INFLIGHT EVALUATION OF AN ACOUSTIC

 ORIENTATION INSTRUMENTDan D. Fulgham John L. Orr Brian Mikiten

DTIC
ELECTE
FEB 171993
c

MacAulay Brown, Incorporated 3915 Germany Lane Dayton, OH 45431

Southeastern Center for Electrical Engineering Education 1101 Massachusetts Avenue St. Cloud, FL 34769

CREW SYSTEMS DIRECTORATE

2504 D Drive, Suite 1 Brooks Air Force Base, TX 78235-5104

December 1992
Interim Technical Report for Period 16 November 1987-30 April 1991

Approved for public release; distribution is unlimited.
93
216
041

DISCLAIMER NOTICR

THIS DOCUMENT IS BEST QUALITY AVALLABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICES

This technical report is published as received and has not been edited by the technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

KENT K GILUNGHAM, M.D., Ph.D.
Project Scientist

RONALD C. HIL, Lt Col, USAF, BSC
Chief, Flight Motion Effects Branch

RICHARD L. MILLER, Ph.D.
Chief, Crew Technology Division

OTIC QUALITY INSPECTED 3

Armstrong Laboratory

Crew Systems Directorate
2504 D Drive, Suite 1
Brooks Air Force Base, TX 78235-5104
AL-TR-1992-0160
SUPPLEME:
Armstrong Laboratory Technical Monitor: Dr. Kent K. Gillingham, (210) 536-3521
TETRET

Approved for public release; distribution is unlimited.

Subcontractor (Southwest Research Institute) provides engineering data and system software description for the Acoustic Orientation instrument (AOI), which they developed for inflight testing. The overall scheme of operation of the system involves inputting a frame of scaled flight data (airspeed, bank angle, vertical velocity, etc.) from the Flight Instrument Package (FIP) over an RS232 serial link to the AOI, conversion of the flight data to corresponding output voltage waveforms by the AOI, and delivery of those outputs to stereo headphones to generate an auditory display of the flight parameters of interest. This report constitutes an operation and maintenance manual for the AOI, including system programming in the FORTH computer language.

Acoustic orientation

Introduction

Software

A. Acoustic Orientation Aid Software
B. Software Operations Overview
C. Operating Sequence
D. Values Displayed When AOI Operates
E. Reading and Setting Variables
G. Changing the Value of a Variable in DEMO
H. Software Vector Hooks
I. Acoustic Transformations
J. Changing $A O I$ Function Routines
K. Substituting AOI Function Routines
L. Development Environment
M. Delivered Files

Serial Communications Information
A. Serial Communications

System Overview
A. Purpose
B. Component Overview

Appendices:

Appendix A - 8930/6522 board
PCB schematics
PCB layouts
data sheets 74LS688
AY-8930
R65C22
PCB silkscreens

Appendix B-68HC11
Max-Forth manual
NMI board manual

Appendix C-R65C52

Appendix D-Ground plane/Power board
schematic
PCB layouts
Appendix E - Filter board
schematic
PCB layouts
FLT-U2 data
PCB silks

Appendix F - Audio mixer board
schematic
layout
PCB silks
data sheets
Op amps
Xicor digital pots
Appendx G - Parts list

Appendix H - Source code listing

INTRODUCTION

Selected flight parameters of the aircraft are monitored by the Flight Information Package (FIP). Upon a request from the Acoustic Orientation Instrument (AOI), the FIP sends a frame of scaled data corresponding to the current flight parameters over a RS232 serial link to the AOI. Figure 1 shows a diagram of the system.

The audio control circuitry of the AOI provides direct microprocessor control over six channels of waveform generation. Scaled parameters from the FIP are mapped to an output waveform heard by the pilot through stereo earphones. A simple example follows: Heading deviation (the deviation of actual heading relative to a set heading) is used to help the pilot stay on a pre-determined course. This heading deviation information is used to control the position of the acoustic signal across the pilot's head by adjusting the signal to the channels of the pilot's stereo headset. A course deviation of 10 degrees or greater results in a monophonic signal in the ear opposite the deviation. As the pilot corrects the error, the signals become more centrally located between the left and right ears, until finally there is an equal amplitude between the pilot's left and right ears and the auditory image is centered.

Other aircraft parameters which may be presented as transformations mapped to acoustic signals include airspeed, angle of attack, vertical velocity, altitude, and pitch and roll angle. Input parameters may be represented as changes in waveform frequency, amplitude, modulation, duration, attack, and decay times. The system software is written in the FORTH computer language and is designed for flexibility over parameter minimums, maximums, activation values, and types of signals used for stimulus. This system allows changes in control values to remap the acoustic signals with little knowledge of the theory of the system or programming.

SOFTWARE

Acoustic Orientation Ald Software

The software for the AOI has been provided in three formats: 1) source code listing in Appendix H 2) MS-DOS "non-document" text flles on 1.2 Mbyte $51 / 4$ inch floppy disk and 3) 720 Kbyte 3 1/2 inch disks.

Software Operations Overview

A MS-DOS laptop computer with a communications program such as CrossTalk XVI or Mirror Ill should be used to load the software into the AOI and monitor its operation.

A batch file for Mirror is included which SENDS modules to the AOI. If another communications program is used, it should be set to require character echo and wait for a CR/LF before sending the next line.
B

FIGURE 1. AOI/FIP SYSTEM CONFIGURATION.

Once the AOI software has been loaded, the laptop functions as a terminal to the AOI. The delvered DEMO module can stream the values read from the FIP to the screen.

Each of the AOI functional components - for example DO.AIRSPEED, which translates the data from the airspeed channel of the FIP into tone frequency - has several variables associated with it. Two of the airspeed related variables are AIRSPEED.MAX.FREQ. and AIRSPEED.MIN.FREQ. These variables correspond to the maximum and minimum frequencies generated by the airspeed channel. The characteristics of the AOI may be modified by simply placing a new value in the variable and starting the program. The functional components and their associated variables are described in detail in the section Acoustic Transformations.

Software integrity is only maintained by avoiding modifications of the source code. Changes in the variable settings should be made in the file DEMO.DO using a text editor.

Operating Sequence

The FIP and AOI computer programs must be loaded into the respective systems before a flight occurs. First, secure the battery package to the aircraft seat channels. Next, mount the FIP to the top of the battery package and engage the holding straps. This places the FIP in the correct configuration for flight. Foliowing the steps outlined below will run the system.

- Turn the FIP control switches located on the to panel of the FIP to the off position.
- Connect the battery pack power connector labeled Power Cable A to the FIP and lock in place
- Connect RS-232 Cable A to the AOI but not the FIP
- Connect RS-232 Cable B to the Inflight contoller
- Connect RS-232 Cable C from the Infight controlier to the Flight data monitor
- Connect the cockpit mounted remote indicator
- Connect the AOI Power Cable from the FIP to the AOI
- Turn on the Infight controller power and verity battery power
- Turn on the FIP main power switch
- Turn on the Gyro power
- Turn on the FIP computer power
- Connect the downloading computer to port A of the FIP
- Turn on the downloading computer and start MIRROR
- Confirm the < OK> from the FIP computer *
- Download the FIP computer program
- Hook up the AOI RS-232 Cable A to the FIP Port A
- Hook up the downloading computer RS-232 cable to the AOI terminal port.
- Confirm the OK from the AOI **
- Download the code from the computer to the AOI (see
below)
- Start the AOI program
- Turn the experiment-on switch to the on position
- Confirm data streaming and the TX light at a rate
of approximately 1 Hz . ***
- Start the recording system and the flight
* If an <ok> is not present, the connections are faulty or the FIP computer is not working. If the green light on the FIP computer is on, the connections are faulty.
** If an <ok> is not present, check the power connection and press the red reset button on the front panel of the AOI. If this does not correct the problem, the AOI or FIP power system may require service.
*** If data is not streaming or $T \times$ light is not at 1 Hz , the FIP may not be executing its program. Check the download program and the status of the FIP computer system.

AOI Code loading instructions:

1. Start the communications program. The settings are 9600 baud, 8 bits 1 stop hit, no parity, character echo.
2. Line Walt $=$ CTRL J.
3. From the MIRROR command line type: DO STARTUP and press the ENTER key.
4. The program modules will then load into the AOI.
5. Normal operation of the AOI is indicated by an OK prompt.

NOTE: BE CERTAIN THAT THE CAPS KEY ON THE LAPTOP IS DEPRESSED. ALL COMMANDS TO THE AOI MUST BE IN UPPER CASE!
6. Type AOI and press ENTER. In a few seconds, data values from the FIP will start streaming to the laptop display.
7. Pressing any key will stop the AOI program. Typing AOI and pressing ENTER will partially re-initialize the system and start the program. Variables which have been changed at the OK prompt will now be in effect until changed or until the program is reloaded.

Values Olisplayed When AOI Operates

The values displayed are scaled data values from the FIP. The figures in the section Acoustic Transformations show the relationships between the readings on the cockpit instruments and the scaled data.

Reading and Setting Variables

To see the value of a variable you must do three things: 1) obtain the location of the variable by typing tis name, 2) fetch the value of the variable by typing @, and 3) display the variable by typing a period. The OK prompt means the AOI is ready to accept a command.

For example:
OK AIRSPEED.MIN.FREQ @ .
40
OK
shows that the current value of the variable AIRSPEED.MIN.FREQ. is 40 .

To temporarily change the value of a variable, three steps are again required: 1) type the new value and a space, 2) type the name of the variable and a space, and 3) type ! and Enter. Each of these entries must be separated with a blank space.

For example to make the lowest fre juency for airspeed 200 Hz :
OK 200 HZ AIRSPEED.MIN.FREQ!
OK
and the value is changed. HZ is a word which translates frequency to period.

Changing the Value of a Variable in DEMO

The same commands may be used in DEMO to change the values of a variable. Use a text editor in the laptop to edit the file DEMO to contain the command.

As in the airspeed example above, type:
200 HZ AIRSPEED.MIN.FREQ !
then save the modified DEMO file. There is no OK here because we are editing a text file, not interacting with the interpreter. When DEMO is reloaded, the new value will be in effect. The advantage of this approach is that the program itself is not changed, it is easy to keep track of where changes have been made, and a complete re-loading of the program is not required.

Software Vector Hooks

DEMO contains examples of the use of the Forth MAKE construct. As AOI was written, portions of the program were constructed as changeable hooks, also known as forward references or execution vectors. The MAKE command is used to plug a particular section of code into the hook. Initially, all hooks are connected to a routine called NOP (no operation), which does nothing. Inspection of the source code in Appendix H for the routine AOI in the module AOI will show that it is just an infinite loop with a series of named hooks. The declaration of one of these hooks is by the word DOER. The declaration of the execution vectors for the routine AOI in the module AOI, is just before the AOI routine itself.

If AOI was loaded, but not DEMO, and AOI typed to start it, the AOI microprocessor would be an infinite loop doing nothing. It would be necessary to elither remove power from the system and reload the software or press the reset button on the AOI in order to stop the execution.

In DEMO the phrase:

MAKE HOOK4 GET.OUT

changes the operation of HOOK3 from NOP to the routine GET. OUT which checks for depression of any key and exits the loop H any key has been pressed.

Similarly, the phrase:

MAKE N.STARTUP SETUP

Causes the routine SETUP to be inserted into the hook N.STARTUP.
Hooks can be turned off by setting them to execute the routine NOP as follows:

MAKE HOOK2 NOP

This phrase will stop the display of the scaled data values on the laptop.

In general, the vectors can be hooked and unhooked as desired, with one exception. The routines for alrspeed (DO.AIRSPEED) and for vertical velocity (DO.VERTICALVELOCITY) are related since the vertical velocity routine controls the amplitude of the airspeed tone.

Acoustic Transformations

The software modules for the various functions work in a consistent manner. There is a range of scaled data values defined by endpoints and a range of AY-8930 control parameters for an acoustic dimension defined by endpoints.

The software linearly scales the data value to the AY-8930 parameter value and loads the appropriate AY-8930 register to set the corresponding acoustic dimension. The rest of the code in the function routines is primarly logic to prepare for the appropriate scaling.

The following discusses the relationships between the scaled data from the FIP and parameters for the acoustlc signals. The specific values described are those originally delivered with AOI-II. As described above, it is intended that these parameters be changed by modifying the file DEMO. It is important to understand that the encoding relationships described here are only and example of the set of possible encoding schemes. The source code containing FIP data to AOI scaled data is found in Appendix H. One must carefully read the source code to understand the detalls of the encoding examples. In figures 2-7, the upper line indicates the range of scaled data from the FIP and the corresponding physical parameter values, while the lower line displays the range of acoustic parameters.
AIRSPEED

VERTICAL.VELOCITY

NOIIV7nOOW 3anıIIdWV 3าפNVIA ALTITUDE．ENVELO
ALTITUDE．ENVELOPE．PERIOD
ALIITUDE．＞．TOLERANCE．FREQ
TRIANGLE AMPLITUDE MODULATION
ALIITUDE．ENVELOPE．PERIOD
ANGLE.OF.ATTACK

NOII甘W甘O

Abstract

Airspeed

Airspeed is encoded into the frequency of a square wave output which increases in frequency as airspeed increases. The upper line in Figure 2 shows that the range of scaled airspeed values is from 0 to 330 knots, corresponding to scaled data values from 0 to 4096. The lower line shows that the AIRSPEED.MIN.FREQ is 40 Hz and the AIRSPEED.MAX.FREQ is 1000 Hz . This range of frequencies is mapped linearly between the scaled data values corresponding to LOW.AIRSPEED.LIMIT.VALUE (current scaled data value of 1116 corresponding to 90 knots) and HI.AIRSPEED.LIMIT.VALUE (current scaled data value of 2235 corresponding to 180 knots). Changes in these variables will change the scaling. If LOW.AIRSPEED.LIMIT.VALUE was set to 1861 (150 knots) and HI.AIRSPEED.LMMIT.VALUE was set to 2110 (170 knots) and the other variables unchanged, the new airspeed range of 20 knots would be scaled from 40 to 1000 Hz . Similarly, if the airspeed limit values were at their original values and AIRSPEED.MAX.FREQ was changed to 1500 Hz , airspeeds from 90 to 180 knots would be mapped onto a $\mathbf{5 0 \%}$ larger frequency range.

Vertical Velocity

The direction of vertical velocity (climb or dive) is encoded as a change in amplitude modulation (attack or decay) of the airspeed tone. The magnitude of vertical velocity is encoded into the period of the amplitude modulation with long periods corresponding to low verical velocities and short periods corresponding to high vertical velocities. There are selectable vertical velocities beyond which the modulation period does not change. As shown in Figure 3 the scaled values of vertical velocity from the FIP range from 0 (2048 feet/minute dive) through 2048 (level flight) to 4096 (2048 feet/minute climb). The range between the DIVE.THRESHOLD of 1748 (300 feet/minute cimb) and the CLMB.THRESHOLD of 2348 (300 feet/minute dive) define a null region where there is no amplitude modulation of the airspeed tone. Between the CUMB.THRESHOLD and the CLIMB.2048.FT/MIN.VALUE, the period of amplitude modulation (decays starting with the maximum intensity and decreasing in 32 logarthmic steps) changes from slow (the maximum envelope period of 65535) to fast (the minimum envelope period of 12000). The signal changes between the DIVE.THRESHOLD and the DIVE.2048.FT/MIN.COUNTS are analogous except when the amplitude moduation consists of attacks starting with the lowest intensity and stepping to the maximum. The VERTICALVELOCITY.MINIMUM.ENVELOPE.PERIOD is set to 12000 in order to permit discrimination of the decays and attacks. Athough the demo program has symmetrical thresholds and Ilimit values, this is not a requirement.

Heading.error

Heading error is relative to the heading set on the FIP. Heading errors move the apparent location of the acoustic signal in a direction opposite the deviation. Figure 4 shows the encoding of heading error. Scaled heading error values from the FIP range from 0 (180 degrees left heading error) to 180 (on course) to 359 (179 degrees right heading error). Between LEFT.HEADING.ERROR.THRESHOLD (scaled value of 175 which corresponds to a 5 degree left
heading error) and RIGHT.HEADING.ERROR.THRESHOLD (185 which corresponds to a 5 degree right heading error) the acoustic signal is centered. Between LEFT.HEADING.ERROR.THRESHOLD and LEFT.HEADING.ERROR.LIMIT.VALUE (160 corresponding to a 20 degree left heading error) there are 50 position steps toward an apparent location of the acoustic signal on the right. Left heading errors larger than the LEFT.HEADING.LIMIT.VALUE are positioned at the maximum location to the right. Heading deviations to the right are similar in concept, except that the apparent acoustic signal location moves to the left with increasing deviations.

Roll

Encoding of roll is directly analogous to the encoding for heading error. Figure 5 shows the particular values of the values in the roll variables used in the supplied version of AOI. Because heading error and roll both encode to position within the head on the interaural axis, only one may be connecteci to tis software vector hook at a time.

Altitude Deviation

Athude devlation is relative to the value set on the FIP. Figure 6 shows the altitude encoding scheme. Altitude deviation covers a range between 2048 feet below the FIP setting (scaled data value of 0) and 2048 above the FIP setting (scaled data value of 4096). Above the HIGH.ALTITUDE.LIMIT.VALUE of 2548 (500 feet above FIP setting), a high pitched triangle modulated annunciatior is added to the acoustic signal. ALTITUDE. >. TOLERANCE.FREQ is the variable which controls the frequency of the annunciator and ALTITUDE.ENVELOPE.PERIOD is the varlable which controls the period of the annunciator. Below the LOW.ALTITUDE.LIMIT.VALUE of 1548 (500 fee below FIP setting) the annunciator is added to the acoustic signal with a frequency controlled by the variable ALTITUDE. <.TOLERANCE.FREQ.

Angle.Of.attack

Encoding of angle of attack is shown in Figure 7. Because there is not a functioning angle of attack vane on our test alrcraft, this function is not yet implemented. The acoustic signal for angle of attack is intended to provide a warning of an impending stall. ANGLE.OF.ATTACK.NEUTRAL.VALUE is an offset. If the scaled data value for angle of attack is less than ANGLE.OF.ATTACK.NEUTRALVALUE plus ANGLE.OF.ATTACK.THRESHOLD, there is no acoustic output for angle of attack. If the scaled data value is greater than ANGLE.OF.ATTACK.THRESHOLD but less than the stall value, angle of attack deviation from threshold is mapped onto the period of a digital noise generator in one of the AY-8930 programmable sound chips. Just above the threshold, the acoustic signal is randornly spaced clicks with a low average rate. As deviation above threshold increases, the average rate increases untll just before a stall, the acoustic signal resembles wide band noise. When data value scaling is known, it is merely necessary to insert appropriate scaled values into the variables in the module DEMO as described above.

Changing AOI Function Routines

The diagrams in the section Acoustic Transformations show the important variables for the different functional routines. A great deal of flexibility in the operation of the $A O I$ is avaliable by careful changing of the values of the variables. Alternatively, by inappropriate changes in the variables, it is possible to render the AOI non-functional until the original code is reloaded.

Substituting AOI Function Routines

Using the delvered source code as a guide, new routines can be written in the MAXFORTH language of the AOI microprocessor. For example, a new vertical velocity routine, for example, DO.NEW.VERTICALVELOCITY, could be written and loaded after the file AOI. By editing the line in file named DEMO from

MAKE N.DO.VERTICAL VELOCITY DO.VERTICAL.VELOCITY
to
MAKE N.DO.VERTICAL VELOCITY DO.NEW.VERTICAL VELOCITY
the new routine would be hooked into the AOI-II software.

Development Environment

The AOI software was developed on IBM-PC compatibles. Either Crosstalk XVI from Digital Communications Associates or Mirror from Softkone Associates were used as communications programs. Mirror includes a screen editor which allows the editing of files while still in serial communications with the AOI.

Delvered Flies

The following filles are on the MS-DOS format disk dellvered with the AOI system. The first group of files are modules which make up the AOI software. These files are lis! 9 in Appendix H. These source code files have comments which clarity the actions being periormed. Since the source code is written in MAX-FORTH, the language embedded in the ROM of the microprocessor of the AOI, one must be proficient in FORTH to understand the code in detail. However, because of the ability to use meaningtul names for routines in Forth, one does not need to be an expert to read the Forth source code and understand the function of the components of the routines.

Forth has a variety of unique characteristics. The language is a postfix notation similar to that of most Hewlett Packard calculators. This means that first the operands are entered and then the operator. For example, to add four and six in Forth, you would type $46+$ and then a period. (. is the print command) to print out the result of 10. The MAX-Forth reference manual delivered with the AOI includes an introduction to programming Forth. A second feature of Forth is the dictionary. Routines are called words, and as new words are defined they are entered into the dictionary. Because of its structure, Forth requires that any words used within another defining word must have been previously entered into the dictionary (unless it is a forward reference preceded by the word DOER). Another feature of Forth is that most parameter passing is done on a data stack instead of through static data structures. Forth is ideally suited for hardware oriented, real-time control problem applications such as the AOI, because routines (words) may be interactively tested and debugged.

The following source code files are listed in the order in which they are loaded into the AOI system.

SETUP Configures the system memory and defines utlities
ARRAYS Defines array and table words
CASE Defines a case selection execution structure

CHIPCTRL Hardware control primitives for the AY-8930s
DOERMAKE Implements the forward reference mechanism

SELECTOR Connects functional names to AY-8930 registers
VIEW8930 Controls AY-8930 shape/cycle registers
ENVELOPE Dumps all AY-8930 registers in AOI context
CONVERT Converts frequency to period

TIME6522 -Uses 6522 as a timer
XICOR Controls digital potentlometers
CONFIGUR Sets up hardware

TRANSIT Provides AOI $1 \& 2$ compatibility
ACIACOM Provides communications to FIP

SHOFRAME Displays scaled data

Performs the AOI transformations

SYSINITS Initializes routines

The AOI module is the module relevant for understanding the operation of the AOI and seeing the meaning of the variables which are analogous to the trimmer potentiometers on traditional instruments. Skilled adjustment and change can enhance AOI performance.

The source code modules listed below contain comments and white space to enhance readability.

DEMO is the last module downloaded to the AOI and contains the following:

MAKE N.STARTUP SETUP (IN FILE SYSINITS)

MAKE HOOK1 SYNCH
(WAITS UNTIL 1 SECOND HAS ELAPSED SINCE TIMER STARTED)
(THE TIME FOR THE AOI PROCESSING IS WITHIN THE SECOND)
MAKE HOOK2 GET.DATA.FRAME
(PUTS A FRAME OF DATA INTO INPUT.DATA ARRAY)
(INPUT.DATA IS DEFINED IN FILE TRANSITS)
(GET.DATA.FRAME IS DEFINED IN ACIACOM)

MAKE HOOK3 SHOW.DATA.FRAME
(SHOWS THE DATA FRAME FROM INPUT.ARRAY)
MAKE HOOK GET.OUT
(GET.OUT BREAKS YOU OUT OF THE PROGRAM IF ANY KEY IS HIT)
(GET.OUT DEFINED IN FILE SETUP)
(MAKE N.DO.AOA DO.AOA)
(AOA VANE IS NOT YET ON AIRPLANE)
MAKE N.DO.AIRSPEED DO.AIRSPEED
(BOTH DO.ROL AND DO.HEADING.ERROR USE THE HEADPHONE

BALANCE)

(THEREFORE ONLY ONE CAN BE USED AT A TIME)
MIAKE N.DO.ROLL DO.ROLL
(MAKE N.DO.HEADING.ERROR DO.HEADING.ERROR)
MAKE N.DO.ALTITUDE DO.ALTITUDE
MAKE N.DO.VERTICAL.VELOCITY DO.VERTICALVELOCITY
The modules above connect the routines to the hooks in the AOI program (resolves the forward references from NOP to the desired action. DEMO. is the appropriate place to add changes to set variables to new values.

LP.DOC explains how the listings were printed and contains the following:
This is the command line used with Norton's LP program to produce the HP Laserjet listings:
Ip filespec /h60/w132/set:\aoi\lasercod/l25/r25
The file LASERCOD contains the setup for the HP Laserjet and consists of:
\027E\027(s16.66H)
(This information is only relevant if you have Norton Utilities and an HP-Laserjet printer).

SERIAL COMMUNICATIONS INFORMATION

Serial Communications

The following data frame is used when data is sent from the FIP to the AOI-II.
Frame Start Character (STX ascii 02)
Airspeed
Angle of Attach (not used)
Vertical Velocity
Heading Deviation (+ -)
Roll Angle
Pitch Angle
Altinude Deviation (+ -)
End of Frame Character (ETX - ascii 03)
Data is sent at 9600 haud, 8 data bits, 1 stop bit, no parity. The data are sent as 16 bit binary integers with a check surn.

SYSTEM OVERVIEW

Purpose

The Acoustic Orientation instrument (AOI) has been designed as an acoustic signal synthesis and output device driven by the Flight Instrumentation Package (FIP). As a system, the AOI is directly connected through a serial communications line to the FIP and generates acoustic parameters based on the scaled values of filght parameters measured by the FIP while in flight.

The FIP-AOI system is designed to operate for up to 4 hours from a battery package that supplies both the AOI and the FIP. Audio output is provided to two stereo headphone jacks located on the front panel of the AOI. The AOI is housed in a $\times \times 6 \times 4$ inch metal case and consists of six individual printed circuit boards.

Component Overview

68HC11/F Single Board Comouter

The first component in the system is a $68 \mathrm{HC11/F}$, single-board computer operating at 4 MHz from Now Micros Inc., Dallas, Texas. The board runs the FORTH programming language as well as assembly code and contains a port replacement unit (PRU), three sockets for RAM, and a total addressable range of 64K, minus the space used by the FORTH language in ROM within the microprocessor. Also included on the board is a RS232 communications port for the console operating at 9600 baud, 8 bits no parity, one stop bit. In this implementation the board utilizes 32 K of RAM and the Forth language in ROM. All components in the AOI-II are memory mapped on the bus using the JEDSTACK connector on the board. The bus contains 16 address lines, 8 data lines multiplexed, read/write signals, interrupt signals and other miscellaneous microprocessor generated signals. The clock used on the microprocessor board is used as the AOI system clock and drives all other boards. Bus addressing has been used to guarantee high speed operations and data transfer to all other boards in the system. The bus also provides one leg of the mechanical support for the entire AOI board set. Other information on the 68HC11/F board can be found in the Appendix B. Also included in Appendix B are the Max-Forth and 68HC11 manuals.

6522/8930 Board

The 6522/8930 board is used in the system to generate acoustic signals. Two General Instruments AY-8930s are located on the board and provide up to six independent channels of digital audio. Each 8930 is separately memory mapped and operates Independently. During the development of the system it was found that the 8930s are not directly compatible with the bus structure of the JEDSTACK. To correct the interface signal problems, a Rockwell Semiconductor 65 C 22 was used. This single 65 C 22 provides two extra parallel ports and thereby the ability to synthesize a secondary bus used to interface the AY-8930s to the $68 \mathrm{HC11/F}$.

Board Function

Signals from the bus are decoded by two 74 HC 6888 bit bus comparators. The board is decoded in 16 bytes of RAM and can be located anywhere within the free memory space of the microprocessor. The dual 688s decode address lines A15-A4 based on a low address strobe on the bus. The subsequent $\mathbf{P}=\mathbf{Q}$ line pulls down memory disable and provides the chip select line to the 6522. All subsequent reads and writes to the 6522 are done using standard bus nomenclature. The 6522 is used in this application to synthesize the 8 bit data bus going to both AY-8930s and the required control lines BDIR, BC1, Reset, A8 and A9. Because of this synthetic bus, transfer rates to the AY-8930s are substantially lower than that which could be achieved using direct bus access. Fortunately, in this application, higher speed access was not a requirement.

Port A on the 65C22 is used to provide data and address lines to both AY-8930s as shown in the schematic labeled AOI Digital Board Rev 3.0 in Appendix A. The 6522 pins CA1, CA2, CB1, CB2 are not used at this time. Port B synthesizes all of the control lines used for both of the AY8930s. PB1 and PB2 are used to synthesize BDIR and BC1 on the 8930 chips. PBO is used to select AY-8930-0 or AY-8930-1. AY-8930-0 has its control line A8 tied high thereby using a low signal on PB 5 to select it. AY-8930-1 has bit A9 tied low, and uses a high signal on A8 to select it. This single line provides simple, quick chip select logic between the two devices and guarantees that bus contention between the two chips never occurs.

All of the parts on this board are clocked using the microprocessor's 2 MHz clock. A secondary bus system is also provided on the AY-8930/6522 board. It consists of four rows of 35 pins located on the rear portion of the board and is designed for board-to-board interconnection. All signals from the 8930 as well as $12 \mathrm{~V},-12 \mathrm{~V},+5 \mathrm{v}$, and ground are present on this bus. 1/0 control ports from both AY-8930s are used to control mixer board functions on the audio mixer board (see that section).

The board-to-board interconnection bus is configured as four rows of 35 pins. Row 1 , labeled C1, contains all four of the 8 bit ports found on the AY-8930s. Row 2, C2, is completely grounded to provided isolation and noise immunity to the system. Row 3, C3, carries on pins 1-6, all slx channels of audio generated by the AY-8930s chips 0 and 1. Row 4, C4, contains ground, $+12 \mathrm{~V},-12 \mathrm{~V}$ and 5 V . See the schematic for pin labeling on this bus. Silk screens for this board are provided in Appendix A. One 150\% board layout is provided in Appendix A. A component list for this board is provided in Appendlx G. A bit list for this board is shown on the following page.

AOI II Dlaital Potentiometer Control Bit List

The following Ilst shows the AY-8930 output bits used to control the digital potentiometers. All bits are shown with the AY-8930 pin number and the function.
$10=$ Chip 0
$11=$ Chip 1
Negative logic is shown with a ~

Bit	Function	Description
10-80	U/~D	All U/D for the Xicors
10-B1	INC Xicor Pot	Increment all Xicors
11-AO	Pre-Mixer Pot	Level control
\|1-A1	Noise Level	Noise level control
11-A2	Balance	Balance XIcor control
11-A3	Left Volume	Post balance gain
11-A4	Right Volume	Post balance gain
11-A5	-	Not Used
11-A6	HP Filter	Sets the pass band* tied to A7
11-B0	Ch OA	Audio output gain
11-B1	Ch OB	Audio output gain
11-82	ChOC	Audio output gain
11-83	all Chip 0	Mixer 0
11-84	Ch 1A	Audio output gain
11-B5	Ch 18	Audio output gain
11-86	Ch 1 C	Audio output gain
11-B7	All Chip 1	Mixer 1

Note: 10-A0 through 10-B7 and Ch OA, 08, OC, are from chip zero (0) and I1-AO through $11-\mathrm{B7}$ and Ch 1A, 1B, 1C are from chip one (1).

Audio Mixer Board

The Audio mixer board provides six channels of mix-down capability and final amplification of the audio signals generated by the 6522/8930 board. The board contains six channels of independent mixers with independent digitally controlled volume, two 3 to 1 mixers, mixers for four external signal sources with manually controlled potentiometers, computer-controlled balance circuitry, and final amplification. Also included on this board is a variable bandwidth filtered white noise source. Information about this board is in Appendix F.

Each of the audio chanrels from the AY-8930 board (A,B,C AY-8930-0, A', B', C' AY-8930-1) are provided to this board using the board to board bus interconnections described under the AY8930 board section. The board provides several stages of modification to the audio signal generated on the AY-8930 board. The first stage, buffering, attenuation and amplification, is realized using a digital XICOR potentiometer. The potentiometer is located on the feedback loop of the Op-amp used to buffer the digital signal to this board. Gains up to 2 X and attenuation to .5 X can be achieved with the 100 step potentiometer. Individual control of each of the six channels and each of the gain/amplification/attenuation network is provided using AY-8930 control bits (see the AY-8930 board bit list). Once amplified or attenuated, the raw signals are provided to jumper blocks $\mathrm{J} 1-\sqrt{ } 3$ for AY-8930-1 or J5- J 7 for AY-8930-0. Each jumper block provides the user the capabillty of mixing the signal within the output group of that chip, or separating the signal to be used in the post-balance portion of this board's circuitry. If used in the default configuration all signals from the single attenuation /amplification stages, will be routed to the $3: 1$ mixer on IC1. At this point, all three of the signals from AY-8930-0 will be routed to IC2 and all signals from AY-89301 will be routed to IC1. In this configuration, complete $3: 1 \mathrm{mbxing}$ is achieved on one quad opamp. The output of this $3: 1$ mber is then sent to a $2: 1$, or final mixing stage, on IC3. IC3 also contains the amplifiers used in the external mbxing sources referred to as pre-balance external mbers. Note that the output of both $3: 1$ mixers and the subsequent 4:1 include only monaural signals from the two AY-8930s and the two external signal sources. The external signal source opamps, located on IC3, provide up to $.2 X$ attenuation or $+2 X$ amplification of the external signal source. R12 and R13 (components list appendix G) are used to match the impedance and set the gain of the circuit for the external signals to the internal circuitry used on this PC board.

The final portion of circuitry in the prebalance mixing chain, op-amp 4, located on IC3, allows the user to digitally control all AY-8930 and two extemal prebalance signal sources before they are processed by the balance circuit. Complete digital control of attenuation and gain of this combined signal is provided using another XICOR digital potentiometer and the control lines found on the external bus. Once the signals are mixed, a balance circult, uttizing one XICOR digital potentiometer and one MC34082 dual op-amp allows the users to modulate the signal source across the head of the pilot. Near full attenuation on either channel is attained csing this system. Note that unity gain is provided through this circult.

Balance Clicult - A note

Note, at this point in the circuitry the user is allowed to route signals either prebalance or postbalance. If prebalance is selected, all signals are mixed through IC3 op-amp 4. If post balance is selected, signals are routed to jumpers $1-9$ pins 6 or 4 and are processed post balance. As was the case with the prebalance signals, two external inputs are provided for the user. In contrast to the prebalance signals, the postbalance external mixers are either external left or external right. Crossover between the two channels is nonexistent. The final stage before power amplification mixes any signals routed from the prebalance mixers or external prebalance signal sources and the external post balance sources. Again, digital gain using the XICOR digital potentiometers is provided with attenuation characteristics similar to those mentioned above.

Final mixers, located on IC2, op-amps 2 and 4, are routed to the LM 1877 power amplifier. This power amplifier is capable of driving loads up to 8 ohms at one watt. Two jacks have been provided on the AOI front panel both wired in parallel. Because of this, impedance calculations should be considered before attaching any low impedance systems.

XICOR Dialtal Potentiometers

The XICOR digital potentlometers (data sheet shown in Appendlx F) provide full digital control of an IC-based 100 step potentiometer. In the AOI system, 10K, 50K, and 100 K ICs are used. Implementation of the potemtiometers on this board is simple. All up, down, and increment lines are tied to a single pin and are operated using the AY-8930 control pins. Chip select, Pin 7, is Individually controlled across the entire board using individual pins on the AY-8930s (see the chip control data sheet under the AY-8930 section). This implementation provides two features. The first, the lessening of control lines by ganging all up/down and increment lines together, provides a simpler and less noisy board layout. The second, individual control of chip select but not up/down and increment, provides high speed chip select and the ability to gang together the operation of several devices at once, l.e., the entire AY- $8930-0$ audio can be attenuated while not affecting the channels on AY-8930-1.

The Ground Plane/Power Board

The ground plane power board provides two basic functions. The first, distribution of power and signals for the entire AOI system. The second, isolation of high frequency nolse from the microprocessor unit to the sensitve analog audio portions of the AOI. Power from the external DB-9 power connector is routed directly across the board through several bypass capacitors and ferrite beads. This implementation of power filtering provides not only low frequency filtering and decoupling but also high frequency noise attenuation. Once the power is brought to the board, t is distributed to both the AY-8930 board to board bus, busses C1-C4, and connector AC1. Complete schematics, board layouts, and pin numbering for this board can be found in Appendlx D.

Noise Filter Board
The noise filter board, a final addition to the AOI-II system, consists of a white noise source, a fixed low pass and variable high pass digitally controlled filter system. Wide band white noise is achieved using the LM389 audio op-amp. The op-amp and its associated free transistor are used in conjunction to generate white noise. The transistor shown in the data sheet, located in Appendix E, is used in an open collector mode to generate transistor noise. The resulting noise is amplified and used within this circult. The resulting signal is processed using a variable high pass, fixed low pass, band passed filter conflguration. This filter utilized a fixed low pass edge, located on IC2, and a variable high pass, Located on IC3. The filter building blocks, consisting of four free op-amps on the FLT-U2s, provide not only stable, easy to configure filter configurations, but also in the case of the high pass varlability, provide a simple resistor based frequency cut-off variations. In this configuration four XICOR pots are used to set the cut-ff filter frequency. The four pots on the board share the up/down and increment lines found on the main board. A single chip select line is used for all of the XICOR pots on this board. The board has been developed as a daughter board, and because of this, all signals provided through connector CO on the mixer audio board. Note that 5V, $-12 \mathrm{~V},+12 \mathrm{~V}$ and ground are also provided through this connector. Because of the mechanical features of this board, and because of its mounting position on the audio mixer board, care must be taken when mounting or unmounting these components. See Appendix E for schematics, board layouts and other information on the FLT-U2 Universal Filter Building Block.

6255 Boand

The final board in the system is the 6255 New Micros dual ACIA board. This board consisting of a Rockwell 6552 dual ACIA that provides two 8 bit serial ports memory mapped under full control of the microprocessor to the AOI-II. Only a single port on this board is used to communicate between the AOI and the FIP. For a description of the protocols used, see the module ACIACOM in the source code in Appendix H on the software. Detailed information on the $65 C 52$ dual ACIA is provided in Appendix C.

Appendix A - 8930/6522 board

$$
1
$$

Appendix A - PCB layouts

Digital Board Final	2.0	
Wed, Sep 13,	1989	11:24 AM
Component Xray	Scale150\%	

Digital Board Final 2.0	
Wed, Sep 13, 1989	11:24 AM
Component Side	Scale150\%

[^0]SN54/74LS682
SN54/74LS684 SN54/74LS688

8-BIT MAGNITUDE COMPARATORS

LOW POWER SCHOTTKY

The LS682. LS684 and LS688 are totem pole devices. The LS682 has $: 20 \mathrm{k} \Omega$ pullup resistor on the Q inputs for analog or switch data.

FUNCTION TAGLE

INPUTS			OUTPUT8	
Data	EmAOLE*			
P.O	©. ${ }^{\text {GY }}$	$\overline{62}$	$\overline{p=0}$	$\overline{P>Q}$
$P=0$	L	L	L	H
$P>0$	L	L	H	L
$p<0$	-	1	H	H
-	H	H	H	H.

DESCRHPIION - The SN54LS/74LS682. 684, 688 are 8 -bit magnitude comparators. These device rypes are designed to perform comparisons berween wo eight-bit binary or BCD words. All device types provide $\bar{\beta}=\mathbf{Q}$ outputs and the LS 682 and LS684 have P>б outputs also.

B-BIT MAGNITUDE
COMPARATORS
LOW POWER SCMOTTKY

TYPE	$p=0$	$\overline{P>0}$	OUTPUT ENABLE	OUTPUT CONFIGURATION	PULLUP
LS682	yes	ves	no	10tem-pole	ves
LS883	vea	ver	no	coen-collector	yes
LS684	yes	vos	no	rotem-pote	no
LS685	ves	ves	no	open-collactor	no
LS886	vet	ves	ves	totem-pole	no
LS687	ves	ves	yes	open-collector	no
LS888	ves	no	ves	totem-pole	no
LS889	ves	no	ves	open-collector	no

GUARANTEED OPERATMNO MANGES

SYMEOL	PARAMETER		MIN	TYP	MAX	UNIT
VCC	Supply Voltage	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{array}{r} 4.5 \\ 4.75 \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 55 \\ 5.25 \end{gathered}$	V
T_{A}	Operating Ambient Temperature Range	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{array}{r} -55 \\ 0 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 125 \\ 7 r \end{array}$	${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{OH}$	Output Current - High	54.74			-04	4
${ }^{\prime} \mathrm{OL}$	Output Current - Low	$\begin{aligned} & 54 \\ & 74 \end{aligned}$			$\begin{array}{r} 12 \\ 24 \\ \hline \end{array}$	$\pi .4$

DC CMARACTERHSTCE OVER OPERATNGG TEMPERATURE RANGE (Uniess otherwise SDectied)

SYMBOL	PARAMETER		LIMITS			UNTTS	TEST CONDITIONS	
			MIN	TYP	Max			
$V_{1 H}$	Input HIGH Vohage		2.0			v	Guaranteed In All Inputs	Dut HIGH Votrage for
V_{IL}.	Input LOW Voltage	54			0.7	v	Guaranteed input LOW Voltage for All Inputs	
		74			08			
$V_{\text {IK }}$	Input Cliamp Diode Vottage			-0.65	-1.5	v	$\mathrm{V}_{C C}=$ MIN. $1 / \mathrm{N}$	$N=-18 \mathrm{~mA}$
VOH	Output HIGH Vothage	54	2.5	3.5		v	$V_{C C}=M I N \cdot I O H=M A X, V_{I N}=V_{I H}$$\text { or } V_{I L} \text { der Truth Table }$	
		74	27	3.5		v		
$\mathrm{V}_{\text {OL }}$	Output LOW Votage	54.74		0.25	0.4	v	$1 \mathrm{OL}=12 \mathrm{~mA}$	$V_{C C}=V_{C C}$ MIN.
		74		0.35	0.5	V	$10 \mathrm{~L}=24 \mathrm{~mA}$	$V_{I N}=V_{I L}$ or $V_{I H}$ per Truth Table
I/	Inout MIGH Current				20	$\mu \mathrm{A}$	$v_{C C}=$ Max	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$
		LS682-0 Inputs			0.1	mA	$V_{C C}=\operatorname{MAX} \cdot V^{\prime}$	$\mathrm{IN}^{\mathrm{N}}=5.5 \mathrm{~V}$
		Orhers			01	mA	$\mathrm{v}_{\text {cc }}=$ max.	$1 \mathrm{IN}=70 \mathrm{~V}$
14	Inpus LOW Current	$\begin{array}{\|c\|} \hline \text { LS682-Q } \\ \text { Inputs } \\ \hline \end{array}$			-0.4	ma	$V_{\text {CC }}=\operatorname{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
		Orners			-0.2	$m \mathrm{~A}$		
105	Shont Circuit Current		-30		-130	mA	$\mathrm{V}_{C C}=\mathrm{max}$	
${ }^{\text {'cc }}$	Power Supdly Current	L5682			70	ma	$V_{\text {cc }}=$ MAX	
		L5684			65	$m \mathrm{~m}$		
		LS688			65	ma		

SNSA74LS682 • SN5ATM4S684 • SNSATHLSE8B

LOGIC DIAGRAMS

Snealisialseez thvi Lesen
snsenctacen

FAST AND LS TTL DATA

AC Charactemisince: $T_{A}=25^{\circ} \mathrm{C}$
8NB4LS/74LS682

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONDITIONS
		MIN	TYP	MAX		
tplH 4 HL	Propagation Delay, P to $\overline{\mathrm{P}=\mathbf{0}}$		$\begin{aligned} & 13 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { YPLM } \\ & \hline \text { LPHL } \\ & \hline \end{aligned}$	Propegation Delay, Q to $\overline{P=0}$		14 15	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	ns	
tPL.M tPHL	Propegation Delay. P to $\overline{P>0}$		20 15 1	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	$R_{L}=667 \Omega$
TPLM $4 P H L$	Propegation Delay. Q to $\overline{\mathrm{P}}>\mathbf{0}$		21 19	30 30	ns	

SNB4LS/74LS884

SYMBOL	PARAMETER	LIMITS			UNITS	TEST CONOITIONS
		MIN	TYP	MAX		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHLL } \\ & \hline \end{aligned}$	Propagation Delay, P to $\overline{\mathrm{P}=0}$		$\begin{aligned} & 15 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	ns	$\begin{aligned} & V_{C C}=50 V \\ & C_{L}=45 \mathrm{pF} \\ & A_{L}=667 \Omega \end{aligned}$
$\begin{aligned} & \text { TPLH } \\ & \text { tPHLL } \\ & \hline \end{aligned}$	Propagation Delay. Q io $\overline{\mathrm{P}=0}$		$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns	
$\begin{aligned} & \text { TPLH } \\ & \text { TPHL } \\ & \hline \end{aligned}$	Propagation Delay, P to $\overline{\mathrm{P}>0}$		22 17	30 30	ns	
TPLH tPHL	Propagation Delay, Q to $\overline{\mathrm{P}}>0$		24	30 30	ns	

SN54LS/74LS688

SYMBOL	PARAMEIER	LIMITS			UNITS	TEST CONOITIONS
		MIN	TYP	MAX		
.tplin tPHL	Propagation Delay. P to $\bar{P}=\mathbf{0}$		$\begin{aligned} & 12 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 23 \end{aligned}$	ns	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & C_{L}=45 \mathrm{pF} \\ & \mathrm{~A}_{\mathrm{L}}=667 \mathrm{n} \end{aligned}$
$\begin{array}{r} \text { PPLH } \\ \text { TPHL } \\ \hline \end{array}$	Propagation Dalay, Q to $\overline{\mathrm{P}=0}$		$\begin{aligned} & 12 \\ & 17 \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 23 \\ \hline \end{array}$	ns	
$\begin{aligned} & \text { TPLH }^{\text {tPHL }} \end{aligned}$	Propegation Delay. $\overline{\mathrm{G}} . \overline{\mathrm{GI}}$ to $\overline{\mathrm{P}}=0$		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	ns	

Appendix A - AY-8930

Enhanced Programmable Sound Generator

FEATURES

- Two Modes Available On-Chip - AY8930 Expanded Mode - AY-3-8910A-Compatible Mode
- Improved Frequency Range
- Three Independently Programmable Anaiog Output Channels with Separate Frequency, Duty Cycle and Envelope Controls for Each Channel
- 5 Bits of Logarithmic Digital-to-Analog Conversion Per Channel
- Bus Interface Independent of Clock Frequency
- Inpur Clock Frequency: 2 or 4 MHz
- Two 8-Bit General Purpose I/O Ports

DESCRIPTION

The AV9930 Enhanced Programmable Sound Generator (EPSG) is an LSI circuit that can produce a wide varlety of complex sounds under software control. The AY8930 is manufactured in the Microchip Technology inc. n-channel silicon gate process. The AY8930 is an enhanced version of the company's industry standard AY-3-8910A -. -7d generator. Enhanced features include umproved frequency range and noiee syntreais and independent control of each chennel's envelope and duty cycie.

The PSG is easity interfaced to any bus-oriented system. Its flexibility makes it usetul in applications such as music synthesis, sound effects generation, audible alarms, tone signalling, and home computer usege. In order to generate sound effects while allowing the processor to perform other tasks, the PSG can continue to produce sound after the initial commands have been given by the control processor. The fact that realistic sound production ofter involves more than one effect is satisfied by the three independently controliable analog sound output channels available in the device. These analog sound output channels can each provide five bits of logarithmic digita-to-analog conversion. greatly enhancing the dynamic range of the sounds produced.

PIN CONFIGURATION

AY8030

40 LEAD DUAL IN LINE

Top View

All circuit control signals are digital in nature and can be provided directly by a microprocessor/microcomputer. Therefore, one PSG can produce the full range of required sounds with no change in extemal circuitry. Since the frequency response of the PSG ranges from sub-audible at its lowest frequency to poes-audible at its highest trequency, there are few sounds which are beyond reproduction with only the simpleet electrical connections.

DEVICE ARCHITECTURE

The AY8930 is a register oriented PSG. Communication between the microprocessor and the PSG is based on the concept of memory mapped VO. Control commands are issued to the PSG by writing to these memory mapped registers. Each of the registers within the PSG is readable so that the microprocessor can determine, as necessary, present states or stored data values.

REGISTER ARRAY

The principal element of the AY8930 is an array of 27 control registers arranged in one bank of 16 and one bank of 11 registers. These registers occupy 16 address locations of the 1,024-word memory space in which the PSG resides.

The configuration of this register array is shown on the following pages. Note the two modes of operation: 8910A-compatibility mode and 8930 expanded mode.

The registers are addressed via the combination of the bidirectional data bus (DAO-DA7) and address input pins A8 and $\overline{\mathrm{A} 9}$.

$\overline{\text { A }}$	18	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
0	1	0	0	0	0	X	x	x	x

These four low-order address bits are used to select one of the internal registers within a bank. AB, $\overline{A 9}$

DA4-DA7, These six high-order address bits function as chip selects and are used to position the register bank(s) within the 1,024 word memory space. In the deselected state, the data bus is in the high impedance state.

The address enable code for bits DA4-DA7 is all zeros.

Inputs 48 and $\overline{\mathrm{A} 9}$ are enabled by a high on $\mathbf{A 8}$ and a low on $\overline{\mathrm{A} 9}$; all other input level combinations result in a deselected condition. Pins A8 and $\overline{A 9}$ have an on-chip pull-up and pull-down resistor, respectively, and will assume the correct logic level it left unconnected.

Address bits DA7-DAO are latched internally. This internally latched address is updated and modified on every "latch address" signal presented to the PSG via the BDIR and BC1 control lines.

The AY8930 initializes in the AY-3-8910A-compatibility mode. To utilize the expanded features of the AY8930, an access code must be input to register R15 upon program initialization.

Entering a "101" code in bits B7-85 of register R15 selects the 8930 expanded mode. In the 8930 Expanded mode, bit B4 = 0 (R15) selects BANK A and $B 4=1$ selects BANK B All other bit selections are detined as 8910A-compatibility mode. Registers R15A and R15B are mapped into the same physical register.

Switching modes causes loss of all register data from the previous mode. All registers will be initialized except for the Mode Select code of R15.

Shown on the next page is the register configuration for the AY8930. Note that Bank A of the expanded mode is virtually identical to the single register array of the 8910A-compatibility mode.

AY8930 REGISTER ARRAY: AY-3-8910A-COMPATIBILITY MODE

REGISTER		B7	86	85	B4	83	B2	81	BO
RO	Channel A Tone Period	8-Bit Fine Tune							
R1							4-Bit Co	Stun	
R2	Channel B Tone Period					Tune			
R3						4-Bit Coarse Tune			
R4	Channel C Tone Period					Tune			
R5						4-Bit Coarse Tune			
R6	Noise Period					5-Bit Period Control			
		INOUT		NOISE			TONE		
R7	Enable	108	IOA	c	B	A	C	B	A
R10	Channel A Amplitude	WII		Cl\|A	M	L3	\underline{L}	L1	LO
A11	Channel 8 Amplitude	-	-	Cll-य	M	L3	\underline{L}	L1	L0
R12	Channel C Amplitude	Ella	LlVL	Clla	M	13	12	L1	LO
R13	Envelope Period	8-Bit Fine Tune							
R14		8-Bit Coarse Tune							
R15	Envelope Shape/Cycle		MODE	LECT		CONT.	ATT.	ALT.	HOLD
R16	1/O Port A	8 -Bit Parallel lV on Port A							
R17	1/0 Port B	8 -Bit Parallel I/O on Port B							

AY8930 REGISTER ARRAY: EXPANDED CAPABILITY MODE - BANK A

AY8930 REGISTER ARRAY: EXPANDED CAPABILITY MODE - BANK B

"Nor accessible in AY8930 mode.
NOTE: All unused bits will be read back as " 0

SOUND GENERATING BLOCKS

The basic blocks in the PSG that produce the pre. grammed sounds include:

Tone - Produce the basic puise tone frec enGenerators cies for each channel (A, B, C).

Noise - Produces a frequency modulated Generator pseudorandom noise output.

Mixers - Combine the outputs of the tone zanerators and the noise generator. '. ie for each channel (A, B, C).

Amplitude - Provides the D/A converters with Control either a fixed or variable amplituce pattern. The fixed amplitude is ur.der direct CPU control; the variable amplitude is accomplished by using the output of the envelope generators, one for each channel (A, B, C).

Envelope - Produce an envelope pattern that can Generators be used to amplitude modulate the output of the mixer, one for eacn channel (A, B, C).

D/A - The three D/A converters each pro-
Converters duce up to a 32 -level output signal as determined by the amplitude control.

Since all functions of the PSG are controlled by a host processor via a series of register loads, a detailed description of the PSG operation can best be accomplished by relating each PSG function to its corresponding register. The function of creating or programming a specific sound or sound effect logically follows the control sequence listed:

OPERATION	REGISTERS	FUNCTION
Tone Generator Control	R0-R5A	Program tone periods.
Duty Cycle Control	R6-R10B	Select duty cycle.
Noise Generator Control	R6A. R11-12B	Program noise period.
Mixer Control	R7A	Enable tone noise on selected channels.
Amplitude Control	R10-R12A	Select "fixed" or "variable" amplitudes.
Envelope Generator Control	R13-R15A. R0-R58	Program envelope period and envelope pattern.
D/A Converters	-	Produces a 32-bit output signal.

*All registers referenced are for the AY8930 Expanded Mode, except as noted.

TONE GENERATOR CONTROL

Each analog output channel has associated with it two registers which specity the tone period for that channel, the coarse tune and the fine tune registers. The tone period for each channel is obtained by combining the coarse and fine tune registers as shown.

Note that the value programmed in the combined coarse and fine tune registers is a period value the higher the value in the registers, the lower the resultant frequency.

COARSE TUNE REGISTER	CHANNEL	FINE TUNE REGISTER
R1A	A	ROA
R3A	B	R2A
R5A	C	R4A

12-BIT TONE PERIOD (TP) VALUE: AY-3-8910A-COMPATIBILITY MODE

16-BIT TONE PERIOD (TP) VALUE: AY8930 EXPANDED MODE

Coarse Tune	Fine Tune
	87 86 $\mathrm{B5}$ $\mathrm{B4}$ $\mathrm{B3}$ B 2 B BO
	-
$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline T P & T P & T P & T P & T P & T P & T P \\ 15 & 14 & 13 & 12 & 11 & 10 & 9 \\ \hline \end{array}$	$T P$ 7 6 5 4 3 2 1 0

NOTE:

If the coarse and fine tune registers are both set to 0008 , the resulting period will be minimum, i.e. the generated tone period will be as if the coarse tune register was set to 000_{8} and the fine tune register was set to 0^{018}. The counter will count the period value down to zero. When zero is reached, the period value will be reloaded into the counter.

DUTY CYCLE CONTROL

The duty cycle of each pulse generated by the three tone generators is controlied by an associated 4-bit duty cycle register (R6B. R7B, and R108).

The following duty cycles are selectable:

\% DUTY CYCLE	DUTY CYCLE	REGISTER VALUE
3.125%	0	0000
6.25%	1	0001
12.50%	2	0010
25.00%	3	0011
50.00%	4	0100
75.00%	5	0101
87.50%	6	0110
93.75%	7	0111
96.875%	8	1111

*NOTE: Any value greater than 810 decodes as an 810 .

NOTE:

The percent duty cycles refers to the high (logic high) portion of the duty cycle. The low portion is then 100 percent duty cycle. A 10% duty cycle is then 10% up and 90% down, as shown below.

In 8910A-compatibility mode, the duty cycle is fixed at 50%. The capability for a variable duty cycle exists only in the expanded AY8930 mode.

In order to change a duty cycle, the appropriate duty cycle register must be updated. The new duty cycle will then remain constant at this value until the duty cycle register is modified. The new duty cycle value will take effect immediately. This may result in one period with a "random" duty cycle at the time the register is updated.

NOISE GENERATOR CONTROL

AY-3-8910A-Compatibility Mode:

Noise is generated by a 17 -bit polynomial shift register. The period of the clock to this shift register is specitied by the 8 -bit binary value NP.

The noise period value is derived from the lower five bits (B4-80) of the noise period register (R6) as shown.

5 EIT NOTSE PERKOD (NP) VALUE
NOTE:
As with the tone period, the lowest period value is 00001 (divide by 1), an entry of 00000 will have the same value as 00001; the highest period value is 11111 (ivide by 31 10).

AY-3-8910A-COMPATIBILITY MODE NOISE BLOCK DIAGRAM (Figure 1)

AY8930 Expanded Mode:

In the AY8930 expanded mode, noise is generated using a 17-bit polynomial shift register, an "AND" mask, an "OR" mask, and an 8-bit noise period value. The least significant byte of the polynomial shift register is logically AND'ed with the "AND" mask specified in Register 11B, then logically OR'ed with the "OR" mask specified in Register 12B. The
result is stored in a temporary register which is clocked each time the counter associated with the 8bit noise period register (R6A) reaches zero. When the noise value reaches zero, a new value is fetched from the polynomial shift register and the process is repeated. The noise output is toggled each time the noise value reaches zero.

AY8930 EXPANDED MODE

NOISE BLOCK DIAGRAM (Figure 2)

MIXER CONTROL - IO ENABLE

Register 7A is a multi-function Enable register which controls the three Noise/Tone Mixers and the two general purpose I/O Ports. The mixers as previously described, combine the noise and tone frequencies for each of the three channeis. The determination of combining neither/either/both noise and tone frequencies on each channel is made by the state of bits B5-B0 of R7A.

The direction (input or output) of the two general purpose I/O Ports (IOA and IOB) is determined by the state of bits $\mathrm{B7}$ and $\mathbf{B 6}$ of R7A.

These functions are illustrated in the following:

Nolse Enable Truth Table						Tonw Enable Truth Table					
R7A BAts B6 B4 83			NoiseEnabledOn Channel			R7A Bits B2 B1 80			Tone Enablad On Channel		
0	0	0	C	B	A	0	0	0	C	B	A
0	0	1	C	B	-	0	0	1	C	B	
0	1	0	C	-	A	0	1	0	C	-	A
0	1	1	c	-	-	0	1	1	C	-	-
1	0	0	-	B	A	1	0	0	-	B	A
1	0	1	-	B	-	1	0	1	-	B	-
1	1	0	-	-	A	1	1	0	-	-	A
1	1	1		-		1	1	1			

The direction of the I/O Port(s) is determined as follows:
yo Port Truth Table

R7A Bht		VO Direction	
07	B6	108	10A
0	0	In	In
0	1	in	Out
1	0	Out	In
1	1	Out	Out

Note: The Mixer - I/O Control function is identical in both modes of operation.

AMPLITUDE CONTROL

The amplitudes of the signals generated by each of the three D/A converters (one each for channeis A. B, and C) are determined by the contents of the amplitude control registers as illustrated in the following:

Amplitude Control Regiater	Channel
R10A	A
R11A	B
R12A	C

AY-3-8910A-Compatibility Mode:

AY8930 Expanded Mode:

The amplitude "mode" (bit M) selects either fixed level amplitude ($M=0$) or variable level amplitude $(M=1)$. It follows that bits $\mathrm{L} 4-\mathrm{L} 0$, defining the value of a "fixed" level amplitude, are only active when $M=0$. The amplitude is only "fixed" in the sense that the amplitude level is under the direct control of the system processor via an address latchwrite data sequence.

When "variable amplitude" is selected ($M=1$), the amplitude of each channet is determined by the envelope pattern as detined by the envelope generators 5-bit output (E4-EO). The amplitude "mode" bit (bit M) can also be thought of as an envelope enable bit, i.e. when $M=1$, the envelope is enabled.

AMPLITUDE CONTROL (continued)

The following is a chart describing all combinations of the 6-bit Amplitude Control.

NOTE:

In the AY-3-8910A-compatibility mode, the externally driven "fixed" amplitude is limited to a total of 16 possible levels determined by amplitude bits L4-L1.

ENVELOPE GENERATOR CONTROL

Envelope Period Control

The period of the sound envelope, in the 8910Acompatibility mode, is controlled by two 8 -bit registers, R13 and R14 (the enveiope fine and coarse tune, respectively). In the 8930 expanded mode, each analog output channel has its own independent sound envelope. Changes to the envelope period counter will occur at envelope period boundary or when envelope shape/cycle register is loaded.

COARSE TUNE REGISTER	CHANNEL	FINE TUNE
REGISTER		
R14A	A	R13B
R 1B	B	R OE
R 3B	C	$R 2 B$

16-BIT ENVELOPE PERIOD TO ENVELOPE GENERATOR

Note that the value programmed in the combined coarse and fine tune registers is a penod value the higher the value in the registers, the lower the resultant frequency.

Note also, that as the tone period. the lowest period values is 0000018 (divided by 1); the highest period val'de is 1777778 (divided by 65.53510).

Envelope Shape/Cycle Control

The envelope generator further counts down the envelope frequency by 32, producing a 32-state per cycie envelope pattern defined by its 5 -bit counter output. E4, E3, E2. E1, and E0. The particular shape and cycie pattern of any desired envelope is accomplished by controlling the count pattern (count up/ count down) of the 5-bit counter and by defining a single cycle or repeat-cycle pattern.

Loading of the envelope shape/cycle control register will reset the associated counter to the appropriate initial state and reset the envelope period counter for that channel.

The envelope shape/cycle control is contained in the lower 4 bits ($\mathrm{B3}-\mathrm{BO}$) of the respective envelope control registers. Each of these 4 bits controls a function in the envelope generator, as illustrated in the following:

Envelope Shape/Cycle
Control Regiater

The definition of each function is as follows:
Hold - when set to logic " 1 ", limits the envelope to one cycle, hoiding the last count of the envelope counter ($E 3-E 0=0000$ or 1111. depending on whether the envelope counter was in a count-down or count-up mode, respectively).

Alternate - when set to logic " 1 ". the envelope counter reverses count direction (up-down) after each cycle.
NOTE: When both the hoid bit and the alternate bit are ones, the envelope counter is reset to its initial count before hoiding.

Attack - when set to logic " 1 ", the envelope counter will count up (attack) from E3 E2 E1 $E 0=0000$ to E3 E2 E1 E0 = 1111; when set to logic " 0 ", the envelope counter will count down (decay) from 1111 to 0000.

Continue - when set to logic " 1 ". the cycle pattern will be as defined by the hold bit; when set to logic " 0 ". the envelope generator will reset to 0000 after one cycle and hold at that count.

Further description of the above functions could be accomplished by numerous charts of the binary count sequence of E3 E2 E1 E0 for each combination of hold, atternate, attack and continue. However, since these outputs are used (when selected by the amplitude control registers) to amplitude modulate the output of the mixers, a better understanding of their effect can be accomplished via a graphic representation of their value for each condition selected. as illustrated in Figs. 3 and 4.

ENVELOPE SHAPE CYCLE CONTROL (Figure 3)
(

DETAIL OF TWO CYCLES OF Fig. 3 - AY-3-8910A MODE (Figure 4) (ref. waveform "1010" in Fig. 3)

DIGITAL TO ANALOG CONVERTER

The Digital to Analog conversion is performed in logarithmic steps with a normalized voltage range of OV 101.0 V . The specified amplitude of each converter is controlled by a 5 -bit word from either the amplitude control register* or the envelope generator. The sig-
nal of the output is the Noise/Tone specified for that channel.
-Except in the 8910A-compatibility mode. which only allows for 4 bits of external amplitude control.

D/A CONVERTER OUTPUT (Figure 5)

This figure illustrates the D/A converter output which would result if noise and tones were disabled and an
envelope controlled variable amplitude were selected.

NOTE: The RESET condition is zero current.

I/O PORT DATA STORE

Registers R16A and R17A function as intermediate data storage registers between the PSG/CPU data bus (DAO-DA7) and the two I/O ports (IOAO-IOA7. IOBO-IOB7). Both I/O ports are available on the AY8930.

Using registers R16A and R17A for the transter of I/O data has no effect at all on sound generation.

To output data from the CPU Bus to a peripheral device connected to I/O port A:

1. Address the enable register (R7A).
2. Set the port A direction bit to output (write " 1 " to bit 86 of R7A).
3. Address the I/O port A register (R16A).
4. Write data to $/ / O$ port A register. The data will pass through the PSG I/O port A register to the l/O port bus.

To input data from I/O port A to the CPU bus:

1. Address the enable register (R7A).
2. Set the port A direction bit to input (write a " 0 " to bit 86 of R7A).
3. Address the I/O port A register (R16A). The contents of the port register will follow the signals applied to the I/O port.
4. Read data from I/O port A register. The data will be transferred from the PSG V/O port A register to the CPU bus as in a normal read operation.

If a logic 1 has been written to any bit position of register R16A or register R17A and the corresponding VO pins of port A or port B are externally pulled below the logic $0,\left(V_{I L}\right)$ level, a subsequent CPU read instruction of registers R16A or R17A will actually contain a logic 0 in the pulled down bit positions. The output pins will return to logic 1 if the pull down condition is removed.

If a logic 0 has been written to any bit position of the VO registers and the external world wishes to pull these pins to a 1, the user should be aware that an impedance conflict will exist between the pull down trensistor and the external driver.

Select $=1$ Input Clock $=2 \mathrm{MHz}$ max.
The select pin is provided with an internal puli-up resistor such that the pin default condition is Select $=1$.

INPUT CONTROL SIGNALS

Interfacing to the AY8930 requires the generation of only two of the three AY-3-8910A input control signals, BDIR and BC1. BC2 is shown on the pinout diagram for reference only; the pin is not internaliy connected.

The input control signals for the AY8930 are as follows:

BDIR	BC1	FUNCTION	DESCRIPTION
0	0	INACTIVE	INACTIVE. The PSG CPU bus is inactive. DA7-DAO are in a high impedance state.
0	1	READ FROM PSG	READ FROM PSG. This signal causes the contents of the register which is currently addressed to appear on the PSG/CPU bus. DA7-DAO are in the output mode.
1	0	WRITE TO	
PSG	WRITE TO PSG. This signal indicates that the bus contains register data which should be latched into the currently addressed register. DAT-DAO are in the input mode.		
1	1	LATCH ADORESS	LATCH ADDRESS. This signal indicates that the bus Contains a register address which should be latched by the PSG. DA7-DAO are in the input mode.

CLOCK DIVIDE - SELECT

$$
\begin{aligned}
\text { Select }=0 & \text { Input Clock }=4 \mathrm{MHz} \text { max. } \\
& \text { (Divided internally by } 2 \text {) }
\end{aligned}
$$

RESET

After a RESET condition the internal state of the PSG will be the following:

REGISTER	87	B6	85	84	B3	B2	B1	B0
RO/R0A	0	0	0	0	0	0	0	0
R1/R1A	0	0	0	0	0	0	0	0
R2/R2A	0	0	0	0	0	0	0	0
R3/R3A	0	0	0	0	0	0	0	0
R4/R4A	0	0	0	0	0	0	0	0
R5/R5A	0	0	0	0	0	0	0	0
R6iR6A	0	0	0	0	0	0	0	0
R7/R7A	0	0	0	0	0	0	0	0
R10/R10A	*	\#	0	0	0	0	0	0
R11/R11A	*	*	0	0	0	0	0	0
R12/R12A	*	*	0	0	0	0	0	0
R13/R13A	0	0	0	0	0	0	0	0
R14/R14A	0	0	0	0	0	0	0	0
R15/R15NR15B	0	0	0	0	0	0	0	0
R16/R16A	0	0	0	0	0	0	0	0
R17/R17A	0	0	0	0	0	0	0	0
ROB	0	0	0	0	0	0	0	0
R18	0	0	0	0	0	0	0	0
R2B	0	0	0	0	0	0	0	0
R38	0	0	0	0	0	0	0	0
R48	*	*	*	*	X	X	x	X
R5B	*	"	*	"	x	X	x	x
R68	*	*	*	*	x	x	x	x
R78	*	*	*	*	x	x	x	x
R108	*	*	*	\#	x	X	x	x
R118	0	0	0	0	0	0	0	0
R128	x	x	\times	x	x	x	x	x
R178	0	0	0	0	0	0	0	0

X indicates a don't care.
\# indicates that there is no physical memory eiement for a bit: if read a 0 will be returned.

All counter work registers should be initialized to zeros.

The noise generator 17 -bit shift register should be initialized to ones.

The noise value register should be initialized to zeros.

ELECTRICAL SPECIFICATIONS

Maximum Ratings*

Storage temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum temperature under bias $+125^{\circ} \mathrm{C}$
$V_{D D}$ and all other inputioutput voltages
with respect to VSS - 0.3 V to +7.0 V

Standard Conditions

Free air ambient operating
temperature.
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
VDD
+4.5 V to +5.5 V
$V_{S S}$
0.0V (Ground)
"Exceeding these ratings could case permanent damage to this device. This is a stress rating only and functional operation of this device at these conditions is not implied - operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

CHARACTERISTICS	SYM	MIN	TYP	MAX	UNTTS	CONDITIONS
input Logic Levels Logic 0 Logic 1	$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{\mathrm{IH}} \end{aligned}$	$\begin{array}{r} -0.3 \\ +2.4 \\ \hline \end{array}$	-	$\begin{aligned} & +0.4 \\ & V_{D D} \end{aligned}$	Volts Volts	
Input Leakage Clock BC1. BDIR	-	-	-	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathbf{A} \\ & \mu \mathbf{A} \end{aligned}$	
Inputs with Pullups A8, Reset. Select	ILL	10	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$
Inputs with Pulldowns	IIH	10	-	50	$\mu \mathrm{A}$	$V_{\text {IN }}=+2.4 V$
1/O with Pullups A7-A0, B7-B0	$\begin{gathered} \text { ! IL } \\ \mathrm{VOH} \\ \mathrm{VOL} \end{gathered}$	$\begin{array}{r} 20 \\ +2.4 \\ 0.0 \end{array}$	-	$\begin{aligned} & 150 \\ & \text { VDD } \\ & +0.4 \end{aligned}$	$\mu \mathrm{A}$ Volts Volts	$\begin{aligned} & V_{\mathrm{IN}}=+0.4 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OH}}=100 \mu \mathrm{~A} / 100 \mathrm{pF} \\ & \mathrm{IOL}=1.6 \mathrm{~mA} w / 100 \mathrm{pF} \end{aligned}$
Data/Address DA7-DAO	$\begin{aligned} & \mathrm{VOH} \\ & \mathrm{VOL} \end{aligned}$	$\begin{array}{r} +2.4 \\ 0.0 \end{array}$	-	$\begin{aligned} & \text { VDD } \\ & +0.4 \end{aligned}$	Volts Volts	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=100 \mu \mathrm{~A} w / 100 \mathrm{pF} \\ & \mathrm{lOL}=1.6 \mathrm{~mA} w / 100 \mathrm{pF} \end{aligned}$
Power Supply	IOD	-	-	85	mA	All inputs and outputs tied to VSS or VDE.

ELECTRICAL SPECIFICATIONS (continued)

AC CHARACTERISTICS*

CHARACTERISTICS	SYM	MIN	TYP	max	UNITS	CONDITIONS
Clock Input Frequency Rise/Fall Time	$\overline{t_{r}, t_{1}}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	-	$\begin{gathered} 4 \\ 50 \\ \hline \end{gathered}$	MHZ ns	40/60 asymmetry allowed
$\begin{aligned} & \text { Master Reset } \\ & \text { Reset } \end{aligned}$	ims	*	-	-	ns	-Two Clock Periods
Control Signals BC1, BC2, BDIR Skew Valid	$\mathrm{tcs}_{\text {thre }}$	300	三	40	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
Data Address Bus DA7-DAO, A8, $\overline{A 9}$ Address Setup Time Address Hold Time	$\begin{aligned} & \operatorname{tas} \\ & \tan \end{aligned}$	$\begin{gathered} 300 \\ 65 \end{gathered}$	-	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
Read Mode: Data Setup Time Data Hold Time	$\begin{aligned} & \text { tab } \\ & t_{d} \end{aligned}$	20	二	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
Write Mode: Data Setup Time Data Hold Time	$\begin{aligned} & \text { ids } \\ & \text { toh } \end{aligned}$	$\begin{gathered} 300 \\ 65 \\ \hline \end{gathered}$	-	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$.
InputOutput Port IOA7-IOAO, 1OB7-IOBO Output Mode: Data Setup Time	${ }^{\text {tow }}$	500	-	-	ns	
Input Mode: Data Setup Time Data Hold Time	Lprs toph	$\begin{gathered} 200 \\ 65 \end{gathered}$	-	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

-The address/data read cycle is latch address fotlowed by an inactive state then the read command. The address/data write cycle would be the same with the substitution of the write command in place of the read. An inactive state is required between each cycle (or active command).

TIMING DIAGRAMS

TIMING DIAGRAMS (continued)

I/O Port Input Mode: Write Data
From I/O Port To CPU Bus*

[^1]Appendix A-R65C22

R65C22 Versatile Interface Adapter (VIA)

DESCRIPTION

The Resc22 Versatile interface Adapter (VIA) is a very flexible WO control device. In addition. this device contains a pair of very powertul 16-bit intervel timers, a seriehto-paraliel/perallotho serial anift regieter and input data latching on the peripherel ports. Expanded handehakung capability allows control of bidiructional data transters bewwen VIA's in multuple processor syatems.

The ResC22 inctudes functions for programmed control of up to two peripherel devices (Ports A and B). These two program controled ebin bidirectional peripheral VO ports ellow direct interfacing between the microproceseor and selected peripheral unite. Each port hes input data letching capebility. Two progrant meble Data Direction Regieters (A and B) allow setection of data direction (input or output) on an individual line beats.

The ResC22 atso has two programmable 10 -bit imerval Timer/Counture with latches. Timer 1 may be operated in a OneShot interrupt Mode with interrupts on each count-io-zero, or in a Free-Run Mode with a continuous series of eventy speced imerrupta. Tinver 2 functions as both an interval and puise coumter. Seriel data tranetors are providec by aeriatio-perathe/peraliolito-eerial shift register. Application versatility is further increeed by various control registers. inchuding-the Imerrupt Fiag Regieter, the imterrupt Enable Register, the Auxilitry Control Regieter and the Peripheral Control Register.

FEATURES

- Low power CMOS N-welt silicon gate technology
- Fully compatible with NMOS 6522 devices
- Two e-bit bidirectional vO ports
- Two 16-bi programmabie timericoumters
- Serial bidirectional peripheral vo
- TTL compatible peripheral control lines
- Expanded "hanclatiake" capability ellows positive control of data transiers between processor and peripheral devices.
- Latched output and input registers on both IO ports
- 1.2.3. and 4 MHz operation
- Commercial and industrial temperature range versions
- Single +5 Vdc power requirement
- Wide variety of packages
- 40-pin plastic and coramic DIP
- 44-pin platic laaded chip carrier (PLCC)

Figure 1. Resc22 Pin Aceignonemts

ORDERING INFORMATION

INTERFACE SIGNALS

Figure 1 (on the front page) shows the R65C22 VIA pin assignments and Figure 2 groups the signals by functional intertace.

AESET (RES)

Reen ($\overline{\text { RES }}$) clears all internal registers (except T 1 and T 2 counters and latches, and the Shit Register (SR)). In the FES condition, all peripheral interface lines (PA and PB) are placed in the input state. Also. the Timers (T1 and T2). SR and imter. rupt logic are dieabled from operation.

MPUT CLOCK (PHASE 2)

The sydem Phase 2 (12) inpur Clock controls all dati transfors between the ResC22 and the microprocestor.

READNRITE (RNTM)

The direction of the data trenserve between the R65C22 and the sybtem proceseor it controlled by the R(WW line in conjunction with the CS1 and CS2 inputs. When RWW is low (write operntion) and the masce22 is selected, dath is Iransferred from the proceseor bus into the setected Resc22 register. When R \bar{W} is high (read operation) and the Re5C22 in selected. data is transterred from the selected A6SC22 regivter to the procestor but.

Data bus (D0-0n)

The eight bidirectional Deta Bus lines tranafor data between the Aesc22 and the micropreceseor. During a read operation. the conterits of the atwected RESC22 internal reginter are transterred to the microproceseor via the Date Bus lines. During a write operation, the Oeta Gus lines serve as high impedance inputs over which deta is trensferred from the microprocessor to a serected Resce2s reginter. The Data Bus lines are in the high impedence state when the R85C22 is unselected.

Figure 2. Resc22 VIA Intertace Signats

CHIP SELECTS (CS1, CS2)

Normally, the two chip select lines are connected to the microprocessor address lines. This connection may be direct or through decoding. To access a selected R65C22 register. CS 1 must be high (logic 1) and CS2 must be low (logic 0).

RECISTER SELECTS (RSO-RS3)

The Register Select +nputs allow the microprocessor to select one of 16 imernal registers within the R65C22. Reter to Table 1 for Register Select coding and a functional description.

interrupt request (푸o)

The internept Request (IITO) output signel is gonerated whernever an intemal Interrupt Flag bit is set and the corresponding interrupt Enable bit is a Logic 1. The interrupt Requegt output is an open-drain configuration, thus allowng the IRO signal to be wire-ORted to a common microprocessor IAO input line.

PERAPNERAL POFT A (PMO-PAT)

Peripheral Data Port A is an 8 -line. bidirectional bus for the transfor of date, control and status information berween the fesc22 and a peripheral device. Esch Penpheral Data Port bus line may be individually programmed as ether an input or output under control of a Datia Direction Register. Oata flow direction may be selected on a line-by-line basis with intermixed input and output lines within the same port. When a " 0 " is written to any bit position of the Date Direction Register, the corresponding line will be programmed as an input. When a " 9 " is wrtten into any br position of the register, the corresponding data line will serve as an output. Polarity of the data output is determined by the Output Register, whila input data may be latched into the Input Regiater under control of the CA1 line. All modes are program controtted by the microprocessor by way of the R65C22's internal control registers. Each Peripheral Data Port line reprosents two TTL toede in the input mode and will drive two standerd TL loeds in the output mode. A typical output curcuit for Penpheral Data Port A is shown in Figure 3.

PORT A CONTROL LINES (CA1, CAZ)

Control lines CA1 and CA2 serve as interrupt inputs or handshake outputs for Peripheral Data Port A. Each line controls an internal Interrupt Fiag with a corresponding Interrupt Enable bit. CA1 also controts the latching of Input Data on Port A. CA1 is a high impedance input, while CA2 reprecents two standard TTL loads in the input mode. In the output mode, CA2 will drive two standard TLL loads.

PORT 8 (PEO-PET)

Peripheral Data Port B is an E-line, bidirectional bus which is controlled by an Output Register. Input Register and Data Direction Register in a manner much the same as Data Port A. With respect to Port B, the output signal on line PB7 may be controtled by Timer I while Timer 2 may be programmed to count outses on the PB6 line. Port 8 linesa represent two standard TTL loads in the inout mode and will drive two TTL loads in the
output mode. Port B lines are atso capabie of sourcing 3.2 mA at 1.5 Voc in the output mode. This allows the outputs to directly drive Darington transistor circuits. A typical output circuit for Port B is shown in Figure 3.

PORT B CONTROL LINES (CB1, CE2)

Control lines CB1 and C82 serve as interrupt inputs or hand shake outputs for Peripheral Data Port B. Like Port A. theee two control lines control an internal Imerrupt Fing with a correeponoing interrupt Enable bit. These lines also serve as a seried deta port under control of the Shitt Register (SA). Eech control line represents two standard TTL loeds in the input mode and can drive two TTL loads in the output moos. Note that CB1 and CB2 can drive Darlington transistor circuits, because they both will source 3.2 mA al 1.5 Vdc . Each line represents two standerd TTL loads in the input mode and will drive two standard TTL lomds in the output mode.

Table 1. Resc22 Regiater Addroeelng

Rememer		ns			Raginter		mertyon
Numbery	hin	Nat	Hi5	H0	Deain.	$W h+\cdots /=L)$	mad (T) $=\mathrm{M}$)
0	0	0	0	0	ORBMR	Ouput Recimer 8	Iroun Ameinter 8
1	0	0	0	1	OPANIPA	Output Reguer A	Inout Ameiner A
2	0	0	1	0	DOAB	Den	Auener 8
3	0	0	1	1	DOPA	Data	quperer A
4	0	1	0	0	T1C-L	T1 Low-Order Lethers	TI Low-Order Counter
5	0	1	0	1	TIC-H		Countr
6	0	1	1	0	TIL-L		Lextue
7	0	1	1	1	TIL-H		Cumbes
6	1	0	0	0	T2C-L	T2 Low-Order Leatere	T2 Low-Orem Countr
9	1	0	0	1	T2C-M		Counw
10	1	0	1	0	SR		
11	1	0	1	1	ACA	Amax	Prepiner
12	1	1	0	0	PCA	Perip	ol Precier
13	1	1	0	1	FFR		Anciver
14	1	1	1	0	IER	Wens	Anouner
15	1	1	1	1	OFNMA	Output Reginer A	Input Aeginer A

Floure 3. Port A and B Output Clreunts

FUNCTIONAL DESCRIPTION

The internal organization of the R65C22 VIA is illustrated in Figure 4.

PORT A AND POFT B OPERATION

The R65C22 VIA has two 8-bit bidirectional IOO ports (Port A and Port B) and each port has two associated control lines.

Each 9 -bit peripheral port has a Data Direction Register (DDRA. DDRB) for specity.ng whether the penpheral pins are to act as inputs or outputs. A " D " in a bit of the Data Direction Register causes the corresponding peripheral pin to act as an input. A" 1 " causes the pin to act as an output.

Each peripheral pin is also controlled by a bit in the Output Register (ORA, ORB) and the Input Register (IRA, IRB). When the pin is programmed as an output. the voltage on the pin is controlled by the corresponding bit of the Output Register. A " 1 " in the Output Register causes the output to go high, and a " 0 " causes the output to go low. Data may be written into Output

Register bits corresponding to pins which are programmed as inputs. In this case, howover. the output signal is unaffected.

Reading a peripheral port causes the contents of the Input Register (IRA, IRB) to be transterred onto the Data Bus. With input latching disebled. IRA will always reflect the levels on the PA pins. With input latching enabled. IRA will reflect the levels on the PA pins at the time the latcting occurred (via CA1).

The IRB register operates similar to the IRA register. However, for pins programmed as outputs there is a difference. When reading IRA, the hevel on the pin determines whether a " 0 " or a " 1 is sensed. When reading IRB, however, the bit stored in the output register, ORB, is the bit sensed. Thus, for outputs which have large loeding effects and which pull an output " 1 " down or which pull an output " 0 " up. reading IRA may result in reading a " 0 " when a " 1 " was actually programmed, and resding a " 1 " when a " 0 " was programmed. Reading IRB, on the other hand. will read the " i " or " 0 " level actually programmed, no matter what the loading on the pin.

Figures 5 through 8 illustrate the formats of the port registers

Figure 4. ReSC22 VIA Blean Olegram

HANDSHAKE CONTROL OF DATA TRANSFERS

The R85C22 allows positive control of data transters between the system processor and perioheral devices through the operation of "handshake" lines. Port A lines (CA1, CA2) handshake dats on both a read and a write operation while the Port B innes (CB1. CB2) handshake on a write operation only

mead Handshake

Poenive control of data transfers from peripheral devices into the system processor can be accomplished very effectively using Reed Handshaking. In this case, the peripheral device must generate the equivelent of a "Data Ready" signal to the processor signifying that valid data is present on the peripheral

Fligure 5. Output Regiater B (ORB), Input Register B (IRB)

Figure 7. Oata Oirection Reginter 8 (DORE)
port. This signal normally interrupts the processor. which then reads the data. causing generation of a "Data Taken" signal. The penipheral device responds by making new data available This process continues until the data transfer is complete.

