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ABSTRACT

This dissertation examines three methods of recovering signals cheaply from one class of

highly sensitive Optical Fiber Interferometric Sensors (OFIS). This class of sensors consists of

a laser light source; a 2x2 optical fiber coupler-to split the beam in two; a differential transducer

which converts a signal of interest-into optical phase shift in thclaser light transmitted through

the two optical fibers -in the interferometer; and a 3x3 optical fiber coupler-which-recombines

the two beams, producing interference which-can be detected electronically. The three outputs

can be operated on symmetrically- or asymmetrically -to recover the signal of interest. The use

of the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals

provided by the interferometcr without feedback control or modulation o]f the laser itself and

without requiring the use of electronics within-the interferometer. One of the three methods

discussed in this dissertation performs symmetric demodulation with analog electronics. Another

uses analog-to-digital conversion of the signals-and performs asymmetric demodulation in digital-

hardware. The third method discussed uses asymmetric fringe-rate demodulation. The three

methods are characterized-by their harmonic distortion, minimum detectable signal. bandwidth,

dynamic range, noise, complexity, and approximate cost.
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TABLE-OF SYMBOLS

In this dissertation- we use units from the Systeme International d'Units, or SI.

For a good description- of this system, see Appendix Bin Hayt [Ref. 1, pp. 501-

5061. A table of prefixes to units in this system is given at the end of the table of

symbols. Generally we use italics -to -denote scalar variables, bold- to -denote vector

variables, and ordinary type to-denote units. For-example, x is a scalar variable. x is a

vector variable, and s is the abbreviation for "second".

Symbol -Definition

The amplitude of the signal -of interest when it is a simple sinusoid

of the form

A- sin(cat).

Its-units vary with the context: it may be measured in units of-theA
signal of interest, or-in radians of phase shift created in the optical

fiber interferometric sensor When the signal-of interest impinges

on the-sensor. For-example, in an acoustic sensor-it could be

measured'in pascals (Pa). After demodulation of a phase-modu-

lated signal, A- could be measured in volts.

The magnetic flux-density. It is measured in-tesla (T),or. equiva-

B lently, webers per square meter (W / m2). In fundamental SI

units, one tesla is the ratio-of-kilograms -to the product of cou-

lombs and seconds, or I T = 1 kg / (C s).
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Symbol JDefinition
The speed of light, which was redefined in 1983 to have the value

C
2.99792458X 10 meters per second (m/ s).

C One coulomb, the-fundamental unit of charge in SI units.

The central value around-which the output of the-optical fiber

interferometric sensor fluctuates. Its units vary with the context:

D it may be- measured in watts of-optical power, or. after the light

strikes a photodiode, in amperes of current, or, after passage- of

that current-through a transimpedance amplifier. in volts.

The electric flux density, measured in units of coulombs per squareD
meter.

The amplitude of the output of the optical fiber interferometric

E sensor. Its units vary with the context in the same manner as the

units of D described above.

The electric field intensity, measured in units of volts per coulomb

E -(V / C). In fundamental SI units, this is equivalent to kilogram

meters per coulomb per second-squared (kg-m I C s2).

The conventional frequency of the signal of interest, measured-in

hertz (Hz).

The scale factor of tae Optical Fiber Interferometer with a power

amplifier of gain 10 providing the input voltage signal. This is the
F, conversion factor between the peak input tothe power amplifier

in volts and the output in-radians of peak phase shift.
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Symbol Definition

The scale factor of the Analog Interferometric Simulators. This is

Fs.EFF the conversion factor between the peak input in volts and-the

output in radians of peak:phase shift.

:-The scale factor of the Symmetric Analog Demodulator. This-is

Fswo  the conversion factor between the input in radians of phase shift

and the output in volts.

-One farad, the SI unit of capacitance. One farad is equal to one

volt per coulomb (V C), or, in fundamental units, the product ofF
kilograms and cubic-meters divided by the-product of seconds

squared and coulombs squared I(kg m-) I (s- C2)1.

One heni. the SI- unit of inductance. One henry is:equal to one

weber per ampere (Wb I A), or, in fundamental units, the productH
of kilograms and meters squared divided by coulombs squared

[(kg m) I C21

The magnetic field intensity measured in units of amperes perH
meter (A /m).

One hertz, the SI -uniL of frequency. One-hertz is defined to be

Hz one cycle per second (s-'). Sinceone cycle-comprises 2-, rad,

1 Hz = 2- radls.
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Symbol ]Definition

The imaginary number usually called i by-mathematiciansand

physicists. It is- called j by electrical engineers in order to avoid

confusion with the conventional use of the symbol i for electrical

current.

The current density, measured in amperes per square meter

(A/ m).

k - Boltzmann's constant, with a value of 1.38x 10-2 ' -J/K.

One kelvin, the unit of thermodynamic temperature. Until, the

13th General- Conference on Weights and Measures changed the

name ch 1967, this was called the degree Kelvin (0 K). Thedegree
K

Celsius, measures the same interval of temperature, but the Celsius.:

'scale has a different origin: 0°C = 273.16 K. [Ref. 2

p. F-100]

kg One kilogram, the fundamental SI unit of mass.

m One meter, the fundamental SI unit of length.

rad One radian. There are-27r rad in a circle.

TThe real-part of the quantity which follows. For example, if z is a

complex quantity, then

Re
-Re[z] = Re[x + jy] - x.
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Symbol JDefinition
_s One -second, the- fundamental SI unit of time.

One siemen, the ratio of amperes-to volts (A / V). (Formerly the

siemen was often called a mho-and either the symbol U or fl-

S was used -to represent it.) In fundamental -SI units, one siemen

equals the product-of seconds and coulombs squared divided by

the -product of kilograms and cubic-meters [(s C2)J (kg m)].

t The time in seconds (s).

The period- of one oscillation of the signal -or interest. T is mea-

sured.inunits of seconds (s). It is related to the conventional

frequency f by

T

T 1
f

The kth output of the optical fiber interferometric sensor. In an

interferometer using 3x3 optical-fiber couplers at the~output, k

can take on the values 1, 2, or 3. -In such an--interferometer.

Xk xk = D + E cos k - -- +

The other symbols in this expression ate defined elsewhere in this

,table.

The permittivity of a given substance, measured in- farads per

C meter (F / m). In isotropic materials, it is a scalar-constant. -In

anisotropic materials, it is a tensor. [Ref. 1, p. 1491

xxv~i



Symbol- Definition

The (dielectric) -permittivity of free space. This physical constant

has the -value 8.854x 10- 2 farads per meter'(F /ni).

The permeability:of a given -substance, measured -in- henrys per

/a meter (H / m). In isotropic materials, it is a scalar constant. In

anisotropic materials, it is a-tensor. [Ref. 1. p. 3151

The permeability of free space. This physical constant is defined

tohave the value 4-,x10-" henrys per meter (H m i).

The ratio between- the circumference- of a circle and its diameter.
7r

There are 27- radln a circle.

This symbol represents a signal of interesL. It is a function-of

time, and so-can also be written as ,(t). Frequently in -this disser-

tation we assume f" is aosimple sinusoid with amplitude A and-

natura frequency (, so

= A sin(Cot).

This assumption simplifies certain mathematical manipulations, but

in general. il f is-periodic, it-may be represcnted:as a Fourier

series consisting of many frequencies. ovarious-amplitudes.

The (electrical) conductivity, measured-in units of siemens per
0r

meter (S I m).

xxvii-



Symbol- Definition
hase~ ~~ shf nteot

The phase shift inthe output of the optical fiber interferoretric

sensor due to various, miscellaneous causes excluding the cause

which the sensor was designed to-detect. For example, in an

acoustic sensor, fluctuations in phase due to changes in tempera-

ture would be-lumped in with 4,. Although written as a constant

4 is not necessarily fixed. If it is not fixed, we-generally write it as

0(i). Often, however, its frequency of variation is well below the

frequency range of the signal of-interest. In this case, we call

"quasi-static". For example, temperature and-pressure usually

vary much more slowly than acoustic waves and so the changes in-

phase induced-by chpnges in temperature or pressure are quasi-

static compared to: changes -in phase induced by-acoustic waves.

The phase shift in a-general sinusoid. We use this symbol rather

than k only-to avoid-the impression that some phase shift under

discussion is necessarily a-phase shift induced in an interferometer.

The natural frequency in units of radians- per second&(s-). It is

related to the -conventional frequency fin hertz (Hz) by
6) W- 2ntf.

-Used as a superscript to indicate the complex conjugate of a

quantity. For example, if z = x + jy, then z = x - jy.

Used as a superscript to indicate: that a quantity is a-spectral'

t density. For example, et could symbolize a voltage spectral

density in volts per root hertz (V/-Hz).
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Symbol- Definition

Used to signify the parallel combination of two, impedances. For

examplc, the impedance of Z, and Z2 taken in parallel-can be

computed as

1+! Z1+Z2z z - + z z
z, z

'Used to signify the logical AND of two logical quantities. For

A example, the AND of A andB is written A A B;_ The resultof the

-operation A A B is TRUE ifA=B=TRUE and FALSE otherwise.

'Used-to signify the logical OR of two-logical quantities. For

example, the OR of A and B is written-A V B. The result of the

operation A V B is TRUE unless A-B=FALSE, in which case the

Trcsuit-is FALSE.

:Used-tt sigiity the logical EXCLUSIVE-OR of:two logical quanti-

ties. For example, the EXCLUSIVE-OR of A and B is written

A ( B. The result:of the operation.A ( B is TRUE if A B and

FALSE otherwist

Usedto signify that one-quantity is approximately equal to anoth-

er. For example, if A=B, then A and B are roughly the same.
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Symbol Definition ]
-Used to signit'-that one quantity is-very much lesszthan another.

For example, if A ((B, then A is very much less than B. This is-a

somewhat vague expression; it simply means that in a comparison,

A is negligible compared to B. Some authors- interpret A ,B to

mean that A:<B/1O.
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STANDARD PREFIXES USED-:WITH- SI UNITS

This table is adapted 1rom Hayt IRef. 1,p. 5061.

I Abhrev- I Abbrev- 1
Prefix jMeaning Prefix j_______jMeaning
atto- a- 101 deka- da- -101

femto- f- 10-15 hecto- h- 102

pico- p- 10-12 kilo- k- i0,

nano- n- l0-9 mega- M- 11

micro- p-1 ~giga- G-109

deci- d- 10-1 cxa-- E1018
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GLOSSARY

AC Alternating current.

AC COUPLING Electronic devices can-be connected to one-another either by AC-coupling

or by DC coupling. In AC coupling.:the lowest frequencies arc removed -from a signal

before it is passed to the following stage. Some instruments, the HP3561A Dynamic

Signal Analyzer for example, have a -selectable option to permit the user to select the

mode of coupling he -prefers.

A/D Analog-to-digital converter. A/D converters generate an analog signal from a

sequence of digital words. An analog signal- can assume a continuous -range of

amplitudes, whereas -a digital word can represent only a discrete number of amplitudes.

Consequently, only some of the possible analog -signal levels can be generated. The

abrupt changes in output level- which result from changes in the magnitude of the input

word generate high-frequency noise in the output, which is usually filtered by a -low-pass

filter in order to mitigate this effect. A/D converters are characterized by the range of

analog voltages over which they can operate, by the number of bits which they use to

represent- the voltage, and by the time it takes-them to perform-a-conversion.

D/A converters generate a digital word representing the magnitude o. an analog signal.

An analog signal can assume a continuous range of amplitudes, whereas a digital word

can represent only a discrete number of amplitudes,.so the conversion process introduces

quantization errors. D/A converters are characterized by the range of analog voltages

which they can generate, by the number of bits which they use to represent the voltage,

and by the time it takes them to perform a conversion.
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AM Amplitude modulation. The amplitude of a-sine wave-can be changed as a function

of time, i.e., it can be modulated.

APPLICATION-SPECIFICIN'I'EGRXTEl) CIRCUIT (ASIC) It is increasingly common for many

complex electronic functions to be combined onto a single -integrated circuit on- a silicon

(or other) substrate. These custom-designed circuits are known by the acronym ASIC.

The digital implementation of the demodulator, in particular, would benefit greatly from

the use of application-specific integrated circuits since it requires the-largest number of

interconnections, and, so. is -the most complicated of the demodulators considered in this

dissertation.

COHERENT-LIGHT The coherence of a source-of electromagnetic radiation is a -measure

of how pure its wavelength is, or equivalently, how narrow its bandwidth is. In reality,

there are no perfectly coherent -sources: all sources have a finite (non-zero) band of

component wavelengths. However, it is convenient to comparea real source to an ideal

(coherent) one. There are two-aspects-to coherence. Firstly, we generally require that

any two photons coming from the source have the same frequency. Secondly, we require

that the phase of a photon depend only on its distance from the source. To measure

coherence, we can split light from the-source into two-beams, permit each beam to travel

along separate paths of known length, and then permit these two-beams-to recombine.

The electric fields of each of the two beams add vectorially. If they happen to be of

equal magnitudes and opposite directions, then they sum to zero, and the result is zero

optical power. Conversely, if they point in the same direction, then the sum of their

amplitudes and the corresponding power is non-zero. In general, the sum will be

intermediate between these.

The only optical detectors currently available detect optical power, not electric field

strength and direction, because optical frequencies are too high for current electronics

to keep up with. Now if the difference in the two path lengths is large enough, then the

two beams are no longer synchronized, which is another way of saying that they are no
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longer coherent. Upon recombination, no recognizable pattern of bright and dark

"fringes" is detectable. All that appears is a smear of essentially -constant brightness.

The minimum path difference necessary to produce this effect is called the coherence

length of the light source. The amount of time-it takes light to propagate over this path

difference is called the coherence time of the-light source. The light from the sun and
from incandescent and fluorescent lamps is- incoherent: there is no path difference so

small as to permit an interference pattern to be visible. Laser light, in contrast, exhibits

some coherence. Different laser sources have different degrees of coherence, that is,
different coherence lengths. The semiconductor lasers usedin the research described in

this paper have coherence lengths on the order of a few centimeters.

D/A Digital-to-analog converter. D/A converters generate a digital word representing

the magnitude of an analog signal. An analog-signal can assume-a continuous-range of
amplitudes, whereas a digital word.can represent only-a discrete number of amplitudes.

Consequently the conversion process introcuces quantization errors. It is possible for

signals of more than one frequency to generate the same-output sequence, a phenome-

non known as aliasing. To eliminate At. effect, frequencies exceeding the- Nyquist

frequency (half of the sampling frequency-) must be removed prior to conversion. This is

generally done: by -passing.the analogsignal through a low-pass filter before sending it to
the D/A converter. D/A converters ak- characterized by the range oi analog voltages

which-they can-generate, by the number of bits which they use to represent the voltage,

and by the time it takes them to perform a cenversion.

DC Direct current.

DC COUPLING Electronic devices can be connected either by AC coupling or -by DC

coupling. With DC coupling, all frequency components of a signal (even those of zero

frequency) are passed to the following stage.
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DECADE In the expression per decade increase of frequency, we mean for every ten-fold

increase in frequency.

DQPMS (DIGITAL QUADRATURE PHASE MODULATION SIMULATOR) This is an interfero-

metric signal simulator we designed and built using a mixture of analog and- digital

circuitry. It produces in-phase and-quadrature signals which resemble -the outputs of an

optical fiber interferometric sensor terminated with a 2x2 optical fiber coupler, rather

than a 3x3 coupler. However, the waves are squared-off. not smoothly varying. (As is

the case with all digital signals, some overshoot always exists, and-it takes some-time for

the signal -to settle at the -new -level- after a transition, but these- effects can usually -be

neglected.)

DSP Digital Signal Processor. These are integrated circuits which perform a dedicated

signal-processing function. They arc similar to the more general-purpose microprocessor.

EG&G PRINCETON APPLIED RESEARCH MODEL 5210 LOCK-IN AMPLIFIER This lock-in

amplifier permits very small signals to be detected synchronously. It provides variable

time constants, sensitivities, and filter skirts witheither -6Db or -12 Db per octave

change in frequency.

EMI Electromagnetic interference. Electric and magnetic fields can propagate through

space. As a consequence, despite the fact that these fields are attenuated as they

propagate, and even though their sources may be quite some distance away, electrically

responsive elements can be affected by them. EMI can also penetrate through to a

system through power supplies, if they are connected to the power mains, and from other,

less obvious, mechanisms. The latter include optical effects (such as the noise induced

in diodes by fluorescent lighting), acoustic coupling, vibration, and even thermal

fluctuations.



FRINGE The output of an interferometric sensor is a sequence of-bright and dark light.

If the recombined-waves undergo a shift of-27r radians (one wavelength), a complete cycle

from-bright to dark and back to bright will occur. This is called-one fringe. To obtain

one fringe, the amplitude of the stimulus must be r radians, which results in a total

excursion in phase of ±-r radians. It is possible for the direction of the phase shift to

change in the middle of such a cycle, and- in this case-we speak of a sub-fringe. A sub-

fringe is a shift of less than 2v radians (phase amplitude less than i, radians), or less than

one wavelength-of light. For example, if the wavelength l of the light in-a vacuum is 830

nm and the change Al in relative path lengths within the two legs of-the interferometer

is 3 pm, then the interferometric output will undergo 2-i'nAl/A = 33.6 rad of phase shift,

which is 5.4 fringes. Here. we have taken the index of refraction /Z= 1.48, which is a

typical value for glass.

HP3314A FUNCTION-GENERATOR This-device can generate sinusoids, triangular waves,

or square waves, as well as more complicated waveforms. The user can command a

desired signal amplitude, frequency, phase shift relative to some- reference, and a DC

offset. We found that the commanded signal amplitude-was inaccurate at low levels.

Using the Gertsch Model 480 Ratio Standard to reduce a strong output from the

HP3314A to the desired low level was much more accurate.

HP3456A DIGITAL VOLTMETER This digital voltmeter-provides up to six digits of accuracy.

It has an averaging capability. The number N specifies the number of readings which the

HP3456A takes before computing an average. Individual readings are averaged over a

number of intervals of the power line cycle. With 60 Hz operation, one cycle is 1/60 s

= 16.7 ms. We typically specified either 10 or 100 power line cycles per reading in

making noise measurements, depending on how erratic the measured signal was. As the

period of observation lengthens, the variance of the average computed by the instrument

diminishes, although the variance in the signal itself (which the instrument also computes)

is unaffected.
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HP3561A DYNAMIC SIGNAl. ANALYZER This device is capable of performing a Fast

Fourier Tra';sform (FFT) on its input. The resultant display of amplitude vs. frequency

makesahalysis of the spectral content of a signal quite straightforward. The device has

a mode for computing noise on a basis which is normalized for the bandwidth. This

means that the measured amplitude is divided by the square root of the bandwidth in

which that amplitude was measured. Unfortunately, the display does not make this fact

highly evident. The device can measure frequencies of up to 100 kHz. It adjusts its

dynamic range as needed. It can perform averages, too.

HP4194A- IMPEDANCE-GAIN/PHASE ANALYZER This instrument makes the measurement

of gain and phase of a electronic system very easy. The range of -frequencies one wishes

to have applied to the system under test can be specified. The output signal is applied

to the system under test and the output of that system is applied to the test input of the

HP4194A. The difference in magnitude and phase can-be plotted with eitherlinear or

logarithmic scales. This device can- generate similar plots of the-impedance of a system

under test, and can calculate the equivalent parameters of resistance, capacitance, and

inductance for a variety of models such as-a series connection of a resistor, capacitor and

inductor.

INCOHERENT LIGHT Incoherent light is that in which the phase of one wave-of light -is ncE

related to the phase of another wave except by some random difference. The most

common example of incoherent light is that from the sun. Of course, if the two waves

do not have the same frequency, then they are generally not regarded as coherent even

if their frequencies are commensurate: they have to have equal frequencies and their

phases must not bear a random relationship to one another before they can be reg'' ded

as coherent waves.

INPUT PHASE SHIFT A demodulator of interferometric sensor outputs is a device which

senses optical phase shift and generates a voltage proportional to the phase shift. In

sensing-applications, the quantity of interest is more apt to be a meastire of pressure (in
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pascals), distance (in meters), temperature (in kelvins) and so on. The function-of the

transducer is to convert this physical phenomenon, the signal- of interest, into an

equivalent differential phase shift of the light within the two legs of the interferometer.

In the case of optical- fiber sensors, this usually is done by causing the signal of interest

to strain the glass fibers in direct proportion to the amplitude of the signal. This makes

the amount of phase shift directly proportional to the amplitude of the phenomenon

being measured. This in turn means that the output of the demodulator is directly

proportional to the amplitude of the signal of interest. In short, the phase shift is a

measure of the signal of interest, no-matter what that signal might he.

JFET Junction Field-Effect Transistor. A unipolar transistor in which the current

flowing between two terminals of the-device is controlled by the electric field applied to

a third terminal.

LSER This is an acronym standing for Light Amplification -by the Stinulated Enission of

Radiation. The essence of laser operation is-that the atoms in a substance are excited

by some form of Npumping" action so that there are more of them in an excited state

than in the- usual, relaxed state. When any such atom relaxes into the state of lower

enerey, it emits a photon. Such emission occurs spontaneously. by chance. When this

photon interacts with another excited atom, it can cause-this second-atom to relax to the

lower state too, during which process the second atom also emits a photon. This process

is known as stimulated emission. The significant fact is that the original photon is not

absorbed in the interaction, but continues onward, and the new photon has the-same

frequency, phase, and direction of propagation as the first photon. Because the supply

of excited atoms is kept artificially high by pumping, the process can-repeat itself over and

over again. A resonant cavity usually partly or completely surrounds the emissive

material, and it ensures that the process occurs often enough for a useful level of

amplification to occur. (Some lasers provide sufficient amplification without a resonator.)

The consequence is an intense beam of coherent photons. A partially transmissive
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element, such as a partially silvered mirror, permits the beam to escape from the resonant

cavity, if-one-is used. The term laser has come to refer to the process itself, to the device

in which- the process takes place, and to the beam produced by the device.

MASER This is an acronym standing for Microwave Amplification- by the Stimulated

Emission of Radiation. Apart from the fact that the electromagnetic radiation emitted

by the maser process is in the microwave region or the spectrum, rather than in the

visible region, the process-is exactly the same as was described above under the heading

LASER. Historically, the maser was invented before the laser.

MAXIMUM-PERMISSIBLE SIGNAL (MPS) The largest amplitude of the signal of interest

which can be processed by a demodulator -without introducing undue -distortion. Some

latitude exists in-establishing the amount of distortion -which is regarded as acceptable.

MINIMUM DETECTABI.F SIGNAL. (MDS) The smallest amplitude of the signal- of interest

which can be-distinguished from noise. This is the level of signal which- provides a signal-

to-noise ratio of I (0-dB). For a particular purpose, a higher or lower ratio of signal-to-

-noise ratio may be appropriatc. For example, communications systems typically need

more than 10 or 20 dB between signal and noise.

OPTICAL FIBER COUPLERS These devices take the place of partially silvered mirrors and

prisms, which were the only means of splitting light beams and recombining them in

interferometers in the days before optical fibers had been invented. They are

manufactured by laying two or more fibers parallel to one another and- fusing them

together. The geometry of the arrangement and the length or the fused section-both are

crucial in determining the characteristics of the coupler. Two common examples-of these

couplers are 2X2 couplers and 3-x3 couplers. The 2x2 coupler brings two fibers into

close contact; hence it has two inputs and two outputs. Either end of the coupler can

function either as input or as output; in other words, the 2X2 coupler-is bidirectional.
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The 3x3 coupler brings three fibers into close contact. Hence it, has three inputs and-

three inputs,and it, too, is bidirectional.

PLA (PROGRAMMABLE LoGic ARRAY)- An integrated circuit which contains flip-flops for

storing-bits of data and which has programmable logic. In the variant-of this that we use,

an Atera EP310, one can designate .vhich pins are inputs, which arc outputs, and how

the outputs should be derived from the inputs. One can also-make-this particular PLA

operate in a-synchronous-(clocked) or asynchronous (unclocked) mode. Using a PLA is

a convenient way to reduce numerous discrete-logic integrated circuits to a single chip.

The EP310 can be erased (by exposure to ultraviolet light) and reprogrammed, making

it an excellent choice for prototype systems.

PHASE RATE The multiplicativeproduct of the phase of the output of aninterferometric

sensor and its frequency. It is-measured-in radians per second and.is-an- indication of the

highest frequency- components present in the interferometric output. The chief limitation

on acceptable phase rate is the bandwidth of the demodulator. If -the -signal is

differentiated, the phase-rate appears-as a factor in the-magnitude of the derivative, and

so the possibility of saturating amplifiers also-arises if phase rate is too high. This is the

second principal limitation on acceptable phase rate.

POLARIZATION ANGLE The light from many -lasers is -linearly polarized. As it passes

through an interferometric sensor, the polarization direction changes due to several

uncontrollable factors. One of these is twisting of the fibers themselves. As a result, the

light which is recombined at the output of the interferometer often- does not have the

optimum polarization. The optimum polarization occurs when both interfering bea'ns are

polarized in-a parallel direction, the specific-direction being irrelevant.

When-two beams of light have entirely orthogonal polarizations and no components of

parallel polarization, no interference -results. This would result in an output of uniform

intensity. In practice, we have- never observed this. The implication is that the light in
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our interferometer is not purely linear in its polarization. The Sharp LTO15 laser diode

is linearly polarized in a ratio of 5:1 for I mW output power, 100:] for 10 mW output

power, and 250:1 -for 30 mW output power [Ref. 31, which is consistent with our

observations. So even -though the visibility of the interference pattern does indeed

wander with time, it never vanishes totally. This has -a beneficial effect on all the

demodulators we consider in this dissertation, for it means that there always is some

signal to process, which would not be the case if the interference pattern were wholly

absent.

RMS Root-mean-squared. In general, the root-mean-squarc of a function v(t) is

VS T -* Tf 0

When v(t) is a periodic signal with period T, then we obtain the same result without

taking the limit, and the RMS-value is given by

VRs= fTv2(tdt.

If v(t) = A sin(wi), or v(t) = A cos(col), then its RMS value is A/%/2.

SPST Single pole, single throw. A type of switch which can connect two--terminals

together or leave them open.

TEK2430 DIGITAL OSCILLOSCOPE This device has two input channels. It digitizes the

inputs and stores them in memory. This means that a display can be frozen, and the

scales of time and amplitude can be altered to provide increased resolution. It has a

mode in which Channel I can be displayed along the horizontal axis and Channel 2 can

be displayed along the vertical axis, permitting the display of Lissajous patterns. This
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makes accurate measurements of the phase angle between two signals possible,_since a

,riety of measurement functions is provided, including voltage time, and frequency.

7L ('1RANSISTOR-TRANSISTOR LOGIC) A particular family of digital logic integrated

circuits. Signals can take on only two valid voltage levels. The low state is at-roughly

0 V. The high state is at roughly 3.3 V. The supply voltage is at +5 V. [Ret. 4]

VCO (VOLTAGE CONTROLLED OSCILLATOR) A circuit which outputs a sinusoidal, square

wave, or triangular wave whose -frequency is directly proportional to the input voltage.

The EXAR Archer XR2206 is an example of a VCO, and is the one we employed in the

coesign of the Digital Quadrature Phase Modulation- Simulator (DQPMS).
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I. OPTICAL FIBER SENSORS

A. APPLICATIONS OF OPTICAL FIBER SENSORS

That anything at all can bc detected with strands of glass fiber comes as a complete

surprise to the average person. One readily thinks- of glass as a useful substance for

windows and for beverage containers. That silicon, the raw material from which glass is

made, is now the most widely-used substance in fabricating integrated circuits is known

to many. The widespread introduction of optical fibers into the telecommunications

industry has of course made the existence of optical fibers a matter of common

knowledge. Many consumers even have seen their use by artists to make exotic lamps.

Their use as sensors, however, is largely unknown to the ordinary :itizen and seldom

mentioned in the- popular press.

Yet optical fiber sensors have attracted considerable- interest in the scientific and

technological community since 1977. They have been usedsuccessfully to sense a variety

of phenomena, including acoustic fields, temperature, magnetic fields, displacement, fluid

level, torque, current, strain, pressure, acceleration, rotation, and seismic activity.

[Ref. 5, p. 626] Apart from the apparent versatility of application of optical fibers

as sensors, a number of other reasons for this great interest are shown in the list -Qf their

advantageous characteristics presented in Table I. Some disadvantages to the use of

optical fibers are also given in zhe table.

B. THE NEED FOR LOW-COST SENSORS

Of particular interest to-the United States Navy is the possibility of using optical

fiber sensors as highly sensitive underwater hydrophones. This interest has been a

principal, underlying motivation behind the -research into optical fiber sensors currently

in progress at the Naval Postgraduate School, as well as at the Naval Research

Laboratory. In a time of great fiscal constraint, indeed, at any time, the Navy is very
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Table I Advantages and disadvantages of optical fibers sensors.

Advantages

1 Optical fibers are lighter-in weight than metal. Therefore a length of optical fiber require much
less structural support than a comparable length of metal wire.

2 Optical fibers are made from sand, which potentially could make them much cheaper than metal

wires.

3 Losses-in optical fiber arevery low.

4 Opticalfibers arc immune to electromagnetic interference (EMIj. This makes them suitable-for
use in "noisy" environments.

5 Optical-fibers are geometrically ,ersatile. They can be stretched out, coiled up. and embedded in
epoxy, plastic, or composite materials very readily.

Glass is immune to the effects of many chemicals which corrode metals. Consequently optical
6 fibers can sometimes be used in environments which would be harmful to metal wires.

7 Sensors made from optical fibers are compatible with optical fiber communications systems.

8 Power consumption is very low in optical fibers.

9 Large separations between sensor and detector are feasible.

Disadvantages

As of the time of writing (1991). optical signal processing is not as highly developed as electronic
signal processing. so conversion of optical signals to electronic form is usually required. Thus a
purely optical system is generally impractical. One could expec! costs to be lower if mixed
processing were unnecessary.

Connecting optical fiber% together requires splicing, and reflections and losses invariably occur at
the splices. These effects may be small if slices are performed by fusing the glass strands
together, but joinitg glass fibers together by this means is much less convenient than soldering

metal wires together.

Tapping into an optical fiber requires the use of optical fiber couplers, and these devices are
3 more costly, less convenient, larger. and heavier than the soldered connections permissible with

metal wires.

Optical fibers are more delicate than metal wires. Although glass is an amorphous crystal and
4 can be stretched to a limited degree, it will break much more-readily than metal-wires of

comparable diameter if its radius of curvature is made too small.
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concerned about the immense cost of much of the modern technology used in military

applications. In particular, it is infeasible to deploy large numbers of underwater

hydrophones if their price is exorbitant.

In addition to the cost of the sensor itself, there is a cost. associated with extracting

information from it about the phenomenon it has detected. It is of little utility to have

inexpensive sensors if the means to recover the signals of interest is not correspondingly

cheap.

The purpose of this research is to describe three inexpensive ways to recover signals

from very sensitive optical fiber interferometric sensors. Whether the signals are derived

from acoustic sensors, accelerometers, scismometers, or any -other kind of optical

interferometric sensor, the signals can be recovered in the identical, inexpensive manner

presented in this dissertation.

C. PRINCIPLES OF OPERATION OF OP'ICAL FIBER SENSORS

Since awareness of optical fiber sensing is not yet widespread, it is the purpose of

this section to examine in general terms the means by which optical fibers can be made

to act as sensors of physical phenomena. The phenomenon under consideration may

have a natural origin, as in the case of seismic waves, or it may have a man-made origin,

as in the case of noises emitted by a submarine. In either case, we shall refer to the

phenomenon which we want to detect as the "signal of interest".

Detection of some signal of interest by an optical fiber sensor can be done if we

transmit-light through the fiber and if we somehow modify the light within the fiber. This

step is called the modulation of the optical (light) wave by the signal of interest. Of

course, merely altering the light within the fiber may -be necessary, but it is hardly

sufficient. Our goal is to examine the modified light when it finally emerges from the

optical fiber and to infer from it what must have been the stimulus, that is, the quantity

of interest to us. This latter step is the demodulation of the optical wave.' A general

We often speak loosely of demodulating the signal since it is the signal which
interests us, not the optical wave-itself. This is not strictly accurate, however.
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goal in the design of sensors is to ensure that only the signal of interest induces the

modulating-effect. As this is a matter pertaining to the design of transducers for specific

applications, we shall not discuss this in-detail.

There are three fundamental aspects of light which can bemodified to encode the

information we are interested in detecting. These are-amplitude, polarization, and phase.

While it is possible to modulate all three aspects of light simultaneously, typically only one

of them is modulated. Some workers -in- this field also speak of modifying the wavelength,

the length of the delay in receiving a response to a pulse, or the spatial position of the

received radiation- [Ref. 6, p. 596]. We shall regard these latter three as essentially

the same as modifying the phase of the light.

1. Amplitude Modulation

The quantity being sensed-can be made to modulate the amplitude of coherent

or incoherent light transmitted through the fiber. (Recall that the amplitude of light is

the amplitude of the continually changing electric and magnetic fields that comprise light.)

In one example of this method, external pressure is applied to the fibers and induces

small bends in it. These so-called micro-bends change the transmission characteristics

within the fiber, and this. in turn, changes the amplitude of the light within the fiber.

Upon the emergence of the light from the optical fiber, the change in amplitude is

manifested as a change in intensity. [Ref. 6: pp. 600-6011 Standard methods of

electronic amplitude demodulation- permit recovery of the signal inducing the changes in

intensiti, e.g., the acoustic field being measured.

A primary drawback to the use of amplitude modulation is the variation-in the

intensity of the output of the light source with variations in temperature, aging, and other

causes. Compensation for changes in temperature is feasible, but it adds to the

complexity and the cost of these systems. Compensation for other causes of the

variations in the intensity of the light -is not so easy. In any case, the variations distort

the output, as anyone who has ever listened to AM radio during a thunderstorm will

attest.
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2. Polarization Modulation

The quantity being sensed can be made to modulate the polarization of the

light within the Fiber. By detecting the change, it is possible to recover the signal. As an

example of the use of this form of light modulation, quartz will rotate the plane of

polarization of a beam or light [Ref. 6, p. 6141. The amount of rotation is linearly

dependent on temperature. as shown in Figure 1. One could therefore design a sensor

of temperature by taking advantage of this effect and observing the amount of rotation

of the polarization which a light wave underwent. A disadvantage of this particular

0
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Figure 1 Variation of the angle of rotation of polarization in quartz as a function of
temperature. Adapted from Busurin, et al. [Ref. 6. -p. 6141
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example is that the light must leave the fiber and then enter it once more. The optical

fiber is reduced to beinga mere-conduit for the signal and is -not really-itself a sensor.

A more general disadvantage of polarization modulation is the tendency of the

optical fibers to get twisted, altering the polarization of the light emitted from the fiber.

To counter this, one can use polarization-preserving optical fiber, but it costs more than

ordinary fiber. The use of polarization controlling- devices is another possible solution,

but these operate by twisting -the fiber by an amount which corrects an error in

polarization. Simple polarization controllers do not detect the amount of the error, nor

do they prevent the fibers from- twisting further and so spoiling the corrective effect.

More elaborate controllers do detect the error and attempt to keep it-constant, but-they

are correspondingly more costly to use.

3. Phase Modulation

The field being sensed can be made to modulate the phase of the light within

the fiber. This is most easily done by arranging the fibers-so that they arc stretched or

relaxed by changes in the signal of interest. If the length of a fiber changes by one

wavelength X, there will be 2-' radians of phase shift in-the light reaching th.- furthest end

of the fiber. Since a wavelength of light is very small (830 nm in a vacuum or 560 nm in

the glass for the infrared-laser diodes used in this research), measuring- phase shifts of

one radian is equivalent to measuring changes of length of only

I = 560 nm = 90 rm. (1)
2n 2n

It is possible to measure considerably less than ] radian without great difficulty, and with

care, phase shifts on the order of as little as 1 prad [Ref. 7, p. 16521 can be

detected during an observation lasting one second. Clearly, one does not need to stretch

the glass very much to create an easily observable effect. Since there are many

phenomena of nature which can be induced to stretch the optical fibers, even a little bit,
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by applying a strain to them. optical fibers make very sensitive and versatile detectors of

a great many different phenomena.

D. OPTICAL FIBER INTERFEROMETRIC SENSORS

Of the three general methods of modulation applicable to the design of optical fiber

sensors, one stands head and shoulders above the others in its ability to detect small

signals. This is the method or phase modulation. For this method to be useful, a method

of measuring the phase shift must be-found. This section discusses how this can be done.

1. Principles of Operation

The difference in phase between two coherent beams of light can be detected

by interferometric techniques, which are the most sensitive techniques known for

measuring changes in-distance (optical path length) [Ref. 6, p. 606; and Ref. 5, p. 661].

No sensors exist for directly measuring the electric or magnetic fields of an opticalsignal.

The reason for this is that visible, and even infrared, radiation have frequencies much

higher than those sustainable in any electronics available today. For example, the slightly

infrared light emitted by the laser diodes used in our research has a wavelength of 830

nm. The frequency of this light is 361 THz (3.61 X 10 Hz), well beyond the maximum

bandwidth of our fastest electronic components.

We do, however, have detectors which can measure the intensity of light, and,

if the intensity varies with time, they can detect this variation, provided that it does not

vary too fast. For example, photodiodes with bandwidths of many GHz (10 Hz) are now

available.

The oscillating phase shifts created by many phenomena have a sufficiently low

frequency content to be easily detectable by photodiodes if they can only be converted

to variations in the intensity of the light. To perform such a conversion, coherent light

is passed through two fibers. Together, the two fibers constitute the arms of an

interferometer. The-field being measured is made to induce a difference in the phase-of
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the light in each arm by applying a strain to them, but in opposite:directions. 2 When the

light waves are recombined, they interfere both constructively and destructively. The

resulting pattern of light and dark "fringes" contains information about the original

signal.

Whether the output contains enough information to recover the signal depends

on the means by which the light is recombined. We shall elaborate on this key point

presently.

2. Schemes for Recovering Signals

Numerous schemes have been devised:for recovering signals from optical fiber

interferometric sensors. Several of these are described here.

a. Phase Generated Carrier Homodyne Demodulation-

One method of demodulating a phase-modulated interferometric output

is that called Phase Generated Carrier Homodyne Demodulation [Ref. 8]. This

scheme is also known as Pseudo-Heterodyne Demodulation. In this technique, the

current which drives the laser source is modulated in amplitude. The result of this is to

create a modulation of the laser's output power-and wavelength. If there is a difference

in the-length of the two legs of the-interferometer, the change in wavelength manifests

2 It is possible to arrange matters so that only one fiber is affected by the field of

interest. This is an inferior approach since in -practice it is impossible to avoid having
extraneous effects such as temperature or pressure create length differences between the
two fibers. The result is a sensor which detects- both the quantity of interest and other
quantities which one would prefer to have suppressed. The rejection of these unwanted
quantities is best achieved by using a push-pull arrangement in which unwanted effects
are applied equally to each arm, whereas the desired effect induces opposite effects in
each arm. The output yields enhancement of the desired quantity and rejection of the
unwanted quantities.
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itself as a change in phase at the output.' This guarantees the-presence of a fundamen-

tal frequency in the received signal. namely, the frequency of the current modulation.

The modulation frequency and its harmonics each carry in their sidebands

a replica of the phase-modulated- signal created when-the signal ofinterest impinges on

the-sensor. Twoof these replicas are isolated by the use of bandpass filters. Prope-"

control of the strength of the modulation also guarantees that each of-these replicas has

the same strength. The receiver uses these tones as inputs to two mixers. The output

of this signal processing is a pair of signals. One contains a voltage signal proportional

to the trigonometric sine of the signal of interest. The other contains that signal's

cosine. That is, if s(t) is the signal of interest -expressed in units of induced optical phase

shift, the two outputs are

x,(t) = Asis(O] (2)

and

X2(t ) = A2coss()]. (3)

One can sum these signals, obtaining a signal like a conventional phase-

modulated signal, namely

X I W + - X,(V) = rA52As1i.2ss; (t) + M n -il (4)

This signal can he demodulated using techniques which are standard in the communica-

tions field, the goal being to extract the varying phase term s(t). Usually the fixed phase

term, the one dependent onA, and A,, would be discarded. However, in forming the sum

of x,(t) and x(t), we effectively discard- one signal, since we are left with only a single

3 In the absence of a difference in the path lengths, this is not the case. The larger
the difference in path length, the larger the phase shift caused by a modulated wave
length. [Ref. 7, p. 16521
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sinusoid. The absence of an orthogonal signal (the cosinusoid) causes an-ambiguity in

trying to recover the phase; which, after all, is simply the argument-of the sine function.

For example, if the sinegiven in Equation (4) has the instantaneous \- je

1/2, we cannot tell whether the-phase angle is 300 or. 1500 -. If we knew-the cosine, it

would either be I3/2 for a phase angle of 300 or -T/312 for a phase angle of 1500.

Even with both the sine and the cosine, however, we need more information to

distinguish between the four primary quadrants (-180" to +1800) and all other

quadrants. If the-phase amplitude can fall outside this range, we must keep track of the

history of the wanderings of the phase angle in order to ;know in which quadrant it

presently lies.

Keeping track of these wanderings still does not eliminate the need for

both the sine and the cosine. The reason-for this-is that, in general, we do not know the

waveform in advance. Suppose-we have only the sine. Then it becomes impossible to

distLguish -between a signal of interest which, after rising in phase amplitude, hesitates

briefly at 900 before continuing to grow, and one which hesitates briefly at this same

point before beginning to diminish in amplitude.

As an alternative to the standard methods of phase recovery, one can use

a-method which will be explained in Chapter VII. In this method, the sine and cosine

information-can both be used in such a way as to recover their mutual argument, i.e., the

signal of interest. This met -d implicitly keeps track of the wanderings of the phase

angle outside the four primary quadrants, and so it is capable of demodulating very-large

phase amplitudes.

There are three principal -drawbacks to Phase-Generated Carrier

Demodulation.

1. A mismatch in- the lengths of the two legs of the interferometer is mandatory.
Without- the mismatch, the fluctuations-in the output wavelength of the laser do
not induce fluctuations in phase shift at the output of the interferometer. The
inclusion of a mismatch in length has an adverse effect on the coherence of the
light emerging from each leg, which shows up as a reduction in fringe visibility,
the contrast between bright and dark at the output. This is equivalent to a
reduction in the ratio of signal-to-noise. Also, phase noise from the laser source,
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already present in both legs of the-interferometer, isieffectively enhanced by a
mismatch in length-into differential phase noise upon recombination of the two
beams into an interference °pattern. Thus it -contaminates the interference
pattern created by the signa-of interest.

2. The phase modulated signal generated by the signal of interest appears as
sidebands around the modulation frequency and each of its harmonics. The
separation of these harmonics places a limit on the bandwidth of the signal of
interest which can be sustained. In fact, only half of the modulation frequency
is available as signal bandwidth. If this frequency limitation is exceeded, the
upper sideband around the modulation frequency mixes with the lower sideband
around its -second harmonic, creating distortion in the demodulation process.
Since the amplitude of the signal-of interest determines-its bandwidth, there is
thereforea limit on its strength due to the choice of modulation frequency. The
demodulator itself must operate over a bandwidth at least five times larger than
this permissible signal bandwidth, in order to encompass the upper sidebands of
both the modulation frequency and its second harmonic. In Dandridge [Ref. 7],
apeak of about one radian in the -signal of interest was permissible. In 1982,
there were no optical fiber -interferometric -sensors capable of creating much
bigger phase shifts than this, so the use-of the Phase-Generated Carrier scheme
was convenient. The situation is-now different. Sensors capable of generating
very large phase shifts are available. A demodulator whose entire bandwidth is
devoted to handling the signal of interest is preferable to one which needs
additional bandwidth due to the choice of demodulation scheme.

3. To achieve large dynamic range with a sensor which is limited to peak phase
shifts of less than about one radian requires successful processing of-peak phase
shifts far belowone-radian. To achieve a dynamic range ot, say, 100 dB when
the peak signal is on the order of one radian requires that signals -of under 10
vrad be demodulated. Such- small phase shifts correspond -to very small changes

•if intensity-of the interference pattern at the output of the interferometer. Such
small intensity changes are contaminated by noise, so much attention must be
paid to the demodulator in order that it may separate the signal from the noise.
This tends to make-such demodulators expensive. It also makes necessary the
use of more costly laser sources with small amounts of phase noise in- order to
reduce the severity of the effect. At the end of its travel down a fiber, the
beam's phase oscillates because the number of wavelengths which fit into the
fiber keeps on changing. To increase the operating rangewithphase-generated
carrier demodulation, the modulation frequency must be increased with the
consequent adverse effect on bandwidth mentioned in the previous paragraph.
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b. Synthetic Heterodyne Demodulation

This techniques -bears a great resemblance to the Phase Generated

Carrier Demodulation scheme just discussed. It differs principally in that rather than

creating-a phase shift in the carrier by modulating the laser current, the phase shift is

modulated with a piezoelectric cylinder around which one leg of -the interferometer is

wrapped and to which a sinusoidal voltage signal is applied [Ref. 9. p. 695].

The principal drawback-to this scheme is the-need to introduce electronics

into the interferometer. Since a primary objective in using optical fiber sensors is to

eliminate electronics from -the sensor, this requirement defeats the purpose.

Another drawback is the different treatment of each leg of the

interferometer. This loss of symmetry reduces the rejection of unwanted signals such as

changes in pressure or-temperature since they-are likely to-act differently on that leg-of

the interferometer which contains the piezoelectric cylinder. Once two complete

sidebands of the interferometric output have been isolated, the demodulation, proceeds

as with the Phase Generated Carrier method.

c. Fringe-Rate Demodulation

When large amounts of phase shift are provided by an interferometric

sensor, another technique becomes feasible. This technique comes in two variants. One

is called fringe-counting, -the other -is called fringe-rate demodulation

[Ref. 10, 11]. These approaches rely on the transitions of interferometric

outputs across some central value.

