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I. An Outline of the Research Results 

The present report summarizes the research findings on several fundamental 

problems associated with the mechanical behavior and failure of filament-wound 

composite structures. The main body of the investigation and its conclusions are 

based on the available experimental results of filament-wound tubes of composite 

material systems tested under an internal pressure load. Depending on the 

winding geometry, the end conditions of the tubes, and other factors, different 

failure modes are observed and are preceded by widely different strain paths. 

In most cases, significant deviations from linear strain-pressure relations are 

found at moderate or even low levels of the applied pressure load. A basic 

problem in characterizing and analyzing the nonlinear behavior of a filament- 

wound structure is the determination of the (incremental) constitutive equations 

of a generic filament layer. However, even the formulation of the in-situ 

linearly elastic constitutive relation of the layer from the experimental results 

of tubes subjected to small deformations is not without ambiguity because, due 

to the variations in the process parameters (such as the resin content, fiber 

misalignment and waviness), the elastic moduli of the filament layer as 

calculated from different tube specimens show appreciable, and sometimes even 

substantial, discrepancies. The initial elastic modulus of the filament layer 

along the fiber direction is often found to be lower than the prediction of the 

micromechanical analysis based on the elastic moduli of the constituents. In the 

range of deformation where the composite behavior deviates significantly from 

linearity, the experimental results suggest strong coupling between the 

transverse extensional deformation and the shear deformation (associated with the 

directions parallel and perpendicular to the fibers). This coupling effect may 

seriously affect the solutions of filament-wound structures in the nolinear and 

inelastic range of deformation, but has not been sufficiently recognized in the 

past. 

Depending on the winding geometry, material systems, and the nature of 

loading, filament layers in a composite tube may undergo significantly different 

strain paths in the intrinsic strain space. Failure initiation may occur at a 

low or moderate level of the pressure load, and the specimen may experience 

progressive damage and degradation of stiffness before ultimate failure in a 



particular failure mode. Each distinct failure mode requires a specific 

methodology of failure analysis, which may involve empirical failure criteria, 

incremental macromechanical analysis involving stiffness degradation, 

micromechanical modeling and analysis, and failure criteria of fracture 

mechanics. 

The report includes unpublished material presented in Parts II to V of the 

main text, and published or presented papers attached as Appendices B through H. 

Several important results obtained in the present study are summarized in the 

following. 

(1) A kinematical analysis of the finite deformation of a long layered 

tube, with emphasis on the intrinsic strain measures referred to the material 

axes of the filament layers, is presented in Sees. 2.1 an 2.2 of Part II. 

(2) A discussion of the scissoring action at the fiber cross-over points 

is given in Sec. 2.3. The effect yields a distributed couple moment acting 

between two adjacent filament layers and causes the non-symmetry of the in-plane 

shearing stresses. 

(3) An incremental formulation for the axisymmetric deformation of a long, 

thick, layered composite tube, containing the incremental compliances of the 

successive layers as parameters, is presented in Sees. 2.4 and 2.5. A simple 

solution algorithm is given for the initial linear elasticity problem (Sec. 3). 

(4) Analytical relations involving the winding angle, the intrinsic 

incremental compliance coefficients of the filament layer and the experimental 

data of the strains and the pressure are established in Sees. 4.1 to 4.3. These 

relations may be used to evaluate the initial elastic moduli in the range of 

small strain (Sec. 4.4) and to investigate the incremental shear modulus and 

other incremental stiffness parameters in subsequent, large deformation (Sec. 

4.4). 

(5) A constitutive model for large deformation of a filament layer, 

including the coupling effect between the shear strain and the extensional strain 

perpendicular to the filament direction, is proposed. It is shown that the model 

reconciles the significant difference in the shear stress/shear strain relation 

between the experimental results of the open-end and the closed-end tubes with 

the ±45° winding angle (Sec. 4.5 to 4.8). 

(6) An analysis scheme is given for the incremental solution of nonlinear 

problems of filament-wound structures, based on the presently proposed nonlinear 



constitutive model of the filament layer (Sec. 4.9). 

(7) A theoretical analysis is presented which demonstrates that, for a 

unidirectional composite consisting of isotropic matrix and transversely isotro- 

pic fibers, the micromechanical problems for determining the gross elastic moduli 

from the constituent properties can be transformed to plane-strain, two-phase 

elasticity problems involving a fictitious isotropic fiber region, with possible 

discontinuous displacement data across the interfaces (Part III, Sees. 1 to 5). 

(8) A two-dimensional boundary-element method is developed for efficient 

and accurate solutions of the transformed, two-phase elasticity problems asso- 

ciated with the determination of gross composite moduli, based on the existing 

two-dimensional boundary-element-analysis computer codes for a single isotropic 

elastic medium. A unique and appealing feature of the solution scheme is that 

all boundary conditions, symmetry conditions and interface continuity and jump 

conditions are treated in a unified and systematic way, allowing significant 

simplification in the implementation of the boundary-element methed (Sees. 6 to 

8) .  A FORTRAN program MICROBEM is written and listed in Appendix A of this 

report. 

(9) Numerical results of gross composite moduli are obtained by the 

boundary-element method and found to be in excellent agreement with existing 

elasticity solutions using serious expansions. The effects of the fiber-volume 

fraction and of the Poisson's ratio of the resin material are investigated (Sec. 

9) .  Suggestions for further research on the problems of nonlinear composite 

behavior are mentioned (Sec. 10). 

(10) Experimental data on the failure processes of filament-wound tubes 

with different winding angles and end conditions are reduced to plots of the 

intrinsic strains and the areal expansion ratio of the filament layer versus the 

pressure load (Sec. 4, Part IV). Two broad categories of failure processes, 

corresponding to the shear and expansion modes of failure, are identified. 

Various failure mechanisms that may operate in each mode are associated with the 

different types of strain histories preceding the final failure (Sec. 3). An 

analysis of the deformation of the fiber net without the resin material yields 

useful suggestions concerning the nature of the failure process (Sec. 2). 

(11) Micromechanical analyses of fiber-matrix debonding are conducted by 

using a simplified, plane-strain analytical model considering the fibers as rigid 

media.  Solutions to the problems of transverse strain and shearing strain, 
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corresponding respectively to relative displacements of two neighboring fibers 

in the transverse and axial directions, are obtained by the boundary-element 

method. A boundary-element code is developed for the present class of problems 

which uses linear shape functions in the elements and exact elementwise 

integration. The displacements on the crack boundary are solved and the strain- 

energy-release rates associated with disbond growth are calculated by the method 

of crack-closure integrals (Sec. 5). 

(12) Similar micromechanical analysis is conducted for an oblique matrix 

crack between two adjacent fibers. Boundary-element solutions are computed for 

cracks with the inclination angle varying from 15° to 75°. For each inclination 

angle, the strain-energy-release rates are evaluated and compared between the two 

cases depending on whether the fiber-matrix interface has or has not a short 

disbond at the reentrant corner where the interface intersects the oblique matrix 

crack (Sec. 6). 

(13) An analysis of a possible failure mode due to the separation and 

growth of a helical face layer from the interior surface of the filament-wound 

tube is mentioned in Sec. 7, and with details presented in a published paper 

attached as Appendix C. The work provides an analysis of an apparently puzzling 

mode of failure observed in pressure testing of certain filament wound tubes 

under the open-end condition. 

(14) A general analysis of buckling and postbuckling deformation and growth 

of a thin, two-dimensional delaminated layer in a composite laminate is presented 

in a sequence of two papers attached as Appendices D and E. Delamination is a 

prevalent mode of failure in composite laminates and filament-wound structures 

are prone to local delamination failure in regions subjected to compressive 

service loads. 

(15) A stress-function based, variational analysis of the free-edge 

interlaminar stress problems associated with the ends and openings of a composite 

structure is introduced in Part V. The methods of analysis and the analytical 

results are developed for the case of mechanical loading in a paper attached as 

Appendix F, and suggested for the case of thermal loading in the two papers 

attached as Appendices G and H. Free edge interlaminar stresses in layered 

composite structures can initiate delamination failure. The present analysis 

method yields highly efficient solutions with an accuracy comparable to elaborate 

finite-element solutions using refined mesh. 



II. Linear and Nonlinear Behavior of a Filament-Wound Composite Tube 

1. Introduction 

In producing a filament-wound composite structural component, continuous 

filaments are laid down upon a rotating rigid mandrel by a feeding head which 

traverses back and forth along the axial direction. In some cases the mandrel 

undergoes both rotational and axial motion while the feeding head remains 

stationary. In each pass of the feeding head, a thin band of filaments is laid 

upon the surface of the partially finished product in a direction making an angle 

a with respect to the meridional direction. For a general axisymmetric filament- 

wound component, the angle a varies continuously during the forward or backward 

pass. In the special case of a circular cylinder, a remains constant in each 

pass but undergoes a discontinuous change when the relative axial motion reverses 

the direction. Cylinders may be formed of only filaments wound at ±a angle, or 

they may have additional circumferential and longitudinal windings to enhance the 

strength for various cases of loading. 

The band of filaments laid down in a single pass of the feeding head often 

consists of more than one layer of filaments in the thickness direction. Within 

the band the parallel filaments form a helical pattern and are more or less 

evenly distributed. This is ensured by applying a suitable tension in the 

filaments and, in the production of large components, by feeding the filaments 

through a series of rollers to produce desired wide tapes of uniform quality. 

For several filament-wound structural components composed of the same 

filament-resin material system and produced under the same winding process, the 

fundamental structural unit for the analysis of the mechanical response is the 

thin band of res Li-impregnated filaments laid in a single pass of the feeding 



head. These thin bands are analogous to the unidirectional laminae in a laminate 

of fiber-reinforced composite. The mechanical behavior of the thin band and its 

strength is determined by the material system and the winding and curing process. 

When these bands are laid at predesigned angles to from the filament-wound 

structure, the response behavior and the strength of the structure can be 

calculated in terms of the properties of a generic band and the geometry of 

winding. 

One complicating factor in the case of a filament-wound composite, when 

compared to a laminate formed by unidirectional laminae, is that the cross-over 

of two adjacent bands with different winding angles can produce local effects on 

the stresses in a filament-wound structure. However, if there are a large number 

of band layers across the thickness of the structure, and if the winding process 

ensures a fairly uniform distribution of the cross-over regions within the 

structure, then the local stresses due to the cross over of thin bands have 

insignificant effect on the gross stiffness properties of the composite 

structure, although they may have significant effects on its strength. In such 

a case, the filament-wound structure may be modeled analytically as a curved 

laminate, which is neatly divided into a sequence of thin laminae or layers. 

Each layer is actually patched up from parallel bands of resin-impregnated 

filaments introduced in the same or different passes of the feeding head. The 

layer has a winding angle a different from the two adjacent layers (which often 

have the winding angle -a), and a is either constant or changes continuously on 

the surface of the layer. In fact, this simplified model is almost universally 

adapted in the existing analytical studies of filament-wound structures. 

However, in the analysis of a filament-wound structure, the mechanical 

properties of a layer is often less consistent than those of a lamina in a 



laminate. Due to the nature of the winding process, it is more difficult to 

avoid misalignment and uneven distribution of fibers, variations in the resin 

content and the degree of fiber waviness, as well as the curing residual stresses 

in filaments and the resin material. The constitutive relation of a filament 

layer as determined from the properties of the filament and the resin phases by 

a micromechanical analysis may be, and has been found to be, significantly 

different from the in situ behavior of the layer in the composite, because the 

micromechanical analysis usually ignores the deviation from perfect geometry and 

the effects of the residual stresses. These deviations and the variations of the 

process parameters are more significant in the products produced by filament 

winding, than in the laminates made of unidirectional coupons. 

A program to directly determine the in situ constitutive behavior of a 

filament layer from the experimental testing of filament-wound tubes is 

attractive because the test results implicitly include the effects of certain 

process variables which are not easy to identify or to evaluate and which may 

significantly affect the final product. Such experiments are, furthermore, the 

only means to investigate the various failure modes and failure processes of 

filament-wound components. For simplicity of analysis and testing, long tubes 

with open or closed ends and consisting of alternating +a and -a filament layers 

are tested under an increasing internal pressure load, with or without using a 

rubber liner to contain the leakage of fluid from the tube wall. Analysis of the 

experimental results indicates that most tubes begin to behave nonlinearly at a 

relatively low pressure load. This is followed by several different deformation 

patterns, depending essentially on the winding angle and the end condition of 

testing, which lead to different modes of failure. The nonlinear response of the 

tube in an early stage of pressure loading has important implications for the 



design of filament-wound structures. The nonlinearity is largely, but not 

entirely, associated with the large shear deformation of the resin material 

between neighboring filaments. Small or moderate tensile strain of a filament 

layer in the direction transverse to the fiber direction may cause microcracking 

of the resin material and thereby progressively degradate the stiffness of the 

layer. 

An analysis of the existing experimental data indicates that the testing 

results of thin filament-wound tubes with different winding angles under 

different end conditions may yield different in-situ elastic stress-strain 

relations of a filament layer under infinitesimal deformation. This is not 

surprising because in at least two comprehensive and detailed sets of 

experimental results (Hull, D. , Legg, M.J. and Spencer, B., "Failure of 

glass/polyester filament wound pipe," Composites, Vol. 9, pp. 17-24, 1978 and 

Spencer, B. and Hull, D., "Effect of winding angle on the failure of filament 

wound pipe," Composites. Vol. 9, pp.263-271, 1978; Uemura, M. and Fukunaga, H., 

"Probabilistic Burst Strength of Filament-Wound Cylinders Under Internal 

Pressure," J. Composite Materials. Vol. 15, pp. 462-480), there are appreciable 

and even substantial discrepancies in both the measured axial strain and the 

measured circumferential strains among supposedly identical tube specimens under 

the same pressure load. While other reports sometimes claim good agreement 

between the test results and the prediction of the elastic response of a filament 

layer from constituent elastic properties, such reports do not include sufficient 

test data (corresponding to tubes with identical or different winding angles 

under both the closed-end and the open-end conditions) to show the consistency 

of prediction. The apparently significant variations in the specimen and the 

resulting differences in the elastic properties of the filament layer suggest 
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that, for a particular type of filament-wound structure, the constitutive 

properties of a generic filament layer can be ascertained only to within an 

appreciable margin of error by repeating experiments on several specimens and 

calculating the average properties and their standard deviations. 

The response of the filament layer in the nonlinear range of deformation 

is characterized by the dependence of the intrinsic stress components relative 

to the filament and transverse directions, al, oz and r12, upon the history of the 

corresponding intrinsic strain components elt t2 and -y12. Because of the limited 

types and ranges of deformation histories attainable in tube experiments, such 

experiments cannot provided the complete information of the material behavior 

needed to formulate the general inelastic constitutive equations of a filament 

layer. However, the experimental data may be used to provided constitutive 

equations with a limited range of applicability, i.e., intended for those 

applications in which the filament layers in a structure are subjected to 

deformation histories similar to those experienced in tube tests. It is with 

this objective in mind that we investigate, in this chapter of the present work, 

the kinematics and mechanics of deformation of a filament-wound tube which 

generally involve large intrinsic shear deformation of a filament layer. It is 

found that the experimental results of a tube with ±45° winding angles provided 

sufficient information for determining the initial intrinsic shear modulus G12 

referred to the material axes of the layer, as well as the incremental modulus 

in the subsequent states of deformation. The results also provide an additional 

relation among the initial or incremental compliances 1/Ej, 1/E2 and ^^/Ei- 

Additional relations among the initial compliance coefficients may be obtained 

from the experimental data of tubes with different winding angles or different 

end conditions.   Assuming linearity of the layer response in the filament 



direction, one may use the experimental data of filament-wound tubes to formulate 

an empirical constitutive equation involving two nonlinear material functions, 

and it is found that the test results under the open and closed end conditions 

yield material functions that are in approximate agreement. 

Once the nonlinear or incremental constitutive equations of the filament 

layer have been formulated by a combination of theory and experiment, the 

equations can be applied to filament-wound structures to predict its response to 

external loads. Integration of the expressions of the incremental stresses (in 

terms of the incremental strain field in each filament layer) across the 

thickness of a filament-wound structure yields the dependence of the incremental 

force and moment resultants on the increments of the middle-surface strains and 

the curvatures of the composite shell These incremental relations are updated 

in each stage of the solution process to obtain the solution for the next step 

in terms of the results of the preceding step and the incremental load. 

2. Deformation of a filament-wound tube under internal pressure 

2.1 Finite deformation of a filament-wound tube 

Consider a thin filament-wound tube with alternating layers of filaments 

oriented at +Q0 and -aQ angles with respect to the longitudinal axis of the tube. 

Assume that the tube is subjected to a uniform internal pressure p. with or 

without an accompanying axial load, so that the stress and strain in the tube are 

independent of the axial and circumferential coordinates z and 6, at least in a 

section of the tube away from the two ends. In each layer of filament, we define 

(local) orthogonal material axes 1 and 2 along and perpendicular to the 

tangential direction of the filament. Then the extensional strain along the 

filament direction, ex  , is small if the longitudinal elastic modulus of the 
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filament is significantly greater than the elastic moduli of the resin material. 

In this section, we restrict our attention to the special case in which the 

tube deforms without twisting, so that the longitudinal and circumferential 

material lines are mapped into the corresponding lines of the deformed tube. 

This condition is approximately valid if the tube has an equal number of layers 

with +a and -a winding angles and if it is subjected to no twisting moment. More 

general deformations including the twisting effect are considered in Sec. 2.2. 

A pair of neighboring filaments in a filament layer with the winding angle 

+Q0, and another pair of neighboring filaments in a layer with the winding angle 

~a0, form a rhombus. In the undeformed state, the diagonal length of the rhombus 

along the axial direction of the tube is 2L cos a0, and the diagonal length along 

the circumferential direction is 2L sin Q0. After deformation, these diagonal 

lengths change to 2L(l+c1)cos a and 2L(l+e1)sin a, respectively, where a is the 

winding angle in the deformed state (Fig. 1). The stretches (i.e., the ratio of 

the deformed curve length to the initial curve length) in the axial and 

circumferential directions of the tube are given by 

A2 - (2L(1+C!) cos a)/(2L cos a0)   - (1+Cj) cos a /cos a0 

\e  - (2L(1+€1) sin a)/{2L sin a0) - (1+ci) sin a /sin a0     (2.1) 

Hence the ratio of the deformed area of the rhombus to the initial area is 

\z  \e  - (1+Cl)
2 sin 2a  /sin 2a0 . (2.2) 

This area ratio must be equal to the product of the stretch along the filament 

direction, l+elf and the stretch along the perpendicular direction, l+e2 . It 

follows that 

l+e2 « (1+Ci) sin 2a /sin 2a0 . (2.3) 

While the extensional strains et and tz  are usually small in the states of 

deformation before failure of the tube, the resin matrix between two neighboring 
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Fig. 2: Change of the angle between two material 
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fibers may be subjected to a very large shear deformation. In a filament-wound 

layer, material lines initially perpendicular to the filaments become non- 

orthogonal to the deformed filaments. The reduction in angle, -yl2 , may be 

determined by considering the deformation of the right triangle ABC in Fig. 2a 

into the triangle A'B'C in Fig. 2b. Here the undeformed material lines AB and 

AC are along two adjacent sides of an undeformed rhombus, and the deformed 

material lines A'B' and A'C are along the corresponding sides of the deformed 

rhombus.  Using the relations 

A'C - (1+€X) AC,       A'B' - (l+€i) AB,       AC - AB COS(TT-2Q0) , 

A'D' -A'B' cos(7r-2a),        B'D' -A'B' sin(*-2a) , 

where D' is the orthogonal projection of the point B' on the line A'C , we obtain 

CD' - A'D'-A'C - (1+Ci) AB (cos(w-2a) - COS(TT-2Q0)} 

- A'B' {cos 2a0 - cos 2a), 

Substitution into tan y12 - C'D'/B'D' yields the following result 

tan 712 - (cos 2Q0 - cos 2a)/sin 2a . (2.4) 

Although 712 is not a tensorial component of a finite strain tensor with 

respect to the orthogonal axes 1 and 2, it may be used as a measure of the in- 

plane shear deformation of the filament layer. Equation (2.A) indicates that, 

for the type of deformation considered here (without twisting and uniform in each 

r-0 surface), yl2 depends only on the initial and deformed winding angles a0. 

From Eq. (2.1) we obtain 

Ar
2 cos2a0 + V sin2a0 - (1+c,)

2 . 

Hence the extensional strains e1  and c2 
are given by 

fx - (A2
2 cos2a0 + Xe

2  sin2a0 )1/2 - 1 , (2.5) 

e2 - A«A#/<l+«i> ~ 1 - A,A»U«2 COS2Q0 + Aö
2 sin2a0 )"

1/2 - 1 

- (Az
2 cos2a0 + Ae

2 sin2a0 )1/2 (sin 2a / sin 2a0 ) - 1 .    (2.6) 
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The expressions on the right hand sides of Eqs. (2.4)-(2.6) involve only the 

axial and circumferential stretches, Az and Xe , and the initial and deformed 

winding angles. The constant axial stretch A2 in the tube and the values of a 

and Ae on the exterior surface of the tube may be directly measured in tube 

experiments. If the thickness-to-radius ratio of the tube is small, then a and 

Xe vary only slightly across the thickness of the tube, so that the values of 

these quantities in the interior region of the tube may be approximated by the 

measured values on the exterior surface. 

From eliminating (1+Cj) from Eqs. (2.1) and (2.2), we obtain 

(Az cos a0)
2 + (Afl sin a0)

2 - XzXe  sin 2a0/sin 2a = 0. 

This relation among the three measurable quantities Az, Xe  and a is a consequence 

of the assumption that the tube experiences no twisting deformation.  If this 

assumption is removed,  then A,.,  Ae and a become independent kinematical 

variables. 

The measured data of Q, AZ and Xe determine the intrinsic strains of a 

filament layer with respect to the material axes of the layer according to Eqs. 

(2.4)-(2.6), and the latter strains determine the intrinsic components of stress 

through the (generally nonlinear and inelastic) constitutive equations of the 

layer. The constitutive equations are needed to solve the successive states of 

deformation and stress in the tube under increasing loads. Conversely, 

experimental data of the relation between the load and deformation may be used 

to infer the constitutive equations of a filament layer referred to the intrinsic 

axes 1 and 2. A major concern in the following analysis is the determination of 

the constitutive behavior, both in linear and nonlinear range, of a filament 

layer from the experimental data of filament wound tubes with various winding 

angles. 
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2.2 The strain field 

In a thick tube of mean radius R* and thickness t, subjected to a uniform 

internal pressure load, the stress components depend on the radial coordinate r, 

but are independent of the coordinates z and 0 (Fig. 3). In the absence of body 

force, the equilibrium equations reduce to 

d(r ar)/dr = ae, d(r2 rr(?)/dr - 0,       d(r rr2) = 0.     (2.7) 

The last two equilibrium equations together with the traction boundary conditions 

rrfl " Trz " 0 on the outer surface r - R*+t/2 yield the following result in the 

entire tube: 

're " rrz  - 0. (2.8) 

This implies that the radial direction is a principal direction of stress. Since 

the layers are composed of orthotropic material and the radial direction is an 

axis of orthotropy, it follows that the same direction is also a principal 

direction of strain. While the validity of this conclusion requires the 

orthotropy of layers, it is not dependent on the material response being elastic 

or linear. 

Since the radial direction is a principal direction of strain, and the 

intrinsic components of strain are independent of the coordinates z and 8, the 

deformation of the tube is characterized by a finite strain field whose right 

Cauchy-Green tensor (for the definition of this tensor see Truesdell, C. and 

Noll, W., Non-Liner Field Theories of Mechanics. Encyclopedia of Physics. Vol. 

III/3, Springer-Verlag, New York, 1965, p. 53) has the form 

C - Ar
2 ir ir + \z

2 k k + \e
2 \e ie + fi (ie k + k \e), (2.9) 

where {ir, \e, k) is the orthonormal set of cylindrical base vectors at the 

undeformed position of a material element. 

The cylindrical surfaces r - constant are material surfaces.  That is, 
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Fig. 3: Coordinate system for a composite tube 

Fig. 4: Finite deformation of a surface element 
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filament sheets of initial radius R deform into cylindrical surface of radius r 

- f(R).  We have 

\e  = r/R - f(R)/R ,    Ar - dr/dR = f'(R). (2.10) 

A region in an undeformed filament layer bounded by a pair of axial material 

lines and an orthogonal pair of circumferential lines deforms into a region 

bounded by two intersecting pairs of helices in the deformed filament layer (Fig. 

4). For a complete tube, the uniqueness of the axial displacement (i.e., the 

axial displacement at 6 - 0 must agree with that at 6 ■= 2n) requires that the 

deformation maps circumferential material lines in an undeformed filament layer 

into circumferential material lines in the deformed filament layer. Hence the 

deformation gradient tensor has the form 

F - Ar er ir f A2 k k + xB ed i9 + D ee k, 

= f(R) er ir + A2 k k + (f(r)/R) efl iB + D ee k, (2.11) 

where {er, e9, k} is the orthonormal set of cylindrical base vectors at the 

deformed position. The last equation characterizes the finite deformation of the 

tube in terms of the deformation parameters A2 = l+ez and D and the radial 

deformation function r - f(R). 

Notice that while the analysis of Sec. 2.1 was based on the assumption of 

vanishing twisting deformation, the finite deformations considered in this 

section are not subjected to that restriction. 

2.3 Scissoring action between the filaments of alternating layers 

In the preceding analysis, we obtained kinematical results referring to the 

deformation of the tube as a homogeneous continuum. The kinematical tensor C 

and F given Eqs. (2.9) and (2.10) are macromechanical quantities that 

characterize the averaged deformation of the fiber phase and the matrix phase in 
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a volume element of the composite material. The actual deformation of the two 

phases at the micromechanical level is very complex. The macroscopic shear 

deformation 712 i-s often contributed largely by severe shearing in the narrow 

matrix region between adjacent filaments on the same cylindrical surface r = 

constant. Likewise, the macroscopic strain e2 generally has uneven contributions 

from the fiber and matrix phases. These considerations are important for 

understanding the physical factors affecting the gross response of the composite 

material. However, most aspects of the deformation at the micromechanical level 

need not be scrutinized if the objective is to formulate gross constitutive 

equations of the composite material using a phenomenological approach, and if the 

two phases constituting the composite are d1" r ■. riovted in a regular or continuous 

pattern in a volume element of „he size comparable to a finite element for 

subsequent macromechanical ai.alysi" 

In filament-wound structures, the density and orientation of the filaments 

is either constant or varies continuous within certain strips of each filament 

layer. Across the thickness direction of a filament-wound vessel, the 

orientation of the fibers has a sequence of discontinuous changes. Therefore, 

while macroscopic averaging of the stresses and strains of the two phases is 

legitimate with respect to the in-plane coordinates of a filament sheet, it 

should be examined and used more carefully with regard to the thickness 

direction. In fact, if two adjacent filament layers have initial winding angles 

± a0 and deformed winding angles ± a, then the filaments of one layer rotate 

relative to those of the other layer during the deformation. This relative 

rotation of two crossing fibers has no direct effect on the matrix material in 

the interior of the filament layers (that is, in the region away from the skins 

of layers) , but it introduces a severe shearing strain 7r^ in the thin and small 
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matrix region between two crossing fibers near the point of crossing, where r is 

the thickness coordinate and <f> is associated with the circumferential direction 

of a polar coordinate system (p, 4>) with the origin at the point of crossing. 

This scissoring effect at the crossing points of fibers effectively results in 

a distributed couple moment accion (i.e., a couple stress) from one filament 

layer to the adjacent layer with the opposite winding angle (Fig. 5). The effect 

of the couple moment action tends to reduce the relative orientation angle from 

2a towards the initial value 2a0. If we consider a rectangular element of area 

AA, taken from one filament sheet with the orientation angle +a, which contains 

only one fiber crossing point and which has the edges parallel either to the 

global coordinate axes z and 8 or to the material axes 1 and 2 (Figs. 6a and 6b, 

respectively), then the upper and lower faces of the element are each subjected 

to a clockwise couple moment m0AA which tends to restore the deformed orientation 

angle a to the original angle aQ. The moment equilibrium of the element requires 

that these two moments be balanced by a counterclockwise moment of the magnitude 

2m0AA, which can only be produced by the macroscopic shearing stresses TZS and 

T0Z in Fig. 6a or by the macroscopic shearing stresses r12 and r21 in Fig. 6b. 

It follows that the macroscopic stress tensor ai;J for a filament layer cannot be 

symmetric, and the differences in the two in-plane components of the shearing 

stress are determined by the distributed couple moment m^ between the adjacent 

layers according to 

T12 " T21 " Tz6   ~   T6z   " 2mo- 

It is reasonable to make the constitutive assumption concerning the 

scissoring action that the distributed couple moment m0 depends essentially on 

the change in the orientation angle, a-aD, i.e., for a given Q0, m0 is 

essentially a function of a.  For deformations of filament-wound tubes without 
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Fig. 5: Scissoring action at a filament cross-over 

point and the resulting distributed moment between 

adjacent filament layers 

T, vz 

WoAA 

(a) (b) 

Fig. 6: Moment equilibrium of a layer element under 

non-symmetric shearing stresses and the distributed 

moment 
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twisting, Eq. (2.4) indicates that a depends only on the shearing strain y12. 

Consequently, the non-symmetry of the in-plane shearing stresses, r12 - r21> 

depends essentially on -yl2 only (the functional relationship is determined by the 

initial winding angle a0). This conclusion implies that, in formulating the 

gross constitutive equation of a filament layer, no additional kinematical 

variable need be included. The three intrinsic stress components olt o2 and r12 

are determined constitutively by the histories of the three strain parameters e,, 

c2 and 712- The stress tensor is generally not symmetric and the difference in 

the in-plane stress, T12 - T21, depends essentially on j12. 

Although the consideration of the scissoring effect around the fiber cross- 

over point does not introduce additional kinematical variable in the (nonlinear) 

constitutive equation of a filament layer, the severe shear deformation of the 

resin material in the cross-over region may constitute an important dissipative 

mechanism with significant effects on the inelastic behavior of the layer. 

2.4 Infinitesimal and incremental deformation 

The characterization of special axisymmetric deformations of a tube (i.e. , 

axisymmetric deformations that are also independent of the axial coordinate z) 

given in Sec. 2.2 reduces, in the case of infinitesimal deformation, to the 

following expression for the infinitesimal displacement functions along the 

axial, circumferential and radial directions 

u7 - z €z   ,      ue  - D r z , w - w(r) .     (2.12) 

Naturally, rigid-body displacements may be superposed without affecting the 

stress in the tube. 

A finite deformation may be decomposed into a series of incremental 

deformations. The displacement functions in each incremental step have the form 

given in Eq. (2.12).  The components of the incremental strain are At2, A«e - 
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Aw(r)/r and A7fl2 - AD r, where Aw is the incremental radial displacement. 

Let Acx and Aa denote small changes in the filament strain and in the 

deformed winding angle resulting from an increment in the load. Then, by 

differentiating Eq. (2.3), we obtain the following relation for infinitesimal 

increments 

A€2 •= (sin 2a /sin 2a0) {A^ + 2(1+^) ctn 2a Aa} . (2.13) 

In an advanced stage of deformation of a tube with relatively stiff filaments, 

the filament strain increment A«! is usually small compared to the angle 

increment Aa. Then the algebraic sign of (cos 2a /sin 2a0)Aa determines the 

algebraic sign of Ae2 • The sign of Ac2 determines whether the spacing between 

the neighboring filaments increases or decreases in continued loading, and has 

a significant effect on the failure mode of the tube. 

2.5 Linearized or incremental constitutive relation 

At each step in the loading process, the stress and strain increments in 

each layer are related by the incremental constitutive relation: 

C  A€z^ 

Aefl 

r a 

> 

11       d12       rf13       d16 

l12       d22       d23       d26 

l13       d23       d33       d36 

l16       «26       d36       d66 

f äa* \ 

< y 
Aor 

r^Uz) 

(2.14) 

where [a^] is the incremental compliance matrix of the particular layer. Since 

the layers are very thin, the dependence of a^ upon the radial coordinate r 

within each thin layer due to slight variation of the stress history in the layer 

may be neglected. Consequently, at each stage of loading, we regard the 

incremental compliance matrix as a constant matrix within each layer. The matrix 

may vary from layer to layer due to different stress and strain histories of the 

layers. 
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Equation (2.14) may be partially inverted to yield expressions of Aee, AeT, 

Aaz and Aröz in terms of Ao&, Aar, Ae2 and Ay6z - AD r. We adopt the notation of 

Lekhnitskii 

ßij - aij ~ aii aji/au for i,j  * 1. (2.15) 

From the  first row of Eq.   (2.14)  we obtain 

Aaz «   (A€2 - a12 Aoe - a13 Aor + a16 Are2)/an. 

Substitution into  the  last  three  rows of Eq.   (2.14)  yields 

Ae9 «   (a12/an)A€z + ßzz Aoe + ß13 Aor - ßze ATBZ, 

Acr -   (ai3/an)A€z + ß,3 Aae + ß32 Aar - ß36 AT$Z, 

- Mez -   (ai6/an)A£z + £26 A^e + ßis Aar - 066 ATSZ. 

By eliminating Aröz  from  the   last   three  equations  we   obtain  the  expressions  of 

Aee and A€r in terms of Aez,   Aae,   Aar and A7Ö2 - AD r.     Corresponding expressions 

can be  subsequently obtained for Aröz and A<7Z.     The  results are 

Aw/r  - Ae6  -   (r2  Aez  +  *  Aa9   )/r,  -  S  Aar  /Tl   -  AD   (ßZ6  /ß66)r, (2.16) 

d(Aw)/dr - Acr -   (a13 a66 - al6 a36)   Aez  /rl  +   (/923 ß66 - ßz6 ß36)   Aoe  /ß66 

+   (£33 066 - 0362)   Aor /ß66 - AD   (ß36 /ß66)r, (2.17) 

Arflz -   (a16 Acz /an + AD r + ßZ6 Aoe + ß36 Ao,)/ß66   , (2.18) 

Aaz -   {a66 A£z + a16 AD  r - T2 Aoö + T3 Aar)/Tl. (2.19) 

where   the  symbols  Tlt   Tz,   T3,   4> and * are  defined by 

Tx - anß66 - ana66 - a16 , 

f2 - a12 a66 - a15 a26, 

r3 - ?i6 a36 - a13  a66, (2.20) 

* -  an   (ßZ6 ß36 -  ßZ3 ß66) , 

* - an   (ß?z ß66 - ß26
2) 

Substituting Eqs. (2.16) and (2.17) into the compatibility equation 

Aer - d(r Acfl)/dr, 
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and making use of the first equilibrium equation for the incremental stress, 

d(r Aor) - A<7e, we obtain the following differential equation 

d2(r Aar)/d(in r)
2 - A2 r Aar - H AD r

2 - K Ac2 r, (2.21) 

where 

A2   -    (033   066   ~   ß362)/(ß22   066   ~   026*) . 

H - (2 ß26  - 036)/(022 066 - 026
2) . (2.22) 

K - (r2 + r3)/* . 

In the i-th layer, the general solution of the differential equation is 

r Aar - Ai (r/R*)A + B, (r/R*)~A + H AD r2/(4-A2) - K Acz r/(l-A
2), (2.23) 

r ACTö - AAx(r/R*)
A - AB4(r/R*)"

A + 2H AD r2/(4-A2) - K Aez r/(l-A
2), (2.24) 

where the constants Ai may be determined, in terms of the deformation parameters 

AD and Ac2, from the boundary conditions (on the interior and exterior surfaces 

of the tube) of Aar and the continuity conditions of Aar and Acfl across all 

interfaces. The solutions for the radial and circumferential stress increments, 

given by Eqs. (2.23) and (2.24), may be substituted into Eqs. (2.18) and (2.19). 

The resulting expressions for Arez and Aa2 are then substituted into the 

following equations for the increments in the axial force and the twisting moment 

0, (open end tube) 

l*(R* -  t/2)2 Ap,     (closed-end tube)   (2.25) 

AMZ - I II   ArÖ2 r
2 dr dd   - 0, (2.26) 

where Ap is the uniform pressure increment and where the summations are taken 

over all layers. The last two equations determine the deformation parameters AD 

and A*,. 

AFZ - £ JJ ACTZ r dr dJ -j 
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3. Solution of a multi-layer tube in infinitesimal 

or incremental deformation 

An analysis of infinitesimal axisymmetric deformation of filament-wound 

tubes (assuming the deformation is also independent of the axial coordinates z) 

has been presented by Sherrer (Sherrer, R.E., "Filament-wound cylinders with 

axial-symmetric loads," J. Composite Mat.. Vol. 1, pp. 344-355, 1967). 

Additional studies have been performed by Pagano (Pagano, N.J. . "Stress gradients 

in laminated composite cylinders," J. Composite Mat.. Vol. 5, pp. 260-265, 1971) 

and others. The following analysis and its results provide explicit relations 

involving the material parameters and the solutions. These relations provide the 

basis for the determination of certain material parameters from the experimental 

data of filament-wound tubes under internal pressure load. The present analysis 

also suggests a simpler solution algorithm for a filament-wound tube with 

alternating layers. 

3.1 Linearized and incremental problems for a filament-wound tube 

For the linearized problem concerned with small deformations of the tube, 

the elastic compliance coefficients a^ and ßL^ are material constants. For the 

incremental problems associated with large deformation, these coefficients change 

with the local deformation history. In each particular thin filament sheet, the 

coefficients change as deformation progresses. At any stage in the deformation 

of the tube, the compliance coefficients are functions of the radial coordinate 

because the deformation history depends on the radial coordinate. However, in 

the case of a thin tube subjected to a negligible twisting deformation (t/R small 

and D ~ 0), the intrinsic extensional strains ex and e2 
are nearly identical for 

all filament sheets and, with the exception of the sign change from +Q layers to 

-a layers, the intrinsic shear deformation Tr12 are also nearly identical in 
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magnitude. As the deformation continues under an increasing load, the compliance 

coefficients of all +a layers evolve in nearly the same way and they either 

remain equal to or differ only in algebraic sign from the corresponding 

coefficients of the -a layers. The coefficients belonging to the latter type are 

ai6» a26» a36> ßze and ^36- *n tne ~Q layers their values are replaced by -a16, 

-a26. -a36, -ßz& anc* "036- It follows that, in each step of increment, the 

parameters A and K in the differential equations for the incremental problem, Eq. 

(2.21), are the same in all layers, whereas the parameter H of a +a layer is 

replaced by -H in a -a layer. 

If the twisting parameter D is not small, then the preceding remarks 

concerning the relation between the compliance coefficients and the parameters 

X, K and H of the +a and -a layers are only approximately valid in the case of 

infinitesimal deformation but not for incremental deformations in the range of 

large shear strain, because the deformation evolves in such a way that the state 

of strain in a -a layer ceases to be related to that of a +a layer by a mirror 

reflection. 

3.2 Solution of the linearized or incremental problem 

Instead of solving directly for the unknown coefficients AL and 2>i, it is 

convenient to consider Ax, Bx and the jumps of Aj and BA across the interfaces of 

the layers. Let [4>\i denote the jump of <t> across the i-th interface, i.e., the 

interface between the i-th layer and the (i+l)-th layer. Then, using Eq. (2.16) 

and the interfacial continuity of &or  and Aw, we obtain 

[r Aarh - 0 , [r Aae]l - AD r
2 [ß2e]xan/*   . (3.1) 

Substituting Eqs. (2.23) and (2.24) into the preceding equations, we obtain a 

system of equations which yield the following solutions for the jumps [A]4 ■» Ai+1 

- Ai and [B]4 - Bi+1 - Bx: 
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[Ali - AD(r/R*rÄ(r2/2A)(-[H]1(A+2)/(4-A
2) + [02B]iail/») , 

[B]i - AD(r/R#)\r2/2A){[H]i(2-A)/(4-A
2) - [ft6]iail/*) . (3.2) 

These recurrence relations determine all subsequent coefficients A1 and Bx from 

the first two coefficients Ax and B: and the parameters AD and Acz. The last 

four unknowns are solved from the boundary conditions of Aar on the interior and 

exterior surfaces of the tube, and the equations for the axial force and twisting 

moment, Eqs. (2.25) and (2.26). 

A FORTRAN program has been written to implement the linear or incremental 

analysis of a filament-wound tube with the open-end or closed-end conditions 

subjected to a uniform pressure load. Using the elastic moduli of glass/epoxy 

layers suggested in Hull, et al. (Hull, D., Legg, M.J., and B. Spencer, "Failure 

of glass/polyester filament wound pipe," Composites. Vol. 9, pp. 17-24, 1978), 

we obtain, for a four-layer tube with R*/t - 25.75mm/l. 5mm and vanishing Mz, the 

results for the circumferential strain te and the shearing strain -ygz = D R* on 

the middle surface of the tube as shown in Table 1. 

Closed-end tube Open-end tube 

-7.924xl0-3 

-3.681xl0"3 

6.382xl0_3 

16.77xl0-3 

12.70xl0"3 

Table 1:  Comparison of the magnitudes of the circumferential and 

twisting strains in tubes subjected to internal pressure load only 
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a (E1t/pR*)€fl (E1t/pR*)7«I (Eit/pR*) 

35° 2.642 3.66xl0-3 3.283 

45° 2.031 8.37x10-3 2.781 

55° 1.388 14.94xl0-3 2.030 

65° 1.005 16.42x10-3 1.437 

75° 0.853 6.73xl0-3 1.120 



These results indicate that, with a vanishing twisting moment, the shearing 

strain i6z resulting from the twisting parameter D varies from about 0.1% to less 

Chan 2% of the value of circumferential strain on the middle surface. The effect 

of the twisting deformation should decrease as the number of alternating layers 

increases and the thickness of each layer decreases. Furthermore, comparison has 

been made between the stress fields in the preceding solutions associated with 

M2 - 0, and the corresponding solutions with the condition M2 - 0 replaced by D 

- 0.  The differences in the solutions are, typically, only of the order 0.1%. 

The preceding results indicate that, if a filament-wound tube consists of 

equal number of alternati:./ layers with +a and -a winding angles, then the 

twisting deformation remains exceeding small provided that the tube is 

subjected to a varlsning twisting moment. When the parameter AD is set equal to 

zero, Eq. (3.2) yields zero jumps of the coefficients AA and Et across each 

interface. Hence the coefficients are the same in all layers. Furthermore, Eq. 

(3.1) shows that &o0 is continuous across layer interfaces. Indeed, as far as 

the solutions for the radial and circumferential stress increments A<?r and Aae 

are concerned, the present problem for a balanced filament-wound tube with zero 

twisting deformation (D - 0) is exactly the same as that for an equivalent 

homogeneous orthotropic tube. When these stresses are determined, the remaining 

non-vanishing stress increments Aa2 and ArÖ2 are given by Eqs. (2.18) and (2.19), 

with AD - 0. The resulting axial stress increment Aa2 is continuous across each 

interface, while the shearing stress increment ArÖ2 is discontinuous because of 

the jumps of a16, /926 
and 036 across the interfaces. 
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4. Determination of the constitutive equations of a filament layer 

from the experimental results of a pressure-loaded tube 

The solutions of a thin filament-wound tube described in the preceding 

section are extremely useful for the experimental determination of certain 

constitutive properties of a filament layer by direct tests on filament-wound 

tubes. Due to the limited type and range of deformations experienced by the 

filament layers in the tube test, the experimental results and the theoretical 

solutions cannot provide a complete description of the constitutive behavior of 

a filament layer. However, they do provide a great deal of information 

concerning linear and incremental constitutive properties, particularly those 

aspects relevant to similar but more general applications such as axisymmetric 

deformations of a thick tube. 

4.1 Two approximate equalities for a thin filament-wound tube 

If experiments under pressure loading are performed on a balanced filament- 

wound tube with a large radius-to-thickness ratio, R/t, then the axial and 

circumferential stresses may be considered constant in the tube. They are 

approximated by the well known formulae 

&og  - Ap(R/t) , Aaz  - q Ap(R/2t) , (4.1) 

where Ap is the internal pressure increment and q has the values 0 and 1, 

respectively, for open-end and closed-end tubes. Since Aae and the radial 

coordinate r vary only slightly across the thickness of the tube, the equilibrium 

equation d(r Aar) - Loe implies that AaT depends almost linearly on r. Using the 

boundary conditions of Aar on the interior and exterior surfaces (-Ap and 0, 

respectively), we have 

J J Acrr dA - - wRt Ap, 

where the area integral extends over the cross-section of the tube.   By 
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neglecting the terms involving AD in Eqs. (2.16) and (2.19), integrating Eq. 

(2.16) over the cross-section of the tube, and substituting Eq. (2.19) into 

(2.25), we obtain the following approximate equalities valid for a thin tube 

subjected to a vanishing twisting moment: 

Z T2 + * = 0 rx - (t/2R) *, (4.2a) 

Z a66 - T2 - (t/2R) T3 - (q/2) rlf (4.2b) 

where 

Z = Aez (t/RAp),        9 - Aee (t/RAp) (4.3) 

are easily evaluated in terms of experimental data. 

The compliance coefficients aijt and the parameters ßijt Tlt T2, T3, $ and 

*, which are defined in terms of a^ by Eqs. (2.15) and (2.20), are determined 

by the orientation angle of the filament layer and the intrinsic linear or 

incremental stiffness parameters of the layer. These intrinsic stiffness 

parameters are the extensional moduli along and perpendicular to the filament 

direction, Ex and E2, the in-plane shear modulus G12, and the Poisson ratios u12 

and i/23.  We denote 

x* « 1/E,,        y* - 1/E2,        z* - 1/G12, 

u* m Un/Ei'               v* ■ v2z/^2- (4.4) 

Then, 

a66 " - (x*+y*-z*+2u*) (cos 4a)/2 + (x*+y*+zN-2u*)/2, (4.5a) 

1*1 - an£66 - KxV-2u*)z*-4(xV-u*
2))(cos 4a)/8 + (x*-y*)z* (cos 2a)/2 

+ (3x*+3y*+2u*)z78 + (x*yV2)/2, (4.5b) 

T2 - a12a65 - a16a26 - { (x*+y*-2u*)z*-4(xV"u*2) } (cos 4Q)/8 

- (x*+y*+6u*)z78 + (xY-u'2)/2, (4.5c) 

T3 - a16a36 - a13a66 - {(uV)zV4-(uV+vV+uV+u
,2)/2)(cos 4a) 

+ (u*-v*)z*(cos 2a)/2 + (u*+v*)z74 + (uV+vV+uV+u*2)/2, (4.5d) 
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* - a11(^25/336 - 023066)   - -  z4(u*y"-vV+uV-u'2)(cos  2Q)/2 

+  z*(uy+vV+uV+u'2)/2, (4.5e) 

* - ^iiißizß^ ~ ßze2) - (x'y* - u*2)z\ (4.5f) 

4.2 Use of the data from ±45° tube -- Determination of the shear modulus G1? 

We now consider the task of determining the material moduli E,, £2, ^12 • "12 

and u23 (or, equivalently, x*, y*. z*, u* and v*) from the experimental results 

of filament-wound tubes with various winding angles ±a undergoing linear elastic 

deformation. The tubes are assumed to be under an internal pressure load and 

both the open-end condition and the closed-end condition will be considered. By 

substituting the expressions of Eq. (4.5) into Eqs . (4.2a) and (4.2b), we obtain, 

for each winding angle, two equations for x*, y*, z*, u* and v* in the case of 

open-end test, and two more equations in the case of closed-end test. Additional 

sets of equations for the five materiel parameters may be obtained by testing 

filament-wound tubes with different winding angles. These equations provide 

conditior_> for determining the material parameters. 

Of particular interest is the system of equations corresponding to a - 45°. 

For this winding angle Eq. (4.5) reduce to 

a66 -= x*+y*+2u\ (4.6a) 

T1  « (x*+y*+2u*)z*/4 + x*y* " 
u*2- (4.6b) 

T2 - - (x*+y*+2u*)z*/4 + x*y* " 
u*2. (4.6c) 

T3 - u*y*+v*x*+uV+u*
2, (4.6d) 

$ - z*(u*y*+v*x*+u*v*+u*2)/2 , (4.6e) 

* - (X*y* - u*
2)z\ (4.6f) 

Substitution into Eq. (4.2) yields 

4(l+(Z-e)/z')(xy-u*2) - (Z+0) (x*+/+2uV(t/R) (u'y'+v'x'+u'vV2) ,  (4.7a) 

(2+q)(xV-u*2) - {2Z+(2-q)*z74)(xVy#+2u*)-(t/R)(uV+vV+uV+u*2) . (4.7b) 
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Taking the difference of the last two equations, we have 

{Z - 6 + (2-q)z*) (4(xV-u*2)/z* + x*+y*+2u*} - 0. 

Using the definitions of x*, y* and u*, one can show thac the second factor of 

the left-hand side of the last equation is positive. Hence the equality requires 

that 

1/G12 - z* - 4(6-Z)/(2-q) |^/A. (4.8) 

Substitution into Eq. (4.7b) yields 

(2+q)(xY-u*2) - <Z+e)|a^,/fc(x*+y*+2u*) - (t/R) (u'yVxVvV
2) .   (4.9) 

For a tube with a small thickness-to-radius ratio t/R, one may neglect the 

term involving the factor t/R in Eq. (4.9) in comparison with the remaining terms 

(to a certain extent, this approximation is implicit in Eq. (4.1)). This yields 

the approximate result: 

(xV-u*2)/(xN-y%-2u*) - p  - (Z+e)/(2+q)|a^/4. (4.10) 

The last equation yields an expression of u* in terms of x* and y*: 

u*  - {(x*-p)(y*-p))1/2 - p. (4.11) 

Since the expressions of Eqs. (4.9) and (4.10) involve only the 

experimental data measured from a particular test specimen (with a - ±45° and 

with a specific fiber content) at a particular stage of the deformation process, 

they may be used to determine the values of z* and (x*y*-u*2)/(x*+y*+2u*) at that 

stage of deformation. This is in contrast to the task of determining the 

remaining material parameters, which require, in addition, data taken under 

different test conditions or from other tubes with different winding angles. 

Those other specimens have different stress and strain histories. Hence their 

incremental moduli do not evolve in the same manner as the incremental moduli of 

the tube with ±45° winding angles. Therefore, the incremental shear modulus G12 

and the relation (4.11) among the incremental compliances x*, y* and u* 
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associated with the deformation of ±45° tubes generally cannot be combined with 

the relations among the incremental compliances associated with the experimental 

results of tubes with different winding angles to yield a complete set of 

equations for determining all incremental compliances. A method that can be used 

to circumvent this difficulty, at least to a certain extent, is by first 

subjecting several identical tubes with the same winding angle (not equal to 45°) 

to the same load history, and subsequently impose incremental loads of different 

nature, e.g., by varying the end conditions or by superimposing different axial 

loads upon the pressure load. 

We note that when the terms involving t/R in Eqs. (4.2) and (4.7) are 

neglected in comparison with the remaining terms, the material parameter v* no 

longer appears in the governing equations. Thus, in the limit of vanishing t/R, 

the stresses in the tube (under axisymmetric deformation with zero twisting 

deformation) are unaffected by the Poisson's ratio y23. The latter cannot be 

determined by the type of experiments considered here if the thickness ratio t/R 

is small. 

4.3 Use of the data from tubes with other winding angles 

In using the test data from tubes with winding angles different from ±45° 

subjected to open-end or closed end conditions (where q - 0 and 1, respectively), 

it is convenient to refer the incremental stresses and strains to the material 

axes parallel and perpendicular to the fibers. The intrinsic strain increments 

Aelt Ac2 and A712 may be calculated from the measured axial and circumferential 

strain increments by using the transformation rule of the strain, or, in case of 

large shear deformation, by using Eqs. (2.5), (2.6) and (2.4). From the 

definitions of Eq. (4.4) we have 

Acx - x* A^i - u* A<72,   Ac2 - - u* äol  + y* Aa2. 
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Hence, 

A*! « {yV(xV-u*2)) Acj + (uV(xV-u*2)) A€2, 

Aa2 = (u7(xVV
2)] Aex +  (xV(xV-u*2)) Ac2. 

Summing the last two expressions and making use of the equality 

ACTX + Aa2 - Aaz + Loe  - (l+q/2) &o0  - (l+q/2) RAp/t, 

we obtain 

Hi (yV)/(xV-u*2) + E2 (xV)/(x'yV
2) »l + q/2, (4.12) 

where 

Ex - Acj   (t/RAp), E2 - Ae2   (t/RAp) , (4.13a,b) 

and,   for  subsequent use, 

=12 - 7i2   (t/RAp). (4.13c) 

Now, using the transformation rule of the incremental stress, we obtain 

AT12 esc 2ß  cos 2(a+/3) - (Aa2 - Aae)/2 (2-q)RAp/(4t) , 

and, consequently, 

esc 2ß  cos 2(a+ß)   - -(2-q)z*/(4E12) , (4.14a) 

where 2ß  satisfies 

2 ctn 2£ - (Ao1  -  A<r2)/Ar12 

- (Ae1/A7l2)(y*-u*)z7(xV-u*
2) - (Ae2/A7l2)(x*V)Z7(xVV

2). (4.14b) 

We note that 2ß is the angle between the horizontal axis of the Aa-Ar plane and 

the radial line through the point (Aaj, AT12) in the Mohr's circle for the 

incremental stress. 

Expressing 2A in terms of the right hand side of Eq. (4.14b), and 

substituting the result into Eq. (14.a), one obtains, in addition to Eq. (4.12) 

another algebraic relation among x*. y*, z* and u*, with Slt E2, E12 and q as 

parameters. The two equations reduce to Eqs. (4.8) and (4.10) in the case a - 

45°. 
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The parameter q may be changed at any stage of the loading process by 

changing the end conditions. Consider two identical test specimens under the 

same end conditions and subjected to identical pressure loads until the present 

state. Subsequently, the tubes are subjected to an incremental pressure load, 

with one tube under the open-end condition (q -= 0) and the other tube under the 

closed-end condition. Then each set of data for Sj, E2 and E12 (calculated from 

the experimental data by using Eqs. (2.A), (2.5), (2.6) and (4.13)) with the 

corresponding value of q yield two relations among the incremental compliances 

according to Eqs. (4.12) and (4.14). The solution of the four resulting 

relations yield x*, y*, z* and u*. 

