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I. An Qutline of the Research Results

The present report summarizes ths research findings on several fundamental
problems associated with the mechanical behavior and failure of filament-wound
composite structures. The main body of the investipation and its conclusions are
based on the available experimental.results of filament-wound tubes of composite
material systems tested under an internal pressure load. Depending on the
winding geometry, the end conditions of the tubes, and other factors, different
failure modes are observed and are preceded by widely different strain paths.
In most cases, significant deviations from linear strain-pressure relations are
found at moderate or even low levels of the applied pressure load. A basic
problem in characterizing and analyzing the nonlinear behavior of a filament-
wound structure is the determination of the (incremental) constitutive equations
of a generic filament layer. However, even the formulation of the in-situ
linearly elastic constitutive relation of the layer from the experimental results
of tubes subjected to small deformations is not without ambiguity because, due
to the variations in the process parameters (such as the resin content, fiber
misalignment and waviness), the elastic moduli of the filament layer as
calculated from different tube specimens show appreciable, and sometimes even
substantial, discrepancies. The initial elastic modulus of the filament layer
along the fiber direction is often found to be lower than the prediction of the
micromechanical analysis based on the elastic moduli of the constituents. In the
range of deformation where the composite behavior deviates significantly from
linearity, the experimental results suggest strong coupling between the
transverse extensional deformation and the shear deformation {(associated with the
directions parallel and perpendicular to the fibers). This coupling effect may
seriously affect the solutions of filament-wound structures in the nolinear and
inelastic range of deformation, but has not been sufficiently recognized in the
past.

Depending on the winding geometry, material systems, and the nature of
loading, filament layers in a composite tube may undergo significantly different
strain paths in the intrinsic strain space. Failure initiation may occur at a
low or moderate level of the pressure load, and the specimen may experience

progressive damage and degradation of stiffness before ultimate failure in a



particular failure mode. Each distinct failure mode requires a specific
methodology of failure analysis, which may involve empirical failure criteria,
incremental macromechanical analysis involving stiffness degradation,
micromechanical modeling and analysis, and failure criteria of fracture
mechanics.

The report includes unpublished material presented in Parts II to V of the
main text, and published or presented papers attached as Appendices B through H.
Several important results obtained in the present study are summarized in the
following.

(1) A kinematical analysis of the finite deformation of a long layered
tube, with emphasis on the intrinsic strain measures referred to the material
axes of the filament layers, is presented in Secs. 2.1 an 2.2 of Part II.

(2) A discussion of the scissoring action at the fiber cross-over points
is given in Sec., 2.3. The effect yields a distributed couple mument acting
between two adjacent filament layers and causes the non-symmetry of the in-plane
shearing stresses.

(3) An incremental formulation for the axisymmetric deformation of a long,
thick, layered composite tube, containing the incremental compliances of the
successive layers as parameters, is presented in Secs. 2.4 and 2.5. A simple
solution algorithm is given for the initial linear elasticity problem (Sec. 3).

(4) Analytical relations involving the winding angle, the intrinsic
incremental compliance coefficients of the filament layer and the experimental
data of the strains and the pressure are established in Secs., 4.1 to 4.3, These
relations may be used to evaluate the initial elastic moduli in the range of
small strain (Sec. 4.4) and to investigate the incremental shear modulus and
other incremental stiffness parameteis in subsequent. large deformation (Sec.
4.4},

(5) A constitutive mod:1l for large deformation of a filament layer,
including the coupling effert between the shear strain and the axtensional strain
perpendicular to the filament direction, is proposed. It is shown that the model
reconciles the significant difference in the shear stress/shear strain relation
between the experimental results of the open-end and the closed-end tubes with
the *45° winding angle (Sec. 4.5 to 4.8},

(6) An analysis scheme is given for the incremental solution of nonlinear

problems of filament-wound structures, based on the presently proposed nonlinear
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constitutive model of the filament layer (Sec. 4.9).

(7) A theoretical analysis is presented which demonstrates that, for a
unidirectional composite consisting of isotropic matrix and transversely isotro-
pic fibers, the micromechanical problems for determining the gross elastic moduli
from the constituent properties can be transformed to plane-strain, two-phase
elasticity problems involving a fictitious isotropic fiber regicn, with possible
discontinuous displacement data across the interfaces (Part IITI, Secs. 1 to 5).

(8) A two-dimensional boundary-element method is developed for efficient
and accurate solutions of the transformed, two-phase elasticity problems asso-
ciated with the determination of gross composite moduli, based on the existing
two-dimensional boundary-element-analysis computer codes for a single isotropic
elastic medium. A unique and appealing feature of the solution scheme is that
all boundary conditions, symmetry conditions and interface continuity and jump
conditions are treated in a unified and systematic way, allowing significant
simplification in tne implementation of the boundary-element methcd (Secs. 6 to
8). A FORTRAN program MICROBEM is written and listed in Appendix A of this
report,

(9) Numerical results of gross composite moduli are obtained by the
boundary-element method and found to be in excellent agreement with existing
elasticity solutions using serious expansions. The effects of the fiber-volume
fraction and of the Poisson’'s ratio of the resin material are investigated (Sec.
9). Sugpgestions for further research on the problems of nonlinear composite
behavior are mentioned (Sec. 10)}.

(10) Experimental data on the failure processes of filament-wound tubes
with different winding angles and end conditions are reduced to plots of the
intrinsic strains and the areal expansion ratio of the filament layer versus the
pressure load (Sec. 4, Part IV). Two broad categories of failure processes,
corresponding to the shear and expansion modzs of failure, are identified.
Various failure mechanisms that may operate in each mode are associated with the
different types of strain histories preceding the final failure (Sec. 3). An
analysis of the deformation of the fiber net without the resin material yields
useful suggestions concerning the nature of the failure process (Sec. 2).

(11) Micromechanical analyses of fiber-matrix debonding are conducted by
using a simplified, plane-strain analytical model considering the fibers as rigid

media. Solutions to the problems of transverse strain and shearing strain,
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corresponding respectively to relative displacements of two neighboring fibers
in the transverse and axial directions, are obtained by the boundary-element
method. A boundary-element code is developed for the present class of problems
which uses linear shape functions in the elements and exact elementwise
integration. The displacements on the crack boundary are solved and the strain-
energy-release rates associated with disbond growth are calculated by the method
of crack-closure integrals (Sec. 3).

(12) Similar micromechanical analysis is conducted for an oblique matrix
crack between two adjacent fibers. Boundary-element sclutions are computed for
cracks with the inclination angle varying from 15° to 75°. For each inclination
angle, the strain-energy-release rates are evaluated and compared between the two
cases depending on whether the fiber-matrix interface has or has not a short
disbond at the reentrant corner where the interface intersects the oblique matrix
crack (Sec. 6).

(13) An analysis of a possible failure mode due to the separation and
growth of a helical face layer from the interior surface of the filament-wound
tube is mentioned in Sec. 7, and with details presented in a published paper
attached as Appendix €. The work provides an analysis of an apparently puzzling
mode of failure observed in pressure testing of certain filament wound tubes
under the open-end condition.

(14) A general analysis of buckling and postbuckling deformation and growth
of a thin, two-dimensional delaminated layer in a composite laminate is presented
in a sequence of two papers attached as Appendices D and E. Delamination is a
prevalent mode of failure in composite laminates and filament-wound structures
are prone to local delamination failure in regions subjected to compressive
service loads.

(15) A stress-function based, variational analysis of the free-edge
interlaminar stress problems associated with the ends and openings of a composite
structure is introduced in Part V. The methods of analysis and the analytical
results are developed for the case of mechanical loading in a paper attached as
Appendix F, and suggested for the case of thermal loading in the two papers
attached as Appendices G and H. Free edge interlaminar stresses in layered
composite structures can initiate delamination failure. The present analysis
method yields highly efficient solutions with an accuracy comparable to elaborate

finite-element solutions using refined mesh.
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I1. Linear and Nonlinear Behavior of a Filament-Wound Composite Tube

1., Introduction

In producing a filament-wound composite structural component, continuous
filaments are laid down upon a rotating rigid mandrel by a feeding head which
traverses back and forth along the axial direction. In some cases the mandrel
undergoes both rotational and axial motion while the feeding head remains
stationary. 1In each pass of the feeding head, a thin band of filaments is laid
upon the surface of the partially finished product in a direction making an angle
a with respect to the meridional direction. For a general axisymmetric filament-
wound component, the angle a varies continuously during the forward or backward
pass. In the special case of a circular cylinder, a remains constant in each
pass but undergoes a discontinuous change when the relative axial motion reverses
the direction. Cylinders may be formed of only filaments wound at *a angle, or
they may have additicnal circumferential and longitudinal windings to enhance the
strength for various cases of loading.

The band of filaments laid down in a single pass of the feeding head often
consists of more than one layer of filaments in the thickness direction. Within
the band the parallel filaments form a helical pattern and are more or less
evenly distributed. This is ensured by applying a suitable tension in the
filaments and, in the production of large components, by feeding the filaments
through a series of rollers to produce desired wide tapes of uniform quality.

For several filament-wound structural components composed of the same
filament-resin material system and produced under the same winding process, the
fundamental structural unit for the analysis of the mechanical response is the

thin band of resia-impregnated filaments laid in a single pass of the feeding




head. These thin bands are analogous to the unidirectional laminae in a laminate
of fiber-reinforced composite. The mechanical behavior of the thin band and its
strength is determined by the material system and the winding and curing process.
When these bands are laid at predesigned angles to from the filament-wound
structure, the response behavior and the strength of the structure can be
calculated in terms of the properties of a generic band and the geometry of
winding.

One complicating factor in the case of a filament-wound composite, when
compared to a laminate formed by unidirectional laminae, is that the cross-over
of two adjacent bands with different winding angles can produce local effects on
the stresses in a filament-wound structure. However, if there are a large number
of band layers across the thickness of the structure, and if the winding process
ensures a fairly uniform distribution of the cross-over regions within the
structure, then the local stresses due to the c¢cross over of thin bands have
insignificant effect on the gross stiffness properties of the composite
structure, although they may have significant effects on its strength. In such
a case, the filament-wound structure may be modeled analytically as a curved
laminate, which is neatly divided into a sequence of thin laminae or layers.
Each layer is actually patched up from parallel bands of resin-impregnated
filaments introduced in the same or different passes of the feeding head. The
layer has a winding angle a different from the two adjacent layers (which often
have the winding angle =-a), and a is either constant or changes continuocusly on
the surface of the layer., In fact, this simplified model is almost universally
adapted in the existing analytical studies of filament-wound structures.

However, in the analysis of a filament-wound structure, the mechanical

properties of a layer is often less consistent than those of a lamina in a




laminate. Due to the nature of the winding process, it is more difficult to
avoid misalignment and uneven distribution of fibers, variations in the resin
content and the degree of fiber waviness, as well as the curing residual stresses
in filaments and the resin material. The constitutive relation of a filament
layer as determined from the properties of the filament and the resin phases by
a micromechanical analysis may be, and has been found to be, significantly
different from the in situ behavior of the layer in the composite, because the
micromechanical analysis usually ignores the deviation from perfect geometry and
the effects of the residual stresses. These deviations and the variations of the
process parameters are more significant in the products produced by filament
winding, than in the laminates made of unidirectional coupons.

A program to directly determine the in situ constitutive behavior of a
filament 1layer from the experimental testing of filament-wound tubes is
attractive because the test results implicitly include the effects of certain
process variables which are not easy to identify or to evaluate and which may
significantly affect the final product. Such experiments are, furthermore, the
only means to investigate the various failure modes and failure processes of
filament-wound components. For simplicity of analysis and testing, long tubes
with open or closed ends and consisting of alternating +e and —a filament layers
are tested under an increasing internal pressure load, with or without using a
rubber liner to contain the leakage of fluid from the tube wall. Analysis of the
experimental results indicates that most tubes begin to behave nonlinearly at a
relatively low pressure load. This is followed by several different deformation
patterns, depending essentially on the winding angle and the end condition of
testing, which lead to different modes of failure. The nonlinear response of the

tube in an early stage of pressure loading has important implications for the



design of filament-wound structures. The nonlinearity is largely, but not
entirely, associated with the large shear deformation of the resin material
between neighboring filaments. Small or moderate tensile strain of a filament
layer in the direction transverse to the fiber direction may cause microcracking
of the resin material and thereby progressively degradate the stiffness of the
layer.

An analysis of the existing experimental data indicates that the testing
results of thin filament-wound tubes with different winding angles under
different end conditions may yield different in-situ elastic stress-strain
relations of a filament layer under infinitesimal deformation. This is not
surprising because in at least two comprehensive and detailed sets of
experimental results (Hull, D., Legg, M.J. and Spencer, B.,, "Failure of
glass/polyester filament wound pipe," Composites, Vol. 9, pp. 17-24, 1978 and
Spencer, B. and Hull, D., "Effect of winding angle on the failure of filament
wound pipe,” Composites, Vol. 9, pp.263-271, 1978; Uemura, M. and Fukunaga, H.,

"Probabilistic Burst Strength of Filament-Wound Cylinders Under Internal

Pressure,” J. Composite Materials, Vol. 15, pp. 462-480), there are appreciable
and even substantial discrepancies in both the measured axial strain and the
measured circumferential strains among supposedly identical tube specimens under
the same pressure load. While other reports sometimes claim good agreement
between the test results and the prediction of the elastic response of a filament
layer from constituent elastic properties, such reports do not include sufficient
test data (corresponding to tubes with identical or different winding angles
under both the closed-end and the open-end conditions) to show the consistency
of prediction. The apparently significant variations in the specimen and the

resulting differences in the elastic properties of the filament layer suggest



that, for a particular type of filament-wound structure, the constitutive
properties of a peneric filament layer can be ascertained only to within an
appreciable margin of error by repeating experiments on several specimens and
calculating the average properties and their standard deviations.

The rcsponse of the filament layer in the nonlinear range of deformation
is characterized by the dependence of the intrinsic stress components relative
to the filament and transverse directions, ¢;, 0, and r,;, upon the history of the
corresponding intrinsic strain components €¢;, e, and vy,;,. Because of the limited
types and ranges of deformation histories attainable in tube experiments, such
experiments cannot provided the complete information of the material behavior
needed to formulate the general inelastic constitutive equations of a filament
layer. However, the experimental data may be used to provided constitutive
equations with a limited range of applicability, i.e., intended for those
applications in which the filament layers in a structure are subjected to
deformation histories similar to those experienced in tube tests. It is with
this objective in mind that we investigate, in this chapter of the present work,
the kinematics and mechanics of deformation of a filament-wound tube which
generally involve large intrinsic shear deformation of a filament layer. It is
found that the experimental results of a tube with *45° winding angles provided
sufficient information for determining the initial intrinsic shear modulus G,
referred to the material axes of the layer, as well as the incremental modulus
in the subsequent states of deformation. The results also provide an additional
relation among the initial or incremental compliances 1/E,, 1/E, and v;/E;.
Additional relations among the initial compliance coefficients may be obtained
from the experimental data of tubes with different winding angles or different

end conditions. Assuming linearity of the layer response in the filament




direction, one may use the experimental data of filament-wound tubes to formulate
an empirical constitutive equation involving two nonlinear material functions,
and it is found that the test results under the open and clesed end conditions
yield material functions that are in approximate agreement.

Once the nonlinear or incremental constitutive equations of the filament
layer have been formulated by a combination of theory and experiment, the
equations can be applied to filament-wound structures to predict its response to
external loads. Integration of the expressions of the increme:::al stresses (in
terms of the incremental strain field in each filament layer) across the
thickness of a filament-wound structure yields the dependence of the incremental
force and moment resultants on the increments of the middle-surface strains and
the curvatures of the composite shell These incremental relations are updated
in each stage of the solution process to obtain the solution for the next step

in terms of the results of the preceding step and the incremental load.

2, Deformation of a filament-wound tube under internal pressure
2.1 Finite deformation of a filament-wound tube

Consider a thin filament-wound tube with alternating layers of filaments
oriented at +a, and ~a, angles with respect to the longitudinal axis of the tube.
Assume that the tube is subjected to a uniform internal pressure p., with or
without an accompanying axial load, so that the stress and strain in the tube are
independent of the axial and circumferential coordinates z and §, at least in a
section of the tube away from the two ends. In each layer of filament, we define
(local) orthogonal material axes 1 and 2 along and perpendicular to the
tangential direction of the filament. Then the extensional strain along the

filament direction, ¢, , is small if the longitudinal elastic modulus of the
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filament is significantly greater than the elastic moduli of the resin material.
In this section, we restrict our attention to the special case in which the
tube deforms without twisting, so that the longitudinal and circumferential
material lines are mapped into the corresponding lines of the deformed tube.
This condition is approximately valid if the tube has an equal number of layers
with +a and —a winding angles and if it is subjected to no twisting moment. More
general deformations including the twisting effect are considered in Sec. 2.2.
A pair of neighboring filaments in a filament layer with the winding angle
ta,, and another pair of neighboring filaments in a layer with the winding angle
-a,, form a rhombus. In the undeformed state, the diagonal length of the rhombus
along the axial direction of the tube is 2L cos a,, and the diagonal length along
the circumferentiul direction is 2L sin a,. After deformation, these diagonal
lengths change to 2L{l+¢;)cos a and 2L{1+¢;)sin a, respectively, where a is the
winding angle in the deformed state (Fig. 1). The stretches (i.e., the ratio of
the deformed curve length to the initial curve length) in the axial and
circumferential directions of the tube are given by
A; = {2L(14¢,;) cos a)/{2L cos a,} = (l+e;) cos a /fcos o, ,
Ag = {2L(1+¢4) sin a}/(2L sin ay) = (l4¢,} sin e /sin e, . (2.1
Hence the ratio of the deformed area of the rhombus to the initial area is
A, Ay = (1+cl)2 sin 2a /sin 2a, . (2.2)
This area ratio must be equal to the product of the stretch along the filament
direction, l+e¢;, and the stretch along the perpendicular direction, l+e; . It
follows that
l+¢; = (1l+4¢;) sin 2a /sin 2q, . (2.3)
While the extensional strains ¢, and ¢; are usually small in the states of

deformation before failure of the tube, the resin matrix between two neighboring
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fibers may be subjected to a very large shear deformation. In a filament-wound
layer, material lines initially perpendicular to the filaments become non-
orthogonal to the deformed filaments. The reduction in angle, <7, , may be
determined by considering the deformation of the right triangle ABC in Fig. 2a
into the triangle A'B'C’' in Fig. 2b. Here the undeformed material lines AB and
AC are along two adjacent sides of an undeformed rhombus, and the deformed
material lines A'B’ and A'C’ are along the corresponding sides of the deformed
rhombus. Using the relations
A'C' = (l+4€,) AC, A'B' = (1l+¢,;) AB, AC = AB cos(n-2a,)},
A'D' = A'B' cos(n-2a), B'D' = A'B’ sin(n-2a),
where D' is the orthogonal projection of the point B’ on the line A'C’, we obtain
C'D' = A'D'-A'C' = (l+¢;} AB lcos(m-2a) - cos(m-2a,})}
- A'B' {cos 2a, - cos Za}l,
Substitution into tan v, = C'D"/B’'D’' yields the following result
tan y;; = (cos 2a, - cos 2a)/sin 2a . (2.4)
Although +v,; is not a tensorial component of a finite strain tensor with
respect to the orthogonal axes 1 and 2, it may be used as a measure of the in-
plane shear deformation of the filament layer. Equation (2.4) indicates that,
for the type of deformation considered here (without twisting and uniform in each
r-f surface), 7, depends only on the initial and deformed winding angles a,.
From Eq. (2.1) we obtain
2,% cos?o, + g% sinfa, = (1+¢y)% .
Hence the extensional strains ¢; and ¢; are given by
€, = (2,2 cos?o, + A% sinfa, )% -1, (2.5)
€2 = A Ag/(L+eg) = 1 = X, 25(2,2 cos?a, + Ag? sin?a, )72 -1

- (1% cos%a, + Ag? sin®a, )% (sin 2a / sin 2a,) - 1 . (2.6)
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The expressions on the right hand sides of Egqs. (2.4)-(2.6) involve only the
axial and circumferential stretches, X, and )y , and the initial and deformed
winding angles. The constant axial stretch X, in the tube and the values of a
and X; on the exterior surface of the tube may be directly measured in tube
experiments. 1If the thickness-to-radius ratio of the tube is small, then a and
g vary only slightly across the thickness of the tube, so that the values of
these quantities in the interior region of the tube may be approximated by the
measured values on the exterior surface.

From eliminating (l+e¢;) from Eqs. (2.1) and (2.2), we obtain

(X; cos ay)? + (X sin ay)? - A sin 2a./sin 2a = 0.
This relation among the three measurable quantities X;, X, and a is a consequence
of the assumption that the tube experiences no twisting deformation. If this
assumption is remecved, then 1,, X; and a become independent kinematical
variables,

The measured data of a, X, and 3; determine the intrinsic strains of a
filament layer with respect to the material axes of the layer according to Egs.
(2.4}-(2.6}, and the latter strains determine the intrinsic components of stress
through the (generally nonlinear and inelastic) constitutive equations of the
layer. The constitutive equations are needed to solve the successive states of
deformation and stress in the tube under increasing Ileoads. Conversely,
experimental data of the relation between the load and deformation mzy be used
to infer the constitutive equations of a filament layer referred to the intrinsic
axes 1 and 2. A major concern in the following analysis is the determination of
the constitutive behavior, both in linear and nonlinear range, of a filament
layer from the experimental data of filament wound tubes with various winding

angles.
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2.2 The _strain field

In a thick tube of mean radius R* and thickness t, subjected to a uniform
internal pressure load, the stress components depend on the radial coordinate r,
but are independent of the coordinates z and § (Fig. 3). In the absence of body
force, the equilibrium equations reduce to

d{r o;)/dr = a,, d(r? r_4)/dr = O, d(r r_,} = 0. (2.7
The last two equilibrium equations together with the traction boundary conditions
7.4 = 7., = 0 on the outer surface r = R"+t/2 yield the following result in the
entire tube:

Trg = Tre = 0. (2.8)
This implies that the radial direction is a principal direction of stress. Since
the layers are composed of orthotropic material and the radial direction is an
axis of orthotropy, it follows that the same direction is also a principal
direction of strain. While the wvalidity of this conclusion requires the
orthotropy of layers, it is not dependent on the material response being elastic
or linear.

Since the radial direction is a principal direction of strain, and the
intrinsic components of strain are independent of the coordinates z and ¢, the
deformation of the tube is characterized by a finite strain field whose right
Cauchy-Green tensor (for the definition of this tensor see Truesdell, C. and
Noll, W., Non-Liner Field Theories of Mechanics, Encyclopedia of Physics, Vol.
111/3, Springer-Verlag, New York, 1965, p. 33) has the form

C=220 0, + 32 kk+ 2210+ p (ig k + ki, (2.9)

where (i, i3, K} is the orthonormal set of cylindrical base vectors at the

undeformed position of a material element.

The cylindrical surfaces r = constant are material surfaces. That is,
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filament sheets of initial radius R deform into cylindrical surface of radius r
= f(R). We have
Ag = r/R = £(R)/R , A, = dr/dR = £'(R). (2.10)
A region in an undeformed filament layer bounded by a pair of axial material
lines and an orthogonal pair of circumferential lines deforms into a region
bounded by two intersecting pairs of helices in the deformed filament layer (Fig.
4). For a complete tube, the uniqueness of the axial displacement (i.e., the
axial displacement at # = 0 must agree with that at # = 2n) requires that the
deformation maps circumferential material lines in an undeformed filament laver
into circumferential material lines in the deformed filament layer. Hence the
deformation gradient tensor has the form
F=xei.+x kk+xei +De Kk,
= f'(Ry e, i, + », Kk k + (f(xr)/R) e; i, + D g, k, (2.11)
where (€., &g, K} is the orthonormal set of cylindrical base vectors at the

deformed position. The last equation characterizes the finite deformation of the
tube in terms of the deformation parameters A, = l+e¢, and D and the radial
deformation function r = f(R).

Notice that while the analysis of Sec. 2.1 was based on the assumption of
vanishing twisting deformation, the finite deformations considered ir this

section are not subjected to that restriction.

2.3 Scissoring action between the filaments of altermating layers

In the preceding analysis, we obtained kinematical results referring to the

deformation of the tube as a homogeneous continuum. The kinematical tensor C

and F given Egqs. (2.9) and (2.10) are macromechanical quantities that

characterize the averaged deformation of the fiber phase and the matrix phase in
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a volume element of the composite material. The actual deformation of the two
phases at the micromechanical level is very complex. The macroscopic shear
deformation <v;, is often contributed largely by severe shearing in the narrow
matrix region between adjacent filaments on the same cylindrical surface r =
constant. Likewise, the macroscopic strain ¢, generally has uneven contributions
from the fiber and matrix phases. These considerations are important for
understanding the physical factors affecting the gross response of the composite
material, However, most aspects of the deformation at the micromechanical level
need not be scrutinized if the objective is to formulate gross constitutive
equations of the composite material using a phenomenological approach, and if the
two phases coustituting the composite are dir.cicvred in a regular or continuous
pattern in a volume element of _he size comparable to a finite element for
subsequent macromechanical aizlysic.

In filament-wound structures, the density and orientation of the filaments
is either constant or varies continuous within certain strips of each filament
layer. Across the thickness direction of a filament-wound vessel, the
orientation of the fibers has a sequence of discontinuous changes. Therefore,
while macroscopic averaging of the stresses and strains of the two phases is
legitimate with respect to the in-plane coordinates of a filament sheet, it
should be examined and used more carefully with regard to the thickness
direction. In fact, if two adjacent filament layers have initial winding angles
* o, and deformed winding angles * a, then the filaments ol one layer rotate
relative to those of the other layer during the deformation. This relative
rotation of two crossing fibers has no direct effect on the matrix material in
the interior of the filament layers (that is, in the region away from the skins

of layers), but it introduces a severe shearing strain v,, in the thin and small
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matrix region between two crossing fibers near the point of crossing, where r is
the thickness coordinate and ¢ is associated with the circumferential direction
of a polar coordinate system (p, ¢) with the origin at the point of crossing.
This scissoring effect at the crossing points of fibers effectively results in
a distributed couple moment acction (i.e., a couple stress) from one filament
layer to the adjacent layer with the opposite winding angle (Fig. 5). The effect
of the couple moment action tends to reduce the relative orientation angle from
2a towards the initial value 2a,. If we consider a rectangular element of area
AA, taken from one filament sheet with the orientation angle +a, which contains
only one fiber crossing point and which has the edges parallel either to the
global coordinate axes z and § or to the material axes 1 and 2 (Figs. 6a and 6b,
respectively), then the upper and lower faces of the element are each subjected
to a clockwise couple moment m,AA which tends to restore the deformed orientation
angle a to the original angle a,. The moment equilibrium of the element requires
that these two moments be balanced by a counterclockwise moment of the magnitude
2m,AA, which can only be produced by the macroscopic shearing stresses r,; and
74, in Fig. 6a or by the macroscopic shearing stresses r;; and r,; in Fig. 6éb.
It follows that the macroscopic stress tensor o,, for a filament layer cannot be
symmetric, and the differences in the two in-plane components of the shearing
stress are determined by the distributed couple moment m, between the adjacent
layers according to
Tiz = T21 = Tap = Ty = 2Mg.

It is reasonzblc to make the constitutive assumption concerning the
scissoring action that the distributed couple moment m, depends essentially on
the change in the orientation angle, a-a,, i.e., for a given a,, m, is

essentially a function of a. For deformations of filament-wound tubes without
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Fig. 5: Scissoring action at a filament cross-over
puint and the resulting distributed wmoment between
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twisting, Eq. (2.4) indicates that o depends only on the shearing strain v,,.
Consequently, the non-symmetry of the in-plane shearing stresses, ry, - r,,,
depends essentially on 7v;; only (the functional relationship is determined by the
initial winding angle @,). This conclusion implies that, in formulating the
gross constitutive equation of a filament layer, no additional kinematical
variable need be included. The three intrinsic stress components o,, 0, and rq;
are determined constitutively by the histories of the three strain paramerers ¢,
€2 and 7y,. The stress tensor is generally not symmetric and the difference in
the in-plane stress, 7y, — r,;, depends essentially on vi,.

Although the consideration of the scissoring effect around the fiber cross-
over point does not introduce additional kinematical variable in the (nonlinear)
constitutive equation of a filament layer, the severe shear deformation of the
resin material in the cross-over region may constitute an important dissipative
mechanism with significant effects on the inelastic behavior of the layer.

2.4 Infinitesimal and incremental deformation

The characterization of special axisymmetric deformations of a tube (i.e.,
axisymmetric deformations that are also independent of the axial coordinate z)
given in Sec. 2.2 reduces, in the case of infinitesimal deformation, to the
following expression for the infinitesimal displacement functions along the
axial, circumferential and radial directions

u, =z €, , u =Dr z , wo=wir) . (2.12)
Naturally, rigid-body displacements may be superposed without affecting the
stress in the tube.

A finite deformation may be decomposed into a series of incremental
deformations. The displacement functions in each incremental step have the form

given in Eq. (2.12). The components of the incremental strain are Ae,, ey =
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Aw(r)/r and Ay, - 4D r, where Aw is the incremental radial displacenent.

Let Ae; and Aa denote small changes in the filament strain and in the
deformed winding angle resulting from an increment in the load. Then, by
differentiating Eq. (2.3), we obtain the following relation for infinitesimal
increments

Ae; = (sin 2a /sin 2a,) {a€; + 2{1l+¢;) ctn 2c Ac) . (2.13)
In an advanced stage of deformation of a tube with relatively stiff filaments,
the filament strain increment Ae; is wusually small compared to the angle
increment Aa. Then the algebraic sign of (cos 2a /sin 2a,)Aa determines the
algebraic sign of A¢; . The sign of Ae¢; determines whether the spacing between
the neighboring filaments increases or decreases in continued loading, and has
a significant effect on the failure mode of the tube.

2.5 Linearized oy _incremental constitutive relation

At each step in the loading process, the stress and strain increments in

each layer are related by the incremental constitutive relation:

[ de, M ay;; aypy apy a; bo,
4 beg _ aj; az; az ax Aoy

A€, a3 day 4as3 asg Ao, (2.14)
\ ~87p2) | 81 4dp¢ 4d3g dgg -4rg,

where [a;;] is the incremental compliance matrix of the particular layer. Since
the layers are very thin, the dependence of a;; upon the radial coordinate r
within each thin layer due to slight variation of the stress history in the layer
may be neglected. Consequently, at each stage of loading, we regard the
incremental compliance matrix as a constant matrix within each layer. The matrix

may vary from layer to layer due to different stress and strain histories of the

layers.
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Equation (2.14) may be partially inverted to yield expressions of Aeg, Ac,,
Ao, and A74, in terms of Agy, Ao,, Ae¢, and Ayy, = AD r. We adopt the notation of
Lekhnitskii

Bij = ay; - a;; a;y/ap for i,j » 1. (2.15)

From the first row of Eq. (2.14) we obtain

bo, = (Le, — ay; Aoy — a,3 Ao, + aye ATg)/ay;.
Substitution into the last three rows of Eq. (2.14) yields

beg = (ayz/ay)le, + By Bog + By3 80; = Pog A7y,

Aer = (ay13/ay)le, + B3 Bog + B33 80, = Pag ATy,

= &Yy, = (ajs/ay)le, + fog Aoy + P35 L0 — Peg BTg-
By eliminating Ar,, from the last three equations we obtain the expressions of
4ey and Ae, in terms of Ae,, Aoy, Ao, and Avyg, = AD r. Corresponding expressions
can be subsequently obtained for Ar,, and Ac,. The results are

Aw/r = Aeg = ([; Ae, + ¥ Loy )/Ty - & Lo, /T — AD (B /Bee)T, (2.16)

d(aw) /dr = Ae; = (ay3 age — 416 a35) 8¢z /Ty + (B3 Bss — Bz6 Bas) Bog /Bes

+ (B33 Bes ~ Bas’) 80, /Bes — AD (B3 /Bes)T. (2.17)
Afgz L (als Afz /all + ADr + ﬂZB AO’G + ,635 Aa-)/ﬁ55 . (2.18)
Aaz L lass Afz + ayg AD r - Fz Aas + F3 Aa:}/rl. (2.19)

where the symbols Iy, I';, I';, ¢ and ¥ are defined by
Ty = a1Bes = andes - aie’,
Tz = aj; agg — aj5 az.
I3 = 236 a3 = a13 ags (2.20)
® = ay) (Bas Bas = B2z Pes)
¥ = ay; (B2 Bes — Bz6”)
Substituting Egs. (2.16) and (2.17) into the compatibility equation

Ae, = d(r Aeg)/dr,
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and making use of the first equilibrium equation for the incremental stress,
d(r aAo.) = Aog, we obtain the following differential equation
d?(r Ac.)/d(4n r)?2 - A2 r Ao, = H AD 1% - K A¢, T, (2.21)
where
A% = (B33 Bes = B36”)/ B2z Bss = B26°)
H = (2 Bz = Bae)/(Baz Bes - Bae?) . (2.22)
K= (I + Py)/¥ .
In the i-th layer, the general solution of the differential equation is
r Ao, =~ A, (r/R")* + B, (r/R")™ + H AD r?/(4-3%) - K Ae, r/(1-2%), (2.23)
T Aog = M (r/R")* - AB(xr/R")™ + 2H 4D r?/(4-3%) - K A¢, r/(1-2%), (2.24)
where the constants A; may be determined, in terms of the deformation parameters
AD and Ae¢,, from the boundary conditions (on the interior and exterior surfaces
of the tube) of Ao, and the continuity conditions of Ao, and Ae¢y across all
interfaces. The solutions for the radial and circumferential stress increments,
given by Eqs. (2.23) and (2.24), may be substituted inte Eqs. (2.18) and (2.19).
The resulting expressions for Arg, and Ao, are then substituted into the

following equations for the increments in the axial force and the twisting moment

o, (open end tube)
AF,-):” Ao, r dr df =

m(R" - t/2)% ap, (closed-end tube) (2.25)
AM,-):” Arg, r? dr dé = O, (2.26)

where Ap is the uniform pressure increment and where the summations are taken
over all layers. The last two equations determine the deformation parameters AD

and Ae,.
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3. Solution of a multi-laver tube in infinitesimal

or incremental deformation
An analysis of infinitesimal axisymmetric deformation of filament-wound
tubes (assuming the deformation is also independent of the axial coordinates z)
has been presented by Sherrer (Sherrer, R.E., "Filament-wound cylinders with

axial-symmetric loads,” J. Composite Mat., Vol. 1, pp. 344-355, 1967).

Additional studies have been performed by Pagano {Pagano, N.J.. "Stress gradients

in laminated composite cylinders,” J, Composite Mat., Vol. 5, pp. 260-265, 1971)
and others. The following analysis and its results provide explicit relations
invelving the material parameters and the solutions. These relations provide the
basis for the determination of certain material parameters from the experimental
data of filament-wound tubes under internal pressure load. The present analysis
also suggests a simpler solution algorithm for a filament-wound tube with
alternating layers.

3.1 Linearized and incremental problems for a filament-wound tube

For the linearized problem concerned with small deformations of the tube,
the elastic compliance coefficients a,; and f,; are material constants. For the
incremental problems associated with large deformation, these coefficients change
with the local deformation history. In each particular thin filament sheet, the
coefficients change as deformation progresses. At any stage in the deformation
of the tube, the compliance coefficients are functions of the radial coordinate
because the deformation history depends on the radial coordinate. However, in
the case of a thin tube subjected to a negligible twisting deformation (t/R small
and D = 0), the intrinsic extensional strains ¢; and ¢, are nearly identical for
all filament sheets and, with the exception of the sign change from +a layers to

-a layers, the intrinsic shear deformation v,; are also nearly identical in
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magnitude. As the deformation continues under an increasing load, the compliance
coefficients of all +a layers evolve in nearly the same way and they either
remain equal to or differ only in algebraic sign from the corresponding
coefficients of the -a layers. The coefficients belonging to the latter type are
a5, azg, ays, Bz and Pi;5. In the -a layers their values are replaced by -apg

-azg, =azg, =-P¢ and -fs. It follows that, in each step of increment, the
parameters A and K in the differential equations for the incremental problem, Eq.
(2.21), are the same in all layers, whereas the parameter H of a +a layer is
replaced by -H in a -a layer.

If the twisting parameter D is not small, then the preceding remarks
concerning the relation between the compliance coefficients and the parameters
A, K and H of the +a and -a layers are only approximately valid in the case of
infinitesimal deformation but not for incremental deformations in the range of
large shear strain, because the deformation evolves in such a way that the state
of strain in a -a layer ceases to be related to that of a +a layer by a mirror
reflection.

3.2 Solution of rhe linearjzed or incremental problem

Instead of solving directly for the unknown coefficients A, and B;, it is
convenient to consider A,, B; and the jumps of A; and B, across the interfaces of
the layers. Let [¢], denote the jump of ¢ across the i-th interface, i.e., the
interface between the i-th layer and the (i+l)-th layer. Then, using Eq. (2.16)
and the interfacial continuity of Ao, and Aw, we obtain

(r bo.}, =0, [r Bogly = 8D v (Byelian/V . (3.1)
Substituting Eqs. (2.23) and (2.24) into the preceding equations, we obtain a
system of equations which yield the following solutions for the jumps [A] | = A,

- Ai and [B]l L Bi‘l = Bl:
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[A}; = AD(r/R™)™A(x?/2X){-[H);(A+2)/(4-2%) + [Bagl,ay /W)

(Bl = AD(r/R")*(r?/20){[H](2-2)/(4-22) - [Bge).ari/¥) . (3.2)
These recurrence relations determine all subsequent coefficients A, and B, from
the first two coefficients A, and B; and the parameters AD and Ae¢,. The last
four unknowns are solved from the boundary conditions of Ag, on the interior and
exterior surfaces of the tube, and the equations for the axial force and twisting
moment, Eqs. (2.25) and (2.26).

A FORTRAN program has been written to implement the linear or incremental
analysis of a filament-wound tube with the open-end or closed-end conditions
subjected to a uniform pressure load. Using the elastic moduli of glass/epoxy
layers suggested in Hull, et al. (Hull, D., Legg, M.J., and B. Spencer, "Failure
of glass/polyester filament wound pipe," Composites, Vol. 9, pp. 17-24, 1978),
we obtain, for a four-layer tube with R*/t = 25,75mm/1.5mm and vanishing M,, the
results for the circumferential strain e; and the shearing strain vy, = D R" on

the middle surface of the tube as shown in Table 1.

Closed-end tube Cpen-end tube
a (Eit/pR%) ¢, (E1t/pR™) 74, (E;t/pR™) €y {E1t/pR" } 74,
35° 2.642 3.66x107 3.283 -7.924%107°
45° 2.021 8.37x1073 2.781 -3.681x1073
55° 1.388 14.94x1073 2.030 6.382x1073
65° 1.005 16.42x107° 1.437 16.77x107?
75° 0.853 6.73x107? 1.120 12.70x1073

Table 1: Comparison of the magnitudes of the circumferential and

twisting strains in tubes subjected to internal pressure load only
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These results indicate that, with a vanishing twisting moment, the shearing
strain vg, resulting from the twisting parameter D varies from about 0.1% to less
than 2% of the value of circumferential strain on the middle surface. The effect
of the twisting deformation should decrease as the number of alternating layers
increases and the thickness of each layer decreases. Furthermore, comparison has
been made between the stress fields in the preceding solutions associated with
M, = 0, and the corresponding solutions with the condition M, = O replaced by D
= 0. The differences in the sclutions are, typically, only of the order 0.1%.

The preceding results indicate that, if a filament-wound tube consists of
equal number of alternati:r layers with +a and -a winding angles, then the
twisting deformatior ' remains exceeding small provided that the tube is
subjected to a varisning twisting moment. When the parameter AD is set equal to
zero, Eq. (2.2) yields zero jumps of the coefficients A; and B, across each
interface. Hence the coefficients are the same in all layers. Furthermore, Eq.
(3.1) shows that Ag, is continuous across layer interfaces. Indeed, as far as
the solutions for the radial and circumferential stress increments Ag, and Ag,
are concerned, the present problem for a balanced filament-wound tube with zero
twisting deformation (D = 0) is exactly the same as that for an equivalent
homogeneous orthotropic tube. When these stresses are determined, the remaining
non-vanishing stress increments Ag, and Ary, are given by Eqs. (2.18) and (2.19),
with AD = 0, The resulting axial stress increment Ag, is continuous across each
interface, while the shearing stress increment Ary, is discontinuous because of

the jumps of a5, Bzs and B;s across the interfaces.
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4. Determinatiopn of the constitutive equations of a filament laver
from the experimental results of a pressure-loaded tube

The solutions of a thin filament-wound tube described in the preceding
section are extremely useful for the experimental determination of certain
constitutive properties of a filament layer by direct tests on filament-wound
tubes. Due to the limited type and range of deformations experienced by the
filament layers in the tube test, the experimental results and the theoretical
solutions cannot provide a complete description of the constitutive behavior of
a filament layer. However, they do provide a great deal of information
concerning linear and incremental constitutive properties, particularly those
aspects relevant to similar but more general applications such as axisymmetric
deforuations of a thick tube.

4.1 Two_approximate equalities for a thin filament-wound tube

If experiments under pressure loading are performed on a balanced filament-
wound tube with a large radius-to-thickness ratic, R/t, then the axial and
circumferential stresses may be considered constant in the tube. They are
approximated by the well known formulae

dog = Lp(R/L) , Ao, = q Ap(R/2t) , (4.1)
where Ap is the internal pressure increment and q has the values 0 and 1,
respectively, for open-end and closed-end tubes. Since Agy, and the radial
coordinate r vary only slightly across the thickness of the tube, the equilibrium
equation d(r &c,) = Agy, implies that Ac_ depends almost linearly on r. Using the
boundary conditions of A, on the interior and exterior surfaces (-4p and O,
respectively), we have

[[ Ao, dA - - @Rt Ap,

where the area integral extends over the cross-section of the tube. By
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neglecting the terms involving AD in Eqs. (2.16) and (2.19), integrating Eq.
(2.16) over the cross-section of the tube, and substituting Eq. (2.19) into
(2.25), we obtain the following approximate equalities wvalid for a thin tube

subjected to a vanishing twisting moment:

ZT,+ ¥ =867 - (t/2R) &, (4.2a)
Z agg - 'y - (t/2R) Ty = (q/2) Iy, (4.2b)

where
Z = de, (t/RAP), 8 = Acy (t/RAP) (4.3)

are easily evaluated in terms of experimental data.

The compliance coefficients a;;, and the parameters Bi;. T1, T2, T3, @ and
¥, which are defined in terms of a;; by Eqs. (2.15) and (2.20), are determined
by the orientation angle of the filament layer and the intrinsic linear or
incremental stiffness parameters of the layer. These intrinsic stiffness
parameters are the extensional moduli along and perpendicular to the filament
direction, E; and E,, the in-plane shear modulus G,;, and the Poisson ratios v,,

and v3,. We denote

x" = 1/E,, y' = 1/E,, z" = 1/Gy,,
u' = v, /E,, v’ w v, /E,. (4.4)
Then,
agg = — (x"+y"=z"+2u") (cos 4a)/2 + (x"+y"+z'4+2u")/2, (4.5a)

Ty = a;,8gs = [(x"+y"=2u")z"-4(x"y"-u"?) ) (cos 4a)/8 + (x'-y")z" (cos 2a)/2
+ (3x"+3y"+2u)z"/8 + (x"y"-u"?) /2, (4.5b)
T, = ajyags - 81585 = | (x"+y"-2u")2"-4(x"y"-u"?) ) (cos 4a)/8
- (x"+y"+6ut)z"/8 + (X'y'-u"?)/2, (4.5¢)
T3 = 2,535 — 8j383g5 = & (W +v") 2" /4= (u'y +v x"+u'v +u'?) /2} (cos 4a)

+ (U=v")z"(cos 2a)/2 + (u'+vh)z2'/4 4+ (UYTHVIXTHUCVIRUTY) /2, (4.54)

30




@ = a,,(BeBas - B23Bes) = — z (U'y'=v'x"+u'v'-u"?)(cos 2a)/2
+ 2" Uy HutviHut?) /2, (4.5e)

U = ay,(ByzBes - Bzed) = (X'y" ~ u"¥H)z", (4.5f)
4.2 Use of the data from #45° tube -- Determination_cf the shear modulus G,,

We now consider the task of determining the material moduli E;, E;, G5, vy,
and vy, (or, equivalently, x", y*, 2", u” and v") from the experimental results
of filament-wound tubes with various winding angles *a undergoing linear elastic
deformation. The tubes are assumed to be under an internal pressure load and
both the open-end condition and the closed-end condition will be considered. By
substituting the expressions of Eq. (4.5) into Egqs. (4.2a) and (4.2b), we obtain,
for each winding angle, two equations for x", y", z", u" and v" in the case of
open-end test, and two more equations in the case of closed-end test. Additional
sets of equations for the five materiel parameters may be obtained by testing
filament-wound tubes with different winding angles. These equations provide
conditior, for determining the material parameters.

0f particular interest is the system of equations corresponding to a = 45°.

For this winding angle Eq. (4.5) reduce to

agg = X'+y +2u”, (4.6a)
T, = (x"+y"+2u”)z"/4 + x"y" - u'?, (4.6b)
[, = ~ (x"+y"+2u™)z"/4 + 2'y* - u*?, (4.6¢)
Ty ~ u'y"+v 2 +u'vi+ut?, (4.6d)
& = z'(u'y vk +uviut?) /2, (4.6e)
¥ o= (x"y" - u"?)zh, (4.6f)

Substitution into Eq. (4.2) yields
4{14(2-8) /2" ) (X'y"-u"?) = (Z48) (x"+y +2u")~(t/R)} (W y +v X "4uvi+utl) . (4.7a)

(24q) (X"y"-u"?) = (2Z+(2-q)*z"/4) (X"+y"+2u") = (£ /R) (u"y "+ X +u"v +u"?) L (6. 7b)
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Taking the difference of the last two equations, we have
{Z -8 + (2-q)z") (4(xX"y"-u"2)/z" + x"+y™+2u") = 0.
Using the definitions of x*, y" and u”, one can show that the second factor of
the left-hand side of the last equation is positive. Hence the equality requires
that
1/Gy, = 2" = 4(8-2)/(2-qQ) |cmnya- (4.8)
Substitution into Eq. (4.7b) yields
(24q) (XY =U"2) = (248) | g (XT+y™+2u7) ~ (t/R) Uy +v™x"+u'vi+u?) . (4.9)
For a tube with a small thickness-to-radius ratio t/R, one may neglect the
term involving the factor t/R in Eq. (4.9) in comparison with the remaining terms
(to a certain extent, this approximation is implicit in Eq. (4.1)). This yields
the approximate result:
(x"y"~u"2) /(x"+y"+2u") = p = (Z+8) /(24Q) | qunsa - (4.10)
The last equation yields an expression of u” in terms of x" and y":
ut o= (XT-p) (yT-p) MR - p. (4.11)
Since the expressions of Eqs. (4.9) and (4.10) involve only the
experimental data measured from a particular test specimen {with a = 145° and
with a specific fiber content) at a particular stage of the deformation process,
they may be used to determine the values of z' and (x"y"-u"®)/(x"+y"+2u”) at that
stage of deformation. This is in contrast to the task of determining the
remaining material parameters, which require, in addition, data taken under
different test conditions or from other tubes with different winding angles.
Those other specimens have different stress and strain histories. Hence their
incremental moduli do not evolve in the same manner as the incremental moduli of
the tube with *45° winding angles. Therefore, the incremental shear modulus G,,

and the relation (&4.l1l) among the incremental compliances x", y* and u’
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associated with the deformation of #45° tubes generally cannot be combined with
the relations among the incremental compliances associated with the experimental
results of tubes with different winding angles to yield a complete setr of
equations for determining all incremental compliances. A method that can be used
to circumvent this difficulty, at least to a certain extent, is by first
subjecting several identical tubes with the same winding angle (not equal to 45°)
to the same load history, and subsequently impose incremental loads of different
nature, e.g., by varying the end conditions or by superimposing different axial
loads upon the pressure load.

We note that when the terms involving t/R in Eqs. (4.2) and {4.7) are
neglected in comparison with the remaining terms, the material parameter v" no
longer appears in the governing equations. Thus, in the limit of vanishing t/R,
the stresses in the tube (under axisymmetric deformation with zero twisting
deformation) are unaffected by the Poisson’'s ratio wyy. The latter cannot be
determined by the type of experiments considered here if the thickness ratio t/R
is small.

4.3 Use of the data from tubes with other winding angles

In using the test data from tubes with winding angles different from *45°
subjected to open-end or closed end conditions (where g = 0 and 1, respectively},
it is convenient to refer the incremental stresses and strains to the material
axes parallel and perpendicular to the fibers. The intrinsic strain increments
A¢y, bhey and Ay, may be calculated from the measured axial and circumferential
strain increments by using the transformation rule of the strain, or, in case cf
large shear deformation, by using Eqs. (2.5), (2.6) and (2.4). From the
definitions of Eq. (4.4) we have

be, = X" Aoy - u” A0,  hAey = - Ut Aoy + Y Ao,
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Hence,

Boy = (y"/(x"y"-u"2)) Aey + (u'/(x"Y'-u"?)} Ae,,

Ao, = {u'/(x"y"-u'?)) Aey + (XT/(x"y'-u'?)) Ae,.

Summing the last two expressions and making use of the equality

Aoy + b0y = Ao, + boy = (l+q/2) Aoy = (l+q/2) Rap/t,
we obtain

Ty (YU /(xXTy"-ut?) + Ep (x"uT)/(xTy'-u'?) = 1+ q/2, (4.12)
where

=, = Ae¢y (t/RAp), =, = bey, (t/RAp), (4.13a,b)
and, for subsequent use,

By, = 712 (t,/Rop). (4.13c)

Now, using the transformation rule of the incremental stress, we obtain

Aty csc 28 cos 2(a+f) = (Lo, — A0g)/2 = -(2-q)Rap/(4t),
and, consequently,

csc 28 cos 2(a+B) = —(2-q)2"/(4Z,2), (4.14a)
where 28 satisfies

2 ctn 28 = (Ao, - Aop) /ATy,

= (Aey /A1) (Y -uM)z /(X" y"-u"?) - (Aey/Aryn) (xT-ut)zt/(xMyT-ut?) . (4.14b)
We note that 28 is the angle between the horizontal axis of the Ac-Ar plane and
the radial line through the point (Ac;, 4r,;) in the Mohr's circle for the
incremental stress,.

Expressing 2A in terms of the right hand side of Eq. (4.14b), and
substituting the result into Eq. (l4.a), one obtains, in addition to Eq. (4.12)
another algebraic relation among x*, y*, z" and u*, with E,, 5, E;; and q as
parameters. The two equations reduce to Eqs. (4.8) and (4.10) in the case a =

45°.
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The parameter g may be changed at any stage of the loading process by
changing the end conditions. Consider two identical test specimens under the
same end conditions and subjected to identical pressure loads until the present
state. Subsequently, the tubes are subjected to an incremental pressure load,
with one tube under the open-end condition (q = 0) and the other tube under the
closed-end condition. Then each set of data for E,, E; and T;; (calculated from
the experimental dJata by using Eqs. (2.4), (2.5), (2.6) and (4.13)) with the
corresponding value of q yield two relations among the incremental compliances
according to Egs. (4.12) and (4.14), The solution of the four resulting
relations yield x*, y*, z" and u".

4.4 Determination of the initial elastic moduli in the range of small strain

For the determination of the initial elastic moduli in the range of small
strain, relations based on experimental results of tubes with different winding
angles may be combined to yield a complete system of equations for calculating
the moduli. First, the test data of the *45° tubes are used to obtain z" from
Eq. (4.8) and a relation (Eq.(4.10) or (4.11)) among x", y" and u". Substituting
the relation into Eq. (4.12), we obtain

yHu' = ((14q/2)p/(E1-5;) - 5o/ (E1-Ep)) (x"+y"+2u"), (4.15)
or,

x"+u' = {(—(14q/2)p/(5,-5;) + 5,/(5;-53)) (x"+y"+2u").

