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L STATEMENT OF THE PROBLEM STUDIED .

Factors that play a significant role during the penetration of metal targets by
projectiles include material properties, impact velocity, projectile shape, target support
position, and relative dimensions of the target and the projectile. Recently, emphasis has
been placed on kinetic energy penetrators, which for terminal ballistic purposes may be
considered as long metal rods traveling at high speeds. For impact velocities in the range
of 2 to 10 km/sec, compressible hydrodynamic flow equations can be used to describe
adequately the impact and penetration phenomena, because large stresses occurring in
hypervelocity impact permit one to neglect the rigidity and compressibility of the striking
bodies. Models, which require the use of the Bernoulli equation or its modification to
describe this hypervelocity impact, have been proposed by Birkhoff et al' and Pack and
Evans.® At ordnance velocities (0.5 to 2 km/sec), material strength becomes an important
parameter. Allen and Rogers® modified the Pack and Evans® flow model by representing
the strength as a resistive pressure. This idea was taken further by Alekseevskii* and Tate,**
who considered separate resistive pressures for the penetrator and the target. These
resistive pressures are empirically determined quantities, and the predicted results depend
strongly upon the assumed values of these pressures. As described lucidly by Wright’ in his
survey article on long rod penetrators, Tate’s model is difficult to use for quantitative
purposes, because the strength parameters depend upon the velocity of impact and the
particular combination of materials involved. Wright and Frank® recently re-examined
Tate’s theory and derived expressions for the resistive pressures in terms of mass densities,
yield strengths of the penetrator and target materials, and penetrator speed. They
postulated the expression . ;

F = A @I, + bpp? + cp A ¢

for the force F, delivered to the target during the nearly steady portion of the penetration
process. In equation (1) A, is the cross-sectional area of the cavity, L, is the yield stress for
the target material in a quasistatic simple tension or compression test, p, equals the mass
density of the target material, p and p equal, respectively, the axial velocity and axial
acceleration of the target/penetrator interface, and a, b, and ¢ are nondimensional numbers
that depend on material parameters. Dehn’ assumed

F

, =2+ bp +cp’ @)

and gave values of a, b, and c in terms of material parameters for the target. Strictly
speaking, the modified Bernoulli’s equation is valid only when the flow fields are steady. .
Batra and Wright'® studied numerically the steady state penetration of a rigid/perfectly
plastic target by a hemispherical nosed rigid cylindrical rod and found a = 3.9, and b =
0.0773. Batra'""? subsequently accounted for strain hardening, strain-rate hardening, and
thermal softening, as well as different nose shapes, and found that the coefficients varied
by a factor of at Jeast three, depended strongly on the nose shape, and decreased for a more
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pointed shape.

The one-dimensional theories ignore the lateral motion, plastic flow, and the detailed
dynamic effects. The paper by Backman and Goldsmith® is an authoritative and superb
review of the open literature on ballistic penetration, containing 278 reference citations from
the 1800’s to 1977. They describe different physical mechanisms involved in the penetration
and perforation processes, and also discuss a number of engineering models. Jonas and
Zukas'* reviewed various analytical methods for the study of kinetic energy projectile-armor
interaction at ordnance velocities and placed particular emphasis on three-dimensional
numerical simulation of perforation. Anderson and Bodner” have recently reviewed
engineering models for penetration and some of the major advances in hydrocode modeling
of penetration problems. Three books,'*!""* published during the past few ye~-s, include
extensive discussions of the engineering models, experimental techniques, ana analytical
modeling of ballistic perforation.

Manganello and Abbott,'”” Wingrove and Wulf?® and Recht? observed that the
penetration resistance of some armor materials is reduced, even though these materials
exhibit increased static mechanical strength. During penetration of such targets the
formation of adiabatic shear bands leads to a sharp drop in shear yield stress after the
formation of a plug, and the penetration resistance of the target is severely reduced. It has
been suggested?® that the material in the shear band melts. Woodward® has proposed a
model for adiabatic shear plugging failure of targets. He considered the penetration of
ductile metal targets impinged upon by a sharp conical projectile and assumed that the
penetration is achieved by radial expansion of a hole in the plate from zero to the
penetrator radius. Wingrove's® experiments show that sharp corners of flat-ended
projectiles cause deformation in a narrow zone of the target, and hemispherical and ogive
nose shapes progressively broaden the deformation pattern. Because of the formation of
the thermally-softened shear zone and the difference in fracture behavior for breakout, flat-
ended projectiles penetrate materials susceptible to adiabatic shear with greater ease than
do radiused projectiles.

Awerbuch,”® Awerbuch and Bodner,” Ravid and Bodner,® and Ravid, Bodner, and
Holcman® have developed models with which to analyze the normal perforation of metallic
plates by projectiles. The penetration process is presumed to occur in several
interconnected stages, with plug formation and ejection being the principal mechanism of
plate perforation. They presumed a kinematically admissible flow field and found the
unknown parameters by minimizing thz plastic dissipation. They characterized the
procedure as being "a modification of the upper bound theorem of plasticity to include
dynamic effects”. Even if such a theorem were valid, it is bard to tell how close such a
bound might be to the solution of the problem. These authors have included the
dependence of the yield stress upon the strain rate and studied a purely mechanical
problem.

Recht® has adapted the Taylor’' mode! of mushrooming to the situation in which the
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penetrator is allowed to move into the target, and both erosion and shear mass loss are
allowed in the penetrator. The principal difficulty is the specification of velocities for the
plastic waves in the projectile and the target in order to obtain a unique solution for the rate
of interface movement. Brooks*? and Brooks and Erickson* have demonstrated traasitions
in behavior such that, at increased velocities, it is possible to observe a reduced depth of
penetration over a range of velocities. The transition is related to the degree of radial
constraint offered by the surrounding target material and its ability to resirict projectile
deformation. The transition velocity depends strongly upon the projectile tip geometry.
Above the transition velocity, the deformation is described as “jetting” to illustrate a
similarity in behavior to shaped charge jets. Forrestal et aL* have used the cavity expansion
model to predict the penetration depths for relatively rigid projectiles striking deformable
semi-infinite targets.

An important and still totally unresolved problem is that of selecting the most
appropriate constitutive relation for the penetrator and target materials, The constitutive
relation employed should adequately model the material response over the range of
deformations expected to occur in the problem. However, the computed values of the
deformation fields generally depend strongly upon the constitutive assumptions made. A
way out of this dilemma is to choose a constitutive relation, solve the problem, check to see
if the constitutive assumptions are valid over the range of computed deformations, and, if
necessary, solve the problem again with the modified constitutive relation. In the last few
years, many new theories*?%% of large deformation elasto-plasticity have been proposed.
We use three such theories to analyze the steady state penetration problem.

The work conducted under this contract involved the analysis of the steady state
axisymmetric penetration problems with the objectives of delineating important material and
kinematic variables that should be included in simpler penetration models, and, if possible,
propose such a model.

II. SUMMARY OF RESULTS

When both the penetrator and target materials are assumed to be thermally
softening, but strain and strain-rate hardening, the bottom part of the target/penetrator
interface was found to be ellipsoidal rather than hemispherical.® The peak pressures near
the stagnation point in the penetrator and target regions approached 4.58 o,, and 14 o,
respectively, for o,/0, = 3.06. Here o, and o, equal, respectively, the yield stress in a
quasistatic simple compression test for the penetrator and target materials. The axial force
on the penetrator equalled 8.91F, 11.52F, and 14.5F (F = =t/0,,) for stagnation point
speeds of 450 m/s, 500 m/s, and 550 m/s, respectively. A significant contribution to the
resisting force is made by the consideration of strain-rate hardening effects. When the
penetrator and target materials are modeled as rigid/perfectly plastic,” the resistive pressure
terms in the modified Bernoulli’s equation were found to depend upon the ratio of the mass
densities of the target and the penetrator, as well as on the penetration speed.




The consideration of elastic deformations of the target reduced the peak value of the
hydrostatic pressure acting at the stagnation point, the axial resisting force experienced by
the rigid penetrator, and the target resistance parameter appearing in the modified Bernoulli
equation by nearly 28%, 25%, and 25%, respec 'vely, as compared to those for a
rigid/perfectly plastic target.*

When the flow rules due to Litonski-Batra, Bodner-Partom, and Brown, Kim, and
Anand were calibrated against a hypothetical compression test performed at a nominal
strain-rate of 3300 sec” and then used to study the steady state axisymmetric deformations
of a target, the three constitutive relations gave nearly the same value of the resisting force
acting on the penetrator, temperature rise of material particles in the vicinity of the
target/penetrator interface, and other macroscopic measures of deformation, such as the
effective stress and the effective strain-rate.* However, when the Litonski-Batra and the
Bodner-Partom flow rules are calibrated against a simple shear test, the Bodner-Partom
model gave a very high value of the hydrostatic pressure at the target/penetrator interface
as compared to that given by the Litonski-Batra flow rule.*

The transverse isotropy of the target material affected significantly its deformations
and the resisting force it exerts on the penetrator.”

III. BRIEF REVIEW OF THE COMPLETED WORK

We?® have studied axisymmetric deformations of a thermoviscoplastic rod penetrating
a thick thermoviscoplastic target when their deformations appear steady to an observer
situated at the stagnation point and moving with it. Both the rod and the target material
are assumed to exhibit strain-rate hardening and thermal softening, and the contact between
them at the common interface is smooth. We have plotted in Fig. 1 the shapes of the free
surface of the deformed penetrator, and the target/penetrator interface for three values of
the speed of the stagnation point. In order to elucidate the dependence of the location of
the stagnation point upon the speeds of penetration, the ordinate is measured from the
bottom surface of the target region studied. The stagnation point moves away from the free
surface of the deformed penetrator as the speed of penetration is increased. Also, with the
increase in the speed of peuetration, the distance between the free surface of the
undeformed penetrator and the deformed penetrator particles moving rearward increases.
The shape of the target/penetrator interface also depends strongly upon the penetration
speed. The peak values of the temperature rise 8, second invariant I of the strain-rate

tensor D and the hydrostatic pressure p, and where they occur are influenced by the values

of the strain-rate hardening exponents m, and m, for the penetrator and target, respectively.
This is evidenced by the information provided in Table 1.

One of the challenging problems in penetration mechanics is to find constitutive
relations that are valid over a wide range of strains, strain rates, and temperatures likely to




Table 1. Effect of m, and m, on p,, La,, and py, in the penetrator target regions’

Values om (oc) I-u Pooax (x,v.z)

of m Penetrator Target Penetrator Target Penetrator Targe:
m, = 0.025 2322 189.5 5.25 4.185 0.8975 1.017
m, = 0.025 (0.17,0.06)  (0.479,0.05) (1.135,1.01) (1.096,0.175) (0.0,0.0) (0.148,-0.012)
m, = 0.005 199.8 167.1 4.26 4.108 0.9409 1.005
m = 0.025 (0.165,0.04) (0.464,0.04) (1.193,0.96) (1.074,0.164) (0.0,0.0) (0.149,-0.004)
m, = 0.0 193.07 164.15 4.11 4.174 0.9562 0.9951
m, = 0.025 (0.165,0.03) (0.525,0.04) (0.052,0.02) (1.26,0.26) (0.0,0.0) (0.113,0.002)
m, = 0.025 229.9 183.2 5.27 4.595 0.8957 0.978
m, = 0005 (0.15-0.02) (0.48,0.02) (1.134,1.02) (1.86,0.77) (0.0,0.0) (0.15,-0.014)
m, = 0.025 230.7 186.03 4.2815 4.128 0.9509 0.9454

m, = 0.0 (0.165,0.034)  (0.526,0.04) (0.052,0.02)  (1.26,0.27) (0.0,0.0) (0.1129,0.001)

“The coordinates of points where 6, I, and p assume maximum values are parenthetically noted.
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occur in the deforming penetrator and target regions. Compounding the difficulty is the
observation that different deformation mechanisms are active at var.ous temperatures and
strain rates, and the mechanisms themselves are temperature and tim: dependent. Another
complicating factor is the microstructural changes such as the generation/annihilation of
dislocations, development of texture, dynamic recovery and recrystallization, nucleation and
growth of microcracks and voids, and the development of shear bands, that occur during the
plastic deformation of a material. One way to account for these microstructural changes at
a macroscopic level is to use the theory of internal variables proposed by Coleman and
Gurtin.“ We*' used three such constitutive relations, namely, the Litonski-Batra (LB) flow
rule, the Bodner-Partom (BP) flow rule, and the Brown-Kim-Anand (BKA) flow rule. The
material parameters in these constitutive relations were evaluated by solving numerically an




initial-boundary-value problem corresponding to plane strain compression of a block made
of the target material and deformed at an average strain-rate of 3300 s and ensuring that
the effective stress vs. the logarithmic strain curves for the three constitutive relations are
nearly identical. With these values of material parameters, the analysis of steady state
axisymmetric deformations of the target by a hemispherical nosed rigid penetrator gave the
following results.

Figure 2 depicts the distribution of the normal stress, temperature rise 4, and the
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F16. 2 Comparison of the variation of normal stress. strain rate messure, tangential speed. and
the lemperature nse al larget particles abutting the penetraior nose surface for the three constitistave
relations. .

tangential speed on the penetrator nose surface and the second invariant I of the deviatoric
strain-rate tensor at the centroids of elements abutting the nose surface for a = 10, which
corresponds to the penetrator speed of 718 m/s. Here a = pvy’/0,, p being the mass density
of the target, g, its yield stress in a quasistatic simple compression test, and v, the speed of
the penetrator. The quantities plotted are nondimensional, obtained by scaling stresses by
d, speed by v, time by ro/v, where 1, is the radius of the penetrator, and the temperature
rise by 108.9° C. It is clear that the three models give essentially identical results; the
maximum difference between the temperature rise computed at any point on the surface
with the three flow ruies is nearly 30° C for an average temperature rise of 400° C. The
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nondimensional axial resisting force experienced by the penetrator was found to be 8.19,

8.84, and 8.26 for the LB, BP, and BKA flow rules, respectively. The values of (I,0) at the
stagnation point for the LB, BP, and BKA flow rules equalled (1.52, 3.53), (1.52, 3.80), and
(1.53, 3.67), respectively.

An integration of the balance of linear momentum along the central streamline (r
= () gives .

) _ _ do,, ..
Eav +p-s, 2'!:?& 0, (0). (1)

Figure 3 shows the contribution from the various terms for @ = 10. The three models give
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Fi0. 3 Contribution of vanious terms in the nondimensionalized Bernoulli equation along the
centrai stream line.

nearly the same value of the kinetic energy Y:av?, and the deviatoric stress s,,. The value
of the hydrostatic pressure p for the BP model is uniformly more than that for the other two
models, and each model predicts a substantial contribution from transverse gradients of the
shear stress. The value of the strength parameter for the target in Tate’s equation was
found to be 7.71, 8.46, and 7.89 for the LB, BP, and BKA models, respectively.

We* studied the effect of the elasticity of the target material and the penetrator nose
shape by modeling the target material as elastic/perfectiy plastic. The dependence of the
nondimensional peak pressure p.,, that occurs at the stagnation point, and of the
nondimensional axial resisting force F experienced by the penetrator upon « is exhibited in
Fig. 4. Here r, and r, equal, respectively, the semimajor and semiminor axes of the
ellipsoidal nose of the rigid cylindrical penetrator. For each nose shape, the consideration
of elastic effects lowers the value of p,,, by abcut 2, and of F by 1.8. Whereas p,,, depends
upon a rather strongly, the dependence of F upon a is quite w’eak/Assuming that material
points for which
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are deforming plastically and those for which the stress state lies inside the surface are
deforming elastically, one can determine the elastic/plastic boundary. Results plotted in Fig.
5 suggest that less of the material ahead of the penetrator nose tip and to the sides of the

t/eg = 8.3

4 ~.
.,/..7-.1.0 S

Distance from the nose tip
w

Fig. 5. Elastic-plastic boundary for
-3 three different nose shapes, and 2 = {0




rigid rod is deformed plastically for the ellipsoidal nosed penetrator as compared to the
other two nose shapes considered. The distance of the elastic-plastic bcundary from the
penetrator nose tip is found to be 5.4, 6.8, and 7.7, respectively, according as the penetrator
nose shape is ellipsoidal, hemispherical, or blunt. Tate* presumed that a material particle
was deforming either elastically or plastically, and based on his solenoid flow model, he
found the axial distance of the elastic-plastic boundary from the stagnation point to be 6. 71
which compares well with our computed values.

We* have used the velocity field computed in the preceding problem to develop an
engineering model of target penetration. The deforming target region is divided into two
parts, one ahead of the penetrator nose center and the other behind it. In each, the
presumed velocity field satisfies the condition of isochoric deformations, essential boundary
conditions, and the velocity compatibility condition across the interface between the two
regions. The unknown parameters in the velocity field are determined by minimizing the
error in the satisfaction of the balance of linear momentum. As shown in Fig. 6, the

NORMAL STRESS/TIELD STRESS

q A 20 2 40 50 6 2 L] 99

Fig.8 Distribution of the normal traction on the penetrator nose. —— Qne ter;n solution; -----
three terms solution; - ~ - FEM solution.

computed normal traction on the penetrator nose surface matches well with that obtained
from the finite element solution near the penetrator nose center, but the two differ at points
near the nose periphery, probably because of the differences in the values of the hydrostatic
pressure. However, the dependence of the axial resisting force F upon a in the two cases,

viz.,
F = 8575 + 0.197a, FEM solution, (3.1)
F = 8717 + 0.243a, engineering model, (3.2)

is virtually identical for 0 < a < 10.
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By using an analogy between the flow of a fluid around a cylinder and that of the
target material around the penetrator nose, we evaluated 4 and 8 in the following expression
(4) for the frictional force f, between the target and the penetrator.”’

£ = -pvPfylv, viaviev, fo=1p-ep, 4)

where n is a unit outward normal and g is the Cauchy stress tensor. Figure 7 depicts the
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Fig. 7. Distribution of the normal traction on the hemispherical nose of the penetrator
for different values of the coefficient u of friction.

distribution of the normal traction f, on the hemispherical nose surface of the penetrator
fora = 6.5, 8 = 1.5, and u = 0.0, 0.1, 0.2, 0.3, and 0.4. We note that the hydrostatic
pressure, which seems to be less sensitive to the value of p, makes a significant contribution
to f,. Thus, the value and the distribution of the normal tractions on the penetrator nose
surface change very little when u is increased from 0.0 to 0.4. Whatever little change does
occur, the general trend is that f, increases near the nose tip and decreases near the nose -
periphery with an increase in the value of u.
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IX.

APPENDIX
A copy of each of the following papers is included in the appendix.

