PL-TR-92-2217

ON THE DYNAMICS OF SPACE PLASMAS

Jay Albert
Chung Chan
Michael B. Silevitch
Elena Villalón

Northeastern University
360 Huntington Avenue
Boston, Massachusetts 02115

01 September 1992

Final Report
06 March 1989 - 01 September 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PHILLIPS LABORATORY
Directorate of Geophysics
AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-5000

"This technical report has been reviewed and is approved for publication."

WILLIAM J. BURKE
Contract Manager

NELSON C. MAYNARD Branch Chief

This report has been reviewed by the ESC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/TSI, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

Table of Contents

Introduction

Description of Research

A) An examination of stochastic electron acceleration mechanisms in the ionosphere and the resulting dynamics of magnetospheric (i.e., Radiation Belt) particles and waves.
B) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere-ionosphere auroral arc system.
C) An experimental investigation of the wake signatures created by a solid body immersed in a flowing plasma.

Publications

(1) W.J. Burke, E. Villalón, P.L. Rothwell and M.B. Silevitch, "Some Consequences of Intense Electromagnetic Wave Injection into Space Plasmas". Space Technology Plasma Issues in 2001. JPL Publications 86-49, 213 (NASA JET Propulsion Laboratory, California Institute of Technology), 1 October 1986.
(2) E. Villalón and W.J. Burke, "Relativistic Particle Acceleration by Obliquely Propagating Electromagnetic Fields". Physics of Fluids, 30, 3695, 1987.
(3) W.J. Burke, G.P. Ginet, E. Villalón and M.A. Heinemann, "Electron Acceleration in the Ionosphere by Obliquely Propagating Electromagnetic Waves". Journal of Geomagnetism and Geoelectricity, 40, 1147, 1988.
(4) M.B. Silevitch, P.L. Rothwell and E. Villalón, "Active Control and Nonlinear Feedback Instabilities in the Earth's Radiation Belts". Proceedings of the Twenty-Seventh Plenary Meeting of the Committee on Space Research, Cospar, Finland, 1988.
(5) E. Villalón, M.B. Silevitch, W.J. Burke and P.L. Rothwell, "Gyroresonant Interaction of Energetic Trapped Electrons and Protons". 1989 Cambridge

Workshop in Theoretical Geoplasma Physics (SPI Conference Proceedings and

 Reprint Series by Scientific Publishers, Inc.), Volume 9, 1989.(6) E. Villalon, "Ionospheric Electron Acceleration by Electromagnetic Waves near Regions of Plasma Resonances". Journal of Geophysical Research, 94, No. A3, 2717, 1989.
(7) D.A. Hardy, W.J. Burke and E. Villalón, "Electron Dispersion Events in the Morningside Auroral Zone and their Relationship to VLF Emissions". Journal of Geophysical Research, 95, 6451, 1990.
(8) E. Villalón, W.J. Burke, P.L. Rothwell and M.B. Silevitch, "Quasilinear Wave-
Particle Interactions in the Earth's Radiation Belts". Journal of Geophysical
(8) E. Villalón, W.J. Burke, P.L. Rothwell and M.B. Silevitch, "Quasilinear Wave-
Particle Interactions in the Earth's Radiation Belts". Journal of Geophysical Research, 94, 15243, 1989.
(9) W.J. Burke and E. Villalón, "Ionospheric Heating for Radiation Belt Control",
(9) W.J. Burke and E. Vilaion, "Ionospheric Heating for Radiation Beit Contro", Norway, 1990.
(10) E. Villalón, "Cyclotron Resonance Absorption in Ionospheric Plasma". Journal of Geophysical Research, 96, 5819, 1991.
(11) E. Villalón and W.J. Burke, "Near Equatorial Pitch-Angle Diffusion of Energetic Electrons by Oblique Whistler Waves". Journal of Geophysical Research, 96, 9655, 1991.
(12) E. Villalon and W.J. Burke, "Proton-Whistler Interactions in the Radiation
Belts", in III Potsdam - V Kiev International Workshop on Nonlinear Processes
(12) E. Villalon and W.J. Burke, "Proton-Whistler Interactions in the Radiation
Belts", in III Potsdam - V Kiev International Workshop on Nonlinear Processes in Physics, Clarkson University, Potsdam, New York, NY 1991.
(13) E. Villalón and W.J. Burke, "Whistler Interactions with Energetic Protons", 1991 Cambridge Workshop in Theoretical Geoplasma Physics (SPI Conference Proceedings and Reprint Series by Scientific Publishers, Inc.), Volume 11, 1991.
(14) G.P. Ginet and J.M. Albert, "Test particle motion in the cyclotron resonance regime". Phys. Fluids B 3 (11), 2994, November 1991.
(15) P.L. Rothwell, M.B. Silevitch, L.P. Block and C-G Fälthammar, "The Substorm Onset and Magnetosphere-Ionosphere Coupling", Physics of Space Plasmas (SPI Conference Proceedings and Reprint Series by Scientific Publishers, Inc.), Number 10, 1990.
(16) P.L. Rothwell, M.B. Silevitch, L.P. Block and C-G Fälthammar, "Prebreakup

Arcs: A Comparison between Theory and Experiment". Journal of Geophysical Research, 96, 13967, 1991.
(17) P.L. Rothwell, M.B. Silevitch, L.P. Block and C-G Fälthammar, "Acceleration
(17) P.L. Rothwell, M.B. Silevitch, L.P. Block and C-G Falthammar, "Acceleration
and Stochastic Heating of Ions Drifting through an Auroral Arc". Journal of Geophysical Research, In Press, 1992.
(1992.
(18) M.A. Morgan, C. Chan, D.L. Cooke and M.F. Tautz, "The Dynamics of Charged Particles in the Near Wake of a Very Negatively Charged Body Laboratory Experiment and Numerical Simulation". IEEE Transactions on Plasma Science, 17, April 1989.

Introduction

This document is a final report describing the research activities performed under the contract F 19628-89-K-0014, "On the Dynamics of Space Plasmas". The research was focused into three related areas. These were:
A) An examination of stochastic electron acceleration mechanisms in the ionosphere and the resulting dynamics of magnetospheric (i.e., Radiation Belt) particles and waves.
B) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere-ionosphere auroral arc system.
C) An experimental investigation of the wake signatures created by a solid body immersed in a flowing plasma.

In the next section we present a more detailed description of the three research areas. Following that is a list of the refereed publications which resulted from the research investigations. Copies of the publications themselves are then added.

Description of Research

In this section we present a more detailed synopsis of the research areas which were investigated during the period of the contract.
A) An examination of stochastic electron acceleration mechanisms in the ionosphere and the resulting dynamics of magnetospheric (i.e., Radiation Belt) particles and waves.

In this area we have studied the following problems:
(1) The interaction of high frequency electromagnetic waves (EM) with plasma particles in a constant magnetic field. This theory is of interest to ionospheric modification research. The EM waves can be radiated from the ground and will propagate in the ionosphere. They interact with the ambient electrons and may accelerate them to high energies. We have published three papers in scientific journals and two articles in conference proceedings.
(2) The mode conversion of EM waves into electrostatic (ES) cyclotron waves in the ionosphere. We consider an inhomogeneous plasma and wave frequencies in the range $\Omega_{e} \leq \omega \leq 2 \Omega_{e}$, where Ω_{e} is the electron gyrofrequency. By using a WKB analysis of the wave equation in a warm plasma we estimate the erergy transmission coefficients and
power absorbed by the ES waves. We have published two papers containing this theory: The radio window idea of mode conversion into ES waves has been tested in the HIPASUCLA facility in Alaska. The electrostatic waves can interact very efficiently with the ambient plasma producing density cavities and acceleration of electrons to high energies.
(3) The interaction of electrons and YLF waves in the Radiation Belts. The interaction of electrons and whistler waves near the equator inside the plasmasphere is investigated by using quasilinear theory. The waves propagate at arbitrary angles with respect to the inhomogeneous geomagnetic field. The cyclotron instability is due to the resonance interaction of waves and particles at multiple harmonics of the cyclotron frequency. The magnetosphere can be treated as a gigantic maser whose mirrors are the ionospheric regions and the earth's surface in the conjugate hemispheres. The waves' amplitudes grow to large values due to interactions with the energetic particles, which anisotropic velocity distributions provide the free source of energy. It is also a mechanism for the removal of energetic electrons, which are precipitated into the ionosphere and lost from the trap. This theory is of interest to active magnetospheric experiments such as CRRES which can test the efficiency of wave particle interactions in the Radiation Belts. We have published three articles in scientific journals and three in conference proceedings.
(4) The interaction of protons and whistler waves in the equatorial regions of the magnetosphere. Experiments performed by U.S. and Russian scientists [H.C. Koons, Journal Geophysics Research, 82, 1163, 1977; R.A. Kovrazhkin, et al., JETP Lett., 39, 228, 1984], have shown that protons can precipitate from the Radiation Belts as a result of their interaction with VLF waves. The waves are launched from satellites and have frequencies which are close to the equatorial electron gyrofrequency. Waves and particles can interact through multiple harmonics of the proton gyrofrequency in the inhomogeneous geomagnetic field. For protons that satisfy the second order resonance condition the change in pitch-angle can be very large which will precipitate them into the ionosphere. We have published two articles in conference proceedings and are in the process of preparing a paper to be submitted to a major journal.
(5) The development of a relativistic Hamiltonian formalism of magnetospheric wave particle interactions including background inhomogeneities. We are also studying wave-particle interactions in the Earth's magnetosphere, and particularly have in mind protons and VLF waves, motivated by observed precipitation of protons by VLF waves near the electron cyclotron frequency [Kovrazhkin, et al., JETP Lett., 39, 228, 1984]. An important application is the upcoming WISP (Waves in Space) experiment. Previous work [Ginet and Albert, Phys. Fluids, B3, 2994, 1991] reduced the resonant test particle problem to one dimension in resonance-averaged canonical variables, for the
approximation of a constant background geomagnetic field \mathbf{B}_{0}. We are generalizing this to realistic, slow varying \mathbf{B}_{0}, which is especially crucial in the paradigm of Shklyar [Planet. Space Sci. 34, 1091, 1986], who gives a schematic theory of nonrelativistic proton pitch-angle scattering by a perfectly ducted electrostatic wave. The resonance function, $\omega-k_{1} v_{z}-\ell \Omega$, is a function of distance along the field line, so that many isolated resonances occur. It is important to study the result of a resonant interaction as the particle enters and leaves the resonant region. The work of Ginet and Albert, among others, shows that the behavior depends strongly on the degree of tuning of the resonance.

We have extended the relativistic, electromagnetic Hamiltonian formalism of Ginet and Albert to account for local background inhomogeneity. The price is an additional degree of freedom in the description, which can no longer be reduced to an autonomous (timeindependent) pair of equations of resonant motion. The analytic solutions of the homogeneous case no longer hold exactly, and can only be used as guides. Nevertheless, resonance averaging is still fruitful, yielding a non-autonomous pair of equations (with distance along the field line replacing time). This is accomplished by exploiting several constants of the motion, which can be found explicitly to lowest and first order in the wave amplitude, or exactly if an iteration method is used to solve a certain implicit equation. This set is much easier to solve numerically than the full set, and allow greater insight and possibilities for approximate analytic solutions as well.

For comparison, two codes with six degrees of freedom (plus time) have been written to follow the exact behavior of test particles with a quite general specified electromagnetic wave, one for a dipole magnetic field and one for a slab approximation. Both codes use a Hamiltonian description to allow direct comparison with the theoretical treatment. Both use scalar functions to specify the vector potential of the magnetic fields, and so satisfy the Maxwell equation $\nabla \bullet B=0$ exactly. In the case of the dipole field, the canonical coordinates of the Hamiltonian are also dipole coordinates. The slab geometry code allows for arbitrary values of the inhomogeneity, including zero, which permits testing of theoretical ideas in a clear and simple way. We have also generated parameters for which the paradigm of Shklyar [Planet Space Sci. 34, 1091, 1986] of many isolated ℓ resonances seems to be valid. It is not necessary to carefully tune the particle initial conditions to achieve resonance; the simulated particle "finds" resonances it encounters along its path.

We have seen very interesting behavior of the phase angle near resonance. Shklyar assumed that the value of this angle at exact resonance, which controls the sign and value of the jumps in action, would be randomly and uniformly distributed between 0 and 2π, and used this assumption to generate diffusion coefficients. We see instead that this angle takes on values only in a range of width π, and preferentially close to the angle of the x-point. This gives the jumps in action a systematic direction, determined by the resonance number and other parameters, which greatly affects the cumulative influence
of many resonance crossings. Numerical results from both the resonance-averaged and exact numerical simulations support the following scenario: most of the time, the particle trajectory closely follows the contours of the instantaneous Hamiltonian (which would be exact streamlines in a homogeneous B field), while the separatrix between streaming and phase-trapped motion drifts slowly towards the particle. However, near the x-point of this separatrix, even slow drifting has a large effect because it allows the particle to cross the opposite side of the island enclosed by the separatrix, so that there is a net increase in the action variable of roughly the island width (which is proportional to $\epsilon^{1 /}$). Once the drifting has taken the island past the particle, the motion is again guided by H -contours.

These qualitative arguments, supported by estimates of the streaming and drifting rates as functions of distance from the island, explain much of the behavior observed: the localization and magnitude of the jumps in action (and therefore energy and pitch angle) near resonances, and also the systematic direction of these jumps. Jumps that tend to be in the same direction will have a much larger cumulative effect than jumps that occur in a random walk fashion. This work has been presented at the 1992 AGU Spring Meeting [EOS 73, 253, 1992].

Work is also in progress on a three-dimensional particle-in-cell code for the Echo series of beam-in-space experiments. The design features cylindrical geometry and open radial boundary conditions. The electrostatic field solver is at a mature stage; the next issues are efficient charge-to-grid assignment (scatter of information) and grid-to-particle interpolation (gather) as w as time advancement. We are also considering incorporating the kernel of the field solver in a two-dimensional version of the code, which would be a relatively quick and useful took for exploring the qualitative dynamics.
B) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere-ionosphere auroral arc system.

In this area we have developed a model describing the structure of a prebreakup arc based on an ionospheric Cowling channel and its extension into the magnetosphere. A coupled two-circuit representation of the substorm current wedge is used which is locally superimposed on both westward and eastward electrojets. We find that brighter, more unstable prebreakup arcs are formed in the premidnight (southwest of the Harang Discontinuity) than in the postmidnight (northeast of the Harang Discontinuity) sector. This contributes to the observed prevalence of auroral activity in the premidnight sector. Also, our model predicts that the north-south dimensions of the current wedge in the ionosphere should vary from a few kilometers at an invariant latitude (Λ) of 62° to hundreds of kilometers above $\Lambda=68^{\circ}$. Comparison of the model results with the extensive observations of Marklund et al. (1983) for a specific arc observed just after onset shows good agreement, particularly for the magnitude of the polarization electric field and the arc size. We conclude that this agreement is further evidence that the
substorm breakup arises from magnetosphere-ionosphere coupling in the near magnetosphere and that the steady state model developed here is descriptive of the breakup arc before inductive effects become dominant. A more detailed description of this work is given in the paper entitled, "Prebreakup Arcs: A Comparison Between Theory and Experiment". This work is reproduced in the next section.

The theory of auroral arcs has progressed along many lines of thought: electrostatic shocks, double layers, the Alfvén wave propagation, the formation of a small wedge, and viscuous interaction of the magnetopause. In simple terms, the arc is analogous to a fountain that rises to some height at the center, spreads out at the top and then is returned over an extended area. The presence of a conductive ionosphere and the complex interaction of the associated fields and particles makes the problem very complex. A self-consistent model of an auroral arc should include a mechanism for generating the field-aligned potential drop associated with the arc and a description of how the associated currents are conserved, including ionospheric effects. In our research, we also address the additional complication that an auroral arc may not be self-contained. We find that it modifies the ion population that is EXB drifting through it. The drifting ions, on the other hand, affect the charge distribution inside the arc and, hence, the potential distribution itself. We have examined the effect of the arc on the ions in analogy with similar effects in the magnetotail.

We find that ions EXB drifting through an auroral arc can undergo transverse acceleration and stochastic heating. This result is very analogous to recent work regarding similar phenomena in the magnetotail. An analytic expression for the maximum arc width for which chaotic behavior is present is derived and numerically verified. We find, for example, that a 1.5 km thick arc at $\Lambda=65^{\circ}$ requires a minimum potential drop of 3 Kv for transverse ion acceleration and heating to occur. Thicker arcs require higher potential drops for stochasticity to occur. This mechanism could be a partial cause for ion conics. A more detailed description of this work is reported in the paper, "Acceleration and Stochastic Heating of Ions Drifting through an Auroral Arc". The paper is included in the next section of this report.
C) An experimental investigation of the wake signatures created by a solid body immersed in a flowing plasma.

In this area we have experimentally studied the formation of the wake of a conducting body in a flowing plasma similar to that encountered in Low Earth Orbit. We developed a device that produced a well-behaved plasma stream. This device allows the laboratory simulation of plasmas over a wide range of conditions (including scalable to Low Earth Orbit) with the unique ability of allowing the study of the three-dimensional plasma phenomena.

We have developed a number of diagnostics for this device that allow us to measure ion and electron currents, densities and distribution functions, in addition to measuring the space and plasma potentials inside the device. Electron and ion currents are measured with the aid of collecting Langmuir probes while the particle distribution functions are ascertained with the aid of retarding potential analyzers. Space and plasma potentials are measured with a differential emissive probe operating in the limit of zero emission for a minimal perturbation of the plasma. All diagnostics were optimized for low density, fast time response measurements (frequency response $=1 \mathrm{MHz}$) and wel designed to minimize the perturbation of the quantities being measured.

We have performed considerable work in studying the physics of wake and ram formation, current collection of biased objects in the wake of the objects, and the problem of secondary electron emission from biased objects in the plasma environment. Our experimental results have been used to verify the prediction of various computer models, including SIMION, MACH, and POLAR.

The study of wake and ram phenomena is important for a number of reasons. The ram and wake regions itself can be a source of noise due to instabilities being driven by the density and potential gradients at the wake-flowing plasma interface. Objects placed in the ion-free wake region can experience considerable charging problems due to the collection of electrons. Since there are no ions in the wake region to neutralize the charge collected from the electrons, the object may charge to a considerable voltage. This is especially true for an object in polar orbit, where high energy electrons precipitating down along magnetic field lines may induce charging of several thousand volts for large structures.

We have investigated the current collection of biased objects in the wake region of a conducting body. The experiments were performed in the JUMBO vacuum chamber (1.7 m long and 1.7 m diameter) at GL. For these experiments a 1 cm diameter biasable sphere was placed on axis 5 cm downstream from a 10 cm diameter grounded disk. The sphere was biasable to a potential of $\pm 5000 \mathrm{~V}$ and the current collected by the sphere was measured as a function of the voltage applicd to the sphere. For positive bias voltages applied to the sphere current is collected as electrons are drawn into the sphere. It is observed that for low negative bias voltages there is no current colle ted by the object which is in the ion-free wake region. As the negative bias voltage is increased, there is a sharp turn-on of the current collected by the object as it draws ions into the wake region. The bias voltage at which this current turn-on occurs is dependent on a number of factors, e.g., the angular momentum of the flowing ions at a given sheath electric field. As the beam energy is increased the turn-on voltage also increases. This is to be expected since, for higher energies, it is more difficult to deflect the ions enough to be collected by the sphere.

We have also compared the measured current-voltage characteristics of a biased sphere in a wake with the predictions of a number of computer codes. For the simplest model we have used the particle trajectory code, SIMION. When the measured potential profiles are entered into SIMION and the particle trajectories are followed, the code predicts the dependence of the current turn-on voltage with beam energy, distance from the conducting body to the biased object, and the magnetic field. The code cannot, however, predict the magnitude of the current collected or solve for the potential profiles. In addition to the study of current collection, SIMION has been used to study the dynamics of wake formation. By entering the measured potential profiles this code is able to predict the size of the wake region and also predicts the important features of the mid-wake region, such as on-axis density enhancement. This code has been invaluable in the design of the advanced plasma detector. Since the detector operates at low plasma densities, the inability of the code to include space charge effects is not an issue. The code is in remarkable agreement with experimental data from laboratory tests of prototype detectors.

We have found that the MACH simulation results consistently give a wider contour for the ion sheath of the biased sphere in the wake than was measured in the experiment under almost identical conditions, although both simulation and laboratory data give a sheath dimension consistent with the Langmuir-Blodgett spherical sheath model. The difference may be due to a slight enhancement of scattering of ions into the wake region by charge exchange (although the charge exchange length is longer than the device) or some type of plasma oscillations. However, it is extremely time consuming to solve the current collection problem using computer simulations because MACH is a backwards tracking code where particles are launched from their collection point and tracked to their source. Due to this, the code has difficulty in converging.

Into Space Plasmas
By
William J. Burke ${ }^{1}$, Elena Villalon ${ }^{2}$, Paul L. Rothwell ${ }^{1}$, and Michael Silevitch ${ }^{2}$

1 Introduction

The past decade has been marked by an increasing interest in performing active experiments in space. These experiments involve the artificial injecions of beams, chemicals, or waves into the space environment. Properly diagnosed, these experiments can be used to validate our understanding of plasma processes, in the absence of wall effects. Sometimes they even lead to practical results. For example, the plasma-beam device on SCATHA became the protolype of an automatic device now avallable for controlling spacecraft charging at geostationary orbit.

In this paper we discuss the future possibility of actively testing our current understanding of how energetic particles way be accelerated in space or dumped from the radiation belts using intense electromagnetic energy from ground based antennas. The ground source of radiation is merely a convenience. A space station source for radiation that does not have to pass through the atmosphere and lower ionosphere, is an attractive alternative. The text is divided into two main sections addressing the possibilities of (1) accelerating electrons to fill selected flux tubes above the Kennel-petscheck limit for stably trapped fluxes and (2) using an Alfven maser to cause rapid depletion of energetic protons or electrons from the radiation belts. Particle acceleration by electrostatic waves have received a great deal of attention over the last few years (Wong et al., 1981; Katsouleas and Dawson, 1983). However, much less is known about acceleration using electromagnetic waves. The work described herein is still in evolution. We only justify its presentacion at this symposium based on the novelty of the ideas in the context of space plasma physics and the excitement they have generated among several groups as major new directions for research in the remaining years of this century.

1. Air Force Geophysics Laboratory, Hanscom AFB, MA 01731
2. Center for Electromagnetic Research, Northeastern University, Boston, MA 02115

One of the first things we were mistaught in under graduate physics 1 s that electromagnetic (em) waves can't accelerate charged particles. If the particip gains energy in the first half cycle, it loses it in the second half. Teachers are, of course, clever people who want graduate students. So they hold of discussing gytoresonance, in which case, all bets are of f. The resonance condition is:
(1)

$$
\omega-k_{z} v_{z}-n \Omega_{0}^{\prime} Y=0
$$

Here ω is the frequency of the driving wave, k_{z} the component of the wave vector along the zero order wagnetic field $\underline{B}_{0}=B_{0} \hat{z}, v_{z}$ the particle's component of velocity along B_{0} and n is an integer representing an harmonic of the gyrofrequency $n_{0}=9 B_{o} / m_{1} \quad Y$ is the relativistic correction $\left(1-v^{2} / c^{2}\right)^{-1 / 2}$, q is the charge, and m the rest wass of the electron.

Before going into a detatled mathematical analysis it is obvious that there are going to be problems accelerating cold 1 onospheric electrons to high energies. Higher than first gyroharmonics will have Bessel function multipliers where the argument of the Bessel function is the perpendicular component of the wave vector and the gyroradius. For cold electrons with small gyroradii, all but the zero index Bessel function terms will be stoall. The second concern can be understood by considering the motion of a charged particle in a circularly polarized wave. Roberts and Buchsbaum (1964) have shown that with an electron in gyroresonance according to eq.(1) and v initially antiparallel to thr wave electric field E and perpendicular to the wave magnetic fleld B, two effects combine to drive it away from resonance. As the electric field accelerates the electron, Y increases, changing the gyrofrequency. The magnetic component of the wave changes v_{z} and thus, the Doppler shift term. It is only in the case of the index of refraction $n=c k / \omega=1$ that unrestricted acceleration occurs. In all other cases the electron goes through cycles gaining and losing kinetic energy.

Recently, the SAIC group (Menyuk et al. 1986) has devised a conceptually simple way to understand acceleration by em waves as a stochastic process. In terms of the relativistic momenta p_{z} and p_{\perp}, eq.(1) can be rewritten as

$$
p_{1}^{2}=\left(n^{2}-1\right) p_{z}^{2}+2 n_{z} p_{z} m c\left(n \Omega_{0} / \omega\right)+\left(\left(n \Omega_{0} / \omega\right)^{2}-1\right) m c^{2}
$$

Depending on the phase velocity of the waves, equation (2) represents a fanily of ellipses ($n_{z}=c k_{2} / \omega<1$), hyperbolae ($n_{z}>1$) and parabolae $\left(n_{z}=1\right)$ in ap1, p_{z} phase space. The zero order Hanilitonian can also be witcen in the form

$$
\begin{equation*}
H_{0} / m c^{2}-\left[1+\left(p_{2} / m c\right)^{2}+\left(p_{1} / m c\right)^{2}\right]^{1 / 2}-\left(r_{z} / m c\right)\left(\omega / c k_{z}\right) \tag{2}
\end{equation*}
$$

Thus, in p, p_{z} space constant Hamiltonian surfaces represent families of hyperbolae $\left(n_{z}<1\right)$ ellipses $\left(n_{z}>1\right)$ and parabolae $\left(\eta_{2}=1\right)$. Hamiltonian surfaces have open topologies for indices of refraction $\eta_{z} \leqslant 1$. The case $r_{z}=1$ in which resonance and Hanilconian surfaces are overlying parabolae is that of unlimited acceleration studied by Roberts and Buschbaum (1964).*

In the case of anall anplitude waves the intersections of resonance and Hamilionian surfaces in $p 1$. P_{2} space are very sharp. As the amplitudes of the waves grow so too do the widths of resonance. For sufficiently large amplitudes, resonance widths may extend down to low kinetic energies allowing cold electrons to be stochastically accelerated to relativistic energies.

It should be pointed out that although this wodel heuristically explains the main conceptual reasons for stochastic acceleration to occur, its validity extends only to small angles θ becween k and \underline{B}_{0}. At large angles, it is not clear that the zero-order Hamiltonian topologies described above will still hold.

Over the past several months we have developed a rigorous extension of the analytical model of Roberts and Buchsbaw by letting $k=k_{x} \widehat{x}+k_{z} \widehat{z}$ assume an arbitrary angle to \underline{B}_{0}. We begin with the Lorentz equation.

$$
\begin{equation*}
\frac{d p}{d t}=q\left[\underline{E}+\underline{v} \times\left(\underline{B_{0}}+\underline{B}\right)\right] \tag{3}
\end{equation*}
$$

The relativistic momentum and Hamiltonian are given by $p=m \quad Y \quad v \quad$ and $H=\mathrm{ac}^{2} \gamma$, respectively. The magnetic field of the wave B is related to the electric E chrough Maxwell's equation $\underline{B}=(\underline{c} / \omega) \underline{k} \underset{E}{E}$. The time rate of change of the Hamiltonian is

$$
\begin{equation*}
\dot{H}=q \underline{E} \cdot \underline{v}=q c^{2} \underline{E} \cdot \underline{p} / H \tag{4}
\end{equation*}
$$

If we define $E_{x}=E_{1} \cos \phi, E_{y}=-E_{2} \sin \phi$ and $E_{z}=-E_{3} \cos \phi$, where $=k_{x} x+k_{z} z-\omega t$ then equation (4) may be rewritten in the form

$$
\begin{equation*}
\frac{H \dot{H}}{c^{2} \omega}=\frac{q E_{1}}{\omega} P_{x} \cos \phi-\frac{q E_{2}}{\omega} P_{y} \sin \phi-\frac{q E_{3}}{\omega} p_{z} \cos \phi \tag{5}
\end{equation*}
$$

The Lorentz force equation can also be rewritien as
(6)

$$
\dot{P}_{x}+P_{y}\left[\Omega+\frac{q E_{2}}{m Y} \frac{k_{x}}{\omega} \sin \phi\right]=\frac{q E_{1}}{\omega}\left(\omega-k_{z} z\right) \cos \phi
$$

$$
\begin{equation*}
\dot{p}_{y}-p_{x}\left[\Omega+\frac{q E_{2}}{m} \frac{k_{x}}{\omega} \sin \phi\right]=-\frac{q E_{2}}{\omega}\left(\omega-k_{z} \dot{z}\right) \sin \phi \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\dot{P}_{z}-\frac{K_{z}}{\omega} \dot{H}+\frac{E_{z}}{E_{1}}\left(\dot{p}_{x}+\Omega p_{y}\right)=0 \tag{8}
\end{equation*}
$$

where $k_{2}=k_{2}\left(1+E_{3} k_{x} / \varepsilon_{1} k_{2}\right)$. Equations $(5-8)$ are exact. Our first simplification is to assure $E_{2} k_{x} / \omega=B_{2} \ll B_{0}$, then eqs. (6-8) way be combined to give
(9) $\frac{4 H H}{c^{2} \omega}=\frac{q}{\omega}\left(E_{1}+E_{2}\right) \quad\left[\int_{0}^{t} Q^{\prime} \cos \left(a+\phi-\sigma^{\prime}+\phi^{\prime}\right) d t^{\prime}+\right.$
$\left.+\int_{0}^{t} R^{\prime} \cos \left(0+\phi-0^{\prime}-\phi \prime\right) d t^{\prime}-2 p 1 \sin (0+\phi+a)\right]$
$+\frac{q}{\omega}\left(E_{1}-E_{2}\right) \ \int_{0}^{t} Q^{\prime} \cos \left(\phi-0+\sigma^{\prime}-\phi{ }^{\prime}\right) d t^{\prime}$
$\left.+\int_{0}^{t} R^{\prime} \cos \left(\phi-0+\phi^{\prime}+0{ }^{\prime}\right) d t^{\prime}+2 p 1 \sin (\phi-0-a)\right]$
$-\frac{q}{\omega} E_{3}\left(4\left(P_{20}+\frac{K_{2}}{\omega}\left(H-H_{0}\right)\right) \cos \phi\right.$
$\left.-\frac{E_{3}}{E_{1}} \int_{0}^{t}\left(Q^{\prime}+R^{\prime}\right)\left[\cos \left(\phi+\phi^{\prime}\right)+\cos \left(\phi-\phi^{\prime}\right)\right] d t^{\prime}\right]$
where $\quad \sigma(t)=\int_{0}^{t} \cap\left(t^{\prime}\right) d t^{\prime}$, t an $a \cdots-\left(p_{x o} / p_{y o}\right)$,
(the subscript o refers to the initial conditions at $t=0$), and

$$
\begin{aligned}
& Q=\frac{g E_{1}}{\omega}\left(\omega-k_{z} \dot{z}\right)-\frac{q E_{2}}{\omega}\left(\omega-k_{z} \dot{z}\right) \\
& R=\frac{g E_{1}}{\omega}\left(\omega-k_{2} \dot{z}\right)+\frac{q E_{2}}{\omega}\left(\omega-k_{2} \dot{z}\right)
\end{aligned}
$$

Primed and unprimed quantities are evaluated at times t^{\prime} and t, respectively. We note that accelerations represented in Eq. (9) are related to terms multiplying electric fields in right -hand $\left(E_{1}+E_{2}\right)$, left-hand ($E_{1}-E_{2}$) and parallel E_{3} modes.

Our next aimplification 16 to substitute for x and z in eq.(9) the zero order solutions (in the electric field amplitude) of eqs. (6-8). That 16 , we t ake $x=\rho \cos (\sigma+a)$ where $\rho=v \perp / \Omega$ is the electron gyroradius and

$$
\begin{equation*}
p_{z}=\left[p_{20}+\frac{K_{2}}{\omega}\left(H-H_{0}\right)\right] . \tag{10}
\end{equation*}
$$

We note that eq.(10) reduces to eq. (2) by taking $K_{2}=k_{2}$, which is only valid for small angles between k and B_{0}. In fact, Figure 1 shows that Hamiltonians with open (hyperbolic or parabolic) topologies in p_{z}, p, p space at small angles between \underline{k} and \underline{B}_{0} become closed (elliptical) as the angle increases. The practical implication is that cases of potentially infinite accelaration with $k=k_{z}$ become restricted to finite values at other direction of wave propagation.

By taking $x=\rho \cos (\sigma+\alpha)$ and expanding terms with $\sin k_{x} x$ and $\cos k_{x}$ in series of Bessel functions, eq. (9) becomes
(11)

$$
\begin{aligned}
& c^{2 \frac{4 \dot{H}}{\omega}}=\sum_{n} T_{n} \\
& \left.T_{n}=\frac{q_{i}}{u^{\prime}}\left(E_{1}+E_{2}\right) J_{n-1}\left(k_{x} \rho\right) \right\rvert\, \sum_{m} \int_{0}^{t}\left\{Q^{\prime} J_{m+1}^{\prime} \cos \left(n \theta+m \theta^{\prime}+\psi+\psi^{\prime}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{q}{\omega}\left(E_{1}-E_{2}\right) J_{n+1}\left(k_{x} \rho\right) \right\rvert\, \sum_{m} \int_{0}^{t}\left(Q^{\prime} J_{m+1}^{\prime} \cos \left(n \theta-m \theta \theta^{\prime}+\psi-\psi{ }^{\prime}\right)\right. \\
& \left.\left.+R^{\prime} J_{m-1} \cos (n \theta+m \theta \prime+\psi+\psi ')\right] d t^{\prime}+2 n \perp \cos (n \theta+\psi)\right\} \\
& -\frac{q E_{3}}{\omega} J_{n}\left(k_{x} \rho\right)\left\{4\left(p_{20}+\frac{K_{2}}{\omega}\left(H-H_{0}\right)\right) \cos (n \theta+\psi)\right. \\
& -\frac{E_{3}}{E_{1}} \sum_{0} \int_{0}^{t}\left(Q^{\prime}+R^{\prime}\right) J_{m}^{\prime}\left(\cos \left(n \theta+m \theta^{\prime}+\psi+\psi^{\prime}\right)\right. \\
& \left.+\cos \left(n \theta-\infty \theta^{\prime}+\psi-\psi^{\prime}\right)\right] d t^{\prime} \mid
\end{aligned}
$$

where $\theta=\int_{0}^{t} \cap\left(t^{\prime}\right) d t^{\prime}+\alpha+\pi / 2, \quad j^{\prime} \equiv J_{j}\left(k_{x} \rho^{\prime}\right),(v=m, m \pm 1)$ and $\psi=k_{z} z=\omega t$.

After averaging over the fast (gyroperiod) time dependencies and a good deal of tedious algebra, we obtain that, for each n, the particle energy obeys the following differential equation:
(12)

$$
(u+1)^{2}\left(\frac{1}{w} \frac{d U}{d t}\right)^{2}+v_{n}(u)=0
$$

where $\mathrm{U}=\left(\mathrm{H}-\mathrm{H}_{\mathrm{O}}\right) / \mathrm{H}_{\mathrm{O}}$ and

$$
\begin{aligned}
& v_{n}(U)=\frac{d_{1}}{4} U^{2}\left(U+2 r_{n} / d_{1}\right)^{2}-1(0) \sin \phi_{n} d_{1} U\left(U+2 r_{n} / d_{1}\right) \\
& +\frac{\Sigma_{1}-\Sigma_{2}}{2}\left(\left(\Sigma_{2} d_{1}-\sum_{1} h_{1}\right)\left(G_{n+1}(u)+F_{n+1}(u)\right)\right. \\
& +\left(\left[{ }_{2} d_{2} \sum_{1} h_{2}\right) F_{n+1} \text { (U) }\right] \\
& -\Sigma_{1}+L_{2} \mid\left(\Sigma_{1} h_{1}+\Sigma_{2} d_{1}\right)\left(G_{n-1}(U)+F_{n-1}(U)\right) \\
& \left.+\left(\sum_{1} h_{2}+\sum_{2} d_{2}\right) F_{n-1}(u)\right) \\
& -\sum_{3}^{2}\left|h_{1}\left(G_{n}(U)+F_{n}(U)\right)+h_{2} F_{n}(U)\right|-\left(\psi(0) \cos \phi_{n}\right)^{2} \\
& \text { where } L_{1}=-\left(q E_{1} / w\right) c / h_{0}(i=1,2,3), \quad d_{1}=1-k_{z} k_{z} c^{2} / \omega^{2} \\
& d_{2}=k_{z} k_{z} c^{2} / \omega^{2}-k_{z} z_{0} / \omega, \quad h_{1}=1+k_{z} / k_{z}\left(d_{1}-1\right) \\
& r_{n}=1-k_{2} z_{0} \omega-n \Omega_{0} d \omega, \quad h_{2}=k_{2} / k_{2} d_{2} \\
& 申(0)=v_{10} / 2 c\left[-\left(\Sigma_{1}+\sum_{2}\right) J_{n-1}\left(k_{x} \rho_{0}\right)+\left(\Sigma_{2}-\Sigma_{1}\right)\right. \\
& \left.J_{n+1}\left(k_{x} \rho \rho_{0}\right)\right]+v_{20} / c \quad\left[3 J_{n}\left(k_{x} \rho_{0}\right)\right. \text {, } \\
& \phi_{n}=n\left(a+\frac{\pi}{2}\right)+k_{z} z_{0} \\
& \text { and } \\
& G v(U)=\int_{0}^{U} J_{v}^{2}\left(k_{x} \rho\left(U^{\prime}\right)\right] u^{\prime} d U^{\prime} \\
& F v(U)=\int_{0}^{U} J_{v}^{2}\left[k_{x} p\left(U^{\prime}\right)\right] d U^{\prime},(v=n, n \pm 1) \text {. }
\end{aligned}
$$

Eq.(12) is in the form of the equations of a hamonic oscillator. Under the limic $0=0$, Eq. (12) becomes the equation derived by Robert and Buchsbaum (1964). The limits of the particles excursion in energy for agiven resonance n and electric field E can be found by secting the potentials $V_{n}(U)=0$. At wave amplitudes where the range of potentials for different harmonics overlap, we have the onset of stochasticity.

At the present time we have just begun to explore the nuerical solutions of equation (12). In Figure 2, we show some of our preliminary results. We assume that ω pel $n_{0}-0.3$, the electric field applitude is such that $\Sigma i=0.1$, and the wave frequency is $w 1.8 \Omega{ }^{\circ}$. We consider only the second cyclotron hamonic since this is the closest to satisfying the resonance condition, eq.(1), for initially cold electrons. The components of the wave electric field and the refractive index n are calculated fron che cold plasma dispersion relation for electromagnetic waves at any arbitrary angle θ to B_{0}. It turns out that η is always maller than, but very close to $1(n) 0.97)$. The maximum allowed

Fig. 1. Surfaces of zero order Hamilionians with different propagation angles to magnetic field.

Fig. 2. Range of allowed electron energy gain (shaded) as a function of wave propagation angle to magnetic field. The solid line represents waximum energy excursion for elliptical topologies.
energy gain, as given by the zero order Hamiltonian topologies, is represented by the solid lines. The shaded region represents the actual energy gain ns obtalned by requiring $V_{n}(U)<0$. We see that for $\theta=35^{\circ}$, initially cold electrons c an be accelerated to very high energies. In fact, for cold electrons we find that $U=Y-1$ and that the particle can gain as much as 2.5 Mev. As θ decreases more initial kinetic energy is required for any acceleration to take place. For large θ, the elliptical haniltonian topologies severely restrict the energy gain.

III The Alfven Maser

Active control of energetic particle fluxes in the radiation belts has maintained a continuing interest in both the United States and the Sovipt Union. Electron dumping experiments concluded by the Stanford University and Lockhect groups using VLF transmissions are well known (Inanet al. 1982, Imhof el al. 1983). Perhaps less known is a theoretical paper by Trakthengerts (1983) entitled "Alfven Hasers" in which he proposes a theoretical scheme for dumping both electrons and protons from the belts. The basic idea is to use RFenergy to heat the ionosphere at the foot of a flux tube to raise the height integrated conductivity. The conductivity is then modulated at VLf or ELf frequencieg which modulates the reflection of waves that cause pitch angle diffusion in the equatorial plane. The artifically enhanced conductivity of the ionosphere thus maintains high wave energy densities in the associated flux tube, thereby, producing a masing effect.

In addition to external ionospheric perturbations particle precipitation also raises ionospheric conductivity. The masing of the VLF waves causes further precipitation which, in principle, results in an explosive instability. The purpose of this section is to establish the basic equations and to present the results of a preliminary computer simulation.

The fundamental equations derived by Irakhtengerts (1983) are based on quasilinear theory and relate only to the weak diffusion regime. It is useful to use similar set of equations derived by Schulz (1974) based on phenomenological arguments that includes strong pitch angle diffusion. The key variables are N, the number of trapped particles per unit area on a flux tube and ε the wave intensity averaged over the flux tube. In this we assume that c is directly proportioned to the pitch angle diffusion coefficient. The time rate of change for N is

$$
\begin{equation*}
\frac{d N}{d t} \quad \frac{-A E N}{1+E . T}+S \tag{13}
\end{equation*}
$$

where the first tem represent losses due to pitch angle scattering with a a constant and S accounts for represents particle source terms in the magnetospheric equatorial plane. T is a parareter that characterizes lifetimer against strong pitch angle diffusion. The time rate of change of e is given by

$$
\begin{equation*}
\frac{d e}{d t}=\frac{\left(2 Y * N / N^{\star}\right)}{1+E T} c+\frac{V_{g} \varepsilon}{L R_{e}} \ln R+W \tag{14}
\end{equation*}
$$

The first term represents wave growth near the equatorial plane, the second term gives the wave losses in and through the fonosphere and the third accounts for any wave energy sources. The terms Y^{*} and N^{*} are used to denote the weak diffusion growth rate and column density of a flux tube at the Kennel and Petschek (1966) limit for stably trapped particles. In the second term, $\mathrm{v}_{\mathrm{g}} / \mathrm{LR}_{\mathrm{e}}$ approximates bounce frequency of waves where v_{g} is the group velocity of the wave $L R_{e}$ the approximate length of flux tube; Ris the reflection coefficient of the lonosphere. Since $R<1$ the second term is always negative. The ($1+\varepsilon T$) term empirically lowers growth rate due to the pitch angle distribution becoming more isotropic under strong diffusion conditions.

In our present study we have examined numerical solutions of equations (13) and (14) using non-equilibrium initial conditions. The first case is represented by figure 3 in which we started initial wave energy densities which are a factor of 3 (top panel) and 0.1 (bottom panel) above the KennelPetschek limit. In both cases we ignored associated enhancements in ionospheric coupling that lead to increased reflectivity. We see that the wave energy density quickly darps to the Kennel-Petschek equillbrium represented by the solld line.

In the second level of simulation the wave energy density is initially set at a factor of three above the Kennel-Petschek equilibrium value but includes a coupling factor to the ionosphere 5. We find that for values of $5 \geq 10 \%$ the oscillations become spike-like. The top panel of Figure 4 represents the normalized wave energy density for $5=10 \%$ after the waves have evolved into periodic spikes. The middle and bot tom panels of Figure 4 represent the normalized energetic particle density $\left(\mathrm{cm}^{-2}\right)$ contained on a flux tube and the normalized height integrated density of the ionosphere. Attention is directed to the phase relacionship between the maxima of the three curves. The maximum, energetic particle flux leads the wave term and goes through the KennelPetschek value as the wave growth changes from positive to negative.

Fig. 3. Example of wave energy densities initially set at factors of 3.0 and 0.1 above Kennel Petschek equilibriun value.

Fig. 4. Example of splke-like wave structures as well as energetic particle losses and fonospheric density changes with inignetosphereionosphere coupling.

Fig. S. Simulated, mormalized wave energy density with magnetosphèrefonosphere coupling. A VLF source is turned on at $t=650 \mathrm{~s}$.

The maximum lonospheric effect occurs after the wave spike maximum. Our physical interpretation of figure 4 is as follows. A spike in the wave energy density cases a depletion of electrons trapped in the belts to levels well below the Kennel-Petschek limit. The subsequent drop of precipitating electron flux allows the ionospheric conductivity to decrease. Thus, VLf waves are less strongly reflected back into the magnetosphere. This effectively ratses the Kennel-Petschek limit as higher particle fluxes are necessary to offset increased ionospheric VLF absorbtion. In the presence of equatorial sources of particles, the similations show flux levels bullding to 1.15 times the KennelPetschek limit. The enhanced fluxes in the magnetosphere, even with weak pitch angle diffusion, allows the ionospheric conductivity to rise, evencually leadieg to another wasing epike.

Figure (5) shows the effect of an external VLF signal. The first few spikes result from the masing effect of the ionosphere due to particle precipitation. At $t=650$ seconds a VlF square wave source is turned on with a 50 second duration. The spikes now are modulated at the driving frequency at a reduced amplitude. The applitude is reduced since the fluxes are more frequently dumped with the VLf signal present than in its absence.

Iversen et al. (1984) using simultaneous ground and satellite measurements, have recentiy observed the codulation of precipitating electron at pulsation frequencies. In terms of our simulations these would be close to the situation shown in figure 4 in which natural masing occurs in a flux tube. The observed frequencies are consistent with those expected from the linear theory. Detalled comparison with experimental data necessitates knowing the efficiency with which VLF waves reach the lonosphere.

IV Conclusion

Although the work presented in this paper is still in a very preliminary stage of development it appears that significant space effects can be produced by the injection of intense electrowagnetic waves into ionospheric plasmas. In the coming wonths we expect that as calculations mature we will grow in the ability to translate watheratical representation into physical understanding. If the results of our analyses live up to early promise then a series of groundbased wave emission experiments will be developed to measure injection effects in space. The upcoming ECHO-7 experiment presents a well instrumented target of opportunity for electron acceleration experiments with the HIPAS system. After the launch of the CRRES satellite it will be possible to make simultaneous in situ measurements of wave and particle fluxes in artificially excited alfven Masers. Looking forward to the 1990's it appears that WISP experiment planned. for the Space Station will make an ideal source for both electron acceleration and radiation belt depletion experiments. Recently a Soviet experiment measured electrons accelerated to kilovolt energies using a low power telemetry system (Babaev et al., 1983). Just imagine what could be done with the specifically designed, high power WISP!

Babnev, A.P., S.B. Lyakhov, G.G. Managadze, A. A. Martinson and P. P. Timofeev, Plama particle acceleration due to emission of ground-based and onboard transmitters, in Active Experiments in Space, ESA SP-195 61-65, 1983.

Imhof, W.L., J.B. Reagan, !l.D. Voss, E.E. Gaines, D.W. Datlowe, J. Mobilia, R.A. Helliwell, U.S. Inan, J. Katsufrakis, and R.G. Joiner, Direct observation of radiation belt electrons precipicated by the controlled injection of VLF signals from a ground based transmitter, Geophys. Res. Lett. . 4. 361-364, 1983.

Imhof, W.L., H.D. Voss, J.B. Reagan, D.W. Datlowe and D.S. Evans, Relativistic electron and energetic ion precipitation spikes near the plasmapause, J. Geophys. Res., 91, 3077 - 3088, 1986

Inan, U.S., T. F. Bell and H. C. Chang, Particle precipitation induced by short duration VLF waves in the magnetosphere, J. Geophys. Res., 87, 6243-6264, 1982.

Iversen, I.B., L.P. Block, K. Bronstad, R. Grad, G. Haerendel, H. Junginger, A Korth, G. Kremser M. Madsen, J. Niskanen, W. Riedler, P. Tans'ıanen, K.M. Torkar, and S. Ullaland, Simultaneous observations of a pulsation event from the ground with balloons and with a geostationary satellite on August 12, 1978, J. Geophys. Res., 89, 6775-6785, 1984.

Kat souleas, T., and J.M. Dawson, Unlimited electron acceleration in laser driven plasma waves, Phys. Rev. Lett., 51, 392-395, 1983.

Kennel, C.F., and H.E. Petschek, Limit on stably trapped particle fluxes, J. Geophys. Res., 71, 1-28, 1966.

Menyuk, C.R., A.T. Drobot, K. Papadopoulos and H. Karimabadi, Stochastic electron acceleration in obliquely propagating electromagnetic waves, SAIC Preprinc, 1986

Roberts, C.S., and S.J. Buchsbaum, Motion of a charged particle in a constant magnetic field and a transverse electrowagnetic field, Phys. Rev., 135, A381, 1964.

Schulz, M., Particle saturation of the outer zone: a nonlinear model, Astrophys. and Space Sc1., 29, 232-242, 1974.

Trakhtengerts, V.Yu., Alfven masers, In Active Experiments in Space, ESA SP-195, 67-74, 1983.

Hong, A.Y., J. Santoru, and G.G. Sivjee, Active stimulation of the auroral plasma, J. Geophys. Res., 86, 7718-7732, 1981.

Relativistic particle acceleration by obliquely propagating electromagnetic fields

Elena Villalón
Center for Electromagnetics Resparch. Northeatiern Unumerify: Bosion. Mossachusefis 021IS
William J. Burke
Air Force Geophysics Laboratong. Hanscom Air Force Rasc. Massachusetts 0173/

(Received 4 December 1986; accepted 24 July 1987)
The relativistic equations of motion are analyzed for charged particles in a magnetized plasma and externally imposed electromagnetic fields (ω, k), which have wave vectors k that are at arbitrary angles. The particle energy is ohtained from a set of nonlinear differential equations. as a function of time, initial conditions, and cyclotron harmonic numbers. For a given cyclotron resonance, the energy oscillates in time within th- limits of a potential well: stochastic acceleration occurs if the widths of different Ilamiltonian potentials overlap. The net energy gain for a given harmonic increases with the angle of propagation, and decreases as the magnitude of the wave magnetic field increases. Applications of these results to the acceleration of ionsopheric electrons are presented.

I. INTRODUCTION

The interaction of high-power rf fields with plasma particles is a subject of very active research because of its richness in basic plasma processes and practical applications. It can be used as a method to increase the plasma temperature' and to accelerate some particles to high energies.? Particle acceleration by electrostatic waves is a well-explored area of research because of its application in laboratory plasmas.' Although less is known ahout acceleration processes hy electromagnetic waves, " ${ }^{\text {a }}$ they may have greater relevance in space plasma physics. Recently, there has been an increasing effort to understand the basic ionospheric plasma processes and the nature of particle motion under the influence of high-power rf fields." A number of nonlinear phenomena have been observed such as the formation of cavions (local plasma density depletion) and parametric instabilities. In addition, particle acceleration has also been observed near the critical layer where the wave frequency matches the local plasma frequency.' In this paper, we concentrate on single particle rather than collective plasma motion.

The motion of a relativistic particie of charge q and rest mass m, under the influence of an external electromagnetic field and a uniform magnetic field B_{0}, is described by the Lorentz force equation

$$
\begin{equation*}
\frac{d p}{d i}=q\left(E+\frac{v}{c} \times\left(B+B_{0}\right)\right) . \tag{1}
\end{equation*}
$$

where c is the speed of light. Gaussian units are insed throughout the paper. The wave propagates al an arbitrary angle with respect to B_{n}. which we assume to be along the z direction Without loss of generality, the wave propagation vector is given by $k=k_{x} \mathfrak{j}+k_{,} \hat{\mathbf{z}}$. and the electric field is

$$
\begin{equation*}
F-\hat{\mathbf{x}} E_{1} \cos \phi-\hat{\mathbf{y}} E_{2} \sin \boldsymbol{t}-\hat{\mathbf{i}} E_{1} \cos \phi . \tag{2}
\end{equation*}
$$

Whese \hat{i}, \hat{y}, and \hat{i} are unit vectors, $\boldsymbol{\dagger}=k, x+k, \hat{x} \cdots$ of, and ω is the wave frequency. The wave magnetic field is given by the Maxwell equation: $B=c / w(k \times F)$. The relativistic momentum is $p=m \rho$, where $\gamma=\left(1-p_{1}^{2} / c^{2}-r^{2} / c^{2}\right)^{-1 / 7}$ is the Lorentz factor, v is the particle velocity, and $v_{1}, r_{\text {, are }}$ are
the components perpendicular and parallel to \mathbf{B}_{6}, respectively. This interaction is resonant at multiple harmonics of the relativistic cyclotron frequency $\$ 1$. The resonance conditions are

$$
\begin{align*}
& \omega-k_{s} v_{z}-n \Omega=0, \tag{3a}\\
& \Omega=-q B_{0} / m c \gamma . \tag{3b}
\end{align*}
$$

where n is an integer: the nonrelativistic cyclotron frequency is demoted by $\Omega_{\text {r }}$, where $\Omega=\Omega \Omega, 17$. The case of a citculaly polarized wave (i.e., $E_{1}-E_{3}$ and $E_{3}-0$) which piopagates aloug B_{n} has been studied in Refs. 8-10. It has heen shou n^{*} that to all orders in the field amplitudes, particles can the accelerated indefinitely provided that (1) the index of refraction $\eta=c k / \omega$ is equal to I and (2) the particle is initially at resonance with the $n=1$ harmonic.

In this paper we extend the analytical results of Roberts and Buchsbaum' to waves of arbitrary polarizations, propagation angles, and refractive indices, by assuming that the field amplitudes become small compared to $\left|\mathbf{B}_{\mathrm{n}}\right|$ as the prop. agation angle increases. Our analysis is also applicable to electrostatic modes, which appear as a particular application of our general results. We shuw that the net energy gain for any given harmonic resonance is always finite excent in the case of circularly polarized waves with $\eta=1$. To lowest order in field amplitudes, particles gain energy following certain trajectories in $\left(p_{1}, p_{2}\right.$) phase space. These traiestories may be opened or closed according to the magninude of the wave magnetic field, the angle of propagation. and the value of refractive index η. We find that they are closed for electrrmagnetic fields that propagate at large angles, and hence the net energy gain is restricted in finite values. They can be opened for em waves that propagate at small angles, if η is small or equal to 1. For electrostatic waves (i.e., For small values of $|n|$) the energy trajectories are always opened. and if resonances overlap, the net energy gain can be very large

The total energy H is obtained from a set of umblinear differential equations which depend on time, mitial conditions, and the harmonic number n. In deriving these equa
tions, we ascume that the particle undergoes many cyelotron arbis hefore its encogy changes appreciably the slow bime evolution of $I I$ is found by averaging ower lime scalles arsociated with the motion of the wave and gyromotion, and satisfice equations of the form ($d / / / d f)^{2}+V_{n}(\|)-0$ For a given harmonic $n, ~ H$ oscillates in time within the Itamilto. nian potential wells, and the maximum atlowed encrgy gain is given hy setting the potentials $V_{n}(H)=0$ The widths of the potential wells are also given as functions of $|\boldsymbol{I}|$ and the angle of propagation. We find that the resonance widths increase with the angle and decrease as $|\mathbf{B}|$ increases. Besides. they are larger for particies that initially satisfy the resonance condition. Eq. (3). The particle motion becones stochastic when the widths of potentials for different harnomics overlap, and then the mean net momentum transfer to the particles can be very large.

We apply our results to the acceleration of electrons in the innosphere by considering an extraordinary mode propagating into a region of increasing plasma density. For the purpose of illustration. calculations are presented with a mode frequency $m-18 \Omega_{e}$; here Ω_{c} is evaluated in the Earth's magnetic field ($\Omega_{\mathrm{e}}=16 \mathrm{MHz}$). We show that, at large angles of propagation, initially cold particles can be accelerated to large energies at power levels ($P=025 \mathrm{~W}$ / cm^{2}). This happens near the critical densily (cutoff) where the wave vectork and group velocity along k are zeroand the wave amplitude is preally enhanced.' In addition, we also find that the morte becomes purely circularly polarized uear the cutoff layer, and its magnetic fieid amplitude is very small. Because the first and second cyclotion harmonic resonances overlap near the cutoff, initially cold particles which gain some energy interacting with the first harmonic can be picked up by the second and boosted to still higher energies. For small angles of propagation and at the power levels considered in our calculations, we find that resonances do not overlap so that initially cold particles only interact with the first harmonic. Because the resonance condition. Eq. (3), is far from being satisfied for $n=1$, cold particles $u_{1}=0$. and $\omega=2 \Omega_{r}$, then the net energy gain for small angles of propagation is very small.

II. BASIC EQUATIONS

We start by considering that Eq. (I) admits the follow. ing three constants of motion ${ }^{\prime \prime}$:

$$
\begin{equation*}
\frac{d}{d l}\left(p-\frac{q_{r}}{c} \times \mathbf{B}_{n}-\frac{k}{m} H+\frac{q}{c} \mathbf{A}\right)=0 \tag{4}
\end{equation*}
$$

where $\mathbf{r}=(x, y, z)$ is the vector position. $H-$) m ' is the total particle energy including the rest energy, and A, the vector potential, is

After multiplying the x component of Eq. (4) hy k, and the z component by k_{e}. we easily ohtain

$$
\begin{equation*}
\dot{p}_{1}-\left(K_{1} / \omega\right) / H+\left(E_{1} / E_{1}\right)\left(\dot{p}_{2}+\Omega p_{2}\right)=0 \tag{5}
\end{equation*}
$$

where $K_{1}=k_{1}\left(1+E_{1} k_{1} / E_{1} k_{1}\right)$. Hereafter), dots signify differentiation with respect to time.

The equations of motion for the perpendicular compor-
nents of the patiele momentum can also be written in the form

In our calculations, we shali neglect the conrection to the cyclotron frequency in Eqs. (6) and (7) by assuming $B,=E_{2} c k$, /ou e B_{1} (i.e., we assume that either k, oloor $i=,{ }^{\prime}$ R_{0} is very small)

The evolution in time of the particle energy is given by

$$
\frac{H \dot{H}}{c^{2} \omega}=\frac{q E_{1}}{\omega} \cdot \cos D
$$

$$
\begin{equation*}
-\frac{q E_{2}}{m} \rho_{r} \sin p-\frac{q E_{1}}{\sigma} \rho_{2} \cos \phi . \tag{8}
\end{equation*}
$$

Equations (5)-(R) are the foundations of our theon'llal analysis.

Before going into a detailed mathemationd derivations. it is usefint to consider the lowest-order solutions in the electric field amplitudes to Eqs. (5)-(7). If the electric field ampli. tude is small we may approximate x by

$$
\begin{equation*}
x=\rho \cos (\sigma+\alpha) \tag{9}
\end{equation*}
$$

where $\sigma=f_{n}^{\prime} \Omega\left(\prime^{\prime}\right) d t^{\prime}, \tan a=-\rho_{\pi} / \rho_{m}$. and $\rho-r_{1} / \Omega$ is the particle gyrmadius. Hereafter, the subseript zero refers to the initial conditions at 1 - 0 Jo acooth oudet in the cler. tric field amplitudes, Eq (5) yields

$$
\begin{equation*}
p_{\mathrm{z}}=p_{\mathrm{m}}+\left(K_{2} / \omega\right)\left(H-H_{n}\right) \tag{10}
\end{equation*}
$$

In terms of p_{1} and ρ_{1}, the components parallel and perpendicular to H_{0}, reapectively, Eq. (10) can also he wrilten as

$$
\begin{align*}
&\left(\frac{\rho_{1}}{m c}\right)^{2}=-1+\sin \left(1-\frac{1}{\beta_{r}} \frac{v_{n}}{c}\right)^{2} \\
&+\frac{2}{\beta_{1}} \frac{\rho_{2}}{m c} \ln \left(1-\frac{v_{0}}{c} \frac{1}{\beta_{r}}\right) \\
&+\left(\frac{\rho_{2}}{m c}\right)^{2}\left(\frac{1}{\beta_{t}^{2}}-1\right), \\
& \beta_{z}=\frac{c k_{2}}{\omega}\left(1+\frac{E_{1}}{E_{1}} \frac{k_{2}}{k_{2}}\right) .
\end{align*}
$$

where γ_{0} is the lorentz factor evaluated at $t-0$, and ${ }^{\prime}=$, is also evaluated at $t=0$. Note that depending on the magnitude of β_{z}, Fq (11) describes families of clliptical $\left|\left|\beta_{a}\right|>1\right)$, parabolic ($\left.\left|\beta_{2}\right|-1\right)$, or hypertolic $\left(\left|\mathcal{Z}_{2}\right|-1\right)$ trajectories in $\left(\Gamma_{1}, \Gamma,\right)$ phase space.

III. SOLUTION OF THE EQUATION OF MOTION

Equations (6) and (7) can be solved to all orders in the field amplitudes as functions of $\boldsymbol{\phi}=k_{\varepsilon_{1}} x+k_{z} z \cdots$ and
$Q=\left(q E_{1} / \omega\right)\left(\omega-K_{i} \dot{z}\right)-\left(q E_{3} / \omega\right)\left(\omega-k_{i} \dot{z}\right) . \quad(12 a)$
$R=\left(q E_{1} /(\omega)(\omega)-K, i\right)+\left(q E_{V} / \omega\right)\left(\omega-k_{r} i\right) . \quad(12 h)$
We find

$$
\begin{aligned}
& \text { (1) } \\
& P_{v}-P \cdot\left|\Omega+(q E, \ln)\left(k_{,} / m\right) \sin \phi\right| \\
& =-\left(q E_{V}(\infty)((n)-k, z) \sin \phi\right. \\
& \text { (i) }
\end{aligned}
$$

$$
\begin{align*}
p_{x}= & \frac{1}{2} \int_{0}^{\prime}\left(Q^{\prime} \cos \left(\sigma-\sigma^{\prime}+\Phi^{\prime}\right)\right. \\
& +R^{\prime} \cos \left(\sigma-\sigma^{\prime}-\Phi^{\prime}\right) \mid d^{\prime}-p_{1} \sin (\sigma+\alpha) \tag{13a}
\end{align*}
$$

$$
\begin{aligned}
p_{y}= & \frac{1}{2} \int_{0}^{\prime}\left[Q^{\prime} \sin \left(\sigma-\sigma^{\prime}+\Phi^{\prime}\right)\right. \\
& \left.+R^{\prime} \sin \left(\sigma-\sigma^{\prime}-\Phi^{\prime}\right)\right] d t^{\prime}+p_{1} \cos (\sigma+a)
\end{aligned}
$$

(13b)

Primed and unprimed quantities are evaluated al times r and r ', respectively. After substituting these equations into E.q (5) and integrating, we obtain

$$
\begin{align*}
\rho_{1}= & \rho_{n}+\frac{K_{2}}{\omega}\left(J-H_{0}\right) \\
& -\frac{1}{2} \frac{E_{3}}{E_{1}} \int_{0}^{\prime}\left(Q^{\prime}+R^{\prime}\right) \cos \phi^{\prime} d f^{\prime} . \tag{14}
\end{align*}
$$

Equations (13) and (14) together with Eq. (8) give the following expression for the rate of change of particle enerBy:

$$
\begin{align*}
\frac{4 H \dot{H}}{c^{\prime} \omega}= & \frac{q}{\omega}\left(E_{1}+E_{2}\right)\left(\int_{0}^{\prime} Q^{\prime} \cos \left(\sigma+\Phi-\sigma^{\prime}+\Phi^{\prime}\right) d t^{\prime}+\int_{0}^{\prime} R^{\prime} \cos \left(\sigma+\Phi-\sigma^{\prime}-\Phi^{\prime}\right) d t^{\prime}-2 p_{1} \sin (\sigma+\Phi+\sigma)\right) \\
& +\frac{q}{\omega}\left(E_{1}-E_{2}\right)\left(\int_{0}^{\prime} Q^{\prime} \cos \left(\Phi-\sigma+\sigma^{\prime}-\Phi^{\prime}\right) d t^{\prime}+\int_{0}^{\prime} R^{\prime} \cos \left(\Phi-\sigma+\Phi^{\prime}+\sigma^{\prime}\right) d t^{\prime}+2 p_{1} \sin (\Phi-\sigma-\alpha)\right) \\
& -\frac{q}{\omega} E_{3}\left[4\left(p_{m}+\frac{K_{2}}{\omega}\left(H-H_{n}\right)\right) \cos \phi-\frac{E_{3}}{E_{1}} \int_{0}^{\prime}\left(Q^{\prime}+R^{\prime}\right)\left(\cos \left(\phi+\Phi^{\prime}\right)+\cos \left(\phi-\Phi^{\prime}\right)\right] d t^{\prime}\right] \tag{15}
\end{align*}
$$

We note that polarizations represented in Eq. (15) are related to terms multiplying electric fields in right-hand ($E_{1}+E_{2}$). left-hand ($E_{1}-E_{2}$), and parallel E_{3} modes.

Next, we substitute for x using Eq. (9) and define $\gamma=\sigma+\sigma+\pi / 2$ and $\Psi=k_{z} z-\omega t$, so that $\boldsymbol{\phi}=\Psi+k_{x} \rho \sin Y$. After expanding the sine and cosine terms in Eq. (15) in the series of Bessel functions J_{v} (λ), we obtain

$$
\begin{equation*}
\frac{4 H \dot{H}}{r^{2} \omega}=\sum_{n} I_{n} . \tag{16a}
\end{equation*}
$$

where

$$
\begin{align*}
I_{n}= & \frac{q}{\omega}\left(E_{1}+E_{2}\right) J_{n-1}(\lambda)\left(\sum _ { m } \int _ { 0 } ^ { \prime } \left[Q^{\prime} J_{m+1}\left(\lambda^{\prime}\right) \cos \left(n Y+m Y^{\prime}+\Psi^{\prime}+\Psi^{\prime}\right)\right.\right. \\
& \left.\left.+R^{\prime} J_{m-1}\left(\lambda^{\prime}\right) \cos \left(n Y-m Y^{\prime}+\Psi-\Psi^{\prime}\right)\right] d r^{\prime}+2 p_{1} \cos (n Y+\Psi)\right)+\frac{q}{\omega}\left(E_{1}-E_{2}\right) J_{n+1}(\lambda) \\
& \times\left(\sum_{m} \int_{0}^{\prime}\left[Q^{\prime} J_{m+1}\left(\lambda^{\prime}\right) \cos \left(n Y-m Y^{\prime}+\Psi-\Psi^{\prime}\right)+R^{\prime} J_{m-1}\left(\lambda^{\prime}\right) \cos \left(n Y+m Y^{\prime}+\Psi^{\prime}+\Psi^{\prime}\right)\right] d I^{\prime}\right. \\
& \left.+2 p_{1} \cos (n Y+\Psi)\right)-\frac{q E_{3}}{\omega} J_{n}(\lambda)\left[4\left(p_{20}+\frac{K_{2}}{\omega}\left(H-H_{0}\right)\right) \cos (n Y+\Psi)\right. \\
& \left.-\frac{E_{3}}{E_{1}} \sum_{m} \int_{0}^{\prime}\left(Q^{\prime}+R^{\prime}\right) J_{m}\left(\lambda^{\prime}\right)\left[\cos \left(n Y+m Y^{\prime}+\Psi+\Psi^{\prime}\right)+\cos \left(n Y-m^{\prime} Y^{\prime}+\Psi-\Psi^{\prime}\right)\right] d r^{\prime}\right] \tag{16b}
\end{align*}
$$

where $\lambda=k_{x} \rho$, and the summations are over all integer values from $\rightarrow \infty$ to $+\infty$. Note that H can be split into rapidiy fluctuating parts, which depend on the time scales associated with the motion of the wave (through the function Ψ^{\prime}) and with the gyromotion (through the function Υ), and a slowly time-varying part H^{5}. If $f(H)$ is any given function of the total energy, the slow time variation of f is obtained as

$$
f(H)^{s}=\int_{0}^{2 \pi} \frac{d Y}{2 \pi} \int_{0}^{\pi} \frac{d \Psi}{\pi} f(H)
$$

Our next step is to approximate $v_{1}=\left(c^{2} / H\right) p_{z}$ in Q and R by the zeroth-order solution to Eq. (10). Here, every H function appearing in the definitions of v_{z} and p_{z} is given to lowest order by the slow time energy function H^{5}. The argument of the Bessel functions λ and the momentum p_{1} are also given in terms of f^{5} and initial conditions by means of Eqs. (10) and (II).

$$
\begin{equation*}
\lambda=\frac{c k_{A}}{\Omega_{0}}\left[1-\frac{v_{n}^{2}}{c^{2}}-\frac{1}{r_{0}^{2}}+2 U\left(1-\beta_{i} \frac{v_{n}}{c}\right)+U^{2}\left(1-\beta^{2}\right)\right]^{1 / 2}, \tag{17}
\end{equation*}
$$

Where $\Omega_{0}=-q B_{0} / m c \gamma_{0}$ is the relativistic cyclotron frequency evaluated at $t=0$, and $U=\left(H H^{5}-H_{0}^{s}\right) / H_{n}^{5}$ is the slow time evolution of the normalized particle energy. Differentiating Eq. (16b) with respect to time, we obtain the following:

$$
\begin{align*}
\dot{I}_{n}= & \frac{q}{\omega}\left(E_{1}+E_{2}\right) J_{n-1}(\lambda) \sum_{m}\left\{Q J_{m},(\lambda) \cos |(n \mid \cdot m) Y+2 V|+R J_{m},(\lambda) \cos |(n-m) Y|\right\} \\
& +\frac{q}{\omega}\left(E_{1}-E_{2}\right) J_{n},(\lambda) \sum_{m}\left\{Q J_{m+1}(\lambda) \cos \left\{(n-m) Y\left|+R J_{m-1}(\lambda) \cos \right|(n \mid-m) Y+2 W \mid\right\}\right. \\
& +\frac{q}{a} \frac{E_{1}^{2}}{E_{1}} J_{n}(\lambda) \sum_{m}(Q+R) J_{m}(\lambda)\{\cos |(n+m) Y+2 V|+\cos |(n-m) Y|\}-(n \dot{Y}+\dot{W}) P_{n} . \tag{18}
\end{align*}
$$

where $n \dot{\gamma}+\dot{\psi}=n \Omega+k_{1} v_{1}-w$. The funcumn P_{n} is alefined by

$$
\begin{aligned}
P_{n}= & \frac{q}{\omega}\left(E_{1}+E_{2}\right) J_{n-1}(\lambda)\left(\sum _ { m } \int _ { 0 } ^ { \prime } \left[Q^{\prime} J_{m+1}\left(\lambda^{\prime}\right) \sin \left(n Y+m Y^{\prime}+\Psi+\Psi^{\prime}\right)\right.\right. \\
& \left.\left.+R^{\prime} J_{m \ldots}\left(\lambda^{\prime}\right) \sin \left(n Y-m Y^{\prime}+\Psi-\Psi^{\prime}\right)\right] d r^{\prime}+2 p_{1} \sin (n Y+\Psi)\right)+\frac{q}{\omega}\left(E_{1}-E_{2}\right) J_{n},(\lambda) \\
& \times\left(\sum _ { m } \int _ { 0 } ^ { \prime } \left[Q^{\prime} J_{m, 1}\left(\lambda^{\prime}\right) \sin \left(n Y-m Y^{\prime}+\Psi \ldots \Psi^{\prime}\right)+R^{\prime} J_{m},\left(\lambda^{\prime}\right) \sin \left(n Y \mid m Y^{\prime}+\Psi+\Psi^{\prime}\right) \mid d t^{\prime}\right.\right. \\
& \left.+2 p_{1} \sin (n Y+\Psi)\right)-\frac{q E_{3}}{\omega} J_{n}(\lambda)\left[4\left(p_{n}+\frac{K_{1}}{\omega}\left(I^{s}-H_{n}^{s}\right)\right) \sin (n Y+\Psi)\right. \\
& -\frac{E_{3}}{E_{1}} \sum_{m} \int_{n}^{\prime}\left(Q^{\prime}+R^{\prime}\right) J_{m}\left(\lambda^{\prime}\right)\left[\sin \left(n Y+m Y^{\prime}+\Psi+\Psi^{\prime}\right)+\sin \left(n Y-m Y^{\prime}+\Psi-\Psi^{\prime}\right) \mid d t^{\prime}\right]
\end{aligned}
$$

Differentiating P_{n} with respect to time, we obtain

$$
\begin{align*}
\dot{P}_{n}= & \frac{q}{\omega}\left(E_{1}+E_{1}\right) J_{n-1}(\lambda) \sum_{m}\left\{Q J_{m+1}(\lambda) \sin \left[(n+m) Y+2 Y\left|+R J_{m-1}(\lambda) \sin \right|(n-m) Y \mid\right\}\right. \\
& \left.+\frac{q}{\omega}\left(E_{1}-E_{2}\right) J_{n+1}(\lambda) \sum_{m}\left\{Q J_{m+1}(\lambda) \sin \mid(n-m) \Upsilon\right]+R J_{m-1}(\lambda) \sin |(n+m) \Upsilon+2 Y|\right\} \\
& +\frac{q}{\omega} \frac{E^{2}}{E_{1}} J_{n}(\lambda) \sum_{m}(Q+R) J_{m}(\lambda)\left(\sin |(n+m) \Upsilon+2 Y|+\sin [(n-m) Y \mid\}+(n Y+\dot{\psi}) I_{n}\right. \tag{19}
\end{align*}
$$

Since we are only interested in the slow time evolution of the total particle energy, we can average Eqs. (18) and (19) over the fast time dependencies (i.e., over γ and ψ) to find that only terms with $n=m$ give a nonzero contribution. ${ }^{12}$ We also consider the contribution of a single (isolated) resonance, and then for each harmonic n, we find that the particle energy ($4 / I \dot{I} / c^{2} \omega=I_{n}^{s}$) obeys the following coupled differential equations:

$$
\begin{align*}
\dot{I}_{n}^{s}= & \frac{q}{\omega}\left(E_{1}+E_{2}\right) R J_{n-1}^{2}(\lambda)+\frac{q}{\omega}\left(E_{1}-E_{2}\right) Q J_{n}^{2}, 1(\lambda) \\
& +\frac{q}{\omega} \frac{E_{3}^{2}}{E_{1}}(Q+R) J_{-}^{2}(\lambda)-(n \dot{Y}+\dot{\psi}) P_{n}^{s}, \tag{20a}\\
\dot{P}_{n}^{s}= & (n \dot{Y}+\dot{\psi}) I_{n}^{s} .
\end{align*}
$$

$$
\begin{align*}
(U+1)^{2} & \left(\frac{1}{\omega} \frac{d U}{d t}\right)^{2}+V_{n}(U)=0, \tag{21a}\\
V_{n}(U)= & \frac{d_{1}^{2}}{4} U \prime\left(U+\frac{2 r_{n}}{d_{1}}\right)^{2}-\zeta_{n}\left(0 d_{1} U\left(U+\frac{2 r_{n}}{d_{1}}\right) \sin \delta_{n}+\left(\frac{\Sigma_{2}-\Sigma_{1}}{2}\right)\right. \\
& \times\left\{-\left(\Sigma_{2}-\Sigma_{1}\right)\left\{F_{n+1}(U)+G_{n},(U)\right\}+\left(\Sigma_{2} \eta-\Sigma_{n} \beta_{n}\right)\left[\left(n_{n} / c\right) F_{n+1}(U)+\beta_{2} G_{n+1}(U)\right]\right\}
\end{align*}
$$

$$
\begin{aligned}
& -\left|\left(\Sigma_{1}+\Sigma_{1}\right) / 2\right|\left\{\left(\Sigma_{1}+\Sigma_{2}\right) \mid F_{n},(l)+G_{n},(U)\right] \\
& \left.-\left(\beta_{2} \Sigma_{1}+\Sigma_{2} \eta_{1}\right)\left\{\left(v_{n 1} / c\right) F_{n},(U)+\beta_{2} G_{n},(U)\right)\right\} \\
& -\Sigma_{1}^{2}\left\{G_{n}(U)+F_{n}(U)-\beta_{n}\left[\left(C_{r 1} / c\right) F_{n}(U)+\beta_{n} G_{n}(U)\right]\right\}-\left|\zeta_{n}(0) \cos S_{n}\right|^{2} .
\end{aligned}
$$

where $d_{1}=1-\eta_{1} \beta_{2}, \eta_{s}=c k, / \omega, \beta$, is defined in Eq. (llb), $r_{n}=1-k_{t} I_{n} / \omega-n \Omega_{0} / \omega$, and

$$
\begin{aligned}
& G_{r}(U)=\int_{0}^{U} J^{2}\left|\lambda\left(U^{\prime}\right)\right| U^{\prime} d U \\
& r_{1}(U)=\int_{0}^{\prime \prime} J^{2}\left|\lambda\left(U^{\prime}\right)\right| d U^{\prime}
\end{aligned}
$$

with $r=n, n \pm 1$. This is just a differential equation describing the motion of trapped particles within the llamiltonian potential well V_{n}^{\prime}. Under the limit $k_{.}-0$. F.qs. (21) reduce to the equalions derived by Roberts and Buchsbaum" for the cases $n= \pm 1$. Note that in the limit $k_{3} \rightarrow 0$. Eqs. (21) and the Hamiltonian trajectories as defined in Eq. (10) are exact integrals to the equation of motion (i.e., they are valid to all orders in the field amplitudes).

IV. THE HAMILTONIAN POTENTIAL WELLS

W'e note that the first term of Eq. (21b) does not depend on the wave amplitude and is always positive for $d_{1} \neq 0$. The case $d_{1}=0$ corresponds to a circularly polarized wave with a refractive index $\eta=I$. If, in addition, $r_{n}=0$, then this term is zero and we are in the case of unlimited acceleration. For $d_{1} \neq 0$ and at large values of U, this first term dominates over all the others, and its contribution can be diminished by taking $r_{n}=0$ (i.e. particles initially at resonance with the wave). Thus V_{n} can be regarded as a potential well within which H oscillates as a function of time The maximum value that H can attain for a given resonance and field amplitude can be found by setting the potentials $V_{n}(U)=0$. At wave amplitudes and propagation angles where the widths of po-
tentials for different harmonics overlap, the particle montion becomes stochastic and at the net momentum transfer to the particle can be very large. Nevertheless, since λ (the argument of the Bessel functions) is given by the fower-order solution. Eq. (17), the amount of energy the particle can gain is limited according to the value of β, In fact, recall that the Hamiltonian trajectories as defined in Eqs. (II) are open hyperbolas for $\left|\beta_{r}\right|<1$ in a $\left(\rho_{1}, \Gamma,\right)$ phase space. For $\left|\beta_{z}\right|, 1$ they are closed ellipses and the range of accessitie energy: gain is restricted to finite values

In order to better understand the physical meaning of β_{s}, let us consider the time average of the wave magnetse field

$$
\begin{equation*}
\left\langle\mathrm{B}^{2}\right)=\left(E_{1}^{2} / 2\right)\left(\eta^{2} E_{2}^{2} / E_{1}^{3}+\beta_{2}^{2}\right) \tag{22}
\end{equation*}
$$

Electrostatic waves are characterized by small values of β : and of the product $\eta E_{2} / E_{1}$. Thus, the zeroth-order trajectories associated with electrostatic fields are open in a (ρ, f,) phase space. For electromagnetic waves, $\beta_{\text {: }}$ is large, in general. However, if the angle of propagation is small and if the refractive index is such that $\eta<1$, then $\beta_{2} \sim \eta$, and the Hamiltonian trajectories can also be open as is the case for circularly polarized waves with $\eta<1$. If the angle of propagation is large, the allowable energy gain is limited even for $\eta<1$.

It is also instructive to study the behavior of 1 , with respect to β_{1}. We consider only the case of particles which are initially at rest, i.e., $r_{x}=r_{1 n}=0$. Hence $U=\lambda-1$ and the potential well becomes

$$
\begin{align*}
& V_{n}^{\prime}(U)=\left(d_{1}^{2} U^{2} / 4\right)\left(U+2 r_{n} / d_{1}\right)^{2}+\left|\left(\Sigma_{2}-\Sigma_{1}\right) / 2\right|\left\{-\left(\Sigma_{2}-\Sigma_{1}\right)\left[G_{n}, 1(U)+F_{n},(U)\right]\right. \\
& \left.+\beta_{1}\left(\Sigma_{2} \eta_{2}-\Sigma_{1} \beta_{r}\right) G_{n+1}(U)\right\}-\left\{\left(\Sigma_{1}+\Sigma_{2}\right) / 2\right)\left\{\left(\Sigma_{1}+\Sigma_{2}\right)\left[G_{n-1}(U)+\Gamma_{n},(U)\right\}\right. \\
& \left.-\beta_{r}\left(\Sigma \beta_{s}+\Sigma_{2} \eta_{t}\right) G_{n-1}(U)\right]-\Sigma_{j}^{2}\left[G_{n}(U)+F_{n}(U)-\beta_{2}^{2} G_{n}(U)\right] \tag{23}
\end{align*}
$$

Terms multiplying β_{2} in the right-hand and parallel polarization fields are always positive for any $\beta_{r} \neq 0$. Although the β_{z} term in the left-hand component may be negative, its contribution is small because the order of the Bessel function is higher. Therefore, we conclude that the larger β_{z} is, the smaller the widths of potential wells.

Finally, some comment should be made regarding the dependence of V_{n} on propagation angles. For initially cold particles with small gyroradii, all but the zeroth-order Bessel functions are very small. Since the argument of the Bessel functions is the perpendicular component of the wave vector k. limes the particle's gyroradius, increasing the propagation angle increases the value of the Bessel functions terms. Thus, for all but the first- and zeroth-order harmonics. the potential may not trap low-energy particles unless the prop. agation angle is large. The behavior of the potential for small values of k, is as follows. For $k,-0$ and $|n|>2$. only the firsi
term of Eq. (23) is nonzero. and therefore no particles can be trapped For $k_{*}-0$ and $n=1$. the right-hand polarization field may accelerate cold particles.

V. ELECTRON ACCELERATION IN THE IONOSPHERE

We consider an extraordinary mode propagating in a cold plasma at an anple θ with respect to B_{n}. The dispersion relation is ${ }^{11}$

$$
\begin{align*}
\eta^{2}= & 1-\lambda^{2} / D \tag{24:}\\
D= & 1-\left|Y^{2} / 2(1-X)\right| \sin ^{2} \theta \\
& -\left\{\left|\gamma^{2} / 2(1-X)\right|^{2} \sin ^{2} \theta+y^{2} \cos ^{2} \theta\right\}^{\prime \prime} \tag{24b}
\end{align*}
$$

where $X=\omega_{r,}^{2} / \omega^{2}, \omega_{r}$, is the electron plasma frequencs. $\gamma=\Omega, / \omega$. and $I_{1}=e B_{i} / \mathbf{c m}$. The electric field compouent ration are given by

$$
\begin{align*}
& \frac{E_{2}}{E_{1}}=\frac{x y^{\prime}}{\left(1 \cdots Y^{3}\right)\left(1-\eta^{2}\right) \cdots \bar{x}} . \tag{25a}\\
& \frac{E_{1}}{E_{1}}-1-\eta_{1} \eta_{1}
\end{align*}
$$

Combining Eqs. (25b) and (11b) we find

$$
\begin{equation*}
\beta_{1}=\eta_{1}(1-x) /\left(1-x-\eta_{1}^{2}\right) \tag{26}
\end{equation*}
$$

where $\eta_{1}, \eta_{\text {, }}$ are the x_{0} and z components of the relitactive index.

The magnitude of the electric field Σ_{1} is given as a fimetion of the power flow density P along \mathbf{k} by solving for the following equation:
$P=\frac{\omega^{2} H_{0}^{2}}{q^{2} c} \frac{v_{i}}{c} \frac{\Sigma_{1}^{2}}{16 \pi}\left[\left(\frac{E_{1}}{E_{1}}\right)^{2}\left(1+\eta^{2}\right)+1+\left(\frac{E_{1}}{E_{1}}\right)^{2}+\beta_{1}^{2}\right]$.
where $"_{p}$, the group velocity along k, is given by

$$
\begin{equation*}
\frac{v_{s}}{c}=\frac{\eta}{\left.1+\frac{1}{(D} \omega / D\right)\left(1-\eta^{2}\right)} \tag{27b}
\end{equation*}
$$

and $D^{\prime}=d D / d \omega$.
In our numerical calculations we assume that $\boldsymbol{\omega}=1.8 \Omega_{r}$, where $\Omega_{r}=1.6 \mathrm{MHz}$ is the electron cyclotion frequency in the Earth's magnetic field. The wave propagates into a region of increasing plasma density until it reaches the cutof point where k and v_{p} are zern. At the reflection point we find the following.
(i) The electron density is given hy solving for $1-X=Y$, which in our case is $n=4.65 \times 10^{4} \mathrm{~cm} \quad$ and corresponds to $\omega_{p} / \Omega_{r}=1.22$.
(ii) The electromagnetic mode becomes circularly polarized, i.e. $\Sigma_{1}=\Sigma_{2}$, and $\Sigma_{1}=0$.
(iii) The magnetic field is zero because k, the propagation vector, is zero.
(iv) The electric field amplitude Σ, is very large because $v_{s}=0$.
(v) The resonance widths as obtained solving for $V_{n}(U)=0$ are also large because β_{z} is zero.

We conclude that electron acceleration should he most effective near the turning point. In the following calculations we show that significant acceleration can indeed only take place near the cutoff layer.

Figure 1 shows the zeroth-order Hamiltonian trajectories for a low plasma density ($n=3 \times 10^{\prime} \mathrm{cm}^{-3}$) at different angles of propagation. These trajectories are open (hypertolic) for $\theta<\theta_{T}=14^{\circ}$ and closed (elliptical) for larger angles. In all cases the refractive index is smaller than, hut close t. unity ($\eta-0.95$). The ratio between the magnitudes of the wave magnetic and eiectric fields is also close to unity. For $\omega \simeq 2 \mathrm{I}_{\mathrm{c}}$ and for the power levels that are used in our calculations ($P=0.25 \mathrm{~W} / \mathrm{cm}^{2}$), we find that the potentials are positive so that acceleration cannot take place. If the density is increased $103.14 \times 10^{4} \mathrm{~cm}^{-1}$, we find that electrons can gnin about 12 keV through the interaction with the $n-1$ hatmonic.

In Figs. 2 and 3, the plasma density is $4.5 \times 10^{\prime} \mathrm{cm}$ ' which corresponds to $\omega_{r e} / \Omega_{e}=1.2$, and the Hamiltomian

FIG; 1 liamitunian tapretorics for different propagatow angles in the magnetic field. The chocell paramelect are $a_{m} / 11,-0$ and $n-1$ kil, If
 between elosed ellipucal (A. $A_{\text {, }}$) and npened hyperthola (A. A_{1}) arhits
trajectories are open for all angles of propagation. The net energy gain, as given by solving for the zeros of $V_{n}(U)$, is represented by the shaded regions as a function of θ. We consider the first two cyclotron harmonic resonances and assume that the particle is initially at rest. The first harmonic resonance interacts with cold particles through the contrihution of the right-hand polarization field. The second harmonic does not interact with cold electrons even for the largest θ, hecause η. the refractive index, is very small ($\eta \sim 0.25$). The energy that a particle can gain from the first harmonic is very limited because the resonance condition is far from being satisfied $\left(r_{1}=0.45\right)$ for $r_{x}=0$ and $n \sim 211$, For the second harmonic $r_{2}=-0.1$, and the net energy gain can be larger. In Fig. 2, $P=0.15 \mathrm{~W} / \mathrm{cm}^{2}$, and the first and second harmonics barely overlap. In Fig. 3 where $p=0.25 \mathrm{~W} / \mathrm{cm}^{2}$, they fully overlap (double shaded region) for angles greater than 40°. The second harmonic may trap those elections that have already gained some energy interacting with the first harmonic, and boost them to still higher energies. In fact, since $U=\gamma-1$, we see that the net energy gain can be as much as 150 keV .

In Fig. 4, we show the Hamiltonian potential wells as a function of the normalized particle energy U. We represent the inverse of the function W_{n}.

$$
\begin{equation*}
W_{n}(U)=-\operatorname{sgn}\left(V_{n}\right) \log \left[\left|V_{n}^{\prime}(U)\right| /(U+1)^{2}\right] \tag{28}
\end{equation*}
$$

The plasma parameters are those of Fig 3, and we consider

Hti 2 Range of allowed ractay gain (ahaded regions) for the termance harmonic numberse - 1.2, as a function of wave proparation ample lo inas
 anct the intal prower hins is $r-0$ is w / cm^{\prime}

f1f; 3 . 1 he same as in Fig. 2 but with $r=025 \mathrm{~W} / \mathrm{cm}^{2}$.
Iwo different angles of propagation- (a) $\theta=80^{\circ}$ and (b) $\theta=20^{\circ}$. The magnitudes of the potential wells, $\left|V_{n}^{\prime}(U)\right|$. are very small. For $\theta=80^{\circ}$ and $n=2$ the maximum value of $\left|t_{n}\right|$ is of order 10^{-9}, and for $n=1$ the maximum value is 2×10^{-1}. This is consistent with the assumption that the particle energy changes slowly over the gyro and wave periods. In fact, by normalizing time to Ω^{-1} in Eqs. (21) we see that $\left.\left|V_{n}\right|(\omega / \Omega)\right)^{2}$ must be much smaller than 1 if the changes in energy occur over many gyroperiods.

In the theory presented in Sec. III, we assume that the magnitude of the wave magnetic field is much smaller than that of the background magnetic field B_{n} for increasing propagation angles. This allows us to use the zeroth-order solutions, Eqs. (9) and (10), in the perturbative analysis at large angles. In order to verify the validity of this approximation we have calculated the following dimensionless quantities:

$$
B_{z} / B_{n}=\eta_{n}(\omega / \Omega) \Sigma_{2} \gamma_{0}, \quad B_{n} / R_{n}=\eta_{z}(\omega / \Omega) \Sigma_{2} \gamma_{n},
$$

$$
B_{y} / B_{0}=B_{y}(\omega / \Omega) \Sigma_{1} y_{0}
$$

In the case of Fig. 4, we find that for $\theta=80^{\circ} . B_{2} /$ $B_{0}=7 \times 10^{-2}, B_{1} / B_{0}=9 \times 10^{-4}$, and $B_{v} / B_{0}=1.3 \times 10^{-1}$ For $\theta=20^{\circ}$ these values are $1.5 \times 10^{-2}, 4 \times 10^{-2}$, and 4×10^{-2}, respectively. The magnitude of the wave electric field as given by Σ_{1} (recall that near the cutoff we have $\Sigma_{1}=\Sigma_{1}$ and $\Sigma_{1}=0$) is found to be closed to 0.14 for all cases of Fig. 4.

VI. CONCLUSION

In this paper, we have presented a theoretical analysis of the energy gained by relativistic charged particles in oblique. ly propagating electromagnetic waves. The main results of our analysis are as follows.
(1) To lower order in the field amplitudes, particles gain energy following certain trajectories in a (p_{1}, p_{z}) phase space. Because these trajectories are closed for large values of the magnetic field amplitude $|\mathbf{B}|$ and the propagation angle θ, the net energy is restricted in finite values. They are, however, open for large values of $|B|$ and small values of θ if the refractive index η is smaller or equal to 1 . For sufficiently small values of |B| they are always open.
(2) For a given harmonic resonance, the range of the allowed particle energies is obtained hy solving for the zeros of the Hamiltonian potentials V_{n}. The resonance widths are always finite except for the case of circularly pilarized waves with $\eta=1$ and for particles that are initially in resonance with the $n=1$ harmonic.
hroad spectrmen of waves stould he comsidered As the resis nance widths overlan." 'the electrons may gain considerable energy for different frequencies and harmomics llowever. near the turning point the electric fields are so lange that other nonlinear effects may also be important, and miy at. fect both the acceleration and propagation processes. In adddition, linear mode conversion into electrostatic waver" of large refractive indices can also be very relevant and may enhance the acceleration process by allowing initially cold particles to be picked up by the second- or higher-order harmonics. Questions related to the propagation of large-amplitude waves in the ionosphere and the consequent heating of plasma electrons deserve furiher attention.

ACKNOWLEDGMENTS

We are very grateful to Dr. A. Drobot and Dr K. Papadopoulor for introducing us to this problem and for useful discussions. We alsn acknowledge helpful conversations with Dr. M. Silevitch.

This work was suppnited by the U.S. Air Force under Contract No. F19628-85-K-00s3

APPENDIX: DERIVATION OF EOS. (21)

From Eq. (10) we obtain
$1-k_{1} v_{s} / \omega=d_{1}+\left(H_{n} / H\right) d_{2}$,
$1-K_{1} v_{1} / \omega=h_{1}+\left(H_{N} / H\right) h_{2}$,
$n \Upsilon+\boldsymbol{\Psi}=-\left\{d_{1}+\left(H_{0} / H\right)\left(d_{2}-n \Omega_{N} / v\right) \mid\right.$.
where $d_{1}=1-\eta_{1} \beta_{1}, d_{3}=\eta_{2}\left(\beta_{z}-v_{00} / c\right) . h_{1}=1-\beta_{i}$. and $h_{2}=\beta_{2}\left(B_{3}-v_{n 0} / C\right)$.

By using Eq. (A3), integrating Eq. (20b) over ' me from yero to t, and recalling that $I_{n}^{5}=4 / H / / / c^{2} w$. we find that the function $\gamma=(n \dot{Y}+\dot{V}) P_{n}^{s}(t) / H$ is given by

$$
\begin{align*}
x= & -\left(H_{0} \omega / H^{2}\right)\left\{r_{n} P_{n}^{S}(0)\right. \\
& +\left[d_{1} P_{n}^{5}(0)-4 r_{n}^{2} H_{0}^{2} / c^{2}\right] U \\
& \left.-6 r_{n}\left(H_{n}^{2} / c^{2}\right) d_{1} U^{2}-2\left(H_{n}^{2} / c^{2}\right) d_{1}^{2} U^{\prime}\right\} . \tag{4}
\end{align*}
$$

By substituting Eqs. (A1) and (A2) into Eqs (12), we find Q and R as functinns of H and initial conditions. Combining this with Fqs ($\mathbf{A 4}$) and (20a), we ubtan

$$
\begin{aligned}
& 1111 \frac{d}{d!}(11 / d)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \frac{q}{w}\left(E_{1}-E_{2}\right)\left(a_{1} H+H_{1} A_{2}\right) J_{n}^{2},(\lambda) \\
& \left.+2 \frac{q^{2}}{\omega)^{2}} E^{2}\left(H_{1} \|+H_{1} H_{2}\right) J_{n}^{2}(\lambda)\right)-\frac{a^{\prime \prime}}{4} \| H_{1} .\left(A_{1}\right)
\end{aligned}
$$

where

$b_{1}=\frac{q E_{1}}{\omega} h_{1}+\frac{q E_{2}}{\omega} d_{1} \quad b_{2}=\frac{q E_{1}}{\omega} h_{3}+\frac{q E}{m} d_{0}$
Equation (\wedge S) can be integrated once over time from 0 $10 t$. The left-hand side becomes $\left(1 H^{*} H^{2}-H_{n}^{2} H_{n}^{2}\right)$. The contribution of the term $I_{H}, f f_{1}$ can be calculated by means of Eq. (8). By considering that at $t-0$. $N_{1}-k_{1}, p_{1}$ cora $+k_{1} z_{n}$ and that $\rho_{\infty}=-\rho_{1 n} \sin \sigma, p_{n}=\rho_{10} \cos \alpha$, and cx . panding in terms of Bessel functions, we obtain

$$
\frac{\dot{H}_{0}}{{ }_{n} H_{n}}=\sum_{n} \zeta_{n}(0) \cos \delta_{n}
$$

 (A6) and after a good deal of tedious hut stiaightmerwand algebra, we arrive al E.gs. (21).
 'T Katsouleas and I M Dawion, Phys Rer I elt 51 , 39 (1983) 'GR. Smith and A N Kaufman. Phys. Rev Lett M, 1611(1715).P' Palmaderoo. Phys Fluwis is, 2006 (1072).
${ }^{\prime}$ P. C. Clemmow and R D Ularding. J. Phama Phy 23, 11 (19月0)
'A. B. Kitrenko, I M Pankratov, and K N Stepanov, Sur l'tive Pech Phys 20. 375 (1976)
'A Y. Wimg. l. Santoru. C Davrow. I. Wang. and I © Romitres. Kaimo Sci 1n. 815 (19n3)
 (1981)
'V. Ye. Davydnvthii. Th Eksp. Tenf. Fiz. 43. RRg (19\%2) |Sow Phis
 Dikl 7. 745 (19611

"M. L. Wrolley, Masma Phys 13, 1141 (1971).
'Similar calculations can be forund in the thenry of quasolinear diffissom of particles: sce. for inctance. C. F Kennel and F. Engelimann. Phus Thuids 12. 2377 (1965)

Clasmar (Aidison Weslev. Lnndon. 1969)
"A V Chiriknv, Phve Rep 51. 261 (1979)

The U.S. Government is authorized to reproduce and sell inis report. Permission for further reproduction by others must be obtalned from the copyright owner.

Electron Acceleration in the Ionosphere by Obliquely Propagating Electromagnetic Waves

William J. Burke', Gregory P. Ginet', Elena Villalon², and Michael A. Heinemann'
'Air Force Geophys. Lab., Hanscom Air Force Basc, MA 0173I, U.S.A.
${ }^{2}$ Monsen Rd. Concord, MA 0I742, U.S.A.