4.4 Determination of the initial elastic moduli in the range of small strain 

For the determination of the initial elastic moduli in the range of small 

strain, relations based on experimental results of tubes with different winding 

angles may be combined to yield a complete system of equations for calculating 

the moduli. First, the test data of the ±45° tubes are used to obtain z* from 

Eq. (4.8) and a relation (Eq.(4.10) or (4.11)) among x*, y* and u*. Substituting 

the relation into Eq. (4.12), we obtain 

y*+u* = ((l+q/2)p/(H1-Ea) - S2/(S1-S2) ) (x*+y*+2u*), (4.15) 

or, 

x*+u* - {-(l+q/2)p/(H1-E2) + -!/(-!--;,) } (xVyV2u*). 

The test data of a tube with a *   45° is then used to solve for 2/3 from Eq. 

(4.14a).  The solution is substituted into Eq. (4.14b) to yield 

(Si/E12)(y*-u*) - (S2/E12)(x*-u*) - 2 (ctn 2ß) (p/z*) (x*+y*+2u*). (4.16) 

Equations (4.15) and (4.16) are two linear relations among the unknowns x*, y* 

and u* which may be used to express x* and y* as products of u* with factors 

involving known quantities.  Substituting the expressions into Eq. (4.10), we 
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obtain a quadratic equation for u*, which is readily solved. The only nontrivial 

step in the process of computation is solving 2ß from Eq. (A.14a). This may be 

done by the Newton-Raphson iterative scheme. 

Hence, the experimental results for two tubes, one with the winding angle 

±45° and another with a different angle, suffice to determine the four compliance 

coefficients z*, x*, y* and u* associated with the linear elastic behavior at 

small strain. The two filament-wound tubes must be identical in material and 

geometry except for the winding angle. In particular, the fiber volume content 

must be the same. 

Hull and coworkers have presented a comprehensive set of test results on 

glass/polyester filament wound tubes under both the open-end and the closed-end 

conditions, for a - 54°44' (the "ideal winding angle" for a closed-end tube, see 

Hull, D., Legg, M.J. and Spencer, B. , "Failure of glass/polyester filament wound 

pipe", Composites. Vol. 9, pp. 17-24, 1978) as well as for tubes with other 

winding angles (Spencer, B and Hull, D., "Effect of winding angle on the failure 

of filament wound pipe," Composites. Vol. 9, pp. 263-271 (1978). Twisting 

deformation was apparently not noticeable at least in the initial stages of the 

experiments and therefore were not reported. The fiber volume fractions in 

different specimens were measured by using ASTM method D2584, and were found to 

vary in the range from 0.39 to 0.56. Since the fiber content affects the 

composite property, only the relations based on specimens with nearly identical 

fiber contents should be combined to determine the initial compliance parameters. 

For the six specimens with a - ±45° (including two specimens under the open-end 

conditions and four under the closed-end conditions), the reported fiber volume 

fraction Vf, the measured initial stiffnesses 1/8 - oe/ce and 1/Z - oe/tz (taken 

from Table 1 and 2 in Spencer and Hull, 1978) and the value of G12 - z* and 1/p 
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- (x*+y*+2u*)/(x*y*-u*2) calculated from Eqs. (4.8) and (4.10) are shown in Table 

2, where all numbers except Vf have the unit of GPa.  Notice that 

l/p  « ((l+i/21)E1+(l+i.12)E2}/(l-»/X2i/2J). (4.17) 

vf i/e 1/2 G12 1/P 

(GPa) (GPa) (GPa) (GPa) 

Open-end 0.43 17.7 -30.7 5.61 83.6 

Open-end 0.46 15.3 -23.2 4.61 89.9 

Closed-end 0.46 20.8 large 5.20 62.4 

Closed-end 0.45 22.8 large 5.70 68.4 

Closed-end 0.39 17.8 large 4.45 53.4 

Closed-end 0.43 20.4 large 5.10 61.2 

Table 2:  Response of ±45° tubes in the initial small-strain range 

(Base on the experimental data of Spencer and Hull, 1978) 

There are significant differences in the results (especially in l/p, 

between open-end and closed-end tubes) which cannot be attributed primarily to 

the differences in the fiber volume fraction. The very large difference in the 

measured data for 1/Z - pR/(t£2) of the two open-end tubes and the near 10% 

difference in the measured data of 1/6 from the two closed-end tubes with similar 

fiber contents (Vf - 0.46 and 0.45) suggest that the specimen properties are not 

consistent, due perhaps to unevenaess in fiber property and variations in the 

winding process (with the resulting misalignment and waviness of fibers). 

The significant differences in the elastic compliance coefficients as 
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determined by testing of different tube specimens suggest that, for a particular 

material system and winding process, a sufficiently large number of specimens 

should be tested to provide information concerning the average values and the 

range of variation of the parameters characterizing the behavior of the 

composite. It is risky to rely on empirical formulas of the composite elastic 

moduli or on analytical predictions of the composite behavior (based on 

microraechanical analysis using the fiber and matrix properties as supplied by 

manufacturers) as the sole basis for the design and analysis of filament-wound 

structures. 

Spencer and Hull also presented test results for open-end and closed-end 

tubes with other winding angles. These results supply additional relations among 

the compliance coefficients. The values of z* and l/p are based on the test 

results of the tube with ±45° winding angle, after excluding the data for the 

tube w-i.il *"he exceptionally small fiber content (the one with Vf - 0.39). Thus 

G12 - 1/z* -5.24 GPa is obtained by averaging the results of the remaining five 

tubes, while two values of l/p, 86.8 GPa and 64.0 GPa, respectively, will be used 

for the open-end and closed-end cases, because of the significant differences in 

the respective results from the ±45° tubes. Using the experimental data of open- 

and closed-end tubes with winding angles 35°, 55°, 65° and 75°, and Eqs. (4.15), 

(4.16) and (4.10), we obtain for the open-end tubes the elastic moduli as shown 

in Table 3. The results for the closed-end case shown considerable discrepancies 

among the tubes with different winding angles and, therefore, are not presented. 

These discrepancies are possibly due to the inconsistency of the specimen 

material and fiber content s^ that the values of z* and l/p as determined from 

the average experimental results of ±45° tubes are significantly different from 

their true values for the tubes with other winding angles. 
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Q e Z =i -2 -12 Ei E2 
v12 

MPa"1 MPa"1 MPa-1 MPa-1 MPa"1 GPa GPa 

35° 67 -27 3.9 36.2 88.3 62.3 20.0 .11 

55° 44 -27 20.6 -3.6 66.7 50.7 26.3 .16 

65° 33 -19.5 23.6 -10.1 40.2 45.8 19.9 .39 

75° 26 -8.3 23.7 -6.0 17.2 43.9 28.0 .22 

Table 3: Linear elastic moduli determined from the experimental results 

of the open-end, ±45° tube (G12 - 1/z* -5.24 GPa and 1/p - 86.8 GPa) and 

another open-end tube with a different winding angle. 
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Fig. 7: Shear stress vs. sheer strain in 

45° tubes under increasing internal pressure 
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4.5 Comparison of the nonlinear shear responses associated with the open-end and 

closed-end conditions 

Figures 5 and 8 of Spencer and Hull (1978) show the data of the axial and 

circumferential strains versus the pressure load for open and closed-end tubes 

of various winding angles when the pressure increases from zero to the level at 

final failure. The data corresponding to a - ±45° are used here to obtain the 

incremental moduli G12 and 1/p at the successive stages of deformation. Since 

the incremental stiffness of the composite is dependent on the entire history of 

deformation, the dependence of G12 and 1/p upon 712 i-s affected by the present and 

past values of €X and c2. For the sake of illustrating the dependence of the 

incremental modul1" on the history, the values of all three strain components at 

the successive stages of deformation are shown in the following two tables (Table 

4 and 5, respectively, for the open-end case and the closed-end case) with the 

corresponding values of the incremental moduli and the pressure. Notice that in 

the open-end experiments of ±45° tubes, the shearing strain is greater than the 

extensional strains by an order of magnitude. In the closed-end experiments, y12 

varies from two to four times the magnitude of cx or €2. Therefore, the relation 

between r12 and -yl2 as suggested by the incremental moduli G12 *-n tne first table 

is more representative of the shear response in the absence of significant 

accompanying normal stresses, while the effect of the normal stresses is 

certainly important in the relation described by Table 5. For ±45° tubes we have 

fi2 " (a9 ~ az)/2 s (l-q)pR/(2t). Therefore, r12 may be directly associated with 

the corresponding value of 712 in the successive stages of deformation. In Fig. 

7, the results are plotted for both the open-end and closed-end cases. The two 

curves are tangential at the origin, because the common slope equals the initial 

shear modulus.  The relation for the close-end tube deviates significantly from 
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linearity at a very early stage of deformation, because of the relatively larger 

values of e±  and €2 i-n t^ie deformation of the closed-end tubes. 

pR/t ei <2 712 G12 1/P 

(MPa) CIO"3) (10~3) (io-3) (GPa) (GPa) 

10 .05 .05 .94 5.3 150. 

20 .10 .10 1.97 4.85 117. 

30 .23 .22 3.11 4.39 70. 

40 .39 .38 4.56 3.45 59. 

50 .61 .60 5.88 3.2 51. 

60 .79 .76 8.0 2.5 69. 

70 .85 .79 10.5 2.0 95. 

80 .97 .88 13.4 1.61 80. 

90 1.15 .99 17.8 1.27 61. 

100 1.51 1.26 22.4 1.03 23. 

110 2.33 1.90 29.3 0.73 13. 

120 4.35 3.57 39.5 0.48 5.2 

Table 4:   Incremental moduli G12 and 1/p calculate from the large 

deformation experimental results of a ±45°, open-end tube 
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pR/t ei <2 712 G12 1/P 

(MPa) (10"3) CIO"3) (lO"3) (GPa) (GPa) 

10 .23 .23 .53 5.3 70. 

20 .46 .46 1.08 4.7 64. 

30 .70 .70 1.66 3.9 57. 

40 .96 .96 2.30 2.9 55. 

50 1.30 1.29 3.17 2.0 51. 

60 1.63 1.62 4.33 2.5 45. 

70 1.99 1.98 5.69 1.9 51. 

80 2.43 2.40 7.32 1.13 27. 

90 2.99 2.94 10.2 0.77 27. 

100 3,69 3.60 13.7 0.63 21. 

110 4.37 4.21 17.9 0.58 19.2 

120 5.17 4.92 22.5 0.49 19.9 

130 6.10 5.70 28.3 0.43 16.9 

140 7.04 6.45 34.0 0.37 16.9 

150 8.01 7.17 41.0 0.33 16.8 

180 8.92 7.71 49.1 0.28 13.4 

190 10.3 8.58 58.7 0.24 12.4 

Table 5:   Incremental moduli G12 and 1/p calculated from the large 

deformation experimental results of a ±45°, closed-end tube 
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The preceding two tables indicate that, for both the open-end and closed- 

end conditions, the incremental shear modulus G12 decreases monotonically as the 

pressure load increases. Since the factor (l-^i^i) ls close to 1 for strongly 

anisotropic fiber-reinforced composites, the incremental stiffness 1/p as given 

by £q. (4.17) is approximately equal to the sum of the incremental stiffnesses 

along the fiber and the transverse directions, characterized respectively by 

(i-W2i)Ei and (1+^12)E2. Since glass and carbon fibers show linearly elastic 

axial response before tensile failure, and since the stiffness of the filament 

layer in the fiber direction is largely contributed by the elasticity of the 

fiber, (l+i/2i)E1 remains almost constant throughout the process of deformation. 

Hence the significant decrease in the stiffness 1/p, as indicated in the 

preceding two tables, may imply that the incremental stiffness in the transverse 

direction eventually becomes negative. A negative incremental stiffness in the 

transverse direction is not physically unreasonable. It simply means that, at 

a certain stage of deformation, additional positive strain increments Acx and Ac2 

may be produced by increasing the tensile stress a^ along the fiber direction 

while partially relieving the tensile stress a2 in the transverse direction. 

4.6 A constitutive model for large deformation of a filament layer 

The experimental results of Hull and coworkers for glass/polyester 

filament-wound tubes show significant deviation from linear stress-strain 

relation at even a low level of pressure. Similar nonlinearity at moderate or 

large pressure loads were also observed in experiments on filament-wound tubes 

with carbon fibers (see, for example, Uemura, M. and Fukunaga, H. , "Probabilistic 

Burst Strength of Filament-Wound Cylinders Under Internal Pressure," J . Composite 

Materials. Vol. 15, pp. 462-480. A large body of experimental results on tubes 

with glass and carbon filaments have been obtained at Redstone Arsenal, Alabama, 
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including Technical Report RL-84-11, "Mechanical Property Characterization of the 

Sentry Initial Propulsion Test Vehicle (IPTV) Composite Motorcase Materials," by 

Terry L. Vandiver, Technical Report RL-80-13, "Evaluation of Filament-Wound 

Composites with Kevlar 49 Filament and Two Resins, HBRF 55A and HBRF 241, By 

Hydrostatic Testing," and Tech. Report RL-75-8, "Development cf the filament- 

wound composite launch tubes for the SMAWT program," both by G.A. Clodfeltcr, 

U.S. Army Missile Command, Redstone Arsenal, March 1975). 

The nonlinearity in response and the inelastic behavior of a filament layer 

are primarily due to the severe shear deformation in the resin material. 

Constitutive equations that adequately describe these effects may be given in the 

incremental form, and the preceding analysis is an initial step in that direction 

from a purely empirical viewpoint, with very little regard to the underlying 

physical basis such as the plasticity behavior of the resin material and the 

effects of microcracking or interface debonding. In general, the incremental 

compliance coefficients are dependent on the history of strain. A purely 

empirical formulation of the incremental constitutive relations over the entire 

range of strain space would require a very complex set of expressions, not to 

mention an impossibly large amount of experimental data to be used to obtain such 

expressions. However, if the results of tube experiments are intended only for 

the purpose of formulating constitutive relations with a limited range of 

applicability, i.e., limited only to applications in which the geometrical 

configurations and loading histories are similar to those involved in the tube 

experiments (e.g., monotone loading or proportional loading), then the amount of 

the required experimental data may be significantly reduced and relatively simple 

empirical constitutive relations may be sought. Such constitutive equations with 

a limited range of applicability need not be in the incremental form.  A 

44 



functional relationship between the stresses alt o2 and r12 and _r>" _ ins e1, 

e2 and 712 is convenient because of the simplicity of formulation and the ease 

of determining the material functions from the experimental resul *""... 

We note that, as mentioned previously, 712 (defined as the reduction in the 

angle between two material lines originally parallel and orthogonal to the fiber 

direction) is not a physical component of a finite strain tensor with respect to 

the intrinsic material directions. Indeed, under the orthogonal transformation 

of the coordinates from (z, 6) to the intrinsic axes, the components c2, e9 and 

720 transform into elf e2 
an<^ 7i2 only if the strain is infinitesimal. However, 

the most convenient and therefore the most appropriate constitutive equation for 

an anisotropic filament layer need not be a relation among the tensorial 

components of stress and strain. It is perfectly legitimate to use a 

functionally related set of strain variables, provided that one keeps in mind 

their original definitions which, in the case of y12, is given by Eq. (2.4) for 

a tube suffering no twisting deformation. 

Since the response of a filament layer in the filament direction is 

dominated by the linearly elastic behavior of the filament material, it is 

reasonable to assume that al depends linearly on (j and e2, provided that these 

strains are small, and that a: is not appreciably affected by 712. The shearing 

stress r12 depends nonlinearly on 712, and this dependence is expected to be 

influenced by the transverse strain e2, because a negative e2 tends to cause 

compression of the resin material between two parallel fibers with the effect of 

increasing the resistance of the resin material to shear deformation. This 

effect of e2 upon r12 should be reciprocated by a corresponding effect of 712 upon 

the transverse normal stress a2. The nature of the coupling effect is suggested 

by the usual assumption concerning the symmetry of the incremental stiffness 
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matrix. Thus, although the general nature of the material behavior is inelastic, 

the special constitutive equations intended only for a limited class of 

deformations histories with similar geometrical and loading features may still 

be expressed in forms suggested by nonlinear elasticity. Consequently, for a 

filament layer in a certain restricted range of deformation histories we 

postulate the following constitutive equation for alt   o2  and r12 in terms of 

«1.     c2    and   Tl2: 

°l   "   SU    el    +    S12    €2. 

°2   m    S12    cl    +    S22    e2   "    f(7l2>. (4.18) 

r12   '   g(7l2>    ~    e2   f' (7l2>. 

where f and g are even and odd functions, respectively, of the shear strain. 

There are a number of previous works dealing with the formulation of 

nonlinear constitutive equations of unidirectional composites and filament-wound 

layers. For example, Hahn and Tsai (Hahn, H. T. and Tsai, S.W., "Nonlinear 

elastic behavior of unidirectional composite laminae," J. Composite Materials, 

Vol. 7, pp. 102-118, 1973) considered nonlinear elastic behavior and introduced 

a complementary energy density that is a fourth-order polynomial function of 

olt o2 and T12. The formulation generally leads to an expression of the strains 

in terms of the stresses which, except in some special cases, is difficult to 

invert. Elastic relations for the strain components as polynomial functions of 

the stress components were also proposed recently by Luo and Chou (Luo, S-Y and 

Chou T-W., "Finite deformation and nonlinear elastic behavior of flexible 

composites," J. Appl, Mech.. Vol. 55, pp. 149-155, 1988). Notice that in 

practice it is always preferable to use a constitutive equation of the filament 

layer with elt e2 
anc* y12 

as independent variables, because these variables vary 

continuously across the interfaces of alternating layers (whereas the stresses 
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may suffer discontinuities) and, in the deformation of thin tubes without 

twisting, they do not vary appreciably across the thickness. Furthermore, the 

force and moment resultants occurring in the shell equations are calculate by 

integrating the expression of the stresses in terms of strains with respect to 

the thickness coordinate. While the inversion of a linear stress-strain relation 

is a trivial matter, a nonlinear constitutive for the strains in terms of the 

stresses is in most cases extremely difficult to invert. 

The direct use of a polynomial strain energy density was also suggested in 

the work of Hahn and Tsai. However, their results did include a coupling effect 

between the transverse strain and shearing strain. The coupling effect was also 

not taken into account in a recent study by Frost (Frost, S. R., "An approximate 

theory for predicting the moduli of unidirectior»il laminates with non-linear 

stress/strain behavior," J. Composite Materials. Vol. 24, pp. 269-292, 1990), or 

in the work of Hashin et al. (Hashin.Z., Bagchi, D. and Rosen, W., "Non-linear 

Behavior of Fiber Composite Laminates," NASA CR-2313, April, 1974). When the 

coupling effect is ignored, the shearing stress is simply a function of the 

shearing strain alone, unrelated to and unaffected by the transverse strain e2. 

But the validity of this conclusion is evidently refuted by the significant 

differences between the r12 versus 012 relations of the open-end and closed-end 

tubes, as shown in Fig. 7. 

Equation (4.18) is proposed because it is perhaps the simplest constitutive 

equation for a filament layer that captures the general nonlinear dependence of 

the shearing stress upon the shearing strain and, at the same time, includes the 

nonlinear coupling effect between the shearing and transverse strains in a way 

consistent with the usual assumption of the symmetry of the incremental stiffness 

matrix.  The linear dependence of r12 on c2 
is the simplest functional relation 
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consistent with the assumption that the incremental shearing stiffness increases 

with transverse compression (theiefore, decreases with the transverse extension 

€2) , i.e., that the resistence of the material to incremental shearing 

deformation is analogous to the law of friction. In contrast, Luo and Chou 

("Finite deformation and nonlinear elastic behavior of flexible composites," J. 

APPI. Mech. . Vol. 55, pp. 149-155, 1988, see Eq. (9) of the paper) assumed a 

coupling between the transverse stress a2 and the shear strain 7l2 in such a 

manner that the contribution of the coupling effect to the shear stiffness is an 

even function of a2. Their assumption is contrary to the reasonable expectation 

that the effect of coupling is dependent on the algebraic sign of a2- 

The incremental stress-strain relation associated with Eq. (A.18) is 

f**l' [ 
)  A*2 

^Ariz; 

r A€i    >\ 

(4.19) 

Sn     s12 0 

S12      S22        -* 2 f'(7i2) ) *<■ 

0 - f'(7i2) 2{g'(7l2)-€2f"(7l2)} _ ^A7l2/2. 

Since the incremental stiffness matrix reduces to the initial stiffness matrix 

when all strain components vanish, one has the following conditions for the 

initial derivatives of the functions f and g: 

f'(0) - 0,       g'(0) - G12. (4.20a,b) 

Furthermore, since Sn, S12 and S22 are the stiffness coefficients in the range 

of small strain, we have 

f(0) - 0. (4.20c) 

Otherwise, the material functions f and g and the stiffness parameters Sn, 

S12 and S22 in Eq. (4.18) must be determined for each specific type of filament 

layer from experimental data. The results are presented in the following section 

for the glass/polyester tubes studied in work of Spencer and Hull, on the basis 

of their experimental results for the ±45° tubes. 
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4 . 8 Determination of the constitutive functions f and g from the results of tube 

experiments 

In testing the ±45° tubes under an internal pressure p, we have 

ox + a2  « a9 + az  - (l+q/2) pR/t, 

'12 -   (oe - oz)/2  -   (l-q/2)   PR/(2t). 

Hence  Eq.   (4.18)  yields 

f(712)   -   (Sn+S12)   €j +       (S12+S22)   e2 -   (l+q/2)   pR/t, (4.21) 

g(7i2> - d-q/2) pR/(2t) + c2 f'(7i2)- (4.22) 

The linear elastic moduli Sn+S12 and S12+S22 are determined from the experimental 

results in the range of small strain, as described in Sec. 4.4. The data for clt 

c2 and pR/t corresponding to each value of 712 are substituted into the right- 

hand side of Eq. (4.21), and this determines the material function f(712) . The 

function so obtained may be differentiated numerically to obtain its derivative 

f' (712) • Then the values of f'(7i2). 
f2 an<^ pR/t associated with each value of 

712 are substitute into Eq. (4.22) to obtain the function g(7i2) . This procedure 

is applied to the experimental results of ±45° tubes with both closed-end and 

open-end conditions, and the validity of the constitutive equations (4.18) may 

be tested by comparing the functions f and g obtained in the two cases. Because 

of the significant differences in the calculated values of the linear elastic 

moduli corresponding to the closed-end and open-end cases, the stiffness 

coefficients S11+S12 and S12+S22 in Eq. (4.21) are evaluated separately for these 

two cases from the respective experimental data, instead of using a common set 

of values. In view of the appreciable discrepancies in the linear elastic moduli 

based on different specimens, the material functions f and g determined from the 

experimental results in the range of large deformation along different loading 

paths are expecttd only to be in approximate or qualitative agreement.  The 

49 



present results for the closed-end and open-end tubes are shown in Figs. 8a and 

8b for the function f and in Figs. 9a and 9b for the function g. The approximate 

agreement between the two sets of results present a contrast with the significant 

discrepancy in the relation between r12 and -y12 as shown in Fig. 7 (see p. 39). 

The relation r12 - (o9 - oz)/2 and the resulting Eq. (4.22) are not valid 

in the case of tubes with winding angles different from ±45°. Indeed, for such 

tubes the values of r12 at the successive stages of deformation cannot be 

determined from the measured data. However, Eq. (21) still holds and the data 

from such tubes provide independent bases for determining the material function 

f(7i2). 

4.9 Nonlinear constitutive equations of the filament-wound structure: 

the incremental stress-strain relation of a laminate 

The transformation of the incremental stresses and strains from a local 

tangential coordinate system (x, y) at a point on the shell middle surface 

(which, for a circular cylindrical shell, may be identified with the global 

cylindrical coordinates z and 6) to the material axes (1, 2) in a filament layer 

follows the relations 

me)) 
Ac. 

Ac, 

/7xy/2; 

Aar 
>\ 

bo. 

Ar *y 

;M(-0) 

where the matrix [M(0)I is defined by 

cosz6 

(M(0) 

sin20 

.2/3 sin20      cos' 

L-(sin 26)/2   (sin 26)/2 

Substituting into Eq. (4.19), we obtain 

sin 26 

-  sin 26 

cos 26 
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Aax \ 

Aa„ 

Ar xy 

:M(-OI 

'ii '12 0 

- 2f' ;M(^)] J12     J22 

0     f    2(g'-e2f) J 

(4.23) 

If we adopt the Kirchhoff-Love assumption that the strain increments at a point 

(x.y.z) are related to the strain increments at the projected point on the middle 

surface (x,y,0) by the relations 

Aex - Aex° - z A*x,      Aey - Acy° - z A*y, 

*7xy - A7xy° - z A/c^, 

where AKX, A«y and A/c^ are the increments of the curvature of the middle surface 

during the incremental deformation, then by integrating Eq. (4.23) across the 

thickness of the shell we obtain the relation between the increments of the force 

and moment resultants, ANX, ANy, AN^, AM*, AMy, AM^, and the increments of the 

middle-surface strains and curvatures. This incremental relation characterizes 

the response of the shell element. In each step of the solution process, the 

current of y12 is computed and the updated values of f'(7i2) and g' (712) are 

substituted into Eq. (4.23) to compute the shell element stiffness matrix for the 

next incremental solution by integrating this equation through the thickness of 

the shell. Notice that, in the constitutive equation (4.18) for the filament 

layer, the stiffness coefficients Sn, S12 and S22 have constant values through 

the deformation process and therefore need not be updated in an incremental step. 
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III. Micromechanics:   Calculation of the Constitutive Properties 

of a Filament Layer based on the Properties of the Constituents 

1. Introduction 

A fundamental problem in the mechanics of fiber-reinforced composite 

materials is the derivation of the gross (macromechanical) constitutive equations 

of a unidirectional composite from the properties of constituent materials. In 

the case of a filament-wound structure, the problem is to derive the constitutive 

equations of a generic filament layer from the properties of the filaments and 

the resin material. Since the filament layers are often subjected to large shear 

deformation, and since filament-wound structures show nonlinear responses under 

moderate external loads, one should generally consider the nonlinear behavior of 

the resin material in a micromechanical analysis for calculating the gross 

response of the filament layer. However, a nonlinear and inelastic micro- 

mechanical analysis is extremely difficult. As a first step in this direction, 

one should choose and develop methodology of analysis and apply it to simple 

cases. The methodology, when proved successful and effective, can then be 

further developed to investigate more general and realistic cases. 

Existing micromechanical studies with the objective of formulating 

constitutive equations of composite materials are mostly concerned with the 

linearly elastic behavior. Such studies aim to calculate the gross elastic 

moduli of the composite on the basis of the known elastic properties of the 

constituents. Methods used in the previous studies include variational bound 

theorems, and finite-element analysis. The latter method, although more 

laborious, can be modified to derive gross constitutive relations including 

nonlinear and inelastic response.  In this method, an analytical model of the 
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composite is used in which the parallel filaments are arranged in a rectangular 

or hexagonal pattern and immersed in the resin material. A representative unit 

cell consisting of segments of filament and matrix regions is selected and these 

segments of regions are divided into finite elements. 

An alternative analysis method that is believed to be especially suitable 

for the present type of problems is the boundary element analysis. The principal 

advantage of this method is that it reduces the spatial dimension of the problem 

from three to two or from two to one, and therefore results in drastic reduction 

in the number of nodal points and degrees of freedom. Although the available 

boundary-element computer codes are mostly limited to elastic analysis, 

considerable theoretical progresses have been made, during the last decade, for 

applying the boundary element analysis to problems involving plastic deformation. 

These progresses have important implications for the solution of micromechanical 

problems related to the nonlinear constitutive equations of composites. 

In the present work, we demonstrate that the problem of determining the 

linear elastic moduli of a unidirectional composite from the elastic properties 

of isotropic resin material and transversely isotropic filaments can be solved 

by using boundary element analysis codes for plane-strain problem of an isotropic 

elastic medium. The computational effort is considerably less than the 

corresponding solution by the finite-element method, and yet the results are in 

extremely close agreement with the previous elasticity solutions in the 

literature. 

Further investigation should be conducted on extending the boundary element 

method to the determination of nonlinear constitutive equations of a composite 

material from the properties of the constituents. As mentioned previously, the 

present analysis is only a first step in that direction. 
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2. Boundary element analysis of the micromechanical problem for determining the 

gross elastic moduli of a composite 

In this initial study, we assume that each constituent material of the 

composite material is homogeneous and linearly elastic, and that the fibers are 

arranged in periodic patterns. Then the calculation of the gross elastic moduli 

of the composite can be reduced to a small number of two-phase elasticity 

problems (micromechanical problems) for a unit volume cell of the composite 

containing one or more sectors of a single fiber and the surrounding matrix. 

Each elasticity problem of the unit composite cell corresponds to a particular 

type of loading: extension/shortening along or perpendicular to the fiber 

direction and longitudinal or transverse shearing. In all loading cases, the 

extensional strain along the fiber direction has the same constant value in the 

several subregions occupied by the fiber and the resin matrix. The boundary 

conditions over the lateral faces of the unit cell may be greatly simplified if 

the unit composite cell is chosen appropriately. For example, in the case of a 

square or hexagonal array of fibers under an extensional load along the 

longitudinal or transverse directions, the unit cell may be chosen in such a way 

that, over each lateral face, the normal displacement is a constant and the 

shearing stresses vanish. The constant normal displacements on the lateral faces 

yield constant (macroscopic) strains of the composite. The resultant normal 

forces over the lateral faces of the unit region, or the resultant longitudinal 

force over its cross-section, when divided by the respective areas, yield the 

gross stress components in the composite. Hence the solutions of the two-phase 

elasticity problems for the unit cell yield the stress-strain relation in the 

unidirectional composite. 

In most fiber-reinforced composite materials of engineering interest the 
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resin matrix is an isotropic material while the fibers have transversely 

isotropic elastic properties. The elastic moduli of the fibers along the 

longitudinal and transverse directions are significantly different, in the case 

of graphite fibers. Therefore, if finite-element or boundary-element methods are 

used directly to solve general two-dimensional micromechanical problems for the 

unit composite cell, the computer code should have the capability to deal with 

a material that is not isotropic. 

The boundary-element method is ideally suited for the present task. Nodal 

points for a boundary-element analysis are picked only on the boundary curve and 

on the fiber/matrix interface. No interior nodal points are required. This 

reduces the dimension of the problem from two to one and, consequently, provides 

great savings in computational effort. Evaluation of the macroscopic stresses 

and strains of the composite requires only the knowledge of the nodal forces and 

nodal displacements along the boundary of the unit cell and along the fiber- 

matrix interface, which are readily provided by the boundary-element analysis. 

Finally, the interfacial stresses between the fiber and the matrix, important for 

the prediction of failure initiation, are also readily available from the results 

of a boundary-element analysis. In contrast, conventional finite-element 

analysis requires a large number of internal nodes which drastically increase the 

size of the problem, but the computational results of the internal nodal 

variables may be of little or no practical use. 

However, a boundary-element analysis is considerably more complicated in 

a case involving an anisotropic elastic medium than in problems involving only 

isotropic elastic media, because of the complexity of the Green's function and 

the resulting integral equations for an anisotropic medium. The complication may 

be so significant that a finite-element analysis may appear to be a better choice 
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in micromechanical problems involving anisotropic fiber regions. 

It is shown in the present work that, in the case of an isotropic resin 

matrix and transversely isotropic fibers, a micromechanical problem of the unit 

cell associated with the determination of one or more gross elastic moduli of the 

unidirectional composite can be transformed mathematically into a coupled plane- 

strain problem for two isotropic elastic media, whose isotropic moduli are 

related to the true moduli of the fiber and the resin materials according to 

simple relations. This mathematically transformed problem requires the 

continuity of the tractions across the fiber-matrix interface. However, across 

the same interface the displacement components u' and v' of the transformed 

problem (along the coordinate directions x and y, which are the symmetry axes of 

the unit cell) are generally not continuous but may suffer jumps that are 

proportional to the mismatch between the Poisson's ratios of the resin matrix and 

the fiber (where the latter ratio is associated with longitudinal shearing). 

Furthermore, along the boundary curve of the unit cell, the displacement boundary 

conditions of the mathematically transformed problem must be modified accordingly 

so that, for the fiber region as well as the matrix region, the boundary 

displacements are consistent with the interior displacements. Since the 

discontinuities of u' and v' of the transformed problem are known along the 

interface, they are no more difficult to handle in a boundary-element analysis 

than, for example, the interface continuity conditions of the same displacement 

functions in conventional interface problems. 

In summary, the present work implies that the simpler integral equations 

associated with the plane-strain boundary-element analysis of isotropic elastic 

media are applicable to, and adequate for, the micromechanical analysis of 

unidirectional  composites consisting of an isotropic  resin material and 
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transversely isotropic fibers, provided that the problem is appropriately 

transformed into a modified, plane-strain problem with suitable equivalent 

isotropic moduli for the fiber region and with suitable discontinuities of the 

in-plane displacements across the fiber-matrix interface. 

3. Unit Composite Cell Subjected to a Uniform Longitudinal Strain Load 

Let Ejn and um denote, respectively, the Young's modulus and the Poisson's 

ratio of the isotropic resin material. Let Ex and E2 be the elastic moduli of 

the transversely isotropic fibers in the longitudinal and the transverse 

directions, G22 and u22 
De tne shear modulus and the Poisson's ratio associated 

with transverse shearing of fibers and G12, v12 and u2l be the corresponding 

quantities associated with longitudinal shearing such that ui2/E1 - ^2i/
E2- Then 

G22 " £22/2(1+^22) because of the transverse isotropy of the fibers. We first 

consider the loading case when the unit composite cell (defined by a rectangular 

or square region -a/2 < x < a/2, -b/2 < y < b/2) is subjected only to a uniform 

extensional strain along the fiber direction, tz = e0. The boundary conditions 

are 

u - 0,     Tjy  - 0     on x - ± a/2, 

v - 0,      fjjy - 0     on y - ± b/2, (1) 

For this loading case it is obvious that in both the fiber and matrix 

regions one has 

7x2 - 7y2 " 0,     r„ - ryz  « 0. (2) 

In the fiber regions, the remaining stress components ox,   oy,   az   and r^ are 

related to the strains cx, ey, ee and 7^ by the generalized Hooke's law: 

Oz   *   v\2    (ax   +   Oy)    +    Elco. 7xy   "    rxy/G22 

ex -   (ax-u22ay-u21oz)/E2 -  ax(\-ul2u21 )/E2  -  oy(v22+vl2v21)/E2 -  vl2t0,       (3) 

€y  -   (oy-v22ox-v21oz)/E2  -  ay(l-i/12i/21)/E2   -  ox(u22+unu2l)/E2   -   ^12t0: 
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We consider an equivalent isotropic material for the fiber region with the 

Young's modulus Ef and Poisson's ratio ut  given by 

Ef - (1^^22)~2(1 + 2i/22+^12^2l)E2. »I   =    ( ^22+" 12^21) / ( 1+^22 ) ■ W 

Then the fictitious isotropic material has a shearing modulus, Gf, equal to G22 

of the a-tual fiber material: 

Gf - Ef/2(l+uf) ■= E2/2(l+i/22) - G22. 

From Eqs. (3) and (4) we obtain 

ex + ^12^0 - ^xd"i/f2)/Ef " <Vfd+i'f)/E£, 

*y  +   "12*0  -  -   oxuf(l+uf)/Ef  +  ay(l-i/f
2)/Ef, (5) 

7xy   "   Txy/Gf- 

In the  matrix  region we hav*> 

** + *.€„ - »,(l-^.2)/^i " ayvro(l+l/m)/EEJ 

€y + '^o - - ^„(l+l/J/E,, + ffy(lV)/^, • (6) 

7xy = TxyA"m- 

and 

^z - Vo + ^mC^x + °y) (7) 

The original elasticity problem for the unit composite cell will be 

transformed into a modified micromechanical problem in which the fiber material 

is replaced by the fictitious isotropic material. The solutions of the original 

micromechanical problem and the modified problem shall have identical stress 

fields Oj., ay and r^ in both the fiber and the matrix regions. However, the 

extensional strains cx' and e ' of the modified problem shall be related to those 

of the original problem by 

t%'   - cx + ^12e0.      
cy'° €y + ui2€o      in the fiber region,    (8a) 

€x' - cx + vmt0, iy'-   €y + um(.Q in the matrix region.   (8b) 

Now the constitutive equations of the fictitious isotropic material and the 
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matrix material yield 

€x'   " (°x~utay~utaz' )/Ef»       cy' " (Oy-vtox-vtoz
f)/Ef  in the fiber region, 

«x' " (Wy-"^')/^. «y' - (Oy-VvPx-VttPi')/^ in the matrix region. 

These two set of expressions are consistent with Eqs. (5), (6) and (8) if and 

only if 

az    « ff(ax + CTy)       in the fiber region 

oz'   - vm(ox  + ffy)       in the matrix region. (9) 

The two equalities of Eq. (9) imply that the solution of the modified problem 

satisfies the plane strain condition: 

ez'   = 0. 

Equations (8a) and (8b) imply that the displacement functions of the 

modified micromechanical problem, u' and v' , must be related to the displacement 

solutions u and v of the original problem according to 

u' - u + ^i2€ox>   v' - v + ^i2«0y   i° 
tne fiber region 

u' - u + ^m€0x,   v' - v + i/oe0y    in the matrix region    (10) 

Since the actual displacements of the original problem, u and v, are required to 

be continuous across the fiber-matrix interface, across the same interface the 

functions u' and v' of the modified problem must have the discontinuities 

[u'] - (•/„ - "i2)<0x,        [V] - («/« - ^i2)^y. (ID 

where [u'] and [\ ' ] denote the jumps of u' and v', respectively, across the 

interface from the fiber region to the matrix region. Furthermore, while any 

traction boundary condition of the original problem is preserved without change 

as a traction boundary condition of the modified problem, displacement boundary 

conditions for u and v transform into different conditions for u' and v' in a way 

consistent with Eq. (10). Hence the displacement boundary conditions of Eq. (1) 

become 
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u' - ± i/fe0a/2,   v' - ± ufeQb/2 on the exterior boundary of the fiber, 

u' - ± um€0a/2, v' - ± vm€0b/2    on the exterior boundary of the matrix 

region. (12) 

The solution of the modified microraechanical problem may be obtained 

numerically by discretizing the boundary integral equations for the matrix and 

fiber regions, occupied, respectively, by the isotropic resin material and the 

fictitious isotropic material with the elastic moduli Ef and uf. The numerical 

solution scheme must implement the continuity of the tractions and the jump 

conditions of the displacements, Eq. (11), across the interface of the two 

regions. The solution scheme must also implement the mixed boundary conditions 

on the exterior boundary of the fiber and matrix regions, which are provided by 

r,^ - 0 and Eq. (12) . 

Once the stress and displacement solutions of the modified problem, ox' , 

<jy' , Txy' , a2' , u' and v' are determined (with e2' identically zero), the actual 

stresses and displacements of the original problem are given as follows 

ax ~ °x' > °y  " °y' >   Txy  " Txy' in tne whole region 

°z  " u\2^axJtay)Jr^\(-o^ u " u'_1/i2cox.   v ~ v'_i/i2€oy *n tne fiber region 

°z  * l/m((7x+0/)+Emco.     u - u'-i/a€0x,   v - v'-*/Be0y  in the matrix region 

(13) 

4. Plane-Strain Deformations of the Unit Composite Cell 

We next consider the case when the unit composite cell is subjected to a 

plane-strain deformation 

u - u(x, y) ,     v - v(x,y),      cz - 0. (14) 

There are two particularly important problems of this class connected with the 

determination of the gross elastic moduli of the composite. From the macroscopic 

viewpoint, the first problem is associated with a uniform strain in the composite 
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along the x- or y-direction, for example, cy - e0 and ex ■= 0, and the second 

problem is associated with a uniform shear strain 7^ - 70. From the microscopic 

viewpoint, the first problem is characterized by the following boundary 

conditions for the unit composite cell: 

u-0,     r^y-O    on x - ± a, 

v - €oY, Txy ~ ° on y - ± b, (15) 

while the second problem is characterized by the boundary conditions 

v «= 0,     ax -= 0     on x - ± a, 

u - 70y»    ay - 0     on y - ± b. (16) 

These boundary conditions may be derived on the basis of symmetry considerations. 

The last condition of Eq. (14) yields the following relations in the fiber 

region 

°z - "i2<ax + °y) . *x - ox(l-ut
2)/Et - CTyi/f(l+i/f)/Ef, 

«7 - - axyta+vt)/Zt  + ay(l-i/f
2)/Ef, (17) 

where Ef and ut are as defined by Eq. (4). In the matrix region the preceding 

relation must be replaced by 

*z " *■<*» + Oy), <*   " *x(l-0/Em - Vf(1+"l)/^' 

«y - - «V.d+*.)Ai + <^y(l-^2)/Ec. (Iß) 

Hence each original plane strain problem for the two elastic media, one isotropic 

and one transversely isotropic, may be reduced to a new plane strain problem for 

two isotropic media with the elastic moduli E^, um and Ef, i/f, respectively. All 

the boundary conditions and interface conditions remain unchanged. 

5. Longitudinal Shear Deformation 

When the composite is subjected to a macroscopically uniform longitudinal 

shear deformation, the fiber and matrix regions in the unit cell are both 
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subjected to (nonuniform) anti-plane shear deformation. That is, in both regions 

the displacement functions have the from 

u ■ 0,     v ■ 0,     w - w(x, y) (19) 

The only nonvanishing strain components are 

7x2 - dw/dx, 7yz - dv/dy, 

and the only nonvanishing stress components have the expressions 

rxz - G12 3w/3x,   Tyz - G12 dw/dy in the fiber region 

Txz " Gm dw/3x,    ryz - Gm dw/dy in the matrix region      (20) 

The equilibrium equations reduce to the Laplace equation for w(x,y) in both the 

fiber and matrix regions 

V*w - 0. (21) 

This equation must be solved together with the following boundary conditions 

w - 7Qy along x - ± a/2 

w - ± 7ob/2      along y - ± b/2. (22) 

and the continuity conditions of w, rxz and ryz across the fiber-matrix interface, 

i.e., 

[w] - 0,    G12 aw/ax - Gm 3v/9x,   G12 du/dy  - Gm dv/dy (23) 

The last two conditions of Eq. (23) imply that, unless G12 * Gm, the gradient of 

the solution w is discontinuous across the interface. 

Since w is governed by the Laplace equation, the boundary-element analysis 

of the preceding boundary-value problem for w is relatively simple. 

6. The Elastic Moduli of a Unidirectional Composite 

A unidirectional composite consisting of an isotropic resin material and 

transversely isotropic fibers has transversely isotropic gross (macroscopic) 

properties if the fibers are randomly distributed in the matrix.  If the fibers 
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are periodically arranged in square or hexagonal patterns, then the mechanical 

behavior of the composite manifests certain symmetry properties with respect to 

the planes of symmetry. Strictly speaking, such a composite may be not 

transversely isotropic. For example, a unidirectional composite with a square 

array of fibers placed along the coordinate directions x and y has the same gross 

extensional elastic moduli in these two directions, E2* - E3*, and furthermore, 

"23* " "32*• However, the gross extensional modulus along other directions in the 

x-y plane are general different, and the gross shear modulus G23* associated with 

the x- and y-directions is generally not equal to E2*/2 (l+i/23*) . Whereas a 

material with transversely isotropic elastic properties possesses a continuous 

group of symmetry transformations, unidirectional composites with square or 

hexagonal fiber patterns possess symmetry transformations which form a discrete 

group. The elastic properties of such composites are generally characterized by 

nine independent parameters of an orthotropic material, Ex*, E2*, E3*, 1/12*1 ^23*> 

"31*> ^12*» ^23* anc* G31*, although certain relations among these parameters may 

arise as in the case of square arrays. Other frequently used elastic parameters 

of an orthotropic material are defined by 

"21* - "12* E2*/El*» "32* " "23* E3*/E2*' "l3* = "31* El*/E3* •   (2A) 

Notice that the fiber direction (with the associated elastic moduli E^) is here 

identified with the z-direction while two orthogonal symmetry axes 2 and 3 are 

identified with tlie x- and y-axes, respectively. 

The gross elastic moduli of a composite may be directly determined by 

experimental measurements under various multiaxial and shearing loads. 

Alternatively, they may be calculated by solving several micromechanical problems 

for a unit cell of the composite. Solutions to the transverse and longitudinal 

shear problems, described respectively in Sec. 4 and 5 of the present paper, 
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directly yield the gross shearing moduli G23*, G31* and G12* of the unidirectional 

composite. In calculating these gross moduli, the macroscopic shearing stress 

TiJ* is obtained by integrating the boundary shearing stress r^ of the 

micromechanical problem along a rectilinear boundary of the unit cell and 

dividing the result by the length of the boundary segment. The boundary data of 

the micromechanical shearing stresses rij are directly provided by the boundary 

element solution of the micromechanical problem. 

On the other hand, the evaluation of the gross extensional elastic moduli 

Ej , E2 , £3 and the Poisson's ratios t/12 . ^23 anc^ "31* °f the composite requires 

two independent plane strain solutions of Sec. 4 and a third solution 

corresponding to a uniform longitudinal strain load, described earlier in Sec. 

3. In tie last solution, the unit cell is subjected to boundary displacements 

which result in an average strain field 

tx   ty   \J ,     t2   t 

The con esponding average stresses <7X*
(1), ay*

{1) and oz"ll)   are related to the 

precedii g average strains by the gross constitutive relation of the composite, 

i.e. , 

Ol> - a/'1' v23*  - O" "21* - 0, (25a) 

*/«> - a/(1> „32* " *z*
(1) "3i* - 0, (25b) 

„,•<« - <,/<!> vl2* -  a/<
1' u13- - *<*> El". (25c) 

In one of the two plane strain solutions, the unit cell is subjected to the 

average strain field 

The corresponding macroscopic stresses ox*(2),   oy*(2)  and oz*(2)   safisfy 

a/(2> _ ayH2)   Uz3*   _   0z*U)   Uix*   . c(2) E2* (25d) 

ay*(2) . ax*(2) „32. _ aW  „3i. . 0, (25e) 
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02) - 02) "12* - a/«> *13* - 0. (25f) 

For the other plane strain solution, the preceding equations for the average 

strains and the average stresses are replaced by 

€ * - €{3) e * - i '  - 0 

and 

a/«) - ,y*C3) ^ -  ,/<» *21* - 0, (25g) 

a/<3> - a/<3> „„* - a/<3> i/31* - e(3) E3\ (25h) 

az*(3) _ a/(3) „^ _ ay*(3) „^ . o. (25i) 

7. Calculating the average stresses aLj*   from the solutions of the modified 

micromechanical problem 

The macroscopic stresses ox*(1), ay*
(1), ax*{2), oy*{2) , oT*(3) and oy*(3) may be 

appearing in Eq. (25) mav be calculated from the solutions of the micromechanical 

problems for a unit cell (Sections 3 and 4) by averaging the normal tractions 

over vertical and horizontal boundary segments of the unit cell. These normal 

tractions (CTX or ay) are provided directly by the boundary-element solutions of 

the modified micromechanical problems, because oT' - ax and ay' - oy in both the 

fiber and matrix regions. 

The average stresses oz*
(1), az*

c2) and oz*
(3>, on the other hand, will be 

expressed in terms of the boundary and interfacial values of the displacements 

of the modified micromechanical problems. These boundary and interfacial values 

are also provided directly by the boundary-element solutions. For example, one 

has 

(Af + Am) az
#(1) - II   az  dx dy, (26) 

where Af and A,,, denote the cross-sectional areas of the fiber and of the matrix 

material, respectively, of the unit cell, and where the integral on the right- 
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hand side extends over both areas.  By virtue of the first equation in Eq. (3), 

the part of the integral over the fiber cross-section yields the contribution 

II    {u12(ax+oy)   + E!€(1)) dx dy - E1€
(1)Af + II    (v12(ox'+oy' ) dx dy.    (27) 

Since the modified micromechanical problem is a plane-strain elasticity problem 

for both the fiber and matrix regions, we have, in the fiber region 

ox'+oy'   - (Ef/(l-i/f-2i/f
2)) (cx'+c/). 

Substitution into Eq. (27) yields the following contribution to the right hand 

side of Eq. (26): 

ElC
(1)Af + i/12{Ef/(l-2i/f-»/f

2)) 7 u'dy - v'dx. (28) 

To this must be added a similar contribution from the matrix region: 

II {um(ox+oy) + ^,€
(1>) dx dy - Em6

(1)Am + un[ ZJ(l-vm-2vm
2)) 7 u'dy - v'dx. (29) 

The line integrals in the last two expressions are performed along the closed 

boundary curves of the fiber and matrix regions, respectively. We recall that, 

according to Eq. (11), the displacement solutions u' and v' of the modified 

problem are generally discontinuous across the interface between the fiber and 

matrix regions. 

The preceding results show that the input data needed to compute the 

average stresses a^* in Eq. (25) are the values of boundary tractions and of the 

boundary and interfacial displacements associated with the micromechanical 

problems of the unit cell. These values are all immediately available from the 

boundary-element solutions of the modified micromechanical problems. There is 

no need to compute the stresses or displacements at any interior point of the 

fiber region or the matrix region. Thus the large number of interior nodes used 

in the finite-elei.ient analysis of micromechanical problems serve no purpose, in 

the present context, other than as a means to generate the finite-element 

solutions themselves.  By eliminating the need for the internal nodes and the 
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associated unknown variables, the boundary-element analysis provides an 

exceedingly efficient method for obtaining exactly those quantities necessary for 

the determination of the gross elastic moduli of the composite. 

After the evaluation of the average stresses, the nine gross elastic 

parameters Ej*, E2*. E3*, v\z > "23*» "31*» ^21*» u22 ana ^13* maY De easily 

determined from Eq. (25). First, Eqs. (25f) and (25i) yield v12* and i/13*. Eqs. 

(25b) and (25e) yield v3Z* anc* ^31*, and Eqs. (25a) and (25g) provide i/23* and i/21*. 

Then Eqs. (25c), (25d) and (25h) yield E^, E2* and E3\ respectively. The nine 

parameters thus determined should satisfy Eq. (24), because these parameter are 

calculated from the relations between conjugate forces and displacements in 

elasticity solutions. 

8. Implementation of the boundary-element analysis for two-dimensional interface 

problems 

The preceding analysis indicates that all input data needed for calculating 

the gross elastic moduli of a unidirectional composite with regular and periodic 

fiber patterns may be obtained from the boundary-element solutions of certain 

modified micromechanical problems. These modified micromechanical problems are 

plane-strain elasticity problems for two distinct isotropic elastic media, with 

simple types of boundary conditions for the displacements and tractions on the 

exterior boundary of a unit cell, and with continuous tractions and continuous 

or discontinuous displacements across the interfaces of the fiber and matrix 

regions. An existing computer program for two-dimensional, plane-strain 

boundary-element analysis of an isotropic medium may be applied, first to the 

matrix region, and subsequently to the fiber region, where the transversely 

isotropic fiber material is replaced by a fictitious isotropic material with the 
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elastic moduli Ef and uf defined by Eq. (4). Each node on the interface of the 

fiber and matrix regions will be counted twice (i.e., treated as a double node), 

first as a boundary node of the matrix region and later as a boundary node of the 

fiber region. There are four variables associated with each boundary node: the 

two displacement components u' and v' , and the two traction components tx and ty 

(notice that, since ax' , ay' and T^' of the modified micromechanical problem are 

identical to ax, ay and r^ of the original problem for the unit cell, the 

tractions tx' and ty' are also identical to tx and ty on any segment of the 

exterior boundary or internal interface). For a double node associated with a 

point on the interface, there are eight variables, four associated with the 

matrix region and the other four associated with the fiber region. The computer 

program for boundary-element analysis generates square matrices [A,J and [Bm] for 

the matrix region such that 

[AJ <uJ + [Bml It,»} - {0}, (30) 

where {i^} is the column vector whose elements include all displacement variables 

u' and v' (known aid unknown) associated with a boundary or interface node of the 

matrix region, and (t^) is the column vector whose elements include all traction 

variables tx and ty associated with the same nodes. For the fiber region, one 

has a similar equation 

[Af] {uc} + [B£] {tf} - {0}, (31) 

where the column vectors {uf} and (tf) include, respectively, the displacement 

and traction variables associated with all boundary and interface nodes in the 

fiber region. Notice that, for each double node on the interface, four of the 

eight variables are included in Eq. (30) and the remaining four variables are 

included in Eq. (31). 

Equations (30) and (31) may be combined into a single equation of the 
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following form 

[A] (u) + [B] (t) - (0), 

where 

[AJ  [0)1 

[0]  [Af]_' 

(32) 

B 
f J _ 

and (u) and {t} are, respectively, column vectors obtained by combining {u^} with 

{uf} and {tm} with {tf} . 

Along the exterior boundary of the fiber and matrix regions, the boundary 

conditions are imposed according to Eqs. (1) and (10). Each boundary condition 

is a condition on an element of (u) or of {t} associated with a boundary node. 

Due to the geometrical symmetry of the unit cell and the symmetry of the boundary 

load, the displacements (tractions) at one boundary or interface node may be 

equal or opposite to the corresponding displacements (tractions) at another node. 

Furthermore, at an interface (double) node, the continuity conditions of the 

tractions and the continuity or jump conditions of the displacements across the 

fiber-matrix interface provide additional relations between two traction 

variables or two displacement variables associated with that node. 

Every boundary condition, symmetric condition, interfacial continuity or 

jump condition described above has the form 

Xi + N Xj - c - 0, (33) 

where xA and Xj are two distinct elements of the column vector {u} or (t), c is 

a known number determined by the specified boundary displacement or by the 

specified jump of u' or v' across the interface, and the integer N may assume 

values 0 (in the case of a boundary condition), +1 or -1 (in case of a symmetry 

condition or interfacial continuity or jump conditions). There are two boundary 

conditions of this form at each boundary node, and four interfacial continuity 
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or jump conditions (two for the tractions and two for the displacements) at each 

double node on the interface. 

Equation (33) may be used to eliminate a variable, Xj or xit from Eq. (32). 

This amounts to combining two columns of the matrix [A] or of the matrix [B] , or 

moving a column of [A] or [B] to the right hand side of the equation after 

multiplication by the factor c, or doing both. In each case the operation 

reduces the dimension of the matrix [A] or [B] . When the operation has been 

repeated for each one of the boundary, interface and symmetry conditions, the 

total number of columns remaining in the matrices [A] and [B] is equal to the row 

dimension, and those variables in {u} and {t} which have not been eliminated may 

be solved from the reduced system of linear equations. This yield an approximate 

solution of the modified micromechanical problem by the boundary-element method. 

