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13. AWT MAua menjo~we

Nonla optical susceptibilities provde a convenient me$=s of relatig muocpcoptical

Measurements to rnCTOSCOpiC models. The susceptibffities ane useful as long as the radiation
field and the material degrees of freedom are weakly coupled. In the opposite case, h
dynamics is interpreted in -em of cobined radiation-mte 'oe plr tos adl

susceptibilities are usually not used In this rview ST anayze both situations from a
unified dynamcal framework based on equations of motion. Thne present formalism is also

pariclalysuitable for the calculation of optical nonin"tie in nasetimtfe VMt

restricted geometries. The transient grating and it$ fequency-oan analogue (dbgfat

four wave mixing) awe used 10 iluste the formalm in both the sucag and do weak
radiation-matmr coupling rmdL
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J. Knoester and S . Atikamel. Transient grattn s, tour- iate nittjfV and pfolarton efltects in ,Iottlnit'ar 3

1. Introduction

The transient grating (TG) technique is one of the most powerful means for the direct probe of
dynamical processes in condensed phases [1-181. It has been used to probe relaxation rates andtransport phenomena in molecular crystals [2]. ionic crystals 13-6, solutions of dye molecules [7. 81.
conjugated polymers [91. semiconductors [10-141, surfaces 1151 and proteins 1161. Laser gratings are
important for holography and the elimination of beam distortions in random media (phase conjugation)
[17. 181. A simple phenomenological description of the TG can be obtained as follows: When two laser
lields with wave vectors k. and k. simultaneously interact with the material system. they form an
interference pattern with wave vector k, - k,. Consequently some material property (e.g. excitons.
electron-hole pairs. space charge, temperature. density. etc.) is created and modulated by the same
wave vector. If the optical dielectric function depends on this property. it will be spatially modulated:
A'(r) = A cos[(k t - k,). r. When a third beam with wave vector k, is now scattered by the sample. it
will undergo diffraction resulting in a signal at wave vector k, = k - (k, - k,). By varying the delay
between the initial and the probe beams we can follow the decay of the grating amplitude and.
consequently, the underlying motions of the elementary excitations. on a controlled lengthscale
determined by the grating wave vector k -k, - k, (fig. I). For off-resonance conditions A, is purely
real (phase grating) whereas for resonant excitation it has an imaginary part (population grating).
Phenomenological treatments of grating experiments have been developed and widely used for the
interpretation of numerous experiments. These consist of identifying the nature of the relevant
dynamical variables produced by the laser grating (excitation density, free charge carriers, temperature.
mass density. etc.) and using macroscopic transport equations to describe their time evolution. An
excellent review of this level of description is found in Eichler et at. 1].

signal

ks= k1- kg+ k3

samle i 4--grating

k//
ki k2

excitation k3 excitation
t=O probe t=O

t='r

Fie. I T pical transient gratim Netup No excitation beams crossed under anIe -i create a erating in the sample %tth \%a~e \ector k k.. After a
ariable delay -. the grating is proh'd h\ a third pulse ke . rculline in a nonlinear i ditractedI signal at A - k A. - k
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Alternatively. TG spectroscopy can be iesecra,, I particular tcchniuLue ,ut nonlinear optics \, hich
belon,-s to a broader farilv of processes known as four-'vc nutxin, It . '1-211. Four-, ave mixing is ,a
technique in which three incoming beams with wave \ectors k,. k.. k, interact N ith a nonlinear medium
and generate a coherent signal at a wave vector which is any combination of the wave vectors

. -k..--k. The four-wave mixing signal is usuallv calculated using the standard and well
established systematic machinery of nonlinear optics. In this picture we expand the. optical polarization
in powers of the average electric field (the Maxwell field)

P E + V "'EE ';'EEE -. .

Four-wave mixing is related to the nonlinear susceptibility ' The tour-%ave mixing point of view
allows us to put the TG technique in a broader context, and to explore its relationship to other
spectroscopies (photon echo. pump-probe..CARS. etc.) 119-271. For example. it has been shown that
the information obtained from the TG experiment can in principle also be obtained using a frequenc\-
domain technique. degenerate four-wave mixing (D4WM 128-151. In this variant. three stationary_I-,ci wn thi warvnt vectoe ktationdryincident waves with wave 'ectors k,. k, and k, interact in the system and the scattered wave at
k = k, (k - k.) is detected. It has been shown that resonances in the signal as a function of uw, - w,
are. under some very general conditions, equal to the Fourier transform of the TG signal 1361. The
possibility of exciton localization l37-3], which is tile analogue of the Anderson electron localization,
could also be probed ideally by the grating technique 1401.

In this review we develop a fully microscopic framework for the calculation of four-wave mixing
processes in condensed phases, and use it to analyze TG spectroscopy in molecular crystals. Molecular
crystals at low temperatures seem ideal systems or the application of the grating techniques. In these
,stems. optical excitation creates elementary excitations. Frenkel exciton 1-l1-4 1 or charge transfer
cxcitons 1-50J. which are well understood. Such systems seem sufficientl\ simple to allow a rigorous
microscopic treatment 150-561. It was anticipated that the grating technique wouid directly probe the
excton motion. That motion is expected to be incoherent at high temperatures and to gradually become
coherent as the tempcr lature is lowered. Lxperiments pertormed on anthracene crystals 12b.cl showed
however no evidence of coherent (nondiffusive) exciton motion. Instead the\ showed incoherent motion
with a very large diffusion coefficient. These observations were interpreted h% .Agranovich et al. [51. 521
in terms of diffusion of polaritons [57-62]. wkhich are quasiparticles representing the correlated
polarization and radiation held degrees of freedom. Other evidence related to polariton dynamics in
organic crystals was obtained by Small and coworkcrs 161 M0ho measured ,ccond harmonic generation
and two-photon fluorescence in naphthalene. Their measurements strongi% suggest the importance ot
polariton (rather than exciton) scattering, and cannot be accounted for uing standard (nonretarded)
expressions (or the nonlinear susceptibilities. Polariton effects have also been measured by a variety of
other nonlinear optical techniques 163-651.

The incorporation of polariton effects in the theory of nonlinear susceptibilities is not straightforwvard
151. 52. 6-691. Traditionally the optical susceptibilities are viewed as purely material quantities. and
calculated using summations over eigenstates of the molecular (unretarded) Hamiltonian. Consequently

depends on exciton resonances and dipole matrix elements and does not depend on retarded
interactions 1211. The calculation of any nonlinear optical signal is then conveniently divided into two
steps: we first calculate susceptibilities in the absence of the radiation tield and next. we use the
susceptibilities in the Maxwell equations. thereby introducing the retarded interactions on a macro-
scopic level. This is the conventional formulation of nonlinear optics developed by Bloembergen



I -21.hIch holds ats Jn til e radi ion and imartii.r e oree : reedoml ire xx cakk xcoLIpled (Cc..
tor Lit -resonat processes or xx hen iixcito n dha i, ii 1d~re) . ider t hese t:0nu0ri0 1s tihe c lenient arx
t xcitations are excitons and photons. and it i-possi Pie to neeleIct correclatiows hectxcn thle radiation
field !,id the material polarization and to &111 fine LISCertlibilities. W\hen the radiation M id matter modes
are strongly% coupled. then retarded Interactions need to he incorporated more niicroscopicalkl\and the
optical response reflects thle dynamics oI polaritons -r iIt is then dif ricult to CIIuLaltC suIscep-
tibilitics. Instead. the sig-nJ,, is expanded irectl\ In ternis, of the e-tiernal held rather than thle M~axwell
tield E. It should be stressed that the linearl suIsceptibility jos. -,()I I tand the dielectric function t can

a hx ' e uabioui.detined . whelither or notI polatri ton ir cr import a nt. ( )pt rc il non linearities
reqluire. how ex er. a different atpproac:h in hot h s ituatio ns.

One ot the primary -,oals of the present rex iexx , to dcx elop a systematic torniulation inl xx hch
polarliton and exciton d nlanics can he accounIted for inl a unitied framexx ork . InI Additioln. \%e discuss

'. era -iapproximlate Nchenic, Ior thle calcu lation of non linear optical response. I-h, simpiest is thle
.11ha rnonic oscillator model to he po'la rizatin proposed. 1h- 13]ocimbereen jI NI 9 cv.mn\

body effects are often handled using, at mean-tield t heor ilie local-tield approximation) I 7). -lI. Our
-,encral formialism reduce,, to these commnon procedureN xxci he pecific approxmations are made and
therefore provides useful i nsitcht into thiir liminitations.

filhe Out line ot this rcx icxx is as follows. i section 2 xx introduce lie erieral model H amiltonian for
mllol c uIar crystal Ix\ hich In CIudes eXC Itok ns. p)i'10no0s al nd Photons an Id tilie I r "(II I I rIn!-. [he multipolar

D ) formi of the exciton -photon coupliiLe is adopted, I he entire rexC\ Pex-i dcx oted to developing
aipproximnate schenies for calculatineIL thle dynamics dc~cribed h% this ILamiltolianl and the Heisenberey
eq uations (eqls. 2.9) for x arrous limiting cases. In section ., we tocus oil tile material evolution alone
ICe xctons an1d phonoris h\ taetorizi ng out the e lectroniaunetic heldt. t reating it effcttivefv as a classical c
ii umbehr. I is is lieC usual ramew1%ork in w\%ichi lnear ind nonlinear optical i cept ihil itic,, are defined
And calculated. In section 3. I wec present the operator equations and their solultion ito linear order in tile
e:lectric held Thle material equations form a ierairchy xx hereb' ,mtc-prt1itclc perators. such as
he p Ia tri/at ion. are et uplcd to operaPtr- In'.kxini- morsic n e patr lo I w et order in the

hie rarch\ wec ret aini onkl sim-fle-pai-ticle operators amid dlescrri heour-xx ax e imm ixin ard the non linear
Nus"ceptihilMit xx t hin thle h cal- hld aioprominiation icetion 3.2 . Fhe incorporation of transport
requjLires the next ( txxo-particlci level of thle hierarelix . mliicl I, is ddressled In scton .'C .3. he dcrate
four-..axe iminge Min lxhich is absenlt iii thle msi c ' lparticle level. no\%' hlow,. s up. ind dephasing-
nduced resonances, are obt ainied. Inl sctionI 3.4 we iscuss lie transie nt crt nc hich Is tilie

description, as no r ranspor in \ts ml thle ll icit:i 0 c) l. In sCclll ' 1i. ' (m ho' ho" thle
xx o-nartrcle CULuatioI' of the Matter can be related it) 11te: B01In11 annard the dli Il'11 fusioeiuations We
urt her introduce tilie stronL -colhlson and tilie I laeii-'st ro'hI models to r cieton -pllononi scatterinme. BhS

concludes our discussion of1 e xctonl transport andI d\1, 1iiNii
InI sect ion - %we turn to thle more Lceneral aind comiiplex problemi Mx ien lie photon x ariables are

i ronefl' c~ rre kited xx it h the material ;mrd cannot be t .ictori/ed . Ili tis case. \\x e inulate noninear
opti cs xcr\ difrcntl% . h% uwing polaritons and aioidinc, the caculation of scetblts.Inl section 4.1
wec i nt roduce the polariton i rnst .ormalttion xx ilich\c sokx , thle linear t'pic.Inl section 4.2' xx\
deve\lo)p equtations ol motion at the txx-particilcxcl i Ima loc-ous to section .3(.In sections 4.3 an1d ".I

*x e apply these equat1101ioto tilie t ransie nt grating, ifnd its 1req uenic\-donlIi Xa021 tialoetie dcrate

fouir-xxave nixinO . res pcctixfc \ eA ie dIU1CILiscussion1 of various linitine- eases Ill iven. [mnall'. Ill

section we resent concludinLg remarks and summarize our results.



2. Model. Hlamiltonian. and equations of motion-

In this ,ection %ke present our model s~ stem. thle Hamillton ,in. and the bic e ios Io L 1 t )In INn k1 Il)IIk)It I

Lire used in sections 3 aind 4 to calculate optical signals. W\e are interested in the nonlinear optical
response of molecular crystals and restrict the model to ai lattice o1 polarizable (nonipolarn 1~tko-iec ci
molecules wIth transition trequency fl (one molecule per unit cell). Thie total numnber of molecuics InI
the crystal is denoted b\ N. Even though optical experiments Lire usually carried out onl thiin cr'\stl

%%bs w ill assume that the sample is still thick enough to invoke translational invariance In all latti1ce
directions. [or examiple. \\ e will assume that the ekenttar\ excitations o1 thle crystal exciton, or
polaritons) Lire k elI-approximiated by those tor an intinite crystal. Retinemencrts related to thle irkcament
ot m1Ultile el molecules,. thle occurrence of more than one molecule per unit cell, or the C\plicit
treatment of tinite uconictries. aire possible. but not essential tor the mainl o~bictive ot this paper and
\\ olld obscure the physics by addine notational and alhebraic comiplexit\.

A\ microscopic r heor\ ot (nonlinear) optical rc,,ponse should start with the choice ti ai [lamitonian
co)upline- the material system to the radiation held. Thle t\ o best-known choices are thle multi11polar

(A-D ) Hlamiltonian anid the minimal coupling ( p -.4) K-lmiltonian . which aire related by a canoknicali
transtormation 17", -31. lecre. w\e will not elaborate on the controversial issue of the exact equi\ alencc
o1 both choices: an extensive literature exists which deals w ith this problem J741. Suffice it to Sa\. 01hai
discrepancies between the results of both pictures 'tre ultimately due to the fac! that approximationis
(which aire unavoidable in a, practical calculation) affect them in a different wa\ . We Wil Use thle
multipolar H-amiltonian for the two following- reasons: W This choice allows for a straightforw ard
connection to the literature of the Bloch equations. which aire used to describe nonlinear excited-tate
Ua'~namics of Isolated mole1cules (22. 751. (ii0 An easy connection to the popular local-hield approach if?
kwndensed , stemns is possible within this Hamiltonian 1761. A dra\% back of the multipolar fliltonianl
is that it does not explcitly contain intermolecular interactions: these aire instead carried by exchanee, oi
photons between the molecules 177]. The interactions can bie recovered by elimination of the radiation
field 17SI or h\ at procedure presented previously, by us, that keeps thle radiation held ais ai degree ot
treedom 1701. The latter procedure wIll be used belowk.

In the dipole approximlation. the explicit form of the multipolar [lamiltonian fcor our Nssteml readlk

D'=1, -I P~ (r) dr -- 2 P (r) ,dr - F 2

Ithroui0hout this paper. operators are indicated b\ a caret (0() : thle samei s'~mbol \O thout cairet kcnotel,
!he expectaton \Litle OM1 O()!) . In eq. (2.1) Iis thle liamiltonian oA thle Isolated mlolcc'.ulc ill

nd II i the contribution from the free radiation held. InI second qjuant1izatIOn. both can hec\pce
Usingi creation mnd irnnihilatiOn operators.

IUIB . 2

I ere,. B ,, ( 1?,,) decn otes thei cre at ion aLnn ih iIa t ion) ope rato r fo r a n e xci t atio o001n mole cle 11 ecc
operators commute for different molecules. whcre,' for an\y sinele molecule thev obey

$B~ ~B B_ -1 B.,,., =. I 4
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'Fhe last cqualtv dciines thc miolecuiar population operator. \\ hich. combining eqs,. (_'.4a) a-nd
can also be writtenl as

It"" "1 B,,

Evidently, this operator hats eilzenvalue zero in the gro "und state and 2 in the excited state. For harmonic
oscillators (bosons). eq. (2.4a) does not hold and W, as deftined in eq. ( 2.4h) \van shcs identicalk
Therefore, neglecting this operator for two-level mc,!eculces is referred to as the Bose approximation

[42.58. 1J. n e .1.). the operators a' and aA create and annihilate at photon with wave \~ector k
and transverse polarization A ( A = . 2). respectively. They ohc\ Bose commutation relations.

Lind they commute with ill material operators. Furthermore. k _ki and c Is the velocity of light Inl
Vacuum.

The third term in eq. (2. 1 g-i\ves the interaction between thle radiation hield and the molecules. P r) is
the polarization field in the medium, which in the dipole approximation miav be written ats

P~r) (5( -- r..

Here i, denotes the total dipole operator of molecule in position r I. which can lie writtC1n as!

with pA,, the transition dipole matrix element of molecule In. I) (r) den1otes the transverse part of !hc
electric displacement field at position r and is related to thle transversec part of thle Maxwell electric-nid
operator E( r) by,

D (r) E (r) - 4 ,P (r).

