
ÄD-A260 436 
INI IIII ill! 

STUDIES IN PENETRATION MECHANICS 

FINAL REPORT 

R. C. BATRA 

October 1992 

U. S. ARMY RESEARCH OFFICE 

CONTRACT NO. DAAL03-89-K-0050 

Tt I 
UNIVERSITY OF MISSOURI - ROLLA 

ROLLA, MO 65401 

APPROVED FOR PUBLIC RELEASE 
DISTRIBUTION UNLIMITED 

DT1C 
PLECTE 
FEB191993! 

i'.'i'-- <:\ 

mnnP£444 
w*****iH||loO 

i'wiv* 



/ 

s 

TfflS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB NO  0704-0168 

f>UO*ie 'tQCrtinS Du'Oe* '0' t*H CCH*CT\On ot n«crr>*t.on <% «tim«rM ?C *«e'»0t* ' "Our O«' rr^oor« <rci(.ain<; ff># tifll« for reviewing rnttfoCTlom l**fr.n.r<q editing aatJ %Ourc« 
g»t**fing »oo «i»int*in,ng. t**djt» n**a«. *nd ccwix#tin<3 *"Q rev#«nr>g •;■? ;;HKTtton Ot iMsrmjtion S*nfl commenti r<^»r<jirg t*i» burden «tir"atf of in-, jtner »oea 0» tnu 
CCHttttOr* 0» irt*onnjtior>. '"duOing m>3g«tiOr>> »Of fMutirc triil Durfl«« t; A*ir»n"3tOi H«*a«ujrte'l S*r»iCW Oir«TOrite for ir«tormjt.on OD*'»tioni <na »«-Dom. IÜ5 ,effpfiür> 
0«*i»HiQbv*»». Sun« '2C4 Arlington   <a ;i2Q;.J302 «no to ("«■ Ort.tf o* V*"*<3*~*»»t ->nd 3uogtr. Pio*r*or» «edurtion P'Cierr (0VC4 0188) tfrnmngio"   DC i05CJ 

T 1.  AGENCY USE ONLY (Leave blink) 2. REPORT DATE 

October 1992 
3. REPORT TYPE   AfcD 0ATE5 COVERED 

4. TITLE AND SUBTITLE 

Studies in Penetration Mechanics 

6. AUTHOR(S) 
Romesh C. Batra 

S.  FUNDING NUMBERS 

DftflLOZ-W-lr-ooSO 

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 

University of Missouri - Rolla 
Rolla, MO 65401-0249 

PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MON'TORING AGENCY NAME(S) AND ADOK.SS(ES) 

U. S. Army Research Office 
P. 0. Box 12211 
Research Triangle Park, NC 27709-2211 

10. SPONSORING   MONITORING 
AGENCY REPORT NUMBER 

PtiLo SiWSJL-eC- 

11. SUPPLEMENTARY NOTES / 

The view, opinions and/or findings contained in this report are those of the 
author(s) and should not be construed as an official Department of the Army 
position, policy, or decision, unless so designated by other documentation. 

12«y DISTRIBUTION/AVAILABILITY STATEMENT | 12b. DISTRIBUTION CODE 

Approved for public release; distribution unlimited. 

13. ABSTRACT (Maximum 200 worts) 

Steady state axisymmetric deformations of a thick thermoviscoplastic target being 
penetrated by a cylindrical penetrator also made of a thermoviscoplastic material have been 
studied. The materials of the target and the penetrator have been assumed to exhibit strain- 
rate hardening and thermal softening. 

In the second set of studies, the penetrator has been taken to be rigid, and the effect 
of friction at the target/penetrator interface, elasticity of the target material, and different 
flow rules used to model the target material have been analyzed. 

An engineering model capable of analyzing deformations of a viscoplastic target 
being penetrated by a rigid cylindrical rod has been developed. Various predictions from 
the model are found to match well with those from the finite element solution of the 
problem. 

14. SUBJECT TERMS 
Steady state penetration, axisymmetric deformations, material 
elasticity, frictional force 

15. NUMBER OF PAGES 

 157  
16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-0" -280-55GO Star-ca-G -err 238   -*ev   2-69) 



._/ 

—i 

TABLE OF CONTENTS 

I. STATEMENT OF THE PROBLEM STUDIED  .. 

II. SUMMARY OF RESULTS  

III. BRIEF REVIEW OF THE COMPLETED WORK 

IV. LIST OF PUBLICATIONS  

V. LIST OF PRESENTATIONS  

VI. DEGREES AWARDED  

VII. PARTICIPATING SCIENTIFIC PERSONNEL ... 

VIII. BIBLIOGRAPHY  

IX. APPENDIX  

1 

3 

4 

12 

13 

14 

14 

15 

17 

Accesion For 

NTIS    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

? 
a 

By   
DLtibutior./ 

Availability Codes 

Dist 

m 
Avail ,ind/or 

Special 

/! 

/ 

DTIC QÜAUTY INSPECTED 3 

,/ 



I.        STATEMENT OF THE PROBLEM STUDIED 
j 

Factors that play a significant role during the penetration of metal targets by 
projectiles include material properties, impact velocity, projectile shape, target support 
position, and relative dimensions of the target and the projectile. Recently, emphasis has 
been placed on kinetic energy penetrators, which for terminal ballistic purposes may be 
considered as long metal rods traveling at high speeds. For impact velocities in the range 
of 2 to 10 km/sec, compressible hydrodynamic flow equations can be used to describe 
adequately the impact and penetration phenomena, because large stresses occurring in 
hypervelocity impact permit one to neglect the rigidity and compressibility of the striking 
bodies. Models, which require the use of the Bernoulli equation or its modification to 
describe this hypervelocity impact, have been proposed by Birkhoff et aLx and Pack and 
Evans.2 At ordnance velocities (0.5 to 2 km/sec), material strength becomes an important 
parameter. Allen and Rogers3 modified the Pack and Evans2 flow model by representing 
the strength as a resistive pressure. This idea was taken further by Alekseevskii4 and Täte,5,6 

who considered separate resistive pressures for the penetrator and the target. These 
resistive pressures are empirically determined quantities, and the predicted results depend 
strongly upon the assumed values of these pressures. As described lucidly by Wright7 in his 
survey article on long rod penetrators, Tate's model is difficult to use for quantitative 
purposes, because the strength parameters depend upon the velocity of impact and the 
particular combination of materials involved. Wright and Frank* recently re-examined 
Tate's theory and derived expressions for the resistive pressures in terms of mass densities, 
yield strengths of the penetrator and target materials, and penetrator speed. They 
postulated the expression 

F.-A^aE, + bPtp
2 + cp.A^P) (1) 

for the force Ft delivered to the target during the nearly steady portion of the penetration 
process. In equation (1) A1 is the cross-sectional area of the cavity, £, is the yield stress for 
the target material in a quasistatic simple tension or compression test, pt equals the mass 
density of the target material, p and p equal, respectively, the axial velocity and axial 
acceleration of the target/penetrator interface, and a, b, and c are nondimensional numbers 
that depend on material parameters. Dehn9 assumed 

F • a + bp + cp2 (2) 

and gave values of a, b, and c in terms of material parameters for the target. Strictly 
speaking, the modified Bernoulli's equation is valid only when the flow fields are steady. 
Batra and Wright10 studied numerically the steady state penetration of a rigid/perfectly 
plastic target by a hemispherical nosed rigid cylindrical rod and found a = 3.9, and b = 
0.0773. Batra11,12 subsequently accounted for strain hardening, strain-rate hardening, and 
thermal softening, as well as different nose shapes, and found that the coefficients varied 
by a factor of at least three, depended strongly on the nose shape, and decreased for a more 
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pointed shape. 

The one-dimensional theories ignore the lateral motion, plastic flow, and the detailed 
dynamic effects. The paper by Backman and Goldsmith13 is an authoritative and superb 
review of the open literature on ballistic penetration, containing 278 reference citations from 
the 1800's to 1977. They describe different physical mechanisms involved in the penetration 
and perforation processes, and also discuss a number of engineering models. Jonas and 
Zukas14 reviewed various analytical methods for the study of kinetic energy projectile-armor 
interaction at ordnance velocities and placed particular emphasis on three-dimensional 
numerical simulation of perforation. Anderson and Bodner15 have recently reviewed 
engineering models for penetration and some of the major advances in hydrocode modeling 
of penetration problems. Three books,16,17,1' published during the past few ye.~-s, include 
extensive discussions of the engineering models, experimental techniques, ana analytical 
modeling of ballistic perforation. 

Manganello and Abbott,19 Wingrove and Wulf,20 and Recht21 observed that the 
penetration resistance of some armor materials is reduced, even though these materials 
exhibit increased static mechanical strength. During penetration of such targets the 
formation of adiabatic shear bands leads to a sharp drop in shear yield stress after the 
formation of a plug, and the penetration resistance of the target is severely reduced. It has 
been suggested22,23 that the material in the shear band melts. Woodward24 has proposed a 
model for adiabatic shear plugging failure of targets. He considered the penetration of 
ductile metal targets impinged upon by a sharp conical projectile and assumed that the 
penetration is achieved by radial expansion of a hole in the plate from zero to the 
penetrator radius. Wingrove's25 experiments show that sharp corners of flat-ended 
projectiles cause deformation in a narrow zone of the target, and hemispherical and ogive 
nose shapes progressively broaden the deformation pattern. Because of the formation of 
the thermally-softened shear zone and the difference in fracture behavior for breakout, flat- 
ended projectiles penetrate materials susceptible to adiabatic shear with greater ease than 
do radiused projectiles. 

Awerbuch,24 Awerbuch and Bodner,27 Ravid and Bodner,28 and Ravid, Bodner, and 
Holcman29 have developed models with which to analyze the normal perforation of metallic 
plates by projectiles. The penetration process is presumed to occur in several 
interconnected stages, with plug formation and ejection being the principal mechanism of 
plate perforation. They presumed a kinematically admissible flow field and found the 
unknown parameters by minimizing the plastic dissipation. They characterized the 
procedure as being "a modification of the upper bound theorem of plasticity to include 
dynamic effects". Even if such a theorem were valid, it is hard to tell how close such a 
bound might be to the solution of the problem. These authors have included the 
dependence of the yield stress upon the strain rate and studied a purely mechanical 
problem. 

Recht30 has adapted the Taylor31 model of mushrooming to the situation in which the 



peiietrator is allowed to move into the target, and both erosion and shear mass loss are 
allowed in the penetrator. The principal difficulty is the specification of velocities for the 
plastic waves in the projectile and the target in order to obtain a unique solution for the rate 
of interface movement. Brooks32 and Brooks and Erickson33 have demonstrated transitions 
in behavior such that, at increased velocities, it is possible to observe a reduced depth of 
penetration over a range of velocities. The transition is related to '.he degree of radial 
constraint offered by the surrounding target material and its ability to restrict projectile 
deformation. The transition velocity depends strongly upon the projectile tip geometry. 
Above the transition velocity, the deformation is described as "jetting" to illustrate a 
similarity in behavior to shaped charge jets. Forrestal et alu have used the cavity expansion 
model to predict the penetration depths for relatively rigid projectiles striking deformable 
semi-infinite targets. 

An important and still totally unresolved problem is that of selecting the most 
appropriate constitutive relation for the penetrator and target materials. The constitutive 
relation employed should adequately model the material response over the range of 
deformations expected to occur in the problem. However, the computed values of the 
deformation fields generally depend strongly upon the constitutive assumptions made. A 
way out of this dilemma is to choose a constitutive relation, solve the problem, check to see 
if the constitutive assumptions are valid over the range of computed deformations, and, if 
necessary, solve the problem again with the modified constitutive relation. In the last few 
years, many new theories35,36,37 of large deformation elasto-plasticity have been proposed. 
We use three such theories to analyze the steady state penetration problem. 

The work conducted under this contract involved the analysis of the steady state 
axisymmetric penetration problems with the objectives of delineating important material and 
kinematic variables that should be included in simpler penetration models, and, if possible, 
propose such a model. 

n.       SUMMARY OF RESULTS 

When both the penetrator and target materials are assumed to be thermally 
softening, but strain and strain-rate hardening, the bottom part of the target/penetrator 
interface was found to be ellipsoidal rather than hemispherical.38 The peak pressures near 
the stagnation point in the penetrator and target regions approached 4.58 a^ and 14 a^ 
respectively, for a^/o* = 3.06. Here a^ and a« equal, respectively, the yield stress in a 
quasistatic simple compression test for the penetrator and target materials. The axial force 
on the penetrator equalled 8.91F, 11.52F, and 14.5F (F = rto^) for stagnation point 
speeds of 450 m/s, 500 m/s, and 550 m/s, respectively. A significant contribution to the 
resisting force is made by the consideration of strain-rate hardening effects. When the 
penetrator and target materials are modeled as rigid/perfectly plastic,39 the resistive pressure 
terms in the modified Bernoulli's equation were found to depend upon the ratio of the mass 
densities of the target and the penetrator, as well as on the penetration speed. 



The consideration of elastic deformations of the target reduced the peak value of the 
hydrostatic pressure acting at the stagnation point, the axial resisting force experienced by 
the rigid penetrator, and the target resistance parameter appearing in the modified Bernoulli 
equation by nearly 28%, 25%, and 25%, respervely, as compared to those for a 
rigid/perfectly plastic target.40 

When the flow rules due to Litonski-Batra, Bodner-Partom, and Brown, Kim, and 
Anand were calibrated against a hypothetical compression test performed at a nominal 
strain-rate of 3300 sec*1 and then used to study the steady state axisymmetric deformations 
of a target, the three constitutive relations gave nearly the same value of the resisting force 
acting on the penetrator, temperature rise of material particles in the vicinity of the 
target/penetrator interface, and other macroscopic measures of deformation, such as the 
effective stress and the effective strain-rate.41 However, when the Litonski-Batra and the 
Bodner-Partom flow rules are calibrated against a simple shear test, the Bodner-Partom 
model gave a very high value of the hydrostatic pressure at the target/penetrator interface 
as compared to that given by the Litonski-Batra flow rule.42 

The transverse isotropy of the target material affected significantly its deformations 
and the resisting force it exerts on the penetrator.43 

m.      BRIEF REVIEW OF THE COMPLETED WORK 

We3S have studied axisymmetric deformations of a thermoviscoplastic rod penetrating 
a thick thermoviscoplastic target when their deformations appear steady to an observer 
situated at the stagnation point and moving with it. Both the rod and the target material 
are assumed to exhibit strain-rate hardening and thermal softening, and the contact between 
them at the common interface is smooth. We have plotted in Fig. 1 the shapes of the free 
surface of the deformed penetrator, and the target/penetrator interface for three values of 
the speed of the stagnation point. In order to elucidate the dependence of the location of 
the stagnation point upon the speeds of penetration, the ordinate is measured from the 
bottom surface of the target region studied. The stagnation point moves away from the free 
surface of the deformed penetrator as the speed of penetration is increased. Also, with the 
increase in the speed of peüetration, the distance between the free surface of the 
undeformed penetrator and the deformed penetrator particles moving rearward increases. 
The shape of the target/penetrator interface also depends strongly upon the penetration 
speed. The peak values of the temperature rise 0, second invariant I of the strain-rate 
tensor D and the hydrostatic pressure p, and where they occur are influenced by the values 

of the strain-rate hardening exponents nip and m» for the penetrator and target, respectively. 
This is evidenced by the information provided in Table 1. 

One of the challenging problems in penetration mechanics is to find constitutive 
relations that are valid over a wide range of strains, strain rates, and temperatures likely to 



Table 1. Effect of nip and m, on $„ !„„, and p^, in the penetrator target regions" 

Values e^ (°C) u P»u (V.2) 
of m Penetrator Target Penetrator Target Penetrator Target 

nip » 0.025 
m, - 0.025 

232.2 
(0.17,0.06) 

189.5 
(0.479,0.05) 

5.25 
(1.135,1.01) 

4.185 
(1.096,0.175) 

0.8975 
(0.0,0.0) 

1.017 
(0.148,-0.012) 

m„ » 0.005 
in, ■ 0.025 

199.8 
(0.165,0.04) 

167.1 
(0.464,0.04) 

4.26 
(1.193,0.96) 

4.108 
(1.074,0.164) 

0.9409 
(0.0,0.0) 

1.005 
(0.149,-0.004) 

m, ■ 0.0 
m, ■ 0.025 

193.07 
(0.165,0.03) 

164.15 
(0.525,0.04) 

4.11 
(0.052,0.02) 

4.174 
(1.26,0.26) 

0.9562 
(0.0,0.0) 

0.9951 
(0.113,0.002) 

nip ■ 0.025 
m, ■ 0.005 

229.9 
(0.15,-0.02) 

183.2 
(0.48,0.02) 

5.27 
(1.134,1.02) 

4.595 
(1.86,0.77) 

0.8957 
(0.0,0.0) 

0.978 
(0.15,-0.014) 

nip =» 0.025 
m» ■ 0.0 

230.7 
(0.165,0.034) 

186.03 
(0.526,0.04) 

4.2815 
(0.052,0.02) 

4.128 
(1.26,0.27) 

0.9509 
(0.0,0.0) 

0.9454 
(0.1129,0.001) 

"The coordinates of points where 0,1, and p assume maximum values are parenthetically noted. 
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Fto. 1 (b). Shapes of the target/penetrator interface 
for three different speeds of penetration. 

occur in the deforming penetrator and target regions. Compounding the difficulty is the 
observation that different deformation mechanisms are active at various temperatures and 
strain rates, and the mechanisms themselves are temperature and tim; dependent. Another 
complicating factor is the microstructural changes such as the generation/annihilation of 
dislocations, development of texture, dynamic recovery and recrystallization, nucleation and 
growth of microcracks and voids, and the development of shear bands, that occur during the 
plastic deformation of a material. One way to account for these microstructural changes at 
a macroscopic level is to use the theory of internal variables proposed by Coleman and 
Gurtin.44 We41 used three such constitutive relations, namely, the Litonski-Batra (LB) flow 
rule, the Bodner-Partom (BP) flow rule, and the Brown-Kim-Anand (BKA) flow rule. The 
material parameters in these constitutive relations were evaluated by solving numerically an 



initial-boundary-value problem corresponding to plane strain compression of a block made 
of the target material and deformed at an average strain-rate of 3300 s"' and ensuring that 
the effective stress vs. the logarithmic strain curves for the three constitutive relations are 
nearly identical. With these values of material parameters, the analysis of steady state 
axisymmetric deformations of the target by a hemispherical nosed rigid penetrator gave the 
following results. 

Figure 2 depicts the distribution of the normal stress, temperature rise 6, and the 

Temperature rise  mm„* 

——— Litonckt-Batra 
— Bodner-Partom 
— — —  Brown, Kim and Anand 

J*» Normal stress 

0      10     20     30     40     50      60      70     80      90 
Angular position. 8 

FIG. 2 Comparison of the variation of normal stress, strain rate measure, tantential speed and 
the temperature rise at target particles abutting the penetraior nose surface for the three constitutive 

relations. 

tangential speed on the penetrator nose surface and the second invariant I of the deviatoric 
strain-rate tensor at the centroids of elements abutting the nose surface for or = 10, which 
corresponds to the penetrator speed of 718 m/s. Here a ■ pVoV^o P being the mass density 
of the target, a0 its yield stress in a quasistatic simple compression test, and v0 the speed of 
the penetrator. The quantities plotted are nondimensional, obtained by scaling stresses by 
(TQ, speed by Vo, time by r0/v0 where r0 is the radius of the penetrator, and the temperature 
rise by 108.9° C. It is clear that the three models give essentially identical results; the 
maximum difference between the temperature rise computed at any point on the surface 
with the three flow rules is nearly 30° C for an average temperature rise of 400° C. The 



nondimensional axial resisting force experienced by the penetrator was found to be 8.19, 
8.84, and 8.26 for the LB, BP, and BKA flow rules, respectively. The values of (1,0) at the 
stagnation point for the LB, BP, and BKA flow rules equalled (1.52, 3.53), (1.52, 3.80), and 
(1.53, 3.67), respectively. 

An integration of the balance of linear momentum along the central streamline (r 
■ 0) gives 

\do_ 
lav2 +p - s„ - 2f-^dz » -a„(0). 
2 a       {   dt " (1) 

Figure 3 shows the contribution from the various terms for a * 10. The three models give 

Litonsk^-Batra Bodner-Partom Brown, Kim and Anand 

1        2       3       4        5     0 12       3       4       5   0 

Distant« from stagnation point 

FiO. 3  Contribution of vanous terms in the nondimeusionauzed Bernoulli equation along the 
central stream line. 

nearly the same value of the kinetic energy Vzav2, and the deviatoric stress su. The value 
of the hydrostatic pressure p for the BP model is uniformly more than that for the other two 
models, and each model predicts a substantial contribution from transverse gradients of the 
shear stress. The value of the strength parameter for the target in Tate's equation was 
found to be 7.71, 8.46, and 7.89 for the LB, BP, and BKA models, respectively. 

We40 studied the effect of the elasticity of the target material and the penetrator nose 
shape by modeling the target material as elastic/perfectiy plastic. The dependence of the 
nondimensional peak pressure p^ that occurs at the stagnation point, and of the 
nondimensional axial resisting force F experienced by the penetrator upon a is exhibited in 
Fig. 4. Here ra and r0 equal, respectively, the semimajor and semiminor axes of the 
ellipsoidal nose of the rigid cylindrical penetrator. For each nose shape, the consideration 
of elastic effects lowers the value of p,^ by about 2, and of F fyy 1.8. Whereas p^ depends 
upon a rather strongly, the dependence of F upon a is quite weak, assuming that material 
points for which 
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Ftg. < Dependence of the peak pressure at the stagnation point and the axial resisting force experienced by 
the pcnctraior upon a 
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are deforming plastically and those for which the stress state lies inside the surface are 
deforming elastically, one can determine the elastic/plastic boundary. Results plotted in Fig. 
5 suggest that less of the material ahead of the penetrator nose tip and to the sides of the 

Fig. 5 . Elastic-plastic    boundary    for 
three different nose shapes, and % = 10 



rigid rod is deformed plastically for the ellipsoidal nosed penetrator as compared to the 
other two nose shapes considered. The distance of the elastic-plastic boundary from the 
penetrator nose tip is found to be 5.4, 6.8, and 7.7, respectively, according as the penetrator 
nose shape is ellipsoidal, hemispherical, or blunt. Täte45 presumed that a material particle 
was deforming either elastically or plastically, and based on his solenoid flow model, he 
found the axial distance of the elastic-plastic boundary from the stagnation point to be 6.71, 
which compares well with our computed values. 

We4* have used the velocity field computed in the preceding problem to develop an 
engineering model of target penetration. The deforming target region is divided into two 
parts, one ahead of the penetrator nose center and the other behind it. In each, the 
presumed velocity field satisfies the condition of isochoric deformations, essential boundary 
conditions, and the velocity compatibility condition across the interface between the two 
regions. The unknown parameters in the velocity field are determined by minimizing the 
error in the satisfaction of the balance of linear momentum. As shown in Fig. 6, the 

13 
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Fig. S    Distribution of the normal traction on the penetrator nose.  One term solution;  
three terms solution; FEM solution. 

computed normal traction on the penetrator nose surface matches well with that obtained 
from the finite element solution near the penetrator nose center, but the two differ at points 
near the nose periphery, probably because of the differences in the values of the hydrostatic 
pressure. However, the dependence of the axial resisting force F upon a in the two cases, 
viz., 

F = 8.575 + 0.197a,      FEM solution, 

F = 8.717 + 0.243a,      engineering model, 

is virtually identical for 0 £ a £ 10. 

(3.1) 

(3.2) 

10 



By using an analogy between the flow of a fluid around a cylinder and that of the 
target material around the penetrator nose, we evaluated fi and ß in the following expression 
(4) for the frictional force ft between the target and the penetrator.47 

f . -nv'f v/v,       v2 V2   4  V2 vf       vz, S * 2B» (4) 

where n is a unit outward normal and a is the Cauchy stress tensor. Figure 7 depicts the 

Fig. 7. Distribution of the normal traction on the hemispherical nose of the penetrator 
for different values of the coefficient n of friction. 

distribution of the normal traction fn on the hemispherical nose surface of the penetrator 
for a * 6.5, ß - 1.5, and n * 0.0, 0.1, 0.2, 0.3, and 0.4. We note that the hydrostatic 
pressure, which seems to be less sensitive to the value of n, makes a significant contribution 
to f„. Thus, the value and the distribution of the normal tractions on the penetrator nose 
surface change very little when p is increased from 0.0 to 0.4. Whatever little change does 
occur, the general trend is that f^ increases near the nose tip and decreases near the nose 
periphery with an increase in the value of ft. 

11 
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IX.     APPENDIX 

A copy of each of the following papers is included in the appendix. 

1. Steady state axisymmetric deformations of a thermoviscoplastic rod penetrating a 
thick thermoviscoplastic target 

2. A steady state axisymmetric penetration problem for rigid/perfectly plastic materials 

3. Steady state penetration of transversely isotropic rigid/perfectly plastic targets 

4. Steady state penetration of elastic perfectly plastic targets 

5. Steady state axisymmetric deformations of a thick elastic-thermoviscoplastic target 

6. Effect of viscoplastic flow rules on steady state penetration of thermoviscoplastic 
targets 

7. Effect of constitutive models on steady state axisymmetric deformations of 
thermoelastic-viscoplastic targets 

8. Histories of stress, strain-rate, temperature, and spin in a steady state deformation 
of a thermoviscoplastic rod striking a hemispherical rigid cavity 

9. An approximate analysis of steady state axisymmetric deformations of viscoplastic 
targets 
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STEADY STATE AXISYMMETRIC DEFORMATIONS 
OF A THERMOVISCOPLASTIC ROD PENETRATING 

A THICK THERMOVISCOPLASTIC TARGET 
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Department of Mechanical and Aerospace Engineering and Eneineerina Mechanics. 
University of Missoun-Rolla, Rolla, MO 65401-0249. U.S.A. 
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Summary—The coupled nonlinear partial differential equations governing the thcrmomechanical 
and axisymmetric deformations of a cylindrical rod penetrating into a thick target, also made of a 
rigid viscoplastic material, are solved by the finite element method. It is assumed that the 
deformations of the target and the penttrator as seen by an observer sitrated at the stagnation 
point and moving with it are independent of time. Both the rod and the target material are assumed 
to exhibit strain-rate hardening and thermal softening, and the contact between the penetrator 
and the target at the common interface is smooth. An effort has been made to assess the effect of 
rhe strain-rate hardening and thermal softening on the deformations of the target and the penetrator. 
It is found that the axial resisting force experienced by the penetrator. ;he shape and location o( 
the free surface of the deformed penetrator and the target penetrator interlace, and normal 
tractions on this common interface depend rather strongly upon the speed of the stagnation point 
and hence on the speed of the striking rod. Results presented graphically include the distribution 
of the velocity field, the temperature change, the hydrostatic pressure and the second-invariant of 
the strain-rate tensor. 

In an attempt to help establish desirable testing regimes for determining constitutive relations 
appropriate for penetration problems, we also find histories of the effective stress, hydrostatic 
pressure, temperature and the second invariant of the strain-rate tensor experienced by four 
penetrator and two target particles. 

/ 

NOTATION 

/ 

f velocity of a rod particle 
p mass density 
1 heat flux 
u specific internal energy 
D strain-rate tensor 
9 Cauchy stress tensor 

T deviatoric stress tensor 
P hydrostatic pressure 
9 temperature change 
k thermal conductivity 
c specific heat 

«0 yield stress in simple compression 
b.m strain-rate sensitivity parameters 

y thermal softening coefficient 
* a unit tangent vector 
n a unit normal vector 
h heat transfer coefficient 

grad gradient operator 
div divergence operator 
/J second invariant of D 

«.* non-dimensional numbers 

I. INTRODUCTION 

When a fast moving long rod strikes a very thick target, the deformations of the rod and 
the target appear to be time independent to an observer situated at the stagnation point 
and moving with it after the rod has penetrated into the target through a distance equal 
to a few rod diameters. This steady state lasts until the stagnation point reaches close to 
the other end of the target. Thus, for thick targets, the duration of the steady state portion 
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of the penetration process is a significant part oi the total time taken to perforate through 
the target. For very high striking speeds, the deformations of the target and the penetrator 
can be assumed to be governed by purely hydrodynamic incompressible flow processes. 
In this approach, the only significant material property is the ratio of mass densities of 
the target and the penetrator. and the same penetration depth is predicted for all impact 
velocities. Täte [1.2] and Alekseevskii [3] modified this model by incorporating the effects 
of the material strengths of the projectile and the target and representing them as some 
multiple of the uniaxial yield stress of the material, but the multiplying factor was not 
specified. These and other limitations of the one-dimensional models have been discussed 
by Wright [4], and more recently by Wright and Frank [5]. Pidsley [6], who studied the 
penetration of a copper rod into an aluminum target, found that during the steady state 
portion of the penetration process these strength parameters equalled 2.4l<rH)t and 
-(0.7)(<7H)P for the target and the penetrator. respectively. Here vH is the Hugoniot 
elastic limit. He explained that the negative value for the rod strength is due to the yield 
strength of the rod being lower than that of the target. 

The reader is referred to the paper by Backman and Goldsmith [7] for a review of 
the open literature on ballistic penetration until 1977. It describes various physical 
mechanisms involved in the penetration and perforation processes, and also discusses a 
number of engineering models. Other recent review articles and books include those by 
Wright and Frank [5], Anderson and Bodner [8], Zukas et at. [9], Blazynski [10], and 
Macauley [11]. Ravid and Bodner [12] have proposed a five-stage penetration model 
applicable to two-dimensional analysis of rigid projectiles penetrating deformable targets. 
Various unknowns in the assumed kinematically admissible velocity field are found 
by using an upper bound theorem of plasticity modified to include dynamic effects. The 
penetration model proposed by Ravid et ai. [13] also accounts for the shock effects and 
plastic deformation in the component bodies. Forrestal et ai. [14] have recently applied 
the cavity expansion mode! to study the penetration of rigid projectiles into geological 
materials. 

With the main objective of providing some guidelines for selecting and improving upon 
the previously used kinematically admissible fields in engineering models of penetration, 
Batra and Wright [15] initiated the study of an idealized steady state penetration problem. 
It simulates the penetration of a very long (semi-infinite) rod into an infinite target when 
all of the flow fields appear steady to an observer situated on the penetrator nose tip and 
moving with it and the target/penetrator interface is smooth. They studied the problem of 
a deformable target, assumed to be made of a rigid/perfectly plastic material and a rigid 
cylindrical penetrator with a hemispherical nose. Subsequently, Batra [16,17] found that 
the nose shape affected significantly the resisting force experienced by the penetrator and 
also studied the case when the target material exhibited work-hardening, strain-rate 
hardening and thermal softening effects. Batra and Lin [18-20], and Lin and Batra [21] 
studied the steady state axisymmetric deformations of a semi-infinite cylindrical penetrator 
striking a known semi-infinite cavity in an infinite and rigid target, and also computed the 
histories of the effective stress, temperature, second invariant of the strain-rate tensor and 
the plastic spin. Gobinath and Batra [22] have recently analysed the steady state 
axisymmetric penetration problem in which both the target and the penetrator are made 
of a rigid perfectly plastic material. Since most penetrator and target materials exhibit 
strain-rate hardening and thermal softening effects, we extend the previous work [22] to 
incorporate these effects. The problem is very challenging because of the presence in it of 
two a priori unknown surfaces, namely, the target penetrator interface and the free surface 
of the penetrator material flowing backwards. The shapes and locations of these surfaces 
are strongly influenced by the value of the strain-rate hardening exponent for the penetrator 
and a little by the value of the strain-rate hardening exponent for the target. The speed 
of penetration also affects noticeably the shapes of the target penetrator interface. 

We note that there is no fracture or failure criterion incorporated in our work. Thus 
both the penetrator and target materials are presumed to undergo unlimited plastic 
deformations. It is hoped that the details of the kinematic und stress fields provided herein 
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*ill help propose better estimates o( the kinematic fields in engineering models oi steady 
state penetration process. Also the histories of the stress, temperature, the second invariant 
of the strain-rate tensor and the plastic spin for four penetrator and two target particles 
given herein should help establish desirable testing regimes for practical problems, and 
help assess the efficacy of different plasticity theories for the penetration problem. 

2. FORMULATION OF THE  PROBLEM 

We use a cylindrical coordinate system, with origin at the stagnation point and moving 
with it at a uniform speed r, and positive r-axis pointing towards the undeformed portion 
of the rod. to describe the deformations of the target and the penetrator. The equations 
governing their deformations are 

divv = 0, 11) 

div<y = f>r, (2.1) 

«^r-grad)r. (2.2) 

-div? + maD) ssp(?.grad)L\ (3i 

2Z> = grad * + (grad v)T. (4) 

These equations are written in the Eulerian description of motion. Equation 11 > expresses 
the balance of mass, Eqn (2) the balance of linear momentum, and Eqn (3) the balance 
of internal energy. Here * is the velocity of a material particle, o the Cauchy stress at the 
present location of a material particle, p the mass density, q the heat flux, and V the 
specific internal energy. A dot superimposed over a character implies its material time 
derivative, and the operators grad and div signify the gradient and the divergence operators 
defined in the present configuration. In writing Eqn (!) we have assumed that the 
deformations of the target and the penetrator are isochoric. and in Eqn (3) all of the plastic 
working rather than 90-95% of it as asserted by Farren and Taylo- [23] is assumed to 
be converted into heat. 