Steady state axisymmetric deformations of a thermoviscoplastic rod penetrating a
thick thermoviscoplastic target

A steady state axisymmetric penetration problem for rigid/perfectly plastic materials
Steady state penetration of transversely isotropic rigid/perfectly plastic targets
Steady state penétration of elastic perfectly plastic targets

Steady state axisymmetric deformations of a thick elastic-thermoviscoplastic target

Effect of viscoplastic flow rules on steady state penetration of thermoviscoplastic
targets

Effect of constitutive models on steady state axisymmetric. deformations of
thermoelastic-viscoplastic targets

Histories of stress, strain-rate, temperature, and spin in a steady state deformation
of a thermoviscoplastic rod striking a hemispherical rigid cavity

An approximate analysis of steady state axisymmetric deformations of viscoplastic
targets
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Summary—The coupled nonlinear partial differential equations governing the thermomechanical
and axisymmetric deformations of a cylindrical rod penetraung into a thick target, also made of a
rigid viscoplastic material. are solved by the finite elemen: method. It is assumed that the
deformations of the target and the penetrator as seen by an observer sitvated at the stagnation
point and moving with it are independent of time. Both the rod and the target material are assumed
to exhibit strain-rate hardening and thermal softening. and the contact between the penetrator
and the target at the common interface is smooth. An effort has been made to assess the etfect of
the strain-rate hardening and thermal softening on the deformations of the target and the penetrator.
1t is found that the axial resisting force experienced by the penetrator. the shape and location of
the (rec surface of the deformed penctrator and the target penetrator interface. and normal
tractions on this common interface depend rather strongly upon the speed of the stagnation point
and hence on the speed of the striking rod. Results presented graphically include the distribution
of the velocity field. the temperature change. the hydrostatic pressure and the second-invarant of

the strain-rate tensor. .

In an attempt to help establish desirable testing regimes for determining constitutive relattons
aparopriate for penetration problems. we also find histones of the effective stress. hydrostatic
pressure. temperature and the second invariant of the strain-rate tensor experienced by four

penetrator and two target particles.

NOTATION

velocity of a rod particle
mass density
heat flux
specific internal energy
strain~rate tensor
Cauchy stress tensor
deviatoric stress tensor
hydrostatic pressure
temperature change
thermal conductivity
specific heat
yield stress in simple compression
strain-rate sensitivity parameters
thermal softening coeflicient
1 unit tangent vector
a unit normal vector
heat transfer coeflicient
grad  gradient operator

div  divergence operator

I3 second invariant of D
1. non-dimensional numbers

>3 -3l axacu-aDCTav <

1. INTRODUCTION

When a fast moving long rod strikes a very thick target, the deformations of the rod and
the target appear to be time independent to an observer situated at the stagnation point
and moving with it after the rod has penetrated into the target through a distance equal
to a few rod diameters, This steady state lasts until the stagnation point reaches close to
the other end of the target. Thus, for tlhaick targets, the duration of the steady state portion
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of the penetration process is a significant part of the total time taken to perforate through
the target. For very high striking speeds. the deformations of the target and the penetrator
can be assumed to be governed by purely hvdrodvnamic incompressible flow processes.
In this approach. the only significant material property is the ratio of mass densities of
the target and the penetrator. and the same penetration depth is predicted for all impact
velocities. Tate [1.2] and Alekseevskii [3] modified this model by incorporating the effects
of the material strengths of the projectile and the target and representing them as some
multiple of the uniaxial vield stress of the material. but the multiplying factor was not
specified. These and other limitations of the one-dimensional models have been discussed
by Wright [4]. and more recently by Wright and Frank [53]. Pidsley (6], who studied the
penetration of a copper rod into an aluminum target. found that during the steady state
portion of the penetration process these strength parameters equallea 2.4ay), and
—1(0.7)oy), for the target and the penetrator. respectively. Here gy is the Hugoniot
elastic limit. He explained that the negative value for the rod strength is due to the vield
strength of the rod being lower than that of the target.

The reader is referred to the paper by Backman and Goldsmith (7] for a review of
the open literature on ballistic penetration until 1977. It describes various physical
mechanisms involved in the penetration and perforation processes. and also discusses a
number of engincering models. Other recent review articles and books include those by
Wright and Frank [5], Anderson and Bodner [8]. Zukas et al. [9]. Blazynski [10]. and
Macauley [11]. Ravid and Bodner {12] have proposed a five-stage penetration model
applicable to two-dimensional analysis of rigid projectiles penetrating deformable targets.
Various unknowns in the assumed kinematically admissible velocity field are found
by using an upper bound theorem of plasticity modified to include dvnamic effects. The
penetration model proposed by Ravid et al. [13] also accounts for the shock effects and
plastic deformation in the component bodies. Forrestal et af. [14] have recently applied
the cavity expansion model to study the penetration of rigid projectiles into geological
matenials. :

With the main objective of providing some guidelines for selecting and improving upon
the previously used kinematically admissible fields in engineering models of penetration.
Batra and Wright [15] initiated the study of an idealized steady state penetration problem.
[t simulates the penetration of a very long (semi-infinite) rod into an infinite target when
all of the flow fields appear steady to an observer situated on the penetrator nose tip and
moving with it and the target’penetrator interface is smooth. They studied the problem of
a deformable target, assumed to be made of a rigid perfectly plastic material and a rigid
cylindrical penetrator with a hemispherical nose. Subsequently. Batra [16.17] found that
the nose shape affected significantly the resisting force experienced by the penetrator and
also studied the case when the target .material exhibited work-hardening. strain-rate
hardening and thermal softening effects. Batra and Lin [18-20]. and Lin and Batra [21]
studied the steady state axisymmetric deformations of a semi-infinite cvlindrical penetrator
striking a known semi-infinite cavity in an infinite and rigid target. and also computed the
histories of the effective stress. temperature, second invariant of the strain-rate tensor and
the plastic spin. Gobinath and Batra [22] have recently analysed the steady state
axisymmetric penetration problem in which both the target and the penetrator are made
of a rigid. perfectly plastic material. Since most penetrator and target materials exhibit
strain-rate hardening and thermal softening effects, we extend the previous work [22] to
incorporate these effects. The problem is very challenging because of the presence in it of
two g priori unknown surfaces. namely, the target penetrator interface and the free surface
of the penetrator material flowing backwards. The shapes and locations of these surfaces
are strongly influenced by the value of the strain-rate hardening exponent for the penetrator
and a little by the value of the strain-rate hardening exponent for the target. The speed
of penetration also affects noticeably the shapes of the target penetrator interface,

We note that there is no fracture or failure criterion incorporated in our work. Thus
both the penetrator and target materials are presumed to undergo unlimited plastic
deformations. It is hoped that the details of the kinematic and stress fields provided herein
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will help propose better estimates of the kinematic fields in engineering models of steady
state penetration process. Also the histories of the stress. temperature. the second invariant
of the strain-rate tensor and the plastic spin for four penetrator and two target particles
given herein should help establish desirable testing regimes for practical problems. and
help assess the efficacy of different plasticity theories for the penetration problem.

J. FORMULATION OF THE PROBLEM

We use a cylindrical coordinate system, with origin at the stagnation point and moving
with it at a uniform speed ¢, and positive =-axis pointing towards the undeformed portion
of the rod. to describe the deformations of the target und the penetrator. The equations
governing their deformations are

dive=20, {1
dive = pv, 2.0

= p{r-grad)r, (2.

—div g+ trieD) = p{v-grad)L’, (3
2D =grad v + (grad v)". - {4)

These equations are written in the Eulerian description ol motion. Equation {1) expresses
the balance of mass, Eqn (2) the balance of linear momentum, and Eqn (3) the balance
of internal energy. Here » is the velocity of a material particle. & the Cauchy stress at the
present location of a material particle. p the mass density. ¢ the heat flux. and U the
specific internal energy. A dot superimposed over a character implies its material time
derivative, and the operators grad and div signify the gradient and the divergence operators
defined in the present configuration. In writing Eqn (1) we have assumed that the
deformations of the target and the penetrator are isochoric. and in Eyn (3) all of the plustic
working rather than 90-95% of it as asserted by Farren and Tayle~ (23] is assumed to

be converted into heat.
For constitutive relations. which are characteristic of the target and the penetrator

materials, we take

o= —pl+—2 (1+bI™1~+0)D. D #0. (%)
v 3

D=0 iftris)® <iod(] — 0. (6)

s=a +pl, (7

g=—kgrad 8. 18)

U=ch. CAl

21 =t D). © 10y

In these equations. p is the hydrostatic pressure not determined by the deformation history
of a material particle because we have assumed the target and penetrator materials to be
incompressible. 1 is the unit tensor. o, the yield stress in a quasistatic simple tension or
compression test, [? the second invariant of the strain-rate tensor. b and m characterize
the strain-rate hardening of the material. ;+ describes its thermal softening. ¢ equals, the
absolute temperature of a material particle. s is the deviatoric stress tensor. A the thermal
conductivity and ¢ the specific heat. Both k and ¢ are assumed to be independent of the
temperature. From Eqns (5) and (7), we get

N (51!'5:)1:=—(%”ﬁ-h“m“—}'f}]. (1

N

~This can be viewed as a generalized von Mises vield criterion when the flow stress. given
»\by the.cight-hand side of Eqn (11, at a matenal particle depends upon its strain-rate and

=

\ 20
e - -]




4 R. C. Batra and T. GoBinary

the temperature change. That the flow stress decreases linearly with the temperature rise

has been observed by Bell [24], and Lindholm and Johnson [25]. The range of temperatures

studied by these investigators is not as large as that likely to occur here. We add that Tate

[26] also used a linear thermal softening law in his study of the penetration probiem.
Rewriting Eqn (5) as

g = ~[p+ 26— 0)K]1 + 22 (1 = bI™(1 = -6)D. (12)
i
~

where x and K equal. respectively. the coeflicient of thermal expansion and the bulk
modulus of the material, we see that Eqn (3) embodies implicitly thermal stresses caused
by the non-uniform temperature rise at different material particles. In Eqn (12), p is not
determined by the deformation history of a material particle and the addition of a
determinate term to it gives rise to p in Eqn (3) which is taken to be an independent
variable throughout this work.

Substitution for ¢. ¢. and U from Eqns (5), (8) and (9) into Eqns (2.2) and (3) gives the
following field equations:

—grad p + o div[(1 + bIY™(1 = 30)D', 31] = ptv-gradw (3
k divigrad 6) + 2a,/(1 = BIy™(1 — ;8)., 3 = pe(v-grad) 6. ()

The nonlinear coupled Eqns (13)and (i4). and Eqn (1) subject to the appropriate boundary
conditions are to be solved for the fields of the velocity v. pressure p and temperature #
in the deforming target and penetrator regions. Even though governing equations for the
target and penetrator regions are the same, the values of material parameters o,. b. m. ;.
p. k and ¢ need not have the same values for the target and penetrator materials. In order
to solve Egns (1), (13) and (14). we need to know the domains over which they apply.
This in turn requires a knowledge of the shapes and locations of the target penetrator
interface T, and the free surface [ of the deformed penetrator. Both these surfaces are
unknown a priori. For the time being, we presume that T and I are known. Subsequently,
we discuss how to find these surfaces.

It is convenient to introduce non-dimensional variables. indicated below by ua super-
imposed bar, as follows:

d=aiprl,  p=poprl, a=pele,  Oy=tlc
Fmwjir, F=rr, i=zr,  T=60,
Fml,  B=klperyy).  b=be,r,,  h=hpcr, i1135)

We note that v, is the same for the target and the penetrator. but the values of other
variables need not be the same. When non-dimensionalizing a quantity for the target
{penetrator), the value of the material parameter for the target (penctrator) is used. An
advantage of the non-dimensionalization (15) is that the governing equations for the
penetrator and the target look alike. In Eqn (15). r, is the radius of the undeformed
cylindrical penetrator. the pair (r. 2) denotes the cylindrical coordinates of a point. 8, is
the reference temperature, h is the heat transfer coeflicient between the penetrator material
and air. and the non-dimensional numbxr x gives the magnitude of the inertia forces relative
to the flow stress of the material. Rewriting Eqns (1), {13) and (14) in terms of
non-dimensional variables. dropping the superimposed bars. and denoting the gradient
and divergence operators in non-dimensional coordinates by grad and div. we arrive at
the foliowing set of equations:

dive=0, (16)
~grad p~div{(l + b)™(1 = =)D’ 3 Ix] = (v-grad)v. (17)
Bdivigrad 8) + 2I(1 + bI)™(1 = ;8).(y, 32) = (v-grad)¥. s
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For the boundary conditions. we take

t-{on)=0 onl, (19.1)
n-a,na&n-apn onTl, {19.2)
Py

ven=0 onTl,, {19.3)

8, = (65,8456, on [, (9.4

i co

(pﬂ '-—) =(pB t—) on I, (19.5
‘n/, én/y

en=0 on [. (19.6)

ven=0 on I, (19.7)
co

~B = -0, on I, (19.8)
cn

where # is a unit outward normal to the surface. ¢ is a unit tangent to the surface. o, is
the air temperature and subscripts p and t signify the quantity for the penetrator and the
target. respectively. We note that boundary conditions (19.3) and (19.7) which signify that
I, and I are streamlines are not required for a complete specification of the problem
provided that these surfaces are known. Since these surfaces are not known. we presume
their shapes. solve the problem without using {19.2) and (19.7). and then use these conditions
to ensure that the presumed [ and [ are correct. The procedure for adjusting I and I
if (19.2)and (19.7)are not satisfied within the prescribed tolerance is described in Section 4.
At target particles far away from I, we take

jv+e —0 as (rs =23 {20.1H
lam — O as S — L. (20.2)
légl
—| =0 as == X, ' 120.3)
cn|

That is, target particles at a large distance from I, appear to be moving at a uniform speed
to an observer situated at the stagnation point. Equations (20.2) and (20.3) state that the
fields of surface tractions and heat flux vanish at target particles behind the stagnation
point and far {rom it. On the penetrator cross-section far from the stagnation point.

v+ir,—le =0 as - = ¢, (21.0)
10=8,=0 as :— x. 21.2)

and on the deformed penetrator material at the outlet.

toml =0 as(rf =) g, (21.3)
el . .

E-;—;—o() At =) - 2, t21.4)
énl .

Equations (21.1) and 121.2) state that the ¢nd of the penetrator far from the stagnation
point is moving in the negative z-direction with 4 uniform speed of tr, — 1) relative to the
observer at the stagnation point and 15 at & uniform temperature ¢,. Equations (21.3) and
(21.4) state that the surface of the delormed penetrator near the outlet is traction free and

‘there is no heat exchange between them and the material on the other side of the outlet

surface. [deaily, one should specify the rate of decay of quantities in Eqns (20.1) through
(20.3). and (21.1) through (21.4). However. at this time. there is little hope of proving any
existence or uniqueness theorem for the stated problem and we. therefore. gloss over the
issue. Herein we assume that the problem defined by Eqns (16)-121) has a solution and
seek an approximation to that solution by the finite element method.

279
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3. FINITE ELEMENT FORMULATION OF THE PROBLEM

Unless one uses infinite elements. a numerical solution of the problem necessitates that
we consider a finite region and know the shapes of the free surface [ and the
target penetrator interface I, We presume I and I, and study deformations of the
penetrator over the region ABGHIJA shown in Fig. 1 and of the target on the region
BCDEFGB also shown in Fig. 1. The figure depicts a finite element discretization of the
domain; the mesh is very fine in the darker regions. We note that the finite domains for
the penetrator and the target considered here are larger than the penetrator region studied
by Batra and Lin [18~19] and the target regions examined by Batra [15-17].

The boundary conditions {19.1). {19.3)and {19.4) apply on the target. penetrator interface
BG and (19.6) and (19.8) on the penetrator free surface JIH. We recall that conditions
(19.2) and (19.7) are used to verifv the accuracy of the assumed surfaces I; and I;. On the
axis of symmetry ABC. we impose

6,,=0. v, =0, 56-’ =0. (22
cr
The boundary conditions (20) and (21) at the far surface of the penetrator and the target
are replaced by the following conditions on the bounding surfaces of the finite region being
analysed:
r,=1, v, =0. 6=, on the bounding surfaces CD and DEF. (23.1)

g, =0, v, =0, C—f—)=0 on FG, (23.2)

hi.. o B

Fi1G. |. The finite region studied and its discretization.
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ct -

r,=r,, r, =0, —=0 on the outlet surfuce GH. 235
c:

ve=m —{r,=~1). r, =0, 0=4, on the surface AJ. {23.4)

The value of ¢, is computed so as to satisfv the balance of mass.
Referring the reader to one of the books [27-29] for details of deriving a weak formulation
of the problem. we simply note that a weak formulation of the problem defined on the

target region R, by Eqns (16)~(18). and boundary conditions (19.1). (22). (23.1) and ¢23.2)
is that equations
sdiveydV =0 (24.1)
v Ry ’
f n(div@)dV - f ul. 0. 2)[D: (grad ) + (grad ¢)7] d}’
v R Ry
==J [(v-grad)v]- dV - ’ {n-en)¢-n)dS 124.2)
Ry o
!‘ ¥
B. ' (grad 8-grad q)dl’+f [(v-grad)d]n dV=j nQgl. 6. 2x)dv - “ /}ql_—‘dS {24.3)
v R, R ' or, n
where
ul. 8. %) = (1 +bI™(1 —8) (2.3 I2), (25.1)
QI 8. %)= 21(1 + bD)™(1 —;0Y, 3. (25.2)

hold for arbitrary smooth functions 4. ¢ and 5 defined on R, such that ¢ =48 on CD and
DEF. ¢,=0 on BC and FG, and n=0 on CD and DEF. If at a boundarv point a
component of the trial solution is prescribed. the corresponding component of the test
function is taken to vanish there. In Eqn (24.2) A: B = tr(AB") for linear transformations
A4 and B. A similar set of equations can be derived for the penetrator region. Note that
for the penetrator region the second term on the right-hand side of Egn (24.3) will be

replaced by

- f ﬂrrﬁdS+J~ h@—6,)nds. (25.3)
Jr; cn Ce

Because of the boundary condition (19.4). we use the following iterative scheme to sohe
the problem. We estimate 0 in R, and R,, solve equations (24.1). 124.2) and a similar set
of equations for the penetrator for the fields of v and p in R, and R,, (cf. Section 4.1 below).
use these values of v in Eqn (24.3) and a similar equation for the penetrator to solve these
for 8 in R,u R,. Thus the boundary conditions (19.4) and (19.5) requiring the continuity
of the temperature and the normal component of the heat flux across the target. penetrator
interface T, are satisfied. The computed value of 8 is compared with the estimated value and
the aforementioned process is repeated until the difference between the two at every node
point is less than the prescribed tolerance. The nonlinear equations (24.1) and (24.2) ure
solved iteratively for p and v. At the ith iteration. equations

~

| audiv o av=o. (26.1)
v R ’
J- pitdiv $)dV ~ [' wli=' 6, 2)! D': [grad ¢ + (grad ¢)7]} dV’
R v Ry
) ~
=f [(v""-grad)v‘]~¢dV—J (n-a' " 'n)(p-ndS 126.2)
R, ri
are solved for v' and p'. The iterative process is stopped when. at each nodal point.
=y geliv~ty] 126.3)
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where jvi{® = ¢} + . and ¢ is a preassigned small number. Since Eqn (26.2) is lineur in p,
its values are not included in the convergence criterion (26.3).