We stress that inl thle multipolar Hamiltonian. the displacement hield D) ( r) (a-nd not thle Mlaxwell (1cid
E is the con LI~ate momentum of the vector potential 4(r). ,o that Inl scond quaI~ntiiationl 1) i ri

ttlyexpressed in terms of radiation creation and annihilatio prtr ny.Epiil."eh\c7

(r A-r Vk 1, explk -r) + acKA exp(-ilk -r) le~, .~

D) (r) zI'> (2x , exp(ik -r) - ti expl-i Ie

with V' the quantization volume, taken equal to the crystal volume lin all calculations. and e,, ( ' I.
the transverse unit polarization vectors belonging to the wave vector k. Wec work inl thle ('oulom111 ea1UL'.
so that the longitudi nal part of' the vector potential vanishes. Of course. the longzitudinalI part ol thle
displacement field also vanishes, because there are no free charges In our systemn. Thle transl.\erse
electric field in second quantization Is now defined by eq. (2.7). in combination with eqs. (2.6) aInd
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(2.8b). In general, the longitudinal part of the electric field. E . does not vanish. but is fully determined
by the polarization field through the relation E = -47rP

The fourth term in eq. (2.1) is a self-energy. in which P,,(r) is the transverse polarization field caused
by molecule m only. For two-level molecules this term is an infinite constant which does not contribute
to the evolution, so that it is often omitted completely from the Hamiltonian. Finaily. the last term in
eq. (2.1). T, represents the kinetic energy related to the nuclear motion (phonons).

To calculate optical response, coupled equations of motion for the expectation values of dynamical
variables (e.g.. the polarization field) are ideal. Such equations can be obtained from the expectation
values of Heisenberg equations of motion, supplemented with some factorization approximation to
truncate the coupling to increasingly more complicated variables (sections 3 and 4). A great advantage

of an equation-of-motion approach is that. unlike the density-matrix approach in the Schr6dinger
picture [19-23], it does not involve the tedious calculation of the eigenstates of the total system.
Instead, we focus directly on the relevant dynamical variables which carry the information necessary for
a given measurement. The complete dynamical information as given by the eigenstates is usually too
complex and not required for most applications involving complex systems in condensed phases.

We have shown earlier [76] that the Hei-,berg equations of motion for material operators within
the multipolar Hamiltonian, can be written in a form which explicitly contains the instantaneous
Coulomb interactions between the molecules. and the interactions between the molecular dipoles and
the transverse Maxwell field tE- (instead of D ). It is essential that in the derivation of these equations.
we split the (transverse) displacement field according to eq. (2.7). i.e.. in terms of the transverse electric
and polarization fields. An alternative approach that uses D = b = t + 4,'. leads to equations of a
very different form. in which the instantaneous interactions are not readily recognized. It is straightfor-
ward to extend the derivation of ref. [761 to the present situation where also nuclear motion is possible.
For an arbitrary operator Q (material., radiation. or mixed). we find (all operators taken at time t)

(1 i)dQ,/dt = LQ. (2.9a)

1 H{ .,,,. QJO .1 E (r,,Q)'- (rI,,)'[l,,. -

2.. .., {p,,.[i r,,), - [Dir,). ] ,,j 2.9b)

Here. H ... denotes a material Hamiltonian which consists of three well-known parts.
= , - -H -r HP .10)

H,. is the usual Frenkel exciton Hamiltonian 142]

h X,,J(r,,,,,)(B.,, - B,J(B -, - B,,). ,2.11
tpl - ,,i .ft

where the second term accounts for the instantaneous dipole-dipole interactions between the molecules
in their equilibrium positions and orientations (the prime excludes terms with in = n from the
summation). We have defined r,,,,, r,,, - r,. where. from now on. r,,, denotes the equilibrium position
of molecule m. The explicit form of the interaction reads

/1J(r) = t (I ir' - 3rrir') . (2.12)
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with I the molecular transition dipole in the equilibirium configuration (equal for all molecules on the
lattice). Of course, short-range interactions (e.g., exchange), which have been omitted from the
Hamiltonian from the very start (eq. 2.1), can be added heuristically to J(r). The second term in eq.
(2.10) is the energy of the phonons, which are treated within the harmonic approximation [42. 79],

s qh qs b , b^. (2.13)
q.5

Here. , (b,,) is the creation (annihilation) operator for a phonon with wave vector q in branch s and
hf~qq is its energy. b', and b obey Bose commutation relations [cf. eq. (2.5)].

Finally, the last contribution to Hi,,, is the exciton-phonon interaction, which arises from the
dependence of the intermolecular interactions and the Van der Waals shifts on the displacements of the
nuclear coordinates from their equilibrium values. To lowest (linear) order in these displacements, we
can write [42. 60a]

H/ep = [F(k. q) + xs(q)]n qB (q, 4- b'). (2.14)

k.q.s

where bk and B* are the exciton annihilation and creation operators in momentum representation,
respectively,

b.. .exp(-ik, r,,,). B.. exp(ik, r,,,) . (2.15a. b)

Of course, these operators are periodic on the reciprocal lattice and the inverse transformations read

b,, = I exp(ik, r,,,. Bl exp(-ik .r . G.15c. d)

VN k? A
IBZ 1BZ

where the k summations extend over the first Brillouin zone only. F,(k, q) and X,(q) are complex
coupling constants that can be expressed in the first derivatives of the intermolecular interactions and
the Van der Waals shifts, respectively, with respect to the nuclear displacements [42]. They obey the
symmetry relations F,(k. q) = F(k + q. -q) and X,(q) = X:'(-q) (the asterisk denotes the complex
conjugate), which guarantees that H, is Hermitian. It is noteworthy that in the delocalized representa-
tion of eq. (2.14). F,(k. q) and V(jq) multiply the same operators. so that their sum may be replaced bya single total coupling constant. which we will write F,(k. q). In the standard reference [42] for Hp, this

is not the case. as a result of improper use of translational symmetry. This completes the discussion of
Hmat in eq. (2.9b).

All other contributions to this equation speak for themselves. In the last two r.h.s. terms, the
equilibrium positions and orientations for the molecules are implied, in agreement with the common
neglect of direct photon-phonon interactions [60, 80]. Clearly. for a purely material operator Q, eq.
(2.9) reduces to eq. (12) of ref. [76], with additional contributions due to exciton-phonon interactions.
Equation (2.9) is the basis for all equations of motion that are used in this paper. In general, eq. (2.9)
will result in an infinite hierarchy of coupled dynamical equations whereby single-body operators are
successively coupled to more complex quantities. Fortunately. the optical response to electromagnetic
fields that are not too strong, requires the explicit introduction of only few-particle states. This allows us
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to truncate the hierarchy at a very early stage. We shall demonstrate in the coming sections how a
truncation at the two-particle or even the single-particle level is adequate for the calculation of a variety
of optical measurements. This situation is formally very similar to the zero-temperature many-body
theory where a few quasiparticles dominate the dynamical behavior [44, 811.

We conclude this section by giving the definition for the spatial and temporal Fourier transforms of
an arbitrary function f(r. t),

f(k. w)= f dr f dt f(r, t)exp(-ik r + iwt). (2.16a)

The inverse transform then reads

ft1 rj dw f(k.w)exp(ik'r-iwt) (2.16b)

where the k summation extends over all Brillouin zones.

3. Nonlinear optical response of excitons

3. 1. Operator equations and linear optics

In this section. we consider the exciton theory of nonlinear optical response. This is the conventional
approach. in which the electric field E-' is treated as an external c-number. Equivalently, in equations
of motion, the expectation value (Q o-). with Q an arbitrary material operator. is always factored into
(0) (t/-E). All material variables can then be expanded in powers of (E-). For the polarization field.
the expansion coefficients define the susceptibilities or response functions [19-221. In combination with
the Maxwell equations, the susceptibilities suffice to calculate the optical signal. In this approach. the
susceptibilities are completely determined by the evolution of the isolated material system with
instantaneous intermolecular interactions, i.e.. by the eigenstates of /(/m,, which are the Coulomb
excitons. This approach does not, therefore, account for the fact that in low-temperature crystals
strongly mixed coherent combinations of photons and excitons (polaritons [57. 581) occur as eigen-
modes: polariton effects will be studied in section 4.

The first step in the exciton theory consists of deriving equations of motion for the exciton operators
b. and 8 k (with k in the first Brillouin zone) from eq. (2.9). Throughout this paper. we neglect
Umklapp contributions to E-. i.e.. we neglect Fourier components E-(k. t) with k outside the first
Brillouin zone. This approximation is customary (see, e.g.. ref. 1571) and has in the context of the
multipolar Hamiltonian been discussed in ref. [761. Using the commutation relation (2.4b). the
following compact form for the equations of motion can now be obtained (all operators taken at time t0:

I d (/k )t = - J (k ) - ! (k ) -J(k) B,

+ dt J(k) 22 + J(k) + (k) )

+ 2 R1- [2 -1ph - A .E -(k) + ,k(k)]j-I 31
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Here, J(k) is the lattice Fourier transform of the intermolecular interaction

J(k) = J(r,,) exp(-ik -r,,). 03.2
P.n -O

Because the lattice model described in section 2 is centrosvmmetric, we have J(k) = J(-k. Further-
more. _v(k) [= !(-k)] is the complex exciton self-energy which accounts for the iffect of phonon
scattering on the electronic evolution. In appendix A we discuss a procedure to calculate .(k) and
obtain, to second order in the exciton-phonon interaction, the well-known expressions [421

v(k) -A(k) - iF(k) (3.3a)

h IV 12q - - ! 2, S f2i q + P it"

-(k) = T iF(k. q)L[(nq) T(1 _ -q - - , ) + ( n -q + 1)TS(Qk q - 12k 0- f2 q,)]. (3.3c)I~)-h N q.,

Here. f2k is the frequency of the Coulomb exciton with wave vector k (eq. 3.6). (nqi r denotes the
thermal (Bose-Einstein) occupation number of phonons with wave vector q in branch s. and P stands
for the principal part. F(k) is the damping rate of the exciton induced by the phonon bath: A(k) is the
phonon induced frequency shift, which will henceforth be neglected. 1(k) plays a crucial role in the
occurrence of polariton effects (section 4.1).

Returning to eq. (3.1). p -- N/V denotes the average molecular density in the crystal and. finally.
.f(k)-= 12 N' [Jk')VN(t , + k_)- ph-'" E-('). Wk - k')] . (3.4)

k') Vb + k)p g4 k

Here, the k' summation (as from now on all wave vector sums in this paper) extends over the first
Brillouin zone only, and V(k - k') is the lattice Fourier transform of the population operator.

W(k-k')-l ,,, exp[-i(k-k').r] = . kBkk. •(3.5)

Let us first consider eq. (3.1) without the inhomogeneous source terms multiplying the vector .
This defines an eigenvalue problem whose solutions are the annihilation operator for the Coulomb
exciton at wave vector k and the creation operator for the Coulomb exciton at -k. in terms of B and
B-k [421. The Coulomb exciton frequency is determined by the secular equation of the problem and
easily found to be 2k -iV(k). with

12k= {lQ + 2J(k)j} ' 3..6)

For jJ(k)j U. which is almost by definition the case in molecular crystals 142. 481. this yields
lk- 12 + J(k). This is known as the Heitler-London approximation and is obtained directly if one does

not use second quantization. In this approximation. the Coulomb excitons are simply created (annihi-
lated) by B; (A) [421. The excitons respond to the source term in eq. (3.1). which contains a linear
(-E ) and a nonlinear (-.if) contribution. The latter is the source of nonlinear optical response and
vanishes identically for harmonic oscillators [W(k) 01. We note that in the present paper W(k) is the
only source of nonlinearities. In systems with multilevel (and polar two-level) molecules, other sources
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arise from intermolecular interaction terms that are cubic and quartic in the molecular exciton creation
and annihilation operators 147. 59]. Such terms even give rise to nonlinearities if a Bose approximation
is applied, which is usually done in the literature considering this kind of nonlinearities. In reality, both
types of nonlinearities will occur.

It proves useful to rewrite eq. (3.1) by introducing the variables

P(k) V-N(bk+ k). (k) = VN(i- Bk). (3.7a. b)

P(k) equals, up to a factor ji. the material polarization field. Adding and subtracting the temporal
Fourier transforms of the two equations contained in eq. (3.1) and eliminating V(k. o), we obtain

{-[ + iF(k)]-2 + fl2} P(k. co) = 2f2ph'-t F-(k, o) + JtI(k, co), (3.8a)

.U(k. o) --- J dw' "E J(k')P(k'. o') - ph-'. -(k'. w'). W(k - k'. o - w')],. (3.8b)

Alternatively, we can write

*k, ) =(2n) I'
(27rN) d k'f f")

x I[J(k') P(V' w') - ( p/ h),u'/t- (V. (o'), . (o") P(k -V'- V. to-t o)+,

(3.8c)

where f(k, o) has been reexpressed using eq. (3.5) and the exact relations

Bk(o) = In+ o + iF(k)]IJP(k, &o)/(2fPV-N), (3.9a)

Bk(o) = ' - iF(k)] P(k, &)/(2fl/-N). (3.9b)

Here, b(w) denotes the temporal Fourier transform of B(t), and not the Hermitian conjugate

Iik(wo)I: of k(t). Of course, we have (to) = [B W(-t)I. Relations (3.9) follow easily from eqs. (3.1)
and (3.7). Transforming eq. (3.8a) back to the time domain, it becomes clear that we have replaced two
first-order (in time) differential equations by a single second-order equation.

To conclude this subsection, we discuss the simple case of linear optics. governed by the first-order
susceptibility. We first note that, in practice. susceptibilities are defined using discrete Fourier
decompositions for the expectation values of the fields, instead of the Fourier transforms eq. (2.16) [19.
22. 68. 821. The electric field is then written in the form

E-(r, t) = [E , exp(ik, .r - iwt) + c.c.I. (3.10)

where j labels a few modes which are essential in the experiment. to, (>0) and ki are related by the
dispersion relation of the crystal. The Fourier transform eq. (2.16) for this field reads

E-(k. to) = 21rV [E (k.k8(W - to,) + EI *5k8,,(W + W,)1. (3.11)
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Similar decompositions are possible for, e.g., the -polarization field P. The coefficients appearing in
the expansion of the amplitudes P, in terms of powers of the electric-field amplitudes E,, are now the
susceptibilities [19, 22, 68, 821. The first-order susceptibility is easily obtained from eq. (3.8a). Namely,
the part of the polarization that is linear in the electric field is found by neglecting the nonlinearity
J (k). After taking expectation values and substituting eq. (3.11) and its analogue for the polarization,
we obtain

PM-/ = -up0 ('(kj, %).- Ej- ,(3.12a)

with the linear susceptibility tensor

1. - (k, w) - 1 z 2.ph'.qA (3.12b)
4 7T -[W + iF(k)" +f

Here, and throughout the paper, superscripts in parentheses indicate the order in the electric field
amplitudes. -8(k, w) is the frequency and wave-vector dependent dielectric tensor. Equation (3.12b) is a
standard result (see, e.g., ref. [42]); for crystals containing molecules with more than two well-
separated levels, eq. (3.12) gives the contribution of each level to the linear susceptibility. In the
remainder of this section, we will address the nonlinear optical response of the crystal by including the
effect of Jt,(k) in various approximate ways.

3.2. The single-particle description: frequency-domain four-wave mixing

The first nonlinear optical technique that we discuss is frequency-domain four-wave mixing. We
consider ? situation with three fundamental fields [j = 1. 2. 3 in eq. (3.10)] and are interested in the
signal at ,, ,, w,)-_ (ki - k, + k , w 1 - W, + w,). To lowest order in the field amplitudes E>, this is
determined by the third-order susceptibility, which is defined through

p(3) ( 3)EE*E (.3p )_ ltl,= 3)_,_o ;ko k, - w_. ko w& E -E,-_ * E ; (3.13)

where p 3) is the discrete Fourier coefficient of the polarization field with wave vector k, and frequency
w, to third order in the electric field amplitudes. We note that )is the lowest nonlinearity allowed by
the present model, since V') vanishes for a centrosymmetric medium [211.

To evaluate ;.. we take the expectation value of eq. (3.8a) with (k. w) = (k,. w,). The nonlinear
source term for the third-order polarization is (.lt(k,, o )), 31. which involves the expectation values of
products of two and three "single-particle'" operators [(t- ) (PP) and (PPP) in eq. (3.8c)]. For these
products. new equations of motion must be derived, which will involve yet higher-order products of
operators, etc. In order to truncate the thus generated hierarchy of equations of motion [61], a
factorization approximation must be invoked that breaks apart expectation values of products of
operators into products of expectation values. It is natural to start with the simplest possible truncation.
which consists of factoring (.Jt) completely into single-particle expectation values. A typical contribu-
tion to J(V(3)(k, w,) then reads

it(3(k,. o,) ' (J(k )P', - phf'p Et)P '*Pl)

The first-order polarizations in this expression are obtained from the linear approximation to eq. (3.8a)



14 J. Knoester and S. Mukamel. Transient gratings. four-wave mixing and polariton effects in nonlinear optics

and straightforward algebra leads to

(3) (- ks - W,; kw,. - k,-to,.k,to,3)=4f2 p jOt~tAA [f2 + oi, - ir(k,)][f2 + wi + iF(/,,)]

j3 k (k5.w)4(kjwl)A(-k,,-w,)

( (Ak33) 1) + permutations of j = 1, 2, 3, (3.14a)

A(k, co) - -[&w + iF(k)]2 + k . (3.14b)

The permutations of (k1,. WI), (-k,, -w,), and (k3, w3) account for the different time orderings with
which the electric fields can interact with the sample [231. Expression (3.14a) can be simplified if the
three following conditions hold: (i) IJ(k) I < 12 for all k, which is generally the case; (ii) wj - .OkI >>
I J(k,) (off-resonance fundamental waves);-(iii) 1w, - .O,,I > 2., so that the rotating wave approximation
(RWA) [75J can be applied to the signal wave. We then obtain

3 (-ks - ws; kj, -k 2 - &)2, k 3w3)

-2p(j.qjqjtIA~i)[w,- f4 + iF(kj)1'[&wI-Qnk iF~ 1 1[0 k

n, +[ol n+ iF(k)]'[co2 , - ir(k:)T]

+ permutations of j = 1, 2, 3. (3.15)

We note that contributions which are anti-rotating with respect to the fundamental frequencies are still
contained in this expression. They are hidden in the permutations; for example, interchanging (k,, w)
and (- k,, -02) results in two anti-rotating denominators.