(Received January 14, 1988; Accepted April 20, 1988)

The relativistic equations of motion have been analyzed for electrons in magnetized plasmas and externally imposed electromagnetic fietds that propagate at arbitrary angles to the background magnetic field. The electron energy is obtained from a set of non-linear differential equations as functions of time, initial conditions and cyclotron harmonic numbers. For a given cyclotron resonance the energy oscillates in time within the limits of a potential well. Stochastic acceleration occurs if the widths of hamiltonian potentials overlap. Numerical analyses suggest that, at wave energy fluxes in excess of $10^{2} \mathrm{~mW} / \mathrm{m}^{2}$, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Practical attempts to validate the theory with a series of planned rocket nights over the HIPAS facility in Alaska are discussed. The HIPAS antennas will be used to irradiate the magnetic mirror points of $10-40 \mathrm{keV}$ electrons emitted from the ECHO 7 rocket in the early winter of 1988 . Follow-on rocket experiments to exploit the wave amplification properties of the ionospheric "radio window" are described.

1. Introduction

Attempts to actively perturb space plasmas using HF emissions from ground based antennas have generally used O-mode radiation (STUBBE et al., 1985; ROSE ef al., 1985; Lee et al., 1988). The X-mode can only propagate to the altitude of cutoff. This is because the circularly polarized X -mode rotates in the same sense as electrons about the magnetic field, and thus interacts strongly with them. Recently scientists at the Air Force Geophysics Laboratory (AFGL) have become interested in using this characteristic for controlled, gyroresonant acceleration of electrons in space plasmas. Indeed, gyroresonant X-mode radiation has been used successfully to accelerate electrons to relativistic energies in the ELMO Bumpy Torus (Batchelor and Goldfinger, 1980). Although the driving mechanisms have not been established, JAMES (1983) has reported the presence of eiectrons accelerated up to several kilovolts in energy after sounder emissions from the ISIS satellites. Babaey et al. (1983) have also reported the detection of electrons accelerated to kilovolt energies through interactions with a low power telemetry system.

The motion of an electron moving in the presence of a right circularly polarized wave propagating along the magnetic field has been treated by RoBlRis and

Buschbaum (1964). They show that if the Doppler shifted frequency of the driver wave is at the electron gyrofrequency, and the phase speed of the wave is that of light in free space, test electrons stay in resonance and can be accelerated to arbitrarily high energy. For other wave phase speeds, electrons eventually lose resonance due either to the relativistic lowering of the gyrofrequency or to unbalanced Doppler shifts. In either case the electrons appear to move in pseudo-potential wells in which they alternately gain and lose kinetic energy. Recently the analysis of Roberts and Buschbaum has been extended to include the case of obliquely propagating waves using two different perturbation formalisms. Menyuk et al. (1987) utilized the canonical Hamiltonian while Villalon and Burke (1987) solved the Lorentz equation. While the first concentrated only on the stochastic regime, the second considered both stochastic and sub-stochastic acceleration.

This paper is divided into three sections in which we discuss: first, the relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma, second, wave propagation through the ionospheric "radio window," and third, a series of planned space flights to test the validity of our model.

2. Analytical and Numerical Solutions of the Lorentz Equation

We consider the motion of an electron gyrating in a constant magnetic field $B_{0} \hat{z}$ in the presence of an obliquely propagating electromagnetic wave with wave vector $k=k_{1} \hat{x}+k_{1} \hat{z}$ and frequency ω. The wave's electric field is given by

$$
E=E_{1} \hat{x} \cos \phi-E_{2} \hat{y} \sin \phi-E_{3} \hat{z} \cos \phi,
$$

where the phase angle $\phi=k_{x} x+k_{z} z-\omega t$. The Lorentz equation is

$$
p=q\left[E+V \times\left(B_{0}+B_{v}\right)\right]
$$

where p, V and q represent the momentum, velocity and charge of the electron; B_{w} is the wave magnetic field. This equation admits three constants of the motion derived from

$$
d / d /\left[p-q r \times B_{0}-k H / \omega+q A\right]=0,
$$

where A is the vector potential of the wave and $H=m c^{2} \gamma$, is the relativistic energy. γ is the standard relativistic factor $1 / \sqrt{1-u^{2} / c^{2}}$. The relativistic momentum and velocity are related by $p=m \boldsymbol{V}$. The time rate of change of the electron's Hamiltonian is

$$
\mathrm{d} H / \mathrm{d} t=q c^{2}(E \cdot p) / \boldsymbol{H} .
$$

Substitution into the Lorentz equation gives

$$
\begin{aligned}
& \dot{p}_{z}+p_{y}\left[\Omega+\left(q E_{2} k_{x}\right) /(m \gamma \omega) \sin \phi\right]=\left(q E_{1} / \omega\right)\left(\omega-K_{z} z\right) \cos \phi, \\
& \dot{p}_{y}-p_{x}\left[\Omega+\left(q E_{2} k_{x}\right) /(m \gamma \omega) \sin \phi\right]=-\left(q E_{2} / \omega\right)\left(\omega-k_{z} z\right) \sin \phi, \\
& \dot{p}_{z}-\left(K_{z} H / \omega\right)+\left(E_{3} / E_{1}\right)\left(\dot{p}_{x}+\Omega p_{y}\right)=0,
\end{aligned}
$$

where $K_{1}=k_{z}\left[1+E_{3} k_{x} / E_{1} k_{z}\right]$ and $\Omega=q B_{0} / m \gamma$ the relativistic electron cyclotron frequency. Dots over quantities indicate time derivatives. To this point the equations are exact.

Our first assumption is that terms containing the quantity $\left(E_{2} k_{x} / \omega\right)=B_{z} \ll B_{0}$ can be ignored in any reasonable geophysical situation. The second assumption is that to zero-order the x and $;$ components of the momentum vector of any test electron follow Larmor trajectories.

$$
\begin{aligned}
& p_{x}=-p \sin \left(\sigma+\alpha_{0}\right), \\
& p_{y}=p \cos \left(\sigma+\alpha_{0}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma(t)=\int_{0}^{1} \Omega\left(t^{\prime}\right) \mathrm{d} t^{\prime}, \\
& a_{0}=\tan ^{-1}\left(p_{x 0} / p_{y 0}\right),
\end{aligned}
$$

with the subscript 0 referring to initial momentum conditions.
After substituting into the Lorentz equation, expanding in a series of Bessel functions, averaging over fast time variation and filling many pages of algebra, whose main steps are indicated by VILIALON and BURKE (1987) we arrive at an equation in the form

$$
[1+U]^{2}[\mathrm{~d} U / \mathrm{d} r]^{2}+\omega^{2} V_{n}(U)=0
$$

This is very similar to the equation of a particle moving in a pseudo-potential field. The term $U=\left(H-H_{0}\right) / H_{0}$ represents the hamiltonian of the electron normalized to its initial value. The subscript n on the potential functions $V_{n}(U)$ represents the contribution of the n-th harmonic of the electron gyrofrequency. The actual form of the potential is given in Appendix 1 . Here we note several features of the potential that provide immediate insight into this electron acceleration model. First, an electron can only access the regions of parameter space in which V_{n} is negative. The regions of access can be determined for each harmonic by solving for the zeros of the potential. Second, at large value of U the potential increases as U^{\prime}. Thus, in the asymptotic limit V_{n} is positive and the amount of energy that can be absorbed from the wave is finite. Third, the contributions of the right, left and parallel polarizations are distinct and depend on Bessel functions of order $n-1, n+1$ and n, respectively. Thus, right circularly polarized waves should interact most strongly. Since the arguments of the Bessel functions are products of k_{x} and the gyroradius, accelera-
tion efficiency should be enhanced for test electrons with a substantial, initial kinetic energy.

To test the range of validity of the assumptions presented above, we have performed a series of numerical solutions of the Lorentz equation and compared the results with the predictions of our pseudo-potential model. In all cases we used electromagnetic waves propagating in the X-mode at a frequency twice that of the electron gyrofrequency. The ratio of the plasma frequency to the drive frequency is 0.58 . These correspond the conditions of $B_{0}=0.55 \mathrm{G}$ and $n=10^{4} / \mathrm{cc}$, typical of the bottomside of the ionosphere at auroral latitudes during periods of magnetic quiet. Note that under these conditions the waves are propagating below the right hand cutoff where Villalon and Burke (1987) predict the strongest electron/wave interactions. All cases presented here represent averages of 33 cases with random initial phases.

In Fig. I we present a summary of the numerical results. In log-log format we have plotted the maximum kinetic energy gained by initially cold test electrons normalized to their rest energy as a function of the wave Poynting flux in milliWatts per square meter. Note that existing mega-Watt ionospheric heaters typically

X-Mode Acceleration $\omega / \Omega=2$

Fig. I. Numerical solutions of Lorentz equation. The kinetic energy gain is plotted as a function of input wave energy flux. The straight line and triangles sepresent average energy gained by thirty three test electrons with random initial phase froin gyroresonant waves propagating along and at 30° to magnetic field lines, respectively.
deliver $1-10 \mathrm{~mW} / \mathrm{m}^{2}$ to ionospheric altitudes of $200-300 \mathrm{~km}$. The straight line and diamond symbols represent effects of radiation propagating along and at 30° to the magnetic field, respectively. Results for higher angles are similar to those at 30°. The characteristics of the acceleration divide into three categories which we call quasiperiodic resonance, chaotic and direct wave acceleration. The range of chaotic acceleration extends roughly from 10^{\prime} to $10^{11} \mathrm{~mW} / \mathrm{m}^{2}$.

Figure 2 provides examples of each type of acceleration with the solutions followed for 0.7 ms . Wave intensities of $10^{6} \mathrm{~mW} / \mathrm{m}^{2}$ accelerate initially cold electrons to 60 keV in $400 \mu \mathrm{~s}$ and then fall back to low energy. If the wave intensity is increased to $10^{8} \mathrm{~mW} / \mathrm{m}^{2}$ electron are accelerated irregularly to 9 MeV . In the direct

Fig. 2. Numerical solutions of the Lorentz equation for three wave energy flux levels followed for 0.7 ms.
acceleration regime wave magnetic fields are greater than B_{0} and electrons undergo periodic accelerations up to 50 MeV .

Comparisons of the predictions of the pseudo-potential model of VILLALON and BURKE (1987) with the numerical solutions of the Lorentz equation are given in Fig. 3, represented by dashed lines and triangles, respectively. The first impression gained from this comparison is that predictions of these independent approaches to the problem are in remarkable agreement. At a propagation angle of 0° the V - B and numerical solutions agree exactly. At other angles $V-B$ predicts less acceleration than was numerically calculated.

Fig. 3. Comparison of predictions of pseudo-potential models with exact numerical solutions of the Lorentz equation for different wave propagation angles.

Figure 4 plots the values of $V_{n}(U)$ for selected values of n. Again the wave frequency is at the second gyroharmonic, with a Poynting flux of $10^{\prime} \mathrm{mW} / \mathrm{m}^{2}$. The region of negative potentials extends down to $U=0$ for the first and second harmonics. We note however, that the slope of the potential for the first harmonic is steeper than the second at low energies. Thus, initial acceleration is by the first, rather than the second harmonic. Potentials of higher harmonics are initially positive and do not accelerate low energy electrons.

Fig. 4.

3. Radio Window Mode Conversion

It is obvious from the discussion presented above that serious acceleration of ionospheric electrons by ground antennas requires power enhancements that greatly exceed any capabilities that can be achieved within a reasonable time span. This is one time however, when nature appears to be working on our side. Mjolmus and FLA (1984) have studied O-mode radiation propagating in the ionosphere where the vertical plasma density gradient is at an arbitrary angle to the earth's magnetic field. Consequent to obeying Snell's law the cold plasma dispersion relation reduces to the Booker quartic (BOOKER, 1938). Normally, O-mode radiation propagates to the altitude where the driver frequency is equal to the local plasma frequency and is reflected. It is possible however, for radiation transmitted from ground in the O mode close to a critical angle θ_{c} to convert linearly to the Z -mode, where

$$
\left.\sin \theta_{c}=\sqrt{Y /(\bar{Y}+1}\right) \sin \psi .
$$

Here $Y=\Omega / \omega$. For the case we have been considering here $Y=2$. In Alaska where the magnetic dip angle is about $13^{\circ}, \theta_{\mathrm{c}}=7.5^{\circ}$ towards the south of vertical.

0 -mode rays in this "radio window" propagate in the slow extraordinary (Z) mode to the altitude of cutoff where they are reflected. As they approach the altitude where

$$
X=\left(1-Y^{2}\right) /\left(1-Y^{2} \cos ^{2} \psi\right)
$$

with $X=\left(\omega_{\mathrm{p}} / \omega\right)^{2}$, the Z -mode undergoes resonance. Here the group speed slows to zero. In this region the Z-mode turns into an electrostatic wave that propagates perpendicular to the B_{0}. Cold plasma theor; does not allow the possibility of electrostatic waves. VILLalon (1988) had included warm plasma effects as second order corrections to the Booker quartic. In the resonant region the group velocity (V_{k}) of the electrostatic waves is much less than the speed of light with which the radiation enters the ionosphere. The conservation of energy requires that the amplitude of the wave electric field steepens as $\left(c / V_{x}\right)^{1 / 2}$. Calculations by Villalon (1988) show that in the resonant region electrons can be accelerated by several keV with modest input powers of $1 \mathrm{~mW} / \mathrm{m}^{2}$. The possibility of the wave energy being dissipated by other non-linear processes must next be given careful analysis.

4. Planned Space Experiments

Experiments to test in space the validity of the theoretical models outlined in the last two sections are planned for the next several years. To perform such experiments two major elements are necessary: (1) an HF ground source, and (2) properly instrumented space vehicles. We first consider the impact of these constraints for mission planning.

Suitable ground antennas exist at Tromso in Norway, Arecibo in Puerto Rico and HIPAS in Alaska. Although the Tromso and HIPAS antennas have access to nearby rocket ranges, Arecibo does not. From the closeness of the "radio window" to both the vertical and magnetic field directions at high latitudes, rocket trajectories must pass both overhead and close to the magnetic meridian. Rockets fired from the Andoya range are constrained to over-water trajectories at some distance from Tromso. It is possible to launch rockets toward magnetic north from mobile launchers located south of HIPAS.

To measure the characteristics of the waves transmitted from the ground as well as their effects on both the ionospheric plasma and the acceleration of electrons to kilovolt energies, in situ diagnostics are necessary. These instru'?ents should measure: (1) the density and temperature of the ionospheric constituents ' n specify the cold plasma dielectric coefficient, (2) the spectral characteristics of waves in the ionosphere to provide information on alternate decay modes of the primary wave associated with parametric instabilities, and (3) energetic electron detectors that look both up and down magnetic field lines. The latter are useful for distinguishing wave-acceleration from natural auroral effects.

Some or all elements of this complement of passive detectors are available on present or planned American and Japanese polar orbiting satellites. Because of the repeatability of coordinated ground-satellite experiments these resources should be utilized to the fullest. There are however, significant drawbacks to satellite based experiments that cannot be ignored. First, satellites generally fly at altitudes far above the interactions discussed in the previous sections. At these heights it is very difficult to meet exacting magnetic conjunction conditions. Thus, only debris from wave-electron interactions can be detected. Second, because of the high speed of satellites and the relatively low sampling rates allowed to particle detectors, spatial resolution is probably insufficient. Limitations of the second kind are directly addressed by the joint US/Canadian satellite FOCUS I, scheduled for a Scout launch in the early 1990's. FOCUS will only operate in real time when in view of ground receiving stations. High spatial resolution will be achieved by using a broad band telemetry system normally associated with rocket experiments. Coordinated studies of wave-plasma interactions using ionospheric heaters is a prime scientific goal of this mission.

To understand the basic physics of wave particle interactions suborbital rocket flights have much to offer. First, they can be designed to pass close to or through critical volumes of space at relatively low speeds. Second, available telemetry rates allow important parameters to be measured with high resolution. Third, spatialtemporal ambiguities are easily resolved by simultaneous measurements with multiple payloads. Fourth, the environment can be actively varied to meet specific experimental goals. In the case at hand, an artificial auroral environment can be turned on and off by emitting charged particle beams from one of the rocket payloads. Fifth, rocket launches can be coordinated with satellite passes over heaters to gain maximum insight into the large-scale effects of localized plasma perturbation experiments.

An initial attempt to validate the electron acceleration concepts will be carried out during the light of the ECHO 7 rocket. ECHO 7 represents a cooperative effort between NASA, the University of Minnesota and AFGL. Launch from Poker Flat toward magnetic east is scheduled for a moonless evening during a period of low magnetic activity in the early winter of 1988. There are four payloads, one to emit electrons with controlled injection energy between 10 and 40 keV and pitch angles between 15° and 180°; the other three measure plasma, energetic particle and electromagnetic field effects of the beam emissions. The primary mission of ECHO 7 is to study the long distance transmission properties of electron beams in space. It is also ideally instrumented to measure the effects of HF waves interacting with controlied plasma environments.

The ground track of the ECHO 7 trajectory along with the positions of the Poker Flat Range, the HIPAS facility and Eilson AFB are sketched in Fig. 5. The heavy part of the trajectory line represents the post-deployment segment of the flight. The hatched portion near the HIPAS magnetic meridian represents the "radio window." The dashed line to the north of the trajectory represents the

Fig. 5. Schematic representation of ECHO 7 trajectory relative to the position of the HIPAS facility, The heavy line represents the post deployments phase of the flight. The dashed line represents the mirror points of beam electrons emitted downward from ECHO. This region will he illuminated by X-mode radiation at the second harmunic of the electron gyro-frequency.
location of magnetic mirror points at 100 km for beam electrons injected down the field lines. We note that full deployment of the ECHO payloads occurs about thirty kilometers to the east of the HIPAS magnetic meridian. Experiments designed to verify the effects of transmission through the "radio window" are thus doomed to failure. For this reason we have decided that during the ECHO flight it is better to illuminate the region of the magnetic mirrors with radiation near the second harmonic of the electron gyrofrequency in the X-mode. This is the right hand polarization mode that does not propagate to very high altitudes in the ionosphere. However, the $V-B$ model predicts efficient acceleration near the right-hand cutoff.

A series of follow-on rocket flights along the magnetic meridian over HIPAS is planned for the early 1990's as a joint effort with NASA and UCLA. The diagnostic packages to be flown during these experiments will be similar to those flown on ECHO 7. Photometers will be added to the complement to measure radiation from cavitons expected to form in the vicinity of the Z-mode resonance. Periodically during the mission, energetic electron beams will be injected into the resonance region. Thus, the relative efficiencies for cold/warm electron acceleration by Zmode radiation can be determined.

Figure 6 is a sketch of the planned experimental geometry. The rocket trajectories will be in the HIPAS magnetic meridian. HIPAS will transmit at the

Fig. 6. Schematic representation of a ray propagating in the ionospheric "radio window." Near the Z-mode resonance it is expected that plama density cavitons will form.
second gyroharmonic, in the O -mode. Rays outside the "radio window" are reflected to the ground with little effect on the ambient plasma. Inside the "radio window" radiation that converts to the Z -mode continue to propagate to the altitude of the left hand cutoff where they are reflected. As the Z-mode radiation approaches resonance the intensity of the wave vector turns normal to the magnetic field and the electric fields steepen. Ponderomotive forces generate plasma density cavitons (WONG and SANTORU, 1981; WONG et al., 1987). Electrons within the cavitons see intense electric field variations at the second gyroharmonic. When the rockets are near magnetic conjunction with HIPAS created cavitons, particle detectors should measure intense fluxes of accelerated electrons.

Appendix 1. Mathematical Form of Pseudo-Potentials

In the main text we argued that the equations of motion for a test electron in an obliquely propagating electromagnetic wave can be reduced to the form of motion in a potential well.

$$
(\mathrm{d} U / \mathrm{d} t)^{2}+\omega^{2} V_{n}(U) /(U+1)^{2}
$$

where $U=\left(H-H_{0}\right) / H_{0}$ is the energy gained normalized to the initial relativistic Hamiltonian. The potential well associated with the \boldsymbol{n}-th harmonic of the electron gyro-frequency is

$$
\begin{aligned}
V_{n}(U)= & \left(d_{1} U / 2\right)^{2}\left(U+2 r_{n} / d_{1}\right)^{2}-\psi(0) \sin \phi_{n} d_{1} U\left(U+2 r_{n} / d_{1}\right) \\
& +\left(\Sigma_{1}-\Sigma_{2}\right) / 2\left\{\left(\Sigma_{2} d_{1}-\Sigma_{1} h_{1}\right)\left(G_{n+1}(U)+F_{n+1}(U)\right)\right. \\
& \left.+\left(\Sigma_{2} d_{2}-\Sigma_{1} h_{1}\right) F_{n+1}(U)\right\} \\
- & \left(\Sigma_{1}-\Sigma_{2}\right) / 2\left\{\left(\Sigma_{1} h_{1}+\Sigma_{2} d_{1}\right)\left(G_{n-1}(U)+F_{n-1}(U)\right)\right. \\
& \left.+\left(\Sigma_{1} h_{2}+\Sigma_{2} d_{1}\right) F_{n-1}(U)\right\} \\
- & \Sigma_{3}^{2}\left\{h_{1}\left(G_{n}(U)+F_{n}(U)\right)+h_{2} F_{n}(U)\right]-\left(\psi(0) \cos \phi_{n}\right)^{2}
\end{aligned}
$$

Terms with $\Sigma_{1}+\Sigma_{2}$ and $\Sigma_{1}-\Sigma_{2}$ refer to the right and left hand polarization modes, respectively.

Here also

$$
\begin{aligned}
& \Sigma_{i}=-\left(q E_{i} / \omega\right) c / H_{0} \quad i=1,2,3, \\
& d_{1}=1-K_{z} k_{z} c^{2} / \omega^{2}, \\
& d_{2}=\left(K_{z} k_{2} c^{2} / \omega^{2}\right)-k_{z} \dot{z}_{0} / \omega, \\
& h_{1}=1+\left(K_{2} / k_{z}\right)\left(d_{1}-1\right), \\
& h_{2}=\left(K_{2} / k_{z}\right) d_{2},
\end{aligned}
$$

$$
\begin{aligned}
r_{n}=1 & -k_{2} z_{0} / \omega-n \Omega_{0} / \omega \\
\phi_{n}= & k_{1} z_{0}+n\left(\alpha_{0}+\pi / 2\right), \\
\psi(0)= & V_{0} / 2 c\left[-\left(\Sigma_{1}+\Sigma_{2}\right) J_{n-1}\left(k_{x} \rho_{0}\right)+\left(\Sigma_{2}-\Sigma_{1}\right) J_{n+1}\left(k_{x} \rho_{0}\right)\right] \\
& +V_{x 0} / c \Sigma_{3} J_{n}\left(k_{x} \rho_{0}\right),
\end{aligned}
$$

where J_{n} represents a standard Bessel function of order n. The functions $G_{n}(U)$ and $F_{n}(U)$ are defined by

$$
\begin{aligned}
& G_{n}(U)=\int_{0}^{U} J_{n}^{2}\left[k_{x} \rho\left(U^{\prime}\right)\right] U^{\prime} \mathrm{d} U^{\prime} \\
& F_{n}(U)=\int_{0}^{U} J_{n}^{2}\left[k_{x} \rho\left(U^{\prime}\right)\right] \mathrm{d} U^{\prime}
\end{aligned}
$$

REFERENCES

Babaev, A. P., S. B. Lyakhov, G. G. Managadze, A. A. Martinson, and P. P. Timofeev, Plasma particle acceleration due to emission of ground-based and onboard transmitters, in detive Experiments in Space. ESA SP-195 61-65, 1983.
Batchelor, D. B. and R. C. Goldfinger, A theoretical study of electron-cyclutron absorblion in El.MO bumpy torus, Nuc. Fus., 20, 403-417, 1980.
Booker, H. G., Propagation of wave-packets incident obliquely upon a stratified doubly refracting ionosphere, Philos. Trans. R. Soc. London Ser. A, 237, 411, 1938.
James, H. G., Saunder-accelerated electrons observed on ISIS, J. Geophys. Res., 88, 4027-4040, 1983.
Lee, M. C., K. M. Groves, C. P. Liao, D. R. Rivas, and S. P. Kuo, Cumbined operation of two ground transmitters for enhanced ionospheric heating. J. Geomag. Geoelectr., this issuc. 1141-1145, 19 ks.
Menyux, C. R., A. T. Drohot, K. Papaidupuulos, and H. Karimabadi, Stuchastic election acceleration in obliquely propagating electromagnetic waves, Phys. Rev. Lett., 58, 2071-2074, 1987.
Miolhus, E. and T. Fla, Direct access to plasma resonance in ionosphere radio experiments, J. Geophys. Res., 89, 3921-3928, 1984.
Roberts, C. S. and S. J. Buschbaum, Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field, Phys. Ref., 135, A381-A389, 1964.
Rose, G., G. Grandal, e. Neske, W. Ott, K. Spencer, J. Holtet, K. Maseide, and J. Troim, Experimental results Irom the HERO project: in situ measurements of ionospheric modifications using sounding rockets, J. Geophys. Res., 90, 2851-2860, 1985.
Stubee, P., H. Kapka, M. T. Rietveld, A. Frey, P. Hoeg, H. Kohl, e. Nielsen, G. Rose, C. Lahoz, R. Barr, H. Derblom, A. Hedberg, B. Thilde, T. B. Jones, T. Robinson, A. Brexke, T. Hansen, and O . Holt, ionospheric modification experiments with the Tromso heating facility, J. Atmos. Terr. Phys., 47, 1151-1163, 1985.
Villalon, E., lonospheric electron acceleration by electromagnetic waves near regions of plasma resonance, submitted to Phys. Rev. Letr., 1988.
Villalon, E. and W. J. Burkr., Particie acceleration by obliquely propagating electromagnetic fieids, Phys. of Fluids, 30, 3695.-3702, 1987.
Wong, A. Y. and J. Santoru, Active stimulation of auroral plasma, J. Geophys. Res., 86, 7718-7732, 1981.

Wong, A. Y., T. Tanikawa, and A. Kauthi, Observation of ionospheric cavitons, Phys. Rev. Leit., 58, 1375-1378, 1987.
active control and nonlinear feemback instanilities in ilie EARTI'S RADIATION BRLTS
H. B. Stlevitch.* P. L. Rothwell,** and E. Villaton*
*Center for Electromagretics Research, Northeastern
University, Roston, MA 02115, U.S.A., 由AAIr Force
Ceophystca Laboratory. Hanscon Air Force Rase, Dedford MA, O1J3I, U.S.A.

ABSTRACT

The stability of trapped particle fluxes are examined near the Kennel-Petschek limit. In the obsence of coupling between the foluspherc and magnetosphere it is iound that both the Ituzes and the assoclated vave intensitics are stable to external perturbat ions. However, if the lonosphere and magnetosphere are coujled through the ducting of the waves eluen a posizive feedback may devalop depending on the efficioncy of the coupling. This results is a spiky, nonllnear precipitation pattern which for electrons has a period on the urder ol hundreds of seconds. liere we fiva a linear analysis that highifghts the regions of Instability togather with a computer aimulation of the monlinear regimes.

INTRODUCTION

Active control of energetic particlefluxes in the radistion belts has been a upl of inajor interest in both the United States and the Soviet Unton. Filectron dumfing experimerits condurted by the Stanford Untversity and Lockheed groups using Vif transmissions are wellknown /1.2/. Perhaps less known is the theoretical work by Traklicengerts/3/ entitled "Alfuen Maserg" in which he proposes a theoretical schese for dumping both electrons and protons from the radiation belts. Tho basic idea is to use Rf energy to heat the lonosphere at the fnot of flux tube co ralse the height intugrated conductivity. The conductivity is then modulated at VLF or ELF frequencles which modulates the reflection of waves that cause pitch angle diffusion In the equatorial plane. The artifictally enthanced conductivity of the lonosphere thuy maintains high wave energy densities in the associated flux tube theruby producing a positive feedback.

In addition to external lonospheric perturhations particle precifitation also raises ionospherle conductivity. The trapping of VI.F vaves causes further preciplitation which, In principlo, results in an explosive instablity. The purpose of this paper ls to restablish the basic equations.

The fundamental equations derived by /3/ are based on quasilinear plasme theory and relate only to the weak diffusion regime. Wh have plotted an example of the Trakhtengerts equations in figure 1. Here watilustrate the importance of posicive feedback from the lonosphere using a porameter t_{M} which parameterizes tho strength of the coupling. When the couplink is wak, perturbations near the Kennel-Petschek limit slowly damp away. flowevor, as the coupling strength excends 5% highly nonlinear oscillations devalop. It is important to note that the splky bohavior that results ctearly violates the basic assumptions upon ulifh quasillnear cheory is based. Wo, therefore, weed co set the Trakhtengerts analysis on flimer ground. In paritcular, one needs to take Into account the change in pitch angla anlsotropy as function of the pitch angle diffusion coufficient.

It is uscful to use aimilar set of equations derived by Schulz /h/ which are based on phenomenological artuments that include strong pitch angle diffusion. The hey varlablas ere H, the number of trapped particles per unit aros on flux tube and D, the normalized pitch angle diffusion coeffictent which is proportional to the invorse trappling lilfotime. Ne note that D Is avoraged over the entire flux tube. In the Schulz formulagion thatime rate of change of N is given by

$$
\begin{equation*}
\frac{d N}{d t}=\frac{N D}{\left(1+D t_{s}\right)}+s_{0} \tag{1}
\end{equation*}
$$

Where the first tere tepresents lasses due to pltch angle becateoring and So represents an equatorial particle source term for the particular flux tube. The paramoter, is, characterlzes tho expected trapped partlcie lifutimas due to strong piteli ankle diffusion. For electrons this is on the order of a handred secours. Note that the denominator in (i)
reflects the change in pltch angle antsotropy as a function of D which is nerisisiry lur corsistency. The timo rate of charge of D is given by

$$
\begin{equation*}
\frac{d D}{d t}=D\left(2 \gamma+V_{R} \frac{\ln R}{1 N_{E}}+W_{0} / 1_{s}\right. \tag{2}
\end{equation*}
$$

The first term represents wave growiti near the equatorial plane, the second term Rivns the wave losses in and through the fomosphere and the third accounts for any wave efieriy sources.

Fig. 1. The effect of ionospheric feedback on electron precipitation. Note the spiky behavior due to the nonlinear nature of the feedback process.

In the second term, the expression $V_{G} / \operatorname{LD}_{E}$ approximaces the bounce frequency of waves where V_{8} is the eroup velocity of the wave. . H_{E} the approximate length of a flux tube; H is tiv reflection coefficient of the lonomphere. Since $R<t$ the second term is aluays nugative. The denominator in (1) reflects ehe decreased efficiency for pitch angle scatering ilirough wave-particla interactions as the diffosion rate increases. This is due to the plich angle distribution becoming more lisotropic as described by Kennel and petsrtuek/S/.

The wave growth is of particular interest and requires further conment. It can be expressed as

Where A_{0} is defined by the value of the grouth rate, Y_{0}, at the Kennel Petschek limit where
 setting che LAS of $\mathrm{P}^{(i)}$ to zero.

$$
\begin{equation*}
S_{0}=\frac{N_{0} D_{0}}{\left(1+D_{0} s^{\prime}\right)} \tag{t}
\end{equation*}
$$

We now include the coupling of the radiation belt vaves and particles to the active tonosphere. This mechanism Introduces a positive feedback effect which will structure the large amplitude nonilnear response of the system /3/. The key idee here is thit the precipitating alectrons modify the lonospheric plasma density which. in turn, mudifins the ionosplerfc reflection of the waves causling the precipitation. Tife modilication of the plasma density by the precifitation is given by

$$
\begin{equation*}
\frac{d n_{1}}{d t}=Q\left(\frac{D N}{2\left(1+D_{r_{s}}\right)}\right)-o_{r} n_{1}^{2} \tag{5}
\end{equation*}
$$

Were nt is the lonospherle plasma density. The RHS of (5) represents a balance of dunsity increase due to the pracipliating particle llux and a decrease due fo rlinctrontion rocombinstion effecte. 0 is the fonfitition efficiency (electrons/em) and or is the rerombinntion coefficient.

Positiva feedback arises when enhanced lonization causus enlianced wave reflrctlon. Tho unhanced tonization a calculatul from (5) increases R In (2) causing b to licioase. Therefore, the trick is to relato changes in the rofloction cunfficient to changes in this tonospheric plasma density. This iy fatticularly diffleult for whistler waves lecaust. uf the unknoun nature of the ducting efficloncy as well as uncertaintles in the reflection procrss at the lonosphere. Therefore, we assume an cmplitcal coupling relationship which is givin by

$$
\begin{equation*}
\frac{6 n^{n}}{n_{0}}=\frac{c \delta n_{1}}{n_{10}} \tag{6}
\end{equation*}
$$

Ilere c is an adustable parameter whose strength Indicates the degree of coupling botwen changes in the ionospheric density and clanges in the vave reflection cofficleat. Note that c as used hare is similar to hut not exactly the same as rm used figure 1 . As sorin lution
 dlifusion case).

We fnitially examine the stabllity of equations (1), (2) and (5) by performing a linear perturdation andiyals. All firgt order guantitics are considered to vary as exp(st/ra). Rern order quantities are deftued at the Kennel-petschek limit and are dennted by the" "a" subscript. A cuble equation (dispersion ciation) is obtalned for the mondincustonil naturil frequencles. s. This equatlon is given by

$$
\begin{align*}
& \left(s+W_{0} / D_{0}+2 \gamma_{1} D_{1}\left\|_{s}+0_{1}\right\| s+2 t_{s} / t_{r}\right) \tag{7}
\end{align*}
$$

 lonusphere and magnetosphere nre desoupled ($\quad-0$) equation (1) can be rifuced (", 1 quadratic. It is found that damped oscillatory molutions exist fin the meak diliuston limit

 (3) must be retalned in the linear analysis even in the weak diffusion limit.

The full cublc equation for the case when f : nonzero ylelds the following three solutions

$s_{1}=-4$

$$
\begin{equation*}
\left.\left.s_{2.3}= \pm \frac{101 / 7}{9} \right\rvert\, 54 D_{1}-15 c\right]^{1 / 2} \tag{8}
\end{equation*}
$$

Now when $e>54 D_{1} / 35$ then we have a purely growing (unstable) mode. Alternatively when tits condition is not satistled we have oscillatury solutions. Fvolutiout of the unstable moile vill soon exceed the linear regtma and the nonlinear dynambes must examined using other techiniques. We, therafore, give numerical exampis as shown in Figure 2 which highights the nonlinear nature of the feedhack mechanism. (See also ilpure 1). The top pancl ol figure
 bottom panels of Figure 2 represent N and n_{i}. Attention is directed to the phase relationshlps batween the threc curves. The maximum particle flux leads tho vavo lintensity and soes tirough the Kennel-Petschek lifit as the wave grouth changes from positive to negat (vo. The maximun ionosphericeffect occurs after the wave splke maximum. Our physical Interpretation of figure 2 is as follous. A spike in the wave energy denslty causes a depletiou of electrons trapped In tha belts to levels wali below tha Kenmel-Parsclick ifitit. The subsequant drop of proclpitafing eluctron flux atlows nit co decrease. Thus, Vi.f vaves are luss itrongly reflectud back linto the magnotosphere. This effectively raisen the KennolPetschek limic as higher particle fluxes are necessary to offset increased lomospheric VI.F absorbetion. When the equatorial particle source causas the trapped elcetrong to crcied the sem Kennel-Petschek lifit an explosivu burst of precipleatlon is produced due tu the ionosphertc feedbeck. The repection rate or frequency of these bursts is on the ordir of hundrads of saconds and la governed by the flobal nonitinear dynamien of thin ratlation belt syatem.

DISCUSSICN AND CONCLUSIONS
Davidson and Chiu /6/ assumed a passive lonosphere and obtained linear osclllatory solutions in the stront diffusion limil by liaving the grouth rate be modulated by the filling and dumpint of the loss cone. Wa have not yet fincorporated this fililing mechanism fito tho prasent approach. Instead our oscillations arise from tho large amplitude nonlinear coupling between the precipitatint particles and the reflected waves at the lonosphere. We are presently modifying our numericel approach by including a realistic estimation of the luss cone fllilng time in both moak and strong diffusion liwits. Ihopefully, this will more completely characterito those oscillatory (sptky i) refimes phat have bren obsurvid in the dala. For emamplo, see the paper by lvarsen et al. /7/.

F18. 2. Example of aptke-1tke VLF wave etructures te wall as energotic particle losses and ionospheric density changes arising from the magnetosphere-lonosphere couplinf described in text.

ACKNOWLEDCEHENTS

It is with pleasure that we acknowledge the helpful comments of Nelson Maynard, William Burke, Fredertck Rich. Howard Singer and Hichaci llelnemann from the Air Force Gcophysics Laboratory. One of the authors (HBS) vould like co ecknowledge the support of U.S. Alr forte contract Fi962f-85-K-0053.

REFERENCES

1. U. S. Inan, T. F. Beil, and H. C. Chang. Particle precipitation induced by short duration VLF waves in the agnetosphere. J. Geophys. Res. 87, 6243-6264 (1982)
2. W. L. Imhof, II. D. Voss, J. B. Reaxan, D. W. Dat Iove, and D. S. Evans, Reletivistic electron and onergetic ion precipitation spikes near the plasmapause. J. Goghyg. Res. 91. 3077-3088 (1986)
3. V. Yu. Trakhtengerts, Alfven Masers, In: Active Experiments in Spaca, ESA-195, 1983, p 67.
4. N. Schulz, Particle saturation of the outer zone: nonlinesr model. Astrophys. and Space ScI. 29. 232-242 (1974)
S. C. F. Kennel and H. E. Petschek, Limit on stably trapped particle fluxes, J. Geophys. Res. 71. 1-28 (1966)
5. G. T. Davidson, and Y. T. Chiu, A closed nonilinear model of wave-particle interactions in the outer trapping and morningside auraral regions. J. Geopliys. Res. 91, 13705-13710 (1986)
6. I. B. Iverson, L. P. Block, K. Bronstad, R. Crad, C. Haerende I, II. Junjinger, A. Korth, G. Kremser, H. Madsen. J. Nıskanen, W. Riedier, P, Tanskanen, K, M. Torkar, and S. Ullaland. Simultaneous observations of a pulsation event from the ground uith balloons and with egeostationary satellite on August 12, 1978, J. Geophys. Res. 89, 6775-6785
(1984) (1984)

GYROHESONANT INTERACTION OF ENEHCBITIC TRAPPED ELECTRONS AND PHOTONS

Elena Villalón and Michael B. Silevitch
Center for Electromagnetics Research, Northeastern University, Boston MA 02115

William J. Burke and Paul L. Rothwell
Geophysics Laboratory, Hanscom AFB, MA 01731

ABSTRACT

This paper studies the theory of gyroresonant interactions of energetic trappred electrons and protons in the Earth's radiation aones with durted electronagnetic cyclotron waves. Substorm injected electrons in the mid latitude regions interact with coherent VLF signals, such as whistler mode waves. Energetic protons may interact with narrow band hydromagnetic (Alfvén) waves. A set of equations is derived based on the Fokker - Planck Hirery of pitch-angle diffusion. They describe the evolution in time of the mumber of pasticles in the flux tube and the energy density of waves, for the interartion of Alfvén waves with protons and of whistier waves with electrons. The coupling coefficients are obtained based on a quasilinear analysis after averaging over the particle bounce motion. The reflection of the waves in the ionospherc is discussed. To dump the energetic particles from the radiation belts efficiently, the reflection coefficient must be very close to unity so waves amplitudes can grow to high values. Ther, the precipitating particle fluxes may act as a positive feedback to raise the height integrated conductivity of the ionosphere which in turn, enhances the reflection of the waves. In addition, by ieating the foot of the flux tube with high intensity, RF energy the mirroring properties of the ionosphere are also enhanced. The stability analyasis around the equilibrium solutions for precipitating particle fluxes and wave intensity, show that an actively excited ionosphere can cause the development of exponentially growing instabilities.

I. INTRODUCTION

A theory of nonlinear interactions of radiation belts particles with cyclotron waves is developed here. We consider cases where the wave frequencies are small fractions of the equatorial cyclotron frequency and where the wave vectors are aligned with the geomagnetic field. Because of the latter we only consider resonant excitations due to the first harmonic of the cyclotron frequency. For high-temperature plasmas, the pitch-angle distributions of

Sciemific: Publishers, Inc., Cumbridge, MA $02 / 39$
The U.S. Government is authorized to reproduce and sell this report. Permisslon for further reproduction by others must be obtalned from the copyright owner.
trapped thermal particles in the llax tube changes in timu and their distri-
 rates for the whistler and Alfven instabilities. due to the resonant excitation set of coupled differential equations describing the evolution in time of the number of particles in the flux tube. and the energy density of waves. They: are discussed in Sec. V. The equilibrium solutions for whistlers and Alfven waves are given here. The nonlinear stability equation is also given in Sec. V. In Sec. VI we study the reflection of the waves at the foot of the flux effects that an actively excited ionosphere may have in the stability of the equilibrium solutions. Sec. VIII contains a summary and the conclusions. II. RESONANT WAVE PARTICLE INTERACTION
A particle of mass m. charge q and velocity t. moving along the dipole
field lines of the Earth's magnetic field, bounces from mirror points in the conjugate hemispheres in a time given by
(1)
where the coordinate $=$ represents the distance along the magnetic field line
 $\left(z\right.$-direction), is $v_{2}=v\left(1-\mu \Omega / \Omega_{t}\right)^{1 / 2}$. where $\Omega=q B / m \mathrm{~m}$ is the ryclotron frequency, and $\mu=\sin ^{2} \theta_{L}$. Here θ_{L} is the particle's pitch angle at $==0$. .e.

 calculations that follow.
For analytical simplicity, we assume that in the equatorial region we mayapproximate the Earth's magnetic field by the parabolic profile
 nux tube. If we define \because as the geomagnetic latitude in radian units, and
expand the dipole magnetic field in powers of v we find that $: \simeq R_{E} L_{2}$

 the Earth. Eq. (2) is a good approximation to the geomagnetir ficld lines
for latitudes smaller than $\pm 20^{n}$.
the particies are anisotropic. whirh provides the free energy for the cyclotron instability. As a distribution lunction relaxes toward equilibrium. it interacts with several types of electromagnetic waves. A number of observations of electron precipitation in middle latitudes ($L \leq 6$). have been attributed to highly coherent magnctospheric V'LF waves $|1-3|$. Substorm-injected protons in the midlatitude regions. interact with ULF hydromagnetic pulsations of the Pc type, which are ducted along a given magnetic flux tube [4]. The amplitudes of the waves grow directly proportional to the number of resonant particles and the degree of the pitch angle anisotropy until they reach the equilibrium state. The generated waves, in turn. act upon the particles and change their velocity distributions. Some of these particles are scattered into the loss cone producing the well known particie precipitation fluxes investigated by Kennel and Petschek [5] and observed in the ionosphere.

The amplification of the electron (proton) cyclotron waves mainly occurs near the equatorial region where resonant wave-particle interactions are most efficient. As waves travel along the flux tube and enter the ionosphere they are partially reflected back into the flux tube. and partially transmitted toward the ground. An important concept developed by Bespalor and Trakhtengerts $[6]$ and Trakhtengerts (7). considers the magnetosphere as a
gigantic maser where whistler and Alfven waves are trapped between ionospheric mirrors grow in amplitude as they cross back and forth across the equatoriai region. They derive a set of equations based on quasilinear theory
 density of waves in the flux tube. The ray equations were aiso introduced in a phenomenological manner by Schulz (8). Our paper is a detailed review of the theory developed by Bespalov and Trakhtengerts on the electron action of Alfven waves with ions. For simplicity, we assume that the waves are ducted in the magnetosphere between the ionosphere and the equatorial plane. We also estimate the qualitative values of the ionospheric reflection coefficients for both whistler and Alfven waves. The role that an actively excited ionosphere may play in modifying the wave reflection coefficients and ey as follows. Sections 11 and III contain the basis The paper is organized as follows. Sections II and III contain the basis the evolution in time of the particle distribution functions based on local. quasi-linear theory. We assume that the dielectric properties of wave propagation are given by a cold background of either ejectrons (for whistlers). or protons (for Alfven waves). The population of hot plasma particles (i.e.. larger than 40 keV for the electrons and 100 keV (or the ions). is represented near the equatoriai regions. Hecause of resonant diffusion. the number of

Ducted whistlers and Alfven waves are such that their wave vector k is aligned with the geomagnetic ficld. These waves grow if the partucle motion
resonates at the first cyclotron harmonic and there is a sufficient number of eiectrons or protons which satisfy the resonant condition,
(3)
where \rightarrow is the wave frequency. The electromagnetic wave is assumed to be circularly polarized, with the electric and magnetic fields perpendicular to each wher and both perpendicular to k. The refractive index is represented the Alfven waves (see Sec. IV). Eq. (3) defines a mapping between values of the cyclotron frequency Ω along the geomagnetic trap, and the resonant equatorial pitch angles μ, for given values of k and v, i.e. $(\Omega+\omega) / k v=$ $\left(1-\mu \Omega / \Omega_{L}\right)^{1 / 2}$. The range of resonant equatorial pitch angles, i.e. those
that satisfy Eq_{q}. (3): $\mu_{c} \leq \mu \leq \mu_{m}$, is such that μ_{c} is given by the pitch that satisity ε_{q}. (3): $\mu_{c} \leq \mu \leq \mu_{m}$, is such that μ_{c} is given by the pitch
angle at the boundary of the loss cone and μ_{m} is defined in terms of the equatopial cyclotron frequency. The resonant gyrofrequencies are such that
 are resonant with the values of the equatoriai pitci angles corresponding to μ_{m}. and μ_{c}, respectively (see Fig. 11. We may also write that $\Omega_{M} / \Omega_{L}=$

(4)

For given values of the particle's energy and wave vector, we obtain

$$
\psi_{m}=\frac{\sqrt{2}}{3}\left(k v / \Omega_{L}-1\right)^{1 / 2}
$$ Theu by equating Eqs. (4) and (5), we may obtain the equatorial range of

resonam prith angles in terms of the particie velocities and wave vectors. By realizing that the argument of the square root in Eq. (5) wast be larger than zero we obtain that the wave frequency must be such that: $\omega / \Omega_{L}>c /(v \eta)$. time scales which are much larger than the temporal changes in the magneluplasina. We derive the equations for the evolution in time of the number of energetic particles in the flux tube as a function of the wave energy intensity.
III. DISTRIBITION FUNCTIONS OF RESONANT PARTICLES
The cold particie population ghes the dielectric properties of wave prop-
axatiun in the magnctosphere; ther distribution function is isotropic in putit angic. The total distribution junctions for the energetic particles are anisotropic maxwellians. For a staile plasma. it is a function of μ and v and立dependent of the distance z along the thux tube for $|z|<l_{m} / 2$. The ener\therefore hich are resonant with the waves and those which are not. In this paper f *hich are resonant with the waves and those which are not. In this paper f
Epresents only the resonant portion of the distribution functions. The cyclotron instability can modify the distribution functions of the res: along the flux tube. However for the weak diffusion case we assume that : does not depend on $=$ between the mirror points $|z| \leq l_{\mathrm{m}} / 2$, and that the athisotropy in pitch angle is independent on time; we may write
(6)
where $Z(\mu)$ is the lowest order cigenfunction of the diffusion operator which s denned beiow, and $\sigma=1 / \mu_{c}$, is the mirror ratio. The number of resonant . 15 denoted by. V(t). Here $N(t)$ depends on time over time scales such hat $t>\tau_{t}$ and $t>\tau_{g}$, where τ_{a}, the particle's bounce time, is defined in U. (1). The time that the wave spends traveling between one conjugate
cemisphere and the other is represented by τ_{g}.
The evolution in time of a plasma particle distribution function in the sresence of a specified distribution of waves is described by quasilinear theory

$$
\begin{aligned}
& \frac{\alpha U_{:}}{\frac{1}{p^{2}}} \frac{1}{\partial p} p^{2} \frac{p_{\perp}}{p}-2 \frac{\Omega_{L}}{\omega} \frac{p_{x}}{p^{2}} \frac{\partial}{\partial \mu} \frac{p_{1}}{p_{i}} \\
& \dot{G}=\frac{p_{2}}{p}\left(\frac{\partial}{\partial p}-2 \frac{\Omega_{L}}{\sim} \frac{1}{\partial \mu}\right)
\end{aligned}
$$

(9)
where $"=c h /-$ is the refractive index. The energy density of waves is $H_{A}=B_{:} \cdot 10: *$. Where B_{4} is the wave magistic held. Here ω_{p} is the plasma
irequenc: evaluated for the cold background uf plasma particles of density n We assume that $n \geqslant N / \prime$, where $/$ is the length of the llux tube. We now inteErate E4 it, alung the flux tube by applying the operator $\left(1 / \tau_{B}\right) \int_{-1 / 2}^{1 / 2}\left(d z / v_{s}\right)$

It. Wow that E_{4} (15) call be apphed to crether the interaction of whistlers will electrons of Alfvell waves with ions provided that the gyrofrequencies in
 1) Wate crowth rates
The thear wave growth rates for resonam wave-particle interaction is
enen by ti.
$\bar{\Sigma}=\frac{2 \pi^{-}-\dot{0}}{n_{-} \cdot 2} \int_{0}^{\infty} v^{2} d v \int_{\omega}^{m-m} \mu d \mu \frac{\Omega^{2} / \Omega_{L}}{\left(1-\mu \Omega / \Omega_{L} j^{1 / 2}\right.} \frac{1}{\eta^{2}} \delta\left(-\omega+k v_{i}-\Omega\right) \frac{\partial f}{\partial \mu} \quad(19)$
where we have taken $\eta \gg C / v$, To ubtain the spatial amplification factor we aphy the operator $\left.\left(1 / r_{g}\right) \int_{-, i, 2}^{2} d z / v_{g}\right)$ to both left and right sides of Eq.

the evolution it ume of the energy density of waves W_{k} is given by $\frac{\partial H_{k}^{\prime}}{\partial t}+c, \frac{\partial W_{k}^{\prime}}{\partial z}=\left(r-\frac{r}{-}\right) W_{i} \quad$ (21)
Hese - is given by E. (19) and $r=-2 \ln R$, where R is the reflection wellicieat at i,oti ends of the limx tube it.e.. the ionospheric reflection coEllicient: By assuming that IV_{2} depends weakly on z, and after integrating
Ey. .21) atong the flux tube we obtain $\frac{d W_{i}}{d t}=\frac{\Gamma}{-} W_{k}-\frac{r}{T} W_{k}$ He nust : now estimate the terms Γ / r, and r / r_{3} for whistlers and Aliven
gaussian units, the length of the flux tube, l, is approximately of the order of ten times the Earth's radius, and τ_{f} of the order of a few seconds. The of resonant pitch angles is 40°. The coupling coefficient for the wave growth rate (see Eqs. (24) and (25)) is $\Delta_{e}(\nu / \pi a) \simeq 10^{-10} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. For a particle

We consider the interaction of 200 keV protons with Alfven waves at $L=4.5$. The wave frequency is takien equal to 1 Hz and the refractive index $\eta=9$. Thus the plasma frequency is 10 Hz , the cyclotron frequency is
5.45 Hz , the maximum geomagnetic latitude ψ_{m} is about 10°, the range of resonant pitch angles is 34^{+}, and $\left[2\left(\mu_{m}-\mu_{c}\right)\right]^{1 / 2}$ is 0.8 . The group time delay

 s^{-1}. By assuming that $\mathcal{J}=10^{3}$ to 10^{6} particies $/\left(\mathrm{cm}^{2} \mathrm{~s}\right)$, and that $R=0.8$
we show that $\nu \simeq \rho^{2}$ and their values range between 10^{-6} to $10^{-3} \mathrm{~s}^{-2} \tau_{g}^{2}$ A. The stability equation
(36)
 where $\alpha=e, i$ depending on whether we are studying either electrons or
 $\frac{d \hat{N}}{d \tau}=-\dot{N} \dot{W}_{\mathrm{k}}+\dot{J}_{\mathrm{d}}$

$\hat{N}=\Delta_{o}\left(\frac{v}{\pi a}\right) r_{g}\left[2\left(\mu_{m}-\mu_{c}\right)\right]^{1 / 2} N$

$$
\begin{aligned}
& \text { A. The stability equation } \\
& \text { Let us now define }
\end{aligned}
$$

$\frac{d \dot{W}_{k}}{d r}=\hat{N} \dot{W}_{k}-r \dot{W}_{k}$
(39)
 8utuyap रit
$\dot{N}=\frac{d \phi}{d \tau}+r$
(40) (41)

V. THE RAY EQUATIONS

The equations describing the parametric coupling between the energy density of whistier (Aliven) waves H_{k}^{\prime}, and the number of electrons (protons) in the flux tube are
(29)

 Let us now assume that the system is in equilibri
$d V_{k}^{\prime} / d t=0$. We find that $W_{k}=W_{0}^{\prime}$ and $N=N_{0}$ where

> (IE) (zع) $\quad \varepsilon / t-\left[\left({ }^{\circ} n-\omega \pi\right) z\right]^{2 D / a^{\circ} \Gamma^{6} \perp} \frac{1}{2}=$

 'suo! we find

$$
(\varepsilon \varepsilon)
$$

 we obtain that $\zeta=-v \pm 1\left(\rho^{2}-\nu^{2}\right)^{1 / 2}$, where
\qquad (34) (sc) \quad rit $t=0$ Hecause ν and $\rho>0$, we see that the equilibrium solutions in Eqs. (34) and

 30. The interaction occurs at $L=4.5$. Thus the mirror ratio σ is equal to
1.6×10^{2}. the square of the equatorial magnetic field ia $B_{L}^{2}=1.16 \times 10^{-5}$
We note that as $r \rightarrow \infty$. \dot{N} and \dot{i}^{\prime} tend to the equilibrium solutions $t i{ }^{\prime}$, and
\dot{i}, and thell we must liave that $\varphi \rightarrow 0$. He note that as
\dot{H}, and then we must liave that $\varphi \rightarrow 0$.
la the linear approximation the deviation from equilibrium is small. i.e. we may assume that $\phi<1$. In addition we may write $\phi=\exp (\zeta \tau)$ where cquilibrium given given in Eqs. (34) and (35).

VI. THE WAVES REFLECTION COEFFICIENTS

As a wave enters the ionosphere it is partially reflected back into the magnetic trap and partially; penetrates the ionosplere and gets to the ground. of the wave amplitude which gets reflected back, and W_{k} is the wave amplitude in the flux tube. The value of the rellection coefficient depends on several factors such as the ratio between the wave and collision frequencies with the enviromental particies (neutral). It also depends on the ratios of the size of the ionosphere d, the wavelength $\lambda=2 \pi / k$, and the scale of the density gradient \mathcal{L}, where

(43)

 by η_{F}. η_{E}. and η_{0}, the refractive indices in the F and E-layers. and in
the fiux tube, respectively. Next we discuss qualitatively the reflection of

the inclination of the waves duct exit with respect to the vertical is small.

A. Reflection of whistlers

Here we consider the reflection of whistler waves with frequencies of the order of a few kHz , in the F, E and D regions of the ionosphere. In the F-iayer the electron density is between values of 10^{4} to 10° particies per wavelengths of whistier modes are of the order of a few kilometers, and such that $\lambda<\mathcal{L}$. For example, for $\omega / 2 \pi \simeq 4 \mathrm{kHz}$, and a density of 10^{4} particles per cc , we find that $\lambda=6 \mathrm{~km}$. Because the wave amplitude changes siowly ant expects whistler waves which are ducted in the flux tube to penetrate the ionospineric F -layer without significant reflection. Whatever little reAlection takes place is due to collisional effects. On the other hand in the
consider two cases: id ii $c: \ll Y^{\prime}$ very small collision frequency, we find collisions favor wave rellection back into the flux tube, as do large density gradients and large waveiengiths.

Note that at normai nightime ionosphere, there is little ionization in the E-layer. These cunditions and the fact that the collision frequency in the F-layer is so smail. dllow whistler waves to travel all the way down to E-layer, where the plasma density can be as low as 10^{2} particles per ce. By taking the wave irequency equal to 4 kHz , we find that the refractive index η_{E} is very close to unity (i.e. $\eta_{E}=1.3$). The wavelength $\lambda / 2 \pi$ is then equal to 9 km which is much smaller than the altitude of the ionospheric E -layer.
The refractive index in the F-layer is $\eta F \simeq 13$, which corresponds to an ronospheric density oi approximately 10^{+}parucles per cc. Thus whistler waves which are passing ihrough the F -layer encounter a sharp boundary at the low density nignt-time E-iayer, and get almost totally reflected there. -
 $(1 / 2 \pi)$ is of the order of the altitude d of the ionospheric F-layer, we can
 F-layer now has two boundaries. One is at $:=0$, the border with the E-layer. and the other one is at $:=d$ somewhere inside the flux tube. Inside the E-layer $1=\leq 0$. we assume the wave propagates into a plasma medium
with a refractive index equal to $\eta \varepsilon$. When the E -layer is equivalent to free space then $\pi_{E}=1$. The F-layer ionospheric model with the two boundaries acts as a resonant cavity for the very large wavelength fields. A wave incident from the flux tube on the upper boundary $(z=d)$ is partially reflected back into the flux tube. and partially transmitted into the ionospheric slab. The
 $==d$. we find that the absolute value of the reflection coefficient is

(47)

where $r_{1}=\left(\eta_{F}-\eta_{U} \eta_{1} \eta_{E}-\eta_{F}\right)_{1} r_{2}=\left(\eta_{F}-\eta_{U}\right)\left(\eta_{E}+\eta_{F}\right), d_{1}=\left(\eta_{F}-\eta_{0}\right)\left(\eta_{E}-\right.$
 rediness to the result verived by Budden $\{10\}$ in the limit $\eta_{0}, \eta_{E}-1$. In additwin, if we let the reiractive index η_{F} have all infinitesimally small imaginary
 sty of waves which is defined in E_{4}. (31). The function $\boldsymbol{\varphi}_{\mathrm{m}}$ satisties the differcuthal equation
$\left.\frac{4 \cdot}{d-i}-2 \exp \left(\phi_{m}\right) \frac{d \omega_{m}}{d T}+p^{2} \exp \left(0_{m}\right)-1 \right\rvert\,+c_{m} \frac{d \Lambda}{d \tau}+2 \nu_{m} d \exp \left(\psi_{m}\right)=0$ (50)
where: and ρ arc decined in Eqs. (31) and (35). Eq. (50) is comparable to $E_{4} \cdot(2)$, but here we have added the contribution of an actively excited whosphere through the terms propurtional to cm .1 .
to an example we constider the coupiing of the radiation betts waves and partcies to the ionosphere ! 11 . This mechamsm introduces a positive ieed.
back effect which will structure the large amplitude non-linear response of the system. The precipitating electrons modify the ionospheric plasma densty wiuch, in turn, modifies the onospheric retlection of the waves causing the precipution. In the $\mathrm{D}-$ and E - layers, the modification of the plasma density by the precipitation is given by

$$
\frac{d n_{1}}{d t}=\frac{Q}{2}\left(\mathcal{J}-\frac{d N}{d t}\right)-\sigma \cdot n_{I}^{2}
$$

(51)

Where $n_{\text {: }}$ is the lunospheric piasma density. The right-hand side of Eq, i51) represents the balance between the increasing density due to the precipiting yartucie tiux and the decrease due to electron-ion recombination effects. Hecause the term proportional to the recombination coefficient is non-linear iin n. we may. neglect it in the linear calculations that follow.

We nuw assume that $.1 / t$ is proportonal to dnatdt. i.e. we have

$$
\{52\}
$$

where we have redifined - as $r+c_{m} Q \dot{J}_{o} / 2$. After linearizing in c_{m}, and
taining : \sim exp $(\dot{\zeta})$, we tind
(53)

We may soive Eq. (53) approximately ior $1 / 1,<Q\left|\epsilon_{m}\right| \ll(\rho / \nu)^{2}$. We obtain
 we iound that $1 / \nu$ varied between the values 10^{7} to 10^{4} times r (where $r=-1 / h /$. If the reflection coelficiemt. R, is very close to one, then r is $1, i i_{j}$ a small number so the condition ior the instability, $Q\left|\epsilon_{m}\right|>1 ; \nu$. can be easily satisfied. Otherwise. : e. ior $R<1$, it is very difficult to find unstavie solutions to Eq. :53l. since very large values ior the particle source
magnetosphere ate protons, and that the wave-partucie meraction ucturs at $i=4.5$. We also treat $: \leq 0$ as iree space in.e. we take $\eta_{E}=11$. The equatorial cyclotron frequency is equal to 5.45 ht . In Fig. ". we have repre-
sented $|R|^{2}$ as function of ψ for a piasma densty of one hundred protons per c.c. the refractive index 1 m the tiux tube is now equal to 385 . We can sce the resonamt behaviour of the reflection coefficient as iunction of v. Because $u=\left(1 / F^{d} / c\right) w \sim(d / 300)_{w}$. we lind that ior $U<d<t \pi$ radialls, the wave
irecuency varies roughty between zero and two Hertz. VII. THE ACTIVELY EXCITED IONOSPHERE

The reflection of waves in the onosphere is a very important factor in
 trapped energetic particles into the loss cone. This is a diffusion process which is described by a Fokker-Planck type of equation. By changing the rellection coefficient at the ionospheric turning points of the waves, we may substantially modify the felds amplitudes and hence, the efficiency of tire thaser operation in the geomagnetic flux tube. In Sec. VI we presented a discussion on the qualitative vaiues that the retlection coefficients tane it an unperturbed (natural) ionosphere depending on the range of wave irequenaes and wavelengths. We learned that wave reflection is increased by sharp density gradients and large values of the collision frequency. Thus iwe may
wam to modify the ionospheric properties with some exterval means. 10 m . wam to modify the ionospheric properthes with some exterbal means. 10 im -
prove wave rellection. One way of doing this is using a ligh power racio wave :ransmiter either from the ground or irom space vehicies at the seiected fieyueacies whose turning points fall at the height where the properthes of the conosphere are to be modified. Healing the ionosphere can produce energetic .

 flux tube $N(t)$, and the energy density of waves $W_{k}(t)$ are given by
V'Ill. SUMmary and conclusions
We have presented a self-consistent theory on the interaction of magneiospheric particles with ducted eiectromagnetic cyclotron waves. Our theory is based on the following assumptions:
The dietectric properties oi wave propagation are given by a cold back-
ground of plasina particles. which can either be electrons (for the whistlers) or ions, e.g. protons. (for the Alfven instabilities). The density of the cold plasma popuiation is taken constant along the flux variations.
(2) Near the equator the Earth's magnetic field is approximated by a parabolic profile. Because wave vectors are along the geomagnetic field
(3) The maser instability is produced by the interaction of a hot plasma population (e.g. particies with energies larger than 40 keV for the electrons, and 100 keV for the ions), with the cyclotron waves near equatorial regions. The changes in the thermal distribution functions due to pitch-angle diffusion, are studied here.
The main results of our theory can be summarized as follows:
(1) The resonant part of the energetic particles' distribution func
The resonant part of the energetic particles' distribution functions are
described within the framewori of quasilinear theory. From the resonance condition. we establish relations between the range of equatorial pici angles and the extent of geomagnetic latitudes for which interactions take place. After integrating along the flux tube, we arrive at

(2) The spatial amplification factors are obtained for whistlers and Alfven waves, after integrating the temporal growth rates over time scales which are comparable to the group time delays of the waves t_{g}. The ray equations describing the evolution in time of the number of particies
in the flux tube and the energy density of waves, are studied The equatorially generated waves may be partially reflected back into the flux tube when they reach the sonosphere. Whistlers can penetrate the F-laver without significant reflection, and be reflected in the Dwhich acts as a resonanist. Alfiven waves are reflected in the F-layer
4) We have also presented some caiculations on the role that an active excited tonosphere plays in the confinement of the cyclotron waves within the tlux tube. The stability equation has been extended as to acluae ume dependent retiection coefficients, which may be created

Ionospheric Electron Acceleration by Electromagnetic Waves Near Regions of Plasma Resonances

Elena Vit lialon'

Fiectron acteteratum by electromagnetic lichls prop,opating in the inhomogencous tomospheric plasma is thverigned It is found that high-amplitude short wivelengelf etectrostatic waves are generated by the inculcon electronsgnetic lields that penetiste the isdio window theve waves can very efficienly transler their energy to the electrons if the inctident frequency is neas the second harmanic of the cyctotran frequency

1 Intkenturilion
Acceleratoun of iomospheric electrons by electromagnetic If Nil fiefds via uradiation erther from ground bused macro.

 aty active reseatch this interest is motivated by ohservations of high-energy electrons by spaccoraft in the ionosphere. and this fact can help in improve our understanding of hasti properties of wave-particle plasma interactions [Fejer. 1979]. trilitially acceierated electrons can also be used as a probe of the motemial coupling terween the ionosphere and the magoetimphere. We consider an EM monochromatic plane wave of frequency \quad ond wave vector k and assume that the walve is litunched near the ground at an arbitrary angle with respect to the constant, ambient magnetic tield B_{0}. We take B_{n} in be along the $=$ direction. 1 e., $B_{n}=B_{11} e_{\text {, , and }} k=k_{9} e_{8}+k_{z} c_{\text {. }}$. The wave electric field can the written as $\dot{E}=e_{2} E_{1} \cos \phi-e_{,}, E_{2} \sin$ $\phi-e_{i} E, \cos \phi$. where $\phi=h_{1} x+k_{i}=-$ wh. and E, are real numbers The motion of a relativistic electron of charge q and revt mass m is described by the Lorentz force equation

$$
\begin{equation*}
d p u \|=d^{\prime}\left[E+v_{c} \times\left(B+B_{n}\right)\right] \tag{1}
\end{equation*}
$$

where B is the wave mangetic tield. v is the partucle velocity. and $p=m ; r$ is the mumentum. The relativistic factor is $;=11$
 lum components perpendicular and parallel to B_{n}. respectisely the particle ganns energy if the resonance conditions

$$
\begin{equation*}
\cdots-h: r^{\prime}:-m 1 / ;=0 \tag{2}
\end{equation*}
$$

 the electron esclormon bexpuency

Recently. Sollotion ,und Burhe [19K7] have develuped a thent! " which EM supraluminotis tie. the relractive index. 4. in smaller than onel cold plasmat waves accelerate the elec. trons via resonam stochastic acceleration That is, by taking ". near 2st. they show that the cyclotron tesonances overlap at hugh poser levels. It was shown that wave intensities of 10^{n} IIIV II : accelerate the electrons up to energies of about 100 heV Nuncericai integration of 11 , thows that for the electrons (t) erath large energes int the MeV rangel the power tevels
 Hace Vhas.achurets

that are required exced a value of $10^{\prime} \mathrm{mW}$ im ${ }^{2}$ [Hirke et al . 1 ised Nevestheless. wich power levels are at least a factor if fir" tunes greater than what is curently availithe in wno. phente heating experments flus other more feasobie in
 invenhgated

In this article, we propose a far more ellective accelerathon mechanism based upon propagation charactersisics of EM wates in nonuniform plasmas. If the incident frequency in is near 2月. and of the plasma density is such that is is between the lexal upper hybrid. "'w... and electron plasma. "). fre-
 waves of shost wavelength is possible We show that these wates very efficiently transfer energy to the electrons. We also repurt calculations relevant to present RF heating experiments by considering a power Hux $P=1 \mathrm{~mW} / \mathrm{m}^{2}$. The energy ganed hy the electrons is obtatned by applying the Itamutionian potental wells theory of 'illulin and Burke [1987] At low puinp lield amplitudes we find that particles gain energy following tratectortes in $P_{:}$, P_{1} phase space along the zero-order Hambtoman H_{n}. For a relativistic particle we have

$$
\begin{equation*}
H_{n}=m c^{2} ;-\left(c / \beta_{0}\right) r_{2} \tag{131}
\end{equation*}
$$

whice $\beta_{:}=\eta_{1}\left(1+E_{3} h_{,} E_{1} A_{1}\right)$ and η_{1} is the component of the relractive onder. $\eta=h^{h} \ldots$. along \mathbf{B}_{0}. For electrostatic wates we tind that $H_{:}=0$. and then that the zero-order trajectories are upen and the particle gains energy in the direction perpentheolar to the background magnetic liedd. i.e., p: is constant
? Fhimosiatli Wavi Girntralion
We consuler the propagation of EM waves in a nonomatorm. umbinfienc plasmat We assume that the densiry gradient os
 respect to $\begin{gathered}\text {. and that } k\end{gathered}$ is in the plane spanned by 5 and $B_{\text {, }}$, Ne: Fgure if $\mathbf{T h e}$ lannching angle with respect to the verncal difection is denoted by ψ. The angle between k and $\boldsymbol{B}_{\text {., }}$ " talled x and depends on the allothde The retractive urdor n has a component Q along the vertikal direction and a compo-
 $1 x+\pi=-B=Q: \eta$ Hecome of the hosizomtally ptane vattlied romonpleric mudel considered here, the hormantal comps. ment in the relrate tive melex S is a comstant midependent of the

 dennts. and can be whaned by whing lor the bewher quath

The U.S. Government is authorleed to repraduce and sell this report. Permission for further reproduction by others must be obtained from the copyright owner.

of incidence ψ such that

$$
\begin{equation*}
\left.\left.\sin \psi=Y^{1}\right)_{1}+Y\right)^{-12} \sin \theta \tag{4}
\end{equation*}
$$

where $Y=\Omega / \omega$) If the ordinary (O) mode is launched near the ground at the critical angle given in (4), it will penetrate the radio vindow and will be transmitted near the couphing lael where (1) $=w_{\text {, }}$ into the extraordinary mode falso called the Z mote). The transmission coellicient from O to Z modes has bect obtained by Mpolhus [1984], and it is unty flotal trans. mission) if $S=\sin \psi$ is given by $1+1$ The Z mode propagates in the inhomogeneous plasona of the ionosphere until it falls int.
 Fid. 1984] Near the plasma ressnance: (I) Q hecomes very large $(Q \rightarrow x)$ in lact, since $Q \geqslant S$ we find that $x \rightarrow 0$. (2) the wave becomes electrostatic. ie., $E_{1}, E_{3}=-\tan \theta$ and $E_{2}=10$. and (3) the vertical group velocity component becomes very simali. The plasma density in the resonance region is given by solving for $X=X$, where, because $\boldsymbol{x} \rightarrow 0$, we have

$$
\begin{equation*}
\left.x_{1}=\left(1-r^{2} x\right)-r^{2} \cos ^{2} \theta\right)^{-1} \tag{5}
\end{equation*}
$$

 the retrative undex Q must be calculated by consudering a hente temperature plasma. In lact. by adding the lowest order thential corrections to the coetficients of fouth and third fegrec of the Booker quarte. we find thal Q is given by solvHey for the real ront of lie disperseot relation

$$
\begin{equation*}
\left(r_{1}, r^{\prime}\left(\wedge Q^{3}+2 \wedge Q^{2}\right)-I r=0\right. \tag{n}
\end{equation*}
$$

wher

$$
1 \quad 3 \text { cos } 1+\frac{3 \sin ^{+1} 11}{11-11-1)}
$$

$$
\frac{16-n:+\gamma^{2} 1}{\left.11-\gamma^{2}\right)^{3}} \text { con } n=1
$$

$$
\text { a } \quad \operatorname{vin} 11 \cos 11\left\{\cos ^{2} \theta^{1} 155^{2}+175^{4} 6\right\}^{\circ \cdot 1}
$$

$$
+411 \frac{1-15 y^{2}+7 Y^{4}+11^{a} 11}{11-11^{\prime \prime} 11}+
$$

$$
r=S \sin \theta \cos n+11-\frac{r^{2}}{2}
$$

Prdati [1972], and its contribution is mach larger than that propurtuotiat to $\&$ if $\Lambda \neq 0$ the case $\lambda=0$ has not received any attertion yet. Neverthetess. we lind that it is of interest. ance the retractive indtes are latger than when $A \neq 0$ by d factur of $\left(6, r_{1}\right)^{1,3}$ For a gisen value of $0 . A$ is equat to zero at a certan frequency which is greater than Ω and smatler than is In fact. we find that lor $\theta \leq 45$. I becomes zero for ". very close to $\mathbf{2 \Omega}$. In Figure 2. we thow the cefractive indices as functions of the angle 0 for two values of the incident frequency (1) which are smalier than but cluse to 2Ω; we take ris $=0.25 \times 10^{\text {P }}$ The largest Q are found near $0=0$. where 11 . is such that $(1(0, a)=0$. We have that for $(1)=181$ $\Omega . \theta_{1}=\$ 36^{\circ}$ and $Q= \pm 963$. and that for $\omega=1.92 \Omega . \theta_{=}=$ 127 and $Q= \pm 460$

The I andatu damping tate I due to the Doppler shifted

$\mathrm{I}: \bar{r}=-(1 / 16)(\pi / 2)^{1 / 2}\left(w_{1}, 1\right)\left(\sin { }^{2}\right.$ U/cos 1$\left.) \times a_{1} Y^{2}\right)$

$$
\begin{equation*}
\left.\cdot \exp (-(1)-2 \Omega)^{2}, 2(k, r,)^{2}\right) \tag{7}
\end{equation*}
$$

where $\sigma=\left(1-\gamma^{2} y\left(X X_{-}^{-1}-\gamma^{2} \cos ^{2} \theta\right)\right.$ We see that if $\Lambda \neq 0$. 1 is is of order $(1,, i)^{\prime \prime \prime}$, but if $A=0$, then $I ;(1)$ - $\left.K I\right)$

The components of the group velowity along the vettoal. isiand horizonial, ${ }^{2}$, ditections are reatily obtaned from (6). we show
 propagates in the direction perpendicular to the densty gradient. but if $A=0$. then $v_{0}=1$) llowever, by adding to 161 a third thermal correction of the form $(d, i c)^{2} \cdot Q$. where v is 2 function of 0 and Y. we shas that 8 a, is proportionat to $\left.(1,)^{2}\right)$ when $\Lambda=0$. Thus r .: and , order of magntude and much smaller than "y for the case i $\neq 0$. The amplitude of the tine-alveraged electicic fiedd can be whained solving for

Here P is the verlical compunent of the energy thax density the higheat energy concemtathon excurs when the group ie. lacity is the smatlest.

$$
3 \text { IEITIMON ATMURAIGIN }
$$

twoming that I is smath the energy that a angle electron maty gann imeracteng whth a genetal Eat plane wase of the

Fig 3 Net energy gain as function of the angle a thetween the anbelil magnetic field and the eertacal We consater iwa situes of $Y=0$ and the interaction of cold elcairons with (a) the " - 2. and (b) the $n=I$ cyclotion resunances
firm given before (i). has been obtained as a function of tume IIt the arficle by lillilion and Burhe [1987] It wis found Ihal the burmalized particle energy U is obtained solving lor

$$
\begin{equation*}
(U+1)^{2}(d U d t)^{2}+b_{n}(U)=0 \tag{1111}
\end{equation*}
$$

where $C=;-1$. and time is normalized to number of wave(wituds. $\mathrm{z}=(\mathrm{m})$ Here we consider the electron interaction with a single fisolated eyclotron resunance of order n For a partr. cle inilally $(t=0)$ at rest interacting with the ES waves If:, $F,=-\operatorname{lan} \|_{\text {. }}$ and $E_{2}=U$ that are generated near reso. mance, the Itamiltonian potentials may be written as

$$
\begin{aligned}
& \| U^{\prime} \left\lvert\,=\frac{1}{4} U^{2}\left(U+2 r_{n}\right)^{2}-\Sigma^{2} \cos ^{2}\left(1 K_{n}(U)\right.\right. \\
& -\Sigma^{2} 2 \sin ^{2} \mu\left(K_{n},(U)+K_{n},(U)\right) \\
& \text { wihr. }=1-n Y, \Sigma=-\boldsymbol{I}|\mathbf{E}| \text { meros. and } \\
& \left.K_{n}(U)=\int_{-0}^{U} J_{n}^{2}(K, \mu) U+I\right) d U .
\end{aligned}
$$

Here $J, t h, p$ are Bessel functurns and p is the I.armor ratius
 .the energics are resiricted by the condition $1 ;\left({ }^{\prime}\right) \leq 0$. Note Wail the tinst ierm in $\mid 12$ is alwass posilive alld dominales wef all the whers at targe values of U. Thus $V_{n}(U)$ cim be regarded as apitential well within which the particle's energy waillates in time. The kinetic energy slowly increases over manly eychitron and wave periods, and the net energy gamed b) the particle has always a tinite value if 1 , $(1)<0$ when ('..13. the potential can trap zero kinetic encrgy particics: these partacles may increase their energy up to a valuc $U=\left[{ }^{\prime}\right.$, sach that $l_{n}\left(U_{n}\right)=11$. If $V_{n}(I)>0$ when U. 0 . then the potenlal cannot trap refo kinetic energy partickes.

In I innte lin. We repervent the net energy githed by the

 consater iwo salues of \because and a power lax ${ }^{\prime}=1 \mathrm{~mW}$ w: ilie amplitudes of the liSthelids are obtatned from (10) We vee that the $n=\mathbf{S}$ resonance ean only trap cold etectoms for angles
 () $H=0551$ The broken lines near the $0=0$. which makes A II. indicate that $;=|\mu-2 \Omega 2|, k, r, \leq 2$ and ibat 1 (1) - Ont Thus the cnergy of the ES fietds is strongly thworted by the bulk distribution of plasma electrons. The kinetse ciergies reached by the electrons are very latge due to the enhanged electic helds and large values of 1 near $0-0$, 1 or hater talies of 5 (sotad lincsi. we lind that 1 in is very vm.all
 the tall of the danlobution functun may intetat with the Wases These chectrons ate accelerated in the directun petpen. diculat to the constant magnetic fiefd up to eticrges of the urder of hundreds of electron volts Note that in the Hath's dipole magnetic field the mirroring force actiag on the electrons will also acceleate them along geomagnetic lield lates Itice micraction of cold electrons with the n - I resonamie tahes place for all values of θ The net energy gatn (in evi) is reprevented in ligure $3 b$, and is quite small if $0 \neq 0$. Whas is because the resonance condition (2) is fat from being satisfied lis $(1) \geqslant 20, n=1$, and intially culd clectrons

The time it takes to reach these energies ean be calculated with the help of (11) and (12). We start with the $n=1$ eyclutron resoname and cold clecarons until the potential beownes Pasitive. then. if there is avetlapping with the $n \approx 2$ revonabuce. the particles are acceterated to high energies Fur example fior $"=192 \Omega$ and $\theta=23^{\circ}$, it takes 168 wave neriods (WP) 13 gain 2 keV , where half of this time is spent reathing the tirst (x) iv If $0=43$ ' the electrons gam 800 eV over 86 WP isec I igure 4 al As a second example, we consider $41=18182$: II $11=37$, it takes 35 WP to gain 350 eV , but if $10=\downarrow 6$, then it anly takes ?5 WP to reach the same energy (wee Figure th) Although the first and second cyclonon resonances may overlap over a hroad range in energies, we lind that we can neglect the contribution of the $n=2$ resonance in the oveitapping region. In fact. if $t=181 \Omega$ and $\theta=37$ it takes +3 WP to 12) reach the first 28 eV whth the $n=2$ resunance, but only takes 7 WP with the $n=1$. On average we find that, in ciatsstan units, the amplitude of the electric tieds are about dous times the ambient magnetac field.

5 Conctubing; Remaras

In this aricle, we have investigated the pervitility of accel-
 tiefls We have presented at very efficient acceleatlan and lealling usechanism which consisis in the generalion of woutHavelengeth, high-amplitude clectrostatic (F:S) thehts by the incident EM waves that penetrate the radu) window By inciud. ing thermal effects, we have derived the dispersion relation har these F:S fields: analyical expressitms are given her thear graup velccities and damping rates. Because of the very small group velocity components in both the vertical and borizontal dirci. thms. the electromatgetic energy is lighly comentrited in a region of plasma resonance The eflectivencss of the media matm alepends on the value of the inctident frequency as .tation

Iig 4 Energy gatn as function of time f normalized to number of wave periods. Here ${ }^{t}$ is the angle thetween the umbient nagnetic field thed the vertical and $\mathbf{Y}=\Omega$. w. The entrgy is given in (a) KeV. and (b) cv

Apibendix

For electrostatic waves the dielectric response function is

$$
\begin{equation*}
y=\eta^{4}\left(r_{1}, \sin ^{2} x+\varepsilon_{3}, \cos ^{2} x+2 \varepsilon_{1,} \cos x \sin \alpha\right) \tag{A1}
\end{equation*}
$$

where $r_{i j}$ are components of the dielectric tensor (the row is indicated by the subscript i and the column by j) which can be found elsewhere [lchimaru, 1973]. Next. we expand ε_{1}, in pi)wers of the small quantities $\left(K_{1}{ }^{\prime} \gamma_{1} \Omega\right)^{2}$ and $[(a)$ $-n\left\{2 k_{2} r_{1}\right]$, where $n=0,1,2$ and $k_{1}=k \sin U_{0} k_{z}=k \cos$ 0 are the perpendicular and parallel components to B_{0} of the wave vector. By keeping only tirst-order terms in $\left(v_{1} i^{\prime}\right)^{2}$, we find

$$
\begin{align*}
& H_{11}=1 \cdot \frac{X}{\left.\| I-Y^{2}\right)}-n^{2}\left(\frac{r_{1}}{r}\right)^{2} \times\left(\frac{3 \sin ^{2} x}{\left.\| 1 . . Y^{2} X I-4 Y^{2}\right)}\right. \\
& \left.+\cos ^{2} x \frac{\left(1+3 \gamma^{2}\right\}}{\left(1-\gamma^{2}\right)^{3}}-\frac{\operatorname{sn}^{2} x}{2 \gamma^{2}\left(1-2 \gamma^{\prime}\right)} H_{j}\right) \tag{A2}\\
& \text { R. } H=1-N-y^{2}\left(\frac{c_{1}}{c}\right)^{2} \cdot x\left(\frac{\sin ^{2} x}{\left(1-\gamma^{2}\right)}+3 \cos ^{2} x\right. \\
& \left.-\frac{1}{8} \frac{\sin ^{2} x}{x} \frac{11-2 Y}{x} \gamma^{4}-H_{i}\right) \tag{|A|}
\end{align*}
$$

Whete

Hy constidering that $\cos \alpha=\{S \sin \theta+Q \cos \theta / \eta$ with $Q \gg$ S. alld by keeping the higher-order powers in Q. we may write $y=\psi+1 \mathscr{L}_{1}$ where

$$
\begin{equation*}
\dot{S}_{0}=Q^{+}\left[r_{\because}-\left(\frac{v_{r}}{c}\right)^{2}\left(\Lambda Q^{2}+2 n Q\right) X+\frac{2 Y X}{Q}\right] \tag{AS}
\end{equation*}
$$

Here $r_{i j}=I-X / X$., where X, is given in (5) and A. k, and 1 we given after (6). By taking ${ }^{5}:$ very small and setting $f,=0$. we ohtain the dispersion refation (6). We also have
$y_{1}=\frac{1}{8}\left(\frac{\pi}{2}\right)^{1 / 2}\left(\frac{u_{I}}{c}\right) Q^{3} \frac{\sin ^{2} \theta}{|\cos \theta|} \frac{x}{\gamma^{4}} \exp \left[-\left(\frac{\omega-2 \Omega}{2^{1 / 2} k_{i} v_{I}}\right)^{2}\right] \quad(A b)$

The components of the group velocity $v_{0,}, v_{\theta, 0}$ in (8) and (9) are oblained by detining $t,=9, Q^{4}$, and then

$$
\begin{equation*}
v_{0}=-\frac{\left(\partial \pi,_{i} \partial k\right)}{\left(\partial . X_{. j}|\partial \omega|\right.} \tag{A7}
\end{equation*}
$$

where recall that $c k_{7} / t u=Q$ and $c k_{\mu^{\prime}}{ }^{\prime} \omega=S$. The Landau damping rate at the second cyclotron harmonic is also obtained by considering that $\boldsymbol{H}_{1}=\mathscr{S}_{1} / Q^{4}$ and then that $\Gamma=$
 is delined after (7).

Aidousledgmens The authos is grateful to A. Y. Wong for drawing her attention to the problem of propagation through the radio nindow, and for very helpful discussions We also acknowledge heipful consersatuons with W J. Burke and E Mollus. This work has then supported by the US Air Force under contraci F19628-85.K. (16) 3.

The Editor thanks I Kimura and another referee for their assist. ance in evalualing this paper

Rererencis

Bukmayer, W, T Hagfurs, and W Kufman. Small-scale plasma den. sily depletions in Arecibo high-frequency nodification experiments. Phis Rer Lett., 57, 1008. 1986
Budden. K. G. Radio Wates in the lomosphere. Cambridge University Press. New York, 1961.
Hurke. W J., G Ginet. E. Villalon. and M A Heinemann, Electron acteleralton in the ionosphere by obliquely propagating electromatenelic waves, J. Gesmayn. Genelec., A1), $1147,1988$.
I cer. J A., Ionuspheric moditicalion and parametric instabilities. Rer. ©icuphes. 17, 135. 1979.
Golantt. V E., and A. D Piliya. Linear transformation and absorphon of wives in a plasma. Sor Phes. Usp. Engl Transl, 14.413. 1972 Inhmiaru. S. Basic Proncioples of Plasma Phisucs it Siatistical Apfrimith. W A. Benjamin, Rcading. Mass. 1973
tames. If G. Sounder-accelerated paracles wherved in ISIS. f Gern. fhい Rev, KA. 11227. 1983
Hoblhis. E.. Ciouphing lo 7 mome near cillical angic. f Plasma Phis il. part I. 7. 1984
 wheric radio enperments. J Gerophis Ris. 49. 3921. 1984
Villatun. E., and W J Burke. Relitivistic paricie acceletation by whluquely propaigating electromagnetic tields. Phis Fhads. 3n. 3bys 1987

1 Vilhaton. Center for Itectromagnets Revearch. Nimbensern Harvirity. Moston, MA O2IIS

Electron Dispersion Events in the Morningside Auroral Zone and Their Relationship With VLF Emissions

David A. Hardy and William 3. Burke

Space Physics Division, Air Force Geophysic: Laboratory, Honscom Air Force Base. Massachusells
Elena Villalon
Cinter far Electromagneties Research. Nartheastern University, Boston. Afarmehusptrs

Abstract

Energyhime dispersion events have been ohserved in the precinitating electron data in the enerpy range from 630 eV to 20 keV recorded by the I sensor on the low-altitude, polar oshiting lillal satellite. The dispersions are such that the higher-energy etectrons are observed earlier in time than the luwer-energy electrons. The time interval for a singte dispersion event is from 1 to 2 s . Within an auroral pass in which such energyhime dispersion events are observed, there are typically several such cventa, and they can the spaced within the pass in ether a perioxic or aperioxlic manner. The events are lypically nbserved within and towatd the equatorward edge of the repion of difluse arroral electron precipitation. During agiven pass the events can be observed over a wide range of L. shells. The occurrence of these events maximizes in the interval 0600 - 1200 d hours ML.T. The energytime dispersion is generally consistent with the electrons originating from a common source. The events are seen at \mathcal{L} shells from 3.7 to greater than is. The source disiance for the electrons in inferred to be penerally beyond the equator for events at t. shells tess than approsimately 8 nod before the equatur for evems at higher L shells. Decause of the low energies at which the dispersions are observed. it is unlikely that their occurrence can be explained by resomant inferaction with VLF waves. Hased on circumstontial evidence from other reported observations common to the morning secitor, an alternative thearetical explanation is presented. According to this muslel the dispersion events result from impulsive interactions of the electrons with intense. asymmetric packets of VLF waves via the nonlinear, ponderomotive force.

I. Introduction

The charncteristics of VLF chorus emissions and the role such emissions play in electron pitch angle scattering and precipitation have long been a significant area of research. These emissions have been observed at both low altitudes over the auroral zone and high altitudes in the inner mapnelosphere [Dunkel and Helliwell, 1969; Russell et al., 1969; Tsururani and Smirf. 1974; Burron and Ilolzer, 1974: Thorne ef al., 1974, 1977: Tsurutani and Smish, 19771. Chorus consists of many band-limited, randomiy occurring, rising or falling tones each lasting a lew tenths of a second. The frequency band fur chorus lies above andor below half the equatorial eleciron gyrofrequency. When both bands are present, there is usually a gap with no measurable waves near half the eiectron cyclotron frequency. The origin of this gap is still poorly understood (Anderson and Maeda. 1977).
Chorus emissions are confined primarily to the momingside of the magnetosphere over an L shell range from just outside the plasmapnuse to just inside the magnetopayse. Within this region the occurrence frequency has two maxima. one slightly posimidnight and the other between Orno and 1200 MLT. The emissions occur primarily at latitudes close to the magnelic equator. However, a second region of emissions at higher latitudes is observed in the $0 \times 6 \times 1-1200$ MLT secter for L. the!!! near the mapretopasce. Chorss is generated on field lines either directly mopulated with hom electrons injected into the inner magnetosphere during sub-
Copyrigh 1990 by the American Geophysical Union.
Paper number 893 A01235.
0148-0227/9018914-01235505.00
storms or populated by hot electrons that have been transported to later local times after subatorm injection.
A class of particle precipitation events called "microbursts" are associated with chorus emissions [Vrakntrsam ef nl.. 196R: Oliven el al., 1968: Oliven and Ciurnert. 1968). They consist of spikes of energetic electron precipibation lasting a few tenths of a second and occurrieg over a small spatial extent. As with chorus enissions, the microbursts' occurrence frequency maximizes for 1 . shells between 4 and 8.5 and MLTs between 0600 and 120 KN . The amplitudes of VLF waves measured in association with microbursts covered the entire 0.001- to 0.03-nT range of the INJUN 3 loop antenna [Oliven and Gurnelt, I9ow].

The most detailed work relating chorus emissions it microbursts has been done using data from the magnetically conjugate stations at Roberval. Canada, and Siple Station. Antaretica IRasenhers el al.. 1971: Foster and Rosenherg. 1976: Helliwell and Mende. 1980; Rosenterg al al.. I9NIJ. These studies have esrablished a clear relatiunship hetween discrete chorus clements and the presipitation of highenergy electrons inferred from either ballown-thome X ray detectors or ground-based optical systems. The nieasurements indicate a source region for the particles within 20° of the magnetic equator. In addition, Rosenberg and Dudeney [1986] have shown that the average level of high-energy electron precipitation at $L=4.1$ during active times. deduced from riometer meavurements. diaplays the same lixi:d time distribution as VLF emissions. In situ measurements near geosynchronous atitude have estahlished good correlations between high-energy electron llux entancements associated with substorm injections and the occurtence of chorus emissions (Isentherg ef al., 1982).

The U.S. Government is authorized to reproduce and sell this report. Permission for further reproduction by others must be ou:ained from the copyright owner.

Chorus emissions are thought fo result fiom resonamt interactions between energetic electrons and clectumatgnelic waves that are Doppler shifted to sume harmanic of the electron gyrolrequency (Kennel and Perse hek, l'6n; Kermel and Engelmann, 1966; Kennel er al. 19701. Coherent enission may be produced by resonam, cycloton emissions from phase-bunched electrons [/frfliwell. 1967: Helliwell amd Crystal, 19731. These theoretical explanations pediet hat the wave-particle interactions take place near the magnetic equator for energies above a minimum resonant energy given by

$$
E_{\min }=B^{2} /[8 \operatorname{mn}(1(1+1)]
$$

where B is the equatorial field strength, 11 the plasimia density. and A the anisotrony exponent whose typical value lies between 0.1 and 0.5 (Dividsom, 19N6iI).
As pointed out by Davidson [1Y\$6a!, these theoretical models successtilly account for the precipitation of refalively high energy electrons ($E>20 \mathrm{keV}$) but nut for precipitation in the low keV range. For the cases of microbursts seen at $L=4.1$ (Foster and Rosentierg, 1974; Helliwell and Afende. 1980; Rosenberg et ul., I9XII, plamia densities in the source region of the interaction are reported in the range from 10 to $50 \mathrm{~cm}^{-1}$. For a density of 10 the minimum resonance energy varies from $5(0)$ to 82 keV for anisuotropy exponents from 0.1 to 0.5 . For densitics of 50 em^{-3} the resonance encrgy varics from 110 to 16.1 keV . Using data trom the SCATIIA satellite, Arobere at al. | 19 K 2 | estimated resoname encrgies in the range trom is to 30 keV for radial distances between 5.5 and $6.3 \mathrm{R}_{\mathrm{A}}$. At geosyilchronous alsitude, precipitation of electrons of i keV encrgy in the 0600 to 1200 MLT sector would require densities in excess of $10 \mathrm{~cm}^{-3}$ while the measured density is in the range from $0.1108 \mathrm{~cm}^{-3}$ with iypical values of a fiew per cubic centimeter (ffigel and Wu. 1984).

In this paper we report on observations of electron precipitation bursts observed in the morningside aurorat zone with the J sensor, an electron detectur on the llit.AI satellite. Although these bursts exhibit a distribution in ML. and I. shell similar to microbursts and VLIF chorus, they are typically observed for energies from the IUNeV uriver energy limit of the HILAT detector down to a lew kev and as low as 600 eV on occasion. The luw enelgies of the electrons are shown to be diticule to reconcile with precipitation via resonant inceractions with VLF waves. The licit that they occur preferentially in the region of enhanced VLF chorus suggests, however, that such waves may play a role in their precipitation. We first document the characteristics of these precipitation events and then presem the oulines of a theoreticul modet that could account fir their wheived propesties.

2. Instrumentation

Data used in this study are from the J sensor that was nown as part of the experiment complement on the HILAT satellite [/lardy et al.. 1984]. The J sensor consists of an array of six cylindrical curved-plate, elecersustatic analyaers arranged into ithree pairs. In each pair there is a high-energy head measuring electrons from 630 eV to 20 keV and a low-energy head measuring from 20 eV to 6.30 eV . In heilh the high- and low-energy heids the energy bange is covered in eight channels spaced at equal logatithmic imervals ill

 and low-energy heads are $\times 50 \times 11^{4}$ and $225 \cdot 10$ 'ar
 three pairs are oriented on the valicectall wath hath Jus.
 line local nadio.

 times per secuand. In mode? a lull lopmint pectione.

 mode 2 and 1 dinta were uned.

 the I semsurs ane reanamathy fixed redative to fle leath come:
 such that all focal times ane vamples every four atonths
 acyuired only when the satellite of within range ol anc of figround stations. For this staty the gomme watmo wast locared at Sondre Seromijord, Gicecalimd: Inemen, Nura.-
 mately six IILLAT overpasses pel dar alle liconded at is.

 in fatitude. the diatar recurded at this site ment comvislofi:.

 the recording vallions.

3. Ouschvabions

The ubservation wection is divided into iwn pants In $t:$

 divpervion events. It the secolnd pat we minnatios :: oberved dislithotions of events accomiling to 1 vell. on: netic lucell time: and valuce dintance

3.1. Detuiled liven Amalysis

In this subvection we examine typieal examplo, of tas energytione dispersion events reconded during thee IIL 11

 tily the roles these divpersions, plas in the diovelte pre...ir ration of dilluse aurotal chectoms.

 Daring this periud the satellite moved equaternand, uppol

 the mode 2 uperation of the I vemen are hown in lific 1 , culor spectrogram lorman. Illate 1 in slumathers in H-a and white. The colar version c:an be foumed in the ve..color acction in thin iswe.) th the pecterestim anh p-a

 in the separare coltar encturn in this is:

Fig. 1. The counts per accumulation interval ploted versux lime for the five highest-energy channeis of the I eensur for the tinte interval 0438:12-0438:18 UT.