In the fringe-counting variation, the transitions are counted digitaly-in

a givenperiod of time. The instantaneous ratio of count to time is the frequency of the

phase-modulated interference pattern. By integrating this-number over time, the-phase

can be-recovered. Of course, it is impossible to obtain an- instantaneous count, so one

must in practice wait a short time to produce.at least one count.

In the fringe-rate variation, the transitions are used as inputs to a

frequency-to-voltage converter. In a sense, the converter is itself a counter. However,

it does-not perform a precise count of crossings per unit time. Instead, each transition
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triggers a boosting of the- output by causing an increment of charge to be pumped onto

a capacitor. Thepassage of time, conversely, causes the output to droop since the

capacitor is drained of its accumulated charge through a resistor. The combination of

these two tendencies is a voltage which is ,proportional to the frequency. Again,

integration of the result permits recovery of the phase information.

When signals are weak, however, there are-no transitions -at alL The

minimum detectable signal-is that necessary to create at least one transition. This-signal

is on the order of 7r radians peak phase shift. When signals are still only a little stronger

than this threshold, an erratic output from the charge pump due to the incremental

nature of the charge which- is added- to the capacitor whenever a transition occurs can be

objectionable. This noise is lessened when large signals of interest are present.

d. Homodyne Demodulation

Whereas the synthetic heterodyne technique has generally been limited

to less than 7" radians peak phase shift, the fringe-counting and fringe-rate -techniques

stop working below -r radians peak phase shift. To bridge this region, we can use a

number of homodyne demodulation techniques.' These methods all are predicated on

the use of orthogonal components of the phase-modulated signal obtained from the

interferometer without using heterodyne methods.

Normally, an interferometer has only one output. Optical fiber

interferometric.sensors usually have two, since they employ 2x2 optical fiber couplers to

combine the two legs of the interferometer into an interference pattern. From the law

of conservation of energy, it is--easy to see that the two outputs must be 1800 out of

phase from one another: when one is dark, the energy must. all be present in the other

output and vice versa. There are no orthogonal components in, the outputs, and for this

" The word homodyne literally means "similar -power". That is, there is no mixing
with a reference frequency in the receiver, as with heterodyne ("different power")-
techniques. The term homodyne is more commonly used to mean that only one
frequency is present, whereas heterodyne usually means that more than one frequency is
present. Since photons of different frequencies contain different quantities of energy, the
two meanings for each term are completely consistent with one another.
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reason, heterodyning in the various forms described above has been used to, obtain-

orthogonal components artificially as sidebands to the carrier frequency.

3. The Use of 3x3 Couplers to Facilitate Signal-Recovery

There is a way to modify the output stage of the interferometer to obtain

orthogonal components directly. To achieve this, we can use a 3x3 optical fiber coupler

to create the outputs of the interferometer.. The-two legs of the interferometer now are

used to generate three interferometric outputs which do contain orthogonal components.

The details of this will be discussed extensively in Chapter III. Methods of extracting the

amount of optical phaseshift present in the interferometric outputs will then occupy our

attention throughout the rest. of this dissertation. Suffice it to say, for the present, that

with a 3x3 optical fiber coupler at-the output, recovery of the signal is feasible without

the drawbacks listed for the other techniques of demodulation already discussed.
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If. SCOPE OF THE RESEARCH

A. OBJECTIVES OF THE RESEARCH

In the previous chapter, we considered the motivation behind the general- research

into optical fiber sensors. We stated that the use-of optical fiber interferometric sensors,

in particular, which apply the techniques of interferometry to the use of phase-modulating

optical fiber sensors, could produce extremely sensitive-sensors. The-use of 3x3 couplers

at the output of the interferometer, we said, could permit us to obtain orthogonal signals-

from which the signal of interest could- be recovered, without elaborate modulation of

lase" current on-theonc hand and without inserting modulating elements into one leg of

the- interferometer.

It was the goal- of our research to investigate three methods of recovering-signals

of interest from optical fiber interferometric sensors with 3x3- couplers at the -output.

It is the goal of this dissertation to present -the results- of this research.

The sensors we arc-interested in are capable of generating phase shifts of thousands

of radians and-more. In principle, a sensor producing- even greater-phase shifts should

permit recovery of smaller and smaller signals, until thermal-and other sources of noise

become significant. The phenomena sensed by the sensor are of secondary importance

in this research. The chie' requirement is that the phase shift they induce in a sensor be

linearly proportional to their amplitude.

B. ORGANIZATION OF THE DISSERTATION

In this section, we outline the organization of the rest of this dissertation in order

to help the reader grasp the results of-the research. To explain this sensibly, it will be

useful to consider the situation at the outset of the research.
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In the summer of 1989, when we began this research, we did not yet have any

optical fiber interferometric sensors with 3x3 optical fiber couplers at the output for the

simple reason-that tl. y were-not yet commercially available. Their appearance was then

imminent, but in order not to be dependent on their arrival to commence the research,

we resorted to simulating interferometric signals in order to begin to address the

requirements of demodulation. We used two such simulators, one of-which was of our

cwn design and construction. These are described in the appendices to this dissertation.

In Appendix B, we present-relevant portions of the theory of optical fiber couplers.

This lays the foundation for Chapter III, in which we show how 3x3 couplers can be

incorporated into a Mach-Zender optical fiber interferometric sensor. The purpose of

this is to make it clear how the use of 3x3 couplers produces interferometric outputs

which contain both the sine and the cosine of the optical phase shift- induced by signal of

interest. Dandridge [Ref. 71 showed how one could recover the signal of interest,-once

its sine and cosine had been isolated. In Chapter VII we explain his method, which we

refer to as asymmetric demodulation.

By the summer of -1990. the 3x3 couplers had arrived and we quickly sought to

produce an optical interferometer to replace the simulators. Although parallel research

was going on by other members of our research group into the design of hydrophones,

there were still no-practical sensors with 3<3 couplers at the output. Consequently, the

author designed an optical fiber interferometer to sense voltage signals, as these could

easily be generated in the laboratory. The construction of this sensor is described in

Chapter IV.

The easiest demodulation method investigated in -this research -is the-Fringe-Rate

Demodulation scheme described by Crooker [Ref. 10] and Crooker and Garrett [Ref.

111. The design- of the Fringe-Rate Demodulator is the subject of Chapter V. Some

modifications have been made to the scheme originally discussed in Crooker, and these

are detailed here. In Chapter VI, we present experimental measurements of the

performance of the Fringe Rate Demodulator.

To demodulate interferometric outputs with peak phase shifts of magnitudes

extending both above and below 7 radians, we have invented a new -demodulation
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technique which we call symmetric demodulation. The author wishes to give credit to Dr.

Robert Keolian and to Dr. Steven Garrett for the discussions that made this invention

possible. The method of this new demodulation scheme is explained in Chapter VIII.

In Chapter IX we describe the design of an analog implementation of this new algorithm,

the Symmetric Analog Demodulator.

A key difference between the Symmetric Analog Demodulator and theFringe Rate

Demodulator is that the latter cannot properly handle phase shifts of less than

approximately -n/2 radians (more, in-practice). The-former can handle signals all the way

down to the demodulator's noise level. In order -to describe the performance of the

Symmetric Analog Demodulator, then, we must -consider its noise floor. Therefore, in

Chapter X we digress briefly to describe-how we measure low signal levels and noise in

the laboratory. We also describe some of the theory that -permits us to predict noise.

The close match between theory and observation -provides a high degree of confidence

in the noise measurements included in the next chapter, Chapter XI, which-describes the

performance of the- Symmetric Analog Demodulator using all the criteria mentioned

earlier in Chapter VI on the performance of the Fringe Rate Demodulator, as well as

its noise level. The noise of the Fringe Rate Demodulator was not quantified :because

signals of less than r/2 radians in amplitude cannot successfully be demodulated by it

anyway.

The use of digital signal processing-techniques has become increasingly common:in

recent years because of the continuing reductions in cost and-increasing capabilities of

microprocessors. Such techniques can be applied to signals recovered from optical fiber

interferometric sensors, too. To demonstrate-this, we describe in-Chapter XII the design

of an Asymmetric Digital Demodulator which implements the asymmetric demodulation

scheme of Dandridge [Ref. 7], described in Chapter VII of this dissertation. Our design

employs discrete digital logic with digital signal processing integrated circuits and a pipe-

lined architecture which exhibits an ability to process signals at a speed limited only by

that of the analog-to-digital converters it uses. The performance of the Asymmetric

Digital- Demodulator is described in-Chapter XIII. The performance is characterized in
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the-same manner as was done in Chapters VI and XI dealing with the performance -of

the Fringe Rate Demodulator and the SymmetricAnalog Demodulator, -respectively.

The final chapter in.-this dissertation, Chapter XIV, presents a synopsis of the

results and discusses areas for further research and improvements in the demodulation

schemes presented earlier.

In the appendices we-provide mathematical details omitted from the main body of

the dissertation in mn attempt to make it somewhat more readable, although there is

ample mathematics in the body of the-dissertation already! We also include analyses of

both the interferometric simulators we used early in-the course of our research: analysis

of a simple analog circuit capable of performing integration, differentiation, and bandpass

filtering (a circuit which we used repeatedly in the design of the Symmetric Analog

Demodulator); and a detailed analysis of the noise in the Symmetric Analog.

Demodulator.

C. MEASURES OF THE PERFORMANCE OF THE DEMODULATOR

As mentioned above. three chapters of this dissertation- are devoted to presenting

measurements of the performance of the demodulators-we have built. namely the Fringe

Rate Demodulator, the Symmetric Analog Demodulator, and the Asymmetric Digital

Demodulator. For the sake of completeness, we-complete this chapter on the scope-of

the research with a list of the criteria by which- we assessed the performance of the

demodulators. These are:

1. the stability of the scale factor, which expresses the voltage out of the

demodulator per radian of input optical phase shift;

2- the.small-signal bandwidth;

. the maximum permissible signal (MPS), which is the greatest phase shift which
can be demodulated- correctly without an unacceptable level of total harmonic
distortion;

4. the minimum detectable- signal (MDS), which is the smallest peak phase shift
which -can be detected. It is defined as being equal to the noise threshold (in a
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one hertz bandwidth) which is output by the demodulator. This noise threshold
is expressed in terms of input phase shift. This definition of minimum detectable
signal is inappropriate for the Fringe Rate Demodulator, since it cannot-handle
signals of less than 7-/2 radians;

5. the dynamic range, which is the difference between MDS and MPS;

6. complexity of the circuit; and

7. component cost.

We have attempted to account for differences between the predicted and observed

performance.
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iII. THEORY OF 3x3 MACH-ZENDER OPTICAL FIBER INTERFEROMETERS

A. KEY RESULT OF THE THEORY

In this chapter we derive a mathematical prediction of the performance of an

optical fiber interferometer in the Mach-Zender configuration. The Mach-Zender

configuration is distinguished from the Michelson configuration in that the two optical

paths in the interferometer are only traversed once by light, rather than twice. The

implication of this for an optical fiber interferometer is that there must be two optical

fiber couplers: one for the input and a second for the output.

In general, Mach-Zender interferometers produce more output power than do

Michelson interferometers because they do not rely on reflection for light to be output.

On the other hand, Michelson interferometers are twice as sensitive as Mach-Zender

interferometers because the light is twice subject to the phase shift induced by the

transducer, once for each pass through the interferometer. They are cheaper, too, since

only one optical fiber coupler is required, instead of two.

Figure 2 is a schematic drawing of a Mach-Zender optical fiber interferometric

sensor with 2x2 optical fiber couplers at both the input and the output. Figure 3 is a

schematic drawing of-a Michelson optical fiber interferometric sensor with a-single 2x2

optical fiber couplers serving as both the input and the output. The drawback to the use

of 2x2 couplers is that the two interferometric outputs are 1800 out of phase-from each

other, and so there is insufficient information-in them faithfully to reconstruct- the signal

of interest. In the case of the 2X-2 Michelson configuration, there is only one output,

and the inability to reconstruct the input is more blatant, although no more real.

To take advantage or passive homodyne demodulation techniques, we can use a

3x3 coupler at the output. Figure 4 shows a Mach-Zender optical fiber interferometric

sensor with a 2X2 optical fiber coupler at the input and a 3x3 optical fiber coupler at

the output. Figure 5 shows a Mach-Zender optical fiber interferometric sensor with a
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Figure 2 Mach-Zender Optical Fiber Interferometer with 2x2:opticai fiber couplers at
input and output.

Differential
Transducers
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Output 2x2 Mirrore
Coupler Ends

Figure 3 Michelson Optical Fiber Interferometer with a single 2x2 optical fiber coupler
for input and output.

3x3 optical fiber coupler at the input and a 3x3 optical fiber coupler at-the output. One

could also construct a Michelson interferometer with a 3 x3 coupler serving both as input

and output. In this case, there would be only two outputs available, since one of the

three strands of glass in the couplers devoted to the input. This situation is depicted in

Figure 6.

The purpose of the derivation in this chapter is to obtain a theoretical model of the

optical power in the output generated by a Mach-Zender optical fiber interferometric

sensor like those in Figure 4 and Figure 5. Of these two, that using the 2x2 coupler at
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Figure 4 Schematic of a Mach-Zender optical fiber interferometer with a 2x2 coupler
at the input and a 3x3 coupler at the output.
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/ 3x3 3x3 --* Output 3
Input 3 ~Coupler Coupler

Figure 5 Schematic of a Mach-Zender optical fiber interferometer with a 3 x3 coupler
at the input and a 3x3 coupler at the-output.

the input is more efficient. As we shall show, this yields a 1.76 dB improvement in

output power.

The model we derive in detail in the balance of this chapter is given by Equa-

tion: (5).

Iak(L) I D + (t) -(k-1) 2 . (5)
2 [

We shall complete the derivation of the model described in Equation (5) for the

interferometer whose input is a 2x2 coupler, that of Figure 4. The completion of the

model for the interferometer whose input is- a 3x3 coupler, that of Figure 5, proceeds
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Figure 6 Michelson Optical Fiber Interferometer with a-single3 x3 optical fiber coupler
for input and output.

upon very similar lines, most of which are supplied- in this chapter.

In Equation (5), k is an index which can take on the values 1, 2, or 3. It specifies

which- of the three outputs is being considered. D represents a central value, around

which the outputs of the interferometer can fluctuate by -tE, at most. Whether or not

they actually reach the two extrema at D+E and D-E depends on the signal f't). If it

has a very small amplitude, then the cosine will not vary much and so the extreme values

will not,- in general, be achieved. On the other hand, if f" has a very large amplitude,

more than ±-,, radians, in particular, then the signals are guaranteed to reach both

extrema, possibly many times for each cycle of e. The term 0(t) is contributed to the

phase by phenomena which are of no interest to us.

In an acoustics application, for example, we would prefer that acoustic waves

impinging on the interferometric sensor be the only phenomena to induce a phase shift

in the light within the interferometer. Acoustic waves are the signals of interest in this

application, and we represent them by f(l). Temperature changes also can induce phase

shifts within the interferometer, although we do not desire this effect. Thus they

contribute to the unwanted phase shift, .(t). We often ind that the frequency of 4(t)

is much less than the frequency band of the signal of interest, which makes its elimination

somewhat easier. With proper construction of the transducer, unwanted effects can be
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made to produce the same effect on both legs-of theinterferometer, and-this helps to

suppress 0(t), too. In any event, we shall often suppress this term for mathematical

convenience, and because it can be remoye by filtering, but itis never truly absent.

In Figure 7 we show ivranhc z;7r"nree samples of the kind of outputs described by

Equation (5). These graphs were drawn by computer. Superimposed over the three

interferometric outpu, -is a-plot of-the stimulus itself, '(t=Asin(2,rft). This graph is not

to the same scale as the other three; it is centered vertically over the middle output for

convenience. For the purpose of illustration, we chose to let the signal of interest be a-

pure tone (a sinusoid) with phase amplitude A =57r radians., The plot does aot show the

scale of time along the horizontal axis, and so the choice of the freqvuncy f is not

specified. By suitable scaling of the time axis, the plot-will look the same no matter what

f might be. The three plots are offset from one another vertically- only to make them

easy to see. The model specifies that theywill- all-really be-centered-around the same

central, value D.

The choice or amplitude A dictates the amplitude of f, of course, but it also

dictates the number-of fringes (completc-ycles -of 2Tr radians, or multiples of T- in A) in

the three outputs between each -successive- extremumi of C.

As the stimulus passesthrough zero-(its midpoint), it changes-at its most rapid rate-

Simultaneously, the -outputs -achieve their highest instantaneous frequencies. When the

stimulus stops changing (when it reaches an extre num), the outputs also stop changing

and-:heir instantancous frequency drops to zero. The phase shift is-directly proportional

to C. The instantaneous frequency-of tLzinterferometric outputs is givenby the rate of

change of f. A -Fourier scries for the -interferometric outputs is- presented in Equa-

tion (282) on- page 177.

In Figure 8 we show another set of sample graphs. They differ from those of

Figure 7 only-in the-different chQice- for the amplitude of the stimulus, A =4035-r radians.

Note that therr are mort. fringes -in this second example than--in the first. Yet -the

locations of the points where the ihstantaheous frequency reaches its maximum and

where it~reaches zero have-not changed, since these dcpend only on the frequencyf of

the stimulus.
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Ssin(2/t) c os[5r s in(2 ft) + 1200]

cos[57 sin(21rft)]
5 Fringes - 2x(5,7) radians phase shift

Figure 7 Simulation of an interferometric output with a peak phase amplitude of 5,7
radians.

It is worth- discussing the units of C at this-point. In the previousparagraph, we

treated f as measured in radians. f is indicative of the amount- of strain on the glass in

the optical fiber interferometer. The signal of interest, no matter what its natural units,

produces differential strain in the -two -legs of the interferometer, with a consequent

differential optical path length. The number of wavelengths of differential path length

corresponds to the number of multiples of 2-" radians of phase shift induced in the

interferometric output.
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sin(2.ft) cos[10.5it sin(2 )+ 1200]

10.5 Finges - 2x(1O.5n) radians phase shift cos[1 0.5nt sin(2nft)]-

Figure 8 Another simulation of interferometric Output for a sinusoidal- st'imulus of
amplitude A = 10.5v" radians.

B. DERIVATION OF THE-KEY RESULT OF THE THEORY

The differential equations which describe the armplitudes of the phasors within the

2x2 and 3X3 couplers are -given in Sheem [Ref. 12, p. 3865; and Ref. 13,

p. 869]. Before presenting the differential equations themselves, wedfirst, establish some

notation.

The fibers will be denoted by numbers I and 2 for the 2 x2 case and 1, 2, and 3 for

the 3x3 case. We shall denote- e!ectrical field intensities by phasor amplitudes. The

electrical ield phasor ak(z) within iber k is a function of position Z mcasured from the

point where light enters the coupler. For instance, a,(z)- is the electric field in optical
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fiber 1 at a distance z fomthe entry point. The differential equations include coupling

coefficients K, between fibers i and j.- For example, K,2 is the coupling coefficient

between optical fibers- I and 2 within--a coupler. For the 2x2 case, the differential

equations given by Sheem are

da(Z) + jK 2a2(z)- = 0 (6)
dz

and

da2(z)
dz" + jK12a,(z) = 0. (7)

For the 3x3 case, they are very similar:

da (Z)
dz + JK12a2(z) + jK13a3(z) = 0 (8)

da2(z)+ K3
dz + JK23a3(z) + jK21al(z) = 0, (9)

dz

and

daz) + jK31a(z) + jK32a2(z) = 0. (10)

If we compare these equations with the general result given in Equation (420)-in

Appendix-B on page 279, we may note two differences. Firstly, Sheem [Refs. 12 and 13]

renames Snyder's [Ref. 201 coupling coefficients C., and brings them to the left-hand side

of the equations as K,,. This is a minor difference in notation, which we shall nonetheless

adopt in order to-keep this chapter's developments similar to Sheem's.

A more important difference is the dropping of the term jpa, in Equation (420)

on page 279. The effect of themissing term is zero in-'. ase-where the three fibers

are identical. [Ref. 141 That they all are identical -reasonable approximation in a-

• We assume that K0 = Kii for all combinations of i and j.
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3x3 optical fiber coupler. This chapter provides details of the solution-of the differential

equations where this approximation is valid.

It will be noted that in equations (6) and (7) there is little point in appending

subscripts to the coupling coefficient K,,, so-we shall-replace it with coupling coefficient

K and rewrite these equations as

da1 (z)
+ jKa2(z) -0

dz

and

da2 (Z) + jKa,(z) = 0. (12)

dz

Also, in equations (8) through (10) there are :three distinct coupling coefficients. K,, K,3,

and K1. Strictly speaking. the coupling between each pair of optical fibers in a 3X3

coupler may be different. However,-in order-to make-the -mathematics- tractable. we shall

assume that the coefficients all are equal to the same value, K This would obviously

be a valid assumption-for three -fibers -arranged equidistant from each-other, as-if at the

vertices of an equilateral triangle. However, it is not valid for three fibers aligned in a

plane. As it turns out, -this assumption leads to a good description of the actual-behavior

of the interferometers we have built in the laboratory. A more elaborate theory could

be created treating the coupling coefficients as random variables dependent, on the

position z, something we have not- found necessary to get useful results. but-which might

assist in optimization of a-practical system.

Replacing all coefficients Ki by K, equations (8) through (l 0)_ simplify to

da1 (z) (13)
dz + jKa2(z)- + jKa3(z) 0,dz

6 Not necessarily equal to the K in equations (11) and (12).
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da2(z) (14)
+ jK 3(z) + jKa(z) = 0,dz

and

da3 (Z) + jKa(z) + jKa2(z) = 0. (15)
dz

Sheem [Ref. 13, p. 38651 gives the solutions to equations (1 ) and (12) as

a,(z) = a,(O)cos(Kz) - ya2(O)sin(Kz) (16)

and

a2(z) = a2(0)cos(Kz) - 1a1(0)sin(Kz). (17)

We can verify that these are indeed solutions by differentiating equations (16) and

(17) and substituting into quationsO!):1and (12). Because this is straightforward, we

omit this verification.

The solution to equations (13) through (15) is also given by Sheem [Ref. 12,

p. 869]:

a1(z) = ceijKz + de-j2Kz (18)

a2(z) = c2eiz + de(19)

and

a 3(z) = c3ejKz + de -j2Kz (20)

where

c1 + c2 +c3 = 0. (21)

We can verify that equations (18) through (20) are indeed solutions of differential

equations (13) through (15) by taking their derivatives and substituting them into-the
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differential equations. Because this is straightforward, we omit the verification. Note,

however, that Equation (21) is useful in performing the verification.

Equations (1 ]) and (12) fbr the 2x2 coupler and Equations (18).through:(20) for

the 3x3 coupler aregeneral. Particular solutions depend on the initial conditions. At

the input to our Mach-Zender interferometer, we have

a1(0) = A (22)

a2 (O) = a3(0) = 0. (23)

This represents the situation where a laser of constant amplitude A injects light into one

leg of the fiber and the other leg (in the case of a 2x2 coupler) or both other legs (in

the case of a 3x3 coupler) are unilluminated.

We shall analyze both these situations before movingon to the-next stage, which

entails taking the outputs from either a 2x 2 coupler or a 3x3 coupler and using them

as inputs to a second-coupler, a,3 x3 coupler. Either of these configurations comprises

a-Mach-Zender interferometer with a 3x3 coupler as an output.

First we consider the case where the~input to-the interferometerconsists of a 2x2

coupler. Evaluating Equations (16)-and (17) we get

a,(z) =Acos(Kz) (24)

and

a(z ) = -jAsin(Kz). (25)

At the outputs of the coupler, z=L and so the average-power represented by these

two outputs is given-by

m= a(L) 12 (26)
2

= a(L)a*(L) (27)
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SACOS2(KL) (28)
2

and

Iaz(L) 2  
(29)P0"t2 2

2

= 2[(-j)Asin(KL)][jAsin(KL)] (31)

= Asn2(KL). (32)
PO't2

The sum of the average power emitted by each output of the coupler is a constant, as

should be expected from the law of conservationof energy if the couplers are assumed

to be lossless. (Although couplers are not 100% lossless, this approximation is quite

good.)

We next consider th-cease -where the input to the-interferometer consists of a 3X3

coupler. We shall suppose that laser light of amplitude A is injected into input 1; inputs

2 and 3 will be left dark. Evaluating equations (18) through (20) at z=0 we get

a(O) = A = c, + d (33)

a2(0) = 0 = c2 + d (34)

and
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a3(O) 0 C3 + d. (35)

So

c,= A - d (36)

and

C2  = -d. (37)

If we sum the three equations (33) through (35) we get

A = c, + c2 +c 3 + 3d (38)

= 3d

where we-once again have used equation (21). From this, we see that

d = A (39)
3

and substituting this into equations (36) and (37), we get

c1 =A-d

!A

3

-and

2 = C3 = -d

A (41)

3-

Substituting equations (39) through (41 )into equations (18) through (20) yields the

particular solutions
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al(z) =Aer + 1Ae'j2KI (42)

3 3

a2(z) =_AeiKz + 1Ae-J2 (43)31 3

and

a 3(z) =_Aejrl + lAe-J2Kz
3 3 (44)

= a2(z) .

Note that outputs 2 and 3 are identical, which intuitively they-should be, since they have

not yet been distinguished from one another in any way except by the arbitrary

assignment of index numbers tothem.

The average power contained- in output 1 is given by

- a1(L) 12
Po,,q - 2 

(45)

a1(L)a (L)

2

Substituting z = L into Equation (42-) and rewriting Equation (45) yields

P = 1A(2eiL+e-j2.)A(2e-jiL+eJ2fL)' 23
A2 (4+1 +2eKLej 2KL+2e-j2e - ) (46)

18

= [5+2(e 3 +e J3Y9].

We can replace the complex exponentials with trigonometric functions as follows:
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Poui =~L[ +4(el3KL ejJ3KL)]
Pu' 18-- (47)

= A [5 +4 cos(3KL)].
18

Similarly, the power in outputs 2 and 3 is given by

Po'Ut2 = POU3  2
(48)

a2(L)a2 (L)