It is instructive at this point to make a connection to the (damped) anharmonic oscillator picture,
which is a popular way to think about nonlinear response [19, 22]. If we take the expectation value of
eq. (3.8) in the single-particle factorization and transform back to the time domain, we find [neglecting
F(k)2 with respect to n2Oj

P(k, t) + 2F(k)P(k. t) + fkP(k, t) = 2,phI'A E (k, t) + .4f(k, t) , (3.16a)

,R(k. t) = - - E Y [p-'tp.E-(k',t)- J(k')P(k',t)]{[12-iF(k")]P(k",t)-iP(k",t)}
N91 k -k

x {[ + iF(k - '- k")JP(k - k'- k". t) + iP(k - k'- k", t)}. (3.16b)

Equation (3.16a) represents a set of damped harmonic oscillators, coupled by anharmonic driving
terms. The oscillator picture can be pushed even further, if we realize that all intermolecular
interactions can be eliminated from eqs. (3.16) by introducing the local electric field through

A" EL(k, t) - IA " E-(k, t) - (h/p)J(k)P(k, t) . (3.17a)

For dipolar interactions in the continuum (k-*O) limit, this coincides with the Lorentz local field [19,
22 831

EL(k, t) =- E(k, t) + 4 rrP(k, t) . (3.17b)
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Here we used J(k) = 41rph -'u . (kklk2 - 1/3). p for-the dipole sum [84-86] and Ell = -47rP il as there
are no free charges in the system (div D = 0). The equation of motion (3.16a) can now be rewritten

P(k, t) + 2F(k)P(k, t) + n 2P(k, t) = 2fph- t • E,(k, t) + H(k. t). (3.18)

In r-space, this equation takes the compact-form

P(r, t) + 2FP(r, t) + f 2P(r, t) = 2Qph-'L • EL(r, t) + 11(r, t), (3.19a)

with r an arbitrary lattice site and

J1(r, t)= -(pp/hf) .EL(r, t)[( - iF)P(r, )4- iP(r, t)][(Q + iF)P(r, t) + iP(r, t)] . (3.19b)

Here, the k dependence of the damping is neglected; otherwise, a local picture is, of course, impossible.
The polarization at every site behaves like an oscillator driven by the local electric field and by
anharmonic (nonlinear) "forces". It is noteworthy that the anharmonicity is a function of both the
"position" (P) and the "velocity" (P) of the oscillator; in heuristic anharmonic oscillator models. one
usually -- umes an anharmonicity in the position only [19, 22].

The fact that the single-particle factorization used here leads to a local-field description, is not
surprising and agrees with the more general conclusion that any theory that uses a factorization of
single-molecule variables is equivalent to the local-field approximation [761. Consequently, it must be
possible to write the susceptibility eq. (3.14a) as the third-order molecular polarizability
( tos; O1, --02, 0"3) multiplied by appropriate local-field correction factors [19, 22]. We check this

explicitly. is easily obtained from eq. (3.14a) by setting J(k) = 0 and p = 1. We then find
I

X 3 (-k, -w ; kIo il, - k, - to,, k3( 3 )

*(W) j(w,) 3(-0)) A(W) -w -

A(k,. to,) (kl, &),) J(-k,, -to,) A(k3, (03) yto. to3 ). (&0a)

( () -(t+ iF)2 + 2. (3.20b)

The first three numerators in eq. (3.20a) simply cancel the molecular resonances in y. We now restrict
our treatment for simplicity to the case that all wave vectors are perpendicular to the dipoles. Then. for
optical wave vectors and dipolar interactions [84-861,

J(k) = -(47r/3h )pA . (3.21)

Combining this with eq. (3.12b), it is easily found that

.1(w)/A(k. to)= [(k, ,D) + 2], (3.22)

so that eq. (3.20a) is indeed of the familiar local-field form [19. 221. We finally note that cascading
contributions to X which are usually found in a local-field approach [21, 82, 87], are absent here.
because the second-order polarizability vanishes for nonpolar two-level molecules.
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3.3. The two-particle description: degenerate fiur-wave mixing

In this section. we extend our study of frequency-domain four-wave mixing by relaxing the
single-particle factorization. Instead of factorizing (.t(k, wv)) in the expectation value of eq. (3.8a) [or
eq. (3.1)] completely, we only factor the population W(k - k') from it. We thus do not break up the
population into single-particle variables, as.we did in section 3.2. We then obtain-from eq. (3.1) [with
Bk W)=-Bk tW

1

(1/i) dBk(t)Idt = -[fl + J(k) - iF(k)JB,(t) - J(k)B'k(t) + -- ph- J E -(k. t)

+ I [J(k')P(k', t)- ph-'p.E-(k', t)]W(k- k'. t). (3.23)
k"

and a similar equation for B*k(t)= (b!3k(t)}.
W(k - k', t) now appears as a new variable. However, instead of pursuing the hierarchy by deriving

an equation for the population itself, it proves more useful to introduce the two-particle variables

Q(k, p, t)= ( bl,_k 2(t)BPk,2(t))

E (B (t)b,,(t)) exp[-ik. (r,,, + r, )/2 + ip. (r,,, - r,) (3.24a)
,m~n M

which are the diagonal elements (k = 0) and coherences (k - 0) of the exciton density matrix in the
momentum representation. From the last form of eq. (3.24a). it is clear that k is conjugate to the
exciton center of mass: p is related to the classical exciton momentum. The significance of the k and p
variables may be clarified by switching to the Wigner representation for the exciton density matrix. This
is done in section 3.5. where we also make the connection to common transport equations such as the
Boltzmann equation. The exciton popul-ition can now be written [cf. eq. (3.5)].

W(k. t) = - E Q(k. p. t). (3.24b)
Np

As next step in the hierarchy we now consider the equation of motion for Q(k, p, t). We first
concentrate on the electronic (coherent) part of this equation. i.e.. without accounting for phonons.
This is obtained from (k- p - k/2: k, p + k/2)

(d[B,(t) t)]/dt) = [dBk (t)/dt]Bk(t)) + (IB(t)dBk(t)/dt.

and eq. (3.1) without the self-energy terms. In the final result the following approximations are made:
(i) (-) is factored from all other variables (exciton theory!): (ii) we neglect terms coupling to
variables of the form (,(t)B k(t)) and (B_(t)B,(t)), which is equivalent to invoking the

Heitler-London approximation on this level of the hierarchy: (iii) we neglect all variables which are
higher than bilinear in the exciton variables (such as (WB)), as they eventually result in contributions
to the polarization that are of order four and higher in the electric field amplitudes. The leading order
for four-wave mixing processes is three. The phonon (incoherent) contribution to Q(k, p, t) is. to
second order in the exciton-phonon interaction, derived in appendix A. The total equation of motion
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then reads,

Sd Q(k, p, t)= [J(p - k12)- J(p+ k/2flQ(k, p. t) - 'SV(k: p. p')Q(k, p't0

- (VN/hV)[BPk 2 (t)0 . E-(-p + k/2. ) - B*_k ,()i -E - p - ki2. .(3.25)

The first r.h.s. term describes the free-exciton motion and the last term represents a source for
two-particle coherences created by electric fields in a sample in which a polarization already exists. The
second r.h.s. term in eq. (3.25) is due to the phonon bath. where the complex self-energy matrix has
the form

..Y(k, p. p,) = [ Y(p + k12) - !*(p - ki2)13PP

+ 1(p + k12, p- ki2. p' - p)- (p- kV2. p + k2. p' - p). (3.26)

Here, !(k) has been defined in eq. (3.3) and ±(k,. k_ k) is given in eq. (A.13). Note that ,(k: p, p)
consists of the independent sum of the self-energies of the excitons B'-k 2 and Bp k 2 that make up the
coherence Q(k, p, t) (TI-processes) [22. 751 and additional contributions (1) due to the correlated
dynamics of these excitons (T*- or pure dephasing processes [22, 751). Due to the pure dephasing
contributions, the single-particle factorization in section 3.2 breaks down: this will be seen explicitly in
the result eq. (3.33). It is important to observe that the phonon bath only induces coupling (scattering)
between coherences with different p values. The variable k is conserved in eq. (3.25). which is a
consequence of the system's translational symmetry and the thermal average performed over the
phonon bath in appendix A. We also note from eq. (3.26) that for k = 0 the self-energy is purely
imaginary. The physical explanation for this is that a diagonal density matrix element has no frequency
associated with it. and hence no frequency shifts either. Equations (3.23)-(3.25) form a closed set and
govern our two-particle description of excited state dynamics.

To study frequency-domain response. we apply temporal Fourier transforms and introduce the
variable P defined in eq. (3.7) to obtain

{-[o + iF(k)]2 + f22}P(k. co)= 2f-ph('t E -k.M 21p 0.1E(k -
+. |" d AV PVw)-pt /-E-. , 2 - . p,,a

27T P

and, using eqs. (3.9).

-wQ(k, p, w) = [J( p - k12) - J( p + k/2)]Q(k. p, w) - , ,(k: p. p')Q(k. p'. W)
p

2rfV d w' [ +w'+iF(p+k/2)]P(p+k/2.co')IA (-p+ 2.

- [fl - w' - iF(-p + k/2)1P(-p + k/2. / J )L . E(p + ki2, w - 3). . (7.b)

These equations have to be iterated in order to obtain the third-order susceptibility.
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Instead of treating the general case, however, we will direct our attention to the degenerate
four-wave mixing (D4WM) experiment 128-351. In this experiment, two fundamental fields exist.
(k1 , Wo1 ) and (k,, w,) and the nonlinear signal at k, = 2k, - k, w, = 2w1 - 0). is observed while the
frequency difference o1 - W. is tuned through zero. We will assume that w,. t.. and 2w, - o. are all far
from the material resonance and we solely concentrate on contributions to the third-order polarization
that have possible resonances at to, - to. Furthermore, we restrict our study to the Haken-Strobl
model for the phonon-induced self-energies [54. 881. Within this simple model, the basic equations are

[d(/b,,t))Idtiph = - M(-- y)(B,,(t)). (3.28a)

[d( b,(t)B,(t)) /dtph = -[r( 1 - 6,,.,n) - " y1K B,(t)B,j(t)). (3.28b)

where [. .]ph denotes the phonon contribution. These equations imply for the self-energies

1(k) = -iF(k)= -i( + )/'2. V(k: p, p')= -i(F + y )5,, + iF/N. (3.28c. d)

The parameters t and -y are usually taken real. so that only imaginary self-energy contributions are
included. P is the pure dephasing rate and y represents the population relaxation rate. The main
motivation to use this model is that it allows for analytical results, while still preserving the essential
physical aspects related to pure dephasing. Previous studies of D4WM (using response theory [36]) and
of transient gratings [40. 55] in crystals have also used the Haken-Strobl model.

Given our microscopic expressions for the self-energies derived in appendix A. we can in principle
improve the theory. Yet alternative (Markovian and non-Markovian) exciton self-energy models have
been proposed within the theory of optical absorption in molecular crystals [89-911. However, both the
evaluation of more realistic self-energies and the subsequent solution of the equations of motion will
involve extensive numerical calculations. Other. probably more practical improvements over the
Haken-Strobl model lie in the connection between the equation of motion (3.25) and the Boltzmann
equation (section 3.5). This connection enables us to utilize the well-developed methods for solving the
Boltzmann equation within transport theory.

We now calculate the third-order susceptibility for the D4WM setup. Define kg- k- k,.
p,-(k, + k,)/2 (g stands for "grating") and let Qg(p) denote the component at wave vector k, and
frequency o, - o. in the discrete Fourier decomposition of the two-particle coherences. From eq.
(3.27a) we then obtain for the third-order polarization at the signal wave vector and frequency and with
a possible resonance at w, - to.

p) _ J(k,-P,_ph 'A.E] Q,) . (3.29)A(k,. w,) P

P, has already been solved in section 3.1 and from eq. (3.27b) it follows that the Q'2( p) for different
p values obey the coupled equations

-oV-)O 1(p) = [J(p - k2) - J(p + k,/2) + i(/ + y)lQ- (p)

O P( ) + rR Spp. + c (, . (3.30)
p
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Here, crop,6 and o' P0 are -source terms" that originate from the last r.h.s. term of eq. (3.27b).
Using eq. (3.12b) for the first-order polarizations, we find

o =p_ (0)1,+i(i'+y)/2 fl + w,-i(FP+ y)/2-3{-, = -p Ji- -- to. j ) , E I , El'
- ph2{to -&,+i(F + y )/21-1 - [t(-& -i ', i2-l .E a.E 3.31a)

o= h-"= p 2 o, - i(F+ y)/2 fl - to. -,- i( P + y),2 ) ' ' E. 1 .E
SWA)-1(-k,. -w,)

-ph- {[t, i - f2k + i(+ y)/2 - ' - [to, t I2i, - -i(F- y),2-'}A .E:,I - * . 3.31b)

where the approximations hold if J(k )I. J(k)i <- 12. Obviously. rR6 P6 and (r,67 P are the rotating
and anti-rotating sources for the two-particle coherences. respectivel%.'and they transform into each
other if (k,, W, ) and (-k. -to,) are interchanged. In section 3.2 the same interchange of rotating and
anti-rotating terms under permutation of the fundamental fields was observcd (eq. 3.15).

Equation (3.30) is solved in appendix B and yields

____ ____,__ ____ ___ __ iY\
p " iW1:-i[J(k,) - J(k,)] + (I'+ y) -i&). - i[J(k)- J(k) + (P4- 'y)

x - ['f-i),, iJ p- k. )0iJp -k, 2) F" yI ) (3.32

where w,, = W1 - w.. Combining eqs. (3.29). (3.12b). (3.31). and (3.32). the third-order susceptibility
is easily found. To simplify the result, we apply the RWA with respect to the fundamentai fields
(oA- -0) as well as the signal field. Furthermore, we use to, - f 2. > IJ(k,) (w, is off-resonance). so
that J(k, )P," in eq. (3.29) is negligible relative to ph - • E, . Finally. we use the approximate identity

W, + . Qk.- .l,+i( + y)
1.

to,: + J(k,) - 1(k,) + i(F+ y)

This relation becomes an exact identity within the Hcitler-London approximation (HLA) .12 =

12 + J(k). Here. we do not obtain an exact identity. becausc the IiLA has not been inlvoked in eq.
(3.29) for the polarization. whereas it is used in the equation for the two-particle variables. We finally
obtain

1 (k,. -w:kw,. -k. - w.. k,w,)

=2p( qiijil h )[w, - f,. + i(i" y)/21 '1to, - 12A i( "- y) 21 Iw - i(I- y) 21

a r ve t- iresJ( p r-dkc o2)f te i t f . 3) wi w

We immediately observe that this result is the product of the rotating part of eq. (315). which was
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obtained in the single-particle factorization, and a dephasing-induced factor which is unity if P= 0). In

other words, in the presence of pure dephasing, the single-particle description breaks down.

Loring and Mukamel [36] were the first to calculate the D4WM susceptibility for a molecular crystal.
within the Haken-Strobl model for dephasing and using Liouville-space Green-function techniques.

Specific application was made for a one-dimensional system with nearest-neighbor interactions, for
which the sum over the momenta p in-eq. '(3.33) can be evaluated. Their analysis-of the D4WM signal

for various limiting cases is also possible frot our general expression (3.33). The signal intensity

S(k,, w ) is, within the slowly varying amplitude approximation, proportional to IT 3)(- k, - w,: k, co,.

-k, - w,, ki W, )12. Any frequency dependences deriving from the first three denominators in eq. (3.33)
may be neglected. as we assumed that a), oJ and *& are off-resonance. The only frequency dependence
in S(k1 , w,) then emerges from the last factor in eq. (3.33).