Over the pass, significant variations in the electron spectra occurred. Al the beginning of the interval, ineasurable fluxes of electrons were confined to energies generally below 1 keV and were temporarily andor spatially highly variable in intensity. Such precipitation is characteristic of the cusp or cleft regions. At lower latitudes the spectra initially hardened, and the variability and intensity of fluxes beluw 1 keV decreased. Significant fluxes of electrons at energies above 1 keV were observed starting at approximately 0435:42 UT with a more continuous hardening of the spectrum begianing at 0436:20 UT. The spectral hardnest reached a maximum at 0436:40 UT, after which the flux at energies helow a lew keV began to decrease. We interpret the spectral hardening and subsequent decrease in low-energy varability and intensity as the signature of the satellite passage from the cusp/cleft into the dayside diffuse auroral region.
In the interval atter 0436:40 UT, patches of high-energy electron were detected. The occurrence and intensity of these patches appear unrelated to the overall decrease in intensity of the lower-energy electrons. This is particularly evident starting at 0437:20 UT when at low energies a weak, monotonically decreasing spectrum, produced primarily by photoelectrons, is observed ilong with a band of precipitation at energies above 10 keV .
It is within these regions of patchy, highenergy precipitation that energy/time dispersion events are observed. By energy/time dispersion events, we mean enhancements in
the higher-energy elecirons that are fullowed at later umis.
 spectrogram these appear as diagenal seripes. For this pan dispersion events occurred sporidicaily fiom approximacel 0437:30 to 0.19:10 UT and were particulady evident te. tween 0438:20 and 0438:30 UT.
A detailed example of the dispersion events is shoun 4 Figure 1, where the comas per accumatation interval ate ploued for the five highest energy chamets lor 6 s sianing : 0-38:12 UT. In this interval, thece enliancements uccurted es each channel and are marked by sequences of artows. We define the onset of the enhaneement in each chamel a $1:$: point where the count rate exceeded 1 per :ccumblatic
 oceur in all live channels, with the time sepatations of $:$: enlancements between consecutive challnch incte.sing l.e decreasing energy. Second, the time separathon between eenhancements in consecutive channeis and lite fots tras separation fiom the highest to the lowest energy thanke. are approximately the same for the three evems. Thed. ts: onset of enhancements occurs with an appoulnate pen. dicity of 1.5 s . Lasily, within eath of the linee events thate ate shorter time scale structures that :ate repented in mas) (" all of the energy channcts. For cample. during the tw: event there are two peaks with a bime wenamom of ofrou imately $\frac{1}{6}$ s in every chamed excem the ome comered all:

in four if the five plothed channels. The tempunt widhs and epeatt frequencies of these events are sumblar to those reporied for microhursi events |Oliven er at . IUh*: He/liwell und M/.nde. 19x01

There are tivo hapalieses that could explath sath disper. stons. The first hypothesis is that electrons of all energies were impulsively scattered smmitaneousty who the atmospheric loss cone at some point along the ficted lines of detection and that the dispersion resulted from the dillerent transit times of the electrons alung the field line from the source region to the point of observalion. In this case the time delays in detecting electrons of different enderies can he used in estimate the location it which the "impulaes" originated The second hypothesis is that electrons at higher energes are scattered into the loss cone near the equatior before electrons at lower energies such that the dispersion results from a combination of the difference in wine of injection and the dilference of iransit times atong the fiett line for electrons at different energies. In the discusstion section we show that the second hypothesis appears to he inconsistent with wave and/or cold plasma measwements in the magnetosphere. Here we only consider the first hypath. esis.
Theac observed dispersion events ase consistent with the first hypothesis discussed above. For this case the dillerence in arrival time, Δt. for electrons coming from a common source with paralled velocities ${ }^{\prime}$, and v_{2}, is related to the distance to the source. d. by the equation

$$
d-\Delta /\left(1 / 1_{1}-1 / r_{1}\right)^{-1}
$$

In Figure 2 we show an example of the observed time delays. Here $\Delta 1$ is ploted as a function of the electron velocity for the third energy/time dispersion event of Figure I. For this evample. At was calculated as the time dillerence from the onset of the enhancement in the $20.1 \cdot \mathrm{ke} V$ channel. and the clectron velocities were calculated for the centrat energy in each channel. The solid line is the hest fit source distance d to the observed values of Δf. We find that a source distance of 92.00 k kn firs the data extremely well. Λ simitar quality of fit is found for a majority of the other observed dispersion events.

Fig. 2. The meatired ar from the ancel of enfanced Alues in the 201 keV channel olisted versus the electron velucity list twer
 valuea of it amil the adit bre gives the best fil to a amite sumer hstance. d

Fir 3. The inferted difterential number fux somece spectroun for the two dispersion events shating at $041 \mathrm{~K}: 2 \mathrm{~S}$ U I on day IXG

The energytime dispersion event of Figure 1 ucensmed at $69.75^{\circ} \mathrm{C}$ (iL and an 1 . shelf of 8.4 . Using either the simple dinole or the Mead-fairfield models gives a distatice along the magnetic liedt line from IAlI.Al to the equator al appoxamaty 70.6 kO km . The litted sotirce distance ol $92 .(\mathrm{KH}) \mathrm{km}$ implics a source region abous 22.0 MK km sturl af the magnetic equator. This is a generat characturstic of the phenomenon.

For impulsive scattering of the electrons the withos of Filses observed at MILAT depend boilh on the extent of the seutering region along magnetic lield lines and on the daration of the scatlering interactions. The width of a pulse will vary with the interaction region length w as $W \%$, where t is the parallel velocity of the electron. Assuming that the inleraction region is the same for electrons at all energies and
 widths should increase from appooxinately! la! s for clectron energies from 20 . I to 1 keV . Width valiations of this nagnitude would the casily discemable for the J sensor operaling in mode 2. The widthe of pulses resuliting only from the durations of the interactions would have no velocity dependence.

For the dispersion events shown in Figure 1 there is no width increase with decreacing energy. If anything, the wifth decreases with decreasing energy as is the gencrill chamateristic of the events. This suggests that the pulse shape is definced promarily by the daration of the scattering process and that the interaction region is at most a fow thousand kilometers in extent.
Since the observed dispersions appear to he consistent wilt a common source for the particles, the low-alitude llus measurements can be used to reconstract the souter speeirum. Such reconstructed spectra are plotted in Figute 1 for the dispersion events starting at 0438:25 UT. At high ener. bics the flux was calculated by averaging over the time the flux was enhanced in each channel. At encrgies lower than where dispersion was obeerved. the flux was averafed aver the entire time inferval.

For hoth spectra in Figure 1, at enerpics below the dispersion. the fixy decerased, comphly momotomicalty. "ith moreasitig energy for the lowest enterg chmmel withe

Fig. 4. A plot as in Figure I for the zenith-looking detector for the lime interval 03+2:23-0342:S5 UT for the Tromou pass un Julian day 362. 1983.
dispersive part of the spectra, the flux increased by a factor of $4-5$ and then decreased monotonically for increasing energy. Integrating over the portion of the spectrum above 2.73 keV and assuming the flux to be isotronic for pitch angles from 0° to 90° gives a total precipitating energy fiux ul $0.20-0.27 \mathrm{erg} /\left(\mathrm{cm}^{2} \mathrm{~s}\right)$. If the measured purtion of the speetrum is fit to a power law and extrapolated to higher energies, the energy tlux values increase by about a factur of 2. Energy fluxes on the level of $0.5 \mathrm{erg} /\left(\mathrm{cm}^{2}\right.$ s) should be sufficiens to produce visible optical emissions. Fluctuations in optical emissions atributed to particle precipitation have been observed in conjunction with VLF churus |/lelliwell and Mende, 19801.

In the spectrogram the slopes of the dispersiun tracks increase with decreasing latitude, indicating a decrease in the source distance. This is illustrated in Figure 2, where the values of Δt are plotted for a dispersion event approximately 1.7^{+}equatorward of the one previousty discussed. One sees that for this case a source distance of approximately 60.000 km is inferred.
The second HILAT pass occurred from 0340 to 0345 UT on Julian day 362. 1983. The J sensor data recorded at the Tromso station are shown in color spectrogram format in Plate 2. (Plate $\mathbf{2}$ is shown here in black and white. The color
version can be found in the special color xecturn in ide isuuc.) In this interval. IIILAT moved trom 75 h loci COL and from 0712 to 07Ss M1.T. The J wenx $=-$ operating in mode 3.

The measurements repeal the same basic morpinane seen in the lirst example. At the begiming of the pats :1d llux was ubserved pimarily at encrgies below I his wit decreasing latitude, the variability and intencily of the L-e energy lluxes decreased, and the opectium initath ened. Coincident with the hardening of the protrun. pathes of highenergy electrons were delected As a do previous case, the appearance and intemity of the tat energy patches were unrelated lo vartations wilh bitilat
 below I keV solten while pateles cumblet to be uheree a higher energies. A seices of clear dinpervinn wems a;"e during the $20-5$ period starting an 0143:53 Uf

The cunnts per accumutation interval for the whats. energy channels for the period ol clear diupersion coent, ath plorled in Figure 4. Measurable electron llutes uas .n. served up to the 12.1 -keV channel. Clearly in won otime Irom I. 6 KeV io 12.1 keV , there are a meriev of peak, that be matched un to time oflsel peaks in one or note as :s aljacent channels. The data for this period illuntrate x.ea

 in the afporate colos section in lhis isalue

Fig. 5. The inferred source spectra for dixpersion events observed in the Tromso pass on Julian day 362, 1983. The sulid line tives the spectrum constructed from data in the interval 034?: 22-0242:52 UT. The two spectrm matked i and 2 are constructed from dispersion events 1 and 2 in Figure 6.
additional aspects of the phenomenon. First, the count rates at the peaks in any channel vary significantly. For example. in the $7.4-k e V$ channel the counts per accumulation interval at peaks associaled with dispersion events villy by a fictur of 6. Second, the energy range over which the tispersion occurs also varies. Dispersiun events can be observed over the entire range from 1.6 keV to 12.2 keV or in as few as tivo adjacent channels. Third, the intervals between consecutive peaks in a given channel vary. For example, in the $7.4-\mathrm{keV}$ channel, near the beginning of the interval, consecutive peaks are separated by $0.5-0.75 \mathrm{~s}$, while later they incre:ase to 1.25 s or greater. Fourth, though the intervals between consecutive peaks vary, there is a significant interval over which peaks recur periodically. In both the 4.5 keV and 7.4-keV channels starting at approximatcly $0144: 02 \mathrm{Ur}$. there is a series of 12 peaks spaced periodically at $1.25-5$ intervals. In the same interval, additiunal peaks ate ocensionally observed between the periodically spaced poaks. Lastly, in most channels, the count rates drup to zero between peaks, implying that scattering has ether stopped completely or decreased to low values below the instrument's flux sensitivity. This drop to a zero count level occurred in both the zenith and 40° detectors.
A source spectrum from this interval is platled in Figures. The source spectrum was calculated as an average over the dispersion events in the period from 0344:00 ju 014.4:17 UI for which the peak counts per accumulation interval in the 12.2 keV channel exceeded 5 . Averapes were used becabse of low count tates in some of the chanmels. As in the day 18 , examples, the spectrum mondonically decteases will increasing energy for the energies below the divpetsion. In the dispersive energy range the spectrum peaks at 4.5 keV . lategrating over this portion of the spectium gives a lutal energy llux of $0.2 \mathrm{Kerg} /\left(\mathrm{cm}^{2} \mathrm{~s}\right)$ assuming isutrupy over the downcoming hemisphere.
In Figure 6 the counts per accumalation interval ate plotted for the six highest-energy chamels lor the periud from 0342:20 to 0342:57 of this same pass. In lis interval the spectrogram shows patches of high energy hures with mo
 however, that thete wete a number of dinpersing event within this intervas, sypically exteoding over the bur high. est-energy channels. Severat of these dinnersion events ate marked with arrows at the peak counts per accumatation interval for each event in each shannel. The principal ditlerence of this interval from the whers in the getater disurder in the occurrence of the dispervion events. In than interval there are no consistem pertodicites in the occur. rence of the pe:ks, wide variations in the leat comens, and occasional peaks in individual chamets with mot matchme peaks in adjacent channels.

Two suarce spectra from this interval are plotled in Figure 5. Unfike the previous examples, tor these pectha the level in the dispersive portion is lower than that in the purtion where no dispersions were observed. Integial energy llaxiv of 0.47 and $0.35 \mathrm{erg}^{2}\left(\mathrm{~cm}^{2}\right.$, $)$ were calculatid in the diapernse pails of the spectra.
The thind pass occurred from 0.44:30 to 0.94y 10 UU' on day 365, 1983, with the I sensor operilling in mode ? For the pass, the satellite was traveling appoxamately along lee ussu MLT meridian from 78.78 to $61.9^{\circ} \mathrm{CGL}$. The color spectro. gram of the f sensor data (Plate 3) shows the sathe benctal spectral variations with latimude as the two prevome examples. (Plate 1 is shown here in black allud white He coler version can be found in the special culat section in than

For this pasi, we concentsate on the J seman meavine
 this interval shows a patch of entamed high emengy electrons with dispersion events toward the end of the intervat
In Figure 7 the counts per accumulation inter wal tor the four energy channels from 2.7 to 12.2 keV are plothed an :
 figure illustrates that allhough dingersion event accurad loward the equatorward edge of this pathe mo dear ansolation of peaks in contigonus chameh can be evthblished m the poleward portion. The coum ratev did vary ughticamtly in time. This can he seen in the 4.5 kev chamel whete the I'oisson earor has have been ploted tor severad puins in the interval. These illustrate that vtalntically vipmilicam van mtions occur on time scales down to the 0.25 , sampline Irequency of the J vensor. In :ddition, the thax : have extribited an occasional periodicily. For example. in the 4.5 keV chanale al the begiming of the interval, thete are four consecutive peaks with a 1.5 , y pacime. Such periodicities were generally limited at any owe lime in a vingle chanmel.

The examples presented liere ungent that the pectom:
 prodaced by a combmon process. What valleal homeen the examples is the clatity of the observabilaty of the donetate events within the precipitation The examples dow a ate
 where the dispersion evens ine sepanale and protiodis to those where the events hecome aporindic and of mbe.

 wher companed to the valmplane perout al the s comen in the

Fig. 6. A plot in the same format as Figure I for the time interval 0342:20-0143:00 UT for the Tromso pass on Julian day 362, 1983.
simutianeous presence of several trains of dispersion events with different periodicities and energy ranges.
In both the second and third examples the color spectro. grams show approximately equal huxes for clectrons detected in the dispersion events in the zenith and 40^{\prime} detectors. To check this degree of isotropy, the zemith and 40° detectors were first cross normalized using diata fiom the middle of the midnight diffuse aurora where electron distributions are generally isotropic for pitch angles between $)^{n}$ and 90°. The average ratio of the normalized fluxes in the zenith in 40° detectors was then calculated in each energy channel for the neaks in the dispersion events for pasies on three days. A pass on day 176 was included since it contained a large number of dispersions over a wide range in energy. For the three events the zenith detectur sampled pitch angles between 5° and 10°, and the 40° detector pitch angles between $38^{\prime \prime}$ and 43°. The results for the three days are listed in Table 1. In general, the values are within 10% of unity, implying that downeoming fluxes are reasonathly isoTrepic over this angutar range.
 and Germannetir Activity
We next consider the distributions of dispersion events in magnetic local times, the distribution of source distances
along field lines as a function of L shell, and the distribution of events in geomagnetic activity. To determine the local lime dependence, we divided MLT into 24 nne-hour bins. All Tromso passes for the period finm Decemher 19H3 to March 19×4 were analyzed. Tromso was chosen since it consistently provided the hest data coverage of the entire difluse auroral region at all local times. Because of HILAT"s orbital precession all MLTs are sampled in four months. A total of 741 separate passes were examined.
Color apectrograms of the 1 sensor data were examinell in determine if, at any time daring a given pass. time/energy dispersion events were obsetved. Each pass was arsigned to a magnetic local lime bin based upon the hour in MLT in which the majority of the data in the difluse aurora were obtained. Due to the high inclination of the orbit, for most passes, all Jata in the diffuse aurora occurred within a single Ml.T bin. Typically, between 20 and 40 passes were examined in each local time hin, and the percentape of passes in
 centages are lower hounds since we did not count as dispersion events pasees where only patchy pecipitation at ligh energies was ohererved. As shown above, such patelies may contain dispersion events not discernible in a enlor spectrogram.

 36s． 1983.

The results of this analysis are piotted as a histogram in Figure R．The occurrence is strangly skewed to the morn－ ingside of the atrorat oval：Rom of the nasses evtuhiting dispersions occurred between 0000 and 1200 MLI ，and 66% occurred hetween $\mathbf{0 w O O}$ and 1200 MLT．There is a clear peak in the $0 R 00-1100$ MLT bins at a level of approximataly 50% ． The occurrence percentage decreases after 1300 MLI I with no cases teenf from 1500 to 2100 MLT ．In the midnight sector the occurrence rate is belween 10 and 20% ．The strong peaking of event occurrence in the $0(600-12(2)$ MIL I sector is the same as for VIF emissions observed at both fow and high altitudes and for microbursls foliven ac al．，1968： Tharne Cl al．，1977： 1 surnmeni and Smith，1977．The distri－ bution is also the same as that for substom associated． high－energy，microturst precipitation al subauroral tatitudes （Rosenterg nud Dulency，1986）．This point is considered in greater detait in the discussion section．
Second，we examined the relationshin hetucen the in－

	Ratio of 7enith to 40° Detector Channels					l＇ilch Anple	
	12	13	14	15	16	7．nuth	：；
Day 17，	\％${ }^{\prime \prime}$	0 リフ	181	111	1 リ	111	1111
19ay lut		1198	$1: 1$	1 IN		31	192
Day 165		109	（17）	1.15	114	711	1910

ferred sourse distances and the I ．shell on which the disper－ sion events were ohserved．For this analysis，events were chosen primarily from mode 2 operations of tife \mathcal{S} sensor when dispersion times could he determined most accillately． We also required that dispersion extend over at least the energy channels．In the few cases whete dana with the instrument in mode 3 were used，the dispersion was required to extend over at least four channels．For events occurrinp． within a few seconals of one anather the avetage sume distance was ealculated and assikned to the avetage I ．shell over which the events occuried．We consideret events io be separate if there was a distance of more than 1° in latilule betiveen them．t ．shells were nssigned using a dipole mag． netic field model．Comparisons hetween the dipole and Mead－Fairfield models showed neglipible differences for I ．－ 10.

The inferred enurce distances of 3 events are piofted versus f ．shell in figure 9．These events necurred on 10 difterent days and for $2 f$ different passes．Triangles and crosses denote events when the f sensor was in montes 2 and 3．respectively．Solid lines show the distance alone the magnetic field line to the equatorial plane and to a point tor． 20° ．and 10° beyond the equatorial plane．Cleasly，the in－ ferred source dist：ances increase with increating l shell in the 3.5 to 10 range．For latitudes eorrespunding to 1 ．－ 10 －ese is ereater uncertanty in the assipned l ．value hecanse as uncelaminties in the mapping from low to high altitules． The－vents are aproximately evenly distributed over the 1. shell range from if to Alhough the mented somese

Fig. 8. The percent occurrence as a function of magnetic local time of observation anywhere within a pasy of encigythue dippersion events.
distances of some events are closer than the equatoriat plane, in the majority of cases they are significantly greater than the equatorial distance. On average, the sources are located $10^{\circ}-20^{\circ}$ from the equator.

We also did a prefiminary analysis of the level of geomag. netic activity during the periods of dispersion event obser. vation. For the 35 events included in Figure 9, only two were found to have occurred for $K p$ less than 2 , and the average value of $K p$ over all 35 events was approximbtely 3 . I his indicates a preference for the occurrence of the events toward somewhat elevated levels of geomagnetic activity.

4. Discussiun

In the previous section we presented obyctrations of electron dispersion events in the mornong sector of the aurotal zone occurring over the energy range lrom 30 kev to a few keV or less. As noted, these events have accurrence distributions in MLT and L shell that clusely mirror thene of microbursts and VLF emissions (oheren el al . Wex: ohion and Gurnelt, 1988: Rusirll et al, 19t9: Thurne al wl. 1977.

 possible theories to explain such at elationstho Withon thas
 interactions helween VIF water and clection wht enet

 the luture be verificd by instrmentatom thenn on plamed satellites.

This section is divided into two mam viluections. In the first subsection we review the guast lame:n theory of pheh angle scattering and show that whthe the limes of expet mental knowledge it camot explath the disperson events ine have reported. In the secomd subsectosn we ypty the

 crobursts. In our model the preciputator urricture difectad by HILAT represent debos from asymmetric wave pulves propagating though a tapped. wan phtinma

4.1. Quasi Linear Pith Ankle Seathering

Pitch angle acallering of magnetovpleric elecifons ho electromignetic and electrostatic waves in the VI.F liequency range has been analyzed by many invevtik:int, |Kenuel and Persehed, 1966: Kernel and fingelmann. Ioris: Kennel ef al.. 1970; L.yons. 197al. In these lieuretical models the scallesing is produced hy waves that ine Donpler shilted to some hamone of the electom gymbequents.

Fis. 9. The inferred source distances fir enesgytime diapersumevents versis f, shetl Solit lines ene the dwance the

$$
w \cdots k \cdot v+N I I=0
$$

where w and Ω are the wave and electron gyrofrefucncies. respectively: k is the wave vector. v is the clectron's velocily, and N is in integer.

Using the cold plasma dispersion relationslitip for wifister waves, Aemel and I'resched [198k] showed that there is a range in energy where electeons resonate with waves at the $N=-1$ gyroharmonic. The minimunt resomance energy E, is siven by

$$
\left.E_{s}=E_{s}(\Omega) / \omega\right)(1-\omega / \Omega)^{\prime}
$$

where $E_{r}=B^{2} / 8 n n$ is the menelic energy mer particle: B is the mannetic field strength, and othe cold plasimit density. For whisler waves to prow in amplitude the puch amele anisotrony in the electron distitustion function hear the loss cone must be greater than $1 /(1) / w-11$.
One can show that for such an interaction to pitch :ungle scatter electrons in the energy range of our ohservations requires cold plasma densitics well in excens of those me:a surce in the dayende. equatorial magnetosphere. On the Jayside. for much of the \boldsymbol{L} shell range aver which the exents are ohserved. the magnetic fieht is approximately ilipular For a dipole lield the equatorial fiela strenuth decereases from $2 \$ 8$ to 60 nT as the radiat diatinnce from the conter of the Earth increases from $5108 R_{E}\left(1 R_{f}=6.170 \mathrm{~km}\right)$. The principal range over which we observed lise dispersion events. This eorresponds to a mapnetic energy density from $15510 \mathrm{ln} \mathrm{keV} / \mathrm{cm}^{\prime}$. For $\mathrm{F}:$, to have a value of 1 keV . consivient with our ibservalions, would require coll plisma densilies from $1551010 \mathrm{~cm}^{-1}$ over this I, shell range. Higel and thin | 19 A 4 , however, have remorted that at genstationatiy ofthit $(f .=6.6$) the cold masona dencily peaserally incteases from $1 \mathrm{~cm}^{-1}$ near the diswn meridian to 8 cm ' near local noon. well below the required densities.
I. yons [1974| has muposed a model for the scattering and loss of plasma sheel electrons in the energy range 1-20 keV by elcetrostatic waves. This model applies to quasi-steaty state clectron precipitation and requires millivolt per incter clectric lielal anplitmes. I here are contraliciory renouts as to whether the avetinge wave inlensities repoited are sulliciently farge to support the proposed process (Airimel et al..
 et al.. 1981: Rocder und Komms, 19491. In itddition, there is nothing in the model that explains either the impulsive nature of the observed events. Their oftequalotial orijin, or their morningsiufe occurrence

An alternalive explanation th the apmarent oll equatorial source far the llll. AT dispersion events is that the watrm ejectrons are resonantly scattered ty fising choris lones nronagating ne:or the equator. Rising tones occur becallse the phase velocitics of whistler waves are inversely retilled to their frequencies. The process would therefore tend to pitch angle scatier 20-keV efectron thefore $1 \cdot \mathrm{keV}$ electrons. The resulting dispersion combined with the dispersion produced by the difference in transit time could then mimic in the ionosphere an oll equatorial source.

To evaluate this explanation. let us ennetuler the interac. dion of warm ($1-30 \mathrm{keV}$) electrons with VLF rixing lones near peossationary orhir where the range of cold plama densities has heen measured for a cold plasmin denully of cm^{-1}. Is pical of the postian n cector and with $n-118 \mathrm{nt}$.

He masnetic energy mer electoon is 6 heV formel imele scalter ciectrons with eneigies hetween 20 and 1 keV . Whe
 lhis covers the ohserveal gan at half the cycholmon lir quence. If we assume that the rasing tone has frepuracies ahove 0 S23, and scatlers electrons with energus less thin 20 keV . we estimate the required entd plasma density la lie $0.1 \mathrm{~cm}^{-3}$. This is much tevs titan the observed, mommenite. cold plasma density range Conversely, if we assme that the rising tone has frequencies less than 0.48 s , and scatfers electrons with energics greater than 1 keV . the cold plasma density nust be about $9 \mathrm{~cm}^{-1}$. Whule this is comparable to Jensities found at geaseationary orbit ne:ir mom, if cammot explain the many examples of near diawn dispersion events where the measurements of Ihind and W'u |toky imiluate mash lover densilices
On the basis of our observations and analvais of quastlinear miteh angle scattering thenty we comelmale that any model explatising the elispersion events inmst involice puls. cesses that (1) are specific to the morning iecleot and mavi-
 lecations away from the equator. pencially in the opposile femisphere in which the dispersinn events are nonsel ved. 17) impolsively fill the loss cone with isultopic flixes of elec trons with enerfies hetween $\mathbf{0 . 6}$ and 20 keV , and ($1 /$ operate over a wide range of l. shelle.

4.2. Nomlintar ritch Angle Scumering:

Since neither the electromagnetic nor the electrostatic quasi-linear moutel catl account lor the IIILAI obsetvatuns. we have attempted a dilferent appronch that relics bin peviouts work of Dasidsom [19R(sas. b]. Davidion has puinted out that foce energy responsithe for wave growith need inet resite in the precipitating electrons. For the cases of hot (こ, 20 keV) electron precipitation bursts in the morning maporetosplere, considefed by Davidson, particle anisotropies ate the fice energy senges of wave growith. Thus Daviden was able in derive self-consistent tefationships between the wave lielis and the hod clectron diseribution functions.

Here we consider seatforing of the $1-$ in $20 . k e V$ elections hy an interaction with VI IV wives where these clectrons da nut act as the free enefgy source to drive the Vi.l wases lly the nature of this kind of interaction, wilhont spectic kmowledge of the hof electron distributien. the initial value pooth. lem cannot be solved self-consistenlly.

Fipure 0 is a flowehat of the suprested process. A source of trapined. hot electrons is retpuired in the midmpht sector Whether these electeons oripinate fom subutom injecturns * wher processes is mimimotime. We oulv iequite that a pitch ancle anisotrony in their distrbution famefint cintics Iree energy that can be released when the aprobumate
 for GEOS 2 indicate that as these clectrons drill castwart into the morning sector. they encounter azinuthat gradients in the cold plasma density. This reduced F_{r}. the maenctic energy per particle, allowing an increased potion of the irapped. hot electron disiribution to resonate with whistler mode waves.

With both energy resonance and paticle anisotions con-
 That this occurs is supperted hy the focal trme amel $/$. slied

Fig. 10. Flowchart representing processes leating to impulsive scattering of auroral energy electrons into the loss cone.
cited above (Isenters el nl., 19R2: Rosenherg and Duatroy. 1986]. According to the model developed by Daviluon. in the early stages of wave growth the pitch angle diltusinn tate is weak. The waves grow in amplitude umblit stong pich angle scaltering is achieved, i.e., until in the equatomal region of wave particle resonance, electrons pitch anple scatter over half the width of the atmoipheric loss cone on time scales less than the transit time across the interaction region. Once the electron flux in the luss cone is isurtupic. the particle anisotrony in the equatorial region neceded to support wave growth is no longer present. and the waves ane quickly quenched. The wave growth should procecd more slowly than the quenching such that an asymmetric wave packet is produced with a much shauper gradient on the trailing edge of the packet than on its leading edge
A schematic represemation of this process is shown in Figure II. Cluse to the equatorial resonange ragion. VLF waves propagate both loward and away from the equator. Under symmetric conditions between the nothern and southern hemispheres, waves that have passed through Hie region of resonant interaction propagate away from the equator with larger amplitules. The avymmetio amplitudes
 quenching are tepresented to the lyatue

Whe distance lion the equator at which vich waves mish be ubserved depends on whether or not the we ducted Obervations of ducted wave bains can. in promente. Wa made all the way down to the bomphere for the unducter care, waves only propagate to the facatoms where then

 poial is set by the cunditum that

$$
\begin{equation*}
w-H_{13}=\omega_{11}=V m_{1} m_{1} I \|_{1} \tag{11}
\end{equation*}
$$

Where ω is the liepuency of the wive: 14,1 , the election
 0.015-0.2: m, and m, are the electom .mat woll mancs.

 redicer la

$$
\sqrt{m, m, l}+11+3, \operatorname{lin} n^{2}+1^{\prime \prime} \cdot s_{1} n^{n} 1
$$

For the rame in F given above. He lathote of ellocomots varies from 25° to 42°. We showed in Figure 9 that tor 1. . the warm electom busss typically origmated an magnetio latudes between 10° and 20°. Itas buth ducted and unducted wave trains coming lown the equaton propagate throngh the region where the inpulac seattomg uccum
We next combiter the imeractin! bl the want dectron with wave trams of the gencrat astmonetoc shape stown in Figure 11. The watn electoms mowng athog the manctic fich lines fovard and away fom the equator can imen act with the gradients in the wave train through the pomblestan.
 gradient. The force exthed on an individual electom via the montine:ar. punderomotive furce is

$$
\begin{equation*}
\left.f_{\mathrm{NI} .}=-\left(a^{2} / 4 m+\omega^{\wedge}\right) \Gamma \mid 4\right\}^{\prime} \tag{191}
\end{equation*}
$$

where E is the amplitute of the wive electat liedt. Itic bach ide stadiem of a wave tram propatithing an:y hom the

Ifig if A sehematic sepresentation of the penerituon ami prop.t

 result. an clectron moving toward (away form) the cillators receive an impulse toward smaller (larger) pifch imples.

We can estimate the wave amplitude requined la imput. sively seatter warm electrons from just outside lo jusi insile the lass come. la the intenation the lied alipacd compure ot of the ceection's ombientum must increase by

$$
\begin{equation*}
\delta_{p_{11}}-n(1 \text { cosal-nall } \tag{b}
\end{equation*}
$$

where a is the half width of the loss cone. I his impulse is

$$
\begin{equation*}
\delta_{D_{11}}=\int_{0}^{s_{r}} f_{N I} d t=-\left(e^{\left.2 / 4 m+w^{2}\right) \Gamma|f|^{\prime} \delta_{r}, ~}\right. \tag{7}
\end{equation*}
$$

We approximate $D|f|^{2}$ by F^{2} mas $/ D$, where 1$)$ is the se;ate lengit over which the wive amplitude decesaces liom its maximum value $E_{\text {man }}$ lo a low background level. The inleraction time divided by the seale fenget ofrof iv $-1 / 1_{\mathrm{r}}$. where V_{ℓ} is the eroup speed of the wave train. Combining the expressions for δ_{p} in equations (6) and (77. we get

$$
\begin{equation*}
F_{\ldots, m}=a(c / c)\left(2 m V_{g} \Gamma\right)^{1 ; 2} \tag{X}
\end{equation*}
$$

In MKS units. clection monemturn is related tu kinctic energy X in convemient unils as $p=1.7 \times 10^{31} K^{1 / 2}$ (keV'). We see that the ciectric ficld amplitude requited for acatiering by the pondernmotive force depends only weakly fourth root) on the electron energy and thus is a viatie camdidite for impulvive seattering over the full 1 - In 20 -keV range Nole. (oon, that the maxmmen (equited electic fiche is ditectly proportional ta w. the half width of the loss come .t the mapnetic latitude A of the impulse. For a dipute. a inereases away from the equator romphty as $1 / \mathrm{cos}$ ' A. ther the promes ommotive force shonld the most elfective for pushing traped warm electrons into the loss cone immediately atter a wave train emerges from the equatorial region of resamane inter. action with the hot electrons.

We can estimate the electric field amplitude required for ponderomotive scaltering at $\lambda=-15$ along the $t=6$ field line. At this position the half width of the loss cone is $\mathbf{3 . 1 n}$. We assume a cold plasma density of $5 \mathrm{~cm}^{-1}$ and a VI.F frequency of $0.1 \Omega_{n}$. For a dipole field this conesponds io $E_{r}=10$ and $E_{r}=75 \mathrm{kc} V$. The proup speed of the wave train is approximately $10^{4} \mathrm{~km} / \mathrm{s}$. Sutstitution ol the se valhes into equation (8) gives $E_{\text {man }}=10 \mathrm{mV} / \mathrm{m}$. Electrostatic waves of this mannitude have been ohserved near the cquathyal plane
 corresponding magnetic field amplitude firm aluiviet wave is 0.07 nI . This is consistent with the amplimates of V1.f:
 crobuss aclivity
Other possibic effects of intense wave traine perpagatiog away from the equabrial plane can be consideted. I he wave Irain may be either ducted or unducted alone the mapnetic field hux tulic. In the former case it would propigate diewn to the iomosphere. This appears to be trite for the casers reported by Rowmberg ef al. |lonl|. In the umducted cance the wave train is fully or parially reflected hack fowad the equator at the point where the drive frempency equats the Inwer hybrid fiequency \{Kimmen, \{9fit|. II the distribution function of the the edectrons has again heconse inwotrope when the refected wave returns to the equalser. it can giow through the standat pitch angle scattering process. Such

Fig. 12. Representation of opmosuty tirected VI.f wave trans propagation belween lower hobilid reflection punts.
reflected waves could then interact with the wat in elecloms via the ponderomolive force. several times, in podme die muffinile dispersion events obscived.

Figure 12 schematically repesents the history of twor unmositely traveling wave trains. At initiat titne t_{n} the wanc Irains have small amplatodes as they apprameh the refoatur During their passape thomph the equatotat layer (f, they How and acquite asymmetic vimpes ami popatille away
 they are fellected f_{1}) loward the equator t_{1} ha atain anplified $\left(f_{4}\right)$. If the wave refains its shape and intensty on reflection at the lower hybridi point, one can explaw the few examples of injections on the near tnorth) side of the equatorial plane. In this case the backside. penderomotive loree of the wave train moving loward the equator provides a direce impulse tow ard the ionosplere.

In conclusion, we have presented examples of energythime dispersion events occurring over the encrgy range from $\mathbf{2 0}$ keV down to a few keV or less. The events oceur ciller periondically or aperiodically with the fures isotiopic for pitch angles between appoximately 0^{n} ami 40^{n}. The disper. sion events are oforeded pimarily in the amomingsule atsmat zone over l. shells from aproximately 3.7 tu 1 s. Ihe events are consistent with a sume distance along the field line $10^{\prime \prime}-20^{\prime \prime}$ heyomd the mapmetic equaforial plane. We argue that the occomsence wf sich events canment be acomoted for by a esomant interathon will VI, waves lased int cia. chmatantial evidence fom similar morming secter Vifi aml microbust phenemeonhagy. we propose that the wamelece trons are impulsively seatlered by pondenomotive forces exerted by הяymumetric Viff wive packets.

[^0]
References

Anderson, R. R., and K. Maeda. VLF emissiuns associated with enhanced magnetospheric electrons, J. Gruphys. Res.. 8?. 135, 1971.

Beimoni, G.. D. Fontaine, and P. Canu. Are equatorial electron cyclotron waves responsible for diffuse auroral electron precipitation? J. Grophys. Res., 88, 9163, 1983.
Burton, R. K., and R. E. Holzer, The origin and propugatiun or chorus in the outer magnetosphere, J. Gruphys. Res.. 79, 1014. 1974.

Chen, F. F., Plasma Physics, vol. I, Plusma Fhysies and Curirolled Fusion, 2nd ed., pp. 305-309, Ple num. New York, 1984.
Davidson, G. T., Pitch angle diefusion in the morningside aurorace, 2. The formation of repelitive auroral pulsations, J. Grephys. Rers., 91. 4429. 1986a.

Davidson, G. T., Pitch angle difusion in the morningside aurorae, I, The role of the loss cone in the formation of impubsive hurstis of presipiation. J. Grophys. Res., 91, +11), 1946b.
Dunkel. N., and R. A. Heltiwell. Whistler-marle emissions on the OGO I satellise. J. Gruphys. Res., 74, 6371, 1964.
Foster. J. C., and T. J. Rosenberg. Electron precipitation and VLF emissions mssociated with cyclotron resonance interaclion near the plasmapause, J. Geophys. Res., 81, 2143, 1976.
Fredricks, R. W., and F. L. Scarf, Recent studies of nagnetospheric electric field emissions above the electron gyrofrequency. J. Geophys. Res., 78, 310. 1973.
Hardy. D. A.. A. Huber, and J. Pantazis, The eiectron Rux J-sensor for HILAT, APL Tech. Dig., S, 12S, 1984.
Helliwell. R. A., A cheory of discrete VLF emissions from the mugnetosphere, J. Geophys. Res., 72, 4713, 1467.
Helliwell, R. A., and T. L. Crysial, A leedhack model of cyclotion interaction between whistler-mode wuves and energetic electrons in the magnetosphere, J. Geaphys. Res., 74, 31, 1971.
Helliwell. R. A., and S. B. Mende, Correlations between $\lambda 4278$ optical emissions and VLF wave evenis observed at $L \sim+1$ in the Antaretic, J. Genphys. Res., 85, 1376. 19k0.
Higel, B., and Wu Lei, Electron density and plasmapause charicteristics at $6.6 R_{E}$: A statistical study of ilie Git:OS 2 relaxalion sounder data, J. Geuphys. Res., 89, ISH3. 19×4.
isenberg, P. A., H. C. Koons, and I. T. Fennel, Simuttaneous observations of energetic electrons and dayside charus in geosynchronous orbit, J. Geophys. Res.. 87, I498, 198?.
Kennel, C. F., and F. Engelmann, Velocity space difusion from weak plasma turbutence in a magnetic field, Phys. Fluids, 9, 2377. 1966.

Kennel, C. F., and II. E. Petschek, Limit on stahly irapped particle nuxes, J. Geuphys. Res., 7I, 1, 1966.
Kennel. C. F., F. J. Scarf, R. W. Firedricks, J. H. McGhee, and F. V. Coroniti, VLF electric field observations in the mabnetasphere, J. Geophys. Res., 75, 6136, 1470.
Kimura, I., Elfecis of ions on whister mode ray tracing. Rudio Sci.. 1, 269, 1966.

Lyons, L. R., Electron dillusion drive hy magnelunntiece elestin. stalic waves, J. Geuphys. Res.. 79. 575 . 1974
 whisilers. Planes. Span +50 i., i8. 1753. 1970 .
Oliven, M. N, and D. A. Gurnetl. Microbursi phenumenia, 3 . In association between microbursts and Vif chorus, 1 Cicerfion Res.. 73, 2355, 1\%6\%.
Otiven, M. N. D. Venkatesan, and K. G. Mecroachen. Matohas:-1 phenomena. 2. Auroral cume electroms. S. Cowhens. Mot II. 23+5, 3968 .

 seasonal dependence of electrom pitecipuidiun in l. $=1$ interied

Rosenberg. T. J., R. A. Helliwell, and J. P. K.anthishis, Elecllum precipitution assuciated with diserele very-hne-fiequency emb. sions, J. Griphys. Res., 7h, K+4s, 1971.
Roventerg. T. S., J. C. Siren. D. L. Mahhewy, K. Amphinen. I A Heltel. A. Eisciand, U. L. Capremer, and R. A. Helliwell.
 Res., Ho, 5sty. 18N1.
Russeli. C. T., R. F. Holzer, and E. J. Smith, O(i) I whservathun, of ELF noise in the magnelonphere, 1. Spattal extent and liequency of occurrence, J. Geuphys. Res., 7t. 15s. 1\%.9
Scarf, F. L., K. W. Fredicks, C. F. Kennel, and F v Coranni. Satellite studies of magnelonpheric suhtormson Aubivi is. iming OGO 5 plasma wave observations. I. Cecopher. Hes. 7н, 311 1973.

Thorne, R. M.. E. J. Smith. K. J. Fivke, and S. K. Church. Intennly vatiation of Ei, F hiss and chorus duting inulated subvoroms Gecoplys. Res. Lett, 1, 193. 1974
Thurne, R. M., S. R. Church, W, J. Malloy, and B. T. Temutani, The local time variation of ELI: cmovion during peliods al substorm activily, J. Geophes. Rec., Ne. 15xs. 1977
Tsurubani, D. '., and E. J. Smith, I'usumidnight clen"w: $\boldsymbol{\wedge}$ vuhoturn ghenmanemon, / Gruphus Rer., 7U. 11א, 1974
Tsunilani, B. T., and E. J. Smill. Iwo types of maknetopphetic
 82, 5112, 1977.
Venkitesan, D. M. N. Oliven, P J. Pidwats, K G Meribachen. and M. Sicinberk, Microbmist phenamena, I, Autoral mate X rays, J. Gerphys. Res. 73, 2313, 1\%,
W. J. Durke and D. A. Hardy, AlGUPIIP. Hanscom Air Force Bave, MA 01731.
f. Villalon, Center for Electromagnetics Research. Northe:blern University, IBoston, MA 02115.
(Received November 9. 19xk: revised Alay 1. Imy:
accepted lune 1.1. 19K'.)

Quasi-Linear Wave-Particle Interactions in the Earth's Radiation Belts

Eliena Viliatión
Center for Electromagnefics Research. Northeustern University, Boston. Massachuseirs

William J. Burke and Paul L. Rothwell
Air Farce Geophysics Laborarory. IIanscam Air Force Base, Massachusetrs
Miciasil B. Silevitici
Center for Electromennelue Rescarch. Norsheavern Unversity. Anston. Massachmeis
This paper studies the theory of gyroresomiant interactions of energetic trapped electrons and protons in the Earth's radiation zones with ducted electromagnetic cyctotron waves. Substorm injected electrons in the mid-latitude regions interact with coherent VIFF signals. such as whistler moxle waves. Energetic protons may interact with narrow-hand hydromagnelic (Alfven) waves. A set of equations is derived based on lie Fukker- Panck thenry of pitch angle diflusion. They dercribe the evolution in time of the number of particies in the flux tube and the energy density of waves. for the interaction of Alfven waves with protons and of whistler waves with eiectrons. The cougling cocficients are obtained based on a quasi-lincar analysis after averaging over the particle buunce motion. It is found that the equilibrium solutions for particle fluxes and wave amplifudes are shable under small keal perturbations. The reflection of the waves in the iunosphere is discoused. Tin efficienlly dump the energetic particles from the radiation belts, the reflection corfficient must the very clase to untry so waves amplitules can grow to high values. Then. The precipitating particle llunes may act as a moutive feedhack to raive the height inteprated conductivity of the innosphere which in turn, enhances the reflection of the waves. In aldition. by heibing the fiom of the tux tuhe with high imfensity. Rf energy the mirroring propertics of the mosphere are also entanced. The vability analysis around the equilibrinm solatons for preciptiatug particie fluxes and wave intencity show that an actively excoled ionosphere can cause the devefopment of explosive instabitities.

1. Introduction

A theory of nonlinear interactions of radiation belt particles with eyclotron waves is developed here. We consider cases where the wave frequencies are small fractions of the equatorial cyclotron frequency and where the wave vectors are aligned with the geomagnetic field. Because of the latter we only consider resonant excitations due to the first harmornic of the eyclotron frequency. For high-temperature plavmats. the pitch angle distributions of the particles are anivotronic, which provides the free energy for the cyefotron instiability. As a distribution function relaxes toward cyuilibrum. it interacts with several types of electromagnetic waves. A number of observations of electron precipitation in mudilic tatiludes (I. ≤ 6). have been attributed to highly colerent magnetospheric Vi.F waves (Dingle and CarpinHer, IVXI: Daolitile and Carpenter. 19R3I. This includes natirally accurring whistlers. Iriggered Vif emissions, choris. signath that are injected into the magnetonshere by VI.F ground tranumitters and lirge-scate power grids signal from satellite borne VLF transmitices. Substorms injected proIons in the mid-hatitude regions, interact with hydromagnelic IJ.F nulsations of the Pe type. which are dueted along a plven masnctic Aux lube. The amplitudes of the waves arow directly proportional to the number of resonant particies and to the degrec of the pitch angle anisotropy until they reach the equilitrium state. The gencrated waves. in turn. act upon

> Cunynah lygo by the Amencan Geoplysical Union.

Pipuer number kojailile

the particles and change their velocity distrihution. Sume of these particles are scattered into the loss cone producing the well-known particle precipitation nuxes investigated by K cinnel and Petschek (1966) and observed in the maqnelosphere. The electrons fluxes and associated wave activity in the radiation belts have been extensively studied over the years
 cavic et al.. 1984: Inan, 1987; Srhuls and Davidsom, 19x| and provides a possible explanation for the presence of the eiectron slot around $L=3.4$ shells [Lyons and Thorice. 197): L.yons and Williams, 1983|. In addition. pitch angle scallering of ring current ions by ion cyclotron waves. with a Srequency in the range between 0.1 and 0.7 times the proton gyrolreguency, are believed to play a significant role in the plasma panse region (Kozyra ct al.. 1984: Imhof et al. . 198k: Cerndrin. |Ats].
The amplification of the electron (proton) cyclutron waves mainly uccurs near the equatorial region where the resonant wave particie interactions are more chlicient. As wave travel along the flux tube and emter the ionomplese they are partially reflected back into the flux tube and partially transmitted toward the ground. An impurtant concept devetoped by Brspaloy and Trakhengeris $\{1980\}$ and Trakhiengerts [1983] considers the mapnetosphere as a gigantic maser where whistier and Alfven waves are trapped between the ionospheric mirror and grow in amplitude as they cross back and forth across the equatorial region. The maner will result if the path-integrated growth rate of the intensity of the wive picket excects the absolute value of the logarithon of the imernal refecton coethicent at the maxneloyphere-

The U.S. Government is authorized to reproduce and sell this report. Permission for further reproduction by others must be obtalned from the copyright owner.
umonplate intelate. They derive a set of equations based onf guavi line:ar theory which gives the evoluthen in tulte of the tapped particles in the llux tube, and the energy denney of waver. It is assumed that quasi-limear dolluston ocine over tine scales which are longer that the partide bounce tane between conjugate lemispheres and the lime waves bithe to travel from one ionoypheric mirror to its conjugite. the tay equations were also introduced in a phenumenolugleal matmer by Schulz (1974]: the time-dependent piech angle anisotropies were also modeled as to include the strong pitch angle dialusion casc. However, the coupling coetlicients for the tay entuations are not given in Schula' plenomenological dexcriptom.

Our paper is a detailed review of the theory developed by Hevpaluv. Trakhengerts and their collaboraturs [Bespalov it al. ISN3: Gipomov-Grchhos er al. . bext; Trakhengeres. |9X. \mid an the electron cyclotron wave instability. In addition. we extend this theory to the interaction of Alliven waves with ums. The main contribution is to catculate the coupling coctlicicuts for the ray equations describing the teaporal evolotion of the eyclotron instability. These ane obtaned withon the framework of quasi-linear interaction of waves and particles. For simplicity, we assume that the waves are ducted ill the magnetosplere between the ionouphere and the equatorat plane. We also giv. a detailed accoum of the qualitative values of the ionuspheric reflection coellicients lior boll whinter and Allven waves. The role that an actir-ly excited bomophere may play modifying the wave reflection seellictents and hence the maser efficency within the radiamon bells is aho discussed.

Hec pape is organized as follows. Sections 2 and 3 contain the banis of resonam interactions between waves and partieles and a descetption of the evolution in time of the particle diseribution tunctions based on local, quasi-line:ar theory |Rolects. 1969: Schulz and Lalscroni, 1974]. We assume that the dielectric properties of wave propagation are given by a cold background of cither elecirons (for whisters), or piotons tior Aliven wavest. The hot population of plasma panncles iceg. , lastger than 10 keV for the electrons and 100 kev lior the ions), is represented by the parlicle source flat, .ind they meract with the electromagnetic waves near the calmatuial regions. The equatorial sources of particles in a given llax tube are due to gradient-curvature driting on the sume maghenc shell and inward radial dillusion that conarves the tin th two adiabatic invariants. The tatter is greatly enhanced daring magnetic substorms. Because of resuntant dillision, the number of trapped thermal particles in the flux luthe changes in time, and their distribution functions are whelied in section ? We consider eanes in which the pith angle distatmation function does not change in time, and als, when it changes over time seales longer than the bunace lime and the group twe delay of the wave. The pitch angte distribumen lunctions are eigenfunctions of the dillusion operator, athd they are given in Appendix \mathbf{B}. In ection + we pecten the growth rates for the whister and Allven matiabilites. dae to the resonant excitation by the thermal pathcles. We sosume that the man spintiat inhomogenerly that "astes encounter as they move near the equathor is due to the viatial vallation of the geomagnetic fiede. Altur integrating . Wheng the flux rube fi.e. , along the magnefic fiedd variations), we whtant the vatiad amphlicatom factor as a lunction of the number of evenant particles in the magnetic trap. We arrive .11. 1 xet of compled dillerembal equations dencribing the
 and the enespy density of waver. these equation are vald wer tine weales fonger than the bounce tine of the paticlen and lie group time delio of the waves and do not comprise the possobility of particles drifting away from the waves ducls. The ray equations are discussed in section 5 . The cqualibrum solutions for whisters and difven waves are given here. The nonlinear stability equation is atso goven in section j. Section 6, and Appendix C contailn a description onl how a mane-dependent, pitch angle anisotropy atlects the ray equations and their equilibrium solutions. In section 7 we study the rellection of the waves at the foot of the flux tuoe lior buth whistlers (HAlliwell. 1965 , and Altven waves. We diseoss the dependences of the rellection coellicients on the wavelengit, size of the iono phere, and the length of the denurly whornogencity. In section 7 we atso consider the ellects that an aetively excited ionosphere may have in the stablity of the equilibrium solutions. The ionuspheric rellection coelficient may be changed in two dillerent ways. First. by uning high power morowave tratnomiters, the dielectric propetaies of the ionusphere may be changed by creating a high population of thermal electrons. This modifies the rellectoon coedticients, and hence the condition for stability of the cyclutron wave modes. We atso consider the ellect on the heightintegrated conductivity due to the tilling of the lons conce and consequently, a large particle precipitation due to the maser instability. The conductivity is then modulated at VI.F or ELEF freyuencies which modulates the rellection of watves that caluse pitch angle diffosion in the equadorial plane and the gruwth of the waves themselves. This ploblem has been stadied perviously by lavidum and (him |1986| Hese we give a derivation of the stabtity equathon stanting fiom quastlinear theory and incorpobating the monlmear leedback of the particle precipitation. This causes at third mode to appear which was not piesent in the stabsitity analysis of a hatural unperturbed iunosphere. The conditions under which this mode becomes unstal are given. Section y contains a summary and conclusions.

2. Resonant Wave-Pariticle Initriciton

A patticle of mass m, charge of and velocaty r , moving afung the dipoie field lines of the Earth's geomagnetic field. bouncer trum mirror point to its opposite hembphere conjugite in a time given by (Schule and Lamzerom, 1974)

$$
\begin{equation*}
\tau_{H}=\int_{-I_{-2} 2}^{1-2} \frac{d z}{v}=\frac{2 \pi \pi}{v}(1-0.23 \sqrt{\mu}) \tag{1}
\end{equation*}
$$

where the coordinate : represeats the distance atong the magnetic licta line, $I_{\text {t, }}$ is the length the parlicle tratels along the ticid line, and a is a comstant wheh we shall define fater un. The paticle's velocity alung the magnente tield (z disection), is $n:=$ an $-\mu\left(1 / A_{L}\right)^{1 / 2}$. where $\Omega=$ allme is the cyclotion frequency, and $\mu=$ in' v_{1}. Hete $\theta_{\text {, }}$ in the
 patticte velocity vector and the geomagnetic hichd at the
 Io vi.ratoms in the equaturial pitch ang心. Iburs we will approxumate r_{n} by 2π at in the calculations that lollows
For the wate of analyacial smplicity, we aviume that ne.ar the equatortal region : may approamate the Earth', mag netic licha by the patabolic protic.

$$
\begin{equation*}
\frac{1 B}{B_{1}}=1+\left(\frac{E}{n}\right)^{2} \tag{2}
\end{equation*}
$$

where the index t stands for the values at the central eross secturn of the llax tube. If we define of the feomagneac lattude in radbat units. and by expanding the dipole magnetic licid in powers of ψ. we find that $:=R, t, 4$ and $d=$ $\cdots 21, R_{1}, l$. Here R_{F} is the Earth: radius and R_{F} : meawien the distance of the center cross section of the magnetio Ifap lowm liwe cemter of the Eath We show that (2) is a goted aponsmatom the geomagnetic biedd lines for lamodes smalle than - 20°

Dobied whater and Alfven waves are such that ther wave vector k is atugned along the geomagnetic fickl. For these waves the particie motor resonates at the first cyelotron harmonic if there is a sulfietent number of electrons or protons whach satmly the resoname conditon

$$
\begin{equation*}
\omega-h_{1^{\prime}}+\Omega=0 \tag{3}
\end{equation*}
$$

"here wis the wave frequency. The electromagnetic wave is ansumed to be corcutarly potarized. with the electric and matenctic field perpendicular to each other and both perpendicular tok. The refractive index is represented by η and n is biven be the dianersion relation for enther the whaller or the Niven waves (uee section d) Equation (3) detines a mappone thetween values of the eyclotron frequency 1 along the peomaknctic trap, and the resoname equatornal nitch anelo, μ. lior given values of h and r. i.c. $(1)+w / h n=11-$
 ic. . luose that wotwly (3): $\mu_{r} \leq \mu \leq \mu_{0}$, is such that μ_{1}, is peven by the puts angle all the bumdary of the lows cone and μ_{m} is detined in ernis of the equatorial cyclotron frequency. The resoln, metrifequencies are such that $\pi_{1}=10: \|_{18}$. Heac $a_{\text {, }}$ is the equatorial dymolrequency. and Ω_{3} is the
 amed $\Omega_{1,}$, are resonant with the values of the equatemat path angles corresponding to $\mu . m$. and μ., respectisely (see Figure 11 That is. the smallest value of Ω resonates with the large. 1 porwhice value of μ. and vice veria. In fact, for u \& fl, we have

$$
\begin{gather*}
\Omega_{U}=h_{U}\left(1-\mu_{1} \Omega_{A p} / \Omega_{I}\right)^{1 / 2} \tag{d}\\
\left.\Omega_{L}=h_{n+1} 1-\mu_{I_{n}}\right)^{1 / 2} \tag{5}
\end{gather*}
$$

 1) w the maximum geomageels latitude for whach resonant wave particie micsaction takes place. We lind that d^{2}, \ldots is related for the equalorat range of resonant pitch angles by the cquialı:

$$
\begin{equation*}
\left.\mu_{m}=\frac{1}{i} 1 \mu_{m}-\mu_{1}\right)^{1 / 2} \tag{f}
\end{equation*}
$$

We at'ol lind that lar given vathes of the particle's encrey and wiave vector, W, is obtained from

$$
\begin{equation*}
u_{1}, \ldots=\frac{\sqrt{2}}{3}\left(h_{1} / n_{1}-1\right)^{\prime 2} \tag{171}
\end{equation*}
$$

 resumbin fith meles is

$$
\begin{equation*}
\left.1 / 1_{m},-11,1 \cdot 2\left(h_{1} \cdot 1\right)_{1}-1\right) \tag{x}
\end{equation*}
$$

Fit. 1 The earth's dipule manelac field and the paratolic proble are quatialtively lericied here the pyrolrequenctes 1_{t}. In, corrcspond fo the equatorial and the abiamum resomam feomaty
 nethe bititude for which icsonamt wave-particle interacomon take place The edsedies ${ }^{1} . r_{1}$. represent the perpendicular and parallel Eomponents of the revoriant pirtale velocsty ats besen in the

 respectively

IBy realsane that the argument of the square root in (7) his lo be larger lian zero, we obain that the wave frequency mose be such that

$$
\frac{m}{n_{l}}>\frac{1}{1 \cdot}
$$

3. Disiribution Function oi Risonani Pahititis

The cold paticle puphlatton gives the dielectrie properties of wave propatation in the magnetosplaere: thers Maxwellan distribution function is isotropie in mich ande. The total distrbutum functoon for the energetic paricles is an aniso-

 made uf of (wo parts: those particles which aue revomath wish the waves and those which are not. In llas paper f represents oniy the resonant portion of the distributum function

 thecome depembent on the dotame : along the llas labe Howeret. hor the case of weith abd moterate dithosom we

$$
\begin{equation*}
f=\frac{4}{\pi^{3 / 2} u v_{u}^{4}} N(\delta) Z(\mu) \exp \left(-v^{2} / v_{0,},\right) \tag{3}
\end{equation*}
$$

where $Z(\mu)$ is the lowest order eigenfunction of the difliusion operator which is defined in Appendix B, and $r=1 / \mu_{r}$ is the murror ratio. The number of resonant particles in the llux tube (particles per square centimeter) for given values of μ and v is denoted by $N(1)$. Here $N(1)$ depends un time over times seales such that $\mid>\tau_{y}$ and $\Rightarrow \tau_{k}$, where τ_{H}. the particle's bounce time, is detined in (1). The time that the wave spends traveling between one conjugate hemisphere inid the other is represented by τ_{8}.

In the moderate dillusion case the particle anisotropy depends on time, but f is given for all values of z by the equintorial distribution tunction. Thus we have

$$
\begin{equation*}
f=\frac{4}{\pi^{3 n} \sigma v_{0}^{4}}\left(\sum_{1=1}^{\infty} N_{1}(\theta) Z_{1}(\mu)\right) \exp \left(-v^{2} / \nu_{\omega}^{2}\right) \tag{10}
\end{equation*}
$$

Whet $K_{1}(\mu)$ are the eigenfunctions of the difliusion operator The eigenvalues are represented by p_{f}, with $\ell=1,2, \cdots$. and the summation extends to all possthle cigenvalues. The total mumber of resonam particles in the tlux tube due to the contribution of all pussible eigenvalues is

$$
\begin{equation*}
N(1)=N_{1}(t)+\sum_{c, 1+1} \frac{p_{i}^{2}}{p_{i}^{2}} N_{1}(t) \tag{11}
\end{equation*}
$$

where $N_{\text {, }}$ corresponds to the luwest order eigenvalue which we denote by ρ_{i}, and $N_{\text {e }}$ corresponds to a higher order eigenvalue p_{i}^{2}. In the limit $p_{i}^{2} \leftrightarrow p_{i}^{2}$, we find that $N \rightarrow N_{1}$, which is the value of N in the weak dilfusion case. The vrong dillusion case (i.e., when f depends on z) will not be treated in this articte.
The evolution in time of the plasma particle distribution function in the presence of a specilited distribution of waves is described by quasi-linear theory (d.yons and Williams. 19831

$$
\begin{array}{r}
\frac{d y}{d \prime}=\int_{0}^{e} d h \frac{d \pi^{2} q^{2}}{m^{2} \eta^{2}}\left(\frac{h}{\omega} \hat{\theta}+\frac{\omega-h_{v^{\prime}}}{\omega v_{1}}\right) \\
\cdot \delta\left(-\omega+h v_{:}-\Omega\right) W_{h}\left(\frac{h}{\omega} \dot{\theta}\right) \delta \tag{12}
\end{array}
$$

where ${ }^{1}+$ is the perpendicular (to a) component of the pallele's velocity, and $\eta=c h / \omega$. the refataive index. is wheh that $\eta \gg c h \cdot$. The energy demsity of waves is W_{4} $\|_{1}^{\prime} / 16 \pi^{2}$, where B_{1} is the wave magnetic fiefld. Since $y^{2}=$. 1. we aeed consider only pich angle dillusiun and neglest dillurion in energy The operator i) is mow given by

$$
\begin{equation*}
\dot{\theta}=-2 \frac{\Omega I_{1}}{\Omega} \frac{v_{1} v_{2}}{v^{2}} \frac{\partial}{\partial \mu} \tag{1}
\end{equation*}
$$

Upon substituting (13) into (12), we find
where ω_{p} is the plasma trequency evaluated for the cold background of plisma particles of density n. We assume that $n \rightarrow N / I$, where 1 is the tength of the tlux tube We now integrate (14) along the liux tube by applying the operatur $\left(1 / T_{y}\right) \int_{-1 / 2}^{\nu 1}\left(d \pm v_{i}\right)$ to both left. and righthand sides of $(1+1)$ We assume that the only spatial inhomogeneities are due to the magnetic field variations, we also assume that / dues not depend on z and is given by (9) or (10). By using the parabolic profile in (2) we may write

$$
\begin{align*}
\frac{\partial f}{\partial!} & =\frac{4 \pi a \omega_{p}^{2} \Omega_{L}}{T_{b} \nu^{3} m c^{2}} \int_{0}^{\infty} \frac{d k}{R^{2}} W_{L} \int_{I_{1}}^{\Omega_{\mu}} \frac{d \Omega}{\left(\Omega \nu \Omega_{L}-1\right)^{1 / 2}} \\
& \cdot \frac{\partial}{\partial \mu}\left(\frac{\Omega}{\Omega_{L}} \frac{\mu}{\left(1-\mu \Omega / \Omega_{L}\right)^{1 / 2}} \delta\left(-\omega+L \nu_{:}-\Omega\right) \frac{\partial f}{\partial \mu}\right) \tag{15}
\end{align*}
$$

To integrate this equation along the flux tube we make use of the delta function; for more details see Appendix λ. Alter some ledious algebra we arrive at liee equations (Itahhr. emberts, 19841

$$
\begin{gather*}
\frac{\partial f}{\partial f}=\frac{1}{r_{B}} \frac{\partial}{\partial \mu}\left(\mu H \frac{\partial f}{\partial \mu}\right) \tag{16}\\
H=\frac{4 \pi \Omega_{L} \omega_{p^{2}}^{2}}{\nu^{3} m n^{2}} \int_{L_{R}}^{\alpha} \frac{d h}{h^{2}} \psi_{1}(k, \mu) W_{L} \tag{17}\\
\psi_{1}=2 \frac{G-1}{G}\left(2 \mu(G-1)-\left(\frac{2 \Omega_{L}}{h_{\nu}}\right)^{2}\right)^{-1 / 2} \tag{18}
\end{gather*}
$$

Here $\left.h_{0}=\Omega_{L} /(v \mid-\mu)^{102}\right\}$ and $G=\left\{1+\left(2 \Omega_{L} / h_{L}, \mu\right)^{2} \|^{112}\right.$. The wave vector k should be evaluated al the magnetic equator. From (5), we see that $2 \Omega_{L} / h_{r} \mu \geq 2\left(1-\mu_{m}\right.$) ${ }^{1 \rho_{/} / \mu_{m}}$. Thus for $\theta_{L} \leq 45^{\circ}$, we may assume that $2 \mathrm{f}_{\mathrm{L}} h_{i, \mu} \approx 1$. Equation (18) now becomes

$$
\begin{equation*}
\psi_{1}=\frac{k_{1} / \Omega_{L}}{\left(h_{1} / \Omega_{L}-1\right)^{1 / 2}} \tag{19}
\end{equation*}
$$

Let us now consider a narrow spectrum of waves centered around a certain value of A, and the delinitions

$$
\begin{equation*}
\mathrm{Y}=\frac{2 \pi \|_{i}^{2}}{\theta_{i}^{2} h_{1}} \tag{20}
\end{equation*}
$$

:nd

$$
\begin{equation*}
F=\int_{11, / 4}^{2} \pi u w^{3} / i h^{\prime} \tag{21}
\end{equation*}
$$

Combining (16) to (21) and (1), we lind

$$
\begin{equation*}
\frac{\partial F}{\partial t}=Y W_{4} \frac{1}{\xi} \frac{d}{d \xi}\left(\frac{\xi}{1 h_{1} \cdot I_{l}-11^{1 / 2}} \frac{d f}{d \xi}\right)+J(1, \xi) \tag{I2}
\end{equation*}
$$

where $\xi=\mu^{1 \prime 2}=\sin \theta_{L}$, and J is a particic vource which mity depend on t and ξ.
In the weak diflusion cane we have that $f(1, \xi)=N(1) Z(\xi)$: we alio assume that $\mu(1, \xi)=\mu(t)(\xi)$ The eigenfonction $Z(\xi)$ sutivties

$$
\begin{equation*}
\frac{1}{\xi} \frac{d}{d \xi}\left(\varepsilon \frac{d Z}{d \xi}\right)=-p^{2}\left(\xi_{m}^{2}-\xi_{1}^{2}\right) Z(\xi) \tag{23}
\end{equation*}
$$

where p is the lowest order eigenvalue of the diffusion operatior, and the range of resonam pitch angles in now given by $\xi_{\mathrm{c}} \cdot \boldsymbol{\xi} \leq \xi_{\mathrm{m}}$. We also have

$$
\begin{gather*}
\int_{\ell .}^{\ell-} \xi Z(\xi) d \xi=\frac{2 v}{\pi a \eta^{2}\left(\xi_{m}^{2}-\xi_{r}^{2}\right)} \tag{24}\\
{\left[\frac{d Z}{d \xi}\right]_{\ell \cdot \xi, \xi_{-}}=0} \tag{25}
\end{gather*}
$$

For more detals on the function Z(€) see Appendix B. By uing (23) we may rewrite (22) as

$$
\begin{equation*}
\frac{d N}{d t}=-\rho \cdot\left(2\left(\mu_{m}-\mu_{r}\right)\right)^{d / 2} Y W_{k} N+J(t) \tag{26}
\end{equation*}
$$

We mote that (26) can be applied to efther the interacton of whullers with electenns or Alfven waves with ions provided that the gyrofrequencies in (20) are evaluated for the resonaint particles. 1c., electrons for whistiers and ions for Allven waves.

4. Wave (inowith Ratts

The heres wave prowth rates for resonamt wave-particle interactuon is given by [Lyons and Williams, 198.3

$$
\begin{equation*}
\frac{\gamma}{\omega}=\frac{\pi^{2} \omega_{n}^{\prime}}{\omega_{i}^{*}} \int_{n}^{n} n_{i}^{\prime} d_{1} \int_{-\infty}^{*} d v_{i} \delta\left(\frac{-\omega}{k}+v_{s}-\frac{\Omega}{k}\right) \frac{1}{\eta^{2}} \dot{\theta} r \tag{27}
\end{equation*}
$$

where \dot{A} is defined in (13). By using the constancy of the particle's magnctic moment we may write (27) as

$$
\begin{align*}
& \cdot \frac{1}{\eta} \delta\left(-\omega+h_{v}-\{1) \frac{d f}{\partial \mu}\right. \tag{28}
\end{align*}
$$

The spatial amplification factur is given by integrating along the field line

$$
\begin{equation*}
r=\int_{12}^{12} \frac{\gamma}{u} d z \tag{29}
\end{equation*}
$$

where "r is the wave gromp velucty. and $/$ is the tolal leneith of the fichl hanc. He astumine that the only spatial mbumo. gencoly is in the peomagnetic lield and by using the parabolic protile in (2) we may write

$$
\begin{equation*}
r=\int_{1_{1}}^{n_{4}} \cdot \frac{a}{\left(\Omega / n_{6}-1\right)^{1 / 2}} \frac{y}{n_{6}} \frac{d \Omega}{n_{L}} \tag{30}
\end{equation*}
$$

The evolution in time of the eneegy density of waves W_{4} is given liy

$$
\begin{equation*}
\frac{n W_{1}}{n}+v_{p} \frac{\| W_{1}}{d z}=\left(\gamma-\frac{r}{r_{p}}\right) W_{4} \tag{31}
\end{equation*}
$$

llere y is given by (28) and $r:-2 \ln R$. where R N the
 ionosplence reflection coeflicientl. By assummg that w_{1} depends weakly on 2 . and by applying the operator $1 / r_{e} \int_{-i_{2}(d)}^{i_{2}}\left(v_{e}\right)$ to both left- and right-hand sudes of (31), we find

$$
\begin{equation*}
\frac{d W_{1}}{d t}=\frac{\Gamma}{r_{k}} W_{1}-\frac{r}{r_{k}} W_{1} \tag{1321}
\end{equation*}
$$

4.1. Whistler Wames

The disperson relation is $\left.\eta=\omega_{n} /(1)_{0}\right)^{1 / 2}$ and the normatized group velocity is $r_{x} / c=2 / \eta$. where the plasma and cyelotron frequencies are evaluated for cold electrons. Combining (281 and (29) together with the equations in Appendix A. we find \{Bupalar el al. 1983\}

$$
\begin{equation*}
\frac{\left(1^{2} \mu\right)^{2}}{\left[2 \mu(6-1)-\left[2 \Omega_{i^{\prime}} / h_{1}\right)^{1}\right]^{12}} \frac{d f}{a_{\mu}} \tag{13}
\end{equation*}
$$

 1, 133) becomes

$$
\mathrm{I}=\frac{4 \pi^{2} h m, \pi}{E_{i}^{2}} \int_{n}^{r} d r \int_{\mu_{r}}^{\mu-} d \mu \frac{\mu 1^{\prime}}{\left(h_{1}\left(M l_{L}-1\right)^{1 / 2}\right.} \frac{d \mu}{\partial \mu} \quad(34
$$

L.et us now consider the defintion in (21) and that $f=$ $N\left(11 Z(\xi)\right.$ with $\epsilon=\mu^{1 / 2}$. We may now rewrite (34) as

$$
\begin{gather*}
\frac{r}{r_{R}}=J_{R} \varphi(\omega) N(t) \tag{1351}\\
S_{r}=\frac{2 \pi^{2}\left(t m_{r} 1 \omega\right)}{l_{1} B_{l}^{2}} \tag{36}\\
\varphi(\omega)=\int_{\ell}^{\ell-} \frac{2 \xi^{2}}{\left(k_{1} M_{l}-1\right)^{1 / 2}} \frac{d Z}{d \xi} d \xi \tag{37}
\end{gather*}
$$

where of :- $1 / \mu_{1}$. can be expressed in terms of the I. shell value as ${ }^{\prime}=1 .^{1}\left(4-1 /()^{1 / 2}\right.$. Equation (37) can be inteprated approximaticly by ansumme that $\varepsilon_{\text {on }}$ is very choce lo ε, face Appentix 11 for detads). We lind

$$
\begin{equation*}
\frac{1}{T_{r}}=\Delta_{r}\left(2\left(\mu_{m}-\mu_{1}\right)\right)^{1 / 2} \frac{r}{\pi n} N(n) \tag{38}
\end{equation*}
$$

4.2. Alfu: What

The diaperston relation is $\eta=\omega_{n} / 2 \mathrm{a}$ and the gromp velacity is $r_{2} / t=/ / \eta$. Where the plasma frequency. w_{p}. is evaluated at the plasma density n of the amberen ones deg. cold protors), which umport the Afven waves, and In sthers

$$
\begin{align*}
& I=\frac{\pi^{2} \lambda^{4} d \omega_{r}}{\omega \omega n \|_{i}^{1} \cdot} \int_{0}^{=} d \nu \int_{\mu}^{\mu-} d \mu \\
& \cdot \frac{(C-1)^{3}}{G} \frac{\left(\nu^{2} \mu\right)^{\prime}}{\left[2 \mu(G-I)-\left(2 \Omega_{i} / h_{i}\right)^{2}\right]^{1 / 2}} \frac{d)}{\partial \mu} \tag{3y}
\end{align*}
$$

Under the limit $2 \Omega_{L} / l_{1} \mu \mu>1$ we obtain

$$
\begin{equation*}
l=\frac{2 \pi^{2} h^{3} u \omega_{p}}{\omega n \Omega_{i}^{2}} \int_{0}^{\alpha} d u \int_{\mu .}^{\mu-} d \mu \frac{v^{s} \mu}{\left(k_{1} / \Omega_{l}-1\right)^{1 / 2}} \frac{d f}{\partial \mu} \tag{40}
\end{equation*}
$$

Hy comsidering the delinition of F given in (21) and the weat dillusun case (where f is given by (9) we ubtian

$$
\begin{align*}
& \frac{l^{\cdot}}{r_{e}}=\Delta_{i} \varphi(\omega) N(1) \tag{41}\\
& \Delta_{1}=\frac{v^{2} \pi a \omega_{v}^{\prime} \omega^{2}}{m_{1} / l^{\prime} \Omega_{1}^{t}} \tag{+2}
\end{align*}
$$

Substituting for $\boldsymbol{\psi}(\omega)$, we finally obtain for the growth of Alfven waves

$$
\begin{equation*}
\frac{V}{T_{k}}=\lambda_{1}\left[2\left(\mu_{m}-\mu_{1}\right)\right]^{1 / 2} \frac{v}{\pi a} N(t) \tag{43}
\end{equation*}
$$

S. Ray Equations

S.1. Whisher Wares

The equations describing the parametric coupling between the energy density of waves W_{a} and the number of particies II the liux tube are

$$
\begin{align*}
& \frac{d W_{L}}{d t}=\Delta_{f}\left\{\left(\mu_{\mu m}-\mu_{G}\right)\right]^{1 / 2} \frac{v}{\pi a} N W_{k}-\frac{r}{T_{g}} W_{L} \tag{44}\\
& \frac{d N}{d f}=-p^{-} Y\left(2\left(\mu_{m 1}-\mu_{1}\right)\right)^{1 / 2} N W_{4}+J(1) \tag{4.5}
\end{align*}
$$

Whete Y^{\prime} and λ_{r} ane given by (20) and (36), and p is the lowest
 Note that the goowth of the instabintity is propurtional tos the tance of resemant interaction, i.e. $\left(\mu_{m}-\mu_{1}\right)^{122}$, whete $\left(\mu_{m}-\mu_{1}\right)^{1 / 2}$ is delined as a linction of $h_{\text {, }} v_{\text {, and }} \Omega_{t}$, by (γ).

Let us now assume that the systetn is in equilibrium. i.e., $d N / d s=d W_{L} / d t=0$. We lind that $W_{1}=W_{0}$, and $N=N_{u}$. where

$$
\begin{align*}
& W_{n}=\frac{J \Delta_{r}(i d u \pi)_{t}}{{ }_{i p} p^{\prime} \gamma} \tag{46}
\end{align*}
$$

Fur small deviation from equilibitun we may write $N=$ $N_{1},+\delta i v e x p(\zeta T)$ and $W_{1}=W_{0}+\delta W \exp (\xi r)$. Where $r=$ $1 / r_{k}$. Upon substituling these expressions into ($4+1$ and it. 5) and keceping only first-urder corrections, we tind

$$
\begin{equation*}
\left.\zeta^{2}+(\zeta+r) \frac{j_{r}}{r}=0\right) \tag{4x}
\end{equation*}
$$

 sulving for (48) we obtain that $\left.\zeta \cdots=4 \mu^{2}-\nu^{2}\right)^{\prime \prime \prime}$, whete

$$
\begin{align*}
\nu & =\frac{j_{r}}{2 r} \tag{+4}\\
\mu & =j_{e}^{m} \tag{SO}
\end{align*}
$$

Because $\nu, \rho>0$, we see that the equilibrium solutions in (46) and (47), are always stable.

As an application we consider the interaction of $40-\mathrm{keV}$ electrons with a whinaler wave with a frequency of $1 \mathrm{hll} /$ and with a relfactive index of 30 . The interaction occurs at L 4.5. Thas the mirror ratio er is equal to 1.6×10^{2}, the square of the equatorial magnetic tield is $B_{i}^{2}=1.16 \times 10^{-5}$ gaussian units, the lengith of the tlux tube. I. Is appoximately of the order of 10 times the Earth's radii, and r_{k} of the order of a tew seconds. The equaturial gyrolticquency is $\Pi_{t}=10 \mathrm{kllz}$. and $\psi_{\text {an }}$ is about 12". The range of renolants pitch angles as ohtaned from (8), is 40°. We have entmated that $\{3(\mu, \ldots$, $\left.\mu_{c}\right)^{112}=0.9$. The coupling cuetficient for the wave growth rate (see (35) and (36) is $\Delta_{r}(2 / \pi a)=10^{-10} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. For a particle source, $J=10^{3}$ to 10^{6} partictes $/\left(\mathrm{cm}^{2} \mathrm{~s}\right)$, and by taking $R=0.8$, we find that $\nu \sim p^{2}$ and their values range between $10^{-7} 1010^{-4},{ }^{-2}$,

5.2. Alfien Wares

The evolution in time of the encrgy density of Alliven waves and the number of resonant ions in the llux tube atc given by the equations

$$
\begin{gather*}
\frac{d W_{l}}{d t}=\Delta_{i} \frac{v}{u \pi}\left[2\left(\mu_{m}-\mu_{d}\right)\right]^{1 \cdot 2} N W_{k}-\frac{r}{r_{t}} W_{k} \tag{51}\\
\frac{d N}{d t}=-p^{2} Y\left[2\left(\mu_{m}-\mu_{i}\right)\right]^{1 / 2} W_{k} N+J \tag{S?}
\end{gather*}
$$

where Y and Δ, are given in (20) and (+2). p^{\prime} is the lowest order eigenvalue of (23), μ_{m} and μ_{1} ate defined by (8), is a function of k, v, and Ω_{L}.

The equilibrium solution to the system of (51) and (52) a $w_{k}=w_{u}$ and $N=N_{u}$, where

$$
\begin{align*}
& N_{1,}=\frac{r}{T_{x} \Delta_{1}(1 / 1 / \pi)}\left[2\left(\mu_{m}-\mu_{1}\right)\right]^{-1 / 2}
\end{align*}
$$

 $\exp (\zeta r)$ and $W_{1}=W_{n}+\delta W_{\text {a }} \exp (\zeta r)$, wherer $\left.\quad \| r_{k}\right)$, we

$$
\begin{align*}
& v=\frac{j_{1}}{2 r} \tag{1551}\\
& p=j_{1}^{1 \prime 2} \tag{461}
\end{align*}
$$

and $j_{1}=\int \Delta,(1+\pi a) \tau_{i}^{2}\left(2\left(\mu_{m}-\mu_{0} H^{12}\right.\right.$
We consider the interaction of $2(x)$ keV protons wilh Aliven waves at $L=45$. The wave liequency in tohen cegu.al (a) 1 Hz and the refractive index $\eta=9$ Thun the planma liequency is 10 Hz . He cychetion fiequenty is 5 fi H_{6}. The
maximum geomagnelic latitude $\psi_{i n}$ is about 10^{n}, the range of reconimt mich angles is $34^{\prime \prime}$. and $\left\{\left.2\left(\mu_{m}-\mu_{r}\right)\right|^{\text {in }}\right.$ is 0.8 . The group lime detay for Alfven waves may be of the order of mentues. We find that the growth rate is proportional to the complang cocticient $J,(1 / \pi / \pi)=0.5 \times 10^{.9} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. By assumme that $J=10^{\prime}$ to 10^{n} partucles $/\left(\mathrm{cm}^{2}\right.$ s) and that $R=$ O.R. we thow that $v=\rho^{2}$ and their values range between $10^{-5} \operatorname{to~} 10^{-3} s^{-2} r_{1}^{2}$.

5.3. Stuhbiry Eipmatwon

f.ct ms rese icline

$$
\begin{gather*}
\dot{N}=\Delta_{n}\left(\frac{v}{r a}\right) r_{x}\left\{2\left(\mu_{m}-\mu_{c}\right)\right]^{\prime \prime 2} N \tag{57}\\
\dot{W}=p^{2} r_{r} Y\left[2\left(\mu_{m}-\mu_{r}\right)\right]^{\prime \prime 2} W \tag{58}
\end{gather*}
$$

where is - - . idenending on whether we are setudying either (44). 145) or (51). (52). In terms of normalized quantities, the ray contatores become

$$
\begin{align*}
& \frac{d \dot{N}}{d r}=-\dot{N} \dot{W}_{4}+J_{a} \tag{59}\\
& \frac{d \dot{W}_{4}}{d r}=\dot{N} \dot{W}_{l}-r \dot{W}_{4} \tag{6,0}
\end{align*}
$$

7 The cumblurium whatuns can now be wrillen as $\dot{N}_{\text {. }}=r$ and $\dot{W}_{\text {., }}$ J., $!r$

We can further reduce (59) and (60) to a single nonlinear cquatoon by detining

$$
\begin{gather*}
\dot{N}=\frac{d d}{d r}+r \tag{61}\\
\dot{W}_{k}=\dot{W}_{,} \exp (\phi) \tag{62}
\end{gather*}
$$

we may write [Trakhtongerns, 19B4]

$$
\begin{equation*}
\frac{d^{2} \phi}{d r^{2}}+2 \exp (\phi) \frac{d \phi}{d \tau}+p^{2}[\operatorname{cxp}(b)-1]=0 \tag{63}
\end{equation*}
$$

We nute that as $r \rightarrow \infty$. \dot{N} and if iend to the cquilibritum solutums $\dot{W}_{,}$, and \dot{N}_{n}, and then we must have that $\phi-0$
In the linear approximation the deviation from equilibrium is smiall. I © . we may assume that $\phi \leqslant 1$, (63) now becomes

$$
\begin{equation*}
\frac{d^{2} \phi}{d s^{2}}+2 v \frac{d d}{d r}+p^{2} \phi=0 \tag{1,4}
\end{equation*}
$$

The ubutmens to thes cquation are exp (\langle r) where $\zeta=-\mathrm{d}=$
 around coulitioum given in (19). (50) and (55). (56).

4. Contrimuimin of lligilit-Onder Elgenvaluls

In the moderate diltusion regune the puch angle distribus. fion of the resoniat particles depend on time, the number of
 the divilimeng lumituon in (It) I et us further write for the panlide cource

$$
\begin{equation*}
J(1, \xi)=\sum_{i=1}^{\infty} Z_{1}(\xi) J_{1}(1) \tag{6,5}
\end{equation*}
$$

where the summation is extended to all possible eqgenvatites and the cigentunctions $Z,(\xi)$ salisfy (23) by setling $p=m$, The cigenvalues and eigenfunctions are given in Appendix B.
The evolution in time of the functions $N_{f}(f)$ and the enctgy density of waves W_{1} are given by the system of equations

$$
\begin{gather*}
\frac{d N_{l}}{d r}=-p ; \backslash\left(2\left(\mu_{m}-\mu_{1}\right)\right]^{1 / 2} N_{l} W_{n}+J_{l}(t) \\
\frac{d W_{l}}{d l}=\left(d_{1} \frac{\ddot{v}}{d \pi}\right)\left[2\left(\mu_{m}-\mu_{r}\right)\right]^{1 / 2} W_{h}\left(\sum_{l=1}^{\infty} N_{l}\right)-\frac{r}{\tau_{n}} W_{l} \tag{67}
\end{gather*}
$$

where $n=\boldsymbol{e}$. idepending on whether we are considering the growth of whistler (e) or Alfven (i) waves. By assumme that $p_{i}^{\prime} \gg p_{1}^{2}$ for all $e \neq 1$ and keeping lowest order terms in the ralio ($\left.p_{1} / p_{1}\right)^{2}$. we may approximately cast the syvtem (6,6) and (67) into the set of two coupled equations (see Appendix C)

$$
\begin{equation*}
\frac{d N}{d r}=-p_{1}^{2} Y\left[2\left(\mu_{m}-\mu_{1}\right)\right]^{1 / 2} W_{2} N+J_{1} \tag{68}
\end{equation*}
$$

$\frac{d W_{4}}{d f}=\left(\Delta_{n} \frac{1}{d \pi}\right)\left[\left.2\left(\mu_{m}-\mu_{1}\right)\right|^{1 / 2} W_{4} N\right.$

$$
+\left[\sum_{e, p+1} \frac{\left(\Delta_{n}, / a \pi\right)}{Y} \frac{J_{i}}{\left(p_{i}^{\prime}-p_{i}\right)}\right]-\frac{r}{r_{k}} W_{k}
$$

These equations admit the equilibritum solution

$$
\begin{equation*}
W_{n}=\frac{J_{1}\left(\Delta_{n}(a \pi) \tau_{r}\right.}{\rho_{i}^{i}}\left[1+\sum_{i=1} \frac{J_{1} / J_{1}}{\left(\rho_{i}^{j} / m_{i}-1\right)}\right] \tag{70}
\end{equation*}
$$

$N_{1,}=\frac{r}{\left(\Delta_{r},(l a \pi) \tau_{f}\right.}\left[2\left(\mu_{m}-\mu_{r}\right)\right]^{-1 / 2}$

$$
\begin{equation*}
\left[1+\sum_{n, 1+1} \frac{s_{1} / s_{1}}{\left(p_{i}^{2} / p_{i}^{2}-1\right)}\right]^{1} \tag{71}
\end{equation*}
$$

We see that the anisotropy of the particle source as defined in (65) is rellected in the equilibrium solutions. The predeminant contritution is given by the component f, such that J_{1} / p_{i} has the maximum value. In fact, an ansotropic vourse enhances the kevel of the energy density of waves and depletes a larger number ol particles toward equilitrium. For snall deviations from the solutions we have: $\zeta=-1 \therefore 1 n^{2}$ $-\left(1^{2}\right)^{1 / 2}$. Here $\nu=\dot{W}_{,} / 2 . p=\left(\hat{W}_{, 0}\right)^{1 / 2}$ and $\dot{w}_{,}=$ Pir $_{n} Y \mid 2 \mu_{m}-\mu_{1} \|^{1 / 2} W_{\text {. }}$.

7 Wave Retitition Comerionens

As a wive eniers the lomonphere it is partially rellected back win the mapnclic liap and partally penetiates the
 have abeady called R the reflection coellicient, where $R W$,
is he anount of the wave amplitude which gets rellected back. and W_{h} is the wave amplitude in the llua tube. Itae batue of the rellectuse coellicient depends on sevetal tation. such as the ratio between the wave and collision tiequencies wath the environmental patlicics (neutrall). It also dependion the ratios of the we of the tonusphere d. the wavelengh $1-2 \pi / h$, and the sate of the density gradient 1 , whete

$$
\begin{equation*}
\frac{1}{4}-\frac{1}{n} d n \tag{72}
\end{equation*}
$$

Typically. we have $t=50 \mathrm{~km}$ and $d>Y$ (e.g. $d=300$ hant. We represent by η_{1}, η_{f}, and $\eta_{1,}$, the reltacive indices In the f and t layers, and in the flux tube, reppectively. Next, we discurs quaditatively the reflection of whisters and alfiell wives. We blow that wheters are mamly mellected fom the E and 1 layers of the ienowphere, while ittven "wes ane rellected from the f layer.
We assume perfect ducting for the rellecten of ELF amd VIIF waves. Namely, the rellection coelticients are given for the dead situation where the rellected wave reenters the s.ance duct from which it utiginalled. llowever, we nute lhat. dac for tux speciading, this may not be in general the ciase |thomion arnd Donden, 1977|. As a matter of fiact, path of the energy can be duected motside the duct and be "lose" mos the inagnetorphete. On the other hand. adjacem ducts maty be a suarce of wave energy for a given dact atier the waves ane rellected in the ionopphere and find their way inte that duct. Nondacted whister waves are reflected ill the mathetomphere when their tienuenciev lall below the lucial lowet lis brid frequency as they propagate into regions of Hercasing lield strength away from the equator (Lymon and Thowe, 1970|. These waves are not studied here, and they may also be an impontant wource of wave-panticle interac homs in the magnetovplace, In addition. for vimplicity in the calculations, we assume that the inclination of the wates duct exte with respect to the vertical is imall. A mote sealistic model of wave rellection should tahe into accome .ll these complextios.

7.1. Reflection of Whinhers

Here we consider the rellection of whinter waves with fiequences of the order of as tew kilulerez in the F. F., and 11 egnoms of the ionusphese. In the Flayer the elecirun denvily N between values of 10^{4} to $10^{\prime \prime}$ partictes per cubic ceminincter. and the scale length of the density gradient is about ' $\boldsymbol{\ell}$ 6) Kin The wavelengith of whiver modes are of the order of

 condmeler. we hand that A. G hill. Because the wase .mphomete changes vowly as 11 pemetraten the F layer. a Whill abalyvis a a vadad apporamiation. Thus une expects whosler waves which ate ducted in the thax tube to pentiate the nomphetic f layer withous signtican' r.itection. Wharcici litle reflectuon tahes place will be due to collosions weth
 the peat electorn debvity ranges hetweetbvalies of 10° to

 we limed that navelengits ane metween valuce of a lew :a

 waves to be reflected theie. We may distingonh betucon these gases depending on whether us consoder reflecthon

 protile. For the weat deavity case, we teal the flasu a.
 the Flayer.
L.et us first sudy rellection tron a hegh dennty collivenn.al E layer. The reliactive index becomen complex $\boldsymbol{\eta} i=\eta$,
 which depends on the heiglt : and it in such that as: -. $v \rightarrow 0$. The origin of heights $:=0$. s chowen at the botom of the flayer Thus mode the fitater $:=11$. Herc $\}=11$, and $X=\omega_{p}^{2} / \omega^{2}$. whete the phanma dennty ω_{1}, depend, on

$$
\begin{equation*}
(\eta f)^{\prime}=1-\frac{1}{1-11}=r \tag{1731}
\end{equation*}
$$

The wave equation is

$$
\frac{d^{2} v}{d s^{2}}+\left(1-b . x^{2}\right) \leq-0
$$

 clectric tichd. and $s=z / \lambda$. The hitn plos courenomsh to the nghthand potatisation and minen to the kith-hand polandstwon. Here $b=11-\pi, \pm Y^{-1}$ abo dipemde on the was polarization. Given vome profites for the plastata demits and collision frequeticy, (74) may be studed by wing the Whits approximation |Buddin. 1961| Helc we solve (7f) cxacils) when the electron density prutile is exponential. Note thit for exaniphe, the expuncatial protile is at interest io dencribe amroral ares in the mightome ionowphere. I has we may write: $X=X_{\text {, }}+$ expl-os), whete X,, , an averaged value of X in the llux tube and $\delta=N Y$. For : $-x, I=X$, , imente the E layer $\leq \mathbb{U}$. We alou assume that the collowon liequency is independent of herghand given by an avelaged valuce Equation (74) can be reduced to the Bensel cyutamen For $2\left(b^{1 / 2}\right) \geqslant 0$, the sulution to (74) whelt iepresemts at upgoing wave at great heights is the lesed latelon of the hinirl kind.

$$
\begin{equation*}
\underline{\Xi}==I_{u}^{(1 \prime \prime}(i) \tag{175}
\end{equation*}
$$

 \pm-), where for 1 - to we have only on upgong wave W. don consider that the polarifathons of the downemang end
 The absolute value of the relliction cocllicient lon 1.1 is

$$
R=\exp \left[-\frac{2 \pi}{i} \eta . .+\frac{2 \eta .0}{\delta} \arctan \left(\frac{\ddots}{1-r}\right)\right] \quad \text { Th. }
$$

 [10,1], by anclutheng the comphong to the tha tule 1 it
 totally Iransmilted and ecachen the gommat Nole that the l.nger the relriative urdex 4 .. the sur.ther the collethen

small collision irequency, we lind that $R=\exp (-2 \pi \eta, / \delta)$, and (2) if r, $\Rightarrow V_{\text {, then }} R=\exp \left(-\pi \eta_{N_{0}} / \delta\right)$. Thus collisions favor wave reflection back into the flax tube, as do large densuly gradients and large wavelengths.
Nute that at normat nighttime ionosphere, there is lifle ionization in the E layer. These conditions and the fact that the collision frequency in the F layer is so small, allow whivier waves to travel all the way down to the Earth through a collisiontess media. We now treat the case of a wak E layer, where the plasma density can be as low as 10^{2} particles per cubic centimeter. By taking the wave frequency equal to 4 kHz . we find that the refractive index η_{E} is very close to unity (ie., $\eta_{f}=1.3$). The wavelength $\lambda / 2 \pi$ is then equal 109 km which is much smailer than the altitude of the ionospheric E layer. The refractive index in the F layer is π_{r} $=13$. Which corresponds to an ionospheric density of approximately 10^{4} particles per cubic centimeter. Thus whister waves which are passing through the F layer encounter a sharp boundary at the low density nightime \mathscr{E} linyer, and eet reflected there. Under these conditions, the reflectuon coefficient can be obtained by assuming that the \boldsymbol{E} layer is a semu-infinite slah of constam density. Here the upper houndiary of the slab is the F layer. We find

$$
\begin{equation*}
R=\frac{\eta_{r}-\eta_{E}}{\eta_{t}+\eta_{E}} \tag{77}
\end{equation*}
$$

For the example given above. R is equal to $0 . X$. In this paper we den not discuss the effect of the whistlers penetrating throush the atmorphere and reflecting from the ground. For our applicattoms thes ardditional reflection process provides a secondiry source of wave energy in the flux tube, which will only enhance the efliciency of the wave resonator.

7.2. Reflection of Alfuen Waves

First let us book at the reflection of Alfvin waves in the F tayer. Because $(A / 2 \pi)$ is of the order of the alturnde d of the ionownheric f layer, we cannot any fonger assume that the dimensions of the ionosphere are infinite. The F lityer now has iwo buandarics. One is at $==0$. the horder with the E bisyer. and lise uther one is at $z=d$ somewhere inside the flisx lube Insole the E layer $(\mathbb{f} \leq 0)$, we assume the wave propagates into a plasma medium with a refractive index culail in η_{f}. When the E layer is equivalent to free space then $\eta_{1}=1$. The F layer ionospheric model with the two Inomulavies ancts as a resonam cavily for the very large wavelengih fietis. A wave incidene from the tlux tute on the upper lenambary $1:=d)$ is pirtially reflected back wite (he
 The tramsmitied wave is partially reflected at the lower bubindary : - 0 and partially transmuted below : $=0$ By matchane these waves at $z=0$ and $z=\pi$. we find that the absolite value of the reflection coefficient is tsee Appendix D)

$$
\begin{equation*}
\mid R_{1}:=\frac{\left|n_{1}+x_{2}(1-\tan : n)\right|^{2}+d_{1} \tan ^{2} n}{\left\{A_{1}+\left.d_{2}\left(1-\tan ^{2} n\right)\right|^{2}+4 d^{2} \tan ^{2} \theta\right.} \tag{78}
\end{equation*}
$$

where $\left.r_{1}=\left(\eta_{1}+\eta_{1}\right)\left(\eta_{t}-\eta_{1}\right) . r_{2}=\left(\eta_{r}-\eta_{1}\right) \eta_{i}+\eta_{i}\right)$. $d_{1}=\left(\eta_{1}-\eta_{1} K \eta_{1}-\eta_{1}\right)_{1} d_{2}=\left|\eta_{1}+\eta_{1} K \eta_{1}+\eta_{1}\right|$, and $0=12 \pi / \lambda m /$ We recall thal η, and η., are the relractive

(78) reduces to the result derived by findidell |1961| in the linn: $\eta_{1 .,} \eta_{f} \rightarrow 1$. In aldition. if we tet the refractive mex η_{f} have an infinitesimally small imaginary part and of $d-n$. then we atso recover the reflection cocficient for a senuinfinte wah as treated above. Nole that for nondionernive waves (such as Aliven waves). the refractive mbices do nut depend on wave frequencies. Thus the semi-infinite stath moiel yields reflection coefifients independent on wave frequencies. Nevertheless. the reflection coelficient in the finite stab model of (78) is frequency dependent. In fact. is exhibits resonant behavior for ecertain values of the wave frequency. In parlicular for $\eta_{r}=\eta_{\text {, }}$, and both much langer than η_{1}. we find that $d_{:}=-r_{1}=2 \eta_{i}$ and $d_{1}=r_{2} \cdots$. The reficelion coefficient now becomes $t / R=$ cos: 5 . which is zero lor $\theta=(\pi / 2)(2 n+1)$, where n is an integer, ice for $2 d / A=n+1 / 2$

Now let us illustrate the frequency dependency of the reflection coefficient in (78) with sonie examples. Thrs should be conirasted with the frequency independent nature of the semotifinute slath model. In the F hayer. Alfuen waves are mosilly vupported by O^{*} ions. The ion cyclorron freancency is $\Omega_{1}=0.05 \mathrm{kllz}$. For an auroral ionospheric particte denoty of about 18^{6} particles per cutic centincter. we find that the plasma frequency is 52.5 klle . The collisionless divperveen relation for Alfven waves yields a refractive mbex η, :1027.5. For wave frequencies of the order of 0.5 Hz , we have that $A-6010 \mathrm{~km}$. Hence we conclude that wave reflecton will mosily oceur as deseriled atove. and that the reflection coelficient in the F layer is given in (7x). Let 115 now consider the flux whe as part of the same cxample. We assume that the particles supporting the Alfven wares in the magnetiosphere are protons, and that the wave particle interaction aectirs at ℓ. $=4.5$. We also treat $=\leq 0$ as free space li.e. . we take $\eta_{r}=1$. The equatorial cyelotron frequency is equal to 5.45 Hz . If the particle density in the flux tube is of one proton per cuhic centimeter. we find that η,, $=38.5$ which leads to a reflection coefficient equal to one. In Figure 2 It. we have represented $\mid R^{2}$ as function of 0 for a plasma density of one hundred protons per cubic centimeter. the refractive index in the flux tube is now equal to 385 . We can see the resonat behavior of the refiection cofeficient is [unction of $)$. Because $\nu=(\eta, d / c) \omega-(d / 300)$ ou. we find that for $0<0<4 \pi$ radians. The wave frequency vatics roughly heiween 0 and 2 Hz . Maximum reflectorn, $\mid R 1=1$. occurs for $\omega=0.0 .5$ I. I.5. and 2 Hz . In Figure 2h. we tike the number of protons in the flux tube to be equal in $\mathbf{4} \mathbf{(x)}$ particles per e.c., and show $\mid \mathrm{Kl}^{2}$ as a finction of 1 H Here we have that $7 .,-770$, and that ω varies hetween 0 and $2 H$. where we have asumed than d - 3 m hm. From these example we conclude that refectorn of Alfven werver in the A bayer is very senstave to the valloen of the wave fieflency. and of the refractive index in the flus whe th the waves penetrate the f layer. they then can the reflected in the highly collisumad E and D layers. The reflection coevificient in these region depends on the heght integrateal Pedersen condile-
 1982

8 Artiveiy Excitrd loniosimith

The reflectoon of waves in the monsplere a a very impurtiant litior in the growing of the whuther and Vfven insabilite An eflectively operating cyelomen moser de

Hig. ?. Squitce of the rethection coetlicient as a Jinction of is in Iadiansi which is equal to $(2 \pi / A \mathrm{~N}$. where A is the wavelength and d the kength of the ionospheric layer. In case 2a. we tiahe n. the monter of powns in the flux tube. to be cyuat to 100 partickes per
 centometer. The density of 0^{\prime} 'ions in the iunosphere is tatien equal

ytilt, large wave amplitudes to pitch angle scatter irapped eatiselo partacles into the lass conc. This is a diflusion grocess which is described by a fokker-Planck iype of eguation. \#y changing the reflection cuefliciant at the ionovpleitic faning puints of the waves, we may substantially mambly the fields amplitudes ind hen ece, the efficiency of the
 we pexcented at ancesoion on the glialitative valucs ithat the fellectan coetlicients lake in atn unpeiturbed (natural) lantsphere depending on the range of wave licequencies and wavelengoth. We learned that wave rellection in increased by sharp denvity gradients and large values of the collision frepuency. Thus we may want to modily the ionorpheric poopelties with sume external meatrs, to mnprove wate iellection. One way ol duing this is using is high-puwer tadio
 vefacies at the selected fregucucics whuse furnnis points fiall of the height where the propertics of the tonosphere are to be mantolical. Ifeating of the ionovplace at the iuriang peinis of Hic juntip lields can prowlice entrgetic electrons which, by

clectrons and a suthatantial moditication of the wnovplacic mopdance. Other pliysical phenomena can ishe platic near the turning points of the transmitled radio waves vuch is pitametric instabilities, and gemeration of lafge dinvity cavities by the ponderomotive force of the radiated fiefl. They can also lead to etectron accelerition and thus to mestilicalion of the dielectric propertiev of the tunovplece. In alditun, by heating the D and E layers with a frequency dose to $\mathrm{Nt}_{\text {. }}$, the clectron population can be increased by dissociation of some of the negative molecular and atonaic ions that exist in the iunovphere (Hamhs and Kockarts, 1973). Ihis maly also improved the collision rates, with relatively smatl values of the power radiated forl the ground.