The preceding method of eliminating variables suggests an algorithm for 

treating, in a unified and systematic way, all boundary, interface and symmetry 

conditions in the modified micromechanical problem involving two distinct 

isotropic elastic media. When these conditions are put in the form of Eq. (33), 

the algorithm consists of purely algebraic manipulations on the matrices [A] and 

[B]. 

9. Results 

A Fortran program has been developed to implement the boundary-element 

analysis of the moditied micromechanical problem for the unit cell composed of 

fiber and matrix regions (see Appendix A: Program MICROBEM). The portion of the 

program which generates the matrices [Aj , [BJ , [Af] and [Bf] of Eqs. (30) and 

(31) are essentially taken from the two-dimensional boundary-element code for a 

single isotropic elastic medium give in Brebbia et al. (see Chapter 14 in 
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Brebbia, C. A., Teiles, J.C.F. and Wrobel, L. C, Boundary Element Techniques: 

Theory and Applications in Engineering. Springer-Verlag, Berlin, 1984). 

Subroutines for combining the matrices and eliminating columns by using the 

boundary, interface and symmetry conditions are included in the program. The 

resulting system of algebraic equations are solved and the average stiesses ai* 

corresponding to the three loading cases associated with Eq. (25) are computed 

by numerical integration of the boundary tractions along the exterior boundary 

and of the interfacial displacements along the interface. 

In their micromechanical analysis of fiber-reinforced composites with 

hexagonal fiber arrangement, Chen and Cheng used the elastic moduli for the 

graphite fiber and the epoxy matrix given earlier by Whitney (Chen, C.H. and Shun 

Cheng, "Mechanical properties of anisotropic fiber-reinforced composites," J. 

Appl. Mech.. Vol. 37, pp. 186-189, 1970; Whitney, J. M. , "Elastic moduli of 

unidirectional composites with anisotropic filaments," J. Composite Materials, 

Vol. 1, p. 188, 1967).  The values are 

Ex - 24 msi,      E2 - 2 msi,    G12 - 4 msi,   ul2  " 0.3,  u22  "0.15 

for the fiber material and 

E» - 0.6 msi,     ua  - 0.3 

for the matrix material. The composite has the fiber volume fraction Vf = 0.5. 

Chen an Cheng reduced the problem to a boundary problem for the biharmonic 

equation and used series expansion in polar coordinates to obtain the following 

results for the composite moduli: 

Ex* - 12.33i03 msi, vl2    - 0.20025,     i/13* « 0 30025, 

i/21* - 0.02575, E2* - 1.05805 msi,      u23*  - 0.32059, 

u2l*  - 0.02567,        vz2   - 0.32265,        E3* - 1.05389 msi, 

In the present analysis, the micromechanical problem for the unit cell is 
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first transformed into a modified plane-strain problem in which the anisotropic 

fiber region is replaced by a suitable isotropic medium. The exterior boundary 

of the unit cell and the interfaces are partitioned into boundary elements as 

shown in Fig. 10. The boundary element equations are solved and the gross moduli 

of the composite are computed according to the procedure described in Sec. 8. 

The results are given in the following table for the preceding material system 

along with the results for two other material systems which have different values 

of j/m but are otherwise identical. 

"B Er E2* E3* ul2* ^23* 

(msi) (msi) (msi) 

0.3 12.2994 1.06411 1.06406 0.3 0.31979 

0.35 12.3000 1.10160 1.10150 0.32389 0.38579 

0.4 12.3014 1.15481 1.15466 0.34965 0.46679 

Table 6:  Composite elastic moduli calculated by the boundary-element 

analysis of the micromechanical problem for a unit cell 

For i/m «= 0.3, the present results are in excellent agreement with those 

reported by Chen and Cheng. Notice that since for this case um - u12, Eqs. (11) 

indicate that there are no jumps of u' and v' across the interface. It is 

interesting to notice that in all three cases the parameter t/23* of the composite 

is greater than the corresponding parameters of the fiber (v23 " 0-15) and the 

matrix (t/m «= 0.3, 0.35 or 0.4) . 

The computed results of E-,* and u12* 
are i-ti excellent agreement with the 

predictions based on the rule of mixture: 
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Ei* « Ej V£ + E. (1 - Vf) - 12.3 msi, (34) 

i/12* = u12  Vf + »m   (1 - Vf). (35) 

Furthermore, the present results of E2* are also in excellent agreement with the 

predictions of certain empirical formulae proposed by Tsai (Tsai, S. W. , 

Structural Behavior of Composite Materials. NASA CR-71, July, 1964) and Halpin 

and Tsai (Halpin, J.C. and Tsai, S.W., Effects of Environmental Factors on 

Composite Materials, AFML-TR 67-423, June 1969). However, the results of i/23* 

obtained by micromechanical solutions (including the present solution and that 

of Chen and Cheng, which are in close agreement) are significantly different from 

the empirical formulae cited above. On the other hand, the in-plane volume 

modulus , defined as a2*/(2c2*) under the isotropic plane strain condition (c2* 

- e3* and cx* - 0) as calculate by the present analysis is in excellent agreement 

with the prediction of an empirical formula given in the book by Tsai and Hahn 

(see Eq. (3.55) in page 397 of Tsai, S.W. and Hahn, H.T., Introduction to 

Composite Materials. Technomic Publishing Co. , Westport, Connecticut, 1980). For 

a composite with transversely isotropic gross elastic properties, this in-plane 

modulus k* is determined by E2*, i/12* and i/23* according to the relation 

k* - E2*/2(l - i/23*  - 2 ul2*  i/2i*) ■ (36) 

For the material system considered here (with i/a - 0.3), k* has the value 0.8005 

ssi frwu. rae present analysis and 0.8011 msi from the empirical formula of Tsai 

and Hahn. Similar agreement was found for the case i/m - 0.4, and for other 

values of the fiber-volume fraction. Hence the results of the present analysis 

confirm that an accurate prediction of u2z can be obtained by first using the 

empirical formula in Tasi and Hahn to estimate the in-plane volume modulus k*, 

and subsequently calculating i/23* from Eq. (36). On the other hand, direct 

estimation of */23* using the Halpin-Tsai equations generally yields results that 
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have substantial errors. 

By changing the fiber radius in the model of Fig. 10, and repeating the 

boundary-element analysis, we obtain the gross elastic moduli of the composite 

with a different fiber content. The dependence of E2* and u2-C upon the fiber 

volume fraction is shown in Figs. 11 and 12 for two values of i/m (0.3 and 0.4). 

9. Summary and a comment on future work 

The determination of the gross constitutive properties of a composite 

material from the constitutive equations of its constituents is a fundamental 

problem in the mechanics of composite materials. The current literature on the 

subject is largely confined to linearly elastic behavior of composites. Much 

remains to be done in the raicromechanical analysis of composites with inelastic 

matrix phase. The present work indicates that the boundary-element analysis 

provides a very efficient and accurate method for dealing with interface problems 

at the micromechanical level. The efficiency comes largely from reducing the 

dimension of the problem from three to two or from two to one. This usually 

results in simplified data input and modeling, and great savings in computational 

effort. 

Significant progresses have been made in the last decade on the application 

of the boundary-element method to plasticity problems. Although the present 

analysis is restricted to elastic fibers and elastic matrices, the method can be 

extended to determine non-linear and inelastic gross properties of a composite 

composed of linearly elastic fibers and non-linear resin materials. In solving 

micromechanical interface problems with inelastic regions, the use of the 

boundary-element analysis is even more attractive, and perhaps imperative, 

because of the unusual complexity of the finite-element modeling and solution of 
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such problems. Furthermore, the nonlinear constitutive relation in an inelastic 

process is generally history dependent. A much greater number of solutions of 

different micromechanical problems (with different loading histories) must be 

obtained to evaluate the material parameters or material functions characterizing 

the inelastic response of the composite. Hence the solution procedure must be 

standardized and used repeatedly. Any significant saving in the modeling and 

computational effort for a single execution of the solution process will result 

in tremendous savings in the large task of calculating the nonlinear gross 

response of a composite material from the constituent properties. 
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Fig. 11: Dependence of the composite 

transverse elastic modulus on the fiber 
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Fig. 12: Dependence of the gross Poisson's 

ratio, V> * , on the fiber volume fraction 
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IV. Failure Modes and Analysis 

1. Introduction 

When a filament-wound composite structure is subjected to an internal 

pressure, it generates tensile membrane forces which are largely carried by two 

intersecting families of stiff fibers. The matrix material serves to hold the 

net of fibers in place, to transmit forces among unevenly stretched fibers via 

shear action, and to contain internal pressure. While a net of fibers alone is 

capable of large membrane deformation with little fiber stretching, through 

finite changes in the intersecting angle, such membrane deformations are opposed 

by the reactions from the matrix material. Thus, if the deformation of the fiber 

net tends to compress the matrix, the matrix material reacts to the fiber net in 

such a manner as to smooth out local non-uniformity in fiber tension resulting 

from irregularities in the fiber diameter, material defects, winding geometry, 

initial fiber stress and waviness. On the other hand, if the deformation of the 

fiber net tends to produce predominantly tensile stress in the matrix, then the 

composite is likely to develop matrix or interfacial cracks which propagate 

across the barriers of the intersecting family of fibers. This process may 

interact with and accelerate the breaking and debonding of fibers and the 

sequential failure of neighboring fibers. It is apparent that in this fracture 

mode of failure, the matrix and fibers behave and interact in such a manner as 

to enhance and accentuate, rather than smoothing out, any initial concentration 

of strains and defects. Thus, depending upon the nature of the deformation of 

the fiber net produced by the pressure loading, two fundamentally different types 

of failure processes can occur in a filament-wound structure, dominated 

respectively by intense shear deforamation in the matrix and by the expansion of 
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a surface element with eventual tensile fracture. While the processes of the 

first type may be amenable to a macromechanical analysis if one takes into 

consideration the distinct constitutive properties of the constituents in the 

various stages of the failure processes, the methodology of fracture mechanics 

ir; appropriate in modeling and analyzing the failure processes of the second 

type. 

Since the tensile or compressive nature of the stress in the matrix 

material is essentially determined by the deformation of the fiber net that would 

occur in the absence of the matrix, and since the presence of the matrix merely 

modifies such deformation through shear and compression, the first step in the 

failure analysis is to solve the problem of finite deformation of a net of 

linearly elastic (or even inextensible) fibers with prescribed boundary 

conditions. The solution determines the character of the stress in the matrix 

which in turn predicts the type of the failure process that will be operative. 

This approach is demonstrated by the simple case of the cylindrical geometry for 

which the solution of the fiber net is trivial (see Sees. 3 and 4 in the 

following). 

While the existing experimental data provide a sufficient basis for 

identifying the failure modes in the different specimens under different test 

conditions, further experimental results are need to provide a quantitative basis 

for determining the empirical failure criterion associated with each failure 

mode. The most commonly used failure criteria for composite materials, including 

the Tsai-Wu criteria, are represented by a failure surface in the stress space. 

The parameters in the criteria are evaluated by fitting the points of the failure 

surface with experimental data. While criteria of such nature are useful for 

characterizing the strength of the composite in the circumstances where the 
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composite is only expected to experience deformations with small strains, they 

are not well suited for composites which may experience significant inelastic 

deformation and large shear strain. Failure of filament-wound structures is 

generally a progressive process starting from microcracking of matrix and 

whitening at a relatively low level of stress. Aside from certain exceptions 

cases, it is not an instantaneous event reached suddenly when the stress path 

meets a certain fixed surface in the stress space. Hence the formal analogy of 

the failure criteria to the yield condition in plasticity may be inappropriate. 

It appears that the failure of a filament layer should depend on the 

maximum values of the transverse strain e2 and of the shear strain -y12 

experienced by an element of the layer preceding failure, as well as the filament 

strain e1 at the instant of failure. There are other important reasons for 

preferring a strain-based failure criterion over a stress-based criterion. The 

first is that the intrinsic components of the failure strain are easily 

calculated in terms of the experimental data from testing of filament-wound 

structures, while the stress data in the various filament layers usually cannot 

be obtained with certainty or cannot be obtained without an elaborate analysis. 

The second reason is that in the analysis of a thin filament-wound structure, the 

strain field is fairly smooth or uniform within the structure, and can be 

expressed in terras of a small number of unknowns including the middle-surface 

strains and curvatures, whereas the stresses may vary discontinuously from one 

filament band to another, because of the discontinuous change in the filament 

orientation and the cross-over of filament bands. Consequently, it is relatively 

easy to apply a strain-based failure criterion to a filament-wound structure. 

Recently, Feng has proposed a strain-based general failure criterion for 

composite materials undergoing finite deformation (Feng, W. W., "A failure 
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criterion for composite materials," J. Composite Materials. Vol. 25, pp. 88-100, 

1991). 

While empirical failure criteria are attractive from an engineering point 

of view because of its simplicity and ease of application, such formal criteria 

do not suggest the underlying failure mechanism at the micromechanical level. 

Although the progressive degradation of the resin matrix associated with 

significant transverse and shear strains, e2 and 712, is initially a spread-out, 

continuous process which may be characterized by a continuum theory of damage, 

eventually the microcracks evolve or coalesce into finite matrix cracks or 

fiber/matrix disbonds which ultimately determine the failure of the composite 

according to the failure criteria of fracture mechanics. For the filament layer 

in a filament-wound structure, this aspect of the failure analysis is 

particularly relevant to the tubes experiencing significant transverse tensile 

strain c2 before failure. It is less important for the prediction of failure 

loads governed by fiber breaking, at least in the case of axisymraetric filament- 

wound structures, because in such structures the position and the level of the 

maximum fiber tension may often be estimated by considering the global 

equilibrium of the structure and, consequently, an empirical failure criterion 

based on the average filament strength or allowable filament strain may be 

adequate. 

In Section 5 of the present part of the report, we present boundary-element 

analyses of two-dimensional micromechanical models of fiber-matrix interfacial 

di-.bonds and oblique matrix cracks. For simplicity, the fiber regions are 

considered as rigid whereas the resin material is treated as a linearly elastic 

medium. The assumption of rigid fibers should yield an overestimation of the 

interfacial stresses (which are unbounded and oscillatory according to the exact 
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elasticity analysis) and therefore is on the conservative side. Analysis was 

conducted for two cases corresponding, respectively, to a unit transverse strain 

and a unit shear strain in the matrix region. It is found that the energy- 

release rate associated with the growth of the interfacial crack grows rapidly 

when the disbond length reaches a certain critical value. Subsequently, the 

energy release rate levels off and approaches a limiting values when the disbond 

length becomes sufficiently large. The case of transverse strain load is more 

critical because the results show that a large energy release rate can be 

attained when the disbond length is comparable or shorter than the spacing 

between two neighboring fibers. 

Spencer and Hull observed the occurrence of local buckling and delamination 

in the failure of open-ended tubes with winding angle greater than 45°, 

particularly in the 65° tubes. It may appear somewhat puzzling that delamination 

should occur in a tube loaded under internal pressure, where the adjacent layers 

are pressed against each other in the radial direction, and that buckling and 

bending of the tube should happen under the open-end test condition, where the 

resultant axial load in the tube vanishes. An analysis of a possible failure 

mode due to the separation and growth of a helical face layer from the interior 

surface of the filament-wound tube is briefly mentioned in Sec. 6 and described 

in more detailed in the paper "Separation failure of a helical delamination in 

a filament-wound composite tube," Developments in Theoretical and Applied 

Mechanics. Vol. XV (Proceedings of the SECTAM XV, March, 1990, Atlanta, GA), pp. 

440-447 (by Wan-Lee Yin, see Appendix C of this report). 

Delamination is a prevalent mode of failure in composite laminates. 

Filament-wound structures are prone to delamination failure because the 

scissoring action at the cross-over point of two filaments belonging to separate 
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layers, mentioned in Sec. 2.3 of Part II, may produce intense local shearing 

deformation in the cross-over region as the fibers rotate and realign themselves 

to the load direction. Such scissoring action results in a system of distributed 

couple moment from one filament layer to the adjacent layer, which may initiate 

separation of the layers. After the initiation of delamination damage, 

catastrophic delamination growth may result from buckling and postbuckling 

deformation of the layer when the structure is subject to the service load. A 

general analysis of buckling and postbuckling growth of a thin two-dimensional 

delaminated layer in a composite laminate is present in a sequence of two papers: 

Yin, W.-L. and Jane, K.C., "Refined buckling and postbuckling analysis of two- 

dimensional delaminations, Part I: Analysis and Validation," and Jane, K.C. and 

Yin, W.-L., "Refined buckling and postbuckling analysis of two-dimensional 

delaminations, Part II: Results for anisotropic laminates and conclusion," Int. 

J. Solids & Structures, in press (see Appendix D and E). 

2. Relation of the deformation a tube to the deformation of a fiber net 

We consider again the deformation of the diamond-shaped region of a 

filament layer shown in Fig. 1 (p.12). The length of each side of the rhombus 

changes from L in the initial state to LCl+Cj) in the deformed state. Since cx 

is bounded by the fiber failure strain, it is always small. However, during the 

failure process the orientation angle of the fibers may deviate significantly 

from the initial angle a0. This description applies not only to the actual 

deformatiop of the filament-wound tube, but also to the hypothetical deformation 

of a fiber net without resin matrix. 

We consider an external load which causes approximately uniform axial and 

circumferential Cauchy stresses oz  and ae   in the tube.  The magnitude of the 

85 



shearing stress r2Ö is also approximately uniform but its algebraic sign changes 

from a +a filament layer to a -a layer. If the resin material were absent (i.e. , 

if the filament-wound tube is replaced by a skeleton of filaments) , then the 

orientation of the fibers under the given state of stress would be given by the 

angle a* such that 

(T cos ct*/L sin Q*)/(T sin o*/L cos a*) ■= az/oe, 

where T is the tension in each fiber.  Hence, 

tan Q* -=   (a6/oz)
lf2. (1) 

In the case of a closed-end tube subjected to a uniform internal pressure, one 

has ae/az = 2 and a* - 54° 44' . This angle is called the optimum winding angle 

in the literature on filament-wound structures. Its optimality is clearly 

dependent on the specifically assumed loading condition o6/oz  - 2. 

The presence of the resin material affects the deformation and prevents the 

fiber net from assuming the orientation angle a*. Therefore, the actual 

orientation angle of the filaments corresponding to the stress state (az, oe) is 

between u0 and a*. Under normal operating conditions, a should be close to a0. 

Any significant deviation of a from a0 toward a* would be resisted by the 

shearing stiffness of the resin material. In any such state of small-strain 

deformation (i.e. , when both ej and i - a0 are small), an increase in the loading 

is accompanied by an increase in €l and a change of a away from Q0 toward a*. 

Let these small increments be denoted by Acx and AQ, respectively.  Then 

A€j > 0     and (a*-a0) Aa > 0, (2) 

i.e., the algebraic sign of a* - a0 determine that of Aa. 

If a filament-wound tube is appropriately designed, it should deform in 

such a way that a remains close to Q0 under a wide range of operating loads. 

Large deformation of the tube, i.e., significant deviation of a from a0, should 
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occur only when the external load is close to the failure load.  In the small- 

strain deformation states preceding failure,  the algebraic sign of Aa is 

important because it generally determines the nature or mechanism of the failure 

process, as we shall find in the following analysis. 

3. Shear failure and expansion failure 

Deformation of a filament-wound tube may either increase or decrease the 

surface area of the rhombus shown in Fig. 1. A significant increase in the area 

may result in the tensile fracture of the resin material or adhesive failure 

between fiber and matrix. This is associated with experimentally observed 

progressive whitening and weepage of the tube, formation of droplets and, 

eventually, fiber breakage and tube rupture. The initiation of this expansion 

mode of failure may occur at a relatively low level of load. Large strain in the 

resin material and significant rotation of the fibers do not usually occur until 

the external load becomes close to the final failure load. 

On the other hand, if the surface area decreases as the external loading 

continues, then the resin material eventually fails under excessive shear 

deformation. There is much less whitening of the tube and no slow formation of 

droplets. When the shear strength of the resin material is exhausted, the fiber 

orientation may be significantly different from the initial orientation. 

Consequently, large deformation of the tube may occur in the failure process, and 

an accurate prediction of the failure load may require the knowledge of the 

inelastic behavior of the matrix under large deformation. Furthermore, failure 

of the tube in the shear mode may be preceded by extensive delamination since the 

in-plane areal conpression of the resin material may result in buckling of 

filament layers. 

Let AQ and A denote, respectively, the area of the rhombus in the initial 
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and deformed state, and let AA be a small increment in A. From Eq. (2.2) of Part 

II (p. 11) we obtain 

AA/A0 - 2{(sin 2a/sin 2a0) (l+e1)Acl  + (cos 2a/sin 2a0)(l+e1)
2 Aa) .    (3) 

If a < 45°, then a positive Aa contributes to a positive increment in the area. 

The opposite is true if Q < 45°.  Consequently, there are four possible cases: 

(i) a  <  45° and Q0 < a*.  In this case the area increases as a increases 

toward a*.  Expansion failure occurs. 

(ii) a > 45° and Q0 > a*.     In this case the area increases as a decreases 

toward a*.  Expansion failure also occurs. 

(iii) a < 4b° and a0 > a*.  In this case the area decreases as a decreases 

toward a*.     Shear failure occurs. 

(iii) a  > 45° and Q0 < a*.  In this case the area decreases as a  increases 

toward a*.  Shear failure also occurs. 

At the initiation of the expansional mode of failure, a is not 

significantly different from the initial angle a0. Therefore, if the angle a* 

given by Eq. (1) is greater than 45°, then in order to avoid expansional failure 

one should choose a winding angle a0 smaller than the o*. On the other hand, if 

a* is smaller than 45°, then the winding angle should be larger than a*. In 

either case, choo ;ing a winding angle between 45° and a* generally promotes the 

shear mode of failure (except when Q0 is chosen to be very close to 45° or to a*, 

as will be explained below). If Q0 is close to a*, then the resin material will 

not be subjected to excessive shear deformation in the states preceding the final 

failure. The final failure will be initiated by tensile failure of weak or 

flawed filaments. 

If either a0 - a* or a - 45°, then cos 2a Aa - 0 and, consequently, there 

is no areal expansion due to the rotation of the fibers.  However, there is some 
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areal expansion due to the fiber strain increment äe1. Thus, tubes wound at the 

ideal winding angle (Q0 - a*) or at 45° angle may start to fail in the 

expansional mode. As failure progresses in the 45° filament-wound tube under the 

closed-end condition, a increases toward a* and the failure behavior may 

subsequently change from the expansion mode to the shear mode. 

In the usual production process, a constant pitch is enforced and, as a 

result, the winding angle aQ is smaller toward the interior surface of the tube 

and larger toward the exterior surface. The deviation from the mean winding 

angle increases with the thickness of the tube and decreases with the mean 

radius. This three-dimensional effect influences the accuracy of the analysis 

given in Part II. It also implies that, for whatever choice of the helical 

pitch, a certain amount of in-plane shear deformation necessarily occurs in the 

resin material and this shear deformation varies in the thickness direction of 

the tube. 

4. Experimental evidences 

The preceding simple predictions are verified by various experimental 

results available from the existing literature. Hull et al. (Hull, D., Legg, 

M.J. and Spencer, B. "Failure of glass/polyester filament wound pipe" Composites. 

Vol 9, pp. 17-24, 1978) tested filament-wound tubes with the "ideal" winding 

angle (54° 44') under both closed-end and open-end conditions. Since the fiber 

orientation tends to stay at the "ideal" angle under the close-end test 

condition, the surface area expands because of fiber extensional strain rather 

than because of fiber rotation. Hence the tube fails under the expansion mode. 

In the open-end case, the fibers tend to orient toward the circumferential 

direction. The surface area decreases in the deformation process, and the tube 

fails in the shear mode.  The nature of the observed failure phenomena was also 
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confirmed by examination of photomicrographs (Jones, M.L.C. and Hull, D. 

"Microscopy of failure mechanisms in filament-wound pipe," J . Material Sei. . Vol. 

14, pp. 165-174, 1979). 

More extensive testing of pipes wound at 35, 45, 65 and 75 degree angles 

(Spencer, B and Hull, D., "Effect of winding angle on the failure of filament 

wound pipe", Composites. Vol. 9, pp. 263-271, 1978) further supports the 

theoretical prediction. Under both closed-end and open-end conditions, the 35° 

tubes failed primarily under the expansion mode, although the failure is also 

accompanied by significant or large shear deformation. Weepage and whitening 

begins at a very low level of loading. The orientation angle of the fibers 

increase from 35° and eventually reaches 50° in the state immediately preceding 

final fracture. For the tubes wound at 45° angle, the area increase due to 

increase in a is zero initially (because cos 2Q «= 0 in Eq. (3)). The initial 

failure of the closed-end tube may be associated with the expansion mode because 

the surface area increases with fiber elongation. However, as a increase and 

deviates significantly from 45°, shear deformation becomes dominant and the 

failure process changes into that of the shear mode. Spencer and Hull observed 

less extensive whitening and reduced over-all breakdown of the tube when the 

winding angle is 45°. Furthermore, under the open-end condition, local 

delamination was observed which suggested the reduction of surface area 

accompanying the shear mode of failure. 

The 65° and 75° tubes under the closed-end condition showed very extensive 

whitening after weepage and generated creaking noise at the instant of failure. 

The phenomena are clearly associated with the expansion mode of failure as the 

surface area increases when the fiber orientation angle decreases toward the 

limiting angle a* -  54° 44'.  On the other hand, under the open-end condition, 
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the same tubes (especially those wound at the 75° angle) showed much less 

whitening. The onset of weepage occurred suddenly with the formation of jets of 

liquid through the tube wall as the tube buckled before final failure. The 

failure process is clearly associate with the shear mode. 

Spencer and Hull reported the measured data of the axial and circum- 

ferential strains, as functions of the mean circumferential stress (which is 

related to the internal pressure) for the tubes with various winding angles under 

the open-end and closed-end conditions. From these data the intrinsic strains 

elt e2 and y12 and the areal expansion ratio (A-A0)/A0 may be calculated by using 

the finite-deformation kineraatical relations in Part II. The results are *hown 

in Figs. 13 to 17 for the open-end tubes and Figs. 18 to 22 for the closed-end 

tubes. The figures show the paths of the intrinsic strain followed by different 

tube specimens in the entire deformation process preceding the final failure. 

Large magnitudes of 712, accompanied by small or negative transverse strain c2, 

indicate the shear mode of failure, while a significant positive transverse 

strain and a large areal expansion ratio indicate the expansional failure mode 

(for example, the 55° and 65° tubes under the closed-end condition). Under the 

closed-end condition, the strain path for the 75° tube terminated prematurely at 

a very low level of the pressure load. Although the average intrinsic strains 

in the tube remained small before failure, a narrow spiral band of intense 

whitening was clearly observed, which suggests local failure under the expansion 

mode . 

Experimental results of the similar kind for other composite material 

systems are available, e.g., the results for closed-end tubes of carbon/epoxy 

filament-wound cylinders reported by Uemura and Fukunaga (ibid.). Special 

mention should be made concerning the work of Cole and Pipes (Cole, B.W. and 
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Pipes, R.B., Filamentary Composite Laminates Subjected to Biaxial Stress Fields. 

IIT Research Institute Report AD-785 362, June 1974). These authors developed 

a testing device for tubular specimens with the capability of varying the axial 

to the circumferential stress ratio, so that stress paths more general than the 

proportional loading paths corresponding to the open-end or closed-end conditions 

are made feasible. Results from such tests provide valuable additional 

information concerning the nonlinear material behavior and the effect of the 

strain path on the failure mode and the ultimate strength. 

5.  Two-dimensional micromechanical modeling and analysis of fiber-matrix 

debonding 

If, with a certain combination of the winding geometry and applied load, 

a filament-wound structure undergoes the expansion mode of failure, then 

whitening appears in the resin matrix at an initial stage of the failure process 

due to the formation of microcracks. Eventually, small cracks coalesce to form 

finite cracks across the resin matrix or on the filament-resin interface. As 

mentioned previously, the expansional mode of failure is usually associated with 

a transverse extensional strain in the filament layers. Under such a strain 

state, the resin material near the tip of a matrix crack or a fiber-matrix 

disbond is subjected to intense local peeling and shearing stress. This intense 

local stress field may result in catastrophic growth of the crack if the level 

of the transverse strain in the filament layer is sufficiently high, if the crack 

length is sufficiently large, and if an increase in the crack length under a 

fixed transverse strain causes an increase in the strain-energy-release rate. 

This possibility is investigated in the present section of the report for a 

fiber-matrix disbond, and in the next section for an oblique matrix crack running 
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across the matrix region between two adjacent fibers. At this stage, the 

objective of the analysis is to assess the possibility and the stability 

characteristics of crack growth by using simple analytical models. Specifically, 

we consider two-dimensional (plane strain or plane stress) micromechanical models 

in which the fiber regions are assumed to be rigid media. The assumption 

concerning the rigidity of the fiber regions is conservative because it generally 

yields a more severe stress state in the vicinity of the crack tip. 

5.1 Boundary-element analysis 

We consider a plane strain model in which an isotropic resin material of 

Young's modulus E and Poisson' ratio v occupies the infinite strip, -« < x < « 

and 0 < y < h, between two rigid filaments. A disbond of length 2a exists 

between the resin and the lower filament in the interval -a < x < a. The upper 

rigid filament is then subjected to a horizontal displacement h70 and a vertical 

displacement he0 relative to the lower filament, which result in average strains 

ty — e0 and 7^ » 70 in the resin region. Our problem is to determine, for 

various ratios of a/h, the displacements of the crack surface, the interfacial 

stresses between the resin and the lower filament ahead of the crack, and the 

strain-energy-release rate associated with crack growth. 

Because of the linearity of the problem, the effects of the two strain 

loads €0 and 7Q may be considered separately. This results in two problems 

associated, respectively, with the vertical and horizontal displacements of the 

upper filament relative to the lower filament. In the first problem, the 

limiting stress and strain states at infinity (x -» ±«) are given by 

oy  - ((l-i/)/V}A«ol ox  « az  - A€0, (4a) 

e* - <2 - 0, (4b) 

where 
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A - E/{(l-2*/)(l+i/)}, p  ■= E/{2(l+i/)) 

are the Lame elastic constants of the resin material. The solution to this 

problem may be decomposed into (i) a trivial solution characterized by uniform 

strains and uniform stresses which have the expressions of Eq. (4) in the entire 

matrix region and (ii) the solution of a complementary problem with the following 

boundary conditions 

t2 - - ay  - (l-2^)KeOI   tx  - 0     along the crack surface,  (5a) 

u — v - 0,       along the remaining portions of the x-axis and 

along the entire line y - h. (5b) 

Similarly, the solution of the second problem, associated with the horizontal 

displacement of the upper filament, can be decomposed into (i) a trivial uniform 

solution characterized by 

rxy - M7o. 7xy - 7o. (6) 

in the entire matrix region, and (ii) the solution of a complementary problem 

with the boundary conditions 

tj — - T^ - fiy0, t2 - 0     along the crack surface,  (7a) 

u - v - 0,       along the remaining portions of the x-axis and 

along the entire line y - h. (7b) 

Notice that the two complementary problems defined respectively by the boundary 

conditions of Eqs. (5) and (7) have solutions with zero limiting displacements 

and stresses at infinity. 

The boundary displacements ut and the boundary tractions t1 (with i - 1 and 

2 corresponding, respectively, to the x and y directions) satisfy the integral 

identity 

Uj(X) - 7 (G^S.X) tx(£) - FijC^X) 11,(0) ds(C). (8) 

where the path of the line integral encloses the matrix region and where 
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Gij(5,X)  - Cj   (C2 6ij  in  r - ziZj/r
2) , 

Fi0(C,X)   -  C3r
-2   (C^CZitij  -  zjni)   +   (CkSi3  +  2r-2s1sj)   zknk) , 

zi - Si  - xi. ^2 - zizi. ti - aijtVj, 

Cx - -  l/{8ir/*(l-i/)}, C2 -  3-4i/, 

C3 - - l/{4w(l-i/)}, C« - l-2i/. 

In the preceding expressions, nt is the unit outward normal vector along the 

boundary (Banerjee, P.K. and Butterfield, R. , Boundary Element Methods in 

Engineering Science. 1981). The integral identity will be discretized by 

dividing the boundary curve into intervals (boundary elements) and by assuming 

that the displacements and the tractions vary linearly within each interval 

(which is then called a linear boundary element). In the present problems the 

boundary of the matrix region consists of segments of straight lines. If tj and 

Uj vary linearly within each element, then the integrals on the right hand side 

of Eq. (8) can be evaluated exactly and numerical integration schemes are not 

needed. Equation (8) yields a system of linear algebraic relations for the nodal 

values of tA and ui. 

At each node point, two of the four quantities ux, u2, t: and t2 are 

specified while the remaining two variables are to be solved. Hence the system 

of linear algebraic relations obtained by discretizing Eq. (8) provides 2N linear 

algebraic equations for 2N unknown nodal variables, where N is the total number 

of boundary nodes. A double node, which stands for two boundary nodes at the 

same position, will be used at a boundary point of discontinuity of the traction 

vector tt or of the normal vector r\i. Examples of such double nodes include the 

crack tip and a corner point of the matrix region. By solving the system of 

equations one obtains an approximate solution for the unknown nodal displacements 

on the crack surface and the nodal values of the interfacial tractions ahead of 
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the crack tip. 

For the two complementary problems defined, respectively, by the boundary 

condition of Eqs. (5) and (7), both the displacement and the traction vectors 

vanish at infinity. Hence the line integrals of Eq. (6) need be performed only 

along the two horizontal paths and, in practice, only along a sufficiently long 

finite portions of the paths. Furthermore, the first problem, associated with 

a vertical displacement of the upper filament, is symmetric with respect to the 

y-axis while the second problem, associated with a horizontal displacement of the 

upper filament, is antisymmetric. These symmetry conditions ~iay be used to 

eliminate all unknown variables associated with the boundary nodes in the region 

x < 0 by expressing them in terms of the remaining variables, according to the 

procedure described in Part III, Sec. 8 (pp. 71-72). Notice that this practice, 

which is convenient in dealing with the symmetry conditions in a boundary-element 

analysis, is different from the common practice in a finite-element analysis, in 

which one half of the region separated by the symmetry axis is removed from the 

finite-element model and the symmetry conditions along the symmetry axis are used 

as part of the boundary conditions for the reduced region. The latter practice 

is not used in the present boundary-element analysis because, by removing the 

left half region of the infinite strip 0 < y < h, corner points would have to be 

introduced which generally introduce additional complication in programming the 

solution algorithm. 

The boundary-element models used for the analysis of the first and second 

complementary problems are described, respectively, in Figs. 23 and 24, where 

only the regions x > 0 of the models are shown in the figures and the remaining 

portions of the models are implied by symmetry. In these models, the length 

scales have been normalized with respect to h so that the normalized width of the 
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Fig. 23: Boundary-element model for a fiber-matrix disbond 

under a transverse strain load 
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Fig.   24:   Boundary-   element  model   for  a   fiber-matrix  disbond 

under  a   shear   load 
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strip is unity. Figs. 23b and 24b show, in complete detail, the shaded regions 

around the crack tip in Figs. 23a and 24a. The mesh of boundary elements is made 

progressively finer as the crack tip is approached. The shortest elements have 

the normalized length 1/512 for the problem associated with the tension load and 

1/128 for the problem associated with the shear load. Outside the shaded region, 

the partition of the crack face and the number of nodes may vary with the length 

of the crack and, therefore, may be different from those shown in the figures. 

5.2 Strain energy release rates associated with crack growth 

When the system of algebraic equations for the unknown nodal variables are 

derived by integrating Eq. (8) and the equations are solved, the energy-release 

rate associated with crack growth is calculated from the crack closure integral 

G - (l/27)  f ay(x)u2 (x-7) dx + (l/27)  f r^U)^ (x-7) dx. 
Jo Jo 

(9) 

In the preceding integrals the coordinate x has been shifted so that its origin 

is located at the crack tip, and 6 is a small length parameter usually taken to 

be equal to the length of the boundary or finite element immediately ahead of the 

crack tip. The two integrals are often referred to as the mode I and mode II 

strain-energy-release rates and denoted by Gj and Gn. However, there appears 

to be no rigorous theoretical basis for such a partition (except for the special 

case of an interior crack in a single homogeneous medium) because the interfacial 

stresses ay and r^ oscillate wildly in a tiny immediate neighborhood of the 

crack tip, and the values of the two integrals are sensitively dependent on the 

length parameter 6 when 6 assumes values comparable to the size of the tiny 

immediate neighborhood. Sun and Manoharan showed that for a crack between two 

dissimilar orthotropic media, the two integrals eventually approach the same 

limiting value, G/2, when 6 approaches zero (Sun, C.T. and Manoharan, M.G. , 

"Strain energy release rates of an interfacial crack between two orthotropic 
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solids," J. Composite Materials. Vol. 23, pp. 460-477, 1989). The sum of the two 

integrals, however, is quite insensitive to the length parameter 6 provided that 

6 is sufficiently small, i.e., insensitive to mesh refinement in the boundary- 

element or the finite-element model. 

In spite of the lack of a rigorous theoretical justification for the 

partition of G into Gx and Gn, one may argue heuristically that the latter two 

quantities, as calculated by using a sufficiently small (but not excessively 

small) length parameter 6, provide quantitative measures of two different types 

of interaction (associated, respectively, with peeling and shearing) between an 

immediate neighborhood of the crack tip (of size comparable to 8) and the region 

of the matrix outside that neighborhood. While the interfacial stresses of the 

elasticity solution show wild oscillations and increasingly large positive and 

negative peak values in an immediate neighborhood of the crack tip, such an 

abnormal and singular stress field is invariably modified in a real material by 

nonlinear and inelastic effects. However, the modified (i.e., the actual) stress 

field in the real material in the immediate neighborhood of the crack tip may 

still share with the singular stress field of the elasticity solution certa-' 

common gross characteristics such as the magnitudes of energy transfer associated 

with the tearing and shearing action. If the redistribution of the stress within 

the small immediate neighborhood of the crack tip due to the nonlinear and 

inelastic material effects does not totally invalidate all results of the 

elasticity solution (this assumption must be made, because otherwise there would 

be no use to compate or consider the elasticity solution at all), then certain 

gross quantities derivable from the approximate elasticity solutions may be 

physically significant, provided that their values are not sensitively dependent 

on the mesh refinement when the mesh is not so over-refined that the wild 

110 



oscillation of the interfacial stresses is no longer limited to one element ahead 

of the crack tip but spreads out over several elements. In the present analysis, 

the two integrals have been separately evaluated. This is done by first taking 

5 to be the length of one element ahead of crack tip, and subsequently taking 6 

to be the combined length of two elements ahead of the crack tip. 

5.3 Results of the analysis 

The results described in the following refer to the solutions of the two 

complementary problems described in Sec. 5.1. The solutions to the corresponding 

original problems may be obtained by combining the present solutions with the 

respective trivial uniform solutions expressed by Eqs. (4) and (6). In the 

present solutions, the Poisson's ratio of the resin material is taken to be 0.3. 

For two different crack lengths 2a - h and 2a - 4h, the displacements of 

the crack face in the first complementary problem (corresponding to the average 

tensile load cy - c0 in the matrix material) are shown in Figs. 25 and 26. These 

displacements have been normalized with respect to €0h. The interfacial normal 

and shearing stresses between the upper rigid filament and the matrix (along y 

- h) is shown in Fig. 27 for the model with a crack length 2a - 4h. Figure 28 

shows the interfacial stresses ahead of the crack tip on y - 0. These 

approximate solutions of the stresses show oscillatory behavior near the crack 

tip and very large peak values at the crack tip. The effects of the mesh size 

on the interfacial normal and shearing stresses near the crack tip are shown, 

respectively, in Figs. 29a and 29b, by comparing the results using the boundary 

element model shown in Fig. 23 (fine mesh) and a less refined model in which the 

smallest element size is increased from h/512 to h/256. Although the interfacial 

stresses near the crack tip are significantly changed, their patterns away from 

the crack tip are not appreciably dependent on mesh refinement. 
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Fig. 25: Normalized crack-surface displacements under 

the transverse tension load (crack length 2a = h) 
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Fig. 26: Normalized crack-surface displacements under 

the transverse tension load (crack length 2a = 4h) 
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Fig. 28: Interfacial stresses ahead of the crack tip 

(Stresses normalized with respect to it€0 

crack length 2a = 4h) 
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Fig. 29a: Effect of the size of crack-tip elements 

on the normalized interfacial normal stress 

(Crack length 2a = 4h, under transverse tension load) 
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Fig. 29b: Effect of the size 0f crack-tip elements 

on the normalized interfacial shear stress 

(Crack length 2a = 4h, under transverse tension load) 
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For the second complementary problem (associated with an average shear 

strain load 7^ - 70 in the matrix) , the results of the crack surface 

displacements are shown in Figs. 30 and 31 for two different values of the crack 

length. Notice that in the case of shear load the horizontal displacement along 

the crack surface is an order of magnitude greater than the vertical displacement 

(i.e. the crack opening displacement). While the crack opening displacement is 

positive near the crack tip x - a, it is negative in an interval to the right of 

the origin. Since the vertical displacement is anti-symmetric with respect to 

the coordinate x, the opening displacement near the crack tip x = -a is negative. 

Negative opening displacements imply that the resin material actually contacts 

the fiber region and the solution should be modified by the effect of partial 

contact. However, this effect is not investigated in the present study. The 

large value of the horizontal displacement in comparison with the opening 

displacement implies that, in case of negative opening displacement, there may 

be severe friction effect associated with the sliding of the crack surfaces. 

The interfacial stresses on y - h and y - 0 are shown, for the crack length 

2a = 4h only, in Figs. 32 and 33. However, in order to provide more information 

concerning the various solutions, the effect of mesh refinement on the 

interfacial normal and shearing stresses is shown for a different crack length, 

2a = h, in Figs. 34a and 34b. In the case of shear load the fine mesh (shown by 

the boundary-element model of Fig. 24) has the smallest element size h/128 while 

the coarse mesh his the smallest element size h/64. 

The integrals Gx and Gn associated with each of the two loading cases are 

shown in Figs. 35 and 36 as functions of the crack length. For the case of 

tension load Gj and Gn as shown in Fig. 35 have been normalized with respect to 

/itu0
2, while for the case of shear load they have been normalized with respect 
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to nhyQ
2. Comparison is made between the results based on the fine-mesh model 

and the coarse-mesh model. The differences are not significant for the larger 

modal contribution (Gj in the case of tension load and GI: in the case of shear 

load). As mentioned previously, the results for G: and Gn are obtained by 

choosing the length parameter 6 in Eq. (9) to be equal to the length of the crack 

tip element in the present model. No significant changes in values of the 

dominant modal contribution are found when b changes with mesh refinement, 

provided the refinement is not excessive. The results are expected to vary 

significantly with S when 6 becomes extremely small, since G: and Gn should 

approach a common limit G/2 when 8   approaches zero. 

The dependence of the total strain-energy-release rate upon the crack 

length is shown in Fig. 37. As in the two preceding figures, the energy-release- 

rate is normalized with respect to /ihc0
2 for the case of tension load and with 

respect to ^hjQ
2 for the case of shear load. The actual result corresponding to 

a combined strain load cy - c0 and 7^ - 70 may be evaluated by superposition. 

The trends of the two curves in Fig. 37 have important implications on the 

characteristics of disbond growth. We find that G associated with the shear 

strain load increases monotonically with the crack length. Hence, if the growth 

of the disbond is governed by a critical level of the total strain-energy-release 

rate, Gcr, and if the shear strain load 70 is raised to a sufficiently high level 

so that G attains the critical value, then the disbond starts to grow and 

subsequently G increases with the lengthening of the crack and becomes 

increasingly greater than Gcr even if the shear strain load is held fixed at the 

level required for the initiation of growth. The growth of the crack under the 

fixed shear strain load is therefore a catastrophic process. 

Under the tensile strain load cy - c0, the relation of G to the crack 
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length increases rapidly and reaches a peak value at a crack length of 

approximately 1.5h. Subsequently G suffers a slight decrease and eventually it 

approaches a constant value as the crack length further increases. From a 

practical standpoint, the slight decrease in the G following the attainment of 

its peak value does not change the essentially catastrophic nature of disbond 

growth under the tension load. For a given disbond length 2a and for a resin 

material with a known fracture toughness Gcr, the level of the strain load eQ and 

70 required to initiate the growth of the disbond can be found by using the 

curves in Fig. 37. The present analysis implies that, under the assumption of 

a growth criterion depending only on the total strain-energy-release rate, the 

disbond growth will continue catastrophically once it is initiated. 

Consequently, in a filament-wound structure, fiber-matrix debonding is a possible 

failure mechanism in the filament layers subjected to transverse expansion and 

shear deformation. 

It should be reiterated that since widespread microcracking of the resin 

material usually precede final failure associated with disbond growth, there is 

a need to use a continuum theory of damage to evaluate the degradation of the 

elastic moduli of the resin material in the initial failure process. The elastic 

moduli to be used in the micromechanical fracture analysis should be the 

degradated values. 

Supplement In order to find the dependence of the two integrals in Eq. (9) upon 

the length parameter 6, we added increasingly smaller elements at the crack tip, 

and obtained boundary-element solutions and computed closure integrals using 

increasingly smaller 6/h, varying from 2"8 - 1/256 to 2"1* - 1/16384, for a crack 

length 2a - 2h under the tension load. The results for Gx, Gn and G are shown 

in Fig. 38. 
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Fig. 30: Normalized crack-surface displacements 

under the shear load (crack length 2a = h) 
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Fig. 31: Normalized crack-surface displacements 

under the shear load (crack length 2a = 4h) 
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Fig. 32: Interfacial stresses on y = h (Stresses 

normalized with respect to kiY6f   2a = 4h) 
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Fig. 33: Interfacial stresses ahead of the crack 

tip (Stresses normalized with respect to ALYO, 

crack length 2a = 4h) 
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Fig. 34a: Effect of the size of crack-tip elements 

on the normalized interfacial normal stress 

(Crack length 2a = h, under shear load) 
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Fig. 34b: Effect of the size of crack-tip elements 

on the normalized interfacial shear stress 

(Crack length 2a = h, under shear load) 
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in the crack-closure integrals, 

disbond length 2a = 2h, under tension load 
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6. Modeling and Analysis of an Oblique Matrix Crack 

In this section, we consider a two-dimensional boundary-element model of 

an oblique matrix crack running across the matrix region (of thickness h) between 

two parallel filaments. As in the previous analysis of an interface disbond, the 

two fibers are modeled as rigid media, and the load is introduced by the transla- 

tional displacements of the upper fiber relative to the lower fiber, u1 - h70 and 

u2 - hcOI along the x- and y-directions, respectively. Results in the following 

analysis are obtained for a resin material with the Poisson's ratio v = 0.3, and 

the resin material is assumed to be under the plane stress condition. However, 

any plane stress solution of a resin material with Poisson's ratio u may be 

converted into a plane strain solution of a material with Poisson's ratio 

i//(l-u). 

The analytical model for the boundary element analysis is shown in Fig. 39. 

The upper and lower boundaries of the region in Fig. 39b are the interfaces of 

the resin material with the upper and lower fibers. The oblique crack surface 

has the inclination angle ß. All length dimensions are normalized with respect 

to the height of the region, and the vertical boundary on the right side is 

chosen to be at a large distance away from the oblique crack. One segment of the 

lower boundary which has an unmarked length may be empty, or may be divided into 

several element depending on the value of the inclination angle ß. A detailed 

sketch of the shaded region at the lower left corner is shown in Fig. 40a. Under 

the displacement loading, intense local stresses are expected around the 

reentrant corner of the region where the crack meets the upper interface. Two 

submodels of the shaded region at the reentrant corner are considered and shown 

in Figs. 40b and 40c. The second submodel has a short interfacial crack of small 

length h/128, which is divided into two boundary elements, while the first 
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Fig. 40: Details of the corner regions in Fig. 39 
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submodel has no interfacial crack. 

The problems associated with the transverse tension and shear loads are 

again decomposed into (i) trivial solutions with uniform stress and strain 

fields, and (ii) complementary solutions with zero displacements on the fiber- 

matrix interfaces and vanishing stresses and strains at infinity. For the case 

of transverse tension load ey = €0, the complementary problem is characterized 

by the following traction boundary conditions on the crack surface 

tl    "    uao    s^n   ß> t2   "    ~   °o   cos   ß> (10) 

where 

f 2ne0(l-u)/(l-2u) under tno plane strain condition, 

^ 2/ic0/(l-i/) under the plane stress condition. 

In the  ase of shear load, the preceding traction boundary conditions ire 

replaced by 

ci * - M7o cos ß, -i. " Wo  si"1 ß- (U) 

The boundary element solutions reported in the following have the ^.ngle of 

inclination ranging from 15° to 75° at increments of 7.5°. 

Figure 41 shows the interfacial normal stress (normalized with respect to 

/i€0) near the reentrant corner, under the tension load, for oblique matrix cracks 

with various inclination angles.  Figure 42 shows the corresponding results when 

there is a short interface crack of length h/128 at the reentrant corner.  The 

horizontal axis in Fig. 42 has beei: shifted so that the origin is at the crack 

tip.   The peak stresses  in Fig.  42 are significantly greater than the 

corresponding values in Fig. 41, particularly in the cases of large ß.      The 

results for the interfacial shearing stresses under the tension load are shown 

in Figs. 43 and 44, respectively, for the cases without and with a short 

interfacial crack.   It is found that the introduction of a short crack 
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drastically increases the peak interfacial shearing stress by doubling or 

tripling the values. 

Under a positive average shear strain load 7^ - 70, the region around the 

reentrant corner is clearly subjected to vertical compression (i.e., a peeling 

action should be produced by a negative shear strain load). The results for the 

interfacial normal stresses are shown in Figs. 45 and 46, respectively, for the 

cases without and with a short interfacial crack. The corresponding results for 

the interfacial shearing stresses are given in Figs. 47 and 48. The four figures 

also demonstrate the significant increases in the interfacial stresses due to the 

presence of a short interfacial crack at the reentrant corner. 

Since the evaluation of the crack-closure integrals requires the solutions 

of the crack surface displacements near the crack tip, the strain-energy-release 

rates are computed only for the model with a short interfacial crack at the 

reentrant corner. The length parameter 6 appearing in Eq. (9) is taken to be the 

length of the short crack (which is divided into two boundary elements). Results 

under the tension load are normalized with respect to f*he0
z and shown, for 

various winding angles, in Fig. 49a for the total G and in Fig. 49b for Gj and 

GJJ. The corresponding results under the shear load are normalized with respect 

to fth70
2 and shown in Figs. 50a and 50b. If the strain load is large enough to 

initiate the growth of the short interfacial crack, then the subsequent growth 

behavior is expected to be qualitatively similar to what has been found in Sec. 

5 for an interfacial disbond, i.e., the strain-energy-release rate generally 

increases as the crack length increases and, consequently, catastrophic failure 

occurs. 

If the inclination angle ß is allowed to decrease and approach zero, then 

the present results, which are based on the plane stress assumption, should 
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Fig. 42: Interfacial normal stress near the cracked 

reentrant corner (crack length = h/128) 
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Fig. 43: Interfacial shear stress near the reentrant 
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Fig. 44: Interfacial shear stress near the cracked 

reentrant corner (crack length = h/128) 
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Fig. 46: Interfacial normal stress near the cracked reentrant 

corner (crack "length = h/128), shear load 
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Fig. 47: Interfacial shear stress near the reentrant 
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Fig. 48: Interfacial shear stress near the cracked reentrant 

corner (crack length = h/128), shear load 
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increase and approach the limiting values of the strain-energy-release rates 

associated with an infinitely long interfacial disbond under the plane stress 

condition. In the present model, deviation of ß from 0 yields lower values of 

the strain-energy-release rates. In the model for the interfacial disbond of the 

previous section, smaller disbond lengths yield lower values of G. For both 

types of cracks, a sufficiently large combination of strain loads €0 and 70 may 

initiate crack growth and lead to catastrophic failure. 

7. Delamination Failure in Filament-Wound Structures and Composite Laminates 

In the pressure testing of filament-wound tubes with winding angles greater 

than 45° under the open-end condition, it has been observed that the final 

failure appears to be often preceded by bending, local buckling and delamination 

(see Sec. 4, Part IV). Filament-wound tubes are prone to delamination damage 

because the scissoring action in the fiber cross-over region introduces intense 

local twisting action in the resin material between adjacent filament layers as 

the differently oriented, relatively rigid filaments align themselves, through 

opposite rotations, toward the principal stress axis of the tube (see Sec. 2.3, 

Part II). If the filament-wound structure with an existing delamination is later 

subjected to a service load that results in a local compression along a certain 

direction, a thin delaminated layer may buckle and may grow catastrophically in 

the postbuckled state. 

7.1 Separation failure of a helical delamination in a filament-wound tube 

The observed delaminations in filament-wound tubes often have spiral or 

helical shapes. An analysis of the separation failure of a helical delaminated 

layer from the interior surface of a filament-wound tube was presented in a paper 

attached as Appendix C.  In that paper, we considered the separation of a thin 
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helical delaminated sheet of width 2a, composed of a single filament layer with 

the winding angle 4>, from a relatively thick tube subjected to the pressure load. 

Under the assumption that the separation of the thin layer does not appreciably 

affect the existing deformation of the main body of the tube, we calculated the 

amplitude of separation and the change in the boundary normal curvature of the 

thin layer resulting from separation, for various combinations of the 

delamination width and the tangential strains on the interior surface of the 

tube. It was remarked that the strain-energy-release rate associated with the 

widening of the helical delamination may be computed in terms of the boundary 

values of the solution (along the helical boundaries of the delamination). Since 

the appearence of the paper, further analysis has been made for the case of a 

delaminated sheet composed of two filament layers with +65° and -65° winding 

angle, and the strain-energy-release rates associated with the widening of one- 

layer and two-layer delaminated sheets have been obtained by evaluating a path- 

independent integral.  The results are summarized in the following. 