Three limiting cases are now of special interest [36]. First, we consider non-interacting molecules

(J(k) = 01 and find

S(k, w,)x I + T+ 2y)/(w~2 + y 2). (3.34)

This signal has a Lorentzian resonance at (o.1 = 0, whose width is the inverse of the excited-state
lifetime. The resonance vanishes in the absence of dephasing. These dephasing-induced resonances

have been observed by Bloembergen et al. [311 in the gas phase and have been denoted PIER4

(pressure-induced extra resonances in four-wave mixing). In fig. 2 we show the variation of such a
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resonance in Na induced by the buffer gas He. (The-dephasing rate P is in this case proportional to the
He gas pressure.) In molecular crystals similar resonances have been observed by Hochstrasser et al.
[32] and have been denoted DICE (dephasing-induced coherent emission). An example is displayed in
fig. 3a and 3b. This resonance is similar to the one discussed here, except that it occurs at &), equal to
some vibrational frequency rather than tot, = 0. This is a Raman transition which is totally analogous to
the D4WM resonance. In Hochstrasser's experiment. wlo, =-747 cm-' represents a- vibrational mode
and in Bloembergen's case &),, = 17 cm- ' is the:splitting of the Na D lines. The unique and surprising
aspect of these resonances is that usually dephasing results in loss of coherence and line broadening.
whereas here, it induces new sharp resonances as wo, is varied. The reason is a delicate interference of
various terms contributing to X(3) which exactly cancel in the absence of dephasing. The addition of
dephasing eliminates this cancellation and results in the new resonance [34. 23].

As a second special case, we consider molecules with arbitrary interactions in the absence of
dephasing. For F = 0, the Haken-Strobl model describes coherent exciton motion on the lattice. and
from eq. (3.33) it is clear that the D4WM signal exhibits no resonance as a function of &)2 in this limit.

We finally discuss the case of finite interactions in the strong dephasing (incoherent or diffusive)
limit, defined by P> JJ(p - kg/2) - J(p + kg/2)j (for all p) and P> y. In this limit, the Haken-Strobl

Xd 16.8 cmll-'
4.5 K

761 755 747 U

13

zI
L&J

/0

0 2i

(a)] (b)
760 750 740 10 20
(02 - 0)1 (cm- I) T (K)

Fig. 3(a). Stationary four-wave mixing icoherent Raman) spectrum of a doped crystal (pentacene in benzoic acid) as a function of temperature

[32b]. The portion of the spectrum near W,. 747cm is shown on an expanded vertical scale. Note that the dephasing-induced hand at
a), = 747cm ' grows relative to the peak at ,, = 755 cm with increasing temperature. (b) Growth of the pure dephasing rate F(T) as a function
of temperature 132bl. as derived from experimental measurements of the intensity of the dephasing-induced hand at w., = 747 cm '. The solid line is
a fit to an Arrhenius form.
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model describes diffusive exciton motion. In appendix C it is shown that for arbitrary interactions and
dimensionality we now have

SF, jo (r + 2y) (3 35)
1o, + [y + (k, - k2)Dj 2

with the exciton diffusion constant (tensor) d-efi~id by

I 1 4 1 J()inI(k.
De=i [j(p - kg/2) - J(p + k/2)] = Ik 1 -sk[(k P

(3.36)

In the last step of eq. (3.36) we have used eq. (3.2). In the incoherent limit, the D4WM signal shows a
Lorentzian resonance with a width that is the sum of the inverse excited-state lifetime (-Y) and a
contribution from exciton motion (Dek'). The same result has been obtained for a disordered medium
[82]. In general, De is a tensor depending on the magnitude and the direction of k ; if, however, the
range of interactions is small compared to the characteristic length scale I kg ' of the experiment, eq.
(3.36) reduces for an isotropic d-dimensional system to

De = I E, J2(r,,,)r . (3.37)

Alternatively. eq. (3.36) may be written as

Z 1 [k.Vjp)12 ,3.38a)

kgI2 FN P

with ve(p) = J(p), the exciton group velocity at wave vector p. For an isotropic d-dimensional
system, this yields

1 1 _I Zv2(p)__ v( 3.38b)

De dN P dF

with V. an effective exciton group velocity.

3.4. Time-domain four-wave mixing: transient grating and exciton dynamics

We now turn to the study of transient grating (TG) experiments within the exciton theory. The
following typical setup is considered (fig. 1). At time t = 0. two short excitation pulses, (k1, Wo) and
(k,, w ), crossed under an angle e interfere in the sample and create an excitonic grating. The decay of
the grating as a result of dephasing and population relaxation is monitored by applying a probe pulse.
(k3l, WO), at t = r. The observable is the time-integrated intensity of the nonlinear ("diffracted") signal
with wave vector k, = ki - k, + k, and frequency &) = ol - w., + to. as a function of the pump-probe
delay r. The electric fields now take the form of eq. (3.10), except that E' (j = 1,2, 3) is replaced by
the pulse envelope E' (t). For simplicity, we will consider square pulses with polarization parallel to the
molecular transition dipoles, with amplitudes E,, and with duration T,. All pulses are long compared to
an optical cycle (w), >- 1), but short (delta pulses) on the dynamical time scales in the sample.



J. Knoester and S. Mukamel. Transient gratings, four-wave mixing and polariton effects in nonlinear optics 23

To describe this experiment microscopically, we use our equations of motion in the two-particle
factorization [eqs. (3.23)-(3.25)]. Working with the polarization as variable. eq. (3.23) takes the same
form as eq. (3.16a), but now with

,f(k, t) = 2Q E [J(k')P(k', t) - ph-') .E(k ' t)IW(k - k', t) . (3.39)
k' ,

To lowest (third) order in the pulse amplitudes, the observed polarization P(k,, t) is sourced by
.H( 3)(k,, t) in eq. (3.16a), and the only important contribution to j(t(3)(kr, t) in eq. (3.39) arises from
the term k' = k3. (In principle, third-order contributions are also obtained from k' = k or k' = -k 2, but
these are very small due to negligible temporal overlap of pump and probe pulses.) We assume an
off-resonance probe pulse (fw3 - Q7 3 > 1), so that the polarization envelope associated with it
instantaneously follows the electric field [92],

P('"(t) = (')(k3 W) -E3(t ) . (3.40a)

The envelope of the nonlinear source term then obeys
,#(3)(t)cE3(t)W(1 (k - k, t). (3.40b)

Within the slowly varying envelope approximation [22], the observable now reads

S( ) z cdt IP(3)(t)[2 OC 193121w(2)(k, - k,) 2  (3.41a)

with 0, the probe pulse area defined by

-A..E 3 r3/h. (3.41b)

In eq. (3.41a) we used the fact that E (t) is a delta function on the dynamical time scale, so that
W(k, - k, t) does not vary appreciably during the pulse. According to eq. (3.41), the TG is determined
by the Fourier component of the exciton population at the grating wave vector k, = ki - k2 and at time
t= r. This result agrees with the usual diffraction picture [1 2a. 55. 931 and was first derived
microscopically by Loring and Mukamel [56], using response theory. These authors also pointed out
limitations of the diffraction picture by showing that in general the temporal profile of the signal does
not follow that of the probe pulse.

The evolution of the population can be found from eqs. (3.24) and (3.25). During the pump-probe
delay, the last term in eq. (3.25), containing the electric field amplitudes, is, of course, absent. As in
the previous section, we restrict ourselves to the Haken-Strobl model for the phonon-induced
self-energies. If we define the Laplace transform of a time-dependent function f(t) by

f(s) f dt f(t) exp(-st). (3.42)
0

then eq. (3.25) translates into
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sQ1')(k,, p, s) = [iJ(p - kC/2) - iJ(p+ k /2)-- (F + y)]Q (k, p. s)

N Q,2 )(kg, p'% s) -Q( 2 (kg, p. t = 0). (3.43)

This equation has the same form as eq. (3.30) governing the D4WM experiment, except that -iw is
replaced by s and the source term is now determined by the grating's initial condition Q 2((k 2, p, t = 0)
right after the pump pulses.

Before solving eq. (3.43), we first determine these initial conditions. As the pump pulses are short on
the dynamical time scale, the phonon bath has no time to establish correlations between the ket and bra
sides of the exciton density matrix (the crystal Atate is still a pure state). so that immediately following
the pump pulses we may use the factorization

Q p t =0) _kg/2(0))(l)( p+kg/2 (0) (3.44a)

The first-order exciton amplitudes can be obtained by integrating the linear part of eq. (3.23) during the
pump pulses. In the RWA, assuming Iwi - 0 '. 1i ( = 1.2). and neglecting intermolecular interac-
tions during the pulses, we find [561

/k(0))'" =iV(01 3kk1 + A0_, ), (3.44b)

and (Bk(0)W" = [(!k(0)WI]*. Here the i (j = 1,2) denote the pump pulse areas defined in analogy
with eq. (3.41b). Thus

Q ( , p. t = 0) = pV 1 O,, , PP (3.44c)

with pg = (k, + k,) /2. as before. As mrst theories for the TG signal work within the site representation.
it is useful to mention that. using eq. (2.15), the present initial condition (a coherence of excitons at
wave vectors k, and k.) translates into

. (0)>) ---1,012 cos(k • r,,/2) cos(kg• r,,12). (3.45a)

Here we made the common assumptions that iO = ,= 0 and that the system is qu;isi one-dimensional
with k, + k. perpendicular to the lattice vector [55, 56]. Equation (3.45a) is known as the coherent
initial condition, which contains site populations (m = n) as well as intersite coherences (m -n). It is
expected to be most relevant in the case of resonant pumping. Wong and Kenkre [93] have also
introduced the diagonal initial condition

( 10- 12 cos-(k. r/2) 8,n, (3.45b)

which only contains populations. This condition is important in the case of off-resonance excitation
followed by ultrafast vibrational relaxation [4].

We will restrict our treatment to the case of coherent excitation. Combining eqs. (3.43), (3.44c).
(3.24b), and using appendix B, we eventually arrive at the Laplace transform of the population
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W(k, - k_..s) = 20, ff* Is -I iJ(k_.) - J(k,)] + P #F'}-'

x (- [s -iJ(p-kgI 2)+iJ(p+ ke'2) + y'-]') . (3.46a)

This can be rewritten as

k- '."i~j(p) - (&) "7
W(k- s) 2 " 0) p ( (3.46b)

J(p) J(p - k,/2) - (p + kj2), (3.46c)

where the kg-dependence of J(p) is suppressed for compactness.
One interesting exact result follows directly from eq. (3.46): in the absence of exciton dispersion

[J(k) = constant], or, in particular, in the absence of interactions, the population W(k, - k,, t) only
decays with the trivial rate '. independently of the scattering strength P. The TG signal thus decays with
rate 2y (eq. 3.41a). The physical explanation is that all coherences Q(k, p, t) now have the same
frequency (zero), so that they do not dephase with respect to each other and keep adding up coherently
to the population (eq. 3.24b) at all times, irrespective of the scattering rates between them. This result
is. of course, not restricted to the Haken-Strobl model.

In the case of general interactions, it is hard to transform eq. (3.46b) back to the time domain and
we will therefore restrict ourselves from now on to a study of the long-time behavior of the grating
signal. Analytical results valid for all times, have been derived by Garrity and Skinner for a
one-dimensional system with nearest-neighbor interactions [55]. Their important conclusions concerning
the limits of coherent and incoherent motion on the experimental length scale, however, can also be
reached from our expression. We first note that the long-time limit, 1F + ' - iJ( p)lt > 1, is governed
by the small s region (Is] < + y - iU(p)I) in the Laplace domain. Equation (3.46b) then yields

W(k - k. t) = 2 00!exp(at). a=ig(pg)-y 4- N i[S~p-.J(p) (3.47a. b)-~~ ~ + -" N" +3i,(p)

In the remainder of this section, we will assume that .(p,) = J(k,) - J(k1 )= 0. which holds under
very general symmetry conditions with respect to the experimental set-up. We further note that
.( p) =-k! v,(p), with v,( p) the exciton group velocity defined under eq. (3.38a). Let us first
concentrate on the limit of weak scattering: ,(p) > F + y for most p in the first Brillouin zone. This is
the coherent limit, as the exciton scattering length v(p)/F is now much larger than the experimental
length scale lkgK-'. We then obtain

a = - y - P, (3.48a)

so that, using eq. (3.41a), we find for the intensity of the TG signal normalized to its initial value

S(r) = exp[-2(y + r I . (3.48b)

This result has also been found by Garrity and Skinner 1551. In the extreme case of/F = 0. no grating
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decay is observed, apart from the trivial population decay exp(-2yt). This result is rigorous for all
times, as is directly seen from eq. (3.46b), and is easily understood: for F= 0 the coherent initial
condition is an exact eigenstate of the system. By contrast, the diagonal initial condition is a
superposition of eigenstates and leads, even iih the case r = 0, to a nontrivial decay of the grating on a
time scale (kgve) -1 with v, a typical exciton group velocity (ballistic motion) [55, 931.

We now turn to the opposite limit of strong scattering. P > ' and P> J( p) (all p), where the exciton
scattering length is much smaller than the grating length scale (diffusive or incoherent motion).
Equation (3.47b) then reduces to

a = -y - Dejkj - k,12 , (3.49a)

with D, the exciton diffusion constant as defined in eq. (3.36). In the derivation of eq. (3.49a), we used
that EPJ(p) = 0, as is explained in appendix C. We now obtain for the signal intensity [551

S(T) = exp[-2(y + Delki - k,12)]. (3.49b)

We can get an idea how well this long-time expression describes the actual decay by using in eq. (3.46b)

iY(p) I 2 [-(p)]2

P s - i(p)+ + (s+ + P

(Equation (3.49) agrees with taking s = 0 in the r.h.s. of this expression.) The thus obtained
approximation to W(k - k, s) can be Laplace-inverted analytically and leads to an additive correction
in eq. (3.49b). This correction term ha a relative magnitude (Dek' / 2 , which is much smaller than
unity, and decays on a time scale F-', which is very fast compared to the decay in eq. (3.49b). This
suggests that eq. (3.49b) is a good approximation to the actual signal over the entire observable decay.
Furthermore, we note that the present result is not affected by the exact initial condition and is also
found for diagonal excitation of the system [55, 931. The reason is that in the incoherent limit, intersite
coherences anyhow relax very fast compared to the grating decay [cf. eq. (3.28b)].

We will now discuss the result eq. (3.49) in more detail. The signal decay rate consists of a trivial
contribution due to population relaxation (2y) and a contribution from the exciton motion, which is
proportional to 1k, - k,1'. This is characteristic for diffusive motion [1, 2a. 55. 931 and leads, for small
cross angles 1 between the two pump pulses (fig. 1). to a linear relation between the observed decay
rate and (9. This relation allows us to distinguish experimentally between diffusive and coherent
exciton motion on the scale 1k, - k,l-'. In fig. 4 we display the TG signal showing incoherent (diffusive)
motion and its dependence on the fringe spacing through the variation of 09. In fig. 4a, the TG probes
exciton motion in disodium fluorescein in ethanol [8], whereas in fig. 4b it probes carrier motion in a
semiconductor (GaAs). In both cases the TG decay becomes slower as e is reduced. In fig. 5 we show
the 02 variation of the TG decay rate in anthracene at two temperatures (10 K and 20 K) [2b]. Note the
diffusive character, even at these low temperatures. In spite of an active search, coherent motion has
never been directly observed in transient grating experiments.

In the incoherent limit, an interesting relation exists between the D4WM and TG signals. Namely,
the amplitude of the D4WM signal (eq. C.4) can be obtained by evaluating the Fourier transform of the
amplitude of the TG signal [exp(ar)] at the frequency w,.. This single-Fourier-transform relation
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Fig. 4. (a) Fringe spacing dependence of the TG signal probing excited-state energy transport in disodium fluorescein in ethanol, for H/2 = 80 and
22' (excitation wavelength 266 nml (8]. For the smaller angle, the signal is dominated by acoustic effects (note: time scale is different for H/2 = 8'.
At H/2 = 22' , the acoustic-signal contribution damps out due to acoustic attenuation. (b) Fringe spacing dependence of the TG signal probing
carrier density diffusion in GaAs. Nh = 2 x 10'4 photocarriers/cm' . The measured ambipolar diffusion constant is in good agreement with the
known value for high purity GaAs (D, =" 8 cm2/sec). Curve 1: 9 = 4.9, curve 2: 9 = 3'. curve 3: 8 = 1. 1 (see ref. 11171).
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Fig. 5. (a) The decay rate of the transient grating signal versus 02 for two anthracene crystals at 10 K. along the a axis 12b]. The magnitude of the
slope equals 8rD,/A. with A the wavelength of the pump pulses. and thus yields directly the exciton diffusion constant De. The value of the
intercept equals 2y. where y is the population relaxation rate. (b) The decay rate of the transient grating signal for the same two crystals at 20 K.
The difference in slopes is due to the temperature dependence of the exciton diffusion constant. As the temperature increases, a decrease in the
diffusion constant is observed. The average diffusion constant obtained front these measurements is roughly 10 times larger than the expected value
for incoherent exciton diffusion 1511.

between nonlinear frequency-domain and time-resolved techniques is not trivial and was first estab-
lished by Loring and Mukamel (36]. In concluding this section. we mention that the TG signal for cases
intermediate between the coherent and incoherent limits has been studied by Garrity and Skinner
(using the Haken-Strobl model) [55] and by Wong and Kenkre (using a generalized master equation
approach) [93]. Finally, we remark that we only studied the TG within the two-particle description. The
single-particle (local-field) description would lead to the exponential decay eq. (3.48b), independently
of the magnitude of r. Diffusive exciton transfer cannot be incorporated at this level of description,
which is intimately related to the fact that in the single-particle factorization no resonance with respect
to w0,. is found in the D4WM signal. This illustrates the limitations of the local-field approach.