In the R65C22, automatic "Read" Handshaking is possible on the Peripheral A port only. The CA1 interrupt input pin accepts the "Data Ready" signal and CA2 generates the "Data Taken" signal. The "Data Ready" signal will set an internal flag which may interrupt the processor or which may be polied under program control. The "Data Taken" signal can etther be a puise or a level which is sel low by the system processor and is cleared by the "Data Ready" signal. These options are shown in Figure 9 which illustrates the normal Read Handshake sequence

Figure 6. Output Register A (ORA), Input Regiater A (IRA)

Figure t. Date Direction Regtater a (DOAA)

Figure 9. Read Handahake Timing (Port A Only)

Write Handshake

The sequence of operations which allows handshaking data from the system processor to a peripheral device is very similar to that ceacribed for Read Handshaking. However. for Write Handshaking, the R65C22 generates the "Data Ready" signal and the peripheral device must respond with the "Data Taken" signal. This can be accomplished on both the PA port and the PB port on the R65C22. CA2 or CB2 act as a "Data Ready"' output in either the handshake mode or puise mode and CA1 or CBi accept the "Data Taken" signal from the penpheral device. setting the interrupt Hag and clearing the "Data Ready" output. This sequence is shown in Figure 10

Letching

The PA port and the PB port on the R65C22 can be enabled in the Auxiliary Control Register (Figure 14) to be latched by their individual port control lines (CA1. CB1). Latching is selectabte to be on the rising or falling edge of the signal at each individual port control line. Selection of operating modes for CA1. CA2. C81 and CB2 is accomplizhed by the Peripheral Control Register (Figure 11).

Flgure 11. Peripheral Control Aegiater (PCR)

Figure 10. Withe Handahake Timing

Versatile Interface Adapter (VIA)

COUNTERTIMERS

There are two independent 16 -bit countertimers (called Timer 1 and Timer 2) in the R65C22. Each timer is controlled by writing bits into the Auxiliary Control Register (ACR) to select the mode of operation (Figure 14).

Timer 1 Operation

Interval Timer T1 consists of two 8-bit latches (Figure 12) and a 16 -bit counter (Figure 13). The latches store data which is to de loeded into the counter. Ater loading. the counter decrements at 02 clock rate. Upon reaching zaro, an interrupt flag is set. and JRQ goes low if the T 1 interrupt is enabled. Timer 1 then
disables any further interrupts and automatically transfers the contents of the latches into the counter and continues to decrement. In adidition. the timer may be programmed to invert the output signal on peripheral pin PB7 each time it "times-out' Each of these modes is discussed separately below.

Note that the processor does not write directly into the low-order counter (TIC-L). Instead. this halt of the counter is roaded automatically from the low order laten (TIL-L) when the processor writes into the high order counter (T1C-H). In lact. it may not be necessary to write to the low order counter in some applications since the timing operation is tnggered by writing to the high order latch

Figure 12. Timer 1 (T1) Latch Regiaters

Figure 13. Timer 1 (T1) Counter Roginters

Figure 14. Auxiliary Control Regiater (ACA)

Timer 1 One-Shot Mode

The Timer 1 one-shot mode generates a single interrupt for each timer load operation. As with any interval timer, the delay between the "write TICH" operation and generation of the processor interrupt is a direct function of the data loaded into the timing counter. In addition 10 generating a single interrupt. Timer i can be programmed to produce a single negative pulse on the P87 peripheral pin. With the output enabled (ACA7 $=1$) a "write T1C-H" operation will cause PB7 to go low. PB7 will return high when Timer 1 times out. The resull is a single programmable width pulse.

Timing for the R65C22 interval timer one-shot modes is shown in Figure 15.

In the one-shot mode, writing into the T1L-H has no effect on the operation of Timer 1. However. it will be necessary to assure that the low order latch contains the proper data belore intiating the count-down with a "write TIC-H" operation. When the processor writes into the high order counter (T1C-H). the T1 interrupt flag will be cleared, the contents of the low order latch will be transterred into the low order counter. and the tumer will begin to decrement at system clock rate. If the PB7 outpu is enabied, this signal will go low on the falling eage of 02 follow. ing the wite operation. When the counter resches zero, the T1 interrupt fiag will be set. the $\overline{\mathrm{RO}}$ pin will go low (interrupt enabled), and the signal on PB7 will go high. At this tume the counter will continue to decrement at system clock rate. This allows the system processor to read the contents of the counter to determine the time since interrupt. However, the T interrupt flag cannot be sel again unless it has been cleared as described in this specification.

Figure 15. Timer 1 Ome-snot mode Timing

Timer 1 Free-hun Mode

The most important advantage associated with the tatches in T is the ability to produce a comtinuous series of evenly spaced interrupts and the abbily to produce a square weve on PB7 whose frequency is not aftected by variations in the processor imterrupt response time. This is accomplished in the "Iree-running" mode.

In the free-running mode, the interrupt hag is set and the signal on PB7 is inverted each time the counter reaches zero at which time the timer automatically transfers the comtents of the lath into the counter (16 bits) and continues to decrement from there. The interrupt flag can be cleared by writing T1C-H or TIL-H. by reading T1C-L. or by writing directly into the flag as described later. However. it is not necessary to rewrite the timer to enable secting the interrupr filig on the next time-out.

All interval tumers in the P65C22 are "re-frggerable". Rewriting the counter will atways re-initialize the time-out period. In fact.
the time-out can be prevented completely if the processor continues to rewrite the tumer betore it reaches zero. Timer 1 will cpertate in this manner if the processor writes into the high orour counter (T1C-H). However, by loeding the latiches only. ine processor can access the timer during each down-counting operation without affecting the time-out in process. Instead. the data loaded into the latches will determine the length of the next time-out period. This capabity is particularty veluable in the freerunning mode with the output enabled. In this mode, the signal on PB7 is inverted and the interrupt flag is set with each trmeout. By responding to the interrupts with new deta for the latiches. the processor can determine the period of the next half cycte during each half cycte of the output signal on PB7. In this manner. very complex wavetorms can be generated.

A precaution to lake in the use of PB7 as the tumer output concems the Data Direction Register coments for PB7. Both DOAB bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer output. If one is 1 and other is 0 , then Peg functions as a normal outpin pin. controlled by ORB bit 7.

Figure 16. Timer 1 Froe-Run mode Timing

Timer 2 Operation

Timer 2 ocerates as an interval timer (in the "one-ahot" mode only). or as a courter for counting negetive pulses on the PB6 peripherel pin. A singte control bit in the Auxiliary Control Peginter selects between thee two modes. This timer is compried of a "write-only" lower-order saten (T2L-L), a "reed-only" low-order counter (TZC-L) and a readwrite high order counter (TZC-H). The counter regiemers act ate a 18 -bit counter which decremerts at 02 rate. Figure 17 illustrates the 12 Lath/Coumter Regreters.

Timer 2 Ono-ghet Mode

As an interval timer. T2 operates in the "one-shor" mode amilar to Timer 1. in this mode. \mathbf{T} provides a singte imerrupt for each "write T2C.H" aperation. Alter tuming out, the coumter will conthue to decrememt. However. seting of the interrupt hag is disabted ather initial tume-out so that it will not be ser by the coumer
decrementing again through zero. The processor must rewrite TZC-H to enable setting of the interrupt flag. The interrupt fiag is claared by reading TZC-L or by writing TZC-H. Timing for this operation is shown in Figure is.

Timer 2 Pulse Counting Mode

In the puke counting mode. \mathbf{T} countas a predenermined number of negetrve-going puises on PBS. This is accompleated by first loading a number into $\mathbf{7 2}$. Writing into TZCH clears the interrupt thag and allows the counter to decremem each time a pulse is applied to PB6. The interrupt fieg is set when T 2 counts down peap zera. The counter will then continus to decremem with each pulse on PBC. However. it is necesesery to newrite TzC-H to allow the interrupt fieg to set on a subeequent time-out. Timung for this mode se shown in Figure 19. The puties mus be tow on the teading odge of 12.

Figure 17. Timer 2 (T2) Latch/Counter Regitaters

Figure 18. Timer 2 One-Shot Mode Timing

Figure 19. Timer 2 Puise Counting Mode

shift recister operation

The Shith Register (SR) pertorms serial date transters into and out of the CB2 pin under control of an internal modulo-8 counter. Senal data trunster in and out of the Snit Reguster (SR) begin with the most signoficant bit (MS8) first. Shitt pulses can be epplised to the CBI pin from an external source or, with the proper mode selection, shit pulses generated internally will appear on the CB1 puf for controlling external devices.

The controt bris which select the varous sniff register operating modes are located in the Auxiliary Control Register. Figure 20 illustrates the contiguration of the SR data bits and Figure 21 shows the SR controt bits of the ACR.

SA Mode 0 - Shift Register Interrupt Disebied

Moce 0 disebles the Shift Register interrupt. In this mode the microproceesor can wrte or read the SR and the SR will shitt on each CB1 positive edge shitting in the value on CB2. In this mode the SR interrupt fieg is disabled (hetd to a logic 0).

SA Mode 1 - Shift in Under Control of 72

in mode 1 , the shifting rate is controlled by the low order 8 bits of $\mathbf{T 2}$ (Figure 22). Shift pulses are generated on the CB1 pin to

Figure 20. Snifl Requeter
control shifting in external devices. The tirme between tranamions of this output clock is a function of the syatem ctock perrod and the contents of the low order T2 latch (N).

The snifting operation is triggered by the read or write of the SR if the SR flag is set in the iFR. Otnenwise the first shitt will occur at the next time-out of T2 after a read or write of the SR. The input data should change betore the positive-going edge of C81 clock pulse. This data is shitted into the shift register dunng the 02 clock cycie following the positve-going edge of the C81 ctock pulse. After ${ }^{\circ}$ ~ 31 clock pulses, the shith register interrupt flag will set *. $\mathrm{d}^{-\overline{-3}}$ I will go low.

SR Mode 2 - Shift In Under 12 Control

in mode 2. the shith rate is a direct tunction of the syatem crock frequency (Figure 23). C81 becomes an output which genermes shif pulsee for controlling external devices. Timer 2 operatee as an independent interval timer and has no effect on SR. The shifting operation is triggered by reading or writing the Shif Register. Dete is shifted. firat ino bit 0 and is then strited into the neath higher order bit of the shiff register on the trating edge of each $\mathbf{0} 2$ clock pulse. Atror 8 clock putsen. the shif regimer imerrupt fleg will be set. and the output ciock putses on CB1 will stop.

Figure 21. Shll Aogister Modee

$\overline{10} 0$

Figure 22. SA Mode $1 \mathbf{- 5} \mathbf{h t h}$ in Under 72 Contred

SR Mode 3 - Shift In Under CB1 Control

in mode 3. external pin C81 becomes an input (Figure 24). This allows an external device to load the shift register at its own pace. The shif register counter will interrupt the processor each time 8 bits have been shifted in. The shit register stops atter 8 counts and must be reset to start again. Reading or writing the Shit Register resets the interrupt Flag and initializes the SR counter to count another 8 pulses.

Note that the data is shited during the first system clock cycle fotiowing the positive-going eage of the CB1 shitt pulse. For this reason. data must be held stable during the tirst full cycie fot rowing CB1 going high.

SR Mode 4 - Shift Out Under T2 Control (Free-Run) Mode 4 is very sumilar to mode 1 in which the shiting rate is
set by T2. However. in mode 4 the SR Counter does nor stop the shiting operation (Figure 25). Since the Shitt Register bit 7 (SR7) is recircuiated back into bit 0 . the 8 bits loaded into the shift reguster will be clocked anto C82 repetilively. In this moce the shitt register counter is disabled

SA Mode 5 - Shift Out Under T2 Control

In mode 5. the shift rate is controlied by T2 (as in mode 1). The shitting operation is tnggered by the read or write of the SR if the SR tiag is set in the IFA (Figure 26). Otherwise the tirsi shith will occur at the next time-out of T2 after a read or write of the SR. However, with each resd or write of the shift register the SR Counter is reset and 8 bits are shitted onto CB2. At the same ume. 8 shith pulses are generated on C81 to control shifting in external devices. Atter the 8 shit puises. the snifing is disabled. the SR imerrupt Flag is set and CB2 remains at the last datia leval.

Figure 23. SR mode 2 - Shift In Under 02 Control

Figure 24. SA Mode 3 - Snm In Under CE1 Controd

Figure 25. SR Mode 4-Snh Out Under TZ Control (Free-Aun)

SR Mode 6 - Shift Out Under 92 Control
in mode 6. the shift rate is controled by the $\mathbf{2} 2$ system clock (Figure 27)

SR Mode 7 - Shift Out Under CBt Control
in mode 7 . snitting is controiled by pulses appilied to the CB1 pin by an external device (Figure 28). The SR counter sets the SR

Interrupt Fiag each time it counts 8 puises but it does not disable the shifting function. Each ume the microprocessor. writes or reads the shitt regaster. the SR interrupt Fiag is reset and the SR counter is intialized to begin counting the nexi 8 shith putses on pin CBi. Atter 8 shitt pulses, the interrupt Fiag is ser. The microprocessor can then load the shift register with the next byte of date.

ת

Figure 26. SR Mode 5 - Shifl Out Under T2 Control

Figure 27. SA Mode 6 - Shift Out Under 92 Control

Figure 20. SA mode 7 - Shifl Out Under CE1 Control

interrupt operation

Controliing interrupts within the R65C22 involves three principal operations. These are Hagging the interrupts. enabing interrupts and signaling to the processor that an active interrupts exists within the chip. Interrupt tiags are sel in the Interrupt Fiag Register (IFA) by conditions detected within the R65C22 or on inputs to the R65C22. These flags normally remain set until the interrupt has been serviced. To determine the source of an interrupt. the microprocessor must examine these flags in order, trom nighest to lowest priority.

Acsociated with each interrupt flag is an imerrupt onable bit in the Interrupt Enable Register (IEP). This can be set or cleared by the processor to enabie interrupting the processor from the corresponding interrupt flag. It an imerrupt flag is set to a logic 1 by an interrupting condition, and the corresponding interrupt enable bit is set to a 1 , the Interrupt Request Output (iRO) will go low. IRO is an "open-colfector" output which can be "wire-OR'ed" with other devices in the system to interrupt the processor.

Interrupt Fias Register (IFR)

In the PBSC22. all the interrupt flags are contaned in one register, i.e. the IFR (Figure 29). In addition, bit 7 of this register with be reed as a logic 1 when an interrupt exists within the chip. This anowe very convenient polling of soveral devices within a sysrem to locete the source of an internupt.

The Interrupt Flag Register (IFA) may be read directly by the processor. In addition, individual hag bits may be cloared by wrrt. ing a " 1 " into the appropriate bit of the IFR. When the proper chwp setect and reguster signals are applied to the chip, the contents of this regrater are placed on the deta bus. Bit 7 indicates the status of the $\overline{\mathrm{RO}}$ output. This bit corresponds to the logle

Figure 29. Interrupt fiag Reguter (IFR)
function: $\overline{\mathrm{IRO}}=$ IFR6 \times IER6 + IFR5 \times IER5 + IFR $4 \times$ IER 4 + IFR $3 \times$ IER3 + IFR $2 \times I E R 2+|F R 1 \times I E R 1+| F R O \times$ IERO.

Note:
$x=\operatorname{logic} A N D .+=$ Logic OR
The IFR bit 7 is not a flag. Theretore, this br is not directly cleared by wrting a logic 1 imo it. It can only be cleared by clearing all the flags in the register or by disabling all the active interrupts as discussed in the next section.

Interrupt Enable Regiater (IER)
For each interrupt tlag in IFR, there is a corresponding bit in the Interrupt Enable Register (IER) (Figure 30). Individual bits in the IER can be ser or cleared to facilitate controlling individual interrupts without affecting others. This is accomplished by writing to the (IER) atter bit 7 set or cleared to, in tum. set or cioer selected enable bits. If bit 7 of the data placed on the system data bus during thes write operation is a 0 . each 1 in bits 6 through 0 clears the corresponding bit in the Interrupr Enable Register. For each zero in bits 6 through 0 . the corresponding bit is unaftected.

Selected bits in the IER can be ser by writing to the IER with bit 7 in the data word set to a 1. In this case. each 1 in brts 6 through 0 will set the corresponding bit. For each zero, the corresponding bit will be unaffected. This individual comrol of the setting and cloaring operations allowe very convenient control of the imerrupts during system operation.

In addtion to setting and clearing IER bits. the contents of this register can be reed at any time. Bit 7 will be read as a logic 1 . nowever.

REG 14-INTEARUPT ENABLE RECISTEA

votes

Figure 30. Intorrupt Enable Regiater (IER)

SWITCHING CHARACTERISTICS
$\left(V_{C C}=5.0 \mathrm{Vac} \pm 5 \% . V_{S S}=0 . T_{A}=T_{L}\right.$ to T_{H}, uniess otherwise noted)
PERIPHERAL INTERFACE TIMING

Permmetor	Symbol	Min.	max.	Unt	Figure
Rise and Fall Time tor CA1. C81. CA2 and CB2 input Signats	4.4	-	10	4	-
Dolay Time. Clock Negative Transtion to CA2 Negative Transition (reed nandshake or pulse mode)	Lenz^{2}	-	1.0	\cdots	313. 310
Delay Time. Clock Negative Transition to CA2 Postive Transition (pulse mode)	$\mathrm{t}_{\text {fS }}$,	-	1.0	μ	318
Delay Time. CA1 Active Tranation to CA2 Positive Transition (handshake mode)	$\mathrm{t}_{\text {ts } 2}$	-	2.0	${ }^{4}$	310
Delay Time. Clock Postivg Transtion to CA2 or C82 Negative Transition (wnte nandsiake)	'wors	0.05	1.0	${ }^{\mu}$	31c. 310
Dextay Time. Penphral Oata valid to CB2 Nogative Tranaition	los	0.20	1.5	μ	31c. 31d
Detay Time. Clock Postive Transition to CA2 or C82 Poutive Transition (pulse mode)	$t_{\text {ASS }}$	-	10	\cdots	31 c
Delay Time. CA1 or CB1 Active Transition to CA2 or CB2 Pomive Tranation (handshake mode)	Tase	-	2.0	\%	310
Delay Time Requirect from CA2 Output to CA1 Active Transtion (nandishake moco)	t_{21}	400	-	ns	310
Sexup Time. Peripheral Data valid to CA1 or CB1 Active Tranation (inout inching)	$4{ }_{\text {L }}$	300	-	ns	310
CAI. CB1 Serup Pror to Tranation to Arm Latch	t^{2}	300	-	ns	310
Penpheral Data Hold Atter CAi. CBi Tranation	tron	150	-	ns	310
Snit-Oun Delay Time - Time trom 02 Fatling Edge to C82 Data Out	'sal	-	300	ns	311
Shintin Senup Time - Time from CB2 Data in to 92 Rising Edge	tsin 2	300	-	ns	319
External Snim Clock (CB1) Setup Time Revarive to 22 Trailing Edge	tsay	100	${ }_{T}{ }^{\text {r }}$	ns	319
Putse Width - P8s input Pulse	4 mm	$2 \times T_{C r}$	-		31.
Putse Width - CB1 inpul Clock	${ }_{1} \mathrm{~cm}$	$2 \times \mathrm{T}_{\text {cr }}$	-		31 n
Putse Specing - PB6 input Pulse	tips	$2 \times \mathrm{Tar}^{\text {r }}$	-		311
Puise Specing - CBi input Puise	IICS	$2 \times \mathrm{T}_{\mathrm{Cr}}$	-		31 n

bus timing

Pursmeter	Symbol	1 mHz		2 Mre		3 mhz		4 man 2		Unit	Froure
		min	max	Min	Max	Min	Max	Min	Mex		
Cycio Time	c_{c}	1000	-	500	-	330	-	250	-	ns	
Prase 2 Pulse Wioth High	imun	470	-	240	-	160	-	120	-	ns	32 E .
Prese 2 Pubse Wioth Low	tavi	470	-	240	-	100	-	120	-	ns	32b
Prase 2 Tramation	$\mathrm{t}_{\text {f. }}$	-	30	-	30	-	30	-	30	ns	
Aead											
Sewert. R/W̄ Setup	${ }_{14}{ }_{\text {ca }}$	160	-	90	-	65	-	45	-	$n 3$	32 a
Select. RW్̄W Hotd	Cena	0	-	0	-	0	-	0	-	$n 3$	
Data Bus Detay	${ }^{\text {cona }}$	-	320	-	150	-	130	-	75	ns	
Data Bua Hova	1 ma	10	-	10	-	10	-	10	-	ns	
Penioneral Data Selup	${ }_{4}$	300	-	150	-	110	-	75	-	$n 9$	
Write											
Serect RWW Smup	${ }_{\text {Haw }}$	160	-	90	-	65	-	45	-	ns	32 b
Sorect. AVW Howd	tan	0	-	0	-	0	-	0	-	ns	
Drat bus Serup	locm	195	-	75	-	65	-	45	-	ns	
Deve bus mova	Imm	10	-	10	-	10	-	10	-	ni	
Penpheres Data Doway	${ }^{4} \mathrm{Cm}$	-	1000	-	500	-	330	-	250	ns	

PERIPHERAL INTERFACE WAVEFORMS

Figure 31a. CA2 Timing for Read Handehake. Puise Mode

Figure 31b. CA2 Timing for Read Handshake. Handahate Mode

Figure 31c. CA2. CB2 Timing for Write Mandshake, Pulee Mode

Figure 31d. CA2, C82 Timing for Wrtte Mandanake, Mandahake Mode

Figure 31e. Peripheral Data Input Latching Timing

Figure 311. Fiming for Snift Out whth Internal or External Stift Clocking

MOTE: SET UP TIMES tsma AND $\mathrm{l}_{\text {gap }}$ MUST be obserfeo.
Figure 31g. Timing for Shitt In with Internal or External Shift Clocking

Figure 31h. External Snift Clock Timing

Figure 311. Puise Count Input Timing
bUS TIMING WAVEFORMS

Figure 32a. Rasd Timing Waveforms

Figure 32b. Write riming Wavetorme

ABSOLUTE MAXIMUM RATINGS*

Paremoter	Symbor	Value	Unit
Supply Vottage	V_{cc}	-0.3 to + 70	Vac
inpun voteage	$\mathrm{V}_{\text {IN }}$	$-0.310 \mathrm{v}_{\mathrm{cc}}+0.3$	Vac
Ourput Vomege	$V_{\text {out }}$	$-0.310 \mathrm{Vce}+0.3$	vac
Operating Temperature Commercial Induatrial	$\mathrm{T}_{\text {A }}$	$\begin{array}{r} 0 t 0+70 \\ -40 \text { to }+85 \end{array}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-5510+150$	${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Parampter	Symbol	Value
Supply Votage	$V_{C C}$	$5 V \pm 5 \%$
Temperature Range	T_{A}	$T_{t} 10 T_{H}$
Commercial		$0^{\circ} \mathrm{C} 1070^{\circ} \mathrm{C}$
induatral		$-10^{\circ} \mathrm{C} t 0+85^{\circ} \mathrm{C}$

-NOTE: Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condrions above those indicated in the other sections of this document is not implied. Exposure to absolute maximum rating condtions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

$V_{C c}=5.0 \mathrm{Vdc} \pm 5 \%, V_{S S}=0, T_{A}=T_{L}$ to $T_{H_{1}}$ unless otherwise noted)