Here we assume thist the rettection coctlicient changes accurding to the expression, $r+\epsilon_{\text {en }}(1 \pi)$. The unperturbed reflectoon costliciont is $r=-2 \ln R$ and $N(T)$ is the modulation due to the presence of the IIF waves, where $\tau=\| \tau_{z}$ is the normalieed time. We misy now write that the number od particles in the flux tube $N(1)$, and the encegy density of Wives $W_{1}(I)$ are given by

$$
\begin{gather*}
\dot{N}=\frac{d b_{m}(\tau)}{d \tau}+r+\varepsilon_{\ldots} \cdot \backslash(\tau) \tag{79}\\
\dot{W_{i}}=\mid \dot{V}_{u} \exp \left(\phi_{m}\right) \tag{180}
\end{gather*}
$$

 eguntabran energy densily of waves which is defined in (tha) for whstlers, ind (53) lof Affiven waves. The tancton $\psi_{\text {... }}$ satmsié the ditlerental equation

$$
\begin{align*}
& \frac{d^{2} \phi_{m}}{d T^{2}}+2 \nu \exp \left(\phi_{m}\right) \frac{d \phi_{m}}{d T}+\rho^{2}\left[\exp \left(\phi_{m}\right)-1\right] \\
& \tag{81}\\
& +i_{m} \frac{d \Lambda}{d \tau}+2 \nu \varepsilon_{m} A \exp \left(\phi_{m}\right)=0
\end{align*}
$$

where ν and μ are defined in (49) and (50) (for whistlers), and (55) and (56) (for Alfvin waves). Equation (81) is comparable Io 163), but there we have adeded the contribution of all actively exciled iunusphere through the terms prupmtiunial to i_{m}. We may lurther lincarice (81) by asvaming that $1 \phi_{m} \mid \ll$ J. We find

$$
\begin{equation*}
\frac{d^{2} \phi_{m}}{d \tau^{2}}+2 v \frac{d \phi_{m}}{d \tau}+\left(\rho^{2}+2 \varepsilon_{m} d\right) \phi_{m}=-\varepsilon_{m}\left(\frac{d A}{d \tau}, 2 V_{i}\right) \tag{8:}
\end{equation*}
$$

L.t us study (82) after setting it tighthetral we equal to

$$
\begin{equation*}
\frac{d^{2} v^{\prime}}{d_{r}^{2}}+Q_{m}\left(r W_{m}^{\prime}-0\right. \tag{81}
\end{equation*}
$$

where $Q_{o m}=\rho^{2}-y^{2}+2 v \varepsilon_{m} \backslash(r)$.
As an example we now assume that $M(r)=-\cos \left(\mathbf{I u}_{\text {in }}\right.$ r
 driver Irequency, and detime

$$
\begin{aligned}
& u_{m m}=\frac{\nu^{2}-\nu}{u_{m}^{?}} \\
& u_{m}=\frac{t_{m} \nu}{u_{n} \vdots}
\end{aligned}
$$

The Wh 13 solution (o (83) is

$$
\begin{align*}
& V_{m} \cdot U_{n \prime \prime}^{1 / 4} \\
& \cdot \exp \left(\pm \sqrt{2 a_{m}-a_{m}} \int_{n}^{m} \sqrt{1-k_{m}^{!} \sin ^{2}\left(r_{m}\right)} d r_{m}\right) \tag{84}
\end{align*}
$$

where $厶_{m}^{2}=4_{q_{m}} /\left(2 q_{m}-a_{m}\right)$ and $\tau_{m}=a_{m} r^{r}$.
Let IS now write $V_{m}\left(r_{m}=\pi / 2\right)=\left(Q_{m}^{-1 / 4} \exp \left(\pm A_{m}\right)\right.$. To find unstable modes we calculate the amplification. A_{m}, over one periud af the driver frequency. The case $\varepsilon_{\text {in }}=0$ fiee.. the ionosphere is not exiernally perturbed) corresponis to $A_{m}=$ $\pm 1 / \pi / 2$. and the function $V_{m}(\pi / 2)$ is purely oscillatory. If f_{m} $\neq 0$. we find that the equilihrium will be unstatice only if $1 \mathrm{Im}^{\mathbf{\prime}}$ $\geq 10^{2}-\mu^{2} / 22$. In the case where $\rho^{2} \gg \mu^{2}$. we find that in order to have unstahlity we need to require that $14 m^{1} \gg$ w 2 .
As a second example we conoder the coupling of the rathentorn Ieths waves and particles to the ionosphere. This mechamou introdices a pontive feedbach ellect which well senclure the large umplitude nonlinear response of the sys. tem. The precipmating electrons modify the ionowpheric planmal density which. in lurn. modifies the ionospheric reflectorn of the waves causing the precipitation. In the D) and E : liyers. the modification of the plasma density by the preciputation is geten by (Silevitchet al. 1989)

$$
\begin{equation*}
\frac{d m, 1}{d \prime}=\frac{U}{2}\left(J-\frac{d N}{d t}\right)-\|, n i \tag{Kऽ}
\end{equation*}
$$

where $"$, 5 the sonomp. eric plasma densily. The right-hand side of ix5 represents the batance between the increasing density the to the precipitating particle flex and the decreave due to electron-ion recombination effects. Here Q is the unnfation elliciency. and σ, the recombination corfficient. Bec:use the ierm proportional to the recombination coclficient is nunlinear in n_{1}, we may neglect it in the lincar calculations that fullow.

We now assume that $\Lambda(\tau)$ is proportional to $d n, / d t$, i.e., we have

$$
\begin{equation*}
\Lambda=-\frac{\varrho}{2}\left(\frac{d^{2} b_{m}}{d r^{2}}\right) \tag{x6}
\end{equation*}
$$

Where we have redefined r as $\left.r+f_{m} Q\right)_{1} / 2$. By combining (86) and (821. we find

$$
\begin{equation*}
\left.=\frac{0}{2} \frac{d^{\prime} \phi_{m}}{d r^{2}}+11 r_{m} Q-1\right) \frac{d^{2} \phi_{m}}{d r^{2}}-21 \frac{d b_{m}}{d r}-o^{2} d_{m}=0 \tag{87}
\end{equation*}
$$

Nevi we take \$in expl(t). whech yield

$$
\begin{equation*}
\xi^{1}+2\left(1-\frac{1}{Q r_{m}}\right) \zeta^{2}-\frac{4}{Q r_{m}} r \zeta-\frac{2}{Q r_{m}} p^{2}=0 \tag{88}
\end{equation*}
$$

 We whtan the following Itree roots:

$$
\begin{gathered}
s_{1}=\left(\frac{2_{p}}{Q_{r m}}\right)^{: 1} \\
\therefore \therefore-\left(\frac{20^{2}}{U r_{m}}\right)^{\prime \prime \prime}\left(-\frac{1}{2} \pm, \frac{\sqrt{3}}{2}\right)
\end{gathered}
$$

In the numerical example presented in sections I. for the whister invabinty. we lound that $1 / 2$ vaned berween the vallues 10^{7} la 11^{4} times r (where $r: \operatorname{In}$ RI. It the rellectum coetlicient. R. is very close to one, then r is very smill (as amall is 10^{-1} or 10^{2}). Hence when $R=1$. we have thitt I / r is a matl number so the condition for the instatility. $Q^{1} \varepsilon_{m}{ }^{1}>1 / 1$. can be casily satisficd. Otherwise. i.e.. for $R=$: 1. it is very dificill to find unstable solutions to (8s). sunce very large values for the particle source f are then required.

9. Sumpiary and Conclusions

We have presented a self-consistent theory on the interaction of magnetonpheric particles with ducted electromagnetic cyctotron waves. Our theory is bised on the fullowing assitmpletins:
I. The defectric pooperlies of wave propacaton are goven by a cold background of plasma particles. which can ether be electrons (lis the whatlers) or ions. es. pertoms. flor the Altiven matablaties. Since the denely in the cold plasma populaton is laken constiant along the fux tuhe, the only spatial inhomogencites are due to geomagnetic field variations.
2. Near the equator the Earth's magnetie field is approximated by a paratholic profile. This profile is shown to the a good approximation to the actual dipole geomacnetic liclad within latholdes watler thin approximately : ? 0 : wll the equator. Oumale canatorial repuos we we the dipole anse netic field to descote pantictes obla satal bennce times
3. The maxer mesatolity is prodincel by the interactuon of a hot plasnaa population (ceg. particles with enercies linger than til keV lor the electrons. and lko keV for the iomal. with the cyclotron waves near equaturial regions. The changes in the thermal distribulton functions due to pitch angle tiffision are studied here. We assume that diltusion oceurs over time scales that are longer than particles bunce times and the group time delays of the waves, and do not consider the pussibility of particles drifting away from the waves ducts
4. Because we ansume that the wave vectors are fieldatiened. resomant interactions can only take place at the first harmonic of the cyclotron frequency. We da not consider the contributoen of larger harmonies to the difluston processes. which becomes sipnoficiant for highly energetic particles ll.wins it al. 19711 and for non field-alyned (i.c., $k_{1} \neq(1)$ waves \mid Kimurn, $|\%(6)|$.
The malll results of our theory can be vommaniecd as fullow:

1. The revonant part of the energetic partictes distibu-
 selmear theory from the resonance condatom. we cuathidi

 take plice. Alter integating along the flux tulve. we stove at cquatiom devcollong the tume evolition of the nembet of particlev in the lise tithe as Junctions ol time energy demoty of waves
2. The whatal amplificaton factors are whained lor whollers and Altven waves. aller mitepatme the temperal growth rates over time scale, which are comparable to the gremp tune delays of the waves p_{f}. The rity equathons
 the llan tute and the conegy denoty of wave atre vathed near camintimern

3 The equatorially gencrated waves may be pallatly cellected batik into the flux tube when they teach the iomonplere. Whisters call penetate the fiayer without venticam seflections, and be selfected in the D and E layas It connats, Alfiven waves are rellected in the F layer which .ets as a desunamt cavity for these lung wavelengths waves.
4. We have adso presented some calculations on the owle that ith actively excited ionouphete plays in the conlinement of the eychorron waves within the llux tute. The stability equaton har been extended an to inclade lime dependent aclicetion cosellicients. which may be created by eather madalation of the iunorphicte with high-puwer nicrowave thansumbed or by the same particle piecipitations due to the maser insabilities. Unstable modes are found lor latge crethal perturbations of the ionuspheric comduclivity.

Ithe theny pesented here provides a basis lior additional renc:ach on dee dynamics of nuntine:ar meractions of wave, and panticles in the magnelosphere. Sume posmbite poblems whel dencive further altention ase as fulluw:

1. Non tield-aligned waves with wave vectors having components perpendicula to the geomagnetic lield abot interati with encrgetic patiactes. Siace dillusion cian now tatie phace at higher harmanics of the syrolecquency, their connmbution to the diflusion processes and wave growth rates , hould be evaluated.
2. The strong dillusion problem where the energy density of waves, and the number of paticles in the flux tube, may change over time seides which are comparable to the panticles' tounce limes and gronp thene delays of the waves.
3. Changes in the ionospheric herghe integrated conder tivit) due to external perturbations such as heating with intense radiu frequency waves. The elfects that this has on the mirroring properties of the ionosplece has been introduced. Further research in this areat is essemtial in ordet to elliculvely plan future active experimems.

Aיmindix A: Initghailion Aiong Fielo Lines

We convider

$$
\begin{equation*}
\left.\int f(1) \delta\left(d_{(}\right)\right) d x=\frac{5}{v} f\left(r_{R}\right)\left|\left(\frac{d h(1)}{d_{1}}\right)_{1 . I_{n}}\right|^{-1} \tag{1}
\end{equation*}
$$

where i_{k} is such that $h^{\prime} \boldsymbol{i n}^{\prime}=0$. and the summation is catcoded to all pussible cero of the function h(w). Applying

$$
\begin{equation*}
n_{n}=\frac{A^{2} ध^{2} \mu}{21_{!}}(f ;-1) \tag{A2}
\end{equation*}
$$

where (; is defined after (1 s). We : also find

$$
\begin{align*}
& \left(1-\mu \frac{I_{\mu}}{\Omega_{i}}\right)^{\mu!}=\frac{R_{1} \mu}{2 n_{i}}\left(C_{i}-1\right) \tag{A3}
\end{align*}
$$

We next combider thal the dificiental operator (what on the righthand side of (15) can be brought out the integal \quad ugh Then by combining (A?)-(A5) lagether with ils), we c.on canily recover the ievults in ($160-1 \mid 8)$

Arpinoix B: Pich Anetle Eitiniunctions
Hy delinang $\dot{\rho}=p\left(\xi_{m}^{2}-\xi_{i}^{2}\right)^{1 \prime 2}$ and $y=p \xi$, we maty cart (23) into the Bessel cquation (Redera, 1969: Bapatar ar al. 19K31

$$
\begin{equation*}
=\quad, \frac{d^{2} Z}{d y^{2}}+v \frac{d Z}{d v}+y=Z=0 \tag{131}
\end{equation*}
$$

whase general solutuen is

$$
\begin{equation*}
Z=C_{1} J_{,}(\dot{p} \xi)+C_{1} Y_{0}(\dot{p} \xi) \tag{132}
\end{equation*}
$$

Helc C_{1} and C_{1} are commans, and J_{0} and $\gamma_{,}$, ate Hessel lunctoms of order zero. By imposing the boundary conditions given in (25), we get the following equation when rolves lor the eigenvatues of the dillerential equation (23)

$$
\begin{equation*}
J_{1}\left(y_{1}\right) Y_{1}\left(y_{m}\right)-Y_{1}\left(y_{1}\right) J_{1}\left(y_{m}\right)=0 \tag{13}
\end{equation*}
$$

where $y_{1}=\dot{p} \xi_{1}, y_{m}=\dot{\rho} \xi_{m}$, and J_{1}, γ_{1} ate the Bewal lunctions of order one. We also have

$$
Z=C\left(-Y_{1}\left(y_{l}\right) J_{,}(y)+J_{1}\left(y_{1}\right) Y_{0}(y \cdot l)\right.
$$

(iven that $\xi_{1} \ll 1$, we have that $H_{1}\left(y_{1}\right)$ - $1 / y$, amd $J_{1}(1)$,) (1. Ihes (B.3) approximately becones

$$
\left.J_{1}\left(p_{1} \mu_{m}-\mu_{1}\right)^{1 / 2} \mu_{m}^{\prime, 2}\right)=0
$$

and hence that the eigenvaluse are given in terms of the zeros of the first-order Bessel function. The numadizalion condition (24) yields

$$
\begin{equation*}
C \int_{v .}^{v=}\left(J_{1}\left(y_{1}\right) Y_{1}(y)-r_{1}\left(y_{1}\right) J_{0}(y)\right) y d v=\frac{21_{1}}{\pi / 1} \quad(B j) \tag{185}
\end{equation*}
$$

We see that the lunction $Z(\mu)$ has the dimensions of velocary

 $\prime^{\prime \prime}$
 consider
$\xi \frac{d /}{d \xi}=\int_{\xi-}^{6} \frac{d}{d x}\left(x \frac{d Z}{d x}\right) d x=-p^{2}\left(\mu_{m}-\mu,\right) \int_{4-}^{6} w / I t d x$
(13th
By combining (8), (37) and (136). we find

$$
\begin{equation*}
\varphi(w)=4 p^{2}\left(h_{1} / d l_{l}-1\right)^{11} \int_{6}^{6-} r d x \int_{0}^{6-}(\lambda(x) d s \tag{137}
\end{equation*}
$$

Then by ansuming that ξ, is veas clone to ξ... . we may furtice write

$$
\begin{equation*}
\varphi(\omega)=\frac{?_{1}}{\pi n}\left(\mu_{1} / \Omega_{t}-1^{112}\right. \tag{139}
\end{equation*}
$$

Ibrs last cqualtun cavily teads to the revults in (38) and (43).

APIPI:NIDIX C: TIAII-DIPPI:NDI:NT PITCII-ANGILE
ANISOTROFIES
Led us write that all $\left(\neq 1 . N_{1}(1)=N_{1}(1) \beta,(1)\right.$. Upon substltuting this expression into (66) we find

$$
\begin{equation*}
\frac{d \beta_{l}}{d l}+\kappa_{1} w_{4} \beta_{1}=\frac{J_{1}}{N_{1}} \tag{Cl}
\end{equation*}
$$

 $\mu, I^{\prime \prime 2}$. We may also write the following integral ceptation

$$
\begin{align*}
\beta_{1}(n)=\operatorname{cxp}(& \left.-\int_{0}^{1} \kappa_{1} W_{1} d r\right) \\
& \cdot\left[\int_{0}^{1} d x \frac{J_{f}}{N_{1}} \exp \left(\int_{0}^{1} \kappa_{1} W_{4} d s\right)\right] \tag{C2}
\end{align*}
$$

Integrating by parts we may approximate $N_{\text {c }}$ by

$$
N_{1}=\frac{J_{1} N_{1}}{\hat{Y}_{1} N_{1} W_{1}+J_{1}}
$$

where we have imponed that at $=0$, we have $N_{1}=N_{1}=$ $W_{1}=0$. We can liuther proceed by consideoing that $p_{i}^{\prime}:=$ p_{i}. and by keeping the lowest order ierms in the ramio $\left(n_{1}, m,\right)^{\prime}$, we find

$$
\begin{align*}
\frac{d N}{d \prime}= & \left.-p_{j}\right\rangle\left[2 \mu_{m}-\mu_{1}\right]^{12} W_{l} N \\
& \cdot\left[1+\sum_{1,1,} \frac{J_{1}}{\hat{\gamma}_{1} W_{2} N+J_{1}}\right]+\sum_{i=1}\left(\frac{p_{1}}{p_{i}}\right)^{2} s_{1}
\end{align*}
$$

$$
\frac{d W_{1}}{d \prime}: J_{1}, \frac{\prime \prime}{\pi n}\left\{2\left(\mu_{m}-\mu_{1}\right)\right\}^{1 \prime 2} W_{L} N
$$

$$
\left[1+\sum_{r+1} \frac{J_{1}}{\bar{V}_{i} W_{A} N+J_{1}}\right]-\frac{r}{r_{r}} w_{2} \quad(C S)
$$

After assumbing that

$$
\begin{equation*}
\dot{f}_{1} w_{1} N \nRightarrow f_{1} \tag{Ch}
\end{equation*}
$$

 takinti $N=N_{\text {, }}$ and $W_{t}=W_{\text {, }}$ in (C6), we obtan that It reduce the the condition $\left(p_{1} / p_{1}\right)^{2} \ll 1$.

Abpinitix D: Ionomehtric Sial Modit.

We inmet the onosphere as a humbereners sith with wo hurimintil bemotaries. One temendary is focinted it: $=\boldsymbol{n}$. The
 A wave mentent liom athove is partally reflected ame parHally to anombed We assume that the wave vector in always

 perpendicular to each other. We call $\|^{\prime}$. t^{\prime}. The mentem wave from the nux tube. and $\mathbf{1 0}^{N}$. 1 : $^{\text {H }}$ the reflected wave. where

$$
\begin{aligned}
& B^{\prime}(z)=i, B^{\prime} \exp \left(i \frac{\omega}{r} \eta \ldots\right) \quad \text { (1) } \\
& E^{\prime}(z)=-\frac{i_{0}}{\eta_{n}} b^{\prime} \exp \left(i \frac{\prime \prime}{c} \eta_{n}, z\right) \quad \text { OD }
\end{aligned}
$$

$$
\begin{aligned}
& E^{R}(:)=\frac{i_{1}}{\eta_{.}} \beta^{R} \exp \left(-i \frac{m}{c} \eta_{1,2}\right) \quad \text { (1) }
\end{aligned}
$$

Here i, and i, are unil vectors and A^{\prime}. $\|^{R}$. the wave amplitules. are constant. The electric and nagenetic lichds of the transmitted wave mito the Elayer $(\mathbb{E} 0$) are

$$
\begin{aligned}
& B^{I}(z)=i_{1} B^{r} \exp \left(i \frac{\prime \prime}{c} \eta_{1}:\right) \\
& f^{\prime}(i)=-\frac{i_{1}}{\eta_{t}} H^{\prime} \exp \left(i \frac{\prime \prime}{c}-\eta_{1}:\right)
\end{aligned}
$$

 downgong. $B^{[2 \prime}$. $E^{[2]}$. Mraveline waves. where

$$
\begin{aligned}
& B^{\prime \prime \prime}(a)=i_{1} B^{\prime \prime \prime} \exp \left(-i \frac{\omega}{c} \eta_{1}: 2\right) \quad \text { (1) } \\
& \left.E^{\prime \prime \prime}(i)=\frac{i_{2}}{\eta_{f}} B^{(1)} \exp \left(-i \frac{\omega}{r} \eta_{f} i\right) \quad(1) 8\right) \\
& n^{\prime 21}(0)-\dot{c}_{1} b^{\prime 3} \exp \left(i \frac{\omega}{r} \eta_{1},\right) \quad \text { (1) }
\end{aligned}
$$

By matelome the electric and magnetic field of the wave with superseripts (1) and (2). to those of the transmitied wate with wherscript (T) at the boundary $z=0$. we get

$$
\begin{gather*}
B^{\prime \prime \prime}+\beta^{\prime \prime \prime}=\beta^{\prime} \\
\frac{1}{\eta_{1}}\left(B^{\prime: 1}-\theta^{\prime \prime \prime}\right)=\frac{1}{\eta_{1}} H^{\prime} \tag{1}
\end{gather*}
$$

By with hing the waves (f) and (R). Whe wate (1) and (2) at the busmiaty $:=d$ with the liux tule we get
$n^{\prime \prime \prime} \exp \left(-\frac{\prime \prime}{\prime} \eta, 1\right)+n^{\prime \prime \prime} \exp \left(\begin{array}{c}i \prime \prime \\ i \\ i\end{array}, 1\right)$

11713)

$$
\begin{aligned}
& \frac{1}{\eta_{1}}\left(n^{\prime \prime \prime} \exp \left(-i \frac{\omega}{c} \eta_{1} d\right)-B^{(2)} \exp \left(i \frac{\omega}{c} \eta_{r} d\right)\right) \\
& -\frac{1}{\eta_{1}}\left(B^{N} \exp \left(-i \frac{\omega}{c} \eta_{u} d\right)\right. \\
& \left.-\Delta^{\prime} \exp \left(i \frac{\omega}{c} \eta_{\nu} d\right)\right)
\end{aligned}
$$

Niter solving for the systern of (DI3) and (DI4), the rellecHon coellicient which is detined as $R=b^{N} / B^{t}$, is given by

$$
\begin{equation*}
R=\exp \left(2 i \frac{\omega}{c} r_{d} d\right) \frac{r_{1}+r_{2} \exp (2 i v)}{d_{1}+d_{2} \exp (2 i v)} \tag{D15}
\end{equation*}
$$

where $r_{1}, r_{3}, d_{1}, d_{2}$ and v are defined atier (78). By taking the aboblute value of R in (DIS) we arrive at (78).

Hidnowhidiments. Two of as (E:V. and M.B.S.) have beten
 and I-1N2R-8リ-K-WOH.
the tivitor thanks R. L. Dowden and D. Nunn for their absistance is evaluilling this paper.

References

Manks, IP. M.. and G. Kuckirts, Acronumy, Academic, Sian Diego. C.siil. IU73.

Hespaluv, P. A., and V. Yu. Trakhtengers, Cychuron invability of Fioth radtation belts. Rer. Hlamu J'hys., Engl. Iransl., JU. X8. l'skt.
Hesualuv. P. A., C. U. Wigner, A. Grafe, and V. Yu. Trakhtchicils. (jap fiombation in the eleciron belis, Geomugn. derion.. lingl. Trand., 23, 52, 19K3.
Howhom. K.. A ardel of the auroral electrojets. J. Geruphys. Res. . o4, JM 3, 1904.
Budden. K. G., Radin Waves in the Ionosphere. Cambridue Univeosity l'resis, New Yurk, 1Y, 1 .
Davidson, G. T., und Y. T. Chiv, A clused nonlinear model of wave-particle interactions in the outer irapping and neorningside , aturial region.. J. Girophys. Res., 91, 13,705. 19Mh.
Dingle, 13 , and D. L. Carpenter, Election precipitation induced by VI.F noise hursts at the plamapause and defected at conjugate ground ulations, J. Gerophys. Res., 86. 45y7, 1951.
Dexhtile. J. H., and D. L. Carpenter, I'hutometric evidence of eleceron precipitation induced by tirst hop whistlers, Gecophys. Res. L.err. 10, 611. 19N3.
(japmerv-Gickhov, A. V., V. M. Gligolev, and V. Yu. Trahhcugerts. Cyclotron resonance maser with background plasma, Sine. Phys. Jfitr. Engi. Tranvl., 53, IIth, I'si.
(iendifin. R.. Brach angle dillustun of low energy protons due to
 hist. I'livi. . 10. 1313, IMKK.
 Iflimates, Peggamun. New Yoik. 1970
llediwell. K. N. Whishler and Rehord lomospherne Phenome'tue. Vianturd Univermity Press, Stanturd. Calif., $1 \% 65$.
Hughes. W. J., Hydromasmelic waves in the andynetosphere, in

 phys Kev.. 'N1, 3241, 1976.
Imhul. W. I... H. D. Voss, J. B. Reasian. D W. I.atome. I: I: Ginnes. J. Mubilis, and D. S. Evans. Kedatornatio dection and
 phrs. Res., 91, 3077. IVth.
Inan. U. S., Gyrotesoman puch angle wallerimg by coliseront alid
 phov. K.'.. 4?, 127, 19K7.
Kermel, C. F., and II. E. P'elschek, Limit on stably Irapped particic

Kimusa. I. Eilects of ions wn whintler-mode ray tracing. Radul Sti 1. 269. 1460.

Kuryta, J. U., T. E. Ciavens, A. F. Nagy. and E. G. Fontheron.

 $2217,14 \times 4$.
l.yous. L. K., and K. M. Thorne, The magnetuspheric reflection al whistlers, Plantet. Spute Sot., 18. 1753, 1970.
 belis electruns. J. Gcophin. Kí., 78. 21t?. 1973

L. yons, L. R., R. M. Thurike, and C. F. Kemei, Eleciros pith-angle dillusion driven by ublique whintler-mente turbulence. J. Phasina Phys., 6, 589, 1971.
Retterer, J. M., J. R. Jasperse, and T. S. Chang, A new appoach to puch angle scallering in the magnetovpletc, J. (i, ophys. Ris.. s.s. 201.1983.

Rubetis. C. S., pitch angle ditiosion of electrons in the magnetuphere, Rev. Ceophys.. 7. 3u5. (x,9).
Schute, M.. Piarticle vituration of the water zone: A nonlincur Hendel, Astrophiva. Spater Sor., 29, 233, 1974
Schoulz. M., and G. T. Dividaton. Libititig encisy vpectrum of 1 vilurated radiation belt, J. (irophyy. Res., Ws. Sy, I'vxk.
 H.lls, Springer-Verlag. New Yuik, 1974

Sileviteh, M. IS., P. L. Kulliwell. and E. Vallalon. Active cuntiol and nonliocar leedback instabilities in the Earth's radiation tidis. dJe. Sinace Kes. in press, l989.
Thumion, K. J., and R. L. Duwden. Jonospheric whastler gropitg tion, J. Almus. Treg. Hys., dU, 215, 1977.
Thatcevic, S. U. S. Inan, and K. A. Iteiliwell, Nonlinear pitch angle scallering and mapping al energetic particks Juring latidua
 Kes., sy, 16, K13, 10Kt.
Trakhtengens, V. Yu., Altiven matsers in active experiments in
 Trikhtengeris. V. Yu.. Kelanition ul a plisma with inisustrupa vetociay distribution. in Harribuse of Plasoma Phrsics. vel?
 Sudin, p. S19. I:levier, New Youh. I'R4.
W. J Hurke and P. L. Rothwell. Ar Furce Geophystcs Labors. tory. Hamsom Air force Itase. AIA 01711

(Receive ' March I. I'm,
revised Mity 26. iyny.
iscepted Juluc 20. (I989)

ADVISOAY GROUP FOR AEROSPACE RESEARCH \& DEVELOPMENT

7 RUE ANCELLE 92200 NEUILLY SUR SEINE FRANCE

Paper Reprinted from Conference Proceedings No. 485

Ionospheric Modification and its Potential

to Enhance or Degrade the Performance

of Military Systems

(La Modification de l'lonosphère et son Potentiel d'Amélioration ou de Dégradation des Performances des Systèmes Militaires)

The U.S. Government is authorized to reproduce and sell inis report.
Permission for further reproduction by others must be obtalned from the copyright owner.

1OMOSPIERIC HEATINE ROM RNOLATION BELT COMTRO*

William J. Burke	Elena Villalon
Ceophysics Laboratory	Northeastern University
Itanscan ArB, MA 01731	Boston, MA 02115

surnara
Pitch-angle scattering interactions of electronagnetic waves in the ELF/VIF bands with trapped electrons, as formulated by Kennel and Petschek [l], describe the dynamics of the freshly filled radiation belts flux tubes. The natural existence of a "slot" region with electron fluxes below the Kennel-Petschek 1 imit requires non-local wave sources. We describe a set of planned, active experiments in which VFF rediation will be injected fran ground and space based transmitters in confunction with the CRRES satellite in the radiation belts. These experinents will areasure the intensity of waves driving pitch-angle diffusion and the electron energies in gyroresonance with the waves. An ability to reduce the flux of energetic particles trappait in the radiation belts by artificial means could improve the reliability of microelectronic components or earth-observing satellites in midde-altitude orbits.

LIST OE SEBCOS

B	Magnetic Field
c	Speed of Light
$E_{0,1}$	Resonant Energy for Electrons, Ions
$E_{\boldsymbol{A}}$	Magnetic Energy per Particle
k	Wave Vector
L	Magnetic Shell Munber
$m_{0,1}$	Masa of Electrons, Ions
n	Plasma Density
N	Hatmonic Mumber
co	Pecaittivity of Exee Space
No	Pemeability of Fiee Space
ω	Wave Erequency
$\mathrm{WrH}_{\mathbf{H}}$	Lower Hybrid Frequency
$u^{1} \mathrm{pe}$	Election Plasma Erequency
$\Omega_{\text {ce, }} 1$	Electron, Ion Cyclotron Frequency

inmolectian

One of space physic's major success stories of the 1960^{\prime} s was the development of the theory of pitch-angle acattering of energetic electrons trappod in the earth's radiation belts by EFMNF radiation [1]. This theoretical model postulates that energetic electrons moving along magnetic field IInes near the equatorial plane of the magnetosphere see lowfrequeris: waves Doppler shifted to their local gyrofrequencies. In consequent, gyroresonant interactiona particles diffuse in pitati angie along surfaces of constant phase velocity. Particles diffusing toward the loss cone give up andll amounts of energy to wave growth. The model is self consistent in the sense that waves responsible for pitch-angle scattering grow from background fluctuation levels du; to the free energy contained in the anisotropic pitch-angle distributions of trapped particles. If the anisotropy of the trapped distribution falls below a critical level growth ceases.

Duxing magnetic stoms the radiation belts fill up with t.apped, energetic particles from about $\mathrm{L}=0$ to $\mathrm{L}=1.5$. In the weeks following storms the flux of trapped olectrons in the slot between L . 2 to $\mathrm{L}=3.5 \mathrm{fsll}$ to the thresholds of detector sensitivity, well below the stable trapping limit of Kennal and petachek. Trapped protons do not show slot-like distributions. Lyons and coworkers $|2|$ recognized that waves responstble for the pitch-angle scatterimg of alot electrons need not grow self consistently fran background fluctuation levels. Rather, they can be injected from non-local sources wivt it ill pitch-aragle scater trappad electrons into the atmospher ir loss rome.

The sources of ELE/VLF waves are multiple and their relative importance for magnetospheric particle distributions is the subject of an ongoing research. The waves envisaged by kennel and petschek acise naturally out of background tluctuations by selective amplification. Atmosplieric lightning produces broad-bard etr/vaf enissions. part of the tadiation propagates in the earthlonosphere wavequide and part accesses the magnetosphere in fleld-aligned ducts. Studies of lightning induced precipitation abound in the literature [3-6]. The Stanford group has pioneerad tectniques for monitoring llghtning induced dumping of the radiation belts using the SuNy Albany network.

Another major source of VIF is man-made radiation. The Stanford group has made numerous studles of magnetospheric effects of EIF/VLF transmissions fram the Siple station in Antarctica co maynetic conjugate poincs in Canada [71. The intensities of waves emitted fram siple have been measured directly by the wave detector experiment on satellites near the equatorial plane of the magnetosphere [81. A series of successful experiments were conducted in the early 1980 's in which time-codud vif amissions fran US Navy transmitters were cancareat with electron precipitation events simultaneously detected by the SEEP satellite 191. Vanpola 1101 investigated the effects of a powerful VhF transmitter at corky on radiation belt electrons and suggested that it maintains the inner reacties of the? slot.

The purpose of this paper is to describe a group of active experiments that will be conducted by Geophysics Laboratory scientists after the launch of the CRRES satellite this sumer. In these experiments, low-frequency waves will be injected into the magnetosphere by several different methods. Instrumentation on CRRES will monitor: (1) the intensity and interactions of the injected waves, and (2) the dymamics of electrons and protons near the loss cone. The object of these exper iments is to establish the feasibility of using active techniques to control the flures of energetic particles in the slot. A human ability to accelerate or inaintain slot depletion would allow earth observing gatellites to fly in orbits now considered too hazardous [11]. Space Based Radar would profit frun this capability [12]

In the following sections we first review criteria for pitch-angle scattering trapped particles. After sumaxizing the capabilities of CRRES instrumentation for measuring wave-particle interactions, we describe three methods of wave injection using ground-based VLF and IFF transmitters, and VuF transmissions Exan the Soviet ACTIVE satellite.

HAVE-PARTICTE INTERACTIONS

To understand slot dynamics it is necessary to consider whistler mode propagation in the radiation belts and its interactions with energetic particles. The waves of interest are in the elf-VLF (0.330 kHz) bands. Two enpirical facts are used in our simple models: (a) The earth's magnetic field B is approximately dipolar, and at the magnetic equatot is given by
(1)
$B(n T)=3.1 \cdot 10^{4} \cdot \mathrm{G}^{-3}$
where t is the standard magnetic shell number. (b) The background plasna is dominated by cold particles whose density is approxinated \{1\}\}

$$
\begin{equation*}
n\left(\alpha^{-3}\right)=3 * 10^{3} \cdot(2 / L)^{4} \tag{2}
\end{equation*}
$$

The high-energy particles have densities that are < $1 \mathrm{~cm}^{-3}$. Thus, wave propagation is well described in the magnetized, cold plasma limit. The whistler wave is a right hard mode that propagates along the magnetic field if its frequency ω is less than the electron cyclotron $\Omega_{c e}$ and greater than the lowerhybrid $\omega_{\text {Li }}$ Erequencies at all points.

As illustrated in Eigure 1 , whistler waves in the radiation belts in two distinct modes called ducted and unducted (14). Ducted waves propagate along magnetic field-aligned plasma irregularities as in waveguides. Haves injected into a duct can propagate fran one hemisphere to it conjugate and back many timea 1151. Unducted waves observed in the magnetosphere never make it to the ground. Raytracing studies [16] show that as the waves propagate away from the equatorial region the contributions of lons to the dielectric coefficient grow in importance. As unducted waves propagate to locations along magnetic field lines where their frequencies approach $\omega \boldsymbol{H}$ their wave vectors turn and reflect back toward the equator. The process is analogous to total internal reflecrion at optical frequencies. Hot being confined to propagate in a single magnetic shell these waves suffuse throughout the plasmasphere as a broadband hiss.

Fox waves and particles to interact strongly they must satisfy a resonance condition
(3)

$$
\omega-k v+N \Omega_{c e, i}=0
$$

Where N Is an integer, v the component of particle motion along the magnetic field, w and k are the wave frequency (in radians per second) and the wave vector. In the nonrelativistlic limit the cyclotion frequency for electrons (e) and ions (i) is \cap ce, $i=|e 8 / m c e, i|$ where e represents the elamental unit of charge, B the magretic field and m the mass of an electron or ion, A particle must see the wave Doppler-shifted in to some hamonic of its gyrofrequency. Figure 2 depicts whistler interactions with electrons and protons. Electron interactions occur at the $N=-1,-2, \ldots$ harmonics and conuire that they travel in opposite directions to the waves. Protons interactions occur for positive values of N with the protons traveling in the same direction and overtaking the waves.

Fig. 1. Ducted and unducted whistler waves in the magnetosphere.

The dispersion relation for wistler waves propagatimg along the nagnetic field near the equatorial plane is approximately
(4)

$$
\frac{c^{2} k^{2}}{\omega^{2}}=\frac{\omega_{\rho e}^{2}}{\omega\left(\Omega_{c e}-\omega\right)}
$$

 space. canbining equations (3) and (4) shows that the energy of cesonant electrons is
(5)

$$
E_{e}=E_{A} N^{2}\left[\frac{\Omega_{c e}}{\omega}\right]\left[1-\frac{\omega}{\Omega_{c e}}\right]\left[1+\frac{\omega}{N \Omega_{c e}}\right]^{2}
$$

For protons the resonant energy is
(6)

$$
E_{p}=E_{A} N^{2}\left[\frac{\Omega_{c i}}{\omega}\right]\left[1-\frac{\omega}{\Omega_{c e}}\right]\left[1+\frac{\omega}{N \Omega_{c i}}\right]^{2}
$$

where $E_{A}=B^{2} / 2 \mu_{0} n$ is the magnetic energy per particle and μ_{0} is the permeability of free space. In planning active experiments in the radiation belts we estimate E_{A} using the dipolar magnetic fielos and the cold plasma densities given in equations (1) and (2). To study pitch-angle scattering in a glven energy range the only free parameters that renain are the wave frequancy and the resonance
habmic number N.

Fig. 2. Resonant interactions of wistlers with protons and electrons.

CRRES (Canbined Release Radiation Effects Satellite) is scheduled to be launched in June 1990 into a 17° inclination, geostationary tgansfer orbit. As its name suggests, CRRES has two mission objectives: to study the effects of cherical releases at high altitudes, and to understand the interactions of advanced microelectronics components with natural radiation envirorments. Detailed descriptions of the comprehensive sclentific payload on CRRES have been compiled by Gussenhoven and coworkers 1171 . For the studies discussed belon three instruments are gemane and are described brietly. These are the Low Energy Plasma Nnalyzer (LEPA), the Plasma Wave Experiment and a Langmit Probe.

The LEPA experiment was designed to measure the three dimensional distribution function of ions and electrons with energies between 10 eV and 30 keV . The particle distribution functions are measural by two 260° sphetical electrostatic analyzers. Each sensor consists of two concentric spherical plates. On one edge the space between the plates is closed off except for 5.6° by 128° apprture. A microchannel plate is placed at the other edge. Tha energy analysis is dochieved by ctianging the electrostatic potential between the plates. The instrument focusing is such that particle pitch angles are inaged on the microchannel plate to an accuracy of better than itegree. The particle positions ace divided into sixteen bo bin can be resolved into eight 1° zones. Because the 1 imited telanetry does not allow the full data get to be transmitted to ground, a microprocessor has been programmad to select desired sampling patterns.

Particles that are in resonance with given wave mode can be identified by means of a correlator device [18] that measures the time of arrival of electrons or ions in an go sector with a highfrequency clock. The microprocessor then prefouns autocortelations to laentify bunching of the particles. During active experiments the microprocessor will select the bin closest to the direction of the local magnetic field to study the dynamics of particles in and near the atmospheric loss cone and identify the wave modes responsible for resonant pitch-angle scattering.

The Passive Wave Experiment was designed by the University of towa to measure electric and magnetic fluctuations over a dynamic range of 100 db using a 100 m tip-to-tip dipole and a search coll magnetometer. The instruments will operate in swept frequency and fixed-filter modes. The swept frequency analyzer covers the range from 100 Hz to 400 kHz in 128 steps . For wave frequencies in the Vfr band both electric and magnetic spectra be complied every 16 s . The fixed filters will be used to compile a 14 point spectrum with center frequencies between 5.6 Hz and 10 kliz eight times per second.

The Langmuir probe experiment consists of a 100 m tip-to-tip dipole that uses spherical sensors each containing a preamplifier with a 1 MHz bandwidth. The instrument can be used in either a lowimpedance mode to measuce the plasma density or a high-impedance made to measure electric fields. It contains two microprocessors; one controls ordinary operations and the other a "burst menory" device. The burst manory holds 192 kbytes and can be filled with data fram the plasma Wave and/or Langmir Probe Experiments at rates up to 50 kHz . The measured paraneters and collection rates are controllaj by ground command. Data of the desiced kind will be contimually fed through the burgt memory as a buffer. When the microprocessor recognizes some specified event, it will save a small anount of preevent data and proceed to fill the burst menory. A rapid increase in the wave activity measured near the central frequency of a fixed-filter channels will probably bo used to triggec burst memory dara collections during the experiments described below. After the memory is filled, data will be slowly leaked to the main tape recorder for later transmission to ground.

8ig. 3. Wave injection experiments from ACTive to CRRES.

In this section wa discuss a number of active tectiniques for injectiny and diagnosimy thistler waves in the cadiation belts. The experiment concept is illustrated schematically in figure 3 . The antennas used to tranmit energy into the radiation belts may operate in either the Vtr or HF canqes and may be either ground or space besed. For simplicity we first consider the case of transmissions from the polar orbiting ACTIVE satellite. This allows us to illustrate the principles that apply to expeciment planning and easily extend to ground-based transnissions.

The MCPIVE satellite was launched on 28 Septenber 1989. Into polar orbit with an apogee, periget and inclination of $2500 \mathrm{~km}, 500 \mathrm{~km}$ and 630 , respectively. The prime experiment is a vif generator that powers a single turn loop antenn of 20 m diameter. The enitted frequency falls in the range from 9.0 to 10.5 kHz and is controlled by ground camand. There are tight preprogramed on/off enission sequences that may be selected. Because the loop antenna failed to deploy properly the enitted power from ACTIVE is well below its planned 10 kW value.

The rates of orbital precession for the ACIIVE and CBRES satellites are -1.65 and 0.67 degrees per day. This implies that within a few months of lawn the orbital planes of the two spacecraft will overlap favorably for conducting experiments in which Vif radiation can be enitted fran ACTIVE and recelved by CRRES. Since MCTIVE changes magnetic latitude quite rapidly relative to the near equatorlal CRRES. It is necessary to determine the useful locations for conducting transaission and pitchangle ecattering experiments. Eigure 4 plots the equatorial cyclotron and plasma frequencies derived for the magnetic fleld and plama densities given in equations (1) and (2) as functions of L. We also indlcate MCPIVE's emission band. The figure Indicates that this radiation can only propagate to the equator for t shells less than 4. At greater distances ACTIVE's radiation cannot reach craps.

rig. 4. Electron cyclotron and plasma frequencies at the magnetic equator.

Fig. 5. Energies of electrons resonant with Active emissions for $N=-1$ and -2 , at the magnetic equator as functions of C.

Using equations (1) and (2) wo calculate that the magnetic energy per particle is $50 \mathrm{keV} / \mathrm{L}$. With an emission frequency from ACTIVE of 9.6 kHz , the ratios $\cap_{\mathrm{co}} / \omega$ and $\boldsymbol{\Omega}_{\mathrm{ci}} / \mathrm{w}$ are $90.4 / \mathrm{L}^{3}$ and $0.31 \pi^{3}$, respoctively. In Figura 5 we have ploted the energies of electrons that are resonant with 9.6 kliz waves at the equator using equation (5) for the first two harmonics. At distances $L>2.5$ () 31 the energy of cesonant electrons is in cange of cEpA's sensitivity for the $N=-1$ (- 2) hacmonic interaction. Higher hamonic interactions can be detected by high-energy detectors but with coutser pitch-angle cesolution than LEPA. At off equatorial latitudes the magnetic energy per particle Increases leading to higher energies for resonant interactions. Note that CrRes can detect resonant interactions resulting from directly injected waves only if the two spacecraft are in opposite hemispheres. Resonant interactions can occur at the location of CRRES with the satellites in the sane howisplere if the waves undergo internal magnetospheric reflections. Protons interacting with whistler waves emitted by ACTIVE at the first hamonic must have energies >1 meV. Higher hamonic interactions take place at lower energies.

There are two methods for injecting VLF waves into the magnetosphere fron the ground, directly from VIF transmitters or indirectly from lF ionospheric heaters. Many direct Vif injections have already been cited. The Siple transmitter had flexibility in its emitted frequencies. However, Siple was cloged when Antarctic ice crushod the station. Inhof and coworkers carried out experiments using VF transaitters at a mmber of fixed frequencies used by the U.S. Navy. These can be repeated with CRRES. Consistent with sesp measurements [9], Erequencies, 20 kiz will interact with electrons in LEPA's energy range at $\mathrm{L} \geqslant 2$.

Indirect injections of VE waves into the radiation belts can be accomplished by two methods. The first is through modulation of ionospraric currents and the second through beat waves. Ionospileric current modulations have been achieved by a modulated heating of the 0 region of the ionosphere fls201. The basic concept is that the IF waves heat the ionospheric electrons and thus increase the ionospheric conductivity. If the amplitude of the heater is modulated at vef frequencies the ionospheric currents are also modulated, turning them into a virtual antenna in space. Trakhtergerts \{21)

Fig. 6. Energies of electrons and protons resonant at the first narmonic with whistlers at $\mathrm{k}=2$.
suggested that this technique can be adopted to turn whole tlux tubt: into a muser-like device in which injected waves grow to latje amplitudes. Duantitative conditions required for growth with parallel wave propayation have been explored by Villalon and coworkers (221. Ionospheric curcent modulation techniques have the advantage of flexibility over fixed frequency transmitters. However, while wisves emitted from virtual ionospheric antennas have been derected at the ground, little is known about the efficiency with which they transmit across the ionosptiere into deep space. The wave detectors on ciafis will reduce this uncertainty.

A second method for indirect VLF injection involves the use of beat waves. Different sectors of the Arecibo antenna can radiate at selected frequencies whose difference lies in the Vif rarge. This also provides flexibility for studying resonant interactions in LEPA's energy ramge near $f=2$. \quad. The ff heater also provides a means for enhancing the efficiency of wave injections. If the lono:iphere i, heated for about ten minutes prior to VIF turn-on, it develops fitillallgnod themal striations [231. Irducal irraqularities can enthore: VLE transmission through the ionosphere either alom artificially created ducts or off strategically located scattering centers. Figure 6 plots the resonant energy of electrons and protons at the first harmonic at $L=2$ as a function of frequency. Resonant electrons in LEPA's range of sensitivity require injected wave frequencies $>20 \mathrm{kliz}$.

REPEREXCES

[1]. Kennel, C.F. and H.E. Petschek, Limit on stably trapped particle fluxes, J. Geophys, Res,. 71, 1 - 28. 1966.
[2]. Lyons, L.R., R.M. Thorne and C.F. Kennel, Pitch-angle diffusion of radiation belt electrons within the plasmasphere., J. Ceophys. Res.. 77, 3455-3474, 1972.
131. Chang, H.C. and U.S. Inan, Lightning-induced electron precipitation from the magnetospliere, J. Gcophys. Res.. 90. 1531 ~ 1541, 1985.
(4). Inan, U.S. and D.L. Carpenter, Lightnim-induced electron precipitation events observed at L 2.4 as phase and anplitude perturbations on subionosplieric VLF signais, 3. Geophys. Res.. 92. 32933303. 1987.
[5]. Inan, U.S., W.C. Burgess, T.G. Holf, D.C. Shater and R.E. Orville, Lightning-associated precipitation of melf electrons from the Imer sadiation belt, Geophys. Rea. Lett., 15, 172-275, 1988.
[6]. Rycroft, M.J., Strange new whistlets, Nature, 327, 368-369, 1987.
[7]. Helliwell, R.A., Controlled stimulation of VLF emissions fran Siple Station, Antarctica, Radio Sci.. 18, BO1-814, 1983.
(0). Inan, U.S., T.F. Bell, D.L. Carpenter and R.R. Anderson, Explorer 45 and Imp 6 observations in the magnetosphere of injected waves tran the Siple VLf transmitter, J. Ceophys. Rea.. 82, 1177-1187, 1977.
[9]. tmhof, W.L., J.B. Reagan, H.D. Voss, .E. Gaines, D.W. Datlowe, J. Mobllia, R.A. Helliwell, U.S. Inan, J. Katsufrakis and R.G. Joiner, The modulated precipitation of radiation belt electrons by controlled signals from vir transmitters, Geophys. Pes. Lett., 10, 615-618, 1983.
1101. Vampola, A.t., electron precipitation in the vicinity of a VF transmitter, J. Geophys. Res.. 92, 4525-4532. 1987.
(11). Burke, w.J. and R.C. Sagalyn. Active space experiments and International treaty obligations. SICMAL, (in press) 1990.
1121. Tsandoulas, G.N., Space Based Radar, Science, 237, 257-262, 1987.
[131. Chappell, C.R., K.K. Harris and G.W. Sharp, A study of the influence of magnetic activity on the location of the plama pause as measured by $O C O$ 5, J. Ceophys. Pes., 75, 50-56, 1970.
[141. Silth, R.L. and J.J. Angerami, Magnetospheric properties deduced fran ocy 1 observations of ducted and norducted whistlers, 3.-Ceaptrys. Res., 73, 1-20, 1968.
(15). Helliwell, R.A., Whistlers and VIF emissions, in fhysics of the Magnetosphere, ed. by R.L Cacovillano, J.F. MClay and H.R. Radoski, D. Reidel Co., Dordrecht, 106 - 146, 1968.

16]. Kimura, 1. Effects of Ions on whistler-mode ray tracing, Radio sci., 1, 269-283, 1966.
[17]. Qussenhoven, M.S., E.G. Mullen and R.C. Sagalyn, CRRES-SPACEPAD experiment descriptions, Aptr-TR-85-0017. 1985.
[18). Cough, M.P. and A. Urban, Auroral beadplasma inceraction observed directiy, Planst. Sp. Sci.. 31. 075 - 883.1983.
[191. Lunnen, R.J., A.J. Ferraro, H.S. Lee, R. Allshouse, K. Carroll, D. Werner and r.W. Collins, Detection of local and long-path VE/EIF radiation fram modulated ionospheric curcent systems, Radio 5ci.. 20, 553-563, 1985.
[20]. Stubbe, P., H. Kopka, M.T. Rietveld, A. Frey, P. Hoeg, H. Kohl, E. Nielsen, G. Rose, C. Laltoz, R. Barr, H. Derblas, A. Hedberg. B. Thide, T.B. Jones, T. Robineon, A. Brekke, T. Hansen and O. Holt, lonospheric modification experimenta with the Tronso heating facility, J. Atroa. Ferr. Ehys., 47, 115i - 1163. 1985.
(21). Trakhtengerts, V. Yu., Afven Masers, in Active Experimente in Space, ESM Sp-195, 67-74, 1983.
[22]. Villalon, E., W.J. Burke, P.L. Rothwell and M.B. Silevitch, Quasi-linear mave-particle interactions in the earth radiation belits, J. Cacplyy. 日as., 94, $15,243=15256,1989$.
\{23). Lee, M.C. and S.P. Kuo, Ionospheric irregulaxities and geanagnetic fluctuations due to Ionospheric heating, in Active Experiments in Space, ESA SR-195, 81-89, 1983.

MGOMEDONDRAS

This work was supported in part by USNF Contract No. E19628-99-K- 0014 with Northeastern University and by AFOSR Task 231166.

PAPER NO. 28
DISCUSSION
P. LePEUNRE. FR

In paper you co-authored with Dr. Villalen you auggested to heat the foot of the tiux tube where the interaction takes place. do you plan to do it in your crRes experiment?

AUPHOR'S REPLY

The cRpeg experimenta are designed for single-hop wistlers. To heat the confugate polnt lor the aliven maser vould require a two-hop whistier. If it happens, cRes could tee it.

Cyclotron Resonance Absorption in lonospheric Plasma

Pilini Vilitadon'

Abstract

 waves in the inhomogencous bmorpheis phasa is investigated. Neal resuname the wam piasma differential equations describing the electuc fielt amplitudes near the plasma esonance ac sudied the wave equatuons reduce to the patatolic culinter equatom. The ruengy timamission corilicients and amplitudes is estimated using a WKIt analysis of the wave equation

I. Introduction

In ionospheric heating experiments the orditiary mole is launched from the ground at the critical angle of incidence that penetrates the radio window [Wong "t Al.. 1981: Birkmaver ef al., 1986: Bernhtardt et al., 1988). Aller expetiencing a rapid change in polarization it converts into in electrostatic wave which is rapidly absorbed hy the plasma |Atjo/hins. 1984: Misi/hus and Fld. I984|. In a previous piper we studied the dispersion relation in an inhomogencous plasma near resonance. considering therinal corrections and assuming an arbitrary angle A between the geomapnetic field B_{n} and the density gradient [Villalon. 1484). The wave frequency w is such that $\mathrm{SI} \leq \boldsymbol{\omega} \leq 2 \mathrm{n}$. where I is the eleciron gyrofrequency. The warm plasma dispersion relation contains third- and second-order power terms in the refractive index η. Our results extend previous work by ciohlant and Pilival [1972], which includes only the third-order power in η but not the sccond. We show that for certain values of A and ω satisfying the equation $\Lambda(\theta, \omega)=0$ (see the detinition of Λ in equation (7)) the Golant and Piliya dispersion relation cannot be applied. As a matter of fact we found that for 0 $45^{\circ} . \lambda=0$ if $\boldsymbol{\omega}=\mathbf{2 1 1}$. In these cases, the retractive indices are very large, the group velocities are very slow. and wave energy should be absorbed efficiently by the electrons at the second gyroharmonic.
Here we further develop the theory of moric conversion by investigating the wave electric fields near the plasma resonance. We derive a differential equation for the variation of the wave amplitudes in the vertical coordinate along the density gradient. It contains third-and secome-onder spatial derivatives, and the contribution of the linear damping rates at the second gyroharmonic. Asymptotic expainsions are given. The wave amplitudes are a combination of ordinary electromagnetic and warm plasma waves. We calculate the energy transmission coefficient (Cairns and IashmoreDaries. 1982 and the power absorbed per unit area hy the plasma wave [Piliyn and Fedorov. 1970]. The amplification coeficient for the cyclotron waves depends on 1 :and wrl and
 liase Massachusells

Popsight 1901 the the Amentan Gerphe sical timen
['aner number '01] 1012748

is very large for 4 near 0 and on very close to 20. When 10 and ware such that $d=0$, we wave equation redices to the parabolic cylinder equation whose asymprotic solthoms ant: well known. Note that the Weber's equation is the standad differential equation to describe a variety of monde conversion problems in plasma plyysics | Iiliva. 1906: Antomarn and Manheimer, 1978: Curns and Iashmere hasma. 198 1

We apply a WKB analysis to investigate the mots at the wave equations. In the case $M A$, at $\neq 0$ we timb thee complex roots. One of them represents the " moxle and the other two are combinations of the 0 mode and plasma waves. By calculating the turning points we evtimate the extent of vertical penctration of the wave fictus. For cipical ionospleric parameters this length is of the onder of a lew hundred meters. In the limit $\boldsymbol{\Lambda} \rightarrow \mathbf{0}$ we find tive tonss, now the O mode and the second the plasma wave. Ihe vilitio:l penetration of the wave fields is now of the melet al alcur meters. Thus wave energy is elficienlly abouthed bithe electrons in veiv small iegions ol space.

- Wioni Pi isna Disti rsion Rit ition

We consider the monuniform plasma of the buncophere. where the density changes slowly along the velifal disectin ξ and is constant along the horizontal diretion μ. Ileceen. magnetic fieta B_{a} is taken at an angle A with respect bo the vertical ℓ and is in the plane defined by the comrdinates ℓ and μ. The coordinates along and perpendicular te $\boldsymbol{H}_{\text {" }}$ are denoted by $=$ and x, respectively isce Figure II. An ordin:ary polirized electromagnetic wive (O) model. of trequener as and wave vector k, is launched from the gomumal an ande th with respect to the vertical. The angle helween k iml $B_{\text {, }}$ denends on the attillide and is represented hy or face 1 ietie 1). Whe frequence \boldsymbol{w} is such that $n \leq \ldots<2$. wheme n e R_{n} / m e is the electron gyrofiequency io is the electron charge and m its mase) the relractive inder 1% - h / \ldots has a component Q along the vetical direction and a conponent 5 in the horizontal direction. In terms of the angles $\#$ imal one have the relation sin $1 / \pi+\pi / 2-m=Q^{\prime} \eta$ Becamse the plasma density deres not change along \boldsymbol{n}. 5 is also a comstant

The U.S. Government is authorlzed to reproduce and sell this report. Permission for further reproduction by others must be obtalned from the copyright owner.

Fig. 1. The coordinates t and μ are alone and perpendicular to the density gradient. respectively. The cocritinates : and t are perallel and perpendicular to the geonangetic fiekd $\mathbf{B}_{\mathbf{g}}$. respectively. The wave vector k is in the plane defined by B_{n} and ε The angles that g_{n} and k form with the vertical $;$ are represented hy θ and ϕ. respeclively.
where

$$
\begin{aligned}
\varepsilon_{U} & =1-X / X_{r} \\
X_{1} & =\frac{1-y^{2}}{1-y^{2} \cos ^{2} \theta}
\end{aligned}
$$

Here $X=\omega_{p}^{2} / \omega^{2}$. where $\omega_{p}=\left(4 \pi N e^{2} / m\right)^{\prime \prime 2}$ is the eiectran plasma frequency. N is the plasma density, and $r=\Omega 1 / \omega$. The other coneficients in equation (I) may be found in the work by Budden (1961). We assume that the angle of incidence ϕ is such that

$$
\begin{equation*}
\sin \psi=\left(\frac{\gamma}{1+\gamma}\right)^{1 / 2} \sin \theta \tag{3}
\end{equation*}
$$

If the ordinary mode is lnunched near the ground at the angle of incidence defined in (3), it penetrates the radic window and experiences a rapid change of polarization associated with a strong compling between the ordinary and extraordinary waves (Mifilhus. 19841 (sce Figure 2). The ordinary wave is totally transmitted near $\boldsymbol{X}=\boldsymbol{X}$, into the "clow extraordinary monle" (also called the Z mode), which be-

Fis. 2. Refractive index η versus $X+\left(\omega_{N} / \omega\right)^{*}:$ heie $r=[1 / \omega$. The curve a is an ordinary polurized moxle. and b ind f are extromdinary modes. The ordinary monde "pronagates Iromifree space in \rightarrow if to its cularf $(\eta=0)$ and mny cowple in the show exlraw dinary maxle tranch e ialso called the 7 . model. the 7 . monle moves into the region of eyciotron plama resiminces in $\rightarrow+\infty$.
comes increasingly electrostatic as it mporamates in the plasma |Afjolluas and Fild. 1984]. i.e.. the retractive mider $Q \rightarrow \infty$ and $\alpha \rightarrow \theta$. The ratio hetween lie : and r components of the electric field is such that $E_{1} / E .=13 n \mathrm{~A}$ and $E_{r}=0$.

Near the plasma resonance where $\epsilon=\xi_{n}$. we arsume that the density variation is

$$
\begin{equation*}
N=N_{1}\left(1+\frac{\xi-\xi_{0}}{1}\right) \tag{4}
\end{equation*}
$$

Here N_{r} is the plasma density at the resonance where $X=$ X, as defined in (2), and I is the length of density variation ttypically, in the F region of the ionosphere it is asound sn km). Near the mosle conversion point. the 0 n node frequency satisfies the dispersion relation for the upper hytrid resonance in (2). Substiluting (4) into the definition of f_{ℓ} in (2), we find

$$
\begin{equation*}
F_{i c}=-\frac{\left(\xi-\xi_{n}\right)}{1} \tag{151}
\end{equation*}
$$

The refractive index is near $\ell=\epsilon_{n} . Q--h / \varepsilon_{\ell \ell} \rightarrow \pm x$. and its actual value must be ohtained hy adding the lowest-order thermal corrections to the Booker quartic dispersion relation (Budden. 1961|. The complex dielectric respunse function. $\mathscr{X}=Q^{\prime} \boldsymbol{B}$. was derived by villalion [1989]. where \uparrow is

Here ${ }^{\prime} r$, the thermal velocity, is such that $r^{\prime}, / c-10^{\prime}$. and

$$
\Lambda=3 \cos ^{4} \theta+\frac{3 \sin ^{4} \theta}{\left(1-r^{2}\right)\left(1-4 r^{2}\right)}
$$

$$
\begin{equation*}
+\frac{\left(6-3 Y^{2}+Y^{4}\right)}{\left(1-Y^{2}\right)^{\prime}} \cos ^{2} a \sin : \theta \tag{7}
\end{equation*}
$$

$\alpha=S \sin \theta \cos \theta\left\{\cos ^{2} \theta \frac{\left.1-15 \gamma^{2}+17 y^{4}-61^{h}\right)}{\left(1-y^{2}\right)^{\prime}}\right.$

$$
\left.\begin{array}{rl}
& \left.+\sin ^{2} \theta \frac{\left.\left.\left(-15 \gamma^{2}+7\right)^{4}-4\right)^{n}\right)}{\left(1-r^{2}(1)-4 r^{2}\right)}\right\} \\
Y= & S \sin \theta \cos \theta \frac{r^{2}}{\left(1-r^{2}\right)} \\
\rho=-\frac{1}{16}\left(\frac{\pi}{2}\right)^{1 / 2} \frac{\sin ^{4} \theta}{|\cos \theta|} \frac{1}{r^{4}} \exp \left[-\left(\frac{(2-2(l}{2^{i / 2} h_{; 11}}\right)\right. \tag{10}
\end{array}\right)
$$

where $k_{\text {: }}$ is the component of k along \mathbf{B}_{0}. The refractive index Q may be othained by selling the real part of (f) cqual to zero. Refractive indices in the resonance regions have been studied in the papers by rinfon, and Piliva 1972l and limhlinn [19R9]. The Golant and Piliya paper doses nou include the teim propurtional to x in the dispersion relation. As a matter of fact this term may he neglected provided that i \neq 0. In Figure 3 we represent θ versus , whs as aht:ined hy solving for the equation $1=0$. We find that for $1 \leq 15$. I becomes zero for wery close to 23: in this case the ierm proportional to x cannert the ignored. In Figure dwe represent

Fig. 3 We represent θ (the angle the geomagnetic field forms with the vertical) as a function of the ratio of wave to cyclotion frequencies afl. after solving for $A(A, \ldots)=0$ where λ is defined in equation (7)
the refractive index Q as a function of θ by solving for the dispersion relation in (6). As shown in Figure 4. the refractive indices are much larger for $\Lambda=0$ than for $A \neq 0$ hy a factor of $v_{r^{\prime}}$. Thus if the angle θ between B_{n} and the density gradient is $<45^{\circ}$, one expects plasma waves with frequencies $\omega \sim 212$ to be absorbed more efficiently by the electrons than waves with $\omega<2 \Omega$.
The components of the groun velocity along the vertical $r_{g \xi}$ and horizontal $v_{g \mu}$ directions are

$$
\begin{align*}
& v_{2 \xi} / C=\frac{1}{2}\left(\frac{v_{I}}{c}\right)^{2}\left(3 \Lambda Q+4_{k}\right) f \tag{II}\\
& r_{q \mu} / c=-\frac{1}{2}\left(\frac{v_{T}}{r}\right)^{2} \Lambda Q^{2} f / S
\end{align*}
$$

where $f=\left(1-Y^{2}\right) /\left(X_{r}^{-1}-\gamma^{2} \cos ^{2} \theta\right)$. When $\Lambda \neq 0$, $v_{g i} / v_{g \mu} \ll 1$. and the wave propagates along the direction perpendicular to the density gradient. When $\Lambda \rightarrow 0$. rose and "gic can be of the same order of magnitude and much smaller than $v_{g \mu}$ for the case $\Lambda \neq 0$. Because the group velocities are smaller when $\Lambda=0$ than when $\Lambda \neq 0$, the waves interact with the electrons for longer times and then deliver their energy to the plasma more efficiently.

Fin. 4. Refractive indices near the plasma resonances as func. tione of θ and for two values of $\gamma=12 / \boldsymbol{w}$. They are largert when $\#$ and ware such that A - 0 (equation (7)).

3. Tine Wave Eurciric Pifids

The wave electric fietds near resonance are polaized along the vertical. and their amplitudes vary as $E=e_{\ell} F(\xi)$ $\exp \{-i \omega t+i \omega / r(Q \xi+S \mu)]$. Here eg is the unit vector along the $\boldsymbol{\xi}$ direction, and $E(\xi)$ is a slowly varying function of ξ. Next. to obtain the differential equation for the wave amplitude $E(\xi)$. we identify Q with the spatial derivative $Q=-(i c / \omega) d / d \xi$. When this is substituted into (6). A hecomes a differential operator. and the equation for the electric field amplitude is then $\mathscr{D} E(\xi)=0$. By defining $W=$ $X E(\xi)$ and denoting with primes differentiation with respect to ξ. we show

$$
\begin{aligned}
& {\left[f_{\{\xi}^{\prime}-\varepsilon_{\xi\}}(\ln X)^{\prime}+2 i Y X \frac{\omega}{c}\right] w+{ }_{\xi\{ } w .}
\end{aligned}
$$

$$
\begin{align*}
& +\left(\frac{v_{I}}{c}\right)^{2}\left(\frac{c}{\omega}\right)^{2} \Delta X w^{\prime \prime \prime}=0 \tag{12}
\end{align*}
$$

Next. we define $"=1+\left(\xi-\xi_{0}\right) / 1$ and $\delta=c / \omega /\left(<10^{-1}\right)$: (12) now becomes
$\left[-\frac{\delta}{u^{2}}+2 i Y_{X} X_{r}\right] W-\delta \frac{u-1}{u} \frac{d W}{d u}$

$$
\begin{align*}
& +2 \frac{v^{\prime} I}{c} \delta^{2}\left[i \frac{\nu^{\prime}}{c} \kappa+\sigma\right] K_{r} \frac{d^{2} W}{d u^{2}} \\
& +\left(\frac{v_{I}}{c}\right)^{2} \delta^{3} \wedge X, \frac{d^{\prime} W}{d u^{i}}=0 \tag{1.3}
\end{align*}
$$

Near resonance we have that $11=1$: in addition. we define $\zeta=u-1$ and

$$
\begin{align*}
& r=2 Y X, \delta^{-1} \tag{14}\\
& \gamma=2 \frac{V_{r}}{r} \delta\left(\rho+i \frac{w^{\prime} r}{r} \kappa\right) X, \tag{15}\\
& \beta=\left(\frac{n^{\prime} \gamma}{c} \delta\right)^{2} \Lambda X, \tag{16}
\end{align*}
$$

Equation (13) now becomes

$$
\begin{equation*}
\beta \frac{d^{2} W}{d \zeta^{3}}+\gamma \frac{d^{2} W}{d \zeta^{2}}-\zeta \frac{d W}{d \zeta}+(-1+i \sigma) W=0 \tag{17}
\end{equation*}
$$

By taking $y=0$ we recover the third-order diferential equation as obtained hy Golant and Piliya [1972]. As shown in section 4 when $\beta=0$. (17) reduces io a second-order differentia! equation of the parabolic cylinder type.
The three solutions to (17) may be found by Laplace transform methods. as
$W(\zeta)=\gamma^{\prime 1-i m / 2} \int_{r_{1}} d t t^{-i=} \exp \left[\zeta 1-\gamma \frac{t^{2}}{2}-\frac{\beta}{9}, 1\right]$
where the enmpicx o plane has a cut faken from the urisin at

1. 2) are such that arg $1=2 k \pi / 3$. Giolame ont filiva (19972)
 exponential factor. The behavior of $W(\zeta)$ when $\langle>0$ and $\zeta \rightarrow \infty$ is given by \boldsymbol{W}_{r}. Here

$$
\begin{equation*}
W_{r}=C\left(\frac{1}{\xi-\xi_{n}}\right)^{1-i n}+B \tag{19}
\end{equation*}
$$

where C and B are arbitrary constants which have dimensions of electric fields. Note that (19), which is independent of v_{7} / c, represents the ordinary electromagnetic wave $|D n|$ gopolor, 1966]. For $\zeta<0$ the asymptotic form of W is a combination of the cold electromagnetic wave W, and the warm plasma wave. In fact, Golant and Piliva |1972| show that

$$
\begin{equation*}
w \rightarrow W_{r}-a_{p} \frac{i \pi^{1 / 2}}{\dot{\xi}^{1 / 4} \exp }\left[-\frac{2}{3} \dot{\xi}^{1 / 2}-\frac{i r}{2} \ln \dot{\}}\right] \tag{20}
\end{equation*}
$$

where

$$
\alpha_{p}=C \frac{\exp (-\pi \sigma)}{1(1-i \sigma)}\left(\frac{1}{\beta^{m / 3}}\right)^{\prime}
$$

and $\dot{\zeta}=\left\langle\beta^{-1 / 3}\right.$. The power absorbed at $\xi=\xi_{11}$ per unit aren of surface. S. was calculated by Piliya and Frdorov [1970]; it is determined completely by the cold solmion $W_{\text {a }}$ and given by

$$
\begin{equation*}
P=\frac{r}{8 \pi}\left|C^{2}\right| A \tag{1211}
\end{equation*}
$$

where A is the amplification coefficient defined as

$$
\begin{equation*}
A=\frac{\omega l}{c} \frac{1-\exp (-2 \pi \sigma)}{2 \pi} \tag{22}
\end{equation*}
$$

Under the limit $\gamma \rightarrow 0$ we investigate the three roots of (17). By assuming that $W-\exp \left(\int Q d \zeta\right)$ one gets

$$
\begin{align*}
Q_{1} & =s_{1}+s_{2} \\
Q_{2.3} & =-\frac{1}{2}\left(s_{1}+s_{2}\right) \pm i \frac{3^{1 / 2}}{2}\left(s_{1}-s_{2}\right) \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
& s_{1} \pm s_{2}=\left[E^{-1}-\left(E^{-2}-r^{1}\right)^{1 / 2}\right]^{1 / 3} \\
& \pm\left(E^{-1}+\left(F:-r^{3}\right)^{1 / 2}\right]^{1 / 1}
\end{aligned}
$$

F. $=2 \beta /(1-i r)$ is such that $|F|<1$, and $t=12 / 3 / 3)$. By taking the limit r^{\prime} is k : " we show

$$
\begin{gather*}
Q_{1} \rightarrow \frac{2}{3} \exp \left(-i \frac{\pi}{3}\right)(E, x) \tag{24}\\
Q_{2}, \cdots \frac{-1}{3} \exp \left(-i \frac{\pi}{3}\right)(E, x)^{\prime} \pm \exp \left(-i \frac{\pi}{3}\right)(1+x)^{\prime \prime}
\end{gather*}
$$

We see that Q, does not depend on ${ }^{2} / c$ and represents the cold electromafnetic wave. The romis $Q_{2,}$, are such thall they tend in infinity as $r, / \in \rightarrow 0$: they represem the plasma waves. To estimate approximately how tat alme the vertical the plasma wave amplitude extends ii.e. is exponemially
large). we calculate the lurning points of the ans Q_{2}, The turning points are values of $\left\langle=l_{\mathrm{m}}\right.$ such that i_{1} - \because :): we show that $\zeta_{0}=3(1-i \sigma)^{\circ}(3 / 4)^{1 \prime \prime}$. By taking o $12 / 3 / 11 t$.
 10^{-1}. Hence, according to this simple calculation. the vertical penetration of the wave fiedds shond the less than 151 m If we take $\Omega / \omega \cdots 1.8$, then $\varepsilon-\varepsilon_{0}$ is ahoull 71 m

4. Secono Harmionic Risonanef Abstrition

L.et us now consider the case $\Lambda \rightarrow \mathbf{n}$: here the terni $\mathrm{y}^{2 / 2}$ cannot be neglected. By taking $\Lambda \rightarrow 0$. we find that \mid fl $=1$. and then we may expand exp $(-\beta / 3,1)$ in powers of β (Bender and Orszag, 1978). which yields
$W(\zeta)=\gamma^{(1-1,+1 / 2} \sum_{n=n}^{n} \frac{1}{n!}\left(\frac{-\beta}{3}\right)^{n}$

$$
\begin{equation*}
\cdot \int_{r} d r t^{(n n-n)} \exp \left(\zeta r-\frac{r i}{2}\right) \tag{25}
\end{equation*}
$$

where the contour of integration c is taken from the origin at an angle arg $1=-1 / 2$ arg γ. The integrals in (25) replesent parabolic cylinder functions |Abramowita and Strgun. |964|. Thus we write
$W(x)=\exp \left(x^{2 / 4}\right) \sum_{n=0}^{n} \frac{1}{n!}\left(\frac{-\beta}{3 y^{2+2}}\right)^{n}(1-1 \cdot 1), 1$, 12
where

$$
\begin{align*}
& v=i \sigma-3 n-1 \tag{1271}\\
& x=\gamma^{\cdot 1 / 2} \frac{\xi-\xi_{n}}{1} \tag{28}
\end{align*}
$$

$\Gamma(-1)$ is the gamma (factorial) function. and $D,(1)$ is the parabolic cylinder function. Note that the series expansion in (26) requires that $\left|\beta / \gamma^{1 / 2}\right|<1$.

To study the hehavior of $W(y)$ as $|x| \cdots v$. we must consider the asympintic expansions of 0,1 , γ at latge values of |x|. For $\pi / 4<\arg x<7 / 4 \pi$ one lias

$$
\begin{equation*}
n,(-r)-x^{\prime} \exp (i 1 \pi) \exp \binom{1}{-i} \tag{1291}
\end{equation*}
$$

For lion $x \mid<1 / 4 \pi$. one gets

$$
\begin{align*}
& \left(O_{1}(-x) \sim x^{\prime \prime} \exp (i v \pi) \exp \left(. \frac{x}{4}\right)\right. \\
& +\frac{(2 \pi)^{19}}{\mid(-\infty)}, \quad 1 \exp \binom{1}{\vdots} \tag{1}
\end{align*}
$$

Substituting (29) into (26) yieids the asympteric hehavior of W(x) for $\pi / 4<\arg 1-7 \pi / 4$.

Fig. S. Natural hroarithm of the amplification coeflicient (equalion 122ll versus A for thee values of $\gamma=\Omega / \omega$. Maximum amplification is ohtained for $\omega=2 \boldsymbol{\pi}$ and $\boldsymbol{\theta}$ near $\boldsymbol{\sigma}$.

This equation contains only the contribution of the electromagnetic (0 mode) wave. Combining (30) and (26), we obtain the asymptotic form of $W(x)$ for \mid arg $\lambda \mid \div \pi / 4$:

$$
\begin{align*}
W(x)- & \left.\frac{1}{x^{1-1 /}} \exp (-\sigma \pi)\right)^{(1-i \sigma)} \\
& +\frac{(2 \pi)^{1 / 2}}{x^{1 \sigma}} \exp \left(\frac{x^{2}}{2}\right) \exp \left[-\frac{\beta}{3 \gamma^{3 / 2}} x^{\prime}\right] \tag{32}
\end{align*}
$$

Equation (32) contains the contribution of the electromag. netic (first term in the right side of the equation) and plasma (second term) waves. Equation (32), valid if $\left|\beta / \gamma^{7 / 2}\right|<1$, should be contrasted with (20), which was derived for the case $\beta \neq 0$ and $\gamma=0$. The ratio of the O mode amplitude at $\xi-\xi_{0}=r>0$ to that at $\xi-\xi_{0}=-r$ is obtained from (31) and (32): we show it is equal to $\exp (-\pi \sigma)$. The energy transmission coefficient $T=\exp (-2 \pi \sigma)$. The quantity $1-T$ is the fraction of the incident energy which is mode converted to the cyclotron harmonic wave. The power absorbed per unit area by the plasma wave at $\xi=\xi_{0}$ is

$$
3:=(\pi / 8 \pi) r_{t}\left|W_{d}\right|^{2}(1-T)
$$

where $n=c / Q \sim c e_{\ell \ell} / 2 Y X$ and W_{c} is defined in $1 / 91$. Note that this expression is identical to the power atsorthed hy the O mode as given in (21) and (22). In Figule 5 we have represented the natural logarithon of the amplificatior roef. ficient A defined in (22). as a function of 0 for these values of $Y=\$ 1 / w$ (i.e., $Y=0.5,0.7$, and 0.9), and assuming that $\delta^{-1}=1500 / Y$. We show that maximum anuplifications ane ohtained for $\omega=20$ and θ very close on 0^{n}. As a matter of fact the maximum valice of A is calculated for $n \cdot 0^{n}$ and 90^{n}. where $A \rightarrow 8^{-1} \pi$.
First, consider the limit where there is no damping, i.e.. $\left(\omega-2\{2) / k_{:} v_{r}>2^{12}, \rho=0\right.$. and then arg $\gamma=\pi / 2$. For ξ. ξ_{n}, arg $x=-\pi / 4$. and 3arg $x-1 / 2$ arg $\left.y\right)=-(3 / 2) \pi$. For $\xi-\xi_{0}$. arg $x=(3 / 4) \pi$. and then $3(\arg x-1 / 2 \arg y)=(3 / 2) \pi$. In tooth cases the plasma wave, as defined in (32) is an undamped plane wave propagating away fiom the resonant
point $\varepsilon-\xi_{n}$. Second. we assume that the wave is damped at the second cychotron hat monic. i.e., $w \sim 2 \Omega$ and $1+1 \mathrm{Hv}$ taking $\left|x_{1} f^{\prime} \rho\right|<1$, we see that the plasma wave is generated for $\xi>\xi_{0}$ if $\beta>0$ and for $\xi \because \epsilon_{0}$ if $\beta-n$. lis amplitude decays exponentially as Re|x $\chi^{\prime} / 2-\beta_{\lambda}^{\prime} / \gamma^{\prime \prime \prime} \mid$. where Re denotes the real part of the expression in hiankets. If $\beta>0$ and $\xi-\xi_{0}$ or if $\beta=0$ and $\xi>\xi_{0}$, then the anvmplotic form of $W(x)$ is given by (31) containing only the clectiomagnetic wave.
The plasma wave which extends along a finite lengll in the ξ direction decays exponentially away from this region for large values of ε. Next. we calculate the size of this reaion for the case $\beta=0$, hy applying a W KB analysis to (17). Let us define a new complex conrdinate

$$
\begin{equation*}
r=\frac{i}{2}(11 \gamma)^{1 / 2 \frac{\xi-\xi_{n}}{1}} \tag{1711}
\end{equation*}
$$

where $n=1 / 2-i \sigma$. With the introduction of $11(t)-$ exp $\left(-\pi r^{2}\right) V(\tau)$, equation (17) becomes a second-order equation of the Weher's type |Ahramowitz and Steginn. 19(i-1|.

$$
\begin{equation*}
\frac{d^{2} v}{d r^{2}}+4 a^{2}\left(1-r^{2}\right) v=0 \tag{14}
\end{equation*}
$$

where we have set $\beta=0$. The WKB solutions to (34) are [Nayfef, 1973]

$$
\begin{align*}
W= & \frac{1}{\left(1-\tau^{2}\right)^{i / 4} \exp \left(-a r^{2}\right)} \\
& \cdot\left\{C \exp \left[-2 i a \int_{1}^{r}\left(1-x^{2}\right)^{1 / 2} d x\right]\right. \\
& \left.+B \exp \left[2 i a \int_{1}^{r}\left(1-x^{2}\right)^{1 / 2} d x\right]\right\} \tag{35}
\end{align*}
$$

where C and B are constants and the turning points are $T=$ ± 1. The solution with constant of proportionality C is the electromagnetic wave, and the one with constant of proportionality B is the plasma wave. This may he verified hy taking $|x| \gg 1$. approximating $\left(1-x^{-2}\right)^{112}-1-1 / 2$ and integrating (35), which leads to

$$
\begin{equation*}
W \rightarrow \frac{\exp (i \pi / 4)}{r^{1 / 2}}\left\{C \frac{1}{r^{n}}+B r^{n} \exp \left(-2 a r^{2}\right)\right\} \tag{36}
\end{equation*}
$$

Comparing (36) and (32) yields the values of the constans of proportionality $(C$ and B.

$$
\begin{equation*}
\frac{e}{n}-\frac{\exp (-i \pi / 2) \operatorname{l(})}{(2 \pi)^{i / 2}} \frac{i(1)}{(4 a)^{\pi}} \tag{17}
\end{equation*}
$$

The amplitucte of the plasma wave grows until r is such that

$$
\begin{equation*}
\operatorname{Re}\left\{(2 r+i) \int^{r}\left[\left(1-r^{2}\right)^{1 / 2}+i r\right] d r\right\}-0 \tag{18}
\end{equation*}
$$

The length of wave growth is the maximum value of $\varepsilon \varepsilon_{m}$ for which the plasma wave in (35) is expmentially lange: it may he obtained by solving for (38). To give ant cctimate of this lengeth. let us set $\mid \mu=1$, and then ζ 2(ny)"? We take
$\omega-1.92, \theta=200^{\circ} . \quad \mathrm{r} / \mathrm{c}=0.25 \times 10^{-1}$, and $\delta \quad 0.3 \times 10^{\prime}$. We also consider that there is no damping, i.e. . take $f=0$. Substituting these numbers in the definition of r, we show that $\left|\xi_{m}-\xi_{0}\right|$ is 0 the order of a few (<5) meters. Thus the power carried by the wave is delivered in amall regions of space to the electrons through the second hammonic resonance absorption.

5. Conclusions

We have studied the mode conversion of ordinary electromagnelic waves into electrostatic plasma waves in inhomogeneous magnetized plasmas. The density gladient is along the vertical direction, and the geomagnetic field I_{n} forms ant angle θ with the vertical. The wam plasma dispersion relation for the plasma waves and the refractive indices are calculated as functions of θ and the ratio between the wave. ω, and cyclotron. Ω. frequencies. It is assumed that $\Omega \leq \omega \leq$ 252. The diferential equations for the electric licks describing the mode conversion processes near resonance are derived; the spatial derivatives are third order in the vertical coordinate. We investigate the wave equations using analytical techniques such as Laplace transform methords to obtain asymptolic behaviors. We also derive WKB solutions to calculate the penetration of the eiectric field amplitudes along the vertical. For certain values of θ and w that satisfy the equation $A(A, \omega)=0$ (see the definition of I in (7)) the wave equation reduces to the standard panabolic cylinder equation which describes a broad spectrum of mode conversion problems in plasma physics. The energy transmission coefficient and the power absorhed by the cyclotron waves are calculated. The amplification of the cyctotron waves is largest for $\omega=2 \Omega$ and $\theta \sim 0^{\circ}$. For typical ionospheric parameters we estimate that the electric field amplitudes extend a few meters along the vertical coordinate. They should be absorbed thy the electrons due to the second harmonic resonance dimping.

Acknow/rdgments. This work has been surported by the U.S. Air Force under contract F19628-89.K.ON14. The athor thanks W. J. Burke for a carelui reading of the mamuscript.

The Editor thanks R. A. Cairns for his assistance in evaluating this paper.

Ritirinetis

 Standards. Warhington, D. C. 1 Mas
Antonsen. T. M.. Jr., and W. M. Manhermer. Electromagnetic wave propagation in inhomogeneous plisma. Phws. Ihuids. 21. 2295 1978.
 for Scienisi and Enviners. D. 272. Mçiaw.llill. New Yuik 1978
Bernhardt. P. A.. I. M. Duncan and C. A. Teplev. Arrificial 3irglow exciled by high power radio waves. Stirnce. 242. 1022 1988
Birkmayer. W., I. Hagfors, and W. Kofman. Small scale plasma density denletions in Arecito high frequency modificalion experiments. Fhy Rev. I.ctt. 57. 10)R. 1786.
Hulden. K. (i. Radiol Wares on the homophere p 122. Cimivilese University Press. New Yoik, 1\%/1
Cains. R. A. and C. N I ashmote Davies. The alsomptimen mech anism of the nerlinary mode mopagation perpendicularly in the magnetic fiedd at the electron cyctotion frequency. Miss. Fhumst 25. 1005, 19R2.

Cairns, R. A. and C. N. Lashmore-Davies. A unilicd themv of a clast of mode conversion problems. Phes. Fluids. 26. 1268. 1983.
Dolgopolov. V. V.. Electromagnetic ficld singulartics in an inhomogenenus magneloactive plasma. Sor. Phes. Trit l'hve. Engt Transl. II. 198, 1966.
Golant. V. E.. and A. D. Piliya. Linear tranefornation and sbeopp tion of waves in a plasma. Sol. Phus. Usp. Engl. Iransl. It. H13 1972.

Miglhus. E., Compling to \mathbf{Z} mode near critical angle. J. Phersma Phys. 3/(1). 7. 1984.
Misthus. E.. and T. Flak. Direct ascess in plasma resonance in innospheric radio experiments.J Gropher. Rers. 90. 1921. I784
 York. 1971
piliya. A. D. Wave conversion in an mhomerenenus plasm:. S., Fhys. Tech. Fhure. Engl. Transl. II. An9. I9ne,
piliya. A. D., and V. 1. Fedorov. Linear wave conversion in an inhomogeneous magneloactive nlasma. Sur. Phes JETF. Engl Transl., 30. 653, 1970.
Villafón. E. Ionospheric electron acceleration bv ciectronamenetic waves near regions of plasma resmances. J. Gerophy Rer., we. 2717. 1989.

Wimg. A. Y.. J. Santory, and G. G. Sivjee. Active simulation on the auroral plasma. J. Ciccophrs. Res. sh. 7718. 1991
E. Villalón. Center for Electromannetics Rese:uch, Nurtheastern University. Bocton. MA 0211s.

Near-Equatorial Pitch Angle Diffusion of Energetic Electrons by Oblique Whistler Waves

Eiena Villatóon

Whilinal J. Burke

The pitch angle scatiening of tapped energetic electrons by ohliquely puragating whister wases in the equatorial regions of the plasmasphere is investigated. Storminjected electrons moving along field lines near the equator interact with electesmagnetic waves whose frequencies are Duppler-shified in some hamonic of the cyelotrun fiequency. The wave nommals are disuituted almost parallel to the genmagnetic field Waves grow from the combined contributions al a lage recervoir uf energetuefections that are driven into the foss cone hy the highest harmonic interactions permulted to them
 evolution of waves and patictes oure tme xales which ate fonger than the paticle home line and ghoup time delav of the waves. The courilibium solutions and their sentilit; we studied. considering the reflection of the waves by the wnospheie and the coupling of mulliple hammonic resonances. The contributions of nonlocal wave sumbes ine atso included in the theory. Numerical computations based on our theorefical analysis for reguns inside the plasmasphere $1 / .<21$ and near the plasmapanse (I. - 4 5) and for the first three hamonic resonames are presented.

I. Iniroducition

In this paper we investigate pitch angle scattering interactions of radiation belt electrons with ubliquely propagating whistier waves. Trapped electrons in the radiation belts moving along field lines near the equatorial plane of the magnetosphere may see low-frequency electromannctic waves Doppler-shifted to some harmonic ol their local gyrofrequencies (Ruheris. 1969; Gendrin. 1972: So huttand Lanzerntif. 1974| We assume that the waves are distributed over Gaussian profiles in frequencies ω and in anples φ between the wave vector k and the ambient geomagnetic field B_{n}. The wave packet distributions are centered at values of ω well helow the equatorial gyrofrequencies Ω_{l} and at the normal angle $\varphi=0$. Since φ is small. the component of the group velocity parallel to B_{0} is nuch larger than the perpendicular component: thus the waves are almost field-aligned. Because $\omega<\pi \Omega_{t}$. cveluthon icsonamt wave-particle interactions cause difusion almost purely in pitch angle |Kennel and Pesichek. I96G: I.vans ind Willinoms. 1984: Villation ef al., 1989bl. For hightemperature plasmas the pitch angle distithutions of the particles are anisotronic and provide sources of free energy for cyclotron instabilities to occur. Consecmently. particles diffuse in pitch angle along surfaces of constant phase velocity to reduce the anisotropy of their distribution functions [Trakluengerts, 1984: Snzhin, 1989]. Particies scaltered into the loss cone give up a small amount of encrgy to the waves. hut many of these particies cause substintiat wave growth [lian et al. 1978: Imhol et al. 1986: Ilmum it al. 1990]. Kennel and reaschek [1966) developed a model in which the waves responsible for pitch angle scattering are derived from the lice energy contained in the anmolopic.

Paper number क1J, (10) 14.4

pitch angle dionithuinn of the energetic trapped electrom 11 predicts that when the maticles" nuxes fall leclen a suatle. trapping limit, the waves stop growing, and pitch angle scattering should cease.
During magnetic storms the radiation helfs become filled with trapped, encrgetic particles from ahom 1 - 8 W 1 1.5 (L. represents the magnetic shelf). In the wecks following, the fluxes of trapped electrons in the range $/$ - 2-1.5 diminish to levels below detector sensitivity and well belows
 al. |1972| recognized that some of the waves responsihle for pitch angle diflusion need not necessarily te generated locally from low, hackground fluctuation levels. Rather. thev have been cieated elsewhere in the outer plasmasphere. They propagate along field lines in locations where their frequencies reach the local. lower-hybrid fiequency and get reflected back across field lines toward equaloriat recoms. eventually filling the entire plasmasphere with waves $\mid I . v o n s$ and Thorne, 1970: Kimum. 196, 1]. The waves responsible tor diffusing particles in the slot regions may also be initiated in the atmospheie hy. For example. lighining strokes $1 /$ min it
 1977]. We have phennmenologically incorperated the con tribution of these soutces of wave energy to electron putch angle diflusion. Thus our theoretical model considers wave growth from background electromagnetic nuctuations as well as wave energy injected from nonlocal origin. Both sources of waves contribute to reducing the level ot energetic plasmaspheric electrons by scattering them into cilher the atmosphere of the drift loss cones.
For wave propagation strictly along field lines di.e.. \& $=$ 0°). quasi-linear dinusion reduces to the fundamemal / -. I

The U.S. Government is authorized to reproduce and sell inis report. Permission for further reproduction by others must be obtained from the copyright owner.
 accounted for hy atricily considering the fund:umentat teso. mance. As the particle's energy increases (say langer than lok) keV), resonamt interactions near equatorial regions at the fundamental harmonic, for particles whose pitch angles are near the loss cone, are not permitted. By allowing the wave vectors to form small angles with respect $10 \mathrm{H}_{n}$. higherharnonic resonance interactions can lake place. In fact. high-harmonic resonance resulting from oblique wave propagation together with high-latitude interactions is needed to explain the precipitation of many energetic electrons from the radiation belts.
Lwons et al. [1971| studied higher-harmonic, pitch angle diflusion at all geomagnetic latitudes. They showed that the difiusion into the loss cone of $>1(\mathrm{X})$-keV electrons is controlled by hatmonics with $1>1$. In their wotk it was assumed that the wave intensity is given and docs not grow from the anisotropy of the particles they are scattering toward the loss cone. Also. very energetic particles may interact with waves at the $I=1$ harmonic away from the equator. However, the distance allowed for oll-equatorial. resonant interaction is limited because of large gradients in the magnetic energy per particle with increasing latitude [Bell. 1986]. Efficient scattering of these particles requites that the waves have already grown to large anoplitudes |Rosenherg et nl. 1981|.
This paper extends previous work hy lifllition it al. | 1989 al \mid on electron difission by parallel-propatating whisller waves to the case of ohlique propagition. We assume that quasi-linear theory can be applied to study the tempural evolution of waves and particles which are resonamty conpied at some gyroharmonic. Our investigations are restricted to interactions that occur near the cquator li.e. fior geomagnetic latitudes such that $\psi \leq \mathbf{2} 0^{\circ}$). In the weak dillusion limit. interactions that significantly modify particle distributions accur on time scales much longer than either the wave travel times from one hemisphere to the other or the particle bounce periods. The dillusion coefficients are averaged over a bounce orbit. Energetic particles are driven into the loss cone by the highest-harmonic interactions permitted to them. We recognize that they may also be scallered it high latitudes by interactions at the first gyroharmunic with waves that are amplified near the equator |Rosentire ict id . 19811. For the sake of analytical simplicity we do not consider high-latitude scattering in our calculations. In the work by Lyoms ef al. [1972), high-latitude interactions are included numerically for a magnetic dipole prolile. The more restsictive scope of our parabolic magnetic lichl model allows us to carry analvicat stadies further and to ohbain Iranspatent expressions for the difilusion cerellicients. We alson consiter wave growth liom the resonamt interactions the waves ate growing from an extensive range of patlicte energies which depend on the harmonic with which they are in resomance. On the ather himal. because we nepled hiph. latitude interactions. our results may mot he realistic throuchou the plasmasphere but may only apply to cquanorial repions.
The paper is organized as follows: section 2 contains our hasic morlel for the whistier wave apectral distribultions. We
 given to the cohd plasmaspheric electrom whene denvitios are much liager tham those of iesomant. eneluetice electroms. I hus own mosel applies both made the plan masplece amil in
egions of cold plasma density enhancements leyoud the plasmapatise. We also assume that spatial inhomberne are aligned along geomagnetic lield lines. Section ? presents the theory of quasi-linear resonant diflusion ol relativistic electrons by ublique. whistler waves. The energetic electrons are represented by the particle sources $!$ FIE. I.I, which depends on the particle resonamt energy E and on the magnetic shell I. The pitch angle eigenvalues and distribution functions are studied in Appendix \mathbf{A} as linnctions of the harmonic resonances. Since we only investigate the we:ak diffusion limit. we consider the lowest-order pitch ingle eigenvalues and ejgenfunctions for each harmonic resonance. This should be conerasted with the moterate dillusion for parallel-propagating waves [Jillalon ef al. l lygonl. in which we treated many eigenvalues and eigenfunctions of the difiusion operator hut only the fundamental resoniance. Section 4 presents the growth rates for whisticrs due to the contribution of several harmonics: this extends previous results by Kennel and Petschech [1966] on wave growth due to the fundamental resonance. Section 5 contains the equations which describe the evolution in time of the waves and the numbers of resonant particles in a flux tuhe. The waves which grow near the equator by selective amplification are partially reflected somewhere along the flux tube. Our thenretical morlel includes wave reflection as a parameter. The contributions of external wave sources which are not generated lecally by the cyclorron instability are also included in the theory. We study the equilitrium solutions and the stahility of the system. which is lin mally identical to the one ubtained for parallel propagation in the moderate diflusion case. In Appendix \mathbf{B} we solve the stability equations for the coupling of three harmonic resonances. We preselt some numerical applications of this theory in section f. assuming that there are no external wave sources. We sludy three harmunic resonances at the shells $l .-2$ and I.- 4.5. which corresponds to the slot portion of the radiation belt and to the plasmapause. The resonant energies and the equilitrium solutions for waves and particles are obtained. The times required for the first three harmonics to reach equilitrium are calculated. Section 7 contains a summary and conclusions.
2. Wilistifer Eifciron Resonani Initracions
l.el us consider electromagnetic. whister monte waves whose frequencies are small fractions of the equatorial. electron gyrolrequencies and that propagate at ohlique angles to the geomagnetic field $\mathbf{B}_{\mathbf{n}}$. The wave frequency is denoted by es. and the wave vector hy k. The mapnetic fied B_{11} is taken along the : direction. and k propagates at ant angle φ with respect to B_{0} isee Figute II. The compunemis.l k paralel and perpendicular to B_{1}, are represented $h_{1} h_{n}$ amd h_{1}. respectively. The retraclive index $\eta=6 /$ hat satislies the dispersion relation

$$
\begin{equation*}
\eta^{:}=\frac{\omega_{p}^{j} / \omega^{2}}{|\Omega t / \omega| \cos \omega \mid-1} \tag{111}
\end{equation*}
$$

where ω_{p} is the plasma frequency of planimisphence electrons. and Ω is the electron cyclotron frequencv. Fquation (1) is walid if whateos e: and pane much tanger than I: than

Fig. 1. The Earth's dipole magnetic field \mathbf{R}_{11} and the marabolic profile are qualitatively tepicted here the gyrnfrequencies Ω_{L} and I_{11} correspond to the cipatorial and the maximum resonant geomagnetic fields, respectively. The angle ψ_{m} is the maximum peomagnetic batitude lor which resonant wave particle interaction lakes place. In a lucal coordinate system. B_{0} is along the = direction. and the wave vector k forms a small angle φ with respect to B_{n} the velocities ${ }^{\prime}$, and ψ_{1} represent the perpendicular and parailel components of the resonant particle's velocity as given in the equatorial cross section indicated thy the inile 1 . The equatorial pitch angle is denoted by θ, and $\mu=\sin ^{\prime} \boldsymbol{\theta}$. The values $\mu_{\text {, }}$ and μ_{m} are evaluated for pitch angles at the equatorial loss cone and for the maximum value of A which satisfied the resonant condition, respectively.