4 COMMENTS ON COMPUTATIONAL ASPECTS OF THE PROBLEM

Batra [17] and Batra and Lin [19] used 6-noded triangular elements to analyse steady
state thermomechanical deformations of the target and the penetrator. respectively, while
assuming that the other body was rigid. Thus. they approximated the velocity and pressure
fields by piecewise quadratic and piecewise linear fields over R, and R,. Each of these fields
is continuous across inter-element boundaries. The convergence rate of the iterative scheme
used to solve Eqns (24.1) and (24.2) deteriorated significantly once the value of x, or x,
exceeded 5. We note that for higher values of x, and %,. the convective part of the acceleration
plays a dominant role and the finite element mesh required to obtain a satisfactory solution
of Eqns (24) by the Galerkin approximation [29] needs to be very fine. This difficulty was
overcome by adding an artificial viscosity to the diffusive terms in Eqns (24) and using
4-noded quadrilateral elements in which the pressure field is taken to be constant and the
velocity field bilinear. The value of the artificial viscosity v to be added in each clement
depends upon the values of v and u. defined by Eqn (25.1), at the centroid of the element
and the dimensions (h,. h,) of the element. Here h, and h, equal. respectively. the largest
distances in the r and - directions between the midpoints of the sides of a quadrilateral.
Following Brooks and Hughes [30]. we take

e R (27.0
v, = hlcothv, — 1 v,)2, 27.2)
v, = h(cothv, — 1 v,) 2, . (27.3)
vy = esh,/utle 6, 1), vy = 0Sh, 'u(If, 6°. 2), (27.4)

when solving Eqn (24.2), and
v, =vih, B, vy =Ush,/B (27.5)

when solving Eqn (24.3). In these equations. the superscript ¢ signifies that the quantity
is evaluated at the centroid of an element. Brooks and Hughes [30] have shown that
adding artificial viscosity is equivalent to using the Petrov-Galerkin approximation of Eqn
(24).

4.1 Solution algorithm

Assume the shapes and locations of the target/penetrator interface I, and the free surface
I} of the deformed penetrator. Estimate the temperature field 8 over the regions R, and
R, occupied by the penetrator and the target. Solve Eqns (24.1) and (24.2) for (v. p) on
R, and a similar set of equations on R, with the boundary condition (19.3). Thus ¢-n=0
on I and the contribution from the surface integral term on the right-hand side of Egn
(24.2) vanishes. Equations (19.2) and (19.7) are used to ascertain the accuracy of I and
I;. Emphasis is placed on finding [ first. and once I, has been determined. T is found
always ensuring that [ is still reasonably correct and if necessary, [ is adjusted. During
the adjustment of I, nodes on it are mosved 1n a direction perpendicular to it by an amount.
proportional to (f} — f7) where r} and /7 equal. respectively. the normal force on the
penetrator and target particles abutting I, A check is made to ensure that the elements
adjoining I, are not severely distorted after the nodes on I have been shifted. The algorithm
for modifying [T, if necessary. is given below in Section 4.2.

After the mechaniczl problem has been satisfactorily solved. the computed velocity field
is used to solve the thermal problem for the combined domain R, U R,. Thus the boundary
conditions {19.4) and (19.5) are trivially satisfied. The second term in Eqn (25.3) results
in the satisfaction of the boundary condition (19.8). The computed values of 8 are compared
with the estimated values and. if necessary. the solution process is repeated until the
prespecified convergence criteria have been met.
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4.2 Adjustment of the free surface

The algorithm used to adjust the free surface I is the same as that given by Gobinath
and Batra [22] and is included herein for compieteness. Referring to Fig. 2. let point Q
on I be downstream from P on I;. Assume that the computed velocity v, is tangent to
I at P and v, does not satisfy vo-n =0. In order to find the new location of point Q. we
draw a circular arc that passes through points P and Q and is tangent to v, at P. Let C
be the center of this circular arc. Point Q is moved along CQ to Q* such that P and Q*
lie on a circular arc with v, and v, being tangent to the circle at P and Q*. Points
downstream from Q are moved to an intermediate location before this rule is applied to
them. Let R be a point neighboring Q and downstream from it. R is moved to R, such
that the vector R, Q* equals the vector RQ. The final location R* of R, is then found in
the same way as Q* was determined and by assuming that the velocity of R, is v,. Since
point J is on I, the algorithm can be applied starting from J.

4.3 Mesh regeneration

After the position of I'; has been determined. the finite element mesh or R, is regenerated
by solving on it the Poisson equation

V¢ = Plr, -

under the essential boundary conditions # =r and ¢ = = at nodes on the boundary ¢R,,.
Here P is the control function [31-34] that helps generate an aporopriately graded mesh.
The points of intersection of the equipotential curves through nodes on the boundary define
the new locations of interior nodes.

,‘;’ b
| |

> 5
c P~

FiG. 2. Mlustration of the aigorithm to adjust ;.
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5. DISCUSSION OF RESULTS
t

Except when we study the effect of varying the valie of a material parameter. we assign
the foliowing values to different parameters for the penetrator and target materials:

P, =p,=7800kgm’.  ry=10mm,
0o, = 350 MPa. G0, = 114.3 MPa,
m,=0025, m =0.025,
b,=10000s, b, =10000s.
7o =0.000555;°C, 1 =0.000772,~C.
c,=473Jkg™'°C™!, ¢ =395JKg''C"\,
k,=48 Wm~™1°C™', k=111Wm™'*C"!,
h=20Wm~3°C~!,  §,=0.

We recall that subscripts p and t signify the quantity for the penetrator and the target,
respectively. For an assigned value of t,, the value of v, is estimated from the relation [1]

He, = D+ Y= (R + Dlp/p,) (28)

where Y, and R, represent strength parameters for the penetrator and target, respectively.
Pidsley [6], for a copper penetrator and an aluminum target, estimated these parameters
to equal (—0.7)(ay), and 2.4(0y),. respectively, where o, is the Hugoniot elastic limit. {n
his 1967 paper, Tate [1] found R, =3.5(gy), and in a recent paper [25] he gave

Y, = 1.70,,,

(29)
R‘ = Uol[z_f} -+ ln‘0.57£l,‘}am}],

where E, is Young's modulus for the target matérial. Batra and Chen [36] used a

semianalytical method to analyse the steady state axisymmetric deformations of a

viscoplastic target being penetrated by a rigid hcm:sphencal nosed penetrator and found

that

R, =9.430,,. :

In terms of dimensional variables. we need to know (R — Y, ) rather than the values of R,
and Y, to find v, from Eqn (28).

In all of the results presented below the solution for the velocity and temperature [ields
was assumed to have converged when, at each nodal point, the value of these quaantities
during two successive iterations differed by no more than 5%. The free surface was taken
to have converged wh=n at each node point on it. ;v-a} was less than 0.02. The iterative
process to compute the target.penetrator interface was stopped when the values of the
normal tractions f¥ and /7, at each node point on T; differed from their mean values by
less than 5%. We discuss below results for different speeds of the penetrator. and for
different values of the strain-rate hardening exponent m and the coefficient of thermal
softening 1. :

5.1 Results for v,= 500 m/s

Figure 3 depicts the computed velocity field in the penetrator and target regions for
v, = 500 m/s. The penetrator speed. as computed from Eqn (28), equals 104! m s. The plots
clearly show that the velocity at points on the free surface and the target. penetrator interface
is along the tangent to these surfaces. In order to show this effect clearly. the velocity {leld
in only a part of the deforming region is shown. The computed velocity field estabiishes
the validity of the iterative technique outlined above to find the shapes of the free surface
and the target/penetrator interface. A least squares fit to the bottom surface of the
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target/penetrator interface [ can be represented by the equation
r? (z —0.874)°
+ =1
1.861° 0.8742

Itis interesting to note that Tate {37] found the equation of the bottom surface of T, to be

(30)

L Gt LY 31)
4 a° a-

A possible reason for the difference in the value of the coefficient for the first term is the
lower value of v, considered here.

If the penetrator speed is less than the limiting velocity and there is no perforation of
the target. Eqn (30) will give approximately the shape of the bottom surface of the cylindrical
cavity in the target. We note that the computed shape of I'; does not match well with the
hemispherical cavity considered by Batra and Lin [19] in their study of the deformations
of a thermoviscoplastic rod striking a rigid cavity. The thickness 0.38r, of the outlet region
computed by Batra and Lin [19] for z, = 5.6 is comparable to 0.42r, found herein. At the
penetrator and target particles that lie to the rear of the bottom-most point of the free

Sot

-850
I
- 78
€ / .
2 |
]
5 ~100k- ;
i
S -129— .
» |
E
o
< ~180;
© \
9 3
5 i
-?, ~173 : - :
& e} .29 87 86 14 143 171 200
10

o7

03

02

(o]¢]
[eXe) 02 [°X-] o7 o9 12 14 186 19

R coordinate
Fi1G. 4. Contours of the hydrostatic pressure in the penetrator and target regions for ¢, = 00 m s.
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Steady state axisymmetric deformations 13

surface, the flow quickly becomes essentially parallel to the axis of the penetrator. Target
particles that lie ahead of the penctrator/target interface and within one penetrator radius
from it have a noticeable radial component of velocity. The velocity field for other values
of v, was found to be similar to that shown in Fig. 3.

Figure 4 shows contours of the hydrostatic pressure in the penetrator and target regions.
Recalling that the non-dimensionalization is with respect to pvZ, and v, = 500 m/s, these
values need to be multiplied by 5.6 and 17.1 for the penetrator and target, respectively,

|1.82
l'HW l Strain-rates on target side  Scale
} L1 AT [} | t

1l g = " ; '
x i “ -

FiG. 5. Distribution of the strain-rate invariant [ in the deforming penetrator and target regions
for v, = 500 m/s.
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FI1G. 6. Variation of 2nd invariant / of the strain-rate tensor along three arbitrary lines LM, PQ,
and PS perpendicular to T (v, = 500 m/s).

to get values of p as a multiple of corresponding ¢,. The maximum values of the
non-dimensional hydrostatic pressure were found to be 0.8975 and 1.017 for the penetrator
and the target, respectively. These equal 5.03 o4, and 17.390,,, respectively. When the
penetrator and the target materials are modeled as rigid/perfectly plastic, Gobinath and
Batra [38] found for v, = 500 m/s, the peak pressures in the penetrator and target to be
5.060,, and 15.680¢, near the stagnation point. It seems that the consideration of strain-rate
hardening and thermal softening effects has virtually no effect on the value of the peak
hydrostatic pressure in the penetrator but increases its value in the target region. We note
that for the rigid ellipsoidal nosed penetrator (r,/r, =2.0) and rigid/thermoviscoplastic
target, Batra [16] computed the maximum value of p to be 120y, for «, = 5.0 and for the
thermoviscoplastic rod upset at the bottom of a rigid hemispherical cavity, Batra and Lin
[19] found p,, to be 30, for &, = 5.0. Pidsley [6] who studied the penetration of a copper
rod into a steel target by using the HELP code, computed p,,,, to be 5.53a,, and 4.33a,,
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Steady state axisymmetric deformations 15

for #, = 7.84 and = 1.92, respectively, during the steady state portion of the penetration
process.

The distribution of I in the deforming penetrator and target regions is shown in Fig. 5.
Note that the scales in the two regions are different but the values of [ in each case are
to be multiplied by v,/r, to get the dimensional values of I. Thus peak strain-rates of the
order of 10%/s occur in the penetrator and the target. As for the thermoviscoplastic target
striking a rigid hemispherical cavity [19] significant deformations of the penetrator occur
within the hemispherical region of radius nearly 1.0 and centered at the bottom-most point
of the free surface. Note that the values of I near the stagnation point are quite high both

Temperatures on penetrator

K
L1
LT
8%
/|

Temperatures on target side \ S \§§

FiG. 7. Distribution of the temperature rise in the deforming penetrator and target regions
(v, = 500 m/s).
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P ~Hydrostatic pressure

V = Tangential velocity

T ~Temperature

I —Second invariont of strain-rate tensor

4 4 Solid line (penetrator) Dashed-line (target)
T
31 3
| j
i *
V; I —-—\
|
j .Y
<
2

Terms

Arclength

FiG. 8. Distribution of the hydrostatic pressure, tangential velocity, 2nd invariant { of the strain-rate
tensor D, and the temperature rise on the target/penetrator interface (v, = 500 m/s).

in the target and penetrator regions. Whereas peak values of I in the deforming penetrator
region occur at points near the free surface where the flow is reversing, those in the target
occur at points adjoining the common interface I';. Peak values of I in the penetrator and
target equal 5.25 at the point (1.135, 1.01), 3.75 at the point (1.106, 0.17), respectively. In
dimensional units these equal, respectively, 0.2625 x 10°/s and 0.1875 x 10%/s.

In order to examine whether or not sharp gradients of I occur across the target/penetrator
interface I, we have plotted in Fig. 6 the variation of [ along lines LM, PQ and PS which
are arbitrarily selected and shown in the figure. The distribution of I along these three
lines exhibits similar behavior in that the values of I are discontinuous across I and the
value of I at the target particle abutting I; is higher than that for the penetrator particle
occupying the same spatial position. The maximum value of I within the deforming target
region occurs at a point slightly away from I. For points on line LM, I, for the target
is higher than that for the penetrator particles, but the converse holds for points on lines
PQ and PS. Since the tangential velocity of target and penetrator particles abutting I are
nearly the same, for normal tractions to be continuous across I, normal derivatives of »
on I, must be discontinuous if target and penetrator particles are made of different materials.
This provides a justification for the jump in the value of I as one crosses I;. Recalling that
the hydrostatic pressure contributes significantly to the normal tractions, it is not necessary
that I be sharply discontinuous across [ for the normal tractions on the two sides of [;
to match with each other.

Figure 7 depicts the temperature distribution in the deforming penetrator and target
regions. Note that the scales for the two plots are different. As for the values of the
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strain-rate invariant [, high temperatures occur in the deforming penetrator region near
the stagnation point and points adjoining the free surface. Because of the high speed of
material particles. a considerable amount of heat is transferred by convection. For this
reason, the temperature decreases rather slowly as one moves downstream along the
target. penetrator interface or along any other streamline such as the free surface of the
penetrator. The maximum temperature rise in the penetrator and target is found to be
232°C at the point (0.17.0.66) and 191°C at the point (0.479, 0.05), respectively. This is
considerably less than that found when either the penetrator {504°C) or the target (605 C)
is regarded as rigid for nearly the same value of r,. One possible explanation for this is
that the external work done in the present problem is used to deform both the penetrator
and the target, whereas in the previous studies referred to, all of the external work was
used to deform cither the penetrator or the target. Along the axial line the temperature
decreases slowly within the penetrator but quite rapidly in the target.

Figure 8 shows the distribution of the non-dimensional hydrostatic pressure, second
invariant I of the strain-rate tensor, tangential velocity and the temperature rise at points
on the target’penetrator interface [;. The temperature values are to be multiplied by 52.8 C
to get their dimensional counterparts. It is clear that on [, the maximum value of the
temperature occurs at a point slightly away from the stagnation point. Even though the
values of the non-dimensional and dimensional pressures on the penetrator and target
sides of the common interface I are nearly the same, their values as a multiple of the flow
stress are not because of the difference in the values of the flow stresses for the penetrator
and target regions. The slight difference in the value of the tangential velocities of the
target and penetrator particles situated at the same spatial position on I, reveals that there
is some slippage between the two. This is consistent with our assumptions of only the
normal velocity and normal tractions being continuous across [,

On the axial line, uniaxial strain conditions prevail. approximately. Thus the magnitude
of the deviatoric stress s,, should equal 23 the effective stress, which equals | '3 times the
right-hand side of Eqn (11). As shown in Fig. 9(a). the difference between s,, and 2.3, is
less than <% on the penetrator side and less than 0.3% on the target side. Also depicted
in the figwi= are contributions of various terms in Eqn (32), obtained by integrating the
equation of motion along the central streamline r =0

i

T ﬁvzd.-p—-s,,-—z'[ L—gifd:=-—a,,(0}. (32)
o Cr
This equatica holds both for the penetrator and the target. and - is measured from the
stagnation point. Even though ¢,,(0) for the target and the penetrator should equal cach
other, the two do not match in our plot because the solution was taken to have converged
when the normal tractions on the penetrator and target sides differed from the mean normal
tractions by, at most, 5%. Note that the integral term in Eqn (32) contributes significantly
to the total as we move away frorn the stagnation point. This was pointed out by Wright
[4] and has also been verified by Pidsley [6]. We add that while computing a,, from the
computed velocity and temperature fields, contributions from the artificial viscosity were
not considered. Figure 9(b) depicts the variation of the second invariant [ of the strain-rate
tensor and the temperature rise 8 on the axial line. The temperature on the target side
falls off rather rapidly as one moves away from the stagnation point. However. within the
penetrator, the maximum value of the temperature/rise occurs at a point away from the
stagnation point. Even though the maximum value/of / on the target axial line occurs near
the stagnation point and is much higher than that on the penetrator axial line. #,,, lor
the penetrator particles is larger than 8,,,, for the target. This is due to the differences in ™~
the value of their heat capacities and flow stresses. A possible explanation for the
discontinuity in the values of [ as one crosses the target, pengtrator interface is the same
as that given above for lines LM, PQ and PS.