3.5. The Boltzmann and the diffusion equations for exciton transport

Further physical insight into the equation of motion (3.25) for the two-particle coherences Q(k, p, t)
can be obtained by making the connection to macroscopic transport equations. such as the Boltzmann
equation and thy, diffusion equation. To this end, we define the Wigner phase-space distribution
function 46(r, p, t) by (94, 95]

th(r, p, t) Q(k, p, t) exp(ik, r). (3.50)
V



J Knoester and S. ,lukanel. Transient gratns. fhur-wave mixing and polariton ettects ii nonlinear optics 29

Here. r and p play the role of the classical position ard momentum. respectively. of the particle that is
described bv the Wigner distribution. Comparing with eq. (3.24a). it is clear that r is the position of the
cxciton "'center-of-mass". That p indeed corresponds to the exciton momentum. becomes evident if we
consider the pure state for a completely delocalized exciton with momentum p,,: then, namely.
Q(k. p. t) = 6pp, 5ko. The Wigner distribution function carries the full quantum behavior, vet it has a well
defined classical analogue: as h-- 0 it reduces to the classical density matrix of the particle (exciton in
our case). and it is therefore very useful in providing a semiclassical insight in quantum dynamics [94].

In this section we will only be interested in the homogeneous equation of motion for the two-particle
variables. i.e.. we ignore the last term in eq. (3.25). which couples to the electric field. Also. we will
only consider a purely imaginary self-energy matrix 2(k: p. p ) -iF(k: p. p'). The Wigner distribu-
tion then obeys the equation

d p V)2Jasn~a6r.a2
d 6 (r.si( p aa (r al2. p.t0- V V (a: p. p')(b(r -a 2 p'.t) (3.5a)

a 
a p

T(a, p, p') F(k: p. p')exp(-ik.a! 2). (3.51b)
IVk

The first term in eq. (3.51a) describes coherent exciton motion on the lattice [we used J(r) = J(-r)]; the
second term is due to (phonon) scattering. For scattering kernels that do not depend on k,
l'(k: p. p')=g(p. p'). we have

ha: p. p') = 6a.og(p. p'). (3.52)

This implies that the position is not affected, whereas the momentum is scattered as in a discretized
Boltzmann equation with collision kernel g( p. p'). An interesting class of collision kernels is found by
further restriction to

g( P. p') =(+ y)6pp -Fg(p) (3.53)

with v g( p) = I (sum over the first Brillouin zone). The Haken-Strobi model. eq. (3.28). is contained
within this class, with g( p)- I/N. For a general g(p). the equation of motion now reads

d -6 ,(r. p. t)= J(a) sin( p a)b(r- a 2. p. l

-I g(p')(r. p. -,p)(r.p.fl-(r. p. t) . (3.54)
P

Ihe second term in this equation has the form of the BGK strong collision operator in the Boltzmann
equation [96. 971. in which collisions occur with rate " and the momentum after each collision is
distributed according to g(p). In this model. g(p) is the equilibrium momentum distribution. This
implies in particular that the Haken-Strobl model is a high-temperature model, as the equilibrium
distribution is then uniform over all momenta. The strong collision operator conserves the number of
particles (population): a population loss with rate y is described by the last term in eq. (3.54). This is
also nicely illustrated in vet another representation for the two-particle variables, which is found by
Fourier transforming (r, p. t) with respect to p [951.



30 J. Knoester and S. Alukamel. Transient gratings. four-wave mixin and polariton ettects in nonlinear optics

(r. s. 0) 0(r. p. t) exp(-ip* s).
VN p(355)p

Comparison with eq. (3.24a) shows that s plays the role of a relative coordinate and db(r, s = 0, t)
represents the exciton population at site r.

Equation (3.54) now translates into 1951.,

d(r. s, t)= -iZ J(a)[j4(r + a12, s - a, t)- (r + ai2, s + a, t)]dt a

- (F + y)k(r. s, t) + f(s)4_(r, 0. t). (3.56a)

g(s)= g(p) exp(-ip, s). (3.56b)
P

As a consequence of the normalization of g(p), we have g(s = 0) = 1. so that the last two terms of eq.
(3.56a) indeed describe a net loss of population with rate y.

We return to the equation of motion (3.54) for the Wigner distribution and direct our attention to
the coherent term. We will assume that the interaction is symmetric [J(r) = J(-r)] and has a short range
R. Furthermore, we assume that g(p) is centered at optical momenta p, for which IpIR < 1. In the
continuum approximation. eq. (3.54) then becomes [951

6(r. p, 0 m' ',h(r, p, t) - f dp' [g(p')h(r. p. ) - g(p)O(r. p'. t)] - yO(r. p, t) ,
(3.57a)

where. for an isotropic d-dimensional system,

(mn*) - ' = (I1/d) " J(r,,)r2. (3.57b)

Here. n runs over the original lattice and r, -r, j. Furthermore, j(p) is defined in analogy with g(p),
but has continuum normalization f j(p) dp = 1. Equation (3.57a) clearly has the form of the Boltzmann
equation for a classical particle of mass m*. It can now be shown quite generally that in the limit of high
friction. P. eq. (3.57a) reduces to a diffusion equation for the particle position distribution function
defined by

(r, t) jdp (r. p. t). (3.58)

Explicitly. one finds (see ref. [971, chapter 10 and appendix 2):

(a / at) 6(r, t) = D r-2d(r. t) - yb(r, t) , (3.59a)

with the diffusion constant defined by
I-- t(PiM*)2).i = I(3.59b)2)
1 l(, J(r )r(p2) (3.59b)

where (...) takes the average over the equilibrium distribution j(p).
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The direct solution of the equation of motion f6r Q(k. p. t) within the Haken-Strobl model also
leads to a diffusion constant (eq. 3.37).

D, ( l/df E J(r,)r- . (3.60)
n

It is clear that in general D does not coincide with De, even if we take f(p) = (a12)d, which is the
equilibrium distribution in the Haken-Strobl: model (a is the lattice spacing). The quantitative
difference between the two above diffusion constants can be illustrated by giving their values in the case
of nearest-neighbor interactions (J) on a lattice with spacing a.

De = (2/) Ja2, D = (4'd/3F-)Ja. (3.61a, b)

The solution to this apparent discrepancy is-that for the Haken-Strobl model. strictly speaking, the
Boltzmann equation cannot be derived through the above method, because the equilibrium distribution
g(p) is uniform instead of centered at optical wave vectors. Consequently, eq. (3.59b) cannot be
derived within the Haken-Strobl model. Alternatively, for a very broad equilibrium distribution g(p),
the classical picture of a momentum-independent effective mass m* is an oversimplification.

That it is possible, however, to derive in a rigorous way a diffusion equation for the exciton motion
within the incoherent limit of the Haken-Strobl model is clear from the discussion following eq. (C.5).
A very elegant derivation has been put forward by Reineker and Kuhne [54. 98. 99]. These authors first
derive the Pauli master equation for the site exciton populations W,, in the strong scattering limit. In our
notation, this equation reads [54, 98]

dW ,, , W ",  _ Y, 3 , W 21J(r,,,, )121t (3.62a. b)
d--- w= ,, ~ (W?-1'- y 1 . ,w,,, = Jr,,)I.

Equation (3.62a) has been extensively studied within the field of incoherent energy transfer [100]; w,,,,,
is the well-known F6rster rate of energy transfer between the molecules n and n' [41. 101]. For dipolar
interactions, w,,, has the characteristic 1/r", dependence. In the continuum approximation, the
diffusion equation for the exciton population density is now easily derived from eq. (3.62a). by
expanding W, around the lattice point r,, [54, 99]. For an isotropic system the diffusion constant
obtained in this way indeed coincides with eq. (3.60).

4. Nonlinear optical response of polaritons

4. 1. Canonical transformation and operator equations

In this section we develop a polariton theory of nonlinear optical response for the case that the
radiation and the matter degrees of freedom are strongly coupled and the TG and D4WM experiments
are dominated by polariton dynamics. Polaritons are the combined radiation-electronic eigenmodes of
the crystal. which have a dispersion diagram that can differ profoundly from that for excitons (see fig. 6)
[57, 58]. Of course, the optical response of a crystal is in general determined by its proper elementary
excitations, so that optical signals must exhibit resonances and broadenings determined by the
energetics and dynamics of polaritons instead of excitons. The theory of section 3 cannot account for
those effects: the calculation of response functions and susceptibilities was based on a factorization of
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the electric field, thus treating it effectively as-an external c-number and neglecting part of the
correlations between the material (excitons) and the radiation fields. Such a scheme leads to signals
characterized by the exciton dispersion and dynamics. Although it is in principle possible to define and
calculate susceptibilities without factorization. this does not lead to a very practical scheme [66. 67].
Here. we rather follow an approach in which a hierarchy of nonlinear equations of motion for polariton
variables inside the crystai is built, which directly leads to the optical signal (polariton hierarchy) [761.
This method is described in more detail in the-next section.

As in the exciton theory, our approach starts by deriving a basic set of operator equations. Now,
however, we also consider equations for the photon operators. as the radiation field is treated as an
explicit degree of freedom. We use eq. (2.9) as starting point and neglect Umklapp contributions to E-.
Furthermore. we note that. at every wave vector k. we only need to consider photons with polarization
in the plane spanned by k and the molecular transition dipole i; photons polarized perpendicular to
this plane do not couple to the crystal and form no new eigenmodes with the excitons. We, thus. drop
the polarization labels A on the photon creation and annihilation operators and arrive at (all operators
taken at time t)

Bk -kc Dil ( k i (1k

I kCk -2-D I 'k ) C4 -i k B A1 . I iiD + F(k) 0
IC U±D '-F(k)B

(4.1a)

D.(BA -,/1k)k - iC.(, - -kWk) lkV,(k - k' )1.. (4.1b)

(k = (2 rkcph -'A' )' - (4.2a)

Dk= J(k)-4'rpk-'' A .k (4.2b, c)

In the derivation of eq. (4.1) we used eqs. (2.6)-(2.8) to express E in terms of photon and exciton
creation and annihilation operators. Of course, the equations for /3k and R A arc equivalent to eq.
(3, 1 ). The inclusion of 1'(k). the phonon-induccd exciton damping. is not fully consistent here, as it was
calculated without accounting for polaritons. We will come back to this further on in this section. From
eq. 14.1 ) one easily derives the Maxwell equations in the electric dipole approximation [71. 76]

E (k. t)- 1 ; ,4 (k, t) . k' __ 1 i) E (k. t)_ 4,r z P (k.t0 (4.3a, b)
C i" C it C- dl

These equations are not affected by the nonlinear term -,A'(k) in eq. (4.1).
We now consider eq. (4.1) in the Bose approximation '(k)=0. It is then a closed 4 X 4 matrix

equation that completely describes the linear propagation of electromagnetic waves. The eigenmodes of
this proolem are the polaritons, which are related to the photons and excitons by a canonical
transformation (57. 58, 611. We follow Hopfield's notation and search for a transformation 1571
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4t, AIrak - "kl Bj - U -4 i B 8 A (4.4)

such that

(d~dt)k,, - w (Bose approximation) . (4.5)

Here ik, denotes the annihilation operator for a polariton with wave vector k in branch i. and wki is the
frequency of this polariton. In combination with eq. (4.1) this defines an eigenvalue problem whose
s ecular equation gives the polariton dispension relation.

(k)= + += I~T I'M J7)' (4.6a. b)

where O2A Is the exciton dispersion eq. (3.6). As the polariton dispersion is by definition equivalent to
the one for electromagnetic waves in the crystal. (kc )must also define the transverse dielectric

tuncion~ (k wk,).Comprisn wth e. (. 1b) shows that :.he thus obtained transverse dielectric
function is identical to the one found throug-h excito n response. The linear response ot the crYstal, apart
tromn a possible change oJ i/u datnpiny constant 1'( k) Isee hl/ow]-. is not a~tfccd bY [lt, introduction of'
tile po/aniton concept [57. -58. Sol.

We now first analyze the polariton dispersion and transformation in more detail for the important
case I'Mk 0. i.e.. totally neglecting the phonon bath. This is the standard case considered in the
literature. Equation (4.6) then gives the usual dispersion diagram (cf. fiie. o) with two branches
separated by the polariton stopgap: the frequency interval where no real wvave-vector solutions to the
dispersion relation exist. so that no waves with those frequencies can propagate in the crystal. In an
atomic crystal, the stopgap ranges from the transverse (wo ) to the lonitudinal (wo ) exciton frequency
143. 57. 581. For our crystal of two-level molecules. these b1oundaries depend on the direction of

WAVE VECTOR
ig 6 If'picai riariton dispersion cur'eN in the oial reLeii'n foir in atormtc cr\stal i thick ofid cur'c.c t he dii~oii line represents the pure
photon dispersion curve ((#, ko. Fhe shaded repion between the transverse iw iand ItiniiudinalIt )w crsi esciton trequencies is the stopgap.
where no polariton modes exist. 12 indicates the atomic transition frequenc\. For a crsstal of tv~o-lesei molecules. thc itopgap position depends on
the direction of propagation (see text).
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propagation and are replaced by f2,, and ((2 - ). respectively, with l2,, Im,, , f2k and f as defined
in eq. (4.6). (Exciton dispersion is neglected when considering the stopgap.)

The strongest mixture between excitons and photons occurs in the photon- and exciton-band crossing
region kc - fl, =- . In that region the frequency difference between the two branches reaches its
minimum value, which. to a good approximation. is given by f1[50b]. From eq. (4.6). we observe that f
is a measure for the density of oscillator strength in the crystal and in combination-with eq. (4.2a). it is
also seen that f'12 is the coupling C between the exciton and the radiation field in the band-crossing
region. For molecular crystals, we usuallv have , (< fl. For example, for the lowest singlet a-exciton in
naphthalene. we have f 45 cm -' and 12,,;- 12:: 31 500 cm -' [60b]: for the same exciton in anthracene.
we find f=- 1(O cm _' and l,, - 25 000 cm _[ 0a]. (Both f values acco int for the crystal's background
index of refraction.)

The polariton transformation coefficients, which are determined by the eigenvectors of the diagonali-
zation procedure. also nicely demonstrate the mixed character of the polaritons. In the case Fk) 0.
the coefficients are found to be

(w + kc)(wo - k-f) (4.7a)k.=C 2(wkc)1 2[(w f2 /-f)2 + f 2k 2c ] 12'

fkc(w+1.) (4.7b)
., =Ie"2(w) [( - & f')' +fk'- '  "

kc - wn f 2Ykv _. '-Wkv • , - .kA (4.7c. d)
KC+w + 0 w+ Q

where p is an arbitrary phase and w stands for w,,. These coefficients have been normalized according
to [57. 58, 611

Ihk,.t +L~. l- )kL' - , = . (4.8)

In spite of the complexity of eqs. (4.7), several general and instructive conclusions can be drawn.
First, the coefficients Yk, and Zk, usually have absolute values small compared to unity (see. e.g.. ref.
[68]). Second, the limits for small aad large wave vectors are easily studied. In the limit ik-0- 0. we find
for the upper branch jxI = 1. 1wl = IYj = 1z = 0 (up to order fifl). so that the polariton is a pure exciton
there. For IkI--,. the same branch represents a pure photon (Iw = 1. xj =i = . This could.
of course, have been already guessed from the dispersion diagram (fig. 6). Equally natural results are
found for the lower branch. For intermediate wave vectors the polaritons smoothly change character
from exciton-like to photon-like (or vice versa). Third. at the band crossing (kc - fl). we find
IwL = Xt for both branches, confirming that the strongest photon-exciton mixture occurs there.

We note that the coefficients (4.7) do not exactly coincide with the ones obtained within the minimal
coupling Hamiltonian 157. 58]. but their basic features are not affected by this. The dispersion relation
(4.6), which is an "observable". is of course independent of the choice of the Hamiltonian. The present
polariton transformation does coincide with the one derived in ref. [1021, if in the latter we ignore the
coefficients coupling to the higher Brillouin zones (Umklapp contributions) and neglect the retardation
in the effective interatomic interaction. Finally. we will need the inverse polariton transformation.
which can, quite generally, be shown to read [61]
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k (t.;ka, 4 - Yk,., Bk = 7 rA: A ks k ). (4.9a. b)

We now return to the general polariton transformation with T(k) ? 0. The two branches found above
are then no longer the correct eigenmodes. For ]'F(k) < 1. the maximum amount of mixing between
photons and excitons is of the order fIF(k), so that the polaritons are to a good approximation just the
photons and (damped) -excitons [60. 68]. In other words, if the exciton-radiation coupling, . is small
compared to the coupling of excitons to phonons (or any other perturbing degree of freedom [103]).
measured by F(k). no strongly mixed radiation-matter eigenmodes exist. We then expect the exciton
description of optical response to be accurate. We note that in this case of strong exciton damping, the
elimination of the phonon bath [leading to F(k)J before considering the coupled exciton-photon system
is fully justified.