Near the equator the Earth's magnetic field is approximated by the parabolic profile [Villation et ill. 1989a. b]

$$
\begin{equation*}
\Omega \Omega / \Omega_{L}=1+(z / a)^{2} \tag{2}
\end{equation*}
$$

where $z \neq R_{E} L \psi . a=(\sqrt{2} / 3) R_{E} L, R_{E}$ is the Earth's radius. and $L R_{E}$ measures the equatorial distance of the magnetic trap from the center of the Earth. Here ψ is the geomagnetic latitude in radian units. Equation (2) is ohmained from a Taylor expansion of the dipole field and is an excellent representation of the magnetic geometry within $\pm 20^{\circ}$ of the equator.

2.1. 7he Resomanter Condition

The electromagnetic waves interact with electrons whose energies are $\geq 10 \mathrm{keV}$. These electrons bounce between mirror points in a time equal to r_{h}. We approximate r_{f} by $4 \pi \mathrm{al} / \mathrm{r}$. where i is the particle's velocity. The density of the thot electrons is much smaller than that of cold electrons, so they do not contribute to the diefectric properties of wave propagation. However, because their pitch nngle distributions are very anisotrnpic. they provide sources of free energy for the growth of the cyclotron instability. The interaction with the waves occurs for those electroms which satisfy the Doppler-shifted resonance condition

$$
\begin{equation*}
w-h_{n} \prime^{\prime}-(\mid(1) / y)=0 \tag{11}
\end{equation*}
$$

where $\Omega=\left|q B_{n} / m \in\right|, q$ is the electron charge, m is its mass. and $!=1,2,3, \cdots$ is the harmonic number. Here y is the relativistic factor $y=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ which relates a particle's momentum p to its velocity $p=m \gamma r$. The components of the particle velocity and wave vector parallel to B_{n} are given by $r \boldsymbol{l}$ and $k_{k}=k \cos \varphi$. We call θ the particle's equatorial pitch angle, and $\mu=\sin ^{2} \theta$. We assume that the first adiabatic invariant is almost conserved during the interactions. Therefore the particle's pitch angle A_{A} at any point along the field line is related to its equatorial value hy $\sin ^{2} \theta_{B}=\left(\Omega / \Omega_{l}\right) \sin ^{2} \theta$. The resonant condition is satisfied for values of μ such that $\mu_{r} \leq \mu \leq \mu_{m}$. where μ, is defined in terms of the pitch angle at the boundary with the loss cone and $\mu_{m}=\sin ^{2} \theta_{m}$ is an upper limit Isee Fipure 11 . As function of the L. shell. the mirror ratio $\sigma=1 / \mu$, is $\sigma=$ $L^{3}(4-3 / L)^{1 / 2}$. In terms of the equatorial pitch angle the parallel and perpendicular components of the particle veloc: ity are $v_{1}=-H 1-\mu\left(1 / \Omega_{1}\right)^{1 / 2}$ and $\left.r_{t}=4 \mu \Omega / / \Omega_{t}\right)^{\prime}$: respectively.
The resonant gyrofiequencies are such that $\|_{1} \leftarrow \Omega^{\circ}$ $\Omega_{A f}$, where $\|_{L}$ is the equatorial cyclotron frequency and $\|_{1}$, is the maximum value of Ω which satisfies (?) From now ont the subseript I. reters to values at the mingetic equator the frequencies $\|_{C}$ and $\|_{1}$, are iesonant with the values at the equatorial pitch angles corresponding to μ_{m} :aril $\mu_{\text {, }}$. respec tively isee Figure If. The resonimt geomiognetic latitudes ane
such that $0 \leq \psi \leq \psi_{m}$, where for $\psi=0 . \Omega=\Omega \Omega_{I}$. and for $\psi=\psi_{m}, \mathfrak{\Omega}=\mathfrak{\Omega}_{\boldsymbol{A f}}$. $\mathbf{B y}$ writing the resonance condition (3) for $\Omega=\Omega_{L}$ and $\mu=\mu_{m}$, we find that the normalized relativistic momentum of the electron, p_{1}, is

$$
\begin{equation*}
\frac{\rho_{1}}{m c}=\left(\frac{\Omega_{L}}{\omega}\right)^{1 / 2} \frac{\Omega_{L}}{\omega_{D}} \frac{1}{|\cos \varphi|}\left(\frac{|\cos \varphi|-\omega / \Omega \Omega_{L}}{1-\mu_{m}}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

where $\gamma \omega / / \Omega_{f} \ll \mid$ and $\Omega_{f} / \omega_{p}<1$. In our calculations we assume that the plasma density decreases within the plasmasphere as $1 / L^{4}$ (see (53)); hence the value of Ω_{l} / ω_{n} decreases as $1 / L$ with increasing L shell. and the resonant energies are larger for smaller L shells. The very low energy electrons (i.e., in the tens of electron volts) can interact with waves whose frequencies are such that $\omega / \Omega_{\boldsymbol{l}} \sim|\cos \varphi|$. For jcos $\boldsymbol{\phi}$ close to I we must have $\omega=\Omega_{\text {, for gyroresonant }}$ interactions with low-energy electrons. The energies increase well into the hundreds of keV as the harmonic number I increases. For a given value of I, as μ_{m} approaches unity. i.e., the equatorial pitch angles are near 90°, the energy also increases.

The refractive index along the field lines varies as $\eta_{1} \eta_{t}=$ ($\left.\mathrm{I}_{\mathrm{t}} / \mathrm{II}\right)^{1 / 2}$. Applying Snell's law yields the fact that k_{1} does not change along a given field tine; then the wave angle φ as related to its equatorial value φ_{ℓ} is $\cos ^{2} \varphi=1-\left(11 / \Omega_{\ell}\right)$ $\sin ^{2} \varphi_{l}$. The cyclotron frequency Ω is defined in 21 . Since both ψ and φ_{L} are quite small. we may assume that $\varphi=\varphi_{L}$ [Bell, 1986]. If $\omega \ll \Omega_{L}$. the resonance condition at $\Omega=$ \mathbf{n}_{M} and $\mu=\mu_{c}$, yields

$$
\begin{equation*}
\frac{p_{1}}{m c}=1\left(\frac{\Omega_{M}}{\omega}\right)^{1 / 2} \frac{\Omega_{M}}{\omega_{p}} \frac{1}{|\cos \varphi|}\left(\frac{|\cos \varphi|-\omega / \Omega_{L}}{1-\mu_{1} \Omega_{A} / \Omega_{t}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

where we have taken til as defined after (3). Combining (4) and (5) leads to

$$
\begin{equation*}
\left(\Omega_{M} / \Omega_{L}\right)^{l}\left(1-\mu_{m}\right)=1-\mu_{1}\left(\Omega_{A_{l}} / \Omega_{L}\right) \tag{6}
\end{equation*}
$$

In deriving this equation, we have considered that the refractive index changes along the field tines as $\eta / \eta_{t}=$ $\left(\Omega l / \Omega_{L}\right)^{1 / 2}$. For a parabolic profile in the magnetic field we obtain
$\psi_{m}=\frac{\sqrt{2}}{3}\left[\frac{\mu_{m}-\mu_{c}}{3\left(1-\mu_{m}\right)+\mu_{c}}\right]^{1 / 2}-\left(\frac{2}{3}\right)^{1 / 2} \frac{\left(\mu_{m}-\mu_{c}\right)^{1 / 2}}{3}$
We find that

$$
\begin{equation*}
\psi_{m}=\frac{\sqrt{2}}{3}\left[\left(\frac{k_{L^{u}} \gamma \cos \varphi}{h)_{t}}\right)^{3 / 1}-1\right]^{1 / 2} \tag{8}
\end{equation*}
$$

The factor $(2 / 3)^{1 / 2}$ in (7) is due to the changes of the wave vector k along the fietd lines. Equations (7) and (8) should be contrasted with the same equations of Villalion er cII. [1989a] where k was taken as a constant independent of z, and μ_{m}. $\mu_{r} \ll 1$.
We now summarize our investigations on the resonant wave particle coupling: (4) defines the eiectron's energy for a given harmonic number as a function of the l. shell and pitch angles. Particles with this energy and with pitch angles at the equator such that $\mu_{r} \leq \mu \leq \mu_{t, n}$ sadisfy the iesonance condition somewhere alung the near-equiltoriad mortion of the field line. The geomagnetic fatitudes fon resomment interactions are such that $0 \leq \psi \leq \psi_{m}$, where ψ_{m} is given in (7).

Note that by increasing the maximum pitch angle θ_{m}, ψ_{m} atso increases, and so does the electron energy. Thus high-latitude interactions at the first pyroharmonic can aifect high-energy electrons. In addition, by increasing the harmonic number, we may also increase the electron resonance energies.

2.2. Spectral Energy Distribution of Waves

The magnetic field of the whistler mode \boldsymbol{B}_{k} as a function of the wave vector k. is related to the observable wave magnetic field at position x. Bmere $(x, 1)$. by

$$
\begin{equation*}
B_{\text {wave }}(x . t)=\frac{1}{(2 \pi)^{3}} v^{\prime / 2} \int B_{k} \exp (i k x) d^{\prime} k \tag{9}
\end{equation*}
$$

where V is the plasma volume. Note that in our representation B_{k} has units of the square root of energy. The wave energy as a function of k is represented by $W_{k}(\varphi$. 1), where $W_{k}=(1 / 8 \pi)\left(B_{k} / 2 \pi\right)^{2}$. We next assume that wave energy is distributed over Gaussian profiles in k^{2} (i.e.. in wave frequencies; see the dispersion relation in (1) and in $\zeta=\cos \varphi$. These profiles are peaked at $k^{2}=k_{n}^{2}$ and $\zeta^{2}=1$ with half widths Δk^{2} and $\Delta \zeta^{2}$. We may write
$W_{a}(\varphi \cdot 1)$

$$
\begin{equation*}
=\frac{C_{G}}{C_{k}} W(1) \exp \left[-\left(\frac{k^{2}-L_{0}^{2}}{\Delta k^{2}}\right)^{2}\right] \exp \left[-\left(\frac{\zeta^{2}-1}{\Delta \zeta^{2}}\right)^{2}\right] \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}=\frac{k_{0}}{2} \int_{0}^{\infty} d k^{2} \exp \left[-\left(\frac{k^{2}-k_{0}^{2}}{d k^{2}}\right)^{2}\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{i}=\frac{2}{\sqrt{\pi}} \frac{1}{\Delta \zeta^{2}} \tag{12}
\end{equation*}
$$

The reasons for the representations of C_{4} and C_{6} in $\{i l l$ and (12) are explained after (29). Here $W(t)$ is the equalorial energy density of waves.
The components of the group velocity parallel and perpendicular to B_{n} are

$$
\begin{align*}
& \because \varphi=\frac{1}{\eta} \frac{1+\cos { }^{2} \varphi}{|\cos \varphi|} \\
& u_{\theta 1}=\frac{c}{\eta} \sin \varphi \frac{\cos \varphi}{|\cos \varphi|} \tag{13}
\end{align*}
$$

Since the distribution profiles in (10) are centered around cos $\varphi=1$. "all $\Rightarrow r_{n!}$. and we may consider the wases as field-aligned. The time it takes the waves to tavel from : reflection point in one hemisphere to the conjugate reflection
 where η_{f}, is the refractive inder evaluated at the misenclic equator, i.e. for $\Omega=\pi$, and $n-N 23, R, L$. The electic field components are denoled by $f,=1, \ldots$, is. and $f_{i}=-f_{1}$, where

$$
\begin{align*}
& \frac{\varepsilon_{1}}{f_{1}}=|\cos \varphi|-\frac{\omega}{\Omega} \\
& \frac{\varepsilon_{1}}{f_{1}}--\frac{\cos \varphi}{|\cos \varphi|} \sin \varphi \frac{\omega}{n} \tag{14}
\end{align*}
$$

For the waves described in 100 we may neglect the component of the electric fiete. f_{1}, along $\boldsymbol{B}_{\mathbf{n}}$. These waves are preferentially right-hand circulanly polarized. and their elec tric fields are $R_{R}=\left(R_{1} / N / \overline{2}\right)(|+| \cos (\mid)$.

3. Higiler-Harmonic fitch Angle Ditfigion

In the limit of pure pitch angle diffusion we use relativistic quasi-linear theory to study the evolution in tince of the electron whistler interactions. The electrons energies are given as a function of the harmonic numbers in (4). Hec:alse these energies usually do not overlap for dilferem gyrohar. monics. we Ireat each cyciotron resonance as independent of the others. Nevertheless. we assume that a hoad energs range of electrons interact with the same waves. We also assume that their distribution functions are independent of the distance z along the flux tuhe. For the weak diffucion case we treat the pitch angle anisotrony to he independent of time and assume that for each resonance the distribution function is

$$
1=\frac{4}{\pi} N_{1}+r_{1}^{2}(n) Z|\mu| \exp \left(-\frac{m_{1}}{p_{i}}\right) \quad| |<\mid
$$

Where $7(1$,) is the lowest order eigenfunction of the dillusion operator delined helow. The number of resomant electoons in the flux tube per square centimeter. N,for. changes on time scales $1 \Rightarrow T_{A}, T_{1}$. We must find the equations lor the temporal evolution of $N_{1}(n)$ and defining the eigenfunctions $Z(\mu)$. For an infinite homogeneous background plasmn of cold particles immersed in the geomagnetic field B_{11} as in 121 . the distribution function of resonant electrons is uthained for each cyclotron resonance solving for LLvoms and Willians. 198.4

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial 1}=\pi q^{2} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\frac{k_{1}}{\omega} \dot{G}+\frac{\omega-k_{1} v_{1}}{\omega p_{1}}\right] \tag{16}
\end{align*}
$$

By assuming that of - I 1_{1}. we may neglect diflusion in
 and write

$$
\begin{align*}
& {\left[\frac{h_{1}}{\omega_{1}} ;, \frac{\omega-k_{1 \prime 1}}{\omega N_{1}}\right]=2\left(\frac{m l}{y \omega}\right)} \\
& \cdot\left(\frac{1 I_{1}}{11}\right)^{1 / 2} \frac{p_{1}}{F^{j}} \frac{\lambda}{\partial \mu} \frac{\mu^{1 / 2}}{11-\mu\left(1 /(1,)^{n}\right.} \tag{17}
\end{align*}
$$

where f and fig represem the momentum compomems
 energy W_{4} appears in the function $(-1,1$, where

$$
\left.\frac{\theta_{1}}{(2 \pi)^{2}}=\frac{4 \pi}{\eta^{2}} W_{1}(r .1) \frac{\left.Q_{1} \mid f \cdot \lambda\right)}{| | \cos f \mid-\pi /(\pi)} \operatorname{lcon} r \right\rvert\,
$$

 kind we have

$$
\begin{aligned}
& \varrho_{1}(4 . \lambda)=\frac{1}{4 \cos -}\left\{\left(1+|\cos \varphi| 1 / L_{1} \quad(\lambda)\right.\right. \\
& \left.+(1-|\cos \varphi|) I_{1}, 1(\lambda)+\frac{r_{1} \omega}{1_{1} \Omega} \sin \varphi J_{1}(\lambda)\right]^{?} \quad(10)
\end{aligned}
$$

where the plus or minus sign depends on the sign cos \leftarrow. Because $\lambda \ll 1$ and cos $\leftarrow-1$, we may approximatic

$$
\begin{equation*}
\text { Qur. } \lambda \left\lvert\, \cdots\left[\frac{1+|\cos r| \mid}{2|\cos r|} J_{1},(\lambda)\right]^{?}\right. \tag{1201}
\end{equation*}
$$

Combining ($\mid f(4)-48)$ keads 10

$$
\begin{aligned}
& \cdot\left(1-\mu \frac{\Omega}{n_{1}}\right)^{\prime \prime 2} \frac{A}{A \mu}\left[\frac{\Omega}{n_{1}} \frac{\mu}{\left(1-\mu \Omega / \Omega_{1}\right)^{1 i}}\right.
\end{aligned}
$$

where n_{1}. the density of the cold efectrons. is such lla:t $n, \rightarrow N, l a$ and $\omega_{p}^{\frac{1}{2}} / A^{\therefore} \quad \therefore h^{?}$

Because interactions take place near the equathr. we lirst integrate 121 alung the fluy tuhe using the geomagnetic liedd profile in (2). The plasma density is taken as constant along \therefore We apply the operator $1 / \tau_{R} \int d z / \mathrm{r}$, to the left-and right-hand sides of 121) in average the distrihution lunction over time scales comparable to the bounce time r_{B}. The wave vector k as function of a is represented hy h / h, $\left(11_{1} /(1)^{1 / 2}\right.$. where h_{1} is the value of k al the ananetic equator. In the weak diffusion case. f, is a constant indepentent of $:$. and

$$
\begin{aligned}
& \int_{1}^{n, n, n} \frac{1 s)}{n, n} \frac{1}{n,(1 n} \frac{n}{n, n}
\end{aligned}
$$

To integrate along 4 . we must consider the retos ol the Alela function. For $\omega<\pi 1$, and $k / k,=111, / 11)^{\prime \prime}$ the resunance comdition 13 hecornes

The real root of (23) is represented by Ω_{R}. Inder the limit $\left(k_{l} y+1 / \Omega_{l}\right)^{m} \ll 1 / \mu$ we oblain

$$
\begin{equation*}
\frac{n_{n}}{n_{L}} \sim\left(\frac{k_{L} \gamma v \cos \varphi}{\Omega_{L}}\right)^{2 n} \tag{24}
\end{equation*}
$$

because of the resonance condition $k_{L^{\prime}}, \gamma \cos \varphi / / \Omega_{\ell}=$ (1 $\left.-\mu_{m}\right)^{-1 / 2}$ independent of the wave vector. For resonant interactions near the equator $\mu_{m} \ll 1$, the particle's equatorial pitch angle must be near the loss cone. We call λ_{R}^{2} the square of the argument of the Bessel function in (20), evaluated for $\boldsymbol{\Omega} \boldsymbol{=} \mathbf{\Omega}_{\boldsymbol{R}}$. where

$$
\begin{align*}
& \lambda_{R}^{2}=\mu b_{1} \frac{1-\zeta^{2}}{\zeta^{2 / \zeta}} \\
& b_{1}=\left(\frac{1}{\gamma}\right)^{2}\left(\frac{k_{L} \gamma v}{\| I_{L}}\right)^{2 / 1} \tag{25}
\end{align*}
$$

Since $\zeta^{2}=\cos ^{2} \varphi-1, \lambda_{n}^{2} \ll 1$.
Next, let us consider the definitions

$$
\begin{gather*}
F_{1}=\int_{0}^{n} \pi \sigma p^{3} f_{1}(p .1) d p \tag{26}\\
Y=\frac{2 \pi m \Omega_{L}^{2}}{p B_{1}^{2} k_{0}}\left[\left(\frac{2}{3}\right)^{1 / 2}\left(\frac{1 \Omega_{L}}{\gamma r k_{n}}\right)^{2 / n}\right] \tag{27}
\end{gather*}
$$

Integrating along $\boldsymbol{\text { Il leads to }}$

$$
\begin{align*}
\frac{\partial F_{1}}{\partial t}= & \gamma\left(\frac{2}{3}\right)^{1 / 2}\left[\frac{1}{\left(k_{0} \nu \gamma / / \Omega_{L}\right)^{2 / 3}-1}\right]^{1 / 2} \frac{\partial}{\partial \mu}\left(\mu^{\prime} \frac{\partial r_{1}}{\partial \mu}\right) \\
& \cdot \frac{\sigma^{(t-11}}{2^{T-1} \Gamma(l)}\left\{\int_{0}^{1} d \zeta \zeta^{1 / 3}\left(\frac{\zeta+1}{\zeta}\right)^{2} J_{1}-1\left(\frac{\lambda_{R}^{2}}{\sigma}\right)\right. \\
& \left.\cdot \int_{0}^{=} k_{L} d k_{L}^{2} W_{A}(\zeta, t)\right\}+\sigma_{1}(t, \mu) \tag{28}
\end{align*}
$$

where [' 1 ! is the standard gamma futiction. Conhining (15) and (26) yields $F_{1}=N_{1}(1) Z(\mu)$. We assume that the particle flux is independent of time and $S_{1}(1, \mu)=\left(S_{1} / \tau_{,}\right) Z(\mu)$. The actual particle source $\mathscr{\mathscr { P }}(E, L)=\mathscr{P}_{1} / \tau_{q}$ depends on the resonant particle energy E, which in turns depends on the $/$ th harmonic number (see (4)) and the magnetic shell $L:$ it is given in section 6. The pitch angle eigenfunctions $Z(\mu)$ satisfy the differential equation

$$
\begin{equation*}
\frac{d}{d \mu}\left(\mu^{\prime} \frac{d Z}{d \mu}\right)=-g_{i}^{2}\left(\mu_{m}-\mu_{i}\right) Z(\mu) \tag{29}
\end{equation*}
$$

where gi refers to the lowest-order eigenvalues and is given in Appendix A. For $1=2$ the solutions of (29) are trigonometric functions, and for $1 \neq 2$ they are Bessel functions.

We next substitute the wave packet distributions $W_{1}(6,1)$ given in (10)-(12) into (28). Since the main contribution to the integral in ζ comes from the neighthorhond of $\zeta=1$, we evaluate the integral approximately. The constints C_{k} and $C_{<}$are chosen so that by taking the linits $1=1$ and $\Delta \zeta^{2}=$ o in 128), we recover the results of parailel propagation |Villalin el al. 1989a, equation 122)|. The energy-
dependent particle fluxes are represented hy the constam source iff. Alter some alpebra it can be shown that the evolution of $N_{t}(1)$ is given by

$$
\left.\frac{d N_{1}}{d t}=-Y 4 g i\left(21 \mu_{m}-\mu_{r}\right)\right)^{1 / 2} \mathcal{R}_{i} B(t) N_{N}(1)+\frac{r_{1}}{r_{q}}
$$

where

$$
\begin{gather*}
\pi_{1}=\frac{\Gamma(1 / 2) \Gamma((1 / 2+(1 / 2)}{\Gamma(1)^{2}} \frac{\left.\sigma^{\prime \prime}-1\right)}{\sqrt{\pi}} \exp \left(-\frac{x_{1}}{\sigma^{2}}\right) I_{1 \prime} \cdot w_{2}\left(\frac{x_{1}}{\sigma^{2}}\right) \\
x_{1}=\left(b_{1}^{2} / 2\right)\left(\Delta \zeta^{2} / 2\right)^{2} \tag{31}
\end{gather*}
$$

and $I_{\left(f-i \mu_{2}\right.}\left(T_{i} / \sigma^{2}\right)$ is the modified Bessel function The factors $2 / 3$ and $/ 11, / \mathrm{Y} \cdot \mathrm{k}$ in the definition of Y . 127). are due in the variations of the wave vectors along the field lines. Because their contribution is of order unity, their variations may be ignored.

4. Temporal Growith of Whisilfrs

To describe the interaction of whistlers and energetic electrons at higher-harmonic resonances, we must derive an equation for the energy density of waves $W(1)$ as function of the numbers of resonant particles. In the limit of pure pitch angle diffusion the temporal wave growth rate y_{n} is (Lyons und Williams. 1984]
$\frac{\gamma_{\theta}}{\omega}=\frac{2 \pi^{2}}{n_{c}} \sum_{i=1} \int_{0}^{=} p^{v} d p \int_{0}^{1} d \mu \frac{\mu}{\left(1-\mu\left(\Omega / \Omega_{L}\right)^{1 / 2}\right.} \frac{\Omega}{\Omega \Omega_{i}}$

$$
\begin{equation*}
\cdot\left(\frac{I \Omega}{r \omega}-1\right) \Omega\left(\frac{I \Omega}{r}-\omega+k_{1} v_{1}\right)|\cos \varphi| Q_{1}(\varphi \cdot \lambda) \frac{\partial f_{1}}{\partial \mu} \tag{32}
\end{equation*}
$$

where the summation extends over all possible harmonic numbers. Integrating along the flux tube yields the spatial amplification factor which is defined as $\mathrm{l}_{\mathrm{A}}(\neq, 1)=\int d z$ y_{0} / v_{g}. In doing this integral, we average over time scales comparable to the group tine delay of the waves. Alter some tedious algebra we arrive at
where $Q_{1}\left(\varphi . \lambda_{R}\right)$ is defined in (20). Recall that $F_{1}=$ $N_{1}(t) Z(\mu)$, where N_{1} is the number of electrons in the flux tube interacting with the cyclotron resonance of order l. We must also consider that

$$
\int_{\mu}^{\mu \mu} d \mu\left[\frac{1}{\left(A_{1} \gamma / 1(1,)^{3 / 2}-1\right.}\right]^{1 / 2} \mu^{\prime} \frac{d Z}{d \mu}
$$

$$
=\left(\frac{3}{2}\right)^{1 / 2}\left(\frac{\mu_{m}-\mu_{1}}{2}\right)^{1 \times} \frac{P_{1}}{\pi / 1} \quad 13+1
$$

$$
\begin{align*}
& r_{k}(\varphi . n)=\sum_{1=1} \frac{\pi \omega_{p}^{2} a k_{l} p_{1}}{\left(1 \Omega_{L} m\right)^{2} n_{c} c^{2} \sigma}\left[\frac{2}{3}\left(\frac{1 \Omega_{1}}{\gamma k_{1} \cdot \prime}\right)^{1 / 3}\right] \\
& \left.\cdot \int_{\mu}^{\mu-} d \mu \cos ^{n / 3} \varphi Q d f \cdot \lambda_{n}\right) \\
& {\left[\frac{1}{\left(k_{t_{2}} r^{r} /\left(1 i_{t}\right)^{2 / 3}-1\right.}\right]^{1 / 2} \mu \frac{\partial f_{1}}{\partial \mu}} \tag{33}
\end{align*}
$$

The temporal evolution of the wave energy $w_{l}(\varphi, 1)$ is oblained from

$$
\begin{equation*}
\frac{\partial W_{k}}{\partial r}=\left(\frac{\Gamma_{h}}{r_{q}}-\frac{r}{r_{q}}\right) W_{k}(\varphi, n) \tag{35}
\end{equation*}
$$

Here $r=-2 \ln |R|$, where R is the amplitude. reflection coefficient. Wave reflection may occur either at both ends of the flux tube in the ionosphere or at the location along the field line at which the wave frequency malches the lower hybrid frequency |Kimurn. 1966|. Next we substitute into W_{a} fe. it the distributions in (10)-(12) and integrate hoth sides of (35) with respect to k and ζ. which atter some algebra becomes

$$
\begin{equation*}
\frac{d W}{d t}=\left(\frac{V}{T_{q}}-\frac{r}{T_{q}}\right) W(t)+\frac{F(t)}{T_{q}} \tag{36}
\end{equation*}
$$

where $f(t)$ is a external source of wave energy. Here

$$
\begin{align*}
& \frac{\Gamma}{T_{q}}=\sum_{l=1} \Delta_{f}(l) \frac{b \gamma}{\pi a}\left[2\left(\mu_{m}-\mu_{l}\right)\right]^{\mu_{M_{1}} N_{l}(l)} \\
& \Delta_{e}(1)=\frac{2 \pi^{2} p_{1} \omega}{\sigma\left(l B_{1}\right)^{2}}\left[\left(\frac{2}{3}\right)^{1 / 2}\left(\frac{1 n_{L}}{\gamma k_{v}}\right)^{1 / n}\right] \tag{37}
\end{align*}
$$

 larger-harmonic resonances. $\#_{1}$ is very small and the collpling hetween waves and particles is much weaker. The factor in the square brackets of the definition of $1,1 / 1$ in (37) is due to the variations in the wave vectors and is of order unity.
Equations (36) and (37) together with (30) and (31) are called the ray equations. They describe the self-consistent interactions of obliquely propagating whisters and electrons in the magnetosphere. Because of the oblique propagation the waves grow from interactions with a wide energy range of electrons through higher cyclotron resonance coupling. The electrons are depleted from the magnelosphere hecause of pitch angle diffision into the loss cone. The rate at which they are depleted is proportional to M_{1}, which is very small for $1>1$. Because high-energy electrons interact with some I> \mathbf{I} gyroharmonics. it takes longer for them to difluse into the loss cone and for the waves to grow. We must now consider the conditions for equilibrium and stability of the ray equations.

5. Eouilimpiuat and Stability

We call

$$
\begin{align*}
& D_{1}=Y\left(4 g_{i}^{2}\right)\left[2\left(\mu_{m}-\mu_{r}\right)\right]^{1 / 2} A_{j} r_{n} \tag{38}
\end{align*}
$$

By defining $\tau=1 / r_{g}$. The ray equations (1.30) and (26) descrihing the inleraction of waves and particles may he written as

$$
\frac{d N_{1}}{d r}=-n, N, w+n_{1}
$$

$$
\begin{equation*}
\frac{d W}{d r}=\left(\sum_{i=1} K_{1} N_{1}-r\right) w \cdot 1 \tag{1411}
\end{equation*}
$$

where the index I extends aver all possible cyclonron reso. nances we may want to study le.f., $1=1 . \cdots . M, M=$ 1). This is a system of $M+1$ equations whose cquilibinm solutions are ohtained by setting $d N_{1} / d t=d W / d s=0 . W_{e}$ call $N^{(n)}$ and $W^{\prime \prime \prime}$ the solutions to the equilibritim where

$$
\begin{gather*}
N_{i}^{(m)}=\left(I / D_{1}\right)\left(\left(f_{1} / w^{(n)}\right)\right. \tag{42}\\
w^{(n)}=\frac{1}{r}\left(\sum_{i-1}^{M} \frac{K_{1}}{D_{i}} \cdot f_{1}+y\right) \tag{143}
\end{gather*}
$$

Next we introduce the functions $l_{\text {t }}$ and $\Lambda_{\text {, }}$ such that the solutions to (40) and (41) can be written in ternis of these functions as

$$
\begin{gather*}
N_{1}-N_{1}^{(m)}+\frac{1}{K_{1}}\left(\frac{d_{1}}{d r}, \Lambda_{1}\right) \tag{4.4}\\
W=W^{(n)} \exp \left(V_{1}\right) \tag{19}
\end{gather*}
$$

where

$$
\begin{align*}
& w_{1}=\sum_{1-1}^{n} \psi_{t} \\
& \lambda_{1}=\frac{J}{w^{\prime \prime \prime}} \frac{\exp \left(\Psi_{t}\right)-1}{\exp \left(w_{t}\right)} \frac{\Psi_{1}}{\Psi_{1}} \tag{46}
\end{align*}
$$

After substituting (44)-(46) into (40) and (41). they reduce in a system of M equations for the functions \boldsymbol{V}_{1}.

$$
\begin{align*}
& \frac{d^{2} V_{1}}{d r^{2}}+\frac{d \Lambda_{1}}{d r}=K_{1} S S_{l}\left(1-\exp \left(\Psi_{t}\right)\right] \\
& \tag{47}\\
& -D_{1}\left(\frac{d V_{1}}{d r}+\Lambda_{1}\right) W^{\prime \prime \prime} \exp \left(\psi_{1}\right)
\end{align*}
$$

for all $I \geq 1$ whose stability we may study by ascuming small deviations from equilitrium. Thus we linearize (47) by taking $\psi_{1} \ll 1$ and $\lambda_{1}-1.9 / W^{(19)}, v_{1}$, which leads in

$$
\begin{equation*}
\frac{d^{2} v_{1}}{d r^{2}}+2 v_{1} \frac{d V_{1}}{d r}+v_{1} m_{i}+K_{i} f_{1} \sum_{i=1,+1} w_{1}=0 \tag{14x}
\end{equation*}
$$

where

$$
\begin{gather*}
2 r_{1}=\left[\frac{1}{w^{(n)}}+D_{1} w^{\prime n)}\right] \tag{199}\\
m_{i}^{\prime}=\left[K_{1} f_{1}+B O_{1}\right] \tag{1}
\end{gather*}
$$

Next take $\psi_{1}-\beta_{1} \exp (\xi 7)$ and substitute it into (48), which becomes a system of algebraic equations for $\boldsymbol{\epsilon}$ and β_{t} :

$$
\begin{equation*}
\beta_{1}\left(\epsilon^{2}+2 r_{1} t+\rho_{i}\right)+K_{i} f_{1} \sum_{,=1} \beta_{1}=0 \tag{1511}
\end{equation*}
$$

There are $2 A f$ sotutions in this swstem of equations then the solution to (4K) will be

$$
\begin{equation*}
v_{1}=\sum_{m=1}^{2 M} \beta_{1 m} \exp \left(\xi_{m} T\right) \tag{52}
\end{equation*}
$$

In Appendix 8 we have solved (51) assuming no wave source $(\xi=0)$ for the case of three $1=1.2$. and 3 resonances.

For the case >0 we detine $\xi_{m}=-\xi_{m}^{R}+i \xi_{m}^{\prime}(m=$ 1. $\cdots, M+1)$, where ξ_{m}^{R} and $\xi_{m}^{\prime \prime}$ are real numbers. We arrange the eigenvalues so the time scales associated with them. $\tau_{m}=1 / \xi_{m}^{n}$, are such that $\tau_{1} \sim r_{2} \ll r_{1} \ll \cdots \tau_{M+1}$. The eigenvalues $\xi_{1.2}$ are driven by the fundamental harmonic and have the shorter, associated time scales (see Appendix B). The evolution of the waves over times of the order of $\mathrm{r}_{1,2}$ are dominated by the $l=1$ harmonic, and the equilibrium solutions contain only the contribution of $1=1$. By increasing linie so that $r \sim r_{3}$, we must include the second resonance $l=2$ in the equilibrium solutions. There appears to te a third eigenvalue ξ, which results from contributions of the fundamental and second resonances. This is thecause the waves which have already grown to a certain level because of the interaction at the fundamental act as sources to drive the second harmonic. By increasing time $10 \tau \sim \tau_{6}$, we need to consider the first three $(1=1,2,3)$ resonances in the equilibrium solutions for waves and particles. The new eigenvalue ξ_{a}, which is driven by the third harmonic. conlains contributions of the $l=I$ and 2 resonances. This is due to the fact that the waves which have grown from the interaction with the $1=1$ and 2 resonances act as sources to drive the eigenmode ξ_{4}. All these ideas have been detailed with the calculations presented in the Appendix B.

The modes ξ_{m} given in Appendix B should be conirasied with the eigenvalues we woutd obtain hy assuming that the resonances can te treated separately and independent of each other. That is, tet us assume that for each value of 1 we have $\xi_{1}^{2}+\xi_{1} 2 v_{1}+\rho_{1}^{2}=0$. whose solution is $\xi_{1}=-v_{1} \pm$ $i\left(\rho_{1}^{2}-\nu_{1}^{2}\right)^{1 / 2}$. In our numerical computations we show that except for the fundamental harmonic, ν_{i} is smaller (by a factor of 2-4) than ξ_{m}^{R}. Thus the equilibrium times r_{m} may sometimes be a factor of 4 smaller than $1 / \omega_{1}$.

6. Numerical Calcuiations

The density of cold, plasmaspheric electrons is approximated by a function of the distance R from the center of the Farth to the equatorial field line as [Chnpprll of ill. $1970 \mid$

$$
\begin{equation*}
n_{r}=3 \times 10^{3}\left(2 R_{f} / R\right)^{4} \tag{53}
\end{equation*}
$$

Recall that the dinole geomagnetic field is proputional to R^{\prime} ' In our numetical examples we study the sliells $L, \ldots 2$ and 4.5. which corresponds to the sfot region of the radiation hells and to near the plasmapause in the outer radiation bell. respecively. The differential fluxes of enerpetic electrons (i.e.. cl/fam's sr keV) are represented as a lunction of energy in Figure 2 for the values $L \cdots 2$ and 4.5 i.spjeiduik and Rerhurall. |Y8s!.

I he resomami eliergies ane eqpesented in ligure 3 as ohlained from (4). We calculate three harmumic resonances for each of the shells at $L=2$ and $4.5 . \lambda 1 .=2$ the equatorial loss come is $\theta=16.5^{\circ}$, and an $I=4.5$ it is $0,=$ 4. 5^{2}. Is an example, we issume that H_{m}, the maximum
 2. and $H_{m}=15^{n}$ at 1 . 4.5. From 171 the maximum

Fig. 2. Radiation bell electrnn flexes in loparithnuic unts versua energy in keV at I. $=2$ and 4.5 . The energy axis must he multiplied by 10^{2} to obtain the actual electron energies.
geomagnetic fatitudes are $\psi_{m}=5.34^{7}$ at $L \sim 2$ and $\psi_{m}=4^{\circ}$ at I. 4.5. Figure 3 shows that resonant energies are smaller al $L=4.5$ than at $L=2$ because of the decreasing values of $\left(\Omega_{l_{1}} / \omega_{p}\right)^{2}$ (the magnetic energy per particte). For a given L shell the energies increase with $/$ and with incrensing Ω_{L} / ω. Note that the particle's energy as given by (4) increases with \boldsymbol{A}_{m}. If we were taking $A_{\ldots, \ldots}=55^{\circ}$. then $\psi_{1, \ldots}=$ 20° at $L=2$ and $\psi_{m n}=22^{\circ}$ at $L=4 \leqslant$ and the cesonamt energies will be larger than in the examples in Figure 3. The paratolic profile in (2) is a good approximation to the geomagnetic field only if $\boldsymbol{\psi} \boldsymbol{2} \mathbf{2 0}^{\circ}$. This means that our moutel applies to particles whose equatorial pilch angles ine such $\theta<55^{\circ}$. Here we present only examples with θ within 10° off the loss cone. This is becauce for θ near the loss cone. the

Fig. I lagatitm of the electron energies in kev irisus $\|_{1}$...

 for wave monnad angle cors 6 . the mumber by the ansen indicate the hamonic resomancer 1-1.2.amil
 time it takes to establish equilibrium is shorter.

We have calculated the lower hyhrid frequencics ' 1 , /" it geomagnetic latitides $\psi_{m}-5^{n}$ and found that $\|_{1}$: $w_{1} / \|^{-}$ 43 For unducted waves $(K i m u r n$. 1966) the wave frequency is larger than wi/" at any point in the interaction region and smalier than the equanorial gyrofrequency. and the frequency range may the defined as $x<12_{1} / \omega<42$. Hence the frequency range at I. $=2$ is $2.6 \mathrm{kHz} \leq \omega \leq 18 \mathrm{kHz}$, which corresponds to the VLF hand. AI $I=4.5 .227 \mathrm{~Hz}<\boldsymbol{\omega}$ < 1.6 klit. which is in the EI. F hand of frequencies lhe fluxes of resonant electrons $\boldsymbol{f}_{f} / T_{g}=(f(E, L$.) are functions of the particles' energies E and the magnetic shell t. They can be ohtained by multiplying the differential nuxes in I jgure? by the energy widths ΔE. If 1 is the velocity of a resonant electron. we take $\Delta E=m c^{2} \| 1-\left.\left(\Delta_{1} /\right)^{1}\right|^{1 / 2}$ where dulv $=$ 0.01. For the cases represented in Figure 2. ΔE ranges from 0.001 up to 0.025 keV . corresponding to the smallest (10 keV) and to the largest (-1 MeV) energies. respectively. The contributions of the particles fluxes to the equilibrium equations (42) and (43) are proportional to an effective flux, which is defined as $!(E, L) \rightarrow \boldsymbol{f}(E . L) / 4 g)^{2}$: The eigenvalues $4 g_{i}{ }^{3}$ are given in Appendix A. Because $4 g_{i}{ }^{\text { }}$ decreases with increasing $/$, the effective funes are lamger for larger energies than those depicted in Figure 2. That is. there is an enhancement of the particles' nuxes at large encrgies due to a decrease in the eigenvalues $4 \pi i$ as $/$ increases

We have carried out calculations for the equalibtimm solutions of waves and particles considering tirce harmomic

Fig. 4. The magnetic field of whistlers $\left(B_{x}\right)$ momatized to the equatmial genmapmetic field versus $\boldsymbol{\Lambda}_{L} / \mathrm{b}$ e equatorial gyrolrequen. ciestwave frequencies), and the number of reamang electrems in the
 Each of the panels represents the case as 1 . ": and fio, = 1 . $n_{m}-35^{-}$and $د t^{2}=0$ S the harmonic resonamces $l-1$. and are indicated insite the panels. the curves latheied b and N must he multiplied hy the facturs indie ated in the teft and rught hand sides of the panek to othain \boldsymbol{n}_{w} and \dot{N}_{1}, reanectivelv

Fig. 5. Same as figure 4 hut at 1 - 4 5and 0 ... - is
 (Figure 5). The magnetic fied of the wave nomatizal to the equatorial geomingnetic fiedt $\left.A_{1}\right)$ is represented ho n_{11} : 11 can be ohtained for each value of / from (43):

$$
\begin{equation*}
R_{w}=\frac{1}{B_{1}}\left(8 \pi \frac{\tau_{2}}{r} \frac{K_{1}}{D_{1}} \text { f(F. H.) }\left.\right|^{1:}\right. \tag{1541}
\end{equation*}
$$

where we shall assume that $r=1$. We note that B_{w} does mot depend on \mathcal{R}_{f} (equarion (31). Because of this. $B_{\text {w }}$ can also be very large for larger harmonics li.e.. I- II. The number of resonant particles in the flux tube notmadized io A, urin' $f(E, C) / 4 g i$ is nhtained for each value of las

$$
\dot{N}_{1}=\frac{1}{\omega \tau_{i}} \frac{4 g_{i}^{\prime}}{D_{1}} \frac{1}{W_{1}^{\left(w^{\prime \prime}\right.}}
$$

where

$$
W_{i}^{\prime \prime \prime}=\frac{r_{n}}{r} \sum_{n-1}^{1} \frac{K_{n}}{n_{n}} \text { NF }_{n}, t
$$

and E_{n} is the resonaint energy. Ilere we include in the wise amplitude $W^{\prime \prime}{ }^{(1)}$ the contributions of harmonic numbers stich that $n \leq 1$. This is because when $n-1$. resonances contribute to wave growith in much shorter times than when $n=1$. Thus the harmonics $n<1$ act as souces fiom wase growth which. in turn. help to deplete the electrons in resonance with the $n=1$ harmonic. In Figule 4 we represent B_{w} and \dot{N}, at $t=2$ for $1-1$. 2. and 3. As ant examile we

 creases. Note that wave gowih is limited th a matomes

electoons in the tlux tube \dot{N}_{1} is a mimimum when H_{10} is : maximum. Since $\dot{N}_{1}-1 / A_{1}$, where A_{1} \& 1 lor 1 . 1 and $n_{1}=11$. particles are more easily depleted from the radiadion belis by the fundamental harmonic than lier larger unes. The fundamental $I=I$ harmonic is not sensitive to the value of $\Delta \zeta^{2}$. However. larger harmonics are alfected hy the values of $\Delta \zeta^{2}$. In fact. if $\Delta \zeta^{2}<0.5$. the number of resonant electrons in the flux tuhe hecomes langer thin for the cases represented in Figure 4. The refractive inder η is lauger thatn 10.0.5< $r_{n}<2$. and $0.25<2 r_{\text {A }}<0.6 \mathrm{~s}$. In our theorelical derivations the number of resonant electrons in the flux tube must be much smaller than that of cold particles (N,). To find N, we integrate (53) along a dipole field line from $\psi=0$ to $\psi=\psi_{A f}$. where ψ is the geomagnetic latitude and ψ_{11} is such that $\cos ^{2} \psi_{1 /}=1 / 2$. We find that the ratio helween the number of resonant eiectrons to cold pirtictes along a field line for $1=1$ is smaller than $10{ }^{\circ}$. for $I=2$ is smatler than 10 , and for $1=3$ is smaller than if ?

Figure S represents \boldsymbol{A}_{w} and \dot{N}_{1} for $1=1.2$ and 3 and $t=4.5$. As an example, we take $r=1 . J i^{2}=0.5$. and $\theta_{m}=15^{n}$. Because \boldsymbol{B}_{w} is smaller for $1=1$ than for $1=2$ and 3 and B_{w} is also smaller for $I=2$ than for $I=3$. electrons are now more easily depleted by the larger resonances. Note that B_{w} is proportional to $\mathcal{f}\left(E, I, 1 / 49_{i}^{\circ}\right.$. which is quite large for larger harmonics since energies are comparatively small (i.e., In $\leq E \leq 600 \mathrm{keV}$) and $4 g_{i}$ decreases with increasing l. The maximum of B_{w} and minimum of \dot{N}_{1} are shifted toward larger I_{1} 'to in comparison with the $1 .=2$ case. thecause energies are now smaller. They move loward smailer Ω_{1} / ω as $/$ increases. By comparing the cases $L=$? and 4.5. we find that the resonant energies for the fundamental harmonic and $L=2$ (i.e.. $\mathbf{5 0} \leq E \leq 500 \mathrm{keV}$) overlap with energies in resonance with the $I=2$ and 3 harmonics in the $L=4.5$ case. However, as we show next. The fundamental resonance is in all cases the fastest to reach equilibrium. that is. to achieve wave growth and particle depletion. This is why low-energy electrons. with $E \sim 10 \mathrm{kcV}$. are first depleted by the fundamental harmonic in the outer edge of the plasmasphere. As the energy increases, electrons are trapped for longer times in the outer plasmasphere and are more easily scattered into the loss cone when L. decreases. The refractive index $\boldsymbol{\eta}$ is greater than 20. and 3- $r_{g}-9$ and $1-2 r_{B}-1 \mathrm{~s}$. We have also compared the numbers of resomant and cold (N_{1}) electrons in the field line. where N_{5} is ohtained by integrating (53) from $\psi=010$ tw (where cos $\left.\phi_{3}=1 / L\right)$. In all cases we found that the ratio of resonamt Io cold electrons is much smaller than I.

The linear theory of the evolution of the wave panticle inferactions is descrihed in section 5 and in Appendix 13. The stability of the equitibrium solutions is given as lunction of
 and p_{1} for $t=2$ and the first three resonances. where r : 1. $\Delta \zeta^{2}=0.5$, and $\theta_{m}=25^{\circ}$. For the fundimental harmonic the time it takes to establish equilibrium (in units of r_{g}) is $1 / \nu_{1}$, and ρ_{1} is the oscillating frequency (see the definition of the cigenvalucs $\epsilon_{1.2}$ in Appendix BI. Note that $1 / r$, is much smaller for the $1=1$ harmonic than for larger ones; thus the equilibrium time is shorter for the fundamential resonance. In fact. for the harmonics $1=2$ and 3 the time in takes to reach

Fig. 6. Eigenvaluer of the sahility equation (S13. mand lity versus $\Omega i_{t} / w$ lequalorial pyrofrequencies/wave frequencieal at t. 2 ind for $r=1.0_{m}=25^{3}$. and $D i^{2}-0 \leq$ Each if the pancls represenis the harmunic reannances $/=1.2$ and , as indicile inside the panels. The curves tatelet θ and, 1 anout be multiplied by the factors in the left-and right-hand sides of the ramela lo ohtian by the fictors in the left-and right-hand sites of the rame h to athian
ρ_{I} and $/ 1 / \mathrm{r}$. respectively. The equilitimm times for the thee harmonic resonances are proportional to I / m.
and third resonances are such that $1 / 4 v \leq t \leq 1 / 2$, where $\nu=\nu_{3 . j}$). but still they are much larger than for the case $I=$ 1. Recall that the resonant energies for $I=1$ are $50 \leq E \leq$ 500 keV, and for $1=2$ and 3 they are $200 \leq f \leq 2 \times 10^{\prime}$ keV.
In Figure 7 we represent ρ_{1} and \mid / b, for $1=1.2$, and 3 and the shell $L=4.5$. Herer $=1 . \Delta Z^{2}=0.5$. and $A_{m}-15$ Again. we show that equilibrium times. which ine propurtional to $/ / v_{1}$. are longer the larger the harmonic numbers are. In our numerical catculations we fird that $\varepsilon_{1}-\operatorname{din}_{2}$ and $\boldsymbol{\xi}_{d}=-\mathbf{3}_{\mathrm{t}}$. The resonamt energies for the fundiumental $i=1$ resonance are such that $10 \leq E \leq 100 \mathrm{keV}$. For the seconal and third resonances. $d(1) \leq E \leq G(H) k e V$. By comparing the cases $l .=2$ and 4.5 . We conclude that the elecirons whome energies are later thin or of the ader of so keV are mome easily depieted at smaller I. shalls since the equitituimen times ate shouter then.

7. Summary and (ionetusions

We have modeled the pitch angle scaltering of energetic electrons by abliquely proparationg whistles wases lhe waves grow near the equator in the plasmasplicte becource it the pitch angle anisotropies of the encrgetic elections. The wave vectors form small angles with respect to the ecomace

 for sudy the tempural evention el wane and piaticle in the weak diffosion limit. hy assiming that the , ath pathal

Fir. 7. Same as Figure 6 hut at $L=4.5$ and $\theta_{m}=15^{n}$
inhomogeneities are along the geomagnetic field. The main results of our investigations are as follows.

1. We have derived equations which describe the temporal evolution of wave-particle interactions. The diffusion coefficients are obtained for all gyroharmonics and for interactions that lake place near the equator after averaging over electron bounce orbits. The pitch angle distributions of the electrons are proportional to linear combinations of Bessel functions. The growth rates of the waves are calculated in terms of the distribution functions of the resonant electrons for all gyroharmonics. Our results complement previous results by Lyons el al. [1972] for high-latitude interactions in a dipole field and by Kennel and Petsrhek [1966] for wave growth due to the fundamental harmonic.
2. The equilibrium and stability of the system of nonlinear equations describing the wave-particle instabilities are investigated. By including an external wave source which is not generated from local background fluctuations. we reduce the limit of stably irapped particles to a level helow the equilibrium solutions of the self-consistent prohlem. The time it takes to reach equilibrium is defined in terms of the eigenmodes of the stability equation.
3. Numerical calculations are carried out for the slot region and near the plasmapause in the outer radiation belt for three harmonic resonances and assuming no external wave source. They indicate that wave amplitudes may grow as much from the fundamental harmonic as from larger ones, but particles are more efficiently depleted from the radiation belts by the fundamental resonance. The wave frequencies are in the ELF band ($227 \mathrm{~Hz} \leq \omega \leq 1.6 \mathrm{kHz}$) at $L=4.5$; they are in the VLF band of frequencies $12.6 \mathrm{kllz} \leq \omega \leq 18$ $k H_{z}$ at $L=2$.
4. Equilibrium is established in much shorter times for the fundamental harmonic than for larger harmonic numbers. Wave-particle interactions for the highest hatmonics
are enbanced by contributions al tower hammonics. which act as a feedhack to supply wave energy
5. High-energy particles. $>50 \mathrm{keV}$. are dep.leted at low l. shells. Electrons with lower energies, -10 keV , are scaltered into the loss cone at the outer edge of the plasmasphere.

Afrendix A: Pitch Angie Eigenfunetions

For a given harmonic number / the pitch angle cigenfume tions $7(\mu)$ satisfy the differential equation (29) and the toundary conditions

$$
\begin{equation*}
[d 7 / d \mu]_{\mu-\mu, \cdot \mu}=0 \tag{57}
\end{equation*}
$$

The normalization equation is

$$
\int_{\mu}^{\mu-} 7(\mu) d \mu=\frac{p}{\pi a g_{i}^{2}\left(\mu_{m}-\mu_{i}\right)}
$$

where $\mu_{1} \leq \mu$ - μ_{m} is the range of resonant interactions in equatorial pitch angles. n_{1}^{2} are the eipenvalurs p is ω. particle momentum. and a is a distance defined alter (2)
First, we study the case $I=2$. By defining in $-\eta_{1}\left(H_{m}\right.$, $\left.\mu_{r}\right)^{1 / 2}$, the solution $\mathbf{t o}(29)$ is

$$
\begin{align*}
& \pi(\mu)=\frac{i}{(\mu)^{i / 2}}\left(A \cos \left[\left(\dot{\theta}_{i}^{2}-\frac{1}{4}\right)^{1 / 2} \ln \mu\right]\right. \\
& \tag{59}\\
& \quad+B \sin \left[\left(\dot{g}_{1}^{2}-\frac{1}{4}\right)^{1 / 2} \ln \mu \|\right.
\end{align*}
$$

where A and B are arbitrary functions whose ratio is given solving for the normalization condition in (58). Imposing the boundary conditions in (57) yieids the eigenvalues of the diffusion operator, which are such that $g_{l}^{?}>\frac{1}{4}$ and which are obtained from

$$
\begin{equation*}
\sin \left[\left(\hat{g}_{i}^{2}-\frac{!}{j}\right)^{1 / 2} \ln \left(\mu_{m} / \mu_{l}\right)\right]=0 \tag{60}
\end{equation*}
$$

Next. let us study the case $1+2$ (i.e., $1-1$ and $l>3)$ We define $\alpha=1-1 / 2, \beta=(1-1) / 12-1)$. and $\delta-$ $22_{1} / 12$ - 1 . The solutions to (29) are Bessel functions of the first and second kind |Bespalow el al., 19841:

$$
\begin{equation*}
Z(\mu)=A \mu^{n-1 / 2} J_{\beta}\left(\delta \mu^{n}\right)+B \mu^{n-1 / 2} Y_{\beta}\left(\delta \mu^{n}\right) \tag{61}
\end{equation*}
$$

where A and B are constants which according to (5R) have dimensions of momenturn divided hy length. After impusing the boundary conditions, the eigenvalues of the dillusiun operator satisfy the following equation
$J_{B-}\left(\delta \mu_{c}^{a}\right) Y_{B-1}\left(\delta \mu_{m}^{a}\right)=\gamma_{B-1}\left(\delta \mu_{r}^{a}\right) J_{B},\left(\delta \mu_{m}^{;}\right)$
For the case $l=1$ we have $a=\frac{1}{2}, \beta=0$, and $\delta=2 \dot{g}_{1}$. When $i=3 . a=-\frac{1}{2} \cdot \beta=2$. and $\delta=2 \dot{q}_{1}$. We have solved $(f())$ and (62) numerically at $L=2\left(\theta_{c}=16.3^{\circ}\right)$ and $\theta_{m}=25^{\circ}$. We find that the minimum eigenvalues are $4 g_{1}^{2}=5 \times 10^{\prime}$. $4 g_{2}^{2}=607$., and $4 g_{i}^{2}=70$. If we increase A_{m}. the eigenvalues decrease: for example. if $A_{m}=35^{n}$. Ihen $47{ }_{i}^{i}=$ 480.. $4 g_{2}^{\frac{2}{2}}=81.7$, and $4 g^{2}=12.5$. The calculations were also done at $L=45\left(\theta_{c}=4,5^{n}\right)$. By taking $\theta_{m}=15^{n}$, the minimum eigenvalues are $4 g_{i}^{2}=5.4 \times 10^{\prime}$. $477^{2}=127.8$. and $4 g_{i}^{2}=2$. If we increase A_{m} to 35^{n}, then $41 i i_{\text {- }}$ I? . $47_{i}^{i}=10.73$, and $49_{i}^{i}=0.11$.

Apiendix B: Three Modes Coupline;

For the case of three resonances $(f=1,2,3)$ and no wave source. $I=0$, (51) hecomes

$$
\begin{align*}
& \beta_{1}\left(\xi^{2}+2 p_{1} \xi\right)+\rho_{1}^{2} \beta_{1}=0 \tag{1611}\\
& \beta_{1}\left(\xi^{2}+2 \nu_{2} \xi\right)+\rho_{2}^{2} \beta_{1}=0 \tag{64}\\
& \beta_{3}\left(\xi^{2}+2 \nu_{3} \xi\right)+\rho_{3}^{2} \beta_{I}=0 \tag{65}
\end{align*}
$$

where $\beta_{T}=\beta_{1}+\beta_{2}+\beta_{3}$. and equilibrium is given by (42) and (43) after setting $1=1,2$, and 3 . This system of equations yields the fourth-order equation for the eigenvalues ξ.

$$
\begin{align*}
& \xi^{4}+\xi^{2} 2 v_{1}+\xi^{2}\left[\rho_{i}^{2}+4 v_{1}\left(\nu_{2}+\nu_{3}\right)+4 v_{2} v_{1}\right] \\
&+\xi\left(2 v_{1}\left(\rho_{2}^{2}+\rho_{i}^{2}\right)+2 \nu_{2}\left(\rho_{i}^{2}+\rho_{i}^{2}\right)+2 v_{1}\left(\rho_{i}^{2}+\rho_{2}^{2}\right)+R_{1} v_{1} v_{2} v_{1}\right] \\
&+4 v_{1}\left(v_{2} \rho_{3}^{2}+v_{3} \rho_{2}^{2}\right)+4 \rho_{i}^{2} v_{3} v_{1}=0 \tag{66}
\end{align*}
$$

where $v_{r}=\nu_{1}+v_{2}+\nu_{1}$ and $\rho_{\hat{i}}^{2}=\rho_{i}^{j}+p_{i}^{*}+\rho_{i}$. Next we shall find these eigenvalues by assuming that \quad, $O\left(f^{\prime}\right)$ $\ll 1(\varepsilon \rightarrow 0$ and $l \pm 1.2$, and 3$)$ and $1>\rho_{i}^{2}>n_{i}^{2} \gg \rho_{i}^{i}$ (where $\rho_{1}^{*} \sim \nu_{1}$), which are supported thy the numerical calculations in section 6. These assumptions will allow us to solve approximately (63)-(65) for the eigenvalues ami eipenvectors.
First, consider the solutions ε_{1}, driven ly the fimdamental $1=1$ harmonic. Now we have that $\beta_{2}<\beta_{1} . \beta_{1}\left\ulcorner\beta_{1}\right.$. and $\beta_{1}<\beta_{2}$. From (64) and (6.5) we get

$$
\begin{align*}
& \beta_{2} / \beta_{1}=-\rho_{3}^{2} / \xi^{2}-\rho_{2}^{2} / \rho_{1}^{2} \\
& \beta_{3} / \beta_{1}=-\rho_{3}^{2} / \xi^{2} \sim-\rho_{1}^{2} / \rho_{i}^{2} \tag{67}
\end{align*}
$$

The eigenvalues derived from (63) are

$$
\begin{equation*}
\xi_{1.2}=-\nu_{1} \pm i\left(\rho_{1}^{2}-\nu_{1}^{2}\right)^{1 / 2} \tag{68}
\end{equation*}
$$

The time it takes to rench equilibrium for the fundamentat harmonic is $r \sim I / v_{1}$.
The third eigenmode $\xi_{3}-O\left(\varepsilon^{2}\right)$ is driven by the second harmonic. We must now have $\beta_{1}<\beta_{1}$ and $\beta_{1}-\beta_{1}$. From (63) and (65) we get

$$
\begin{align*}
& \beta_{2} / \beta_{1}=-1-\left(2 v_{1} / \rho_{1}^{2}\right) \xi \\
& \beta_{1} / \beta_{1}=\left(2 v_{1} / \rho_{1}^{2}\right)\left(\rho_{1}^{2} / \xi\right) \tag{69}
\end{align*}
$$

By combining these equations with (fot). we show

$$
\begin{equation*}
\epsilon_{1}--2 r_{2}+n_{2}^{2}\left(x_{1}, n_{i} \dot{)}\right) \tag{70}
\end{equation*}
$$

The lime it takes to establish equilitioum for the second resonance is $\tau \sim 1 / \xi_{3}$.
The fourth eigenmode $\xi_{4}-O_{F}{ }^{2}$) is driven thy the third harmonic resonance $(I=3)$ and is such that $\beta_{3}-\beta_{1}$ and $\beta_{2} \sim \beta_{1}$. Equations (63) and (64) become approximately

$$
\begin{align*}
& \beta_{7} / \beta_{3}=-\left(21 v_{0} i\right) \xi\left(\beta_{1} / \beta_{1}\right) \\
& \beta_{7} / \beta_{1}=-\left(21 v_{0} \vdots!\varepsilon\left(\beta_{3} / \beta_{1}\right)\right. \tag{1711}
\end{align*}
$$

Then we ohtain

$$
\beta_{1} / \beta_{:}=1 r_{2} / n_{\vdots}^{\vdots} \|_{i}^{i / 1,1}
$$

$$
\begin{equation*}
\beta_{1} / \beta_{1}=\frac{-\rho_{i}^{2} / 1_{1}}{\rho_{1}^{T} / L_{1}+\rho_{1}^{3} / L_{2}} \tag{1721}
\end{equation*}
$$

Combining (65). (711, and 172) yiehts the eigenvalue of the third resonance:

$$
\varepsilon_{1}=-2\left[p_{1}+\frac{\mu_{i}^{i}}{\rho_{i}^{i} p_{1}+\rho_{i}^{2} / n_{2}}\right]
$$

The time it takes to reach equilitrium is proportional to $1 / t$:
The eigenmodes ξ_{1} : may also be ohtained from (f6) hy laking

$$
\xi^{4}+\xi^{3} 2 \nu r+\xi^{2} \mu_{j}^{\prime}=0
$$

 cigenvalue ε_{1}, we need to consider the terms in ξ^{2} and ε in (6fi). that is.

$$
\xi^{2} \rho^{j}+\xi\left(2 v_{1} p \vdots+2 v_{2} p i=0\right.
$$

Finally. the eigenvalue ε_{4} mav he ohtained fom (for) hy considering only the terms in first and zero order in ϵ :

Nolvilon

B_{11} geanaignctic field.
B/ cyuatorial geomagnetic field.
B_{A}, B_{W} wave magnetic liedd.
c speed of light
E particle's energy
f. wave electric field
f_{1} distritution function of resomant electrons.
π_{1} pitch angle eigenvalues.
. 7 external wave source.
k wave vector.
l harmonic number.
L magnetic shell number.
m electron mass.
n_{r} density of cold etectrons
N_{i} number of resonant electroms in a Dur tube
p particle's momentum.
q palticle's charge.
R_{F} Earth radius.
' f_{1} particle Mux.
1 time.
r) particle's velocity.
"n watte group velocits.
W_{k} equativial wave eneley
IV equatomial energy density of waves
z distance along flux twhe from magnetic equator
$Z(\mu)$ pitch angle eigenfunctions.
γ relativistic factor
γ_{0} temporal growth rate
I. wave spatial amplification factor
$\zeta=\cos \boldsymbol{r}$.
7 refractive index.
A equatorial pitch angle.
A. pitch angle :or the loss cone humblar!
"on maximmm pitch angle for which electom :ane en resunance.
$\mu=\sin ^{*} \|$

$$
\mu_{1}=\sin ^{2} \theta_{1} .
$$

$\mu_{m}=\sin ^{2} \boldsymbol{A}_{1}$
n_{1}. 1 is stability eigenvalues.
σ misror ratio.
r normalized time.
. electron bounce time
r_{g} wave group traveling time.
φ angle hetween wave vector and inagnetic lield.

* magnetic latitude.
$\psi_{m} \quad$ an upper magnetic latitude fimit for resonant interactions.
ω wave frequency.
ω_{p} plasma frequency.
$w_{1}, \|$ lower hybrid frequency
(1) electron gyrofrequency
Ω_{t}. equatorial, electron gyrofrequency.
$\Omega_{A t}$ maxinum gyrofrequency with which electrons are in resonance.

Achnowledgments. This work has been supported by the U.S. Air Force under contract F19628-89-K.0114.
The Editor thanks G. Davidson and L. L.yons for their assistance in evaluating this paper.

References

Bell. T. F. The wave magnetic field amplitude threshold for nonfinear trapping of energetic gyroresonant and Landau resanant electrons by nonducted VLF waves in the magnetosphere. J. Gecophyre Res. 91. 4165. 19Rg.
Bespalov. P. A., and V. Yu. Trakhtengerts. Cyclution instabitity of Earth radiation belts, Rev. Plasma Fhys.. 10, 88, 1980.
Bespalov. P. A., C. U. Wagner, A. Grafe, and V. Yu. Trakhtengerts. Gap formation in the electron belts. Gicmman. Acrom., 23. 52, 1984.

Burke. W. J., and E. Villalion, Ionospheric heating for iadiation bell control. AGARD Conf. Proc., 485. 28-1. 1990.
Chappell. C. R., K. K. Harris, and G. W. Sharp. A study of the infuence of magnetic activity on the location of the plasmapause as measured by OGO 5. J. Geophys. Res. 75. 50. 1970.
Gendrin. R.. Gyroresonant wave particie interactions, in Solar Terrestrial Physics, part Ill. Astrmphes. Spuce .5ri. I.ibr., voll 29. edited by E. R. Dyer. p. 23k. Kluwer Academic. Borton. Mass.. 1972.

Helliwell, R. A. Whistlers and Related linospheric Phemoment. p. 27. Stanford University Press, Stanford. Calif., 1965.

Huang, L.. J. G. Ilawkins, and L. C. Lee. On the generation of the pulsating aurora hy the loss cone driven whistler instatility in the equatorial region, J. Genphys. Res.. 95. 3893, 1990.
Imhof. W. L.. H. D. Voss, j. B. Reagan. D. W. Dallowe. E. E. Gaines. J. Mobilia, and D. S. Evans. Relativistic electron and energetic inn nrecipitations spikes near the plasmapause. J. Genphivs. Res., 91, 3077. 1986.
Inan. U. S., T. F. Hell. and R. A. Heliwell. Nonlinear mith :mple scattering of energetic electrons hy conerent ELF waves in the magnelosphere. J. Geophivs. Res., \&3. 1235.1978
Inan. U. S.. W. C. Burgess. T. G. Woil. D. C. Shaner and R. E.

Orville. I ightning ascociated necipitation ol McV electoms from the inner radiation belt, Gerophys. Res I.ch. Is, II?. 1u4k
Kennel. C. F.. and F Engelman, Velocity space diflusion from weak plasma turbulence in a magnetic field. I'hus, I huts. 9.2377. 1986.

Kennel. C. F., and II. E. Pelschek. Limit on stably mapped particie fluxes. J. Gerimhs. Res., 71. 1. ITs.
Kimura, I. Effects of ions on whistler mode ray Incing. Redion Sa . I. 269. 1966.

Luhmann.J G amd ^ L. Vampola. Effects of licaliued someres on quiet time plasmasshere election precinitation. J. Ciropher Rra.. 82. 2671. 1977
L.yons. L. R , and R. M. Thorne. The mannetospheic reflection of whistiers, Phenet. Spuer Sci., 18. 1753. 1970.
Lyons. L. R. and D 1 Williams. Quantitative A pects of Maverospheric Phwnes. D. Reillel. Hingham, Mass. I9R4
Lyons. I. R. R. M. Thorne, and C F Kennel. Election pitch-angle diflusinn driven by ohlique whistler nude mithlense. I. Muma Mors. 6. 599.1971
L.yons. I. R, R M. Ihwne, and (C. F. Kennel, Pitch angle diflosom of radiation toll electroms within the phamasplere. J firmphat. Rer. 77. 3459.1972
Roberts. C. S. Pitch angle diflusion of electuons in the namenetosphere. Rev. Gerphos. 7. 30s. 19k9.
Rosenberg. T. J..J.C. Sinen. D. L. Malthews. K. Marihinsen. J A Holtet. A. Fgeland. D. L. Carpenter, and R. A. Helliwell. Conjugate of electron microburst and VLF chorus. J. Ciconfins. Res. . 88. 5819. 1981.
Sazhin. S. S.. Improved quasilinear moilels of parallel whistler mode instability. Planer. Space Sci., 37, 633. 1989.
Schulz. M.. and G. T. Davidson, Limiting energy apectrom of a saturated radiation helt, J. Genphys. Res., 93. 59. 19R8.
Schulz. M. . and L. J. Lanzerotii. Furficle Diffusion in the Radintion Belts. Springer-Verlag. New York. 1974.
Srjeldvik, W. N. and P. I. Rolitwell. The madiation helts, in Handhooh of Gerophrsics and the Spare Emriornment, rdited by A. S. Jursa. p. S.1. National Technical Information Service. Springfield. Va., $198 \leq$.
Swift. D. W., Mechanisms for aurnal precinitation: A review, Rev Gremhs. 19. 185. 1981
Trakhiengerts. V. Yu. Relaxation of a plasma with anismurnic velocily distrihution, in Handbook of Plasma Physirs, val. 2. Basic Phasmu Thysics H. p. S19. Elsevier Scientific. New York. 1984.

Villalon. E., W. J. Burke, P. L. Rothwell. and M. B. Silevitch. Quasi-linear wave particle interactions in the Earth's radiation

Villalón. E., M. B. Silevitch. W. J. Burke, and P. I. Rothwell. Gyroresonant interaction of energelic trapped electroms and protons, in Fhysic s of Spme Plasmas (1089). SNI Comif. Prum. Reprint Ser., vol. 9. edited by I. Chang. G. B. Crew, and J. R. Jasperse. p. 36s. Scientific. Cambridge. Mass.. 1989h.
W. J. Burke. Geophysics 1 aboratory, Hanscom Air Force Base. MA 01731.
E. Villaión. Center for Electromagnetic Research. Northeastern University. Boston. MA 01742.
(Received June 20. 1990:
revised Januaty 17. 1991: accepled Fehriary 4, 1991.)

Proton-Whistler Interactions in the Radiation Belts

Elena Villalón
Center for Electromagnetics Research
Northeastern University
Boston MA 02115
and
William J. Burke
Geophysics Directorate, PL/OL-AA,
Hanscom AFB, MA 01791

Abstract

The interactions of whistlers with radiation belt protons is investigated. In the inhomogeneous geomagnetic field, near the equator, the spacing between cyclotron resonances is very small. After crossing multiple harmonic resonances, a significant change of particle energy takes place, and the protons pitch-angle scatter toward the atmospheric loss cone. A test-particle hamiltonian formalism is investigated for first and second order resonant protons. Quasilinear theory is applied for first-order resonant particles to obtain bounce-averaged, diffusion coefficients. The Fokker Planck equation, containing pitchangle, energy and the cross energy/ pitch-angle diffusion terms, is investigated to calculate diffusion life times.

I. INTRODUCTION

We consider the interaction of plasmaspheric electrons and protons with whistler waves. The particles are trapped within the earth's radiation belts moving back and forth along field lines between magnetic mirror points. We call τ_{B} the bounce period, the time required for a particle to go from one mirror point to the other and return. In the region of interest, the geomagnetic field, $\mathbf{B}_{\mathbf{a}}$, is described as a dipole. The interaction region is limited to the plasmasphere, $L<4$, where L is the equatorial distance of the field line measures in Earth radii (R_{E}). The plasmashere is made up of cold particles of ionospheric origin

Figure 1. Schematic representation of whistler (u, k), interacting with electrons and protons near the equator. The coordinate system used in this paper is depicted here.
whose distribution is isotropic and Maxwellian. During magnetic storms the radiation belts fill with energetic, trapped particles whose density is much smaller than that of the cold plasma. Whistlers are right-hand polarized electromagnetic waves whose magnetic field, $\left|\mathbf{B}_{\mathbf{k}}\right| \ll \mathbf{B}_{\mathbf{o}}$. Often they propagate in field-aligned ducts due to density depletions in local flux tubes. They can either be launched from ground sources or be generated in the plasmasphere. The dielectric properties for wave propagation are determined by the magnetized cold plasma distribution. These waves interact with the energetic particles, if the Doppler-shifted frequency of the waves is some harmonic of the gyrofrequency. For electron-whistler interactions the waves and particles travel in opposite directions. For protons they travel in the same direction and the wave phase velocity is very close to the proton parallel velocity. The situation is depicted in the Figure 1.

Whistler-electron interactions has been extensively study over the years ${ }^{\mathbf{1 . 2} .5}$. The electrons typically have energies between 10 to 50 keV . The interaction occurs mainly at the first gyroharmonic of the electron gyrofrequency, although higher gyroharmonics may also be important ${ }^{4}$. The electron energies change very little during these interactions. The electron pitch angle is θ, where $\tan \theta=v_{\perp} / v_{\|}$, the ratio between the parallel and perpendicular components of the particle velocity. The pitch angle can be significantly changed and, as a result, the particle is scattered into the loss cone and precipitate into the ionosphere. Because large numbers of electrons interact with the waves, they grow in amplitude to values whose limits depend on the degree of anisotropy of the electron distribution function ${ }^{2}$. Detailed analyses are given in the papers by Villalón and coworkers ${ }^{4,5}$. These investigations where based on relativistic, quasilinear theory that simultaneously considers wave growth and particle depletion from the radiation belts.

Proton-whistler interactions have not received as much attention. Recents experiments have shown ${ }^{6,7}$ that protons whose energies are in the hundreds of keV range, can be scattered from the radiation belts by analogous interactions. The frequency of the wave must be close to the equatorial electron gyrofrequency. The particle energy changes significantly during the interactions ${ }^{8}$. Thus, the changes in pitch angle is due to both direct pitch angle and energy diffusion. Because of the small population of high-energy protons we neglect their effects on the amplitudes of the waves. We present a study of proton whistler interactions by using a test particle formalism and a statistical approach based on the Fokker-Planck equation. In Sec. II, we present the main dielectric properties of whistler waves; because the whistler protons interactions require large refractive indices, we limit ourselves to the pararesonance mode ${ }^{9}$. Sec. III presents the resonance condition for multiple harmonics of the gyrofrequency. The geomagnetic atitudes of high harmonic resonances are obtained based in a parabolic approximation for the near equatorial geomagnetic field. We show that the distance between subsequence resonances is very small. The crossing of multiple resonances near the equator makes the interartions very effertiven. Sec IV contains the equations for the test particle in a varying geomagnetic field using hamiltonian formalism. Sec V studies the evolution of the action (I) angle (ξ_{ℓ}) variables as function of the distance (s) along the flux tube using Taylor expansions around isolated resonances. Let us expand ξ_{l} around the equator: $\xi_{l}(s)=\xi_{l}(0)+\xi_{l}^{(1)} s+\xi_{l}^{(1)} s^{2}$. First-order resonant particles are such that $\xi_{l}^{(1)}=0$ (i. e., at the equator $d \xi_{l} / d s=0$). This is the resonance condition as given in Eq. (5). The second-order term $\xi_{l}^{(2)} \sim d B_{0} / d s+O\left(B_{k}\right)$.

For large wave amplitudes $O\left(B_{k}\right)$ is larger than the contribution of the inhomogeneous geomagnetic field $d B_{0} / d s$. In this case, we say that protons which are in gyroresonance (i. e. $\xi_{\ell}^{(1)}=0$), satisfy the second-order resonance condition. This is because to zero order in the electric field amplitudes $d \xi_{l} / d s=d^{2} \xi_{l} / d s^{2} \simeq 0$. For first-order resonant particles, the change in action is proportional to the electric field amplitude. For second-order resonant protons the change in action is proportional to the square root of the electric field amplitude. The second-order resonance condition is met when the field amplitude is large ${ }^{11,12}$, the threshold is calculated in this paper. Sec. VI contains a quasilinear formulation for the distribution function of first order resonant protons. We assume that the protons are unmagnetized in time scales of the order of $2 \pi / \omega$, where ω is the frequency of the whistler wave. They are magnetized in times comparable to the bounce period. Because diffusion occurs over many bounce periods, we average the diffusion equation along the flux tube. The bounce averaged, Fokker-Planck equation contains the diffusion coefficients for the pitch angle, energy, and the cross energy/pitch angle terms. These coefficients are shown to have the same orders of magnitude. We reduce the equation to a one-dimensional diffusion equation to be solved for the energy part of the distribution function. This eigenvalue equation gives the diffusion life-times of protons in the radiation belts.

II. QUASI-ELECTROSTATIC WHISTLER WAVES

We consider a whistler wave of frequency ω and wave vector k, propagating in a field aligned duct. The geomagnetic field B_{0} is along the \mathbf{z} direction and ϕ is the angle between \mathbf{k} and $\mathbf{B}_{\mathbf{o}}$. The dispersion relation for the refractve index $\eta=c k / \omega$ is

$$
\begin{equation*}
\eta^{2}=1+\frac{\left(\omega_{p} / \omega\right)^{2}}{\left(\Omega_{e} / \omega\right)|\cos \phi|-1} \tag{1}
\end{equation*}
$$

where ω_{p} and Ω_{e} are the electron plasma and gyro frequencies, respectively.
The electric fields components are denoted by $\mathcal{E}_{z}=\varepsilon_{1}, \mathcal{E}_{v}=i \varepsilon_{2}$, and $\mathcal{\varepsilon}_{z}=-\mathcal{\varepsilon}_{3}$, where

$$
\begin{align*}
& \frac{\varepsilon_{2}}{\varepsilon_{1}}=\frac{1}{\eta^{2}-1} \frac{\left(\omega_{p} / \omega\right)^{2}}{\left(\Omega_{1} / \omega\right)-|\cos \phi|} \\
& \frac{\varepsilon_{1}}{\varepsilon_{3}}=\frac{1-\left(\omega_{p} / \omega\right)^{2}-(\eta \sin \phi)^{2}}{\eta^{2} \sin \phi \cos \phi} \tag{2}
\end{align*}
$$

For the case where $\omega \sim \Omega_{e}(L)|\cos \phi|$, the equatorial refractive index $\eta^{2}(L) \gg 1$, then $\mathcal{E}_{2} / \mathcal{E}_{1} \ll 1$, and $\varepsilon_{1} / \mathcal{E}_{3} \sim-\sin \phi / \cos \phi$. The wave becomes quasi-electrostatic, i.e. E is
in the direction of k, and the group velocities $v_{0} \sim 1 / \eta$ are very small. These waves can interact with protons which energies are in the hundreds of keV .

Near the equator, the Earth's magnetic field approximates a parabolic profile

$$
\begin{equation*}
\frac{\Omega}{\Omega(L)}=1+\left(\frac{s}{r_{L}}\right)^{2} \tag{4}
\end{equation*}
$$

where $s \simeq R_{E} L \psi, R_{E}$ is the Earth's radius, L is the magnetic shell and ψ is the geomagnetic latitude (see the Gigure), and $r_{L}=(\sqrt{2} / 3) R_{E} L$. The equatorial gyrofrequency is $\Omega(L) ; \Omega$ stands for the gyrofrequencies either for electrons or protons, along the field line.

III. RESONANT PROTON-WHISTLER INTERACTIONS

For whistler waves to interact strongly with protons near equatorial regions, they must satisfy the resonance condition

$$
\begin{equation*}
\omega-k_{\|} v_{\|}-\ell \Omega_{p}=0 \tag{5}
\end{equation*}
$$

where, $\ell=0,1,2 \ldots ; \Omega_{p}$ is the proton gyrofrequency, and $k_{\|}$and $v_{\|}$are the parallel components of the wave vector and particle's velocity, respectively. We call $\mu=\sin ^{2} \theta_{L}$, where θ_{L} is the equatorial pitch angle. Here $\theta_{L}>\theta_{c}(L)$, where $\theta_{c}(L)$ is the pitch angle at the boundary of the loss cone, and μ_{c} the corresponding value of μ. As function of the L shell, the mirror ratio is $\sigma=1 / \mu_{c}=L^{3}(4-3 / L)^{1 / 2}$. To zero order in electric field amplitudes, the first adiabatic invariant is conserved. Then we may write for the parallel and perpendicular components of the particle velocity $v: v_{\|}=v\left[1-\mu \Omega /\left.\Omega(L)\right|^{1 / 2}, v_{\perp}=v|\mu \Omega / \Omega(L)|^{1 / 2}\right.$.

If we assume that at the equator the protons interact with the harmonic $\ell=1$, the energy of resonant particles is found solving for the equation: $\omega-k_{\|} \nu_{\|}-\Omega_{p}(L)=0$. We show

$$
\begin{equation*}
\frac{v}{c}=\frac{1}{\eta(L) \cos \phi} \frac{1}{(1-\mu)^{1 / 2}}\left(1-\frac{m_{e}}{m_{p}} f_{e}\right) \tag{6}
\end{equation*}
$$

where L denotes equatorial values, $m_{e, p}$ are the electron, proton masses, and $f_{e}=\Omega_{e}(L) / \omega$.
By solving for Eq. (5), using the parabolic profile in Eq. (4), we find the geomagnetic latitude ψ_{ℓ} of higher order resonances (i.e., $\ell \geq 1$),

$$
\begin{equation*}
\psi_{\ell}^{2}=\frac{4}{9} \frac{m_{e}}{m_{p}}(\ell-1)\left(f_{e}|\cos \phi|-1\right) \frac{1}{g(\mu)} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\mu)=\frac{\mu}{1-\mu}\left(|\cos \phi|-\frac{1}{f_{0}}\right)+|\cos \phi| . \tag{8}
\end{equation*}
$$

The distance along the flux tube where resonant interactions take place is given by, $s_{l}=$ $R_{E} L \psi_{\ell}$. The distance between sequential resonances is $\Delta s_{\ell}=R_{E} L\left(\psi_{\ell+1}-\psi_{\ell}\right)$.

For example, we take $L=3.5, \omega_{p} / \Omega_{e}(L)=7.9, \omega / \Omega_{e}(L)=0.75$, and $\theta_{L}=10^{\circ}$. For $\phi=37^{\circ}$, we show that $\eta(L)=41.4$ and the energy of the resonant protons is 437 keV . The location along the geomagnetic field of the gyroresonances are: $\psi_{2}=0.25^{\circ}, \psi_{3}=$ $0.35^{\circ}, \ldots, \psi_{17}=1 .^{\circ}$. As another example we take $\phi=40^{\circ}$, then $\eta(L)=72$ and the proton energy is 158.6 keV . The location of the gyroresonances are: $\psi_{2}=0.15^{\circ}, \psi_{3}=$ $0.21^{\circ}, \ldots, \psi_{47}=1 .^{\circ}$. Thus there are multiple resonances crossings (17 for the first and 47 for the second examples) within one degree of the magnetic equator, which makes the proton whistler interactions very efficient.

IV. THE HAMILTONIAN EQUATIONS

We normalize time t to $\Omega_{p}(L)$, velocity v to c^{-1}, and length s to r_{L}^{-1}, and from now on we always refer to these normalized variables. Let us define

$$
\begin{equation*}
\xi_{\ell}=\ell \lambda+\int_{0}^{3} d s^{\prime} r_{L} k_{\|}\left(s^{\prime}\right)-\frac{\omega}{\Omega_{p}(L)} t \tag{9}
\end{equation*}
$$

where $\tan \lambda=v_{v} / v_{z}$, and $v_{x, y}$ are the components of the particle velocity in the x and y directions, respectively. The dimensionless electric field amplitudes are

$$
\begin{equation*}
\varepsilon_{i}=\frac{q \varepsilon_{i}}{m_{p} c \omega} \tag{10}
\end{equation*}
$$

for $i=1,2,3$, and where q is the proton charge. The action-angle variables are (I, λ), where

$$
\begin{equation*}
I=\frac{v_{1}^{2}}{2} \frac{\Omega_{p}(L)}{\Omega_{p}} \tag{11}
\end{equation*}
$$

To first order in the electric field amplitudes ϵ_{i}, the normalize, time-dependent hamiltonian, as function of the canonical pairs, $\left(v_{\|}, s\right)$, and action-angle variables, is

$$
\begin{equation*}
\mathcal{H}=\frac{v_{\|}^{2}}{2}+I \frac{\Omega}{\Omega(L)}+\sum_{l=-\infty}^{-\infty} \sin \xi_{l}\left\{\varepsilon_{3} v_{\|} J_{l}\left(k_{\perp} \rho\right)-\left(\frac{I \Omega}{2 \Omega(L)}\right)^{1 / 2} \Gamma_{\ell}\right\} \tag{12}
\end{equation*}
$$

Here

$$
\begin{equation*}
\Gamma_{\ell}=\left(\varepsilon_{1}-\varepsilon_{2}\right) J_{\ell+1}\left(k_{\perp} \rho\right)+\left(\varepsilon_{1}+\varepsilon_{2}\right) J_{\ell-1}\left(k_{\perp} \rho\right) \tag{13}
\end{equation*}
$$

where J_{l} are Bessel functions whose arguments are $k_{\perp} \rho=\left(c k_{\perp} / \Omega_{p}\right)\left(2 I \Omega /\left.\Omega(L)\right|^{1 / 2}\right.$. If, in addition to the electromagnetic wave, there is an electrostatic potential ϕ_{0}, then we replace in Eq. (12), ε_{3} by $\varepsilon_{3}+\varepsilon_{0} / v_{\|}$, where $\varepsilon_{0}=q \phi_{0} / m_{p} c^{2}$.

For particles crossing a single isolated cyclotron resonance, we consider only one term ℓ in the summation in Eq. (12). In this case, we find the following constant of motion

$$
\begin{equation*}
C_{\ell}=\ell H-\frac{\omega}{\Omega_{p}(L)} I \tag{14}
\end{equation*}
$$

By calling $\chi=\left(\omega / \Omega_{p}\right) \sin ^{2} \theta(s)$, where $\theta(s)$ is the local pitch angle, we find

$$
\begin{equation*}
x=\frac{\ell \omega}{\Omega_{p}(L)} \frac{I}{C_{\ell}+\left[\omega / \Omega_{p}(L) \mid I\right.} \tag{15}
\end{equation*}
$$

This defines the evolution of the pitch angle as a function of the action I.
By defining v_{0} so that $\mathcal{K}=v_{0}^{2} / 2+I \Omega / \Omega(L)$, we obtain

$$
\begin{equation*}
v_{0}=\left\{\frac{2}{\ell}\left[C_{\ell}+I\left(\frac{\omega}{\Omega_{p}(L)}-\ell \frac{\Omega}{\Omega(L)}\right)\right]\right\}^{1 / 2} \tag{16}
\end{equation*}
$$

We can now reduce the problem to one-dimension, in which case we find

$$
\begin{align*}
v_{\|} & =v_{0}+\sin \xi_{l}\left\{-\varepsilon_{3} J_{l}\left(k_{\perp} \rho\right)+\frac{1}{v_{0}}\left\{\frac{I \Omega}{2 \Omega(L)}\right]^{1 / 2} \Gamma_{\ell}\right\} \\
\frac{d s}{d t} & =v_{0}+\frac{1}{v_{0}}\left[\left.\frac{I \Omega}{2 \Omega(L)}\right|^{1 / 2} \Gamma_{\ell} \sin \xi_{l}\right. \tag{17}
\end{align*}
$$

To zero order in ε_{i}, the dimensionless length $s=t v_{0}$. The equation of motion for I as a function of s is

$$
\begin{align*}
\frac{d I}{d s} & =\ell \cos \xi_{\ell} \Upsilon_{\ell}\left(I, v_{0}\right) \tag{18}\\
\Upsilon_{\ell}\left(I, v_{0}\right) & =-\varepsilon_{3} J_{\ell}\left(k_{\perp} \rho\right)+\frac{1}{v_{0}}\left\lceil\left.\frac{I \Omega}{2 \Omega(L)}\right|^{1 / 2} \Gamma_{\ell}\right. \tag{19}
\end{align*}
$$

As $\varepsilon_{i} \rightarrow 0$, then

$$
\begin{equation*}
\frac{d \xi_{l}}{d s} \rightarrow k_{\|} r_{L}+\frac{\ell \Omega_{p}-\omega}{\Omega_{p}(L) v_{0}} \tag{20}
\end{equation*}
$$

The gyroresonance condition is obtained by setting Eq. (20) equal to zero. When this is satisfied $s=s_{l}$ (the resonance length) which is defined as $s_{l}=3 / \sqrt{2} \psi_{l}$ and ψ_{l} is given in Eq. (7).

By assuming that the protons are in gyroresonance, we show that ξ_{ℓ} satisfies the second order differential equation

$$
\begin{equation*}
\frac{d^{2} \xi_{\ell}}{d s^{2}}=\alpha_{\ell}+\frac{\left(k_{\sharp} r_{L}\right)^{2}}{v_{0}} \frac{1}{\ell} \frac{d I}{d s} \tag{21}
\end{equation*}
$$

The change in χ after crossing a resonance is

$$
\begin{equation*}
\Delta \chi=\chi(R)\left[\frac{1}{I(R)}-\frac{1 / f_{p}}{C_{\ell}+I(R) / f_{p}}\right]\left(\frac{d I}{d s}\right)_{(R)} \delta s_{\ell} \tag{30}
\end{equation*}
$$

where $\chi(R)$ is given by Eq. (15) setting $I=I(R)$.
The resonance length δs_{ℓ} is defined as

$$
\begin{equation*}
\delta s_{\ell}=\int_{-\infty}^{+\infty} d s \cos \xi_{\ell} \tag{31}
\end{equation*}
$$

By combining Eqs. (26), (28), and integrating along s we show

$$
\begin{equation*}
\delta s_{\ell}=\Gamma(1 / 2) \cos (\pi / 4)\left[\frac{2}{\left|\xi_{\ell}^{(2)}\right|}\right]^{1 / 2} \tag{32}
\end{equation*}
$$

The condition of isolated resonances is $\delta s_{\ell}<\Delta s_{\ell}$, where $\Delta s_{\ell}=3 / \sqrt{2}\left(\psi_{\ell+1}-\psi_{\ell}\right)$ and ψ_{ℓ} is given in Eq. (7).

In the case where the inhomogeneity of the magnetic field is larger than the contribution of the resonance, we may neglect the term proportional to $(d I / d s)_{(R)}$ in Eq. (28), we get

$$
\begin{equation*}
\Delta I=\left(\frac{d I}{d s}\right)_{(R)} \Gamma(1 / 2) \cos (\pi / 4)\left[\left|\frac{1}{\beta_{\ell}(R) s_{\ell}}\right|\right]^{1 / 2} \tag{33}
\end{equation*}
$$

where $\beta_{l}(R)$ is given by Eq. (23) and must be evaluated at resonance. From the definition of Γ_{c} in Eq. (13), the change in the action is proportional to the electric field amplitudes.

For interactions such that the contribution of $\alpha_{l}(R)$ in Eq. (28) is smaller than the contribution of $(d I / d s)_{R}$, we get

$$
\begin{equation*}
\Delta I= \pm\left[\left|\ell\left(\frac{d I}{d s}\right)_{(R)}\right|\right]^{1 / 2} \Gamma(1 / 2) \frac{\left[2\left|v_{0}(R)\right|^{1 / 2}\right.}{k_{\|} r_{L}} \cos (\pi / 4) \tag{34}
\end{equation*}
$$

where the \pm sign depends on the sign of $(d I / d s)_{R}$. We see that the change in particle momentum I is now proportional to the square root of the electric field amplitudes, i.e. $\sqrt{\varepsilon_{i}}$. We call this the second order resonance condition because to zero order in the electric field amplitudes $d^{2} \xi_{l} / d s^{2} \simeq 0$. For the case of equatorial interactions $\left(s_{l}=0\right)$, the condition for the validity of this approximation is

$$
\begin{equation*}
\left[\frac{k_{\|} \Gamma_{l}}{\sqrt{2 v_{0}}}\left(\frac{1}{\ell}\left|\left(\frac{d I}{d s}\right)_{(R)}\right|\right)^{1 / 2}\right]^{3} \gg \beta_{\ell}(R) \Gamma(1 / 2) \cos \pi / 4 \tag{35}
\end{equation*}
$$

Note that for a fix value of ω the second order resonance condition is most likely satisfied for equatorial interactions, because then the inhomogeneity of the magnetic field is small.

Thus the first harmonic will dominate the second-order interactions. If we allow ω to be a function of s, then

$$
\begin{equation*}
\alpha_{\ell}=\beta_{\ell} \frac{1}{\Pi(L)} \frac{d \Omega}{d s}+r_{L} \frac{d k_{\|}}{d \omega} \frac{d \omega}{d s} \tag{36}
\end{equation*}
$$

By changing ω so that $\alpha_{\ell}(R)=0$ for $s_{\ell}>0$, the second-order resonance condition is satisfied for other harmonics, and the change in the particle velocity is proportional to $\sqrt{\epsilon_{i}}$. This should be contrasted with the result in Eq. (33) where the change in action is linear with the electric Gields and thus smaller than when the condition for second order resonance is satisfied.

VI. QUASILINEAR THEORY

The distribution function of protons which satisfy the first order resonance condition is given by solving for the quasilinear equation Lyons and Williams (1984):

$$
\begin{equation*}
\left(\frac{1}{r_{\mathrm{atm}}}+\frac{\partial}{\partial t}\right) f=\pi q^{2} \sum_{\ell=-\infty}^{+\infty} \int \frac{d^{3} \mathrm{k}}{(2 \pi)^{3}}\left[\bar{G}+\frac{\omega-k_{\|} v_{\|}}{\omega p_{\perp}}\right] \delta\left(k_{\|} v_{\|}-\ell \Omega_{p}-\omega\right) \Theta_{\ell}(\mathbf{k}) \hat{G} f \tag{37}
\end{equation*}
$$

where p is momentum and $r_{\text {atm }}$, the atmospheric loss time is defined in^{2}. By assuming that $\omega / \Omega_{p} \ll \sin ^{2} \theta_{c}$ (where θ_{c} is the local pitch angle at the loss cone boundary) we may approximate

$$
\begin{align*}
\hat{G} & =-\frac{2}{p} \frac{\Omega_{e}(L)}{\Omega_{e}}\left(\frac{p_{1}}{p}\right)^{3} \frac{\partial}{\partial \mu}+\frac{p_{\perp}}{p} \frac{\partial}{\partial p} \\
\hat{G}+\frac{\omega-k_{\|} v_{\|}}{\omega p_{\perp}} & =\frac{1}{p^{2}} \frac{\partial}{\partial p} p^{2} \sin \theta-\frac{2}{p} \frac{\Omega_{\varepsilon}(L)}{\Omega_{\epsilon}} \frac{p_{\|}}{p} \frac{\partial}{\partial \mu}\left(\frac{p_{\perp}}{p}\right)^{s} \frac{p}{p_{\|}} \tag{38}\\
\sum_{\epsilon=-\infty}^{+\infty} \delta\left(k_{\|} v_{\|}+\ell \Omega_{p}-\omega\right) \Theta_{\ell}(k) & \simeq(2 \pi)^{3} \delta\left(k_{\|} v_{\|}-\omega\right) \frac{\omega \Omega_{e}}{\omega_{p}^{2}} \frac{W_{k}(\phi, t)}{|\cos \phi|} b(\phi) \tag{39}
\end{align*}
$$

where

$$
\begin{equation*}
b(\phi)=1+\cos ^{2} \phi+\frac{1}{2}\left|\frac{p_{\|}}{p_{\perp}} \frac{\omega}{\Omega_{e}} \sin \phi\right|^{2} \tag{41}
\end{equation*}
$$

If B_{k} is the wave magnetic field ($B_{k} \ll B_{0}$, the geomagnetic field), then the energy density of waves is

$$
\begin{equation*}
W_{k}(\phi, t)=\frac{1}{8 \pi}\left(\frac{B_{k}}{2 \pi}\right)^{2} \tag{42}
\end{equation*}
$$

We assume that diffusion occurs on time scales such $t>\tau_{B}$, where τ_{B} is the proton bounce time between ionospheric conjugates. We integrate the diffusion equation along
the flux tube by applying the operator $1 / r_{B} \int d z / v_{\|}$to both sides of Eq. (37). The bounceaveraged diffusion equation, in terms of equatorial pitch-angles θ_{L} and particle momentum, is

$$
\begin{align*}
\left(\frac{1}{T_{\mathrm{atm}}}+\frac{\partial}{\partial t}\right) f= & \frac{1}{p \sin \theta_{L} \cos \theta_{L}} \frac{\partial}{\partial \theta_{L}} \sin \theta_{L} \cos \theta_{L}\left[D_{0, \theta} \frac{1}{p} \frac{\partial f}{\partial \theta_{L}}+D_{0, p} \frac{\partial f}{\partial p}\right]+ \\
& \frac{1}{p^{2}} \frac{\partial}{\partial p}\left\{p\left[p D_{p, p} \frac{\partial f}{\partial p}+D_{p, \theta} \frac{\partial f}{\partial \theta_{L}}\right]\right\} \tag{43}
\end{align*}
$$

The bounce-averaged diffusion coefficients are

$$
\begin{align*}
& D_{0,0}=\tan ^{2} \theta_{L} D_{p, p} \tag{44}\\
& D_{0, p}=D_{p, 0}=-\tan \theta_{L} D_{p, p} \tag{45}
\end{align*}
$$

The energy-diffusion coefficient is

$$
\begin{equation*}
D_{p, p}=\frac{\pi q^{2}}{v \tau_{B}} \int_{0}^{\infty} k^{2} d k \int_{-\pi / 2}^{+\pi / 2} \sin \phi \Lambda(k, \phi) d \phi \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda(k, \phi)=\frac{4 \pi \Omega_{e}(L)^{3}}{\omega_{p}^{2}} \frac{W_{k}(\phi, t)}{|\cos \phi|}\left(\frac{d s}{d \Omega}\right)_{(R)}\left|\frac{\Omega(R)}{\Omega(L)}\right|^{2} \frac{p_{\|}}{p} \varepsilon(\phi) \tag{47}
\end{equation*}
$$

Here R denotes values at the resonance where $v_{\|} \sim v$, and $\omega-k_{\|} v \simeq 0$. Note that for small values of ϕ, we can neglect the contribution of the parallel component of the wave field in $b(\phi)$ (see Eq. (41)), then $D_{p, p}$ is approximately independent of μ, the equatorial pitch angle, and we write

$$
\begin{equation*}
f=F(t) \mu^{o} K(p) \tag{48}
\end{equation*}
$$

where $\sigma>0$ is a free parameter. We define the precipitation lifetime as

$$
\begin{equation*}
\tau_{p}=-\left|\frac{1}{F} \frac{d F}{d t}\right|^{-1} \tag{49}
\end{equation*}
$$

By combining Eqs. (43) through (45) and Eq. (48), we show

$$
\begin{align*}
\left|\frac{2 \kappa_{\mathrm{e}}}{r_{B}}-\frac{1}{r_{p}}\right| K(p) & =\frac{4 \sigma(\sigma+1)}{p^{2}} D_{p, p} K+\frac{d}{d p}\left|D_{\Gamma, p} \frac{d K}{d p}\right|- \\
& =\frac{4 \sigma}{p} D_{p, p} \frac{d K}{d p}-\frac{2 \sigma}{p^{2}} K \frac{d}{d p}\left|p D_{p, p}\right| \tag{50}
\end{align*}
$$

where $\kappa_{c}=\mu_{c}^{(\sigma+1)}$. This is an eigenvalue equation for τ_{p} as a function of the free parameter σ. The eigenfunction $K(p)$ is such that must be regular as $p \rightarrow 0$, and well behaved for large p, i. e. as $p \rightarrow \infty$ then $K \ll p^{-2}$.