Parmeter	Symbel	Min.	Typ. ${ }^{3}$	Max.	1 Unit'	Temt Conditiont
Inpur High Votiage Logic t_{2}	$V_{\text {IN }}$	$\begin{aligned} & +2.0 \\ & +2.4 \end{aligned}$		-	\checkmark	
```Input Low Vonage Logic \|```	V L	-0.3 -0.4	-	$\begin{array}{r} -0.8 \\ -0.4 \end{array}$	V	
Inpul Leakege Currem RWW. RES. RSO. RS1, RS2, RS3, CS1. CS2. CA1. 02	${ }_{1 / \mathrm{N}}$	-	$\pm 1$	$\pm 2.5$	${ }^{4}$	$\begin{aligned} & V_{I N}=0 V \text { to } V_{c c} \\ & V_{C C}=525 \mathrm{~V} \end{aligned}$
inpur Leakege Currem for Three-State OH 00-07	Irsi	-	$\pm 2$	$\pm 10$	${ }^{4}$	$\begin{aligned} & V_{\text {IN }}=0.4 V 102.4 V \\ & V C c=525 V \end{aligned}$
Impu High Current PAO-PA7. CA2. P80-P87. CB1. CB2	${ }_{1 / 4}$	$-200$	-400	$\sim$	${ }^{\text {A }}$	$V_{\text {IM }}=24 \mathrm{~V}$
Input Low Current PA0-PA7. CA2. PE0-PB7, CB1. CB2	14	-	-2	-2.6	mA	$V_{16}=0.4 V$
Oriput High Vomage   All oupputs P80-P87. CB1 and CB2 (Dartingtion Drive)	VOH	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	-	-	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & I_{\text {LON }}=200 \mathrm{~mA} \\ & I_{\text {LOAO }}=-3.2 \mathrm{~mA} \end{aligned}$
Ouput Low Vomege PAO-PA7, CA2. PB0-PB7, CB1, CB2. 00-D7, TRO	$V_{0}$	-	-	+0.4	$v$	$\begin{aligned} & V_{\mathrm{CC}}=475 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAO}}=3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LONO}}=18 \mathrm{~mA} \end{aligned}$
Oupht High Currert (Sourcing) Logic P80-P87. CB1 and CB2 (Dermigion Drive)	${ }^{101}$	$\begin{aligned} & -200 \\ & -3.2 \end{aligned}$	$\begin{gathered} -1500 \\ -6 \\ \hline \end{gathered}$	-	$\underset{m A}{n}$	$\begin{aligned} & V_{\mathrm{ow}}=2.4 \mathrm{~V} \\ & V_{\mathrm{OH}}=15 \mathrm{~V} \end{aligned}$
Ouput Low Curremt (Siniung)	10	3.2	-	-	mA	$v_{\alpha}=04 \mathrm{~V}$
$\begin{aligned} & \text { Output Leakege Current (On Stana) } \\ & \text { TAO } \end{aligned}$	\% OF	-	1	$\pm 10$	$\cdots$	$\begin{aligned} & V_{\mathrm{Ow}}=24 \mathrm{~V} \\ & v_{c c}=5.25 \mathrm{~V} \end{aligned}$
Power Diempation	$P_{0}$	-	7	10	I mW/AHz	
mput Capeciance DO-D7. PA0-PA7, CA1, CA2. P80-P87. C81, CB2    0	$\mathrm{Clw}_{\text {IN }}$	-	-	$\begin{gathered} 10 \\ 7 \\ 20 \end{gathered}$	pf   pF   pF	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \\ & 1=2 \mathrm{MHz} \\ & r_{A}=25^{\circ} \mathrm{C} \end{aligned}$
Ouput Cmpeeitaree	$\mathrm{C}_{\text {OUT }}$	-	-	10	pF	
Nomee: .   1. All unms ere olrect current ( $O C$ ) except for cepectance   2. Nequive man indicetes outwerd currem how, poertive inowcetes inwerd now   3. Typied valued nown for $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$.						

package dimensions
40-PIN CERAMIC DIP


DM	Huncrinil		maxtes	
	mos	max	Men	max
$\cdots$	5028	5131	1900	2020
$\square$	1511	158	0506	0625
c	254	418	0100	0.85
0	03	053	0015	0021
$F$	078	127	0030	0050
0	25	Bsc	0,00	BSe
$\cdots$	276	178	0030	0070
$\dagger$	020	033	0000	0013
$\ldots$	254	419	$0: 00$	0115
2	1480	1537	0575	0803
$\square$	$0 \cdot$	100	$0 \cdot$	$10^{\circ}$
$\cdots$	051	152	0020	006



0 m			moras	
	$\underline{1}$	max	min	max
4	St 21	5238	2000	2.000
B	1372	142	0 Se0	0580
c	3.58	5.09	0140	0200
0	038	051	0014	0080
F	108	152	0940	0000
0	2.54 Esc		0.100 日sc	
H	185	218	0005	0005
$\pm$	020	030	0000	0012
K	3.30	432	0130	0170
L	1534 asc		0000 ESC	
4	7	$10^{*}$	7	$10^{\circ}$
.	051	102	0020	0000

LAPPN PLASTIC LEADED CHIP CARRIEA (PLCC)


## R85NC22/R65C22 DIFFERENCES

masc22	ABSNC22
	1. Register select liness are decoded durng $\overline{\overline{2}}$ only if $\overline{\mathrm{CS} 2}$ is active low.
2. CB1 mut not change during lay 100 ns of 92. CB1 must have a pube wath groeler than one perrod.	2. CB1 can change anytime but is sampled onty duning $\overline{\mathbf{2}}$. CB1 must have a pulse greater than one pencod.
3 PB0-PB7 and CB1, CB2 have actre pulthps.	3. P80-P87 and C81. C82 have pasave pull ups (-3 K8)
4. PBO-PB7, C81 and CB2 represent two standurd TTL loads in the inoun moce and will dive two sandard TTL loeds in the outpun moce.	4. P80-P87. C81 and C82 ropresemt one standard TLL losd in the inpun moce ano will drve one srandard TTL load in the ourpur mode

Appendix A - PCB silkscreens


## Appendix B-68HC11

## MC68HC11A8

Advance Information

## HCMOS Single-Chip Microcomputer




## TABLE OF CONTENTS

Paragraph
Title
Page Number
Section 1Introduction
1.1 Features ..... 1-1
1.2 General Description ..... 1-2
Section 2
CPU Registers, Functional Pin Description,
CPU Registers, Functional Pin Description,Operating Modes, Input/Output Programming, and Memory
2.1
Registers ..... 2-12.1.12.1.22.1.32.1.42.1 .52.1.62.1.6.12.1.6.22.1.6.3
2.1.6.4
2.1.6.52.1.6.6
2.1.6.7
2.1.6.82.2
2.2.1
2.2.22.2.32.2.4
2.2.52.2.62.2.7
2.2.82.2.82.2.102.32.3.12.3.1.12.3.1.2
2.3.1.32.3.1.4
2.3.1.5
General Description ..........................
Section 2
Accumulators A and B ..... $2-2$
Index Register $X$ (IX) ..... 2-2
Index Register $Y$ (IY) ..... 2-2
Stack Pointer (SP) ..... 2-2
Program Counter (PC) ..... 2-2
Condition Code Register (CCR) ..... 2-2
Carry/Borrow (C) ..... 2-2
Overflow (V) ..... 2-2
Zero (Z) ..... 2-2
Negative (N) ..... 2-2
I Interrupt Mask (I) ..... 2-3
Half Carry ( H ) ..... 2-3
$X$ Interrupt Mesk ( $X$ ) ..... 2.3
Stop Disable (S) ..... 2-3
Functional Pin Description ..... 2-3
VDP and VSS ..... 2-3
RESET ..... 2-3
XTAL and EXTAL ..... 2-3
$E$ (Ensble) Clock ..... 2.3
TRO ..... 2.3
XIFQ. ..... 2.4
MODA/LIR and MODB ..... 2-4
Vrl and Vrh ..... 2.4
R/W/STRB ..... 2-4
AS/STRA ..... 2.4
Operating Modees and Input/Output Programming ..... 2.5
Single-Chip Mode ..... 2.5
Fort A ..... 2.5
Port $B$ ..... 2.6
Port E ..... 2.6Port $C$2.6
Port 0 ..... 2.6

## TABLE OF CONTENTS (Continued)

Paragraph
Number Titte
Page Number
2.3.2
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.5
2.3.3
2.4
2.4 .1
2.4 .2
2.4 .3
2.4.4
2.4 .5
2.4 .6
2.4.6
.2.3.2.23.2.4

Expanded Multiplexed Mode ..... 2.6
Expanded Multiplexed Mode

2.3.2.1
Port A ..... 2-6
Port C ..... 2-6Port B2.6
Port D ..... 2.7
Port E ..... 2.7
Bootstrap Mode ..... 2.7

2.3.4
3.4 Test Mode ..... 2.7
Memory ..... 2.7
ROM ..... 2.8
EEPROM ..... 2-8
Programming/Erasing Internal EEPROM ..... $2-8$
PPROG Register (EEPROM Programming Control) ..... 2-10
RAM. ..... 2.11
Internal Registers ..... 2.11
INIT Register (RAM and I/O Mapping) ..... 2-11
Section 3
Resets. Interrupts. and Low Power Modes
3.1 Resets ..... 3-13.1.1
3.1.2
3.1.33.1.4
3.2
3.2.13.2.2
3.2.33.2.43.2.5
3.3
3.3.13.3.2
द्RESET Pin ..... 3-1
Power-On Reset ..... 3-2
Computer Operating Properly ICOPI Reset ..... 3-3
Clock Monitor Reset ..... 3-3
Interrupts ..... 3-3
Software Interrupt (SWI) ..... $3-5$
Illegal Opcode Trap ..... 3-5
Interrupt Mask Bits in Condition Code Register ..... 3-5
Priority Structure ..... 3-5
Highest Priority I Interrupt Register (HPRIO) ..... 3-9
Low Power Modes ..... 3-10
WAIT Instruction ..... 3-10
STOP Instruction ..... 3-10
Section 4
Paralled 1/O and System Configuration
4.1 Paratiol I/O ..... 41
4.1 .1 General Purpose I/O (Ports C and D) ..... 41
4.1.2 Fixed Direction I/O (Ports A, B, and E) ..... 41
4.1.3Simple Strobed I/O42
4.1.3.1 Strobed Input Port C ..... 42
4.1.3.2 Strobed Output Port $B$ ..... 42
4.1.4 Full Handshake I/O ..... $4-2$
4.1.4.1 Inpui Handahake Protocol ..... 42
4.1.4.2

## TABLE OF CONTENTS (Continued)

Paragraph
Number Title
Page
Number
4.1.4.3 Paralled 1/O Control Register (PIOC) ..... 43
4.2 System Configuration ..... 44
4.3 Programming and Erasure of the CONFIG Register ..... 4.5
Section 5
Serial Communications Interface (SCI)
5.1 Overview and Features ..... 5-1
5.2 Data Format ..... 5-2
5.3 Wake-Up Feature ..... 5-2
5.4 Receive Data (RxD) ..... 5-2
5.5 Start Bit Detection ..... 5-2
5.6 Transmit Data (TxD) ..... 5-4
5.7 Functional Description ..... 5-4
5.8 Registers ..... 5-6
5.8.1 Serial Communications Data Register (SCDR) ..... 5-6
| 5.8.2 Serial Communications Control Register 1 (SCCR1) ..... 5-6
5.8.3 Serial Communications Control Register 2 (SCCR2) ..... 5-7
5.8.4 Serial Communications Status Register (SCSR) ..... 5-8
5.8.5 Baud Rate Register ..... 5-9
Section 6
Serial Peripheral Interface (SPI)
6.1 Overview and Features ..... 6-1
6.2 Signal Description ..... 6-1
6.2.1 Master in Slave Out (MISO) ..... 6-1
6.2.2 Mester Out Sisve in (MOSI) ..... 6-1
6.2.3 Serial Clock (SCK) ..... 6-2
6.2.4 Slave Select (SS) ..... 6-2
6.3 Functional Deecription ..... 6.3
6.4 Registers ..... 6-4
6.4 .1 Serial Peripheral Control Register (SPCR) ..... 6-4
6.4.2 Serial Peripheral Status Register (SPSR) ..... 6-5
6.4.3 Serial Peripheral Data 1/O Register (SPDR) ..... 6-5
Section 7Analog-to-Digital Converter
7.1 Conversion Procees ..... 7.1
7.2 Channel Axignments ..... $7-1$
7.3 Single-Channel Operation ..... $7-2$
7.4 Four-Chennel Operation ..... 7.2
7.5 Operation in STOP and WAIT Modes ..... 7.2
7.6 A/D Control/Status Register (ADCTL) ..... $7-2$
7.7 A/D Reeult Reginters 1, 2, 3, and 4 (ADR1, ADR2, ADR3, and ADR4) ..... 7-3
7.8 A/D Power Up and Clock Select ..... 7.3

## TABLE OF CONTENTS (Continued)

Paragraph	
Number	Title

Number

Section 8
Programmable Timer, Real-Time Interrupt, and Pulse Accumulator
8.1
8.1.1
8.1 .2
8.1.3
8.1 .4
8.1 .5
8.1.6
8.1.7
8.1.8
8.1.9
8.1 .10
8.1 .11
8.1.12
8.1.13
8.2
8.3
9.1

10.1
10.1.1

$$
10.1 .2
$$

10.1.3
10.1.4
10.1.5
10.1.6
10.1.7

Section 11
Electrical Specifications
11.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 . 11 .
11.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 .1
11.3 Power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 .1
11.4

DC Eloctrical Characterietics $11-2$
11.8 Control Timing ........................................................................ . . . . $11-3$ Programmable Timer$8-1$
Counter ..... 8-1
Input Capture ..... 8-2
Output Compare ..... 8-2
Output Compare 1 I/O Pin Control . ..... 8-2
Timer Compare Force Register (CFORC) ..... $8-3$
Output Compare 1 Mask Register (OC1M) ..... $8-3$
Output Compare 1 Data Register (OC1D) ..... $8-4$
Timer Control Register 1 (TCTL1) ..... $8-4$
Timer Control Register 2 (TCTL2) ..... $8-4$
Main Timer Interrupt Mask Register 1 (TMSK1) ..... $8-5$
Main Timer Interrupt Flag Register 1 (TRLG1) ..... 8.5
Timer Interrupt Mask Register 2 (TMSK2) ..... $8-6$
Timer Interrupt Flag Register 2 (TFLG2) ..... $8-7$
Real Time Interrupt ..... 8-8
Pulse Accumulator ..... $8-8$
Pulse Accumulator Control Register (PACTL) ..... $8-8$
Section 9System Protection
COP Watchdog Syatem ..... $9-1$
Configuration Options Register (OPTION) ..... 9-2
Clock Monitor ..... $9-3$Section 10Addressing Modes and Instruction Set
Addressing Modes ..... 10-1
Immediate Addreesing ..... 10-1
Direct Addreasing ..... 10-1
Extended Addressing ..... 10-1
Indexed Addressing ..... 10-1
Inherent Addressing . ..... 10-2
Relative Addressing ..... 10-2
Prebyte. ..... 10-2

Instruction Set
Instruction Set ..... 10-2
Contior Tinning11-3

## TABLE OF CONTENTS

## (Concluded)

Paragraph Page Number Title Number

Title

Page
11.6 Peripheral Port Timing ..... 11-6
11.7 Expansion Bus Timing ..... $11-9$
11.8 Serial Peripheral Interface (SPI Timing) ..... 11-10
11.9 A/D Converter Characteristics ..... 11-11
Mechanical Data and Ordering Information

Mechanical Data and Ordering Information
12.1 Pin Assignments ..... 12-1

Pin Assionments
12.1.1 ..... 12-1
52-Lead Quad Package12.1.212.212.3


## Section 12 <br> Section 12

12-2
48-Pin Dual-in-Line Package
Package Dimensions ..... 12-3
Ordering Information ..... $12-4$
EPROMs ..... 12-4
MDOS Disk File ..... 12-4
Verification Media ..... 12-4
ROM Verification Units ..... 12-5
Flexible Disks ..... 12-5
Sample Order Form ..... 12-6

## LIST OF ILLUSTRATIONS

Figure Title
Page
Number Number
1-1 Block Diagram ..... $1-2$
$2 \cdot 1$ Programming Model ..... 2-1
2-2 interrupt Stacking Order ..... 2-2
2-3 Memory Maps ..... 2.7
2-4 EEPROM Programming Control Register (PROG) ..... 2.10
2.5 RAM and I/O Mapping Register (INIT) ..... 2-11/2-12
3-1 Reset Timing ..... 3-1
3-2 MC68HC11A8 Interrupt Structure Flowchart ..... 3-6
3-3 Highest Priority I Interrupt Register (HPRIO) ..... 3-9
4-1 Parallel I/O Control Register (PIOC) ..... 43
4-2 System Configuration Control Register (CONFIG) ..... 4-4
5-1 Data Format5-2
5-2
5-2
Sampling Technique Used on All Bits ..... 5-2
Examples of Start Bit Sampling Techniques ..... 5-3
SCI Artificial Start Following a Framing Error ..... 5-3
SCI Start Bit Following a Break ..... 5-4
Serial Communications Interface Block Diagram ..... 5-5
Rate Generator Division ..... 5-6
Serial Communications Data Register (SCDR) ..... 5-6
Serial Communications Control Register 1 (SCCR1) ..... 5-6
Serial Communications Control Register 2 (SCCR2) ..... 5-7
5-11 Serial Communications Status Register (SCSR) ..... 5-8
5-12 Baud Rate Register ..... 5-9
6-1 Data Clock Timing Diagram ..... 6-2
6-2 Serial Peripheral Interface Block Diagram ..... 6-3
6-3 Serial Peripheral Interface Master-Slave Interconnection ..... 6-4
6-4 Serial Peripheral Control Register (SPCR) ..... 6-4
6-5 Serial Peripheral Status Register (SPSR) ..... $6-5$
6-6 Serial Peripheral Data I/O Register (SPDR) ..... 6-6
$7-1$
A/D Control/Status Register (ADCTL) ..... 7.2
8-1 Timer Compare Force Register (CFORC) ..... $8-3$
8-2 Output Compare 1 Mesk Register (OC1M) ..... 8-3
8-3 Output Compare 1 Data Register (OC1D) ..... 8-4
8-4 Tine "introl Register 1 (TCTLI) ..... 8-4

## LIST OF ILLUSTRATIONS (Continued)

Fgure Number ..... Title
Page Number
8-5 Timer Control Register 2 (TCTL2) ..... 8-4
8-6 Timer Interrupt Mask Register 1 (TMSK1) ..... 8-5
$8-7$ Timer Interrupt Flag Register 1 (TFLG1) ..... $8-5$
8-88-9Timer Interrupt Mask Register 2 (TMSK2)$8-6$
Timer Interrupt Flag Register 2 (TFLG2) ..... $8-7$
8-10 Pulse Accumulator Control Register (PACTL) ..... 8-8
$9-1$ Configuration Options Register (OPTION) ..... 9-2
$10-1$ Special Operations ..... 10-10
$11-1$ Equivalent Test Load ..... $11-2$
11-2 Power-On Reset and RESET Timing Diagram ..... $11-3$
$11-3$ Stop Recovery and Power-On Reset Timing Diagram ..... $11-4$
$11-4$ Wait Recovery from Internal or External Interrupts Timing Diagram ..... $11-4$
$11-5$ Mode Programming ..... $11-5$
11.6 Internal RESET ..... 11.5
11.7 Interrupt Timing ..... 11-5
118 Timer Inputs ..... $11-5$
11-9 Port Write or Timer Output Compare ..... 11.6
11-10 Port Read ..... $11-6$
11-11 Simple Output Strobe ..... 11.7
11-12 Simple Input Strobe ..... 11.7
11-13 Port C Input Handshake. ..... 11.7
11-14 Port C Output Handshake ..... 11.8
11-15 Port C Output Handshake with 3-State Enabled ..... 11.8
11-16 Expansion Bus Timing ..... Foldout 3
11-17 SPI Timing Foldout 4
11-18 Oscillator Circuits ..... 11-12
11-19 Typical Reset Circuits ..... 11-12
12-1 EPROM Marking Example ..... 12-5

## LIST OF TABLES

Table
Number Title
Page
Number
2-1 Opersting Modes versus MODA and MODB ..... 2-4
Port Signal Summary ..... 2-5
2-3 Register and Control Bit Assignments Foldout 1
3-1 Interrupt Vector Assignments ..... 3-4
3-2 SCI Serial System Interrupts ..... $3-4$3-3
IRQ Vector Interrupts . ..... 3-4
Mode Bits Relationship ..... 3-9
3-5 Highest Priority I Interrupt versus PSEL3-PSELO ..... 3-9
4-1 STAF Bit Clearing Conditions ..... 4.4
5-1 First Prescale Stage ..... 5-95-25-3
Second Prescale Stage ..... 5-9
Prescaler Highest Baud Rate Frequency Output ..... 5-10
Transmit Baud Rate Output for a Given Prescaler Output ..... 5-10
Serial Peripheral Rate Selection ..... 6-5
Analog-to-Digital Channel Assignments ..... $7-1$
$8-1$ Real Time Interrupt Rate versus RTR1 and RTRO ..... $8-9$
$9-1$ COP Timeout Period versus CR1 and CRO ..... $9-1$
$10-1$ MC68HC11A8 Instructions, Addressing Modes, and Execution Times ..... 10-3
10-2 Cycle-by-Cycle Operation - Inherent Mode ..... 10-11
$10-3$ Cycle-by-Cycle Operation - Immediate Mode ..... 10-14
10-4 Cycle-by-Cycle Operation - Direct Mode ..... 10-14
$10-5$ Cycle-by-Cycle Operation - Extended Mode ..... 10-15
10-6 Cycle-by-Cycle Operation - Indexed X Mode ..... 10-17
$10-7$ Cycle-by-Cycle Operation - Indexed Y Mode ..... 10-18
10-8 Cycle-by-Cycle Operation - Relative Mode ..... 10-20

## SECTION 1 INTRODUCTION

The HCMOS MC6BHC11A8 is an advanced single-chip microcomputer (MCU) with highly sophisticated onchip peripheral functions. New design techniques are used to achieve a nominal bus speed of two megahertz. In addition, the fully static design allows operation at frequencies down to dc, further reducing its low power consumption.

### 1.1 FEATURES

The following are some of the hardware and software highlights.

## Hardware Features

- 8K Bytes of ROM
- 512 Bytes of EEPROM
- 256 Bytes of RAM (All Saved During Standby) Mappable to Any 4K Boundary
- Enhanced 16-Bit Timer System:

Four Stage Programmable Prescaler
Three Input Capture Functions
Five Output Compare Functions

- An 8-Bit Pulse Accumulator Circuit
- An Enhanced NRZ Serial Communications Interface (SCI)
- A Serial Peripheral Interface (SPI)
- Eight Channel, 8-Bit Analog-to-Digital Converter
- Real Time Interrupt Circuit
- Computer Operating Properly (COP) Watchdog System
- Available in Dual-in-Line or Leaded Chip Carrier Packages


## Software Features

- Enhanced M6800/M6801 Instruction Set
- $16 \times 16$ Integer and Fractional Divide Features
- Bit Manipulation
- WAIT Mode
- STOP Mode


### 1.2 GENERAL DESCRIPTION

The MC68HC11A8 is a single-chip microcomputer that utilizes HCMOS technolegy to provide the lowpower characteristics and high noise immunity of CMOS plus the high-speed operation of HMOS. On-chip memory systems include a 8 K byte ROM, 512 bytes of electrically erasable programmable ROM $\operatorname{IEEPROM}$ ), and 256 bytes of static RAM. The MC68HCllA8 microcomputer also provides highly sophisticated, on-chip peripheral functions including: an 8 -channel analog-to-digital (A/D) converter, a serial communications interface (SCI) subsystem, and a serial peripheral interface (SPI) subsystem.

The timer system provides three input capture lines, five output compare lines, and a real time interrupt circuit.

Other features include: a pulse accumulator which can be used to count external events levent counting mode) or measure an external period; a computer operating properly (COP) watchdog system which helps protect against software failures; a clock monitor system which causes generation of a system reset in case the clock is lost or running too slow: an ilegal opcode detection circuit which provides an unmaskable interrupt if an illegal opcode fetch is detected; and two power seving standby modes, STOP and WAIT.

A block diagram of the MC68HC11A8 is given in Figure 1-1.


Figure 1-1. Block Dlagram

## SECTION 2

CPU REGISTERS, FUNCTIONAL PIN DESCRIPTION, OPERATING MODES, INPUT/OUTPUT PROGRAMMING, AND MEMORY

This section provides a description of the CPU registers, functional pins, input/output programming, and memory.

### 2.1 CPU RECISTERS

In addition to being able to execute all M6800 and M6801 instructions, the MC63HC11A8 uses 84 -pege opcode map to allow execution of 91 new opcodes. Seven registers, discussed in the following peragraphe. are available to programmers as shown in Figure 2-1. Figure 2-2 gives the interrupt stacking order.


	Stack	- - SP EFFOME mTEMupt
Sp	PCI	
SP. 1	cch	
5P. 2	in	
Sp. 3	[ m	
58.4	\|xa	
Sp. 5	$1 \times \mathrm{H}$	
58.6	${ }_{\text {acca }}$	
Sp. 1	${ }_{\text {acte }}$	
Sp. 8	cca	
SPO		

Figure 2-2. Interrupt Stacking Order

### 2.1.1 Accumulatore $A$ and $B$

Accumulator $A$ and accumulator $B$ are generalpurpose 8 -bit registers used to hold operands and results of arithmetic calculations or data manipulations. These two sccumuletors cen be concatenated into a single 16 -bit accumulator called the D accumulator.

### 2.1.2 Index Reglater $X$ (IX)

The 16-bit IX regieter is used for indexed mode addreesing. It provides a 16 -bit indexing velue which is added to an 8 -bit offeet provided in an instruction to create an effective address. The IX register can also be used as a counter or at a temporary storage register.

### 2.1.3 Index Register Y (IY)

The 16-bit IY register is elso used for indexed mode addresaing similer to the IX reginter; howover, all instructions using the IY register require an extra byte of mechine code end en extra cycle of execution time since they are two byte opcodes.

### 2.1.4 Stack Pointer (SP)

The stack pointer (SP) is a 16 -bit regiater that contains the addrees of the next free focation on the stack. The stack is configured as a sequence of lest-in-first-out reed/wite regiaters which allow important deta to be stored during interrupts and subroutine calle. Each time a new byte is added to the stack (a puash), the SP is decremented; wheress, each time a byte is removed from the stack (a pull) the SP is incremented.

### 2.1.8 Program Counter (PC)

The program counter is a 16 -bit regiater that contsins the addrese of the next instruction to be executed.

### 2.1.6 Condition Code Reginter (CCA)

The condition code regiater is an 8-bit reginter in which each bit signifies the reaults of the inatruction just oxecuted. Theee bits cen be individually teatad by a program and a specific action can be taken as a reout of the teat. Each individual condition code regiater bit is expleined below.
2.1.6.1 CARAY/BORROW (C). The C bit in set if there whe a carry or borrow out of the erithrnetic logic unit (ALU) during the leat arthmetic operation. The C bl is also affected during shift and rotate instructions.
2.1.6.2 OVERFLOW (V). The overifow bit is cet if there was en erithmetic overflow as a reeut of the operetion; otherwite, the V bit ie cleared.
2.1.6.3 ZERO (Z). The zero bit is set if the reauk of the leat erithmetic, logic, or date manipulation operation was zero; otherwise, the $Z$ lit is cleered.
2.1.6.4 NECATIVE (N). The negative bit is set if the reeult of the lest entitmetic, logic, or data manipulation operation wase negative; otherwiee, the $N$ bit is cleered.
2.1.6.5 I INTERRUPT MASK (I). The interrupt mask bit is set either by hardware or program instruction to disable (mask) all maskable interrupt sources (both externsl and internall.
2.1.6.6 HALF CARRY (H). The half carry bit is set to a logic one when a carry occurs between bita 3 and 4 of the arithmetic logic unit during an ADD, ABA, or ADC instruction; otherwise, the $H$ bit is cleared.
2.1.6.7 X INTERRUPT MASK (X). The $X$ interrupt mask bit is set only by hardware (RESET or XIRO acknowledge); and it is cleared only by program instruction (TAP or RTI).
2.1.6.8 STOP DISABLE (S). The stop disable bit is set to disable the STOP instruction, and cleared to enable the STOP instruction. The $S$ bit is program controlled. The STOP instruction is treated as no operation (NOP) if the $S$ bit is set.

### 2.2 FUNCTIONAL PIN DESCRIPTION

The following paragraphs describe all of the function pins except for the ports which are discussed seperately under 2.3 OPERATING MODES AND INPUT/OUTPUT PROGRAMMING.

### 2.2.1 VDD AND V8s

Power is supplied to the MC68HC11A8 using these two pins. VDD is the power input ( +5 volts) and VSS is ground.

### 2.2.2 RESET

This active low bidirectional control pin is used as an input to initialize the MC68HC11A8 to a known startup stete, and as an open-drain output to indicate an internal failure has been detected in either the clock monitor or computer operating property (COP) circuit. Refer to Figure 11-19 for a typical reeet circuit.

### 2.2.3 XTAL and EXTAL

Theee two pins provide for an interface with either a crystel or a CMOS compatible clock to control the MCCBHCIIAB internal clock generator circuitry. The frequency applied to these pins should be four times the deaired internal clock rate. The XTAL output is only intended to drive the crystel. H should not be used to drive external circuitry. The XTAL pin must be left unconnected when using an external CMOS compatible clock on EXTAL. Refer to Figure 11-18 for a diagram of the oscillator circuits.

### 2.2.4 E (ENABLE) CLOCK

The Epin provides an output for the internally generated Eclock which can be used as a timing reference. The frequency of the E output is actually one fourth that of the input frequency at the XTAL and EXTAL pine. In general when the Epin is low, an internal process is taking place and, when high, data is being acceseed. The E signal is haked when the MCU is in a STOP state.

## $2.251 \overline{1 \pi}$

The $\overline{\mathrm{IRO}}$ pin provides a meens for requesting esynchronous interrupts to the MCBBC11AB. It is program selectable IOPTION register) with a choice of either negative edge-sensitive or level-sensitive triggering, and is atways configured to lovel-sensitive triggering during reset. The $\overline{R Q} \bar{p}$ pin requires an external resistor , to VOD.

### 2.2.6 $\overline{\text { XIRO }}$

The $\overline{\text { XIRO }}$ pin provides a means of requesting asynchronous non-maskable interrupts to the MC6̈8HC11A8, after a power-on reset. During reset, the $X$ bit in the condition code register is set and the XIRQ interrupt is masked to preclude interrupts on this line until MCU operation is stabilized. The $\overline{X I R} \overline{\mathrm{Q}}$ is a level sensitive pin and requires an external resistor to VDD.

### 2.2.7 MODA/LIR AND MODB

During reset, these two pins are used to control the two basic operating modes of the MC68HC11A8 plus two special operating modes (Table 2-1). Refer to 2.3 OPERATING MODES AND INPUTIOUTPUT PROGRAMMING for more detailed information.

Table 2-1. Operating Modes versus MODA and MODB

MODB	MODA	Mode 8elected
1	0	Singi-Chip (Mode 01
1	1	Expended Multiplaxed (Mode 11
1	0	Specid Bootetrep
1	1	Speciel Teet

NOTE:
1 = Logic High
$0=$ Logic Low
$t=1.8$ Times VDD (or Mipher)
145
In addition to the MOOA function, the MODA/LTR pin provides an output as an aid in debugging once reeet is completed. The $\overline{\mathrm{LI}}$ pin goes to an active low during the first $\mathbf{E}$ clock cycle of each instruction and remains low for the duration of that cycle (opcode fetch).

### 2.2.8 VRL and VRH

These two pins provide the reference voltage for the analog-to-digital converter.

### 2.2.9 R/W/STRB

This pin provides two different functions depending on the operating mode.
In the single-chip mode, the STRB pin acts as a programmable strobe for handshake to a peralled I/O device.

In the expanded multiplexed mode, $R / \bar{W}$ (read/write) is used to controt the direction of transfers on the external data bus. A low level (write) on the R/W pin enables the data bus output drivers to the external data bus. A high level fread) on this pin forces the output drivers to a high-impedance state and data is read from the external bus. R/W will stay low during consecutive data bus write cycles, such as in a double-byte store.

### 2.2.10 AS/STRA

This pin provides two different functions depending on the operating mode.
In the single-chip mode, the STRA pin acts as a programmable input strobe, which can be used with STRB and port C for full handshake modes of parailet I/O.

In the expended multiplexed mode, the AS laddress strobel output may be used to demultiplex the address and data signats at port C .

### 2.3 OPERATING MODES AND INPUT/OUTPUT PROGRAMMING

There are five 8 -bit ports on the MC68HC11A8 MCU. Three of these ports serve more than one purpose, depending on the mode configuration of the MCU. A summary of the pins versus function and mode is provided in Table 2-2 and discussed in the following paragraphs. Because some of the port functions are controlled by the particular mode selected, each port is discussed for its function(s) during the mode of operation. Unused port input or 1/O pins should be tied high or low.

Table 2-2. Port Signal Summary

Port-8t	Single-Chip Modes 0 and Boozstrap Mode	Expanded Multiplexed   Mode 1 and Special Teet Mode
A-0	PA0/IC3	PAOIIC3
A. 1	PAI/IC2	PAI/IC2
A. 2	PA2IIC1	PAZ/IC,
A. 3	PA3/OC5/ mnd-or OC1	PA3/OC5/andor OC1
A-4	PA4/OC4/andor OC1	PAA/OC4/medor OC1
A. 5	PA5/OC3/ mid.or OC1	PAS/OC3/and-or OC1
A. 8	PA6/OC2/andor OC1	PA6/OC2/ondor Or ${ }^{\text {P }}$
A. 7	PA7/PAI/OC1	PAT/PAI/OC:
8-0	P90	${ }^{\text {A }}$
8.1	P81	A9
8-2	982	A10
8.3	P93	Al1
$8-4$	P84	A12
8-5	P85	A13
8-8	P88	A14
8.7	P87	Als
C. 0	PCO	AO/DO
C. 1	PCI	A1/DI
C. 2	PC2	A2/02
C. 3	PC3	A3/03
C. 4	PC4	A / ${ }^{\text {d }}$
C-5	PC5	A5/06
C. 8	PC6	A6/D8
C. 7	PC7	A7/D7
0-0	PDO/RxD	PDO/RxD
0.1	PD1/TxD	PD1/TxD
0-2	PO2/MISO	PD2/MiSO
0.3	P03/MOSI	PD3/MOS:
D-4	PD4/SCK	POA/SCK
0-5	P06/SS	PDS/SS
D-8	STRA	AS
0.7	STRE	R/W
E-0	PEO/ANO	PEO/ANO
E. 1	PEI/AN1	PEI/AN1
E-2	PEE/AN2	PEE/AN2
E-3	Pe3/ant	PE3/ANS
E-4	PES/ANH 11	PEA/ANM If
E-5	PES/ANS 41	PE5/AN5 4
E-6	PEs/ANS 41	PEg/ant 11
E. 7	PET/ANT ©	PET/AN7 0

III-not bonded in 40-pin veristions

### 2.3.1 Single-Chip Mode

In the single-chip mode, the MC68HCIIA8 functions as a monolithic microcomputer without external address or data buses.
2.3.1.1 PORT A. In all operating modes port A may be configured for: three input capture functions IICI, IC2. IC3), four output compare functions (OC2, OC3, OC4, OC5). and a puise accumulator input (PAl) or a fifth output compare function (OC1). Refer to 8.1 PROGRAMMABLE TIMER for additional information.

Each port A pin that is not used for its alternate timer function may be used as a general-purpose input or output line.
2.3.1.2 PORT B. All of the port $B$ pins are general-purpose output pins. During MCU reads of this port, the level sensed at the input side of the port B output drivers is read. Port B may also be used in a simple strobed output mode where the STRB pulses each time port B is written.
2.3.1.3 PORT C. All port $C$ pins are general-purpose input/output pins. Port $C$ inputs can be latched by the STRA input. Port C may also be used in full handshake modes of parallel I/O where the STRA input and STRB output act as handshake control lines.
2.3.1.4 PORT D. Port D bits $0-5$ may be used for general I/O or with the serial communications interface (SCI) and serial peripheral interface (SPI) subsystems. Bits 6 and 7 are used as handshake control signals for ports B and C .

Bit 0 is the receive data input ( RxD ) for the serial communication interface (SCI).
Bit 1 is the transmit data output ( $T \times D$ ) for the SCl .
Bits 2 through 5 are dedicated to the serial peripheral interface (SPI). Bit $\mathbf{2}$ is the master-in-slave-out (MISO) line. Bit 3 is the master-out-of-slave-in (MOSI) line. Bit 4 is the serial clock (SCK) and bit 5 is the slave select ( $\overline{\mathrm{SS}}$ ) input.

Bit 6 is STRA.

Bit 7 is STRB.
2.3.1.5 PORT E. In all operating modes, port $E$ is used for general-purpose inputs and/or analog-to-digital (A/D) channet inputs. Port $E$ should not be reed white an $A / D$ conversion is actually taking place.

## NOTE

On 48-pin packaged versions of the MC6BHC11A8, the four most significant bits of port E are not connected to pins.

### 2.3.2 Expanded Multiplexed Mode

In the expanded multiplexed mode, the MC63HC11A8 has the capability of acceasing a 64K byte addrese space. The totel address space includes the same on-chip mernory eddrees es for single-chip mode plus external peripherel and memory devicos.
2.3.2.1 PORT A. This port has the same functions as in the single-chip mode (refer to 2.3.1.1 PORT A).
2.3.2.2 PORT B. All of the port B pint act ss high order address output pins. During each MCU cycle, bits 8 through 15 of the addrees are output on the PBO-PB7 linee reepectively.
2.3.2.3 PORT C. All port C pins are configured as mutiplaxed addrees/data pins. During the addrees portion of each MCU cycle, bits 0 through 7 of the addrees are output on the PCO-PC7 lines. During the data portion of each MCU cycle (E high), bits 0 through 7 (DO-D7) are bidirectional deta pins controlled by the $R / \bar{W}$ signal.
2.3.2.4 PORT D. This port functions the same way as in the single-chip mode (refer to 2.3.1.4 PORT D) except bits 6 and 7 which act as expansion bus control lines AS and $R / \bar{W}$ respectively.
2.3.2.6 PORT E. This port has the same function as in the single-chip mode (refer to 2.3.1.5 PORT E).

### 2.3.3 Bootatrap Mode

The bootatrap mode is considered a special mode as distinguished from the normal operating single-chip mode. This is a very versatile mode since there are essentially no limitations on the special purpose program that is boot loaded into the internal RAM. The boot losder is contained in 192 bytes of ROM which is enabled as internal memory space at \$BF40-\$BFFF. The boot loeder contains a smell progrem which reads a 258 byte program into on-chip RAM ( $\$ 0000$-\$00FF) via the SCI. After the character for addrees \$00FF is recelved, control is automatically passed to that program at memory address s:0000 and the MCU starts operating.

In the bootatrap mode, the serial receive logic is initialized by software in the boot losder ROM to be $\mathbf{1 2 0 0}$ boud for a 8.0 MHz crystal or $\mathbf{6 0 0}$ baud for a 4.0 MHz crystel and a data format of one stert bit, \&-bit data, and one stop bit. An opening character should be \$FF. The character following that will be placed at $\$ 0000$ and each subsequent charecter is put in the next higher address until the entire 256 bytes are filled. Note that the entire 258 -byte spece must be filled.

### 2.3.4 Test Mode

The teat mode is used for factory testing.

### 2.4 MEMORY

Composite memory maps for each MC68HC11A8 mode of operation are shown in Figure 2-3. Theee modes inctude single-chip, expanded multiplexed, and special boot.


## NOTES:




In the single-chip mode (mode 0 ) of Figure 2-3, the MC68HC11A8 does not generate external addresses. The actual internal memory locations are shown in the shaded areas ot Figure 2-3 and the contents of these shaded areas are shown on the right side of the diagram. Refer to Table 2-3 found on a foldout page at the back of this document for a full list of the registers.

The expanded multiplexed mode (mode 1 i memory locations shown in Figure 2-3 are basically the same as for the single-chip mode; however, the memory locations between the shaded areas (designated EXT) are for externally addressed memory and I/O.

The special bootstrap mode memory locations are similar to the single-chip memory locations except that a special bootstrap program is addressed at memory locations \$BF40 through \$BFFF.

### 2.4.1 ROM

The internal 8K ROM occupies the highest 8K of the memory map (\$E000-sFFFF). This ROM can be disabled when the ROMON bit in the CONFIG register is clear. This register bit is implemented with an EEPROM cell and should be programmed using the same procedures for programming the on-chip EEPROM.

### 2.4.2 EEPROM

The MC68HC11AB includes 512 bytes of EEPROM located in the area \$B600 through \$B7FF which has the same read cycle time as the internal ROM. The write (or programming) mechanism for the EEPROM is controlled by the PPROG register. The 512-byte EEPROM is disabled when the EEON bit in the CONFIG register is clear. This register bit is implemented with an EEPROM cell.

### 2.4.3 Programming/Erasing Internal EEPROM

The EEPROM programming and erasure process is controlled by the PPROG register. The operating modes for the 512-byte EEPROM are as follows:

NORMAL REAO - In this mode, the ERASE bit in the PPROG register must be clear (not erase mode) and the EELAT bit must be ciear (not programming mode). While these two bits are cleared, the ROW and EEPGM bits in the PPROG register have no meaning or effect. and the $\mathbf{5 1 2}$-byte EEPROM may be read as if it were a normal ROM.

PROGRAMMING - During EEPROM programming, the ROW bit is not used. If the Eclock frequency is less than 1 MHz the CSEL bit in the OPTION register must be set. The normal se-- quence of events in programming the EEPROM is as follows:

1) Write $\mathrm{xxxx} \times 010$ to the PPROG register. This specifies program normal mode (ERASE bit $=0$ ), address/data buses configured to latch address and data information (EELAT bit $=1$ ), and erase voltage turned off (EEPGM bit $=0$ ).
2) Write data to be programmed to the desired EEPROM address. This write causes the address and data to be latched in a parallel internal latch.
3) Write EEPGM bit to one ( $x \times x x \times 011$ ). This couples the EEPROM programming supply voltage to the EEPROM array, to program the specified data into the specified address in EEPROM.
4) Delay for 10 milliseconds.
5) Write $x \times x x \times 00$ to the PPROG register to turn off the programming voltage.
6) Repeat steps 2) through 5) until all desired locations have been programmed.
7) Write EELAT bit back to zero to allow the programmed data to be verified.
' ERAASE - If the E clock frequency is less than 1 MHz , the CSEL bit in the OPTION register must be set when erasing the EEPROM. The EEPROM has three erase modes:
8) full, 512-byte simultaneous "bulk" erase,
9) "row" erase where only one row ( 16 bytes) is erased at a time, and
10) "brte" erase where a single specified byte is erased.

VOTE
The erased state of all EEPROM cells is logic $0 \cdot 1 e$. On early parts, byte and row erase are not implemented.

The normal procedure for erasure of the entire EEPROM is:

1) Write $x \times x x 0110$ to the PPROG register. This specifies the "all" erase mode (ROW bit $=0$ ), erase mode (ERASE bit $=1$ ), EEPROM configured for address/data latching (EELAT bit $=1$ ), and erese voltage turned off (EEPGM bit $=0$ ).

1a) A write must be done to any EEPROM address after Step. 1.
1b) Optionally if the CONFIG register is also to be erased, a write to the address of the CONFIG register must be performed after "bulk" erase was specified by the write, in step 1 above, and before the programming voltage is turned on in step 2 below.

In the case of erasure, the data involved in this write operation is : : nimportant and the write is needed only for the addressing information it provides.
2) Write $x x x x 0111$ to the PPROG register to turn on the erase voltage to the EEPROM array.
3) Weit for 10 milliseconds to allow the erasure to complete.
4) Write $x x x x 0110$ to the PPROG register to turn off the erase voltage.
5) Write $\times x x x 0000$ to the PPROG register to return the EEPROM to the norral read configuration.

The normal procedure for erasure of a row of EEPROM is:

1) Write xxxx 1110 to the PPROG register. This specifies the "row" orase mode (ROW bit = 1), ersee mode (ERASE bit $=1$ ), address/data buses configured to latch row address information (EELAT bit $=1$ ), and erase voltage turned off (EEPGM bit $=0$ ).
2) Write to en eddrees in the EEPAOM row to be erased (each row is 16 bytes). This latches the row addreasing information for the row to be eresed.
3) Write $x x x x 1111$ to the PPROG register to tum on the erase voltage to the EEPROM array.
4) Wait for 10 milliseconds to allow the erasure to complete.
5) Write xxxx 1110 to the PPROG register to tum off the erase voltage.
6) Write xxxx 0000 to the PPROG register to retum the EEPROM to the normal read configuration.

The normal procedure for erasure of a single byte of EEPROM is:

1) Write $x \times x 1 \times 110$ to the PPROG register. This specifies the byte erase mode ( $8 Y$ YTE $=1$; ROW $=x$ ), erase mode (ERASE bit = 1), address/data buses configured to latch address information (EELAT bit $=1$ ), and erase voltage turned off (EEPGM bit $=0$ ).
2) Write to the address in the EEPROM to be erased (data is ignored). This latches the addrees of the byte to be erased.
3) Write $\mathrm{xxx} 1 \times 111$ to the PPROG egister. This tums on the ersee voltage to the EEPROM array. EEPGM was not changed to one in the same write operation ts the write that configured ROW, ERASE, and EELAT because of the possibility of enabling the erase voltage before the erase mode specification was stable.
4) Wait for 10 milliseconds to allow the erasure to complete.
5) Write $x 0 x i \times 110$ to the PPROG eegister to turn off the erase voltege.
6) Write $\times x \times 00000$ to the PPROG register to return the EEPROM to the normal reed configuration.

### 2.4.4 PPROG Register (EEPROM Programming Control)

This 8-bit register (see Figure 2-4) is used to control progremming and erssure of the 512 -byte internal EEPROM. Reset clears this register to $\$ 00$ so EEPROM is configured for normal reeds.

81	2	18	4	13	12	81	0
000	EvEM	-	OYTE	MW	Enast	felat	EEPrem

Figure 2-4. EEPROM Programming Control Regiater (PPROQ)

Bit 7, ODD Used to Program Odd Rows (TEST)
Bit 6, EVEN Used to Program Even Rows (TEST)
Bit 5 - Not Implemented
Bit 4, BYTE Used for Erasing Brtes-Overrides Bit 3
0 = Row or Bulk E-ase
1 = Erase Only Ore Byte
Bit 3, ROW Used for Row Ersaing
$0=$ Bulk Ereee
1 = Row Erase

## Bit 2, ERASE Enables the Erase

$0=$ Normal Read or Program
1 = Erase Mode
Bit 1. EELAT EEPROM Latch Control
$0=$ EEPROM Address and Data Configured for Read
$1=$ EEPROM Address and Data Configured for Programming
Bit 0, EEPGM Program Command
$0=$ Switched Off
1 = Turned On

### 2.4.5 RAM

The 256 byte internal RAM may be positioned in the memory map during initialization by writing to the INIT control register. The reset default position is $\$ 0000$ through $\$ 00 \mathrm{FF}$. RAM is implemented with static cells and retains its contents during the WAIT and STOP modes.

### 2.4.6 Internal Registers

There are 84 internal registers which are used to control the operation of the MC68HC11A8. These registers can be remapped in the memory space on 4K boundaries using the INIT register. Refer to Table 2-3 (found on a foldout page at the back of this document) for a complete list of the registers. Most of the registers are explained throughout the text.

### 2.4.7 INIT Register (RAM and I/O Mapping)

This special purpose 8 -bit register (see Figure $2-5$ ) is used (optionally) during initialization to change the defaut locations of RAM and internal registers in the MCU memory map. It may be written to only once within the initial 64 E cycles after a reset and thereafter becomes a read-only register.

01	80	05	84	83	02	81	0	
nams	nam2	nam 1	namo	${ }^{1} 63$	1262	ne61	REEO	- 030

Figure 2-6. RAM and I/O Mapping Register (INIT)
The defeult starting addreas for internal RAM is 50000 and the defaut starting address of the 84 byte internel register space is $\$ 1000$ (the INIT register is initiolized to $\$ 01$ by reset). The upper four bits of the INIT recieter specify the sterting address for the internal 258 byte RAM and the lower four bits of INIT specify the starting address for the 64 byte internal register space. The four bits reflect the upper nibble of the 16 -bit. addreen.

Nose that if the RAM is repositioned to $\$ 000$ or \$F000 so that it conflicts with the internal ROM ino conflict if in "No ROM" model, then the RAM takes higher priority and the conflicting ROM becomes inaccessible. Aloo, if the 64-byte internal register spece is repositioned so that it conflicts with the RAM and/or ROM, then the regiater space takes highest priority and the RAM and/or ROM become inacceasible.

## SECTION 3

RESETS, INTERRUPTS, AND LOW POWER MODES

This section provides a description of the resets, interrupts, and low power modes for the MC68HC11AB.

### 3.1 RESETS

The MC6BHC11A8 has four possible types of reset: an active low external reset pin ( $\overline{\operatorname{RESET}})$, a power-on reeet function, a computer operating properly (COP) watchdog timer reset, and a clock monitor reset.

### 3.1.1 RESET Pin

The RESET pin is used to reset the MCU to provide an orderly softwere startup procedure. When the RESET pin goes low, it is held low by an internel device for four E cycles, then relessed, and two E cycles leter it is sampled. If the pin is low, it means that an externel reset has occurred. If the pin is high, it means that the reset was initiated internally by the watchdog timer (COP) or the clock monitor (refer to Figure 3-1).


[^2]Figure 3-1. Reeet Timing

### 3.1.2 Power-On Reset

The power-on reset occurs when a positive transition is detected on VDD. The power-on reser is used strictly for power turn-on conditions and should not be used to detect any drops in power supply voltage. The power-on circuitry provides for a 4064 cycle time delay from the time of the first oscillator operation. In a system where $E=2 \mathrm{MHz}$, POR lasts about 2 milliseconds. If the system power supply rise time is more than 2 milliseconds, an external reset circuit should be used. If the external RESET pin is low at the end of the power-on delay time, the processor remains in the reset condition until the RESET pin goes high.

CPU After reset, the CPU fetches the restart vector from $\$$ FFFE and $\$$ FFFF ( 3 BFFE and \$BFFF if in special bootstrap model during the firat three cycles after reset, and begins executing instructions. The stack pointer and other CPU registers are indeterminate immediately after reset; however, the $X$ and I interrupt mask bits in the condition code register are aet so interrupt requests are masked. Also, the S bit in the condition code register is set so that the stop mode is disabled.

Memory Map After reset, the INIT register is initialized to $\$ 01$, putting the 258 bytes of RAM at $\$ 0000$ and the internal registers at $\$ 1000$. The $8 \times$-byte ROM and/or the 512 -byte EEPROM mey or may not be present in the memory map because the two bits that eneble them in the CONFIG register are EEPROM cells and are not affected by reeot or power down.

Paralled I/O
When reset occurs in expended multiplaxed mode, the 18 pins used by the perrellel 1/O functions are dedicated to the expansion bus. If reeot in singlo-chip mode, the STAF, STAI, and HNDS bits in the parallel input/output control (PIOC) regiater are initialized to zeros so that no interrupt is pending or enabled, and the simple strobed mode frather then full handshake mode) of parallel I/O is selected. The CWOM bit in the PIOC is initislized to zero (port C not in wired-OR mode). Port C is initialized as an input port (DDRC $=\mathbf{\$ 0 0}$ ), port B is a general purpose output port whth all bits initialized to logic zeros. Port $D$ bit 6 in the STRA edge-sensitive strobe input and the ective edge is initially configured to detect rising edgee (EGA bit in the PIOC set to one by reeet), and port D bit 7 is the STRB strobe output end is initially a logic zero (the INVB bit in the PIOC is initialized to logic one). Port C, port D bits 0 through 5, port A bits $0,1,2$, and 7, and port $E$ are configured as general purpoee high-impedence inputs. Port $B$ and bits 3 through 8 of port $A$ heve their directions fixed as outputs, when used as general purpoee I/O pins, and their reset state is a logic zero.

Timer During reset, the timer systern is initielized to a count of $\mathbf{6 0 0 0 0}$. The prescaler bite are axt to $0: 0$, end all output compare registers are initiallzed to \$FFFF. Al input cepture registers are indeterminate after reeet. The output compare 1 meek (OC1M) register is cleeved 90 that succesaful OC1 comperes do not affect any $1 / 0$ pins. The other four output compares are configured so as not to effect any $1 / O$ pins on succeasful comperes. Al three input capture edge-detector circuits are configured for "capture diasbled" operation. The timer overfiow interrupt fiag and all cight timer function interrupt flegs are cteered and all nine timer interrupts are diaabled since their mask bits are cleered.

Red Time Interrupt	The real time interrupt fleg is cleered and automatic herdwere interrupte ere meeked. The rate control bits are cleared after reset and may be initialized by softwere before the reel time interrupt system is used.
Pulse Accumulato	The pulse accumulator syatem is disabled at reeet so that the PAI input pin defauta being a general purpoee input pin.

The COP wetchidog syetem is ensbled if the NOCOP control bit in the system configure-
tion control regiater (EEPROM cell) is chear, and dhabled if NOCOP ie set. The COP rate is set for the shortest duration timeout.

SCI Serial I/O The reset condition of the SCl system is independent of the operating mode. At reset, the SCI baud rate is indeterminate and must be eatablished by a software write to the BAUD register. All tranamit and receive interrupts are maaked and both the transmitter and receiver are disabled so the port pins defautt to being general purpose $1 / \mathrm{O}$ lines. The SCI frame format is initialized to 8 -bit word size. The send breek and receiver wake up functions are disabled. The TDRE and TC status bits in the SCI status register are both set, indicating that there is no tranamit date in either the transmit data register or the transmit serial shift register. The RDRF, IDLE, OR, NF, and FE receiverelated status bits are all cleared.

SPI Serial I/O The SPI system is disabled by reset. The port pins aesociated with this function default to being general purpose $1 / O$ lines.
$A$ to $D \quad$ The $A / D$ syatern configuration at reset is indeterminate.
Syetem The EEPROM programming controls are all dieebled so the memory syetem is configured for normel read operation. The higheet priority I interrupt defautes to being the external $\overline{I R Q}$ pin by PSEL3-PSELO equal to 0:1:0:1. The $\overline{\mathrm{R} Q}$ interrupt pin is configured for level sensitive operation (for wire-OR syatems). The RBOOT, SMOD, and MDA bits in the HPRIO register reflect the status of the MODB and MODA inputs at the rising edge of reset. The DLY control bit is set to specify that an oscillator stert-up deloy is imposed upon recovery from STOP mode. The clock monitor syutem is disabled by CME equal zero.

### 3.1.3 Computer Operating Properly (COP) Rewet

The watchdog timer, if not reeet within a specific time by a COP reeet sequence, will generate an MCU reeet end drive the RESET pin tow to reser the externel syatem.

### 3.1.4 Clock Monitor Reeet

The clock monitor circuit, if enabled, measures the E-clock frequency. If the E-clock signel is iost, or its frequency fells below about 200 kHz , then an MCU reset is generated, and the RESET pin is driven low to reep the external systern.

### 3.2 INTERRUPT8

When an axternal or internal (hardware) interrupt occurs, the interrupt is not serviced until the current instruction being executed is completed. Until the current instruction is complete, the interrupt is considered pending. After completion of current instruction execution, unmeaked interrupts may be serviced in eccordence with en established fixed hardware priority circuit; however, one I bit related interrupt source mey be dynamicelly elevated to the highest I bit priority position in the circuit.

Seventeen hardwere interrupts and one software interrupt (exctuding reat type interrupts) can be generated from all of the possible sources. The interrupts can be divided into two besic categorive, meikable and non-maekable. In the MCEBHC11A8 fifteen of the interrupts cen be meaked using the condition code reginter I bit. In addition to being meakeble by the I bit in the conclition code register, all of the onchip interrupt sources are inclividuily meekebtis by locel control bles. The sofwere imerrupt (SW)
instruction) is a non-makable instruction rather than a maskable interrupt source. The last interrupt (external input to the XIRQ pin) is considered as a non-maskable interrupt because once enabled, it cennot be masked by software; however, it is masked during reset and upon receipt of an interrupt at the XIRQ pin. Tables 3-1, 3-2, and 3-3 provide a list of each interrupt, its vector location in ROM, and the actual condition code and control bits that mask it. A discussion of the various interrupts is provided below.

Table 3-1. Interrupt Vector Assignments

Vector Addreea	Interrupt Source	CC   Reglater Meek	Local Mank
$\begin{gathered} \text { FFCO, C1 } \\ \text { FFD4, } 06 \\ \text { FFD4, } 07 \end{gathered}$	$\qquad$		See Tible 3-2
$\begin{aligned} & \text { FFD. D9 } \\ & \text { FFDA. DB } \\ & \text { FFDC. DD } \\ & \text { FFDE, DF } \end{aligned}$	SPI Seriel Trenefer Complete   Puteo Accumuletor Inpur Edop   Pube Accumuletor Overtiow   Tiner Overthow	$18 k$ $18 k$ $18 k$ $18 k$	$\begin{aligned} & \text { SPHE } \\ & \text { PAII } \\ & \text { PAOY } \\ & \text { TOI } \end{aligned}$
$\begin{aligned} & \text { FFEO, E1 } \\ & \text { FFE2, } 3 \\ & \text { FFEA, E5 } \\ & \text { FFES, E7 } \end{aligned}$	Timer Outpur Compere 5 Tiner Output Compere 4 Timer Outpur Compere 3 Tirmer Output Compera 2	$\begin{aligned} & 18 k \\ & 18 k \\ & 18 k \\ & 18 k \end{aligned}$	OC:   OC4   OC3   0 C 21
$\begin{aligned} & \text { FFEB, EB } \\ & \text { FFEA, EB } \\ & \text { FFEC, ED } \\ & \text { FFEE, EF } \end{aligned}$	Trinem Output Compere 1   Timer Input Cepture 3   Tirser Input Capture 2   Tirner Input Cempure 1	18 Bit 18 E 18 BR 18 C	$\begin{aligned} & \text { OC11 } \\ & \text { OC31 } \\ & \text { OC2 } \\ & \text { OC11 } \end{aligned}$
$\begin{aligned} & \text { FFF0, F1 } \\ & \text { FFF2, F3 } \\ & \text { FFF4, F5 } \\ & \text { FFFB, F7 } \end{aligned}$	Real Time interrupt   $\overline{\mathrm{AQ}}$ (Extornal Pin or Parallal $1 / 0$ )   $\overline{\text { XIRO Pin (Panvido Non-Meeteble Interrupt) }}$ SWI	$\begin{aligned} & 180 \\ & 18 e_{k} \\ & \times 8 e^{i} \\ & \text { None } \end{aligned}$	RTII See Table 3-3 None None
FFFB, $\mathrm{Fs}_{\mathrm{s}}$   FFFA, FB   FFFC, FD   FFFE, FF	Inviel Opcode Trap   COP Fzilure (Remet)   COP Clock Monitor Fsin (Resen)   AESET	None   None   None   None	Nome NOCOP CME None

Table 3-2. SCI Serial System Interrupts

Interrupt Ceveo	Locel Maek
Receive Dene Regiter Full	RIE
Recriver Overun	RIE
rate Line Derect	ILE
Tranamik Dete Reginer Empry	TE
Trenamin Complote	TCIE

1-1

Table 3-3. IRQ Vector Interrupts

Interrupt Couse	Loeal Mond
Externel Pin	None
Porumel $1 /$ O Mendencke	STAI

### 3.2.1 Software Interrupt (SWI)

The softwere interrupt is executed the same as any other instruction and will take precedence over interrupts only if the other interrupts are masked (I and $X$ bits in the condition code register set). The SWI instruction is executed similar to other maskable interrupts in that it sets the I bit, CPU regiaters are stacked, etc.

## NOTE

The SWI instruction cannot be fetched as long as another interrupt is pending execution. However, once it is fetched no other interrupt can be honored until the first instruction in the SWI service routine is completed.

## 3.2 .2 illegal Opcode Trap

Since not all poseible opcodes or opcode sequences are defined, an illegal opcode detection circuit has been included in the MCEBHC11A8. When an illegal opcode is detected, an interrupt is requested to the illegel opcode vector.

### 3.2.3 Interrupt Mask Blts in Condition Code Regieter

Upon recet, both the $X$ bit and the I bit are sot to mask all interrupts. After minimum syetem initialization, softwere mey cleer the $X$ bit by a TAP instruction, thus enabling XIRQ interrupts. Thereefter software cennot set the $X$ bit so an XIFQ interrupt is effectively a non-meakeble interrupt. Since the operation of the I bit related interrupt structure hes no effect on the $X$ bit, the external XIFQ pin remeins effectively non-msaked. In the interrupt priority logic, the XIFQ interrupt would be a higher priority then any source that is maskeble by the I bh. All I bit related interrupts would operate normelly with their own priority relationship. When an I bit related interrupt occurs, the I bit is automatically set by herdwere after stacking the condition code recieter byte, but the $X$ bit is not affected. When an $X$ bh related interrupt occurs, both the $X$ bit and the $I$ bit ane automatically set by hardware after stacking the condition code register. An RTI (return from interrupt inatruction restores the $X$ and $\mid$ bits to their pre-interrupt request state.

### 3.2.4 Pifority Structure

Imterupts in the MCBOHC11A8 obey a fixed hardwere priority circuit to reeolve simulteneous requents; howver, one I bit related interrupt source may be elovated to the higheat I blt priority position in the resolution circuit. The firet six interrupt sources are not maeked by the I bit in the condition code regiater end howe the fived priority interrupt reletionship of: rewt, clock monitor fail, COP fall, illegel opcode, and XIRQ. (SW ie ectually en instruction end has higheet priority other then reeet in the sanse that once the SWI opcode ie fetched, no other interrupt can be honored untll the SWI vector has been fetched). Each of thees sources in en input to the priority resolution circuit. The higheat I bit meeked priority input to the reeolution circuit is aecigned under software control (of the HPR1O register) to be connected to any one of the remaining I bit releted interrupt sources. In order to avoid timing racee, the HPRIO regiater mey only be written while the 1 bit related interrupts are inhibited (I bit in condition code regieter is a logic one). An interrupt that is atsigned to this high priority position is still subject to maeking by any aseociated control bits or the I bit in the condition code register. The interrupt vector address is not affected by assigning a source to this higher priority pocition.

Fogure 3-2 summerizes the priority structure and additional mesk conditions thet leed to recognition of interrupt requeste in the MCBOHC11A8.




Figure 3-2. MCeßнC11AB Interrupt Structure Flowchart (Sheet 2 of 3)


Figure 3-2. MсевнС11AB Interrupt Structure Flowchart (Sheot 3 of 3)

### 3.2.5 Highest Priority I Interrupt Register (HPRIO)

This \&-bit register (Figure 3-3) is used to select one of the I bit related interrupt sources to be elevated to the highest I bit masked position in the priority resolution circuit. In addition, four miscellaneous system control bits are included in this register.

81	88	85	84	83	82	81	80
R800T	SMOD	MOAA	19V	PSEI3	PSEL2	PSECL	PSELO

Figure 3-3. Highest Priority I Interrupt Regiater (HPRIO) ,en

B7. RBOOT The read bootstrap ROM bit only has meaning when the SMOD bit is a logic one (special bootstrap mode or special test mode). At all other times, this bit reverts to its logic zero disabled state and may not be written.

When set, upon reset in bootstrap mode only, the small bootstrap loader program is enabled. When clear, by reset in the other three modes, this ROM is disabled and accesses to this area are treated as external accesses.

B6, SMOD
The special mode write-only bit reflects the status of the MODB input pin at the rising edge of reset. It is set if the MODB pin is at or above 1.8 times VOD volts during reset. Otherwise, it is cleared or under software control from the special modes.

B5, MDA

B4, IRV The internal read visibility bit is used in the speciel modes (SMOD $=1$ ) to affect visibility of internal reads on the expension data bus. IRV is writable only if SMOD $=1$ and returns to zero of $\mathrm{SMOD}=\mathbf{0}$. If the bit is zero, visibility of internal reads are blocked. If the bit is one, internal reads are visible on the external bus.

BS, PSEL3
B2, PSEL2
81, PSELI
80, PSELO
The mode select A bit reflects the status of the MODA input pin at the rising edge of reeet. While the SMOD bit is a logic one (special test or special bootstrap mode in effect), the MDA bit may be written, thus, changing the operating mode of the MCU. When the SMOD bit is a logic zero, the MODA bit is a resd-only bit and the operating mode cannot be chenged without going through a reset sequence.

Table 3-4 summarizes the relationship between the SMOD and MDA bits and the MODB and MODA input pins at the rising edge of reset.

Table 3-4. Mode Bits Relationship

Inputs		Mode Description	Latched at Reser	
MODE	MODA		SMOD	MDA
1	0	Single Chip (Mode 01	0	0
1	1	Expended Muripioned (Mode 11	0	1
*	0	Specid Bootetrep	1	0
*	1	Speciel Tat	1	1

These four priority select bits are used to specify one I bit related interrupt source which becomes the highest priority I bit related source (Table 3-5).

Table 3-5. Highest Priority I Interrupt versus PSEL3-PSELO

PSEL3	PSEL2	PSELI	PSELO	Interrupt Source Promoted
0	0	0	0	Timer Overtiow
0	0	0	1	Pulse Accumulator Overfiow
0	0	1	0	Pulse Accumulator input Edge
0	0	1	1	SPI Serral Transfer Comprete
0	1	0	0	SCI Serual System
0	1	0	1	Reserved (Detauh to IAO)
0	1	1	0	IRO (External Pin or Parawei $1 / \mathrm{O}$
0	1	1	1	Reed Time Interrupt
1	0	0	0	Timer Input Capture 1
1	0	0	1	Timer Inout Capture 2
1	0	1	0	Timer Input Capture 3
1	0	1	1	Timer Output Compere 1
1	1	0	0	Timer Output Compere 2
1	1	0	1	Timer Output Compere 3
1	1	1	0	Timer Output Compare 4
1	1	1	1	Timer Output Compere 5

NOTE: During renet. PSEL3, PSEL2, PSELI, and PSELO are initielized to
$0: 1: 0: 1$ which correaponds to "Reeerved (defeutt to $\overline{\mathrm{AO}})^{\prime}$ being
the highest priority I bit relteted interrupt soruce.

### 3.3 LOW POWER MODES

The MC68HC11A8 MCU contains two programmable low power operating modes; stop and wait. These two instructions are discussed below.

### 3.3.1 WAIT Instruction

The WAl instruction puts the MC68HC11A8 in a low-power mode, keoping the oscillator running. Upon execution of WAI, the machine state is stacked and program execution stops. The wait state can be exited only by an unmasked interrupt or RESET. If the I bit is set (interrupts masked) and the COP is disabled, the timer system will be tumed off to reduce power consumption. The amount of power savings is application dependent and depends upon circuitry connected to the MCU pins as well as which subsystems li.e., timer, SPI, SCII are active when the WAIT mode is entered.

### 3.3.2 STOP Instruction

The STOP instruction places the MC68HC11A8 MCU in its lowest power consumption mode provided the S bit in the condition code register is clear. In the stop mode, all clocks including the internal oscillator are stopped causing all internal processing to be hatted. Recovery from STOP may be accomplished by RESET, $\overline{X I R Q}$, or an unmasked IVQ. When the XIRQ is used, the MCU exits from the stop mode regardless of the state of the $X$ bit in the condition code register; however, the actual recovery sequence differs depending on the state of the $X$ bit. If the $X$ bit is a logic zero, the MCU starts up with the stacking sequence leading to normal service of the XIRQ request. If the $X$ bit is a logic one, then processing will continue with the instruction immediately following the STOP instruction and no XIRQ interrupt service routine is requested. A $\overline{R E S E T}$ will always result in an exit from the stop mode, and the start of MCU operation is determined by the reset vector.

Since the oscillator is stopped in the stop mode, a restart delay of 4084 cycle times may be required to allow for oscillator stabilization when exiting from the stop mode. If the internal oscillator is being used, this delay is required; however, if a stable external oscillator is being used, a control bit in the OPTION register may be used (OLY = 0 ) to give a delay of four cycles.

## SECTION 4 PARALLEL I/O AND SYSTEM CONFIGURATION

### 4.1 PARALLEL I/O

The MC68HC11A8 includes $401 / 0$ pins in five 8 -bit ports. All of these pins serve multiple functions depending on the operating mode and several internal control registers. This section explains the operation of these pins only when they are used as parallel I/O pins.

Ports $C$ and $D$ may be used as general purpose input and/or output pins, as specified by the data direction registers DDRC and DDRD. Ports A, B, and E, with the exception of port A bit 7, have fixed data direction and do not require a DDR control register. Ports B and C, and bits 6 and 7 of port D, may be used for special strobed and handshake modes of paraliel $1 / 0$, as well as for general purpose $1 / 0$.

### 4.1.1 General Purpose 1/O (Ports C and D)

As general-purpose $/ / O$ lines, each bit has an associated bit in a PORTx data register and a bit in ihe corresponding position in a DDRx register. The DDRx is used to specify the primary direction of data on the $1 / 0$ pin. When a bit which is configured for output is read, the value returned is the value at the input to the pin driver. When a line is configured as an input, by clearing the DDRx bit, the pin becomes a high impedence input. If a write is executed to a line that is configured as an input, the value does not affect the $1 / O$ pin. but the bit is stored in an internal latch so that if the line is later reconfigured as an output, then this value appears at the $1 / 0$ pin.

Note that bits 6 and 7 of port $D$ are dedicated to bus control (AS and R/W) white in expanded mode, or parallel I/O strabes (STRA and STRB) while in single chip modes. For this reason, bits 6 and 7 of port $D$ are not available as general purpose $1 / O$ lines and the associated bits in the DDRD and PORTD registers are not implemented.

### 4.1.2 Fixed Direction I/O (Ports A, B, and E)

The pins for ports A, B, and E, except for port A bit 7, have fixed data directions and do not need data direction registers. When port B is being used for generel purpose outputs, it is configured for output-only and reads return the lovels sensed at the input of the pin drivers. When port $A$ is being used for general purpose $1 / 0$, bits 0,1 , and 2 are configured for input-only and writes to these bits have no meaning or effect. Bits 3, 4, 5, and 6 of port $A$ are configured for output-only when used for general purpose $1 / 0$, and reads of thees bits return the levels sensed at the inputs to the pin drivers. Port A bit 7 (PA7) can be configured as a general-purpose I/O using the DDRA7 bit in the PACTL register. Port E contains the oight A/D channel inputs, but these pins may also be used as general purpose digital inputs. Writes to the PORTE address have no meaning of effect.

### 4.1.3 Simple Strobed 1/O

The simple strobed mode of parallel I/ $O$ is invoked and controlled by the PIOC control register. This mode is selected when the HNDS bit in the PIOC control register is clear. It forces port C to be a strobed input port with port D bit 6 as the edge-detecting latch command input (STRA pin). Also, port 8 becomes a strobed output port with port $D$ bit 7 as the output strobe (STRB pin). The logic sense of the STRB output is selected by the INVB control bit.
4.1.3.1 STROBED INPUT PORT C. In this mode, there are two addresses where port C may be read, PORTC data register and PORTCL latch register. The ODRC register still controls the data direction af all port C pins. Even when the strobed input mode is selected, any or all of the bits in port C may still be used as general purpose $1 / 0$ lines.

STRA (port D bit 6 ) is used as an edge-detecting input, and either falling or rising edges may be specified as the significant edge by use of the EGA bit in PIOC. Whenever the selected active edge is detected at the STRA pin, the current logic levels at port C are latched into the PORTCL register and the strobe A flag (STAF) bit in PIOC is set. If the STAI bit in PIOC is also set, an internal interrupt sequence is requested to the IRQ vector. The STAF flag is automatically cleared by reading the PInf. register (with STAF set) followed by a read of the PORTCL register. Data is latched in the POR $u$ L egister whether or not the STAF flag was previously clear.
4.1.3.2 STROBED OUTPUT PORT B. In this mode, port D bit 7 (STRB) is a strobe output which is pulsed for two E periods each time there is a write to port B. The INVB bit in PIOC controls the polarity of the putse out of the STRB pin.

### 4.1.4 Full Handshake $1 / 0$

The full handshake modes of paralled I/O involve port C and bits 6 and 7 of port D . There are two bssic modes linput and output) and an additional variation on the output handshake mode that allows for threestated operation of port C. In all handshake modes, port D bit 6 (STRA) is an edge-detecting input, and port D bit 7 (STRB) is a handshake output line.

When full input handshake protocol is specified, both general purpose input and/or general purpose output can coexist at port C. When full output handshake protocol is specified, general purpose output can coexist with the handshake outputs at port C, but the three-state feature of the output handshake mode interferee with general purpose input in two woys. First, in full output handshake, the port $C$ pins are forced to be driven outputs whenever STRA is at its active level regardiess of the DDRC bits. This potentially conflicts with any device trying to drive port C unleas the external device has an open-drain type output driver. Second, the value returned on reads of port C is the state of the outputs of an internal port C output latch regardless of the states of the DORC bits, so that the data written for output handshake can be read even if the pins are in a three-state condition.
4.1.4.1 INPUT HANDSHAKE PROTOCOL. In the input handshake scherne, port C is a latching input port, port $D$ bit 6 (STRA) is an edge-sensitive latch commend from the external system that is driving port C, and port D bit 7 (STRB) is a "READY" output line controlled by logic in the MCU.

When a ready condition is recognized, the externel device places data on the port Cinpits, then pulses the STRA input to the MC6BHC11AB. The active edge on the STRA line latches the port C data into the PORTCL register, sets the STAF flog (optionely causing an intertupt), and deseserte the STRB line. Desesertion of the STRB line automaticaly inhibits the external device form strobing now data into port C.

Reading the PORTCL latch register (independent of clearing the STAF flag) causes the STRB line to be asserted indicating that new data may now be strobed into port C.

The STRB line can be configured (with the PLS control bit) to be a pulse output (pulse mode) or a static output (interlocked mode).

The port $C$ data direction register bits should be cleared (input) for each bit that is to be used as a latched input bit. However, some port $C$ bits can be used as latched inputs with the input handshake protocol while, at the same time, using some port C bits as static inputs, and some port C bits as static output bits. The input handshake protocol has no effect on the use of port C bits as static inputs or as static outputs. Reads of the PORTC register always return the static logic level at the port C pins (for lines configured as input by DDRC bit $=0$ ). Writes to either the PORTC address or the PORTCL address send information to the port C output register without affecting the input handshake strobes.
4.1.4.2 OUTPUT HANDSHAKE PROTOCOL. In the output handshake scherne, port C is an output port, port D bit 7 (STRB) is a "READY" output, and port D bit 6 (STRA) is an edge-sensitive acknowledge input signal, indicating that port C output data hes been accepted by the external device. In a variation of this output handshake operation, port D bit 6 (STRA) is also used as an output enable input, as well as an edgesensitive acknowiedge input.

The MC68HC11AB places data on the port C output lines and then indicates stable data is available by automatically asserting the STRB line. The externed device then processes the available data and pulses the STRA input to indicate that new data may be placed on the port C output lines. The active edge on STRA causes the STRB line to be automatically deasserted and the STAF status fieg to be set loptionally causing an interrupt). In response to STAF being set, the program transfers now data out on port C as required. Placing the data in PORTCL asserts the STRB.

There is a variation to the output handshake protocol that allows three-state operation of port C. It is possible to directly interconnect this 8 -bit paraliel port to other 8 -bit three-state devices with no extra externel perts.

While the STRA input pin is inactive, all port C bits obey the data direction specified by ODRC so that bits which are configured as inputs are high impedance. When the STRA input is activated, all port C lines are forced to outputs regardless of the data in DDRC. Note that in output handshake mode, reads of port C sways return the value sensed at the input to the output buffer regardlees of the state of the DDRC bits because the pins would not necessarily have meaningful data on them in the three-state variation of this mode. This operation makes it impossible to use some port C bits as static inputs, while using others as handshake outputs, but does not interfere with the use of some port C bits as static outputs. Port C bits intended as static outputs or normal handshake outputs should hove their corresponding DDRC bits set, and bits intended as three-state handshake outputs should have their corresponding DDRC bits clear.

### 4.1.4.3 PARALLEL I/O CONTROL REGISTER (PIOC)

The parallel handshake I/O functions are available only in the single-chip mode. PIOC is a read/write register except bit 7 which is read onty (see Figure 41 ).

17	68	65	84	83	02	81	80
Staf	STA	Cwom	1 wos	0 m	MS	664	Wro

Figure 4-1. Parallel I/O Control Regleter (PIOC)
 reset.

Table 4-1. STAF Bit Clearing Conditions

HNDS	OIN	Clearing Mechanism
0	$X$	Reeding PIOC (with STAF Set) Followed by a Reed of PORTCL
1	0	Reeding PIOC (with STAF Set) Followed by a Reed of PORTCL
1	1	Reeding PIOC (with STAF Set) Followed by a Write to PORTCL

Bit 6, STAI Strobe A Interrupt Enable Mesk. When this bit is set and the I bit in the condition code
register is clear, STAF (when set) will request an interrupt. STAl is cleared by reset.
Bit 5, CWOM Port C Wire-OR Mode. When clear, port C operates normaily. When set, port C behaves as open-drain outputs. CWOM is cleared by reset.

Bit 4, HNDS Handshake Mode. When clear, strobe $A$ acts as a simple input strobe to latch data into PORTCL, and strobe B acts as a simple output strobe which pulses after a write to port B. When set, a handshake protocol involving port C, STRA, and STRB is selected (see the definition for the OIN bit).

Bit 3, OIN Output or Input Handshaking. This bit has no meaning when HNDS $=0$. When clear, input handshake mode is selected. When set, output handshake mode is selected. OIN is cleegred by reset.

Bit 2, PLS Pulse/Interlocked Handshake Operation. This bit has no meaning if HNDS $=0$. When clear, interlocked handshake operation is selected. In this mode strobe B, once activated, steys active until the selected edge of strobe $A$ is detected. When set, strobe $B$ is pulsed for two E cycles. This bit is undefined coming out of reset.

Bit 1, EGA Active Edge for Strobe A. When clear, falling edge of STRA is selected. When output handshake is selected, port C bits obey the DDRC while STRA is low, but port C is forced to output when STRA is high.

When set, rising edge of STRA is selected. When output handshake is selected, port C bits obey the DDRC while STRA is high, but port C is forced to output when STRA is low. This bit is set by reset.

Bit O, INVB Invert Strobe B. When clear, the active lovel on strobe B is a logic zero. When set, the active level on strobe $B$ is a logic one. It is set by reset.

### 4.2 SYSTEM CONFIGURATION

The MCEBHC11A8 allows an end user to configure the MCU system to his specific requirements through the use of hardwired options such as the mode select pins, semi-permenent EEPROM control bit specificetiens (CONFIG register), or by use of internal software control registers. The CONFIG control register (see Figure 4-2) is implemented in EEPROM celts and controls the presence of ROM and EEPROM in the memory map, as well as the COPON COP watchdog system enable. An optional security feature is available intended to allow user protection of data in MCGBHC11A8 EEPROM and RAM.


Figure 4-2. Syetem Conflguretion Centrel Regbter (CONFIC)

## Bits 7, 6,

5, and 4-Not
Implemented These bits are not implemented. They read as logic zeros.
Bit 3-NOSEC Security Mode Option Bit. When the security mask option is specified, this bit can be used to enable a software antitheft mechanism. When cleared, this bit forces the MDA mode control bit to zero so that only single-chip modes of operation can be selected. If the bit is cleared when the MCU is reset in the special bootstrap mode, EEPROM and RAM are erased before the boot loading process continues.

Bit 2-NOCOP COP System OFF. When this bit is clear, the COP watchdog forced reset function is enabled. When this bit is set, the COP watchdog circuit is disabled.

Bit 1-ROMON Enable On-Chip ROM Select Bit. When this bit is clear, the 8K internal ROM is disabled, and that memory space becomes externally accessed space.

Bit 0-EEON Enable On-Chip EEPROM Select Bit. When this bit is clear, the 512-byte internel EEROM is disabled, and that memory space becomes externally accessed space.

### 4.3 PROGRAMMING AND ERASURE OF THE CONFIG REGISTER

Since the CONFIG register is implemented with EEPROM cells, special provisions must be made to erase and program this register. The normal EEPROM control bits in the PPROG register are used for this purpoee. The programming/erasure procedures for the CONFIG register are described in 2.4.3 Programming/Erasing Internal EEPROM.

## SECTION 5 SERIAL COMMUNICATIONS INTERFACE (SCI)

This section contains a description of the serial communications interface (SCI).

### 5.1 OVERVIEW AND FEATURES

A full-duplox asynchronous Serial Communications Interface (SCI) is provided with a standerd NRZ format (one start bit, eight or nine data bits, and one stop bit) and a veriety of baud rates. The SCI tranamitter and receiver are functionally independent, but use the same data format and bt rate. "Baud" and "bit rate" ave used synonymously in the following description.

## SCI Two-Wire Syatern Featurea

- Standerd NRZ (merk/space) format.
- Advanced error detection method includes noise detection for noise duration of up to $\mathbf{1 / 1 6}$ bit time.
- Full-duplex operation.
- Softwere programmeble for one of 32 different baud rates.
- Software selecteble word length (eight or nine bit words).
- Separate tranamitter and receiver enable bits.
- Capable of being interrupt driven.
- Four separate enable bits avaidable for interrupt control.


## SCI Recelver Features

- Receiver wake-up function lidie or address bit).
- Idive line detect.
- Framing error detect.
- Noise detect.
- Overrun detect.
- Receiver data regieter full fieg.

SCI Tranamitter Features

- Transmit deta regiater empty fleg.
- Tranemit complote flag.
- Send break.


### 5.2 DATA FORMAT

Receive data (RxD) or transmit data (TxD) is the serial data which is transferred to the internal data bus from the input pin (RxD), and from the internal bus to the output pin (TxD). Data format is ss shown for the NRZ in Figure 5-1 and must meet the following criteria:

1) The idle line is in a high (logic one) state prior to transmission/reception of a message.
2) A start bit (logic zero) is transmitted/receiver indicating the start of a message.
3) The deta is transmitted and received least-significant-bit first.
4) A stop bit (high in the tenth or eleventh bit position) indicates the byte is complete.
5) A break is defined as the transmission or reception of a low (logic zero) for at least one complere frame time.


Figure 5-1. Date Format

### 8.3 WAKE-UP FEATURE

An inactive SCI may be re-enabled by two different methods. In the first method, an SCI receiver is roenabled by an idtestring of at lesst ten (or deven) consecutive ones. The second wake-up method allows the user to insert a logic one as the most significant data bit leighth or ninth bit) of the tranamit data word which automatically wakes up all "sloeping" SCls.

### 6.4 RECEIVE DATA (RxD)

Receive data ( RxD ) is the serial data which is presented from the input pin via the SCl to the internal bus. The receiver clocks the input at a rate equal to 16 times the baud rate. This 16 times higher-then-beud rate is referred to as the RT rate.

Once a valid start bit is detected, the stert bit, each data bit, and the stop bit are sampled three times at RT intervals 8 RT, 9 RT, and 10 RT II RT is the position where the bit is expected to start), as shown in Figure 5-2. The value of the bit is determined by voting logic which takee the value of the mejority of semples.


Figure 5-2. Sempling Technique Used on All Bite

### 5.5 START BIT DETECTION

When the RxD input is detected low, it is reeted for three more sample times (referred to as the start edge verificetion samples in Figure 5-3). If at leest two of theee three verification samples detect a logic zero, a valid start bit has been detected, otherwise the line is sesumed to be idte. A noise flag is set if ell three verificetion semples do not detect a logic zero. A valid etert bit could be aseumed with eser noise fiag present.


Figure 8-3. Examples of Start Blt Sampling Techniquee

If there has been a framing error without detection of a break (10 zeros for 8 -bit format or 11 zeros for 9 -bit format), the circuit continues to operate as if there actually was astop bit and the stert edge will be placed. artificially. The last bit received in the data shift register is inverted to a logic one, and the three logic one start qualifiers (shown in Figure 5-3) are forced into the sample shift regiater during the interval when detection of a stert bit is anticipated (see Figure 5-4); therefore, the start bit will be accepted no sooner than it is anticipated.

(a) Cese 1, Recelve Line Low During Artificial Edge

(b) Case 2, Recelve Line High During Expected 8tert Edeo

Figure 8-4. 8CI Artificid Start Following a Froming Error

If the receiver detects that a break produced the framing error, the stert bit will not be artificielly induced and the receiver must actually receive a logic one bit before start. See Figure 5-5.


Figure 5-5. SCI Start Bit Following a Break

### 6.6 TRANSMIT DATA (TXD)

4
Transmit data (TXD) is the serial data which is presented from the internal data bus via the SCl and then to the output pin. The tranamitter generates a bit time by using a derivative of the RT clock, thus producing a transmission rate equal to $\mathbf{1 / 1 6}$ that of the receiver sample clock.

### 5.7 FUNCTIONAL DESCRIPTION

A block diegram of the SCI is shown in Figure 5-6. The user has option bits in serial communications control register 1 (SCCR1) to determine the "wake-up" method (WAKE bit) and data word length (M bit) of the SCl. Serial communications control register 2 (SCCR2) providen control bits which individually enable/disable the transmitter or receiver (TE and RE, respectively), enable system interrupts (TIE, TCIE, ILIE) and provide the wake-up enable bit (RWU) and the send break code bit (SBK). The beud rate regieter bits allow the user to select different baud rates which may be used as the rate control for the transmitter and receiver.

Data tranamission is initiated by a write to the serial communications data register (SCDR). Provided the transmitter is enabled, data stored in the SCDR is transferred to the transmit serial shift register. This transfor of data sets the TDRE bit of the SCl status regiater (SCSR) and may generate an interrupt if the transmit interrupt is enabled. The transfer of date to the tranamit ashift register is synchronized with the bit rate clock (Figure 5-7). All data is trenamitted blt zero firti. Upon completion of data tranamisaion, the TC (transmisaion complete) bit of the SCSR is set (provided no pending data, preamble, or break is to be sent), and an interrupt may be generated if the transmit complete interrupt is enabled. If the the transmitter is disabled, and the date, preamble, or break (in the tranemit shift register) has been sent, the TC bit will also be set. This will aleo generate an interrupt if the TCIE bit is set.

When the SCDR is reed, it contains the lapt dats byte received, provided that the reciviver is enabled. The RDRF bit of the SCSR is set to indicate that a date byte hes been transferred from the input serial shift register to the SCDR, which can cause an interrupt if the receiver interrupt is enabled. The data transfer from the input seriel shitt register to the SCDR is synctronized by the receiver bit rate clock. The OR loverrun), NF (noise), or FE (freming) error bits of the SCSR may be eet if date reception errors occurred.

An idele inse interrupt is generated if the idfo fine interrupt is enebled end the IDLE bit (which detects idite line trenemianionl of SCSA is eve. Thie sllowe a receiver that ie not in the weks-up mode to detect the end of a memege, the preamble of a new measege, or to reynchronice with the treneritter.

 receve dine raterion mion reat.

Figure 5.8. Exted Communicationa Intertices Block Dlegram


Figure 5-7. Rate Generator Division

### 5.8 REGISTERS

There are five different registers used in the serial communications interface (SCI) and the internel configuration of these registers is discussed in the following peregraphs. Refer to the block diagram shown in Figure 5-6.

### 5.8.1 SERIAL COMMUNICATIONS DATA REGISTER (SCDR)

The serial communications date register (Figure 5-8) performs two functions; i.e. it acts as the receive data register when it is read and as the transmit data register when it is written. Figure 5-6 shows this register as two separate registers, namely: the receive data register (RDR) and the transmit data register (TDR).

7	6	5	4	3	2	1	0
SEmal Commmminations data meersten							

:_02F

15
Figure 5-8. Serial Communications Date Register (SCDR)

### 5.8.2 Serial Communications Control Register 1 (SCCR1)

The serial communications control register 1 (SCCR1) (Figure 5-9) provides the control bits which: (1) determine the word length, and (2) selects the method used for the wake-up feature.


Figure 5-9. Serial Communications Control Register 1 (SCCR1)

Bit 7. R8 If the $M$ bit is set, then this bit provides a storage location for the ninth bit in the receive date word. Reset does not affect this bit.

Bit 6. T8 - If the $M$ bit is set, then this bit provides a storage location for the ninth bit in the transmit data word. Reset does not affect this bit.

Bit $5 \quad$ This bit is not implemented and reads as zero.
Bit 4. M This bit selects the word length. Reset clears this bit.

$$
0=1 \text { start bit, } 8 \text { data bits, } 1 \text { stop bit }
$$

$1=1$ start bit, 9 dete bits, 1 stop bit
Bit 3-WAKE This bit allows the user to select the method for receiver "wake up".
'When clear, an idie line condition (10 consecutive ones if $M=0$ or 11 consecutive ones if $M=1)$ will wake-up the receiver.

When set, detection of a one in last data bit (eighth data bit if $M=0$, ninth data bit if $M=1$ ) will wake-up the receiver.

Bit 2-0
These bits are not implemented and read as zeros.

### 5.8.3 Serial Communications Control Register 2 (SCCR2)

The serial communications control register 2 (SCCR2) (Figure 5-10) provides the control bits which: individually enable/disable the SCI functions.


Fig spe $\therefore$ 10. Serial Communications Control Register 2 (SCCR2)

Bit 7. TIE When the iransmit interrupt enable bit is set, the SCI interrupt occurs when TDRE is set. When TIE is clear, the TDRE interrupt is disabled. Cleared by reset.

Bit 6, TCIE When the transmission complete interrupt enable bit is set, the SCl interrupt occurs when TC is set. When TCIE is clear, the TC interrupt is disabled. Cleared by reset.

Bit 5, RIE When the receive interrupt enable bit is set, the SCl interrupt occurs when OR or RDRF are set. When RIE is clear, the OR and RDRF interrupts are disabled. Cleared by reset.

Bit 4, ILIE When the idie line interrupt enable bit is set, the SCI interrupt occurs when IDLE is set. When ILIE is clear, the IDLE interrupt is disabled. Cleared by reset.

Bit 3, TE When the transmit enable bit is set, the transmit shift register output is applied to the TxD line. Depending on the state of control bit $M$ (SCCR1), a preamble of $10(M=0)$ or 11 ( $M=1$ ) consecutive ones is transmitted when software sets the $T E$ bit from a cleered stete. After loading the lest byte in the serial communications date registor and receiving the interrupt from TDRE, the user can clear TE. Trensmission of the last byte will then be completed before the transmitter gives up control of the TxD pin. Cleared by reset.

Bit 2, RE When the receive enable bit is set, the receiver is enabled. When RE is clear, the receiver is disabled and ell of the status bits associated with the receiver (RDRF, IDLE, OR, NF, and FE) are inhibited. Cleared by reset.

Bit 1, RWU When the receiver wake-up bit is set, it enables the "wake up" function. If the WAKE bit is cleared, RWU is cleared after receiving $10(\mathrm{M}=0)$ or $11(\mathrm{M}=1\rangle$ consecutive ones. If the WAKE bit is set, RWU is cleared after receiving a data word whose MSB is set. Cleared by reset.

Bit 0, S8K If the send break bit is toggled set and cleared, the transmitter sends $10(M=0)$ or 11 ( $M=1$ ) zeros and then reverts to idle or sending data. If SBK remains set, the transmitter will continually send whole blocks (sets of 10 or 11) zeros until cleared. At the completion of the breck code, the tranaritter sende at leept one high bit to guarantee recognition of a valid start bit. Recet clears the SBK bit.

### 5.8.4 Serial Communications Status Register (SCSR)

The serial communications status register (SCSR) (Figure 5-11) provides inputs to the interrupt logic circuits for generation of the SCI system interrupt.

1	6	5	4	3	2	1	0	
TDPR	IC	HOPF	1015	On	$\cdots$	$f 8$	-	1_02E

Figure 5-11. Serial Communications Statu: Register (SCSR)

Bit 7, TDRE The transmit data register empty bit is set to indicate that the content of the serial communications data register have been transferred to the transmit serisk shift register. This bit is cleared by reading the SCSR (with TDRE $=1$ ) followed by a write to the SCDR. Reopt sets the TDRE bit.

Bit 6, TC The transmit complete bit is set at the end of a data frame, preamble, or break condition if:

1) $T E=1$, TDRE = 1, and no pending data, preamble, or break is to be transmitted; or
2) $T E=0$, and the data, preamble, or break (in the transmit shift register; has been transmitted.
The TC bit is a status flag which indicates that one of the above conditions have occurred. The TC bit is cleared by reading the SCSR (with TC set) followed by a write to the SCDR. Reset sets the TC bit.

Bit 5, RDRF The receive data register full bit is set when the receiver serial shift register is tranaferred to the SCDR. The RDRF bit is cleared when the SCSR is read (with RDRF set) followed by a read of the SCDR. Reset clears the RDRF bit.

Bit 4, IDLE The idie line detect bit, when set, indicates a receiver idle line is selected. The IDLE bit is cleared by reading the SCSR with IDLE set followed by a reed of the SCDR. The IDLE bit is inhibited when the RWU bit is set. Reset clears the IDLE bit.

Bit 3, OR The overrun error bit is set when the next byte is ready to be transferred from the receive shift register to the SCDR which is alreedy full (RDRF bit is set). The only valid dete is located in SCDR when OR is set. The OR bit is cleared when the SCSR is read (with OR set), followed by a read of the SCDR. Reset clears the OR bit.

Bit 2, NF The noise flag bit is set if there is noise on any of the received bits, including the stert and stop bits. The NF bit is not set until the RDRF flag is set. The NF bit is cleared when the SCSR to read (with NF set), followed by a reed of the SCDR. Reeet clears the NF bit.

Bh 1, FE- The framing error bit is set when no stop bit was detected in the data string received. The FE bit is set at the same time as the RDRF is ser. If the byte received causes both freming and overrun errors, the processor will only recognize the overrun error. The framing error flag inhibits further transfer of data into the SCDR until it is cleared. The FE bit is cleered when the SCSR is read (with FE equal to one) followed by a read of the SCDR. Reert chemes the FE bit.

Bn 0
Not implemented. Reads as zero.

### 5.8.5 Baud Rate Register

The baud rate register (Figure 5-12) provides the means for selecting different baud rates which may be used as the rate control for the transmitter and receiver. The SCPO-SCP1 bits function as a prescaler for the SCRO-SCR2 bits. Together, these five bits provide multiple baud rate combinations for a given crystel frequency.


Figure 5-12. Baud Rate Register

Bit 5, SCP1 Table 5-1 shows the prescale values attained from the $\mathbf{E}$ clock.
Bit 4, SCPO
Reset clears SCP1-SCPO bits (divide-by-one).
Table 5-1. Firat Prescaler Stage

SCP1	SCPO	Internol Proceseop   Clock Dhide Ey
0	0	1
0	1	3
1	0	4
1	1	13

Bit 2, SCR2 These three bits select the baud rates of both the transmitter and the receiver. Table 5-2 Bit 1, SCR1
Bit O, SCRO shows the prescaler value that divides the output of the first stage. Reset does not affect the SCR2-SCRO bits.

Table 5-2. Second Prescaler Stage

SCR2	SCR1	scmo	$\begin{gathered} \text { Preseater Ortevt } \\ \text { Otide :y } \end{gathered}$
0	0	0	1
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	12:

The diagram of Figure 5-7 and Tables 5-3 and 5-4 illustrate the divider chain used to obtain the baud rate clock. Note that there is a fixed rate divide-by- 16 between the receive clock (RT) and the transmit clock ( $T x$ ). The actual divider chain is controlled by the combined SCP0-SCP1 and SCRO-SCR2 bits in the baud rate register as illustrated.

Table 5-3. Prescaler Highest Baud Rate Frequency Output

$\begin{gathered} \mathrm{SCP} \\ \mathrm{Bit} \end{gathered}$	Cik. Divided	Crystal Frequency (MHz)				
10	By	8.303	8.0	4.9152	4.0	3.0.7
	1	131.072 K Baud	125.000 K Baud	76.80 K Baud	62.50 K Baud	5760 K Baud
01	3	43.690 K Baud	41.666 K Baud	25.60 K Baud	20.833 K Beud	19.20 K Baud
10	4	32.768 K Baud	31250 K Baud	19.20 K Baud	15.625 K Baud	14.40 K Baud
11	13	10.082 K Boud	9600 Boud	5.907 K 8aud	4800 Baud	4430 Baud

-The clock in the "Clock Divided $8 y^{\prime \prime}$ column is the internal processor clock.

NOTE
The divided frequances shown in Table 5-3 represent baud rates which are the highest transmit baud rate ( $T x$ ) that can be obtained by a specific crystal frequency and only using the prescaler division. Lower baud rates may be obtained by providing a further division using the SCI rate select bits as shown below for some representative prescaler outputs.

Table 5-4. Transmit Baud Rate Output For a Given Prescaler Output

$\begin{aligned} & \text { SCN } \\ & \text { Bits } \end{aligned}$	Divided	Repreaentetive Higheet Preacaler Baud Rate Output				
210	8v	131.072 K Eand	3.70 K Beud	72.0 K Beud	19.29 K Beud	3700 Baud
000	1	131.072 K Beud	32.708 K Beud	78.80 K Beud	19.20 K Baud	9000 Beud
0 0 01	2	65.538 K Boud	18.384 K Boud	38.00 K Boud	9800 Baud	4800 Beud
010	4	32.700 K Boud	8.192 K 8oud	19.20 K Beud	4800 Beud	2400 Beud
0 1 1	8	18.384 K Baud	4.083 K 8oud	9000 8eud	2400 8xud	1200 8xud
100	16	$8.192 \times$ Baud	2.048 K Baud	4800 Beud	1200 Beud	600 Baud
101	32	$4.006 \times$ Baud	$1.024 \times$ Beud	2400 Beud	600 Beud	300 Beud
110	64	2.048 K Baud	512 Boud	1200 Brud	300 Boud	150 Beud
111	128	1.024 K Baud	256 Baud	600 Beud	150 Boud	75 Baud

NOTE
Table 5-4 illustrates how the SCl select bits can be used to provide lower transmitter baud rates by further dividing the prescaler output frequency. The five examples are only representative samples. In all cases, the baud rates shown are transmit baud rates (transmit clock) and the receiver clock is $\mathbf{1 6}$ times higher in frequency than the actual baud rate.

## SECTION 6

 SERIAL PERIPHERAL INTERFACE (SPI)This section contains a description of the serial peripherel interface (SPI).

### 8.1 OVERVIEW AND FEATURES

The serial peripheral interface (SPI) is a synchronous interface buint into the MC68HC11A8 MCU which Howe several MCBBHC11A8 MCUs, or an MC68HC11AB plus peripherel devices, to be interconnected. In en SPI, esperate wires (eignala) are required for data and clock as the clock is not included in the data etream. An SPI system may be configured as a master or as a slave.

Fentures include:

- Full Duplex, Three-Wire Synchronous Transfers
- Master or Slove Operation
- 1.06 MHz (Maximum) Mester Bit Frequency
- 2.1 MHz (Maximum) Slave Bit Frequency
- Four Progremmabla Mester Bit Ratee
- Programmable Clock Polerity and Phase
- End-of-Trenemieeion Interrupt Fleg
- Write Colliaion Fleg Protection
- Master-Master Moda Fault Protection Capacity
- Excily Interfaces to Simple Exparision Parts (PLLs, D-A, Latches, Diaplay Drivers, etc.)


### 0.2 SIGNAL DEBCRIPTION

The four beaic signale (MISO, MOSI, SCK, and SS) used to trensmit data by the serid peripheral interfece ere diacuseed in the following peragrephe. Eech signal is deecribed for both the meater and slave modes.

Any SPI output has to heve its corremponding data direction bit in DDRD aet. If this bit is cleer, the pin is dieconnected from the SPI logic and becomes a general-purpoee input.

### 3.2.1 Meeter In Stave Out (M18O)

Thw MISO pin isconfigured as an input in a meater device and as an output in a deve devica. It is one of the two wires thet carry date in one direction, with the moet significent ble sent firat. The MISO pin of a sleve device is pleced in the high-impedence state if the deve if not eelacted.

### 3.2.2 Meeter Out Slove In (MOs1)

The MOSI pin is confloured as a deta output in a menter device and ase dete input in a slive device. K is one of the two tines the trenefer seriel dote in one direction when the moet significemt but sent first.

### 6.2.3 Sorial Clock (SCK)

The serial clock is used to synchronize data movement both in and out of the dovice through its MOSI and MISO pins. The master and slave devices are capable of exchanging a data byte of information during a soquence of eight clock cycles. Since SCK is generated by the master device, this line becomes an input on a slave device.

As shown in Figures 6-1 and 11-17, four possible timing relationships may be chosen by using control bits CPOL and CPHA. Both master and slave devices must be operated in the same timing mode. The master device always allows data to be applied on the MOSI line a half-cycle before the clock edge (SCK), in order for the slave device to latch the data.


Figure 6-1. Data Clock Timing Diagram

Two bits (SPRO and SPR1) in the SPCR of the master device select the clock rate. In the slave device. SPRO and SPR1 have no effect on the operation of the SPI.

### 6.2.4 Slave Select ( $\overline{\mathrm{SS}}$ )

The slave select ( $\overline{S S}$ ) input is used to chip select a slave when it goes low. It has to be low prior to data transections and must stay low for the duration of the transection.

The $\overline{S S}$ pin on the master must be tied high. If it goes low for any reason, a mode fault error flag (MODF) is set in the SPSA. The $\overline{\text { SS }}$ pin can be selected to be a general-purpose output by writing a one in the port D data direction register bit 5 , thus disabling the mode fault circuit.

### 6.3 FUNCTIONAL DESCRIPTION

Figure 6-2 shows a block diagram of the SPI. When the master device transmits data to a second (stave) device via the MOSI line, the slave device responds by sending data to the master device via the MISO line. This implies full duplex transmission with both data out and data in synchronized with the same clock signal. Thus, the byte transmitted is replaced by the byte received and eliminates the need for separate transmit-empty and receiver-full status bits. A single status bit (SPIF) is used to signify that the $1 / 0$ operation is completed.


NOTES: The SS, SCK, MOSI, and MSO tre erternal pine wrich provide the following functione:
 device is confipured el a stive unve.
 confipured as a leve unit.
 unit.
d. $\overline{5 S}$-Providet elogic low to anect a sleve device for a trenefor with a mater device.

Figure 8-2. Seriai Peripheral Interface Block Diagram
The SPI is double buffered on the reed, but not the write. If a write is performed during data transfer, the trenefer occurs uninterrupted, and the write will be unaucceseful. This condition will cause the write collision (WCOL) status bit of the SPSR to be set. After a data byte is shifted, the SPIF fleg of the SPSR is set.

In the mester mode, the SCK pin is an output. Kidfes high or low, depending on the CPOL bit in the SPCR, until data is writen to the shift register, at which point eight clocks ere generated to shift the eight bits of deta and then SCK goes idte again.

In a steve mode, the sleve start logic receives a logic low at the $\overline{S S}$ pin and a system clock input at the SCK pin. Thus, the slove is synchronized with the mester. Date from the mester is received serillty at the slove MOSI pin and loede the \&-bt shift regieter. After the Q-bit shift reginter ies loeded, its deta ie pereliel transferrad to the reed buffer. During a write cycle, deta ie written into the athit regienter, then the save waits for - clock train from the mester to shift the date out on the MISO pin.

Figure 6-3 illustrates the MOSI, MISO, and SCK master-slave interconnections.


Figure 8-3. Serial Peripheral Interface Master-Slave Interconnection

### 6.4 REGISTERS

There are three registers in the serial perallel interface which provide control, status, and date storage functions.

### 6.4.1 Serial Peripheral Control Register (SPCA), Flgure 6-4



[^3]Figure 8-4. Sorial Peripheral Control Register (SPCR)

Bit 7, SPIE When the serial peripheral interrupt enable bit is set, SPI interrupts are ellowed. Interrupts are masked when this bit is cleared. The SPIE bit is cleared by reset.

Bit 6, SPE When the serial peripherel enable bit is set, it enebles the SPI system by connecting it to the external pins. Because the SPE bit is cleered by reset, the SPI system is not connected to the external pins upon reset.

Bit 5, DWOM If the DWOM bit is set, port D output pins function ss open-drain outputs, and when the DWOM bit is cleer, port D output pins function normally. The DWOM bit is cleered by reset.

Bit 4, MSTR If the MSTR bit is ext, the SPI is a master device. If cleared, the SPI is a slave device.
Bit 3, CPOL When the clock polarity bit is cleared and dote is not being transferred, a steady stete low velue is produced at the SCK pin of the meeter device. Conversely, if this bit is set, the SCK pin will idte high. This bit is also used in conjunction with the clock phase control bit to produce the desired clock-data relationship between master and deve. The CPOL bit is cleared by reeet. See Figure 6-1.

Bit 2, CPHA The clock phase bit, in conjunction with the CPOL bit, controls the clock-dete reletionahip between master and slave. In general, the CPHA bit selecte which clock edge ceptures deta and ellows it to chenge stentes. The CPHA bit is sti by reeot. Refer to Figure 6-1.

Bit 1. SPR1
Bit 0, SPRO
These two serial peripheral rate bits select one of four baud rates (Table 6-1) to be used as SCK if the device is a master: however, they have no effect in the slave mode. The SPR1 and SPRO bits are not affected by reser.

Table 6-1. Serial Peripheral Rate Selection

SPR1	SpRO	Internal Proceator   Clock Olvide By
0	0	2
0	1	4
1	0	16
1	1	32

### 6.4.2 Serial Peripheral Status Register (SPSR), Figure 6-5

7	6	5	4	3	2	1	0	
$\sin$	mea	-	maO	-	-	-	-	0

Figure 6-5. Serial Peripheral Status Register (SPSA)

Bit 7, SPIF The serial peripheral data transfer flag bit is set upon completion of data transfer between the processor and external device. If SPIF goes high, and if SPIE is ser, a serial peripheral interrupt is generated. While SPIF is set, all writes to the serial peripheral data register are inhibited. Clearing the SPIF bit is accomplished by reeding the SPSR (with SPIF set) followed by an access of the SPDR. The SPIF bit is cleared by reaet.

Bit 6. WCOL The write collision bit is set when an attempt is made to write to the serial peripheral data register while data transfer is taking place. Cleering the WCOL bit is accomplished by reading the SPSR (with WCOL set) followed by an access to SPDR. The WCOL bit is cleared by reset.

Bit 5 Not implemented and reads as zero.
Bit 4, MODF The mode fault flag indicates that there mey have been a multi-master conflict for system control and allows a proper exit from system operation to a reset or default system state. The MODF bit is normally cleer, and is set only when the mester device has its $\overline{\mathrm{SS}}$ pin pulled tow. Setting the MODF bit affects the internal serial peripheral interface system in the following ways:

1) An SPI interrupt is generated if SPIE $=1$.
2) The SPE bit is cleared. This dissbles the SPI.
3) The MSTR bit is cleared, thus forcing the device into the slove mode.

Clearing the MODF bit is accomplished by reading the SPSR (with MODF set), followed by a write to the SPCR. Control bits SPE and MSTR may be restored to their original set state after the MODF bit has been cleared. The MODF bit is cleared by reset.


Figure 6-6. Serial Peripheral Data I/O Register (SPDR)

The serial peripheral data I/O register is used to transmit and receive data on the serial bus. Only a write to this register will initiate transmission/reception of another byte, and this will only occur in the master device. At the completion of transmitting a byte of data, the SPIF status bit is set in both the master and slave devices.

When the user reads the serial peripheral data I/O register, a buffer is actually being read. The first SPIF must be cleared by the time a second transfer of data from the shift register to the reed buffer is initiated or an overrun condition will exist.

A write to the serial peripheral data I/O register is not buffered and places data directly into the shift register for transmission.

## SECTION 7 ANALOG-TO-DIGITAL CONVERTER

The MCBBHC11A8 includes an 8-channel multiplexed-input succeasive approximation analog-to-digital (A/D) converter with sample and hold to minimize conversion errors caused by rapidly changing input signels. Two dedicated pins (VRL, VRH) are provided for the reference supply voltage inputs. Theee pins mey be connected to a lower noise power supply to sseure full accuracy of the A/D conversion. The 8-bit A/D converter has a lineerity error of $\pm 1 / 2$ LSB and accepts anelog inputs which renge from VRL to VRH. Smaller analog input rangee can also be obtained by adjusting VRH and VRL to the desired upper and lower Imits. Each convertion is accomplished in 32 MCU E clock cycles, provided the E rate is equal to or greater then 1 MHz . For syatems which operate at clock rates lees than 1.0 MHz , an internal R-C oecimator must be uead to clock the A/D syatem by setting the CSEL bit in the OPTION register.

NOTE
Onty four A/D inputs are available in the 48 -pin packege version of the MC6BHC11A8.

### 7.1 CONVERSION PROCESS

The $A / D$ converter is ratiometric. An input voltege equal to $V_{R L}$ converts to 500 and an input voltage equal to VAH converts to \$FF (full scale), with no overflow indication. For ratiometric convervions, the source of each analog input should use VRH as the supply voltage and be referenced to VAL.

### 7.2 CHANNEL AB8IGNMENTS

A multiplexer allows the single A/D converter to solect one of sixteen analog signals. Eight of theme channets correspond to port E input pins to the MCU, four of the channels are for internal reference pointa or teet functions, and four channela are reservod for future use. Table 7-1 showe the signats selected by the four chennel edect control bits.

Table 7-1. Analog-to-Digital Channd Aselgnments

CO	CC	C	Ca	Chemed Shend	Deseit m ADNR H MULT = 1
0	0	0	0	ANO	ADP1
0	0	0	1	AN1	ADN2
0	0	1	0	AN2	ADN3
0	0	1	1	AN3	ADP4
0	1	0	0	ANM ${ }^{-}$	ADN3
0	1	0	1	ANS*	AOMS
0	1	1	0	ANP*	ADn3
0	1	1	1	AN7*	ADM
1	0	0	0	Heeerved	ADM1
1	0	0	1	Fleperved	AOn2
1	0	1	0	Puperved	AOM3
1	0	1	1	Recerved	ADM
1	1	0	0	Vhn Mn	AON1
1	1	0	1	VRL ${ }^{\text {Pr }}$	ADE2
1	1	1	0	$\left(\mathrm{V}_{\text {M }}\right)^{\prime} / 2$	ADA3
1	1	1	1	Remerved	AOM

### 7.3 SINGLE-CHANMEL OPERATION

There are two variations of single-channel operation. In the first variation (SCAN =0), the single-selected channel is converted four consecutive times with the first result being stored in the ADR 1 result register and the fourth result being stored in the ADR4 register. After the fourth conversion is complete, all conversion activity is halted until a new conversion command is written to the ADCTL control register. In the second variation (SCAN = 1), conversions continue to be performed on the selected channel with the fitth conversion being stored to the ADR1 register loverwriting the first conversion result), the sixth conversion overwrites ADR2, and so on continuously.

### 7.4 FOUR-CHANNEL OPERATION

There are two variations in multiple-channel operation. In the first variation (SCAN =0), the selected group of four channels are convarted, one time each, with the first result being stored in the ADR1 reeult register and the fourth result being stored to the ADR4 register. After the fourth conversion is complete, all conversion activity is hatted until a new conversion command is written to the ADCTL control register. In the second variation (SCAN $=1$ ), conversions continue to be performed on the selected group of channels with the fifth conversion being stored in the ADRI register (replacing the earlier conversion result for the first channel in the groupl, the sixth conversion overwrites ADR2, and so on continuousty.

### 7.5 OPERATION IN STOP AND WAIT MODES

If a conversion sequence is still in process when the MCBBHC11A8 enters the STOP or WAIT mode, the conversion of the current channel is suspended. When the MCU resumee normel opuration, that channel will be re-sampled and the conversion sequence reeumes. As the MCU exits the WAIT mode, the A/D circuits are stable and velid results can be obtained on the first conversion. However, in STOP mode, all analog bise currents are disabled and it becomea neceseary to allow a stabilization period when leaving the STOP mode. If the MC6BHC11A8 exits the STOP mode with a delay, there will automaticelly be enough time for these circuits to stebilize before the first conversion. If the MC8BHC11A8 exits the STOP mode with no detay (DLY bit in OPTION register equal to zero), the user must allow sufficient time for the A/D circuitry to stabilize to avoid invalid results.

### 7.6 A/D CONTROL/STATUS REGISTER (ADCTL)

All bits in this register may be read or written, except bit 7 which is a read-only status indicator and bit 6 which always reads as a zero. Bit 7 is cleared at reset but the other bits are not affected by reser. Figure 7-1 and the following paragraphs describe the function of eech of the bits.

87	86	85	84	83	02	01	80
CCF	-	SCAM	mant	CO	cc	c	Ca

Figure 7-1. A/D Control/Statu: Regiater (ADCTL)
Bit 7. CCF Conversions Complete Flag - This reed-only status indicator is set when ell four A/D result registers contain valid conversion results. Each time the ADCTL register is written, this bit ie automatically clesred to zero and a conversion sequence is started. In the continuous modes, conversions continue in a round-robin fashion and the result registers continue to be updated with current data even though the CCF bit remains set.

NOTE
The user must write to register ADCTL to initiate conversion.

Bit 5, SCAN Continuous Scen Control - When this control bit is cleared, the four requested conversions are performed once to fill the four result registers. When this control bit is set, conversions continue in a round-robin fashion with the result registers being updated as data becomes available.

Bit 4, MULT Multiple-Channel/Single Channel Control - When this bit is cleared, the A/D system is configured to perform four consecutive conversions on the single chennel specified by the fow channel select bits CD thru CA (bits $3-0$ of ADCTL). When this bit is set, the A/D system is configured to perform a conversion on each of four channets where each reaut register corresponds to one channel.

Bit 3. CD
Channel Select D
Bit 2, CC
Channel Select $C$
Bit 1, CB Channel Select B
Bit 0, CA Channel Select A - These four bits are used to select one of 16 A/D channels (see Table 7-1). When a multipte chennel mode is selected (MULT $=1$ ), the two leept-significent chennel eslect bite (C8 and CA) heve no meening and the CD and CC bits apecity which group of four channels are to be converted. The signals selected by the four chennel select control bits are shown in Table 7-1.

### 7.7 A/D RESULT REGISTERS 1, 2, 3. AND 4 (ADR1, ADR2, ADR3, and ADR4)

The A/D reeuk regieters are read-anty regiaters used to hold an 8 -bit conversion reauk. Writes to theee reginters have no effect. Data in the A/D reaut registers is not valid unless the CCF flag bit in ADCTL is set. indicating conversion complete. Refer to the A/D channel assignments in Table 7-1 for the reletionship berween the chennels and the result registers.

### 7.8 A/D POWER UP AND CLOCK SELECT

A/D power up is controlted by bit 7 (ADPU) of the OPTION register. When ADPU is cleared, power to the A/D syetem is disebled. When ADPU is set, the A/D system is enebled. A delay of typically 100 microseconds is required efter turning on the A/D converter to allow the enalog bies voltages to stabilize.

Clock select is controlted by bit 6 (CSEL) of the OPTION register. When CSEL is cleered, the A/D uses the oystem E clock. When CSEL is set, the A/D uses an internal R-C clock source, which runs at about 1.5 MHz. The MCU E clock is not suiteble to drive the A/D system if it is operating below 1 MHz , in which case the R-C internal clock should be selected. Refer to 9.2 CONFIGURATION OPTIONS REGISTER (OPTION) for more detailed information.

## SECTION 8

## PROGRAMMABLE TIMER, REAL-TIME INTERRUPT, AND PULSE ACCUMULATOR

This section describee the 16-bit programmeble timer, the real-time interrupt, and the pulse accumulator system features of the MC6BHC11A8.

### 8.1 PROGRAMMABLE TIMER

The timer hes a single 16 -bit free-running counter which is clocked by the outpur of a four-atege prescaler (divide by $1,4,8$, or 16), which is in turn driven by the MCU E clock. Input functione sere called input captures. These input captures record the count from the free-running counter in reaponse to a detected edge on an input pin. Output functions, called output compares, cause en output action when there is a match between a 16-bit output-compere reginter and the free-running counter. This timer syatem has three input capture registers and five output compere reginters.

In order to reduce the overheed required to service interrupts, timer overlow, and the other eight timer functions, eech has a seperate interrupt vector, and eech of the nine interrupts is sepperately maskable. A change in the way interrupt fieg bits are cleared has been incorporated to enhence timer interrupt operation.

### 8.1.1 Counter

The key element in the timer syetem is a 16 -bit free-running counter, or timer counter regiater. After reep, the MCEBHC11A8 is configured to use the E clock ss the input to the free-running counter. Minialization software moy optionally reconfigure the syatem to use one of the three preacele tape. Software can reed the counter at eny time without affecting its value because it is clocked and reed during opposite half cycies of the MPU E clock.

A counter reed should first eddrees the mout significent byte. An MPU reed of thin addrese causes the toent significant byte to be transferred to a buffer. This buffer is not affected by reeet and is acceseed when reading the lesest significent byte of the counter. For double byte reed instructions, the two accesese oceur on consecutive bus cycles.

The counter is cleared to $\$ 0000$ during reset and is a read-onty regieter with one exception. In teet modee only, any MPU write to the most significent byte always precets the counter to \$FFF8 regardieas of the value involved in the write.

When the count chinges from \$FFFF to $\mathbf{\$ 0 0 0 0}$, the timer overtiow fieg (TOF) bit is set in TFLG2. An interrupt can be ensbled by setting the interrupt enable bit (TOI) in TMSK2.

### 8.1.2 Input Capture

The input capture registers are 16 -bit read-only registers which are not affected by reset and are used to latch the value of the counter when a defined transition is sensed by the corresponding input capture edge detector. The level transition which triggers counter transfer is defined by the corresponding input edge bits (EDGXB, EDGXA) in TCTL2.

The result obtained by an input capture corresponds to the value of the counter one cycle after the transition which triggered the edge-detection logic. The selected edge transition sets the ICxF in TFLG1 and can cause an interrupt if the corresponding ICxI bit(s) is (are) set in the TMSK1 register. A read of the input Capture Register's MSB inhibits captures for one E cycle to allow a double-byte read of the full 16 -bit register.

### 8.1.3 Output Compare

The output compare registers are 16 -bit read/write registers which are initialized to $\$$ FFFF by reset. They can be used as output waveform controls and as elapsed time indicators. If an output compere is not utilized, the unused registers may be used as storage locations.

All output compare registers have a separate dedicated comperator for comparing egainst the tree-running counter. If a match is found, the corresponding output compare flag (OCxF) bit in TFLG1 is set and a specified action is automatically taken. For output compare functions two through five the automatic action is controlled by pairs of bits in the TCTL1 control register (OMX and OLX). Each peir of control bits are encoded to specity the output action to be taken as a result of a successful OCx compare.

An interrupt can also accompany a successful output compare, provided that the corresponding interrupt enable bit (OCxI) is set in TMSK1.

After an MPU write cycle to the most significant byte, output compares are inhibited for one $\mathbf{E}$ cycle in order to allow writing two consecutive bytes before making the next comparison. If both bytes of the regieter are to be changed, a double-byte write instruction should be used in order to take advantage of the compare inhibit feature.

MPU writes can be made to either byte of the output compare register without affecting the other byte.
A write-only register (CFORC), allows forced compares. Five of the bit positions in the CFORC register correepond to the five output comperes. To force a compere, or comperes, a write is done to CFORC with the seeociated bits set for each output compere that is to be forced. The action taken as a result of $t$ forced compere is the same as if there was a match between the OCX regiater and the freo-running counter, except thet the corresponding interrupt flag status bits are not set.

### 8.1.4 Output Compare 1 I/O Pin Control

Unlike the other four output compares, output compare 1 can automatically affect any or all of the five outDut pins (bits 3-7) in port A as a result of a successful compare between the OC 1 register and the 16 -bit freerunning counter. The two 5-bit registers used in conjunction with this function are the output compere 1 mask register (OCIM) and the output compare 1 data register (OC1D).

Regieter OC1M is used to specity the bits of port A $11 / O$ and timer port) which are to be affected as a reeut of a successful OC1 compare. Register OC1D is used to specity the data which is to be stored to the affected bits of port $A$ as the result of a successful OC1 compare. If an OC1 compare and another outpur compare occur during the same E cycle and both attempt to alter the same port A bit, the OC compere overrides.

This function allows control of multiple $1 / O$ pins automatically with a single output compare.
Another intended use for the special I/O pin control on output compare 1 is to ellow more than one output compere to control a single $1 / 0$ pin.

### 8.1.8 Timer Compare Force Register (CFORC)

The compare force register is used to force early output compare actions. The CFORC register is an 8-bit write-only register except that bits 2, 1, and 0 are not implemented. Reads of this location have no meening or effect and atweys return logic zeros $(\$ 00)$. Note that the compere force function is not generally recommended for use with the output toggle function because a normal compere occuring immediately before or after the force may result in undesirable operation. Figure 8-1 and the following peragraphs describe the function of each of the bits.

\% 7	0	85	8	83	82	11	00
FOC1	Fact	FOC3	f0C4	F0Cs	-	-	-

_
$1.5 \%$
Figure 8-1. Timer Compare Force Reglster (CFORC)
FOC1-FOC5

## Force Output Compare x Action

$0-$ Hes no meaning
1-Causes the action which is programmed for output compere except that the OCxF is not set.
Brt 2-0
Not implemented. Reed as a logic zero.

### 8.1.6 Output Compare 1 Mask Register (OC1M)

This 8-bit reed/write register (Figure 8-2) is cleered by reeet end is used in conjunction with output compere 1 to specity the bite of port A which are to be affected as a resutt of a eucceseful OC1 compare. Bits zero through two are not implemented and always return zero.

87	0	85	84	83	12	81	8	
$0 \mathrm{Cl} \mathrm{m}^{\prime} 7$	CSIN	OCTM	OCIm	0,1M3	-	-	-	-_006

Figure 8-2. Output Compare 1 Mask Register (OC1M)
The bite of OCIM register correepond bit-for-bit with the bits of port A (bits 7 through 3 only). For each bit thet is affected by the succeseful compere, the corresponding bit in OC1M should be set to one.

Note that the pube sccumulator function sheres bit 7 of port A. If the DDRA7 control bit in the PACTL repieter is eet, then port A bit 7 is configured as en output and OC1 can obtrin acceess by setting OCIM bit 7. In this condition if the PAEN control bit in the PACTL reginter is aet, enabling the pulse accumulator input, then OC1 compares cause a write of OC1D bit 7 to an internal latch, and the output of that latch drives the pin end the pulse accumulator input. This action can then cause the pubse accumulator to take the appropriese action (pulee coums or gete modes).

### 8.1.7 Output Compare 1 Data Register (OC1D)

This 8-bit, read/write register (Figure 8-3) is cleared by reset and is used in conjunction with output compare 1 to specify the data which is to be stored to the affected bits of port $A$ as the result of a successful OC1 compare. This register is not affected by reset. Bits zero through two are not implemented and always read as zeros.


Figure 8-3. Output Compare I Data Register (OC1D)
The bits of OC1D correspond bit-for-bit with the bits of port A (bits 7 thru 3 only). When a successful OC1 compare occurs, for each bit that is set in OCIM, the corresponding data bit in OC1D is stored in the correaponding bit of port A . If there is a conflicting situation where an OC1 compare and another output compave function occur during the same E cycle with both attempting to atter the same port A bit, the OC1 action overrides.

### 8.1.8 Timer Control Regiater 1 (TCTLI)

Timer control register 1 is an 8 -bit read/write register. All bits in this register are cleared to zero during reset. Figure 8-4 and the following paragraphs describe the function of each of the bits.


Figure 8-4. Timer Control Register 1 (TCTL1)

Bits 7, 5, 3, 1 Output Mode
OMx
Bits 6, 4, 2, 0 Output Level. These two control bits (OMx and OLx) are encoded to specify the output OLx action to be taken as a result of a successful OCx compere.

OMx	OLx	Action Taken Upon Successful Compare
0	0	Timer disconnected from output pin logic
0	1	Toggle OCx output line
1	0	Clasr OCx output line to zero
1	1	Set OCx output line to one

### 8.1.8 Timer Control Rogister 2 (TCTL2)

Timer control regiater 2 is an 8 -bit read/write register except for bits 6 and 7 which are not implemented. Figure 8-5 and the following paragraphs describe the function of each of the bits.

17	88	${ }^{6} 5$	0	13	12	1	$\infty$
-	-	60618	1	E062t	E082A	EDS39	ED639

Figure 8-6. Timer Control Register 2 (TCTL2)

Bits 5, 3, 1 Input Capture $\times$ Edge Control. These two bits (EDG×B and EDG×A) are cleared to zero by EDGxB reset and are encoded to configure the input sensing logic for input capture $x$ as follows:

EDGxB	EDG×A	Configuration
0	0	Capture disabled
0	1	Capture on rising edges only
1	0	Capture on falling edges only
1	1	Capture on any (rising or falling) edze

### 8.1.10 Main Timer Interrupt Mask Register 1 (TMSK1)

The timer interrupt mask register (see Figure 8-6) is a read/write register and the bits are described in the following paragraphs.

81	日6	85	84	83	82	81	80
$0 C 11$	$0 C 21$	$0 C 31$	$0 C 41$	$0 C 51$	$\mid C 11$	$\mid C 21$	$\mid C 31$

Figure 8-6. Timer Interrupt Mask Register 1 (TMSK1)
Bits 7-3, OCxI Output Compare x interrupt. If the $O C x 1$ mask bit is set when the OCxF flag bit is set, a hardware interrupt sequence is requested.

Bits 2-0, ICxI Input Capture $x$ interrupt. If the ICxi mask bit is set when the ICxF flag bit is set, a hardware interrupt sequence is requested.

### 8.1.11 Main Timer Interrupt Flag Register 1 (TFLG1)

The timer system flag register 1 (TFLG1), shown in Figure 8-7, is used to indicate the occurrence of timer system events, and together with the TMSK1 register allows the timer sub-system to operate in a polled or interrupt driven system. For each bit in the timer flag register 1 (TFLG1), there is a corresponding bit in the timer mask register 1 (TMSK1) in the same bit position. If, and only if, the mask bit is set each time the conditions for the corresponding flag are met, a hardware interrupt sequence is requested as well as the fleg bit being set.

Bit manipulation instructions would be inappropriate for fiag clearing because they are read-modify-write instructions. Even though the instruction mask implies that the programmer is only interested in some of the bits in the manipulated location, the entire 8-bit location is actually read and rewritten which may clear other bits in the register.

81	86	85	84	83	82	81	80
$0 ¢ 18$	OC2 ${ }^{5}$	$0{ }^{\text {c }} 3 \mathrm{~F}$	OCAF	0C5f	ICIf	$1 \mathrm{C2F}$	IC3F

[^4]1516
Figure 8-7. Timer Interrupt Flag Register 1 (TFLG1)

Bits 7-3, OCxF Output Compare $\times$ Flag. This flag bit is set each time the timer counter matches the output compare register $x$ value. A write of a zero does not affect the state of this bit. A write of a one causes this bit to be cleared.

Bits 2-0, ICXF Input Capture $\times$ Flag. This flag bit is set each time a selected active edge is detected on the ICx input line. A write of a zero, does not affect this bit. A write of a one causes this bit to be cleared.

### 8.1.12 Timer Interrupt Mask Register 2 (TMSK2)

The timer system mask regisier $\mathbf{2}$ is used to control whether or not a hardware interrupt sequence is requested as a result of a status bit being set in timer syster • flag register 2. In addition, two timer prescaler bits are included in this register. For each of the four most significant bits in timer flag register 2 (TFLG2) there is a corresponding bit in the timer mask register 2 (- MSK2) in the same bit position.

The timer interrupt mask register is a read/write register and the bits are described in Figure 8-8 and the following paragraphs.

-_024
1517
Figure 8-8. Timer Interrupt Mask Register 2 (TMSK2)
Bit 7, TOI Timer Overflow Interrupt Enable. This read/write bit is cleared by reset. If this bit is set, a timer overflow interrupt request is initiated each time the TOF bit (in TFLG2) is set as a result of a timer counter overflow.

Bit 6, RTII RTI Interrupt Enable. This read/write bit is cleared to zero by reset and is used to enable or inhibit RTIF interrupt flags from causing hardware interrupt sequences. When RTII is clear, the RTIF flag is masked (inhibited). When RTII is set, the RTIF flag is enabled to causes a hardware interrupt.

Bit 5, PAOVI Pulse Accumulator Overflow Interrupt Enable. This read/write bit is cleared to zero by reset and is used to enable or inhibit PAOVF interrupt flags from causing hardware interrupt sequences. When it is set, a hardware interrupt results when the PAOVF bit is set.
Bit 4, PAll Pulse Accumulator Input Interrupt Enable. This read/write bit is cleared to zero by reset and is used to enable or inhibit PAlF interrupt flegs from causing hardware interrupt sequences. When it is set, a hardware interrupt results if the PAIF bit is set.

Bits 3, 2 These bits are not implemented. Reads of these bits will always return a logic zero.

Bit 1. PR1 Timer Prescaler Selects. These two bits may be read at any time but may only be written
Bit 0, PRO during initialization. Writes are disabled after the first write or after 64 E cycles out of reset. If the MCU is in special test or special bootstrap mode, then these two bits may be written any time.

These two bits specity the timer prescaler divide factor.

PR1	PRO	Divide-by-Factor
0	0	1
0	1	4
1	0	8
1	1	16

### 8.1.13 Timer Interrupt Flag Register 2 (TFLG2)

Timer system flag register 2 (TFLG2) is used to indicate the occurrence of timer syatem events and, together with the TMSK2 register, allows the timer sub-systems to operate in a polled or interrupt driven syatem. For each bit in timer flag register 2 (TFLG2), there is a corresponding bit in timer mask register 2 (TMSK2) in the same bit position. If the mask bit is set each time the conditions for the corresponding flag are met, a hardware interrupt sequence is requested, as well as the flag bit being set.

The timer system status register indicates when interrupt conditions heve occurred. To clear a bit, or bits, a logic one is written to it, or them.

Bt manipulation instructions would be inappropriate for fleg clearing because they are read-modity-write instructions. Even though the instruction mask implies that the programmer is only interested in some of the bits in the manipulated location, the entire 8-bit location is actually read and rewritten which may clear other bits in the register.

The timer system fleg register 2 is shown in Figure 8-9 and the bits are described in the following paregraphs.

87	86	85	84	03	82	81	80
TOF	RT/4	PaOFF	PAIF	-	-	-	-

8 $\quad 025$
2.518

Figure 8-9. Timer Interrupt Flag Register 2 (TfLG2)
Bit 7. TOF Timer Overflow. This bit is cleared by reset. It is set to one each time the $\mathbf{1 6 - b i t}$ freerunning counter advances from a value of \$FFFF to \$0000. In order to acknowiedge (clear) the TOF flag the user must perform a write operation to TFLG2 with bit 7 set.

Bit 6, RTIF
Real Time Interrupt Flog. This bit is cleared by reset. RTIF is set at each rising edge of the selected tap point. To clear the RTIF flag, a software write is performed to the TFLG2 register with bit 6 set to one.

Bit 5, PAOVF Pulse Accumulator Overflow Interrupt Flag. This bit is cleared by reset and becomes set when the count in the pulse accumulator rolls over from $\$ F F$ to $\$ 00$. This bit is cleared by a write to the TFLG2 register with bit 5 set.

Bit 4, PAIF Pulse Accumulator Input Edge Interrupt Flag. This bit is cleared by reset, and becomes set when an active edge is detected on the PAl input pin. This bit is cleared by a write to the TFLG2 register with bit 4 set.

Bits 3-0 These bits are not implemented and they read as a logic zero.

### 8.2 REAL TIME INTERRUPT

The real time interrupt feature on the MC68HC11A8 is configured and controlled by two bits in the PACTL control register(RTR1 and RTRO) to select one of four interrupt rates. The RTII bit in TMSK2 enables the interrupt capability. Every timeout causes the RTIF bit to be set in TFLG2, and if RTII is set, an interrupt request is generated. After reset, one entire real time interrupt period elapses before the RTIF flag is set for the first time.

### 8.3 PULSE ACCUMULATOR

The pulse accumulator is an 8-bit counter which can operate in either of two modes depending on the state of the PAMOD control bit in PACTL. In the event counting mode, the 8 -bit counter is clocked to increasing values by an external pin. In the gated time accumulation mode, an $\mathrm{E} / 64$ clock drives the 8 -bit counter, but only while the externai PAI input pin is in a selected state.

The pulse accumulator uses port A bit 7 as its PAl input, but this pin also shares function as a general purpose $1 / O$ pin and as a timer output compare 1 output. Although the port A bit 7 pin would normally be configured as an input when being used for the pulse accumulator, it still drives the pulse accumulator system oven when it is configured for use in its alternate capacities.

### 8.4 PULSE ACCUMULATOR CONTROL REGISTER (PACTL)

Four bits in this register are used to control an \&-bit pulse accumulator syatem and two other bits are used to select the rate for the real time interrupt system. Figure 8-10 and the following paragraphs deacribe the function of each of the bits.

17	\% 6	05	84	83	B2	81	0	
009n7	PAEN	Pamod	Proce	-	-	ATAI	MTN0	1-026

Figure 8-10. Pulse Accumulator Control Register (PACTL)
Bit 7, DDRA7 Data Direction for Port A Bit 7. This reed/write bit in cleared by reeet and is used to enable or disable the output driver for the port A bit 7 pin. When DDRA7 is zero the port A bit 7 pin is configured for input only and when DDRA7 is one port $A$ bit 7 is configured for output. Note that even when port $A$ bit 7 is configured for output, this pin still acts as the input to the pulse accumulator system.

Bit 6, PAEN Pulse Accumulator Syatem Enable. This read/write bit is cleared by reset and is used to enable or disable the pubse accumulator syatem. When it is set, the pulse accumulator is enabled, and when clear, the pulse accumulator syitem is disabled.

Bit 5, PAMOD Pulsa Accumulator Mode. This read/write bit controls whether the pulse accumulator is to operate in the external event counting mode or the gated time accumulation mode. When it is zero, the pulse acumulator counts pulses on the PAl input pin (port A bit 7 ). When it is set, the putse accumulator operates in the gated time accumulation mode and the PAI input allows the pulse accumulator counter to count. The PAMOD bit is cleared - to zero by reset.

Bit 4, PEDGE Pulse Accumuletor Edge Control. This reed/write bit has different meanings depending on the stete of the PAMOD control bit. This bit is cleared by reset.

PAMOD	PEDGE	Action on Clock
0	0	PAI Falling Edge Increments the Counter
0	1	PAI Rising Edge Increments the Counter
1	0	$A^{\prime} 0^{\prime}$ on PAl Inhibits Counting
1	$i$	$A^{\prime} 1^{\prime}$ on PAI Inhibits Counting

Bits 3-2 These bits are not implemented and read as a logic zero.

Bit 1, RTR1 Bt O, RTRO

RTI Interrupt Rate Selects. These two reed/write bits select one of four rates for the reel time periodic interrupt circuit (see Table 8-1). Reset cleers these two bits and after resek, a full RTI period elapes before the first RTI interrupt.

Table 8-1. Real Time Interrupt Rate versus RTh1 and RTRo

HTM1	ATMO	$\begin{aligned} & \hline \text { OVide } \\ & \text { E BY } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { XTAL } \\ 2^{23} \\ \hline \end{array}$	$\begin{aligned} & \text { XTAL }= \\ & 0.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { XTAL } \\ \text { 4. } \mathrm{m}=\mathrm{MHz} \end{gathered}$	XTAL $=$ 4.0 MHz	XTAL 3.enen MMz
0	0	$2^{13}$	3.91 ms	4.10 me	0.67 mm	6.19 mm	8.09 mm
0	1	214	7.81 mm	8.19 mm	13.33 mm	28.30 ms	17.78 mm
1	0	$2{ }^{16}$	15.62 mm	16.38 me	23.07 mm	32.77 mm	35.58 mm
1	1	$2{ }^{16}$	31.28 mm	32.77 me	53.33 mm	65.54 mm	71.11 mm
		E =	2.1 MHz	2.0 MHz		1.0 NHz	921.6 KHz

## SECTION 9 SYSTEM PROTECTION

This section describes the computer operating properly (COP) system feature and other system protection features.

### 9.1 COP WATCHDOG SYSTEM

The MCBBHC11A8 includes a COP (computer operating property) watchdog system to help protect against software failures. To use a COP watchdog timer, a watchdog reeet sequence is executed on a reguler periodic bseis so that the watcholog timer is never allowed to time out.

The internal MC6BHC11A8 COP function includes special control bits which permit specificetion of one of four time out periods and even allows the function to be disebled completely.

The NOCOP control bit, which determines whether or not a watchdog timeout causes a syitem reset, is implemented in an EEPROM cell in the CONFIG register. Once programmed, this bit remains set (or cleered) oven when no power is applied to the MCӨBHC11A8, and the COP function is ensbled or diasbled independent of resident software. The NOCOP control bit mey be overridden while in speciel teat modes so the COP syatem can be inhibited from causing a hardwere reser.

Two other control bits in the OPTION register select one of four timeout durations for the COP timer. The actual timeout period is dependent on the system E clock frequency, but for reference purpoees. Table 9-1 shows the relationship between the CR1 and CRO control bits and the COP timeout period for verious syutem clock frequencies.

Table 91. COP Timeout Period versus CA1 and CAO

CN1	CNO	E/274   Okrient By	$\begin{aligned} & \text { XTAL }=22^{2} \\ & \text { Timeour } \\ & -0 /+18.1 \mathrm{~ms} \end{aligned}$	$\begin{gathered} \text { XTAL }=0.0 \text { MMz } \\ \text { Thweont } \\ -0 /+18.4 \mathrm{me} \end{gathered}$	$\begin{gathered} \text { XTAL m. } 4.5 \text { : MHE } \\ \text { Tinneent } \\ -0+2.7 \mathrm{~mm} \end{gathered}$	$\left[\begin{array}{c} \text { XTAL }=4.0 \text { MHz } \\ \text { Thuneont } \\ -0 /+3 x .1 \text { mi } \end{array}\right.$	
0	0	1	15.6\% mis	16.304 me	22.07 mm	$32.70{ }^{\text {a me }}$	35.58
0	1	4	02.5 mm	65.63 mm	108.67 m	131.07 me	142.2 m
1	0	18	200 me	$2 \times 2.14 \mathrm{~mm}$	40.07 me	204.29 mm	5.5
1	1	44	18	1.00 \%	1.707 e	2.18	2.278
		$E=$	2.1 MMz	$2.0 \mathrm{MHz}^{2}$	1.2\% ${ }^{2} \mathrm{MH}$	1.0 anmz	S21.8 $\times 142$

The default reset condition of CR1:CR0 is 0:0 which corresponds to the shortent timeout period.
The sequence required to rewt the watchdog timer is: 11 write 565 to the COPRST register at \& _O3A, fotlowed by 2) wite \$AA to the same address. Both writes must occur in correct order prior to timeout but, any number of instructions may be executed between the writes. The elapeed time between adjecent softwere reset sequences must never be greater than the COP time out period.

## S.2 CONFIGURATION OPTIONS REGISTER IOPTION)

This is a special purpose 8 -bit register that is used (optionally) during initialization to configure internal system configuration options. With the exception of bits 7, 6, and 3 (ADPU, CSEL, and CME) which may be read or written at any time, this register may be written to only once after a reset and theresfter is a reedonly register. If no write is performed to this location within 64 E -clock cycles after reset, then bits $5,4,1$. and 0 (IRAE, DLY, CR1, and CRO) will become read-only to minimize the possibility of any accidental changes to the system configuration. While in special test modes, the protection mechanism on this register is overridden and all bits in the OPTION register may be written.

Figure 9-1 and the following paragraphs describe the function of each of the bits.

17	18	85	4	13	- 2	11	00
AOPN	CSEL	1月02	OXY	CME	-	CR1	C月O

Figure 9-1. Configuration Options Register (OPTION)
Bit 7, ADPU A/D Powerup. This bit is cleared by reset and controls operation of the on-chip analog-todigital converter. When ADPU is clear, the A/D system is powered down and conversion requests will not return meaningful information. To use the $A / D$ system, this bit should be set.

Bit 6, CSEL A/D Clock Source Select. This bit is cleared by reset and determines the clocking source for the on-chip A/D. When this bit is zero, the MCU E clock drives the A/D system. When CSEL is one, an on-chip R-C oscillator is enabled and clocks the $A / D$ systern at about 1.5 MHz rate. When running with an E clock less than $1 \mathrm{MHz}, \mathrm{CSEL}$ must be high to program or erase the EEPROM.

Bit 5, IRQE IRQ Edge/Level Sensitive. This read/write bit is cleared at reset. When it is clear, the IRQ pin is configured for level sensitive wired-OR operation (low level) and when it is set, the IRQ is configured for edge-only sensitivity (falling edges) on the IRO pin.

Bit 4, DLY STOP Exit Turn-On Delay. This bit may only be written under special circumstances as described above. This bit is set to one during reset and controls whether or not a relatively long turn-on delay will be imposed before processing can resume after a STOP period. If an external clock source is supplied this delay can be inhibited so that processing can resume within a fow cycles of a wake up from STOP mode. When DLY is a one, delay is imposed to allow oscillator stabilization and when DLY is a zero, this delay is bypassed.

Bit 3, CME Clock Monitor Enable. This control bit may be read or written at any time and controls whether or not the internal clock monitor circuit will trigger a reset sequence when a stow or absent system clock is detected. When it is clear, the clock monitor circuit is disabled and when it is set, the clock monitor circuit is enabled. Systems operating at or below 200 KHz should not use the clock monitor function. Reset clears the CME bit.

Bit 2 Not Implemented. Reads as a logic zero.
Bit 1. CR1 COP Timer Rate Selects. Refer to Table 9-1 for the relationship between CR1:CRO and the Bit O, CRO COP timeout period.

### 9.3 CLOCK MONITOR

The clock monitor function is enabled by the CME control bit in the OPTION register. When CME is zero, the function is disabled and when CME is a one, the clock monitor function detects the absence of an E clock for more than a certain period of time. The timeout period is dependent on processing perameters and will be between 5 and 100 microseconds. This means that an E-clock rate of $\mathbf{2 0 0} \mathbf{k H z}$ or more will never cause a clock monitor failure and an E-clock rate of 10 kHz or less will definitely cause a clock monitor failure. This implies that systems operating near or below an E-clock rete of $\mathbf{2 0 0} \mathbf{k H z}$ should not use the clock monitor function.

Upon detection of astow or absent clock, the clock monitor circuit (if enabled by CME = 1 ) will cause a syatem reset to be generated. This reset is issued to the external system via the bidirectional FESET pin.

Special considerations are needed when using a STOP function and clock monitor in the same syetem. Since the STOP function causes the clocks to be halted, the clock monitor function will generate a reeot sequence if it is enabled at the time the STOP mode is entered.

## SECTION 10 ADDRESSING MODES AND INSTRUCTION SET

This section provides a description of the addressing modes and instruction set.

### 10.1 ADDRESSING MODES

Six addreseing modes can be used to reference memory; they include: immediate, direct, extended, indexed (with either of two 16 -bit index registers and an 8 -bit offset), inherent and relative. Some instructions require an additional byte before the opcode to accomodate a multi-pege opcode mep; this byte is called a probyte.

The following paragrephs provide a description of each addressing mode plus a discussion of the prebyte. In these descriptions the term effective address is used to indicate the address in memory from which the ergument is fetched or stored, or from which execution is to proceed.

### 10.1.1 Immediate Addreaeling

In the immediate addreseing mode, the actual argument is contained in the byte(s) immediately following the instruction, where the number of bytes matches the size of the register. These are two, three, or four fif prebyte is required) byte instructions.

### 20.1.2 Direct Addreaing

In the direct addreasing mode, the leset significant byte of the operend address is contained in a single byte following the opcode and the most significent byte is assumed to be $\$ 00$. Direct addressing allows the user to accese $\$ 0000$ through $\$ 00 \mathrm{FF}$ using two byte instructions and execution time is reduced by eliminating the additional memory access. In most applications, this 258-byte area is reserved for frequently referenced dets. In the MCEBHC11AB, software can configure the memory mep so that internal RAM, and/or internal reginters, of external memory space cen occupy these addresess.

### 10.1.3 Extended Addreeeing

In the extended addreasing mode, the second and third bytes (following the opcode) contain the absolute address of the operand. Theee are three or four (if prebyte is required) byte instructions: one or two for the opcode, and two for the effective address.

### 10.1.4 Indexed Addreseing

In the indexed addreesing mode, one of the index registers ( X or Y ) is used in calculating the effective addrees. In this caee, the effective address is variable and depends on two factors: 1 ) the current contents of the index regiater ( $X$ or $Y$ ) being used, and 2) the 8 -bit unsigned offeet contained in the instruction. This addreasing mode allows referencing any memory location in the 64K byte address space. These are usually two or three (if prebyte is required) byte instructions, the opcode plus the 8-bit offset.

### 10.1.5 Inherent Addressing

In the inherent addressing mode, all of the information to execute the instruction is contained in the opcode. The operands (if any) are registers and no memory reference is required. These are usually one or two byte instructions.

### 10.1.6 Relative Addressing

The relative addressing mode is used for branch instructions. If the branch condition is true, the contents of the 8 -bit signed byte following the opcode (the offset) is added to the contents of the program counter to form the effective branch address; otherwise, control proceeds to the next instruction. These are usually two byte instructions.

### 10.1.7 Prebyte

In order to expand the number of instructions used in the MC68HC11A8, a prebyte instruction has been added to certain instructions. The instructions affected are usually associated with index register $Y$. The opcode instructions which do not require a prebyte could be considered as pege 1 of the overall opcode map. The remaining opcodes could be considered as pages 2,3 , and 4 of the opcode map and would require a prebyte; $\$ 18$ for page 2, $\$ 14$ for page 3, and \$CD for page 4.

### 10.2 INSTRUCTION SET

The central processing unit (CPU) in the MC68HCTiA8 is basically a proper extension of the MC6801 CPU. In addition to its ability to execute all M6800 and M6801 instructions, the MC6BHC11A8 CPU has a peged operation code lopcodel map with a total of 91 new opcodes. Major functional additions include a second 16-bit index register (Y register), two types of 16-by-16 divide instructions, STOP and WAIT instructions, and bit manipulation instructions.

Table 10-1 shows all MC68HC11A8 instructions in all possible addressing modes. For each instruction, the operand construction is shown as well as the total number of machine code bytes and execution time in CPU E-clock cycles. Notes are provided at the end of Table 10-1 which explain the tetters in the Operand and Execution Time columns for some instructions. Definition of "Special Ops" found in the Boolean Expreseion column is found in Figure 10-1.

Tables 10-2 through 10-8 provide a detailed description of the information present on the addrees bus, data bus, and the read/write ( $R / \bar{W}$ ) line during each cycle of each instruction. The information is useful in compering actual with expected results during debug of both softwere and herdware as the program is executed. The information is categorized in groups according to addressing mode and number of cycles per instruction. In general, instructions with the same addressing mode and number of cycles execute in the same menner. Exceptions are indicated in the tabie.

Table 10-1. MCeshC11A8 Instructions. Addressing Modes, and Execution Times (Sheet 1 of II

Source Formis)	Operation	Booken Expresesion	AddrumingMode forOperend	Muchine Coding (Mexedecimall				$\begin{array}{\|c\|} \text { Crele } \\ \text { by } \\ \text { Cycloe } \end{array}$	Condition Coden	
				Opcode	Operend(s)				3	$\times \mathrm{H} 1 \mathrm{~N} 2 \mathrm{C}$
ABA	Add Accurmulators	$A+B-A$	INH	18		1	2	2.1	$\cdot$	11111
ABX	Add 8 to $X$	$1 X+00: 8 \rightarrow 1 X$	INH	3 A		1	3	2.2	-	- - . . .
ABY	Add B to Y	$I Y+00: 8 \rightarrow I Y$	INH	183 A		2	4	2-4	-	- . . - . .
ADCA lopi	Add winh Cerry to A	$A+M+C \rightarrow A$	A IMM   A OIR   A EXT   A IND, X   A IND, Y	$\begin{array}{r} 69 \\ 99 \\ 89 \\ \text { A9 } \\ 18 \text { A9 } \\ \hline \end{array}$	ii   dd   in \|   H   H	$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 3 \\ 2 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 6-2 \\ & 7.2 \\ & \hline \end{aligned}$	-	$1-1111$
ADCE loprl	Add with Cerry to 8	$B+M+C-B$	B IMM B DIA B EXT B IND. $X$ B ind.Y	$\begin{array}{r} C 9 \\ D 9 \\ F 9 \\ E P \\ 18 \\ \hline \end{array}$	$d$   nh   H   H	$\left[\begin{array}{l} 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ \hline \end{array}\right.$	$\left[\begin{array}{l} 2 \\ 3 \\ 4 \\ 4 \\ 5 \end{array}\right.$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 6-2 \\ & 7.2 \end{aligned}$	-	$1-1111$
ADOA (opr)	Add Memory to A	$A+M-A$	A IMN A DIA A EXT A IND, $X$ A IND, $Y$	88 98 88 48 1848	in od Hin H $h$	$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 8-2 \\ & 7.2 \end{aligned}$		$1 \cdot 1111$
ADOB lopri	Add Memory to 8	$8+\mathrm{M}-8$	B INM B DIR B EXT B IND.X B IND.Y	CB DB FB EB 18 EB		$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 6-2 \\ & 7.2 \end{aligned}$	-	-1.1111
ADOD (0p)	Add 18-8k to D	$D+M: M+1=0$	IMM DIR EXT INO.X IND, $Y$ I	$\begin{gathered} C 3 \\ D 3 \\ \text { F3 } \\ E 3 \\ 10 E \\ \hline \end{gathered}$		$\begin{array}{\|l\|} \hline 3 \\ 2 \\ 3 \\ 2 \\ 3 \\ \hline \end{array}$		$\begin{aligned} & 3-3 \\ & 47 \\ & 5-10 \\ & 6.10 \\ & 7.8 \\ & \hline \end{aligned}$	-	1111
ANDA (cpr)	AND A with Memory	$A \cup M \rightarrow A$	A IMM A DIR A EXT A IND, X A IND, $Y$	$\begin{array}{r} 84 \\ 94 \\ 84 \\ 44 \\ 1844 \end{array}$	$\begin{aligned} & \text { in } \\ & \text { dod } \\ & \text { hen } \\ & \text { H } \\ & \text { H } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 8-2 \\ & 7.2 \\ & \hline \end{aligned}$	-	- 110
ANDS iops)	AND 8 with Memory	$B \cdot M \rightarrow 8$	B IMM B DIR B EXT B IND. $x$ B IND. $Y$	$\begin{gathered} \text { C4 } \\ \text { D4 } \\ \text { F4 } \\ \text { E4 } \\ \text { 16 E4 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { in } \\ & \text { do } \\ & \text { hh } \\ & \text { H } \\ & \text { H } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 8-2 \\ & 7-2 \end{aligned}$		$\cdots 110$
$\begin{array}{\|l\|} \hline \text { ASL lopr) } \\ \hline \text { ASLA } \\ \hline \text { ASL } \\ \hline \end{array}$	Arintmetic Stive Lett	$\begin{array}{ccc} 0 & -10 \\ C & 67 & 60 \end{array}$	$\begin{aligned} & \text { EXT } \\ & \text { IND.X } \\ & \text { IND.Y } \\ & \text { A INH } \\ & \text { B INH } \\ & \hline \end{aligned}$	$\begin{array}{r} 78 \\ 186 \\ 68 \\ 68 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & m \\ & m \\ & h \end{aligned}$	$\left[\begin{array}{l} 3 \\ 2 \\ 3 \\ 1 \\ 1 \end{array}\right]$	$\begin{array}{\|l\|} \hline 6 \\ \hline \\ 7 \\ 2 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 5-8 \\ & 6-3 \\ & 7.3 \\ & 2 \cdot 1 \\ & 2-1 \\ & \hline \end{aligned}$	-	. 1111
ASLO	Arithrmic Shith Lett Double	$\begin{array}{\|cc\|} \hline 0 \\ C & \text { bis } \\ 0 & -1 \\ 0 \end{array}$	INH	05		1	3	$2-2$		1111
Asn lopi   Asna   Ashe   actin	Arithmatic Shitit Right		EXT IND.X IND.Y A INH B INH	$\begin{array}{r} 77 \\ 87 \\ 1867 \\ 47 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & m m \\ & n \\ & n \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$	6 6 7 7 2 2	$\begin{aligned} & 58 \\ & 6.3 \\ & 7.3 \\ & 2.1 \\ & 2.1 \\ & \hline \end{aligned}$		1111
ecc (ral)	Branch it Corry Cloer	16=0	REL	24	$\pi$	2	3	81	$\cdot$	$\cdots \cdots \cdot \cdots$
$\begin{array}{\|c\|} \hline \operatorname{ACLR}(\operatorname{coper}) \\ (\pi \mathrm{man}) \end{array}$	Cloer Bita)	$\mathrm{me}(\mathrm{mm})-\mathrm{m}$	$\begin{aligned} & \text { Oin } \\ & \text { IND.X } \\ & \text { IND.Y } \end{aligned}$	$\begin{array}{r} 18 \\ 10 \\ 1810 \end{array}$		$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	\%	$\begin{aligned} & 4-10 \\ & 8-13 \\ & 7.10 \\ & \hline \end{aligned}$	-	110
Ccs $\operatorname{mon}$ )	Eranch 1 Cerry San	7C=1	REL	2	$\pi$	2	3	8.1	$\cdot$	$\cdots \cdot \cdot \cdot \cdot \cdot$
eno (ral)	Ormetin - 2000	72=1	REL	21	$\pi$	2	3	8.1	$\cdot$	- . - .




Table 10-1. MCEAHC11A8 Instructions. Addressing Modes, and Execution Timee (Sheet 2 of 71

Source Formis)	Operation	Booleen Expression	Addreweing   Mode for   Operend	Machina Coding (Hezedecimel)		$\sqrt{8}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	Cycle by Crale	Condition Coden			
				Opeode	Operandis)					$\times \mathrm{H}$	1 N 2 C	
BGE (rel)	Branch if $\geq$ 2ero	$\boldsymbol{T} \oplus \mathrm{V}=0$	REL	2 C	"	2	3	8.1	.	.	. . . .	
BGT leal)	Branch if > Zero		REL	2E	"	2	3	8.1		.	. . .	
8HI (reel)	Branch if Higher	C $\mathrm{C}+2=0$	REL	22	"	2	3	8.1		.	.	
BHS Irell	Branch if Higher or Same	' $\mathrm{C}=0$	REL	24	"	2	3	8.1		. $\cdot$	. $\cdot$.	
BITA (opr)	Bits) Test A with Memory	A.M	A IMM A DIR A EXT A IND,X A IND,Y	$\begin{array}{r} 85 \\ 95 \\ 85 \\ 45 \\ 1845 \\ \hline \end{array}$	ii   dd   hh   H   H	2   2   2   3   2   3	2   3   4   4   5	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 6-2 \\ & 7-2 \end{aligned}$	-	- .	110	
B17B (opr)	Bits) Test 8 with Mermory	80M	$B$ IMM 8 DIA B EXT a INOXX B INO,Y	C5 D5 F5 E5 18 E5	; dd hh H $H$ H	$\left.\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned} \right\rvert\,$	2   3   4   4	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 8-2 \\ & 7-2 \\ & \hline \end{aligned}$	-	- .	110	
OLE (ral)	Branch if $\leq$ Zero	$32+(N \oplus)^{\prime}=1$	REL	$2 F$	r	2	3	8	-	-	- - - .	
BLO (rat)	Branch if Lower	PC=1	REL	28	7	2	3	01	-	-	- • $\cdot$	
OLS (rall	Branch if Lower or Seme	TC-2 =	REL	23	$\pi$	2	3	O-1	-	-	- - . -	
BLT Iroll	Branch it < Zero	? $\mathrm{N} \oplus+\mathrm{V}=1$	AEL	20	$\pi$	2	3	8.1	-	-	- • - -	
BMet (ral)	Branch if Minus	TN = 1	REL	28	$\pi$	2	3	$8-1$	$\cdot$	- $\cdot$	- • -	
BNE (ral)	Branch if Not $=$ 2wo	$32=0$	AEL	28	"	2	3	$8-1$	$\cdot$	-	$\cdots \cdot \cdot \cdot$	
BPL (red)	Branch it Plua	T $\mathrm{N}=0$	REL	2 A	$\pi$	2	3	81	$\cdot$	-	- - .	
ERA (ral)	Branch Alwavs	T1=1	REL	20	$\pi$	2	3	$8-1$	$\cdot$	-	- - .	
$\begin{gathered} \text { EACLAlopr) } \\ \text { (makn } \\ \text { (rel) } \\ \hline \end{gathered}$	Branch if Bitis) Cleer	$7 \mathrm{M} \cdot \mathrm{mm}=0$	$\begin{aligned} & \text { Did } \\ & \text { IND.X } \\ & \text { IND.Y } \end{aligned}$	$\begin{array}{r} 13 \\ \text { if } \\ 18 \mathrm{if} \end{array}$	$\begin{aligned} & \text { dd mon } \pi \\ & \text { in min } \pi \\ & H \operatorname{mon} \pi \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 5 \end{aligned}$	6   7	$\begin{aligned} & 4-11 \\ & 6-14 \\ & 7.11 \end{aligned}$	-	- -	- - - -	
BnN (ral)	Branch Nower	11=0	REL	21	$\pi$	2	3	8.1	$\cdot$	- -	,	
BRSETIopr)   (mak)   (ral)	Branch if Bital Ser	? (1) $10 \mathrm{~mm}=0$	$\begin{aligned} & \text { DIR } \\ & \text { IND.X } \\ & \text { IND.Y } \end{aligned}$	12 18 $181 E$	do mm H mm it H mon ir	$\begin{aligned} & 4 \\ & 4 \\ & 5 \end{aligned}$	\|l		$\begin{aligned} & 4-11 \\ & 6.14 \\ & 7.11 \end{aligned}$	-	- -	$\cdots \cdot \cdots$
$\begin{array}{\|c} \text { BSETlopr) } \\ \text { (mak) } \end{array}$	Set Bit'si	$\mathrm{M}+\mathrm{mm} \rightarrow \mathrm{M}$	$\begin{aligned} & \text { DIA } \\ & \text { IND.X } \\ & \text { IND.Y } \end{aligned}$	$\begin{array}{r} 14 \\ 1 \mathrm{C} \\ 18 \mathrm{C} \end{array}$	dd mm   f mm   H mm	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 4 \\ \hline \end{array}$	6   7   8	$\begin{aligned} & 4.10 \\ & 6-13 \\ & 7.10 \\ & \hline \end{aligned}$	$\cdot$	- $\cdot$	110	
8SR (rall	Branch to Subroutine	See Speciel Ops	AEL	80	$\pi$	2	8	8.2	-	$\cdot$ -	-	
BVC (ren)	Branch if Overtlow Clear	TV=0	REL	23	$\pi$	2	3	$8-1$	-	.	-	
BVS (ral)	Branch if Overtlow Set	? $\mathrm{V}=1$	AEL	29	"	2	3	$8-1$		$\cdot$	$\cdots \cdot \cdots$	
CBA	Compere A to B	A. ${ }^{\text {B }}$	INH	11		1	2	2.1			-	
CLC	Clom Carry Bir	O-C	INH	$0 \times$		1	2	2.1		-	0	
CLI	Clear Interrupt Mask	$0-1$	INH	OE		1	2	2.1	$\cdot$	$\cdot$	0	
CLA lape 1	Clear Memory Bry	$0 \rightarrow \mathrm{M}$	$\begin{aligned} & \text { EXT } \\ & \text { IND,X } \\ & \text { IND,Y } \end{aligned}$	$\begin{array}{r} 7 F \\ 6 F \\ 186 F \\ \hline \end{array}$	$\begin{aligned} & \text { nn } \\ & H \\ & H \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \end{aligned}$	6 7 7	$\begin{aligned} & 5-8 \\ & 6-3 \\ & 7.3 \end{aligned}$	$\cdot$	- $\cdot$	0100	
CLAA	Cloer Accurmuletor $A$	$0 \rightarrow A$	A INH	45		1	2	2.1	$\cdot$	$\cdot$	- 0100	
CLRE	Clew Accumulator 8	$0 \rightarrow 8$	BINH	55		1	2	2.1	-	-	0100	
CLV	Cloer Ovorflow flee	0-v	INH	04		1	2	2.1		-	0	
CMPA (opr)	Compere A to Memory -	A-M	$\begin{aligned} & \text { A IMM } \\ & \text { A DIR } \\ & \text { A EXT } \\ & \text { A MO,X } \\ & \text { A INO,Y } \end{aligned}$	$\begin{array}{r} 81 \\ 81 \\ 81 \\ 81 \\ \text { 18 A1 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{do} \\ & \mathrm{din} \\ & \mathrm{n} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	2   2   3   3   2   3	2 3 3 4 4 5	$\begin{aligned} & 3-1 \\ & 4.1 \\ & 5-2 \\ & -2 \\ & 7.2 \end{aligned}$		- •	111	

[^5]Exemple: Table 10-1 Cyce-by-Crite cokumn reference number 2-4 equel Toble $10-2$ Ine Mem 2-4.

Table 10-1. MCe3HC11A8 Instructions. Addressing Modes, and Execution Times (Sheot 3 of 7 )


[^6]Example: Tabie 10.1 Cycte-by. Cycte column raterance number 2-4 equad Table $10-2$ line inem 2-4.

Table 10-1. MCesHC11A8 Instructions. Addreasing Modes, and Execution Times (Sheet 4 of 71




Table 10-1. MCeshC11A8 Instructions. Addressing Modes, and Execution Times (Sheet 5 of 7 )

Source   Form(s)	Operation	Booleen Exprossion	$\begin{aligned} & \text { Addreenine } \\ & \text { Mode for } \\ & \text { Operend } \end{aligned}$	Mechine Coding (Horedecimal)		$\begin{aligned} & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & \frac{9}{3} \\ & 4 \end{aligned}$	Cyels by Crcle*	Condition Codee		
				Opcode	Operandis)				S	$\times \mathrm{H}$	1 N 2 C
NEG (own)	2's Complement Mernory Eve	$0-M \rightarrow M$	$\begin{aligned} & \text { EXT } \\ & \text { IND,X } \\ & \text { IND,Y } \end{aligned}$	$\begin{array}{r} 70 \\ 60 \\ 1860 \end{array}$	$\begin{aligned} & \mathrm{hm} \quad \mathrm{H} \\ & \mathrm{ff} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 6-3 \\ & 7-3 \end{aligned}$	-	-	-1111
NEGA	2's Complement A	$0-A \rightarrow A$	A INH	40		1	2	2.1		.	1111
NEGE	$\boldsymbol{7}$ s Complement B	0-B-B	B INH	50		1	2	$2-1$	-	.	1111
NOP	No Operration	No Operation	INH	01		1	2	$2 \cdot 1$	-	-	- . .
ORAA loprl	OR Accurnulator A (linclusive)	$A+M \rightarrow A$	A IMAN A DIR A EXT A IND.X A IND.Y	$8 A$ $9 A$ $8 A$ $18 A A$	ii   dd   hh M   H   H	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 6-2 \\ & 7-2 \end{aligned}$	-	-	. 110
OnA8 (opr)	OR Accumulator 8 (inctusive)	$B+M-8$	B IMM   B DIR   8 EXT   B IND.X   B IND, Y	CA DA FA EA 18 EA	$\begin{aligned} & \mathrm{in} \\ & \text { dd } \\ & \text { hn } \\ & \text { if } \\ & \text { H } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 8-2 \\ & 7.2 \end{aligned}$		- -	110
PSHA	Puph A onto Suack	$A-S 4 . S P=S P-1$	A INH	36		1	3	2-8	-	-	- - - .
PSHE	Push 8 onto Stach	$B \rightarrow S x, S P=S P-1$	8 INH	37		1	3	$2 \cdot 6$	-	- -	- . - .
PSHX	Push $X$ onto Steck (Lo First)	$1 \mathrm{X} \rightarrow$ Stk, $S P=S P-2$	INH	$3 C$		1	4	2.7	-	-	- - - -
PSHY	Puah Y onto Stack (Lo First)	$\mathrm{Y} \rightarrow$ Stk. $\mathrm{SP}=\mathrm{SP}$-2	INH	183 C		2	5	2-8	-	-	- •
PULA	Pull A from Stack	$\mathbf{S P}=\mathbf{S P}+1, A-\mathbf{S t k}$	A INH	32		1	4	2-9	-	-	-
PULS	Pull B from Sueck	$S P=S P+1,8-S$ tk	8 INH	30		1	4	2.9	-	-	-
PULX	Pum X from Stack (Hi First)	$S P=S P+2,1 X-S d$	INH	38		1	5	2-10	-	-	-
PULY	Pull Y from Stack (Hi First)	$S P=S P+2,1 \mathrm{Y}-\mathrm{Stk}$	NH	183		2	8	2-11	-	-	- $\cdot-\quad \cdot$
ROL lopd	Rotate Left		EXT IND,X IND,Y A INH B INH	79 69 1869 49 59	$\begin{aligned} & \text { Hh H } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$	6   6   7   2   2	$\begin{aligned} & 8-8 \\ & 8-3 \\ & 7.3 \\ & 2-1 \\ & 2-1 \\ & \hline \end{aligned}$	-	-	. 11
ROR (cpr)   RORA   MOM	Rotete Right		$\begin{aligned} & \text { EXT } \\ & \text { IND,X } \\ & \text { IND,Y } \\ & \text { A INH } \\ & \text { B INH } \\ & \hline \end{aligned}$	$\begin{array}{r} 78 \\ 66 \\ 1868 \\ 48 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & \text { hh H } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 7 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 6-3 \\ & 7.3 \\ & 2-1 \\ & 2-1 \\ & \hline \end{aligned}$	-	$\cdots \cdot{ }^{-1}$	1111
ATI	Retum from Interrupt	Sed Speciol Ope	INH	38		1	12	2.14	1	11	11111
ATS	Aeturn from Subroutine	See Speciel Opt	INH	38		1	5	$2 \cdot 12$	-	$\cdots$	- -1.
SeA	Subtract 8 from $A$	$A-B \rightarrow A$	INH	10		1	2	2.1	$\cdot$	$\cdots$	$-1111$
Seca (opr)	Subtract winh Carry from A	$A-M-C \rightarrow A$	A INM A DIR A EXT A IND, X A INO,Y	82 92 82 1822	dd   inh   H   H	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 6-2 \\ & 7-2 \\ & \hline \end{aligned}$	-	- .	. 1111
SeCs (app)	Subrrect from Cerry from 8	$\mathbf{B}-\mathrm{M}-\mathrm{C} \rightarrow \mathrm{B}$		C2 D2 F2 E2 $18 \mathrm{E2}$	$\qquad$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 3-1 \\ & 4-1 \\ & 5-2 \\ & 8-2 \\ & 7.2 \end{aligned}$	-	-	.1111
Stc	Set Carry	$1 \rightarrow C$	INH	00		1	2	2.1	-	-	1
SE	Sti Interrupe Moek	$1 \rightarrow 1$	INH	OF		1	2	$2 \cdot 1$	-	- -	$1 \cdot$
Sty	Sti Oventow Peg	$1 \rightarrow V$	INH	O8		1	2	$2 \cdot 1$	-	-	- . 1

- Cyele-by-cycle number provides a reference to Tables $10-2$ through $10-8$ which detail cyele-by-cycte operation. Exemple: Tebie 10-1 Cycie-by-Cycte column reference number 2-4 coustis Table 10-2 line inem 2-4.

Table 10-1. MC68HCi1A8 Instructions. Addressing Modes, and Execution Times (Sheet 6 of 7)


[^7]Exenele: Tabie 10-1 Crcle-by. Crcle column reference number $2-4$ equals Table $10-2$ line item 24.

Table 10-1. MCesHC11A8 Instructions, Addressing Modes, and Execution Times (Sheet 7 of 7 )

Source Formis)	Operation	Booleen Expreasion	Addrewaing   Mode for   Operand	Mechine Coding (Hexadecimal)		$8$	en	$\begin{gathered} \text { Cycie } \\ \text { by } \\ \text { Cycle } \end{gathered}$	Condition Codee						
				Opcode	Operand(a)				S	$\times$	H	I	N 2	$v$	C
TXS	Transfor $X$ to Stack Pointer	IX P - $\rightarrow$ SP	INH	35		1	3	2.2		-	.	.	-	.	
TYS	Trenster $Y$ to Steck Pointer	IY-1 $\rightarrow$ SP	iNH	1835		2	4	2.4	-	-	$\cdot$		-	.	
WAI	Weit for Imterrupt	Stack Regs E WAIT	INH	3 E		2	***	$2 \cdot 18$	.	-	-	.	$\cdot$		
XGDX	Exchenge D with $X$	$\underline{X} \rightarrow$ D, D $\rightarrow$ IX	INH	8 F		1	3	$2 \cdot 2$		.	$\cdot$	-	-		
XGOY	Exchenge 0 with $Y$	$\underline{I Y} \rightarrow$ D, D $\rightarrow$ IY	INH	1887		2	4	24		.		.	.		

Cycie-by-cycie number providet a reference to Tabies 10-2 through 10-8 which detaid cycle-by-cycle operation. Exemple: Table 10-1 Cyct-by-Cycte column reference number 2-4 equata Table 10-2 line item 2-4.

- *infinity or Until Rever Occurs
* \# 12 Cycioe erp ued beginning with tha opcode fetch. A wit state is entered which remains in effect for anintecer number of MPU E-clock cycies (n) until en interrupt is recogrized. Finclly, two additional cyclet are used to fetch the appropriate interrupt vector ( $14+\mathrm{n}$ totel)


hh = Migh Order Eyte of 1e-Bk Extended Addrees
ii = One Eyte of lrwinditie Dete
i = High Order Bye of 18-Bt Inmediere Dete
kk = Low Order Byte of 16-8h Immediate Date
H = Low Order Byte of 18-8t Extended Addreas
$\mathrm{mm}=8-8 \mathrm{~B}_{\mathrm{h}}$ Bit Mank (Set Bite to be Affected)
If = Sigred Restive Offet teo ( - 12in) to 37F $1+127$ )
(Offerf Reletive to the Addrees Following the Machine Coda Offrer Bytel


Table 10-2. Cycle-by-Cycle Operation - Inherent Mode (Sheet 1 of 3)

Reforence Number"	Address Mode and Inatructions	Cyctes	Cvelo $1$	Addreas Bus	$\begin{aligned} & \hline \text { R/ } \bar{W} \\ & \text { Line } \end{aligned}$	Data 8 us
2.1	ABA, ASLA, ASLB. ASAA, ASRB, CBA, CLC. CLI, CLRA, CLRE, CLV. COMA, COMB, DAA, DECA. DECB. INCA, INCB. LSLA, LSLB. LSRA, LSRB, NEGA, NEGB. NOP, ROLA, ROLB. RORA, RORB. SBA, SEC, SEI, SEV. STOP. TAB. TAP. TBA. TPA, TSTA. TSTB	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Adidress + 1	$1$	Opcode Irredevent Data
2-2	ABX, ASLD, DEX. INX, LSLD, LSRO. TXS. XGDX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Addreme Opcode Addreses + 1 9FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opeode Irrelovent Data Inrelevam Deta
2-3	OES. INS, TSX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Addrees Opcode Addraes + 1 Previous SP Viku	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irreciovant Oxta Mrelovent Date
$2-4$	$\begin{aligned} & \text { ABY, DEY, INY, } \\ & \text { TYS, XGDY } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addrive   Opcode Addreme +1   Opcode Adorrese + 2 : FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Byte) (\$18) Opcode (Second Byte)   Irribvarr Doea   Itrelovemt Dete
2.5	TSY	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addrave   Opcode Aodreen + 1   Opcodo Addries +2   Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opeode (Page Select Even) (1818) Opcode (Second Brte) (\$30) Immevert Dite Itredevemt Data
2.6	PSHA, PSHB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Addreve Opcode Addreses + 1 Steck Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	Opeode Ifrelevent Data Accurmulator Data
2.7	PSHX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addreves   Opcode Addreses + 1   Stack Pointer   Suck Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (13C)   Inciovern Data   IXL (Low Byte) to Steck IXH (High Evtel to Stuck
2.8	PSHY	5	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Addriees   Opcode Addrem + 1   Opcode Addrose +2   Suack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (Page Select Brtel (818) Opcode (Second 8ytu) (13C) Irredovem Date IXL (Low Byte) to Steck IXH IHiph Byto) to Stack
2.9	PULA, PULB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	Opcode Addrave   Opcode Addreme + 1   Stack Pointer   Steck Pointer +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Irrecevent Data   Itralevamt Dase   Operand Date from Stack
$2 \cdot 10$	PULX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Adcreve   Opcode Addrese + 1   Stack Pointor   Stack Pointer +1   Steck Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (33e)   Irrelevant Data   Irrelevent Date   IXH (High Bret) from Stack   IXL (Low Byte) from Suack
$2 \cdot 11$	PULY	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addreet   Opcode Addrete + 1   Opcode Addreese +2   Steck Pointer   Steck Pointer +1   Steck Pointer +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Serect Brte) 1818) Opcode (Second Eyta) (\$30)   Itrubvart Deta   Irrelevant Data   IYH (High Brte) from Steck   IYL ILow Brte) from Steck

[^8]Table 10-2. Cycle-by-Cycle Operation - Inherent Mode (Sheet 2 of 3)

Reference Number*	Addreas Mode and Instructions	Crales	Crele \#	Addrens Bus	日/W   Line	Oata Bus
2.12	PTS	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Stack Pounter   Stack Pointer + 1   Stack Pornter +2	1   1   1   1   1	Opcode (\$39)   Ifrelevant Oata   Irretevant Data   Addrests of Next Instruction   IHigh Bytel   Addrest of Next Instruction (Low Byte)
$2 \cdot 13$	MUL	10	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	Opcode Address   Opcode Address + 1   SFFFF   SFFFF   sfFFF   SFFFF   9FFFF   SFFFF   SFFFF   SFFFF		Opcode (\$3DI Irrelevant Date Irrelovamt Oatt Irroldvent Data Irrelevant Data Irrelovant Oata Irrelevam Data Irrelevent Dete Irrelevert Oate Irrelovem Data
2.14	RTI	12	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	Opcode Address   Opcode Addrese + 1   Steck Pointer   Stack Pointer +1   Steck Pointer +2   Stack Pointer +3   Stach Pointer +4   Stach Pointer +5   Stech Pointer +6   Stack Pointer +7   Stack Pointer +8   Stack Pointer +9	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (338)   Irrefivant Oets   Irrelevent Oats   Condition Code Regizeter from Stack   B Accurmstator from Stack   A Accumulator from Steck   IXH (High Byte) from Stack   IKL (Low Bytel from Stack   IVH (High Brte) from Stack   IYL ILaw Bytel from Stack   Addreen of Next Inatruction   (High Brto)   Addrem of Next Instruction   How Byel
2.15	SWI	14	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$	Opcode Addreme   Opcode Address +1   Stack Pointwr   Stack Pointer - 1   Stack Pointer - 2   Steck Pointer - 3   Stack Pointer-4   Stack Pointer - 5   Stack Pointer-8   Srack Pointer - 7   Stack Point ${ }^{6}$ - 8   Stack Pointer-8   Addraes of SWI   Vector (Firet   Location!   Addrees of Vector +1 (Second Locrtion)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Opcode (3F)   Irrelevant Dita   Retum Address LLow Ertel   Return Addrues (High Byto)   IYL (Low Byte) to Stack   IYH (High Byre) to Steck   IXL ILow Bytel to Suack   IXH (High Byte) to Stack   A Accumulator to Stack   8 Accumulator to Stack   Condition Code Regieter to Steck   Irrelevent Dete   SWI Service Routine Addrees (Hiph 8yte)   SWI Service Routine Addrese (Low Bye)
2.18	WA]	$14+n$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Opcode Addreve   Opcode Adtreee + 1   Steck Pointer   Steck Pointer - 1   Stack Pointer - 2   Sreck Pointer-3   Steck Pountror -4   Stack Pointer -5   Stach Pointer - 6	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Opcode (133)   Irrelovem Dete   Rotum Addres (Low Brtel   Return Addreen (Migh Brte)   IYL (Low Byte) to Stack   IVH IHigh Brtol to Stack   IXL (Low Byte) to Stack   1XH (High Byte) to Stack   A Accumulator to Stack

*The reverence number is given to provide acrosereference to Tabie 10-1

Table 10-2. Cycie-by-Cycle Operation - Inherent Mode (Sheet 3 of 31

Reference Number*	Addrees Mode and Inetructions	Cycke	Crcie $\\|$	Addrens 8 us	$\begin{aligned} & \text { R/W } \\ & \text { Line } \end{aligned}$	Date Bue
$2.16$   (Continued)	WAI	$14+n$	$\begin{gathered} 10 \\ 11 \\ 12 \text { to } \\ n+12 \\ n+13 \\ n+14 \end{gathered}$	Siack Pointer - 7   Si kck Pointer - 8   Stack Pointer - 8   Address of Vector   (First Location)   Address of Vector ISecond Locenon)	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	B Accumutator to Stack Condition Code Reguter to Stack   Irrelevant Data   Servee Routine Addreme (High Byre)   Service Routine Address (Low Bytel
$2 \cdot 17$	FDIV, IDIV	41	$\begin{gathered} 1 \\ 2 \\ 3-41 \end{gathered}$	Opcode Addreve   Opcode Addrese + 1 SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode Irreverent Deta Irrelovam Dete
$2 \cdot 18$	Page 1 Itleged Opcodes	15	1 2   3   4   5   6   7   8   9   10   11   12   13   14   15	Opcode Address   Opcode Adoreme +1   SFFFF   Stack Pointer   Stack Pointer - 1   Stack Pointer - 2   Stack Pointer - 3   Stack Pointer-4   Stack Pointer - 5   Stack Pointer - 6   Stack Pointer - 7   Srack Pointer - 8   Stack Pointer - 8   Address of Vector   (First Locmion)   Addreme of Vector +1   (Second Locution)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Opcode (illagel)   Irrelavant Oeta   Irrolevem Date   Refurn Addrees ILow Bvtel   Refurn Addreen (High Byte)   IYL (Low Byte) to Stack   IVH (High Brte) to Stuck   IXL (Low Oyte) to Steck   IXH Ihigh Bytu) to Steck   A Accumulator   B Accumulator   Condition Code Register to Stack   Irreberant Deta   Service Routine Addrtee (High Byte)   Service Routing Addrees (Low Byte)
2.19	Pages 2. 3. or 4 Hegar Opcodes	16		Opcode Addreme   Opcode Addrees +1   Opcode Addrese +2 SFFFF   Stack Pointer   Stack Pointer - 1   Stack Pointior -2   Stack Pointer - 3   Stack Pointer-4   Stack Pointer - 5   Stack Pointer - 6   Stack Pointer - 7   Stack Pointer - 8   Stack Pointer - 8   Addrese of Vector   (Firet Locition)   Addrem of Vector + 1 (Second Lecertion)	1 1 1 1 0 0 0 0 0 0 0 0 0 1 1	Opcode ILegal Page Sebact   Opcode (Iniogel Second Erte)   Irrutivert Date   Irrelovert Dipe   Retum Addrees (Low Byte)   Ratum Address (High Byta)   IYL ILow Bytel to Stuck   IYH (High Brte) to Stack   IXL (Low Byte) to Stack   IXH IHigh Evel to Stack   A Accumuletor   8 Accumuletor   Condition Code Regieter to Stack   Irrelevem Date   Service Routine Addrume (High Byte)   Service Routine Addrees (Low Byte)
2-20	rest	Infinit	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5-n \end{gathered}$	Opcode Addrext   Opcode Addrese +1   Opcode Adrrees +1   Opcode Addrese +2   Previous Addreat +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opeode (1000)   ITHerame Deta   Intevan Date   Irnuivent Deta   Irrelovent Oera

- The raterence number in given to provide a croes-reference to Table 10-1

Table 10-3. Cycle-by-Cycle Operation - Immediate Mode

Reference Number*	Address Mode and Instructions	Cyclas	Cycle	Address Bus	$\begin{aligned} & \hline R / \bar{W} \\ & \text { Line } \end{aligned}$	Data Bus
3.1	ADCA ADCB ADDA ADDB. ANDA. ANDB BITA. BITB. CMPA CMPG. GORA. EORB. LOAA LDAB. ORAA. ORAB. SBCA. SBCB. SUBA. SUBE	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address   Opcode Address - 1	$1$	Opcode   Operana Data
$3 \cdot 2$	LDO. LDS. LOX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 Opcode Address + 2	$1$	Opcode   Operand Data (High Brue) Operand Data LLow Bre)
3.3	ADOD. CPX. SUBD	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addresa   Opcode Address +1   Opcode Address + 2   SFFFF	$1$	Opcode   Operand Data (High Brie) Operand Data (Low Evre) Irretevent Data
34	LOY	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Opcode Address + 3		Opcode (Page Select Bre) (s18)   Opcode (Second Bytel (SEC)   Operand Data (High Byte)   Operand Data ILow 8ytel
$3 \cdot 5$	CPD. CPY	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address +2   Opcode Address + 3   SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Brel Opcode (Second Bra) Opermad Date (High Bne) Operand Data ILow Brie) Irrevevant Data

* The relsence number is given to provide a cross-reference to rable 10.1

Table 10-4. Cycle-by-Cycle Operation - Direct Mode (Sheet 1 of 2)

Refersnce Number"	Address Mode and Instructions	Cycles	$\begin{gathered} \text { Cycle } \\ \hline \end{gathered}$	Address ${ }^{\text {Bus }}$	$\begin{aligned} & \hline \mathbf{R} / \overline{\mathbf{W}} \\ & \text { Line } \end{aligned}$	Date 8 8u
*	ADCA. ADCB. ADDA. ADDE. ANDA, ANDB. BITA. BITB. CMPA. CMPB, EORA, EORB. LDAA. LDAB, ORAA. ORAB. SBCA. SBCB SUBA, SUB8	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address   Opcode Address + 1   Operand Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Address ILow Bnel (High Byte Assurned to be sool Operand Data
42	STAA, STAB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Addrem: Opcode Address + Operand Addreses	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	Opcode   Operand Address (Low Byte)   (High Byte Assurned to be \%001   Data from Accumutator
4	LDO. LDS. LOX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addrese Opcode Addrese + 1   Operend Addrean Operand Addreas + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Opcode   Operand Addrese (Low Evis)   (High Bne Ascumed to be so0)   Operend Dree (High Bra)   Operend Date LLow Bytel
4.4	STD. STS. STX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addreve   Opcode Address + 1   Operand Address   Operand Addrees + 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Operand Addrese (Low Brie)   (High Bre Aeturmed to be (S00)   Register Dote (High Byte)   Repieter Date (Low Byta)
4.5 -	LDY	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Addrews   Opcode Addreme + 1   Opcode Addreme +2   Operend Addrwes   Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Brte) (318)   Opcode (Second Bytul (\$DE)   Operend Addrave (Low Erte)   (High Evte Acoumed to be $\$ 001$   Operand Dete (High Bre)   Operand Deve (Low Byte)

*The reference number saven to pronde a croes-reference to tebte $10-1$

Table 10-4. Cycle-by-Cycle Operation - Uirect Moae isneet < or 41

Reference Number	Addrees Mode and instructiona	Cralos	Crele 1	Addrees Sue	$\begin{aligned} & \text { R/ } \bar{W} \\ & \text { Line } \end{aligned}$	Data tue
4.6	STY	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address - 2   Operand Address   Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (Page Setect Brte) (318)   Opcode (Second Bre) (SDF)   Operand Address LLow Brte)   IHigh Byre Assumed to be 5001   Regrster Data (High Byre)   Register Data LLow Onte)
4.7	AOOD. CPX. SUBO	5	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Operand Address   Operand Address + 1 SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Address (Low Byte)   IHigh Evte Assumed to be 2001   Operand Data (High Byta)   Operand Data KLow Brtel   Irretevant Data
4-8	JSR	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Subroutine Address   Stack Pomter   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (1890)   Subroutme Address (Low Bna)   (High Byte Assumed to be s00)   First Subroutine Opcode   Return Addrese ILow Bytel   Return Address (Migh Byte)
4.9	CPD, CPY	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Addreses + 1   Opcode Address +2   Opersnd Address   Operand Address + 1 SFFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Opcode (Page Select Byta) Opcode ISecond Brtel Operand Address LLow Byte) (High Byte Assumed to bessol) Operand Deva (High Byte) Operand Dete (Low Brie) Irrotevam Date
410	BCLR. BSET	6	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Opcode Address Opcode Addrese + 1   Operand Addrees   Opcode Address - 2 SFFFF   Operand Addrees	$1$	Opcode   Operand Addrese (Low Byte)   IHigh Brye Assumted to be 2001   Original Operand Date   Mank Evie   Irrelevant Deta   Result Operand Data
$4-11$	BACLR. BRSET	6	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addrees Opcode Address + 1   Operana Address   Opcode Address +2   Opcode Address +3   \$FFFF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Opersend Address LLow Bviel   (High Byte Assumed to be s00)   Oniginal Operand Data   Mosk Byte   Branch Offan   Irretevant Date

- The raterence number is given to provide a crose-reterence to Table $10-1$

Table 10-6. Cycle-by-Cycle Operation - Extended Mode (Sheet 1 of 2)

nelerence	Addrees Mode and Inviructions	Crateo	Crele !	Addreen live	$\begin{aligned} & \text { M/W } \\ & \text { Line } \end{aligned}$	Dote Bue
51	JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Addrene Opcode Addrese + 1 Opcode Addrees +2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode 187E)   Jump Addrees (High Byte)   Jump Addrewe (Low Briel
8-2	ADCA. AOCS. ADOA. ADDE, ANDA, ANDE. BITA. ETTB. CMPA. CMPE. EORA. EORE. LDAA, LOAG, ORAA. DRAB. SECA. SBCE. SUEA, SUBE	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opeode Addreve   Opcode Addrene + 1   Opcode Addrese + 2   Opersnd Addreve	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Addrees (High Bvte)   Operand Addreet ILow Onve) Opersend Diste

[^9]Table 10-5. Cycle-by-Cycle Operation - Extended Mode (Sheet 2 of 21

Raterance Number*	Address Mode and instructiona	Cractes	Cycle 1	Address Bus	$\begin{aligned} & \text { R/ } \bar{W} \\ & \text { Line } \end{aligned}$	Dsta Bus
5.3	STAA STAB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Operand Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Operand Address (High Brtal   Operand Address (Low Brte) Accumulator Oate
$5 \cdot 4$	LDD. LDS. LDX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   Operand Address   Operend Address + 1	$\begin{aligned} & 7 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Addrese (High Byte)   Operand Address ILow Brtel   Operand Data (High Bytel   Operand Dete (Low Evte)
5.5	STD. STS. STX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Addresis   Gicode Addrese + 1   Opcode Address +2   Operand Address   Operand Addrest + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Operand Address (High Byto)   Operand Addrese (Low Bytel   Register Date (High Byte)   Register Data (Low Byte)
5-6	LDY	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address +2   Opcode Addreas + 3   Operand Addreen   Operand Address + 1		Opcode (Page Sevect Evte) (\$18) Opcode (Second Evtel (\$FE) Operand Address (High Byte) Operand Address ILow Byte) Operand Date (High Bye) Operand Osta (Low Byte)
5-7	STY	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Addreses + 2   Opcode Address +3   Operand Addrein   Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (Page Selact 8yte) 1818 )   Opcode (Second Byte) (SFF)   Operand Address (High Bytal   Operand Addrese ILow Bytel   Register Date (High Byta)   Register Date ILow Brye)
5.8	ASL. ASA. CLR. COM, DEC, INC. LSL. LSR. NEG. ROL. ROR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addrest   Opcode Address + 1   Opcoda Address + 2   Operand Addrests \$FFFF   Operand Addreas	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcodo   Operand Address (High Byte)   Operand Address LLow Brtel   Original uperand Date   Irrebevant Date   Resulh Operand Deta
5.9	TST	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addrese Opcode Addrens + 1 Opcode Addrese + 2 Operand Address SFFFF SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode ( 3701   Operand Addrees (High Byte)   Operand Addrese ILow Brtel   Original Operand Data   Irrevevant Date   Irrelevant Data
5-10	ADDO. CPX. SU80	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addrese   Opcode Addrees + 1   Opcode Addrese + 2   Operand Address   Operand Addreme + 1   3FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Operand Addrees (High Byte)   Operend Addreen ILow Brtel   Operend Data (High Byte)   Operand Data (Low Brte)   Irrevevant Data
5.11	CPD. CPY	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Addrest   Opcode Addrene +1   Opcode Addrese + 2   Opeode Addrese + 3   Opmand Addreas   Operend Addrees + 1   SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Brtel Opcode (Second Bys)   Operand Addrese (High Bytel Operand Addrane ILow Bytal Opperand Data (High Evte) Operand Dete (Low Evte) Irrevevam Date
5-12	JSA	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addreen   Opcode Addrees + 1   Opcode Addren + 2   Subroutine Addreve   Steck Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode 18BDI   Subroutine Addrees (High Bves)   Subroutine Adtrees llaw Bytel   Fingt Opeode in Subroutine   Aerum Addrem (Low Bym)   Retum Addreme (High Evte)

-The reference number is gren to provide a croes refference to Teble 10.1

Table 10-6. Cycle-by-Cycle Operation - Indexed X Mode (Sheet 1 of 2)

Refarence Number*	Addreese Mode and Inatructions	Cralen	Cycle ,	Addreas Bua	$\begin{aligned} & \hline \text { M/W } \\ & \text { Line } \end{aligned}$	Date Bun	
$6-1$	JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Address Opcode Address + 1 SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (96E) Index Ottset Irrelevant Data	
6.2	ADCA, ADC8. ADOA. ADDB. ANDA. ANDB. BITA, BITB, CMPA. CMPB, EORA, EORB. LDAA, LDAB, ORAA. ORAB, SBCA. SBCB. SUBA, SUBE	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Address + 1 SFFFF   ( $\mid x$ ) + Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Inder Othsor   Irrelevant Data   Operand Data	
6 63	ASL. ASA. CLR. COM, DEC. INC. LSL. LSR. NEG. ROL, ROP	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address + 1 SFFFF   $(\\| X)+$ OHsen   SFFFF   $(\|X\|+O H$ set	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Index Oftser   Irrelevant Data   Onginal Operand Dota   Irrelevant Deta   Resut Opperand Data	
8-4	TST	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	Opcode Adchees   Opcode Addrese + 1   SFFFF   $1(x)+$ Ofteet   SFFFF   PFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (560) index Oftsen Irrelevant Date Original Operand Data Irrelevent Date irrolevant Data	
6-5	STAA. STAB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Address   Opcode Addrese + 1   SFFFF   ( $1 \times 1$ ) + Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Inder Ottyn   Irrelovent Data   Accumulator Dare	
6-6	LDO. LOS. LOX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Aderese Opcode Adrese +1 \$FFFF (1X) + Offset $(1 X)+$ Offset +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   Index Offyent   ifrelovam Oara   Operand Data (High Byra)   Operund Data (Low Brte)	
67	LOY	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addrees   Opcode Address + 1   Opcode Address +2   SFFFF   (IX) + Offere   $(\mid x)+$ Offset +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Evee) (81A)   Opcode (Second 8vel (SEE)   index Ottow   Irrelovent Data   Operand Data (High Bra)   Operand Date (Low Byte)	
6	STD. STS. STX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address Opcode Adress +1 \$FFFF $\\| X \mid+$ Oftsel $(\|X\|+$ Offsel +1	$\begin{aligned} & 7 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode   Index Offset   Irrelovent Data   Regurter Date (High Byte)   Aegister Dete (Low Bne)	
69	STY	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcocs Addreme   Opcode Addrese + 1   Opcode Adorese +2   \$FFFF   $(1 x)+$ Offen   $\|\|x\|+$ Offer +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (Page Select Byte) (181A) Opcode (Second Brtel isEf) Inder Otfert   Itrelevart Oate   Regieter Date (High Byte)   Regiserer Date (Low Brra)	
610	A000. CPX, SU80	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addrese   Opcode Addrees + 1 SFFFF   $1\|x\|+$ Oftsen   $\|\|X\|+$ Oftsen +1   fffFf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode   indek Offsel   Irretevam Data   Registor Dara (High Eytol   Aegister Deta (Low Byt)   Irrolevant Oata	

- The reference number ieg given to provide ecrowe reference to Tebte 10.1

Table 10-6. Cycle-by-Cycle Oparation-Index X Mode (Sheet 2 of 2)

Apference Number*	Address Mode and Instructions	Cuctes	Cycle !	Addrens Bus	M   Line	Data But		
6-11	CPD. CPY	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcode Address + 2   SFFFF   \|	X	+ Offset   $(I X)+$ Offset +1   \$FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Seloct Brte) Opcode ISecond Byte) index Offent Irrelevant Data Register Date (Migh Byte) Reguster Date llow Bvel Irrelevent Oata
6.12	JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Address   Opcode Address +1   SFFFF   (IX) + Offser   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcoda ISADI   Index OHser   Irrelevant Date   First Opcode in Subroutine   Ruturn Addrees (Low Brio)   Poturn Addreas (High Eyto)		
6-13	BCLR. BSET	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Address   Opcode Addrese + 1   SFFFF   (IX) + Offent   Opcode Addremas +2   3FFFF $(1 X)+\text { Offert }$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode   Index Offset   Itrevevant Data   Original Operand Data   Mank Byte   Irrelevent Dete   Reain Operand Date		
6-14	BRCLR, BASET	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Addreas:   Opcode Address +1   SFFFF   (IX) + Offeat   Opcode Address +2   Opcode Address +3   3 FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opeode   Index Ottser   Irrelevent Oats   Original Operend Data   Mosk Brte   Branch Offset   Irrolevant Dete		

*The reference number is given to provide a cross.reference to Table 10.1

Table 10-7. Cycle-by-Cycle Operation - Indexed Y Mode (Sheet 1 of 2)

Reforence Number	Addreas Mode and Instructions	Cyclies	Crele -	Addrese ${ }^{\text {Pup }}$	R/W   Line	Date Hua
7.1	JMP	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Opcode Addreas   Opcode Addrese + 1   Opcode Addrese + 2   SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Brte) (\$18) Opcode (Second Byte) (S6E) Inder Offert Irrevevem Data
7.2	ADCA, ADCB, ADOA. ADDB, ANDA, ANDE. BITA, BITB, CMPA, CMPB, EORA. EURB. LDAA. LDAB, ORAA. ORAB. SBCA, SECB. SUBA, SUBB	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Addrese   Opcode Addrese + 1   Opcode Addrees + 2   \$FFFF   (IY) + Offere	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	```Opcode (Page Select 8yte) ($18) Opcode (Second Byte) Index Ottsen Ircovemt Dots Operand Date```
7.3	ASL, ASR, CLR. COM, OEC. INC. LSL, LSA, NEG. ROL, ROA	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Addreas   Opcode Addrese + 1   Opcode Addrese +2   SFFFF   (ivi + Ofter   (FFFF   IIYI + Oftere	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode (Pege Select Brie) Opcode (Second Brte) Inder Offapt   Irrelevemt Dente   Onginal Operend Dote   Irrefevent Deta   Recul Operand Dete

[^10]Table 10-7. Cycle-by-Cycle Operation-Indexed Y Mode (Sheet 2 of 2)

Reforence Number*	Addreas Mode and Instructions	Cyclos	Crcle 1	Address Bus	$\begin{aligned} & \hline \mathbf{A} / \bar{W} \\ & \text { Line } \end{aligned}$	Oate Bus	
1.4	TST	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Address   Opcode Address + 1   Opcoda Address + 2   SFFFF   (IY) + Oftset   3FFFF   SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Page Select Evte) (sis)   Opcode (Second Brit) (s60)   Index Otheet   Irrelevam Data   Onginal Operand Date   Irrelevant Date   Irrelevant Date	
7.5	STAA, STAB	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Opcode Address   Opcode Address +1   Opcode Address + 2   SFFFF   (IY) + Offent	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode (Page Select Bris) (ste)   Opcode (Second Byte)   Index Ottsen   Irrelovant Oata   Accumuletor Date	
7.8	$\begin{aligned} & \text { LOD. LOS. LOX. } \\ & \text { LOY } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Opcode Addreme   Opcode Addrese + 1   Opcode Addrees +2   SFFFF   (IY) + Offsen   (IY) + Ottent +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcoce (Page Seloct Byte)   Opeode (Second Byte)   Indax Offeet   Irrebvant Data   Operand Date (Hiph Bytu)   Operend Date (Low Byte)	
7.7	$\begin{aligned} & \text { STO. STS, STX, } \\ & \text { STY } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 8 \end{aligned}$	Opcode Addrest   Opcode Addrant + 1   Opcode Addrese + 2   (FFFF   (IY) + Offept   (IY) + Offert +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (Page Sewet Byte)   Opcode (Second Oyte)   Index Ofteen   Irrelovamt Data   Aogister Date (High Byte)   Regieter Daxa (Low Evte)	
7.8	ADDD. CPD. CPX. CPY. SUBD	7	$\begin{aligned} & 7 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Addrees   Opcode Address + 1   Opcode Address +2   3FFFF   $\\| Y \mid+$ Other   (IY) + Offser + 1   sffff	1 1 1 1 1 1 1	Opcode (Page Seract Byte)   Opcode (Second Eyte)   Index Othen   Irruevent Date   Operand Dere (High Bre)   Operand Dete (Low Byte)   Irrelevant Data	
7.9	JSA	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	Opcode Address   Opcode Addrese + 1   Opcode Address +2   SFFFF   (iY) + Offent   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (Page Select Bnte) (1818) Opcode (Second Byte) (\$AD) Index Offeet Itrelevant Oata   First Opcode in Subroutine Retum Adorese ILow Bytel Retum Addrese (High Byte)	
7.10	BCLR, BSET	8	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Opcode Addreste   Opcode Addrese + 1   Opcode Address +2   SFFFF   (iY) + Offiet   Opcode Addrese +3   SFFFF   $\|\|Y\|+$ Ottser	$\begin{aligned} & 7 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Opcode (Papp Select Bra) (\$18)   Opcode (Second Brto)   Index Othser   Itrelevant Data   Onginal Operand Data   Maek Byte   Irrebevant Data   Resut Operand Dera	
7.11	BRCLA. BRSET	8	$\begin{aligned} & 7 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Opcode Addrees   Opcode Addreme + 1   Opcode Addrese +2   3FFFF   $\|\|Y\|+O H 501$   Opcode Addrese +3   Opcode Addrese + 4   SFFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode (Puge Select Bre) is 181   Opcode (Second Byte)   Index Offere   Irrevevent Date   Original Operand Deta   Meat Byte   Branch Offom   Irrelevent Deta	

[^11]Table 10-8. Cycle-by-Cycle Operation - Relative Mode

Reference Number*	Address Mode and Instructions	Craclea	Cyele 4	Address Bus	R/信   Line	Data Bua
$8-1$	BCC. BCS. BEO. BGE. BGT. BHI. BHS. BLE, BLO. BLS. BLT, BMI. BNE. BPL. BRA, BRN, BVC. BVS	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Opcode Addrens   Opcode Address + 1   \$FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Opcode 8ranch Ottset Ifrelovant Data
$8-2$	BSA	6		Opcode Addrese   Opcode Address + 1   \$FFFF   Subroutine Addrese   Stack Pointer   Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Opcode (380)   Branch Otfiset   Irrelevent Data   Opcode of Next Instruction   Return Addrese (Low Byte)   Return Addreses (High Brte)

-The reference number is given to provide a crose-reference to Table 10-1

## SECTION 11

ELECTRICAL SPECIFICATIONS

### 11.1 MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Volrege	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to + 7.0	$V$
mpur Voltage	$\mathrm{V}_{\text {in }}$	$-0.310+7.0$	$\checkmark$
Operating Tompenoture Range	$\mathrm{T}_{\text {A }}$	-40 to 86	${ }^{\circ} \mathrm{C}$
Storege Temperature Runge	Tatg	-56 to 150	${ }^{\circ} \mathrm{C}$

This device contains protective circuitry agoingt darrage due to high atetic volterese or electrical fielde; however, it is adviend the normal preceutions be teken to avoid application of any vorteges higher then maximum-roved voteoges to this high-impedence circuit. Reliebility of operation is enihenced it unused inputs ore tied to an approprime togic voltage loval (e.g., wither GND or VCC).

### 11.2 THERMAL CHARACTERISTICS

Charactentatic	Symbol	Vatue	Untr
Thermal Rowivernce Plectic 52-Pm Ound Puck Plexic 40-Pin DIP	${ }^{0}$ JA	$\begin{array}{r} 50 \\ \text { TBD } \\ \hline \end{array}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

### 11.3 POWER CONSIDERATIONS

The average chip-junction temperature, $\mathrm{T}_{\mathrm{J}}$, in ${ }^{\circ} \mathrm{C}$ can be obtained from:
$T_{J}=T_{A}+\left(P_{D}{ }^{\bullet} J_{J A}\right)$
Where:
$T_{A}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
OJA $=$ Package Thermal Recistance, Junction-to-Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD $=$ PINT $+P_{I / O}$
PINT=ICC $\times$ VCC, Watts - Chip Internal Power
P1/O= Power Dissipation on Input and Output Pins - User Determined
For most applications $P_{1 / O}<P_{I N T}$ and can be neglected.
An approximate relationship between $\mathrm{PD}_{\mathrm{D}}$ and $\mathrm{T}_{J}$ (if $\mathrm{P}_{1 / O}$ is neglected) is:

$$
\begin{equation*}
P_{D}=K+\left(T J+273^{\circ} \mathrm{C}\right) \tag{2}
\end{equation*}
$$

Solving equations-1 and 2 for $K$ gives:

$$
\begin{equation*}
K=P_{D} \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\theta J_{A} \cdot P_{D^{2}}^{2} \tag{3}
\end{equation*}
$$

Where $K$ is a constant pertaining to the particular part. $K$ can be determined from equation (3) by measuring $P_{D}$ (at equilibrium) for a known TA. Using this value of $K$, the values of $P D$ and $T J$ can be obtained by solving equations (1) and (2) iteratively for any value of TA.


Figure 11-1. Equivalent Test Load
11.4 DC ELECTRICAL CHARACTERISTICS $\operatorname{VDD}=5.0 \mathrm{Vdc} \pm 10 \%, \mathrm{VSS}=0 \mathrm{Vdc}, \mathrm{T}_{A}=-40$ io $86^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristies	Symbe:	Min	Max	Undt
Output Voltage LLoed $= \pm 10.0$ AA ISee Note 11 Outputs	VOL   VOH	VDC-0.1	$0.1$	V
```Output High Voltege All Outputs Except RESST and EXTAL I```	VOH	VOD -0.6	-	V
Output Low Vottege LLond $=1.6 \mathrm{~mA}$	Vol	-	0.4	V
Input High Voltage All inpute	V_{H}	$0.7 \times \mathrm{VOO}$	VDO	V
Input Low Voltage AM Inputa	V_{12}	VSS	$0.2 \times \mathrm{VOD}$	V
I/O Ports, 3Stere Leqkege PA7, PCO-PC7, $V_{\text {in }}=V_{\text {DD }} V_{\text {IL }}$ PDOPDS, AS/STRA, (See Note 2) MODA/LIR, HESET	102	-	± 10	\cdots
Input Current ```Vin = VODor VSS PAO-PA2, PEO-PE7, IFQ, XIAQ Vin}=VO MOD*```	in	-	$\begin{array}{r} \pm 1 \\ 180 \end{array}$	\cdots
Tota Supphy Current (See Note 3) RUN: Singie Chip Expended Mutiplaxed WAIT: Al Paripheral Functions Shut Down STOP: No Clocke, Single-Chip Mode	IOD WOD SIDD	$-$	$\begin{gathered} 20 \\ 780 \\ 4 \\ 300 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
mput Capecitence PAOPA2, PEO-PE7. TRO, XIFT, EXTAL PA1, PCO-PC7, PDO-PDS, AS/STRA, MODA/LIA, हESET	$C_{\text {in }}$	\rightarrow	$\begin{gathered} 8 \\ 12 \end{gathered}$	DF
Power Distipation	Po	$=$	110	mw