The test data of a tube with a » 45° is then used to solve for 28 from Eq.
(4.14a). The solution is substituted into Eq. (4.14b) to yield

(E1/E1) (y'-u") = (52/Epp) (x"-u") = 2 (ctn 28) (p/z") (x'+y™+2u").  (4.16)
Equations (4.15) and (4.16) are two linear relations among the unknowns %", y"
and u" which may be used to express x" and y" as products of u® with factors

involving known gquantities. Substituting the expressions into Eq. (4.10}), we
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obtain a quadratic equation for u®, which is readily solved. The only nontrivial
step in the process of computation is solving 28 from Eg. (4.l4a). This may be
done by the Newton-Raphson iterative scheme.

Hence, the experimental results for two tubes, one with the winding angle
¥45° and another with a different angle, suffice to determine the four compliance
coefficients 2", x", y" and u" associated with the linear elastic behavior at
small strain. The two filament-wound tubes must be identical in material and
geometry except for the winding angle. In particular, the fiber volume content
must be the same.

Hull and coworkers have presented a comprehensive set of test results on
glass/polyester filament wound tubes under both the open-end and the closed-end
conditions, for a = 54°4’ (the "ideal winding angle" for a closed-end tube, see
Hull, D., Legg, M.J. and Spencer, B., "Failure of glass/polyester filament wound
pipe", Composites, Vol. 9, pp. 17-24, 1978) as well as for tubes with other
winding angles (Spencer, B and Hull, D., "Effect of winding angle on the failure
of filament wound pipe," Composites, Vol. 9, pp. 263-271 (1978). Twisting
deformation was apparently not noticeable at least in the initial stages of the
experiments and therefore were not reported. The fiber volume fractions in
different specimens were measured by using ASTM method D2584, and were found to
vary in the range from 0.39 to 0.56. Since the fiber content affects the
composite property, only the relations based on specimens with nearly identical
fiber contents should be combined to determine the initial compliance parameters.
For the six specimens with @ = #45° (including two specimens under the open-end
conditions and four under the closed-end conditions), the reported fiber volume
fraction Vg, the measured initial stiffnesses 1/8 = o04/¢4 and 1/Z = o,/¢, (taken

from Table 1 and 2 in Spencer and Hull, 1978) and the value of G;; = z" and 1/p
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= (x"+y"+2u") /(x"y"-u"?) calculated from Eqs. (4.8) and (4.10) are shown in Table

2, where all numbers except V, have the unit of GPa. Notice that

1/p = ((1+v )E+(14v15)Er} / (1~ ppvp,) - (4.17)
Ve 1/6 172 Giz 1/p

{GPa) (GPa) (GPa) (GPa)
Open-end 0.43 17.7 -30.7 3.61 831.6
Open-end 0.46 15.3 ~23.2 4.61 89.9
Closed-end 0.46 20.8 large 5.20 62.4
Closed-end 0.45 22.8 large 5.70 68.4
Closed-end 0.39 17.8 large 4.45 33.4
Closed-end 0.43 20.4 large 5.10 61.2

Table 2: Response of *45° tubes in the initial small-strain range

(Base on the experimental data of Spencer and Hull, 1978)

There are significant differences in the results (especially in 1l/p,
between open-end and closed-end tubes) which cannot be attributed primarily to
the differences in the fiber volume fraction. The very large difference in the
measured data for 1/Z =~ pR/(te;) of the two open-end tubes and the near 10%
difference in the measured data of 1/8 from the two closed-end tubes with similar
fiber contents (Vy; = 0.46 and 0.45) suggest that the specimen properties are not
consistent, due perhaps to unevenness in fiber property and variations in the
winding process (with the resulting misalignment and waviness of fibers).

The significant differences in the elastic compliance coefficients as
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determined by testing of different tube specimens suggest that, for a particular
material system and winding process, a sufficiently large number of specimens
should be tested to provide information concerning the average values and the
range of variation of the parameters characterizing the behavior of the
composite. It is risky to rely on empirical formulas of the composite elastic
moduli or on analytical predictions of the composite behavior (based on
micromechanical analysis using the fiber and matrix properties as supplied by
manufacturers) as the sole basis for the design and analysis of filament-wound
structures.

Spencer and Hull also presented test results for open-end and closed-end
tubes with other winding angles. These results supply additional relations among
the compliance coefficients. The values of £ and 1/p are based on the test
results of the tube with #45° winding angle, after excluding the data for the
tube w®un *he exceptionally small fiber content (the one with V. = 0.39). Thus
Gy = 1/2° = 5.24 GPa is obtained by averaging the results of the remaining five
tubes, while two values of 1/p, 86.8 GPa and 64.0 GPa, respectively, will be used
for the open-end and closed-end cases, because of the significant differences in
the respective results from the *45° tubes. Using the experimental data of open-
and closed-end tuves with winding angles 35°, 55¢, 65° and 75°, and Eqs. (4.13},
(4.16) and (4.10), we obtain for the open-end tubes the elastic moduli as shown
in Table 3. The results for the closed-end case shown considerable discrepancies
among the tubes with different winding angles and, therefore, are not presented.
These discrepancies are possibly due to the inconsistency of the specimen
material and fiver content s~ that the values of z" and 1/p as determined from
the average experimental results of #45° tubes are significantly different from

their true values for the tubes with other winding angles.
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a 8 Z g =2 2 Ey E; Viz
MPa™! MPa’! MPa! MPa’! MPa™} GPa GPa

35° 67 -27 3.9 36.2 88.3 62.3 20.0 .11

55° 44 =27 20,6  -3.6 66.7 50.7 26.3 .16

65° 33 -19.5 23.6 -10.1 40.2 45.8 19.9 .39

75° 26 -8.3 23.7 -6.0 17.2 43.9 28.0 .22
Table 3: Linear elastic moduli determined from the experimental results

of the open-end,

*45° tube (Gy; = 1/z2" = 5.24 GPa and 1/p ~ 86.8 GPa) and

another open-end tube with a different winding angle.

T2 (MN/m?) oy = 45°
60 p
Oen-end tube _ -~ -
50 =+ GA =0 ”- -
e d Closed-end tube
40+ d GA = O'H /2

304

20

104

Y12
0 . + —— ; +
0.000 0.090 0.020 0.030 0.040 0.050 0.060
Fig. 7: Shear stress vs. sheer strain in

45° tubes under increasing internal pressure
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4.5 Comparison of the nonlinear shear responses associated with the open-end and

closed-end conditions

Figures 5 and 8 of Spencer and Hull (1978) show the data of the axial and
¢ircumferential strains versus the pressure load for open and closed-end tubes
of various winding angles when the pressure increases from zero to the level at
final failure. The data corresponding to a = *45° are used here to obtain the
incremental moduli Gy; and 1/p at the successive stages of deformation. Since
the incremental stiffness of the composite is dependent on the entire history of
deformation, the dependence of Gy; and 1/p upon ¥;; is affected by the present and
past values of ¢; and ¢;. For the sake of illustrating the depcndence of the
incremental moduli on the history, the values of all three strain components at
the successive stages of deformation are shown in the following two tables (Table
4 and 5, respectively, for the open-end case and the closed-end case) with the
corresponding values of the incremental moduli and the pressure. Notice that in
the open-end experiments of *45° tubes, the shearing strain is greater than the
extensional strains by an order of magnitude. In the closed-end experiments, 7;;
varies from two to four times the magnitude of ¢; or ¢;. Therefore, the relation
between 7;; and v,; as suggested by the incremental moduli G,; in the first table
is more representative of the shear response in the absence of significant
accompanying normal stresses, while the effect of the normal stresses is
certainly important in the relation described by Table 5. For #45° tubes we have
142 = (05 - 0,)/2 = (1-q)pR/(2t). Therefore, r;; may be directly associated with
the corresponding value of v,; in the successive stages of deformation. 1In Fig.
7, the results are plotted for both the open-end and closed-end cases. The two
curves are tangential at the origin, because the common slope equals the initial

shear modulus. The relation for the close-end tube deviates significantly from
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linearity at a very early stage of deformation, because of the relatively larger

values of €¢; and ¢, in the deformation of the closed-end tubes.

PR/t €1 €2 Y1z G2 1/p
(MPa) (107%) (107%) (107%) (GPa) (GPa)
10 .05 .05 .94 5.3 150.
20 .10 .10 1.97 4.85 117.
30 .23 .22 3.11 4.39 70.
40 .39 .38 4.56 3.45 59.
50 .61 .60 5.88 3.2 51.
60 .79 .76 8.0 2.5 69.
70 .85 .79 10.5 2.0 95.
80 .97 .88 13.4 1.61 80.
90 1.15 .99 17.8 1.27 61.
100 1.51 1.26 22.4 1.03 23.
110 2.33 1.90 29.3 0.73 13.
120 4.35 3.57 39.5 0.48 5.2
Table 4: Incremental moduli G,; and 1l/p calculate from the large-

deformation experimental results of a *45°, open-end tube
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PR/t €1 €2 Y12 Gz 1/e
(MPa) (107%) (107%) (107%) (GPa) (GPa)
10 .23 .23 .53 5.3 70,
20 .46 .46 1.08 4.7 64 .
30 .70 .70 1.66 3.9 57.
40 .96 .96 2.30 2.9 55.
50 1.30 1.29 3.17 2.0 51.
60 1.63 1.62 4 .33 2.5 45,
70 1.99 1.98 5.69 1.9 51

8o 2.43 2.40 7.32 1.13 27.
90 2.99 2.94 10.2 0.77 27.
100 3,69 3.60 13.7 0.63 21.
110 4,37 4.21 17.9 0.58 19.2
120 5.17 4.92 22.5 0.49 19.9
130 6.10 5.70 28.3 0.43 16.9
140 7.04 6.45 34.0 0.37 16.9
150 8.01 7.17 41.0 0.33 16.8
180 8.92 7.71 49.1 0.28 13.4
190 10.3 B8.58 58.7 0.24 12.4

Table 5: Incremental moduli G;; and 1/p calculated from the

deformation experimental results of a 145°, closed-end tube
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The preceding two tables indicate that, for both the open-end and closed-
end conditions, the incremental shear modulus G;;, decreases monotonically as the
pressure load increases. 8ince the factor (l-v;v;,) is close to 1 for strongly
anisotropic fiber-reinferced compesites, the incremental stiffness 1/p as given
by £q. (4.17) is approximately equal to the sum of the incremental stiffnesses
along the fiber and the transverse directions, characterized respectively by
vitrz)Ey and (1+4vy;)E,. Since glass and carbon fivers show linearly =lastic
axial response before tensile failure, and since the stiffness of the filament
layer in the fiber direction is largely contributed by the elasticity of the
fiber, (l+v;)E; remains almost constant throughout the process of deformation.
Hence the significant decrease in the stiffness 1/p, as indicated in the
preceding two tables, may imply that the incremental stiffness in the transverse
direction eventually becomes negative. A negative incremental stiffness in the
transverse direction is not physically unreasonable. It simply means that, at
a certain stage of deformation, additional positive strain increments Ae; and Ae,
may be produced by increasing the tensile stress o; along the fiber direction
while partially relieving the tensile stress g, in the transverse direction.
4.6 A constitutive model for large deformation of a filament laver

The experimental results of Hull and coworkers for glass/polyester
filament-wound tubes show significant deviation from 1linear stress-strain
relation at even a low level of pressure. Similar nonlinearity at mederate or
large pressure loads were also observed in experiments on filament-wound tubes
with carbon fibers (see, for example, Uemura, M. and Fukunaga, H., "Probabilistic
Burst Strength of Filament-Wound Cylinders Under Internal Pressure,” J. Composite
Materials, Vol. 15, pp. 462-480. A large body of experimental results on tubes

with glass and carbon filaments have been obtained at Redstone Arsenal, Alabama,
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including Technical Report RL-84-11, "Mechanical Property Characterization of the
Sentry Initial Propulsion Test Vehicle (IPTV) Composite Motorcase Materials,” by
Terry L. Vandiver, Technical Report RL-80-13, “Evaluation of Filament-Wound
Composites with Kevlar 49 Filament and Two Resins, HBRF 55A and HBRF 241, By
Hydrostatic Testing," and Tech. Report RL-75-8, "Development cf the filament-
wound composite launch tubes for the SMAWT program,” both by G.A. Cledfeltcr,
U.S. Army Missile Command, Redstone Arsenal, Mavch 1975).

The nonlinearity in response and the inelastic behavior of a filament layer
are primarily due to the severe shear deformation in the resin material.
Constitutive equations that adequately describe these effects may be given in the
incremental form, and the preceding analysis is an initial step in that direction
from a purely empirical viewpoint, with very little regard to the underlying
physical basis such as the plasticity behavior of the resin material and the
effects of microcracking or interface debonding. 1In general, the incremental
compliance coefficients are dependent on the history of strain. A purely
empirical formulation of the incremental constitutive relations over the entire
range of strain space would require a very complex set of expressions, not to
mention an impossibly large amount of experimental data to be used to obtain such
expressions. However, if the results of tube experiments are intended only for
the purpose of formulating constitutive relations with a limited range of
applicability, i.e., limited only to applications in which the geometrical
configurations and loading histories are similar to those involved in the tube
experiments (e.g., monotone loading or proportional loading), then the amount of
the required experimental data may be significantly reduced and relatively simple
empirical constitutive relations may be sought. Such constitutive equations with

a limited range of applicability need not be in the incremental form. A
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functional relationship between the stresses o;, ¢, and 7, and _re . .ns €y,
€; and v, 1s convenient because of the simplicity of formulation and the ease
of determining the material functions from the experimental resul--.

We note that, as mentioned previously, <¥,;, (defined as the reduction in the
angle between two material lines originally parallel and orthogonal to the fiber
direction) is not a physical component of a finite strain tensor with respect to
the intrinsic material directions. Indeed, under the orthogonal transformation
of the coordinates from (z, #) to the intrinsic axes, the components ¢,, ¢z and
.9 transform into ¢,, ¢; and y;; only if the strain is infinitesimal. However,
the most convenient and therefore the most appropriate constitutive equation for
an anisotropic filament layer need not be a relation among the tensorial
components of stress and strain. It is perfectly legitimate to use a
functionally related set of strain variables, provided that one keeps in mind
their original definitions which, in the case of v,,, is given by Eq. (2.4) for
a tube suffering no twisting deformation.

Since the response of a filament layer in the filament direction is
dominated by the linearly elastic behavior of the filament material, it is
reasonable to assume that ¢; depends linearly on €¢; and ¢;, provided that these
strains are small, and that ¢, is not appreciably affected by 7v;,. The shearing
stress r;, depends nonlinearly on +v,;, and this dependence is expected to be
influenced by the transverse strain ¢, because a negative ¢, tends to cause
compression of the resin material between two parallel fibers with the effect of
increasing the resistance of the resin material to shear deformation. This
effect of ¢, upon ry, should be reciprocated by a corresponding effect of vy;; upon
the transverse normal stress o,. The nature of the coupling effect is suggested

by the usual assumption concerning the symmetry of the incremental stiffness
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matrix. Thus, although the general nature of the material behavior is inelastic,
the special constitutive equations intended only for a limited class of
deformations histories with similar geometrical and loading features may still
be expressed in forms suggested by nonlinear elasticity. Consequently, for a
filament layer in a certain restricted range of deformation histories we
postulate the following constitutive equation for o,, o, and 7y, in terms of
€1, €; and 5

01 = S11 €1 + 512 €2,

0y = Sy €4 + S35 €2 = £(7y5), (4.18)

71z = B(r12) - €z £' (9127,
where f and g are even and odd functions, respectively, of the shear strain.

There are a number of previous works dealing with the formulation of

nonlinear constitutive equations of unidirectional composites and filament-wound
layers. For example, Hahn and Tsai (Hahn, H. T. and Tsai, S.W., "Nonlinear

elastic behavior of unidirectional composite laminae,” J, Composite Materials,

Vol. 7, pp. 102-118, 1973} considered nonlinear elastic behavior and introduced
a complementary energy density that is a fourth-order polynomial function of

o,, 0, and ry,. The formulation generally leads to an expression of the strains
in terms of the stresses which, except in some special cases, is difficult to
invert. Elastic relations for the strain components as polynomial functions of
the stress components were also proposed recently by Luc and Chou (Luo, S-Y and

Chou T-W., "Finite deformation and nonlinear elastic behavior of flexible

composites,"” J. Appl. Mech., Vol. 55, pp. 149-155, 1988). Notice that in
practice it is always preferable to use a constitutive equation of the filament
layer with ¢;, €¢; and y;, as independent variables, because these variables vary

continuously across the interfaces of alternating layers (whereas the str-sses
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may suffer discontinuities) and, in the deformation of thin tubes without
twisting, they do not vary appreciably across the thickness. Furthermore, the
force and moment resultants occurring in the shell equations are calculate by
integrating the expression of the stresses in terms of strains with respect to
the thickness coordinate. While the inversion of a linear stress-strain relation
is a trivial matter, a nonlinear constitutive for the strains in terms of the
stresses Is in most cases extremely difficult to invert.

The direct use of a polynomial strain energy density was also suggested in
the work of Hahn and Tsai. However, their results did include a coupling effect
between the transverse strain and shearing strain. The coupling effect was also
not taken into account in a recent study by Frost (Frost, S. R., "An approximate
theory for predicting the moduli of unidirectionil laminates with non-linear

stress/strain behavior,” J. Composite Materials, Vol. 24, pp. 269-292, 1990), or

in the work of Hashin et al. (Hashin,Z., Bagchi, D. and Rosen, W., "Non-linear
Behavior of Fiber Composite Laminates," NASA CR-2313, April, 1974). When the
coupling effect is ignored, the shearing stress is simply a function of the
shearing strain alone, unrelated to and unaffected by the transverse strain e,.
But the validity of this conclusion is evidently refuted by the significant
differences between the 7, versus 6,, relations of the open-end and closed-end
tubes, as shown in Fig. 7,

Equation (4.18) is proposed because it is perhaps the simplest constitutive
equation for a filament layer that captures the general nonlinear dependence of
the shearing stress upon the shearing strain and, at the same time, includes the
nonlinear coupling effect between the shearing and transverse strains in a way
consistent with the usual assumption of the symmetry of the incremental stiffness

matrix. The linear dependence of ry, on ¢; is the simplest functional relation
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consistent with the assumption that the incremental shearing stiffness increases
with transverse compression (theiefore, decreases with the transverse extension
¢€;), i.e., that the resistence of the material to incremental shearing
deformation is analogous to the law of friction. In contrast, Luo and Chou
("Finite deformation and nonlinear elastic behavior of flexible composites,” J.
Appl. Mech., Vol. 55, pp. 149-155, 1988, see Eq. (9) of the paper) assumed a
coupling between the transverse stress g, and the shear strain v;; in such a
manner that the contribution of the coupling effect to the shear stiffness is an
even function of o,. Their assumption is contrary to the reasonable expectation
that the effect of coupling is dependent on the algebraic sign of o,.

The incremental stress-strain relation associated with Eq. (4.18) is

Aal Sll 512 0 ACI
Aoy [ = S12 S22 -2 £'(73) Aeg (4.19)
47y, 0 - £ (72) 20g" (112)-€2£" (712) ) Avya/2

Since the incremental stiffness matrix reduces to the initial stiffness matrix
when all strain components vanish, one has the following conditions for the
initial derivatives of the functions f and g:
£f'(0) =0, g'(0) = Gy;. (4.20a,b)
Furthermore, since 8;;,, S;; and 5;; are the stiffness coefficients in the range
of small strain, we have
£(0) = 0. (4.20¢)
Otherwise, the material functions f and g and the stiffness parameters 5;,,
Sy, and Sy, in Eq. (4.18) must be determined for each specific type of filament
layer from experimental data. The results are presented in the following section
for the plass/polyester tubes studied in work of Spencer and Hull, on the basis

of their experimental results for the *45° tubes.
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4.8 Determination of the constitutive functiong f and p from the results of tube
experiments
In testing the #45° tubes under an internal pressure p, we have

o) + 0y = a5 + 0, = (1+q/2) PR/E,

Ti2 = (09 = 0,)/2 = (1-q/2) pR/(20).
Hence Eq. (4.18) yields

£(v12) = (S11¥512) €1+ (S512%53) €; - (1+q/2) pR/t, (4.21)

g(712) = (1-9/2) pR/(2t) + €3 £'(712). (4.22)
The linear elastic moduli §,,+S,; and §,,+5;; are determined from the experimental
results in the range of small strain, as described in Sec. 4.4. The data for ¢;,
¢, and pR/t corresponding to each value of v,, are substituted into the right-
hand side of Eq. (4.21), and this determines the material function f(v;,). The
function so obtained may be differentiated numerically to obtain its derivative
f'(72). Then the values of f’'(v,3), €, and pR/t associated with each value of
71, are substitute into Eq. (4.22) to obtain the function g(vy,,). This procedure
is applied to the experimental results of *45° tubes with both closed-end and
open-end conditions, and the validity of the constitutive equations (4.18) may
e tested by comparing the functions f and g obtained in the two cases. Because
of the significant differences in the calculated values of the linear elastic
moduli corresponding to the closed-end and open-end cases, the stiffness
coefficients $,;+S;; and §,,+S,;, in Eq. (4.2]1) are evaluated separately for these
two cases from the respective experimental data, instead of using a common set
of values. In view of the appreciable discrepancies in the linear elastic moduli
based on different specimens, the material functions f and g determined from the
experimental results in the range of large deformation along different locading

paths are expected only to be in approximate or qualitative agreement. The
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present results for the closed-end and open-end tubes are shown in Figs. 8a and
8b for the function f and in Figs. 9a and 9b for the function g. The approximate
agreement between the two sets of results present a contrast with the significant
discrepancy in the relation between r,; and v,;, as shown in Fig. 7 (see p. 39).

The relation 7y, = (05 — 0,)/2 and the resulting Eq. (4.22) are not valid
in the case of tubes with winding angles different from *45°. Indeed, for such
tubes the values of r;; at the successive stages of deformation cannot be
determined from the measured data. However, Eq. (21) still holds and the data
from such tubes provide independent bases for determining the material function

f(712)-

4.9 Nonlinear constitutive eqguations of the filament-wound structure:

the incremental stress-strain relation of a laminate

The transformation of the incremental stresses and strains from a loecal

tangential coordinate system (x, y) at a point on the shell middle surface
(which, for a circular cylindrical shell, may be identified with the global
cylindrical coordinates z and #) to the material axes (1, 2) in a filament layer

follows the relations

Oeg Aty Aoy b,
Ay - [M(8)] Aey ; poy L = (M(-8)] { boy },

where the matrix ‘M(#)] is defined by

costh sin®é sin 26
[M(8)) = sin%s cos?p - sin 28
—(sin 28)/2 (sin 28)/2 cos 248

Substituting into Eq. (4.19), we obtain
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on S11 512 0 fhf,
Aoy = [M(-8)] { S;; S22 - 2f (M(8)] bey
AT 0 f’ 2(g’' -e,f) BYgy/2

(4.23)
If we adopt the Kirchhoff-Love assumption that the strain increments at a point
(x,7.z) are related to the strain increments at the projected point on the middle
surface (x,y,0) by the relations
Ae, = be° - z Ax,, bey, = Ae,” - Z bk,
Ay = B7y° - Z Axyy,
where 4x,, Ak, and Ak, are the increments of the curvature of the middle surface
during the incremental deformation, then by integrating Eq. (4.23) across the
thickness of the shell we obtain the relation between the increments of the force
and moment resultants, AN, ANy, AN, aM;, aM,, AM,.., and the increments of the
middle-surface strains and curvatures. This incremental relation characterizes
the response of the shell element. In each step of the solution process, the
current of <v,; is computed and the updated values of f’'(v;;}) and g'(y,;) are
substituted into Eq. (4.23) to compute the shell element stiffness matrix for the
next incremental solution by integrating this equation through the thickness of
the shell. Notice that, in the constitutive equation (4.18) for the filament

layer, the stiffness coefficients S;;, S;; and S,; have constant values through

the deformation process and therefoure need not be updated in an incremental step.

53




II1. Micromechanics: Calculation of the Constitutive Properties

of a Filament Layer based on the Properties of the Constituents

1. Introduction

A fundamental problem in the mechanics of fiber-reinforced composite
materials is the derivation of the gross (macromechanical) constitutive equations
of a unidirectional composite from the properties of constituent materials. 1In
the case of a filament-wound structure, the problem is to derive the constitutive
zquations of a generic filament layer from the properties of the filaments and
the resin material. Since the filament layers are often subjected to large shear
deformation, and since filament-wound structures show nonlinear responses under
moderate external loads, one should generally consider the nonlinear behavior of
the resin material in a micromechanical analysis for calculating the gross
response of the filament layer. However, a nonlinear and inelastic micro-
mechanical analysis is extremely difficult, As a first step in this direction,
one should choose and develop methodology of analysis and apply it to simple
cases. The methodology, when proved successful and effective, can then be
further developed to investigate more general and realistic cases.

Existing micromechanical studies with the objective of formulating
constitutive equations of composite materials are mostly concerned with the
linearly elastic behavior. Such studies aim to calculate the gross elastic
moduli of the composite on the basis of the known elastic properties of the
constituents. Methods used in the previous studies include variational bound
theorems, and finite-element analysis. The latter method, although more
laborious, can be modified to derive gross constitutive relations including

nonlinear and inelastic response. In this method, an analytical model of the
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composite is used in which the parallel filaments are arranged in a rectangular
or hexagonal pattern and immersed in the resin material. A representative unit
cell consisting of segments of filament and matrix regions is selected and these
segments of regions are divided into finite elements.

An alternative analysis method that is believed to be especially suitable
for the present type of problems is the boundary element analysis. The principal
advantage of this method is that it reduces the spatial dimension of the problem
from three to two or from two to one, and therefore results in drastic reduction
in the number of nodal points and degrees of freedom. Although the available
boundary-element computer codes are mostly limited to elastic analysis,
considerable theoretical progresses have been made, during the last decade, for
applying the boundary element analysis to problems involving plastic deformation.
These progresses have important implications for the solution of micromechanical
problems related to the nonlinear constitutive equations of composites.

In the present work, we demonstrate that the problem of determining the
linear elastic moduli of a unidirectional composite from the elastic properties
of isotropic resin material and transversely isotropic filaments can be solved
by using boundary element analysis codes for plane-strain problem of an isotropic
elastic medium. The computational effort 1is considerably less than the
corresponding solution by the finite-element method, and yet the results are in
extremely close agreement with the previous elasticity sclutions in the
literature.

Further investigation should be conducted on extending the boundary element
method to the determination of nonlinear constitutive equations of a composite
material from the properties of the constituents. As mentioned previously, the

present analysis is only a first step in that direction.
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2. Boundary element analysis of the micromechanical problem for determininpg the

gross_elastic moduli of a composite

In this initial study, we assume that each constituent material of the
composite material is homogeneous and linearly elastic, and that the fibers are
arranged in periodic patterns. Then the calculation of the gross elastic moduli
of the composite can be reduced to a small number of two-phase elasticity
problems (micromechanical problems) for a unit volume cell of the composite
containing one or more sectors of a single fiber and the surrounding matrix.
Each elasticity problem of the unit composite cell corresponds to a particular
type of loading: extension/shortening along or perpendicular to the fiber
direction and longitudinal or transverse shearing. In all loading cases, the
extensional strain along the fiber direction has the same constant value in the
several subregions occupied by the fiber and the resin matrix. The boundary
conditions over the lateral faces of the unit cell may be greatly simplified if
the unit composite cell is chosen appropriately. For example, in the case of a
square or hexagonal array of fibers under an extensional load along the
longitudinal or transverse directions, the unit cell may be chosen in such a way
that, over each lateral face, the normal displacement is a constant and the
shearing stresses vanish. The constant normal displacements on the lateral faces
yield constant (macroscopic) strains of the composite. The resultant normal
forces over the lateral faces of the unit region, or the resultant longitudinal
force over its cross-section, when divided by the respective areas, yield the
gross stress components in the composite. Hence the solutions of the two-phase
elasticity problems for the unit cell yield the stress-strain relation in the
unidirectional composite.

In most fiber-reinforced composite materials of engineering interest the
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resin matrix is an isotropic material while the fibers have transversely
isotropic elastic properties. The elastic moduli of the fibers along the
longitudinal and transverse directions are significantly different, in the case
of graphite fibers. Therefore, if finite-element or boundary-element methods are
used directly to solve general two-dimensional micromechanical problems for the
unit composite cell, the computer code should have the capability to deal with
a material that is not isotropic.

The boundary-element method is ideally suited for the present task. Nodal
points for a boundary-element analysis are picked only on the boundary curve and
on the fiber/matrix interface, No interior nodal points are required. This
reduces the dimension of the problem from two to one and, consequently, provides
great savings in computational effort. Evaluation of the macroscopic stresses
and strains of the composite requires only the knowledge of the nodal forces and
nodal displacements along the boundary of the unit cell and along the fiber-
matrix interface, which are readily provided by the boundary-element analysis.
Finally, the interfacial stresses between the fiber and the matrix, important for
the prediction of failure initiation, are alsc readily available from the results
of a boundary-element analysis. In contrast, conventional finite-element
analysis requires a large number of internal nodes which drastically increase the
size of the problem, but the computational results of the internal nodal
variables may be of little or no practical use.

However, a boundary-element analysis is considerably more complicated in
a case invelving an anisotropic elastic medium than in problems invelving only
isotropic elastic media, because of the complexity of the Green’'s function and
the resulting integral equations for an anisotropic medium. The complication may

be so significant that a finite-element analysis may appear to be a better choice
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in micromechanical problems involving anisotropic fiber regions.

It is shown in the present work that, in the case of an isotropic resin
matrix and transversely isotropic fibers, a micromechanical problem of the unit
cell associated with the determination of one or more gross elastic moduli of the
unidirectional composite can be transformed mathematically into a coupled plane-

strain problem for two jisotropic elastic media, whose isotropic moduli are

related to the true meduli of the fiber and the resin materials according to
simple relations. This mathematically *ransformed problem requires the
continuity of the tractions across the fiber-matrix interface. However, across
the same interface the displacement components u' and v' of the transformed
problem (along the coordinate directions X and y, which are the symmetry axes of
the unit cell) are generally pot continuous but may suffer jumps that are
proportional to the mismatch between the Poisson’s ratios of the resin matrix and
the fiber (where the latter ratioc is associated with lengitudinal shearing).
Furthermore, along the boundary curve of the unit cell, the displacement boundary
conditions of the mathematically transformed problem must be modified accordingly
so that, for the fiber region as well as the matrix region, the boundary
displacements are consistent with the interior displacements. Since the
Jiscontinuities of u’ and v’ of the transformed problem are known along the
interface, they are no more difficult te handle in a boundary-element analysis
than, for example, the interface continuity conditions of the same displacement
functions in conv-:ntional interface problems.

In summary, the present work implies that the simpler integral equations
associated with the plane-strain boundary-element analysis of isotropic elastic
media are applicable to, and adequate for, the micromechanical analysis of

unidirectional composites consisting of an isotropic resin material and
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transversely isotropic fibers, provided that the problem is appropriately
transformed into a modified, plane-strain problem with suitable equivalent
isotropic moduli for the fiber region and with suitable discontinuities of the
in-plane displacements across the fiber-matrix interface.
3. Unit Composite Cell Subjected to a Uniform Longitudinal Strain Load
Let E, and v, denote, respectively, the Young's modulus and the Poisson's

ratio of the isotropic resin material. Let E; and E; be the elastic moduli of
the transversely isotropic fibers in the longitudinal and the transverse
directions, G;;, and v,; be the shear modulus and the Poisson’s ratio associated
with transverse shearing of fibers and G;;, v,;; and v,. be the corresponding
quantities associated with longitudinal shearing such that wv;»/E, = v;;/E;. Then
Gy, = Ejp/2(1l+v,,;) because of the transverse isotropy of the fibers. We first
consider the loading case when the unit composite cell (defined by a rectangular
or square region -a/2 < x < a/2, -b/2 <y < b/2) is subjected only te a uniform
extensional strain along the fiber direction, ¢, = ¢,. The boundary conditions
are
-0 on x = * a/2,

v =0, r., =0 ony =*b/2, (1}

For this loading case it is obvious that in both the fiber and matrix

regions one has

Yz ™ Tyz = 0, Tz = Tyy = 0. (2)
In the fiber regions, the remaining stress components o,, oy, 0, and 7, are
related to the strains ¢,, ¢,, ¢, and v, by the generalized Hooke's law:

o, = ¥z (0x + 0y) + Ejeg, Ty = Txy/G2z
€x = (Ux'szay‘“21az)/Ez = 0, (1-vyovp,) /E; - Uy(V22+V1sz1)/Ez = Vi12€9. (3}

€y = (0y=v320,~v210,) /By = 0y (l-vov5,) /E; — o (voatvyovp)) /By — vyzes,
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We consider an equivalent isotropic material for the fiber region with the
Young’s modulus E; and Poisson’s ratio vy given by

Ee = (14v35) 2 (14205540505, ) Ea, ve = (votvipra}/(14v;) . (4)
Then the fictitious isotropic material has a shearing modulus, G;, equal to G,
of the a.-tual fiber material:

Ge = Eg/2(1+vs) = E3/2(1+4vq3) = Gy
From Eqs. (3) and (4) we ohtain

€x * Y126, = ox(1-v®) /Er - aye(l+vg) /Ey,

€y + Vviz€, = — awe(l4vg) /B¢ + o,(1-v¢*) /Eg, (5)

Ty = Txy/Ct.
In the matrix region we have

€x + Vnto = 0x(1-0p?) /By — g (14vy) /E,,

€y + Vpto = — O (l4u,) /By + 0y (1-vg?) /By (6)

Ty = Txy/Ca-
and

g, = Eneg + vo(oy + 0y) (7)

The original elasticity problem for the unit composite cell will be
transformed into a modified micromechanical problem in which the fiber material
is replaced by the fictitious isotropic material. The solutions of the original
micromechanical problem and the modified problem shall have identical stress
fields o4, o, and 7, in both the fiber and the matrix regions. However, the
extensional strains ¢,’ and ¢, of the modified problem shall be related tc those
of the original problem by

Ep' =€

< * VizEg, €= €y + v o€, in the fiber region, (8a)

o= ey + ovge,, €, = ¢

€y v

y * Vpto in the matrix region. (8b)

Now the constitutive equations of the fictitious isotropic material and the
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matrix material yield
€' = (og—vio,~veo,')/Eg, ¢y’ = (oy—veo,-ve0,')/E; in the fiber region,
€x' = (o vpo,~ve0,')/Ey, €' = (oy—vpog-voo," ) /E; in the matrix region.

These two set of expressions are consistent with Egs. (5), (6) and (8) if and

only if
g,' = ve(oy + oy) in the fiber region
o' = vp(ox + ay) in the matrix region. (D)

The two equalities of Eq. (9) imply that the scolution of the modified problem
satisfies the plane strain condition:
€, = 0.
Equations (Ba) and (Bb) imply that the displacement functions of the
modified micromechanical problem, u’ and v', must be related to the displacement
solutions u and v of the original problem according to

U' = U+ v, V' o= W o Ve in the fiber region

r L}

u’ = u 4+ e X, v o= v o+ ey in the matrix region (10)
Since the actual displacements of the original problem, u and v, are required to
be continuous across the fiber-matrix interface, across the same interface the
functions u’ and v' of the modified problem must have the discontinuities

[u'] = (vp = vi2)eeX, [v'] = (v - Vi) €Y, (11)
where [u’'] and [v'] denote the jumps of u' and v', respectively, across the
interface from the fiber region to the matrix region. Furthermore, while any
traction boundary condition of the original problem is preserved without change
as a traction boundary condition of the modified problem, displacement boundary
conditions for u and v transform into different conditions for u’ and v’ in a way

consistent with Eq. (10). Hence the displacement boundary conditions of Eq. (1)

become
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u' = % veega/2, v' =% peeb/2 on the exterior boundary of the fiber,
u’ =% v a/2, v =% yoe b/2 on the exterior boundary of the matrix
region. (12)

The solution of the modified micromechanical problem may be obtained
numerically by discretizing the boundary integral equations for the matrix and
fiber regions, occupied, respectively, by the isotropic resin material and the
fictitious isotropic material with the elastic moduli E; and v;. The numerical
solution scheme must implement the continuity of the tractions and the jump
conditions of the displacements, Eq. (11), across the interface of the two
regions. The solution scheme must also implement the mixed boundary conditions
on the exterior boundary of the fiber and matrix regions, which are provided by
Tyy = 0 and Eq. (12).

Once the stress and displacement solutions of the modified problem, o.’,

oy', Tg', 0;', ' and v’ are determined (with ¢,’ identically zero), the actual

stresses and displacements of the original problem are given as follows

gy = 0.', oy, = a,’, Txy: = Txy in the whole region
o, = vip(o,+o )+Ee,, U= u'-vjex, Vv = vi-vpey in the fiber region
0, = vg(oyto,)+Eqe,, u = u'-pgex, v = v'-poe,y  in the matrix region

(13
4. Plane-Strajin Deformations of the Unit Composite Cell
We next consider the case when the unit composite cell is subjected to a
plane-strain deformation
u = u(x, v, v = v(x,y), €, = 0. (14)
There are two particularly important problems of this class connected with the
determination of the gross elastic moduli of the composite. From the macroscopic

viewpoint, the first problem is associated with a uniform strain in the composite

62




— 2 v ey ——

(——

——-——————_—

along the x- or y-direction, for example, €, = ¢, and ¢, = 0, and the second
problem is associated with a uniform shear strain v,, = v,. From the microscopic
viewpoint, the first problem is characterized by the following boundary
conditions for the unit composite cell:
u=0, Ty = 0 on X =% a,
Vo= €Y, Tyy = 0 ony==b, (15)
while the second problem is characterized by the boundary conditions
v =0, o, =0 on X =t a,
U = YoV, oy = 0 ony—-%*5b. (15)
These boundary conditions may be derived on the basis of symmetry considerations.
The last condition of Eq. (14) yields the following relations in the fiber
region
o, = vylop + 0y), €x = 0x(1-v¢2)/E; — ows(14vy) /Eq,
€y = = ove(l4vg) /E. + ay(l_sz)/Ef, an
where E; and v; are as defined by Eq. (4). In the matrix region the preceding
relation must be replaced by
0, = vplo, + 0y), €x = 0x(1-v2) /By - o (14w,) /E,,
€y = = oo (14vy) /En + 0y(1-v %) /E,, (18)
Hence each original plane strain problem for the two elastic media, one isotropic
and one transversely isotropic, may be reduced to a new plane strain problem for
two isotropic media with the elastic moduli E,, v, and E;, vy, respectively. All

the boundary conditions and interface conditions remain unchanged.

5. Longitudinal Shear Deformation

When the composite is subjected to a macroscopically uniform longitudinal

shear deformation, the fiber and matrix regions in the unit cell are both
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subjected to (nonuniform) anti-plane shear deformation. That is, in both regions
the displacement functions have the from
u = 0, v =0, w o= wix, y) (19)
The only nonvanishing strain components are
Yxz = W/3x, Yyz = OW/3Y,
and the only nonvanishing stress components have the expressions
Ty = Gyp OW/0%, Ty, = Gyp dw/dy in the fiber region
Tyz = Gp Ow/0x, Tyz = Gp dw/dy in the matrix region (20
The equilibrium equations reduce to the Laplace equation for w(x,y) in both the
fiber and matrix regions
Vi = 0. (21
This equation must be solved together with the following boundary conditions
W= Y along x = £ a/2
w =% 9b/2 along vy = * b/2. (2)
and the continuity conditions of w, 7,, and 7y, across the fiber-matrix interface,
i.e.,
[w] = O, Gy dw/dx = G, aw/ox%, Gz dw/dy = G, dw/dy (23)
The last two conditions of Eq. (23) imply that, unless G,; # G,, the gradient of
the solution w is discontinuous across the interface.
Since w is governed by the Laplace equation, the boundary-element analysis

of the preceding boundary-value problem for w is relatively simple.

6. The Elastic Moduli of a Unidirectional Composite

A unidirectional composite consisting of an isotropic resin material and
transversely isotropic fibers has transversely isotropic gross (macroscopic)

properties if the flbers are randomly distributed in the matrix., If the fibers
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are periodically arranged in square or hexagonal patterns, then the mechanical
behavior of the composite manifests certain symmetry properties with respect to
the planes of symmetry. Strictly speaking, such a composite may be not
transversely isotropic. For example, a unidirectional composite with a square
array of fibers placed along the coordinate directions x and y has the same gross
extensional elastic moduli in these two directions, E," = E;", and furthermore,
vy3" = v3,". However, the gross extensional modulus along other directions in the
x-y plane are general different, and the gross shear modulus G,;" associated with
the x- and y-directions is generally not equal to E;"/2(l+v,;"). Whereas a
material with transversely isotropic elastic properties possesses a continuous
group of symmetry transformations, unidirectional composites with square or
hexagonal fiber patterns possess symmetry transformations which form a discrete
group. The elastic properties of such composites are generally characterized by

-

nine independent parameters of an orthotropic material, E,*, E,", E;", vy, va",
va1', Gp2', Gpa' and G;;°, although certain relations among these parameters may
arise as in the case of square arrays. Other frequently used elastic parameters
of an orthotropic material are defined by

var = vy E7/E)T, va;” = vz E37/E;, vish = va” EJ/ES. (24)
Notice that the fiber direction (with the associated elastic moduli E;”) is here
jdentified with the z-direction while two orthogonal symmetry axes 2 and 3 are
identified with the x- and y-axes, respectiv.ly.

The gross elastic moduli of a composite may be directly determined by
experimental measurements under various multiaxial and shearing loads.
Alternatively, they may be calculated by solving several micromechanical problems

for a unit cell of the composite. Solutions to the transverse and longitudinal

shear problems, described respectively in Sec. 4 and 5 of the present paper,
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directly yield the gross shearing moduli G,3", Gi;" and G;»" of the unidirectional
composite. In calculating these gross moduli, the macroscopic shearing stress
r(," is obtained by integrating the boundary shearing stress 7;; of the
micromechanical problem along a rectilinear boundary of the unit cell and
dividing the result by the length of the boundary segment. The boundary data of
the micromechanical shearing stresses r,; are directly provided by the boundary
element solution of the micromechanical problem.

On the other hand, the evaluation of the gross extensional elastic moduli
E,*, E,", E;" and the Poisson’s ratios vi»", vy;" and v,,” of the composite requires
two independent plane strain solutions of Sec. 4 and a third solution
correspoading to a uniform longitudinal strain load, described earlier in Sec.
3. In taie last solution, the unit cell is subjected to boundary displacements
which result in an average strain field

e, = ¢ " =0, €,0 = €1,

The cor:esponding average stresses o,""?, 0" and o,"") are related to the

precedir gz average strains by the gross constitutive relation of the composite,

i.e.,
A 2 B 7SN L i BN (25a)
ay‘(l) -0y vyt - 0wyt -0, (25b)
T Y A LIV S T (25c)

In one of the two plane strain solutions, the unit cell is subjected to the
average strain field
2 :

* -
€ = €', €, = €¢; = 0.

The corresponding macroscopic stresses o, %, ¢,"? and ¢,"'? <arisfy

0, 8 = 0,7 wpy" - 0,1 vyt = PR, (25d)
0,2 — g, yyt - g, )t <0, (25e)
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g, 2~ g M2 ut - "y'm vist = 0. (25%)
For the other plane strain solution, the preceding equations for the average

strains and the average stresses are replaced by

€, = ¢, €, = ¢, =0,

and
o - ay-(a) vast - 8, ) byt = 0, (25g)
ay“(S) - ax'“” iy — ax*m ,,31' - ¢ E;", (25h)
0"t - g3 Lt oy'(-ﬂ vzt = 0. (251)

7. Calculating the average stresses aij' from the solutions of the modified
micromechanical problem

The macroscopic stresses o,"’, o,V 0,72}, ¢,"2 £,"3) and 0¢,"3 may be
appearing in Eq. (25) mav be calculated from the solutions of the micromechanical
problems for a unit cell (Sections 3 and 4) by averaging the normal tractions
over vertical and horizontal boundary segments of the unit cell. These normal
tractions (o, or o,) are provided directly by the boundary-element solutions of
the modified micromechanical problems, because o,’ = o, and o, = o, in both the
fiber and matrix regions.

The average stresses .}, ¢,"?’ and ¢,°®’, on the other hand, will be
expressed in terms of the boundary and interfacial values of the displacements
of the modified micromechanical problems. These boundary and interfacial values
are also provided directly by the boundary-element solutions. For example, one
has

(Ay + Ap) o,V = II g, dx dy, (26)
where A, arnd A, denote the cross-sectional areas of the fiber and of the matrix

material, respectively, of the unit cell, and where the integral on the right-
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hand side extends over both areas. By virtue of the first equation in Eq. (3),
the part of the integral over the fiber cross-section yields the contribution

[! {vialoytoy) + Epefl)) dx dy = E;e'Pap + I[ fviz(o,'+0,') dx dy. (27)
Since the modified micromechanical problem is a plane-strain elasticity problem
for both the fiber and matrix regions, we have, in the fiber region

oy'to," = !Ef/(l—vf—Zufz)} (ex"+ey' ).

Substitution into Eq. (27) yields the following contribution to the right hand
side of Eq. (26):
Ere'DAr + viplE/(1-20g-v )} f u'dy - v'dx. (28)

To this must be added a similar contribution from the matrix region:

ff (vp(ogtoy) + Epe ™) dx dy = Epe DAy + vl Ep/(1-vg=20,7) ) f u'dy - v'dx. (29)
The line integrals in the last two expressions are performed along the closed
boundary curves of the fiber and matrix regions, respectively. We recall that,
according to Eq. (11), the displacement scolutions u’ and v’ of the modified
problem are generally discontinuous across the interface between the fiber and
matrix regions.

The preceding results show that the input data needed to compute the
average stresses o;;" in Eq. (25) are the values of boundary tractions and of the
boundary and interfacial displacements associated with the wmicromechanical
problems of the unit cell. These values are all immediately available from the
boundary-element solutions of the modified micromechanical problems. There is
no need to compute the stresses or displacements at any interior point of the
fiber region or the matrix region. Thus the large number of interior nodes used
in the finite-elewent analysis of micromechanical problems serve no purpose, in
the present context, other than as a means to generate the finite-element

solutions themselves. By eliminating the need for the internal nodes and the
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associated unknown variables, the boundary-element analysis provides an
exceedingly efficient method for obtaining exactly those quantities necessary for
the determination of the gross elastic modull of the composite.

After the evaluation of the average stresses, the nine gross elastic
parameters E;", E;*, E;", wvip", va', va", vy, viy" and vy;" may be easily
determined from Eq. (25). First, Eqs. (25f) and (25i) yield v,;" and v;,;", Egs,
(25b) and (25e) yield v3," and v3;", and Eqs. (25a) and (25g) provide v,3" and v,,".
Then Eqs. (25¢), (25d) and (25h) yield E,*, E,” and E,", respectively. The nine
parameters thus determined should satisfy Eq. (24), because these parameter are
calculated from the relations between conjugate forces and displacements in

elasticity solutions,

8. Implementation of the boundary-element analysis for two-dimensional interface

problems

The preceding analysis indicates that all input data needed for calculating
the gross elastic moduli of a unidirectional composite with regular and periodic
fiber patterns may be obtained from the boundary-element solutions of certain
modified micromechanical problems. These modified micromechanical problems are
plane-strain elasticity problems for two distinct isotropic¢ elastic media, with
simple types of boundary conditions for the displacements and tractions on the
exterior boundary of a unit cell, and with continuous tractions and continuous
or discontinuous displacements across the interfaces of the fiber and matrix
regions. An existing computer program for two-dimensional, plane-strain
boundary-element analysis of an isotropic medium may be applied, first to the
matrix region, and subsequently to the fiber region, where the transversely

isotropic fiber material is replaced by a fictitious isotropic material with the
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elastic moduli E; and v; defined by Eq. (4). Each node on the interface of the
fiber and matrix regions will be counted twice {(i.e., treated as a double node),
first as a boundary node of the matrix region and later as a boundary node of the
fiber region. There are four variables associated with each boundary node: the

two displacement components u’ and v', and the two traction components t, and ty

Y

(notice that, since o,', o,’ and 7,.,' of the modified micromechanical problem are

identical to o,, o, and 7., of the original problem for the unit cell, the

y
tractions t;’ and t,’ are also identical to t, and t, on any segment of the
exterior boundary or internal interface). For a double node associated with a
point on the interface, there are eight variables, four associated with the
matrix region and the other four associated with the fiber region. The computer
program for boundary-element analysis generates square matrices [A;] and [B,] for
the matrix region such that

[An] fug) + [Bs] () = (0}, (30)
where {u,) is the column vector whose elements include all displacement variables
u’' and v' (known and unknown) associated with a boundary or interface node of the
matrix region, and {t,) is the column vector whose elements include all traction
variables t, and t, associated with the same nodes. For the fiber region, one
has a similar equation

[Ac] tug) + [Bg] ttg} = {0), (31)
where the column vectors {us) and [t;) include, respectively, the displacement
and traction variables associated with all boundary and interface nodes in the
fiber region. Notice that, for each double node on the interface, four of the
eight variables are included in Eq. (30) and the remaining four variables are
included in Eq. (31).

Equations (30) and (31) may be combined into a single equation of the
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following form

[A] {u} + [B] (t} =~ (O}, (32)
where
[Ax] [O] [ [B] [0O]
[A] = 5 [B] = L '
(0] (A] [0]  [Bg]

and {u} and {t} are, respectively, column vectors obtained by combining {u,) with
{ug) and (t;)} with {tg).

Along the exterior boundary of the fiber and matrix regions, the boundary
conditions are imposed according to Egs. (1) and (10). Each boundary condition
is a condition on an element of {u} or of [t} associated with a boundary node.
Due to the geometrical symmetry of the unit cell and the symmetry of the boundary
load, the displacements (tractions) at one boundary or interface node may be
equal or opposite to the corresponding displacements (tractions) at another node.
Furthermore, at an interface (double) node, the continuity conditions of the
tractions and the continuity or jump conditions of the displacements across the
fiber-matrix interface provide additional relations between two traction
variables or two displacement variables associated with that node.

Every boundary condition, symmetric condition, interfacial continuity or
jump condition described above has the form

X + Nx; -c =0, (33)
where x; and x; are two distinct elements of the column vector {u} or {t}, c is
a known number determined by the specified boundary displacement or by the
specified jump of u' or v’ across the interface, and the integer N may assume
values 0 (in the case of a boundary condition), +l1 or -1 (in case of a svmmetry
condition or interfacial continuity or jump conditions). There are two boundary

conditions of this form at each boundary node, and four interfacial continuity
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or jump conditions (two for the tractions and two for the displacements) at each
double node on the interface.

Equation (33) may be used to eliminate a variable, x; or x;, from Eq. (32).
This amounts to combining two columns of the matrix [A] or of the matrix (B], or
moving a column of [A] or [B] to the right hand side of the equation after
multiplication by the factor ¢, or doing both. 1In each case the operation
reduces the dimension of the matrix [A] or [B]. When the operation has been
repeated for each one of the boundary, interface and symmetry conditions, the
total number of columns remaining in the matrices [A] and [B] is equal to the row
dimension, and those variables in (u} and {t} which have not been eliminated may
be solved from the reduced system of linear equations. This yield an approximate
solution of the modified micromechanical problem by the boundary-element method.