2

Substituting z = L into Equation (44) gives

- 1A(_eir+e.J2K.)A (_e _JLeJ2l,,)
P°uO=PW'a- 23 3-

(49)
= +1 -eJ3KL-e -j3KL

We can replace the complex exponentials with trigonometric functions as- follows:

~~~~ P0  2 2 (e3KLe3KL)j 
(0A2 18[ 2 J(50)

= 9 [1-cos3L].

We now have obtained:expressions for the output of both a 2x2 coupler and a 3 x3

coupler when they are provided with a laser input on only one optical fiber. These- are

the conditions at the input of the interferometer. Both outputs of the 2x2 coupler will

comprise a leg of the interferometer. In the case of the 3 x 3 coupler, we arbitrarily pick

two of the three-available outputs of the coupler for the two legs-of the interferometer.

The third output is not used. To eliminate back reflection into the laser (a cause of

instability in the laser and consequent phase noise), we can put the end of the unused

fiber into some index matching fluid. Any light emitted from this strand of the output
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of the coupler will be transmitted into the fluid, from which it will be more difficult for

it to reflect back into thc fiber.

We next derive the conditions under which the couplers split the input-power-evenly

over the outputs. To get an even split, we require that the power out of each leg of the

interferometer be equal. For a 2x2 coupler, this means that

po,, -o=p . (51)

Substituting Equations (28) and (32) into Equation (51) yields

Acost = a-siriKL. (52)
2 2

A2

The common factor - can be divided into both sides, so2

cos2KL = sinKL. (53)

This equation is true only when

KL =CTh + n X (54)
4 2

where n is an arbitrary integer. For example, it might be 0, in which case the condition

is that KL=45 0 . Equations (24) and(25) can be rewritten with this choice of n and with

z = L as

a - A (55)

and
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.A
a2ut-_= -J--

(56)

Other choices for n will result in different signs, and the net effect will be that a,,, will

either lead a,.,,,, by 900 or rice iera. This is tantamount to-inverting- the choice of labels

for the two legs of the coupler. When these two signals arc shifted- in phase by-some

differential transducer in the arms of the interferometer, this initial static phase

difference will cease to be of any consequence at all since it will- be- augmented by other

sources of phase shift. These other sources include a quasi-static phase shift due to

temperature, pressure, and-other-effects,-and by a dynamic-phase shiftidue to-the physical

quantity we really want to measure with our transducer.

Turning now to the question of how:to obtainmeven splitting from a 3x3 coupler,

we must have

m, = P0,, = P~t3 . (57)

Note from Equation (49) that the power in output legs 2 and 3 is equal since the electric

fields in these legs-arc identical. Setting Equations (47) and (50) equal to one another,

we get

(5 + 4cos3KL) = 2( - cos3KL). (58)
18 9

Dividing through on both sides by the common factor A219 and multiplying both sides by

2 gives

5 + 4cos3KL = 2(1 - cos3KL). (59)
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Gathering like terms, we get-

2 -5 =4cos3KL +2cos3KL (60)

6cos3KL -3 (61)

cos3KL -_ (62)
2

Equation (62) can only be satisfied when

3KL = ±t + n2nr (63)
3

KL n + . _ 2- ,(64)
3 9 3

where it is an arbitrary integer. For example, n- might be 0. in which case the conditions

are that KL=400 or KL=800 .

Summarizine what we have to this point, the electric fields from the 2x2 coupler

are given by Equations (24) and (25). The corresponding expressions for the power

contained in each output are given in Equations (28) and (32). The electric fields from

the 3x3 coupler are given by Equations (42) through (44). The corresponding expressions

for the power contained in each output- are given in Equations (47) and (50).

We shall now consider what happens when the light from the input coupler (either

2x2 or 3x3) travels through the two legs of the interferometer to the output coupler

(which is a 3x3 coupler, always). We shall refer to the input to leg k of the output

coupler as ak(z) where z is the distance from the point where leg k enters the output,

coupler. Note that we have redefined the origin of the z-axis. Earlier, z=0 defined the

input to the first optical fiber coupler in the interferometer. Now it defines the input to

the second coupler, the one which terminates the interferometer.

First let us consider what happens when the laser light is split by a 2x2 input

coupler. After travelling along the two legs of the interferometer. the electric fields in
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-each leg will have undergone some amount of phase shift. Let us suppose that we-" C

configured the interferometer as shown in Figure 4 on page 21.

Output i of the input coupler is fed-to input 2 of-the output coupler. Output 2

of the input coupler -is fed to input 3 or the output coupler. Input I of the output

coupler is left d. rk, No matter whether the phase in input 2 -of the output coupler

initially led that in input 3 by 900 or vice versa, at the point whcre the two optical signals

enter the 3x3 coupler. we can say that the light in the input to leg 2 of the 3X3 coupler

has been shifted through an angle (h and that in the input to leg 3 has been shifted

through an angle -q. Thus. the light waves in-these two legs have phasor-representations

a2(O) = A-cos(KL)&!' (65)

= B2&1

and

a3(0) = -jAsin(KL)e" (6 )

= B3e-!)

where

B2 -A cos(KL) (67)

and where

S= -jA sin(KL). (68)

Nowlet us consider the output from a 3x3 input coupler. After travelling along

the two legs- of -the interferometer, the electric fields in each leg- will have undergone

some amount of phase shift. Let us-suppose-that we have configured the-interferometer

as-shown in Figure 5-on page 21. Output 2 oP the input coupler is fed to-input 2of the

output coupler. Output 3 of the input -coupler is fed to input 3 of the output coupler.

Oitputl-of theinputcoupler is left disconnected and'input I of the output coupler is left
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dark. The light in input 2 of the output coupler initially was-in phase with that in input

3, but at the point where the two optical signals enter the 3x3 coupler, their relative

phases have been shifted. We can say that the light in the-input to leg 2 of the 3x3

coupler has been shifted through an angle 0 and that in the input to leg 3 has been

shifted through an angle r7. These shifts arc partly due to the quasi-static phase

difference induced by tempernturc. pressure, and other effects and partly due to- the

dynamic phase shift which wc arc trying to measure. Multiplying Equation (43) by the

phase shift e1O gives us the input to the 3x3 coupler. Input 2 of the output coupler thus

has phasor representation

L42(O) = ~Aex +!Ae-j iK OJ~(9

_A['jKL~~j~nej 
(69)_

-3

We can remove a complex exponential factor thus:

a2(O) =  _ " _ " _je e 2 ]dj

(70)
.Li3KL _j3KtL

3P

Finally, we can simplify this by replacing thcdifference of the two complex exponentials

by a trigonometric function.
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KL

a2(0) = Me- 2 eiO3- 2(71)-

= B2e'o.

In this equation we define

B2 = 4 su3K)e 2 (72)

which is a different definition than. the one we used when a 2x2 coupler served as the

input coupler of the interfcrometer.

In a very similar manner, we can multiply the equation for input number 3

(Equation (44)) by the phase shift which affects it, em7. This gives us

a3(O)- = AeiXL+!Ae -i2Xleim

2 .3KL .,L (73)
2A -j-sil-e 2

3 X2

= B 3e"I

From this equation, we scethat

B3 = B2. (74)-

If we compare Equation (65) to Equation-(71) and Equation (66) to Equation (73),

we see that the form of the inputs4o the second-optical fiber coupler is the same whether

we use a 2x2 coupler or a 3x3 coupler at the input to the interferometer. The only

difference is in th. definitions of B, and B. in each case. For the 2x2 coupler at the

input, these are defined by Equations (67) and (68); for the 3x3 coupler, -they are

defined by Equations (72) and (74). In fact, if the input coupler is a 3x3 coupler, then

B= B3 .
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Our next goal is to find the outputs of-the 3x3 -coupler when two inputs-receive

light (legs 2 and 3) and one is left dark (leg 1), as illustrated in Figure 4 on page 21 and

in Figure 5 on page 21. We will find thissoutput in terms of B.and s so that the results

may readily be applied to either of two cases: a 2x2 coupler at the input to the

interferometer or a3X3 coupler at the input. Earlier, in discussing what happens at the

input coupler, we used L to denote the length of the coupler. We-shall continue to use

this notation here. but one should not infer that the length of the various couplers in a

system must be the-same. Later, when we combine equations-that include the length or

more than one-coupler, we shall take care to use symbols that distinguish one length from

another.

Because the output coupler is a 3x3 coupler,.the electric field phasors arc-specified

by Equations (18) through (20).- We would liketo find the constants c,. and d in these

equations, for then-we could-evaluate the equations at z.=L, where the light leaves the

terminating 3x3 coupler. Evaluating each of these equations-at the point z=O, where

signals are injected into the coupler and are known, we get-

a1 (O) = c, + d = 0,, (75)

a2(O) = c2 + d = B2ei, (76)

and

a3(0). c3 + -d = B3eih. (77)

Summing Equations (75) through (77) gives

3 3

Sak(O) = 3d + (78)
k-I k-I (78)

= B2e1 +-B~

Making use of Equation (21),
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3a(O) 3d = B2eJ BeO (79)
k-I'

So

d B3 + ] (80)

Using Equation (80)-in Equations (75)- through- (77) lets us calculate the constants CA.-

c1 + d = c,+ [B2eiO+ B3ejI] -O. (81)

So

C 1[re + Be}(82)

Also

c+ d =B2e!ll~ (83)

so

2 0 = eJ-[B 2 e B3 ] (84)

- [2B2e'~ - Bei7].

-Finally,

+3 d' B3e"'2. (85)

So
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C=3Be"i - e + B3em']

= -[tB 2eJ -2Be'.

We now have obtained, expressions fbr all-the constants in Equations (18) through

(20). Rcplacing the constants by-these expressions- gives us-the ability to-compute the

output power at the end-of the coupler, where z=L.

a(L) = -B 2e'i .B 3eJ]e + [B2eiO + B3ein]e-P2-  (87)

This can be rearranged-to give

a (L) _ e e - - _e 21_ e- e I
(88)

The complex conjugate of this is

.KL

al(L [B;e + Be~sA!e 3 2K (89)

We get the power in strand I at the output- -point z=L by multiplying the complex

conjugates-and dividing by 2.

1a1(L) 12 = 

(90)

'2 " 9)

-- I(3)21, 2B; + B3B; + + B jB3e -A# }sin-2).

The same procedure appliedlto-output 2 gives
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a2(L) = c2eKL + de'J2KL

(91)

This can be rearranged a little to give a marginally improved form.

a2(L) = .eij2er' + e-j2 _ei'-[eiL - e- 2 L] (92)
3 3

The complex conjugate of this is

a;(L) = B e 12e; B + eK L] - -3:e - e)2KL].

3 3

The power in this output is

I a2(L) 12 _ 1a2(L)(L )
2 2

_B{J*2 + 2ilKL +2e -j3XL]

+ (j) 2 B3 B;[1 +I e 3KL-e -JKL] (94)

- -)B 2B;ei(--02 -1 -2e 3KL +,ej3KL]

-(1~) 
2B;B3e -0-112 -1 +ei3KL-2e -J3KL]}-.

We can simplify this expression by replacing certain pairs of complex exponentials with

trigonometric equivalents.
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a2 L 1 8 - -

2 jiB[ +4cos(3KL)] + _2B 3B;[1 -cos(3KL)]
_ (95)-

- BB3 i(O- 'III -2ej3KL+e J1](5

- B;Be-j(b "q[1 .i-e'-2e j3'-'4I.

Now we turn-to the last of'-the three outputs, number 3.

a 3(L) = c 3 e
- + de -J2KL

O - 2 3e !' 1 e + -
(9 6 )

We can rewrite this as

a3(L)- = - 2-ei [eiKL - e-j2a] + B3 e,1 [2ei, + CAL]. (97)

3 3

Comparing this with Equation (92). we see -that they are ilentical except that B, and Bs

are interchanged, and d) and -7 also are interchanged. Thispermits us to write the-power

in output leg I by performing the same interchange on Equation (95).

a3(L) 12 {2B 2B1 -cos(3KL)I + B3B;[5+4cos(3KL)]

2 18

- B2B;e(4-"?1 +e'3 ta-2e -J3KL] (98)

- B;B3e-'jI-)[l-2e3 , +e-j _09}"

Equations (90), (95), and (98) are general solutions to the -power in the three

outputs of an optical- fiber interferometer with one dark input. -Knowing the values of

B, and B. as well as the product of K and L permits one to find specific solutions as

functions of q6 and -q.

As mentioned before, once we start to combine results of the analysis of more than

one coupler, we must be careful -to distinguish between the coupling coefficie,,,s K and
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the coupiing interaction lengths L of each. Our next task-is to perform this combination

for the two cases where the output 3 x 3 coupler-gets signals from an interferometer with

either a 2x2 coupler or a 3x3 coupler at its input. We shalLdesignate as Ki and Li the

parameters which apply to the input coupler, and-we shall designate as K,, and L, the

parameters which apply to the output coupler. We shall-denote by z, the position in the

input coupler, and as z,, the -position in the output coupler.

For the 2x2 coupler at the input to-the interferometer, we can:therefore rewrite

Equations (65) and (66) as

BejO = a-(z,,) [o = Acos(KLi)e'o (99)

and

B3e0' = a3(z) =:,O=o -jAsin(KL)e"'. (100)

We now compute the various products of Bk which appear in Equation (90), (95), and

(98). By using the trigonometric -identity

cos(20) = 2cos2(O)-1. (101)

we get

B2B; = A 2COS?(KiL,)
A2  (102)

= 2 [c4(2KL) +1].

By using the trigonometric identity

cos(20) = 1-2sin2 (O). (103)

we get
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B3B =A 2sin(KJLj)
a (104)

A 2 -cos(2K L)].
2

By using the trigonometric identity

sin(20) = 2sin(O)cos(O). (105)

we get

B2B; =jA 2sin(KjL)cos(KL)

(106)= J-sin(2 tL,) ".16

2

Finally, we can use the same trigonometric identity to get

BB 3 
= j sn(KjL)cos(KL)

A2  
(107)

= -j-.2s-M(2K.L).

Substituting them into Equation (90) gives

- [cos(2KL,) +1]
2

Ia(Lo12 2 ( +-![1-cos(2KLj) ]  s 3KoLo(
+J2 .c2K j(3.j) 2)08)

2
SjA.sin(2KL)e -j(- 1)

2

In this expression, the braces do not denote a matrix of values. They are used in order

to keep the lengthy summation within from sprawling across the page. We shall use

braces in-this manncr whenever it lends clarity to the expressions. We can rewrite the

expression as
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a(l) 1) ZAfl-Sil2KL )[ #i#1)Jisin KL
2 9 j~j2 ~ 2 ) (1)

A 2= 9 [1--sin(2K1 L1)sin('- ii)][1 -cos(3K0 L)1.

For the-power in the second output-leg, we get

2-cos(2KLj) +11[5 +4cos(3K0L)]

21+ 12[l -cos(2KL 1)][1 -cos(3K0L)]-
P2(L)I2  A2  2 (i10)

2 18.. - sin(2K1L)eJ'O"{1 2 e3KLo+e-j3 KLo]

+ -Lsin(2KjLje -j('OAI +ei-xoL-o 2e3 oc

We can remove the factor of 1/2 from within the admittedly forbidding--looking expression

within the brackets.- multiply out-the terms within the-brackets, and get ready to replace

the complex- exponential- functions with trigonometric functions.

5cos(24L1) +4cos(3K L0)+5
+4cos(2K.L)cos(3KL)+2-2cos(2KiL,)
-2cos(3K0L) +2cos(2KL)cos(3KL)

Pz2(Ldj2  A2  +in(2KL) 24'-~1j(I)

2 36 -4sin(2K5L4

+2sil2K~j

Summing like terms within the brackets and factoring some terms gives a simpler,

though still quite formidable, form

P2~(Ldf =A 2 {7+3cos(2KLi)+2cos(3K L0)+6cos(2K.L.)cos(3KL 0) (112)

2 36 +2i(K~linO )2i(Oi+K~~in,-73.o

This can be further rewritten as
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-7+3 cos(2KLi)+2 cos(3K0L)+6 cos(2K1L,)cos(3K0L)
sin(O-77)

A__ 2
- -2sin(4-i1 )cos(3K,L,)

2 36 +2sin(2KLL) -2 cos6(-l)sin(3K0,Ld
+si(O-i7)cos(3K 0,L) -cos(,O- t) (113)

AI 2-7+ cos(2KjLj) +2 cos(3KL) +6 cos(2KL.)cos(3KL)

= +2si4(2KL n( tq)cos(3K0L)-3 cos(o- 7)sin(3K 0Lj}

Now finding the power in the third output leg is just as tedious as-it was to ind the

power in the second output leg. Wc start with Equation (98), using the products-found

in Equations (102)-through (107).

-2[cos(2KjL,) +1][1 -cos(3KL)]

a3(L) 12 A + [1-cos(2KjL)][5+4C~os(3KQL] (114)-
2 361 - Jsin(2KL~e(Aq14 ---K~ 2eAL *

I.+ jsin(2K .Li~e- '[i f-2 ei3 KoL+e -J3K. L-1

Multiplying this out and replacing the complex exponentials with equivalent trigonometric

functions gives

a3(L)12 12cos(2KL) +2 -2cos(3KL) -2cos(2KiL -)cos(3K L~)

2 36 +5j5:os(2Ki~4o3Ld-4cos(2Ki4Ldcos(3K,L)~ j
(115)

This can be further simplified to
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7 -3 cos(2K L) +2 cos(3K.L) -6cos(2K,Li)cos(3K.L)
sin(C-,(1

Sa3(L) I2 _ A2  + sin(O-j7)cos(3K 0L) (116)

2 36 +2sin(2KL) + cos(-i)sin(3KoLo)- 2sin(e -q,)cosC3Ko.,,,
+ 2cos(4-ql)sin(3KoLo)

Finally, we get the equation

7-3 cos(2RiLi) +2 cos(3K0L) -6 cos(2KiLi)cos(3K0,L0

I a3(L) 12 _ A2  sin(-q) (117)
2 36 +2 sin(2 KjLj) - sin(O=rl)ces(3KL)

+ 3cos(O-iq)sin(3K 0L)

AE iast we are-in the position we have been struggling toward so patiently. We have

three expressions for the power from each of the three output legs of the 3x3 coupler

at the output of the interferometer. These-very complicated expressions are given in

Equations (109), (112). and (117). We can apply the conditions derived earlier for

couplers which provide even splitting of the power to find several of the sines and cosines

in these expressions. First we use Equation (54).

cos(2KjL,) = c[( + n)

= co + ] (118)

=0.
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sin(2K,L1) = s+x{(2.

s i~~] (19)
= S -1+ nl'/

q2.

From Equation (62).

cos(3KL.) 1 (120)

From Equation (64),

sin(3KoL) = s +3( .3 2k + n3

sin[t +n2 (121)S + 3"

2

If we did not use couplers with evenly split power, or if we used couplers with

imperfections that prevented even splitting from occurring, then these four trigonometric

quantities would differ, but they stiliwould be fixed numbers and so could be used to find

equations describing the output of the interferometer. A useful piece of research would

be to investigate the effects of uneven splitting on the equations developed in this

chapter.

In order to keep our notation consistent with that of Crooker [Rel 10, p. 301, we

shall define two new angles 4 and f- We shall define

(122)2

and
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We can go through the same process for outputs 2 and 3, also. In -addition to the

two possible signs or cos(2KL) that can occur, we must also account for the two possible

signs of sin(3KL,,) which can occur, since this expression appears in Equations (112) and

(7). First we consider the ease where sin(2KiLi) = +1 and sin(3KoL) = . For the
2

power from output 2. we substitute Equations (118) through (121) into Equation (1 12).

Sa2(L) 12 A2 k6 + 2sin(-q) + sin(O-q) -

2 3o,

2-.{ + 1sin(O47) - -cos( 3o (126)
61- 22 1(126)

A - {1 - Icos(f) --- sin(')

2 2a

61 + cos( e.,+ 3~}

For the power from output 3, we substitute (118)-through (121) into-Equation (117).

a3(L) 2 _- 7 I + 3sin(O-q) + 3v3cos(O-ri}
2 36

+21 + lsin(O- 17 ) + -cos(4- 0
2 2 (127)

=A 2 Ico5(f'a) + fV~sn(fl}

=A 2

Next we consider the change to Equations (126) and (127) when sin(3L) -f.
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[aq2(L) 12 = -A 2 cs4 1 3i~~l~a 18
2 2e s(.f.) +  Esin(f,,)

2 61, 2 2 1(128)

-a3(L) 12 - 1 !cos(fa) - Isil(f) }

61 2 (129)

' + Cos(fa+!7.n

By comparing these two equations with Equations (126) and (127), we see thatthe effect

of this change is equivalent--to interchanging legs 2 and 3 in its effect on the outputs.

Next we consider the case where sin(2KLi) = -1 and sin(3K,,L) = +L. For the
2

power from output 2, we substitute Equations (118) through (121) into Equation (112).

Ia2 (L) 2 A 2
2 36{6 - 2sin(O-r) - sin(O-r) - 3v/3cos(O-q)}2 3

=-2 - Isin(O-) - -Leos(O- 1)
=6, 22 1(130)

= A2{ 1 icos(4, + L3 sin(4 )}
= A{1 + COS('b-2n)}.

For the power from output 3. we substitute (118) through (121) into Equation (117).
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a3(L) 2  A7 - 1 3siii(O-) + 3vrcos(0-0)}

2 36-

6 2 ~ 2 (131)

A 2~- 1~cs4 3

By comparing these two equations with Equations (126) and (127), we see that the

effect of this change is equivalent to interchanging legs 2 and 3 in, its effect on the

outputs. However, we had to redefine the phase origin (the point where phase is deemed

to-be zero). This should not disturb us, since the choice of origin is entirely arbitrary to

begin with. A signal exhibiting periodic characteristics will take on every possible value

of phase over time. so- redefining the phase origin is akin to waiting a while before

looking at a-signal, and-it-does not:affect the appearance of any of the signals.

By this time, it should be clear that the -final condition, namely

sin(2KL) = -1 and sin(3K0L) = ___ (132)
2

will not change matters, but for completeness, we provide the equations anyway.

a2(L) 12 .cos(t, - _r sin(
2 61 (133)

A, -A{ + Cos(4b+ 1 1)}
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2 - + - cos( + sin(f
2 6 t1 2\ w 2 (134)

A 2

This exhaustive consideration of all possible conditions which meet the criteria for

couplers with even split ratios shows-that a reasonable-model for the thrce- outputs of the

Mach-Zender optical libcr interferometer constructed with a 2x2 coupler at the input

and a 3X3 coupler at the output can be given by the following equation. In this

equation, the index k is an index to one of the three output legs. It can take on the

values 1, 2, or 3.

2 6 +3TI-kL 2 - +~1 cs - (k-l). J. (135)

This equation represents the culmination of this very lengthy chapter of tedious-

:mathematics. Even so. this model is not quite right. That is. it does not describe the

actual behavior of a real optical fiber interferometric sensor -precisely. Wherein-lie the

differences?

Firstly, this -equation is based on the presumption that there are~no losses in the

- A2

couplers or fibers. Since there are losses in a real interferometer, the leading coefficient
2

should be replaced by whatever amount of power does arrive at the output. We shall call

this amount D. As stated in the Table of Symbols at the beginning of this dissertation,

the units of D will vary, depending on the context. When we are speaking of optical

power, D will be measured in watts. When the received optical power has been

converted to a current by its action on a photodiode, D will be measured in amperes.

When the current has been converted to a voltage through the action of a transimped-

ance amplifier, then D will be measured in volts. However, the fonn of the modified

model we are developing here will not be altered.
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A second reason lbr the inaccuracy of the model considered here is our failure to

include a consideration of the polarization of the recombined light-in our equations. We

have assumed that the two combining beams can be fully parallel or fully anti-parallel,

which implies that they-both have the same amplitudes. (If the polarizations are anti-

parallel, an additional phase shift of -" radians occurs.) In practice, due to different

degrees of attenuation in each leg of the interferometer, imperfections in the couplers,

and rotation of the polarization of each beam, this will not-be the case. The result of this

is that the intensity of the interferometric output will not wander through the full range

from 0 to D, but from somewhat above 0-to somewhat less than D. Put:another way, the

coefficient of the cosine in the above equationneeds to be reduced from I to some lesser

value. We shall define a new quantity, E, measured in the same units as D. This new

quantity is defined implicitly by the following modified model.

I a(L) D -12 +2 7j (136)

We call the fraction EID the fringe depth. Multiplying this out gives

-a(L) 12 = D + c -(k-1) . (137)
2 [

The three signals represented by this equation vary around a central value, D, by ±E, at

most. Whether or not they actually reach the two extrema at D+E and D-E depends

on the signal C. If it has a very small amplitude, then the cosine will not vary much and

so the-extreme values will not, in general, be achieved. On the other hand, if f has a

very large amplitude, more than ±-r radians, in particular, then the signals are guaranteed

to reach both extrema.

It is worth discussing the units of f at this point. As we tacitly assumed in the

previous paragraph, f is measured in radians. It represents the amount of optical phase

shift due to strain on the glass in the optical fiber interferometer. So the signal of

interest, no matter what its natural units,-produces differential stretching of the two legs

7 Note that other authors may apply this terminology to different quantities.
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of the interferometer. The number of wavelengths of differential stretching corresponds

to the number of multiplcs of 27r radians of phase shift induced in the interferometric

output.

In the equation as written, there-are only two contributors to the phase shift. One

is the signal of interest. The other is the choice of an output leg. However, as the

earlier lengthy discussion of shifting the phase origin made plain, we are free to choose

any origin we like, and only the difference in phase between the output of one leg and

another is-of importance.

There are other contributors to-the phase. For example, changes in temperature

and pressure may stretch the glass or permit it to relax, even if they are not the

phenomena we want our sensor to detect. These additional factors usually vary slowly

with time, although this is not necessarily so. If we lump them together into a single term

46(t), then we can write the equation which describes our complete model.

a - D + + - (k-1) 2.xj. (138)
23

This use of the symbol (P is not be confused with its earlier use to describe the shift in

phase of the light in one of the two legs of the- interferometer (the other was "7).

One final observation about this model is in order. It is assumed that D and E are

equal for any choice of output leg (1, 2, or 3). In practice, each output leg has its own

value of D and E. Having noted this fact, we shall continue to use the approximation

that they all are equal because of the simplicity this assumption entails, and the fact that

it is a fairly good approximation.

C. SUMMARY

In this chapter we have applied Sheem's methods of analysis to the particular case

where an-optical fiber interferometric sensor has either a 2x2 coupler or a 3x3 coupler

at the input and a 3x3 coupler at the output. We have derived a mathematical model

which will allow us to design demodulators to recover the signal-of interest. We have left

numerous quantities in the equations as parameters so that further research might more

readily ascertain their importance. For example, the degree to which the interferometric
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outputs depart from a 1200 -phase difference from each other as the product of coupling

coefficients andinteraction length varies from theideal. In thenext chapter, we-describe

the construction of an optical fiber interferometric sensor suitable for providing inputs

to experimental demodulators in the laboratory.
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IV. CONSTRUCTION OF A 3x3 OPTICAL FIBER INTERFEROMETRIC SENSOR

In this chapter, we discuss the construction of an optical fiber interferometric sensor

which we built in the laboratory for the purpose of providing signals with which- to

operate the three demodulators we investigated in our research.

Up to-the time when we built this optical interferometer,-wc had been constrained

to using simulations of interferometric outputs. One simulation was provided by a set of

three Analog Interferometric Simulators. These were limited in the amount of peak

-phase shift they could deliver to around 2 rad, although the Analog Devices AD639 on

which they depend permit ±5000. Exceeding about 2 rad led to increasingly apparent

distortion in the waveforms delivered by the simulators. Since the newest class of

interferometric sensors can easily generate optical phase shifts-far in excess of this=-small

value, these simulators were only-suitable for the-most rudimentary work.

A second simulation was-provided by a Digital Quadrature Phase Shift Modulation

Simulator. This simulation could easily achieve phase -shifts of several hundreds of

-radians. Unfortunately. it was only able to produce square waves-at its output. Thus the

outputs were not very good replicas of the output of an optical interferometer, which can

generate a-continuous range of-output amplitudes, not just two of them.!

A. APPLICABILITY OF THIS SENSOR

One of the chief purposes of building optical fiber interferometric sensors is to

avoid the need to have electrical signals -in inaccessible locations. Eliminating the need

for electrical signals permits reductions in weight, cost, and susceptibility to electromag-

netic interference (EMI). The sensor we have built for experimental purposes is a

voltage sensor. Clearly there is no avoidance of the presence of electrical signals in a

sensor which detects electrical signals! However, the benefit of great sensitivity is -still

For the Fringe Rate Demodulator, square waves were no limitation at all, since this
demodulator makes interferometric outputs square before it processes them anyway.
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present in our sensor: -very small-changes in- the size of the piezoelectric cylinders create

a-noticeable optical phase shift in the sensor's interferometric output, so quite small

voltages can be detected. When we discuss the performance of the Symmetric Analog

Demodulator, for-example. we shall see that it can detect voltages of 2.2 pV in a 1 Hz

bandwidth and has a dyq-nmic range of 1-15 dB (in the same bandwidth) at a frequency

-of 600 Hz. The most sttractive-feature of our sensor is its ease of operation. Voltage

sources are easily controlled, so we can generate optical phase shift of controllable

amounts with this sensor. It is an -excellent tool- for the kind of research we conducted

into demodulation.

B. DETAILS OF CONSTRUCTION

Our interferometer was physically laid out as-shown-in the diagram in Figure 9. A

single voltage signal is applied in opposite polarities to each of two Channel 5500

piezoelectric cylinders. This causes- one cylinder to expand while the-other- contracts. and
vice versa. The fibers are wrtippcd-around each cylinder with constant tension. There

are 9.099 m of 125 pm single-mode optical fiber in each leg, as measured-from the 2x2
coupler's output to the 3x3 coupler's input. The actual length is not critical, so long

as the two lengths are within a few centimeters of being the same. As one cylinder

expands, it applies a strain to its fiber. At the same time, the other cylinder is contracting

and its fiber-is re!axing. The first fiber experiences an increase in its optical path length;

the other fiber experiences a reduction in the optical path length.

Figure 10 shows the details of how the cylinder was clamped onto the mounting

brackets in such a way that it could still respond to the applied voltage without undue

mechanical interference from the mounting hardvare.

To apply a constant tension to the fibers wrapped on each cylinder, we used the

apparatus shown in Figure II ' For our purposes, the amount of tension was not

significant. Our desire was simply to ensure that the tension was a constant so that

uniform expansion and contraction of the cylinders would produce uniform increases and

9 The author would like to thank Dr. David Gardner for showing him this technique
of ensuring constant tension in the fibers.
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Voltage Piezoelectric VoltageInput Cylinders Input

Laser v -Source , °;

lntefferometric-} Outputs
3x31 2x2

Coupler CouplerAluminum
Baseplate

Figure 9 Physical layout of an optical fiber interferometric sensor of voltages.

decreases in the strain on the optical fiber wrapped around them.

The 2x2 optical fiber coupler we used was an Amphenol Model 945-122-1002. It

is specified for a wavelength of 820 nm, although we operated it at 830 nm. As we said

in Chapter III, the split -ratio of the coupler is equal in, both legs (measured by the

manufacturer as 47%-53%), and the coupler is bidirectional. The excess loss is specified

at below 1.0 dB (measured by the manufacturer as 0.59 dB).

The 3x3 coupler is a Sifam Model Special 33S 82C. It is specified for a wavelength

of 830 nm. It also has equal splits in all three legs, if only one leg is used for input. Of

course, in an interferometer this condition is not met, and so each output is different, as

discussed in detail in Chapter Il1. The manufacturer measured the split ratio as shown

in Table II. Our own measurements are shown in the same table. We made our
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* Mounting Bolts, -

Figure 10 Detail of the assembly of the piezoelectric clinders with fiber wrapped around
them.

Table I Split-ratios of the Sifam Model -Special 33S 82C 3x3 optical fiber coupler
(S/N 01150).

Output Output-

1 31% 34% 33% 1 27% 37% 36%

Input 2 35% 31% 34% 2 34% 27% 39%
3 33% 34% 33% 3 q2 33% % 44

Sifam's Measurements Our Measurement

measurements by applying a known current to the laser diode. a SharpLT-015 whose

wavelength in a vacuum is 830 nm laser (560 nm in glass). This laser was repackaged by

Seastar as a Model PT-450. To measure the power from each leg, we fused the laser
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Optical
Fiber

Holder '" I Piezoelectric
; Cylinder

Pulley -

Adhesive- Table

Weight with Tension
Pulley

Figure 11 Apparatus used to obtain constant tension in the fiber wvTapped on the
cylinders. The fibers-were wrapped by hand.

diode to each input leg in turn. For each input, we successively placed a different output

leg into a slotted cylinder which we then inserted into a LDT Model 255 Photodiode with

a barrel receptacle. A BNC connector on one end of the Photodiode was then mounted

directly into the mating BNC connector on a UDT Model 550 Fiber Optics Power Meter.

We did not calibrate the meter for operation at 830 nm. Since we were only interested

in measuring the relative transmissivity of each leg, this omission is not a flaw in our

technique. The chief elements of variability in this technique are:

1. The transmission or the fusion splice in each case is different. but since the total
power is measured for each splice, this is not significant:

2. The insertion or an output into the slottEd cylinder and its placement in the
detector barrel is imprecise. but, the UDT Model 550 is a lare-area detector
and hence does not require precise alignment.

64



The measurements at each of several laser-diode currents were averaged together

to yield the results shown in the left-hand half of the table. The agreement is only fair

with the manufacturer's measurements. Hopefully the manufacturer's technique was

somewhat less variable than was ours.

The 2x2 coupler had about 10 m of fiber attached on two leads; the other two

leads had only about a meter of fiber attached. The 3x3 coupler had only about I m of

fiber on each end of its three legs. We recommend obtaining them with as much fiber

already attached to them as will-be needed in the-sensor where they will be used. This

will permit the number of fusion splices to be reduced. Since each -splice raises the

possibility of more reflections, -more transmissive loss, and more oir a nuisance generally,

th'-: is a very useful reduction.

We used a Sumitomo Type IIX Fusion Splicer to splice our fibers together. It

provides a microscope Ior precise- positioning of the bared fiber prior to fusion by electric

arc. This -particular splicer does not permit a very large range of adjustment in the
position of the fibers laterally and-vertically, so if placement is not quite good in-advance,

it is very difficult to get it right without starting over again. As a consequence, splicing

can consume a large amount of time (and did so).

A good way to check on the success of a splice is to shine light (we used laser light)

through it before the fusion occurs. The far end of the receiving fiber can be connected

to a photodetector and thence to either a power meter or an oscilloscope. By adjusting

the position of both ends or the fiber to be fused, we can maximize the received power.

We found that alternating between adjusting lateral position and vertical position enabled

us to find the optimum position fairly quickly, if the optimum position could be reached

at all by the-adjustment controls on the fusion splicer. After fusion occurs, there should

be more power received than -before the fusion (by 0.5 to 1.0 dB). If this is not the case,

then the fusion splice was poor. The fiber should be broken, the buffer should be

stripped again, the ends should be cleaved once more, and the fusion splice should be

repeated.

To make Mach-Zender interferometer with legs properly matched in length requires

considerable care. Suppose enough fiber has been attached to the input coupler to form

65



the two legs of the interferometer. One of the two legs can be spliced to an input leg

of the output coupler without too much trouble if we monitor the power transmitted

through the leg both before and after splicing it to the output coupler. The connection

of the remaining leg to the output coupler is considerably more difficult. Light passing

through it- also passes through the already-completed leg, since they are effectively

connected together at the input coupler. When we bring the remaining leg close to the

output coupler -n order to splice it to the coupler, two coherent beams recombine,

producing interference. No longer is there a constant-power level from the coupler. This

complicates the task of finding the optimal position of the remaining fiber prior to

completing the second fusion splice. However, one can still search for the placement of

the fibers which generates the maximal fringe depth.

A bigger problem occurs if this second fusion splice fails. In this case, the second

leg will be shorter than-the first. It generally is necessary to break the first leg-again in

order to ensure the lengths are equal (or nearly so). We recommend acquiring some

practice and skill in performing fusion splices before tackling this tedious task.

Upon the completion of the construction of our interferometer, we placed-the three

output fibers of the terminating 3x3 optical fiber coupler into three slotted cylinders.

Each of these was in turn inserted into a mounting barrel with a photodiode within it.

We had two CLD42163 photodiodes and one CLD41461 photodiode available, and so we

used them. Without calibrating the UDT Model 550 Fiber Optics Power Meter for

operation at 830 nm, we measured the responsivity of these photodiodes as 370 mA/W

for the two identical photodiodes and 362 mA/W for the odd one. Since we did not

perform a calibration, these results are not likely to be accurate, but accuracy here was

not crucial-to our development of the demodulators. Our purpose was to develop an

understanding of the factors which affected performance, not to optimize the perfor-

mance. For fine tuning of the performance, however, the responsivity of the photodiodes

is an important parameter of operation because it determines the amount of current

delivered to the receiver stage.
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C. SCALE FACTOR OF THE INTERFEROMETER

Our interferometer produces a very highly linear optical phase shift fbr an applied

voltage. We used an HP6824A DC Power Amplifier to boost the output of an

HP3314A Function Generator from an amplitude of 10 V maximum to an amplitude of

60 V maximum. For convenience, we adjusted the- gain of the power amplifier to

approximately 10. This amplified signal was then applied in opposite polarities to each

of the piezoelectric cylinders in-the interferometer. The upper photograph in Figure 12

shows the three outputs ofour interferometer for a sinusoidal input with amplitude

2.79 rad. The lower trace shows the elliptical Lissajous figure which results when two of

these 'are fed to the X and Y inputs of an oscilloscope.

The Lissajous figure closes on itsell, retracing the same elliptical pattern, if -an

optical phase shift amplitude in excess of T" radians is generated by the interferometer;

otherwise it is-open. We found-that -after closure-had occurred, it was easy to see the

ends of the traces and so count the number of closures as the applied voltage was

increased. We noted the voltage for each such closure, which represented an additional

7r radians of optical phase shift. A summary of our observations is shown in Table III and

Table IV.

If we apply a linear least-squares fit to-these (data- we find-the relationship between

nominal voltage displayed on-the front panel of the HP33i4A and the optical phase shift

delivered by the interferometric sensor is-given by the following equation:

AOUTr = (34.29±0.02 -'-) V + (-0.64±0.08 mrad). (139)

We shall make extensive use of this highly linear relationship in further chapters in order

to infer the output optical phase shift-from a selected nominal input voltage.

D. SUMMARY

In this chapter, we described in detail the construction of an optical fiber

interferometric sensor suitable-for providing inputs to experimental demodulators. We

found that this sensor generates output optical phase shifts dependent on an input

voltage with a high degree of linearity. In the next chapter, we describe the design of the
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Figure 12 Upper trace: oscilloscope display of three interferometric outputs resulting
from a sinusoidal stimulus (also shown) of amplitude 2.79 rad. Lower trace: two
interferometric outputs on an XY plot generate a Lissajous figure.
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Table III Measurements to determine the amount of optical phase shift output by the
interferometer for a given voltage on the signal generator (one through 40 closures of
the Lissajous pattern.)

Number of Number of
Closures of Nominal-Input Peak Output Closures-of Nominal Input Peak Output

the Lissajous Voltage Voltage the Lissajous Voltage Voltage
Figure Figure

1 91 mV 880 mV 21 1.95 V 18.65 V

2 182 mV 1.758 V 22 2.04 V 19.52 V

3 276 mV 2.667 V 23 2.14 V 20.48 V

4 368 mV 3.557 V 24- 223 V 21.34 V

5 459 mV 4.439 V 25 232 V 22.25 V

6 552 mV 5.33 V 26 2.41 V 23.11 V

7 644 mV 6.22 V 27 2.50 V 23.97 V

8 734 mV 7.10 V 28 2.59 V 24.83 V

9 827 mV 8.00 V 29 2.68 V 25.70 V

10 920 mV 8.90 V 30 2.78 V 26.66 V

11 1.02V 9.73 V 31 2.87 V 27.52 V

12 1.12 V 10.7 V 32 2.96 V 28.38 V

13 1.21 V 11.6 V 33 3.05 V 29.25-V

14 1.30 V 12.4 V 34 3.14 V 30.09 V

15 1.40 V 13.4 V 35 3.23 V 30.96 V

16 1.49 V 14.24 V 36 3.33 V 31.93 V

17 1.58 V 15.10 V 37 3.42 V 32.78 V

18 1.07 V 15.97 V 38 3.51 V 33.64 V

19 1.77-V 16.93 V 39 3.60 V 34.51 V

20 1.86 V 17.79 V 40 3.69 V 35.37 V
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Table IV Measurements to determine the amount of optical- phase shift output by the
interferometer for a given voltage on the signal generator (41- through 79 closures of the
Lissajous pattern).

Number of Number of
Closures of Nominal Input Peak Output Closures of Nominal Input Peak Output

the Lissajous Voltage Voltage the Lissajous Voltage Voltage
Figure Figure

41- 3.78 V 36.23 V 61 5.61 V 53.6 V

42 3.87 V 37.09 V -62 5.70 V 54.4 V

43 3.97 V 38.06 V 63 5.79 V 55.3 V

44 4.06-V 38.92 V 64 5.89 V 56.3 V

45 4.15 V 39.77 V 65" 5.97 V 57.1 V

46 4.24 V 40.63 V 66 6.06 V 58.0 V

47 4:33 V 41.49 V 67 6.16 V 58.8 V

48 4.42 V 42.36 V 68 6.25 V 59.7 V

49 4,51 V 43.22 V 69 6.33 V 60.5 V

50 4.60 V 44.08 V 70 6.42 V 61.4 V

51 4.69 V 44.99 V 71 6.51 V 62.2 V

52 4.78 V 45.85 V 72 6.61 V -63.2 V

53 4.88 V 46.7 V 73 6.69 V 63.9 V

54 4.97 V 47.5 V 74 6.78 -V 64.8 V

55 .5-06 V 48.4 V 75 6.88 V 65.8 V

56 5.15 V 49.2 V 76 6.97 -V 66.6 V

57 5.25 V 50.1 V 77 7.06-V 67.5 V

58 5.34 V 51.1 V 78 7.15 V 68.3 V

59 5.42 V 51.8-V 79 7.25 V 69.3 V

60 5.51 V 52.6 V
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first of three demodulators which we consider in detail in.this dissertation, a fringe-rate

demodulator.
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V. DESIGN OF A FRINGE-RATE Di V;-, JLATOR

A. INTRODUCTION

The method of fringe-rate demodulation was disc.t. J at some-length in Crooker

[Ref. 10] and Crooker and Garrett [Ref. -1 1. Thefunda,:.,.z tal idea is to take two of-the

outputs of an optical fiber interferomettic sensor terminated by a 3x3 optical fiber

couplericonvert-them to two square waves, and mLasure the Lequency Of the modulation

o- the optical wave with a frequency-to-voltage converter. By integrating:-his:result over

time, we can recover the signal. An ambiguity results :fromthe use of this scheme. We

shall explain-presently how this can be eliminated. A limitation inherent to-the technique

is that phase amplitudes of less than- one half fringe (±r, rad) cannot be ritx:"vered

successfully.

B. THEORY

When~the signal ofinterest is strong, it inducesa large peak-phase shift in thelight.

At the moment that the-signal peaks, however, the instantaneous frequency of the output

is zero. Conversely, when the signal is zero, the output is changing mort rapidly. This

corresponds to a large instantaneous peak frequency of the interferometric output.

To see this, consider the-mathematical form of-the interferometric output x(t) for

a single input tone of frequency f. That is, if _f(t) represents a signal of interest

= A sin(wo0 = A sin(27rft), (140)

then we may use Equation (5) of Chapter III to obtain
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x(O D+Ecos[Asin(2rft ) + 0). (141)

-ir, this expression, the phase 6 includes the phase terms due to choosing a -particular

output ofthe interferorneter as well as all the extraneous influences on phase mentioned

in -Chapter IIL Recall'that D is -the central value around which the output waveform

varies, E is the peak departure of the interferomc:ric output from D; A is the phase

amplitude of the input,f is the frequency of- he signal of interest, and i is the time. The

.instantaneous frequency of the output in hertz is defined as the derivati- of the

argument of the cosine function with respect to time, divided by 27r.

1 df(t) _ = Afcos(2irft). (142)
AMNTANTANEOUS = dt 2fms~rarov -2n dt 2 ig

Here; we assume that the derivative of the phase term 0 is small and can be

neglected. Whenever theextrai:eous contributions to the phase shift-are of a quasi-static

nature, this is a reasonable assumption. The instantaneous frequency is maximal when

the cosine-in the derivative givenby Equation (142) reaches a peak, that is, when

2,rft = nr (_43"

where n is an integer. This occurs when the sine in, the-interferometric output of

Equation (141) is zero, since

sin(n7t) = 0, (144)

that is, when the signal oi" interest passes through zero.

If we can convert the instantaneous frejuency -to a voltage, then we need only

integrate-it over time to recover the signal f'(t), in effect, reversing Equation (142). The

chief difficulty in this scheme is not the conversion of frequency to voltage, since

integrated circuits to perform this function are readily available. Rather, it is the fact

that a high instantaneous frequency occurs both when '(t) is rising and when it is falling.

A a-t equency-to-voltage converters do not give different outputs for these two situations.

We alluded to this problem in the introduction to this chapter.

73



We would like our conyerter to give, say, a rising output when the instantaneous

frequency is high and when f(t) is rising. With-this choice, we would also like it to give

a falling output when- f(t) is falling. Succinctly, we need to distinguish between two

distinct situations, both of which give rise to high voltages from a frequency-to-voltage

converter. If the voltage from the frequency-to-voltage converter can range from 0V

to, say, -V,,y, then we would like to invert this range on alternate cycles to 0 V to -V,.\.

Crooker's method calls for the use of an optional inverter to do this.

The use of a 3x3 coupler at the interferometer's output -provides enough

information to make it possible to distinguish between a high instantaneous frequency due

to a rising signal of interest and a high instantar eous frequency due to a falling signal of

interest. In its simplest form, the method uses two-of the three available outputs and

determines which one leads and which one lags the other. From Equation (5) in

Chapter III, the3 x3 coupler generates three:outputs of the form

xk(t) = D+Eco ()-(k-l)2,zr (145)

where (t) is the signal of interest and k is a index which can be 1. 2, or 3. Here, we are

igporing the additional phase shifts due to extraneous influences such as pressure and

teperature.

Figure 13 is a block diagram of a Fringe Rate Demodulator. Without any loss of

generality, we can arbitrarily select two of the-three outputs of the interferometer, say

xQct) and x2(t), as two channels of input to the Fringe Rate Demodulator. With this

choice, Equation (145) implies that when f(t) is increasing, x,(t) leads x,(t) by 1200. But

when f(t) is decreasing, .,(t) leads x,(t) by 1200. A comparable situation obtains no

matter which pair of outputs we select.

We shall put both or these signals through comparators so that the result is either

a logical 0 (0 voltl,) or a logical 1 (5 volts). One of these logical signals we now label I

(for in-phase) and the other Q (for quadrature). This terminology is somewhat

anachronistic, since the term "quadrature" generally refers to 900, not 1200. Crooker

[Ref. 10, p. 54] discovered that fringe~rate demodulation is largely insensitive to this fairly
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Figure 13 Block diagram of a-Fringe Rate Demodulator.

large difference -in- phase angles. So although the fringe-ratc -method originally -was

conceived of as operating when a 900 phase difference were present, phase differences

of 120 q work perfectly adequately.

We now develop the Boolean logic which permits the determination of whether I

leads Q, or vice versa. The resultant logic is different from that given in Crooker

[Ref. 10] and Crooker and Garrett [Ref. 11]. Our purpose in altering her equations is

to facilitate the programming or a programmable logic array (PLA) to-contain all the

logic, rather than using discrete logic integrated circuits. We made use of an Altera

EP310 Erasable Programmable Logic Device (EPLD), a form of PLA which can be

erased under ultraviolet light and reprogrammed. This characteristic is useful in the

design of prototype systems.

We also modified Crooker's approach from one using synchronous, clocked logic

to one using asynchronous logic. This permitted more rapid transitions of the outputs to
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new states, which-reduces the lag in-recognizing that the signal which was leading before

is now lagging, and- vice versa.

We assume that I and Q cannot both make a transition simultaneously. That this

is true is implied by Equation (145),-for there is no angle 0 such that
2

Cos(O) = co4+ 3-r1 = 0. (146)

The goal-of the circuit is to produce a -lead-lag decision signal LL which will take on the

-value 1 when I leads Q and the value 0 otherwise. The PLA will store the-most recently

computed value of LL in an internal-flip-flop, present it as an output to the circuit, and

use it to, determine the next- value of LL.

In addition to computing LL, the-circuit must-store the most recent values ofl and

Q internally, since these-have a bearing on the determination of the next value of LL.

These values we shall- call and and . Like LL, they wvifl -be stored in flip-flops

internal to the PLA. The EP310 requires that all computed values be presented as

outputs to the circuit, so LL. lDO., and QoLD will be available as outputs." Of course,

we want LL as an output in any case so that it can provide -the lead-lag decision to the

optional inverter.

If we were using synchronous logic, LL, l,,o and QOLD would only change when the

clock signal permitted them to do so. Because we-are using asynchronous logic, however,

this is not -the case. Instead. they swiftly take on new values in response to changes in

the inputs. For the brief interval during which the old and new values differ, transitions

must be taking place. Therefore we must take care that transitions in the outputs never

give wrong results, even momentarily. In this case, there are two desired outputs. One

is the signal LL (for lead-lag) which -will be I if I leads Q and which will be 0-if Q leads

. The second output is a pulse train whose state changes whenever I or Q changes state.