NOTES:

1. VOH apecificetion for reet is not epplicabis beceust it is en oben-drain pin.
2. See A/D mpecification for leakege current for port E.
3. All ports confipured te inputs. $V_{I L} \leq 0.2 \mathrm{~V}, V_{I H} \geq V_{D O}-0.2 \mathrm{~V}$, no dc loede. EXTAL is diven by eavere wive. $C_{L}=20$ pF On EXTAL ${ }^{1}{ }^{\text {cyc }}=500 \mathrm{~ns}$
11.5 CONTROL TIMING $\left(V_{D D}=5.0 \mathrm{Vdc} \pm 10 \%, V_{S S}=0 \mathrm{Vdc}, \mathrm{T}_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}$)

Characteristic	Symbol	Min	Max	Unit
Frequency of Operation Crystal Operation External Clock Option	$\begin{aligned} & \text { fXTAL } \\ & H_{0} \end{aligned}$	$\overrightarrow{d c}$	$\begin{aligned} & 8.4 \\ & 8.4 \end{aligned}$	MHz
mternei Operating Frequency Crystal Option (fxTAL -4) External Clock Option	$\begin{aligned} & \mathrm{i}_{0} \\ & \mathrm{i}_{0} \end{aligned}$	dc	$\begin{array}{r} 2.1 \\ 2.1 \\ \hline \end{array}$	MHz
Cryetel Oscilator Startup Time (see Figure 11-2)	t_{rc}	-	100	ms
Crued Oscillenor Stop Recovery Startup time lsee figure 11-3)	HLCH	-	100	ms
Whit Recovery Stertup Time (soe Figure 11-4)	IVASH	-	2	E Cra
Procemer Control Setup Time Betore Fsting Edpe of E lmee Figure 11-2)	tPCS	TBD	-	ns
Raver Low Time (Output)	${ }^{\text {PRCCM }}$	3	4	E Cyc
Aavel Rise Time from internal Reser (see Figure 11.5 and Note 11	IIRR	-	2	E Cyc
Repen Inpur Putse Width (seo Figure 11.2 and Note 2)	PWASTL	2	-	ECrc
mremupt Putee Wioth Low, Ihd Edge-Triggered Mode isoe Figure 11-6)	PW ${ }_{\text {IRO }}$	125	-	$n 3$
Truer Input Capture Pulae Width (see Figure 11.71	PW ${ }^{\text {PIM }}$	125	-	ns
Pume Accumulator input Putse Whith (see Figure 11.7)	PW WIM	125	-	ns

NOTES:

1. This is the maximum time that external components should delay $\overline{\text { EESET }}$ rising so thet interna COP and clock monitor interrupts can be recognized.
2. This is the minimum time that RESE $\overline{\text { B }}$ must be held low for an externel rewet if not prempted by an internal revet (COP or clock monitor). To guarantee an external reset vector will be generated, RESET must be held low for a minimum of 8 E cyches.

Figure 11-2. Power-On Reset and $\overline{\text { RESET Timing Diagram }}$

Figure 11-3. Stop Recovery and Power-On Reset Timing Diagram

Figure 11-4. Wait Recovery From Internal or External Interrupts Timing Diagram

Figure 11-5. Mode Programming

Figure 11-6. Internal $\overline{R E S E T}$

Figure 11-7. Interrupt Timing

Fgure 11-8. Timer Inputs

NOTES

1. If this setup time is met. STAB will ecknowtedge in the next cycle. If it is not mek. the responas may be delayed one more cycle
2. Port C and D timing is valid for active dive CWOM and OWOM bics not set in PIOC and SPCR registers reapectivalyl.
3. All timing is shown with reapect to $\mathbf{2 0 \%} V_{D O}$ and $\mathbf{7 0 \%}$ VDO uniees otherviee noted.

Figure 11-9. Port Write or Timer Output Compare

Figure 11-10. Port Read

Figure 11-11. Simple Output Strobe

Figure 11-12. Simpla Input Strobe

Figure 11-13. Port C Input Mandehake

Figure 11-14. Port C Output Handahake

Figure 11-15. Port C Outpuz Handehake whth 3-8tate Enabled ISTRA Enebles Outpur Buffer)
11.7 EXPANSION BUS TIMING $\operatorname{IVDD}=5.0 \mathrm{Vdc} \pm 10 \%, \mathrm{VSS}=0 \mathrm{Vdc}, \mathrm{TA}=25^{\circ} \mathrm{C} \pm 5^{\circ}$, unless otherwise noted) (see Figure 11-16)

Num	Characteristic	Symbot	1.05 MHz		2.1 MHz		Unit
			Min	Max	Min	Max	
1	Craie Time	${ }_{\text {teve }}$	952	-	478	-	ns
2	Putoo Width, ELow	PWEL	400	-	200	-	m
3	Puta With. E High	PWEH	420	-	210	-	0
4	E Rive and Finll Time	I_{r} If	-	25	-	20	n
9	Adareme Hold Time (men Nose 11	tah	50	-	30	-	ns
12	Non-Mused Addrees Valid Time to E (300 Note 2)	tav	200	-	75	-	ne
17	Reed Deta Setup Time	tosa	60	-	30	-	$n 6$
18	Aced Deta Hold Tirme	TOHA	10	80	10	80	ns
19	Wrine Doce Dedey Time	todw	-	225	-	123	n*
21	Write Deen Hold Time	TDHW	50	-	30	-	ns
22	Muxed Addrose Valid Time to E Rive (soe Note 2)	tavm	200	-	75	-	ns
24	Muxed Addrese Velid Time to AS Fall (mee Note 2)	IASL	6	-	20	-	ns
23	Muxed Aderemes Hotd Time lexe Note 1)	'AML	50	-	30	-	ns
28	Deviey Time. E to AS Mipo (seo Notes 1 and 2)	IASD	90	-	40	-	ns
27	Putwe With, AS High (800 Note 2)	PWASH	200	-	50	-	1
2	Devery Time, AS to E Rive fere Notee 1 and 21	IASED	90	-	40	-	ne
2	MPU Adereen Accien Time (Computed se0 Note 2) 112 or 22) Whichevw is Smatior, Addrose Velid +4 Clock Aiee Time +3 Pusee With, E High - 17 Reed Data Setrip Time	tacca	615	-	275	${ }^{-}$	ns
35	MPU Accere Time (Computed see Note 41 +3 Pumeo Width, E High - 17 Reed Drea Serve Time	'aCCE	-	330	-	180	ne
30	Mumiploxed Addremen Dever (Previoue Crcle MPU Reed)	IMAD	120	-	0	-	n4
3	Inturnd Resd Onte Vilid Betore E	IIAV	10	-	10	-	n
3	Mumtiploxed Addrese Off Before E	${ }_{\text {t }}$ ADP	0	\sim	0	-	ns
3	Wrike Depa Setup Time IComputer see Note 5) +3 PutreWidn, E High - 19 Wrine Dere Dever Time	'0SW	196	-	110	-	ns
40	MODA/LIR Hotd Time (During Opcode Ferch)	tram	50	-	30	-	ns

MOTES:

1. Affected by inpue ctock duly oveto (XTAL, EXTAL)
2. At mpecified cycte time.
3. Adrren eccuen time ne computed by: 112 opr $221+4+3-17$
4. No device should drive pon C except when E is high or contention mav reeun.
5. E (enebial scceen time is computind by: 3-17.

Timing diagram (Figure 11-16) is located on a foldout page at the end of this document.
11.8 SERIAL PERIPHERAL INTERFACE (SPI) TIMING (VDD $=5.0 \mathrm{Vdc} \pm 10 \%$, VSS $=0 \mathrm{Vdc}, \mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ io $85^{\circ} \mathrm{C}$) (See Figure 11-17)

Num	Characteriatic		Symbol	Min	Max	Unut
	Operating Frequency Master Slave		'op(m) ${ }^{\prime}$ opls)	$\begin{aligned} & d c \\ & d c \end{aligned}$	$\begin{aligned} & 1.05 \\ & 2.1 \end{aligned}$	MHz
1	```Ensbile Lead Time Mentor Slove (CPMA \(=0\)) Slave (CPMA \(=11\)```		tlendim) theedisol thood (SI)	$\begin{gathered} 10 \\ 200 \\ 100 \\ \hline \end{gathered}$		ns
2	$\begin{aligned} & \text { Enable Leg Time } \\ & \text { Master } \\ & \text { Sique (CPMA }=0 \text {) } \\ & \text { Siove ICPMMA }=11 \end{aligned}$		$\begin{aligned} & \log (m) \\ & 4 \log (S 0) \\ & 4 \operatorname{leg}(S 1) \end{aligned}$	$\begin{aligned} & 0.0 \\ & 125 \\ & \hline \end{aligned}$	-	n
3	Clock (SCK) High Time Maeter Steve		$\begin{aligned} & \text { iwISCKHim } \\ & \text { iwISCKHie } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { r80 } \\ & \text { TBD } \\ & \hline \end{aligned}$	-	n
4	Clock (SCK) Low Time Master Stive		$\begin{aligned} & i_{\text {wISCKLIm }} \\ & \mathbf{t}_{\text {wISCKKLs }} \end{aligned}$	$\begin{array}{r} \text { T80 } \\ \text { T80 } \\ \hline \end{array}$	-	ns
5	Detr Serup Time (Inouts) Mexter Steve		tsulm) tuen)	$\begin{array}{r} 100 \\ 100 \end{array}$	-	ne
6	Oate Hold Time (inputs) Menter Sleve		th(m) thia)	$\begin{array}{r} 100 \\ 100 \\ \hline \end{array}$	-	\cdots
7	$\begin{gathered} \text { Accous Time } \\ \text { Slave } \end{gathered}$		t	-	T80	n
8	Dieable Time IHold Time to High-Impedence Stetol Stave		tin	-	т80	ns
9	Date Vaid Merrer (Before Cepture Edge) Slave (After Enable Edpol **		tvi8m PulBy	r80	$\overline{200}$	ne
10	Data Valid Maprer (After Ceprure Edge)		'v(A)	TBD	-	n
11	Aive Times (20\% VDD 10 70\% $V_{D D} . C L=200 \mathrm{pF}$) SPI Outputh SPI inputs	$\begin{array}{r} \text { SCK, MOSI, MISO } \\ \text { SCK, MOSI, MISO, } \overline{\text { SS }} \\ \hline \end{array}$	$\begin{aligned} & \text { trisCKIm } \\ & \text { triSCKin } \end{aligned}$	-	$\begin{aligned} & 100 \\ & 2.0 \\ & \hline \end{aligned}$	
12	$\begin{aligned} & \text { Fall Timan } \left.120 \% V_{O O} \text { to } 70 \% \text { VDD. } C L=200 \mathrm{pF}\right) \\ & \text { SPI Outputs } \\ & \text { SPI hputs } \end{aligned}$	$\begin{array}{r} \text { SCK, MOSI, MISO } \\ \text { SCK, MOSI, MISO. SS } \\ \hline \end{array}$	thSCKim HSCKK:	-	$\begin{aligned} & 100 \\ & 2.0 \\ & \hline \end{aligned}$	ne
13	Outpur Data Hold IAftior Enable Edep) Manter Steve		tholml thole)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ne

- Signal Production Deoponde an Sofwere
*Asmumes 200 pF Lasd on AM SPI Pins

Timing diagram (Figure 11-17) is located on foldout pages at the end of this document.
11.9 A/D CONVERTER CHARACTERISTICS IVDD $=5.0 \mathrm{Vdc} \pm 10 \%, \mathrm{VSS}=0 \mathrm{Vdc}, \mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{o}} \leq 1.0 \mathrm{MHz} \leq \varepsilon \leq 2.1 \mathrm{MHz}$, uniess otherwise noted) (see Note 1)

\begin{tabular}{|c|c|c|c|c|}
\hline Charecterietic \& Paramater \& Miln \& Mex \& Unit \\
\hline Precolution \& Number of bits resolved by the A/D \& 8 \& - \& Bit \\
\hline Non-Lineerity \& Maximum deviation from the beet straight line through the \(A / D\) transfer characterntics \(\left(V_{\text {RH }}=V_{D O} \pm 100 \mathrm{mV}\right.\) and \(\left.V_{\text {RL }}=0 \mathrm{~V}\right)\) \& - \& 1/2 \& LSB \\
\hline Ouentization Error \& Uncertainty due to converter resolution \& - \& Y/2 \& LS8 \\
\hline Abeolute Accuracy \& Difference between the actual input voltage and the full-scabe weighted equivetent of the binery output code for all errors \& - \& \(\pm 1\) \& LS8 \\
\hline Conversion Range \& Andog input voltape rence \& V FL \& VRH \& \(V\) \\
\hline VRH \& Maximum endog reference voltage \& VRL \& VDD +0.1 \& \(V\) \\
\hline VAL \& Minimum andiog relorence voitage \& -0.1 \& \(V_{\text {RH }}\) \& V \\
\hline Converion Time \& \begin{tabular}{l}
Toved time to perform a single analog to digital convertion \\
a. External clock (XTAL. EXTAL) \\
b. Internel RC oecilmer
\end{tabular} \& - \& \[
\begin{aligned}
\& 32 \\
\& 32
\end{aligned}
\] \& \({ }^{4} \mathrm{cvc}\) \(\mu\) \\
\hline Monotonicity \& Converion result never decreeses with an increcee in input voltege and hes no miveing codes \& \multicolumn{3}{|c|}{Guarenteed} \\
\hline Zero input Peeding \& Convertion reeuln when \(\mathrm{V}_{\text {in }}=V_{\text {fl }}\) \& 00 \& - \& Hex \\
\hline Ful Scate Reading \& Corversion revelt when \(\mathrm{V}_{\text {in }}=V_{\text {AH }}\) \& - \& FF \& Hex \\
\hline Semple Acquinition
Twive Ieve Note in \& \begin{tabular}{l}
Andiog input sequieition sempling time \\
-. Externa clock (XTAL, EXTAL) \\
b. Internal RC oecilutior
\end{tabular} \& - \& \[
\begin{aligned}
\& 12 \\
\& 12
\end{aligned}
\] \& teve M \\
\hline Sempla/Hold
Cepmeitence \& Input capacitance on Peo-pe7 pins \& - \& 8 \& pF \\
\hline Input Lectuce \& Input lerkege on A/O ping (PEO-PE7) (eee Note 21 \& - \& \[
\begin{aligned}
\& 400 \\
\& 1.0
\end{aligned}
\] \& nA

\mathbf{n}

\hline
\end{tabular}

NOTES:

1. Source impedencee gracter then 10K ohm will edversaly affect incernal RC charging time during ingut axmpling. 2. The externel sybtem error ceused by input leakege current is approximately equel to the product of R source and input current

Figure 11-18. Oscillator Circuits

Figure 11-15. Typical Reset Circuit

SECTION 12
 MECHANICAL DATA AND ORDERING INFORMATION

Thie section contains the pin assignment and package dimension diagrems for the MC6BHC11A8 as well as information to be used as a guide when ordering the MCU.

12.1 PIN ASSIGNMENTS

The MC6BHC11A8 is available in both a 48-pin plestic dual-in-line package and a 52 -lead quad pack. The following peragraphs provide pin assignments for both package versions.

12.1.1 82-Lead Ouad Package

1

12.2 PACKAGE DIMENSIONS

vuifs
\Rightarrow I is eno if package jarum plame is both a datum amo seat.mg PIANE
positional tolgranle for leads SND 48
C 05100201 T] © (a) - sitional tolebance for (eao pattean
partean

- 025100101 [18

3 DIMENSION B OOES MOT INCIUDE MOLG flash

- DIMEMSION LIS TO CEMTER OF LEADS NHEN FORMEO PARAILEI
OIME NSIONING ANO TOLERANCING PER ANSIYISS 1982
6 COMProllimg oimension Inch

	WILIMETEMS		Inciel	
	41	MAM	7mim	4
4	5134	6210	2415	2445
1	1312	1422	0540	0500
C	394	508	0155	0200
D	036	055	0014	0022
F	102	152	0040	0080
6	254	8SC	0100	Esc
\cdots		8 C	0070	OSC
J	020	038	0008	0015
K	292	342	0115	0135
1	1524	8S5	0500	BSC
4	-	15		15
W	051	$101{ }^{\circ}$	0020	004

FN SUFFIX
QUAD PACK
CABE 7m-01

nores
OMENSIONS R ANO L 20 NOT MCLURE MONO PIASN
 V145M. 152
3 CONTHOLIMG DEMENSION HOH

D	217-20		-192	
	He.	M	\cdots	4
0	1894	29.12	$0{ }^{2}$	17.
\square	H2M	20.19	0.7	20.
6	419	4.51	0.18	Q12
0	0.4	1.01	0005	1 CO
E	2.16	2.78	0.0	Q19
F	0.7	0.91	0.013	091
0			09	\cdots
H	0.1	0.1	0.4	192
1	0.3	08	0.015	B^{+3}
$\underline{1}$	17.8	115	$0 \cdot 2$	1r
员	12.8	128	0.12	17)
4	196	$12 \times$	0.70	0.7
Y	107	121	009	AC
W	107	1.21	0.02	0.4
x	107	142	0.09	2 Cl
$\underline{\square}$	0.00	090	0.00	$0 \cdot$

12.3 ORDERING INFORMATION

The following information is required when ordering a custom MCU. The information may be transmitted to Motorola in the following media:

EPROM(s), MCM2716 or MCM2532
MDOS, disk file
To initiate a ROM pattern for the MCU, it is necessary to first contact your local field service office, local sales person, or your local Motorola representative.

12.3.1 EPROMs

The MCM2716 or MCM2532 type EPROMs, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. The EPROMs must be clearly marked to indicate which EPROM corresponds to which address space. Figure 12-1 illustrates the markings for the four MCM2716 EPROMs required to emulate the MC68HC11A8 MCU. All unused bytes should be pro-' grammed to zeros.

After the EPROM(s) are marked, they should be placed in conductive IC carriers and securely packed. Do not use styrofoam.

Figure 12-1. EPROM Marking Example

12.3.2 MDOS Disk File

An MDOS disk, programmed with the customer program (positive logic sense for address and data), may be submitted for pattern generation. WHEN USING THE MDOS DISK, INCLUDE THE ENTIRE MEMORY IMAGE OF BOTH DATA AND PROGRAM SPACE. ALL UNUSED BYTES. INCLUDING the User's space, must be set to zero.

12.3.3 Verification Media

All original partern media (EPROMs or floppy disk) are filed for contractual purposes and are not retumed. A computer listing of the ROM code will be generated and returned along with a listing verification form. The listing should be thoroughly checked and the verification form completed, signed, and returned to Motorola. The signed verification form constitutes the contractual agreement for creation of the customer mask. If desired, Motorola will program blank MCM2716 or MCM2532 EPROMs lsupplied by the customer) from the data file used to create the custom mask to aid in the verification process.

12.3.4 ROM Verification Units

Ten MCUs containing the customer's ROM pattern will be sent for program verification. These units will have been made using the custom mask but are for the purpose of ROM verification only. For expediency. they are usually unmarked and tested only at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and five volts. These RVUs are included in the mask charge and are not production parts. These RVUs are not backed nor guaranteed by Motorola Quality Assurance.

12.3.5 Flexible Disks

The disk media submitted must be single-sided, single density, 8-inch, MDOS compatible floppies. The customer must clearly label the disk with the ROM pattern file name and company name. The floppies are not returned by Motorola, as they are used for archival storage. The minimum MDOS system files as well as the absolute binary object file (filename. LO type of file) from the MC68HC11A8 cross assembler must be on the disk. An object file made from the memory dump using the ROLLOUT command is also admisesble. Consider submitting a source listing as well as: filename, LX (EXORciser loadable format). This file will, of course, be kept confidential and is used 11 to speed up the process in house if any problerns arise, and 2) to speed up our customer to factory interface if a user finds any software errors and needs assistance quickly from the factory representative.

MDOS is Motorola's Disk Operating Systam available on development systems such as EXORciser, EXORsat, etc.

12.3.6 Sample Order Form

A sample order form is provided on the next page.

MAX-EORTH

REPERENCE MANOAL ADDENDUM

NEW MICROS, IAC.
1601 CHALK HILL RD.
DALLAS, TEXAS 75212
T-214-339-2204

THANK YOU
Thank you for purchasing Max-FORTH. We think we have created an excellent product and we hope that it will be of benefit to you. We are looking forward to a continuing business relationship.

If you have problems, however, we want to hear about them. Please refrain from cursing at us, at least until you've had a chance to talk with us (after that, use your own judgment!). Meaning that, we want to support your development effort by providing correct and sufficient information about our product. This doesn't mean we want to work as free consultants, but it does mean you can call us if you need to be pointed in the right direction. If you finc something that doesn't work, we want to hear from you--the sooner the better.

It is our desire to add a great deal more information to the user's manual. We will send the first update to you prepaid since you have received a preliminary manual, thereafter, revisions are free for the cost of shipping. We realize that the manual needs more 68HCll specifics and examples. This is, again, why you are encouraged to call with your questions, so we will know what information is really important in the manual updates.

There is a registration form enclosed with the manual. Please use it. If you don't, manual updates and possible application notes are likely to go to a receivirg department dock, rather than directly to you.

Well then, thank you, good luck and good hunting (and may the forth be with you).

We at New Micros, Inc. see ourselves as a leader in high level language single chip computers and related board level products. With the introduction of the F 68 HCll , we became the only supplier in the world of a single chip computer that can be programmed in high level language, without any support chips. Additionally, we manufacture our own line of standard board level computer products and also design and manufacture semi-custom and fully custom computer systems. We refer here to standard board level products as boards that are already designed and tested and carried as stock items. The semi-custom boards generally follow the same board outline and form factor as the standard line boards and are usually peripherals, rather than processor boards, that mate with the processor boards of the existing lines. Semicustom boards are designed specifically for a customers needs and may or may not be added to the standard line later. Fully custom: boards are those that are designed specifically for a customers application. Form and function follow the customer's needs. Custom boards are not added to the standard product line.