For constitutive relations, which are characteristic of the target and the penetrator 
materials, we take 

v3/ 

O = 0   if tr<j)2<i<rS(l-ytf>2. (6) 

5 a* •*-/>!. (?) 

?=*-it grad 0, (8) 

U~c0. (9) 

2/:=Mr(02). <t0) 

In these equations, p is the hydrostatic pressure not determined by the deformation history 
of a material particle because we have assumed the target and penetrator materials to be 
incompressible. I is the unit tensor. <T0 the yield stress in a quasistatic simple tension or 
compression test, l1 the second invariant of the strain-rate tensor, b and m characterize 
the strain-rate hardening of the material, y describes its thermal softening. 0 equals, the 
absolute temperature of a material particle, s is the deviatoric stress tensor, k the thermal 
conductivity and c the specific heat. Both k and c are assumed to be independent o( the 
temperaturerFrom Eqns (5) and (7), we get 

(4trs2)12« —(1 */>/Hl --0). (It) 

^ThTs can be viewed as a generalized von Mises yield criterion when the flow stress, given 
by fhe-rjght-hand side of Eqn (11 j. at a material particle depends upon its strain-rate and 
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the temperature change. That the flow stress decreases linearly with the temperature rise 
has been observed by Bell [24], and Lindholm and Johnson [25]. The range of temperatures 
studied by these investigators is not as large as that likely to occur here. We add that Täte 
[26] also used a linear thermal softening law in his study of the penetration probiem. 

Rewriting Eqn (5) as 

<*=» -t~p + 2\6-t)0)K]\ + --^-(1 +M)m(l --;6)D. 112) 

where 2 and K equal, respectively, the coefficient of thermal expansion and the bulk 
modulus of the material, we see that Eqn (5) embodies implicitly thermal stresses caused 
by the non-uniform temperature rise at dilTerent material particles. In Eqn (12), p is not 
determined by the deformation history of a material particle and the addition of a 
determinate term to it gives rise to p in Eqn (5) which is taken to be an independent 
variable throughout this work. 

Substitution for <r. q. and I" from Eqns (5). (8) and (9) into Eqns (2.2) and (3) gives the 
following field equations: 

-gradp + <70div[(l tWHl-^)fl\ 3/] = p<*grad)r (13) 

k div(grad $) + 2<r0/( 1 + bl)m{ 1 - y0),'v 3 ~ pc(vgrad) B. (14) 

The nonlinear coupled Eqns (13) and (14), and Eqn (I) subject to the appropriate boundary 
conditions are to be solved for the fields of the velocity *. pressure p and temperature ti 
in the deforming target and penetrator regions. Even though governing equations for the 
target and penetrator regions are the same, the values of material parameters <r0. b. m, ;. 
p. k and c need not have the same values for the target and penetrator materials. In order 
to solve Eqns (1), (13) and (14). we need to know the domains over which they apply. 
This in turn requires a knowledge of the shapes and locations of the target penetrator 
interface I~ and the free surface Tf of the deformed penetrator. Both these surfaces are 
unknown a priori. For the time being, we presume that I" and Tf are known. Subsequently, 
we discuss how to find these surfaces. 

It is convenient to introduce non-dimensional variables, indicated below by a super- 
imposed bar, as follows: 

<?=»<r/pr,2
t      p**ppv;*       3£»pr;,<70,       O0»v;c. 

jf»r/rv       r = rr0,       z ■: r0,       tT=»#0o. 

ß =*k,ipci\r0),       S~bi\,r0,        ft»hipct\. (15) 1 / vQ, 

We note that t', is the same for the target and the penetrator, but the values of other 
variables need not be the same. When non-dimensionahzing a quantity for the target 
(penetrator), the value of the material parameter for the target (penetrator) is used. An 
advantage of the non-dimensionalization (15) is that the governing equations for the 
penetrator and the target look alike. In Eqn (15), r0 is the radius of the undelbrmed 
cylindrical penetrator, the pair ir.:) denotes the cylindrical coordinates of a point. t),y is 
the referrnee temperature, h is the heat transfer coefficient between the penetrator material 
and air. and the non-dimensional number t gives the magnitude of the inertia forces relative 
to the flow stress of the material. Rewriting Eqns (1), (13) and (14) in terms of 
non-dimensional variables, dropping the superimposed bars, and denoting the gradient 
and divergence operators in non-dimensional coordinates by grad and div. we arrive at 
the following set of equations: 

div*»0. (16) 

-grad/>-div[(l +bl)m{\ -;0)0-'v 3/2] - (rgrad)v. (17) 

0div(grad0) + 2/(l +Mf(l -ytf),(v 3a)» (»-grad )0. (IS) 
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For the boundary conditions, we take 

on r*. II9.I) 

(19.2) 

(19.5) 

(19.4) 

(19.5) 

(19.6) 

(19.7) 

(19.8) 

where n is a unit outward normal to the surface, t is a unit tangent to the surface. t\ is 
the air temperature and subscripts p and t signify the quantity for the penetrator and the 
target, respectively. We note that boundary conditions (19.3) and (19.7) which signify that 
Tj and F*f are streamlines are not required for a complete specification of the problem 
provided that these surfaces are known. Since these surfaces are not known, we presume 
their shapes, solve the problem without using (19.2) and (19.7). and then use these conditions 
to ensure that the presumed F", and ff are correct. The procedure for adjusting f, and I~f 

if (19.2) and (19.7) are not satisfied within the prescribed tolerance is described in Section 4. 
At target particles far away from T. we take 

jv + <?|-0       as lr:+r:)1 :- x. (20.1) 

n • erxn m -Z n Gpn on r, 

v/i = 0 on r, 

0p«<0o,0op>0« on rt 

(*S.-("s). on r( 

<r/! = 0 on rf 

vn = Q on rf 

en 
on rf 

an\ — 0 as:-x. 

as r -» x. 
\c6\ n 1—1 -0 
oil 

(20.2) 

(20.3) 

That is, target particles at a large distance from T, appear to be moving at a uniform speed 
to an observer situated at the stagnation point. Equations (20.2) and (20.3) state that the 
fields of surface tractions and heat flux vanish at target particles behind the stagnation 
point and far from it. On the penetrator cross-section far from the stagnation point, 

121.I) 

(21.2) 

|r + (rp- l)*-0 as : — x, 

i-d'-O as r -* x. 

and on the deformed penetrator material at the outlet. 

\an\ - 0 

\cB\ 
-0 

en 

as ir: * :-)[ : -* x. 

::)- as \r~ —. x. 

(21.3) 

(21.4) 

Equations (21.1) and (21.2) state that the end o( the penetrator far from the stagnation 
point is moving in the negative :-direction with a uniform speed of lvp - 11 relative to the 
observer at the stagnation point and IN at a uniform temperature t)t. Equations (21.3) and 
(21.4) state that the surface of the deformed penetrator near the outlet is traction free and 
there is no heat exchange between them and the material on the other side of the outlf. 
surface. Ideally, one should specify the rate of decay of quantities in Eqns (20.1) through 
(20.3). and (21.1) through (21.4). Howe\er. at this time, there is little hope of proving any 
existence or uniqueness theorem for the stated problem and we, therefore, gloss over the 
issue. Herein we assume that the problem defined by Eqns (!6H21) has a solution and 
seek an approximation to that solution by the finite element method. 
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3   FINITE  ELEMENT  FORMULATION OF THE  PROBLEM 

Unless one uses infinite elements, a numerical solution of the problem necessitates that 
we consider a finite region and know the shapes of the free surface l~f and the 
target penetrator interface r*. We presume I" and Vf and study deformations of the 
penetrator over the region ABGHIJA shown in Fig. 1 and of the target on the region 
BCDEFGB also shown in Fig. I. The figure depicts a finite element discretization of the 
domain; the mesh is very fine in the darker regions. We note that the finite domains for 
the penetrator and the target considered here are larger than the penetrator region studied 
by Batra and Lin [18-19] and the target regions examined by Batra [15-17]. 

The boundary conditions (19.1), (19.3) and (19.4) apply on the target, penetrator interface 
BG and (19.6) and (19.8) on the penetrator free surface JIH. We recall that conditions 
(19.2) and (19.7) are used to verify the accuracy of the assumed surfaces r; and Tf. On the 
axis of symmetry ABC, we impose 

cO 
<rri»0.       rr*0,       — = 0. (22) 

IT 

The boundary conditions (20) and (21) at the far surface of the penetrator and the target 
are replaced by the following conditions on the bounding surfaces of the finite region being 
analvsed: 

t.       CfSS0.       $**9, 

-0,       t-,-0,       ?-0 

on the bounding surfaces CD and DEF, (23.1) 

on FG. (23.2) 

FIG. 1. The finite region studied and its discretization. 
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, r,.        rr =» 0.        — m 0 
cz 

on the outlet surface GH. 

on the surface AJ. (23.4) 

The value of r€ is computed so as to satisfy the balance of mass. 
Referring the reader to one of the books [27-29] for details of deriving a weak formulation 

of the problem, we simply note that a weak formulation of the problem defined on the 
target region Rx by Eqns (16H18). and boundary conditions (19.1). (22). (23.!) and (23.2) 
is that equations 

/.(div rldKatO (24.1) 

ßx      (gradtf-grad^)dr + 

where 

p(d\\<t>)dV-      ^.(/. 0. *)[/>: (grad0)-Hgrad <£)T]dr 
J *t J A, 

f f [(^grad)v]-^dr-      (jicrjtH^fi)dS 
J«, Jr, 

[(vgrad)%dK= I    ,/&(/. 0,a)dK-      /ty-dS  (24.3 
JA, Jr,     f« 

(24.2) 

/i,(/.Ö.i)«|l+W)B(l--;Ö),(2v
/3h). 

3 a. 

(25.1) 

(25.2) ß,(/,ö,x)»2/llrWHl-7Ö)/v 

hold for arbitrary smooth functions /.. <f> and >/ defined on Rt such that <^ * 0 on CD and 
DEF, 0r=sO on BC and FG, and >/ = 0 on CD and DEF. If at a boundary point a 
component of the trial solution is prescribed, the corresponding component of the test 
function is taken to vanish there. In Eqn (24.2) A:B** ir(ABT) for linear transformations 
A and B. A similar set of equations can be derived for the penetrator region. Note that 
for the penetrator region the second term on the right-hand side of Eqn (24.3) will be 
replaced by 

-I    ßn — dS+ j    hid-OjrjdS. (25.3) 
Jn     <?« Jr, 

Because of the boundary condition (19.4), we use the following iterative scheme to solve 
the problem. We estimate B in Rp and /?,, solve equations (24.1). (24.2) and a similar set 
of equations for the penetrator for the fields of v and p in Rp and K„ (cf. Section 4.1 below >. 
use these values of v in Eqn (24.3) and a similar equation for the penetrator to solve these 
for 0 in /?pu/?t. Thus the boundary conditions (19.4) and (19.5) requiring the continuity 
of the temperature and the normal component of the heat flux across the target penetrator 
interface rj are satisfied. The computed value of 9 is compared with the estimated value and 
the aforementioned process is repeated until the difference between the two at every node 
point is less than the prescribed tolerance. The nonlinear equations (24.1) and (24.2) are 
solved iteratively for p and v. At the Uh iteration, equations 

I 
/.(divv')dKaO. 

pVdiv^dK- j   ^(/i-1.^,a);Di:[grad<> + (grad^)T]Jdl'' 

(26.1) 

[(^-'■grady] <f>dV- 
K, 

ffldS (26.2) 

are solved for v* and p'. The iterative process is stopped when, at each nodal point. 

V-P
1
"

1
'! ^oO'-1;!] (26.3) 
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where >;|: *> 17 + tf, and e is a preassigned small number. Since Eqn (26.2) is linear in /?. 
its values are not included in the convergence criterion (26.3). 

4   COMMENTS ON COMPUTATIONAL ASPECTS OF THE  PROBLEM 

Batra [17] and Batra and Lin [19] used 6-noded triangular elements to analyse steady 
state thermomechanical deformations of the target and the penetrator. respectively, while 
assuming that the other body was rigid. Thus, they approximated the velocity and pressure 
fields by piecewise quadratic and piecewise linear fields over Rp and Rr Each of these fields 
is continuous across inter-element boundaries. The convergence rate of the iterative scheme 
used to solve Eqns (24.1) and (24.2) deteriorated significantly once the value of *p or x, 
exceeded 5. We note that for higher values of xp and zv the convective part of the acceleration 
plays a dominant role and the finite element mesh required to obtain a satisfactory solution 
of Eqns (24) by the Galerkin approximation [29] needs to be very fine. This difficulty was 
overcome by adding an artificial viscosity to the diffusive terms in Eqns (24) and using 
4-noded quadrilateral elements in which the pressure field is taken to be constant and the 
velocity field bilinear. The value of the artificial viscosity v to be added in each element 
depends upon the values of v and ^. defined by Eqn (25.1), at the centroid of the element 
and the dimensions (/ir. hz) of the element. Here hT and hz equal, respectively, the largest 
distances in the r and z directions between the midpoints of the sides of a quadrilateral. 
Following Brooks and Hughes [30]. we take 

v*vr + v2. (27.1) 

vr = /ir(cothvt - I v,)2. (27.2) 

v, - /t2(coth 1*2 - t v,),2, / (27.3) 

v, - v'hjfur. ec, x».     v2 m vihz;mr. e°. ii (27.4) 

when solving Eqn (24.2), and 

vx~v'tht,ß,       y2*v\hjß (27.5) 

when solving Eqn (24.3). In these equations, the superscript c signifies that the quantity 
is evaluated at the centroid of an element. Brooks and Hughes [30] have shown that 
adding artificial viscosity is equivalent to usine the Petrov-Galerkin approximation of Eqn 
(24). 

4.1 Solution algorithm 

Assume the shapes and locations of the target/penetrator interface I" and the free surface 
Tf of the deformed penetrator. Estimate the temperature field 0 over the regions Rp and 
Ä, occupied by the penetrator and the target. Solve Eqns (24.1) and (24.2) for (v, p) on 
Rt and a similar set of equations on Rp with the boundary condition (19.3). Thus fn = 0 
on I" and the contribution from the surface integral term on the right-hand side of Eqn 
(24.2) vanishes. Equations (19.2) and 119.7) are used to ascertain the accuracy of I~ and 
Tf. Emphasis is placed on finding l~f first, and once I~f has been determined, rj is found 
always ensuring that Ff is still reasonably correct and if necessary, Tf is adjusted. During 
the adjustment of r* nodes on it are moved in a direction perpendicular to it by an amount 
proportional to (/J-/r) where fp and fj equal, respectively, the normal force on the 
penetrator and target particles abutting f,. A check is made to ensure that the elements 
adjoining I" are not severely distorted alter the nodes on Tt have been shifted. The algorithm 
for modifying Tf, if necessary, is given below in Section 4.2. 

After the mechanical problem has been satisfactorily solved, the computed velocity field 
is used to solve the thermal problem for the combined domain KpuKt. Thus the boundary 
conditions (19.4) and (19.5) are trivially satisfied. The second term in Eqn (25.3) results 
in the satisfaction of the boundary condition (19.8). The computed values of 6 are compared 
with the estimated values and. if necessary, the solution process is repeated until the 
prespecified convergence criteria have been met. 
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4.2 Adjustment of the free surface 

The algorithm used to adjust the free surface Tf is the same as that given by Gobinath 
and Batra [22] and is included herein for completeness. Referring to Fig. 2. let point Q 
on Tf be downstream from P on Tr. Assume that the computed velocity rp is tangent to 
Tr at P and F0 does not satisfy *0 n ■ 0. In order to find the new location of point Q, we 
draw a circular arc that passes through points P and Q and is tangent to vp at P. Let C 
be the center of this circular arc. Point Q is moved along CQ to Q* such that P and Q* 
lie on a circular arc with vp and v0 being tangent to the circle at P and Q* Points 
downstream from Q are moved to an intermediate location before this rule is applied to 
them. Let R be a point neighboring Q and downstream from it. R is moved to Rl such 
that the vector R^* equals the vector RQ. The final location R* of Ri is then found in 
the same way as Q* was determined and by assuming that the velocity of Rt is vR. Since 
point J is on I~f, the algorithm can be applied starting from J. 

4.3 Mesh regeneration 

After the position of Tf has been determined, the finite element mesh on Rp is regenerated 
by solving on it the Poisson equation 

V:0 = />(r,r) 

under the essential boundary conditions <h = r and </> = r at nodes on the boundary cRp. 
Here P is the control function [31-34] that helps generate an aporopriately graded mesh. 
The points of intersection of the equipotential curves through nodes on the boundary define 
the new locations of interior nodes. 

p^< 

Fie. 2. Illustration of the algorithm to adjust Tr. 
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5   DISCUSSION OF RESULTS 

-     ' Except when we study the effect of varying the value of a material parameter, we assign 
the following values to different parameters for the penetrator and target materials: 

pp»A»7800kgm3,       r0=!0mm, 

<r0p * 350 MPa.       <r0t - 114.3 MPa. 

mp~ 0.025,       m,=* 0.025, 

--*" '- J>p~10000s,       ft, = 10000s. 
!  V Vp « 0.000555,-C,       7,«0.000772rC 

.  •'  , cp = 473Jkg-1;C"1,       ct = 395JKg-1:C*1. 

kp-48Wm-l5C"lf      fc.alUWm^'C-1, 

Ä = 20Wm-2iC-1.       Ö3 = 0. 

We recall that subscripts p and t signify the quantity for the penetrator and the target, 
respectively. For an assigned value of r„ the value of vv is estimated from the relation [ 1 ] 

J(c,-l)2 + yp-(Ä1 + iMpt//>p) (28) 

where Yp and Rt represent strength parameters for the penetrator and target, respectively. 
Pidsley [6], for a copper penetrator and an aluminum target, estimated these parameters 

\ to equal (-0.7)(<rH)p and 2.4(<rH),. respectively, where <rH is the Hugoniot elastic limit. In 
\ his 1967 paper, Täte [1] found Rt = 3.5(crH), and in a recent paper [25] he gave 

T: Y'-11^ (29) 
R,-(7O([2/3 + ln(0.57£l/<TOt)], 

where £t is Young's modulus for the target material. Batra and Chen [36] used a 
semianalytical method to analyse the steady state axisymmetric deformations of a 
viscoplastic target being penetrated by a rigid hemispherical nosed penetrator and found 
that 

Kt = 9.43cr0t. j 

In terms of dimensional variables, we need to know (/?, — Y9) rather than the values of Ä, 
and Kp to find vp from Eqn (28). 

In all of the results presented below the solution for the velocity and temperature fields 
was assumed to have converged when, at each nodal point, the value of these quantities 
during two successive iterations differed by no more than 5%. The free surface was taken 
to have converged when at each node point on it. \v-n\ was less than 0.02. The iterative 
process to compute the target, penetrator interface was stopped when the values of the 
normal tractions f* and j"n at each node point on I~ differed from their mean values by 
less than 5%. We discuss below results for different speeds of the penetrator. and for 
different values of the strain-rate hardening exponent m and the coefficient of thermal 
softening *;. 

5.1 Results for vt - 500 m/s 
Figure 3 depicts the computed velocity field in the penetrator and target regions for 

t;, m 500 m/s. The penetrator speed, as computed from Eqn (28), equals 1041 m s. The plots 
clearly show that the velocity at points on the free surface and the target, penetrator interface 
is along the tangent to these surfaces. In order to show this effect clearly, the velocity field 
in only a part of the deforming region is shown. The computed velocity field establishes 
the validity of the iterative technique outlined above to find the shape; of the free surface 
and the target, penetrator interface. A least squares fit to the bottom surface of the 
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target, penetrator interface I", can be represented by the equation 

C-0.874)2 

1.861- 
: + • 

0.8742 -=1. (30) 

It is interesting to note that Täte [37] found the equation of the bottom surface of ft to be 

•a)- 3r     , 
I. (3D 

A possible reason for the difference in the value of the coefficient for the first term is the 
lower value of vt considered here. 

If the penetrator speed is less than the limiting velocity and there is no perforation of 
the target. Eqn (30) will give approximately the shape of the bottom surface of the cylindrical 
cavity in the target. We note that the computed shape of I" does not match well with the 
hemispherical cavity considered by Batra and Lin [19] in their study of the deformations 
of a thermoviscoplastic rod striking a rigid cavity. The thickness O.38r0 of the outlet region 
computed by Batra and Lin [19] for iv m 5.6 is comparable to 0.42r0 found herein. At the 
penetrator and target particles that lie to the rear of the bottom-most point of the free 

0.0 02 03 07 09 12 14 16 19 

P coordinate 

FIG. 4. Contours of the hydrostatic pressure in the penetrator and target regions for i\ =■ 500 m s. 
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surface, the flow quickly becomes essentially parallel to the axis of the penetrator. Target 
particles that lie ahead of the penetrator/target interface and within one penetrator radius 
from it have a noticeable radial component of velocity. The velocity field for other values 
of vs was found to be similar to that shown in Fig. 3. 

Figure 4 shows contours of the hydrostatic pressure in the penetrator and target regions. 
Recalling that the non-dimensionalization is with respect to pv;, and v, = 500 m/s, these 
values need to be multiplied by 5.6 and 17.1 for the penetrator and target, respectively, 

side 

1.82 

Strain-rates on  target   side      Scale 

FIG. 5. Distribution of the strain-rate invariant / in the deforming penetrator and target regions 
for u, = 500 m/s. 

30 



R. C. BATRA and T. GOBINATH 

Vocation of 
along Uil 

I 2 

Vonotion of I oLong PS Variation of I oLong PQ 

-4 -3 -Z -1 0 

Perpendicular  distance 

1 -4 -3 -2 -1 0 

Perpendicular  distonce 

FIG. 6. Variation of 2nd invariant / of the strain-rale tensor along three arbitrary lines LM, PQ, 
and PS perpendicular to E", (ut = 500 m/s). 

to get values of p as a multiple of corresponding a0. The maximum values of the 
non-dimensional hydrostatic pressure were found to be 0.8975 and 1.017 for the penetrator 
and the target, respectively. These equal 5.03 tr0p and 17.39cr0t, respectively. When the 
penetrator and the target materials are modeled as rigid/perfectly plastic, Gobinath and 
Batra [38] found for i>s = 500 m/s, the peak pressures in the penetrator and target to be 
5.06cr0p and i5.68cr0t near the stagnation point. It seems that the consideration of strain-rate 
hardening and thermal softening effects has virtually no effect on the value of the peak 
hydrostatic pressure in the penetrator but increases its value in the target region. We note 
that for the rigid ellipsoidal nosed penetrator {rjr0 = 2.0) and rigid/thermovtscoplastic 
target, Batra [16] computed the maximum value of p to be 12cr0t for a, = 5.0 and for the 
thermoviscoplastic rod upset at the bottom of a rigid hemispherical cavity, Batra and Lin 
[19] found pmax to be 3cr0p for ap = 5.0. Pidsley [6] who studied the penetration of a copper 
rod into a steel target by using the HELP code, computed /?max to be 5.53a0p and 4.33o-0l 
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for y.p = 7.84 and x, = 1.92, respectively, during the steady state portion of the penetration 
process. 

The distribution of / in the deforming penetrator and target regions is shown in Fig. 5. 
Note that the scales in the two regions are different but the values of 1 in each case are 
to be multiplied by vjr0 to get the dimensional values of /. Thus peak strain-rates of the 
order of t05/s occur in the penetrator and the target. As for the thermoviscoplastic target 
striking a rigid hemispherical cavity [19] significant deformations of the penetrator occur 
within the hemispherical region of radius nearly 1.0 and centered at the bottom-most point 
of the free surface. Note that the values of / near the stagnation point are quite high both 

Temperatures on penetrator 
side 

Temperatures on target   side 

FIG. 7. Distribution of the temperature rise in the deforming penetrator and target regions 
(y, m 500 m/s). 
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P-Hydrostatic    pressure 
V-Tangential   velocity 
T - Temperature 
I-Second   invariant of  strain-rate   tensor 
Solid  line Ipenetrator)    Doshea-Une   (target) 

Arctength 

FIG, 8. Distribution of the hydrostatic pressure, tangential velocity, 2nd invariant / of the strain-rate 
tensor D, and the temperature rise on the target/penetrator interface {vi = 500 m/s). 

in the target and penetrator regions. Whereas peak values of/ in the deforming penetrator 
region occur at points near the free surface where the flow is reversing, those in the target 
occur at points adjoining the common interface Vr Peak values of/ in the penetrator and 
target equal 5.25 at the point (1.135, 1.01), 3.75 at the point (1.106,0.17), respectively. In 
dimensional units these equal, respectively, 0.2625 x 106/s and 0.1875 x 106/s. 

In order to examine whether or not sharp gradients of/ occur across the target/penetrator 
interface rr, we have plotted in Fig. 6 the variation of / along lines LM, PQ and PS which 
are arbitrarily selected and shown in the figure. The distribution of / along these three 
lines exhibits similar behavior in that the values of / are discontinuous across F| and the 
value of / at the target particle abutting F| is higher than that for the penetrator particle 
occupying the same spatial position. The maximum value of / within the deforming target 
region occurs at a point slightly away from Vv For points on line LM, /max for the target 
is higher than that for the penetrator particles, but the converse holds for points on lines 
PQ and PS. Since the tangential velocity of target and penetrator particles abutting f, are 
nearly the same, for normal tractions to be continuous across Tb normal derivatives of v 
on Tj must be discontinuous if target and penetrator particles are made of different materials. 
This provides a justification for the jump in the value of/ as one crosses r^ Recalling that 
the hydrostatic pressure contributes significantly to the normal tractions, it is not necessary 
that / be sharply discontinuous across Fj for the normal tractions on the two sides of F| 
to match with each other. 

Figure 7 depicts the temperature distribution in the deforming penetrator and target 
regions. Note that the scales for the two plots are different. As for the values of the 
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strain-rate invariant /, high temperatures occur in the deforming penetrator region near 
the stagnation point and points adjoining the free surface. Because of the high speed of 
material particles, a considerable amount of heat is transferred by convection. For this 
reason, the temperature decreases rather slowly as one moves downstream along the 
target, penetrator interface or along any other streamline such as the free surface of the 
penetrator. The maximum temperature rise in the penetrator and target is found to be 
232C at the point (0.17,0.66) and 191 C at the point (0.479,0.05), respectively. This is 
considerably less than that found when either the penetrator <504:C) or the target (605 O 
is regarded as rigid for nearly the same value of r,. One possible explanation for this is 
that the external work done in the present problem is used to deform both the penetrator 
and the target, whereas in the previous studies referred to, all of the external work was 
used to deform either the penetrator or the target. Along the axial line the temperature 
decreases slowly within the penetrator but quite rapidly in the target. 

Figure 8 shows the distribution of the non-dimensional hydrostatic pressure, second 
invariant / of the strain-rate tensor, tangential velocity and the temperature rise at points 
on the target penetrator interface rr The temperature values are to be multiplied by 52.8 C 
to get their dimensional counterparts. It is clear that on Tit the maximum value of the 
temperature occurs at a point slightly away from the stagnation point. Even though the 
values of the non-dimensional and dimensional pressures on the penetrator and target 
sides of the common interface I", are nearly the same, their values as a multiple of the flow 
stress are not because o( the difference in the values of the flow stresses for the penetrator 
and target regions. The slight difference in the value of the tangential velocities of the 
target and penetrator particles situated at the same spatial position on F reveals that there 
is some slippage between the two. This is consistent with our assumptions of only the 
normal velocity and normal tractions being continuous across rr 

On the axial line, uniaxial strain conditions prevail, approximately. Thus the magnitude 
of the deviatoric stress s„ should equal 2/3 the effective stress, which equals v 3 times the 
right-hand side of Eqn (II). As shown in Fig. 9(a), the difference between szl and 2.3«re is 
less than *'•% on the penetrator side and less than 0.3% on the target side. Also depicted 
in the figui.r are contributions of various terms in Eqn (32), obtained by integrating the 
equation of motion along the central streamline r » 0 

\v2 + p _ Su __ 2 \' CZ« d. =, _O0). 
Jo   cr 

(32) 

This equation holds both for the penetrator and the target, and z is measured from the 
stagnation point. Even though <7„(0) for the target and the penetrator should equal each 
other, the two do not match in our plot because the solution was taken to have converged 
when the normal tractions on the penetrator and target sides differed from the mean normal 
tractions by, at most. 5%. Note that the integral term in Eqn (32) contributes significantly 
to the total as we move away from the stagnation point. This was pointed out by Wright 
[4] and has also been verified by Pidsley [6]. We add that while computing er„ from the 
computed velocity and temperature fields, contributions from the artificial viscosity were 

y not considered. Figure 9(b) depicts the variation of the second invariant / of the strain - rate 
/ tensor and the temperature rise 0 on the axial line. The temperature on the target side 

falls off rather rapidly as one moves away from the stagnation point. However, within the 
penetrator, the maximum value of the temperature/rise occurs at a point away from the 
stagnation point. Even though the maximum value of / on the target axial line occurs near 
the stagnation point and is much higher than that on the penetrator axial line. tim„ lor 
the penetrator particles is larger than 0mM for the targeiTThis is due to the differences in" 
the value of their heat capacities and flow stresses. A possible explanation for the 
discontinuity in the values of / as one crosses the target/ penetrator interface is the same 
as that given above for lines LM, PQ and PS. 

5.2 Effect of the speed of penetration 

Figure 10 depicts the distribution of the mean normal tractions^rTTrreHafget, penetrator 
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-3.3 -2.2 -1,1 

Distance    from stagnation   point 

0.0 0.0 

FIG. 9(a). Contributions of various terms in the Bernoulli equation along the central streamline 
(va - 500 m/s). 

(b) 

3' 

** 

Target 

OAi 

Penetrator 

| 0.2 

o.c 
-3 -2 -2 

FIG. 9(b). Distribution of the 2nd invariant / of the strain-rate tensor D and the temperature rise 
along the central streamline {i\ = 500 m/s). 

interface for t?5 = 450m/s, 500 m/s and 550 m/s. The values of (ap, at) corresponding to 
these values of vs equal (4.51, 13.82), (5.57, 17.06), and (6.74, 20,65), respectively. The values 
of the penetrator speed for these values of vs equal 850 m/s, 1041 m/s and 1234 m/s, 
respectively. These plots elucidate that the normal tractions on the common interface 
increase sharply with the penetration speed. The normal tractions diminish to nearly zero 
values for non-dimensional values of arc length on FJ exceeding 2.0. We note that these 
curves are similar to that given by Gobinath and Batra [22] who assumed the penetrator 
and target materials to be rigid/perfectly plastic and solved the problem for vs = 400 m/s. 
The axial resisting force experienced by the penetrator for the three values of % considered 
herein equalled 8.91, 11.52, and 14.51, respectively. These numbers need to be multiplied 
by 7TT5rx0p to get the corresponding dimensional values of the axial force acting on the 
penetrator. We have plotted the shapes of the free surface and the target/penetrator interface 
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FIG. 10. Distribution of the mean normal tractions on the target/penetrator interface for three 
different speeds of penetration. 
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FIG. 10(a). Shapes of the free surface for three 
different speeds of penetration. 

FIG. 10(b). Shapes of the target/penetrator interface 
for three different speeds of penetration. 

for the three values of vs stated above in Figs 10(a) and 10(b), respectively. In order to 
elucidate the dependence of the location of the stagnation point upon the speeds of 
penetration, the ordinate is measured from the bottom surface (CD in Fig. 1) of the target 
region considered. The stagnation point moves away from the free surface of the deformed 
penetrator as the speed of penetration is increased. Also with the increase in the speed 
of penetration, the distance between the free surface of the undeformed penetrator and 
the deformed penetrator particles moving rearwards increases. The shape of the target/ 
penetrator interface also depends strongly upon the penetration speed. 

53 Effect of the strain-rate hardening exponent m 

Figures II, 11(a) and 11(b) depict the distribution of the mean normal tractions on the 
target/penetrator interface Fi: its shape and the shape of the free surface Tf for three different 
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Fro. 11. Distribution of the mean normal tractions on the target/penetrator interface for three 
different strain-rate hardening exponents. 
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FIG. 11 (a). Shapes of target/penetrator interface for three different strain-rate hardening exponents. 

FIG. 11(b). Shapes of free surface for three different strain-rate hardening exponents. 

FIG. 11 (c). Comparison of shapes of free-surface for three different combinations of material model. 