Conversely, the condition f/F(k) > 1. which is typically met in low-temperature pure crystals. marks
the region of strong polariton effects in optical response. It is then inconsistent to account for phonons
(or other bath variables) by including the exciton damping F(k) in eq. (4. 1). Instead. we should first
diagonalize the bare exciton-photon system [F(k) = 01 and then account for other degrees of freedom
by considering their perturbation to the thus found polariton eigenmodes (polariton self-energies) [60b.
68]. In the remainder of this review we will assume that the limit of strong polariton effects applies. so
that from now on the polariton dispersion and transformation coefficients refer to the case F(k)= 0.
The polariton self-energies are addressed in appendix A and incorporated in the equations of motion in
section 4.2. For completeness we note that the theoretical treatment of the intermediate region where
the exciton-photon coupling roughly equals the exciton-phonon coupling, is very complicated, because
it is then impossible to indicate a simple set of eigenmodes that are weakly perturbed by the phonon
bath.

So far we only considered polaritons in the Bose approximation. which results in a purely linear
optical response. However, using the above-obtained polariton transformation, the full equation of
motion (4.1) yields

d4k!dt = i-Ck 4 ,v + i(xOkv - zk,)A'(k) (4.10)

and its hermitian conjugate for the polariton creation operator f. Equation (4.10) is. apart from the
omission of the phonon-induced self-energy, exact and fully accounts for nonlinear behavior. The linear
part of the equation is. of course, equivalent to eq. (4.5): the nonlinear part is determined by eq. (4. lb)
and may be translated into polariton creation and annihilation operators by using the inverse polariton
transformation (4.9). A typical term in .,'(k) reads

. .a(kk'k". ' " " k (4.11)
4 '," k' -k." ."k

th a(kk'k". vv"i/") a complicated function of wave vectors and branches. Finally. as the excitor,
population operator plays a crucial role in the nonlinearity, it is useful to give its full expression in terms
of polariton operators. Using eqs. (3.5) and (4.9) we arrive at

-kV) (X k' k' Xkk'rk -k -k-k +Zk -  V -k- , k -k i 6--4
N V ka' -

X'kv'Zk~k"L' kv p' k-k i - Zk -k i k-k'i r -k--k'i 4-k~ J (4.12)



36 J. Knoester and S. Mukamel, Transient gratings. four-wave mixing and polariton effects in nonlinear optics

4.2. The polariton hierarchy in the two-particle description

Before turning to the treatment of the TG and the D4WM experiments in the limit of strong
polariton effects, we first discuss the general ipproach. the polariton hierarchy [761. Consider a finite
crystal that is still large enough, however, so that its eigenmodes are to a good approximation the
polaritons discussed in section 4.1. The- nonlinear evolution of the isolated polariton system is in
principle -fully described by eq. (4'10), but thIM equation d6es not yet describe the generation of
polaritons by the external laser fields. It is important that this generation is not caused by a direct
interaction term between electromagnetic fields and polaritons in the Hamiltonian [691, because the
electromagnetic field itself is. inside the crystal, fully contained within the polaritons. Instead, the
coupling occurs through the boundary conditions at the surface of the crystal. If an external electric
field with wave vector k and frequency w, (o) = lk'Ic) is incident on the crystal. it launches a polariton
which is specified by matching the boundary-conditions for the expectation values of its electromagnetic
field components to the external field (accounting for reflection). Thus, the polariton will also have
frequency wj,; its wave vector kJ is determined by the component parallel to the crystal's surface
(k,.11 = k;, ,,) and by its magnitude, Jk, , which is fixed through &), and the polariton dispersion relation
(i.e. the crystal's dielectric function) [691. This agrees with Snell's l2w. Finally. the amplitude of the
polariton, (k ,(t)), is (in the frame rotating with frequency w,) proportional to the external field
amplitude E'.

The complete solution to the boundary value problem is. in particular if spatial dispersion is taken
into account, a complicated problem [43. 104-107]. Instead of rigorously solving this problem, we will
incorporate the above well accepted ideas about the generation of polaritons by adding simple source
terms to our equations of motion (see below). In the absence of the nonlinear term in eq. (4.10), the
thus generated "first-order" polaritons constitute the only response of the crystal to exciting fields.
Clearly, however, the nonlinear term causes fusion of first-order polaritons to higher-order ones at new
(not fundamental) wave vectors and frequencies. Such a higher-order polariton generates an observable
nonlinear signal outside the crystal which is. again, found by matching boundary conditions. In
particular, the signal amplitude will be proportional to the amplitude (_k,,,(t)) of the higher-order
polariton. The problem of calculating the optical response of the crystal now boils down to calculating
the amplitude (k,), which can be done using a truncated hierarchy of equations of motion for
polariton expectation values based on eq. (4.10).

To apply this scheme to the TG and D4WM experiments, we use the truncation that also proved
useful in the exciton theory. namely, we factorize the exciton population in the expectation value of
.V(k) (two-particle description). From eq. (4.10). we then obtain ffk,,(t)- (4(t))J

4,J0

(x - ' 'y(kV)e, (t) - y ' * (kV) (t)]I W(k - k'. t)
V P'

+ Z .l(kv, k,)E!(t)exp(-iw,t). (4.13a)

Here. .(k)is the phonon-induced polariton self-energy given in eq. (A.14b) and

y(kv) Ck(w* + y,) + iDk(xk, - zv). (4.13b)
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Finally, the last term in eq. (4.13a) describes the above discussed generation of polaritons, where E'(t)
is the (slowly varying) amplitude of the jth external electric field. The proportionality constant A(kv, k')
is nonzero only if the jth external field mode exactly matches the polariton kv: its magnitude is then a
complicated function of geometry and frequency which we do not calculate here. Of course, this
"source term" only makes sense for pulses which are long compared to an optical cycle.

As next step in the hierarchy, we need equations for the two-particle variables contained in
(W(k - k', t))-. In section 3 we considered the exciton two-particle variables, Q(k. p. t) [cf. eqs. (3.24)],
but this choice is not useful here, because these variables couple to expectation values of products of
exciton and radiation operators, which we cannot factor in the limit of strong polariton effects. Instead,
it is more appropriate and more direct to consider polariton two-particle variables. From eq. (4.12), we
see that four types of such variables are involved. However, as in general ZkvI << 1 and. moreover, for
the self-energy models to which we will confine ourselves later on. IZk , Ix, 1. we will only maintain
the first r.h.s. term in eq. (4.12), so that

W(k, t) =(2/N) k Xp-kl2.'X P ,k2.F,,v(k. p. t) , (4.14)

(k, p. t) ( (4.15)

The next step in the hierarchy now results in the equation of motion for the variables .V,,(k, p, t),
which reads

(d/dt)=,, ,(k, p, t) i(Wpk 2.,,' - Wp A 2.,,) (k. P. t) - i Z _(k, v: p. p')=..,,(k, p', t)

+ fP*_k12.,.(t)E.,l(p + k/2. v. k;)E'(t) exp(-io~t)

+ p-k,2.,,(t) A( p - k12. v'. k' )E:* (t) exp(iw,t). (4.16)

The first term in this equation reflects the linear coherent motion [first r.h.s. term in eq. (4.10)]. The
nonlinear coherent motion is neglected on this level, because it couples to variables which are of fourth
and higher orders in the external field amplitudes, which is beyond the leading order (3) for four-wave
mixing processes. The second term in eq. 4.16) accounts for phonon scattering. The calculation of the
self-energy kernel f_(k, v: p. p') [v-(v. t,'. v" ')] is addressed in appendix A (eq. A.16), and
remarks similar to those following eq. (3.26) for the exciton self-energy apply here. In particular, we
see again that the "center-of-mass" wave vector k is conserved in the scattering process. Finally. the last
two contributions in eq. (4.16) account for creation of two-particle coherences from existing single-
particle amplitudes and new polaritons generated by external fields [cf. the generation term in eq.
(4.13a)J.

4.3. Polariton dynamics probed by transient grating spectroscopy

We now apply the two-particle polariton hierarchy [eqs. (4.13a) and (4.16)1 to the TG experiment in
the limit of strong polariton effects. Two external pump fields f(k,. w) and (k-. w. )] create polaritons,
ki v, and k. v,. resulting in a grating characterized by the wave vector k - k,. After a delay time r, a
probe pulse (k3. w,) generates probe polaritons. k, P'. which interact nonlinearly with the grating and
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give rise to signal polaritons with wave vector k, -k - k, + k3 . The amplitude _k,,(t) determines the
amplitude of the observable field at k' =- k' - k' + k,. From eq. (4.13) we observe that the nonlinear
source term for the signal polaritons to third order in the external field amplitudes is given by

(xk, - zk)y(k3 i) (t)W(2)(k - k,, t), (4.17)

- where- superscripts in-parentheses indicate the order in powers of the external field amplitudes. We will
assume an off-resonance (square) probe pulse that is short compared to the typical time scale for
population decay. On this time scale, the amplitude 6") (t) then behaves as a delta function centered
around t = r, so that the time-integrated signal intensity (to third order in the external field intensities)
is given by

S(r) oc dt k, W I IW ')(k 2-k,, I)12 . (4.18)
f
7'

Thus, as in the exciton theory of section 3.4, the TG signal is determined by the exciton population at
the grating wave vector k. = ki - k2. This is a direct consequence of the fact that the exciton population
operator is really the only nonlinearity in our system (cf. section 3.1; the photons are perfect bosons).
The difference with the theory of section 3 is, of course, that now the evolution of the exciton
population occurs within the complete polariton system [eqs. (4.14)-(4.16)] instead of the isolated
exciton system. We thus take into account that, even though there are no external fields during the
pump-probe delay, the (microscopic) radiation field still affects the material. The TG signal is a probe
for polariton dynamics during the delay period. A second difference between the exciton and polariton
approaches is the initial condition immediately following the pump pulses. In section 3, these were
exciton amplitudes and coherences (eqs. 3.44), whereas in :he present treatment polariton amplitudes
and coherences are appropriate. Using eq. (4.13a) for square excitation pulses with amplitudes E' and a
duration Te that is short enough to neglect the self-energy (r],Y,, . < 1), we obtain

f ("(1)=A(kv, k')tE exp(-ioit), j=1,2, 0<t< r,. (4.19)

This leads in particular to the initial condition for the delay period

,', (r.) = A(kiP, k;)reE' exp(-iwj e). (4.20)

More directly relevant to the description of the TG, are the initial conditions for the two-particle
variables =(2k p, t). Using eq. (4.19) in eq. (4.16) and neglecting the self-energy contributions
during the pulses, we obtain

(kg, p, ) A(k1 v, k)A*(kv 2 , k2) EeE 7- expti(O, - 1)T 1 ,, , (4.21)

with p_-(k, + k2)/2. Note that this result is consistent with the factorization ( -,(t) k(t))
( ,,,(t))(')( k,(t))"' during the pulses, which results from the fact that phonon scattering can be
neglected for these early times. An analogous factorization has been used in section 3.4 to determine
the initial two-particle exciton variables.



J. Knoester and S. Mukamel. Transient gratings. four-wave mixing and polariton effects in nonlinear optics 39

In summary, the TG signal can, in principle, be calculated from eqs. (4.18) and (4.14) after solving
the coupled equations of motion (4.16) for the two-particle variables I.lkl' p,;) (for all p and with
k - k - k. fixed) during the pump-probe delay period. During this period, the last two terms in eq.
(4.16) are absent (no external fields) and the initial condition for this period is given by eq. (4.21). In
practice, we have to restrict the treatment to simple models for the self-energy (or scattering) kernel to
find analytic expressions for the signal. Before discussing such models, we give a general result. In the
absence of scattering (low temperature), the TG signal does not decay. Namely, the solution of eq.
(4.16) for k = kg is in this case trivially given by the initial condition (4.21) with an additional phase
factor exp[i(o,_ - ) )']. As this factor gives the only r dependence of W(kg, r). the signal does not
depend on 7 at all. It should be noted that this result does not rely on the approximation eq. (4.14). but
also holds if the complete form eq. (4.12) for the exciton population is used. The physical explanation
is, of course, that the initially created polariton coherence (eq. 4.21) is an eigenstate of the system in
the absence of scattering.

We now discuss two-specific models for the phonon-induced scattering kernel 1(k. v: p. p') in eq.
(4.16), for which analytic results can be obtained. In the exciton theory, we used the Haken-Strobl
model. As discussed in section 3.5, this is a (high-temperature) strong-collision model that scatters all
excitons into each other with equal rate t, irrespective of their energies. Using the same model for
polaritons would be very unrealistic. First, because these excitations span an enormous bandwidth.
Second, it is only the exciton component of the polariton that couples directly to phonons. so that
photon-like polaritons cannot be scattered very strongly. A simple model that takes these considera-
tions into account, is a restricted Haken-Strobi model, which is defined as follows. All polaritons with
exciton components Ix l2 > scatter into each other with equal rate tp, whereas all other (photon-like)
polaritons do not take part in the scattering process at all. This model boils down to the Haken-Strobl
model for the restricted set of exciton-like volaritons. which (section 4.1 ) constitute the upper polariton
branch for kj < k, and the lower branch for Jkl > k, (k,,-- f2,c marks the photon-exciton band
crossing). We thus consider only one effective branch (i.e.. only one polariton per wave vector) with
width f (fig. 7), so that branch labels can be dropped without ambiguitv.
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U_ U-

kO WAVE VECTOR

Fig. 7. Illustration of the restricted Haken-Strobi scattering model for polantons. All polaritons %ithin the shaded region ot %%idth I (cq. 4.o) have

exciton components greater than 4 (section 4.1) and are assumed to scatter into each other with equal rates. 12, is the exciton frequenc, at zero
(optical) wave vector and k, = fl,,/c indicates the exciton-photon (dashed diagonal) hand crossing. The polariton stopgap is not shown and exciton
dispersion has been neglected.
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In the Laplace domain, eq. (4.16) for k = kg now takes the form

s- (kg, p, s) = [i()k2- (/ 2p.+9 2 (kg, p, s)

- + (FPIN) E 2 )(kg, p', s) + -=((kg, p, t =0) , (4.22a)

with the initial condition-

= 2(kg, p, t = 0) cc E. e,, E e ,pp . 4 2 b

Here we assumed that initially exciton-like polaritons are excited. In eq. (4.22a) we added an overall
loss of polaritons with rate yp. The equation of motion is identical to eq. (3.43), except that the exciton
dispersion and scattering rates are replaced by those for the polaritons. The solution for the
=({2)(kg, p, s) is, therefore, easily obtained by analogy to the solution in section 3. In calculating the
signal from this solution, we use one more approximation, namely we replace eq. (4.14) by

W(2(kg, s) 2(2N) E 2)(kg, p, s). (4.23)

We thus approximate all polariton transformation coefficients xk. for the exciton-like polaritons by
unity. Admittedly, this is a strong discretization of the exciton character, but in view of the very simple
scattering model, it seems unnecessary to account in a more rigorous way for these coefficients. The
solution for W(kg, s) is now of the same form as eq. (3.46b), with F--,Ip, y-"*yp, and

J(P)-' % -k 12- &),Pk,12. In the coherent limit (fP = 0), this yields for the signal

S(r) = exp(-2yp") (coherent), (4.24)

which agrees with our general conclusion that in the absence of scattering the signal does not decay
(apart from the trivial population loss with rate 2yp). In the opposite limit of strong scattering
(fp> %- W-, k Wp+k/21, yp) we obtain, in analogy to eq. (3.49),

S(r) = exp[-2(yp + DpIk, - k, 12)r (incoherent). (4.25)

with the polariton diffusion constant (tc isor)

DI ( -k_,_- - k,) • (4.26)
lk gJ2 tPN P ~ ~ 2

Here, we assumed that w, = wk, which holds under general symmetry conditions with respect to the
experimental setup.

Equation (4.26) can be rewritten using the polariton group velocity vp(p)- Vw [cf. eq. (3.38a)].
For an isotropic d-dimensional system, w% is a function of IjI only and we have

I' I 2 )= 1 -9

DP:=)=_ __. V', (4.27)
P p
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with 6P an effective polariton group velocity. As polaiitons have a photon component. it is clear that L!P
is larger than the effective exciton group velocity 6,, (eq. 3.38b) for the same system. Thus. ignoring
possible differences in the exciton and polariton scattering rates. the general effect of polaritons on the
TG will be to accelerate the decav. An estimate for tY is calculated in appendix D. within the infinite
effective exciton-mass approximation (Je = 0 then!) on a simple cubic lattice. We find

U P 1c)- f r(f/f2)(a/AJ , -, (4.28)

with a the lattice constant and A,, = 2rTcl the vacuum wavelength corresponding to the molecular
transition.