VII. SUMMARY AND CONCLUSIONS

We have presented a theoretical analysis of proton-whistler interactions near the equator in the plasmasphere. Whistler waves which are near the pararesonance mode ${ }^{9}$, can interact with protons whose energies are in the hundreds of keV . In an inhomogeneous geomagnetic field, we show that the spacing between subsequence cyclotron resonances is very small. Because of that, protons are scattered into the atmospheric loss cone after crossing multiple resonances. A test-particle hamiltonian formalism is given in terms of the action (I), angle (ξ_{ℓ}), variables as function of the distance (s) along the flux tube. We show that for second-order resonant protons, $d \xi_{l} / d s=d^{2} \xi_{l} / d s^{2}=0$, and the change in the particle's momentum is proportional to the square root of the electric field amplitudes. The thresholds in electric fields for second-order resonance conditions are calculated. A quasilinear formulation for the distribution function of first-order resonant protons is presented. The bounce-averaged diffusion equation contains diffusion coefficients for the pitch angle, energy, and cross energy/ pitch angle terms. They are shown to be of the same orders of magnitude. We reduce the diffussion equation to a one-dimensional energy dependent equation to be solved for the precipitation life times of protons in the Radiation Belts.

Acknowledgements. This work has been supported in part by the U. S. Air Force contract F19628-89-K-0014 with Northeastern University.

VIII. REFERENCES

1. L. R. Lyons and D. J. Williams, Quantitative Aspects of Magnetospheric Physics, D. Reidel Publising Company, The Netherlands, 1984.
2. C. F. Kennel and H. E. Petschek, J. Geophys. Res., 1966, 71, 1.
3. P. A. Bespalov and V. Yu. Trakhtengerts, Rev. Plasma Phys., 1980, 10, 88.
4. E. Villalón and W. J. Burke, J. Geophys. Res., 1991, 96, 9655.
5. E. Villalón, W. J. Burke, P. L. Rothwell, M. B. Silevitch, J. Geophys. Res., 1989, 94, 15243.
6. H. C. Koons, Geophys. Res. Lett., 1975, 2, 281.
7. R. A. Kovrazhkin, M. M. Mogilevskii, O. A. Molchanov, Yu. I. Gal'perin, N. V. Dzhordzhio, Zh. M. Bosbe, and A. Rem, JETP Lett., 1904, 39, 228.
8. R. Gendrin, J. Atmospheric Terrest. Phys., 1968, 30, 1313.
9. M. G. Morgan, J. Geophys. Res., 1980, 85, 130.
10. D. R. Shklyar, Planet. Space Phys., 1986, 34, 1091.
11. R. A. Helliwell, J. Geophys. Res., 1967, 72, 4773.
12. K. B. Dysthe, J. Geophys. Res., 1971, 76, 6915.

WHISTLER INTERACTIONS WITH ENERGETIC PROTONS

Elena Villalón
Center for Electromagnetics Research, Northeastern University, Boston MA 02115
William J. Burke
Geophysics Directorate, PL/OL-AA, Hanscom AFB, MA 01731

Abstract

Whistler waves, near the electrostatic limit, can interact with trapped, energetic protons close to the equator in the Earth's Radiation Belts. In an inhomogeneous geomagnetic field, the spacing between cyclotron resonances is very small due to large ion Larmor radii. After crossing multiple resonances, the pitch angles change significantly and the protons are scattered toward the atmospheric loss cone. A test-particle, Hamiltonian formalism is investigated. For second-order resonant protons, the change in particle momentum is proportional to the square root of the wave electric field amplitudes. The thresholds in electric fields for second-order resonance conditions are calculated. Quasilinear theory is studied to describe the distribution functions and calculate the diffusion life times of first-order resonant protons. The diffusion coefficients for the energy, pitch angle, and the cross energy/ pitch angle terms are shown to be of the same orders of magnitude.

I. INTRODUCTION

Interactions between whistler waves and energetic electrons in the magnetosphere have been the subject of intensive research during the past two decades $[1-3]$. The wave-electron, resonant interactions are believed to account for many phenomena such as growth of signals [2], emissions of varying frequencies [4] and electron precipitation into the ionosphere [5]. Most of the theoretical work is based on resonant interactions at the first harmonic of the electron gyrofrequency, although higher harmonics interactions may also be important [1]. Detailed theoretical analyses taking into account wave growth and particle depletion, is given in the papers by Villalón and coworkers (see Refs. $[6,7]$ and references therein).

The interactions of plasmaspheric protons and whistler waves have not received as much attention. This is because the energies required are very large and the population of protons with energies larger than 500 keV , is small. Since the proton gyrofrequency Ω_{p}, is much lower than the wave frequency ω, the resonant velocity $\nu_{\| \|}$is of the order of the wave phase velocity $\omega / k_{\|}$
(where $k_{\|}$is the parallel component of the wave vector). However recent experiments $[8,9]$ have demonstrated that protons precipitate by interactions with VLF waves launched into the magnetosphere from ground sources. The wave frequencies are close to the equatorial electron gyrofrequency. Thus, near the equator, $k_{\| \mid}$is very large and the resonant energies of protons relatively low. We limit our studies to regions near the magnetic equator of the plasmasphere $L<4$ (where L is the equatorial crossing distance of the field line measured in Earth radii R_{E}).

Figure 1. Schematic representation of whistler (ω, \mathbf{k}), interacting with electrons and protons near the equator. The coordinate system used in this paper is depicted here.

The plasmasphere contains a relatively dense population of cold particles of ionospheric origin whose distribution function is isotropic in pitch angle. The energetic particles originate from stationary sources (convective transfer accross L shells) and pulsed sources (sudden impulses during magnetic storms and substorms). They are trapped within the radiation belts traveling back and forth along field lines between magnetic mirror points, and interacting with the quasi-electrostatic whistler waves near the magnetic equator. The predominant feature of the resonant interactions is the
crossing of multiple harmonics of the proton gyrofrequency. The proton pitch angle is θ, where $\tan \theta=v_{\perp} / v_{\| l}$ (the ratio between the perpendicular and parallel components of the velocity). The pitch angles can change due to direct pitch-angle scattering or to energy diffusion [10]. This should be contrasted with the analogous whistler-electron interactions, where the predominant harmonic is the first. Also, electron energies do not change during the interactions. For proton-whistler interactions, the waves and particles travel in the same direction, with the waves slightly overtaking the protons. For electron-whistler interactions the waves and particles travel in opposite directions. The situation is depicted in the Figure 1.

The paper is organized as follows: Sec. II describes the propagation of whistler waves in a cold plasma, near the electrostatic limit [11]. Sec. III studies the resonance conditions for multiple harmonics of the proton gyrofrequency. The inhomogeneous, near-equatorial geomagnetic field is described by a parabolic profile. Due to the large ion Larmor radii, we show that the distance between resonances is very small. Because of the inclusion of multiple harmonics, these interactions are very effective [12]. The test-particle Hamiltonian formalism for each isolated cyclotron resonance, is given in Sec. IV. Sec V studies the evolution of the action (I) and angle $\left(\xi_{\ell}\right)$ variables as function of the distance (s) along the flux tube using Taylor expansions around isolated resonance points. Let us expand ξ_{ℓ} around the equator: $\xi_{l}(s)=\xi_{l}(0)+\xi_{l}^{(1)} s+1 / 2 \xi_{l}^{(2)} s^{2}$. First-order resonant particles are such that $\xi_{l}^{(1)}=0$. That is, at the equator $d \xi_{l} / d s=0$, which is the resonance condition as given in Eq. (5). The second-order term $\xi_{l}^{(2)} \sim d B_{o} / d s+O\left(B_{k}\right)$. For large wave amplitudes $O\left(B_{h}\right)$ is larger than the contribution of the inhomogeneous geomagnetic field $d B_{0} / d s$. In this case, we say that protons which are in gyroresonance (i. e. $\xi_{l}^{(1)}=0$), satisfy the second-order resonance condition. This is because to zero order in the electric field amplitude. $d \xi_{l} / d s=d^{2} \xi_{l} / d s^{2} \simeq 0$. For first-order resonant particles, the change in action is proportional to the electric field amplitude. For second-order resonant protons, the change in action is proportional to the square root of the electric field amplitude. The second-order resonance condition is met when the field amplitude is large [13, 14]. The thresholds in electric fields, are then calculated. Sec. VI contains a quasilinear formulation for the distribution function of first order resonant protons. We assume that the protons are unmagnetized in time scales of the order of $2 \pi / \omega$, where ω is the frequency of the whistler wave. They are however magnetized in times comparable to the bounce period. Because diffusion occurs over many bounce periods, we average the diffusion equation along the flux tube. The bounce averaged, Fokker-Planck equation contains the diffusion coefficients for the pitch angle, energy, and the cross energy/pitch angle terms. These coefficients are shown to have the same orders of magnitude. We reduce the equation to a
one-dimensional diffusion equation to be solved for the energy part of the distribution function. This eigenvalue equation estimates the VLF diffusion life times of protons in the radiation belts.

II. QUASI-ELECTROSTATIC WHISTLER WAVES

We consider a whistler wave of frequency ω and wave vector k, propagating in a field-aligned duct. The geomagnetic field B_{0} is along the z direction and ϕ is the angle between k and $B_{\mathbf{o}}$. The dispersion relation for the refractve index $\eta=c k / \omega$ is

$$
\begin{equation*}
\eta^{2}=1+\frac{\left(\omega_{p} / \omega\right)^{2}}{\left(\Omega_{e} / \omega\right)|\cos \phi|-1} \tag{1}
\end{equation*}
$$

where ω_{p} and Ω_{e} are the electron plasma and gyro frequencies, respectively.
The electric field is [15]

$$
\begin{equation*}
\mathrm{E}=\hat{\mathbf{x}} \mathcal{E}_{1} \cos \Psi-\hat{\mathbf{y}} \mathcal{E}_{2} \sin \Psi-\hat{\mathbf{z}} \mathcal{E}_{3} \cos \Psi \tag{2}
\end{equation*}
$$

where $\hat{\mathbf{x}}, \hat{\mathrm{y}}$ and $\hat{\mathbf{z}}$ are unit vectors; $\Psi=k_{\perp} x+k_{\|} z-\omega t$, and $k_{\|}, k_{\perp}$ are the components along and perpendicular to B_{0} of the wave vector. The ratjos of electric field components are

$$
\begin{align*}
& \frac{\mathcal{E}_{2}}{\mathcal{E}_{1}}=\frac{1}{\eta^{2}-1} \frac{\left(\omega_{p} / \omega\right)^{2}}{\left(\Omega_{e} / \omega\right)-|\cos \phi|} \\
& \frac{\mathcal{E}_{1}}{\mathcal{E}_{3}}=\frac{1-\left(\omega_{p} / \omega\right)^{2}-(\eta \sin \phi)^{2}}{\eta^{2} \sin \phi \cos \phi} \tag{3}
\end{align*}
$$

For the case where $\omega \sim \Omega_{e}(L)|\cos \phi|$, the equatorial refractive index $\eta^{2}(L) \gg$ 1 , then $\mathcal{E}_{2} / \mathcal{E}_{1} \ll 1$, and $\mathcal{E}_{1} / \mathcal{E}_{3} \sim-\sin \phi / \cos \phi$. The wave becomes quasielectrostatic, i.e. E has a significant component in the direction of k, and the group velocity $v_{g} \sim 1 / \eta$. This wave can interact with protons which energies are in the hundreds of keV .

Near the equator, the Earth's magnetic field may be approximated as having a parabolic profile

$$
\begin{equation*}
\frac{\Omega}{\Omega(L)}=1+\left(\frac{s}{r_{L}}\right)^{2} \tag{5}
\end{equation*}
$$

where $s \simeq R_{E} L \psi$ and ψ is the geomagnetic latitude (see the figure), and $r_{L}=(\sqrt{2} / 3) R_{E} L$. The equatorial gyrofrequency is denoted by $\Omega(L)$, and Ω stands for the gyrofrequencies either for electrons or protons at a location s away from the equator along the field line.

III. RESONANCE PROTON WHISTLER INTERACTIONS

For whistler waves to interact strongly with protons near equatorial regions, they must satisfy the resonance condition

$$
\begin{equation*}
\omega-k_{\|} \boldsymbol{v}_{\|}-\ell \Omega_{p}=0 \tag{6}
\end{equation*}
$$

where, $\ell=0,1,2 \ldots ; \Omega_{p}$ is the proton gyrofrequency, and $\nu_{\|}$is the parallel component of the particle's velocity. We call $\mu=\sin ^{2} \theta_{L}$, where θ_{L} is the equatorial pitch angle. Here $\theta_{L}>\theta_{c}(L)$, where $\theta_{c}(L)$ is the pitch angle at the boundary of the loss cone, and μ_{c} the corresponding value of μ. As function of the L shell, the mirror ratio is $\sigma=1 / \mu_{c}=L^{3}(4-3 / L)^{1 / 2}$. To zero order in electric field amplitudes, the first adiabatic invariant is conserved. Then we may write for the parallel and perpendicular components of the particle velocity $v: v_{\|}=v[1-\mu \Omega / \Omega(L)]^{1 / 2}, v_{\perp}=v[\mu \Omega / \Omega(L)]^{1 / 2}$.

At the equator the protons interact with the harmonic $\ell=0$, and then the energy of resonant particles is found solving for the equation: $\omega-k_{\|} v_{\|}=0$. We show

$$
\begin{equation*}
\frac{v}{c}=\frac{1}{\eta(L) \cos \phi} \frac{1}{(1-\mu)^{2 / 2}} \tag{7}
\end{equation*}
$$

where $\eta(L)$ denotes equatorial values of the refractive index, and $f_{e}=$ $\Omega_{e}(L) / \omega$.

By solving for Eq. (6), using the parabolic profile in Eq. (5), we find the geomagnetic latitude ψ_{ℓ} of higher order resonances (i.e., $\ell \geq 0$),

$$
\begin{equation*}
\psi_{\ell}^{2}=\frac{4}{9} \frac{m_{e}}{m_{p}} \ell\left(f_{e}|\cos \phi|-1\right) \frac{1}{g(\mu)} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\mu)=\frac{\mu}{1-\mu}\left(|\cos \phi|-\frac{1}{f_{e}}\right)+|\cos \phi| . \tag{9}
\end{equation*}
$$

where $\boldsymbol{m}_{e, p}$ are the electron, proton masses. The distance along the flux tube where resonant interactions take place is given by, $s_{\ell}=R_{E} L \psi_{\ell}$. The distance between two subsequent rescnances is obtained from $\Delta s_{\ell}=R_{E} L\left(\psi_{\ell+1}-\psi_{\ell}\right)$.

For example, we take $L=3.5, \omega_{p} / \Omega_{e}(L)=7.9, \omega / \Omega_{e}(L)=0.75$, and $\theta_{L}=10^{\circ}$. For $\phi=37^{\circ}$, we find that $\eta(L)=41.4$ and the energy of the resonant protons is 437 keV . The location along the geomagnetic field of the gyroresonances are: $\psi_{2}=0.25^{\circ}, \psi_{3}=0.35^{\circ}, \ldots, \psi_{17}=1 .^{\circ}$. As another example we take $\phi=40^{\circ}$, then $\eta(L)=72$ and the proton energy is 158.6 keV . The location of the gyroresonances are: $\psi_{2}=0.15^{\circ}, \psi_{3}=0.21^{\circ}, \ldots, \psi_{47}=$ $1 .^{\circ}$. We also show that ψ_{l} is very weakly dependent upon pitch angle μ. Thus there are multiple resonances crossings (17 for the first and 47 for the second examples) within one degree of the magnetic equator, which makes the proton whistler interactions very efficient.

IV. THE HAMILTONIAN EQUATIONS

We normalize time t to $\Omega_{p}(L)$, velocity v to c^{-1}, and length s to r_{L}^{-1}, and from now on we always refer to these normalized variables. Let us define

$$
\begin{equation*}
\xi_{\ell}=\ell \lambda+\int_{0}^{\prime} d s^{\prime} r_{\mathrm{L}} k_{\|}\left(s^{\prime}\right)-\frac{\omega}{\Omega_{\mathrm{p}}(L)} t \tag{10}
\end{equation*}
$$

where $\tan \lambda=v_{y} / v_{z}$, and $v_{\varepsilon, y}$ are the components of the particle velocity in the x and y directions, respectively. The dimensionless electric field amplitudes are

$$
\begin{equation*}
\varepsilon_{i}=\frac{q \varepsilon_{i}}{m_{p} c \omega} \tag{11}
\end{equation*}
$$

for $i=1,2,3$, and where q is the proton charge. The action-angle variables are (I, λ), where

$$
\begin{equation*}
I=\frac{v_{\perp}^{2}}{2} \frac{\Omega_{p}(L)}{\Omega_{p}} \tag{12}
\end{equation*}
$$

To first order in the electric field amplitudes ε_{i}, the normalize, timedependent hamiltonian, as function of the canonical pairs, $\left(v_{\|}, s\right)$, and actionangle variables, is

$$
\begin{equation*}
\mathcal{H}=\frac{v_{\|}^{2}}{2}+I \frac{\Omega}{\Omega(L)}+\sum_{\ell=-\infty}^{\infty} \sin \xi_{\ell}\left\{\varepsilon_{3} v_{\|} \mathcal{J}_{\ell}\left(k_{\perp} \rho\right)-\left[\frac{I \Omega}{2 \Omega(L)}\right]^{1 / 2} \Gamma_{\ell}\right\} \tag{13}
\end{equation*}
$$

Here Γ_{ℓ} is a linear combination of Bessel functions \mathcal{J}_{ℓ},

$$
\begin{equation*}
\Gamma_{\ell}=\left(\varepsilon_{1}-\varepsilon_{2}\right) \mathcal{J}_{\ell+1}\left(k_{\perp} \rho\right)+\left(\varepsilon_{1}+\varepsilon_{2}\right) \mathcal{J}_{\ell-1}\left(k_{\perp} \rho\right) \tag{14}
\end{equation*}
$$

whose arguments are $k_{\perp} \rho=\left(c k_{\perp} / \Omega_{p}\right)[2 I \Omega / \Omega(L)]^{1 / 2}$. If, in addition to the electromagnetic wave, there is an electrostatic potential ϕ_{0}, then we replace in Eq. (13), ε_{3} by $\varepsilon_{3}+\varepsilon_{0} / v_{\|}$, where $\varepsilon_{0}=q \phi_{0} / m_{p} c^{2}$.

For particles crossing a single isolated cyclotron resonance, we consider only one term ℓ in the summation in Eq. (13). In this case, we find the following constant of motion

$$
\begin{equation*}
C_{\ell}=\ell \mathcal{H}-\frac{\omega}{\Omega_{p}(L)} I \tag{15}
\end{equation*}
$$

The criterion for overlapping of resonances is given later on in Eq. (37).
By defining v_{0} so that $\mathcal{H}=v_{o}^{2} / 2+I \Omega / \Omega(L)$, we obtain

$$
\begin{equation*}
v_{0}=\left\{\frac{2}{\ell}\left[C_{\ell}+I\left(\frac{\omega}{\Omega_{p}(L)}-\ell \frac{\Omega}{\Omega(L)}\right)\right]\right\}^{1 / 2} \tag{16}
\end{equation*}
$$

We can now reduce the problem to one-dimension, in which case we find

$$
\begin{align*}
v_{\|} & =v_{0}+\sin \xi_{\ell} \Upsilon_{\ell}\left(I, v_{0}\right) \\
\frac{d s}{d t} & =v_{0}+\frac{1}{v_{0}}\left[\frac{I \Omega}{2 \Omega(L)}\right]^{1 / 2} \Gamma_{\ell} \sin \xi_{\ell} \tag{17}
\end{align*}
$$

where $\Upsilon_{\ell}\left(I, v_{o}\right)$ is defined in Eq. (19).
To zero order in ε_{i}, the dimensionless length $s=t v_{0}$. The equation of motion for I as a function of s is

$$
\begin{align*}
\frac{d I}{d s} & =\ell \cos \xi_{\ell} \Upsilon_{\ell}\left(I, v_{0}\right) \tag{18}\\
\Upsilon_{\ell}\left(I, v_{0}\right) & =-\varepsilon_{3} J_{\ell}\left(k_{\perp} \rho\right)+\frac{1}{v_{0}}\left[\frac{I \Omega}{2 \Omega(L)}\right)^{1 / 2} \Gamma_{\ell} \tag{19}
\end{align*}
$$

As $\varepsilon_{i} \rightarrow 0$, then

$$
\begin{equation*}
\frac{d \xi_{l}}{d s} \rightarrow k_{\|} r_{L}+\frac{\ell \Omega_{p}-\omega}{\Omega_{p}(L) v_{o}} \tag{20}
\end{equation*}
$$

The gyroresonance condition is obtained by setting Eq. (20) equal to zero. When this is satisfied $s=s_{\ell}$ (the resonance length) which is defined as $s_{\ell}=3 / \sqrt{2} \psi_{\ell}$ and ψ_{ℓ} is given in Eq. (8).

By assuming that the protons are in gyroresonance, we show that ξ_{l} satisfies the second order differential equation

$$
\begin{equation*}
\frac{d^{2} \xi_{\ell}}{d s^{2}}=\alpha_{\ell}+\frac{\left(k_{\|} r_{L}\right)^{2}}{v_{0}} \frac{1}{\ell} \frac{d I}{d s} \tag{21}
\end{equation*}
$$

Here

$$
\begin{align*}
& \alpha_{\ell}=\frac{\beta_{\ell}}{\Omega(L)} \frac{d \Omega}{d s} \tag{22}\\
& \beta_{\ell}=\Omega_{p}(L) r_{L} \frac{m_{\mathrm{p}}}{m_{\mathrm{e}}} \frac{d k_{\|}}{d \Omega_{e}}+\frac{1}{v_{\mathrm{o}}}\left\lceil\frac{\ell}{2}+\frac{C_{\ell}}{v_{\mathrm{o}}^{2}}\right\rceil \tag{23}
\end{align*}
$$

where $d \Omega / d s=2 s \Omega(L)$.

V. SECOND ORDER RESONANCE

We next solve the pair of coupled Eqs. (18) and (21) under the assumption that s is very close to the resonance length s_{l}. The parallel velocity v_{0} is given by setting Eq. (20) equal to zero, i.e.

$$
\begin{equation*}
v_{o}(R)=\frac{\omega}{c k_{\|}} \frac{c}{\Omega_{p}(L) r_{L}}\left(1-\ell \frac{\Omega_{p}}{\omega}\right) \tag{24}
\end{equation*}
$$

In this case we may use a Taylor expansion around s_{l}, then

$$
\begin{align*}
I & \simeq I_{l}(R)+\left(\frac{d I}{d s}\right)_{(R)}\left(s-s_{l}\right) \tag{25}\\
\xi_{l} & \simeq \xi_{l}(R)+\xi_{l}^{(1)}\left(s-s_{\ell}\right)+\frac{\xi_{l}^{(2)}}{2}\left(s-s_{l}\right)^{2} \tag{26}
\end{align*}
$$

where $I_{l}(R), \xi_{l}(R)$ are constants, and R denotes values at the resonance ($s=s_{l}$). Here $(d I / d s)_{(R)}$ is given by Eqs. (18) and (19), with $\xi_{\ell}=\xi_{l}(R), I=$ $I(R)$, and $v_{0}=v_{0}(R)$, evaluated for resonant values. For protons satisfying the resonance condition, $\xi_{l}^{(1)}=0$. For convenience we choose $\cos \left[\xi_{l}(R)\right]=1$.

The constant of motion C_{ℓ} is obtained evaluating Eq. (15) at the equator, we show

$$
\begin{equation*}
C_{\ell}=\left(\frac{1}{\sqrt{2} \eta(L) \cos \phi} \frac{c}{\Omega_{p}(L) r_{L}}\right)^{2} \frac{1}{1-\mu}\left[\frac{-\mu}{f_{p}}+\ell\right] \tag{27}
\end{equation*}
$$

where $f_{p}=\Omega_{p}(L) / \omega \ll 1$. Using Eq. (16) and setting $v_{o}=v_{o}(R)$, we find

$$
\begin{equation*}
I_{\ell}(R)=\frac{f_{p}}{\left[1-\ell f_{p} \Omega(R) / \Omega(L)\right]}\left\{-C_{\ell}+\frac{\ell}{2} v_{0}^{2}(R)\right\} \tag{28}
\end{equation*}
$$

where $\Omega(R) / \Omega(L)=1+s_{l}^{2}$. By substituting Eq. (26) into Eq. (21) we show

$$
\begin{equation*}
\xi_{\ell}^{(2)}=a_{\ell}(R)+\frac{\left(k_{\|} r_{L}\right)^{2}}{v_{0}(R)} \frac{1}{\ell}\left(\frac{d I}{d s}\right)_{(R)} \tag{29}
\end{equation*}
$$

where $\alpha_{\ell}(R)$ is evaluated at the resonance.
The change of the action I after crossing the ℓ 'th resonance, ΔI, obtained by integrating Eq. (18), is approximately

$$
\begin{equation*}
\Delta I=\left(\frac{d I}{d s}\right)_{(R)} \delta_{s_{l}} \tag{30}
\end{equation*}
$$

The resonance length δs_{ℓ} is defined as

$$
\begin{equation*}
\delta s_{\ell}=\int_{-\infty}^{+\infty} d s \cos \xi_{\ell} \tag{31}
\end{equation*}
$$

By combining Eqs. (26), (29), and integrating along s we show

$$
\begin{equation*}
\delta s_{\ell}=\Gamma(1 / 2) \cos (\pi / 4)\left[\frac{2}{\left|\xi_{\ell}^{(2)}\right|}\right]^{1 / 2} \tag{32}
\end{equation*}
$$

Resonances are isolated in space if $\delta s_{\ell}<\Delta s_{\ell}$, where $\Delta s_{\ell}=3 / \sqrt{2}\left(\psi_{\ell+1}-\psi_{\ell}\right)$ and ψ_{l} is given in Eq. (8).

In the case where the inhomogeneity of the magnetic field is larger than
the contribution of the resonance, we may neglect the term proportional to $(d I / d s)_{(R)}$ in Eq. (29), we get

$$
\begin{equation*}
\Delta I=\left(\frac{d I}{d s}\right)_{(R)} \Gamma(1 / 2) \cos (\pi / 4)\left[\left|\frac{1}{\beta_{l}(R) s_{l}}\right|\right]^{1 / 2} \tag{33}
\end{equation*}
$$

where $\beta_{l}(R)$ is given by Eq. (23) and must be evaluated at resonance. From the definition of Γ_{ℓ} in Eq. (14), the change in the action is proportional to the electric field amplitudes.

For interactions such that the contribution of $\alpha_{\ell}(R)$ in Eq. (29) is smaller than the contribution of $(d I / d s)_{R}$, we get

$$
\begin{equation*}
\Delta I= \pm\left[\left.\ell\left(\frac{d I}{d s}\right)_{(R)} \right\rvert\,\right]^{1 / 2} \Gamma(1 / 2) \frac{\left[\left.2\left|v_{0}(R)\right|\right|^{1 / 2}\right.}{k_{\|} r_{L}} \cos (\pi / 4) \tag{34}
\end{equation*}
$$

where the \pm sign depends on the sign of $(d I / d s)_{R}$. We see that the change in particle momentum I is now proportional to the square root of the electric field amplitudes, i.e. $\sqrt{\epsilon_{i}}$. We call this the second order resonance condition because to zero order in the electric field amplitudes $d^{2} \xi_{l} / d s^{2} \simeq 0$. For the case of equatorial interactions ($s_{\ell}=0$), the condition for the validity of this approximation is

$$
\begin{equation*}
\left[\frac{k_{\|} r_{L}}{\sqrt{2 v_{0}}}\left(\frac{1}{\ell} \left\lvert\,\left(\frac{d I}{d s}\right)_{(R) \mid}\right.\right)^{1 / 2}\right]^{3} \gg \beta_{l}(R) \Gamma(1 / 2) \cos \pi / 4 \tag{35}
\end{equation*}
$$

Note that for a fix value of ω the second order resonance condition is most likely satisfied for equatorial interactions, because then the inhomogeneity of the magnetic field is small. Thus the first harmonic will dominate the second-order interactions. If we allow ω to be a function of s, then

$$
\begin{equation*}
\alpha_{\ell}=\beta_{\ell} \frac{1}{\Omega(L)} \frac{d \Omega}{d s}+r_{L} \frac{d k_{\|}}{d \omega} \frac{d \omega}{d s} \tag{36}
\end{equation*}
$$

By changing ω so that $\alpha_{\ell}(R)=0$ for $s_{\ell}>0$, the second-order resonance condition is satisfied for other harmonics, and the change in the particle velocity is proportional to $\sqrt{\varepsilon_{i}}$. This should be contrasted with the result in Eq. (33) where the change in action is linear with the electric fields and thus smaller than when the condition for second order resonance is satisfied.

We have carried out some preliminary calculations applying the theory presented in this section; for waves such that $0.5 \leq \omega / \Omega_{\ell} \leq 1$, and $\cos \phi \geq$ ω / Ω_{ℓ}, and for electric field amplitudes which are in the range 10^{-6} to 10^{-4} Volt $/ \mathrm{cm}$. They show the contribution of large harmonic resonances, i.e. $\ell \geq$ 50 in the change of the action ΔI as defined in Eq. (30). As a matter of fact
of fact the largest contributions to ΔI come from values of ℓ which are close to the argument of the Bessel functions $k_{\perp} \rho$. For equatorial pitch angles between 7.5 and 20 degrees, at the L shell 3.5 , the values of ℓ which give maximum change in the action are larger than 50 and smaller than 150 . Overlapping of resonances occur when

$$
\begin{equation*}
\frac{\Delta I}{I_{l-1}(R)-I_{l}(R)} \geq 1 \tag{37}
\end{equation*}
$$

For electric fields greater than 10^{-4} Volt/cm all resonances ($150 \geq \ell \geq 1$) overlap, but for smaller electric fields only some of them do for particles which equatorial pitch angles are near the loss cone. Note that even if resonances overlap in space (see comments after Eq. (32)), we must still treat them as independent of each other if the criterion in Eq. (37) is not met.

VI. QUASILINEAR THEORY

The distribution function of protons which satisfy the first order resonance condition is given by solving for the quasilinear equation Lyons and Williams (1984):

$$
\begin{equation*}
\left(\frac{1}{\tau_{a \ell m}}+\frac{\partial}{\partial t}\right) f=\pi q^{2} \sum_{\ell=-\infty}^{+\infty} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\dot{G}+\frac{\omega-k_{\|} v_{\|}}{\omega p_{\perp}}\right] \delta\left(k_{\|} v_{\|}-\ell \Omega_{p}-\omega\right) \Theta_{\ell}(k) \dot{G} f \tag{38}
\end{equation*}
$$

where p is momentum and $\tau_{\text {atm }}$, the atmospheric loss time is defined in [1]. By assuming that $\omega / \Omega_{p} \ll \sin ^{2} \theta_{c}$ (where θ_{c} is the local pitch angle at the loss cone boundary) we may approximate

$$
\begin{align*}
& \dot{G}+\frac{\omega-k_{\|} v_{\|}}{\omega p_{\perp}}=\frac{1}{p^{2}} \frac{\partial}{\partial p} p^{2} \sin \theta-\frac{2}{p} \frac{\Omega_{e}(L)}{\Omega_{e}} \frac{p_{\|}}{p} \frac{\partial}{\partial \mu}\left(\frac{p_{\perp}}{p}\right)^{3} \frac{p}{p_{\|}} \\
& \dot{G}=-\frac{2}{p} \frac{\Omega_{e}(L)}{\Omega_{e}}\left(\frac{p_{\perp}}{p}\right)^{3} \frac{\partial}{\partial \mu}+\frac{p_{\perp}}{p} \frac{\partial}{\partial p} \tag{39}\\
& \sum_{\ell=-\infty}^{+\infty} \delta\left(k_{\|} v_{\|}+\ell \Omega_{p}-\omega\right) \Theta_{\ell}(k) \simeq(2 \pi)^{3} \delta\left(k_{\|} v_{\|}-\omega\right) \frac{\omega \Omega_{e}}{\omega_{p}^{2}} \frac{W_{k}(\phi, t)}{|\cos \phi|} b(\phi) \tag{41}
\end{align*}
$$

where

$$
\begin{equation*}
b(\phi)=1+\cos ^{2} \phi+\frac{1}{2}\left[\left.\frac{p_{\|}}{p_{\perp}} \frac{\omega}{\Omega_{e}} \sin \phi\right|^{2}\right. \tag{42}
\end{equation*}
$$

If B_{k} is the wave magnetic field ($B_{k} \ll B_{o}$, the geomagnetic field), then the energy density of waves is

$$
\begin{equation*}
W_{k}(\phi, t)=\frac{1}{8 \pi}\left(\frac{B_{k}}{2 \pi}\right)^{2} \tag{43}
\end{equation*}
$$

We assume that diffusion occurs on time scales such $t>\tau_{B}$, where τ_{B} is the proton bounce time between ionospheric conjugates. We integrate the diffusion equation along the flux tube by applying the operator $1 / \tau_{B} \int d z / v_{\|}$ to both sides of Eq. (38). The bounce-averaged diffusion equation, in terms of equatorial pitch-angles θ_{L} and particle momentum, is

$$
\begin{align*}
\left(\frac{1}{\tau_{\mathrm{atm}}}+\frac{\partial}{\partial t}\right) f= & \frac{1}{p \sin \theta_{L} \cos \theta_{L}} \frac{\partial}{\partial \theta_{L}} \sin \theta_{L} \cos \theta_{L} \\
& {\left[\mathcal{D}_{\theta, \theta} \frac{1}{p} \frac{\partial f}{\partial \theta_{L}}+\mathcal{D}_{\theta, p} \frac{\partial f}{\partial p}\right]+} \\
& \frac{1}{p^{2}} \frac{\partial}{\partial p}\left\{p\left[p \mathcal{D}_{p, p} \frac{\partial f}{\partial_{p}}+\mathcal{D}_{p, \theta} \frac{\partial f}{\partial \theta_{L}}\right]\right\} \tag{44}
\end{align*}
$$

The bounce-averaged diffusion coefficients are

$$
\begin{align*}
& \mathcal{D}_{\theta, \theta}=\tan ^{2} \theta_{L} \mathcal{D}_{p, p} \tag{45}\\
& \mathcal{D}_{\theta, p}=\mathcal{D}_{p, \theta}=-\tan \theta_{L} \mathcal{D}_{p, p} \tag{46}
\end{align*}
$$

The energy-diffusion coefficient is

$$
\begin{equation*}
\mathcal{D}_{p, p}=\frac{\pi q^{2}}{v \tau_{B}} \int_{0}^{\infty} k^{2} d k \int_{-\pi / 2}^{+\pi / 2} \sin \phi \Lambda(k, \phi) d \phi \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda(k, \phi)=\frac{4 \pi \Omega_{\mathrm{e}}(L)^{3}}{\omega_{p}^{2}} \frac{W_{k}(\phi, t)}{|\cos \phi|}\left(\frac{d s}{d \Omega}\right)_{(R)}\left[\frac{\Omega(R)}{\Omega(L)}\right]^{2} \frac{p_{\|}}{p} b(\phi) \tag{48}
\end{equation*}
$$

Here R denotes values at the resonance where $v_{\|} \sim v$, and $\omega-k_{\|} v \simeq 0$. Note that for small values of ϕ, we can neglect the contribution of the parallel component of the wave field in $b(\phi)$ (see Eq. (42)), then $\mathcal{D}_{\mathrm{p}, \mathrm{p}}$ is approximately independent of μ, the equatorial pitch angle, and we write

$$
\begin{equation*}
f=F(t) \mu^{\sigma} K(p) \tag{49}
\end{equation*}
$$

where $\sigma>0$ is a free parameter. We define the precipitation lifetime as

$$
\begin{equation*}
\tau_{p}=-\left[\frac{1}{F} \frac{d F}{d t}\right]^{-1} \tag{50}
\end{equation*}
$$

By combining Eqs. (44) through (46) and Eq. (49), we show

$$
\begin{align*}
\left|\frac{2 \kappa_{\mathrm{c}}}{\tau_{B}}-\frac{1}{\tau_{p}}\right| K(p)= & \frac{4 \sigma(\sigma+1)}{p^{2}} \mathcal{D}_{p, p} K+\frac{d}{d p}\left|\mathcal{D}_{p, p} \frac{d K}{d p}\right|- \\
& \frac{4 \sigma}{p} \mathcal{D}_{p, p} \frac{d K}{d p}-\frac{2 \sigma}{p^{2}} K \frac{d}{d p}\left|p \mathcal{D}_{p, p}\right| \tag{51}
\end{align*}
$$

where $\kappa_{c}=\mu_{c}^{(\sigma+1)}$. This is an eigenvalue equation for τ_{p} as a function of the free parameter σ. The eigenfunction $K(p)$ is such that must be regular as $p \rightarrow 0$, and well behaved for large p, i. e, as $p \rightarrow \infty$ then $K \ll p^{-2}$.

ACKNOWLEDGEMENTS

We are grateful to J. M. Albert and J. U. Kozyra for helpful conversations. This work has been supported in part by the U. S. Air Force contract F19628-89-K-0014 with Northeastern University.

REFERENCES

[1] L. R. Lyons and D. J. Williams, Quantitative Aspects of Magnetospheric Physics (D. Reidel Publising Company, The Netherlands, (1984).
[2] C. F. Kennel and H. E. Petschek, J. Geophys. Res. 71, 1 (1966).
$[3]$ P. A. Bespalov and V. Yu. Trakhtengerts, Rev. Plasma Phys. 10, 88 (1980).
[4] R. A. Helliwell, J. Geophys. Res. 72, 4773 (1967).
$[5$] W.L. Imhof, H.D. Voss, J.B. Reagan, D.W. Datlowe, E.E. Gaines, J. Mobilia and D.S. Evans, J. Geophys. Res. 91, 3077 (1986).
[6] E. Villalón, W. J. Burke, P. L. Rothwell, M. B. Silevitch, J. Geophys. Res. 94, 152 (1989).
| 7 | E. Villalón and W. J. Burke, J. Geophys. Res. 96, 9655 (1991).
[8 | H. C. Koons, Geophys. Res. Lett. 2, 281 (1975).
[9] R. A. Kovrazhkin, M. M. Mogilevskii, O. A. Molchanov, Yu. I. Gal'perin, N. V. Dzhordzhio, Zh. M. Bosbe, and A. Rem, JETP Lett. 39, 228 (1984).
[10] R. Gendrin, J. Atmospheric Terrest. Phys. 30, 1313 (1968).
[11] M. G. Morgan, J. Geophys. Res., 85, 130 (1980).
[1 2] D. R. Shklyar, Planet. Space Phys. 34, 1091 (1986).
[13] K. B. Dysthe, J. Geophys. Res. 76, 6915 (1971).
[14] D. Nunn, Planet. Space Sci. 19, 1141 (1971).
[15] E. Villalón and W. J. Burke, Phys. Fluids, 30, 3695 (1987).

Test particle motion in the cyclotron resonance regime

Gregory P. Ginet and Jay M. Albert

(Received 20 March 1991; accepted 12 July 1991)
Test particles moving in the field of an electromagnetic wave propagating in a hackground magnetic field can gain significant energy when the wave paramelers and particle eneıg are such that the cyclotron resonance condition is satisticd. Central to the acceleration process and long time scale periodic bebavior is the coherent accumulation over many cyctoron orbits of a small change in energy during each orbit, a result of the circularly polarized component of the wave electric field. Also important is the snall change in the relative wave plase duning each orbit tesulting from relativistic variations of the cyclotron fiequency and wave-induced streaming along the background magnetic field The pitysical mechanisms underlying cyclotron resonance acceleration are explored using a sel of heuristic mapping equations whe PMAP) describing changes in the particle momentum and relative wave phase More accurale (but less transparent) descriptions of the particle motion are pursued in the context of orhitaveraged flamilonian theory. A discrete set of mapping equations for the siowly varying canonical aclion and angle are derived (the QMAl') but are found to generate inacemate solutions in certain regions ol phase space when the revonance mumber in such that $|/|=1$ and the particles are imitially cold. These difficulties are avoded by comstructing a cominumb time orbit-averaged Hamilonian and solving the tesultant canonical equations of motion Assuming the momentum is small relative of $m e$ (where m is the particle mass and c is the speed of light), details of the distribution of particle (rajectories in the action-angle plase space for $|/|=1$ and $|I|=2$ are presented and criterial for the exisicnce of orbis oscillatory in angle are derived

1. INTRODUCTION

When constructing a kinetic-theoretic description of the interaction between an electromapnetic wave and a magnetized plasma, it is important to know the trajectory of test particles in the presence of the electromagnetic wave and background magnetic field. A particulatly interesting re gime of wave-test particle interaction sccurs when the wave frequency ω and the particle momentum satisfy the cycto tron resonance condition.

$$
\begin{equation*}
\omega-k_{i} r_{z}-|| | \Omega=0 \tag{1}
\end{equation*}
$$

where Ω is the cyclotron frequency. l is the resonance number, and k, and n_{2} are the wave vector and particle velocily, respectively, in the direction of the background magnetic field $\mathbf{B}_{\mathfrak{p}}=\boldsymbol{B}_{\mathbf{n}} \mathbf{e}_{\mathbf{r}}$. In the cyclotron resonance regime. it is possible for test particles to achieve kinetic energies far in excess of the "quiver energy" on time scales of many wave periods. even for relatively small wave amplitudes. ${ }^{1-7}$ We define the quiver energy as the maximum energy achieved by a test particle in an electromagnetic wave without a background maguetic field.

In the work of Ginet and Heinemann" (hereafter l'aper I). a llamiltonian psendopotential (HPP) theory was developed and used to predict the maximumi kinetic energy $U_{\text {m.... }}$ (normalized to the rest mass energy) and acceleratinnt time ir (uormalized to the wave period) resulting from the cyclorron iesonance acreleration process in the limit of small wave amplitude. Allough the HIP theory proves In be a useful predictive tool, as demonstrated by the extensive comparison of ill'l predictions with those ohtained from mumerical solutions of the full equations of motion given in

Paper 1. these are limitations The IIPP theors deres ont predict any details of the parlicle trajectory other than the temporal dependence of the kinctic encigy and deses not prowide much physical insight into how the acceleration process acluaily works

This paper addiesses the details of the evelotron resenance interaction process that are not cotered by the thipy theory. As in Paper I. we restrict ourselves to the regime of small wave amplitude sn biat pasticles are mot trapped in the troughe of a wave and chaotic motion reculing from overlapping resonances does not occur In Sec II. we discuss the plysical mechanism underlying the acceleration process in the comext of a set of pedagogical mappinf equalous that describes the change in paticic nomentum and wave phase fromone cyclotron orbit tothe next. More accurate (holl less (ransparent) methoxis for computing details rif the cychotron orbil-averaged particle trajectory hased on Hamiltonian theory are presented in Sec: 111. At the end of Sec. III. we study in some detail the distribution of particle trapectories in phase space when the mememmm is small $||\mathrm{p}| /(\mathrm{mc})<\mathbb{\|}$. \wedge summary of the entire papet is combined in Sec. IV

II. THE PHYSICAL MECHANISM

To beller understand the physical mochamism iesponsible for the resonance accelecation process, we des elep in this sectinn a mapping of parlicle momentum and phase from one cyclotron orbil to amother the pedageremal map (I'MAP') will be derived from the equations of monion by lling estimates of the particle trapectory that ate chanacteris. tic of the true trajectory yet simple emouph io allow us to

The U.S. Govarnment is authorized to reproduce and sell this report. permission for further reproduction by others must be obtained from the copyright owner.
 cosang on the small momentum regime. a redaced version al the PMAI' will be ohtaned that depends only on the perpendicular monsentum and relative wave plase 1 las redite ed map will then guide our extended discussion of the acceleraton mechanism Iof motational convenience. we assume a nefatinely charged paticle in our discussion, though all of the analysis applies equally well in positively changed piaticle: given appropiate sign changes in the trapectory and wave polarizations

A. Derivalion of the pedagogical map

The equations of motion for the momentum p and position x of a particle of charge q and mase m in a (artestan cootdinate system ($2.1,2$) can be written as

$$
\begin{align*}
& \frac{d p}{d i}=q\left(\mathrm{E}_{1}+: \times\left(\mathbf{B}_{1}+\mathrm{B}_{4}\right)\right) \tag{2}\\
& \frac{d x}{d i} \cdots \tag{1}
\end{align*}
$$

 ground magnetic field $H_{1},-B_{2}$, . The plane wave clectio and magnetic fields are taken to be

$$
\begin{align*}
& F_{\text {. }}-F_{1} \cos (k \cdot x-a f) e_{n} \\
& E_{1} \sin (k \cdot x-\omega t) e_{1} \cdot F_{1} \cos (k \cdot x \quad \text {, }, t) c_{.} \\
& H_{.}=A_{1} \sin (k \cdot x-\omega \prime) e_{*} \\
& +B_{2} \cos (k \cdot x-\omega) e_{1}-B_{1} \sin \left(k \cdot x-(, H) e_{:} .\right. \tag{5}
\end{align*}
$$

Where w is the wave frequency and $k=k_{x} c_{i}+k_{:} c_{\text {, }}$ is the wave vector in a coordinate system where $k_{1}=0$ with no loss of generality. The sign convention has been chosen so that if all the wave components are positive then the wave is right-hand circularly polarized. Using the plane wave solutinn to Faraday's law.

$$
\begin{equation*}
\mathbf{B}_{. .}-(c / w) \mathbf{k} \times \mathbf{F}_{\ldots} . \tag{6}
\end{equation*}
$$

the components of the wave magnetic field can be wrilten in terms of the components of the wave electric field.

$$
\begin{align*}
& A_{1}-\eta_{1} E_{2} \tag{7}\\
& A_{3}-\eta_{1} E_{1} \mid \eta_{0} E_{1} \tag{8}\\
& A_{1}-\eta_{2} E_{3}
\end{align*}
$$

where $\eta_{,}=c k_{1} / m . \eta_{0}=c h, / G$, and dive index of reflaction η is defined as $\eta=r|k| / \omega$.

The wave electric field amplitudes can be expressed as dimensionless quantities ϵ_{6}, where

$$
c_{1}-|\mathrm{g}| E_{1} / \mathrm{mcm} . \quad 1-1.2 .3 \ldots
$$

The ascumption that $\in<1$. where $f=\max \left(f_{1}, f_{2}, f_{1}\right)$. de . fines the small wave amplitude approximation. In this limit, the quiver energy is proportional to ϵ^{\prime} (cf. Appendix A of Paper I).

Numerical solutions of the full equations of montion in the small wave amplitude limit show that the particle motion in the piane perpendicular to $\mathbf{B}_{\text {, }}$ can he viewed as cyclotron motion with a slowly varying eyclotron radius μ and perpen-
 Thus we are motivated to model the syatem as a seanence of discrete cyclotoon orbits in the perpendicular plane with streaming paraliel to the field (i.e., r. in a comatant d duting each orbit. The dynamics can lhen be ieduced te a map, that gives the momentumand presition of the paraic le at a pation las plase of the cyclotion on bit in temos of the momentum and position exactly one or hit catliet. We outline live derivalion of this pedagengical map (PMAP) helow

Assume that a particte undergeses cyelorom monion in the perpendicular plane and streaming motion parallel to B_{0}, with a constant perpendicular and parallel momentum
 $n=0,1,2, \ldots$. For $t_{n}-t-t_{n}, 1$, the orhits for a megatively chatged particle can be wrilten as

$$
\begin{align*}
& r_{:}-p_{r} . \tag{11}
\end{align*}
$$

$$
\begin{align*}
& y-r r_{n} \sin |\sin (t)| \text {. } \\
& \text { (11) } \tag{12}\\
& \left.z=z_{n}\left|1_{i n}\right| 1-I_{n}\right) . \quad \text { (ls) }
\end{align*}
$$

 and the relativistic cychotum fiequenor wdelined as

$$
\begin{equation*}
\left.s s_{.,}=|q| B_{n} /\right\}_{n} m c \cdots, \gamma_{n} \tag{16}
\end{equation*}
$$

with w, the monrelativistic cychoron legmenes In life 1. these orbits are ploted in tatious slicesol is.p) phase pace Since the guiding cemer in x is a constami of the motion (l'aper I), we have set it equal to zeto wilhom any loss of generality. We have also arbit rarily set the 1 quiding center I equal to zero for illustrative purposes in I if \mid Ihe catue of 1; although not constant, is irietevant since there is no y dependence in the problem

At time t_{n}, , the particle momentum, $=$ position. and cycfotron radius are jumped (Fig I) hy an amount that can be computed by integrating the equation of motion hetween t_{n} and $t_{\text {, }, 1, ~ a s s u m i n g ~ t h a t ~ t h e ~ w a v e ~ f i e l d ~ i s ~ s m a l l ~ c u c o u g h ~}^{\text {a }}$ that the particle motion can be reasomably apponimated by a cyclotron orbit with streaming parallel to the hackgotond fich the 2 position vatiable can be replaced by the welative wave phase valiable t, which we deline to be

$$
\begin{equation*}
v_{1}=k_{z} z \cdots \tag{17}
\end{equation*}
$$

Noting that the jumpin liec x position can be compured irom the jutmp in ρ, using the definition of the cyclenmon radius ρ. the equations of motion necessary to compute the iump valwes can be reduced to three.

$$
\begin{aligned}
& \frac{d p_{1}}{d t^{\prime}}-\frac{|q|}{2 m} \dot{j} \\
& \left.\times \cos \left(m \Omega \Omega_{n}+\prime \prime-K_{\cdot} \mathbf{r}_{m}\right) r^{\prime}+\frac{m \pi}{2} \cdot t^{\prime \prime}\right) \\
& \forall\left[\left(E_{1}+E_{2}-\frac{r_{i n}}{r}\left(B_{1}+B_{3}\right)\right) \prime_{\ldots, \ldots}\left(R_{1} r_{1}\right)\right. \\
& +\left(F_{1}-E_{0}-\frac{r_{i n}}{r}\left(R_{0}-B_{1}\right)\right) J_{n,},\left(R_{0} r_{n}\right) \mid(18) \\
& \text { or Gmetand } \mathrm{Ml} \text { Almil } 2995
\end{aligned}
$$

FIG. 1. Phase space (iajectories in (a) the x. plane. (h) the f. F. plane. and (e) the $\mathrm{P} \cdot \mathrm{F}$, plane. which are used for compuring the PNIAP 1 lie pant cle teagins at I_{n} (lateled with abon). compietes one notbit. antl then is jumped as indicated in hegin another orbil at I. . , (labeleci witll a circle) Also chown in (a) and (b) are the components of the corolatinp wave elec

 $\left|E_{1}\right|=\left|\mathbf{B}_{r}\right|$. Orientations of the parallel wave electric field (solid arrow) and magnetic fietd (dashed arrow) at points along the traictions are ahown in (e) Aotd face arrows correspond in compments of the wave vector k
where $I^{\prime}-1-t_{n}$ and J_{n}, representsa Bessel fume tom of ineger order m. These modified equations have been derived from the Cartesian equations of motion [Eqs (2) and (3)] using the definition of f_{1}. the explicit form for the wave fields [Eqs. (4) and (5)], and the approximate leaicctories | Eqs (11)-(15)] with the appropriate Rescel function expansion. "Making the cyciotron resonance approxtmaton [E4. (1)] with l < O for negatively charged particies, hic modified equations of motion [Eqs. (18)-(20)| can he imegrated over the interval $t^{\prime}=\left\{0.2 \pi / 1 I_{n}\right\}$ to yield

$$
\begin{align*}
\Delta \rho_{1 n}= & \frac{\left.(-1)^{\prime \prime \prime}\right)^{\prime}|q| \pi}{\Omega_{n}} \cos \left(v_{n}+\frac{|l| \pi}{2}\right) \\
& \vee\left[\left(E_{1}+E_{2} \cdots \frac{P_{1 n}}{r_{n} m}\left(B_{1}+B_{2}\right)\right) I,,\left(k_{1} f_{n}\right)\right. \\
& \left.+\left(E_{1}-E_{2}-\frac{p_{1 n}}{r_{n} m c}\left(B_{:}-B_{1}\right)\right) I_{,},\left(k_{n} \rho_{n}\right)\right] \tag{21}
\end{align*}
$$

$\Delta \Gamma_{m}=\frac{(-1)^{\prime \prime \prime} \cdot{ }^{1}|g| \bar{n}}{\Omega_{n}}$

$$
x \cos \left(v_{n}+\frac{1 / \mid \pi}{2}\right)\left(2 F_{1} J_{11},\left(k_{,} f_{n}\right)\right.
$$

$$
+\frac{r_{1 n}}{\gamma_{n} m c}\left[\left(B_{1}+B_{2}\right) M_{1 /},\left(k_{\ldots} \rho_{n}\right)\right.
$$

$$
\begin{equation*}
\left.\left.+\left(B_{2}-B_{1}\right) J_{11},\left(k_{1} \rho_{n}\right)\right)\right) \tag{22}
\end{equation*}
$$

$\Delta d_{n}=2 \pi\left(k_{2} P_{\text {: }} / m \omega,-\omega / \Omega \Omega_{n}\right)$
The PMAl' is now completely specified: piven ' $f_{1}, \ldots, F_{r} . v_{n}$) at time I_{n}, the corresponding quantities al t_{n}. , ate piven by

$$
\begin{align*}
& \rho_{1 n+1}=r_{1 n}+\Delta r_{1 n} \tag{24}\\
& \rho_{1 n+1}=\rho_{1 n}+\Delta p_{i n} \tag{25}\\
& \psi_{n+1}=\psi_{n}+\Delta t_{n}^{\prime} \tag{26}
\end{align*}
$$

using Eqs (21)-(23) for the jump values.
The PMAP will prove to he a useful pedacogical tonl for understanding the resonance acceleration process liowever, it is not a gocel computatiomal tool fom armately predicting a particie trajectory over any long perind of time. This is largely hecause the map is not area presersing in phase space and hence not time reversal invatiant. though the true equatoms of motion are derivable foom a Hamilos. nian. After many iterations, the phase space traiectories of the PMAP solutions will drift away from the traiectories of the true solutions.

The PMAI' alsn has difficulties in predicting the initial

$$
\begin{align*}
& \times\left(\left.2 E_{1} J_{m}\left(k_{1} \rho_{n}\right)+\frac{r_{i n}}{c} \right\rvert\,\left(A_{1}+A_{:}\right) J_{\ldots,},\left(k, \rho_{\ldots}\right)\right. \\
& \left.-\left(B_{2}-B_{1}\right) J_{m} \quad\left(k_{1} r_{m}\right)\right) \text {. } \tag{19}\\
& \frac{d V^{\prime}}{d t^{\prime}}=k_{2} r_{14}-(1), \tag{20}
\end{align*}
$$

phasi and milial mbmentum dependener of the mentem, at least when the initial energy is less than or equat to the pumen energy. Our assumption in detiving the P'MAI that the particle orbit differs only slightly from a cyclotron orbit could break down when the momentum is at the quiver energy level $\{p /(m)=O(\epsilon)\}$ If the particle does not complete a reasonable approximation to a cyclotron orbit in the time interval of an unperturbed cyclotron period. then the change in both ρ_{1-} and p_{1}. will not necessarily be as dictated by the IMAP and could be of $O(\epsilon)$. This will certainly he the case for the first cyclotron perind when starting from cold intial conditions

In light of these problems, the reader mipht woudet how we caln be comfident that lie l'MAl' will be at all uselul in understanding the acoderation puoss We acpured out confidence from analy sk with the PMAI', wheh vicked the kinctic energ! and uscillation period scaling laws bo the $\eta_{:} \neq 1$ regime derived in l'aper I to within a conctant lactor of order unity. Furthermore. analysis in the limit of parallet propagation ($k=k e_{r}$) with the PMAP can reproduce precisely the asymptotic scaling of energy as a function of time derived from the exact solution of Roberts and Buchalanm. The derivations of the $1, \neq 1$ scaling laws from the PMAP' are given in the Appendix.

B. The small momentum limit of the PMAP

The PMAl' can be made simpler by assuming that the momentum will be relatively small $\| p . .1 /(m)$ \& $1 . n=1.2 .3 \ldots$. though perhaps much larger that $O(\epsilon)$. Having the advantage of knowing what maxinum energies are possible (Paper II we can expect this to he a reasomate approximation in all parameter regimes excepting the case whell $\eta_{:}=1$. Fiven when $\eta_{:}=1$. the small momentum timit of the ['MA!' will be useful in illustrating hosu cold initial particles are accelerated through the small nomentum regime to eventually achieve energies where $|p| /(\mathrm{mr})$ - $0(1)$

Recalling that $k_{A} f_{n}=k_{,} f_{1 n} /\left(m m_{1}\right)$. the Bessel functions in the full PMAP |Eqs. (21)-(23) | can be appoximated as"

$$
\begin{equation*}
J_{1}\left(k_{1} \rho_{n}\right)=\frac{1}{2^{14} \cdot \Gamma(| | \mid+1)}\left(\eta, \frac{\omega}{11 \cdot} \frac{p_{1 n}}{m c}\right)^{\prime \prime} \tag{27}
\end{equation*}
$$

when $|/|=1$ If $|f|=0$. then $J_{1}=1$. Expanding the ctativis lic gamma factor and the cyclotron frequency we ohtain

$$
\begin{align*}
& r_{n}=1+\rho_{1 m}^{3} / 2 m^{\prime} c^{\prime}+p_{i n}^{\prime} / 2 m^{2} c^{\prime} \tag{28}\\
& \Omega_{n}=m_{c}\left(1-\Gamma_{i m}^{\vdots} / 2 m c^{\prime}-\Gamma_{i n}^{:} / 2 m^{\prime} c^{\prime}\right) \tag{29}
\end{align*}
$$

and. after some manipulation, we find that tolowest order in $|\boldsymbol{p}| /(\mathrm{mc})$ the jump values for the PMA!' become
$\Delta \rho_{1 m}=d_{1!}\left(E_{1}+E_{0}\right) \cos \left(\theta_{n}+\| \mid \pi / 2\right)\left(\rho_{1,} / m c\right)^{\prime \prime}$
$\Delta r_{: n}=d_{1 .}\left(-\eta_{1} E_{1}+B_{1}+B_{2}\right)$
$\times \cos \left(v_{i}+1 / 1:=/ 2\right)\left(p_{1} / m c\right)^{\prime \prime}=$
$\Delta t^{\prime}{ }_{n}=-2 \pi|l|\left(1+\frac{p_{i n}^{*}}{2 m r^{\prime}}+\frac{p_{3}^{\prime}}{2 m^{\prime} r^{2}} \cdots \quad \eta \cdot \frac{\Gamma_{\cdots}}{m c}\right)$.
where $d_{1}=|\eta| n / m$ and

299: Rhys Flunds B Val 3. No 11 November 1991

$$
\| \eta .\left.(m ; n \cdot)\right|^{1}
$$

(111)

for $|\mid>1$

Further simplification is possible by moting an ons emien! relation that follows from the plane wave solation of far. aday's law [Eqs (7)-(9)].

$$
-\eta, E_{1}+B_{1}+R_{1}=\eta_{1}\left(E_{1}+F_{1}\right)
$$

Using this polarization relation. the equation for $\Delta_{r} \ldots, \mid E q$ (31)] can be rewriten as
$\Delta P_{1 n}=d_{1,1} \eta_{:}\left(F_{1}+E_{2}\right) \cos \left(v_{n}+\| \|^{\prime} 2\right)\left(\rho_{1 m} / m_{c}\right)^{\prime \prime \prime}$
(19)
 tion for $\Delta P_{1,}$ | Fiq. (30) |, we find

$$
\begin{equation*}
\eta=\frac{p_{1 n}}{m c} \frac{\Delta p_{1 n}}{m c}=-\frac{\Delta p_{2 n}}{m c} \tag{36}
\end{equation*}
$$

Considering a sequence of orbits, we can sum E, q (76), begiming at $n=0.10$ obtain

$$
\begin{equation*}
\eta\left(\frac{\rho_{1 n}^{2}}{2 m^{*} c^{2}}-\frac{\rho_{1,}^{2}}{2 m \cdot}\right)-\frac{\rho_{2 n}}{m c}-\frac{\rho_{n}}{m c} \tag{37}
\end{equation*}
$$

where we have assumed $r_{1,} \Delta r_{1^{\prime \prime}} \approx \Delta \Gamma_{i_{1,}}^{2} / 2$. I lixs redation is the small wave amplitude, small momentum appoximation to an exact constant of the motion |cf. Fq. (15) of laper I)

Using the reduced constant of the motion $\{1.4 .37) \mid$ in replace p_{2}, in the phase jump equation, we discover to fowest order

$$
\left.\begin{array}{c}
\Delta v^{\prime}=-2 \pi|l|\left(1+\left(1-\eta_{:}^{\prime}\right) \frac{r_{1}^{\prime}}{2 m_{c}^{\prime}}\right. \\
\eta_{m c}^{n_{n}}+\eta_{i}^{\prime}-m_{i \prime}^{\prime} \tag{XR}\\
2 m_{c}^{\prime}
\end{array}\right) .
$$

Where the quadratic term in Γ_{A}, has heen dropped untice it is much smaller than the term lisear in ρ_{a} The momalized kinetic energy $U_{n}=Y_{n}-1$ call also be approximated using the small momentum expansion | Eq. (28) | and the reduced constant of the motion [Eq. (37)|. We abtain to lowest order in ϵ,

$$
\begin{equation*}
U_{n}=p_{i n}^{2} / 2 m^{\prime} r^{\prime}+r_{x 1}^{2} / 2 m^{\prime} c^{\prime} \tag{30}
\end{equation*}
$$

Note that the change in kinetic energy is proportional to the change in perpendicular momentum $\Delta \|_{n,}=r_{1} . \Delta \Gamma_{1, \ldots}$. Thus a discussion of the physical mechamen respomsible for the change in momentum will be equally application the change in kinetic energ.

Io summarize, the l'MAP' reduce to two immp equa. tions in the small momentum limit: one for Δv^{\prime}. |Eid (38)| and another for $\Delta f_{1 n}|\mathrm{Eq}(30)|$ Values of n_{n}, are ohtained from the reduced constant of the montion |F.q (37)| The approximation of small momentum will be valid for small wave amplitudes excopt when $\eta .=1$. where, alter actelerabion has taken place. $r_{1 n} /(m e)-O(1)$ We rematk that when k, - . the full version of the PMAP fieqs (21)(2?) 1 is identical to that given in Eqs (30) and (12) repadless of the value of \mid pl: m)

C. Discussion of the physical mechanism

lest particles can achieve kinctic energics far in excess of the quiver energy, on times scales of many cyclotem or bics, by coherently accumulating the relatively snall changes in kinelic energy that occur during each orbit The degree to which a particle will gain or lose energy cach ouhit depends on the value of the relative wave phase. which will vary from orbit to orbit as a function of the energy. In this section. using the PMAP as a guide, we probe the physical effects underlying the change in energy and phase during each cyclotron orbit and how these effects act in concert to produce the long time scale acceleration mechanism. Our discussion will focus on the regime of small momentum drscribable thy the version of the l'MAP given in Eqs (30) and (38).

1. The change in energy

The normalized kinetic energy U of a particle changes in an electromagnetic field according to the relation

$$
\begin{equation*}
\frac{d U}{d t}=\frac{q v \cdot E}{m c^{2}} . \tag{40}
\end{equation*}
$$

Our study of the variation of kinetic energy becomes a study of how the particle velocity "lines up with" the wave clectric field during the course of a cyclotron orbit. Since the change in kinetic energy ΔU_{n} is proportional in the chamge in perpendicular momentum Δp_{\imath}, $\mid E q$ (39) \mid in the small mo.
 illustrate the processes responsible for ΔU_{n}.

Examining the expression for $\Delta r_{1 n} \mid$ Eq. (30)|, we see that a necessary condition for acceleration is $E_{1}+E_{2} \neq 0$ The reason for this becomes more clear when the wave clectric field [Eq. (4)] is written in the following manner:

$$
\begin{align*}
E_{w}= & \left.\mid\left(E_{1}+E_{2}\right) / 2\right] \mid \cos (k \cdot x-\omega r) e_{,} \\
& \left.-\sin (k \cdot x-\omega t) e_{v}\right] \\
& +\left[\left(E_{1}-E_{2}\right) / 2\right] \mid \cos (k \cdot x-\omega t) e_{1} \\
& \left.+\sin (k \cdot x-\omega f) e_{v}\right] \\
& -E_{1} \cos (k \cdot x-\omega t) c_{:} . \tag{41}
\end{align*}
$$

The term proportional to $E_{1}+E_{2}$ represents the electric field component in the plane perpendicular to B_{1} that ro. tates about B_{n} in the same sense as the particle cyclotron motion. Not surprisingly, it is this component of the electric field (which we term the "corotating component" and denote as E_{r}) that dictates the energy transfer hetween the wave and particle via the change in $\rho_{1 n}$. The corotating wave magnetic field H, can be defined in a similar manner with int amplitule
$\left(H_{1} \mid B_{2}\right) / 2-\left|\eta,\left(E_{1} \mid E_{1}\right)\right| \eta, E_{1} \mid / 2$

[E4. (14)]

The nonzero $\Delta \rho_{1}$ arising from the comotang component of the electric field is a result of either offuoeflects the corotation effect or the Doppler effect. If $\omega=m$. se liat $|1|=1$ satisfies the resonance condition $\mid \mathrm{E}-\mathrm{q}$. (1) \mid. it is the corotation effect that dominates as follows. When the wase frequency is within $O(\epsilon)$ of the eychotron frequency the cos. otation angle O. defmed as the angle between p_{1} and $I_{:}$,

$$
\begin{equation*}
\theta=\arccos \left(\frac{p_{1} \cdot \dot{F}_{1}}{\left|\mathbf{p}_{1}\right|\left|\mathbf{F}_{,}\right|}\right) \tag{42}
\end{equation*}
$$

remains relatively comstant during the entire orhyt if the conotating electic field component E, is nonzer. , then the
 with the wave cither gabung er iosing or energy depending of the value of the corotation angle Though ielatively constant during one orbit, θ will vary slighty from enthit te orbit and this slow variation will prove to he a major factor in the acceleration process. We will demomstrate helom that A is telated in the PMIAP phase variahle v^{\prime}, in a simple manner.

If $0=1 / 10$. such that $|/|$ - i catisfies the cold particie resonance condition, it is the Deppler eflect that determines $\Delta \rho_{1 n}$. The corotating coomponent of the electric field denes mot maintain a relatisely constant angle with respect $10 p_{\text {; }}$ hut rotates through an angle of roughly $2 \pi(|/|)-1 \mid$ during the course of an orbit We illustrate this in the phase apace plots of Fig. I by showing the directions of the wave electric field vector (solid arrows) and magnetic field vector (detted arrows) for various points in the IMAP' cyctotron nobit for $|l|=2$. Unlike the situation when the coromation eflect dominates, the x dependence of the wave phase (i e. $k, \neq 0$) is essential on the energy gain process The inlegral of $p \cdot E_{\text {. }}$ is dominated by the corotating component of the electric field E_{r} evaluated during that part or the orbit where n_{1} is parallel tok the puint where $r_{1} \cdot 0_{1} p_{1}-0$ in lig $\|$ At this point, which we tetm the "I "pplet perint." He dhange of the wave phase with respect oo the particie pentuon is slinwer than at any other point in the orbin. The sign and magnotude of $\Delta r_{1,}$ will depend on the value of the comation angle al the Doppler point We denote this angle as θ_{1}. A . with the corotation effect scenario. the value of the θ_{1}, (mod $2:$) will change slighuly from ubit io orbit acconding to the change of v_{n}.

Whether it is the corotation effect or the loppler efiect that is responsible for altering Γ_{1}. the sign and maguitude of $\Delta p_{1 n}$ will depend on θ_{10} (in the case of the corotation effect. $\theta_{\text {Dr }}$ is characteristic of the value of θ ower the entire ortit). To deduce the relation between A_{b}, and the PMAP phase variable ψ_{n}, we first note that the Dnppler point is the pmint one-quarter of the way around the PMAP cyclotion orbit (Fig. 1). which will be reached at the lime $t_{n}, 1 / 4=t_{n}+\pi /\left(2 I_{n}\right)$. Evaluating the expression for the corotation angle |Eq. (42)| at $t=t_{m}$,, using the PMAP trajectories |Eqs. (11)-(15)| and the wave field elefinitions [Eq. (4)], we discover

$$
\begin{equation*}
n_{10}=k \cdot x_{n}, \ldots, \quad \text {,n, }, \ldots \tag{41}
\end{equation*}
$$

 al the relation

$$
\begin{equation*}
\theta_{n}=v_{n}-|1| \pi / 2 \tag{44}
\end{equation*}
$$

where we have ifunced the small nomentum terms We see that the change in $\theta_{t, \text {, }}$ from one ortit on the next wht is equivalent to Δv, (mend 2π)

The phase dependence of $\Delta \Gamma_{1} \ldots$ as dectated by the

cost t^{\prime}. $/ \| / \pi^{2}$? Substiming in the experssion fon the corotanow angle at the Dopplet point |Eq (44) |. We find
$\left.\Delta r_{1}=1 \cdot 1\right)^{\prime \prime}$ wos n_{m}
Taking into account the sign of the factor $a_{1,}, \Delta \mu_{1,}$ is in. deed maximized as a function of v^{\prime}, at exactly the value of $t^{\prime \prime}$ that maximizes $q \mathbf{D}_{1} \cdot \mathbf{F}_{\mathrm{r}} /\left(\mid \mathbf{D}_{1} \mathbf{E},^{\prime}\right)$) at the Doppler point

It is clear that only the perpendicular component of the particle momentum Γ_{1}.. and the wave eleciric field compo. nent $E_{\text {, , are needed to alter the kinetic energy of each cyclo- }}^{\text {a }}$. tron osbit If $||\mid>1$, there must also exist a nonzero oblique component to the wave vector $\left(h_{1} \neq 0\right)$. The parallel mo. mentum Γ_{2} and the wave magnetic field $B_{\text {. }}$ camot be neglected. however, as they play an important role in attering the plase

2. The change in phase

Having extahlished the importance of the Doppler peint corotation angle $A_{n r}$ its deterinining the kinetic energy gaits. we consider now the physical mechanisms responsitic for the slow variation of $A_{\text {wr }}$, or. equivalently. $\psi_{n}[\mathrm{Eq}(44)]$. The jump in v^{\prime}, predicted by the PMAP | Eq. (38) | is approximately $-2 \pi / / /$, indicating that the wave propigates past the particle approximately $|\mid$ phases in a single cyclotron orbit. The small, hut essential $O(\epsilon)$ deviations from an exact $-2 \pi|/|$ phase change are a result of the energy dependence of the cyclotron frequency and the particle's streaming motion along the background magnetic field. These effects are clearly evident in the unapproximated I'MAP' expressinn for $\Delta v_{n} \mid E q$ (23)].

The Δv, equation in the small momentum version of the PMAP |F:q (38)| contains the energy dependence of the caclotron frequency in the negative semidefinite ierm $-\pi\| \| \rho_{\text {in }} /(m e) j$ As the particle gains encrg). Whe cy. cintron frequency decreases and, with a fixed phase velacity ω / k, the wave will propagate further past the particle during the increased cyclotron period. Consequently, ψ_{n} will decrease slightly more than the nominal value of .. $2 \pi / / \mid \mathrm{ln}$. terestingly, the energy dependence of the cychotronf frequency is a relativistic effect and plays a major role in the resonance acceleration process in the apparenty monrebativistic regime of $|\mathrm{p}| /(\mathrm{mc}\}<1$.

The phase $d_{n}(\bmod 2 \pi)$ can also be allered by the particle motion along the backgrnund magnetic field during the course of the orbit. The streaming component of Δv_{n}, originally proportional in f_{2} in the full PMAP [Eq (23)]. reduces to the term

$$
\begin{equation*}
2 \pi|l|\left(\eta_{1}^{2} \frac{p_{1 n}}{2 m^{2} c^{2}}-\eta \cdot \frac{f_{\pi}}{m c}-\eta^{2} \frac{p_{\mathrm{j}}^{2}}{2 m^{2} c^{2}}\right) \tag{46}
\end{equation*}
$$

in the small momentum version of Δv_{n}. Besides the initial streaming terms proportional to ρ_{p}, and $\rho_{\text {In }}$. tbere is an ener-g)-dependent sireaming term resulting from the wave interaction This term is positive semidefinite because the wave interaction aluays produces a $\rho_{1 n}$ greater than p_{n}. ic Frm - $P_{\infty}>0$ |Eq $1371 \mid$ Asctming for a moment that

 not move quite sular past the paticle clumg the consere of a cyelotron orbil as would the the case if $p_{:, n}$. 0 and ψ^{\prime}., will be increased slighty from the nomimal value of $\cdot 2 \pi / / \mid$ if $\Gamma_{+1}=0$, the wave-induced streaming is enhanced by the initial streaming If $f_{m}<0$, the initial streaming opposes the wave-induced streaming and thus the total streaming part of Δv_{n} will he negative unless the particic enerpy hecomes high enough that the wave-induced streaming dommates

It is through the non-negligible streaming contribution to $\Delta \psi_{n}$ that the motion of the particle in the direction of $\boldsymbol{B}_{\text {r }}$ plays a role in the acceleration process. The variation of this
 (31)] and perhaps a litile surprisingly $\Delta \rho_{n}$ is proportional to the corotating componem of the wave clectric field. A closer examination of the relation between the wave electric and magnetic field polarizations (Eq (34) | that leads to the simplified form of $\Delta p_{t r}$ reveais the following picture. If the wave is electrostatic ($k \| F_{w}$), then wave maghelo firld is zero and the components of the electric field can tre writen as $E_{2}-0 . \eta, E_{1} \quad \eta . E_{1}-0$ the compment of the farce in the z direction being purportional only in F, can then be expressed in terms of E_{1} and hence the corotating compenent of the wave electric field [Eq. (41)]

If the wave has an electromagnetic component. then $\Delta r_{r_{n}}$ is determined entirely by the $\left(r \times H_{r}\right) / c$ magnetic force. When averaged over a cyclotron period, the a componnent of the electric force is canceled out by the ($6, e, \times 1 t, 1 / 6$ component of the magnetic force leaving the other components of the magnetic force (proporional in $F_{1}+f_{2}$) in push the particle in 2 . The one exception would he the case of a wave where $\eta, E_{1}+\eta_{2} E_{1}=0$ but $E_{1} \neq 0$ (lincarly polarized in the y direction). In this case. the z component if the elcetric force is not canceled ont and it is both the clectric and mapnetic fores that push the particle inz Wie tomedude that, For waves that are not purely electusetatic, the manderic field of the wave camon the ignored since it determines. to a latge extent (if mot completely). the motion of the patide parallel to \boldsymbol{n}_{n} and. as we have sect. this is importamt in determining the variation of $\forall_{n}(\bmod 2 \pi)$ and heace ρ_{1}.,

3. The acceleration scenario for $p_{10}=p_{z o}=0$

Our discussion of the cyclotron resonance acceleration process will not be complete until we explain how it is that the momentum and phase changing mechanisms work to. gether to produce large energy gaims over many ryctotron orbits. The acceleration scenario will be presented in two parts. First, we consider the case where $\Gamma_{11}-0$ (this sec(ion) Second, we consider initial momentum such that $r_{11}-P_{A} \sim O(6)(S e c .1 I C 4)$ We reiterate our callier comments (Sec. II A) that the PMAP imitial momentum will only be wilhin $O(f)$ of the irue initial momentum 1 on ex-
 in reality and vice versa.

The chanpe in phase $|E q(38)|$ in the $\Gamma_{1, \ldots}-r_{*}-0$ limut takes the simple form

$$
\begin{equation*}
\Delta v_{n}--2 \pi|l|\left|1+\left(1-\eta_{r}^{2}\right)\left(r_{i n}^{2} / 2 m^{2} c^{2}\right)\right| \tag{47}
\end{equation*}
$$

Though the magnitude of $\Delta \psi_{n}(\bmod 2 \pi)$ depends upon col ergy, the behavior of $\psi_{n}(\bmod 2 \pi)$ will be monotonic; either monotonic decreasing if $\eta_{z}<1$, monotonic increasing if $\eta_{s}>1$, or constant if $\eta_{z}=1$. When $\eta_{z}<1$, the phase velocity in the direction of \mathbf{B}_{0} is greater than the speed of light and the relativistic cyclotron frequency effect dominates the phase change. Conversely, when $\eta_{2}>1$, the phase velocity along B_{0} is less than the speed of light and the streaming effect dominates. The phase change effects cancel each other out when $\eta_{,}=1$ leaving $\psi_{n}(\bmod 2 \pi)$ a constant and, as we shall see. this causes singular behavior.

Let us first examine in detail the acceleration scenario for $|l|=1$ and then generalize for the scenarin for other resonance numbers. When $|/|=1$, the wave frequency is within $O(\epsilon)$ of the cyclotron frequency and the PMAl' equation for the change in perpendicular momentum [Eq. (30)] reduces to

$$
\begin{equation*}
\Delta r_{1 n}-d_{1}\left(E_{1}+E_{2}\right) \cos \left(\psi_{n}+\pi / 2\right), \tag{48}
\end{equation*}
$$

where d_{1} is positive definite. Assume that $\eta_{2}>1$ and $\psi_{0}=\pi+\delta$, where δ is a small number greater than zero ($\delta / \pi<1$). The scenario is jllustrated schematically in Fig. 2 , where we plot $\Delta p_{1 n}$ as a function of v_{n} (solid curve). A dotdashed line below the curve indicates the time history of t_{n} with a circle denoting the initial and final state of one period within $O(\epsilon)$.

Initially, $\Delta p_{1 \pi}>0$ causing $p_{1^{n}}$ to grow and $\psi_{n}(\bmod 2 \pi)$ to increase. The growth of $p_{1 n}$ will continue as long as ψ_{n} is in the range $\pi<\psi_{n}<2 \pi$ (the "acceleration range") corresponding to the range of corotation angles where $g p_{1} \cdot \mathbf{E},>0$. After a finite number of orbits, say $N . \psi_{n}(\bmod 2 \pi)$ will reach the value of $2 \pi\left[\psi^{\prime} N(\bmod 2 \pi)=0\right]$ and $\rho_{1 n}$ will be a maximum, having accumulated over the N orbits where $\Delta p_{1 n}>0$. Continuing the monotonic increase, ψ_{n} will traverse the range $0<v_{n}<\pi$ (the "deceleration range") where $\Delta p_{1 m}-0$ because of the corotation angle theing such that $q p_{1}, E,-0$. The inverse symmetry of Δp_{1}, about v_{1}, ensures that $p_{1 n}$ will decrease for N orbits until the initial condition
of $p_{12 s}=0$ is reached at $\psi_{2,}-\pi$.. δ. A1 this print. ane cycle of a peciodic prosess has been completed (pise on take the small factor of δ) with a maximum energy from the accumulation process exceeding the quiver energy and a period much longer than a cyciotron period.

If, instead, we were to consider the acceleration scenario for the case where $\eta_{2}<1$. then $\psi_{m}(\bmod 2 \pi)$ would be monotonically decreasing. The scenarin described afove would apply given the appropriate choice of initial phase ($\psi_{0}=2 \pi-\delta$) and ihe sign changes for $\Delta \psi_{n}$. Likewise. if we consider different resonance frequencies $(||||$,$) , the$ above described scenario will apply given the appropriate choice of t_{n}, and sign of Δv_{n}. The major difference between the acceleration processes al $|f|=1$ and $|I|$, 1 is the rela. tive inefficiency of the Doppler effect in changing the energy compared to the corotation effect. This inefliciency is mani fested in the PMAP through the factor of $\left(\Gamma_{1_{n}} / m c\right)^{1 / \prime}$ ' in $\Delta p_{1 n}$ (Eq. (30)]. As a result of the less efficient cnergy gain per orbit $p_{1 n}$ will remain small for a larger numher of orbits and v^{\prime}, will take a larger number of orbits in cover the accelcration and deceleration ranges yielding a longer perion for the cyclic process. For $||\mid>3$, the Doppler effect hecomes sufficiently ineflicient that maximum energies exceeding the quiver energy are no longer possible

A less complicated, but more dramatic acceleration scenarin exists when $\eta_{:}=1$. According to the emall momentum version of the PMAP. $\Delta \psi_{n}=0$ when $\eta_{:}=1$ [Eq. (38)]. Choosing ψ_{1}, so that $\Delta p_{10}>0$ implies that $\Delta r_{1 \text {. }}$, will be greater than zero for all n, and the particle will accelerate indefinitely. This will he true for arbitrarily large $p_{1 n}$ in the limit $k_{,}=0$, where the small momentum version of the PMAP becomes equivalent to the full PMAP. If $k, \neq 0$, then the rising $p_{1 n}$ will saturate when $p_{1 m} \sim O(m c)$ because of the effects of higher-order terms not included in the expansions of the relativistic cyclotron freguency and the constant of the molion that were used in deriving the small nomentum version of $\Delta \psi_{n}$. Thus, when $n_{1 n} \sim O(m c)$, the relativistic cyclotron frequency effect no innger cancels out the streaming effect and the plase begins to slip. Such a higher-order effect

woukd explain why the maximum energies oberewed when $\eta_{0}=1$ and k, ± 0 are independent of wave amplitule and resomance licquency (Yaper I).

The reader may have noted that the descriptions ot the acceleration scenarios all depend upon a judicious choice of the initial phase ψ_{11}. If ψ_{n} is not chosen properly, the PMAP can predict negative values of $p_{1 n}$. an umphysical sitnation. As we have emphasized. this failure of the PMAP to eltucidate the initial phase dependence is a consequence of the rychotron orbit sometimes failing to be a good approximation to the particle tragectory when $p_{1 n} \leqslant O(e)$

4. The acceleration scenario for $p_{10} \sim p_{80} \sim O(t)$

Let us consider hriefly how the acceleration mechanism works when the initial particle energy is of the order of the quiver energy. When formulated in terms of the PMAI', the predominant changes in the accelesation scenario with respect to the f_{1} - $P_{0}-0$ case will he due to the eflect of the
 a constant streaming phase change in addition to the plase changes stemming from the energy-dependent straming and relativistic cyclotron frequency terms. The behavior of ψ_{n}, and hence $\rho_{1 n}$, depends on the relative sign of the f_{n} term with respect to the energy-dependent terms that are proportional to ($1 \cdots \boldsymbol{\eta}_{2}^{2}$).

If the sign of p_{11} is opposite that of $\left(1-\eta_{2}^{2}\right)$. the acceleration process is little changed from the $p_{s},=0$) scenario. The behavior of ψ^{\prime}, is monotonic increasing or decreasing (depending on the value of η_{2}). with the background streaming effect simply increasing the rate of change. An increased rate of change means that ψ_{n} passes through the acceleration range in fewer orbits. This decreases the sum of $\Delta \rho_{\text {In }}$ over the acceleration range and, consequently. Inwers the maximum energy

If f_{1}, has the same sign as $\left(1-\eta_{2}^{2}\right)$. then the hack. ground streaming term contributes to Δw_{n} with a sign opposite to that of the energy-dependent effects. Toillustrate how this alters the accelesation scenario, we consider the case where $|l|=1, \eta_{1}<1$, and $\rho_{ \pm 1}>0$, i.e., a regime where the reiativistic cyciotron frequency effect dominates the energydependent contribution to $\Delta \psi_{n}$. These parameters lead to the simplified Δp_{10}, retation given in Eq. (48). 10 help gaide the reader through the scenario, we display in Fig. 2 a schematic of the time history of ψ_{n} on the $\Delta f_{1 n}$ is U_{n}^{\prime} plot (dashed line above the solid curve) with the squate demoting the initial and final states of a long period in within $O(\epsilon)$.

Initially, the hackground streaming dominates the phase change since $\left|\rho_{n,} / m c\right|>\left|\rho_{10}^{\prime} / m^{\prime} c^{\prime}\right|$ and $v_{\prime \prime}$, will increase. Given the appropriate choice of inibial phase ($\left.\psi_{n}=\pi+\delta\right) . \Delta f_{1 n}$ will initially be positive and remams positive as iong as $\pi<t_{n}<2 \pi$. If p_{s} is not too large. then the rate of change of d_{n} will he siow enough to allow $f_{1 n}$ (10 build up to a level that allows the energy-dependent term in Δt_{1}., to cancel out and then exceed the backginund steaming term. Assume that the cancellation of the lwo terms $\left|\Delta v_{n}(\bmod 2 \pi)-0\right|$ accurs at $v_{n}-d_{1}$. where $\pi \cdot \psi_{1}$, -2π. 1 he phase will begin to decrease but Δp_{1}. temains pesitive until $v_{4}=\pi$, at which point $p_{i n}$ has reached a maxi-
mam. Continning to dectease. ts. enters the decelenatom

 ground streaming term will begin again to dommate Δw^{\prime}. Tine phase begins to increase while Δp_{1}, remanns negative until $\psi_{.}=\pi-\delta$ and the cycle is complete.

This acceleration scenario applics equally well to the $\eta_{z}>1$ and $p_{s},-0$ case. provided the appropriate changes in initial phase, acceleration-deceleration ranges, and sign of $\Delta V_{n}(\bmod 2 \pi)$ are made. The scematio is similar to the $P_{s,}=0$ scenaion that maximum energes moch latper han
 er than a cyclotrong perind laconerast with the $f .0 \quad 0$ see nario. b_{n} exhihits ascillatery hefavior insteat of muntome hehavior. Maximum kinetic energies with an wathathry \mathbb{v}^{\prime}. can often exceed maximum kinetic energies wilh a momotonic v^{\prime}, because an oscillating v^{\prime}, spends more cyelotron orbits it the acceleration range.

Oscillatory $\psi_{"}$ hehavior disappears when $f^{\prime \prime}$. exereds
 propels tin through the acceleration ranee heloue the eomp! dependent combibutions to Δv_{1}, can "shat wil" the back ground streaming. For $f_{n}>p_{i c}$, the phase monotonicaly changes and the maximum p_{t}, decreases as,n., incrases. Numerical solutions of the full equations of motion have verified that this type of phase belavior occurs with valucs of $p_{\text {s }}$ within order unity of those estimated by the PMAP

As was the case when $f_{1},=0$, it is not wise to press the PMAP Ioo far since problems wibl the inilial phase and momentum dependence thwart the PMAS predictive power. This becomes obvious when te ask what hapgens when $\rho_{s 1} \rightarrow 0$. Slicking to the oscillatory scenariondestubet in this section for $p_{\infty}-0(6)$, we would expect that the escillation period and maximum energy would decrease 10 zero. But this is not what happens: the initial phase changes to different values so that, when f_{s}. D. we have the P., -1 acceleration seenario as discussed in Sec. Il C 3 with lin be maximum energies. Let us appreciate the physical intuition that the PMAP has given us and move on to a more complex Ilamiltonian analysis that will satisfy our quantitative needs.

III. REDUCED HAMILTONIAN EQUATIONS OF MOTION

To probe the details of the cyclotron resonance acceleration process that fell through the cracks of the PMAP we turn to a Hamiltonian formulation of the test particle problem. Ilamiltonian methods were used in Paper I to derive a preudopotential function that was able to descibe the behavior of the kinetic energy on time seales lomeer than a cyciotron period. In this section, we extend the Itamiltonian formulation of Paper 1 to produce reduced equations of inotion capable of predicting cyclotron orbit-avernged details of the particle trajectory either analytically or in far less computational time than it would take to compute solutions of the full equations of motien.

In Cartesian condinates, the Itamitemam lan alost pat ticte in the electromamelie wase fieded desmbed in Sce It |Eqs. (4) and (5)|, is

$$
\begin{equation*}
\psi(x, p: C)=\left|m r^{\prime}+(\Gamma c-q A)^{\prime}\right|^{\prime} \tag{49}
\end{equation*}
$$

 physical momenta as $\mathbf{P}^{\mathbf{\prime}}=\mathbf{P}+\boldsymbol{q} \mathbf{A} / \mathbf{c}$. The componcuts of the vector polential can be reduced to

$$
\begin{align*}
& A_{1}-\left(m c^{\prime} /|q|\right)\left|-(m, / m) y^{\prime}+f_{1} \sin / f\right| \tag{50}\\
& A_{1}=\left(m c^{\prime} \epsilon /|q|\right) \cos \beta . \tag{51}\\
& A_{z}=-\left(m c^{\prime} \epsilon_{1} /|q|\right) \sin \beta . \tag{52}
\end{align*}
$$

where ϵ, is given b; Eq. (10) and we have introduced the phase variable

$$
\begin{equation*}
\beta(x, z, f)=k, x+k, z-w n . \tag{53}
\end{equation*}
$$

A number of camonical tansformations of the Cantesian Hamiltonian must be performed before a sulliciently useful time-independent Hamiltonian and corresponding set of canonical coordinates is produced. We refer the reader io Paper I for details on the sequence of transformations that we employ and will only present here the resultant Hamiltomian and the definitions of the corresponding canonical coordinates in terms of physical conrdinates.

The Ilamiltonian of interest [Eq. (24) of Paper I] can be written to $O(\epsilon)$ as
where

$$
\begin{align*}
& H_{n}\left(\Gamma_{l}, \bar{l}, P_{n}\right)=Y-r_{2} \tag{55}\\
& H_{1}\left(\xi, \bar{\phi}, \Gamma_{l}, \bar{I}, \Gamma_{n}\right)=\frac{1}{2 \Upsilon_{n}} \sum_{n}^{\infty} a_{n} \sin |\underline{\xi}+s(n-\mid) \bar{\phi}| . \tag{56}
\end{align*}
$$

with $H_{0} \sim O(1)$ and $H_{1} \sim O(\epsilon)$. We have introduced the following quantities into the H representation:

$$
\begin{align*}
Y\left(\Gamma_{:}, \bar{j}, P_{n}\right)= & {\left[1+\left(2 \omega_{r} / \omega\right)\left(\bar{I}+s P_{:}\right)\right.} \\
& \left.+\left(\eta, P_{;}-\eta, \Gamma_{n}\right)\right]^{\prime \prime}, \tag{57}\\
a_{1 \prime}\left(P_{:}, \bar{l}, P_{n}\right)= & -\left(\omega_{1} / \omega\right) \bar{\rho}\left\{\left(\epsilon_{1}+\epsilon_{y}\right) J_{n}, 1(\eta, \bar{\rho})\right. \\
& \left.+\left(\epsilon_{1}-\epsilon_{2}\right) J_{n},(\eta, \bar{\rho})\right] \\
& +2 s \epsilon_{1}\left(\eta_{:} P_{:}-\eta, \Gamma_{n}\right) J_{n}(\eta, \bar{\rho}), \tag{58}
\end{align*}
$$

where

$$
\begin{equation*}
\vec{\rho}\left(\Gamma_{:} . \bar{l}\right)=\left[(2 \omega / \omega,)\left(\bar{l}+s\left(\Gamma_{:}\right)\right]^{1 / 2}\right. \tag{59}
\end{equation*}
$$

and s is the sign of the charge. Unlike the Paper I representalion of H, we have chosen to use dimensionless canonical variables. In particular. the canonical momenta ($P_{t}, \bar{J}, P_{,}$) are in units normalized to $\omega / m c^{\prime}$ and the Hamiltonian $/ /$ is normalized to $\boldsymbol{m c}^{2}$. To maintain the canonical properties of the Ilamiltonian system it is necessary to introluce the normalized time variahle $i=$ att. In our set of dimensionies variables. derivatives with respect to tine arc expressed with the independent variable \hat{i}.
llse canonical variables ($\left\langle, \bar{\phi} . I_{i}^{\prime}, \bar{I} . r_{n}\right.$) are defined in terms of the physical variables by the relations.

$$
\begin{align*}
& \left.\underline{\xi}-\beta+\left(\omega / \omega_{1}\right) s \eta_{1}\left(\rho_{1} / m c+s f_{y} \cos \beta\right)+x / \bar{\phi}, \quad(6)\right) \\
& \dot{\alpha}=\arctan \left(\frac{-\left(p_{\mathrm{r}} / m c+s \epsilon_{2} \cos \beta\right)}{s\left(\rho_{0} / m c+s \epsilon_{1} \sin \beta\right)^{-}}\right) . \tag{6t}\\
& \mu=k_{,} x-k_{z} z-\left(\omega / \omega_{r}\right) s \eta_{:}\left(p_{1} / m c+s \epsilon_{2} \cos \beta\right) . \tag{62}
\end{align*}
$$

$$
\begin{align*}
& \bar{I}=\frac{\omega}{2\left(n_{1}\right.}\left[\left(\frac{P_{0}}{m c}+s \epsilon_{1} \sin \beta\right)^{\prime}\right. \tag{6.3}\\
& \left.+\left(\frac{\Gamma_{r}}{m c}+s \epsilon, \cos \beta\right)^{\prime}\right]-s / \Gamma_{:}, \tag{64}\\
& r_{n}=\frac{1}{\eta}\left(\eta_{i} \frac{P_{1}}{m c} \quad \eta_{1} \frac{P_{i}}{m}\right. \\
& \left.-\frac{\omega_{1}}{c} s \eta_{,} y+s\left(\eta_{i} \epsilon_{1}+\eta_{1} \epsilon_{1}\right) \sin \beta\right) . \tag{65}
\end{align*}
$$

with $\beta(x . z, 1)$ given by Eq (53) fuserting these definitions. we abtain the following expressions for the physical variables as functions of the canonical variables:

$$
\begin{align*}
& x=\left(c /\left(1 \eta^{2}\right)(\eta, 11+\eta, \underline{\xi}\right. \\
& -s / \eta, \dot{\phi}+\eta \cdot \dot{i}+\pi \bar{\eta} \sin \dot{\phi}) . \tag{66}\\
& r=\left(c /(1) \mid-s(\omega / \sigma,)\left(\eta, r_{-}+\eta_{i} \Gamma_{n}\right)+\bar{j} \cos \bar{\phi}\right] . \tag{67}\\
& z=\left(c / a \eta^{2}\right)(\eta, \xi-\eta, \mu-s / \eta, \dot{\phi}+\eta, i) . \tag{68}\\
& \Gamma_{.} / m c=(s \omega, / \omega) \bar{\rho} \cos \bar{\phi} \\
& -s \epsilon_{1} \sin (\underline{c}-s i \bar{\phi}+s \eta, \bar{\rho} \sin \bar{\alpha}) . \tag{69}\\
& \rho_{\mathrm{c}} / m \mathrm{mc}=-(\omega, /(v) \bar{\rho} \sin \dot{\phi} \\
& -s \epsilon, \cos (\underline{E}-s / \bar{\phi}+s \eta, \bar{\rho} \sin \dot{\phi}) . \tag{70}\\
& \rho_{:} / m \mathrm{mc}=\eta_{:} P_{:}-\eta_{1} P_{,}, \\
& +s F_{1} \sin (\underline{c}-s \bar{\alpha}+s \eta \cdot \bar{p} \sin \dot{\alpha}) . \tag{71}
\end{align*}
$$

with $\bar{\rho}\left(\Gamma_{i}, \bar{J}\right)$ given by Eq ((6)). In Paper I. The relation bet ween the canonical coordinates ($\left.E, \dot{\phi} \neq 1, P_{,}, \bar{i}, P_{, 1}\right)$ and conventional action-angle guiding center canonical variables is discussed. The Hamiltonian H and corresponding canovical variables differ from Hamiltonian formulatious used in previous studies of wave-particie interactions" "" in that there is no singular behavior in the canonical conrdinates as η : -0 ,

The cyclotron resonance approximation used in Paper I and in the construction of the PMAA' (Sec. 17) is founded on the assumption that there are two widely vat ying dymamical time scales. with the faster time scale theing ou the order of the nonrelativistic cyclotron period. In the Ilamiltonian formulation. this separation of time scales is determined by the relative mapnitude of the twn frequencies $m,-d!$ $\sigma_{0}=d \dot{\phi} / d i$ These nomdimensimal fiequencios can the contpuled from $/ /$ and are found to te

$$
\begin{align*}
& m_{1}=(1 / Y) \mid(s / m, /(t) \mid \eta(\eta r \quad \eta, r, 1] \\
& 1 \mid O(f) \tag{1721}\\
& m_{1}-m_{1} / Y_{m}+O(\epsilon) \tag{7.3}
\end{align*}
$$

Defining the winding number r to the the ration of the slow to fast frequency, we see

$$
\begin{equation*}
\left.r=s l+(\omega) / \omega_{0}\right) \eta_{i}\left(\eta_{i} P_{i}-\eta_{1} P_{, \prime}\right)-\left((, 1) /()_{0}\right) Y+O(\epsilon) \tag{74}
\end{equation*}
$$

The enchotron resonalle approximation issumes $r-0(6)$ with / chosen to satisfy this as well as possible When expressed in terms of the physical variables, the assumption of small winding number is equivalent to the resumance condition |Eq. (1)| normalized to the relativistic cyclotron frequency $\mathbf{5 l}$. In the above analysis, it has been implicitly as sumed that $\partial H_{1} / \overrightarrow{J P}, \sim O(\epsilon)$, which seems reasonable given H, - O(ϵ) We slall discover later (Sec. III C 2) that this is not always the case.