This pulse train provides the frequency input to a frequency-to-voltage converter. Since

one cycle of I corresponds to the passing of one fringe (2r radians), and likewise for Q,

10 We do not show I and QOLD in the block diagram of Figure 13.
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we can generate two cycles of output for each fringe in this manner. This has the

advantage of permitting slightly smaller phase shifts to-be resolved by the fringe-rate

demodulator. Theoretically, one can-accept an-interferometric output with as little-as

±.r/2 radians of phase shift with this method. If the third-output of the interferometer

were incorporated in the logic, a more rapid pulse train could be generated, and this

would lead to a minimum resolution of ±7-,/3 radians o " phase shift. In practice. these

minima are not sufficient: one needs a number of fringes before reasonable fidelity-in

the reconstructed wave can-be achieved.

Figure 14 contains a Karraugh map of the digital logic necessary to generate LL.

1oLD is the value of the in-phase channel which-was observed most recently. QoLD is the

value of the quadrature channel which was observed most recently. I is the current

(incoming) value of the in-phase channel. Q is the current (incoming) value of the

-quadrature channel. LLo,,.Dis the last computed value of the lead-lag signal which the

circuit generated. The new value of the lead-lag signal, LL, is determined by-looking up

in the Karnaugh map that value which corresponds to the -ive inputs: LLot1 , flI.o Q(t.o.

I, and Q.

For example, suppose that the circuit's most recent output for LL was 0, which

means that at the time when LL last-was determined, the in-phase channel was lagging

the quadrature channel." If it so happened that IOLD=O and Q.o.= 1. then, since the

in-phase channel was lagging before, we expect it to follow the quadrature channel to I

very soon. If this happens. then I=1 and Q=I after the transition occurs. As the table

shows, this implies that the in-phase channel still lags thequadrature channel, so the new

output LL should remain 0. Btit suppose, instead, that Q reverts to 0 without I ever

having gone to 1. This means that the quadrature channel is now lagging the in-phase

channel. Since the new values of the channels are I=0 and Q=0, the Karnaugh map

shows that the next value o1 LL should be 1.

" This means that the in-phase channel changed after the quadrature channel
changed.
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00 0 1 X O I

01 0 0 1 X
I.Q - - __-

11 X 0 0 1
10 1 , .X 0 0

00 01 11 10

00 0 I X 0-

010 1 ! X
LLo,1f=; I.Q

1ix 0 l 1

Figure 14 Karnaugh map of logic needed to generate LL.

All other entries in the Karnaugh map were filled out in a similar manner. The

symbol X shows transitions which we do not expect ever to occur. The underlying

supposition is that the in-phase andquadrature channels cannot Ith change at the same

time, an assumption we have already discussed. The four logical equations of the EPLD

are as follows.

LL (iA o A Q) V (I A LLA _Q0oL)

V (A A Q o) V (IA LLAQ) (147)

V (I A IO,,A Q) V (IOW A LL A Q)

v([L A LL A )v A Q A QOw),
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fOUT = IEQ, (148)

'OLD 1' (149)

and

QOLD = Q" (150)

The symbol A mean logical AND: the-symbo[V means logical OR; and the symbol

means logical EXCLUSIVE-OR. These logical operations aire defined more precisely

in the Glossary.

C. DESIGN

We shall defer until Chapter IX the specifies of the design of a receiver to convert

the-interferometric outputs-into voltage signals. For the time being, suffice it to say that

these signals will be:in the-form of Equation (145), and that the units of D and E will be

volts. The receiver, will deliver signals in the range D±E, with -D=(0 V and E= 0,V.

Figure 15 is a-schematic of a comparator which we use to convert this bipolar signal

to a unipolar (binary) signal. The LF31 I comparator is made by National Semiconductor

[Ref. 15, p. 5-1941. The databook uses the symbol for the open-collector output

shown in Figure 15. The analysis of this circuit is given in Appendix A. The design

equations derived there are repeated here. Provided that the conditions

s - v;, (151)

RI<R3, (152)

R(153)

and
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R 1 < 8 F311

3 R4

22

VS R

Figure 15 Comparator circuit used-to convert bipolar interferometric outputs to-binary
levels of 0 -or V H.

R4<R1 . (154)

are met, then the lower switching threshold of the comparator is given by

R, -R155)
VTHRESHOLD RI +R2 V

and the upper threshold is higher than this by

R, IIR, 16
VmCREMWL, - V,,. . 16

How much hysteresis we want is dependent on the-amount of noise we expect to

see, For our purposes. we chose to set VTHPSHOLD= -50 mV and I"C.REMENTA.= + 100 mV.

This means that switching of the output from high to low will only take place when the

input goes below -50 mV, and switching from low to high will only take place when the

input goes above +50 mV. We picked R,=-1.00 kf,. Suppose that R2=aR, fbr some

number a. Then from Equation (155) we have
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( !-;)R1 v=.vs = -50 mV. (157)(,a l)gv  - +

We shall select is7= + I5V. Solving for a, we find

(a-1)(15 V) = -(a+1)50 mV

a(15 V+50 mV) 15 V-50 mV (158)
14.95-a - 15 0.993.

15.05

If we chooseR 1 = 10.0 k12 + 66.5-fl (a series combination) and R, = 10.0 kfl, then we

find: VTHso -- -49.7 mV, which is reasonably close to- the desired-value, 50 mV.

Next we can apply Equation-(156) to-the desired-amount of hysteresis. which is the

difference between the upper and lower threshold -levels, or 100 mV. The value of V,

-is +5 V in our-digital logic circuitry. So

v-= 100 mV (159)
R3

10 MV (5 V)

5.017 k( (160)-- (5-Vv)-

= 251 k).

As it-happens, standard 1% resistors do not come in values of 251 kf1; the nearest value

is 249 kfl for R3. Using the chosen resistor values, we expect to see lower and upper

switch threshold levels of -48.7 mV and 49.6 mV, both of which are close enough to the

desired' values. To get smaller values would be difficult with I % resistors without

carefullychoosing them for accuracy. Note that the 66.5 fl resistor (which, with 10.0 k12,

makes up R,) is,less than I1% of the 10.0 kfl resistor as it is. This means that a resistor

which has a nominal resistance of 10.0 kfl might actually have as little as 9.9 kfl and as
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much as 40.1 kWt. Adding 66.5 fl to this does not guarantee that we get 10.0665 fl. In

the laboritory,-we did not need to pickthc 10.0 kf1 resistor specially, as it happened. but

it-could easily have been necessary. This is an unattractive feature of the design of this

comparator which really arises because we want such a small level of hysteresis. If we

relaxed this kneed, the inaccuracies of 1% components would cease to be a constraint.

Two oftthese comparators arc used, one for each of the two interferometric outputs

we choose to rise in the Fringe Rate Demodulator. In Figure 16 we show the schematic

of the rest of the Fringe Rate Demodulator. The -unipolar outputs of the two

comparators become the inputs to the I and Q inputs of the EP3J0 Erasable Program-

mable Logic Device (EPLD) described earlier in this chapter.

FRINGE-RAT-E DEMODULATOR
IS 112

, c ..... 1 2 /O ALL CLOS E CIViat S Z 1:. @1 t.1 C4
V C . 2* PI IsUj ~ ?5

IN-PHASE It is ! 11 2

.UAD .ATU .. 2 ' 1 1 . ofI " !

I7 SM 00.,
.15 r. -0 *1P1-

.15V81I

. ... . .......... ......1 1107) k_J/~~6 Elk 21. 1 1 , .

Figure 16 Schematic drawing of the Fringe Rate Demodulator. The receivers,

transimpedance amplifiers, and comparators are omitted from this drawing.

The LL output of the EP310 causes the LF13333 Quad SPST JFET Analog Switch

to alternate between connecting its D4 input at pin 15 to the ground at pin 14 and

leaving D4 open. When D4 is grounded, the non-inverting input to the optional inverter
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built around the LF356 Monolithic JFET-Input Operational Amplifier is grounded. This

causes the LF356 to function as an-inverting amplifier of gain 1. When D4 is left open,

the voltage at the input to the LF356 is the same as that 'from the output of the

LM2917N Frequency-to-Voltage Converter Because an -operational amplifier with

negative feedback tries to keep both its inputs at.the same voltage level, there will be no

current flowing through the feedback network, and so the output willnot be inverted

when D4 is left. open.

The EP31O generates a frequency signal at its-pin 16 which serves as the input to

the LM2917N, which is often loosely referred to as-a tachometer chip. This signal is

formed from the exclusive-or o1 its two inputs, so the output frequency- is -roughly twice

that of theinput frequency. We cannot say it is precisely double, since the instantaneous

frequency of a phase-modulated-signal is not a constant. The-voltage -level provided to

pin II of the LM2917N by a resistive divider comprising resistors R, and R, is around

2V.

Our design differs in another respect from that in Crooker [Ref. 10, p. 531.

Crooker used a high-pass-filtcr at the input to-the frequency-to-voltage converter and a

comparator threshold of zero. We used no filter, just-a- threshold about-midway between

tfieupper and'lower voltage levels -generated by the -EP310. An advantage to avoiding

the use of the filter is -that, potentially, the absence of a capacitor could provide the

ability to handle higher frequencies. Since the frequency input can be either 0 V or 5V.

the input comparator ol thc -LM2917N will -not change unless the frequency input

changes. Because this signal is derived from the interferometric outputs, its frequency

is high when the phase in the inte- xnmeter is shifting most rapidly. and it is low when

the phase shift -reaches ancxtremum.

From the data sheet 'or the LM2917 [Ref. 15, p. 5-1941, an equation describing the

output voltage of the frequency-to-voltage converter is

VouT = VccfNC? (161)

R, and C, are the external components attached to the chargc pump within the converter.

Vcc is 15 V, the voltage supplied to the output transistor ,ithin the converter. K is the
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gain of the converter; it is roughly I. The zener-diode in the LM2917N limits-the voltage

-from the operational amplifier which controls the transistor at its output to 7.56 V at

most. We could include some gain in its feedback loop, but it is just as easy-to apply the

gain in the following stage. which is what we chose to do. We would like l to re-ach

this maximum when the maximum input frequency occurs. What is this frequency?

For a signal of interest of the form

f(t) = Asin(27rft), (162)

recall that-the interferometric output -is of the form

x(t) = D + EcosAsin(21rft)]. (163)

We shall design the circuit to handle -the case where A = 100 rad -and f=200 Hz. The

peak instantaneous frequency in the interferometric output is roughly equal to the

number of complete cycles in interferometric output in one second. In a quarter of a

period of-the signal of interest. T4. there are A/2r cycles of the -interferometric output.

-So the frequency is roughly

( ) 2A = 2Af (164)

However, the EP310 has -logic which roughly doubles the frequency delivered to the

LM2917N,-so the actual frequency is therefore estimated as

ftN 4Af (165)

Therefore we expect the EP310- to see a peak frequency of

fix = 4(100 rad)(200 Hz) = 25.5 kHz. (166)

Now from the specifications for the LM2917N [Ref. 15. p. 5-1981, a restriction on the

input frequency is

84



(167)
CI Vcc

In this expression, I, is the current delivered to the timing capacitor C1, f is the

frequency delivered to the input of the LM2917N, and Vc- is the supply'voltage. We can

use this expression, to determine the value of C, because I, is specified in the data book.

We have chosen V ,= 15 V. and we-have just found that f.,-5.5 kHz-at most.

=(25.5 k 1z)(15 V) 
1367 F for the minimum 1. 140,iA

fmVcc 240A = 630 pf for the maximum 1, 240p AI(25.5 -kHz)(15 V)

(168)

Unfortunately, the databook recommends keeping C,>500 pF for accuracy. Whether or

not we can handle the maximum frequency for this choice of C, depends on the current

I,, and this is dependenton the characteristics of the-particular device we end up using.-

We can calculate tht: peak frequency-we-can handle, however. We have

1450-pF)1A"" = 18.7 kHz if I1 = 140JA

f m J _ (500PF)(15- 3 . z (169)
cc 20A -32.0kHz if 11 =2401A1

(500pff)(15 V)

In the worst case, I,= 140 pA and fl,_<18.7 kHz. If f=200 Hz, then we must have

A . fM r - (18.7 kHz),r = 73.3 rad. (170)
.4f 4(200 Hz)

If we lower C, slightly to 470 pF, we can raise this to 78.0 rad. Although the accuracy

of the output wiltsuffer a little, we only need one capacitor to achieve this value, whereas

it would take two to obtain 500 pF. The elimination of one component with a

consequent increase in the permissible phase amplitude A is a satisfactory compensation

for the sacrifice in accuracy.
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-By-using the optional inverter. we create a bipolar output which is negative when

I lags Q and-positive otherwise. However, this signal is proportiowal -to the derivative

f(t of-the signal of interest. f(t) in-Equation (140). We must intcgcate this to recover

f(t) itself.

The LF444 Quad Low Power FET Input Operational Amplifier performs the

integration function. In Appendix A we derive equations to permit the design of this

integrator. Equation (401) in the appendix shows that the output of our integrator circuit

is

G(f) = _ 1 (171)
VIN, RC'2-J2irf

provided that-.,ie input i'requencyf is much greater than the-pole freluencyj,. There arc

actually two-poles in this circuit. A design-goal is to set-them equal to each other. From

Equation (397) in the appendix, we have

1 _____! _

24 A =  21rRR -- -2" (172)

We-want-to choose f, so that the error in the phase is small in the frequency range of'-

interest to-us. We would like to have reasonable accuracy in both phase and gain when

f>'20 Hz (a design choice). From Equation (407) in the appendix. the error ep in. the

phase is given by

= -2tan (f,) (173)

If we choose f=0.5 Hz. then this error will be only 30 for f=20 Hz; it will fall to 0.30

for f=200 Hz. From Equation (410) in the appendix, the error E.,, in the gain is given by
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2M (174)

So for this-same choice _orj; the-crror in magnitude will be less-than 0.06%, and it will

be even less signilicani it- higher frequenecs.

Our choice ol],=0.5 Hz determines the- two products RC, and R,C,.

RIC, = R!2C2 - 318 ins. (175)
2 7rf,

We also have to select -the dLiirpd gain factor., IRC 2 . For an input to the interferometer

of ±100 fad-at-f=200 -Hz.- the -ouitput ol-the frequency-to-voltage- converter is- measured

as 3.8- V. To get- an amplitude or 7.56 V out-ol- the i ntegrator-uLnder these conditions. the

gain -must -be 7-56 V/1.8 V. or 2-.0. So

R, = i 2.0*
R~c' 2 2~rf(176)

'1C2 : -),-(200 Hz)(2.0) 38s

In -the-end, we increased the gain to about 3 by -lowering R,C, -to- around 265 Ps.

By trial and error, we findr-combinations of R,, R,. C,. and -C, which meet these

conditions and which- are availableor are easily produced from availahle components. A

viable-solution is

R, = kg), R2 =475-MU,

(177)

C, = 800 nF, C 2  680 pF.

The above discussion explains how the component values in the integrator in Figure 16

were chosen. To get the large -resistance R, in the feedback network. we used a Tee-

network. The values used in this network were obtained by applying Equations (416) and

(418) of Appendix A. The form or the network illustrated there is repeated here in
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+

R 1  Va  R3  1

Figur IT A Tee-network can be used to obtain large resistances.

Figure 17. Resistors R,, R,., and R. in Figure 17 on page 88 correspond to resistors R12,

R,3, and-R14 in Figure 16 on page 82.

The effective: resistance or our Tee is given by

RF = R12R14 -(110 kW) 2 _ 475 MO, (178)
R13  25.5 0

which is just the value of R. which we -sdtg1-t for the integrator.

There are two subsystems in theFringe Rate Demodulator which could bemodified

to change its operating regime. The frequency-to-voltage converter is configured by the

choice ofUR 3 and C, in Figure 16 to-achieve its peak output voltage for a specified peak

input frequency. This frequency is dependent on both the amplitude and the frequency

of the signal of interest, and therefore changes in these two components could be made

to accommodate a different set of signal parameters.

The integrator is the other subsystem which would need to be modified to

accommodate such changes. The methods used in this chapter can be easily applied to

make these changes. if needed.
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D. SUMMARY

In this chapter we have, considered a modification to a method proposed by

Crooker [Ref. 101-and Crooker and-Garrett [Ref. 11] which uses a frequency-to-voltage

converter, an optional inverter, and suitable control logic-to recover a signal of interest

from the-outputs of an optical fiber interferometric sensor terminated with a 3 x3 optical

fiber-coupler. This method is very inexpensive, as we shall see in the next chapter, and

takes up very little space physically. It is capable or operating with large phase

amplitudes, provided that- the bandwidth limitations of the converter arc not exceeded.

Its primary limitation is its inherent inability to recover signals of less than one half (or,

if pushed, one third) of a fringe. For extremely sens,.ive optical fiber interferometric

sensors, where large dynamic range can be achieved without dropping below this lower

limit, this type of demodulator is excellent. In the next chapter. we consider the

performance of the Fringe Rate Demodulator.
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VI. PERFORMANCE OF THE FRINGE-RATE DEMODULATOR

A. OVERVIEW

In this chapter we-examine the performance of a Fringc Rate Demodulator. The

aspects of its performance which we consider are:

1. scale factor, which relates -the phase amplitude in the modulated signal to the

voltage -amplitude in the demodulated signal;

2. small, signal bandwidth;

3. maximum acceptable signal;

4. minimum detectable signal:

5. dynamic range:

6. complexity: and

7. approximate cost.

B. SCALE FACTOR

The scale factor is defined as-the ratio of the demodulator's output voltage to the

input phase. If the phase signal provided by the interferometric sensor is 0(t) and the

output provided by the Fringe Rate Demodulator is v(i), then we define the scale factor

FFD(t) of this-demodulator by the equation
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(dvt)
F FRV( Q) _
-F , O (179)

dO(t)

Ideally the scale lactor would be constant. In practice. it is =not. We shall call- the

multiplicative product A of the phase shift A and the frequencyf the phase rate, since

the product is measured in radians per second. When the phase rate is too large.

saturation of th -frequency-to-voltage converter's output at the level of the high voltage

power supply (or-slightly below it)-takes place.

The reason saturation -occurs- is:clcar if we-consider the mathematical expressions
-for the output of the interferometer. Let a signal of interest '(t) be applied to the

interferometric sensor. If (C(t) is a sinusoid of amplitude A- and frequency aw=24rf, then

((t) = Asin(w*t). (180)

After conversion or the inter'erometric output into-its voltage analog, '(t) is converted

-into the phase-modulated signal

x(t) = D + Ecos[1(t)+4] (181)

= D +Ec4A sin(wt)

The term represents an additional phase shift which accounts for the choice of one of

the three outputs of the 3X3 coupler at the output of the intericrometric sensor, as well

as the effects of temperature, pressure, and other factors.

The instantaneous natural frcquency of this interferometric output is given by ;i;e

derivative of the argument of the cosine function. To get this in conventional frequency

units (hertz), we divide by 2-,,. So the instantaneous frequency is given by

We assume that the derivative of b is negligible, which is valid if h is quasi-static.

Now the EP310 Erasable Programmable Logic Device (EPLD) generates a square

wave as input to the LM2917N Voltage-to-Frequency Converter. This square wave has
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.AIN TANEOUS 1 dA sin(Wt)
27r dt

Aeo 1182)

2,r

= Afcos(wtt).

twice the lrequencyf....,,-, approximately. We have configured the LM2917N to

provide a maximal output voltage for an instantaneous input frequency of 25.5 kHz. In

Figure 18 is a graph showing the measured output of the-LM2917N. The same data-also

are graphed in Figure 19. but each axis in that plot is logarithmic. A summary of the

observations is given in Table V. The data were obtained by use of the instrumentation

shown-in Figure 20. We used an HP3314A Function Generator to create a square wave

with a 50% duty cycle, ranging between 0 V and 5 V. The output of the LM2917N was

averaged on an HP3456A Digital Voltmeter. A leas-squares linear lit -to the data gives

the relationship

Vo0 . = (97.0±0.2 -Y) f + (14±4) mV, (183)

and the correlation coeflicient in this linear fit is r=0.999976. The LM2917N is verv

linear, but the log-log plot shows the deviation from linearity at the low and high ends

of the frequency scale: the output voltage reaches a floor of around 12.5 mV and a

ceiling at around 5.30 V. The relatively large voltage offset of 12.5 mV limits the

dynamic range of the device. We can calculate this ratio by the fillowing method.
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Range Maximum output voltageMinimum output voltage

_5,29 V5,2 V(184)
12.5 mV

V" = 423

= 52.5 dB.

This is a fairly poor dynamic range. it could be increased ifwe could lower the voltage

offset; raise the voltage ceiling. or both. The voltage offset could be reduced by using

a trim network with -the output operational amplifier and transistor. though care would

be required to avoid a high coefficient of change in the offset with temperature and time.

The specification for the LM2917N states-that the-voltage-offset typically is 3 mV.and

is 10 mV at most. Since wemeasured more-than 12 mV. a reduction in the offset -should

be easy to obtain. Getting the offset down to 3 mV would -provide an increase in

dynamic range of 12 dB.

The upper voltage limitation is due to the use of the LM29i7N with its built-in

zener diode. This diode limits the voltage to 7.56 V nominally: we measured the voltage

as 747 V. The LM2907N could be substituted for the LM2917N. It has no zener diode

built in. To-obtain-the samedegree of stability, one could',insert a-discrete zencr diode

with a voltage higher than the 7.56-V of that in the LM2917N. With the 15 V power

supplies we-used, this would :permit nearly double the dynamic range (an extra 6 dB).

The two changes that have been suggested here should provide an extra 18 dB of

dynamic range without much effort. Replacing the frequency-to-voltage converter with

one of greater inherent dynamic range is another approach to expanding- the dynamic

range.

Another way to view the dynamic range is not as the ratio of maximumn'to minimum

output voltages but as the ratio of maximum to minimum input frequencies. This is. not

really suitable, however, since we could use as -low an input frequency as we like. One

could achieve as high a dynamic range as desired -by this approach. but the' resultant

number would not be a helpful measure of performance.
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LM2917N Voltage Output vs. Frequency Input

Le st Squio
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Frequency Input (HZ]4000 s n c e -

Figure 18 Graph of the oT t we obtheLM2917N Frequency-to-V0tage
Converter as a unction o input requency.

There is, however, a limit to the maximum input 'requency of-the LM2917N. and

it Was discussed in the last chapter. It is

f~x - I2 .(185)

Since I, may be as little as L4O pA, C2 must be at least 500 pF (we have shaded this

number a little, using only 470 pF) fr accuracy. VKcc typically would be at least 5 V (but

is 15 V in our demodulator), so the frequency input really should not exceed 19kHz if

we assume the "worst case" for 1.,. That we obtained successful results up to55 kHz

must be regarded as due to having, been lucky enough to obtain a superior sample of the-

LM291 7N.

To measure the scale-f'actor, we used the instrumentation illustrated in Figure 21.

Our observations of input voltage, equivalent input- phase. peak output voltage, and

computed scale factor are shown in Table VI and Table VII. The equivalent phase
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LM2917N Voltage Output vs. Frequency Input
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Figure 19 Graph of the -output voltage ot the LM2917N Frequency-to-Voltage
Converter as a function on input tre-uency. This figure shows the same data as in
Figure 18, but here it isplotLed logarithmically on both axes.

H P331 4A Feuny
Function- rqec P46

Generator Voltage Voltmeter

Figure 20 Instrumentation used to obtain the output voltage of the LM2917N
Freque iicy-to-VoltageConverter as a function of input frequency.

amplitude shown in the tables was computed from the linear relationship found in

Equation (139) on page 67 between voltage from the HP3314A Function Generator
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Table V Summary of-observat ions showing the output voltage of the- LM291 7N Voltage-
to-Frequency Converter as -I lunction of input frequency.

[ I;N J .r .[V J
1 Hz 12.5±0.1-

2 Hz 12.6±0.1 mV

5 Hz 12.80±0.10 mV

10 Hz 13.1 ±0.1 mV

20 Hz 1.1.9±0.1 mV

50- Hz 16.2±0.1 mV

100 Hz 19.9±0.1 mV

200 Hz 27.44±0.09 mV

500 Hz 49.9±0.] mV

I kHz 87.44±0.08 mV

2kHz 208.89±0.02 mV

5-kHz 505.49±0.02 mV

10 kHz 997.33±0.03 mV

15 kHz 1.48674±0.00003 V

20 kHz 1.97469±0.00005 V

25 kHz 2.46907±0.00005 V

30 kHz 2.93716±0.00005 V

35 kHz 3.41414±0.00007 V

40 kHz 3.89596±0.00009 V

45 kHz 4.3769±0.0001- V

50 kHz 4.8569±0.0008 V

54 kHz 5.2288±0.0001 V

55 kHz 5.29019±0.00006 V

56 kHz 5.2955±0.0001 V
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Generator Amplifier ometer Demodulator Gignlnalyer

Figuiri21' Instrumentation used to measure the scale factor of' the Fringe Rate
Demodulator.

when routed through the HP6824A Power Amplifier with gain 10. This relationship is

-repeated here:

A,,= (34.29,0.02 .) + (-0.64±0.08 rad). (186)

No Attempt has been made in these two -tables to exclude some data from the

averages. A cursory -examination of these averages will reveal that the scale factor is

between 105 and 120 mV!rad. and that it declines with increasing frequency as well as

with- increasing-phaseamplitude. As we. have already discovered, increases in either-of

these quantities cause an increase in the instantaneous frequency-of the input to the

LM2917N Frequency-to-Voltage Converter. Thus the scale factor drops off with an

increase in the phase rate, and this suggests that the slew rate limitation at the output

of the LM2917N may be a I'actor. The slew rate of the LM2917N is not a published

specification, however.

C. BANDWIDTH

The Fringe Rate Demodulator is inherently incapable of demodulating phase

amplitudes of less than i-,/2 rad (or 7r/3 rad if all three outputs of the interferometer are

used). This makes it impossible to define the bandwidth of the Fringe Rate Demodulator

in the same manner that we shall use when we discuss the Symmetric Analog Demodulat-

or. That is, we cannot speak- of' a small signal bandwidth: the demodulator does not
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Table VI Measurements to obtain the scale factor -of' the Fringe-Rate -Demodulator
(f=50, 100, and 150:Hz).

I I l~ I Averagef Vt E quivalent Scale
I'V Phase Valeor Facte
(V, peak) (rad) (V, peak) (matr Factor

=rad- IV/rad) (mV/rad)

1.00 33.7 4.2 125

1.50 50.8 6.1 120

50 2.00 68.0 8.1 119 120

2.50 85.1 10.1 119

3.00 102 12.1 118

1.00 33.7 4.0 119-

1.50 50.8 6.0 118

100 2.00 68.0 8.0 118 118

2.50 85.1 10.0 118

3.00 102 12.0 117

1.00 33.7 4.03 120

1.50 50.8 5.96 117

150 2.00 68.0 7.95 117 117

2.50 85.1 9.91 117

3.00 102 11.9 116

respond to small signals. However, we can get an idea of the failure ot the demodulator

properly to respond at- high frequencies if we consider the effect of increases in frequency

on the scale factor, which we discussed in the previous section. 11f we fix the input phase

amplitude, we can measure the scale factor over a range of frequencies. We find that

eventually it drops to a level which is 1/2 times the size of the scale factor at low

frequencies. This is the frequency which we will define as the upper limit on bandwidth.

Of course, we expect it, to be a function of the phase amplitude. The truth of the matter
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Table VII. Measurements to obtain the scale factor of the Fringe-Rate -Demodulator

(f= 200, 250, and 300 Hz).

Equivalent Scale Average
f VIN Phs Factor Scale

(Hz) (V peak) Phase (V, peak) Factor r
(rad) (mV/rad) (mV/rad)

1.00 33.7 4.00 119

1.50 50.8 5.93 117

200 2.00 68.0 7.88 116 116

2.50 85.1 9.85 116

3.00 102 11.5 113

1.00 33.7 3.92 116

1.50 50.8 5.89 116

250 2.00- 68.0 7.86 116 111

2.50 85.1 9.34 110

3.00 102 10.16 100
1.00 33.7 3.90 116

1.50 50.8 5.87 116

300 2.00 68.0 7.53 111 106

2.50 85.1 8.52 100

3.00 102 9.09 89

is that it is the phase rate which is limited by various limitations on bandwidth within the

Fringe Rate Demodulator. especially by that of the LM2917N Frequency-to-Voltage

Converter. The frequency at which the scale factor dropped to this level and the scale

factor itself are shown in Table VIII. The product of phase modulation amplitude and

frequency, Af, is constant to within ±5%, as one would expect from the characteristic

limitation due to phase rate which is associated with this approach. The average value

of 31 krad/s is consistent with the design goal of 25.5 kHz (see Equation (166)) and

within the spread of typical device values for the LM2917N. The fact that it is greater
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Table VIII These data-show the bandwidth of the Fringe Rate Demodulator at various
levels of input phase amplitude.

Input Equivalent Output Scale Band-
Voltage Phase Voltage Factor wanAf

PI Amplitude Vot n .  FFPW (Hz) (krad/s)
(V) (rad) (V) (mV/rad)

1.00 33.7 3.02 89.61 850 28.6

1.50 50.8 4.34 85.43 610 30.9

2.00 67.9 5.70 83.95 460 31.2

2.50 85.1 7.20 84.61 360 30.6

3.00 102 8.52 83.53 320- 32.6

- -1Average 30.8±1d.4

than the design-value is iot significant since the value depends on the-choice of maximum

acceptable distortion. When it is defined as the level giving 4% total-harmonic distortion,

the product Af is approximately 21 krad/s,,as shown in Table IX.

D. MAXIMUM ACCEPTABLE SIGNAL

In Chapter XI we explain the performance of the Symmetric Analog Demodulator.

There, we consider in detail how one :an best- assess the maximum -phase amplitude that

-a demodulator can handle. For now, we shall simply state that our criterion for

acceptability is that the total harmonic distortion induced in a sinusoidal signal be less

-than or equal to-4%-after demodulation. On an oscilloscope, this level of-distortion is

barely perceptible. A series of graphs illustrating this assertion also are presented be

presented in Figure 49 on page 186 in Chapter XI.

The harmonic distortion of the output of the Fringe Rate Demodulator is affected

-by several factors. The-choice of an integrating capacitor in the LM2917N is one of the

most significant. If it is too big, then the LM2917N cannot respond rapidly enough when

its input frequency is high. Conversely, if the-capacitor is too small, then the outputs are

very noisy, and this is manifested in the harmonic distortion. The presence of a sizable
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voltage offset at -the -output also leads to an abrupt change in the output o! the optional

inverter whenever the LL lead/lag signal changes state. This abrupt change is somewhat

softened by the integrator which follows, but -it still: contributes some distortion. Also,

because the Fringe Rate Demodulator is inherently -unable successfully to demodulate

excessively small phase amplitudes, we ind -that total harmonic distortion becomes very

large for very small signals. too.

In Figure 22 we show a contour plot connecting combinations of input- frequency

and phase amplitude which result in equal levels o1' total harmonic distortion from the

Fringe Rate Demodulator. The same data are plotted in Figure 23 in a surface plot,

viewed in perspective. Both these plots were generated by computer programs which

interpolatedbetween data collected by a computer program operating our experimental

apparatus on-an IEEE-496 bus. In Table IX we show the results of interpolation on the

same data to obtain the highest phase amplitude which will not cause the Fringe Rate

Demodulator-to exceed 4% total-harmonic distortion. We-do this calculation at all of the
observed frequencies where interpolation was -possible.

It is worth noting- a few points about the data presented in Figure 22,-Figure 23.

and Table IX. The lowest distortion always occurs in the range between 100 Hz and

500 Hz. At both high and low frequencies, distortion goes up. This implies that it is not

merely the phase rate which determines the level of distortion. If it were, we would

expect the data to depend only on the productfA of frequencyf and phase amplitude A,

which it does not. The peak acceptable phase amplitude is roughly constant from 10 Hz

to 100 Hz. It then begins to decline roughly in proportion to Ji4 until the frequency

reaches 1000-Hz. At higher frequencies, the distortion- always exceeds the 4% level.

We can -understand the behavior of the Fringe Rate Demodulator by considering

what happens at the various extremes of input phase amplitude and frequency. When

the productfA is low. then the frequency applied to the LM2917N Frequency-to-Voltage

Converter is low. Under these conditions, the converter seldom outputs any charge from

its charge pump. When it does, the charge is quickly drained- from the integrating

capacitor. The reason for this is that the charge pump only puts charge onto the

capacitor in response to a transition of its frequency input from low to high or high to
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Surface Plot of -Harmonic Distortion-
Fringe Rate Demodulator
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Table IX Interpolation to determine the maximum phase amplitude resulting-in 4% total-
harmonic distortion from the Fringe Rate Demodulator for several frequencies.

Lower Lower Upper Upper Interpolated Equi- f
(Hz) voltage THD voltage THD Voltage Phase (krad/s)

(V) (%) (V) (%) (V) (rad)

10 3.5 3.9412 4.0 7.6147 3.508 120 1.2

20- 3.5 3.3095 4.0 7.6276 3.580 122 2.4

30 3.5 3.317 4.0 7.4295 3.583 122 3.6

50 3.5 2.7395 4.0 7.2526 3.640 124 6.2

100 3.5 2.2206 4.0 6.7416 3.697 126 12.6

200 Total harmonic remained below 4% for all voltages applied (7 V max.)

300 2.5 3.636 3.0 4.5001 2.711 92 27.6

500 1.0 2.4485 1.5 4.4076 1.396 47 23.5

750 0.6 2.9334 0.8 4.2590 0.7609 25 18.7

1000 0.6 3.7165 0.8 6.2645 0.6223 20.7 20.7

1500
Total harmonic distortion remained above 4% -for all voltages applied.2000-

low. The charge is not added in anything like a continuous manner. Even if the product

fA is high, if-f is low. there will -be relatively long periods during which no transitions o1

the converter's input occur. These take place whenever the- phase amplitude reaches an

extremum. During these periods, the pulsating -nature of the converter's output again

becomes evident, with an adverse effect on tidelity. It is little wonder, therefore, that one

cannot simply increase the phase amplitude to compensate for a falling frequency. This

pulsating current does not lend itself to a smoothly varying, distortionless output. A

change in the frequency regime of the LM2917N (that is, a change in the value of the

integrating capacitor and its resistive drain) would be required to reduce this effect. Even

though the LM2917N shows a highly linear relationship between input frequency and

output voltage, this is on an averaged basis. On an instantaneous basis, the noise-like
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fluctuations in the current are significant. At high values of the product fA, the

-LM2917N saturates and distortion is the inevitable- consequence. We find that the phase

rate is 22.4-krad/s in the frequency band=from 300 Hz to I kHz. based on a criterion of

4% total harmonic distortion.

E. MINIMUM DETECTABLE SIGNAL

For the Fringe Rate Demodulator to function requires transitions of its input from

low to high and from high to low. Absent these transitions, there is no output. As the

product Af-of amplitude A and -frequency f falls, the frequency input to the LM2917N

becomes lower. As discussed in the previous section, this results-in a -pulsating current

from the output of the LM2917N. The minimum detectable signal is one which just

manages to create one transition, if only infrequently. Of course, faithful reproduction

of this signal- requires a much larger product Af. But provided that at least one transition

occurs, the- presence of the signal can be detected. Because the -programmable logic

generates-two transitions- or each complete cycle of the inputs, an output transiion- is

-guaranteed to -occur if A is greater than T-/2 rad. IIf this logic were modified- to process

all three interferometric outputs, the minimum detectable signal would drop to--r/3 rad.

Note that f-does not enter into the determination of the detectability of the signal. It

only affects the fidelity of the reconstruction of the signal of interest.

F. DYNAMIC RANGE

The dynamic range is the ratio between the maximum acceptable signal and the

minimum detectable signal. The latter quantity is '42 rad. The former is dependent on

frequency, and was shown in Table IX on page 101. The ratio of these two as a function

of frequency is tabulated in Table X.

By comparing the tabulated values of dynamic range to the maximum dynamic

range of the LM2917N which is at the core of the-Fringe Rate Demodulator, given in

Table V, we can see that the demodulator fails to achieve this maximum. Why is this?
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Table X Dynamic range of the Fringe Rate Demodulator.

Maximum Minimum Dynamic Range
fAcceptable Detectable

Signal Signal As a Fraction. In dB

10 Hz 120 rad 76.4 37.7

20 Hz 122 rad 77.7 37.8

30 Hz 122 rad -r/2 77.7 37.8

50 Hz 124 rad 70.9 38.0

100 Hz 126 rad 80.2 38.1
200 Hz 4% Total Harmonic Distortion was never reached, so maximum

acceptable signal was undetermined.

300 Hz 92 rad 58.6 35.4

500 Hz 47 rad 29.9 29.5,1i2
750 Hz 25 rad 15.9 24.0

1000 Hz 20.7 rad 13.2 22.4

1500 Hz - Total harmonic distortion remained above 4ci so maximum accept-

2000 Hz able signal was undetermined.

It is because we used averaging of the pulsating output of the LM2917N in measuring its

dynamic range, but we relied on a criterion of 4% total harmonic distortion in

determining the maximum acceptable signal It is not surprising, then. that the LM2917N

appears to have a different dynamic range, since we assessed its performance in a

different way. In Table VIII we found that the average phase rate was 30.8 krads: we

would infer a peak amplitude or (30.8 kradls)I(100 Hz)=308 rad when the frequenc,

f=100 Hz. Using the criterion on which that table was based. the maximum dynamic

range would be computed as (308 rad)I(T'P_ rad)=46 dB.

An investigation into ways to reduce the total harmonic distortion from the Fringe

Rate Demodulator should be undertaken to stretch its dynamic range. An examination
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of different frequency-to-voltage,-converters or designs for converters built Irom discrete

components may-permit the dynamic range of the converter to be raised, too.

G. COMPLEXITY

The Fringe Rate Dcmodulator is easily the least complicated of the three

demodulators evaluated in this dissertation. Apart from the receiver section, which each

of the three schemes have in common, there are only seven integrated circuits in all,

although the Altera EP310 Erasable Programmable Logic Device (EPLD) is admittedly

a complicated one. However, the logic contained in-it is quite simple.

-H. APPROXIMATE COST

In Table Xlwe show the cost of-the Fringe Rate-Demodulator. In our implemen-

tation ofzthe Fringe Rate Demodulator, we used an LF356 Operational Amplifier as the

optional inverter and we used one -of the four operational amplifiers within an- LF444

Quad Operational Amplifier to perform the integration function. The only-reason we did-

not- use-the -LF444 for both functions is. because we were using -it for something else in

another cf'rcuit. If-one examines the-receiver section-(see Chapter IX), one discovers that

'the summing amplifier usL2 in the -receiver to remove D (the fixed offset of the

4nterferometric output from 0 V) is one of the two- operational amplifiers within an

AnalogDevices AD712. The LF444 could provide all three of the operational amplifiers

neede A-,n the Fringe Rate Demodulator, saving $4.56, or roughly 5% of the cost.

The EP310 and the three low-noise receiver amplifiers (OPA-111) together

comprise around 80% of the whole cost of -the demodulator. Therefore, finding less

-costly replacements is an attractive idea, since a low-noise receiver is not required to

generate the requisite square waves. If we used combinational logic gates, two LF444

quad operational amplifiers, and a-quad comparator woud -reduce the cost to less than

$30.00.
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Table XI Calculation- of the cost of the integrated circuits used in the Fringe Rate
Demodulator.

I Source Total
Part ID Description Price of Cost of

Required Pricc -Part

Eraseable Pro- Altera
EP310 grammable Logic I $44.70 Aorpra $44.70

Device (EPLD)Coprtn

Frequency-to- Digi -Key
LM2917N Voltage 1 $1.95 Corporation $1.95

Converter

LF3333 uad SPST JFET $8.30 Marvac $8.30
• Analog Switch Electronics

LM314 olag Mouser(simi Voltage $0.32 0.64
(silar1 Comparator Electronics

'to -LF311-)__ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _

Monolithic JFET
LF356 Input, Operational $0.96 Corporation $0.96
_ Amplifier Corporation

OPA-111 Low-noise Op 3 $11.80 Burr-B,'own $35.40
Amp

AD712 General Purpose 2 $3.60 Analog $7.20
Op Amp Devices

Quad Low Power
i .44 JFET Input $1.65 Digi-Key $1.65

Operational Corporation
Amplifier

TOTAL 15 - $100.80
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I SUMMARY

In this-chapte' 'e have seen that the Fringe-Rate Demodulator is inexpensive, and

is appropriate for sensors which generate large amounts-of optical phase shift (more than

7/2 rad in amplitude). We saw areas in which the performance might be improved. The

inability of this sensor to :handle signals below -r/2 radian-, without gross distortion

,remains-a serious drawback in some-applications, however. In the next two chapters, we

consider two other demodulation schemes that do not share this limitation.

109



VII. ASYMMETRIC DEMODULATION

In this-chapter we describe a method of passive homodyne demodulation presented

by Koo et al. [Ref. 16]. Koo's method requires the sine and the cosine of the

signalof interest. These arc obtainable from the output of an interferometer which uses

a 3x3 coupler at its output., the kind in which we are-interested. However, as is clear

fromlEquation (5) on page (5). which is

aJk(L) 2 (187)1)7~- D + Ec (t) + 0-( (187)

the outputs of this coupler are not the sine and the cosine: they are three cosines

separated not by 900 hut by 1200. We shall ignore the "static" phase shift 0 (or,

equivalently, consider it to be absorbed into the signal or- interest. .)

A. OBTAINING THE SINE OF THE SIGNAL OF INTEREST

To obtain the sine and cosine one could pick two of the three outputs arbitrarily,

say outputs 1 and 2, and rnanipulate them as follows.

xt  D+Ecos('). (188)

X2 = D+Eo4.r1
(189)

2 2

We-first subtract D from each term. How-to compute D is not made clear by Koo. but

we present a method in Chapter VIII.
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Let

= x,-D = Ecos(f). (190)

Subtracting-D from x, removes the constant- offset from zero:

x2-D = -Ec0s()+E-sin(). (191)
2 2

If we add twice this quantity to the expression given byy, we obtain

(x1-D)+2(x,-D) = E3sin(). (192)

By suitable rescaling, we can obtain the- sine of the signal of interest. Let

y2 -- "_____-D = Esin('). (193).

We call this methodof demodulation asymmetric because before the demodulation

process can begin, we must take one output of the- interferometer more or less as is,

perform algebra on this and another output to get the sine, and totally disregard the

third. In Chapter VIII we develop a new technique- of passive homodyne demodulation

which uses all three outputs in a similar manner, a symmetric manner. whence the -name

of both the chapter and the method.

B. THE ALGORITHM

In the asymmetric -method of demodulation given by Koo, we first take the

derivative of the sine and cosine.

=dy1y= - =Esin(-, . (194)Y-dt

We multiply y, by the derivative ofy, and we multiply y, by the derivative of y,.
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d2 _ Eecos(e). (195)

y = E2ecos 2(O. (19)

-E I _42s4r(f). (197)

y~s'2y , -re[CO e(f)+sm (f)]
2YA = E2 ~[2((198)

= E 2 e.

We can integrate the result to get

= fE2e ,1

'dt

-_ E2 .

This method produces a result which depends on the square of the number E. This

number -depends on. the pei formance of the interferomcter, reflecting the contrast

between bright and dark fringes. It is desirable to eliminate this multiple. Again, Koo's

paper does not address this detail of implementation; in fact, in-his models, E and D both

are tacitly-treated as~being 1. In Chapter VIII, we present a-method tor measuring E,

too, which permits-its-removal from the result.

In discussingKoo's-method, Giallorenzi points out that

AIlreal four quadrant analog [sic] multipliers-have inaccuracies which will corrupt
the detected signal and limit the minimum detectable signal- S(t). [Ref. 5, p. 6581

This is an egregious matter if large dynamic range is required but,at the same time, the

* peak-phase shift which can he demodulated is on the order of radian or so. When the

peak rises to the level. of thousands of radians, this becomes less problematic, for the

lowest phase shifts which need to-be demodulated are now higher, and so a-higher noise

floor can be tolerated.
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C. SUMMARY

Recall that an interferometer -terminated by a_3X3 coupler provides signals which

are 1200 out of phase from each- other. The asymmetric demodulation algorithm

-described in this chapter requires two signals which are 900 out of phase from each

other. To use this method of demodulation, we use one of the three outputs as is,

regarding it as the-cosine of the signal-of interest. We must obtain the sine of the signal

of interest in the manner-described in-this chapter. Obtaining the inverse sine or inverse

cosine is ambiguous; with both the sine and the cosine available, the ambiguity vanishes.

The ability to track the phase angle through more than just the four basic quadrants

(-1800 to +1800) is implicitly handled by the integration step.

Perhaps the least appealing feature of this algorithm is its asymmetry, that is, the

discarding of a perfectly good output.-and the different processing of the two remaining

-outputs. This objection is not a purely aesthetic one, -for intuitively we suspect that a

higher ratio of signal to noise could be achieved if no outputs were thrown away.

However, there is another important drawback to the asymmetric demodulation

algorithm: the output depends on the quantity E, which itself depends on the power in

the output of the interferometer. This is a highly undesirable state of affairs because F

varies, and we do not want the output of the demodulator to vary With it. In the next

chapter, we develop a new method of passive homodyne demodulation which addresses

both these deficiencies. We shall return to the asy'nmctric method of demodulation -later

when we describe a digital electronic implementation of it.
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VIII. SYMMETRIC DEMODULATION

In Chapter VII we described, the method of asymmetric demodulation, also called

sine-cosine demodulation. which was presented by Koo et a. [Ref. t61. In this chapter,

we present a new method~which uses all three outputs of the optical interferometer in

a symmetric manner. ' Figure 24 is a block diagram showing how symmetric demodula-

tion is accomplished. The rest of this chapter is devoted to showing that this diagram

correctly illustrates how to recover the signal: f(t) from the-interferometric outputs.

A. THE-INTERFEROMETRIC OUTPUTS WITH AND WITHOUT DISTORTION

From-Equation (5) in-Chapter III, we-have

ao,( f, (200)
X 2 D + Eco st) + t) - (k-1)!n. (200)

This gives the power from output k of the 3x3 coupler which terminates the-optical fiber

interferometric sensor, where-k can- be 1, 2,-or 3. For the moment, we shall neglect the

"static" phase shift 0(t), regarding it as part of the signal of interest '(t), for example.

The formof the-three equations was given graphically in Figure 7 of Chapter III, which

we repeat here-in Figure 25. To make this-plot, we used a sinusoidal stimulus

f(t) = A sin(wt) -= 5 sin(2 rft). (201)

All three interferometric outputs look similar, but they are shifted by 1200 from each

other. In the plot, the tiree outputs also are separated from each other vertically so that

they can be seen individually, and the sinusoidal stimulus is superimposed on the plot (to

a different scale) so that the relationship-between the stimulus and the interferometric

12 The author is indebted to Dr. Robert Keolian and Dr. Steven Garrett for

discussions which led to the idea described in this chapter.
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sin(2ieft) cos[5Tr sin(. ft) + 12001

cos[5it sin(2.ft) - 120°1

cos[5ir sin(27ft)]

5 Fringes - 2x(5r) radians phase shift

Figure- 25 Simulation of an interferometric output with a peak phase amplitude of 5i-
radians.

outputs canbe readily seen.

The simulated waveforms of Figure 25 are free of distortion. However. these

images were drawn by computer on a video screen with only moderate resolution (dots

per unit length), and so staircase-like jagged edges can be discerned in the curves.

In Figure 26, the upper traces:show undistorted outputs of the interferometer we

described in Chapter IV when stimulated by a sinusoidal waveform inducing an optical

phase-shift of ir radians. The lower traces show distortion which we believe was due to

reflections back into the laser, causing it to operate in an unstable manner. We were

able to eliminate the distortion easily by adjusting the current through the laser.

However, we believe that long-term stability will require either a temperature controller

on the laser to prevent mode-hopping from occurring, or a optical liber isolator to
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prevent reflections by rotating their polarization. The left-hand side of the figure shows
two of the three interferometric outputs plotted vertically against time on the lower axis.

The right-hand side of the figure shows one of these outputs- plotted against another to

yield a Lissajous figure. Because we chose a phase-amplitude'of -, radians, the elliptical

shape is just closed. With smaller phase amplitudes, the figure is not closed; with larger

phase amplitudes, it remains closed and retraces the same path repeatedly.
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B. MEASURING THE PHASE ANGLE BETWEEN INTERFEROMETR[C OUTPUTS

Before going on- to explain how to recover the signal of interest, we shall digress

at-this point to explain a-technique of measuring the actual phase difference between two
outputs of the interfcrometer. using the Lissajous figure. Atpresent. 3x3 optical fiber

couplers are made by monitoring the ratio of power in each of the three outputs during

fabrication to ensure the desired amount of power in each. This method is entirely

suitable in the communications industry, but for interferometric applications, it would be

preferable to monitor-the phase difference between adjacentoutputs and adjust it to be

-120o.

In our technique of measuring :the actual phase difference, we use a digital