FIG. 11(d). Comparison of shapes of target, penetrator interface for three different combinations of 
material model. 
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combinations of the values of the strain-rate hardening exponent m and r, * 500 m s. 
When the value of m for the penetrator is kept fixed at 0.025 and the value of m for the 
target is changed from 0.025 to 0.005, there is hardly any change in the shape of the free 
surface. However, the shape of Ty and the distribution of normal tractions on it do change 
seme, though not significantly, when mt is reduced from 0.025 to 0.005. In Fig. 1 Mb), the 
free surfaces are plotted to a large scale so as to magnify differences, if any. in their shapes 
for different values of m. The change in the value of mp from 0.025 to 0.005 while m, is 
kept fixed at 0.025 does influence significantly the shape of the free surface and to a 
somewhat less extent, the shape of the target,penetrator interface and the distribution of 
normal tractions on it. The stagnation point moves away a little bit from the free surface 
when the value of m is changed from 0.025 to 0.005 either for the penetrator or the target. 
The peak values of 9, /. and p and where they occur are influenced by the values of mp 

and m, as evidenced by the information provided in Table 1. 
When either the penetrator or the target is modeled as rigid/perfectly plastic material 

and the other body as viscoplastic with m * 0.025, the shapes of the free surfaces and the 
corresponding intermediate surfaces are shown in Figs 11(c) and 11(d). respectively. The 
vertical scale in these figures represents the distance measured from the boitom-most point 
of the target region studied so that vertical displacements, if any, of the stagnation point 
could be determined. When either one of the two materials is modeled as rigid perfectly 
plastic, the stagnation point moves downward, the displacement for mp» 0 being twice of 
that for mx — 0. The shapes of the free surface of the deformed penetrator remain unaltered 
when either mt is 0.025 or 0.0 and does not change noticeably when mp is decreased from 
0.025 to 0.0. 

5.4 Effect of the thermal-softening coefficient y 

When the value of the thermal softening coefficient y for either the target or the penetrator 
was doubled keeping that lor the other part unchanged, the distributions of the mean 
normal tractions on the target/penetrator interface I", its shape and the shape of the free 
surface Tf were essentially unaltered. Therefore, these plots are not included in the paper. 
The values of (?„,„, pm„, /mM in the penetrator and target regions do not change much 
when y is doubled either for the target or the penetrator. We note that a similar effect was 
observed by Batra [17] who analysed the steady state penetration of a rigid cylindrical 
rod into a thick thermoviscoplastic target. 

5.5 Effect of different ratios of mass densities 

Results presented in this section are fat the case when the penetrator and target materials 
are modeled as rigid/perfectly plastic. Figure 12 shows the shapes of the target penetrator 
interface I", and the distribution of normal tractions on it for pvp9« 1.25. 1.0. and 0.75. 
The ordinate in Fig. 12(a) is the vertical distance from the bottom surface CD of the target 
region considered and the scales along the horizontal and vertical axes are quite different. 
The expanded scale along the horizontal axis is meant to magnify the small differences in 
the shapes of r( when pjpp is varied. We note that in these computations pp was kept fixed. 
The plots of normal tractions on T, reveal that the largest normal tractions occur for 
pvpp « 1.25 and least for p,/pp* 0.75 and the change seems to depend continuously upon 
pt/pp. Thus, for the same penetrator material, the pressure at the stagnation point will 
increase with an increase in the mass density of the target. Similarly for a fixed target 
material, higher density penetrators would result in smaller values of the pressure at the 
stagnation point. 

6. HISTORIES OF THE STRESS. STRAIN-RATE INVARIANT. 
HYDROSTATIC  PRESSURE AND THE SPIN TENSOR 

One of the unresolved problems in penetration mechanics is the selection for the material 
of the penetrator and the target constitutive relations that adequately mode! their response 
over the range of deformations anticipated to occur in a problem. In an attempt to help 
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determine which one of the many recently proposed theories (e.g. Refs [39-42]) of large 
deformation elastoplasticity is most appropriate for a penetration problem, we give below 
histories of the effective stress, second invariant of the strain-rate tensor, the temperature 
and the spin for a few typical target and penetrator particles. These time histories should 
also help establish desirable testing regimes for practical problems. 

The first step in finding histories of a field variable at a material particle is to find the 
streamline for that particle. Streamlines originating from four locations, viz. A(0.1. 5.88), 
B(0.15, 5.88), C(0.90, 5.88), and D(0.95, 5.88) within the deforming penetrator region and 
two locations, i.e. E (0.10, - 3.12) and F(0.15, - 3.12) within the deforming target region 
are plotted in Fig. 13. That the four streamlines originating from points C. D, E, and F 
do not intersect or merge together is clear from the enlarged view of the portion enclosed 
in the box. In the following discussion, we identify the histories of the material particle 
that once occupied, say, the place A as histories of the variable for the material particle A. 

6.1 Histories of field variables for penetrator particles 

Figure 14 depicts the location of the four particles at different times. The time is reckoned 
from the instant when particles A. B. C, and D occupied the places (0.10.5.88), (0.15. 5.88), 
(0.90, 5.88), and (0.95. 5.88), respectively. The radial and axial components of the velocity 
at different times for these four particles are plotted in Fig. 15. As particles A and B 
approach the region surrounding the stagnation point at t ■ 5. their velocities in the radial 
direction increase sharply and those in the axial direction decrease to zero. Material 
particles C and D adjoining the free surface of the penetrator reach near the bottom-most 
point on the free surface at time t ■ 2.8. The radial velocity of these particles which was 
initially zero increases sharply, and becomes maximum when they are close to the 
bottom-most point on the free surface. It is followed by a rapid decrease to a small value 
which gradually becomes zero. Recalling that the velocities plotted are those relative to 
the velocity of the stagnation point, the sharp jump in the value of r, for these particles 
corresponds to the reversal in their direction of motion after they move past the bottom 
of the free surface. In Fig. 16 we have plotted the histories of the non-dimensional 
temperature and the second invariant / of the strain-rate tensor. For points A and B 

40 



24 

A      8 

R. C. BATRA and T. GODINATH 

C    o 

FIG. 13. Streamlines emanating from four points of the penetrator region and two points of the 
target region. 

adjoining the axial line, peak values of the temperature rise are higher than those for points 
C and D, but the peak values of / for points C and D are higher than those for points A 
and B. Peak values of the second invariant / of the strain-rate tensor at points A and B 
are much lower than those for points C and D. Peak values of 6 and / at points A and B 
occur when they are near the stagnation point. As these points move far away from the 
stagnation point, the value of/ decreases rapidly but that of 0 decreases slowly due to the 
convective transport of heat. For points C and D near the free surface, peak values of 9 
and / occur simultaneously soon after they cross over to the right of their bottom-most 
positions. Note that the values of / and 0 increase at points C and D rapidly as they 
approach the bottom-most point on the free surface. Whereas the values of / drop quite 
rapidly, their temperature is still high because of the convective transport of heat. Figure 
17 shows histories of the effective stress Se, defined as the right-hand side of Eqn (11), and 
the hydrostatic pressure at these four particles. For particles C and D the hydrostatic 
pressure is negligibly small. This is to be expected since these particles always stay close 
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FIG. 14. The variation of r-, j-coordinate of four penetrator particles at different times. 
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FIG. 15, Histories of the radial and axial components of velocity for four penetrator particles. 

to the free surface of the penetrator. Note that the peak values of Se at all four points 
considered is nearly the same. Since the material particles are undergoing plastic 
deformation, the effective stress must satisfy the yield condition (11). The variation in the 
effective stress at these points is due to the change in the values of / and 0. At points C 
and D, the peak values of /, % and Se occur at the same time thereby implying that the 
strain-rate hardening effects dominate over the thermal softening effects. For t > 5 when 
the values of / have become essentially zero, the effective stress drops because of the 
softening caused by the heating of the material points. For material particles A and B, 
whereas Jmax occurs at t ä 2.8, the maximum value of Se occurs at r ~ 2.2. Recalling the 
history of the temperature plotted in Fig. 16, we see that #max occurs at t^4.S and the 
values of 9 at f ^ 2.8 are higher than those at t^2.2. The higher value of the thermal 
softening effect at t m 2.8 reduces the value of 5e as compared to that at t a* 2.2. 
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F(C. 16. Histories of the temperature rise and 2nd invariant / of the strain-rate tensor for four 
penetrator particles. 
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FIG. 17. Histories of the hydrostatic pressure and effective stress for four penetrator particles. 

/ 

Because of the assumptions of axisymmetric deformations, there is only one non-zero 
component of spin. The histories of the spin for the four penetrator particles, plotted in 
Fig. 18, reveal that the material particle C that is near the free surface has the highest 
value of spin. The peak value of the plastic spin for the material particle C is twice that 
for each of the other three particles. This peak value of the spin at C occurs when it has 
crosscd-over to the right of its bottom-most position and is flowing rearwards. 

6.2 Histories of field variables for target particles 

In Fig. 19 we have plotted the r- and r-coordinates of the target material particles 
for different values of time f; their positions at time t»Q were E(0.10, -3.12} and 
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FIG. 18. Histories of the spin of four penetrator particles. 

2.0 

R     1.0 -i 

S 

6.0- 

3_5^ 

1.0- 

-1.5 i 

-4.01L 
10 12 0 5 10 

Time Time 

FIG, 19. Variation of r-, --coordinates of two different target particles at different times. 

15 

F(0.15, —3.12), respectively. The radial and axial components of the velocity of these 
particles are plotted in Fig. 20. As these particles approach the region surrounding the 
stagnation point, their radial velocity increases sharply and subsequently drops to zero 
equally fast. The axial velocity of these particles relative to that of the stagnation point 
decreases and then increases as these points leave the area near the stagnation point. For 
t >9, these particles are moving essentially vertically and parallel to the target/penetrator 
interface. The histories of the second invariant / of the strain-rate tensor and the 
temperature rise 6 are plotted in Fig. 21. The peak values of 6 at these two points occur 
at the same value of time. However, the peak values of / occur a little bit later. The rate 
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FIG. 21. Histories of the temperature rise and 2nd invariant / of two target particles. 

of increase of temperature at these particles is much higher than the rate of increase of /, 
but / decreases much more rapidly than the temperature does because of the convective 
transport of heat. The histories of the hydrostatic pressure p and the effective stress 5e 

shown in Fig. 22 reveal that the pressure attains its maximum value when points E and 
F reach the zone surrounding the stagnation point at time t ^ 4.5. Note that the maximum 
values of / and 6 occur at these points when they have moved quite a bit away from the 
stagnation point. The effective stress at these points does not vary much because the 
thermal softening caused by their getting heated up seems to balance out the strain-rate 
hardening. The histories of the plastic spin, plotted in Fig. 23, suggest that of the two 
target particles considered, the one farther from the axial line has the higher values of the 
spin. The highest value of the spin occurs just before these particles arrive near the stagnation 
point. Also, when the particles start turning upwards along the target/penetrator interface, 
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FIG. 22. Histories of the hydrostatic pressure and effective stress for two target particles. 

FIG. 23, Histories of the spin of two target particles. 

their spin, now of opposite sign, is equally large in magnitude. The peak values of the spin 
are comparable in magnitude to the peak values of / for these particles. 

7.  CONCLUSIONS 

We have analysed steady state axisymmetric deformations of a long cylindrical 
thermoviscoplastic rod penetrating into a thick thermoviscoplastic target. Also studied is 
the effect, on the deformations of the rod and the target, of the penetration speed, values 
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of the strain-rate hardening exponent and the coefficient of thermal softening. The bottom 
part of the target, penetrator interface F~ is a part of an ellipsoid rather than a hemisphere. 
For r, * 500 m,s, the peak pressures in the penetratoi r.ear the stagnation point approach 
5.6<r0p and that in the target 14<70{ when <r0p, o*0t ™ 3.06 where a0p and <x0, equal the yield 
stress in a quasistatic simple compression test for the penetrator and target materials, 
respectively. The peak values of 232'C of the temperature rise in the penetrator and 19TC 
in the target are significantly lower than those found when either of the two materials is 
considered as rigid. Along the axial line the temperature decreases siowly in the penetrator 
but quite rapidly in the target. The normal tractions on the common interface V, increase 
sharply with the increase in the penetration speed. Also the axial resisting force acting on 
the penetrator equalled 8.91. 11.52 and 14.51 F {F = 7rr5<70p) for stagnation point speeds 
of 450. 500 and 550 m/s. respectively. The corresponding values of the penetrator speed 
are 850, 1041 and 1234 ms, respectively. A significant contribution to the resisting force 
is made by the consideration of the strain-rate hardening effects. The value of the strain-rate 
hardening exponent for the penetrator affects more the shapes of the free surface Tf of the 
deformed penetrator and the target penetrator interface Tj than the value of the strain-rate 
hardening exponent for the target. The values of the thermal softening coefficient for the 
penetrator and target have minimal effect on the shapes of I" and Tf and the distribution 
of normal tractions on Tf. The computed histories of the stress, second invariant of the 
strain-rate tensor, temperature, and the plastic spin for four penetrator and two target 
particles indicate that for the material parameters selected and the three speeds considered 
here, there is no likelihood of any material instability developing in the sense that the 
effective stress at these material particles is decreasing while their temperatures and values 
of the second invariant / of the strain-rate tensor are increasing. Also no narrow layers 
with sharp gradients of / were found on either side of I" for the various cases studied. It 
is very likely that either the penetration speeds considered herein were not high enough 
for these effects to manifest themselves or the materials selected for the penetrator and the 
target were such that no localization of deformation could occur in regions surrounding 
fj. The peak values of the plastic spin for the penetrator particles close to the free surface 
are nearly twice the peak values of the second-invariant / of the strain-rate tensor for 
them. Also for the two target particles close to the target, penetrator interface, peak values 
of the plastic spin are comparable to the peak values of / for them. It seems that plasticity 
theories which account appropriately for values of the plastic spin comparable to the values 
of the strain-rate tensor should be very suitable for analysing steady state axisymmetric 
problems. 
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A STEADY STATE AXISYMMETRIC PENETRATION 
PR ^LEM FOR RIGID/PERFECTLY PLASTIC 

MATERIALS 

T. GOBINATHt and R. C. BATRA 
Department of Mechanical and Aerospace Engineering and Engineering Mechanics. University of 

Missouri-Rolla. Rolla, MO 65401-0249, U.S.A. 

Abstract—The axisymmetric deformations of an eroding long cylindrical rod made of a rigid/perfectly 
plastic material penetrating at a uniform rate into a thick rigid/perfectly plastic target are studied by 
the finite element method. It is assumed that the deformations appear steady to an observer situated 
at the stagnation point and moving with it, and that the contact between the target and the penetrator 
at the common interface is smooth. It is found that the resisting force experienced by the penetrator. 
the shape of the target/penetrator interface, and the distribution of normal tractions on it depend 
rather strongly upon the square of the penetration speed and also upon the ratio of the mass density 
of the penetrator to that of the target. In an attempt to help establish desirable testing regimes for 
practical problems we have also computed time histories of the hydrostatic pressure, second invariant 
of the strain-rate tensor and the spin for four typical penetrator and two typical target particles. 

INTRODUCTION 

Wc study that phase of the penetration process in which the penetrator and target deformations 
appear steady to an observer located at the stagnation point and moving with it. This situation 
occurs when a very long cylindrical rod strikes a rather huge target and has penetrated a few 
rod diameters into it. Until the time either most of the rod has been eroded or the stagnation 
point reaches near the other end of the target, the penetration process can be regarded as being 
nearly steady and may constitute a significant part of the total penetration process. For 
moderately high striking speeds, Täte [1, 2] and Alekseevskii [3] modified the purely 
hydrodynamic approach by including the effects of the material strengths of the projectile and 
the target and representing them as some multiple of the yield strengths of the corresponding 
materials. However, the multiplying factor was unresolved in the theories. Hdsley [4] recently 
computed the values of the strength parameters for a copper rod penetrating into an aluminum 
target to be 2.4 (aH), and (-0.7)(a,. )p for the target and the penetrator, respectively. Here a„ 
equals the Hugoniot elastic limit of the material. He justified the negative value for the rod 
strength because of its yield stress being lower than that of the target. 

The review paper of Backman and Goldsmith [5] provides a comprehensive summary of the 
work done on ballistic penetration until 1977, and discusses various physical mechanisms 
involved in the penetration and perforation processes and their engineering models. Also 
during the last decade engineering models of target penetration have been proposed by Ravid 
and Bodncr [6], Ravid et at. [7], and Forrestal [8]. Some of the books en the subject are by 
Zukas et al [9], Blazynski [10], Billington and Täte [11], and MaCauley [12]. 

In previous studies [13-19] Batra and his coworkers have analyzed the steady state 
penetration problem in which either the penetrator or the target was considered as rigid. Here 
we study the case when both deform and their materials can be modeled as rigid/perfectly 
plastic. As in [13-19], the contact between the penetrator and the target at the common 
interface is assumed to be smooth and no fracture or failure criteiion is included. However, the 
effect of the penetration speed and t^e ratio of the mass densities of the penetrator and target 
on their deformations is investigated. We add that the problem studied herein is more 
challenging than those studied ear.ier in [13-19] because of the presence in it of two a priori 
unknown free surfaces, one the target/penetrator interface and the other the free surface of the 
penetrator material flowing backwards. Also the convective part of the acceleration plays a 
dominant role which requires the use of either an appropriately graded mesh or the use of 

tPresent address: EGS ADEPT, 25900 Greenfield. Oakpark. MI 48237, U.S.A. 
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artificial viscosity or both. The kinematic and stress fields found herein should help select 
improved kinematic fields in other approximate theories of penetration mechanics and also 
check results from simpler engineering theories of penetration. 

An other outstanding problem in penetration mechanics is the selection of the appropriate 
constitutive models for the penetrator and target materials. In order to assess which one of the 
many recently proposed theories [20-23] of large deformation elastoplasticity is appropriate, 
and also help establish desirable 'esting regimes for practical problems, we compute histories of 
the second-invariant of the strain-rate tensor and the plastic spin for four penetrator and two 
target particles. 

FORMULATION OF THE PROBLEM 

We use the Eulerian description of motion and a cylindrical coordinate system with origin at 
the stagnation point and moving with it at a uniform speed vs to describe the deformations of 
the penetrator and the target. The positive z-axis is taken to point towards the undeformed 
portion of the rod. Also we work in terms of non-dimensional variables indicated below by a 
superimposed bar. 

b**olpv2
st       p**plpv),       a=*pv)ioQ, 

v*v/u„       f»r/r0,       z*>z/r0. (1) 

Fig. I. The finite region studied and its discretization. 
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Here and below, a is the Cauchy stress tensor, p the hydrostatic pressure not determined by 
the deformation history because the deformations are assumed to be isochoric, v = (iv, v.) is 
the velocity of a material particle, and r0 is the radius of the undeformed cyiindrical portion of 
the penetrator. The non-dimensional parameter a equals the magnitude of the mertia forces 
relative to the flow stress of the material. When non-dimensionalizing a quantity for the 
penetrator and the target, the value of the corresponding material parameter is used in 
equation (I). An advantage of the non-dimensionalization (I) is that the equations governing 
the deformations of the penetrator and target look alike. Hereafter we use only non- 
dimensional variables and drop the superimposed bars. The governing equations can be written 
as 

divv«0, (2.1) 

divo^ (v-grad)v. (2.2) 

ff,_pl+-i_/D, (2.3) 

2D=*gradv + (gradv)r, (2.4) 

2/: = tr(D2). (2.5) 

Equation (2.1) expresses the balance of mass, (2.2) the balance of linear momentum, and 
equation (2.3) is the constitutive relation for the penetrator and target materials. Recall that 
the value of a will be different for them. D. given by equation (2.4), is the strain-rate tensor 
and its second invariant is denoted by /. Equations (2.1) and the one obtained by substituting 
(2.3) into (2.2) are the field equations to be solved for/> and v under the appropriate boundary 
conditions. 

A numerical solution of the problem usually necessitates that we consider only a finite region 
which for the Eulerian description of motion is also referred to as the control volume. The 
finite regions for the penetrator and target studied are depicted in Fig. t, which also shows its 
finite element discretization. In the dark regions, a very fine finite element mesh is used. For 
the boundary conditions, we take 

lf 

vt 

t • (on) = 0       on I*,, (3.1) 

n'Otn~(ppIp,)n-apn      on r„ (3.2) 

v«n = 0       on I",, (3.3) 

<m = 0       on Tft (3.4) 

v ■ n « 0       on Vf, (3.5) 

rz • 0,    v, =» 0       on the axis of symmetry ABC, (3.6) 

,    vr - 0       on the boundary surfaces CD and DEF, (3.7) 

cr„»0.    v, =0       on FG, (3.8) 

vt * vt,    o,z - 0       on the outlet surface GH, (3.9) 

tm~{vp-l),    v. = 0       on the inlet surface AJ. (3.10) 

Here T, is the target/penetrator interface BG, and F, is the free surface JIH of the deformed 
penetrator. The condition (3.1) expresses the assumption that the contact between the 
penetrator and target is frictionless, therefore, the tangential tractions there vanish. This seems 
reasonable since a thin layer of the material at the interface either melts or is severely degraded 
by adiabatic shear. The boundary condition (3.2) states that the normal tractions across the 
common interface T, are continuous, and equation (3.3) implies that V, is a streamline. If T( 

were known, then either (3.2) or (3.3) is required. Here we use (3.2) to verify that the assumed 
shape of T, is reasonably correct as discussed in the next section. The boundary condition (3.4) 
asserts that Tf is a free surface, and equation (3.5) implies that it is a streamline. Equation (3.5) 

«2»: 10-« 51 



1318 T. GOBINATH and R. C. BATRA 

is used to ensure that the assumed shape of Tf is close to the actual one. The boundary 
condition (3.6) follows from the assumption that the deformations are axisymmetric. Since the 
distances of CD and DF from T, exceed 30 r0, and significant target deformations occur in the 
target region distance at most 2r0 from T„ it is reasonable to assume that target particles on the 
bounding surfaces CD and DF do not deform. If the surfaces FG and GH were situated at 
infinite distances from the stagnation point B, then the boundary conditions (3.8) and (3.9) on 
them will hold exactly. Since these surfaces are situated at a distance of nearly 7r0 from B, the 
boundary conditions (3.8) and (3.9) are good approximations. The value of u, in equation 
(3.9) is estimated by using the balance of mass for the penetrator region. The boundary 
condition (3.10) states that the end AJ of the rod has not deformed and is moving downward 
with a uniform speed. For an assigned value of vs, vp is estimated from the relation [1] 

5<*-»*+*-(*+l)(£) (4> 
where Yp and R, represent strength parameters for the penetrator and target materials. In his 
1967 paper Täte [1] found Rt = 3.5(oH), and in a recent paper [24] he gave Yp=*l.7o0p, 
Rt 

m Oo»(2/3 + ln(0.57£f/oor)), where E, is Young's modulus for the target material. Batra and 
Chen [25] used a semianalyiical method to analyze the steady state axisymmetric deformations 
of a viscoplastic target being penetrated by a rigid hemispherical nosed penetrator and found 
that 

/?, = 9.43a0,. 

In terms of dimensional variables, we need to know (R, - Yp) rather than the values of R, and 
Yp to find vp from equation (4). 

COMPUTATIONAL CONSIDERATIONS 

The aforestated problem was solved by the following iterative technique. Assume T^ and Tf. 
Ynen the regions Rp (shown in Fig. 1 by the closed curve ABGHIJA) and R, (shwn in Fig. I by 
the closed curve BCDEFGB) occupied, respectively, by the de formating penetrator and target 
material aie well defined. The governing equations (2) under the boundary conditions (3.1), 
(3.3), (3.4), (3.6), (3.9), and (3.10) are solved to find the fields of (v,/>) for the penetrator, and 
equations (2) under the boundary conditions (3.1), (3.3), (3.6), (3.7), and (3.8) are solved to 
find the fields of (v,p) for the target. The boundary conditions (3.2) and (3.5) are used to 
verify that the assumed T, and Tf are reasonably correct. We first adjust Vf, and then T, always 
ensuring that Tf is still correct and, if necessary, Tf is readjusted. During the modification of T,, 
nodes on it are moved in a direction perpendicular to Tt by an amount proportional to 
(/P~/D- Here fp and fj equal, respectively, the normal force on a penetrator and target 
particle on T{. 

The algorithm developed by Batra and Lin [16] to adjust Tf was modified to increase its 
efficiency and has been described by Gobinath and Batra [26]. After new shapes of r, and Tf 

have been determined, a check is made to ensure that the elements adjoining these surfaces 
have not been severely distorted. If necessary, a new mesh is generated by solving on Rp and Rt 

the Laplace equation V2(p ■ 0 under the essential boundary conditions <p ■ r and <p » z. The 
intersection of the equipotential curves gives the new location of the nodes. 

We used 9-noded quadrilateral macroelements each of which was divided into four 4-noded 
quadrilateral elements called microelements. In each micro-element the velocity field was 
assumed to be bilinear and pressure constant. The variables corresponding to the central node 
were eliminated prior to the assembly of the global stiffness matrix. An artificial viscosity v 
given by [27] 

v = v,+ v„ (5.1) 

v,«Mcothv,-l/vt)/2, (5.2) 

v, »Mcothv2-t/v:)/2, (5.3) 

v,«V3ü^/r/a.        Vj-VSttfWVdr. (5.4) 
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was added to a/\3I in equation (2.3). In these equations hr and h. equal, respectively, the 
largest distances in the r and z directions between the midpoints of the sides of a quadrilateral, 
and the superscript c denotes that the quantity is evaluated at the centroid of an element. 
Brooks and Hughes [27] have shown that adding artificial viscosity is equivalent to using the 
Petrov-Galerkin approximation of equations (2.2)-(2.5). 

DISCUSSION OF  RESULTS 

Recalling that the governing equations for the velocity field are nonlinear, the solution was 
assumed to have converged when, at each nodal point, the value of the speed computed during 
two successive iterations differed by no more than 50-. The convergence criterion used for the 
free surface Tf was that at each node point on Tf, jv • n\ s U.U2. and that for T, 

!/;-/?; so.o25[i/;i +!/n]( (6) 

at each node point on it. These convergence criteria are stronger than the global norms of 
errors sometimes employed. 

Results for different speeds of penetration 

We set 

pp = p,= 7800 kg/m\       o„p - 350 MPa.       oVtf = 114.3 MPa, (7) 

and compute results for v, -400 m/s, 500 m/s and 600 m/s. The corresponding values of 
(ap,at) are (3.57.10.92), (5.57,17.06), and (8.02.24.57), respectively. Values of vp, as 
computed from equation (4), with R, - Yp - 164.35 MPa. equal 850 m/s, 1041 m/s and 1234 m/s 
for the three values of v, considered herein. Since a,**3ap. the inertia forces play a more 
dominant role for the target deformations as compared to that for the deformations of the 
penctrator. Figure 2 depicts the shapes of the free surface 1% and the target/penetrator 
interface I*, for these three values of i»,. In these plots the ordinate is the vertical distance from 
the bottom-mosi surface CD of the target region studied in order to decipher the vertical 
movement of T, and Tf. When plotting Tft the horizontal scale has been enlarged enormously to 
magnify the small differences in the shapes of the free surface for the three values of vt, The 

25.0 

23.9 

ii Free-sirfac« 

I    22.0 t 

190 h. 

Curvi A, V$ - 400m/i 

Cyfv«B, V,- 500 */• 

Curvt C,  V, • 600 m/» 

.13 9:   S- 
1.000 1.125 1.290 

R 

1.375 1 0 

9 

1.5 2.0 

Fig. 2. Shapes of the free surface of the deformed penetrator and the target/penetrator interface for 
three different speeds. 
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shapes of T, in the vicinity of the stagnation point seem to be independent of vs. A least squares 
fit to the curve for vt ■ 600 m/s has the equation 

2.0612 

(2 - 1.05)2 

1.052 1. (8) 

It is interesting to note that Täte [28] found the equation of the bottom surface of F, to be 

- + —= i. 
(1.155a)2 

A possible reason for the difference in the value of the coefficient for the first term is the lower 
value of v, considered here. 

The mean normal tractions at the common interface T, for the three values of vs are plotted 
in Fig. 3. Also shown in the figure is a least squares fit to the data points (Fa, a,) where Fa is the 
non-dimensional axial resisting force experienced by the penetrator; the corresponding 
dimensional force equals {xrlo^F^ It was found that the quadratic curve 

Fm - 5.323 + 1.101a, + 0.031a?,    10.92* <*,s 24.57, (9) 

provided a better fit to the computed data than a straight line. Batra and Lin [16] who studied 
the deformations of a rigid/perfectly plastic cylindrical rod upset at the bottom of a rigid cavity 
z-0.04r* found /^ --2.2 +2.15a",,, 1.8ssar, s6. In each of these cases, the values of Fa 

depend rather noticeably upon a, and/or ap. The normal tractions on T, increase significantly 
with an increase in vs. The general shapes of these curves especially near the stagnation point 
do not vary, and they are shifted upwards with an increase in vt. For values of the 
non-dimensional arc length exceeding 2, the normal tractions on T, become exceedingly small. 
At the stagnation point, the normal traction on T, equals {-ozz), and since uniaxial strain 
conditions prevail on the axial line, sxt * (a£I + p) equals (2/3o*0) there. For penetrator and 
target particles on the axial line and situated within 2r0 of the stagnation point, computed 
values of \s32 - 2<70/3| were less than 0.02. Since ass»a0 at the stagnation point, the 
hydrostatic pressure p0 there provides a predominant contribution to a„. The least squares fit 

25 r 
Cur*t8, V, -SOOm/i 

Cufv«C. V, -SOOm/i 

54, 

0.5S 1.10 1,65 2 2C 

Arc lengtn 

<*) (b) 

Fig. 3. (a) Distribution of the mean normal tractions on the target/oenetrator interface for three 
different speeds, (b) Dependence of the axial resisting force experienced by the penetrator upon the 

non-dimensional number a,. 
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to the data points (pop, ap), (p0t, ot). have the equations 

Pop ■ (0.1084 + O.m<xp)o0p, (10.1) 

Po, - (4.005 + 0.683*,)oo„ (10.2) 

for the penetrator and the target respectively. 
Recalling that equations, 

\pp{vp-vtf + Y,~lp,v) + R,--(oti)„ (H) 

proposed by Alekseevskii [3] and Täte [1], wnere Yp and R, equal the resistive pressure term3 
due to the strength of the material, (o\x), is the value of olx at the stagnation point B, and 
quantities are dimensional, hold on the axial line we can find the values of R, and Yp. The 
computed values of Rt and Yp for the three penetration speeds studied are listed in Table 1. 

Table 1 

(m/s> 
*, 

(**») 

400 
500 
600 

6.19 
8.46 

10.29 

1.553 
2.293 
2.89 

We should caution the reader that equations (10.1) and (10.2) were obtained by a least 
squares fit to the data. Substitution from (10.1) and (10.2) into (11) and setting {sz:)s ■ 2/3a0p 

or 2/3OQ, may yield values of Yp and R. that are slightly different from those listed in the table. 

Results for different ratios of mass densities 
In Fig. 4(a) are plotted the shapes of the free surface of the deformed penetrator and of the 

target/penetrator interface for pjpp »1.25, 1.0 and 0.75. The ordinate is the vertical distance 
from the bottom surface CD of the target region considered. In these computations pp was kept 
fixed and v, was set equal to 500 m/s. For p,/pp ■ 0.75, the bottom portion of the free surface 
is slightly above that for pt/pp » 1.0, and for p(lpp ■ 1.25, the bottom part of the free surface 
moves a little below that for p,lpp »1.0. The curvature of the free surface where the flow turns 
upwards also seems to depend on p,/pp. The stagnation point does not move much when p,/pp 
is changed from 1.00 to 0.75 implying thereby that the thickness of the deforming penetrator 
material between the target/penetrator interface and the free surface of the deformed 
penetrator, especially near the axial line, is larger for p,lpp**0.75 as compared to that for 
Pt/pp m 1-0. When p,/pp is changed from 1.0 to 1.25, both the stagnation point and the bottom 
part of the free surface Tf move lower and since the former moves by a larger distance, the 
thickness of the deforming penetrator material between Tf and Tf increases again. The normal 
tractions on T„ plotted in Fig. 4(b), reveal tb?t the largest normal tractions occur for 
p,/pp» 1.25 and least for p,/p„«0.75 and the change seems to depend continuously upon 
ptlpp. Thus, tor the same penetrator material, the pressure at the stagnation point will increase 
with an increase in the mass density of the target; and for a given targ2t, higher density 
penetrators would result in smaller values of the pressure at the stagnation point. 

Values of Rt and Yp, computed by using equation (11) and vs =«600 m/s, for different values 
of p,lpp are listed in Table 2. 

We note that Pidsley [4] found for pjpp -0.313, R, = 2A{oH)t and Yp = -0.7( cr„)p. For 
many materials the Hugoniot elastic limit equais approximately 1.6 times the yield strength in a 
quasistatic simple compression test [lj. 

Results for a fixed value ofv, 
The contours of the non-dimensional hydrostatic pressure for v, ■ 600 m/s are shown in Fig. 

5. These values ought to be multipled by 8.02 and 24.57 for the penetrator and target to obtain 
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Fig, 4(a). Shapes of the free surfaces of the deformed penetrator and the target/penetrator interface 
for three different values of p,lp,. 