/

5.2 Ej]'éct of the speed of penetration
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Figure 10 depicts the distribution of the mean normal tractions Onthe-tasget penetrator -~
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F1G. 9(a). Contributions of various terms in the Bernoulli equation along the central streamline
(v, = 500 m/s).
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F1G. 9(b). Distribution of the 2nd invariant [ of the strain—rate tensor D and the temperature rise
along the central streamline (v, = 500 m/s).

interface for v, =450 m/s, 500 m/s and 550 m/s. The values of («,, 2,) corresponding to
these values of v, equal (4.51, 13.82), (5.57, 17.06), and (6.74, 20.65), respectively. The values
of the penetrator speed for these values of v, equal 850 m/s, 1041 m/s and 1234 m/s,
respectively. These plots elucidate that the normal tractions on the common interface
increase sharply with the penetration speed. The normal tractions diminish to nearly zero
values for non-dimensional values of arc length on I exceeding 2.0. We note that these
curves are similar to that given by Gobinath and Batra [22] who assumed the penetrator
and target materials to be rigid/perfectly plastic and solved the problem for v, = 400 m/s.
The axial resisting force experienced by the penetrator for the three values of v, considered
herein equalled 8.91, 11.52, and 14.51, respectively. These numbers need to be multiplied
by nr§o,, to get the corresponding dimensional values of the axial force acting on the
penetrator. We have plotted the shapes of the free surface and the target/penetrator interface
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21 Curve A a, = 4.51, o= 13.82
b Curve B a;=5.57, q,=17.06
I Curve C ap=6.74, a,= 20.65
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F1G. 10. Distribution of the mean normal tractions on the target/penetrator interface for three
different speeds of penetration.
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FiG. 10(a). Shapes of the free surface for three F1G. 10(b). Shapes of the target/penetrator interface
different speeds of penetration. for three different speeds of penetration.

for the three values of v, stated above in Figs 10(a) and 10(b), respectively. In order to
elucidate the dependence of the location of the stagnation point upon the speeds of
penetration, the ordinate is measured from the bottom surface (CD in Fig. 1) of the target
region considered. The stagnation point moves away from the free surface of the deformed
penetrator as the speed of penetration is increased. Also with the increase in the speed
of penetration, the distance between the free surface of the undeformed penetrator and
the deformed penetrator particles moving rearwards increases. The shape of the target/
penetrator interface also depends strongly upon the penetration speed.

5.3 Effect of the strain-rate hardening exponent m

Figures 11, 11(a) and 11(b) depict the distribution of the mean normal tractions on the
target/penetrator interface [, its shape and the shape of the free surface I for three different
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Fic. 11. Distribution of the mean normal tractions on the target/penetrator interface for three
different strain-rate hardening exponents.
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F1G. 11(a). Shapes of target/penetrator interface for three different strain-rate hardening exponents.
F1G. 11(b). Shapes of free surface {or three different strain-rate hardening exponents.
FI1G. 11(c). Comparison of shapes of lree-surface {or three different combinations of material model.

FiG. 11(d). Comparison of shapes of target, penetrator interface for three different combinations of
material model.
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combinations of the values of the strain-rate hardening exponent m and ¢, = 500 m s.
When the value of m for the penetrator is kept fixed at 0.025 and the value of m for the
target is changed from 0.025 to 0.005, there is hardly any change in the shape of the free
surface. However. the shape of I and the distribution of normal tractions on it do change
scme, though not significantly, when m, is reduced from 0.025 to 0.005. In Fig. 11(b), the
free surfaces are plotted to a large scale so as to magnify differences, if any. in their shapes
for different values of m. The change in the value of m, from 0.025 to 0.005 while m, is
kept fixed at 0.025 does influence significantly the shape of the free surface and to a
somewhat less extent. the shape of the target.penetrator interface and the distribution of
normal tractions on it. The stagna:ion point moves away a little bit from the free surface
when the value of m is changed from 0.025 to 0.005 either for the penetrator or the target.
The peak values of 6, /. and p and where they occur are influenced by the values of m,
and m, as evidenced by the information provided in Table 1.

When either the penetrator or the target is modeled as rigid /perfectly plastic material
and the other body as viscoplastic with m =0.025, the shapes of the free surfaces and the
corresponding intermediate surfaces are shown in Figs li{c} and 11(d). respectively. The
vertical scale in these figures represents the distance measured from the bottom-most point
of the target region studied so that vertical displacements, if any, of the stagnation point
could be determined. When either one of the two materials is modeled as rigid perfectly
plastic. the stagnation point moves downward. the displacement for m, = 0 being twice of
that for m, = 0. The shapes of the free surface of the deformed penetrator remain unaltered
when cither m, is 0.025 or 0.0 and does not chunge noticeably when m, is decreased from
0.025 to 0.0.

5.4 Effect of the thermal-softening coefficient ;

When the value of the thermal softening coefficient 7 for cither the target or the penetrator
was doubled keeping that lor the other part unchanged. the distributions of the mean
normal tractions on the target,penetrator interface I, its shape and the shape of the free
surface [, were essentially unaltered. Therefore, these plots are not inciuded in the paper.
The values of @,,,,. Pmass Imsx iN the penetrator and target regions do not change much
when v is doubled either for the target or the penetrator. We note that a similar effect was
observed by Batra [17] who analvsed the steady state penetration of a rigid cvlindrical
rod into a thick thermoviscoplastic target.

5.5 Effect of different ratios of mass densities

Results presented in this section are {~r the case when the penetrator and target materials
are modeled as rigid/rerfectly plastic. Figure 12 shows the shapes of the target penetrator
interface I and the distribution of normal tractions on it for p, p, = 1.25. 1.0. and 0.75.
The ordinate in Fig. 12(a) is the vertical distance from the bottom surface CD of the target
region considered and the scales along the horizontal and vertical axes are quite different.
The expanded scale along the horizontal axis is meant to magnify the small differences in
the shapes of I, when p,/p, is varied. We note that in these computations p, was kept fixed.
The plots of normal tractions on I, reveal that the largest normal tractions occur for
pv pp = 1.25 and least for p,/p, = 0.75 and the change seems to depend continuously upon
p./p,. Thus, for the same penetrator material. the pressure at the stagnation point will
increase with an increase in the mass density of the target. Similarly for a fixed target
material. higher density penetrators would result in smaller values of the pressure at the
stagnation point.

6. HISTORIES OF THE STRESS. STRAIN-RATE [INVARIANT.
HYDROSTATIC PRESSURE AND THE SPIN TENSOR

One of the unresolved problems in penetration mechanics is the selection for the material
of the penetrator and the target constitutive relations that adequately mode! their response
over the range of deformations anticipated to occur in a problem. In an attempt to help
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F1G. 12(a). Shapes of the target penetrator interface for  FiG. 12(b). Distnbution of the mean normal tractions
three different values of p, p,. on the target penetrator interface for three
different values of p, p,,.

determine which one of the many recentiv proposed theories (e.g. Refs [39-42]) of large
deformation elastoplasticity is most appropriate for a penetration problem. we give below
histories of the effective stress, second invariant of the strain-rate tensor. the temperature
and the spin for a few typical target and penetrator particles. These time histeries should
also help establish desirable testing regimes for practica! problems.

The first step in finding histories of a field variable at a material particle is to find the
streamline for that particle. Streamlines originating from four locations. viz. A10.1. 5.88),
B(0.15. 5.88), C(0.90, 5.88), and D(0.95, 5.88) within the deforming penetrator region and
two locations, i.e. E (0.10, — 3.12) and F(0.15. — 3.12) within the deforming target region
are plotted in Fig. 13. That the four streamlines originating from points C. D. E. and F
do not intersect or merge together is clear from the enlarged view of the pertion enclosed
in the box. In the following discussion. we identify the histories of the material particle
that once occupied. say. the place A as histories of the variable for the material particle A.

6.1 Histories of field variabies for penetrator particles

Figure 14 depicts the location of the four particles at different times. The time is reckoned
from the instant when particles A, B. C. and D occupied the places (0.10. 5.88), (0.15. 5.88),
(0.90, 5.88), and (0.95. 5.88), respectively. The radial and axial components of the velocity
at different times for these four particles are plotted in Fig. 15. As particles A and B
approach the region surrounding the stagnation point at t = 5, their velocities in the radial
direction increase sharply and those in the axial direction decrease to zero. Matenal
particles C and D adjoining the free surface of the penetrator reach near the bottom-most
point on the free surface at time ¢ = 2.8. The radial velocity of these particles which was
initially zero increases sharply. and becomes maximum when they are close to the
bottom-most point on the free surface. It is followed by a rapid decrease to a small value
which gradually becomes zero. Recalling that the velocities plotted are those relative to
the velocity of the stagnation point. the sharp jump in the value of v, for these particles
corresponds to the reversal in their direction of motion after they move past the bottom
of the free surface. In Fig. 16 we have plotted the histories of the non-dimensional
temperature and the second invariant [ of the strain-rate tensor. For points A and B
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B/E
7 E
F./
F1G. 13. Streamlines emanating from four points of the penetrator region and two points of the
target region,

adjoining the axial lihe, peak values of the temperature rise are higher than those for points
C and D, but the peak values of I for points C and D are higher than those for points A
and B. Peak values of the second invariant I of the strain-rate tensor at points A and B
are much lower than those for points C and D. Peak values of 8 and I at points A and B
occur when they are near the stagnation point. As these points move far away from the
stagnation point, the value of I decreases rapidly but that of 8 decreases slowly due to the
convective transport of heat. For points C and D near the free surface, peak values of 6
and [/ occur simultaneously soon after they cross over to the right of their bottom-most
positions. Note that the values of [ and 6 increase at points C and D rapidly as they
approach the bottom-most point on the [ree surface. Whereas the values of [ drop quite
rapidly, their temperature is still high because of the convective transport of heat. Figure
17 shows histories of the effective stress S,, defined as the right-hand side of Eqn (11), and
the hydrostatic pressure at these four particles. For particles C and D the hydrostatic
pressure is negligibly small. This is to be expected since these particles always stay close
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F1G. 15. Histories of the radial and axial components of velocity for four penetrator particles.

to the free surface of the penetrator. Note that the peak values of S, at all four points
considered is nearly the same. Since the material particles are undergoing plastic
deformation, the effective stress must satisfy the yield condition (11). The variation in the
effective stress at these points is due to the change in the values of I and 8. At points C
and D, the peak values of I, 8, and S, occur at the same time thereby implying that the
strain-rate hardening effects dominate over the thermal softening effects. For ¢t > 5 when
the values of I have become essentially zero, the effective stress drops because of the
softening caused by the heating of the material points. For material particles A and B,
whereas I,,, occurs at ¢ ~ 2.8, the maximum value of S, occurs at ¢t~ 2.2. Recalling the
history of the temperature plotted in Fig. 16, we see that 8_,, occurs at t ~4.5 and the
values of 6 at ¢t ~ 2.8 are higher than those at t~2.2. The higher value of the thermal
softening effect at ¢ ~ 2.8 reduces the value of S, as compared to that at ¢ ~2.2.
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F1G. 16. Histories of the temperature rise and 2nd invariant [ of the strain-rate tensor for four
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Fic. 7. Histories of the hydrostatic pressure and effective stress for four penetrator particies.

Because of the assumptions of axisymmetric deformations. there is only vne non-zero
component of spin. The histories of the spin for the four penetrator particles, plotted in
Fig. 18, reveal that the material particle C that is near the free surface has the highest
value of spin. The peak value of the plastic spin for the material particle C is twice that
for each of the other three particles. This peak value of the spin at C occurs when it has
crossed-over to the right of its bottom-most position and is flowing rearwards.

6.2 Histories of field variables for rarget particles

In Fig. 19 we have plotted the r- and :-coordinates of the target material particles
for different values of time t; their positions at time t =0 were E(0.10, -3.12) and
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F1G. 18. Histories of the spin of four penetrator particles.
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F(0.15, —3.12), respectively. The radial and axial components of the velocity of these
particles are plotted in Fig. 20. As these particles approach the region surrounding the
stagnation point, their radial velocity increases sharply and subsequently drops to zero
equally fast. The axial velocity of these particles relative to that of the stagnation point
decreases and then increases as these points leave the area near the stagnation point. For
t > 9, these particles are moving essentially vertically and parallel to the target/penetrator
interface. The histories of the second invariant I of the strain-rate tensor and the

temperature rise 6 are plotted in Fig. 21. The peak values of 8 at these two points occur

at the same value of time. However, the peak values of I occur a little bit later. The rate
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F1G. 21. Histories of the temperature rise and 2nd invariant [ of two target particles.

of increase of temperature at these particles is much higher than the rate of increase of I,
but [ decreases much more rapidly than the temperature does because of the convective
transport of heat. The histories of the hydrostatic pressure p and the effective stress S,
shown in Fig. 22 reveal that the pressure attains its maximum value when points E and
F reach the zone surrounding the stagnation point at time ¢ ~ 4.5, Note that the maximum
values of I and 6 occur at these points when they have moved quite a bit away from the
stagnation point. The effective stress at these points does not vary much because the
thermal softening caused by their getting heated up seems to balance out the strain-rate
hardening. The histories of the plastic spin, plotted in Fig. 23, suggest that of the two
target particles considered, the one farther from the axial line has the higher values of the
spin. The highest value of the spin occurs just before these particles arrive near the stagnation
point. Also, when the particles start turning upwards along the target/penetrator interface,
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their spin, now of opposite sign, is equally large in magnitude. The peak values of the spin
are comparable in magnitude to the peak values of I for these particles.

7. CONCLUSIONS

We have analysed steady state axisymmetric deformations of a long cylindrical
thermoviscoplastic rod penetrating into a thick thermoviscoplastic target. Also studied is
the effect, on the deformations of the rod and the target, of the penetration speed, values
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of the strain—rate hardening exponent and the coefficient of thermal softening. The bottom
part of the target, penetrator interface T is a part of an ellipsoid rather than a hemisphere.
For v, = 500 ms, the peak pressures in the penetrator r:ear the stagnation point approach
5.60,, and that in the target 140, when o, 04, = 3.06 where oy, and g,, equal the yield
stress in a quasistatic simple compression test {or the penetrator and target materials,
r:spcctwely The peak values of 232°C of the temperature rise in the penetrator and 191°C
in the target are significantly lower than those found when either of the two materials is
considered as rigid. Along the axial line the temperature decreases siowly in the penetrator
but quite rapidly in the target. The normal tractions on the common interface I’ increase
sharply with the increase in the penetration speed. Also the axial resisting force acting on
the penetrator equalled 8.91. 11.52 and 1451 F (F = nréaop) for stagnation point speeds
of 450, 500 and 550 m;s. respectively. The corresponding values of the penetrator speed
are 850, 1041 and 1234 m:s. respectively. A significant contribution to the resisting force
is made by the consideration of the strain-rate hardening effects. The value of the strain-rate
hardening exponent for the penetrator affects more the shapes of the free surface I of the
deformed penetrator and the target. penetrator interface I than the value of the strain-rate
hardening exponent for the target. The values of the thermal softening coefficient for the
penetrator and target have minimal effect on the shapes of T and I, and the distribution
of normal tractions on I;. The computed histories of the stress, second invariant of the
strain-rate tensor. temperature, and the plastic spin for four penetrator and two target
particles indicate that for the material parameters selected and the three speeds considered
here, there is no likelthood of any material instability developing in the sense that the
effective stress at these material particles is decreasing while their temperatures and values
of the second invariant [ of the strain-rate tensor are increasing. Also no narrow layers
with sharp gradients of [ were found on either side of T’ for the various cases studied. It
is very likely that either the penetration speeds coasidered herein were not high enough
for these effects to manifest themselves or the materials selected for the penetrator and the
target were such that no localization of deformation could occur in regions surrounding
T;. The peak values of the plastic spin for the penetrator particles close to the free surface
are nearly twice the peak values of the second-invariant I of the strain-rate tensor for
them. Also for the two target particles close to the target/penetrator interface, peak values
of the plastic spin are comparable to the peak values of I for them. It seems that plasticity
theories which account appropriately for values of the plastic spin comparable to the values
of the strain-rate tensor should be very suitable for analysing steady state axisymmetric
problems.
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A STEADY STATE AXISYMMETRIC PENETRATION
PR “3LEM FOR RIGID/PERFECTLY PLASTIC
MATERIALS

T. GOBINATHt and R. C. BATRA

Depantment of Mechanical and Aerospace Engineenng and Enginecring Mechanics. University of
Missouri-Roila. Rolla, MO 65401-0249, U.S.A.

Abstract—The axisymmetric deformations of an eroding long cylindrical rod made of a rigid/perfectly
plastic material penetrating at a uniform rate into a thick rigid/perfectly plastic target are studied by
the finite element method. It is assumed that the deformations appear steady to an observer situated
at the stagnation point and moving with it, and that the contact between the target and the penetrator
at the common interface is smooth. It is found that the resisting force experienced by the penetrator,
the shape of the target/penetrator interface, and the distribution of normal tractions on it depend
rather strongly upon the square of the penetration speed and also upon the ratio of the mass density
of the penetrator to that of the target. In an attempt to help establish desirable testing regimes for
practical problems we have also computed time histories of the hydrostatic pressure. second invariant
of the strain-ratz tensor and the spin for four typical penetrator and two typical target particles.

INTRODUCTION

We study that phase of the penetration process in which the penctrator and target deformations
appear steady to an observer located at the stagnation point and moving with it. This situation
occurs when a very long cylindrical rod strikes a rather huge target and has penetrated a few
rod diameters into it. Until the time either most of the rod has been eroded or the stagnation
point reaches near the other end of the target, the penetration process can be regarded as being
nearly steady and may constitute a significant part of the total penetration process. For
moderately high striking speeds, Tate [1, 2] and Alekseevskii (3] modified the purely
hydrodynamic approach by including the effects of the material str~ngths of the projectile and
the target and representing them as some multiple of the yield strengths of the corresponding
materials. However, the multiplying factor was uaresclved in the theories. Fidsley {4] recently
computed the values of the strength parameters for a copper rod penetrating into an aluininum
target to be 2.4 (oy), and (=0.7)(0;.), for the target and the penetrator, respectively. Here oy
equals the Hugoniot elastic limit of the material. He justified the negative value for the rod
strength because of its yield stress being lower than that of the target.

The review paper of Backman and Goldsmith {5] provides a comprehensive summary of the
work done on ballistic penetration until 1977, and discusses various physical mechanisms
involved in the penetration and perforation processes and their engineering models. Also
during the last decade engineering models of target penetration have been proposed by Ravid
and Bodner [6], Ravid er al. {7], and Forrestal [8]. Seme of the books cn the subject are by
Zukas et al. [9], Blazynski [10], Biilington and Tate [11], and MaCauley [12].

In previous studies [13-19] Batra and his coworkers have analyzed the steady state
penetration problem in which either the penetrator or-the target was considered as rigid. Here
we study the case when both deform and their materials can be modeled as rigid/perfectly
plastic. As in [13-19], the contact between the penetrator and the target at the common
interface is assumed to be smooth and no fracture or failure criterion is included. However, the
effect of the penetration speed and th= ratio of the mass densities of the penetrator and target
on their deformations is investigated. We add that the problem studied herein is more
challenging than those studied ear.ier in [13-19] because of the presence in it of two a priori
unknown free surfaces, one the target/psnetrator interface and the other the free surface of the
penetrator material flowing backwards. Alsoc the convective part of the acceleration plays a
dominant role which requires the use of either an appropriately graded mesh or the use of

tPresent address: EGS ADEPT, 25900 Greenfield, Oakpark, M1 48237, U.S.A.
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1318 T. GOBINATH and R. C. BATRA

artificial viscosity or both. The kinematic and stress fields found herein should help select
improved kinematic fields in other approximate theories of penetration mechanics and also
check results from simpler engineering theories of penetration.