oscilloscope such as-the Tektronix TEK2430. The plots in Figure 26 were displayed on

and printed by a TEK2430. This oscilloscope has the useful feature of permitting

measurements of the Lissajous figure's dimensions on the screen. Two separate

measurements of-the-Lissajous figure permit us-to compute the phase angle between any

two-interferometric-outputs. We can show this by irst considering the two waveforms.

For generality, we-need not assume that both waveforms have equal amplitudes, and so

they take on the form

ul(t = Elcos(f(t)) and u2(t) = E2Cos(f(t) +). (202)

-In these equations, the amplitudes are E, and E., f(t) is the signal of interest, and 0 is

the phase angle between the two outputs. We first measure ut(i) at some time t,, when

u,(t)=O. We can readily solve for the-phase angle of tt,(t) at this instant:

(t) = cos-(u +n27, (203)

,El)

where n is an arbitrary integer. Knowing that u,(t)=O and that its phase must contain

the same phase component f(t), we can find the phase difference (b:
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X

2

= -i+m r- f(t) (204)
2

where m, like n,- is an arbitrary' integer.

Thus we only require two measurements to obtain the phase angle f. We need the

peak.amplitude E, -of the signal tt,(t) and we need- its amplitude at a time when the

second signal u,(t) is zero. From their ratio andsimple trigonometry, the phase angle can

be obtained.

The oscilloscope we used makes it very- easy to measure E. Actually, it is easier

to measure 2E,, which is -the -greatest width of -the elliptical Lissajous ligure. We then

measure-the amplitude of the same signal-along the axis where the second signal is zero.

Actually, it is easier to measure-thc entire breadth of the Lissajous-figure along-this axis,

which gives 2u,(t) at time i=t,,. The ratio- (2u,(t,,))/(2E,) is. of course. the same as
uj(to)Ej.

As an example of how to use this technique, we measured 2E,=93.2 mV and

2u,(t,)=74.0 mV. For these values, the phase difference is

= 9o+os'I (2uJ = 1270. (205)

Notice that we have neglected the arbitrary integers in and n in this expression. This

calculation give aphase difference which is 70 away from the 1200 which we would have

preferred the couplers to deliver. On the other hand, this difference is good empirical

evidence for the robustness of the technique which we shall now describe, for we still

managed to recover signals with excellent fidelity from this imperfect 3x3 coupler.
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C. RECOVERING THE SIGNAL OF INTEREST

Our first goal in the p1iocessing of the three interferometric output signals is to

eliminate the constant D from-the three outputs by subtraction. An easy way to compute

D in a circuit is to add up all three signals and divide by 3. A typical implementation of

an adder has some gain factor k, associated with it. We will arrange matters so that

k=-13. If we add up the three signals, we get

S, k x = kjE +Ec4 A-k
(206)

= 3k 1D+kEj -(k-1)!7rI.
iL 3

On page 255 in Appendix A we prove the theorem given there as Equation (342), which

is

e = 'V O-k 2+is O-k 2 0. (207)

The real part of this expression can only be zero if

~co Ok~) 0. (208)

This is geometrically obvious since vectors comprising the sides of an equilateral, regular

polygon must sum to zero because the polygon is closed. Applying this to Equation (206),

we see that

S = 3kD = D. (209)

Because we have a way of computing D (or, rather. its neative), we can subtract

it from the interferometric outputs. This is akin to removing a constant offset from a

signal by the use of lowpass filtering, except that using such a filter would preclude the

correct processing of low frequency components in the signal of interest. What is worse.

however, is that sianals of interest with very small amplitude produce signalsx which do
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nat~vary much. This does not mean that they are always close to D, however: it only

means that co~k~~)7 is nearly cr.sstant. However, this-constant multiplies E to

produce different levels of signaI in each -or the three signal path.,. Putting these signals

-through lowpass dfilti merely changes the constant offset, rather than eliminating it

totally.

In Figure 24, three adders are used-to perform thc-subtraction. Let their outputs

be called, x1,, r_, and x,?,. Because these adders have some -gain. kA,we have

Xk kAEcos[Hk_1). 2] (210)

The next'step is to differentiate each of the-xA,. Thcdifferentiators,-too, have their

own-gain,-k,). The outputs of' the three differentiators are

Xk 2 =kD*kl -k* kAEesi4(k-d)! 7r (211)

The- three derivatives are simulated-in the plots of Figure 27 for the same case as

in Figure 25. Again. the-sinusoidal stimulus is-shown for reference. although still not to

the sa-me vertical- scale , s the derivatives. In the ~plots, we have dropped the second

subscript, as, if-D -were zero In x. --

.In the last chapter we described nsymmetric demodulation and %ve went to Some

trouble to --obtain -the sine and -cosine of the signal of interest from a set of three

intefferometric'-outputs, each 1200 out of phase from the other. From the siwe and

cosine we obtained the fderivative -of each. -It was an eas.y matter to cr955s-multiply,

subtract, and-integrate the rcsult-to obtain a scaled rcplica-of the signal of intu-rest. How

can we exten~d this-idea sc -that all ihree signals might be used? In discussions with the

author, D . Robert Keolian had -the, insight -to apply phasor techniques to this problem.

Now phasors are a -tool which -onliy apply to linear systems: processing which entails

multiplication is non-linear. One, can acidt two phqrors together and get another phasor.

One cannot mnultiply two phasers together at all. When two sinusoids are multiplied
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.sin(2itft)-X

*2

Figure 27 Simulations of the derivatives of the three interferometric outputs.

together, the result consists of the sum of two sinusoids. One of these has a frequency

which is the sum of the input frequencies; the other has a frequency which is the

difference between the input frequencies. If the two inputs have the same frequency,

which is the case for two signals represented by two phasors, their product contains a

term at twice the input frequency and a constant term. In what follows, we shall ignore

the constant term and focus our attention on the sinusoidal term at twice the input

frequency. The output at twice the input frequency could be represented as a phasor,

too, but it would normally not be.shown on the same phasor diagram because of the fact

that its frequency is different.

We shall take the liberty of breaking the rulethat phasors at different frequencies

never be discussed in the same sentence or drawn on the same diagram. However, the
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"phasor" representing the output signal at twice the frequencyof the input, signals is not

a phasor in- the conventional sense. Although in the figures which follow we show this

output signal as an arrow in the complex plane, superimposed on a phasor diagram, the

reader must be mindful that- its frequency is different from that of the phasors in the

diagram and the phase relationships between the various phasors and the output
uphasor" are not constant. We shall be careful to use-quotation marks around the word

phasorwhenever this output signal is beingreferred to. If the reader rebels at the heresy

of using phasor techniques-in non-linear signal processing, he may be somewhat mollified

to know that without this highly unorthodox approach-we would never have discovered

the algorithm which we explain in this chapter.

In Figure 28 we show the phasor approach applied: to asymmetric demodulation.

The small, black arrows show the two signals, sine and cosine, that the asymmetric

method uses. The cosine leads the sine.so-it is the arrow labelled jE; the sine is labelled

E. The derivatives are the intermediate-sized arrows with white interiors. The derivative

of the E phasor is--the joE phasor: the derivative of the jE phasor is the -oE phasor.

The large, diagonally-striped arrows shows the cross-product "phasors" which the

asymmetric method produces. Both cross-products are the same. The product of E and

the derivative of jE is - &E . The product of jE and the derivative of E also is equal to

- a E'

At this point, the phasor approach collapses, for according to the asymmetric

Jefnodulation technique, the difference between-these two cross-products is the derivative

of the signal of interest. But the difference between these two "phasors" is zero; only

their sum would yield a non-zero, real result. This problem evaporates if we stick to a

trigonometric description of the signal processing; it only occurs because we have used

the wrong tool, the phasor tool. Yet the geometric interpretation provided by the phasor

methods made the-discovery of the method a reality. Dr. Keolian's insight was to apply

the method to the symmetric demodulation idea despite the obvious error in doing so.

Figure 29 uses phasors to depict the idea behind symmetric demodulation. As was

the case in Figure 28 where we used phasors to explain asymmetric demodulation, the

small, black arrows represent the outputs of the interferometer, but now there are three,
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Figure 28 Phasor diagram depicting the operation of the asymmetric demodulation
technique.

each separated -by 1200 from the other. (We use the notation MZO to denote the

complex number of magnitude M and phase angle 0.) The derivatives of these three

signals are shown in the intermediate-sized, white arrows. In dotted outlines,, we show

the-negatives of these three derivatives, too. Note how, the derivative of one signal and

the-negative of the derivative of a second signal-bracket the third signal in-a symmetric

manner. By taking the difference of the two derivatives, a phasor parallel to the third

signal is formed.

In asymmetric demodulation, the effect of cross-multiplication of signals and

derivatives was to create product "phasors" along the real- axis. In symmetric

demodulation, the product "phasors" line up along the 00, 1200 , and -1200 axes. but

because they contain E2. their sum is not zero. as it would be if phasor addition of

multiplied phasors were strictly correct, but the real constant 1.5. In fact, in general, one

can- divide 3600 evenly into N pieces and add the squares of either the sines or the

cosines to arrive-at-a total o" N/2. Formally, we h,- .ie theorem
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Figure 29 Phasor diagram depicting the operation of the symmetric demodulation

technique.

N-I N-

-- c++k21 E .+ 1 k2 N (212)

from Equation (344) in Appendix A, where we also provide a proof.

Now that we have arrived through graphical ideas at the basic method of combining

derivatives and signals in the method of symmetric demodulation, we can show in

mathematical terms what is going on.

We start by combining signal -x,, with the derivatives ofx,, and x.,,.

-krkAEe sin(f_2 g)

k,,x=(l-'3i) kdkA,Ecos(4) 1 (213)

This simplifies to
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kMxl(x21 -31  = kjkA E2 -icos({ 3in X) 3 i(.~r1 24

We can apply to this the trigonometric -identity

sin(A+B)_-sin(A -B) = 2cos(A)sin(B)(25

to obtain

k xi(.t, x 1)= k,4  .1 E2 e~o)2cq () s(. ir)] 26
ux= k~kA E2 2cos ff(4. 2

Next we combine signal x,, wit ande,,

-kDkj i +Isg&r
=~ 3~Acst-~ (217)

+k,,kA Efsin(4)

This-simplifies to

kmX2l@31 _- l) Alk De~ eco(-. r[-in (. sn( (218)

If we rewrite this as

kX2l(' 31-ilI) kmA= S( 3 sn 29

then we can apply the same trigonometric _identity to get
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2 f "I ) 2 -.jf_ 1
kMX2 1(31 -i ) = kMkPJ,,e2 coi(. 3j2cs 3- 3~ _ji~~ (220)

Finally we combine signal .v,: with -the derivatives of x,, and x,,.

-kDkA E4sin(t)

kmx 3ljt1l 4 21) kmkA E cos( 2 7r) +kA ~ ~~(221)

This simplifies to

km3(1=_'d kMkA2kDE2 ~COS(4 37r[sifle) S f - 2j (222)

If we rewrite this as

kuE2 2 ( 3.- 3 (223)

k~~fX3!(+sin 1~~1P _'1 -D c 47

then we can once again apply the same trigonometric identity to get

kmx31(' 1 x21)-= kk 2 E2 ec4 '[2cos( f 'r)si{n(3 ] (224)

Visualizing a-plot corresponding to the manipulations which have been described

-here without using a computer is no easy feat. In fact, a plot of' the difference between

two derivatives-is very similar to the-plots of the derivatives themselves. Figure 30 shows

a simulation of these differences in the derivatives for the case A =5-.
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Figure 30 Simulations of the differences between the three possible pairings of
derivatives of the interferometric outputs. The stimulus has amplitude A =5i radians.

When we sum the three expressions of Equations (216), (220), and (224), using the

gain constant kA,, we obtain

vT~kAkmkA2kDE 2e Os2(0+ IC +s 2 f-!7 +cos2( f+!) (225)

3 r/kA kmkA2kDE24.
2-

We have applied Equation (212) here.

The three plots in Figure 31 arc simulations or the three formulas of Equa-

tion (225). Once again, we include the sinusoidal stimulus in order to make clear the

relation of the complicated expressions of Equation (225) to the stimulus. Note that the
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envelope of the three signals is itself now sinusoidal. How do we extract just the

envelope?

If we wanted to, we could simply integrate the expressions in Equation (225). and

get a fair replica or the original signal of interest, f(t). However. there is a factor of E2

in the expressions, which implies that the derivatives still depend on the contrast between

the dark and light extrema of the interference pattern. Since this is a number which

wanders due to changes in laser intensity (which itself depends on the temperature) and

due to changes in the polarization angle of the light within the optical fiber interferomet-

ric sensor, it would be useful to eliminate this factor.

We can do this by squaring each of the signals vk, and adding them up. The

squaring operation can be performed with another multiplier of gain k~1 and the addition

can be performed with another adder of-gain kA,. That is

k,_JkMkAEco[ _k1Y)1r]} 1 2 1k, -k kE2. (226)
kA2 F1 3 - 2 2At

We have again applied Equation (212) -in computing the sum.

In Figure 32 we illustrate the result of the summation for the example we have

been using throughout this chapter in which the amplitude of the stimulus is A =5"

radians. It should be clear from the figure that the sum of products is indeed

proportional to the derivative of the sinusoid displayed with it. In the figure, the

amplitudes of each waveform have been scaled for convenience, and so they arc not

labelled.

Both Equations (225) and (226) include the factor E2. We can eliminate this factor

by dividing Equation (226) into Equation (225). Any practical divider has a gain which

we shall call kd (not to be confused with kD, the gain of the differentiators discussed

above). Division yields
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Figure 31 Plots of the products of one signal with the difference between the derivatives
of the other two signals.

3vrkMkA k ?lD2

kd 3 kAk= kd (227)
d kk3 2 k

2 kAA,

We can integrate this with an integrator of gain k, to-get

kf 'A~kDkd ' fkAkDkd3 3kA 3 (228)

Obtaining this expression has been the goal of this entire chapter. By the

processing algorithm developed here, we have the ability to recover a scalar multiple of
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X1 k + x2(x3-x1) + x3(' 1.-2)

Figure 32 The result of adding up the three products of signals with differences of
derivatives. Superimposed on it is the original stimulus of amplitude,4 =5-" radians.

the signal of interest, f(t). It is important to recognize that neither D nor E appear in

this final expression. This means that the scale factor of the demodulator is independent

of the average power in the laser, and it is also independent of the fringe depth.

The scalar multiple consists of factors which we can control in implementing the

algorithm. They include the gains of two adders, the gain of three identical differen-

tiators, and the gain of the final integrator. These factors can be chosen within certain

constraints to provide f(t)'scaled to whatever level is desired. In an analog implementa-

tion of this scheme, clipping of signals constrains the selection of these parameters at the

high-frequency limit, and the noise of the circuit constrains their selection at the low-

frequency limit.
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In-the next chapter. we descrihe-our implementation of this algorithm with analog

electronics.- -In Chapter XI. % e-mL'asure the performance of this implementation.
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IX. DESIGN OF A SYMMETRIC ANALOG DEMODULATOR

In the last chapter we analyzed a--new method of passive homodyne demodulation

which we call symmetric demodulation, due to the fact that all three outputs of the

optical fiber. interferometric sensor are processed in the same (symmetric) manner. In

this chapter we apply the analysis to the implementation of the technique in analog

electronics.

Figure 33-is a schematic drawing of the circuit. The three inputs are shown at the

left-hand side where three photodiodes convert'the interferometric outputs into current

signals. These currents- are converted to voltage signals by three transimpedance

amplifiers built around operational-amplifiers U1, U2. and U3. The summation of the

.hree-voltage signals to compute D in-Equation (200) in Chapter VIII-is performed by the

inverting scaling adders built around operational amplifier U4A. This sum is subtracted

from the outputs of the transimpedance amplifiers by operational amplifiers U5A, U6A.

and U7A.

The outputs of U5A, U6A. and U7A are described by Equation (210) in

Chapter VIII. Their derivatives are computed in the differentiators built around

operational amplifiers U5B. U6B. and U7B. The Analog Devices AD534 Multipliers

UL1, U12, and U13 have differential inputs. We apply one signal and a ground to one

differential input in each. To the other, we apply the derivatives of the other two signals

according to Equations (216), (220), and (224) in Chapter VIII. Each signal is multiplied

internally by the difference between the two derivatives of the other two signals. These

three outputs are added in- the inverting scaling adder built around operational amplifier

UI 4A to yield the result modelled in Equation (225) in Chapter VIII. In order to remove

the factor of E- in that result, another expression with El in it is computed by the

inverting adder built around operational amplifier U4B, which gets its-own input from

three more AD534 Multipliers, U8, U9, and UI0. These multipliers are configured to

square their inputs, which are the interferometric outputs stripped of D. The sum of
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Sthese squares is of the form given in Equation (226) of Chapter VIII. The Burr-Brown

DIV100 Divider UI5 takes the ratio of the output ol U14A and that of U4B. This result

is proportional to the derivative of the signal of interest, but without depender on D

or E, as -'shown in Equation (227) in Chapter VIII. The final step in the circuit is to

reconstruct from this the signal of interest as shown in-Equation (228)-of Chapter VIII.

" The integration is performed by the integrator built around operational amplifier U14B.

We-no%, turn to a detailed discussion of each of the several stages in the Symmetric

Analog Demodulator.

A. THE RECEIVERS

The receivers comprise the three photodetectors-CR I.CR2. and CR3 together with

the three. .ransimpedance amplifiers built around operational ampl.fiers UI, U2. and U3.

These three amplifiers arc Burr-Brown OPAl I Is. They feature very low bias currents

o1- at most, 2 pA, which contribute only 130 nV to the output offset voltage when passed

through the 64.9 kfi feedback resistors RI, R2, and R3. The input voltage offset is

less than 500 .V. This offset voltage appears with gain I at the output of the

transimpedance amplifier. The maximum drift in input offset current is 5 pV/K: over

50 K of temperature drift, this amounts; to no more than a 250 PV drift in the 500 IV

figure- previously mentioned for a total of no more than 750 pV. Although this amount

is tii !arger than that due to the bias current, it is nonetheless very small. The unity gain

bandwidth of the OPAl I]- is 2 MHz.

The OPAll also provides very low voltage noise, no more than 40 nV/NHz at a

frequency of 100 Hz, and typically only 15 nV/lHz. Since this is the input stage of the

entire circuit, we wish to minimize the contribution of the receiver to the overall nois,:,

so the OPAl 11 makes a good choice.

' As is the case in nearly all the work-described in this dissertation, we used resistors
with 1% -tolerance. This was largely for convenience, because they were available. In
many cases, resistors of lower tolerance could have been used. The main exceptions to
this statement are the active sub-circuits such as integrators and differentiators.
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When the laser's monitor current was 58.2 j.A (indicating that the laser diode was

emitting 7.1 mW optical power), the three photodiodes produced measured voltages

D=26.3 mV, 25.9 mV, and 29.0 mV across transimpedance amplifiers with 500 fI in the

feedback path. The fluctuation in these voltages was E=9 mV. 10 mV, and 10 mV. We

increased the resistances to 64.9 kfQ in order to raise the peak voltages to around 5 V

under these conditions. The value 5 V was about half-way through the range in which

we desired to work. - 10 V to + 10 V. This allowed room for fluctuations of the laser

power to higher levels without saturating the transimpedance amplifiers. These changes

altered the voltages from the transimpedance amplifiers to

D (150 ftW)(370 -)(64.9 kU) (229)

-3.6 V.

and

E (55 iW)(370 .)(64.9 kU) (230)

-1.3 V.

In the laboratory, we used fairly lengthy (=1 m long) coaxial leads to transmit the

Currents from the photodiodes to the transimpedance amplifiers. The capacitance

presented by-these leads was sufficient to act as a differentiator of the interferometric

signals, enhancing their high frequencies. We-compensated for this empirically by placing

10 pF capacitors CI, C2, and C3 across the feedback. We believe these could be reduced

or eliminated if more attention were paid to lead capacitances by placing the photodiodes

in close proximity to the amplifiers.

The choice of operational amplifiers throughout-the rest of the circuit was not as

critical. We selected Analog Devices AD712 dual precision operational amplifiers. These

have a higher unity-gain bandwidth than the OPAl I Is, 4 MHz. Their voltage noise is

typically 45 nV/4Hz at 100 Hz, higher than the typical value of 15 nV/'Hz for the
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OPA!li, but still respectably small. Their input offset voltage is atmost 3 mV. Their

input bias current has a nifaximum of 75 pA. These are good, general-purpose

operational amplifiers.

In Chapter VIII. Equation (209) implied that the averaging circuit implemented

around operational amplifier U4A needs to have gain k,=--I/3. We -can achieve this by

picking 102 k,. input resistors R4-.R5. and-R6-and a 34.0 kf. feedback resistor R7. The

design of summing amplifiers is explained in numerous books on operational amplifiers

(for example, see Sedra and Smith [Ref. 171) and so will not be further discussed

here, except to say that we also added a 1-pF feedback capacitor CI 8 in parallel with the
34-.0 k,. resistor R7 to-eliminate the ripple in the output. The ripple was dueto the-fact

that although each interferometric output is assumed to have equal central values D and

peak deviations E from this value; in, fact these values are not all equal to one another.

Furthermore, the- phase differences between different legs are not- exactly 1200. As a

result, the sum is not a: constant. The capacitor masks the vari..Ion in the result.

Although it only-produces an approximation of the theoretical constant D. we-found-that

the amount of-constant offset left-after the subsequent addi-ion stage in U5A. U6A. and

U7A was not so severe as to render the technique of symmetric demodulation useless.

The summing circuits U5A, U6A, and U7A are designed to provide the summing

gain kA of Equation (210) in Chapter VIII. Again we want -to let these-amplifiers have

peak-outputs of 5 V to-permit fluctuations in laser power without causing saturation of

the amplifiers. Since these summers remove D from the signal, the amplitudes coming

out-of them is dependent on E and the gain of the summers. From Equation (230) we

know that E= 1.3 V. So we should pick the gain to be

kA 5 V = 3.8. (231)
1.3 V

We can achieve roughly this level of gain: (precision is not important here because the

-signal levels are so highly variable) by selecting 13.7 kf. input resistors and 51.1 kf.

feedback resistors. For this choice, we actually achieve
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kA 3 51.k .73. (232)13.7 kQ

The next step in the demodulation technique is to differentiate the outputs of the

summingamplifiers U5A. U6A, and U7A. Operational amplifiers U5B, U6B, and U7B

are configured to do this. Figure 70 in Appendix A shows a generalized circuit to

perform differentiation. We present a detailed analysis-of the circuit in that appendix.

The key results are given in Equations (399), (405), and (407). The first of these

equations gives the transfer function G(f) of the differentiating circuit if the two pole

frequencies are equal to one-another and-if the operating frequency is well below this.

G(f) - VEUT -RCCj27rf kD. -(233)
ViNV

The second of these equations gives the relative error in the magnitude-of the gain. which

depends on how far away from-the pole frequency4 we elect to operate.

1

The third of these equations gives the error in--the phase of the gain, which, likewise,

depends on -how far away from the pole frequency we elect to operate.

e= -21A~ni(4). -(235)

We designed-the circuit to handle peak phase shifts of 100 radians when the signal 01

interest had a frequency of 200 Hz. The time for the signal of interest to-change from

zero to its peak amplitude is-a quarter of a cycle, or n/2 radians. So if the peak phase

shift is A, there are
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A
(236)-

cycles of the interferometric output in a quarter cycle of the signal o interest. The

period of a, cycle is T, so a rough approximation of the peak frequency present in the

signal of interest is

A 2Af

(TI) - i (237)

Thus we expect frequencies up to

2(100 rad)(200 Hz) = 12.7 kRz. (23)
i"

We can use this value, along with our desire to-keepthe phase error less than 20 at-this

peak frequency, to choose the pole frequency.

e= -2tan-ll,
Jp (239)

20 < -2taxf( 2.

Froim this, we conclude that we mustpickf =728 kHz. This rneans that

RiC, = R2C2 _ I 219 ns, (240)

which-we get by applying Equation (397) in Appendix A.

Tn picking the gain of the differentiator, we have a conflict between-what we would

like-the gain-to be-and what the AD712 can deliver. We still want a 5 V margin between

the expected peak signal and the upper limit of 10 V-we want-to impose. For a simple,

sinusoidal signal of interest of the form
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f=A sin(2 ,rft), (241)

the-derivative of the interferometric outputs- (after -passing through the summers) is

kD~kAEco[A sin(27rft)](22

=-2 ;rfk~kAEcos(2 ffft~ sin~sin(2 irft0].

To-ensure that, when f=200:Hz and A =100 rad, we still do not-get more than-5, V from

the-circuit, we set

5-V = 27rfkDkAAE =21rfR ClkA AE

5V (243)

21rfkAAE

We, sought- a pek-tp~f5 V -from- the adders -U5A, U6A. and U7A. so we will- treat

5V 5 V. (244)
-A E

Hence

2 2iAf

______________(245)

2 ir(1O0rad)(200Hz)

=7.96- ps.

But athbigh frequencies, the-AD712 will is not guaranteed to su;tain more than a 3 MHz

gaini-bandwidth produra. That is
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Gain x Bandwidth = 3 MHz

(2rR2Cf)x Bandwidth = 3 ,MHz (246)

3 MfHzBandwidth - __
(2 'R2Clf)

The maximum permissible bandwidth is dictated by the maximum frequency f in this

equation. Setting the bandwidth equal to the maximum frequency, we get

2 7rR2 C1

1 3 -MHz (247)

C2r(7.96 l.Ls)

= 245 kHz.

But earlier we-decided we needed 728 kHz for-the pole frequency. Figure 34 is a Bode

plot of the-gain-of the AD712 and of the differentiator gain characteristic we want to

achieve. As IL Ig-as we-demand less-gain than the operational amplifier can provide, the

feedback control loop-is closed, and our desired gain is the-actual gain-of the circuit. But

if the gain we-want gets too big, the operational amplifier- no longer has enough excess

loQp-gain to keep control: the amplifier's own transfer characteristic becomes dominant.

As the figure makes clear. we must-compromise by lowering the gain of the differentiator

until its characteristic peaks at the pole frequency, 728 kHz, where it intersects the gain

characteristic of -the operational amplifier. The new value of the gain is

3 M3Hz

3 NI-Iz (248)
[2 r(728kHz)2 ]

-901 ns.

By trial and error, we find combinations of R,. R,, C,. and C, which correspond to
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Figur- 34 Design of a Differentiator. A compromise is necessary in setting the gain of
the differentiator to avoid exceeding the gain-bandwidth product of the amplifier, an
AD712 in this case.

available- values of the components and-which meet the conditions we have derived in

Equations (240) and (248). A suitable combination is

R, =464 0 C, =470pF (249)

R2 = 1.91 k C 10 opF

and these are the values in the schematic in Figure 33 on page 133. The gain constant

for the differentiator thus is
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- kD= R2C = -901 ns. (250)

The-multipliers U1 1. U12, U!3, U8, U9, and UlO in the schematic are very easy

to use. Three of them are used to compute the cross-product of interferometric signals

with the difference in the derivatives of the otlier two signals. These arc the multipliers

Ull, U12, and U13.

One'differential pair of'inputs is one interferometric output (with D subtracted off)

and ground (zero). The other pair-consists of the outputs of two differentiators. Their

difference is computed intcrnally-tothese AD534 multipliers and-the product is produced

at the output.

The squares of the interferomctric outputs (with D-subtracted off) are computed

by U8, U9, and U10. Later on in the circuit, the denominator input to the DIVIO0

(Ul5) must be positive. To guarantee- this, we connected these three multipliers to

produce-negative squares. So the inputsWere provided to a non-inverting terminal ofone

of the differential inputs and to an inverting-terminal on the other differential input. The

remaining input terminals were connected to ground.

The AD534 has a built-in multiplicative scale factor of 0.1 V-'. Thus two-full scale

inputs (10V is full scale)- will produce an output of (0.1 V- )(10 V)(10 V) = 10 V.'4

Since we have been assuming that peak signal levels of 5 V are present at the outputs

of all stages, we expect to-see (0.1 V-)(5 V)(5 V) = 2.5 V. Thesmall signal bandwidth

of the AD534 is 1 MHz. Its noise spectral density is large compared to-that associated

with good operational amplifiers: 800 nV/4fHz at 10 kHz; it is larger at 100 Hz. about

900 nV/rHz.

The adder in U I4A is very similar to that in U4A described earlier. To compute

the required gain, we makeuse of Equation (225) in Chapter VIII. It gives the-output

of this adder as

The scale factor can be adjusted. but we have not used this feature. Analog

Devices has a new multiplier, the AD734, which has a scale factor which can vary
dynamically. By varying the scale factor in a suitable manner. division is made possible.
in addition to multiplication.
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V13k k k-E 24'. (251)
2 3 MkA1 D

We want this to peak at 5 V when A=100 rad and f=200 Hz. So

AVjkAkAk2kDE2e = _3  k2_k E2A2f sinA sin(2 rfO)]
2 2 2 rA 3 mk AI

5 V >  ( V-')(3.8)2 (901 ns)(1.3 V)2A2 rf2 (252)

_kA3  

2(5 V)

3V/3(0.1 V-')(3.8)2 (901 ns)(1.3 V)2(100 rad)21r(200 Hz)

= 7.0.

We later decided to lower this value in order to accommodate input phase shifts of

239 rad, more: than the 100 rad used: in this calculation. so our final choice for input

resistors to U14A was 14.O kfl with a-4.99 k-feedback resistor. giving

kA .994.99k _ 0.356. (253)
kA -14.0 k(a

We now turn to the summer U4B which adds together the squares of the

interferometric outputs (with D subtracted off)-which are produced by U8, U9. and U 10.

From Equation (226) in Chapter VIII.

3k kkZE2 g 5 V

kA 2(5 V)
3k k2 E2 (254)

2(5 V)

3(0.1 V-')(3.8)2(1.3 7)2

= 1.37.

We selected input resistor R26. R30, and R35 to be 10.5 kI and the feedback resistor

R37 to be 14.0 kfl, giving an actual value of
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kA =1.33. (255)

The outputs- of the two adders U14A and U4B form the numerator and

denominator inputs respectively to the Burr-Brown DIV100 (U15). The DIV100 has a

small signal bandwidth of 350 kHz. The denominator needs to be greater than 250 mV

for reasonable accuracy. and it must be positive. As mentioned above, this was easily

arranged by causing the multipliers U8. U9, and U10 to generate negative squares.

Subsequently U4B inverted the sum, so this-constraint was met.

The DIV100 has a scale factor

kd= 10 V. (256)

In the range 10 Hz-to 10 k1-z. the DIV] 00 generates voltage noise between 370 pV/4Hz

and I mV/-'Hz. This is greater-than the noise of the AD534 multipliers, and it is vastly

bigger-than the noise of the operational amplifiers-we have used so far. We will-examine

the consequences of this fact in. Appendix F.

We use the DIV if) to -remove the effects of E from the demodulated signal.

Recall that E is affected by laser-power and the fringe depth of the interference pattern,

which-varies as the polarization of the light-within the- interferometer wanders.

The output of-the divider is given by Equation (227) in Chapter VIII, which is

/kA3 k~d (257)
kA,

Upon integration by UI4B, Equation(228) of Chapter VIII shows that the

demodulator's output is

/3kAkk kd (258)

kA,

The final gain constant is that of the integrator:
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k- - 6.89x10 3 s-1. (259)

RSIC 17

-We can now substitute all the constants into Equation (258):

(6.89×103 s-')(0-356)(901 ns)(1O V) -29 mv (260)
1.33 rad

which-is very close to thc value 31 mV/radmeasured in Chapter X1.

B. WAVEFORMS

In the last chapter we showed computer simulations of the wavelorms which would

exist at various stages of the symmetric demodulation process if the signal of interest

were a sinusoid. In -this section we present photographs of an oscilloscope display of the

-waveforms actually present in the Symmetric Analogue Demodulator for sinusoidal inputs.

Figure 35 shows two photographs of the interference patterns generated by the

interferometer we built. Both patterns were generated by a 100 Hz stimulus. In -the

upper photograph, the phase amplitude A =33.7 rad: in the lower trace. .4 =67.9 rad.

Note that the amplitude o" the interference pattern is the same in cach-photograph, and

the-points of minimum frequency in the interference pattern always correspond to the

extrema of the stimulus.

Figure 36 shows the outputs of- the differentiators U5B, U6B. and U7B. The

frequency of the stimulus is 100 Hz as -before. and the upper and lower traces still

correspond to phase amplitudes of 33.7 and 67.9 rad, respectively. Note how high-

frequency noise is very evident-in the photographs. Noise was completely absent in the

computer simulations. The differentiators amplifi the high frequencies, so any noise

which is already present in the interferometric outputs is enhanced. This also explains

why the amplitude of the derivatives is largest in the region where the interferometric

outputs are oscillating most rapidly.

In the last chapter. we were able to show computer simulations of the differences

between each of the two derivatives. We cannot show photographs or the differences

because the differences are computed inside the AD534 differential-input analog
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Figure 35 Three outputs~ of thc optical fiber intcrrerometric senlsor with thc 100 Hz
sinusoidal stimulus superimposed. Upper photograph: A =3 3.7 rad. Lower photograph:
A= 67.9 rad.
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Fiur ,6Drvtvso three outputs or the opical fiber interrerometric sensor With
the 100 Hz sinusoidal- stimulus superimposed. Upper photograph: A =33.7 rad. Lower
photograph: A =67.9 rad.
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Figure 37' Products of each output with the difference between the derivatives of theother two;- the 100 Hz sinusoidal stimulus is superimposed. Upper photograph:
A =33.7 rad. Lower photograph: A =67.9 rad.
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Figure 38 Symmetric Analogue Demodulator output, f=100 Hz, A=137 rad. Upper
photograph, upper trace: undistorted input; lower trace, demodulator output. Lower
photograph: FFT of demodulator output with 5% THD present.
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multipliers. 'The results of the muftiplication; however, are shown in Figure 37. The

frequency of the stimulus and the phase amplitudes are the same as before. The

envelope of the traces now is,,i sinusoid with the same :frequency as the stimulus, but

shifted inphase by 900. Noise is still rather severe in these photographs, and one begins

to wonder if a faithful replica-of the itimulus can be reconstructed.

Figure 38 shovs that after summing the three products and integrating them, we

do indeed gt a good replica of the stimulus. The upper trace in the upper photograph

is-the undistorted sinusoid generated by the HP3314A Function Genherator. The lower

trace in the upper photograph is the output of the demodulator. In-the lower photograph

-is a Fast Fourier Transform (FFT) of the demodulator's output. The photographs in

Figure 38 correspond to a, stimulus of frequency 100 Hz and the phase amplitude

A=136.5 rad. At this high phase amplitude, the distortion has reached the 5% level

(,-25.79 dB), but this is hard to discern from the oscilloscope trace alone.

Wezhave also used teiangular waves to' excite the sensor; the demodulator outputs

a triangle wave, just as it should:

C. SUMMARY

This-chapterand the previous-onezhave described the most innovative aspect of the

work described in-this dissertation. We developed a new algorithm for demodulating the

-outputs of an optical fiber -interferometric sensor terminated by a 3x3 optical fiber

-coupler. Unlike the asymmetric demodulation method described in Chapter VII, the

symmetric demodulation method processes all outputs of the interferometer in a similar

fashion. None is discarded. The algorithm was-arrived at in a semi-intuitive manner by

'the entirely unorthodox application of phasor techniques to a non-linear process. Its

correctness could not be demonstrated, however, by such ill-chosen (but intuitively

helpful) methods. We had to rely on-the useof trigonometry (or the equivalent use of

complex exponentias and their complex conjugates).

The symmetric demodulation method has an additional advantage (apart from

symmetry) over the asymmetric method. The dependence of the output of the

demodulator on the central value D of the output of the interfcrometer and on the
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amplitude E of the fluctuations around-D is absent from the final result. The asymmetric

demodulation method achieves independence from D, but not from E.

In the next chapter we digress briefly to discuss the measurement of noise. Upon

the-completionof this digression, we shall be in-a-position-to-measure the performance

of our implementation of the symmetric demodulation algorithm in the presence of noise.
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X. MEASURING NOISE

In this chapter we present the methods we have used to measure noise-and the

results of measurements of the noise of our instruments. The purpose of doing-this is to

be sure that when we measure the noise of the Symmetric AnalogDemodulator and the

Asymmetric Digital Demodulator we do not inadvertently measure the noise of

instruments. If the noise introduced by the instruments is less than that observed from

the demodulators, then it is reasonable to infer that this inadvertency-has not occurred.

All measurements were taken at 590:Hz. This value -was chosen slightly offset from

600 Hin order to avoid contamination by the abundant sources of 60KHz harmonics

which existed -in- ourqaboratory.

A. HOW TO MEASURE-NOISE

We generally used two independent techniques to measure noise. The easiest
entailed the use of an HP3561 A Dynamic Signal Analyzer. This devicehas 400frequency

bins which it uses in performing a Fast Fourier Transform on the input wave form. The

bandwidth of each bin is dependent oh the user's choice of frequency span (the lowest

and highest frequencies of interest). It also depends on the user's choice of "window"

function. The instrument offers a selectable option to present the root-mean-squared

voltage in each bin divided by the square root of the bandwidth. Thus, the units of

measure become V-Hz rather than V. This instrument is attractive because it is so easy

to use.

B. HP3561A-DYNAMIC SIGNAL ANALYZER

The HP3561A measured its own noise floor. The instrument has a 1 M1 input

impedance, and we placed a matched 50 fl load across its two inputs. The inputs were

AC coupled by a selection on the front panel of the instrument. The HP3561A displayed

its own measurement ol the noise as 56.2 nV/fHz (- 145 dBV/fHz). This cannot be due
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to-the presence of the 50-fl load. whose noise spectral -density ent can-be computed-from

the-expression

i!t=__T (261)

where k= 1.381 x 10- J/K 's Boltzmann's constant, T is- the tcmpcrature. and R is the

resistance. IfIwe take the temperature as 300 K (room temperature) and use 50 fl for

R, then the load would only generate 910-pV/i'Hz (-181 dbV/'Hz), considerably less

than that measured for the HP3561A. Our measurement- of the noise compares well with

thewvalue specified for the HP3561A, at most -141 dBV/"Hz.

C. EG&G PRINCETON APPLIED RESEARCH MODEL 5210 LOCK-IN AMPLIFIER

This device, like the HP3561A Dynamic Signal Analyzer. can -measure its own

noise floor. Like the HP3561A, it has a I Mflinput impedance. It is calibrated only for

source impedances much smaller than this. We simply shorted the differential inputs

together. We set the lock-in amplifier's sensitivity scale factor set to 10Y. time constant

7 to 1 s, and the filter skirts to decline at - 12 dB per. decade of increase of frequency.

The output:of the lock-in amplifier was averaged on an HP3456A Digital Voltmeter, and

was Vt01,7=0.53_O.19 V. We can convert this to a voltage noise spectral density e. ,,,

referred to the input from the formula

ot VoU nV - (262)e521 - -1  ; 15 - 157

-- This compares well with the noise -floor specified for the Model 5210. 5 nV/-/Hz

(-166 dBVIIHz) at I kHz (we measured the noise floor at 590 Hz).

D. ANALOG INTERFEROMETRIC SIMULATORS

We made two measurements of the noise of each of the Analog Interferometric

Simulators, dne with open inputs, the other with shorted inputs. These results were

within a standard deviation of each other, as shown in Table XII. The standard

deviations were divided by the sensitivity setting of the lock-in amplifier (107) and by
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Table XII Measurements olthe noise of the Analog lnterferometric Simulators. taken
on the Model 5210 Lock-In Ampliier.

Simulator Inputs Output Voltage (VR) ± Noise Spectral Density
Standard Deviation nVI'Hz dBVI4'Hz

1 3.4±1.9 960 -121

-2 Open 3.3±1.7 92(0 -120

3 2.5±1.3 700 -123

1 3.6±1.7 1000 -120

Shorted 27± 1.4 780 - 122

3 3.0±1.7 860 -121

1/i(igT, the -square root-of the equivalent noise bandwidth, with a-time constant r=1 s.

These values are-almost two orders of magnitude larger than the noise floor of the lock-

in amplifier itself, so we can be fairly confident that they are :not an artifact of the

instrumentation.

E. AN- INVERTING AMPLIFIER

As a -final check on the correctness both of our measuring techniques and our

ability theoretically to predict the noise of an electronic circuit, we consider a simple

inverting-amplifier built around the same operational amplifier, the OPA-1 11, that we use

in the optical receivers-of each of the-three demodulators considered in this research.

The circuit we shall consider is diagrammed in Figure 39.

There are .ive spectral noise sources shown in the figure. The noise from the

preceding stage is e,. The two resistors R, and R, have voltage noise spectral densities

est and e&t. The operational amplifier provides noise modelled by the voltage noise

spectral density e,, and the current noise spectral density i,..' at the inputs. We will

regard the operational amplifier as ideal (having infinite gain), so with all noise sources

suppressed, the voltage at hoth the inverting and non-inverting inputs or" the operational

amplifier must be zero. We consider the effects of each noise source separately: the
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etR2 e32

to

Figure 39 Noise sources in an inverting amplifier.

Pythagorean sum of each= of them gives the total output noise voltage spectral density

e,,. Weshal assumethat each noise source is uncorrelated to ".ny other. This implies

that the -Pythagorean sum, by which we-specifically mean the square root-of the sum of

= - the:squares of the effects due to each-noise source individually, is an appropriate method

for combining the various contributions of the noise together.

1. -Noise sources e t and eRmt

We can lump these two noise sources together. Both are operated upon by

the inverting amplification characteristic ofthe amplifier. just as any ordinary voltage

input Would be. If we assume that the source resistance is negligible, then each noise

source is simply multiplied by the factor -R,.IR 1. The two contributions to the noise then

are

--R and = -P- kR. (263)

The negative sign is unimportant in the tinal-analysis because noises add as the square

root of the sum of the squares of the contributions to the noise.
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2. Noise source e,

When noise sources et and e,,t are suppressed. there can be no currents

flowing through-the system. Thus-the-voltage source

_T -(264)

contributes to the output noise vo!tage spectral density with gain one.

3. Noise-source e,,

Inputs to the ron-inverting terminal o the operational amplifier are amplified

by gain I +RIR,, and this t'.,, the case with this noise-source. too. The contribution to the

noise from this source then is

-- i;.3t (265)

4. Noise source :.

If any of ths! noise from this source -were to flow through resistor R,. then

there would be a non-zero voltagLe at- the- inverting terminal of the operational amplifier.

An ideal operational amplifler maintains the -inverting -terminal and the non-inverting

terminal-at equal potentials. namely-zero, so the current flowing through R, must be zero.

All the current must 1o,, through resistor R. and so this source's contribution to the

-noise is

i~s. - (266)

5. Total noise

The sum of all these contributions to the noise can be expressed as
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7-2

R,( t 2(lti 2 I. (267){o = ef)2+(§)2 TRl k 1 -ii.et +4kTR.J, It ' - , ,i

A comparison of the predicted noise and the measured noise for this circuit

is-shown in Table XIII. The entries-with zero noise from the source were made with no

source connected, thatis. with the input resistor R, grounded. The last column shows a

measurement taken with the input resistor connected to the output of one of the-Analog

Interferometric Simulators. Notice the-excellent agreement between the predicted and

the observed values. More than -any other measurement cited so -ar, this consistency

between theory and observation gives us confidence both in our ability

teoretically to -analyze 'noise and practically to observe it.

Now that we have briefly discussed the instrum ents with which we can measure

noise and have performed a detailed analysis on- a particular circuit, we are ready to

inctorporate these techniques -in measuring the performance of the Symmetric Analog

Demodulator-so that we can determine its minimum detectable signal.
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Ta-ble-XIII Comparison- a[ predicted and observed noise levels from an inverting
amplifier.

R- 10-kfl 49.9 Wf

R,2.00 Mfl 1.00 Mfl 100 kft 10.0 kil 04.9 kn

et0V/-fHz (short-circuit to -roun~d) 1.23li

Nos s uc 2.17 1.2.9 129 12.9 37.4
and its effect eRit UVI4,Hz pVAI%1? nVj'flz nVI-,iz nV/'fHz
at the output _____

182t 129 40712.9 32.S

_____ ____WW__ nI 17 nvlvfHz nVI'f Ix nWrlz nVIvqiz

Burr 3.02 1.52 165 30.0 34.5
Burow 15 nV!(iz, pV(I4k YVj-II z nVI41I7. nV;,4Hz nVI(Ilz

OPA- jit 1.00 500 i0.0 i.00 32.5
500iO nANV1 Ix nV.fI 1. pWfIx pVfI I ~Vi(' I z pVWVlz

Predicted
output -1
Noise e!4.0 1.0 21 3i 1.2

Spectral pV;iff lx juV11 nV W41 I nV.WFlz puWifI1

Density____ _____________ ____

Parameters T1.ime
of the [Lock- Coinstant

inApiir Filter 412 dl per decade
skirns

Output voltage ~j____
Standard Deviation - 507V 1.0±0.5 V 2.2=1.2 V 120 V 4.4±2.3 V

-Output noise spectral density:- 4.2 2)8 190 33f 12
_____________ V,,' lz puv!"[lIz nVf1lz nVWI z PV 1
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Xl. PERFORMANCE OF TIE SYMMETRIC ANAL(; DEMODULATOR

A. OVERVIEW

In this chapter we examine the performance of the Symmetric Analog Demodulat-

or. The aspects-of its perflormance which we consider are:

1. scale factor, which relates the phase amplitude in the modulated signal to the
voltage amplitude in the demodulated signal;

2. small signal bandwidth:

3. maximum acceptable .ignal:

4. noise floor:

5. dynamic range:

6. complexity: and

7. approximate cost.

These are the same characteristics we examined in assessing the performance of the

Fringe Rate Demodulator. plus one new one: the noise floor. This did not arise in the

case of the Fringe Rate Demodulator because its principle or operation made it incapable

of demodulating signals with less than half a fringe (an optical phase shift of rai2 rdians)

and so the useful-signals were always very much stronger than the noise anyway. The

Symmetric Analog Demodulator is capable of demodulating signals both above and below

the one-half fringe level. In fact, at the lower end it is only the noise that prevents it

'from recovering arbitrarily small signals.
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B. SCALE FACTOR

As with the Fringe Rate Demodulator, the scale factor is defined as the ratio of the

demodulator's ouput voltage to the input phase. If the phase signal provided by the

interferometric sensor is ¢(t) and the output provided by the Symmetric Analog

Demodulator is v(t), then we define the scale factor Fv.,ID(t) of the demodulator by the

equation

(dv(t) )

)MD - (d t)) (268)

dt

dvt)

Ideally the scale factor would -be constant. In practice. it is not. We shall call the

multiplicative product of the phase shift A and the frequency] the phase rate, since the

product is measured in radians per second. When the phase rate is too large. saturation

of the electronics at the level of the power supplies (or slightly below them) takes place.

The reason saturation occu's is clear if we consider the mathematical expressions for the

output-of the interferometer and its derivative. Let a signal of interest e(t) be applied

to the-interferometric sensor. If f(t) is a sinusoid of amplitude A and frequency o-2rf4

then

¢(t) = Asin(wto. (269)

After conversion of'the'interferometric output into its voltage analog, '(i) is converted

into the phase-modulated signal
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x(t) = D +EcosV(t+01 (270)

= D +Ecos[,Asin() +#I.

The term, represents an additional phase shift which accounts for the choice of one of

the three outputs of the 3 x3 coupler at the output of the interl'erometric sensor. as well

as the effects of temperature. pressure. and other factors.

The-derivative ofxr() with respect time is