Fig. 4(b). Distribution of mean normal tractions on the target/penetrator interface for three different 
values of p,/p,. Curve A, p,lp$ - 1.25; Curve B, p,/pß - 1.0; Curve C, p,lpp - 0.75. 
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values of p as a multiple of corresponding o0. Thus pm„ equals 7.3a0p in the penetrator and 
20.8a,), in the target for ap » 8.02 and a, ■ 24.57. We note that for the hemispherical nosed 
rigid penetrator and a rigid/perfectly plastic target Batra and Wright [13] computed pmmt to be 
8.0oo, for a, =» 6.15 and Batra and Lin [19] found pmM ■ 3o0p for ap * 5.1 for a rigid/perfectly 
plastic cylindrical rod striking a rigid cavity. The variation of the hydrostatic pressure on the 
axial line, also depicted in Fig. 5, reveals that the pressure decays quickly in the penetrator and 
rather slowly in the target as we move away from the stagnation point. The distributions of / in 
the deforming penetrator and target regions are shown in Fig. 6. Also plotted in this figure is 
the variation of / on the axial line. These plots reveal that significant deformations of the 
penetrator occur within the hemispherical region of radius nearly 2.0 and centered at the 
stagnation point. The values of / near the stagnation point are quite high in the penetrator and 
target regions. As for the values of p, the value of / on the axial line also drops quickly in the 
penetrator and slowly in the target as we move away from the stagnation point. 

In order to see whether or not sharp gradients of / occur across the target/penetrator 
interface I*(, we have plotted in Fig. 7 the variation of / along three arbitrarily selected lines 
LMt PQ and PS. The abscissa in these figures is the distance from T, of a point along the line 

Prwturt olong the oxlol Un« 

' « '9 2 1 

Fig. 5. Contours of non-dimensiooaJ hydrostatic pressure for v, - 600 m/s. 
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P«nttrotor 

Fig. 6. Distribution of the second-invariant of the strain-rate tensor in the deforming penetrator and 
target regions and also on the axial line for v, - 600 m/s. 

considered. In each case / is discontinuous across I*,. On line LM, I lot the target particle 
abutting T, is higher than that for the corresponding penetrator particle but the opposite holds 
for points on lines PQ and PS. For points on PQ and PS, sharp gradients of / develop in the 
penetrator region whereas for points on LM, I varies sharply for points on the target side. The 
value of / at point P where the penetrator particles undergo a change in the flow direction h 
considerably higher than that for the penetrator particles on line PQ and PS. Since the 
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Fig. 7. Variation of the second invariant of the strain-rate tensor on three arbitrary selected lines for 
v,-500 m/s. 

tangential velocity of target and penetrator particles abutting I", are nearly the same, for normal 
tractions to be continuous across Tit normal derivatives of v on T, must be discontinuous if 
target and penetrator particles are made of different materials. This provides a justification for 
the jump in the value of / as one crosses T,. Recalling that the hydrostatic pressure contributes 
significantly to the normal tractions, it is not necessary that / be sharply discontinuous across T, 
for the normal tractions on the two sides of r, to match with each other. 

Histories of field variables 

An outstanding problem in mechanics is the choice of the most appropriate constitutive 
model for the problem at hand. In general, the solution of a boundary-value problem depends 
strongly upon the constitutive model used. In order to determine which one of the many 
recently proposed theories [20-23] of large deformation elastoplasticity is suitable for a 
penetration problem, we compute histories of the hydrostatic pressure, second invariant of the 
strain-rate tensor and the spin for four penetrator and two target particles. These results should 
also help identify desirable testing regimes for practical problems. 

The first step in finding the histories of a field variable is to plot the streamlines. Streamlines 
for four penetrator particles that once occupied the places 4(0.10, 5.88), 5(0.15,5.88). 
C(0.90, 5.88) and D(0.95, 5.88), and two target particles sometime situated at £(0.10, -3.12) 
and F(0.15,-3.12) are shown in Fig. 8. That the streamlines do not intersect or merge 
together is clear from the blow up of the region enclosed in the box. In the discussion below we 
refer to the material particle that once occupied the place A au» the material particle A. 

Histories of fiela variables for penetrator particles Figure 9 shows, for v, ■ 500 m/s, (r, z) 
coordinates of the four penetrator particles at different non-dimensional times; the time being 
reckoned from the instant these particles occupied the aforestated places, and the non- 
dimensional time equals thf physical time multiplied by (vs/r0). The variation of the radial and 
axial components of the velocity of these particles is plotted in Fig. 10. Particles A and fl, 
initially near the axial line, arrive in the vicinity of the stagnation point at time t ** 5 when their 
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Fig. 8. Streamlines for four penetrator and two tirget particles for v, - 500 kn/s. 

axial velocity relative to that of the stagnation point becomes zero. The radial velocity of these 
particles gradually increases, becomes maximum just before they begin turning upwards at 
/=*6.5 and then decreases to zero quite rapidly. Material particles C and D that were initially 
close to the free surface of the penetrator approach near their bottom-most positions at t ^ 2.6. 
Their radial velocity stays zero till they are close to their lowest positions, increases sharply and 
then decreases to zero equally rapidly too. In Fig. 11, we have plotted histories of the second 
invariant / of the strain-rate tensor and of the plastic spin. Because the deformations are 
axisymmetric, there is only one non-zero component of total spin which equals the plastic spin 
since elastic deformations have been neglected. The peak values of / and the plastic spin for 
material particles C and D are very large as compared to those for material particles A and B, 
For particles C and D, the magnitude of the plastic spin is either comparable or slightly larger 
than the value of /, and the peak values of / and the plastic spin occur at almost the same 
instant. For these particles, / and the plastic spin increase or decrease in tandem. Peak values 
of / at particles A and B occur after their axial Component of velocity has changed sign, i.e. 
they are moving upwards as observed from the stagnation point. Whereas / for these particles 
increases quite rapidly and stays large for an extended^perjod of time, the magnitude of the 
plastic spin for them increases slowly at first and once these particles are close to the stagnatk 
point, the spin increases rapidly, and subsequently drops to zero ar-eyerTa faster rate. The 
histories of the non-dimensional hydrostatic pressure shown inJMg. 12 reveal that for material 
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Fig. 9. r and z -coordinates at different time» of the four penetrator particles. 
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Fig. 10. The variation with time of the axial and radial velocity of the four penetrator particles. 
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Fig. 11. !iistories of the second invariant of the strain-rate tensor and the plastic spin for the four 
penetrator particles. 

particles A and B, pm„ is very large as compared to that for particles C and D. This is because 
particles C and D are close to the traction free surface of the penetrator. 

Histories of field variables for target particles. Figure 13 depicts the r- and z -coordinates and 
the radial and axial components of the velocity of the two target particles E and F at different 
times. As these particles approach the stagnation point z ■ 0 at t =■ 7, their radial velocity begins 
to increase sharply, becomes maximum at r»7.5 and 6.5, respectively, for £ and Ft then 
rapidly decreases to zero. Their axial velocity relative to that of the stagnation point exhibits 
the reverse trend, i.e. it decreases to zero at f =»4.5 and then increases gradually, the rates of 
decrease and increase of the axial velocity are nearly the same. The histories of the second 
invariant of the strain-rate tensor and the plastic spin for these two particles are exhibited in 
Fig. 14. Even though the values of / for these particles gradually increase till t =» 5, their plastic 
spin stays zero. At about t =* 5, both the values of / and of the plastic spin increase rapidly. The 
peak values of the plastic spin for these particles equal nearly twice the peak values of / for 
them. The plastic spin decreases to zero much faster than /. The history of the non-dimensional 
hydrostatic pressure for these particles is shown in Fig. 12. Peak values, equal to 14.200,, of the 
hydrostatic pressure at these particles occur when they are close to the stagnation point. Once 
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Fig. !2. Histories of the hydrostatic pressure for four penetritor and two target particles. 
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Fig. 13. The variation with time of r and x-coordinates, and the axial ind radial velocity of the two 
target particles. 
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Fig. 14. Histories of the second invariant of the strain-rate tensor and the plastic spin for the two 
target particles. 

these particles leave the area surrounding the stagnation point, the hydrostatic pressure 
decreases rather rapidly to zero. 

CONCLUSIONS 

We have studied the penetration of a rigid/perfectly plastic rod penetrating into a thick 
rigid/perfectly plastic target when the deformations of both as seen by an observer situated at 
the stagnation point and moving with it are steady. It is found that the shape of the common 
interface near the stagnation point is ellipsoidal, and significant deformations of the penetrator 
occur in the hemispherical region of radius 2r0 centered at the stagnation point; r0 being equal 
to the radius of the undeformed cylindrical portion of the rod. The axial resisting force 
experienced by the penetrator and the hydrostatic pressure near the stagnation point depend 
strongly upon the non-dimensional parameter a = pv;/o0 where p is the mass density, vs the 
speed of the stagnation point and a0 is the yield stress of the material in a quasistatic simple 
compression test. For the three speeds considered, the crater radius was found to vary from 
1.75/u to 1.92r0. The values of the resistive strength parameters introduced by Täte [2] and 
Alekseevskii [3] depend upon the penettation speed v, and also on ratio p,lpp of the mass 
densities. The peak values of the plastic spin experienced by a penetrator or a target particle 
either equal or exceed the peak values of the second invariant / of the strain-rate tensor for it. 
Thus, plasticity theories which properly account for the evolution of the high plastic spin and 
defotmation induced anisotropy ought to be employed in the study of penetration problems. 
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STEADY-STATE PENETRATION OF TRANSVERSELY 
ISOTROPIC RIGID/PERFECTLY PLASTIC TARGETS 

R. C. BATiuf and A. ADAM 

Department of Mechanical and Aerospace Engineering and Engineering Mechanics, 
University of Mtuouri-RoUj. Rolk, MO 65401-0249. USA 

(Ktttwed 11 Dtcember 1990) 

Abstract—Axisymmetric deformations of a transversely isotropic rigid/perfectly plastic target being 
penetrated by a long rigid cylindrical rod with an ellipsoidal nose have been analyzed. The deformations 
of the target appear steady to an observer situated at the penetrator nose tip. The contact between the 
target and the penetrator is assumed to oe smooth. Computed results show that the deformation field 
adjacent to the penetrator nose surface is significantly influenced by the nose shape, and the ratio of the 
yield stress in the axial direction to that in the transverse direction. The axial rooting force experienced 
by the penetrator is found to depend strongly upon the nose shape and the ratio of the yield stress in 
the axial to that in the transverse direction, but weakly upon the square of the penetration speed. 

I. INTRODUCTION 

For very thick targets, the steady-state portion of the 
penetration process constitutes a significant part of 
the entire penetration event. Accordingly, a consider- 
able amount of work has been done in studying this 
process. For example. Täte (1,2] and Alekseevskii (3] 
have modified models in which the steady defor- 
mations of the target and the penetrator are assumed 
to be governed by purely hydrodynamic incompress- 
ible flow processes by incorporating the effects of the 
material strengths of the target and the penetrator. 
These strengths were assumed to be some multiple of 
the yield stress of the respective materials, the multi- 
plying factor has recently been given by Täte [4, 5] by 
using a solenoidal fluid flow model Pidsley {61, Batra 
and Gobinath [7], and Batra and Chen [8] have esti- 
mated these multiplying factors from their numerical 
solutions of the problem. 

We refer the reader to the review articles of Back- 
mann and Goldsmith [9], Wright and Frank {10], 
Anderson and Bodner(ll], and books by Zukas et 
al. (12], Blazynski[13], and MacaukyJM] for a dis- 
cussion of various aspects of the penetration prob- 
lem, and for a list of references on the subject Ravid 
and Bodner [15], Ravid et al. {16], ForrestaJ et al. {17], 
and Batra and Chen [8] have proposed engineering 
models of different complexity. 

The works referred to above have assumed the 
target material to be isotropic. However, manufactur- 
ing processes such as rolling induce anisotropy in the 
material properties. For example, in beavily-rolled 
brass, the tensile yield stress transverse to the direc- 
tion of rolling may be as much as ten percent greater 
than that parallel to the direction of rolling [18]. 
Greater variations may be obtained by an appropri- 
ate combination of mechanical and heat treatments, 

fAlso Senior Research Investigator, Intelligent Systems' 
Center. 

which produces a final recrystallization texture close 
to that of a single crystal {19). Here we assume the 
target material to be transversely isotropic, and study 
the effect of varying the yield stress in the axial 
direction upon the deformation fields during steady- 
state penetration of the target by a rigid cylindrical 
penetrator. It is assumed that the degree of an- 
isotropy, defined as the ratio of the yield stress in the 
axial direction to that in the transverse direction, 
stays constant during the deformation process. The 
effect of the speed of penetration as well as the nose 
shape on the deformations of the target is also 
investigated. 

1 FORMULATION OF THt PtOftLEM 

We use a cylindrical coordinate system with origin 
at the center of the penetrator nose and r-axis 
pointing into the target We presume that the defor- 
mations of the target are axisymmetric and appear 
steady to an observer situated at the penetrator nose 
tip and moving with it at a uniform velocity e0t, • 
being a unit vector in the direction of motion of the' 
rigid penetrator, which we take to be the x-axis. 
Equations governing the target deformations are 

divv-0, (2.1) 

p(tgrad)v»div#. (2.2) 

Here v is the velocity of a target particle relative to 
the observer situated at the penetrator nose tip, p is 
the mass density for the target material, and 9 is the 
Cauchy stress tensor. We neglect elastic deformations 
of the target and have assumed in (2.1) that its 
deformations are isochoric. Equations (2.1) and (2.2) 
express, respectively, the balance of mass and the 
balance of linear momentum. 

We assume that the target material obeys Hill's 
yield criterion [20], which for transvenely isotropic 
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materials  undergoing  axisymmetric  deformations 
becomes 

*i<*„-o,+(»«-o,i 
(2.3) 

where 

2/-l/*L. 
2#-2/*L-l/*L. 
2A/-1/*,2,, (2.4) 

J„ and d„ are yield stresses in the or- and x-directions, 
respectively, and <J„ is the shear yield stress. 

The constitutive relation for the target material can 
be written as 

/*- 

4,-4./"/. 

£-3f*(f + 2/f). 

fK^-fW + iSfDL     2 
F{F + 2H) M   "" 

2D • grad * + (grad ?)r. 

In eqn (2.S), # is the Cauchy stress tensor, s the 
deviatoric stress tensor, and p the hydrostatic press- 
ure not determined by the deformation history. 
Equations (16) and (17) relate the components of the 
deviatoric stress tensor to the components of the 
strain-rate tensor D. Note that because of the depen- 
dence of / upon D„, Dm, Da, and Dn, even s„ 
depends upon all non-zero components of D. 
Equations (2.6H2.9) reduce to those for isotropic 
rigid/perfectly plastic materials if one takes 
F m H m 0.5/*I, M m 1.5/aJ, a% being the yield stress 
in a quasistatic simple tension or compression test. 

Equation (11) and the one obtained by substitut- 
ing from eqns (2.6H110) into eqn (2.2) are the field 
equations to be solved for p and ▼ subject to suitable 
boundary conditions. Before stating theae, we non- 
dimensionalize the variables as follows: 

f - r\r%%    i m t/r#f 

(1U) 

penetrator and a0 is a reference stress. Rewriting eqns 
(2.1) and (2.2) in terms of non-dimensional variables, 
dropping the superimposed bats, and denoting the 
gradient and divergence operators in non-dimen- 
sional coordinates by grad and div, we obtain the 
following equations 

divf-0, (112) 

«(vgrad)*» -gradp+ diva, (2.13) 

where a * pci/a9 is a non-dimensional number and 
measures the magnitude of inertia forces relative to 
the flow stress of the material. At the 
target/penetrator interface we impose 

t(#.)-0, 

vi-0, 

(IM) 

(115) 

Here re is the radius of the cylindrical portion of the 

where ■ and t are, respectively, the unit outward 
normal and the unit tangent vectors at a point on the 
surface. At points far away from the penetrator 

|» + «|-»0   as   (ra + j,)w-»ao,*>-oo,   (116) 

|#i|—0   as   x—oo. (117) 

The boundary condition (114) states that the 
target/penetrator interface is smooth, and (115) 
implies that there is no penetration of the target 
material into the penetrator. Equation (116) implies 
that target particles at a large distance from the 
penetrator appear to be moving at a uniform speed 
with respect to it, and eqn (117) states that far to the 
rear the traction field vanishes. Note that the govern- 
ing eqns (2.13) with a given by (16) and (2.7) are 
nonlinear in ?, and that a solution of the boundary- 
value problem stated above, if there exists one, will 
depend on the rate at which quantities in (116) and 
(117) tend to zero. Since the problem is difficult to 
solve analytically, we seek an approximate solution of 
the problem by the finite element method.    ♦- 

J. FINITE ELEMENT SOLUTION OE THE EtOILEM 

3.1. Computational considerations 

Recalling that the target deformations are assumed 
to be axisymmetric, only the finite region R shown in 
Fig. 1 is studied, and the boundary conditions (116) 
and (2.17) are replaced by the following 

rf--1.0,       &,-0, 
on the boundary surface EFA,   (3.1) 

•«-I.      »,-0, 

on the bottom surface AB.   (3.2) 
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Fig. 1. Tbc finite region analyzed aad iu discretization. 

On the axis of symmetry DE, we impose 

<r„-0,      c,-0. (3.3) 

A finite element solution of the problem denned by 
eqnt (2.12) and (2.13) with s given by non-dimension- 
allied versions of (2.6H210), and boundary con- 
ditions (2.14). (2.15), and (3.1H3.3) has be-n found 
for several values of a, dajdiMt and penetrator 
nose shapes. The finite element code developed by 
Batra {21] was modified to solve the present problem. 
The changes made were checked by solving the same 
penetration problem for an isotropic target with the 
modified code by setting F - H - 0.5, and M - 1.5, 
and with the original code. Since in the numerical 
solution of the problem, eqn (2.12) is only approxi- 
mately satisfied, the two sets of results for the same 
problem computed with the original code and the 
modified code, as shown in Fig. 2, agree qualitatively, 
hut differ quantitatively by about ten percent We 
have used the method of Lagrange multipliers to 
satisfy the incompressibility constraint (2.12), and the 
boundary condition (2.15). 

3.2. Results for the trcnaxmty isotropic target 

We have assigned the following values to various 
variables when computing numerical result* that are 
presented below 

ec-*„-*„« 498 MPa, 

/>-?M0kg/m»,   rt- 2.54 mm.   (3.4) 

The effect of varying #„,«,, and the penetrator nose 
shape is analyzed. The value of du is computed from 

i: 

1      2 
(3.5) 

Except when discussing the effect of the nose shape 

10 19        10 2.5 
Owtowt *-m tf» n«M Up 

Fig. 2. Comparisoo of remit» for an isotropic target com« 
putod with tbt two codes. 

*> 
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Fig. 3. Effect of the yield tut« is the axial direction on the 
distribution of the norm*! stress at target panicles on the 

penetratoT note surface, a - 6.23. 

on the deformations of the target* the penetrator nose 
is taken to be hemispherical. 

Figure 3 shows the effect of the yield stress in the 
axial direction on the distribution of the normal streu 
at target particles situated on the penetrator/targtt 
interface when a - 62$. As expected, the magnitude 
of the normal stress increases with an increase in the 
value of im. The range of values of da considered is 
considerably more than that likely to occur in a 
practical situation. In Figure 4, we have plotted the 
variation with 6a of the strain-rate measure / and the 
tangential speed at target particles abutting the 

Fig. 4. Effect of the ykld strex in the axial direction on the 
«rain-ret« measure / and the tangential speed at target 

parucks on the ptoetrator note turface. c - 6.25. 

10 19 £0 n 
Omanern tnm tm MM tip 

Fig. 5. Effect of the yield stress in the axial direction on /, 
a„, and C, at target particles on the axial line. « - 6.25. 

penetrator nose surface for a hemispherical nosed 
penetrator and a - 6.25. At every target particle on 
the penetrator nose surface, both the tangential speed 
and the strain-rate measure / increase with t„. The 
tangential speed varies slowly with the value of i„ at 
a target particle on the penetrator nose periphery. 
The dependence of (-<r„), /, and the axial velocity at 
target particles on the axial line upon the yield stress 
iu is depicted in Fig. S. The rate of decay of the axial 
velocity as seen by an observer moving with the 
penetrator nose tip decreases with an increase in the 
value of «V We note that the values of / and the 
absolute axial velocity become zero at target particles 
on the axial fane whose distance from the penetrator 
nose tip exceeds 3rt. Thus, the region studied is 
adequate. The values of ea do not decay to zero, but 
approach the value of p as we move away from the 
penetrator nose surface. We recall that we have 
neglected elastic deformations of the target,.and the 
hydrostatic pressure does not influence the wielding 
of the material. The consideration of elastic 
deformations should give a better estimate of the 
hydrostatic pressure at a point. 

The distributions of the normal stress and the 
strain-rate measur: / at target particles adjoining the 
target/penetrator interface for four different nose 
shapes, i.e. rjrt« 0.2,0.5,1.0, and 2.0, are shown in 
Fig. 6. Here 2/0 and 2>, equal the length of the 
principal axes in the r and 2 directions, respectively, 
of the penetrator nose. The normal stress at the 
stagnation point appears to be the same for all four 
different nose shapes. The normal stress decreases 
rapidly with the angular position 8 for a long narrow 
nose. For the essentially blunt nose, the normal stress 
stays virtually constant on the entire nose surface, 
and rapidly drops to zero near the nose periphery. A 
similar behavior was found by Batra for an isotrop« 
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Fig. 6. Distribution of the normal stress and the strain-rat« 
measure / at target particles on the penetrator nose surface 

for four different shapes of the penetrator nose. 

viscoplastic[2l) and an isotropic thermoviscoplastk 
target {22]. For a cylindrical penetrator with a long 
pointed nose, the strain-rate measure / assumes 
highest values at the stagnation point, and the values 
of / drop off sharply with the angular position 0. 
However, for a blunt nose, / stays essentially constant 
at a relatively low value on the entire surface and 
suddenly shoots up near the nose periphery. Thus, 
very severe deformations of the target occur at points 
surrounding the stagnation point for a long tapered 
nosed penetrator, and near the nose periphery for a 
blunt nosed penetrator. The variation of /, (- v,), and 
(-O at target particles on the axial line for four 
different nose shapes is depicted in Fig. 7. The value 
of the axial velocity changes rather slowly for a blunt 

Fig. 7. Distribution of/,»,, and em at target particles on the 
axial line for four different shapes of the penetrator nose. 

70 

nosed penetrator, but quite rapidly for a long tapered 
nosed penetrator. The difference in the values of 
(-ou) at a point on the axial line distant 4r0 from the 
penetrator nose tip is mainly due to the different 
limiting values of the hydrostatic pressure for the four 
nose shapes. Ideally, the pressure should decay to 
zero at target points far away from the penentrator 
nose. However, the assumption that the target ma- 
terial is rigid/perfectly plastic and the observation 
that the strain-rates are extremely small at target 
points whose distance from the penetrator nose tip 
exceeds 4r9 suggest that the computed values of p at 
target particles far away from the penetrator nose 
surface are not very reliable. 

In Fig. 8, we have plotted for a hemispherical 
nosed penetrator and <*„/<*»- 1-8 the distribution of 
the normal stress, /, and the tangential speed for 
different values of «. As for an isotropic target [21], 
the normal stress at target particles near the nose 
periphery decreases with a. The tangential speed and 
the values of / seem to be affected very little by the 
value of CL At target particles situated on the axial 
line, the values of <r„, /, and v, do not change much 
when a is increased from 3.0 to 6,25. Their plots and 
those for <*„/<?,- 3.6 are not included in the paper. 
We note that results for dj«9 - 3.6 are qualitatively 
similar to those for <*„/<?, ■ 1.8. 

Figure 9 shows the variation of the axial speed v, 
with r on the planes 7 * 0 and i - -1.0 for the four 
different nose shapes. These results indicate that the 
target material adjacent to the sides of the penetrator 
appears to extrude rearward as a uniform block that 
is separated from the bulk of the stationary target 
material by a narrow region with a sharp velocity 
gradient. This observation provides a partial justifica- 
tion for the velocity field assumed by Ravid and 

Fig. 8. Distribution of the normal stress, /, and the tangen- 
tial spend on the penetrator nose surface for different values 

of* 

} 
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Fig. 9. Variation of the axial speed with r oo tht surface* r - 0 and i • -1.0. 
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Bodoer [15] in their work involving targets of finite 
thickness. We add that Batra and Wright (23) found 
a similar result for the steady state penetration of 
isotropic rigid/perfectiy plastic targets. 

The axial resisting force F experienced by the 
penetrator is given by 

oosjrin gtsm» 9 + frs/r.? cos10)1* Jtt 

* [^B^r.^^Bf "' 0€) 

where tht angle 8 is defined in Fig. I, and (r, x) are 
the coordinates of a point on the penetrator/target 
interface. The corresponding axial force in physical 
units is given by {*r\ot)F. We note that the ex* 
presston given by Batra (21] for the axial force, except 
for the bemitpberkal nose shape, is in error. The 
dependence of the axial force upon a, rjr^ and «f„/c, 
is exhibited in Fig. 10. For each one of the two values 
of imla% considered herein« F depends upon a very 
weakly. However, F depends strongly upon rjr, and 
1j9t\ the resisting force is maximum for a blunt 
nosed and least for a tapered nosed penetrator. F 
increases rapidly with 9m first, but slowly after djc% 

exceeds approximately 1.9. 

4 CONCLUSIONS 

We hive studied the steady tute penetration of a 
rigid/perfectly pUstk and transversely isotropic 
target being penetrated by a rigid cylindrical pen- 
etrator having an ellipsoidal nose. It is found that the 

V*»«;/* 

o        i        i        s       *        5       •        r 

Fig. 10. Dependence of the axial resisting force upon 
various parameters. 

axial reii$ting force experienced by the penetrator 
depends strongly upon the penetrator nose shape, 
and also upon the ratio of the yield »tress in the axial 
direction to that in a transverse direction. The axial 
resisting for» depends rather weakly upon the square 
of the penetration speed. Peak values of the strain* 
rate measure / occur near the stagnation point for a 
long tapered nosed penetrator, but near the nose 
periphery for a blunt nosed penetrator. 
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Summary. Steady state axisymmetric deformations of an elastic perfectly plastic target being penetrated by 
a fast moving ngid cylindrical rod have been anal\ 7ed by the finite element method. The target is assumed to 
obey the von Mises yield criterion and the associated flow rule. Contact between target and penetrator has 
been assumed to be smooth. A mixed formulation, in which two components of the velocity and four 
components of the deviatonc stress twnsor at each node point, and the hydrostatic pressure at the centroid of 
an element arc taken as unknowns, is employed This should give a better estimate of tractions acting on the 
penetrator nose, and hence of the axial resisting force experienced by the penetrator. The effect of the 
penetrator speed, its nose shape and the elasticity of the target material on the target deformations, and the 
axial force experienced by the penetrator has been studied. The consideration of elastic effects helps delineate 
the elastic-plastic boundary in the target. 

1 Introduction 

An outstanding problem in penetration mechanics is to find, within reasonable resources, 
whether or not for the given penetrator and target geometries, materials, target support 
conditions, penetrator speed, and the angle of attack, the target will be perforated or not. If the 
target is perforated, the speed of the penetrator when it ejects out of the target is of interest. And if 
the target is not perforated, one will like to know the shape and size of the hole made in the target. 
This problem has defied a complete solution for many years. We refer the reader to review articles 
by Backman and Goldsmith [1], Wright and Frank [2]. Anderson and Bodner (3|. and the books 
by Zukas et a!. [4], Blazynski [5]. and MaCauley (b] for a summary of the available literature on 
ballistic penetration. Awerbuch [7], Awerbuch and Bodner [8|. Ravid and Bodner [9]. Ravid et al. 
[10], Forrestalet al. [Ill, ar,d Batra and Chen [12] have proposed engineering models ofdifFerent 
complexity. 

In recent years, emphasis has been placed on kinetic energy penetrators. which for terminal 
ballistic purposes mav be regarded as long metal rods travelling at high speeds. For impact 
velocities in the range of 2- 10 km s. incompressible hydrodynamic flow equations can be used 
to describe adequately the impact and penetration phenomena, because large stresses occurring 
in hypervelocity impact permit one to neglect the rigidity and compressibility of the striking 
bodies. Birkhoffet al. [13] and Pack and Evans (14) have proposed models which require the use 
of the Bernoulli equation or its modification to describe the hypervelocity impact. At ordnance 
velocities 10.5-2 km si. the material strength becomes an important parameter. Allen and 
Rogers [15] represented the material strength as a resistive pressure. Alekseevskii [16] and Talc 
[17], [18] have considered separate resistive pressures for the penetrator and the target and 
proposed that these equal some multiple of the umaml yield stress of the matertal. However, the 
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multiplying factor was not specified. Täte [19], [20], Pidsley [21]. Batra and Gobinath [22]. 
Gobinath and Batra [23]. and Batra and Chen [12] have estimated these multiplying factors. 
Whereas Täte used a solenoid fluid flow model to simulate the steady state penetration process. 
other investigations relied on a numerical solution of the problem. 

We recall that the one-dimensional penetration theories [ 15] - [ 18] ignore the lateral motion. 
plastic flow and the detailed dynamic effects. In an attempt to understand better these 
approximations. Batra and Wright [24] studied the problem of a rigid cylindrical rod with 
a hemispherical nose penetrating into a rigid perfectly plastic target. The target deformations as 
seen by an observer moving with the penetrator nose tip, were presumed to be steady. 
Subsequently, Batra and his co-workers [25]-[30] studied the effect of nose shape, strain 
hardening, strain-rate hardening and thermal softening characteristics of the target material. 
Batra and Gobinath [22] - [23] have analyzed the steady state penetration problem in which both 
the target and the penetrator deform. 

When the target material is modeled as rigid perfectly plastic it is likely that the hydrostatic 
pressure at target points adjoining the penetrator target interface is increased because of the 
rigidity of the surrounding target material. Also, computations of stresses and hence tractions on 
the target penetrator interface from the finite element solution in which velocities at nodal points 
are taken as unknowns is less accurate as compared to the nodal velocities. We alleviate these 
concerns here by including the effect of material elasticity in the problem formulation, and using 
a mixed finite element formulation in which both the nodal velocities and nodal stresses are taken 
as unknowns. 

2 Formulation of the problem 

We use a cylindrical coordinate system with origin attached to the center of the penetrator nose, 
moving with it at a uniform speed r0. and positive :-axis pointing into the target, to describe the 
deformations of the target. These deformations appear to be steady to an obser\er situated at the 
origin of this coordinate system, and are governed by the following equations: 

Balance of mass: div v - 0. 

Balance of linear momentum: div a * ^r-grad) r. 

Constitutive relations: a ■ -pi + 5. 

imZGD- IK). 

j m 2tfl) IK. 
where 

2/i 
13/" 

2I2 - tr(ZK') 

(1) 

(21 

(3) 

14) 

151 

♦6.1.2» 

i«ir-grad>j + 5*f' - m. I-I 

2D - grad v + (grad rtr.      2JF - grad r - (grad rir. (gi 

Equations (1) and i2)are written in the Eulenan description of motion. The operators grad and 
div denote the gradient and divergence operators on fields defined in the present configuration. 
In Eqs. (ll-|8). ns the velocity of a targe» particle relative to the penetrator. v the Cauchy stress 
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tensor, s its deviatoric part, p the hydrostatic pressure not determined by the deformation history, 

and an open circle on 5 indicates the Jaumann derivative defined by Eq. (7) for the steady stress 

field. Furthermore, G is the shear modulus, Dp the plastic strain-rate, // defined by*Eq. (6.1) may be 

interpreted as the shear viscosity of the target material, a0 is the yield stress in a quasistatic simple 

compression test, D the strain-rate tensor and W is the spin tensor. Equation (4) expresses 

Hooke's law written in the rate form and is based on the tacit assumption that the strain-rate has 

additive decomposition into elastic and plastic parts. We note that Pidsley [21] used the ordinary 

time derivative rather than the Jaumann rate in Eq. (4). Equation (5) follows from the assumption 

that the target material obeys von Mises yield criterion and the associated flow rule. However, in 

Eqs. (3)-(5) we have assumed that a material particle is undergoing elastic and plastic 

deformations simultaneously. Substitution from Eqs. (5) and (7) into Eq. (4) gives the following 
differential equation for s: 

(vgrad)s +sW- Ws 4- (<?//*) $ - 2GD. (9) 

We non-dimensionalize variables as follows: 

<j = O/G0 ,     s = s/(i0,     p = p/ffo,     v = V/UQ ,     f - rfr$, 

-        r„ <10> 

&o 

where the superimposed bar indicates the non-dimensional variable, the pair (r, 2) the cylindrical 

coordinates of a point, v0 the uniform penetrator speed, r0 the radius of the cylindrical part of the 

penetrator, and 2r0 and 2rn equal the length of the principal axes of the ellipsoidal nose in the 

r and z directions, respectively. Equations (1), (2), and (9), when written in terms of 

non-dimensional variables become 

divv  -0, (11) 

-grad p + dws = a(vgrad) >', (12) 

s + /i-/((v-grad) J + s\V- Ws) = ßD, (13) 

w lie re 

a=—,      7 = 7?,      and      ß = ^^- (14) 
^0 G 2]/3 / 

are non-dimensional numbers, and we have dropped the superimposed bars. Henceforth, we 

will use only non-dimensional variables. Note that a and 7 are constants for the given problem, 

but ß varies from point to point in the deforming region. The value of 2 signifies the importance 

of inertia forces relative to the flow stress of the material, and that of 7 gives the effect of 

material elasticity. For most metals 7 is of the order of 10~3. For a rigid perfectly plastic 
material 7 equals zero. The value of the Weissenberg number {ßy) varies from 1CT3 to 104 in 
the deforming region. 