An other outstanding problem in penetration mechanics is the selection of the appropriate
constitutive models for the penetrator and target materials. In order to assess which one of the
many recently proposed theories [20-23] of large deformation elastoplasticity is appropriate,
and also help establish desirable *esting regimes for practical problems, we compute histories of
the second-invariant of the strain-rate tensor and the plastic spin for four penetrator and two

target particles.

FORMULATION OF THE PROBLEM

We use the Eulerian description of motion and a cylindrical coordinate system with origin at
the stagnation point and moving with it at a uniform speed v, to describe the deformations of
the penetrator and the target. The positive z-axis is taken to point towards the undeformed
portion of the rod. Also we work in terms of non-dimensional variables indicated below by a

superimposed bar.

d=0/pv}, p=plpvi, a=pvio,
V=v/y,, F=rlr,, Z=2z/r, ‘ )
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Fig. 1. The finite region studied and its discretization.
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Here and betow. g is the Cauchy stress tensor, p the hydrostatic pressure not determined by
the deformation history because the deformations are assumed to be isochoric, v=(v,, v.) is
the velocity of a material particle, and r, is the radius of the undeformed cylindrical portion of
the penetrator. The non-dimensional parameter o equals the magnitude of the inertia forces
refative to the flow stress of the matenal. When non-dimensionalizing a quantity for the
penetrator and the target, the value of the corresponding material parameter is used in
. equation (1). An advantage of the non-dimensionalization (1) is that the equatons governing
the deformations of the penetrator and target look alike. Hereafter we use only non-
dimensional variables and drop the superimposed bars. The governing equations can be written

/ | d

/. ' divv =0, .
diva = (v grad)v, (N
1
= -pl +—m . .
g=-p 3 ID (2.3)
2D =grad v + (grad v)7, 2.9
2% = (D). (2.5)

Equation (2.1) expresses the balance of mass. (2.2) the balance of linear momentum, and
equation (2.3) is the constitutive relation for the penetrator and target materials. Recall that
the value of a will be different for them. D. given by equation (2.4), is the strain-rate tensor .
and its second invariant is denoted by /. Equations (2.1) and the one obtained by substituting
(2.3) into (2.2) are the field equations to be solved for p and v under the appropriate boundary
conditions.

A numericaf solution of the problem usually necessitates that we consider only a finite region
which for the Eulerian description of motion is also referred to as the control volume. The
finite regions for the penetrator and target studied are depicted in Fig. 1, which also shows its
finite element discretization. In the dark regions. a very fine finite element mesh is used. For

: the boundary conditions. we take

t-(om)=0 onT, ' (3.1
n-on=(p,/p)n-a,n onTl, (3.2)

v-n=0 onTl, - (3.3)

an=0 on [, 3.4

v.n=10 on [, (3.5)

g,.,=0, v,=0  on the axis of symmetry ASC, (3.6)
v,=1, v,=0 . on the boundary surfaces CD and DEF, 3.7
0.=0. v,=0 onFG, (3.8)

v,=v,, 0,=0  on the outlet surface GH, (3.9)

v, = —~(y,—- 1), v.=0 on the inlet surface AJ. (3.10)

Here T, is the target/penetrator interface BG. and [, is the free surface JIH of the deformed
penetrator. The condition (3.1) expresses the assumption that the contact between the
penetrator and target is frictionless, therefore. the tangential tractions there vanish. This seems
reasonable since a thin layer of the matenial at the interface either melts or is severely degraded
by adiabatic shear. The boundary condition {3.2) states that the normal tractions across the
commen interface I, are continuous, and equation (3.3) implies that [, is a streamline. If T
were known. then either (3.2) or (3.3) is required. Here we use (3.2) to verify that the assumed
shape of I, is reasonably correct as discussed in the next section. The boundary condition (3.4)
asserts that [, is a free surface. and equation (3.5) implies that it is a streamline. Equation (3.5)
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1318 T. GOBINATH and R. C. BATRA

is used to ensure that the assumed shape of I is close to the actual one. The boundary
condition (3.6) follows from the assumption that the deformations are axisymmetric. Since the
distances of CD and DF from I; exceed 30 ry, and significant target deformations occur in the
target region distance at most 2r, from I, it is reasonable to assume that target particles on the
bounding surfaces CD and DF do not deform. If the surfaces FG and GH were situated at
infinite distances from the stagnation point B, then the boundary conditions (3.8) and (3.9) on
them will hold exactly. Since these surfaces are situated at a distance of nearly 7r, from B, the
boundary conditicns (3.8) and (3.9) are good approximations. The value of v, in equation
(3.9) is estimated by using the balance of mass for the penetrator region. The boundary
condition (3.10) states that the end AJ of the rod has not deformed and is moving downward
with a uniform speed. For an assigned value of v,, v, is estimated from the relation [1]

—v—lz v,=(r+3)(2)
(v =17+ )5 (4)
where Y, and R, represent strength parameters for the penetrator and target materials. In his
1967 paper Tate [1] found R,=3.5(0y), and in a reccnt paper {24] he gave Y, = 1.70,,,
R, = 04(2/3 +In(0.57E,/ 04,)), where E, is Young's modulus for the target material. Batra and
Chen [25] used a semianalytical method to analyze the steady state axisymmetric deformations
of a viscoplastic target being penetrated by a rigid hemispherical nosed penetrator and found
that

R, = 9.4300,.

In terms of dimensional variables, we need to know (R, - Y,) rather than the values of R, and
Y, to find v, from equation {4).

COMPUTATIONAL CONSIDERATIONS

The aforestated problem was solved by the following iterative technique. Assume I; and I.
“i'aen the regions R, (shown in Fig. 1 by the closed curve ABGHIJA) and R, (shwn in Fig. 1 by
the closed curve BCDEFGB) occupied, respectively, by the deformating penetrator and target
material are well defined. The governing equations (2) under the boundary conditions (3.1),
(3.3), (3.4), (2.6), (3.9), and (3.10) are solved to find the fields of (v, p) for the penetrator, and .
equations (2) under the boundary conditions (3.1), (3.3), (3.6). (3.7), and (3.8) are sclved to
find the fields of (v, p) for the target. The boundary conditions (3.2) and (3.5) are used to
verify that the assumed I'; and I, are reasonably correct. We first adjust I',, and then T, always
ensuring that I, is still correct and, if necessary, I'; is readjusted. During the modification of I,
nodes on it are moved in a direction perpendicular to I, by an amount proportional to
(fp —f7). Here f; and f7 equal, respectively, the normal force on a penetrator and target
particle on T,

The algorithm developed by Batra and Lin [16] to adjust [, was modified to increase its
efficiency and has been described by Gobinath and Batra [26]. After new shapes of T, and I,
have been determined, a check is made to ensure that the elements adjoining these surfaces
have not been severely distorted. If necessary, 2 new mesh is generated by solving on R, and R,
the Laplace equation V?¢ =0 under the essential boundary conditions ¢ =r and ¢ = z. The
intersection of the equipotential curves gives the new location of the nodes.

We used 9-noded quadrilateral macroelements each of which was divided into four 4-noded
quadrilateral elements called microelements. In each micro-element the velocity field was
assumed to be bilinear and pressure constant. The variables corresponding to the central node
were eliminated prior to the assembly of the global stiffness matrix. An artificial viscosity v
given by [27)

v=v, +v,, (5.1)

v, = h.(coth v, — 1/v,)/2, (5.2)

v, = h.(coth v, — 1/v.)/2, (5.3)

3vih I, vy=V3UihIa, (5.4)
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was added to a/V3/ in equation (2.3). In these equations h, and h. equal. respectively, the
largest distances in the r and = directions between the midpoints of the sides of a quadrilaterai.
and the superscript ¢ denotes that the quantity is evaluated at the centroid of an element.
Brooks and Hughes [27] have shown that adding artificial viscosity is equivalent to using the
Petrov-Galerkin approximation of equations (2.2)-(2.5).

DISCUSSION OF RESULTS

Recalling that the governing equations for the velocity field are nonlinear, the solution was
assumed to have converged when. at each nodal point. the value of the speed computed during
two successive iterations differed by no more than 5. The convergence criterion used for the
free surface I, was that at each node point on Iy, |v- 2} =0.02, and that for T,

15— f1i=0.0I5(If 71 + 1f71]. (6)

at each node point on it. These convergence criteria are stronger than the global norms of
errors sometimes emploved.

Results for different speeds of penetration
We set

p,=p,=1800kg/m*. 0, =350MPa. g, =1143MPa, (7

and compute results for v, =400 m/s, 500 m/s and 600 m/s. The corresponding values of
(a,, a;) are (3.57.10.92), (5.57,17.06). and (8.02.24.57). respectively. Values of v,, as
computed from equation (4). with R, — Y, = 164.35 MPa. equal 850 m/s, 1041 m/s and 1234 m/s
for the three values of v, considered herein. Since a, =3a,. the inertia forces play a more
dominant role for the target deformations as compared to that for the deformations of the
penctrator. Figure 2 depicts the shapes of the free surface I, and the target/penetrator
interface T, for these three values of v,. In these plots the ordinate is the vertical distance from
the bottom-mos. surface CD of the target region studied in order to decipher the vertical
movement of T, and [, When plotting I';, the horizontal scale has been enlarged enormously to
magnify the small differences in the shapes of the free surface for the three values of v,. The

2%.0 » Free -surface . . 2000
4 . allse H Curve A, V, =400 m/s
E - ! Cutved, V@500 m/s
u . | | Curve C, v, ® 600 m /s
2 E
238 ! j /
3 ', /
] ! 2
. h i '/
| . /
Z 2200k ! Y 19 4% /
| i
’ 1]
238 / ; 8 e o
A Y 3 i il =
"“--.::':";i—u_-a—o_‘ : l/". - .
| ¢ o
i peone®”
1
190 1392 =
1.000 1128 1290 1.278 3 24 10 1.5 2.0
R ]

Fig. 2. Shapes of the free surface of the deformed penctrator and the target/penetrator interface for
three differeat speeds.
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shapes of T, in the vicinity of the stagnation point seem to be independent of v,. A least squares
fit to the curve for v, = 600 m/s has the equation

r (z - 1.05)2=

2.061° 1.05° )
It is interesting to note that Tate [28] found the equation of the bottom surface of T; to be
2 .2
4 (zzay

s+
(1.155a)2 " &°

A possible reason for the difference in the value of the coefficient for the first term is the lower
value of v, considered here. ‘

The mean normal tractions at the common interface T, for the three values of v, are plotted
in Fig. 3. Also shown in the figure is a least squares fit to the data points (F,, a,) where F, is the
non-dimensional axial resisting force experienced by the penetrator; the corresponding
dimensional force equals (m%ao,)F,. It was found that the quadratic curve

F,=5.323+1.101a, + 0.03107, 10.92s a,=24.57, 9)

provided a better fit to the computed data than a straight line. Batra and Lin [16] who studied
the deformations of a rigid/perfectly plastic cylindrical rod upset at the bottom of a rigid cavity
z2=0.04r* found F,=-2.2+2.15q,, 1.8 a,=<6. In each of these cases, the values of F,
depend rather noticeably upon «, and/or a,. The normal tractions on T, increase significantly
with an increase in v,. The general shapes of these curves especially near the stagnation point
do not vary, and they are shifted upwards with an increase in v,. For values of the
non-dimensional arc length exceeding 2, the normal tractions on I'; become exceedingly small.
At the stagnation point, the normal traction on I, equals (—o,,), and since uniaxial strain
conditions prevail on the axial line, s,, = (0., + p) equals (2/30,) there. For penetrator and
target particles on the axial line and situated within 2r, of the stagnation point, computed
values of |s., —200/3] were less than 0.02. Since 0., >> 0, at the stagnation point. the
hydrostatic pressure p, there provides a predominant contribution to o,,. The least squares fit

29 ~ Curve A, /32400 m/s sa r
” Curve 8, vy » 500 m/s :

r\: CurveC, V; =600 m/s
as -

°

27 ~

Traction (Xao)
Axial force

\, ~
< - 10 18 20 28
‘ l a
] [+X-1.} 1.10 1,63 220
Arc Lengtn
(a) (v

Fig. 3. (a) Distribution of the mean normal tractions on the target/penetrator interface for three
different speeds. (b) Dependence of the axial resisting force experienced by the penetratue upon the
non-dimensional number a,.
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to the data points (pq,, a,), (Pai» ;). have the equations

Pop = (0.1084 + 0.884a,,) 0, (10.1)
o= (4.005 + 0.683a,) 0, (10.2)

for the penetrator and the target respectively.
Recailing that equations,

1
iplv3+Rl= —(azz)n (11)

1

505Uy =) + Y, =
proposed Ey Alekseevskii [3] and Tate [1], wnere Y, and R, equal the resistive pressure terms
due to the strength of the material, (o..), is the value of o,, at the stagnation point B, and
quantities are dimensional, hold on the axial line we can find the values of R, and Y,. The
computed values of R, and Y, for the three penetration speeds studied are listed in Table 1.

Table 1
v, R, Y,
(m/s) (xo,,) (x0,,)
400 6.19 1.553
500 846 . 2293
600 10.29 2.89

We should caution the reader that equations (10.1) and (10.2) were obtained by a least
squares fit to the data. Substitution from (10.1) and (10.2) into (11) and setting (s,.), = 2/30,,
or 2/30,, may yield values of Y, and R, that are slightly different from those listed in the table.

Results for different ratios of mass densities

In Fig. 4(a) are plotted the shapes of the free surface of the deformed penetrator and of the
target/penetrator interface for p,/p, =1.25, 1.0 and 0.75. The ordinate is the vertical distance
from the bottom surface CD of the target region considered. In these computations p, was kept
fixed and v, was set equal to 500 m/s. For p,/p, = 0.75, the bottom portion of the free surface
is slightly above that for p,/p, = 1.0, and for p,/p, = 1.25, the bottom part of the free surface
moves a little below that for p,/p, = 1.0. The curvature of the free surface where the flow turns
upwards also seems to depend on p,/p,. The stagnation point does not move much when p,/p,
is changed from 1.00 to 0.75 implying thereby that the thickness of the deforming penetrator
material between the target/penetrator interface and the free surface of the deformed
penetrator, especially near the axial line, is larger for p,/p, =0.75 as compared to that for
p:/p, = 1.0. When p,/p, is changed from 1.0 to 1.25, both the stagnation point and the bottom
part of the {ree surface I', move lower and since the former moves by 2 larger distance. the
thickness of the deforming penetrator material between I, and T, increases again. The normal
tractions on I, plotted in Fig. 4(b), reveal that the largest normal tractions occur for
p./p, =1.25 and least for p,/p, =0.75 and the change seems to depend continuously upon
p./ p,. Thus, for the same penetrator material, the pressure at the stagnation point will increase
with an increase in the mass density of the target; and for a given targat, higher density
penetrators would result in smaller values of the pressure at the stagnation point,

Values of R, and Y, computed by using equation (11) and v, = 600 m/s, for different values
of p,/p, are listed in Table 2.

We note that Pidsley [4] found for p,/p, = 0.313, R, =2.4(ay)t and Y, = —0.7(0y)p. For
many materials the Hugoniot elastic iimit equais approximately 1.6 times the yield strength in a
quasistatic simple compression test [1}.

Results for a fixed value of v,

The contours of the non-dimensional hydrostatic pressure for v, = 600 m/s are shown in Fig.
5. These values ought to be multipled by 8.02 and 24.57 for the penetrator and target tc obtain
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Fig. 4s). Shapes of the free surfaces of the deformed penetrator and the target/penetrator interface
for three different values of p,/p,.
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Fig. 4b). Distribution of mean normal tractions on the target/penetrator interface for three different
values of p,/p,. Curve A, p,/p, = 1.25; Curve B, p,/p, = 1.0; Curve C, p,/p, = 0.75.

Table 2

R, Y,
(p/p,)  (104) (x0q)

0.78 7.448 1.963
1.0 8.46 229
1.28 9.49 2.63

56




7

A steady state axisymmetric penetration problem 1323

values of p as a multiple of corresponding g,. Thus pn,, equals 7.30¢, in the penetrator and
20.80¢ in the target for a, = 8.02 and a, = 24.57. We note that for the hemispherical nosed
rigid penetrator and a rigid/perfectly plastic target Batra and Wright {13] computed p,,. to be
8.00¢ for a, = 6.15 and Batra and Lin [19] found pn., = 30, for a, = 5.1 for a rigid/perfectly
plastic cylindrical rod striking a rigid cavity. The variation of the hydrostatic pressure on the
axial line, also depicted in Fig. 5, reveals that the pressure decays quickly in the penetrator and
rather slowly in the target as we move away from the stagnation point. The distributions of / in
the deforming penetrator and target regions are shown in Fig. 6. Also plotted in this figure is
the variation of / on the axial line. These plots reveal that significant deformations of the
penetrator occur within the hemispherical region of radius nearly 2.0 and centered at the
stagnation point. The values of / near the stagnation point are quite high in the penetrator and
target regions. As for the values of p, the value of / on the axial line also drops quickly in the
penetrator and slowly in the target as we move away from the stagnation point.

In order to see whether or not sharp gradients of I occur across the target/penetrator
interface T,, we have plotted in Fig. 7 the variation of / along three arbitrarily selected lines
LM, PQ and PS. The abscissa in these figures is the distance from [, of a point along the line
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Fig. 5. Contours of non-dimensional hydrostatic pressure for v, = 600 m/s.
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considered. In each case [ is discontinuous across I On line LM, I for the target particle
abutting T, is higher than that for the corresponding penetrator particle but the opposite holds
for points on lines PQ and PS. For points on PQ and PS, sharp gradients of I develop in the
penetrator region whereas for points on LM, [ varies sharply for points on the target side. The
value of [ at point P where the penetrator particles undergo a change in the flow direction is
considerably higher than that for the penetrator particles on line PQ and PS. Since the
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tangential velocity of target and penetrator particles abutting I', are nearly the same, for normal
tractions to be contiruous acrnss I';, normal derivatives of v on I; must be discontinuous if
target and penetrator particles are made of different materials. This provides a justification for
the jump in the value of I as one crosses I';,. Recalling that the hydrostatic pressure contributes
significantly to the normal tractions, it is not necessary that I be sharply discontinuous across I';
for the normal tractions on the two sides of I, to match with each other.

Histories of field variables

An outstanding problem in mechanics is the choice of the most appropiiate constitutive
model for the problem at hand. In general, the solution of a boundary-valie problem depends
strongly upon the constitutive model used. In order to determine which one of the many
recently proposed theories [20-23] of large deformation elastoplasticity is suitable for a
penetration problem, we compute histories of the hydrostatic pressure, second invariant of the
strain-rate tensor and the spin for four penetrator and two target particles. These results should
also help identify desirable testing regimes for practical problems.