I = -=-AE &cos(tO sin[Asin(cwt)-]. (271)
dt

Since the product ,Ea, is a voltage limited to the level of the supply voltage (or possibly

a little less), this product must not exceed some specific value or saturation results.'5

On the other hand, when this product is very low, the noise produced- by the

differentiators in the demodulator dominates the product AEw and so the outputs no-

longer adequately approximate the derivatives o1the inputs.

In either of these limits, the scale factor -of the demodulator -deviates from the

constant level desired. It drops off sharply in the former case, since further increases in

the value of the amplitude A of the signal of interest cannot increase the outputs of thc

differentiators past their limit. In the latter case, the scale -factor rises as A get smaller.

This occurs because the outputs of the differentiators, which are now noisy and very

small, are multiplied by one of the undifferentiated signals. While this signal continues

to decline, its product with the ostensible derivative- does not decline as rapidly as it

should. In other words, the-circuit provides too -much output for the input it receives.

In the intermediate range, where the scale factor is roughly constant, the

combination of optical fiber interferometer and Symmetric Analog Demodulator is

' In general, the product AE~a will also be multiplied by one or more other
multiplicative constants k, which depend on the specific choices of components in the
design. It is the complete product of all the ki and AEo which is limited. However, in
the design there is some latitude available in picking these various constants to achieve
the performance desired.
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essentially linear-in operation. This means that the output frequency is-that of the input

to the sensor, namely,(A. aid the output amplitude, is proportional to the amplitude-of the

input to'the -sensor.

Two other reasons for the departure or the scale factor froma constant- are the

-limited bandwidth and the limited -slew rate of the components of the Symmetric Analog

Demodulator. These create distortion of the waveforms, and the distortion becomes

-more -severe when high frequencies. are 'significant.

To measure the scale factor in the region. where it is- a constant, we used an

HP3314A Function Generatorto generate a sinusoidal test signal. To create the-phase-

modulated signals used by the Symmetric Analog Demodulator. we can apply this test

signal either to- the optical interferometer described- in Chapter IV or -to the Analog

Interferometric Simulators described in- Appendix C. Because the use of the optical

interferometer introduces the added complications-of-laser phase noise and wandering of

the diredtionof polarization of the optical waves in-the- interfcrometer, we chose-Analog

Interferometric Simulators for perkorming our measurements-ol scale factor.

We discovered that to rely on the -HP3314A to provide outputs of the same

amplitude as the setting on the front- panel is unwise when thc-amplitudes are very small:

the outputs-are inaccurate. The data on which we based this conclusion are shown in

Table XIV. Vv -is the voltage selected on- the front panel of' the HP3314A Function

Generator. V0o;r is the voltage ob,-erved on the HP3561A Dynamic Signal Analyzer,

expressed in root-mean-squared logarithmic form (dBV). n" Because it is a root-mean-

squared:measurement, we ,:an multiply it by "2 to get the equivalent peak amplitude of

the observed output. and we- can then take the ratio "2,,.IV. This ratio should equal

the constant 1, which would be the case if the actual output were always equal -to the

observed output. The ratios shown-in Table XIV are graphed-against input voltage Vt.V

in Figure 40. Clearly, the ratios deviate more and more from I when V.,<1 imV.

41 One-decibel is defined as 10 times the logarithm of the power in a signal. Since

voltage squared divided by resistance equals power through the resistance, a decibel also
is 20 times the logarithm of the voltage across the resistance, if' the resistance is- taken
as I fl. This is the conventional definition-of I dBV, even if the resistance is not equal
to 1I-
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To compensate for this deficiency, we kept the output voltage of the HP3314A

Function Generator above this-ievel'but interposed-a Gertsch Mode 480 Ratio Standard

between the HP3314A and the inputs to the Analog Interferometric Simulators. The

output of the HP3314A could then b:kept close to the value selected on its front panel.

by keeping it higher than I mV. The ratio selected on the front-panel of the Model 480

was then used to attenuate the output of the HP3314A to the low level needed for-noise

measurements. While the data we consider here are-above the noise, we generally used

the Model 480 Ratio Standard anyway once we had found- that the amplitude of the

output ofthe HP3314A was not reliable at smallsignal levels.

That -the use -of the Model 480 Ratio Standard provides accurately reduced signal

levels, down-to the level of I pV is clear from the.data in Table XV. To obtain these

data, we used -the instrumentation shown in Figure 41. The outputs of the HP3314A

Function Generator had an amplitude of 10.00-mV. were- attenuated by the Gertsch

Model 480 Ratio Standard; and were measured in two ways. The HP3561A Dynamic

Signal Analyzer provided one measurement. The combination of the EG&G Princeton

Applied, Research Model 521(0 Lock-In Amplifier and HP3456A Digital Voltmeter

-provided a second measurement.

The HP3561 A normally provides measurements in RMS form. -However, this time

we used the arithmetic capability of the device to multiply this-value by f2 and so convert

the readings into peak amplitudes. The Model 5210 Lock-In Amplifier likewise provides

its measurements in RMS form. After first averaging the outputs of the Model 5210 on

the HP3456A, we provided the [2 factor ourselves.

In Table XV,f is the frequency of the signal applied by the HP3314A: Ratio is the

-reduction ratio selected on the front panel of the Model 480: Vr.,, is-the effective-output

of the Model 480, computed by taking the product VtxRatio. where VV= 10.00 mV; VIr

is the effective peak output of the Model 480 measured on the HP3561A Dynamic Signal

Analyzer; S is the scale factor of the Model 5210 Lock-In Amplifier in volts/volt: N is the

number of samples averaged by the HP3456A; V,1 is the average t the standard

deviation of the output of the Model 480 Ratio Standard as-measured with the HP3456A

Digital Voltmeter: and . is the average ± the standard deviation of the voltage
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Table'XIV Inaccuracies in the output of- the HP3314A Function -Generator when-small
amplitudes arespecified.

• I). Vou.4"_f l~* - I oUI1 I,\
6.00 V :12.52 dBV 0.996

3.() V 6.49 dBV 0.995

i.00 V 2.95 dBV 0.993

1.00 V -2.96 dBV 1.01

600 mV -7.40 dBV 1.01

300 mV -13.44 dBV 1.00

200 mV -16.98 dBV 1.00

100 mV .22.98 dBV 1.00

60.0 mV -27.42 dBV 1.00

30.0 mV -33.46 dBV 1.00

20.0 mV -37.00 dBV 0.999

10.0 mV -43.01 dBV 1.00

6.00 mV -47.42 dBV 1.00

3.00 mV -53.46 dBV 1.00

2.01) mV -57.00 dBV 0.999

1.00 mV -63.09 dBV 0.991

600 I~tV - -67.49 dBV . 0.995

300 pV -73.62 dBV I0.983
200 pV -77.27 dBV 0.968

100 PV -83.65 dBV 0.929

60.0 IV -88.89 dBV 0.847

30.0 VV -95.30 dBV 0.810

20.0 pV -100.2 dBV 0.691

10.0 PV -113.0 dBV 0.317
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HP3314A Peak Output Voltage / Input Voltage
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Figure 40 Graph of the ratio VCJ./V,. shown in T1able XIV.

detected by the Model 5210"Lock-in Amplifier, computed as

r2~VDV (272)
VL A

to express the output of the Model 480 Ratio Standard in terms of peak amplitude rather

than RMS amplitude.
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Function Model480 Model 5210G t Digita t
FunctLock-in VoltmeterStandard Amliie

SHP3561A

Dynamic
Analyzer

-Figure-41 This instrumentation Was used to verify that- the Gertsch Model 480 Ratio
Standard could provide accurately scaled replicas of the signals from the HP3314A
Function Generator.

We used the HP3561A Dynamic Signal Analyzer in a mode which averages

successive readings with 16 exponentially decaying weights.' 7 Where the average

fluctuated to an excessive degree. a dash is shown in Table XV. The exponential

averaging mode would not give results of tess -than 121.6 nV during our observations,

although smaller numbers were observable if RMS averaging were used instead.

However, the RMS values at higher levels did not appear to be much different from

those obtained, with exponential averaging.

We operated the Model 5210 Lock-In Amplifier with a time constant = 1 s and

ailter skirt which dropped off at 12 dB per octave of frequency. We selected a mode

which provides both the magnitude and the phase of its input.

The magnitude output of the Model 5210 Lock-In Amplifier was provided:as an

input to an HP3456A Digital Voltmeter. This device was set to average N samples.

Each sample was performed by integraLtg .he inputover 10 power line cycles, or 167 ms.

The error shown in Table XV for V,,v is the sq" , ,root of-the sample variance provided

,7 The HP3561A Dynamic Signal Analyzer permits one to specify- the number of such
weights, but no control over the size of the weights is provided. In this mode, the
averaging gives greatest emphasis to the most recent data. Therefore. the HP3561A can
follow a mean- which is a function. of time, -provided the mean does not wander too
rapidly.
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Table XV These data show that the Gertsch Model 480 Ratio Standard can accurately
scale an input voltage ol 10 mV to as little as 1 pV.

f7 Ratio .j : I u-' [IS I NX I________ VD I?.

1.000000 1.K_0.1__-1 , " 10_ 1 7.16464 ± 0.00060 V' 1013233 ± 0.00085 mV

0.100000 I.(I00 mV I,9, mV 104 1447 ± 0.0022 V 1.01041 _ 0.00031 mV

0.010000 I0M0 PV Pll'.I 101 i 1314 ± 0.0048 V 100.853 ± 0.068 pV

20 0.001000 100i " .7 ± 0.0026 V 10.0843 ± 0.0037 VVt

0.000100 UK* pV i.2 0± 117 7.130 ± 0.028 V 1.0084 ± 0.0039 11V

0.000010 If0o .n n 123,2W 10 7.16 ± 0.18 V 101.2 ± 2.6 nV

0.000001 1110, nV 121.(. Nv .09 1.80 2 0.17 V 25.5 ± 2.4 nV

1.000000 10A0mV 10Il11 mV 1 3  I 7.12552 ± (100085 V 10.0770 ± 0.0012 mV

0.100000 I. mV 1.401 mV 10"  7.1189 ± 0.0012 V 1.00677 ± 00017 mV

0.010000 10011 1 v IW.2 P' 1051 7.0760 ± 0.0085 V 100.07 ± 0.12 pV

100 0.001000 I0.(0 PV I9.03 P 1' 7.1001 ± 0.0092 V 10.041 ± 0.013 pV

0.000100 1.0W pV 1.102 P' 107 7.A6 ± 0.21V 1.012 ± 0.030 PV

0.000010 100.0 ,1% 124. it\ 1ON 7.4 ± 1.8 V 104 ± 26 nV

0.000001- 10.00 nV 121,m 11V 2 - 12 0.85V 37 -12 nV
25 6

1.000000 10.) mV 10.02 rn 10 7.18008 ± 0.000,3) \ 10.15416 ± 0.00043 mV

.1C,0000 1.0OO mV 1102 1% 10"  7.1743 ± 0.00018 V 1.01460 0 0.00025 mV

0.010000 IN) U PV 40.. PV 101 7.1458 ± 0.00029 V 101.056 ± 0.041 .V

1000 0.001000 o1100 JLV 1005 PV 106 7.0813 ± 0.01029 V 10.0144 ± 0.0041 IV

0.000100 .K* V - 10, 7.076 ± 0.022 V 1.0007 ± 0.0031 pV

0.000010 I(I.lI iN 121., nV 101 6.87 ± 0.17 V 97.2 ± 2.4 nV

0.000001 100. nV 121.6 nV 10 0.86 ± 0.21V 12.2 ± 2.9 nV

by the HP3456A Digital Voltmeter.

To measure the scale factor F, of the demodulator, we applied the outputs o1 the

Model 480 Ratio Standard to the inputs of three Analog Interferomctric Simulators as

shown in Figure 42. This setup is very similar to that in Figure 41. The difference is the

presence of the simulators and the demodulator, and the absence of the HP3561A

Dynamic Signal Analyzer. The outputs of the simulators were provid,.. -.o thc Symmetric
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Analogue

Simulator

"n M6i480 Analogue on Reoi-

- Analogue :Mdl51Simulator n.o

Figur 42' Setup used to -measure -the scale f'actor fD of the Symmetric Analog
Demodulator.

Analog DemodLIidor.

The output 6f the H e.334A Function Geerator was set ,o- have an amplitude of

1.00 V. This is a-value well within the ability of the HP3314A to oi-:.,tt an accurate

amplitude, as established by the dia , in Table XIV. The smallest ratio set on the

Gertsch Model 480 Ratio Standard was:0,000500. This resulted in a signal amplitude o,

500 aV,.-well above the minimum reliable signal level of about 1 paV established-by the
data in Table XV.

We again used an EG&G Princeton Applied Research Model 5210 Lock-In

Amplifier-to make meashe e-as of the outputs of the demodulator. The filter time
constant set on the front paiel of thelock-in amplitier was 1 s. The ilter had a roll-off

of 12 deper octave increase in frequency. The equivalent noise bandwidth B of-the

lock-in ta ko'be computed from the formula
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B- -(273)
8r

where r is the filter time -constant. This formula is derived in Appendix A.

We-fed the outputof the lock-in-amplifier to an HP3456A-Digital Voltmeter, which

averaged 768 samples of the lock-in ampliier's output. Each such sample is actually itself

an average of the input, conducted over an integral number of cycles of the power lines.

We chose 10 cycles for this integration process. This resulted in averaging for a little

over two minutes. The output scale-factor F, of the demodulator is computed from the

formula

F 2Vo- (274)F D -SEFF

where S is the sensitivity-of the lock-in amplifier in volts/volt, V,/n is-the average voltage

from the lock-in amplifier as- calculated-by the HP3456A-Digital Voltmeter, and bEFl, is

the phase from the analog simulators. The quantity Ot.r.: is computed-Irom the formula

-EFF = IN Ratio -F .  (275)

In this expression, Ratio is- the ratio set on the Gertsch Model 480 Ratio Standard, V,.V

is the output level of the HP3314A Function Generator. and F.s.,: is the average scale

factor for the Analog Interferometric Simulators. As shown in Chapter I.V, this is 918±4

mradlV.

The- observations are summarized in Table XVI. As was mentioned earlier, the

scale factor :is not constant for all possible inputs. When the multiplicative product of

signal amplitude and -frequency is too small, the outputs of the differentiators cease to

he, proportional to that product, and so the scale factor rises. Conversely, when-the

product of the two is too big, saturation of the outputs of various components within the

demodulator occurs, and-so the scale factor drops. Both these trends are evident in the

data of Table XVI. In between the two extremes, however, we must conclude that the

scale factor FD is approximately 31 mV/rad.

170



Analogue
Simulator Vaious Output Points

-Test 
Signalic

HP3314A MSymmetri

_ L Modl 4A0anayogu

xFunon R

SGenerator DC Contolof Simulator Output Amplitude

_Figure 43 Instrumenitation for an experiment to testrwhether the increase inscale factoir
at low combinations o amplitude and frequency could be due to a-failure of the

DIV100's divider input to stay within acceptable limits.

The increase in scale factor for low combinations of amplitude and f'requencytled

us to- hypothesize, at first, that the denominator voltage input into the Burr-Brown

DIV100Odivider integrated circuit was becoming dominated by noise, so that it stopped

-decreasing as the numerator input decreased. We devised an experiment to test this

theory, and-concluded that it is untenable. Figure 43-shows the instrumentation we used

to test this-hypothesis. We used one HP3314A Function Generator to create a sine

wave. This was attenuated by a Gertsch Model 480 Ratio Standard and then applied to

the three main inputs of the Analog Electronic Simulators. This created a simulated

interferometrin sensor output. The amplitude of the Output could be adjusted by setting

a DC offset on , a s h a andeapplying this to the AM input of the simulators.

In mathematical terms, the output of simulator k was
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xk(t) Ecos[Asin(wt)-(k-1)3ir ] .  (276)
3

In- this expression, A and w are- controlled by the first HP3314A whereas E is-controlled

by the second one.

The results of our.measurements are given in Table XVII and-in Table XVIII. The

primary signal generator provided a frequency f= 100 -Hz and a peak voltage output'

V EN= 10.00 V. This signal was scaled down by a factor of 0.500000 by the Gertsch

Model 402-Ratio Standard to create an effective output voltage of 5.00 V. The-DC signal

applied to theAM input of the Analog- Interferometric Simulator is1 'lI in Table XVIL

E is the peak amplitude of the output of the simulator. I/ o/,,L is the voltage supplied

to the denominator of the DIV100 divider in-the Symmetric Analog Demodulator as-a

control. VouTv. s is the-RMS voltage provided by the Symmetric Analog Demodulator.

As the-valuc of E increases, the control voltage continues to climb at just the right

rate-to hold-the output constant. However, when E surpasses 1.74 V. the control voltage

is saturated- and so the output voltage begins to grow due to 'thc absence of any control.

So from Table XVII we sec that the maximum amplitude E from the simulators-that can

still be accepted by the Symmetric Analog Demodulator is-around 1.74 V peak and that

control is maintained as long as V( .f)1R 1" does not saturate, i.e., remains below about

13.77 V.

To obtain the data in Table XVIII, we applied a L kHz sine wave with a peak

amplitude of 3.00 V to the ratio standard. We then lowered the output of the ratio

standard to apply progressively weaker signals to the inputs of the Analog Interferometric

Simulators. The DC signal applied to the AM input of the simulators was held constant

at 897 mV to keep the peak voltage out of the simulator to a nominal 1.50 V, the level

which was set to be present when the AM input was left open. The actual amplitude

from the simulator was measured as 1.49 V. The data show that the drop in phase shift

from the simulators did not have any effect on VcorRo1., the control voltage, but of

course the demodulator's output continued to drop as the input peak phase shift

dropped. In view of the data in Table XVII, we must infer that the change in -scale
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Table XVI -Measurement~s to .obtain the scale factor or the Symmetric Analog
-Demodulator.

-[HzJ IVVI Rai bIm~'/ tL nViradI

0.o 00 iooo m0 rV 02.8 Mrd 20 Of 0.055 V 3.

0.050000 50 (1 n~v 45.1# mmad LW.00 (.076 V ;0.7

0.02500 25.11 mV 2..0 mmad WL5  0 f6 V 3

0.012500 12.5 mV 11,3 mmd _______ (1.2t.1 R005 32.1

1.000000 UN1I V )I-. nmrad 102 2.3340 4 (10141 V 36A3

0. 100000 l1Wt mV 11.8 mraid 1n 2W ±O 0(1.11 V.1.

0.010000 10.41 ' -V).1.1 ir..d 2.01 0 (.42 V 441;

-0.005000 5.00 mV 450Q mW d 1.55 z0.40 V 47.5

[.000 .(I(' v 018 npram Id U-.126 =(10(170 V 36.2

0.100000 100 mV 01.8 Mrd =.0 R0072 V 13.0
65

-0O.010000 10 (1 111v '1.1 mrmd 333 x I Ir %83= ',,I mV 45.4

-0.005000 5.11( mV 4.59-mrmd 512 MI8 mV 47.3

1.000000 - .00f V - 0 mmad 7.00 .00.17 3.

0.100000 100) mV OI.X mmd 70.1.1 34 mV 3.

0.010000 10.01 mV Q.18 mmad - 92,z-4t, mV 36. 1

_____ 0.005000 5.01 V 4.) mmid . ,.7 rnV -4.4

1000000 10"i V Olt mm~d hs... .7214 0.07v 31.1

- .00000 I0N mV - 02. mmad 71~ It 2 In v .
200

0.01000 - 011m - 01 mrad hQ4±1.9 mv32

____;0,500 50 mV 4 50 mm~d XIS 2.3 M V 31.2

0.00000 10 V QI8 mmad h.3 ~ .7175 =(24 V 332.

0.010000 10.01 iV '),18 mrid 3 x 10- 3 . V 3.

______ 0.0010M) .0(1 Mv gig prail 1_____ 2$4 = 060 V 413.9

LOOM00 1.00 V U18 mad A 1.1 6.51M8 = 0.0012 V 310.1

0.1000 100D mO nV 91.r mmad 33X 10 6,07 001067 V 31.4

0010000 10.0 Mv 0.18 mrad 33.3x 10 6.811 0.060 V 31.

_____ 0.001000 1.00 mV W1 jarad 10 2.00 ±0.21 V 32.2

1.000000 1.00 V 01$ mrad 3313. 3 f6.4731 0.0021 V __________

0.300000 100 .1 tv 1.8I mrAD 3.3103 6.7.174 :t 0.0035 V 31.1
I1low

00 0.010000 10. mV 9.1$ mmad 33.3x 103 6.760 = 0.045; V 31.3

000000 Ill Mv Q I$ p nd i0 2.05 = 0.0- V 3.

173



Table XVII These data show some examples of combinations of frequency and
amplitude which cause the divisor input to the DIV 100 to saturate, resulting in a loss of

'control of the output amplitude.

VW E Vc'-oTROL [ "Ot.rjW

2.00 V 1.19 V 6.29 V 97.33 mV

1.50 V 1.33 V 7.94 V 97.72 mV

1.00 V 1.47 V 9.79 V 97.72 mV

897 mV 1.49 V 9.84 V 97.78-mV

500 mV 1.61 V 11.83 V 97.72 mV

60 mV 1.74 V 13.77 V 98.12 mV

0 V 1.75 V 13.78 V 100.0 mV

-500 MV 1.90 V 13.78 V 117.2 mV

-1.OOo V 2.03 V 135.8 mV

-1.500-V 2.17 V 13. 77 V 155.8 mV

factor for small input phase shifts cannot be due to a loss of control. Note that in

Table XVIII, a decrease in the input phase shift of a flctor of !10 is matched by a similar

decrease in the-output of the demodulator.

It is likely that the output of 65.24 mVRtS when the nominal output of the

simulators was 2.75 rad peak phase shift was due to the fact that the AD639 is

increasingly inaccurate as the input gets larger than about 2 radians.

It must be emphasized that there is considerable latitude in choosing the scale

factor during- the-design process. Gains can be set at various stages of the Symmetric

Analog Demodulator to achieve the overall, desired scale factor. Specifically, the gains

of the differentiators. the two summing amplifiers which sum the outputs of the two sets

of six multipliers, and the integrator in the output of the demodulator all can be varied

from the values we chose.

The gains chosen for the differentiators and the integrators are perhaps the most

influential, since their effects are a function of frequency. By a judicious choice of these

gains, not only can the scale factor be varied, but so can the envelope of the dynamic
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Table XVIII. These data rule-out the hypothesis that the rise in-scale factor with small
combinations of amplitude and- frequency can be clue to a failure of the denominator
input of the DIV 100 to stay within range.

[ Ratio f 1'F..,I'F-" VNIRoI. Vou,:fs
1.000000 3.00 V 2.75 rad 10.42 V 65.24 mV

0.100000 300 mV 275 mrad 10.46 V 7.129 mV

0.010000 30 mV 27.5 mrad 10.49 V 715 yV

0.001000 3 mV 2.75 mrad 10.49 V 71 MV

0.000100 300 PV 275 prad -10.49 V

range.

A comparison between the measured scale- factor (31 mV/rad) and the predicted

scale factor (29mV/rad) is good evidence that the theoretical models provide a good

description of the real system.

C. BANDWIDTH

The bandwidth of a system is the range of frequencies in which-input signals-can

lie and still be processed usefully. In the-case-of linear systems. the frequency into the

system,-is the same as the frequency out of the system. Therefore it is sensible to speak

of the gain of the system at that frequency. In such systems. somc frequencyfj,,t I will

have the highest gain through the system. At some higher frequency fa,, -, the gain in
power will only be one half that at J' If P4KO, then there may also be a lower

frequencyfLo,;ER with only half the gain in power. :;" there is no such frequency, then we

specifyfLowER=O Hz. rIfJ,jK=O, then we define the bandwidth B by

18 The frequency fu,F., is often called f;,u' since the power is 3 dB lower at this

frequency than- at fP,. I fa signal's level is measured in-volts or amperes, the power is
half its maximum when the voltage or current is down by a factor of 1/"2 = 0.7071.
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B = fuppER" (277)

IffpE4KoO, then we define )y

B U -fUPPER fowER " (278)

Unfortunately, interferometric sensors-are not linear systems, inasmuch as they can

generate many frequencies " for each input frequency. Likewise, interferometric

demodulators'are-not linear systems, inasmuch as they can-generate one output frequency

-for many input frequencies. The straightforward definitions of bandwidth just given for

linear systems do not apply in an obvious way for these non-linear systems. How does

one characterize the bandwidth of such a system?

As we have seen ,i earlier chapters, the interferometric output from output k can

be modelled- as

xk(t) = D + E cosA sin(wot) + 0t) - (k-1)2r. (279)

-Here,.E is the amplitude of the interference fringes and D is their central-value. It -is

convenient for our present purposes to lump the two additional contributors to the phase

together as one term ,. We shall treat this as a-quasi-static term. neglecting its variation

over time. In this~case. we get the simplified expression

x(t) = D + E cos[A sin(ot) + (280)

for the form of an unspecified output of the interfcrometer. This can-be expanded using

a well-known trigonometric identity.

' A countably infinite number of harmonics of the input frequency is generated,
although -most of the higher frequencies are completely negligible.
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x(t) = D + E cos(O)cos[A sin(ot)] (281)

- E sin(O)sin[A sin(wt)].

This has-a-Fourier expansion, given by-Abramowitz [Ref. 18, p. 3611

x(t) =b cos(4 J4(A) +21 J,(A)cos[2kwoJ
01k al 01 282)

-sn(#o{ 2E J~ki(A)cos[(2k+4)wit1}

The function Jk(A)- is the Bessel function of order k. The dependence of the Bessel
-function on k andA is illustrated graphically in Appendix-E.

If we examine Equation (282), we see that there are twosources of constants. One

-of these is D and the other is Ji,(A) attenuated by-the factor cos(o). There also are even

-harmonics attenuated by the same -factor, cos((k). andi odd -harmonics attenuated by a

different factor, sin(o).

In this equation, we see, clearly the manfier in which the interferometer generates

a multiplicity of output frequencies for a single input frequency. Notice, however, the

dependence of the amplitude of the kth harmonic on J4(A). As A varies, so does the

strength of 1his harmonic. When A is smaller than 1, J,(A) is,bigger than J,(A) for all

k> 1. So in this small-signal regime, the system is not too unlike a linear system in that

the fundamental frequency is dominant. The-smaller A becomes, the more accurate this

statement becomes.

In the small-signal regime, therefore, the bandwidth both of the interferometer and

the demodulator can be defined in a manner similar to that in which it is defined for

simple linear systems. Experimentally, we ind that there-is a maximum frequencyft;PPER

where the gain in power is half that at fpEI. This frequency increases as A declines, but

eventually reaches a limit at which it stops increasing. The interferometer is a lowpass

system, so there is no lower frequency of half the gain in power. Therefore we will define

the smallsignal bandwidth-B as
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B = fuppER (283)

Now the Symmetric Analog Demodulator was designed to-have a low-frequency

roll-off in gain, so it is actually a.bandpass system. However. aswe shallsee, the-high-

frequency cutoff f UppER- is so much higher than the low-frequency cutofffLoliER that the

difference

B = fuppER - fLowER = fuPpER" (284)

The situation is different in the large-signal regime. When A > > 1, the graphs in

Appendix E show that the dominant frequencies are near fA. If too many of these

dominant frequencies -are attenuated by the system, it is impossible for the demodulator

correctly to reproduce a signal of the form given in Equation-?. A better way to

characterize the system in this regime is by the total harmonic distortion in-the output.

This is an indirect measure of, the extent to which these high-frequency components are

disproportionately altered by the system.

To measure the bandwidth of the Symmetric Analog Demodulator in the small-

signal regime, we want only the fundamental at frequency f= ~j/27r=f, to be present.

Equation (282) implies that, unless we control 0, we cannot guarantee that the

fundamental will be present at all,.nor can-we be sure that the second harmonic atf=2f,,

will besuppressed. To arrange this, we want

= + kxr (285)
2

where k 'is an integer, so that

sin(O) = (286)

-and
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Figure 44: Instrumentation used to measure the small-signal bandwidth -of the Analog-
-Electronic-Simulators.

cos(O) = 0. (287)

Now if we-keep A small, then- no-odd:harmonics above the fundamental will be present

in strength, and likewise for all the even- harmonics.

These conditions guided our selection of the analog electronic simulators rather

than the optical interferometer to provide test inputs to the demodulator. They have a

sepahrate input to which a voltage dictating the "static" phase 0 can be provided, in

addition .Q the usual input to which a voltage dictating A can be given. This is the-input

labelled "PZT". he value of D can be set to zero by adjustment of the DC offset at

the output- through a-control labelled "STATIC" on the front panel of the simulator.

The effect-of these- Ings. provided A is small enough, is to change the interferometric

signal to this much simpler'-form:

x(t) = -2E J,(A) cos(wa). (288)

We can now vary (, and so determine the small-signal bandwidth -by finding the frequency

fuppER where* the scale factor decrases by 1/-2. Before measuring the small-signal
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bandwidth of the Symmetric Analog Demodulator itself, however, we first measured the

small-signal bandwidth of the Analog Electronic Simulators. Figure 44 shows the

instrumentation we used to measure the small-signal bandwidth of the analog electronic

simulators. The HP3561A Dynamic Signal Analyzer was used to establish what DC level

needed-to be applied to-the PZTinput in order to eliminate the even harmonics, i.e., the

level needed to set cos(k)=( in Equation (282) and so generate the simple interferomet-

ric signal of Equation (288). We found that a-DC voltage of 954 mV, corresponding to

a phase shift of 876 mrad. was suitable. We set the output of the simulator to have no

static offset, i.e., D=0 in Equation (279). The elimination of the even harmonics by

proper adjustment of h also made the static offset cos(O)J,(A)=0. The harmonic

distortion from the simulator was measured 'at only -65 dB or 0.06% total harmonic

distortion when the input to the simulators was V.,=100 mV. Converting this to the

equivalent phase shift produced by the simulators, A was set to

A = VN fsEFF

= (100 mV) (918 inL) (289)

= 91.8 mrad.

This distortion rose to I % for Vv=500 mV, which we took as an acceptable level for the

experiment.

Figure 45 shows a graph of the bandwidth-of the Analog Interferometric Simulators.

This plot was generated by the HP4194A Impedance-Gain/Phase Analyzer. set to cover

a frequency span of 5 MHz. The measured bandwidth of the simulators is 1 MHz.

Knowing the bandwidth of the simulators permits us to consider the bandwidth of the

Symmetric Analog-Demodulator. If its bandwidth is less than 1 MHz, then we can be

sure that we shall have measured the bandwidth of the demodulator itself, and not that

of the simulators.

Figure 46 shows the instrumentation we used to measure the bandwidth of the

Symmetric Analog Demodulator. It is only slightly modified from that used to measure

the bandwidth of the Analog Interferometric Simulators. shown in Figure 45. We have
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Figure 45 Small-signal bandwidth of the Analog Interferometric Simulators. The upper
trace is the, magnitude of the gain; the lower trace is its-phase. The gain is-down by 3dB
atf = 1 MHz.

provided two-additional simulators in order to provide simulations of the remaining two,

outputs of an optical fiber interferometer with a 3x3 output coupler.

We also performed measurements of the bandwidth of the Symmetric Analog

Demodulator with larger inputs to the simulators. To get larger inputs still, we replaced

the simulators with -the combination of the-HP6824A Power Amplifier and optical fiber

interferometric sensor. In Figure- 47 are plots of the magnitude of the gain of the

combination of. simulator (or interferometer) with demodulator. The ive traces shown

here indicate decreasing bandwidths when larger signals are provided to the simulators

or interferometer. The four highest bandwidths are with the Analog Interferometric

Simulators as inputs; the lowest is with the-power amplifier and interferometer instead

of the simulators. In decreasing order of bandwidth, the inputs had peak phase shifts of

219 mrad, 690 mrad. 2.17 rad, 5.54 rad, and-9.28 ad. We found that the small signal

bandwidth-was 113 kHz.
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fligure 46 Block diagram nof instrumentation for determining the small-signal bandwidth
of the Symmetric Analog:Demodulator.

The higher the iiiput phase. the-less accurate is-Equation (288), so-the usefulness

of these plots is more open to question. In the next section, we shall characterize the
performance of the Symmetric Analog Demodulator for large phase shifts at the input

by considering the resultant total harmonic distortion. However, the-plots make it clear

that bandwidth and signal amplitude are inversely _proportional. The small-signal

bandwidth of the Symmetric Analog Demodulator is 113 kHz. This-is well below the
1 MHz bandwidth of the Analog interferometric Simulators, so we canbe sure wereally

are measuring the effect of the demodulator, not the simulators.

D. MAXIMUM ACCEPTABLE SIGNAL
We considered the small-signal bandwidth in the previous section. When the

interferometer is subjected to signals-with large phase amplitudes, this is no longer an

effectivemeasure of the performance of the demodulator. The reason, as we have seen,

is that there is a multiplicity of frequencies present in the output of the interferometer

and they all are important to the reconstruction of the input sjgnal, modelled in

Equation ?.
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DEMODULATOR BANDW0IDTH
A: T/R (dB)-B: 8 0 VKR 1' 020. 492 Hz
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8 MA': 180. 0 deq PHASE _de_
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Figure 47 Measured bandwidth of the Symmetric Analog-Demodulator (113 kH-z for
small signals). In -escending order of bandwidth, the phase inputs to the demodulator
were 219 mrad, 690- mrad. 2.17 rad, 5.54 rad, and 9.28 rad.

There is no- precise amplitude of the signal of interest beyond which the

demodulator fails to perform properly. The degradation in the quality of the output is

gradual. What is more, both the amplitude and the frequency of the signal of interest

have a bearing on this degradation.

The amplitude A of the signal of interest is what determines the amount of phase

shift delivered to the demodulator by the interferometric sensor. If the signal of interest

has-frequeficyf and-creates a peak phase shift ofA radians, then in one period T = Ilf

of the signal of interest, the interferometric output undergoes A/(2-r) cycles (fringes).

Thus, in one second, the interferometric output undergoes up to (A f)/(2ir) transitions.

It is obvious from this reasoning, therefore, that the interferometric output has .dquency

components at higher frequencies than f, and this is true even if A is less than 2i'.

The Fourier series of Equation (282) gives this statement a more precise meaning

inasmuch as it quantifies the relative strengths of the various harmonic components. The
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Figlure 48 Block diagram of instrumentatio fo esring the-bnwdho h
Symmetric AnJalog-Demodulator -when the inputr-is from the-combination of power supply
and optical--fiber interferometer,

bandidth0fth demdulaotq i~miedand thefrequency content Gthe interferometri

output is affected by this.limit, So- there is-a relationship betweenthe bandwidth of the

demodulator and the amplitude and frequency of the signal of interest. The limited

bandwidth of.the demoti'ator which we examined in the previous section has the effect

of distortingits output because it attenuates higher frequency components more than

lower frequency components. This is not the only distort;ag influence, however.

We have called the multiplicative product of phase shift and frequency the phase

rate, since the product is measured in radians per second. When the received signal is

differentiated, a signal results whose magnitude is proportional to the phase rate. A

second mechanism for creating distortion is saturation of any of the demodulator's
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internal amplifiers.20 Saturation occurs when -the amplifier receives excessively large

inputs. So an excessively large phase rate can cause saturation. At the onset of

saturation at any internal amplifier, distortion of the output begins to grow. As the

degree of saturation intensifies, so-does- the consequent distortion.

To quantify the gradualcloss of output quality due to-limited bandwidth and limited-

phase rate, we can-'measure -the total harmonic distortion present at the output of the

demodulator-when a single-frequency test signal is applied. When the signal of interest

applied to-the interferometer has frequency f, its harmonic overtones have frequencies

kf for k>2. The output of the Symmetric Analog Demodulator will-also contain these-
overtones. If the RMS amplitude at frequency kf is A', then the total harmonic distortion

is defined as

(290)

JA-1l

For our purposes, we are not very concerned with -how one might determine an

acceptable- level of total harmonic distortion. For audio applications, figures as low as-

0.01% total- harmonic distortion often are bandied about for amplifiers, although the

linearity of-speakers-and thc ability of the human ear to-detect distortion below 1% is

questionable. If one's objective is simply to determine that a particular frequency is

present, considerably more distortion than this is- permissible.

We-have found experimentally that-for distortion to be easily seen whena sinusoid

is-displayed on an oscilloscope.- the level of total harmonic distortion must be between 4%

and 10% or higher. Because of this fact; we have made measurements of the peak phase

shift required to exceed 4% total harmonic distortion, and we have done so over a range

of frequencies. We-illustrate the fact that distortion of less than I % is barely perceptible

visually in the series of oscilloscope traces shown in Figure 49.

o An amplifier is saturated when its output is at the limit dictated by the power
supplies or when it is slew-rate limited.
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Figure 49 Five oscilloscope traces of increasingly distorted sinusoidal waveforms (lower
traces) with an undistorted waveform for comparison (upper traces).
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To measure the total harmonic distortion, we used the instrumentation depicted in-

FigureS0. The HP3561A Dynamic Signal Analyzer permits the user to designate the

fundamental frequency and up to 20 harmonics. It automatically computes the harmonic

distortion that-these overtones represent.

The data are shown in Table XIX and graphed in Figure 51. In the table. Vt, is

the voltage from the HP33 i 4A Function Generator. The HP467A Power Amplifier was

adjusted to give a gain of approximately 10 VN. With this combination, the .'2lationship

between the phase generated by the-interferometer and-the voltage shown on the front

panel of the HP3314Awas found in Chapter IV by a least-squares fit to be

A = (34.29+O.O2 _-)Vn. +(-0.64±O.O8 rad) (291)

Table XIX These are the peak input phase shifts required to force the Symmetric
Analog Demodulator output to exceed 4% total harmonic distortion.

A l v V . . A . . f ., A I. .

__(rad) (krad/s)

10 Hz 5.8V 200 1.3

20 Hz 5.I V 170 3.5

30 Hz 6.1 V 210 6.3

60Hz 5.6 V 190 12

100 Hz 6.6 V 230 23

200 Hz 6.7 V 230 46

300-Hz 6.4 V 220 66

600 Hz 4.2 V 140 86

1 kHz 1.7 V 58 58

2 kHz 1.1 V 37 74

3kHz 700 mV 23 70

6kHz 360 mV 12 70

10 kHz 177 mV 5.4 54
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and this is the equation used ,o compute A,. in Table XIX. The-product f.VA., also is

shown in the table. The voltage selection on the front pancl of the .HP3314A was varied

until the HP3561A indicated that the total distortion was 4%.

Gradual drift of the direction or polarization of the light in the interferometer alters

Figure 50 This instrumentation was used to measure the phase shift required to ex. -ed
4%-total harmonic distortion in the output of the Symmetric Analog Demodulator.

the fringe visibility and appears related to increases in laser noise which we observed to

occur whenever fringe visibility declined markedly. These problems -both can easily be

corrected as necessary by varying the laser current, and we made these corrections in the

course-of this experiment in order to ensure that the demodulator had an undistorted

interferometric waveform on which to operate. Consequently. the values of D and E in

Equation (279) could not be held constant during this experiment. Undoubtedly this

affected our measurements of the peak phase shift needed to exceed 4% total harmonic

distortion. To obtain improved measurements would require the use of an interferometer

with a reduced propensity to generate such noise, or a feedback controller to regulate the

temperature of the laser and -so keep it away from combinations of current, temperature,

and back-'eflection which cause such noise. (An alternative way to eliminate back-

reflections would be to incorporate an optical isolator.) It is comforting to know,

however, that even in the presence of this noise, the demodulator was generally-able to

recover the signal, albeit in a degraded manner. Of course, it was designed to counter

the effects of changes in D and E in the model of Equation (279).

There are two distinct regions to the graph in Figure 51. For frequencies of up to

about 300 Hz, the graph is horizontal. This reflects a limitation on the peak optical

phase shift we could achieve through the use of the HP6824A Power Amplifier, which
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Fiue51Pa paesil no h ymetric Analog Demodulator necessary to exceed
4% total harmonic di stortion. The straight line extrapolates the region of constant phase
rate to low frequencies.

saturated at-around 60 V. the phase-is so linear with voltage up to this limit-that there

is no reason -to suppose that -higher voltages -applied to the -piezoelectric cylinders in the

optical'interferometer would not continue to generate greater phase shifts. However, this

was the most powerful- amplifier we had available and so we could neither verify this

supposition, nor obtain phase shifts-in excess of about 250 radians.
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For frequencies above about 300 Hz the-graph begins to fall at roughly 20 dB per

decade of frequency.2 " We have-seen that it is the product of phase shift and frequency,

the phase rate, which is crucial to the orrect operation of the Symmetric Analog

Demodulator. This product cannot exceed a value whichis approximately constant over

the range in which the demodulator operates with constan scale factor. For the

demodulator, we have Afon the order of 65 krad/s. Recall that in the design, we sought

voltage levels of 5 V at.-the output of each internal amplifier when the peak input phase

A was 100 radians and the -frequency of the signal of interest was 200 Hz. If the actual

saturation voltage is 13,;5 V, then we would expect a maximum phase rate of

_____ m~ 13,5
VsaG x f_ -Ax 1'(100 rad)(200 Hz)

VESG--N 5 - -(292)

= 54

which is close-to what we achieved.

Furtherinsight into the performance'of the Symmetric Analog Demodulator can

be gleaned from two further plots of-harmonic distortion. :Figure 52 shows a contour plot

of the harmonic distortion as a function of. the frequency and the phase amplitude of the

signal of interest. The contour lines jpin points with equal harmonic distortion. The data

were taken by a computer operating our apparatus on an IEEE-496 bus. The-contour

plot represents interpolation- between the points where measurements were taken.

The same data are displayed in a different- form in-Figure 53, which is a perspective

view- of a three-dimensional plot of the total harmonic distortion above the plane of

frequency and phase amplitude of the signal of interest.

From these two plots, we can:see that there is a large region in the center of the

plots where distortion-is quite low. Not surprisingly, distortion becomes severe where the

phase rate (the product of phase amplitude and frequency) is high, for under these

circumstances, high frequencies are present in the interferometric output, and they are

21 This appears to be a linear decline on a-log-log plot and is a rectangular hyperbola

on a linear-linear plot.
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Fig-Ure52 Contour plot of the Harmonic Distortion in the output of the Symmetric
Analog Demodulator as a function- of frequency -and amplitude of the signal- of interest.

adversely affected by th; limited bandwidth of the demodulator.

In the opposite corner, distortion due-to noise from the differentiators is evident.

The other two. corners-also show increased total harmonic distortion, although for high

frequencies and low phase amplitudes, it still is below 4%. For low frequencies and large
phase amplitudes, thelow-frequency roll-off of the integrators distorts the output.

To modify our design to set a different maximum acceptable signal, it is necessary

to ensure that the gains within the demodulator are altered so that when this phase rate

is present, no amplifier reaches saturation. It is also necessary that no amplifier be

expected to change its outputs :faster than its specified slew rate (measured in volts per

second). Some increase in the maximum permissible'phase rate can be achieved by
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-Figure 53 Surface plot of the Harmonic Distortion in the output of the Symmetric
Analog Demodulator as a function of frequency-and amplitude of the signal of interest.
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limiting theb0utputs of the internal amplifiers to- srhall -enough levels. However, this

measure has an adverse effect on-dynamic range since the ratio of peak signal-to-noise

declines if the peak output signal must be smaller but the noise is fixed in magnitude.

E. NOISE FLOOR

We have now seen that in the small-signal regime, the demodulator has a

bandwidth of around 113 kHz. We have also examined the.peak phase shifts (as a

function of frequency) which can be demodulated with less than 4% total harmonic

-distortion. Let us now turn to the performance when only very small phase shifts are

present.

To measure the noise floor, we used the same instrumentation shown earlier in

'Figure 42. At that time. we were interested in measuring the scale factor of the

Symmetric Analog Demodulator. Here, we use the same measuring technique, but

because the:inputs are-sm-ll. weare actually-measuring the noise. We measure the mean

voltage delivered-by the-demodulator and its-standard deviation. The ratio of the mean

tobhe standard deviation is defined as the ratio of signal to noise, SIN. To-obtain the

noise floor, we simply measure S/N while gradually decreasing S. When S/N= 1 (0-dB),

the-signal and-the noise are of equal strengths. The only difficulty is-that as-the signal

vanishes, the-lock-in amplifier becomes progressively-less-able to detect -anything. So we

shall try to extrapolate to the noise floor without actually reducing S all the way to it.

We set the HP3456A -Digital Voltmeter to perform 10 integrations per cycle of the

power line, and to take 768 such samples. The effect of this was to give over two

minutes of averaging. The HP3314A Function Generator was set to provide a peak

output voltage of 1.00 V. This signal was reduced by the Gertsch Model 480 Ratio

Standard to maintain a precise peak. We applied the effective scale factor for the

Analog Interferometric Simulators which is shown in Appendix C to be is FS... -

918±4 mrad/V to calculate the effective peak phase A from the simulators. The-EG&G

Princeton Applied Research Model 5210 Lock-In Amplifier was operated with a time

constant '=1 s and with a filter roll-off of 12 dB per octave. The equivalent noise

bandwidth resulting from these settings can be computed from the formula
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Table XX Measurements to obtain the noise floor of the Symmetric Analog
Demodulator (23-110 Hz). Data marked with an asterisk (*)-were not included in the
least-squares fit.

f -Ratio I .. F AJC.J. S_ VoUt.RMs S/N_

0.100000 100) mV 91.8 mrad 2.01±0.055 V 31 dlI

0.050000 50.0 mV 45.9 mrad 1.00±0.076 V 22 dB

23 0.025000 25.0 mV 23.0 mrad 0.51±0.066 V 18 dB
Hz

0.012500 12.5 mV 11.5 mrad 0261±0.055 V 13 dB

0.006250 6.25 mV 5.74 mrad 0.147'±0.048 V 10 dB

1.000000 1.00 V 918 mrad 102 _.3340±0.0041 V 55 dB

0.100000 100 mV 91.8 mrad :101 2.801±0.033 V 38 dB

35 0.010000 10.0 mV 9.18 mrad 2.91±0.42 V 17 dB
-Hz - __

0.005000 5.00 mV 4.59 mrad 1.55±0.40 V 12 dB
.00, 4. 10,12 dB

0.002500 2.50 mV 2.30 mrad 1.02±0.34 V 10 dB

1.000000 1.00 V 918 mrad 333.3 7.8236_0.0079-V 60 dB

0.100000 100 mV 91.8 mrad 9.293±0-.072 V 42 dB

65 0.010000 10.0 mV 9.18 mrad 983±71 mV 23 dB
H z -- 3 x o

0.005000 5.00 mV 4.59 mrad 3i3x10 512±80 mV 16 dB

0.002500 2.50 mV 2.29-mrad 289±58 mV 14 dB

1.000000 1.00 V 918 mrad 7.0990.0.0047 V 64 dB

0.100000 100-mV 91.8 mrad 794.1±3.4 mV 47 dB
110 0.010000 10.0 mV 9.18 mrad 333.3 78.2±4.0 mV 25 dB
Hz _

0.005000 5.00 mV 4.59 mrad 37.2±3.7 mV 20 dB

0.002500 2.50 mV 2.29 mrad 19.9±3.5 mV 15 dB
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B - " 125 mHz. (293)BEN-8r

The experimentaV observations are shown in Table XX and Table XXI. It will be

noticed that when signal levels are strong, the signal-to-noise ratio drops roughly 6 dB for

every halving of the effective voltage Vp... as it should. This is somewhat inaccurate.

which is not too surprising inasmuch as the standard deviation of each set- of -measure-

ments is not always the-same at a single value-of the frcquencyf. 'It also becomes grossly

inaccurate for the lowest signal levels. 5.74 m rad and 2.30 mrad. at 23 Hz and 35 -Hz

respectively. These- data show that the standard deviation does not change too much at

these low levels, and if the standard deviation truly measures the noise, this is to be

expected. However, themean fails-to decline by- one-half at these'low levels. Doubtless

this is due to the fact that the mean-and the noise are now of comparable values.

To extrapolate the declining ratio of signal to-noise to the level where signal and

noise are equal, i.e.. whec the signal-to-noise ratio is 1 (0 dB), -all the data except those

marked with an. asterisk (") in Table XX and Table XXI were subjected to a least

squares linear curve fit. The signal-to-noise ratio in dB was-regarded as the independent

variable and' the logarithm to the base 10 of the effective peak input phase shift was

regarded as the dependent variable. Table XXII-shows the linear equations which-result

from this procedure. To find the noise floor,it -is- only- necessary to let SIN be 0 in each

equation. This gives the logarithm of the phase shift-A which would produce-an output

voltage equal to-the noise. Thus. by this procedure. we can regard all of the output noise

as due to phase noise-at the input.

The great utility of-the lock-in amplifier is its ability-synchronously to detect less and

less signal if it examines a narrower and narrower bandwidth. In order to -isolate the

performance of the Symmetric Analog Demodulator from that of the lock-in amplifier,

we should normalize the noise floor found by this extrapolation process by dividing it by
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Table XXI Measurcments to obtain the noise floor of' the Symmetric Analog
Demodulator (200 Hz - 1.00 kHz).

f Ratio 'I.t :T - A,...r  : S I Vot;r.,s SN

1.000000 1.00 V 918 mrad 6.7219±0.0027 V 08 dB

0.100000 100 rnA' 91.8 mrad 717.6±2.6 mV 49 dI

Hz 0.010000 10.0 mV 9.18 mrad 333.3 69.4±1.9 mV 31 dHz

0.005000 5.0 mV 4.59 mrad 33.8±2.3 mV 23 dB

-0.002500- 2.5 mV 2.29 mrad 16.9±2.3 mV 17 dB-

1.000001 1.00 V 9J8 mrad 6.7175±0.0024 V 69 dB

0;100000 100 nV 91.8 mrad 3.33x10' 7.186±0.026 V 49 dB

300 -0.01000) 10.0 mV 9.18 mrad 33.3x 10' 7.31±0.20 V 31 dI3
Hz

0.001000 5.A) mV 4.59 mrad 2.84±0.69 V 12 dB
10"0.000500 500 PV 2.29 mrad 1.37±0.62 V 6.9

dli

1.000000 1.00 \ 918 mrad 333.3 6.5138±0.0012 V 75 di

0.100000 100 mV 91.8 mrad 3.33x 10' 6.7976±0.0067 V 60 d

H0 0.01000() 10.0 mV 9.18 mrad 33.3 x 1-0- 6.811 ±0.069 V 40 dBIHz
0.001000 1.00 mV 4.59-mrad 2.09±0.21 V 20 dB

10
0.000500 504) pV 2.29 mrad 1.07±0.21V 14 dB

1.000000 1.00 V 918 mrad 333.3 6.4731±0.0021 V 70 dB

0.100000 100 mV 91.8 mrad 3.33x 101 6.7374±0.0035 V 66 dBI
1.0 0.010000 10.0 mV 9.18 mrad 33.3x10 6.760±0.045 V 44 dB

kHz

0.001000 1.00 ,nV 4.59 mrad 2.05±0.13V 24 dBi

0.000500 50) pV 2.29 mrad 1.03 ±0.14 V 18 dB