We assume that the larget/penetrator interface is smooth, and impose on it the following 
boundary conditions: 

t(<xn) = 0, 

r-n = 0. (16) 
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Here n and t are, respectively, a unit norma! and a unit tangent vector to the surface. Equation 
(15) implies that there is no frictional force acting at the contact surface, and the boundary 
condition (16) ensures that there is no interpenetration of the target material into the penetrator 
and vice-versa. A partial justification for boundary condition (15) is that a thin layer of material 
at the interface either melts or is severely degraded by adiabatic shear. At points far away from 
the penetrator, we impose 

\v + e\-+Q,     as     (r-f:2)1'2 x : > - -JO , 

■0. as x,      rfel. 

where e is a unit vector in the positive z-dircction. The boundary condition (17) embodies 
the assumption that target particles far from the penetrator and not on the bounding back 
surface appear to be moving at a uniform velocity with respect to it. Equation (18) implies 
that when a target particle has moved far to the rear of the penetrator, the surface tractions 
on it vanish. 

The problem formulation outlined above differs from that studied earlier by Batra and 
co-workers [25] —[30] because of the consideration of elastic deformations here. In earlier work 
substitution for s in Eq, (12) resulted in non-linear field equations for v. Here, Eq. (13) can not be 
solved easily for s; accordingly we solve Eqs. (11) — (13) for p, v and s. This necessitates that the 
boundary conditions for stress components be prescribed at the entrance region. Shimazaki 
and Thompson [31] have studied a simple problem whose governing equations are similar to 
Eqs. (11) —(13), and have justified prescribing p and s at the entrance region. 

(20) 

3 Finite element formulation of the problem 

Unless we use special infinite elements, a numerical solution of the problem requires that we 
consider a finite region. Accordingly, we study deformations of the region R shown in Fig. 1, and 
replace boundary conditions (17) and (IS) at the far surfaces by the following conditions (19) and 
(21) on the boundary surfaces of the finite region being analyzed: 

rr  ss 0.      r. — —1.0      on the bounding surface EFA, 

<jr: = 0,      tv = 0 on the axis of symmetry DE, 

ff-. = 0,      % ss Ö on the surface AB. 

Conditions (20) follow from the assumed axisymmetric nature of deformations. The validity of 
replacing (17) by (19), (IS) by (21), and the accuracy of the computed results depend upon the size 
of the region R. Since Eq.(13)can not be solved explicitly for s, but is to be solved simultaneously 
with Eqs. (11) and (12), we need to specify the state of stress of the material entering the control 
volume (e.g. see Shimazaki and Thompson [31]). Accordingly we set 

p — 0.      sn = 0.      s00 = 0.      5.; - 0      and srs — 0      on the boundary surface EFA .    (22) 

The first step in analyzing the problem numerically is to obtain a weak formulation of the 
problem. Let <p and ij/ be smooth and bounded vector and tensor-valued functions defined on the 
region R that vanish on the surface EFA, and <fir = 0 on AB and DE, <}> • n — 0 on the 
target penetrator interface BCD. Also, let J; be a bounded, scalar valued function defined on R. 
Taking the inner product of both sides of Eqs. (11), (12), and (13) with //, <f> and ^, integrating the 
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19r, 

L3r, 

n 

L9rn 
j*        Fig. 1. The finite region studied and its 

discretization 

resulting equations over R, using the divergence theorem, the traction boundary conditions (15), 
(19) and (20), and the aforestated boundary conditions on ifi and if/, we arrive at the following 
equations; 

l*0xvv)aV=Q, 

j p(6\\'4>)dV~ j j:(grad0 + (grad <f>)T) dV = stj [(r-grad) r] ■ <£ f/K, 

ljfJiY-ir     ßU) $' [grad v + (grad v)T] <3t% 

s = s + ßy({v ■ grad) $ + sft7 - Ws). 

(23) 

(24) 

(25) 

(26) 

Here and below the integrations are over the region R. The boundary value problem defined by 
Eqs. (11)—(13), (15). (16), and (19)—(22) is equivalent to the statement that v and s satisfy the 
prescribed essential boundary conditions and Eqs. (23} —(25) hold for every 0, i{/ and t] such that 
grad (j), grad \jt. and >/ are square integrable over R. and <p and i// satisfy the stated homogeneous 
essential boundary conditions. 

An approximate solution of Eqs. (23) —(25) has been obtained by using the finite element 
method (e,g. see Hughes [32]). In order to preclude spurious oscillations in the stress deviator 
s and also to improve upon the rate of convergence, we employed the Petrov-Galerkin 
approximation of Eq. (25) but Galerkin approximation of Eqs. (23) and (24) (see Hughes [32]). 
The region R is divided into quadrilateral subregions, called finite elements, over each of which 
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v and s are approximated by simple polynomials defined in terms of their values at the four corner 
nodes. The pressure p is assumed to be uniform over each element; this value is assigned to the 
centroid of the element. The basis functions used in the Petrov-Galerkin approximation are those 
given by Brooks and Hughes [33]. The boundary condition (16) on target/penetrator interface 
BCD is enforced by using the method of Lagrange multipliers. 

We note that Eqs. (23)-(25) are coupled and are nonlinear in ip. The following iterative 
technique was used to linearize them: 

f $djv i>m) dV=* 0, (27) 

f p"((div <j>) dV~ } s{vm~ '}: (grad <p + (grad <p)T) dV = a j ((,."»-' . grad) v
m) ■ t$> dV, (28) 

ff:sdV + jiff:s[vm-i)dV= {$(/*-*) #:[gräd v*~l + (grad ym^)T]dV, (29) 

where m is the iteration number. The iterative process was stopped when 

(Zip™ - p>»-r-v2 £om(i \P»>->\2y\ (30.2) 

(X \\s'" -s'"~[\\2y 2 g 0.01(2; jfV"- Ml")1 2, (30.3) 

where [|j')J2 = ty + i;.2tand ||si|2 = tr(.*5r). The summation sign refers to the sum of the indicated 
quantity evaluated at all nodes in the finite element mesh. This convergence criterion is weaker 
than the local norm used by Batra and his co-workers [25]-[30]. 

Having determined pressure /; at the centroids of elements, the pressure at node points is 
computed from 

X (j NtNj dV) pj dV = j N$ dV,      i = 1, 2 M (31) 

where M is the number of nodes, and A'ls N2i.., are the piecewise bilinear finite element basis 
functions. We note that Eq. (31) also serves to smooth out the pressure field. 

m 

4 Computation and discussion of results 

A computer code based on Eqs. (27) —(29) and employing 4-noded quadrilateral elements has 
been developed. The two components (r,. v.) of the velocity and four components (srr, s00, sr:, and 
5-.) of the deviatoric stress tensor are taken as unknowns at each node, and the hydrostatic 
pressure p is assumed to be constant within an element. The validity of the computer code was 
established by solving the radial flow problem discussed by Shimazaki and Thompson [31]. For 
the same finite element grid and numerical values of parameters as those used by Shimazaki and 
Thompson [31]. the two sets of computed results plotted in Fig. 2 agree well with each other. 
Another test problem studied was a hypothetical one involving the flow of a Navier-Stokes fluid 
in a circular pipe and achieving a favorable comparison between the computed and analytical 
results; this problem is discussed in the Appendix. 

In the results presented below, the target material was assumed to be an aluminium-alloy for 
which we took a0 = 340 MPa. 0 - 21 GPa, and o = 2S90kg/m3. However, the results are 
presented below in terms of non-dimensional numbers and are therefore valid for other 
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0       10      20      30      40      50      60      70      80      90 0        10      20      30      40      50      60      70      SO      90 

Angular position,8" Angular position,6" 

■ a   =   2 

a  -  6 

—   ■   — a  -   10 

Fig. 4. Distribution of the compressive normal stress on the penetrator nose surface for the three different 
nose shapes and for 2 = 2. 6. 8, and 10 when the target material is modeled as elastic perfectly plastic 

combinations of target material and penetration speed. The finite element subdivision of the 
target region when the penetrator has an ellipsoidal nose with rjr0 = 2.0 is shown in Fig. 1. The 
components of the deviatoric stress tensor and the hydrostatic pressure were assigned to be zero 
at the entrance region EFA. 

Figure 3 depicts the effect of material elasticity (y = 1.26 x 10~2) on the pressure 
distribution at the nose surface for three different nose shapes with rjr0 = 0,2, 1.0, and 
2,0, and when x was set equal to 10.0. For each nose shape the normal pressure on 
the nose surface was lower when material elasticity was accounted for than that for 
the rigid perfectly plastic case (7 = 01. However, the general shapes of the curves are 
unaffected by the consideration of elastic effects. The normal stress at the stagnation 
point is nearly the same for the three nose shapes, but the shape of the normal stress 
versus angular position 0 curve depends strongly upon the nose shape. As expected, 
for the blunt nose, the normal stress stays constant over most of the nose surface, and 
drops off rapidly to zero near the nose periphery. For the hemispherical nosed penetrator, 
the normal stress  drops  off nearly evenly as one moves away from the center to the 
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O        10      20      30      40      50      60      70      30      90 

Angular position,©' 

|V«. 

0       10      20      30      40      50      60      70      BO      90 

Angular position,Ö* 

  Rigid/Perfectly Plastic 
„_„_„-,  Elastic/Perfectly Plastic 

a  -   10.Ü 

Fig. 5. Distribution of the tangential speed and the strain-rate measure / upon the penetrator nose surface 
for three different nose shapes; x. = 10 

'W 

nose periphery. For the ellipsoidal nosed penetrator the normal stress drops off quite 
rapidly for 0° ^ 0 ^ 30°, and rather slowly for 6 > 30r. The curvature of the curve for 
r„;r0 = 2.0 is opposite to that of the curve for rn.rQ - 1.0 or 0.2. 

The distribution of the compressive normal stress on the nose surface for y. — 2, 6, 
8t and 10 and when the target material is modeled as elastic perfectly plastic is plotted 
in Fig. 4. For each of the three nose shapes considered the normal stress at points 
on the nose surface for which 0 ^ 0 ^ 6C increases with a, that at points with 6 > 6C 

decreases with y.. The value of" 6C equals approximately 22°, 45'. and 82°, for the long 
tapered ellipsoidal nosed, hemispherical nosed and the blunt nosed penetrators, respectively. 
The normal stress at points near the nose periphery was found to be positive for a > 15 
implying thereby that the target particles tended to separate away from the penetrator. 
However, for the blunt nosed penetrator this tendency of the target particles to separate 
away from the penetrator adjacent to the nose periphery was also observed at lower 
values of -x. 

The distribution of the tangential speed on the penetrator nose surface and the strain- 
rate measure / at the centroids of elements abutting the penetrator nose surface for the three 
different nose shapes and a = 10.0 is shown in Fig. 5. It is apparent that the material elasticity has 
negligible effect on the tangential speed and the strain-rate measure /. For the long tapered nosed 
penetrator. the tangential speed increases very rapidly for 0 % 8 <; 20", attains the value of 1.0 at 
0 * 30s, and then stays close to 1.0 for 30° ^ 9 ^ 90°. For the hemispherical hosed penetrator the 
tangential speed increases gradually from 0 at $ = 0° to 1.0 at 6 ^ 60^ and does not vary much for 
60J < 0 <; 9Q-   jne trenc} js qUjte different for the blunt nosed penetrator. In this case the 
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Rigid/Perfectly Plascic 

2   3   4   5   5   7   g   g   10  1 i  Elascic/Perfectly Plastic 

a * 10.0 

Distance from the nose tip 

Fig. 6. Variation of the pressure, strain-rale measure / and the ---velocity on the axial line with the distance 
from the penetrator nose tip 

tangential speed increases slowly for 0 g 50", and then very rapidly. The maximum value of the 
tangential speed computed for the blunt nosed penetrator is more than that for the other two 
nose shapes. For the blunt nosed penetrator the peak values of the strain-rate measure / are an 
order of magnitude higher than that for the long tapered nosed penetrator. Whereas /mJ, occurs 
near the nose periphery for the blunt nosed penetrator, peak values of/ for the other two nose 
shapes are realized at the stagnation point. Both for the hemispherical and the elliptical nosed 
penetrator, / decreases slowly from its maximum value at the nose center to nearly zero at the 
nose periphery. 

We have plotted the variation of the hydrostatic pressure, strain-rate measure / and the axial 
velocity along the axis of symmetry in Fig. 6. The consideration of material elasticity has very 
little effect on the distribution of/ and the axial velocity but reduces noticeably the value of the 
hydrostatic pressure. The value of/ at the stagnation point is maximum for the ellipsoidal nosed 
penetrator and least for the blunt nosed penetrator; the former equals nearly twice the latter. It is 
clear that severe deformations of the target occur at points situated at most 3r0 from the 
penetrator nose surface. Thus the target region studied is adequate. The pressure drops off more 
slowly when the target material is modeled as rigid perfectly plastic as compared to the case when 
it is modeled as elastic perfectly plastic. The general shapes of the curves /. v: or p versus the 
distance from the nose tip are unaffected by the penetrator nose shape and by the consideration 
of material elasticity. 
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Fig. 7. Dependence of the peak pressure at the stagnation point and the axial resisting force experienced by 
the penetrator upon y. 

The dependence of the peak pressure that occurs at the stagnation point, and of the axial 

resisting force F experienced by the penetrator upon y. is depicted in Fig. 7. The axial resisting 

force F is given by 

F = 2 
cos (f) sintf [sin2ü + (l/V„)4 cos: Ö]1 : 

(32.1) 

cos <f> - —= ->■ 2^2nr.' [r2 + (w'V)2] 
(32.2) 

where the angle 8 is defined in Fig. 1 and (r. r) are the coordinates of a point on the 

penetrator/target interface. The corresponding axial force in physical units is given by (m'oVo) F. 

For each nose shape, the relationships between pma, and x and F and » are nearly affine, and the 

consideration of elastic effects lowers the value of pnlJ, by about 2. and of F by 1.8. The least 

squares fit to the computed data gives 

/W = 6.82 + 0.48x. F = 7.97 + 0.094a. rn;r0 = 0.2. 

/W = 7.20 + 0.48a. F = 7.67 + 0.042*, rjr§ = 1.0. 

/W * 7.26 4- 0.48A.      F = 7.29 + 0.021a,      rn;rn = 2,0. 

(33.1) 

(33.2) 

(33.3) 
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when the target material is modeled as rigid perfectly plastic, and 

Pnt« = 4.87 + 0,47«,     F = 6.17 + 0.096a.      rjr0 = 0.2, 

p[im = 5.29 + 0.47a.      F = 5,90 + 0.038a,      rjr0 « 1.0, 

pnm = 5.16 + 0.47a,     F = 532 + 0.019a.      rJrQ * 2.0. 

(34.1) 

(34.2) 

(34,3) 

when it is taken to be elastic perfectly plastic. We note that the dependence of F upon a is quite 
weak. 

The contours of the hydrostatic pressure in the deforming target region for the three different 
nose shapes and a = 10 are depicted in Fig. 8. These show that the pressure falls off to zero, not 
only on the axial line, but also along other radial lines as one moves away from the penetrator 
nose surface. The contour of the zero hydrostatic pressure near the bounding surface is not 
plotted in order to focus on the narrow region surrounding the penetrator/target interface. For 
each one of the three nose shapes examined, the pressure near the nose periphery drops off to 
a very small value. The pressure gradient at points near the nose tip is steepest for the ellipsoidal 
nosed penetrator. 

On the axial line uniaxial strain conditions prevail approximately. Thus the magnitude of the 
deviatoric stress s:s at a point on the axial line should equal (2/3ff0) whenever the material point is 
deforming plastically. For a rigid perfectly plastic target material and for each nose shape 
considered, the computed value of \s„\ came out to be 2/3cr0 as shown in Fig. 9. Near the 
boundary point F of the target region studied, \sz.\ rapidly dropped to the prescribed zero value. 
This rapid drop is not shown in the figure. However, when the target material is modeled as 
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elastic perfectly plastic. \s~\ equals (2.'3<J0) for a distance of 3r0 to 4r0 from the nose tip and then 
gradually decreases to the assigned value of zero at the outer boundary. The penetrator nose 
shape influences the rate of decay of [5-r|: the plastic deformation progresses farther for the blunt 
nosed penetrator and \s..\ decays slowly for it as compared to the ellipsoidal nosed penetrator. 
On the axial line, the Bernoulli equation in terms of non-dimensional variables and as modified 
by Täte [17], [IS] is 

-« + Ä,- -oi; = />* + - (35) 

where R; accounts for the strength of the target material, and o\: and p? are the values ofer-- and 
p at the stagnation point. Having computed ff.s and knowing a, we can find Rc. For the three nose 
shapes considered, the least squares fit to the computed values of R( for different values of % gives 
the following: 

Rs = 7.48 - 0.020a, Umr0) = 0.2. (36.1) 

R: = 7.86 - 0.0187. (r„ r0) = 1.0, (36.2) 

R,= 7.92 -0.024a, (rjr9) = 2.0, (36.3) 

for a rigid perfectly plastic target, and 

Rt = 5.53 - 0.027a. {rjfy) = 0.2, (37.1) 

R, = 5.96 -0.027a. i>,/r0) « L0, (37.2) 

Rt = 5.83 - 0.032a, [rJrQ) = 2.0. (37.3) 

for an elastic perfectly plastic target. In either case the dependence of R, upon -/ is very weak and 
this explains why the assumption of constant R, in simpler theories of penetration gives good 
results. Täte [19] has proposed that 

K, = | + ln(g). ,38, 

where £, is Young's modulus of the target material. Thus for values of G and o0 taken herein, 

2 (1 /3 x 27 x 10y\\ 

which is close to the values computed for the elastic perfectly plastic target. Recalling that 
p" = £W it is interesting to note that the slope of the least squares fit to the pmii vs. a data is close 
to 0.5 as it should be if Eq. (35) were to hold. 

As is transparent  from Fig. 9  the stress state at  target particles far away from  the 
target, penetrator interface lies inside the surface defined by 

tr(*2) = y. (40) 

This is certainly true of points on the boundary surface EFA where s = 0 is prescribed. The 
constitutive assumptions (4) —(6) tacitly assume that each target particle is deforming elastically 
and plastically. However, points where |Jj|| is small are undergoing negligible plastic deforma- 
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tions. Here we classify points for which the stress state satisfies the condition (40) as deforming 
plastically and those for which the stress state lies inside the surface (40) as deforming elastically. 
The elastic plastic boundary computed by using this criterion and obtained by joining points that 
are deforming plastically by straight line segments is depicted in Fig. 1 O.These curves suggest that 
less of the material ahead of the penetrator nose tip and to the sides of the rigid rod is deformed 
plastically for the ellipsoidal nosed penetrator as compared to the other two nose shapes 
considered. The distance of the elastic-plastic boundary from the penetrator nose tip is found to 
be 5.4. 6.8, and 7.7, respectively, according as the penetrator nose shape is ellipsoidal, 
hemispherical or blunt. Täte [19] presumed that a material particle was deforming either 
elasticaily or plastically and based on his solenoid flow model he found the axial distance of the 
elastic-plastic boundary from the stagnation point to be 6.71. which compares well with our 
computed values. The computed results, not plotted herein, show that ahead of the penetrator 
the elastic-plastic boundary does not advance much when a is increased from 6 to 10 for the 
hemispherical and blunt nosed penetrator but does move appreciably for the ellipsoidal nosed 
penetrator. As soon as a material particle goes past the nose periphery, stresses on it are relieved 
and the stress state for it lies inside the surface defined by (40). 

A measure of the deformation of a material particle is the value of the effective strain g, 
defined as 

(itr^Y2 
(41 

at that point. For a steady state penetration problem Täte [20] has described a method to 
compute different components of the finite strain tensor from a knowledge of the velocity field. 
He showed thai contours of the circumferential strain are approximately parallel to the crater 
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u 

Fig. 11. Contours of the effective strain in 
the deforming target region for a blunt 
nosed penetrator, and -J. = 10 

R-Coordinate 

surface and that the circumferential strain at a point distance a little more than one radius from 
the crater tip equals 5%. Because of the steady state deformations, we write Eq. (41) as 

U'-grad) e = / (42) 

and first compute / from the velocity field, and then find £ as a solution of Eq. (42) with the 
boundary conditions = 0 on EFA. These contours basically look alike for the three nose shapes, 
and are shown in Fig. 11 only for the blunt nosed penetrator. The contours of e suggest that 
severe deformations propagate farther to the side than ahead of the penetrator nose. The peak 
values of fi occur at target particles near the target penetrator interface and equal 100%. We 
recall that no failure or fracture criterion is included in our work. Thus a material point can 
undergo an unlimited amount of deformation. As expected, the strain gradients are high at points 
near the target/penetrator interface and rapidly decay as one moves away from this interface. 
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5 Conclusions 

We have analyzed the steady state axisymmetric deformations of an elastic perfectly plastic target 
being penetrated by a fast moving rigid cylindrical rod. Three different nose shapes, i.e.. 
ellipsoidal, hemispherical, and blunt are considered. For each nose shape the effect of the 
penetration speed upon the deformations of the target is investigated. The consideration of 
elastic effects necessitates that the problem be analyzed by using a mixed formulation in which 
both velocities and stresses at a node point are taken as unknowns. 

The peak hydrostatic pressure at the stagnation point is lower when elastic effects are 
included than when they are not. Also, the axial resisting force experienced by the penetrator is 
found to be lower when the target material is modeled as elastic perfectly plastic than when it is 
modeled as rigid perfectly plastic. In either case, the axial force depends upon the non- 
dimensional parameter j very weakly. Similarly the strength parameter appearing in the 
modified Bernoulli equation is found to be essentially independent of t. and the computed value 
is close to that given by Täte. For the blunt nosed penetrator. plastic deformations spread farther 
ahead of the penetrator nose as well as to its sides as compared to those when the penetrator nose 
is ellipsoidal or hemispherical. The distance of the elastic-plastic boundary from the penetrator 
nose tip along the axis of symmetry is found to compare well with that estimated by Täte. 

Appendix 

One of the problems analyzed in order to establish the validity of ihe finite element code 
developed is the following hypothetical problem. Consider the flow of a homogeneous and 
incompressible Navier-Stokes fluid of unit mass density and unit viscosity. The flow is governed 

by equations obtained from Eqs. 111 through (8) when Q ■ 1. <T„, | 3 / » 2, omitting Eq. |4> and 
adding the body force vector to the left-hand side of Eq. \2). These equations have the solution 

v, »rtl-rh     r, ■ —n2 - 3r),     p«:. 

C, » J + Hi -rHl - >>•      g- - 1 - 3: r + 3rrfl - r) + _i2 - }rr. 
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Tabk Al. Comparison of analytical and numerical solution. The good agreement between the computed 
and analytical values of r,. v.. and p establishes the \alidity of the code 

Point Analytical values Computed values Point Analytical 
value 
-r 

Cumputed 
vr.luc 

r, i. 1 ■ r. -r 

V 0.1875 0.3125 0.1S90 0.3116 1 0.312 5 0.331 1 
P 0.2500 0.1250 0.2504 0 1250 •» 0.3125 0.3115 
Q 0.2500 0.2500 0.2502 0.2500 3 0.437 5 0.4329 
R 0.2500 0J750 0.2501 0.3750 4 0.4375 0.4318 
S 0.1*75 -0.1875 0.18*5 -0.1875 5 0.6875 0.*03 2 
T 0.18^5 0.937 5 0.1876 09374 6 0 687 5 0.6819 

where r, and rs are. respectively, the radial and axial components of the velocity, and g, and 

gr equal the radial and axial components of the body force per unit mass. 

The finite element mesh used to compute the solution is shown in Fig. A I. On surfaces AB. 

BC. and CD. both r, and r. as given b\ Eq. IA 1) were prescribed, on the surface AD. tP and the 
normal traction, equal to <r... were specified. In this case, the specification of the state of stress at 
the entrance region was not needed. In Table A 1. we have listed the converged computed results 
and the values from the analytical solution 1A I \ at various points in the domain. Recall that the 
pressure field is assumed to be constant within an element: this value is assigned to the centroid of 
the element. The pressure field at other points is inteipolated from its values at the centroids of 

the elements. 
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STEADY STATE AXISYMMETRIC DEFORMATIONS OF A 
THICK ELASTIC-THERMOVISCOPLASTIC TARGET 

R. JAYACHANDRAN and R. C. BATRA 
Department of Mechanical and Aerospace Engineering and Engineering Mechanics. University of 

Missoun-RoUa. Rolia, MO 65401-0249. U.S.A. 

Abstract—We study thermomechanical deformations of a thick elastic-viscoplastic target being 
penetrated by a rigid tcng cylindrical rod. and assume that tareet deformations as seen by an observer 
situated at the penetrator nose tip are steady. We presume that the target response can be adequately 
modeled by the Brown-Kim-Anand flow rule. We analyze the effect of different material parameters 
on the deformations of the target in order to elucidate then relative importance, and hence enumerate 
more critical ones. We also study the effect of the penetrator nose shape and the penetrator speed on 
the deformations of the target. 

INTRODUCTION 

One of the unresolved issues in penetration mechanics as well as in large deformation 
elastoplasticity is the choice of an appropriate constitutive relation used to model the finite 
plastic deformations of a material. Many of the recently proposed theories (e.g. [1-4]) of large 
deformation elastoplasticity are based on different kinematic assumptions and necessitate the 
hypothesizing of constitutive relations for variables that are not simply related to each other. 
Here we use one such theory, namely that due to Brown-Kim-Anand (hereafter referred to as 
BKA) [4], and study in detail the effect of varying the material parameters in it on the 
deformations of the target. This should help identify the critical parameters in the constitutive 
relation, at least for the penetration problem. A similar study was conducted earlier [5,6] for 
the Litonski-Batra and the Bodner-Partom flow rules. 

We refer the reader to review articles by Backman and Goldsmith [7], Wright and Frank [8], 
Wright [9], and Anderson and Bodner [10) for a review and discussion of most of the work 
done on ballistic penetration. Different engineering models have been proposed by Awerbuch 
[11], Awerbuch and Bodner [12], Ravid and Bodner [13], Ravid et ai [14], Forrestal et at. [15], 
and Batra and Chen [16]. For impact velocities in the range of 0.5-10 km/s. Birkhoff et ai. [17], 
Pack and Evans [18], Allen and Rogers [19], Alekseevskii [20], and Täte [21] have proposed 
using the Bernoulli equation or its modification to analyze the impact phenomenon. The last 
three references introduced a resistive pressure, dependent upon the material strength, in the 
Bernoulli equation. Täte [22-24], Pidsley [25], Batra and Gobinath [26], Batra and Chen (16), 
and Jayachandran and Batra [27] have estimated the value of the resistive pressure. Whereas 
Täte used a solenoid fluid flow model of the steady stale penetration process, other 
investigations used a numerical solution of the problem. Both Pidsley [25] and Wright [9] have 
pointed out that the transverse gradients of the shear stress evaluated on the axial line make 
noticeable contributions to the resistive pressure terms in the modified Bernoulli equation. The 
books by Zukas et at. [28], Blazynski [29], and Macauley [30] may be consulted for the 
available literature on ballistic penetration. 

FORMULATION OF THE PROBLEM 

With respect to a cylindrical coordinate system with origin at the center of the penetrator 
nose and positive z-axis pointing into the target, equations governing the target deformations 
are: 
Balance of mass: 

diw-0. (1) 

CS JO:1-0 
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Balance of linear momentum: 

Balance of internal energy: 

Constitutive relations: 

where 

div a - p(v • grad)v, 

-divq-f tr(oDp) = pt/, 

*«-pl + s, 

*«2G(D-DP), 

^ - -* grad 0,       0 » T - T0, 

U-c6, 

2/2 = tr(Dp)2, 

J*»(vgrad)i + »W-Ws, 

2D ■ grad v + (grad v)r, 

2W * grad v - (grad v)r. 

(2) 

(3) 

(4.1) 

(4.2) 

(4.3) 

(4-4) 

(4.5) 

(4.6) 

(4.7) 

(5) 

(6) 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

Equations (1), (2), and (3) are written in the Eulerian description of motion. The operators 
grad and div denote the gradient and divergence operators on fields defined in the present 
configuration. In equations (l)-(7), v is the velocity of a target particle relative to the 
penetrator, a the Cauchy stress tensor, s its deviatoric part, p the hydrostatic pressure not 
determined by the deformation history, an open circle on s indicates its Jaumann derivative 
defined by equation (7.2) for the steady stress field, q is the heat flux vector, and V is the 
specific internal energy. Furthermore, G is the shear modulus, Dp the plastic strain-rate, p 
defined by equation (4.4) may be interpreted as the shear viscosity of the target material, g is 
an internal variable whose evolution rate is postulated to be given by equation (4.5), Q the 
activation energy, R the gas constant, T the absolute temperature, T0 the ambient absolute 
temperature, m the strain-rate sensitivity, h0 a constant rate of athermal hardening, and the 
quantity g* represents a saturation value of g associated with given values of the temperature 
and strain-rate. In order to characterize the viscoplastic response of a material, one needs to 
assign values to f, m, h0, a, §, n, A, Q> and R. Equation (4.2) is Hooke's law in the rate form 
when the dependence of the shear modulus upon the mass density or the hydrostatic pressure is 
neglected, equation (5) is the Fourier law of heat conduction, and equation (6) is a constitutive 
relation for the specific internal energy. The thermal conductivity k and the specific heat c are 
taken to be constants. The strain-rate tensor D defined by equation (7.3) is assumed to have 
additive decomposition into elastic and plastic Dp parts, and W defined by equation (7.4) is the 
spin tensor. 
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Deformations of a thick elastic-thermoviscoplastic target 1011 

As has been pointed out by Batra and Gobinath [26], the problem formulation does include 
thermal stresses caused by the uneven temperature ris; at different material particles. 
However, the change in the mass density due to temperature rise of a material particle is not 
considered. 

Henceforth, we use non-dimensional variables defined below and indicated by an overbar. 

0o- 

.    0 

O0 

s           .     P                 v           -     r 
5=» —,       p» —,       v» — ,       r = -, 

o*o               o0               v0               r0 

.    z 

'0 

v0 »b                   v0                  v0 "f 
.^2         C --**-,       I-8".       I-1.       «o--°. pcv0        °    a0              a0               o0 •■•s (8) 

Here a0 is the yield stress of the target material in a quasistatic simple compression test, r0 is 
the radius of the cylindrical part of the penetrator, v0 is the steady speed of penetration, and hc 

is the coefficient of heat transfer between the target and the penetrator. 
The governing equations, when written in terms of nondimensional variables, become 

div v m 0, 

-grad/? + div » = a(v • grad)v, 

* + 0y[(v • grad)s + sW - Ws] « 2/5D, 

tr(aDp) + Ö div(grad 0) - (v - grad)0, 

where 

P*0 fiV0 

OQ Ooro 

o-o <5=- 
pcv0r0 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(10) 

are non-dimensional numbers, and we have dropped the overbars. Henceforth, we work in 
terms of nondimensional variables. The values of a, v, and ö signiry, respectively, the 
importance of inertia force relative to the flow stress of the material, material elasticity, and the 
heat transfer due to conduction. 

We note that the governing equations are highly nonlinear, and we seek their approximate 
solution by the finite element method, which necessitates that we consider a finite region. The 
bounded region R of the target whose deformations are analyzed is depicted in Fig. 1, which 
also shows the discretization of the domain into finite elements. The boundary conditions 
imposed on this finite region are 

v,=0, -1.0,       p = 0,       5^ = 0, 500 = O,        s2Z=0,        5^ = 0, 0=0o, 

on the boundary surface EFA,   (11.1) 

v • n m 0, 

or2 ■ 0, 

t-(on) = 0, 

dd vr = 0»       -r- = 0,   on the axis of symmetry DE, (11.2) 

on the target/penetrator interface DCB,   (11.3) 

dd 
vr - 0,       —- ■ 0,    on the bounding surface BA. (11.4) 

The validity of replacing boundary conditions at the boundaries of the semi-infinite target 
region by conditions (11.1) and (11.4) on the bounding surfaces EFA and BA of the finite 
target region studied was established by analyzing the problem over successively larger regions 
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Fig. 1, Finite target region studied and its discretization. 

each new region containing the previous one, until the solution variables at points on the 
target/penetrator interface DC changed by less than 4.7%. Of the variables p, v, 0, s, and g of 
interest, the variation in s was the largest and it occurred at points near the nose periphery. 
The boundary conditions on p and components of s on the s jrface EFA are needed, since here 
we need to solve equation (9.3) for s, along with equations (9.1), (9.2), and (9.4) for p, v and 
6; e.g. see Shimazaki and Thompson [31]. Conditions (11.2) follow from the assumed 
axisymmetric nature of deformations. The imposed boundary conditions (11.3) on the 
target/penetrator interface DCB imply that there is no interpenetration of the target material 
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into the penetrator, the contact surface is smooth, and the heat flux between the target and the 
penetrator is proportional to the temperature difference between the two; 8M being the average 
temperature of the penetrator. The boundary conditions (11.4) on BA are a good approxima- 
tion, provided that the surface BA is far removed from DC, as is the case here. 