We consider a helical delaminated sheet of width 2a on the interior surface 

of a relatively thick filament-wound tube with the interior radius R^ (Fig. 51), 

Fig. 51: A helical delamination near the interior surface 

of a filament-wound tube 
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subjected to a uniform axisymmetric load so that the interior surface suffers the 

axial strain c2 and the circumferential strain ie. The delaminated sheet is 

composed of a single filament layer with the winding angle 4> and thickness t «= 

h, or two filament layers wound at +<f> and -<p angles with a combined thickness t 

- 2h (<f> is taken to be 65° in computing the numerical solutions because Spencer 

and Hull observed severe delamination damage in open-ended tubes wound at ±65° 

angles, see Composites. Vol. 9, pp. 263-271, 1978). We define a non-dimensional 

delamination width b and a non-dimensional strain parameter c* by the expressions 

b - a (sin 0)/y(Rot), 

c* = (IVt) [ee + e2 - (te-ez) cos 2*}/(2 sin2*) . 

The solutions for a two-layer delaminated sheet are obtained for different 

combinations of the non-dimensional parameters b and c* (the corresponding 

results for a one-layer delaminated sheet were shown in the paper attached as 

Appendix C). For two different values of the normalized delamination length, b 

-1.0 and b - 2.5, the dependence of the amplitude of separation (normalized with 

respect to the total thickness t of the delaminated sheet) upon the strain load 

parameter e* is shown in Fig. 52. The amplitude increases monotonically with the 

strain load and the wider delamination has a much greater amplitude of 

separation. Figure 53 shows the increase in the normalized boundary normal 

curvature of the delaminated sheet (normalized according to the definition given 

in the paper in Appendix C) induced by its separation from the main body of the 

tube. This curvature change is a principal measure of the peeling action at the 

delamination front caused by separation. While the normalized curvature change 

also increases monotonically as the strain load increases, the two curves for the 

two different delamination widths are rather close. In Figs. 54 and 55, the same 

results for the amplitude of separation and the change of the boundary curvature 
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are shown as functions of the non-dimensional delamination width for three values 

of the strain load, e* - 0.1, 0.5 and 1.0. The change in the boundary normal 

curvature, which increases initially with the delaraination width, tends to 

approach a constant value as the normalized width attains a level of about 1.5. 

The results for the strain-energy-release rates (normalized with respect 

to A22(t/Ro)
2sin20) associated with the growth of the two-layer delaminated sheet, 

are shown in Fig. 56 as functions of e* for two fixed values of b, and shown in 

Fig. 57 as functions of b for three fixed values of e*. The corresponding 

results for the one-layer delaminated sheet (which has a thickness t «= h, i.e., 

one half the thickness of the two-layer sheet) show similar trends but the 

physical (dimensional) strain-energy release rate has a much smaller value 

compared to the two-layer sheet.  These results are shown in Figs. 58 and 59. 

Figures 57 and 59 show that, under a fixed strain load in the tube, the 

energy-release rate increases initially as the delamination width increases. It 

reaches a peak value when the nondimensional delamination width b attains a level 

between 1.0 and 2.0. The subsequent drop in the energy-release rate is very 

slight. This behavior suggests catastrophic growth of the helical delamination 

under a sufficiently high strain load. For a given initial delamination width, 

the level of strain load sufficient to initiate delamination growth can be 

determined by comparing the analytical result of the strain-energy-release rate 

with the experimentally measured fracture toughness of the material. 

7.2 Postbuckling deformation and growth of a thin two-dimensional delamination 

in a composite laminate 

Fundamental studies of this important problem have been presented for the 

ideal but representative case of thin elliptical delarainations in a flat 

laminate.  See the two papers attached as Appendices D and E. 
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Fig. 52: Separation of a helical delaminated sheet 

vs. the normalized strain load (two-layer sheet) 

o - 

A - 

3- 

U-^.Q                                                                  ^-              ^fj 

2 - 

1 - 

0- II- 
0 12 3 

Fig. 53: Normalized boundary normal curvature 

vs. the normalized strain load (two-layer sheet) 
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Fig. 54: Separation of a two-layer helical 

deiaminated sheet vs. the normalized delamination 
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Fig. 55: Normalized boundary normal curvature vs. 

the normalized delamination width (fixed strain load) 
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Fig. 57: Normalized e ergy-release rate vs. 
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Fig. 58: Normalized energy-release rate vs 

normalized strain load (fixed delamination 

width, one-layer delaminated sheet) 
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Fig. 59: Normalized energy-release rate vs. 

normalized delamination width (fixed strain 

load, one-layer delaminated sheet) 
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Part V. End and Edge Effects 

Cylindrical filament-wound vessels are usually enclosed by axisymmetric 

caps at the two ends which require special winding patterns. An early but 

comprehensive introduction to the winding geometry and design issues involved in 

filament-wound structures for various applications was given in the book by 

Rosato, D.V. and Grove, C.S., Jr., Filament Winding: its development, 

manufacture, applications and design. Interscience, New York, 1964. The complex 

winding geometry at the closed ends results in special and inhomogeneous response 

behavior of the shell elements which constitute the caps. The problems of stress 

and deformation analysis are complex and difficult, and finite-element or other 

numerical modeling and analysis methods are often required to obtain approximate 

solutions. Special attention must be given to a region with discontinuities in 

the curvature, such as the junction between the cylindrical part and the end cap. 

Significant local stresses due to abrupt changes in the winding geometry may be 

developed in such regions under pressure-induced bending action. 

End effects near the open ends of laminated anisotropic tubes have been 

studied by several authors (see, for example, Pagano, N.J. and Halpin, J.C., 

"Influence of end constraint in the testing of anisotropic bodies," J . Composite 

Materials. Vol. 1, p. 18, 1968; Rizzo, R.R. , "More on the influence of end 

constraints on off-axis tensile tests," J. Composite Materials. Vol. 3, p. 202, 

1969; Vicario, A.A. and Rizzo, R.R., "Effect of length on laminated thin tubes 

under combined loading," J. Composite Materials. Vol. 4, p. 273, 1970; Rizzo, 

R.R. and Vicario, A.A., "A finite element analysis of laminated anisotropic 

tubes," J. Composite Materials. Vol 4, p. 344, 1970). Although an approximate 

analysis of the stresses in the interior region of a filament-wound tube can be 
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conducted on the basis of the anisotropic shell theory, such an analysis cannot 

adequately account for the three-dimensional stress fields at the ends of the 

tube. Along the free edge or opening of a laminated structure, the mismatches 

in the elastic moduli and in the orientation angles of the adjacent layers of a 

laminate may introduce severe interlaminar peeling and shearing stresses. 

Although these interlaminar stresses decay rapidly away from the free edge, they 

may cause the initiation and growth of free-edge delamination because of the 

localized high intensity of the stresses. Significant free-edge interlaminar 

stresses may occur in a composite vessel made of a metal lining and a filament- 

wound exterior shell, or in a filament-wound vessel bonded to a metal fitting. 

Such interlaminar stresses may be caused by mechanical and thermal loads. In the 

latter case the interlaminar stresses are dependent also on the different thermal 

expansion coefficients of the adjacent layers. 

Existing studies of the free-edge interlarainar stresses in layered 

composite plates and cylinders are usually based on finite-element or finite- 

difference modeling of the structure. Because the interlaminar stresses are 

highly localized and depend on the differences in the mechanical and thermal 

properties of the adjacent layers, a proper analytical modeling must include the 

details of the layered structure of the laminate and the anisotropic elastic and 

thermal parameters of the layers. In the case of a multi-layered laminate, this 

usually results in a very refined computational model with a large number of 

degrees of freedom. A substructuring approach may be used to reduce the size of 

the problem. However, the modeling and analysis still involve very considerable 

amount of effort and are, therefore, not suitable for practical purposes of 

design and optimization. 

An efficient and accurate method for the analysis of free-edge interlaminar 
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Stresses has been developed by using a variational method of approach on the 

basis of the principle of complementary virtual work. Since our objective is to 

obtain reasonably accurate solutions for the interlaminar stresses, it is natural 

to adopt a stress formulation, rather than a displacement formulation. The 

stress components in each layer may be represented by the derivatives of 

Lekhnitskii's stress functions (Lekhnitskii, S.G., Theory of Elasticity of an 

Anisotropie Elastic Body. English translation by P. Fern. Holden-Day, San 

Francisco, 1963). This ensures that the equilibrium equations are exactly 

satisfied by the variational solution in all regions of the layered plate, 

including the regions of high stress gradient near a free edge. Furthermore, 

traction-free boundary conditions and interfacial continuity of interlaminar 

stresses may be strictly enforced by imposing homogeneous boundary conditions and 

interfacial continuity conditions on the stress functions and their normal 

derivatives. The compatibility of strain and the interfacial continuity of 

displacements may be enforced in an averaged sense through the use of the 

principle of complementary virtual work. 

Since each layer of the composite structure is very thin, the stress 

functions in each layer may be approximated by polynomial functions of the 

thickness coordinate, with coefficient that are functions of the coordinate along 

the interface. The application of the complementary virtual work principle 

yields a system of ordinary differential equations for the coefficient functions 

of the polynomial stress functions. The inhomogeneous terms (forcing terms) in 

the differential equations are linearly dependent on the three deformation 

parameters at the free edge: an axial extensional strain along the free edge, a 

bending curvature and a twisting curvature. The differential equations together 

with the homogeneous boundary conditions for the stress functions and their 
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derivatives define an eigenvalue problem. Solution of the eigenvalue problem 

yields the stresses in the individual layers and the interlaminar stresses 

between adjacent layers. This analysis method has been developed and presented 

in a recent paper (see Appendix F) . The method is extremely easy to use, because 

of the simplicity of data input required for the analysis. The accuracy of the 

results was shown to be comparable to that of the existing numerical solutions 

base on finite-element and finite-difference methods. However, analysis using 

the present variational method has been implemented on personal computers and the 

results were generated for the classical problem of a four-layer symmetric cross- 

ply or angle-ply laminate in about one second on a 486 machine. 

The variational method of analysis may be extended to the case of thermal 

loading in laminated beams and plates. The thermal stress problem for a finite 

beam or laminate may be decomposed into (i) a trivial problem for an infinite but 

otherwise identical beam or laminate under the same temperature load, and (ii) 

a complementary, purely mechanical problem in which the finite beam or laminate 

is subjected only to boundary tractions equal but opposite to the in-plane 

stresses of the first (trivial) problem. In this case the differential equations 

for the coefficient functions of the polynomial stress functions (derived by 

using the complementary virtual work principle) are homogeneous but the boundary 

conditions for the stress functions are inhomogeneous. Following a procedure 

similar to that in the analysis of mechanical loading, the eigenfunction analysis 

is performed and the stress functions and the interlaminar stresses are 

determined. The analysis method has been developed for the case of layered 

beams. The efficacy of the method and the accuracy of the results were 

demonstrated in two papers attached as Appendices G and H. 

If a portion of the free edge has a curved geometry and if the local radius 

146 



of curvature is an order of magnitude greater than the laminate thickness (this 

is usually true around holes and openings of a laminated structure), then the 

present analysis method may still be applied to any short segment of the curved 

free edge, which is approximated by an treated as a straight segment. In this 

case, however, the system of governing differential equations and the associated 

boundary conditions generally vary along the curved free edge. Hence the local 

values of the layer stiffness matrix (referred to the local tangent and normal 

directions of the free edge) and the local values of the traction data should be 

used in each short segment of the edge. The actual three-dimensional stress 

distribution near the curved free edge is effectively replaced by a local two- 

dimensional stress field. This approximation assumes that the characteristic 

length of decay of the interlaminar stresses, which is usually comparable to the 

laminate thickness, should be small compared to the local radius of curvature of 

the free edge. 

In the case of multi-layered beams and plates, a combined layer/sublaminate 

subs true turing approach may be used to significantly reduce the size of the 

problem. In this approach, two interior layers adjacent to a particular 

interface are modeled as separate anisotropic homogeneous media while the 

remaining layers are grouped into an upper sublaminate and a lower sublaminate. 

The stress and moment resultants of the upper and lower sublaminate are shown to 

be related to the values of the stress functions on the interfaces between the 

sublaminates and the interior layers. After the eigenfuntion analysis is 

completed and the interlaminar stresses are determined on the particular 

interface, another interface is considered and a new layer/sublaminate model is 

used for the analysis of the interlaminar stresses on the latter interface. 
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Appendix A: Program MICRCBEM 

Boundary-Element Analysis of the Micromechanical Problem 

Associated with Calculating the Elastic Moduli of a Composite 

from the Properties of Isotropie Matrix and Transversely Isotropie Filaments 



C PROGRAM MICROBEM 
C    SOLUTION OF MICROMECHANICAL  PROBLEMS BY THE BOUNDARY ELEMENT METHOD 
C    FOR DETERMINING THE GROSS ELASTIC MODULI OF A UNIDIRECTIONAL COMPOSITE 
C    BASED ON AN EXISTING 2-D BEM CODE FOR A SINGLE HOMOGENEOUS  ISOTROPIC MEDIUM 

COMMON/RW/IRE,IWR 
COMMON/A/D(2,2) , XI (6, 3) ,W (6, 3) , IDUP(IOO) , INC (100,2) ,C(100) , 

*S (100,3) , ISYM(IOO) ,X(100) ,Y(100) ,IFIP(108) ,A(108,108) ,P(112) , 
*XM(108),A1 (62,62),BB1 (62,62),A2 (112,112),BB2(112,112) , 
*AB1 (171#. 3i*8) , XX« (174) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 

COMM0N/ABC/JS1 (240),JS2(240),DEL (240),JS3(240) ,IX(240) 
DIMENSION   STF (108) ,BBB(108),CCC(108) ,MEE (108),MFF (108) 

OPEN   (4,FILE«'DB60.DAT'.STATUS-'UNKNOWN') 
OPEN    (6,FILE='RB60.DAT'.STATUS-'UNKNOWN») 

C 
C      INPUT   ,AND   COMPUTE   MATRX   A   AND   B 
C 

IRE-i* 
IWR-6 
READ (IRE.*) RA,CTA,POM,P012,UO,VO,EPO 
WRITE (IWR,100) RA,CTA,UO,VO,EPO 

100   FORMAT (//2X,3HRA«,F7.4,2X,4HCTA«,F1*.1 
?/2X,3HUO-,F6.3,2X,3HVO-,F6.3,2X,4HEPO-,F6.3) 
READ (IRE,*) El ,GGF , VVF ,GGM, VVM 
DP-P012*EP0 
DM«P0M*EPO 
VE-DM-DF 
CTA-CTA*3.1415926535/180. 
READ (IRE,A) N1.N2 
NNN-N1+N2 
NNR-108 
CALL INPT(NE.NN,NP,I PL,PO,NN2,NT,C1,C2, 

*C3,Cii,C5.C6,C7.C8fC9,C10tC11,IDSYM,XSYM,YSYM.INFB.RA.CTA,1) 
CALL MATRX (NE.NN.NN2,NT,C1.C2,C3,C4,C5,C6,C7.C8. 

-.••C9.C10.C1 1,P0, IDSYM.XSYM.YSYM, INFB.IFA.NIF) 
CALL INPTS (NE.NN.NP,IPL,P0,NN2,NT,C1,C2, 

'••C3,Ci4,C5,C6,C7,C8,C9,C10,Cl 1, IDSYM.XSYM.YSYM, I NFB , RA, CTA, 1) 
CALL MATRS (NE,NN,NN2,NT,C1,C2,C3,C4,C5,C6,C7,C8, 

*C9,C10,C1l.PO,IDSYM.XSYM.YSYM,INFB.IFA.NIF) 
DO 140 1*1,28 
XN(I)-X(I) 

140   YN(I)*Y(|) 
CALL CONNECT (A1.BB1,A2,BB2,N1,N2,ABl) 
READ (IRE,*) NC 

READ (IRE,*) (JS1 (I) , 1-1,NC) 
READ (IRE,*) (JS2(D , I-1.NC) 

DO 205 1-1,NC 
205  JS3(D«JS2(D 

CALL ADDI (RA.CTA) 
CALL NCSBC(VE,UO,VO,DF,DM) 
DO 230 l-l,2*NNN 

230   XXM(l)«0. 
CALL REDUCE (AB 1,NNN,XXM.NC,JS1,JS2,DEL,JS3. I X) 

DO 260 1-95,116 
XXM(l)=XXM(l+2) 
DO 260 J-l.NNR 

260   AB1 (I ,J)-AB1 (1 + 2.J) 

DO 262 I-71.M4 
XXM(l)=XXM(l+2) 
DO 262 J-1,NNR 

262   AB1 (l,J)«AB1 (1+2,J) 

DO 264 1-61,113 
XXM(l)-XXM(l + l) 
DO 26^4 J-l .NNR 



264  ABI (I.J)-ABl (1 + 1,J) 

DO 266 1-43,111 
XXM(l)«XXM(l+2) 
DO 266 J-1.NNR 

266  ABI (I.J)-ABl (I+2.J) 

DO 268 1=19.109 
XXM(l)=XXM(l+2) 
DO 268 J-1.NNR 

268 ABI (l,J)«ABl (1+2,J) 

DO 269 1=2,NNR 
XXM(l)=XXM(l + l) 
DO 269 J-l.NNR 

269 ABUl ,J)=AB1 (1 + 1, J) 

DO 250 1-1,NNR 
XM(I)*XXM(I) 
DO 250 J-l.NNR 

250   A(t ,J)=AB1 (I ,J) 
C 
C  SOLVE SYSTEM OF EQUATIONS 
C 

EP-1.E-10 
CALL IVS(A,BBB,CCC,MEE,MFF,NNR,EP) 
CALL MUL(A,XM,STF,108,108,1) 
DO 600 1-1,108 

600   XM(l)=STF(l) 
WRITE (IWR.32O) (XM(l) , 1 = 1,108) 

320 FORMAT (/,2X,6(F10.5,X)/,2X,6(F10.5,X)/,2X,6(F10.5,X) 
>V,2X,6(F10.5,X)/,2X,6(F10.5,X)/,2X,6(F10.5,X) 
*/,2X,6(F10.5.X)/,2X,6(F10.5,X)/,2X,6(F10.5,X) 
>V,2X,6(F10.5,X)/,2X,6(F10.S,X)/,2X,6(F10.S,X) 
*/.2X,6(F10.5.X)/,2X,6(F10.5.X)/,2X,6(F10.5,X) 
ä/,2X,6(F10.5,X)/,2X,6(F10.5.X)/,2X,6(F10.5,X)) 
DO 400 1-1,NNR 

400  XP(I)-XM(I) 
CALL OUTPTO , 1,U0,V0,RA,CTA,DF,SXF,SYF,VF,UF1,UF2) 
CALL 0UTPM(1,1,U0,V0,RA,CTA,VE,DM,SXM,SYM,VM,UM1,UM2) 
AR=SQRT(3.) 
ASX=(SXF+SXM)/AR 
ASY-SYF+SYM 
AF=3.l4i5926535*RA*RA/4. 
AD1»E1*EP0*AF 
EF=2.*GGF*(1.+VVF) 
CN1«EF*PO12/ ((1.+VVF)ä (l.-2.*VVF)) 
ASZF=CN1*(-VF+(UF 1+UF2) )+ADl 
Efl-2.*GGH*(1.+VVM) 
AD2-EM*EPO*(AR-2.*AF)/2. 
CN2=EM*VVM/ ((1 .+VVM) * (1 .-2.*VVM) ) 
AS2M-2.*(CN2* (-VM+(UM1+UM2))+AD2) 
ASZ=(2.*ASZF+ASZM)/AR 
WRITE (lWR,i*50) ASX,ASY,ASZ 

450   FORMAT (//2X,'ASX-',F1^.9,2X,'ASY='.F14.9.2X,'ASZ=',FH.9) 
U STOP 

ENO 

SUBROUTINE INPT (NE,NN,NP,I PL,PO.NN2.NT,C1.C2, 
}'fC3,C4,C5,C6,C7,C8,C9,CIO,Cll . IDSYM,XSYM,YSYM, INFB.RA.CTA, IND) 
COMMON /RW/ IRE.IWR 
COMMON /A/ D(2,2) ,XI (6,3) ,W(6,3) . IDUP(IOO) . INC (100.2) ,C(100) . 

^S (100,3) . ISYM(IOO) ,X(100) ,Y(100) , IFIP(108) ,A(108, 108) , P (1 1 2) , 
*XM(108),Al (62,62) ,BB1(62,62) ,A2( 112,112) ,BB2 (112,112) , 



*AB1 (17*.3*8) ,XX«(17*) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
IF (IND.EQ.l) GOTO 301 
WRITE (IWR,1) 

1     FORMAT (//,13X,'***FIBER REGION***',//) 
C 
C  GENERAL INFORMATION ABOUT THE PROBLEM 
C 
301 READ(IRE,*) INFB,NE,NN,NP,I PL,IDSYM,G,PO 

IF (INFB.EQ.O).GO TO 60 
WRITE (IWR.61) 

61 FORMAT(//,13X,'* INFINITE BOUNDARY *') 
60    IF (IND.EQ.l) GOTO 302 

WRITE (IWR.MNE.NN.NP, I PL, IDSYM,G,PO 
A     FORMAT (//,15X,'NO. ELEMENTS =',I 5,//,15 

*X,'NO. NODES «=',I5.//.15X,'NO. POI NTS =',I 5,//.15X,'PROBL. T 
*YPE =',15.//,15X,'SYMME. TYPE «=',1$,///,15X,'MATERIAL PROPERTIES' 
*,//,15X,'G       -=' ,F 10.8. 
*//.1$X,'POISSON =',F10.8,///,30X,'COORDINATES OF BOUNDARY NODES', 
*//.12X, ,NODE,,}*X, 'X' ,15X, 'Y',12X,'DOUBLE' ,/) 

302 NN2«=NN*2 
NT-NN+NP 

C 
C  NODES AND POINTS COORDINATES 
C 

CALL ADDI (RA.CTA) 
DO 101 1=1,NN 
I DUP (I) =0 

101 ISYM(l)=0 
READ (IRE,102) IDUP (1) ,IDUP (9) .IDUP (22) 

102 FORMAT (3 I 3) 
'IDUP(3D = 1 
IDUP(10)=9 
IDUP(23)=22 
DO 5 K=1,NN 
IF (IDUP(K) .EQ.O)G0 TO 5 
J«IDUP(K) 
IDUP(J)«K 
X(K)=X(J) 
Y(K)»Y(J) 

5     CONTINUE 
IF (IND.EQ.1) GOTO 303 
DO 63 K=l,NN 
IF (IDUP(K) .NE.O)G0 TO 62 
WRITE (IWR,7)K,X (K) ,Y (K) 
GO TO 63 

62 WRITE (IWR.16) K,X(K) ,Y (K) , I DUP (K) 
16    FORMAT (1 OX, I5.5X.F15.1*, lX,F15.i4,7X, 15) 
63 CONTINUE 
7 FORMAT (1 OX, I 5.5X.F 15.*. IX,F15.ii) 
303 IF (NP.EQ.O)GO TO 9 

WRITE(IWR,8) 
8 FORMAT(//,30X,'COORDINATES OF INTERNAL POINTS',//, 

* 1 1X, ' PO I NTS ' , 1 i*X, ■ X ' , 15X, ' Y ' , /) 
K-NN+1 
READORE,*) (X(J) ,Y(J) , ISYM(J) ,J«K,NT) 
WRITE (IWR,7) (J,X(J) ,Y(J) ,J=K,NT) 

C 
C  NODES AND POINTS AT SYMMETRY LINES 
C 
9 IF (IDSYM.EQ.O)GO TO ^3 

WRITE (IWR.i*2) 
h2 FORMAT (//,30X,'BOUNDARY NODES AND INTERNAL POINTS AT SYMMETRY LINE 

*($) ',//,12X,'L. X',12X, 'L. Y' ,/) 
DO 1*3 K«1,NT 
IF (ISYM(K) .EQ.O)GO TO ^3 
IZZ-ISYM(K) 



GO TO (44,45,46) , IZZ 
44 YSYM«Y(K) 

WRITE (IWR.1+7) K 
47 FORMAT(10X,15) 

GO TO 43 
45 XSYM=X(K) 

WRITE (IWR,48)K 
48 FORMAT (26X,15) 

GO TO 43 
46 WRITE (IWR,50)K,K 
50   FORMAT(10X,15.11X,!5) 
1+3   CONTINUE 
C 
C  ELEMENT CONNECTIVITY 
C 
49 IF (IND.EQ.l) GOTO 299 

WRITE (IWR.10) 
10 FORMAT (//,30X,'ELEMENT CONNECTIVITY',//,13X,'EL',13X,'N. r,12X,'N 

*. 2\l4X,'L\/) 
299   CALL ADD1 

DO 11 1 = 1,NE 
K=l 
I l-INC(K.l) 
IF=INC (K,2) 

11 C (K) -SQRT ((X (I F) -X (I I)) **2+(Y (IF)-Y (I l))**2) 
IF (IND.EQ.1) GOTO 310 
WRITE (!WR, 13) (I , INC (I , 1) , INC (I ,2) ,C(I) , 1 — 1 .NE) 

13    FORMAT (1 OX, I5J1^. I5.HX, I5,5X,F15.14) 
C 
C  CONSTANTS 
C 
310   E-G*(2.*(l.+P0)) 

C11=P0 
IF (IPL-1)40,40,41 

40 P0=P0/ (1.+P0) 
C11=0. 

41 C2=3.-4.*P0 
C3=l •/ ((l.-PO) '"O2.56637062) 
C4«l .-2.*P0 
C6=2.*C3*G 
C7-1.-4.*P0 
C1«C3/(2.*G) 
C5=Cl/2. 
C8-2.*G/(l.-PO) 
C9=P0/ (l.-PO) 
C10=(2.-P0)/(l.-P0) 

C 
C  BOUNDARY VALUES PRESCRIBED 
C 

C 
C  INTEGRATION POINTS 
C 
31   XI (1.3)—0.9321*6951 

XI (2. 3)—0.66120939 
XI(3,3)=-0.23861919 
XI (4.3)—XI (3.3) 
XI (5.3)—XI (2,3) 
XI (6,3)—XI (1.3) 
W(l,3)-0.17U2449 
W(2.3)=0.36076157 
w(3.3)-0.46791393 
W(4.3)-W(3,3) 
w(5,3)-w(2.3) 
w(6,3)=w(i,3) 



XI (1,2)—0.86113631 
XI (2,2)— 0.33998101+ 
XI (3,2)—XI (2,2) 
XI (4,2)—XI (1,2) 
W(1,2)=0.34785485 
W(2,2) «O.652H515 
W(3.2)=W(2,2) 
W(l»,2)-W(l,2) 
XI (1,1)—0.57735027 
XI (2,1)—XI (1,1) 
W(1,l)-1. 
W(2,l)«l. 
RETURN 
END 

SUBROUTINE INPTS (NE,NN,NP,IPL.PO,NN2,NT,C1,C2, 
*C3,Ci»,C5,C6,C7,C8,C9.C10.C11,IDSYM,XSYM,Y$YM,INFB.RA.CTA,IND) 
COMMON /RW/ IRE,IWR 
COMMON /A/ 0(2,2) ,XI (6,3) ,W(6,3) .IDUP(IOO) ,1NC(100,2) ,C(100) , 

*S (100,3) . ISYM (100) ,X(100) ,Y (100) , IFIP(108) .A (108, 108) ,P (112) , 
*XM(108),Al (62,62),BB1 (62,62),A2 (112,112),BB2 (112,112), 
*AB1 074,348) ,XXM(17M ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
IF (IND.EQ.l) GOTO 301 
WRITE (IWR,1) 

1     FORMAT(//,13X,'***NATRIX REGION***',//) 
C 
C  GENERAL INFORMATION ABOUT THE PROBLEM 
C 
301 READ (IRE,*) INFB,NE,NN,NP,I PL,IDSYM,G,PO 

IF (INFB.EQ.O)GO TO 60 
WRITE (IWR,61) 

61    FORMAT (//,13X,'* INFINITE BOUNDARY *') 
60    IF (IND.EQ.l) GOTO 302 

WRITE(IWR,4)NE,NN,NP,I PL,ID5YM,G,P0 
4     FORMAT (//,15X,'NO. ELEMENTS =',15,//,15 

*X,'NO.    NODES = ',I5.//.15X,'NO.   POINTS =\ 15.//. 15X, ' PROBL.  T 
*YPE =',I5,//.15X,'SYMME.  TYPE =',I 5,///,15X.'MATER I AL PROPERTIES' 
*.//,15X,'G       =',F10.8, 
*//,15X,'P0ISS0N =',F10.8,///,30X,'COORDINATES OF BOUNDARY NODES', 
*//,12X,'NODE',14X,'X',15X,'Y',12X,'DOUBLE',/) 

302 NN2=NN*2 
NT=NN+NP 

C 
C  NODES AND POINTS COORDINATES 
C 

CALL ADDJ (RA.CTA) 
DO 101 1=1,NN 
IDUP (l)«0 

101 ISYM(l)=0 
READ (IRE,102) IDUP(1),IDUP(4) ,IDUP(17) ,IDUP(28) , 

? IDUP (32) , I DUP (45) 
102 FORMAT (613) 

(DUP (56) = 1 
IDUP (5)=4 
IDUP(18)=17 
IDUP (29)=28 
IDUP (33) =32 
IDUP (46)=45 
DO 5 K=l,NN 
IF (IDUP(K) .EQ.O)GO TO 5 
J=IDUP(K) 
IDUP(J)«=K 
X(K)=X(J) 



Y(K)-Y(J) 
5     CONTINUE 

IF (IND.EQ.1) GOTO 303 
DO 63 K-l.NN 
IF (IDUP(K) .NE.O)GO TO 62 
WRITE (IWR,7)K,X (K) fY (K) 
GO TO 63 

62 WRITE (IWR, 16) KfX(K) ,Y(K) , IDUP(K) 
16    FORMAT (1 OX, l5t5X,F15.1»,lX,F15.i»,7X( 15) 
63 CONTINUE 
7 FORMAT (1 OX, l5,5X,F15.i4, IX, F 15.1«) 
303   IF (NP.EQ.O)GO TO 9 

WRITE (IWR,8) 
8 FORMAT (//,30X,'COORDINATES OF INTERNAL POINTS',//, 

*1IX,'POINTS',14X,'X',15X,'Y',/) 
K«NN+1 
READ (IRE, ft) (X (J) ,Y (J) , ISYM(J) ,J-K.NT) 
WRITE (IWR,7) (J,X(J) ,Y(J) ,J=K,NT) 

C 
C  NODES AND POINTS AT SYMMETRY LINES 
C 
9 IF (IDSYM.EQ.O)GO TO 49 

WRITE (IWR.i+2) 
42 FORMAT (//,30X,'BOUNDARY NODES AND INTERNAL POINTS AT SYMMETRY LINE 

'MS) \//,12X,'L. X',12X,'L. Y',/) 
DO 43 K«=1,NT 
IF (ISYM(K) .EQ.O)GO TO 43 
IZZ=ISYM(K) 
GO TO (44,45.46) , IZZ 

44    YSYM=Y(K) 
WRITE (IWR,47) K 

47 FORMATdOX, 15) 
GO TO 43 

U5    XSYM=X(K) 
WRITE (IWR,48)K 

48 FORMAT (26X,15) 
GO TO 43 

46    WRITE (IWR,50)K,K 
50 FORMATdOX, 15, 1 IX, 15) 
43 CONTINUE 
C 
C  ELEMENT CONNECTIVITY 
C 
49 IF (IND.EQ.1) GOTO 299 

WRITE (IWR,10) 
10 FORMAT (//,30X,'ELEMENT CONNECT I VITY' ,//,13X,'EL',13X, 'N. l',12X,'N 

*. 2\14X,'L',/) 
299   CALL ADD2 

DO 11 1=1,NE 
K=l 
I l = INC(K, \) 
IF=INC(K,2) 

11 C(K) -SQRT ((X (IF)-X (I I)) **2+(Y (I F) -Y (I I))**2) 
IF (IND.EQ. 1) GOTO 310 
WRITE (IWR, 13) (I , INC (I , 1) , INC (I ,2) ,C(I) , l«l,NE) 

13    FORMATdOX, I5.11X, I5.11X, I5.5X.F15.4) 
C 
C  CONSTANTS 
C 
310  E«Gft(2.ft(l.+P0)) 

C11=P0 
IF (IPL-1)40,40,41 

40 PO=PO/(K+P0) 
Cl1=0. 

41 C2=3--1«.*PO 
C3«1./((1.-P0)*12.56637062) 



C<»H.-2.*P0 
C6=2.*C3*G 
C7=l.-4.*P0 
C1-C3/(2.*G) 
C5=Cl/2. 
CB«2.*G/(l.-PO) 
C9=PO/(l.-PO) 
C10= (2--PO)/(1.-PO) 

c 
C  BOUNDARY VALUES PRESCRIBED 
C 

c 
C  INTEGRATION POINTS 
C 
31   XI (1,3)=-0.93246951 

XI (2,3)=-0.66120939 
XI (3,3)=-0.23861919 
XI (4,3)—XI (3,3) 
XI (5.3)—XI (2,3) 
XI (6,3)—XI (1,3) 
W(l, 3) «0.17132^9 
W(2. 3) =0.36076157 
W(3.3)=0.1*6791393 
w(i»,3)*w(3,3) 
w(5,3)=w(2,3) 
w(6,3)«w(i,3) 
XI(1,2)=-0.86113631 
XI (2,2)=-0.33998104 
XI (3.2)=-XI (2,2) 
XI (4,2)=-XI (1,2) 
W(l,2)=0.34785485 
W(2,2)=0.652U515 
W(3,2)=W(2,2) 
W(4,?)=W(1,2) 
XI (1,1)—0.57735027 
XI (2, 1)=-XI (1, 1) 
W(l,l)=l. 
W(2, 1)=1 . 
RETURN 
END 

SUBROUTINE MATRX(NE,NN,NN2,NT,Cl,C2,C3.C4,C5,C6,C7,C8, 
*C9»C10.C11 ,P0, IDSYM,XSYM,YSYM, INFB,IFA.NIF) 
COMMON /A/ 0(2,2) ,XI C,3) ,W(6,3) , IDUP (100) , INC (100,2) ,C (100) 

>VS (100, 3) , ISYM(IOO) ,X (100) ,Y (100) , IF !P(108) ,A(108, 108) ,P (1 12) 
*XM(108) ,Al (62,62) ,BB1 (62,62) ,A2(112,112) ,BB2(112,112) , 
*AB1 (174,348) ,XXM(174) ,XP(108) ,XQ(62) ,PQf62) ,XN(28) ,YN(28) 
COMMON /A4/ H(3,4) ,G(3,4) ,HL(3,4) ,GL(3,4) 

C 
C  KRONECKER DELTA 
r 

D(l,1) = l. 
D(2,2) = l. 
D(l,2)=0. 
D(2,1)=0. 

C 
C  CLEAR ARRAYS 
C 

DO 1 1=1,NN2 
DO 1 J=1,NN2 
BB1 (I ,J)=0. 

1     Al (I ,J)=0. 
C 
C  COMPUTE PARAMETERS FOR SYMMETRY LOOP 



c 
IFA-1 
NIF-1 
IF(1DSYM.EQ 1)IFA=2 
IF(IDSYM.NE 2)GO TO 60 
IFA=3 
NIF=2 

60 
c 
c 

IF (1DSYM.EQ 3) IFA=1* 

TEST FOR INFINITE BOUNDARY 
c 

IF (INFB.EQ.O)GO TO 90 
DO 91 1=1,NN2 
IF (IFIP(I) .NE.O)GO TO 92 
Al (l,l)-l. 
GO TO 91 

92    XM(I)=-P(I) 
91    CONTINUE 
C 
C  SYMMETRY LOOP 
C 
90    DO 2 ISY-1,IFA.NIF 
C 
C  COMPUTE CHANGE SIGN CONTROLLING PARAMETERS 
C 

GO TO (70,71,71,73),ISY 
71   IIS=J»-ISY 

IFS=IIS 
GO TO 70 

73   I IS—1 
IFS=2 

C 
C  LOOP OVER BOUNDARY NODES 
C 
70    DO 2 1=1,NN 

XS=X(I) 
YS-Y(I) 
IF (ISY.EQ.2.0R. I SY . EQ.I») YS=2 .*YSYM-YS 
IF (ISY.GE.3)XS=2.*XSYM-XS 

C 
C  GENERATE MATRIX A AND B 
C 

DO 10 J=l,NE 
I l*INC (J, 1) 
IF-INC(J,2) 
ICOD^l 
IF (ISY.NE. 1 .AND. ISYM(I) .NE. (ISY-D)GO TO 6 
IF (I.EQ.I I.OR.I.EQ.IDUP(I I)) IC0D=2 
IF (I.EQ.IF.OR.I.EQ.IDUP(IF))IC0D=3 

6     CALL FUNC (IC0D,J,C1 ,C2,C3.Ci4,C5,C6,C7,PO, I I , IF.XS.YS, ISY, 
*lIS,IFS) 
DO 10 K=l,2 
JJ«2*(I-1)+K 
M=0 
DO 10 NX-1.2 
DO 10 NV=1,2 
M=M+1 
IC=2*INC (J,NX)+NV-2 
Al (JJ, IC)=A1 (JJ, IC)+H(K,M) 
BB1 (JJ, I C) =BB 1 (JJ, I C) -G (K,M) 
GOTO (61,62,63,6^),ISY 

62 IF (NV-2) 61,64,61 
63 IF (NV-1) 61,64,6i 
64 H(K,M)=-H(K,M) 
61    Al (JJ.JJ+NV-K)=A1 (JJ,JJ+NV-K)-H (K,M) 
10    CONTINUE 



2     CONTINUE 
RETURN 
END 

SUBROUTINE MATRS (NE,NN,NN2.NT,Cl,C2,C3,C^,C5,C6,Cl,C8, 
*C9,C10,C11,PO,IDSYM.XSYM.YSYM,INFB.IFA.NIF) 
COMMON /A/ D(2,2) ,XI (6,3) ,W(6.3) , IDUP(IOO) , INC (100,2) ,C(100) 

*S (100,3) . ISYM(IOO) ,X(100) ,Y(100) ,IFIP(108) ,A(108,10B) ,P(112) 
*XM(108),A1 (62,62) ,BB1 (62,62) ,A2 (112,112),BB2 (112,112) , 
*AB1 (1 7I4, 3^8) ,XXM(17^) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
COMMON /AV H(3.M,G(3.M ,HL(3,J»).GL(3,M 

C 
C  KRONECKER DELTA 
C 

DO,1) = 1. 
D(2,2)=l. 
D(l,2)=0. 
D(2,l)=0. 

C 
C  CLEAR ARRAYS 
C 

DO 1 1=1,NN2 
DO 1 J=1,NN2 
BB2 (I ,J)=0. 

1     A2(I,J)=0. 
C 
C  COMPUTE PARAMETERS FOR SYMMETRY LOOP 
C 

IFA=1 
NIF = 1 
IF (IDSYM.EQ.l) IFA=2 
IF (IDSYM.NE.2)G0 TO 60 
IFA=3 
NIF = 2 

60    IF (IDSYM.EQ.3) IFA=14 
C 
C  TEST FOR INFINITE BOUNDARY 
C 

IF (INFB.EQ.O)GO TO 90 
DO 91 1=1.NN2 
IF (IFIP(l) .NE.O)GO TO 92 
A2 (I , l)=l . 
GO TO 3) 

92 XM(I)=-P(1) 
91 
c 
C 

CONTINUE 

SYMMETRY LOOP 
C 
90 DO 2 ISY=1 ,1 FA, NIF 
C 
C COMPUTE CHANGE SIGN CONTROLLING PARAMETERS 
C 

GO TO (70,71 ,71 ,73),ISY 
71 1IS=A-ISY 

IFS=IIS 
GO TO 70 

73 1 IS=1 
IFS = 2 

C 
C LOOP OVER BOUNDARY NODES 
c 
70 DO 2 1=1,NN 

XS=X(!) 



YS-Y (I) 
IF (ISY.EQ.2.0R. ISY.EQ.4) YS*2.*Y5YM-YS 
IF (ISY.GE.3)XS=2.*XSYM-XS 

C 
C  GENERATE MATRIX A AND B 
C 

DO 10 J=1,NE 
I l = INC(J,l) 
IF=INC(J,2) 
IC0D=1 
IF (ISY.NE.l.AND. ISYM(I) .NE. (ISY-D)GO TO 6 
IF (I.EQ.I I.OR.I.EQ.IDUP (I I)) IC0D=2 
IF (I.EQ.IF.03.I .EQ. IDUP (IF)) IC0D=3 

6    CALL FUNC(IC0D,J,C1,C2,C3,C4,C5.C6,C7.P0,I I , IF.XS.YS. ISY, 
*I1S,IFS) 
DO 10 K=1,2 
JJ=2*(I-1)+K 
M=0 
DO 10 NX=1,2 
DO 10 NV=1,2 
M=M+1 
IC=2*INC(J,NX)+NV-2 
A2 (JJ, I C) =A2 (JJ, IC)+H(K,M) 
BB2 (JJ, IC)=BB2 (JJ, IC) -G (K,M) 
GOTO (61,62,63.64) ,ISY 

62 IF (NV-2) 61,64,61 
63 IF (NV-1) 61,64,61 
64 H (K,M)=-H (K,M) 
61    A2 (JJ,JJ+NV-K)=A2 (JJ,JJ+NV-K) -H(K,M) 
10    CONTINUE 
2     CONTINUE 

RETURN 
END 

SUBROUTINE FUNC (I COD,JA,C1,C2,C3.C4.C5.C6,C7.P0,I I,IF,XS, 
*YS, ISY, I IS, IFS) 

C 
C  INTERGRALS OVER BOUNDARY ELEMENTS 
C 

COMMON /A/ 0(2,2) ,XI (6,3) .W(6,3) . IDUP(IOO) ,INC(100,2) ,C(100) , 
*S(100,3) , ISYM(IOO) ,X(100) ,Y(100) , IFIP(108) ,A(108,108) ,P(112) , 
*XM(108) ,Al (62,62) ,BB1 (62,62) ,A2 (112,112) ,BB2 (112,112), 
-'--AB 1 (174,348) ,XXM(174) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
COMMON /A4/ H(3,4),G(3,4) ,HL(3.4) ,GL(3.4) 
DIMENSION DXY(2) ,BN(2) ,B(2) ,DR(2) ,UL (2,2) ,PL (2,2) ,ULL (2,2,2) , 

*PLL (2,2,2) 
DO 5 KK=1,3 
DO 5 L=l,4 
GL (KK.L)-O. 
HL (KK,L)=0. 
G (KK,L)=0. 

5     H(KK,L)-0. 
DXY (1)=X (IF) -X(l I) 
DXY (2)=Y(IF)-Y(I I) 
GO TO (1,2,2,1),ICOD 

1     BN(1)-DXY(2)/C(JA) 
BN(2)=-DXY(1)/C(JA) 

C 
C  SELECT NO. INTEGRATION POINTS 
C 

SEL=0.5*SQRT((2.*XS-X(I I)-X (IF)) **2+(2.*YS-Y (I I) -Y (I F)) **2) /C (JA! 
NPI=4 
IF (SEL.LE.1.5)NPI=6 
IF (SEL.GT.5.5)NPi=2 



INP-NPI/2 
C 
C  COMPUTE MATRICES NUMERICALLY 
C 

DO 50 KK=1,NPI 
XMX 1-0.5* (1 .+XI (KK,INP))*DXY(1)+X(l I)-XS 
YMYI=0.5*0 .+XI (KK, INP))*DXY (2)+Y (I !) -YS 
R=SQRT (XMX I **2+YMY ' **2) 
B(l)=-0.25*(Xf (KK, INP) -1 .) *C (JA) 
B (2) =0.25* (XI (KK, INP)+1 ,)*C (JA) 
DR (1) «XMXI/R 
DR(2)=YMYI/R 
DRDN=DR (1) *BN (1) +DR (2) *BN (2) 

C 
C  COMPUTE MATRICES H AND G 
C 

DO 6 1=1,2 
DO 6 J=l,2 
UL (I , J)=-C1* (C2*AL0G (R) *D(I ,J) -DR (I) *DR (J)) 

6 PL (I , J) «-C3* ((Ci»*D (I , J)+2.*DR (l) *DR (J)) *DRDN+C4* (DR (J) *BN (I) -DR (I) 
**BN (J)))/R 
DO 7 LA=1,2 
IC=0 
DO 7 LL=1,2 
DO 7 JJ=1,2 
IC=IC+1 
G(LA, !C)=G (LA, IC)+UL (LA,JJ)*B (LL)*W(KK, INP) 

7 H (LA, IC)=H(LA, IC)+PL (LA,JJ) *B(LL)*W (KK, INP) 
IF (I COD.NE.A)GO TO 50 

C 
C  COMPUTE THE MATRICES HL AND GL (STRESSES AT INTERNAL POINTS) 
C 
10 DO 11 1=1,2 

DO 11 J=l,2 
DO U K=l,2 
ULL (I ,JVK)-C3*(CM< (DR (J) *D (K, l)+DR(l)*D (K,J) -DR (K) *D (I ,J))+2.*DR(I 

ft) *DR (J) *DR (K)) /R 
B1=2.*DRDN*(C4*DR (K) *D (I , J)+PO* (DR (J) *D (I , K)+DR (I) *D (J,K)) -1».*DR (I 

ft) *DR(J)*DR (K)) 
B2=2 . *P0* (BN (I) *DR (J) *DR (K) +BN (J) *DR (I) *DR (K)) 
B3=C4*(2.*BN (K)*DR (I) *DR (J)+BN (J) *D (I ,K)+BN (I) *D (J, K)) 

11 PLL (I ,J,K)=C6* (B1+B2+B3"C7*BN (K) *D (I ,J))/R**2 
IL«0 
DO 12 1=1,2 
DO 12 J=l,2 
IL=IL+1 
IC=0 
DO 12 IAA=1,2 
DO 12 JAA=1,2 
IC=IC+1 
GL(IL, IC)=GL (IL, IC)+B(IAA)*ULL (I , J , JAA) *W (KK , INP) 

12 HL (IL, IC)=HL (IL, IC)+B(IAA) *PLl (I .J.JAA) *W(KK, INP) 
50    CONTINUE 

GO TO 18 
C 
C  COMPUTE MATRICES H AND G ANALYTICALLY (BOUNDARY CONSTRAINT EQ.) 
C 
2     AL=C5*C2*C(JA) 

AA = AL* (0.5-AL0G(C (JA))) 
DO 15 1=1,2 
DO 15 J-1.J» 
IT«(J/2)*2+2-J 
G(l,J)=C5*DXY(l)*DXY(IT)/C(JA) 
IF (IT.EQ. I)G(I ,J)=G(I ,J)+AA 

15    CONTINUE 
IAA*-2 



IF (I COD.EQ.3) IAA-0 
G(1,3+IAA)«G(1,3+IAA)+AL 
G (2 , i*+1 AA) «G (2, i»+1 AA) +AL 
H(lf2-IAA)-C3*Ci»*(l. + IAA) 
H (2 • 1 -1 AA> —H (1,2- I AA) 

C 
C     SYMMETRY  TEST 
C 
18 IF (ISY.EQ.l)GO  TO  8 

DO  2*4   1 = 1 IS, I FS 
DO  2i*  JH.Ji 
H(I,J)—H(I.J) 

2k G(I,J)=-G(I ,J) 
IF (ICOD.NE.A.OR. ISY.EQ.MGO  TO   8 
DO 25 J-1,4 
HL(2,J)=-HL (2,J) 

25 GL(2,J)=-GL(2,J) 
8     RETURN 

END 

SUBROUTINE OUTPT (IFA,NIF,UO,VO.RA,CTA,DF,SXF,SYF,VF,UF1, 
?UF2) 

C 
C  OUTPUT RESULTS 
C 

COMMON /RW/ IRE,IWR 
COMMON /A/ D(2,2) ,XI (6,3) ,W(6,3) . IDUP(IOO) , INC(100,2) ,C(100) , 

*S (100,3) , ISYM(IOO) ,X(100) ,Y(100) , IFIP(108) ,A(108,108) ,P(112) , 
*XM(108) ,Al (62,62) ,BB1 (62,62) ,A2 (112,112) ,BB2 (112,112) , 
*AB1 (17/4. 3^8) ,XXM(17M ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
COMMON /AA/ H(3,M,G(3,2») .HL(3,M »Gl(3,M 
DIMENSION U(2) ,SA(i*) ,XG(15) ,FG(15) 
CALL INPT(NE,NN,NP,I PL,PO,NN2,NT,C1,C2, 

*C3,C1*,C5,C6,C7,C8,C9,C10,C11,IDSYM.XSYM.YSYM,INFB,RA,CTA,2) 
WRITE (IWR,6) 

6     FORMAT (///,30X,'BOUNDARY DISPLACEMENTS AND TRACTIONS',//, 
?12X, 'NODE' , UX, 'U' , 15X, 'V , li»X, ' PX ' , U»X, ' PY ' ,/) 

C 
C  BOUNDARY DISPLACEMENTS AND TRACTIONS 
C 

SR2 = SQRT(3.)/2. 
DO 200 1=1,62 
P(l)=0. 

200   XM(l)=0. 
DO 205 1=1,9 
J=2*|-1 
K=38+l 

205   P(J)=XP(K) 
P(20)=XP(48) 
DO 210 1=21,42 
J=l+28 

210   P(I)=XP(J) 
P(^3)=XP(7D 
DO 220 1=1,9 
J=i+L+2*I 
K=71+l 

220   P(J)=XP(K) 
DO 230 1=1,9 
J=2*l-1 

230   XM(J)*-.5* (UO+DF) 
XM(2)=SR2*(VO+DF) 
DO 235 '«1.8 
J=2+2*t 

235   XM(J)-XP(I) 
XM(19)=XM(17) 



XM(20)-XM(l8) 
DO 240 1-1,23 
J-l+20 
K-l+8 

240   XM(J)=XP(K) 
DO 245 1-1.10 
J-42+2*! 

245   XM(J)=SR2*(V0+DF) 
XM(ii5)-X«(i»3) 
DO 250 1-1,7 
J-i»6+2*l-1 
K-31+1 

250   XM(J)=XP(K) 
XM(6l)=XM(l) 
DO 260 1-1,62 
XQ(I)=XM(I) 

260   PQ(I)-P(I) 
WRITE (IWR.H) (lfXM(2*l-l) ,XM(2*I) , P (2*1 -1)., P (2* I) , 1-1,NN) 

11 FORMAT (10X, 15,5X.F15.J*.1X^15.4.IX,Fi5.OX.Fi5.!♦) 
C 
C  DISPLACEMENTS AND STRESSES AT NODES AND INT. POINTS 
C 

WRITE(IWR,12) 
12 FORMAT(//,15X,'DISPLACEMENTS AND STRESSES AT NODES AND INTERNAL PO 

ft I NTS',//,2X,'N0/PT',9X,'IT ,13X,'V,12X,'SX'.J2X,'SXY',11X,'SY', 
*12X,'SZ\/) 

C 
C  COMPUTE BOUNDARY STRESSES 
C 

DO 14 1 = 1,NN 
DO 14 J=l,3 

14 S(l,J)-0. 
C 
C    LOOP OVER ALL BOUNDARY ELEMENTS 
C 

DO 30 1=1,NE 
I l-INCO , 1) 
IF«INC(I,2) 
CC1= (Y (I F) -Y (I l))/C(l) 
CC2=(X(I l)-X(IF))/C(l) 
CALL FENC(C8,C9,C10,CC1,CC2, I) 
DO 30 JP=1,2 
IIF-INC (I,JP) 
XFAC=2. 
IF (IDUP(I IF) .NE.O.OR.ISYM(IIF) .NE.0)XFAC=1. 
DO 30 IR-1,3 
M=0 
DO 30 IP-1,2 
10=2*1IF+IP-2 
S (I IF, IR)=S (I IF, IR)+G (IR, IP) *P (10) /XFAC 
DO 30 JR-1,2 
M=M+1 
I0=2*INC (I,IP)+JR-2 

30    S(l IF, IR)-S (I IF, IR)-H(IR,M) *XM(IO) /XFAC 
C 
C    PRINT VALUES ON THE BOUNDARY 
C 

DO 13 1=1,NN 
SA(10=C11*(S(I,1)+S(I,3)) 
IF (ISYM(I) .NE.0)S(I,2)=0. 

13 WRITE (IWR, 15) I ,XM(2ft|-l) ,XM(2*I) ,S(I ,1) ,S(lf2) ,S(I ,3) ,SA(4) 
15 FORMAT (2X,I 4 , 1 X,6 (IX,F13.4)) 

NG=8 
NG1=9 
DO 310 1=1,NG1 
J=NG1-I+1 



XGO)-Y(J) 
310  FG(I)-S(J,1) 

CALL AST(NG,NG1,SXF,XG,FG) 
DO 320 1*1,NG1 
J»32-l 
XG(I)-X(J) 

320   FG(I)-S(J,3) 
CALL AST(NG,NG1,SYF,XG,FG) 
DO 330 1=1.NG1 
XG (I) =Y (I) 

330   FG(I)=XM(2*I-1) 
CALL AST (NG.NG1,UF1,XG,FG) 
NG=12 
NG1=13 
DO 3^0 1=1.NG1 
J=l+9 
XG (l)=X (J) 

3*»0  FG(I)=XM(2*J) 
CALL AST (NG.NG1,VF,XG,FG) 
DO 350 1=1,NG1 
J*)+9 
XG(I)«Y(J) 

350   FG(I)=XM(2*J-1) 
CALL AST(NG,NG1,UF2,XG,FG) 
IF (NN.EQ.NT)GO TO 5 

C 
C    COMPUTE INTERNAL VALUES 
C 

NNI-NN+1 
IC0D=i4 

C 
C  LOOP OVER ALL INTERNAL POINTS 
C 

DO 16 l=NNI,NT 
U(1)=0. 
U(2)=0. 
DO 17 J=l,3 

17    SA(J)=0. 
C 
C    SYMMETRY LOOP 
C 

DO 20 ISY-1,IFA.NIF 
XS=X(I) 
YS-Y(I) 
IF (ISY.EQ.2.0R.ISY.EQ.4)YS=2.*YSYM-YS 
IF (ISY.GE.3)XS=2.*XSYM-XS 
GO TO (70,71,71,73),1SY 

71    1 1 S=i* - I S Y 
IFS=IIS 
GO TO 70 

73    IIS-1 
IFS=2 

C 
C     INTEGRATE OVER THE BOUNDARY 
C 
70    DO 20 J=l,NE 

I l = INC (J,1) 
IF=INC (J,2) 
CALL FUNC (IC0D.J.C1 ,C2,C3,Ci4,C5,C6,C7,P0, I I , I F , XS , YS . I SY , 

*l IS,IFS) 
DO 20 K=l,3 
M=0 
DO 20 NX=1,2 
DO 20 NV=1,2 
M=M+1 
ICA=2*INC(J,NX)+NV-2 



IF (K.LT.3) U (K) «U (K) -H (K, M) *XM (I CA) +G (K, M) *P (I CA) 
20    SA (K) «SA (K) -HL (K,M) *XM (I CA) +GL (K.M) *P (I CA) 

SA(i»)«Cll*(SA(l)+SA(3)) 
16   WRITE (IWR, 15) I.U(1) .U(2) ,SA(1) ,SA(2) . SA (3) ,SA(1») 
5    RETURN 

END 

SUBROUTINE OUTPM (IFA,NIF,U0,VO.RA,CTA,VE,DM.SXM,SYM,VM,UM1, 
?UM2) 

C 
C  OUTPUT RESULTS 
C 

COMMON /RW/ IRE,IWR 
COMMON /A/ D(2,2) ,XI (6,3) ,W(6,3) , I DUP (100) , INC (100.2) .C(100) 

äS (100. 3) . ISYM(IOO) ,X(100) ,Y(100) , IF IP (108) ,A(108.108) ,P(112) 
*XM(108),A1 (62,62),BB1 (62,62),A2( 112,112),BB2( 112,112), 
*AB1 0 74.3*8) ,XXM(174) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN (28) 
COMMON /A4/ H(3.4),G(3.4),HL(3.4),GL(3.4) 
DIMENSION U(2) ,SA(4) ,XG(15) • F G (15) 
CALL INPTS(NE,NN,NP,IPL,P0,NN2,NT,C1,C2, 

*C3,C4, C5,C6,C7,C8,C9, C10.C11, I DSYM,XSYM, YSYM, I NFB,RA, CTA, 2) 
WRITE (IWR,6) 

6     FORMAT (///,30X,'BOUNDARY DISPLACEMENTS AND TRACTIONS',//, 
TUX.'NODE'.HX, 'U' ,15X, 'V ,14X, 'PX'.UX.'PY',/) 

c 
C  BOUNDARY DISPLACEMENTS AND TRACTIONS 
C 

SR2=SQRT(3.)/2. 
DO 200 1=1,112 
P (I) =0. 