The products which are listed on our price sheet fall into two categories: those which are standard items available only from New Micros, Inc. and those that are generally available commodity items, such as RAM's and Wall Transformer Power Supplies, etc..

The standard processor board items fall into three pricing stratum. The "full up" development systems are priced to the market average for single board computers. This positioning reflects an expectation that the customer will only desired a few systems configured that way. The development systems have all board options installed and are shipped with manuals, Case, power Supply and FORTH Development Rom. Many of the comparably priced single board computers have less features or options and are, for the most part, only boards - not high level language development systems with power supplies, etc., etc.. The OEM versions have full board options, however, they are supplied without other frills. They have no metal case or wall transformer power supply (although onboard rectification, regulation is installed) or development rom (if applicable). They are intended for the customer who wants a full featured SBC (with RS-232, Watchdog Timer, etc.) without the added expenses. These systems will probably be embedded in a larger machine or system manufactured by the customer, which is why we call the configuration, "OEM". Finally, "The Generic Target Computer"TM or "GTC" versions of our processor boards have the minimum configuration of board options. The GTC's are 5 Volt only systems, without accessories such as connectors, memory selection jumpers, RS-232 or RS422/485 conversion, ete..

The purpose of the GTC is to give the most features, at the lowest possible price, of any stock single board computer. The GTC's exceed all the known competitors pricing on single board computers. All of the mentioned versions are made on the same PC board. This means the GTC board has the same number of holes as the OEM version, and any or all of the additional features of the OEM boards can be added to the GTC by the customer or by special arrangement with NMI.

Our peripheral boards, which we believe to be the best values around, are available in only one configuration. Still special arrangements are sometimes made on: a per case basis to make a reduced cost version if some incluad features can be removed.

As mentioned earlier, there are also a number of generally availf able commodity items on the NMI price lists. In essence, these items are listed only as a service to the customer who wants to avoid calling all around to find parts that are assured to work in our systems. Please understand, we may not always be competitive on these items, particularly the memory products. Our feelings will certainly not be hurt if you find a better price else where. We don't move enough of these items to make it possible. to follow the latest price swings in the market, but if you need them, we \exists :e generally able to supply.

As implied by the fact we have made mention of the custom side of our business, we are equiped and experienced at doing customer promoted design work. We have several CAD packages for $P C B$ and mechanical designs. Our rates are competitive, but our forte' lies in our familiarity with FORTH and dedicated applications. Working in this area is not only a source of income to us. It is also the way we stay in touch with the market, and the designer's needs. Even in our business, we recognize that no single board computer is ever exactly "right" for a final application. We have served many customers applications by making a semi-custom peripheral board to add features and solve interconnect problems. Contact us if we can be of service. (214) 339-2204 for Technical Assistance, 1-(800)-255-4664 for NMI Sales outside Texas, Telex NO. 9102500125 NEW MICROS DAL UQ.

$$
O R D E R \quad F \quad O R M
$$

Company Name \qquad Date

Engineer's Name \qquad Buryer's Name

Shipping Address \qquad Billing Address \qquad

Engineer's Phone No \qquad Byyer's Phone No \qquad
Method of Payment:

- Net 30 days requires your Purchase Order No: \qquad
- Oneck or Money Order No: \qquad Anount \qquad
- Mestercard or OVISA Exp \qquad Account Nb \qquad
- COD (Add \$1.95 COD fee)

$160{ }^{\circ}$ CHALK HILL RD. SUITE A DALLAS. .XAS $75212 \quad 214339.2204$
PR I C E LIST \quad S/87

Iten No
Description
Price in USS

PRODUCT MATRIX
 for

NMI PROCESSOR BOARDS $3 / 87$

The F68tCll Single Chip Computer

EGBCIITN V3. 3

specifications

The F68tcll is a omplete computer on a civip with coerating system and hign level langupe
 with no aditional supprt chips. In minimum configuration, the F6\% Cll, with a simple erstal circuit (a crystal, a resistor and two capacitors), needs anly 5 V power, grand and TIL serial-in/ferial-at cornections to oprate interactively.

Processor: MOICRCLA 68HCll, Ehanced 6800/6801
Languge: MaX-FR2H 231 words: A superset of the Forni-83 Standard including:

* The 83 Staniard Word set.
* The 83 Standard Dable Nutber Extension hord Set
* The 83 Stardard System Extersiars hord set
* All the 83 Standard Cantrolled Fefereme vords
* Single-Chip System Extensions

Counter/Tiners: Erhanced 16-bit timer system: Four stage proyraumble prescaler, tree 16-bit input captrie registers, five 16 -bit oulput-ampare registrers, real time intempt cirauit.
8-bit pulse acamulator (event counting mode). COP watcidog timer. Clook monitor.

Parallel ports: Five - are port of 6 individally configurable lines.
(same lines multifunctianed with serial use).

- ane part of 8 input lines (finction multiplered with AD canverter).
- ane port of 8 atat lines.
- ane prt of 8 cunfigurable lines.
- ane port with 1 configurable lire, 3 input lines and 4 arpat lines.

Ferial Charnel: Ehanoed NRZ Serial Omunicatians Interface (SII) (UARI). Serial peripheral
 $75,150,300,600,1200,2400,4800$, or 960 C baud. (default: 9600 baur, 8 data, no parity, 1 stop)
AD Canverter: Eight 8-bit charnels, 32 clock cycle canversion time.
Intempts:
15 meskeble intrempts.
2 man-miskale intinuts: SWI and XIRQ.
4 mon-meskale reset type internuts.
Memory Expansion: 64 Kbyte direct adressing.
Spply: $\quad 50 \mathrm{mw}$ typical at 8 Mnz , nan expanded bus mode 5 VDC 10 ma typical (15 memax) 100 mw Eppical at 8 Mz , equanded bus mode 5 VIC 20 ma typical (27 ma max) 1.7a typical (l0ua max) in SIOP mode.

This high speed, low power, ans ornater-an-a-chip is packeged in a 52 pin prec, measuring just 0.75 indes on a side. The chip hosts five, user available, 8 -bit parallel ports in the single chip mode. There are triee uten exganded to have a 64K athess and data bus. The asynctronous gerial Gumuications Interfoce (SCI) spports tie system temiral. The secind serial ciarnel, the syndranous Serial Feripheral Interface (STI), is unumiturd and available to the user: there are also included: a the timer sobssten, a computer cperating properly (waturig) circuit, a fast 8-bit 8-charrel AD Canverter, and te $1 / 2 K$ bytes of internal phrom.

With an 8 Mz crystal, operating in single chip mode, the F68世Cll draws less than 10 mA (typ). It supprts a lower arrent wait for intermpt maje, and a stop mode that dams 1.7 uA (Eyp).
The built-in high level lanquage and operating system, based on the FCRIH 83 standand, gives ensy mechine acoass to the user interactively. The vocibulary contains 231 words. Applications can be very cmpect. Althand internal ReM is limited, nan trivial dopilcations can be propramed by ifining a pord in RaM and than moved to brpaM, using the built-in EPRROM supart functions. inis frees the Ral to acoept of ner prograuming.
A11 the words of Fornt 83 Standard Peavired Word set are incluned, plus all of the stadern's 5y-

Reference hords Set, plus a nurier of woris no associaped with the staniarc, which are perr of

 Hows are provided for user jefined muここ-askinc.
The advannare of using the F68FCII liex the speed of proiect develometit and creckot. Even if te fgotcli is the only cilp working in a aesign, interrctuve deanging of the nariware ani software can be perforied.

Max-forkt V3. 3 Words Listing

The fgarmll is ideal for apolications where proman develoment time is critical. Its low power OMS nature is perfect for solar and iattery power applications.
The built-in subystans and watch dog timer, makes it the rabral choice for real tire enbedied apolications. Dáncirad apolicarians trat requre stall plysical sive and interactive field teising and servicung also con benefit from it's feanmes.
The fratill is fountial for New Micros, Inc. by Motorola, Inc.. softuare manual umyby and Mix-0023 assatiled and trested borici level develquent sysum axailable from New Mictos, Ire..


```
The " 100 squared" \({ }^{\text {ma }}\)
    E68HCI: Vession
        NYIX-0023
    Specifications
```

 The " 100 Sqared"M is a complete simplo :xan 1 ompter with operating system and high level ian

Eion it is providec with 8 K bytes RPM and the Max-FORMH RO!. For program develament an apional
serial caile (ONior = 2303232-4) can be used ornect to an R5-232 yerminal (or better yet, host
compler with mass storage for editing and downloailim of source code). power must pe suppiled
from a 7 to 18 VAC or 7 to 24 VDC source (Order $\# 23 P S$), or from an external regulated 5 VIC
source. UM-Mex and UM-100Fill Manals are included.
Size: $\quad 100 \mathrm{~mm}$ by 100 mm active comprent area. 100 mm oy 60 mm prototyping area.

Processor:	MOICROA 68HCLI
OPO:	Exanced 6800/6801
Languege:	MAX-FQRH, 221 words: A superset of the Farit-83 Standard including: * The 83 standard hord jet. * The 83 Standard pable Nimber Extension hord Set * The 83 standard system Extensions hord set * All the 83 Standand controlled Peferenoe Words * Single-chip System Extensians
Conter/tiues:	Fhanod 16-bit timer system: Four stage programable prescaler, thre 1 irput-capure registers, five l6-bit artent-compare registers, real intempt cirauit. 2init alsw acamulator (event ounting mode). OP watadg tiner. olox manitor.
Pacallel pacts:	Truee ports: - ane prit of 6 individally anfigurable lines (some lines multifunctioned with serial use). - one port of 8 inpat lines (function multiplexed with AD converter). - ane part with 1 canfigurajle line, 3 input lines and 4 arpot lines.

Sarial Chamels: Enhanoed NR2 Serial Oumnicatians Interface (SCI) (UARI) . Serial peripherai Interface (SPI) (USART). RS-232 chamel is 3 or 7 (Jits witil silgcobie bere rates: $75,150,300,600,1200,2400,4800$, Or 9600 baid (default: 9600 bavi, 8 dita, ∞ pricity, 1 stop) braght to 4 . 1 "pins, cable oprional.
AD Onverter: Eight 8-bit chamels, 32 clook cycle oanversion time.
Intemptes: $\quad 15$ maskble internpts.
2 nin-meskeble intempts: SVI and XIRO. 4 mon-maskable reset type internpts.
Mancy Eqpasion:- 64 Koyte direct adressing.

Sodetes:
Epension:

Suply: pores

100 mw typical
Opional hall Transformer (7 to 18 VACNO or External PBgulared 5 VCC .
arboand rectification (MDB)
aroard requation (7805)

arment

```
Tné".ここ, Squared"TN
    NMIX-0022
```

 Specifica:ions
 The "100 Squared"IM is a complete single board compter with operating system and high level iam guage development tools incluped in the on-boare Nax-FORTH \& ibye RO. In the retai configurntion it is provided in a metai case, with power supply, 512 bytes EEPROM, 8 ; Dytes RAM, and the Itax-FORTH Ra!, ready in ali respects to connect to an R3-232 teminai for immediate program development (or better yet, nos computer with mass storage and oowioad software). Wel versions of the system are provided at reduced cost without case or power supply.
 Size: $\quad 100 \mathrm{~mm}$ by 100 mm active camponent area. 100 mm by 60 mm prototyping area.
Proceseor: MOTOROL 68HC11
CPU:
Langrge:
Conter/IImers:

Parallel ports:

Serial Chamel: Enhanced NRZ Serial Comm.nications Interface (SCI) (UART). Serial Periphérai

MD Cosverter:
Interrupts:

Memory Expmasion: 64 kbyte direct addressing.
Socicts: Tree 28-PIn JEDEC standard sockets for 28-pin ROM RAMEEPROM/EEPROM devices.
Accepts: $2764,2864,4464,6264,27128,27256,62256$, etc.
Expmsion: - $34-$ pin 0.1 " dual-in-line cornector: All daia lines (8), ail address lines' 16) PWF, gnd, RW, E, AS, OE, INT, RST, MEMDS (on board menory disable), 1 N.C.
andress Decoder: $74 \mathrm{HC1} 38$ with jumper selectable options for 8 or 32 KPyte devices.
Supply: Roorer $\quad 100 \mathrm{mt}$ typical
Holtase
arrent
Case:
Enhanced 6800/6801
MAX-FORTH 231 words: A superset of the FORTH-83 Standard including:
*The 83 Standard hord Set.

* The 83 Standard Double Nuber Extension Word Set
"The 83 Standard System Extensions Word Set
* All the 83 Standard Controlled Reference Words * Single-Chip System Extensions

Counter/Timers: Enhanced 16-bit timer system: Four stage programable prescaler, three 16-bit inpur-capture registers, five 16 -bit output-campare registers, real time interrupt circuit.
8 -bit puise accumulator (event counting mode).
COP watchdog timer.
Clock monitor.
Five ports:

- ane port of 6 individually configurable lines.
(same lines multinnctioned with serial use).
- one port of 8 input lines (function multiplexed with $A D$ converter).
- one port of 8 aitput lines.
- one port of 8 configurable lines.
- one port with 1 configurable line, 3 input lines and 4 output 2 ines. Interface (SPI) USARL', PS-232 chamel is 8 or 9 bits with selectable baud rates: 75, 150, 300, 600, 1200, 2400, 4800, or 9600 beud. (default:' 9600 baud,' 8 data, no parity, 1 stop)
Eight 8-bit chamels, 32 clock cycle conversion time.
15 maskable interrupts.
2 non-maskable interrupts: SWI and XIRQ.
4 non-maskable reset type interrupts.

Supplied hall Transformer (7 to $18 \mathrm{VAC/DC}$) or External Regulated 5 VDC . abboard rectification (MOB) anboard regulation (7805) arboard DC/DC for negative PS-232 supply (7660)
20 ma typical
Aluminum ribbed extrusion with steel back panel, all anodized black. Front Panel heavy aluminum plate. Interior cut to hold Euro format $160 \times 100 \mathrm{~mm}$ cards. Rack mountable in 19" Euro system.

```
Tne "Bi:c Squared"TM
        NMIX-0021
    Specificaこions
```

The " 100 Squared"TM is a complete single board computer with operating systen and high level ianguage development tools included in the on-board Maxforith gK-byte Roy. In the retail conijguram tion it is provided in a metal case, with power supply, 512 bytes SEPROM, $8 K$ bytes Ray, and the Max-FORIH ROM, ready in all respects to connect to an RS-232 terminal for irmediate program development (or better yet, host computer with mass storage and download software:. Dev versions of the system are provided at reduced cost without case or power supply.
Size: $\quad 100 \mathrm{~mm}$ by 100 mm active component area. 100 mm by 60 mm prototypins area.
Processor: \quad MOTORQA 68 HC 11
CPU: Enhanced 6800/6801

Langrege:	MAX-FCRTH, 231 words: A superset of the FCRTH-83 Standard including: *The 83 Standard Word Set. *The 83 Standard Double Nimber Extension Word Set *The 83 Standard System Extensions Word Set * AII the 83 Standard Controlled Reference Words * Single-chip System Extensions
Counter/Timers:	Enhanced 16-bit timer system: Four stage programmable prescaler, three 16-bit input-capture registers, five 16 -oit output-compare registers, real time intermpt circuit. 8 -bit pulse accumulator (event counting mode). © P watchdog timer. Clock monitor.
Parallel ports:	Three ports: - one port of 6 individually configurable lines (same lines multinnctioned with serial use). - ane port of 8 input lines (function multiplexed with ADD converter). - one port with 1 configurable line, 3 input lines and 4 output lines.
Serial Charnel:	Enhanced NPZ Serial Cormmications Interface (SCI) (UART). Serial Peripheral Interface (SPI) (USART). FS-232 chamel is 8 or 9 bits with selectable baud rates: $75,150,300,600,1200,<400,4800$, or 9600 baud. (default: ' 9600 'baud,' 8 data, no parity, istop)

ND Converter: Eight 8-bit channels, 32 clock cycle conversion time.
Interrpts: $\quad 15$ maskable interrupts.
2 non-maskable interrupts: SWI and XIRQ. 4 non-maskable reset type interrupts.

Manory Expansion: 64 Koyte direct addressing.
Soclests:
Inree 28-Pin JEDEC standard sockets for 28-pin ROM/RAM/EPRONEEPROM devices. Accepts: $2764,2864,4454,6264,27128,27266,62256$, etc.

Expension:
Adress Deooder:
34 -pin 0.1^{11} dual-in-line cornector: All data lines (8), all address 1 ines(16) PWr, End, RW, E, AS, OE, INT, RST, MPDIS (on board menory disable), 1 N.C.
74 HC 138 with junper selectable options for 8 or 32 KByte devices.

Syply: Porer

Orrent
Cuse:

100 mw typical Transformer (7 to 18 VAC/DC) or External Regulated 5 VDC .
Onboard rectification (MOB)
onboard regulation (7805) Onboard DCADC for negative RS-232 supply (7660) 20 ma typical
Aluminum ribbed extrusion with steel back panel, all anodized black. Front Panel heavy aluminum plate. Interior at to hold Ero format $160 \times 100 \mathrm{~mm}$ cards. Fack mountable in 19 " Euro system.

F68HC11 Internal ROM and XC68HC11 External ROM Versions
Specifications
"Max-formpriM for the $68 H C 11$ is a ROM based operating system and language. When cormbined with a 68 HC 11 , whether in internal or exterral ROM, "Max-FCRTM. ${ }^{M}$ creates a complete development enviranent. Max-fORTH programs can be written, tested and mun under its control.

Although usual development configurations would include external RAM and mass storage (either on the 68HC11 system or on the host terminal), short prograns actually can be developed on a 68HC 11 systen using "Max-forTH. ${ }^{T M}$ with no extra support (beyond XTAL circuit, pull ups, power and serial I/ 0 cornections).
"Max-ForTMr ${ }^{T M}$ produces campact code that is suitable for Rating or EPPRMing. Both "Headed" and "Target Compiled" code applications can be created. While the compiled prograns may not execute as fast as well written assenbly language prograns, they do compare favorably with the results fran other compiled languages. They are usually more compact, more quickly written, and more easily tested in "Mexforthr ${ }^{1 M}$'s interactive programing enviroment.
"Max-FORITH ${ }^{\text {TM }}$ closely follows the FORIT-83 Standard in onder to be compatible with other FORTH!s, also to be easily supported, learned and used. In addition to the FCRTH-83 Required hord Set, "Max-form ${ }^{1 / 2}$ also contains all the FORIH-83 Extension Word Sets, all the Controlled Peference Words and some of the thoontrolled Reference hords. It also has many single chip specific extensions and operating system words not found in the standard.
"Max-fartirn ${ }^{1 M}$ is available in several versions:
Version 1.0 is supplied in an external ROM for use on systems such as Mbtorola's EVE system or the New Micros, Inc. MDX-0021 single board computer. This version does not have autostart capebility. It is otherwise "חlll featured". Order \# Max68iC11vi. 0

Version 2.0 is also supplied in external ROM for use on the sane type systens. This version will atostart a user progran at any 1 K boundry, or in the EmPROM. This version is suitable for volume production use, under license agreanent. The license agreement requirements to acquire the Version 2.0 ROM's are, therefore, stricter than for Version 1.O. Version 2.0 is easentially identical to Version 3.0 which is supplied in the MI $68 \mathrm{HC11} \mathrm{MCl}$. order \# Max68HC1iv2. 0

Version 3.0 is supplied in the internal ROM of the NII F6AHC11 MCU. These chips are manufactured by Motorola for sale by New Micros, Inc. These chips will autostart a user progran at any 1 K boundry, or in the EEPROM and are suitable for volume production use, under license agreenent. Order F68\%C11

Version 4.0, not yet released, will allow the user to target compile up to 5 K bytes of progran on a $3 \times$ byte Max-form kernel, which may be sumitted to Mbtorola for production as an internal single chip RaM code in the MC6BHC11A8, under license agreenent for the kernel with New Micros, Inc.. Order \# not yet assigned

User Manal, Order \# UM-Max, is suitab. for use with Versions 1.0, 2.0 and 3.0
 only the character count and the non-umoerlined craracters actuaily exist in the intemai 00%, i.e., SPACES and SPACE are not differentiated. Wiess WIDH is set to 3 (number of sharaciers - maximur is 31; the names entered wiili be normal length.

vanos				
Fa93	Task	Ento 1	riab	reot co
Por 3	+	rete $\mathrm{Cl}^{\text {l }}$	H0E 29	P9\% 21
ETEI	:	ctoa	Pder .	FDC
Fay	1-1	raso 1.1	-atil 1	F808
real	,	P097 》	F052 Swap	F9co zoven
rete	23wap	Foer sup	F988 2bup	cojf oven
ro2e	not	P9Ca 2rol	FRT3 PICE	Fazo -0LE
FAsd	-noll	rois onop	rect 20 Iop	rota 30
F013	A)	Peos.	resa not	rezt $0 \cdot$
F904	00\%	Pcir os	Peic os	Fero us
rete	,	fita ous	P912 08	1982 0.
feto	,	Fos 3 ano	coas on	1097 208
Efor	2F	2F92 TwEP	Efic else	Ef22 ecolir
Erim	UnTril	EFO2 AEPLET	Effa vmrte	cetc asall
EF'4	cmo	ctsa 00	cest loof	cese - Loge
Fato	K	Fabe 2	Pa06 !	past me
cia	Leave	FEAE ExII	cafc xty	faft twr
ract	ITERniMal	Fios s-3g	Fice ams	F982 Dass
FEAD	min	fist buill	Fase may	Poic emay
F963	3Paces	FAld DEPTM	Fider ct	Poet tipg
F682	count	FGBA - fanling	Fese 1.	PC15 2.
cod	1.	resf $2-$	teso 2\%	ress 2°
F9at	0.	F98\% $0-$	F907 02/	Fiso imog
Fi3s	NOD	F329 \% Mne	Fir ${ }^{\text {c/ }}$	Fe39 und
1805	un/mot	fara megite	F956 oncgate	c002 combsant
ETf?	VARIACLE	cilo 2constant	cten 2vanjalle	Fatt ciequte
P06A	spe	F709 Cnoys?	FTE3 cnoyt	Fens is
C806	coocssut	ctia coos	cesa Emo-copr	caic usen
F5\%	-	rsas .f	Fses ${ }^{\circ}$	rsar u.
r39\%	U. 1	rser 0.0	P616 08	F620
\%605	310트․	rsps ${ }^{\text {c }}$	Pses <1	F587
rese	txpect		Fin9 06	P53s 37ay
Pss\%	curntar	csor contegy	rsec sen	PS99 0tr
Psor	Op	P520 ofrsif	Fsee re	「330 0pl
[33*	31\%	pate lasc	Fats 80	Fatf 718
F934	19	1537 3DA!	rsce c/l	F16) Fingl
Piel	Limli	PS60 Pat	trse Meme	efin allot
cfit	-	cris c.	F170 spage	F03s 9 Pif
EDF\%	Tangivfers	crsa latery	cese cemplit	cesc
Es5)	rice mex	pocs otczmat	te3s reone
Et31	ctughes	ce81 votg	tese . ${ }^{\text {c }}$	ceiz. 1
193	Filk	Ften thass	P7B3 blage	\%500 mole
7285	vors	Fase cowytat		tant Fing
cate	10.	cest creaft	cact lcomelis	cama birtial
c7st		cort 1mutelats	cese vecanthans	c9F: 0npt
cest	201708	C9t\% Asifnlof	c9en ospinficon	ceat mecmin
EE3t	PMARE	cris CMAER	ctso sagatur	test entsonit
c50	tcas	ctas	can (')	Pesp lfa
Pe7s	3109\%	ctit epa	cter mpa	cect prapye
1731	Loge		treb -->	fitt upsay
F16*	emeft-pursas	Foe 3 3nga-uprpis	P003 PLent	-09* PLian)
F091	. 21.8	pose 38	F123 Evryen	Ces) Bloge
P393	9\%0y	E901 M/C	cerr mugis	cere aujerfalit
E34	0×29	c94, porgel	Pice oung	P398. 3
cei	vogrs	eric thlas	cres imont	pe8A Lisf
cerr	0ulit	cer) asonfo	coes ament	reci coly
Foil	-RAamer		panc atos	cois EEMant
1397	EEnovi	PJof EEC!	C093 Pourn-t	\%

The following errata has been noted in the Max-FOFTH RaFERENCE MANUAi Preliminary June, 1986. Page 10, last paragraph. The Data Stack is limited to 16 and the Return Stack to $1 \underline{1}$ words.

Page $25, \chi$ and 27. Replace all occurrences of.$"$ with .(and " with).
Page 130. A word has been added to the language. It is ATOM. See supporting sheets for further information on this word.

Page 158. The "head" for CSP has been removed. It can not be found in the dictionary.
Page 172. The "head" for DLITERAL has been removed. It can not be found in the dictionary.

Page 184. Three words have been added to the language. They are EDC!, EeMOV and Bentid - See supporting sheets for further information on these words.

Page 281. The "head" for DuITERAL has been removed. It can not be found in the dictionary. Remove reference in compiler section.

Page 291. Three words have been added to the language. They are EDCI, BeMVIE and EPMPD - See supporting sheets for further information on these words. Add reference in memory section.
Page 29. A word has been added to the language. It is AHOH. See supporting sheets for further information on this word. Add reference in operating system section.

Page 292. The "head" for CSP has been removed. It can not be found in the dictionary. Remove reference in security section.
Page 302. The order of UP , W and IP have been changed to reduce the pain of accidentally trying to clear some menory location with the erroneous entry of yoxa 0 !. Since W is the least critical of the three variables, accidentai clearing should not cause system crash. W is now at $\$ 0000$, IP at $\$ 0002$, and UP at $\$ 0004$. Information associated with each label, otherwise correct, moves with its label.

Page 30e. Change KHZ to $\mathrm{C} / 10 \mathrm{OS}$ which is the time used for the progranning of each EEPROM location, and its default setting to 20000.
Page 303. Change default setting of UFIRST to \$DTFC.
Page 308. The EEPROM addresses should be \$Bxax as oppossed to $\$ \$ x x x$.
Page 314. Peset routine heavily modified. Function maintained, except there is no warm downioad or autostart.
Page 315. Downioad value for W and $I P$ removed fram aniop table.
Page 316. Change $K H Z$ to C/IONS which is the time used for the progranming of each EEPROM location, and its defaut setting to 20000.
Page 303. Change default setting of UFIRST to \$DIFC.

Hardware Configuration

RS-232 Terminal Interconnection

EVB Parts Placement Diagram

To communicate with the Max-FORTH ROM, use the RS-232 terminal near the power connection, labeled as HOST and replace the Buffalo ROM_With the Max-FORTH ROM. Connection to this port may require a nuli modem which swaps pins 2 and 3 . Pins $4 \& 5$ and pins 6820 may also need to be swapped depending on the particular terminal used.

GND	1	0	0	14	NC
TXD	2	0	0	15	NC
RXD	3	0	0	16	NC
NC	4	0	0	17	NC
CTS	5	0	0	18	NC
OSR	6	0	0	18	
SIG-GND	7	0	0	19	NC
DCD	8	0	0	20	$0 T R$
NC	9	0	0	21	NC
NC	10	0	0	22	NC
NC	11	0	0	23	NC
NC	12	0	0	24	NC
NC	13	0	0	25	NC

RS-232 Pin Assignment Diagram for the Host Port of the EVE
WORDS LIST FOR MaX-FORIH Vi.

The following words list was captured from a Max－FORTH V1．0 system．To conserve ROM space，oriy the character count and the nor－underlined characters actually exist in the internal pou，i．e．， SPACES and SPAXYZ are not differentiated．Unless you set WIDIH to three（number of cnaracters－ maximam is 21）the names you enter will be normal length．

WORDS							
F893	TASK	EBEO	（	FE26	θ	FEOO	CO
FDF3	！	FDE 6	C ！	FAOE	26	F9F8	2！
E7C4	：	E7DA	；	FDCF	＋	FDC4	－
FA9F	1－！	FA90	$1+!$	FA81	＋！	F88B	＊
F881	1	FD47	＞	FD5 2	SWAP	F9EO	20VE？
F9EC	2SWAP	FD8F	DUP	F9D8	2DUP	FD3F	OVE
FD2B	ROT	F9CA	2ROT	FA73	PICK	FA2D	ROL
FA4D	－ROLL	FD83	DROP	F9C8	2 DROP	FD7A	$>R$
FD7 3	R $)$	FCO9	$=$	FC3A	NOT	FC28	$0=$
F96A	DO＝	FC1F	0）	FC16	0＜	FBFD	Uく
FBE8	＜	F97A	DUく	F972	D＜	F962	$D=$
FBEO	＞	FDB3	AND	FDA5	OR	FD97	XOR
EF4E	IF	EF42	THEN	EF2C	ELSE	EF22	BEGIN
EF 14	UNTIL	EFO2	REPEAT	EEFA	WHIIE	EEEC	$A G A \overline{I N}$
EF14	END	EE54	DO	EE81	LOOP	EE60	＋LOOP
FAE6	K	FADE	J	FAD6	I	FAD6	Re
EEA2	LEAVE	FEBB	EXIT	F8FC	KEY	F8F4	EMII
F8EC	？TERMINAL	FBD 8	S $->\bar{D}$	FBC9	ABS	F942	DABS
FBAD	MIN	F92E	LMIN	FB9D	MAX	F91C	DMAX
F763	SPACES	FA1D	DEPTH	F6DE	CR	F6BE	TYPE
F6B2	COUNT	F68A	－TRAILING	FC80	$1+$	FC75	2 ＋
FC6A	1－	FC5F	2－	FC50	21	FC45	2＊
F9A8	D＋	F982	D－	F907	D21	F83D	／MCD
F835	MOD	F829	＊／MOD	F81F	＊	FE39	UM＊
FB05	UM／MOD	FAFA	$\mathrm{N}: \mathrm{EGATE}$	F956	DNEGATE	E802	CONSTANT
ETF2	VARIABLE	E810	2 OONSTANT	E7E8	2VARIABLE	FAEE	EXECUTE
FD6A	SPE	F7B9	CMOVE	F7E3	CMOVE	FEBB	；S
E 846	CODE－SUB	E83A	CODE	E82A	END－CODE	E81C	USE？
F597	－	F5A9	－R	F5B5	D．	F58F	U．
F59F	U．R	F5BF	D．R	F616	\＃S	F624	\＃
F605	SIGN	F5F5	＊${ }^{\text {P }}$	F5EB	＜	F587	？
F6EC	EXPECT	E7OE	QUERY	F647	BL	F555	STATE
F552	CURRENT	F54F	C－NTEXT	F54C	SCR	F549	BLK
F507	DP	F52B	O－FSET	F540	FLD	F53D	DPL
F534	＞IN	F4FB	$B \div S E$	F4E6	SO	F4EF	TIP
F53A	＊TIB	F537	$S: A \bar{N}$	F56C	C／L	F1C9	FIRST
F1C1	LIMIT	F564	P． $\mathrm{I}^{\text {d }}$	EF82	HERE	EF7A	ALLOT
EF6E		EF62	C ，	F77B	SPACE	FD85	？DUP
EDF 4	TRAVERSE	EF5A	L¢TEST	EC64	COMPILE	EC5C	［
EC5 1	］	F4CC	$\mathrm{H}=\mathrm{X}$	F4C3	DECIMAL	EC39	；CODE
EC31	＜BUILDS	EC21	$D: E S\rangle$	EBED	＂${ }^{\text {² }}$	EC12	－（
F793	FILL	F78B	ETASE	F783	BLANK	F5DD	HOLD
F 225	WORD	F45C	C CNVERT	F406	NUM $\overline{B E R}$	E日BE	FIND
EADE	ID．	E896	CEEATE	EACE	［COMPILE］	EAAA	LITERAL
E75E	INTERPREI	E9FE	IMMEDIATE	E864	VOCABULARY	E9F4	FORTH

E9EC	EこITOP	E95L	ASSEMBLEE	Eらご	こここさ？：こさONS	EGご	或こごこの三
EE3E	＞MARK	E＝82	＜NARK	ここ30	＞PESCLVE	Eこ2t	くRESEこ
E854	：CASE	EBA 4	，	ERA4	：＇j	FC5F	LFA
FC75	＞BODY	EEIE	CFA	EEOF	NFA	EDE7	PFAPE
E7ミ8	LOAD	E728	THRU	EFE6	－－＞	F187	UPDEE
F16D	EMPTY－BUFFEPS	FOE3	SAVE－BUFFERS	FOE 3	FLUSH	F09	（LENE：
F091	－LINE	F 36 C	＞L	Fi23	BUEFER	＝003	BLOCK
F393	E／BUF	EDB 1	H／C	ECF5	HWORD	ECE9	AUTOSTAPT
E934	UNDO	E941	FORGET	F1ED	DUMP	F352	．S
ECB 1	WORDS	EFFC	TRIAD	EFCD	INDEX	F02A	LIS？
E6EF	QUII	EBF9	ABORT＂	E6E5	ABOPT	FEC 1	COLE
FD 1 B	BRANCH	FDO9	？BRANCH	FAAB	ATO4	ED43	EEWORD
F397	EEMOVE	F3BF	EEC！	F893	FORTH－83		

NAME	ATO4
PRONUNCIATION	"assembly-to-fourth"
VERSION	NMI NMIDR
STACK NOTATION	- \quad)
* ARGUMENTS In	0
* Arguments out	1
RETURN STACK	
DICTIONARY	
PAD	
INPUT	
OUTPUT	
GROUP	Operating System
ATTRIBUTE	
STANDARD	
SHORT DEFINITI	N: Returns address of subroutine call to high vel word as indicated in D register.
LONG DEFINITION	Execution returns the address of machine code ubroutine which can be used as the object of a an instruction to call a high level word from an sembly language routine, such as aninterrupt ocess. The processor D register must contain address of the CFA of the word to be executed. processor Y register must point to free RAM ance the high level word will use it as the Data ack pointer. Program control will be returned the instruction following the J:R after compleon of the specified high level word.

```
NAME : EEMOVE
PRONUNCIATION: "e-e-move"
VERSION : NMI NMIDR
STACK NCTATION:( addr1 addr2 u - m )
# ARGUMENTS IN: 3
# ARGUMENTS OUT: O
RETURN STACK :
DICTIONARY:
PAD :
INPUT:
OUTPUT :
GROUP: Memory
ATTRIBUTE :
STANDARD :
SHORT DEFINITION: Moves towards high memory the u bytes at addresses addri and addr2. addr2 should be in EEPROM.
LONG DEFINITION: Move the u bytes at addresses addri to addr2. The byte at addri is moved first, proceeding toward high memory. If u is zero, nothing is moved. addr2 should be in EEPROM. EEC! is used to accomplish this function. See EEC!
```



```
MAME : EEC!
PRONUNCIATION: "e-e-c-store"
VERSION : NMI NY:IDR
STACK NOTATION:(16b addr --- )
# ARGUMENIS IN : 2
# ARGUMENTS OUT: O
RETURN STACK :
DICTIONARY:
PAD :
INPUT :
OUTPUT:
GROUP: Memory
ATTRIBUTE :
STANDARD :
SHORT DEFINITION: Stores the least significant byte of 16 b into addr in EEPROM.
LONG DEFINITION: The addr in EEPROM is erased, then ieast significant 9 bits of \(16 b\) are programmed into the byte at addr. The time period of the programming is set by C/1OMS and Timer Output Capture for both the erasure and programming cycles.
```


TOUF \mathcal{F} TH S8HC1: Max-FOPTH MSMOPY MAP

A Sirst step in preparing to use a dedicated camputer system is to learn the system's memory max. This is an easy task with the use of the Max-FOFTH DUMP command. Femember, Dunp displays one or more lines each containing 16 memory locations (8 words) which are most easily read when in hex mode, so begin by entering HEX .

Starting in low memory, examine the contents of the first three words (six memor:/ locations-one byte or two hex digits per location which means two locations per word) by entering 06 DUMP. (This, of course, displays a full dump-line of 16 memory locations- 8 words, $\$ 0000-\$ 000$. Leading zeros at each location are not displayed.) Examine the first three words ($\$ 0000-\$ 000 \mathrm{E}$), ignoring the others for the mament. Fram the manual's Appendix C (IMPORTANT: see errata for corrections), it is seen thet these locations contain the system variables of Max-FORTH, namely:

```
W (Word pointer, $0000-$0001);
IP (Instruction Pointer, $0002-$0003); and
UP (User Pointer, $0004-$0005).
```

Any two bytes of menory reserved to hold only the address of a particular item (word, block, stack, etc.) is refered to as a pointer. Thus W and IP are pointers whose contents change every time forth executes a new definition. Programers rarely have need to use W or IP. Advalced programmers might use them in code level definitions when making multitasikers, etc.. UP points to the USER area. By modifying UP to point to another area, the values that user variables return will be a different set. This again is useful in multitaskers. Be sure that the new USER area is initialized with its set of values before changing \mathbb{P} to point to it, otherwise, the systens will crash and it will be difficult to recover.

> It is worth mentioning that if you experience a systen crash fram wich it is difficult to recover with a simple reset, a <CIRL>-G key canbination in the Serial Commacations Interface input register will force a cold reset. (<CIRLh-G is the ASCI: "BEL" character, $\$ N 7$ hex.) By entering <CIRL-G and hitting reset again, you should recover from any badly modified variable, blown dictionary links, crashed processor, or similar problem. A bad autostart, however, can only be rectisied by removing or disabling the offending menory device.

Notice that UP points to the current USER menory area starting at $\$ 0006$. To examine this area enter 674 DIAP. The first four words ($\$ 0006, \$ 0008$, $\$ 000 \mathrm{~A}$ and $\$ 000 \mathrm{C}$) are zero'ed by the cold downloed. They represent DINE, UPDE , PRIDRIII and Pirsive which are user variables reserved for multitasking. These variables are not used by the Version $1.0 \mathrm{Max}-\mathrm{FORIH}$ inplementation.

The following two sords ($\$ 000$ E and $\$ 0010$) are the default stack values, $R \mathrm{RO}$ and SO , assigned by ABCiI . Iney cen be modified to point into RAM if larger stack areas are desired. They will not be put into effect until ABOia is executed. Normally, the stacks should stay in internal RaM. IIB, PAD, and the dictionary areas can be moved to external RAM which will allow rocm for 28 Fieturn Stack words and 39 Data Stack words.

The next tho word locations ($\$ 0012$ and $\$ 0014$), KEY-CB-PIR and EMII-CB-PIR, point to control blocks that determine how the built-in I/O rourines work. Alternate contral blocks can be constructed to handle alternais I/O devices without modifying the I/O routines. Each control block is six bytes long and contains the following:
i) a tho-byte address of the I / O device status register to be read,
2) a one-byte mask with which the siatus value read will be AND'ed to screen out extraneous bi:s,
3.) a one-byte mask with which the ANO'ed resil' will be XOR'ed to obtain a zero resuit when the device is ready for transfer, and
4) a two-byte address of the I/O device data register.

These pointers (KEY-CB-PTR and EMT-CB-PTR) are initialized to point to the begiming of the default Serial Comminications Interface control blocks. The pointer can be modified to point io control blocks that handle LCD displays and keypad controllers or alternate serial chips, etc. to redirect system I/O.

The next three hord locations (\$0016, $\$ 0018$ and $\$ 001 A$) are the actual machine level vectors to the I/O subroutines that provide the functions mentioned above. If a control block solution is not sufficient, you may write your own machine code subroutine. Its address is installed in UKEY , UEMIT or U?TERMINAL as appropriate.

Following is the pointer (at $\$ 001 C$) to the Terminal Input Buffer, TIB, and nonmally contains an address pointing to the RAM just beyond the bottom of the Return Stack. It is limited by UC/L ($\$ 001 \mathrm{E}$) to 16 characters. IIB can be moved to external RAM and made large by modifying these USER variables.

The USER variable which indicates that a COD reset has been performed is called CLD/WFM (\$0020). As long as it contains a $\$ A 55 A$ pattern and there is no $\langle C I R\rangle-R$ in the SCI, the system will not do a cold dounload of system variables at every reset.

PAD in most FORIH systems is a fixed distance above the dictionary pointer, but in Max-fORTH that would be impossible with the limited internal RAM, so PAD is restricted to be at a "fixed" location, which can be "moved" by changing UPAD ($\$ 0022$). Since the user may work "above" PAD with temporary variables and the systen works "below" PAD when doing output number conversions, ensure that PAD has free RAM on both sides of its new setting.

BASE, the current number base, is kept in the next location (\$0024), and performs as per most other FORIH's.

The next location (\$0026) is used in conjunction with the Timer atput Capture 5 in EPPROM programing words to time the number of cycles to program the EEPROM. It is called C/iaNS for "Cycles Per 10 Milliseconds delay". You should decrease this value from the default decimal value of 20000 if your system has a clock slower than 2 Mz .

The line teruination character can be changed from a carriage return to any other character by modification of the next location (\$0c28). Similarly the back space character can be changed fram a back spece to a delete by modifying the following location ($\$ 002 \mathrm{~A}$).

The Dictionary-Pointer, DP , and the heads dictionary pointer follow (\$002C and \$002E). The location after them ($\$ 0030$) is the EEPROM dictionary usage pointer that is added to when a word is moved into EEPROM with EPND. The Ilag that controls headerless code generation follows (\$0032).

Additional standard FORIH USER definitions follow (\$0034 through \$0070). Following are four USER variable locations ($\$ 0072, \$ 0074, \$ 0076$ and $\$ 0078$) which are reserved for mass storage requirements. Only the Ilrst location ($\$ 0072$) has any reference in the internal code. It is used to set the base address of the RAMDK mass storage simulator. To use RAMDSK, which is pointed to by the default setting of URW ($\$ 0056$), set the first location to the base address of
free RAM fie: C400 72 !) anc clear the buffers (which are at default locations EJTF : froug $\$ 000$) (ie: DPTY-BUFFERS). The RAM screens can then be iisted, loaded and saved, etc..

This ends the USER area wile the default location of the dictionary begins at $\$ 007 \mathrm{~A}$. When a cold reset occurs, TASK is moved to the beginning of the dictionary. New entries in the dictionary will build up fran TASf. ($\$ 0083$ and up).

The Data Stack is above the dictionary. It grows down as more entries are added ($\$ 00$, and down). There aren't many locations between the dictionary and the stack, so some care snoild be exercised. Needless to say, running the stack into the dictionary or vice versa is a very bad idea.

The dictionary can be moved after a cold reset simply by forgeting task and storing the address of the new dictionary RAM in DP (ie: FORFET TASK HEX C004 DP !).

The area immediately above the data stack ($\$ 00 C 8$ down from $\$ 00 C F$) is used by the system numeric output routines. The usage builds down from just below PAD till the number of output characters for a given print or "dot word" is reached. (Note: only 8 digit mubers are provided for in the default setting.) (The two lowest locations are used as "secret" storage places for the settings of ELX ($\$ 00 C 8$) and $>$ IN ($\$ 00 C A$) after an error message is generated so you can look up the lofation of the error on mass storage after the crasi. Better get them before you print any numbers after a crash...)

The begiming of TIB and PAD are both at the sane location (\$0000), the idea is to prevent PAD from being used in internal RAM if TIB is in use. Sixteen bytes are reserved for IIB ($\$ 0000$ through \$000F).

The Return Stack occupies the upper end of internal RAM (\$0CEO through \$OOFF).
The next location of interest in the 684 C 11 map is the first location that an autostart pattern can be located ($\$ 0400$). Versions 2.0 and greater do autostart pattern searches in EEPROM and then on every 1 K boundary starting there and $a n$.

Since reset puts the register block of the 681 C 11 at $\$ 1000$ in the "middle of things", the MaxFORIH operating system moves them to $\$ 9000$. (Originally it was intended to put them at $\$ 8000$, but the EVB has a special write latch from $\$ A 000$ to $\$ E P F F$ that precluded that.) The write that moves the register block will still affect external menory when the move is performed, so always watch out for location $\$ 1030$ which will have $\$ 09$ stored into it with every reset. The registers are moved into $\$ 9000-\$ 903$. See the appropriate Mbtorola documentation for their description. To look at them, enter 900040 DIPP.

The EIPPROM is the next natural occurrence in the menory map (\$B600 through \$B7FF). The first word location ($\$ 8600$) may hold the autostart pattern. This location is the first high level atostart location checked after power up. If the first location is the autostart pattern, the next ($\$ 8602$) is the address of the CFA (code field address) of the word to be autostarted. If interrupts are not used, tine next 247 bytes of EPPROM are unassigned. If intertputs are to be used, the particular interrupt enable must have a machine code program at its EEPROM targe location. Starting at location SBTBF and thereafter for each intermpt vector in ROM, three bytes are reserved. They will normally contain a jump instruction to another portion of memory which performs the appropriate interrupt function. It can return to the intermpted program by doing an RII at its completion.

At the very end of EEPROM, a word location (\$DTEE) is checked by the reset routine for an autos tart pattern which means that there is a machine code instruction in the previous three bytes ($\$ E 7 F B$) to be executed at power-up before the write-ance-only registers are modified. If that autostart patterm is found, the system jumps to subroutine to the code address. It will nomaily contain a jump instruction to another portion of memory which sets the OPTIONS and DIIT registers as desired. It can reenter the start up procedures by doing an RTS at its campletion. To iook at the EEPROM, enter B600 200 DUPP .
(On the Mbtorola EVB, the area fram \$C000 to \$DFFF is RAM. This can be used for mass storage buffers and screens, or program space or for IIB and PAD etc.)

The Max-FORTH ROM runs from \$E000 through SFFFF and contains the heads of Max-FORTH, followed by non-runtime words, followed by the runtime kernel. The DUPP canmand can be used to explore any portion of the ROM. It will be noted that the heads are made up mostly of ASCII characters and pointers. The non runtime codes are mostly pointers. The runtime codes are a mix of pointers, machine code and miscellaneous tables etc..

Development with the Max-FORTH system will normally be done usine a host computer. (One alternative would be to add sufficient fin? and use the internal RAMDSK. Another alternative would be hooking up mass storage to the system and writing a user mass storage handier that would replace RAMDSK in the USER variable UR/W'. Either method requires you to live with the limited FORTH line editors available or to write your own.)

Source text can be edited on host PC with a familiar editor. The code can be down loaded and tested a portion at a time using a communications package. This can be continued until the program is complete. PC's are usually graced with printer, etc., so all in all, using a $P C$ as a host can save development time.

Any editor that produces an ASCII text file (ie: non-document mode) should be suitable. Communications packages should be abłe to handle 9600 baud transfers (or you have to run the XTML slower) and should have file send and capture capabilities.

The file send program should have a wait-for-echo'ed-character setting and a wait-at-end-of-line-for-return-character. The character to be waited for at the end of line should be a LINE FEED, ASCII \$OA (<CTRL>-J).

In Microstuff's Crosstalk these settings are the CWait Echo and LWait CHaracter 'J . With those settings, a smooth down load =: a code file by the SEnd command should be possible.

Be sure to watch the down load as it occurs to spot any error messages returned from the Max-FORTH system.

```
USEN:G EXTERNAL MEMORY
```

The internal RAM and EEPROM of the 68 HCli is inited. Many applications wili require more RAM for program development. Using a Terminal Incut Buffer longer than 16 characters is also desireable.

The following brief listing moves the internal pointers for TIB, PAD and the dictionary for using external memory. The input line is also extended to 80 (decimal) characters. In this exampie, the memory is located at $\$ 0000$ as in the case of the Motorola EVB. Other addresses for RAM can be accomodated by changing ine listed $\$ C x x x$ constants accordingly.

HEX
COO4 1C !
(TIB MOVE)
50 1E!
(C/L Change)
C060 22 :
(PAD MOVE)
FORGET TASK
C080 DP :
(DICTIONARY MOVE)

Note that the first four locations at $\$ 000$ are left unassigned so that an autostart pattern can be placed there (\$COOO is a $1 K$ boundary) after the program is complete. If a Battery RAM were used in that socket, the program would be saved through power down. If autostarting is not done, the address of the mairoutine to be run can be EXECUTE'ed from the terminal, or it can be run by its name if the dictionary pointers are intact. To be able to use the Battery RAM words' heads, the USER area must be battery backed, otherwise, the dictionary pointers must be relinked. If the program is ROM'ed later, it should allow for the locations \$COO4 through \$CO8O to become "unwritable".

The USER area can also be moved to give more room in the data stack, although, it is not normally necessary to do so.

You may occasionally experience a sysiem crasn, from wrich it is difficult to recover. i simpie reset may give you a Max-FORTH Vx.x prompt and a carriage return may even give you an "OR", however, Max-FORTH doesn't seem to understand anything typed in that is over 1 character lons. (A "no Max-Forit prompt" condition probaily means an autosiart prociem or hardware failure.)

This is usually the result of a blown dictionary link. If the linked list of the dicionary is opened (ie: one of the link fields is erased, written over, badly manipulated, etc.) Max-forth will accept your input and then go or. a wild goose chase looking for a match with your word all over memory until it finds a $\$ 0000$ in a link field which indicates "end of dictionary" (whicn, coincidentally, may never be found). It will either lock up or echo the entry with a question mark. This can be simulated by doing: 0 LATEST PFAPTR IFA! . You might want to wait a munute before you try this, however, until you know how to recover...

Another problem can happen wen the dictionary pointer gets out of RAM if, for instance, you did a KIX 5000 DP ! (which puts the dictionary pointer in ROM). The problen is that the outer interpreter takes your input line in TIB and parses a word at a time out of it. It moves the parsed word to HERE which is an exceptionally bad idea if DP is in ROM. ROM is funny that way, no matter what you write to it, it never takes it. Of course when the dictionary search compares, the dictionary list with the word at HERE, result has nothing to do with the characters (and number of then) of the word you typed in. It prints junk and a question mark.

A similar thing can happen if a word is moved to EEPROM with EFWORD and then forgotten. Quess where DP ends up?

Putting a bad value in UP can be interesting. Changing LDMIT or UKEY to same erroneous values can have same extremely quiet results, too.

If any of the above conditions occur, the onily way to recover is to power down and re-power or to force a cold reset.

A <CIRLD-G key combination in the Serial Commications Interface input register will force a cold reset. (<CTRL -C is the ASCII "BEIL" character, $\$ 0 /$ hex.) Entering the <CTRL \sim-G and hitting reset again should recover from any badly modified variable, blown dictionary links, crashed processor, etc. problems.

A bad autostart, however, can only be rectified by disabling the offending memory device. If the autostart pattern is in the part's EEPROM, it may be erased using a Mbtorola EMM for recovery.

1. AUTOSTARTING

Abstract

4: Max-FCRTH versions have autostarting capabiiities. Everi Version $1 . x$, advertised to the contrary, autostarts. It has heen modified, however, to find itse,f before jooking for any user proarams. !Version l.x was created so the product couid be safely distributed, without a signed i icense agreement, in ROM's that were copyabie. By reducing the autostart capabilities, the part is not des reabie for mass production.)

The autostart capability is the means by which the ianguage or the designated user program is started at power-up or reset. It makes up the better part of the Max-FORTH's operating system. In Version 2.x and greater releases, there are three distinct actions in the autostart sequence.

In brief summary, the first autostart attempt aijows a machine code routine to aiter the INIT, OPTION and TMSK2 registers immediateiy after reset. The second autostart attempt checks the beginning of EEPROM and then all lk memory map boundaries for a; temporary autostart pettern. The third autostart attempt checks! the beginning of EEPROM and ali of memory map lk boundaries for a primary autostart pattern. Each will be discussed in detail.

The first autostart occurs within a few cycles after reset. It looks at the EEPROM at SB7FE for a primary outostart pattern, SA55A. If that pattern is found, a JSR to iocation SB7FB is executed. At that location, three empty bytes aliow the insertion of a jump instruction which passes control to a designated machine code routine. The routine can aiter the INIT (REG $3-8$ \& RAM 3-G bits), OPTIONS (IRQE, DLY, CRI \& CRQ bits) and TMSK2 (PR1 \& PRD bits) registers which must be estabiished in the first 64 ciock cycies foliowing reset. Since they can only be written once and only in the 64 cycie period, any settings made in that routine will not be affected by iater system initialization action. Normally, the machine code routine will return to the system initiajization and autostart functions by performing an RTS. When the rest of the system initiaiization is not required, control could be maintained by user machine code programs.

The second autostart attempt checks the beginning of EEPROM, SB60日, and then searches all $1 k$ memory map boundaries, starting at iocation SO400 and continuing through SFCO日, for a temporary autostart pattern, SA44A. If the temporary autostart pattern is found at a given iocation SXXOD, the next word iocation foilowing the autostart pattern, SXXe2, is taken to be the CFA of the word to be run. This word could be anywhere in the memory map, aithough this program will typicaliy be in the memory device positioned at the boundary. The autostarted routine can either be a high jeved definition or a code definition. The unique advantage of this autostart attempt and the temporary autostart pattern is
code produced may not be premptabie and couid cause high-ievei interrupt and muititasking faiiures.

The SP redister is used for the FORTH Return Stack Pointer. Ne vajues sar be taken from, or ieft on, the machine stack by the end of the tefinition. while a vaiue can be temporariiy pusher on the stack, it must come off before the return to NEXT.

The A, B, D, X and C registers can be used without consequence.
Since the address of NEXT varies from version to version and revision to revision, CODE-SUB is again used in the next example. Using a CODE definition wouid require providing the address of NEXT for all versions and revisions. If a new revision was reieased with a different NEXT, this exampie may not work. Using CODE-SUB in defining a word here, assures that this exampie wiji be abie to return control to FORTH easily in all versions and revisions.

The example below reads the first four A / D channeis and piaces them on the stack.

```
CODE-SUB READ-M/D-CHO-3
    CE C. 9030 . ( LDK $9030)
    ( SET ADCTL FOR MULT READINSS, STRT CONV )
    86 C, 1% C, ( LDNA है 10)
    A7 C, 60, (SINA 0,X , S9339)
    ( WAIT UNIIL CCF SET )
(SPIN ) 1PC, 00 C, 80 C, FC C, ( BRCLR G,80,SPIN )
    4PC, ( CLRA )
    ( TAKE DATA, OPEN SIACK, SIORE DATN )
    E6 C, el C. (LDMB 1,X )
    18C, 09 C. (DEY )
    18C, 69 C, ( DEY )
    18C, ED C, C, ( STD D,Y )
    E6 C, }82\mathrm{ C, ( LDNB 2,X )
    18C, 09 C, (DEY )
    18 C. }69\mathrm{ C, (DEY)
    18 C, ED C, 00 C, (SID O,Y)
    E6 C, }63\mathrm{ C. (LDAB 3,X)
    18C, }99\mathrm{ C. (DEY )
    -18C. 69 C. ( DEY )
    18C, ED C, BOC, (STD O,Y)
    E6 C, 04 C, (LDAB 4,X )
    18C, 69 C. (DCY )
    18C, 89 C, ( DCY )
    18C, ED C, 69 C. ( SID 0,Y )
    39 ( RIS )
BD-cODE
```

One other requirement of the Assembler Extension word Set is the ;CODE word. This we (in conjuction with a newly defined defining word) causes later defined words to use : machine code interpreter following the ;CODE . As an example, the foilowing program se

```
ment simuiates the set up for a two engine monitaring proaram that uses ifen:ina. -ar
for bsth encine's parmeters. F.variabie CFANNEL is used to controi a new typf var:ar
created by the defining word CHANNEL-VARIABLE .
E CONSTANT PORT
1 CONSTANT STBD
VARIABLE CHANNEL (VALUE SHOULD BE O OR 1)
: MARE-CBANNEL-VARIABLE <BUILDS . .
;CODE
FC C, ' CHANNEL P , ( LDD CHANNEL )
F3 C, ' ceanelel e . ( adDO CbanNel )
8F C. ( XGOD )
EC C, 6S C, (LDD E,X )
18 C, }09\mathrm{ C, ( DEY )
18 C, }99\mathrm{ C, ( DEY )
18 C, ED C, (STD @,Y )
7E , FESE , ( MMP VERSION 1.0 NEXI )
END-CODE
MAKE-CHNNNEL-VARIABLE ENGINE-SUPPLY-TEMP
MANE-CBANEEL-VARIABLE ENGNE-RETURN-TENP
MAKE-CHRNNEL-VARIABLE ENGINE-SUPPY-FLON
MARE-CBRLEEL-VARIABLE ENGDE-FETURN-FLON
MAKE-CHNNEL-VARIABLE ENGINE-RPM
PORT CHANEEL ! ( NON WORR ON PORT ENGDE )
    ( etc. ... )
STBD CHNNELL ! ( NOW WORK ON STBD ENGINE )
( etc. ... )
```


1. CODE DEFINITIONS

Ajthough the 8 K versions of Max-FORTH do not have on inziuned assembier, code definitions can stiil be adrer. Three key words, CODE , END-CODE and CODE-5'8 have been added to faciilitate this.

CODE is a defining word that creates a head for the name string that foilows it. The Code Field of the created word points to its own Parameter Fieid. This causes control to transfer to the code in the Parameter Fieid when the word is executed. CODE does not set the compilation mode but does leave security values on the stack for END-CODE which ends the code definition.

Usuaily, in systems with assembiers, what goes between the CODE <name> and END-CODE, is assembiy mnemonics and their parameters. Although there is an ASSEMBLER vocabuiary, as required by the Assembier Extension Word Set, there was not enough room for a fuil assembier, so the vocabuiary is empty. In order to enter machine code, the code must be hand assembied and piaced in the dictionary using, and $C_{\text {, }}$. At the end of the code definition's execution d control must be transfered back to the Max-FORTH system. This wili usualiy be. done by a JMP NEXT instruction. No knowing the address of NEXT can be a big! drawback to using machine code definitions.

For that very reason, the defining word, CODE-SUB , was addec to Max-FORTH. It ailows the entry of a machine coded subroutine to be entered as a FORTH definition. Like CODE , CODE-SUB creates a head for its name string, and jeaves security for END-COOE . CODE-SUB, however, puts the address of an interpreter in the new definition's Code Field. The interpreter will JSR to the new definition's Parameter Fieid when it is called, and wiil JMP NEXT after the caided routine returns. The normal way to finish a CODE-SUB definition, is by compiling an RTS and using the standard END-CODE definition termination. The CODE-SUB definition can either be executed by name from high level FOR'H or cailed from a machine code routine by JSR'ing to its Parameter Fieid.

The foilowing example illustrates the creation of a code definition that causes the processor to go into the wait mode. It takes advantage of the previousiy described CODe-sub word.

```
CODE-SUB WAIT
    3E ( WAIT INSTRUCTION )
    39 ( RTS )
END-CODE
```

It should be noted that certain registers have significance to the virtual FORTH machine and require speciai treatment in code definitions. The Y register is used for the Data Stack Pointer. It should be left aione for the most part. (Note: the Data Stack grows down in memory.) If something is to be removed from the stack, it shouid be removed and then the Y register should be increnented twice (ie: LDD D,Y INY INY). If something is to be put on the stack, the Y register should FIRST be decremented twice and then the vaiue shouid be put on (ie: DEY DEY STD D,Y). If this order is not observed, the
＝hat，＝he autostarted definjtion need not be an endiess i＝2f．It can terminate normaiiy with \exists for hign ievei words ar a jup NEX：E：r code definitions．When the system turns contris over to a temporary autostart word，the If is set to return coneroi to the tinird autostart attempt．In this manner，normai termination of a temporary autostart word wiid cause initiation of the primary autostart search．

The third autostart attempt checks the beginning of EEPROM， SB6ヵロ，and then searches all lK memory map boundaries，starting at iocation $\$ 040 \theta$ and continuing through SFC日B，for a primary autostart pattern，SA55A．IE the primary autostart pattern is found at a given location SXX日⿹，the next word location foijowing the autostart pattern，SXXO2，is taken to be the CFA of the word to be run．This word could be anywhere in the memory map，aj－ though this program wili typically be in the memory device posi－ tioned at the boundary．The autostarted routine can either be a high ievel definition or a code definition．The autostarted definition will normally be an endless joop．If it terminates， with a for high level words or a JMP NEXT for code definitions， the system again returns control to the beginning of the third autostart attempt．In this case，the same word will be found and autostarted again and again．If no user autostarts are found；a primary autostart pattern should be found at SE日gD，the beginning of the Max－FORTH ROM．If by some circumstance it is not there， the search wili begin again at the third step．It wiji so con－ tinue until an autostart pattern is found．

The three leveis of autostart system give a great deai of fiexibijity to the system user．With no interference，the Max－ FORTH operating system wili find and run itseif．A user program can intercept the primary autostart search by having an autostart pattern at a memory jocation iower than that of the Max－FORTH＇s ROM．A specific application to be started and the system thereby dedicated to its operation，instead of the running the Max－FORTH outer interpreter．A user may simply want to modify the normai start up procedure without taking permanent system initiaiization responsibilities．In this case，the temporary autostart optiur． aijows linking of additional ROM＇s and command vocabuiaries into Max－FORTH or even multitasking without interfering with the primary autostart abilities．The temporary autostart option is aiso useful to modify baud rates，etc．，when there is no oppor－ tunity to catch the primary autostart by being piaced in＂iower＂ memory（ie：primary autostart pattern located at SB600 or S040®）． A ROM higher in the memory map can still perform its function and ailow the primary search to find its mark．

The neaderiess code feature of the Max-FCRTH anauage is not avaiiabie in many other versions of FORTH, so it is necessary to point out the significance of the PFAPTR and how it can affect the use of a wrd's sompilation address in an appijication program.

The use of the Parameter Fieid Address is common piace in Max-FORTH and other FORTH's as weil. Max-FORTH's dictionary structure is sightly different because of its PFAPTR which ailows headeriess code generation and testing. Words such as ' do not return a PFA, but rather a PFAPTR. The word's PFAPTR is a part of its head. It serves as the connection between a word's head
:length field : name field : : ink fieid : parameter-field-pointer field :
Word's Head Components
code fieid : parameter fieid :
Word's Code Components
and its code. To convert a PFAPTR to the actual PFA of a word, only a e is required. Some care must be used in a compiled program to be sure that the address of the PFAPTR which is in the head is availabie to be fetched. If the program is target compiled and the heads discarded, there will be a mysterious error haunting in the headerless program.

For exampie:

```
: INITI
    ( NDW-NEY-RIN & ( note e changes PFAPTR to PFA ) UKEY !
;
```

works fine if the program is not headeriess, or if the heads are stili in memory. But if the program is headeriess, and the program is in ROM and the heads go away with a powerdow, the program will not work at power up.

It is suggested that the foiiowing format be used instead.

```
: INITI
    [ ' REN-NEY-RTN E ] LITERAL UKEY !
;
```

Note in this situation that the [causes the ' and to be executed in the immediate mode. The $]$ returns to the compije mode and the LITERAL compiies a iiterai with the vaiue from the stack ieft by the [] . All the indirection involving the head is done at compilation time, rather than at rum time.

1. INTERRUPTS

The 68HCll has many separate interrupt veztors. In order not $=0$ compromise their user avaiiabiiity lsince $=$ he ROM inside the chip can not be user modifiabie), these vectors were assigned with acdresses outside the RON. The addresses chosen for these vectors to point at were the high jocations of the EEPROM from SE7xx to SB7xx. This collection of a byte iocations will typicaily =onsist of a jump table. At each jocation, a user machine coded jump instruction wili direct the interrupt on to the jocation of its own machine code handier. If EEPROM has been disabied, externai memory can provide this second redirection.

A machine code handier must first be written to use a particuia: interrupt. It wili normaijy end with an RTI to return to the interrupted program. The JMP op-code and the address of the code definition's parameter fieid shouid be instailed in the jump table. The particuiar interrupt can then be enabied.

CODE IRQRTN (HANDLE EXT PIN IRQ'S)

)
...)
....)
3B C, (RTI

END-CODE

```
CODE-SUB CLEAR-CC-MASKS
    86 C, BE C, ( LDAA © )
    06 C. ( TAP)
    39 C. ( RTS )
END-CODE
```

```
    ENABLE-IRQ'S
    7E BTE9 EEC! ( JMP OP-CODE )
    [ ' IRQRTN @ >< FF AND ] LITERAL B7EA EEC! ( HI BYTE )
    [' IRQRTN @ FF AND ] LITERAL B7EB EEC! ( LO BYTE )
    CLEAR-CC-MASRS
```

;

In this exampie, ENABLE-IRQ's puts the JMP op-code in the address (SB7E9) pointed to by the Externai IRQ Pin vector (SFFF2). It fetches the address of the interrupt routine that will handie the IRQ Pin's requests, IRQRTN and puts it in after the JMp op-code. This is accompiished one byte at a time. Each time, the compiiation mode is ieft. The interrupt routine's name is ticked. This returns its PFAPTR. The PFAPTR is converted to a PFA by the e. The appropriate high byte or jow byte of the resuit is masked out. The compilation is then reentered. The value on the stack is compiled as a iiteral to be programmed into EEPRCM at run time. A routine that ciears she condition code register mask bits is then caijed, enabiing interrupts. Be aware that the

Stop mode and XIRG hits are aiso effected by that routine.
High ievei interrupts can easily be handied in Max-FORTH. Low ievei interrupt handiers that caii high ievei interrupts can be written with oniy 3 iines of machine code. This is possibie because of the inciusion of a subroutine cailed ATO4 which can start a high ievei word from machine code.

To run a high ievei word, aij that is necessary is to first ioad the D Register with the Code Field Address of the word to be run, ioad the Y Register with a pointer to free memory area that can be used as data stack and to then jump subroutine to ATO4. This routine catches the system after the completion of the so caijed high ievel word and does an RTS to return to the machine code that called it. The high level word will probably use the Data and Return Stacks, but since Max-FORTH has been written to be totally preemptable, this should pose no problem. The $S P$ and Y registers should not need adjustment. (In many instances, the Y Register would not need to be modified either. Only the FIND routine in Max-FORTH uses the Y register for anything except a very carefuily maintained stack pointer. If the foreground program is not using FIND or in other words, the outer interpreter, but is instead a dedicated program itself, and the user has not entered machine coded definitions that tamper with Y's purpose as a data stack pointer, no concern need be paid to Y's contents during interrupt.)

There is a built-in constant that returns the address of th's special subroutine. To aquire this address simply enter ATO4.

```
: HI-LEVEL-IRQRTN ( HANDLE EXT PIN IRQ'S )
    ( ... )
    (... )
    (...)
;
CODE LO-LEVEL-IRQRTN
    CC C, ' BI-LEVEL-IRQRTN % ( LDD * CFA-OR-RI-LEVEL-IRQRTN )
    BD C, ATO4 , ( JSR ATO4 )
    3B C, ( RTI )
END-CODE
```

CODE-SUB CLEAR-CC-MASKS
86 C . $\mathrm{EFC}^{\circ} \mathrm{C}$. (LDAA 0)
66 C. (TAP)
39 C. (RTS)
END-CODE
: ENABLE-IRQ'S
7E B7E9 EEC! (JMP OP-CODE)
[© IRQRTN \gg< FF AND] LITERAL B7EA EEC! (BI BYTE)
[' IRQRTN a FF AND] LITERAL B7EB EEC! (LO BYTE)
CLEAR-CC-MASES

1. PROGRAMMING THE INPUT / OUTPUT OF THE F68CH11

Aii of the F68HCll onboard input/cutput features are controiiet by a singie register bjock of 64 iocations. Understanding the use of those registers means understanding aij of the I / O features of the Ff8HCll.

The location of this register biock is controlied (you might r.tve quessed) by a register. Upon reset, this register estabiishes the reais:er biock at Slybe. Aithough the Max-FORTH operating system aiows modification, the register set wili normally be moved by the operating system to SBU0X for Rev 2 parts (59000 for Rev and Rev 1) to give the most consistentiy contiguous memory map possibie. (At SBD日e, the registers are in the same 4 K biock of memory aiready partiticned by the EEPROM.) The following discussion assumes the register set is at SBDOU.

The number of register may seem formidable. It will be easier to understand them by first grouping them by their function. There are five major groups: port, timer, serial channel, A / D and misceianeous.

The 68 HCll includes a $40 \mathrm{I} / \mathrm{O}$ pins in five 8-bit ports. All of these pirs serve multipie functions depending on the operating mode and the internai control registers. These registers are in memory from SB0b0 to SBD0A.

PORTA	SE
PIOC	SB00
PORTC	SBPE3
PORTB	\$BDD
PORTCL	SB00
DDRC	SB807
PORTD	SB00
DDRD	SB
PORTE	5 BO

The first register, PORTA at SB601, is used to read and write port A. When Port A is used for generai purpose I/C bits, bits $\ell, 1$ and 2 are configured for input-oniy and writes to these bits have no meaning or effect. Bits 3, 4, 5 and 6 of Port A are configured for output-oniy. Reads of these bits return the leveis sensed at the inputs to the pindrivers. Port a bit 7 (PA7) can be configured as a generai-purpose I/O using the DDRA7 bit in the PACTL register. Port A. may also be configured as: three input capture functions (IC1, IC2, IC3), four outpu: compare functions ($\propto 2, \propto 3, \propto 4, \propto 5$), with a pulse accumuiator input (PA1) or a fifth output compare functions (OC1). Each port A bit that is not used for a capture or compare function may be used as a general purpose input or output iine.

The second iocation at SBudl is reserved and has no Eunction currentiy.
The Port I / O Controi register, PIOC at ioca=ion SBわw2, has a coijection os controi hits deaiing largeiy with handshake controi. With the exception of bit 7 , which is read only, the $P I O C$ is a read/write register.

Due to the complexity of the bits in the PIOC each bit wili be describec separately.

B7 B6 B5 B4 B3 B2 B1 B0

| STAF| STAI| CWOM| HNDS| OIN | PLS | EGA | INVB| SBQ日2 PIOC

Bit 7 STAF Strobe A Interrupt Status Fiag. This bit is set when a seiected edge of strobe A occurs. Clearing it depends on the state of $H N D S$ and OIN bits. STAF is cleared by reset.

Bit 6 STAI Strobe A Interrupt Enable Mask. When this bit is set and the I bit in the condition code register is clear, STAF (when set) wili request an interrupt. STAI is cleared by reset.

Eit 5 CWOM Port C Wire-OR Mode. When clear, port C operates normally. When set, port C behaves as open-drain outputs. ©NOM is cieared by reset.

Bit \& LNDS Handshake Mode. When clear, strobe A acts as a simple input strobe to latch data into PORTCL, and strobe B acts as a simpie output strobe which pulses after a write to port B. When set, a handshake protocol involving port C, STRA and STRB is seiected (see the definition of the OIN bit).

Bit 3 OIN Output or Input Handshaking. This bit has no meaning when $\mathbb{H N D S}=0$. Otherwise, when OIN is clear, input handshake mode is seiected. When OIN is set, output handshake mode is seiected. OIN is cieared by reset.

Bit 2 PLS Pulse/Interlocked Handshake Operation. This bit has no meaning if HNDS $=0$. When PLS is ciear, interlocked handshake operation is seiecteri. In this mode, strobe B, once activated, stays active until the selected edge of strobe A is detected. When PLS is set, strobe B is puised for two E cycies. This bit is undefined coming out of reset.

Bit 1 EGA Active Edge for Strobe A. When clear, failing edge of STRA is seiected. When output handshake is seiected, port C bits obey tine DDRC whije STRA is jow, but port C is forced to output when STRA is high.

When set, rising edge $2 f$ STRF is seiected. iner cutput handshake is seiected, port C bits obey Ene DDRC while STRA is high, hut port C is forced to output when STRA is low. This bit is set by reset.

Bit $\&$ INVB Invert Strobs 5. When ciear, the artive ievei on strobe E is 3 iogic zero. When set, the astive ievei on strobe P is a iogic one. " is set by reset.

Location SEXV4, PORTC, is used to read and write the Port C pins. Ali Port C pins are generai-purpose input/output pins. The direction of the Port C ines are controiled by a direction register, DDRC. port C inputs can be iatched by tne STRA input. Port C may $a l$ so be used in full handshake modes of paraiiei I/O where the STRA input and STRE output act as handshake control iines.

$\mid \mathrm{PC} 7$ | PC6 | PC5 | PC0 | PC 3 | PC2 | PCl | PC0 | SB003 PORTC

$!$
Lacation SB005, PORTB, is used to read and write Port B. Ali of the port $\frac{1}{8}$ pins are general-purpose output pins. During reads of this port, the ievel sensed at the input side of the port E output drivers is read. Port B may also be used in a simple strobed output mode where the STRB pulses each time port B is written.

Location SBDE5, PORTCL, is used to read Port C, but it returns the value latched at the time of the last significant edge on STRA. All Port C pins are generai-purpose input/output pins. The direction of the Port Clines are controiled by a direction register, DDRC. Port C inputs can be latched by the STRA input. Port. C may aiso be used in full handshake modes of paraijei I/O where the STRA input and STRB output act as handshake control iines.

The next iocation at $\$ \mathrm{BeO}$ is reserved and has no function currently.
A data direction register, DDRC at SBOE7, detemines whether the individuad port C pins are input or outputs. The data direction register can be either
reac or wriEten to in order to set the fort C $1 / O$ directions. Eash bit in PORTC data register has a bit position in the DDRC register. When a bit is consigured for output, by being set to 1 , the vaive returned by a read is the value at the input to the pin Jriver. When a ine is configured as an input, by ciearing the DDRC bit, the pin becomes a high impedance input. If a write is executed to a jine that is configured as an input, the value does not affect the I / O pin, but the bit is stored in an internaj jatch so that if the ine is iater reconfigured as an output, then this value appears at the $1 / 0$ pin.

```
    E7 B6 Br B5 B4 B3 Br B2 Bl Bl
|-----|----- |-----|----- |----- |----- |--------------1
|Bit 7|Bit 6|Bit 5|Bit 4|Bit 3|Bit 2|Bit l|Bit 0| $B007 DDRC
|-----|----- |----- |----- |------|----------------------
```

Location \$B008, PORTD, is used to read and write Port D. Port D bits B-5 may be used for general I/O or with the seriai communications interface (SCI) and seriai peripherai interface (SPI) subsystems. Bits 6 and 7 are used as handshake control signals for ports B and C.

A data direction register, DDRD at SB009, determines whether the five individual general purpose port D pins act as input or outputs. The data direction register can be either read or written to in order to set the Port D I/O directions. Each bit in PORTD data register has a bit position in the DDRC register. When a bit is configured for output, by being set to 1 , the value returned by a read is the value at the input to the pin driver. When a line is configured as an input, by clearing the DORD bit, the pin becomes a high impedance input. If a write is executed to a jine that is configured as an input, the vaiue does not affect the I/O pin, but the bit is stored in an internal lateh so that if the line is later reconfigured as an output, then this vajue appears at the I/O pin.

Note that bits 6 and 7 of Port D are dedicated to bus control (AS and R/M) while in expanded mode or parailei I/O strobes (STRA and STRB) while in singie chip mode. For this reason, bits 6 and 7 of port D are not availabje as generai purpose I / O ines and the associated bits in the DRRD and PORTD registers are not impiemented.

Location SBinin, PORTE, is used to read Port E. In aid operating moses, Bote E is used for generai-purpose inputs and/or anaiog-to-cigitai (A/D) channei inputs. Port E shouid not be read while an A / D conversion is actuaidy taking piace. Writes to the PORTE address have no meaning or effect.

The largest of the five groups of registers concern the timer functions:

CFORC	SBQ0b	TOC 4	sbolc
OCIM	SBQDC	TOC 5	SB81E
OC1D	SB00D	TCTLI	SBP20
TCNT	SBDOE	TCTL2	SB621
TICl	SB\#18	TMSK1	SBE22
TIC2	SBE12	TFLG1	SBQ23
TIC3	SBE14	TMSK2	SB824
TOCl	SB016	TFLG 2	SB825
- 0 O2	SB018	PACTL	SB026
TOC3	SBEIA	PACNT	SB027

The timer has a single l6-bit free-running counter which is ciocked by the output of a four-stage prescaler (divide by $1,4,8$ or 15), which is in turn driven by the MCU E clock. Input functions are called input captures. These input captures record the count from the free-running counter in response to a detected edge on an input pin. Output functions, cailed output compares, can automatically affect output pins when there is a match between a l6-bit output-compare register and the free-running counter. Additionaliy, one output compare can affect any or all of the five output pins (Bits 7-3) in Port A at once, as a resuit of a successful compare. This function allows controi of multipie I/O pins automatically with a single output compare.

This timer system has a total of three input capture register and five output compare registers.

The first register in the group deais with the output compare function. The writemany register, CFORC at SB0日B, aliows output compares to be forced by writing to CFORC with the associated bit set for each output compare that is to be forced. The astion taken as a result of a forced compare is the same as if there was a match between the $\propto x$ register and the free-running counter, except for the corresponding interrupt flag status bits which are not set. Reads of this location have no meaning or effect and always return jogic zeros (507).

Five of the bit positions in the CFCRC register, bits 7-3, correspond to the five output compares. Bits 2, 1 and of the CFORC register are not impiemented. Note that the compare force function is not generaiiy recom-
mended for use with the output soogie function because a nomai sompare occuring immediately before or after the force may resuit in the uncesirabie operation.

Bits 2-0 Not impiemented. Pead as a iogic zeros.
The next register, $\propto 1 M$ at SB00C, is used in conjunetion with Output Compare : to specify the bits of port A which are to be affected as a result of a successful $\propto 1$ compare.

SBDDC OCIM

The bits of $\propto 1 M$ register correspond bit-for-bit with the output bits of port A (bits 7 through 3 only). For each bit that is affected by the successfui Output 1 Compare, the corresponding bit in $\propto 1 M$ should be set to one. Eits zero through two are not impiemented and always read as zeros. This register is cieared by reset.

The register immediately foilowing, $\propto 1 D$ at SBODD, is also used in conjunction with Output Compare 1. It specifies the data which is to be stored to the affected bits of Port A as the resuit of a successful $O l$ compare. Bits zerc through two are not implemented and aiweys read as zeros. This register is not affected by reset.

The bits of $O C l D$ correspond bit-for-bit with the bits of port A (bits ? through 3 only). When a successfui $\propto 1$ compare occurs, for each bit that is set in $\propto 1 M$, the corresponding data bit in $\propto 1 D$ is stored in the corresponding bit of port A.

If there is a conflicting situation where an $\propto 1$ compare and another output

Compare function cceur suring the same E sycie with both attempting to aiter the same port A bit, the \propto : astion overrides.
(Note that the puise aceumuiator function shares bit 7 of port A. If the DDRA 7 contrci hit in tne PACTL register is set, then Port A bit 7 is configured as an cutput and $O C l$ can obtain access by setting $C C l M$ oit?. Further, if the PAEN controi bit in the PACTL register is set, enabiing the puise accumuiator, $\propto l$ compares cause the puise accumulator to take the appropriate action of the puise counting or gating mode).

The next two incations, TCNT at SBDBE and SBUOF, can be used to read the cour:ter at any time without affecting its value because it is clocked and read during opposite half cycies of the MPU E clock. A counter read should first address the most significant byte. An MPU read of this address causes the ieast significant byte to be transferred to a buffer. This buffer is not affected by reset and is accessed when reading the least significant byte of the counter. For dowle byte read insructions, the two accesses occur on consecutive bus cycles. The counter is cleared to $\$ 0000$ during reset and is a readonly register in ali but the test mode.

The counter is cieared to 50000 during reset and is a read-only register in ali but the test mode.

The input capture registers are 15 -bit read-only registers which are not affected by reset and are used to latch the value of the counter when a defined transition is sensed by the corresponding input capture edge detector. The ievel transition which triggers counter transfer is defined by the corresponding input edge bits, EDOXB and EDOXA, in TCTL2.)

The result obtained by an input capture corresponds to the value of the counter one cycle after the transition which triggered the edge-detection logic: The seiected edge transition sets the ICXF in TFLEl and can cause an interrupt if the corresponding ICXI bit(s) is (are) set in the TMSKI register. A read of the Input Capture Register's MSB inhibits captures for one E cycie to aijow a double-byte read of the full 16 -bit register.

The output compare registers are l6-bit read/write registers which are initialized to SFFFF by reset. They càn be used as output waveform controis and as elapsed time indicators. If an output compare is not utilized, the unusec registers may be used as storage locations.

Ail output compare registers have a separate dedicated comparator for comparing against the free-running counter. If a match is found, the corresponding output compare Eigg (OCXF) bit in TFLG is set and a specified action is automatically taken. For output compare furctions two through five, the automatic action is controlled by pairs of bits in the TCTLI control register (OMx and OLx). Each pair of controi bits are encoded to specify the output action taken as a result of a successful $\propto \times x$ compare.

An interrupt can also accompany a successful output compare, provided that the corresponding interrupt enable bit (0×1) is set in TMSKI.

After an MPU write cycie to the most significant byte, output compares are inhibited for one E cycle in order to aliow writing of two consecutive bytes before making the next comparison. If both bytes of the register are to be changed, a double-byte write instruction should be used in order to take advantage of the compare inhibit feature. MPU writes can be made to either one of the bytes of the output compare register without affecting the other byte.

Timer Controi Register 1, TCTLI, is an 8-bit read/write register. Ail bits in this register are cleared to zero during reset.

Bits 7, 5, 3, 1 - OMx Output Mode.
Bits 6, 4, 2, 0 - OLx Output Level.
These two controi bits (OMx and OLX) are encoded to specify the output action to be taken as a resuit of a successfui oCx
compare.
OMx OLx Action Taken Upon Successful Compare

0	Timer disconnected from output pin iogic	
1	1	Toggie oCx output i ine
1	Ciear ocx output i ine to zero	
1	Set ocx output line to one	

Timer Controj Register 2, TCTL2, is an 8-bit read/write register except for bits 6 and 7 which are not impiemented.
$\begin{array}{cccccccc}\text { B7 B6 B6 } & \text { B6 } & \text { B3 } & \text { B2 } & \text { B1 } & \text { B0 }\end{array}$
$1-1-|E D G 1 B| E D G 1 A|E D G 2 B| E D G 2 A|E D G 3 B| E D G 3 A \mid$ SB021 TCTL2

Bits 7, 5 Not impiemented. Read as logic zeros.
Bits 5, 3, 1 EDOxB Input Capture x Edge Control. These two bits (EDGXB and EDGXA) are cleared to zero by bits 4, 2, EDCXA reset and are encoded to configure the input sensing logic for input capture x as foilows:

EDGxB	EDGXA	Configuration
0	0	Capture disabled
0	1	Capture on rising edges only
1	0	Capture on falling edges only
1	1	Capture on any (rising or faling) edge

The timer interrupt mask register, TMSKI^{2}, is a read/write register.

Bits 7-3 OXI Output Compare x Interrupt. If the $C_{x I}$ mask bit is set when the OXF fiag bit is set, a hardware interrupt sequence is requested.

Bits 2-ه ICxI Input Capture x Interrupt. If the ICxImask bit is set when the ICXF fiag bit is set, a hardware interrupt sequence is requested.

The Timer System F_{1} ag Register 1, TFLG1, indicates the occurence of timer system events and, together with the TMSKl register, allows the timer sub-system to operate in a poised or interrupt driven system. For each bit in the timer
fiag register 1 (TFLEl:, there is a cerresponding bit in the timer mask register 1 (TMSKl) in the same bit position. If, and oniy if, the mask bit is set each time that the conditions for the corresponding fiag are met, a hardware interrupt sequence, as weil as the fiag bit being set, is requested.