Although, strictly speaking, our crystal model is oversimplified to fully represent aromatic molecular
crystals, it is tempting to use eq. (4.28) also for this class of crystals by replacing a- by the volume of a

unit cell. We then obtain V, 2 x 105 cm/s and V _ 106 cm/s for the lowest singlet a-transitions in
naphthalene and anthracene. respectively. (For f and ., we used the values given in section 4. 1: for a'.

we used 400 A3 for naphthalene and 600 ' 3 in the case of anthracene.) This result for anthracene is an
order of magnitude larger than the estimate made by Agranovich et al. [511 for the relevant polariton
group velocity (see below). In view of the simple model and the approximations used, it is not surprising
to find such a large discrepancy.

The situation in anthracene is probably much better described by the second scattering model that
we wish to discuss here: the bottleneck model. This model is inspired by the explanation by Agranovich
et al. [51. 521 for the TG experiments on anthracene crystals carried out by Rose et al. [2b]. Let the
experiment be such that the two pump pulses have frequencies just in the exciton band, so that they
excite first-order polaritons with high wave vector and strong exciton character (fig. 8). Accounting for
a positive effective exciton mass. it is reasonable to assume that at low temperature. polariton-phonon
scattering will cause the initially created polaritons to relax rapidly to the bottleneck region. where the

Z
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-LL lrlxJn o(lai~
D
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WAVE VECTOR

Fin. S. Illustration of the bottleneck modlel for polariton scattering. Compared to fig. 7. a larger part ot the Bnillouin zone is shown .ind a tiflte
(po. ;ti'.e) etffctive exciton mass has been included. High wave-vector polaritons in the lower branch are excited by pulses with frequencies iust

aboe !,, (the zero wave-vector excton frequency) and rapidly relax to the polariton bottleneck, where the actual TG decay takes place.
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density of states levels off. This classical (particle-picture translates into the following model for rapid
initial relaxation of the polariton coherences ,E(k, p, t).

(i) The polariton center-of-mass wave vector k is conserved at its initial value k,, = ki - k.: we have
obtained this previously as a general result for phonon-induced scattering processes. This is equivalent
to the assumption in ret. [52] that during the rapid relaxation process, the spatial density of polaritons
created by the interfering pump pulses is unchanged.

(ii) p relaxes rapidly to the bottleneck region. This is equivalent to the statement in ref. [521 that the
polariton momentum (wave vector) relaxes rapidly. In general, p must be expected to be distributed
over the entire bottleneck region after the relaxation. because many scattering steps involving many
different phonons can take place during this process [52]. We note that the classical interpretation of p
as the polariton momentum that relaxes to the bottleneck, only makes sense if 1k,121 is small compared
to the wave-vector width of the bottleneck region. Only then does the coherence ,,F(k,. p, t) involve
two polaritons with wave vectors p ± k9/2 that also lie within the bottleneck region. For the experiments
on anthracene, this is indeed the case, as these were carried out at very small cross angles 9 of the
pump pulses, so that the grating wave number was always much less than optical wave numbers [2b].

If the initial relaxation is fast enough, the observed part of the TG decay now starts from a new
initial condition for the coherences within the bottleneck. We will assume that within the bottleneck all
polaritons scatter into each other with rate/P and that there is an overall loss of polaritons with rate yp.
Like the first scattering model that we discussed, this defines a restricted Haken-Strobl model, for
which the equation of motion (4.16) can be solved analytically. To calculate the signal from this
solution, we use eq. (4.23), which is a good approximation in the bottleneck, because the coefficients
ixk I are close to unity there. Nevertheless, the polariton group velocity may differ appreciably from the
bare exciton group velocity [601. Let vb denote the typical group velocity in the bottleneck region. If
PP > ikglv ,, the polariton motion is diffusive on the length scale of the grating and we recover eq. (4.25)
for the signal, with the diffusion constant eq. (4.27). except that the effective eroup velocity Up is
replaced by vb.

This result is independent of the exact initial condition within the bottleneck: such an insensitivity to
the initial condition was also noted in the strong scattering limit of the exciton theory (section 3.4). The
present expression for the signal was also used by Agranovich et al. [51, 521; our approach shows how
to derive it microscopically. For anthracene. U 10' cm/s; combining this with a scattering length
v/t == 10- 5 cm (estimated from absorption data), one arrives at D 1 cm/s [511. which agrees with
the observed values [2b].

We conclude the discussion of the bottleneck model bv noting that in the limit of weak scattering.
tP < Iklv,, the initial condition is in general important for the form of the TG signal. Decay will always
occur, even if P = Y, = 0, because the initially populated coherences --(k,. p. t) for different p values in
the bottleneck will dephase with respect to each other.

4.4. Polariton effects in frequency-domain four-wave mixing

In this section we discuss the degenerate four-wave mixing experiment in terms of polaritons. Two
cw external electric fields with wave vectors k', frequencies o,. and amplitudes E' (j = 1.2) are
incident on the crystal and we are interested in the signal with wave vector k, = 2k, - k and frequency
w = 2w, - iv,. The amplitude of this signal is proportional to the amplitude of the polariton with wave
vector k, = 2ki - k, that is generated nonlinearly in the crystal by the first-order polaritons with wave
vectors k1 and k.. Our description is based on the temporal Fourier transforms of the two-particle
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polariton hierarchy eqs. (4.13a) and (4.16). We will-confine ourselves to the restricted Haken-Strobi
model introduced in section 4.3, and, as in the exciton theory of section 3.3, we will only calculate
contributions to the signal with possible resonances at to,, - to, = 0.

From the Fourier transform of eq. (4.13a) we find for the signal amplitude to third order in the field
amplitudes

kk, - .(Xk, Z, p. J IH) (4.29)
p

where we used eq. (4.23) and kg =k - k. as before. The two-particle variables for different momenta
p obey coupled equations of motion that are obtained from eq. (4.16) with the restricted Haken-Strobl
scattering model,

p.-) [ _~ 2 - )- (1+ yv)].( 2 (k,. p. w1,) + La
( . Y,) I (k,, w )

+ fk,(w2)A(k, v,, k )Ee + 'k(w I )A*(k, ,, k,)E_ ]E5I,,, (4.30)
pg-=_(k, + k2)/2.

This equation is solved in the standard way (appendix B) and after substituting the first-order polariton
amplitudes from the linear approximation to eq. (4.13a), we obtain

g k , t W , zc( k , _ k , ) ( k i P ) A ( k , v , k ; ) .I * ( k . v . ,  kV ) ( E ,) 2

) Z - i, i(k , V, - W ) + 1 ,, +

(I / 'r -(-io,-i _, +, + +Yp)- ) (4.31)

We will assume that the second factor on the r.h.s. has no sharp dependence on w,,. For excitons. this
was found as a result of cancellations between the source o"R and the quantity -i 1 , - i[J(k2 )-
J(k1 )] + l + y in eq. (3.32). In the present case. i R is replaced by the factor multiplying 6PP, in eq.
(4.30), and a cancellation is not likely, even though we have no detailed form for .1(kv. k'). Note.
however, that Wk = and w = w, as the frequencies of the first-order polaritons have to equal the
frequencies of the external fields. This is an essential difference with the exciton theory.

We thus conclude that the first denominator on the r.h.s. of eq. (4.31) does not depend on w,. at all!
Any w,,-resonance must emerge from the last factor.

R(k,. Wl)-(1 ' W-'op - , +iw . + & -. k4.32)

For F7 =0. we have R(k . w 2) = 1. so that no wl,-resonance is found. Conversely. in the limit of stronz

dephasing (r.> YP' IWP-k,,,2 - Wplk,21), we find (cf. appendix C),

R(kg. w,.)= 1 + PP/(-iw1, + yp + Dpk). (4.33)
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with Dp the polariton diffusion constant as defined in eq. (4.26). The intensity of the D4WM signal.
- R(k7 , _,)1 then exhibits a Lorentzian resonance analogous to the one in eq. (3.35)

(replace F--* F, y-- yp, D,- Dp). Comparing this with our results in section 4.3. we also conclude
that, as in the exciton case, the amplitude of the D4WM signal is related to the amplitude of the TG
signal by a single Fourier transform.

5. Concluding remarks

The calculation of the nonlinear optical response in condensed phases is a complicated many-body
problem involving the material and the radiation-field degrees of freedom. Numerous approximate
schemes have been developed over the years with various degrees of sophistication in order to calculate
optical nonlinearities [19-23, 70, 71, 92]. The present review provides a unified theoretical description
which clarifies the interrelationships among the different schemes and their range of validity. Figure 9
illustrates the systematic hierarchy of approximations. Starting with the multipolar Hamiltonian [73]
which is fully retarded and contains no explicit intermolecular interactions, we can rigorously derive

Multipolar Hamiltonian

(no intermolecular interactions)

Eqs. (2.9)

Maxwell Eqs. & Material Eqs.
(with intermolecular interactions)

Weak Field-Matter Coupling Strong Field-Matter Coupling

excitons polaritons
Maxwell field external field
susceptibilities signal

Two-Particle Description Two-Particle Description

exciton transport polariton transport
degenerate four-wave mixing p

Single-Particle Description

anharmonic oscillators Single-Particle Description
local-field approximation

Fig. 9. Schematic diagram showing the hierarchy of approximations used in this paper.
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Heisenberg equations of motion (eq. 2.9) in which tntermolecular forces are explicitly included 1761.
Equation (2.9), which applies to any material and field operator Q. is the starting point for the present
microscopic theory. For Q = E, we get the Maxwell equation (eq. 4.3b). In simple single-molecule
theories of nonlinear response. one often uses the Schr6dinger picture and solves for the density matrix
f19-231. This procedure is impractical for complex many-body systems, since the complete many-body
density matrix is very complicated and contains too much information. The Heisenberg equations, on
the other hand, allow the direct calculation of the relevant observables.

At this point, as shown in fig. 9, we should follow two separate routes, depending on the
radiation-matter coupling strength ( f). The key parameter is t/F(k). The exciton dephasing rate 1'(k)
may be obtained from linear optical measurements [see eq. (3.12b)]. If it is sufficiently large IF(k) ,>.l.
it destroys the coherence between the radiation and exciton modes, which then become weakly
coupled. In this case, the material-radiation correlations can be neglected. and we may derive coupled
equations for the field and the material degrees of freedom as illustrated in the left route in fig. 9
(section 3). The field satisfies the Maxwell equations whereas the material system (excitons) satisfies an
infinite hierarchy of coupled equations in which the polarization (P) is coupled to the expectation value
of the Maxwell field and to higher variables such as ( PV), which in turn couple successively to
higher-order variables. By solving these equations perturbatively in the average Maxwell field E, we
obtain the optical susceptibilities x', ) ". etc.

The success of this method is based on the fact that the linear optical properties of the system depend
only on single-particle states whereas weak nonlinearities. such as V'3 and k"> depend only on a few
particles. This situation. which is similar to the zero-temperature many-body theory [44. 811, allows us
to truncate the hierarchy very early and still maintain the essential physics of the system. The simplest
approximation is obtained by factorizing at the single-particle level (section 3.2). In this case. the only
relevant material dynamical variables (by assumption) are the polarization variables. The -onlinear
susceptibility V'" can then be written ih various equivalent forms. Within this factorization. the
local-field approximation [eqs. (3.19) and (3.20)1 holds, and the many-body problem reduces to
essentially a single-body calculation. We further recover the coupled-oscillator expression (eq. 3.14a)
with interaction-induced correction terms. At this level of description, the susceptibilities have
resonances at the Frenkel exciton energies. exciton transport is not accounted for. and we cannot
describe the TG or degenerate four-wave mixing experiments.

When the hierarchy is truncated at the binary (two-particle) level (sections 3.3 and 3.4), we obtain a
good description of quantum transport and we can make the connection to the phenomenological
macroscopic treatments of the grating experiment which use master equations. the Boltzmann equation.
and the diffusion equation (section 3.5). The single Fourier-transform relation between the TG and its
frequency-domain analogue (degenerate four-wave mixing) is demonstrated.

The two-particle description illustrates the limitations of Bloembergen's classical anharmonic oscil-
lator picture 1191. When nonlinearities are important. new dynamical variables (other than the
polarization P) become relevant. The oscillator model neglects the contributions of these additional
variables and requires the factorization of every variable in terms of the polarization. In our equations
we choose a particular two-body factorization in which WV is the source of nonlinearity. This
nonlinearity is local in space (intramolecular) and seems adequate for the calculation of the TG
experiment, since the signal depends on W. It should be emphasized. however, that alternative sources
of nonlinear evolution may be important in other situations [47. 591 (cf. section 3.1). In particular.
enhanced (cooperative) optical nonlinearities. which may be observed in molecular aggregates. have
been shown to originate from intermolecular (nonlocal) nonlinearities [35]. The present hierarchy is
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illustrated in fig. 9. The single-particle description-can be obtained directly from eqs. (2.9) (as done in
section 3.2). or by factorizing the two-particle variables into products of single-particle variables.

When the oscillator strength per unit volume is sufficiently large and dephasing processes. are slow
[f > F(k)], the radiation and the exciton degriees of freedom are strongly coupled. and they should be
treated as a single dynamical system. In this limit, the description of optical processes in terms of
polariton models is most natural (section4)-and is illustrated in the route shown on the right side in fig.

- 9. Although it is formally-possible to define nOnlinear susceptibilities even in this limit [66. 67], they are
complicated and not particularly useful. In section 4 we develop a polariton hierarchy [761 which allows
us to expand the nonlinear signal directly in terms of the external fields (rather than the Maxwell fields)
and to abandon the notion of susceptibilities. Note that this expansion then depends on the boundary
conditions relating the external field to the polaritons.

Ovander [59] has incorporated polariton effects in nonlinear optics. by expressing his total Hamil-
tonian, which also contains cubic and quartic terms. in terms of the polariton creation and annihilation
operators. The harmonic (quadratic) part then assumes, by definition, the simple form of a set of
noninteracting harmonic oscillators (the bare polaritons). The anharmonic terms yield, even for the
simplest approximations of the polariton transformation, a large number of interaction terms which are
responsible for nonlinear processes, and Ovander treats them as perturbations to the harmonic
Hamiltonian. The Fermi golden rule is used to evaluate polariton fusion and fission rates, which are
related to, e.g., the sum harmonic intensity, the Raman scattering intensity, etc.. depending on the
specific perturbation term under consideration. This formulation has several limitations. The resulting
Hamiltonian is very complicated, the Bose approximation used for the Pauli operators results in the
neglect of intramolecular nonlinearities, ar ' the Fermi golden rule does not suffice to treat nonlinear
processes of order higher than three: higher-order perturbation theory has to be used to describe these.

Our polariton hierarchy does not suffer from these difficulties. In the strong-coupling regime
analyzed in section 4, the TG probes the dynamics of polaritons. Like the exciton motion. polariton
dynamics can be either coherent or incoherent (diffusive), depending on the magnitude of polariton
dephasing. Two conditions have to be satisfied in order for the dynamics to show diffusive polariton
motion, namely. F(k) <f and 17,> Ip-k2 - 4-, I (section 4.3). The exciton dephasing rate has to be
sufficiently small for the elementary excitations to be polaritons and the polariton dephasing should be
sufficiently large to make the motion incoherent. Both conditions can be satisfied simultaneously. A
two-particle and single-particle level of approximation exists for polaritons. in complete analogy with
what we derived for excitons. Since our interest is in polariton transport. which is absent in the
single-particle description, we considered only the two-particle level.

An important conclusion of the present analysis is that observation of coherent exciton motion for
dipolar excitons is impossible. because, when exciton damping is small enough to give coherent exciton
motion, the radiation modes are necessarily strongly coupled with the polarization. so that polariton
effects become significant. Coherent exciton motion over distances greater than the optical wavelength
is therefore an unrealistic and oversimplified model of elementary excitations in molecular crystals at
low temperatures.

The present formulation and equations of motion can be directly used and extended to treat optical
nonlinearities in other systems. There is currently a growing interest in the optical properties of
nanostructures [108-113]. These are fabricated molecular assemblies with specific molecular-level
order. Examples are clusters, monolayers and multilayers. Our equations of motion are ideally suited
for the microscopic calculations of optical nonlinearities in these systems. Other interesting extensions
of the present formulation involve the incorporation of short-range forces and static and dynamical
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disorder [821. This is important for calculating optical nonlinearities in doped glasses. polymers.
solutions, and in mixed crystals.
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Appendix A. Elimination of phonon degrees of freedom

In this appendix we discuss the elimination of phonon variables underlying the various self-energy
and scattering kernels for excitons and polaritons given in sections 3 and 4. respectively. To this end.
several approaches can be used, which do not differ essentially in their results 142. 08. 1141. Here we
use the projection-operator technique which was also employed in ref. [68]. The relevant Hamiltonian
for our problem reads

H=HH + H+ (A.l)

Here / stands for the -'system" Hamiltonian. To describe the scattering of excitons on phonons
(section 3). we choose the exciton Hamiltonian for H/.

k k

(We use the lieitler-London approximation in this appendix.) To describe polariton-phonon scattering
(section 4). we choose

= wkv AI. kr .

with wk,, the polariton dispersion in the absence of exciton damping IR(k) = ( in eq. (4.6)]. Both
excitons and polaritons are treated as bosons in the calculation of the self-energies. The phonons
constitute a -'bath" and are described bv the Hamiltonian Hflh (eq. 2.13). Finally. H r denotes the
system-bath interaction (eq. 2.14). If we take the polaritons as the system. Hr has to be expressed in
terms of polariton operators. which is done using the inverse polariton transformation eq. (4.9b): it is
customary to make the approximation Z _, = 0 when doing this [60a. 68. 80].