200   XM(l)=0. 
00 205   1-1,4 
J-2*l 
K=93+l 

205   P(J)=XP(K) 
DO 210 1=1,13 
J=8+2*l 
K«46-2*l 
J1=J-1 
Kl-K-1 
P(J)=-PQ(K) 

210   P(J1)=-PQ(K1) 
DO 215 1=1,11 
J»34+2*l-l 
K=97+l 

215   P(J)=XP(K) 
DO 220 1=1,56 
J=56+l 

220   P(J)=-P(I) 
DO 230 1=1.3 
J=2*l-1 
J1=J+1 
K=80+l 
XM(J)=XP (K) 

2 30   XM(J1)«SR2*(V0+DM) 
DO 240 1=1,15 
J=6+2*l 
K-48-2*l 
J 1 = J- 1 
K1=K-1 
L = 3+l 
XM(J)*XQ(K)+VE*Y (L) 

240   XM(J1)«XQ(K1)+VE*X(L) 
DO 250 1=1,10 



J«36+2*l 
J1-J-1 
K-83+1 
XM(Jl) — .5*(U0+DM) 

250   XM(J)=XP(K) 
DO 260 1=1,56 
j=56+l 

260   XM(J)=-XM(l) 
WRITE (IWR, 11)  (l,XM(2*l-1) ,XM(2*I) ,P(2*1-1) . P (2*1) ,l-l.NN) 

11 FORMAT (10X, l5.5X,F15.i4, 1X.F15-1*. 1X,F15.14, 1X.F15.4) 
C 
C  DISPLACEMENTS AND STRESSES AT NODES AND INT. POINTS 
C 

WRITE (IWR,12) 
12 FORMAT (//,15X,'DISPLACEMENTS AND STRESSES AT NODES AND INTERNAL PO 

*INTS',//,2X,'NO/PT',9X,'U',13X,'V,12X,'SX',12X,'SXY1,11X,'SY', 
*12X,'SZ',/) 

C 
C  COMPUTE BOUNDARY STRESSES 
C 

DO H 1=1,NN 
DO 14 J=1,3 

u 
c 
c 
c 

S(I.J)-0. 

LOOP OVER ALL BOUNDARY ELEMENTS 

DO 30 1=1,NE 
1 l = INC (1 , 1) 
IF=INC(1,2) 
CC1=(Y(IF)-Y(I l))/C(l) 
CC2=(X(I l)-X(IF))/C(l) 
CALL FENC (C8,C9,C10,CC1,CC2,1) 
DO 30 JP=1.2 
1 IF=INC(\ ,JP) 
XFAC=2. 
IF (IDUP(I IF) .NE.O.OR.ISYM(IIF) .NE.0)XFAC=1. 
DO 30 IR=1,3 
M=0 
DO 30 IP-1,2 
10=2*1IF+IP-2 
S (1 IF, IR)=S (1 IF, IR)+G (IR, IP) *P (10) /XFAC 
DO 30 JR=1.2 
M=M+1 
10*2*INC (1,IP)+JR-2 

30 
c 
c 
c 

S(l IF, 1 R) =5 (1 IF, IR)-H(IR,M)*XM(lO)/XFAC 

PRINT VALUES ON THE BOUNDARY 

DO 13 1=1,NN 
SA(M-C11*(S(I ,0+S(l,3)) 
IF (ISYM(I) .NE.0)S(I,2)=0. 

13    WRITE (IWR, 15) I ,XM(2*I-1) ,XM(2*I) ,S (I , 1) ,S (I ,2) ,S (I ,3) .SA (M 
15    FORMAT (2X,U»,1X,6(IX,F13 .A)) 

NG=10 
NG1=11 
DO 310 1=1,NG1 
J=29~l 
XG (I)=YN (J) 

310   FG(I)=S(J,1) 
CALL AST(NG.NG1,SXM,XG,FG) 
DO 320 1=1,NG1 
J=17+l 
XG(I)=YN(J) 

320   FG(I)=XM(2*J-1) 
CALL AST(NG,NG1,UM2,XG,FG) 
NG=3 



NGl-Jt 
DO 330 1=1,NG1 
J-5-1 
XG(l)=XN(J) 

330   FG(I)-S(J,3) 
CALL AST(NG,NG1,SYM,XG,FG) 
NG=12 
NG1=13 
DO 3^0 1=1,NG1 
J=A+I 
XG(I)-XN(J) 

3^0  FG(I)«XM(2*J) 
CALL AST(NG,NG1,VM,XG,FG) 
DO 350 1=1,NG1 
J=l+i« 
XG(I)=YN(J) 

350   FG (l)=XM(2*J-l) 
CALL AST(NG,NG1,UM1,XG,FG) 
IF (NN.EQ.NT)GO TO 5 

C 
C    COMPUTE INTERNAL VALUES 
C 

NNI=NN+1 
IC0D*1* 

C 
C  LOOP OVER ALL INTERNAL POINTS 
C 

DO 16 l=NNI,NT 
U(1)=0. 
U(2)=0. 
DO 17 J-1.3 

17    SA(J)=0. 
C 
C    SYMMETRY LOOP 
C 

DO 20 ISY-1,IFA.NIF 
XS=X(I) 
YS=Y(I) 
IF(ISY.EQ.2.0R.ISY.EQ.MYS-2.*YSYM-YS 
IF (ISY.GE.3)XS=2.*XSYM-XS 
GO TO (70,71.71.73).ISY 

71    IIS=i»-ISY 
IFS=I IS 
GO TO 70 

73   MS-1 
I FS = 2 

C 
C     INTEGRATE OVER THE BOUNDARY 
C 
70    DO 20 J=l,NE 

I l = INC(J,D 
IF=INC (J,2) 
CALL FUNC(ICOD,J,Cl,C2,C3.Ci4,C5,C6,C7,P0, I I , IF.XS.YS, ISY, 

*lIS,IFS) 
DO 20 K=l,3 
M=0 
DO 20 NX=1,2 
DO 20 NV=1,2 
M=M+1 
ICA=2*INC(J,NX)+NV-2 
I F (K . LT . 3) U (K) =U (K) -H (K , M) *XM (I CA) +G (K , M) *P (I CA) 

20    SA (K)=SA (K) -HL (K,M) *XM(ICA)+GL (KfM)*P(ICA) 
SA(li)-Cn*(SA(l)+SA(3)) 

16    WRITE (IWR, 15) I ,U(1) ,U(2) ,SA (1) ,SA(2) ,SA(3) ,SA(M 
5     RETURN 

END 



SUBROUTINE FENC(C8,C9.C10,CC1,CC2,I) 
C 
C  EXPRESSIONS FOR STRESSES AT BOUNDARY NODES 
C 

COMMON /A/ D(2,2) ,XI (6.3) .W(6,3) .IDUP(IOO) .INC000.2) ,C(100) , 
*S (100,3) . ISYM(IOO) ,X(100) ,Y (100) , IF IP (108) ,A(108, 108) ,P (112) , 
*XM(108) ,A1 (62,62) ,BB1 (62,62) ,A2(112,112) ,BB2(112,112) , 
*AB1 (17A, 3^8) ,XXM(17M ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
COMMON /Ai»/ H(3,JO.G(3,M.Hl(3,M.Gl(3.JO 

c 
c 
c 

MATRIX   H 

C0=-C8/C(l) 
H(l, l)*CO*CC2**3 
H(lt2)*-C0*CCl*CC2**2 
H(l,3)—H(l,l) 
H(l.li)—H(l,2) 
H(2,1)=H(1,2) 
H (2,2)=C0*CC2*CC1**2 
H(2,3)—H(1.2) 
H(2,4)«-H(2,2) 
H(3J)*H(2,2) 
H (3,2)=-CO*CC1**3 
H (3.3)—H (2,2) 

r 
H(3.M—H(3,2) 

C MATRIX   G 
c 

G (1,1)=CC1 **3+C 10*CC 1 *CC2**2 
G(1,2)«-CC2*CC1**2+C9*CC2**3 
G (2, 1)=CC2**3"C9*CC2*CC1**2 
G(2,2)=CC1**3"C9*CC1*CC2**2 
G (3.1) *-CC1*CC2**2+C9*CCl **3 
G(3,2)=CC2**3+C10*CC2*CC1**2 
RETURN 
END 

SUBROUTINE ADD I (RA.CTA) 
C  INPUT X AND Y COORDINATES 

COMMON /A/ D (2,2) ,XI (6,3) .W(6,3) .IDUP (100) , INC (100,2) ,C (100) , 
*S (100,3) , ISYM(IOO) ,X(100) ,Y (100) , IF IP (108) ,A(108, 108) ,P(112) , 
*XM(108) ,A1 (62,62) ,BB1 (62, 62) , A2 (1 1 2 , 11 2) , BB2 (11 2 , 1 1 2) , 
*AB1 (17^.3^8) ,XXM(17M ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
R2=SQRT(3.)/2. 
DO 10 1=1,9 
J-l-1 
x(D —.5 

10    Y (l)=R2-RA/8.*J 
DO 20 1=10,22 
J=l-10 
CT=CTA*J 
X (l)=-.5+RA*SIN(CT) 

20    Y (l)=R2-RA*C0S (CT) 
DO 30 1=23,31 
J=I -23 
X (l)=-.5+RA*(l .-J/8.) 

30    Y(I)=R2 
RETURN 
END 

SUBROUTINE ADDJ (RA.CTA) 
COMMON /A/ D(2,2) ,XI (6,3) iW(6,3) , IDUP(IOO) , INC (100,2) ,C(100) , 

*S (100,3) . ISYM(IOO) ,X(100) ,Y(100) , IFIP(108) ,A(108,108) ,P(1 12) , 



*XM(108),Al (62,62),BB1 (62,62)tA2 (112.112),BB2 (112.112), 
*AB1 (17^,3^8) ,XXM(17A) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
R3*SQRT(3.) 
R2=R3/2. 
DO 10 1-1, i* 
J=l-1 
X(l)*.5-(l.-RA)*J/3. 

10    Y(l)«R2 
DO 20 l*5J7 
J-l-5 
CT=CTA*J 
X (l)=-.5+RA*C0S (CT) 

20    Y(l)=R2-RA*SIN(CT) 
DO 30 1=18,28 
J-i-18 

x(0 —.5 
30    Y(I)«R2-RA-(R3-RA)*J/10. 

DO kO   1*29,32 
J-l-28 
X(l)»- X(J) 

UO Y(I)«-Y(J) 
DO 50 1*33.^5 
J-l-28 
x(0—x(j) 

50    Y(l)=-Y(J) 
DO 60 1=146,56 
J*l-28 
x(D—x(j) 

60    Y(l)—Y(J) 
RETURN 
END 

SUBROUTINE ADD1 
COMMON /A/ D(2,2) ,XI (6,3) ,W(6,3) , IDUP (100) , INC (100,2) ,C (100) 

AS (100, 3) . ISYM(IOO) ,X (100) ,Y (100) , IF IP (108) ,A (108, 108) ,P(1 12) 
*XM(108) ,A1 (62,62) ,BB1 (62,62),A2( 112,112) ,BB2 (112,112), 
*AB1 (1 7i*. 3^8) ,XXM(17M ,XP(108) ,XQ(62) ,P0(62) ,XN(28) ,YN(28) 
DO 2 1=1,8 
INC (I , l) = l 
I NC (I ,2)=l + l 
DO U   1=9.20 
INC (I , l) = l + l 
INC(l,2)«l+2 
DO 6 1=21,28 
INCO ,l) = l+2 
INC(l,2)=l+3 
RETURN 
END 

SUBROUTINE ADD2 
COMMON /A/ D(2,2) ,XI (6,3) ,W(6,3) . IDUP(IOO) , INC(100,2) ,C(100) 

*S (100,3) . ISYM(IOO) ,X(100) ,Y(100) , IFIP(108) , A (108, 108) , P (1 12) 
*XM(108) ,A1(62,62) ,BB1 (62,62) ,A2(112, 112) ,BB2 (112.112) , 
*AB1 (17A, 3^8) ,XXM(17M ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
DO 2 1=1,3 
INC (I , l) = l 
INC (I ,2)=l + l 
DO U   I-4, 15 
INC (I , l) = l + l 
INC(l,2) = l+2 
DO 6 1=16,25 
I NC (I , 1)*l+2 
INC(l,2) = l+3 
DO 8 1=26,28 
wed, n-1+3 



8     INC(l,2)»l+ii 
DO 10 I «29.1*0 
INC(I,1)«I+1» 

10    INC(l,2)«l+5 
DO 12 1-1*1,50 
INC (I , 1) = 1+5 

12    INC(l,2) = l+6 
RETURN 
END 

SUBROUTINE NCSBC (VE,UO,VO.DF,DM) 
COMMON /A/ D(2,2) ,XI (6,3) .W(6.3) .IDUP(IOO) . INC (100,2) ,C(100) 

*S (100,3) . ISYM(IOO) ,X(100) .Y(100) , IFIP(108) ,A(108,108) , P (1 1 2) 
*XM(108) ,A1 (62,62),BB1 (62,62) ,A2 (112,112) ,BB2 (112,112), 
*AB1 07*. 3*8) ,XXM(17*) ,XP(108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28) 
COMMON /ABC/ JS1 (21*0) ,JS2 (2i*0) ,DEL (21*0) ,J$3 (21*0) , IX (2**0) 
SR2=SQRT(3.)/2. 
DO 10 1= ,2i»0 

10 DEL (1) «=0 
DEL (113)=VE*X (9) 
DEL(114)> «VE*Y (9) 

DEL (116)-VE*X (10) 
DEL (1 17) =VE'*-Y (10) 
DEL(120)=VE*X (11) 
DEL(121)=VE*Y (11) 
DEL (12i*)-VE*X (12) 
DEL (125)=VE*Y 02) 
DEL(128)=VE*X (13) 
DEL (129)=VE-'-Y (13) 
DEL(132)=VE*X Oi») 
DEL (133)=VE*Y (11.) 
DEL (136)«VE*X (15) 
DEL (137)-VE*Y (15) 
DEL (1*0)*VE*X (16) 
DEL (11»1)-VE*Y (16) 
DEL 0**)-VE*X (17) 
DEL (1J»5)-VE*Y 07) 
DEL (1L8) =VE5VX 08) 
DEL (11*9)-VE*Y 08) 
DEL052)*VE*X 09) 
DEL(153)=VE*Y 09) 
DEL (156)=VE^X (20) 
DEL (157) =VE>'-Y (20) 
DEL (lbO)=VE*X (21) 
DEL (l6l)=VE*Y (21) 
DEL(l6M=VE*X (22) 
DEL(165)=VE*Y (22) 
DEL (168)«VE*X (23) 
DEL (169) =VE'*'Y (23) 

DO 20 1= .31 
J1=176+2 M-l 
IF (I.LE .9) GOTO 30 
IF (I.GT .9.AND.1.LE.18) GOTO kO 
IF (I.GT .18.AND.1.LE.21) GOTO 50 
IF (I.GT .21) GOTO 60 

30 DEL(Jl)« 
GOTO 20 

-.5*(U0+DF) 

AO DEL (J1) = 
GOTO 20 

SR2*(V0+DF) 

50 DEL (J 1) - 
GOTO 20 

SR2* (VO+DM) 

6o DEL (Jl) = -.5* (UO+DM) 
20 CONTINUE 

RETURN 
END 



SUBROUTINE rJNNECT (Al,Bl,A2,B2tNl,N2,A) 
DIMENSION (  i (2*N1,2*N1) ,B1 (2*N1,2*N1) ,A2 (2*N2 ,2*N2) 

*B2 (2*N2, 2*N2) , A (2*N 1+2*N2 , i»*N l+i»*N2) 
N=N1+N2 
DO 10 1*1 ,2*N 
DO 10 J=l ,1+*N 
A(l ,J) =0. 
DO 20 1 = 1 ,2 AN 
DO 20 J=l ,2*N 

10 

A(l ,J)=A1 (I ,J) 
A (I ,J+2*N1)=B1 (I ,J) 

20    CONTINUE 
DO 30 I=2*N1+1,2*(NI+N2) 
DO 30 J»I»*N1 + 1,J»*N1+2*N2 
A (I ,J)=A2 (I -2-VN1 , J-^^N 1) 
A (I ,J+2*N2)=B2 (I-2*N1 ,J-i»*Nl) 

30    CONTINUE 
RETURN 
END 

SUBROUTINE KILL COL (A ,N,F,JA,JB,DELTA; 
DIMENSION A (2*N,1»*N) ,F (2*N) 
DO 20 1=1,2*N 
IF (JB.LT.O) GOTO 10 
F (l)=F (l)-DELTA*A(l ,JB) 
IF (JA.GT.O) A (I ,JA)=A(I ,JA)+A (I ,JB) 
A (I ,JB)=0. 
GOTO 20 

10    JJ=-JB 
F (l)=F (l)+DELTA*A(l ,JJ) 
IF (JA.GT.O) A (I ,JA)=A (I ,JA)-A (I ,JJ) 
A(l ,JJ)=0. 

20    CONTINUE 
RETURN 
END 

SUBROUTINE REDUCE (A,N,F,NC,J1,J2,DEL,J3,I X) 
COMMON/RW/IRE,IWR 
DIMENSION A (2*N,ii*N) ,F (2*N) ,J1 (NC) ,J2 (NC) »DEL (NC] 
DIMENSION IX (NC) ,J3(NC) 
DO 100 JC=1,NC 
JA=J1 (JC) 
JB=J2 (JC) 
DELTA=DEL(JC) 
CALL KILLCOL (A,N,F,JA,JB,DELTA) 

100   CONTINUE 
DO 200 K=l,NC 
IX(K)«K 
MX = J3 (K) 
DO 150 1=1,NC 
MS=J3(D 
IF (MS**2.GT.MX**2) THEN 
IX (K) = l 
MX=MS 
ENDIF 

150   CONTINUE 
ID=IX (K) 
J3(ID)=0 

200   CONTINUE 
DO 300 K=1,NC 
L= I X (K) 



JB=J2 (L) 
IF (JB.LT.O) JB*-JB 
IF (JB.GT.4*N-K) GOTO 300 
DO 250 1=1,2*N 
DO 240 MI=JB,*»*N-K 
A (I ,MI)=A(I ,MI + 1) 

21*0   CONTINUE 
250   CONTINUE 
300   CONTINUE 

RETURN 
END 

SUBROUTINE MUL (U,V.T.M,K,N) 
DIMENSION U(M,K) ,V(K,N) ,T(M,N] 
DO 20 1 = 1,M 
DO 20 J=1,N 
T(I.J)-0. 
DO 20 L=1,K 
T1«U(I,L)*V(L,J) 

20   T(I,J)-T(I,J)+T1 
RETURN 
END 

SUBROUTINE IVS (A,B,C,ME,MF,N,EP) 
DIMENSION A(N,N) ,B(N) ,C (N) ,ME (N) ,MF (N) 
DO 10 K=1,N 
Y=0. 
DO 20 l=K,N 
DO 20 J=K,N 
IF (ABS (A (I,J)) .LE.ABS (Y)) GO TO 20 
Y=A(I,J) 
12=1 
J2=J 

20    CONTINUE 
IF (ABS (Y) .LE.EP) GO TO 32 
IF (I2.EQ.K) GO TO 33 
DO 11 J=1,N 
W=A (I2,J) 
A(I2,J)=A(K,J) 

11 A (K, J)-W 
33 IF (J2.EQ.K) GO TO U 

DO 22 1=1,N 
W=A (1 ,J2) 
A (1 ,J2)=A (1 ,K) 

22 A(l ,K)=W 
kk ME (K) = I2 

MF (K)=J2 
DO 50 J=1,N 
IF (J-K) 2,3.2 

3 B(J)=1./Y 
C(J)»1. 
GO TO k 

2 B(J)=-A(K,J)/Y 
C(J)=A(J,K) 

U A (K,J)=0. 
A (J,K)=0. 

5C CONTINUE 
DO i+0 1 = 1 ,N 
DO ^0 J=1,N 

ko A (1 ,J)=A (1 ,J)+C(I) *B(J) 
10 CONTINUE 

DO 60 L=1.N 
K=N-L+1 
K1=ME (K) 



K2=MF (K) 
IF (Kl.EQ.K) GO TO 70 
DO 55 1-1,N 
W-A0.K1) 
A(I,K1)=A(I,K) 

55 A(l ,K)=W 
70 IF (K2.EQ.K) GO TO 60 

DO 66 J=1,N 
W=A (K2.J) 
A (K2,J)=A (K,J) 

66 A (K,J)=W 
60 CONTINUE 

RETURN 
32 EP=-EP 

RETURN 
END 

SUBROUTINE AST(N,N1,S , X, F 
DIMENSION X (15) ,F (15) 
S=0.0 
DO 10 1=1,N 
J=l + 1 
H=X (J)-X(l) 
T-(F(l)+F(J))*H/2. 

10 S=S+T 
RETURN 
END 
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Lamina Constitutive Equations Based on the Mechanical Behavior 
of a Pressurized Composite Tube 

Wan-Lee Yin and Lin Yang 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

ABSTRACT 

The mechanical behavior of a filament-wound composite tube under an 
internal pressure load depends on the constitutive properties of the resin and 
fiber materials, the fiber volume fraction Vf, and the winding angle a. The 
range of variation and the relative magnitudes of the in-plane strains €lf e2 

anci 

712 in a lamina of the tube (referred to the directions parallel and perpendi- 
cular to the fibers) vary significantly with the winding angle. For tubes of 
various winding angles, the experimental data of the strains and the 
corresponding internal pressure may be used to infer the constitutive equations 
of a lamina within and beyond the linearly elastic regime. It is found that the 
mechanical responses of filament-wound tubes cannot be accurately predicted by 
classical engineering theories of lamina stiffness (e.g., rule of mixture, the 
Halpin-Tsai equations and certain estimates based on variational bounds) in terms 
of the properties of the fibers and the resin material. A principal reason 
appears to be that the fibers in a filament-wound structure are not initially 
straight so that, at a low or moderate level of extensional strain, these fibers 
manifest an apparent Young's modulus that is appreciably smaller than the 
documented value. 

In the present work, the lamina constitutive equations are determined from 
the experimental results of glass/epoxy and carbon/epsxy filament-wound tubes 
with various winding angles. Beyond a small initial range of the pressure load, 
the lamina stress-strain relation deviates significantly from linearly elastic 
behavior due to the occurrence of a large shear strain 712 (unless the winding 
angle is very close to the "optimum winding angle", in which case 712 remains 
small under a large pressure load). Furthermore, the nonlinear relation between 
T 12 and 712 is strongly affected by the transverse in-plane normal stress a2. The 
following relations are shown to be in good agreement with experimental results 
over a wide range of strain: 

°\    -    Sll    cl    +    S12    f2    . °2    "    S12    £1    +   S22    e2    "     f(7l2)     - 

T12   =    -     €2    f'(7l2>    +    g(7l2>     . (1) 

where f and g are, respectively, even and odd functions. In the range of small 
shearing strain, g is a linear function and f practically vanishes. The elastic 
moduli Sn, S12 and S22 are determined from 

fi (Sn + siz)   + £2 (si2 + S22)  - o1  + o2  - ox  + oB (2) 

S12/S11 - utVt  + i/.(l-Vc) , (3) 

where i/f and um are the Poisson's ratios of the fibers and the resin material. 
Experimental results for a tube of a specific winding angle provide a set of 
coefficients clt e2 and ox + oe of Eq. (2). As the winding angle varies, an 
overdetermined system of equations is generated and it is found that these 
equations yield consistent results for the elastic moduli Sn, S12 and S22- The 
material functions f and g are subsequently determined from the experimental data 

corresponding to large shearing strain. 
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SEPARATION    FAILURE    OF    A    HELICAL    DELAMINATION 
IN    A    FILAMENT-WOUND    COMPOSITE    TUBE 

Wan - Lee   Yin 
School   of   Civil    Engineering 

Georgia   Institute   of   Technology 
Atlanta.    GA   30332 

Abstract 

IntroductIon 

In their experimental study of the failure of glass/polyester filament-wound 
tubes under internal pressure load. Spencer and Hull [1] reported several dlffernt 
■ odes of failure depending on the winding angle and the loading condition (I.e.. 
open-ended or close-ended) The events precipitating or accompanying failure 
include whitening, weepage. large In-plane shear deformation, matrix cracking, fiber 
breaking and delamination. Interlavlnar cracking and delaminatlon. accompanied by 
buckling and bending of the tube, were observed In open-ended tubes with relatively 
large winding angles (45 degrees or above) It may appear somewhat puzzling that 
delamlnation should occur In a tube loaded under Internal pressure, where the 
adjacent layers are pressed against each other, and that buckling and bending of the 
tube should happen under the open-ended test condlton. where the axial load In the 
tube vanishes However, while the tube wall taken as a whole Is stressed only in 
circumferential tension, the Individual unidirectional laminae are subjected 
additionally to shearing stresses T*» and T#* . except In the end regions adjacent 
to the free edges of the tube As the pressure load Increases, the two families of 
fibers tend to reorient themselves toward the circumferntial direction, producing a 
scissoring action at the cross-over points of intersecting fibers and Introducing 
large shear deformation in the interleaving sheet of resin material. This shear 
action may tend to initiate interlaminar fracture in certain regions of a laminar 
interface where, because of the nonunifomity and peculiarity associated with the 
winding process, the thickness of the Interleaving resin material is particularly 
thin. Incidentally, since the cross-over points are densely distributed over a 
laminar interface, the scissoring action effectively produces a system of 
distributed interacting couple moments between adjacent laminae. The presence of 
this distributed couple moment implies that. In each lamina, the shearing stress 
components   X*©   and "tjx    are   generally   not   equal. 

Because a single unidirectional layer or a group of layers has significant 
anisotropy. interlaminar fracture may tend to form or propagate along the general 
direction of one family of filaments Hence a helical strip of delamlnated face 
sheet, consisting of one or several filament-wound layers, may be formed in the 
Inner   surface   of   the  tube.     This   delamlnated   face   sheet   Is   subjected   to   the  same 
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large membrane tension as that which applies to the Intact portion of the face 
sheet, so long as the delaainated portion maintains contact with the stain body of 
the tube wall. Although there is a tendency for the delaainated sheet to deflect 
Inward and sepatfe fro« the tube wall, so as to reduce the membrane tension and the 
str.Jn energy, this tendency Is balanced by the outward action of the Internal 
pressure. However. If the aeabrane tension and shear deformation In the delaainated 
face sheet are sufficiently large, scattered resin cracks stay be formed so that the 
face sheet say fall to contain the pressure. Eventually, the fluid pressure on both 
sides of the delaainated face sheet may becoae equalized and separation of the face 
sheet  froa  the tube  wall   aay   occur   spontaneously   to   relieve  the   aeabrane  tension. 

In the present work, equilibrium solutions of a helical atrip of the separated 
face sheet are determined for a specific combination of geometrical and material 
parameters. The amplitude of separation and the peeling bending aoaent along the 
boundary of the strip Increase approximately in proportion to the internal pressure 
load. However, the boundary peeling aoaent do not vary significantly with the 
Increase of the strip width. The aagnltude of this aoaent is Indicative of the 
peeling action which tends to cause delaalnatlon growth. Thus, under a sufficiently 
Jarge pressure load a delaainated strip aay separate froa the tube wall and aay 
subsequently grow to reach a significant width. This causes local stiffness 
degradation and redistribution of the stresses in the aain body of the tube and aay 
precipitate further  cracking,   bending,   buckling   and   eventual   catastrophic   failure. 

While the present analysis is aotlvated by the consideration of delaalnatlon 
failure In a pressurized fllaaent-wound tube, it yields a class of closed-form 
analytical solutions of thin anlsotroplc shells with a nontrlvlal type of geometry. 
Hence the results aay have soae Intrinsic interest. The solutions are rather 
slallar to postbuckllng solutions although the physical process is not characterized 
by a bifurcation state. The problems of snap buckling and peeling of a thin 
cylindrical Isotropie layer froa the inner surface of a thick cylinder subjected to 
radially inward displacement load have been studied by several authors [2-5] The 
layer buckles because it was under large membrane compression in the prebuckllng 
state and because buckling substantially relieves the compression The present 
analysis suggests that delaalnatlon failure aay also occur In tubes loaded under 
Internal pressure where the tube wall is subjected to aeabrane tension, and that the 
formation and growth of delaalnatlon in a fllaaent-wound tube may assume the shape 
of   a   helical   strip   rather   than   a   sector   of   the   cylindrical   surface. 

Poraulation   of   the   Equilibrium   Solution   of   a   Separated    Helical    Delaalnatlon 

We assume that a helical strip of delaalnatlon exists close to the inner surface 
of the tube as a result of the scissoring action between adjacent fllaaent-wound 
layers due to a sufficiently large pressure load. The boundaries of the helical 
strip are parallel to one families of filaments (say, with the winding angle f. the 
filaments of the other family are wound at the angle -J)- The thickness of the 
delaainated face sheet, h. is assumed to be saall compared to the total thickness of 
the tube. t. so that when the face sheet deflects inward and separates froa the tube 
wall, the existing deformation of the latter is not appreciably affected This 
existing deformation is characterized by uniform axial and circumferential 
strains €° and €j . So long as the helical strip of the delaainated face sheet 
remains attached to the tube wall, it Is subjected to the same aebrane strains €* 
and €j. Let a system of orthogonal geodesic coordinates (Xj , xz) be defined so 
that x^ » ti' along the boundaries of the helical strip (Pig 1) Referred to the 
new   coordinate   axes,   the   components   of   the   membrane   strain   are 

er-4(«;+€:)-£(<•-*?> e"*T ,   Y.j-ic^-csjsw.if. ,,«. b) 
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When   the  face   sheet   separates   fro»   the  tube   wall   and   deflects   Inward,   the 
tangential   displacement   components   u   and   v   (along   the   xt -    and   x4 - d lrect Ion s, 
respectively)  and  the Inward   radial  displacement   w   of   the   middle   surface  of  the  face 
sheet   are constant   In   the x^-dlrectlon.   i.e..   they   depend   only   on   the   coordinate   xz 

The   following   nonlinear   stra1n-d lsp lacement    relations   may    be   established 

€1 =   *>. +  fr" "     =   £z ~ W/Pi +  ^  t ^(w )  t }• w    , 
■2) 

where   the   primes   Indicate   differentiation   with   respect   to   x. 
ex p ressIon. 

In    the   p recedlng 

Rt*   R/sin1? R^   R/cos2<? 

R la the radius of curvature of the middle surface of the undeformed face sheet and 
z Is the coordinate In the thickness direction measured radially outward from the 
mlddlle surface. The membrane force resultants and the moment resultants In the 
face sheet   (Fig.   2)   are   related   to   the   curvature   Increment   w   (xt)   and   the   middle- 
plane   strains   €«.    k,   and   T. i 

^2.  J 

through   the   relations 

[" A„ *a A(4p Ba*| ( *, 
_ j *i». *u. *U. ßü t    €| 

I Aifc Au, Au B^ Y|t 

I B.t *«• Bzfr P«. j . w" 

3) 

If the thickness h of the face sheet is very small compared to the initial mean 
radius R.  then  the stiffness  matrices   [A,, ].   [B .   ]   and   [D, . ]   may   be   approximated   by 

CA.j]-r J [a.J *»$- ,     [B.p-ZJCGujJ Y*y,    d>.j3«zjr&.p J-^  (4) 

where [Q;; J Is the matrix of anlsotroplc elastic moduli of a filament - wound layer 
referred to the local geodesic coordinate directions and where the summations extend 
over all layers In the face sheet We note that while Eq. (4) Is exactly valid in 
the case of a flat face sheet. It is only approximately vailed for an Initially 
curved sheet. A segment of the face sheet with unit length In the x, -direction has 
the   strain   energy 

V=   2  J.   . K €tr ^ «i.+ *»*."*«.+ Mi»") 4*1 (5> 

It Is further assumed that, due to significant membrane tension caused by the 
pressure load, the face sheet has developed scattered matrix cracks which allow 
equalization of the fluid pressure on the two sides of the sheet but which do not 
significantly degradate the stiffness properties of the face sheet. Then the fluid 
pressure performs no work as the sheet deflects Inward. The work of the boundary 
forces and moments is also negligible if the main body of the tube wall does not 
undergo appreciable additional deformation when the face sheet separates Hence the 
potential energy of the face sheet is equal to the strain energy Setting the first 
variation of the potential energy to zero and making use of the boundary conditions 
along   xz- is* 
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0. 
0. w' 

0. 
0, 

(6a) 
(6b) 

one obtains the following equilibrium  equations  for  the  mebrane  forces   and   moments 

0. N'      -   0. (7a) 

N. /R. 

Nll 
N, /R 2/R2    -    M^    ♦    (Naw')'    -    0. (7b) 

Except   for  the  presence  of  the  term   N^/R,    In   the  third   equation,   the   last   twi 
equilibrium   equations   are   Identical   to   those   of   a   shallow   arch. 

Substituting the strain-displacement   relations   Into the first two equlllbrlui 
equations,   one   obtains 

vVf («•)*- - 

*-i A^      N,^/^6t-Au€l-Awy(t+(^+ Ag)w-gl6w#' 

(8a) 

(8b) 

where 

A * 
Azz    Au 
Azfc   Att 

Then   the   third   equation   of   (7)   becosies 

Pji    B»*.   BJ4 

An Oft.      *VA 

Bxt   A^   Atfc 

*i *"" + 2 

^-PtNz/Z     A,j   A,* 
Pi», Aiv   *i4 

Pit Au   Ait 

w" + 
A|(    Aiz  A,i| 

A|i     Ali   *it 

Ait   Ait  *tk 

AM    Alt    A,J 
i     s 

An   *n.   *uj ei 

Ait Aii  AtJ 
+       "N2. Au    Au, 

I    "Nu.        AU    A** 
(91 

This fourth-order linear differential equation for wlx^J contains two undetermined 
parameters N« and N!a. Additional equations for the determination of the parameters 
may be obtained by integrating Eqs (8a) and (8b) across the width of the strip and 
making   use   of   the   boundary   conditions   of   Eq   (6)       This   yields 

*,+ Ri 

0=25' 
A«.     Ni-A,x€r-^r,t|        I A„.    Au/fc,l r 5*     , 

Ait      Nu.-Ait^-AttYtfl Azfc    Ait/IE-     -5" 

(10a) 

( 10b) 

The differential equation   (9).   the  boundary   conditions   (6b)   and   Eq    (10)   completely 
determine   the   deflection   function   wfxj.)   and   the   constants   Na   and   K\g, . 
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The procedure of solution may proceed as follows. Under a given pressure load. 
Che membrane strain components in the (x.©) coordinates Bay be calculated using the 
stiffness properties of the whole tube The strain components in the geodesic 
coordinates (xt. x^l are calculated fro« Eq. (1) Estimates of the values of Na and 
Nlt are tentatively made, and the boundary value problem of Eqs. {9) and (6b) are 
solved. The resulting closed form solution for w(x2) involves products of 
exponential and sinusoidal functions. This solution is substituted into Eq (10) to 
see whether the two equalities are satisfied. If they are not satisfied, then the 
estimated values of N^ and N i2_ are modified and the process is repeated until Bq. 
(10) is satisfied to within certain permissible margin of error The solution is 
physical  possible only  if w(x^)  is  never   negative,   otherwise   it   should   be  discarded. 

Solution   for   a   Unidirectional   Pace   Sheet 

For the sake of simplicity we consider the case of a unidirectlonally wound face 
sheet For such a sheet the bendlng-stretchlng coupling matrix [B;j ] vanishes as do 
the   shear in g - ex ten s l on   coupling   A lfc    and   A^ .      Furthermore, 

l/12)h*-A, "VL l "  **'"    "12. 

Hence   the   governing   differential   equation   (9)   reduces   to 

The second   condition   of   Eq.   (10)   Is   identically   satisfied   and   the  first  condition 
yields 

We   introduce  dimensionless   variables  5  and   w(f)   and   dimension less   parameters 
«•.   T.   €**.   oLand   A   as   follows 

W(5)» wC*o/h,,      ?= ^/-v^T  ,      <a = sVvß1K, 

4 = Ü  -4- A'L (U) 

where, 

(12] 

Then   the   two   preceedlng   equations   become 

k L\ t«f^5 " r [>* t2»f(fe+$V-T} . ,.       (11| 

The   solution   of   Eq    (12)   satisfying   the   boundary   conditions   of   Eq     (6b)   is 
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where. 

ris - U/H) (A* cojk.*«- S.n/*A +/«. 5i>h AA. C<?s/**-); 

<^ = -a/H) (/*«. e«l A«./«/**- A«. 5«mm A*   Ct/<*.) , (16) 

The solution given by Eq. (14) contains an undetermined parameter T. The 
parameter »ay be determined by the following condition which is obtained by 
substituting   (14)   Into   Eq.   (13): 

2C3C£*+TfWt+ ^C«*+T^)-fi+JC^+^JJT-O,       117) 

The left hand side of Eq. (17) is a complicated function of T because the 
parameters >v and /i are dependent on T (see Eq. (15)). However, for any given value 
of T. Eq. (17) provides a quadratic equation for 6 ♦ t^/oL which may be readily 
solved. We note that the membrane strain ratio €*/ fj" in the main body of the tube 
wall Is independent of the pressure load so long as the response of the tube regains 
linearly elastic. Hence, if for any specified delamination geometry we are 
Interested In a family of separation solutions corresponding to Increasing values of 
the «embrane strain parameter €*(i e., corresponding to a certain range of the 
pressure load In the tube), then Eq. (17) may be easily solved for € *"tf''d* 
corresponding to a series of values of T. No iteration process need be conducted 
for this purpose. The results of the computation yield the dependence of the 
various properties of the separation solution upon the strain parameter 6*1 For a 
helical delamination atrip with unidirectional winding at the angle <?= 65*. the 
dependence of the nondl men sional center-line deflection. w(0)/h, and of the 
nondlmensional boundary peeling moment, M^R/fDj^ slnr 65*) = d*W/df*", upon the 
membrane strain parameter £ are shown, respectively, In Figs. 3 and 4 for two 
distinct values of the normalized delamination width (24.* 2 and 5) The relations 
are approximately linear. Here the anisotropic elastic properties of the 
unidirectional face sheet are taken from or computed according to Ref [lj 
Specifically, 

Et=   42.0   GPa.      Ej«    11.05   GPa.      Gj^«   4.73   GPa.      »?•    0.278,      ^( =    0  073. 

oL  ■    3   72.        ß-    0  495, A|j/A«,"    0   277 

Assuming that  the tube is  composed  of equal  nuaber  of  layers     nurd   «t  i.GOr   angles, 
and  using the open-end  condition,   the  following   membrane  strain   radios   are  found 

€„•/€/•    -0.360.        e*l $° =    -0.155. 

Pigures 5 and 6 show, respectively, the variation of the center line deflection 
and of the boundary peeling moment with the increase in the delaminat ion width for 
three  fixed   values  of  the  membrane   strain   parameter. £■   0.5.    1.0.    1  5 The 
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center-line deflection at first increases and later shows slight decrease as the 
delaalnatlon width Increases, while the boundary peeling soient regains 
approximately constant in the entire range of delaalnatlon width for which the 
solution« of Eq. (17) can be obtained. It should be noted that, as a quadratic 
equation for €** Tß/d., Eq. (17) always has real solutions if T is nonnegative, when 
Nz change« fro« tension to coapresslon and when its aagnltude becoaes sufficiently 
large, the roots of Eq. (17) change fro« real Into coaplex. Along each curve In 
Figs. 5 and 6. the value of T associated with a data point decreases In the 
direction of increasing delaalnatlon width. The curves teralnate at right end 
points   where  the   roots    €*♦   T(J/oL   of   Eq.   (17)   becoae   complex. 

The strain energy release rate associated with delaalnatlon growth aay be 
evaluated by using the J-integral aethod [6,7]. The result is an algebraic 
expression in tera« of the boundary peeling aoaent. the constant force N2 and the 
aeabrane strain« in the aain body of the tube wall. If the aeabrane strain 
parameter €*"la sufficiently large, the energy-release rate at the delaalnation 
boundary aay exceed the fracture toughness and the width of the delaalnatlon aay 
Increase   spontaneously. 

A fundamental assuaptlon used in the present analysis Is that the delawlnated 
face sheet is thin compared to the wall thickness of the tube so that the separation 
of the face sheet does not appreciably affect the existing deforaatlon in the aain 
body of tube wall. A aore elaborate analysis without using this assuaptlon «ay 
indicate the effect of delaalnatlon separation on the deforaatlon of the wain tube 
and provide better insight into the failure process Initiated by delaalnatlon 
separation. 
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Abstract—An analytical procedure, based on the Rayleigh-Ritz method and von Karman*s non- 
linear theory of plates, is developed for computing the buckling loads and the postbuckling solutions 
of laminated anisotropic elliptical plates. Lengthy algebraic equations governing the expansion 
coefficients of the displacement functions are generated by a symbolic algorithm. Using polynomial 
displacement expansions of different orders, postbuckling solutions with increasing accuracy are 
systematically computed for isotropic and laminated elliptical plates. The deflections, the force and 
moment resultants and the energy release rates associated with the solutions of various orders are 
compared to assess the trend of convergence. The comparison suggests the lowest order polynomial 
expansion needed to obtain reasonably accurate results for the force and moment resultants and 
the energy release rales. Previous Rayleigh-Rit2 postbuckling solutions based on lower-order 
polynomial expansions of the displacements are found to yield results with significant errors. 

1. INTRODUCTION 

The problems of sublaminate buckling and crack growth in a homogeneous plate or a 
composite laminate containing an interior delamination have been the subject of extensive 
analytical and numerical studies in the past decade. J For thin strip or elliptical delamination 
models the bifurcation loads obtained by two- or three-dimensional finite element analysis 
[see. for example, Shivakumar and Whitcomb (1985) and Yin et al. (1986a)] are not 
appreciably different from the corresponding results of the homogeneous or laminated plate 
analysis. In the case of strip delamination models, closed-form analytical solutions of the 
postbuckling deformation may be obtained in the context of the classical laminated plate 
theory (Chai et al, 1981; Yin et al., 1986b). The energy release rates associated with 
delamination growth may be evaluated, by using the path-independent /-integral, in terms 
of the membrane forces and the bending moments in the cracked and intact parts of the 
laminate at the crack tip (Yin and Wang. 1984). The results also agree well with the energy 
release rates calculated by finite element analysis and the closure integral method (Yin et 
al., 1986a). These findings suggest that accurate postbuckling analysis based on a homo- 
geneous or laminated plate theory (preferably with the inclusion of the effect of the thick- 
ness-shear deformation) may be used, in place of expensive three-dimensional analysis, to 
obtain reliable results for the buckling and growth behavior a delamination with a general 
shape. 

For a two-dimensional thin-film delamination with an arbitrary shape, the local mem- 
brane forces and the bending and twisting moments at a point of the delamination front 
determine the pointwise value of the energy release rate (Bottega. 1983; Storakers and 
Anderson. 1988). If one assumes a delamination growth criterion depending only on the 
local energy release rate, without discriminating among its separate components associated 

♦ A preliminary version of this paper was presented in the ASME Winter Annual Meeting. San Francisco. CA. 
December 1989. 

J For general reviews of the subject, see the recent articles by Garg (1988) and Storakers (1989). Additional 
information may be found in Kapania and Raciti (1989). Simitses (1989) and Yin (1989) 
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with the three fracture modes, then the principa) task involved in the analysis of two- 
dimensional delaminations is that of obtaining accurate bifurcation loads and postbuckling 
solutions from the von Karman equations. This task is formidable if one wishes to take 
into account the postbuckling deformations of both the cracked and intact parts of the 
plate. It is difficult even if one completely ignores the bending deformation and the non- 
uniformity of the membrane deformation in the base laminate as induced by local buckling 
of a thin delaminated layer, i.e. if one adopts the "thin-film" approximation for the 
delaminated layer by imposing the conditions of vanishing deflection and slope along the 
crack boundary. 

The difficulties arise from the geometrical non-linearity and the strong coupling, 
between the in-plane and transverse displacements, that are intrinsic to the von Karman 
equations of plates. Postbuckling solutions which ignore or inadequately account for such 
effects cannot yield reliable results for the membrane forces, the bending and twisting 
moments, or the energy release rates. Many existing solution schemes for the bending and 
buckling of plates use the calculated results of the central deflection as the principal test of 
accuracy. The criterion is inadequate and misleading because, as shown in this paper, 
relatively crude postbuckling solutions may yield sufficiently accurate results for the central 
deflection and, at the same time, very poor results for the membrane forces and the energy 
release rates. 

In their analysis of transversely loaded and postbuckled rectangular plates, Chia (1980) 
and co-workers obtained solutions by the Rayleigh-Ritz method, using beam eigenfunctions 
to approximate the displacements. As the number of terms in the displacement functions 
increases, the results for the transverse deflection converge reasonably fast. However, 
accurate results for the membrane forces and the bending moments are considerably more 
difficult to obtain. Following Chia's method, Feng (1983) presented a computerized analysis 
of the postbuckling behavior of laminated anisotropic rectangular plates. His analysis used 
a much larger set of beam eigenfunctions to represent the displacements of the middle 
surface. He did not provide information concerning the rate or trend of convergence of the 
solutions. 

In a postbuckling analysis of a simply-supported circular plate under axisymmetric 
compression, Friedrichs and Stoker (1941.1942) noticed significant non-uniform membrane 
deformation in an advanced stage of postbuckling. As the boundary compression increases, 
the membrane forces in a central portion of the plate eventually become tensile. Bodner 
(1973) found a similar behavior in the axisymmetric postbuckling of a clamped circular 
plate. Due to the coupling in the von Karman equations, the non-uniformity of the in-plane 
deformation has important implications for the bending deformation. This results in large 
curvature of the deformed middle surface around the boundary of the plate. Although the 
perturbation method used by these authors is applicable only to within a certain range of 
the strain load, the general validity of their conclusions beyond this range has been confirmed 
by an analysis based on direct integration of the von Karman equations (Yin. 1985). 

As suggested by Chai and Babcock (1985). the buckling and growth behavior associated 
with general two-dimensional delaminations may be studied by an analysis of elliptical 
delaminations. However, the displacement functions used by Chai and Babcock contain an 
insufficient number of terms to reflect significant non-uniform membrane deformation and 
the boundary effect. In the present work, power series expansions of the displacements 
are systematically enlarged to obtain higher order approximate solutions of postbuckled. 
clamped elliptical plates by means of the Rayleigh-Ritz method. In the special case of 
axisymmetric postbuckling of circular plates, Rayleigh-Ritz solutions of the various orders 
are compared with the solutions obtained by direct integration of the von Karman equations 
(Yin, 1985). The comparison indicates convergence of the Rayleigh-Ritz solutions, and 
suggests the lowest order approximate solution needed to obtain reasonably accurate results 
for the membrane forces, the bending moments and the energy release rates. The solutions 
of the required order are then computed for elliptical delaminations with various aspect 
ratios. It is found that these postbuckling solutions also show significant boundary effect, 
although in a manner more complex and fascinating than in the case of axisymmetric 
postbuckling of circular plates. 
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A Rayleigh-Ritz procedure involving a relatively large number of coefficients for the 
non-linear analysis of anisotropic plates requires the use of symbolic algebra. A symbolic 
computational program is written in the Fortran code to generate the total potential energy 
function in terms of the geometrical, material and loading parameters, as well as the 
undetermined expansion coefficients (Jane, 1989). The program also yields the non-linear 
algebraic equations governing the undetermined coefficients. Solutions of the equations are 
computed for isotropic circular and elliptical plates (in Part I of this paper) and for cross- 
ply and angle-ply elliptical laminates (in Part II). 

Non-dimensionalization of the postbuckling problem shows that the total potential 
energy function depends on the geometrical and stiffness parameters through certain specific 
combinations. Consequently, all postbuckling solutions of anisotropic elliptical (or rec- 
tangular) laminates may be generated from appropriate solutions of anisotropic circular {or 
square) lajninates by rescaling of variables. This important conclusion, shown in Section 
2.3 of the present paper, allows a significant saving of computational effort in a parametric 
study of the postbuckling behavior of various types of elliptical laminates. 

2   RAYLEIGH RITZ SOLUTIONS 

We consider an elliptical delamination with semi-axial lengths a and b along the X- 
and y-coordinate axes, respectively. Let the base plate be subjected to uniform in-plane 
normal and shearing strains Exx. £,-> and Ex >. If the strains are predominantly compressive 
and if they are sufficiently large, then the elliptical delaminated layer buckles and becomes 
completely or partially detached from the base plate. We assume that the thickness of the 
delaminated layer, /J, is small compared to the thickness of the base plate, so that, within 
the base plate, the bending deformation and the non-uniformity of the in-plane deformation 
caused by the buckling of the delaminated layer are both negligibly small. Then the delami- 
nated layer is subjected to displacement boundary conditions along the entire elliptical 
boundary. The total potential energy of the layer is identical to its total strain energy. 

2.1. The total potential energy 
In the buckled states, the membrane strains and the curvatures of the middle surface 

of the delaminated layer may be approximated by 

cU 
£,=^ + 2 

1 /cTf'v 

Ix 
iv   i fewy cU    cV    cU'cH' 

r>      cX      cX   c} 

c-W c:W 
K; = — 

cY: ' 
— -> r-w 

Kt = Z- 
cX c Y 

(1) 

where V and V are the in-plane displacements on the middle surface and where W is the 
transverse deflection. The force and moment resultants of the delaminated layer are related 
to the strains and the curvatures according to the equation 

r.v, 
A': 

A/, 
A/; 
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The stiffness coefficients in the last equation are those defined in the classical laminated 
plate theory. If we abbreviate the preceding equation in the form 
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N, « A.JCJ + B,jKr    M, = £„£, + D.JKJ (2) 

ihen the total potential energy of the delaminated layer may be expressed as 

n = UjK^+^K-;)dA'dy (3) 

where the integration is carried over the region of the plate and the index i is summed over 
1,2 and 6. 

2.2. Non-dimensionalizaiion and polynomial approximation 
We introduce the following non-dimensional variables and constants: 

x = Xj'a.    u=Ua'h2,    M = W'/A, 2(nh\4 

v B Y/b,    v = Vb/h-,     '/. = alb, Auab 

txx s {aih)2Exx,   cx, = (ab;h7)E„,   cl} = (b!h)2E,> 

£, = (fl,7j)2£,,    ez = (6,7i)-£2.    £«, = (abjh')cb 

Kx={a'!h)Kx.      K; = (b2lh)K2,      Kb = (abh)Kb. (4) 

Let the displacement functions be approximated by the polynomial expansions 

U = axExx + b\EAy + (\ -x2-y2)P(x.y)h2la 

V=axExr + byEyy + {\ -x2-y2)Q(x.y)h2jb 

W=h(\-x2-y2)2R{x.y) 

where P, Q and R are polynomial functions of the normalized coordinate variables. All 
boundary conditions along (X a)2 + {Y!b)2 - 1 are satisfied by these displacement 
functions. Now the non-dimensional displacement components u. r and H have the following 
expressions: 

u = *£„ + Y€,, + Z0P(xy y) 

v = xext +.»'£,. +Z0Q(x.y) 

H=ZlR(x,y) (5) 

where, 

Z0 9 l-x
2-)2. 

From eqn (1) we obtain the following expressions for the normalized membrane strain 
components and the normalized curvatures 

c, «e„ + (Zo/>)., + (l/2H(Z?Ä).J: 

e2-£vl+(Zoö).l + (l ;2)[{ZlR)S' 

£6 = 2£„ + (Z0/
>), + (Zoö).. + (ZiR)JZiR), 

K} = (ZiR).xxt   Kj = (Z6/?).„,   K6 = 2(ZSÄ).„. 