To clear a fiag in this reaister, a pattern of ones should be written to the bits to be cieared. The zeros in that pattern wili not affect the state of any bit. Bit manipulation instructions would be inappropriate for fiag ciearing because they are read-modify-write instructions. Even though the instruction mask implies that the programmer is only interested in some of the bits in the manipulated location, the entire 8-bit location is actuaily read and rewritten which may ciear other bits in the register.
$\begin{array}{cccccccc}\text { B7 } & \text { B6 } & \text { B5 } & \text { B4 } & \text { B3 } & \text { B2 } & \text { B1 } & \text { BQ }\end{array}$
$|O C 1 F|$ OC2F| OC3F| OC4F| OC5F| ICIF| IC2F| IC3F|
SBe23 TfLG1

Bits 7-3 OCXF Output Compare x Flag. This fiag bit is set each time the timer counter matches the output compare register x value. A wriţe of zero foes not affect the state of this bit. A write of a one causes this bit to be cleared.

Bits 2-0 ICXF Input Capture x Flag. This fiag bit is set each time a selected active edge is detected on the $I C x$ input ine. A write of a zero does not affect this bit. A write of a one causes this bit to be cieared.

The Timer System Mask Register 2, TMSK2, is used to controi whethe: or not a hardware interrupt sequence is requested, as a result of a status bit being set in timer system fiag register 2. In addition, two timer prescaier bits are included in this register. For each of the four most significant bits in timer flag register 2 (TFLS2), there is a corresponding bit in the timer mask register 2 (TMSK2) in the same bit position. All bits in the TMSK2 Register are cleared by reset.

Bit 7 TOI Timer Querfiow Interrupt Enabie. This read/write bit is cieared by reset. If this bit is set, a timer overflow interrupt request is initiated each time the $T O F$ bit (in TFLE2) is set, as a resuit of a timer counter overfiow.

Bit 5 RTI Interrupt Enable. This read/write bit is used to enable or inhibit RTIF interrupt flags from causing hardware interrupt sequences.

It is cieared to zers by reset. When RTII is ciear, the RTIF fiad is masked (inhihited). When RTII is set, the RTIF fiag is enabied to cause a hardware interrupt.

Bit 5 PAOVI Puise Accumuiator Overfiow Interrupt Enabie. This read/write bit is cleared to zero by reset and is used to enabie or inhibit PAOVF interrupt flags from causing hardware interrupt sequences. When it is set, a hardware interrupt resuits when the PAOVF bit is set.

Bit 4 PAII Puise Accumuiator Input Interrupt Enable. This read/write bit is used to enabie or inhibit PAIF interrupt flags from causing hardware interrupt sequences. It is cieared to zero by reset. When it is set, a hardware interrupt results if the PAIF bit is set.

Bit 3-2 These bits are not implemented. Reads of these bits will aiways return a logic zero.

Bit 1-0 PRI, PRD Timer Prescaler Selects. These two bits may be read at any time but may only be written during initialization. Reset clears these bits. Writes are disabled after the first write or after 64 E cycles out of reset. If the MCU is in special test or speciai bootstrap mode, then these two bits may be written any time.

These two bits specify the timer prescaler divide factor:

PRl	PR 0	Divide-by-Factor
0	0	1
0	1	4
1	0	8
1	1	16

Timer System Flag Register 2, TFLE2, indicates the occurence of timer system events and, together with the TMSK2 register, allows the timer sub-systems to operate in a poiled or interrupt driven system. For each bit in timer fiag register 2. (TFLE2), there is a corresponding bit in timer mask register 2 (TMSK2) in the same bit position. If the mask bit is set each time that the conditions for the corresponding flag are met, a hardware interrupt sequence, as weil as the flag bit being set, is requested.

The timer system status register indicates when interrupt conditions have occurred. To clear a bit or bits, a logic one is written to it, or them.

Bit manipulation instructions are inappropriate for $f l a g$ clearing because they are read-modify-write instructions. Even though the instruction mask impilies that the programer is only interested in some of the bits in the manipuiated iocation, the entire 8 -bit location is actuaijy read and rewritten which may clear other bits in the register.

SEE25 TFLG2

Bit 7 TOF Timer Ouerflow. This bit is cieared by reset. It is set to one each time the 16 -bit free-running counter advances from a vaiue of SFFFF to s00DE. In order to acknowiedge (clear) the TOF fiag the user must perform a write operation to TFLE 2 with bit 7 set.

Bit κ RTIF Real Time Interrupt Flag. This bit is cieared by reset. RTIF is set at each rising edge of the selected tap point. To clear the RTIF fiag, a software write is performed to the TFLO 2 register with bit 6 set to one.

Bit 5 PAOVF Puise Accumulator overflow Interrupt Flag. This bit is cieared by reset. PAOVF becomes set when the count in the pulse accumuiator roils over from SFF to S00. This bit is cleared by a write to the TFLG2 register with bit 5 set.

Bit 4 PAIF Puise Accumulator Input Edge Interrupt Flag. This bit is ciearad by reset. PAIF becomes set when an active edge is detected on the PAI input pin. This bit is cieared by a write to the TFLG2 register with bit 4 set.

Bits 3-8 These bits are not implemented and they read as logic zeros.

When the count changes from SFFFF to SODOD, the timer overfiow fiag (TOF) bit is set in TFGL2. An interrupt can be enabled by setting the interrupt enabie bit (TOI) in TMSK2.

The real time feature on the 68 HCll is configured and controijed by two bits in the PACTL control register (RTRI and RTRD) to seiect one of four interrupt rates. The RTII bit in TMSK2 enables the interrupt capability. Every time out causes the RTIF bit to be set in TFLO2 and if RTII is set, an interrupt request is generated. After reset, one entire real time interrupt period elapses before the RTIF fiag is set for the first time.

The pulse accumulator is an 8-bit counter which can operate in either one of the two modes depending on the state of the PAMOD controi bit in PACTL. In the event counting mode, the 8-bit counter is clocked to inereasing vaiues by an externai pin. In the gated time accumuiation mode, an $E / 64$ ciock drives the 8-bit counter, but oniy while the externai PAI input pin is in a seiected state.

The puise accumulator uses port A bit 7 as its PAI input, but this pin aiso shares function as a general purpose I/O pin and as a timer output compare 1 output. Although port A bit 7 would normaily be configured as an input when being used for the puise accumuiator, it stili drives the pulse ac- muiator system even when it is configured for use in its alternate capacities

Four bits in this register are used to controi an 8 -bit puise accumuiator system and two other bits are used to seiect the rate for the reai time interrupt system.

Bit 7 DDRA7 Data Direction for Port A Bit 7. This read/write bit is used to enable or disable the output driver for the Port A bit 7 pin. DDRA7 is cieared by reset. When DDRA7 is zero, the Port A bit 7 pin is configured for input only and when DDRA7 is one, Port A bit 7 is configured for output. Note that even when Port A bit 7 is configured for output, this pin stiil acts as the input to the pulse accumulator system.

Bit 6 PAEN Puise Accumuiator System Enable. This read/write bit is used to enable or disable the puise accumuiator system. PAEN is cieared by reset. When it is set, the puise accumulator is enabled, and when ciear, the puise accumulator system is disabled.

Bit 5 PMMOD Pulse Accumulator Mode. This read/write bit controls whether the pulse accumulator is to operate in the external event counting mode or the gated time accumulation mode. When it is zero, the pulse accumulator counts pulses on the PAI input pin (port A bit 7). When it is set, the pulse accumulator operates in the gated time accumulation mode and the PAI input ailows the puise accumulator counter to count. The PAMOD bit is cleared to zero by reset.

Bit 4 PEDGE Puise Accumulator Edge Controi. This read/write bit has different meanings depending on the state of the PAMOD controi bit. This bit is cleared by reset.

Bit 3-2 These bits are not implemented and read as iogic zeros.
Bit 1-0 RTR1,RTRE RTI Interrupt Rate Seiects. These two read/write bits select one of four rates for the reai time period interrupt circuit. Reset ciears these two bits and after reset, a full RTI period eiapses before the first RTI interrupt.

The serial peripheral interface (SPI) is a synchronous interface built into the 6RHCll MCU which allows several 68HCll MCUs or a 68HCll pius peripherai revices, to be interconnected. In an SPI, separate wires (signals) are required for data and ciock as the clock is not included in the data stream. An SPI system may be configured as a master or as a siave.

The four basic signais (MISO, MOSI, SCK and SS) used to transmit data by the serial peripherai interface are discussed in the foilowing paragraphs. Each signal is deseribed for both the master and siave modes.

Any SPI outputs has to have its corresponding data direction bit in DORD set. If this bit is clear, the pin is disconnected from the SPI logic and becomes a general-purpose input.

There are three registers in the serial peripherai interface which provide controi, status and data strorage functions.

: 7 SPIE Seriai peripheral Interrupt Enabie. When the SPIE bit is set, ? interrupts are allower. Interrupts are masked when this bit is clear The SPIE bit is cleared by reset.

Bit $\&$ SPE Seriai Peripherai Enabie. When seriai peripnerai enabıo bit is set, it enabies the SPI system by connecting it to the externai pins. Because the SPE bit is cieared by reset, the SPT system is not connected to the externai pins upon reset.

Bit 5 DWOM Port D ???, If the Drom bit is set, Port L output pins Eunction as open-drain outputs, and when the Dwom is =iear, port D output pins function normaliy. The DWON bit is cieared by reset.

Bit \triangle MSIR Master. If the MSTR bit is set, the SPI is a master device. If cieared, the SPI is a slave device.

Bit 3 CPOL Clock Polarity. When the CPOL bit is cieared and data is not being transferred, a steady state low vaiue is produced at the SCK pin of the master device. Conversely, if this bit is set, the SCK pin wili idle high. This bit is aiso used in conjunction with the ciock phase controi bit to produce the desired clock-data reiationship between master and siave. The CPOL bit is cieared by reset.

Bit 2 CFiA Clock Phase. The CPHA bit, in conjunction with the CPOL bit, controls the clock-data relationship between master and slave. In general, the CPHA bit selects which clock edge captures data and ailows it to change states. The CPHA bit is set by reset.

Bit 1-p SPRI SPR Serial Peripheral Rate Selects. These two bits seiect one of four baud rates to be used as a SCK if a device is a master; however, they have no effect in the siave mode. The SPRI and SPRO bits are not affected by reset.

Bit 7 SPIP Serial Peripheral Data Transfer Flag. The SPIF bit is set upon compietion of data transfer between the processor and externa: device. If SPIF goes high and if SPIF is set, a serial peripherai interrupt is generated. Whice SPIF is set, ail writes to the seriai peripherai data register are inhibited. Clearing the SPIF bit is eccomplished by read-
ing the SPSR (with SPIF set) foiiowed by an access
SPIF bit is cieared by reset.
Bit 5 WCOL Write Coisision. The WCOL bit is set when an at
write to the serial peripherai data reaister whiie da taking pi*ce. Clearing the wCOL bit is accompiished by ri (with WCOL set) foilowed by an access to SPDR. The WCOL b. by reset.

Bit 5 Not impiemented and reads as zero.
Bit 4 MODF Mode Fault Fiag. The mode fauit fiag indicates that th. have been a multi-master conflict for system controi and ailows a : exit from system operation to a reset or default system state. The bit is nomaily clear, and is set only when the master device has its pin puiled low. Setting the MODF bit affects the internal seri peripheral interface system in the following ways:

1. An SPI interrupt is generated if SPIE $=1$
2. The SPE bit is cleared. This disables the SPI.
3. The MSTR bit is cleared, thus forcing the device into the siave mode.

Clearing the MODF bit is accomplished by reading the SPSR (with MODF set). foliowed by awrite to the SPCR. Control bits SPE and MSTR maybe restored to their original set state after the MODF bit has been cieared. The MODF bit is cleared by reset.

Bit 3-0 These bits are not implemented and read as zeros.

SBR2A SPDR

The serial peripherai data I / O register is used to transmit and receive data on the seriai bus. Only a write to this register will initiate transmission/reception of another byte and this will only occur in the master device. At the completion of transmitting a byte of data, the SPIF status bit is set in both the master and siove devices.

When the user reads the seriai peripherai data I / O register, a buffer is actually being read. The first SPIF must be cleared by the time a second transfer of data from the shift register to the read buffer is initiated or an overrun condition wili exist.

A write to the serial peripheral data I / O register is not buffered and piaces data directly into the shift register for transmission.

A fuii-dupiex asynchronous Serial Communizations Interface (SCI) is provided with a standard NR2 format lone start bit, eight or nine data bits and one
stop bit) and a variety os baud rates. The SCI Eransmitter and receiver are functionaijy independent, but use the same data fomat and bit rate. "Baud" and "bit rate" are used synonymousiy in the following description.

Receive data (RXD) or transmit data (TxD) is the seriai data which is transfered to the internai data bus from the input pin (RxD) and from the internai bus to the output pin (TXD). The user has option bits in seriai communications controi register 1 (SCCRI) to detenmine the "wake-up" method (WAKE bit) and data word length (M bit) of the SCI. Seriai communications controj register 2 (SCCR2) provides control bits which individuaily enabie/disable the transmitter or receiver (TE and $R E$, respectively) enable system interrupts (TIE, TCIE, ILIE) and provide the wake-up enable bit (RWU) and the send break code bit (SBK). The baud rate register bits allow the user to select different baud rates which may be used as the rate control for the transmitter and receiver.

Data transmission is initiated by a write to serial communications data register (SCDR). Provided that the transmitter is enabled, data stored in the SCDR is transferred to the transmit serial shift register. This transfer of data sets the TDRE bit of the SCI status register (SCSR) and may generate an interrupt if the transmit interrupt is enabled. The transfer of data to the transmit shift register is synchronized with the bit rate clock. Ail data is transmitted bit zero first. Upon compietion of data transmission, the TC (transmission compiete) bit of the SCSR is set (provided no pending data, preamble or break is to be sent) and an interrupt may.be generated if the transmit complete interrupt is enabled. If the transmitter is disabled and the data, preamble or break (in the transmit shift register) has been sent, the T bit wili also be set. This wili also generate an interrupt if the TCIE bit is set.

When the SCDR is read, it contains the last data byte received, provided that the receiver is enabied. The RDRF bit of the SCSR is set to indicate that a data byte has been transfered from the input serial shift register to the SCDR, which can cause an interrupt if the receiver interrupt is enabled. The data transfer from the input serial shift register to the SCDR is synchronized by the receiver bit rate ciock. The $O R$ (overrun), $N F$ (noise), or $F E$ (framing error) bits of the SCSR may be set if data reception errors occured.

An idle iine interrupt is generated if the idle line interrupt is enabied and the IDLE bit (which detects idle line transmission) of SCSR is set. This allows a receiver that is not in the wake-up mode to detect the end of a message, the preamble of a new message or to resynchronize with the transmitter.

The baud rate register, BAUD, provides the means for selecting different baud rates which may be used as the rate control for the transmitter and receiver. The SCP0-SCP1 bits function as a prescaler for the SCR0-SCR2 bits. Together, these five bits provide multipie baud rate combinations for a given crystal frequency.

Bit 7-f These two bits are not impiemented.
Eit 5 SCPI,SCPE Tabie beiow shows the prescaie values attained from the E clock. Reset clears SCPI-SCP bits (divide-by-one).

Bit 3 Not implemented.
Eit 2-0 SCR2 SCR1 SCR0 These three bits select the baud rate of both the transmitter and the receiver. Table beiow shows the prescaier vaiue that divides the output of the first stage. Reset does not affect the SCR2-SCRD.

Note that there is a fixed rate divide-by-15 between the receive ciock (Rx) and the transmit clock (TX). The actual divider chain is controiled by the combined SCPB-SCPI and SCRP-SCR2 bits in the baud rate register as iilustrated.

*The clock in the "Clock Divided By" column is in the internal processor ciock.
Note: The divided frequencies shown above represent baud rates which are the highest transmit baud rate (TX) that can be obtained by a specific crystai frequency and only using the prescaier division. Lower baud rates may be obtained by providing a further division using the SCI rate select bits as shown on Table for some representative prescaier outputs.

Note: This illustrates how the SCI select bits can be used to provide lower transmitter baud rates by further dividing the prescaler output frequency. The five examples are only representative samples. In all cases, the baud rates shown are transmit baud rates (transmit ciock) and the receiver ciock is 16 times higher in frequency than the actuai baud rate.

The Serial Communications Control Register l, SCCR1, provides the control bits which:

1. detemine the word length and
2. selects the method used for the wake-up feature

Bit 7 R8 If the M bit is set, this bit provides a storage iocation for t'e ninth bit in the receive data word. Reset does not affect this bit.

Bit 5 T8 If the M bit is set, this bit provides a storage location for the ninth bit in the transmit data word. Reset does not affect this bit.

Bit 5 This bit is not implemented and reads as zero.
Bit 4 M This bit selects the word length. Reset clears this bit.

```
| = 1 start bit, & data bits, 1 stop bit
1 = 1 start bit, }9\mathrm{ data bits, 1 stop bit
```

Bit 3 WAKE This bit allows the user to select the method for receiver "wakeup".

When ciear, an idie iine condition (le consecutive ones if $M=0$ or I' consecutive ones if $M=1$) will wakeup the receiver.

When set, detection of a one in last data bit (eight data bit if $M=8$, ninth data bit if $M=1$) will wake-up the receiver.

Bit 2-0 These bits are not implemented and read as zeros.
The serial communications control register 2, SCCR2, provides controi bits which individually enable/disable the SCI functions.

Bit 7 TIE Transmit Interrupt Enabie. When the TIE bit is set, the SCI interrupt accurs when TDRE is set. When TIE is ciear, the TDRE interrupt is disabled. Cleared by reset.

Bit 6 TCIE Transmission Complete Interrupt. When the TCIE bit is set, the SCI interrupt occurs when TC is set. When TCIE is ciear, the TC interrupt is disabied. Cleared by reset.

Bit 5 RIE Receive Interrupt Enable. When the RIE bit is set, the SCI interrupt occurs when $C R$ or RDRF are set. When RIE is ciear, the $O R$ and RDRF interrupts are disabied. Cleared by reset.

Bit 4 ILIE Idle Line Interrupt Enable. When the ILIE bit is set, the SCI in-
terrupt oceurs when IDLE is set. When ILIE is ciear, the IDLE interrup: is tisabied. Cieared by reset.

Bit 3 TE Transmit Enabie. When the $T E$ bit is set, the transmit shift register output is appiied to the TXD iine. Depending on the state of controi bit M (SCCR), a preambie of $10(M=\$)$ or $11(M=1)$ consecutive ones is transmitted when software sets the TE bit from a cieared state. After joading the jast byte in the serial communications data register and receiving the interrupt from TDRE, the user can clear TE. Transmission of the last hyte wili then be completed before the transmitter gives up controi of the TXD pin. Cleared by reset.

Bit 2 RE Receive Enable. When the receive enable bit is set, the receiver is enabled. When RE is clear, the receiver is disabled and ail of the status bits associated with the receiver (RDRF, IDLE, $O R, N F$ and FE) are inhibited. Cleared by reset.

Bit 1 PWU Receiver Wake-up. When the FWU bit is set, it enables the "wakeup" function. If the WAKE bit is cleared, FWU is cleared after receiving $18(M=0)$ or 11 ($M=1$) consecutive ones. If the WAKE bit is set, FWU is cleared after receiving a data word whose MSB is set. Cleared hy reset.

Bit 0 SBK Send Break. If the SBK bit is toggled set and cleared, the transmitter sends $10(M=8)$ or $11(M=1)$ zeros and then reverts to idie or sending data. If SBK remains set, the transmitter will continually send whole blocks (sets of 10 or 11) zeros until cleared. At the completion of the break code, the transmitter sends at least one high bit to guarantee recognition of a vaiid start bit. Reset clears the SBK bit.

The Serial Communications Status Register, SCSR, provides inputs to the interrupt logic circuits for generation of the SCI system interrupt.

Bit 7 TDRE Transmit Data Register Empty. The TDRE bit is set to indicate that the content of of the serial communications data register have been transferred to the transmit serial shift register. This bit is cieared by reading the SCSR (with TDFE=1) foijowed by a write to the SCDR. Reset sets the TDRE bit.

Bit 6 TC Transmit Compiete. The $T C$ bit is set at the end of a data frame, preamble, or break condition if:

1. $\mathrm{TE}=1, \mathrm{TLRE}=1$ and no pending data, preambie or break is to be transmitted; or
2. $T E=L^{2}$ and the data, preambie, or break (in the transmit shift. register) has been transmitter.

The T bit is a status Eiag which indicates that one of the above conditions have occured. The $T C$ bit is cieared by reading the SCSR (with T. set) foilowed by a write to the SCDR. Reset sets the $T \mathrm{C}$ bit.

Bit 5 RDRF Receiver Data Register Full. The RDRF bit is set when the receiver seriai shift register is transferred to the SCDR. The RDRF bit is cleared when the SCSR is read (with RDRF set) foilowed by a read of the SCDR. Reset ciears the RDRF bit.

Bit 4 IDLE Idle Line Detect. The IDLE bit, when set, indicates a receiver idle line is selected. The IDLE bit is cleared by reading the SCSR with IDLE set foliowed by a read of the SCDR. The IDLE bit is inhibited when the RWU bit is set. Peset clears the IDLE bit.

Bit 3 CR Overrun. The OR bit is set when the next byte is ready to be transferred from the receive shift register to the SCDR which is already fuli (RDRF bit is set). The only valid data is located in SCDR when OR is set. The $O R$ bit is cieared when the SCSR is read (with OR set), foliowed Dy a read of the SCDR. Peset clears the OR bit.

Bit 2 MF Noise Flag. The NF bit is set if there is noise on any of the received bits, including the start and stop bits. The NF bit is not set until the RDRF fiag is set. The NF bit is cieared when the SCSR is read (with NF set), followed by a read of the SCDR. Reset clears the NF bit.

Bit 1 PE Framing Error. The FE bit is set when no stop bit was detected in the data string received. The FE bit is set at the same time as the RDRF is set. If the byte received causes both framing and overrun errors, the processor will only recognize the overrun error. The framing error flag inhibits further transfer of data into SCDR until it is cleared. The FE bit is cieared when the SCSR is read (with FE=1) followed by a read of the SCDR. Reset ciears the FE bit.

Eit Not implemented. Reads as zero.
The Serial Communications Data Register, SCDR, performs two functions, i.e., it acts as the receive data register when it is read and as the transmit data register when it is written.

ADCTL	SBE 30
ADR1	SBQ31
ADR2	SBE 32

$$
\begin{array}{ll}
A D R ? & \leqslant B \Perp 33 \\
\text { ADR } \triangle & \leq B \Perp 34
\end{array}
$$

The f8HCll inciundes an 8-channè muitipiexed-input successive approximation anaiog-to-digital (A/D) converter with sampie and hoid to minimize conversion errors caused by rapidiy shanging input signais. Two dedicated pins $/ V_{R L}$ ' V_{RH}) are provided for the reference supply voitage inputs. These pins may be connected to a lower noise power suppiy to assure fuil accuracy of the A / D conversion. The 8 -bit A / D converter has a inearity error of $1 / 2$ LSE and accepts analog inputs which range from $V_{R L}$ to $V_{R H}$. Smailer anaiog input ranges can also be obtained by adjusting $V_{R H}$ and $V_{R L}$ to the desired upper and lower limits. Each conversion is accompiished in 32 MCU E ciock cycies, provided the E rate is equai to or greater than 1 MHz . For systems which operate at clock rates less than 1.0 mHz , an internal R-C osciilator must be used to clock the A / D system by setting the CSEL bit in the OPTION register.

All bits in the ADCTL register may be read or written, except bit 7 which is a read-only status indicator and bit 6 which always reads as zero. Eit 7 is cleared at reset but the other bits are not affected by reset.

Bit 7 CCF Conversion Complete Flag. This read-only status indicator is set when all four A / D resuit registers contain vaid conversion results. Each time the ADCTL register is written, this bit is automaticaily cleared to zero and a conversion sequence is started. In the continuous modes, conversions continue in a round-robin fashion and the resuit registers continue to be updated with current data even though the CCF bit remains set.

Note: The user must write to register ADCTL to initiate conversion.
Bit 6 Not implemented. Reads as zero.
Bit 5 SCAN Continuous Scan Controi. When this control bit is cleared, the four requested conversions are performed once to fill the four resuit registers. When this control bit is set, conversions continue in a roundrobin fashion with the resuit registers being updated as data becomes available.

Bit 4 mult Multi-Channel/Single Channel Control. When this bit is cleared, the A / D system is configured to perform four consecutive conversions on the single channel specified by the four channel select bits CD through CA (bits $3-0$ of ADCTL). When this bit is set, the A / D system is configured to perform a conversion on each of four channels where each result register corresponds to one channè.

Bit 3-a CD CC CB CA Channel Select D, Channel Select C, Channel Seiect B,

Cnanne: Seiont A. Bits ? through p are used to seiect one of 16 \% channeis. When a muitipie channei mode is seiested (MUL? $=1$, , the twi ieast-significant seiect bits $(\mathbb{C E}$ and $C A$) have no meaning and the $C C$ and CC bits specify which group of four channels is to he converted. The signais sejocted by the four channej seiect controi bits are showrit the tabie beiow.

There are two variations of single-channel operation. In the first variation (SCAN=(1), the single-selected channel is converted four consecutive times with the first result being stored in the ADR4 register. After the fourth conversion is complete, ail conversion activity is halted until a new conversion command is written to the ADCTL controi register. In the second variation (SCAN=1), conversions continue to be performed on the seiected channel with the fifth conversion being stored to the ADRl register (overwriting the first conversion result), the sixth conversion overwrites ADR2, and so on continuousiy.

There are two variations in multipiemshannel operation. In the first variation (SCAN $=0$), the selected group of four channels are converted, one each, with the first resuit being stored in the ADR1 result register and the fourth resuit being stored in the ADR4 register. After the fourth conversion is complete, ail conversion activity is haited until a new conversion command is written to the ADCTL control register. In the second variation (SCAN=1), conversions continue to be performed on the seiected group of channels with the fifth conversion being stored in the ADRI register (replacing the earijer conversion resuit for the first channel in the group), the sixth conversion overwrites ADR2, and so on continuousiy.

The AD resuit registers are read-oniy registers used to hoid an 8-bit oonversion resuit. Writes to these registers have no effect. Data in the A, D resuit registers is not vaidi uniess the CCF fiag bit in ADTCL is set, indicating conversion completo.

The next four locations at SB635 through SB638 are reserved and have no function currently.

OPTION	SBQ39
COPRST	SBQ $3 A$
PPROG	SBQ3B
HPRIO	SBQ3C
INIT	SBQ3D
TESTI	SBQ3E
CONFIG	SBQ $3 F$

The Configuration Options Register (OPTION) is a special purpose 8-bit register that is used (optionally) during initiajization to configure internaj system conftguration options. With the exception of bits 7, 5 and 3 (ADPU, CSEL and OME) which may be read or written at any time, this register may be written to only once after a reset and thereafter is a read-only register. If no write is performed to this location within 54 E-ciock cycies after reset, then bits 5, 4, 1 and \varnothing (IRQ, DLY, CRI and CR®) will become read-oniy to minimize the possibility of any accidental changes to the system configuration. While in special test modes, the protection mechanism on this register is overridden and ail bits in the OPTION register may be written.

Bit 7 ADPU A/D Powerup. This bit is cieared by reset and controis operation of the on-chip anaiog-to-digital converter. When ADPU is ciear, the A / D system is powered down and conversion requests will not return meaningfue infomation. To use the A / D system, this bit shouid be set.

Bit 6 CSEL A/D Clock Scurce Select. This bit is cieared by reset and determines the ciocking source for the on-chip A / D. When this bit is zero, the MCU E clock drives the A / D system. When CSEL is one, an on-chip p-C oscillator is enabled and ciocks the A / D system at about 1.5 MHz rate. When running with an E clock less than 1 MHz, CSEL must be high to program or erase the EEPROM.

Bit 5 IRQE IRC Edge/Level Sensitive. This read/write bit is cieared at reset. When it is clear, the IRQ pin is configured for level sensitive wired-OR operation (low level) and when it is set, the IRQ is configured for edge-oniy sensitivity (faliing edges) on the IRQ pin.

Bit 4 DLY STOP Exit Turn-On Delay. This bit may only be written under special circumstances as described above. This bit is set to one during reset and controls whether or not a relatively long turn-on delay wiil be imposed before processing can resume after a STOP period. If an external clock source is supplied, this deiay can be inhibited so that processing can resume within a few cycies of a wake up from STOP mode. When DLY is a one, delay is imposed to dilow oscillator stabilization and when DLY is a zero, this delay is bypassed.

Bit ? CME Ciock Monitor Enable. This control bit may be read or written at any time. It controis whether or nct the monitor circuit wili trigger a reset sequence when a slow or absent system clock is detected. When it is ciear, the clock monitor circuit is disabled. When it is set, the clock monitor circuit is enabled. Systems operating at or below 200 KHz should not use the ciock monitor func=ion. Reset clears the OME bit.

Bit 2 Not implemented and reads as a logic zero.
Bit 1-D CRI-CRE COP Timer Rate Seiects.

The clock monitor function is enabled by the OME control bit in the OPTION register. When OME is zero, the function is disabled and when OME is one, the ciock monitor function detects the absence of an E clock for more than a certain period of time. The timeout period is dependent on processing parameters and will be between 5 and 100 microseconds. This means that an E clock rate of $2 \mathbb{E} 0 \mathrm{KHz}$ or more will never cause a clock monitor failure and an E clock rate of 18 KHz or less will definitely cause a ciock monitor failure. This impies that systems operating near or below an E clock rate of 200 KHz shouid not use the ciock monitor function.

Upon detection of a slow or absent ciock, the clock monitor circuit (if enabied by $O M E=1$) wili cause a system reset to be generated. This reset is issued to the external system via the bidirectional RESET pin.

Special considerations are needed wher, using a STOP function and clock monitorin the same system. Since the STOP function causes the clocks to be haited, the clock monitor function wili generate a reset sequence if it is enabied at the time the STOP mode is entered.

The 68HCll inciudes 512 bytes of EEPROM located in the area SB600 through SB7FF which has the same read cycle time as the internal ROM. PPROG Register (EEPROM Programming Control) register is used to control programming and erasure of the 512-byte internai EERROM. Reset clears this register to S 80 so EEPROM is configured so EEPROM is configured for normai reads.

Bit 7 ODD Odd Pows. Used to Program Odd Pows (TEST)
Bit 5 EVEN Even Rows. Used to Program Even Rows (TEST)
Bit 5 - Not Impiemented

```
Bit C BYTE Byte Erase. Used for Erasing Eytes - Overriies Eit ?
    v = Pow or Buik Erase
    l = Erase Oniy One Byte
Bit 3 ROW Fow Erase. User for Row Erasing
    | = Bulk Erase
    1 = Row Erase
Bit 2 ERASE Erase. Enabies the Erase 0 = Nomas Read or Program 1 = Erase Mode
Eit 1 EELAT EEPROM Latch Controi.
\(0=E E F R O M\) Address and Data configured for Read \(1=E E R R M\) Address and Data configured for Programming
Bit EEPGM EEPROM Program Command.
\(\theta=\) Switched Off
\(1=\) Turned 0 n
```

The operating modes for the 512-byte EEPRQ are as follows:
Nomal Read - In this mode, the ERASE bit in the PPROG register must be ciear (not in programming mode). Whiie these two bits are cieared, the ROW and EEPGM bits in the OPTION register have no meaning or effect, and the 512-byte EEPROM may be read as if it were a normal ROM.

Progranming - During EEPROM programming, the ROW bit is not used. If the E ciock frequency is less than 1 MHz the CSEL bit in the OPTION register must be set.

Nomal sequence of events in programing the ExPROM:

1) Write $x x x x$ x 012 to the PPROG register. This specifies program nomal mote (ERASE bit=才), address/data buses configured to iatch address and data information (EELAT bit=l), and erase voitage turned off (EEPGM bit=0). -
2) Write data to be programmed to the desired EEPROM address. This write causes the address and data to be iatched in a parailei internal latch.
3) Write EEPGM bit to one ($x \times x \times x 011$). This coupies the EEPROM programming supply voitage to the EEPROM array, to program the specified data into the specified data address in EEPRRM.
4) Deiay for 12 milliseconds.
5) Write $x \times x x \times 010$ to the PPROG register to turn osf the programming voitage.
6) Repeat steps 2 through 5 untii aij desired jocations have heen programmed.
7) Write EELAT bit back to zero to aijow the programmed data to be verified.

Erase - If the E clock frequency is jess than 1 MHz , the CSEL bit in the OPTION register must be set when erasing the EEPROM.

Three erase modes of EEPROM:

1) Euli 512-byte simultaneous "bulk" erase
2) "row" erase where only one row (15 bytes) is erased at a time and
3) "byte" erase where a singie specified byte is erased.

NOTE

The erased state of all EEPROM ceil is logic one. On early parts, byte and row erase are not implemented.

Nonnal procedures for erasure of the entire EEPROM:

1) Write $x \times x x \operatorname{B110}$ to the PPROG register. This specifies the "aii" erase mode (ROW bit=A), erase mode (ERASE bit=1), EEPROM configured for address/data latching (EELAT bit=l), and erase voitage turned off (EEPGM bit=D).
la) A write must be done to any EEPROM address after Step 1.
1b) Optionaily, if the CONFIG register is also to be erased, a write to the address of the CONFIG register must be performed after "bulk" erase was specified by the write, in step 1 above, and before programing voltage is turned on in step 2 beiow.

In the case of erasure, the data involved in this write operation is unimportant and the write is needed only for the addressing information it provides.
2) -Write $x x x x$ D111 to the PPROG register to turn on the the erase voitage to the EEPROM array.
3) Wait for 12 milliseconds to allow the erasure to compiete.
4) Write $x \times x x$ Pll to the PPROG register to turn off the erase voltage.
5) Write $x \times x x$ DDDD to the PPROG register to return the EEPRQM to the nomsi read configuration.

Normal procedure for erasure of a row of EEPROM:

1) Write $x \times x x$ 1118 to the $P P R O G$ register. This specifies the "row" erase mode (ROW bit=1), erase mote (ERASE bit=1), address/data huses configured to latch row address information (EELAT bit $=1$), and erase voitage turned of (EEPGM=か).
2) Write to an address in the EEPROM row to be erased (each row is in bytes). This latches the row addressing information for the row to be erased.
3) Write $x \times x x 1111$ to the $P P R O G$ register to turn on the erase voitage to the EEPROM array.
4) Wait for 10 mỉiiseconds to allow the erasure to complete.
5) Write $x x x x 1110$ to the PPROG register to turn off the erase voltage.
6) Write $x x x x 00 D 0$ to the $P P R O G$ register to return the EEPROM to the normal read configuration.

Normal procedure for erasure of a single byte of EEPROM:

1) Write $x \times x l$ xild to the $P P R O G$ register. This specifies the byte erase mode ($B Y T E=1$; $R O W=x$), erase mode (ERASE bit=1), address/data buses configured to jatch address information (EELAT bit=1), and erase voltage turned off (EEPGM bit $=\varnothing$).
2) Write to the address in the EEPROM to be erased (data is ignored). This latches the address of the byte to be erased.
3) Write xxxl xlll to the $P P R O G$ register. This turns on the erase voltage to the EEPROM array. EEPGM was not changed to one in the same write operation as the write that configured ROW, ERASE, and EELAT because of the possibility of enabiing the erase voitage before the erase mode specification was stable.
4) Wait for 10 miliseconds to allow the erasure to complete.
5) Write $x \times x 1 \times 110$ to the $P P R \subseteq$ register to turn off the erasure voitage.
6) Write $x x x$ DVDO to the PPROG register to return the EEPROM to the normal read configuration.

The COPRST Register is used to reset the watch dog timer. The sequence required to accompish this is:

1) write $\$ 55$ to the CORPST register at SB83A, foilowed by
2) write SAA to the same address.

Both writes must occur in correct order prior to timeout but, any number s. instructions may be executed between the writes. The siapsed time between acijacent software reset sequences must never be greater than the COP fimeout period.

The HPRIO register is used to seiect one of the I bit related interrupt sources to be elevated to the highest I bit masked position in the priority resolution circuit. In addition, four miscelianeous system controi bits are included in this register.

Bit 7 RBOOT Read Bootsrap ROM. The read bootstrap ROM bit only has meaning when the SMOD bit is a logic one (special bootstrap mode or special test mode). At all times, this bit reverts to its logic zero disabied state and may not be written.

When set, upon reset in bootstrap mode only, the small bootstrap ioader program is enabied. When clear, by reset in the other three modes, this ROM is disabled and accesses to this area are treated as externai accesses.

Eit 6 SMOD Special Mode. The special mode write-only bit refiects the status of the MODB input pin at the rising edge of reset. It is set if the MODB pin is at or above 1.8 times $V_{D D}$ volts during reset. Otherwise, it is cleared or under software control from the special modes.

Bit 5 MDA Mode Select A. The mode select A bit reflects the status of the MODA input pin at the rising edge of reset. While the SMOD bit is a iogic one (special test or special bootstrap mode in effect), the MDA bit may be written, thus, changing the operating mode of the MCU. When the $5 M O D$ bit is a iogic zero, the MODA bit is a read-only bit and the operating mode cannot be changed without going through a reset sequence.

The tabie below summarizes the relationship between the SMOD and MDA bits and the MODB and MODA input pins at the rising edge of reset.

Bit 4 IRV Internal Read Visibility. The internal read visibility bit is used in the special modes ($S M O D=1$) to affect visibility of internal reads dn the expension data bus. IRV is writable only if SMOD=1 and returns to zero if $S M O D=0$. If the bit is zero, visibility of internal reads are blocked. If the bit is one, internal reads are visible on the externai bus.

Bit 3-0 PSEL3, PSEL2, PSEL1, PSELD Priority Selects 3-®. These four seiect bits are used to specify one I bit related interrupt source which becomes the highest priority I bit reiated source.

Note: During reset, PSEL3, PSEL2, PSEL1 and PSELD are initialized to 0:1:8:1 which corresponds to "Reserved (default to IRQ)" being the highest priority I bit related interrupt source.

Interrupts in the 68HCll obey a fixed hardware priority circuit to resoive simultaneous requests; however, one I bit related interrupt source may be eievated to the highest I bit priority position in the resoiution circuit. The first six interrupt sources are not masked by the I bit in the condition code register and have the fixed priority interrupt relationship of: reset, ciock monitor fail, COP fail, illegal opcode and XIRQ. (SWI is actually an instruction and has highest priority other than reset in the sense that once the SWI opcode is fetched no other interrupt can be honored until the SWI vector has been fetched). Each of these sources is an input to the priority resoiution circuit. The highest I bit masked priority input to the resolution circuit is assigned under software controi (of the HPRIO register) to be connected to any one of the remaining I bit related interrupt sources. In order to avoid timing races, the HPRIO register may only be written while the I bit reiated interrupts are inhibited (I bit in condition code register is a jogic one). An interrupt that is assigned to this high priority position is stili subject to masking by any associated controi bits or the I bit in the condition code register. The interrupt vector address is not affected by assigning a source to this higher priority position.

The INIT Register is special purpose 8-bit register is used (optionaiiy) during initialization to change the default locations of RAM and internaj registers in the MCU memory map. It may be written to only once within the initiai 64 E cycies after a reset and thereafter becomes a read-only register.

The defauit starting address for internai RAM is 50000 and the defauit starting address of the 64 byte internai register space is $\$ 1000$ (the INIT register is initiailized to Sol by reset). The upper four bits of the INIT register specify the starting address for the internai 256 byte RAM and the lower four bits of INI? specify the starting address for the 64 byte internai register space. The four bits reflect the upper nibble of the lf-bit address. The Max-FORTH operating system moves the registers to SBEDB at reset for ail versions with Revision 2 ($\$ 900 \mathrm{for}$ fev - 1).

Since the TESTl Register at SBR3E is only availabie in the test mode, it is not included in this section.

The 68HCll ailows an end user to configure the MCU system to his specific requirements through the use of hardwired options suc: as the mode seiect pins, semi-permanent EEPROM controi bit specification. The CONFIG control register is implemented in EEPROM cells and controis the presence of ROM and EEPROM in tne memory map, as well as the COPON COP watchdog system enable. An optional security feature is availabie to ailow user protection of data in σ (HCll EEPROM and RAM.

Bit 7-4 Not implemented. Read as iogic zero.
Bit 3 NOSEC Security Mode Option. When the security mask option is specified, this bit can be used to enabie a software antitheft mechanism. When cleared, this bit forces the MDA mode controi bit to zero so that only single-chip modes of operation can be seiected. If the bit is cleared during $M C U$ reset in the special bootstrap mode, EEPROM and RAM are erased before the boot loading process continues.

Bit 2 NOCOP COP System OFF. When this bit is clear, the COP watchdog forcedreset function is enabled. When this bit is set, the COP watchdog circuit is disabjed.

Bit 1 ROMON Enable On-Chip ROM Select. When this bit is clear, the PK_{K} internal ROM is disabied and that memory space becomes an externaiiy accessed space.

Bit EEON Enabie 0 -Chip EEPROM Seject. When this bit is ciear, the 53.2-
nyte internaj EERGM is disabied and that memory space becomes an externaily accessed space.

Since the CaNFIG register is impiemented with EEPROM ceiis, speciai provisions must be made to erase and program this register. The nommai EEPROM controi bits in the PPROG register are used for this purpose.

1. MOVING THE USER AREA

 contains 59 word iceations that hoid the variabies describing how Max-FORTH uses :he rest $e f$ memory and how it interfaces to the outside worid. When a aoid reset occurs, the operating system initializes the first 41 words with values needed to start with a cieaniy linked system.

There are several reasons why it could be advantageous to move the USER area. One might to be to give the data stack more room in low memory. (Ofcourse the dictionary would aiso have to be compieteiy moved out in this case, too.) Another might be to put the USER area into battery backed RAM, so the operator coujd modify one location (the UP) to recover the complete dictionary and configuration. As ar aiternative, the user couid create several USER areas, and thereby have severai dictionaries or configurations in memory at once, switching back and forth hy manipuiating a singie variable.

The foilowing exampie creates a second user area at SCBD日. The easiest way to create a new USER area is to capy the reset initiaiized RAM area to the new jocation. The new copy can then be edited to remove ail references to its origin. This is done in this example by adding an offset to the existing values in the USER area to accomodate its new jocation. After the new area is initialized, piacing its address in the user area pointer (Up: completes the transfer. Notice in this example the new user has different stack initiaijztion values as weid. Execution of ABORT instails these new stack locations, and breaks the iast ties with the originai configuration.

COLD

$$
M \because-\because=T A S K I N C
$$

Aithough max-FORTH does not directiy support muititasking, mujeiこasking is possibie. The user may add or a muiti=asking proaram with reiative ease since Max-FCRTH was written to be totaiay preemptabie. When Max-FOpTH was created, user variabie were reserved to specify each task's priority, recort the task's state and aijow for a doubie inked iist of tasks to be created.

Using these variabies and interrupts, the user can create round robin or priority mujtitaskers, or combinations thereof. possibly the simplest structured multitasker is the round robin time siiced scheme. The foilowing exampie demonstrates such a system. For simpi icity's sake, only one task is open to communicate with the terminaj. (The other tasks' USER variabies, KEY-BC-PTR and EMIT-BC-PTR, could have been modified to allow them to tajk to their own terminal.)

In order to find the vaiue of NEXT2 in your revision of MaxFORTH, tick the address of COLD and DUMP the following lap hex bytes. The address of NEXT2 is heid in the two bytes immediateiy following the first $7 E$ op-code in the that listing, about 90 hax bytes down.)

COLD

HEX
FORGET TASK

MARE NEW	
(USER	R AREA
1 FOR	TASK 1
©639 C	C006 108
CMOVE	
C006 C	COOE + !
Coge C	CE10 +1
Cl00 C	colc :
50 cel	1E
C16 C	co22
C180 C	Co2C
Cobs C	C034 + !
COS C	cose +1
Coer c	C046 +1
COBO C	C86A +1
C896 C	C06C +
D006 C	C006 !
C886	C088!

[^12]```
CMOVE
C808 C80E +!
c80e c810 +!
C900 C81C !
5* C81E !
C968 C822
C980 C82C !
C800 C834 +!
C800 C840 +!
C800 C846 +!
C808 C86A +!
C860 C86C +!
C806 C806 !
D006 C898 !
(MARE NEW)
(USER AREA)
(FOR TASK %)
000 D006 100
CMOVE
D000 D00E +!
DGOE DOlG +!
Dl00 D01C !
5B DEIE !
D160 De22 !
D188 De2C !
D009 D034 +!
D000 D848 +!
D060 D046 +!
D08E D86A +!
D006 D06C +!
C806 D606 !
C006 D808 !
C086 04 !
ABORT
(Assumes three tasks and 8R of RAM at $C000)
(The first task at SCOB| slowly counts up on PB)
(The second task at SC800 acts as a thermostat: reads AND output PA6)
(The third task at $D0日g runs the normal Max-FORTB outer interpreter)
(the task will also be master task, starting f handiing of others)
(Begin with simple task first)
: TASK ;
: WAIT 1008 DO LOOP ;
: RUN-TASK-1
B
BEGIN
1+
DUP
B004 C!
DUP
```

```
 CBOA: (THIS LINE IS ONLY TO LEAVE A TRACE IN MEM)
 WAIT
 AGAIN
:
' RUN-TASK-1 CFA CBB2 ! (SAVE CFA TO RUN IN AUTOSTART POS FOR LATER)
(Switch to define the second task)
C806 64 !
ABORT
: TASK ;
VARIABLE LO-SET-POINT
VARIABLE HI-SET-POINT
VARIABLE HEATER-STATE
VARIABLE TEMP
: READ-A/D
 0 B030 C! (Start conversion for PEO)
 BEGIN BO3G CP 8% AND UNTIL (Wait for conversion complete)
 B031 Ce TEMP !
;
: CHK-LO?
 TEMP CA LO-SET-POINT Ce <
;
: HEATER-ON
 1 HEATER-STATE !
 FF B000 !
;
: CHK-BI?
 TEMP Ce BI-SET-POINT Ce >
;
: HEATER-OFF
 | HEATER-STATE !
 BF BORO !
;
: RUN-TASK-2
 7% LO-SET-POINT !
 74 EI-SET-POINT :
 BEGIN
 READ-A/D
 GEATER-STATE & C8OA ! (TGIS LINE IS ONLY TO LEAVE A TRACE IN MEM)
 CHK-LO?
 IF
 HEATER-ON
 THEN
```

```
 CHK-BI?
 IP
 HEATER-OFF
 THEN
 AGAIN
;
' RUN-TASK-2 CFA C8@2 ! (SAVE CFA TO RUN IN AUTOSTART POS FOR LATER)
(Switch to define the third task)
D006 04 !
ABORT
: TASK ;
CODE IRQRTN
```

$86 \mathrm{C}, 40 \mathrm{C}$ ，（ LDAA \＃$\$ 40$
B7 C，B025 ．（ STAA SB025
DE C． 82 C ，（LDX IP
3C C，（ PSHX
DE C， 0 C ，（ LDX W
3C C，（ PSHX
DE C， 04 C ，（ LDX UP
AF C， 86 C，$($ STS RPSAVE，$X$
EE C， 02 C ．（ LDX UPLINK，$X$
DF C， 04 C ，（ STX UP
AE C， 06 C，（ LDS RPSAVE，$X$
38 C．（ PULX
DF C， 00 C ，（ STX W
38 C．（ PULX
DF C， 62 C．（ STX IP
3B C，（ RTI ）
END－CODE
CODE－SUB CLEAR－CC－MASKS
86 C，Gf C．（LDAA ）
86 C．（ TAP ）
39 C．（ RTS ）
END－CODE

CLEAR THE INTERRUPT SOURCE ） BY KNOCRING DOWN BIT TFLG2 ） SAVE IP ON CONTEXT＇S STACK）

SAVE W ON CONTEXT＇S STACK ）

GET THIS
SAVE OLD CONTEXT ） FIND NEXT TASK ） AND SAVE FOR NXT IRQ ） SWITCH CONTEXT ）
RECOVER $W$ CONTEXT＇S STACK ）
RECOVER IP CONTEXT＇S STACK）

```
：ENABLE－MULTITASKING
（ INSTALL THE REAL－TIME－INTERRUPT JUMP TABLE ENTRY）
7E B7E6 EEC！（ JMP OP－CODE ）
```



```
（ CREATE CONTEXTS POR TEE OTHER TASKS ON TEEIR STACKS ）
（ TASK 1 START UP CONTEXT ）
FE54 CAFE ：（ PROGRAM COUNTER＝NEXT2）
CO10 e COFC ！（ Y REGISTER \(=\) XXXX ）
CO日 2 C C日FA \(!(X\) REGISTER \(=\) CFA TO RUN ）
G日g CgF8 ！（B\＆A REGISTERS ）
00 C日R7 C！（ CC REGISTER ）
```

```
 0000 COF5 ! (IP)
 ODサD COF3 ! (W)
 CBF2 CBOC ! (RPSAVE)
 (TASK 2 START UP CONTEXT)
 FE54 C8FE ! (PROGRAM COUNTER = NEXT2)
 C810 E C8FC ! (Y REGISTER = XXXX)
 C802 & C8FA ! (X REGISTER = CFA TO RUN)
 0日00 C8F8 ! (B&A REGISTERS)
 80 C8F7 C! (CC REGISTER)
 0000 C8F5 : (IP)
 0000 C8F3 ! (W)
 C8F2 C8BC ! (RPSAVE)
 (ENABLE THE GARDWARE TO GIVE REAL TIME IRQ'S)
 4! BO24 C! (RTII SET)
 CLEAR-CC-MASKS
;
: TASKI? BEGIN CBBA @ U. ?TERMINAL UNTIL ;
: TASK2? BEGIN C8@A A U. ?TERMINAL UNTIL :
```

```
PREPARING A PRCCRAM FCR PROM
```

The defining word VARIARLE works fine if your appiication is run in RAM, but when the program is moved to ROM the variabie space aijotted by VARIABLE becomes "frozen" in read oniy memory. The vaiue of the variabies can never be ajtered and the program wiij fail. An ajternative to using VARIABLE is shown beiow.

HEX

: RAM ( $n$ - addr )
RAM POINTER 9 ( GET THE PREE RAM POINTER )
SWA $\bar{P}$ ( RRING THE OF BYTES TO ALLOT UP)
RAM_POINTER + ! ( ADD THAT \# TO POINTER IE: ALLOT RAM)
;
( RRING THE OF BYTES TO ALLOT UP
( ADD THAT TO POINTER IE: ALLOT RAM )
( RETURN ADDRESS OF ALLOTTED RAM )

Examples of how to use RAM:

| 2 | RAM | IS | VARIABLE1 |
| :---: | :---: | :---: | :---: |
| 2 | RRM | IS | VARIABLE2 |
| 4 | RAM | IS | DVARIABLE |
| - | RAM | IS | SEON-TABLE |
| 2 | RNA | IS | PARAMETER1 |
| 2 | RNM | IS | PARAMETER2 |
| 2 | RAM | IS | PARAMETER 3 |
| 2 | RNM | IS | PARAMETER4 |
| 0 | RAM | IS | SEON-END |

VARIABLE1 © VARIABLE2 $e+$ PARAMETER1 : DVARIABLE DVARIABLE 2+ e VARIABLEI e U/ PARAMETER3: PARAMETER 4 !

```
: INITI SHON-TABLE SHON-END OVER - ERASE ; (CLEARS PARAMETERI-4)
```


## ERSOR MESSACES

## Sundard Error Messege

? (ouestion mark) is the standard error message in Max-Forit. An error exists when Max-fort responds with a ? prefixed with one of the foilowing:

- the most recently entered word which. is not part of the Max-FOPTH dictionary
$\sigma$
- the most recently entered number which is not vaiid under the current EASE.

Example: Enter WRONG WRONG is not a part of the Max-FOPTH dictionary, therefore, Max-rorTH will respond with WROMG?.

Enter HEX . Max-FORTH -ill respond with $O$. TYPE $10 H$. Max-FORTH will respond with IOH? since 10 H is not a val:a hexadecimal number.

## STAMARD ERRCR MESSKEE PDUTDE

Max-forIH has a standard routine for zandling errors depending on the value of the user variable WARNING which is not named in the dictionary:


> Max-FORTH action
> axecutes the word fisori
> prin:- an error message number $n$ assumes zat a disk (RAMisk) is in use

## giod resice dermitions

When Max-FORIH detects an error cond: ion, it may respond with an error message which corresponds to an error message number shown in the Tak-2 below. Max-FORH clears the stacks and executes @UII as its last actions when an error is processed, axcept for the message, NOT UNIDE, which has no effect on staciss allowing Max-form to continue execution normally.

Mem-FiNill Eifich Messactes

| Number | Message | Defli-:tion | Pecovery Action |
| :---: | :---: | :---: | :---: |
| 0 | ? | Echoed word was the most recently interpreted. The word is not in the dictionary or is not a valid number. | Oreck the word's name for spei21ng error or define the named word. oneck if the number is vailid under the current BASE or change BASC |
| 1 | STACK EMPIT | Paraneter stack is enpty. | Put more nunbers into the stack or quit pulling out number from the empty stack. |
| 2 | $\begin{aligned} & \text { DICIIONARY } \\ & \text { FUL } \end{aligned}$ | Dictionary spece is used up. FIRSI fint is -uss than $\$ A 0$ | Increase dictionary space by moving FIRST or by FORETIng disposaile word entries. |
| 3 | - | Not assigned | - |
| 4 | NOT UNIXE | The <name> of the word just defined already exist in the dictionary. | Max-forty uses the latest definition of <name〉. fuminder: previous definition is still in the system and is acoessible by Forveting the recent: (name). |
| 5-6 | - | Not assigned | - |
| 7 | FUL STAEX | The parameter stack is Tull. The traximum siack entry is 39. | LROP or outpur sone stack item. |
| 8-16 | - | Not assigned. | - |
| 17 | COMPLLATION ORY | The word jus: interpreted must be used inside of a definition. | Do not use the wond for interpreting. |
| 18 | Explution | The word just interpreted must be used autside of a de:inition. | Do not use the word in defining. |
| 19 | COOTITONASS NOT PAIRED | Onitted words or incorrect nesting of conditionals | Correct or add the conditional ir. |
| 20 | DEEINTTION <br> NOT FINISAD | Definition is not Inished or delimiter is missing. | Finish the definiton or add delimiter. |

21 TN PRCP The word in arestion is below the FENCE. DICIIONARY

22 USE ONLY WHEN Incorrect use of the word $\rightarrow$. LOADNG

23 MO NME Attempt to create definition with 0 length name.

Qut trying to Fapcri a protected wor or move FEACE.

Use $\rightarrow$ aniy tren loading.

Use appropriate name.
"100 Squared"TM System Documentation
By New MICROS INC. 1601 Chalk Hill Rd. Dallas, Texas 75212

Covers: NMIX-0021 Rev. 1.0 10/10/86 IMIX-0022 Rev. 1.0 NMIT-0021 Rev. 1.0 NMIT-0022 Rev. 1.0 MMIX-0021 Rev. $2.0 \& 2.1$ 12/13/87 NMIX-0022 Rev. $2.0 \& 2.1$ NMIT-0021 Rev. $2.0 \& 2.1$ NMIT-0022 Rev. $2.0 \& 2.1$

## Getting Started

The " 100 Squared"TM, when purchased in development configuration, is complete and ready to run. To operate the system, plug in the wall transformer and connect a terminal to the serial RS-232 DB25F connector. Most terminals should plug in directly, with a straight through cable (ie: pin 1 to pin 1, 2 to 2,3 to 3 , etc.). The"l00 Squared"TM uses only lines 2 and 3 for serial in and serial out respectively, and pins 1 and 7 for ground. Many terminals require additional handshaking signals to work, so pins 4 and 5 are hooked together on the DB25F connector, as are pins 6 and 20. In this way the teminals that require the additional handshake signal have their own " clear to send" / "ready to send" and "data terminal ready" / "data set ready" signals wrapped back around, indicating "always ready".

In order to talk to the " 100 Squared"TM the terminal must have the correct bit settings. The baud rate should be set at 9600 baud for 2 Mhz systems ( 8 Mhz crystal), 4800 for 1 Mhz systems ( 4 Mnz crystal). The " 100 Squared"TM sends and receives a bit protocol of one start bit, eight data bits and one stop bits.


When the terminal is set correctly, every time you depress and release the red reset button the " 100 Squared"TM should respond with:

Max-FORTH Vx.x
Seeing that message means the terminal. can see the " 100 Squared"TM. Press "return" on your terminal several times. If the " 100 Squared"TM responds with "OK" each time, cormunications are established.

Now you will want to see the system do samething. Type WORDS followed by a return. This will cause the system to list its entire vocabulary, some $200+$ words. The listing can be stopped at any time by pressing a key, like the space bar.

When the F68HCll powers up, it assumes nothing else on the board is working, so it defaults to its own internal RAM. As a result there is a limited terminal input buffer area ( 16 characters) and dictionary space. The "100 Squared"TM provides external menory expansion. You now need to tell the system to move its terminal input buffer and dictionary to external memory. If the RAM is installed at 0100-1FFF (factory default for single 8 K RAM) the following will accomplish that.

```
HEX
100 TIB !
50 TIB 2+ !
200 DP !
```

Now try a simple program to exercise some of these words. Enter:
: TYPE-LETTERS 5B 41 DO I EMIT LOOP ;
TYPE-EETTERS

```
to which the machine will respond:
```

: TYPE-LETTERS 5B 41 DO I EMIT LOOP ; OK
TYPE-LETTERS ABCDEFGHIJKLMNOPQRSTUVWXYZOK

Now have a look at memory with the DUMP command. Type:
000080 DUMP
and examine the results (remember we put the machine in HEX).
Try another WORDS and observe the first word displayed. It has become the word TYPE-LETTERS entered above.

Your "100 Squared"TM is now running and communicating as it should. Its time to begin your design project by learning more about how to use the " 100 Squared"TM.

The " 100 Squared"TM, when purchased in the generic target configuration, is a minimum, 5 Volt only, configuration. The F68HCll, Xtal, reset circuit, various HC "glue" components and three 28 pin JEDEC sockets. Typically, a program developed in the "development configured" board will be installed in the "generic target configured" board for production of a dedicated application. The user must install the appropriate jumpers, which are not provided in the target configuration.

All configurations of the $E 68$ HCll based "100 Squared"TM boares use the same base PC board. This includes the NMIX-0021, the NMIX-0022, the NMIT-0021 and the NMIT-0022. Configuration disferences refer to the extent to which the board is filled with components.

DARALLEL PORTS
The F 68 HCll has five parallel ports, port A, B, C, D and E. Although some port lines have special multiplexed functions, they can all be used as inputs or as outputs according to their individual designs. Some of the port lines have direction registers allowing them to be used as either inputs or outputs. Two ports of the F 86 HCll are sacrificed to create an 64 K address and data bus. The 68 HC 24 simulates the replacement of those ports. Three ports of the F 68 HCll and two replacement ports of the 68HC24 are brought out to connector J2. Power and ground are also available on J2.

## " 100 SQUARED"TM DOCUMENTATION INPUT/OUTPUT JACKS J2



The lines can be used as individual inputs or outputs or in combination. There are very few applications, however, where pins are switched dynamically, sometimes used as inputs, sometimes as outputs.

The simplest form of input device is a switch to ground, to create a low level when the switch is closed, with a pullup to give a high level when the switch is open. This switch can be breaker points, reed switch, the contacts of a relay, microswitch, etc. To try an example of this type input, hook up a simple push button switch to Port A Line 0 (PAO) with a 10 K ohm pull up resistor to +5 .


The following program will show the current state of the switch. Enter LOOK after pushing reset. (Reset sets the ports to all "ones".)

BOOO CONSTANT PA
: SWITCH PA C® 1 AND ;
: CHECK-STATE IF ." OPEN" ELSE ." CLOSED" THEN CR ;
: LOOK SWITCH BEGIN SWITCH 2DUP = IF DROP ELSE SWAP $0=$ CHECK-STATE THEN ?TERMINAL UNTIL ;
LOOK
Whenever the switch changes state, open or closed, the computer follows with a written report.

Other possible input devices are shown here.

relay


TTL LOGIC


TRANSISTOR


COMPARATOR


PHOTO TRANSISTOR


OPTO ISOLATOR

Note that due to the 10 K pull up on the port, the "switch" must sink .5 ma to ground with no more voltage rise than an HC low level ( $2 / 10$ ths of Vcc ) at the pin. (A voltage of $7 / 10 \mathrm{Vcc}$ will always be recognised as a logical one.) Voltages applied above Vdd or below 0 Volts can damage the computer.

The outputs of the F 68 HCll and 68 HC 24 can sink 1.6 ma to ground while letting the pin go no higher than 0.4 Volts for a "zero" and source about .8 ma at 4.5 Volts for a "one". In terms of control, this is a very small signal. Most relays require over 50 times more current to operate. LED's typically take 5 ma to be visible. HC levels are such that the output is sufficient to drive the input on one pin of one TTL device or about a dozen of the lower power [STTT inputs. The output is sufficient to drive VMOS FET's and Darlingtons with an external pull up which can in turn control several amps of current. Usually, however, a buffer will be needed to do serious non-HC interfacing.


To test the output capabilities, wire one of the two circuiss shown here or use an oscilloscope or logic probe.


When the output is a "l" the LED will be on. When the output is a " 0 " the LED will be off. The following program will exercise the outputs of the 68HC24.
: RUN-UP EF B007 C! 0 BEGIN 1+ DUP B003 ! ?TERMINAL INTiL ;
Notice that the low lines of Port $B$ are changing so fast the LED appears to be on continuously at low brightness. Higher numbered Port $B$ lines and Port C lines toggle at slower rates. Each bit position toggles at $1 / 2$ the speed of the next lower bit.

The F68HCll has a full duplex hardware serial channel that operates at $H C$ levels. To use this serial channel with most standard communications interfaces, level converters are needed. Drivers for RS-232C and IEEE 422/485 drivers are on the boards. (It should be noted that only one combination of RS-232 driver, RS-422 drivers or RS-485 driver should be used at one time to avoid contention of their receiver outputs.)

A zero by RS-232C specification is any voltage from +3 to +15 Volts, a one is between -3 and -15 Volts. To convert the HC signals to the voltage ranges of that interface standard, the " 100 Squared"TM Rev. 1.0 uses a single 16 pin device, the MC145406.

The circuit is shown here.


The 145406 is ideally suited for this use. It not only provides an RS-232 receiver and transmitter pair for the F68HCll processor, but also two spare RS-232 receiver and transmitter pairs which can be used with port lines for handshaking or software driven UARTS, etc..

The RS-422 standard represents a relatively new interface now coming into popularity, and with good reason. Unlike the RS-232 requirements which specify a single wire voltage transmission referenced to ground, the RS-422 standard uses a voltage differential on a pair of conductors. While the RS-232 at full volatge drive levels in electrically noisy enviroments is barely reliable at distances to 1000 feet, RS-422 signals are considered reliable at distances up to 4000 feet. The 422 drivers operate, requiring only a single sided 5 Volt supply, over twisted pairs of wires. A full duplex connection for RS-422 requires two twisted pairs, one for transmit, one for recieve.

The RS-485 interface uses the same specifications for its transmitters and receivers. It, however, allows a single twisted pair to be used for incoming and outgoing messages. This is accomplished by having both a transmitter (with 3 state abiltity) and a reciever tied in parallel to the same twisted pair. Multiple drop point communications are possible under this scheme (up to 64 pairs by specification). Of course, in application the
transmitter turns on and takes control of the lines only under software control. The actual implementation of this control will be determined by the particular protocol being used in the communication network. Usually one master sends an addresses message to one of multiple slaves and then turns off its master transmitter. The addressed slave, recognizing its address will turn on its transmitter and respond with the requested data.

These two interfaces are accomodated on the " 100 Squared"TM by the addition of two 8 pin 75176's, which each contain a transmitter/receiver pair. Whether the transmitter of the pair is active, or not, is controlled by a signal on one of its pins.

One of the 75176's (Ull) has its receiver always enabled. It is used exclusively as the RS-422 receiver. The other 75176 (U12) can be used as the RS-422 transmitter if jumper $C$ on the " 100 Squared"TM is grounded (ie: in 422 position), or it car be used as the receiver and transmitter for the RS-485 interface as controlled by PA3 (ie: in 485 position). In this case if PA3 is high, the 75176's transmitter is not active. If PA3 is low its transmitter is active.

The RS-422/485 interface circuit is shown below.


The power supply circuit on the " 100 Squared"TM is designed to allow the board to operate from a simple AC wall transformer. It has three major sub circuits - rectification, regulation and $D C$ to $D$ conversion. Rev $2 . x$ added battery backup capabilities to the 28 pin JEDEC sockets and the F68HC1l internal RAM, and an improved power-up power-down reset circuit.


The bridge rectifier converts the $A C$ to $D C$. The 7805 regulates this rectified incoming voltage to a constant 5 Volts.

The most unusual feature of the power supply is the use of the $D C$ to $D C$ converter, the ICL 7660. On NMIx-002x boards the 7660 is fed from the 5 Volt rail. The two voltages are used to power the RS-232 converter circuit. This means the maximum output from the RS-232 converter would be + and - 5 Volts.

The upper limit of $+V$ is set by the ability of the 7805 to dissipate heat: If a heat sink is added to the 7805, voltages in excess of 20 Volts are possible. Driving the 7805 to hard, however $r$ will cause it to enter themal overload and "shut down" its output.

The typical current required by the " 100 Squared"TM with 8 K CMOS RAM and the Max-FORTH ROM at 2 Mhz from 9 VAC is 20 ma.

The power terminal, J3, can be used as an alternate power source instead of the AC supply. The 5 volts applied at the terminal is also applied to the 7660 . The 5 Volt $+/-$ rails are usually sufficient to generate more than the $+/-3$ Volts needed to meet the RS-232 specification. Some terminals, however, may not fully meet those requirements.

## BATTERY BACK UP AND RESET

(Rev 2.x only)
The battery backup capability added to the Rev $2 . \mathrm{x}$ boards to allow data retention in otherwise volitale CMOS RAMS and the processors own internal RAM through main board power downs. A third terminal has been added to the power connector, J3, marked VBB for Voltage Battery Backup.

The VBB terminal on $J 3$ is connected to the VBB supply rail on the board by diode, D1. The VBB supply rail supplied the three 28 pin JEDEC sockets, the 8054HN low voltage indicator in the reset circuit, the 74 HCOO gate and the 74 HCl 38 decoder. If no power is applied to the VBB terminal, the VBB rail is supplied through the intrinsic diode of $P$ channel $F E T$, $Q 1$, to within a diode drop of the suppling 5 volt rail ( -4.4 Volts). When the 8054 HN low voltage indicator releases the reset line, $Q 1$ is turned on and the VBB comes almost completely up to the 5 volt rail ( $\sim 4.95$ Volts). (This may cause some problem with the Dallas Semiconductor DS1223 battery sockets, as they "write protect" their RAMs at 4.75 Volts. Running an elevated 5 Volt supply may be necessary to accomodate these parts. The purpose of this new feature is, however, to do away with the need for those devices in final system configurations.)

When the 8054 HN low voltage indicator holds the reset line low (when VBB is below 3.8-4.2 Volts), Q1 is turned off and the address decoder is disabled through the same input that is used by MEMDIS. This "access" protects the memories during the power down cycle.

To meet the full letter of the specifications of the parts involved the correct backup voltage on the VBB pin is critical. This supply must be low enough to ensure that after the diode drop of DI, the VBB rail cause the 8054 HN to issue a reset ( $\sim 4.0$ Volts), otherwise Ql will remain on and the whole system will be powered by VBB. It must also be high enough to ensure that after the diode drop of Dl , the VBB rail will meet the processors required backup volatge (listed as 4.0 Volts ). Therefore, the ideal voltage for the VBB supply is 4.3-4.5 volts. It should be pointed out however that the Motorola specification appears to be overly conservative. By empirical test, VBB supplies below 3 Volts appear to be quite adequate. Most CMOS RAMs will retain data down to 2.2 volts. Accounting for the diode drop under such low currents, the VBB supply may work as low as 2.5 Volts.

The proccess battery backup supply enters the chip via the MODB pin. Jumper block $D$ controls the setting of MODB, either to ground or to VBB. For backup of the processor's RAM to be successful jumpers $D$ and $E$ must be in the Single Chip or Expanded Multiplexed settings. When the VBB supply is used on the processor, it will retain its User irea through power down ano remenber its linkages to the external FORTH dictionary.

## ADDRESS DECODING

The chip selects of the three JEDEC sockets are generated by a 74HCl38. When jumpers $A$ and $B$ are in the 8 K position, address lines Al5 to Al3 are brought to this part. This means that each of the eight generated chip selects represent a single 8 K byte segment out of the 64 K byte memory map.

When jumpers $A$ and $B$ are in the 16 K position, address lines Als and Al4 are brought to this part. The Al3 is held high. This means that the upper four generated chip selects represent a single 16 K byte segment out of the 64 K byte memory map.

When jumpers $A$ and $B$ are in the 32 K position, address lines $A 15$ alone controls the part. The Al4 and Al3 are held high. This means that each of the two upper chip selects represent a 32 K byte segments out of the 64 K byte memory map.

Two other signals control the decoder - Address Strobe (AS) and On Board Memory Disable (MEMDIS). The Address Strobe (AS) signal must be active low before any chip selects are enabled. This is the processor's signal indicating the address on the bus is valid for the off-chip memory. The On Board Memory Disable (MEMDIS) signal allows an offboard open collector source to disable the or. board decoder, so offboard components can usurp a memory segment from on board memory, even if the entire 64K is filled with RAM on the main board.

74HC138


* Rev 1.0 boards do not have a jumper block in this postion - U4 Chip select is hard wired to the socket. On $2 . x$ boards this jumper block is installed - the jumpered connection of the high order chip select to $U 4$ is user selectable.

As always the first thing to do when troubleshooting is to check the power and ground connections. An oscilliscope should be used to check signals. The heat sink of the 7805 is a convenient place to hook a ground clip. If +5 Volts is present at $j 3$ and the board is not operational, the next item to check is the oscillator. Putting the scope on EXTAL (Pin 7) should show a 8 Mhz sine wave ( 4 Mhz F68HCll parts running 4 the XTAL's) running from about . 5 Volt lows to 4.5 Volt peaks. XTAL (F68HCll Pin 8) should have an identical signal, but of a much smaller amplitude. If the sine waves are not present and there is 5 V present at the power pin Vec (Pins 26), and ground at Vss (Pin 52), then either the F 68 HCll or the crystal are bad and require replacement. There is one exception. If the processor has executed a STOP instruction, the oscillator will stop. When the oscillator is functioning correctly a 2 Mhz ( 1 Mhz ) clean running square wave should be present at the $E$ output (Pin 5). The E signal drives the timing for all external memory transfers. This signal should transition nearly rail to rail, a 0.4 V low and a 4.6 V high are normal. Less amplitude can indicate a board short or an excessive load on the line external to the F68HCll.

The serial channel should send a sign on message if no aurostart ROM interferes. If not, the reset circuic could be bad, the serial converter could have failed, or the F68HCll could be defective. With the reset button depressed the RES pin (pin 17) should be at ground. When release, the pin should rise to 5 Volts in about a quarter second. If the reset pin is working and still no message is seen on the terminal, check PD1, the serial output line (Pin 33). When reset is exercised, this line should go from nomally high through a multitude of toggles back to a high state. The periods of the toggle transitions are multiples of approximately 100 microseconds. If this signal is not present, and there are no user ROMs in the board, the F68HCll is suspect. If the signal is present, check pin 3 of the DB25F connector. It should nomally be at $-V$ ( -5 Volts nominally) and should toggle to $+V$ ( +5 Volts nominally) at the same rate as the serial output line. If this is happening and no message is seen, the RS-232 wiring or the terminal is suspect. Check to see if JI is connected to the DB25F RS-232 connector as follows:

| DB25F | Signal Name |
| :--- | :--- |
| 1 | Case ground |
| 2 | Serial in (to "100 Squared"TM) |
| 3 | Serial out (fzom "100 Squared"TM) |
| 7 | Electrical ground |

Check the voltages on pins 2 and 3. If pin 3 is very nejative and pin 2 is floating, both systems are trying to talk on the same line. Pins 2 and 3 need to be swapped. Usually this is done with a "null moden" inserted where the two systems connect.

If the $-V /+V$ signal was not found at pin 3, the RS-232 converter is not working. Check pin 1 of the 145406 for $+V$ and pin 8 of the 145406 for $-V$. If $-V$ is not present at the $-V$ pin, the 7660 has failed. Pin 7 of the 145406, the output, should look the same as pin 3 of Jl .

Check pin 2 of $J l$ which is the serial into the board from the terminal. It should nommally be at a negative voltage between -3 and -15 Volts. When a key is pressed on the terminal it should pulse to positive voltages between +3 and +15 volts. If it doesn't, the termirial or the RS-232 wiring are suspect. The same signals at inverted TTL levels, should also be at PDO, winich is the serial input line of the processor ( $\operatorname{Pin} 34$ ).

The most common error in trying to use the " 100 Squared"TM is mismatched baud rates or bit settings. Verify that the terminal is set for 9600 baud with one start bit, eigth data bits and one stop bits, with no parity generated. (Review this discussion in the Getting Started section.)

MEMORY MAP


## "100 SQUARED"TM DOCUMENTATION MISCELLANEOUS JUMPERS

| \# | SOURCE | destination | NORMALLY |
| :---: | :---: | :---: | :---: |
| A |  |  |  |
| A13-A | ADDRESS LINE 13 | ADDRESS DECODER INPUT |  |
| A-5 | +5 VOLT RAIL |  |  |
| B |  |  |  |
| A13-A | ADDress line 13 | ADDRESS DECODER INPUT |  |
| A-5 | +5 VOLT RAIL |  |  |
| $C$ C |  |  |  |
| 00-U2 | decoder output 0 | U2 JEDEC SOCKET |  |
| 01-U2 | DECODER OUTPUT 1 | U2 JEDEC SOCKET |  |
| 02-U2 | DECODER OUTPUT 2 | U2 JEDEC SOCKET |  |
| 03-U2 | DECODER OUTPUT 3 | U2 JEDEC SOCKET |  |
| 04-U2 | DECODER OUTPUT 4 | U2 JEDEC SOCKET |  |
| 05-U3 | DECODER OUTPUT 5 | U3 JEDEC SOCKET |  |
| 06-U3 | DECODER OUTPUT 6 | U3 JEDEC SOCKET |  |
| 07-U4 | DECODER OUTPUT 7 | U4 JEDEC SOCKET * |  |
| D |  |  |  |
| GND-D | GROUND | MOOB PIN | OPEN |
| D-5 | MODB PIN | +5 VOLT RAIL | CLOSED |
| E LST |  |  |  |
| GND-E | GROUND | MODA PIN | OPEN |
| E-5 | MODA PIN | +5 VOLT RAIL | CLOSED |
| F |  |  |  |
| XIRQ-B | NMI | INT FROM J 4 | OPEN |
| $B-I R Q$ | INT FROM J4 | PA3 EDGE SENSITIVE LINE | OPEN |
| $G$ S-IRQ SA3 EDGE SENSITIVE LINE OPEN |  |  |  |
| 485-C | PA3 | U12 PINS $2 \& 3$ |  |
| C-422 | U12 PINS 2 \& 3 | GROUND |  |
| 1 |  |  |  |
| U2 | U2 PIN 27 R/W LINE | U2 PIN 28 SUPPLY | OPEN** |
| U2 U2 PIN 27 R/W LINE U2 PIN 28 SUPRY ORE* |  |  |  |
| U3 | U3 PIN 27 R/W LINE | U3 PIN 28 SUPPLY | OPEN** |
| K 4 U4 27 R/N |  |  |  |
| U4 | U4 PIN 27 R/W LINE | U4 PIN 28 SUPPLY | OPEN** |
| - |  |  |  |
| * Rev 1.0 is hard wired to U4, Rev 2.x is jumper selectable |  |  |  |
| ** Rev 2.x has option of pullups on R/W lines to write protect |  |  |  |
| Rams i jumper If bat | n socket. To use in fram 28 pin JEDEC s | stall 100K pullup resisto election socket for pin 2 | \& remove |



Rev 2.x has option of pullups on $R / W$ lines to write protect RAMs in socket. To use, install 100 K pullup resistor \& remove jumper for pin 27. If battery back up is in use, RAM will then emulate ROM.
" 100 SQUARED"TM DOCUMENTATION: GENERAL PURPOSE SOCKET - U6, U7, U8

## Jumper Settings for Standard JEDEC 24/28 Pin Devices

ALL $8 \mathrm{~K} \times 8$ DEVICES
2764
2864
6264
PIN 1 PIN 26 PIN 27


16K X 8 EPROM
27128
PIN 1 PIN 26 PIN 27


32K X 8 EPROM 27256
PIN 1 PIN 26 PIN 27


* Rev 2.x has option of pullups on R/W lines to write protect RAMs in socket. To use, install 100K pullup resistor \& remove jumper for pin 27. If battery backup is in use, RAM will then emulate rom.
"100 SQUARED"TM DOCUMENTATION GENERAL PURPOSE SOCKET - U6, U7, U8


## Jumper Settings for Various Addressing Schemes

3 8K DEVICES


* Rev 1.0 is hard wired to U 4 , Rev $2 . \mathrm{x}$ is jumper selectable

3 l6K DEvices


* Rev 1.0 is hard wired to U4, Rev 2.x is jumper selectable
** See appnote on PRU overmepping cautions


## 2 32K DEVICES



* Rev 1.0 is hard wired to U4, Rev $2 . x$ is jumper selectable ** See appnote on PRU overmapping cautions




## " 100 SQUARED"TM DOCUMENTATION

INPUT,OUTPUT JACKS J2

| FRONT (EDGE) CE | TOP VIEW |
| :---: | :---: |
|  | CARD v |
|  | - X PA7 0 O pab |
|  | 10 PA5 00 PA4 |
|  | $\bigcirc$ PA3 $0 \bigcirc$ PA2 |
|  | I PAI $0 \bigcirc$ PAO I |
| 20 pin header group | +5 $000+5$ |
|  | GND $0 \circ$ GND |
|  | $\bigcirc$ PB7 $0 \bigcirc$ PB6 0 |
|  | $\bigcirc$ PB5 $0 \bigcirc$ PB4 0 |
|  | $\bigcirc 0$ PB3 $0 \bigcirc$ PB2 0 |
|  | - 0 PBI $\bigcirc 0$ PBO 0 |
|  | +5 $000+5$ |
|  | GND $\circ \bigcirc$ OND |
|  | - X PC7 ○ ○ PC6 X |
|  | $X$ PC5 ○ ○ PC4 X |
|  | $X$ PC3 $\bigcirc \bigcirc$ PC2 X |
|  | $X \mathrm{PCl}$ ○ ○ PCO X |
|  | +5 00 +5 |
|  | GND $\circ \bigcirc$ GND |
|  | $\bigcirc$ PD7 $0 \bigcirc$ PD6 I |
|  | X PD5 $0 \bigcirc \mathrm{PD4} \mathrm{X}$ |
| 34 pin header group | $X$ PD3 ○ ○ PD2 X |
|  | $X$ PDI $0 \bigcirc$ PDO $X$ |
|  | +5 00 +5 |
|  | GND $0 \bigcirc$ GND |
|  | I PE7 0 O PE6 |
|  | I PE5 $0 \bigcirc$ PE4 I |
|  | I PE3 $0 \bigcirc$ PE2 I |
|  | I PEI $\circ \bigcirc$ PEO |
|  | +5 $00+5$ |
|  | GND $\bigcirc \bigcirc \bigcirc \mathrm{GND}$ |

$I=I N P U T$ O=OUTPUT X=EITHER
F68HCLI "100 SQUARED"TM NMIX-0021/2/3 REV 1.0 \& 2.x $11 / 13 / 87$

## "100 SQUARED"TM DOCUMENTATION EXPANSION JACK J4

| MEMDIS | 0 | 0 | N.C. |
| :---: | :--- | :--- | :--- | :--- |
| E | 0 | 0 | RST |
| A15 | 0 | 0 | INT |
| A14 | 0 | 0 | +5 |
| A12 | 0 | 0 | R/W |
| A7 | 0 | 0 | A13 |
| A6 | 0 | 0 | A8 |
| A5 | 0 | 0 | A9 |
| A4 | 0 | 0 | A11 |
| A3 | 0 | 0 | $0 E$ |
| A2 | 0 | 0 | A10 |
| A1 | 0 | 0 | AS |
| A0 | 0 | 0 | D7 |
| D0 | 0 | 0 | D6 |
| D1 | 0 | 0 | D5 |
| D2 | 0 | 0 | D4 |
| GND | 0 | 0 | D3 |

The J4 expansion connector was designed to follow the JEDEC standard for byte sized memory parts in the 8,16 and 32 K Byte varieties. The J 4 connector on these boards are made to most closely match the more recently available 32 K JEDEC parts.

NEW MICROS, INC.
AMIX-0021/2 E68FCII " 100 SQUARED"TM PARTS LIST REV 1. 0 \& 2. x

| PART\# | GEMERIC | DESCRIPTION |
| :---: | :---: | :---: |
| U1 | 52 PIN SOCKET |  |
|  | F68HCll | FORTH CPU |
| U2 | 28 PIN SOCKET |  |
|  | 2064 | 8K $\times 8$ RAM |
| U3 | 28 PIN SOCKET |  |
| U4 | 28 PIN SOCKET |  |
|  | 2064/20256 | OPTIONAL MEMORIES U4,5 |
| U5 | 44 PIN SOCKET |  |
|  | F68HC24 PRU | PRT RPLCMNT UNT (NMIX-0022 ONLY) |
| 06 | 8 PIN SOCKET |  |
|  | 7660 | DC/DC CONVERTER |
| U7 | 14 PIN SOCKET |  |
|  | 74HC00 | NAND GATE |
| U8 | 16 PIN SOCKET |  |
|  | 74HC138 | ADDRESS DECODING PROM |
| U9 | 20 PIN SOCKET |  |
|  | 74HC373 | 8 BIT LATCH |
| 010 | 16 PIN SOCKET |  |
|  | 145406 | RS-232 CONVERTOR |
| U11,12 | 8 PIN SOCKETS |  |
|  | 75176 | RS-422/485 DRIVERS |
| Y1 | 8 MHZ XTAL |  |
| J3 | SCREW TERMINAL | 2 PIN .194" CONN (Rev 1.0 only) |
| J3 | SCREW TERMINAL | 3 PIN .194" CONN (Rev 2.x only) |
| J4 | 34 PIN VSC HEADER | .1" DUAL INLINE |
| R0 | 10K | 1/8 WATT RESISTOR (Rev 2.x only) |
| R1 | IMeg | 1/8 WATT RESISTOR |
| R2-5 | 10K | 1/8 WATT RESISTOR |
| R6 | 10K | 1/8 WATT RESISTOR (Rev 1.0 only) |
| $\mathrm{Cl}, 2$ | 220uf | 16V ELECTROLYTIC CAP |
| C3,4 | 10uf | 16V ELECTROLYTIC CAP |
| C5 | 10uf | 16V ELECTROLYTIC CAP (Rev 1.0 only) |
| C6,7 | 20 pf | CERAMIC DISC |
| C8-14 | . luf | MONOLYTHIC BYPASS |
| C15 | . 1 uf | MONOLYTHIC BYPASS (Rev 2.x only) |
| LVI1 | 8054HN | POWER ON RESET MONITOR (Rev 2.x) |
| Q1 | VP0300L | P CHANNEL FET (Rev 2.x only) |
| D1 | 1N4148 OR 1N914 | SIGNAL DIODE |
| CRI | VM08 | BRIDGE RECTIFIER |
| VR1 | 7805 | 5 SV REGULATOR |
| PCB | 100 SQUARED | NMIX-0021/2/3 PCB REV 1.0 or $2 . x$ |
|  | JUMPER PINS | BERG STYLE . ${ }^{\prime \prime}$ CENTER JUMPERS |
|  | JUMPER SHUNTS | BERG STYLE . ${ }^{\prime \prime}$ CENTER SHUNTS |
| S1 | MOMENTARY PUSt. | RESET SWITCH |
|  | 9 V WALL PLUG | A.C. POWER TRANSFORMER |
|  | CASE | ALUMINUM EXTRUDED METAL CASE |
|  | FRON ${ }^{\text {P }}$ PANEL | ALUMINUM MOUNTING FACE PLATE |
|  | BACK PANEL | STEEL BLACK END PLATE |

NEW MICROS, INC.
NMIT-0021/2 E68HC11 "GENERIC TARGET COMPUTER"TM PARTS LIST REV $1.0 \& 2 . x$

| PART ${ }^{\text {\# }}$ | GENERIC | DESCRIPTION |
| :---: | :---: | :---: |
| U1 | 52 PIN SOCKET |  |
|  | F68HCl1 | FORTH CPU |
| U2 | 28 PIN SOCKET |  |
| U3 | 28 PIN SOCKET |  |
| U4 | 28 PIN SOCKET |  |
| U7 | 14 PIN SOCKET |  |
|  | 74HCOO | NAND GATE |
| U8 | 16 PIN SOCKET |  |
|  | $74 \mathrm{HC138}$ | ADDRESS DECODING PROM |
| U9 | 20 PIN SOCKET |  |
|  | 74HC373 | 8 BIT LATCH |
| Y1 | 8 OR 4 MHZ XTAL |  |
| R0 | 10K | 1/8 WATT RESISTOR (Rev 2.x only) |
| R1 | lMeg | 1/8 WATT RESISTOR |
| R2-5 | 10K | 1/8 WATT RESISTOR |
| R6 | 10K | 1/8 WATT RESISTOR (Rev 1.0 only) |
| C6,7 | 20 pf | CERAMIC DISC |
| C9-13 | .luf | MONOLYTHIC BYPASS |
| Cl5 | .luf | MONOLYTHIC BYPASS (Rev 2.x only) |
| LVI1 | 8054 HN | POWER ON RESET MONITOR (Rev 2.x) |
| Q1 | VP0300L | P CHANNEL FET (Rev 2.x only) |
| D1 | 1N4148 OR 1N914 | SIGNAL DIODE |
| PCB | 100 SQUARED | NMIX-0021/2/3 PCB REV 1.0 or 2.x |




"schemaさic REV 1.0"

"scinematic REV 2.x"


## "100 SQUARED"TM DOCUMENTATION APPLICATION: NOTE

## CONNEATING A PARALLEL PRINTER TO THE "100 SQUARED"TM

Being able to keep a hard copy of entered or displayed text can be a very desirable feature during development. Further, the ability to make written reports from a run time apolication may be required of the finished system. The hook-up below shows connections between the " 100 SQUARED"TM and a Centronics style printer.

This example works only on the NMIX and NMIT-0022 with the port Replacement Unit installed.

| PRINTER | SIGNAL | CABLE | J2 | F68HC11 |
| :---: | :---: | :---: | :---: | :---: |
| CONNECTOR | NAME | CONDUCTOR |  | 68HC24 |
| PIN \# |  | NUMBER | 34 | SIGNAL |
| 1 | STB | 1 | 13 | STRB (PD7) |
| 19 | GND | 2 | 11 | GTD |
| 2 | D0 | 3 | 8 | PCO |
| 20 | GND | 4 |  | GND |
| 3 | D1 | 5 | 7 | PCl |
| 21 | GND | 6 |  | GND |
| 4 | D2 | 7 | 6 | PC2 |
| 22 | GND | 8 |  | GND |
| 5 | D3 | 9 | 5 | PC3 |
| 23 | GND | 10 |  | GND |
| 6 | D4 | 11 | 4 | PC4 |
| 24 | GND | 12 |  | GND |
| 7 | D5 | 13 | 3 | PC5 |
| 25 | GND | 14 |  | GND |
| 8 | D6 | 15 | 2 | PC6 |
| 26 | GND | 16 |  | GND |
| 9 | D7 | 17 | 1 | PC7 |
| 27 | GND | 18 |  | GND |
| 10 | ACK | 19 | 14 | STRA (PD6) |
| 28 | GMD | 20 |  | GND |
| 11-18 | N.C. |  |  |  |
| 29-36 | N.C. |  |  |  |

## "100 SQUARED"TM DOCUMENTATION APPLICATION M:OTE

## INTEL FORMAT DUMP COMMAID

The following program allows a section of memory to be dumped out the serial channel in the Intel hex format which is a standard used by many of the conmercially available PROM progranmers. This program should allow the use of such programmers to capture programs and data in EPROMs, which are not supported for programming by the "100 SQUARED"TM directly.

HEX
VARIABLE CHKSUM