The first step in finding the histories of a field variable is to plot the streamlines. Streamlines
for four penetrator particles that once occupied the places A(0.10, 5.88), B(0.15, 5.88).
C(0.90, 5.88) and D(0.95, 5.88), and two target particles sometime situated at E(0.10, —3.12)
and F(0.15,~3.12) are shown in Fig. 8. That the streamlines do not intersect or merge
together is clear from the blow up of the region enclosed in the box. In the discussion below we
refer to the material particle that once occupied the place A as the material particle A,

Histories of fiela variables for ,-enctrator particles. Figure 9 shows, for v, = 500 mys, (r, z)
coordinates of the four penetrator particles at different non-dimensional times; the time being
reckoned from the instant these particles occupied the aforestated places, and the non-
dimensional time equals the physical time multiplied by (v,/r,). The variation of the radial and
axial components of the velocity of these particles is plotted in Fig. 10. Particles A and B,
initially near the axial line, arrive in the vicinity of the stagnation point at time t = S when their
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Fig. 8. Streamlines for four penetrator and two target particles for v, = 500.n/s.

axial velocity relative to that of the stagnation point becomes zero. The radial velocity of these
particles gradually increases, becomes maximum just before they begin turning upwards at
t=6.5 and then decreases to zero quite rapidly. Material particles C and D that were initially
close to the free surface of the penetrator approach near their bottom-most positions at ¢ = 2.6,
Their radial velocity stays zero till they are close to their lowest positions, increases sharply and
then decreases to zero equally rapidly too. In Fig. 11, we have plotted histories of the second
invariant [ of the strain-rate tensor and of the plastic spin. Because the deformations are
axisymmetric, there is only one non-zero component of total spin which equals the plastic spin
since elastic deformations have been neglected. The peak valucs of I and the plastic spin for
material particies C and D are very large as compared to those for material particles A and B.
For particles C and D, the magnitude of the plastlc spin is either comparable or slightly larger
than the value of /, and the peak valu:« of l and the plastic spin occur at almost the same
instant. For these particles, / and the plastic spin increase or decrease in tandem.-Peak values
of I at particles A and B occur after their axial -omponent of velocity has changed sign, i.e.
they are moving upwards as obssrved from the'stagnation point. Whereas / for these particles
increases quite rapidly and stays large for an extended Period of time, the magnitude of the
plastic spin for them increases slowly at first and once these particles are close to the stagnatic

point, the spin increases rapidly, and subsequently drops to zero at-even a faster rate. The
histories of the non-dimensional hydrostatic pressure shown inﬁg&:veal that for material

~.
-
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o ) 10 13 Time
Time
Fig. 9. r and z-coordinates at different times of the four penetrator particles.

-] s 10 18
Fig. 10. The variation with time of the axia! and radial velocity of the four penetrator particles.
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Fig. 11. "Tustories of the second invarisnt of the strain-rate tensor and the plastic spin for the four
penetrator particles.

particles A and B, pp,, is very large as compared to that for particles C and D. This is because
particles C and D are close to the traction free surtface of the penetrator.

Histories of field variables for target particles. Figure 13 depicts the r- and z-coordinates and
the radial and axial components of the velocity of the two target particles E and F at different
times. As these particles approach the stagnation point z = 0 at ¢ = 7, their radial velocity begins
to increase sharply, becomes maximum at ¢t =7.5 and 6.5, respectiveiy, for E and F, then
rapidly decreases to zero. Their axial velocity relative to that of the stagnation point exhibits
the reverse trend, i.e. it decreases to zero at ¢ = 4.5 and then increases gradually, the rates of
ds=crease and increase of the axial velocity are nearly the same. The histories of the second
invariant of the strain-rate tensor and the plastic spin for these two particles are exhibited in
Fig. 14. Even though the values of 7 for these particles gradually increase till r = 5, their plastic
spin stays zero. At about f = §, both the values of I and of the plastic spin increase rapidly. The
peak values of the plastic spin for these particles equal nearly twice the peak values of / for
them. The plastic spin decreases to zero much faster than /. The history of the non-dimensional
hydrostatic pressure for these particles is shown in Fig. 12. Peak values, equal to 14.20,,, of the
hydrostatic pressure at these particles occur when they are clcse to the stagnation point. Once
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Fig. .12. Histories of the hydrostatic pressure for four penctrator and two target particles.

20

o ) 10 19 Time
Time °

Time
Fig. 13. The variation with time of r and z-coordinates, and the axial snd radial velocity of the two
target particles.
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Fig. 14. Histories of the second invariant of the strain-rate tensor and the plastic spin for the two
target particles.

these particles leave the area surrounding the stagnation point, the hydrostatic pressure
decreases rather rapidly to zero.

CONCLUSIONS

We have studied the penetration of a rigid/perfectly plastic rod penetrating into a thick
rigid/perfectly plastic target when the deformations of both as seen by an observer situated at
the stagnation point and moving with it are steady. It is found that the shape of the common
interface near the stagnation point is ellipsoidal. and significant deformations of the penetrator
occur in the hemispherical region of radius 27, centered at the stagnation point; r, being equal
to the radius of the undeformed cylindrical portion of the rod. The axial resisting force
experienced by the penetrator and the hydrostatic pressure near the stagnation point depend
strongly upon the non-dimensional parameter a = pt'}/g, where p is the mass density, v, the
speed of the stagnation point and o, is the yield stress of the material in a quasistatic simple
compression test. For the three speeds considered. the crater radius was found to vary from
1.75r, 10 1.92r,. The values of the resistive strength parameters introduced by Tate [2] and
Alekseevskii [3] depend upon the penetration speed v, and also on ratio p,/p, of the mass
densities. The peak values of the plastic spin expenenced by a penetrator or a target particle
either equal or exceed the peak values of the second invariant / of the strain-rate tensor for it.
Thus, plasticity theories which properly account for the evolution of the high plastic spin and
defotmation induced anisotropy ought to be emploved in the study of penetration problems.

Acknowledgements—This work was suppotted by the U.S. Army Research Office Contract DAALO03-89-K-0050 to the
University of Missouri-Rolla. Some of the computations were performed on the *SF sponsored supercomputer center
at the University of [ilinois-Urbana.
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Abstract—Axisymmetric deformations of s transversely isotropic, rigid/perfectly plastic target being
penetrated by a long rigid cylindrical rod with an ellipsoidal nose have been analyzed. The deformations
of the target appear steady to an observer situated at the penetrator nose tip. The contact between the
target and the penetrator is assumed 10 oe smooth. Computed results show that the deformsation field
adjacent 1o the penetrator nose surface is significantly infiuenced by the pose shape, and the ratio of the
yield stress in the axial direction to that in the transverse direction. The axial resisting force upeﬁeneqd
by the penctrator is found to depend strongly upon the nose shape and the ratio of the yield stress in
the axial to that in the transverse direction, but weakly upon the square of the penetration speed.

1. INTRODUCTION

For very thick targets, the sicady-state portion of the
penetration process constitutes a significant part of
the entire penetration event. Accordingly, a consider-
able amount of work has been done in studying this
process. For example, Tate[1, 2] and Alekseevskii (3]
have modified modeis in which the steady defor-
mations of the target and the penetrator are assumed
to be governed by purely hydrodynamic incompress-
ible flow processes by incorporating the effects of the
material strengths of the target and the penetrator.
These strengths were assumed to be some multiple of
the yield stress of the respective materials, the muiti.
plying factor has recently been given by Tate [4, 5] by
using a solenoidal fluid flow model. Pidsley [6], Batra
and Gobinath [7), and Batra and Chen (8] have esti-
mated these multiplying factors from their numerical
solutions of the problem.

We refer the reader to the review articles of Back-
mann and Goldsmith [9), Wright and Frank (10),
Anderson and Bodner [11), and books by Zukas er
al. (12}, Blazynski[13], and Macauley[14] for a dis-
cussion of various aspects of the penetration prob-
lem, and for a list of references on the subject. Ravid
and Bodner [15), Ravid er al. {16], Forrestal er al. {17},
and Batra and Chen [8] have proposed engineering
models of different complexity.

The works referred to above have assumed the
target material to be isotropic. However, manufactur-
ing processes such as rolling induce anisowropy in the
material properties. For example, in beavily-rolled
brass, the tensile yield stress transverse to the direc-
tion of rolling may be as much as ten percent greater
than that parallel to the direction of rolling[18].
Greater variations may be obtained by sn appropri-
ate combination of mechanical and heat treatments,

tAlso Senior Research Investigator, Intelligent Systems
Center.
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which produces a final recrystallization texture close
to that of a single crystal {19]. Here we assumc the
target material to be transversely isotropic, and study
the effect of varying tae yield siress in the axial
direction upon the deformation fields during steady-
state penetration of the target by a rigid cylindrical
penetrator. It is assumed that the degree of an-
isotropy, defined as the ratio of the yield stress in the
axial direction to that in the transverse direction,
stays constant during the deformation process. The
effect of the speed of penetration as well as the nose
shape on the deformations of the target is also
investigated,
1 FORMULATION Of THZ. PROBLEM

We use a cylindrical coordinate system with origin
at the center of the penetrator nose and z-axis
pointing into the target. We presume that the defor-
mations of the target are axisymmetric and appear
steady to an observer situsted at the penetrator nose
tip and moving with it at 2 uniform velocity vye, ¢
being & unit vector in the direction of motion of th¥
rigid penetrator, which we take to be the z-axis.
Equations governing the target deformations are

divem O, 2.1
p(v-gndivmdive. {2.2)

Here v is the velocity of 2 target particle relative to
the observer situsted at the penetrator nose tip, p is
the mass density for the target material, and e is the
Cauchy stress tensor. We neglect elastic deformations
of the target and have assumed i1 (2.1) that its
deformastions are isochoric. Equations (2.1) and (2.2)
express, respectively, the balance of mass and the
balance of linear momentum.

We assume that the target material obeys Hill's
yield criterion [20), which for transversely isotropic

i
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materials undergoing axisymmetric deformations
becomes

ﬂ(d” - a-)l + (‘. - anﬂ
+H(o,,~0, P +2Mal, =1, (2.3)

2F = 1/82,,

2H = 2/¢3, - 1/d,,

2M =143, (2.4)
d,.and & are yield stresses in the x- and z-directions,
respectively, and 4,, is the shear yield stress.

The constitutive relation for the target material can
be written as

e = —pl4s, (2.5)
3. 1 IF+H H F D,
So0 -El H 3F+ H F D. *
S F F AF+H)|\D,
(2.6)
3, = D, IMI, 2.7
E = 3F(F +2H), (2.8)
F(DL 4+ D)+ HD? 2 1
Pw FF+20) +§Dm 2.9)
2D = grad v+ (grad v)’. (2.10)

In oqn (2.5), ¢ is the Cauchy stress tensor, s the
deviatoric stress tensor, and p the hydrostatic press-
ure not determined by the deformation history.
Equations (2.6) and (2.7) relate the components of the
devistoric stress tensor to the components of the
strain-rate tensor D. Note that because of the depen-
dence of 7 upon D,, Dy, D, and D, even s,
depends upon ail non-zero components of D.
Eauations (2.6)+(2.9) reduce to those for isotropic
rigid/perfectly plastic materials if one takes
F = H =05/a}, M =1.5/a}, o, being the yield stress
in m quasistatic simple tension or compression test.
Equation (2.1) and the one obtained by substitut.
ing from eqns (2.6)(2.10) into eqn (2.2) are the field
equations to be solved for p and v subject to suitable
boundary conditions. Before stating these, we non-
dimensionalize the variables as follows:

‘ -./ﬂ., .-'/viv
'-’l’ﬂ ‘-’l"h
A=ploy, bmifo,. 211

Here r, is the radius of the cylindrical portion Br the

penetrator and o, is a reference stress. Rewriting eqns
(2.1) and (2.2) in terms of non-dimensional variabies,
dropping the superimposed hats, and denoting the
gradient and divergence operators in non-dimen-
sional coordinates by grad and div, we obtain the
following equations

dive=Q, 2.12)
a(y - grad)y = —grad p +divs, .13)
where @ = pvl/o, is 2 non-dimensional aumber and

measures the magnitude of inertia forces relative to
the flow stress of the raterial. At the

target/penetrator interface we impose
t-(em)=0, Q14
voa=0, (2.15)

where B and t are, respectively, the unit outward
normal and the unit tangent vectors at a point on the
surface. At points far away from the peaetrator

iv+el—=0 a3 (F247)—m,2> =, (216)
|en]—0 as z=o-o00. 17

The boundary condition (2.14) states that the
target/penetrator interface is smooth, and (2.15)
implies that there is no penctration of the target
material into the pevetrator. Equation (216) implies
that target particles at a large distance from the
penetrator appear to be moving at a uniform speed
with respect to it, and eqn (2.17) states that far to the
rear the traction field vanishes. Note that the govern-
ing eqns (2.13) with s given by (2.6) and (2.7) are
noulinear in v, and that a solution of the boundary-
value problem stated above, if there exists one, will
depend on the rate at which quantities in (2.16) and
(2.17) tend to zero. Since the prodbiem is difficult to
solve analytically, we seek an approximate solution of
the problem by the finite element method.

3 FINTTE ELEMENT SOLUTION Of THI PROBLEM

3.1. Computational ¢onsiderations

Recalling that the target deformations are assumed
to be axisymmetric, only the finite region R shown in
Fig. 1 is studied, and the boundary conditions (2.16)
and (2.17) are replaced by the following

p=~=10, =0,

on the boundary surface EFA, (3.1)

a, =1, v, =0,

on the bottom surface AB. (3.2)
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3.2. Resulis for the trensversely isotropic target
We have assigned the following values to various

variables when computing sumerical results that are
presented below i
gymd, =43, =498 MP2, "
p w1860k’ rpm2.54mm. (3.4)

The effect of varying 4, 5. and the penetrator nose

: —I shape is analyzed. The value of &,, is computed from
;
1 2
/ -, (3.9

| é, &, 6l

Except when discussing the effect of the nose shape

]“” —— Originat conie (211

2571

Tongantict speed, normal stress /10, |

A

]
Fig. 1. The finite region analyzed and its discretization.
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On the axis of symmetry DE, we impose

9, =0, v, =0. 3.3)

= Originat code (211

A finite element solution of the problem defined by ~ Modified code

eqns (2.12) and (2.13) with s given by non-dimension-
alized versions of (2.6)«2.10), and boundary con-
ditions (2.14), (2.15), and (3.1)~(3.3) has be=n found
for several values of a, 2,/4.,, and penetrsior
pose shapes. The finite element code developed by
Batra {21]) was modified to solve the present problem.
The changes made were checked by solving the same
penetration problem for an isotropic target with the
modified code by setting Fm H« 0.5, and M= 1.5,
and with the original code. Since in the numerical
solution of the problem, eqn (2.12) is only approxi-
mately satisfied, the two sets of results for the same
problem computed with the original coce and the
modified code, as shown in Fig. 2, agree qualitatively, "
but differ quantitatively by about ten percent. We ° s 1 5 20 23 W 18
have used the method of Lagrange multipliers to Owtanet Fom the nose Up

satisfy the incompressibility constraint (2.12), and the - Fjg 2. Comparison of results for an isotropic target com-
boundary condition (2.15). puted with the two codes.
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Fig. 3. Effect of the yield stress in the axial direction on the
distribution of the normal stress at target parucles on the
pencetrator nose surface. & = 6.25.

on the deformations of the target, the penetrator nose
is taken to be hemispherical. :
Figure 3 shows the effect of the yield stress in the
axial direction on the distribution of the normal stress
at target particles situsted on the penetrator/target
interface when a = 6.25. As expected, the magnitude
of the norma! stress increases with an increase in the
value of &,,. The raage of values of 4, considered is
considerably more than that likely to occur in a
practical situstion. In Figure 4, we have plotted the
variation with &, of the strain-rate measure / and the
tangential speed at target particies abutting the

°

0 © X BV 4 0 © ™ ® w0
Fig. 4. Effect of the yiald stress in the axial direction on the

strain-rate moasure / and the tangential speed at target
partcies on the penetralor noes surface. & = 6.25.
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° Qs ) [t} 20 23 30 3
Demtonce from the noes t:p

Fig. 5. Effect of the yicld stress in the axia) direction on /,
d,. and o, at target particles on the axial line. & = 6.25.

penetrator nose surface for a hemispherical nosed
penctrator and x = 6.25. At every target particle on
the penetrator nose surface, both the tangential speed
and the strain-rate measure / increase with 4,,. The
tangential speed varies slowly with the value of 4, at
a target particle on the penctrator nose periphery.
The dependence of (—o,,), /, and the axial velocity at
target particles on the axial line upon the yield stress
4,, is depicted in Fig. 5. The rate of decay of the axial
velocity as seen by an observer moving with the
penetrator nose tip decreases with an increase in the
value of &,. We note that the values of 7 and the
absolute axial velocity become zero at target particles
on’the axial line whose distance from the penetrator
nose tlip exceeds 3r,. Thus, the region studied is
adequate. The values of ¢, do not decay to zero, but
approach the value of p as we move away from the
penetrator nose ‘surface. We recall that we bave
negiected elastic deformations of the target, and the
hydrostatic pressure does not influence the wielding
of the material. The consideration of elastic
deformations should give a better estimate of the
hydrostatic pressure at a point. .
The distributions of the normal stress and the
strain-rate measur: / at target particles adjoining the
target/penetrator interface for four different nose
shapes, i.e. 7,/ry = 0.2, 0.5, 1.0, and 2.0, are shown in
Fig. 6. Here 2r, and 2r, equal the length of the
principal axes in the 7 and 2 directions, respectively,
of the penetrator nose. The normal stress at the
stagnation point appears to be the same for all four
different nose shapes. The normal stress decreases
rapidly with the angular position 8 for a long narrow
nose. For the essentially blunt nose, the normal stress
stays virtually constant on the entire nose surface,
and rapidly drops to 2ero vear the nose periphery. A
" similar behavior was found by Batra for an isotropic
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Fig. 6. Distribution of the normal stress and the strain-rate
measure / at target particies on the penetrator nose surface
for four different shapes of the penetrator nose.

viscoplastic {21] and an isotropic thermoviscoplastic
target {22). For a cylindrical penetrator with a long
pointed nose, the strain-rate measure / assumes
highest values at the stagnation point, and the values
of 7 drop off sharply with the angular position 6.
However, for a blunt nose, / siays essentially constant
at a relatively low value on the entire surface and
suddenly shoots up near the nose periphery. Thus,
very severe deformations of the target occur at points
surrounding the stagnation point for a long tapered
nosed penetrator, and near the nose periphery for a
blunt nosed penetrator. The variation of 7, (—v, ), and
(=o,) at target particles on the axial line for four
different nose shapes is depicted in Fig. 7. The value
of the axial velocity changes rather slowly for a blunt

Fig. 7. Distribution of /, v,, and ¢, st target particles on the
axig] line for four different shapes of the penetrator nose.
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nosed penetrator, but quite rapidly for a long tapered
nosed penctrator. The difference in the values of
(—2,,) at a point on the axial kine distant 4r, from the
penetrator nose tip is mainly due 10 the different
limiting values of the hydrostatic pressure for ths four
nose shapes. Ideally, the pressure should decay to
2ero at target points far away from the penentrator
nose. However, the assumption that the target ma-
terial is rigid/perfectly plastic and the observation
that the strain-rates are extremely small at target
points whose distance from the penetrator nose tip
exceeds 47, suggest that the computed values of p at
target particles far away from the penetrator nose
surface are not very reliable.