The preceding method of eliminating variables suggests an algorithm for
treating, in a unified and systematic way, all boundary, interface and symmetry
conditions in the modified micromechanical problem inveolving two distinct
isotropic elastic media. When these conditions are put in the form of Eq. (33),

the algorithm consists of purely algebraic manipulations on the matrices [A] and

{B].

9. Results

A Fortran program has been developed to implement the boundary-element
analysis of the moditied micromechanical problem for the unit cell composed of
fiber and matrix regions (see Appendix A: Program MICROBEM). The portion of the
program which generates the matrices (Ay], [By), [Af] and {B¢] of Eqs. (30) and
(31) are essentially taken from the two-dimensional boundary-element code for a

single isotropic elastic wedium give in Brebbia et al. (see Chapter 14 in
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Brebbia, C. A., Telles, J.C.F. and Wrobel, L. C., Boundary Element Techniques:

Theory and_ Applications in FEngineering. Springer-Verlag, Berlin, 1984).
Subroutines for combining the matrices and eliminating columns by using the
boundary, interface and symmetry conditions are included in the program. The
resulting system of algebraic equations are solved and the average stiesses ou*
corresponding to the three loading cases associated with Eq. (25) are computed
by numerical integration of the boundary tractions along the exterior boundary
and of the interfacial displacements along the interface.

In their micromechanical analysis of fiber-reinforced composites with
hexagonal fiber arrangement, Chen and Cheng used the elastic moduli for the
graphite fiber and the epoxy matrix given earlier by Whitney (Chen, C.H. and Shun
Cheng, "Mechanical properties of anisotropic fiber-reinforced composites,” J_
Appl. Mech., Vol., 37, pp. 186-189, 1970; Whitney, J. M., "Elastic moduli of
unidirectional composites with anisotropic filaments,” J. Compesite Materials,
Vol, 1, p. 188, 1967). The values are

E; = 24 msi, E; = 2 ms:i, Gy = 4 msi, vy, = 0.3, vy = 0.15
for the fiber material and

E, = 0.6 msi, vy = 0.3
for the matrix material. The composite has the fiber volume fraction V; = 0.5.
Chen an Cheng reduced the problem to a boundary problem for the biharmonic

equation and used series expansion in polar coordinates to obtain the following

results for the composite moduli:

E,* = 12.33303 msi, vy = 0.20025, viy" = 0 30025,
vs" = 0.02575, E," = 1.05805 msi, vyy" = 0.32059,
vy' = 0.02567, vy = 0.32265, E," = 1.05389 msi,

In the present analysis, the micromechanical problem for the unit cell is
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first transformed into a modified plane-strain problem iIn which the anisotropic
fiber region is replaced by a suitable isotropic medium. The exterior boundary
of the unit cell and the interfaces are partitioned into boundary elements as
shown in Fig. 10. The boundary element equations are solved and the gross moduli
of the composite are computed according to the procedure described in Sec. 8,
The results are given in the following table for the preceding material system
along with the results for two other material systems which have different values

of v, but are otherwise identical.

ol E,” E;" Ey” vig© Vo
{msi) (msi) {msi)
0.3 12.2994 1.06411 1.06406 0.3 0.31979
0.35 12.3000 1.10160 1.10150 0.32389 0.38579
0.4 12.3014 1.15481 1.15466 0.34965 0.46679
Table 6: Composite elastic moduli calculated by the boundary-element

analysis of the micromechanical problem for a unit cell

For v, = 0.3, the present results are in excellent agreement with those
reported by Chen and Cheng. Notice that since for this case v, = v, Egqs. (11}
indicate that there are no jumps of u' and v' across the interface. It is
irteresting to notice that in all three cases the parameter v,;,” of the composite
is greater than the corresponding parameters of the fiber (wv;; = 0.15) and the
matrix (v, = 0.3, 0.35 or 0.4).

The computed results of E,” and vy,” are in excellent agreement with the

predictions based on the rule of mixture:
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E," = E; Vg + Ep (1 - Vg) = 12.3 msi, (34)
vt = v Ve + gy (1 - V). (35)
Furthermore, the present results of E," are also in excellent agreement with the
predictions of certain empirical formulae proposed by Tsai (Tsai, S. W

Structural Behavior of Composite Materials, NASA CR-71, July, 19%64) and Halpin
and Tsai (Halpin, J.C. and Tsai, S.W., Effects of Enviromnmental Factors on
Composite Materials, AFML-TR 67-423, June 1969). However, the results of w,;"
obtained by micromechanical solutions (including the present solution and that
of Chen and Cheng, which are in close agreement) are significantly different from
the empirical formulae cited above. On the other hand, the in-plane volume
modulus , defined as o0,"/(2¢,") under the isotropic plane strain condition (e,"
= €;" and ¢;," = 0) as calculate by the present analysis is in excellent agreement
with the prediction of an empirical formula given in the book by Tsai and Hahn

(see Eq. f3.55) in page 397 of Tsai, S.W. and Hahn, H.T., Introduction_ to

Composite Materials, Technomic Publishing Co., Westport, Comnecticut, 1980). For

a composite with transversely isotropic gross elastic properties, this in-plane
modulus k* is determined by E,", v;;" and v,;" according to the relation
kK" = B /2(1 = va" = 2 vyt vy, (36)

For the material system considered here (with v, = 0.3}, k" has the value 0.8005
@si fruw rue present analysis and 0.8011 msi from the empirical formula of Tsai
and Hahn. Similar agreement was found for the case v, = 0.4, and for other
values of the fiber-volume fraction. Hence the results of the present analysis
confirm that an accurate prediction of v,;" can be obtained by first using the
empirical formula in Tasi and Hahn to estimate the in-plane volume modulus k*,
and subsequently calculating v,;" from Eq. (36). On the other hand, direct

estimation of v,," using the Halpin-Tsai equations generally yields results that
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have substantial errors.

By changing the fiber radius in the model of Fig. 10, and repeating the
boundary-element analysis, we obtain the gross elastic moduli of the composite
with a different fiber content. The dependence of E," and v,;" upon the fiber

volume fraction is shown in Figs. 11 and 12 for two values of v, (0.3 and 0.4).

9. Summary and a comment on future work

The determination of the gross constitutive properties of a composite
material from the constitutive equations of its constituents is a fundamental
problem in the mechanics of composite materials. The current literature on the
subject is largely confined to linearly elastic behavior of composites. Much
remains to be done in the micromechanical analysis of composites with inelastic
matrix phase. The present work indicates that the boundary-element analysis
provides a very efficient and accurate method for dealing with interface problems
at the micromechanical level. The efficiency comes largely from reducing the
dimension of the problem from three to two or from two to one. This usually
results in simplified data input and modeling, and great savings in computational
effort.

Significant progresses have been made in the last decade on the application
of the boundary-element method to plasticity problems. Although the present
analysis is restricted to elastic fibers and elastic matrices, the method can be
extended to determine non-linear and inelastic gross properties of a composite
composed of linearly elastic fibers and non-linear resin materials. In solving
micromechanical interface problems with inelastic regions, the use of the
boundary-element analysis is even more attractive, and perhaps imperative,

because of the unusual complexity of the finite-element modeling and solution of
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such problems. Furthermore, the nonlinear constitutive relation in an inelastie
process is generally history dependent. A much greater number of solutions of
different micromechanical problems (with different loading histories) must be
obtained to evaluate the material parameters or material functions characterizing
the inelastic response of the composite. Hence the solution procedure must be
standardized and used repeatedly. Any significant saving in the modeling and
computational effort for a single execution of the solution process will result
in tremendous savings in the large task of calculating the nonlinear gross

response of a composite material from the constituent properties,
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Fig. 11: Dependence of the composite

transverse elastic modulus on the fiber

volume fraction
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Fig. 12: Dependence of the gross Poisson's

ratio,lé;, on the fiber volume fraction
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IV. Failure Modes and Analysis

1. Introduction

When a filament-wound composite structure is subjected to an internal
pressure, it generates tensile membrane forces which are largely carried by two
intersecting families of stiff fibers. The matrix material serves to hold the
net of fibers in place, to transmit forces among unevenly stretched fibers via
shear action, and to contain internal pressure. While a net of fibers alone is
capable of large membrane deformation with little fiber stretching, through
finite changes in the intersecting angle, such membrane deformations are opposed
by the reactions from the matrix material. Thus, if the deformation of the fiber
net tends to compress the matrix, the matrix material reacts to the fiber net in
such a manner as to smooth out local non-uniformity in fiber tension resulting
from irregularities in the fiber diameter, material defects, winding geometry,
initial fiber stress and waviness. On the other hand, if the deformation of the
fiber net tends to produce predominantly tensile stress in the matrix, then the
composite is likely to develop matrix or interfacial cracks which propagate
across the barriers of the intersecting family of fibers. This process may
interact with and accelerate the breaking and debonding of fibers and the
sequential failure of neighboring fibers. It is apparent that in this fracture
mode of failure, the matrix and fibers behave and interact in such a manner as
to enhance and accentuate, rather than smoothing out, any initial concentration
of strains and defects. Thus, depending upon the nature of the deformation of
the fiber net produced by the pressure loading, two fundamentally different types
of failure processes can occur in a filament-wound structure, dominated

respectively by intense shear deforamation in the matrix and by the expansion of
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a surface element with eventual tensile fracture. While the processes of the
first type may be amenable to a macromechanical analysis if one takes into
consideration the distinct constitutive properties of the constituents in the
various stages of the failure processes, the methodology of fracture mechanics
is appropriate in modeling and analyzing the fallure processes of the second
type.

Since the tensile or compressive nature of the stress in the matrix
material is essentially determined by the deformation of the fiber net that would
occur in the absence of the matrix, and since the presence of the matrix merely
modifies such deformation through shear and compression, the first step in the
failure analysis is to solve the problem of finite deformation of a net of
linearly elastic (or even inextensible) fibers with prescribed boundary
conditions. The solution determines the character of the stress in the matrix
which in turn predicts the type of the failure process that will be operative,
This approach is demonstrated by the simple case of the cylindrical geometry for
which the solution of the fiber net is trivial (see Secs. 3 and 4 in the
following).

While the existing experimental data provide a sufficient basis for
identifying the failure modes in the different specimens under different test
conditions, further experimental results are need to provide a quantitative basis
for determining the empirical failure criterion associated with each failure
mode, The most commonly used failure criteria for composite materials, including
the Tsai-Wu criteria, are represented by a failure surface in the stress space.
The parameters in the criteria are evaluated by fitting the points of the failure
surface with experimental data. While criteria of such nature are useful for

characterizing the strength of the composite in the circumstances where the
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composite is only eXxpected to experience deformations with small strains, they
are not well suited for composites which may experience significant inelastic
deformation and large shear strain. Failure of filament-wound structures is
generally a progressive process starting from microcracking of matrix and
whitening at a relatively low level of stress. Aside from certain exceptions
cases, it 1s not an instantaneous event reached suddenly when the stress path
meets a certain fixed surface in the stress space. Hence the formal analogy of
the failure criteria to the yield condition in plasticity may be inappropriate.

It appears that the failure of a filament layer should depend on the
maximum values of the transverse strain ¢, and of the shear strain -+,
experienced by an element of the layer preceding failure, as well as the filament
strain ¢, at the instant of failure. There are other important reasons for
preferring a strain-based failure criterion over a stress-based criterion. The
first is that the intrinsic components of the failure strain are easily
calculated in terms of the experimental data from testing of filament-wound
structures, while the stress data in the various filament layers usually cannot
be obtained with certainty or cannot be obtained without an elaborate analysis.
The second reason is that in the analysis of a thin filament-wound structure, the
strain field is fairly smooth or uniform within the structure, and can be
expressed in terms of a small number of unknowns including the middle-surface
strains and curvatures, whereas the stresses may vary .iscontinuously from one
filament band to another, because of the discontinuous change in the filament
orientation and the cross-over of filament bands. Consequently, it is relatively
easy to apply a strain-based fallure criterion to a filament-wound structure,
Recently, Feng has proposed a strain-based general failure criterion for

composite materials undergoing finite deformation (Feng, W. W., "A failure
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criterion for composite materials,” J. Composite Materials, Vol. 25, pp. 88-100,
1991).

While empirical failure criteria are attractive from an engineering point
of view because of its simplicity and ease of application, such formal criteria
do not suggest the underlying failure mechanism at the micromechanical level.
Although the progressive degradation of the resin matrix associated with
significant transverse and shear strains, e, and 7v;;, is initially a spread-out,
continuous process which may be characterized by a continuum theory of damage,
eventually the microcracks evolve or coalesce into finite matrix eracks or
fiber/matrix disbonds which ultimately determine the failure of the composite
according to the failure criteria of fracture mechanics. For the filament layer
in a filament-wound structure, this aspect of the failure analysis is
particularly relevant to the tubes experiencing significant transverse tensile
strain ¢, before failure. It is less important for the prediction of failure
loads governed by fiber breaking, at least in the case of axisymmetric filament-
wound structures, because in such structures the position and the level of the
maximum fiber tension may often be estimated by considering the global
equilibrium of the structure and, consequently, an empirical failure criterion
based on the average filament strength or allowable filament strain may be
adequate,

In Section 5 of the present part of the report, we present boundary-element
analyses of two-dimensional micromechanical models of fiber-matrix interfacial
di-bonds and oblique matrix cracks. For simplicity, the fiber regions are
considered as rigid whereas the resin material is treated as a linearly elastic
medium. The assumption of rigid fibers should yield an overestimation of the

interfacial stresses (which are unbounded and oscillatory according to the exact
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elasticity analysis) and therefore is on the conservative side. Analysis was
conducted for two cases corresponding, respectively, to a unit transverse strain
and a unit shear strain in the matrix region. It is found that the energy-
release rate associated with the growth of the interfacial crack grows rapidly
vhen the disbond length reaches a certain critical value. Subsequently, the
energy release rate levels off and approaches a limiting values when the disbond
length becomes sufficiently large. The case of transverse strain load is more
critical because the results show that a large energy release rate can be
attained when the disbond length is comparable or shorter than the spacing
between two neighboring fibers.

Spencer and Hull observed the occurrence of local buckling and delamination
in the failure of open-ended tubes with winding angle greater than 45°,
particularly in the 653° tubes. It may appear somewhat puzzling that delamination
should occur in a tube loaded under internal pressure, where the adjacent layers
are pressed against each other in the radial direction, and that buckling and
bending of the tuhe should happen under the open-end test condition, where the
resultant axial load in the tube vanishes. An analysis of a possible failure
mode due to the separation and growth of a helical face layer from the interior
surface of the filament-wound tube is briefly mentioned in Sec. é and described
in more detailed in the paper "Separation failure of a helical delamination in
a filament-wound composite tube," Developments in Theoretical and Applied
Mechanics, Vol. XV (Proceedings of the SECTAM XV, March, 1990, Atlanta, GA), pp.
440-447 (by Wan-Lee Yin, see Appendix C of this report).

Delamination is a prevalent mode of failure in composite laminates.
Filament-wound structures are prone to delamination failure because the

scissoring action at the cross-over point of two filaments belonging to separate
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layers, mentioned in Sec. 2.3 of Part II, may produce intense local shearing
deformation in the cross-over region as the fibers rotate and realign themselves
to the load direction. Such scissoring action results in a system of distributed
couple moment from one filament layer to the adjacent layer, which may initiate
separation of the layers. After the initiation of delamination damage,
catastrophic delamination growth may result from buckling and postbuckling
deformation of the layer when the structure is subject to the service load. A
general analysis of buckling and postbuckling growth of a thin two-dimensional
delaminated layer in a composite laminate is present in a sequence of two papers:
Yin, W.-L. and Jane, K.C., "Refined buckling and postbuckling analysis of two-
dimensional delaminations, Part I: Analysis and Validation,” and Jane, K.C. and
Yin, W.-L., "Refined buckling and postbuckling analysis of two-dimensional
delaminations, Part II: Results for anisotropic laminates and conclusion,” Int.

J. Solids & Structures, in press (see Appendix D and E).

2. Relation of the deformation a tube to the deformation of a fiber net

We consider again the deformation of the diamond-shaped region of a
filament layer shown in Fig. 1 (p.12). The length of each side of the rhombus
changes from L in the initial state to L(l+¢;) in the deformed state. Since ¢,
is bounded by the fiber failure strain, it is always small. However, during the
failure process the orientation angle of the fibers may deviate significantly
from the initial angle «,. This description applies not only to the actual
deformatior of the filament-wound tube, but also to the hypothetical deformation
of a fiber net without resin matrix.

We consider an external load which causes approximately uniform axial and

circumferential Cauchy stresses o, and oy in the tube. The magnitude of the
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shearing stress 7,y is also approximately uniform but its algebraic sign changes
from a +o filament layer to a -a layer. If the resin material were absent (i.e.,
if the filament-wound tube is replaced by a skeleton of filaments), then the
orientation of the fibers under the given state of stress would be given by the
angle a" such that

(T cos a'/L sin a")/(T sin &"/L cos a") = a,/04,
where T is the tension in each fiber. Hence,

tan a” = (gy/0,)1/2. (1)

In the case of a closed-end tube subjected to a uniform internal pressure, one
has o4/0, = 2 and a" = 54° 44*'. This angle is called the optimum winding angle
in the literature on filament-wound structures. Its optimality is clearly
dependent on the specifically assumed loading condition ayz/0, = 2.

The presence of the resin material affects the deformation and prevents the
fiber net from assuming the orientation angle a. Therefore, the actual
orientation angle of the filaments corresponding to the stress state (g,, g;) is
between u«, and e¢”. Under normal operating conditions, a should be close to a,.
Any significant deviation of o from a, toward a" would be resisted by the
shearing stiffness of the resin material. 1In any such state of small-strain
deformation (i.e., when both ¢; and 2« — a, are small), an increase in the loading
is accompanied by an increase in ¢, and a change of a away from @, toward a.
Let these small increments be denoted by Ae¢, and Aa, respectively. Then

hey > 0 and (a’-a,) bda > 0, (2)
i.e., the algebraic sign of " - a, determine that of Aa.

1f a filament-wound tube is appropriately designed, it should deform in

such a way that a remains close to e, under a wide range of operating loads.

Large deformation of the tube, i.e., significant deviation of « from a,, should
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occur only when the external load is close to the failure load. In the small-
strain deformation states preceding failure, the algebraic sign of Aa is
important because it generally determines the nature or mechanism of the failure
process, as we shall find in the following analysis.

3. Shear failure and expansion failure

Deformation of a filament-wound tube may either increase or decrease the
surface area of the rhombus shown in Fig. 1. A significant increase in the area
may result in the tensile fracture of the resin material or adhesive failure
between fiber and matrix. This is associated with experimentally observed
progressive whitening and weepage of the¢ tube, formation of droplets and,
eventually, fiber breakage and tube rupture. The initiation of this expansion
mode of failure may occur at a relatively low level of load. Large strain in the
resin material and significant rotation of the fibers do not usually occur until
the external load becomes close to the final failure load.

On the other hand, if the surface area decreases as the extermal loading
continues, then the resin material eventually fails under excessive shear
deformation. There is much less whitening of the tube and no slow formation of
droplets. When the shear strength of the resin material is exhausted, the fiber
orientation may be significantly different from the initial orientation.
Consequently, large deformation of the tube may occur in the failure process, and
an accurate prediction of the failure load may require the knowledge of the
inelastic behavior of the matrix under large deformation. Furthermore, failure
of the tube in the shear mode may be preceded by extensive delamination since the
in-plane areal compression of the resin material may result in buckling of
filament layers.

Let A, and A denote, respectively, the area of the rhombus in the initial
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and deformed state, and let AA be a small increment in A. From Eq. (2.2) of Part
II1 (p. 11) we obtain

AA/A, = 2{(sin 2a/sin 2a,)(l+e;)he; + (cos 2a/sin 2a°)(1+el)2 Aa). (3)
If a < 45°, then a positive Aa contributes to a positive increment in the area.
The opposite is true if a < 45°. Consequently, there are four possible cases:

(i) @ < 45° and a, < @'. In this case the area increases as a increases
toward a". Expansion failure occurs.

(ii) @ > 45° and o, > a". In this case the area increases as a decreases
toward o". Expansion failure also occurs.

(iii) @ < 45° and a, > a”. In this case the area decreases as a decreases
toward a". Shear failure occurs.

{(1ii) a > 45° and a, < a". In this case the area decreases as a increases
toward a“. Shear failure also occurs.

At the initiation of the expansional mode of failure, a is not
significantly different from the initial angle a,. Therefore, if the angle a"
glven by Eq. (1) is greater than 45°, then in order to avoid expansional failure
one should choose a winding angle a, smaller than the a’. On the other hand, if
e" is smaller than 45°, then the winding angle should be larger than a*. In
either case, chooiing a winding angle between 45° and a” generally promotes the
shear mode of failure (except when a, is chosen to be very close to 45° or to a°,
as will be explained below). If a, is close to a”, then the resin material will
not be subjected to excessive shear deformation in the states preceding the final
failure. The final failure will be initiated by tensile failure of weak or
flawed filaments.

If either a, = a" or a = 45°, then cos 2a Ac = 0 and, consequently, there

is no areal expansion due to the rotation of the fibers. However, there is some
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areal expansion due to the fiber strain increment Ae¢;. Thus, tubes wound at the
ideal winding angle (a, = ") or at 45° angle may start to fail in the
expansional mode. As failure progresses in the 45° filament-wound tube under the
closed-end condition, a increases toward @' and the failure behavior may
subsequently change from the expansion mode to the shear mode.

In the usual production process, a constant pitch is enforced and, as a
result, the winding angle a, is smaller toward the interior surface of the tube
and larger toward the exterlor surface. The deviation from the mean winding
angle increases with the thickness of the tube and decreases with the mean
radius. This three-dimensional effect influences the accuracy of the analysis
given in Part II. It also implies that, for whatever choice of the helical
pitch, a certain amount of in-plane shear deformation necessarily occurs in the

resin material and this shear deformation varies in the thickness direction of

the tube.

4. Experimental evidences

The preceding simple predictions are verified by various experimental
results available from the existing literature. Hull et al. (Hull, D., Legg,
M.J. and Spencer, B. "Failure of glass/polyester filament wound pipe” Composites,
Vol 9, pp. 17-24, 1978) tested filament-wound tubes with the “ideal” winding
angle (54° 44') under both closed-end and open-end conditions. Since the fiber
orientation tends to stay at the ™ideal" angle under the close-end test
condition, the surface area expands because of fiber extensional strain rather
than because of fiber rotation. Hence the tube fails under the expansion mode.
In the open-end case, the fibers tend to orient toward the circumferential
direction. The surface area decreases in the deformation process, and the tube

fails in the shear mode. The nature of the observed failure phenomena was also
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confirmed by examination of photomicrographs {(Jones, M.L.C., and Hull, D,

"Microscopy of failure mechanisms in filament-wound pipe,” J. Material Sci., Vol.

14, pp. 165-174, 1979).

More extensive testing of pipes wound at 35, 45, 65 and 75 degree angles
(Spencer, B and Hull, D., "Effect of winding angle on the failure of filament
wound pipe", Composites, Vol. 9, pp. 263-271, 1978) further supports the
theoretical prediction. Under both closed-end and open-end conditions, the 35°
tubes failed primarily under the expansion mode, although the failure is also
accompanied by significant or large shear deformation. Weepage and whitening
begins at a very low level of loading. The orientation angle of the fibers
increase from 35° and eventually reaches 50° in the state immediately preceding
final fracture. For the tubes wound at 45° angle, the area increase due to
increase in a is zero initially (because cos 2a = 0 in Eq. (3)). The initial
failure of the closed-end tube may be associated with the expansion mode because
the surface area increases with fiber elongation. However, as o increase and
deviates significantly from 45°, shear deformation becomes dominant and the
failure process changes into that of the shear mode. Spencer and Hull observed
less extensive whitening and reduced over-all breakdown of the tube when the
winding angle is 45°. Furthermore, wunder the open-end condition, local
delamination was observed which suggested the reduction of surface area
accompanying the shear mode of failure.

The 65° and 75° tubes under the closed-end condition showed very extensive
whitening after weepage and generated creaking noise at the instant of failure.
The phenomena are clearly associated with the expansion mode of failure as the
surface area increases when the fiber orientation angle decreases toward the

limiting angle a" ~ 54° 44'. On the other hand, under the open-end condition,
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the same tubes (especially those wound at the 75° angle) showed much less
whitening. The onset of weepage occurred suddenly with the formation of jets of
liquid through the tube wall as the tube buckled before final failure. The
failure process is clearly associate with the shear mode.

Spencer and Hull reported the measured data of the axial and circum-
ferential strains as functions of the mean circumferential stress (which is
related to the internal pressure) for the tubes with various winding angles under
the open-end and closed-end conditions. From these data the Intrinsic strains
€y, €3 and +y,, and the areal expansion ratio (A-A,)/A;, may be calculated by using
the finite-deformation kinematical relations in Part I1. The results are <hown
in Figs. 13 to 17 for the open-end tubes and Figs. 18 to 22 for the closed-end
tubes. The figures show the paths of the intrinsic strain followed by different
tube specimens in the entire deformation process preceding the final failure.
Large magnitudes of 7y,,, accompanied by small or negative transverse strain e,,
indicate the shear mode of failure, while a significant positive transverse
strain and a large areal expansion ratio indicate the expansional failure mode
(for example, the 55° and 65° tubes under the closed-end condition). Under the
closed-end condition, the strain path for the 75° tube terminated prematurely at
a very low level of the pressure load. Although the average intrinsic strains
in the tube remained small before failure, a narrow spiral band of intense
whitening was clearly observed, which suggests local failure under the expansion
mode .

Experimentat results of the similar kind for other composite material
systems are available, e.g., the results for closed-end tubes of carbon/epoxy
filament-wound cylinders reported by Uemura and Fukunaga (ibid.). Special

mention should be made concerning the work of Cole and Pipes (Cole, B.W. and
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Pipes, R.B., Filamentary Composite lamipnates Subjected to Biaxial Stress Fields.

IIT Research Institute Report AD-785 362, June 1974). These authors developed
a testing device for tubular specimens with the capability of varying the axial
to the circumferential stress ratio, so that stress paths more general than the
proportional loading paths corresponding to the open-end or closed-end conditions
are made feasible, Results from such tests provide valuable additional
information concerning the nonlinear material behavior and the effect of the

strain path on the failure mode and the ultimate strength.

5. Iwo-dimensional micromechanical modeling and analysis of fiber-matrix

debonding

If, with a certain combination of the winding geometry and applied load,
a filament-wound structure undergoes the expansion mode of failure, then
whitening appears in the resin matrix at an initial stage of the failure process
due to the formation of microcracks. Eventually, small cracks coalesce to form
finite cracks across the resin matrix or on the filament-resin interface. As
mentioned previously, the expansional mode of failure is usually associated with
a transverse extensional strain in the filament layers. Under such a strain
state, the resin material near the tip of a matrix ecrack or a fiber-matrix
disbond is subjected to intense local peeling and shearing stress. This intense
local stress field may result in catastrophic growth of the crack if the level
of the transverse strain in the filament layer is sufficiently high, if the crack
length is sufficiently large, and if an increase in the crack length under a
fixed transverse strain causes an increase in the strain-energy-release rate.
This possibility is investigated in the present section of the report for a

fiber-matrix disbond, and in the next section for an oblique matrix crack running
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across the matrix region between two adjacent fibers, At this stage, the
objective of the analysis is to assess the possibility and the stability
characteristics of crack growth by using simple analytical models. Specifically,
we consider two-dimensional (plane strain or plane stress) micromechanical models
in which the fiber regions are assumed to be rigid media. The assumption
concerning the rigidity of the fiber regions is conservative because it generally
yields a more severe stress state in the vicinity of the crack tip.

5.1 Boundarv-element analvsis

We consider a plane strain model in which an isotropic resin material of
Young'’s modulus E and Poisson’ ratio v occupies the infinite strip, -o < x < =
and 0 < y < h, between two rigid filaments. A disbond of length 2a exists
between the resin and the lower filament in the interval -a < x < a. The upper
rigid filament is then subjected to a horizontal displacement hy, and a vertical
displacement he, relative to the lower filament, which result in average strains
€y, = €, and ¥, = 7Y, in the resin region. Our problem is to determine, for
various ratios of a/h, the displacements of the crack surface, the interfacial
stresses between the resin and the lower filament ahead of the c¢rack, and the
strain-energy-release rate assoclated with c¢rack growth.

Because of the linearity of the problem, the effects of the two strain
loads €, and vy, may be considered separately. This results in two problems
associated, respectively, with the vertical and horizontal displacements of the
upper filament relative to the lower filament. In the first problem, the
limiting stress and strain states at infinity (x - *=} are given by

oy = {(1-v)Y/vide,, Oy = 0, = Aég, (4a)
€, = €, €x = €, = 0, (4b)

where
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A = E/{(1-20)(1+) ), s = E/{2(1+v))
are the Lame elastic constants of the resin material. The solution to this
preoblem may be decomposed inte (1) a trivial solution characterized by uniform
strains and uniform stresses which have the expressions of Eq. (4) in the entire

matrix region and (ii) the solution of a complementary problem with the following

boundary conditions

t; = - o, = (1-v)Ke,, t, =0 along the crack surface, (5a)
u=v =0, along the remaining portions of the x-axis and
along the entire line y = h. (5b)

Similarly, the solution of the second problem, associated with the horizontal
displacement of the upper filament, can be decompesed inte (i) a trivial uniferm
solution characterized by

Txy = HYo» Yry = Yo» (6)
in the entire matrix region, and (ii)} the solution of a complementary problem

with the boundary conditions

ty = = Tey = WY t, =0 along the crack surface, (7a)
u=v=20, along the remaining portions of the x-axis and
along the entire line y = h. (7o)

Notice that the two complementary problems defined respectively by the boundary
conditions of Egqs. (5) and (7) have solutions with zero limiting displacements
and stresses at infinity.
The boundary displacements u; and the boundary tractions t; (with i = 1 and
2 corresponding, respectively, to the x and y directions) satisfy the integral
identity
u, (X) -f (G, (E.x) t,(E) - F (£,%) u (£)) ds(f), (8)

where the path of the line integral encloses the matrix region and where
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CU(E.X) = C, (C; si_j Inrt - ziz‘j/rz),

F;J(E)x) = C3r_2 lca(zin_j - zjni) + (C.,,81J + 21-_221:_]) ank}'

Z; = §i - X, rZ = Z;Zy, tl - aijn_j!
Cy = - 1/{8ap(l-v)}, C, = 3-4u,
Cy = - 1/t4n(1-v)}, C, = 1-2v.

In the preceding expressions, n; is the unit outward normal vector along the
boundary (Banerjee, P.K. and Butterfield, R., Boundary Element Methods in
Engineering Science, 19%81). The integral identity will be discretized by
dividing the boundary curve into intervals (boundary elements) and by assuming
that the displacements and the tractions vary linearly within each interval
(which is then called a linear boundary element). In the present problems the
boundary of the matrix region consists of segments of straight lines., If t; and
u; vary linearly within each element, then the integrals on the right hand side
of Eq. (8) can be evaluated exactly and numerical integration schemes are not
needed. Equation (8) yields a system of linear algebraic relations for the nodal
values of t; and u;.

At each node point, two of the four quantities u;, u,, t; and t, are
specified while the remaining two variables are to be solved. Hence the system
of linear algebraic relations obtained by discretizing Eq. (8) provides 2N linear
algebraic equations for 2N unknown nodal variables, where N is the total number
of boundary nodes. A double node, which stands for two boundary nodes at the
same position, will be used at a boundary point of discontinuity of the traction
vector t; or of the normal vector ny;. Examples of such double nodes include the
crack tip and a corner point of the matrix region. By solving the system of
equations one obtains an approximate solution for the unknown nodal displacements

on the crack surface and the nodal values of the interfacial tractions ahead of
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the crack tip.

For the two complementary problems defined, respectively, by the boundary
condition of Eqs. (5) and (7), both the displacement and the traction vectors
vanish at infinity. Hence the line integrals of Eq. (6) need be performed only
along the two horizontal paths and, in practice, only along a sufficiently long
finite portions of the paths. Furthermore, the first problem, associated with
a vertical displacement of the upper filament, is symmetric with respect to the
y-axis while the second problem, associated with a horizontal displacement of the
upper filament, is antisymmetric. These symmetry conditions may be used to
eliminate all unknown variables associated with the boundary nodes in the region
X < 0 by expressing them in terms of the remaining variables, according to the
procedure described in Part III, Sec. 8 (pp. 71-72). Notice that this practice,
which is convenient in dealing with the symmetry conditions in a boundary-element
analysis, is different from the common practice in a finite-element analysis, in
which one half of the region separated by the symmetry axis is removed from the
finite-element model and the symmetry conditions along the symmetry axis are used
as part of the boundary conditions for the reduced region. The latter practice
is not used in the present boundary-element analysis because, by removing the
left half region of the infinite strip 0 £ y = h, corner points would have to be
introduced which generally introduce additional complication in programming the
solution algorithm,

The boundary-element models used for the analysis of the tirst and second
complementary problems are described, respectively, in Figs. 23 and 24, where
only the regions x = 0 of the models are shown in the figures and the remaining
portions of the models are implied by symmetry. In these models, the length

scales have been normalized with respect to h so that the normalized width of the
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strip is unity. Figs. 23b and 24b show, in complete detail, the shaded regions
around the crack tip in Figs. 23a and 24a. The mesh of boundary elements is made
progressively finer as the crack tip is approached. The shortest elements have
the normalized length 1/512 for the problem associated with the tension load and
1/128 for the problem associated with the shear load. Outside the shaded region,
the partition of the crack face and the number of nodes may vary with the length
of the crack and, therefore, may be different from those shown in the figures.
5.2 Strain energy release rates assocjated with crack growth

When the system of algebraic equations for the unknown nodal variables are
derived by integrating Eq. (8) and the equations are solved, the energy-release

rate associated with crack growth is calculated from the crack closure integral
6 S
G = (1/27) L oy (x)uy (x=7) dx + (1/27) L Tey (XD (x-7v) dx. (9)

In the preceding integrals the coordinate x has been shifted so that its origin
is located at the crack tip, and § is a small length parameter usually taken to
be equal to the length of the boundary or finite element immediately ahead of the
crack tip. The two integrals are often referred to as the mode I and mode II
strain-energy-release rates and denoted by G; and G;;. However, there appears
to be no rigorous thecretical basis for such a partition (except for the special
case of an interior crack in a single homogeneous medium) because the interfacial
stresses o, and 7,, oscillate wildly in a tiny immediate neighborhood of the
crack tip, and the values of the two integrals are sensitively dependent on the
length parameter § when § assumes values comparable to the size of the tiny
immediate neighborhood. Sun and Mancharan showed that for a crack between two
dissimilar orthotropic media, the two integrals eventually approach the same
limiting value, G/2, when § approaches zero (Sun, C.T. and Manoharan, M.C.,
"Strain energy release rates of an interfacial crack between two orthotropic
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solids," J, Composite Materials, Veol, 23, pp. 460-477, 1989). The sum of the two

integrals, however, is quite insensitive to the length parameter é provided that
§ is sufficiently small, i.e., insensitive to mesh refinement in the boundary.
element or the finite-element model.

In spite of the lack of a rigorous theoretical justification for the
partition of G into G; and G;;, one may argue heuristically that the latter two
quantities, as calculated by using a sufficiently small (but not excessively
small) length parameter §, provide quantitative measures of two different types
of interaction (associated, respectively, with peeling and shearing) between an
immediate neighborhood of the crack tip (of size comparable to §) and the region
of the matrix outside that neighborhood. While the interfacial stresses of the
elasticity solution show wild oscillations and increasingly large positive and
negative peak values in an immediate neighborhood of the crack tip, such an
abnormal and singular stress field is invariably modified in a real material by
nonlinear and inelastic effects. However, the modified (i.e., the actual) stress
field in the real material in the immediate neighborhood of the crack tip may
still share with the singular stress field of the elasticity solution certa¥®
common gross characteristics such as the magnitudes of energy transfer associated
with the tearing and shearing action. If the redistribution of the stress within
the small immediate neighborhood of the crack tip due to the nonlinear and
inelastic material effects does not totally invalidate all results of the
elasticity solution (this assumption must be made, because otherwise there would
be no use to compite or consider the elasticity solution at all), then certain
gross quantities derivable from the approximate elasticity solutions may be
physically significant, provided that their values are not sensitively dependent

on the mesh refinement when the mesh is not so over-refined that the wild
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oscillation of the interfacial stresses is no longer limited to one element ahead
of the crack tip but spreads out over several elements. In the present analysis,
the two integrals have been separately evaluated. This is done by first taking
§ to be the length of one element ahead of crack tip, and subsequently taking é
to be the combined length of two elements ahead of the crack tip.

5.3 Results of the analvsis

The results described in the following refer to the solutions of the two
complementary problems described in Sec. 5.1. The solutions to the corresponding
original problems may be obtained by combining the present solutions with the
respective trivial uniform solutions expressed by Eqs. (4) and (6). In the
present solutions, the Poisson’'s ratio of the resin material is taken to be 0.3.

For two different crack lengths 2a = h and 2a = 4h, the displacements of
the crack face in the first complementary problem (corresponding to the average
tensile load eo=iie in the matrix material) are shown in Figs. 25 and 26. These
displacements have been normalized with respect to e¢,h. The interfacial normal
and shearing stresses between the upper rigid filament and the matrix (along vy
= h) is shown in Fig. 27 for the model with a crack length 2a = 4h. Figure 28
shows the interfacial stresses ahead of the crack tip on y = O. These
approximate solutions of the stresses show oscillatory behavior near the crack
tip and very large peak values at the crack tip. The effects of the mesh size
on the interfacial normal and shearing stresses near the crack tip are shown,
respectively, in Figs. 2%a and 29b, by comparing the results using the boundary
element model shown in Fig. 23 (fine mesh) and a less refined model in which the
smallest element size is increased from h/512 to h/256. Although the interfacial
stresses near the crack tip are significantly changed, their patterns away from

the crack tip are not appreciably dependent on mesh refinement.
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Fig. 25: Normalized crack-surface displacements under
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Fig. 26: Normalized crack-surface displacements under

the transverse tension load (crack length 2a = 4h)
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For the second complementary problem (associated with an average shear
strain load 7, = 7, in the matrix), the results of the crack surface
displacements are shown in Figs. 30 and 31 for two different values of the crack
length. Notice that in the case of shear load the horizontal displacement along
the crack surface is an order of magnitude greater than the vertical displacement
(i.e. the crack opening displacement). While the crack opening displacement is
positive near the crack tip x = a, it is negative in an interval to the right of
the origin. Since the vertical displacement is anti-symmetric with respect to
the coordinate x, the opening displacement near the crack tip x = —-a is negative.
Negative opening displacements imply that the resin material actually contacts
the fiber region and the solution should be modified by the effect of partial
contact. However, this effect is not investigated in the present study. The
large value of the horizontal displacement in comparison with the opening
displacement implies that, in case of negative opening displacement, there may
be severe friction effect associated with the sliding of the crack surfaces.

The interfacial stresses ony = h and y = 0 are shown, for the crack length
2a = 4h only, in Figs. 32 and 33. However, in order to provide more information
concerning the various solutions, the effect of mesh refinement on the
interfacial normal and shearing stresses is shown for a different crack length,
2a = h, in Figs. 34a and 34b. 1In the case of shear load the fine mesh (shown by
the boundary-element model of Fig. 24) has the smallest element size h/128 while
the coarse mesh his the smallest element size h/64.

The integrals G; and G;; associated with each of the two loading cases are
shown in Figs. 35 and 36 as functjons of the crack length. For the case of
tension load G; and Gy; as shown in Fig. 35 have been normalized with respect to

phe 2, while for the case of shear load they have been normalized with respect
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to ph102. Comparison 1s made between the results based on the fine-mesh model
and the coarse-mesh model. The differences are not significant for the larger
modal contribution (G; in the case of tension load and G;; in the case of shear
load). As mentioned previously, the results for G; and G;; are obtained by
choosing the length parameter § in Eq. (9) to be equal to the length of the crack
tip element in the present model. No significant changes in values of the
dominant modal contribution are found when & changes with mesh refinement,
provided the refinement is not excessive. The results are expected to vary
significantly with § when § becomes extremely small, since G; and G;; should
approach a common limit G/2 when § approaches zero.

The dependence of the total strain-energy-release rate upon the crack
length is shown in Fig. 37. As in the two preceding figures, the energy-release-
rate is normalized with respect to uhe,? for the case of tension load and with
respect to phy,2 for the case of shear load. The actual result corresponding to
a combined strain load €, = ¢, and v,, = v, may be evaluated by superposition.
The trends of the two curves in Fig. 37 have important implications on the
characteristics of disbond growth. We find that G associated with the shear
strain load incresses monotonically with the crack length. Hence, if the growth
of the disbond is governed by a critical level of the total strain-energy-release
rate, G.., and if the shear strain load v, is raised to a sufficiently high level
so that G attains the critical wvalue, then the disbond starts to grow and
subsequently G increases with the 1lengthening of the crack and becomes
increasingly greater than G., even if the shear strain load is held fixed at the
level required for the initiation of growth. The growth of the crack under the
fixed shear strain load is therefore a catastrophic process.

Under the tensile strain load ¢, = ¢,, the relation of G to the crack
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length increases rapidly and reaches a peak wvalue at a crack length of
approximately 1.5h. Subsequently G suffers a slight decrease and eventually it
approaches a constant value as the crack length further increases. From a
practical standpolint, the slight decrease in the G following the attainment of
its peak value does not change the essentially catastrophic nature of disbend
growth under the tension load. For a given disbond length 2a and for a resin
material with a known fracture toughness G_., the level of the strain load ¢, and
Yo required to initiate the growth of the disbond can be found by using the
curves in Fig. 37. The present analysis implies that, under the assumption of
a growth criterion depending only on the total strain-energy-release rate, the
disbond growth will continue catastrophically once it 1is initiated.
Gonsequently, in a filament-wound structure, fiber-matrix debonding is a possible
failure mechanism in the filament layers subjected to transverse expansion and
shear deformation.

It should be reiterated that since widespread microcracking of the resin
material usually precede final failure associated with disbond growth, there is
a need to use a continuum theory of damage to evaluate the degradation of the
elastic moduli of the resin material in the initial failure process. The elastic
moduli to be used in the micromechanical fracture analysis should be the
degradated values.

Supplement In order to find the dependence of the two integrals in Eq. (9) upon
the length parameter §, we added increasingly smaller elements at the crack tip,
and obtained boundary-element solutions and computed closure integrals using
increasingly smaller §/h, varying from 278 = 1/256 to 271% = 1/16384, for a crack
length 2a = 2h under the tension load. The results for G;, G;; and G are shown

in Fig. 38.
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Fig. 30: Normalized crack-surface displacements
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Fig.

38: Dependence of G; and G;; on the length parameter §
in the crack-closure integrals,

disbond length 2a = 2h, under tension load

123




6. Modeling and Analysis of an Oblique Matrix Crack

In thic section, we consider a two-dimensional boundary-element model of
an oblique matrix crack running across the matrix region (of thickness h) between
two parallel filaments. As in the previous analysis of an interface disbond, the
two fibers are modeled as rigid media, and the load is introduced by the transla-
tional displacements of the upper fiber relative to the lower fiber, u; = hy, and
u, = he,, along the x- and y-directions, respectively. Results in the following
analysis are obtained for a resin material with the Poisson’'s ratio v = 0.3, and
the resin material is assumed to be under the plane stress condition. However,
any plane stress solution of a resin material with Poisson’s ratio » may be
converted into a plane strain solution of a material with Poisson’s ratio
v/{1-v).

The analytical model for the boundary element analysis is shown in Fig. 39.
The upper and lower boundaries of the region in Fig. 39b are the interfaces of
the resin material with the upper and lower fibers. The oblique crack surface
has the inclination angle S. All length dimensions are normalized with respect
to the height of the region, and the vertical boundary on the right side is
chosen to be at a large distance away from the oblique crack. Omne segment of the
lower boundary which has an unmarked length may be empty, or may be divided into
several element depending on the value of the inclination angle 8. A detailed
sketch of the shaded region at the lower left corner is shown in Fig. 40a. Under
the displacement loading, intense local stresses are expected around the
reentrant corner of the region where the crack meets the upper interface. Two
submodels of the shaded region at the reentrant corner are considered and shown
in Figs. 40b and 40c. The second submodel has a short interfacial crack of small

length h/128, which is divided into two boundary elements, while the first
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submodel has no interfacial crack.

The problems associated with the transverse tensicen and shear loads arve
again decomposed into (i) trivial solutions with uniform stress and strain
fields, and (ii) complementary solutions with zero displacements on the fiber-
matrix interfaces and vanishing stresses and strains at infinity. For the case
of transverse tension load ¢, = ¢,, the complementary problem is characterized

by the following traction boundary conditions on the crack surface

t; = vo, sin 8, t, = — o, cos g, (10)

where
2pe (1-v)/(1-2v) under the plane straincondition,
o 2pe,/(1-0) under the plane scress condition,

In the -ase of shear load, the preceding traction boundary conditions are
replaced by
t; = = uvy, cos f, t, = Wy, sin B. (1)
The boundary elewment solutions reported in the following have the angle of
inclination ranging from 15° to 75° at increments of 7.5°.
Figure 41 shows the interfacial normal stress (normalized with respect to
p#e,) near the reentrant corner, under the tension load, for oblique matrix cracks
with various inclination angles. Figure 42 shows the corresponding results when
there is a short interface crack of length h/12% at the reentrant corner. The
horizontal axis in Fig. 42 has beern shifted so that the origin is at the crack
tip. The peak stresses in Fig. 42 are significantly greater than the
corresponding wvalues in Fig. 41, particularly in the cases of large A. The
results for the interfacial shearing stresses under the tension load are shown
in Figs. 43 and 44, respectively, for the cases without and with a short

interfacial crack. It is found that the introduction of a short crack

127




drastically increases the peak interfacial shearing stress by doubling or
tripling the values.

Under a positive average shear strain load Txy = Yo- the region around the
reentrant corner is clearly subjected to vertical compression (i.e., a peeling
action should be produced by a negative shear strain load). The results for the
interfacial normal stresses are shown in Figs. 45 and 46, respectively, for the
cases without and with a short interfacial crack. The corresponding results for
the interfacial shearing stresses are given in Figs. 47 and 48. The four figures
also demonstrate the significant increases in the interfacial stresses due to the
presence of a short interfacial crack at the reentrant corner.

Since the evaluation of the crack-closure integrals requires the solutions
of the crack surface displacements near the crack tip, the strain-energy-release
rates are computed only for the model with a short interfacial crack at the
reentrant corner. The length parameter § appearing in Eq. (9) is taken to be the
length of the short crack {which is divided into two boundary elements). Results
under the tension load are normalized with respect to phe¢,?2 and shown, for
various winding angles, in Fig. 49a for the total G and in Fig. 49b for G; and
Gy;- The corresponding results under the shear load are normalized with respect
to phy,2 and shown in Figs. 50a and S50b. If the strain load is large enough to
initiate the growth of the short interfacial crack, then the subsequent growth
behavior is expected to be qualitatively similar to what has been found in Sec.
5 for an interfacial disbond, i.e., the strain-energy-release rate generally
increases as the crack length increases and, consequently, catastrophic failure
occurs.

If the inclination angle 8 is allowed to decrease and approach zero, then

the present results, which are based on the plane stress assumption, should
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Fig. 42: Interfacial normal stress near the cracked

reentrant corner (crack length = h/128)
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Fig. 46: Interfacial normal stress near the cracked reentrant
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increase and approach the limiting values of the strain-energy-release rates
associated with an infinitely long interfacial dislbond under the plane stress
condition. 1In the present model, deviation of A from 0 yields lower values of
the strain-energy-release rates. In the model for the interfacial disbond of the
previous section, smaller disbond lengths yield lower values of G, For both
types of cracks, a sufficiently large combination of strain loads ¢, and vy, may

initiate crack growth and lead to catastrophic failure.

7. Delamination Fajilure in Filament-Wound Structures and Composite laminates

In the pressure testing of filament-wound tubes with winding angles greater
than 45° under the open-end condition, it has been observed that the final
failure appears to be often preceded by bending, local buckling and delamination
(see Sec. 4, Part IV), Filament-wound tubes are prone to delamination damage
because the scissoring action in the fiber cross-over region introduces intense
local twisting action in the resin material between adjacent filament layers as
the differently oriented, relatively rigid filaments align themselves, through
opposite rotations, toward the principal stress axis of the tube (see Sec. 2.3,
Part I1). If the filament-wound structure with an existing delamination is later
subjected to a service load that results in a local compression along a certain
direction, a thin delaminated layer may buckle and may grow catastrophically in
the postbuckled state.

7.1 Separation failure of a helical delamination in a filament-wound tube

The observed delaminations in filament-wound tubes often have spiral or
helical shapes. An analysis of the separation failure of a helical delaminated
layer from the interior surface of a filament-wound tube was presented in a paper

attached as Appendix C. In that paper, we considered the separation of a thin
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helical delaminated sheet of width 2a, composed of a single filament layer with
the winding angle ¢, from a relatively thick tube subjected to the pressure load.
Under the assumption that the separation of the thin layer does not appreciably
affect the existing deformation of the main body of the tube, we calculated the
amplitude of separation and the change in the boundary normal curvature of the
thin 1layer resulting from separation, for wvarious combinations of the
delamination width and the tangential strains on the interior surface of the
tube. It was remarked that the strain-energy-release rate associated with the
widening of the helical delamination may be computed in terms of the boundary
values of the solution (along the helical boundaries of the delamination). Since
the appearence of the paper, further analysis has been made for the case of a
delaminated sheet composed of two filament layers with +65° and -65° winding
angle, and the strain-energy-release rates associated with the widening of one-
layer and two-layer delaminated sheets have been obtained by evaluating a path-
independent integral. The results are summarized in the following.

We consider a helical delaminated sheet of width 2a on the interior surface

of a relatively thick filament-wound tube with the interior radius R, (Fig. 51),

i

Fig. 51: A helical delamination near the interior surface

of a filament-wound tube
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subjected to a uniform axisymmetric load so that the interior surface suffers the
axial strain ¢, and the circumferential strain ¢;. The delaminated sheet is
composed of a single filament layer with the winding angle ¢ and thickness t =
h, or two filament layers wound at +¢ and -¢ angles with a combined thickness t
= 2h (¢ is taken to be 65° in computing the numerical solutions because Spencer
and Hull observed severe delamination damage in open-ended tubes wound at *65°
angles, see Composites, Vol. 9, pp. 263-271, 1978). We define a non-dimensional
delamination width b and a non-dimensional strain parameter ¢ by the expressions

b = a (sin ¢)//(R,t),

€' = (Ry/t) leg + €, — (eg—e,) cOS 26)/(2 sin®g).