Reduction of the Hamiltonian $/ /$ in the cyelnton resonance approximation can be carried out either discretely or continuously. Though the discrete mapping approach presented in Sec. III A is often the method of choice (since the time averaging process is explicit). there are difficulties with accuracy in certain regions of phase space. We are thus led to construct equations of motion with a continuous time vatiable in Sec. III B from an orbit-averaged reduced Ilamiltonian. Details of the particle trajectories in the small momentum limit are studied in Sec. III C.

A. Orbit-averaged mapping equatlons

Our goal in this section is to construct a set of areapreserving mapping equations that will approximate the particle trajectory in the canonical variable phase space. The mapping equations will determine the slowly varying variables Γ_{ξ} and ξ on the phase space surface of constant $\bar{\phi}(\bmod 2 \pi)$ with successive iterations of the map (denoted by the subscript n) indicating an increase of $\bar{\phi}$ by 2π. i.e.. $\bar{\phi}_{n+1}=\bar{\phi}_{n}+2 \pi$. The map construction outlined below employees standard methods of Hamiltonian analysis that are discussed in detail elsewhere."

We seek a mapping of the form

$$
\begin{align*}
& P_{\ell, \ldots}=P_{\ell .}+\Delta P_{\varepsilon_{-}}\left(P_{\ell_{n}, 1}, \xi_{n}\right) \tag{75}\\
& \xi_{n}=1=\xi_{n}+2 \pi r\left(P_{\ell \ldots}\right)+g\left(P_{\ell \ldots,}, \xi_{n}\right) \tag{76}
\end{align*}
$$

where r is the winding number given by Eq. (74) without the " $O(\epsilon)^{\prime}$ term. When $f=0$, then $\Delta r_{t,}-g=0$ and r_{t}, is a constant of the motion. In this limit. ξ_{n} will advance by an amount equal to the slow frequency ω_{1} times the fast period $T=2 \pi / \omega_{2}$, with ω, given by Eq. (73) without the "O(f)" term.

The first-nrder correction $\Delta P_{z_{2}}$ to the trivial zeroth-order behavior of P_{i}. is computed by integrating the equation of motion for $d \Gamma_{!} / d i$ from time i_{n} to $i_{n}+T$.

$$
\begin{align*}
& \Delta P_{t_{-}}=\int_{i_{-}}^{i \cdot} \cdot \frac{d P_{5}}{d t} \\
& =-\int_{0}^{l} d i \frac{\partial I_{1}}{\partial \underline{\xi}}\left(\xi_{n}+w_{1} \dot{i}, \dot{\phi}_{n}+\left(1, \dot{i} \cdot P_{\ldots}, i\right) .\right. \tag{77}
\end{align*}
$$

where the zeroth-order trajectories are substituted in for the canonical variables in the integrand. For purposes of area preservation, the value $r_{\text {_, }}$, is used insteator $r_{\text {... Also. } \bar{I} \text { is }}$ a constant to $O\left(\epsilon^{\prime}\right)$ independent of n. This can be deduced by integrating the expression $d \bar{t} / d i=-\lambda H_{1} / \partial \dot{\phi}$ to lowest order belween $i_{,}$and $i_{n}+1$.

Evaluating the $\Delta f_{!}$, integral (Eq. (77)) using the firat
 nance approximatom, we lind

$$
\begin{equation*}
\Delta P_{-}=\left(\pi, \omega / \omega, \omega_{1}\right) a, \cos E_{n} \tag{78}
\end{equation*}
$$

where $a_{1}\left(P_{t_{n}}\right)$ is given by $\mathrm{Eq} .(58)$ with P_{\ldots}. sumstitured in for $P_{!}$.

The firse-urder correcting g to the zeroth-urder motatun of ξ_{n} is determined by demanding that the map be areapreserving in ($P_{2}, \dot{\xi}$) phase space. A consideration of the Jacobian of the map transformation defined by $\mathrm{F} \boldsymbol{\mathrm { g }}$ s. (75) and (76) yields the fillowing condition for area preservation:

$$
\begin{equation*}
\frac{\partial\left(\Delta P_{z_{n}}\right)}{\partial P_{\varepsilon_{n}}}+\frac{\partial g}{\partial \xi_{n}}=0 \tag{79}
\end{equation*}
$$

This differential equation can be easily integrated upon suhstitution of the ΔF_{2}, expression |E: (78) | to vielld

$$
\begin{equation*}
\mathbf{g}=\left(\pi \omega / \omega_{r}\right) a_{i}^{\prime} \sin \xi_{n} . \tag{80}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1}^{\prime}= & -\left(s l^{2} / \bar{\rho}\right) \mid\left(\epsilon_{1}, \epsilon,\right) J_{t},(\eta, \bar{\rho}) \\
& -\left(\epsilon_{1}+\epsilon_{1}\right) J_{1},(\eta, \bar{\rho}) \mid-2 s / \eta,(, J, 1 \eta, \bar{\beta}) \\
& +2 s \epsilon,\left\{\eta, J,(\eta, \bar{\rho})+\left(s / \omega / \bar{\rho}^{\prime}\left(\sigma_{,}\right)\left(\eta, r_{2}, \quad \eta, \Gamma_{1}\right)\right.\right. \\
& \times\left[\eta, \bar{\rho} J_{1},(\eta, \bar{\rho})-\left|J_{1}(\eta, \bar{\rho})\right|\right\}
\end{aligned}
$$

The map is now complete. Starting with values for $\left(\xi_{1}, P^{\prime}\right.$. $)$. the value of $P_{t_{n}, \text {, }}$ is obtained by solving the $P_{\text {. map equation }}$
 [Eq. (7R)|. Direct substilution of r, and $\dot{\leq}$, into the map equation (76) with $r\left(P_{;, \ldots}\right.$, given hy Eq. (75) and $g\left(r_{5} \ldots \xi_{n}\right)$ given hy Eq. (80) yields ξ_{n}, , Inithal condi. tions fix the value of $\dot{\phi}(\bmod 2 \pi)$ and the constants of the motion \bar{I} and $F_{\text {u }}$. We denote the map constructed abive as the "OMAP" since it is more quantitatively accurate than the PMAP constructed in Sec. II

The QMAP' can be simplified by acsuming small mo. menta. In physical variables. the smail monentum limit demands $|\mathrm{p} / \mathrm{me}|$ \& I , which, when translated to camonical variables, is equivalent in the conditions $\bar{l}, \mathrm{v} l$? <1 and $\eta, \Gamma_{z_{n}}-\eta, \Gamma_{,}$\& 1 . Expanding the $\Delta \Gamma_{\Sigma_{,}, \ldots}$. and \& functions of the QMAP' in the small arguments | making use of Eq_{q}. (27) | we arrive at the following set of mapping cequations fir negatively charged particles

$$
\begin{align*}
& P_{t_{\ldots},}=P_{s .}-(\bar{m}(1 / a)) h, \bar{\rho}^{\prime \prime} \cos \xi_{n} . \tag{82}\\
& \xi_{n} .1=\xi_{n}+2 n\left(|l|-\frac{\prime \prime}{\omega}-1 i+|l| r \ldots,\right. \\
& +\frac{\eta \cdot(1)}{m \cdot}\left(\eta . \Gamma_{-\ldots} .-\eta . \Gamma_{.,}\right) \\
& +\frac{\pi \omega}{\omega} \boldsymbol{r}_{1,}, \boldsymbol{\mu}^{-\prime \prime} \quad \therefore \sin \underline{E}_{n} . \tag{83}
\end{align*}
$$

where

$$
\begin{aligned}
& \text { (84) }
\end{aligned}
$$

and $\bar{m} P_{:, ~, ~}$) is given by Eq (59) with $r_{t}-P_{L_{n} .}$. In the small momentum approximation $\bar{\rho}<1$.

Io sec if the QNAAI' provided a reasomahly accurate estimate of the true phase space trajectories. we compared GMAf solutions with numerical solutions of the full equations of motion |Eqs. (2) and (3)| over a range of the free parameters ($\left|\mid, \omega / \omega_{c}, \eta, \alpha_{,}, \boldsymbol{k} \cdot x_{0}\right.$) for cold initial conditions ($p_{0}=0$). We found gond agreement when $|/|>2$, albeit we did not do as complete a survey as will be discussed in Sec. III B. There is a problem, however, when $|\lambda|=1$ and the true behavior of $\underline{\xi}$ in certain regions of phase space is not well modeled by the QMAP.

This difficulty can be understood as follows. When $!\|=1$, the ξ QMAP equation [Eq. (83) | contains a term proportional to $\left(\sin \xi_{n}\right) / \bar{\rho}\left(\Gamma_{4 .},\right)$ For cold initial particles, there are portions of the phase space orbits (where the monenta are very small) that pass very close to those values of r_{t} that make $\bar{\rho}=0$. Fortunately, the true phase trajectory is also in a region near $\xi=0$ or π so that the value of $\sin \xi_{n}$ also approaches 0 . The behavior of the ratio ($\sin \underline{\xi} / \bar{\rho}\left(P_{l}\right)$ is extremely sensitive to the exact values of $\left(\xi, \Gamma_{t}\right)$ to the extent that a slight deviation from the true trajectory as $\boldsymbol{\xi} \rightarrow 0$ or π results in a value much greater than unity. Unfortunately, as a consequence of the fixed time-step size of the QMAI' and the implicit nature in which the quantities are advanced, the discrete jump in P_{Y} is computed before the corresponding jump in ξ, and the quantity ($\xi_{n}, P_{L_{1}, \ldots}$) deviaies enough from the true trajectory that QMAP ratio $\sin \underline{E}_{n} / \bar{\rho}\left(\Gamma_{\ell_{n},}\right.$) hecomes extremely large. The deviation is enough, in fact, io eause large inaccuracies in the values of $\boldsymbol{\xi}_{n+1}-\boldsymbol{\xi}_{n}$. More will be said about these regions of singular behavior in Sec. III C

In trying to circumvent this problem, we are immediateIy led to consider the possibility of decreasing the time step of the jump so that the quantity ($\xi_{n} . P_{s_{n}, 1}$) more closely approximates the desired quantity $\left[\xi(1), P_{\ell}(1)\right]$. This can be done most effectively by abandoning the discrete jumps of a map altogether and constructing orbit-averaged equations of motion with a continuous time variable.

B. Orblt-averaged continuum equations

With the aid of adiabatic canonical perturbation thenry. ${ }^{12}$ it is possible to transform the I Iamiltonian H to a new Hamilionian \vec{H} that will depend only on siowly varying variables to $O(6)$, provided the resonance approximation is saliafied. This transformation was used in the cour se of derivinfthe HI'l' theory in Appendix 13 of Paper \mid We nulline the Iransformation below in the context of the dimensioniess canonical variables that have been introduced in this paper.

The generating function S for the transformation can be written as a function of the old coordinates and new nomenlumas
$S\left(\xi \cdot \bar{\phi}, \mu, \bar{\Gamma}_{2}, \bar{J}, \bar{P}_{n}\right)=\xi \bar{\Gamma}_{t}+\dot{\phi} \bar{J}+\mu \bar{P}_{n}+S,\left(\xi, \bar{\phi}, \bar{P}_{i}, \overline{\bar{J}}, \bar{\Gamma}_{n}\right)$,
(86)

where

$S_{1}\left(\xi, \bar{\phi}, \bar{\Gamma}_{z}, \bar{J} \cdot \bar{F}_{\mu}\right)$

$$
\begin{equation*}
\left.\left.=\frac{\omega}{2 \omega_{r}} \sum_{n=1}^{\infty} \frac{a_{n}}{\sin -1)} \cos \right\rvert\, t+s(n-1) \dot{\alpha}\right] \tag{87}
\end{equation*}
$$

and $a_{n}\left(\bar{P}_{C}, \bar{J}_{\bar{\prime}} \bar{P}_{t}\right)$ is piven by $\mathrm{E}=\mathrm{y}$ (58) with $\left(P_{\ell}, \bar{I}, P_{u}\right) \rightarrow\left(\bar{P}_{2}, \bar{I}, \bar{P}_{,}\right)$. To $O(f)$. The new canonical variables ($\left.\bar{\xi}, \bar{\phi}_{,}, \bar{P}_{\ell}, \bar{J}\right)$ are defined in terms of the old variahles according to the relalions

$$
\begin{align*}
& \bar{\xi}=\xi+\frac{\partial S_{1}}{\partial \Gamma_{l}} \tag{88}\\
& \bar{\omega}=\bar{\phi}+\frac{\partial S_{1}}{\partial \bar{I}} \tag{89}\\
& \bar{\mu}=\mu+\frac{\partial S_{1}}{\partial \Gamma_{\prime \prime}} \tag{9}\\
& \bar{\Gamma}_{t}=\Gamma_{t}-\frac{\partial S_{1}}{\partial \xi} \tag{01}\\
& \bar{I}=\bar{I}-\frac{\partial S_{1}}{\partial \bar{\phi}} \tag{92}\\
& \bar{\Gamma}_{\prime \prime}=P_{\mu \prime} \tag{02}
\end{align*}
$$

where ($\Gamma_{s}, \bar{J}, \Gamma_{1}$) have heen substituted in for ($\bar{\Gamma}_{2}, \overline{\bar{I}}, \bar{\Gamma}_{1,}$) in the S_{1} definition [E.q. (87)] The \|amiltomian //"Eq. (54)] Iransforms to \bar{f}. where

$$
\begin{align*}
& \bar{H}=\mathrm{Y}-\bar{P}_{t}+(0, / 2 \mathrm{Y}) \sin \bar{\xi} \tag{94}\\
& \text { and } \mathrm{r}\left(\bar{P}_{1}, \bar{J}_{\bar{J}}\right) \text { is given by Eq (57) with }
\end{align*}
$$ $\left(\Gamma_{2}, \bar{i}, \Gamma_{1}\right) \rightarrow\left(\bar{P}_{2}, \overline{,}, \bar{P}_{,}\right)$. By chomsing S, properly. the lasi varying terms have heen displaced in $O\left(\epsilon^{2}\right)$ in transforming from $/ /$ to \bar{H}. What remains in $\bar{\Pi}$ is escentially $/$ averaped over one period in $\bar{\phi}$ white the nther variables are held constant. Thus, like the QMAP. dynamic detaik owcurring on time scales less than $2 \pi / \omega$, (roughly the cyclotron period) are absent

From the orbit-averaged Hamiltonian \bar{H}. we can compute the nrbit-averaged equations of motion for the canonical variables $\overline{\underline{\xi}}$ and \bar{F}_{l} :

$$
\begin{align*}
& \frac{d \bar{\xi}}{d t}=Y-1+\frac{1}{2 Y}\left(a_{i}-a_{i} \frac{Y}{Y}\right) \sin \bar{\xi} \tag{95}\\
& \frac{d \bar{P}_{t}}{d t}=-\frac{a_{1}}{2 Y} \cos \bar{\xi} \tag{1961}
\end{align*}
$$

where
aud $a ;$ is given by $E(81)$ with $r_{1}, \bar{\Gamma}$, and j. $/$ I lee ca nomical momenta \bar{T} and $\bar{F}_{\text {, }}$ are constamis of the motion and the linear time variation of the corresponding angles can be written as

$$
\begin{align*}
& \bar{\phi}=\bar{\phi}_{1}+\frac{\partial \bar{H}}{\bar{\partial}} i \tag{198}\\
& \bar{\mu}=\bar{u}_{n}+\frac{\partial \bar{\Pi}}{\partial \bar{P}_{i \prime}} i \tag{09}
\end{align*}
$$

In the small momentum limit. the orhil-averaped equa.
tiom ol monion call be reduced to the simpler term | at the ()NAM reduction. Fiqs (82) and (83)

$$
\begin{aligned}
& \frac{d \bar{\Gamma}}{d i}=-\frac{b_{1}}{2}\left[\left.\left(\frac{2 \omega}{\omega_{,}}\right)\left(\bar{I}+|l| \bar{J}_{.}\right)\right|^{\prime \prime} \text { cis. } \bar{L} \quad(l(x))\right. \\
& \frac{d \vec{E}}{d l}=\frac{\left\|\left.\right|_{1}\right\|_{1}}{\omega}-\left(\frac{\omega_{c}}{\omega}\right)\left(\vec{l}+\left|| | \bar{P}_{-}\right)\right. \\
& +\eta \cdot\left(\eta, \bar{\Gamma}_{-} \cdot \eta, \bar{\Gamma}_{.,}\right)-1
\end{aligned}
$$

Whereb, :mdr, are given hy Figs (84) and (85). iespec lively, and we have assumed negatively charged parsicles. We also make use of the fact that. in the smatl monenta limit. the resoname comblition is satistied when

To complete the orbit-averaged continnum description. we need a prescription that gives the canomical variables ($\left.\bar{\xi}, \bar{\phi}, \bar{F}_{i}, \bar{I}_{4}, \bar{F}_{, \prime}\right)$ in terms of the physical variables and vice versa. İn theory. His is straightforward. given the definitions of these variables in terms of $\left(\underline{\xi}, \dot{\phi} . P_{.}, \bar{\lambda} . \mu, \Gamma_{.,}\right) \mid$F(gs. (88)(93)| and the explicit relations between ($5 . \bar{\phi} . \Gamma_{.}, \bar{I}, \mu, \Gamma_{,}$) and the physical variables (Eqs. (60)-(71)|. In pitictice, we have chosen to simply sel $\overline{\bar{E}} . \bar{d}, \bar{\Gamma}, \bar{j} \bar{j}, \bar{F}_{4}$) $=\left(\underline{\xi} . \bar{\phi} \cdot \Gamma_{.} . \bar{I}_{1}, \bar{\Gamma}_{.}\right)$and ignore the S, corrections Equating the angles $(\overline{\underline{E}}, \bar{d} \cdot \bar{\mu})=(\underline{\xi}, \dot{\phi}, \mu)$ is undoubtedly a ramomatile approximatom since the angular variations ane (12π) and the corrections are $O(\epsilon)$. Equating the actions $(\bar{p} . \bar{f})$ $=(P . \bar{I})$ is reasomabic if we interpret $(\vec{P} . \bar{l})$ as iepresemting quantities lime averaged over the fast period $1.5 / m$. We must then assume that the physical initial conditions repuesent the initial time-averaged values of ($P_{.}, \bar{f}$) theongh $\mathrm{F}_{\mathrm{g}} \mathrm{s}$. ((6))-(65). Conversely, the pliysical variables de: ived fiom F.gs. (66)-(71), assuming ($\left.r_{.}, \vec{f}\right)=\left(\vec{r}_{.}, \vec{I}\right)$, will be chanat teristic of the time average.
 hir-averaged continuum equations are identical to the contimuos limit of the JMA' [Eqs. (75) and (76)| in the sense that

$$
\begin{align*}
& \frac{d \bar{P}}{d i}=\frac{\Delta \Gamma_{z_{1}}}{T} \tag{102}\\
& \frac{d \bar{\xi}}{d \dot{f}}=\frac{2 \pi r+g}{T} \tag{103}
\end{align*}
$$

when $\boldsymbol{P}_{t_{-},}-\bar{P}_{:}$and $\boldsymbol{\xi}_{n}-\bar{\xi}^{\underline{\xi}}$
Being ordinary differential equations in a comtimoms time variable, the orbil-averaged equations of molion can le solved numerically with arbitrary time steps fice . as stiall as needed for stability) and hence avoid the difficultics that were imposed on the OMAP by a fixed time step interval. The freedom in impose an arbitrary time step should he viewed solely as a mathematical convenience since short time-seale physical effects have heen averaged out.

To numerically solve the equations on motion. we use a standard fourth-order accurate Runge-Kutal" algorithm. As a demonstration of the validity of the orbit averaged continuum approach. we compare numerical solutions of the orbit-averaged equations to numerical shlutions of the full

 and the oscollation perionl ir characteristic of whetions in the cyclotron tesoname regine over a hooad range of the pa-
 waves and cold mitial condmons The size of the parameter space surveyed is somewhat greater than that stersered in the extensive comparison of predictions of the III limery to solutions of the foll equations of motom that was presented in Sec. IV af Paper I.

Referring to the "desiation" as the diflemence between the orbit-averaged prediction and the lull eqpatem prediction normalized to the finll equation pediction. we find that. on the average, when $|/|-1$, the dewationinif..... intypiat-
 lypically 3% whit at maximum of aroumd 17% When $|I|=2$, typical destations in $U_{\text {m.... }}$ and r_{f} arc 5% and 17%. respectively, with maximums around $39 m_{c}\left(l^{\prime} \ldots\right.$,) and 50% $\left(r_{r}\right)$. For $\left|\left|\mid=3\right.\right.$, we compared only solutions with $\eta_{2}=1$ and found typical deviations of $U_{\text {m .. }}$ to be $4 \%_{r}$ with a maximum of $13{ }_{r}$. Typical deviations of r_{r} were $10 r_{r}$ with a maximum of $56 \mathrm{~T}_{\mathrm{n}}$. In short, the $U_{m, a}$ and i_{r} ectimates from the orbit-averaged equatinns are accurate to the same order as those from the IIP' theory.

Examination of the particle frapectobing genemated from the full equations of motion reveals that when the farger than igpical deviations oceured. it was oflen fin the following reasons. First, solutions that have large salues of ir feg. when |f| - i) require extremely bage mumbersaf fine steps and the numerical solntions of the full equation t:an become inaccurate. Second. some parameter values (fins rxample. $\beta_{n}=\pi$ when $||\mid-2)$ place the particte najectorics uncomfortably close to sepanatices, i.e . boundaries in phase space defined by the orhit-averaged Ilamiltomian then y that separate regimes of qualinatively different hehan" VIigher-arder effects not included in the othit-aseraged theory will cause the actual particle trajectory to mum theincen regions of phase space both inside and outside the sepalatrix, whereas the trajectory generated from the orbit-avetaged theory will remain smothly on one side or the other. We have more to say about the detailed phase space structure in the next subsection

C. Phase space structure in the small momentum Ilmit

The orhit averaged contimum equations cam be ceadily employed to predict details of the particle tamectories beyond the scope of thith the flamilonampseudapotental theory (Paper I) and the PMAl' (Sec II) In what follows we explore the character of the trajectories fior megatively chatged particles in the $\bar{\Gamma}$. mined by the on hit -averaged equations of motion in the small momentum limit |Eqs. (10) and (101)) lakeer within this realm of parmeter space. we will only comsidet parameter sets whete $\eta .+1$. We limit our analysis $10 / / 1-1$ and $\| \mid=2$ since they are the only values of \mid | | has lead thenergies above the quicer energy when $n .+1$
of pimaty impotance in determmong the propertes of
the particle trajectories in phase space is the lecation and nature of the fixed points, i.e., these poills where $d \bar{k} / d \dot{i}=d \bar{F}_{l} / d \dot{d}=0$. Setling $d P_{t} / d i=0 \mid \mathrm{Eq}$. ($\left.\mid 01\right) \mid$, we find that any fixed points must satisfy one of two possible conditions:

$$
\begin{align*}
& A: \cos \bar{G}_{A}=0 \tag{104}\\
& B: a_{1,},\left(\bar{F}_{L_{n}}\right)=0
\end{align*}
$$

where we denote the candidate fixed points that satisfy condition A or condition B as $\left(\bar{\xi}_{A}, \bar{P}_{l_{A}}\right)$ and $\left(\bar{\xi}_{A}, \bar{P}_{k_{n}}\right)$, respectively.

Hefore pursuing the fixed point solutions, we pause to introduce some new notation. Consideration of the canonical cyclotron radius $\bar{\rho}$ |Eq. (59)] indicates that, for physically realizable problems (where \bar{n} is a real number), the values permissible for \bar{F}_{l} are bounded from below hy $\bar{V}_{\ell, \ldots \ldots}$. where $\bar{P}_{L_{m m}}=-\bar{I} /|| |$. It is convenient to introduce the dimensioniess variable \bar{P}_{i} defined as

$$
\begin{equation*}
\bar{P}_{i}=\bar{F}_{t}-\bar{F}_{t_{m a n}} \tag{106}
\end{equation*}
$$

When expressed in terms of the physical variahles | Eqs. (60)-(65)]. \bar{P}; reduces to an expression involving only the perpendicular momentum and the phase:

$$
\begin{align*}
\bar{P}_{\xi}= & \frac{\omega}{2 \| \mid \omega_{c}}\left[\left(\frac{p_{s}}{m c}+s \epsilon_{1} \sin \beta\right)^{2}\right. \\
& \left.+\left(\frac{p_{r}}{m c}+s \epsilon_{2} \cos \beta\right)^{2}\right] \tag{107}
\end{align*}
$$

Another useful quantity is a constant of the motion P_{i}; man , where

$$
\begin{equation*}
P:_{: m u n}=\eta_{1} \bar{P}_{s m m}-\eta_{x} \bar{P}_{\mu} . \tag{108}
\end{equation*}
$$

Written in terms of the initial values of the physical variables. $P_{: ~ m i n}$ becomes

$$
\begin{equation*}
P_{x \min }^{\prime}=P_{x} / m c-s \epsilon_{3} \sin \beta_{0}-\eta_{i} \bar{P} \tag{109}
\end{equation*}
$$

The assumption of small momenta is equivalent to the assumption that $\vec{P}_{i}<1$ and $P_{i \text { min }}<1$.

The existence of fixed points is established by solving the equation $d \bar{\xi} / d i=0$ [F.q. (100)] for either \vec{P}_{i}, (case A) or ξ_{n} (case B). The nature of the particle motion near the fixed pmint is then investigated via linear stability analysis. Using the case A fixed point as an example, we assume solutions of the form

$$
\begin{align*}
& \bar{P}_{i}(\dot{l})=\bar{P}_{i_{4}}+\delta \bar{P}_{i_{n}} \exp (\lambda \dot{l}) \tag{110}\\
& \bar{\xi}(\dot{i})=\bar{\xi}_{4}+\delta \bar{\xi}_{n} \exp (\lambda \hat{l}) . \tag{111}
\end{align*}
$$

. Where $\delta \bar{f}$; and $\delta \bar{E}$ are perturbations sufficiently small so that the equations of motion can be linearized about $1 \overline{\underline{k}}_{A}, \bar{P}_{i}$, . Solving the resultant set of linear equations for the eigenvalues λ, the fixed point can be classed as the stahle type if both eigenvalues are imaginary. or of the unstable type if hoth eigenvalues are real. When the eigenvalues are real, there will be both a positive and negative branch. in which case the fixed point is of the hyperbolic type.

The remaining discussion is broken up into separate seclions. the first describing phase space properties for $|/|=2$ and the second for $|I|=1$. In addition to the fixed point
structure, we will examine the the havior of the phase angle $\bar{\xi}$ and determine under what physical initial conditions $\underset{\underline{E}}{ }$ te. comes an oscillatory (as opposed to monotonic) function of lime. An oscillatory $\overline{\underline{k}}$ implies that the particies are "phase trapped." which is an important process, for exampte. in interactions of whistler waves with charged particles in the Earth's magnetosphere. ${ }^{14.15}$

1. The $\|\|=2$ resonance

We consider first the $|l|=2$ resonance since the candidate fixed points are of a more standard variety than what we will find for $||\mid=1$. In Fig. 3(a), we show curves of constant \bar{H} (denoting possible particle orbits) in ($\bar{\xi} . \bar{P}_{1}$) pliase space. Fixed points corresponding to cases A and B are labeled with an " A " and " B." respectively.

The fixed points for case A must clearly have $\bar{\xi}_{A}=-\pi / 2$ or $3 \pi / 2$. Solving the $d \bar{\xi} / d \dot{i}=0$ equation for $\bar{P}_{i,}$, we find

$$
\begin{align*}
\bar{r}_{i_{1}=}= & {\left[1 /\left(1-\eta_{:}^{2}\right)\right] } \\
& \left.\times\left[2 \omega_{r} / \omega\right)-1+\eta_{i} P_{i m \times n}+\eta_{1}\left(\epsilon_{1}+\epsilon_{2}\right) \sin \bar{\xi}_{1}\right] . \tag{112}
\end{align*}
$$

Performing the stability analy sis we find that the eigenvalues satisfy the equation

$$
\begin{equation*}
\lambda^{2}=-\left(1-\eta_{2}^{2}\right) \eta_{1}\left(\epsilon_{1}+\epsilon_{2}\right) \bar{P}_{i,} \sin \bar{\xi}_{1} \tag{11.3}
\end{equation*}
$$

indicating that $\left(\bar{\xi}_{4}, \bar{F}_{i_{0}}\right)$ is a stable fixed print for $\bar{\xi}_{A}=\pi / 2(3 \pi / 2)$ when $\eta_{E}<1(>1)$. A nipping of the stable point from $\bar{\xi}_{A}=\pi / 2 \ln \bar{\xi}_{A}=3 \pi / 2$ as η_{t} increases through the value of 1 does occur and has been observed in numerical solutions of the full equations of motion.

The oscillation period about the stable fixed print provides a crude estimate of the oscillation period t_{r} characteristic of the cyciotron resonance acceleration process. As. suming $\omega=2 \omega$, and cold initial particles, the eigenvalue relation (Eq. (113)) and definition of \bar{P}, yield the extimate

$$
\tau_{p}=\left\{\eta_{4}^{2}\left(\epsilon_{1}+\epsilon_{2}\right)^{2}+\eta_{8} P_{i} \operatorname{son} \sin \bar{\xi}_{4}\right\} \quad \text { 1.2, (114) }
$$

where τ_{ρ} is in units of the wave perind $(2 \pi / a)$. Comparius this estimate to those obtained in Paper I, we find that Eq (114) predicts a significantly lower value than that found from either the IIPP theory |Eq (44) of Paper II or the numerical solutions of the equations of motion / Sec W of Paper 1]. The reason for this is that all trajectories for cold initial particles lie close to the separatrix (a pmint discussed later in this section) and will therefore have a longer oscillatinn perind than those near the stable fixed pmint.

Turning to the case B fixed points, a solution to the equation $a_{1,1}\left(\bar{P}_{f_{n}}\right)=0$ is $\bar{P}_{z_{n}}=P_{i_{\ldots} . .}$, or $\bar{P}_{i_{n}}=0$ Other sn. lutions might exist, but they will have $\bar{P}_{i_{2}}-O(1)$ and are therefore beyond the scope of this study. The whations \bar{l}_{μ} to $d \bar{\xi} / d \dot{i}=0$ must satisfy the relation
$\sin \overline{\underline{E}}_{\mathrm{A}}=-\left[1 / \eta,\left(\epsilon_{1}+\epsilon_{2}\right)\right]\left(2\left(\omega / \omega_{1}-1+\eta P_{i m \ldots n}\right)\right.$
(115)

There will be iwn solutions for $\bar{\xi}_{A}$ if the right-hand side of Eq. (115) is less than one, and no solutions ntherwise As. suming that solutions exist, the stability analysis victds the eipenvalues

$$
\begin{equation*}
\lambda= \pm \eta_{n}\left(\epsilon_{1}+\epsilon_{2}\right) \cos \bar{\xi}_{n} . \tag{116}
\end{equation*}
$$

The points $\left(\bar{\xi}_{n}, \vec{P}_{i_{A}}\right)$ are thus fixed pminis of the anstatie hyperbolic variety

The structure of the orbits in ($\bar{\xi}, \bar{F}_{\mathbf{l}}$) phase space [Fig. 3 (a) $\|$ is not unlike that for a classic nonlinear oscillator, i.e. a stable fixed point flanked by two unstable fixed points.

There exists a separatrix connecting the two mustable fixed points that separates the ortits that are oscillaton in $\bar{\xi}$ from those that are monntonic |dashed line in Fig. 3(a)|. Qualitatively, the phase space structure throughoul hic small moomentum regine resembles Fip $3(a)$ when fixed point solufions for $\vec{\xi}$ exist. though the lerations of the fixed points vary depending on parameter values and initial conditions.

Winether \leq is momotomic or oscillatory in time depeods on which side of the separatrix the initial conditions place the trajectory. This can be determined in the following manner. When $\eta_{2}<1$ we consider the functional dependence of \bar{H} on $\overline{\mathcal{E}}$ as we move along line of constant \bar{P}; when $\bar{P}_{i}=\bar{P}_{i_{4} .}$ Starting at the stable fixed point $\bar{\xi}_{A}=\pi / 2$ and moving in the direction of increasing $\bar{\xi}$, we see that $\bar{\Pi}$ is monotonically decreasing in the interval $\bar{\xi}=|\pi / 2,3 \pi / 2|$. Thus. if the value of \bar{H} corresponding to a given set of initial conditions is greater than the value of $\bar{\Pi}$ evaluated on the separatrix. $\bar{\Pi}_{n}=\bar{\Pi}\left(\bar{\xi}_{A}, \bar{P}_{A_{a}}\right)$, the orbit will be oscillatory in $\underline{\xi}$. Evaluating $\bar{\Pi}$ and \bar{H}_{n} [Eq. (54)] in terms of the initial conditions using the estimates for ($\bar{\xi}_{A}, \overline{\bar{F}} i_{A}$) and assuming $\omega=2 \omega_{\text {, }}$, the oscillatory condition $\bar{H}-\vec{H}_{n}>0$ can be written

$$
\begin{equation*}
\sin \bar{\xi}_{n}+\eta_{r} P_{i \min }^{\prime} / \eta_{,}\left(\epsilon_{1}+\epsilon_{2}\right)>0 \tag{117}
\end{equation*}
$$

When $\eta_{2}>1$, the stable fixed point shifts to $\bar{\xi}_{A}=3 \pi / 2$ and $\bar{H}\left(\bar{\xi} \cdot \bar{P} \bar{l}_{1}\right)$ is monotonically increasing as $\bar{\xi}$ decreases from $3 \pi / 2$ 10 $\pi / 2$. In this case, the condition for oscillatory $\bar{\xi}$ behavior $\bar{H}-\bar{H}_{n}<0$ and the direction of the inequality in Eq. (117) must be reversed.

As an example, we investigate the condition for oscilla. tory $\bar{\xi}$ when $\eta_{z}<1$ and the particles are initially cold. We firsl note that whether the orbits are oscillatory or not. they will all be close to the separatrix in the sense that the initial conditions place \bar{H} much closer to the value of \bar{H}_{n} then to the value of \bar{H} at the stable fixed point. This claim follows from the fact that $\bar{P}_{i_{n}} / \overline{P_{i}} \sim \theta(\epsilon) \mid$ for the initially cold particles. Recalling the definitions of the canonical variables in terms of the physical variables [Eqs. (60)-(65)], the oscillatory condition can be written to lowest order as

$$
\begin{equation*}
G_{2}\left(\beta_{n}\right)>0, \tag{118}
\end{equation*}
$$

where

$$
\begin{align*}
G_{2}= & \sin \beta_{n}\left(\frac{\epsilon_{1}^{i} \sin ^{`} \beta_{11}-\epsilon_{i}^{j} \cos ^{2} \beta_{n}+2 \epsilon_{1} \epsilon_{2} \cos \beta_{1}}{\epsilon_{1}^{2} \sin ^{2} \beta_{11}+\epsilon_{2}^{2} \cos ^{2} \beta_{11}}\right. \\
& \left.+\frac{\eta_{2} \epsilon_{3}}{\eta_{1}\left(\epsilon_{1}+\epsilon_{2}\right)}\right) \tag{119}
\end{align*}
$$

Figure 4 (a) contains plots of G_{2} for circularly polarized waves as a function of the initial phase β_{n}. Several diferent curves are shown, each with a unique value of the propaga. tion angle a. The condition for oscillatory $\overline{\underline{b}}$ behavior is salisfied for a variety of initial conditions and exhibits a montrivial dependence on angle. These predictions of the onset of oscillatory behavior agree with numerical solutions of the orbit-averaged equations of motion. Comparing to the solutions of the full equations motion. we find gond agreement for $a=5^{\circ}$ and 45°. When $a=85^{\circ}$. the full equation solutions have a tendency to jump between the oscillatory and monotonic branches if β_{1} is not close to $\pi / 2$ or $3 \pi / 2$.

2. The $/ \|=1$ resonance

In Fig. $\mathbf{3}$ (b), curves of constant \bar{H} are plotted in $\left(\bar{\varepsilon}, \bar{\Gamma}_{i}\right)$ phase space for the $|l|=1$ resonance The curves liwk qualitatively similar to the $\mid I=2$ curves and in many ways they are. Both resonances have stable fixed points (labeled hy " A ") and have a clear separation hetween the orbits that oscillate in $\overline{\underline{\xi}}$ and those that do not. The primary difference between the two resonances is that for $|/|=1$. there are no fixed points that satisfy condition B |Eq. (106)]. Rather. "singular points" satisfying condition B exist and they behave like fixed points in certain respects.

Before considering the details of case B. we examine case A. For angles $\bar{\xi}_{A}=\pi / 2.3 \pi / 2$ the $d \bar{\xi} / d \hat{t}=0$ equation diclates that $\bar{F}_{\text {: }}$, satisfies the relation

IIIf 4 the function 6 ; serves imbal phase n, when|| - 2 for vationsanplesinf Mopapation a when η - 018 , B/f , $10{ }^{\circ}$. and \ldots... $2 \ldots$. for cold matial par ikies and riphe-hand circulaty polanzel waves When $G,:$ O. the luelhavimi of \boldsymbol{E} is oxcillatory

$$
\begin{align*}
& \vec{P} \cdot\left|\bar{r} \cdot\binom{\omega_{1}-\eta_{:}}{\frac{\omega}{\prime}}+1-\frac{\omega}{\omega}-\eta_{:} P_{: m \cdots n}\right| \\
& \quad=\frac{\omega_{c}}{8 \omega}\left(\epsilon_{1}+\epsilon_{1}\right)^{2} \tag{120}
\end{align*}
$$

The stability analysis yields the eigenvalue equation

$$
\begin{align*}
d^{:}= & \frac{\left(\epsilon_{1}+\epsilon_{1}\right)}{\bar{\Gamma}_{: .}^{\prime}}\left(\frac{\omega_{c}}{\omega}\right)^{1 / 2} \\
& \times\left[\left(1-\eta_{8}^{2}\right) \frac{\bar{P}_{\xi_{:}^{\prime, 2}}}{\sin \tilde{\xi}_{4}}-\frac{\left(\epsilon_{1}+\epsilon_{2}\right)}{4}\left(\frac{\omega_{c}}{11}\right)^{1,:}\right] \tag{121}
\end{align*}
$$

Thus $\vec{\xi}_{1}=3 \pi / 2(\pi / 2)$ corresponds to a stable fixed point when $\eta_{z}<1(>1)$. The shifting of the fixed point as η_{t} passes through I has been verified with numerical solutions of the full equations of motion. In Fig. 3(b), we show the stable fixed point (A) for $\eta_{2}<1$.

Considering cold initial particles and setting $\omega=\omega$, we obtain from Eq. (120) the following expression for \vec{P} :

$$
\begin{equation*}
\bar{P}_{i}=\|\left(\epsilon_{1}+\epsilon_{2}\right) /\left.\left(1-\eta_{2}^{2}\right)\right|^{2 / n} \tag{122}
\end{equation*}
$$

when we assume $P_{i m u n}\left\langle\bar{P}_{i}\right.$, (justified a posteriori). As was done for $|l|=2$, we can estimate the resonance oscillation period τ_{f} using the stable fixed point eigenvalues [Eq. (121)] and the \bar{f}_{i}. relation [Eq. (12)]. Normalizing r_{p} to the wave period, we find

$$
\begin{equation*}
r_{r}=\frac{2 / \sqrt{3}}{\left|1-\eta_{2}^{2}\right|^{1 / 1}\left|\epsilon_{1}+\epsilon_{2}\right|^{2 / 3}} \tag{123}
\end{equation*}
$$

Contrary to what was found for $\| l=2$, the τ_{μ} estimate resulting from the stable fixed point eigenvalue analysis is remarkably close to the τ_{p} estimate from the HPP theory [Eq. (41) of Paper I] and the predictions of numerical solutions to the full equations of motion [Sec. IV of Paper I]. I.ike the $\|\|=2$ case. the orbits of cold initial particles lie near the separatrix. However, unlike the $|I|=2$ case. the oscillation periods for orbits near the separatrix are approximately equivalent to the oscillation periods of orbits near the stable fixed point. Anticipating our upcoming analysis, we conjecture that the fast periods near the separatrix are a manifestation of the particle behavior in the vicinity of the case B singular points, where changes in $\bar{\xi}$ become quite rapid.

Moving on to the analysis of case B, the solution of interest to the equation $a_{11,}\left(\bar{P}_{t_{p}}\right)=0$ is $\bar{P}_{\xi_{n}}=\bar{P}_{\ell_{m \ldots n}}$, the same as we found for $||\mid=2$. Consequently, any candidate fixed points must have angles $\bar{\xi}_{n}$ that solve the equation

$$
\begin{align*}
0= & \frac{\omega_{1}}{\omega}-1+\eta, P_{: m 1 n}-\left(\epsilon_{1}+\epsilon_{2}\right)\left(\frac{\omega_{1}}{8_{m 1}}\right)^{L^{2}} \\
& x_{, L F_{6},-1 i_{m} F_{i n}}\left(\frac{\sin \bar{\xi}}{\left(\overline{\bar{P}}_{1}-\overline{\bar{P}}_{t_{n}}\right)^{1 /:}}\right) . \tag{124}
\end{align*}
$$

The only hope for a solution is $\vec{\xi}_{n}=0$ or π sn that the limit as $\bar{\xi}_{\xi} \rightarrow \bar{\xi}_{n}$ and $\bar{P}_{t} \rightarrow \bar{P}_{L_{0}}$ has a chance of remaining finite. Even so. the limit in Eq. (124) is not uniquely determined so we will have to content ourselves with examining the trajectories in the vicinity of the candidate fixed pmints.

Letting $\bar{\xi}$ and $\bar{\Gamma}$: lake the form $\bar{\xi}=\bar{\xi}_{n}+\delta \bar{s}(j)$ and
 perturbations, the orbit averaged equatimbot mentom flip (100) and (101) | to lowest order hecome

$$
\begin{align*}
\frac{d \delta \bar{P}_{:}}{d t}= & \left(\epsilon_{t}+\epsilon,\right) \cos \bar{\xi}_{R}\left(\frac{\omega_{c}}{2 \omega}\right)^{\prime \prime} \delta \bar{P}! \tag{125}\\
\frac{d \delta \bar{\xi}}{d t}= & \frac{\omega_{t}}{\omega}-11 \eta_{r} P_{: m i n}^{\prime} \\
& -\left(\epsilon_{1}+\epsilon,\right) \cos \bar{\xi}_{A}\left(\frac{\omega_{c}}{8(t)}\right)^{1,2} \frac{\delta \bar{\xi}}{\delta \bar{P}!/ ?} \tag{126}
\end{align*}
$$

Analytic solutions to these time-differential equations are found to be

$$
\begin{align*}
\delta \bar{P}_{t}= & \delta \bar{\Gamma}_{t_{1}}\left(1+i / C_{1}\right)^{2} \tag{127}\\
\delta \vec{\xi}= & \left(\omega_{c} /(0)-1 \mid \eta_{2} P_{: ~ w n n ~}\right) \\
& \times\left[\left(\bar{i}+C_{1}\right)^{2}-C_{i}^{2}+2 C_{2}\right] / 2\left(\dot{i}+c_{1}\right) \tag{128}
\end{align*}
$$

where

$$
\begin{align*}
& C_{1}=\left[\delta \bar{P}_{L_{1}}^{\prime \prime} /\left(\epsilon_{1}+\epsilon_{2}\right) \cos \bar{\xi}_{\mathrm{F}}\right]\left(R_{\omega} / \omega_{0}\right)^{1 \prime} . \tag{129}\\
& C_{2}=\frac{C_{1} \delta \bar{\xi}_{0}}{\omega_{c} / \omega-1+\eta_{2} P_{:}^{\prime}} . \tag{130}
\end{align*}
$$

and $\left(\delta \overline{\underline{\xi}}_{0}, \delta \bar{P}_{k_{n}}\right)$ are the initial values at lime $i=0$. If we make the assumption that $\delta \bar{\Gamma}_{\text {:, }}$, is small enough so that

$$
\begin{equation*}
\delta \overline{\underline{E}}_{n}>C_{1}\left(\omega_{1} / \omega-1 \mid \eta_{2} P_{; n+n}^{\prime}\right) \tag{131}
\end{equation*}
$$

then the $\delta \bar{\xi}$ solution takes the relatively simple form

$$
\begin{equation*}
\delta \bar{\xi}=\delta \bar{\xi}_{n}\left(1-i / C_{1}\right) \tag{132}
\end{equation*}
$$

when $i / C_{1}<1$. In the discussion to follow, we will use the full $\delta \bar{P}_{\text {s }}$ solution and the approximate $\delta \bar{\xi}$ solution (Eq. (132)], though we realize the approxination might not encompass all physically possible Irajectories.

Caveats notwithstanding, the local $\delta \bar{P}_{2}$ and $\delta \overline{\underline{E}}$ solutions indicate the following general behavior. If $\overline{\underline{E}}_{R}=0$, then Irajectories approaching ($\bar{\xi}_{n}, \bar{P}_{\xi,}$) will have $|\delta \bar{\xi}|$ decreasing with $\delta \bar{P}_{\xi}$ increasing. Conversely, trajectories approaching $\bar{\xi}_{A}=\pi$ will have $|\delta \bar{\xi}|$ increasing with $\delta \bar{P}_{s}$ decreasing. This behavior in the vicinity of the singular points is consistent with the many numerical solutions of the equations of motion we have examined, and is similar to that found near the unstable hyperbolic fixed points at $\left(\bar{\xi}_{n}, \bar{\Gamma}_{z_{n}}\right)$ when $|l|=2$. We cannot, however, deduce that $\left(\bar{\xi}_{n}, \bar{P}_{L_{n}}\right)$ is a fixed point for $\mid \|=1$ using ithe local analytic solutions because the same problems exist in taking the limit $\delta \bar{\xi}_{0} \rightarrow 0, \delta \bar{f}_{s, n} \rightarrow 0$ as did in evaluating Eq. (124). In fact, numerical solutions of the full equations of motion indicate that, as trajectories apprnach the point ($0, \bar{r}_{厶_{n}}$), values of $d \vec{\xi} / d \boldsymbol{d}$ can become very large. The rate of change of the fast angle $\bar{\phi}$ hecomes large also and the ratio of the fast angle to slow angic variation becomes of O (1), stretching the validity of the resonance approximation. It is this rapid evolution of $\bar{\xi}$ near the singular points that causes the convergence probiems for the OMAF (Sec. III A).

We will sidestep the issue of the precise characterization of the $\left(\bar{\xi}_{n}, \bar{D}_{t}\right)$ points when $|/|=1$ and asselt that these
"uinstable simgular peints" [labeled with a "IT" in Fip. 3(b) | heliave in a manner similar to hyperbolic fixed points. The contour connecting the two singular prints separates trajectories monototic in $\bar{\xi}$ from those oscillatory in $\bar{\xi}$ and is therefore a separatrix [dashed line in Fig. 3(b)]. Full numerical solutions of the equation of motion have verified that the phase space structure throughout the small momentum regime resembles Fig. 3(b) and the locations of the points ($\bar{E}_{A}, \bar{P}_{i_{A}}$) and ($\bar{\xi}_{A}, \bar{P}_{f_{F}}$) are in good agreement with the locations predicted by the preceding analysis.

The range of parameters and initial conditions that produce oscillatory $\vec{\xi}$ behavior can be deduced by the method that was used in the $|I|=2$ analysis. When $|I|=1$, the Hamiltonian $\bar{\Pi}$ is monotonically decreasing (increasing) away from the stable fixed point when $\eta_{r}<1\left(\eta_{z}>1\right)$ so that the condition for oscillatory $\bar{\xi}$ is $\bar{H}-\bar{H}_{A}>0\left(\bar{H}-\bar{H}_{R}<0\right)$. Assuming $\omega=\omega_{c}$, this condition simplifies to

$$
\begin{equation*}
\sin \bar{\xi}_{0}<0 \tag{133}
\end{equation*}
$$

when $\eta_{:} \leq 1$ with a reversal of the inequality for $\eta_{2} \leq 1$. Expanding $\vec{\xi}_{a}$ in terms of the physical variables, the condition for oscillatory $\vec{\xi}$ can be written to lowest order as

$$
\begin{equation*}
G_{1}\left(\beta_{n}, P_{n}\right)<0, \tag{134}
\end{equation*}
$$

where

$$
\begin{align*}
G_{1}= & -\left(\frac{\rho_{\infty}}{m c}-\epsilon, \sin \beta_{0}\right) \sin \left(\beta_{0}+\eta_{x} \frac{\rho_{\infty}}{m c}\right) \\
& -\left(\frac{\rho_{\infty 1}}{m c}-\epsilon_{2} \cos \beta_{0}\right) \cos \left(\beta_{0}+\eta_{x} \frac{p_{\infty 0}}{m c}\right) . \tag{135}
\end{align*}
$$

Addressing the specific case of cold initial conditions, il can be shown that. like the $|l|=2$ situation, all physically realizable orbits are very close to the separatrix, i.e., $\bar{P}_{\ell_{n}} / \bar{P}_{i_{1}}-O\left(\epsilon^{4 / 3}\right)$. Unlike the situation when $|I|-2$ all cold particle orbits will be monotonic for $||\mid=-1$ when the
angle of propagation $a<90^{*}$ (Ey (134)). Oscillaton behavior can be found for some combination of parameters if a 90° or if the initial pespendieular monentum is monzens Figure 5 illustrates this point with plots of G_{1} ver sus initial phase β_{n} for several diflerent values of $\Gamma_{\text {on }}$ when $\rho_{n}=\rho_{n}=0$ and the wave is circularly polarized. Numerical solutions of thoth the orbit-averaged equations of motion and the full equations of motion have verified that the sign of G_{1} is an accurate predictor of the $\bar{\xi}$ betiavior

IV. SUMMARY

The objectives of this paper have been twofold first. in understand the physical mechanisms responsible for generaling large kinetic energy gains in the cyclotron resonance acceleration process: and second. in obtain a sel of reduced equations of motion that still allow the accurate determination of details of the particte orbits in the cyclotron resonance regime.

The phenomenology of the acceleration mechanism is addressed with the I'MAP. a set of mapping equations jump. ing the momentum and phase of the lest particle from one cyclotron orbit to the next. For each orbit. the change in kinetic energy is proportional io the corotating comprimell of the wave electric field aud is of the order of the quiser energy or less. This small change in kinetic energy is the resule of either the corotation eflect ($\mid \lambda=1$) or the Doppler effect ($|I|>1$) with the sign and magnitude of the change depending on the relative phase of the wave at certain points during the orbit. For the Doppler effect to he operative. Hiere must be a nonzero k, Large changes in the kinetic energy arise from the accumulation of the small changes over many orbits.

Crucial to the encrgy accumulation process and the long time scale periostic befavion is a small shilime in the wave

IIf; ithe function fi, risus mital pliase $/$,. when [/] . 1 fir warniok wal ues of inilial momenca remic wher $\eta=0 \mathrm{~A} .=1 \mathrm{lh} \cdot 10$, 0 15 and m - $"$. for meth hand cucularly
 haverer of ì is oscrillators
phise ti (inud 2ir) of each cyclotron orbit. The shilt in phase has two energy-dependent contributions arising fiont the wave interaction: one is a result of streaming aloug the liackground magnetic field caused by the acceleration of the particle parallel to n_{n}, and the other is a result of an increase in the cyclotron period arising from relativistic effects. There is also a constant parallel streaming contribution due to the initial conditions. We find that, when $\eta_{2} \neq 1$, the belinvior of the $\psi(\bmod 2 \pi)$ can the either monotonic or oscillatory, depending on the value of the initial streaming term. It is a limitation of the PMAP that we can only predict the existence of both monotonic and oscillatory phase hehavior for initial momenta $p_{n} / m c<O(\epsilon)$ and not the exact functional dependence. When $\eta_{2}=1$, the energy-dependent terms cancel each other out and. at least for some ranges of initial phase and momentum, the phase remains constant in the small momentum limit. This allows for kinetic energy gains of order of the rest mass energy

It can be concluded from the PMAP analysis that the magnetic field of the wave plays a significant, if not dominant role in altering the refative phase of the wave of each cyclotron orbit. Furthermore, the energy-dependent cyclotron frequency plays a large role in altering the phase even when the particle energies are far below the rest mass energy. Clearly, it is not reasonable to ignore the wave magnetic field or relativistic cyclotron frequency effects in studies of resonance acceleration mo matter what the particle energy

Reduced equations of motion more accurate than the PMAP are obtained by turning to a Hamiltonian formulation of the problem. A set of mapping equations (QMAP') is derived that jump the slowly varying canonical action P_{t} and angle ξ over a 2π perind of variation in the fast angle ϕ. The QMAP performs well when $|I|>\mid$ but runs into accuracy problems for cold initial conditions when $|l|=1$. Difficulties arise because the particle orbits in phase space pass close to singular points where the rate of change of the slow angle apparently diverges.

The QMAP difficulties are avoided by workink with a set of orbit-averaged equations of motion oblained from a llamiltonian that was derived using adiabatic perturbation theory. In terms of the physical processes being modeled. the orbit-averaged continuum equations and the QMAP are of idenlical scope. However, with a continuous time variable the orbit-averaged equations of motion can be numerically solved with an arbitrary time step and therefore avoill convergence difficulties near the $||\mid=I$ singular points. An extensive comparison of numerical solutions of the full equations of motion to solutions of the orbit-averaged equations demonstrates the viability of the orbit-averaged approach.

Details of the orbit distribution in the phase space defined by the orbit-averaged continuum variables $\left(\bar{\xi}, \bar{r}_{G}\right)$ | which have heen equated to the QMAP variables ($\left.\xi, P_{!}\right)$| are examined for $|I|=1$ and $|I|=\mathbf{2}$ in the limit of small momentum. When $|l|=2$, the structure is similar to that of a one-dimensional nonlinear oscillator, i.c., a stable fixed point between two unstable fixed points that define a separatrix. A general criterion for oscillatory $\bar{\xi}$ behavior is derived which is a function of the wave parameters and particle initial conditions. For initially cold particies and $\omega=2(1)$, we
find that all particle orbits will be close to the sepatalix and that the existence of oscillatory behavior depends stomgly on the values of the initial phase, wave pulaization, and index of refraction (Eq. (119))

The phase space structure when $|d|-1$ differs from the $|l|=2$ structure in that there are no unstahic fixed points Instead, there are unstahle singular points where fixed points might be expected Though the time rate of thange or k is mot uniquely determined at these singular points, malysis of the behavior of nearby orhits suggests divergence. Numerical solutions of the full equations of motion also show divergent hehavior in the vicinity of the singular points and indicate that $\bar{\xi}$ ceases to he a slowly varying variable. Despite the singular nature of these points, they play much the same role as unstable hypertolic fixed points; they can attiact and icpel orbits along different axes, and they define a sepatatrix between orbits oscillatory and monotonic in $\bar{\xi}$. Like the $|I|=\mathbf{2}$ case, a general criterion for oscillatory hehavior can be derived. When $\omega=\omega$, and the particles are initially cold all the orbits are near the separatrix and all are monotomic in $\bar{\xi}$ for angles of propagation $0^{\circ}<a<90^{\circ}$. Only when the initial perpendicular momentum is nonzero or $\alpha>90^{\circ}$ can oscillatory motion occur, and then only for certain values of the initial phase that depend on the wave polarization and index of refraction [Eq. (134))

ACKNOWLEDGMENTS

One of us (G.P G.) wishec to thank Gareth (inest and Michael Heinemann for useful discussions.

This work was partially sponsored by AF Contract No. F 19628-86-C-0224 while one of us (J.M.A.) was an Air Force Geophysics Lahoratory Geophysics Scholar. The United States Government is authorized to reptoduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

APPENDIX: SCALING LAWS FROM THE PMAP WHEN

 $\eta \neq 1$In this appendix, we use the PMAP in derive scaling relations for the kinetic energy $U_{m a x}$ and oscillation period r_{ρ} associated with the resonance acceleration process. The small momentum approxination to the PMAP is employed and we assume cold initial particles with $\omega=|/|(1)$. Having the benefit of the Paper I results, we know this to he a reasonable approximation when $\eta_{t} \neq 1$.

We will work with the small momentum version of the PMAP (Eqs. (30)-(32)| in the following form:

$$
\begin{equation*}
\frac{\Delta \rho_{1 n}}{m c}=\bar{d}_{1,1}\left(\epsilon_{1} \nmid \epsilon_{2}\right)\left(\frac{\rho_{1 n}}{m c}\right)^{1 \prime \prime} \cos \left(\mu_{n}^{\prime}+\frac{1 l \mid \pi}{2}-\right) \tag{A1}
\end{equation*}
$$

$$
\frac{\Delta P_{i n}}{m c}=\bar{d}_{1,1} \eta,\left(\epsilon_{1}+\epsilon_{2}\right)\left(\frac{p_{1 n}}{m c}\right)^{1 / 1} \cos \left(v_{n}^{\prime}+\frac{|l| \pi}{2}\right) .
$$

$$
\begin{equation*}
\Delta d_{n}^{\prime}=-\pi|i|\left(1-\eta_{:}^{2}\right)\left(\rho_{1 n} / m c\right)^{2} \tag{A3}
\end{equation*}
$$

where

$$
\vec{d}_{1}-(-\eta, 2)^{\prime \prime \prime} \quad 1 \pi|f|^{\prime \prime \prime} / \boldsymbol{r}(|d|)
$$

and the truncated phase has been defined to the $v_{n}^{\prime}-v_{n}(\bmod 2 \pi)$. The quantities $\epsilon_{,}, i=1,2$ are defined in Eq. (10).

Consider the ratio of $\Delta \rho_{1 n}$ to $\Delta \psi_{i n}$ arising from the mapping equations ($\wedge 1$) and (A) .

$$
\begin{align*}
\frac{\Delta\left(p_{1 n} / m c\right)}{\Delta \psi_{n}^{\prime}}= & -\frac{\bar{d}_{1 n} \eta_{s}^{\prime \prime 1} \cdot 1\left(\epsilon_{1}+\epsilon_{2}\right)}{\pi|l|\left(1-\eta_{n}^{2}\right)}\left(\frac{p_{1 n}}{m r}\right)^{1 / 1} \\
& \times \cos \left(p_{n}^{\prime}+\frac{|l| \pi}{2}\right) .
\end{align*}
$$

Approximating the finite differences as continuous differentiais, we obtain the following differential equation:

$$
\begin{align*}
\frac{d}{d v_{n}^{\prime}}\left(\frac{p_{1 n}}{m c}\right)^{4-1 \prime \prime}= & -(4-|l|) \frac{\bar{d}_{111} \eta_{x}^{\prime \prime \prime}\left(\epsilon_{1}+\epsilon_{2}\right)}{\pi|l|\left(1-\eta_{:}^{2}\right)} \\
& \times \cos \left(\psi_{n}^{\prime}+\frac{|| | \pi}{2}\right) \tag{A6}
\end{align*}
$$

Integrating this differeutial equation assuming $p_{10}=0$. we find with the appropriate choice of initial phase,

$$
\begin{equation*}
\frac{p_{\text {max }}}{m c}=\left|2 \frac{(4-|\||)_{1} \bar{d}_{11} \eta_{x}^{(1 \prime}{ }^{\prime}\left(\epsilon_{1}+\epsilon_{2}\right)}{\pi| | \mid\left(1-\eta_{z}^{2}\right)}\right|^{2 / 4} \tag{A7}
\end{equation*}
$$

For $|1|=1$, the maximum kinetic energy computed from $P_{\text {Iman }}$ is

$$
U_{\max }=1.65\left|\left(\epsilon_{1}+\epsilon_{2}\right) /\left(1-\eta_{2}^{2}\right)\right|^{2 / 9}
$$

and for $|l|=2$, we find

$$
\begin{equation*}
U_{\max }=2 \eta_{x}\left|\left(\epsilon_{1}+\epsilon_{2}\right) /\left(1-\eta_{x}^{2}\right)\right| \tag{A9}
\end{equation*}
$$

For $|l|=3, U_{\text {max }} \sim O\left(\epsilon^{2}\right)$, the same order as the quiver energy. The scaling of $U_{\text {max }}$ in ϵ, η, and α given by Eqs. (A8) and (A9) is identical to that obtained from the HPP theory (Paper I). Even the constants of proportionality are fairly close to those obtained from the HPP theory (1.26 for $||\mid=1$ and 2 for $||=2$).

To probe the scaling of the long time oscillation period i_{r}, we considier the change in phase $\Delta \psi_{n}^{\prime}$, which can be either positive definite ($\eta_{\mathrm{s}}>1$) or negative definite ($\eta_{:}<1$) if we ignore the unstable fixed point at $p_{\text {in }}=0$. The phase $d^{\prime \prime}$, will then be either monntonically increasing or decreasing leading to alternating periods of acceleration and deceleration, as we discussed in Sec. II C. Letting N be the number of orbis that $\Delta p_{1 n}>0$ (which is equivalent to the number of orbits that $\Delta p_{14}<0$ by the symmetry of the map), we deduce from the $\Delta p_{1 m}$ mapping equation (41)

$$
\pi=\sum_{n=1}^{N}\left|\Delta \psi_{n}^{\prime}\right|
$$

Substituting in the $\Delta v^{\prime \prime}$ mapping equation (A3) we find the sum relation

$$
1=|l|\left|1-\eta_{2}^{2}\right| \sum_{n=1}^{N}\left(\frac{p_{1 n}}{m c}\right)^{2}
$$

Defining $\left\langle r_{1 n}^{2}\right\rangle$ to be the average value of $g_{i n}^{2}$ over the acceleration sange of ψ_{n}, we can further reduce the sum relation 10

$$
\begin{equation*}
1=\left|\|\left|\left|1-\eta^{\vdots}\right| N\left(\left\langle n_{i, \prime}^{\prime}\right\rangle / m c^{\prime}\right)\right.\right. \tag{A12}
\end{equation*}
$$

Since the acceleration process is eyclic, we can capress the average of $f_{i n}^{2}$ as a function of the maximum of f_{i},

$$
\begin{equation*}
\Gamma_{\text {iman }}^{2}=C\left\langle p_{i n}^{2}\right\rangle \tag{A13}
\end{equation*}
$$

where C is of order unity and, we hypothesize, weakly dependent on e, η. and a. Noting that t_{ρ} is the long time scale oscillation period normalized to the wave periocl. i.e. $\tau_{r}=2|/| N$, we manipu te the reduced sum relation ($\wedge 12$) to find

$$
\begin{equation*}
U_{\operatorname{man}} \tau_{r}=C / 11-? \| \tag{A14}
\end{equation*}
$$

Using the previously derived expressions for ${ }^{\prime}{ }_{r, 1}$, | Eqs (18) and (19)]. the expression for τ_{r} when $|/|-1$ is found in be

$$
r_{r} \propto 1 /\left|1-\eta_{2}^{2}\right|^{1 / 1}\left|\epsilon_{1}+\epsilon_{2}\right|^{2,1}
$$

and, when $|I|=2$, the scaling relation becomes

$$
\begin{equation*}
\tau_{\mu} \propto I / \eta_{1}\left|\epsilon_{1}+\epsilon_{2}\right| \tag{A16}
\end{equation*}
$$

Hy depicting only a proportionality. we have urflected constants of order unity and the C factor in the above ${ }^{r} r$ estimate. The scaling of τ_{r} with $e . \eta$. and a are the same as that derived from the IIP'' theory except for a Ingarithmic factor that appears in the HPP expressions when $|I|=2$

The agreement of the PMAP and HPl' scaling laws. at least to order unity when $\eta_{2} \neq 1$. demonstrates that the PMAP does reasonably represent the main features of the physical processes that underlie the resonance acceleration mechanism when the momenta are small compared to mc. We reiterate, however, that the PMAP is limited and does not explain very well the initial phase and momenturn dependence (Sec. 11 A).
'Y. Ya. Davydnugki. Zh Eksp. Ten Fiz 43. RR6 (1962) |Smy Phys. JFTT 16. 629 (196?))

${ }^{\circ} \mathrm{P} . \mathrm{J}$ Palmeriessn, Phys Fluids 15, 2(KM [1972)
${ }^{4}$ II. Karimabadi. C. R Menyuh. I' Sprangle. and L Vlalico. Asirmpirys J 316. 462 (1987)
${ }^{3}$ H. Karimabadi, K Akimoto. N Omidi, and C R Menṣuk. Fhys Fluidk B 2. 606 (1990)
'G. Ginel and MI Heinemann, I'livs Fluids B 2. 700 ($19 \% 1$)
'G E Guest, M F. Fetzer, and R A. Dandl. I'hys Fluids 122.1210 (1990)
MI. Ahramowily and I. A. Stegun, Hondhont of Mathemotical Iunctions (U.S. Government I'rinting Ofice. Washingion, DC. 1072). p 361
${ }^{-}$See Ref 8, p. 360.
"'C R. Menyuk, A. 1. Drohul, D lapadepmutoc, and II Karimabadi. Phys. Fluids 31. 2071 (198R): K Akimoto and II Karimabadi. Fhys Fluids 31, 1505 (1988)
"A.J. Lichtenbere and M. A. Lieberman. Rrgular and Shochaske Afntion (Springer-Verlag. New York, 1982). p. 157
${ }^{12}$ See Rel. II, F R8
" W. II. Press. B. P. Flannery, S A Teuknaky, and $\boldsymbol{W} \boldsymbol{I}$ Velterling. Au. merical Reciper (Cambridge U \mathbf{P}, Cambridge. 19R6). Γ is0
${ }^{14} 1$ F. Bell, linys Fluids A. 182" (1969)
"K. B. Dysthe, J Georphys Res 76. 6215 (1971)

THE SUBS CORM ONSET ANI) MAGNETOSPIIERE IONOSPHERE COUPLING

P. L. Rothwell
(ieophysics Laboratory. Hansom AFB, Bedford, MA 01731

M. 13. Sileviteh

Center for filectromagnetics Kesearch. Northeastern liniversity, Boston , MA 02115
L. P. Block and C.. G. Fälthammar

The Royal Institute of Terhnology, S 100 44, Stockholm 70, Swerden

ABSTRACT

We have developed a model describing the structure of a pre-breakup ats based on an iomospheric Cowling channel and its extension into the magneto. sphere. A coupled two-circuit representation of the substorm current wedge is used which is locally superimposed on both westward and eastward clectrojets. We find that brighter, more unstable pre-breakup ares are formerl in the premidnight (southwest of the Ilarang Discontinuity) than in the postmidnight (northeast of the Harang Discontinuity) sector. This contributes to the observed prevalence of auroral activity in the premidnight sector. Nl:o, our model predicts that the north-south dimensions of the current worlge in the ionosphere should vary from a few kilometers at an invariant latitule (Λ) of 62° to hundreds of kilometers above $\Lambda=68^{\circ}$. (Comprarison of the mulel results with the extensive observations of Marklund at al. [1] for a specilic pre-breakup are shows good agreement, particularly for the magnitude of the polarization electric field and the arc size.

1. INTRODUCTION

Substorm breakup, as theoretically defined, marks the onset of a sul, storm's expansion phase. Acrording to Rostoker ef al. [2] there must be a minumum of one auroral breakup before an event can qualify as a substorm. Substorm breakup, as observationally defined, is the sudden brightening of a previously quiescent auroral are near local midnight. Once it is "inggered" the are dynamics is characterized by a rapid poleward and east-west expaltsion (Akasolu [3]; Tanskanen et al. |4]; and Mallinan [5]; Shepherd rt al. [6]). Other key features of auröal brcakup are: (1) Breakup occurs predominantly west of the Harang Discontimity (IID) in the pre-midnight sector (Heppner [7], Akasofu [3], Craven and Frank, [8]. where it can occur at L, values as low as 5.2 (Kremser et al. [9]; Kremser et al. [10]; Tanskanen ot al. [4]; Hallinan [5] ; Galperin and Feldstein [11]). (2) Breakup also ocrurs in a limited longitudinal sector near local midnight (bezniak and Winckler [19], Nagai et al. [13|). (3) During the growth phase there is an enhancement of the polar-cap potential. Therefore, the likehood of breakup must increase as the cross-tail electric field is increased.

We assume that many of the above features are determined by the con
The U.S. Government is authorized to reproduce and sell this report.
Permission for further reproduction by others must be obtalned from the copyright owner.
Scienific Publishers, Inc., Cambidec. M1A 02l.io
ditions underwhich the pre-breakup are is formed. That is the electrical configuration of the pre-breakup are sets the stage for the breakup merhanism. In this paper the pre-breakup are is treated as a local substorm current wedge [14]. As such, the east-west and north-south circnits that. form the current wedge are strongly coupled both in the ionosphere and in the magnetosphere. An important complication arises from the embedding of these local wedge structures in the large-scale electrojets. It is found that. the formation of a local current wedge is enhanced west of the HD) and im paired east of the HD by the large-scale electrojets. It is strongly emphasized that the present model is static in nature and does not pretend to describe the full time-dependent coupling between the fields and particles that must. occur when breakup is occurring.

Figure 1. A three-dimensional view from the equatorial plane of the coupled circuits discussed in the text. $J_{N N}$ is a current sheet downward on the equatorward side of the current wedge and upward on the poleward side. Note that it is closed by an earthward current in the equatorial plane. The other symbols shown in the figure are defined in the text.

Other model features are the compling of magnetospheric plasma llows to the north-south circuit and the use of the work of Fridman and lemaire $[15]$ to relate the field-aligned current density to the field-aligned potential drops. If the HD as mapped to the equatorial plane bifurcates eastward and westward plasma flows (G.-Erickson (16|) then the resulting asymmetry will also enhance wedge formation west of the III).

The independent parameters in the model are the field aligned potembial drop Φ_{1} in the north-south circuit (see Fig. 1) and the total east-west electric field in the equatorial plane, Ew.e. The field-aligned potential drop St "an be $^{\prime}$ related in a one-to-one manner to the diverted east-west current, $J_{w w}$. Wr believe that these magnetospheric parameters play a key role in determining the properties of the pre-breakup arc. In our model breakup occurs whon the fiedd-aligned potential drop along the poleward boundary is suddenly. enhanced which causes an unstable poleward expansion of the wedge.

From our model we have found that (1) auroral ares created thromph the formation of a wedge current system fall into either a "generator" on "load" class. The definition of generator and load arises from how the mag netospheric portion of the north-south circuit closes in the equatorial platir. Westward plasma flows produce a tailward equatorial electric field which, as seen from Fig. 1, creates a generator in the north-south circuit. Eastward plasma flows produce an carilhward equatorial electric field which acts as a load on the north-south circuit. In this paper we will only treal generatorl.jpe ares west of the IID. (2) the imposition of reasonable physical con straints on the wedge formation implies that only a restricted range of are thicknesses are allowed at a given latitude. (See Fig. 2.) This ranges from a few kilometers at $\Lambda=62^{\circ}$ to hundreds of kilometers for latitudes greater than $\sim \Lambda=69^{\circ}$. (3) Higher valucs of the cross-tail electric field shifts our results to lower latitudes and allows the formation of steady-state are structures that correspond to a DC diversion of the cross-tail current through the ionosphere. In these cases the field-aligned potential drop along the poleward boundary may exceed 30 kV consistent with the results of Kremser of al. [10] and Tanskanen et al. [4]. (4) We also found that the thickness of the. pre-breakup arc is dependent on the O^{+}concentration in the plasma sheet which connects our work with the results of Lennartsson and Sharp [17]. Cladis [18], Chappell [19] and Burch [20] that indicate that the ionosphere seeds the inner edge of the plasma sheet with energetic O^{+}during times of high magnetic activity. Ser Fig. 4 and Rothwell et al. [21] and Hothwell et al. [22] for details. We now refer to these earlier papers as Paper 1 and Paper 2.

The ionospheric location where breakup is observed often maps to an equatorial location substantially carthward of the expected location of a near-earth neutral line. This point has been emphasized by Block of al. [23] and more recently by Galperin and Feldstein [11]. In our model, theteforr: breakup does not explicitly depend on the existence of a near-earth neutral line, although breakup may cause the outward propagation of an Alfyen wave which results in the formation of a near-carth neutral line. Recoutly, Lui et al. [24] have observed current interruption at L ~ 8 without the usual signatures associated with magnetic reconnection. Lopez et al. [25] used two satellites to conclude that disruption of the current sheet sometimes begins near geosynchronous, and rapidly expands outward in the alear-arth magnetotail. One key feature, therefore, of the present model is that it does not require the formation of a near-earth neutral line and it places the location of substorm breakup where it has been observed. See Baumioharm [26] for a recent critique of the boundary layer and neutral-line substorm models. The major difference between our breakup model and that of kan et al. [27] and Kan and Akasofu [28] is that we treat the stability of a single arc structure while they examine the global effects of enhanced carthward
convection.
The substorm current wedges are imbedded in the rlectrojets on each sideof the IID. Current continuity requires the current inside the welge to be a superposition of the diverted magnetospheric currents and the electrojets.

$$
\begin{align*}
& J_{w}=J_{W_{0}}+K_{w} \Phi_{w} \tag{1,}\\
& J_{N}=J_{N_{o}}+K_{H} \Phi_{H} \tag{16}
\end{align*}
$$

where $K_{I V}$ and $K_{I f}$ are integrated field-aligned conductances along the wrost ern and poleward boundaries, respectively. Note that Φ_{w} and $\phi_{1 /}$ are the field-aligned potential drops at the westward and poleward bommaries of the current wedge. We treat $\Phi_{\| \prime}$ and Φ_{w} as spatially constant at the boumdaries and zero elsewhere. Inside the wedge, however, we scale the enhanced conductivity with Φ_{H} using the model of Robinson et al. [32]. In Section II we show that this is a reasonable approximation for at least one arc and we also include the effect of the background electrojets on the electrical propertios of the current wedge.

Figure 2. The substorm current wedge as seen in the ionosphere. This has been referred to as the Inhester-Banjohann model in our earlier work [21], [22]. E_{0} is the east-west field that drives a westward Pedersen current J_{p} and a poleward IIall current $J_{n \prime}$. The polarization electric field E_{p}, which results from the nonegual contimuation of J_{n} into the magnetosphere, also drives a westward Hall current and a southward Pedersen current as shown.

On the other hand, northeast of the Harang Discontimity where the convection electric field points equatorward the reverse ellect occurs which tends to inhibit the formation of the substorm current wedge. Therrforit is easier for a current wedge to form and breakup to occur sonthwesi rather than northeast of the llarang Discontinuity as observed by Hrppure [7], Nagai [13] and others.

II. THF, TWO-('IRC(MT' MODEL

Let us now assume that enhaneed electron precipitation has meated a localized region of enhanced conductivity in the iomesphese. Wie new wan to electrically couple this region with the magnetosphere. The extemied cast-west orientation of the ohserved breakup are motivales an approath which morlels the system as two coupled circuits, one noth-south and the other east-west. (Parts of his section are also in Papers 1 and 2). In oum model these circuits close in the maguetosphere via magnetic field alipered
 netosphetic coments in the erplatorial plane and ate deperedent on the phatua characteristics there. It is the compatibility of this carthward consertion with the field-aligned currents and with the ionosphenic configuration that determines where quiescent current systems can be established betwern the ionosphere and the magnetosphere. The associated auroral ares are the sites of auroral breakup.

Looking at Fig. 1 we see a three-dimensional projection of the sulustom current wedge circuits as seen from the magnetotail. A diverted current density $J_{w} w$ is observed in the ionosphere in the east-west direction. This current closes in the magnetosphere through a field-aligned potential doon (Φ_{W}) at the western boundary of the current wedge. $J_{w} w$, closes the conia torial loop in this east-west circuit which we now label WC. The diverled current is driven by the potential produced by the cross-tail electric fiedt, EW.

This field is mapped with corrections for field-aligned potential drops in the east-west circuit to the ionosphere as E。 in Fig. 2, which shows the ionospheric elements of the two circuits. Briefly, the westward-directod electric field, E_{ρ}, drives both a westward Pedersen current and a poleward Hall current in a highly conducting slab which is embedded in the eleetrojets. The lack of full continuation of the Hall current into the magnetosphere is associated with positive charges along the poleward boundary. 'The net poleward current densit.g that closes in the magetosphere is labelled J_{N} in life 1. In our model there are current sheets along the poleward and equator wand boundaries of the wedge region. Along the poleward boundary there is also a field-aligned potential drop, \boldsymbol{q}_{n}. In our model the magnitude of this potential drop is critical in detemmining the stability of the pre breakup ares. We taled the north-south circuit as IIC:, Partial closure also gencrates a southward pointing polarization field, Er. This field drives a southward Pedersen curnent and a westward Hall current thereby creating a Cowling channel. Note that the poleward current and the sonthward polarization field acts as a gructator for the north-south (IIC) circuit. We believe that the establishment of this (Cowling chanuel is an essential element of the breakup mechanism. The II circuit (IIC') is closed by an carthward current, In., in the equatorial platubetween the upward and downard current shetes.

One of the key elements of our model is how the IIC current is dosed in the magnetosphere. The north somth extent, $d_{1 \prime}$, of the ionospheric con rent system shown in Fig. 2 is mapped to the equatorial plane as d_{n} d_{H} / F_{r} where F_{r} is a scaling factor equal to $\Delta \Lambda / \Delta L$ where L is the Mcllwain 1,-shell parameter. F_{0} is the azimuthal ionosphere-magnetosphere scating factor which, in a dipole field, is equal to $11^{-3 / 2}[29]$. Fir and F_{a} call casily. be extended for nondipolar magnetic firld momels such as that of tisyra
nenko [30]. We choose a coordinate system in the equatorial plane such that x points earthward, y westward and z northward. Over the interval. $d_{H e}$, the earthward-flowing magnetospheric closure current, $J_{N_{e}}$, causes the bulk plasma to be accelerated in the -y direction. Following the approarh of Weimer et al. $\{31\}$ we have for J_{N}.

$$
\begin{equation*}
J_{N_{e}}=\frac{\rho t t_{\|}}{B \cdot j}\left[E_{w e} \frac{\partial E_{\mathrm{pe}}}{\partial x}-E_{p e} \frac{\partial E_{\mathrm{pe}}}{\partial y}\right] \tag{2}
\end{equation*}
$$

where ρ is the mass density in the plasma sheet, B. is the equatorial value of the magnetic field, $d_{\| 1} \sim R_{\text {eq }} / 3$ is the assumed field line segment over which j_{N}. is nonzero, and $E_{p e}$ is the radial component of the magnetospheric elertric field. For simplicity we assume that the arc is uniform in longitude so that the second term does not contribute. However, the remaining term depends on the radial gradient of $E_{\text {pe }}$, not on its magnitude. On the other hand, the load or generator character of the magnetospheric circuit depends on the average value and direction of $E_{p \text { p }}$. The exact relationship between these two quantities depends on a self-consistent solution for the arc structure. We resolve the problem here by assuming that the electric field gradient is constant. That is, the average electric field across $d_{h e}$ is some fraction of the ramp height of the gradient. In this way we can examine the coupling of the equatorial plasma flow with the wedge circuit.

III. TIIE EQUATIONS

In this section we give the relevant equations and a brief description of how they are solved. There are cight equations and eight unknowns.
A. Ionospheric Equations
(1)Inside the current wedge

$$
\begin{align*}
& J_{W}=E_{0} \Sigma_{p}+E_{p} \Sigma_{H} \tag{3}\\
& J_{N}=E_{0} \Sigma_{H}-E_{p} \Sigma_{p} \tag{1}
\end{align*}
$$

(2) Outside the current wedge

$$
\begin{align*}
& J_{W o}=E_{o} \Sigma_{p o}+E_{p o} \Sigma_{H o} \tag{5}\\
& J_{N_{0}}=E_{0} \Sigma_{H o}-E_{p o} \Sigma_{p o} \tag{6}
\end{align*}
$$

The subscript "o" refers to the background values of the electric fields and conductivities just outside the current wedge. The use of E_{n} in both sets of equations ensures a solution consistent with a curl free electric field.
B. Current Continuity at the wedge boundaries

$$
\begin{gather*}
J_{W} w=J_{w}-J_{W n}=K_{w} \Phi_{w} \tag{i}\\
J_{N N}=J_{N}-J_{N_{n}}=K_{\mu} \Phi_{H} \tag{8}
\end{gather*}
$$

C. Kirchhoff's Law in the East-West Circuit

$$
\begin{equation*}
-\frac{\Phi_{w}}{d_{w}}=\left[\frac{E_{W e}}{F_{a}}-E_{0}\right] \tag{9}
\end{equation*}
$$

where Φ_{W} is the field-aligned potential drop along the western bounday and $E_{W_{e}}$ is the cross-tail electric ficld $\sim 1 \mathrm{mv} / \mathrm{m} . d_{w} \sim 1000 \mathrm{~km}$.

Define: $\quad \delta \Sigma_{H}=\Sigma_{H}-\Sigma_{H o}, \delta \Sigma_{r}=\Sigma_{r}-\Sigma_{r o}, R \equiv \Sigma_{H} / \Sigma_{p}, \Sigma_{H}=\Sigma_{H}\left(\Phi_{\|}\right), \Sigma_{H}-$ $\Sigma_{r}\left(\Phi_{n \prime}\right)$ Robinson et al.| 32). ($\delta \Sigma_{f}$ and $\delta \Sigma_{r}$ are finite liere.) The above cuna tions can be solved for E_{0} as a function of Φ_{H}

$$
\begin{equation*}
E_{0}=\frac{K_{W} d_{W} E_{W} / F_{a}+R K_{I I} \Phi_{I I}-E_{p o}\left[R \Sigma_{p o}-\Sigma_{I I c}\right]}{\left[\Omega \Sigma_{r}+R \delta \Sigma_{H}+K_{W} d_{W}\right]} \tag{10}
\end{equation*}
$$

D. Inputs: $\Phi_{H}, E_{W^{\prime}}, E_{p o}, \Sigma_{H_{o}}, \Sigma_{\mathrm{po}}$
E. Fixed parameters: $L_{H}, L_{W}, T_{e 1}, T_{e f}, n_{e}$. The first two parameters are the spatial extent of the current closure along the poleward and western wedge boundaries, respectively. The next three parameters are the electron temperature and density. These are inputs to the Fridman and Lemaire [15] relation that relates the field-aligned potential drop to the field-aligned current density. The ratio of these latter two quantities gives the field-aligued conductivity k_{11}. Note that $\kappa_{n}=k_{H} L_{n} \cdot k_{W}$ is fixed at $3 \times 10^{-9} \mathrm{~S} / \mathrm{m}^{2}$. The last three parameters are the electron temperature and density. These are inputs to Fridman and Lemaire [15] relation that relates the field-aligned potential drop to the field-aligned current.
F. Outputs: $E_{0}, E_{f}, J_{N N} \equiv K_{H} \Phi_{H}, J_{W W}, \Phi_{W}$
G. Magnetospheric Equations.
(1) North-South Circuit

Kirchhoff's Law

$$
\begin{equation*}
<\Delta E_{r r}>=F_{r}\left[\Delta E_{p}-\frac{\Phi_{H}}{d_{H}}\right] \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta E_{r}=E_{r}-E_{r o} \tag{12}
\end{equation*}
$$

and $\left\langle\Delta E_{\text {pe }}\right\rangle$ is the average value of the perturbed radial magnetospheric electric field across the arc. The earthward radial current in the magnetosphere is approximated from the results of [31] as discussed above.

$$
\begin{equation*}
J_{N e}=K_{m} \frac{\partial E_{p e}}{\partial x} \sim K_{m} \frac{\delta E_{p e}}{d_{H e}} \tag{1:3}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{t \mathrm{~m}}=\frac{\rho d_{\eta} E_{W_{e}}}{B_{e}^{j}} \tag{14}
\end{equation*}
$$

Note that we have approximated the magnetospheric electric field by a ramp-like behavior which corresponds to a spatially constant polarization current, $J_{N_{e}}$. The value of $\left\langle\Delta E_{r e}\right\rangle$ is assumed proportional to the hright of the ramp $\delta E_{p e}$ by some constant γ where $0 \leq|\gamma| \leq 0.5$. As mentioned above, the precise value of γ can be ascertained only by understanding the spatial structure of the auroral ase and the details of its compling to the backgromid plasma flows in the equatorial plane.

Current continuitv requires

$$
\begin{equation*}
J_{N_{e}}=F_{a} K_{H} \Phi_{H} \tag{15.5}
\end{equation*}
$$

Combining equations(11), (13) and (15) we find a quadratic expression for d_{H}.

$$
\begin{equation*}
-a_{2} d_{H}^{2}+a_{1} d_{H}+a_{0}=0 \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0}=-F_{r}^{2} K_{m} \cdot Q_{H} \tag{1i}\\
& a_{1}=F_{r}^{2} K_{m} \Delta E_{p} \\
& a_{2}=F_{a} K_{H} \Phi_{I I} \gamma
\end{align*}
$$

We find that a positive root for d_{n} only exists when γ is negative. Wr. choose $\gamma=-0.5$. This corresponds to a tailward directed $\Delta E_{p e}$ since δE_{r}. is always positive for an earthward closure current, J_{N}. This is a generator configuration and kinetic energy is being converted from the backgrom, plasma lows.
(1) Inputs: $\Phi_{H}, \Delta E_{p}, E_{W}$.
(2) Fixed parameters: $F_{r}, F_{a}, K_{H}, \gamma_{1}, \rho_{1} B_{\ldots}, d_{\|}$
(3) Outputs: $d_{H},<\Delta E_{p e}>J_{N}$.

Figure 3. Comparison of the present model with the observations of Marklund et al. [1]. E_{p} refers to the polarization field shown in Fig. 2. There are two values of the cross-tail electric field as this quantity is difficult to estimate from the data (1].

IN. RESURTS

We will now compare our model with a specilic prebreakup are as ma sured by Markhund of al. [1] and is classified as I_{d} in the nomenclatumdefined in [33]. The Substorm-(iEOS rockel was launched at 21.01 .5911$]$ on 27 January, 1979 from ESRANGE, Kiruna, Sweden ($\Lambda=66^{\circ}$) near local midnight on January 27, 1979 shortly afler the onset of an intense magnot, spheric substorm over northern Scandinavia. The obtained data represents a comprehensive data sel of the are's electric field profile in both the east we:t and north-sonth directions as well as the spectra and flux of the precipitating: etretrons. Although this data is for an are presumably undergoing breakni we compare the experimental iesults with the static model developed here and find good agrecment. Model inputs are $E_{W_{c}}=0.8 .10 \mathrm{mv} / \mathrm{m}, F_{r_{0}}=-5$ $m \mathrm{~m} / \mathrm{m}, \mathrm{\Sigma}_{\mathrm{Hc}}=16 \mathrm{~S}, \mathrm{\Sigma}_{r c}=10 \mathrm{~S}$ as taken from Marklund of al. (11]. The map' ping factors are calculated using the 1987 model of Tsyganenko [30]. Re and $d_{\| 1}$ are fixed by

Figure 1. One of the more interesting features of our model is the a pability to calculate the are thickusss. Four calculations were made for various cross-tail electric fields and ion mass densities. (The num ber density is maintained at 1 ion per re.). It is seen that the Marklund al al. 's |1| data is well bracketed by an assumption of 0 and 50 per cent for the O^{+}concentration. A potential utilization of such a model is to estimate magnetospheric quantities using ionospheric measurements.
the choice of Λ and the discussion abowe. $k_{n}=r_{H} k_{1 \prime}$ is determined settines, L_{H}, the size of the conductivity gradient along the poleward boundary, to en k mind by using the results of Pridman and Lemaire [15) to determine the field-aligned conductivity. $\gamma=-0.5$. Fig. 3 shows excellent agreement for the polarization electric field inside the arc. Fig. I shows the model resull.s for d_{M}, the north-south extent of the are in the ionosphere as determined from equation (16). The The error bars are taken from Fig. 8 of Marklumi el al. 's [1] data. The number density in the plasma shert is taken as 1 ion (electron) per cc. The uncertainty in Eive, the cross-tail rlectric field, is dhe to the spatial variations in E_{y} as shown in the same work [1]. It is seen that. the experimental results are well bracketed by a plasma sheet mass density that

Figure 5. The wedge thickness as a function of the field-aligned potential drop along the poleward boundary for several magnetic latitudes. Note that in the steady-state model as presented here $\|_{n}$ has an upper limit at a given magnetic latitude. These calculations were made for a background electric field consistent with being west. of the IID. The $\gamma=0$ solutions correspond to no conpling betwern the background plasma llows and the norlin-somth circuit. $\gamma=-0.5$ corresponds to maximum conpling. See text.
is between 0 and 50 per cent in 0^{+}concentration. Fig. 5 shows a graph of $d_{I \prime}$ versus Φ_{H} for several values of Λ. Note that if there is no coupling with the plasma flows in the equatorial plane (i.e. $\gamma=0$) then thinner are structures cannot form. It is only when such a coupling exists that thin arss can form. Note that there is an upper limit to $d_{\| \prime}$ for each value of Λ which indicates that thinner wedges tend to form at lower latitudes.

V. CONCLUSIONS

We have shown that pre-breakup arcs can be represented by two coupled circuits between the ionosphere and the magnetosphere similar to the cur rent. wedge configuration proposed by [14]. The formation of such a current system is strongly influenced by the presence of background electrojets in the ionosphere and directed plasnia flows in the magnetosphere. A comparison with the measurements of Marklund et al. [1] for a specific pre-breakup arc shows excellent agreement. 'The present model highlights the interdependence between ionospheric and magnetospheric quantities and suggests that by measuring one set that one could imply values for the other. For exam ple, the above application of the the model to Marklund et al.'s observations imply a tailward magnetospheric electric field of $-0.9-(-1.6) \mathrm{mv} / \mathrm{m}$ which is in excellent agreement with the in situ measurement of [4] during another breakup event.

REFERENCES

(I) G. Marklund, W. Baumjohann, and I. Sandahl, Planel. Spac. Sci. 31, 20 (1983).
[2] G. Rostoker, S.-I. Akasofu, W. Baumjohann, Y. Kamide, and R. L. McPherron, Space Sci. Revs. 46, 93 (1987).
[3] S. - I. Akasofu, Space Sci. Rev. 16, 617 (1974).
[4] P. Tanskanen, J. Kangas, L. Block, G. Kremser, A. Korth, J. Woch, I.B. Iversen, K. M. Torkar, W. Riedler, S. Ullaland, J. Stadsnes, K.-HI. Glassmeir, J. Gcophys. Res. 92, 7443 (1987).
[5] Thomas J. Hallinan, EOS, 68, 1420 (1987).
[6] G. G. Shepherd, C. D. Anger, J. S. Murphee, and A. Vallance Jones, Geophys. Res. Lett. 14, 395 (1987).
(7) James P. Heppner, (Ph. D. thesis), Defence Research Board of Canada report No. DR 135 (1958).
[8] J. D. Craven, L. A. Frank, and S.-I. Akasofu, J. Geophys. Res. 94. 6961 (1989).
[9] G. Kremser, J. Bjordal, L. Block, K. Bronstad. M. Havag, I. B.Iversen, J. Kangas, A. Korth, M. M. Madsen. J. Niskanen, W. Riedler, J. Stadsnes, P. Tanskanen, K. M. Torkar, and S. L. Ullaland, J. Geophys. Res. 87, 44.5, (1982).
[10] G. Kremser, A. Korth, S. Mllaland, J. Stadnes, V. Baumjohann, L. Block, K. M. Torkar, W. Riedler, B. Aparicio, P. Tanskanen, I. B. Iversen, N. Corncillean-Welrlin, J. Solomon, and E. Amata, J. Geophys. Res. 91, 5711 (1986).
[11] Yu. Galperin, and Ya. Feldstein, in Proceedings, Auroral Physics Conference, St. Johns Collige, Cambridge, England, July 11-15, 1988 in press.
[12] T. W. Lezniak, and J. R. Winckter, J. Geophys. Res. 75, 7075 (1970).
[13] T. Nagai, D. N. Baker, and P. R. Iligbie, J. Geophys. Res. 88, 6994 (1983).
[14] R. L. McPherron, C. T. Russell, and M. P. Aubrey, J. Geophys. Res. 78, 3131, (1973).
15 M. Fridman, and J. Lemaire, J. Geophys. Res. 85, 664 (1980).
16 Gary Erickson, private communicationm, 1990.
17 W. Lennartsson, and R. D. Sharp, Adv. Spac. Res. 5, 411 (1985).
18 J. B. Cladis, Geophys. Res. Ltrs. 13, 893 (1986).
19 Charles L. Chappell, Revs. of Geophys. 26, 229 (1988).
20 J. L. Burch, J. of Geophys. 26, 215 (1988).
21] P. L. Rothwell, L. P. Block, M. B. Silevitch, and C.-G. Fälthammar, Geophys. Res. Lett. 15, 1279 (1988).
[22] Paul L. Rothwell, Lars P. Block, Michael B. Silevitch, and CarlGunue Fälthammar, IEEE Trans. on Plasma Science17, (1989).
[23] Lars P. Block, Paul L. Rothwell, and Michael B. Silevitch, E0S 67,1178 (1986).
[24] A. T. Y. Lui, R. E. Lopez, S. M. Krimigis, R. W. McEntire, L. J. Zanetti, and T. A. Potemra, Geophys. Res. Lett. 15, 721 (1988).
[25] R. E. Lopez, D. G. Sibeck, R. W. McIntire, and S. M. Krimigis, J. Geophys. Res. 95, 109 (1990).
$[26]$ Woligang Baumjohann, J. Geomag. Geoelectr. 40, 157 (1988).
[27] J. R. Kan, L. Zhu, and S.-I. Akasofu, J. Geophys. Res. 93, 5624 (1988).
[28] J. R. Kan, and Syun-Ichi Akasofu, IEEE Trans. on Plasma Science 17, 83 (1989).
[29] W. Lotko, B. U. Ö. Sonnerup, and R. L. Lysak, J. Geophys. Res. 92, 8635 (1987).
[30] N. A. Tsyganenko, Global quantitative models of the geomagnetic field in the Planet. and Space Sci. 35, 1347 (i987).
[31] D. R. Weimer, N. C. Maynard, W. J. Burke, and M. Sugiura, J. Geophys. Res. 93, 11436 (1988).
[32] R. M. Robinson, R. R. Vondrak, K. Miller, T'. Dabbs and D. Mardy, J. Geophys. Res. 92, 2565 (1987).
[33] Göran Marklund, Planet. Space Sci 32, 193 (1984).