The polynomials P, (? and /? are defined by their respective set of coefficients {a,}, {b,} 
and {c,}. The number of coefficients in each set depends on the degree of the polynomial. 
We define twenty-one functions L,r MtJ and N,, (i.j = I. 2, 6: L,t and A',,, are symmetric 
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with respect to the indices while Mu is not) by the following integrals over the unit disk 

Lfj m      f.e, dx dv,   M„ =       c.Kj dx dv,   N,j = K,KJ dx d v. (6) 

It is clear that L,r M„ and NtJ depend only on the normalized strain loads E„, £,,, cX} and 
the coefficients {a,}, {/>,}, {c,} of the polynomials P. Q and R. Thus, once the forms of the 
polynomials P, Q and R are selected, all the integrals Lu, M(J and NtJ can be evaluated and 
expressed explicitly in terms of the normalized strain loads in the base plate and the 
coefficients of the polynomials. These explicit expressions are independent of the geometrical 
and material parameters {a, b, h, A,r B,}i Dl;) of the anisotropic elliptical plate. They depend 
only on the approximation scheme used in the analysis. 

Equation (3) now yields the following expression for the non-dimensional potential 
energy: 

where i and> are again summed over 1, 2 and 6 and 

(5, = {h'a)\    6: m (hb)\    öb - h'fab. 

Once an approximating scheme involving a set of undetermined coefficients a,, b, and c, is 
adopted and the integrals L,r Mt} and A',, are explicitly obtained, the total potential energy 
for any particular geometrical and material configuration of the elliptical laminate can be 
obtained straightforwardly. This yields an expression for the normalized potential energy: 

n = fl(a,.b„c„etl.E,,.£x,;).. AJA u,B„;hAtl,Dvih
2A,,). (8) 

It is clear that the major task involved in the explicit determination of the last expression 
is that of evaluating the integrals of eqn (6). Each integral is a sum of integrals of the 
following form: 

I(m,n,k)=\ A-"V(l-A:-v:)'d.vdv 
J-i J-I1-.-'),: 

=      (l-r2)irw+B*1 dr       cosm 6 sin" 6 dö. 

One has I(m. n, k) = 0 if m and n are not both even. Otherwise, 

1-3 5-(w-l)l-3-5-(n-l)    * (-?)'*! 
I(m.n.k) = 2n ,?o(2 + 2/ 2-4-6 -(m+n) ,fo (2 + 2p + m + n)p\(k-p)]' 

Expending on the number of coefficients involved in the polynomials P. Q and R. the final 
approximate expression for the potential energy may contain hundreds or even thousands 
of terms. The intermediate steps leading to the final expression may involve hundreds of 
thousands of integrals. A special purpose symbolic algorithm was developed in the Fortran 
code to generate the potential energy function and the algebraic equations governing the 
undetermined coefficients (Jane. 1989). Cyber 205 supercomputer at the University of 
Georgia was used to implement the symbolic algorithm and to solve the resulting system 
of non-linear algebraic equations. This system consists of the following equations 
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CO, c7>, cc, 
(9) 

Furthermore, the strains in the base plate corresponding to the stales of bifurcation (from 
membrane states to buckled states) may be calculated from the following characteristic 
equation 

e:n   c:n   c:n 
da.cüj ca.dbj caicc) 

c:n c:n ^:n 
cb.CQj cb.cbj cbjCCj 

c:n ?:n a*n 
deify cc,cbj dcidCj 

= 0. (10) 

(a, = 6, = c, = 0) 

Equation (9) will be solved for the coefficients {a,}, {b,} and {c,} by using the Newton- 
Raphson iteration scheme. In order to have suitable initial estimates of the coefficients, it 
is imperative to start from a bifurcation point (corresponding to a set of coefficients 
satisfying eqn (10)) in the load space, and to obtain successive postbuckling solutions along 
a load path by imposing small load increments. The coordinates of the load space are the 
imposed in-plane normal and shearing strains in the base plate. Since eqn (9) consists of 
algebraic equations which depend linearly on the coefficients {a,} and {b,}, the emphasis in 
each iteration step is to obtain the proper increment of {c,}. The new iterated values of {a,} 
and {b,} may be obtained easily by solving a subsystem of linear equations using the current 
estimates of {c,}. 

2.3. Generating all postbuckling solutions of elliptical laminates from appropriate solutions 
of circular laminates by rescaling 

The structure of the expression for »h* total potential energy, eqn (7). implies the 
following important conclusion : all postbuckling solutions of elliptical laminates (according 
to the von Karman theory) may be obtained from the postbuckling solutions of circular 
laminates by rescaling the coordinate variables, the thickness, the stiffness parameters and 
the membrane strain loads. Indeed, if one wants to obtain the postbuckling solution U, l\ 
W of an elliptical laminate with the thickness A, semi-axial lengths a and b. stiffness matrices 
[A,], [B,j] and [DtJ]. under the strain loads Exx, Ery and Ex > in the base plate, one only has 
to obtain the solution t/0, V0, W^ of a circular laminate with the thickness h0. radius r0 

and stiffness coefficients 

S°u = (r0/A0)4<A/ö)4Sn. 5?j = (r0/A0)4(A2/öA):S,: 

Sh = (r0/A0)4(A b)*S22, S?6 = (r0/Ä0)
4(A4/j^)S,6 

Si, = (r0/A0)4(/j:/a6)2566.    5?6 = (ro^yi^iab^S,, 

(where S,, stands for A,r B,s and D„ in succession) under the strain loads 

Exx = {h0;r0)*(a:h)*Exx,   Err = (Vr„)3(M):£>>.   EXY = (h0r^(ab;h:)EX), 

The solution for the elliptical laminate is related to the solution of the circular laminate by 

V= {h:b0)2(ro/a)Uo,    V = {h A0):(r0/A)I'0.    W = (hh0)U0. 

The validity of this statement follows from the fact that the two laminates have the same 
h,h,A,r b.bjB,, and 6,öjD,r the strain loads on the respective laminates have the same 
normalized values £„, e,, and c„, and the respective solutions have the same normalized 
displacements u. v and M\ From eqn (7) one finds that the potential energy functions of the 
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two laminates are identical except for a multiplicative factor. Hence the stationary condition 
for the respective potential energies are realized by the same normalized displacement 
solution u, v and w. 

Since one has the freedom to choose the radius r0 and the thickness h0 of the circular 
laminate arbitrarily, there are infinitely many postbuckling solutions of circular laminates 
which correspond, according to the preceding relations, to the same postbuckling solution 
of a given elliptical laminate. Furthermore, one may introduce new rectangular coordinate 
axes in such a way that, for the circular laminate, these axes coincide with the principal 
directions of the imposed strain tensor in the base plate (whose components in the original 
coordinates are EXXt Err and Exy). Referred to the new coordinate system the strain load 
in the base plate of the circular laminate has no shearing component. Consequently, in a 
parametric study of the postbuckling behavior of elliptical delaminaiions of various geo- 
metrical and material configurations under general membrane strain loads in the base plate, 
it is sufficient to deal only with circular anisotropic delaminaiions under biaxial strain loads. 
All solutions of the elliptical delaminations may be generated from appropriate solutions 
of circular delaminations according to the preceding rescaling rules. 

It is clear that a similar procedure may be used to generate all postbuckling solutions 
of rectangular anisotropic laminates from appropriate solutions of square laminates sub- 
jected to general in-plane loads. 

2.4. Symmetry conditions on the displacement functions 
For a general anisotropic elliptical delamination in a base plate under the in-plane 

strain loads Exx. Eyy and EX), the postbuckling displacement functions in the delaminated 
sublaminate satisfy the conditions of central symmetry: 

u{-x. -y) = -u(x,v),   r(-x. -_v) = -r(jr.v),    M(—X, -y) = M(.\\V).      (11) 

These symmetry conditions imply that the polynomials P and Q in eqn (5) contain only 
terms of odd degrees while the polynomial R contains only terms of even degrees. In the 
cases of isotropic, specially orthotropic. or cross-ply sublaminates with aligned loading and 
symmetry axes, additional symmetry conditions with respect to the coordinate axes apply: 

u(x,y) = -W(-A, r) = u(x, -V), 

v(x,y) = r(—A*..V) = — v(x. — v). 

vv(x.>) - w(-x,y) = w(x, -v). (12) 

Equations (11) and (12) taken together imply that P, Q and R have the forms 

P(x%y) = xPx{x\y7),   Q(x.y)=yQAx\y*).   R(x.y) - Ä,<x\r). (13) 

If P, and Q, include only constant terms and /?, includes, in addition, linear terms in x2 

and y2. then the displacement functions reduce to those used by Chai and Babcock (1985) 
in their five-term Rayleigh-Ritz solutions. Rayleigh-Ritz solutions of higher orders {p. r) 
may be considered where p and r refer, respectively, to the degrees of the polynomials P 
(same as that of Q) and R of eqn (5). For example, for the solution of the order {5, 4} 
satisfying the full symmetry conditions of eqns (11) and (12). the polynomials P. Q and R 
of eqn (5) have the following forms: 

P(x,y) = x(fl,+fljjc2+fljV2+fl4X4 + flsX:v:-ffl6v
4) 

Q(x,y) = yib^+btx2 + biy2+btx*+bix
iy2 + b<,y') 

R(x.y) = r,+c:x
: + c3.v: + C4xVf>.rV + <V»4- 04) 

The Rayleigh-Ritz solutions examined in the present work are of the orders {I, 2}. 
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{3,4}, {5, 4}, {5, 6} and {7, 6}. The highest degree of the polynomial and the total number 
of undetermined coefficients for each order of solutions are shown in Table 1. 

In the remaining sections of this paper (Part I), we obtain and examine postbuckling 
solutions of homogeneous isotropic circular and elliptical plates. These solutions possess 
the full symmetry properties of eqns (11) and (12). Postbuckling solutions of anisotropic 
elliptical sublaminates generally satisfy eqn (11) only and their displacement expansions 
include a considerably larger number of terms, as indicated in Table I. Such solutions are 
presented in Part II. 

3. CLAMPED ISOTROPIC CIRCULAR PLATES UNDER AXISYMMETR1C COMPRESSION 

In a previous work (Yin, 1985), axisymmetric postbuckling solutions of a clamped 
isotropic circular plate have been obtained by numerical integration of the governing 
differential equations. These solutions may be used as the standard of comparison for the 
Rayleigh-Ritz solutions of various orders. The comparison was made over a range of the 
strain load from the bifurcation strain to about ten times the bifurcation strain. This wide 
range of the strain load far exceeds the usual range considered in existing postbuckling 
analyses or appropriate to most practical applications. The intension is to set an extremely 
severe test of the validity of the lower order approximate solutions by comparing the results 
with the higher order solutions, and with the solutions obtained by direct integration (Yin, 
1985; hereafter cailed the "reference solutions"), at widely different levels of the strain load. 
This accounts for the very significant discrepancies in the results shown in the following 
figures of this paper. 

3.1. Central deflection, membrane force and bending moment 
Consider a circular sublaminate of radius a and thickness /?, made of a homogeneous, 

isotropic elastic material with Young's modulus £ and Poisson's ratio v. The sublaminate 
has the bending rigidity D = £/J

J
/12(1 — v2). In an axisymmetric deformation, the radial 

membrane force and the radial bending moment are related to the radial and transverse 
displacements, U, and W. according to the formulae 

Eh    (dUt      Ut\      w      „/d:H'    vdW 
(I—v*) \ dr r J \dr       r dr 

The strain load in the base plate is given by 

Exx ~ Err = — £o«    Exy = 0. 

We define the non-dimensional compressive radial force and the non-dimensional bending 
moment as follows: 

NtO:       «/du     iA      .. .      a2 d'w     1 du 

where a is the radius of the circular plate, M is as defined in eqn (4). and 

Table I. Rayleigh-Ritz solutions of various orders 

Solution label 51,2}        {3.41 [5.4]        {5.6)     }7.6', 

Max. degree of P&Q 
Max. degree of Ä 
Number of coefficients, when eqn (12) does not apply 
Number of cocfficienis. when eqn (12) applies 

1 3 5 5 7 
2 4 4 6 6 
8 21 ?? 40 56 
5 12 1« -<-> 30 
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Fig. 1. Circular delaminaiion—Reflection at the center. 

c = r,a,    u(i) = aL\ V,    U(I) = — (aih)2£0. 

It is found that, with regard to the central deflection and the radial bending moment 
at the boundary, Rayleigh-Ritz solutions of the order {5, 4] or higher are in excellent 
agreement with the reference solutions (see Figs 1 and 2, where the solutions of the various 
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orders are identified by the number of coefficients given in the last row of Table 1). The 
curves associated with the solution of the order {7, 6}, i.e. the 30-term solution, are nearly 
indistinguishable from those of the reference solutions. Only the solution of the order {7, 6} 
includes polynomial terms of sufficiently high degree to yield very close results for the 
boundary radial force, and this is true only in a range of the strain load up to about two 
to three times the bifurcation strain (Fig. 3). The solutions of the lowest orders, {1,3} and 
{3,4}, generally show very significant errors in the membrane forces. 

Strong non-uniformity of the membrane force is indicated by the difference between 
the radial forces at the boundary (Fig. 3) and at the center (Fig. 4). Under large postbuckling 
loads, all solutions except the lowest order, {1,3}, show tensile radial force at the center. 
Generally speaking, the solutions of the orders {5,4}, {5,6} and {7,6} yield acceptable 
results (i.e. with about 5% or smaller errors) for the deflections, membrane forces and 
boundary bending moments over a range of the radial strain load up to about three times 
the bifurcation strain. When the strain load exceeds this range, the deflection at the center 
is more than 1.5 times the thickness of the sublaminate (see Fig. 1). Compared with the 
solutions of the order {7, 6}, those of the orders {5, 4} and {5, 6} show significantly larger 
deviations from the reference solutions. 

A comparison of the solutions of the orders {5, 4} and {5, 6} indicates that, by raising 
the degree r of the even polynomial R without at the same time also raising the degree/? of 
the odd polynomials P and Q, one increases the number of expansion coefficients in the 
solution but obtains slight change or improvement in the accuracy of approximation. This 
is because a satisfactory representation of the non-uniformity of the membrane deformation 
requires polynomial functions P and Q of sufficiently high degree, and such non-uniformity 
significantly affects the transverse deflection through the coupling in the von Karman 
equations. 

3.2. Energy release rates in delamination growth 
For the particular problem at hand, let the total potential energy of the isotropic 

circular sublaminate be non-dimensionalized in the following manner 
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For the various postbuckling solutions of the sublaminate, the normalized potential energies 
are plotted in Fig. 5. In this and the two subsequent figures, the horizontal coordinate 

v/12(l-v->o<fl//») 

is interpreted as a normalized delamination radius (under a fixed radial strain load c0 in 
the base plate), rather than as a non-dimensionalized strain load (for a fixed delamination 
radius a). Under a fixed strain load, the potential energy for an approximate solution may 
be differentiated with respect to the delamination radius. The result is related to the energy- 
release rate in axisymmetric growth of the delamination according to the following formula 

G = 
Ehd i  dn 
1 - v     2na 6a (15) 

Comparison of the curves in Figs 5 and 6 indicate that all solutions except the lowest-order 
yield close results for the potential energies and the energy release rates, while the lowest 
order solution underestimates the energy release rate by as much as 35%. 

The energy release rate may also be evaluated by means of the path-independent Af- 
integral in terms of the boundary radial force and the boundary bending moment of the 
postbuckling solution (Yin. 1985). This yields the formula 
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I-vs (/Ehe 
G
"-2EH\{I S^J*«M (16) 

For an exact postbuckling solution the result should agree with the previous result obtained 
by differentiation of the total potential energy. However, for an approximate postbuckling 
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Fig. 7. Energy release rate by the ./-integral method 

solution the two results may differ. For the Rayleigh-Ritz solutions of the various orders, 
the results from eqn (16) are normalized with respect to Ehz\ and shown in Fig. 7. It is seen 
that the solutions of the order (5, 4} or higher yield close results over a range of strain load 
up to about three times the bifurcation strain. 

4   ELLIPTICAL DELAMINATIONS 

We next obtain the bifurcation loads and the postbuckling solutions of homogeneous 
isotropic elliptical plates with various aspect ratios by the Rayleigh-Ritz method. 

4.1. Bifurcation loads under equal biaxial compression 
Under equal biaxial loading along the principal axes of the ellipse (i.e. Ex» = 

E>> = — £G)- 
l^e normalized bifurcation loads have been calculated by Woinowsky-Krieger 

(1937) using elliptical coordinates. His results are shown in Table 2, along with two 
sets of Rayleigh-Ritz solutions obtained in the present analysis. One set of Rayleigh-Ritz 
solutions uses a polynomial R(x,y) for »r(.x, v) containing quadratic and constant 
terms only. In the second set of solutions, R(x\ y) contains quartic and lower-order terms. 
Since the solutions in a displacement formulation yield upper bounds of the buckling load, 
the present results, being smaller in value, are better estimates. Furthermore, in the case of 
a circular delamination (a,b = 1), the normalized buckling load predicted by the second set 
of Rayleigh-Ritz solutions is almost indistinguishable from the exact result, namely, 14.683. 
As the aspect ratio a'b becomes large, the present upper-bound estimates approach the 
limiting value n2 = 9.870 much faster than the results of Woinowsky-Krieger (1937). Hence 
the bifurcation loads of elliptical plates under equal biaxial compression are accurately 
predicted by the Rayleigh-Ritz method involving a small number of expansion coefficients. 

Table 2. Normalized buckling loads P{b: D) for elliptical delaminations: Comparison of the 
results of Woinowsky-Krieger (1937) with Rayleigh kiu solutions 

ab 1.0 1 4 2.0 3.0 40 50 

Woinowsky-Krieger (1937) 
Quadratic R 
Quartic R 

14 79 
14702 
14683 

1181 
II 589 
11 562 

11 02 
10517 
10 436 

11.01 
10 239 
10002 

11 15 
10265 
9 929 

II 30 
1032 
9955 
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Fig. 8. Elliptical delaminalion—base plate under uniaxial load. 

4.2. Postbuekling solution under uniaxial compression 
For the postbuekling analyses we consider elliptical delaminations of aspect ratios 

a'b m 1.2 and 4 in a base plate under membrane strain loads 

Eyy  =   — £(,.      Exx   ~  V£0.      £, >   = 0. 

Such strain loads correspond to urt/a.v/a/compressive forces applied to the base plate along 
the y-direction (Fig. 8). Under a normalized strain load Eyy(b,h): =4, and with the 
assumption v = 0.3, the in-plane and transverse displacements along the principal axes of 
the sublaminate are shown in Figs 9-12 for an elliptical sublaminate with a b = 2. 
Additional figures for the cases a;b = 1 and 4 may be found in Jane (1989). Figures 9 and 
10 show the deviations of the in-plane displacements in the delaminated layer from the 

Fig. 9. Displacement I along the A'-axis (a /> = 2) 
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Fig. 10. Displacement V along the )'-axis (a b = 2) 

corresponding displacements in the base plate (where, according to the thin-film assumption, 
the membrane strains are uniform). The slopes of the curves in these figures indicate the 
deviations of the displacement gradients from the average membrane strains. The results 
for the solutions of orders {5, 4} and {5. 6}. based on the same polynomial expansions for 
the in-plane displacements but different expansions for the deflection, are indistinguishable. 
The significant non-uniformity in the membrane strains shown by these higher-order Ray- 
leigh-Ritz solutions is grossly underestimated by the lowest-order solution. Near the bound- 
ary point (X, Y) = (a, 0) the results of the latter are not even qualitatively correct. The 
non-uniformity in the membrane strains increases with the imposed strain load and with 
the aspect ratio of the ellipse. 
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Fig. 12. Deflection profile along the Y-axis (ab = 2). 

Figure 11 indicates that, along the X-axis, the magnitude of the curvature of the 
deformed middle surface is smaller at the center of the plate and larger near the boundary 
points. Along the loading axis, the opposite is true (Fig. 12). Hence the normal bending 
moment is relatively small at the two ends of the loading axis and relatively large at the 
two ends of the X-axis. As the strain load increases, the concentration (attenuation) of the 
normal curvature and the bending moment at the end points of the A'-axis (X-axis) becomes 
more pronounced. This phenomenon has important implications on the postbuckling 
growth behavior of an elliptical delamination. Since the normal bending moment results in 
an opening action along the delamination boundary and contributes predominantly to the 
heal energy release rate, delamination growth tends to initiate and continue along the A'- 
axis until the boundary curvature and the moment at the two ends of the axis are sufficiently 
reduced by the lengthening of the X-axis. In addition, growth of the delamination along 
the A'-direction exposes an interior strip around the K-axis to states of deformation resem- 
bling those of one-dimensional delamination models, as may be seen by comparing the 
deflection profiles along the X-axis for various (increasing) aspect ratios. Hence the cur- 
vature and the bending moment increase at the two ends of the X-axis and, eventually, 
delamination growth may proceed simultaneously in both X- and X-directions. The pre- 
ceding reasoning provides an explanation for the initial transverse growth of a buckled two- 
dimensional delamination under a uniaxial in-plane compression, which has been observed 
experimentally (Chai et at., 1983). 

4.3. Energy release rates 
The non-dimensionalized total potential energies associated with the preceding solu- 

tions are shown in Fig. 13. The results are shown as functions of the normalized strain load 
for elliptical delaminations with aspect ratios ajb — 1 and 10. At a large aspect ratio, the 
deviation of the results of the lowest order solution (Chai and Babcock, 1985) from the 
higher-order solutions becomes significant. The total potential energy may be differentiated 
with respect to the semi-axial length, a or b, to obtain the energy release rates associated 
with delamination growth along the X- or X-directions. As the aspect ratio of the ellipse 
changes during the growth of the delamination, the energy release rate also varies. The 
results are presented in Figs 14 and 15, respectively, for delamination growth along the A- 
and /-directions, and for three fixed values of the normalized strain load. It is clear that 
the lowest-order solution significantly underestimates the energy release rates. 

The energy release rates calculated by differentiating the total potential energy with 
respect to the semi-axial lengths are global quantities associated with certain assumed modes 
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Fig. 13. Total potential energy versus the strain load. 

of delamination growth. Although the shape of a two-dimensional delamination may be 
approximated by an ellipse in each stage of growth, the principal axes of the ellipse may 
rotate in the course of delamination growth if the loading axis does not coincide with the 
geometrical and material symmetry axes. Thus, the actual growth mode is generally not a 
combination of growth along two fixed principal directions and, strictly speaking, it can 
only be determined by evaluating the pointwise values of the energy release rate along the 
delamination boundary. Such local values of the energy release rate may be expressed in 
terms of the local membrane forces and bending moments. In the present case of an isotropic 
elliptical delaminated layer under biaxial loading, the maximum values of the energy release 
rate occur at the boundary points (a, 0) and (0, b). Figure 16 shows the normalized pointwise 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Fig 14 Global energy release rale, delamination growth along the .V-direciion 
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Fig. 15. Global cnerev release rate, delamination growth along the > -direction 
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Fig. 17. Pointwise energy release rate at (0. b) 

energy release rate at (a, 0) for three fixed levels of the strain load, and Fig. 17 shows the 
corresponding results at (0. b). In Fig. 16, the solutions of the highest orders show the largest 
energy release rates, which are about twice as large are the results of the lowest-order 
solution. Figure 17 indicates that the solution of the order {3, 4] greatly overestimates the 
pointwise energy release rate at (0, b). These results suggest that solutions of the order 
lower than {5, 4} cannot be used to predict the initiation and the nature of growth of a 
two-dimensional delamination According to the highest-order solutions, the energy release 
rate at (a. 0) consistently dominates over the rate at (0, b) when the aspect ratio ab is 3 or 
smaller. An opposite conclusion may be valid in the regime of large aspect ratios. 

Some conclusions from the present buckling and posibuckling analysis of homogeneous 
isotropic elliptical sublaminates are summarized in Part 11 along with additional conclusions 
based on more extensive results for anisotropic cross-ply and angle-ply sublaminates. 
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Abstract—The analysis scheme developed in Pan I of the paper is implemented to obtain the 
bifurcation strains of circular delaminated layers and the postbuckling solutions of cross-ply and 
angle-ply elliptical sublaminates. Reasonably accurate solutions for the membrane forces, the 
bending and twisting moments and the point wise energy release rates generally require 33 or more 
undetermined coefficients. Such refined postbuckling solutions show a variety of features including 
significant non-uniformity of the in-plane forces and certain boundary effects characterized by 
concentration of the middle-surface curvatures and the bending moments. The solutions are found 
to be strongly influenced by ply orientation, lay-up and the aspect ratio of the ellipse. Some 
implications of the analytical results on the buckling and postbuckling behavior of two-dimensional 
delamination models are summarized. 

1   INTRODUCTION 

In recent years extensive analytical and numerical studies have been made on sublaminate 
buckling and crack growth associated with an interior delamination in a homogeneous or 
laminated plate. For the simple, one-dimensional model of an across-the-width delamina- 
tion, exact bifurcation loads and closed-form postbuckling solutions have been obtained. 
in^lexV of geometrically non-lionear plate theory, for delaminated homogeneous plates 
(Chai et al., 1981; Simitses et ai, 1985; Yin et a/., 1986; Kardomateas. 1989) and for 
delaminated laminates with arbitrary ply configurations (Yin. 1986, 1988). The strain- 
energy release rate associated with elamination growth has been expressed explicitly in 
terms of sublaminate membrane forces and bending moments at the delamination front, 
and the results were found to be in agreement with the corresponding results based on non- 
linear finite-element analysis and the closure-integral method. Recent studies have taken 
into account the effects of transverse shear deformation (Kardomateas and Schmueser, 
1988; Chen. 1990), which may become important in a thick or strongly anisotropic 
delaminated sublaminate. 

The relative ease with which accurate postbuckling solutions of strip delamination 
models may be obtained is attributable to the fact that, in the one-dimensional case, the 
differential equations of von Karman's non-linear plate theory reduce to linear ordinary 
differential equations. Hence the ffect of geometrical non-linearity is present only in the 
boundary conditions and the crack-tip continuity conditions for the axial displacement, but 
not in the governing differential equations. Furthermore, in the one-dimensional case 
the non-linear coupling between the in-plane deformation and the transverse deflection 
degenerates to a particularly simple form, characterized by the presence of a constant axial 
load in the deflection equation. Accurate postbuckling solutions of general two-dimensional 
delamination models are considerably more difficult to obtain in view of the presence of 

♦ A preliminary version of this paper was presented in AIAA ASME ASCE AHS 30th SDM Conference. 
Mobile. Alabama. Apnl. 1989 
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non-linear and coupling terms in ihe governing equations. It may be expected that these 
terms will significantly affect the postbuckling behavior of the sublaminate and the nature 
of ensuing deiamination growth. 

A first step toward a better understanding of two-dimensional deiamination problems 
is achieved through a buckling and postbuckling analysis of an isotropic circular delamin- 
ated plate subjected to a radially symmetric in-plane compression. The analysis indicates 
that, with proper normalization, the non-dimensional radial buckling load of the circular 
model depends on the normalized deiamination radius and thickness according to relations 
extremely close to the corresponding relations for the normalized axial load of a strip 
deiamination model in terms of the normalized deiamination length and thickness (Yin and 
Fei, 1984). For both strip and circular models, a sharp transition from global buckling of 
the laminate to local buckling of the thin delaminated layer takes place when the deiamina- 
tion reaches a critical size. Furthermore, the postbuckling deformations of the circular and 
strip deiamination models show the same pattern of evolution, from the initiation of 
buckling to final collapse, which is unique to each regime of deiamination size (subcritical 
or supercritical) and which is fundamentally different between the two regimes (Yin el al., 
1986; Yin and Fei, 1988). 

In spite of these similarities, there are also significant and essential differences in the 
buckling and postbuckling behavior of strip and circular deiamination models. Axisym- 
metric postbuckling solutions of the circular model show pronounced boundary effects, 
non-uniform distribution of the in-plane forces, and generally catastrophic nature of 
deiamination growth. As shown by the analysis of Part 1, these effects are also manifest 
in the postbuckling response of isotropic, thin-film elliptical delami.ation models under 
uniaxialcompression in the base plate. It was also shown that an accurate assessment of 
these effects cannot be achieved by lower-order Rayleigh-Ritz postbuckling solutions that 
have been presented in the existing literature. Solutions of at least the order (5,4) involving 
33 or more undetermined coefficients in the polynomial displacement expansions for an 
anisotropic elliptical sublaminate, are required to provide reasonably accurate results for 
the membrane forces, bending and twisting moments, and the global and poin' .ise energy 
release rales. 

Non-linearity and coupling in the von Karman equations, which produce the previously 
mentioned effects, are strongly dependent on the anisotropic elastic moduli of the plies 
constituting the sublaminate and on the orientation and lay-up of the plies. While the 
analysis of isotropic sublaminates in Part I has provided some general features of the 
buckling and postbuckling behavior of two-dimensional deiamination models, an under- 
standing of the combined effects of the various geometrical and material parameters can 
only be gained from a variety of solutions covering a broad ange of parameter values. For 
example, an exact postbuckling analysis of the one-dimensiona' strip deiamination model 
with a general laminated structure has indicated the significance of the destabilizing effect 
of bending-extensional coupling (Yin, 1986). Such effects are not present in two-dimensional 
symmetric sublaminates, including isotropic and orthotropic sublaminates. 

In Part II of this paper, we present postbuckling solutions for anisotropic elliptical 
laminates with various aspect ratios, using polynomial displacement expansions of the order 
(5.4). Although our computer code may handle any uniform in-plane strain loading in the 
base plate, in the present work we restrict the computation to the case of uniaxial com- 
pression in the base plate along .he minor axis of the ellipse. This loading case was considered 
in previous buckling analysis of circular, unidirectional composite laminates (Shivakumar 
and Whitcomb, 1985) and postbuckling analysi of isotropic and specially orthotropic 
elliptical sublaminates (Chai and Babcock, 1985). In the present work, we obtain the 
solutions for cross-ply and 30c and 45c angle-ply elliptical sublaminates under postbuckling 
strain loads as large as four or five times the bifurcation strain. The sublaminates have 
symmetric or antisymmetric four-layer lay-ups and the aspect ratio of the ellipse ranges 
from 1,2 to 4. 

Our results for the force and moment resultants and for the global and pointwise energy 
release rates show complex patterns of behavior, depending strongly on the orientation and 
the stacking sequence of the plies in the sublaminate and. to a lesser degree, on the aspect 
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ratio of the ellipse. These results have direct implication on the initiation and development 
of delamination growth. The complexity and richness of the present results suggests the 
need for caution in making predictions or conjuctures concerning the buckling and growth 
behavior of two-dimensional models based either on analytical and experimental experi- 
ences with strip delaminations or on insufficiently refined approximate solutions of two- 
dimensional sublaminates. 

2. BIFURCATION LOAD OF A CIRCULAR. UNIDIRECTIONAL SUBLAMINATE 

A general and consistent scheme for polynomial representation of displacement func- 
tions associated with the buckling and postbuckling deformation of elliptical sublaminates 
has been developed in Part I of this paper. In the following analysis, we adopt the notations 
and definitions introduced in Section 2 of Part I. 

We first investigate the bifurcation strain of a circular, unidirectional composite layer 
disbonded from an infinite base laminate, when the latter is subjected to in-plane strains— 
-£0 and 0.3 £0 along the Y- and .Y-directions. respectively. The angle a between the material 
axis of fiber orientation and the compression axis is allowed to vary. This problem has been 
investigated by Shivakumarand Whitcomb (1985) using both finite-element and Rayleigh- 
Riiz methods. Their Rayleigh-Ritz solutions were based on a three-term polynomial expan- 
sion for the normalized transverse deflection w in terms of the dimensionless co-ordinates 
A and i : 

M = (\-x2-y2)2R(x.y) <1) 

where 

R{x. y) = c,+c:jc:-t-c?.v 

The results were found to be in close agreement with the finite-element results for small 
O'ientation angles but not for large angles (Fig. 1). 

We notice that the deflection function expressed by the three-term expansion is sym- 
metric with respect to both X- and >'-axes. Since such symmetry conditions cannot be 
assumed generally except for specially orthotropic sublaminates with aligned loading, 
material and geometrical axes, certain deflection modes are suppressed by the assumed 
symmetry and this has the effect of raising the calculated bifurcation load. It is clear that. 
at least in the initial postbuckling states the actual deflection should have centra! symmetry 
but not double symmetry with respect to both co-ordinate axes. i.e. one should oniy have 

M(-.V. -y) = M(.V.V). (2) 
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This implies that, if in eqn (1) one chooses a polynomial factor R(x, y) of degree two, then 
the factor should include an additional term c4xy. The new deflection function yields an 
improved solution for the bifurcation strain (see the middle curve in Fig. 1). 

Further improvement in the bifurcation strain may be obtained by including in the 
polynomial R(x, y) all fourth degree terms that are consistent with the symmetry condition 
of eqn (2). This yields a nine-term deflection function : 

w = (1 - x2 - y2)2(c i + c2x
2 + Cyxy+cty

2 + c5x
4 -f chx*y+cnx

2 y: + csxy3 + c9y*). (3) 

The resulting bifurcation strains are shown by the top curve in Fig. 1. The results are nearly 
indistinguishable from the finite-element solutions over the entire range of the orientation 
angle a. Thus, by including in the polynomial function P{x, v) all fourth and lower degree 
terms that are consistent with the symmetry' condition of eqn (2), the Rayleigh- Ritz analysis 
yields bifurcation loads that are in excellent agreement with the finite-element solutions. 

3. POSTBUCKLING SOLUTIONS OF CROSS-PLY AND ANGLE-PLY ELLIPTICAL 
SUBLAMINATES 

The number of undetermined coefficients required in the RayJeigh-Ritz solutions for 
the postbuckling deformation is considerably larger. For a general anisotropic elliptical 
delamination, the normalized postbuckling displacement functions satisfy the following 
symmetry conditions: 

u( — x. —y) = -u(x,y),    v{-x. -y) = —v(x.y),    H*( —JC, - v) = H(.V. y).        (4) 

Hence P and Q (defined in eqn (5) of Pan I)are odd polynomials and R is an even 
polynomial. 

The convergence study in Part I for the Rayleigh-Ritz solutions of homogeneous 
isotropic sublaminates suggests that, in order to obtain reasonably accurate results for the 
force and moment resultants and the energy release rates, the odd polynomials P and Q 
must include at least terms of the fifth and lower degrees and the even polynomial R must 
include at least terms of the fourth and lower degrees. In this approximation, the poly- 
nomials contain a total of 33 undetermined coefficients: 

P(x, y) = aix + a2y + aix
y +a4x

2y + a<xy2 + a<,yy 

+ a1x
$ + fl8.x4 v + a*x*y2 + al0x*y* + a^ txy* +at: v5, 

Q(x,y) = blx + biy+bix
i+b4X2y+b<xy2 + b(,y

r 

+ b1x
s + bfsx

4y + b9x*y2 + b]0x:y-+bnxy4 + b]:y\ 

R(x,y) = cx+c:x
2 +cyxy + c*y: +c<x* +cttx-y + c1x

:y: + c9xyy + C9Y4. (5) 

A further improvement in the solution may be obtained when all terms of the next order 
consistent with the symmetry conditions of eqn (4) are included in the expressions of u. 1 
and M-. This will bring the total number of coefficients to 56. 

Although higher-order solutions are desirable for improved accuracy, the computer 
storage and time requirements for evaluating the integrals £.,,. M,, and A',, in the potential 
energy expression (see eqns (6) and (7) of Part I) become increasingly demanding. Besides, 
since the thin-film assumption itself (i.e. ignoring the effect of layer buckling on the defor- 
mation of the thick base plate) may introduce significant error in the results, as has been 
demonstrated in the cases of strip and circular delamination models (Chai et ai. 1981 ; Yin 
and Fei, 1988). there is little justification to obtain extremely elaborate postbuckling solu- 
tions based on the thin-film approximation. Consequently, the displacement expansions 
including 33 undetermined coefficients (eqn (14)) are used in the present analysis to obtain 
postbuckling solutions of four-layer cross-ply, 30 angle-ply and 45 angle-ply elliptical 
sublaminates with symmetric or anti-symmetric layup (denoted in the figures by S-cross. 
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U-cross, S30, U30, S45 and U45, respectively). The individual layers are made of T300 5208 
graphite/epoxy unidirectional composite whose longitudinal elastic modulus £, is 17.57 
times the transverse elastic modulus £: and for which v,2 = v21£,/£2 = 0.28. The aspect 
ratio of the ellipse, a/6, assumes the values 1, 2 and 4. 

The results of a non-linear problem with strong coupling among the dependent vari- 
ables and involving many geometrical and material parameters cannot be reduced to simple 
rules of thumb. In this section, an attempt is made to present the large and complex body 
of postbuckling solutions for various elliptical sublaminates without oversimplification and 
with a certain degree of consistency and comprehensiveness. As mentioned previously, we 
restrict the analysis to the loading case when the base plate is subjected to uniform strains 
0.3 EYY and —ErY along the X- and J'-directions, respectively. 

3.1. Central deflection 
The central deflection of the delaminated layer in the buckled state is shown in Fig. 2 

for the various symmetric and unsymmetric delaminations. Sublaminates with the anti- 
symmetric lay-up buckle at lower compressive strains compared to the corresponding 
sublaminates with the symmetric lay-up, and the former show larger central deflections, at 
least in the initial postbuckling states. These rec> ' :test tn the destabilizing effect caused 
by the bending-stretching coupling of antis mmeiric sublaminates. Figure 2 indicates that, 
for aspect ratios 2 and 4, the T+VAU". for the central deflection show similar patterns, while 
in the case ajb = 1 the deflections are generally smaller and the 30: angle-ply sublaminates 
have the lowest bifurcaTion strains and the largest postbuckling deflections. This may be 
explained by the constraining efTcci provided by *He relatively-short transverse in-plane axis 
in the case ajb = 1. This constraining effect is less significant for the 30: angle-ply sub- 
laminates because the fibers are largely aligned along the X-axis and, consequently, the 
bending stiffness in the ^-direction is smaller than in the case of cross-ply and 45 angle- 
ply sublaminates. Generally, the curves of £>■> versus the central deflection show nearly 
parabolic variations. 

a/b= 1 

(a) 

Fig 2 Deflection at (0.0) 
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3.2. Membrane forces 
The normal and shearing forces NXY and NiY at the boundary point (X, Y) = (0,b) 

are shown in Figs 3 and 4. Before buckling, the shearing force vanishes, the normal force 
is proportional to the applied strain £n and the results for the sublaminates with symmetric 
and unsymmetric lay-ups are identical. At the bifurcation strain, the relationship between 
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£■> > and A', > changes from linear to non-linear. In the cases examined, the larger the aspect 
ratio ajb, the greater is the deviation from linear relationship in the postbuckling stage. 
With the exception of the antisymmetric cross-ply circular sublaminate, the deviation of 
Nyr from linear dependence on the postbuckling load is generally on the negative side (i.e. 
a softening behavior). The postbuckling shearing force NXf is non-zero only for unsym- 
metric 30' and 45: angle-ply sublaminates, and its values are small compared to the normal 
force NrY at the same point. 

It is interesting to compare the values of NYV at the boundary point (O.b) and at the 
central point (0,0). The results at (0,0), presented in Fig. 5. show much greater deviation 
from linear dependence on the postbuckling strain load. That is, the decompression in the 
)'-direction due to sublaminate buckling is greater at the center of the sublaminate and 
smaller at the two ends of the K-axis. This is particularly true for the unsymmetric cross- 
ply sublaminates with aspect ratios 2 and 4, where Nyy at (0,0) changes from compression 
to tension at an advanced stage of postbuckling. Consequently, the normal force A",, varies 
significantly from the boundary point (0,b) to the central point (0,0). A comparison of the 
results in Fig. 5 yields the rather unexpected observation that the non-uniformity of the in- 
plane forces tends to be more prominent when the aspect ratio increases from 1 to 2 and 
finally to 4, i.e. when the geometry of the elliptical delamination becomes more similar to 
a strip delamination. Although we have not computed the results for elliptical delaminations 
with even larger aspect ratios, the present results indicate that, as regards the membrane 
force Nyy, there is a significant difference between the postbuckling response« jf one- 
dimensional delaminated layers and of elliptical sublaminates with aspect ratios ab large as 
four. In the first case the axial force is constant whereas in the second case A',, is significantly 
non-uniform. The non-uniformity of the in-plane forces affects the bending deformation 
directly, through the bending-stretching coupling of unsymmetneal sublaminates, and 
indirectly through the strong coupling of in-plane and transverse displacements in the von 
Karman equations. 

Comparison of the transverse in-plane force \xi at the central point and the boundary 
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point (fl,0) (shown respectively in Figs 6 and 7) also indicates a significant non-uniformity 
of that force in the postbuckling stage. Due to the differences of the coupling coefficients 
in the extensional stiffness matrices, the membrane force Nxx in the prebuckling states 
is tensile for the cross-ply sublaminates and compressive for the 30s and 45c angle-ply 
sublaminates. For the angle-ply case, the deviation from the linear relationship between 
Nxx a°d the postbuckling strain load Err is generally on the positive side (i.e. a hardening 
behavior), is greater at the central point than at the boundary point (tf.O), and greater for 
the case of smaller aspect ratio than for the case of larger aspect ratio. However, the 
unsymmetric cross-ply sublaminates show the almost opposite type of behavior; the post- 
buckling force Nxx >n these sublaminates also shows the largest deviation from uniformity. 
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3.3. Bending and twisting moments; deflection profile 
For all combinations of ply orientation and lay-up, the general behavior of the in- 

plane forces in the postbuckling stage are remarkably similar between sublaminates with 
aspect ratios 2 and 4, as may be seen by comparing the respective plots in Figs 2-7. 
The somewhat different behavior of circular sublaminates is apparently caused by the 
constraining effect of a relatively short A'-axis, as already mentioned before. A similar 
conclusion holds for the bending moments Mri and Mxx. Plots for A/>, at (0,6) are shown 
in Fig. 8 while those for Mxx at (a,0) are shown in Fig. 9. Additional plots for the present 
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analysis results, including those for the bending moments at the central point (0,0) may be 
found in Jane (1989). 

The coupling stiffnesses BUt ^12 and B22 vanish in all sublaminates examined in this 
study except for the unsymmetric cross-ply sublaminate. Hence only the unsymmetric cross- 
ply sublaminate shows non-zero bending moments Mxx and MYY in the prebuckling states 
In the postbuckling stage, the relation of the bending moments to the strain load is very 
complex. However, for sublaminates with aspect ratios 2 and 4, the bending moment 
Myy at the boundary point (0,6) is generally much greater, in absolute value, than the 
corresponding moment at the central point. For sublaminates with aspect ratios 1 and 2. 
the bending moment Mxx at (a,0) is also much greater, in absolute value, than the 
corresponding moment at (0,0). For ajb = 4, the bending moment Mxx a1 (0.0) is not 
large, because a relatively large curvature of the clamped boundary curve at that point 
provides a restraining effect on the transverse deflection in the vicinity. 

In the absence of strong bending-stretching coupling, the bending moment is largely 
determined by the curvature of the deformed sublaminate. The profiles of the deformed 
middle surface are shown in Figs 10 and 11 for cross-ply and 45' angle-ply sublaminates 
under a normalized strain of — EYr(b;t)2 = 3, and in Fig. 12 for 30c angle-ply sublaminates 
under a normalized strain of 2.0. The left and right portions of the figures indicate the profiles 
along the y-axis and the A"-axis, respectively. The solid curves refer to the sublaminates with 
symmetric lay-ups, while the dashed curves refer to those with unsymmetric lay-ups. It is 
seen that, along the A'-axis, the curvature of the profile attains much larger absolute values 
in the vicinity of the boundary point (a. 0) than around the central point. In contrast, along 
the y-axis the curvature of the profile attains relatively small absolute values at the boundary 
point (0,b) compared to the central point. 

Since the curvature of the deformed middle surface of the plate directly affects the 
normal bending moment at a boundary point, which in turn contributes significantly to an 
opening action of the delaminated layer from the base laminate (provided that the boundary 
curvature is positive so that the deflection is non-negative), the concentration of the normal 
curvature near the boundary point (tf.0). and its attenuation near the point (0. b). tend to 
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facilitate the growth of the delamination along the A'-direction, i.e. the direction per- 
pendicular to that of the compressive loading axis. However, this conclusion is only valid 
when the aspect ratio is not large. When the growth of the delamination in the transverse 
direction results in a sufficiently large a,b. the normal curvature at (0,0) becomes small 
relative to that at (0,b), because of the longer length of the A'-axis in the profiles. 

It is interesting to note that the postbuckling deflections of the unsymmetric 30: angle- 
ply sublaminates with aspect ratios 2 and 4 show multiple wave patterns in the A'-direction 
(see the second and third figures in Fig. 12). This is perhaps essentially due to the relatively 
small bending stiffness of such sublaminates in the A'-direction. Furthermore, these solutions 
show negative deflection in the vicinity of the boundary' point (a.Q) while the solutions of 
unsymmetric cross-ply sublaminates with a;b = 1 show negative deflection near the bound- 
ary point (0,6). Since negative deflections imply partial contact of the sublaminate with the 
base laminate, such mathematical solutions must be modified to take account of the contact 
condition. However, this difficult task is not attempted in the present work. 

The deflection profiles of the 45c angle-ply sublaminates are similar to those of the 
cross-ply sublaminates with the same aspect ratio. However, the results for sublaminates 
with symmetric and unsymmetric lay-ups are closer in the 45c case than in the cross- 
ply case, because the bending-slretching coupling effect in unsymmetric sublaminates is 
relatively small in the former case compared to the latter case. Furthermore, local contact 
between the sublaminate and the base plate does not occur in the postbuckling deformation 
of 45: angle-ply sublaminates for any one of the three aspect ratios. 

3.4. Global and point wise energy release rates 
For thin-film delaminates with a general shape, the energy-release rate at each point 

of the delamination boundary may be evaluated in terms of the normal and shearing in- 
plane forces and the normal bending moment and the twisting moment at that boundary 
point. The results for the pointwise energy release rates at the two boundary points (a. 0) 
and (0, b) are shown in Figs 13 and 14, respectively, in terms of the imposed strain load. 
As the imposed strain increases, the energy release rate at (a.0) grows more rapidly for the 
delaminations with smaller alb. although the bifurcation strains for such delaminations are 

o/b= 1 

(a) 
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greater. In contrast, the energy release rate at (0,S) grows more rapidly, in general, for 
delaminations with larger alb. For the circular delamination, the value at (a,0) dominates 
over the value at (0,6). If the pointwise energy release rate is used as the criterion of 
delamination growth, then for a delamination model with a near circular initial shape 
subjected to an increasing compressive load along the K-axis, postbuckling delamination 
growth tends to proceed first along the A'-axis until the aspect ratio becomes sufficiently 
large so that the local energy release rates at (a, 0) and (0, b) become equalized. Afterwards, 
stable delamination growth may continue under an increasing load in such a manner that 
the energy release rates at all points of the moving delamination boundary are equal, i.e. 
equal to the critical value for growth. In unstable, dynamic delamination growth, the local 
energy release rates at different points of the moving boundary need not be equal because 
the growth criterion may depend on the crack moving speed. 

It should be mentioned that, in case of anisotropic elliptical sublaminates, the maximum 
and minimum values of the boundary forces and moments and of the energy release rates 
generally do not occur at the point (fl,0) or (0,5). Consequently, postbuckling growth of 
an initially elliptical delamination generally proceeds in such a manner that the shape of the 
delamination becomes non-elliptical. Therefore, a procedure for predicting the delamination 
growth behavior based on evaluating the global energy release rates associated with growth 
along fixed co-ordinate directions is generally not applicable to two-dimensional delamina- 
tions in an anisotropic base plate. In such a procedure, the global energy release rates 
are obtained for an assumed manner of growth by evaluating the potential energies of the 
delamination model in two successive states of growth and by differentiating the results 
numerically with respect to the increasing semi-axial lengths of the ellipse. These global 
energy release rates are fundamentally different from the pointwise energy release rates used 
in the present study. Indeed, as shown by the present results, their relation to the strain 
load •" "fry much different from that of the pointwise energy release rates. In cases where 
the i onsio ration of global energy release rate may be justified, the use of the pointwise and 
global energy release rates are likely to yield somewhat different predictions with regard to 
the delamination growth behavior. 
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4. CONCLUSIONS AND ADDITIONAL REMARKS 

Several conclusions with far-reaching implications for the analysis and understanding 
of sublaminate buckling and crack growth associated with two-dimensional models may 
be drawn from the results of the present study. Some of these conclusions have been 
suggested in previous publications (Yin, 1989; Storakers, 1989). They are substantiated, in 
the present work, by examining Rayleigh-Ritz postbuckling solutions of elliptical sub- 
laminates and by comparing solutions of the various orders. 

(1) The bifurcation loads of thin-film elliptical delaminations may be calculated accu- 
rately by a Rayleigh-Ritz analysis involving a small number of undetermined coefficients. 
The results are better than those obtained by alternative methods [for example, Woinowsky- 
Krieger (1937) and Kassapoglou (1988)]. 

(2) The postbuckling behavior of a strip delamination model is rather exceptional 
because the non-linear von Karman equations reduce to a linear ordinary differential 
equation in the case of plane strain buckling. The solutions of strip models do not show* on- 
uniformity of the in-plane deformation in the sublaminate and concentration of curvature of 
the deformed middle surface around boundary regions. These effects are significant and 
have important implications on the postbuckling and growth behavior of two-dimensional 
delamination models. 

(3) The non-linear and boundary effects mentioned above cannot be determined, or 
determined with sufficient accuracy, by a linearized postbuckling analysis or by a Rayleigh- 
Ritz analysis involving lower-order polynomial expansions of the displacements. Predictions 
of the force and moment resultants in the sublaminate and of the delamination growth 
behavior based on Rayleigh-Ritz solutions of order lower than (5,4) arc generally 
unreliable. 

(4) As the orders of polynomials in the displacement expansions increase, the deflec- 
tion, forces, moments and energy release rates associated with the Rayleigh-Ritz solutions 
of circular delaminations in axisymmetric deformation converge towards the corresponding 
results obtained by direct integration of the von Karman equations (Yin, 1985). The 
convergence confirms the validity of the latter solution, whose results are significantly 
different to the solution obtained by the perturbation method (Bottega and Maewal, 1983). 
Rayleigh-Ritz solutions of the order (5,4) deliver good results over a range of strain loads 
up to about three times the bifurcation strain. Solutions of the order (7,6) yield better 
results over a much wider range of the strain load. On the other hand, solutions of the 
order (5,6) are nearly indistinguishable from those of the order (5.4). The results suggest 
that higher degree polynomials should be used in the expansions of the in-plane 
displacements so as to allow adequate modeling of the non-uniformity of the in-plane 
deformation. 

(5) The computational effort involved in solving the non-linear algebraic equations 
associated with the Rayleigh-Ritz method is small compared to solving the same problem 
by non-linear finite-element modeling since the number of degrees of freedom required in 
the latter method maybe considerably larger. In implementing the Rayleigh-Ritz method, 
the major task consists of algebraic manipulations and integrations for obtaining the 
potential energy function. Given specific polynomial expansions of the displacements, this 
task needs to be performed only once in obtaining the functions L,r M,, and N,, (see eqn 
(6) in Part I of this paper). When these functions are determined, the potential energy 
functions and the governing algebraic equations for elliptical delaminations with different 
thicknesses, aspect ratios and stiffness matrices may be obtained in a straightforward 
manner. Consequently, the Rayleigh-Ritz method is ideally suited for a parametric study 
of the postbuckling behavior of elliptical laminates with diverse geometrical and material 
configurations. 

A recent study of buckling, postbuckling and failure of elliptical delaminations has 
appeared which is also based on the perturbation method (Kassapoglou, 1988). While the 
work does not present sufficiently detailed results on postbuckling deformation to make a 
comparison with the present solutions feasible, it yields bifurcation loads with relatively 



28 K. C. JANE and W.-L. YIN 

large errors (several percent). Generally speaking, any method of analysis which fails to 
provide very accurate results for the bifurcation load cannot be expected to yield acceptable 
results for the postbuckling deformation, because the buckling problem is a linearized 
problem whereas the postbuckling problem is strongly non-linear. It therefore appears 
that, unless higher-order perturbed equations are used, the perturbation method is not a 
promising approach for obtaining accurate solutions beyond an initial stage of postbuckling 
deformation. 

In selecting the order of Rayleigh-Ritz solutions used in the present study we have 
taken into account the limitation on the validity of the solutions imposed by the thin-film 
assumption and the omission of the transverse shear effect. Polynomial expansions of the 
displacements are truncated at the order where further improvement in the accuracy of the 
solutions is believed to be within the eiTor caused by these two assumptions. Recently, the 
effect of transverse shear deformation on the buckling and postbuckling behavior has been 
studied for strip delamination models (Kardomateas and Schmueser. 1988; Chen, 19$J) 
and thin-film elliptical sublaminates (Peck, 1989). The results depend essentially on the 
slenderness of the delaminated layer and the base plate. Analytical solutions for stnp 
delamination models, obtained by the use of a shear correction factor, indicate that the 
transverse shear effect may appreciably reduce the buckling load and significantly increase 
the energy release rate under a given postbuckling axial load. 

Peck (1989) used a higher-order laminated plate theory in conjunction with the Ray- 
leigh-Ritz method to calculate the buckling loads and postbuckling solutions of elliptical 
sublaminates. This provides a better approach to the assessment of the transverse shear 
effect in laminated plates than the use of a single shear correction factor (independent of the 
elastic anisotropy, orientation and lay-up of the constituent plies). It should be mentioned, 
however, that since the significance of the uansverse shear effect increases with the thickness 
of the sublaminate, the effect may be more important in the delaminated portion of the 
base plate than in a thin delaminated layer. Hence an adequate evaluation of the transverse 
shear effect in delamination problems may require a complete analysis of the delamination 
model without using the thin-film assumption. 
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A variational method involving Lekhnitskii's 
stress functions is used to determine the free-edge 
interlaminar stresses in a multi-layered strip of 
laminate subjected to arbitrary combinations of 
axial extension, bending and twisting loads. The 
stress functions in each layer are approximated by 
polynomial functions of the thickness coordinate. 
The equilibrium equacions, the traction-free 
boundary conditions and the continuity conditions of 
the interlaoinar stresses are exactly satisfied in 
the present analysis, while the compatibility 
equations and the interfacial continuity of the 
displacements are enforced in the sense of the mean 
by applying the principle of complementary virtual 
work. Solutions are calculated for symmetric four- 
layer cross-ply and angle-ply laminates and the 
results are found to be in excellent agreement with 
refined finite-element solutions using special 
hybrid-stress elements in corner regions. 