COMPUTATIONAL CONSIDERATIONS 

As shown in Fig. 1, the region R is divided into quadrilateral elements, the elements being 
smaller near the target/penetrator interface DC and gradually becoming larger as we move 
away from this surface. There was no attempt made to optimize the mesh for a given number 
of nodes. However, keeping R fixed, results were computed with three successively finer 
meshes containing 700, 900, and 1250 elements. The peak values of p, 6, and / for these three 
meshes were found to be (12.07, 3.42, 1.38), (12.17, 3.69, 1.52), and (12.10, 3.67, 1.53), 
respectively. Henceforth, we employ the mesh with 1250 elements. 

Within each element the values of vn u2, s», srz, sx:, se6, 6, and g are approximated by 
bilinear polynomials expressed in terms of their values at the four corner nodes, and the 
hydrostatic pressure p is assumed to be constant. The discontinuous pressure field p thus 
computed is smoothened a posteriori by using 

£ (| N,N, d v)p,- j Niß dV,       i - 1, 2,..., M (12) 

where M equals the number of nodes, and ty, N2,..., NM are the piecewise bilinear finite 
element basis functions. 

We used the Petrov-Galerkin formulation [32] of equations (9.3) and (9.4), and the 
Galerkin approximation (32] of equations (9.1) and (9.2). The iterative process used to solve 
the resulting nonlinear algebraic equations was stopped when 

/ \1/2 / \m 

(2n<r-<>m-,ii2) *o.oi(2n<ni2) d3) 

where the summation sign implies the sum of the value of the indicated q iantity at all nodes, 
||<>||2 =s tr(<H>r) when <J> is a second order tensor, ||<>||2 = <p; + <p] whs* £ is a vector, and 
|J4»f| ss j0| when <p is a scalar. The convergence criterion (13) is applied to ? s, 6, p, andg. This 
convergence criterion is weaker than that used by Batra [5], who checked .or the convergence 
of the solution variables at each node. Batra used 6-noded triangular elements and 
approximated the solution variables, except for p, by piecewise quadratic polynomials, and p 
by piecewise linear polynomials defined in terms of their values at the three corner nodes. 

The code developed by Jayachandran and Batra [27] was modified to solve the present 
problem. The boundary condition (11.3), on the target/penetrator interface is satisfied by using 
the method of Lagrange multipliers. 

RESULTS AND DISCUSSION 

When computing results, we assigned the following values to various material and geometric 
parameters. 

p = 7860kg/m\       o-0=*40cMPa,       G = 80GPa,       c = 473J/kg°C, 

* = 50W/maC,       /!c = 2üW/m2oC,       08 = O°C,       r0=10mm, 

/i = 6.346 xl015s"1,       <2 = 275kJ/mol,       | = 405 MPa,       A0 = 5000MPa, 

£ = 3.25,       m-0.1,        /?= 0.002.        a» 1.5.        a =10.        r„ -1.0. (14) 
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Here 2rm equals the length of the principal axis of the elliptical penetrator nose in the 
z-direction. For the values of p, o0, and c given above, the reference temperature 0O used to 
nondimensionalize the temperature rise equals 108.9°C. Since we are interested in delineating 
the effect of different values of material and geometric parameters in the BKA flow rule on the 
deformations of the target, the base values assigned as in (14) to different parameters are of 
less significance. The present study should enumerate the relative importance of various 
material parameters and hence help design experiments for the precise determination of more 
critical ones. The range of values of material parameters considered herein is probably more 
than that likely to occur for any real material. The variables that are assigned values different 
from those given above are so indicated in the figures along with their new values. 

AH of the results presented below and values of variables indicated in figures, unless stated 
otherwise, are non-dimensional. 

(a) Effect of penetration speed 

Figure 2 depicts, for a»2, 6, 8, and 10, the variation of the normal stress, strain-rate 
measure /, tangential speed, and the temperature rise at target particles abutting the 
hemispherical penetrator nose surface. The angular position V>. indicated in Fig. 1, is measured 
from the centroidal axis. In this and other figures, various quantities have been scaled 
appropriately so as to fit on the same plot. The normal stress on the penetrator nose surface is 
independent of a for y * 45°, and the normal stress at a point on the penetrator nose surface 
increases with a for y<45° and the reverse happens for t//>45°. Such a behavior was also 
observed by Batra and Wright [33] for a rigid plastic target, by Jayachandran and Batra [27] for 

40 
"Temparilur« Ris« 

10 20 70 BO 30 40 50 60 

Angular position 

Fig. 2. Distribution of the tangential speed, strain-rate measure, normal stress, and the temperature 
rise at target particles on the penetrator nose surface for a = 2. 6. 8. and 10. 
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an elastic-plastic target, by Batra [5] for a viscoplastic target obeying the Litonski-Batra flow 
rule, and by Batra and Adam [6] for a viscoplastic target following the Bodner-Partom flow 
law. The values of the nondimensional strain-rate measure / at and near the penetrator nose tip 
decrease with an increase in the value of a. We note that the change in the dimensional values 
of / is more than that in the nondimensional values since the former are obtained by 
multiplying the latter by t/0/r0. However, the temperature rise is nearly uniform over thv 
penetrator nose surface, and its value decreases with an increase in the value of a, mainly 
because more heat is transferred due to convection at higher speeds. We note that Batra [5], 
and Batra and Adam [6] observed similar behavior for the Litonski-Batra and Bodner-Partom 
flow rules, respectively. 

In Fig. 3 we have plotted the variation of the strain-rate measure I, temperature rise 6, 
(-a„), and the axial velocity for a = 2, 6, 8, and 10. Whereas the strain-rate measure / and 
the temperature rise drop sharply as one moves away from the nose tip, the value of (-a..) 
decreases slowly to zero mainly because the hydrostatic pressure p drops off slowly with the 
axial distance from the nose surface. For a ■ 10, v0 » 771 m/s, and the peak values of / and the 
temperature rise equal, respectively, 3.55 x 105 s"1 and 408°C It seems that there is a thin layer 
of material, of thickness nearly 0.2r0, around the penetrator nose surface in which the 
temperature rise is quite high. Severe deformations of the target material occur at particles 
situated within a distance of 3r0 from the penetrator nose surface. Thus, the target region 
studied is quite adequate. 

3.0, 

2 3 4 5 6 7 8 

Distonce from trie nose tip 

Fig. 3. Variation of the strain-rate measure, temperature rise, axial velocity, and {-axx) at points on 
the axial line for o = 2. 6. 8, and 10. 
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by the value of n. The dependence of the tangential speed upon n is rather weak, as is the 
dependence of all quantities upon n at points situated more than 2r0 from the penetrator nose 
tip. For each value of n considered herein, the axial stress decays slowly with the distance from 
the nose tip. 

In Fig. 10 we have plotted the variation, on the penetrator nose surface, of the tangential 
speed, strain-rate measure /, normal stress and the temperature rise for strain-rate hardening 
parameter m »0.01, 0.02, 0.05, 0.1, 1.0, and 10.0. The curves for m s»0.1 overlap each other, 
indicating the saturation of the strain-rate hardening effects. Whereas the values of / and the 
tangential speed decrease those of the normal stress and the temperature rise increase with an 
increase in the value of m. For m =«0, the target particles tended to separate away from the 
penetrator nose surface near the nose periphery. Hence, results for this case are not included 
herein. For the aforestated values of m, the hydrostatic pressure p at the stagnation point 
equals 8.87, 10.63, 12.04, 12.10, 12.10, and 12.10, respectively. Thus, an increase in the value 
of the normal stress is due to both an increase in the value of p and the enhanced hardening of 
the material for higher values of m in the range 0.01 *£m «0.1. In this case the temperature 
rise is almost evenly distributed on the target/penetrator interface. On the axial line (cf. Fig. 
11), the values of / and the tangential speed seem not to depend upon m. However, the values 
of the temperature rise and the axial stress (—oZI) are influenced by the value of m considered. 
The curves depicting the variation of the axial stress and the temperature rise with z, the 
distance from the nose tip, for m =»0.05, 0,1, and 10.0 essentially coincide with each other. 

The axial resisting force F (cf. Fig. 4) experienced by the penetrator increases sharply when 

4.0 

01.10.100 

Angular position 

Fig. 10. Effect of different values of the strain-rate hardening parameter m on the distribution of the 
normal stress, tangential speed, temperature rise, and the strain-rate measure on the penetrator nose 

surface. 
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SOi 

2 3 4 5 6 7 8 

Distonce from the nose tip 
Fig. II. Effect of m on the variation of the normal stress, axial velocity, temperature rise, and the 

strain-rate measure on the axial line. 

the value of m is increased from 0.01 to 0.1, but levels off subsequently. Out of the other 
parameters, h0, g, and Q that increase the hardening of the material, F depends strongly upon 
g and rather weakly upon h0. The values of F increase rapidly with an increase in the value of 
Q for Q^ 15GkJ/moI, and then quite slowly. 

Figure 12 depicts the distribution of the strain-rate measure /, tangential speed, normal 
stress, and the temperature rise on the penetrator nose surface for a = 0.01, 0.1, 1.5, 3, 10, and 
100. The values of / and the tangential speed are affected very little by the value of a. Also, the 
values of a *s 0.1 and a s» 3.0 have negligible effect on target deformations. The normal stress 
and the temperature rise decrease with an increase in the value of a from 0.1 to 3.0. We note 
that the value of a is usually selected to represent best the experimental hardening curves. The 
axial resisting force F experienced by the penetrator decreases when a is increased from 0.1 to 
3.0, and stays constant subsequently. As evidenced by the results plotted in Fig. 13, the values, 
at points on the axial line, of the temperature rise, strain-rate measure, axial speed, and the 
axial stress are affected very little by the value of a. The effect of changing the value of the 
pre-exponential factor A on the distribution of the aforementioned four variables is shown in 
Fig. 14. The values of the temperature rise and the normal stress decrease, and those of the 
tangential speed and the strain-rate measure I increase with an increase in the value of A. 
Equations (4.6) and (4.7) suggest that an increase in the value of A reduces tlw saturation 
value g* of g. When g equals g*t further resistance to flow does not develop. The results 
plotted in Fig. 4 indicate that the axial resisting force experienced by the penetrator decreases 
noticeably with an increase in the value of A. 
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Fig   14. Effect of different values of A on the distribution of the temperature rise, normal stress, 
strain-rate measure, and the tangential speed on the penetrator nose surface. 

CONCLUSIONS 

We have studied the steady state axisymmetric deformations of a thermoelastic-viscoplastic 
target being penetrated by a long rigid cylindrical rod by the finite element method, using 
bilinear quadrilateral elements. The target material is modeled by a viscoplastic flow rule 
proposed recently by BKA. Within each element, the fields of the velocity, deviatoric stress 
tensor, temperature, and an internal variable are approximated by bilinear polynomials, and 
the hydrostatic pressure is assumed to be constant. It is found that the axial resisting force 
experienced by the penetrator depends weakly upon the penetration speed. The material 
strength parameter, introduced by Täte, in the modified Bernoulli equation, is found not to 
depend upon the penetrator nose shape. The material parameters that enhance the hardening 
of the material in plane strain compression of a block made of the target material increase the 
axial resisting force acting on the penetrator. The severe deformations of the target are 
confined to material particles situated at most one penetrator diameter away from the 
target/penetrator interface. Thus, the target region analyzed herein is adequate, and the 
computed results do not depend upon the extent of the domain analyzed. 
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Abstract—Steady state thermomechanicai deformations of a thick viscopiastic target being penetrated 
by a fast moving long rigid cylindrical penetrator are analysed by the finite element method. Two 
different constitutive relations, the Bodner-Partom flow rule, and the Liionski-Batu >*' rule, are 
used to model the viscopiastic response of the material. The two Row rules are -.•• irvid to give 
essentially similar shear stress-shear strain curves during the overall adiabat.c i. z shearing 
deformations of a block deformed at an average strain-rate of 3?00s~l. For the *?o <.:■ . artom flow 
rule, the effect on target deformations of tne penetrator nose shape, penetrair- x.d. and the 
variation in the values of material parameters of the target is also studied. 

1. INTRODUCTION 

Given the penetrator and target geometries, materials, target support conditions, penetrator 
speed, and the angle of attack, one would like to find out whether or not the target will be 
perforated, and if yes, the speed of the penetrator when it comes out of the target. If not. the 
shape and size of the hole made in the target is of interest. A complete analysis of this problem 
within reasonable resources is still not possible. There have been numerous attempts made to 
analyze simplified versions of the problem. Backman and Goldsmith [1] have reviewed the 
open literature on ballistic penetration till 1977. It describes various physical mechanisms 
involved in the penetration and perforation processes, and also discusses many engineering 
models. Other review articles and books include those by Wright and Frank [2]. Anderson and 
Bodner [3], Zukas et ai [4], Blazynski [5], and Macauley [6]. Ravid and Bodner [7], Ravid et 
ai. [8], and Forrestal et ai [9] have proposed engineering models of varying complexity. 

When a fast moving long rod strikes a very thick target, the deformations of the two appear 
to be steady to an observer situated at the stagnation point and moving with it after the rod has 
penetrated into the target a few rod diameters. This steady state lasts until the stagnation point 
reaches close to the other end ol the target. For very high striking speeds, the steady 
deformations of the target and the penetrator can be assumed to be governed by purely 
hydrodynamic incompressible flow processes. Täte [10,11] and Alekseevskii [12] modified this 
model by incorporating the effects of material strengths of the target and the projectile. These 
were assumed to equal some multiple of the uniaxial yield stress of the respective materials, but 
the multiplying factor was unspecified. Täte [13, 14], Pidsley [15], Batra and Gobinath [16], and 
Batra and Chen [17] have estimated these multiplying factors. Whereas Täte used a solenoidal 
fluid flow model to simulate the steady state penetration process, the other investigations relied 
on a. numerical solution of the problem. 

One of the unresolved issues in penetration mechanics is the choice of the most appropriate 
constitutive relation for the penetrator and target materials. In order to assess the effect of the 
constitutive models used for the target material, we presume herein that the penetrator is rigid 
and use two different constitutive relations for the target material. The two constitutive 
relations give virtually the same shear stress-shear strain curves during the numerical 
simulation of overall adiabatic simple shearing of a viscopiastic block deformed at an average 
strain-rate of 3300s"'. For the Bodner-Partom flow rule [18], the effect of varying the 
penetrator nose shape, the penetration speed, and the values of material parameters on the 
deformations of the target has also been explored. A similar study for the Litonski-Batra flow 
rule has already been conducted by Batra [19]. 
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2. FORMULATION OF THE PROBLEM 

Wc use a cylindrical coordinate system, with origin at the center of the penetrator nose and 
moving with it at a uniform speed v0 and positive z-axis pointing into the target. Equations 
governing the thermomechanical deformations of the target are: 

div v ■ 0, 

diva*p(vgrad)v, 

•div q + tr(cD) =* p(v • grad)£/, 

D« (grad v +(grad v)r)/2. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Equations (2.1)—(2.3), written in the Eulerian description of motion, express, respectively, 
the balance of mass, balance of linear momentum, and the balance of internal energy. Here we 
have neglected elastic deformations of the target, and assumed that plastic deformations are 
isochoric and all of the plastic working, rather than 90-95% of it as asserted by Farren and 
Taylor [20] is converted into heating. The operators grad and div denote the gradient and 
divergence operators on fields defined in the present configuration. Furthermore, a is the 
Cauchy stress tensor, p the mass density of the target material, v the velocity of the target 
particle relative to the penetrator, q the heat flux per unit present area, D the strain-rate 
tensor, and U the specific internal energy. We need to specify constitutive relations and 
boundary conditions in order to complete the formulation of the problem. 

For the target material, we assume that 

q = —/c grad 0, 

U~cB 

and either the Litonski-Batra flow rule [19] 

o=-pl + 2!i(l, 6, y)D, 

2p(I, 0. y) - ^Sj (1 + blYil - v0)(l + y/Vo)«, 

tr(oD)~a0v/(l + y/Vo)*, 

r = ~tr(D2), 

or the Bodner-Partom flow rule [18] 

HV(v5'[;riln<D°/'>n)D- s = a + pl 

(15) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

n~j,       r2 = zl + (z3-z1)exp(-mW/23), (2.12) 

W m tr(oD) = tr(sD). (2.13) 

Equation (2.5) is the Fourier law of heat conduction, k the constant thermal conductivity, 6 is 
the change in the temperature of a material particle from that in the undeformed configuration. 
c the constant specific heat, p the hydrostatic pressure not determined by the deformation 
history, and a0 is the yield stress in a quasistatic simple tension or compression test. The 
constitutive relation (2.7) was proposed by Batra [19]. It incorporates and generalizes that 
suggested by Litonski [21] for simple shearing deformations. Batra and his coworkers 
(19.22-24] have used it to study thermomechanical penetration problems, and the initiation 
and grow!h of shear bands in viscopi^tic materials. In equations (2.7) and (2.S), the material 
parameters b and e characterize the strain-rate sensitivity of the material, v describes its 
thermal softening, and y0 

and q the strain hardening of the material. Equation (2.9) states that 
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the rate of increase of y at a material point is proportional to the plastic working there. Thus, 
the present value of y depends upon the history of the deformation. The linear dependence of 
the flow stress upon the temperature rise has been used by Täte [25] in the analysis of a 
penetration problem, and has been observed by Bell [26], Lin and Wagoner [27], and 
Lindholm and Johnson [28]. /: defined by equation (2.10) equals the second-invariant of the 
strain-rate tensor, since the deformations are taken to be isochoric. Should the temperature 
rise at a material point exceed 1/v so as to make p. negative, we set p = 0. Thus, the material 
point will behave like an incompressible fluid. However, no account is taken of the latent heat 
needed for the phase transformation to occur. 

In equations (2.11)—(2.13), s is the deviatoric stress tensor, T the absolute temperature of a 
material particle, W the plastic work done, and z2 may be considered as an internal variable 
whose present value at a material point depends upon the density of the plastic work done at 
that point. D0 is the limiting value of the plastic strain-rate, and is usually assigned a large 
value. Besides D0, we need to specify a, zx, z3, and m to characterize the material. We identify 
the parameter a with the melting temperature of the material, and once T equals a, we set 
s ■ 0, analogous to what we did for the Litonski-Batra flow rule. 

We note that there is no loading or explicit yield surface assumed with either (2,7) or (2.11). 
The limiting valu». of st = (1/2 tr s2)1 * as / approaches zero is a0/V5 for the Litonski-Batra law, 
and is zeio for the Bodner-Partom law. 

Rewriting equation (2.7) as 

or» -0? + 0*0)1 + 2p(I. 0, v)D, (2,14) 

where ß and K equal, respectively, the coefficient of thermal expansion and the bulk modulus 
of the material, we see rhat equation (2.7) embodies implicitly thermal stresses caused by the 
nonuniform temperature rise at different material particles. However, the change in the mass 
density due to temperature rise of a material particle is not considered. In equation (2.14), p is 
not determined by the deformation history of a material particle, and the addition of a 
determinate term to it gives rise to p in equation (2.7), which is taken to be an independent 
variable throughout this work. 

We introduce non-dimensional variables, indicated below by a superimposed bar, as- follows: 

d-a/a0f      p«p/a0,       v = v/u0, 
z=z/r0,       <9 = 0/0o,        t=:T/T0, 

v = v0o,        a~pvl/o0,       k-k/(pcvor0)f 

0o - o0/{pc)t        s = s/cr0,        f2 = 2,/<70, 

z3 - Zi/Oo,        W m W/oQ,        D0 ■ D0Vo/r0, 

h^h/(v0pc). 

f = r/r0, 

S = bv0/r0, 

To « 0o + 273, 

zjoo, M 

ö=ö/0o 

(2.15) 

Here r0 is the radius of the cylindrical part of the penetrator and the heat transfer coefficient h 
appears in the boundary condition (2.25) below. Substituting from equations (2.5) and (2.6) 
into equation (2.3), rewriting it and equations (2.1), (2.2), (2.4), and the constitutive relations 
(2.7) and (2.11) in terms of non-dimensional variables, and dropping the superimposed bars, 
we arrive at the following set of equations. 

where either 

div v m 0, 

div v= a{\ ' grad)v, 

tr(üD) + k div(grad 0) = (v • grad)0, 

Ö- -pl + ^0 + bIY(l - v0)(l + y/VorD, 

tr(oD) 

<l + WVo)* 
= (v-grad)v>, 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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0- -pi + (r2/(V3 /[^ Intft//)]'   ))D, (2.21) 

tr(oD) = (vgrad)W, (2.22) 

and n, and z2 are given by expressions (2.12). 
We assume that the target/penetrator interface is smooth, and impose on it the following 

boundary conditions. 

t-(on)«0. (2.23) 

vii-0, (2.24) 

q-B»Ä(e-Ötf), (2.25) 

where h is the heat transfer coefficient between the penetrator and the target, &t, is an average 
temperature of the penetrator. and n and t are, respectively, a unit normal and a unit tangent 
vector to the surface. Equation (2.25) accounts approximately for the heat excha...;e between 
the penetrator and the target. At points far away from the penetrator 

|v + e| — 0,       0 — 0,        v —0,        W-+ 0   as   (r2 + z2)!/2— *,       z > -»,   (2.26) 

|«n|->0t       |q-n| — 0.       y-*0,       W —0   as   z->-x,       r>r0, (2.27) 

where e is a unit vector along the positive z-axis. The boundary condition (2.26) implies that 
target particles at a large distance from the penetrator appear to be moving at a uniform 
velocity with respect to it, and experience no change in their temperature. Equation (2.27) 
states that when target particles have moved far to the rear of the penetrator, the surface 
tractions and heat flux on them vanish. Recalling the constitutive relations (2.7) and (2.11), we 
see that the vanishing of surface tractions at far away points does not imply that the pressure 
there vanishes. Ideally, one should specify the rate of decay of quantities in equations (2.26) 
and (2.27). However, at this time, there is no hope of proving an existence or uniqueness 
theorem for an analytical solution of the stated problem. Wc, therefore, gloss over this rather 
difficult issue. Herein we assume that the aforestated problem has a solution and seek its 
approximation by the finite element method. 

3. COMPUTATIONAL CONSIDERATIONS 

Unless one uses special infinite elements, a numerical solution of the problem necessitates 
that we consider a finite region. Since the target deformations are assumed to be axisymmetric, 
only the deformations of the target region R shown in Fig. 1 are studied, and the boundary 
conditions (2.26) and (2.27) at the far surfaces are replaced by the following conditions (3.1) 
and (3.3) on the boundary surfaces of the finite region being analyzed. 

36 
o:x =0,       u, ■ 0,       -r- = 0       on the surface AB, (3.1) 

dz 

de 
orz =0,       vr = 0,       — = 0       on the axis of svmmetry DE, (3.2) 

or 

Vf = 0,       vs = -1.0,       0 = 0.        y> = 0,       W ~ 0       on the boundary surface EFA.    (3.3) 

Conditions (3.2) follow from the assumed symmetry of deformations. The validity of replacing 
(2.26) by (3.3), and (2.27) by (3.1), and the accuracy of the computed results depend upon the 
size of the region R. Keeping DE fixed, we increased the distance BC until the change in the 
values of solution variables such as the pressure p, velocity v, and tempeature 6 at points in the 
vicinity of the target/penetrator interface was less than 0.1%. Then, BC was kept fixed and the 
size of DE was increased to attain convergence of the solution variables at points adjoining the 
target-penetrator interface. The region so obtained and its finite element discretization 
depicted in Fig. 1 were used to compute ail of the results presented and discussed below. The 
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Fig. 1. The finite region studied and its discretization. 
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finite element mesh is very fine in darker regions. The size of the region considered herein is 
considerably more than that studied by Batra [19]. An increase in the distance DE resulted in a 
decrease in the axial resisting force experienced by the penetrator, but an increase in the 
distance BE increased the axial resisting force acting on the penetrator. 

The finite element code developed by Batra [19] to solve for target deformations when its 
material is modeled by constitutive relation (2.19) was modified to include the Bodner-Partom 
flow rule (2.21). A weak formulation of the problem and an iterative technique to solve the 
nonlinear system of equations is also given in [19]. Whereas Batra [19] used six-noded 
triangular elements, here we use 9-noded quadrilateral elements to approximate the fields of v, 
0, and y within an element. The hydrostatic pressure p is assumed to be bilinear on each 
quadrilateral element, and is defined in terms of its values at the four corner nodes. Batra [29] 
has shown that when a problem similar to the one being studied here is analyzed by using 
identical nodal locations but either 6-noded triangular or 9-noded quadrilateral elements, the 
two sets of results are identical, except that the quadrilateral elements give smoother fields. In 
either case, no posteriori smoothing technique was applied to the computed values of the nodal 
pressures. In the results presented below, as well as in [19], the solution of the nonlinear 
systen of equations was assumed to have converged, if at each nodal point the norm of the 
increments in vr, vz, and 6 differed by less than 2% of the norm of vr, vz, and 6. Here vr and 
vt equal, respectively, the r- and z-components of the velocity of a point relative to an 
observer situated at the stagnation point and moving with it. 

4. NUMERICAL RESULTS 

4.1 Comparison of predictions from the two constitutive relations 

We note that experimental data for the range of deformations expected to occur in the 
penetration problem under study is not available in the open literature. Batra and Kim [30] 
determined values of material parameters appearing in the two constitutive relations by 
ensuring that the computed shear stress-shear strain curve during overall adiabatic simple 
shearing deformations of a viscoplastic block deformed at an average strain-rate of 3300 s"1 

matched well with the experimental curve of Marchand and Duffy [31] for a HY-100 structural 
steel. We use those values, and list them below, 

(a) Values same for both constitutive laws 

/7«7860kg/m3,       a0 = 405MPa,       c = 473J/kg°C, 

K = 50W/m°C,       A~20W/m2oC,       6a~0,       r0 = 2.54mm. 

/ 

(b) Litonski-Batra flow rule 

v = 6.55xHT7°C 

(c) Bodner-Partom flow rule 

a - 1800°K, 

^0 = 0.012,       q <0.054,       e = 0.01872, 

z, = 3.778,       z3 = 3.185, ma 2.5, 

Thus<the reference temperature 90 used to non-dimensionalize the temperature rise equals 

' Figure 2 depicts the distribution of the normal stress, temperature rise, tangential speed, and 
/ on the nösesurface when the penetrator nose is hemispherical and a = 4.5. In these plots, the 
values of the normal stress and the temperature rise have been divided by ten, in order for the 
curves to fit on the s^me^gjYph. The values of the tangential speed and the strain-rate measure 
/ as computedjvithjhe two constitutive relations come out to be very close to each other. The 
two temperature distributions agree qualitatively, and seem to differ by essentially a constant 
value. At first glance it seems that this difference is due to the different scales of temperature in 
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Bodner-Partom 

—   UtoMkl-Batrs 

Angle ( 8) 
Fig. 2, Comparison of the variation of /, normal stress, tangential speed, and the temperature rise at 

target particles abutting the penetrator nose surface for the two constitutive relations. 

the two constitutive relations. However, this was not found to be the case. Both constitutive 
relations predict sharply higher values of the temperature rise at target particles near the 
stagnation point. A possible explanation for this is that, at the stagnation point a considerable 
amount of heat is generated, but little is conducted away due to the low value of the thermal 
conductivity, and the heat loss due to convection is also very small because of the relatively 
small values of the speed of the particles surrounding the stagnation point. As one moves away 
from the stagnation point, heat loss due to convection increases because of the increased speed 
of target particles. The distribution of the normal stress on the penetrator/target interface as 
computed by the two constitutive relations also agrees qualitatively. However, the two normal 
stress distributions differ quantitatively, mainly because of the difference in the values of the 
hydrostatic pressure as computed by the two constitutive relations. For example, the peak 
pressure at or near the stagnation point equalled 18.71 and 30.16, respectively, for the 
Litonski-Batra and the Bodner-Partom flow rules. Because of the differences in the values of 
the deviatoric stress tensor s and the strain-rate measure / as computed by the two constitutive 
relations, the rate of energy dissipated due to plastic working and hence, the resulting 
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temperature distribution is different in the two cases. We note that the two constitutive 
relations are calibrated to give identical response in overall adiabatic simple shearing 
deformations of a viscoplastic block deformed at an average strain-rate of 3300 s"1. The state of 
deformations at a target particle need not correspond to that of simple shearing. Also, the 
calibration procedure involves solving a nonlinear initial-boundary-value problem whose 
solution may be non-unique. Thus, two different sets of values of material parameters may give 
the same shear stress-shear strain curve. The axial resisting force equalled 15.24 and 25.19, 
respectively, for the Litonski-Batra flow rule and the Bodner-Partom flow rule. 

Figure 3 shows the distribution of (-a„), /, 0, and (-uz) on the axial line as computed 
by using the two constitutive relations. Whereas the two sets of values of / and vt are very close 
to each other, those of 0 and azt agree qualitatively. These do indicate that significant 
deformations occur at target points whose distance from the target/penetrator interface is less 
than one penetrator diameter. The values of (/, B) at the stagnation point are found to be 
(2.09,7.35) and (2.14,13.58) for the Litonski-Batra and Bodner-Partom flow rules, respec- 
tively. Thus, for the Bodner-Partom law, the temperature at the stagnation point almost 
equalled the presumed melting temperature of 180CTK. 

* r- 

Bodntr-Partom 

<-«!l) 

Litonski-Batra 

3 1 2 

Distance from the nose tip 

Fig. 3. Comparison of the variation of (-<?„), /,  8, and {-vt) on the axial line for the two 
constitutive relations. 
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4.2 Results for the Bodner-Partom flow rule 

We now study the effect of different material parameters in the Bodner-Partom law on the 
deformations of the target. This will elucidate the relative importance of various material 
parameters and hence help design experiments for the precise determination of more critical 
ones. Since we are interested in the parameteric study, the values of different parameters used 
is of less significance. The range of values of material parameters considered herein is probably 
more than that likely to be encountered for any real material. We have assigned the following 
values to various non-dimensional material and geometric parameters. 

A>»6, 1.505,       r, = 1.236,       m = 5, 1.0, = 2.1 (4.1) 

Except when studying the effect of changes in the melting temperature a of the material, it was 
set equal to 1200°K. The variables that are assigned values different from those given above are 
so indicated in the figures, along with their new values. In (4.1), 2r„ equals the length of the 
principal axis of the ellipsoidal nose in the r-direction. 

In Fig. 4, we have plotted the variation of the normal stress, s'rain rate measure /, the 

3.0 r- 

n 
E 

« a 
E 

c 
(3 

40 50 

Angle ( 8) 

Fig. 4. Variation of /. normal stress, the tangential speed, and the temperature rise at target panicles 
adjoining the penetrator nose surface for different values of a. 
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tangential speed, and the temperature rise on the penetrator/target interface for four different 
values of a. Note that these variables are multipled by different numbers so that the same 
vertical scale could be used. As expected, the normal stress on the target/penetrator interface 
increases with an increase in the value of a. However, for every value of a considered, it does 
drop off quite rapidly near the periphery of the penetrator nose, and seems to be independent 
of a at the point for which the angle 6 =» 70°. A similar behavior at B =» 45° was observed by 
Batra [19] for the Litonski-Batra flow rule. The values of / for 9 « 40° and 6 s 70° increase 
with an increase in the value of a, but at many points for which 40° < 6 < 70°, they exhibit the 
opposite trend. As the penetration speed v0 is varied, the dimensional values of / change more 
than the non-dimensional ones, since the latter need to be multipled by v0/rQ to obtain the 
former. The same is true about the tangential speed on the target/penetrator interface. 
However, with an increase in the value of a, the tangential speed increases at points on the 
target/penetrator interface that are near the axial line, but decreases at points near the 
nose periphery. It would appear from the distributions of the normal stress and / on the 
penetrator/target interface that the temperature rise at target panicles abutting the penetrator 
nose should increase with an increase in the value of a. However, the temperature rise at the 
nose surface decreases with an increase in the penetration speed, because at higher speeds, the 

<0 
o 

9 t 
1 2 3 4 5 6 7 8 9 

m/10. D0/5. a/ 500. a 

Fig. 5. Dependence of the axial resisting force upon various parameters. 

10 11 12        13 
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heat loss due to convection increases significantly.  A similar trend in the temperature 
distribution was computed by Batra [19] with the Litonski-Batra flow rule. 

The axial resisting force F is given by 

Fm2 
JrmfZ 

(n-on) 
o 

cos <p sin fl[sin2 0 + (l/r„)4cos2 6] 
[sin20 + (l/OW0]2 

zlrl 

in 
-d0, 

cos <p 
I^ + U/r;)2] ,2\2lt/2 ' 

(4.2) 

(4.3) 

where the angle 6 is defined in Fig. 1, and (r, z) are the coordinates of a point on the 
penetrator/target interface. The corresponding axial force in physical units is given by 
(*TToa0)F, We note that the expression given by Batra [19] for the axial force, except for the 
hemispherical nose shape, is in error. The dependence of the axial force upon a is exhibted in 
Fig. 5; the axial force depends upon a rather weakly, and the relation between the two is 

CM 

0) 
3 
f3 
5 a 
E 

3 p- 

0 1 2 

Distance from the nose tip 

Fig. 6. Dependence of the temperature rise, /, a.., and v. at target panicles on the axial line upon a. 