In Fig. 8, we have plotted for a hemispherical
nosed penetrator and &, /o, = 1.8 the distribution of
the normal stress, /, and the targential speed for
different values of a. As for an isotropic target [21],
the normal stress at target particies near the nose
peripbery decreases with a. The tangential speed and
the values of 7 seem 10 be affected very litile by the
value of a. Al target particles situated on the axial
line, the values of o,,, J, and v, do not change much
when a is increased from 3.0 to 6.25. Their plots and
those for &,,/0, = 3.6 are pot included in the paper.
We note that results for 4, /a, = 3.6 are qualitatively
similar to those for &,,/c, = 1.8. .

Figure 9 shows the variation of the axial speed v,
with r on the planes 2 = 0 and 2 = — 1.0 for the four
different nose shapes. These results indicate that the
target material adjacent to the sides of the penetrator
appears 10 extrude rearward as a uniform block that
is separated from the bulk of the stationary target.
material by a narrow region with a sharp velocity
gradient. This observation provides a partial justifica-
tion for the velocity field assumed by Ravid and

d
1

Tongentich apeed, | , nermal stress / 10

o

0 © 20 2 « % W ™ ©® W
Ange

Fig. 8. Distribution of the normal stress, /, and the tangen-
tial spead on the penetrator nose surface for different values
of &
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Fig. 9. Variation of the axial spesd with 7 on the surfaces 2 =0 and 2 = ~1.0.

Bodner {15] in their work involving targets of finite
thickness, We add that Batrs and Wright [23] found
2 similar result for the steady state penetration of
isotropic rigid/perfectly plastic targets.

The axial resisting force F experienced by the
penetrator is given by

w1
!‘-2'[ (m-on)
| ]

08 ¢ sin O[sin? 6 + (r,/r, ) cos? §)'2

(5D° 6 + (ro/r. Y co8’ 6F dé, (3.6

z/r}

oA = T+ G

where the angle 4 is defined in Fig 1, and (r, z) are
the coordinates of a point on the penetrator/target
interface. The corresponding axial foree in physical
units is given by (rrio,)F. We note that the ex-
pression given by Batra {21] for the axial force, except
for the bemispherical nose shape, is in error. The
dependence of the axial force upon a, 7, /vy, and 4,, /0
is exhibited in Fig. 10. For each one of the two values
of #,/e, considered berein, F depends upon a very
weakly. However, F depends strongly upon 7,/r, and
8,/6,; the resisting force is maximum for a blunt
nosed and least for a tapered nosed penetrator. F
increases rapidly with ¢, first, but slowly after &, /0,
excesds approximately 1.9.

a.n

4 CONCLUSIONS

We have studied the steady state penetration of &
rigid/perfectly plastic and transversely isotropic
target being penetrated by a rigid cylindrical pen-
etrator having an ellipsoidal nose. It is found that the
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L [ r

Fig. 10. Dependence of the axial resisting force upon
VArious parameters.

axial resisting force experienced by the penetrator
depends strongly upon the penetrator nose shape,
and also upon the ratio of the yield stress in the axial
direction to that in a transverse direction. The axial
resisting foroe depends rather weakly upon the square
of the penetration speed. Peak values of the strain-
rate measure / occur near the stagnation point for a
fong tapered nosed penetrator, but near the nose
periphery for a blunt posed penetrator.
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Steady state penetration of elastic perfectly
plastic targets

R. Jayachandran and R. C. Batra. Rolla. Missouri

{Received March 5. 1991: revised May 7. 1991)

Summary. Steady state axisvmmetric deformations of an elastic perfectly plastic target being penetrated by
afast moving ngid cylindrical rod have been analyvzed by the finite element method. The target is assumed to
obey the von Mises vield criterion and the associated flow rule. Contact between target and penetrator has
been assumed to be smooth. A mixed formulation. 1n which two components of the velocity and four
components of the deviatonc stress tunsor at each node point. and the hydrostatic pressure at the centroid of
an element are taken as unknowns, is employed. This should give a better esumate of tractions acting on the
penetrator nose. and hence of the axial resising force experienced by the penetrator. The effect of the
penetrator speed. its nose shape and the elasticity of the target material on the target deformations. and the
axial force expenenced by the penetrator has been studied. The consideration of elastic effects helps delineate
the elastic-plastic boundary in the target.

1 Inctroduction

An outstanding problem in penetration mechanics is to find. within reasonable resources,
whether or not for the given penetrator and target geometries. materials. target support
conditions. penetrator speed. and the angle of uttack. the target will be perforated or not. If the
target is perforated. the speed of the penetrutor when it ejects out of the target is of interest. And if
the target is not perforated. one will like to know the shape and size of the hole made in the target.
This problem has defied a complete solution for muny vears. We refer the reader to review articles
by Backman and Goldsmith {1}, Wright and Frank [2). Anderson and Bodner {3]. und the books
by Zukas et al. [4]. Blazynski {5}, and MaCauley {6] for a summary of the available literature on
ballistic penetration. Awerbuch {7}, Awerbuch and Bodner (8). Ravid and Bodner [9], Ravid et al.
{10]. Forrestal et al. [ 1], and Batra and Chen [12] have proposed engineering models of different
complexity.

In recent years. emphasis has been placed on kinetic energy penetrators. which for terminal
ballistic purposes mav be regarded as long metal rods travetling at high speeds. For impact
velocities in the range of 2— 10 km s, incompressible hydrodyvnamic flow egquations can be used
to describe adequately the impact and penetration phenomena. because large stresses occurring
in hypervelocity impuact permit one to neglect the rigiditv and compressibility of the striking
bodies. Birkhoffet al. [13] and Pack and Evans [14) have proposed models which require the use
of the Bernoulli equation or 1ts modification to describe the hvperselocity impact. At ordnance
velocities (0.5—2 km si. the material strength becomes an important parameter. Allen and
Rogers [15] represented the materiai strength as a resistive pressure. Alekseevskii [16] and Tate
[17). {18]) have considered separate resisuve pressures for the penetrator and the target and
proposed that these equal some multiple of the umaxial vield stress of the material. However. the
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multiplying factor was not specified. Tate {19). {20}, Pidsley {21]. Batra and Gobinath [22],
Gobinath and Batra {23], and Batra and Chen {12] have estimated these multiplving factors.
Whereas Tate used a solenoid fluid flow model to simulate the steady state penetration process.
other investigations relied on a numerical solution of the problem.

We recall that the one-dimensional penetration theories [15) —[18] ignore the lateral motion.
plastic flow and the detailed dynamic effects. In an aue'mpl to understand better these
approximations. Batra and Wright [24] studied the problem of a rigid cvlindrical rod with
a hemispherical nose penetrating into a rigid perfectly plastic target. The target deformations as
seen by an observer moving with the penetrator nose tip, were presumed to be steady.
Subsequently, Batra and his co-workers [25]—[30) studied the effect of nose shape. strain
hardening, strain-rate hardening and thermal softening characteristics of the target material.
Batraand Gobinath {22] —{23] have analvzed the steady state penetration problemin which both
the target and the penetrator deform.

When the target material is modeled as rigid. perfectly plastic it is likely that the hydrostatic
pressure at target points adjoining the penetrator target interface is increased because of the
rigidity of the surrounding target material. Also. computations of stresses and hence tractions on
the target, penetrator interface from the finite element solution in which velocities at nodal points
are 1aken as unknowns is less accurate as compared to the nodal velocities. We alleviate these
concerns here by including the effect of material elasticity in the problem formulation, and using
amixed finite element formulation in which both the nodal velocities and nodal stresses are taken
as unknowns. :

2 Formulation of the problem

We use a cylindrical coordinate system with origin attached to the center of the penetrator nose.
moving with it at a un:form speed . and positive z-axis pointing into lhc'mrgel. to describe the
deformations of the target. These deformations appear to be steady to an observer situated at the
origin of this coordinate system. and are governed by the following equations:

Balance of mass: divr = 0. (h

Balance of linear momentum: dive = ofr-grad) r. (2)

Constitutive relations: ow —pl +3, ' &)}
= 2GD - D). 4
s=2ul) D, N

where

=== 2 mtr (D), (6.1.2)

[ 31
dm(v-grad)s + sW - s, )
2D=gradv +grad v, 2 = grad v — (grad vi". 181

Equations (1) and (2) are written in the Eulerian descrniption of motion. The operators grad and
div denote the gradient and divergence operators on fields defined in the present configuration.
In Eqgs. (1) —(8). v is the velocity of u targer particle relative to the penetrator. 7 the Cauchy stress
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tensor, sits deviatoric part, p the hydrostatic pressure not determined by the deformation history,
and an open circle on s indicates the Jaumann derivative defined by Eq. (7) for the steady stress
field. Furthermore, G is the shear modulus, D? the plastic strain-rate, g defined by Eq. (6.1) may be
interpreted as the shear viscosity of the target material, 4 is the yield stress in a quasistatic simple
compression test, D the strain-rate tensor and # is the spin tensor. Equation (4) expresses
Hooke's law written in the rate form and is based on the tacit assumption that the strain-rate has
additive decomposition into elastic and plastic parts. We note that Pidsley {21] used the ordinary
time derivative rather than the Jaumann rate in Eq. (4). Equation (5) follows from the assumption
that the target material obeys von Mises yield criterion and the associated flow rule. However, in
Egs. (3)—(5) we have assumed that a material particle is undergoing elastic and plastic
deformations simultaneously. Substitution from Egs. (5) and (7) into Eq. (4) gives the following
differential equation for s:

(v-grad)s + sl — Ws + (G/i) s = 2GD. 9)
We non-dimensionalize variables as follows:

¢ =6/6y, §=58/6g, P=ploe, F=V0vy, TFT=rlrg,

. (10)
- = # )
I=zfrg, Fyu=ryfro, I=1—,

Yo
where the superimposed bar indicates the non-dimensional variable, the pair (r, z) the cylindrical
coordinates of a point, vy the uniform penetrator speed, ry the radius of the cylindrical part of the
penetrator, and 2rg and 2r, equal the length of the principal axes of the ellipsoidal nose in the
r and - directions, respectively. Equations (1), (2), and (9), when written in terms of
non-dimensional variables become

divy =0, (11)
—grad p + divs = «(v - grad) », (12)
s+ By((v-grad) s + s — Ws) = 8D, (13)
where
otg> Go 1
4=—— y=—, and =— (14)
o G 4 213 1

are non-dimensional numbers, and we have dropped the superimposed bars. Henceforth, we
will use only non-dimensional variables. Note that x and y are constants for the given problem,
but f§ varies from point to point in the deforming region. The value of = signifies the importance
of inertia forces relative to the flow stress of the material, and that of y gives the effect of
material elasticity. For most metals y is of the order of 1072, For a rigid perfectly plastic
malerial ; equals zero. The value of the Weissenberg number () varies from 1072 to 10* in
the deforming region.

We assume that the target/penetrator interface is smooth, and impose on it the following
boundary conditions:

t-(en) =0, (15)

ven=0. (16)
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Here # and 1 are, respectively, a unit normal and a unit tangent vector to the surface. Equation
(15) imptlies that there is no frictional force acting at the contact surface, and the boundary
condition (16) ensures that there is no interpenetration of the target material into the penetrator
and vice-versa. A partial justification for boundary condition (15) is that a thin layer of material
at the interface either melts or is severely degraded by adiabatic shear. At points far away from
the penetrator, we impose

v +e—0, as 2+ >x. > —w, (17)
lenl — 0, as z—-—w, rzl, (18)

where e is a unit vector in the positive z-direction. The boundary condition (17) embodies
the assumption that target particles far from the penetrator and not on the bounding back
surface appear to be moving at a uniform velocity with respect to it. Equation (18) implies
that when a target particle has moved far to the rear of the penetrator, the surface tractions
on it vanish.

The problem formulation outlined above differs [rom that studied earlier by Batra and
co-workers [25]—[30] because of the consideration of elastic deformations here. In earlier work
substitution for s in Eq. (12) resulted in non-linear field equations for v. Here, Eq. (13) can not be
solved easily for s; accordingly we solve Eqs. (11)—(13) for p, v and s. This necessitates that the
boundary conditions for stress components be prescribed at the entrance region. Shimazaki
and Thompson [31] have studied a simple problem whose governing equations are similar to
Eqgs. (11)—(13), and have justified prescribing p and s at the entrance region.

3 Finite element formulation of the problem

Unless we use special infinite elements, a numerical sofution of the problem requires that we
consider a finite region. Accordingly, we study deformations of the region R shown in Fig. 1, and
replace boundary conditions (17) and (18) at the far surfaces by the following conditions (19) and
{21) on the boundary surfaces of the finite region being analyzed:

r, =0, r¢.= —1.0 on the bounding surface EF A, (19)
gi. =0k up=10 on the axis of symmetry DE, (20)
g..=0, r,=0 on the surface AB. (21)

Conditions (20) follow from the assumed axisymmetric nature of deformations. The validity of
replacing {17) by (19). (18) by (21), and the accuracy of the computed results depend upon the size
of the region R. Since Eq. (13) can not be solved explicitly for 5, but is to be solved simultaneously
with Eqgs. (11) and (12), we need to specify the state of stress of the material entering the control
volume (e.g. see Shimazaki and Thompson [31]). Accordingly we set

p=0, 5,=0, s5p=0, s5.=0 ands.=0 onthe boundary surface EFA. (22)

The first step in analyzing the problem numerically is to obtain a weak formulation of the
problem. Let ¢ and ¢ be smooth and bounded vector and tensor-valued functions defined on the
region R that vanish on the surface EFA4, and ¢, =0 on 4B and DE, ¢-n =0 on the
target’penetrator interface BCD. Also, let i be a bounded. scalar valued function defined on R.
Taking the inner product of both sides of Egs. (11}, {12), and (13) with 3, ¢ and ¢, integrating the
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ot |

A |gullli] - oo L : IA Fig. 1. The finite region studied and its
| i) discretization

resulting equations over R, using the divergence theorem, the traction boundary conditions (15),
(19) and {20), and the aforestated boundary conditions on ¢ and y, we arrive at the following
equations:

j' ydivy) dV =0, (23)
| p(div @) dV— | s:(grad ¢ + (grad ¢)7) dV == | [(v- grad) v]- § dV, (24)
fw:f dv = % J[f(l) W [grad v + (grad m7] dV, (25)
§ =5+ Byl(v-grad) s + s — Ws). (26)

Here and below the integrations are over the region R. The boundary value problem defined by
Egs. (11)—{13), (15), (16), and {19)—(22) is equivalent to the statement that v and s satisfy the
prescribed essential boundary conditions and Egs. (23)—(25) hold for every ¢, ¥ and # such that
grad ¢, grad i, and » are square integrable over R. and ¢ and i satisfy the stated homogeneous
essential boundary conditions.

An approximale sotution of Egs. (23)—(25) has been obtained by using the finite element
method (e.g. see Hughes {32]). In order to preclude spurious oscillations in the stress deviator
s and also to improve upon the rate of convergence, we employed the Petrov-Galerkin
approximation of Eq. {25) but Galerkin approximation of Eqgs. (23) and (24) (see Hughes [32]).
The region R is divided into quadrilateral subregions, called finite elements. over each of which
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rand sare approximated by simple polynomials defined in terms of their values at the four corner
nodes. The pressure p is assumed to be uniform over each element; this value is assigned to the
centroid of the element. The basis functions used in the Petrov-Galerkin approximation are those
given by Brooks and Hughes [33). The boundary condition {16) on target/penetrator interface
BCD is enforced by using the method of Lagrange multipliers.

We note that Eqs. (23)—(25) are coupled and are nonlinear in ». The following iterative
technique was used to linearize them:

| ndiv ™y dV =0, (27)
§ pdiv @) dV — | s ): (grad ¢ + (grad ¢)7) dV =« [ (™" - grad) v")- ¢ dV, (28)
[isdV+ §gsom™ Yy dV=f ") y:fgrad v* ! + (grad v"~ 17 dV, (29)

where m is the iteration number. The iterative process was stopped when

(Z ”‘,m . ‘,m-lllz)l‘.‘! é OOI(Z ”rmAl".!)lil, [301)
(X lpm = p" P2 S 001(Y (o112, (30.2)
(Z “sm _ Sru~l.||l)l 2 g Ool(z i‘L\JH_ lHZ)I 2’ (303)

where [|vjj? = ¢,> + v_%,and ||s]|* = tr(ssT). The summation sign refers to the sum of the indicated
quantity evaluated at all nodes in the finite element mesh. This convergence criterion is weaker
than the local norm used by Batra and his co-workers [25]—[30].

Having determined pressure p at the centroids of elements, the pressure at node points is
computed from

M
Y (NN dV) pdV = N dV, i=12.,M (31)

=t

where Al is the number of nodes, and N,, N, ... are the piecewise bilinear finite element basis
functions. We note that Eq. (31) also serves to smooth out the pressure field.

4 Computation and discussion of results

A computer code based on Egs. (27)—(29) and employing 4-noded quadrilateral elements has
been developed. The two components (t,, r-) of the velocity and four components (s,, S0, -, and
s..) of the deviatoric stress tensor are taken as unknowns at each node, and the hydrostatic
pressure p is assumed to be constant within an element. The validity of the computer code was
established by solving the radial flow problem discussed by Shimazaki and Thompson [31]. For
the same finite element grid and numerical values of parameters as those used by Shimazakiand
Thompson [31]. the two sets of computed results plotied in Fig. 2 agree well with each other.
Another test problem studied was a hypothetical one involving the flow of a Navier-Stokes fluid
in a circular pipe and achieving a favorable comparison between the computed and analytical
results; this problem is discussed in the Appendix.