Prebreakup Arcs: A Comparison Between Theory and Experiment

P. I.. Rothwell

Geophysics Directorate. Phillips Laboratmen, Hamsiom Air Force Base. Brdford. Mossachusetrs

M. B. Sitevilatil

L. P. Biock and C. G. Fäliliammar

The Royal Institite of 7ichnologr. Siochtolm. Swecden

We have developed a model describing the strucure of a prebreakup are based on an ionospheric Cowling channel and ins extension into itie manterosphere. A compled two circuat represenation of the subvium current wedge is used which is lacially supetmoresed on both westwatd and eavimard electropets. We find that brighter. mure unstable plebicikup arcs are formed in the piemideight (omiliwest of the Harang Discontinuty) than on the postmidnight (northeast of the flarang Discontinuity) sector. I his contributes to the observed prevalence of auroral activity in the premidnight sector. Also. nur model predicts that the north-sumb dimensions of the current wedge in the onosphere should vary from a few kilometers at an invariant latitude (\mathbf{N}) of 62° to hundreds of kilometers above $\Lambda=68^{\circ}$. Comparison of the model results with the extensive observations of Marklund et al. (1983) for a specific arc observed just after onset shows goud agreement. particularly for the magnitude of the polarization electric field and the arc size. We conclude that this agreement is further evidence that the substorm breakup arises from magnetosphere ionosphere coupling in the near magnetosphere and that the steady state moded developed here is descriptive of the breakup are before inductive eflects hecome dominarn

I. Introduction

Substorm breakup, as theoretically defined, marks the onset of a substorm's expansion phase. According to Roswher ef al. [1987] there must be a minimum of one aturoral breakup before an event can qualify as a substorm. Substorm breakup, as observationally defined, is the sudden brightening of a previously quiescent auroral are near local midnight. Once it is "triggered". the are dynamics is characterized by a rapid poleward and east-west expansion |AKasofu, 1974; Tanskanen et al., 1987; Hallinan, 1987; Shepherd et al., 1987]. Other key features of auroral breakup are as follows: (1) Breakup occurs predominantly west of the Harang Discontinuity (IID) in the premidnight sector ($/ 1 / p$. pher, 1958: Akasofu, 1974; C'raren et al., 1989), where it can occur at L values as low as 5.2 |Kremser et al. 1982, 1986: Tanskanen et al.. 1987: Hullinan, 1987: Galperinn and Felds/ein. 1991I. (2) Breakun also occurs in a limited lungitudinal sector near local midnight (Lezniak and Winchler, 1970: Nugai et al. 1983|. (3) During the growth phase there is an enhancement of the polar cap potential. Therefore the likelihood of breakup muse increase as the cross-tail electric field is increased.

We assume that many of the above features are decermined by the conditions under which the prebreakup arc is formed: That is. the electrical contiguration of the prebreakup arc sets the stage for the breakup mechanism. In this paper the prebreakup are is treated as a local substorm

(ingyrifit lwit by the Amemant (icuphystal Unton
Papor numiter gljainiz6s.

east-west and north-south circuits that form the current wedge are strongly coupled both in the ionosphere and in the magnetosphere. An important complication arises from the embedding of these local wedge structures in the large-scale electrojets. It is found that the formation of a local current wedge is more favorable west of the HD due to the presence of the large-scale electrojets. It is strongly emphasized that the present model is static in nature and does not pretend to describe the full time-dependent coupling between the fields and particles that must occur when breakup is occurring.

Other model features are the coupling of magnetospheric plasma llows to the north-south circuit and the use of the Firidman and I emaire $[1980]$ formula to relate the fieldaligned current density to the field-aligned potential drops. If the IDD as mapped to the equatorial plane delineates a region of enhanced westward plasma flows [Erickson el wl., 1991]. then the resulting asymmetry will also enhance wedge formation west of the HD.
The independent pirameters in the model are the fieldaligned potential drop $\Phi_{\text {s }}$ in the north-south circuit (see Figure 11 and the total east-west electric fietd in the equatorial plane, E_{ve}. The field-aligned potential drop Φ, can be related in a one-to-one manner to the diveried east-west current J_{v}. We believe that these magnetospheric parameters play a key role in determining the properties of the prebreakup arc. In our model, breakup occurs when the field-aligned potential drop along the poleward boundiry is andenly enhasered; this causes ath unstable pole ward expan som of the wedge. From our model we have found that il allomat arcs created through the formation of a wedee current system fall into cilher a "gencrater" ol "load" clan The definition of eenctator amil had arises frem hew

Fig. 1. A three dimensional view from the equatorial phane of the coupled circuits discussed in the text. J_{y} is duwnward current on the eastem edge and an upward cuirent on the western edge. J_{r} is a current sheet downward on the equatorward side of the current wedge and upward on the poleward side. Note that it is closed by an earthward current in the equatorial plane. $\boldsymbol{\phi}_{y}$ and $\boldsymbol{\psi}$, represen field-aligned potential drops along the westem and poleward burndaries, respectively. The other symbols shown in the figure are defined in the text. The coordinate system is such that x is toward the Earth and y points duskward (westward)
the magnetospheric portion of the north-south circuit clases in the equatorial plane. Westward plasma tlows produce a tailward equatorial electric field which, as seen from Figure 1. creates a generator in the north-south circuit. Eastward plasmal flows produce an earthward equatorial electric field which acts as a load on the north-south circuit. In this paper we will treat only generator-Iype ares west of the HD. 12) The imposition of reasonable physical constraints on the weuge formation implies that only a restricted range of arc thicknesses are allowed at a given latitude (see Figure 121. This ranges from a few kilometers at $A=62^{\circ}$ to hundreds of kilonneters for latitudes greater than $\sim A=69^{\circ}$. (3) Higher values of the cross-tail electric ficld allows the formation it lower latitudes of steady state arc structures that correspond to a DC diversion of the cross-tail current through the ionusphere. In these cases the lield-aligned potential drop along the poleward boundary may exceed 30 kV which is consistent with the values observed in the preonset precip. itation fiont by Kremser ef al. $|1986|$ and Tanshanen at al. |1987|. 141 We also found that the thickness of the prebreakup are is dependent un the 0^{*} concentration in the plastan , heet which connects our woik with the results of l.ennarts.som and Shurp [1985], Chedis |1986|. Chopprell [1988| and Burch [1988] that indicate that the ionosphere seeds the inner edge of the plasma sheet with energelic \cap^{*} dating times of high magnetic activity. See Figure 9 and Rotharell ef al. $\{1988$, 1989) for details. We now refer to these eirtier papers as paper 1 and paper 2.

The ionospheric leciation where breakup is observed oiten miaps to an equalorial location substantially earthward of the expected focation of a near - Earth neutral linei Thi, point bis

 Weakup, deses met explicaly depend un the existeme of a nciat lanth nential lime althongh beaknp may sanse the
outward propagation of an Altven wave which results in the forsmation of a near-Eiath neustal line Recembly. limet al. [1988| have obscrved current interruption at $L-8$ whhout the ustal signatures associated with magnetic reconnection. Lopez ef al. [1990] used iwo satellites to conclude that disruplion of the current sheet sometumes begins near gensynchronous asd rapidly expands outwird in the near-Eurth miagnetotail. One key feature therefore of the present model is that it does not require the formation of a near-Earth neutral line and it places the location of subetorm breakup where it has been observed. See Batamjohann \{1988) for a receiti critique of the buundary layer and neutral-line substorm inodels. The major difference between our breakup model and that of Kun et al. (1988) and Kant and ARasofic |1989] is that we Ireat a single are stracture while they exannite the global etfects of enhanced earthward convec. เし!

The substorm current wedges are modeled as being im. bedded in the elecirojets on each side of the HD. Current continuity requires the current inside the wedge to be a superposition of the diverted magnelospheric currents and the electrojets.

$$
\begin{align*}
& J_{w}=J_{v u}+K_{v} b_{1} \tag{la}\\
& J_{u}=J_{v}+K_{1} b_{1}
\end{align*}
$$

where $K_{,}$and $K_{\text {, }}$ are integrated fichdialigned conductances along the western and poleward bonndaries. tespectively. Note that to, and W, are the field-aligncel polential dropy at the westward and poleward boundaries of the current wedge. We treat $\Phi_{\text {, }}$ and ϕ_{y} as spatially constant at the boundaries and zero eisewhere. Inside the wedge, however. we scale the enhanced conductivity with th, using the model of Robinson ef al. [1987]. In section 4 we show that this is a reasunable approximation for at least one arc.

2. Two-Circuit Model.

Let us now assume that enhanced electron precipitation hats created a localized region of enhanced conductivity in the ionosphere. We now want to electrically couple this region with the magnetosphere. The extended east-west orientation of the observed breakup are motivates an ap. proach that models the system as two compled circuits. one north-suuth and the other easi-weit. (Purts of this section are also in papers 1 and 2.) In our model these circuits close in the magnetosphere via magnetic-fiedd-alignced cursents. I he field-aligned currents in turn are the continuation of mig. netospheric currents in the equatortal plane ind are depen. dent on the plasmai characteristac lluete. It is the compatibility of this earthward convection u th the field-adighed coltrents and with the ionospheric contiguration that determines where quiescent current vystems cian be wablished between the iunuspleere and the anagitionplicic. We belicve that the assuciated amorat ares are the siles of aurorab hic:ahip.
l.aoking at Figure I we sec a flice almincosmal projection of the substorm current wedge circuils is seen from the magnelotail. A diveled corrent denalis f in obsemsed llowing through the ionovphate in the cist wevt ditectorn

Fig: The substorni current wedge of Figure 1 as seen in the unusphere this has teen reterred to as the Inhesier-Hauminohasin mondel by Rothwell et al. |1988, 1989). Basically, the current densily f, shoun in Figure 1 consists of a Pedersen component f_{f} and d llall component J f, from the polarization electric field $E_{p}\left(E_{i}\right)$. The current Jensity J, shuwn in Figure I also consists of a Pedersen $J p$ compment and a Hall component $J_{1 \prime} E_{0}$, is equivalent to E, in the texi.

West citcuit which we now label Y.C. The diverted eurtent is consistent with the potental produced by the crons-lal electic field $E_{i,}$. We choose a courdinate system ith the cquatorial plane such that points earthward. y points westward. and z is parallet to B. In the ionosphere the corresponding x comrdinate points equatorward. An additiunal "e" subscript denotes a magnetospheric quantity.)

Ihis field is mapped with corrections for field-iligned potential drops in the east-west circuit to the ionusphere as $E_{\text {, }}\left(E_{w}\right)$ in Figure 2. This figure shows the ionospheric elenments of the two circuits. Briefly, the westward directed electric field E_{v}, Jrives buth a westward Pedersen current J_{p} and a poleward Hall current $J_{\|}$in a highly conducting slab which is embedded in the electrojets. The lack of full continuation of the Hall current into the magnetosphere is assuciated with positive charges along the poleward boundary. The net poleward current density that closes in the magnefosphere is labeled J, in Figure 1 . In our model there are current sheets along the poleward and equatorward boundaries of the wedge region. Along the poleward boundary there is also a fie!d-aligned potential drop, W_{z}. The magnitude of this potential drop is critical in determining the stability of the prebreakup arcs. We label the north-south circuit as X-C. Partial closure also generates a southward pointing polarization field. $E_{T}\left(E_{f}\right)$ in the ionosphere. This ciectric field drives a southward Pedersen current (J_{p}^{p}) and a westwasd Hall current ($J \rho_{1}$) thereby creating a Cowling channel as shown in Figure 2. Note that the poleward current and the southward polarization field act as a gener. ator for the north-south (X.C) circuit. We believe that the establishment of this Cowling channel is an essential element of the hieakup mechanism. The north-south circuit (X-C) is closed hy an earthward current $J_{\text {se }}$ in the equatorial plane between the upward and downward current sheets. We assume here that $J_{1,}$ is purely an inertia curreat while the futal westward magnetospheric current is consistent with an earthward pressure gradient. The first assumption may be modified as the present model is incorporated into more global models. The second assumption follows from our treatment of a quasi-stationary sinucture.

One of the key elements of our model is how the X.C current is closed in the magnetosphere. The north-south extent. $d_{\text {. }}$. of the torospheric curient system shown in Figure 2 is mapped to the equatortial plane as $d_{1 r}=d, / f$. . where f, is a sciating fiaclor equal to $\Delta N / J L$. (L. is the Mcilu,um l. thell pomameter and I is the corresponding invariant latifadei. f, is the agimuthal ionosphetc. magnewoshere scaling facion which, in a dipule tieds, is
 extended for nondipolar magnetic field inodels such is that of Tivganenho [1987]. We use the Twgetmente |1987] model in section t. Over the interval $d_{\text {, }}$ the eathward Dowing magnelospheric closure current $f_{\text {er }}$ canses the bulk planma to be accelerated in the $-v$ direction. This means that westward flowing plasma will be decelerated while eantward flowing plasma will be accelerated. Therefore in a region of westward fowing plasma we expect a generator-type circuit. while in the region of eastward flowing plavma we expect a luad-type circuit.

Themagnetospheric inertia current [Weiner at al. 1988] is given by

$$
\begin{equation*}
J_{10}=\frac{p d_{1}}{B_{e}}\left(E_{1}, \frac{\partial E_{1}}{\partial x}-E_{1} \frac{\partial E_{v}}{\partial y}\right) \tag{2}
\end{equation*}
$$

where ρ is the mass denonty in the plasma sheet, Bo in the equatorial value of the magnetic field. $d_{1} \quad R_{r 4} / 3$ is the assumed field line segment over which $J_{\text {, }}$ is nomera, and E_{1}, is the radial component of the magnetospheric electic field. For simplicity we assume that the are is unifurm in longitude so that the second term does not contribute. However, the remaining term depends on the radial gradient of E_{ie}, not on its magnitude. On the other hand. the load or generator character of the magnetospheric circuit depends on the average value and direction of $E_{1,}$. We must look therefore outside our present model for the appropriate electric field gradient. This term could arise, for example. from a more detailed self consistent solation for auroral are structure. We resolve the problem below by assuming that the electric field gradient is constant; that is. the average perturbed electric field across d_{10} is taken as some fraction of the ramp height of the gradient. In this way we approximate the coupling of the equatorial plasma flow with the wedge circuit which can be compared with experiniental data. Note that one cannot approximate (2) with an ohmic relation. The reason is that there must be curtent across $d_{\text {e }}$ even when E_{le} is zero. That is the case when $\psi_{\mathrm{r}}=\varepsilon_{\mathrm{i}} \dot{d}_{\mathrm{i}}$.

3. Equations

In this section we give the retevant equations and a hrief description of how they are solved.

Ionospheric Equations

Inside the current wedge

$$
\begin{equation*}
J_{11}=E_{1} \Sigma_{p}+E_{1} \Sigma_{n} \tag{131}
\end{equation*}
$$

$$
\begin{equation*}
J_{11}=E_{r} \Sigma V_{11}-E_{\mathrm{r}} \Sigma_{1} \tag{1}
\end{equation*}
$$

Outside the current wedge

$$
\begin{equation*}
J_{y,}=E_{y} \Sigma_{m, 0}+E_{p o} \Sigma_{H,} \tag{151}
\end{equation*}
$$

$$
\begin{equation*}
J_{1, \prime}=E_{v} \Sigma_{n_{1}}-E_{r_{1,}} \Sigma_{r_{1}} \tag{6}
\end{equation*}
$$

The subscript " ${ }^{\prime}$ " refers to background quantites outside the current wedge, and the suthscript " t " denotes the total innorpheric currents insule the wedge. The use of t_{y} in both sels of equations is consistent with a curl free electric tield. Note that E, does not equal the mapped valuc of $L_{\text {, }}$ to the nonovphere except in the ham that the W, vamshes We mate the not very tadlaal assumption that nature finds a "an
to contigure the electric fields so that Faraday＇s Law is ubeyed．A full treatment of this problem which entanls negative charge buildup at the western boundary of the wedge is beyond the scope of this paper．
Carrent comtinuity at the wedge boundaries．

$$
\begin{align*}
& J_{v}=J_{y_{1}}-J_{v_{1}}=K_{1} 中_{r} \tag{7}\\
& J_{1}=J_{11}-J_{11}=K_{1} 中_{1} \tag{8}
\end{align*}
$$

Kirchitofl＇s Law in the east－west circuif．

$$
\begin{equation*}
\frac{\phi_{v}}{d_{v}}=\left(\frac{E_{v e}}{F_{v}}-E_{v}\right) \tag{9}
\end{equation*}
$$

where $中$ ，is the field－aligned potential drop along the west－ ern boundary and $E_{v r}$ is the cross－tail electric tield．－1－2 mvion［Fohhhummar．1989a，bl；$d_{v}-1000 \mathrm{~km}$ ．

Definioicons．We detine $\delta \Sigma_{u}=\Sigma_{u}-\Sigma_{H_{1}} \delta \Sigma_{p}=\Sigma_{p}$
 the model of Rubinson et al．［1987］．Note that these are finite differences．The above equations can be solved for E_{v} and E_{r} as a function of φ_{r} ，where

$$
\begin{equation*}
E_{v}=\frac{K_{y} d_{y} E_{y e}\left(F_{y}+R K_{1} \Phi_{v}-E_{p n}\left(R \Sigma_{p u}-\Sigma_{H}\right)\right.}{\left(\delta \Sigma_{p}+R \delta \Sigma_{\|}+K_{y} d_{y}\right)} \tag{10}
\end{equation*}
$$

and E_{x} is easity obtained by substitution．
Inpurs．The inputs for the ionospheric equations are Ψ_{1} ．the field－aligned potential drop along the poleward houndary：$E_{y,}$ ．the cross－tail electric field；$E_{p, \ldots}$ ，the north－ south electric field component outside the current wedge： and $\Sigma_{H_{1}}$ and $\Sigma_{p,}$ ，the Hall and Pedersen conductivities outside the current wedge．

Fixed parameters．The fixed parameters are L_{1}, L_{v} ． $T_{\text {el }}, T_{i l}, n_{x}, d_{y}$ ，and F_{r} ．The first two parameters are the spatial extent of the current closure along the poleward and western wedge boundaries，respectively．The next three parameters are the plasma sheet electron temperature and density．These are inputs to Fridman and Lemaire［1980］ relation that relates the field－aligned potential drop to the field－aligned current density．The ratio of these latter two quantities gives the lield－aligned conductivity $k_{c_{c}}$ ．Note that $K_{r}=h_{1} L_{r}$ and $K_{y}=k_{y} L_{y}$ are the integrated field－aligned conductivities（siemens per meter）．k_{y} is tixed at 3×10^{-9} $\mathrm{S} / \mathrm{mi}^{2}$ ．The Fridman and Lemaire \｛1980］relation allows one to estimate the energy flux of the precipitation which is then inputted into the Rohinson at al． 119871 model for the ionospheric conductivities．Figure 3 shows a somple calcu－ lation and a comparison with experimental dala．

Ohapurs．The outputs are E_{1} ．the ionospheric cast－ west electric field component inside the wedge：E_{1} ，the ionospheric norih－south polarization electric field inside the wedge：$J_{1} \neq \kappa_{1} \notin$ ，，the net poleward current density inside the wedge：$J_{\text {，}}$ ，the net westward current density tin amperes per meter）inside the wedge；and \quad b，the field－aligned potential dop along the western boundary of the current wedtes

Ahagnetorpheris Eymutions

$$
\begin{equation*}
\left(\Delta t_{1_{1}}\right)=r,\left[\Delta i_{1} \quad \frac{w_{1}}{d_{1}}\right] \tag{1111}
\end{equation*}
$$

where

$$
\Delta E_{1}=E_{i}-E_{j, \cdot}
$$

and $\left\langle\Delta E_{14}\right\rangle$ is the average value of the perturbed radial magnetospheric electric field across the arc．The earthward radial current in the magnetosphere is approximated from（？） as discussed above．

$$
\begin{equation*}
J_{i f}=K_{m} \frac{\partial E_{v e}}{\partial x}-K_{m} \frac{S E_{v e}}{d_{i f}} \tag{13}
\end{equation*}
$$

wherè

$$
\begin{equation*}
K_{m}=\frac{\rho d_{1} E_{1 r}}{B_{r}^{3}} \tag{1+1}
\end{equation*}
$$

Note that we have approximated the magnetospheric eleciric fietd by a ramplike behavior which corresponds to a spatiatly constant inertia current $J_{1 .}$ ．The value of $\left(\Delta E_{\text {re }}\right)$ is assumed proportional to the height of the ramp $\delta E_{\text {，e }}$ by some constant γ where $0 \leq|\gamma| \leq 0.5$ ．As was mentioned alouve，the precise value of \boldsymbol{y} can be ascertained only by understanding the spatial structure of the auroral are and the details of its coupling to the background plasma flows in the equatorial plane．Here we assume $|\boldsymbol{\gamma}|=0.5$ which is consis－ tent with the assumption of a ramplike behavior for $E_{\text {is }}$

Current continuity requires

$$
\begin{equation*}
J_{1 r}=F_{1} K_{1} \cdot b_{1} \tag{15}
\end{equation*}
$$

Combining equations（ $\mid 11$ ．（ 13 ），and (15) we find a quadratic expression for d_{1} ．

$$
\begin{equation*}
a_{2} d_{r}^{2}+a_{1} d_{1}+a_{0}=0 \tag{16}
\end{equation*}
$$

where

$$
\begin{gather*}
a_{i \prime}=F_{1}^{2} K_{m} D_{r} \\
a_{1}=-F_{1}^{2} K_{m} \Delta E_{1} \tag{17}\\
a_{\underline{2}}=F_{V} K_{1} \boldsymbol{U}_{1} \gamma
\end{gather*}
$$

The requirement that（16）has only real routs implies

$$
\begin{equation*}
\phi_{i}^{;} \gamma \leq \frac{F_{i}^{2} K_{m}\left(\Delta E_{1}\right)^{2}}{+F_{1} K_{1}}=1 ; \tag{1181}
\end{equation*}
$$

Using the Tivgrutenhe｜ 1987 ）movel at $.1=76^{\circ}$ we find that $r, \cdots 10^{t}$ ．For positive values of γ ，which correspond 10 a ＂luad－type＂perturbation．中，can take on only sonall valtes $\left(\cdots 1 \mathrm{kV}\right.$ ： $\left.\mathrm{A} A=66^{\prime \prime}\right)$ ．Villess a kitovalt or higher can unl）be obtamed al higher latitudes（ $A \geq 70^{\circ}$ ）．In order to oblain the higher values of b ，that are observed at lower latilndes．y mast be negallve．This corresponds to a tationad diected $\Delta E_{1 r}$ since $\delta E_{\text {ie }}$ is always positive for the earthward clusure current J_{2} ．This is a generator condiguration．and hinelac energy is being converted from the background plasmad flows．The background convection electric field enhances the＂generator－sype＂properties of the anc west of the HI） ant the＂lond lype＂propettion eint of the III）figure 1？
 IIITatiant latilude weat of the（11）Note that only penerator ypre values of y allow like formation of natrow wedpe
strititues all lower hattudes. This is where breakup is offen ohscred.

West of the IID the ambient tallward electric fied adds to the tailward pertarbation. This enhances the genetator nafure of the X.C in the equatorial plane. East of the (10) the upponte as tue Where the ambent earthward electric fieh cend wategate the talward perturbation and the eforatomal "generator" ether is weakened or becomes a "load". therefores since we believe that the explosive nature of the hecakup are arises foom the X.C: generator in the equatomal planc. beeakup is more likely west of the III)
Infuls. The inpurs for the magnetospheric equatmon anc the lield aligned potential drop along the polewad hound ary: ΔE_{1}. the enhancement of the north south componeen of the electric field above hackground $\left(E_{\ldots, \ldots}\right)$ and $E_{\text {, }}$, the cons tail electric tield

Fived parameters The fixed parameters are $f_{1} f_{1}$. mapping factors between the ionosphere and the magnetosphere in the noth-south and east-west directions. respectively: K, fin siemens per meter). the feld-aligned conductivity integrated over the poleward boundary; γ, the parameter that couples the north-suthth circuit to equatomal plasma lluws; ρ. the mass density in the plasma sheet: B.. equatonal value of the magnetic field: and d_{1}. the distance over which the crons-tail current is integrated.

Onifins. The outputs are $d_{\text {, }}$. The north-south extent of the chrrent wedge in the innosphere: ($D A_{W_{1}}$) . the perturbation of the tadial componem of the equatorial electre fied inside the wedge region: and $I_{\text {, }}$. the equatorial eanthard current that clases the noth anoth citcurt.

Summary of model asammonme. The model is sumata rized is follows:

1. A prebreakup atutural are may be reasonably ieprevented by a current wedge. A two-dimensional rectangular shape in the tonosphere is adequate fier a first approximation.
2. The radial electric lield in the magnetosphere must be nonconstant requation (2)) in order to properly close the cuntent in the north-soulh circuit. A linear ramp is assumed adequate for a first approximation. See (13) and stobsequent Jiscussion.
3. Reasonable evtimates may be made of the fixed patrancters labeled above.

4. Resulits

We will now compare our model with a spectic prebreakip are as meanured by warlinnd at al lloki| and classitied as I_{4} in the numenclature defined by Vawhiond
 IIT on! ! ma:ary 27. 1979. Hom ESRAN(iE. Kimma. Swalen
 . ller the onset of an intense magnetospheric substorm over morthern Scandinavia. The oblaned data repesent a combprehensove data set of the arc's electric fietd profile in both the east-west and north-south directions as well as the , pectla and llux of the precipitaling electrons Alobumh these data are lor an are presumably undergoing bucakup. we compane the expermental results with the stalle mordel deseloped athove and find gord agrecmem. This mples hat minctase elfects inside this pectic are wece vmall at the Hine at the rorket hath. Model inputs ate f. $0 x .10$

Tig 3 Comparison of the Hall tupper curvel and Pedersen Hower curve) conductivilies as estimated by Mathiund er al. [1483] inside the are with that predicted by the model of Rohinsom it it. [1987] The inputs to the Robinson et al. model were allained uning the results of Fridman and Lemaire $|1980|$ A tield atigned puncential drop of $I 5 \mathrm{kV}$ was used.
lated using the 1987 model of 7wpomenho |1987]. B. and $/ 1 /$

 gridient alung the poleward boundaty. to 30 km and by unurg the results of Fridman and Lemaire $\{1980 \mid$ to determane the tield aligned conductivity. The election number demsity in the plasma sheet is taken at I electron/en's and the paratlel and perpendicular electron temperatures as 5 keV . Note that we cil $\gamma=-0.5$ in light of the ahove discussion atter (17)
One of the assumptions in the present model is that the omospheric conductivities inside the wedge region ate a function of the field-aligned potental drop along the poleward boundary. This assumption is sumewhat artiticial because the conductivity inside the wedge region may also he affected by other precipitation mechanisms such as waseparticle interactions. However, the assumption tends to give results in agreement with data as is seen from Figure 3. Here we plot $\Sigma_{1 /}$ and Σ_{n} as a function of D_{1} using the Rebimene el ad. [1987] conductivity model and estimating the precipitation current from the modet of Fridman and I. \quad manc li9kil. the tup curve and crons hail in for $\underline{E}_{1 \prime}$. and the hothom cume and crons hair is for S_{n}. The condictithes ate delermmed as the square rowt of the sum of sumate of the andicm
 enhanced conductivity as determined fiom the modet at Rohmam et al. |1987). Note that the agreement belleen experiment and theory is excellent. We will now compare cach of the ouput valiables in our model with the revult, of Markhund et al. [1983].
Figure 4 relates the field aligned potential dron 小, will the eist-west current J. Pesently, we are lleange t... N. fixed parameter. We use two values for the magnetonphein cast west electric field $E_{\text {. }}$, hecanse of the uncertann! it the

Fig. 4. Comparison of the field-aligned potential drop along the polewiard toundary $中$, as a function of the diverted current f_{r}. It is seen that a $1.0 \mathrm{mv} / \mathrm{m}$ cross-tail electric lield Ewe gives belter agreement.
divider. The potential drop across the magnetospheric portion of the circuit is divided between the field-aligned putential drop Φ_{y} along the western boundary and the east-west extem of the wedge in the ionosphere. The field-aligned potential drop is directly proportional to J, as long as the area over which the associated upward current exists remains constant as is assumed here. In that case E_{y} must decrease as J_{y} increases in order to satisfy Kirchhoff's Law. The y intercepts are consistent with the direct mapping of the assumed values of $E_{y e}$ to the ionosphere using a mapping factor of $F_{y}=0.055$ as calculated from the model of Tsygunenko [1987] ($K_{p}=3$). Pedersen ec al. [1985] and Fälthammar ($1989 a, b$) report the preonset east-west electric field to be $1-2 \mathrm{mv} / \mathrm{m}$ which is consistent with the values used here. Figure 6 shows excellent agreement for the polarization clectric field inside the arc. Although no measured data

I is The eant west electric lield E, insule the aturoral arc as predicted by the mosiel Nose that the 10 mvim value fin E.., gives beloce agreenient as is the case in figure 4

Fig. 6. Comparison of the measured value of the pularization field E, inside the arc as shown in Figure 6 of Murdiund et ul [1983] with that predicted by the current model Note that we assume E, to be positive in the equalorward direction. while Marklund el af. [|y*3| assume the opposite convention. The error hars presented here are estimated from Figure 6 of Marklund et al. (1983).
exist for Φ_{r}, we show it, for completeness, as as function of J_{v} in Figure 7. For the western bolndary we fix k_{y}, the field-aligned conductivity, at $3 \times 10^{-9} \mathrm{~S} / \mathrm{m}^{2}$. The east-west extent of the wedge is d_{y}, and the fractional distance over which the upward current exists is η_{y}. Clearly, η_{y} affects the slope of the curve shown. That is, if the upward current is confined to a smaller area, Ψ_{y} will be higher for constant I_{y}, i.e.. the smaller spots should be brighter for the same value of diverted current. The net poleward current inside the wedge ($I_{x}=K_{x} \phi_{s}$) as a function of $J_{\boldsymbol{\prime}}$, is shown in Figure 8. The discrepancy is consistent with the large error bars and the uncertainty in estimating the extent of the conductivity

Fig. 7. The modeled field aligned potental drop ${ }^{(1)}$, along the western houndary of the wedge regiun (i) e., the "hos span') 4 , "s the east-west extent of the current wedge. the east-west pathal extent of the upwatd clovire current ahong the wealee is ssamed 10 he 333 km the parameter h, is the teld abigned condine ilvoly .it the western bowindiary

Fig 8. Net puleward ciltent demily J, imade the cillicat wedge tarch as a function of the divented east west curremt . Alihnugh the model results ate not moonsistent with the errm hars shown. agreement can be illiproved by lowering the plaman theet dectron lemperalure from 5 to: 5 heV and increjsing the plismat weet purticle density from I to 2 particies/cm' This iesult is show in by the dathed doted line. No significant modeticataons in the other parameters that have been plomted were obseived.
gratient alung the poleward boundary and the electown temperature and number density in the plasma theet the dashed-dolted curve shows how the agreement can he imsproved by a lower plasma slieet electron temperature flrom $\leq \mathrm{keV}$ to 2.5 keV) and a higher plasma sheel electron number density Ifrom $1 \mathrm{e}^{-} / \mathrm{cm}^{3}$ to $\left.2 \mathrm{e}^{-} / \mathrm{cm}^{\prime}\right)$. Figure 9 shows the model results for d_{i}, the north-south exient of the are in the ionosphere as determined from (16). The error bars are tatien from Figure 8 of Markhund et al. \{1983\} The number density in the plasma sheet is taken as 1 ion telection)/an ${ }^{3}$. The variation in $E_{y e}$, the cross-tail electric field, is due to the observed fluctuations in E_{v} as shown in Figure 6 of Mharhlund et wl. \{1983\}. It is seen that the experimental resuits are well bracketed by a plasma sheet mass density that contains between 0 and 50% of 0°.

Figure 10 shows the predicted value of the magnetosplene eilectric fietd lluctuation arising from the wedge prenence This nuctuation poins tailward and lies between - 1.6 and $0.8 \mathrm{mv} / \mathrm{m}$. which is vely consintent with the value of -1.2 (1) $-0.6 \mathrm{mv} / \mathrm{m}$ as reporied by 7 linshancen ef al. |1987| lir another magnetic storm. Finally, Figure II shows a plot of the magnetospheric closure current in the equatortal platle We estimate this to be athout $3 \mathrm{inA} / \mathrm{m}$ in magnitude for the present example. Therefore it is seen that uur mokel gives a father complete picture of the wedge vincture in leith the ionosphere and the magnetouphere. Figure 12 shows a graph of d, versus 4 , for severat vallues of 1 . Nore that it the averaged perturbed eleatic field is zero in the equallumal plane (i.e.. $\gamma=0$), then thinner are structures cannot town. It is only when there is a finte tailward electric lield perturbation in the cequatortal plane that thin ares cinn torm Now note that there is an upper limit to d, for ciach vathe of 1. Which medicates that thinmet current wedges lemed whern at lower hititudes.

Its 9 . One of the more interesting te:thes of our mentel is the cupability to catendate the arc thickness d. Four calcutations were made for various cross-tail electric fields and ion mass densities It he number density is mantanned at I ion per cubic cemmetern it
 aminmption of 0 and stral loi the 0 ' concentation A potential whlization of such a medel is to estumate magnelospheric yuantiles using renospheric measurements
5. Contitisions

We have shown that prebreakup arcs can be reptesented hy awo coupled circuits between the ionosphere and the matenetosphere similar to the current wedge configuration proposed by AfcPherrom et al. [1973]. The formation of such a current system is strongly influenced by the presence of background electrojets in the ionosphere and directed plastna hows in the magnetosphere. A detailed comparison with the measurements of Marhlund et al. [1983] for a specific breakup anc shows goow agreement. The present moklel highlights the interdependence between ionosphetic

Fig. II. $J_{1,}$ is the earthward closure current in the equatorial plane that is required to close the noth-south (X.C) circuit in our muled. See Figure 1. For the Marklund case I_{d} we find a value of aboun $1 \mathrm{~mA} / \mathrm{m}$.
and magnetospheric quantities and suggests that, by measuring one set, one could imply values for the other. For example. the above application of the model to Marklund et al \therefore s observations imply a tailward magnetospheric electric field of -1.8 to - $1.6 \mathrm{mv} / \mathrm{m}$ which is comparable with the in situ measurements of Tomshanch ef al. [1987] during another breiskup event.

We consider the agreement of our model with experimental data as strong evidence that substorm breakup originates in the near-Earth magnetosphere as proposed by Bloch eit al.

If I: The predeted wedge the knew, d, wa lunctum of the
 magnetic tatitites Nute that in the steady state model as presented here d, hass an upper limus at a given magnetic latitude. These cah mhamom wete made bor a hach gromind electric field connoven

|1986]: Kaulimann [1987]: papers 1 and 2. Gulperin and Fuhdstein |1991]; Baker et al. \{1990\} and others. Mureover. we have shown (see Figure 12) that in order for the current wedge to have similar dimensions as the observed arcs, the plasma flows in the equatorial plane must be decelerated by the equivalent circuit. That is, the equatorial portion of the X.C must act as a generator ($\gamma<0$). This is more likely to occur in regions of enhanced westward convection in the equatorial plane which is in the premidnight sector.

Briefly summarizing, we have assumed that at least part of an auroral arc may be represented by a two-circuit current wedge between the ionosphere and magnetosphere. A quasistationary situation is assumed which implies that the dusk. ward current in the magnetosphere is consistent with an earthward pressure gradient while the earthward magnetospheric current is inertial. Our model is not complete as this inertia current requires specification of a radial electric field gradient in the equatorial plane. This might be determined by a more complete model of auroral arc structure or by incorporating a global model of plasma convection. The good agreement of our static model with an auroral are already undergoing breakup [Mardlund et al , 1983) implies that inductive effects were still weak even some minutes after breakup.

We need to make a few final points. We have ignored a current-voltage relation in the east-west circuit in the equatorial plane for the simple reason we do not presentl) know how to quantify it. Overall consistency in this circuit is maintained by adjusting L_{y}, the distance over which the westward current closes into the magnetosphere. Knowleige of the equatorial current-voltage relation would fix L_{v} rather than arbitrarity setting it at one third the east-west extent of the are as is done here. It is interesting to note that L, scales the size of the expected hot spot at the western wedge boundary. Increasing L, could give the appearance of eastward propagation. We speculate that the prebreakup arc forms near the inner edge of the plasma sheet where radial. mure intense electric field gradients are expected. Another speculation is that the earthward convection of electrons may cause them to exceed their whistler self-excitation timit. The resulting precipitation causes a local conductivity enhancement in the ionosphere that favors the diversion of the cross-tail current. If the cross-tail electric field is sufficiently strung, a quasi steady state current wedge can form as shown by our model The picture is that of an azimuthal stice ol field lines that are displaced earthuard due to the current diversion. Breakup probably commences when the associated equatorial ions. which musi also be depleted to maintain charge neutrality, cause a pressure imbalance and the mag. netic field lines move inward. We du nol yet understand the time cuolution of this process, but we can with the present mondel estimate the initial properties of the breakup arc from magnetospheric and ionospheric conditions.
d. Anomitedpments. We would like io acknowledge hetpfil dis cunums with W J. Burke. N May nald, A Henneman. G Siscoe.

 wete .hat heiptul in making the mantiocript more readuhle
The fditer thank, R I. Kummann and another reteree for their ..wndince in ex.olvating thes paper

Reierences

Akasofu. S -I.. A study of auroral displays photogiaphed fram the DAISP? satellite and trum the Alaska meridian chain of vathons Space Soi. Rer. . 10. 617-725, 1974
Baker. D. N. Extreme energetic particle decreases mear geostation ary urbal: A manifestation of current diversion within the innet plasma sheel. J. (jeophins Res., 95, 6591-6599. 1490)
Baumjohann. W. The plasma sheet boundary layer and magneto spheric subsiorms. J. Cicomakn. Gevelectr, +10, 157-175. 1988.
Hlock. L. P., P. L. Ruthwell. and M. B. Silevitch. A new model for subsootin breakup (abstraci). Eos frans. AGU. 67. 1178. 19Ko
Burch. J. L.. Energetic particles and currents: Results from Dy. namic Explorer, Rev. Geophys., 26. 215-228. 1988
Chappell. C. L.. The tertestrial plasma source: A new perspective in solar-ierrestsial processes from Dynamic Explorer. Rev (ierrphys. 26. 229-248, 1988.
(ladis, J. B. Patallel acceleration and transpent of iuns from protar
 IOH6.
Craven. J. D.. L. A. Frank, and S.l. Akasofu, Propagation of a westward traveling surge and the development of persistent auroral features, J. Gerophyr. Rei.. 94. 6961-6977. 1989
Erickson. G M., R. W Spiro, and R. A. Woff. the physics of the Harang Discontinuity, J. Geaphys. Res., 96. 1633-1645. 1991
Fäthammar, C. G.. Electric fields in the magnetosphere-the evidence from ISEE. GEOS. and Viking. IEEE Trans. Platma Si., 17. 174-185. 1989a.

Falth.unatar. C. G. Elechic fieds in the magnetosphere - A tevicw. I'luhet Spuce Sci. 37. 899-914. 1989h
Fridnuan. M. and 1 emare. Relationships belween auroral elec
 Res. 85, 664-670, 14811
Galperin. YU. I. and V.I I Feflstem, Auronal lummosity and is relationship to magnetospheric plasma domains. in A uriral Ihysits.edited hy C. I Meng el al. Cambradge Universit; P'ress. New York. 1991.
Itallinan. T. J. The dynamics of substorm onsed (abstraci), tou Trars. H(;U. 68, 1420, 1987.
Heppner. J. P.. A study of the relationships between the aurora borealis and the geonalagnetic disturbances caused by electic currens in the ionosphere, Rep DR I3S. Def. Res. Board at Can., Otawa. 1958.
Kun, J. R. and S. I Akasofu, Electrodynamics of solar windmagne tosphere ionosphere interactions, IEEE Trans. P'avma Sis , 17, 8.3-10R. 1989
Kan. J. R. I. Zhu, and S - Akasofu. A theory of substorms: Onset ind whsudence.J Geriphys. Res., 03, 5624-5640. 1988.
Kultmiann. R. I.. Subviom currents: Growih phase and onset. J Ciecophys. Res . 92. 7411-7446. 19\%7.
 energetic particles at the inset of magnetospheric substornis. J Grophys. Res., 87, 445-4453, 1982.
Kremser, G. et al. Energetic eleciron precipiatuon during a magnetospheric subsionm and is relalion to wave-particie interaction. J. Geophys. Res.. 91. 5711-5718. 1986
L.ennartsson, W . and R I) Sharp. Relative contribultom of tertes. trial and solar wind wne in the plasma sheet. Ady Spuct Kes. S. trial and solar
$+11-14$. le8s
L.ezmak. I W. and J K. Winckler, Experimental study il itag. neturpheric motions and the asceleration of energetac ctectrons Juring substorms. J. Girophlvs. Res.. 75. 7075-7198. 1970
l.upez. R. E., D G. Sibeck. R W McIntire, and S M Krimigis.J Greophys. Res 95. 109-117. 194)
Loiko. W.. B. U. 0) Sunnerup. and R L. L.ysisk. Nomveidy
lumanday bayer thow incleding wompheric diag and patallat clectric fietus. J. Geopher Res, y?. R63s- N6-4X. 1987
I.un. A.「 Y.. R.E. I.opez.S M Krimigis, R W AcEintue.I J Zanctif, and T. A. Polemana. A cave sludy of magnetorint cutrent sheet disrupion and diversion. Grophes. Re's. Lert, 15. 7?1-71d. 1988
Alarkland. (; Auroral are classification scheme based on the observed atcossticialed electric field patlerns. Plane spate Sci. 32. 193-211. 1984.
Marklund. G.. W. Bamjohann. and I Sandahl. Rocket and ground. based study of an auroral breakup event. Plunet. Spute Sii. 31. 207-220. 1983
McPherron. R. I., C. T. Russell, and M. P Aubrey, Satelitie studies of magnetorphenc substorms on Augusi is. I'Whs. 9. Phenufogical model for substorm. J. Gerophes Res. 78. M1113149, 1973.
Nagal. 'Г., D. N Baker, and P R Highie. Development at substorm activity in multipie onset substorms at syncheonous orbit. J Cecoplyy Res., 88, 6994-71014. 1983
Petersen. A., C. A. Cattell, C G Fathammar, K Knutt. P A. lindquist. R H. Manka. and F. S. Morer. Electric fields in the plasma sheet and plasina sheet boundary layer. J. Geiphys. Res. 90. 1231-12\$2. 1985

Kobinson, R. M. R. R. Vondrak. K. Miller. T Dabbs, and [] Hardy, On calculating ionospheric conductances from the Hux and energy of preciputating elections, J. Geophys. Res.. 92. 2965-2569, 1987.
Rowoker. G., S.I Akasofu. W Bampohann, Y Kamude. and R I. Actherron. The roles of direct energy input of encrgy fomm the whar wind and intoading of stored nagnetotall energy in drome

Rothwell, P. I..I.I I Hlock. M. B Silevitch, and C (i Faltham. mar. A new model for substorm onsets: The prebreakup and tigetring regimes, Geophys. Res. Le'f. 15. 1279-128?. 19R8
Rothwell. P. L.. I. P. Block. H. Silevitch, and C. G. Filhamman. A new model for aurotal hreakup tuing substorms. IFEE Ifoms. Plarma Sai. 17, 150-157. 1989.
Shepherd. G. G., C. D. Anger. J. S. Murphee. and A. Vatlance Jones. Auroral intensification in the evening sector observed by the Viking ultra violet imager, Geophys. Res. Left., 14. 395- 398 . 1987.

Tanskanen. P., J. Kangas. L. Block. G. Kremser, A. Korth. J Woih. 1. B. Iversen, K. M. Torkar, W. Riedier, S. Ullal: nd, J. Stadsnes, K.-11. Glassmeir, Differeni phases of a magnetospheric substorm on June 23, 1979, J. Georphyr. Res.. 92. 7443-7497. 1987
I yyganenko. N A.. Global quantitative models of the gemmagnetic field in the cislunar magnetosphere for dilferent distutance levels. Plunet. Space Sil., 35. 1347-1358. 1987
Weimer. D R.. N C Maynard. W. J. Burke, and M. Sugina. Stationary auroral ciurent uscillations resulting fiom the magneto. spheric generalor, J Geophys. Res.. 93. 11,436-11,444, 1988.
L. P Block and C. G. Fälthammat. The Royal Institute of Technulagy, S 100 44. Stockholen 70. Sweden.
P. I. Rothwell. Geophysics Directorate/PliG). Phillips I.aboratory. Hanscom Air Force Base. Bedford. MA 01731.
M. H. Sileviach. Center lor Electromagnetic, Restarch. North. wevien dinversuy. Bontim. MA O IIS
(Received November 28. 1941:
revised March 27. 1991:
accepled April 29. 1991.J

P. L. Rothwell
Geophysics Laboratory, Hanscom AFB, Bedford, MA 01731
M. B. Silevitch
Center for Electromagnetics Research, Norlheastern University, Boston, MA 02115

L. P. Block and C. G. Fälthammar
The Royal Institute of Technology, S 100 44, Stockholm 70, Sweden

June 25, 1992

ABSTRACT

We find that ions EXB drifting through an auroral arc can undergo transverse acceleration and stochastic heating. This result is very analogous to recent work regarding similar phenomena in the magnetotail (Büchner and Zelenyi (1990), Chen and Palmadesso (1986) and Brittnacher and Whipple (1991)). An analytic expression for the maximum arc width for which chaotic behavior is present is derived and numerically verified. We find, for example, that a 1.5 km thick arc at $\Lambda=65^{\circ}$ requires a minimum potential drop of 3 Kv for transverse ion acceleration and heating to occur. Thicker arcs require higher potential drops for stochasticity to occur. This mechanism could be a partial cause for ion conics.

I. IN'IRODUCTION

The theory of auroral arcs has progressed along many lines of thought: electrostatic shocks (Swift 1979,1988; Kan 1975); double layers (Block, 1972; Borovsky, 1983; Singh et al., 1987); Alfvén wave propagation (Lysak 1990; Seyler 1990) ; the formation of a small current wedge (Rothwell et al., 1991) and viscuous interaction at the magnetopause (Lotko et al., 1987). In simple terms the arc is analogous to a fountain that rises to some height at the center, spreads out at the top and then is returned over an extended area. The presence of a conductive ionosphere and the complex interaction of the associated fields and particies makes the problem very complex. A self-consistent model of an auroral are should include a mechanism for generating the field-aligned potential drop associated with the are and a description of how the associated currents are conserved, including ionspheric effects. In this paper we address the additional complication that an auroral are may not be self-contained. We find that it modifies the ion population that is EXB drifting through it. The drifting ions, on the other hand, affect the charge distribution inside the arc and, hence, the potential distribution itself. We will examine the effect of the arc on the ions in analogy with similar effects in the magnetotail.

Recent studies of Speiser type orbits in the magnetotail have been shown to exhibit chaotic type behavior (Büchner and Zelenyi (1990), Chen and Palmadesso(1986)). This occurs when an ion makes a transition from gyrating solely on one side of the neutral sheet to gyrating on both sides of the neutral sheet (Speiser orbit). This transition is extremely sharp as is seen from Figure 1 of Rothwell and Yates (1984) and, in fact, corresponds to a point in direct analogy with the unstable equilibrium of a simple harmonic oscillator. It is well known that in the latter case if one places a pendulum so that its weight is dirrctly above the pivot point then upon release the pendulum may either oscillate back and forth or rotate about the pivot point. Which mode is taken is so sensitive to the initial conditions
that it is impossible to predict. The boundary in phase space that separates the two types of rnotion is called the separatrix. In mathematical terms placing a pendulum above its pivot point is equivalent to starting it at a hyperbolic fixed point in phase space. Lichtenberg and Lieberman (1983) give an extensive treatment on the stochastic nature of nonlinear harmonic oscillators near hyperbolic fixed points. From a different point of view Brittnacher and Whipple (1991) examine the discontinuity in the invariants of motion as a particle crosses a separatrix. Their work was based on earlier work by Kruskal (1962) and with specific application to the magnetotail problem. The discontinuity of the particle motion as it crossed the separatrix was found to be analogous to scattering.

Ilere we apply these concepts to an auroral arc. Visualize ions EXB drifting from the magnetotail towards the earth. In their path lies an auroral arc which is elongated in the east-west direction. In the earth-tail direction the arc is assumed to have a U-shaped (gaussian) potential structure (see Figure 1). The subject of this paper is to determine response of the ions to the arc as they pass through. For simplicity, it also assumed that the ions pass through the are in a time short compared to a bounce period. This allows us to treat a two dimensional problem. The coordinates are chosen such that x is earthward, y points west and z is parallel to the magnetic field. As the ion enters the potential structure an earthward electric field accelerates it and at the same time imparts an eastward drift. See Figure 8a. The Ey electric field causes the ion to continue drifting through the arc. When the ion encounters the tailward electric field it drifts westward and eventually escapes the potential. While inside the well the ion may be trapped. In that case when the ion exits the well it must cross a separatrix and scatter (Brittnacher and Whipple (1991)). The cross-tail electric field E_{y}, accelerates the jon westward while it is undergoing nonadiabatic motion (scattering). If we now consider an ensemble of ions entering the potential well and recall that in the vicinity of a hyperbolic fixed point motion is stochastic then we can understand
how a net westward ion acceleration and the associated heating arise. In section II an upper limit is found for the scale size of the potential. Below this limit acceleration and stochastic heating take place, but of above this limit the motion is adizbatic. In Section III a base set of inputs are chosen and appropriately varied to show that this upper limit is a good approximation. In this section we also show that below the limit a hyperbolic fixed point exists and that it causes the drifting ions to scatter as in the manner of Brittnacher and Whipple (1991). In Section IV we give our conclusions.

II. EQUATIONS

The equations of motion in component form are

$$
\begin{align*}
& M \dot{V}_{z}=e\left[E_{x}+V_{y} B\right] \tag{1a}\\
& M \dot{V}_{y}=e\left[E_{y}-V_{x} B\right] \tag{16}
\end{align*}
$$

where e and M are the ion's charge and mass. B denotes the magnetic field in the postitive z-direction. $V=\left(V_{z}{ }^{2}+V_{y}{ }^{2}\right)^{1 / 2}$ is the ion velocity. $\mathrm{E}_{x}=-\nabla \phi(x)$ where

$$
\begin{equation*}
\phi(x)=\phi_{0} \exp \left[-\left(\frac{x}{L_{x}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

and E_{y} in equation (1 b) is considered constant. A finite E_{y} within an auroral arc has been observed by Marklund (1984) and others. Since $x(t)$ denotes the ion's position and, therefore, $E_{x}(x) \equiv E_{x}(x(t))$ we may combine equations (1a) and (1b).

$$
\begin{gather*}
M \ddot{V}_{z}+\left[\omega^{2}-\frac{e}{M} \frac{d E}{d x}\right] V_{z}=\frac{\omega^{2}}{B} E_{y} \tag{3}\\
\omega=\frac{e B}{M}
\end{gather*}
$$

We gain some insight into the physics represented by equation (3) by momentarily assuming $\mathrm{dE} / \mathrm{dx}=$ const. Cole (1976). In that case the homogeneous solutions to equation (3) are either oscillatory or exponential depending on whether the coefficient of V_{z} is positive or negative. More explicitly, if (Cole, 1976)

$$
\begin{equation*}
\omega^{2}<\frac{e}{M} \frac{d E}{d x} \tag{4}
\end{equation*}
$$

then the electric potential has a dominating effect on the ion motion. From equation (2) and Figure 1 we see that in our problen the ions initially encounter a positive ramp in E_{s}. Therefore, equation (4) is an approximation to the value of this $d E / d x$ above which we expect to see nonadiabatic effects.

We appoximate $\mathrm{dE} / \mathrm{dx}$ by

$$
\begin{equation*}
\frac{d E}{d x} \sim \frac{\left|\phi_{0}\right|}{L_{x}^{2}} \tag{5}
\end{equation*}
$$

using equation (2). Therefore, equation (4) is satisfied if

$$
\begin{equation*}
L_{r} \leq L_{s}=\frac{1.0}{\omega}\left(\frac{e}{M} \phi_{\sigma}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

Below we verify equation (6) by varying B, M, and ϕ_{0} and show that it is a reasonable indicator between the adiabatic and nonadiabatic regimes.
L_{6} can also be found by linearizing the potential given in equation (2). This leads to simple harmonic motion near $x=0$ which can be in resonance with the gyrcmotion. By equating the electric oscillator frequency with the gyrofrequency we find that the condition for resonance is the same condition as given by equation (6) to within a numerical factor. Λ similar bound will also result if we compare the maximum amplitude of the trochoidal ion motion in the electric field to the scale L_{s} i.e. when $\left(\left(E_{r_{\text {max }}} / B\right) \cdot(M / e B) \sim L_{s}\right)$. For shallow gradients the ions follow an adiabatic trajectory through the potential well and no net energy exchange takes place. It is only when equation (4) is sufficiently satisfied that significant entrapment in the potential well takes place and stochastic heating and acceleration occur as the ions pass through the vicinity of the hyperbolic fixed point as discussed above.

1II. RESULTS

Mathematical Preliminaries The equations of motion were numerically integrated using a step-wise adaptive technique with a fourth order Runge Kutta method as described by Press et al. (1986). At each step of the integration procedure the total energy

$$
\begin{equation*}
E_{T}=\frac{1}{2} M V^{2}+e \phi(x)-e E_{y} y \tag{7}
\end{equation*}
$$

was calculated and compared to the initial total energy. The accuracy of the integration procedure was adjusted to keep the maximum error in the total energy below 2 parts in a thousand. With this criterion it took between 30s and one minute to trace one ion using an IBM Compatible 386 personal computer.

The Hyperbolic Fixed Point We now wish to illustrate the presence of the hyperbolic fixed point. Figure 2a shows the results in coordinate space for two $200 \mathrm{ev} \mathrm{O}_{+}$ions that start 100 meters ($0.002 \mathrm{~L}_{\mathrm{s}}$) apart 500 kilometers $\left(-10 \mathrm{~L}_{\mathrm{s}}\right.$) downstream of the potential well. (L_{s} $=50 \mathrm{~km}$). They then EXB drift towards the potential well. ($B=144 \mathrm{nT}$). After scattering through the separatrix the ions are separated in the y-direction by 387 km . Figures 2 b and $2 c$ show phase space plots of the two ion trajectories. Note that the jon with the smaller y-displacement (Figure 2c) bearly escaped the potential well while the ion with the larger \boldsymbol{y}-displacement (Figure 2 b) remained narrowly trapped and oscillated in the well structure one more time before exiting. During this one bounce it, of course, was gaining additional energy from $E_{y}(1 \mathrm{mv} / \mathrm{m})$. By superimposing both ion trajectories in an exploded view near where the quasi-discontinous motion appears the hyperbolic nature of the two trajectories is readily apparent (Figure 2d). This is the hyperbolic fixed point. The analogy to scattering as proposed by Brittnacher and Whipple (1901) is clearly apparent.

Acceleration and Stochastic Henting There are six variables that affect the ion trajectory : L_{z}, the size of the potential well; E_{y}, the east-west electric field; ϕ_{g}, the depth of the potential well; c_{i}, the initial kinetic energy of the ion before it enters the potential well; M, the ion
mass; and B, the local magnetic field strength. An initial base result is established and then tested for sensitivity to changes in each of the parameters. The initially chosen values are ϕ_{0} $=3 \mathrm{Kv}, \epsilon_{i}=200 \mathrm{ev}, \mathrm{E}_{\mathrm{y}}=1 \mathrm{mv} / \mathrm{m}, \mathrm{B}=144 \mathrm{nT}$, and $\mathrm{M}=16\left(\mathrm{O}^{+}\right)$. We then scanned in L_{x} to determine the region of nonadiabatic behavior. For each value of L_{z} we followed 100 ions randomly chosen over an interval of $2 \mathrm{R}_{\mathrm{e}}$ ($\mathrm{R}_{e}=$ ion gyroradius). This interval is centered $<$ $6 L_{2}$ from the well center. Each ion is started with its velocity pointing along the x-axis and with $\mathbf{y}=0$. Figure 3 shows the results for the base run. The circles denote the mean values of the exit energy ef and the triangles and squares denote the one standard deviation limits, Note that the energy distribution will generally not be Maxwellian so that these limits may not correspond to true temperatures. However, they do indicate the relative importance of heating. We see that there is a maximum heating and acceleration at about $L_{r}=140$ $k m$. L_{4} is the threshold value of L_{x} as given by equation (6). L_{a} corresponds to the ion gyroradius (56 km). The upper limit I_{3}, which has an actual value of 155 km , fors not exactly correspond to the break betwern adiabatic and nonadiabatic motion at $\sim 200 \mathrm{~km}$. We, therefore, rescale L_{4} to agree with the base case (Figure 3) and test this agreement by changing the values of B, M, and ϕ_{0} as shown in equation (6). For example, if we change ϕ_{0} and B as shown in Figures 4 and 5 then we see that L_{4} scales as expected. However, for the $M=1$ (protons) case shown in Fignre $6 \mathrm{~L}_{\mathrm{t}}$ is $\sim 20 \%$ too high which indicates a mass dependence in L_{t} more complex than that shown in equation (6). We, therefore, conclude that the upper limit given by equation (6) is a reasonable estimate of the threshold between adiabatic and nonadiabatic motion. Having established this we can then use equation (6) to estimate the maximum arc thickness underwhich ion acceleration and heating will occur. This will be done in Section V.

Single Ion Trnjectories Now we take threc single ion trajectorics for the base case shown in Figure $3 ; \mathrm{L}_{\mathrm{z}}=10 \mathrm{~km}, \mathrm{~L}_{\mathrm{z}}=140 \mathrm{~km}$ and $\mathrm{L}_{\mathrm{z}}=400 \mathrm{~km}$. These three cases allow
a comparison between the acceleration/heating regime and the non-acceleration/heating regimes. For the $L_{x}=10 \mathrm{~km}$ case shown in Figures 7a and 7 b we see that although there is significant trapping by the potential well (Figure 7 b) there is little drift in the - y -direction (Figure 7a). Therefore, E_{y} does not significantly interact with the ions in contrast to the next case. The x-coordinate tic marks in Figures $7 a$ and $7 b$ are in units of R_{c}. Note $L_{r} \sim$ $0.2 \mathrm{R}_{\mathrm{e}}$ so that the ion executes only a small part of its gyromotion while being trapped in the well. In other words, the potential well introduces a relatively small perturbation on the gyromotion although there is still some scattering as the ion crosses the separatrix. This is seen as residual heating at low values of L_{x} as seen in the base plot (Figure 3).

The second case ($L_{x}>2.5 \mathrm{R}_{c}$) results are shown in Figures 8 a and $\mathbf{8 b}$. The tic marks shown here are units of $L_{x}=140 \mathrm{~km}$. Note from Figure 8 b how the gyromotion is dominated by the electric potential. As the ion EXB drifts in the - y-direction it becomes more entrapped by the potential well (Figure 8a). Note that the - y-drift distance is more than $9 \mathrm{~L}_{\mathbf{s}}$. The drift in y as previously stated is controlled by the reverse electric fields inside the well. It is the beating of the gyromotion with the trapping inside the potential well that makes the ion trajectories so phase sensitive subject to stochastic behavior.

The third case ($L_{s}=8 R_{e}$) results are shown in Figures 9a and 9b. Again the units are in multiples of L_{x}. Here it is apparent that the gyromotion dominates even in the regions of positive $\mathrm{dE} / \mathrm{dx}$. The ions are never decoupled from the magnetic field as they were in the second case. Here they simply adiabatically drift back and forth in y following an equipotential contour.

IV. CONCLUSIONS

Here we have applied the chaotic properties of the nonlinear harmonic oscillator to an auroral arc. The associated hyperbolic fixed point was explicitly determined and the resonance type behavior of the ion acceleration and heating demonstrated and explained. Although equation (6) was approximate, it was shown to scale properly in the exact case. Therefore, we use it as a measure for the onset of chaos in an auroral arc. For example, if we assume the field-aligned potential drop is located at approximately $2.5 \mathrm{R}_{E}$ at $\Lambda=65^{\circ}$. The B-field value is $3.7 \times 10^{-6} \mathrm{~T}$. From equation (6) we obtain $\mathrm{L}_{\mathrm{t}}=111\left(\phi_{0}\right)^{1 / 2} \mathrm{~m}$. The scale factor is about a factor of four for a dipole field so at the ionosphere we have

$$
\begin{equation*}
L_{\mathrm{B}_{\mathrm{t}}}=27.7\left(\phi_{\mathrm{o}}\right)^{1 / 2} \mathrm{~m} \tag{8}
\end{equation*}
$$

If $\phi_{0}=3 \mathrm{Kv}$ then $\mathrm{L}_{4 i}=1.5 \mathrm{~km}$. Mapping this up to $2.5 \mathrm{R}_{E}$ we have $\mathrm{I}_{6}=6 \mathrm{~km}$ which is 2.7 Refor an $\mathrm{O}^{+}(200 \mathrm{ev})$ ion. This is consistent with Figure 3. Therefore, moderate fieldaligned potential drops are adequate to cause drifting ions to be transversely accelerated and heated. Thicker arcs require a higher value of ϕ_{0} in accordance with equation (8). Whether this could be related to substorm onsets is an open, but interesting question. Also low altitude ion acceleration and stochastic heating could be an important source for ion conics (Lysak, 1981; Yang and Kan, 1983; Borovsky, 1984). Mozer et al. (1980) notes the experimental observation of electric field gradients that satisfy equation (4). Finally, we note that the expected presence of turbulence inside the arc should add to the stochastic heating determined here. Also from Figures $2 b$ and $2 c$ it is apparent that trapped ions will modify the charge distribution inside the are and, hence, the potential structure.

ACKNOWLEDGEMENTS

We would like to express our thanks to J. Albert and M. MacLeod for their interest and comments. One of us (MBS) would like to acknowledge support from Air Force Contracts F19628-85-K-0053, F19628-92-K-0071.

FIGURE CAP'TIONS

FIGURE 1. The auroral arc potential structure and the associated electric field. The abscissas denote the x-coordinate in units of L_{z} while the ordinates are in units of ϕ_{0} and ϕ_{0} / L_{r}, respectively. Note the reversed electric field profile that imposes a nonlinear harmonic component on the ion motion.

FIGURE 2. Explicit representation of the hyperbolic fixed point associated with the nonlinear harmonic motion produced by the potential structure shown in Figure 1. (a) Highlights the sudden bifurcation in the trajectories of two ions that are started $0.002 \mathrm{~L}_{\mathrm{s}}$ units apart $10 \mathrm{~L}_{\mathrm{s}}$ units $\left(\mathrm{L}_{\mathrm{z}}=50 \mathrm{~km}\right)$ upstream of the potential. A net displacement in the y-direction implies a net gain or loss of particle energy due to F_{y}. (b) Phase space plot for the ion that exited the potential with the largest y-displacement in (2a). Note that the ion just barely missed escaping the potential and executed one more oscillation in comparison with the other ion shown in (2c). This allowed the ion shown in (2b) to gain additional energy from $E_{y} . V_{0}$ is the thermal energy. (c) Phase space plot for the ion that exited the potential well with the lower kinetic energy. (d) By superimposing these two trajectories in an exploded view the hyperbolic fixed point is clearly evident.

FIGURE 3. Base plot for the ion $\left(\mathrm{O}^{+}\right)$exit energy as a function of L_{z} (meters). For each value of $L_{2} 100$ ions were drifted through the potential structure shown in Figure 1. The circles denote mean values while the triangles and squares represent a one standard deviation from the mean. L. denotes the ion gyroradius. L, denotes an upper threshold to nonadiabatic motion as described in the text. The inputs for this base run were $M=16, F_{\text {, }}$ $=1 \mathrm{mv} / \mathrm{m}, \mathrm{B}=1.44 \times 10^{-7} \mathrm{~T}, \phi_{0}=3 \mathrm{kV}$. These input values were also used for the results shown in Figure 2.

FIGURE 4. The effect seen in Figure 3 is clearly enhanced if the depth of the poteni ial well is increased from 3 kV to 6 kV . Note that L_{b} is shifted consistent with the square root.
dependence found in the text.
FIGURE 5. This figure is the same as Figure 3 except that the B-field value has been doubled. Note that L_{4} follows the transition between nonadiabatic and adiabatic motion consistent with an inverse B -dependence as found in the text.

FIGURE 6. Same as Figure 3 except now $M=1$. Again note the scaling of $L_{6} . L_{6}$ is at 50 km instead at $\sim 42 \mathrm{~km}$. This is an error of about 20% which is, no donbt, reflects the simplicity of our assumptions in deriving L_{4}.

FIGURE 7. (a) A coordinate space plot of an ion trajectory for which $L_{r}=10 \mathrm{~km}$ and for the parameter values as given in Figure 3. (b) The corresponding phase space plot. Note that although the potential traps the ion it only causes a minor perturbation in its gyromotion. The resulting limited excursion in y accounts for the diminished acceleration and heating observed at lower values of L_{z} in Figure 3.

FIGURE 8. Coordinate (a) and phase space plots (b) of an ion trajectory such that L_{z} $=140 \mathrm{~km}$ which corresponds to the region of maximum acceleration and heating as scen in Figure 3. Note the large displacement in the -y (eastward) direction with significant oscillation in the x -component. The key point here is that as the ion enters the potential the electric field has a much greater effect on the ion trajectory than the magnetic field. This is seen in both (a) and (b).

FIGURE 9. Coordinate (a) and phase space plots (b) of an ion trajectory where $\mathrm{L}_{\mathrm{r}}=$ 400 km . This corresponds to the adiabatic region shown in Figure 3. Note in (a) the ion is executing almost pure EXB drift in the y-direction with only a limitel extent of x being traversed during each gyroperiod. Therefore, the ion is simply following an equipotential contour.

REFELIENCES

Block, L. P., Potential double layers in the ionosphere, Cosmic Electrodyn., 3, 349, 1972.
Borovsky, Joseph E., and Glenn Joyce, Numerically simulated two-dimensional auroral double layers, J. Geophys. Res., 3116, 1983.

Brittnacher, M. J., and E. C. Whipple, Chaotic jumps in the generalized first adiabatir invariants in current sheets, J. Geophys. Res., 18, 1599, 1991.

Borovsky, J. E., The production of ion conics by oblique double layers, J. Geophys. Res., $89,2251,1984$.

Büchner, J., and L. M. Zelenyi, Deterministic Chaos in the dynamics of charged particles near a magnetic reversal, Phys. Rev. Lett. $A, 118,395,1986$.

Chen, J., and P. J. Palmadesso, (hnos and nonlinear dynamics of single-particle orbits in a magnetotail-like magnetic field, J. Geophys. Res., 91,1499, 1986.

Cole, K. D., Effects of crossed magnetic and (spatially dependent) electric fields on particle motion, Planet. Space Sci., 24,515, 1976.

Kan, J. R., Energization of auroral electrons by electrostatic shock waves, J. Geophys. Res., 80, 2089, 1975.

Kruskal, Martin, Asymptotic theory of IIamiltonian and other systems with all solutions nearly periodic, J. Mnth. Phys., 3, 806, 1962.

Lichtenberg, A. J., and M. A. Lieberman, Regular and Stochastic Motion, SpringerVerlag, New York, 1983.

Lotko, W., B. U. Ö. Sonnerup, and R. L. Lysak, Nonsteady boundary layer flow including ionospheric drag and parallel electric fields, J. Geophys. Res., 92, 8635, 1987.

Lysak, R. L., Electric and ion acceleration by strong electrostatic turbulence, in Physics of Auroral Arc Formation, (S.-I. Akasofu and J. R. Kan, eds.), AGU Monograph 25, 15

American Geophysical Union, Washington, D. C., 144, 1981.
Lysak, R. L., Electromagnetic coupling of the magnetosphere and the ionosphere, Space Sci. Rev., 52, 33, 1990.

Marklund, G., Auroral are classification scheme based on the observed arc-associated electric field patterns, Planet. Space Sci., 32,193, 1984.

Mozer, F. S., C. A. Cattell, M. K. Mudson, R. L. Lysak, M. Temerin, and R. B. Torbert, Satellite measurements and theories of auroral particle acceleration, Space Sci. Rev., 27,155, 1980.

Press, William II., Brian P. Flannery, Saul A. Teukolsky, and William T. Vettering, Numerical Recipes, University of Cambridge Press, New York, 1986.

Rothwell, Paul L., and G. Kenneth Yates, Global single ion effects within the earth's plasma sheet, in Magnetic reconnection in space and laboratory plasmas, Edward J. Hones, Jr., Ed., AGU Monograph No. 30, 51, 1984.

Seyler, C. E., A mathematical model of the structure and evolution of small-scale discrete arcs, J. Geophys. Res., 95 17, 199, 1990.

Singh, Nagendra, II. Thiemann, and R. W. Schunk, Simulations of auroral plasma processes: electric fields, waves and particles, Planet. Spac. Sci.,35, 353, 1987.

Swift, D. W., An equipotential model for auroral arcs: The theory of two-dimensional laminar electrostatic shocks, J. Geophys. Res., 84, 6427, 1979.

Swift, D. W,, A numerical model for auroral acceleration, J. Grophys. Res., 93, 9815, 1988.

Yang, W. H., and J. R. Kan, Generation of conic ions by auroral electric fields, J.
Geophys. Res., 88,465, 1983.

Fig. 1.

Fig. 2a

SINGLE ION TRACE

Fig. $2 b$

Fig. 2c

Fig. 3

Fig. ${ }_{4}$

Fig. 5

Fig. 6

Fig. 7a

SINGLE ION TRACE

Fig. 7b

Fig. 8a

SINGLE ION TRACE

Fig. 8 b

FIGURE 9a

- The Dynamics of Charged Particles in the Near Wake of a Very Negatively Charged Body-Laboratory Experiment and Numerical Simulation

M. Alvin Morgan

Chung Chan
David L. Cooke
Maurice F. Tautz

[^1]The U.S. Government is authorized to reproduce and sell this report. Permission for further reproduction by others must be optained from the copyright owner.

The Dynamics of Charged Particles in the Near Wake of a Very Negatively Charged Body-Laboratory Experiment and Numerical Simulation

m. Alvin morgan, Chung chan, senior member, ieee, david l. COOKE, and MAURICE F. TAUTZ

Abnract-A numerical simulation that is cylindrical in confguration
 model for the near-wake dynamies of a very negalively charged body. The simulation parameters were ciosely matched to those of a laboratory experiment sa that the resuits may be compared directly. It was found from the labortotory study that the electrons and lons can dlaplay Aliferent temporal features in the filling-in of the woke; and that they both can be found la the very nemr-wake region (within one body diemeter) of an object with a highly negative body potendial. We have also found that the temperature of the electrons in the very near wake could be somewhat colder than the ambtent value, suagesting the posslbility of a Altering meehanism belng operative there.

The slmelation results to date iargely corroborate the density AndIngs in terms of the presence of an enhancement for both ions and electrons and in lis locetion. There ls reason to think too that additional egreements can be reallied if two key elements-the Inclusion of a $\mathbf{2}$ component, source electron distribution in the simutalion and an understanding of the perturbation limposed by the diagoostic probe liself on the experiment-can be echieved. This is on ongolng process. Results from both the laboratory experiment and the mamerical simulistios will be presented, and a model that accommodates these lindings will be discussed.

1 introduction

THE need to further understand the plasma environment surrounding spacecrafts has been recognized for sometime now. With the resumption of shutle fights into near-earth orbit, and the wide variety of experiments that are to be carried out in its wake or within that of the planned space station, it is becoming imperative that this information be acquired. Hester and Sonin [1], Samir et al. [2], and Stone [3] are foremost among those who have reported on experiments that seek to relate laboratory wake phenomena to the space environment. Others, including Martin [4] and Parker [5] have sought to gain some insight into the physics of plasma wakes by means of numerical simulation. To date, however, there has not

Menuscrign received August 27, 1988; revised January 23, 1989. The work of M.A. Morgen and C. Chan was partially supported by NASA under Gramt no. NAOW 1572 and by the Air Foree Geophysics Lahoratory under Contract mo. F19628-85-K-0053.
M. A. Morgan and C. Chan are with the Center for Electromagnetics Respa-h. Departmem of Electrical and Computer Engineering. Northeastem Univerity. 235 Forsyth Bidg., Bosion, MA 02115.
D. L. Cooke is with the Air Force Geophysics Laborntory. Space Phys. ics Division, Spacectaft Inienctions Branch. Hanscom Air Force Base. Bedford, MA O1731.
M. F. Tautz is with Rades, Inc.. 192 Log Hill Mond. Carlisle, MA 01741.

IEEE Log Number 8927086.
been muct attention given to corroborating numerical simulation results with laboratory findings. A key reason for wanting to do this would be to obtain some assurance that a numerical model can indeed provide results that are realistic: one could actually test the code with some known parameters and compare the results. Conversely, if the model's efficacy is established, then one might want to see how well the laboratory results conform to the model.

This paper is an update of our ongoing effort to understand the dynamics of charged particles in the near wake of a very negatively charged body. In previous publications, we reported on the temporal evolution of electron and ion streams within one body radius in the wake of a metallic disc placed in a flowing plasma \{6\}; and on the variability of the electron temperature in the same region depending on the characteristics of the surrounding plasma [7]. Here, we briefly review these recent and entirely unanticipated findings. present some results from a steadystate numerical simulation (that incorporated much of the experimental parameters, including the finite boundary and the wall potential) which corroborate the steady-state, electron, and ion density findings, and propose a model that links these results together. The organization of the subsequent material is as follows: Section Il contains a brief deseription of the experimental configuration and the experimental results. Section III describes in short order the numerical model and technique that were used to carry out a computer simulation of the experimental scenario. The simulation results achieved to date are also presented. A discussion of the laboratory and simulation results then follow, in the closing Section IV.

II. Experimental Configuration and Results

Our experiments were performed in a pulsed plasma stream that was produced in the modified doubie plasma device shown in Fig. I. The object used was a thin (thickness $<0.5 \mathrm{~cm}$) aluminum dise of radius $\equiv 3.25 \mathrm{~cm}$. It was suspended in the middle of the stream 5.0 cm from the plasma entrance into the target chamber. Readers are referred to previous publications for details on the experimental set-up and diagnostics [6], and on the specifics of the generated plasma [7]. For the particle density studies, the typical operating parameters were: Plasma source density $n_{0} \equiv 10^{\circ} \mathrm{cm}^{-5}$; average plasma stream (target)

Fig 1. Schematic of the experimental device

Fis 2. $1<1$: Time evoiving messured electron current density profiles a $Z / R_{n}=0.8$.
density $n_{s} \equiv 10^{3}-10^{\prime} \mathrm{cm}^{-3} ;$ ambient electron temperature $T_{s} \cong 2-4 \mathrm{eV}$ and ion temperature $T_{i} \leqq 0.3 \mathrm{eV}$; ion flow velocity $\left(v_{1}\right)=1 \rightarrow 2 c_{1}$, where c, is the ion-acoustic velocity; Debye length (λ_{0}) $\cong 0.33 \mathrm{~cm}$; and the steadystate floating potential of the object was $\equiv-20 \rightarrow-25$ V. The ratio of the ion flow energy to the object potential energy-subsequently referred to as the A parameter-was <1.0.
Figs. 2 and $\mathbf{3}$ are illustrative of the results ohtained for electron and ion current density in this plasma regime. The figures both infer particle density at a fixed location $\left(Z / R_{n}=0.8\right)$ in time, from 30 to $100 \mu \mathrm{~s}$ for the electrons and to $500 \mu \mathrm{~s}$ for the ions. The salient points here are that i) a strong enhancement in density for burth paricies in the wake is evident at this location. Indeed, it can be seen that at $70 \mu s$ for the electrons and $55 \mu s$ for the ioms. the wake density exceeds the ambient density in magnitude.

Fig. 3. $A<1$: Time evolving measured ion current density profiles at $7 / R_{n}=0.8$

(b)

Fig 4. (s) $1<1.0$; Transverue electron eurrent density profite at ,00 as and $3.0 \mathrm{~cm}\left(7 . / R_{0}=0.9\right)$ behind disc (h) $A>1.0$. Tiansverse electron current density pmfile at 100 ms and $3.0 \mathrm{~cm}\left(7 . / R_{n}=n 9\right)$ behind disc. (\dagger) Energy analyzer prote tocation for ambient dala (t) Finergy analyzer (\dagger) Energy analyzer prohe foe
probe location for wake dara.
2) the electrons' profile exhibits a double peaking feature. suggestive of crossing electron streams but which may be due to other factors that are absent in the ion proliles. Only a single inn enhancement peak was ever ohserved in these experiments. 3) it is noted that whereas the electron profiles exhibit an electron void in the wake at 30 , 15 , the
(a)

(b)

(c)

Fig. 5. $A<1.0$; Energy analyzer probe traces of ambient and wake, elec tron dala it $3.0 \mathrm{~cm}\left(Z / R_{0}=0.9\right)$ and time (a) 500μ; (b) $100 \mu \mathrm{~s}$; and (c) $70 \mu \mathrm{~s}$.
equivalent ion profile displays a significant ion enhancement. This strongly suggests that particle enhancement occurs first with the ions and subsequently with the electrons.

In the electron temperature experiments two plasma regimes were investigated. One regime corresponded to that used for the aforementioned temporal studies as outlined above. In the other, v_{3} was increased to $3 \rightarrow 5 c$, and ϕ_{B} was : - 10 V , such that $A=2.0 \rightarrow 3.0$, or $A>1.0$. Fig. 4(a) for the $A<1.0$ regime and Fig. 4(b) for $A>$ 1.0 effectively summarize the contrast between the two plasma regimes in terms of the near-wake density. They show the electron current density profiles as obtained by scanning transversely at $3.0 \mathrm{~cm}\left(Z / R_{0}=0.9\right)$ behind the disc; as can be seen in Fig. 4(b), the density profile displays a void in the wake with respect to the ambient density. This is in sharp contrast to the profile shown in Fig. 4(a) for which a density enhancement in the region is clearily evident.
Figs. 5 and 6 show the electron energy distribution for the $A<1.0$ and $A>1.0$ regimes, respectively, at the location ($\mathrm{Z} / \mathrm{R}_{0}=0.9$) of Fig. 4. It was found that in both regimes the energy distribution consists of a Maxwellian bulk population at the plasma poiential, and another population of hotter-tail electrons. However, the location at
(a)

(b)

Fig. 6. A < 1.0 ; Energy analyzer probe iraces of ambient and waife, electron date at $3.0 \mathrm{~cm}\left(2 / R_{0}-0.9\right)$ and time (a) $500 \mu \mathrm{~s}$; (b) $100 \mu \mathrm{~s}$: and (c) 70 As .
which this is true is different for the two regimes. As a result, while the ambient temperature is clearly colder than that of the wake region in the $A>1.0$ regime, the converse is true in the $A<1.0$ instance. It is seen then that for $A<1$, a large-density enhancement in the near wake corresponds to cold amblent electrons being drawn into the region. On the other hand, in the absence of any nearwake density enhancement, the electron temperature in the region could be even hotter than the ambient value due to the presence of a hot-tail component in the bulk electron distribution of the flowing plasma.

iII. Numerical Model, Simulation Tfechnique, and Simulation Resuits

In order to further verify the results that were acheved in the experiments, a full computer simulation of the experimental scenario was initiated. The approach taken was to mbdel the plasma kinetically; that is, the net motion of many interacting particles was regarded as the determining factor in the plasma flow. The laws of mechanics are therefore applied to the individual particles of the ensemble, and statistical techniques are then used to determine the net movement of the bulk plasma. As such, the relevant equations that govem particle behavior in a rarefied phasma flow with singly innized ions and electrons sur-
rounding an object are 1) the Vlasov equations for both ions and electrons which provide the local values of both species, and 2) Poisson's equation, which governs the electric potential. Since the thermal velocity of the electrons ($v_{\text {the }} \equiv 10^{n} \mathrm{~cm} / \mathrm{s}$) significantly exceeds the plasmastreaming velocity. which is on the order of the ionacoustic velocity (i.e., $v_{p}=2 c,=(5) 10^{5} \mathrm{~cm} / \mathrm{s}$, where $c_{,}=$ion-acoustic velocity), it is therefore usual to consider the electrons to be in thermal equilibrium and to have a Maxwell-Bolizmann energy distribution so that

$$
\begin{align*}
f_{l}(x, v, t)= & n_{0}\left(\frac{m_{e}}{2 \pi k T}\right)^{1 / 2} \\
& \cdot \exp \left[\left(e \Phi(x, t)-\frac{1}{2} m, v^{2}\right) / K T_{\epsilon}\right] \tag{1}
\end{align*}
$$

where $n=$ initial stream electron density, and $v=$ elec tron thermal velocity.

The local electron density is then given by

$$
\begin{equation*}
n_{e}(x, t)=n_{0} \exp \left[\left(e \phi(x, t) / K T_{f}\right)\right] \tag{2}
\end{equation*}
$$

The ion-energy distribution cannot he as easily specified, for there is no ready form in which the ion density can be expressed. The local ion density is thus expressed as

$$
\begin{equation*}
n_{i}=\int_{-\infty}^{+\infty} f_{i} d v \tag{3}
\end{equation*}
$$

where f_{i} is to be determined.
Substituting (2) and (3) into Poisson's equation, one gets

$$
\begin{equation*}
\nabla^{2} \Phi=4 \pi \epsilon\left[n_{0} \exp \left(e \Phi / K T_{e}\right)-\int f_{i} d \nu\right] \tag{4}
\end{equation*}
$$

which is solved along with the Vlasov equation for ions.

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial f}+v_{i} \cdot \nabla f_{i}+\frac{e}{m_{i}} \nabla \Phi \cdot \nabla_{r} f_{i}=0 \tag{5}
\end{equation*}
$$

It is then necessary to solve (4) and (5), subject to the appropriate boundary conditions, to get self-consistent values for n_{e}, n_{1}, and $\boldsymbol{\Phi}$.

In general, four boundary conditions are required to obtain a solution. These are as follows:

1) The potential on the body; i.e., $\Phi(R)=\Phi_{1}$, where $R=$ body radius, and $\Phi_{s}=$ surface potential.
2) The potential far away from the object, usually expressed as $\Phi(\infty, 1)$, but necessarily the boundary pntential in a bounded plasma.
3) The distribution function for ions, far away from the object $f_{i}(\infty, v)$; also, it is just the distribution function for ions at the edge in a bounded-plasma.
4) The distribution that describes the charged inns leaving the surface of the object $-f_{1}\left(R, I_{R}>0\right)$: where $\prime^{\prime} n=$ velocity of the emitted ion at the boundary of the object; i.e., at the body radius R.

Generally, all of the above information cannot be readily known and some assumptions must be made. Fior boundary condition 4, for example, it was assumed that the object surface is perfectly conducting to incident ions and secondary emission was ignored; $f_{i}\left(R_{1} v_{R}>0\right)$ was therefore set to zem. $f_{i}(\infty, V)$, on the other hand. was specified to be a drifting Maxwellian, given by

$$
f_{\infty}=\left(\frac{m}{2 \pi K T}\right) \exp -\left(\frac{m}{2 K T}\left(v_{i}-v_{s}\right)^{2}\right)
$$

where v, is the plasma flow velocity.
The boundary potential was set at $-1 K T_{e}$, which roughly corresponded to the actual experimental cham-ber-wall sheath value and the object body potential was set at a steady-state value of -20 V .

The actual solution technique used was the "insideout" method [8]. Particles were followed from a print within the wake, then back outside into the ambient plasma in a time-independent fashion. With no time dependency the distribution function along the particle tracks is constrained to be whatever it is specified to be in the source region, thus affording a means of solving Vlasov's equation to obtain particle densities. The program used was the Mesothermal Auroral CHarging (M^CII) program. It is an adaptation of TDWAKE, a program originally developed for the National Aeronautics and Space Administration (NASA). Currently in the possession of the Space Physics Division of the U.S. Air Force Geophysics Laboratory. MACH was developed in part to study the sheath structures surrounding large bodies in space. It is 2-D (R, Z) in configuration space and 3-D (v_{x}, v_{y}, v_{z}) in velocity space.

Computations were carried out in a cylindrical mesh centered on the object, and the Vlasov and Poisson equations were solved to produce electron density, ion density, total density, and electric potential at each iteration node point. The machine on which the program was executed was a RIDGE- 32 supermini computer.

The steady-state results for the electron and ion density. as obtained by inputting the parameters for the $A<1.0$ regime of the experimental study and ilerating in a cylindrical space scaled to the dimensions of the plasma chamber, are shown in Figs. 7 and 8, respectively. Corresponding plots from data taken at $500 \mu \mathrm{~S}$ (the longest time for which experimental data was available, and which is essentially steady state in the experiment) are shown in Figs. 9 and 10. It is clearly scen in the experimental re sults that a density enhancement occurs in the wake region of both species; in addition, the location at which this is true is roughly equivalent, for it occurs between $Z / R_{0}=$ $0.6 \rightarrow 1.2$ for the electrons, and between $Z / R_{0}=0.5 \rightarrow$ 1.0 for the ions. In the simulation results, some density enhancement is also seen in the wake region. The location at which this occurs, however, is a little furtier downstream from that of the experimental results, at $7 / R_{n}=$ $1.6 \rightarrow 2.1$ for ions and $Z / R_{n}=1.7 \rightarrow 2.1$ for electrons It is noted too that in the electron profiles of Fig. 7 there

Fig. 1. $1<1$; Two-dimensionat electron number density profiles from simulation in the steady state.

Fif A e I; Twn-dimencional ion number density profiles fomm sumu Iation in a steady state

Fig. 9. A <1 : Two-dimensional electron current density profiles from experiment at 500 ps .

Fig. 10. $A<1$: Two-dimensional inn current density profiles Irnm ex. periment at 50 M s
is some apparent enhancement at $Z / R_{0}=0.7 \rightarrow 1.0$ which is in very close accord with the experimental results. The amplitude of this fealure with respect in the ambient density is considerably less than was observed in the corresponding experiniental result however. and further effort is required to fully resolve this feanture in order In detemine exactly what is occurring there One possithe

Fit. 1t. A <1; Two-dimensional electron density contours from simulation in a steady state.

contoun-livels

$$
\begin{aligned}
& 1-0.050 \\
& i-0.100 \\
& h-0.100 \\
& i-0.100 \\
& 1-0.300 \\
& i-0.300 \\
& d-0.400 \\
& c-0.300 \\
& b-0.000 \\
& d-0.000
\end{aligned}
$$

Fis. 12. $A<1$: Two-dimensional ion density comours from simulation in a sleady state.
explanation could lie in the fact that actual number densities were calculated in the simulation, while current density was the actual quantity measured in the experimems.

A difierent perspective of the information in Figa. 7 and 8 is shown in Figs. 11 and 12. These figures easentially show the 2-D denaity contours of the electrons and fons, respectively; in both, the density-enhancement regions (indicated by an arrow) can be clearly seen. The unnumbered contours to the left of $Z / R_{0}=0.5$ are indicative of ions impinging direttly onto the backaide of the object and creating a region of significant density enhancement in the process. Such a fearure could not be observed in the experimental results because of the single-sided nature
of the Langmuir probe that was used to make the density measurements. This is due to the fact that the trajectories of the particles that give rise to it would have impacted directly onto the backside of the probe which was covered with an insulating ceramic coating. This does serve to illustrate very nicely, however, how numerical simulations can direct experimental work. for the presence of such impinging ions will certainly be allowed for and possibly be detected in subsequent laboratory investigations.

IV. Discussion of Laboratory and Simulation Results

Although the experimental ion and electron current density profiles are similar in their essential features to
the numerical profiles. there is a significant difference in their magnitudes. To begin with, the experimental data shows a much larger electron current density enfancenient in the wake when compared to the electron-density enhancement seen in the numerical data. This might be explained by the fact that: a) Electron current density was the quantity measured in the experiment, while the actual electron number density $\cdots \cdots$ calculated in the simulation. As such, then, the velocity of the wake electrons could play a role in the observed differences in magnitude; b) there could also be some secondary electron emission from the backside of the disc, which is being impacted by ions. These electrons would contribute additionally to the enhancement of the wake electron current density as measured in the laboratory. Since secondary emission was nnt considered in the numerical simulation, this added enhancement effect would therefore not be a factor in the simulation results; c) another matter that could have some bearing on the observed differences is that the physical presence of a probe in the wake region of an object will influence to some extent the very parameters which the probe secks to measure. Perturbations of this type are particularly noteworthy in these experiments, for the physics of Langmuir probes in the wake of a larger object is currently not well understood. To illustrate, it is noted that the wake of the probe could conceivably interact with the wake of the disc in such a manner that some of the observed difference between the experiment and simulation data might be attributed to the perturbing influence of the probe. We are currently engaged in studying how such effects could potentially arise by comparing the obtained I-V characteristic of a Langmuir probe that is physically immersed in a plasina (supported on a conducling probe shaft) with those obtained from numerical simulations of a probe-like object that is biased at varying potentials to collect electron current in the wake of a larger object. It is hoped that along with the wall effects, which have also been included in the simulation parameters, we will arrive at a better understanding of laboratory wake dynamics in the presence of diagnostic probes.

The picture that emerges from the experimental and simulation data then, regarding the dynamics of electrons and ions in the near wake, is a somewhat more involved process than that depieted in what has become the standard view of the near-wake environment. From that perspective, ions follow straight-line or "ballistic" trajectories in going past an object immersed in a collisionless plasma flow and cross the geometric axis of the object somewhere in the mid-to far-wake region. The ncar wake (the region in the immediate vicinity of the object and extending out to roughly $\mathbf{Z} / R_{0}<4$) is thought to be ion free. These are the underlying assumptions in the works of several authors, including Taylor [9], Martin [10], Könemann [11], and Sione [12].

One difficulty with this standard viewpoint is the fact that for plasma-now regimes in which the polential energy of the object exceeds the kinetic-llow energy of the plasma
stream-i.e., when $A<1.0$-ion trajectories will not follow ballistic paths, and as seen in Figs. 2-6, 9, and 10ions do enter into the near-wake region. Such conditions could arise from the charging of a spacecraft during the emission of a charged-particle beam or during an auroral event.

The results indicate that if an $A<1.0$ scenario suddenly comes about, ions will be attracted to the object. and under the influence of the surrounding charge sheath. which initially is large in extent (on the order of the object radius prior to the arrival of the main bulk plasma). will follow a curved trajectory into the region behind the object. This focusing action is enhanced by the fact that the sheath contracts as the plasma density increases at the object location (the final Debye length is $\leq 0.33 \mathrm{cms}$ in our experiment). for the contracting sheath serves to pull ions even closer to the object. Indeed, it is seen from the simulation data that some ion trajectories impinge directly onto the backside of the object. even in a steady state

The excess positive space charge generated by the buildup of ions just behind the object-clearly seen in Fig. 12-subsequently serve to attract more electrons to the area. This is supported by the experimental data in Figs. 2 and 3. As was pointed out in Section II, not only do the ions move into the wake region before the electrons, but the electron density is at a maximum at a later time than the corresponding lime for the inns: it is this mechanism that is thought to bring about a colder-than-ambient electron temperature in the near-wake region

Of course, the electrons can never directly impact the object, as the ions easily can. unless they possess energy sufficient to overcome the object's potential barrier. It can be expected that the electrons will he ultimately reflected at the point where the potential harrier equals their kiretic energy. For an electron population that is perfectly Boltzmann in distribution, the $\mid K T$ potential connour will he roughly the closest that electrons can be expected to approach the object. For an electron distribution that has a hot tail component, as was the case in the expetiments. it might be expected that electrons would approach even closer to the object. With etectron densities on the order of $10^{7} \mathrm{~cm}^{-3}$, the Dehye length was $=0.3 \mathrm{~cm}$. which corresponded to a location of $Z / R_{0}=0.1$. It would therefore seem possible for elecirons to approach to within $Z / R_{n}<$ I 0 , even in steady state. and that both ions and elecirons would be present in the near wake The stealy state re sults seem to indicate this to be true.

Acknowifdgment

The authors would like to acknowledge the contsihution of Prof. U. Samir, whose suggestions provided the mitial impetus for this work; Dr. W. Burke. for his support and encouragement in this endeavor, and Dr. K Wright for some helpful discussions along the way We would also like to thank J Genevich and R Allen for their technical assistance in carrying out the experinents

References

III S D. Hester and A. A. Sonin. "A latoratory study of the electmdynamic infuences on the wates of ionospheric sulellites." AlAA J ., val. B. PD 1090-1098. 1969.
[2] U. Samir, W. A. Oran, and N. H. Stone. "Lebmatary simulation of space aerodynamie phenomena: Sarellhe wake studies." Rarefied Gas Dveramics, vol. 2. 1974
[3] N. H. Stone, "The aerodynamics of bodies in a rarefied ionized gas. with spplications to spececrmif envirommental dy namics." NASA. IP1933. 1981.
(4) A. R. Martin. "Numerical solutions to the pmblem of charged particle fow around an ionospheric spacecraf.' Plonet Space Sei., vol. 22. pp. 121-141. 1974.
[S] L. W. Parter. "Computation of collisonless steady-state plasma fow pall a charged disk, " NASA. Washingion, DC, CR-144159, 1976.
16) C. Chan. M. A. Morgon, and R. C. Allen. "Electron dynamics in the near wake of a conducting body." IEEE Trans. Plasma Sci., vol. P5-14. no. 6. pp. 915-924. 1986.
(7) M. A. Morgan, C. Chan. and R. C. Allen. "A laboratory study of the eicetron temperature in the near wake of a conducting body." Geophys. Res. Left., vol. 14, no. 11, pp. $1170-11$ 13. 1981.
[8] L. W. Pofter, "Computation of collisionless stesdy state piasms flow peas charged disks." NASA. CR-133159. 1976.
(91 1. C. Taylor, "Diturbance of a rarefied plasma by a supersonic body on the besin of the Poigron-Vlasov equasions-1." Planet. Space Sci., vol. 15, pp. 195-187, 1967.
(10) A. R. Mortin, "Numerical solations to the problem of charged par ticle fow around an lonospheric spacecreft." Planet. Spare Sci. . vol 22. pp. 121-141. 1974.
[II] B. Romemann. "The collisionless flow of unmagnetized plasmas around bodies:" J. Plasma Phys., vol. 20. pp. 17-30. 1978
[12] N. H. Stone. "The plasma wake of mesonic conducting hodies. pant I: An experimental penmerric study of ion focusing by the plasma sheuth." /. Plasma Phys , vot. 25. pp. 351-371, 1991.

M. Abtia Morsan was bona on Montserrat, in the British West Indies. on May 19. 1956. He received the E.S.E.E and M.S.E.E degres from Northeastern Universiry, Boston, MA, in 1984 and 1988, respectively. He is currenily a Researrh Assistant in the Depertmem of Electrical and Computer Engineering of Northeastern, where he is working lowerds the Ph.D. degree. His rescarch interests are in collisionless plasma dy namics. diagnostics and simulation in general. and wake phenomene in particular.

Chung Chan (S'RO-M BI SM RA) wav buwn in Camon. China. on Octoter 27, 1996. and re. ceived the $\mathbf{B} 5$ degree in electrical engineering Irom North Daknos Stave University Fargn, in 1978, and the M S. and Ph D degrees in elecin cal and computer engineeting form the Univeraly of lowa. Jows City, in 19R0 and 1981. respec tively.

Fimm 19R1 in 1904 he served an a Research Scientist in the Phaedrus Iamdem Mirror at the Universily of Wisconsin in Madimn. In Seplember 1984, he joined the faculty of Northeastern University. Boston. where he currently holds the rank of Associaste Professor He is currently the Direetor of the Plasma Science and the Misroelectronic Laboratories at Northeastern University. He is also a principal investiganor on research projects supponed by the National Science Foundation. the Air Force. The Ofice of Naval Research. Semalech. the Department of Emergy. the Na lonal Aeronautics and Space Administration. and a number of industrial companies.

Dr. Chan received the IEEE Outstanding Graduate Student Award in 1981 for his research work on tibontory plasmas. He has published 40 refereed papers and presented more than 40 conference mapers on topics: reloted to movel plasma devices, space plasma simulations. monlinear plasma phenomena, plasma processing, microelectonic fabrication. and movel plasma diagnostic techniques. He holdx membership in Tau Ress Pi. AVS. APS, AGU and NY Acaderny of Science.

ene, and time travel.

Maurice F. Tsutz was bom in Victoria. AC, Canada, on Ocrober 29. 1941. He received the B.Sc. and M.S. degrees Imon the University of Vietoria in 1964 and 1968. respectively. He obthined the Ph.D. degree from Norkeasrem University. Boston, in 1976. in the field of elementary pantiele physics.
He worked for a few years as a Posidoctorn Fellow at Northeastern, on physics experiments being camed out at Fermilab. Since then. he hav been al the Air Force Geophysics Labonalory. where his main research interest is in computer simulations of spacecraft charging problems.

[^0]:

 this wnik wis cuprorted in part by U.S. Air fiorse combact

 lhe fidfor thanke () (. Alathene and amoliet referee for their astistame in evalitatime this parer

[^1]: Repronted froum IWERE TRANSACTIONS ON PLASMA SCIENCE

 Vol. 17, No. 2, Aprll 1909