ES 29:11-E 
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nearly affine. Because of the increase in F with a, for the same initial kinetic energies of 
penetrators, those moving at higher speeds will give lower values of the penetration depth. 

The variation of the temperature rise 0, 1, azl, and ur along the axial line for the four 
different values of a considered is shown in Fig. 6. These plots vividly reveal that severe 
deformations of the target occur in the vicinity of the target/penetrator interface. The values of 
/ and 6 drop to zero rather quickly, and stay at zero for z s2.0. This ensures the adequacy of 
the region considered. The values of azx decay slowly, mainly because the hydrostatic pressure 
which contributes noticeably to azx drops off slowly. 

Figure 7 depicts the distribution of the tangential speed, normal stress, temperature rise, and 
/ on the target/penetrator interface for several values of m. For larger values of m, the value of 
z2 appraches the saturation value z, for smaller values of the plastic work density W. At a target 
particle abutting the penetrator nose, the values of the normal stress and the temperature rise 
increase monotonically with an increase in the value of m, those of / do not show any definite 
trend. The values of the tangential speed do not change that much when m is varied. The 

2 r- 

•.    Strain-rat* mtasur« 

40 50 

Angle ( 9) 

Fig. 7. Effect of m on the normal stress, tempeature rise, and / at target particles on the penetrator 
nose surface. 
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2    - 

40 50 

Angle (9) 

Fig. 9. Effect of a on the normal stress, temperature rise, and / at target particles on the penetrator 
nose surface. 

90 

adjacent to the penetrator nose surface. Whereas both the normal stress and / increase with an 
increase in the value of a, the temperature rise at a point does not show any clear trend. The 
values of the tangential speed seem to be unaffected by the value of a. Higher values of a imply 
that the material will thermally soften less for the same temperature rise. Consequently, it will 
offer more resistance to penetration as suggested by the larger values of the normal force acting 
on the target/penetrator interface. The axial resisting force experienced by the penetrator 
keeps on increasing with a, but the rate of increase drops off at larger values of a. 

The distribution of the normal stress, strain-rate measure /, and the tangential speed at 
target particles abutting the penetrator nose surface for three different nose shapes, i.e. 
rn/r0 = 2.0, 1.0, and 0.5, is plotted in Fig. 10. The curves representing the normal stress 
distribution when r„/r0 = 2.0 and 1.0 have curvature of opposite signs. For the penetrator nose 
shape with rn/r0 = 0.5, the normal stress changes very little over the region 10° s 0^45°. At 
any particular location on the penetrator nose surface, the tangential speed decreases with a 
decrease in the value of rn/r0. For the long tapered nosed penetrator, the strain-rate measure / 
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Fig. 10. Effect of nose shape on the normal stress, strain-rate measure /, and the tangential speed at 
target particles on the penetrator nose surface. 

assumes its peak value at a target particle near the stagnation point. For a somewhat blunt 
nosed penetrator, the strain-rate measure / stays constant over most of the penetrator nose 
surface, and increases near the nose periphery. We recall that the results [19] computed with 
the Litonski-Batra flow rule agree qualitatively with the ones given in Fig. 10. For the 
Bodner-Partom flow rule, the convergence of the solution for the case when rnlrQ-0.2 
necessitated an increase in the value of D0, presumably because the peak value of / near the 
nose periphery approached D0 and the term ln(D0//) in the denominator of the right-hand side 
of equation (2.21) became negative, and the denominator in equation (2.21) could not be 
evaluated. Thus, results for this case are not included herein. One way to get around this 
problem is to increase D0. Results plotted in Fig. 11 reveal that at target particles on the axial 
line, the rate of decrease of {-o:x) and / with the distance from the penetrator nose tip 
becomes less as the value of rn/r0 is decreased. For the somewhat blunt nosed penetrator 
(rn/ro-0.5), the target particles deform less severely, but more of the target material is 
deformed as compared to that for the long tapered nosed penetrator. 
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Distance from the nose tip 

Fif. 11. Distribution of (-ott), /, and the axial speed at target particles on the axial line for three 
different nose shapes. 

The axial resisting force acting on the penetrator increases sharply as rn/rQ is decreased from 
2.0 to 0.5; this is plotted in Fig. 5. Figure 12 depicts the variation of the axial speed of the 
target material flowing rearward and instantaneously lying on the planes z =0 and z - -1.0. 
It is clear that the target material adjacent to the sides of the penetrator appears to extrude rear- 
ward as a uniform block that is separated from the bulk of the stationary target by a relatively 
narrow region with a sharp velocity gradient. This calculation of backward extrusion of a uniform 
block provides a partial justification to the velocity field assumed by Ravid and Bodner [7] in 
their work involving penetration of targets of finite thickness. There is no experimental data 
available in the open literature that proves or disproves the validity of results presented herein. 

5. CONCLUSIONS 

We  have  studied  thermomechanicaJ  deformations of a  thick  viscoplastic  target  being 
penetrated by a long rigid cylindrical penetrator. Results computed when the target material is 
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Fig. 12. Variation of the axial speed on planes z =» 0 and . .-1.0. 

V 

modeled by the Litonski-Batra flow rule or the Bodner-Partom flow rule agree with each other 
qualitatively, but differ quantitatively. The material constants in the two constitutive relations 
were determined by requiring that the shear stress-shear strain curve in overall adiabatic 
simple shearing deformations of a block made of the target material were essentially similar. 
We note that the method used to determine the parameter values is not unique. The 
quantitative difference in the results computed with the two flow rules could also be due to the 
more complex state of deformations prevailing in the target than that in the simple shearing 
problem. The peak hydrostatic pressure for the Bodner-Partom flow rule is considerably more 
than that computed with the use of the Litonski-Batra flow rule. 

We have also investigated the effect of the variation in the values of various parameters 
appearing in the Bodner-Partom flow rule. The range of values of parameters considered is 
more than that likely to be determined for one material. It is found that all of the parameters 
appearing in the Bodner-Partom flow rule influence strongly the deformations of the target. 
Significant deformations of the target occur at target particles ahead of the penetrator nose, 
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and distant less than one penetrator diameter from the penetrator nose surface. More severe 
deformations occur at target panicles in the vicinity of the stagnation point for a long tapered 
nosed penetrator than for other nose shapes. However, for a blunt nosed penetrator, severest 
deformations occur at target particles near the nose periphery. 
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Summary—We study the steady state a\i>ymmetne deformations of a thick target being penetrated 
by a rigid cylindrical penetrator with a Hemispherical nose and use three different constitutive 
relations, namely, the Litonski-Batra flow rule, the Bodner- Partom flow rule, and the Brown-Kim- 
Anand flow rule, to model the thermoelaiiu-viscoplastjc response of the target. Each of these 
constitutive relations uses an internal variable to account for the microstructural changes in the 
body. The three flow rules are calibrated to give virtually identical effective stress-logarithmic 
strain curves during the overall adiabatic plane >tram compression of a block of the target material 
deformed at an average strain rate o( ?30Os"' It is found that the three constitutive relations give 
nearlv the same value of the residing force acting on the penetrator. temperature rise of material 
particles in the vicinity of the target-penetrator interface, and other macroscopic measures of 
deformation, such as the effective stress and loeanthmic strain rate. , 

I   INTRODUCTION 

During the penetration of a thick target by a fast moving cylindrical rod. severe deformations 
of the target and penetrator cause the temperature of the material particles in the vicinity 
of the target-penetrator interface to rise by a significant amount. Also, strain rates prevailing 
in this region are of the order of 10** s" l. Constitutive relations that are valid over a wide 
range of strains, strain rates and temperatures are presently being developed by various 
research groups. This task is very challenging because different deformation mechanisms 
(for example. [ 1 ]) are active at various temperatures and strain rates, and the mechanisms 
themselves (e.g. thermally activated motion of dislocations, diffusion, phonon drag motion) 
are temperature and time dependent. Another complicating factor is the microstructural 
changes such as the generation annihilation of dislocations, development of texture, 
dynamic recovery and recrystallization. nucleation and growth of microcracks and voids, 
and the development of shear bands, that occur during the plastic deformation of the 
material. One way to account for these microstructural changes at a macroscopic level is 
to use the theory of internal variables proposed by Coleman and Gurtin [2]. Chan et al. 
[3] have summarized more than 10 such constitutive relations valid for small strains. 
Many more are given in the review article by Inoue [4] and the book by Lubliner [5]. 

Here we use three constitutive relations, namely, the Litonski-Batra flow rule [6], the 
Bodner-Partom flow rule [7], and the Brown-Kim-Anand flow rule [8] to model the 
thermoelastic-viscoplastic response of the elastic-viscoplastic target. For simplicity we 
assume that the penetrator is rigid, and steady state as seen by an observer situated at the 
penetrator nose tip has been reached. Each of the aforestated three flow rules employs an 
internal variable to account for the microscopic deformations, and does not employ a yield 
surface. The material parameters in these constitutive relations have been evaluated by 
solving numerically an initial-boundary-value problem corresponding to the plane strain 
compression of a block made of the target material being deformed at an average strain 
rate of 3300s"1 and ensuring that the effective stress-logarithmic strain curves for the 
three constitutive relations are nearly identical. With these values of material parameters, 
steadv state axisvmmetric deformations of the tareet have been analvsed and various 
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quantities, such as the axial resisting force experienced by the penetrator and the pressure 
distribution on the penetrator nose surface, have been computed. 

We note that Batra and Adam [6] conducted such a study for the Litonski-Batra and 
the Bodner-Partom flow rules. They evaluated the material parameters by comparing the 
response of the target material deformed in simple shear. With the values of material 
parameters so determined, they found that the Bodner-Partom law gave a very high value 
of the hydrostatic pressure at the target-penetrator interface as compared to that given 
by the Litonski-Batra flow rule. However, in the present study, all three flow rules give 
essentially the same value of the hydrostatic pressure and hence the axial resisting force 
experienced by the penetrator. 

The present work is a continuation of the one initiated by Batra and Wright [9] with 
the goal of providing some guidelines for selecting and improving upon the previously 
used kinematically admissible fields in engineering models of penetration. Subsequently, 
Batra and co-workers [ 10-18] have analysed various aspects of the steady state penetration 
process. The reader should consult the review articles by Backman and Goldsmith [19], 
Wright and Frank [20], and Anderson and Bodner [21], and books by Blazynski [22], 
MaCauley [23] and Zukas et al. [24] to gain a comprehensive view of the work completed 
on the penetration problem. The engineering models proposed by Täte [25-28] and 
Alekseevskii [29] for the steady state penetration problem have been found very useful by 
ballisticians. Batra and Chen [30] selected a kinematically admissible field based upon 
the numerical studies of Batra et al. alluded to above, and proposed an engineering model 
of steady state deformations of a viscoplastic target. 

Z FORMULATION OF THE PROBLEM 

We use a cylindrical coordinate system with origin attached to the center of the 
hemispherical penetrator nose, moving with it at a uniform speed i>0, and positive r-axis 
pointing 'nto the target, to describe the thermomechanical deformations of the target. We 
note that target deformations appear to be steady to an observer situated at the penetrator 
nose tip and moving with it. Equations governing the target deformations and written in 
the Eulerian description of motion are the following. 

Balance of mass 

Balance of linear momentum 

div £ = 0 

div£ = /?(rgrad)c 

Balance of internal energy 

-divq + tr(qQp) = p(fgrad)CT 

where 

/ 

(grad e + (grad c)r)/2,    W= (grad r. - (grad r)r)/2 

q = -k grad 9 / 

UmcB 

J = 2G(£-£») 

i = (tgrad)5 + ^- Mfc 

$ = 2/i(/,M)£p 

/2 = irr(£>2). 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

[10) 

Uli 
Here v is the velocity of a material particle, q the Cauchy stress tensor at the preseni__^ 
location of a material particle, p the mass density, q the heat flux, Q the stretching tensor. 
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and W the spin tensor. Equation (5) is the Fourier law of heat conduction with k the 
thermal conductivity assumed here to be a constant, and 9 the temperature of a material 
particle in :C. Equation (6) is the constitutive relation for U, and (8) for the deviatoric 
stress tensor $, defined by Eqn (7), where p is the hydrostatic pressure not determined by 
the history of the deformation, since the deformations are assumed to be isochoric. Equation 
(8) is Hooke's law written in the rate form, and is based on the assumption that the strain 
rate [Q) has additive decomposition into elastic (£') and plastic (Qp) parts. The 
superimposed open circle on 5 indicates its Jaumann derivative, which for steady state 
deformations is given by the right-hand side of (9). We recall that Pidsley [31] used the 
ordinary time derivative of $ in Eqn (8). which is not frame-indifferent, and equals the first 
term on the right hand side of (9) for steady state deformations. Equation j 10) is the flow 
rule, and the expression for (i, wherein iff is an internal parameter, depends upon the flow 
rule employed. In order to complete formulation of the problem, we need to specify the 
form of fi. the evolution equation for \j/. and the pertinent boundary conditions. We first 
give details of the three constitutive relations. 

Litonski-Batra flow rule 

2JI</.M)-—=-M + W)mU -t?0) 1 + 
73/ *c 

<A 

Bodner-Partom flow rule 

trjqQp) 

\       «Ao 

IpiLB.W): 
Z, 

'-'{frHW 
Z2~ZX+ (Z3 - Z,)exp< -mW'Z3) 

d»i   7= 273 + e 

Brown-Kim-Anand flow rule 
W= triqQ*). 

(12.1) 

(12.2) 

(13.1) 

(13.2) 

(13.3) 

(13.4) 

2n\Ld,g) = —_ sinh"1^*), 
3/s 

{MM(maxfo,h-4 

(14.1) 

(14.2) 

(14.3) 

(14.4) 

The constitutive relation (12). proposed by Batra [14], incorporates and generalizes that 
suggested by Litonski [32] for simple shearing deformations. Batra and co-workers 
[6.14,16] have used it to study thermomechanical penetration problems, and the initiation 
and growth of shear bands in viscoplastic materials. In it a0 is the yield stress in a quasistatic 
simple compression test, the material parameters b and m characterize the strain rate 
sensitivity of the material. 1? its thermal softening, and \j/0 and n the strain hardening of 
the material. With \j/ interpreted as the plastic strain 

(T   -   Gr 1^1 (15) 
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describes the stress-strain curve in a quasistatic simple compression test. In a dynamic 
test, the effect of the history of deformation upon the present state of deformation is 
accounted for through the parameter \jt. The linear dependence of th* low stress upon the 
temperature rise has been used by Täte [33] in the analysis of a r wt;etration problem, and 
has been observed by Bell [34], Lin and Wagoner [35] and Lindholm and Johnson [36]. 
Should the temperature of a material point exceed 1/r so as to make /i negative, we set 
\i m 0. Thus, the material point behaves like an incompressible fluid for 0 ^ 11 v. However, 
the latent heat required for the phase transformation to occur is not accounted for in our 
work. We add that for the problem studiea herein, the maximum temperature at any point 
in the deforming target region never reached 1/r. 

In Eqns (13.1)-(13.4), 7* is the absolute temperature of a material particle, the internal 
variable Wequals the plastic work done. D0 is the limiting value of the plastic strain rate 
and is usually assigned a large value, the material parameter m characterizes the rate of 
work hardening and n is the strain rate sensitivity parameter. In Eqn (13.2), Z3 equals the 
hardening at zero inelastic strain, and Zj is the limit or saturation value of the work 
hardening of the material. We set ä equal to the melting temperature of the material, and 
we need to specify D0, ä. Zj. Z3 and m to characterize the material. Once Tequals a. we 
set \i - 0. analogous to what we did for the Litonski - Batra flow rule. However, for problems 
studied herein, the temperature at a point never reached the melting temperature of the 
material. 

In the Brown-Kim-Anand flow rule described by Eqns (14.1)-(14.4). A is called the 
pre-exponential factor, Q the activation energy, R the gas constant, m the strain rate 
sensitivity parameter. ha a constant rate of athermal hardening, and y* equals the saturation 
value of g associated with a given temperature strain rate pair. Thus, */ never exceeds g*. 
In order to characterize the material, we need to specify £, m. A. Q, R, h0. <;*, <7, fi and n. 

We nondimensionalize variables by scaling stress-like quantities by <r0, length variables 
by r0, time by (r0/r0), and the temperature by the reference temperature 0f, defined by 

M&. U6> 

Here r0 equals the radius of the cylindrical part of the penetrator. Substituting for $ from 
(9) into (8), and rewriting the result and Eqns( 1 )~(3) in terms of nondimensional variables 
we arrive at the following set of equations. 

divf»0 (17.1) 

-gradp + div$ = z(r;*grad)j; (17.2) 

5 + 07<U"grad)3 + 5^'- W$) m ZßD (17.3) 

tr{qDp) + <)div(gradtf) = (rgrad)tf (17.4) 

where 

,,d.   ßmSs..   ...Sand*.     k 

<J0 <r0r0     '      G pcv0r0 

are nondimensional numbers. Henceforth we will use nondimensional variables only. Note 
that a, ■/ and 6 are constants for the given problem, but ß varies from point to point in 
the deforming region. The value of a signifies the influence of inertia forces relative to the 
flow stress of the material, those of y and 6 give the effect of material elasticity and the 
heat conduction, respectively. For most metals, y is of the order of 10"\ and it equals 
zero for a rigid perfectly plastic material. The value of the Weissenberg number (ßy) varies 
from 10"3 to !04 in the deforming region. For typical penetration problems involving long 
rod penetrators. o is of the order of 10"5; hence, the target deformations may be considered 
adiabatic. The form of flow rules in terms of nondimensional variables remains unaltered. 

Because of our inability to solve analytically nonlinear Eqns (17). we seek their 
approximate solution by the finite element method. Accordingly, we consider deformations 
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FIG. 1. The finite region studied and its discretization. 

of the finite target region shown in Fig. 1 and impose on it the following boundary conditions. 

£{?n} = 0   on    rY (19.1) 

frt»0   on    r*j, (19.2) 

3'« = hc(0-0a)   on    Vt, (19.3) 

<TS. = 0.    rr = 0.   — = 0   on the surface AB. (20.1) 

r,»0.    r.--l.   0 = 0.    ^=0.   c/=l.   p = 0.   srr * 0.   sw * 0.   s.. - 0.   sf. * 0 
on the boundine surface EFA.   (20.2) 

<rr- = 0.    t'r = 0.   — - 0   on the axis of symmetry DE. 
er 

(20.3) 

Here n and £ are. respectively, a unit normal and a unit tangent vector to the surface. 0a 

is an average temperature of the penetrator. and h. is the heat transfer coefficient between 
the penetrator and the target, and fj denotes the target-penetrator interface. Equation 
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(19.1) implies that T, is smooth, and 119.2) ensures that there is no interpenetration of the 
target material into the penetrator and vice versa. The boundary conditions (20.3) are due 
to the axial symmetry of deformations. That the region R studied is adequate was established 
by increasing the size of the region in both r and r direction until the values of p, p, s, 9 
and \jß at points on Tt differed by less than 5%. 

Figure 1 depicts the final region R so obtained, and its finite element discretization used 
to compute the results presented below. We note that enlarging the region ahead of the 
penetrator from 19 to 20ro changed the value of ||$!| by a maximum of 4.7% and of 
pressure, p, by 2.7%, increasing the target region behind the penetrator nose from 17 to 
I8r0 resulted in a maximum variation in j$|| and p of 2.2%. The valm of other variables 
changed by considerably smaller amounts. When the target region R was divided into 700. 
900 and 1250 elements proportioned as shown in Fig. I. the peak values of the temperature 
rise at any node, and the pressure and the strain rate measure / at the centroid of an 
element were found to be (12.07. 3.42. 1.38), (12.17, 3.69. 1.52) and (12.10. 3.67. 1.53), 
respectively. Results presented below are for a finite element mesh with 1250 elements. 

We refer the reader to [37] for details of obtaining a finite element solution of the problem. 

3  NUMERICAL RESULTS 

3.1. Determination of material parameters for the three flow rules 

In order to compute predictions from the three flow rules for the penetration problem, 
we first need to calibrate them against the same test. Since the experimental data for a 
typical target material over the ranges of strain rates and temperature changes likely to 
occur in a penetration problem is not available in the open literature, we consider a 
hypothetical simple compression test. The code developed by Batra and Liu [38] to analyse 
the plane strain thermomechanical deformations of a viscoplastic body obeying the 
Litonski-Batra flow rule was modified to include the Bodner- Partom and the Brown-Kim - 
Anand viscoplastic models. The same initial-boundary value problem corresponding to 
the plane strain simple compression of a viscoplastic block being deformed at an average 
strain rate of 3300s"1 was solved with each of the three flow rules. The value of each 
material parameter was changed in turn to assess the sensitivity of the effective deviatoric 
stress se vs strain ec curve. Here 

£c = m(£) (22) 
/ and /0 being the current and reference heights of the block. The values of material 
parameters determined so that the se vs r.c curves for the three constitutive relations almost 
matched, as shown in Fig. 2. are listed below. 

(a) The Litonski-Batra (LB) flow rule: 

fc=10s.    (,*- 1.2 x 1<T3/CG    «Ao = 0.1,   m = 0.01.    « = 0.13. 

(b) The Bodner-Partom (BP) flow rule: 

£>0 = 3.3 x 106s"!,   <3= 1800 K.   Z3 = 50MPa.    Zt=650MPa,    m « 0.05. 

(c) The Brown-Kim-Anand (BKA) flow rule: 

A = 6.346 x I0l5s"1,   0 = 275kJ/mole.   £ = 405MPa.    /i0 = 5000MPa. 

= = 3.25,   m = 0.1,    n =0.002,    a= 1.5. 

Values of geometric and other material parameters that are independent of the constitutive 
relation employed are: 

/? = 7860kg/m3,   <r0 = 405MPa,   G = 80GPa,   c = 473J/kg:C,   fc»50W,m:C, 

/i = 20W,m2C,   0, = O,   r0=10mm. 
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FIG. 2. The effective stress VS logarithmic strain curves for the three constitutive relations for a 
viscoplastic block deformed in plane strain compression at an average strain rate of 3300s*'. 

We note that the initial-boundary-value problem solved to compute the se vs £c curve is 
highly nonlinear, and its solution may not be unique. 

The aforestated values are used in studying the penetration problem whose results are 
discussed below. 

3.2. Comparison of results for the penetration problem from the three constitutive relations 

Figure 3 depicts the distribution of the normal stress, temperature rise and the tangential 
speed on the penetrator nose surface and the strain rate measure / at the centroids of 
elements abutting the nose surface for a =» 10, which corresponds to the penetrator speed 
of 718 m / s. In these and subsequent plots, the values of various quantities have been divided 
by a factor so that the curves fit on the same graph. For the values of material parameters 
used herein, the reference temperature 0r, used to nondimensionalize the temperature rise, 
equals 108.9CC. The values of the tangential speed and the strain rate measure / for the three 
models are nearly the same. However, the value of the normal stress and the temperature 
rise computed with the BP model is more than that for the other two modeis. The value 
of the temperature rise at every point on the nose surface as computed with the BKA flow 
rule is more than that found with the LB model, but less than that determined by using 
the BP flow rule. The maximum difference between the temperature rise computed at any 
point on the nose surface with the three flow rules is nearly 30:C for an average temperature 
rise there of 400X. One reason for the temperature being essentially uniform over the 
nose surface is that heat is transferred mainly by convection, since the value of ö in Eqn 
(17.4) equals 1.9 x 10"6. The BP flow rule gives the highest value of the normal stress on 
the nose surface among the three flow rules because the pressure computed with it is the 
highest. For example, the pressure at the stagnation point equalled 1207 and 12.67 for 
the LB and the BP flow rules, respectively. The ncndimensional ?.xial resisting force 
experienced by the penetrator was found to be 8.19, 8.84 and 8.26 for the LB. BP and 
BKA flow rules, respectively. 

We recall that Batra and Adam [6] used the material parameters determined by Batra 
and Kim [39], who evaluated them by ensuring that the computed shear stress-shear 
strain curve during overall adiabatic simple shearing deformations of a viscoplastic block 
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FIG. 3. Comparison of the variation of normal stress, strain rate measure, tangential speed, and 
the temperature rise at target particles abutting the penetrator nose surface for the three constitutive 

relations. 

deformed at an average strain rate of 3300 s"1 matched well with the experimental curve 
of Marchand and Duffy [40] for a HY-100 structural steel. Batra and Adam [6] found 
that for x = 4.5, the peak pressure at or near the stagnation point equalled 18.71 and 
30.16. respectively, for the LB and BP flow rules. Also, the values of the tangential speed 
and the strain rate measure / at points on the target-penetrator interface were not as close 
as that found in the present case. The BP flow rule predicted considerably higher values 
of the normal stress, mainly because of the significantly higher value of the hydrostatic 
pressure, and also of the temperature rise as compared to that for the LB flow rule. When 
G was set equal to infinity and material parameters assigned values used by Batra and 
Adam in the present code, the peak pressure with the BP flow rule was found to be twice 
that with the LB flow rule for a = 4.5. We note that the target region analysed herein is 
more than that studied by Batra and Adam, and the problem formulation, as well as the 
finite element meshes used, is different. 

We have plotted in Fig. 4 the variations of the axial stress ( — a..), the temperature rise 
9. and the axial velocity (— v.) on the axial line, and the strain rate measure / at the 
centroids of elements adjoining the central line of symmetry for the three different 
constitutive relations studied herein. As for the distribution on the target-penetrator 
interface, the curves for the axial velocity and the strain rate measure are hardly 
distinguishable from each other for the three constitutive relations. There is not that much 
difference in the computed values of the temperature rise, but the axial stress computed 
with the BP model differs somewhat from that computed with the other two models, 
primarily due to the difference in the computed values of the hydrostatic pressure. These 
plots reveal that, at least along the axial line, significant deformations occur at target 
particles situated, at most, one penetrator diameter from the target-penetrator interface. 
The values of (/, 6) at the stagnation point, i.e. penetrator nose tip. are found to be 
(1.52.3.53U 1.52.3.80} and (1.53.3.67) for the LB, BP and BKA flow rules, respectively 
Since the nondimensional values of / need to be multiplied by (i0/r0) to get their 
dimensional counterparts, it is obvious that peak strain rates of the order of 1.1 x 105 s"1 

occurred in the problem studied herein. 
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FIG. 4. Comparison of the variation of I -a..), ti, I and < -t:) on the axial line for the three 
constitutive relations. 

Along the axial line, uniaxial strain conditions prevail approximately. Thus, the magnitude 
of the deviatoric stress s.. at a point on the axial line should equal 2/3 the effective flow 
stress defined as 

0Vr * 2V 3p/. 

The error e given by 

100 !l£eff_Zi£l£ 

(23) 

(24) 

is plotted in Fig. 5. The maximum error of 2.5% for the BP model suggests that the 
computed results satisfy |s..| ■» 2/3 o%ff on the axial line reasonably well. The error decreases 
first as we move away from the stagnation point, but begins to increase at points distant 
7r0 from the penetrator nose tip, probably because plastic deformations there are negligibly 
small. 

An integration of the equation of motion (! 7.2) along the central streamline (r = 0) gives 

$»•" + p - s„ - «   - 1 
cat. 

cr 
dr = -(T.JO). (25) 

Figure 6 shows the contribution from the various terms for a = 10. The three models give 
nearly the same value of the kinetic energy term (1 2 zu2). The value of p for the BP model 
is uniformly more than that for the other two models. However, the value of s.r for the 
three models is approximately the same. As noted by Pidsley [31 ] and Wright [41 ]. there 
is a substantial contribution from transverse gradients of the shear stress, unlike that for 
a perfect fluid. 

Setting z - 0 in Eqn (25) and comparing it with Tate's Eqn [27], we get 

*t - -^»-7 (26) 

where Rt equals the strength parameter for the target in Tate's equation, and G\. is the 
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FIG. 5. Percentage error of s„ in being equal to 2. 3 ct(i on the axial line. 
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FIG. 6. Contribution of various terms in the nondimensionalized Bernoulli equation along the 
central stream line. 

value of <r:: at the stagnation point. Knowing at. and ae, we find Rt and arrive at the 
following 

Kt = 8.13 o%ff = 7.713,   for the LB model, 

K, - 7.50 <je({ = 8.459,   for the BP model. 

Ät • 6.57 <7eff * 7.886.    for the BKA model. 

(27.1) 

(27.2) 

(27.3) 

Täte [27] gave 

^♦*(!5)] 
where £, is Young's modulus for the target material. Equation (28) gives Rx equal to 6.64 
for each one of the three flow rules. Thus, each one of the three models predicts a slightly 
higher value of Rx than that given by Täte. For an elastic perfectly plastic target, 
Jayachandran and Batra [10] found H, = 5.96, and that its value depended weakly upon *. 

We have plotted in Fig. 7 contours of the hydrostatic pressure in the deforming target 
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FIG. 7, Contours of the hydrostatic pressure in the deforming target region for three different flow 
rules. 

region for the three flow rules. It is clear that along any radial line the pressure drops off 
more slowly for the BP model as compared to that for the other two flow rules. The 
contours are at an interval of 1.0 and the contour of the zero hydrostatic pressure is not 
plotted in order to concentrate on the region surrounding the target-penetrator interface. 
For each flow rule, the pressure drops off to nearly 3.0 at the nose periphery from its peak 
value of more than 12 at the nose tip. However, when the target material was modeled as 
elastic-perfectly plastic in [10], the pressure at the nose tip equalled at most 10 and 
dropped off to nearly 2.0 at the nose periphery. The consideration of strain-hardening, 
strain rate hardening, and thermal softening effects has resulted in an increase in the 
computed value of the hydrostatic pressure. 

In the constitutive relations employed herein, it is tacitly assumed that a material point 
undergoes elastic and plastic deformations simultaneously. However, points on the 
bounding surface EFA where $ = Q cannot be deforming plastically. Here we classify points 
for which the stress state satisfies the condition 

fr(r) = *cr;M (29) 

as deforming plastically, and those for which the stress state lies inside the surface (29) as 
deforming elastically. The elastic-plastic boundary thus computed and obtained by joining 
points on the surface (29) by straight line segments is depicted in Fig. 8. Ahead of the 
penetrator nose surface, the elastic-plastic boundary extends farthest for the LB model. 
The distance 6.8 on the axial line of the elastic-plastic boundary for the BP and BKA 
models is about the same as that found when the target material is presumed to be 
elastic-perfectly plastic [10]. Täte [27]. by using a solenoid flow model and assuming 
that a material point was deforming either elastically or plastically, found that the 
elastic-plastic boundary was located at an axial distance of 6.71, which compares well 
with the presently computed results. 

For steady state problems. Täte [28] has proposed a method to compute the components 
of the finite strain tensor from a known velocity field. He found the contours of the 
circumferential strain to be nearly parallel to the crater surface, and the circumferential 
strain at a point distant r0 from the crater tip equal to 0.05. Here we define a scalar measure 
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FIG. St. Elastic-plastic boundary in the deforming target region for three different flow rules. 

€ of strain by 

t-%3r.rro']"--^r 
V  * 

which, because of the steadv state deformations, can be written as 

(30) 

■> 

(L-arad)c--^=r. (31) 
V'3 

We note that t does not equal an invariant of any finite strain tensor. We first compute 
Tfrom the velocity field, and then £ as a solution of Eqn (31) with boundary condition 
c * 0 on EFA. The contours off: look alike for the three flow rules: those for the BP model 
are depicted in Fig. 9. The contours off are virtually parallel to the crater surface. On any 
radial line, e drops off quite rapidly for a distance of r0 from the crater surface, and then 
quite slowly. Comparing these contours of £ with the elastic-plastic boundary plotted in 
Fig. 8. one can conclude that £ - 0.02 on the elastic-plastic boundary. The contours of £ 
reveal that severe deformations of the target spread farther to the side than ahead of the 
penetrator nose. At points on the target-penetrator interface £ = 3.0. Since no failure 
criterion is included in our work, a material point can undergo an unlimited amount of 
deformation. 

3.3.    Histories of field variables for target particles 

The results discussed heretofore have involved the spatial distribution of field variables. 
However, in order to establish testing regimes for target materials, it is useful to know the 
histories of stress, strain rate, temperature, etc. for a typical target particle. Accordingly, 
we discuss below the histories of field variables for three target particles. The results for 
the three models are quite similar to each other. Thus, we present results for the BKA 
model only: those for the LB model have been given by Lin and Batra [18]. The computer 
code developed by Lin and Batra has been used to first find streamlines originating from 
a spatial location, and then histories of field variables for that material particle. Henceforth, 
we identify the history of a field variable for the material particle that once occupied the 
place A as the history of the variable for the material particle A. 

\ 
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FlG. 9. Contours of strain in the deforming target region for the Bodner-Partom flow rule. 