In the results presented below, the target material was assumed to be an aluminium-alloy for
which we took ¢ = 340 MPa, G = 27 GPa. and ¢ = 2890 kg/m>. However, the results are
presented below in terms of non-dimensional numbers and are therefore valid for other
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Fig. 4. Distribution of the compressive normal stress on the penetrator nose surface for the three different
nose shapes and for 2 = 2, 6. 8, and 10 when the target material is modeled as elastic perfectly plastic

combinations of target material and penetration speed. The finite element subdivision of the
target region when the penetrator has an ellipsoidal nose with r,/r, = 2.0 isshown in Fig. 1. The
components of the deviatoric stress tensor and the hydrostatic pressure were assigned to be zero
at the entrance region EF A. )

Figure 3 depicts the effect of material elasticity (y = 1.26 x 107?) on the pressure
distribution at the nose surface for three different nose shapes with r,/ro = 0.2, 1.0, and
2.0, and when z was set equal to 10.0. For each nose shape the normal pressure on
the nose surface was lower when material elasticity was accounted for than that for
the rigid perfectly plastic case (; =0). However, the general shapes of the curves are
unaffected by the consideration of elastic effects. The normal stress at the stagnation
point is nearly the same for the three nose shapes, but the shape of the normal stress
versus angular position 0 curve depends strongly upon the nose shape. As expected,
for the blunt nose, the normal stress stays constant over most of the nose surface, and
drops off rapidly to zero near the nose periphery. For the hemispherical nosed penetrator,
the normal stress drops off nearly evenly as one moves away from the center to the
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Fig. 5. Distribution of the tangential speed and the strain-rate measure [ upon the penetrator nose surface
for three different nose shapes; « = 10

nose periphery. For the ellipsoidal nosed penetrator the normal stress drops off quite
rapidly for 0° £ # = 30°, and rather slowly for 8 > 30°. The curvature of the curve for
o = 2.0 is opposite to that of the curve for r,/ro = 1.0 or 0.2.

The distribution of the compressive normal stress on the nose surface for o =2, 6,
8. and 10 and when the target material is modeled as elastic perfectly plastic is plotted
in Fig. 4. For each of the three nose shapes considered the normal stress at points
on the nose surface for which 0 < 8 < 6, increases with «, that at points with 6> 6,
decreases with o. The value of 8, equals approximately 22°, 45°, and 82°, for the long
tapered ellipsoidal nosed, hemispherical nosed and the blunt nosed penetrators, respectively.
The normal stress at points near the nose periphery was found to be positive for « > 15
implying thereby that the target particles tended to separate away from the penetrator.
However, for the blunt nosed penetrator this tendency of the target particles to separate
away [rom the penetrator adjacent to the nose periphery was also observed at lower
values of .

The distribution of the tangential speed on the penetrator nose surface and the strain-
rate measure [ at the centroids of elements abutting the penetrator nose surface for the three
different nose shapes and « = 10.0is shown in Fig. 5. It is apparent that the material elasticity has
negligible effect on the tangential speed and the strain-rate measure /. For the long tapered nosed
penetrator, the tangential speed increases very rapidly for 0 £ 8 < 20°, attains the value of 1.0 at
6 ~ 30°,and then stays close to 1.0 for 30° < 8 < 90°. For the hemispherical nosed penetrator the
langential speed increases gradually from O at 8 = 0°to 1.0 at # = 60° and does not vary much for
60° < 8 < 90° The trend is quite different for the blunt nosed penetrator. In this case the
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Fig. 6. Variation of the pressure, strain-rate measure J and the z-velocity on the axial line with the distance
from the penetrator nose tip

tangential speed increases slowly for # £ 507, and then very rapidly. The maximum value of the
tangential speed computed for the blunt nosed penetrator is more than that for the other two
nose shapes. For the blunt nosed penetrator the peak values of the strain-rate measure [ are an
order of magnitude higher than that for the long tapered nosed penetrator. Whereas /;,, occurs
near the nose periphery for the blunt nosed penetrator, peak values of I for the other two nose
shapes are realized at the stagnation point, Both for the hemispherical and the elliptical nosed
penetrator, [ decreases slowly from its maximum value at the nose center to nearly zero at the
nose periphery.

We have plotted the variation of the hydrostatic pressure, strain-rate measure I and the axial
velocity along the axis of symmetry in Fig. 6. The consideration of material elasticity has very
little effect on the distribution of I and the axial velocity but reduces noticeably the value of the
hydrostatic pressure. The value of I at the stagnation point is maximum for the ellipsoidal nosed
penetrator and least for the blunt nosed penetrator; the former equals nearly twice the latter. Itis
clear that severe deformations of the target occur at points situated at most 3r, from the
penetrator nose surface. Thus the target region studied is adequate. The pressure drops off more
slowly when the target material is modeled as rigid perfectly plastic as compared to the case when
it is modeled as elastic perfectly plastic. The general shapes of the curves I, v. or p versus the
distance from the nose tip are unalffected by the penetrator nose shape and by the consideration
of material elasticity.
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--------- Elastic/Perfectly Plascic
Fig. 7. Dependence of the peak pressure at the stagnation point and the axial resisting force experienced by
the penetrator upon
The dependence of the peak pressure that occurs at the stagnation point, and of the axial
resisting force F experienced by the penetrator upon # is depicted in Fig. 7. The axial resisting
force F is given by
a2
" ~cos ¢ sin B [sin? 0 + (1/r,)* cos? 0]*?
F=2 | (n-on ¢ — [ ,( "), 5 ] da, (32.1)
[sin 8 + (1/r,)* cos” 0]
0
PN (2.2
COS ¢ = =573 2
[).2 4 (:{’.HZ)E]U.
|
where the angle @ is defined in Fig. 1 and (r, z) are the coordinates of a point on the
penetrator/target interface. The corresponding axial force in physical units is given by (wro®0) F.
For each nose shape, the relationships between py,,, and . and F and « are nearly affine, and the
consideration of elastic effects lowers the value of p, by about 2, and of F by 1.8. The least
squares fit to the computed data gives |
Pma = 082 + 0.48%, F =797 +00%x, r,/ro =02, (33.1)
Pon = 720 + 0482, F =767 + 00422, r,ro =10, (33.2)
P =126 + 048%, F =729 + 0021z, r,/ro =20, (33.3) |
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Fig. 9. Variation of the deviatoric stress
-1.0 = L = _— ' 5., on the axial line
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Distance from the nose tip
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when the target material is modeled as rigid perfectly plastic, and

P = 4.87 + 0472, F =617 +0.09%z, r,/ro =02, (34.1)
P = 5.20 + 04724,  F =590+ 0.038%, r,/ro =10, (34.2)
P = 516 + 0472,  F =532+ 0019, ry/ro =20, (34.3)

when it is taken to be elastic perfectly plastic. We note that the dependence of F upon « is quite
weak.

The contours of the hydrostatic pressure in the deforming target region for the three different
nose shapes and z = 10 are depicted in Fig. 8. These show that the pressure falls off to zero. not
only on the axial line, but also along other radial lines as one moves away from the penetrator
nose surface. The contour of the zero hydrostatic pressure near the bounding surface is not
plotted in order to focus on the narrow region surrounding the penetrator/target interface. For
each one of the three nose shapes examined, the pressure near the nose periphery drops off to
a very small value. The pressure gradient at points near the nose tip is steepest for the ellipsoidal
nosed penetrator.

On the axial line uniaxial strain conditions prevail approximately. Thus the magnitude of the
deviatoric stress s.. at a point on the axial line should equal (2/30,) whenever the material point is
deforming plastically. For a rigid perfectly plastic target material and for each nose shape
considered, the computed value of |s..| came out to be 2/3¢, as shown in Fig. 9. Near the
boundary point F of the target region studied, |s..| rapidly dropped to the prescribed zero value.
This rapid drop is not shown in the figure. However, when the target material is modeled as
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elastic perfectly plastic, |s..| equals (2/36,) for a distance of 3ry to dry from the nose tip and then
gradually decreases to the assigned value of zero at the outer boundary. The penetrator nose
shape influences the rate of decay of |s..|: the plastic deformation progresses farther for the blunt
nosed penetrator and |s..| decays slowly for it as compared to the ellipsoidal nosed penetrator.
On the axial line, the Bernoulli equation in terms of non-dimensional variables and as modified
by Tate [17], [18] is

(35}

(SN

1
?'I-I'-R::—G"f.::ps-f‘

where R, accounts for the strength of the target material, and ¢i. and p® are the values of 6., and
pat the stagnation point. Having computed 7. and knowing «, we can find R,. For the three nose
shapes considered. the least squares fit to the computed values of R, for different values of « gives
the following:

R, =748 — 0.020%, (r,ro) = 0.2. (36.1)
R, =786 —00182. (r,7) = LO, (36.2)
R.=792—0024%, (r,ro) =20, (36.3)

for a rigid perfectly plastic target, and

R, =553 —-0027x. (r,/ro) =02, (37.1)
R, =596 - 00272, (r.ro) = L0, (37.2)
R, =583 —0.032x%, (r,/ro) = 2.0, (37.3)

for an elastic perfectly plastic target. In either case the dependence of R, upon z is very weak and
this explains why the assumption of constant R, in simpler theories of penetration gives good
results. Tate [19] has proposed that

2 2E,
R=—+In|—], 38
B (300) 58)
where E, is Young’s modulus of the target material. Thus for values of G and 4, taken herein,
2 2 /3 x27 % 10°
R =- —|——————1] =573 39
' 3““(3(0.34“09 )) i

which is close to the values computed for the elastic perfectly plastic target. Recalling that
P’ = Pma, it is interesting to note that the slope of the least squares fit to the p,,,. vs. # data is close
to 0.5 as it should be if Eq. (35) were to hold.

As is transparent from Fig. 9 the stress state at target particles far away from the
target/penetrator interface lies inside the surface defined by

D
tr(s?) = —. (40)
3
This is certainly true of points on the boundary surface EFA where s = 0 is prescribed. The
constitutive assumptions (4)—(6) tacitly assume that each target particle is deforming elastically
and plasticaily. However. points where ||s| is small are undergoing negligible plastic deforma-
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Distance from the nose lip

Fig. 10. Elastic-plastic boundary for
three different nosc shapes, and « = 10

R—Coord.

tions. Here we classify points for which the stress state satisfies the condition (40) as deforming
plastically and those for which the stress state lies inside the surface (40) as deforming elastically.
The elastic plastic boundary computed by using thiscriterion and obtained by joining points that
are deforming plastically by straight line segments is depicted in Fig. 10.These curves suggest that
less of the material ahead of the penetrator nose tip and to the sides of the rigid rod is deformed
plastically for the ellipsoidal nosed penetrator as compared to the other two nose shapes
considered. The distance of the elastic-plastic boundary from the penetrator nose tip is found to
be 54, 6.8, and 7.7, respectively, according as the penetrator nose shape is ellipsoidal,
hemispherical or blunt. Tate [19] presumed that a material particle was deforming either
elastically or plastically and based on his solenoid flow model he found the axial distance of the
elastic-plastic boundary from the stagnation point to be 6.71, which compares well with our
computed values. The computed results, not plotted herein, show that ahead of the penetrator
the elastic-plastic boundary does not advance much when « is increased from 6 to 10 for the
hemispherical and blunt nosed penetrator but does move appreciably for the ellipsoidal nosed
penetrator. As scon as a material particle goes past the nose periphery, stresses on it are relieved
and the stress state for it lies inside the surface defined by (40).

A measure of the deformation of a material particle is the value of the effective strain &.
defined as

1 12
C=<; tr Dl) =1 (4”

at that point. For a steady state penetration problem Tate [20] has described a method to
compute different components of the finite strain tensor from a knowledge of the velocity field.
He showed that contours of the circumferential strain are approximately parallel to the crater
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Z.-Coordinate

Fig. 11. Contours of the effective strain in
the deforming target region for a blunt
nosed penetrator, and x = 10

R-Coordinate

surface and that the circumferential strain at a point distance a little more than one radius from
the crater tip equals 5%. Because of the steady state deformations, we write Eq. (41) as

(r-grad)e =1 ' (42)

and first compute I from the velocity field, and then find ¢ as a solution of Eq. (42) with the
boundary condition & = 0 on EF A. These contours basically look alike for the three nose shapes.
and are shown in Fig. 11 only for the blunt nosed penetrator. The contours of & suggest that
severe deformations propagate farther to the side than ahead of the penetrator nose, The peak
values of & occur at target particles near the target penetrator interface and equal 100%. We
recall that no failure or fracture criterion is included in our work. Thus a material point can
undergo an unlimited amount of deformation. As expected. the strain gradients are high at points
near the target/penetrator interface and rapidly decay as one moves away from this interface.
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5 Conclusions

We have analyzed the steady state axisymmetric deformations of an elastic perfectly plastic target
being penetrated by a fast moving rigid cylindrical rod. Three different nose shapes. ie.
ellipsoidal. hemispherical. and blunt are considered. For each nose shape the effect of the
penetration speed upon the deformations of the target is investigated. The consideration of
elastic effects necessitates that the problem be analyzed by using a mixed formulation in which
both velocities and stresses at a node point are taken as unknowns.

The peak hydrostatic pressure at the stagnation point is lower when elastic effects are
included than when they are not. Also. the axial resisting force experienced by the penetrator is
found to be lower when the target material is modeled as elastic perfzctly plastic than when itis
modeled as rigid perfectly plastic. In either case. the axial force depends upon the non-
dimensional parameter x very weakly. Similarly the strength parameter appeuaring in the
modified Bernoulli equation is found to be essentially independent of . and the computed value
is close to that given by Tate. For the blunt nosed penetrator. plastic deformations spread farther
ahead of the penetrator nose as well as to its sides as compared to those when the penetrator nose
is ellipsoidal or hemispherical. The distance of the elastic-plastic boundary from the penetrator
nose tip along the axis of symmetry is found to compare well with that estimated by Tate.

Appendix

One of the problems analyzed in order to establish the validity of ihe finite element code
developed is the following hypothetical problem. Consider the flow of a homogeneous and
incompressible Navier-Stokes fluid of unit mass density and unit viscosity. The flow is governed

by equations obtained f[rom Eqs. 11) through (8) when o = L. a,, | 3= omitting Eq. (4y and
adding the body force vector to the left-hand side of Eq. 12). These equations have the solution

t,mrl—-r), v,m=n2=3n, p=:, Al
Gm3enl—rl =2 g.ml=3zr+3Al—n+22=23", 1A2)

——— ey —————

MM 1111

I | L | |

IR

IR R TS

IR

HUHE S O .

T

;LLU i ; ! i 1 { | ‘ Fig. ‘\‘I. The fimite ¢clement mc~h used for the test
-] L i ¢ problem
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Table A ). Comparison of analytical and numerical solution. The good agreement between the compuied
and analytical values of r,. .. and p 2stablishes the validity of the code

Point Analytical values Computed values Point Analytical Cumputed
. value vilue
r, r, r, v, -p -r
N 01875 0.3125 11890 03116 1 03125 0.3311
P 0.2500 0.12%0 0.2504 01250 X 03324 03115
Q 0.2500 .0.2200 0.2502 0.2500 3 04375 04329
R 0.2500 0.3750 0.2501 0.37%0 3 04375 04318
s 0.1§7$ -0.1875 01875 ~0.1478 s 0.6875 0.7032
T 0.1878 09378 04876 09374 6 0.6875 0.6819

where ¢, and r, are. respectively. the radial and axial components of the velocity, and g, and
. ¢qual the radial and axial components of the body fotce per unit mass.

The finite element mesh used to compute the solution 1s shown in Fig. A 1. On surfaces 48.
BC.and CD. both r, and v, as given by Eq. tA 1) were prescribed. on the surface AD. v, and the
normal traction. equal to a... were speaified. In this case. the specification of the state of stress at
the entrance region was not needed. In Table A 1. we have listed the converged computed results
and the values from the analvtical solution (A 1) at various points in the domain. Recall that the
pressure field is assumed to be constant within an element: this value is ussigned to the centroid of
the element. The pressure ficld at other points is intei polated from its values at the centrowds of
the elements.
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STEADY STATE AXISYMMETRIC DEFORMATIONS OF A
THICK ELASTIC-THERMOVISCOPLASTIC TARGET

R. JAYACHANDRAN and R. C. BATRA

Department of Mechanical and Aerospace Engineenng and Engineering Mechanics, University of
Missouri-Rolla. Rolla, MO 65401-0249, U.S.A.

Abstract—We study thermomechanical deformations of a thick elastic-viscoplastic target being
penetrated by a rigid lcng cylindrical rod. and assume that target deformations as seen by an observer
situated at the penctrator nose tip are steady. We presume that the target response can be adequately
modeled by the Brown-Kim-Anand flow rule. We analyze the effect of different matenal parameters
on the deformations of the target in order to elucidate theu relative importance, and hence enumerate
more critical ones. We also study the effect of the penetrator nose shape and the penetrator speed on
the deformations of the target.

INTRODUCTION

One of the unresolved issues in penetraticn mechanics as well as in large deformation
elastoplasticity is the choice of an appropriate constitutive relation used to model the finite
plastic deformations of a material. Many of the recently proposed theories (e.g. {1-4]) of large
deformation elastoplasticity are based on different kinematic assumptions and necessitate the
hypothesizing of constitutive relations for variables that are not simply related to each other.
Here we use one such theory, namely that due to Brown-Kim-Anand (hereafter referred to as
BKA) [4], and study in detail the effect of varying the material parameters in it on the
deformations of the target. This should help identify the critical parameters in the constitutive
relation, at least for the penetration problem. A similar study was conducted earlier (5, 6] for
the Litonski~Batra and the Bodner-Partom flow rules.

We refer the reader to review articles by Backman and Goldsmith (7], Wright and Frank (8],
Wright {9], and Anderson and Bodner [10]} for a review and discussion of most of the work
done on ballistic penetration. Different engineering models have been proposed by Awerbuch
(11], Awerbuch and Bodner [12], Ravid and Bodner [13]. Ravid et al. [14], Forrestal et al. {15],
ard Batra and Chen [16}. For impact velocities in the range of 0.5-10 km/s. Birkhoff er al. [17],
Pack and Evans [18], Allen and Rogers [19], Alekseevskii [20). and Tate (21) have proposed
using the Bernoulli equation or its modification to analyze the impact phenomenon. The last
three references introduced a resistive pressure, dependent upon the material strength, in the
Bernoulli equation. Tate [22-24), Pidsley {25]. Batra and Gobinath [26], Batra and Chen (16},
and Jayachandran and Batra [27] have estimated the value of the resistive pressure. Whereas
Tate used a solenoid fluid flow model of the steady state penetration process, other
investigations used a numerical solution of the problem. Both Pidsley [25] and Wright [9] have
pointed out that the transverse gradients of the shear stress evaluated on the axial line make
noticeable contributions to the resistive pressure terms in the modified Bernoulli equation. The
books by Zukas et al. (28], Blazynski [29], and Macauley [30] may be consulted for the
available literature on ballistic penetration.

FORMULATION OF THE PROBLEM

With respect to a cylindrical coordinate system with origin at the center of the penetrator
nose and pasitive z-axis pointing into the target, equations governing the target deformations
are:

Balance of mass:
divv= 0, . N
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