The solutions for a two-layer delaminated sheet are obtained for different
combinations of the non-dimensional parameters b and ¢" (the corresponding
results for a one-layer delaminated sheet were shown in the paper attached as
Appendix C). For two different values of the normalized delamination length, b
=1.0and b = 2.5, the dependence of the amplitude of separation (normalized with
respect to the total thickness t of the delaminated sheet) upon the strain load
parameter ¢* is shown in Fig. 52. The amplitude increases monotonically with the
strain load and the wider delamination has a much greater amplitude of
separation. Figure 53 shows the increase in the normalized boundary normal
curvature of the delaminated sheet (normalized according to the definition given
in the paper in Appendix €) induced by its separation from the main body of the
tube. This curvature change is a principal measure of the peeling action at the
delamination front caused by separation. While the normalized curvature change
also increases monotonically as the strain load increases, the two curves for the

two different delamination widths are rather close. In Figs. 54 and 55, the same

results for the amplitude of separation and the change of the boundary curvature
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are shown as functions of the non-dimensional delamination width for three values
of the strain load, ¢ = 0.1, 0.5 and 1.0. The change in the boundary normal
curvature, which increases initially with the delamination width, tends to
approach a constant value as the normalized width attains a level of about 1.5.
The results for the strain-energy-release rates (normalized with respect
to Ay (t/R,)%sin%$) associated with the growth of the two-layer delaminated sheet,
are shown in Fig. 56 as functions of ¢ for two fixed values of b, and shown in
Fig. 57 as functions of b for three fixed values of ¢". The corresponding
results for the one-layer delaminated sheet (which has a thickness t = h, i.e.,
one half the thickness of the two-layer sheet) show similar trends but the
physical (dimensional) strain-energy release rate has a much smaller value
compared to the two-layer sheet. These results are shown in Figs. 58 and 59.
Figures 57 and 59 show that, under a fixed strain load in the tube, the
energy-release rate increases initially as the delamination width increases. It
reaches a peak value when the nondimensional delamination width b attains a level
between 1.0 and 2.0. The subsequent drop in the energy-release rate is very
slight. This behavior suggests catastrophic growth of the helical delamination
under a sufficiently high strain load. For a given initial delamination width,
the level of strain load sufficient to initiate delamination growth can be
determined by comparing the analytical result of the strain-energy-release rate
with the experimentally measured fracture toughness of the material.
7.2 Postbuckling deformation and growth of a thin two-dimensional delamination

in a composite laminate

Fundamental studies of this important problem have been presented for the
ideal but representative case of thin elliptical delaminations in a flat

laminate., See the two papers attached as Appendices D and E.
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Part V. End and Edge Effects

Cylindrical filament-wound vessels are usually enclosed by axisymmetric
caps at the two ends which require special winding patterns. An early but
comprehensive introduction to the winding geometry and design issues invelved in
filament-wound structures for various applications was given in the book by
Rosato, D.V. and Grove, C€.S5., Jr., Filament Winding: jts development,
manufacture, applications and design, Interscience, New York, 1964. The complex
winding geometry at the closed ends results in special and inhomogeneous response
behavior of the shell elements which constitute the caps. The problems of stress
and deformation analysis are complex and difficult, and finite-element or other
numerical modeling and analysis methods are often required to obtain approximate
solutions. Special attention must be given to a region with discontinuities in
the curvature, such as the junction between the c¢ylindrical part and the end cap.
Significant local stresses due to abrupt changes in the winding geometry may be
developed in such regions under pressure-induced bending action.

End effects near the open ends of laminated anisotropic tubes have been
studied by several authors (see, for example, Pagane, N.J. and Halpin, J.C.,
*Influence of end constraint in the testing of anisotropic bodies,” J. Composite
Materials, Vol. 1, p. 18, 1968; Rizzo, R.R., "More on the influence of end
constraints on off-axis tensile tests," J. Composite Materials, Vol. 3, p. 202,
1969; Vicario, A.A, and Rizzo, R.R., "Effect of length on laminated thin tubes

under combined loading," J. Composite Materials, Vol. 4, p. 273, 1970; Rizzo,

R.R. and Vicario, A.A., "A finite element analysis of laminated anisotropic
tubes," J. Composite Materials, Vol 4, p. 344, 1970). Although an approximate

analysis of the stresses in the interior region of a filament-wound tube can be
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conducted on the basis of the anisotropic shell theory, such an analysis cannot
adequately account for the three-dimensional stress fields at the ends of the
tube. Along the free edge or opening of a laminated structure, the mismatches
in the elastic moduli and in the orientation angles of the adjacent layers of a
laminate may introduce severe interlaminar peeling and shearing stresses.
Although these interlaminar stresses decay rapidly away from the free edge, they
may cause the initiation and growth of free-edge delamination because of the
localized high intensity of the stresses. Significant free-edge interlaminar
stresses may occur in a composite vessel made of a metal lining and a filament-
wound exterior shell, or in a filament-wound vessel bonded to a metal fitting.
Such interlaminar stresses may be caused by mechanical and thermal loads. In the
latter case the interlaminar stresses are dependent also on the different thermal
expansion coefficients of the adjacent layers.

Existing studies of the free-edge interlaminar stresses in layered
composite plates and cylinders are usually based on finite-element or finite-
difference modeling of the structure. Because the interlaminar stresses are
highly localized and depend on the differences in the mechanical and thermal
properties of the adjacent layers, a proper analytical modeling must include the
details of the layered structure of the laminate and the anisotropic elastic and
thermal parameters of the layers. In the case of a multi-layered laminate, this
usually results in a very refined computational model with a large number of
degrees of freedom. A substructuring approach may be used to reduce the size of
the problem. However, the modeling and analysis still involve very considerable
amount of effort and are, therefore, not suitable for practical purposes of
design and optimization.

An efficient and accurate method for the analysis of free-edge interlaminar
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stresses has been developed by using a variational method of approach on the
basis of the principle of complementary virtual work. Since our objective is to
obtain reasonably accurate solutions for the interlaminar stresses, it is natural
to adopt a stress formulation, rather than a displacement formulation. The
stress components In each layer may be represented by the derivatives of

Lekhnitskii's stress functions (Lekhnitskii, S.G., Theory of Elasticity of an

Anisotropic Elastic Body. English translation by P. Fern. Holden-Day, San
Francisco, 1963). This ensures that the equilibrium equations are exactly

satisfied by the wvariational solution in all regions of the layered plate,
including the regions of high stress gradient near a free edge. Furthermore,
traction-free boundary conditions and interfacial continuity of interlaminar
stresses may be strictly enforced by imposing homogeneous boundary conditions and
interfacial continuity conditions on the stress functions and their normal
derivatives. The compatibility of strain and the interfacial continuity of
displacements may be enforced in an averaged sense through the use of the
principle of complementary virtual work.

Since each layer of the composite structure is wvery thin, the stress
functions in each layer may be approximated by polynomial functions of the
thickness coordinate, with coefficient that are functions of the coordinate along
the interface. The application of the complementary virtual work principle
yields a system of ordinary differential equations for the coefficient functions
of the polynomial stress functions. The inhomogeneous terms (forcing terms) in
the differential equations are linearly dependent on the three deformation
parameters at the free edge: an axial extensional strain along the free edge, a
bending curvature and a twisting curvature. The differential equations together

with the homogeneous boundary conditions for the stress functions and their
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derivatives define an eigenvalue problem. Solution of the eigenvalue problem
yields the stresses in the individual layers and the interlaminar stresses
between adjacent layers. This analysis method has been developed and presented
in a recent paper {see Appendix F). The method is extremely easy to use, because
of the simplicity of data input required for the analysis. The accuracy of the
results was shown to be comparable to that of the existing numerical solutions
base on finite-element and finite-difference methods. However, analysis using
the present variational method has been implemented on personal computers and the
results were generated for the classical problem of a four-layer symmetric cross-
ply or angle-ply laminate in about one second on a 486 machine.

The variational method of analysis may be extended to the case of thermal
loading in laminated beams and plates. The thermal stress problem for a finite
beam or laminate may be decomposed into (i) a trivial problem for an infinite but
otherwise identical beam or laminate under the same temperature load, and (ii)
a complementary, purely mechanical problem in which the finite beam or laminate
is subjected only to boundary tractions equal but opposite to the in-plane
stresses of the first (trivial) problem. In this case the differential equations
for the coefficient functions of the polynomial stress functions (derived by
using the complementary virtual work principle) are homogeneous but the boundary
conditions for the stress functions are inhomogeneous. Following a procedure
similar to that in the analysis of mechanical loading, the eigenfunction analysis
is performed and the stress functions and the interlaminar stresses are
determined. The analysis method has been developed for the case of layered
beams. The efficacy of the method and the accuracy of the results were
demonstrated in two papers attached as Appendices G and H.

If a portion of the free edge has a curved geometry and if the local radius
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of curvature is an order of magnitude greater than the laminate thickness (this
is usually true around holes and openings of a laminated structure), then the
present analysis method may still be applied to any short segment of the curved
free edge, which is approximated by an treated as a straight segment. In this
case, however, the system of governing differential equations and the associated
boundary conditions generally vary along the curved free edge. Hence the local
values of the layer stiffness matrix (referred to the local tangent and normal
directions of the free edge) and the local values of the traction data should be
used in each short segment of the edge. The actual three-dimensional stress
distribution near the curved free edge is effectively replaced by a local two-
dimensional stress field. This approximation assumes that the characteristic
length of decay of the interlaminar stresses, which is usually comparable to the
laminate thickness, should be small compared to the local radius of curvature of
the free edge.

In the case of multi-layered beams and plates, a combined layer/sublaminate
substructuring approach may be used to significantly reduce the size of the
problem. In this approach, two interior layers adjacent to a particular
interface are modeled as separate anisotropic homogeneous media while the
remaining layers are grouped into an upper sublaminate and a lower sublaminate.
The stress and moment resultants of the upper and lower sublaminate are shown to
be related to the values of the stress functions on the interfaces between the
sublaminates and the interior layers. After the eigenfuntion analysis is
completed and the interlaminar stresses are determined on the particular
interface, another interface is considered and a new layer/sublaminate model is

used for the analysis of the interlaminar stresses on the latter interface.

147




Appendix A: Program MICRCBEM
Boundary-Element Analysis of the Micromechanical Problem

Associated with Calculating the Elastic Moduli of a Composite

from the Properties of Isotropic Matrix and Transversely Isotropic Filaments




- -

C PROGRAM MICROBEM

C SOLUTION OF MICROMECHANICAL PROBLEMS BY THE BOUNDARY ELEMENT METHOD

C FOR QETERMINING THE GROSS ELASTIC MOOULI OF A UNIDIRECTIONAL COMPOSITE

C BASEO ON AN EXISTING 2-D BEM CODE FOR A SINGLE HOMOGENEOUS ISOTROPIC MEDIUN
COMMON/RW/ IRE, 1WR
COMMON/A/D (2,2) ,X1(6,3) ,W(6,3),10UP(100),INC(100,2),C(100),

#S (100, 3) ,15YM(100) ,x(100) ,Y(100) , IFIP(108) .A (108,108) ,P(112),

=XM(108) ,A1(62,62) ,BB1(62,62),42(112,112),BB82(112,112),

#AB1 (174, 348), XXM (174) ,XP (108) ,xQ(62) ,PQ(62) ,XN(28) ,¥YN(28)
COMMON/ABC/JS1 (2L0) ,JS2 (2L0) ,DEL (2L0) ,JS53(240) ,1X(2L0)
DIMENSION STF (108) ,B8B (108) ,ccc (108) ,MEE (108) ,MFF {(108)

OPEN (L,FILE='DBHO.DAT',STATUS="UNKNOWN")
OPEN (6,FILE='RB6O.DAT',STATUS='UNKNOWN")

C
C INPUT ,AND COMPUTE MATRX A AND 8
C

IRE=Y
| WR=6
REAO (IRE,%*) RA,CTA,POM,PO12,UD,V0,EPOD
WRITE (IWR,100) RA,CTA,U0,VO0,EPO
100 FORMAT (//2X,3HRA=_F7.4, 6 2X,LHCTA=,FL,
7/2X,3HUO= F6.3,2X, 3HVO=,F6. 3, 2%, LHEPO=,F6.3)
READ (IRE,*) E1,GGF,VVF,GGM,VVH
DF=PQ12%EPOD
DM=PQM*EPO
VE=DM-0F
CTA=CTA*3,1415926535/180.
READ (IRE,#®) NI1,N2
NNN=N1+N2
NNR=108
CALL INPT{NE,NN,NP,IPL,PO,NN2,NT,C1,C2,
xC3,CL4,C5,C6,C7,C8,C9,C10,C11,10SYM, XSYM,YSYM, INFB,RA,CTA, 1)
CALL MATRX (NE,NN,NN2,NT,C1,C2,C3,CL,C5,C6,C7,C8,
#C9,C10,C11,P0, IDSYM, XSYM,YSYM, INFB,IFA,NIF)
CALL INPTS (NE,NN,NP,IPL,PQO,NN2,NT,C1,C2,
%C3,CL,C5,06,C7,C8,C9,C10,C11,1DSYM, XSYM,YSYM, INFB,RA,CTA, 1)
CALL MATRS (NE,NN,NN2,NT,C1,C2,C3,C4,C5,C6,C7,C8,
#C9,C10,C11,P0, IDSYM, XSYM,YSYM, INFB, {FA,NIF)
D0 ko i=1,28
XN (1)y=x(1)
140 YN(1)=Y {I)
CALL CONNECT (A1,BB1,A2,.BB2,N1,N2,ABI1)
REAQ (IRE,#*) NC
READ (IRE,=) (JS1(1),I=1,KC)
READ (1RE,#) (JS2(1}),1=1,NC)
00 205 |=1,NC
205 JS3(1)=Js2(1)
CALL AOQDI (RA,CTA)
CALL NCSBC(VE,UO,VO0,0F,0M)
DO 230 I=1,2%NNN
230 XXM(1)=0,
CALL REDUCE (ABY,NNN,XXM,NC,JS1,J52,0EL,JS53,1X)

D0 260 1=95,116
XXM (1) =XXM(1+2)
D0 260 J=1,NNR

260 ABY(1,1)=AB1(1+2,J)

00 262 I=71,114
XXM (1) =XXH (1+2)
00 262 J=1,NNR
262 AB1(1,J)=AB1(142,J)

DO 264 I1=61,113
XXM (1y=XXM(1+1)
DO 264 J=1,NNR




264

266

268

269

250
C
c
C

600

320

L00o

450

AB1(1,J)=ABY (1+1,4)

DO 266 I=43,111
XXM (1) =XXM(1+2)
DO 266 J=1,NNR
AB1(1,3)=AB1 (1+2,J)

DO 268 1=19,109
XEM (1) =XXM (142)

DO 268 J=1,NNR

AB1 (1,3 =AB1(1+2,J)

DO 269 I=2,NNR
XXM (1) =XXM(1+1)
DO 269 J=1,NNR
AB1(1,J)=AB1(1+1,J)

DO 250 1=1,NNR
XM {1 =XXM (1)

DO 250 J=1,NNR
A{l,J)=AB1(1,J)

SOLVE SYSTEM OF EQUATIONS

EP=1.£-10

CALL 1VS{A,BBB,CCC,MEE,MFF,NNR,EP)

CALL MUL (A,XM,STF,108,108,1)

DO 600 1=1,108

XH{1)=STF (1)

WRITE (IWR,320) (xM(1),1=1,108)

FORMAT (/,2X,6(F10.5,%)/,2X,6{(F10.5,X)}/,2X,6(F10.5,X)
w/,2%,6(F10.5,%)/,2%,6(F10.5,X) /,2X,6(F10.5,X)
&/, 2%, 6(F10.5,X) /,2%,6{(F10.5,X) /,2X,6(F10.5,%)
%/,2%,6 (F10.5,X)/,2X,6(F10.5,X) /,2X,6{(F10.5,X)
*/,2%,6(F10.5,X)/,2X%,6(F10.5,X) /,2X,6(F10.5,X)
%/, 2%, 6{(F10.5,X) /,2%,6(F10.5,X) /,2X,6(F10.5,X))

DO 40O |=1,NNR

XP (1) =XH(I)

CALL OUTPT(1,1,U0,VO,RA,CTA,DF,SXF,SYF,VF,UF1,UF2)
CALL OUTPM{1,1,U0,VO,RA,CTA,VE,DM,SXM,SYM, VM, UK, UM2)
AR=SQRT (3.)

ASX= {SXF+SXM) /AR

ASY=SYF+SYM

AF=3.14159265354RANRA /L.

ADI1=E1*EPO®AF

EF=2 . %GGF® (1 .+VVF)
CNI=EF®PO12/ ({1 .4VVF) % (1.-2.%VVF))

ASZF=CN 15 {~VF+ (UF 14+UF2) ) +AD1

EM=2, =GGME (1 . +VVM)

AO2=EMAEPO (AR-2.%AF) /2.
CN2=EMSYVH/ (1. +VVM) &% (1 . -2, %VVH))

ASZM=2.% (CN2% (-VHM+ (UM1+UM2) ) +AD2)
ASZ=(2.%ASZF+ASZM) /AR

WRITE (IWR,450) ASX,ASY,ASZ

FORMAT (//2X,'ASX=',F14.9,2%, 'ASY=',F14.9,2X, 'AS2=",F14.9)
STOP

END

SUBROUT INE INPT (NE,NN,NP, IPL,PO,NN2,NT,C1,C2,
*C3,C4,C5,C6,C7,€8,€9,C10,C11,IDSYM,XSYM,YSYHM, INFB,RA,CTA, IND)
COMMON /Rw/ IRE, IWR

COMMON /A/ D(2,2),X1(6,3),W(6,3),10UP(100),INC{100,2),C(100),
*S {100,3) ,1SYM(100) , X (100) ,Y (100) , IFIP(108) ,4(108,108) ,P{112),
#XM(108) ,a1 (62,62} ,BB1(62,62) ,A2(112,112),BB2(112,112),
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xAB1 (174, 348) , XXM (174) ,XP (108) ,XQ(62) ,PQ(62) ,XN (28) , YN (28)
IF (IND.EQ.3) GOTO 301

WRITE (1WR, 1)

FORMAT (//, 13X, '%xxF |BER REGION¥#i&' //)

1

c

C GENERAL INFORMATION ABOUT THE PROBLEM

c

301 READ(IRE,*) INFB,NE,NN,NP, IPL,1DSYM,G,PO

IF (INFB.EQ.0)GO TO 60
WRITE (IWR,61)

61 FORMAT (//,13X%,'* INFINITE BOUNDARY =')

60 iF (IND.EQ.1) GOTO 302
WRITE (1WR, 4) NE ,NN,NP, IPL, IDSYM,G,PD

L FORMAT (//,15X%, 'ND. ELEMENTS =',15,//,15
=X, 'NO. NODES =',i5,//,15%, 'NO, POINTS =',15,//,15%,"PROBL. T
®YPE =',15,//,15X, 'SYMME. TYPE =',15,///,15X%, 'MATERIAL PRODPERTIES'
%,//,15%,'G =',F10.8,

*//,15%X, 'POISSON =',F10.8,///,30%, 'COOROINATES OF BOUNDARY NODES',
#//,12X%, "NODE ', 14X, "X',15X, 'Y, 12X, 'DOUBLE", /) )

302  NN2=NN#2
NT=NN+NP

NOOES AND POINTS COORDINATES

OO0

CALL ADD! (RA,CTA)

00 101 1=1,NN

iDUP (1) =0
101 iSYM(1)=0

READ (IRE,102) 1DUP(1),IDUP(9),I10UP(22)
102 FORMAT (313)

ToUP (31) =)

iDUP{10) =9

10UP (23) =22

00 5 k=1,NN

iF(10UP(K) .EQ.O)GO TO §

J=1DUP (K)

1DUP (J) =K

X(K)=x({J)

Y (K) =Y (J)
g CONT INUE

iF (IND.EQ.1) GOTO 303

DO 63 K=1,NN

IF {IDUP (K) .NE.O)GO TO 62

WRITE(IWR,7)K, X (K),Y (K)

GO TO 63
62 WRITE (IWR, 16} K, X (K) , Y {K), 1DUP(K)
16 FORMAT (10X, 15,5X,F15.4,1X,F15.4,7X%,15)
&3 CONTINUE
7 FORMAT (10X,15,5X,F15.4,1X,F15.4)
303 IF(NP.EQ.O)GD TO 9

WRITE (1WR, 8)

8 FORMAT (//,30X, 'COORDINATES OF INTERNAL POINTS',//,
V1K, "POINTS ' OLx,'X' 15X, 'Y", /)
K=NN+1

READ (VRE, =) (X (J) ,Y{J),I1SYM(J), J=K,NT)
WRITE (IWR,7) (J,X (J),Y (J),J=K,NT)

NODES AND POINTS AT SYMMETRY LINES

OO0

IF{1DSYM.EQ.0)GO TO 49
WRITE (IWR,42)
42 FORMAT (//,3DX, 'BOUNDARY NOOES ANO INTERNAL PDINTS AT SYMMETRY LINE
%(S)',//,12%,"L. X', 12X,'L. Y, /)
00 43 K=1,NT
IF (I1SYM(K).EQ.0)GD TO 43
1ZZ=1SYM(K)
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GO To (4&,45,46),122
Ly YSYM=Y {K)
WRITE {IWR, 47} K
47 FORMAT (10X, 15)
G0 To 43
L5 XSYM=X (K)
WRITE {IWR, 48) K
LB FORMAT {26X,15)
GO TO 43
L6 WRITE (IWR,50) K, K
50 FORMAT (10X%,15,11%,15)
43 CONT INUE

C ELEMENT CONNECTIVITY

49 IF (IND.EQ.1) GOTC 299
WRITE (IWR, 10)

10 FORMAT (//,30X, 'ELEMENT CONNECTIVITY',//, 13X,"EL', 13X, 'N.

#, 2 14%,'L', /)
299  CALL ADO)
DO 11 I=1,NE
K=|
I I=INC (K, 1)
IF=INC (K, 2)
1 CK)=SQRT ((X CIFY~X{(11)) %22+ {Y(IF}-Y(11))%=2)
'F {INO.EQ.1) GOTO 310
WRITE (1WR,13) (1, INC(I,1),INC(1,2),C(1),1=1,NE)
13 FORMAT (10X, 15,11%,15,11X%,15,5X,F15.4)

o

C CONSTANTS

o

310 E=G=(2.%(1.+P0})

C11=P0
IF{IPL=1) 40,40, 41

40 PO=PO/ {1.+P0O)
C11=0.

41 C2=3.-L4.%PO
C3=1./((1.-P0)*12.56637062)
Ch=1.-2.%P0
C6=2.%C3%G
C7=1.~L.%PO
C1=C3/(2.%G)
c5=C1/2.
€8=2.%G/(1.-P0)
C9=pP0/ (1.-PO)
C10=(2.-P0)/ (1.-PO)

c

C BOUNCARY VALUES PRESCRIBED
c

c

C INTEGRATION POINTS

C

31 x1{1,3)=-0.9324695]

X1{2,3)=-0.66120939
Xt (3,3)=-0.23861919
X1 (4, 3)=-X1(3,3)

X1 (5,3)==-x11(2,3)
x1{6,3)=-x11(1,3)
W(l,3)=0.17132449
W(2,3)=0.36076157
W{3,3)=0.46791393
Wib,3)=w(3,3)
W{(5,3)=w(2,3)
wi6,3)=w(1,3)

1',12X,'N




x1(1,2)=-0.8611363)
X1{2,2)=-0.33998104
X1{3,2)==X1(2,2)
X1, 2)=-Xx1{1,2)
W({1,2)=0.34785485
W{2,2)=0.6521L4515
W{3,2)=Ww({2,2)
Wik,2)=Ww{1,2)

%1 (1,1)=-0.57735027
X1{2,1)==xX1{1,1)
wW{l,1)=1.

W(2,1)=1.

RETURN

END

SUBROUTINE INPTS (NE,NN,NP,1PL,PO,NN2,NT,C1,C2,
*C3,C4,05,06,C7,C8,C9,C10,C11,1DSYM, XSYM,YSYM, INFB,RA,CTA, IND)
COMMON /RW/ IRE,IWR

COMMON /a/ D{(2,2) ,X1(6,3).,w(6,3),IDUP{100),NC{100,2),.C(100)},
%S {100,3),15YM(100) , X {100) ,Y{100),IFIP (108) ,A{108,108),P (112},
*XM{108) ,41(62,62),BB1(62,62),42(112,112),BB2{112,112),
*AB1 {174, 348) ,XXM{174) ,XP {108) ,XxQ(62) ,PQ{62) ,XN (28) ,YN{2B)

IF {IND.EQ.1) GOTO 301

WRITE {1WR, 1)

FORMAT (//, 13X, ' #%XMATRIX REGION®:RE' //)

GENERAL INFORMATION ABOUT THE PROBLEM

w oo —

01 REAO{IRE,®) INFB,NE,NN,NP, IPL, IDSYM,G,PO
IF {INFB.EQ.0)GO TO 60
WRITE {IWR,61)

61 FORMAT (//,13X,'% INFINITE BOUNDARY ')

60 IF {IND.EQ.1) GOTO 302
WRITE (IWR,4) NE,NN,NP, IPL, 1DSYM,G,PD

I FORMAT {//,15X, 'NO. ELEMENTS =',15,//,15
X, 'NO. NODES =',15,//,15X, 'NO. POINTS =',Ii5,//,15%,'"PROBL. T
#YPE =',15,//,15X,'SYMME, TYPE =',t5,///,15X, 'MATERIAL PROPERTIES'
%, //,15%,'G =',F10.8,

#//,156X,'POISSON =',F10.8,///,30X, 'CODRDINATES OF BOUNDARY NODES',
%//,12X,"NODE " , 14X, "X',15X,'Y*, 12X, 'DOUBLE', /)
302  NN2=NN:2

NT=NN+NP
C
C NODES ANO PDINTS COORDINATES
c

CALL ADDJ{(RA,CTA)
Do 101 |=1,NN
1DUP (1) =0
101 ISYM({1})=0
READ (IRE,102) 1DUP(1),10UP(L),t0DUP{17),I1DUP{2B),
21DUP {32), IDUP {45)
102 FORMAT {613)
|OUP {56) =1
1DUP {5) =4
(pUP{18) =17
|DUP (29) =28
IDUP {33) =32
IDUP (46) =45
DO 5 K=1,NN
IF{1DUP{K) .EQ.D0)GO TO 5
J=10UP {K)
1DUP (J) =K
X(K)=X{J)




Y (K) =Y (J)
5 CONTINUE
{f (IND.EQ.1) GOTO 303
00 63 K=1,NN
IF(1OUP(K) .NE.O)GO TO 62
WRITE (IWR,7) K, X (K),Y (K)
GO TO €3
62 WRITE (IWR,16)K, X (K),Y (K) , 1DUP (K)
16 FORMAT (10X, 15,5X,F15. L, 1X,F15.4,7X,15)
6% CONTINUE

7 FORMAT (10X, 15,5%,F15. L, 1X,F15.L)

303 IF(NP.EQ.0)GO TO 9
WRITE (IWR, 8)

8 FORMAT (//,30X, 'COORDINATES OF INTERNAL POINTS',//,
11X, "POINTS ', TLX, ' X', 15X,'Y",/)
K=NN+1

READ (IRE, =) (X(J),Y (J),I1SYM(J),J=K,NT)
WRITE (IWR,7) (J,X(J),Y(J), J=K,NT)

NODES AND POINTS AT SYMMETRY LINES

wooon

IF(IDSYM.EQ.C)GO TO L9
WRITE (IWR,4L2)

42 FORMAT (//, 30X, 'BOUNOARY NOOES AND INTERNAL POINTS AT SYMMETRY LINE

&(S)',//.12%,"'L. X', 12X,'L. Y', /)
DO L3 K=1,NT
{F (ISYM(K) .EQ.D)GO TO 43
1ZZ=1SYM (K)
GO TO (LL,L5,46),122
Ly YSYM=Y (K)
WRITE (1WR,L7) K
L7 FORMAT (10X, I5)
GO TO 43
Lg XSYM=X (K)
WRITE (IWR,L8) K
L8 FORMAT (26X, 15)
GO TO 43
L6 WRITE (IWR,50) K, K
50 FORMAT (10X,15,11X,15)
L3 CONTINUE
C

C ELEMENT CONNECTIVITY

C
Lg 'F {IND.EQ.1) GOTO 299
WRITE (IWR,10)
10 FORMAT (//, 30X, 'ELEMENT CONNECTIVITY',//,13X,"EL", 13X, 'N.
. 2V, 14%,'LY, /)
299 CALL ADD2
Do 1 I=1,NE
K=1I
It=INC (K, 1)
IF=INC(K,2)
1] CK)=SQRT (X {I1F) =X (1)) =2+ (Y(IF)=Y(11))%:%2)
IF (IND.EQ.1) GOTO 310
WRITE (IWR,13) (0, INC(1,1),INC(1,2),C(1),I=},NE]
13 FORMAT (10X, 15,11X,15,11X,15,5X,F15.4)
C

C CONSTANTS
C
310 E=G# (2. (1,+P0))
Cl1=P0
IF(IPL~1) kO, LO, L
Lo PO=P0/ (1.4P0O)
Cl11=0.
L) C2=3.-4. %P0
C3=1./((1.-P0)*12.56637062)

1, 12X, 'N
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CL=1.-2.%PD
C6=2.%(C3%G
C7=1.-L.%PQ
C1=C3/(2.%G)
€5=C1/2.
CB=2.%G6/{(1.-P0)
€9=pP0/ (1.-PD)
C1o0=(2.-P0) / {1.-PD)

BOUNOARY VALUES PRESCRIBEOD

INTEGRATION PDINTS

X1(1,3)=-0.93246951
X1(2,3)=-0.66120939
X1(3,3)=-0.23861919
X1 (L, 3)=-x1(3,3)
Xi(5,3)=-x1(2,3)

X1 (6,3)=-x1(1,3)
W{1,3)=0.17132LLg
wW({2,3)=0.36076157
W(3,3)=0.46791393
Wk, 3)=w(3,3)
W({5.3)=W(Z2,3)
W(6,3)=W(1,3)
X1{1,2)=-0.86113631
X1(2,2)=-0.33998104
X1{3,2)==x1(2,2)

X1 (&,2)==X1(1,2)
wW{1,2)=0.3L785L85
W{2,2)=0.65214515
W{3,2)=W(2,2)
wk,2)=w(1,2)

X1 (1,1)=-0.57735027
X1{2,1)=-x1101,1)
W{l,1)=1.

w{z2,1)=1.

RETURN

END

SUBROUTINE MATRX{NE,NM,NN2,NT,C1,C2,(3,CL4,C5,C6,C7,C8,
#(9,C10,C11,PD, |DSYH, XSYH,YSYM, INFB,LFA NIF)

COMMON /A&7 D{(2,2),X1{5,3),w{6,3),10UP{(100),INC(100,2),C(100),
%S (100,3), 1SYR{100) ,Xx {100) ,Y (100) , IFIP{10B) ,A (10B,108B) ,P(112),
%XM{(108) ,41(62,62),8BB1(62,62),42(112,112),BB2{(112,112},

*AB1 (174, 348) ,XxxM (174) ,XP{(108) ,xQ (62) ,PQ(62) ,XN (2B} ,YN(28B)

COMMON /AL/ H{3,L),G{3,4) ,HL(3,4),GL(3,4)

KRONECKER DELTA

D{1,1)=1,
0(2,2)=1.
D{(1,2)=0.
0(2,1)=0.

CLEAR ARRAYS
DO 1 I=1,NN2
D0 1 J=1,NN2
8B1 {I,J)=0.
A1 (1,J)=0.

COMPUTE PARAMETERS FOR SYMMETRY LOOP




N Gf N S N 4 AN o & EE .

IFA=]
NIF=1
IF(10SYM.EQ. V) IFA=2
IF(IDSYM.NE.2)GO TO 60
IFA=3
NIF=2

0 IF (IDSYM.EQ.3) IFA=Y

TEST FOR INFINITE BOUNDARY

s N aKe X

IF{INFB.EQ.0)GD TO 90
DO 91 1=1,NN2
IF(IFIP (1) .NE.OYGOD TO 92
A1(1, 1) =1,
GO TO 91

g2 XM{1) =-P{I)

gl CONTFNUE

SYMMETRY LOOP
DO 2 ISY=1,IFA,NIF

COMPUTE CHANGE SIGN CONTROLLING PARAMETERS

aNaNal'-Nalalel
o

Go 70 (70,71,71,73),15Y
71 118=4=1SY

IFS=115S
GO TO 70
73 115=]
IFS=2
c
C LOOP OVER BOUNDARY NODES
C
70 DO 2 I=1,NN
XS=X (1)
YS=Y {{)

PF(ISY.EQ.2.0R.I1SY.EQ.4) YS=2.%YSYM-YS
F (1SY.GE.3) XS=2.%XSYM-XS

c
C GENERATE MATRIX A AND B
c
DO 10 J=1,NE
Pl=tNC{J, 1)
IF=INC{J,2)
ICoD=1
IF{ISY.NE.1,AND.ISYM{I) .NE. {ISY-1))GO TO 6
IF{1.EQ.I11.0R.I1.EQ.IDUP(11))1C00=2
IF{I.EQ.IF.OR.1.EQ.IQUP(IF))I1COD=3
6 CALL FUNC(tCOD,J,C),C2,C3,C4,C5,C6,C7,P0O,11,1F,X5,YS,15Y,
%11S,1FS)
DO 10 K=1,2
JJ=25{1-1) +K
HM=0

DO 10 NX=1,2
DO 10 Nv=1,2
M=M+1
IC=2%|NC (J,NX)+Nv-2
AV (JJ,1C) =AY (JJ, IC)+H (K, M)
BB1{JJ,1C)=BB1(JJ,I1C)-G(K,M)
GOTO (61,62,.63,6L),15Y
62 IF (Nv-2) 61,64,61
63 IF (Nv-1) 61,64,6)
64 H{K,M) ==H(K,M
61 A {JJ, JJ+NV-K) =& 1 (JJ, JI+NV-K) -H (K, M)
10 CONTINUE




aNalel

@]

[ I o I ]

[ B ]

b B B on B o |

CONTINUE
RETURN
END

SUBRQUTINE MATRS (NE,NN,NN2,NT,C1,C2,C3,C4,C5,C6,C7,C8,
#CG,C10,C11,P0, IDSYM, XSYM, YSYM, INFB,iFA,NIF)

COMMON /A/ D{(2,2),.X%'(6,3),Ww{6,3),1DUP{(100),INC (100,2),C(100),
#5 {100, 3) ,{1SYM(100) ,%x {100} ,Y (10D) ,1FIP(1DB) ,A {108,108} ,P{112},
SXM(108) ,A1(62,62) ,8BB1(62,62) ,A2(112,112) ,8B2(112,112),

*ABY (174, 348) , XXM (174) ,XP (10B) ,XQ(62) ,PQ{£2) , XN (28) ,YN(28)

COMMON /AL/ H(3,L),G(3,4) ,HL (3,4),GL(3,4)

KRONECKER DELTA

p{1,1)=1.
D{2,2)=1.
D{1,2)=0.
D(2,1)=0.

CLEAR ARRAYS

DO 1 1=1,NN2
DO 1 J=1,NN2
882 (1,J)=0.
A2{1,J4) =0,

COMPUTE PARAMETERS FOR SYMMETRY LOOP

IFA=)

NIF=]

IF (1DSYM.EQ.1) 1FA=2

IF {IDSYM.NE.2) GO TO 60
[FA=3

NIF=2

IF {IDSYM.EQ.3) I FA=k

TEST FOR INFINITE BOUNDARY

1F (INFB.EQ.0)GD TO 90

DO 91 I=1,NN2

(F(1F1P{1) .NE.O)GO TO 92
A2(1, 1) =1,

GO TO 91

XM{1)==P (1)

CONT I NUE

SYMMETRY LQOP
DO 2 1SY=1,IFA,NIF
COMPUTE CHANGE SIGN CONTROLLING PARAMETERS
GO To (70,71,71,73),1SY
[ ES=4=15Y
1FS5=115
GO TD 70
115=]
I1F5=2
LOOP OVER BOUNCARY NODES

0C 2 1=1,NN
XS=x (1)




YS=Y (1)
IF(ISY.EQ.2.0R.ISY.EQ.L) YS=2 %YSYN-YS
VF (ISY.GE,3) XS=2,%XSYM-XS

C
C GENERATE MATRIX A AND B
C
DO 10 J=1,NE
[1=INC{J, 1)
[F=1INC {J,2)
1C00=1
JF (ISY.NE.1.AND.ISYM (1) .NE. (1SY=1))GOD TO 6
FF(1.EQ.11.0R.1.EQ.IDUP{II)) 1COD=2
IF(1.EQ.IF.0R.1.EQ.IDUP{IF))1COD=3
6 CALL FUNC(ICPDO,J,C1,C2,C3,CL,C5,C6,C7,PO,11,IF,XS,YS,ISY,
%118, 1FS)
DO 10 K=1,2
JI=25 (1 -1)+K
M=0

00 10 NX=1,2

00 10 NV=1,2
M=M+1
IC=2%INC (J,NX) +NV-2
A2 (JJ,1C) =A2(JJ, ICY+H (K, M)
BB2(JJ,1C)=BB2 (JJ,IC} -G {K.M)
GOTD (61,62,63,64),18Y

62 LF {NV=-2) 61,64,61

63 IF {NV-1) 61,6L,61

6b H(K,M)=-H (K, M)

61 A2 (JJ, JIHNV=K) =A2 (JJ, JU+NV=K) =H (K, M)

10 CONTINUE

2 CONT INUE
RETURN
END
SUBROUTINE FUNC(ICOD,JA,C1,C2, c3 cL,c5,c6,C7,P0,11,1F,XS,
#YS,ISY, IS, 1FS)
C
C INTERGRALS OVER BOUNDARY ELEMENTS
C
COMMON /A/ D{2,2) ,X1{6,3),Ww(6,3),1DUP(100),INC(100,2),C(100),
#5(100,3) ,1SYM(100) , X (100) ,Y{(100) , IFIP(108),A(108,108) ,P (112},
%XM{108) ,A1(62,62) ,BB1 (62,62} ,A2{(112,112) ,BB2(112,112),
GABY (174, 348) , XXM {174) ,XP (108) ,XxQ (62) ,PQ (62) , XN (28B) ,YN (28)
COMMON /AL/ H{3,4),G(3,4) ,HL{3,4),6L(3,4)
DIMENSION DXY(2),BN(2).B(2),DR{2),UL (2,2} ,PL(2,2),ULL(2,2,2),
APLL(2,2,2)
DO 5 KK=1,3
DO 5 L=1,4
GL (KK,L)=0.
HL {KK, L) =0.
G (KK, L) =0.
5 H(KK,L)=0.

DXY (1) =X(1F)=-X(I1)
DXY (2)=Y (1F)-Y(i1)
GO To (1,2,2,1).1coD
1 BN (1) =DXY (2) /C (JA)
BN (2)=-DXY (1) /C (JA)

o

SELECT NO. INTEGRATION POINTS

SEL=0.5SQRT {{2.%XS=X (1 1) ~X (1F))#22+ (2. %YS-Y (11} =Y (1F}}#:2) /C(JA)
NP =k

IF (SEL.LE.1.5)NPI=6

IF(SEL.GT.5.5)NPI=2




INP=NP | /2

C
C COMPUTE MATRICES NUMERICALLY
C
DO 50 KK=1,NPI
XMX1=0.5% (1.+X| (KK, INP})#DXY (1) +X (11} -X5
YMY 1=0.5% (1 ,+X1 (KK, INP) ) =DXY (2)+Y (1 1) -YS
R=SQRT (XMX | x%2+YMY | %5:2)
B(1)=-0.25% (X1 (KK, INP) -1.) %C {JA)
B(2)=0,25% (X1 (KK, INP)+1.)sC (JA)
DR (1) =XMXI /R
DR (2) =YMYI/R
DRDN=DR (1) #BN (1) +DR (2) *BN (2)
C
C COMPUTE MATRICES H AND G
C
DO & 1=1,2
D0 6 J=1,2
UL(1,) =-C1%(C2+ALOG (R) =D (1 ,J)~-DR (1) *0R(J})
6 PL(I,J)==C35((CL#D(1,I)+2.%DR (1) *DR (J) ) #DRDN+Ch (DR (J) BN (1) -DR (1)
#%BN (J)) ) /R
DO 7 LA=1,2
1C=0
DO 7 LL=1,2
Do 7 JJ=1,2
IC=1C+]
G{LA, IC)=G (LA, C)+DL(LA,JJ) =B (LL) W (KK, INP)
7 H(LA, IC)=H (LA, IC)+PL(LA,JJ) ®B (LL) *W (KK, INP)
tF (1COD.NE.L)GO TO 50
C
C COMPUTE THE MATRICES HL AND GL (STRESSES AT INTERNAL POINTS)
C
10 00 11 i=1,2
Do 11 J=1,2
DO 11 K=1,2

ULL (1,J,K)=C3% (Ch (DR (J) #D (K, 1)+DBR (1) %0 (K, J) —DR {K) =D (1 ,J) ) +2.=DR (I

#) *DR (J) *DR (K) ) /R

B1=2, %DRDN: {(CL#DR (K) 2D (1, J) +POx (DR (J) =D (! ,K)+DR (1) =D (J,K) ) L. DR (I

*) %DR (J) #DR (K) )

B2=2.%P0% (BN (1) *DR (J) DR (K) +BN (J) *DR (1) *DR (K) )

B3=CL% (2. %BN (K) #DR (1) =DR (J) +BN (J) =D (3 , K)+BN (1) *D (J,K) )
11 PLL(I,J,K)=C6s (B1+B2+B3~C7*BN (K) #D (1,J)) /R%*x2

IL=0

DO 12 1=1,2
0o 12 J=1,2
IL=1L+1
1C=0

DO 12 1AA=1,2

DO 12 JAA=1,2

1C=1C+1

GL(IL, CY=GL{IL,IC)+B(I1AA)*ULL {I,J,JAR) W (KK, INP)

12 HL{IL, ICY=HL{IL,1C)+B {IAA) *PLL {I,J,JAA) =W (KK, INP)
50 CONTINUE
GO TO 18
C
C COMPUTE MATRICES H AND G ANALYTICALLY (BOUNDARY CONSTRAINT EQ.)
C
2 AL=C5%C2%C (JA)

AA=AL® (0,5-AL0G (C (JA)))
00 15 I=1,2
DO 15 J=1,4
IT=(J/2) =242-J
G(!,Jd)=C5%DXY (1) &DXY (1T) /C(JA)
IFOT.EQ.NG(1,d) =G (l.J)+AA
15 CONTINUE
PAA=-2




C
c
C
1

8

24

(@]

(@]

200

205

210

220

230

235

IF(ICOD.EQ.3) | AA=0
G(1,3+1A8)=G (1, 3+1AA) +AL
G(2,4+128) =G (2,L+1AR)+AL
H{1,2=-1AA)=C32xCL% (1 .+ AR)
H{2,1-1AR)=-H (1,2-1ARA)

SYMMETRY TEST

IF{1SY.EQ.1)GO TO 8
DO 24 1=115,IFS

DO 24 J=1,4
H{l,J)=-H{1,J)
G(1,0)==-G(1,J)
IF(1ICOD.NE.4.OR.ISY.EQ.4)GO TO 8
DO 25 J=1,4

HL (2,J)=-HL (2, )
GL(2,J)=-GL (2,J)
RETURN

END

SUBROUTINE OUTPT (IFA,NIF,UO,VO,RA,CTA,DF,SXF,SYF,VF,UF,
7UF2)

OUTPUT RESULTS

COMMON /RW/ IRE, IWR

COMMON /A/ D(2,2),.%X1(6,3),wW(6,3),IDUP(100),INC(100,2),C{100),
%S {100, 3} ,1SYM (100} ,x (100) ,Y (100} , 1 FIP(108) ,a (108,108) ,P(112),
#xM(108) ,A1(62,62) ,BB1(62,62),A2(112,112),BB2(112,112),
*AB1 (174,348) , XXM (174) ,xP (108) ,xQ (62) ,PQ(62) ,XN (28} ,YN (28)
COMMON /AaL/ H(3,4).G(3,4) ,HL(3,4),GL(3,4)

DIMENSION U(2),SA(4),XG(15),FG (15)

CALL INPT{NE,NN,NP,IPL,PO.NN2,NT,.CI1,C2,
%C3,Ch,C5,C6,C7,C8,C9,C10,C11, IDSYM, XSYM,YSYM, INFB,RA,CTA,2)
WRITE (IWR,8)

FORMAT (///,30X,'BOUNDARY DISPLACEMENTS AND TRACTIONS',//,
212X, 'NODE"', 14X, 'U', 15X, 'V' 14X, "PX", 14X, 'PY", /)

BOUNDARY DISPLACEMENTS AND TRACTHONS

SR2=SQRT (3.) /2.
DO 200 1=1,62
P{1)=0.

XM (1} =0.

DO 205 t=1,9
J=2% -1

k=38+1
P{J)=XP (K)
P(20)=xP (48B)

DO 210 1=21,42

J=1+28
P{1)=XxP (J)
P(L3)=xP(71)
DO 220 1=1,9
J=hl42)

K=7 141
P{J)=XP (x)
DO 230 !=1,9
J=2%|-1

XM (J) == .5% (UDO+DF)
XM (2)=5R2% (VO+DF)
DO 235 I=1,8

J=2+ 241

XM (D =xpP{1)

XM (19)=xmM (17)




XM (20) =xm {18)
DO 240 1=1,23
J=1+20
K=1+8
2LO0 XM {J)=XP (K)
DO 245 1=1,10
J=L2+2%]
245 XM (J) =SR2#* (VO+DF)
XM (L5)=XM{L3)
D0 250 I=1,7
J=bb+2x1 -]
Ke31+1
250 XM () =XP (K)
XM(61)=XM (1)
DO 260 I=1,62
XQ(1)=XM(I)
260  PQ(1)=P (1)
WRITE (IWR,11) {1, XM{2%1=-1) , XM (21) ,P(2%1-1).,P(2%1),1=1,NN)
1 FORMAT {(10X,15,5X,F15.4, 1X,F15.4,1X,F15.4,1X,F15.4)

DISPLACEMENTS AND STRESSES AT NODES AND INT. POINTS

OO0 —

WRITE (IWR, 12)

12 FORMAT(//, 15X, 'DISPLACEMENTS AND STRESSES AT NODES AND INTERNAL PO
XINTS',//, 2%, "NO/PT',9X, 'U"', 13X, 'V', 12X, 'SX", 12X, 'SXY"',11X,"'SY"',
#12X,'S2', /)

o
C COMPUTE BOUNDARY STRESSES
C
DO 14 I=1,NN
DO 4 J=]'3
14 s(1,Jd)=0.
c
C LOOP QOVER ALL BOUNDARY ELEMENTS
o
DO 30 I=1,NE
IH=1NC {1, 1)
IF=INC {1,2)

CCi=(Y(IF)=Y (1 1)) /c()
CCz=(X{11)-X{UF))/C (1)
CALL FENC(C8,C9,C10,CC1,CC2,1)
DO 30 JP=1,2
[1F=1INC (1, JP)
XFAC=2.
IF(IDUP (1 IF) .NE.O.QR.ISYM(IIF) . NE.O) XFAC=1.
DO 30 IR=1,3
M=0
DO 30 IP=1,2
10=2%1 | F+IP=-2
S{II1F,IR)=S{1IF,IR)+G (IR, IP) %P (10) /XFAC
DO 30 JR=1,2
M=M+1
10=2%INC (1, IP)+JR~2
0 SUIIF,IR)=S{11F, IR} ~H (IR, M) *XM (10) /XFAC

PRINT VALUES ON THE BOUNDARY

g EalNa v

DO 13 1=1,NN

SA(LY=C11=(S (1, 1)+5(1,3))

IF{1SYM (1) .NE.O)S(I,2)=0.
13 WRITE (IWR, 15) 1, XM (2%1=1) , XM (2%1) ,S (1, 1) ,5(1,2),5¢1,3),SA (L)
15 FORMAT (2X,14,1X%,6{1X,F13.4))

NG=8

NG 1=9

DO 310 I=1,NGI
J=NG 1= +1




XG (1) =y (J)
310 FG{)=S(J4,1)
CALL AST {NG,NGI,SXF,XG,FG)
DO 320 I=1,NG]
J=32-]
XG {1y =x(J)
320 FG{1)=S5(J,3)
CALL AST(NG,NGI,SYF,XG,FG)
DO 330 1=1,NGI
XG{1)=Y{l)
330 FG(1)=xM(2x1-1)
CALL AST(NG,NG1,UF1,XG,FG)

NG=12

NG1=13

00 340 I=1,NG!
J=1+49

XG (1) =x(J)

340 FG (1) =xH(2%J)
CALL AST(NG,NG1,VF,XG,FG)
00 350 1=1,NG]
J=1+9
XG (1) =Y (J)

350 FG (1) =xM{2x%J-1)
CALL AST (NG,NG1,UF2,XG,FG)
IF (NN.EQ.NT)GO TO 5

COMPUTE INTERNAL VALUES

OO0

NN I =NN+1
1C00=4

o

LOOP OVER ALL INTERNAL POINTS

00 16 I=NNI,NT
u{n=o0.
u{z)=0.
0o 17 J=1,3

7 SA{J)=0.

SYMMETRY LOOP

OO0 —

00 20 1SY=1,1FA,NIF
xXS=x (1)
YS=Y (I)
EF(ISY.EQ.2.0R.ISY.EQ.L4) YS=2, %YSYM-YS
IF (ISY.GE.3) X5=2 . %X5YM-XS
GO TO (70,71,71,73).,18Y
11 115=L-15Y
lES=11S
GO T0 70
73 118=1
IFS=2

INTEGRATE OVER THE BOUNDARY

YN aNeNel

0 DO 20 J=1,NE
FI=INC{J,1)
IF=INC{J,2)

CALL FUNC(ICOD,J,C1,C2,03,C4,C5,06,C7.PO. 1, IF,XS,YS,15Y,
%115, 1FS)

DO 20 K=1,3

M=0

00 20 NX=1,2

DO 20 NV=1,2

M=M+ ]

ICA=2%INC (J,NX)+NV-2




(

PF(K.LT.3)U{K) =U{K)-H (K, M) *XM (I CA) +G (K, M) *P {1 CA)
20 SA(K) =SA (K) =ML (K, M) *XM (ICA)+GL {K,M) *P {1CA)
SA{(L)=C11x{SA(1)+SA{3))
16 WRITE (IWR,15) 1,U(1),U(2),5A(1),SA(2),5A(3),SA (k)

5 RETURN

END

SUBROUT INE QUTPM(IFA,NIF,UD,VO,RA,CTA,VE,DM,SXM, SYM, VM, UM,
7UM32)

OUTPUT RESULTS

laNaRal

COMMON /RW/ |RE, IWR

COMMON /A/ D(2,2),XI1(6,3),W(6,3),I10UP{100),INC(100,2),C{100),
%S (100, 3), ISYM(100) , X (100) ,Y (100) , IFIP (108) ,A(108,108) ,P(112),
#XM(108),A1(62,62),BB1(62,62),A2(112,112) ,882(112,112),

#ABY (174, 348) , XXM {174) ,xP (108) ,XQ (62) ,PQ(62) , XN (28) ,YN{28)
COMMON /AL/ H(3,4),G6(3,4),HL (3,4),GL(3,4)

DIMENSION U(2),SA (L) ,X6{(15),FG(15)

CALL INPTS {NE,NN,NP,!PL,PO,NN2,NT,C1,C2,
#C3,CL4,C5,C6,C7,C8,C9,C10,C11,1DSYH, XSYM, YSYM, INFB,RA,CTA, 2)
WRITE (IWR,6)

6 FORMAT (///.30X,'BOUNDARY DISPLACEMENTS AND TRACTIONS',//,

712X, 'NODE", 14X, "U', 15X, 'V, 14X, "PX", 14X, 'PY',/)

C
C BOUNDARY DISPLACEMENTS AND TRACTIONS
C
SR2=SQRT {3.) /2.
DO 200 I=1,112
P(l)=0.
200 XM (l)=0.
DO 205 i=1,4
J=2%|
K= 34|

205 P ({J)=XP (K)

DO 210 I=1,13
J=8+2%
K=L46-23%1
J1=y-1

Ki=K-1
P(2)=-PQ(K)

210 P(J1)=-PQ (K1)

0o 215 1=1,11
J=3h+241-1
K=g7+1

2156 P{J)=XP(K)

Do 220 I=1,56
J=5h+]

220 P{H=-P(1)

DO 230 1=1,3
J=2%] -1
J1=J+]
K=80+1

XM (J) =XP (K)

230 XM (J1) =SR2% (VO+DM)
DO 240 1=1,15
J=6+21)

K=LB8-2%1

J1=J-1

Ki=f-1

L=3+I

XM (D) =XQ{K) +VESY (L)

20 XM (J1)=XQ (K1) +VE=X (L)
DO 250 1=1,10




J=36+2%|
Ji1=J-1
K=83+)
XM{J1) == 5& {Q0+DM)
250 XM ({J) =XP (K)
DO 260 1=1,56
J=56+]
260 xM (D) =-XxM(1)
WRITE (IWR, 11} (1, XM{250-1) , XM (2%1) ,P(2551-1) ,P{(2:1),1=1,NN)
] FORMAT (10X,15,5X,F15.4L, 1X,F15.4,1X,F15. 4, 1X,F15.4)

]
C
€ DISPLACEMENTS AND STRESSES AT NODES AND INT. POINTS
o

WRITE {IWR,12)

i2 FORMAT (//,15X, 'DISPLACEMENTS AND STRESSES AT NODES AND INTERNAL PD
*INTS',//,2X, '"NO/PT',9X, 'U',13X,'V', 12X, 'SX"', 12X, 'SXY',11X,'SY",
%12X,'S2',/)

¢
C COMPUTE BOUNDARY STRESSES
¢
DO 14 1=1,NN
DO 1L J=1,3
14 S(1,J)=0.
C
o LOOP OVER ALL BOUNDARY ELEMENTS
C
DO 30 i=1,NE
TI=INC (1, )
1F=1INC (1,2)

cei={y (IRY=Y (1 1)) /c{)
cca=(x(11)-x(1F))/cn)
CALL FENC(CE,C9,Cl10,cC1,CC2, 1)
DO 30 JP=1,2
LYF={NC (1, JP)
XFAC=2.
IF(IDUP(II1F) NE.G.OR.ISYM(IIF) .NE.D) XFAC=1.
DO 30 IR=1,3
M=0
DO 30 IP=1,2
[0=2% ) F+I1P=-2
S(IIF,IR)=S(11F,IRY+G (IR, IPY=P {10) /XFAC
DO 30 JR=1,2
M=M+ |
[0=2%INC {1, IP)+JR-2
0 S{IIF,IRY=S(1IF,IR)-H{IR,M) =XM({10) /XFAC

PRINT VALUES ON THE BOUNDARY

[ B N V]

DO 13 {=1,NN

SA(W)=Cc11=(5(1,1)+5(1,3))

1FOISYM (1) .NE.O)S(1,2)=0.
13 WRITE (IWR,15) 1, XM {2%1=1) , XM (2%0) ,5(1,1),5(1,2),5(1,3),5A (L)
15 FORMAT (2X.14,1X,6(1X,F13.4))

NG=10

NGI=1]

DO 310 1=1,NGI
J=29-)

XG (1Y =YN (J)

310 FGQ1)=5{(J,1)
CALL AST (NG,NG},S5XM,XG,FG)
DO 320 1=1,KNGI
J=17+1
XG{1)=YN{J)

320 FG(1)=xM(2%J-1)
CALL AST (NG,NG1,UM2,XG,FG)
NG=3




330

340

350

I Nel

e Nel

[l o I oo BE

7

OO

20

16

NG 1=k

00 330 I=1,NGI
J=5— |

XG (1) =XN{J)

FG{1)=5(J,3)

CALL AST (NG,NG1,SYH,XG,FG)
NG=12

NG1=13

DO 34D I=1,NG]

J=l+|

XG (1) =XN {J)

FG(1)=XM{2:))

CALL AST (NG,NG1,VM,XG,FG)
DO 350 I=1,NG1

Jel+k

XG (1) =YN {J)
FG(1)=XM(2%J-1)

CALL AST (NG,NG1,UM),XG,FG)
1F (NNLEQ.NT)GD TO §

COMPUTE INTERNAL VALUES

NN =NN+1
ICOD=4

LOOP OVER ALL INTERNAL POINTS

DD 16 1=NNI,NT
u{1) =0,
U(2)=0.