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Table XXII Least squares fIt of the logarithm of phaseinput to the Symmetric Analog
Demodulator to achieve a given ratio S/N of-signal to noise.

Frequency Least-squares fit

23Hz 1a = E 5A [(50±7)x10 3]- + (-2.6±0.1)-
rad)dB

with r=0.983

35Hz log (A..) =-i(53±2)x10"3] s  + (-2.96±0.06)

with r=0.9989

65Hz log( )- = [(53± )x10"]- + (-3.22±0.05)

-1rad) NdB
with r=0.9994

110HzAE = [(52-2)x10"3] s  + (-3.39±0.06)IO lrado NdB

with r=0.9986

200Hz log -- =[(51 ±1)X- ] j S (-3.55±0.06)-
1rad) Nd18

with r=0.9990

with r=0.9998

590Hz !og1 AF) = [(53±2)x10-3]A + (-4.12±0.08)

with- r=0.998

1kHz log ( ) = [(57]±7) X10-A + (-4.4±0.3)

with r=0.979
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Table XXIII Computation of the phase noise spectral density for the Symmetric Analog
'Demodulator.

Frequency Logarithm of Phase - Phase Bandwidth Phase SpectralFloor -Density

f loor(AI V A B At

23 Hz -2.55 2.88 mrad- 8.0 mradflHz

35 Hz -2.962 1.09 mrad 3.09 mrad/btHz

65 Hz -3.218 606 iirad 1.71 mrad/-'Hz

110 Hz -3.386 410 jirad 1.16 mrad/41-z
125 mHz

200 Hz -3.547 284 farad 803 prad/v'1-Lz

300 Hz -3.686 210 prad 583 plrad/- -z

590 Hz -4.117 92 pirad 220 tiradl'fHz

I kHz -4.41 72 itrad 110 strad/N'Hz

-the square root of' the bandwidth.22 The bandwidth of the lock-in amplifier can be

computed from -Equation (293).

Table XXIII shows the computation of the phase noise spectral density from the

equations of Table XXII. It is important to note that the generation of a linear curve-fit

from logarithmic data is not as reliable as doing so from linear data. While the data

shown in Table XXII show the standard-deviation o the error in both the mean and the

variance of the logarithmic data. taking the corresponding linear data to-the same number

of decimal places is inappropriate. In Table XXIII we have contented ourselves with

quoting the resulting phase noise spectral density-At to two or three decimal places.

Figure 54 presents the data of Table XXIII in graphical form. Note that the

spectral density is- not constant with frequency, as it would be if the noise were white.

-Instead, it declines at the rate ofabout 20 dB per decade of increase in frequency, i.e.,

the noise voltage spectral density is proportional -to -the reciprocal- of the frequency, 1/f.

22 If we were considering the power spectral density, we could simply divide by the

=bandwidth in hertz. Since the phase shift (or, for that matter, the voltage) are
proportional to:-the square root-of the power, we divide either of them by the square root
of the bandwidth. The resultant units are rad/fHz or V/iHz.
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Figure 54 Plot of the phase noise spectral density of the Symmetric Analog Demodulator
as a function of frequency of the signal o interest. The spectral density indicates the
minimum discernible signal in a one hertz bandwidth.

Consequently, its noise power spectral-density declines at a rate proportional to 1/f. This

is a form of pink" noise, for the lower frequencies are noisier. It is not to be confused

with that variety of noise usually called pink or 1/f noise and whose power declines at the

rate 1/f. The voltage spectral density of that kind of noise declines at the rate of 1/.1f. 2

Pink noise is what-one would expect from the Symmetric Analog Demodulator since

its output stage is an integrator. An integrator has a 1/f voltage gain characteristic. If

white noise were present at its input, pink noise should be present at the output, at least

3 The term "pink" is applied by analogy with visible light, in which the lowest
frequencies are red and the highest frequencies are blue.
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until the intrinsic noise of the output stage itself becomes significant. Generally speaking,

operationat amplifiers-can -be modelled as generating white noise at their outputs when

the frequency is above about 100 -Hz. If the input noise is -greater, however, then this

noise is not noticeable -until very high frequencies are reached, for only then does the

gain characteristic or the amplifier attenuate the input noise sufficiently for it to be less

than the amplifiers own noise. We show in the detailed noise analysis in Appendix F that

the demodulator's output noise is indeed due to the effect of integration of white noise

from the analog divider.

Now the input to the Symmetric Analog Demodulator as a whole may be white, but

the differentiation that takes place early in the demodulation process would convert this

white noise to "blue" noise, i.e.. noise with more high frequency content than low

frequency content. Yet this noise-is largely dwarfed by the noise inherent-to the Analog

Devices AD534 multipliers. This, in turn, is swamped by the white noise output of the

Burr-Brown DIV100. When the white noise reaches the integrator, a characteristic

decline in power proportional to l1/f results.

F. DYNAMIC RANGE

The dynamic range of the Symmetric Analog Demodulator is the difference

between the smallest and the largest phase shift it can successfully demodulate. As we

have-seen, we can characterize the largest phase shift as that which produces the most

harmonic distortion that we can tolerate. We can characterize the lowest-phase shift as

that which-is equal to the noise of the demodulator. The upper limit is essentially fixed

in character. The lower limit, however, is a function of the bandwidth under consider-

ation, for we have expressed the noise floor in phase noise spectral density.

We shall choose this spectral density as the lower limit. Implicit in using this as the

lower end of the dynamic range is the assumption that we are looking in a 1 Hz

bandwidth. We can increase the dynamic range of the Symmetric Analog Demodulator

by narrowing the bandwidth in which we view the output. Likewise, if we widen the

bandwidth, diminished dynamic range is the consequence.
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Figure 55 The dynamic range of the Symmetric Analog Demodulator when the output
is viewed in-a 1 Hz bandwidth.

Of course, changing the bandwidth in the frequency domain is tantamount to

varying the -duration of observation in the time domain. To achieve a narrower

bandwidth, we observe the output of the demodulator for a longer period of time.

Conversely, to widen the bandwidth, we shorten the period of observation.

In Figure 55, we-show plots of the maximum acceptable signal (that which induces

4% total harmonic distortion) and the phase noise in a 1 Hz bandwidth. These data were

shown separatelywhen we considered these two characteristics of the performance of the

Symmetric Analog Demodulator previously. Here they are superimposed on the same

scale. The dynamic range is the ratio of the upper limit at a frequency to the lower limit.
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Since this plot is logarithmic. the dynamic range in a I Hz bandwidth-can be obtained by

subtracting the-lower limit -from the upper limit in decibels.

For example. at a frequencyf=590 Hz,. the dynamic range of the SymmetricAnalog

Demodulator in a I Hz bandwidth is

Maximum acceptable phase (4% Th)- 140 rad
Phase noise in a 1 Hz bandwidth- 260 prad (294)

- 5.38x!05 = -115 dB.

G. COMPLEXITY

The Symmetric Analog Demodulator is of only moderate complexity. The chief

difficulty is understanding the principles of its operation. This is essentially just an

exercise in mathematics. Of course, the beauty of the mathematical models is not

entirely matched by that of the real signals. They are noisy: those of the models have no

noise. More significantly. the models we have used, those on which the algorithm are

-based, assume that all three outputs of the 3x3 coupler have the same constant offset

D, the same amplitude E (see Equation (279) on page 176), and precisely 1200 phase

shift between each output and any other output. In reality,-these assumptions are more

or-less wrong. Despite this 1'act- the demodulator works quite well.

As far as the circuit itself is concerned, it- does not consist of very many parts. It

could be integrated onto a single (or possibly a very few) application-specific integrated

circuits (ASIC) for some reduction in the amount of space. weight, and power required.

As it is, it could fit onto a single printed circuit board without much difficulty.

H. APPROXIMATE COST

Table XXIV provides a calculation of the cost of the integrated circuits in the

Symmetric Analog Demodulator. The parts are identified by their part numbers. The

quantity of each part required is listed, along with prices from recent price lists. (The
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Table XXIV Calculation of the cost of the integrated circuits used- in the Symmetric
Analog Demodulator.

i Source Total
Part ID- Description Quantity Price of Cost of

Required Price Part

AD534 Analog 6 $29.95 Analog $179.70
Multiplier Devices

DIV100 Analog Divider 1 $36.60 Burr-Brown $36.60

OPA-111 Low-noise Op 3 $11.80 Burr-Brown $35.40
Amp I _

AD712 General Purpose 5 $3.60 Analog $18.00Op Amp _7 Devices $18.0

TOTAL 15 [ $269.70

source of the price is provided.) The tota' price of under $269.70 is very modest for a

demodulator with more than 110 dB dynamic range. extending from hundreds of

microradians to hundreds of whole radians. A practical demodulator would include some

additional items, such as the printed circuit board, passive components. connectors.

packaging, and the like. Also, any commercially available demodulator-would have some

level of profit built into the price, too.

Subsequent- to the construction of this demodulator, Analog Devices released the

AD734 integrated circuit multiplier. At $14.77 for a single chip. it is cheaper than the

AD534 at $29.95 by a factor of 2. Its bandwidth is 10 MHz. versus 1 Mhz for the

AD534. Finalhy, its scale factor is programmable, whereas on the AD534 it is essentially

fixed-. This change lets the new chip perform -division as well as multiplication. If ; -were

used, the DIV100 chip used-in our demodulator could be replaced by this new device,

I. SUMMARY

In this chapter we have considered the performance of a passive homodyne

demodulator which employs a new algorithm for demodulation, namely, symmetric

demodulation. We have seen that the dynamic range achieved is 115 dB, and this was

without pushing the design to handle low levels of signal. 'The phase rate is 65 krad/s,
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and this, -too, could be improved. This demodulator permits handling of signals both

below andabove the level of 17 rad of optical phase shift. which gives it a very decided

advantage over fringe-ratc demodulators. Its cost is low. less than $270, and we

mentioned that the cost and performance both-could be improved by the use of a new

integrated circuit multiplier whose -bandwidth is greater than that of the AD534 by a

factor of 10 and whose cost is a factor of two lower.

In the next chapter. we return to the asymmetric demodulation algorithm,

describing its implementation in digital, rather-than analog, electronics.
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XII. DESIGN OF AN ASYMMETRIC DIGITAL DEMODULATOR

A. BACKGROUND

In this chapter we consider the design of a -digital circuit to implement the

asymmetric demodulation-scheme discussed in Chapter VII. The purpose is to prove that

a digital implementation is feasible. Many techniques of- sophisticated signal-processing

are more easily done with-digital electronics, and so-a system which recovers the signals

in a digital form, and furnishes them to following circuits in the same form- is useful- in

some applications.

Any digital technique requires that an incoming analog signal-first be sampled and

digitized Since -the optical fiber interferometric sensors which we consider in this

dissertation have three outputs. one for each output fiber-of the interferometer, there

are three analog signals available. The symmetricmethod described in Chapter VIII-uses

all three, but the asymmetric method can discard one of these, 4 and this is how we

-implemented it. We- can use an analog-to-digital converter (A/D).to convert the analog

signals-to two binary numbers representing-their -values.

Of-course, one could provide a digital output-to following circuits from the output

of an analog demodulator. However, we chose to attempt to demonstrate the feasibility

of doing, the whole demodulation-in digital circuitry. For the-purpose of showing that the

scheme-works, we terminate it with a conversion from digital-back to analog. This would

not typically be required- in an application. However, it makes it quite easy to see the

wave form output by the demodulator on-an ordinary oscilloscope.

It is desirable that the range of voltages across which the AID can operate match

the range of voltages across which the signal ranges. This takes full advantage of the

resolution which-the A/D possesses. This is especially important when the number of bits

24 It is possible to use all three interferometric outputs in fabricating the in-phase and
quadrature components- required by -the asymmetric demodulation method, but there is
no clear advantage to doing so. There is a drawback, in that more circuitry is needed to
do so.
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in the digital representation is small for -there are fewer numbers available for

representing all possible voltages. It is wasteful to use, say, only one third of the full

range of-an A/D.

Matching the -range or the signals to that of the A/D is not easy. It-is particularly

difficult with the signals output by an optical fiber interferometric sensor because they arc

modelled by the equation

xk(t) = D+Ecos[e(t)+t)-(k-1)27r]. (295)

Recall that in this equation. D is a- central value around which the outputs vary; E is th.

peak variation of the signals from this value; '(t) is the signal of interest, a reconstruction

of which -we want the demodulator to provide; Q() is an additional phase shift due to

extraneous factors; and the final-multiple of 2--/3 is due to-the particular choice of output

from the interferometer. Now-D and E both vary in an-uncontrollable way. Changes in

laser power and-changes in polarization both have an effect on these parameters. So the

A/D: must be able to. handle signals in the range D±.E, and since this range is variable,

it must be able to handle the greatest possible range that this can have. On average, we

do not expect the signals to have-this maximal range, and so some mismatch between the

range of the signals-and the range of the A/Ds is inescapable.

The earliest point where digitization can be performed is just after the receiver

section, where the -signals have been converted for the first time to voltage signals

described by Equation (295). However, we shall postpone the digitization until after D

has been subtracted from each of the two signals in analog- circuitry. This is not strictly

necessary since-some A/Ds can handle a voltage range which is not centered around 0 V

(we say-its range is offset from zero). Many of them, however, and in-particular the ones

we used, require that the offset voltage-be known. To measure it entails adding all three

outputs together, as shown in the discussion of symmetric demodulation in Chapter VIII.

This means that we must have a receiver for each of the three outputs, even though in

the asymmetric method only two are needed for the algorithm. Since it takes little extra

effort to perform the subtraction of D in analog circuitry, we elected to do this.
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Ideally, one'-would be able to eliminate the effects of variability of E, the peak

deviation-of the signal from-D. In the symmetric demodulation scheme, this is done by

a ratiometric technique. There unfortunately is no way to measure E-prior to digitization

of the signals without fairly elaborate analog processing, in which case the question must

arise, why not use an analog demodulator? If a digital signal- is needed for later

processing, then the analog demodulator's output could be digitized. Only one A/D

would be'required, and strict control over the output amplitude would be available for

a given-phase amplitude. One could measure E in-digital circuitry, but this would have

-to occur after the digitizaion, and-so the benefit of being able to match the range of the

analog to digital conversion to'the-peak values of the signal would not be available. So

we shall live with the wastefulness-of resolution inherent in-not being able to control E,

and shall-digitize-the signals once-the average value-has been subtracted off. This must

ibe seen as a major flaw in the use-of a digital demodulator.

There are-several approaches we could have taken in implementing an asymmetric

digital: demodulator. An obvious one would-have been to use either a microprocessor or

a dedicated DigitalSignal Processor (DSP) integrated circuit-to perform the-calculations

required by the algorithm; We considered-this, but found that the number of instructions

needed to complete all the-processing necessary on each pair of samples of data would

-take longer to process than-the 2.5 ps required by the A/D we chose to use, the Analog

Devices AD7769. To take full -advantage of the -speed of the A/D, we would have

needed two DSPs in parallel. This is-feasible, but we-elected a different course.

We-decided to implement- the algorithm with-a purely hardware circuit. We used

dedicated multipliers, adders, subtractors. and registers. The registers permit the use of

a pipe-lined architecture in which different samples of data are being processed

simultaneously at various stages of the circuit. The result of this approach is a

complicated circuit (especially on a breadboard), but the processing is so fast that the

A/Ds remain the limiting factor on speed, which was what we had in mind.
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B. DETAILED DESIGN

The schematic diagrams for the Asymmetric Digital Demodulator are given in

Figure 56 through Figure 59. The majority of the integrated circuits in the demodulator

operate on a single +5 V power supply. However. the A/D and the D/A have special

requirements. The A/D-rcquires a + 12 V power supply. Its absolute peak supply voltage

is +15 V, but we felt that to push the operation to this limit was unwise, even though we

were already using + 15 V commonly for analog circuits, and despite the need for an

additional power supply. The D/A requires a -5 V power supply for its negative analog

output reference. Unlike the AD7769 A/D, it can handle up to ±_17 V for its main

power supplies, so running-it on the standard t 15 V was not a problem.

As we mentioned earlier, the AD7769 has an input to specify the offset-voltage. the

voltage around which the inputs fluctuate. This value is restricted to staying between

+2 V and +6.8V. Because +5 V is already available, and-is within this range, we shall

-use it for the VBl,vs input to the AD7769. For greater accuracy. one should use a

precision voltage reference at this input, a precaution we have ignored.

The variation from this offset is specified as a voltage at the Vs;r~xC; input of the

AD7769. It can be between +2.0 V and +3.0 V. We shall specify it to be +3.0 V: a

voltage divider composed of 10.0 kf1 and 30.1 kfl resistors divides the +12 V power

supply down to +3.0 V to provide this reference. Strictly speaking. this voltage, too,

should be provided with a precision reference, but againy, wchave ignored this.

Our interferometric signals have had D removed from them. The offset voltage

specified at the VlI. input requires that we add +5 V back in to the signal. Also, the

deviation E of the signals from the central value must be scaled so that it never exceeds

VswING, in magnitude.

The AD7769 requires a clock signal which can have a frequency of up to 400 kHz,

'thus providing a conversion period of 2.5 ps. The clock signal must be a square wave

from 0 to +5 V. We generated this using an HP3314A Function Generator. This signal

functions as a strobe to cause conversion to begin. There actually is an internal clock,

too. However, the external clock is the one which we use to synchronize the entire
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Figure 56 Schematic of -the Asymmetric, Digital-Demodulator. This section converts two
of the -interferometric outputs to digital form and creates an in-phase and a quadrature
signal- from them.
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Bit 7 6 5 4 3 2 1 0

Weight -2°- 2-' 2-2 2-3  2-4  2"- 26 2 7

The effect of this is to devote the first- bit to the function of carrying the sign of the value

held-in the other 7 bits. These bits can give values between 0 and I--2-'=0.9922. The

result of using all 8 bits then is a signed number in the range - I to 0.9922. The

conversion then has created an unscaled cosine function,-but - if the value of the input has

a variation of less than , then- the output is scaled by a factor less than one.

The inversion of the high-order bit is performed by UI A. a 76LS04 hex-inverter.

We can regard one o'-thc two outputs as the-cosine. From it and the other input (with

its 1200 phase shift) we want to construct the sine. This is -equivalent to saying-that a

1200 phase shift is notcorrect: we want it to be 900 .

How can we accomplish this? The two digitized signals now have the lbrm

x(t)= cos(4) and x 2(t) = cos( 17rt"  (296)

We can make use of the trigonometric identity

cos(A-B) = cos(A)cos(B) +sin(A)sin(B) (297)

to- rewrite xQ) -as

X20) = cos(Ucos31 rl+sin(?)sir = - _cos(__ sin(). (298)

From this we- can obtain sin(') by the linear combination

2 1c 2 ( )j3sU '1-xQ()+-x(t) -L -o(T-sn) +-cs(4) Sin(O. (299)
r 3 /-J 22 %r

In digital electronics, as in analog, we must-take care that quantities remain-within

specific limits. In our case. the interpretation wehave placed on the bits of an 8-bit word

is such that quantities must remain within the range - I to 0.9922. Does the computation
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cos(- 1200)

Figure 60 Block diagram showing how to obtain the in-phase and-quadrature wave-forms
without overflow.

shown in Equation- (299) cause-any intermediate results to be outside this range? That

depends on the specific manner in-which we implement the equation. The obvious way

to integrate- it is with two- multipliers to do the scaling and one adder to perform the

summation. However. the scale factor 2/13=1.155>1, so this method can indeed cause

an overflow. If we perform the-scaling in two steps, however, as-illustrated in the block

diagram in Figure 60, then overflow cannot occur.

To see- that this method- avoids overflow. we can rewrite Equation (299) as-

(300)

We have-already shown that this sum yields sin(f). We now digress briefly in order to

see how to rewrite-the irst term in a manner that makes its magnitude clear.

In general, the expression Acos(*)+Bsin( &) can be rewritten as

A cos(#,)+Bsin ( .) D cos( .oro) (301)

where D and 40 are values which we would like to determine. To do so, we use the

trigonometric identity
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cos(A*B) cos(A)cos(B)-sin(A)sin(B) (302)

to give

D cos(r O) = Dcos(o)cog O -Dsin( ) sin( r). (303)

We- can equate-the coefficients of the sine and cosine to yield

A = Dcos(,) and B = Dsin(O). (304)

From the trigonometric identity

sin2()+cos(0) = 1 (305)

we have

_A2+B2 = D2cos2(O)+D 2sin2(0) = D2cos2(0)+sin2(O)] = D2 .  (306)

Hence

D =JA-F-T .  (307)

We can solve-for the angle . bhy taking the ratio of the two coefficients:

B _ Dsin(O) = tan(¢). (308)
A Dcos( 

n)

So

= (309)

Applying Equation (301) to Equation (300) gives
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X20 X. (t) _1 1 1
+ -- Co)+Sin(D+-c0S(4

_ _-cCOi+--sin() (310)
-2

= co4ftan 1.

From-this, we see-that by breaking up the method into two parts, as in Equation (300),

we avoid overflow. since I/"3<1.

We implemented the scaling with two Analog Devices ADSP-1080A 8-Bit

Multipliers, labelled U5 and U6 in -the schematic of Figure 57 on page 208. They

generate a 16-bit result; at this point, however, we retain-only the most significant8 bits

and ascribe to them-the same meaning as before. The signed 8-bit numbers are in the

:range -. 1 to 0.9922.

The inputs to the multipliers arrive one conversion time after the clock signal

arrives at the AD7769 AID Converters. Since the multipliers use the-same clock, they

-start -multiplying -the previous cycle's words at this point; the new words must wait for

another cycle. To-keep the word-in the cosine path synchronized 'With-this process. we

have inserted a 74LS374 Octal Latch (U4) which delays the word in- the cosine path by

one cycle, too. The outputs of themultipliers are released on the opposite cycle of the

clock. This means that the multiplier- takes a full half-cycle before it- releases-its output.

Latch U4 has no such delay; -its outputs arrive at latch U13 quite soon after the normal

clock occurs. The word released by the multipliers, in contrast, takes a more tortuous

path-through two stages of three 74LS83 4-bit adders, which perform the two additions

of Figure 60 on page 214. They are quite fast, however, compared to the 1.25 ps for-half

of a clock cycle, so their outputs have no trouble catching up at latch U14 with the

corresponding word at UI3. At this point. Ui3 holds an 8-bit cosine of the signal of

interest and U14 holds an 8-bit sine of it.

Figure 61 is a block diagram of the asymmetric demodulation algorithm. Note that

the data are not continuous either in time or in magnitude. They are equally spaced
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digital-words corresponding to sample times t-l.t, t+., etc. The difference between two

successive wordsis-computed'by-saving the current-word in-a register and subtracting it

from-the next word to come along. A digital multiplier Finds the-product -between the

current sample word and' the difference between -the current sample -word in the other

signal path and-its previous value. When the difference between these products is taken,

we obtain

cos(f,)[sin(4) - sin(4)] - sin(4)[cos(4) - cos(f,)]

= sin(4)cosG,,) - cs(f,)sin(f,) (311)

= sin[e, - f'4_,.

.If the-sample interval is sufficiently small-(i.e., if the sample frequency is sufficiently high),

then-the argument of thc sine in Equation .(31 I)-is very small. In this case, we can use

the small-angle approximation. The output of the subtractoris

sin[,4 - _-- 4 ,- ,_,. (31-2)

We can integrate this -first-order difference to recover a-sequence corresponding to the

signal-of interest-. C.

The integration amounts to weighting these differences by the multiple k, and-

adding them into-a. running sum. The.running sum, however, is also added in on itself.

It would swiftly grow without bound if k, were not less than one. We shall explain how

-to pick these two constants presently.

From the schematics of Figure 57 and Figurc-58, it can be seen that two -successive

words in each data path arc subtracted by the 74LS181 4-Bit Arithmetic Logic Units

(ALUs) U15 and U16 (for the cosine path) and U17 and U!8 (for the-sine path) to yield

first-order differences. These differences are analogous to the derivatives of the

continuous-time- algorithm. The current- data words and the differences are cross-

multiplied-by two more ADSP-1080A multipliers U19 and U20. As with U5 and- U6,

theseaccept data on the normal clock and release the products on the inverted clock.

Shortly after the inverted clock triggers this. elease, the difference between the two cross-
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products is produced by four more 74LS181 ALUs. These ALUs comprise a- 16-bit

subtractor circuit; all- 16 output bits of each multiplier arc used. The,outputs of U21

through U24 are digital words -representing the- first -difference (analogous to the

derivative) of-the signal oFlinterest.

The 16-bit difference is then processed by a digital integrator in order to recover

the-signal of interest. Of'course. a-true integrator would have infinite gain at frequency

0, sc -what we really want is a low-pass filter which approximatcs an integrator at high

frequencies. An analog filter which has a low-pass characteristic and a cut-off25

frequency f=f, has a Laplace transform

1
H(s)- s+2 rfo  (313)

If we-let the complex variable s be purely imaginary. then

s = j = j2 rf. (314)

If f tf1, then this transfer function becomes

H(j27r.D- 1 1 (315)
j2 f+2 rfo j2irf'

-which is the-transfer characteristic of an integrator.

The impulse response h(t) of'the system is given by-the inverse Laplace transform

of the transfer-function.

h(t) = V-IH(s)]  e -2,°a .  (316)

25 The cut-off ficquency is the frequency at which the magnitude of the gain has

declined by 3 dB from the peak.
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Taking- the right-sided Z-transbrm21' of this, we get

Z[h(n7)]-,4_f

-2Afe U _n

n-0

(317)
= (e fT)

n-0

1 Sumof a
I1-e -2XfT . geometric series

The advantage to having obtained-Lhis equation is that the znecessary filter coefficients

for a-digital filter to implement this function can-bie read right from-thezequation. Strum

andlKirk [Ref. -19, pp. 350-351'1 show that a differenice equation

IV L
y(n) = ay~-)L-bx~-) (318)

has a Z-transibrm

26 The right-sided' Z-transform is useful in--converting difference equations into
algebraic equations. Since a sampled-data system uses finite differences rather -than-
infinitesinmal'differences, the Z-transform can-be used with -sampled- systems just as the
-Laplace transform can be used with continuous-time systems. The definition of the~right-
sided -Z-transform is

Z~x4nT)] i z-

wher'e Tis the'.time between- suecessive ki ,ularly-spaced) samples.
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L
_ bkz-k

H(z) -Y(z) _ y(n)]. k.O (319)
X(z) Z[x(n)] N

1 -_j akz
k=1

We want to implement a-difference equation corresponding to the Z-transform function

-in Equation (31-7). Noting that the coefficients bo = 1, ao=e - 0, and all the other ak

and bk'are zerO, the required difference equation is

2 e-2 +X. (320)Yn= e Yn- 1+I

We chose to set-thc cutoff frequency f= 10 Hz, and the sampling interval T=2.5 ps is the

maximum which the AD7769 A/D converters can sustain. Thus the difference equation

becomes

y= 0.9998429y. 1 +x,. ,4321)

We now check-for-the gain ofthe transfer function at a frequencyf=200 Hz. We would

like the-gain to:be I at this -frequency, that is. we would like a signal-of amplitude 1 to-

create an output-of the-same magnitude at this-frequency. To find the gain; we must first

find the digital frequency corresponding to the real frequency f=200 Hz. The digital

frequency can take-on-values from 0 to 2r and is-given by

0 = 2ir f  (322)

wheref =400 kHz is the-sampling frequency. So withf=200 Hz, the frequency response

-is

bo
( = 318Z88°. (323)

1 -aoeJo j2?r 200 Hz
1-0.9998429e " kz

To reduce the gain to 1, we divide b,, by 318, yielding 0.00314. The difference equation

now takes the form
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y= 0.99 9842 9y,,_ +0.00314x.. (324)

The coefficientsin this equation are inconvenient in our hardware implementation. So

we will round-the gain down to the next-lowest power o1 two. The coefficient 0.9998429

can be rewritten-as I - l.570673x10-'. By doing this, we can build the integrator by

adding in: the value Y,,_. accumulated so far, and subtracting oil a small fraction of it.

When we round off (in binary) we obtain a,, = I - 2-' and b, = 2". Using these values

to check the frequency response when f=200 Hz, we find it is 0.621 Z88 0 . Since the

magnitude of the gain is below 1. this integrator should be stable.

We shall implement the difference equation

Y = Y.+(2"9)X.-(2-1 3)n-. (325)

which is quite easy to do in digital hardware. However. because we are using 16-bit

numbers x,, -we need a large number of bits in the.accumulator.

The schematic in- Figure 58 on page 208 shows the most significant 15 bits-of x,,

entering the accumulator shilted down by nine bit positions. However. as we are dealing

with signed -binary numbers, the high-order bit must be provided to-all high bit locations

to avoid the loss of this sign information. The most significant 16 bits ;,.- of the output

registers U37, U38, and U39 are added in with-the scaled-down multiple of x,, in adders

U25 through U30. The sums are then reduced by 2-3),,,_, in the Arithmetic Logic Units

(subtractors) U31 through U36. The difference represents the next output of the

demodulator.

At this point, one could simply pass the digital output to any succeeding circuits that

required it. We used anAnalog Devices AD7846 Digital-to-Analog Converter in order

to display the resultant wave form on an oscilloscope and to permit measurements on the

performance of the system.

The AD7846 requires ± 15 V and +5 V power. In order to provide bipolar outputs

of ±10 V, it also needs ±5 V reference voltages. As before, we ignored the precaution

of using precision voltage references here, but better performance would result it we did

SO.
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Unfortunately. the design of the digital integrator proved to be easier than its

implementation. After repeated checks to see that the analysis and the wiring both were

right, we finally abandoned the attempt to make it work and substituted an analog

integrator in its place. -In view or-the fact that the main thrust of the research was into

demodulation, not digital-integration, this expedient seemed reasonable, albeit somewhat

embarrassing. We took the inputs to the digital integrator as inputs to the AD7846

Digital-to-Analog Converter instead and puts the analog output from the AD7846 into

an analog integrator., The performance measurements-in the -next chapter therefore do

not reflect a-fully-digital implementation of the asymmetric demodulation scheme. This

deficiency needs to be investigated and corrected in follow-on research. Extensive

simulation has confirmed that the design is-valid, and so-the error must be in the wiring

of the-integrator.

C. SUMMARY

In this chapter wc described an implementation of the asymmetric demodulation

algorithm in digital hardware. The complexity-of this circuit k very high. This is partly

due to the use of hardware multipliers and adders, as-opposed to a microprocessor or-a

digital signal processing (DSP) integrated circuit, and partly due-to the use of multiple

four-bit and eight-bit integrated circuits in places where more bits were required (up to

24:at the end).

The use of 8-bit analog-to-digital converters at -the input and a 16-bit digital-to-

analog converter at the output is quite unusual in digital circuitry. At the input, the

dynamic range of the signal of -interest is contained not in the amplitude of the

interferometric outputs. but in their phase, so we can get away with using an 8-bit

converter without sacrificing dynamic range. The demodulation process converts the

phase modulation into fluctuations in amplitude. Along the way, the 8-bit quantities arc

multiplied together to generate 16 bits, making the use of a 16-bit digital-to-analog

converter at the output an appropriate and worthwhile expense. Of course, if succeeding

circuitry did not require an analog replica of the signal of interest, the digital-to-analog

converter could be omitted altogether.
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In the next chapter, we consider the performance of the Asymmetric Digital

Demodulator we have just described.
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XIIL PERFORMANCE OF THE ASYMMETRIC DIGITAL DEMODULATOR

A. OVERVIEW

In-this chapter we examine the performance of the Asymmetric Digital Demodulat-

or. The-aspects of its performance which we consider arc:

1. -.scale factor, which relates the phase amplitude in the modulated signal to the

voltage amplitude in the demodulated signal;

2. small signal bandwidth:

3. maximum acceptable signal;

4. noise floor:

5. dynamic range:

6. complexity:-and

7. approximate cost.

These are the same characteristics we examined in assessing the performance of the

Fringe Rate Demodulator and the-Symmetric Analog Demodulator.2 " The Asymmetric

Digital Demodulator is capable of demodulating signals both above and below the one-

half fringe level.

The techniques used to measure the performance of the Asymmetric Digital

Demodulator were essentially the same as those described in Chapter XI, where we

presented the results of measurements of the performance of the Symmetric Analog

Demodulator. Rather than repeat the information here, we will simply present the

27 In the Case of the Fringe Rate Demodulator, measurement of the noise did not

arise because its principle ol operation made it incapable of demodulating signals of less
than half a fringe (±-,/2 radians) and so the useful signals were always very much
stronger than the noise anyway.
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results. In the description of- the Symmetric Analog Demodulator's perlbrmance. simply

substitute the Asymmetric Digital Demodulator in its place.

B. SCALE FACTOR

Table XXV, Table XXVI, and Table XXVII contain summaries of our measure-

ments of the scale factor of the Asymmetric Digital Demodulator. To assist -in the

understanding -of these data. Figure 62 is a graph of the scale factor for frequency

200-Hz. It is clear from the data that the scale factor is not a constant, as we would

prefer. However, in the horizontal region of -the-graph it is- approximately 35 mV/rad.

At low levels of optical phase shift (phase-amplitude) the scale lactor begins to climb.

This is due-to-the increasing significance of noise in the output: this has the effect of

providing a steady average signal output even though the phase amplitude continues to

drop. Since the scale factor is- calculated as the ratio of output to input, it appears to

-rise. If we narrowed-the bandwidth, the noise would be less severe-and-so the apparent

rise in scale factor would occur at a lower phase amplitude. A similar effect-was observed

when we measured the- scale- factor of -the Symmetric Analog Demodulator.

It should-be noted that implicit in quotingthe scale factor in volts per radian-is the

fact that the output of the Asymmetric Digital Demodulator has been converted to a

voltage. So we are. in effect, quoting a combination of the results of the digital

demodulation as well as the scale-factor of the-analog output stage. A more suitable-way

to quote the scale -factor would be as a magnitude of a binary number per radian of

optical phase shift. Because we took the output of the Asymmetric Digital Demodulator

before the final integration required by the asymmetric demodulation algorithm had been

performed, we cannot quote this-value. It would, however, be a function of the gain of

the digital integrator, just as in our case it is a function of the gain of the analog

integrator.

-C. BANDWIDTH

When we measured the bandwidth of the Symmetric Analog Demodulator. we

applied very small signals from the Analog Interferometric Simulators. This permitted us
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Table XXV Determination of the scale factor of the Asymmetric Digital Demodulator
for- frequencies of 50 Hz and 100 Hz.

Freuency Input Voltage Input Phase Output Voltage Scale iactor

[Hz] j (peak) Irad] (peak) [mV/radl

3.1) V 102 1.84 V 18.0

2.50 V 85.1 1.52 V 17.9

2.0) V 67.9 1.24 V 18.3

1.50 V 50.8 970 mV 19.1

1.00 V 33.7 650 mV 19.3

50 50() mV 16.5 300 mV 18.2

400 mV 13.1 270 mV 20.7

300 mV 9.6 190 mV 19.7

200 mV 6.2 140 mV 22.5

100 mV 2.8 70 mV 25.1

50 mV 1.1 80 mV 74.5

3.00 V 102 2.80 V 27.4

2.50 V 85.1 2.40 V 28.2

100 2.00 V 67.9 2.00 V 29.4

1.50 V 50.8 1.31 V 25.8

I.100V 33.7 940 mV 27.9

500 mV 16.5 50) mV 30.3

400 mV 13.1 410 mV 31.4

300 mV 9.6 290 mV 30.1

200 mV 6.2 195 mV 31.4

100 mV 2.8 100 mV 35.9

50 mV 1.1 90 mV 83.8

to obtain the small-signal bandwidth of the demodulators very easily. The Asymmetric

Digital Demodulator output such distorted wave forms for the small phase shifts

generated by the simulators that we could not effectively measure its small-signal

bandwidth. Any phase amplitude below 2 rad created more than 4% total harmonic
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Table XXVI Determination. of the scale factor of the Asymmetric Digital Demodulator
for frequencies of 150 Hz and 200 Hz.

Frequency Input Voltage Input Phase Output Voltage Scale Factor
[Hz]- (peak) jrad] (peak) [mVlradl

3.00 V 102 3.11 V 30.4

2.50-V 85.1 2.0 V 31.3

2.00 V 67.9 2.21 V 32.5

1.50 V 50.8 1.70 V 33.5

100 V 33.7 1.15 V 34.2

150 50M11V 16.5 600 mV 36.4

400 mV 13.1 490 mV 37.5

300 mV 9.6 380 mV 39.4

200 mV 6.2 230 mV 37.0

100 mV 2.8 115 mV 41.3

50 mV -1.1 65 mV 60.5
3.00 V 102 3.24 V 31.7

2.50 V 85.1 2.86 V 33.6

200 20) V 67.9 2.29 V 33.7

1.50-V 50.8 1.73 V 33.7

1.0 V 33.7 1.20 V 35.7

500 mV 16.5 607 mV 36.8

40() mV 13.1 470 mV 35.9

300 mV 9.6 380 mV 39.4

200 mV 6.2 250 mV 40.2

100 mV 2.8 Il5 mV 41.3

50 mV 1.1 60 mV 55.9

distortion at all frequencies. We suspect that the situation could be improved with a less

conservative design. We set the digitization reference levels high enough to preclude an

input signal from ever exceeding them, an unhappy situation which would have damaged

the analog-to-digital converters. Had we included voltage-protection circuitry, we could
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Table XXVII Determination of the scale factor of the Asymmetric Digital Demodulator
for frequencies of 250 Hz and 300 Hz.

Frequency Input Voltage I Input Phase Output Voltage Scale Factor
[Hzl (peak) Iradl (peak) lmV/radl

3.00 V 102 3.60 V 35.2

2.50 V 85.1 3.10 V 36.4

2.00 V 67.9 2.50 V 36.8

L.5 0 V 50.8 1.90 V 37.4

1.00 V 33.7 1.16 V 34.5

250 500 mV 16.5 560 mV 33.9

400 mV 13.1 500 mV 38.2

300 mnV 9.6 370 mV 38.4

200 mV 6.2 2511 mV 40.2

IOJ mV 2.8 70 mV 25.1

50-mV 1.1 30 mV 27.9

3.00 V 102 2.33 V 22.8

2.5(3 V 85.1 1.94 V 22.8

300 .. ID 67.9 1.60 V 23.6
1.50 V 50.8 1.21 V 23.6

!.00 V 33.7 7.40 mV 231.2

500 mV 16.5 400 mV 2.4.2

400 mV 13.1 340 mV 26.0

300 mV 9.6 250 mV 23.9

20) mV 6.2 170 mV 27.3

100 mV 2.8 90 mV 32.3

50 mV 1.1 35 mV 32.6

have decreased the reference levels, effectively using more of the dynamic range of the

digitizers, and this would very likely have permitted the bandwidth measurements we were

unable to obtain with the present design. This is an area for more investigation in the

future.

229



Asymmetric Digital Demodulator

Scale Factor vs. Phase Amplitude

0010

0_



D. MAXIMUM ACCEPTABLE SIGNAL

As in our-assessment of the performance both of theFringe Rate Demodulator and

the-Symmetric Analog Demodulator, we shall regard the maximum acceptable signal as

.he highest signal amplitude which creates no more than 4% total harmonic distortion.

OJbservations of theltotal harmonic distortion (in %) for various combinations of input

optical phase amplitude andifrequency are presented in Table XXVIII, Table XXIX, and

Table XXX. We have shown !he phase -amplitude in -radians. The odd values are due

to our having actually us ,;d round numbers for the voltage amplitude from the HP3314A

Function Generator. The phase amplitudes were computed from the command voltage

by the linear least squares fit

Ph se amplitude = :(34.29 r_) V - 0.64 mrad. (326)

A contour plot derived from- these data, ;s given in- Figurc 63. The contours join

combinations of input- optical phase shift and frequency which yield equal levels of total

harmonic distortion. An alternative view of the same data is provided imthe surface plot

of Figure 64.

'By studying the two plots- and the data from which they were derived, we can draw

a number of useful conclusions. When the phase rate (the product of phase shift and-

arolitude of the signal of interest) is high, distortion becomes extremely severe. It is

fairly large at each of thc other three corners in the plots, too. Where both frequency

and-phase shift are low, the adverse effects of quantization noise are responsible for the
harmonic distortion. In one of the other two-corners of the plots. frequency is low but

ph.e amplitude-is.high. In the other, phase amplitude is low but frequency is high. At

low frequencies, quantization noise is significant at theextrema of'-the signal of interest.

This is true even if the-phase amplitude-is high, because-the iIstantaneous frequcncy gets

so:lw at these points, Conversely, at high-frequencies, if the phase amplitude A is not

very big, very few quantization levels-are used, and distortion again ensues. In the central

area- of the plots, where the surface plot shows deep. crinkly valleys, the harmonic
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Figure 63 Contour plot showing combinations-of input optical phase shift and frequency
which yield the same.-amount of -total harmonic distortion -in the Asyminetric Digital
Demodulator.

distortion is low, but not yery even; In this regime, the Asymmetric Digita[-Demodulator

providesp a useful output.

We used linear interpoiation between the observations in Table XXVIII,

Table XXIX, and Table XXX to-obtain the maximum acceptable phase amplitude as a

function of frequenqy. The results are shown in Table XXXI in tabular form and they

are plotted in Figure 65. At frequencies above 300 Hz, the maximum acceptpl"

frequency-drops off at roughly 20 dB per decade of frequency increase. This is to be

expected when the-phase rate limit is the dominant effect- on harmonic distortion.
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Figure 64 -Surface plot showing-the total harmonic distortion in the Asymmetric Digital
Demodulator as a function of various combinations of input optical phase shift and
frequency.

There is an anomaly in the data at 200 Hz. For large phase amplitudes, the

harmonic distortion at 200 Hz is higher than that at the next lowest frequency (100 Hz)

and at the next highest frequency (500 Hz). This is true around the level of 4% total

harmonic distortion, but at even higher phase amplitudes. it no longer is the case. In any
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Table XXVIII Total harmonic distortion (in %) -or the Asymmetric-Digital Demodulator
as a function of input optical phase shift and frequency (phase shift from 6.22 rad to
33.7 rad). [ Optical Phase Shift-irad]_

6.22 13.1 16.5 19.9 J 26.8 33.7

10 48.9 23.8 19.8 34.4 17.8 11.4

20 19.8 9.3 11.0 15.8 4.66 3.96

30 18.3 8.85 7.58 12.6 5.42 3.29
F 50 5.41 2.58 2.94 8.52 2.87 4.10
r
e 100 4.26 3.36 2.92 6.17 4.75 3.24
q 200 4.07 4.60 4.65 6.25 2.72 2.20
e 300 4.48 3.40 3.85 5.39 10.3 3.23
n
c 500 5.54 6.66 10.1 8.18 2.38 1.74
Y 750 4.89 7.32 5.35 6.67 1.40 1.14

[Hz]
1000 6.23 10.8 8.03 6.43 5.80 1.15

1500 20.7 11.7 8.97 9.13 10.5 3.89-~ I
2000 8.16 7.19 10.2 361 5.21 5.86

event, this fact, combined with the absence of points exceeding 4' total harmonic

distortion at 50 Hz and 100 Hz makes it impossible to determine whether the maximum

acceptable signal continues to increase at 20 dB per decade as the frequency drops lower.

The most phase shift our interferometer could generate was around 250 rad. and so an

investigation of higher phasc shifts at low frequencies was not feasible.

E, NOISE FLOOR

We performed noise measurements on the Asymmetric Digital Demodulator using

the same technique as we used with the Symmetric Analog Demodulator. The

observations are summarized in the data of Table XXXII and Table XXXIII. Recall that
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Table XXIX Total harmonic distortion (in %)'of the Asymmetric Digital Demodulator
as a function of input optical phase shift and frequency (phase shift from 50.8 rad to
137 rad).

Optical Phase Shift Irad]

[-50.8 67.9 85.1 102 119 137

10 6.13 5.45 8.97 5.29 6.51 9.90

20 2.66 3.17 3.26 3.16 3.81 4.14

30 2.86 2.77 2.65 3.10 2.84 2.73
F 50 4.96 4.30 6.01 4.19 2.50 2.32
r

e 100 4.32 1.80 1.18 2.83 2.03 1.44
q
u 200 2.83 2.05 1.08 .833 1.25 2.07
e 300 2.00 .856 .986 .853 .596 3.70
n
c 500 1.54 1.63 4.00 391 4.01 7.65

750 1.14 1.34 3.25 6.40 12;9 15.7[Hz] i _..
[] 000 4.09 6.15 24.5 39.7 35.7 40.7

-1500 9.58 24.7 19.9 29.6 J 190 105

2000 22.2 33.4 103 108 117 65.1

when we discussed the performance of the Symmetric AnaldgDemodulator. a clear trend

was evident that allowed usto extrapolate to the point where the ratio of signalto noise

reached - dB. This Ais much more difficult in the case of the Asymmetric Digital

Demodulator, especially at the lower frequencies. We have halved the input optical

phase shift for each-successivc observation, yet-we do not always see a 6 dB -decline in

the ratio -of signal to noise, as we expect. In some cases, the decline is nowhere near

6-dB. We may, however. -follow the extrapolative procedure for the data when the

frequenezis 195 Hz:and up.

In Table XXXIV we show the results of a linear curve fit on some of the data

given inTablc-XXXIII. We have excluded some of the data points, as indicated, because

they do not appear-to be-consistent with the hypothesis of a 6 dB decline in the ratio of
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Table XXX Total harmonic distortion (in %)-of the Asymmetric Digital Demodulator as
a function of input optieal phase shift and frequency (phase shift from 154-rad to
239 rad).

Optical Phase Shift Irad]

154 171 188 205 222 239

10 7.21 8.82 11.1 8.02 7.68 29.4

20 4.20 4.09 3.02 3.26 3.58 4.70

30 2.65 2.61 2.81 4.67 6,82 8.32
F

50 2.70 2.88 1.55 1.45 1.58 1.56

e 100 0.971 1.17 1.14 1.85 1.96 1.90
q

200 2.06 3.08 4.58 5.79 6.66 6.27

e 300 0.816 1.36 1.72 2.91 6.03 6.65
n
C 500 20.6 36.4 48:6 33.5 33.3 49.9

Y 750- 10.4 15.5 19.3 32.3 96.0 228" -[H z] l... ..

1000- 42.6 185 183 428 133 127

1500 112 97.0 105 152 95.2 51.1

2000 72.1 t 56.4 73.8 45.8 76.3 85.5

signal-to-noise with everyhalving of the phase amplitude. We also have omitted doing

-a curve fit for the data in Table XXXII because no clear trend of this sort is evident

-upon inspection.

We can easily evaluate the-se expressions for the case where the ratio of signal to

-noise S/N =0 dB. Con',erting these intercepts to a phase amplitude in radians gives the

-values shown in Table XXXV. The observations were made with the time constant of

the lock-in amplifier set to I s, and the amplifier's filter skirts had a 12 dB/decade roll-

off. The resu.tant bandwidth is 125 mHz. Dividing the floor in radians by the square

root of the bandwidth gives the phase noise spectral density in the last column of

Table XXXV. These values are also plotted in Figure 66.
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Table XXXI Maximum phase amplitude acceptable to the Asymmetric Digital
Demodulator, given as a function of input frequency, based on accepting 4% total
harmonic distortion.

Maximum Acceptable Af
Frequency Phase Amplitude ad

[HzI [rad] (krad/s)

10- Total harmonic distortion remained above 4% for

all phase amplitudes.

20 129 2.5

30 199 5.9

50 Total harmonic distortion never exceeded 4% for

100 high phase amplitudes.

200 181 36.2

300 211 63.3

500 117 58.5

750 89 66.7

1000 50 50.0

1500 34 51.0

2000 22 44.0

Note that the decline in the noise floor that is evident from 195 Hz to I kHz seems

to reverse somewhat at 2 kHz. The reason for this is not clear. Further investigation

may permit this anomaly to be cleared up. In the meantime, however, we must

emphasize that the method of extrapolation we have used here is somewhat rough.

F. DYNAMIC RANGE

The dynamic range is ihe ratio of the maximum acceptable signal to the noise floor.

We have combined the results of the last two sections in the plot of Figure 67. At a

frequency of 500 Hz, the dynamic range is 86 dB. This compares very favorably with the
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Figure 65S Maximum phase amplitude acceptable to the Asymmetric Digital Demodulator
as a function of input frequency. The straight line extrapolates the region of constant
phase rate to low frequencies.

301 dB dynamic range of the Fringe 'Rate Demodulator at this frequency, but it is

considerably less than thc 115 dB of the Syiimetric Analog Demodulator at 590 Hz,
which is not too far removed in frequency. On the other hand, the most dynamic range

one could achieve with a 16-bit'digital-to-analog converter is 96 dB, so 86 dB does niot
seem too bad, compared to that. Considering the problems discussed earlier in
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Table XXXII Measurements of the noise fIloor or the Asymmetric Digital Demodulator
for frequencies from 19 Hz to 97-Hz.

I I Signal-to-Noise