We will work in the Schrodinger picture and define p(t) to be the total density operator of the system
and the bath. We now define a projection onto a reduced density operator by (68. 1151

t ph Trhp(t). (A .3)
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where " ,'h is the density operator for phonons in thermal equilibrium at temperature T and Tr,, traces
over the phonon degrees of freedom. The details of this projection can be found in ref. [8]. In
particular. it can be shown that up to second order in Hp, the cor:ibutioii from the phonon bath to the
evolution of the expectation value of an arbiirary system operator O,. is given by

d_ .

dt (6,w) - j dt' Tr[{L~p exp[iL,i(- ")] LPO7 }&("')1 (A.4)

hiL,O-[Ht,, 01_ hL,PO-[H-IP, 01_ (A.5a. b)

where Tr denotes the total trace.
We first consider the exciton case and-calculate the effect of ihe phonon bath on the variables

Ki B(t)) and (Bk(t)Bk()). For (Bk(t)), the result is readily obtained from the scattering contribution
to (4 ,(t)) that was derived in appendix A of ref. [68]. To this end, we drop the branch-labels and
-sums in that derivation, we replace the polariton dispersion by the exciton dispersion and we set all
polariton transformation coefficients xk, equal to unity. Without further derivation we give the result
within the Markov approximation, keeping both the frequency shift and width,

[(d/dt)( k(t)) 1ph = -i Y(k)( /b k(t)), (A.6a)

with the complex self-energy

1 (k) - lim EjF,(k, q)12( (t%)T+ (fl~qs"- I)T

-hk-N 1q0*, 
,'- Qk.,q ,-, 

k + 
f-q -t (A.6h)

F,(k, q) - F,(k. q) + X,( q).

Here (nn%, is the thermal (Bose-Einstein) occupation of phonons with wave number q in branch s.
We note that this result can also be derived on the operator level [114], which we used in eq. (3.1).
Taking the limit 17--i explicitly, we arrive at eqs. (3.3) for the phonon-induced frequency shift and
damping rate of the exciton. Of course, (!b(t)) obeys eq. (A.6a) with 2(k) replaced b. -1*(k)
12 ::(k) denotes the complex conjugate of 21(k)].

We now brieflv outline the derivation of the phonon contribution to the evolution of the exciton
coherence ( ht(t)Bk(t)), which we need in section 3.3. We take O, BkBk in eq. (A.4). and
straightforward algebra leads to (r - t - t')

7 L, ,(k. q) exp[i() k  q V)71 L p[B> qBk. Iq1 (7.)IL~ exp(iL r) L~r(/L!k, ) - hV' 1  (. -q- .)r

1 T,(k' - q, q)exp[i(Q, - Ilk q)7- LP[BB, -qXq,(7)].

(A. 7a)

X¢q,(r)-b , exp(-if2, r) + b exp(in- q r). (A.7b)

. . . ~ m - m mm mmmm m m m mmm m mnmmqmslI +l m
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For the commutators appearing in the r.h.s. of eq. (A.7a) we obtain

L ~p[B,k.Xq,(T)I

-h1 N' [/F(k+q. q') B B - (k - q'. qq B . Bq(T)

qq,-q k q _ I(bq q ,

1 -

hV Z F(k", -q)B.qB,.BkqB - [eXp( B 1 7)-exp(-i2q 7)]. (A.8a)

SN (k q')B"

- AX/(k BA . k q - q'. q')B Bk q-q ]XqJ7)(bq, b

+ F(k". - q)B 10B BB) - ~(ij,') (A.8b)

We will neglect the last contributions (the k" summations) in these equations. as they couple to a higher
(quartic) exciton variable. We now combine cqs. (A.7) and (A.8). and after some straightforward
algebra we obtain

Tr[{L,, exp(iL,7) LP(B Bk. )} 0'(t' )jF (k. q) hXP ,'f 'kfq

x [F,*(k + q. -q)( BA(t')B (t')) k (k'+ q,-q)(BA q(')Bkq(t') ]

1 S'F*((k'+ -q

h-N ~F' +q" -q) exp[-i(.2 - 2. )r]G*(7)

×[jF*(k. q)(B.q(t'),9 P(t')) - F"(k'. q) B (k)B(t ))I . (A.9)

G(7)- Knq,)rexp(if2q, 7) + (n _q + I) exp(-if2 q,7). (A.10)

Equation (A.9) combined with eq. (A.4) defines the phonon contribution to the equation of motion
[or ( ~k (t)/(t). This equation can be made time-local by applying a Markov approximation. To this
end. we approximate [681

( B.(t')/ ()) ( (t)B(t)) exp[-i(QA - 12,)r . (A.11)

and we calculate the remaining time integrals by adding a convergence factor exp(-r ') (T---,)). We
then obtain

[(d/dt)( Bk (t)Bk(t) ) ]ph =ij i : (k') - V.(k)l( BA ()B (t))

+ i ' [*(' k. q) - (k. k'. q)]( B .q(l)B .q(l) . (A. 12)
q



50 J. Knoester and S. Mukamel. Transient qratings. tfur-Kave mixine and polariton effects in nonlinear optics

with 1(k) as defined in eq. (A.6b) and

1(k. k', q) h N lir P*(k, q)FP (k',.q)( (q- - + (n - ) + OT

h2NS V- q QV _qin ' -q fk'+(1-,

(A.13)

The first r.h.s. term inieq. (A.12) simply contains the uncorrelated sum of the self-energies of (B}.(t))
and ( bk(t)), and is the - T"-contribution [22. 75] to the total self-energy of K(t)Bk(t) ). The second
r.h.s. term in eq. (A.12) reflects correlated dynamics of the bra and the ket side of the density operator

T, or pure dephasing contribution) [22. 751. If we rewrite eq. (A. 12) in terms of the variables
Q(k, p, t) introduced in section 3.3, we finally arrive at the phonon contributions in eq. (3.25) with the
self-energy matrix eq. (3.26).

We conclude this appendix by considering the case that the polaritons constitute the system (eq.
A.2b) and we give the phonon-induced self-energies for (Lk(t)) and ( j.A(t) ,(t)). In the approxi-
mation that the polariton transformation coefficients zk, -0, the calculation is very analogous to the
one for excitons, and we just give the final results,

d () = i ,., (k) ( -,(t) , (A. 14a)
ph W ]p

1 ---- lim , IFs(k, q) 12 1Xk- qtIX*kv

(nq)T+ (n, + OT (A. 14b)
(ki+q,- ( ,kv, Qq, M Wk .q, - Wk v + 1 q2 - 17

(d~ < k _ ,.(t) ,k(t) ]pt i .v ,* k )5,.- _,.k (. ,] ; ,() ,,()

+ if' (V [, . ,.,( k. q)- ,..,,(k, V' q)](-,q,.()k qt )

q i"l."  

(A. 15a)
-v ,..(k. V' q) Ji *N k, q) ,(k q)xk,.rk*-q ,,x k , .x k .. q ,..

x( 1 ) T  -7, + 0). (A. I5b)WU'+, -q v Wk - lqv - i oT? ,. - ()k.v + i_, - i r

Note that Eqs. (A.14b) and (A.15b) reduce to the exciton self-energies eqs. (A.6b) and (A.13).
respectively, if all x,, are set to unity, the (summations over) branch labels are dropped. and the
polariton dispersion is replaced everywhere by the exciton dispersion. Equation (A. 15a) for the
two-particle polariton variables can be rewritten in terms of the variables ... ,(k. p. t) introduced in
section 4.2. This leads to the second term in eq. (4.16), with

1(k. P: p. p')--,., ,,( + k12) - v* (p _- kl2)l,, + ,...,(p + k12. p - k2 p' -p)
- , * ,(p - k12. p + k12. p' - p). (A.16)

where , is symbolic for (, ". v'. v,').
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Appendix B. The two-particle Green function

In this appendix, we solve the equation of motion for two-particle coherences within the Haken-
Strobl model. This equation is encountered in sections 3.3 (eq. 3.30). 3.4 (eq. 3.43), 4.3 (eq. 4.22) and
4.4 (eq. 4.30). For explicitness, we adhere to the problem of section 3.3; the other applications are
readily translated to the notation used here-, The equation of interest reads

-iwoQ(p, )=[Uo(p) - (if + y)]Q(p, o)+ (P"/N) Q(p', to) + f(p), (B. 1)

p
where we defined -

J(p) -J( p- k9/2) - J(p + k912). -" (B.2)

The variable kg is suppressed in all quantities, as the equation of motion is trivial with respect to it (k, is
conserved). The w-dependence is indicated explicitly, as this variable is independent of k, in the
time-resolved applications (sections 3.4 and 4.3). Finally, we assumed a general source f(p).

For one-dimensional systems. eq. (B.1) has been solved by Haken and Strobl [881, Reineker [54],
and Garrity and Skinner (551, using eigenvector analysis. In this appendix, we will solve eq. (B. 1) using
the Green function method of ref. [40]. The problem in the equation is the second right-hand side term.
which results from pure dephasing processes (-). In the absence of this term, the equation is diagonal
in p and trivial to solve:

Q0(p, w)- G')(w)f(p). G)(w)=[-iw - i.(p)+ tF+ y]-', (B.3a. b)

and expression (B.3b) is the unperturbed'Green function.
As the perturbation in the full equation (B.1) couples to all momenta p' with equal strength. it

represents a single impurity in the Fourier space conjugate to p. Therefore, the full problem can be
solved through a T-matrix analysis [116]. We use the following Fourier transforms:

Q(m, w) = (1/V Q(p, w) exp(-ip • rm), (B.4a)
P

' 1 Y(p)exp[-ip.(r,,-r,,)J f(m)= .f(p)exp(-ipr,,,). (B.4b.c)
N "p vWN'

Equation (13.1) then translates into

[-E 6,, -i U,, + ([" + y)5,,,, -/ '8,,. J oQ(n, ao))= f(m). (13.5)

The full Green function in coordinate representation is defined by

Q(m. w)=- G,,,J()f(n) . (B.6)
fl

and is now easily found to obey

[ +(F +y),- Fm, 8,O.,rn(W)= , (B.7)
ml~
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Standard T-matrix analvsis with P3, .. 3M as pe rtirbing potential now yields [401

Gm,() G ",,(w) + G Oo(w) G:;,(o)FP1 1 - tG::,(&)J (B.8)

Here, G., is the unperturbed Green function in coordinate representation

Go,(o)) = (I IN)~ G( )(w) exp[-ip -(r, - r (13.9)

[cf. eq. (B.3b)I. The eventual quantity of interest is [see, e.g., eq. (3.29)] EPQ(p, w), which can be
written as:

EQOp, to) = XFN-Q(m = 0, w) = VWN( G:))(w)f(n))[1 - PG:)1 (&)V' (B. 10)

where in the last step we used eqs. (B.6) and (13.8). Using eqs. (B3.3b), (13.4c), and (13.9), we finally
arrive at

P - (TIN) EP.[-iw- ij(p') +F yl

Appendix C. The diffusive limit of the D4WM intensity

In this appendix we derive eq. (3.35) for the D4WM intensity in the diffusive limit [> IJ(p - keI 2)
-J( p + k91I2)1 (for all p) and F> y I. We start from

R~9 Fi + . (C.2a)

where we used the shorthand notation

J( p) = J( p - k9/2) - J( p + kj12). (C.2b)

Straightforward Taylor expansion yields

H(012 - i.(p) + t + ~-1 ~ [+ i(p) ( (P
P - i w1 2 +1'+y, P IwA12 +F't+ Y -W2+ (C.3)

The second term on the r.h.s. vanishes upon summation [EL,.( p) = 01, because .1(p) is the difference of
two lattice Fourier transforms and p runs over an entire Brillouin zone. In the third term within the
r.h.s. summation, we approximate -Wiw1 2 +PF+ -y: . assuming that over the frequency range of
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interest 10,,l F. This will be verified a posteriori.- Substituting eq. (C.3) into eq. (C.2a), we then
arrive at

-iw2 +r + + . "R~kw'= 212 (C.4)Rg,12 iw,2 + y + Dk 1 -i12 + Y -f Dk"

Dk=-(iN) Y, =1(p)I: . (C.5)
p

At this point, it is useful to note that R(k. w) is essentially the Green function for the exciton
population W(k, w) in momentum-frequency representation. This is seen by combining eqs. (3.24b).
(3.32), and (C.2a). In the last form of eq. (C.4), the term I may be neglected relative to the second
term, so that we recognize the Green function for a diffusing particle with diffusion constant D. Thus,
De has the meaning of an exciton diffusion coefficient: in general. D, depends on the wave vector k.
Combining eqs. (C.1) and (C.4) and using D k' </ (because I( p)l < t for all p), we finally obtain

S(k, wo,)= 1 + F(f+ 2y)Iaw2 4 (y + Dek )2 ]. (C.6)

This signal has a Lorentzian resonance with width y + D kg < F, which justifies a posteriori our
assumption that 10121 P in the frequency region of interest.

Appendix D. Effective polariton group velocity in the restricted Haken-Strobi model

In this appendix. we calculate an estimate to the effective polariton group velocity defined through
eq. (4.27) for the restricted Haken-Strobl model. Our system is not isotropic and the polariton
frequency depends both on the direction and the magnitude of its wave vector. In order to obtain a
simple analytical result, we will replace the dispersion relation eq. (4.6a) [with F(k) = 0: strong
polariton effects] by that of transverse polaritons in an isotropic (atomic) system with transition dipole
A. This dispersion relation reads (w is the polariton frequency) [43. 48a, 57]

(kc) 21w = 1 + f /(w 2 -w -(w), (D.1)

with f2 81rplI 21h [cf. eq. (4.6b)]. As mentioned in section 4. 1. f is the frequency separation between
the upper and lower polariton curves at the wave number k,, where the exciton band and photon
dispersion line cross. In practice. f < fl. In eq. (D. 1) an infinite effective exciton mass is assumed and
w. is the transverse dipolar exciton frequency at optical wave vectors (k -0) [48a].

W = (.02 - f /3)1 - - f2/612. (D.2)

We also define the longitudinal exciton frequency 148a],

wil = (922 + 2f 213)1 2 == n + f 2/312. (D.3)

These expressions for o and w, are easily obtained from eq. (3.6) and the approximation to the
dipole sum J(k) given below (eq. 3.17). In the continuum limit for k (N. V- x. NIV= p). we now have
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- ~ d ( 2 V.))d (k) = 2 f dk k-v-p(k). (D.4)

The integral has two contributions: one from the upper branch, extending from k = 0 to k = k0 , and one
from the lower, ranging from k = k,, to the edge of the Brillouin zone (fig. 7). It is convenient to
transform to the frequency as variable.

j dk kv2(k) f dw E(w)(wc)YVp(w). (D.5)

vo,(w) can be found by taking differentials of both sides of the relation

E()o= k& . (D.6)

We then obtain

dw 2cwV ') -
v'(W) = dk e'(w)w2 + 2we(w) E'(Ci)-de/d.. (D.7)

Using eq. (D.1), we arrive at

( 2 - to02)2

(W 2O)2 +f 2  (D.8)

The VE tv) poses no problem as the integration occurs outside the region where E(w) < 0 (the polariton
stopgap ranging from w_ to 0)11).

Combining eqs. (D.1)-(D.5) and (D.8). we arrive at

V , It1 + I,. (D .9a)
wl! .-f 2 o {,: o ) (o o -I

J d w((02  W2 2~3 (
it _ p (d-_ )2 f 2  (D.9b)27T"pc f(W- o- W_+ f "to

W 2(&) -2)3,2 ( 2 - 0 2 )1 2L- 1,dwo, ,):ft (D.9c)

2 W2 (- +f 2 W 2

Here we have used the fact that the upper branch has as lowest frequency w. and the lower branch has
highest frequency wv . The other integration boundaries are determined by the polariton frequencies at
k = k,,. W = W +f/2, where in eq. (D.9b) we approximated w _ +f/2- 0,, +f(1 -f/Of/2= w,i +f/2.
(Use eqs. (D.2) and (D.3) and the fact that f/Q < 1.) As the integration domains are restricted to a
region close to the transition frequency . a resonance approximation can be applied to the integrands.
After straightforward changes of variables, we arrive at
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02 f

1=47rc f dX r (+) (D.I10a)

11; f

4irp f dx - (D.l10b)

As 121 I> 1. a good estimate is obtained from

VP, =I1 +L I- dx (I -- r4 (D. 11)
27roc j X+ (fQ/f)- 217rPC (-T

If we define A0 = 27rcIQl. the vacuum wavelength of the molecular transition, and a the lattice constant,
we finally have (1 - 7r/ 4 - 1/4),

(V c 2 r( f/fl )(a/A,) 3  (D. 12)
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