Figure 10 shows streamlines for three particles A(0.02.8), B(0.05,8) and C(0.1,8). That 
the streamlines do not intersect should be clear from their enlarged view around the 
penetrator nose. Because of the different scales used along the vertical and horizontal axes. 
the nose shape appears flat rather than circular. The r- and r-coordinates of these three 
points at different times are given in Fig. It. the time being measured from the instant these 
particles occupied the aforestated places. The particles reach a position near the nose tip 
at r * 4.5. and are near the nose periphery when t ^ 7.25. The time increment is computed 
by dividing the incremental distance a particle travels by its speed during that interval. 
The time history of the r- and r-components of the velocity of these three particles relative 
to that of the nose tip is depicted in Fig, 12. As these particles approach jthe penetrator 
nose, the r- and r-components of their/absolute velocity increase. Whereas the'peak values 
of tf for these three particles are nearly equal, the maximum value of the z-component of 
the absolute velocity varies from 0.9 for particfe^A to 0.8 for particle C. 

The time histories of the strain rate measure / aM the spin are given in Fig. 13. Since 
the target deformations are assumed to be axisymmetnexbere is only one non-zero 
component of spin. The small oscillations or bumps_in_the curves are due tojiumerical 
errors, possibly introduced because of taking larger time intervals in computing the time 
histories. The peak values of the spin for these three particles are nearly the same. However, 
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FIG. II. The r- and r-coordinates of points A. B and C at different times. 

the-peak value of / for particle A is 2.1, and that for C is 1.9. For particle A. peak values 
of / and the spin occur when it is near the nose tip and the nose periphery, respectively, 

igure ft depictsr the time histories of the temperature rise 0, hydrostatic pressure p, the 
internal variable g, and the effective stress <refr for these four particles. The value of g 
increases slowly till these particles reach near the penetrator nose tip and then stays 

N 
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FIG. 13. Histories of the strain rate measure / and the spin for particles A. B and C. 

essentially constant, suggesting that it has reached the saturation value. Nearly all of the 
temperature rise at a material particle occurs during the time it is going around the 
penetrator nose. The time histories of /. 6 and aeU reveal that even though / and 6 are 
increasing for 4 < t < 6 for particle A, the effective stress <reff is decreasing during this time 
interval, implying that thermal softening exceeds the hardening caused by the strain rate 
and the evolution of the internal variable g. Whether or not this softening will lead to a 
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Effective stress 

FIG. 14. Histories of the temperature rtse. hydrostatic pressure, internal variable and the effective 
stress at points A. B and C. 

material instability in the form of a shear band is unclear because of the complex state of 
deformations prevailing at points adjoining the target-penetrator interface. 

4. CONCLUSIONS 

We have analysed the steady state axisymmetric deformations of a viscoplastic target 
being penetrated by a rigid cylindrical hemispherical nosed penetrator. The thermomechanical 
response of the target material is modeled by three viscoplastic flow rules, namely, the 
Litonski-Batra, the Bodner-Partom and the Brown-Kim-Anand. Each of these flow 
rules is calibrated to give almost identical effective stress versus logarithmic strain curves 
for a block made of target material and deformed in plane strain compression at an average 
strain rate of 3300 s"l. For the penetration problem, the BP model gives a slightly higher 
value of the hydrostatic pressure, and hence, normal stress on the penetrator nose surface 
as compared to that given by the use of the other two models. The pressure decays a little 
bit slowly for the BP model as one moves away from the penetrator nose surface as 
compared to the other two models. A comparison of the presently computed results with 
those obtained previously by Batra and Adam for the BP and LB models reveals that the 
models calibrated against a compression test give almost identical results for the penetration 
problem as compared to those calibrated against .* simple shear test. The time histories 
of the field variables at three target particles initially close to the axis of symmetry suggest 
that they experience softening behavior, in the sense that even though the strain rate 
increases, the effective stress decreases. The peak values of the spin and the second invariant 
of the strain rate tensor are of the same order of magnitude, but a particle experiences 
these peak values when it is at different locations around the penetrator nose. 
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HISTORIES OF STRESS, STRAIN-RATE, TEMPERATURE, 
AND SPIN IN STEADY STATE DEFORMATIONS OF A 

THERMOVISCOPLASTIC ROD STRIKING A 
HEMISPHERICAL RIGID CAVITY 

R. C BATRA and PEI-RONG LIN 
Department of Mechanical and Aerospace Engineering and Engineering Mechanics, University of 

Missouri-Rolla, Rolla, MO 65401, U.S.A. 

Abstract—Given the velocity field and the values of a field variable / at a large number of discrete 
points in a bounded 2-dimensional domain, an algorithm has been developed to compute the 
streamline that passes through a desired point P in the domain, and the time histories of / at the 
material particle starting from the instant it occupied the point P. Time histories of the effective stress. 
second invariant of the strain-rate tensor, temperature and the spin for a few material panicles in the 
steady state axisymmetric deformations of a thermoviscoplastic rod striking a rigid hemispherical 
cavity are presented. This information should help develop appropriate constitutive models for the 
penetrator material and establish desirable testing regimes for practical problems. 

INTRODUCTION 

The solution of any mechanics problem necessarily involves choosing for the material of the 
body a constitutive relation that adequately models its response over the range of deformations 
anticipated to occur in the problem. However, the computed values of various field variables 
depend, in a nontrivial way, upon the constitutive assumptions made to solve the problem. One 
possible resolution of this rather interesting problem is to choose a constitutive relation, solve 
the problem, check if the constitutive assumptions made are valid over the range of computed 
deformations, and, if necessary, redo the problem with the modified constitutive relation. 

We note that many of the recently proposed theories (e.g. see [1-4]) of large deformation 
elastoplasticity are based on different kinematic assumptions thus necessitating the hypothesiz- 
ing of constitutive relations for variables which may not be simply related to each other. In an 
attempt to determine the most appropriate theory for the analysis of penetration problems and 
to delimit the range cf values of the variables for which the constitutive relation should be 
valid, we find the histories of the effective stress, second invariant of the strain-rate tensor, the 
temperature and the spin at a few typical particles on the penetrator. Only steady state 
axisymmetric deformations of a viscoplastic penetrator striking a rigid hemispherical cavity are 
studied. The solution of this problem reported earlier by Batra and Lin [5] is presumed to be 
given. It is hoped that the time histories of various field variables reported herein will help 
establish desirable testing regimes for practical problems, and assess the efficacy of different 
plasticity theories for the penetration problem. 

Computed results reveal that material particles near the free surface suffer higher values of 
the peak plastic strain-rate as compared to those near the centroidal axis of the rod. Values of 
plastic spin are of the same order of magnitude as the second invariant of the strain-rate tensor. 
The effective stress at material particles initially near the undeformed centroidal axis decreases 
because of the rise in their temperature, even though the plastic-strain rate stays essentially 
uniform. This occurs when the particles reach near the cavity bottom. This drop of effective 
stress suggests that there is a greater likelihood of the formation of an adiabatic shear band 
near the stagnation point, and at points adjoining the cavity surface. 

STATEMENT OF THE PROBLEM 

Let / denote one of the quantities such as the second invariant of the strain-rate tensor, 
temperature or a component of the stress tensor. The problem studied herein may be stated as 
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follows: given the values of the velocity field (Vx(x",y*)t Vy(x
a,y*)) and f(xa,ytt), 

or« 1, 2,..., M at M discrete points (xa,ya) in a bounded 2-dimensional domain, find the 
history of / at a material particle that initially was at any arbitrary place (x0, y0). Needless to 
say, the accuracy with which the problem can be solved depends upon the value of M and the 
spatial distribution of points where the data is given. The optimum number of points and their 
spatial distribution required to solve the problem within a prescribed tolerance has not been 
determined yet. However, in the present case the data is given at numerous points since a very 
fine finite element mesh was used to solve the steady state penetration problem whose output 
serves as the data for the current problem. 

The first step in the solution of the problem is to find the streamline that passes through the 
point P{x0tyQ). If the velocity field were given as a continuous function of position, then the 
streamline can be found by integrating the given ordinary differential equations and finding 
their solution that passes through P. However, for the present problem such is not the case. 
When the data is given at a discrete set of points, Lin and Batra [6] have developed an 
algorithm to compute the streamline through P and the time history of the field variable / for a 
material panicle that once occupied the place (x0, y0). We use the same computer code to find 
the histories of the effective stress, second invariant of the strain-rate tensor, spin, hydrostatic 
pressure and the temperature for a few material particles during the steady state axisymmetric 
deformations of a penetrator striking a rigid hemispherical cavity. 

RESULTS 

Below we present streamlines and histories of various field variables for the steady state 
axisymmetric deformations of a thermoviscoplastic rod striking a hemispherical rigid cavity [5]. 
In cylindrical coordinates and in terms of non-dimensional variables, the governing equations 
are: 

div v » 0, 

div a - — (v • grad)v, 

tr(oD) + ß div(grad d) - (v • grad)0, 

tr(aD) 

(i+wo.oi7r^(v-gfad)y' 
where 

2/2 - tr(D2),       2D - grad v + (grad v)T, 

a-blaQ,       p=pfo0,       v=*v/v0,       r=*r/r0,       z**zfr0t 

0-0/00»        ß = ic{(pcv0rQ),        d0 = o0/(pc). 

Here the dimensional quantities are indicated by a superimposed bar. a is the Cauchy stress 
tensor, p is the mass density of a penetrator material particle, k is the thermal conductivity, aQ 

is the yield stress in a quasistatic simple tension or compression test, c is the specific heat, 6 is 
the temperature rise, the internal parameter y/ describes the work hardening of the material, v0 

is the speed of the penetrator and r0 its radius. Values assigned to different parameters are 

c«473J/kg°C,       * = 48W/m°C,       p = 7800 kg/m3,       ao=180MPa, 

v0- 340m/s,       r0 = 2.54mm. 

This choice of values gives 0O-48.9°C. Results presented below are in terms of non- 
dimensional variables and the multiplying factors in order to obtain their dimensional 
counterparts are given in Table 1. 

Figure 1 depicts the streamlines emanating from the points (0.05, 3.0). (0.10. 3.0), (0.90. 3.0) 
and (0.95.3.0). We have not plotted the streamlines that start from the points (0.0.3.0) and 

141 



Letters in Applied and Engineering Sciences 

Table 1 

95 

Quantity Multiplying factor 

• 

Speed (m/s) 
r or i-coordinate (mm) 
Hydrostatic pressure iMPa) 
Effective stress (MPat 
Strain-rate invariant is* 1 
Spin(s"') 
Temperature rise <°C) 

340 
2.54 
180 
180 

1.34 x 10s 

1.34 x 10' 
48.9 

• 

(1.0,3.0). The former coincides with the centroidal axis of the rod and the latter with the free 
surface. The shape of the free surface for different values of the penetrator speed is shown in 
Fig. 3 of the naper by Batra and Lin [5\. Whereas the streamlines passing through the points 
(0.90,3.0) anu (0.95,3.0) stay essentially parallel to each other, the distance between those 
originating from (0.05,3.0) and (0.10.3.0) decreases sharply after they reach the area near the 
stagnation point and turn around. In Fig. 2 we have plotted the location of these material 
particles at different times and their speed, the time is reckoned from the instant these material 
particles were on the surface z = 3. The speed of particles near the free surface decreases from 
1.0 to about 0.45 when they are at the bottom-most point on the free surface and then stays 
essentially constant. However, the speed of material particles initially near the centroid axis 
undergoes a significant change, their speed decreases from 1.0 to about 0.15 when they reach 
the area near the stagnation point and then increases gradually to about 0.74. As expected the 
speed of the particle initially closer to the centroidal axis decreases more than that of the 
particles initially farther from the centroidal axis. 

Figure 3 shows the time histories of the spin and the second invariant / of the strain-rate 
tensor. Since we have neglected elastic deformations and studied the axisymmetric problem, 
there is only one non-zero component of the plastic spin tensor. These plots reveal that the 
values of the plastic spin and / are higher for material particles near the free surface as 
compared to those for material particles near the centroidal axis. Whereas the peak values of / 
for the four material particles considered are of the same order of magnitude those of the 
plastic spin are not. The maximum value of the plastic spin for the material particles near the 
centroidal axis is an order of magnitude lower than that of the particles near the free surface of 
the rod. 

»r 

o 

2 - coordinate 

Fig. 1. Streamlines emanating from four points on the incomine penetrator. The originating point for 
the four curves are: (0.05.3.0); (0.10.3.0); (0.90.3.0); (0.95.3.0). 
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Fig. 2. The variation with time of the speed, and r-, r-coordinates of the four material particles. The 
initial  location of the  material  particle  for the  four curves are: (0.95,3.0);  

(0.>0,3.0); (0.10,3.0);  (0.05,3.0). 

The time histories of the temperature and the effective stress sf defined as 

/l \l/t 

5, = (^tr((F + />l)2J 

for the four material particles considered are plotted in Fig. 4. Note that the peak value of the 
effective stress experienced by the four material particles is essentially the same. However, the 
time histories of the temperature and / for these particles are noticeably different. The 
temperature rise for material particles near the free surface is considerably less as compared to 
that for material panicles near the centroidal axis. The temperature rise for the latter particles 
is nearly one-third of the presumed melting temperature of the material. At a higher speed, 
these values will be even higher. The plots of the strain-rate invariant / in Fig. 3 and of the 
temperature rise and se in Fig. 4 reveal rhat the values of sf for material particles near the 
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/ /! x,     y \.../ \ 
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1 2 3 4 5 6 T 9 9 tO 11 12 

Time 

9 10 11 12 

Fig. 3. Time histories of the spin and the second invariant of the strain-rate tensor for the four 
material particles. See Fig. 2 for explanations. 

centroidal axis decrease due to the fact that softening of the material caused by its heating has 
overcome the combined effects of strain-rate and work hardening. The effect of work- 
hardening represented herein by the parameter y is not that significant because of the 
relatively small value (0.01) of the exponent selected in the constitutive relation. That is why 
we have not included the time history of t// in our results. If plotted, the time histories of t/> for 
these material particles mimic those of the temperature rise except for a change of scale. The 
results of Fig. 4 suggest that, in this problem, a shear band is likely to form near the cavity 
surface for higher values of the penetrator speed. 

CONCLUSIONS 

During the steady state axisymmetric thermomechanical deformations of a viscoplastic rod 
striking a rigid hemispherical cavity, the plastic spin for material particles near the free surface 
is an order of magnitude higher than that for material particles near the centroidal axis. The 
values of the second invariant of the strain-rate tensor at these panicles arc not that much 
different and are of the same order of magnitude as the peak value of the plastic spin. Material 
particles initially near the centroidal axis of the rod are heated considerably more than those 
near the free surface of the rod. The time histories of the temperature, strain-rate invariant I 
and the effective stress seem to suggest that there is a greater likelihood of the formation of an 
adiabatic shear band near the cavity surface. 
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Fig. 4. Time histories of the temperature and the effective stress for the four material particles. See 
Fig. 2 for explanations. 
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AN APPROXIMATE ANALYSIS OF STEADY STATE 
AXISYMMETRIC DEFORMATIONS OF 

VISCOPLASTIC TARGETS 

R. C. BATRA and XINGJU CHEN 
Department of Mechanical and Aerospace Engineering and Engineering Mechanics. University of 

Missouri-Rolla. Rolla. MO 65401-0249. U.S.A. 

Abstract—Steady state axisymmetric deformations of a viscoplastic target being penetrated by a rigid 
cylindrical penetrator with a hemispherical nose are analyzed. The presumed kinematically admissible 
velocity field satisfies all of the boundary conditions o^ the target/penetrator interface, and also the 
balance of mass. The unknown parameters appearing in the admissible velocity field are found by 
minimizing the error in satisfying the balance of linear momentum. The solution so obtained is found 
to be very close to the finite element solution of the problem. An advantage of the present technique 
is the enormous savings in the computational effort and resources required to analyze the problem. 

1. INTRODUCTION 

In recent years, emphasis has been placed on kinetic energy penetrators. which for terminal 
ballistic purposes may be considered as long metal rods traveling at high speeds. For impact 
velocities in the range of 2-10 km/s, incompressible hydrodynamic flow equations can be used 
to describe adequately the impact and penetration phenomena, because large stresses occurring 
in hypervelocity impact permit one to neglect the rigidity and compressibility of the striking 
bodies. Models, which require the use of the Bernoulli equation or its modification to describe 
this hypervelocity impact, have been proposed by Birkhoff et ai [1] and Pack and Evans [2]. At 
ordnance velocities (0.5-2 km/s), the material strength becomes an important parameter. 
Allen and Rogers [3] modified the Pack and Evans [2] flow model by representing the strength 
as a resistive pressure. This idea was taken further by Alekseevskii [4J and Täte [5,6], who 
considered separate resistive pressures for the penetrator and the target. These resistive 
pressures are empirically determined quantities, and the predicted results depend strongly upon 
the assumed values of these pressures. As described by Wright [7] in his survey article on long 
rod penetrators, Tate's model is difficult to use for quantitative purposes, because the strength 
parameters depend upon the velocity of impact and the particular combination of materials 
involved. Wright and Frank [8] in their reexamination of Tate's theory. h2ve derived 
expressions for the resistive pressures in terms of mass densities, yield strengths of the 
penetrator and target material, and penetrator speed. 

The paper by Backman and Goldsmith [9] is an authoritative review of the open literature on 
ballistic penetration, containing 278 reference citations from the 1800s to 1977. They describe 
different physical mechanisms involved in the penetration and perforation processes, and also 
discuss a number of engineering models. Jonas and Zukas [10] reviewed various analytical 
methods for the study of kinetic energy projectile-armor interaction at ordnance velocities and 
placed particular emphasis on three-dimensional numerical simulation of perforation. Ander- 
son and Bodner [11] have recently reviewed engineering models for penetration and some of 
the major advances in hydrocode modeling of penetration problems. Two books [13, 14), 
published during the past few years, include extensive discussions of the engineering models, 
experimental techniques and analytical modeling of ballistic perforation. 

Awerbuch [15], Awerbuch and Eodner [16], Ravid and Bodner [17], and Ravid et al. [18] 
have developed models to analyze the normal perforation of metallic plates by projectiles. The 
penetration process is presumed to occur in several interconnected stages, with plug formation 
and ejection being the principal mechanism of plate perforation. They presumed a kinemati- 
cally admissible flow field and found the unknown parameters by minimizing the plastic 
dissipation. They characterized the procedure as being a modification of the upper bound 
theorem of plasticity to include dynamic effects. These authors have included the dependence 
of the yield stress upon the strain rate and studied a purely mechanical problem. 

V 
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Jones et at [ I9| have modified the one-dimensional eroding-rod penetration theory of Täte 
by accounting for the mass transfer from the rigid end of the rod into the plastic region, and the 
mushroom strain at the deforming end of the rod. Their results suggest that the latter factor has 
a substantial effect on calculated penetrations. Woodward [20] has proposed a one-dimensional 
model of penetration which regards both penetrator and target as mushrooming cylinders and 
the target flow stress is increased to account for the lateral constraint. A finite difference 
formulation is used for both target and projectile to divide them into a series of elements. The 
projectile elements which enter the target are subjected to lateral constraint and a shear stress 
if their diameter is sufficient to touch the edges of the hole. Forrestal et ai [21] have used the 
cavity expansion model to predict the penetration depths for relatively rigid projectiles striking 
deformable semi-infinite targets. 

The one-dimensional theories ignore the lateral motion, plastic flow and the detailed 
dynamic effects. In an attempt to understand better the approximations made in simpler 
theories of penetration, Batra and Wright [22] studied the problem of a rigid cylindrical rod 
with a hemispherical nose penetrating into a rigid/perfectly plastic target. The target 
deformations, as seen by an observer moving with the penetrator nose tip, were presumed to 
be steady. Subsequently Batra and his coworkers [23-28] studied the effect of nose shape, 
strain hardening, strain-rate hardening and thermal softening characteristics of the target 
material and also analyzed the steady state axisymmetric deformations of a rod striking a rigid 
cavity. Guided by the results given in (22, 23] we presume a kinematically admissible velocity 
field to analyze the steady state axisymmetric deformations of a viscoplastic target being 
penetrated by a rigid hemispherical nosed cylindrical rod. The approximate solution obtained 
herein compares favorably with the finite element solution and requires less than one- 
hundredth of the computational resources in terms of the CPU time and the storage 
requirements. 

2.  FORMULATION OF THE PROBLEM 

We use the Eulerian description of motion and a cylindrical coordinate system with origin at 
the center of the hemispherical nose and moving with it at a uniform speed v0 to describe the 
deformations of the target. The positive z-axis is taken to point into the target. We work in 
terms of non-dimensional variables indicated below by a superimposed bar. 

d~olo{U       p-pfa0,       <* = p0vl/o0, 

v = Wi\,. r-rfr0, z = z/r0, (1) 

where a is the Cauchy stress tensor, p the hydrostatic pressure not determined by the 
deformation history since the deformations are assumed to be isochoric, v-(vr, v.) is the 
velocity of a material particle, the pair (r. z) describe the current position of a material particle, 
rn is the radius of the undeformed cylindrical portion of the rod, p0 equals the mass density of a 
target material and o0 is the yield stress of the target material in a quasistatic simple 
compression test. The non-dimensional parameter a equals the magnitude of the inertia forces 
relative to the flow stress of the material. 

Hereafter, we drop the superimposed bars. Equations governing the deformations of the 
target are 

divv = 0, (2.1) 

div o - a(v • grad)v, (2.2) 

(1 +bl)m 

"=-"l+-^rD- <23) 

2D = gradv + (gradv)r, (2.4) 

2/2 = tr(D:). (2.5) 

Equations (2.1) and (2.2) express, respectively, the balance of mass and the balance of linear 
momentum. Equation (2.3) is the constitutive relation for the rigid/viscoplastic target material. 
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(3.1) 

s~a + pl. (3.2) 

The kinetic equation (3.1) is of a specific overstress form—roughly similar to that proposed by 
Cowper-Symonds-Bodner and generalized by Perzyna. The parameters b and m describe the 
strain-rate hardening characteristics of the material. D, given by equation (2.4), is the 
strain-rate tensor and / is its second invariant. Equation (2.1) and the one obtained by 
substituting (2.3) into (2.2) are the nonlinear partial differential equations to be solved for v 
and p under the prescribed boundary conditions. 

At the target/penetrator interface, we impose the boundary conditions 

t-(«m)»0, 

v  n = 0, 

(4.1) 

(4.2) 

where n and t are, respectively, a unit normal and a unit tangent to the surface. The boundary 
condition (4.2) ensures that there is no interpenetration of the target material into the 
penetrator, and the boundary condition (4.1) states that the target/penetrator interface is 
smooth. This seems reasonable because a thin layer of material at the interface either melts or 
is severely degraded by adiabatic shear. At points far away from the penetrator, 

|v + e|-*0   as   |x| » (r2 + z2)1/2->«,       z>:-®, (5.1) 

|<mj—*0   as   z- (5.2) 

where « is a unit vector in the positive z-direction. The boundary condition (5.1) states that 
target particles far away from the penetrator appear to be moving with a uniform speed with 
respect to it. Equation (5.2) states that far to the rear the traction field vanishes. Note that the 
governing equations (2.1)-(2.3) are nonlinear in v and their solution, if there exists one, will 
depend on the rates at which quantities in (5) decay to zero. 

3. AN APPROXIMATE SOLUTION; 

Guided by the finite element solutions [22, 23] of the corresponding problem, we divide the 
deforming target region shown in Fig. 1 into two subregions: region I and region II. We assume 
that in region I the target material extrudes rearward as a uniform block. Thus, the velocity of 

Fig. 1. The problem studied. 
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material particles in this region is along the axis of the rod. We note that a similar assumption 
was made by Ravid and Bodner [17] in their analysis of the perforation of thick plates. In order 
to describe the velocity field in region II, we introduce a new coordinate system (p, 6) where 

p-(r2 + 2
:)1^ (61) 

^ 0«tan-l(r/r). (6.2) 

vB » vr cos 6 - V: sin 0, (7.1) 

vp » v, sin 6 + vz cos 6. (7.2) 

Equation (2.1), and the boundary conditions (4.2) and (5.1) take the form 

dp+pdd+T   7^   °' (8) 

t/p~0      onCDandu8=0onDE, (9.1) 

ü.-*-l,       vr~0   as   p-»oo. (9.2) 

We also need to ensure that on CF 
v,-v„, (10.1) 

and 
(m)i-(<m)ii. (10.2) 

If the boundary EF is far enough from the noise tip D, then condition (9.2) is a reasonable 
approximation to (5.1). The condition (9.1) on DE follows from the assumption that the 
deformations are axisymmttric. 

A velocity field that satisfies equation (8), boundary conditions (9.1) and (9.2), and the 
continuity condition (10.1) and exhibits characteristics similar to that found by the finite 
element solution is given below. In region II, 

*• * i1 "^ + ^)sin 6 + 2 C*r«Pm «*«* 26, (11.1) N P P   ' m.k 

- 2 -^ (^ - p" W'12d((2k + l)cos26 + 1),    (11.2) 
. .        .     . mkm + 2\p-        I 

and in region I 

f.. = -(l-^T + p;).       », = 0. (12) 

In equation (11), the constants n and Cmk are yet to be determined. Tlie natural boundary 
conditions (4.1) and (5.1), and that on the axis of symmetry DE can be written as 

o> = 0       on DC, (13.1) 
|cm| — 0      asp->*, (13.2) 

crrr = 0       on DE. (13.3) 
/ 

Recalling the constitutive relation (2.3), we see that boundary conditions (13.1) and (13.3) 
are equivalent to / 

-^ + --^-- = 0       when p^I or 0 = 0. (1^ 
dp    p 36     p 

This is satisfied if we choose 

m<-3,       k&3,       SU^-l)^.       ^»3l4>ss<- -■- (15) 

The satisfaction of the boundary condition (13.2) requires that 

lpl-0,    as   p-*x. \       (16) 
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In order to determine the hydrostatic pressure p, we use the balance of linear momentum 
(2.2). Substitution from (11), (7) and (2.3) into (2.2) gives 

*-*..>. 

IE. 
3z <g(r, z). 

(17.1) 

(17.2) 

where/and g are known functions of r and r. Their expressions are quite long and are omitted. 
Since it is hard to choose n and Cmk such that the integrability condition 

dz    Br 

is satisfied, we find n and Cmk by ensuring that the functional 

(18) 

(19) 

takes on the minimum value. Knowing n and Cmk, the pressure is found by integrating 
equation (17) and the constant of integration is determined by setting p - 0 at p ■ 1, 0- 90°. 
This condition is also taken from the finite element solution of the problem. The computed 
pressure field does satisfy (16). However, no attempt was made to achieve the rate of decay of 
p equal to that obtained in a finite element solution of the problem. 
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Fig. 2. Distribution of the normal traction on the penetrator nose.  One term solution; 
three terms solution; FEM solution. 
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Having determined a in region II we can use the balance of linear momentum, boundary 
conditions (10.2) and (5.2) to compute the stress field in the region I. However, the 
computation of this stress field is not necessary in order to compute various quantities of 
practical interest. 

4. DISCUSSION OF RESULTS 

In order to compare the solution obtained with the present method with that computed by 
the finite element method, we set ^»K^s, m=»0.03 and oc ■ p0vl/a0 =» 6.15. Whenever 
different values of b, m and a are used, these are stated in the figure captions. Figure 2 depicts 
the distribution of the normal traction on the penetrator nose. The solution computed with the 
leading term in equation (11) differs very little from that found by also including the next two 
terms in the series. These two solutions match well with the finite element solution for 
0 < 6 < 25*. For 6 > 25°, the presently computed solution differs noticeably from the finite 
element solution. Because of very little difference between the leading term solution and the 
three terms solution, it was felt that the consideration of the additional terms in the series will 
not result in any significant improvement in the solution. The variation of the second invariant 
1 of the strain-rate tensor D along the axial line, plotted in Fig. 3, reveals that the results 
obtained with the present method are very close to the finite element solution of the problem. 
In this case, the three terms solution and the one term solution overlapped each other. 
However, the computed values of azt on the axial line, shown in Fig. 4, do not agree that well 
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with the finite element solution except near the nose tip. Three sets of curves show similar 
trends in that a.z decreases gradually as we move away from the nose tip. The decrease is more 
for the finite element solution as compared to the solution with the present method. Since the 
hydrostatic pressure is a major contributor to the value of ozz, the difference between the 
present solution and the finite element solution can be attributed to the different rates of decay 
of p. We note that many results of practical importance computed with the present method, as 
outlined below, are close to those obtained from the finite element solution. 

On the axial line, the Bernoulli equation, as modified by Täte [5, 6] is 

jpovJ + /?t»-a„(l,0) (20) 

where Rt accounts for the strength of the target material. Having computed azz and knowing 
p0vlt we can find /?,. The value of /?, thus computed equals 9.43 a0 with the present method 
and 9.63 a0 with the finite element method. From Fig. 3, we see that at the nose tip I ■ 1.75. 
Since vjr0= 1.48x K^s"1, therefore, at the nose tip 

°D - <*oO + 10*(1J5 x 1.48 x 105))003 - 1.916a0 (21) 

where aD is the value of the flow stress for the target material at a strain-rate of 2.59 x 103 s'1. 
Thus /?, * 4.92<7D for *he presently computed solution. The non-dimensional axial resisting 
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force F experienced by the penetrator is given by 

F-       (n-on)sin20d0. 
Jo 

(22) 

The dimensional values of the resisting force equal xrio0F. Figure 5, which is a plot of F vs a, 
shows that the dependence of F upon a is rather weak. Equations of straight lines fitted by the 
least squares method to the computed data are 

F - 8.575 + 0.197a, FEM solution, 

F ■ 8.717 + 0.243ar, Present 3 terms solution. 

(23.1) 

(23.2) 

Thus the two methods yield virtually identical values of F. The weak dependence of F upon a 
indicates why the choice of the constant target resistance in the simple theory of Täte [5, 6] 
gives good qualitative results. 

The contours of the hydrostatic pressure p plotted in Fig. 6 indicate that the pressure near 
the nose tip is very high and it drops off rather slowly as we move away from the nose tip. It is 
thus obvious that the hydrostatic pressure near the penetrator nose makes a significant 
contribution to the normal traction acting on the nose tip and hence to the axial resisting force 
experienced by the penetrator. In Fig. 7, we have plotted the distribution of the normal 
traction on the penetrator nose for different values of a. As expected, the normal traction at a 
point on the penetrator nose increases with a. In the finite element solution [22] of the 
problem, the normal traction at 6 ■ 45° was unaffected by the value of at. It seems that this was 
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Steady state axisymmetric deformations 1357 

due to the coarse mesh used. Since at 6 ■ 0°, the normal traction on the penetrator nose equals 
(-a,.), and the deviatoric part of the stress equals 0.667 for the rigid/perfectly plastic target 
material and a little bit more for the viscoplastic target material, the hydrostatic pressure at the 
nose tip increases significantly with the increase in the value of ot. 

Figures 8(a) and (b) depict respectively the dependence of the normal stress on the 
penetrator nose upon the values of b and m that characterize the viscoplastic response of the 
target material. It is obvious that the normal stress on the penetrator nose and hence the axial 
resisting force acting on the penetrator depend strongly upon the values of b and m. As the 
value of either b or m is increased, the normal stress at a point on the penetrator nose, except 
near the periphery of the nose, increases sharply. Recall that at 6 » 90°, p is set equal to 0 
during the solution of the problem. The dependence of the axial resisting force upon m and b is 
depicted in Fig. 9. These plots show that F depends strongly upon b and m as was also found to 
be the case in the finite element solution of the problem. 

We note that Forrestal et ai [29] have given the depth of penetration of hemispherical nosed 
steel rods penetrating into aluminum targets impacted at different speeds. From their data, it is 
hard to estimate the resisting force experienced by the rod during the steady state portion of 
the penetration process. Also the assumption in our work that the contact at target/penetrator 
interface is smooth should be modified to account for the frictional forces acting on the 
interface. Since the assumed kinematically admissible velocity field gives zero tangential 
tractions at the contact surface, the consideration of frictional forces there necessitates that we 
modifv the velocity field. 
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Fig. 9. Dependence of the axial resisting force experienced by the penetrator upon the values of b 
and m. b: m; or »8.0. 
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5. CONCLUSIONS 

A simple approximate solution to the problem of analyzing axisymmetric steady state 
deformations of a rigid-viscoplastic target being penetrated by a long rigid cylindrical rod with a 
hemispherical nose is presented. A kinematically admissible velocity field that satisfies the 
balance of mass, all of the essential boundary conditions, and traction boundary conditions on 
the axis of symmetry and the target/penetrator interface is proposed. The various parameters 
in the presumed velocity field are found by minimizing the error in the satisfaction of the 
balance of linear momentum. The computed results reveal that the leading term in the 
proposed velocity field gives a good solution that is reasonably close to the finite element 
solution [22, 23]. The axial resisting force experienced by the penetrator is found to depend 
weakly upon the square of the penetrator speed but strongly upon the strain-rate hardening 
exponent for the target material. The value of the resisting force term suggested by Täte [5,6] 
in the modified Bernoulli equation is found to be 9.43 a0 or 4.92aD where aD is the dynamic 
flow stress for the target material at a value of the strain-rate equal to that prevailing at the 
stagnation point. 
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