DD 17 J=1,3

SA (J)=0.

SYMMETRY LOOP

DO 20 I1SY=1,1FA,NIF

XS=X (1)

YS=Y (1)
IF(ISY.EQ.2.0R.ISY.EQ.L) YS=2, %YSYM-YS
IF(1SY.GE.3) XS=2.%XSYM-XS
G0 TOo (70,71,71,73),15Y
I1S=k-15Y

IFS=11$

60 TO 70

115=}

IFS=2

{INTEGRATE OVER THE BOUNDARY

DO 20 J=1,NE

[ 1=INC{J, 1)

IF=INC{J,2)

CALL FUNC({iCOO0,J,C),C2,C3,CL,C5,C6,C7,PD,11,!F,XS,YS,I18Y,
#11S,IFS)

DD 20 K=1,3

M=D

DO 20 NX=1,2

00 20 Nv=1,2

M=M+1

ICA=2%|NC {J,NX)+NV-2

IF(K.LT.3) UK} =U (K} -H (K, M) XM (i CAY+G (K, M) =P {ICA)
SA(K)=SA(K) -HL {K,M) #XM{1CA)+GL (K, M) =P (1 CA)
SA(L)=CY1= (SA{1)+SA(3))

WRITE (1WR, 15) 1,U{1),U{2) .58 (1) ,5A(2),5A(3).5A (L)
RETURN

END




"'SUBROUTINE FENC({(CB,C9,C10,CC,CC2,1)

ooy

EXPRESSIONS FOR STRESSES AT BOUNDARY NOOES

COMMON /A/ 0(2,2),X1(6,3),w(6,3),10UP{(100),INC(100,2),C(100),
#5(100,3) ,1SYM(100) ,Xx (100) ,Y (100) , IFIP{108B) ,A(108,108) ,P(112),
#XM (108) ,A1(62,62) ,BB1 (62,62) ,A2{112,112) ,BB2(112,112),

*AB1 (174,348) L XXM(17L) ,XP(108),XQ(62) ,PQ(62) ,XN(2B) ,¥YN(2B)

COMMON /AL/ H(3,4),G(3,4) ,HL{(3,4),06L{(3,L)

L]

MATRIX H

co=-c8/C(1)
H(l,l)=c0*CC2**3
H{1,2)=-CO*CCI%CC2%%2
H(]'B)E-H(]o])
H(1,L)=-H(1,2)
H{2,1)=H(1,2)
H{2,2)=CO%CC2RCC1%%2
H(2|3)=_H(]c2)
H(2,L4)=-H(2,2)
H(3,1)=H(2,2)
H(3,2)==~CO#CC1*%3
H{3,3)=-H(2,2)
H(3,L)=-—H{3'2)

C MATRIX G

G(],])‘CC]**3+C]0*CC]*CC2**2
G(1,2)=-CC2%CC1%x24+C9=CC203
6(2,1)=CC2:%%3-CYxCC2HCC 102
G(2'2)=ct]ﬁ*3-c9ﬂcc}ﬁtc2#ﬂ2
G(3,1)==CCI%CC2##2+CG#CC 13
G(3.2)=CC2**3+C]0*CC2*CC]**2
RETURN

END

SUBROUTINE AODI (RA,CTA)
C INPUT X ANO Y COORDINATES
COMMON /A/ D(2,2),X1{6,3) ,W({&,3),IDUP (100}, INC(100,2),C(100),
#5(100,3) , 1SYM{100) , X (100) ,¥Y(100) , IFIP(108) ,A{108,108) ,P(112),
#XM(108) ,A1(62,62) ,BB1(62,62),42(112,112) ,BB2(112,112),
#AB1 (174, 34B) ,XxXxM{(174) ,XxP (10B) . xQ{62) ,PQ (62) ,XN{2B) ,YN(2B)
R2=SQRT (3.} /2.
00 10 1=1,9
J=1-1
X(1)=-.5
10 Y (1)=R2-RA/8B.%J
00 20 1=10,22
J=1-10
CT=CTA®J
X(1)=-.5+RA%SIN(CT)
20 Y {(1)=R2-RA%COS (CT)
DO 30 1=23,3]
J=1-23
X{1)=-.5+RA={1,-J/B.)
30 Y{l}=R2
RETURN
ENO

SUBROUT INE ADDJ{RA,CTA)
COMMON /A/ 0{2,2) ,X1(6,3),w(6,3),1DUP(100),INC(100,2),C (100},
#5(100,3) , 15YM(100) ,X (100} ,Y (100} , IFIP{108) ,A (108,108) ,P(112),




*XM (108) ,A1(62,62) ,8B1(62,62) ,A2(112,112),BB2 (112,112},

*AB1{174,348) , XXM (17L) ,XP (108) ,XQ(62) ,PQ(62) ,XN (28) ,YN(28)

R3=SQRT (3.)

R2=R3/2.

DO 10 I=1,4

J=1-1

X (1)=.5-{1.-RA) #J/3.
10 Y (1) =R2

00 20 1=5,17

J=1-5

CT=CTA%»J

X{1)=-.54+RA%COS (CT)
20 Y {1)=R2-RA%=SIN{CT)

DO 30 I=18,28

J=1-18

X(1)=-.5
30 Y (1)=R2-RA- (R3~RA) %J/10.

DO 4O 1=29,32

J=1-28

X{1)=-X(J)
Lo Y (1)=-Y {J)

DO 50 1=33,45

J=1-28

X{1)=-X(J)
50 Y (1)=-Y (J)

00 60 I=Lb,56

J=1-28

(1) ==X (J)
60 Y{1)=-Y {J)

RETURN

ENO

SUBROUTINE ADDI

COMMON /A/ D{2,2) ,X1(6,3) ,W(6,3),1DUP(100), INC(100,2),C (100},
*5(100,3), ISYM{100) ,X(100) ,Y{100) , IFIP(108) ,A(108,108).,P(112),
%XM({108) ,A1(62,62),BB1(62,62),A2{(112,112),.BB2(112,112),
AB1 (174, 348) , XXM (174) ,XP (108) ,XQ (62) ,PO(62), XN (28) ,YN (2B)

00 2 1=1,8
INC(I,1)=I
2 INC(1,2)=1+1
DO L4 1=9,20
INC(I,1)=1+1
i INC(I,2)=142
00 6 1=21,28
INC{1,1)=1+2
6 INC(1,2)=1+3
RETURN
END

SUBROUTINE ADD2

COMMON /A/ D(2,2),X1(6,3),w(6,3),10UP(100),INC(100,2),C(100},
#5(100,3) , 15YM{100) ,X(100) ,Y(100) ,1FIP(108) ,A (108,108) ,P(112),
XM (108) ,A1(62,62) ,BB1 (62,62) ,A2(112,112) ,BB2(112,112),

®ABY (174, 348) , XXM (174) ,XP (108) ,XQ(62) ,PQ(62) ,XN(28) ,YN(28)

DO 2 1=1,3
INC(1,1) =1

2 INC (I, 2)=1+]
DO 4 I=kL,15
INC{l,1)=1+]

k INC(1,2)=1+2
DO 6 1=16,25
INC{I,1)=142

6 INC{i,2)={+3
00 8 1=26,28
INC(1,1)=1+3



10

10

30
40
50

60
20

INC (1,2) =1+k
DO 10 1=29,40
INC {1, 1) =1+4
INC{1,2)=1+45
00 12 I=41,50
INC(1,Y)=1+5
INC(1,2)=I146
RETURN

END

SUBROUTINE NCSBC(VE,UO,VO,DF,DM)
COMMON /A/ D(2,2),.X1{6,3),W(6,3),!DUP(100),INC(100,2),C(100),
5 (100,3), 15YM (100} ,x (100} ,Y (100}, IFIP(108),A(108,108),P(112),
*XM(108) ,A1(62,62) ,BB1(62,62),42(112,112),BB2(112,112),
“AB1 (174, 348) ,XXM(174) ,XP (108) ,XQ (62) ,PQ(62) ,XN(28),YN(28)
COMMON /ABC/ JS1(240),JS2 (240) ,DEL (240} ,JS3(2L0) , 1 X (2L0O)
SR2=SQRT (3.) /2.
00 10 1=1,240
DEL (1) =0,
DEL (113) =VE*X (9)
DEL (114)=VExY (9)
DEL (116) =VE*X (10)
DEL (117) =VE%Y (10)
DEL {120) =VE%X {11)
OEL (121) =VE*®Y (11)
DEL (124) =VExX (12)
DEL (125) =VE=Y (12)
DEL {128) =vE=Xx {13)
DEL{129)=VEeY {13)
DEL {(132) =VE®=X {14)
DEL{133)=VE=Y {14)
DEL {136) =VE=X (15)
DEL {137)=VE=Y (15)
DEL (140) =VE®X (16)
DEL {141) =VE=Y (16)
DEL {144) =VE*X (17)
DEL {145) =VE=Y {17)
DEL (148) =vE=X (18)
DEL (149) =VExY (18)
DEL {152) =VE%X {19)
DEL (153) =VE«Y (19)
DEL (156) =VE*X (20)
DEL (157) =VE%Y {20)
DEL (160) =VE#X {21)
DEL{161)=VEaY {21)
DEL (164) =VE=X (22)
DEL (165) =VE=Y (22)
DEL (168) =VE=X (23)
DEL (169) =VE:=y (23)
Do 20 1=1,31
J1=17642% 1 =]
IF (1.LE.9) GOTO 30
IF (1.GT.9.AND.I.LE.18) GOTO 4O
1F (1.GT.18.AND.I.LE.21) GOTO 50
IF {1.6T.21) GOTO 60
DEL {J1}=-.5% {UO+DF)
GOTO 20
DEL {J1) =SR2%* (VO+DF)
GOTO 20
OEL (J1) =5R2% (VO+DM)
GOTO 20
DEL (J1) =-.5% (UO+DM)
CONTINUE
RETURN
END




20

30

20

100

150

200

SUBROUT INE "~ ONNECT (A1,B1,A2,B2,N1,N2,A)

DIMENSION £ 1 (2%N1,2%N1) ,BY(2%N1,2&N1) ,A2 (2%N2,2%N2),
*B2 (29N2,2%N2) , A (2HNI+2HNZ, LaENT+LEN2)

N=N1+N2

00 10 1=1,2%N

DO 10 J=1,L4%N

A (1,0)=0.

DO 20 1=1,2%N]

DO 20 J=1,2%N)

A(L, ) =p1(1,0)

Al ,J+25N1)=B1{I1,J)

CONTINUE

DO 30 1=2%N1+1,2% (NI1+N2)

DO 30 J=4%N1+1,48N1+24N2

AL, J)=A2(1-2%N1,J=L%NT)

A1, J+2%N2) =B2 (1=-2%N1,J-L5N1)

CONT i NUE

RETURN

END

SUBROUTINE KILLCOL (A,N,F,JA,JB,DELTA)
DIMENSION A (25N, L%N) F (2::N)

DO 20 I1=1,2%N

IF {JB.LT.0) GOTOD 10

F(1)=F (1)-DELTA®A(I,JB)

IF (JA.GT.0) A(l,JA)=A(I,JA)+A(],JB)
& {1,JB)=0.

GOTO 20

JJ=-JB

F(1)=F (1)+DELTA%:A(l,JJ)

IF (JA.GT.O) A(1,JA)=A{1,J8)-A(1,J))
A(1,J3)=0.

CONT INUE

RETURN

END

SUBROUTINE REDUCE (A,N,F,NC,J1,J2,DEL,J3,1X)
COMMON/RW/ | RE, i WR

DIMENSION A (29N, 4%N) ,F (28N) ,J1 (NC) ,J2 (NC) ,DEL {NC)
DIMENSIQON X (NC),J3(NC)

DO 100 JC=1,NC

JA=J14J0)

JB=J2(JC)

DELTA=DEL (JC)

CALL KILLCOL(A,N,F,JA,JB,DELTA)
CONT I NUE

DO 200 K=1,NC

X {K) =K

MX=03 (K)

DO 150 I=1,NC

MS=J3 (1)

IF (MS#2 GT . MX%%2) THEN
1X{K)=1

MX=MS

ENDIF

CONTINUE

ID=1X {K)

J3{10)=0

CONTINUE

DO 300 K=1,N{

L=1X(K)




240
250
300

20

20

11
33

22
L

50

Lo
10

JB=J2 (L)}

ifF (JB.LT.0) JB=-JB
IF (JB.GT.4%xN-K) GOTD 300
DO 250 I=%,2%N

DD 240 MI=JB, L#N-K
AL, M) =A(I,M1+1)
CONT I NUE

CONT I NUE

CONT I NUE

RETURN

END

SUBROUTINE MUL (U,V,T,.M,K,N)
DIMENSION U(M,K),VIK,N),T{M,N)
DO 20 I1=1,M

Do 20 J=1,N
T(1,J)=0.
DO 20 L=1,K

Ti=u{1,L)=viL,J)
TO,H=T{1,0+T}
RETURN

END

SUBROUTINE I1VS(A,B,C,ME,MF,N,EP)
DIMENSION A{N,N),B (N} ,C (N} ,ME (N}, MF (N)
DO 10 K=1,N

Y=0,

00 20 1=K,N

DO 20 J=K,N

IF (ABS{A{1,J)).LE.ABS(Y)) GD TO 20
Y=A(1,J)

12=1

J2=y

CONT INUE

IF (ABS(Y).LE.EP} GO TO 32
IF {12.EQ.K) GO TO 33
DO 11 J=1,N

W=A(12,J)
A{12,J)=A(K,J)

A(K,J) =W

IF (J2.EQ.K) GO TO Lk
00 22 1=1,N

w=ha(l,J2)
A{1,J2)=401,K)

A{l,K)=W

ME (K) =12

MF (K)=J2

DO 50 J=1,N

IF {(J=K) 2,3,2
B{J)=1./Y

c{h) =1,

GD TD &

B(J)=-A(K,J)/Y
C(J)y=8(J,K)

A(K,J)=0.

A{J,K)=0.

CONTINUE

DO LO I=i,N

DO Lo J=1,N

AL, =a01,0)+C (1) =B (J)
CONTINUE

DD 60 L=1.N

K=N-L+]1

K1=ME (K)




55
70

66
60

32

K2=MF (K)

IF (K1.EQ.K) GO To 70
00 55 I=1,N

w=A(1,%1)
A(H,K1)=A(I,K)
A{l,K)=W

IF (K2.EQ.K) GO TO 60
00 66 J=1,N

w=A (K2,J)
A(KZ,J)=A(K,J)
A(K,J) =W

CONTINUE

RETURN

EP=-EP

RETURN

END

SUBROUTINE AST{N,NI,S,X.F)
OIMENSION X{15) ,F (15)
$=0.0

D0 10 I=1,N

J=141

H=X (JY-X (1)

T=(F (1}+F (J})) =H/2.

S$=5+T

RETURN

ENO
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Lamina Constitutive Equations Based on the Mechanical Behavior
of a Pressurized Composite Tube

Wan-Lee Yin and Lin Yang
Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

The mechanical behavior of a filament-wound composite tube under an
internal pressure load depends on the constitutive properties of the resin and
fiber materials, the fiber volume fraction V;, and the winding angle a. The
range of variation and the relative magnitudes of the in-plane strains ¢;, ¢; and
Y12 in a lamina of the tube {(referred to the directions parallel and perpendi-
cular to the fibers) wvary significantly with the winding angle. For tubes of
various winding angles, the experimental data of the strains and the
corresponding internal pressure may be used to infer the constitutive equations
of a lamina within and beyond the linearly elastic regime. It is found that the
mechanical responses of filament-wound tubes cannot be accurately predicted by
classical engineering theories of lamina stiffness (e.g., rule of mixture, the
Halpin-Tsai equations and certain estimates based on variational bounds) in terms
of the properties of the fibers and the resin material. A principal reason
appears to be that the fibers in a filament-wound structure are not initially
straight so that, at a low or moderate level of extensional strain, these fibers
manifest an apparent Young's modulus that is appreciably smaller than the
documented value.

In the present work, the lamina constitutive equations are determined from
the experimental results of glass/epoxy and carbon/epsxy filament-wound tubes
with various winding angles. Beyond a small initial range of the pressure load,
the lamina stress-strain relation deviates significantly from linearly elastic
behavior due to the occurrence of a large shear strain 7¥;; (unless the winding
angle is very close to the "optimum winding angle", in which case v); remains
small under a large pressure load). Furthermore, the nonlinear relation between
7y; and v;; is strongly affected by the transverse in-plane normal stress o;. The
following relations are shown to be in good agreement with experimental results
over a wide range of strain:

oy = 811 €1 + 557 €2, 02 = S12 €1 *+ Spp €2 - f(752)
T12 = - €2 £ (7v12) + g(ma2)
where f and g are, respectively, even and odd functions. In the range of small

shearing strain, g is a linear function and f practically vanishes. The elastic
moduli S;;, S;; and S;; are determined from

€1 (Sy1 + S12) + €, (Sy2 + Sz3) =0y + 02 =0 + 0
S12/511 = veVe + vo(l-Vg) ,

vwhere v; and v, are the Poisson's ratios of the fibers and the resin material.
Experimental results for a tube of a specific winding angle provide a set of
coefficients ¢;, ¢; and o, + o4 of Eq. (2). As the winding angle varies, an
overdetermined system of equations is generated and it iIs found that these
equations yield consistent results for the elastic moduli §;;, S;» and S;;. The
material functions f and g are subsequently determined from the experimental data
corresponding to large shearing strain,

()

(2)
(3)
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SEPARATION FAILURE OF A HELICAL DELAMINATION
IN A F1LAMENT - WOUND COMPOSITE TUBE

wan-Lee Yin
School of Civil Engineerlng
Georgla Institute of Technology
Atlanta, GA 30332

sttrgct

The fallure of a fillament-wound tube loaded under Internal pressure may be
precipitated by the separation of a deiaminated layer from the lnner surface of the
tube FEgqullibrium solutjons are obtalned for a separated face sheet [n the shape of
a helical strip The face sheet is subjected to reduced membrane tension in [ts
separated state (In comparison with the attached atate) The aaplitude of
separation and the peeling moment along the boundary of the helical strip increase
with the pressure load, but the peeling moment does not vary appreciable when the
width of the strip Increases Hence the helical strip =z=v grow in width under a
sufficlently large pressure load

Ilntroductlon

In thelr experimental study of the fallure of glass/polyester filament=-wound
tubes under Internal pressure load, Spencer and Hull [1] reported several differnt
anodes of Fallure dependtng on the winding angle and the loadling conditlon {t.e
open-ended or close-ended). The events preclpltating or accompanylng failure
Include whitening, weepage, large In-plane shear deformsatlon, matrix cracking, fiber
breaklng and delamlnation. Interlamlnar cracking and delamlnation, accompanied by
buckling and bending of the tube, were observed in open-ended tubes wlth relatively
large winding angles (45 degrees or above). 1t may appear somewhat puzzling that
delamlnation should occur Iln a tube loaded under internal pressure, where the
ad jacent layers are pressed against each other, and that buckilng and bending of the
tube should happen under the open-ended test conditon, where the axlal load In the
tube vanishes. However, while the tube wali taken as a whole i3 stressed only in
ctrcumferential tension. the Individual unidirectional laminae are subjected
additionally to shearing stresses Txg and Tyx . except in the end reglons adjacent
to the free edges of the tube A3 the pressure load lncreases, the two familles of
fibers tend to reorient themselves toward the circusferntial direction, producing a
sclasoring actlen at the cross-cover points of Intersecting flbers and introduclng
large shear deformation Iin the interleaving sheet of resin material. This shear
action may tend to Initiate interlaminar fracture in certain reglons of a laminar
interface where, because of the nconuniformsity and peculiarity assocliated with the
winding process. the thickness of the Interleaving resln materlal is particularly
thin. Incldentatly. since the cross-over polnts are densely distributed over a
lamlnar Interface, the scissoring actlon effectively produces a system of
distributed interactlng couple moments between adjacent lamlnae, The presence of
this dlistributed couple moment Implies that, Iln each lamlna, the shearing stress
components Thp &nd Tyx are generally not equal.

Because a slngle unidlrectlonal laver or & group of layers has significant
anisotropy, interlaminar fracture may tend to form or propagate along the general
direction of one famlly of fllaments Hence a hellcal strip of delaminated face
sheet, consisting of cene or several filament-wound layers, may be formed In the
Inner surface of the tube. This delamlnated face sheet is subjected to the same




lsrge wenbrane teneion as that which applles to the lntact portlon of the face
sheet. 80 long anm the delaminated portion maintalns contact with the main body of
the tube wall. Although there 13 a tendency for the delaminated sheet to deflect
inward and mepagte from the tube wall, ac as Lo reduce the membrane tansion and the
str.in energy, this tendency 1% balanced by the outward action of the lnternal
pressure. Mowever, 1f the membrane tension and shear deformatlon in the delaminated
tace sheet are sufficjently large, scattered resln cracka may be formed mc that the
face shect may fail to contain the pressure. Eventually, the fluid pressure on both
aides of the delaemlnated face sheet may become equalized and separation of the face
shezt from the tube wall may occur spontanegusly to relleve the membrane tenalon.

In the present work, equilibrium soluticons of m hellcal strip of the separated
face sheet are determined for a specific comblnatlon of geometrical and material
parametera. The amplltude of separatleon and the peeling bending moment along the
boundary of the strip Increame approximately in proportlon to the Internal pressure
load. However, the boundary peeling moment do not vary slgnlflcant]ly with the
increase of the strip wldth. The magnltude of this moment {8 Indicative of the
peeling action which tends to cause delamination growth. Thua, under a sufflcientiy
large pressure load a delaminated strip may separate from the tube wall snd may
subaequent)y grow to reach a sjgniflcant width. This causes local atiffness
degradation and redietribution of the stresees In the maln body of the tube and may
precipitste further cracking, bending, buckling and eventual catastrophic faliure.

While the present analyele is motivated by the consideratlon of delamlnation
failure in a pressurlzed fllament-wound tube, It ylelda & clas® of cliosed-foram
snalytical solutions of thin anisotropic ahells with a nontrivlial type of geometry.
Hence the reaults may have some intrineic interest. The solutlons sre rsther
sisilar to postbuckling solutions slthough the physical proceas is not characterized
by @ bifurcation state. The problems of snap buckiing and peeling of a thin
cylindrical lsotropic layer from the Inner surface of a thlck cylinder aublected to
rsdially inward dispiacement load have been studied by several authors {2-5]. The
layer buckles because it waa under large membrane compression In the prebuckling
state and because buckling substantially relieves the compression. The present
analysis auggests that delamination fallure may also occur in tubes loaded under
internal pressure where the tube wall is subjected to membrane tension, and that the
formation and growth of delamination in a f!lament-wound tube may assume the shape
of a helicai strip rather than a sector of the cylindrical aurface,

Forsulation_of the Equlllbrlum Solution of a Separated HYelical Deimmlnation

We aasume that a hellcs] strip of delaminstion exists close to the inner surface
of the tube as a resuit of the acissoring action between sdjmcent filament-wound
layers due to a sufftclently large preasure load, The boundaries of the helical
strip are parallel tc cne families of fijaments (say, with the winding angle . the
fijaments of the other family are wound at the angle -9 ). The thickness of the
defaminated face sheet, h, Is assumed to be small compared to the total thickness of
the tube, t, 5o that when the face sheet deflects inward and separates from the tube
wall, the existing deformation of the latter is not appreciably affected This
existing deformation ls characterized by uniform axial snd circumferential
strains €5 and €5 . So long as the hellcal strip of the delsminated face sheet
remaine attached to the tube wall, 1t ia subjected to the same mebrane strains €,
and G:. Let a system of orthogons] geodealc coordinstes (x‘. X, ) be defined so
thst x; = 3 along the boundaries of the helical atrip (Fig. 1). Referred to the
new coordinate axes, the components of the membrane strain are

€= 2 (0% €)= (€o- €D 20, yr=L(€]-€3)sin 29, (rap




e;_=-l£(e:+e;)+§_—{e:—e;) cos 2. (1e)

When the face sheet separates from the tube wall and deflects inward. the
tangential displacement components u and v |along the x; - and x4 -directions,
respectively) and the jrward radial dlsplacement w of the aiddle surface of the face
aheet are conatant in the x,-direction, l e., they depend only on the coordinate x,
The following nonlinear straln-displacement relations may be established

o
€y= €1 - wiRy , Y= Yo+ v,

(2}
z "
€, = 5;4—}‘\,‘"—e"_w./;z1+u.'1—l~(w')+}-w 3

where the primes indicate differentiation with respect to Xy In the preceding
expression,

R = R/ain®*®. R,= Ricas’®.
R Is the radius of curvature of the middie surface of the undeformed face sheet and
z ls the coordinate in the thicknesa direction measured radlally outward from the
aiddlie surface. The membrane force resultants and the moment resultants in the
face sheet {Pig. 2) are related to the curvature increment w'{x,} and the middle-
plane stralns €,. €, and ‘Yu_ through the relatlons

Ny ( A, A Ay Be) €, “'r
N = frde he B &1 (3)
Ny Ap A A Bu T
H,_ L B B sz Pra w'

I1f the thlckness h of the face sheet 13 very amall compared to the Inttial wmean
radius R, then the stiffness matrices [A,J]. [B,J- ] and [D.-J-] may be approximated by

(AGT=Z {16,145, [B=2l6,Jkdk, [2,]=2{(8,1¥75, (0

where [Q;;] l3 the matrix of anisotrople elastic modull of a fllament-wound iayer
referred to the local geodesic coordinate directions and where the susmations extend
over all layers In the face sheet. We note that while Eq. {4} 13 exactly valid in
the case of s flat face sheet. it is only approximately valled for an initlally
curved shoet, A segment of the face sheet with unit length In the x,-dlrection has

the straln energy
-

3 ~
V= 3 5_5' (Ny €0 N, €+ N, Y, + My w') dx, {5

It is further assumed that, due to aigniflcant sembrane tenston caused by the
pressure load, the face aheet has developed scattered matrix cracks which allow
equallzatlon of the fluld pressure on the two sides of the sheet but which do not
slgnificantly degradate the stiffness propertles of the face sheet. Then the fluid
pressure perforas no work as the sheet deflects Ilnward. The work of the boundary
forces and moments ls alao negligible If the maln body of the tube wall does not
undergo sppreciable additional deformation when the face sheet separates. HKence the
potential energy of the face sheet Iz equal to the straln energy Setting the first
varlation of the potentlal energy to zero and making use of the boundary conditions
along x,- *a®




u = 0, v = 0, {6n)
w = 0, w' o= 0, (6b)

one obtains the following equllibriums equatjona for the mebrane forces and moments
Nﬂ_. 0, H:'_ - 0, {(7a)

K /Ry o+ Ny /Ry - M7 + (Nyw')' = 0. (7b)

Except for the presence of the term K, /Ry, {n the third eguaticn, the laat two

equilibrium equationes are jdentical to those of u shallow arch.
Substituting the strain-displiacesent relaticns Inte the first two equilibrium

equationae, one obtains
A Ne-mael-mael-mie (R e 2y,

V)*%(‘“')z: -':? A s l8a}
L Nu"ibf;—“uf‘i-hoﬁl+(-—'-‘+—-)w—bu‘~ |
Y= _I_IA;,, My =R €F = A €0 — ATl + ("*%)W"Bu“"’ .
’
O I A N|1‘AI&£|_A|$E’ -Pu Yr;'f'(‘.“ &P:.)w -815“’”
where
pa
| A26 Ade| "
Then the third equation of (7) becomes
D'n. By BN o B.;-R:N;/Z A[z s || Az Ntl -
B Aa ho) Ryw™ 1 2] g, M ds W R b b R
[ Bue A Agg Bre fus Au; IA,,, hee Aol
Ay Ay Ay INLK;/R;_ A A,‘I
L TR YR I 19}
Ale A ‘“l | =N ST ST

This fourth-order linear differential equetion for wix,) contains twa undetermined
parameters N, and N;,. Additional equations for the determination of the parameters
may be obtained by lategrating Egs (8a) and (8b) scross the width of the strip and
making use of the boundary conditions of Eq (6] This ylelda

* A N,— A €8 el Au A g®
N SS (w’)"dxl _ 25’| 2 X An.fn. ang’, g [ Ay 7 ! wdx,
) Mo Nop-hgel-huel|  (Au Ee8T s
0 o Av  Na—Ane)—~ATe + [ A AR, [ 5 5'
= s i
Ae N.L-Mtéf’-—-ﬁu‘ﬂf] Mo AulR] (rob)

The differentinl equatlon (9), the boundary conditions (6b} and Eq (10) completely
determine the defiection function wix;) and the conetants K3 and N




The procedure of solution may proceed as follows. Under a given pressure load,
the membrane strain companents in the (X, 8 ) coordinates may be calculated using the
stiffness properties of the whole tube, The strain components in the geadesic
coordlnates (x,. x,) are calculated from Eq. (1). Estimates of the values of N; and
Ny; are tentatively made, and the boundary value problem aof Eqs. {9} and (6d) are
salved. The resulting closed farm soiution for wix,) Involves praoducts of
expanential and sinusoidal functions. This salution is substituted into Eq. (10) to
see whether the two equalities are satisfied. [If they are not satisfied, then the
estimated values of N, and Ny, are modified and the process ls repeated until Eq.
{10) 1s satisfied to wlthin certain permissible margln of error. The solution is
physical possible only If wix,) i3 never negatlve, otherwlse it should be discarded.

Solution for a Unidirectional Pace Sheet

For the sake of simpllcity we consider the case of a unidirectionally wound face
sheet. For such a sheet the bending-stretching coupling matrix [B;J' ] vanishes as do
the shearing-extension coupling Ase and A,.. PFurthermore,

2
D,, = (1/12)n%4,, .
Hence the gavernlng differential equation (9) reduces to

4 2 m N R
=R Ay w'- 2Tt
1z (R ry

wai + A —?_[All A|2_| = -z| l"ll A|l| R1€1 &Nz Ri A'
( 1, iA A;:.' lAu.Au.| ko hﬂn. A:,_)

The second condition of Eq. {10) is fdentically satisfied and the first conditlon
yields

i 5’ AL *[ Ny An .o ° "IL_I_ { 5*
25—5, (W'} dx, = 25 \ 7 Eeg—éz)‘}'(:‘: gif‘,—z-l-)j_stwdr;_

we mtroducp dimensjonless variables ¥ and W(¥) and dimencionlesas parameters
a T, . dand ﬁ as follaws

W= wix/h, ¥=%/VER » a=sVVER,

= @ _ “t A, A Ry, A
T= NeRe e* = K €& o, = (Ayy) | A A a=R_ A (11)
R, R Ay M|’ Lz_.rﬁu,
Then the two preceeding equations became
1 QW 4w »
17 dAr+ -7T PrL +d W= de +‘5T, (12)

1 14 JW\l {An . -
EE-.\ d;-ﬁj’ Wady f2a {\_¢ Se” T} . {(13)
The saolution of Eq. {12) satfisfying the boundary cenditions of Eq. [Bb} !s

W)= (E'-f-Tﬁ/eL) (14 C; cosh A cos AF + Cp siAh AT sin AT), (14)
where,

A={B0%3Ty"™, a= {GO"-3TIY .
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Cy= — (2/H) (Ax cosh A& simMa + Ha sinh Aa Cos pa),
G = —{(2/H) (Ha cosk Am rinpua — An sk Do Cos pa) sk
H= pa sinh 224 + Aa Sin ZAMA.

The solution glven by Eq. (14) contalns an undetermlned parameter T. The
parameter may be determlned by the following condltion which is obtained by
substitutlng (14) lnto Eq. (13):

2 €™+ THAO+ Cy ("4 TR0~ {14 i-(.:— S S TSN EA

where,
£y T T 1
&= A—;’ﬁ [{LE;—‘)-L sihZda — %/%); s.‘nzfm} (cosh 2Aa~ cos Zpa)

— (@} (- cokana eos2un) ] (18)

— Aa &° 22
o= Rt G ] Ehm (eok tam cos o) ~ L]

The left hand alde of Eq. (17) is 2 compllcated function of T because the
parametera X and i are dependent on T (see Eq. {15)). However, for any given vaijue
of T, Eq. (17) provides a quadratlc equation for e, TE/al which may be readily
solved. We note that the membrane strain ratio &€°/ €,° In the main body of the tube
wall la independent of the pressure load so¢ long as the response of the tube remains
linearly elaatic. Kence, If for any specified delamination gecwetry we are
interested in a famliy of separation solutlons corresponding to increasing values of
the membrane straln parameter €*(i.e.. corresponding to & certain range of the
pressure load in the tube), then Eq. {17) may be easily solved for €’~T§'-‘.¢
corresponding to a aerles of values of T. No iteratlon process need be conducted
for thla purpose. The results of the computation yieid the dependence of the
various properties of the aeparation aclution upon the strain parameter e* ror a
helltal delamination atrip with unidirectlonai winding at the angle 7’= 65", the
dependence of the nondimenalonal center-llne deflection, w(0)/h, and of the
nondlmenslonal boundary peeling moment, H,-R/(D,,.sln"ﬁs’] = d*Wsdz*, upon the
membrane atraln parameter £ are shown, respectively. in Figs. 3 and 4 for two
diatinct valuea of the normailzed delamlnatjon width (2a.» 2 and 5). The relations
are approximately linear. Here the anisotropic elastic properties of the
unidirectlonal face sheet are taken from or computed accordlng to Ref [1].
Specifically,

Ey= 42.0 GPa. E,« 11.05 GPa, G,,- 4.73 GPa. ¥,= 0.278, 1} = 0.073,
ol = 3,72, = 0.495, Apgfhg, = 0,277

Asauming that the tube is composcd of equal number of layers -'nund at 2337 angies,
and uaing the open-end condition, the following membrane straln ra’jos are found:

L L ) -]
E,/E, = -0.360, 61/61 = -0.155.
Flgurea 5 and & show, respectively, the varlation of the center line defiection

and of the boundary peeling moment with the increase in the deiamination widtlh for
three flxed valuea of the membrane strain parameter, €™ 0.5. 10,15 The
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center-llne deflection at first increases and iater showa silght decrease as the
delamination wldth Increases, while the boundary peeling moment remains
approxlmately constant in the entire range of delamlnation width for which the
sclutions of Eq. {i7) can be obtained. It should be noted that. as a gquadratic
equation for €®+ TR/d, Eq. [17) aiways has real soiutlons if T is nonnegative. When
N; changes from tenaion to compresslon and when jta magnitude becomes sufficlentiy
large, the roots of Eq. {17} change from real into complex. Ajong each curve in
Flgs. 5 and 8, the value of T associated wlth a data point decreases In the
dlrection of increasing delamination wldth, The curves termjinate at rjght end
points where the roots €% TS/l of Eq. (17) become complex.

The strain energy release rate asscociated with delamlnation growth may be
evaiuated by using the J-integral method [8,7). The result ls an aligebraic
expression in terms of the boundary peeling moment, the constant force N, and the
memabrane strains in the main body of the tube wall., If the membrane strain
parameter £*ls sufficiently larga, the energy-release rate at the delaminatjon
boundary may exceed the fracture toughness and the width of the deiamination may
Increase spontanecusly.

A fundamentai assumptlen used In the present analyaia s that the deiaminated
face sheet is thin compared to the wall thickness of the tube sc that the separation
of the face sheet doea not appreciably affect the existlng deformation In the main
body of tube wall. A more elaborate analysis without using this assumpticn may
indicate the effect of delamination separation on the deformation of the aain tube
and provide better Insight Into the faflure process initiated by delamination
separation.
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Abstract—An analytical procedure. based on the Rayleigh-Ritz method and von Karman's non-
linzar theory of plates. is developed for computing the buckling loads and the postbuckling solutions
of laminated anisotropic clliptica) plates. Lengthy algebraic equations governing the expansion
coefficients of the displacement functions are generated by a symbolic algorithm. Using polynomial
displacement expansions of differenl orders. postbuckling solutions with increasing aceuracy are
systematically computed for isotropic and laminated elliptical plates. The deflections. the foree and
moment resultants and 1he cnergy release rales associated with the solutions of various orders are
compared 10 assess the irend of convergence. The comparison suggests the lowest order polimomial
expansion needed to obtain reasonably accuraie results for the force and moment resultants and
the energy release rates. Previous Rayleigh-Rilz postbuckling solutions based on lower-order
polynomial expansions of the displacements are found 10 yield results with significan) errors.

1. INTRODUCTION

The problems of sublaminate buckiing and crack growth in a homogeneous plate or a
composile laminate containing an interior delamination have been the subject of extensive
analytical and numerical studies in the past decade.} For thin strip or elliptical delamination
models the bifurcation loads obtained by two- or three-dimenstonal finite element analysis
{see. for example, Shivakumar and Whitcomb (1985) and Yin er al. (1986a)) are not
appreciably different from the corresponding results of the homogeneous or laminated plaie
analysis. In the case of strip delamination models, closed-form analytical solutions of the
posibuckling deformation may be obtained in the context of the classical laminated plate
theory (Chai er al., 1981: Yin er al.,, 1586b). The energy release rates associated with
delamination growth may be evaluated, by using the path-independent J-integral. in terms
of the membrane forces and the bending moments in the cracked and intact parts of the
laminate at the crack tip (Yin and Wang. 1984), The results also agree well with the energy
release rates calculated by finile element analysis and the closure integral method (Yin er
al., 1986a). These findings suggest that accurate postbuckling analysis based on a homo-
gencous or laminated plate theory (preferably with the inclusion of the effect of the thick-
ness—shear deformation) may be used, in place gf expensive three-dimensional analysis, to
obtain reliable results for the buckling and growth behavior a delamination with a general
shape.

For a two-dimensional thin-film delamination with an arbitrary shape. the local mem-
brane forces and the bending and twisting moments at a point of the delamination front
determine the pointwise value of the energy release rate {Bottega, 1983 ; Storakers and
Anderson. 1988). If onz assumes a delamination growth criterion depending only on the
local energy release rate, without discriminating among its separate components associated

+ A preliminary version of this paper was presented in the ASME Winter Annual Meeting. San Francisco. CA.
December 1989,

+ For general reviews of the subject. see the recent articles by Garg (1988) and Storakers (1989). Addinonal
information may be found in Kapama and Raciti (1989). Simutses (1989) and Yin (1989)
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with the three fracture modes, then the principal task involved in the analysis of two-
dimensional delaminations is that of obtaining accurate bifurcation loads and postbuckling
solutions {rom the von Karman equations. This task is formidable if one wishes to take
into account the postbuckling deformations of both the cracked and intact parts of the
plate. It is difficult even if one completely ignores the bending deformation and the non-
uniformity of the membrane deformation in the base laminate as induced by local buckling
of a thin delaminated layer, i.c. if one adopts the “thin-flm™ approximation for the
delaminated layer by imposing the conditions of vanishing deflection and slope along the
crack boundary.

The difficulties arise from the geometrical non-linearity and the strong coupling.
between the in-plane and transverse displacements, that are intrinsic to the von Karman
equations of plates. Postbuckling solutions which ignore or inadequately account for such
effects cannot yield reliable results for the membrane forces, the bending and twisting
moments. or the energy release rates. Many existing solution schemes for the bending and
buckling of plates use the calculated results of the central deflection as the principal test of
accuracy. The criterion is inadequate and misleading because, as shown in this paper,
relatively crude postbuckling solutions may yield sufficiently accurate results for the central
deflection and, at the same time, very poor results for the membrane forces and the energy
release rates.

In their analysis of transversely loaded and postbuckled rectangular plates, Chia (1980)
and co-workers obtained solutions by the Rayleigh-Ritzmethod. using beam eigenfunctions
to approximate the displacements. As the number of terms in the displacement functions
increases. the results for the transverse deflection converge reasonably fast. However,
accurate results for the membrane forces and the bending moments are considerably more
difficult to obtain. Following Chia’s method. Feng (1983) presented a computerized analysis
of the postbuckling behavior of laminated anisotropic rectangular plates. His analysis used
a much larger set of beam eigenfunctions to represent the displacements of the middle
surface. He did not provide information concerning the rate or trend of convergence of the
solutions.

In a postbuckling analysis of a simply-supported circular plaie under axisymmetric
compression, Friedrichs and Stoker (194 1. 1942} noticed significant non-uniform membrane
deformation inan advanced stage of postbuckling. As the boundary compression increases,
the membrane forces in a central portion of the plate eventually become tensile. Bodner
(1973) found a similar behavior in the axisymmetric postbuckling of a clamped circular
plate. Due to the coupling in the von Karman equations, the non-uniformity of the in-plane
deformation has important implications for the bending deformation. This results in large
curvature of the deformed middle surface around the boundary of the plate. Although the
perturbation method used by these authors is applicable only to within a certain range of
thestrainload, the general validity of their conclusions beyond this range has been confirmed
by an analysis based on direct integration of the von Karman equations (Yin, 1985).

Assuggested by Chaiand Babcock (1985). the buckling and growth behavior associated
with general two-dimensional delaminations may be studied by an analysis of elliptical
delaminations. However, the displacement functions used by Chai and Babcock contain an
insufficient number of terms to reflect significant non-uniform membrane deformation and
the boundary effect. In the present work. power series expansions of the displacements
are systematically enlarged to obtain higher order approximate solutions of postbuckled.
clamped elliptical plates by means of the Rayleigh-Ritz method. In the special case of
axisymmetric postbuckling of circular plates, Rayleigh-Ritz solutions of the various orders
arecompared with the solutions obtained by direct integration of the von Karman equations
{Yin. 1985). The comparison indicates convergence of the Rayleigh-Ritz solutions. and
suggests the lowest order approximate solution needed to obtain reasonably accurate results
for the membrane forces, the bending moments and the energy release rates. The solutions
of the required order are then computed for elliptical delaminations with vafious aspect
ratios. It is found that these postbuckling solutions also show significant boundary effect,
although in a manner more complex and fascinating than in the case of axisymmetric
postbuckling of circular plates.
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A Rayleigh-Ritz procedure involving a relatively large number of coefficients for the
non-linear analysis of anisotropic plates requires the use of symbolic algebra. A symbolic
computational program is written in the Fortran code to generate the total potential energy
function in terms of the geometrical, material and loading parameters, as well as the
undetermined ¢xpansion coefficients (Jane, 1989). The program also yields the non-linear
algebraic equations governing the undetermined coefficients. Solutions of the equations are
computed for isotropic circular and elliptical plates (in Part I of this paper) and for cross-
ply and angle-ply elliptical laminates (in Part IT).

Non-dimensionalization of the postbuckling problem shows that the total potential
energy function depends on the geometrical and stiffness parameters through certain specific
combinations. Consequently, alf pastbuckling solutians af anisatrapic elliprical (or rec-
tangular)y laminates may be generated fram apprapriate salutions of anisatrapic circular (ar
square) laminates by rescaling of variables. This important conclusion. shown in Section
2.3 of the present paper. allows a significant saving of computational effort in a parametric
study of the postbuckling behavior of various types of elliptical laminates.

2. RAYLEIGH-RITZ SOLUTIONS

We consider an elliptical delamination with semi-axial lengths a and b along the X-
and Y-coordinate axes. respectively. Let the base plate be subjected to uniform in-plane
normal and shearing strains E,,_ E,, and E,,. If the strains are predominantly compressive
and if they are sufficiently large. then the elliptical delaminated layer buckles and becomes
completely or partially detached from the base plate. We assume that the thickness of the
delaminated layer. £, is small compared to the thickness of the base plate. so that, within
the base plate. the bending deformation and the non-uniformity of thein-plane deformation
caused by the buckling of the delaminated layer are both negligibly small. Then the delami-
nated layer is subjected to displacement boundary conditions along the entire ¢lliptical
boundary. The total potential energy of the layer is identical to its total strain energy.

2.1. The tatal poiential energy
In the buckled states. the membrane strains and the curvatures of the middle surface
of the delaminated layer may be approximated by

eu+|(ew)’ V+] SHOV EL'+€I’+EH’EH'
=g tsl=5 ) &=t sl = - ==+t T T
S A 7 A A A T AR S S G S U 3

(n

where U and I are the in-plane displacements on the middle surface and where H' is the
transverse deflection. The force and moment resuitants of the delaminated layer are related
to the strains and the curvatures according to the equation

(N A, A. A, B, B. B, [¢&
N ‘ A A A B B B £:
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The stiffness coefficients in the last equation are those defined in the classical laminated
plate theory. If we abbreviate the preceding equation in the form
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N =Au&+8,x, M =By+Dyx (2)

then the total potential energy of the delaminated layer may be expressed as

n= %'”.z (Ne+Mx)dXdY (3)

where the integration is carried over the region of the piate and the index  is summed over
1,2 and 6.

2.2. Non-ditnensianalization and palynamial approximatian
We introduce the following non-dimensional variables and constants:
x=Xa, usUah’, w= Wh, _ Ml’l
v=Yb, vr=Vbh', i=ab, " A,ab
£, = (@h)y Exy, &, ={ab/h*)Eyy, ¢, = (b/h) Eyy
& =(ahi’e, & =(bh’e. & = (abih’)e,

Ry =(a’/hK,. Ry= (b, K= (ab h)x,. (4)
Let the displacement functions be approximated by the polynomial expansions

U= axE,y+brEyy+(1=x* =) P(x,v)h/a
V=axEyy +brEyy+ {1 =x"=y)Q(x.v)h* b
W=h(1-x—r*)R(x.y)
where P. Q and R are polynomial functions of the normalized coordinate variables. All
boundary conditions along (X'a)*+(Y/b)* =1 are satisfied by these displacemem
functions. Now the non-dimensional displacement components u.  and w-have the following
expressions:
U= XE,+ Ve, +ZoP(x,))
v = XE,, + Ve, + ZoQ(x. V)
w=ZiR(x.v) (3)

where,
Zo=1-x" =27,

From eqn (1) we obtain the following expressions for the normalized membrane strain
components and the normalized curvatures
£ = £, +{ZoP),+(1UZIRY,Y
£ = £, +(Ze0), + (1L DUZERL)
£ = 2, +(ZoP), +(Z:Q), +(Z3R)(Z3R),
K1 =(ZiR) s K3 ={(ZiR)... Ko= AZiR)..

"

The polynomials P, Q and R are defined by their respective set of coefficients [a.}. {b,}
and {c¢,}. The number of coefficients in each set depends on the degree of the polynomial.
We define twenty-one functions L. M, and N, (i.j= 1. 2. 6: L, and N, are symmetric
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with respect to the indices while M ; is not) by the following integrals over the unit disk

X4yigl:
I.,j = J‘JE‘EJ dx dy, M") = J J‘f‘f} dxdy, N'J = JJ KK, dxdy-. {6)

Itis clear that L,, M,; and N, depend only on the normalized strain loads ¢,,. ¢.,, £, and
the coefficients {a,}, {,}, {¢,} of the polynomials P, Q and R. Thus, once the forms of the
polynomials £, O and R are selected. all the integrals L;;, M, and N, can be evaluated and
expressed explicitly in terms of the normalized strain loads in the base plate and the
coefficients of the polynomials. These explicit expressions are independent of the geometrical
and material parameters (g, b, #1, 4,,, B,;, D,,} of the anisotropic elliptical plate. They depend
only on the approximation scheme used in the analysis.

Equation (3) now yields the following expression for the non-dimensional potential
energy -

_ (airh)‘
Al]

n

zz éJéJ[AIILU + (2."}')3!1-"1;"" (I /hz)Diﬂ\,u] (7)
]

where i and j are again summed over 1, 2 and 6 and
6, = (h'a)’, 8:=(h'b)’, &, =h"jab.