```
: CE DUP A < IF 30 ELSE 37 THEN + EMIT ; (CONVERT AND EMIT)
: 2.R FF AND 10/MOD CE CE ;
: 4.R O 100 UM/MOD 2.R 2.R ;
: INTEL-DUMP (addr count ---)
 OVER + SWAP (CONVERTS ADDR & COUNT TO UPPER, LOWER ADDR)
 BEGIN
 CR
 2DUP 20 + MIN (MAKE NEXT LINE OF OUTPUT UP TO 32 BYTES LONG)
 SWAP (BRING UP START ADDRESS, MOVE DOWN END ADDRESS)
 ." :" (BEGIN THE RECORD)
 2DUP - (FIND OUT # OF BYTES IN THIS RECORD)
 DUP CHKSUM ! (BEGIN CHKSUM COMPUTATION)
 2.R (PRINT # OF BYTES IN RECORD IN TWO DIGIT EIELD)
 DUP 100 MOD + CHKSUM +! (ADD START ADDRESS TO CHKSUM)
 DUP 4.R (PRINT START ADDRESS IN FOUR DIGIT FIELD)
 ." OO" (PRINT RECORD TYPE, NO NEED TO ADD TO CHKSUM)
 >R DUP R> (MAKE START STOP #S FOR DO LOOP)
 DO
 I C@ 2.R (PRINT HEX BYTE IN TWO DIGIT FIELD)
 I Ce CHKSUM +! (UPDATE CHKSUM)
 LOOP
 CHKSUM C@ NEGATE 2.R (PRINT CHKSUM NEGATED TWO DIGIT FIELD)
 2DUP =
 UNTIL (KEEP GOING TILL LINE END IS = TO BLOCK END)
 CR ." ;00000001FF" CR (TACK ON END RDCORD)
 2DROP
;
```

Program and application courtesy of Danny Barger, International Computing Scale.

## "100 SQUARED"TM DOCUMENTATION APPEICATION NOTE

Special consideration needs to be given to the address requirements of the Port Replacement Part (PRU) if it is optionally installed in a board by the user. Since the PRU is outside the F68HCll, it must compete for its address space with other devices on the bus, while the internal registers do not. It is possible to accidentally "over-map" the 68 HCll PRU with another external memory device unless some care is given to where the max-Forth system is mapping its registers.

Particular care must be taken when setting one of these boards for the 32 K addressing mode which will always cause problems for the upper 32 K device and the PRU. Generally the 8 K address mode is the safest mode to use when a PRU is installed, if care is given to the $U 2$ jumper to prohibit "over-mapping".

In Max-FORTH revisions x.l (and prior) the registers are at $\$ 9000$. Later revisions put the registers at $\$ B 000$. Only address lines Al5 - All are attached to the PRU, so it will over map a 2 Kbyte area (i.e. 9000-97EF or B000-B7EF) with a skipping pattern that repeats every 64 (40 hex) locations corresponding to the registers it provides.

An off board address decoder could be used to disable the on board memory using MEMDIS. It would need to generate a low signal on MEMDIS when ever there was any address in the area occupied by the PRU. In this way the memories in the 28 pin sockets would be "notched out" to allow the PRU to function normally.

74HC688

| GND- | $\bar{E}$ | Vcc | -+5V |
| :---: | :---: | :---: | :---: |
| GND- | A 0 | $\overline{A=B}$ | -MEMDIS |
| GND- | 30 | B7 | $-+5 \mathrm{~V}$ |
| GND- | A 1 | A7 | -A15 |
| GND- | B1 | B6 | $-+5 \mathrm{~V}$ |
| GND- | A 2 | A 6 | -A14 |
| GND- | B2 | B5 | -GND |
| A11- | A 3 | A 5 | -A13 |
| GND- | B 3 | B4 | $-+5 \mathrm{~V}$ |
| GND- | GND | A 4 | -A12 |

Above 74 HC 688 detects addresses $B 000-B 7 F F$ and controls MEMDIS.


Appendix C-R65C52

## R65C52 <br> Dual Asynchronous Communications Interface Adapter (DACIA)

## DESCAIPTION

The Poctwell CMOS RASCS2 Dum Aynctronous Communice-
 program confrotied two-channel intertece betweon 8 -bit microproceseor-based syimere and serial communticition dexa some and modema.

The DACLA in dealgned for maximum programmed control from the microprocener (MPY) to sirnpity hardwere implementexion. Duel ace of roglerers alow indepencert control and monioring of eech chemal.

 gencurior ceceppa anter a crytel or a clock input. and providen 15 procremmebly beud rime. When a $360{ }^{4} 4$ MHIz crywed is uned the beud thies feape from so bpe to 33,400 bpe.

The DMCN mey be progemmed to trenamin and recevve frame
 or no parivy, end 1 or 2 atop bim.
 the addrexe reognimion in a mumdrop moce.

## FEATURES

- Low power CMOS N-well silicon gex mectnology
- Two incependent full dupvex chennele with butioned recewers and tranemitiors.
- Data swemodem control functions
- Internal beud rime genertior whil 15 progremmetia beid rime (50 ope to 31400 tpe)
- Progrem-aiectable mernely or externaly controlted receiver and trenemitier ble rateo
- Programmable we. o iongithe. mumber of acop blea, end perify bit generation wid amection
- Programmete interript contiol
- Edoe demect for DCD. D8R, and CTS
- Progrem-minetabio echo mode for aech chernal
- Compara Rrginer
- MdrrecerDea frame recogntion
- 50 V de $\pm 5 \%$ mpply requirunerts
- 40-pin piente or cerremic OVP or 4apin PLCC
- Fill TIL or CMOS inpurtocition compatieniny
- Compatiote win Rueco and ResC00 mieroproceesore and Res00r microcompriers


## ORDERANO INFORMATION

R65C52 Dual Asynchronous Communications Interface Adapter (DACIA)

INTERFACE SIGNALS
The DACIA is available in a 40 -pin DIP or a 44-pin PLCC. Figure 1 shows the pin assignments for each package. The DACIA intertace signels are shown in Figure 2. Table 1 contuins a deacription of each signal.



Figure 1. Rescer Min Amaignoments


Figure 2. meces Ducia intertiee armate

| Elonex | Mn Ma. |  | no | Nemaroucortation |
| :---: | :---: | :---: | :---: | :---: |
|  | Ow | PLC |  |  |
| Hox mineteee |  |  |  |  |
| FES | 1 | 24 | 1 |  4 mis for a valid reset to cocur. It is driven high during normal operuion. |
| R(W) | 39 | 20 | 1 | RoedWrita. input controlling the direction of ditat traneter. It is driven low during write gycime and is arven high at all ather times. |
| CS | 30 | 21 | 1 | Chip terect. Active low input enabling dana trandere bermen the how CPU and the ONCLA. The DACLA lechee regumer selectes and the RWW input on the fulting edge of CS. It tectee input dexa on the rising eage of CS. |
| R80-983 | 36-37 | 17-19 | 1 |  coding for each regreer. |
| $\begin{aligned} & \mathrm{DO}-\mathrm{DS}^{2} \\ & \mathrm{D} 4-07 \end{aligned}$ | 24-21 | 44-41 | vo |  output seme during REAO cyclee when CS is lom . At ath ather times, they ere in the migh mpedence sime |
| $\frac{\sqrt{1+01}}{1+2 C^{2}}$ | 29 | 11 36 | 0 |  are normaly high. An IFO Ine goee low when one of the flace of the suociand ISA is sut if the correaponding enabte bit is sat in the IEA. |
| Cooes mavoleo |  |  |  |  |
| XTALS XTALO | $\begin{aligned} & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 28 \\ & 27 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | Cryemel mputiontpuc. One inpur end one output through which the reterence signel tor the internel <br>  may be input a XThul. Whan a ctock is used. XTNLO mum be left open. |
| Cux OUT | 5 | 28 | 0 |  outpur may be ued to arve the XTALI input of enotiser DAClA. Theretort, severd DACU chipe may be driven with one eryey. |
| Prec | 25 | . 7 | 1 | Neoever Cleok. input for enternel 1ex ruceiver clock. |
| TxC | 15 | 30 | 1 | Thenammer cleck. Mput for erturnal rex traneminer ctock. |
| Senal Cramel mameot |  |  |  |  |
| $\frac{6 i n 1}{67 n z}$ | $\begin{aligned} & 27 \\ & 13 \end{aligned}$ | $37$ | 0 |  <br>  <br>  (CSP). |
| O51 | 33 | 13 | 1 |  <br>  |
| $\begin{aligned} & \text { RISI } \\ & \text { RTE } \end{aligned}$ | $\begin{aligned} & 30 \\ & 10 \end{aligned}$ | $\begin{aligned} & 12 \\ & 34 \end{aligned}$ | 0 |  <br>  <br>  |
| $\frac{C r s i}{c+1}$ | $\begin{array}{r} 31 \\ 9 \end{array}$ | $\begin{aligned} & 13 \\ & 33 \end{aligned}$ | 1 |  <br>  <br>  <br>  emocinted CSA ratioctis the currovt the of CTS. |
| $\begin{aligned} & \mathrm{TxO1} \\ & \mathrm{~T} \times 02 \end{aligned}$ | 28 | 3 | 0 |  <br>  or enternal ctock. |
| $\frac{0 \times 01}{D C 0^{2}}$ | $\begin{aligned} & 32 \\ & 3 \end{aligned}$ | 14 | 1 |  <br>  |
| $\begin{aligned} & \mathrm{MaOH} \\ & \mathrm{R} \times \mathrm{D} 2 \end{aligned}$ | 20 | 10 38 | 1 |  reover beuct rite in demermined by the beud rate generuor or criernel ctock. |
| Anuer |  |  |  |  |
| $\begin{aligned} & \text { vce } \\ & \text { vse } \end{aligned}$ | 40 20 | 22 1 | 1 | OC Pumer mpre. 50 y ェ5\%. <br>  |

## R65C52

## Dual Asynchronous Communications interface Adapter (DACIA)

## FUNCTIONAL DESCRIPTION

Figure 3 is a block diagram of the DACIA which consiste of two asynchronous communications intertace adapters with common microprocessor interface controi logic and data bus inffiers. The individual functional elements of the DACIA are described in the following paragraphs.

## RESET LOGIC

The Reed Logic sess various internal regusters, stans bits and cortrol linee to a known state. The AES input must be driven low for a minimum of $4 \mu s$ for a valid reset to occur. At this time. the IERs are sul io se0, the RDPs and ACRs are cleared, and the compare mode is disabled. ABso, the VTH and FTTS ourputs are driven high and the CTS. $\overline{\mathrm{CCO}}$ and $\overline{\mathrm{DSF}}$ iransition detect flags are ciearea. No other bits are aftected.

## DATA BUS BUFFEA

The Dada Bus Bufter is a bidirectional interkece between the deter lines and the internat data bus. The state of the Data Bus Buffer is comrolled by the UO Control Logic and the Interruph Logic. Table 2 summarizes the Data Bus Bufter states.

VO CONTROL LOAIC
The $1 O$ Control Logic comrole detre transfors between the invernat Regivers and the Dena Bus Butfor. Internal Pagister savection is demermined by the Requerer Select inputs as shown in Table 3. When $\mathrm{A} \overline{\mathrm{W}}$ is high and C 'S is low. deta from the sevected registor
is transterred from the intornal data bus to the deta lines. When $\overline{\mathrm{CS}}$ is high. the DACIA is deselected and the data lines are tri-stated.

INTERRUPT LOCIC
The interrupt logic causes the $\overline{\mathrm{AD}}$ lines ( $\overline{\mathrm{RO} 1}$ or $\overline{\mathrm{RO} 2}$ ) to go low when conditions are met that require the atsention of the MPU. There are two regrsters (the Interrupt Enable Regivier and the interrupt Status Register) involved in the control of interrupts in the DACIA. An IFBO will be ascerted on the erenstion of one of the flaga in an ISR from 0 to 1 if the correaponding of in the tueccimed IER is set. The $\overline{R Q}$ line is negeted when the ISA is read or when the interrupting condition is cteared. CAUTION: When the interrupa is generated by TDRE, i/18 of a bit time muat dapee betore IAO can be claared by reading the ISR.

## CLOCX OSCILLATOR LOGIC

The internal clock oecitletor supplies the time bese for the beud raie generwor. The occillator car be diven by a crymial or an erternal clock.
The baud rate generator may be disabled by connecting XTAL to ground and leaving XTALO open. When this is done, a transmitier times 18 clock muat be input it $\mathrm{KX}, \mathrm{C}$ a receiver times 16 clock must be input ai RxC and the Control Regiters must be programmed to select TKC and PxC clocke.

Table 2. Data bue Bufter Summery

| Comtol siqumen | Data tue turner mato |
| :---: | :---: |
| $\begin{array}{ll} L & L \\ H & L \\ X & H \end{array}$ |  |



Floue 2. DiciA noek Olagim

| Mopdiner SolectUnee |  |  |  | Amglater Acentend |  |  |  | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  | Wrim |  | Peed |  |
| HEX | mis | H31 | mso | Symbor | Neme | Symbol | Name |
| 0 | L | $\llcorner$ | L | IER1 | Interrupt Enable Rogrever! | ISR1 | Interrupt Status Regrater 1 |
| 1 | $\llcorner$ | L | H | CA1 | Control Pegrater 1' | CSR1 | Control Stetus Regrmer ! |
|  |  |  |  | FR1 | Format Aegymer ${ }^{13}$ |  |  |
| 2 | $L$ | H | L | CDA1 | Compare Deta Reginter $1^{1}$ |  | Not Used |
|  |  |  |  | ACR1 | Auxiliary Controi Reguter 14 |  |  |
| 3 | L | H | H | TDR1 | Transmit Data Regiter 1 | RORI | Aecevv Datia Regureer 1 |
| 4 | H | L | $\llcorner$ | IER2 | Imerrupt Enabie Reginter 2 | ISR2 | Interrupa Statua Regremer 2 |
| 5 | H | L | H | CR2 | $\begin{aligned} & \text { Controi } \\ & \text { Regutior 2' } \end{aligned}$ | CSR2 | Control Stetue Reguter 2 |
|  |  |  |  | FR2 | $\begin{aligned} & \text { Formar } \\ & \text { Reginer } 2 \end{aligned}$ |  |  |
| 6 | H | H | L | CDR2 | Compare Dite Regremer $2^{4}$ |  | Not Used |
|  |  |  |  | MCR2 | Auxitiary Control Regintor $2^{4}$ |  |  |
| 7 | H | H | H | TOR2 | $\begin{aligned} & \text { Transmint Dewa } \\ & \text { Rogiser } 2 \end{aligned}$ | ROR2 | $\begin{aligned} & \text { Recuve Omi } \\ & \text { Reguser } 2 \end{aligned}$ |
| Noter: <br> 1. O7 must oe sut low to write wo the Control Regiters. <br> 2. Of muex be sum high no write to the Formiel Ragiters. <br> 3. Controt Regaiter bit 6 munt be sut to 0 vo ascerat the Compers Pegister. <br> 4. Control Reguther bit 6 mus be tut to ito eccete the Aluxitiary Controt Regimer. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

## SERIAL DATA CHANNELS

Two independent serial date channels are available for the full duplex (simutaneous tranemit and recerve) transtor of asynchronous tramee. Seperate internal registers ere provided for cech channel for the selection of trame parameters (number of bits per charscter. parrity options. Ac.), status flags. interrupt control and handehake. The asynchronous frame format is shown in Figure 4.

Tresemit dexa from the hou syam is toeded into the Tranami Data Register. From there, it is tranterred to the Trenamit Shin Regiener where it is shifted. LSE first, onto the TxO line. All tranemiseions begin with a start bit and end with the user selected number of stop bits. A parity bit is transmitted betore the stop biti(s) if parity is enabled.

Receve data is shifted imo the Receive Shif Register from the associmed PuD line Seert end tup bies ere sunpped from the frame and the date is tranderred to the Receive Duta Peginter. Perty bits may be discarded or stored in the ISR.

Five $1 / O$ lines are provided for each channel for handshake with the dera communications equipment (DCE). Four of thees signate (ATS, DIFA, DSA and DCO) ere gemerel purpowe inputs or outpute The fith signa. CTS, enableptieabise the trenemition. When CTS
is high and the Transmt Shift Register is empry, the tranamiter (encept for Echo Mode) is inhibited. When CTS is 10 w , the transmitter is enabled.


Figure 4. Abynctwonous Frame Formut

## INTERNAL RECMSTERS

The DACiA contains ien control regiaters and tour status regiasers in addition to the transmit and receive registers. The Comrol Reginters provide for corturol of frame peremeners, beud rase, umer. rupt genertion, hendehale ince, trememiewon end reception. The stius regmers provide stime informmion on trenemit and recemp reginters, error concitions and inmornp: sources. Thoto 4 summerizee the bit deflinitions of theere regivere. A dexaited descrption follows.

| noplever Scleet (Holl) | Anderer | niw | 7 | $\leqslant$ | 5 | 4 | 3 | 2 | 1 | 0 | $\begin{gathered} \text { neex } \\ 74893210 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\begin{aligned} & \text { ISA1 } \\ & \text { isR2 } \end{aligned}$ | R | $\begin{aligned} & \text { ANY } \\ & \text { GIT SET } \end{aligned}$ | TDAE | CTST | DCDT | DJTit | PAR | FIOE | nomp | 1.00000. |
| 0 | IERI IERR | w | $\begin{gathered} \text { CLAISET } \\ \text { BITS } \end{gathered}$ | $\begin{gathered} \text { TORE } \\ \text { IE } \end{gathered}$ | $\begin{gathered} \text { CTST } \\ \text { IE } \end{gathered}$ | OCOT IE | $\overline{0} \cdot \mathrm{MT}$ | $\begin{gathered} \text { PAR } \\ \text { IE } \end{gathered}$ |  | $\begin{aligned} & \text { RDNF } \\ & \text { IE } \end{aligned}$ | - 0000000 |
| 5 | $\begin{aligned} & \text { csp1 } \\ & \text { csR2 } \end{aligned}$ | ค | FE | TUR | CTS LVL | $\begin{aligned} & \overline{806} \\ & \mathrm{LV} \end{aligned}$ | Ln | 0ma | $\begin{aligned} & \hline \text { DTM } \\ & \text { LVR } \end{aligned}$ | $\begin{aligned} & \hline \overline{\text { ATS }} \\ & \text { LV } \end{aligned}$ | 1....011 |
| $\begin{aligned} & 1 \\ & 5 \end{aligned}$ | CA1 CR2 | $w$ | 0 | $\begin{aligned} & \text { CON } \\ & \mathrm{ACN} \end{aligned}$ | $\begin{aligned} & \text { STOP } \\ & \text { BTS } \\ & \hline \end{aligned}$ | ECHO |  | 8 er | Sel |  | 0....... |
| $\begin{aligned} & 1 \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { FR1 } \\ & \text { FAR } \end{aligned}$ | w | 1 | DAT |  |  |  | $\begin{gathered} \text { PAN } \\ \text { EN } \end{gathered}$ | Din CNTL | $\begin{aligned} & \text { RTS } \\ & \text { CNT } \end{aligned}$ | 1....... |
| $\begin{aligned} & 2 \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { COA1 } \\ & \text { CON } \end{aligned}$ | $\left.\cos ^{w}-0\right)^{w}$ |  |  |  | COMPA | EATA |  |  |  | ......... |
| $\begin{aligned} & 2 \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { ACA } \\ & \text { ACR } \end{aligned}$ | $\left.\dot{\cos }^{W}-1\right)$ |  |  |  |  |  |  | TRNS BRK | $\begin{aligned} & \text { PAA } \\ & \text { ERPVST } \end{aligned}$ | $\cdots \cdots \infty$ |
| $\begin{aligned} & 3 \\ & 7 \end{aligned}$ | $\begin{aligned} & \text { nont } \\ & \hline 1 \end{aligned}$ | ค |  |  |  | EIVE DA | neas |  |  |  | 00000000 |
| $\begin{aligned} & 3 \\ & 7 \end{aligned}$ | $\begin{aligned} & \text { TOA1 } \\ & \text { TOM2 } \end{aligned}$ | w |  |  |  | MSunt Da | A Mecut |  |  |  | ........ |

intearupt status recisters (ISAl, ISAz)
The imerrupt Status Registers are read-only registers indicating the status of eech interrupt source. Bits 6 through 0 are set when the indicated IROC $C$. rdition has occurred. Bit 7 is set to a 1 when any IRO source bit is ser. or if Echo Mode is disabled, when CTIS 18 high.

| 7 | 6 | 3 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANY <br> BIT <br> SET | TDRE | CTST | DCDT | DSAT | PAR | FIORB | AORF |


| 817 | Any En Sxt |
| :---: | :---: |
| 1 | Any bit ( 6 through 0) has been set to a 1 or Č'S is high with echo disatoved |
| 0 | No bits have been sex to a 1 or echo is enabled |
| Et 6 | Tranamit Datia Reglater Emply (TOnit) |
| 1 | Transmit Deta Reguster is empty and Cis is low |
| 0 | Tranemit Data Register is full or CT's is nigh |
| Ens | Trenemion On CTS Lime (CTST) |
| 1 | A positive or negetive transition has occurred on |
| 0 | No tranaition has occurred on CTS. or ISR has been Reed |
| Et 4 | Thanation On DCD Une (DC5) |
| 1 | A postive or negative tranetion has occurred on DCD |
| 0 | No traneition has occurred on $\overline{\text { OCD }}$, or ISA hee been Reed |
| En 3 | Tranemen On DTH Lime (ETHT) |
| 1 | A poettive or negetive trantation hee occurrid on |
| 0 | No tranation hae occurred on DSF. of ISA has been Roed |
| 002 | Prity gutus (nan) |
|  | ACP Me O = 0 |
| 1 | A party error has occurred in received dese |
| 0 | No periny error hes cocurred. or the Receive Dens |
|  | Regimer (RDP) has been Reed ACP ENO - 1 |
| 1 | Panty bit = 1 |
| 0 | Party bit $=0$ |
| mil | Prame Efrer, Overrun, Drewt |
| 1 | A freming error, recewo overni. of recove break hee occurred or hes been denected |
| 0 | No error, overrun, braek hes occurred or RDA hes been floed |
| 00 | noeatre Date neginer full (nown) |
| 1 | Peceive Data Reginer is full |
| 0 | Receive Deta Reguer is empry |

INTERRUPT ENARLE RECHSTERS (IEM, IER2)
The imterrupt Enabie Regraters are write-onty reguters that onabiediable the $\overline{\mathbb{A}} \overline{0}$ sources. $\bar{A} \bar{O}$ sources are enabled by wring to an IER with bit 7 sat to a 1 and the bif for every $\overline{1 P O}$ source to be enabied set to a 1 . Iित sources are disebted by writing to an IER with bit 7 reatt to a 0 and the bit for overy source to be disabled sen to a 1 . Any source bit reent bo 0 is uneflected and remains in its original stete. Thus, writing S7F to en IER diambere all of that chamel's interrupts and writing an SFF to an IER enebles all of that chennel's internupes.

| 7 | ¢ | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SET <br> BITS | TORE IE | CTST IE | DCDT IE | DSFT IE | $\begin{aligned} & \text { PAA } \\ & \text { IE } \end{aligned}$ | $\begin{aligned} & \text { FOM } \\ & \text { IE } \end{aligned}$ | RDAF $\mathbb{E}$ |
| Adereat $=0.4$ |  | Reere vive a-0000000 |  |  |  |  |  |
| 虽 7 |  | Encieroiamite |  |  |  |  |  |
| 1 |  | Enable selected IPO source |  |  |  |  |  |
| 0 |  | Disable selucted IRO source |  |  |  |  |  |
| -nses |  |  |  |  |  |  |  |
| 1 |  | Sevect for enmblevinabio |  |  |  |  |  |
|  |  | No change |  |  |  |  |  |

CONTROL STATUS REOUSTER (CAR1, CSN2)
The Control Sutue Regietert are rend-only regimers the provide UO staus and errer conditon informetion. A CSR is normely reed ater an IFO has occurred to devermine the eesct cause of the imterruet condition.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FE | TUA | $\begin{aligned} & \text { CTS } \\ & \text { LVL } \end{aligned}$ | $\overline{D C D}$ cvi | $\begin{aligned} & \overline{D G R} \\ & \mathrm{LV} \end{aligned}$ | BRX | OTh <br> LVL | $\begin{aligned} & \text { Fis } \\ & \text { LVL } \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| Er 7 Praming Eroer (FA) |  |  |  |  |  |  |  |
| A traming error occurred in receive da |  |  |  |  |  |  |  |
| 9 No trening error oceurred, or the RDR mes reed |  |  |  |  |  |  |  |
| me Trasemmer Underion (TUM) |  |  |  |  |  |  |  |
| Thenomim Shil Reciter is empty and TDRE is sen |  |  |  |  |  |  |  |
| 0 Tranomiter Stim Recieter ion not emply |  |  |  |  |  |  |  |
| En 8 Citumel (Tisu) |  |  |  |  |  |  |  |
| 1 CTS uno ie high |  |  |  |  |  |  |  |
| CTS wien is low |  |  |  |  |  |  |  |
| 4.4 |  | CeO Level (ECS Ln) |  |  |  |  |  |
| 1 |  | $\overline{C C O}$ line in migh |  |  |  |  |  |
| 0 |  | CCD Une in low |  |  |  |  |  |
| en 3 |  | Ein Led (0]Nu) |  |  |  |  |  |
| 1 |  | OSA line in high |  |  |  |  |  |
| 0 |  | DSFA the is kow |  |  |  |  |  |
| 20 2 |  |  |  |  |  |  |  |
| 1 |  | A Receive Break hee cocurred No Receive Eraek occurred. or RDD mes reed |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |
| - 1 |  |  |  |  |  |  |  |
| 1 |  | OIf wne in high |  |  |  |  |  |
| 0 |  | Oif line ie low |  |  |  |  |  |
| 00 |  |  |  |  |  |  |  |
| 1 |  | Fits line in high |  |  |  |  |  |
| 0 |  | Frs tine in low |  |  |  |  |  |

## CONTAOL RECUSTERS (CRT, CR2)

The Control Pegimers are whit-only reginere. They contuol sccese to the Auxiliary Control Pegister and the Compare Deta Regivter. They select the number of twop brti, control Echo Mock and sevect the datie rete.
(Aceomed when eri $7=0$ )

| 7 | 0 | 3 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | CDAACA | STOP | ECHO |  | BAUD RATE SEL |  |

Acdrens - 15
Recot Value $=0 \ldots \ldots$

| $\begin{gathered} \text { En } 7 \\ 0 \end{gathered}$ |  |  | Control or Formet Regheter <br> Accese Control Register |
| :---: | :---: | :---: | :---: |
| Br |  |  | COMMCA |
| 1 |  |  | Accese the Auxiliary Comtrol Regieter (ACR) |
| 0 |  |  | Accens the Compers Date Regiver (CDA) |
| Bns |  |  | Number of Suep Eme Pur Crarseter |
| 1 |  |  | Two mop bie |
| 0 |  |  | One stop bit |
| En 4 |  |  | Eotve Mecte selection |
| 1 |  |  | Eeto Moce mebred |
| 0 |  |  | Echo Mode diaebred |
|  | 200 30 |  | Eaud frate Scioction |
| 3 | 21 | 0 |  |
| 0 | 00 | 0 | 50 |
| 0 | 00 | 1 | 1092 |
| 0 | 01 | 0 | 134.58 |
| 0 | 01 | 1 | 150 |
| 0 | 10 | 0 | 300 |
| 0 | 10 | 1 | 600 |
| 0 | 11 | 0 | 1200 |
| 0 | 1 1 | 1 | 1600 |
| 1 | 00 | 0 | 2400 |
| 1 | 00 | 1 | 3000 |
| 1 | 01 | 0 | 4000 |
| 1 | 01 | 1 | 7200 |
| 1 | 10 | 0 | 9800 |
| 1 | 10 | 1 | 19800 |
| 1 | 1 | 0 | 38400 |
| 1 | 11 | 1 | Externa TXC and PxC XT6 Clocke |

## FORMAT RECMSTERS (FAT, FR2)

The Formal Aeginers are wrib-only regitent. Thay sevect the number of date bite per cherecier and perity generationichocking aptions. They ewo control Fi's and DTR.
(Aceesed when Dit $7=1$ )

| 7 | 0 ¢ | - | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | OATM ETS | MAR SEL | $\begin{aligned} & \text { PAR } \\ & \text { EN } \end{aligned}$ | $\begin{aligned} & \text { OMR } \\ & \text { CNT } \end{aligned}$ | R13 CNTL |

Addreet -1.5

| $\begin{gathered} \text { en } 7 \\ 1 \end{gathered}$ | Control of Pormint nepieter Accese Former Regimer |
| :---: | :---: |
| 8us 8-6 | Number of Dexa Cix Per Cheracter |
| - 5 |  |
| 00 | 5 |
| 01 | 6 |
| 10 | 7 |
| 11 | 8 |
| nex 4-3 | Perly Mase savection |
| 43 |  |
| 00 | Oad Perily |
| 01 | Even Parity |
| 10 | Mark in Party bn |
| 11 | Spece in Perty bil |
| H2 | Powy Ename |
| 1 | Perty as apecifled by bite 4-3 |
| 0 | No Perity |
| En 1 | Oin Contral |
| 1 | Sat Orf high |
| 0 | Sen OTh low |
| 0 | Fi3 Contre |
| 1 | Sa Fis high |
| 0 | Sants low |

R65C52 Dual Asynchronous Communications Interface Adapter (DACIA)

## Compart Data riclistens (CDP1, COn2)

the Compare Deat Aequters are write-only regieters which can be cocemed when CR bit $6=0$. By writing a value into the CDA. the DACLA is put in the compers moce. In this mode, seving of the RDAF Di is inhibited unall a character is roceived which machee the vaiue in the COA. The next charector is then rocelved end the ROAF bit is sed. The receiver will now operate normally until the COR is egain loeded.
(Control Reqiater bit $\in=0$ )


## MuxuLAMY CONTHOL nEA:

The Auxillery Controi Regiemers are witte-only regintera. Bite 7.2 co unced. Bk 1 cavee the trenemiter to trenerin a BREAK. EA 0 demmines whether perity error or the perlly bit ie depleyed in ISR on 2.


| mers | Nor thed |
| :---: | :---: |
| C 1 |  |
| 1 | Truerrin condmuous Break |
| 0 | Normel trenemicelon |
| 0 | Forny Ereateme (han Enver) |
| 1 | Send vilue of perty bu io ISR be 2 (Addreese |
| 0 | Send Perly Error mive to Isp bit 2 |

necive ona nemstine (nowl, nonz)
The Receve Ona Regivers ere reac-only regimers which are raded with the receved date chercter of each frame Sten bian. Erep ben end perty bia ere sirpped off of incoming trames betore the dea in trecelerred from the Recelve Stin Ragieter to the necave Dexa Rogiver. For cherciteve of bue then cight bha, the unued bie tre the high order blie witich are ext to $a$.


## Themant own neostere (TON, TOME)



 minh eoc "don't cavo".

| 7 | 6 | 1 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |

## OPERATION

## TERMMNATION OF UNUSED INPUTS

Noise on floating inputes can aftect chip operation. All unueed inputs muat be terminated. H the beud rate generaor is bypeeved, XTALI mum be connected to ground (XTALO is en outpur and must be ief open). If the extemel ctock mode is not uaed. RxC and TXC may be tied either to +5 V or to ground. It the handehace inguts are not needed, the CTS inpute should be thed low to oneble the tranamitters. The DCD and DSF inpute may evither be tred high or low.

## AESET INTTIALIZATION

 to aceure that the stales requers are initialized. Spectically, ine
 The Aecelver Desis Regivere muak be reed to cieer this bh.

TOPE Fibl it generimes only on the treswition of the cormeponding TOR from tuil to empey. Initillepeion scfivere muat eceourt for this occurrence.

## END RATE CLOCK OPTION:

The recelver and tranamitive clockes may be supplied either by the internel Bend Ame Generator or by uaw suppind extivenel clocta. Both chennele mary uee the seme ctock souree or one may ues the Bend Pere Generator and the other chemel externel ctocke. H both chennele ued the Baud Aete Gener ior, exch chernol may have a diflerent bit ras. The opetons are stown in Fioures.

An internel ctock oucilimor supplies the time bece tor the Beud Rew convettor. The cectitior cen be diven by a cryed or an mumel clock

If the onchip oecilution is driven by a crymel, a perallel reconent crywal io connected between the XTALI end XTALO pine. The squivelent cecimeror circuit is shown in Figure a
 swies revonam relatence For proper cecilimor operation, the loed capectence ( $C$ ), veries revidence ( $\mathrm{H}_{\boldsymbol{W}}$ ) and the crybel reconert trequency (F) mut meat the following two rivations:

$$
\begin{gathered}
(C+2)=2 C_{G} \quad \text { or } \quad C=2 C_{L}-2 \\
R_{1} \leq A_{\infty=0}=\frac{2 \times 10^{0}}{\left(F G^{2}\right.}
\end{gathered}
$$

where: $F$ io in Mrkz; $C$ and $C_{L}$ aro in pf; $A$ is in ohma
to ancet a paraliel remonark erymal for the onememor, frut seluct the loed cepecitence from a eryid menutecturer's cariog. Nemt,
 heve a $R_{4}$ reat then the Rower.
neme - 37
Auent Kive


Figure s. Inad Rave Clock Optione


Fowe 8
For example, if $\mathrm{C}_{2}=22 \mathrm{pF}$ for a 3083 MHz parallel remonant cryatel, then:

C $=(2 \times 24)-2-42 \mathrm{pf}$ (use manclard value of 43 pf )

The sertes reedetance of the crywal musx be kees than

$$
R_{\mathrm{mm}}=\frac{2 \times 10^{6}}{(36064 \times 22)^{2}}=304 \mathrm{onms}
$$

If the or-chip oscilletor is driven by an external clock, the clock is input a XTALI and XTALO is lef open.

An internal countertituider circuit dividee the trequency input a XTALI by the divieor selectied in bite 3 through 0 of the Control Regimere. Thate 5 lise the diviaors that may be seincied end showe the bit rave generned with a 3eeet MHz cryitil or clock input. Other blt rated mey be generased by changing the clock or crystal frequency. However, the input trequency must not exceed 4 MHz .

For extiernal clock operation, a trenemiter tirnee 16 clock mus be supplied at BC. and a roceiver timese 18 clock mum be input is Forc. Since there ere sepertio receiver and creneminer clock inputa, the recever dese rese may be different from the tranemitior dexe rese.

Theto 8. Band Rew Oencritor Divieor Salection

| $\begin{aligned} & \text { Central } \\ & \text { noplever } \end{aligned}$ |  |  |  | Ovther fovectedPor TheIntwint Counder | Buad face genourned whan s.teen min Crymer er Cleot |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 1 | 0 |  |  |  |
| 0 | 0 | 0 | 0 | 73,724 | (3.004 $\times 10 \mathrm{~N} 73.720-50$ | 1773.723 |
| 0 | 0 | 0 | 1 | 33,650 | (3.0004 $\times 10 \times 738.530=100.28$ | 1/33,593 |
| 0 | 0 | 1 | 0 | 27.409 | (3.0004 $\times 109 \mathrm{V7.400}-134.50$ | 1227.400 |
| 0 | 0 | 1 | 1 | 24.576 | $13.0844 \times 107 \mathrm{Ma4} .570-150$ | 124,378 |
| 0 | 1 | 0 | 0 | 12.240 | (3.6064 $\times 100 \times 12.290-300$ | \#12,203 |
| 0 | 1 | 0 | 1 | 6.144 | (3.0404 $\times 109 \times 1.144=000$ | \$70.144 |
| 0 | 1 | 1 | 0 | 3.072 | (3.604 $\times 100 / 3.072$ - 1.200 | 13.072 |
| 0 | 1 | 1 | 1 | 2.046 | $13.004 \times 1092.048=1.000$ | 12.040 |
| 1 | 0 | 0 | 0 | 1.558 | (3.6094 $\times 100 / 1,539-2,400$ | 71,589 |
| 1 | 0 | 0 | 1 | 1.084 | (3.0404 $\times 10971.004-3.000$ | \%1,004 |
| 1 | 0 | 1 | 0 | 70 | (3.0504 $\times 10 \mathrm{y} 7 \mathrm{c}$ ( -4.000 | 1770 |
| 1 | 0 | 1 | 1 | 512 |  | 1/512 |
| 1 | 1 | 0 | 0 | 324 |  | HSen |
| 1 | 1 | 0 | 1 | 182 | (3.0nen $\times 10 \mathrm{y} 463$ - 10.200 | 478 |
| 1 | 1 | 1 | 0 | 96 | (3.604 $\times 10 \times 10$ | U19 |
| 1 | 1 | 1 | 1 | 16 |  | Wrand Amo = AxCl10 |
| $\text { -Baud Rame - } \frac{\text { Frequency }}{\text { Owver }}$ |  |  |  |  |  |  |

## continuous data transmit

In the normal operating mode, the TDRE bit in the ISR signals the MPU that the DACIA is ready to accept the next data word. An IFO occurs on the tranation of the TDR from full to emply if the corresponding TDRE $\overline{R O}$ enable bit is set in the IER. The TDRE bit is set ad the beginning of the stant brt. When the MPU writes a word
to the TDR the TDAE bit is cleared. In oroer to maintain comtinu ous transmission the TDR muat be loaded betore the stop brts. are ended. $1 / 16$ of a brt time after IRO goes lom, the IRO line may be resen by reading the ISR. $\overline{\operatorname{RO}}$ will atways reatx when clate is written to the TDR. Figure 7 shows the relationship between IिO and TXD for the Cominuous Data Trensmit mode.


Flguse 7. Continuoue Data Thenemik

TRANSMIT UNDERRUN CONOITION
If the MPU is unabie to loed the TOR betore the leat stop bit is sert. the TXD line goes to the MARK condition and the underrun fieg
(TUR) is sat. This condition persistes Until the TOR is loeced with a new word. Fiours 8 showe the reletion borween IMO and IXD for the Transmit Underrun Condition.


Figure a. Tenemit Underrun Condition Fidationerimp

## TRANSMIT BREAK CHARACTER

A EREAK may be transmitted by sexting bit 1 of the ACR (Transmit Break bit) to a 1. The BREAK is tranmitted atter the character in the Transmit Snift Register is semt. If there is a charscter in the Tranamin Data Register, it will be trensmitted after the BREAK is terminated. The Transmit Break bit must remain set for at lead
one character time wo aseure that a proper BREAK is tranemittiec. If the Tranamit Break on is cleared before one charscter time of BREAK has been tranamitiod, the BREAK will be terminewed atier one charecter time has clapeed. If the Thenemin Break bin ie cleared after one character time of BREAK has been tranamitted. the BREAK will be termineted immediatery. Figure 9 showe the revetionship of TXD. IFO and ACR bit 1 tor various BREAK options.


Figure 9. Tronomit cracak

EFFECTS OF CTS ON TRANBMITTEA
The CFS contol line controle the tranamiscion of dete or the handstaking of dma to a "buty" device (ach ats a primter). When the CTS line is low, the tranammer operates normaly. A high condt tion intwitis the TDRE bit in the ISA from beconing su. Thanemiesion of the word curremity in the thitt regterer is compleied but any word in the TDR is held until CTis goed lom.

Any tranation on CTB ene bit 5 (CTIST) of the ISA $A$ high on CTB forces bit 6 (XDRE) of the ISR to a Q Bh 7 of the ISR ateo goes to a 1 when CIS is high, it Echo Mode is diesbied. Thut, when the ISR is 880 , t meanse that Cis is high and no interrupk source requires service. A proceseor interrupt will not be generted under theee circumbences, but an ISR polling routine ehould eccommodete this.


Figure 19. Efrecte of CTS on thenemmer

## ECHO MOOE TIMNG

In the Echo Mode. the TxO line retransmits the data received on the AxD line. detfyed by $1 / 2$ of a bit tume. An internal underrun mode must occur betore Echo Mode will stant iranamiting. In normal trenemit mode of TDAE occurs (indicating end of data) an
underfow flag would be set and continuous Mark transmitted. If Echo is initiased, the undertiow figg will not be set at end of data and continuous Mark will nor be transmitted. Figure 11 shows the relationship of PxD and TXD for Echo Mode.


Figure 1t. Echo Mode Timung

## CONTHUUOUS DATA RECEIVE

The normal recerve mode sess the RORF bit in the ISR when the DAClA channat hee received a hill dese word. This occurs es about the 918 point through the stop bit. The processor must read the

RDP betore the neat stop bit, or an overun ertor occurs. Figure 12 shows the relationehip between IFO and RxD for the continuous Data Receive mode.


Algue 12. Continuous Deta meeetve

## Dual Asynchronous Communications Interface Adapter (DACIA)

## EPFECTS OF OVERRUN ON RECEIVER

If the proceesor doee not read the RDP betore the stop bit of the net word. en overun error occurs, the owerun bit is sex in the ISR. and the new deta word is not transforred to the RDR. The RDR
contains the last word not reed by the MPU and ell following dex. is low. The recevier will return to normal operation when the ROA is read. Figure 13 shows the reletionahip of IFO and AxD when overrun oecurs.


Flgure 13. Eftecte of Overrun on Peeetver

## HECENE EREAK CHARACTEA

When a Break charscier is received, the Breek bit is set. The reciver dowe not tut the RDRF bh end remains in this state untid a thep on io received. At this time the next cherecter is recetved
normally. Figure 14 showe the retationehip of iTio and 9xD for a Pecoive Break Character.


## R85C552 <br> Dual Asynchronous Communications Interface Adapter (DACIA)

framana enfor
Framing error is caused by the absence of stop bitt(s) on received data. The framing error brt is set when the RDRF bit is set. Subsequent data words are tested separately, so the status bit always
reflects the lat date word recaived. Figure 15 shows the relationship of $\overline{\mathrm{RO}}$ and RxD when a fruming error occura.


Floure 18. Froning Errer

## PARITY ERAOR DETECT/ADORESS FRAME RECOCDITION

The Partly Status bt (ISN bi 2) may be programmed to indicate party ewros (ACR bn 0 - O) or modinpley the parity bit receved (ACA blt $0=1$ ).

In applicatione where perity checking is used, one of the party checking moeve to enabiad by sewing bis 2.3 and 4 of the Format Recieter to the cevired option and bh 0 of the Auxiliery Controt Reginer is rewi to $a$. Then, when the RORf but (be of is sen In the ISR, the PAR bit (bit 2) will be eex when a perity error is derecied.
 fing. t is sex to 1 tor ecorves fremes and is 0 on detia framee. For
this type of opertion, bi 0 of the ACA is sen to 11 and bide 2.3 and 4 of the FR select a perity checting mode. Then. ISR bi 2 will be twt to a 1 by inconing eddress frames end il will be 00 on data fremes.

## compane moot

The Compers Mode io eutomedcely enebied, la, the chennel if put to steena whenever defa io wition to the Compere Deda Pegimer. NOTE: But of the Control Requer mut be sat no 0 \%o encble scceen to the Compere Dera Reqimer. When the chennal is in the compere mode, the RDPF bit (bin 0 of the isn) is forced to a Upon reoupt of a maltinge chercter, normal receiver operstion recurnes end the RDFFF bit (btt 0 of the 1SR) will be set upon receipt of the mext cheracer.

## R65C52

Dual Asynchronous Communications Interface Adapter (DACIA)
SPECIFICATIONS
DICIA REAONWRTE WAVEFORMS


WOTE: THMNG MEASUREMENTS ARE REFERENCEO TO ANO FROM A LOW VOMCE OF ON AND A HIOH VOUNCE OF 2.NV. UNLESS OTHERWSE NOTED.

## DACLA REAOWWTE CYCLE TMMNG



| Hemerer | Crnepamater | Syminel | 14. |  | 2 man |  | 3 cimb |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | man | man. | man. | Max. | mm. | Max. |  |
| 1 | RW, neorne Vuld to ES Low (Setup) | $T_{\text {man }}$ | 5 | - | 5 | - | 3 | - | $n$ |
| 2 |  | $T_{\text {m }}$ | 45 | - | 46 | - | 45 | - | 0 |
| 3 | CS Pree When | $\mathrm{T}_{\mathrm{c}}$ | 410 | - | 340 | - | 210 | - | $m$ |
| 6 | Cis Low to Dame veme (finea) | TCor | - | 300 | - | 200 | - | 170 | $n$ |
| 1 |  | Tcom | 10 | 50 | 10 | 50 | 10 | 50 | ne |
| 0 | Oma Vind no CI Mugh (wina, sempl | Tom | 30 | - | 30 | - | 30 | - | $n$ |
| 10 |  | TCow | 10 | 二 | 10 | - | 10 | - | n |

## Dual Aoynchronous Communications Interface Adapter (DACIA)

OLCLA TRAMEMTT/RECEVER WAVEFORMS


 UNLESS OTMERWHEE NOTED





## ABSOLUTE MAXIMUM RATINOS*

| Panmmer | Symber | vive | Unu |
| :---: | :---: | :---: | :---: |
| Supoly Vorace | $V_{\text {cc }}$ | $-0.3 \pm+70$ | vac |
| input Voriope | $V_{\text {IN }}$ | $-0.310 v_{c c}+0.3$ | Voc |
| Outpur Verage | $V_{\text {Our }}$ | $-0310 \mathrm{~V}_{\mathrm{cc}}+03$ | Vac |
| Operating Tompereture Commercial Induatial | $\mathrm{T}_{4}$ | $\begin{array}{r} 010+70 \\ -4010+85 \\ \hline \end{array}$ | ${ }^{\circ} \mathrm{C}$ |
| Storsce Pemperature | $\mathrm{T}_{5 \pi 0}$ | -55 10 + 150 | ${ }^{\circ} \mathrm{C}$ |

-NOTE: Stresees above those listed mity cause permenent damege to the device. This is a mrese rating only and functiona operation of the device at theee or any other conditions above thoee indicated in other sections of this documem is not implied. Exposure to absolute maximum rating conditions for extended perods may affect device reliability.

## OPERATING CONDITIONS

| Parmmate | Symbat | Vane |
| :---: | :---: | :---: |
| Supply Varege | $\mathrm{V}_{\mathrm{cc}}$ | 5V 5 5\% |
| Romperature Renge Commercial Induarive | $T_{A}$ | $\begin{gathered} 010 \pi \pi^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} 10^{\circ}+86^{\circ} \mathrm{C} \end{gathered}$ |

## DC CHARACTERISTICS

$N_{c c}=30 \mathrm{~V} \pm 5 \%, V_{s e}=Q . T_{A}=T_{L} 10 T_{A 1}$ uniees atherwise noted)

| Primuer | Symbel | min | 7 90 | max | UnW | Tren Condment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inpur ingh Veringe Emopp XTAUS xTaU | $V_{\text {m }}$ | $\begin{array}{r} +20 \\ +30 \\ \hline \end{array}$ | - | $\begin{aligned} & v_{\propto c}+0.3 \\ & v_{\infty}+0.3 \end{aligned}$ | $v$ |  |
| Input Low vemape Excep XTAL XTALU | $v_{1}$ | $\begin{aligned} & -0.3 \\ & -0.3 \end{aligned}$ | - | $\begin{aligned} & +0.4 \\ & +0.4 \end{aligned}$ | V |  |
| inpus Leamep Currient <br>  The CS | 1 m | - | 10 | 50 | $\sim$ | $\begin{aligned} & V_{\mathrm{w}}=0 \mathrm{~V} 105.0 \mathrm{~V} \\ & V_{\propto}=3.25 \mathrm{~V} \end{aligned}$ |
| Input Lemage Curmut for Trice-eato On DO-O7 | ${ }^{1}$ | - | *2 | 10 | $\cdots$ | $\begin{aligned} & v_{m}=0.4 \mathrm{~V} 102.4 \mathrm{~V} \\ & v_{C c}=3.25 \mathrm{~V} \end{aligned}$ |
| Oupur Migh Vemepe Do-07, 1xa CUK OUT, Fis, of | $V_{0 w}$ | +2. | - | - | $\vee$ | $\begin{aligned} & V_{C c}=4.75 V \\ & 1_{1000}=-100 \mathrm{~m} \end{aligned}$ |
| Orpit Low vinepe DO-OR. BXD CLK OUT, FIT, UIH | $v_{0}$ | - | - | +0.4 | $v$ | $\begin{aligned} & V_{\infty}=4.73 \mathrm{~V} \\ & 400=14 \mathrm{ma} \end{aligned}$ |
| Oveut lonkepe Curwint (On amin) | \% 1 | - | $\pm 2$ | $\pm 10$ | A | $\begin{aligned} & V_{c c}=520 V \\ & v_{o u t}=000.0 V \end{aligned}$ |
| Power Ormpenion | $P_{0}$ | - | $\sim$ | 10 | annury |  |
| Inpur Capecinence Ememp XTALS xTaU | $\mathrm{C}_{\mathbf{w}}$ | - | - | $\begin{gathered} 5 \\ 10 \end{gathered}$ | $\begin{aligned} & \text { of } \\ & \text { pf } \end{aligned}$ | $\begin{aligned} & V_{o c}=30 V \\ & V_{m}=O V \\ & t=2 \mathrm{mWz} \end{aligned}$ |
| Orpet Capermice | Cout | - |  | 10 | pf | $\mathrm{T}_{\mathrm{A}}=2 \mathrm{EBA}^{\text {a }}$ |

## Manes:



3. Tpicel velue are anown for $V_{C C}=30 V$ and $T_{A}-23^{\circ} \mathrm{C}$.
R65C52 Dual Aoynchronous Communications Intertace Adapter (DACIA)

## PACKACE DIMENSIONS



## Appendix D - Ground plane/Power board



Appendix D-Schematic

用



ㅇ 뭄ㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ




## Double Stack Final PCB

Tue, Sep 12, 1989 5:54 PM
Component Side Scale150\%.


00000000000000000
00000000000000008
$\square$
-
-
000


209088


Appendix E-Schematic


Appendix E-PCB layouts
Noise Board 1.0 PCB
Tue, Aug 15, 1989 12:05 AM


\section*{| Noise Board 1.0 PCB |
| :--- |
| Tue, Aug 15, 1989 12:05 AM |
| Component Side $\quad$ Scale2:1 |}

Noise Board 1.0 PCB
W甘 SO:己l 686t 'St 6nv 'enı Solder Side Scale2:1

I


Appendix E-FLT-U2 data

## FEATURES

- State variable filter
- LP, BP, or MP functions
- 2-Pole reaponse
- Low-notse operational amplifiers
- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operation
- Low coet


## CENERAL DESCRIPTION

The FLT-U2 is a universal active fitter manufactured with thick-film hybrid technotogy. It uses the state variable active filter principle to implement a second order transfer function. Three committed operational amplifiers are used for the second order function while a fourth uncommitted operational amplifier can be used as a gain stage, summing amplifier, buffer amplfier, or to add another independent real pore.
Two-pole lowpass, bandpass, and highpase output functions are available simutaneously from three different outputs, and notch and allpass functions are avaitable by combining these outputs in ie uncommitted operational amplifier. To ealize higher order fiters, several FLT-U2's can be cascaded. Q range is from 0.1 to 1.000 and resonant frequency range is 0.001 Hz to 200 kHz . Frequency stability is $0.01 \% /{ }^{\circ} \mathrm{C}$ and resonant frequency accuracy is within $\pm 5 \%$ of calculated values. Frequency tuning is done by two external resistors and O tuning by a third external resistor. For resonant frequencies below 50 Hz , two exiernal tuning capecitors must be added. Exset tuning of the resonant frequency is done by varying one of the resiators around its calculated value.
The internal operational amplifiers in the FLT-U2 have 3 MHz gain bandwidth products and a wideband input noise specifice. tion of only $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. This results in considerably improved operation over most other competitive active filters which employ lower performance amplifiers. By proper selection of external components any of the popular fiker types such as Buttemworth, Besed. Chebyshev, or Elliptic may be detigned. Applications include audio, tone signaling, sonar, data acquisition, and feadback control syatems.
Two moded are available for operation over the commercial, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and nivery, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, temperature rangee.


## FUNCTIONAL SPECIFICATIONS

Typical at $25^{\circ} \mathrm{C}$. $£ 15 \mathrm{~V}$ supplies. unvese otherwise stated.

| FILTER Characteristics |
| :---: |
|  |  |
|  |
|  |
| POWER SUPPLY REOUIAEMENTS |
|  |
| PHYSICALENVIPONMENTAL |
|  |
| FOOTMOTE: <br> 1. $100 \leq 5 \times 100$ optimally |

## TECHNICAL NOTES

1. The FLT-U2 has simultaneous lowpass, bandpass, and highpass output functions. The chosen output for a particular function will be at unity gain based on Tables II and III. This means that the other two unused outputs will be at other gain levels. The gain of the lowpass output is always 10 dB higher than the gain of the bandpass output and $\mathbf{2 0} \mathbf{~ d B}$ higher than the gain of the highpass output.
2. When tuning the fitter and checking it over its frequency range, the outputs should be checked with a scope to make sure there is no waveform clipping present, as this will affect the operation of the fiker. In particular the lowpass output should be checked since ite gain is the highest.
3. Check $f_{1}$, the center frequency for bandpass and the cutoff frequency for lowpass or highpass, at the bandpass output. Here the peaking frequency can easily be determined for high $Q$ filters and the $0^{\circ}$ or $180^{\circ}$ phase frequency can easily be determined for low $\mathbf{Q}$ fitters (depending on whether inverting or noninverting).
4. Tuning resistors should be $1 \%$ metal film resistors with 100 ppm/ ${ }^{\circ} \mathrm{C}$ temperature stability or better for best pertormance. Likewise external tuning capacitors should be NPO ceramic or other stable capacitor types.

## THEORY OF OPERATION

The FLT-U2 block diagram is shown in Figure 1. This is a second order state-variable filter using three operational amplifiers. Lowpass, bandpass, and highpass transfer functions are simultaneously produced at its three output terminals. These three transfer functions are characterized by the following second order equations:

$$
\begin{aligned}
& H(s)=\frac{K_{1}}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}} \quad \text { LOWPASS } \\
& H(s)=\frac{K_{2} S}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}} \quad \text { BANDPASS } \\
& H(s)=\frac{K_{3} S^{2}}{S^{2}+\frac{\omega_{0}}{Q} S+\omega_{0}^{2}} \quad \text { HIGHPASS }
\end{aligned}
$$

where $K_{1}, K_{2}$, and $K_{3}$ are arbitrary gain constants.
A second order system is characterized by the location of its poles in the s-plane as shown in Figure 2. The natural radian frequency of this system is $\omega_{0}$. In Hertz this is $f_{0}=\frac{\omega_{0}}{2 \pi}$
The resonant radian frequency of the circuit is different from the natural radian frequency and is:

$$
\omega_{1}=\omega_{0} \sin \theta=\sqrt{\omega_{0}^{2}-\sigma_{1}^{2}}
$$

The damping factor $d$ determines the amount of peaking in the filter frequency response and is detined as:

$$
d=\cos \theta
$$

The point at which the peaking becomes zero is called critical damping and is $d=v \frac{1 / 2}{2}$.
$Q$ is found from $d$ and is a measure of the sharpness of the resonance of the peaking:

$$
\begin{aligned}
& \mathrm{Q}=\frac{1}{2 d} \\
& \text { Also, } \mathrm{Q}=\frac{\mathrm{f}_{0}}{-3 d B \text { Bandwidth }}=\frac{\omega_{0}}{2 \sigma_{1}}
\end{aligned}
$$

For high $\mathbf{Q}$ filters the natural frequency and resonant frequency are approximately equal.

$$
\omega_{1}=\omega_{0} \text { or } f_{1}=f_{0}
$$

This is true since $\omega_{\uparrow}=\omega_{0} \sin \theta$ and $\sin \theta=1$ as the poles move close to the $\dot{\omega} \omega$ axis in the s-plane.

For high Qs ( $\mathrm{Q}>1$ ) we therefore have for the second order filter:

$$
\begin{aligned}
f_{0} & =\text { Bandpass center frequency } \\
& =\text { Lowpass comer frequency } \\
& =\text { Highpass corner frequency }
\end{aligned}
$$

In the simplified tuning procedure which follows, the tuning is accomplished by independently setting the natural frequency and Q of the filter. This is done most simply by assuming unity gain for the output of the desired filter function. Unity gain means a gain of one ( $\pm$ ) at dc for lowpass, at center frequency for bandpass, and at high frequency ( $\mathrm{l} \gg \mathrm{f}_{0}$ ) for highpass. Unity gain does not apply to all outputs simultaneously but only to the chosen output based on the component values given in the tables. Figure 3 shows the relative gains of the three simultaneous outputs assuming the bandpass gain is set to unity. Note that lowpass gain is atways 10 dB higher than bandpass gain and highpass gain is always 10 dB lower than bandpass gain.

## SIMPLIFIED TUNING PROCEDURE

Select the desired transfer function (lowpass, bandpass, or highpass) and inverted or noninverted output. From this determine the filter configuration (inverting or noninverting) using Table I.
TABLE I FILTER CONFIGURATION

|  | LP | BP | HP |
| :--- | :---: | :---: | :---: |
| INVEATING INPUT | INV | NON-INV | INV |
| NONINVERTING INPUT | NON-INV | INV | NON-INV |

2. Starting with the desired natural frequency and $Q$ (determined from the fitter transfer function or s-plane diagram). compute $f_{0} Q$. For $f_{0} Q>10^{4}$ the actual realized $Q$ will exceed the calculated value. At $f_{0} \mathrm{O}=10^{4}$ the increase is about $1 \%$ and at $f_{0} O=10^{5}$ it is about $20 \%$.
3. Inverting Configuration. Using the value of $Q$ from Step 2 find $R_{1}$ and $R_{\mathbf{3}}$ from Table $\| . R_{\mathbf{2}}$ is open, or infinite.
TABLE \| INVERTING CONFIGURATION

|  | $R_{1}$ | $R_{2}$ | $R_{3}$ |
| :--- | :---: | :---: | :---: |
| LOWPASS | 100 K | OPEN | $\frac{100 \mathrm{~K}}{3.80 \mathrm{Q}-1}$ |
| BANDPASS | $Q \times 31.6 \mathrm{~K}$ | OPEN | $\frac{100 \mathrm{~K}}{3.48 \mathrm{O}}$ |
| HIGHPASS | 10 K | OPEN | $\frac{100 \mathrm{~K}}{6.64 \mathrm{Q}-1}$ |

4. Noninverting Configuration. Using the value of $Q$ from Step 2 find $R_{2}$ and $R_{3}$ from Table III. $R_{1}$ is open, or infinite.
TABLE III NONINVERTING CONFIGURATION

|  | $R_{1}$ | $R_{2}$ | $R_{3}$ |
| :---: | :---: | :---: | :---: |
| LOWPASS | OPEN | $\frac{316 \mathrm{~K}}{Q}$ | $\frac{100 \mathrm{~K}}{3.16 \mathrm{Q} \cdot 1}$ |
| BANDPASS | OPEN | 100 K | $\frac{100 \mathrm{~K}}{3.48 \mathrm{Q} \cdot 1}$ |
| HIGHPASS | OPEN | $\frac{31.6 \mathrm{~K}}{Q}$ | $\frac{100 \mathrm{~K}}{0.316 \mathrm{Q} \cdot 1}$ |

5. Using the value of $f_{0}$ from Step 2, set the natural frequency of the filter by finding $R_{4}$ and $R_{g}$ from the equation:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{f_{0}}
$$

where $R_{4}$ and $R_{5}$ are in ohms and $f_{0}$ is in Hertz. The natural frequency varies as $\sqrt{\mathrm{R}_{4} \mathrm{H}_{3}}$ and therefore one value may be increased and the other decreased and the natural frequency will be constant if the geometric mean is constant. To maintain constant bandwidth at thie bandpass output while varying center frequency, fix $R_{4}$ and vary $R_{5}$.
6. For $\mathrm{f}_{0}<50 \mathrm{~Hz}$ the intemar 1000 pF capacitors should be shumted with external capacitors across pins $5 \& 7$ and $13 \&$ 14. If equal value capacitors are used. $R_{4}$ and $R_{5}$ are then computed from:

$$
R_{4}=R_{s}=\frac{5.03 \times 10^{10}}{f_{0} C}(C \text { in } \mathrm{pF})
$$

For unequal value capacitors this becomes:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{10}}{f_{0} C_{1} C_{2}}\left(C_{1} C_{2} \text { in } p F\right)
$$

In both cases the capacitance is the sum of the external values and the internal 1000 pF values.


Figure 1. FLT-U2 Block Diagram


Figure 2. S-Plene Diegram


Figure 3.
Relative Gaine of Simultaneous Outputs, $\mathbf{Q}=1$


## SIMPLIFIED TUNING PROCEDURE, (Cont'd)

7. This procedure is based on unity gain output for the desired function. For additional gain, the fourth uncommitted operational amplifier should be used as an inverting or noninverting gain stage following the selected output. See Figure 4. A third pole on the real axis of the s-plane may also be added to the transfer function by adding a capacitor to the gain stage as shown in Figure 5.

## FILTER DESIGN EXAMPLES

Bandpass Fitter With $1 \mathbf{k H z}$ Center Frequency $\mathrm{O}=10$ and In verted Output

1. From Table | the noninverting configuration is chosen to realize an inverted bandpass output to $=10^{4}$ which means the realized $Q$ will be about $1 \%$ higher than calculated.
2. From Table III. using $Q=10$, we find:

$$
\begin{aligned}
& R_{1}=\text { open } \\
& R_{2}=100 \mathrm{~K} \text { ohms } \\
& R_{3}=\frac{100 \mathrm{~K}}{3.48 \mathrm{Q}-1}=\frac{100 \mathrm{~K}}{33.8}=2.96 \mathrm{~K} \text { ohms }
\end{aligned}
$$

3. Using $f_{0}$ of $1 \mathrm{kHz}, R_{4}$ and $R_{5}$ are found from the equation:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{1000}=50.3 \mathrm{~K} \text { ohms }
$$

4. This completes the filter design which is shown in Figure 6. To choose the nearest $1 \%$ standard value resistors either 49.9 K or 51.1 K ohms could be used; likewise one value of 49.9 K and one of 51.1 K could be used giving the geometric mean of, $\mathrm{R}_{4} \mathrm{R}_{5}=\sqrt{49.9 \mathrm{~K}} \times 51.1 \mathrm{~K}=50.5 \mathrm{~K}$ which is even closer. But due to the filter $\pm 5 \%$ frequency tolerance it may be better to hold $R_{4}$ constant while varying $R_{5}$ to tune it exactly.

## Three-Pole Noninverting Butterworth Low Pass Fiter With de Gain of 10 and Cutoff Frequency of 5 kHz .

The s-plane diagram of the 3-pole Butterworth filter is shown in Figure 7. We will use a second order filter to realize the two complex conjugate poles and the uncommitted operational amplifier to provide the third real axis pole and a dc gain of 10.

1. From Table I, the noninverting filter configuration would normally be used to give a noninverting low pass output. In this case, however, we choose an inverting uncommitted op amp with a gain of 10 and therefore we use the inverting configuration for the filter.. By comparing the second order portion of the Butterworth function $S^{2}+\omega_{0} S+\omega_{0}^{2}$ to the standard second order function $S^{2}+\omega_{0} S+\omega_{0}^{2}$ we find $Q=1$ $\mathrm{f}_{0} \mathrm{O}$ is then $5 \times 10^{3}$ so that Q will not exceed its specified value.
2. From Table II, using $\mathbf{Q}=1$, we find:

$$
\begin{aligned}
& R_{1}=100 \mathrm{~K} \text { ohms } \\
& R_{2}=0 \text { open } \\
& R_{3}=\frac{100 \mathrm{~K}}{3.80 \mathrm{Q}-1}=35.7 \mathrm{~K} \text { ohms }
\end{aligned}
$$

3. Using $f_{0}$ of $5 \mathrm{kHz}, \mathrm{R}_{4}$ and $\mathrm{R}_{5}$ are found from the equation:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{5000}=10.1 \mathrm{~K} \mathrm{ohms}
$$

4. For the uncommitted output amplifier, a gain of -10 is required. This detines $R_{\boldsymbol{T}} / R_{4}=10$ and we atoitrarily choose $R_{8}$ $=2 \mathrm{~K}, \mathrm{R}_{7}=20 \mathrm{~K}$ ohms.


Figure 5.
Using the Uncommitted Op Amp to Add Aeal Axis Pote


Figure 6.
Bendpess Fither Example


Figure 7.
S-Phene Dtagram of 3-Pole Eutterworth Lowpass Fiher


Figure 8.
Three Pole Butterworth Low Pase Fiter Exemple

FILTER DESIGN EXAMPLES, (Cont'd)
5. The final step is to realize the reat axis pole of the Butterworth filter. This pole is at 5 kHz and is set by using capacitor $C_{3}$ across the feedback resistor $R_{7}$ :

$$
C_{3}=\frac{1}{2 \pi f R_{7}}=\frac{1}{6.28 \times 5 \times 10^{3} \times 20 \times 10^{3}}=1590 \mathrm{pF}
$$

6. This completes the 3-pole Butterworth filter which is shown in Figure 8.

Highpass Filter with Gain of $\mathbf{- 1 , 2 0} \mathbf{k H z}$ Cutoff Frequency, and Critical Damping

1. From Table I the inverting configuration must be used to realize a highpass gain of - 1 . An s-plane diagram of this function is shown in Figure 9. Critical damping requires the pole positions to be on a line $45^{\circ}$ with respect to the real axis and this results in no frequency peaking. The damping factor $d$ is:

$$
d=\cos \theta=\cos 45^{\circ}=0.707
$$

and $\quad Q=\frac{1}{2 d}=\frac{1}{2(0.707)}=0.707$
Because this is a low $Q$ system the natural frequency will not be the same as the highpass cutoff frequency $f_{1}$. From Figure 9:

$$
f_{0}=\frac{f_{1}}{\cos \theta}=\frac{20 \mathrm{kHz}}{0.707}=28.3 \mathrm{kHz}
$$

Then $\mathrm{f}_{0} \mathrm{O}=0.707 \times 28.3 \times 10^{3}=2 \times 10^{4}$ and the Q will exceed its desired value by slightly over $1 \%$.
2. From Table II, using $\mathrm{Q}=0.707$ we find:

$$
\begin{aligned}
& R_{1}=10 \mathrm{~K} \text { ohms } \\
& R_{2}=0 p e n \\
& R_{3}=\frac{100 \mathrm{~K}}{6.64 \mathrm{O}-1}=\frac{100 \mathrm{~K}}{3.69}=27.1 \mathrm{~K} \text { ohms }
\end{aligned}
$$

3. Using $f_{0}=28.3 \mathrm{kHz}, R_{4}$ and $R_{5}$ are found from the equation:

$$
R_{4}=R_{5}=\frac{5.03 \times 10^{7}}{28.3 \times 10^{3}}=1.78 \mathrm{~K} \text { ohms }
$$

4. This completes the highpass filter design which is shown in Figure 10. When using this fikter, care should be exercised so that clipping does not occur in the finer due to excessive input levels. If clipping occurs, the filter will not operate proporty. Clipping will tirst occur at the lowpass output around fo since its gain is $\mathbf{2 0} \mathrm{dB}$ higher than the highpass output. The signal level should be reduced so that clipping does not occur anywhere in the trequency range used. If higher signal level is required, the highpass output should be amplified by a gain stage using the uncommitted operational amplifier.


S-Ptane Disgram of Highpass Filter with Critical Damping


## FLT-U2

## ADVANCED FILTERS

All of the common filter types can be realized by using cascaded FLT-U2 stages. This includes multi-pole Butterworth, Bessel. Chebyshev, and Elliptic types. The basic procedure is to implement each pole pair with a sirigle FLT-U2 and cascade enough units to realize all poles. A real axis pole is implemented by an uncommitted operational amplifier stage. Each stage should be separately tuned with an oscillator and scope and then the stages connected together and checked. See Figure 11.
A notch filter can be constructed in several ways. The first way is to use the FLT-U2 as an inverting bandpass filter and sum the output of the filter with the input signal by means of the uncommitted operational amplifier. This produces a net subtraction at the center frequency of the bandpass which produces a null at the output of the amplifier. (See Figure 12.) Likewise lowpass and highpass outputs (which are always in phase) can be subtracted from each other with an extemal operational amplifier. The highpass output must have some gain added to it, however, so that its gain is equal to that of the lowpass output. A third method is to use two separate FLT-U2's, one as a two-pole lowpass fitter and the other as a two-pole highpass filter. Again the outputs are subtracted in an operational amplifier. This method permits independent tuning of the two sections to get the best nuil response.
Further discussion of filter designs is beyond the scope of this data sheet and the user is referred to the various texts on filter design, some of which are listed below.
Estep, G.J., The State Variable Active Filter Configuration Handbook, 2nd Edition, Agoura, Ca., 1974.
Reference Data for Radio Engineers, Howard W. Sams \& Co. Inc., 5th Edition.
Christian, E., and Eisenmann, E., Fitter Design Tables and Graphs, McGraw-Hill Book Co., 1974.


Figure 11.
Realization of a Complax Multipote Filter


Figure 12.
Realization of Notch Fitrer

## ORDERING INFORMATION

OPERATING
MODEL
FLT-U2 FLT-U2M

TEMP. RANGE
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Appendix E-PCB silks

Appendix F - Audio mixer board

## Appendix F - Schematic





Appendix F - PCB silks


## Appendix F - Data Sheets

 op ampsXicor digital pots

## high slew rate, wide bandwioth, JFET INPUT OPERATIONAL AMPLIFIERS

These devices are a new generation of high speed JFET indut monolithic operational amplifiers. Innovative design concepts along with JFET technology provide wide gain bandwidth product and high slew rate. Well matched JFET input devices and advanced trim techniques ensure tow input offset errors and bias currents. The all NPN output stage features large output voltage swing, no deadband crossover distortion, high capacitive drive capability, excellent phase and gain margins. low oden-loop output impedance, and symmetrical source sink ac frequency response.
This series of devices are available in standard or prime performance (A suffix) grades. fully compensated or decompensated (AVCL $\geqslant 2$ ) and are specified over commercial or Miltary temperature ranges. They are pin compatible with existing Industry standard operational amplifiers. and allow the designer to easily upgrade the performance of existing designs

- Wide Gain Bandwidth 8.0 MHz for Fully Compensated Devices 16 MHz for Decompensated Devices
- High Siew Rate: $25 \mathrm{~V} \mu \mathrm{~s}$ for Fully Compensated Devices $50 \mathrm{~V} \mu \mathrm{~s}$ for Decompensated Devices
- High input impedance: $10^{12} 12$
- Input Offset Voltage: 0.5 mV Maximum (Single Amplifief)
- Large Output Voltage Swing: $-14.7 V$ to $+14 \vee$ for $V_{C C} V_{E E}=15 \mathrm{~V}$
- Low Open-Loop Output Impedence: 30 I 1 il 1.0 MHz
- Low THD Distortion: 0.01\%
- Excellent Phase/Gain Margins: 55:7.6 dB for Fully Compensated Devices


DW SUFFR PLASTIC PACKAGE CASE 731G-01
so-1a
NC $\qquad$回NC

| Ondermo mronamatron |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| OpAng | Compronedren | Ava>2 | Tempersture neme | Pedere |
| Single | MC3506IU.AU MC34010.AO MC3401PAP | $\begin{aligned} & \text { MC35000 .AU } \\ & \text { MC34000.AD } \\ & \text { MC34000PAP } \end{aligned}$ | $\left\|\begin{array}{r} -5510+125^{\circ} \mathrm{C} \\ 010+70^{\circ} \mathrm{C} \\ 010+70^{\circ} \mathrm{C} \end{array}\right\|$ | $\begin{aligned} & \text { Coramue OIP } \\ & \text { so-d } \\ & \text { Plosxic DiP } \end{aligned}$ |
| Dual | MC3 ${ }^{\text {M0e2P.AP }}$ |  | 0 $20+700 \mathrm{C}$ | Plastic OP |
| Qued | MC36034LAL MC340040W MC3 40 ANP AP | MC35005LAL MC3 00450 W MC3 4003 sP .AP | $\begin{array}{\|c\|} \hline-55 \text { to }+125^{\circ} \mathrm{C} \\ 010+70^{\circ} \mathrm{C} \\ 010-70^{\circ} \mathrm{C} \\ \hline \end{array}$ | $\begin{aligned} & \text { Ceramic Oip } \\ & \text { so-1 } 1 \text { i } \\ & \text { Plastic Oip } \end{aligned}$ |



## HIGH PERFORMANCE JFET INPUT OPERATIONAL AMPLIFERS



L surnex
 CASE EMEOB panic package CASE 63+-6 MN AgTremments


## MC34080, MC35080 Series

| Rating | Symbet | Value | Unt |
| :---: | :---: | :---: | :---: |
| Supply Voitage (from VCC ${ }^{10} \mathrm{VEE}^{\text {l }}$ | $V_{S}$ | -44 | Volts |
| Input Differential Voitage Range | VIDA | Note 1 | Votis |
| Input Voltage Range | $V_{1 R}$ | Note 1 | Volts |
| Output Short-Circuit Ouration (Note 2) | 15 | Indetinite | Seconds |
| Operating Ambient Temperature Range MC35XXX MC34XXX | $\mathrm{T}_{\mathbf{A}}$ | $\begin{gathered} -55 \text { to }-125 \\ 0 \text { to }-70 \end{gathered}$ | C |
| Oparating Junction Temperature Coramic Package Plastic Package | T」 | $\begin{aligned} & -165 \\ & -125 \end{aligned}$ | C |
| Storage Temparature Range Ceramic Package Plastic Package | $\mathrm{T}_{319}$ | $\begin{aligned} & -65 \text { to }-165 \\ & -55 \text { to }-125 \end{aligned}$ | 'C |

NOTES:

1. Either or both input vottages must not exceed the magnitude of VCC or VEE
2. Power disapation must be considered to ensure maximum junction temperature $T^{\prime} T^{\prime}$ ts not excenced.

## EOUIVALENT CIRCUIT SCHEMATIC (EACH AMMLIFIEX)


mOTOROLA LINEAR/INTERFACE DEVICES

DC ELECTRICAL CHARACTERISTICS $i V_{C}=-15 \mathrm{~V} . V_{E E}=-15 \mathrm{~V} . T_{A}=T_{\text {low }}$ to $T_{\text {high }}$ (Note 31, unless otherwise noted)


## MC34080, MC35080 Series

AC ELECTRICAL CHARACTERISTICS (VCC $=-15 \mathrm{~V} . \mathrm{VEE}=-15 \mathrm{~V} . \mathrm{T}_{\mathbf{A}}=-25^{\circ} \mathrm{C}$ unless otherwise noted)

| Charscteristic | Symbel | A Sutim |  |  | Non-Suthy |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Man |  |
| Slew Rate $\mathrm{V}_{\text {in }}$. $10 \vee 10 \cdot 10 \mathrm{~V} \cdot \mathrm{R}_{\mathrm{L}}=20 \times \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} 1$ | SA |  |  |  |  |  |  | $V$ ¢ 5 |
|  |  | 20 | 25 | - | 20 | 25 | - |  |
| $A_{V} \quad: 0$ |  | - | 30 | - | - | 30 | - |  |
| Decompensated AV - 20 |  | 40 | 50 | - | 40 | 50 | - |  |
| $A_{V}$ : 10 |  | - | 50 | - | - | 50 | - |  |
| Setting Time $110 \vee$ Step. $A_{V}$ To $010^{\circ} \circ 1$ - , LSB of 9. Bitsi To O01". . . LSB of 12.8its | 15 | - | 072 | - | - | 072 | - | - 5 |
|  |  | $\rightarrow$ | 16 | - | - | 16 | - |  |
| Gain Bandwidin Product :f $=200 \mathrm{kHz}$ Compensated | G8W | 60 | 80 | - | 60 | 8.0 | - | MHz |
| Decompensated |  | 12 | 16 | - | 12 | 16 | - |  |
| $\text { Power Bendwidth } \mid R_{L}=20 \mathrm{k} \cdot V_{O}=20 \mathrm{~V}_{\mathrm{D}} \mathrm{p} . \mathrm{THD}=5.0 \mathrm{a} \cdot 1$ $\text { Compensated } A_{V}=-10$ | BWo | - | 400 | - | - | 400 | - | *Hz |
| Decomoensated $A_{V}=10$ |  | - | 800 | - | - | 800 | - |  |
| Phase Margin (Compensateal | om |  |  |  |  |  |  | Degrees |
| $\mathrm{A}_{\mathrm{l}}-20 \mathrm{k}$ |  | - | 55 | - | - | 55 | - |  |
| $R_{L} \quad 20 \mathrm{k} C_{L}=100 \mathrm{pF}$ |  | - | 39 | - | - | 39 | - |  |
| Gain Margin (Compensated) | $A_{m}$ |  |  |  |  |  |  | oB |
| $R_{L}=2.0 \mathrm{k}$ |  | - | 76 | - | - | 76 | - |  |
| $R_{L}=20 \mathrm{k} C_{L}=100 \mathrm{pF}$ |  | - | 45 | - | - | 45 | - |  |
| Equivalent Input Noise Voitage $\hat{A}_{5}=100 \mathrm{nl} .1=10 \mathrm{kHz}$ | $0^{n}$ | - | 20 |  | $\rightarrow$ | 30 | - | $\sqrt[n v]{n z}$ |
| Equivalent input Noise Current (f $=1.0 \mathrm{kHz}$ ) | 'n | - | $\because$ |  |  | 0.01 | - | $\frac{\mathrm{OA}}{\sqrt{W_{2}}}$ |
| Inout Capacitance | C | - | $\pm 0$ | - | - | 5.0 | - | pf |
| Inpur Resistance | 1 | - | $10^{12}$ | - | - | $10^{12}$ | - | 11 |
| Total Hermonic Distortion $A_{V}=-10 . A_{L}=2.0 \times 2.0 \leqslant V_{O} \leqslant 20 V_{p} \cdot p \cdot f=10 \mathrm{kHz}$ | THO | - | 0.05 | - | - | 0.05 | - | -. |
| Channel Separation if $=10 \mathrm{kHz}$ ) | - | - | 120 | - | - | 120 | - | dB |
| Open-Loop Output impedance if $=10 \mathrm{MHz}$ ) | 10 | - | 35 | - | - | 35 | - | 11 |

TYFICAL PERFORMANCE CURVES








## MC34080, MC35080 Series

figure 9 - OUTTUT IMPEDANCE veraus fREQUENCY


FGUAE 11 - OUTIUT VOLTACE SWING versus Pitoulincy


FGURE 10 - OUTPUT MTEDANCE vERWA FREQUENCY


FGURE 12 - OUTIUT DETORTION wwan FREOUENCY






 mODUCT vermu TEAMEATUPE



## MC34080, MC35080 Series

FIGURE $\mathbf{3 0}$ - GAIN MARGIN vETEUS LOAD CAPACITANCE


FIGURE 22 - GANN MARGIN versus TEMNPEMATUAE


FIGURE 21 - PHASE MARGIN verous TEMNERATURE


FOURE 23 - NOMRALIEED SLEW RATE versus TEMTEATUNE


MC34080, MC35080 Series


MC34005 TRANSIENT RESPONSE
$A_{V}=+2.0 . \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k}, \mathrm{V}_{\mathrm{CC}} \mathrm{NEE}_{\mathrm{EE}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$







## APPLICATIONS INFORMATION

The bandwidth and slew rate of the MC34080 series is neariy double inat of currently avariable general purpose JFET op-amps. This improvement in ac performance is due to the P-channel JFET differential indut stage driving a compensated miller integration amplifier in conjunction with an all NPN outout stage

The all NPN output stage offers unique aovantages over the more conventional NPN PNP transistor Class AB output stage. With a 10 k load resistance the op-amp can typically swing within 1.0 V of the dositive rall $\left.\mathrm{V}_{\mathrm{CC}}\right)$. and within 0.3 volts of the negative rail ( $V_{E E}$ ). providing a $28.7 \mathrm{~V}_{\mathrm{p}}-\mathrm{p}$ swing from $=15$ voit supplies. This large output swing becomes most noticeabie at lower sudply voltages. If the load resistance is referenced to VCC instead of ground, the maximum possible output swing can be achieved for a given sudoly voliage. For light load currents. the load resistance will pull the output to VCC during the dositive swing and the NPN Output transistor will pull the output very near $V_{E E}$ during the negative swing. The load resiatance value should be much less than that of the feedback resistance to maximize puil-up capability.
The all NPN transistor output stage is also inherentiv fast. contributing to the operational amplifier's high gain-bandwidth product and last setting time. The associated high frequency outpul impedance is 50 onms (troicat) at 8.0 MHz . This allows driving capacitive loads from 0 to 300 pF without oscillations over the military remperature range, and over the full range of output swing. The 55' ohase margin and 7.6 dB gan margin as well as the general.gain and ohase characteristics are virtually independent of the sink source outout swing conditions. The high frequency characteristics of the MC34080 series is especially useful for active filter applications.

The common mode input range is from 2.0 volts below the positive rail $\mathrm{V}_{\mathrm{CC}}$ to 40 volts above the neg.
ative rat (VEE). The amplifier remains active it the inouts are biased at the oositive rail. This mav de useful for some appications in that single sudoly oderation is possible with a singte negative supply. However. a degradation of offset voitage and voltage gain may result.
Phase reversal does not occur if ether the inverting or noninverting input lor bothl exceeds the positive common mode limit. If erther input tor bothi exceeds the negative common mode limit, the output will be in the high state. The input stage also allows a differential up to $=44$ volts. provided the maximum input voltage range is not exceeded. The supply voltage operating range is from $=5.0 \mathrm{~V}$ to $=22 \mathrm{~V}$.
For optimum frequency performance and stabilty careful component placement and printed circuit board layout should be exercised. For example. long unshielded input or output leads may result in unwanted ingut-output coubling. In order to reduce the ingut capacitance. resistors connected to the input dins should be physically close to these pins. This not onty minimizes the indut pole for optimum frequency response. but also minumizes extraneous "pickup" at this node.
Supply secoupling with adequate capacitance close to the supply pin is also important. particulariy over temparature. since many trpes of decoupling capectors oxhibit large impedence changes over temperature.
Primarily due to the JFET inputs of the Op amp, the input offere voltage may change due to temperature cycling and board soldering. After 20 temperature cycies ( $-55^{\circ} \mathrm{C}$ to $165^{\circ} \mathrm{C}$ ), the typical standard deviation for input offect voltage is $559 \mu \mathrm{~V}$ and $473 \mu \mathrm{~V}$ in the plastic and ceramic packages reapectively. With respect to board soldering $1260^{\circ} \mathrm{C}, 10$ seconds) the typical standard deviation for input offere voltage is $525 \mu \mathrm{~V}$ and $227 \mu V$ in the plastic and ceramic package reapectively. Socketed piastic or ceramic packaged devices should be used over a minimal temperature range for optimum input offer voltage performence.

FGURE 34 - OFFFET AULMNG Cincurt


## LM1877 Dual Power Audio Amplifier

## General Description

The LM1877 is a monolithic dual power amplifier designed to deliver $2 W$ /channel continuous into 8 n loads. The LM1877 is designed to operate with a low number of external components, and still provide flexiblity for use in stereo phonographs, tape recorders and AM-FM stereo receivers. eic. Ench power amplitier is biased from a common internal regulator to provide high power supply rejection, and output O point centering. The LM1877 is internaly compensated for all gains greater than 10.

## Features

- 2W/channel
-     - 65 dB ripple rejection, output referred
- -65 dB chamel seperation, output reforred

Wide supply range, 6V-24V

- Very low crose-over distortion
- Low audio band norse
- AC short circuit protected
- Internal thermal shutdown


## Applications

- Multi-channol audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio recervers
- Servo amplifiers
- Intercom systems
- Automotive products


## Connection Diagram

> Duathriline Packege

Equivalent Schematic Diagram


Absolute Maximum Ratings


Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$ Junction Temperature
$260^{\circ} \mathrm{C}$

## Electrical Characteristics

$V_{S}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (See Note 1) $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{\mathrm{V}}=50(34 \mathrm{~dB})$ unless otherwse specified

| Permmeter | Conditont | min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total Supply Current | $P_{0}=0 W$ |  | 25 | 50 | ma |
| Output Power LM1877 | $\begin{aligned} & \text { THO }=10 \% \\ & V_{S}=20 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$ | 2.0 |  |  | w/Cn |
| Total Harmonc Distortion LM1877 | $f=1 \mathrm{kHz}, \mathrm{V}_{S}=14 \mathrm{~V}$ |  |  |  |  |
|  | $P_{0}=50 \mathrm{~mW} /$ Chanmel |  | 0.075 |  | * |
|  | $P_{0}=500 \mathrm{~mW} /$ Chamnel |  | 0.045 |  | \% |
|  | $P_{0}=1$ W/Channel |  | 0.055 |  | \% |
| Output Swing | $A_{L}=80$ |  | $V_{S}-6$ |  | $V p-p$ |
| Channel Separation | $\begin{aligned} & C_{F}=50 \mu F, C_{I N}=0.1 \mu F, \\ & f=1 \mathrm{kHz} \text {, Output Referred } \end{aligned}$ |  |  |  |  |
|  | $V_{S}=20 \mathrm{~V}, \mathrm{~V}_{0}=4 \mathrm{Vms}$ | -50 | -70 |  | d8 |
|  | $V_{S}=7 \mathrm{~V}_{1} \mathrm{~V}_{0}=0.5 \mathrm{Vmm}$ |  | -60 |  | dB |
| PSRR Pown Supply Rejection Ratro | $\begin{aligned} & C_{F}=50 \mu F, C_{H N}=0.1 \mu F . \\ & I=120 \mathrm{~Hz}, \text { Ouput Referred } \end{aligned}$ |  |  |  |  |
|  | $V_{S}=20 \mathrm{~V}, V_{\text {AIPPLE }}=1 \mathrm{Vms}$ | -50 | -65 |  | d8 |
|  | $V_{S}=T \mathrm{~V} . \mathrm{V}_{\text {RIPPLE }}=0.5 \mathrm{~V} \mathrm{~mm}$ |  | -40 |  | $d \mathrm{~B}$ |
| Noise | Equivatent Input Noiep |  |  |  |  |
|  | $\begin{aligned} & R_{S}=0 . G_{N}=0.1 \mu F, \\ & B W=20 \mathrm{~Hz}-20 \mathrm{kHz}, \text { Outpent Noies Widentend } \end{aligned}$ |  | 2.5 |  | $\mu V$ |
|  | $\mathrm{A}_{\mathbf{S}}=0, C_{N}=0.1 \mu \mathrm{~F}, A_{V} 200$ |  | 0.00 |  | mV |
| Open Loop Gein | $R_{S}=0.1=100 \mathrm{ktz}, R_{L}=8 \Omega$ |  | 70 |  | $d 8$ |
| Input Ohmet Votrege |  |  | 15 |  | mV |
| Input Bias Curront |  |  | 50 |  | na |
| input impedence | Open Loop |  | 4 |  | Mn |
| DC Output Loved | $V_{s}=20 \mathrm{~V}$ | 9 | 10 | 11 | $V$ |
| Slow Rete |  |  | 2.0 |  | $\mathrm{V} / \mathrm{\mu s}$ |
| Powner Benduidy |  |  | 65 |  | kHz |
| Current Limit |  |  | 1.0 |  | A |




## Typical Performance Characteristics



| Commercial | X9MNE |
| :--- | :--- |
| Industrial | X9MMEI |

## E2POTTM Digitally Controlled Potentiometer

## FEATURES

- Solid State Reliability
- Single Chip MOS Implementation
- Three Wire TTL Control
- Operates From Standard 5V Supply
- Wide Analog Voltage Range $\pm 5 \mathrm{~V}$ Min.
- 99 Resistive Elements
-Temperature Compensated
- $\pm 20 \%$ End to End Redotance Range
- 100 Wiper Tap Points
-Wiper Position Digitally Controlled
-Wiper Poaition Stored In Nonvolatile
Memory Then Automatically Recalled on Power-Up
- 100 Year Wiper Poeltion Retention
- 8 Pin MInt-DIP Package


## DESCRIPTION

The Xicor X9MME is a solid state nonvolatile potentiometer, packaged in an 8 pin mini-DIP and is ideal for digitally controlled resistance trimming.

The X9MME is a resistor array composed of 99 resistive elements. Between each element and at erther end are tap points accessible to the wiper element. The position of the wiper element on the array is controlled by the CS, U/D. and INC inputs. The position of the wiper can be stored in nonvolatile memory and is recalled upon a subsequent power-up.
The resolution of the X9MME is equal to the maximum resistance value divided by 99 . As an example; for the X9503 ( $50 \mathrm{~K} \Omega$ ) each tap point represents $505 \Omega$.
Xicor $E^{2}$ products are designed and tested for applications requiring extended endurance. Refer to Xicor reliability reports for further endurance information.

PIN CONFIGURATION


0030-1
PIN NAMES

| $V_{H}$ | High Terminal of Pot |
| :--- | :--- |
| $V_{W}$ | Wiper Terminal of Por |
| $V_{L}$ | Low Terminal of Pot |
| $V_{S S}$ | Ground |
| $V_{C C}$ | System Power |
| U/D | Up/Down Control |
| INC | Wiper Moverient Control |
| CS | Chip Select for Wiper |
|  | Movement/Storage |

FUNCTIONAL DIAGRAM


## X9MME, X9MMEI

analog characteristics

| Electrical Characteristics |  |
| :---: | :---: |
| End to End Resistance Tolerance | $\pm 20 \%$ |
| Power Rating at $25^{\circ} \mathrm{C}$ | 10 mW |
| Wiper Current | $\pm 1 \mathrm{~mA}$ Max. |
| Typical Wiper Resistance | $40 \Omega$ at i mA |
| Typrcal Noise ........ | <-120 dB/, $\overline{\mathrm{Hz}}$ Ref: iV |
| Resolution |  |
| Resistance | 1\% |
| Linearty |  |
| Absolute Lineanty ('). | $\pm 1.0 \mathrm{M} 1(2)$ |
| Relative Lineanty ${ }^{(3)}$ | $\pm 0.2 \mathrm{M} 1(2)$ |
| Temperature Coefficient | $\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Typreal |
| Wiper Adjustabinty |  |
| Unimited Wiper Adjustment |  |
| Nonvolatile Storage of Wiper Postion |  |
|  | 10,000 Cycles Typical |
| Environmentel Cherncterletica |  |
| Temperature Range |  |
| Operating XgMME | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| X9MMEI | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

## Physleal Characteriatica Marking includes: <br> Manufacturer's Trademark Fesistance Value or Code Oate Code

## absolute maximum ratings•



## -COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and the functional operation of the device at these or any other conditions above those indicated in the oothese or any other conditions above those indicated in the op-
erational sections of this specification is not impied. Exposure to absolute maximum rating conditions for extended penods may affect device reliabliity.

## d.c. OPERATING Characteristics

X9MME $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified. X9MMEI $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. $\mathrm{V}_{C C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

| Symbol | Parameter | Limite |  |  | Units | Teat Condtions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. ${ }^{(4)}$ | Max. |  |  |
| Icc | Supply Current |  | 25 | 35 | mA |  |
| $\mathrm{ILI}^{\prime}$ | Input Leakage Current |  |  | $\pm 10$ | $\mu \mathrm{A}$ | $V_{\text {IN }}=0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \overline{\mathrm{NC}}, \underline{\mathrm{I}}$, $\overline{\mathrm{D}}$. CS |
| $V_{1 H}$ | Input High Voltage | 2.0 |  | $V_{C C}+1.0$ | V |  |
| $V_{1 L}$ | Input Low Voltage | -1.0 |  | 0.8 | V |  |
| $\mathrm{R}_{\mathrm{w}}$ | Wiper Resistance |  | 40 | 100 | $\Omega$ | $\pm 1 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{VH}}$ | $\mathrm{V}_{\mathrm{H}}$ Voltage | -5.0 |  | +5.0 | $\checkmark$ |  |
| $\mathrm{V}_{\mathrm{VL}}$ | $\mathrm{V}_{\text {L }}$ Voltage | -5.0 |  | +5.0 | V |  |
| $\mathrm{C}_{1 \times}(5)$ | CS. NNC. U/ס. Input Capacitance |  |  | 10 | pF |  |

Notes: (1) Absolute Lineanty . .jlized to determene actual wiper voltage versus expected vortage as determined by wiper position when used as a D entiometer.
Abeokte Lineerity $=\left(V_{W(n)}(\right.$ actual $)-V_{\text {Win) }}($ expected $\left.)\right)= \pm 1 \mathrm{MI}$ Max.
(2) 1 MI $=$ ค $_{\text {TOT/ }} 99$ or $\frac{V_{H}-V_{L}}{99}=$ Minimum increment.
(3) Relative Lineanty is utilized to determine the actual change in voltege between succeseve tap postion when used as a potentioneter. It is a meesure of the error in step size. Relative Lineanty $=V_{W(n-1)}-\left(V_{W(n)}+M 1\right]= \pm 0.2$ MI Max. Typical values of Lineanty are shown in Figure 3.
(4) Typical vatues are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and nomnal supply voltege.
(5) This parameter is penodically sampted and not $100 \%$ tested.

## X9MME, X9MMEI

| A.C. CONDITIONS OF TEST |  |
| :--- | :---: |
| Input Pulse Levels | OV to 3.0V |
| Input Rise and <br> Fall Times | 10 ns |
| Input | 1.5 V |


| $\overline{\text { CS }}$ | INC | U/ $\overline{\mathbf{D}}$ | $\mathrm{M}_{1}$ |
| :---: | :---: | :---: | :---: |
| $L$ | , | H | Wiper Up |
| $L$ | 1 | L | Wiper Do |
| $\sim$ | H | $x$ | Store Wif |

A.C. CHARACTERISTICS

X9MME $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.
X9MMEI $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

| Symbol | Parameter | Limits |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. ${ }^{(6)}$ | Max. |
| $\mathrm{C}_{\mathrm{Cl}}$ | CS to INC Setup | 100 |  |  |
| 40 | INC High to U/D Change | 100 |  |  |
| toi | U/D to INE Setup | 2.9 |  |  |
| $t_{1 L}$ | INC Low Period | 1 |  |  |
| ${ }_{\text {IH }}$ | INC High Period | 3 |  |  |
| ${ }_{1} \mathrm{C}$ | INC Inactive to CS inactive | 1 |  |  |
| tCPH | CS Deselect Time | 20 |  |  |
| tw | $\overline{\mathbb{N C}}$ to $V_{\text {w }}$ Change |  | 100 | 500 |

A.C. Timing


Note: (6) Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voitage.

## PIN DESCRIPTIONS

$V_{H}$
The high terminal of the $\times 9 M M E$ is capable of handing an input voltage from -5 V to +5 V .
$V_{L}$
The low terminal input is limited from -5 V to +5 V .
Vw
The wiper terminal series resistance is typically less than $40 \Omega$. The value of the wiper is controlled by the use of $U / D$ and INC.

Up/Down (U/ $\bar{\sigma}$ )
The U/D input controts the direction of the wiper movement and the value of the nonvolatile counter.
incroment (INC)
The INC input is negative-edge triggered. Toggling INC will move the wiper and either increment or decrement the counter in the direction indicated by the logic level on the $U / \bar{D}$ input.

## Chip Select (CSS)

The device is selected when the CS input is LOW. The current counter value is stored in nonvolatile memory when CS is returned HIGH with INC HIGH.

## DEVICE OPERATION

The INC, U/D and CS inputs control the movernent of the wiper along the resistor array. HIGH to LOW transitions on INC, with CS LOW, increment (U/D $=$ HIGH) or decrement (U/ $\bar{D}=$ LOW) an internal counter. The output of the counter is decoded to position the wiper. When CS is brought HIGH the counter value is automatically stored in the norvolatile memory. Upon pow-er-up the norvolatite memory contents are restored to the counter.
With the wiper at position 99, additional increments (U/D $=$ HIGH) will not move the wiper. With the wiper at position 0 . additional decrements (U/ $\bar{\delta}=$ LOW) will not move the wiper.
The state of $U / \bar{D}$ may be changed while $\mathbf{C S}$ remains LOW, allowing a groes then fine adiustment during syetem calioration.
If V $\mathcal{C}$ is removed while ES is LOW the contents of the nonvolatile mernory may be lost.
The end to end resistance of the array will fluctuate once $V_{C c}$ is removed.

## APPLICATIONS

The combination of a digital interface and nonvolatile memory in a silicon based trimmer pot provides many application opportunities that could not be addressed by either mechanical potentiometers or digital to ana$\log$ circuits. The $\times 9 \mathrm{MME}$ addresses and solves many issues that are of concern to designers of a wide range of equipment.
Consider the possibilities:
Automated assambly line calibration versus mechanical tweaking of potentiometers.
Protection against drift due to vibration or contamnation.
Eliminate precise alignment of PWB mounted poten. tiometers with case access holes.
Eliminate unsighty access holes on otherwise aesthetically pleasing enclosures.
Product enhancementa such as keyboard adjustment of volume or brightness control.
Front panel microprocessor controlled calibration of test instruments.

Remote location calibration via radio, modem or LAN link.

Calibration of hard to reach instruments in aircraft or other confined spaces.

## APPLICATION CIRCUITS

Appltemtion Cireut © 1


## Appllication Cirewt 2



0003-5
Utilizing the XgMME te a veriabie reciator.
Motes Muximum Wiper Current $=1 \mathrm{~mA}$.

## X9MME, X9MMEI

Figure 1: Typical Frequency Response for X9103


Flgure 2: Typical Total Harmonic Distortion for X9103


## X9MME, X9MMEI

Figure 3: Typical Linearity for X9103


Test CIrcult * 1


Teat Clreuth \#2

Standard Parts

| Minimum Reslatance | Wiper Incromente | Maximum Resistance | Part Mumber |
| :---: | :---: | :---: | :---: |
| $40 \Omega$ | $101 \Omega$ | $10 \mathrm{~K} \Omega$ | $\times 9103$ |
| $40 \Omega$ | $505 \Omega$ | $50 \mathrm{~K} \Omega$ | $\times 9503$ |
| $40 \Omega$ | $1010 \Omega$ | $100 \mathrm{~K} \Omega$ | $\times 9104$ |

- 


## AOI $2 \operatorname{Rev}$ 3.0 Component List

The following is a list of components as of 10/9/89 for the 8930 Digital Board, Audio Board and Noise Board.

Audio Board:

| $\mathrm{Rl}=10 \mathrm{~K} \Omega$ | $\mathbf{R} 2=10 \mathrm{~K} \Omega$ | $\mathrm{R} 3=10 \mathrm{~K} \Omega$ |
| :---: | :---: | :---: |
| $\mathrm{R} 4=20 \mathrm{~K} \Omega$ | $\mathrm{R} 5=20 \mathrm{~K} \Omega$ | $\mathrm{R} 6=20 \mathrm{~K} \Omega$ |
| $\mathrm{R} 7=20 \mathrm{~K} \Omega$ | $\mathrm{R} 8=20 \mathrm{~K} \Omega$ | $\mathrm{R} 9=20 \mathrm{~K} \Omega$ |
| $\mathrm{R} 10=1 \mathrm{~K} \Omega$ | $\mathrm{R} 11=1 \mathrm{~K} \Omega$ | $\mathrm{R} 12=10 \mathrm{~K} \Omega$ |
| $\mathrm{R} 13=10 \mathrm{~K} \Omega$ | $\mathrm{R} 14=10 \mathrm{~K} \Omega$ | $\mathrm{R} 15=10 \mathrm{~K} \Omega$ |
| $\mathrm{R} 16=10 \mathrm{~K} \Omega$ | $\mathrm{R} 17=20 \mathrm{~K} \Omega$ | $\mathrm{R} 18=20 \mathrm{~K} \Omega$ |
| $\mathrm{R} 19=20 \mathrm{~K} \Omega$ | $\mathrm{R} 20=20 \mathrm{~K} \Omega$ | $\mathrm{R} 21=20 \mathrm{~K} \Omega$ |
| $\mathrm{R} 22=10 \mathrm{~K} \Omega$ | $\mathrm{R} 23=24.3 \mathrm{~K} \Omega$ | $\mathrm{R} 24=24.3 \mathrm{~K} \Omega$ |
| $\mathrm{R} 25=10 \mathrm{~K} \Omega$ | $\mathrm{R} 26=10 \mathrm{~K} \Omega$ | $\mathrm{R} 27=58.3 \mathrm{~K} \Omega$ |
| $\mathrm{R} 28=58.3 \mathrm{~K} \Omega$ | $\mathrm{R} 29=100 \mathrm{~K} \Omega$ | $\mathrm{R} 30=1 \mathrm{~K} \Omega$ |
| $\mathrm{R} 31=10 \mathrm{~K} \Omega$ | $\mathrm{R} 32=100 \mathrm{~K} \Omega$ | $R 33=1 \mathrm{~K} \Omega$ |
| $\mathrm{R} 34=10 \mathrm{~K} \Omega$ | $\mathrm{R} 35=1 \mathrm{~K} \Omega$ | $\mathrm{R} 36=1 \mathrm{~K} \Omega$ |
| $\mathrm{R} 37=10 \mathrm{~K} \Omega$ | $\mathrm{R} 38=10 \mathrm{~K} \Omega$ | $\mathrm{R} 39=1 \mathrm{~K} \Omega$ |
| $\mathrm{R} 40=1 \mathrm{~K} \Omega$ | $\mathrm{R} 41=10 \mathrm{~K} \Omega$ | $R 42=10 \mathrm{~K} \Omega$ |

R43 through R $62=100 \mathrm{~K} \Omega$
IC1 through IC4 $=$ MC34084
IC5 through IC14 = Xicor $50 \mathrm{~K} \Omega$ digitally controlled pot
$\mathrm{IC15}=\mathrm{MC} 34082$
IC16 = Xicor $50 \mathrm{~K} \Omega$ digitally controlled Pot
IC17 = Xicor $50 \mathrm{~K} \Omega$ digitally controlled Pot
IC19 = Xicor $50 \mathrm{~K} \Omega$ digitally controlled Pot
P1 through P4 $=50 \mathrm{~K} \Omega$ Pot

Noise Board:

$$
\begin{aligned}
& \mathrm{R} 1=100 \mathrm{~K} \\
& \mathrm{R} 4=510 \mathrm{~K} \\
& \mathrm{R} 8=10 \mathrm{~K} \\
& \mathrm{R} 11=251.5 \mathrm{~K} \\
& \mathrm{R} 14=10 \mathrm{~K} \\
& \mathrm{R} 17 \equiv 25 \mathrm{~K} \\
& \mathrm{C} 1=1 \mathrm{uF} \\
& \mathrm{C} 4=0.05 \mathrm{uF} \\
& \mathrm{C} 7=0.1 \mathrm{uF} \\
& \mathrm{C} 11=0.1 \mathrm{uF} \\
& \text { Pot1 }=50 \mathrm{~K}
\end{aligned}
$$

$$
\mathbf{R}_{2}=16 \mathrm{~K}
$$

$$
\mathbf{R S}=1 \mathrm{~K}
$$

$$
\mathrm{R} 3=6.2 \mathrm{~K}
$$

$$
\mathrm{R} 6=2.7 \mathrm{~K}
$$

$$
\mathbf{R 9}=27.1 \mathrm{~K}
$$

$$
\mathrm{R} 10=251.5 \mathrm{~K}
$$

$$
\mathrm{R} 12=10 \mathrm{~K}
$$

$$
\mathrm{R} 13=10 \mathrm{~K}
$$

$$
R 15=10 \mathrm{~K}
$$

$$
\mathrm{R} 16=27.1 \mathrm{~K}
$$

$$
\mathrm{R} 18=25 \mathrm{~K}
$$

$C 2=0.1 \mathrm{uF}$
$C 3=10 u F$
$\mathrm{C} 5=0.1 \mathrm{uF}$
$\mathrm{C} 6=0.1 \mathrm{uF}$
$\mathrm{C} 8=0.1 \mathrm{uF}$
$C 9=0.1 u F$

## Component Count

## 8930 Digital Board:

Component
74xx688
65 C 22
AY8930
0.1 uF

NMI Connector
AOI Connector Address select Connector

## Power/Ground Plane Board:

Component NMI Connector
AOI Connector
Ferrite Beads
$10 \mu \mathrm{~F}$ Cap
$1 \mu \mathrm{~F}$ Cap
$.01 \mu \mathrm{~F}$ Cap
Power Connector

Audio Board:
Component
$1 \mathrm{~K} \Omega$
$10 \mathrm{~K} \Omega$
$20 \mathrm{~K} \Omega$
$24.3 \mathrm{~K} \Omega$
$58.3 \mathrm{~K} \Omega$
$100 \mathrm{k} \Omega$
0.1 uF

MC34084
MC34082
$50 \mathrm{~K} \Omega$ Xicor Pot
$50 \mathrm{~K} \Omega$ Pot
LM1877
Audio Jacks
External Audio Connector
Noise Connector
AOI Connector

Noise Board:
Component
$1 \mathrm{~K} \Omega$
$2.7 \mathrm{~K} \Omega$

Number Needed 2
1
2
5
1
1
1

Number Needed
1
1
3
3
3
3
1

Number Needed
7
17
11
2
2
22
17
4
1
13
4
2
2
1
1
1

$6.2 \mathrm{~K} \Omega$ ..... 1
$10 \mathrm{~K} \Omega$ ..... 5
$16 \mathrm{~K} \Omega$ ..... 1
$25 \mathrm{~K} \Omega$ ..... 2
$27.1 \mathrm{~K} \Omega$ ..... 2
$100 \mathrm{~K} \Omega$ ..... 1
$251.5 \mathrm{~K} \Omega$ ..... 2
$510 \mathrm{~K} \Omega$ ..... 1
0.05 uF ..... 1
0.1 uF ..... 8
1 uF ..... 1
10 uF ..... 1
$50 \mathrm{~K} \Omega$ Pot ..... 2
FLT-U2 ..... 2
LM389 ..... 1
Xicor 50K Pot ..... 4
Noise Connector ..... 1
Total List:
Component Number Needed
$1 \mathrm{~K} \Omega$
2.7 K $\Omega$ ..... 8
$6.2 \mathrm{~K} \Omega$ ..... 1
$10 \mathrm{~K} \Omega$ ..... 22
$16 \mathrm{~K} \Omega$ ..... 1
$20 \mathrm{~K} \Omega$ ..... 11
$24.3 \mathrm{~K} \Omega$ ..... 2
$25 \mathrm{~K} \Omega$ ..... 2
$27.1 \mathrm{~K} \Omega$ ..... 2
$58.3 \mathrm{~K} \Omega$ ..... 2
$100 \mathrm{~K} \Omega$ ..... 23
$251.5 \mathrm{~K} \Omega$ ..... 2
$510 \mathrm{~K} \Omega$ ..... 1
0.05 uF ..... 1
$0.01 \mu \mathrm{~F}$ ..... 3
0.1 uF ..... 30
1 uF ..... 4
10 uF ..... 4
$50 \mathrm{k} \Omega$ Pot ..... 6
MC34084 ..... 4
MC34082 ..... 1
$50 \mathrm{~K} \Omega$ Xicor Pot ..... 17
LM1877 ..... 2
FLT-U2 ..... 2
LM389 ..... 1
74xx688 ..... 2
$65 C 22$ ..... 1
AY8930 ..... 2
MNI Connector ..... 2
AOI Connector ..... 3
Address select connector ..... 1

Audio Jacks
2
External Audio connector
N ie Connector 2
Power Connector
,
semd setup SEND ARRAYS SENO CASE SEND DOERMAKE SEMD CHIPCTRL SEND SELECTOR SEMD VIEu8930 SEND ENVELOPE SEND CONVERT SEMD time6522 SEND XICORS SEND CONFIGUR SEND TRANSIT SENO ACIACOM SEND SHOFRAME SEND AOI send srsinits SENO DEMO

HEX
304 1C !
50 TE
$36022!$
FORGET TASK ( Reset )
380 DP !

DECIMAL
: OCTAL 8 base ! :
: 8IMARY 2 base ! ;

VARIABLE WAIT.COUNT 5000 WAIT.COUMT !
: WAIT WAIT.COUNT 0 DO I DROP LOOP ;
: NIP SUAP ORDP :
: TUCK SWAP OVER ;
: -ROT ROT ROT ;
: INCR 1 SWAP +1;
: DECR - 1 SWAP +1 :
: OSET 0 SWAP ! :
: COSET O SHAP C! :

- 1 constant true

O constant false
: +- OVER OVER - -ROT + ; (n1 n2 - (n1-n2) (n1 + n2 ) )
: GET.OUT ?TERMINAL IF R> OROP EXIT THEN:
: TASK ;

DECIMAL