1. Introduction 

Composite laminates are prone to severe inter- 
laminar stresses along a free edge. Theoretical 
studies based on the assumptions of layerwise 
homogeneity and linear elastic behavior suggest that 
a singularity of the stress field generally exists 
at the intersection of a free edge with an interface 
between two dissimilar materials [1-3]. From a 
practical point of view, the presence of a stress 
singularity and its effect on the region outside the 
immediate neighborhood of the singularity are of 
greater importance than the precise mathematical 
form of the singularity (deduced by strictly 
applying the simplifying assumptions of layerwise 
homogeneity and linear elasticity to a corner region 
of microstructural dimension, and thereby producing 
physically unrealistic local results). This is 
because, from the same viewpoint, a singularity 
actually indicates a region of severe macroscopic 
stress gradient in which the stress field is 
affected significantly by nonlinear and inelastic 
material response and microscopic heterogeneity. 
This is especially true if, as in the case of free 
edges of laminates composed of thin plies, the 
regions of high stress gradient are only several 
times larger than the characteristic length of the 
microstructure -- the diameter of the reinforcing 
fibers and the spacing between adjacent fibers. 

It follows from this reasoning that, when 
assessing the detrimental effects of free-edge 
interlaminar stresses, one should not pay too much 
attention to the minute details of the local stress 
near a mathematical singularity (as predicted by 
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simplifying constitutive assumptions and layerwise 
homogenization). Obviously, any quantity calculated 
by discretizing the structure (using finite- 
difference or finite-element modeling), with values 
depending significantly on the way and the degree of 
refinement of discretization, is not an appropriate 
or reliable measure of the criticality of stress. 
One should instead rely on global quantities -- 
quantities which manifest the overall mechanical 
effects and characteristics of a small, severely 
stressed region, and quantities whose values do not 
change appreciably with refinement in material and 
geometrical modeling over that region. Examples of 
such global measures include the well-known path- 
independent integrals. They also include the 
maximum values of certain stress functions and their 
first-order derivatives along an interface, which 
are Introduced in the present work. 

This is the first of a series of two papers 
concerned with developing an efficient yet reason- 
ably accurate analysis procedure for the free-edge 
interlaminar stresses in a multi- layered laminate 
subjected to axial entension, bending, twisting, or 
any combination of such strain-controlled loadings. 
Our requirements for efficiency and accuracy are 
such that the final analysis procedure calls for 
extremely simple input data, that it may be 
implemented on a personal computer, and that the 
results of the analysis should be as adequate for 
the practical purposes of laminate analysis, design 
and optimization as the solutions obtained from 
elaborate finite-element analysis. The dual 
objectives may be achieved without trying to 
determine the nature of the stress singularity in an 
extremely small region, but instead by assessing its 
effects upon the surrounding region via a 
variational approach. 

The first paper of the series (Part I) is 
concerned with a laminate composed of a relatively 
small number of aniso*:ropic layers. In this work, 
example solutions under all three loading cases are 
computed for four-layer symmetric laminates, 
including the classical problems of cross-ply and 
angle-ply laminates. Laminates consisting of a 
large number of layers require a sublamiante/layer 
modeling in which the two interior layers adjacent 
to a particular interface are considered as aniso- 
tropic elastic media and all the remaining plies are 
grouped into an upper sublaminate and a lower 
sublaminate. The details of such a formulation and 
the method of analysis are developed in a forth- 
coming paper (Part II of the series). 

Approximate solutions of the free-edge 
interlaminar stress problem may be obtained by 
directly solving the governing differential 
equations (e.g., using finite difference method or 
series expansion in conjunction with boundary 
collocation) or by using a variational approach. 
Direct solutions which accurately represent the 
interlaminar stresses near the free edge are not 
easy to obtain or ascertain because of the diffi- 
culty to enforce and to validate the convergence of 
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such solutions. Among the existing works using a 
variational approach, a large number were based on 
the displacement formulation. More recently, the 
displacement/stress hybrid formulation has also been 
used. In contrast, the stress formulation is used 
in the present study (for all layers of the laminate 
in Part I of the paper and for the two interior 
layers of the model in Part II). 

In the present analysis, Lekhnitskii's stress 
functions are introduced in each layer and the 
traction-free boundary conditions as well as the 
interfacial continuity of interlaminar stresses are 
strictly enforced, while the compatibility of strain 
and the interfacial continuity of displacements are 
enforced in the sense of weighted integrals through 
the use of the principle of complementary virtual 
work. This ensures that the approximate solutions 
of the present approach satisfies exactly the 
equilibrium equations everywhere (including all 
corner regions with steep stress gradients) and the 
continuity of the interlaminar stresses across 
entire interfaces (including short segments adjacent 
to the free edge). In contrast, such conditions are 
only satisfied in the sense of the mean in a 
variational approach based on the displacment 
formulation. With the concentration of the stress 
gradient and intense interlaminar stresses near the 
free edge, the application of the stationary 
potential energy principle to assumed displacement 
functions or their associated element shape 
functions may produce results for the stresses that 
significantly violate the equilibrium equations in 
corner regions and violate the interfacial conti- 
nuity conditions in end segments which, although 
small, are of particular importance. Spilker [4,5] 
found that, if in corner regions one uses hybrid 
finite elements which do not satisfy free-edge 
boundary conditions exactly, then large errors and 
lack of convergence may result in the pointwise 
values of certain stress components even though the 
solutions converge in the sense of weighted 
integrals and satisfy the free-edge condition in the 
same sense. In finite-element solutions based on a 
purely displacement formulation, the danger of this 
anomalous behavior is always present because exact 
satifaction of the traction-free boundary conditions 
cannot be strictly enforced. Therefore, certain 
results provided by such solutions may be unreliable 
or even misleading. Indeed, for the classical 
problem of a symmetric, cross-ply, four-layer 
laminate under axial extension, a careful comparison 
indicates significant discrepancies in the stress 
fields near the free edge and in their trend of 
convergence among the various existing numerical 
solutions which do not strictly enforce the free- 
edge condition. The solutions examined include 
finite-difference solutions, stress-based solutions 
using the boundary collation or other approxiamate 
free-edge conditions, and a number of finite-element 
solutions using a displacement or hybrid formula- 
tion. The possibility of anomalous behavior does 
not arise in the present procedure of solution 

because all equilibrium equations, free-edge 
boundary conditions and interfacial continuity of 
tractions are satisfied exactly rather than in the 
sense of the mean. Although the present analysis 
requires only a very small fraction of computational 
effort compared to refined, displacement-based 
finite-element solutions, the results are found to 
be in better agreement with Spilker's finite-element 
solutions [4,5] which used special free-edge 
elements that satisy the traction-free conditions 
exactly. 

Besides the constitutive assumption of linear 
elasticity, the only approximation used in the 
present analysis is that the stress functions in 
each layer are polynomial functions of the thickness 
coordinate. No a priori assumption is made concern- 
ing the dependence of the stress functions on the 
coordinate parallel to the interface. Rather, it 
follows as a consequence of the principle of comple- 
mentary virtual work that the form of dependence is 
governed by a system of linear ordinary differential 
equations with constant coefficients. This system 
of equations together with homogeneous boundary 
conditions (resulting from the free-edge condition) 
define an eigenvalue problem. The solution of the 
eignevalue problem is a combination of a particular 
solution and eigenfunctions which have exponential 
forms with real or complex exponents. The parti- 
cular solution corresponds to the limiting stress 
fields away from the free edge (constant in each 
layer but generally vary from layer to layer) and is 
peculiar to each one of the three strain loading 
case -- axial extension, bending and twisting. On 
the other hand, the eigenvalues and eigenfunctions 
are the same for all three cases. When the task of 
solving the eigenvalue problem is completed, the 
solutions for the interlaminar stresses correspond- 
ing to the three distinct cases of strain loading 
may be obtained easily by taken different combina- 
tions of the eigenfunctions with the particular 
solution (peculiar to each case) so as to satify the 
homogeneous boundary conditions. Thus the present 
approach has the additional advantage that the 
solutions to all three cases may be obtained 
simultaneously. In contrast, implementation of the 
finite-element and other numerical solution 
procedures usually must be repeated for each 
distinct loading case. 

We note that the assumption of polynomial 
dependence of the stress functions on the thickness 
coordinate in each layer may be justified for 
laminates consisting of thin plies. Although the 
present analysis uses lower-degree polynomial 
representations, more refined analysis may be 
implemented, in principle, with the use of higher 
degree polynomials. However, such refinement will 
only appreciably affect the resulting stress near 
the free edge. If the thickness of each ply Is only 
one order of magnitude greater than the fiber 
diameter, then a higher-order polynomial representa- 
tion of the fluctuations of the macroscopic stresses 
in the thickness direction has dubious physical 
significance. 

It is pointed out in Sec. 8 of this paper 
that, along an interface, the torsion stress 
function ♦ and the first-order derivatives of the 
Airy stress function F are related to the stress 
resultants and the moment resultants of the inter- 
laminar normal and shearing stresses over end 
segments of the interface. Since the maximum values 
of these derivatives are global measures of the 
criticality of the interlaminar stresses near the 
free edge, they may be used as parameters in the 
fracture criteria for the initiation of delamination 
growth along the interface. 

2. Elasticity of an orthotropic layer referred to 
the global coordinates of the laminate 

Consider a laminated strip of thickness 2y* 
with two parallel free edges at x - ±a and consist- 
ing of n+1 unidirectional, fiber-reinforced compo- 
site layers separated by n planar interfaces.  The 
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layers and their interfaces will be numbered from 
the bottom up. Thus the i-th layer is bounded below 
by the (i-l)-th interface, y - yi-i, bounded above by 
the i-th Interface, y - y4, where y - 0 is the middle 
plane of the laminate (Fig. 1). The layer has the 
thickness ht — yj - yt-i- Each unidirectional 
composite layer «fill be regarded in the present 
analysis as a homogeneous, orthotropic, linearly 
elastic medium with the extensional elastic modulus 
Ej along the fiber direction and moduli E2 and E3 
along the other two orthotropic directions. Other 
material moduli needed to characterize the elasti- 
city of the layer are v23, f31, »/12, ^23> ^31 ano- G12. 
It is more convenient for the present analysis to 
use the compliance coefficients StJ (i,j - 1  
6), defined by the following constitutive relation 
for the layer 

From the first row of Eq. (2) one obtains 

"i * (<i • a12°« • *12°,   -   ai6f«.)/an 

Substituting into the right hand side of 
and replacing the first row of Eq. (2 
preceding expression for ot,   one has 

Eq. (2). 
) by the 

", 1 "l/an a12/ 

<J a12/au ß 
«r 

an/an ß 
^ 0 0 

7y« 0 0 

7« j _ai6/an ß2 

ti -ai3/an 0 0 -a] 
0 
0 

»*3 

0  0 

i/ai 

where the coefficients 

^«, 

(3) 

sn S,2 S,3 0 0 

s2] Sp.2 $23 0 0 

s3, S32 s33 0 0 
0 0 0 S**/2 0 
0 0 0 0 S„/2 
0 0 0 0 0 

0    "1 rox - 
0 °2 
0 
0 • 03 

T23 { 
0 T12 

S66/2J lTX3j 

(1) 

where <» - 723/2, <5 - y13/2 and c6 - 7l2/2. If the 
elastic properties of the layer are considered 
transversly isotropic in the plane perpendicular to 
the fiber direction, then E2 - E3, »/12 — t>13 and G12 — 
G13.  Furthermore, 

511 - 1/Ej ,      S22 - S33 - 1/E2 , 
512 " S13 - - ^i2/E! - - ^2i/E2 . 
S23 ~ * ^23/E-  • S** " !/G23 • 
S55 ~ S66 - 1/G12 

The thickness direction of all layers (i.e., 
the y-axis) is an orthotropic direction and this 
direction will be taken as the 3-direction in every 
layer. Within the piane of the layer, the fiber 
direction is oriented at a constant angle « with 
repect to the z-direction (the direction parallel to 
the free edges) . Transformation of the stress 
components from the (z, x, y) coordinate system to 
the orthotropic material system (1, 2, 3) has the 
form 

N COS2« sin2« 0 0 0   sin2« 
2 sin2« cos2« 0 0 0 -sin2« 

0 0 1 00      0 
23  >' 0 0 0 cos«     -sin«   0 
13 0 0 0 sw"   ce&t  0 
12 J _-^sin2« jSin2« 0 0 0    cos2«_ 

('■1 
°x 

< 
'• fy* 

v7«J 

The tensorial strain components transform in exactly 
the same manner. For simplicity we denote the 
matrix of transformation in the last equation by 
TH(«) and the matrix of Eq. (1) by SS. Then TH(-«) 
Is the inverse matrix of TH(«).  Furthermore, 

«7 
7^/2 
7,./2 

l7„/2j 

.- TH(-«).SS.TH(«) 

ry« 

Lr«J 

(2) 

where the matrix TH(-«).SS.TH(«) - MM(«) has the 
form 

•11 fl:2 a13 0 0 «16 
a12 a22 a23 0 0 a26 

«13 a23 a33 0 0 «36 
0 0 0 a*./2 •*i/2 0 
0 0 0 a.j/2 a»/2 0 

ie/2 a26/2 «36/2 0 0 «66/2 

0ij " aij ■ •ii«xj/*ii   for i.j " 1     (*) 

were introduced by Lekhnitskii ((6). p. 109). 

3. Generalized plane deformation of a laminated 
strip 

For a homogeneous anisotropic elastic medium 
of cylindrical shape with the generators parallel to 
the z-direction, Lekhnitskii investigated the class 
of infinitesimal deformations for which the stress 
tenror is independent of the z-coordinate. He found 
that the class consists of deformations whose 
displacement components have the form ([6], pp. 107- 
108) 

w(z,x,y) - (Ax-By+C)z + W(x,y) + wxy - w2x ♦ w0 
u(z,x,y) - -Az2/2 -«yz + U(x,y) + u>2z - w3y + u„ (5) 
v(z.x.y) - Bz2/2 + «xz + V(x,y) + w3x - wjZ + v0 

Such deformations will be called "generalized plane 
deformations". Starting from a plane deformation 
U(x,y) and V(x.y), one may obtain generalized plane 
deformations by superposing rigid-body translations, 
rotations, shearing along the z-axis (characterized 
by the function w(x.y)), uniform extension and 
twisting along the same axis (the constants C and 
«), and uniform bending deformation with respect to 
the y- and x-axes (the constants A and B. respec- 
tively) . 

In the present work, we study the inter laminar 
stresses in a thin laminated strip bounded by two 
parallel free edges (x - ±a) under mechanical loads 
at the two ends (z - 0, i). The end loads are such 
that the resulting stress in the strip depenJs only 
on x and y but not on the axial coordinate z. Hence 
in each layer of the laminated strip, the displace- 
ment functions have the form given by Eq. (5). In 
order to satisfy the interfacial continuity of the 
displacements, either exactly or in an averaged 
sense, it is necessary that the set of constants A. 
B, C and 6  be the same for all layers. 

It is well-known that intense interlaminar 
stresses are localized in the vicincity of the free 
edges. Along a free edge x - a, the in-plar.e normal 
and shearing stress resultants N, and N„ vanish, and 
so does the normal bending moment K,. The r.on- 
vanishing force and moments are N,, M, an>_ Mtl, and 
their corresponding kinematical variables are the 
axial extensional strain t,0 - C, the bending 
curvature k, - B, and the twisting curvature k,, - 6 
Bending with respect to the y-axis introduces large 
bending strains near t'.ie free edges, and this 
usually does not happen unless the thickness and 
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wldch of the laminated strip (2y* and 2a) are 
comparable in magnitude. Furthermore, this bending 
action, characterized by the constant A in Eq. (5), 
produces a nearly constant axial strain a-A in the 
vicinity of the free edge x - a. Hence its local 
effect on the interlaainar stresses near the free 
edge of a thin laminate may be accounted by absorb- 
ing the additional strain a-A into the uniform 
extensional strain C. Consequently, we shall set A 
- 0 in Eq. (5). It follows that, considered as a 
thin laminate, the local states of loading and 
deformation near x - a are characterized by the 
free-edge condition and the three constant 
parameters B, C and $. 

4. Stress functions: interface and boundary condi- 
tions • 

A stress field in the i-th layer satisfying 
the differential equations of equilibrium may be 
expressed in terms of a pair of stress functions 

F(x,y) and *(x,y) in the following manner: 

(1)   (1) (i)   (1) <1)       (L) 

°*   - f-TT •        °J   " F.» ■        rry - - F.xy 
(1)     (1) (ij       (1) 

'„ - *., •    '„ - - *.« (6) 

Obviously, an arbitrary bilinear function of x and y 
and an arbitrary constant may be added to the first 
and the second stress function, respectively, 
without affecting the resulting stress field in the 
layer. The first row of Eq. (3) yields 

(i)       mil) 

°t   * («1 • a12F,y - aiaF„ 
<1M1>    (1) 

- ai6*.y)/«ll (7) 

Now the stress moment M, is given by 

r  (i)     r in       r   in 
M, - -2 J y oxdy - -2 J y F.„dy - -2 j((y F,y).y 

c.) 

F.v dy - F* - y*G* 

where F* is the value of the stress function on the 
top surface. For the case considered in the present 
work, Nr, N„ and M, all vanish because of the free- 
edge conditions.  Hence, 

F* - G' - *' - 0. (ID) 

Finally,  vanishing of the traction vector 
along the free edges x-±a implies that 

- -F, - *., - 0 

Integration with respect to the thickness coordinate 
yields the following results on x - ±a, 

F - F., - * - 0 01) 

Equations (9), (10) and (11) imply that, for 
the present problem, the stress functions in the 
layers may be chosen in such a way that F. * and the 
normal derivative of F vanish on the boundary 
surfaces x - *"a and y - ±y* and are continuous across 
all layer interfaces. 

5. The principle of complementary virtual work 

The continuity of the normal and shearing 
stresses across the i-th interface y • yt requires 
that, along that interface. 

( F 
(i) 

F >,, - 0, 
(i*U  (i> 

( F.y - F., )., - 0, 

<i*i)  (i) 

( * - * >., - 0 

Hence we may appropriately choose an additive 
bilinear function and an additive constant for the 
stress functions in the (i+l)-th layer so that, 
along the interface y - yt, 

(1*11  (i) 
F - F 

(i*i)  (l) 
F  - F 

(1) 
(8) 

Furthermore, without loss of generality the stress 
functions in the bottom layer may be chosen in such 
a way that, over the lower surface of the laminate, 
y - -y*. one has 

(l) 
F - 0. 

(i) 
F,y- 0. + - 0 (9) 

By integrating ax and r„ through the thickness 
of all layers, and making use of the continuity of 
F,_ and * across the interfaces, one finds that the 
stress resultants N, and N„ are equal to the values 
of F._ and *, respectively, on the upper surface of 
the laminate. Let the values be denoted by G* and *, 
i.e., 

r en r (i) (u   iy-y» iv-v* 
N, - 2 J <7,dy - Z jF.„dy - 2 F.y |y_yi_ - F,y \y  y-  C 

f "'      f(l> 
N„ - ZjrMdy * Zj*,,dy - * 

A variation in the stress field in the i-th 
layer satisfies the equilibrium equations 

Jajj.j - 0 

as well as the free-edge condition and the 
continuity of SF, 6F,y and 6* across the upper and 
lower Interfaces.  Hence, 

0 - III u.iffjj.j dxdydz - j III (ut*fftJ) , i   - u^jjdxdydz 

- Jj ut5o0nj dA - I I *<u1.j+uJ>i)6olJ dxdydz  (12) 

Since the stresses in all layers are independent of 
the axial coordinate z, it is sufficient to consider 
only those variations of the stresses which are also 
independent of z. Furthermore, one need only 
consider an interval of the laminated strip of unit 
length along the axial direction. 0 s z S 1. By 
summing Eq. (12) over all layers, and making use of 
the traction-free boundary conditions and the inter- 
facial continuity of the interlaminar stresses, one 
obtains 

2   (Aufir„+Av6ryz+£w6a1)dxdy - 2 ([u]1&rwy+[v]16oy 

♦(w)i**yi)dx - Z [[«ijSo'ij dxdy        (13) 

where the double integrals are summed over all 
layers and the single integrals are summed over all 
interfaces y - yj. The bracket symbol, [ ]:, denotes 
the jump of the quantity inside the bracket across 
the I-th interface. Au, £v and Aw stand for the 
differences of the displacements at z - 1 and z - 0. 
They may be obtained from Eq. (b)   with A - 0: 
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Au -   -0y+u>2,       Av -  B/2+0x-u>i.       ow - C-By 

Equations   (6)  and  (7)  yield,   in each  layer, 

ir„  - i*,y   , Sr71 -   .6*,x   , 

6at - -(a12SF>yy +auSF.„ +a166^)/an (14) 

Hence   the  double   integrals  on  the   left  hand  side  of 
Eq.   (13) yield,   after integration by parts, 

dx -Z  (Ba16/an   -   26)jj  6*  dxdy 4  B  Z   [a12/an]j J*F, 

+ Z (C-Byi)j  ([au/anJ^G^faie/a!,]!«*! dx 

- Z J[W2]J6*I dx 

while   the   single   integrals   in  Eq.   (13)   yield 

-2  f([u.,]xfiGI+(vfM],5FI+[u,,+w,gjjrtj)   dx 

+   Z  J    [u^h«*!   dx 

Here Fj, Cj and *j stand for the values of F, F,T and 
♦, respectively, on the I-th interface. Substituting 
the preceding results into Eq. (13) and using the 
interfacial continuity of the tangential strains «,, 
7„ and the curvature v>XT, one obtains 

Z jj^fioij dxdy ♦ Z (Ba,6/an - 20) IT 6* dxdy 

-Z (C-Byi)J ((a12/a1,]1*G14[aI6/au]I«*j dx 

- B Z |al2/au],J «F, dx - 0. (15a) 

The following expression for the first term of the 
preceding equation may be obtained from Eqs. (3) and 
(14): 

Z Jj^^.) dxdy - Z J| (Fiyy, F,„, -Frry, 

hi 023 0    0  ß2l 
323 ß33 0  0 ß3f 

-*,,. ♦.,)   0 0 fiM ß,5    0 
0 0 ß^  fl„ 0 

^PZt    Pit       0    0 '66. 

r.F 
«F 

n 
XX 

-6* 
17 1 

I ** y - 

dxdy 

(15b) 

6. Polynomial approximations of the stress functions 

In a variational nethod of solution, the 
stress functions F and ♦ in all layers are to be 
determined within a class of admissible stress 
functions satisfying the traction-free boundary 
conditions (Eqs. (9)-(11)) and the interfacial 
continuity of F, F,y and *. The criterion of 
selection is that Eq. (15) should be satisfied for 
arbitrary admissible variations 6F and 6*. The 
criterion ensures, in an averaged sense, the compa- 
tibility of strain and the interfacial continuity of 
the displacements. If the layers constituting the 
laminate are very thin, one may approximate the 
stresses in each layer by polynomial functions of 
the thickness coordinate. Then the class of 
admissible stress functions consists of polynomial 
functions of y, with the coefficients depending on 
x . 

In the i-th layer, we define the nondimen- 
sional thickness coordinate tj by 

n - <y • yi-i)/(yi - yt-i) 

In the classical plate theory the in-plane stresses 
vary linearly in the thickness direction. This 
feature is approximately valid in each thin layer of 
a laminated plate, except in regions close to the 
free edges. Hence the stress function F(x,y) in 
each layer may be approximated by a polynomial 
function of degree three in the normalized thickness 
coordinate rj. Now the stress function in the i-th 
layer must assume values Fx(x) and FJ.J(X), respec- 
tively, on the interfaces y - y1 and y - yw, and the 
y-derivative of the stress function must assume 
values G,(x) and G,.,(x) on these interfaces. Hence 
the cubic polynomial approximation of the stress 
function in the i-th layer must have the following 
expression 

(i) 

F(x,fj) - (l-3»j2+2f73)F1.j(x)-f(r7-2r7
2-H73)h1G1.1(x) 

+(3if2-2i)3)Fl(x)+(ij
3-ij2)h1Gl(x)  (i-2,3...n) (16a) 

The cubic polynomial approximations of the stress 
functions in the bottom and top layers are given, 
respectively, by 

F(x,t?) - (3r,2-2^3)F1(x) + (r?
3-^2)h,G1(x) (16b) 

and 

F(x.ff) - (l-3»?2+2f73)Fn(x)+(f,-2i)
2+iJ3)hn»1Gn(x)  (16c) 

The stress functions given by Eqs. (15a,b,c) 
yield an interlaminar peeling stress ay having a 
cubic dependence on the thickness coordinate in each 
layer, an interlaminar shearing stress r_ with a 
quadratic dependence on »j, and an in-plane stress ax 

with a linear dependence on rj. For the sake of 
consistency the interlaminar shearing stress ryi and 
the in-plane shearing stress rxl will be approxi- 
mated, respectively, by quadratic and linear 
functions of »j. Then, according to Eq. (6), the 
stress function * depends quadratically on y. It 
follows that 

<n 
*(X,IJ) - (l-r,2)*1.j(x)+t;

2#1(x) + (»j-F?
2)h1H1.i(x) 

(i-2, .,n) (17a) 

(17b) *(x.ij) - »72*i(x) + (»)-»?2)hiH0(x) 

*(x.f») - (l-»?2)*n<x) + (»7-»72)h^MHT,(x) (17c) 

where *t(x) is the value of the stress function * on 
the i-th interface and H,(x) is the value of *,y on 
the upper side of the same interface (notice that, 
although * is continuous across each interface. *,y 
is generally discontinuous). Equations (16) and 
(17) imply that the stress functions in all layers 
are completely determined by 3n functions Ft(x), 
G,(x), *,(x) (i - l,2,...n) and n+1 functions H,(x) 
(i - 0,1,...n), where H0(x) is the value of #,y on 
the bottom surface y - -y*. 

7. An eigenvalue problem for the functions F,.   G. . ♦, 
and Hi 

Let the set of 4n+l functions Ti, G,, *, and H, 
be arranged as the components of a column vector (X) 
according to 

Xt - F,(x).      Irt-C,(K),     X1+2j,-*,(x), 

(i - 1.2... n) 
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^»♦3n*l ~ Hl(X) , (1 - 0,1,...n) 

Then, by substituting Eqs. (16) and (17) into Eq. 
(15), performing the Integration with respect to r», 
and integrating by parts with respect to x, we 
obtain 

,5X)t- ((tW)cV+ (Vlfe+ (U1)1X) " {b)) " °   (18) 

where (6X)*•, a row vector, is the variation of the 
transpose of (X) and the column vector {b} has the 
components 

bi " B[a12/«u)i   . b1+n -  (C-Byl)[a12/au]1 

bi«a -  (C-ByiMaie/auli ♦ 2h1+x(2*-   B a16/au)/3 

(i)   (i) 
+ h1(2J-Bal6/a11)/3 

(i*i) (i»i) 
*>io»-i -  (28-  E a16/au)  hin

2/6 

(i - 1.2,...n) 

(i - 0,1,...n) 

As mentioned previously, [a^J, denotes the jump 
of a12/an across the i-th interface. 

The matrices [U], [V] and [U] of Eq. (18) are 
constant real symmetric matrices and are completely 
determined by the integral expressions in Eq. (15b), 
i.e., by the first variation of the strain energy of 
the layers.  It is clear from Eq. (15b) that the 
fourth-order derivatives in Eq. (18) arise only from 

cr axil  (t) 
the integrals Z  033F,„$F,„ dxdy, i.e., they only 

(i) (i) 
lnvlovle the stress functions F but not *. Hence, 
by virtue of the representation of Eq. (16), the 
coefficient matrix [U] of the operator d*/dx* has 
nonzero elements only in a 2n x 2n square submatrix 
in the upper left corner (i.e., in the rows and 
columns corresponding to the unknown functions Fl and 
Ci, i- 1,2 n). 

The elements of the three matrices have 
extremely complex expressions and it is inpractical 
to obtain these expressions without using symbolic 
algebraic programs. In the present work, the 
matrices (U] , [V] and [U] are obtained from Eqs. 
(15b), (16) and (17) by using MACSYMA [7]. The 
symbolic program is also used to obtain the 
compliance coefficients ßii of each layer from Eqs. 
(1), (2) and (4). 

Equation (18) is satisfied for arbitrary 
variations 6H0, 6¥lt SG%, o"#1§ •■ and SH^ if and only 
if 

<["]£?+ mfe + iui><x» - ,b> (19) 

Equation   (19)   and   the   hoaogeneoua   boundary   condi- 
tions  at   the   free  edges 

Ft(±a) - F/Ua)  - C^ta)  - Gt'(±a) 

- *,(±a) - Ht(±a)  - 0        (i - 1.2 n)        (20) 

H0(±a)  - 0 

define an eigenvalue problem where the eigenvalues 
are the roots of the characteristic equation (8) 

Determinant [U) A* ♦ (V] X2  ♦ [U]) - 0     (21) 

The primes in Eq. (20) indicate differentiation with 
respect to x. Since the nonzero elements of [U] are 
limited to a 2n x 2n submatrix, the characteristic 
equation is a polynomial equation of order 2x2n+2n+l 
- 6n+l in the variable X2. Hence there are 6n+l 
pairs of (real and complex) eigenvalues, with each 
pair consisting of eigenvalues which differ only in 
algebraic sign. Considered as an equation for X2, 
the characteristic equation yields no solutions X2 

with negative real parts. Hence there are no purely 
imaginary eigenvalues. Notice that the total number 
of eigenvalues, 12n+2, is equal to the number of 
boundary conditions in Eq. (20). 

The (real or imaginary) eigenvector corres- 
ponding to each eigenvalue may be determined from 
the homogeneous differential equation associated 
with Eq. (19). The eigenfunctions have the form 
{c)exp(±Akx), where (c) is a constant vector with 
real or complex components depending on whether Ak is 
a real or complex eigenvalue. 

Equation (19) has a constant particular 
solution [Ul'Mb). The general solution of the 
equation may be obtained by combining the particular 
solution with a linear combination of the eigen- 
vectors. The coefficients of the eigenvectors must 
be chosen so that all boundary conditions of Eq. 
(20) are satisfied. If the width of the strip, 2a, 
is sufficiently large compared to the thickness, 
then the eigenfunctions associated with the eigen- 
values having negative (positive) real parts make 
negligible contribution to the solution in the right 
(left) half of the strip, since such eigenfunctions 
decay rapidly away from the left (right) free edge. 
In other words, the solutions for the left and right 
parts of the strip are approximately uncoupled. 

In the case of a cross-ply laminate with the 
material axes parallel and perpendicular to the free 
edges, the solution space of the eigenvalue problem 
decomposes orthogonally into subspaces of dimensions 
8n and 4n+2. The two subspaces are associated, 
respectively, with the two stress functions F and *. 
We observe that, in the case of cross-ply laminates, 
the elastic compliance coefficients ß26, ßit and ßki 

vanish in every layer. Hence there is no coupling 
between the two stress functions F and * in the 
variational equation associeted with Eq. (15b). 
Furthermore, since a16 also vanishes in each layer of 
a cross-ply laminate, the last 2n+2 elements of the 
vector (b) in Eq. (18) do not depend on the loading 
parameters B and C while the first 2n elements of 
(b) do not depend on the twisting deformation 8. 
Consequently, Eq. (18) decouples into a system of 2n 
fourth-order differential equations for the 
functions Ft and Gi and another system of 2n+l 
second-order equations for the functions *t and H,. 
The first system of equations determines the 
solutions under axial extension and bending loads 
while the second system of equations determines the 
solutions under the twisting load. 

8. Physical meanlr.Es of the functions F/(x) and 
Gt(x) and *t(x) 

The functions Fj(x), *j(x), G{(\) and Ht(x) in 
Eqs. (16) and (17) are the values of the stress 
functions and their y-derivatives along the l-th 
interface. They are related to the resultant forces 
and moments of the normal and shearing Interlaminar 
stresses over interfaclal intervals of varying 
lengths adjacent to the free edge. Let the origin 
of the axial coordinate x be shifted to the left 
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free edge of Che strip. Then, over the interval [0, 
x] of the i-th interface in the new coordinate 
system, ve have 

f oy  dx - f V dx - Fj'(x), (22a) 

J r„ dx - - fc/ dx - • Gt(x)        (22b) 

j ryi dx - -  [*/ dx - - t4(x> (22c) 

Similarly, 

I x o,  dx - x Tx'(x)   -  Fi(x), 

j x2 ay  dx - x
2F/(x) - 2xFj(x) + 2 J F4 dx 

x r^ dx - - x Gj(x) + 1 G4 dx, 

j x ryi dx - - x *x(x) + I *» dx. 

In particular, the maximum absolute values of Gt and 
*j, reached at the centerline of the strip, are equal 
to the resultant forces of the interlaminar shearing 
stresses r^ and ryI, respectively, over one half of 
the i-th interface. Generally, Gj and +t increase or 
decrease monotonically from zero to their maximum or 
minimum values at the centerline of the strip. If Gt 
or *t attains a large value in a very short distance 
from the free edge, then an intense interlaminar 
shearing stress (of mode I or III, respectively) 
occurs in a very short interval from the free edge. 
This situation is susceptible to delamination 
failure under the shear fracture mode. 

The behavior of the function F,' (x) has a 
similar implication for the interlaminar normal 
stress. This function generally increases from zero 
at the free edge to a maximum value in a short 
distance from the free edge. It then decays slowly 
to zero at the midpoint of the beam. If F,' 
increases from zero to a large maximum value in a 
very short interval from the free edge, then an 
intense tensile interlaminar normal stress acts in 
that short end interval, and the resultant tensile 
force is balanced by an equal compressive force 
distributed over the remaining portion of the half 
interface. This situation is susceptible to 
delamination failure under the peeling fracture 
mode. 

The maximum values of the functions C4, *j and 
Fj' and the characteristic lengths of their regions 
of steep gradient are meaningful measures of the 
criticality of the interlaminar stresses in the i-th 
interface near the free edge. There are good 
reasons to suggest the use of these maximum values 
and characteristic lengths as parameters in the 
interlaminar fracture criteria for the peeling and 
■hearing modes of failure. These parameters may be 
•asily calculated by the present method of analysis. 
Being global measures, their values are less 
affected by the crudeness or refinement of the 
approximate analysis than the pointwise values of 
the interlaminar stresses are. That .is, a relative- 
ly simple analysis (involving low-order polynomial 
approximations of the stress functions) may provide 
unreliable results for the detailed interlaminar 
stress distributions along the Interfaces but may 
still yield accurate results for the maximum values 

of Ct, *j and F,' as well as the charateristic 
lengths of their regions of steep gradient. Aside 
from the question of accuracy and convergence, 
extremely detailed results of the interlaminar 
stresses near a singular point have dubious physical 
meaning in view of the microscopic heterogeneity of 
plies and the randomness inherent in the micro- 
struture. 

9. The case of symmetric laminates 

In the case of a symmetric laminate the middle 
plane y - 0 is a plane of symmetry. All stiffness 
and compliance coefficients are even functions of y. 
In particular, there is no disticontinuity in a12/an 

or a1B/an across the plane y - 0 if that plane is 
artificially regarded as an interface. Hence there 
are no contributions to the single integrals of Eq. 
(15a) from the interface y - 0. 

For a symmetric laminate loaded under a 
uniform axial strain only (i.e., B - 8 - 0 and it - 
C * 0), the deformation and stress In the laminate 
are symmetric with respect to the middle plane. 
Hence F is an even function of y while F,y and ♦ are 
odd functions. In particular, G - ♦ - 0 on the 
middle plane y - 0. Setting B - 8 - 0 in Eq. (15a). 
one finds that the regions of the laminate above and 
below the middle plane make equal contributions to 
the sum of integrals. Consequently, we need only 
compute the double integrals over the upper region 
and the single integrals over all interfaces above 
the middle plane. 

The same conclusion is also valid for a 
symmetric laminate subjected to bending and twisting 
(C - 0 but B and 8 not both zero). Under such 
loading cases F is an odd function of y while F,y and 
* are even functions. In particular, F - *,y - 0 on 
y — 0 (notice that although ♦,, is generally 
discontinuous across an interface, it is continuous 
across y — 0 because the stiffness coefficients have 
no discontinuity across the middle plane of a 
symmetric laminate) . Because a16/a;; I

S
 an even 

function of y while the jumps [a12/a11] and [a^/a^j] 
are odd functions of y. the sum of integrals in Eq. 
(15a) receive equal contributions from the regions 
above and below the middle plane. 

The preceding conclusions imply that, for the 
solution of the interlaminar stress problem of a 
symmetric laminate, the dimension of the vectors IX} 
and (b) may be reduced considerably. The unknown 
functions Fi, G4, *, and Hx associated with the 
interfaces in the lower half of the laminate may be 
dropped. Let the interfaces in the region y > 0. 
including the interface y - 0, be renumbered in the 
ascending order, starting with interface 0 on y - 0. 
Then, for the uniform axial strain load (i.e. . C - 0 
and B-0-0), the required set of unknown functions 
include F,, G,. *, and H, for I 2 1 and the functions 
F0 and H0. Under bending and twisting loads (i.e.. 
C - 0) , F0 and H0 are replaced by G0 and *0. 

For the classical problem of a symmetric, 
four-layer laminate under an axial strain load, the 
functions G0 and *0 on the middle plane vanish 
identically. There is only one interface in the 
upper half of the laminate and the two layers in the 
upper region (renumbered as layers 1 and 2) have the 
expressions: 

F(x.i>) - (l-3^2-.2r?
3)F0(x) + (3»72-2n3)F1(x) 

+ (»J3-'J2)hjC1(x) . (23a) 
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F(x,fj) - (l-3»>2*-2f»3)F1(x) + (F,-2ij2-ffj3)h2G1(x)   ,   (23b) 

♦ (x.t,) - n2*i(x) + (n-fj2)hlH0(x)   . 

*(x,i,) -  (l-n2)*l(x) + (^-^2)h2H1(x)   . 

(23c) 

(23d) 

The    vectors     (XI     and     (b)     of    Eq.      (19)     become, 
respectively, 

f Fo<xO 
Fi(x) 

Gj(x) 

*x(x) 

H0(x) 

Hj(x) 

and 

f 

0 

0 

0 

0 

(24) 

In the cases of bending and twisting loads one 
has C - 0. The functions F0 and H0 vanish identi- 
cally and the stress functions in layer 1 have the 
expressions 

F(X.II) - (v-2v24i|3)h1C0(x) 

+ (3»>
2-2»j3)F1(x) + (^-r,2)h1G,(x) 

*(X,IJ) - (l-»72)*o(x)^2*x(x) 

The stress functions in layer 2 are still given by 
Eqs. (23b) and (23d). The vectors (X) and )b) of 
Eq.   (19)   reduce,   respectively,   Co 

G0(x) 

G,(x) 

•o(x) 

Mx) 

.Hi(x). 

and 

0 

-Bh1   [al2/«iiJx 

2(2*-Ba,6/an)h1/3 

(i)   (i) 
-Bhj[a16/au]l+(2*-Ba16/an)h1/3+ 

(2)   (   2) 
2(2<?-Ba16/au)h2/3 

(2)      (2) 
<20-Ba16/au)h2

2/6 

10. Results for Symmetrie four-laver laminates 

For convenience of comparison with the 
existing solutlns In the literature, approximate 
solutions have been obtained by the present method 
for laminates composed of Identical unidirectional 
plies with the thickness h and with the elastic 
moduli 

Eu - 20 x 10" psi.  E2 - E3 - 2.1 x 10« psl, 
"12 " "13 " "23 - 0.21. 
cia • Gi3 • G23 - 0.85 x 10" psl. 

Unless otherwise stated, the distance between the 
pair of free edges Is w - 2a - 16h. 

We first consider a four-layer symmetric 
cross-ply laminate with the ply configuration 
[0/90],. For the reason mentioned previously, the 
differential equations governing such a laminate, 
Eq. (19), is uncoupled into three fourth-order 
equation« for F0, Fx  and G; and three second-order 

equations for ♦;, H0 and H>. The second set of 
equations (and the associated homogeneous boundary 
conditions) alone determine the functions *c, *; arid 
H; in the case of a twisting load (the function H0 
vanishes identically according to the previous 
symmetry arguments). The first set of equations 
determine the functions F0, F: and G, in the case of 
an axial strain load and the functions F1# G3 and G. 
in the case of a bending load. The resulting 
interlaminar stresses on the 0/90 interface are 
shown in Figs. 2-4 for the three cases of strain 
loads. The solution for a unit bending deformation 
is close to that for a unit axial strain except for 
a reversal of algebraic signs. This may be expected 
because a negative unit bending curvature yields a 
positive unit axial strain ac ehe interface y - h. 
Figure U shows that a unic Cwisting deformation 
produces a mode 3 interlaminar stress ryi whose 
magnitude is much greater than the mode 1 and mode 2 
interlaminar stresses produced by a unit axial 
strain and a unit bending deformation. However, it 
follows from Eq. (5) that, for a laminate with a 
large width to thickness ratio, the work required to 
produce a unit twisting deformation is also much 
greater than that r>. '. :ired to produce a unit bending 
deformation or a unic axial strain. 

In the case of symmetric angle-ply laminates 
the solution space of the governing equations is not 
orthogonally decomposable. Hence all three compo- 
nents of interlaminar stresses generally arise in 
each one of the loading cases. The results are 
shown in Figs. 6-8 for a [45/-45], laminate. Here 
again a unit cwisting deformation produces a very 
large mode 3 interlaminar stress. For the case of 
an axial strain load, the in-plane stresses on the 
lower surface of the Cop layer are shown in Fig. 5. 

The presenC resulcs for Che cross-piy and 
angle-ply laminaces are compared wich several mosc 
elaborace numerical solucions in Che existing 
literature. While the exiscing solucions generally 
show over-all agreemenc, chere are significanc dis- 
crepancies in Che poincwise values (and parcicularly 
in Che peak values) of ehe inCerlaminar stresses. 
In order Co avoid the difficulty of discriminating a 
number of partially overlapping curves in the same 
figure, we use Table 1, instead of graphs, to show 
ehe comparison of cercain key features of the 
various solucions, including the solucions obtained 
by Che presenc mechod, for Che [0/90], larainace under 
a unic axial sCrain load. Each pair of values in 
ehe Cable (enclosed in a sec of parencheses) show a 
maximum or minimum value of ay or r^ and ehe 
discance from ehe free-edge of ehe poinc where ehe 
excremal value occurs. Since Che values are 
measured from ehe graphs of Che original papers, 
chey may include errors ineroduced in ploccing or in 
caking measures from Che graphs. Furchermore. in 
Che case of f iniCe-elemenc solucions Che maximum 
value of ehe ineerlaminar normal scress ay (which 
occurs ac the free edge) depends significantly on 
mesh refinement and may become very large as the 
mesh size further decreases. 

Although the present analysis requires only a 
small fraction of computational effort in comparison 
wich mosc other numerical solucions. ehe resulcs 
obcained are by no means inferior. In face, 
compared Co mosc ocher solucions in Table 1. ehe 
presenC solution yields excremal values of oy which 
are in beceer agreemenc wich Spilker's solucions 
using special free-edge finice elemenCs Co ensure 
exacc sacisfaccion of ehe eraccion-free boundary 
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- min aj 

(.036, 2.0h) 
(.034, 2.3h) 
(.032, 2.3h) 
(.018, 2.4h) 
(.028, 2.1h) 
(.048, 2.1h) 
(.020, 1.9h) 
(.029, 1.9h) 
(.034, 1.7h) 

conditions [4,5]. A similar comparison of the 
results for the [4S/-45], laminates also indicates 
that the solution of the present method agree well 
with the existing refined solutions to the extent 
that the latter solutions are in agreement among 
themselves. 

Present (.21, .32h) (.29, 0) 
Ref. [4,5] (.11, .85h) (.29, 0) 
Ref. [9] (.22, .18h) (.43, 0) 
Ref. [10] (.11, .82h)   
Ref. [11]   (1.0, 0) 
Ref. [12]   (.29, 0) 
Ref. [13]   (.31, 0) 
Ref. [14] (.23, .20h) (.30, 0) 
Ref. [15] (.23, .13h) (.30, 0) 

Table 1: Comparison of the various solutions 
of the [0/90], laminate 

It was mentioned previously that the 
characteristic equation (21) has two sets of 
eigenvalues which differ only in algebraic sign. 
The eigenfunctions corresponding to eigenvalues with 
positive (negative) real parts decay exponentially 
away from the right (left) free edge of the 
laminate. If the ratio w/h is large, then the first 
(second) set of eigenfucntions make negligible 
contribution to the solution away from the right 
(left) free edge. Consequently, the solutions in 
the left and right halves of the laminate are 
approximately decoupled. Hence the interlaminar 
stress distribution near a free edge is dependent on 
w/h only if this ratio is small. This conclusion is 
substantiated by the results for [0/45]s laminates 
with w/h ■= 4, 8, 16 and 50 loaded under an axial 
strain (Fig. 9) and a twisting deformation (Fig. 
10) . The interlaminar stress distributions approach 
limiting pattern as w/h increases. The results 
apparently contradict a previous conclusion of 
Murthy and Chamis [16] concerning the effect of 
laminate width. 

11. Summary and Conclusion 

(1) A systematic approximate method is 
developed for determining the interlaminar stresses 
in a laminated strip with two parallel free edges 
subjected to an axial strain, a bending deformation 
or a twisting deformation. The method is based on 
the use of Lekhnitskii's stress functions. The 
approximate solutions of the present method satisfy 
exactly the equilibrium equations in each layer, the 
traction-free boundary conditions over the top and 
bottom surfaces and the free edges, and the 
continuity conditions of interlaminar stresses 
across all interfaces. The compatibility condition 
for the strain and the interfacial continuity of the 
displacements are enforced in an averaged sense by 
extremizing the complementary energy functional with 
respect to the class of statically admissible stress 
fields whose stress functions in individual layers 
are polynomial functions of the thickness coordi- 
nate. This results in an eigenvalue problem 
associated with a linear system of ordinary 
differential equations having constant coefficients. 
The eigenfunctions have exponential forms with real 
or complex exponents. The solution of the stress 
functions are obtained by appropriately combining 

the eigenfunctions with a constant particular 
solution (peculiar to each one of the three loading 
cases) in such a way as to satisfy the homogeneous 
boundary conditions at the free edges. When the 
task of solving the eigenvalues problem hak been 
completed, the interlaminar stresses corresponding 
to all three loading cases can be determined 
simultaneously. The case of a unit twisting 
deformation generally yields a very large mode 3 
interlaminar shearing stress compared to the 
stresses caused by a unit axial strain and unit 
bending deformation. However, a unit twisting 
deformation also requires a much greater external 
work if the width-to-thickness ratio of the laminate 
is large. 

(2) Sample solutions are obtained for 
symmetric four-layer laminates. By exploiting 
symmetric conditions, the eigenvalue problem is 
reduced in size. For an angle-ply laminate the 
charateristic equation is a polynomial equation of 
degree 9 in the square of the eigenvalue. In the 
case of cross-ply laminates the eigenvalue problem 
is decomposable into orthogonal subspaces of 
solutions. Using the present method, a complete 
analysis of a symmetric four-layer laminate takes 
only a fraction of a minute on an IBM personal 
computer and requires extremely simple preparation 
of input data, while the results for the 
interlaminar stresses are comparable in accuracy to 
refined finite-element solutions involving several 
hundreds of degrees of freedom (with the possible 
use of special corner elements). If the laminate 
has a large number of layers, a sublaminate/layer 
approach developed in the sequel of this paper (Part 
II) may be used to reduce the size of the eigenvalue 
and to obtain approximate solutions. 

(3) The present method achieves the dual 
objectives of efficiency and accuracy because the 
representations of the stress functions in the 
analysis are not chosen arbitrarily or purely for 
computational reasons (as in choosing the shape 
functions in finite-element modeling). They are 
based on the eigenfunctions as determined by the 
complementary virtual work principle. Besides the 
assumption of linear elasticity, the assumed 
polynomial dependence of the stress function upon 
the thickness coordinate in each layer is the only 
approximation made in the present analysis. Addi- 
tional and miscellaneous assumptions with obscure 
meaning and dubious implication are categorically 
avoided. This feature provides an important 
computational advantage because, as found by Spilker 
[4,5], the replacement of exact traction-free 
boundary condition by approximating conditions may 
significantly affect the convergence and the outcome 
of finite-element solutions in a corner region. 

(4) In the i-th interface, the maximum values 
of the first order partial derivatives of the stress 
function and the characteristic lengths of their 
regions of steep gradient provide useful measures of 
the criticality of the interlaminar stresses near 
the free edge. These values are less affected by 
the degree of refinement of the approximate analysis 
method than the detailed distributions of the 
interlaminar stresses are. They may be used as 
parameters in the fracture criteria for the initia- 
tion of delamination failure. 
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Thermal Stresses and Free-Edge 
Effects in Laminated Beams: A 
Variational Approach Using Stress 
Functions 
A variational method invoking stress functions is used to determine the tnterlaminar 
stresses and the free-edge effects in a laminated beam under a temperature loadins. 
The stress function in each layer is approximated by a cubic polynomial function 
of the thickness coordinate. The equilibrium equations, the traction boundary con- 
ditions, and the continuity conditions of the interlaminar stresses are exactly satisfied 
in this analysis, while the compatibility equations and tnterfacial continuity of the 
tangential strains are enforced in an averaged sense by applying the principle of 
complementary virtual work. The method is highly efficient and accurate. A thermal 
stress analysis for a three-layer beam using only eight eisenfunctions yield result* 
that are comparable in accuracy to finite-element solutions iniolving thousands of 
degrees of freedom. 

1    Introduction 
Studies of the thermal stresses in bimetallic or laminated 

beams and plates may be found in the literature of applied 
mechanics and composite materials (see, for example, Ti- 
moshenko (1925), Boley and Testa (1969), Hess (1969). Wang 
and Crossman (1977), Grimado (1978), Wang and Choi (1979), 
Chen and Nelson (1979), Chen et a). (1982), Chang (1983), 
Saganuma et al. (1984), Blech and Kantor (1984), Kuo (1989) 
and Cho et al.). In recent years, thermal stress problems of 
multilayer beams and plates have received a considerable 
amount of attention in the field of electronic packaging. A 
number of papers have appeared and various approximate 
methods have been proposed, at different levels of sophisti- 
cation, to determine the free-edge interlaminar stresses induced 
by thermal expansion and mechanical loads (Taylor and Yuan 
(1962), Reinhart and Logan (1973), Roll (1976), Olsen and 
Ettenberg(1977), Vims and Kerps(1982),Suhir(1986a,b; 1988), 
and Gerstle and Chambers (1987)). However, certain approx- 
imate solutions based on ad hoc assumptions yield results that 
are insufficiently accurate. Other simple solutions or formulas 
may provide only one component of the interlaminar stress or 
may fail to satisfy certain free-edge boundary condition. Al- 
though elaborate numerical solutions using refined finite-ele- 
ment modeling have been obtained for special geometrical and 
material configurations, there is a need to develop efficient 
and reasonably accurate approximate methods of solution for 
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predicting the interlaminar stresses and free-edge effects in 
laminated beams and plates with arbitrary ply configuration 
under various types of loading. 

In a recent paper (Yin, 1991), the author presented an ap- 
proximate method of analysis for calculating the free-edge 
interlaminar stresses in a laminated strip subject to three fun- 
damental types of mechanical loading: extension along the 
longitudinal axis of the strip, bending of the axis, and twisting 
of the strip. In the analysis, Lekhnitskii's stress functions 
(Lekhnitskii, 1963) were introduced in each layer of the lam- 
inate, and both stress functions and the normal derivative of 
one function were required to vanish on the boundary surfaces, 
and to be continuous across all interfaces. The stress functions 
were approximated by polynomial functions of the thickness 
coordinate. A system of ordinary differential equations gov- 
erning the coefficient functions of the polynomials were ob- 
tained by means of the complementary virtual work principle. 
Solution of the associated eigenvalue problem yields the stress 
functions and the interlaminar stresses. The application of the 
method has been extended to laminates with a large number 
of layers by a combined layer sublaminate approach (Yin. 
1989)'. 

The method is adopted, in this paper, to determine the in- 
terlaminar stresses in the free expansion of a laminated beam 
under a temperature loading. Although the method is generally 
applicable to laminated beams composed of anisotropic elastic 
layers, for simplicity we restrict the present analysis to the case 
where all layers are isotropic. In this special case onlv one 
stress function (Airy's stress function) is needed in each layer. 

The problem is first decomposed into a constrained thermal 
expansion problem (with zero axial displacements at the two 
ends of the beam) and a complementary problem. The latter 
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i—th layer- 

y = y\ - 

Fig. 1    A multilayered beam 

problem is further decomposed into a trivial problem char- 
acterized by a uniform axial extension superposed on pure 
bending, and a third problem characterized by rapid decay of 
the interlaminar stresses away from the free edge. The last 
problem is solved by the eigenfunction analysis. 

The analysis method is applied to two configurations of a 
three-layer beam for which refined finite-element solutions 
have been recently presented by Glaser (1989). Comparison of 
the results shows excellent agreement in the interlaminar nor- 
mal stress and some discrepancy in the interlaminar shearing 
stress. While the finite-element solution involves over 10,000 
degrees-of-freedom, the present analysis requires very simple 
data input, and very little computational effort even on a 
personal computer. Furthermore, the eigenvalues and eigen- 
functions are dependent only on the geometry and material of 
the model, and are independent of the thermal loading. Once 
the eigenfunction analysis for a given model has been per- 
formed, repeated solutions for different temperature distri- 
butions involve only different combinations of the 
eigenfunctions, and may be achieved with extreme ease. 

It is pointed out in Section 7 of this paper that the first- 
order partial derivatives of the stress function along an inter- 
face are related to the resultant forces and moments of the 
interlaminar normal and shearing stresses over end segments 
of the interface. Since the maximum values of these derivatives 
are global measures of the criticality of the interlaminar stresses 
near the free edge, they may be used as parameters in the 
fracture criteria for the initiation of delamination failure. 

2   Stress Functions in a Multi-layer Beam 
Consider a laminated beam of length la and consisting of 

n+ 1 homogeneous, isotropic, linearly elastic layers separated 
by n planar interfaces. We assume that mechanical loads are 
applied only to the two ends of the beam, so that the top and 
bottom surfaces of the beam are completely free from traction. 
The layers and their interfaces will be numbered from the 
bottom up. Thus the rth layer is bounded below by the (/-1 )th 
interface and bounded above by the rth interface. This layer 
has the thickness h„ and is composed of a material with Young's 
modulus E, and Poisson's ratio v,. The axial coordinate x and 
the thickness coordinate y are introduced with the origin lo- 
cated at the center of the beam (Fig. 1). Any plane stress field 
in the rth layer satisfying the differential equations of equilib- 
rium may be expressed in terms of a stress function in the 
following manner: 

(/)       (/) (/)       (') («') <o 
ax=F,yy, Oy=Ftxx, 7 xy =   ~   F JXy (1) 

Obviously, an arbitrary bilinear function of x and y may be 
added to the stress function without affecting the resulting 
stress field in the layer. 