Once an approximating scheme involving a set of undetermined coefficients a,. b, and ¢, is
adopted and the integrals L,,. M, and N, are explicitly obtained. the total potential energy
for any particular geometrical and matenial configuration of the elliptical laminate can be
obtained straightiorwardly. This yields an expression for the normalized potential energy :

N =Tla, bbb br 17 A0y, B, A, DR A)). (8)

iﬂ’
Itis clear that the major task involved in the explicit determination of the last expression

is that of evaluating the integrals of eqn (6). Each integral is a sum of integrals of the
following form:

1 fl-a?
Im.n k) = J‘ J "y (1= x*—y?) dxdy
-1

TP

1 In
= J (1 =r3)tpmen-! drj cos™ B sin” 8 d6.
0

¢

One has /(m. n, k) = 0if m and n are not both even. Otherwise,

53-8 (m=1)1-3-5---(n—1) & (= 1)7k!
Y e Yoy . b
fla Rl 2x 2°4-6-- (mn) ,}_:0(2+2p+m+n)p:(k-p)z‘

Depending on the number of coefficients involved in the polynomials P. Q and R. the final
approximale expression for the potential energy may contain hundreds or even thousands
of terms. The intermediate steps leading to the final expression may involve hundreds of
thousands of integrals. A special purpose symbolic algorithm was developed in the Fortran
code o generate the potential energy function and the algebraic equations governing the
undetermined coefficients (Jane, 1989). Cyber 205 supercomputer at the University of
Georgia was used to implement the symbolic algorithm and to solve the resulting system
of non-linear algebraic equations. This system consists of the following equations
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n én 0 ¢l
éa, ' &, ' @

0. 9)

Furthermore, the strains in the base plate corresponding to the states of bifurcation (from

membrane states to buckled states) may be calculated from the following characteristic
equation

en & én
daa; &alb, Eadc;

&N #N én
¢béa, ¢bih; Ebic,

&N &N an

dcifa, Ccfb, Gclic l (g =b,=¢,=0)

=0. (10)

Equation (9) will be solved for the coefficients {a,}, {5} and {c,} by using the Newton-
Raphson iteration scheme. In order to have suitable initial estimates of the coefficients, it
is imperative to start from a bifurcation point (corresponding 1o a set of coefficients
satisfying eqn (10}) in the load space. and to obtain successive postbuckling solutions along
a load path by imposing small load increments,. The coordinates of the load space are the
imposed in-plane normal and shearing strains in the base plate. Since eqn (9) consists of
algebraic equations which depend linearly on the coefficients {a,} and {5}, the emphasis in
each iteration step is to obtain the proper increment of {¢,}. The new iterated values of {a,}

and {b,} may be obtained easily by solving a subsystem of linear equations using the current
estimates of {¢,}.

2.3. Generating all postbuckling solutions of elliprical laminates from appropriate salutions
of circular laminates by rescaling

The structure of the expression for th2 total potential energy. eqn (7). implies the
following important conclusion : all postbuckling solutions of elliptical laminates (according
to the von Karman theory) may be obtained from the postbuckling solutions of circular
laminates by rescaling the coordinate variables. the thickness, the stifiness parameters and
the membrane strain loads. Indeed, if one wants to obtain the postbuckling solution U, F.
W of an elliptical laminate with the thickness A, serni-axial lengths a and b. stiffness matrices
[4,), (B,} and [D,). under the strain loads Ey,, £,y and E, in the base plate, one only has
to obtain the solution Uy, Vo, Wy of a circular laminate with the thickness k. radius rg
and stiffness coefficients

S9) = (ro/he}'(hia)'S),. St = (ro-ho) (R 1ab)*S:
5% = (ro/ho) ' (h'8)*Sz2. Sts = (rotho)*(h*/a’b)S
S0 = (rorho) '(h*/ab)*See.  S%6 = (ro'ho)*(h*/ab’)S1,
{where S, stands for A, B, and D, in succession} under the strain loads
Elx = (ho/ro) (@ h) Exy, ESy = (ho!ro) (b:h)Eyy, E3y = (ho'ro)’(abh7)}E) ;.
The solution for the elliptical laminate is related to the solution of the circular laminate by
U= (h'bo) (re/a)Up. V= (h ko) (ro'h)Vo. W= (hho)W.
The validity of this statement follows from the fact that the two laminates have the same
00,4, 6,68, and 6,6,D,. the strain loads on the respective laminates have the same

normalized values ¢,,, €,, and ¢,,, and the respective solutions have the same normalized
displacements w, v and w. From egn (7) one finds that the potential energy functions of the
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two laminates are identical except for a multiplicative factor. Hence the stauionary condition
for the respective potuntial energies are realized by the same normalized displacement
solution u, v and w,

Since one has the freedom to choose the radius r, and the thickness b, of the circular
laminate arbitranly, there are infinitely many postbuckling solutions of circular laminates
which correspond, according to the preceding relations, to the same postbuckling solution
of a given elliptical laminate. Furthermore, one may introduce new rectangular coordinate
axes in such a way that, for the circular laminate, these axes coincide with the principal
directions of the imposed strain tensor in the base plate (whose components in the original
coordinates are ES,, EY, and E,). Referred to the new coordinate system the strain load
in the base plate of the circular laminate has no shearing component. Consequently, in a
parametric study of the posibuckling behavior of elliptical delaminations of various geo-
metrical and material configurations under general membrane strain loads in the base plate,
itis sufficient 1o deal only with circular anisotropic delaminations under biaxial strain loads.
All solutions of the elliptical delaminations may be generated from appropriate solutions
of circular delaminations according to the preceding rescaling rules.

It is clear that a similar procedure may be used to generate all postbuckling solutions
of rectangular anisotropic laminates from appropriate solutions of square laminates sub-
jected 1o general in-plane loads.

2.4. Symmertry canditions an the displacement functians

For a general anisotropic elliptical delJamination in a base plate under the in-plane
strain loads Ey,. Ey, and E,,. the postbuckling displacement functions in the delaminated
sublaminate satisly the conditions of central symmetry:

u(—x.=v)= —ulx, ¥}, r(—=x—y)=—v(x.y), w(—x,=1)=n(x) Qan

These symmetry conditions imply that the polvnomials P and { in eqn (5) contain only
terms of odd degrees while the polynomial R contains only terms of even degrees. In the
cases of isotropic, specially orthotropic, or cross-ply sublaminates with aligned loading and
symmetry axes. additional symmetry conditions wih respect to the coordinate axes apply:

ulx.r) = —u(—x.y) = u(x, = 1),
r(x ) =r(—x. 1) = —e(x. - ).
w(x.y) = wl—x,3) = wix, —y). (12)

Equations (11) and (12) taken together imply that P,  and R have the forms
Pix.y) = xP (x0 1), @(x.3) =2Q,(x".r%). R(x.y) = Ry(x*.07). (13)

If P, and Q, include only constant terms and R, includes, in addition. linear terms in x,
and v,. then the displacement functions reduce to those used by Chai and Babcock (1985)
in their five-term Rayleigh-Ritz solutions. Rayleigh-Ritz solutions of higher orders {p, r}
may be considered where p and r refer, respectively, to the degrees of the polynomials P
(same as that of Q) and R of eqn (5). For example, for the solution of the order {5, 4}
satisfying the full symmetry conditions of eqns (11) and (12). the pelvnomials P. Q and R
of eqn (5) have the following forms:

Pix.y) = x(a@,+a;x*+a.0" +a,x* +ax’r" +aor?)
O ¥) = y(b +box b + b x + b, + o)

R(x.¥) = +ex ey’ +e Xt + oy +o0. (14)

The Rayleigh-Ritz solutions examined in the present work are of the orders {}, 2},
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{3,4}, {5,4}. {5, 6} and {7, 6}. The highest degree of the polynomial and the total number
of undelermined coeflicients for each order of solutions are shown in Table 1.

In the remaining sections of this paper (Part I), we obtain and examine postbuckling
solutions of homogeneous isotropic circular and elliptical plates. These solutions possess
the full symmetry properties of eqns (11) and (12). Postbuckling solutions of anisotropic
elliptical sublaminates generally satisfy eqn (11) only and their displacement expansions
include a considerably larger number of terms, as indicated in Table 1. Such solutions are
presented in Part II.

3. CLAMPED ISOTROPIC CIRCULAR PLATES UNDER AXtSYMMETRIC COMPRESSION

In a previous work (Yin, 1985), axisynumetri¢ postbuckling solutions of a clamped
isotropic circular plate have been obtained by numerical integration of the governing
differential equations. These solutions may be used as the standard of compansen for the
Rayleigh-Ritz solutions of vanious orders. The comparison was made over a range of the
strain load from the bifurcation strain to about tep times the bifurcation strain. This wide
range of the strain load far exceeds the usual range considered in existing postbuckling
analyses or appropriate 1o most practical applications. The intension is to set an extremely
severe lest of the validity of the lower order approximate solutions by comparing the resulis
with the higher order solutions, and with the solutions obtained by direct integration (Yin,
1985 ; hereafter cailed the *'reference solutions'™), at widely different levels of the strain load.

This accounts for the very significant discrepancies in the results shown in the following
figures of this paper.

3.1. Central deflection, membrane force and bending moment

Consider a circular sublaminate of radius @ and thickness k. made of a homogeneous.
isotropic elastic material with Young's modulus E and Poissons ratio v. The sublaminate
has the bending rigidity D = Ek*/12(1 —v). In an axisymmetric deformation, the radial
membrane force and the radial bending moment are related to the radial and transverse
displacements, U, and W, according to the formulae

Eh (dU, U, d*W v dW
N'=“(l-\':)(E.+‘T)' M'-D(‘af*;:j?)-

The strain load in the base plate is given by
Exyy=Eyy= —£y, Expy=0.

We define the non-dimensional compiessive radial force and the non-dimensional bending
morment as follows:

N.a* du u a’ d*w  1dw
PO =—-—=12{ 5+, MO =—-M=—F+-+
({) D : : (5 hD 4 d\; ) z d:
where ais the radius of the circular plate, wis as defined in eqn (4). and
Table |. Ravieigh-Ritz solutions of various orders
Solulion label .2} 13.4] 5.4, 15,60 1.6
Max. degree of P& ] 3 ] s 7
Max. degree of R 2 4 4 6 6
Number of coefficients, when eqn (12) does not apply g 21 33 40 56
Number of coeflicients. when egn (1) applies L) 12 18 12 LY
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Fig. 1. Circular delamination—deflection at the center.

=ra, W& =al, h*, ull)=—{a/h)c,

It is found that, with regard to the central deflection and the radial bending moment
at the boundary, Rayleigh-Ritz solutions of the order {5.4] or higher are in excellent
agreement with the reference solutions (see Figs | and 2. where the solutions of the various

1
w
=)

e

b
4]

Boundary moment M
(W] -
s o
AV
o

L]
=]

16

]

0 1 4 9 16 25 36 49 64 81 100

12(1-v?) !a/h)zl:o

Fig. 2. Circular delamination—boundary radial moment
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orders are identified by the number of coefficients given in the last row of ‘Table 1). The
curves associated with the solution of the order {7, 6}, i.e. the 30-term solution, are nearly
indistinguishable from those of the reference solutions. Only the solution of the order {7, 6}
includes polynomial terms of sufficiently high degree to yield very close results for the
boundary radial force, and this is true only in a range of the strain load up 10 about two
to three times the bifurcation strain (Fig. 3). The solutions of the lowest orders, {1. 3} and
{3, 4}, generally show very significant errors in the membrane forces.

Strong non-uniformity of the membrane force is indicated by the difference between
the radial forces at the boundary (Fig. 3) and atthe center (Fig. 4). Under large postbuckling
loads, all solutions except the lowest order, {l, 3}, show tensile radial force at the center.
Generally speaking, the solutions of the orders {5,4)}, {5.6] and {7, 6} vield acceptable
results (i.e. with about 5% or smaller errors) for the deflections, membrane forces and
boundary bending moments over a range of the radial strain load up 10 about threg times
the bifurcation strain. When the strain load exceeds this range, the defiection at the center
is more than 1.5 times the thickness of the sublaminate (see Fig. 1). Compared with the
solutions o1 the order {7, 6}, those of the orders {5, 4} and {5, 6} show significantly larger
deviations from the reference solutions.

A comparison of the solutions of the orders {5, 4} and {5. 6} indicates that, by raising
the degree r of the even polynomial R without at the same time also raising the degree p of
the odd polynomials P and Q. one increases the number of expansion coefficients in the
solution but obtains slight change or improvement in the accuracy of approximation. This
is because a satisfactory representation of the non-uniformity of the membrane deformation
requires polynomial functions P and @ of sufficiently high degree, and such non-uniformity

significanly affects the transverse defiection through the coupling in the von Karman
equations.

3.2. Energy release rates in delamination growth

For the particular problem at hand. let the total potential energy of the isotropic
circular sublaminate be non-dimensionalized in the following manner

€01

50

n l "
o a o

Boundary force P(1}

-
e

-20 -~ v — - -

6 1 4 9 16 25 36 49 64 81 100
12(1-v?)(n/h)?:°

Fig. 3. Circular delamination—radial foree a1 boundan.
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-40 — - - v —— v

0 1 L 9 16 25 36 45 64 8L 10c
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Fig. 4. Circular delamination—membrane force at the center.

M= Qa*/zrEXH.

For the various postbuckling solutions of the sublaminate, the normalized potential energies
are plotted in Fig. 5. In this and the two subsequent figures, the horizontal coordinate

V1201 =v3)eglah)

1s interpreted as a normalized delamination radius (under a fixed radial strain load &, in
the base plate). rather than as a non-dimensionalized strain load (for a fixed delamination
radius a). Under a fixed strain load. the potential energy for an approsimate solution may
be differentiated with respect to the delamination radius. The result is related to the energy-
release rate in axisymmetric growth of the delamination according to the following formula

_ Ehs}l 1 dn

C= 1 " Tade

(15)

Comparison of the curves in Figs 5 and 6 indicate that all solutions except the lowest-order
vield close results for the potential energies and the energy release rates, while the lowest
order solution underestimates the energy release rate by as much as 35%.

The energy release rate may also be evaluated by means of the path-independent M-
integral in terms of the boundary radial force and the boundary bending moment of the
posthuckling solution (Yin. 1983}, This yields the formula
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l=v® [{Ehe, ) Mo
DALY § foidad IS ) [etAia B
i {(1-\-*'"(“)) +1 ( - )} (16)

For an exact postbuckling solution the result should agree with the previous result obtained
by differentiation of the tota} potential energy. However, for an approximate postbuckling

160

140 1

N/(xEL*[2a")

100 4

80 1

60 1

40 1

20

/:;u-;)rcm

Fig. 5§ Circular delamination—potential energy versus the radius

1.0 1

T = G/Eh}

0.8

0 1 2 3 4 5 € ? 8 9 1
/12(1-vi)e a/h

Fig 6. Energs releasc rate calculated by differentiating the potennial energy with respect to the
radius.
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Fig. 7. Energy release rale by 1he J-intepral method.

solution the two results may differ. For the Rayleigh-Ritz solutions of the various orders.
the results from eqn (16) are normalized with respect to Eheg and shown in Fig. 7. Itis seen
that the solutions of the order {5, 4} or higher yield close results over a range of strain load
up to about three times the bifurcation strain.

4 ELLIPTICAL DELAMINATIONS

We next obtain the bifurcation loads and the postbuckling solutions of homogeneous
isotropic elliptical plates with various aspect ratios by the Rayleigh-Ritz method.

4.1, Bifurcation loads under equal biaxial compression

Under equal biaxial loading along the principai axes of the ellipse {i.e. E;, =
E,, = ~ &), the normalized bifurcation loads have been calculated by Woinowsky-Krieger
(1937) using elliptical coordinates. His results are shown in Table 2, along with two
sets of Rayleigh-Ritz solutions obtained in the present analysis. One set of Rayleigh-Ritz
solutions uses a polynomial R(x,)} for w(x,y) containing quadratic and constant
terms only. In the second set of solutions, R(x, 1) contains quartic and lower-order terms.
Since the solutions in a displacement formulation yield upper bounds of the buckling load,
the present results, being smaller in value, are better estimates. Furthermore, in the case of
a circular delamination (a'b = 1), the normalized buckling load predicted by the second set
of Rayleigh-Ritz solutions is almost indistinguishable from the exact result, namely, 14.683.
As the aspect ratio a’h becomes large, the present upper-bound estimates approach the
limiting value n? = 9.870 much faster than the resuits of Woinowsky-Krieger (1937). Hence
the bifurcation loads of elliptical plates under equal biaxial compression are accurately
predicted by the Rayleigh-Ritz method involving a smali number of expansion coeflicients.

Table 2. Normalized buckling loads P47 D) for elliptical delaminations : Companson of the
results of Woinowsky-Krieger (1937) with Rayleigh-Ritz solutrons

ab 1.0 14 2.0 10 40 50
Womowsky-Kneger (1937) 1479 11.81 1102 11.01 1115 11230
Quadranc R 14.702 [1.589 10.517 10.239 10.265 1022
Quartic R 14.683 11.562 10436 10002 9929 9955
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Fig. 8. Elliptical delamination—base¢ plalc under uniaxial ioad.

4.2. Postbuckling solution under uniaxial compression
For the postbuckling analyses we consider elliptical delaminations of aspect ratios
a’b=1.2and 41n a base plate under membrane strain loads

E)';' = =&y E.t'l' = V&g, EJ; =0,

Such strain loads correspond to uniaxial compressive forces applied 1o the base plate along
the Y-direction (Fig. 8). Under a normalized strain load E,,(b h)° = 4, and with the
assumption v = 0.3, the in-plane and transverse displacements along the principal axes of
the sublaminate are shown in Figs 9-12 for an elliptical sublaminate with a4 =2
Additional figures for the cases a'4 = 1 and 4 may be found in Jane (1989). Figures 9 and
10 show the deviations of the in-plane displacements in the delaminated laver from the

o/b=2 Eyylb/h)' = - 4 H

2 12 18

}|1h2
om

5=tem

(U-XE
L)

T4

Tm AT om L) om 0% om0 M ™) an Y-

X/a

Fig. 9. Displacement U along the Xams (a A = 2)
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corresponding displacementsin the base plate (where, according to the thin- film assumption,
the membrane strains are uniform). The slopes of the curves in these figures indicate the
deviations of the displacement gradients from the average membrane strains. The resulis
for the solutions of orders {5, 4} and {5. 6}, based on the same polynomial expansions for
the in-plane displacements but different expansions for the deflection, are indistinguishable.
The significant non-uniformity in the membrane strains shown by these higher-order Ray-
leigh-Ritz solutions is grossly underestimated by the lowest-order solution. Near the bound-
ary point (X, ¥) = (a, 0} the results of the latter are not even qualitatively correct. The
non-uniformity in the membrane strains increases with the imposed strain load and with

the aspect ratio of the ellipse.

L
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a/b=12 Exy(b/h)? = — 4

W(0,¥/b)/h

0.0 T 830 4 00 ds .60 om 080 [ 100
Y/b

Fig. 12. Defleciion profile along the Y-axis (a b = 2).

Figure i1 indicates that, along the X-axis, the magnitude of the curvature of the
deformed middle surface is smaller at the center of the plate and larger near the boundary
points. Along the loading axis. the opposite is true (Fig. 12}. Hence the normal bending
moment is relatively small at the two ends of the loading axis and relatively large at the
two ends of the X-axis. As the strain load increases, the concentration (attenuation) of the
normal curvature and the bending moment at the end points of the X-axis (Y-axis) becomes
more pronounced. This phenomenon has important imphcations on the postbuckling
growth behavior of an elliptical delamination. Since the normal bending moment results in
an opening action along the delamination boundary and contributes predominantly to the
12cal energy release rate, delamination growth tends to initiate and continue along the X%
axis until the boundary curvature and the moment at the two ends of the axis are sufficiently
reduced by the lengthening of the X-axis. In addition. growth of the delamination along
the X-direction exposes an interior strip around the Y-axis to stales of deformation resem-
bling those of one-dimensional delamination models, as may be seen by comparing the
defiection profiles along the Y-axis for various (increasing) aspect ratios. Hence the cur-
vature and the bending moment increase at the two ends of the Y-axis and, eventually,
delamination growth may proceed simultaneously in both X- and Y-directions. The pre-
ceding reasoning provides an explanation for the initial transverse growth of a buckled two-
dimensional delamination under a uniaxial in-plane compression, which has been observed
experimentaliy (Chai er al., 1983).

4.3, Energy release rates

The non-dimensionalized total potential energies associated with the preceding solu-
tions are shown in Fig. 13. The results are shown as functions of the normalized strain load
for elliptical delaminations with aspect ratios a/b = 1 and 10. At a large aspect ratio. the
deviation of the resuits of the lowest order solution (Chai and Babcock, 1985) from the
higher-order solutions becomes significant. The total potential energy may be differentiated
with respect to the semi-axial length, 2 or b, 10 oblain the energy release rates associated
with delamination growth along the X- or Y-directions. As the aspect ratio of the ellipse
changes during the growth of the delamination, the energy release rate also varies. The
results are presented in Figs 14 and 15, respectively, for delamination growth along the X-
and Y-directions. and for three fixed values of the normalized strain load. It is clear that
the lowest-order solution significantly underestimates the energy release rales,

The energy release rates calculated by differentiating the total potential energy with
respect 1o the semi-axial lengths are global quantities associated with certain assumed modes
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Fig. 13. Tolal potential energy versus the strain load.

of delamination growth. Although the shape of a two-dimensional delamination may be
approximated by an ellipse in each stage of growth, the principal axes of the ellipse may
rotate in the course of delamination growth if the loading axis does not coincide with the
geometrical and material symmetry axes. Thus, the actual growth mode is generally not a
combination of growth along two fixed principal directions and. strictly speaking. it can
only be determined by evaluating the pointwise values of the energy release rate along the
delamination boundary. Such local values of the energy release rate may be expressed in
terms of the local membrane forces and bending moments. In the present case of an isotropic
elliptical delaminated layer under biaxial loading. the maximum values of the energy release
rate occur at the boundary points (a. 0) and (0. &). Figure 16 shows the normalized pointwise
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energy release rate at {a, 0) for three fixed levels of the strain load. and Fig. 17 shows the
corresponding results at (0. &). In Fig. 16, the solutions of the highest orders show the largest
energy release rates, which are about twice as large are the results of the lowest-order
solution. Figure 17 indicates that the solution of the order {3, 4} greatly overestimates the
pointwise energy release rate at (0, b). These results suggest that solutions of the order
lower than {5, 4} cannot be used to predict the initiation and the nature of growth of a
two-duncnsionai delamination According to the highest-order solutions. the energy release
rate at (a. 0) consistently dominates over the rate at (0, b) when the aspect ratio a’bis 3 or
smaller. An opposite conclusion may be valid in the repime of large aspect ratios.
Someconclusions from the present buckling and postbuckling analysis of homogeneous
isotropic elliptical sublaminates are summarized in Part Il along with additional conclusions
based on more extensive results for anisotropic cross-ply and angte-ply sublaminates.
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Abstract—The analysis scheme developed in Part 1 of 1the paper is implemenied 1o obtain the
bifurcauon strains of circular delaminaled layers and the posibuckling solutions of cross-ply and
angle-ply elliptical sublaminates. Reasanably accurale solutions for the membrane forces, the
bending and 1wisting moments and the pointwise energy release rales generally require 33 or more
undelermined coefficients. Such refined postbuckling solutions show a vanety of fealures including
significan! non-uniformity of the in.plane forces and certain boundary effects charactenzed by
concentration of the middle-surface curvalures and 1he bending moments. The solutions are found
1o be strongly influenced by ply orentalion. lay-up and the aspect ralio of tbe ellipse. Some
ynplications of 1he analytical resulls on 1he buckling and postbuckling behavior of Ilwo-dimensional
delaminalion models are summarized.

I. INTRODUCTION

In recent years extensive analytical and numerical studies have been made on sublaminate
buckling and crack growth associated with an interior delamination in a homogeneous or
laminated plate. For the simple, one-dimensional model of an across-the-width delamina-
.tggp.tc{(‘qct bifurcation loads and closed-form postbuckling so!utions have been obtained.
m,\lcx'l ‘of geometrically non-lionear plate theory, for delaminaled homogeneous plates
(Chai er al., 1981 ; Simitses ef al., 1985 Yin et al., 1986; Kardomateas. 1989) and for
delaminated laminates with arbitrary ply configurations (Yin. 1986, 1988). The strain-
energy release rate associated with -‘elamination growth has been expressed explicitly in
terms of sublaminate membrane forces and bending moments at the delamination front,
and the results were found to be in agreement with the corresponding results based on non-
linear finite-element analysis and the closure~integral method. Recent studies have taken
into account the effects of transverse shear deformation (Kardomateas and Schmueser,
1988, Chen. 1990), which may become important in a thick or strongly anisotropic
delaminated sublaminate,

The relative ease with which accurate postbuckling solutions of strip delamination
models may be obtained is attnbutable to the fact that, in the one-dimenstonal case. the
differential equations of von Karman's non-linear plate theory reduce to lineor ordinary
differential equations. Hence the flect of geometrical non-linearity is present only in the
boundary conditions and the ¢rack-tip continuity conditions for the axial displacement, but
not in the governing differential equations. Furthermore, in the one-dimensional case
the non-linear coupling between the in-plane deformation and the transverse deflection
degenerales to a particularly simple form, characterized by the presence of a constanr axial
load in the deflection equation. Accurate postbuckling solutions of general iwo-dimensional
delamination models are considerably more difficult to obtain in view of the presence of

t A prehminary version of this paper was presented 1n ATAA ASME ASCE AHS 3th SDM Conference,
Mohile. Alahama, Apnl. 1989
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non-linear and coupling terms in the governing equations. 1t may be expecled that these
terms will significantly affect the postbuckling behavior of the sublaminate and the nature
of ensuing detamination growth.

A first step toward a better understanding of two-dimensional delamination problems
is achieved through a buckling and postbuckling analysis of an isotropic circular delamin-
ated plate subjected to a radially symmetric in-plane compression. The analysis indicates
that, with proper normalization, the non-dimensional radial buckling load of the circular
model depends on the normalized delamination radius and thickness according 10 relations
extremely close 10 the corresponding relations for the normalized axial load of a strp
delamination model in terms of the normalized delamination length and thickness (Yin and
Fei, 1984). For both strip and circular models, a sharp transition from global buckling of
the laminate to local buckling of the thin delaminated layer wakes place when the delamina-
tion reaches a critical size. Furthermore, the postbuckling deformations of the circular and
strip delamination models show the same pattern of evolution, from the initiation of
buckling to final collapse, which is unique to each regime of delamination size (subcritical
or supercntical) and which is fundamentally different between the two regimes (Yin er al.,
1986 Yin and Fej, 1988).

In spite of these similarities, there are also significant and essential differences in the
buckling and postbuckling behavior of stip and circular delamination models. Axisym-
metnic postbuckling solutions of the circular model show pronounced boundary effects.
non-uniform distribution of the in-plane forces, and generally catastrophic nature of
delamination growth. As shown by the analysis of Part ], these effects are also manifest
in the postbuckling response of isotropic, thin-film elliptical delami..ation models under
uniaxialcompression in the base plate. It was also shown that an accurate assessment of
these effects cannot be achieved by lower-order Rayleigh-Ritz postbuckling solutions that
have been presented in the existing literature. Solutions of at least the order (5, 4) involving
33 or more undetermined coefficients in the polynomial displacement expansions for an
anisotropic elliptical sublaminate, are required to provide reasonably accurate results for
the membrane forces, bending and twisting moments, and the global and poin .ise energy
release rates.

Non-lineanty and couplingin the von Karman equations, which produce the previously
mentioned effects, are strongly dependent on the anisotropic elastic moduli of the plies
constituting the sublaminate and on the orientation and lay-up of the plies. While the
analysis of isotropic sublaminates in Part 1 has provided some general features of the
buckling and postbuckling behavior of two-dimensional delamination models, an under-
standing of the combined effects of the various geometncal and matenal parameters can
only be gained from a variety of solutions covering a broad -ange of parameter values. For
example, an exact postbuckling analysis of the one-dimensiona’ strip delamination model
with a general laminated structure has indicated the significance of the destabilinng effect
of bending-extensional coupling (Yin, 1986). Such effects are not present in two-dimensional
symmetric sublaminates. including isotropic and orthotropic sublaminates.

In Part 11 of this paper, we present postbuckling solutions for anisotropic elliptical
laminates with various aspect ralios, using polynomial displacement expansions of the order
{5.4). Although our computer code may handle any uniform in-plane strain loading in the
base plate. in the present work we restrict the computation to the case of uniaxial com-
pressioninthe base plate along .he minor axis of theellipse. This loading case was considered
in previous buckling analysis of circular. unidirectional composite laminates (Shivakumar
and Whitcomb, 1985) and postbuckling analysi of isotropic and specially orthotropic
elliptical sublaminates (Chai and Babcock, 1985}). In the present work, we obtain the
solutions for cross-ply and 307 and 457 angle-ply elliptical sublaminates under postbuckling
strain loads as large as four or five times the bifurcation strain. The sublaminates have
symmeltric or antisymmetric four-layer lay-ups and the aspect ratio of the ellipse ranges
from 1.2 10 4.

Qur results for the force and moment resultants and for the global and pointwise energy
release rates show complex patierns of behavior, depending strongly on the onientation and
the stacking sequence of the plies in the sublaminate and. to a lesser degree, on the aspect
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ratio of the ellipse. These results have direct implication on the initiation and development
of delamination growth. The complexity and richness of the present results suggests the
need for caution in making predictions or conjuctures concerning the buckling and growth
behavior of two-dimensional models based either on analytical and experimental experi-
ences with strip delaminations or on insufficiently refined approximate solutions of two-
dimensional sublaminates.

2. BIFURCATION LOAD OF A CIRCULAR, UNIDIRECTIONAL SUBLAMINATE

A general and consistent scheme for polynomial representation of displacement func-
tions associated with the buckling and postbuckling deformation of elliptical sublaminates
kas been developed in Part I of this paper. In the following analysis, we adopt the notations
and definitions introduced in Section 2 of Part [,

We first investigate the bifurcation strain of a circular. unidirectional composite laver
disbonded from an infinite base laminate. when the latter is subjecied 10 in-plane strains—

—E,and 0.3 E; along the Y- and X-directions, respectively, The angle a between the materal
axis of fiber orientation and the compression axis is allowed to vary. This problem has been
investigated by Shivakumar and Whitcomb (1985) using both finit¢-element and Rayleigh-
Ritz methods. Their Rayleigh-Ritz solutions were based on a three-term polvnomial expan-
sion for the normalized transverse deflection w in terms of the dimensionless co-ordinates
xrand 1

w=(l=x"=v) Rx. v) (1)
where
R(x.y)y=r¢, +cax° +c_\_\':.

The results were found 10 be in close agreement with the finite-element results for small
orientation angles but not for large angles (Fig. 1).

We notice that the deflection function expressed by the three-term expansion is sym-
metric with respect to both X- and Y-axes. Since such symmetry conditions cannot be
assumed generally except for specially orthotropic sublaminates with aligned loading.
material and geometrical axes. certain deflection modes are suppressed by the assumed
svmmelry and this has the effect of raising the caleulated bifurcation load. It is clear that,
at least in the initial postbuckling states the actual deflection should have central symmetrv
but not double symmetry with respect to both ¢o-ordinate axes, i.e. one should oniy have

wi—x, — 1) = wix, v). (2)

[
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Fig 1. Bifurcation strain of a carcular unadirectional lamrnate versus the fiber opentation angle
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This implies that, if in eqn (1) one chooses a polynomial factor R(x, 1) of degree two, then
the factor should include an additional term c,x1. The new deflection function yields an
improved solution for the bifurcation strain (see the middle curve in Fig. 1).

Further improvement in the bifurcation strain may be obtained by including in the
polynomial R(x, y) all fourth degree terms that are consistent with the symmetry condition
of eqn (2). This yields a nine-term deflection function:

we= (1= x =y o1t eax? Foaxy+ o)t F o X 0o X ¥+ 0oxTy 4 Xy ooy ). (3)

The resulting bifurcation strains are shown by the top curve in Fig. 1. The results are nearly
indistinguishable from the finite-clement solutions over the entire range of the onientation
angle 2. Thus, by including in the polynomial function P(x, ) all fourth and lower degree
terms that are consistent with the symmetry condition of eqn (2}, the Rayleigh- Ritz analysis
yields bifurcation loads that are in excellent agreement with the finite-element solutions.

3. POSTBUCKLING SOLUTIONS OF CROSS-PLY AND ANGLE-PLY ELLIPTICAL
SUBLAMINATES

The number of undetermined coefficients required in the Rayleigh-Ritz solutions for
the postbuckling deformation is considerably larger. For a gencral anisotropic elliptical
delamination, the normalized postbuckling displacement functions satisfy the following
symmeltry conditions:

u(—x. =y} = —u(x.y). v(-x.—y)= —rv(x.y), w(=x.-r)=w(x y) (4)

Hence P and O (defined in eqn (5) of Part [)are odd polynomials and R is an even
polynomial. '

The convergence study in Part | for the Rayleigh-Ritz solutions of homogeneous
isotropic sublaminates suggests that, in order to obtain reasonably accurate results for the
force and moment resultants and the energy reiease rates, the odd polynomials P and Q
must include at least terms of the fifth and lower degrees and the even polynomial R must
include at least terms of the fourth and lower degrees. In this approximation, the polv-
nomials contain a total of 33 undetermined coefficients:

P(x,3) = ayx+a.v+a.x' +a,xy+a.x" +a.y’

+axt +aex v+ ax’y a0 v da xt +a v,
Q(x.y) = b x4+ byy+bx'+ b x*y+haxr’ + b1’

+hx 4+ hex v+ box v b oy b + b o

Rix.¥) = o, +ox’ +oaxr+ e +oux +oex’v+c.x5 v 4 caxa + ooyt (5)

A further improvement in the solution may be obtained when a/f terms of the next order
consistent with the symmetry conditions of eqn (4) are included in the expressions of w. v
and w. This will bring the total number of coefficients to 56.

Although higher-order solutions are desirable for improved accuracy. the computer
storage and time requirements for evaluating the integrals £,,. M,, and A, in the potential
energy expression (see eqns (6) and (7) of Part I) become increasingly demanding. Besides,
since the thin-film assumption itself (i.¢. ignoring the effect of laver buckling on the dafor-
mation of the thick base plate) may introduce significant error in the results, as has been
demonstrated in the cases of strip and circular delamination models (Chai er afl,, 1981 Yin
and Fei, 1988). there is little justification 10 obtain extremely elaborate postbuckling solu-
tions based on the thin-film approximation. Consequently. the displacement expansions
inciuding 33 undetermined cocfficients {(eqn (14)) are used in the present analysis to obtain
postbuckling solutions of four-laver cross-ply, 30° angle-ply and 45° angle-ply ¢lliptical
sublaminates with symmetric or anti-symmetric layup (denoted 1n the figures by S-cross,
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U-cross, 830, U30, 545 and U453, respectively). The individual layers are made of T300,5208
graphite/epoxy unidirectional composite whose longitudinal elastic modulus £, is 17.57
times the transverse elastic modulus E; and for which v, = v, E|\/E, = 0.28, The aspect
rano of ihe ellipse, a/b, assumes the values 1, 2 and 4.

The results of a non-linear problem with strong coupling among the dependent vari-
ables and involving many geometrical and material parameters cannot be reduced 1o simple
rules of thumb. In this section, an attempt is made to present the large and complex body
of posibuckling solutions for various elliptical sublaminates without oversimplification and
with a certain degree of consistency and comprehensiveness. As mentioned previously, we
restrict the analysis to the loading case when the base plate is subjected to uniform strains
0.3 E,yand — Eyy along the X- and Y-directions, respectively.

3.1. Cemiral deflection P

The central deflection of the delaminated layer in the buckled state is shown in Fig. 2
for the various symmetric and unsymmetric delaminations. Sublaminates with the anti-
symmetric lay-up buckle at lower compressive strains compared 1o the corresponding
sublaminates with the symmetnc lay-up, and the former show larger central deflections, at
least in the initial postbuckling states. These res'>  :test to the destabilizing effect caused
by the bending—stretching coupling of antis =umeuric sublaminates. Figure 2 indicates that,
for aspect ratios 2 and 4, the r~~i:: fur the central deflection show similar patierns, while
in the case a'b = 1 the deficcuions are generally smaller and the 307 angle-ply sublaminates
have the lowest bifurca:ion sirains and the largest postbuckling deflections. This may be
explained by the constraimng eficct . avided by *he relatively-shorn transverse in-plane axis
in the case a/b = 1. This constraining effect is less significant for the 30° angle-ply sub-
laminates because the fibers are largely aligned along the Y-axis and. consequently. the
bending stiffness in the X-direction is smaller than in the case of cross-ply and 45° angle-
ply sublaminaies. Generally, the curves of E, versus the central deflection show nearly
parabolic vanations.
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3.2. Membrane forces

The normal and shearing forces Ny, and N,y at the boundary point (X, Y} = (0,58)
are shown in Figs 3 and 4. Before buckling, the shearing force vanishes, the normal force
is proportional to the applied strain £\ and the results for the sublaminates with symmetric
and unsymmetric lay-ups are identical. At the bifurcation strain, the relationship between
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E,,and Ny, changes from lincar 1o non-linear. In the cases examined. the larger the aspect
ratio a; b, the greater is the deviation from linear relationship in the postbuckling siage.
With the exception of the antisymmetric cross-ply circular sublaminate, the deviation of
N,y from linear dependence on the postbuckling load is generally on the negative side (i.e.
a softening behavior). The postbuckling sheaning force N, is non-zero only for unsym-
metric 30° and 45° angle-ply sublaminates, and its values are small compared to the normal
force N,y at the same point.

It is interesting to compare the values of Ay, at the boundary point {0.5) and at the
central point (0,0). The resulis at (0,0), presented in Fig. 5, show much greater deviation
from linear dependence on the postbuckling strain load. That is, the decompression in the
Y-direction due 10 sublaminate buckling is greater at the center of the sublaminate and
smaller at the two ends of the Y-axis. This is particularly true for the unsymmeltn¢ cross-
ply sublaminates with aspect ratios 2 and 4, where N, at (0,0) changes from compression
to tension at an advanced stage of postbuckling. Consequently, the normal force N, ; vanies
significantly from the boundary point (0, ) to the central point (0,0). A companson of the
results in Fig. S yields the rather unexpected observation that the non-uniformity of the in-
plane forces tends to be more prominent when the aspect ratio increases from } 1o 2 and
finally to 4, i.e. when the geometry of the elliptical delamination becomes more similar to
a stripdelamination. Although we have not computed the results for elliptical delaminations
with even larger aspect ratios, the present results indicate that, as regards the membrane
force Ny, there is a significant difference between the postbuckling responses »f one-
dimensional delaminated layers and of elliptical sublaminates with aspect ratios as large as
four. In the first case the axial force is constant whereas in the second case Ny, is significantly
non-uniform. The non-uniformity of the in-plane forces affects the bending deformation
directly, through the bending-stretching coupling of unsymmetnical sublaminates, and
indirectly through the strong coupling of in-plane and transverse displacements in the von
Karman equations.

Comparison of the transverse in-plane force ¥,y at the central point and the boundary
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point {a,0) (shown respectively in Figs 6 and 7) also indicates a significant non-uniformity
of that force in the postbuckling stage. Due 10 the differences of the coupling coefficients
in the extensional stiffiness matrices, the membrane force N, in the prebuckling siates
15 tensile for the cross-ply sublaminates and compressive for the 30° and 45° angle-ply
sublaminates. For the angle-ply case, the deviation from the linear relationship between
Ny and the postbuckling strain load E, is generally on the positive side (i.e. a hardening
behavior), is greater at the central point than at the boundary point (2,0), and greater for
the case of smaller aspect ratio than for the case of larger aspect ratio. However, the
unsymmetric cross-ply sublaminates show the almost opposite type of behavior; the post-
buckling force N,y in these sublaminates also shows the largest deviation from uniformity.
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3.3. Bending and rwisting moments ; deflection praofile

For all combinations of ply orientation and lay-up, the general behavior of the in-
plane forces in the postbuckling stage are remarkably similar between sublaminates with
aspect ratios 2 and 4, as may be seen by comparing the respective plots in Figs 2-7.
The somewhat different behavior of circular sublaminates is apparently caused by the
constraining effect of a relatively short X-axis, as already mentioned before. A similar
conclusion holds for the bending moments M, and My, Plots for M, at (0, b) are shown
in Fig. 8 while those for M,, at (a,0) are shown in Fig. 9. Additional plots for the present
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analysis results, including those for the bending moments at the central point (G, 0) may be
found in Jane (1989).

The coupling stiffnesses 8,,, B,; and B8;; vanish in all sublaminates examined in this
study except for the unsymmetric cross-ply sublaminate. Hence only the unsymmetric cross-
ply sublaminate shows non-zero bending moments My, and My, in the prebuckling states.
In the postbuckling stage, the relation of the bending moments to the strain load is very
complex. However, for sublaminates with aspect ratios 2 and 4, the bending moment
My at the boundary point (0,5) is generally much greater, in absolute value, than the
corresponding moment at the central point. For sublaminates with aspect ratios 1 and 2.
the bending moment M,, at (a,0) is also much greater, in absolute value, than the
corresponding moment a1 {0,0). For a/b = 4, the bending moment My, at (a.0) is not
large, because a relatively large curvature of the clamped boundary curve at that point
provides a restraining effect on the transverse deflection in the vicinity.

In the absence of strong bending-streiching coupling, the bending moment is largely
determined by the curvature of the deformed sublaminate. The profiles of the deformed
middle surface are shown in Figs 10 and 11 for cross-ply and 45° angle-ply sublaminates
under a normalized strain of — Eyy(b/1)? = 3, and in Fig. 12 for 307 angle-ply sublaminates
under a normalized strain of 2.0. The left and right portions of the figuresindicate the profiles
along the Y-axis and the X-axis, respectively. The solid curves refer to the sublaminates with
symmetric lay-ups, while the dashed curves refer to those with unsymmetric lay-ups. It is
seen that, along the X-axis, the curvature of the profile attains much larger absolute values
in the vicinity of the boundary point (a.0) than around the central point. Incontrast. along
the Y-axis the curvature of the profile attains relatively small absolute values at the boundary
point {0, b) compared to the central point.

Since the curvature of the deformed middle surface of the plate directly affects the
normal bending moment at a boundary point. which in turn contributes significantly to an
opening action of the delaminaied Yayer from the base laminate (provided that the boundary
curvature is positive so that the deflection is non-negative), the concentration of the normal
curvature near the boundary point {a.0). and its attenuation near the point (0. h). tend 10
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facilitate the growth of the delamination along the X-direction, i.e. the direction per-
pendicular to that of the compressive loading axis. However, this conclusion is only valid
when the aspect ratio is not large. When the growth of the delamination in the transverse
direction results in a sufficiently large a’b. the normal curvature at (a.0) becomes small
relative to that at (0. b), because of the longer length of the X-axis in the profiles.

Itis interesting to note that the postbuckling deflections of the unsymmetric 307 angle-
ply sublaminates with aspect ratios 2 and 4 show multiple wave patterns in the X-direction
(see the second and third higures in Fig. 12). This is perhaps essentially due 1o the relatively
small bending suffness of such sublaminatesin the X-direction, Furthermore, these solutions
show negative deflection in the vicinity of the boundary point (a. 0) while the solutions of
unsymmelri¢ cross-ply sublaminates with a/b = | show negative defleciion near the bound-
ary point (0, b}. Since negative deflections imply partial contact of the sublaminate with the
base laminate, such mathematical solutions must be modified 10 take account of the contact
condition. However, this difficult task is not attempted in the present work.

The deflection profiles of the 457 angle-ply sublaminates are similar 10 those of the
cross-ply sublaminates with the same aspect ratio. However, the results for sublaminates
with symmetric and unsymmetric lay-ups are closer in the 45° case than in the cross-
ply case, because the bending-stretching coupling effect in unsymmetric sublaminates is
relatively small in the former case compared 1o the latter case. Furthermore, local contact
between the sublaminate and the base plate does not occur in the postbuckling deformation
of 45 angle-ply sublaminates for any one of the three aspect ratios.

3.4, Global and pointwise encrgy release rates

For thin-film delaminates with a gencral shape, the energy-release rate at cach point
of the delamination boundary may be evaluated in terms of the normal and shearing in-
plane forces and the normal bending moment and the twisting moment at that boundary
point. The results for the pointwise energy release rates at the 1wo boundary points {a. 0)
and (0. b) are shown in Figs 13 and 14, respectively. in terms of the imposed strain load.
As the imposed strain increases, the energy release rate at {a,Q) grows more rapidly for the
delaminations with smaller a/b, although the bifurcation strains for such delaminations are
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greater. In contrast, the energy release rate at (O.b)grows more rapidly, in general, for
delaminations with larger a/b. For the circular delamination, the value at (g, 0) dominates
over the value at (0,5). If the pointwise energy release rate is used as the criterion of
delamination growth, then for a delamination model with a near circular initial shape
subjected to an increasing compressive load along the Y-axis, postbuckling delamination
growth tends to proceed first along the X-axis until the aspect ratio becomes sufficiently
large so that the local energy release rates at (a, Q) and (0, b) become equalized. Afterwards,
stable delamination growth may continue under an increasing load in such a manner that
the energy release raies at all points of the moving delaminpation boundary are equal, i.e.
equal Lo the critical value for growth. In unstable, dynamic delamination growth, the local
energy release rates at different points of the moving boundary need not be equal because
the growth criterion may depend on the crack moving speed.

It should be mentioned that. in case of anisotropic elliptical sublaminates, the maximum
and minimum values of the boundary forces and moments and of the energy release rates
generally do not oceur at the point (a,0) or (0, 4). Consequently, postbuckling growth of
an initally elliptical delamination generally proceeds in such a manner that the shape of the
delamination becomes non-elliptical. Therefore, a procedure for predicting the delamination
growth behavior based on evaluating the global energy release rates associated with growth
along fixed co-ordinate directions is generally not applicable to two~dimensional delamina-
tions in an anisotropic base plate. In such a procedure, the global energy release rates
are obtained for an assumed manner of growth by evaluating the potential energies of the
delamination model in two successive states of growth and by differentiating the results
numerically with respect to the increasing semi-axial lengths of the ellipse. These global
energy release rates are fundamentally different from the pointwise energy release rates used
in the present study. Indeed, as shown by the present results, their relation 1o the strain
load i~ very much different from that of the pointwise energy release rates, In cases where
the . onsi¢ ration of global energy release rate may be justified, the use of the pointwise and
global cuergy release rates are likely to yield somewhat different predictions with regard to
the delamination growth behavior,
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4. CONCLUSIONS AND ADDITIONAL REMARKS

Several conclusions with far-reaching implications for the analysis and understanding
of sublaminate buckling and crack growth associated with two-dimensional models may
be drawn from the results of the present study. Some of these conclusions have been
suggested in previous publications (Yin, 1989 Storakers, 1989). They are substantiated. in
the present work, by examining Rayleigh—-Ritz postbuckling solutions of elliptical sub-
laminates and by comparing solutions of the vanous orders.

(1) The bifurcation loads of thin-film elliptical delaminations may be calculated accu-
rately by a Rayleigh-Ritz analysis involving a small number of undetermined coefficients.
The results are better than those obtained by alternative methods {for example, Woinowsky-
Kricger (1937) and Kassapoglou (1988)].

{2) The postbuckling behavior of a strip delamination model is rather exceptional
because the non-linear von Karman equations reduce 1o a Jinear ordinary differential
equation in the case of plane strain buckling. The solutions of strip models do not show - on-
unifurmity of the in-plane deformation in the sublaminate and concentration of curvature of
the deformed middle surface around boundary regions. These eflects are significant and
have important implications on the postbuckling and growth behavior of two-dimensional
delamination models.

(3) The non-linear and boundary eflects mentioned above cannot be determined, or
determined with sufficient accuracy, by a linearized postbuckling analysis or by a Rayleigh-
Ritz analysisinvolving lower-order polynomial expansions of the displacements. Predictions
of the force and moment resultants in the sublaminate and of the delamination growth
behavior based on Rayleigh-Riwz solutions of order lower than (5.4} are generally
unreliable,

(4) As the orders of polynomials in the displacement expansions increase, the deflec-
tion. forces. moments and energy release rates associated with the Rayleigh~Ritz solutions
of circular delaminations in axisymmetric deformation converge towards the corresponding
results obtained by direct integration of the von Karman equations {Yin, 1985). The
convergence confirms the validity of the latter solution, whose results are significantly
different to the solution obtained by the perturbation method {Bottega and Maewal, 1983).
Rayleigh-Ritz solutions of the order (5,4) deliver good results over a range of strain loads
up to about three times the bifurcation strain. Solutions of the order (7,6) yicld better
results over a much wider range of the strain load. On the other hand. solutions of the
order (5, 6) are nearly indistinguishable from those of the order (5.4). The results suggest
that higher degree polynomials should be used in the expansions of the in-plane
displacements so as to allow adequate modeling of the non-uniformity of the in-plane
deformation.

(5) The computational eflort involved in solving the non-linear algebraic equations
associated with the Rayleigh-Ritz method is small compared to solving the same problem
bv non-linear finite-clement modeling since the number of degrees of freedom required in
the latter method maybe considerably larger. In implementing the Rayleigh-Ritz method.
the major task consists of algebraic manipulations and integrations for obtaining the
potential energy function. Given specific polynomial expansions of the displacements, this
task needs to be performed only once in obtaining the functions L,,. AM,, and N,, (sec eqn
(6) in Part 1 of this paper). When these functions are determined. the potential energy
functions and the governing algebraic equations for elliptical delaminations with different
thicknesses. aspect ratios and stiffness matrices may be obtained in a straightforward
manner. Consequently, the Rayleigh-Ritz method is ideally suited for a parametric study
of the postbuckling behavior of elliptical laminates with diverse geometrical and material
configurations.

A recent study of buckling. postbuckling and failure of elliptical delaminations has
appeared which is also based on the perturbation method (Kassapoglou. 1988). While the
work does not present sufficiently detailed results on postbuckling deformation to make a
comparison with the present solutions feasible, it yields bifurcation loads with relatively
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large errors (several percent). Generally speaking. any method of analysis which fails to
provide very accurate results for the bifurcation load cannot be expected to yield acceptable
results for the postbuckling deformation, because the buckling problem is a lineanized
problem whereas the postbuckling problem is strongly non-linear. It therefore appears
that, unless higher-order perturbed equations are used. the perturbation method is not a
promising approach for obtaining accurate solutions beyond an initial stage of postbuckling
deformation.

In selecting the order of Rayleigh-Ritz solutions used in the present study we have
taken into account the limitation on the validity of the solutions imposed by the thin-film
assumption and the omission of the transverse shear effect. Polynomial expansions of the
displacements are truncated at the order where further improvement in the accuracy of the
solutions is believed to be within the error caused by these two assumptions. Recently, the
effect of transverse shear deformation on the buckling and postbuckling behavior has been
studied for strip delamination models (Kardomateas and Schmueser, 1988; Chen, I
and thin-film elliptical sublaminates (Peck, 1989). The results depend essentially on the
slenderness of the delaminated layer and the base plate. Analytical solutions for stnip
delamination models, obtained by the use of a shear correction factor, indicate that the
transverse shear effect may appreciably reduce the buckling load and significantly increase
the energy release rate under a given postbuckling axial load.

Peck (1989) used a higher-order laminated plate theory in conjunction with the Ray-
leigh~Ritz method to calculate the buckling loads and postbuckling solutions of elliptical
sublaminates. This provides a better approach to the assessment of the transverse shear
effect in laminated plates than the use of a single shear correction factor (independent of the
¢lastic anisotropy, orientation and lay-up of the constituent plies). 1t should be mentioned.
however, that since the significance of the transverse shear effect increases with the thickness
of the sublaminate, the eflfect may be more important in the delaminated portion of the
base plate than in a thin delaminated layer. Hence an adequate evaluation of the transver
shear effect in delamination problems may require a complete analysis of the delamination
model without using the thin-film assumption.
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Free-Edge Effects in Laminates Under Extension, Bending and Twisting,
Part I: A Stress Function Approach
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ARSTRACT

& variational method involving lekhnitskii's
stress functions is used to determine the free-edge
{nterlaminar stresses in & multl-layered strip of
laminate subjected to arbitrary combinations of
axial extension, bending and twisting loads. The
stress functions in each layer are approximated by
polynomial functiens of the thickness coordinata.
The equilibrium equations, the traction: free
boundary conditions and the continuity conditions of
the interlaminar stresses are exactly satlsfied in
the present analysis, while the compatibility
equations and the interfaclai continuity of the
displacements are enforced in the sense of the mean
by applying the principle of complementary virtual
work. Solutions are calculated for symmetric four-
layer cross-ply and angle-ply laminates and the
rasults are found to be in excellent agreement with
rafined finite-element solutions wusing special
hybrid-stress elements in cormer regions.