```
arrays
Wednesday, January 3, 1990 1:22 pm
DECIMAL
```

```
: carray create 3 + allot does> + ;
```

: carray create 3 + allot does> + ;
: array create 2+ 2* allot does> Suap 2* + ;
: array create 2+ 2* allot does> Suap 2* + ;
: 2arra: ( row col .- ) create 2 allot 1+ SuAp i+ suap dup , * 2*
: 2arra: ( row col .- ) create 2 allot 1+ SuAp i+ suap dup , * 2*
ALLOT DOES> ROT OVER a * ROT + 2* + 2+ ;
ALLOT DOES> ROT OVER a * ROT + 2* + 2+ ;
: DARRAY CREATE 1+ 4 * 2+ ALLOT DOES> SMAP 4 * + ;
: DARRAY CREATE 1+ 4 * 2+ ALLOT DOES> SMAP 4 * + ;
: table create 2 allot does> suap 2* + 0 ;
( initialize by commaing )
: ctable create 2 allot does> + Ca ;
( imitialize by c-comajng )
(mmmers to bit heights)
TABLE 2^ 1, 2, 4, 8, 16, 32,64, 128, 256,512,
1024, 2048 , 4096 , 8192 , 16384 , 32768 ,

```
(MCOIFIED FRON W. BADEN)
(FORTH DIMENSIONS VOLUME 8, *5, P 31)

DECIMAL
: CASE DUP ;
: OF [COMPILE] IF COMPILE DROP :
IMNEDIATE
: EMOOF COMPILE EXIT [COMPILE] THEN :
Imediate
: ENOCASE DROP ;
: OOR 2 PICK = OR ;
(N M1 N2 - F: TIFN > N M \& \(<=\) NZ)
: BETLEEN 1+ OVER - >R - R> U< ;
: ASCII BL WORD COUNT q-ABORT" ?? "CO STATE a IF [COMPILE] LITERAL THEN ; IMMEDIATE

DECIMAL
: MOP :
: DOER CREATE 2 ALLOT ['] NOP CFA, DOES> 2 >R ;
(the allot steps over the pointer put in the)
(FIRST WORD OF THE CHILD'S PARAMETER FIELD BY)
(DOES>)
(DOER NAMEX makes NAMEX vectored to NOP)
: MAKE [COMPILE]' a \(2+\) [COMPILE] ' CFA SHAP 1 ;
(MAKE MAMEX NEW-WORD revectors MAMEX)
(MAKE MAMEX NOP revectors NAMEX to NOP)
```

HEX
8000 CONSTANT G8HC11.PORT.A
3 2^ CONSTANT 68HC11.PORT.A.PULSE.BIT
DFFO CONSTANT AUDIO.6522.BASE

```
DECIMAL
```

ALDIO.6522.8ASE O + CONSTANT ALDIO.6522.PORT.B
ALDIO.6522.BASE 15 + CONSTAMT ALDIO.6522.PORT.A
ALDIO.6522.BASE 2 + CONSTANT ALDIO.6522.PORT.B.DDR
ALOIO.6522.BASE 3 + CONSTANT ALDIO.6522.PORT.A.DDR
ANOIO.6522.BASE 4 * CONSTANT ALDIO.6522.T1C-L
ANOIO.6522.BASE 5 + CONSTANT AUO1O.6522.T1C-H
MDIO.6522.BASE 6 + CONSTANT MNIO.6522.TIL-L
ALDIO.6522.BASE 7 + CONSTANT ANDIO.6522.T1L-H
MNOIO.6522.8ASE 8 + CONSTAMT NNOIO.6522.T2C-L
ANOIO.6522.BASE 9 + CONSTANT ANOIO.6522.T2C-H
ALDIO.6522.8ASE 10 + CONSTANT ANDIO.6522.SR
ANOIO.6522.BASE 11 + CONSTAMT AUOIO.6522.ACR
MNDIO.6522.BASE 12 + CONSTAMT MNDIO.6522.PCR
ANDIO.6522.BASE 13 + CONSTAMT ANDIO.6522.IFR
ALDIO.6522.8ASE 14 * CONSTANT ALDIO.6522.IER

```
DECIMAL
0 2^ CONSTANT SOUND.CHIP.SELECT.BIT (chip enable)
1 2^ CONSTANT BUS.CONTROL.8IT (BC1 for AY-8930s)
2 2^ CONSTANT BUS.DIRECTION.8IT (BDIR for AY-8930s)
(bits 3 and 4 are used in XICORS)
5 2^ CONSTANT HDN.RESET.BOTH.AY-8930S.BIT
```

: P.OM ( n port - )
DUP Ca . ( n port contents )
nof (port contents n )
ON ( port new.contents )
sinp Cl:
: P.Off (n port . )
OUP CA ( n port contents )
ROT ( port contents n )
ONER (port contents n (. ients)
AWO ( port contents bits.in.n.currently.on )
xOR ( port new.contents )

```
```

        SWAP CI ;
    HEX
: PULSE
68HC1T.PORT.A.PULSE.BIT GBHC11.PORT.A OVER OVER P.ON P.OFF;
: INIT.AUDIO.6522.PORT.8
FF AUDIO.6522.PORT.B.DDR CI
20 ALDIO.6522.PORT.8 C! ; ( put reset bit high )
: MARDMARE.RESET.BOTH.AY-8930S
HDU.RESET.BOTH.AY-8930S.BIT ALDIO.6522.PORT.B P.OFF
HDW.RESET.BOTH.AY-893OS.BIT ALDIO.6522.PORT.B P.ON ;
: TO.SOUND
FF AUOIO.6522.PORT.A.DDR CI ;
: FRCM.SOUND
O ANDIO.6522.PORT.A.DDR C! ;
: SETUP.SOMNO.CHIPS
INIT.ANDIO.6522.PORT.B
ro.soumo
MARDUARE.RESET.BOTH.AY-8930S ;
: DNULL
[ BUS.COWTROL.BIT BUS.DIRECTIOW.BIT OR I LITERAL
ANDIO.6522.PORT.B P.OFF ;
: DLATCH
〔 BUS.COWTROL.BIT BUS.DIRECTIOW.BIT OR 〕 LITERAL
ALOIO.6522.PORT.8 P.ON ;
: DREAD
BUS.CONTROL.BIT ANOIO.6522.PORT.S P.OW ;
: DURITE
BUS.DIREGTIOW.BIT ANOIO.6522.PORT.B P.OW ;
VARIALLE SELECTED.SOUND.CHIP
: AY-8930.0
SOMND.CHIP.SELECT.8IT ALDIO.6522.PORT.B P.OFF
O SELECTED.SOUMO.CHIP | ;
: AY-8930.1
SOMNO.CHIP.SELECT.BIT ALDIO.6522.PORT.B P.OW
1 SELECTED.SOMNO.CHIP ! ;

```
```

: SET.SOUND.CHIP ( O=AY-8930.0 | 1=AY-8930.1 - )
O= IF AY-8930.0 ELSE AY-8930.1 THEN ;
: RSET DNULL DLATCH AUOIO.6522.PORT.A C! DNULL ; ( for AY-8930 addresses )
( Default AUD10.6522.PORT.A bus direction is out to the periphersls )
: <GET> FROM.SOUND DMULL DREAD AUDIO.6522.PORT.A CA DMULL TO.SOUND ;
: <SEND> DNULL ALDIO.6522.PORT.A CI DURITE DNULL ;
BIMARY
10100000 CONSTANT BANK.A.CCOE
10110000 CONSTANT BANK.B.CODE
00001111 CONSTANT CLEAR.MIBBLE.MASK
OCTAL
: gANK.A (- (bank A is current))
15 RSET
<GET>
CLEAR.NIBELE.MASK ( special case because bank code shares)
AMD ( register with Channel A shape/cycle)
BANK.A.CODE
On
<SEMO>
;

```
```

: BANK.B ({ bank B is current ))

```
: BANK.B ({ bank B is current))
 15 RSET
 15 RSET
 <CET>
 <CET>
 CLEAR.NIESLE.MASK
 CLEAR.NIESLE.MASK
 ANo . (specisl case like bank.A)
 ANo . (specisl case like bank.A)
 BuM.8.CODE
 BuM.8.CODE
 ON
 ON
 <sE゙VD>
 <sE゙VD>
;
```

;

```
DECIMAL

\section*{CHIPCTRL}
```

: SEmO ( n register moytes bank - )
Oz if bank.a else bank.b then
1= IF
RSET
<SEMD> ( transmits low order byte )
ELSE
OUP (n register register)
RSET (n register )
OVER (n register n)
<SEND>
1+ (n registeri+)
RSET
>< ( swap bytes )
<SEND> ( transmits law order byte ... former hi byte )
then
;

```
: GET (register wortes bank -)
 0= IF BANK.A ELSE BANK.B THEN
 1: IF
 RSET
 <GET> (get low order byte)
 ELSE
 DUP (register register)
 RSET
 <GET> (register low-byte)
 suap (low-byte register)
 1+
 RSET
 <GET> (low-byte high-byte
 256 * + (combined-louthigh-bytes)
 THEN
;
decimal
```

( SELECT gY REGISTER MAMES )
DECIMAL
O constant a
1 constant b
2 cowstant c
: TOWE.PERIOO ( chamel - register wbytes bonk )
2* ( register )
2 ( register mbytes )
A ( register Wbytes benk )
;
OCTAL

```
16 CONSTANT PORT.A.REGISTER
: AY-8930.PORT.A (chamel - register Wbytes bank)
 PORT.A.REGISTER
 1
 A
;
: AY-8930.port.B (chamel - register woytes bank)
 port.a.REGISTER \(1+\)
 1
 A
;
6 CONSTANT MOISE.PERIOD.REGISTER
: MOISE.PERIO (channel - register Wbytes benk)
 MOISE.PERIOD.REGISTER (AY-8930 address)
 1
 A
;
7 CONSTANT MOT.EMABLE.REGISTER
: MOT.EMABLE (chamel - register Wortes benk)
 -mot.emable.register (ay-8930 address)
 1
 A
;
: AMPLITLDE (channel - register mbytes benk)
 10 +
 (base AY-8930 address)
 1

A
;
```

: OR.OM (bits )
2 PICK
2 PICK
2 PICK
GET (bits current.value ( register current ) )
4 ROLL
OR (add the new bits)
3 ROLL
3 ROLL
3 ROLL
SEMD (store in register )
;
: XOR.OFF (bits )
2 PICK
2 PICK
2 PICK
GET (bits value )
4 ROLL
ONER (value bits value)
AMD (value "on" bits to turn off )
XOR ( turn them off)
3 ROLL
3 ROLL
3 ROLL
SEND (store in register)
;

```
: ENVELOPE.PERICD (channel - register mbytes benk)
 CASE \(0=0\) 13 2 a EMDOF
 CASE \(1=0\) O 2 ENDOF
 CASE 2 = OF 22 EMDOF
 necrtm CMaMmel ramge errorn
 enocase
;
: SMAPE/CYCLE (chamml - register moytes benk)
 Case \(0=0\) of 15 a emoof
 Case \(1=0 \mathrm{O} 41\) B emoof
 CASE \(2=0\) O 5 E EMDOF
 abortm Chanmel rance error"
 emocase
;
```

SELECTOR
wednesdoy, January 3,1990 1:22 pm
6 CONSTANT CH.A.DUTY.CYCLE.REGISTER
: DUTY.CYCLE ( - register woytes bank )
CH.A.DUTY.CYCLE.REGISTER
+
1
B
;
11 CONSTANT MOISE.AND.MASK.REGISTER
: NOISE.AND.MASX ( - register moytes benk )
NOISE, AMD,MASK.REGISTER
I
B
;
12 COWSTANT NOISE.OR.MASK.REGISTER
: NOISE.OR.MASK ( - register Wbytes bank )
MOISE.OR.MASK.REGISTER
1
8
;
DECIMAL
1 CONSTANT HOLD.BIT
2 CONSTANT ALT.BIT
\& CONSTANT ATTACK.BIT
8 CONSTANT CONTIMUE.BIT
( warming - the mot.emable register is megative logic)
: TOME.EMABLE (ch)
2^ MOT.EMABLE XOR.OFF ;
: TOWE.DISABLE (ch)
Z^ MOT.EMABLE OR.OM:
: mOISE.emable (ch )
2^8* MOT.EMABLE XOR.OFF :
: NOISE.DISABLE (ch )
2^8* mot.emable OR.OW ;
: ZERO.AMPLITUDE (ch )

```

0 SWAP AMPLITLDE SEND
;
: INIT.SOUND.CHIP
255 nOT.ENABLE SEND (enables AY-8930 ports as outputs)
0 a AMPLITLDE SENO
0 B AMPLITLUE SEND
0 C AMPLITLDE SEND
0 A TONE.PERIOD SEND
0 B TONE.PERICD SEND
0 C TONE.PERIOD SEND
0 MOISE.PERICD SEND
O A ENVELOPE.PERICO SEND
O B ENVELOPE.PERICO SEND
O C ENVELOPE.PERICD SENO
255 A SHAPE/CYCLE XOR.OFF
255 B SHAPE/CYCLE XOR.OFF
255 C SHAPE/CYCLE XOR. OFF
4 A DUTY.CYCLE SEND (\(50 \%\) DUTY CYCLE)
4 B DUTY.CYCLE SEND (\(50 \%\) DUTY CYCLE)
4 C DUTY.CYCLE SEND (\(50 \%\) DUTY CYCLE)
255 MOISE.AND.MASK SENO
0 MOISE.OR.MASK SENO
;
```

VIEW0930
Wedresday, Jamuary 3, 1990 1:22 pm
DECIMAL
: 16817s ( d - )
<" \#\# \#\# \#32 HOLD \# \# \# \# 32 HOLD 32 HOLD
\# \# \# \# 32 HOLD \# \# \# \# 32 HOLD 32 HOLD \#/ TYPE ;
: BITS. (n-n)
baSE a binary over O 16BITS bASE ! ;
: HEX.
base a hex over 8 U.r 2 spaces base! ;
: DEC.
base a decimal over 8 U.r 2 spaces base!;
: ALL. DEC. MEX. BITS. DROP ; ( n - )
: SAY.CHANMEL (n-n)
DUP
CR ." Chanmel "
CASE O = OF." A "EmOOF
CASE 1 = OF ." B " ENDOF
CASE 2 = OF ." C " ENDOF
emocase :
: SEE (ch )
SAY.Chanmel
CR." Register Decimal Hex Binary N
CR ." TONE PERICD "
OUP TONE.PERIOD GET ALL.
CR ." AMPLITLDE
DUP AMPLITUDE GET ALL.
CR ." ENVELOPE PERICD N
OUP ENVELOPE.PERIDD GET ALL.
CR ." SHAPE/CYCLE n
DUP SNAPE/CYCLE GET ALL.
CR ." DUTY CYCLE
DUTY.CYCLE GET ALL.
CM ." EMABLE REGISTER *
MOT.EMABLE GET 255 XOR ALL.
CR." MOISE PERICD
wOISE.PERICD GET ALL.
CR ." MOISE AND MASK n
mOISE.AMD.MASK GET ALL.
CR ." MOISE OR MASK
MOISE.OR.MASK GET ALL.
4 SPACES ;

```
Page 1
```

(words to work the envelope registers )
: ENVELOPE.ON 32 SUAP AMPLITUDE SENO ; (ch - )
: ENVELOPE.OFF O SUAP AMPLITUDE SEMD ; (ch - )
: ATTACK.ONCE ( ch - )
[ ATTACK.BIT ALT.BIT COWTIMUE.BIT HOLD.BIT OR OR OR]
LITERAL SUAP SHAPE/CYCLE OR.ON ;
: dECAY.ONCE (ch - )
[ ATtack.bit comtinuE.bit alt.bit hold.bit or or or ]
LITERAL SUAP SHAPE/CYCLE XOR.OFF ;
: ATTACK.AMD.HOLD (ch - )
ALT.BIT OVER SHAPE/CYCLE XOR.OFF
[ ATTACK.BIT CONTINUE.BIT HOLD.BIT OR OR ]
LITERAL SLAP SHAPE/CYCLE OR.OM ;
: TRIANGLES (ch - )
HOLD.BIT OVER SHAPE/CYCLE XOR.OFF
[ ATTACK.BIT ALT.BIT COWTINUE.BIT OR OR ]
LITERAL SMAP SHAPE/CYCLE OR.OW ;
: Attacks (ch - )
{ ALT.BIT HOLD.bIT OR ] LITERAL OVER SHAPE/CYCLE XOR.OFF
{ ATTACK.bIT CONTINUE.BIT OR ] LITERAL SUAP SHAPE/CYCLE OR.OW ;
: DEcars (ch - )
( ATTACK.bIT ALT.bIT HOLD.BIT OR OR ]
LITERAL OVER SHAPE/CYCLE XDR.OFF
COWTINUE.BIT SUAP SHAPE/CYCLE OR.ON ;

```
decimal
250000. 2CONSTANT CLOCK (AY-8930 clock freqeuncy divided by 8) (this is a empirical setting, the preliminary manual divides by)
: HZ CLOCK ROT UM/MOD NIP ;
(2000 HZ leaves the TOWE.PERICO)
(HZ can be used for tone or noise periods)
(noise period is the input clock rate to the polynomial shift register)
: EHZ CLOCK 32 UM/MCD MIP SWAP / :
(envelope period is the time for the 32 envelope steps)
```

TIME6522
Wednesdoy, Jaruary 3, 1990 1:22 pm
( USES II AND t2 ON AUDIO.6522 )
: TASK.;
HEX
: INIT.TIMER.HDN
EO ALDIO.6522.ACR C! ( T1 SOUARE WAVE, T2 COUNT DONM )
40 AUDIO.6522.PORT.B.DDR P.OFF ( MAKE PB6 AN INPUT )
;
dECIMAL
50000 CONSTANT T1.50.MSEC
10000 COWSTANT T1.10.HSEC
5000 CONSTANT T1.5.mSEC
1000 CONSTANT TY.1.MSEC
100 cowstamy T1..1.msec
10 constant t1..01.msec
variable t%.imitial.coumt
T1.1.mSEC Tq.IMITIAL.COUMT !
: ><! ( n addr - stored lowbyte in addr then hibyte in addr +1)
SUAP >< SWAP!
;
: 2>< 2 >< ;
: IMIT.TY.CONNT
T1.INITIAL.CONT a ALDIO.6522.TIL-L ><1
T1.INITIAL.COUNT a ALDIO.6522.TIC-L ><!
;
VARIABLE t2.inItIAL.count
hEX fFFE t2.imitial.count ! DECIMAL
: IWIT.12.cowr
T2.IMITIAL.COMNT a ALDIO.6522.T2C-L ><1
;
: IMIT.TIMER
IMIT.TIMER.NOW
IMIT.IT.COUMT
INIT.T2.COUMT
;
: START.tIMER

```
Page 1
```

        INIT.T2.COUNT
    ;
: READ.TIMER ( - n)
T2.INITIAL.COUNT a AlOIO.6522.T2C-L O>< -
;
( WORDS FOR SCAN TIMING)
VARIABLE TZ.INTER.SCAN.COUNT
1000 T2.IMTER.SCAN.COUNT ! ( default 1 second delay )
5 2^ CONSTANT AUDIO.6522.T2.INTERRUPT.FLAG
: START.INTER.SCAN.INTERVAL
T2.INTER.SCAN.COUNT O
AUDIO.6522.T2C-L ><1
;
: ELAPSED.INTER.SCAM.IMTERVAL
T2.INTER.SCAM.COUNT O
AlDIO.6522.T2C-L >< -
;
: ?INTER.SCAN.INTERVAL.DONE
ALOIO.6522.T2.INTERRUPT.FLAG
ANDIO.6522.IFR CO AND O= NOT
;
: INIT.SYNCH
INIT.TIMER.HDU
INIT.TY.COUNT
START.INTER.SCAN.INTERVAL
;
: SYMCH
8EGIM
TIMTER.SCAN.INTERVAL .DOWE
UNTIL
START.INTER.SCAN.INTERVAL
;

```
```

(Audio Board Control for Xicor Digital Potentiometers )
: TASK ;
(Audio.6522.Port B )
3 2^ CONSTAMT UP/DOWN.BIT (1 IS UP )
4 2^ CONSTAMT STEP.BIT
VARIABLE STEP.DIRECTION
O STEP.DIRECTION !
: STEP.UP
UP/DONN.BIT AUDIO.6522.PORT.B P.ON
TRUE STEP.DIRECTION !
;
: STEP.DOMM
UP/DOMN.BIT ALDIO.6522.PORT.B P.OFF
FALSE STEP.DIRECTION !
;
(The order of the following constants will determine)
( an array colum, the bit weight and the output port )
(AY-8930.1 Port A )
O CONSTANT PRE.MIXER.LEVEL
1 CONSTAMT MOISE.LEVEL
2 CONSTANT BALANCE
3 CONSTAMT LEFT.ANDIO.LEVEL
4 COMSTANT RIGHT.ANDIO.LEVEL
5 CONSTANT MOT.USED
6 CONSTANT HIGH.PASS.FILTER.I
7 CONSTAMT HIGH.PASS.FILTER. }
6 CONSTAMT FILTER
( ALIAS FOR HIGH.PASS.FILTER.1 )
( AY-8930.1 Port ह)
-
8 CONSTAMT AY-8930.0.CHANNEL.A.LEVEL
9 CONSTAMT AY-8930.0.CHANNEL.B.LEVEL
10 CONSTAMT AY-8930.0.CHANNEL.C.LEVEL
If CONSTANT AY-8930.0.LEVEL
12 CONSTANT AY-8930.1.CHANNEL.A.LEVEL
13 CONSTANT AY-8930.1.CHANWEL.B.LEVEL
14 CONSTANT AY-8930.1.CHANNEL.C.LEVEL

```
```

15 constant ar-8930.1.LEVEL
O CONSTANT XICOR.IMITIAL.SETTIMG
1 CONSTANT XICOR.CURREMT.SETTING
1 15 2array XICOR.array
VARIABLE <STEP.TEMP>
O <STEP.TEMP> !
: STEP.TEMP <STEP.TEMP> a : ( wORXS LIKE A COWSTANT )
: <SELECT> (uses STEP.TEMP )
AY-8930.1
STEP.TEWP 8 <
IF STEP.TEMP 2^ AY-8930.PORT.A ( get the bit weight directly)
ELSE STEP.TEMP 8-2^ AY-8930.PORT.B ( shift down by 8)
THEN (-bit.weight port )
;
: SELECT <SELECT> XOR.OFF ; (bit.weight port - )
: UNSELECT <SELECT> OR.ON ; ( bit.weight port - )
: STEP.SETTING (Xicor must be selected )
STEP.BIT ANDIO.6522.PORT.B P.OFF ( XICOR STEP IS ACTIVE LON )
XICOR.CURRENT.SETTIMG STEP.TEMP XICOR.ARRAY ( oddr )
STEP.DIRECTIOM a IF IMCR ELSE DECR THEN
STEP.BIT ALDIO.6522.PORY.8 P.ON ( PUT IT BACK HIGN )
;
: COTO.SETTING ( rarget.setting Xicor.constant 0-15 )
<STEP.TEMP> | ( the key to this routine)
DUP O 100 \&ETWEEM ( target )
If
DUP SELECT ( target target - target target )
XICOR.CURRENT.SETTING STEP.TEWP XICOR.ARRAY O
- ( target target current - target delte )
O< IF STEP.DONW ELSE STEP.UP THEN ( sels AY-8930.0)
( - target )
EEGIN ( target )
OUP XICOR.CURREMT.SETTIMG STEP.TEMP XICOR.ARRAY a
= NOT
WHILE STEP.SETTIMG
REPEAT
ELSE ABORT" BAD ARGUMENT TO GOTO.SETTIMGN
THEN ( target )
DROP

```
```

    UNSELECT
    ;
: ALL.XICORS.TO.2ERO
AY-8930.1
255 AY-8930.PORY.A SEND
255 AY-8930.PORT.B SEMD
( agOVE three lineS are reouired because select is )
( NEGATIVE LOGIC -. A LON SELECTS THE XICOR )
STEP.DOWM
16 0 DO
1 <STEP.TEMP> !
SELECT
100 0 DO STEP.SETTING LOOP
O XICOR.CURRENT.SETTING I XICOR.ARRAY !
UNSELECT
LOOP
;
: ALL.XICORS.TO.IMITIAL.SETTING
ALL.XICORS.TO.ZERO
16 0 DO
| <STEP.TEMP> !
SELECT
XICOR.INITIAL.SETTING I XICOR.ARRAY O
I GOTO.SETTING
UNSELECT
LOOP
;
: SHOW.XICORS
CR
.* XICOR SETTINGS IMITIAL CURRENT *
CR
." PRE.MIXER.LEVEL *
XICOR.INITIAL.SETTING PRE.MIXER.LEVEL XICOR.ARRAY O 10 U.R
XICOR.CURRENT.SETTIMG PRE.MIXER.LEVEL XICON.ARRAY a 10 U.R
CR
* MOTSE.LEVEL "
XICOR.IMITIAL.SETTIMG NOISE.LEVEL XICOR.ARRAY \ 10 U.R
XICOR.OLRREWT.SETTING MOISE.LEVEL XICOR.ARRAY A 10 U.R
CR
." salamce
XICOR.IMITIAL.SETTING BALANCE XICOR.ARRAY O 10 U.R
XICOR.CURRENT.SETTING BALANCE XICOR.ARRAY ( IO U.R
CR
." LEFT.ALOIO.LEVEL *
XICON.IMITIAL.SETTIMG LEFT.ANDIO.LEVEL XICOR.ARRAY O IO U.R
XICOR.CURRENT.SETTING LEFT.ANDIO.LEVEL XICOR.ARRAY O 10 U.R

```
```

CR
." RIGHT.AUDIO.LEVEL M
XICOR.IMITIAL SETTIMG RIGHT.AUDIO.LEVEL XICOR.ARRAY O }10\mathrm{ U.R
XICOR.CURRENT.SETTING RIGHT.ANDIO.LEVEL XICOR.ARRAY a 10 U.R
CR
." MOT.USED M
XICOR.INITIAL.SETTIMG NOT.USED XICOR.ARRAY O 10 U.R
XICOR.CURREMT.SETTIMG NOT.USED XICOR.ARRAY O 10 U.R
CR
." HIGH.PASS.FILTER.1 "
XICOR.INITIAL.SETTIMG HIGH.PASS.FILTER.I XICOR.ARRAY O }1
U.R
XICOR.CURREMT.SETTIMG HIGH.PASS.FILTER.I XICOR.ARRAY O }1
U.R
CR
." HIGH.PASS.FILTER.2 w
XICOR.IMITIAL.SETTIMG HIGH.PASS.FILTER. 2 XICOR.ARRAY O }1
U.R
XICOR.CURRENT.SETTIMG HIGH.PASS.FILTER. 2 XICOR.ARRAY O }1
U,R
CR
." AY-8930.0.CHANNEL.A.LEVEL *
XICOR.INITIAL.SETTING AY-8930.0.CHANNEL.A.LEVEL XICOR.ARRAY
a 10 U.R
XICOR.CURREMT.SETTIMG AY-8930.0.CHANNEL.A.LEVEL XICOR.ARRAY

- 10 U.R
CR
." AY-8930.0.CHANMEL.B.LEVEL N
XICOR.IMITIAL.SETTING AY-8930.0.CHANNEL.B.LEVEL XICOR.ARRAY
a 10 U.R
XICOR.CURRENT.SETTING AY-8930.0.CHANNEL.B.LEVEL XICOR.ARRAY
a 10 U.R
CR
.* AY-8930.0.CHANMEL.C.LEVEL N
XICOR.INITIAL.SETTIMG AY-8930.0.CHANWEL.C.LEVEL XICOR.ARRAY
a 10 U.R
XICOR.CURRENT.SETTIMG AY-8930.O.CHANNEL.C.LEVEL XICOR.ARRAY
- 10 U.R
CR
.^AY-8950.0.LEVEL N
XICOR.IMITIAL.SETTIMG AY-8930.0.LEVEL XICOR.ARRAY a }10\mathrm{ U.\&
XICOR.CNRREMT.SETTING AY-8930.0.LEVEL XICOR.ARRAY O }10\mathrm{ U.R
CR
.* AY-8930.1.CHANMEL.A.LEVEL *
XICOR.INITIAL.SETTING AY-8930.1.CHANNEL.A.LEVEL XICOR.ARRAY
- 10 U.R
XICOR.CURRENT.SETTING AY-8930.1.CHANNEL.A.LEVEL XICOR.ARRAY
- 10 U.R
CR

```
```

." AY-8930.1.CMANMEL.B.LEVEL "
XICOR.IMITIAL.SETTIMG AY-8930.1.CHAMMEL.B.LEVEL XICOR.ARRAY
a 10 U.R
XICOR.CURRENT.SETTING AY-8930.1.CHANNEL.B.LEVEL XICOR.ARRAY
a 10 U.R
CR
." AY-8930.9.CHAMMEL.C.LEVEL"
XICOR.IMITIAL.SETTIMG AY-8930.1.CHANMEL.C.LEVEL XICOR.ARRAY
a 10 U.R
XICOR.CURRENT.SETTING AY-8930.1.CHANMEL.C.LEVEL XICOR.ARRAY
a 10 U.R
CR
." AY-8930.1.LEVEL w
XICOR.IMITIAL.SETTING AY-8930.1.LEVEL XICOR.ARRAY O 10 U.R
XICOR.CURRENT.SETTING AY-8930.1.LEVEL XICOR.ARRAY O 10 U.\&
;
variable defallt.xicor.setting
TS DEFAULT.XICOR.SETTING !
: DEFAULT.XICOR.JMITIAL.SETTINGS
16 O DO
DEFMULT.XICOR.SETTING a
XICOR.IMITIAL.SETTIMG I XICOR.ARRAY I
LOOP
;
: SETUP.XICORS.TO.DEFAULT
dEFAULT.XICOR.imITIAL.SETTIMGS
ALL.XICORS.TO.IMITIAL.SETTIMG
;

```
(samo cmips must ee set up)
SETUP. SOUNO.CHIPS
AY-8930.0
IWIT. SOUNO.CHIP
AY-8930. 1
IMIT. SOUND.CHIP
SETUP .XICORS. TO.DEFAULT
```

( TRANSITION gETMEEM MEW HARDWARE AND AOI SOFTMARE FOR TESTS )
( THIS. IS WHERE TME DATA FROM TME FLIGHT INFORMATIOM PACAKAGE gOES )
( ROUTINE TO CAPTURE THE DATA SHOULD BE INSTALLED IN OME OF THE HOOKS )
( IN AOI HITH A PAUSE TO maIT FOR MEW DATA)
7 ARRAY IMPUT.DATA
( TMESE MAKE THE ARRAY ELEmENTS FUNCTION LIKE VARIABLES )
: AIRSPEED O IMPUT.DATA ;
: ANGLE.OF.ATTACK 1 INPUT.OATA :
: VERTICAL.VELOCITY 2 INPUT.DATA :
: HEADIMG.ERROR 3 INPUT.DATA :
: ROLL.AMGLE 4 INPUT.DATA ;
: PITCH.ANGLE 5 INPUT.DATA :
: ALTITUDE 6 INPUT.DATA ;
: CHECKSUM 7 INPUT.DATA :
( COMPATIBILITY DEFIMITIONS )
: CEMTER.balamce 50 balance coto.SETTIMG ;
: COTO.BALANCE BALANCE GOTO.SETTIMG ; ( n - )

```
```

ACIACOM
Wechesday, Jemuery 3, 1990 1:22 pm
( DRIVER FOR MMI-5002 DUAL ACIA BOARO )
: TASK;
HEX
AOOO CONSTANT 6552.8ASE
6552.gASE 4 + CONSTAMT 6552.INT.REG.2
6552.BASE 5 + CONSTANT 6552.CTRL.2 (VRITE)
6552.BASE 5 + CONSTANT 6552.STATUS.2 ( REAO )
6552.8ASE 7 + COWSTAMT 6552.DATA.2
: IMIT.ACIA.2
OC 6552.CTRL.2 cI (9600 baud)
E1 6552.CTRL.2 CI (8 bits odd parity not enabled RTS (0)
7F 6552.INT.REG.2 (turn off interrupts)
;
: RECEIVE.2 (-n)
BEGIM
6552.INT.REG.2 CO 1 AMD
UWTIL
6552.DATA.2 Ca
;
: XMIT.2 (n-)
6552.DATA.2 CI
BEGIN
6552.STATUS.2 ca
40 AND
UNTIL
;
dECIMAL
: receive.test
BEGIM
RECEIVE. }
EMIT
TTERMIMAL
UWTIL
;
: Xhit.test
BEgIM
ITERMIMAL
IF KEY
xNIT. }

```
 Page 1
```

        THEN
        AGAIM
    ;
HEX
01 comstant som
02 constant stx
03 COWSTANT ETX
DECIMAL
Variable calculated.checksum
variable timeOUT.count
: get.dATA.frame
O CALCULATED.CHECKSUM !
STX XMIT.2
O TIMEOUT.COMNT :
BEGIM
TIMEOUT.COUNT a
1+ DUP TIMEOUT.COMNT !
50=
IF
STX Xhit. }
O TIMEOUT.COWNT :
THEM
RECEIVE.2
SOH =
UNTIL
14 O DO
RECEIVE.2
DUP
O IMPUT.DATA 1 + C!
CALCULATED.CHECKSUM +1
LOOP
RECEIVE.2 O INPUT.DATA 14 * Cl
RECEIVE.2 O IMPUT.DATA 15 + Cl
BEGIM
RECEIve.2
ETX =
UNTIL
;
: SHOW
CR
800
I imput.data a
8U.R
LOOP

```

Calculated. Checksum a
8 U.R
CR
;

\section*{(DISPlays input.data array)}
: TASK :
: SHOU.DATA. FRAME
CR
80 DO 1 IMPUT.DATA 28 U.R LOOP CALCULATED.CHECKSUM 28 U.R
CR
;
```

: START.AOI ;
( PROTOTYPE AOI SOFTHARE )
DOER N.DO.AOA
DOER M.DO.AIRSPEED
DOER H.DO.ROLL
DOER N.DO.HEADING.ERROR
DOER N.DO.ALTITUDE
DOER N.DO.VERTICAL.VELOCITY
DOER HOOK1
DOER HOOK2
DOER HOOK3
DOER HOOK4
DOER N.STARTUP
: AOI N.STARTUP
BEGIN
HOOK1
HOOK2
H00K3
HOOK4
N.DO.AIRSPEED
M.DO.VERTICAL.VELOCITY
N.DO.ROLL
N.OO.NEADING.ERROR
M.DO.ALTITUDE
M.DO.AOA
O UNTIL :
: CENTER CENTER.BALANCE ;
(0 IS LEFT 7O DEGREE ROLL )
( 2048 IS LEVEL )
(4096 IS RIGHT 70 DEGREE ROLL )
( 29.25 COUNTS/DECREE )
VARIABLE LEFT.ROLL.LIMIT.VALUE
1463 LEFT.ROLL.LIMIT.VALUE !
( 20 DECREES LEFT LIMIT )
VARIABLE LEFT.ROLL.THRESHOLD
1901 LEFT.ROLL.THRESHOLD !
( SET TO 5 DECREES LEFT)
VARIABLE ROLL.ZERO
2048 ROL.2ERO I
VARIABLE RIGHT.ROLL.THRESHOLD

```
```

2196 RIGHT.ROLL.THRESHOLD !
( SET TO S DEGREES RIGHT )
variable right.roll.limit.value
2633 RIGHT.ROLL.LIMIT.VALUE !
( 20 degrees right limit )
: DO.ROLL
ROLL.AMGLE ©
left.roll.limit.value a right.roll.limit.value a
BETMEEN
IF
ROLL.ANGLE a
LEFT.ROLL.THRESHOLD a RIGHT.ROLL.THRESHOLD a
BETVEEN
IF 50 GOTO.bALANCE
ELSE ROLL.AMGLE a ROLL.ZERO D <
IF LEFT.ROLL.THRESHOLD a ROLL.ANGLE Q -
50
left.roll.threshold a left.roll.limit.value a -
*/ 50 suap - goto.balance
ELSE
roll.angle a right.roll.thresmold a -
50
RIGHT.roll.limit.VALUE Q RIGHT.ROLL.THRESHOLD a -
*/ 50 + coto.balanCE
THEN
THEN
ELSE ROLL.ANGLE a
LEFT.ROLL.limit.value a >
if 100 coto.balance
else O coto.balance
THEM
THEN
;
(O is LEFT 180 dEGREE ERROR )
( 180 IS MO MEADIMG.ERROR )
( 359 is RIGHT 179 degree error )
VARIABLE LEFT.HEADIMG.ERROR.LIMIT.VALUE
160 LEFT.HEADIMG.ERROR.LIMIT.VALUE !
VARIABLE LEFT.MEADIMG.ERROR.THRESHOLD
173 LEFT.HENDING.ERROR.THRESHOLD :
VARIABLE MEADIMG.ERROR.ZERO
180 MENDING.ERROR.ZERO I

```
```

VARIABLE RIGHT.HEADIMG.ERROR.THRESHOLD
185 RIGHT.HENDING.ERROR.THRESHOLD I
VARIABLE RIGHT.MEADING.ERROR.LIMIT.VALUE
200 RIGHT.HENDING.ERROR.LIMIT.VALUE I
: DO.HEADIMG.ERROR
HEADING.ERROR a
RIGHT.heading.error.limit.value a Left.hendimg.error.limit.value a
BETUEEM
IF
HEADING.ERROR a
RIGHT.HEADING.ERROR.THRESHOLD Q LEFT.HEADING.ERROR.THRESHOLD a
BETUEEN
If 50 goto.balance
ELSE HEADIMG.ERROR a mEADIMG.ERROR.ZERO a <
If RIGHT.HEADING.ERROR.THRESHOLD a HEADING.ERROR a -
50
RIGHT.HENDIMG.ERROR.THRESHOLD Q RIGHT.HEADING.ERROR.LIMIT.VALUE Q -
*/ 50 swap - goto.balamce
ELSE
HEADING.ERROR a LEFT.hEADING.ERROR.THRESHOLD a -
50
lEFT.hEADIMG.ERROR.LIMIT.VALUE a leFt.heADIMG.ERROR.THRESHOLD a -
*/ 50 + goto.balance
THEN
THEN
ELSE HEADIMG.ERROR a
LEFT.MENDIMG.ERROR.LIMIT.VALUE a >
IF 100 goto.balamce
else O goto.balance
THEM
THEN
;

```
VARIABLE AIRSPEED.CHAMMEL
C AIRSPEED.CMAMWEL I
Variagle alrspeed.chip
O AIRSPEED.CHIP !
VARIABLE AIRSPEED.AMPLITLOE
20 AIRSPEED. AMPLITUDE I
(0 is 0 kMOTS Of AIRSPEED)
```

( 4096 is 330 kMOTS OF AIRSPEED )
( 12.41 COUNTS/KMOT )
variable low.airspeed.limit.value
1116 LON.AIRSPEED.LIMIT.VALUE !
( SET TO 90 knots - STALL FOR the QUEEmaIRE )
variable hi.alrspeed.limit.value
2234 HI.AIRSPEED.LIMIT.VALUE I
( SET TO 180 kNOTS - TYPICAL FOR THE QUEEMAIRE )
VARIABLE AIRSPEED.MAX.FREQ ( Hz )
1000 AlRSPEED.MAX.FREO :
VARIABLE AIRSPEED.MIN.FREQ ( Hz )
40 AIRSPEED.MIN.FREQ !
VARIABLE AIRSPEED.AMPLITUDE.FLAG
falSE AIRSPEED.AMPLITUDE.FLAG !
: SETUP.AIRSPEED
AIRSPEED.CHIP 2 SET.SOUMD.CHIP
AIRSPEED.CHAMMEL a TOME.EMABLE
;
: DO.AIRSPEED
AIRSPEED.CHIP a SET.SOUND.CHIP
AIRSPEED a LOU,AIRSPEED.LIMIT.VALUE a <
If falSE AIRSPEED.aMPLITUDE.flaG I (used by DO.vERTICAL.vELOCITY)
ELSE
AIRSPEED a hi.airspeed.limit.value a >
If
AIRSPEED.MAX.FREO O
ELSE
AIRSPEED a LOU.AIRSPEED.LIMIT.VALUE a - ( delta )
AIRSPEED.MAX.FREO a AIRSPEED.MIN.FREQ a - ( freq. range )
hl.alrspeEd.limit.value a low.airspeEd.limit.value a - (used)
*/ AIRSPEED.mIM.freg a +
THEM
hZ Alrspeed.chammel a TOWE.perico semo
tRUE AIRSPEED.aMPLITLDE.flAG I
- them
;
variasle attack.decay.flag
4 CONSTANT ADF.DECAY
2 COMSTANT ADF.ATTACK
(O IS DIVE 2048 fEET/MIM)

```
```

( 2048 IS LEVEL FLIGHT )
( 40%6 IS CLIMB 2048 FEET/MIN )
( 1 FOOT/MIMUTE/COUMT )
variable vertical.velocity.chanNel
c vertical.velocity.chamuel !
Variable vertical.velocity.chip
O VERTICAL.VELOCITY.CHIP !
VARIABLE CLIMB.2048.FT/MIN.VALUE
4096 CLIMB.2048.FT/MIN.VALUE !
VARIABLE CLImB.THRESHOLD
2348 CLIMB.THRESHOLD !
variable vertical.velocity.zero
2048 VERTICAL.VELOCITY.ZERO I
VARIABLE DIVE.THRESHOLD
1748 DIVE.THRESHOLD !
VARIABLE DIVE.2048.fT/MIN.VALUE
O DIVE.2048.FT/MIH.VALUE !
VARIABLE VERT.VEL.MIM.ENVELOPE.PERICO
12000 VERT.VEL.MIM.ENVELOPE.PERIOD !
: SETUP.VERTICAL.VELOCITY
O attack.decay.flag I
;
: DO.vERTICAL.vELOCITY
VERTICAL.VELOCITY.CHIP a SET.SOMND.CHIP
vERTICAL.vELOCITY a
DIVE.2048.FT/MIM.VALUE a CLIMB.2048.FT/MIN.VALUE a
gETUEEN
IF
VERTICAL.VELOCITY a
DIVE.THRESHOLD a CLIMB.THRESHOLD a
SETMEEM
IF
O attack.decay.flag i
AIRSPEED.AMPLITUDE.FLAG a
If AIRSPEED.NMPLITLDE a
alrspeed.chamNel a amplituoe semo
THEN
ELSE
vertical,velocity a vertical.velocity.zero o >

```
```

            If ( climb )
            CLImb.2048.fT/MIN.VALUE a VERTICAL.VELOCITY a -
                        32767 VERT.VEL.MIN.ENVELOPE.PERICD a 2/ - ( spen )
                        CLIMB.2048.FT/MIM.VALUE a CLIMB.THRESHOLD a - 
                        */ 2*
                        attack.decay.flag a mof.decay = mot
                IF
                    VERTICAL.VELOCITY.CHAMNEL a dECAYS
                            then adF.dECAY ATTACK.DECAY.flAG I
            ELSE ( dive )
                VERTICAL.VELOCITY a dIVE.2048.fT/mIM.value a -
                32767 VERT.VEL.mIM.EMVELOPE.PERIOD a 2/ - ( spen )
                DIVE.THRESHOLD a dIVE.2O48.FT/HIN.VALUE a -
                */ 2*
                attack.decay.flag a adF.attack = wot
                IF
                    VERTICAL.VELOCITY.CHANMEL a attackS
                then adF.attack attack.decay.flag I
            THEN
                VERT.VEL.MIN.ENVELOPE.PERICO a +
                vertical.velocity.chamwel a envelope.perido semo
                VERTICAL.VELOCITY.CHAMNEL O EMVELOPE.OM
        THEN
        ELSE
        VERTICAL.VELOCITY a
        DIVE.2048.FT/MIN.VALUE a <
            IF
                    ATTACK.DECAY.FLAG \ ADF.ATTACK = MOT
                    IF
                    VERTICAL.VELOCITY.CHANMEL O ATTACKS
            then adF.attack attack.decay.flag !
            ELSE
                attack.decay.flag a adf.decay = mot
                    IF
                    VERTICAL.VELOCITY.CHANNEL a DECAYS
                    THEM ADF.DECAY ATTACK.DECAY.FLAG I
            THEM
            VERT.VEL.MIM.ENVELOPE.PERICD a
            VERTICAL.VELOCITY.CHAMNEL a ENVELOPE.PERICO SEND
            VERTICAL.VELOCITY.CHANMEL a ENVELOPE.OM
        TMEM
    ;

```

Variable amgle of .attack. tolerance
200 ANGLE.OF.ATtACK.TOLERANCE I

Varialle amgle.of.attack.channel
- amgle. of .attack. channel I
```

VARIABLE ANGLE.OF.ATTACX.CHIP
O ANGLE.OF.ATTACK.CHIP I
VARIABLE ANGLE.OF.ATTACK.AMPLITLDE (0 through 3i)
95 ANGLE.OF .ATTACK.AMPLITLDE !
VARIABLE AMGLE.OF.ATTACK.NEUTRAL.VALUE
4893 ANGLE.OF .ATTACK.NEUTRAL.VALUE I
VARIABLE ANGLE.OF.atTACK.STALL.VALUE
6800 ANGLE.OF.ATTACK.STALL.VALUE I
: SETUP.AOA
ANGLE.OF.ATTACK.CHIP Q SET.SOUND.CHIP
ANGLE.OF.ATTACK.CHAMNEL O mOISE.ENABLE
;
: DO.MOA
ANGLE.OF.ATTACK.CHIP O SET.SOUMD.CHIP
ANGLE.OF.ATTACK D
ANGLE.OF.ATTACK.NEUTRAL.VALUE O AMGLE.OF.ATTACK.TOLERAMCE O + <
IF ANGLE.OF.ATTACK.CHANNEL O ZERO,AMPLITUDE
ELSE
ANGLE.OF.ATTACK \ ANGLE.OF.ATTACK.STALL.VALUE O >
IF
1
ELSE
ANGLE.OF.ATTACK a AMGLE.OF.ATTACK.MEUTRAL.VALUE a
ANGLE.OF.ATTACK.TOLERANCE O + - ( delta )
255
ANGLE.OF.ATTACK.STALL.VALUE O
AMGLE.OF.atTACK.NEUTRAL.VALUE a AMGLE.OF.ATTACK.TOLERANCE - + -
*/ 255 SMAP -
THEN
MOISE.PERIOD SEND
ANGLE.OF.ATTACK.AMPLITUDE a ANGLE.OF.ATTACK.CHANNEL O AMPLITLDE SEND
THEN:
VARIARES ALTITUDE.CHANMEL
A ALTITLDE.CHMNMEL I
VARIABLE AlTITUDE.ChIP
O ALTITUDE.CHIP I
(0 15 2048 FEET BELON FIP SETTING )
(2048 IS AT FIP SETTING )
(4096 is 2040 FEET ABOVE FIP SETTING)

```
```

variable LOW.altitude.limit.value
1548 LON.ALTITUDE.LIMIT.VALUE I
variable high.altitude.limit.value
2548 high.altITUDE.lImIT.VALUE I
VARIABLE ALTITUDE.ENVELOPE.PERICO
2000 ALTITUDE.ENVELOPE.PERICD !
variable low.alttTUDE.freO ( Hz)
1500 HZ LOW.ALTITUOE.FREO !
variable high.altitude.freo ( hz )
3500 H2 HIGH.ALTITUDE.FREO !
: SETUP.ALTITUDE
altitlode.chanNEL a triangles
altitude.envelope.perico a altituoe.channel a emvelope.perico semo
AlTITUDE.CHANMEL a TOME.EMABLE
;
: DO.ALTITLDE
ALTITUDE.CHIP a SET.sOUND.CHIP
altitwe a
low.altifloe.limit.value a high.alyituoe.limit.value a
getveem
if alititue.chammel a zero.amplitloe
ELSE
altITLDE a LOW.ALTITLDE.LIMIT.VALUE a <
IF LON.ALTITLDE.FREO a ALTITUDE.CHAMNEL a TONE.PERICD SEND
ELSE MIGM.ALTITUDE.fREO a ALTITUDE.CMANMEL a TONE.PERIOD SEMO
THEM
altITLDE.CHANMEL a enveLOPE.ON
PHEM
;

```
```

SYSIMITS
Hechesdoy, January 3, 1990 1:22 pm
( initializatiows for the aol startup routime)
DOER H_ MORE.AOI.STARTUP. 1 DOER W.MORE.AOI.STARTUP. 2 DOER W.MORE.AOI.STARTUP. 3
: SETUP
SETUP.SOWND.CHIPS
AY-8930.0
INIT.SONNO.CHIP
255 AY-8930.PORT.A SEND
255 AY-8930.PORT.B SEND
AY-8930.1
IMIT.somND.CHIP
255 AY-8930.PORT.A SEND
ALL.XICORS.TO.IWITIAL.SETTING
CEMTER
SETUP.AIRSPEED
SETUP.VERTICAL.VELOCITY
SETUP.AOA
SETUP.ALTITUDE
N.MORE.AOT.STARTUP. }
M.MORE.AOI.STARTUP.2
M.MOME.AOI.STARTUP. }
IMIT.ACIA.2
IWIT.SYMCM ( INITIALIZE T1-T2 AUDIO.6522.TIMER FOR SYNCH )
100 MOISE.LEVEL COTO.SETTING
;

```
Page 1
```

( Hooks vectors and dumpe median to screen)
( A to D connection removed)
( SMOU.MEDIANS removed)
mAKE w.STARTUP SETUP ( IN FILE SYSINITS )
MAKE HOOK1 SYWCH
( waltS uwtIl I secomo has elapseo simce timer started )
( the time for the aoi processing is within the secomd)
makE HOOK2 GET.DATA.fRAME
( PUTS A fRMME OF DATA INTO ImPUT.DATA arRAY)
( INPUT.DATA IS DEFIMED IN FILE TRAMSITS)
( GET.DATA. FRAME IS DEFIMED IN ACIACOM)
MAKE HOOK3 SHOU.DATA.FRAME
( SMOWS TME DATA FRNEE FROM IMPUT.ARRAY )
MAKE MOOXG GET.OUT
( get.Out breaks you out of the procran if any key is hit )
( get.OUT dEFIMED IN fILE SETUP)
( MAKE M.DO.AOA DO.AON )
( aon vane is mot yet ow airplame)
MAKE W.DO.AIRSPEED
DO.AiRSPEED
( BOTK DO.ROLL AND DO.MEADIMG.ERROR USE THE HENDPHOME BALAMCE)
( TMEREFORE ONLY ONE CAN BE USED AT A TIME )
MAKE M.DC.ROLL
( MAKE M.DO.MEAOING.ERROR
DO.MEADIMG.ERROR )
make n.00.altituDe
Do.altitioe
MAKE M.DO.VERTICAL.VELOCITY
DO.VERTICAL.VELOCITY

```

This is the commend line used with Morton's LP program to procuce the HP Laserjet listings:

Ip filespec /h60/w132/set:\aoi2\lasercod/l25/r25

The file lasercod contains the setup for the MP Laserjet and consists of:
\027E\027(s16.66H```

[^0]: Wed, Sep 13, 1989 11:24 AM
 Solder Side Scale150\%

[^1]: -Accume the direction of the I/O port has already been determined via a write to the Enable register (R7A).

[^2]:

[^3]: - _020

[^4]: 3. 023
[^5]:

[^6]: ${ }^{*}$ Cycteby evcle number provides e reterance to Table $10-2$ through $10-8$ which derein cycle-by-cycie operation.

[^7]: * Cycte-by-cycle number provides a reference to Tables $10-2$ through $10-8$ whoh detaid cycle-by-cycle operation

[^8]: *The referunce number ie given to provide a croes-reforence to Tabla $10-1$

[^9]: - The reterence number in given so provide a crow-raterence to Table 10.1

[^10]: *The reference number se given to provide a crose-reference to Tatio $10-1$

[^11]: *The reference number is given to provice a crose reference to Teble 10.1

[^12]: (MARE NEW)
 (USER AREA)
 (FOR TASK ${ }^{(2)}$
 0000 C800 100