The continuity of the normal and shearing stresses across 
the rth interface y=yt requires that, along that interface, 

(i+l)     (/) 0+1)     (i) 

( F -F)iXX = 0,   (F,y -F,y),x=0. 

Hence we may appropriately choose an additive bilinear func- 
tion for the stress function in the (/+ l)th layer so that, along 
the interface y-yi, 

</+i)    (/)     (/+i)    (/) 

F    =F,        F,y=F,y (2) 

Furthermore, by combining with an additive bilinear function, 
the stress function in the bottom layer and its ^-derivative may 
both be made to vanish identically over the bottom surface. 

By integrating the axial stress through the thickness of all 
layers, and making use of the continuity of F,y across the 
interfaces, one finds that the resultant axial force is equal to 
the value of F,y on the top free surface. Let this value be 
denoted by G', i.e., 

EU4-E 
('■) 

=/r. 
Ir-JV-i 

y=y» 

= G' 

where y* is half the total thickness of the beam. Now the 
resultant bending moment in the beam is given by 

{•   (/) 

M= -£b oxdy~ 

-E 
(0 

y     F,yy *--E 
(I) U) 

(y     F,y),y-F,y dy 

= r-y'G* 
where F* is the value of the stress function on the top free 
surface. Since the beam is subjected only to end loads, the 
axial load and the bending moment are independent of x. 
Consequently, G* and F* are both constants. 

3 Reduction to a Problem With Zero End Force and 
End Moment by Decomposition 

At this stage, we shall decompose a general traction bound- 
ary-value problem of a laminated beam with stress-free top 
and bottom surface (Problem A) into a similar problem with 
F* = G* = 0 (Problem B) and another problem in which the 
stress functions in all layers are independent of x (Problem C). 

In Problem C, the only nonvanishing stress component is 
the axial stress. Since the shearing stress vanishes identically, 
the shearing strain also vanishes and, consequently, the axial 
strain ex varies linearly through the entire thickness of the beam, 
i.e., 

e,*» e0 - ny 

where eo is the axial strain on the middle plane and K is the 
curvature of the deformed axis. Hence, in the /th layer we have 

to 
ox = Eito-EiKy 

It follows that 

G'«£U«Ö>-Ö«o-.Ä« 

(3) 

(4) 

F*-y'G*=-'E]yoxdy=-Rto+SK (5) 

where 

ß=££,/»,,   R^E&t-yi-ftn, 

S~Y,Ety>-yiJ)n    (6) 

with the summations carried over all layers. Solving equations 
(4) and (5) for e0 and K in terms of F* and G*, and substituting 
the results into equation (3), we obtain a solution correspond- 
ing to a uniform axial extension superposed on pure bending. 
When this solution is subtracted from Problem A, the re- 
maining problem is a traction boundary-value problem with 
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F* = G'-Q, i.e.. a problem characterized by vanishing re- 
sultant axial force and resultant bendine moment (Problem 
B). 

In the allowing analysis, we proceed to obtain an approx- 
imate solution of Problem B. 

4    Polynomial Approximations of the Stress Functions 
In the /th layer, we define the nondimensional thickness 

coordinate rj by 

v=(y-y,-\)'\vl-yl_,) 
The stress function in the /th layer may be approximated by 
a polynomial function of the normalized thickness coordinate 
T). In the classical beam theory the bending stress varies linearly 
in the thickness direction. This feature is approximate^ valid 
in each thin layer of a laminated beam, except in regions close 
to the two ends of the beam. Hence the stress function in each 
layer may be approximated by a poly nomial function of degree 
three in the normalized thickness coordinate »j. Now the stress 
function in the /th layer must assume values F.(x) and F (A), 
respectively, on the interfaces >•= v, and y=y,.l, and the y- 
derivative of the stress function must assume values G,[x) and 
G,-:(.v) on these interfaces. Hence the cubic polynomial ap- 
proximation of the stress function in the /th layer must have 
the following expression 

Fl.V.r,) = (1 - 3r?: + 2JT) F,    ,(.v) + (>J- 2if + rj'^G,- :U) 

+ Or,:-2r,})Fl(x)^(r1'-71
1)h,G,{x)    {i = 2 n)     (7) 

The cubic polynomial approximations of the stress functions 
in the bottom and top layers are given, respectively, by 

F(x,rj) = Or?" - 2r,-)Ft{x) + (IJ- - TJ-)A,G,(.V) 

and 

F U.TJ) = (1 - 3TJ
:
 + It,- )Fn(x) + (ij - 2T?

:
 + ri-)hn. tGn(x) 

+ (3T?
2-2jj')/> + (7f

?-jj:)A„.,G*     (9) 

The stress functions given by equations (7)-(9) yield an in- 
terlaminar peeling stress 0V having a cubic dependence on the 
thickness coordinate in each layer, an interlaminar shearing 
stress rtv with a quadratic dependence on rj, and an axial stress 
a, with a linear dependence on r». In the next section we will 
be concerned with the reduced problem, for which the resultant 
axial force and resultant bending moment vanish, i.e., the 
problem with F* = G' = 0 (Problem B). 

ness coordinate, we obtain an integral expression with respect 
to x only. By taking the first variation of the resulting expres- 
sion, performing integration by parts, and making use o\ equa- 
tion (11), we obtain a system of ordinary differential equations 
with constant coefficients o\ the following form 

(lA)£-[B]£~w) \ • f =101 
12) 

where [A]. [B], and [C] are 2n by 2n constant symmetric mat- 
rices. The traction boundary conditions at the two ends of the 
beam provide specified values of F„ G and their first deriv- 
atives. This defines an eigenvalue problem where the eigen- 
values are the roots of the characteristic equation 

Determinant![A]X4 - [B\\: - (C]) = 0 (13) 

Although the total number of real and complex eigenvalues is 
%n, half of the eigenvalues differ from the other half only in 
algebraic sign, because the characteristic equation contains 
only even powers of the eigenvalue X. Considered as an equa- 
tion for X", the characteristic equation yields no solutions X" 
with negative real parts. Hence there are no purely imaginary 
eigenvalues. 

The eigenvector corresponding to each eigenvalue may be 
easily determined from equation (12). All eigenfunctions decay 
or grow exponentially in the positive .»direction. The manner 
of decay or growth is monotone or oscillatory depending on 
whether the eigenvalue is real or complex. The solution to 
Problem B is a linear combination of the eigenvectors with the 
coefficients so chosen that all boundary conditions for F, and 
G, and their first derivatives are satisfied at the two ends of 
the beam. If the length of the beam is sufficiently large com- 
pared to the thickness, then the eigen functions associated with 
eigenvalues having negaäve (positive) real parts make negli- 
gible contribution to the solution in the right (left) half of the 
beam, since such eigenfunctions decay rapidly away from the 
left (right) end of the beam. In other words, the solutions for 
the left and right parts of the beam are approximately uncou- 
pled. 

It should be remarked that, for an inelastic material under 
an incremental loading, differential equations similar to equa- 
tion (12) may still be obtained from the principle of comple- 
mentary virtual work even though the complementary energy 
function may not exist. Hence the applicability of the present 
method is not restricted to elastic bodies. 

5   Complementary Virtual Work Principle for Pure 
Traction Boundary-Value Problems 

In pure traction boundary value problems (including thermal 
stress problems where the entire boundary of the beam is free 
from traction) the total complementary energy of the beam is 

ß = (I/2)£| \(l/E,)\F,J -F,t 

- 2vf.,/",„ +• 2( 1 + v,)F,rv" | dx dy     (10) 

Over the two end sections of the beam, we have 

5o, = (6F),v> = 0,    6T„= -{6F,X),„ = 0, 

Integrating the last two equations in the thickness direction, 
and using the continuity conditions of equation (2), we obtain 

6F=0,    f>F,x = 0   Uix=±a) (II) 

By substituting the cubic polynomial approximations of the 
stress functions for each layer into equation (10), and per- 
forming the integration with respect to the normalized thick- 

6 Thermal Stress in the Free Expansion of a Three- 
Layer Beam 

Consider the thermal expansion of a three-layer beam when 
the /th layer (/ = 1, 2, 3) is subjected to a temperature increment 
T, from its stress-free state. Let us first replace this problem 
by a constrained thermal stress problem in which the two ends 
of the beam are not allowed to expand in the axial direction 
but may expand freely in the thickness direction. If the material 
of the /th layer has the thermal expansion coefficient a„ then 
the solution to the constrained thermal stress problem is simply 
an axial stress field uniform in each layer: 

ui 
a,= -E,a,T,~ -C,    (/ =   1,2.3) (14) 

This trivial solution, however, requires compressive tractions 
at the two ends Hence the solution must be combined with a 
purely mechanical solution which completely relieves the pre- 
ceding compressive tractions at the two ends. The latter so- 
lution is characterized by the stress functions of equations (7)- 
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(9) with n - 2, in which the functions F,(*), F2(x), Gi(x), and 
G2{x) are determined by the governing differential equations 
of equation (12) and the following end conditions: 

Gd± a) = A,C,,    G2(± o) = A1C, + A2C2,   F,(± <7) = /i,2C,/2 

F2(± O) = (/2,
2
C1 + /I2

2
C2)/2 + A1/I2C1 (15) 

Furthermore, the constants F* and G* in equation (9) are given 
by 

G* = h]Cx + h2C2 + hlC-i> 

F* = (AfC, + /J2
2C2 + A3

2C3)/2 + Ä,A2C, + ÄjÄ3C, + ä2ä3C2 

(16) 

Equation (15) and (16) are obtained by integrating equation 
(14) with respect to the thickness coordinate. 

As shown in Section 3, the traction boundary-value problem 
with nonvanishing F* and G* may be decomposed into a similar 
problem with vanishing F* and G* (Problem B) and another 
problem characterized by a uniform axial extension combined 
with pure bending (Problem C). The solution of Problem B 
satisfies the differential equations of equation (12) and assumes 
the boundary values given by the difference of equation (15) 
and the following data: 

G,(± fl) = £jÄi{e0-«c(>'o+^i)/2j 

F,(± <?) = (£, A ,2/6) [3e0-K(2v0+ .>'.)) 

G2(± o) = G,(± a) + E2h2{t0-K(yi+y2)/2\ 

F>(± a) = Fl(± a) + (E2h2
2/6) {3e0 - *(2vi 

+y2)}+Eihlh2Ux-K(yo+yl)/2)     (17) 

where 

jo= -y'= -(Äi + Ä2+A3)/2 

The preceding expressions may be obtained from equations 
(3)-(9) and (16). 

For the three-layer beam, the 4 by 4 constant symmetric 
matrices [A], [B] and [C] of equation (12) are shown in the 
Appendix. 

7    Physical Meanings of the Functions F/ (x) and Gj(x) 

The functions F,(x) and G,(x) in equations (7)-(9) are the 
values of the stress function and of its >'-derivative along the 
z'th interface. They are related to the resultant force and mo- 
ment of the normal and shearing interlaminar stresses over 
interfacial intervals of varying lengths adjacent to the free edge. 
Let the origin of the axial coordinate x be shifted to the left 
end of the beam. Then, over the interval [0, x] of the /th 
interface in the new coordinate system, we have 

Oydx = \ Fi" dx = Ft' (x), 

Similarly, 

7xydx = - \G,'dx = - G,{x) 

x Oydx = x Fi'(x) -F,{x), 

j x2 oydx = x2Fi' (AT) - IxFiix) + 2 \ F, dx 

x TXV dx= -x G,{x) + \G\ dx, 

In particular, the maximum absolute value of G„ reached at 
the midpoint of the beam, is equal to the resultant force of 
the interlaminar shearing stress over one half of the rth inter- 
face. Generally, G, increases or decreases monotonically from 
zero to its maximum or minimum value at the midpoint of the 
beam. If G, reaches a large value in a very short distance from 

the free edge, then an intense interlaminar shearing stress oc- 
curs in a very short interval from the free edge. This situation 
is susceptible to delamination failure under the shear fracture 
mode. 

The behavior of the function F,'{x) has a similar implication 
for the interlaminar normal stress. This function generally 
increases from zero at the free edge to a maximum value in a 
short distance from the free edge. It then decays slowly to zero 
at the midpoint of the beam. If F,-' increases from zero to a 
large maximum value in a very short interval from the free 
edge, then an intense tensile interlaminar normal stress acts in 
that short end interval, and the resultant tensile force is bal- 
anced by an equal compressive force distributed over the re- 
maining portion of the half interface. This situation is 
susceptible to delamination failure under the peeling fracture 
mode. 

The maximum values of the functions G, and F,' and the 
characteristic lengths of their regions of steep gradient are 
meaningful measures of the criticality of the interlaminar 
stresses in the rth interface near the free edge. There are good 
reasons to suggest the use of these maximum values and char- 
acteristic lengths as parameters in the interlaminar fracture 
criteria for the peeling and shearing modes of failure. These 
parameters may be easily calculated by the present method of 
analysis. Being global measures, their values are less affected 
by the crudeness or refinement of the approximate analysis 
than the pointwise values of the interlaminar stresses are. That 
is, a relatively simple analysis may provide unreliable results 
for the detailed interlaminar stress distributions along the in- 
terfaces but may still yield accurate results for the maximum 
values of G, and F,' as well as the characteristic lengths of 
their regions of steep gradient. 

8    First Example 
The preceding method of analysis is applied to two config- 

urations of a three-layer laminated beam for which finite- 
element solutions have been given by Glaser (1989). The pa- 
rameters for the first configuration are: 

hi = 2.032 mm,     £,=  68.95 GPa, 
/?2 = 0.0508 mm,    £2 =   13.0 GPa, 
A3 = 0.508 mm,     £3 = 120.66 GPa, 

p,=0.33 a, = 23.6x 10~V°C 
r2 = 0.3 a2=11.7xlO"6/cC 
»»3=0.28    a3»   3.2x 10"6/°C 

The half length of the beam is 15.24 mm. For this configu- 
ration, Glaser used a total of 6440 plane stress quadrilateral 
elements involving 13,206 degrees of freedom. He also used 
submodeling and mesh refinement to refine his solutions and 
compared the results. 

In the present analysis, we substitute the preceding parameter 
values into the matrices [A], [B] and [C] as given in the Ap- 
pendix. From the characteristic equation, equation (13), we 
obtain four pairs of complex conjugate roots for the square 
of the eigenvalue (in the unit mm-2): 

2.326 ± 2.882/, 15.748 ± 7.950/, 138.02 ± 333.50/, 

1692.4 ± 2548.1 / 

It is clear that all eigenfunctions exp( - Xx) decay rapidly away 
from one or the other end of the beam. Indeed, since the first 
four eigenvalues are given by ± 1.736 ± 0.829 /, at the mid- 
point of the beam (15.24 mm from the two ends) the associated 
eigenfunctions decay to exp(- 15.24 x 1.736) times their max- 
imum values at one or the other end of the beam. Consequently, 
all eigenfunctions associated with the eigenvalues having po- 
sitive (negative) real parts make negligible contributions to the 
solution in the left (right) half of the beam. 
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Fig. 2    Results of the first example: comparison of the present solution 
with Glaser's finite element solution 

When the laminate is subjected to a uniform temperature 
increment 240°C, the solution of equation (14) for the con- 
strained thermal expansion problem is given by 

-C,=-390.53 MPa,    -C2= -36.50 MPa, 
- C3 = - 92.67 MPa 

Now equations (14) and (15) yield 

G, = 0.7936 MPa-m,    Fx = 806.26 x 10~6 MPa-m2, 

G2 = 0.7954 MPa-m,    F2 = 846.62 x 10"6 MPa-m2, 

G* = 0.8425 Mpa-m,    F* -  1262.65 x  10"6 MPa-m2 

From equation (6) we obtain 

Q= 202.06 MPa-m,   R = 25.190x 10~3 MPa-m2, 

S=127.32xl0-6 MPa-m3 

From equations (4) and (5) we obtain e0 and K associated with 
the solution of Problem C (characterized by a uniform axial 
extension combined with pure bending which relieves the re- 
sultant axial force and bending moment of the constrained 
thermal solution): 

e0 = 4.447 x 10-3,   K = 2.225 radian/m 

Combining the axial stresses from equations (3) and (14), we 
obtain ax= -196.9 MPa in the bottom layer at Interface 1, 
and ax=232.5 MPa in the top layer at Interface 2. These results 
are nearly exact in an interior segment of the beam because 
the exact solution of Problem C (which exactly complements 
the preceding two simple but exact solutions) decays rapidly 
away from the two ends. Glaser's finite-element solution yields 
corresponding results of -195.0 MPa and 229.1 MPa, re- 
spectively (the unit used by Glaser for these results, GPa, was 
possibly an error). Hence the discrepancy between the axial 
stress of the present analysis and that of the finite-element 
solution is less than 1.5 percent and, since the present result 
is nearly exact, the discrepancy reflects the error in the finite- 
element solution. 

To obtain the axial stress and the interlaminar stresses in 
the vicinity of the free edge, the solutions of the constrained 
thermal expansion problem and of Problem C must be com- 
bined with the solution of Problem B. The last solution may 

0.750 0.800 0.850 0.900 0.950 1.000 

MPo-mm 

-G2 BU -^^-G, 

60- 

40 

20- 

(■)■  1 -^ 

0.750 0.800 0.850 0.900 0.950 1.000 

Fig. 3    Interfacial values of the first derivatives of the stress function 

be obtained by appropriately combining the eigenfunctions as 
described in the preceding section. The final results are shown 
in the three plots in the right column of Fig. 2. The corre- 
sponding plots in the left column of the figure show the finite- 
element results obtained by Glaser. The agreement is very good 
for the axial stress and the interlaminar normal stress. The 
interlaminar shearing stress obtained in the present analysis is 
smaller than the finite-element result in a very short interval 
(shorter than one quarter of the laminate thickness) adjacent 
to the free edge. Elsewhere, the agreement in the interlaminar 
shearing stress is also excellent. 

The first derivatives of the stress function along the two 
interfaces are shown in Fig. 3. As previously mentioned, along 
each interface the values of F,'(AT) and G{x) are the resultant 
normal force and the resultant shearing force, respectively, 
acting across an end segment of the interface of length (a-x). 
Fj' attains its maximum value at a point x* on the interface 
where the interlaminar normal stress changes its sign. This 
point (x* «0.95a for the present solution) is generally very 
close to the free edge. The average value of the interlaminar 
normal stress over the end segment [x*, a] equals F,'(x*)/ 
(a-x*). This average value is a measure of the criticality of 
the interlaminar normal stress near the free edge. The inter- 
laminar shearing stress does not change sign in the interval [0, 
a]. Hence its integral, G,{x), changes monotonically from 0 at 
the free edge to its maximum (absolute) value at the midpoint 
of the beam, x = 0. Half of the change takes place in a very 
short interval [x**, a] near the free edge. The average inter- 
laminar shearing stress over this short end interval is given by 
G,{x")/(a-x") = G,{0)/2(a-x"). This value is a measure of 
the criticality of the interlaminar shearing stress near the free 
edge. One finds that x* is very close to x**. Hence the two 
end segments of the rth interface used as the basis for averaging 
the interlaminar normal and shearing stresses are not signifi- 
cantly different. 

9   Comments on the Solution Near the Free Edge 
The reason for the more significant discrepancy in the in- 
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terlaminar shearing stress compared to the interlaminar normal 
stress (in the close vicinity of the free edge) is that, in the 
present analysis, TX> varies quadratically across the thickness 
of each layer whereas o, has a cubic variation. In the poly- 
nomial approximation of the stress function (equations (7) to 
(9)), the coefficient functions F,{x) and G,(x) as determined by 
the complementary virtual work principle predict better the 
average shearing stress across the thickness of each layer, and 
less satisfactorily its maximum value, which is reached along 
an adjacent interface. This reasoning suggests that the results 
for the interlaminar shearing stress may be improved if the 
third-order polynomial approximations for the stress functions 
are replaced by fourth-order polynomials in the thickness co- 
ordinate. The validity of this suggestion is supported by the 
superiority of the present result for the interlaminar normal 
stress (which has a cubic variation in TJ) compared to the in- 
terlaminar shearing stress. 

The details of the interlaminar normal stresses as shown in 
the second plot in the right column of Fig. 2 are only captured 
by the finite-element solution with mesh refinement. Thus, 
when higher order polynomials are used to represent the stress 
functions, the present analysis may provide results as good as 
or better than finite-element solutions using more than 10,000 
degrees-of-freedom, with a significant saving of programming 
labor and computational time. 

It is well known that an exact analysis with strict adherence 
to the constitutive relations of linear elasticity (even at phys- 
ically unattainable high levels of stress) yields a singularity at 
the intersection of the free edge with an interface. Such a stress 
singularity cannot be determined by the present approximate 
method or by the usual finite-element analysis. Yet the pre- 
dicted magnitude of the interlaminar normal stress at the free 
edge is sometimes taken as a measure for assessing the accuracy 
of an approximate analysis. The rationale appears to be that 
since an exact ana!} si.s based on linear elasticity predicts infinite 
peeling stress at the free edge, one approximate solution might 
be belter than another if, in the absence of other significant 
differences, the first solution yields a greater peeling stress at 
the free edge. 

But the mere fact that an approximate analysis fails to de- 
termine a stress singularity should not be considered as a weak- 
ness of that analysis, because stress values exceeding a certain 
bound are physically unattainable. Progressive refinement in 
the finite-element modeling or in the present scheme of analysis 
(by raising the degree of the polynomial representation for the 
stress function) may result in increasingly larger values of the 
free-edge peeling stress. However, such refined solutions do 
not necessarily provide more or better information concerning 
the actual stress distribution near the free edge. 

Along the free edge, o, according to the exact elasticity 
solution approaches infinity as one approaches an interface. 
Hence, along an interface, oKi approaches infinity at the free 
edge. But this limiting behavior of ov v presents a distorted 
picture of the real situation because it is a mathematical con- 
sequence of an unrealistic constitutive assumption. We notice 
that 7,, and ov are related by the equilibrium equation T„IV + 
a,., = 0. If an over-refined numerical or finite-element solution 
yields unrealistically large local values of o,,, then it also yields 
unrealistically large values of r,v,,, i.e., of the gradient of the 
interlaminar shearing stress in an end region of the interface. 
Therefore, while the higher gradients and larger values of TIV 

as predicted by over-refined approximate analyses may be closer 
to the exact elasticity solution with stress singularity, they may 
also present a distorted picture of the actual pattern of the 
imerfacial shearing stress in a real material. 

10   Second Example 
The second configuration of the three-layer laminate to be 
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Fig. 4   Results of the second example 

analyzed was originally considered by Chen et al., 1982 (see 
their Example 1). For this configuration, the half length of 
the beam is 250 mm and the values of the geometrical and 
material parameters are 

£,= 68.9 GPa, 
£;= 30.0 GPa, 
£,-206.9 GPa, 

^=0.33, 
K; = 0.33, 

1*3 = 0.25. 
In this case, the characteristic equation has two real roots and 
three pairs of complex conjugate roots for the square of the 
eigenvalue (in the unit ram"'): 

.004226,    .012193,    .001691  ± .001675 i. 

.003524 ± .14678 i.     1.95065 ± 4.202"5 i 

A, = 50.0 mm, 
h:= 1.0 mm, 
/i, = 50.0 mm, 

Q,= 13.0x 10" V°F. 
a~ =   2.5 x 10 6/°F, 
Q-,=   6.5 x 10" VF. 

Chen et al. considered a fictitious uniform temperature in- 
crement of l06oF. As indicated above, virtually exact results 
for the axial stress in the main body of the beam (away from 
the two ends) may be obtained by an elementary analysi -e- 
glecting the contributions of the eigenfunctions. This yields 
the values -255.6 GPa and 558.7 GPa, respectively, in the 
lower layer at Interface 1 and in the upper layer at Interface 
2. The corresponding values from Glaser's finite-element so- 
lution are -254.1 GPa and 554.1 GPa. Glaser reported the 
values of -248.3 GPa and 537.9 GPa. respectively, for the 
solutions of Chen et al., although results with four-digit pre- 
cision were not provided in their original paper and can only 
be conjectured by extrapolating the curves in Fig. 4 of the 
paper. A comparison of the results indicates discrepancies 
smaller than one percent with the finite-element solution and 
larger than three percent with the solution of Chen et al. (as 
given by Glaser). 

The results for the interlaminar normal and shearing stresses 
in the vicinity of the free edge are shown in Fig. 4. The present 
results are somewhat in better agreement with the finite-ele- 
ment solution than the results of Chen et al. 
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In the analysis of Chen et ah, linear variation of the axial 
stress with respect to the thickness coordinate was assumed in 
the two thick layers 1 and 3 but not in the thin middle layer. 
Chen et ah did not introduce stress functions. However, they 
obtained quadratic variation of T^ and cubic variation of ay 
(with respect to the thickness coordinate in layers 1 and 3) 
from the assumed linear variation of the axial stress by inte- 
grating the equilibrium equations in each of the two layers. In 
the thin middle layer, they introduced the additional assump- 
tion that the shearing stress T^ does not vary in the thickness 
direction. Under this additional assumption, one equilibrium 
equation (which the authors used) forces the transverse normal 
stress <jy to depend linearly on the thickness coordinate and 
the other equilibrium equation (which they did not use) requires 
that the axial stress in the middle layer be independent of x— 
a conclusion which is clearly incompatible with the free-edge 
boundary condition. 

It may be shown that the additional assumption of Chen et 
ah for the thin middle layer, when combined with the free- 
edge boundary condition ax = 0, is mathematically equivalent 
to imposing the following expression for the functions F2 and 
G2 of the present analysis in terms of the functions F, and Gx: 

G2{x) = G,(*),   F2(x) = F,(x) + h2 G,(x) 

As a result, the number of unknown functions in the eigenvalue 
problem is reduced from four to two and the order of the 
characteristic equation is lowered from 16 to 8. As an equation 
for the square of the eigenvalue, the characteristic equation in 
the analysis of Chen et ah has two real roots and one pair of 
complex conjugate roots. The simplified analysis and the un- 
derlying assumption are justifiable for a laminate with a very 
thin middle layer. 

11    Summary and Conclusion 
A systematic approximate method for obtaining the plane 

stress solutions of a laminated beam subjected to temperature 
loadings has been developed in this paper. The method is based 
on the use of stress functions. This ensures that the resulting 
approximate solution for the stress field satisfies exactly the 
equilibrium equations in each layer, the traction-free boundary 
conditions over the entire boundary of the beam, and all in- 
ter facial continuity conditions for the interlaminar stresses. 
The compatibility conditions for the strain and the interfacial 
continuity of the displacement are enforced in an averaged 
sense by extremizing the complementary energy functional with 
respect to the class of statically admissible stress fields whose 
stress functions in individual layers are cubic polynomial func- 
tions of the thickness coordinate. This results in an eigenvalue 
problem associated with a linear system of ordinary differential 
equations having constant coefficients. An appropriate com- 
bination of the eigenfunctions which satisfies the traction-free 
boundary conditions at the two ends yields the interlaminar 
stresses in the beam. In the main body of the beam away from 
the two ends, the axial stress is practically independent of the 
axial coordinate and its values can be determined, almost ex- 
actly, by combining two trivial solutions, the first being a 
constrained thermal expansion solution and the second being 
a solution corresponding to a uniform axial extension super- 
posed on pure bending. 

The present method achieves the dual objectives of efficiency 
and accuracy because the representations of the stress functions 
in the analysis are not chosen arbitrarily or purely for com- 
putational reasons (as in choosing the shape functions in finite- 
element modeling). They are based on the eigenfunctions as 
determined by the complementary virtual work principle. Po- 
lynomial expansion of the stress functions with respect to the 
thickness coordinate may be justified on the ground that the 
thickness of each layer is very small compared to the beam 
length. Besides the assumption of linear thermoelasticity, the 

assumed polynomial dependence of the stress function upon 
the thickness coordinate in each layer is the only approximation 
made in the present analysis. Additional and miscellaneous 
assumptions with obscure meaning and dubious implication 
are categorically avoided. This feature makes the present ap- 
proximate analysis particularly appealing from a mathematical 
point of view. 

Using the present method, a thermal stress analysis of a 
three-layer beam involves only eight real and complex eigen- 
functions and yields results that are comparable in accuracy 
to finite-element solutions with more than 10,000 degrees of 
freedom. Compared to the finite-element analysis, the present 
method requires extremely simple data input and very little 
resources of computer time, storage and power (execution of 
the analysis for the two example problems in this paper took 
a fraction of a minute on an IBM personal computer with 
640K memory). Furthermore, refinement and improvement in 
the approximate solutions may be achieved by increasing the 
degree of the polynomial representations of the stress func- 
tions. However, as was argued in Section 9 of this paper, there 
are good reasons to refrain from over-refining the approximate 
solutions. Although an exact analysis based on linear elasticity 
yields a stress singularity at the intersection of the free edge 
with an interface, this limiting behavior may provide a distorted 
picture of the actual patterns of the interlaminar normal and 
shearing stresses along an interface between real materials. 

In the rth interface, the maximum values of the first order 
partial derivatives of the stress function (i.e., the maximum 
values of /v(x) and G,{x)) and the characteristic lengths of 
their regions of steep gradient provide useful measures of the 
criticality of the interlaminar stresses near the free edge. These 
values are less affected by the degree of refinement of the 
approximate analysis method than the detailed distributions 
of the interlaminar stresses are. They may be used as param- 
eters in the fracture criteria for the initiation of delamination 
failure. 
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APPENDIX 

For a laminated beam composed of three isotropic elastic 
layers, the symmetric matrices [A], [B] and [C] of Eqs. (12) 
and (13) are given by 
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Abstract 

Efficient and accurate solutions of the interlaminar stresses in 
a layered beam under a temperature loading are obtained by a 
variational method based on the principle of complementary 
virtual work. Stress functions are introduced in each layer and 
they are approximated by polynomial expansions of the fifth or 
lower degrees in the thickness coordinate. Comparison of the 
solutions of the various orders with the existing numerical and 
analytical solutions indicates that the variational solutions 
converge rapidly as the degree of the polynomial expansion 
increases and that even the lower-order variational solutions yield 
satisfactory results for the interlaminar stresses. Over end 
segments of the interface adjacent to the free edge, the resultant 
forces of the interlaminar normal and shearing stresses are given 
by the first-order derivatives of the stress functions. These global 
measures of the severity of interlaminar peeling and shearing 
action are predicted accurately by the lowest-order variational 
solution. 

1. Introduction 

Bimetal thermostats and multi-layered beams and laminates 
are often subjected to severe interfacial stresses under mechanical 
and temperature loads. Mismatches in the thermal and elastic 
properties of the adjacent layers generally result in a stress 
singularity at the intersection of an interface with a free edge. 
The problem has received a considerable amount of attention 
because of its importance to the technology of composite 
materials and to electronic packaging. Besides theoretical analysis 
of the stress singularity based on elasticity solutions, numerical 
solutions using finite-difference or finite-element methods have 
been obtained to determine the interfacial stress distribution 
near the free edge. Furthermore, simplified mechanistic 
approaches have been developed to provide efficient approximate 
solutions and quantitative measures of the criticality of the free- 
edge effects. 

1 Professor, Engineering Science and Mechanics Program. 

In a recent work (Yin, 1991a), the author developed a general 
scheme for the determination of interlaminar thermal stresses in 
laminated beams. The approach was based on the 
complementary virtual work principle with the use of stress 
functions. Besides the assumption of linear thermoelastic 
constitutive relation, the only approximation introduced in the 
analysis was that the stresses (and hence the stress functions) in 
each layer are polynomial functions of the thickness coordinate. 
No a priori assumption was made concerning the variation of the 
stresses along the axial direction. The resulting approximate 
solutions satisfy, exactly, the equilibrium equations in each layer, 
the free boundary conditions on exterior surfaces, and interfacial 
continuity of the tractions across all interfaces. Compatibility of 
the strain and interfacial continuity of the displacements are 
enforced in an averaged sense by minimizing the complementary 
energy. This computationally simple and efficient method was 
applied to the problem of a three-layer beam. The stress 
functions in the successive layers were taken to be cubic functions 
of the thickness coordinate. The interlaminar normal and 
shearing stresses were calculated and found to be in close 
agreement with the results of a very elaborate finite-element 
solution (Glaser, 1989), except in an extremely short interval at 
the end of the interface. 

Stress functions that are cubic polynomial functions of the 
thickness coordinate in each layer yield an axial stress that has a 
linear variation across the thickness of the layer. Such stress 
functions are, therefore, the lowest order polynomial 
approximations needed to account for the effect of bending of the 
beam. That this lowest-order variational solution provides 
accurate results for the interlaminar stresses, except in extremely 
short intervals adjacent to the free edge, indicates the efficacy of 
the present method. More accurate solutions for the interfacial 
stresses may be obtained by the present approach using higher- 
order polynomial expansions of the stress functions. By 
comparing the variational solutions of increasing order* among 
themselves or with the elasticity solution, one may discern the 
general trend of convergence and assess the accuracy and 
reliablility ol the present method. 



In this paper, refined variations] solutions based on fourth- 
order and fifth-order polynomial expansions of the stress function 
(in terms of the thickness coordinate in each layer) are obtained 
for three-layer and two-layer beams. The additional terms in the 
expansion provide a better representation of the stress field near 
the free edge. The resulting solutions for the three-layer beam 
are in excellent agreement with Glaser's finite element solutions 
even in the immediate neighborhood of the free edge. The 
results for the two-layer bimetal thermostat converge rapidly, in 
the sense appropriate to variational calculus, to an approximate 
elasticity solution (Kuo, 1989) which was obtained by using the 
Fourier transform method and the knowledge of the stress 
singularity associated with two joined quarter-spaces (Bogy, 1968, 
1970). 

The first derivatives of the stress functions (with respect to the 
axial and the thickness coordinates) are the integrals of the 
interfacial normal and shearing stresses (i.e., the resultant normal 
and shearing forces) over end intervals of varying lengths. It has 
been suggested (Yin. 1991a) that these integrals are more appro- 
priate measures of ti.e criticality of the interlaminar stresses than 
conventional measures such as the stress intensity factors, because 
stress singularities co not occur in a real material whereas the 
resultant forces of the interlaminar stresses over short end 
segments of the imerface provide realistic indications of the 
severity of the local ictions of peeling and shearing. For the two- 
and three-layer bea is studied in the present work, a comparison 
of the variational solutions based on the third to the fifth-order 
polynomial expansions of the stress functions indicates that, 
although the result;, .or the interlaminar stresses show appreciable 
discrepancies near '\e free edge, those for the derivatives of the 
stress functions are in much better agreement. Consequently, if 
the derivatives of st ^ss functions are used in the fracture criteria 
of laminated bearr.., the variational solutions based on lower- 
order polynomial • tress functions are adequate for providing 
realiable failure pn dictions even though such solutions do not 
yield accurate lor .1 interlaminar stress distributions in an 
extremely small n ghborhood of the free edge. This indicates 
another importan advantage of the stress-function-based 
variational approa^ l besides its superior efficiency and extreme 
ease of data input. 

2.  Decomposition  jf the Thermal  Expansion  Problem of a 
Layered Beam 

In a previous p<<per (Yin, 1991a), the thermal expansion 
problem of a layered beam of a finite length was decomposed into 
three component problems: (1) a constrained thermoelastic 
problem with a vanishing axial strain and a layerwise constant 
thermal stress field, (2) a mechanical problem characterized by a 
uniform axial extension combined with pure bending and (3) 
another mechanical problem with a self-equilibrating system of 
end tractions which, when superposed on the previous two 
solutions, completely relieves the tractions at the two free ends of 
the beam. The first two problems are easily solved and the 
solutions do not show interlaminar stresses. The interlaminar 
stresses associated with the third, non-trivial problem are 
determined by solving an eigenvalue problem. In the present 
paper, a more direct decomposition of the original problem into 
two (rather than three) subproblems is achieved by conceptually 
extending the layered beam into one of infinite length. The 
second subproblem in the present decomposition is identical to 
the third subproblem in the original decomposition. 

Consider a layered beam, of axial length 2a, consisting of n+ 1 
distinct, homogeneous, isotropic layers. The layers are separated 
by n parallel interfaces at y = y,(i = 1, 2, ... n), where the origin 
of the (x, y) coordinate system is chosen at the center of the 
beam, and the x-coordinate runs along the longitudinal direction. 
The beam is stress-free in some reference temperature and is 
subjected to a temperature increment T(y) which depends only on 
the y-coordinate. Our problem is to determine the thermal 
stresses along the interfaces of the beam. 

We consider, instead of the layered beam of finite length 2a, 
an otherwise identical beam with infinite length under the same 
temparature load T(y). The infinitely long beam is free to bend 
and to extend along the axial direction. Consequently, the 
deformation of the infinite beam is characterized by a constant 
axial membrane strain e0and a constant curvature *, i.e., the 
initially straight beam extends and bends uniformaly into a 
circular beam. Since the infinite beam exists only in imagination, 
over-lapping of the deformed beam with itself due to multiple 
winding around the circle may be ignored. It is clear that all 
cross-sections of the infinite beam are subjected to a zero 
shearing stress (r ^ = 0) and to the same distribution of the axial 
stress a„(y), which is generally discontinuous across the interfaces 
y = y, , and which has vanishing force and moment resultants 
because the beam is free to extend and to bend. In other words, 
the stress distribution a„(y) across each cross-section is a self- 
equilibrating system. We now consider a segment of the infinite 
beam of initial length 2a. The segment is maintained in the given 
state of deformation by the temperature load T(y) and the end 
traction o,(y). If an equal but opposite system of end tractions 
-o,(y) is superimposed on the segment, then the segment 
becomes traction-free over its entire boundary. Consequently, the 
solution of the original thermal stress problem for the finite beam 
may be decomposed into (1) a trivial solution with a total strain 
field characterized by a uniform axial strain €0 on the middle axis 
and a uniform bending curvature K (part of the strain field is due 
to the thermal strain associated with the temperature load and the 
other part is caused by the mechanical load at the two ends) and 
(2) a complementary mechancial solution due soley to the 
reversed end tractions -o,(y). Our analysis is mainly concerned 
with the solution of the complementary mechanical problem. 
Once the solution of the complementary problem is obtained, it 
is combined with the trivial solution of the thermal expansion of 
an infinitely long beam to obtain the final solution for the 
mterlaminar thermal stresses in a finite beam. 

3. Polynomial Stress Functions 

The layers and their interfaces will be numbered from the 
bottom up. Thus the i-th layer is bounded below by the (i-l)-th 
interface and bounded above by the i-th interface. This layer has 
the thickness h, = y, - y,.lt and is composed of a material with 
Young's modulus E„ Poisson's ratio i/„ and coefficient of thermal 
expansion a,. Any plane stress field in the i-th layer satisfying the 
differential equations of equilibrium may be expressed in terms 
of a stress function in the following manner: 

0)        (i) (•) (I) 

= - F (1) 

where the commas indicate partial differentiation. It has been 
pointed out (Yin, 1991a) that, because of the interfacial continuity 
of the interlaminar stresses, the stress functions in the successive 
lavers mav be chosen in such a wav that F and F,v are both 



continuous across the interfaces, i.e., 
d*t)       (0 (.»i)       (>) 

F   = F, F,y = F,y (2) 

along the interface y = y,. Furthermore, the stress function in the 
bottom layer and its y-derivative may both be made to vanish 
identically over the bottom surface. It has also been shown that 
F,y and F on the top surface are related to the force and moment 
resultants of the end traction a,(y). Since these force and 
moment resultants vanish in the case of the complementary 
mechanical problem, F and F,y also vanish on the top surface. 

In the i-th layer, we define the non-dimensional thickness 
coordinate rj by 

n * (y - y-i)/(y, - y,-i) 

and approximate the stress function in the layer by a polynomial 
expansion in the non-dimensionaJ variable rj: 

FOcrj) = (1 ~3r,2 + 2n3)F,.,(x) + (r, -2r,2 + rj3) h,G,.,(x) 

+ (3r/2-2r)3)F,(x) + (r,3 - r>2) h,G,(x) 

+ rj2(l - *?)2P,(x) + fj2(l - r?)
3Q,(x)   (i = 2 n)     (3) 

where F,(x), G,(x), P,(x) and Q,(x) are undetermined coefficient 
functions. It is easily verified that F,(x) and G,(x) coincide, 
respectively, with the first and second quantities in Eq. (2), i.e., 
they are the values of the stress function and its y-derivative along 
the i-th interface. In the bottom and top layers, Eq. (3) is 
replaced, respectively, by the following expressions 

fi) 
F(x,rj) = (3r?2- 2r?

3)F1(x) + (r;3- n2)h,G,(x) 

+ ^2(1 -r?)2P,(x) + r,3(l -r?)2Ol(x) (4) 

and 

(n*l) 
F(vj) = (1 - 3r,2 + 2n3)Fn(x) + (rj - 2rj2 + n3)hnMGn(x) 

+ r?2(I -f?)2P..,(x) + r,2(l -r,)3Qn,,(x) (5) 

The stress functions used in a previous study (Yin, 1991a) did not 
include the coefficients of the quartic and quintic terms in n (P, 
and O). 

Substituting the preceding expressions of the stress functions 
into the total complementary energy of the beam 

n = (i/2) z (l/E,){F.yy
2+ F,a

2-2^1F,yyF„ 

+ 2(1 + u,)Fttf
2)dxdy (f>) 

we obtain, by the usual procedure of variational calculus, the 
Euler equation associated with the first variation of ft: 

((A1d? MBr^2 + IC1MX) = {0} (7) 

where [A), [B] and [C] are 4n + 2 by 4n + 2 real symmetric matrices 
and where the column vector {X} has the components P](x), 
Q,(x), F,(x). F,(x) Fn(x). G„(x), Pn.,(x) and Qnrl(x). 

If the temperature load T(y) varies linearly in each layer, then 
the end traction -a „(y) of the complementary mechanical problem 
also varies linearly in each layer. In this case the the functions P, 
and O, (i = 1, 2 n+ 1) vanish at the end points x = ± a while 
the boundary values of the functions G.and F,(i = 1, 2, ..., n) at 
these end points maybe easily obtained by integrating -a,(y) once 
and twice with respect to the thickness coordinate. These 
boundary condi-tions together with the homogeneous boundary 
condition for the derivatives of the functions F,, G,, P, and O, 
provide enough conditions for uniquely determining the unknown 
coefficients in the general solution of the governing differential 
equation, Eq. (7). 

Because of the lengthy algebraic manipulations required to 
derive the coefficient matrices (A], [B] and [C\ of Eq. (7) in terms 
of the geometrical and material parameters of the beam, the task 
of derivation was implemented with the use of the symbolic com- 
putational program MACSYMA. The program also translated the 
resulting expressions of the matrices into Fortran expressions. 
The expressions were subsequently integrated into a Fortran 
program which reads the geometrical and material parameters 
and the temperature load, evaluates the matrices [A], [B] and [C], 
computes all real and complex eigenvalues and the corresponding 
eigenvectors associated with Eq. (7), forms the appropriate linear 
combination of the eigenvectors so as to satisfy the end conditions 
for the functions F,, G,, P, and 0, (deduced from the end 
traction -a,(y), which is in turn caused by the thermal load), and 
finally calculates the interlaimar stresses along the interfaces by 
evaluating the derivatives of the functions F,(x) and G,(x). The 
execution of the program for a two- or three-layer beam requires 
only a fraction of a minute on an IBM PC-XT and a few seconds 
on a 386 PC. Data input is extremely simple. It consists of a few 
lines of numbers, including the number of layers in the beam (at 
present limited to three but may be increased by modifying the 
program), the elastic moduli and the thermal expansion coeffi- 
cients of the successive layers, and the temperature load in each 
layer (assumed to be constant or to vary linearly within each 
layer). Comparison of the results generated by the program with 
the existing results of finite-element and analytical solutions for 
the same problem show very close agreement, as shown in the 
following section of this paper. The program, therefore, appears 
to be ideally suited for simple, inexpensive and reliable 
computation of the interlaminar thermal stresses in the practical 
analysis of a layered beam. 

4. Refined Variational Solutions of Three-Layer and Two-Layer 
Beams 

Glaser (1989) presented a finite-element solution of the 
thermal stresses in a three-layer beam of length 2a subjected to 
a uniform temperature increment 240°C. The middle layer of the 
beam is a thin layer of adhesive. The geometrical and material 
parameters of the problem are given as follws: 

h, = 2.032 mm, E, = 68.95 GPa, u} = .33. a, = 23.6 x 10"*/°C 
h2 = .0508 mm, E2 = 13.0 GPa, i>2 = .30, cr2 = 11.7 x 107°C 
h3 = .508 mm,   E3 = 120.66 GPa, »2 = .28,  a2 = 3.2 x lO^C 

where h,, E,, v,   and a,  denote, respectively, the thickness. 



Young's modulus, Poisson's ratio and the thermal expansion 
coefficient of the i-th layer. 

For this problem, variational solutions are obtined by the 
preceding solution scheme using polynomial expansions of the 
fifith order in the thickness coorinate, and the results are shown 
by solid curves in Figs. 1-4, where the axial coordinate x originates 
from the center of the beam and is normalized with respect to the 
half-length a = 15.24 mm. These results are in better agreement 
with Glaser's finite-element solution (shown by the scatterd open 
square marks in the figures) than the previous varational solution 
based on cubic polynomial stress function (Yin, 1991a, indicated 
by broken curves). Appreciable discrepancies between the third- 
order and fifth-order variational solutions are confined to a very 
short end interval of the interface with a length smaller than the 
thicknesses of the adjacent layers. 

We next consider a bimetal thermostat previously studied by 
Suhir (1986, 1989) and more recently by Kuo (1989), which has 
the following geometrical and material parameters: 

h, = 2.54 mm, E,= 70.38 GPa, *, = .345, a, = 23.6 x W6/ °C, 
h2 = 2.54 mm,  E2 = 324.7 GPa, «/2 = .293, a2 = 4.9 x lO^C. 

Results for the interlaminar and axial stresses (normalized with 
respect to E2a2&T, where &T = 240°C is the uniform tempera- 
ture load) based on polynomial stress functions of the third, 
fourth and fifth orders are obtained and shown in Figs. 5-8. In 
these figures the origin of the axial coordinate has been chosen 
at the left end of the beam and the coordinate is normalized with 
respect to the layer thickness h = h, = h2. The three sets of 
results for the imerlaminar normal stress oy are all in close 
agreement. The peak value of the interlaminar shearing stress r ^ 
increases with the order of the polynomial representation for the 
stress function, and the results suggest that, as the order increases 
indefinitely, the variational solutions of r ^ along the interface 
converge to a limiting distribution which has an infinite limiting 
value as x approaches zero from the interior of the interface. 
This limiting behavior does not contradict the boundary condition 
of zero traction at the free edge because the intersection of the 
interface with the free edge is a singular point of the stress field 
where the limiting values of the stresses r ^ and a, are not unique 
but depend generally on the path of approach to the singular 
point. Analytical solutions which take into account the nature of 
the stress singularity do predict unbounded interlaminar normal 
and shearing stresses at the free edge (Kuo, 1989). Except in an 
extremely short interval (equal in length to a fraction of the layer 
thickness) adjacent to the free edge, the interlaminar stresses 
obtained from the variational solutions are generally in close 
agreement with those of the analytical solution. 

Figures 7 and 8 show, respectively, the axial stresses o, on the 
lower and upper sides of the interface in the bimetal thermostat. 
The stresses vanish at the free edge due to the boundary 
condition of vanishing traction. In contrast, the elasticity solution 
yields unbounded values of ax at the free edge (Kuo, 1991). 
However, significant discrepancies among the variational solutions 
and between the variational solutions and the elasticity solution 
are once again restricted to an immediate neighborhood of the 
free edge. Outside this neighborhood, the variational solutions 
converge rapidly to the elasticity solution. 

Figures 9 and 10 show the first derivatives of the stress 

functions along the interface. Let the origin of the axial 
coordinate x be shifted to the left end of the beam. Then, over 
the interval (0, x] of the interface in the new coordinate system, 
we have 

foydx =f Fdx = F'(x), 

N^dx = - f G' dx = - G(x). 
J 

(8) 

(9) 

In Fig. 9, the maximum value of I F'l occurs at x = x*» 0.3h, 
where h is the common thicknesses of the two layers. The inter- 
laminar normal stress is negative in the short end intervals of 
length x" and positive in the remaining portion of the interface. 
According to Eqs. (8) and (9), the Tesultant normal and shearing 
forces across the short segment [0, x'] of the interface are equal, 
respectively, to the maximum value of F' and to the value of -G 
at x*. Although the three variational solutions of different 
polynomial orders yield significantly different results for the 
interlaminar stresses within the short segment, both the length of 
the segment, x", and the resultant normal and shearing forces, 
F'(x") and - G(x'), are nearly independent of the order of the 
polynomial approximation. In other words, although the lowest- 
order variational solution does not provide accurate results for the 
interlaminar stresses in the immediate vicinity of the free edge, it 
does yield highly accurate results for the resultant normal and 
shearing forces over the short end interval of the interface where 
oy maintains the same algebraic sign. If the two-layer thermostat 
were subjected to a negative temperature increase, then the value 
of F'(x') would be positive rather than negative and this 
maximum value of F' would indicate the resultant peeling action 
over the short end interval where the peeling stress is positive. 
The approximation in the variational solution results essentially 
in changing the distribution of interlaminar stresses in the short 
interval so uat the solutions are continuous at x = 0 and 
compatible with the free-edge boundary conditions (although the 
elasticity solution is discontinuous at the singular point). This 
smoothing or redistribution of the interlaminar stresses, however, 
does not appreciably change the resultant normal and shearing 
forces in the interval [0, x'j. 

In real materials, stress singularities do not occur and singular 
interlaminar stress distributions based on the assumption of linear 
elasticity are invariably changed by the nonlinearity and inelastic 
response of the material including the effect of plasticity. 
Therefore, precise knowledge of the mathematical nature of the 
stress singularity, considered as an end result of the analysis in 
itself, is practically useless or irrelevant \ Although linear 
elasticity provides an elegant theory and a useful tool to the 
mechanician, one should only extract from it results that make 
sense and give rational interpretations of these results. From this 
point of view, a singularity of the stress field merely indicates a 
region of severe stress and steep stress gradient. Precise 
knowledge of the stress distribution within this region, if desirable, 
must be obtained by using more realistic models of the material 
behavior. However, by extending the implication of the St. 
Venant's principle to inelastic deformations, the elasticity solution 
can provide certain indications of the mutual action between a 

1 Of course, this remark is not a criticism of proper uses of 
singularity solutions in mechanics - not as end results in 
themselves, but as intermediate mathematical tools for 
constructing final solutions, in the sense that Green's functions are 
used in the potential theory and the boundary-element analysis. 



severely stressed region and the larger surrounding region. The 
parameters x', F'(x ) and G(x*), obtained in the present analysis, 
are global measures of the interaction between an end region 
around the interface and the surrounding region. These global 
measures have equal status as other precisely defined global 
measures, e.g., the path-independent integrals used frequently in 
fracture mechanics. Since the first derivatives of the stresses 
functions at x = x* have explicit physical meanings (as resultant 
peeling and shearing forces over the segment [0, x'j) and since 
their values can be obtained accurately by lower-order variational 
solutions, these derivatives may be especially suitable as 
parameters in the failure criteria for interfacial fracture. 

5. Conclusion 

In the present work, we obtained variational solutions of the 
thermal expansion problem of two-layer and three-layer beams 
using high-order polynomial expansions of the stress functions 
with respect to the thickness coordinate. The solutions are 
compared with the existing analytical and numerical solutions. 
The results indicate rapid convergence of the variational solutions 
of successive orders to the elasticity solution. For most practice 
purposes, even the lowest-order variational solution, obtained in 
an earlier paper (Yin, 1991a), yields acceptable results of the 
interlaminar stresses. As the order of the polynomial expansion 
increases, the interlaminar stresses approach limiting patterns that 
have unbounded values as one approaches the free edge from the 
interior of an interface. These limiting patterns are also 
consistent with the elasticity solution. However, because 
analytical functions are used as approximating functions in the 
variational method, and because the free-edge condition is strictly 
imposed, the variational solutions of f ^ and o, must vanish and 
must be continuous at the intersection of the interface with the 
free-edge. In contrast, the elasticity solution has a singularity at 
the intersection. Hence the stress field reaches different limits 
depending upon the path of approach to the singularity. If one 
requires that T^ and a, along the interface be continuous at the 
free e 'ge, then the boundary-value problem of elasticity has no 
solution. The preceding differences between the elasticity 
solution and the variational solutions in the extremely small 
immediate neighborhood of the singularity have no physical 
significance because stress singularities do not occur in real 
materials. 

Althouh the interlaminar stresses obtained from the 
variational solutions of different orders show significant 
discrepancies in a short interval adjacent to the interface, their 
resultant forces over the interval are in excellent agreement. 
These resultant forces are given by the first derivatives of the 
stress functions. They are global measures of the mutual action 
between a region of stress concentration around an end segment 
of the interface and the larger surrounding region. Like other 
global measures examplified by path-independent integrals, they 
are appropriate parameters in the failure criteria for interfacial 
fracture. 

The variational method of solution used in the present work 
is efficient and reliable. The computer progTam, presently 
developed for the analysis of two-layer beams with or without a 
thin adhesive layer, is extremely easy to use, because of the 
simplicity of data input. Furthermore, the method can be 
extended to deal with more general beams and laminates 
composed of anisotropic layers and subjected to a combination of 

thermal and mechanical loads, including extension, bending and 
twisting of the laminates (Yin, 1991b), so long as the geometry 
and stresses are constant in the z-direction (the direction 
perpendicular to the x-y plane). A multi-layered beam or 
laminate can be analyzed by a substructure approach in which two 
interior layers adjacent to a given interface are treated as distinct 
elastic media while the remaining layers are grouped into upper 
and lower sublaminates. Such general problems with practical 
importance defy analytical methods of solution and even finite- 
element modeling (without using a substructure approach) when 
the number of layers becomes large. The present analysis 
method, when properly modified, provides the answers with a 
minimum amount of computational effort. 
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