1. introduction

Composite laminates are prone to severe inter-
laminar stresses along a free edge. Theoretical
studies based on the assumptions of layervise
homogenelty and linear elastic behavior suggest that
a singularity of the stress field generally exists
at the intersection of a frae edge with an interface
between two dissimilar materials |[1-3). From a
practical point of view, the presence of a stress
singularity and its effect on the region outside the
iomediate neighborhood of the singularity are of
greater importance than the precise mathematical
form of the singularity (deduced by strictly
applying the simplifying assumptions of layervise
homogeneity and linear elasticity to a corner region
of microstructural dimension, and thereby producing
physically wunrealistic local results). This is
because, from the same viewpoint, & singuiarity
actually indicates a region of severe macroscopic
stress gradient in which the stress fleld |is
affected sipnificantly by nonlinear and inelastic
material response and microscopic heterogeneity.
This is especlally true if, as in the case of free
edges of laminates composed of thin plies, the
reglons of high stress gradient are only several
times larger than the characteristic length of the
microstructure -- the dlameter of the reinforcing
fibers and the spacing between adjacent fibers.

It follows from this reasoning that, when
assessing the detrimental effects of free-edge
interlaminar stresses, one should not pay too much
attention to the minute details of the locai stress
near a mathematical singularity (as predicted by
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sioplifying constitutive assunptions and layerwise
homogenization). Obviously, any quantity calculated
by discretizing the structure {using finite-
difference or finite-element modeling), with values
depending significantly on the way and the degree of
refinement of discretization, is not an appropriate
or reliable measure of the criticality of stress,
One should instead Tely on global quantities --
quantities which manifest the overall mechanical
effects and characteristics of a small, severely
stressed region, and quantities whose values do not
change appreciably with refinement in material and
geometrical modeiing over that region. Examples of
such global measures inciude the well-known path-
independent integrals. They alse inciude the
maxigousw values of certaln stress functions and their
first-order derivatives along an interface, which
are introduced in the present wark.

This is the first of a series of two papers
concerned with developing an efficient yet reason-
ably accurate analysis procedure for the free-edge
interlaminar stresses in a multi-layered laminate
subjected to axial antension, bending, twisting, or
any combination of such strain-controlled leoadings.
Our raquirements for efficiency and accuracy are
such that the final analysis procedure calls for
extremely simple input data, that it may be
implemented on a personal computer, and that the
results of the analysis should be as adequate for
the practical purposes of laminate snalysis, design
and optimization as the solutions obtalned from
elaborate finite-element analysis. The dual
objectives may be achleved without trying to
determine the nature of the stress singularity in an
extremely spali region, but Instead by assessing its
effects wupon the surrounding region via a
variational approach.

The first paper of the series (Part I) {is
concerned with & laminate composed of a reiatively
spall number of anisotropic layers. In this work,
example solutions under all three loading cases are
computed for four-layer symmetric laminates,
including the classical problems of cross-ply and
angle-ply laminates. lLaminates consisting of a
large number of layers require a sublamiante/layer
modeling in which the two interior layers adjacent
to a particular interface are considered as aniso-
tropic elastic media and all the remalning plies are
grouped inte an upper sublaminate and a lower
sublaminate. The details of such a8 formulation and
the method of analysis are developed in a ferth-
coming paper (Part II of the series).

approximate solutions of the free-edge
interlaminar stress problem may be obtalned by
directly soiving the poverning differentlial

equations (e.g., using finite difference methed or

series expansion 1in conjunction with boundary
coflocation) or by uslng a variational approach.
Direct scliutions which accurateiy represent the

interlaminar stresses near the free edge are not
easy to obtain or ascertain because of the diffi-
culty to enforce and to validate the convergence of




such solutions. Among the existing works using a
variational approach, a large number were based on
the displacement formulation. More recently, the
displacement/stress hybrid formulation has also been
used. In contrast, the stress formulation is used
in the present study {(for all layers of the laminate
in Part I of the paper and for the two interior
layers of the model {n Part II).

In the present analysis, Lekhnitskii’s stress
functions are introduced Iin each layer and the
traction-free boundary conditions as well as the
interfacial continuity of interlaminar stresses are
strictly enforced, while the compatibility of strain
and the interfacial continuity of displacements are
enforced in the sense of weighted integrals through
the use of the principle of complementary virtual

work., This ensures that the approximate solutions
of the present approach satisfies exactly the
equilibrium equations everywhere (including all

corner regions with steep stress gradients) and the
continuity of the interlaminar stresses across
entire interfaces (including short segments adjacent
to the free edge). In contrast, such conditions are
only satisfied in the sense of the mean in a
varlational approach based on the displacment
formulation. With the concentration of the stress
gradient and intense interlaminar stresses near the
free edge, the application of the stationary
potential energy principle to assumed displacement
functions or thelr associated element shape
functions may produce results for the stresses that
significantly wvioclate the equilibrium equations in
corner regions and violate the interfaclal conti-
nuity conditions in end segments which, although
small, are of particular importance. Spilker {4,5]
found that, if In corner regions one uses hybrid
finite elements which do not satisfy free-edge
boundary conditions exactly, then large errors and
lack of convergence may result in the pointwise
values of certain stress components even though the
solutions converge in the sense of weighted
integrals and satisfy the free-edge condition in the
same sense, In finite-element solutions based on a
purely displacement formulation, the danger of this
ancmalous behavior 1s always present because exact
satifaction of the traction-free boundary conditions
cannot be strictly enforced. Therefore, certain
results provided by such solutions may be unreliable
or even misleading. Indeed, for the classical
problem of a symmetric, cross-ply, four-layer
laminate under axial extension, a careful comparison
indicates significant discrepancies in the stress
fields near the free edge and in thelr trend of
convergence among the various existing numerical
solutions which do not strictly enforce the free-
edge conditiom. The solutions examined include
finite-difference solutions, stress-based solutions
using the boundary collation or other approxiamate
free-edge conditions, and a number of finite-element
solutions using a displacement or hybrid formula-
tion. The possibility of anomalous behavier does
not arise in the present procedure of solutlon

because all equilibrium equations, free-edge
boundary conditions and Iinterfacial continuity of
tractions are satisfied exactly rather than in the
sense of the mean. Although the present analysis
requires only a very small fraction of computational
effort compared to refined, displacement-based
finite-element solutions, the results are found to
be in better agreement with Spilker’s finite-element
solutions {4,5] which used special free-edge
alements that satisy the traction-free conditions
exactly.
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Besides the constitutive assumption of linear
elasticity, the only approximation used in the
present analysis is that the stress functions in
each layer are polynomial functions of the thickness
coordinate. No a priorl assumption is made concern-
ing the dependence of the stress functions on the
coordinate parallel to the interface. Rather, it
follows as a consequence of the principle of comple-
mentary virtual work that the form of dependence is
governed by a system of linear ordinary differential
equations with constant coefficients. This system
of equations together with homogeneous boundary
conditions (resulting from the free-edge condition)
define an eigenvalue problem. The solution of the
eignevalue problem is a combination of a particular
solution and eigenfunctions which hava exponential
forms with real or complex exponents. The parti-
cular seolution corresponds te the limiting stress
fields away from the free edge (constant in each
layer but generally vary from layer to layer) and is
peculiar to each one of the three strain loading
case -- axial extension, bending and twisting. On
the other hand, the eigenvalues and eigenfunctions
are the same for all three cases. When the task of
solving the eigenvélue problem is completed, the
solutions for the interlaminar stresses correspond-
ing to the three distinct cases of strain loading
may be obtained easily by taken different combina-
tions of the eigenfunctions with the particular
solution (peculiar to each case) so as to satify the
homogeneous boundary conditions. Thus the present
approach has the additional advantage that the
solutions to all three cases may be obtained
simultaneously. In contrast, lmplementation of the
finite-element and other numerical solution
procedures usually must be repeated for each
distinct loading case.

We note that the assumption of polynomial
dependence of the stress functions on the thickness
coordinate in each layer may be justified for
laminates consisting of thin plies. Alcthough the
present analysis uses lower-degree polynomial
representations, more refined analysis may be
implemented, in principle, with the use of higher
degree polynomials, However, such refinement will
only appreciably affect the resulting stress near
the free edge. If the thickness of each ply is only
one order of magnitude greater than the fiber
diameter, then a higher-order polynomial representa-
tion of the fluctuations of the macroscoplc stresses
in the thickness direction has dubious physical
significance.

It is pointed out in Sec. & of this paper
that, along an interface, the torsion stress
function ¥ and the first-order derivatives of the
Alry stress function F are related to the stress
resultants and the moment resultants of the inter-
laminar normal and shearing stresses over end
segments of the Interface. Since the maximum values
of these derivatives are global measures of the
criticality of the interlaminar stresses near the
free edge, they may be used as parameters in the
fracture criteria for the initiation of delamination
growth along the interface.
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Consider a laminated strip of thickness 2y*
with two parallel free edges at x = *a and consist-
ing of n+l unidirectional, fiber-reinforced compo-
site layers separated by n planar interfaces. Tha



layers and their interfaces will be numbered from
the bottom up. Thus the 1-th layer 1s bounded below
by the (1-1)-th interface, y ~ y,.; bounded above by
the i-th interface, y - y,, where y = 0 is the middle
plane of the laminate (Fig. 1). The layer has the
thickness h; = vy, - y..,. Each unidirectional
composite layer will be regarded in the present
analyslis as a homogeneous, orthotropic, linearly
elastic mediun with the extensional elastic modulus
E, along the fiber direction and modull E, and E,
along the other two orthotropic directions. Other
material moduli needed to characterize the elasti-
city of the layer are wvj;, vy, 33, Gz3. G3y and Gy,
It is more convenient for the present analysis to
use the compliance coefficients §,, (i,J = 1, ...,
6), defined by the following constitutive relation
for the layer

€ S11 Si12 S5 0 0 0 ra; N
€2 S21 S5z S O 0 0 oy |
ol 553 S;2 Sy 0 0 0 oy ;
« 0 0 05,2 0 0 133 (1)
e 0 0 0 0 S5/2 0 J a2
g 0 0 o] 1] 0 555/2 LAY,

wvhere ¢, =~ v23/2, ¢5 = 73/2 and ¢ = y,;,/2. 1 the
elastic properties of the layer are considered
transversly lsotropic in the plane perpendicular to
the fiber direction, then E; = E;, vy; = vy; and G); =
G;3. Furthermore,

Sy, - 1/E, , Sogu= Syp~ 1/Ej ,
512 = Sy = - vp/Ey = - vy /E;

533 = - va/E- Swo= 1/Gy;
S5y = Sgg = 1/Gyz

The thickness direction of all layers (i.e.,
the y-axis) is an orthotropic direction and this
direction will be taken as the 3-direction In every
layer. Within the pilane of the layer, the fiber
direction 1s oriented at a constant angle # with
repect to the z-direction (the direction parallel to
the free edges). Transformation of the stress
components from the (2, x, y) coordinate system to
the orthotropie material system (1, 2, 3) has the
form

o, cosy sin?8 0O 0 0 sin2¢ oy
a, sin?g cos?d 0 00 -sinf oy
ay 0 0 1 00 0 a,
rafl= 0 o 0 cost -sinéd @ Ty
115 0 0 0 staé €olE 0 |7y,
iz -%sinZﬂ %sinZﬂ 0 0D cos2s Tae
The tensorial strain comporents transform in exactly
the sawme manner, For silmplicity we denote the

matrix of transformation in the last equation by
TH(#) and the matrix of Eq. (1) by §5. Then TH(-4)
1s the Inverse matrix of TH(#). Furthermore,

« Iy
€y Oy
L8 = TH(-#).55.TH{#) ay {2)
1'“/2 Try
1,./2 Tys
Tue/2 Txz

where the matrix TH(-#)}.SS.TH(#) = MM{#) has the
form

a, a, a; 0 0 86
a LF] az3 0 0 83
853 L3 a3 0 0 836
0 0 0 8,./2 8,4/2 0
0 0 0  a,5/2 ay/?2 0
8,672 8y5/2 8372 O 0 age/2

From the first row of Eq. (2) one obtains
a, = (tz " 8120, " allay - 535'::)/311
Substituting into the tight hand side of Eq. (2),

and replacing the first row of Eq. (2} by the
preceding expression for ¢,, one has

(¢ 1/a,, -8;3/a;; -833/8;,;, 0 O '315/3:11 (€ )
& a/ay, b1z B3 0 0 Bz | e
L% ap/ay, B23 B33 0 © By , Oy
Yuy 0 0 0 A B O |31,
T o 0 0 By By O ! Ty
Tiz 816/ay, Bz B 0 0 Bg \H-J

(3)
where the coefficients
Biy = 8,y - ajaz/a, for i,j » 1 (&)

were Iintroduced by Lekhnitskii ([6], p. 109).

3. Generalize ane amjnated

Strip

eformation a

For a homogeneous anisotropic elastic medium
of cylindrical shape with the generators parallel to
the z-direction, Lekhnltskii investipated the class
of Infinitesimal defermations for which the stress
tensor 1s Independent ¢f the z-coordinate. He found
that the class conslsts of deformations whose
displacement components have the form ([61. pp. 107-
108)

Wiz, %, ¥y) = (Ax-By+C)z + W(x,y) + w,¥y - wX + w,
u(z,x,y) = -Az3/2 -fyz + U(X,y) + wiz - w3y + u, (5)
vi(z,x,y) = Bz?/2 + fxz + V(X,¥) + wyX - wyz + v,

Such deformations will be called "generalized plane
deformations™., Starting from a plane deformation
U(x,y) and V{(x.y), one may obtain generalized plane
deformations by superposing rigid-bedy translations,
rotations, shearing along the z-axis {characterized
by the function W(x,y)), uniform extension and
twisting along the same axis (the constants C and
#), and uniform bending deformation with respect to
the y- and x-axes (the constants A and B, rTespec-
tively).

In the present work, we study the interlaminar
stresses in & thin laminated strip bounded by two
parallel free edges (x = *a) under mechanical loads
at the two ends (z = 0, ). The end loads are such
that the resulting stress in the strip depends only
on x and y but not on the axial coordinate z. Hence
in each layer of the laminated strip., the displace-
ment functions have the form given bv Eq. (5). 1n
order to satisfy the interfacial continuity of the
displacements, either exactlvy or in an averaged
sense, it is necessary that the set of constants A,
B, C and ¢ be the same for all lavers.

1t is well-known that intense interlasinar
stresses are localized in the vicincity of the free
edges. Along a free edge x = &, the in-plare normal
and shearing stress resultants K, and N,, vanish, and
so does the normal bending moment M,. The non-
vanishing force and moments are N,, M, anc M,,, and
their corresponding kinematical wvariables avre the
axial extensional strain ¢,° = C. the bending
curvature k, = B, and the twisting curvature k,;, = §.
Bending with respect to the y-axis introduces large
bending strains near the free edpes, and this
usually does not happen unless the thickness and




width of the laminated strip (2y° and 2a) are
comparable in magnitude. Furthermore, thls bending
action, characterized by the constant A In Eq. (3),
produces a nearly constant axial strain a-A in the
vicinlty of the free edge x = a. Hence {ts local
effect on the interlaminar stresses near tha frea
edge of a thin laminate may be accounted by absorb-
ing the additional strain a:A into the uniform
extensional strain C. Consequently, we shall set A
= 0 in Eq. (5). It follows that, considered as a
thin laminate, the local states of loading and
deformation near x = a are characterized by the
free-edge condition and the three constant
parameters B, C and #¢.

4, Stress ace and da condi-
tions °

A stress field in the i-th layer satisfying
the differential equations of equilibrium may be
expressed in terms of a palr of stress functlons

(1 ()
F(x,y) and ¥(x,y) in the following manner:

)y {1 (L) ) 1 o)

a; = Fpy oy = F x ey = - Fipy

(1) [£3] ) i)

Tag = W., 0 Tyg = - LT (6)
Obviously, an arbitrary bilinear function of x and ¥y
and an arbitrary constant may be added to the first
and the second stress functlon, respectively,
without affectling the resulting stress fieid in the
layer. The first row of Eq. (3) yields

() (13¢4) TS (i
o= (¢g - aF.yy - a3F. o - a¥y)/ay (N

The continulty of the normai and shearing
stresses across the i-th interface y = y, requires
that, along that interface,

tisy () tislr 1)
F - F)l)g=0  (F,-F,),=0

(i*ly (9]
(¥ - ¥),,=0

Hence we may appropriately choose an additive
bilinear function and an additiva constant for the
stress functions in the (l+i)-th layer so that,
along the interface y = y,,

sty ) (1e1) () 1=l {3

F -F, F.,-F.,. Vo ¥ (8)
Furthermore, without loss of generality the stress
functions Iin the bottom layer may be chosen in such
a way that, over the lower surface of the laminate,

y = -y", one has

( 1% (1)

F =0, F,, =0, ¥ =0 (%)

By Integrating o, and r,, through the thickness
of ell fayers, and making use of the continuity of
F,, and ¥ across the interfaces, one finds that the
atress resultants N, and N, are equal to the values
of F,, and ¥, respectively, on the upper surface of
the laminate. Let the values be denoted by G" and ¥,
i.e.,

t1) JFu)d z(;: |Y‘Yi . Iy_y- ¢
N, -Z dy = L . - ' - F, -
o Ia, Yo YTy Y
1
(1) (1) .
Npyg = IIr,,dy -z J‘W.,dy -
i 1
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Now the stress moment M, is glven by
t1) (1) (1)
M - -}1: Iy audy = }E JY Fopydy = 'ri J"l()" Figdoy

t‘, - -
- Futdy = F - ¥

where F* {s the value of the stress function on the
top surface. For the case considered in the present
work, N,, N,, and M, all vanish because of the free-
edge conditions. Hence,

F* =G = 4" = 0. a0

Finally, wvanishing of the traction vector
along the free edges x=ta implies that

F.,.,=-F_ =¥

vy = Figy -0

'y
Integration with respect to the thickness coordinate
ylelds the following results on x = %a,

F=F,,~%=0. )

Equations (9), (10) and (1ll) imply thar, for
the present problem, the stress functions in the
layers may be chosen in such a way that F, ¥ and the
normal derivative of F vanish on the boundary
surfaces x = *a and y = *y" and are continuous across
ail layer interfaces.

5. comple virrtual w

A varlaction {n the stress field in the i-th
layer satisfies the equilibrium equatlons

ba,5., = 0

as well as the free-edge condition and cthe
continuity of §F, &F,, and &¥ across the upper and
fower interfaces. Hence,

0 - m u.fe,y,, dxdydz = IIII(u,&aU),_, - uy.)dxdydz
= JI ugbayn, dA - IJI %(u1,3+u1,1)6a13 dxdydz (12)

Since the stresses in all layers are independent of
the axial coordinate z, it is sufficlent to conslder
only those varlations of the stresses which are also
independent of z. Furthermore, one need only
consider an Iinterval of the laminated strip of unit
length along tha axial direction, 0 £ z 5 1. By
summing Eq. (12) over all iayers, and making use of
the traction: free boundary conditlons and the inter-
facial continuity of the interlaminar stresses, one
obtains

I I {Bubr  +0vér, +owbo, )dxdy - zI (lul byt [v]ibo,
+{w]br,,)dx = L JJ(,JSal, dxdy (N

where the double integrais are summed over all
layers and the singie Integrals are summed over all
interfaces y = y,. The bracket symbol, [ ];, denotes
the jump of the quantity Inslde the bracket across
the I-th Interface. ou, &v and oW stand for the
differences of the displacements at z = 1 and z = O,
They may be obtained from Eq. (5) with A = O:




bdu = -fy+uw,, &v = B/2+8x-w,, &w = G-By
Equations (&) and (7) yield, in each layer,

67y = ¥,y , 81y = -8¥,, ,
bo, = -(a;36F,,, +a538F, o +3156§r’,)/an {14)

Hence the double integrals on the left hand side of
Eq. (13) yield, after integration by parts,

- (Bayg/ay; - 26‘)-” §¥ dxdy + B T [a;/8y]; J&FI dx

+Z (C'BYI)J (layz/a;,]36Gr+ [ay/a;; ] 5¥; dx
- I J[wz]ISi, dx
while the single integrals in Eq. (13) yield

g I([u.;]xSGz+[v.nl:5Fz+lu-;w-=lx5'i'z) ax
+ zJ [wg) ¥y dx

Here F;, G; and ¥, stand for the values of F, F,, and
¥, respectively, on the I-th interface. Substituting
the preceding results into Eq. (13) and using the
interfacial continuity of the tangential strains ¢,,
¥y: and the curvature v,,, one obtains

z ‘U‘U&“U dxdy + T (Ba;z/a;, - 28)‘” &% dxdy

-z (C-By:)J ([a12/a13]18G+ (ay/a1,],6¥; dx
-BZI [alzja,:],ISF, dx = 0. (15a)
The following expression for the first term of the

preceding equation may be obtained from Eqs. (3) and
(14):

z ‘”(uéo“ dxdy = T JJ (Figys Fops -Fupys

Baz B2z 0 0 By'| [ &F.,
B2y By O 0 By 5F,
¥, ¥.,) 0 0 B Bus O ~6F, oy dxdy
o o Bas 555 0 | '6*'1
Bz Bie O 0 Beg [ E¥,,
(15b)
6. om oximations e stres

In a wvariational method of solution, the
stress functions F and ¥ in all lavers are to be

determined within a class of admissible stress
functions satisfying the traction-free boundary
conditions (Egqs. (9)-(11)) and the 1interfacial

continuity of F, F,, and ¥. The criterion of
selection is that Eq. (15) should be satisfied for
arbitrary admissible wvariations &§F and &¥. The
criterion ensures, in an averaged sense, the compa-
tibility of strain and the interfacial continuity of
the displacements. 1f the layers consticuting the
laminate are very thin, one may approximate the
stresses in each layer by polynomiel functions of
the thickness coordinate. Then the class of
admissible stress functions consists of polynomial
functions of y, with the coefficients depending on
x.

In the i-th layer, we define the nondimen-
sional thickness coordinate n by
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n =Ly - ¥i-1}/{y: - ¥i-1)

In the classical plate theory the in-plane stresses
vary linearly in cthe thickness direction. This
feature is approximately valid in each thin layer of
a laminasted plate, except in regions close to the
free edges. Hence the stress functier F(x,y) in
each layer may be approximated by a polynomial
function of degree three in the normalized thilckness
coordinate n. Now the stress function in the i.th
layer must assume values F,(x) and F,.,(x), respec-
tively, on the interfaces y = y, and y = y,.,, and the
y-derivative of the stress function must assume
values G, (x) and G,.,{x} on these incerfaces. Hence
the cubic polynomial approximation of the stress
function in the i-th layer must have the following
expression

(1)
F(x,n) = (1-3n24200)F, () +(n-2n%+0*)0,C,., (x)

+(302-20)F, (x)+(n*-n?)h,G,(x)  (i= 2,3...n) (léa)

The cubic polynomial approximations of the stress

functions in the bottom and top layers are given,
respectively, by

i1)
Fix.n) = (3n2-207)F,(x)+(n°-5%}h,G, (x)

(16b)
and
tn+1)
F(x,n) = {1-3n2+ 20" )F(x)+(n- 202+7°)hpyG, (x)  (16c)
The stress functlons given by Egs. (1%a,b,c)

yield an interlaminar peeling stress o, having a
cubic dependence on the thickness coordinate in each
layer, an interlaminar shearing stress s, with a
quadratic dependence on n, and an in-plane stress o,
with a linear dependence on n. For the sake of
consistency the interlaminar shearing stress r,, and
the in-plane shearing stress v,, will be approxi-
mated, vrespectively, by quadratic and linear
functions of n. Then, according to Eq. (6), the
stress function ¥ depends quadratically on y. 1t
follows that

{1
¥ix.n) = {1-n2)¥, . (x)+n2¥, (x)+{n-n?)hH, ;(x)

(1=2,...n) (17a)
m

¥(x,n) = p¥¥ (x)+{n-g%)hHy(x) {17b)
(n+l)
¥ix,m) = (1-53)9, 00 +(n-n? b 1 (%) {17¢)

where ¥,(x) ls the value of the stress function ¥ on
the i-th interface and H,(x) is the value of ¥,, on
the upper side of the same interface (notice that,
although ¥ is continuous across each interface, ¥,
is generally discontinuous). Equations (16) and
(17) imply that the stress functions in all lavers
are completely determined by 3n functions F (x}.
Gy(x), ¥,(x) {{ = 1,2,...n) and n+l functions H,(x)
(1 - 0,1,...n), where Hy(x) is the value of ¥, on
the bottom surface y = -y°.

7. &n eigenvalue problem for the functions F,. C,. ¥,
and H,

Let the set of 4n+l functions F,, G,, ¥, and K,
be arranged as the components of a column vector (X}
according to
xl - Fl(x)-

Xiem = G, (x), Xiagp = ¥, (2},

(£ -1,2,...n)




X e3ney = H (X)), {{t =0,1,...n)
Then, by substituting Eqs. (16) and (17) into Eq.
(15), performing the Integration with respect to n,
and integrating by parts with respect to x, we
obtain
. 2

L. av <Ll . -
15X} [([uldx‘i- (Vg * [Uhixy lb}] 0 (18)
where [§X)%, a row vector, is the variation of the
transpose of {X} and the column vector {b) has the
components

b, = Blay/ay ), by = (C-Byy)[ayy/ay,],

(1+1314%13
Biozm = (C-By,){ajg/ay ], + 2hy, (26- B ae/a,}/3

ar
+ h, (28-Baygfa,;) /3 (i =-1,2,...n)

f1v1) (1+1)
biaaner = (28- B ajg/ayy) hy,3/6 (1 =0,1,...n)
As mentioned previously, [a;,/a;,], denotes the jump
of aj;/a,; across the i-th Interface.

The matrices [U], [V] and [W] of Eq. (1B) are
constant real symmetric matrices and are completely
determined by the integral expressions {n Eq. (15b),
i.e., by the first variation of the straln energy of
the layers, It is clear from Eq. (15b) thar the
fourth-order derivatives in Eq. (18) arise only from

FSTTSINNTY
the integrals ZI Ba3F, 508 F, oy dxdy, i.e., they only

i
invlovie the stress functions ¥, but no:t;{ Hence,
by virtue of the representation of Eq. (16), the
coefficient matrix [W) of the operator d'/dx‘ has
nonzero elements only in a 2n x 2n square submatrix
in the upper left cormer (i.e., in the rows and
columns correspending to the unknown functions F, and
G . i=1,2,...m).

The elements of the three matrices have
extremely complex expressions and 1t is inpractlcal
to obtaln these expressions without using symbolic

algebraic programs, In the present work, the
matrices (U], [V] and [W] are obtained from Egs.
(15b), (16) and (17) by using MAGSYMA [7]. The
symbolic program 1is also used to obtain the
compliance coefficients By of each layer from Egs.
(1), (2) and {4).

Equation (18) is satisfled for arbitrary
varlations §Hy, 6F,, §Gy, &V, . and §H, if and only
if

] 2
s+ Sz ¢ DX = 16y 19

Equastion (19) and tha homogeneous boundary condl-
tions at tha free edges

F,(ta) = F,"(*a) = G,(*a) = G,"(%a)
- ¥,(*a) = H,(*a) = 0 (i=1,2,...n) (20)
Hn(ia) -0

defina an eigenvalua problem where the eigenvalues
sre the roots of tha characteristic equation [8)

Datsrolnant([W] A* + [V] A% + [U]) = O (21)
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The primes in Eq. (20) indlcate differentlation with
respect to x. Since the nonzero elements of (W] are
limited to a 2n x 2n submatrix, the characteristic
equation is a polynomial equation of order 2x2n+2n+l
- 6n+l in the variable A%, Hence there are 6n+l
pairs of {(real and complex) elgenvalues, with each
pair consisting of eigenvalues which differ only in
algebralc sign. Considered as an equation for AZ,
the characteristic equation yields no solutions A?
with negative real parts. Hence there are no purely
imaginary eigenvalues. Notlice that the total number
of eigenvalues, 12n+2, is equal to the number of
boundary conditions in Eq. (20).

The (real or Imaginary) eigenvector corres-
ponding to each eigenvalue may be determined from
the homogeneous differential equation associated
with Eq. (1%). The eigenfunctions have the form
(clexp(*i;x), where {c! is a constant vector with
real or complex components depending on whether i, is
a real or complex eigenvalue.

Equation (19) has a constant particular
solution [U] 'tb). The general solution of the
equation may be obrained by combining the particular
solution with a {inear combination of the eigen-
vectors. The coefficients of the eigenvectors must
be chosen so rthat all boundary conditions of Eq.
(20) are satisfied, 1f the width of the strip, 2a,
is sufficiently large compared to the thickness,
then the eigenfunctions associated with the eigen-
values having negative (positive) real parts make
negligible contribution to the solutien in the right
(lefr) half of the strip, since such eigenfunctions
decay rapldly away from the left (right) free edge.
In other words, the solutions for the lefr and right
parts of the strip are approximately uncoupled.

In the case of a cross-ply laminate with the
material axes parailel and perpendicular to the free
edges, the solution space of the elgenvalue problen
decomposes orthogonally into subspaces of dimensions
8n and 4n+2. The two subspaces are assocliated,
respectively, with the two stress functions F and ¥,
We observe that, in the case of cross-ply laminates,
the elastic compliance coefficients fi,, 83 and A,
vanish in every layer. Hence there is no coupling
between the two stress functions F and ¥ {n the
variational equation associated with Eq. (15b).
Furthermore, since a;q also vanishes {n each layer of
a cross-ply laminate, the last 2n+Z elements of the
vector {b) In Eq. (18) do not depend on the loading
parameters B and C while the first Zn elements of
(b} do not depend on the twisting deformation 4.
Consequently, Eq. (18) decouples into a system of 2In
fourth-order differential equations for the
functlons F, and G, and another system of 2n¢l
second-order equations for the functions ¥, and H,.
The first system of equations determines the
solutions under axial extension and bending loads
while the second system of equations determines the
solutions under the twisting load.

B. cal meanicgs
Gy (x) and ¥,(x)

F,'{x) and

The functions F,(x), ¥,(x), G,(x) and H,(x) imn
Egs. {16) and (17) are the values of the stress
functions and thelr y-derivatives along the {.th
interface. They are related to the resultant forces
and moments of the normal and shearing interlaminar
strasses over Interfaclal intervals of varying
lengths adjacent to the free edge. Let the origin
of the axlal coordinate x be shifced to the left




free edge of the strip. Then, over the interval (O,
x] of the i.th interface in the new coordinate
system, we have

I o, dx = I F,* dx = F,'(x), (22a)
J Tey 9% = - JG" dx = - G, (x) (22b)
I Tys % = - I*.' dx = - ¥,(x) (22¢)

Similarly,

J x o, dx « x F,'(x) - F (x),
I x? o, dx = x7F, " (x) - 2xF (x) + ZI F, dx
I X Tey dx « - x G, (%) + J G, dx,

J X 1y, dx o« - ox ¥, (x) + J ¥, dx,

In particular, the maximum absolute values of G, and
¥,, reached at the centerline of the strip, are equal
to the resultant forces of the interlaminar shearing
stresses r, and r,,, Tespectively, over one half of
the i-th interface. Generally, G, and ¥, increase or
decrease monotonically from zero teo their maximum or
minimum values at the centerline of the strip. 1f G;
or ¥, attains a large value in a very short distance
from the free edge, then an intense interlaminar
shearing stress (of mode 1 or 111, respectively)
occurs in a very short interval from the free edge.
This situation 1is susceptible to delapination
failure under the shear fracture mode.

The behavior of the function F,'{x) has a
similar implication for the interlaminar normal
stress, This function generally increases from zero
at the free edge to a maximum value in a short
distance from the free edge. 1t then decays slowly
to zero at the midpoint of the beam. 1f F,*
increases from zero to a large maximum value in a
very short interval from the free edge., then an
intense tensjle interlaminar normal stress acts in
that short end interval, and the resultant tensile
force is balanced by an equal compressive force
distributed over the remaining pertion of the half

interface, This situation is susceptible to
delamination failure under the peeling fracture
mode,

The maximum values of the functions G,, ¥, and
F,' and the charecterietic lengths of their regions
of eteep pradient are meaningful measures of the
criticality of the interlaminar stresses in the i-th
interfece near the free edge. There are good
res&sone to auggest the use of these maximum values
and characteristic lengths as perameters in the
interlapinar fracture criteria for the peeling and
ehearing modes of failure. These parameters may be
easily calculated by the present method of enalysis.
Being global measures, their values are less
effected by the crudeness or refinement of the
epproximate analysis than the pointwise wvalues of
the interlaminar stressee ere. Tha: .1s, a relative-
ly eimple enalysis (involving low-order polynomial
approximations of the stresa functions) may provide
unreliable reaults for the detailed {nterlaminar
etrees dietributions elong the interfaces but may
etill yield accurate reeults for the maxioum valuea
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of G,, ¥, and F,' as well as the charateristic
lengths of their regions of steep gradient., Aside
from the question of accuracy end convergence,
extremely detailed results of the interlaminar

stresses near a singular point have dubious physical
meaning in view of the microscopic heterogeneity of
plies and the randomness inherent in the wmicro-
struture.
9. € case o metr acinate

In the case of a symmetric laminate the middle
plane y = 0 is a plane of symmetry. All stiffness
and compliance coefficients are even functions of y.
In particular, there is no disticontinuity in a;;/a;,
or a,g/a), across the plane y = 0 if that plane is
artificially regarded as an interface. Hence there
are no contributions to the single integrals of Eq.
(15a) from the interface y = 0.

For a symmetric laminate loaded wunder a
uniform axial strain only (i.e., B = ¢ = 0 and ¢, -
G = 0), the deformation and stress in the laminate
are symmetric with respect to the middle plane,
Hence F is an even function of y while F,, and ¥ are
odd functions. In particular, G = ¥ = 0 on the
middle plane y = 0. Setting B = # = 0 in Eq. (15a),
one finds that the regions of the laminate above and
below the middle plane make equal contributions to
the sum of integrals. GConsequently, we need only
compute the double integrals over the upper region
and the single inteprals over all interfaces above
the middle plane.

The same conclusion is elso valid for a
syometric laminate subjected to bending and twisting
(C = 0 but B and # not both zero). Under such
loading cases F is an odd function of y while F,, and
¥ are even functions. In particular, F =¥, =~ 0 on
y = 0 (notice that although ¥,, is pgenerally
discontinuous across an interface, it is continuous
across y = 0 because the stiffness coefficients have
no discontinuity across the middle plane of a
symoetric laminate). Because e,5/a;; is an even
function of y while the jumps (a;;/a;;] and [a,;/a;,]
are odd functions of y, the sum of integrals in Eq.
{15a) receive equal contributions from the regions
above and below the middle plane.

The preceding conclusions imply that, for the
solution of the interlaminar stress problem of a
symmetric laminate, the dimension of the vectors [X)
and {b) may be reduced considerably. The unknown
functions F,, G,, ¥, and H, essociated with the
interfaces in the lower half of the laminate mav be
dropped. Let the interfaces in the region y = 0,
including the interface y = 0, be renumbered in the
ascending order, starting with interface 0 ony = 0.
Then, for the uniform axial strain load {i.e., C w0

and B=#=0), the required set of unknown functions
include F,, G,. ¥, and H, for i 2 1 and the functions
Fp end Hy. Under bending and twisting loads (i.e.,

G = 0), Fy and Hy are replaced by Gy and ¥;.

For the classical problem of & svmmetric,
four-layer laminate under an axial strain load, the
functions G, and ¥, on the middle plane wvanish
identically. There is only one interface in the
upper half of the laminate and the two lavers in the
upper reglon (renumbered as lavers 1 and 2) have the
expressions:

($%]
F(x,n} = (1-3n%«2n®)Fy(x)+(3n? 2n*)F, (x)

+(n* )Gy (xy (232)




{2y
F(x,n) = {1-39%+ 20"} F  (x)+(n-2n2+n¥)h,C, (x) , (23D)

(1

¥(x,n) = n2(x)1+(n-n2)h Ho(x) , {23c)
(2}
¥(x,n) = (L-n?)¥(x)+(n-9P)hH,(x) , (23d)

The vecters {X) and ({b) of Eq. (19) become,
respectively,

’Fo(x)’ 'd 0 ™~
Fy(x) 0
and
Gy({x) Claj /e
J 4 L (24)
¥, (%) Cla/agn ],
| Ho(x) 0
L__Hl(x)__; l 0 -

In the cases of bending and twisting loads one
has G = 0, The functlions F, and H, vanish ident!-
cally end the stress functions in layer 1 have the
expressions

L)
F(x,n) = {(n-29%4n")h,Gy(x)

+(3n2-29Y)Fi(x) +(n’ - 92,6, (%)

i1y
¥(x,n} = (L-n2)¥(x)+n2¥ (x)

The stress functions In layer 2 are still given by
Eqs. (23b) and (23d)}. The vectors (X} and (b} of
Eq. (19) reduce, respectively, to

CF (%) ( Bla;3/a),], h
Co(x) 0
G (x) -Bh, [e) /e ]y
and (L
5 Wel(x) r 2(20-Bay/e; )by /3
(o
¥ (x) -Bhy[ays/ayy],+(20-Bayg/eyy)hy /34
2t
2(20-Ba,g/e,,)ha/3
FIRRLS
\H(x)J . (28-Bag/a, )h,2/6 y

10, Results for symvetric four-lgver laminatves

For convenlence of comperison with the
existing solutins in the litereture, approximate
solutions have been obtained by the present method
for laminates composed of identicel unidirectionel
plies with the thickness h and with the elestic
modull

E;; = 20 x 10% psi, E; = Ey = 2.1 x 10% pai,
Vig = V3 =k = 0.21,
Gz » Gyy = Gy = 0.85 x 10° psi.

Unless otherwise steted, the dlistence between the
palr of free adges is w = 24 = l6h,

We first consider s four-layer symmetric
- laminate with the ply conflguretion
(0/30]),. For the reason mentioned previously, the
differentlel equations governing such e laminate,
Eq. (19}, s wuncoupled iInto three fourth-order
equetions for Fy, F, end G, end three second.order
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equations for ¥,, H, and H,. The second ser of
equations (and the associated homogeneous boundary
condizions) alone determine the functions ¢, ¥, and
Hy in the case of a twisting lead (the function H,
vanishes identically according te the previous
symmetry arguments}, The first set of equa:zions
dectermine the functions F,, F. and &, in the case of
an axial strain lead and the functions F,. Gy and G,
in the case of a bending lead. The resuiting
interlaminar scresses on the (/90 interface are
shown i{n Figs. 2-4 for the three cases of strain
ioads. The solution for a unit bending deformacion
is close to that for a unit axial strain except for
a reversal of algebraic signs. This may be expected
because a negative unit bending curvature vields a
positive unit axial strain at the interface y = h.
Figure 4 shows that a unit twisting deformation
produces a mede 3 interlaminar sctress r,, whose
magnitude is much greater than the mode 1 and mode 2
interiaminar stresses produced by a unit axial
strain and a unit bending deformation. However, it
follows from Egq. (5) that, for a laminate with a
large width to thickness ratio, the work required o
produce a unit twisting deformation is also much
greater than that te%:ired to produce a unit bending

deformatien or a unit axial strain.

In the case of symmetric angle-ply laminates
the solution space of the governing equations is not
orthogonally decomposable. Hence all three compo:
nents of interlaminer stresses generally arise in
eack one of the loading ceses. The resulcs are
shown in Figs. 6-8 for a [45/-45], laminate. Here
again a unit twisting deformation produces a very
large mode 3 interlaminar stress. For the case of
an axial strein load, the in-plane stresses on the
lower surface of the top layer are shown in Fig. 5.

The present results for the cross-piy and
angle-ply laminates are compared with several most
elaborate numerical solutions in the existing
literature, While the existing solutions generaily
show over-all egreement, there are significant dis-
crepancies in the pointwise values (and particularly
in the peak values) of the interlaminar stresses.
In order to avoid the difficulty of discriminating a
number of partially overlapping curves in the same
figure, we use Table 1, instead of graphs, %o show
the comparison of certain key feartures of the
various solutiens, including the solutions obzained
by the present method, for the [0/90], laminate under
a unit axial strain load. Each pair of values in
the table (encleosed in a set of parentheses) show a
maximum or ainimum value of o, or r,, and the
distance from the free-edge of the point where the
extremal value occurs. Since the wvalues are
measured from the graphs of the original papers.
they may include errors introduced in plotting or in
taking measures from the graphs. Furthermore, in
the case of finite-element solutlons the maximum
value of the interlaminar normal siress o, (which
occurs at the free edge) depends significantly on
mesh refinement and may become very large as the
mesh size further decreases.

aAlthough the present analysis requires only a
small fraction of computational effort in comparisoen
with most other numerical solutions, the results
obtained are by no means {nferior. In fact,
conmpared to mest other sclutions in Table 1, cthe
present solution yields extremal values of o, which
are in better agreement with Spilker’s solutiens
using special free-edge finite elements to ensure
exact satisfaction of cthe traction-free boundary




conditions [4&,5]. A similar comparison of the
results for the [45/-45], laminates also indicates
that the solution of the present method agree well
with the existing refined solutions to the extent
that the latter solutions are in agreement among
themselves.

- max f,, max I, - min o,
Present (.21, .32h) (.29, O0) (.036, 2.0h)
Ref. [4,5] (.11, .E5h) (.29, O) (.034, 2.3h)
Ref, [9] (.22, .1Bh) (.43, ©) (.032, 2.3h)
Ref. {10] (.11, .82h) -------- (018, 2.4h)
Ref. [11] ----------- (1.0, 0) (.028, 2.1h)
Ref. [12]  -==-e------ (.29, 0} (.048, 2.1h)
Ref, [13] -------e--- (.31, O (.020, 1.9h)
Ref. [14] (.23, .20n) (.30, 0) (.029, 1.9h)
Ref. [15] (.23, .13h) (.30, 0) (.034, 1.7h)

Iable 1: Comparison of the various selutiens
of the [0/90], laminate

It was mentioned previously that the
characteristic equation (21) has two sets of
eigenvalues which differ only in algebraic sign.
The eigenfunctions corresponding to eigenvalues with
positive (negative) real parts decay exponentially
away from the right (left) free edge of the
laminate. 1f the ratio w/h is large, then the first
(second} set of eigenfucntions make negligible
contribution te the solution away from the right
(left) free edge. Consequently, the solutions in
the left and right halves of the laminate are
approximately decoupled. Hence the interlaminar
stress distribution near a free edge is dependent on
w/h only if this ratio is small. This conclusion is
substantiated by the results for [0/45}, laminates
with w/h = 4, B, 16 and 50 loaded under an axial
strain (Fig. 9) and a twisting deformation (Fig.

10). The interlaminar stress distributions approach
limiting pattern as w/h increases. The results
apparently contradiet a previous conclusion of
Murthy and Chamis [16] concerning the effect of
laminate width,
11. Summarv and Copclusio

(1) A systematic approximate method is

developed for determining the interlaminar stresses
in a laminated strip with two parallel free edges
subjected to an axial strain, a bending deformation
or a twisting deformation. The methed is based on
the use of Lekhnitskii’'s stress functionms. The
approximate solutions of the present method satisfy
exactly the equilibrium equations in each layer, the
traction-free boundary conditions over the top and
bottom surfaces and the free edges, and the
continuity conditions of interlaminar stresses
across all interfaces. The compatibility condition
for the strain and the interfacial continuity of the
displacements are enforced in an averaged sense by
extremizing the complementary energy functional with
respect to the class of statically admissible stress
fields whose stress functions in individual layers
are polynomial functions of the thickness coordi-
nate. This results in an eigenvalue problem
associated with a 1linear system of ordinary
differential equations having constant coefficients.
The eigenfunctions have exponential forms with real
or complex exponents. The solution of the stress
functions are obtained by appropriately combining
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the eigenfunctions with a constant particular
solution (peculiar to each one of the three loading
cases} in such a way as to satisfy the homogeneous
boundary conditions at the free edges. When the
task of solving the eigenvalues problem has been

completed, the interlaminar stresses corresponding
to all three loading cases can be determined
simultaneously. The case of a wunit twisting

deformation generally yields a very large mode 3
interlaminar shearing stress compared to the
stresses caused by a unit axial strain and unit
bending deformation. However, a wunit twisting
deformation also requires a much greater external
work if the width-to-thickness ratio of the laminate
is large.

Sample solutions are obtained for
symmetric four-layer laminates. By expleiting
symmetric conditions, the eigenvalue problem is
reduced in size. TFor an angle-ply laminate the
charateristic equation is a polynomial equation of
degree 9 in the square of the eigenvalue. 1In the
case of cross-ply laminates the eigenvalue problem
is decomposable inte orthogonal subspaces of
solutions. Using the present method, a complete
analysis of a symmetric four-layer laminate takes
only a fraction of a minute on an IBM personal
computer and requires extremely simple preparation
of input data, while the results for the
interlaminar stresses are comparable in accuracy to
refined finite-element solutions invelving several
hundreds of degrees of freedom (with the possible
use of special corner elements). If the laminate
has a large number of layers, a sublaminate/layer
approach developed in the sequel of this paper (Part
11) may be used to reduce the size of the eigenvalue
and to obtain approximate solutions.

(2}

(3) The present method achieves the dual
objectives of efficiency and accuracy because the
representations of the stress functions in the
analysis are not chosen arbitrarily or purely for
computational reasons (as In choosing the shape
functions in finite-element modeling). They are
based on the eigenfunctions as determined by the
complementary virtual work principle. Besides the
assumption of linear elasticity, the assumed
pelynomial dependence of the stress function upen
the thickness coordinate in each layer is the oply
approximation made in the present analysis. Addi-
tional and mwiscellaneous assumptions with obscure
meaning and dubious implication are categorically
avoided. This feature provides an important
computational advantage because, as found by Spilker
f4,5), the replacement of exact traction-free
boundary condition by approximating conditions may
significantly affect the convergence and the outcome
of finite-element solutions in a cormer region.

(4) In the i-th interface, the maximum values
of the first order partial derivatives of the stress
function and the characteristic lengths of their
regions of steep gradient provide useful measures of
the criticality of the interlaminar stresses near
the free edge. These values are less affected by
the degree of refinement of the approximate analysis
method than the detailed distributions of the
interlaminar stresses are. They may be used as
parameters in the fracture criteria for the initcia-
tion of delamination failure.
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Thermal Stresses and Free-Edge
Effects in Laminated Beams: A
Variational Approach Using Stress
Functions

A varianional method involving stress functions i1s used to determine the imierlaminar
stresses and the free-edge effects in a laminated beam under a temperature loading.
The stress funcrion n each laver 1s approximated by a cubic polvnorual funcrion
of the thickness coordinate. The equilibrium equations, the traction boundary con-
ditions, and the connnuity conditions of the interlaminar stresses are exactly satisfied
in this analysis, while the comparibility equations and interfacial continuiey of the
tangential strains are enforced in an averaged sense by applving the principle uf
complemeniary virtugl work, The method is highly efficient and accurate. A thermul
siress analvsis for a three-laver beam using only eight ergenfunctions vield resufrs
that are comparable in accuracy 1o fintte-element soluttons involving thousands of
degrees of freedom,

I Introduction

Studies of the thermal stresses in bimetallic or laminated
beams and plates may be found in the literature of applied
mechanics and composite materials (see, for example, Ti-
moshenko (1925), Boley and Testa (1969), Hess (1969), Wang
and Crossman (1977), Grimado (1978}, Wang and Choi (1979),
Chen and Nelson {1979}, Chen et al. (1982), Chang (1983),
Saganuma et al. (1984), Biech and Kantor (1984), Kuo (1989)
and Cho et al.). In recent years, thermal stress problems of
multilaver beams and plates have received a considerable
amount of attention in the field of electronic packaging, A
number of papers have appeared and various approximate
methods have been proposed, at different levels of sophisti-
cation, to determine the free-edge interlaminar stresses induced
by thermal expansion and mechanical loads {Taylor and Yuan
(1962), Reinhart and Logan (1973), Roll (1976), Olsen and
Ettenberg (1977), Vimsand Kerps (1982}, Suhir (1986a,b; 1928),
and Gerstle and Chambers {1987)). However, certain approx-
imate solutions based on ad hoc assumptions yield results that
are insufficiently accurate. Other simple solutions or formulas
may provide only one component of the interlaminar stress or
may fail to satisfy certain free-edge boundary condition. Al-
though claborate numerical solutions using refined finite-ele-
ment modeling have been obtained for special geometrical and
material configurations, there is a need to develop efficient
and reasonably accurate approximate methods of solution for
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predicting the interlaminar stresses and free-edge effects in
laminated beams and plates with arbitrary plyv contiguration
under various tvpes of loading.

In a recent paper (Yin, 1991}, the author presented an ap-
proximate method of analysis for calculating the free-edge
interlaminar stresses in a laminated strip suhiect to three fun-
damental types of mechanical loading: extension along the
longitudinal axis of the strip, bending of the axis, and twisting
of the strip. In the analvsis, Lekhnitskii’s stress functions
{Lekhnitski, 1963) were introduced in each laver of the lam-
inate, and both stress functions and the normal derivative of
one function were required to vanish on the boundary surfages,
and to be continuous across all interfaces. The stress functions
were approximated by polynomial funcuons of the thivkness
coordinate. A system of ordinary differential equations go-
erning the coefficient functions of the polvnomials were ob-
tained by means of the complementary virtual work prinaple.
Solution of the associated eigenvalue problem yields the stress
functrons and the interlaminar stresses, The application of the
method has been extended to laminates with a laree number
of layers by a combined laver/sublaminate approach (Yin,
1989),

The method is adopted, in this paper, to determine the in-
terlaminar stresses in the free expansion of a laminated beam
under a temperature loading, Although the method is generally
applicable to laminated beams tomposed of anisotropic elastic
layers, for simplicity we restrict the present anaiysis to the vase
where all lavers are isotropic, In this special case onlv one
stress function (Airy's stress function) is needed in each laver.

The problem is first decomposed into a constrained thermal
expansion problem (with zero axial displacements at the wo
ends of the beam) and a complementary problem. The latter
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Fig. 1 A multllayered beam

problem is further decomposed into a trivial problem char-
acterized by a uniform axial extension superposed on pure
bending, and a third problem characterized by rapid decay of
the interiaminar stresses away from the free edge. The last
problem is solved by the eigenfunction analysis.

The analysis method is applied to two configurations of a
three-layer beam for which refined finite-element solutions
have been recently presented by Glaser {1989). Comparison of
the results shows excellent agreement in the interlaminar nor-
mal stress and some discrepancy in the interlaminar shearing
stress. While the finite-element solution involves over 10,000
degrees-of-freedom, the present analysis requires very simple
data input, and very little computational effort even on a
personal computer. Furthermore, the eigenvalues and eigen-
functions are dependent only on the geometry and material of
the model, and are independent of the thermal loading. Once
the eigenfunction analysis for a given model has been per-
formed, repeated solutions for different temperature distri-
butions involve only different combinations of the
eigenfunctions, and may be achieved with extreme ease.

1t is pointed out in Section 7 of this paper that the first-
order partial derivatives of the stress function along an inter-
face are related to the resultant forces and moments of the
interlaminar normal and shearing stresses over end segments
of the interface. Since the maximum values of these derivatives
are global measures of the criticality of the interlaminar stresses
near the free edge, they may be used as parameters in the
fracture criteria for the initiation of delamination failure.

2 Stress Functions in a Multi-layer Beam

Consider a laminated beam of length 2z and consisting of
n+ 1 homogeneous, isotropic, linearly elastic layers separated
by n planar interfaces. We assume that mechanical loads are
applied only to the two ends of the beam, so that the top and
bottom surfaces of the beam are completely free from traction.
The layers and their interfaces will be numbered from the
bottom up. Thus the fth layer is bounded below by the (i-1)th
interface and bounded above by the ith interface. This layer
has the thickness #,, and is composed of a material with Young's
modulus £, and Poisson's ratio »,. The axial coordinate x and
the thickness coordinate y are introduced with the origin lo-
cated at the center of the beam (Fig. 1}. Any plane stress field
in the ith layer satisfying the differential equations of equilib-
rium may be expressed in terms of a stress function in the
following manner:

()] M0 o ()

ax=Fyy y=F,p Txy'_‘_Fuy (1)
Qbviously, an arbitrary bilinear function of x and y may be
added 1o the stress function without affecting the resulting
stress field in the layer.

The continuity of the normal and shearing stresses across
the ith interface y=y, requires that, along that interface,

G+1} (D G+ 10
( F _F)sn’:o: (Fvy _Fvy)!xzo-
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Hence we may appropriately choose an additive bilinear func-
tion for the stress function in the (i + 1)th layer so that, along
the interface y =y,
G+1) G+l (D) .
F =F, F,=F, (2)

Furthermore, by combining with an additive bilinear function,
the stress function in the bottom layer and its y-derivative may
both be made to vanish identically over the bottom surface.

By integrating the axial stress through the thickness of all
layers, and making use of the continuity of F,, across the
interfaces, one finds that the resultant axial force is equal to
the value of F,, on the top free surface. Let this value be
denoted by G*, i.e.,

(i) H 4]
Tie.ar-LiF, -TF,
i i

¥ =¥ F=Fw

=G‘

=F,y

i Y=Y

where y* is half the total thickness of the beam. Now the
resultant bending moment in the beam is given by

()]
M=- E S ya,dy=

i

L) iy [t
- E_Sy Foydy=- Z_:Sto» Fo)y= Fy}dy

P F’l __ylGl
where F* is the value of the stress function on the top free
surface. Since the beam is subjected only to end loads, the
axial load and the bending moment are independent of x.
Consequently, G* and F* are both constants.

3 Reduction to a Problem With Zero End Force and
End Moment by Decomposition

At this stage, we shall decompose a general traction bound-
ary-value problem of a laminated beam with stress-free top
and bottom surface (Problem A) into a similar problem with
F*=G*=0 (Problem B) and another problem in which the
stress functions in all layers are independent of x (Problem C).

In Problem C, the only nonvanishing stress component is
the axial stress. Since the shearing stress vanishes identically,
the shearing strain also vanishes and, consequently, the axial
strain e, varies linearly through the entire thickness of the beam,
ie.,

E=€— kY

where ¢ is the axial strain on the middle plane and x is the
curvature of the deformed axis. Hence, in the ith layer we have
5

0= Eieo— Exy K]

It follows that
G'=ESa, dy=Q¢— Rk 4)
P-y*G‘=—ESyo,dy= - Reg+ Sk )]

where

Q=Y Eh, R=YEW -y_iV2,
S=YEQ -y-rV3 (6

with the summations carried over all layers. Solving equations
{4) and (5) for ¢¢ and « in terms of F* and G*, and substituting
the results into equation {3), we obtain a solution correspond-
ing to a uniform axial extension superposed on pure bending.
When this solution is subtracted from Problem A, the re-
maining problem is a traction boundary-value problem with
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FT=G*=0, 1.e., a problem characterized by vanishing re-
sultant axial force and resultant bending moment (Problem
B).

In the i llowing analvsis, we proceed 1o obtain an approx-
imate solution of Problem B,

4 Polynomial Approximations of the Stress Functions

In the th laver, we Jdefine the nondimensional thickness

coordinaie g by
TP=U'—."'|—|)'U"__'r"-"
The stress function in the ith layer may be approximarted by
a polvnomial l'unction of the normalized thickness coordinate
7. In the vlassical beam theory the bending stress varies linearly
in the thickness direction. This feature is approximately valid
in each thin laver of a laminated beam, except in regions close
to the two ends of the beam. Hence the stress function in cach
laver may be approximated by a polynomial function of degree
three in the normalized thickness coordinate n. Now the sress
function in the ith laver must assume values F(x) and F. i.x),
respectively, on the interfaces y=y, and v=, |, and the v-
derivative of the stress function must assume values G (x) and
G _.(x} on these interfaces. Hence the cubic polvnomial ap-
proximation of the stress function in the rh laver must have
the following expression
'
Flegb=(1 =37 + 20"} F, () +{9- 20"+ 1)AG,_ (x)
(30’ = 20F )+ (1 ARG =2, ..m (T

The cubic polynomial approximations of the stress functions
in the bottom and top lavers are given, respectively, by
1y

Fiond=(3n" = 20YF ) + (' = )Gl (8)
and

LN

Foxm =01 =3y + 200 )+ (7= 29" + 70, . .Gt}

+ (O =20V« (o = e Gt D)

The stress functions given by equations (7)-(9) yield an in-
tertaminar peeling stress ¢, having a cubic dependence on the
thickness coordinate in each layer, an interlaminar shearing
stress r,, with a quadratic dependence on n, and an axial stress
o, with a linear dependence on n. In the next section we will
be concerned with the reduced problem, for which the resultant
axial force and resultant bending moment vanish, i.e., the
problem with F*=G* =0 (Problem B),

5 Complementary Yirtual Work Principle for Pure
Traction Boundary-Value 'roblems

In pure traction boundary value problems (including thermal
stress problems where the entire boundary of the beam is free
from traction) the total complementary energy of the beam is

-

Q=(]/2)Ejj‘(f/£)"c-w: - F\I’.l‘

=20 F o+ AL+ o)F,Cldedy (10)
Over the two end sections of the beam, we have
6Ut=(6F)|i¥=0| 67": —{6va)\v=0\

Integrating the last two equations in the thickness direction,
and using the continuity conditions of equation {2}, we obtain

AF=0, &F,,=0 f(atx= xa) an

By substituting the cubic polynomial approximations of the
stress funcrions for each layer into equation {10), and per-
forming the integration with respect to the normalized thick.
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ness ¢oordinate, we obtain an integral ¢xpression with respegt
to x only. By taking the first variation of the resuluing expres.
sion, performing integration by parts, and making u~¢ of equu-
tion{ll), we obtain a system ot ordinary ditterensial equartions
with constant coefficients of the following form

L
d’ d ©
—_— Pl a — 10 b
(i Z- 1814w 1) 07 ay
F.
G.

where [4]. [B]. and [C] are 2r by 27 constant symmetric mat-
rices. The traction boundary conditions at the two ends of the
beam provide specified values of F,, G, and their tirst deriv-
atives, This defines an eigenvalue problem where the eigen.
values are the roots of the tharacteristic equation

Determinant{{A|N ~ [B]M ~ [C]) =0 (13

Although the total number of real and complex eigenvalues is
8n. half of the eigenvalues differ from the other half only in
algebraic sign, because the characteristic equation contains
only even powers of the eigenvalue A. Considered as an equa-
tion for A, the characteristic equation vields no solutions A
with negative real parts. Hence rhere are no purely imaginary
eigenvalues.

The eigenvector corresponding to each eigenvalue mav be
¢asily determined from equation (12). All eigenfunctions decay
or grow exponentially in the positive x-direction. The manner
of decay or growth ts monotone or oscillatory depending on
whether the eigenvalue is real or complex. The solution to
Problem B is a linear combination of the eigenvectors with the
coelficients so chosen that all boundary vonditions for F, and
G, and their first derivatives are satisfied at the two ends of
the beam. If the length of the beam is sufficiently large com-
pared to the thickness, then the eigenfunctions associated with
eigenvalues having negaiive (positive) real paris make negli-
gible contribution to the schriion in the right {left) half of the
beam, since such eigenfunctions decay rapidly away from the
left (right) end of the beam. In other words, the solutions for
the left and right parts of the beam are approximately uncou-
pled.

It sheuld be remarked thar, for an inelastic material under
an incremental loading, differential equations similar to equa-
tion {12) may still be obtained from the principle of comple-
mentary virtual work even though the complementary energy
function may not exist, Hence the apphcahility of the present
method is not restricted to elastic bodies.

6 Thermal Stress in the Free Expansion of a Three.
Laver Beam

Consider the thermal expansion of a three-laver beam when
the ith laver (4 = 1, 2, 3)is subjected to a temperature increment
T, from its stress-free state. Let us first replace this problem
by a constrained thermal stress problem in which the two ends
of the beam are not allowed to expand in the axial direction
but may expand freely in the thickness direction. 1fthe material
of the ith layer has the thermal expansion coefficient a,, then
the solution 1o the constrained thermal stress problem s simply
an axial stress field umform in each layer:

]

o,=-~Eal,=-C (i=1122% {14

This trivial solution, however, requires compressive tractions
at the two ends. Hence the solution must be combined with a
purely mechanical solution which completely relieves the pre-
ceding compressive tractions at the two ends. The latter so-
lution is characterized by the stress functions of equations (7)-
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(9) with m = 2, in which the functions F1(x), Fx(x), Gi(x), and
Ga(x) are determined by the governing differential equations
of equation (12) and the following end conditions:

Gz a)=hC), Gz a)=hC +hC; Fi(x a)=h>*C/2
Fi(% a)=(h 'C+ ks’ C2)/2+ hiksC) (15)
Furthermore, the constants F* and G* in equation (9) are given
by
G*=hC + hCy + k0,
= (hllcl + hzzc‘z + h32C3)/2 + h]h;CI + h—h;Cl + hzh;Cz
(16)
Equation (15) and (16) are obtained by integrating equation
(14) with respect to the thickness coordinate.

As shown in Section 3, the traction boundary-value problem
with nonvanishing F* and G* may be decomposed into a similar
problem with vanishing F* and G* (Problem B) and another
problem characterized by a uniform axial extension combined
with pure bending (Problem C). The solution of Problem B
satisfies the differential equations of equation {12) and assumes

the boundary values given by the difference of equation (15)
and the following data:

Gi(x ay=E\R{eo— x(yp+51)/2)
Fi(x a)=(E\1’/6) [3e0—x(2¥0+ 1))
Gix a)=G(£ a)+ Exhaleg— x{y1+ y2)/2]
Fo{x a)=F (% a)+{E:hs*/6)1 30— x(2y)
+¥a)) + Ethihple—x(yo+3172)  (17)
where
Yo= —y' = —(hl + h2+ h;)/Z

The preceding expressions may be obtained from equations
(3)~(9) and (16).

For the three-layer beam, the 4 by 4 constant symmetric
matrices [4], [B] and [C] of equation (12) are shown in the
Appendix.

7 Physical Meanings of the Functions F/ (x) and G;(x)

The functions F;(x) and G;(x) in equations (7)-(9) are the
values of the stress function and of its y-derivative along the
ith interface. They are related to the resultant force and mo-
ment of the normal and shearing interlaminar stresses over
interfacial intervals of varying lengths adjacent to the free edge.
Let the origin of the axial coordinate x be shifted to the left
end of the beam. Then, over the interval [0, x] of the ith
interface in the new coordinate system, we have

So)dx= Sﬁ"dx=F,-'(x),

STX)&' = - SG,'dx= - G{x)

Similarly,
Sx aydx =X Fi' (X) - Fix),
Sx‘ 0,dx = X'F;" (x) — 2xF{x) + ZSF.- dx

Sx Toy dx= —Xx G{x)+ Sci dx,

In particular, the maximum absolute value of G,, reached at
the midpoint of the beam, is equal to the resultant force of
the interlaminar shearing stress over one half of the ith inter-
face. Generally, G;increases or decreases monotonically from
zero 1o its maximum or minimum value at the midpoint of the
beam. If G,reaches a large value in a very short distance from
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the free ecge, then an intense interlaminar shearing stress oc-
curs in a very short interval from the free edge. This situation
is susceptible to delamination failure under the shear fracture
mode. .

The behavior of the function F;’ (x) has a similar implication
for the interlaminar normal stress. This function generally
increases from zero at the free edge to a maximum value in a
short distance from the free edge. 1t then decays slowly to zere
at the midpoint of the beam. If F;’ increases from zero to a
large maximum value in a very short interval from the free
edge, then an intense fensile interlaminar normal stress acts in
that short end interval, and the resultant tensile force is bal-
anced by an equal compressive force distributed over the re-
maining portion of the half interface. This situation is
susceptible to delamination failure under the peeling fracture

mode.
The maximum values of the functions G; and F,* and the

characteristic lengths of their regions of steep gradient are
meaningful measures of the criticality of the interlaminar
stresses in the ith interface near the free edge. There are good
reasons to suggest the use of these maximum values and char-
acteristic lengths as parameters in the interlaminar fracture
criteria for the peeling and shearing modes of failure. These
parameters may be easily calculated by the present method of
analysis. Being global measures, their values are less affected
by the crudeness or refinement of the approximate analysis
than the pointwise values of the interlaminar stresses are. That
is, a relatively simple analysis may provide unreliable results
for the detailed interlaminar stress distributions along the in-
terfaces but may still yield accurate results for the maximum
values of G; and F;’ as well as the characteristic lengths of
their regions of steep gradient.

8 First Example

The preceding method of analysis is applied 1o two config-
urations of a three-layer laminated beam for which finite-
element solutions have been given by Glaser (198%). The pa-
rameters for the first configuration are:

h=2.032mm, F,= 6895 GPa,

h=0.0508 mm, F;= 13.0 GPa,

h:=0.508 mm, E;=120.66 GPa,
»=0.33 a;=23.6x10"%°C
=03 a=11.Tx10"°%°C
ry=0.28 ay= 3.2x10°%°C

The half length of the beam is 15.24 mm. For this configu-
ration, Glaser used a total of 6440 plane stress quadrilateral
elements involving 13,206 degrees of freedom. He also used
submodeling and mesh refinement to refine his solutions and
compared the results.

Inthe present analysis, we substitute the preceding parameter
values into the matrices [4], [B] and [C] as given in the Ap-
pendix. From the characteristic equation, equation (13}, we
obtain four pairs of complex conjugate roots for the square
of the eigenvalue (in the unit mm )

2.326 & 2.882 4, 15.748 = 7.950 4, 138.02 = 333.50/,
1692.4 = 2548.1

It is clear that all eigenfunctions exp{— Ax) decay rapidly away
from one or the other end of the beam. Indeed, since the first
four eigenvalues are given by + 1.736 = (.829{, a1 the mid-
point of the beam (15.24 mm from the two ends) the associated
eigenfunctions decay 10 exp(— 15.24 x 1.736) times their max-
imum values at one or the other end of the beam, Consequently,
all eigenfunctions associated with the eigenvalues having po-
sitive {negative) real parts make negligible contributions to the
solution in the left (right) half of the beam.
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Fig. 2 ResuHs of the first exampie: comparison of the present solution
with Gieser’s finite element solution

When the laminate is subjected to a uniform temperature
increment 240°C, the solution of equation (14) for the con-
strained thermal expansion problem is given by
- =—-1390.53 MPa, -C,=-136.50 MPa,

~Cy=-92.67 MPa

Now equations (14) and (15) yield

G; = 0.7936 MPa-m, F, = 806.26 x 10°% MPa-m’,
G; = 0.7954 MPa-m, F; = 846.62 x 10°% MPa-m?,
G* = (.8425 Mpa-m, F* = 1262.65 x 10”¢ MPa.m®

From equation (6) we obtain
Q'=202.06 MPa-m, R=25.190x10"° MPa-m?
$=127.32x 10" ¢ MPa-m’

From equations (4) and (5) we obtain ¢y and « associated with
the solution of Problem C (characterized by a uniform axial
extension combined with pure bending which relieves the re-
sultant axial force and bending moment of the constrained
thermal solution):

e=4.447x 107!, «=2.225 radian/m

Combining the axial stresses from equations (3} and (14}, we
obtain ¢o,= - 196.9 MPa in the bottom layer at Interface 1,
and o,=232.5 MPa in the top layer at Interface 2. These results
are nearly exact in an interior segment of the beam because
the exact solution of Problem C {which exactly complements
the preceding two simple but exact solutions) decays rapidly
-away from the two ends. Glaser’s finite-element solution yields
corresponding results of —195.0 MPa and 229.1 MPa, re-
spectively (the unit used by Glaser for these results, GPa, was
possibly an error), Hence the discrepancy between the axial
stress of the present analysis and that of the finite-element
solution is less than 1.5 percent and, since the present result
is nearly exact, the discrepancy reflects the error in the finite-
element solution.

To obtain the axial stress and the interlaminar stresses in
the vicinity of the free edge, the solutions of the constrained
thermal expansion problem and of Problem C must be com-
bined with the solution of Problem B. The last solution may
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be obtained by appropriately combining the eigenfunctions as
described in the preceding section. The final results are shown
in the three plots in the right column of Fig. 2. The corre-
sponding plots in the left column of the figure show the finite-
clement results obtained by Glaser, The agreement is very good
for the axial stress and the interlaminar normal stress. The
interlaminar shearing stress obtained in the present analysis is
smaller than the finite-element result in a very short interval
{shorter than one quarter of the laminate thickness) adjacent
to the free edge. Elsewhere, the agreement in the interlaminar
shearing stress is also excellent.

The first derivatives of the stress function along the two
interfaces are shown in Fig, 3. As previously mentioned, along
each interface the values of F,"(x) and G{x) are the resultant
normal force and the resultant shearing force, respectively,
acting across an end segment of the interface of length (@ —x).
F;’ attains its maximum value at a point ¥* on the interface
where the interlaminar normal stress changes its sign. This
point (x*=0.95z for the present solution) is generally very
close to the free edge. The average value of the interlaminar
normal stress over the end segment [x*, a] equals F;'(x*)/
(a—x"). This average value is a measure of the criticality of
the interlaminar normal stress near the free edge. The inter-
laminar shearing stress does not change sign in the interval [0,
a). Hence its integral, G{x), changes monotonically from 0 at
the free edge to its maximum (absolute) value at the midpoint
of the beam, x=0. Half of the change takes place in a very
short interval [x**, 4] near the free edge. The agverage inter-
laminar shearing stress over this short end interval is given by
GA{x**}(@—x**)=GA0)/2(a — x**). This value is a measure of
the criticality of the interlaminar shearing stress near the free
edge. One finds that x* is very close to x**. Hence the two
end segments of the ith interface used as the basis for averaging
the interlaminar normal and shearing stresses are not signifi-
cantly different.

9 Comments on the Solution Near the Free Edge
The reason for the more significant discrepancy in the in-
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terlaminar shearing stress compared to the interlaminar normal
stress (in the close vicinity of the free edge) is that, in the
present analysis, 7., varies quadratically across the thickness
of each layer whereas o, has a cubic variation. In the poly-
nomial approximation of the stress function (equations (7) 10
(9)), the coefficient functions F(x) and G4x) as determined by
the complementary virtual work principle predict better the
avergge shearing stress across the thickness of each layer, and
less satisfactorily its maximum value, which is reached along
an adjacent interface. This reasoning suggests that the results
for the interlaminar shearing stress may be improved if the
third-order polynomial approximations for the stress functions
are replaced by fourth-order polynomials in the thickness co-
ordinate. The validity of this suggestion is supported by the
superiority of the present result for the interlaminar normal
siress (which has a cubic variation in n) compared to the in-
rerlaminar shearing stress,

The detatls of the interlaminar normal stresses as shown in
the second plot in the right column of Fig. 2 are only captured
bv the finite-element solution with mesh reftnement. Thus,
when higher order polynomials are used 1o represent the stress
functions, the present analysis may provide resuits as good as
or better than finite-element solutions using more than 10,000
degrees-of-freedom, with a significant saving of programming
labor and computational time.

1t is well known that an exact analysis with strict adherence
to the constitutive relations of linear elasiicity (even at phvs-
ically unattainable high levels of stress) yields a singularity at
the intersection of the free edge with an interface. Such a stress
singularity cannot be determined by the presen! approximaie
method or by the usual finire-element analysis. Yet the pre-
dicted magnitude of the interlaminar normal stress at the {ree
edge is sometimes1aken as a measure for assessing the accuracy
of an approximaie analysis. The rationale appears to be that
since an exact analyvsis based on linear elasticity predicts infinite
peeling stress ai the frce edge, one approximate solution mighi
be better than another if, in the absence of other significan
differences, the first solution vields a greater peeling siress at
the free edge.

But the mere fact that an approximate analysis fails 10 de-
termine a stress singularity should not be considered as a weak-
ness of that analysis, because stress values exceeding a certain
bound are phvsicaliv unanainable. Progressive refinement in

the finite-element modeling or in the present scheme of analysis -

(by raising the degree of the polvnomial representation for the
stress function) may result in increasingly larger values of the
free-edge peeling siress. However, such refined solwions do
not necessarily provide more or better information concerning
the aciual stress distribution near the free edge.

Along the free edge, o, according to the exact elasticity
solution approaches infinity as one approaches an interface.
Hence, along an interface, o, , approaches infinity ai the free
edge. But this limiting behavior of o, , presents a distorted
picture of the real situation because it is a mathemarical con-
sequence of an unrealistic constitutive assumption. We notice
that r,, and a, are related bv the equilibnium equation r,, . +
g,, = 0. if an over-refined numerical or finite-element solution
vields unrealistically large local values of o, ,, then it also vields
unrealistically large values of 7,,,, i.e., of the gradient of the
imerlaminar shearing stress in an end region of the interface.
Therefore, while the higher gradients and larger values of r,,
as predicted by over-refined approximate analyses may be closer
to the exacy elasticity solution with stress singularity, they may
also present a distorted picture of the actual patiern of the
interfacial shearipg stress in a real material.

10 Second Example
The second configuration of the three-layer laminaie to be
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analvzed was originally considered by Chen et al,, 1982 (see
their Example 1). For this configuration, the half length of
the beam is 250 mm and the values of the geometrical and
maierial parameters are

h,=50.0mm, E, = 68.9GPa,

h:= 1.0 mm, E:= 30.0 GPa,

h:=50.0 mm, E.=206.9 GPa,
=033, a;=13.0x10 *"F,
=033, a.= 2.5x10 " °F,
r=0.25 a;= 6.5x10°"/F

In this case, the characteristic equation has 1woreal roots and
three pairs of complex conjugate roots for the square of the
eigenvalue (in the unit mm™ ")

004226, 012193, 001691 = 001675,
003524 = (146784, 1.95065 + 420275

Chen et al. considered a fictitious uniform temperature in-
crement of 10°°F. As indicated above, virtually exac: results
for the axial stress in the main body of the beam (awayv from
the two ends) mav he obrained by an elementary analvsi. ~¢-
glecting the contributions of the eigenfunctions. This wields
the values - 255.6 GPa and $58.7 GPa, respectively, in the
lower laver at Interface 1 and in the upper laver ar Interface
2. The corresponding values from Glaser’s finite-element so-
lution are —254.1 GPa and 554.1 GPa. Glaser reported the
values of - 248.31 GPa and 537.9 GPa, respectively, for the
solutions of Chen et al., although results with four-digit pre-
cision were not provided in their original paper and can only
be conjectured by extrapolating the curves in Frg. 4 of the
paper. A comparison of the results indicates discrepancies
smaller than one percent with the {tnite-element solution and
larger than three percent with the solution of Chen et al. (as
given by Glaser).

The results for the interlaminar normal and shearing stresses
in the vicimity of the free edge are shownin Fig. 4. The present
results are somewhat in better agreement with the finite-ele-
ment solution than the results of Chen er al.
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In the analysis of Chen et al., linear variation of the axial
stress with respect to the thickness coordinate was assumed in
the two thick layers 1 and 3 but not in the thin middle layer.
Chen et al. did not introduce stress functions. However, they
obtained quadratic variation of 7,, and cubic variation of o,
{with respect to the thickness coordinate in layers 1 and 3)
from the assumed linear variation of the axial stress by inte-
grating the equilibrium equations in each of the two layers. In
the thin middle layer, they introduced the additional assump-
tion that the shearing stress 7, does not vary in the thickness
direction. Under this additional assumption, one equilibrium
equation (which the authors used) forces the transverse normal
stress g, to depend linearly on the thickness coordinate and
the other equilibrium equation (which they did not use) requires
that the axial stress in the middle layer be independent of x—
a conclusion which is clearly incompatible with the free-edge
boundary condition.

It may be shown that the additional assumption of Chen et
al. for the thin middle layer, when combined with the free-
edge boundary condition ¢,=0, is mathematically equivalent
to imposing the following expression for the functions F, and
G, of the present analysis in terms of the functions F; and G;:

Gax) = Gilx), Fox) = Filx) + b Gi(x)

As aresult, the number of unknown functions in the eigenvalue
problem is reduced from four to two and the order of the
characteristic equation is lowered from 16 to 8. As an equation
for the square of the eigenvalue, the characteristic equation in
the analysis of Chen et al. has two real roots and one pair of
complex conjugate roots. The simplified analysis and the un-
derlying assumption are justifiable for a laminate with a very
thin middle layer.

11 Summary and Conclusion

A systematic approximate method for obtaining the plane
stress solutions of a laminated beam subjected to temperature
loadings has been developed in this paper. The method is based
on the use of stress functions. This ensures that the resulting
approximate solution for the stress field satisfies exactly the
equilibrium equations in each layer, the traction-free boundary
conditions over the entire boundary of the beam, and all in-
terfacial continuity conditions for the interlaminar stresses.
The compatibility conditions for the strain and the interfacial
continuity of the displacement are enforced in an averaged
sense by extremizing the complemnentary energy functional with
respect to the class of statically admissible stress fields whose
stress functions in individual layers are cubic polynomial func-
tions of the thickness coordinate. This results in an eigenvalue
problem associated with a linear system of ordinary differential
equations having constant coefficients, An appropriate com-
bination of the eigenfunctions which satisfies the traction-free
boundary conditions at the two ends yields the interlaminar
stresses in the beam. In the main body of the beam away from
the two ends, the axial stress is practically independent of the
axial coordinate and its values can be determined, almost ex-
actly, by combining two trivial solutions, the first being a
constrained thermal expansion solution and the second being
a solution corresponding to a uniform axial extension super-
posed on pure bending.

The present method achieves the dual objectives of efficiency
and accuracy because the representations of the stress functions
in the analysis are not chosen arbitrarily or purely for com-
putational reasons (as in choosing the shape functions in finite-
element modeling). They are based on the eigenfunctions as
determined by the complementary virtual work principle. Po-
lynomial expansion of the stress functions with respect to the
thickness coordinate may be justified on the ground that the
thickness of each layer is very small compared to the beam
length. Besides the assumption of linear thermoelasticity, the
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assumed polynomial dependence of the stress function upon
the thickness coordinate in each layer is the only approximation
made in the present analysis, Additional and miscellaneous
assumptions with obscure meaning and dubious implication
are categorically avoided. This feature makes the present ap-
proximate analysis particularly appealing from a mathematical
point of view,

Using the present method, a thermal stress analysis of a
three-layer beam involves only eight real and complex eigen-
functions and yields results that are comparable in accuracy
to finite-element solutions with more than 10,000 degrees of
freedom. Compared to the finite-element analysis, the present
method requires extremely simple data input and very little
resources of computer time, storage and power (execution of
the analysis for the two example problems in this paper took
a fraction of a minute on an 1BM personal computer with
640K memory). Furthermore, refinement and improvement in
the approximate solutions may be achieved by increasing the
degree of the polynomial representations of the stress func-
tions. However, as was argued in Section 9 of this paper, there
are good reasons to refrain from over-refining the approximate
solutions. Although an exact analysis based on linear elasticity
vields a stress singularity at the intersection of the frec edge
with an interface, this limiting behavior may provide a distorted
picture of the actual patterns of the interlaminar normal and
shearing stresses along an interface between real materials.

In the ith interface, the maximum values of the first order
partial derivatives of the stress function (i.e., the maximum
values of F;:(x) and G4x)) and the characteristic lengths of
their regions of steep gradient provide useful measures of the
criticality of the interlaminar stresses near the free edge. These
values are less affected by the degree of refinement of the
approximate analysis method than the detailed distributions
of the interlaminar stresses are. They may be used as param-
eters in the fracture criteria for the initiation of delamination
failure.
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APPENDIX

For a laminated beam composed of three isotropic elastic
layers, the symmetric matrices [4]}, [B] and [C] of Egs. (12)

and (13) are given by
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Refined Variational Solutions of

the Interfacial Thermal Stresses in 2 Laminated Beam
W.-L. Yin !
Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

Efficient and accurate solutions of the interlaminar stresses in
a layered heam under a temperanre loading are gbtained by a
variational method based on the principle of complementary
virrual work. Stress functions are introduced in each layer and
they are approximated by polynomial expansions of the fifth or
lower degrees in the thickness coordinate. Comparison of the
solutions of the various orders with the existing numerical and
analytical solutions indicates thbat the variational solutions
converge rapidly as the degree of tbe polynomial expansion
increases and that even the lower-order variational solutions yield
satisfactory results for the interlaminar stresses. Over end
segments of the interface adjacent to the free edge, the resultant
forces of the interlaminar normal and shearing stresses are given
by the first-order derivatives of the stress functions. These global
measures of the severity of interlaminar peeling and shearing
action are predicted accurately by the lowest-order variational
solution.

1. Iatroduction

Bimetal thermostats and multi-layered beams and laminates
are often suhjected to severe interfacial stresses under mechanical
and temperature loads. Mismatches in the thermal and elastic
properties of the adjacent layers generally result in a stress
singularity at the intersection of an interface with a free edge.
The problem bas received a considerahle amount of attention
because of its importance 10 the technology of composite
materials and to electronie packaging. Besides theoretical analysis
of the stress singularity based on elasticity solutions, numerical
solutions using finite-difference or finite-element methods have
been obtained to determine the interfacial stress distribution
pear the free edge.  Furthermore, simplified mechanistie
appraaches have been developed to provide efficient approximate
solutions and quantitative measures of the criticality of the free-
edge effects,

! Professor, Engineering Science and Mechanics Program.

In a recent work (Yin, 1991a), the author developed a general
scheme for the determination of interlaminar thermal stresses in
laminated beams. The approach was hased on the
complementary virtual work principle with the use of stress
functions.  Besides the assumption of linear thermoelastic
counstitutive relation, the only approximation introduced in the
analysis was that the stresses (and hence the stress functions) in
each layer are polynomial functions of the thickness coordinate.
No a priori assumption was made concerning ine variation of the
stresses along the axial direction. The resulting approximate
solutions satisfy, exactly, the equilibrium equations in each layer,
the free boundary conditions on exterior surfaces, and interfacial
continuity of the tractions across all interfaces. Compatibility of
the strain and interfacial continuity of the displacements are
enforced in an averaged sense hy minimizing the complementary
energy. This computationally simple and efficient method was
applied to the problem of a three-layer beam. The suress
functions in the successive layers were taken to be cubic functions
of the thickness coordinate. The interlaminar normal and
shearing stresses were calculated and found to be in close
agresment witb the results of a very elaborate finite-element
solution (Glaser, 1989), except in an extremely short interval at
the end of the interface.

Stress functions that are cubic polynomial functions of the
thickness coordinate in each layer yield an axial stress that has a
linear variation across the thickness of the layer. Such stress
functions are, therefore, the Iowest order polynomial
approximations needed to account for the effect of hending of the
heam. That this lowest-order variational solution provides
accurate results for the interlaminar stresses, except in extremely
short intervals adjacent to the free edge, indicates the efficacy of
the present method. More accurate solutions for the interfacial
stresses may he ohtained hy the present approach using higher-
order polynomial expansions of the stress functions. By
comparing the variational solutions of increasing nrdert among
themselves or with the elasticity solution, one may discern the
general trend of convergence and assess the accuracy and
reliablility ol the present method.




In this paper, refined variational solutions hased on fourth-
order and fifth-order polynomial expansions of the stress function
(in terms of the thickness coordinate in each layer) are obtained
for three-layer and two-layer beams. The additional terms in the
expansion provide a better representation of the stress field near
the free edge. The resulting solutions for the three-layer beam
are in excellent agreement with Glaser's finite element solutions
even in the immediate neighborhood of the free edge. The
results for the two-layer bimetal thermostat converge rapidly, in
the sense appropnate to variational calculus, 1o an approximate
elasticity solution {Kuo, 1989) which was obtained by using the
Fourier transform method and the knowledge of the stress
singularity associated with two joined quarter-spaces {Bogy, 1968,
1970}

The first derivatives of the stress functions (with respect to the
axial and the thickness coordinates) are the integrals of the
interfacial normal and shearing stresses (i.c., the resultant normal
and shearing forces) over end intervals of varying lengths. Tt has
been suggested (Yin. 1991a) that these integrals are more appro-
priate measures of tne criticality of the interlaminar stresses than
conventional measures such as the stress intensity factors, because
stress singularities ¢o not occur in a real material whereas the
resultant forces of the interlaminar stresses over short end
segments of the in:erface provide realistic indications of the
seventy of the tocal ictions of peeling and shearing. For the two-
and three-layer bea 15 studied in the present work, a comparisan
of the variational s-:lutions based on the third to the fifth-order
polynomial expansinns of the stress functions indicates that,
although the results .or the interlaminar stresses show appreciable
discrepancies near *"¢ free edge, those for the derivatives of the
stress functions are .n much better agreement. Consequently, if
the denivatives of st »ss functions are used in the fracture criteria
of laminated beam;, the variational solutions based on lower-
order polynomial -tress functions are adequate for providing
realiable failure predictions even though such solutions do not
vield accurate locil interlaminar stress distributions in an
extremely small n shborhood of the free edge. This indicates
another importan  advantage of the stress-function-hased
variational approa. 1 hesides its superior efficiency and extreme
case of dats input.

2. Decomposition of the Thermal Expansion Problem of a
Layered Beam

In a previous paper (Yin, 1991a), the thermal expansion
problem of a layered beam of a finite length was decomposed into
three component problems: (1) a constrained thermoelastic
prohlem with a vanishing axial strain and a layerwise constant
thermal stress field, (2) a mechanical problem characterized by a
uniform axial extension combined with pure bending and (3)
another mechanical problem with a self-equilibrating system of
end tractions which, when superposed on the previous two
solutions, completely relieves the tractions at the two free ends of
the beam. The first two problems are easily solved and the
solutions do not show interlaminar stresses. The interlaminar
stresses associated with the third, non-trivial problem are
determined hy solving an eigenvalue problem. In the present
paper, a more direct decomposition of the original problem into
two (rather than three) subproblems is achieved by conceptually
extending the layered beam into one of infinite length. The
second subproblem in the present decomposition is identical to
the third suhprohlem in the original decomposition.

Consider a layered beam, of axial length 2a, consisting of n + 1
distinct, homogeneaus, isotropic layers. The layers are separated
by n parallel interfaces aty = y, (i = 1, 2, ... n), where the origin
of the (x, ¥} coordinate system is chosen at the center of the
heam, and the x-coordinate runs along the longitudinal direction.
The beam is stress-free in some reference temperawre and is
subjected to a temperature increment T(y) which depends only on
the y-coordinate. Qur problem is 1o determine the thermal
stresses along the interfaces of the beam.

We consider, instead of the layered beam of finite length 2a,
an otherwise identical beam with infinite length under the same
temparature load T(y). The infinitely long beam is free to bend
and to extend along the axial direction. Consequently, the
deformation of the infinite beam is characterized by a constant
axial membrane strain €, and a constant curvature =, i.e.. the
initially straight beam extends and bends uniformaly into a
circular beamn. Since the infinite beam exists only in imagination,
over-lapping of the deformed beam with itself due to multiple
winding around the circle may be ignored. It is clear that all
cross-sections of the infinite beam are subjected 10 a zero
shearing stress (7, = 0) and to the same distribution of the axial
stress a (v}, which is generally discontinuous across the interfaces
y = ¥,, and which has vanishing force and moment resultants
because the beam is free to extend and to bend. 1n other words,
the stress distribution a,(v) across each cross-section is a self-
equilibrating system. We now consider a segment of the infinite
beam of initial length 2a. The segment is maintained in the given
siate of deformation hy the temperature load T(y) and the end
traction a,(y). If an equal but opposite system of end tractions
-a,(v) is superimposed on the segment, then the segment
becomes traction-free over its entire boundary. Consequently, the
salution of the original thermal stress problem for the finite beam
may be decomposed into (1) a trivial solution with a total strain
field characterized by a unifnrm axial strain €, on the middle axis
and a uniform bending curvature x (part of the strain field is due
to the thermal strain associated with the temperature load and the
other part is caused by the mechanical load at the two ends) and
(2} a complementary mechancial solution due soley to the
reversed end tractions -a (y). Our analysis is mainly concerned
with the solution of the complementary mechanical problem,
Once the solution of the complementary problem is obtained, it
is combined with the trivial solution of the thermal expansion of
an infinitely long beam to obtain the final solution for the
interlaminar thermal stresses in a finite beam.

3. Polynomial Stress Functions

The layers and their interfaces will be numbered from the
hottom up. Thus the i-th layer is bounded below by the (i-1)-th
interface and bounded ahove hy the i-th interface. This laver has
the thickness h, = y, - v,.;, and is composed of a matenal with
Young's modulus E,, Poisson’s ratio v, and coefficient of thermal
expansion a,. Any plane stress field in the i-th layer satisfying the
differential equations of equilibrium may he expressed in terms
of a stress function in the following manner:

oW woon ] tn)

a, = F.. gy = Foy. Tw=-F.y m
where the commas indicate partial differentiation. 1t has been
pointed out { Yin, 1991a) that, because of the interfacial continuity
of the interlaminar stresses, the stress functions in the successive
layers may he chosen in such a way that F and F., are both




continuous across the interfaces, i.e.,
{iel) (1) e} 1)
F =F, F.,=F, (2)

along the interface y = v,. Furthermore, the stress function in the
bottom layer and its y-derivative may both be made to vanish
identically over the bottom surface. It has also been shown that
F., and F on the top surface are related to the force and moment
resultants of the end traction o,(y). Since these force and
moment resultants vanish in the case of the complementary
mechanical problem, F and F,, also vanish on the top surface.

In the i-th layer, we define the non-dimensional thickness
coordinate n by

n= (y ‘Y--1)/(Y-‘Y.-1)

and approximate the stress function in the layer by a polynomial
expansion in the non-dimensional variable n:

)
F(xn) = (1-30%+ 20) F4(x) + (n - 207+ 0°) h,G,.\(x)
+ (3'72 = 2'73) F|(x) + (n] = nZ) hIG,(X)

+ 031 -0)P(x) + n*(1 - 1)°Qx) (i=2..n) (3)
where F (x), G,(x), P,(x) and Q,(x) are undetermined coefficient
functions. It is easily verified that F,(x) and G,(x) coincide,
respectively, with the first and second quantities in Eq. (2), i.e,,
they are the values of the stress function and its y-derivative along
the i-th interface. In the bottom and top layers, Eq. (3) is
replaced, respectively, by the following expressions

m H 3 3 H
F(x,n) = (3n° - 20°)F,(x) + (n° - 2°)h G ,(x)
+ 031 = 0)?Py(x) + 2°(1 - 72 Q (%) )

and

(n+1)
F(xn) = (1 - 30+ 2n)F,(x) + (n - 202+ n)h,.G.(x)

+ nz(l - n)z Pn’l(x) + nz(l - ?])30,,,1(7() (5)

The stress functions used in a previous study (Yin, 1991a) did not
include the coefficients of the quartic and quintic terms in n (P,
and Q).

Suhstituting the preceding expressions of the stress functions
into the total complementary energy of the beam

A= (/25 [[(/E) (Fipl s Fou?- 2 F o
+ 2(1 + Vn) Fuyz} dx dy (6)

we obtain, hy the usual procedure of vanational calculus, the
Euler equation associated with the first vanation of fi:

2
(A, e+ p %) = (o) ™

where [A], [B} and {C} are 4n+2 hy 4n+2 real symme1ric matrices
and where the column vector {X} has the componenis P,(x),
Qu(x), Fy{x). Fa(x), ..., F(x). Gyix), Py, (x) and Q. (x).

If the temperature load T(y) varies linearly in each layer, then
the end traction -o,(v) of the complementary mechanical problem
also varies linearly in each layer. In this case the the functions P
and Q, (i = 1, 2, ..., n+1) vanish at the end points x = £ a while
the boundary values of the functions G,and F,(i = 1, 2, ..., n) at
these end points may he easily obtained by integrating ~o (v) once
and twice with respect to the thickness coordinate. These
boundary condi-tions together with the homogeneous boundary
condition for the derivatives of the functions F,, G,, P, and Q,
provide enough conditions for uniquely determining the unknown
coefficients in the general solution of the governing differential
equation, Eq. (7).

Because of the lengthy algehraic manipulations required to
derive the coefficient matrices (A]. [B] and [C] of Eq. (7} in terms
of the geometrical and material parameters of the beam, the task
of derivation was implemented with the use of the symbolic com-
putational program MACSYMA. The program also translated the
resulting expressions of the matrices into Fortran expressions.
The expressions were subsequently integrated into a Fortran
program which reads the geometrical and material parameters
and the temperature load, evaluates the matrices [A], [B} and [C].
computes all real and complex eigenvalues and the corresponding
eigenvectors associated with Eq. (7), forms the appropriate linear
combination of the eigenvectors so as to satisfv the end conditions
for the functions F,, G,, P, and Q, (deduced from the end
traction -o (y), which is in wrn caused by the thermul load), and
finally calculates the interlaimar stresses along the interfaces by
cvaluating the derivatives of the functions F (x) and G,(x). The
execution of the program for a two- or three-layver heam requires
only a fraction of a minute on an IBM PC-XT and a few seconds
on a 386 PC. Daia input is extremely simple. It consists of a few
lines of numbers, including the number of layers in the heam (at
present limited to three but may he increased by modifying the
program), the elastic moduli and the thermal expansion coeffi-
cients of the successive layers, and the temperature load in each
layer (assumed to be constant or to vary lincarly within each
layer). Comparison of the results generated by the program with
the existing results of finite-element and analytical solutions for
the same problem show very close agreement, as shown in the
following section of this paper. The program, therefore, appears
to be ideally suited for simple, inexpensive and reliahle
computation of the interlaminar thermal stresses in the practical
analysis of a lavered beam.

4. Refined Variational Solutions of Thr er and Two-Lay
Beams

Glaser (1989) presented a finite-element solution of the
thermal stresses in a three-laver heam of length 2a suhjected to
a uniform temperature increment 240°C. The middle layer of the
heam is a thin layer of adhesive. The geometrical und material
parameters of the problem are given as follws:

68.95 GPa, v, = .33, a,= 23.6x 109°C,
130 GPa, »;= .30, a;=11.7x10%°C,
12066 GPa, v, = 28, a,= 3.2x 10%°C,

h, = 2032 mm, E,
h, = 0508 mm, E,
h} = .508 mimn, E]

nwou

where h,, E,, v, and a, denote, respectively, the thickness,




Young's modulus, Poisson's ratio and the thermal expansion
coefficient of the i-th layer.

For this problem, variational solutions are obtined by the
preceding solution scheme using polynomial expansions of the
fifith order in the thickness coorinate, and the results are shown
by solid curves in Figs. 1-4, where the axial coordinate x originates
from the center of the beam and is normalized with respect to the
half-length 2 = 15.24 mm. These results are in better agreement
witb Glaser's finite-element solution (shown by the scatterd open
square marks in the figures) than the previous varational solution
based on cubic polynomial stress function (Yin, 19914, indicated
by broken curves). Appreciable discrepancies between the third-
order and fifth-order variational solutions are confined to a very
short end interval of the interface with a length smaller than the
thicknesses of the adjacent layers.

We next consider a bimetal thermostat previously studied by
Suhir {1986, 1989) and more recently by Kuo (1989), which has
the following geometrical and material parameters:

h,= 254 mm, E,= 7038 GPa, v, = 345, a, = 236 x 10%/°C,
h,= 254 mm, E, = 324.7GPa, v, = 293, a,= 49 x 10%/°C.

Results for the interlaminar and axial stresses (normalized with
respect to E,a,aT, where aT = 240°C is the uniform tempera-
ture load) based on polynomial stress functions of the third,
fourth and fifth orders are obtained and shown in Figs. 5-8. In
these figures the origin of the axial coordinate has been chosen
at the left end of the beam and the coordinate is normalized with
respect to the layer thickness h = h, = h,. The three sets of
results for the imerlaminar normal stress o, are all in close
agreement. The peak value of the interlaminar shearing stress 7,
increases with the order of the polynomial representation for the
stress function, and the results suggest that, as the order increases
indefinitely, the variational solutions of r,, along the interface
converge to a limiting distribution which has an infinite limiting
value as x approaches zero from the interior of the interface.
This limiting behavior does not contradict the boundary condition
of zero traction at the free edge because the intersection of the
interface witb the free edge is a singular point of the stress field
where the limiting values of the stresses r  and o, are not unique
but depend generally on the path of approach to the singular
point. Analytical solutions which take into account the nature of
the stress singularity do predict unbounded interlaminar normal
and shearing stresses at the free edge (Kuo, 1989). Except in an
extremely short interval (equal in length to a fraction of the layer
thickness) adjacent to the free edge, the interlaminar stresses
obtained from the variational solutions are generally in close
agreement with those of the analytical solution.

Figures 7 and 8 show, respectively, the axial stresses g, on the
lower and upper sides of the interface in the bimetal thermostat.
The stresses vanish at the free edge due to the boundary
condition of vanishing traction. In contrast, the ¢lasticity solution
yields unbounded values of o, at the free edge (Kuo, 1991).
However, significant discrepancies among the variational solutions
and between the variational solutions and the elasticity solution
are once again restricted to an immediate neighborhood of the
free edge. Outside this neighborhood, the variational solutions
converge rapidly to the elasticity sclution.

Figures 9 and 10 show the first derivatives of the stress

functions along the interface.  Let the origin of the axial
coordinate x he shifted to the left end of the beam. Then, over
the interval [0, x} of the interface in the new coordinate system,
we have

Jro,dx - F &= P, (8)
jrf,,dx= ~j.G'dx= - G(x). 0

In Fig. 9, the maximum value of | F*l occurs at x = x” = 0.3h,
where h is the common thicknesses of the two layers. The inter-
laminar normal stress is negative in the short end intervals of
length x” and positive in the remaining portion of the interface.
According 10 Egs. {(8) and (9), the resultant normal and shearing
forces across the short segment [0, x°] of the interface are equal,
respectively, to the maximum value of F* and to the value of -G
at x". Although the three variational solutions of different
polynomial orders yield significantly different results for the
interlaminar stresses within the short segment, both the length of
the segment, x°, and the resultant normal and shearing forces,
F'(x") and - G(x’), are nearly independent of the order of the
polynomial approximation. In other words, although the Jowest-
order variational solution does not provide accurate results for the
interlaminar stresses in the immediate vicinity of the free edge, it
does yield highly accurate results for the resultant normal and
shearing forces over the short end interval of the interface where
o, maintains the same algebraic sign. If the two-layer thermostat
were suhjected to a negative temperature increase, then the value
of F'(x") would be positive rather than negative and this
maximum value of F* would indicate the resultant peeling action
over the short end interval where the pecling stress is positive,
The approximation in the variational solution results essentially
in changing the distribution of interlaminar stresses in the short
interval so 1.at the solutions are continuous at x = O and
compatible with the free-edge boundary conditions (atthough the
elasticity solution is discontinuous at the singular point). This
smoothing or redistribution of the interlaminar stresses, however,
does not appreciably change the resultant normal and shearing
forces in the interval [0, x°).

In real materials, stress singularities do noi occur and singular
interlaminar stress distributions based on the assumption of linear
elasticity are invariably changed by the nonlinearity and inelastic
response of the material tncluding the effect of plasticity.
Therefore, precise knowledge of the mathematical nature of the
stress singularity, considered as an end result of the analysis in
itself, is practically useless or irrelevant ©  Although linear
elasticity provides an elegant theory and a useful tool to the
mechanician, one should only extract from it results that make
sense and give rational interpretations of these results. From this
point of view, a singularity of the stress field merely indicates a
region of severe stress and steep stress gradient. Precise
knowledge of the stress distribution within this region, if desirable,
must be obtained by using more realistic models of the material
behavior. However, by extending the implication of the St
Venant's principle to inelastic deformations, the elasticity solution
can provide certain indications of the mutual action berween a

V'Of course, this remark is not a criticism of proper uses of
singularity solutions in mechanics - not as end results in
themselves, but as intermediate mathematical tools for
constructing final solutions, in the sense that Green's functions are
used in the potential theory and the boundary-element analysis.




severely stressed region and the larger surrounding region. The
parametersx , F'(x’) and G(x"), obtained in the present analysis,
are global measures of the interaction between an end region
around the interface and the surrounding region. These global
measures have equal status as other precisely defined glohal
measures, € g., the path-independent integrals used frequently in
fracture mechanics. Since the first derivatives of the stresses
functions at x = x have explicit physical meanings (as resultant
peeling and shearing forces over the segment [0, x']) and since
their values can be obtained accurately hy lower-order variatienal
solutions, these derivatives may be especially suitable as
parameters in the failure criteria for interfacial fracture.

5. Conclusion

In the present work, we obtained variational solutions of the
thermal expansion problem of two-layer and three-layer beams
using high-order polynomial expansions of the stress functions
with respect to the thickness coordinate. The solutions are
compared with the existing analytical and numerical solutions.
The results indicate rapid convergence of the variational solutions
of successive orders to the elasticity solution. For most practice
purposes, even the lowest-order variational solution, obtained in
an earlier paper (Yin, 1991a), yields acceptable results of the
interlaminar stresses. As the order of the polynomial expansion
increases, the interlaminar stresses approach limiting patterns that
have unbounded values as one approaches the free edge from the
interior of an interface. These limiting patterns are also
consistent with the elasticity solution. However, because
analytical functions are used as approximating functions in the
variational method, and be cause the free-edge condition is strictly
imposed, the variational solusions of 1 ., and o, must vanish and
must be continuous at the intersection of the interface with the
frec-edge. In contrast, the elasticity solution bas a singularity at
the intersection. Hence the stress field reaches different limits
depending upon the path of approach to the singularity. If one
requires that v and o, along the interface be continuous at the
free e 'ge, then the boundary-value problem of elasticity has no
solution. The preceding differences between the elasticity
solution and the variational solutions in the extremely small
immediate neighborhood of the singularity have no physical
significance because stress singularities do not occur in real
materials.

Althouh the interlaminar stresses obtained from the
variational solutions of different orders show significant
discrepancies in a short interval adjacent to the interface, their
resultant forces over the interval are in excellent agreement
These resultant forces are given by the first derivatives of the
stress functions. They are global measures of the mutual action
between a region of stress concentration around an end segment
of the interface and the larger surrounding region. Like other
global measures examplified by path-independent integrals, they
are appropriate parameters in the failure criteria for interfacial
fracture.

The variational method of solution used in the present work
is efficiemt and reliahle. The computer program, presently
developed for the analysis of two-layer beams with or without a
thin adhesive layer, is extremely easy to use, because of the
simplicity of data input. Furthermore, the method can be
extended to deal with more general heams and laminates
composed of anisotropic layers and suhjected to a comhination of

thermal and mechanical loads, including extension, bending and
twisting of the iaminates {Yin, 1991b}, so long as the geometry
and stresses are constant in the z-direction (the direction
perpendicular to the x-y plane). A mulu-layered beam or
laminate can be analyzed by a substructure approach in which two
interior layers adjacent to a given interface are treated as distinct
elastic media while the remaining layers are grouped into upper
and lower sublaminates. Such general problems with praciical
importance defy analytical methods of solution and even finite-
element modeling {without using a substructure approach} when
the number of layers becomes large. The present analysis
method, when properly modified, provides the answers with a
minimum amount of computational effort.
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