Frequency Rai Pae mltd Output Voltage Ratio

IHZ] "" IVRI.J 1jdB)

-1.0000(X)- 4.5 rad 1I.15±0.22 14

0.50000 2.30 rad 1.121-±0.0311 31

190.2500(X) 1.15 rad 2.24±0.52 13

0.125000 574 mrad 1.93.±0.13 24

0.05(xx) 230 mracl 1.07±0.12 19

0.025000 115i mrad 1.19±0.60) 0

1.000000 4.5 rad 1.046±0.091 21

0.500000 2.30 rad 0.725±0.025) 29

0.250000 1.15 rad 0.4;68i±0.0076 38
28

0. 125000 i74 mracl 1.23;3±0.017 37

0U000W 230 mrad 03 6±0.22 4.1

0.025000 115 mrad 0.52±0.5i0 0.2)

L000000 4.59 rad- 1.076±0.037 29

0U00000 2.30 rid 0.702.3±0.0089 39

49-0.250000 1.1 i md 0.478±0.012 3

0.12i000 -i74 m rad 1.124±0.02i 33

0.050000 230 mrad 0.158±0.015 20

0.025000 115 mrad 0.478±0.095i 14

1.000000 4.59 mad- 0.7974±0.009,4 38

U.00000 2.30 mad 0.712±0.084 19

0.2500(X) 1.15 rad 0.3041±0.0027 41
97

0.125000 i74 mrad 0.1915±0.002.; 38

0.050000 2-30 mrad 0.2060±0.005i 32

0.025000 115 mrad 0.2528±0.004 36
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Table XXXIII Measurements -or~the noise floor or-the Asymmetric Digital Demodulator
-for frequencies from 195 Hz to-2 -kHz.

1 1 1 1Signal-to-NoiseFrequency RUIIo Phase Amplitude Output Votg Ratio
1Hzj J VR.MSI dB

1.00(K00() 4.59 rad 1.17585±0.00072 64

0.500000 2.30 rad- 0.67958±0.00061 61

0.250000 1.15 rid 0.3936±0.0012 50
195-

0. 1 NO() i74 mrad 0.1%68±0.0013 42

0).05(0000 230 mrad- 0.1624±0.0042 32

0.2500Ili mrad 0.0740±0.0035 26

1.000000( 4.59 rad 1.07708±0.00065 (4

0.300000 - 2.30 rad 0.6066±0.0049 42

0.2500)0 1.15 rad 0.42597±0.00001 i
500 --

0.125001 .574 mrad 0.19987±0.00061 50

0.050000 2.30 mrad 0.10867±0.00079 43

0.025000 I1 I mrad 0.04209±0.00065 36

1.000000) 4.i9 rad -1.03983±0.0007 05

0.5(MX)0 2.30 rad 0.5512±0.0040 43

0.250000 I.15 rad 0.41987±0.00049 i9
1000

0.125000 574 mrad 0.21210±0.00003- Si

0.050000 2.30 mrad 0.095 19±0.0004( 46

0.025000 115 mrad 0.031782±0.00034 41

1.000000 4.i9 rad 0.47067±0.00026 05

0.5000 230 rad 0-32311±0.0031 4

0.2:00( 1.15ra 0.1742±0.0016 41

2000 0.125000 i74 mrad 0.09427±0.000)42 47

0.00000 2.30 mrad 0.04804±0.00032 43

0.025000 115 mrad 0.03574±0.00042 39

0.006250__ 28.7 mrad 0.O01278±0.00061 T26
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Table XXXIV Least squares fit of the logarithm of the phase input AErF to the
Asymmetric Digital Demodulator to achieve a given ratio S/N of signal to noise.

Frequency Least squares curve fit

195" Hz- I a = [0.0392±0.0021]- + (-1.920.0)

with -r=0.994

500 Hz iog' A4 & / = [0.0485±0.00191 + (-2.696.0.091)
I rad) NdB

with r=0-998 (excluding the-first two data points)

1000 Hz lo = [0.0565±0.0063]- + (-3.22-0.31)
r tad) ,-B

with r=0.988 (excluding the first two datapoints)

2000 Hz IoI ) = [0.0592±0.00781-  + (-3.13-031)
1 rad NdB

with r=0.983 (excluding the first three data points)

Table XXXV The noise floor of the Asymmetric Digital Demodulator.
Noise floor

Frequency Noise floor (normalized for:t [Hzj_ [rad](nraiefo
H]rI bandwidth)

I 195 12 mrad 34 mrad/4Hz

500 2.0 mrad 5.7 mradlfHz

1000 600 prad 1.7 mradlfHz

2000 740 prad 2.1 mrad/%Hz

connection with the harmonic distortion and the scale factor, it is gratifying to see such

a large-dynamic range result.
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Figure-66 The -noise floor of the Asymmetric Digital Demodulator as a function of
frequency.

Further research should investigate -causes of the difference in dynamic rangc

between the Asymmetric Digital Demodulator and the Symmetric Analog Demodulator.

How much of thc difference is due-to the use of digital as against analog hardware?

How much is due to the use of asymmetric demodulation as against symmetric

demodulation?
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Figure-67 The-dynamic range of the Asymmetric Digital Demodulator. The upper limit
is taken to be where 4% total harmonic distortion results. Theower level is the noise
floor in a one hertz bandwidth.

G. COMPLEXITY

The asymmetric demodulation- scheme is even simpler than the symmetric
demodulation scheme. However, the implementation we have chosen is much, much

more complex. The use of 4-bit. integrated circuits was dictated by the ease of obtaining

them. Yet the-wiring required to use them on a bread-board is quite stag'gering, as a

glance at the breadboard -circuit shown in Figure 68 will make abundantly clear. On the
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Figure 68 Breadboard implementation-of the Asymmetric DigitalIDemodulator. The
circuit on the right-hand side of the upper-photograph is the same as that on the left-
hand side-in the lower photograph.
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other hand, this scheme is highly suitable to integration on an application-specific

integrated circuit (ASIC) or. possibly. a few of them.

The pipeline architectufe is easily adaptable to ASIC. It has the very strong

advantage of permitting the analog-to-digital -(A/D) converter to operate as rapidly as

possible. As mentioned in the previous °chapter, a sim,1. r implementation of the

algorithm in digital hardware would entail the use of a microprocessor or a digital signal

processor integrated circuit. If this could be made to operate fast enough to keep the

A/D operating at full capacity, then it would be much, more attractive than- the brute-

force approach we adopted.

Our failure to get the digital integrator working is a convincing illustration of the

complexity of the circuit. Given more time, no doubt this problem could be resolved.

The fact that it is a problem at all is a striking demonstration that our implementation

of -the Asymmetric Digital' Demodulator is the most complicated of the demodulator's

examined in the course of this research.

H. APPROXIMATE COST

The cost of the integrated circuits used in the construction of the Asymmetric

Digital Demodulator is shown in Table XXXVI. At just over $300. it is the most costly

of the demodulators considered in this research, but it is simply not as good as the

Symmetric Analog Demodulator. Nearly half of the cost is due to the expensive

multipliers. A fully integrated version of this algorithm, with a greater measure of success
in using the full dynamic range of the A/D converters, would almost certainly result in an

improved ratio of performance to- pricc.

I. SUMMARY

In this chapter we considered-the performance of a digital electronic implementa-

tion of the asymmetric demodulation algorithm. Of the three demodulators considered

in this chapter, this was the most expensive and the most complicated in circuitry.

Despite this-fact, this circuit was able to operate over a broader dynamic range than our

Fringe Rate Demodulator could. In fact, it was within 10 dB of the best performance
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Table XXXVI. Calculation of the cost of" the integrated circuits used in the Asymmetric
'Digital Demodulator.

IQuantity icc Source Tctal
Part I Required Pr of Cost ofPrice Part

AD7769 LC2MOS Analog 2 $15.00 Analog $30.00I/O Port Devics3

ADSP- 8-Bit Multiplier 4 $37.00 Analog $148.00
1080A Devices

LC 2MOS 16-Bit
AD7846 Voltage Output 1 $31.35 Analog $31.35

DAC Devices

74LS04 Hex Inverter -$0.33 Digi-Key $0.33
_Corporation

74LS83 4-Bit Binary Full 12 $0.60 Digi-Key $7.20
Adder Corporation

Tri-State Octal D $0.60 Digi-Key $3.60
Flip-Flop Corporation

74LS181 4-Bit Arithmetic 14 S2.84 Marvac $39.76Logic Unit Electronics

OPA-11 Low-noise Op Amp 3 $11.80 Burr-Brown $35.40

AD712 General Purpose 2 $3.60 Analog $7.20Op Amp 2 $360 Devices $7.20

TOTAL 15 $302.84

a 16-bit digital-to-analog converter can deliver. We havealso shown how pipe-lining can

be used to provide a high rate of' throughput in a digital demodulator. While this is a

more complicated approach than the use of a digital signal processing (DSP) integrated

circuit would entail, it is generally -faster, too. Where high speed is mandatory, this

approach shows considerable promise.
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In-the next and final chapter, we conclude this dissertatioi -with a summay ofrwhat

we -have found, a comparison of the three demodulators we -built and tested, and we

provide some recommendations Tbr future research.
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XIV. CONCLUSION AND RECOMMENDATIONS

In this dissertation we began by looking closely at the theory of optical fiber

interferometric sensors terminated with 3 x3 optical tiber couplers. We considered in

some detail both the-workings-oficouplers-aspredicted by-Maxwell's equations and their

employment at the output of-interferometric sensors to produce interferometric signals

containing in-phase and quadrature components of the cosine of a signal of interest, the

signal which impinged on the sensor in the -first place. The symmetry of the operation

of the couplers is such that each output is similar to the-next, but with a 1200 optical

phase shift between them. We derived equations that will permit a study of the- effects

on the-interferometric output of other -than exactly 1200 phase difference between the

outputs,

We -described how to build an interferometric sensor for laboratory work. We

noted that the laser exhibited instabilities from time to time. and we suggested that these

could be-eliminated by introducing temperature control or by-using an-optical isolator-to

preclude reflections back into the laser. A sensor with more fiber wrapped on the

piezoelectric cylinders and with a more powerful amplifier to drive them would permitthe

evaluation- ot the three demodulators-described in this dissertation, -as-well a. v,', t

higher phase-amplitudes than we-could achieve.

We then discussed a refinement to the Fringe Rate Demodulator proposed by

Crooker [Ref. 101 and Crooker and Garrett [Ref. I1]. We found -that the scale factor

of this demodulator was between-105 and 120 mV/rad. The demodulator-cannot-function

in the presence of signals generating less than 7r/2 rad of optical phase shift, so we were

unable to express its bandwidth in the small-signal regime. For an optical phase shift of

51' rad,-we found-the bandwidth was 460 Hz, -inasmuch as the scale factor changed by a

-factor of 4"2 at this frequency. The phase rate of the demodulator averaged 22.6 krad/s

between 300 Hz and 1 kHz. The dynamic range peaked at a little over 38-dB at 100 Hz.

This demodulator was both the simplest and the least expensive of the three we
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investigated. However, its performance was-limited. We discussed several ways in which

the performance- might be improved

We.could use all three interferometric outputs, instead-of'just two, to generate the

frequency- signal which driyes the frequency-to-voltage converter. This would reduce the

minimum detectable- signal to -r/3 rad from 7r/2 rad for an extra 3.5 dB of dynamic range.

The zenerdiode in the frequency-to-voltage!-converter we used-could be replaced by one

of 15 V. The 12 mV we measured could be reduced to the 3 mV'specified as typical for

the converter. These three changes would increase the dynamic range by 22 dB. The

possibility of finding a better frequency-to-voltage- converter than the LM2917N we used

should be investigated. Very possibly a phase-locked -converter would yield -superior

linearity.

We next turned our:attention-to the theory of asymmetric and symmetric passive

-homodyne demodulation. We considered the asymmetric -scheme first, -because it was

simpler,-and because the symmetric scheme was-a natural extension of it. The symmetric

scheme has the aesthetically-pleasing feature that no output-is discarded--as is the case

in asymmetric demodulation, and all outputs are treated equally. The algorithm also

automatically eliminates any dependence of the output on the optical power -received, a

feature not shared by the asymmetric demodulation scheme.

A detailed explanation of our analog implementation of the symmetric demodula-

tion scheme-followed next. We examined its performance and found its scale factor was

31 mV/rad, very close to the predicted value of 29 mV/rad. This agreement gave us

confidence both in-the theory and in the practical performance of-the demodulator. The

small-signal bandwidth of the Symmetric Analog Demodulator we found to be 1-13 kHz.

The maximum acceptable signal and the noise floor both declined at the rate of 20 dB

per decade- of increase in frequency, as we expected-them to do. This demodulator had

a-maximum phase rate of 65 krad/s. the highest of the three demodulators considered.

The dynamic range was measured as 115 dB in a one hertz bandwidth with 4% total

harmonic distortion considered acceptable at 600 Hz. This dynamic range is quite large.

This demodulator was moderately complex. It cost $270.00 in integrated circuits. We

suggested that the use of the new AD764 Analog Multiplier in place of the AD534
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Analog Multiplier could achieve a ten-fold incrcasc in bandwidth for a reduction in price

by one half.

With its excellent performance over a broad envelope of frequencies and signal

amplitudes, this new demodulator was the-most successful of the three-we implemented.

Its price was-in the middle of the prices-of the other two. Its performaice far surpassed

the others. We included a- detailed noise analysis in an appendix. We were able to

identify the analog divider and the analog multipliers as the noisiest components in our

implementation of the symmetric demodulation algorithm. As a result, we concluded that

the receivers do not require the expensive, low-noise operational amplifiers we used. This

analysis will make possible the intelligent selection of components to minimize cost and

maximize performance in the future.

Our implementation of the Asymmetric Digital Demodulator was the least

successful. We failed to get- a digital integrator working and resorted in the end to doing

-the integration in analog electronics. This unappealing result needs further investigation.

The performance and price of this demodulator also were arguably-the worst. It had a

lower minimum detectable signal than the Fringe Rate Demodulator. in that it could

detect signals of less than -T!2 rad optical phase shift. However. the mixture of

frequencies and voltages over which it would function adequately was quite irregular.

Improved performance could be obtained by using precision voltage references for the

analog-to-digital and digital-to-analog converters in the Asymmetric Digital Demodulator.

The scale factor of the Asymmetric Digital Demodulator was 35 mV/rad, but this

number is not particularly helpful in view of the fact that the output -was produced by an

analog, not a digital, integrator. The high level of distortion generated by this

demodulator made a meaningful measurement of its bandwidth impossible. With further

work, we believe the distortion could be reduced by taking better advantage of the

dynamic range of the analog-to-digital converters. The maximum phase rate of the

-demodulator averaged 54 kradls in the range from 500 Hz to 2 kHz. higher than-that of

the Fringe Rate Demodulator, but lower than that of the Symmetric Analog

Demodulator.
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In view of the increasing popularity of digital signal processing techniques, we

recommend that- a digital implementation of the symmetric demodulation algorithm be
undertaken using very-large-scale integration (VLSI). This would greatly reduce the

external circuiLcomplexity-of-such a demodulator, and it should lower the cost both of

construction and of components considerably. The use of pipeline-processing has been

shown by our Asymmetric Digital Demodulator to be an effective way to keep the

processing going as rapidly as the conversion rate will permit, and it should be a feature

of a VLSI implementation. An implementation of the Asymmetric Digital Demodulator

or a Symmetric Digital Demodulator should be undertaken with-digital signal processing

integrated circuits replacing the pipeline-processing hardware. This would help ;n

assessing whether the reduced processing speed would be compensated for by the reduced

complexity of the circuit. The large differences between the performance of the

Symmetric Analogue Demodulator and the Asymmetric Digital Demodulator could be

due to the difference between analog and digitaL processing on the one hand or

symmetric and -asymmetric demodulation on the other hand. This issue bears further

-. research.

We also recommend that a new implementation of the Symmetric Analog

Demodulator be built with the AD764 Analog Multiplier integrated circuit. In building

this new demodulator, some trim potentiometers can be removed. Improved noise

reduction should also boost the performance of this circuit at low phase rates.

The Fringe Rate Demodulator is attractive because-of its low cost and its simplicity.

However, it is only feasible to use it when large phase amplitudes are always present

(much greater, say, than theminimum -2 rad). The symmetric demodulation technique

is superior to the asymmetric demodulation technique because dependence on received

optical power is eliminated. The analog implementation of this is simple and yields a

large dynamic range. However, if succeeding processing requires digital signals, then a

digital implementation of the symmetric demodulation algorithm would be attractive,

especially if implemented as an application-specific integrated circuit.

We conclude this dissertation with Table XXXVII, which summarizes the

performance of the three demodulators we built and tested.
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Table XXXVII Summary of the performance of each of the three demodulators
described in this dissertation.

Fringe Asymmetric Symmetric
SRate Digital Analogue

Demodulator Demodulator Demodulator

Phase Rate 23 54 65
[krad/s_

Scale Factor 105-120 35 31ImV/radl _

Minimum T-2 4.2 mrad/fHz 220 prad/f'Hz
Detectable Signal i2@ 600 Hz C, 600 Hz
Dynamic Range 46 dB -86 dB 115 dB

Dynamic Range @100 Hz @500 Hz @6() Hz

Complexity Low High Moderate

Cost $ 100 S303 S270
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APPENDIX A. MISCELLANY

-In this appendix. we provide a number of -lemmas. theorems. derivations, and

observations which are used in the body of the dissertation. These details are placed here

for the sake-of completeness.

A. LEMMA

Ee " =0. (327)
k.O

Proof:

Let

N-I 
'k4 .xS E e: (328)N

k--O

S = 'Fe 41k (329)
k=O

N-I 30S = :j z (329)
k=O

where

r=e. (331)

This sum is the well known -geometric series, and it can be expressed in closed form as

follows.
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N-1 (332)

k-O

N-I N-ias-s = : at - r (333)

-k.O- k.O

N N-I
(a-1)S = I a- at  (334)

k-I k-0

(a-1)S = aNoaO (335)

S(a-i) = a'- 1 (336)

S = -(337)

Theretbre"

S = (338)

-e

-e N-1

Now

e j4" = cos(*4n)+jsin(+4x)

= l+JO (340)

= I.

So
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1-1S-
.4x

N (341)N -1

-0.

This:completes-the proof or the lemma in Equation (327).

B. TIHEOREM

eL " = f O-Oe-k3 l = 0. (342)

Proof:

k-0 k-0

4

i -f [Geometric series]
(343)

ile- _j I
=0.

This completes the proof of the theorem.
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C. THEOREM

cos2(A) "-0 N 2

Proof:

Let

k . 2

-I IV " ' "( 3 4 7)

(3)6
s : l.R'[A , -4-I+-' ( j -3..)

4 k -0 Ax ~

N - -. V-I Xv I (34 9)S = ei# E e 'v + E 2+e-J"# E e i i 39

41 k-0o kso kaO

Now using the lemma in Equation (327), we can write
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S = _[)(o)+2N+(e-' )(o)] (350)
4

S 2 N (351)

N (352)
2

This completes the proof of the theorem as far as the cosine is concerned. The proof of

the part concerning the sine could be proved in a similar manner, but here is a shorter

proof, using-a well known trigonometric identity, namely

sin2 +cos20-=1. (353)

So

2,0 +o2 k2r N-

k=[ (N) N k-- (354)

in view of that -part of Equation (344) proved so far. we can also writ--

N-Isiri(o+ ) +cs2r+) N N ( ) (355)

Comparison of Equations (354) and (355) permits-us to write

N E (356)

N -n (357)

2 kO N)

This completes the remainder of the proof of the theorem of Equation (344).
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D. EQUIVALENT NOISE BANDWIDTH

The equivalent noise bandwidth of a lowpass filter is the bandwidth of a-

hypothetical filter with total transmission below the cut-off frequency and zero

transmission above it. It is a useful concept for considering the amount of white noise

which a lowpass -filter will permit to pass.

For a single-pole rilter, the magnitude of the-gain of the filter declines at the rate

of 20 AB per decade of increase in frequency, e.g., the gain in going from 100 Hz to I

kHz might decline from 30 dB to 10 dB. The equivalent noise bandwidth B can be

derived as follows.

The Laplace transform H,(s) of a -filter with a single pole is

1 (358)

The. frequency response of~this filter can be found by setting s=jW=j2rf, so

H1(j2irf) _ A (359)
1 +j2 7rfr

The noise power experiences a transfer function given by

- - (360)
IH(I2(f)- 2  Af)2

To, find the total noise power transferred by the filter. we must integrate this

expression over alfrequencics. If we let t=27rf-7 and dtu=27-, (if, and call the integral

B, then

B = fjH(j2f)fdf = -f'--du. (361)

If we now make-the substitution u=cot 0, du=-cscO dO, then we have
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A2 (o -csc 26dO

- 2 _0 (362)21rrL , 2

A
2

4r

*Now the point at which the gain in Equation (360) is down by one halt, the -3dB

frequency f.dB, is given by

- 1 (363)
27rr

Also,,the time -constant 7 is usually -specified as the product of a resistance R and- a

capacitance C in a simple. analog -filter, so

r = RC. (364)

Hence we can write-the following equivalent forms of Equation (362):

B - -A 2 rf A2  (365)

4r 2 4RC

For a two-pole filter, the magnitude of the gain of the filter declines at the rate of

40 dB per decade of increase in frequency, e.g., the gain in going from 100-Hz to I kHz

-might decline from 30 dB io - 10 dB. The equivalent noise bandwidth B is-given by the

following derivation.

The Laplace transform H,(s) of a- filter with a double pole is

i2(S) r12 (366)
(1 +S

The frequency response of-this- filter can be found by setting s=jo=j27rf, so
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H2(j'27rf)- A (367)
2(1 +j2 rfr)2

The noise-power experiences a transfer function given by

jH2(i2ff)2 A (368)[ 1 + (2 Irfr)2] '

To find the total noise power transferred by the filter, we must integrate this

expression over all frequencies. If we let u=27-fr and du=2"-'rdf. and call the integral

B, then

B A 2  d
B = f _IH 2(j2 f)12df = ( 2 9

1212'(369)

=A ~ I di 1
2 irJo f1 +U21

If we now make the-substitution u=cot 0. dtu=-csc20 dO, then we have

A 2  'r2 csc2 OdO
7r - 0 o csc 40

(370)
A /2 sin2OdO.

By a simple trigonometric substitution. we can rewrite this and integrate it:

B- 2 ' [1-eos2OJdO

(371)
A 2 [0 sin20] 2

Evaluating the integral at the limits yields
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A-2 7r

4ir~ 2 (372)

A
2

8r

Now the point at which-the gain in Equation (368)- is down by one half, the -3dB

frequency f.4B, is given-by

21a (373)

Also, the time constant r is usually specified as the product of a resistance R and a

capacitance C in a-simple.' analog filter. so

r=RC. (374)

Sb we can-write-the following equivalent formszof Equation (362):

A 2  A 27rf 3dB A 2B-- - 3B-~ (375)
8r 4 8RC

E. ANALYSIS OF A COMPARATOR WITH HYSTERESIS

In Figure 69 we show a schematic diagram of a comparator circuit. This -circuit

provides hysteresis and so gives some noise immunity, that is. the output will not switch

state unless the input changes by more than theamount of hysteresis provided. The

analysis given-here is-sufficiently general-that the circuit can be applied to a system with

any voltage levels.

Resistors R, and R, form a resistive divider which determines the threshold level.

When the input -V.,; crosses this level,-the, output of-the LF3 11 comparator changes states.

However, r-l;istor Rs provides a small-level of positive feedback to the non-inverting input

of the LF311, so the threshold level is changed slightly from its nominal value by an
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iFigure 69 Schematic diagram or" a comparator with hysteresis.

amount which-varies with -the output Vo.

- Pin 7 of the LF31H is connected to an internal transistor with ain-open collector.

Resistor R4 tends to pull vKto the positive voltage VH when the transistor is cut off. The

transistor pulls V 0 to ground through pin 1 when-it is saturated. The transistor is cut off

if the voltage Vhv, is lower than that at the non-inverting termninal o1 the LF31 1: it is

saturated otherwise.

To analyze the performance of" the circuit, we shall apply the principle of:

superposition. When the output is nearly 0 (when the transistor is saturated), the non-

inverting input sees a voltage which is due to the combined effects of V. . and Ps-. This

voltage is given by

RI v".- RKP v. (376)

If we multiply this out, we get

262



R2 R3  RIR 3

V = ( +Rj VR+R 3) Vs.  (377)
+R2R3 R__I R2+3(RRi+R3)

This can be simplified to

VLR2R3 Vs + R1R3  (378)
-R~+RR,+R3 RkR+R 1RP3+R2R3 V5

By removing the common flactor R. we get

R4R2 
V;+RV] (379)

.,L R1R2+R,-.3+R 3 "

When the-transistor in the -output- of the LF31 I is cut off. then R, enters the picture and

modifies the voltage V+ to

= R2 11(R 3 +R4 1~ R,+()
V (H V*+ R+l(R 3+R4) V

R +Ij I(R3 +P I2 +R1 f(R3 +R?41  3 (380)

(R3 +R4) +R lR2 V

Expanding this yields
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R-2(R3 +R Ri(R3+R

v,,H lR 3 +R4  -'

R- -R 2+R1+R4, RR 3+R4f (381)

.- '.

This simplifies-to

V+, -2kR ___;_____+ RR 3 +R1R4  V

RR2-RA-+ifl4R2R3R2R4 R1R2+RR3 +R1 R4 +R2R3 +R2 R4  (382)

+ R1R2  R1?2
RR+R 1R3 +RR 4 +kR3--R2R4

Collecting -common-- terms reduces this to

V-H= -R4 (R .1)V RlV (383)
R1&+RR 3+R,R4-R 2k3+R2R4

v-vR,<R3, R.2R 3, and R4<R3, (384)

then we can approximate I,'+,. as

V.L 3(R-R,]V; R2-R1  35
(RI +R2R 3  R +R2& -35

and-we-can approximate V+.,, as
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R3(R2-R1)V; + -RIR2VH
v..,, - ( )R3

(R2-RI) R11IRi (386)
A R+R 2

-VL R+ 1 R
R3

From, these two expressions. we ean-see that under the given assumptions, the threshbld

'or the switching operati( ,a is

Vnso) - -V(387?
V771RSHOLD R1 +Rj;

and that this- threshold rises, when the output goes high by

RNLIP M (388)

Equations (387) and (388) are-design criteria by which=%ve may pick values of the

four resistors which will achieve a desired lower switching level and amount ofthysteresis.

These-equations are valid ..iroximations only when the conditionsin Equation (384) are

met.

F. ANALYSIS OF A CIRCUIT FORAINTEGRATION AND DIFFERENTIATION

In Figure 70 we show a schematic for a -gencralized circuit which, with proper

choices for the components.can function as a differentiator, an integrator, or-a bandpass

filter.

If we consider a signal ofr the form

s(t)- = Aei "" = Ae 2 ,  (389)

with amplitude A and frequency w=27rf then it has a derivative
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S _s() - -jAe' jA2 rfe12'f. (390)

dt

Its-integral is,

fs(t)dt = Ait= A.~ e2.ft (391)
jo j27rf

Neither the derivative nor the integral is a truly realizable function because, as the

formulas show, they both-become infinite in magnitude if the frequency goes to-infinity

(in the case of the derivative) or to -zero (in the case of the integral). The best we can

do is to approximate them over a specified band of frequencies. So what shall we do

outside the region in which the approximation is acceptable? The best thing often is to

let-the magnitude of the approximation go to zero at extremely high-and extremely low

frequencies-?-

This, of course, is just- what a bandpass filter does. So il we can construct a

bandpass filter whose gain characteristic has a section in which the increase in gain with

frequency looks like the magnitude of the expression in Equation (390) and with a section

in Which the decrease in gain with frequency looks ,ike the magnitude of the expression

in Equation (391), we can make reasonable approximations to these functions.

As a bonus. of course, we will have a bandpass filter for any other purpose we

might have in mind. The emphasis in this section, however, is on approximating

derivatives and integrals.

Note that the capacitors in Figure 70 have been annotated with their impedances

in the s-domain. After completing the analysis in this domain, we shall be interested in

letting s=j, which will give us the steady-state response of the circuit to a sinusoidal

input of frequency w .

An alternative at low frequencies is to let the gain become a constant. This is not
feasible at high frequencies, since it would require an infinite amount of energy: an
impossibility.
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1

sOs 2

VIN-- ____- VOUT

Figure 70 A general circuit for differentiation, integration, and bafidpass filtering.

We can obtain the transfer function for this-circuit by regarding R, and C, in series

as being a single -impedance and R, and C, in parallel as another impedance. At

combinations of gain and frequency well below the gain-bandwidth productE of the

operational amplifier, the transfer function is approximately

VOUT SC2  (392)

VIN R * 1
SCI

=-Simplit-ying this, we get
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VOIIT R2

VN R

= [R2  i C (393)

41sRC 2J 1+sC1 R I

RRC~c(± +Sl~ , +S

This reduces-to

VR C 2 RCs

Letting s=jw,, we -get

VIM RIC2(.~ +J0) RW~ j

R2Cjw~ (395)

1+ (~jW (A)

Expressing this in terms ol* the conventional trequency f= w/21,.
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'2V f =-2¢RC ff

( j 2 i f - i f 1

2 -2RRC (271RJ

This expression is -more easily grasped if we let

and f2 (397)
f,= 2rRC an f 2  __

for then we get

VO(j2irf) j2 -f

IN -RC I  l f I398

Let us set f,=f2 =fj,. For irequenicies fcf.,we have

V°(j27f) =-R2Clj27f. (399)

VIN

From Equations (389) and (390),

(t) 2f (400)

So our circuit produces -RC, times the-derivative of the input, provided thatfcf.

Now let us see what happens for frequencies frfp" We get
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VO (U2 Yrf) = -R 2C j2rf

=R~
= _R2C 2fp~~ 

41
jif

AC, (2(4) _

1 (2rRI, I, j2rf

1 1

R,cj2,rf

From Equations (389) and (391).

frSt)& j(402)
st) j27rf

So our circuit produces - l!RC. times- the integral of the input. provided that ffr"

Any time approximations are used. one is interested in knouing how good the

approximation is. We have simply assumed that the frequencyf is so far above f (in the

case of the derivative) -or so far below it (in the case of the integral) that errors are

negligible. We can be more precise than this, however.

Let f=af,,. The constant a may be more or less than 1. Ve are interested in

letting it be more than I in our consideration of the accuracy of our circuit for calculating

derivatives and less than I in our consideration of the accuracy for calculating integrals.

There are two sources of error. Either the magnitude of the result may, be in error. or

the phase may be in error.

First we will consider derivatives. The magnitude of the gain of the circuit is
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OUT( (j2 2 r.ffC
VN = (403)

The fractional error in the magnitude-of the gain is I less than the ratio of this quantity.

-to our apprQximation'in Equation (399). Calling this error e.,, we have

1
CM -1.(404)

fI-[1  I*] I f2)]I

If we still have equal pole frcquencis-(yf,=J,), then

1

f 2 f

- -24 1 (405)

1

In Table XXXVIII we have tabulated the error .6 in the magnitude of the gain.

As is clear from the table, less than 1% error results if we-cause the pole frequencyf,, to

be less than 1/lO-thc lowest frequency of interest.

The- phase olthe gain- of the circuit i-

= - 2tan-If). (406)

The error in the phase of the gain is the difference between this angle and the phase

angle of our approximation in Equation (399). Calling-this errore1 , we have
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Table XXXVIII Error in the magnitude of the gain of the differentiating circuit as a
function of-the ratio of signal frequency to pole frequency.

* 11/f -EM

1.00 -0.5000

5.00 -0.0385

10.00 -0.0099

50.00 -0.0004

100.00 -0.0001

= -2tan1'(-). (407)

The negative sign indicates that the magnitude of the derivative will always be

understated slightly by the circuit.

In Table XXXIX we have tabulated this function in degrees for several values of

the ratio of the frequency f of the signal to the pole frequency fr.
From Table XXXVIII and Table XXXIX. we can see that the cost of acquiring

-greater accuracy is a-necessity to restrict the frequencies f of the signal to a range well

-below the chosen pole frequency f,,. Generally speaking, in designing a circuit we will

-have in mind some specification for the accuracy in phase or magnitude of the gain. The

equations developed in this section can be used to place constraints on the necessary

value of fp- to meet the specifications. In addition to choosing f,, such as to meet

constraints on accuracy over the range of frequencies expected, we must also choose a

value for the product RC, so that the desired multiple of the derivative is obtained from

the circuit. This number cannot be too big, for the amplifier will-not permit it. The gain

at a given frequency cannot exceed the ratio of the gain-bandwidth product of the

-amplifier (a published specification) and the particular frequency. For example, if we let
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Table XXXIX Error in the phase of the gain of the differentiating circuit as a function
of the ratio of signal frequency to-pole frequency.

K flf I -

1.00 -900

0.50 -53.10

0.10 -11.40

0.05 -5.70

0.01 -1.1O

GBW represent the gain-bandwidth, then at a frequencyf, the gain cannot-exceed GBW/f.

For a differentiator. since we -must operate well below the pole frequency f,, the gain

near the pole frequency will always be consiaerably higher than that at the frequencies

we are interested-in. This is just the region in which the gain-bandwidth product is likely

to'impose a constraint. The upshot of-this is that the gain of the differentiator may need

to be kept down in order to avoid driving the amplifiers too hard. The consequence of

ignoring this point is reduced accuracy in the gain.

The equations [or the fractional error in the magnitude of the gain of our circuit

when it is used as an integrator are not quite as simple -as was the case for the

differentiator. In this case. we find

= A+ ] 1. (408)
¢M

We can sinplify this to
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(2,nf)2R1 R2C1 C2em =  - 1.

ef 2 _ _ _ __ _ _ 1 . (409)

From the definitions of and f2, this can be further simplified to

S= -1 -

=l 1

ff2

The negative sign indicates that the-magnitude-of the integral will:alwaysbe understated

slightly by the circuit. This is a very similar expression to-that for the error in the gain

of the differentiator. However, the ratio in the denominator here is-f,/,, whereas it was

f/f in the case of the differentiator. Table XL looks almost identical to Table XXXVIII,

except for this difference. The degree to which the frequency ] of interest is far away

from the pole frequency-J,, expressed as a ratio, is the key to determining the accuracy

Of the output.

The absolute value of the phase error is exactly the same as for the differentiator,

so Table XXXIX is correct for the integrator, -too.

As with the differentiator, the equations and tables in this section permit one to

design an integrator if one has a required error criterion in mind and can- pick

components to satisfy all equations, all restraints, and the limitations-on gain-bandwidth
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Table XL Error in the-magnitude of the gain of the integrating circuit as a function of
the ratio of signal frequency to pole frequency.

dSfi , [. .

1.00 -0.5000

5.00 -0.0.385

10.00 -0.0099-

50.-00 -0.0004

100.00 -0.0001

product imposed by the operational amplifier. An- attractive feature of this-circuit to

-perform integration is that the gain at zero frequency is zero. Offsetting this,:however,

is the fact that-there is high gain at- frequencies just- above zero, and yet there is so much

phase distortion in that vicinity that the- output does not look anything like a derivative.

Also, to-get adequate gains in an-inegrator-.one often has-to use large impedance in the
-feedback path, which has the effect of magnifying the- effect of the operational

amplifier's offset- currents. These produce voltage:drops across the -feedback impedances

that may tend to spoilthe advantage of low DC gain.

G. OBTAINING LARGE RESISTANCES WITH A TEE-NEIWORK

Often ,ihe needs a larger resistance than is readily available in off-the-shelf

components. TPi v, especially true in constructing-integrators. It is useful, therefore. to-

find a way to obtain farge resistances from a number of smaller resistors. In Figure 71

we show a network which-achieves this. We can understand the working of this circuit

by supposing that we ikiect a current I, into it and calculate-what the output voltage V)

must be. The effectiveresistance of the network is given by
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+

R1  Va  R I

11 1 '-21 R

Figure 71 A Tee-network can be used to obtain large resistances.

V° (411)-

We shall assume that the current-1, comes from a current source atzero volts. This

is the case, for example. when the -network receives its current from the virtual ground

of -an operational amplifier. The voltage at the junction of the Tee is given then-by

Va = -11R1. (412)

Thus the current J, through resistor R, is given by

aV R (413)

R2 R2'

The- remaining current-/.l through resistor R. is given by

13= -I= -- = (1+ . (414)

Knowing this, we-can compute the output voltage
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Vv _IR (-'IR)41I 2 I P1 3
R
I

(415)
,- _ R1R2+R 3+R2R3

Now if we choose the resistanccs-such that

RIR2 RR 3  and R2R3 < R1R3  (416)

then the first and third terms -in the numerator can be neglected and we have the

approximation

REFF (417)

We have dropped thc minus sign. preferring to regw&-it as- due to the inverting action

of the amplifier in which this resistive network commonly is used. If we-set R,=Rs=R,

then we get- the particularly easily remembered approximation

REFF = R2  (418)

As an example. suppose we need a resistance of 3.5-G. If wc use a Tee-network

with R=300 k1 and-R,= 25.. ft. then the -equivalent-resistance is

R - R2 _ (300 k) 2 = 3.5 GQ. (419)
R2 25.5

In summary, a Tee-network can provide the equivalent of a single large resistor.

At first glance,-one might also suppose that the noise contributed by each resistor in the

Tee could be-added together (square root of the sum of squares) to get the total noise.

and that there would he less noise from this combination than from a Single larger

resistor. This is wrong, however, because the noise from resistor R,=R is multiplied

approximately by the ratio RIR,. This is a fairly large multiple if the conditions in
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Equation (416) are met: certainly it is biggcr- .han the multiple 12 which -would apply

(roughly)- if -this'-aporoach were valid.

278



APPENDIX B. THEORY OF-OPTICAL FIBER COUPLERS

In'this appendix we consider the results of applying Maxwell's equations to-the

-operation of 2X2 and 3X3 optical fiber couplers. This material-was presented in Snyder [Rer. 201

in a highly- condensed form. In order to make it more comprehensible, we include many

of the steps omitted in his paper. Some minor errors in-Snyder's work are pointed out

and corrected. Most of this chapter is highly mathematical and requires more than a

-passing familiarity with Maxwell's equations, calculus, and vector -algebra. However.the

key result is presented in the first-section. This-result isnecessary-to the analysis of the

operation of 2x2 and 3x3 optical fiber couplers under specific conditions, which is in

Chapter-IIl.

A. KEY RESULI' OF 'THE 'rl IEORY

dakk+ jpkak = jI_ a5C -. (420)
dz

Sk

This differential equation gives the connection between the amplitude coefficients

of the light in each of the n fibers inan optical fiber coupler where the fibers are laid

-parallel to each other. We consider only single-mode optical fiber. In Equation (420), k

is the propagation constant of the light in-fiber k. a.is the amplitude of the light in fiber

k. C, is -the coupling coefficient between fibers k and s. The amplitude ak actually is a

function of the position z within the coupler, so aA(z) would be a more correct notation.

If we apply n initial conditions, then there is a solution to the 11 differential

equations. Typically we shine a known amount- of light into one or more . -the inputs

to an optical fiber coupler. This amounts to speciiying the .,alues of the ak(z) when
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z = 0, andithese specifics depend on-how the coupler-is to-be used. We shall examine

Various possibilities in -the next -chapter.

B. MAXWELL'SEQUATIONS

Here are Maxwell's equations in point form, taken from Hayt IRefl. 1,pp. 358-3591

V×E- - (421)

VxH = J + Z11 (422)

VD = p (423)

V.B = 0 (424)

The following-two auxiliary equations-relate the electric flux density Dto the electric field

intensity E and the magnetic flux density B to the magnetic field intensity H.

D eE (425)

B=p[ (426)

We also need -two lut:her auxiliary equations for the current density J. There are two

sources of curren density. One is- conduction current density. due to the motion of

charges past-a point with zero-net electric charge-density. This is given by

J = AE. (427)

The other source o1 currcnt density is the motion of volume charge density at a velocity

v. This is given by
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J= pv. (428)

In a glass fiber, we assume that the conductivity- a = 0 and that there-is no net motion

of the volume charge density. Therefore T = 0 in Equation (422).

In general, the-electric field intensity E and the magnetic field intensity H both arc

functions of time, so we would write them as E(t) and H(i). We now consider the

restricted case-in which the variation with time is sinusoidal. Since they-both arc-vector

quantities, we write their amplitudes in vector notation as simply E and [L separate from

their dependence on time. These amplitudes may be-functions of position-and frequency,

but not of time. E(t) and 11(t) each may have some phase shift 4-; and , too, and these

also may-be functions of position-and frequency. but not of time. So we have

Et = E cos(wt + Y) (429)

and

H(t)= H Cos((Ot + Ord. (430)

These two-formulas can also be written as

(0 = Re[jEe"''")] (431)

and

H(t) R4Hej( ( t " "). (432)

To simplify the notation in what follows, we shall suppress the Re. This simplification

leaves

E(t) = Ee/('" )  (433)

and
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H(t) = Hei "' *Hs (434)

Some authors use a different convention in Equations(431) and-(432). They use

-jo instead of +jw. This makes absolutely no difference in these two equations, since

in taking- the real part of the function in brackets, the part which depends on

sin(wt + *) is the imaginary part, and it is discarded. It makes considerable difference

in-Equations (433) and (434), since we no longer discard anything in these formulations.

It would appear that -jo is used in Snyder's paper, although he does not explicitly so

state. For if we substitute Equations (433) and (434) into Equations (421) and -(422),

then we obtain the following:

VxE(t) -8

aH (435)
at

= -jo~pH(t)

and

VxH(t) = J+ aD(t)

= 0 + 6aE(t) (436)

at
= jcoeE t.

Snyder [Ref. 20, p. 12681 gives these equations with opposite signs, which is what one

would get if the substitution of -jo had been made for +jo.

C. APPLICATION OF MAXWELL'S EQUATIONS TO AN ARBITRARY MEDIUM

Snyder now introduces the notation E and ft to refer to solutions to Maxwell's

equations in a medium with permittivity W = i(xyz). This pcrmittivity is a function of
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space. Snyder does not say so, but it also is generally a function of frequency. The

material also has permeability p. Non-magnetic materials have a value of p which is

nearly equal to p,,, the permeability of free space, so Snyder tacitly treats the value of P

as known. Because the subject under consideration now is-optical fiber, the z-axis is

regarded as being along the axis of the fiber, which corresponds to the axis of

propagation of light.

Snyder's goal is to -find solutions for FE and ft in the -material ""ith permittivity

= (x,yz) if solutions for E and 1I are known for a uniform lossless system with

permittivity e = exy). This known permittivity is assumed to be independent of z. In

other words, no matter where along a length of optical fiber you chance to look. you ind

the same permittivity.

To achieve this goal. Snyder defines a new quantity. F.

F = Exla" + 1,xH. (437)

Hayt [Ref. 1. p 4991 gives the-following vector identity:

V.(AxB) = B-(VxA) - A-(VxB). (43)

Another useful vector identity is that the divergence of the sum or two vectors is the sum

of their divergences taken separately. In mathematical form, this says that

V-(A + B)- V-A + V-B. (439)

Snyder uses these two facts to obtain the divergence of Equation (437).

V-F = V-(Exfl) V(xH)

= fi-(VxE) - E-(Vxf) (440)

+ H.(Vxp,*) - S'-(VxH).

It is easy to show that the curl of the complex conjugate is equal to the complex

conjugate of the curl. or
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VxA'-- (VxA). (441)

Applying this fact to Equation (440), we get

V-F = lffl(VxE) - E.(Vxf))" (442)

H -(Vxt)" - g'-CVxH).

We can replace the factors VxE and VxH in Equation (442) by the equivalents easily

obtain from Equations (435) and (436), where the presence of tildes (-) continues to

signify quantities having to-do with the unknown medium. This yields

V-F = fi'-(-pH) - E-(jw-)" (443)
- H-(-jm, iY) - !-U ,ED.

The constant factors can he removed from within the brackets because. (or tny constant
k,I

A-(k B) M-AB. (444)

So

V-F = -jepf1'-H + j]a1E-1" (445)

- jpf-it" - jeE'-E.

The first and third terms in this expression are equal but of oppsiteC signs. so they vanish.

Gathering common factors. we are left with

V-F = (cJ-e]- . (446)

This is Equation (2) in Snyder [Rer. 20. p. 12681, but with opposite sign. for the reasons

we discussed above.
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Next Snyder presents a formidable-looking identity without proof. Here is its

derivation. The divergence theorem is

f V-FdV = F-dS. (447)

If we consider the volume V to be a infinitesimally thin slab of area A and thickness dz,

-then the slab has a differential volume element dV =dA dz. This allows us to

decompose the left hand integral into two parts: a surface integral over the area of the

slab, and an-ordinary integral over its thickness.

The right hand integral in Equation (447) also can be decomposed into two parts.

One is a surface integral of the-projection orfF onto the unit vector 44, perpendicular to

the surface A. This surface has a differential element of area cdA. The other part is a

surface integral of the-projection of F onto the unit vector A, perpendicular to the rim

of'the slab. The circumference of this slab-has a differential elementof length-dL. and..

so, the rim as a whole has a differential element of area dL dz. The result-is

f fVFdAdz = f FUAz. + f ,,jFAdLdz. (448)
-- fA Of

The integral over the closed surface S is replaced here by two integrations over open

surfaces. We can differentiate both sides of this equation by z. The left-hand-sidc of the

equation becomes a mere surface integral. The second term on.the right-hand side is

converted to a.line integral along the-closed contour L., -which follows the rim of the slab.

This gives us

fA V 4 - afF ' d  + f FA . (449)

This is Equation (4) in Snyder. [Ref. 20. p. 1269] After some further development,

which we provide here in detail, Snyder applies this identity.
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If the electrical permittivity characterizing a uniform, lossless material is E, then

electoromagnetic fields are supported in various modes with modal propagation constants

P. These fields are of the form

E,(Y,y,z) = e.(xy)e)Pz (450)

and

HP(xyZ) = hp(xy)ei #: .  (451)

In these equations, e,, and h,, are vector tunctions round by solving the -transverse wave

equation, and-they are independent-of z. Also,-different modes are mutually orthogonal.

That is,

Ji(exh,)dA = tpq

(452)
*1 -if -p=q

= {0 otherwise.

-In this expression, A. represents integration over an infinitely extensive cross-section. and 6.

is the Kronecker delta function, whose de'inition is included in the equation. When p or

q- is positive, then the -mode is- one which propagates in the positive z direction.

Conversely, when p or q is negative, then the mode is one which propagates in the

negative z direction. The cross product of e,, and h,, is the Poynting vector P = ePxhP,

and by a homophonous coincidence, it-gives the direction of' power flow across the cross-

sectional area. -So by convention, we regard e,, as unaffected by a-change in sign of p.

In contrast, h, andj/3 both change-sign when p does. That is,

e= ep, (453)

hP =-hp, (454)

and
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P-P = -Pp. (455)

(If e. also changed, sign, then the Poynting vector would not. and so would incorrectly

describe the flow of power in -the negative- direction- along thcoptical fiber.)

Since ep and h,, both are known solutions to Maxwell's equations, it is reasonable

to substitute them for-E and H respectively in Equation (437). If we do this, then we get

F Ex " + E'xH

= (episP)xn, + V*x(peijz) (456)

=eJPz(epx + xhp).

Now if we define

F = Fpe p ,  (457)

then we can divide both sides of Equation (456)-by e P' and so get

Fp = epx +'xh. (458)

p p

If we-substitute Equation (450) into Equation (446)- then

V'F = io( e~eejPz.,. (459)

Now we can take the integral of this expression over the cross-sectional area A and apply

the identity in Equation (449).
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fAjw ( '-e)e~ej' '-".V* dA

= a'A ejpz diA + fLe"12Fp " A dL (460)

= ejz j + )f.AF i d + ejP idF L .

We can divide through on both sides of this equation by eJPPz and rearrange terms to get

('+ faz p~ (461)

=jwf (e-?)e,-VdA f-!FLAi dL.

This is essentially the same as Equation (9) in-Snyder [Ref. 20, p. 12691. Howcver, the

difference in, convention over the sign ofj(o mentioned- previously shows up-ihere. too:

the first term in-the rightihand side-is the negative-of that given bySnyder.

D. FINDING THE TRANSVERSE FIELDS IN AN ARBITRARY MEDIUM

Snyder next goes on to consider how to represent the transverse field& of the

unknown system with permittivity *. since the transverse-fields of the-lossless cylindrical

uniform system with permittivity e-are-known. The fields-within a uniform optical fiber

are-very well described by these solutions.

The transverse fields of the -known (lossless, cylindrical, uniform) system form a

complete set of orthogonal functions, so the transverse fields of the unknown system can

be expressed-as a linear combination of these. Hence

, : Ea,(z)e,(xy) (462)
q

and
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= ~ ~$z)I~~(,Y).(463)
-q

The subscripttis meant- to indicate the transverse field quantities. The coefficients aq in

these two equations are identical.

Snyder-next substitutes these two equations into the i-ftvside of Equation (461) and

integrates over the infinite cross-section A.. This yields

az P A P ,

-(-lzz+ ,P)f,(exl* + l×hp)'idA (464)

+ Ip)f (epxF a,(z)h;, + Fl aq(z)exh).dA.

Now we can take the- summations and the factor a,(z) outside the integral, since the

integral isonly over the cross-section in- the x-Y plane. Thus

8" (4 65)

=(' z+ JP,) aq(z){fA i'(epxh)dA + fA.'(e,xhp)}dA •

:In-this form, it is easyto see that we can apply-the orthogonality condition expressed in

Equation (452). If we do so. we gct the much simplified result

+ j)fF.2dA + jP/2pz] (466)

This takes care of the left side of Equation (461). As for the right-hand side, the line

integral evaluated at an infinite radius is zero. Dividing both sides by 2, we obtain

da(z) (z) = i W - )e . 'd. (467)

dz P PJA. P
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The positive sign in the right hand side takes effect if p > 0 and the negative sign takes

effect ifp < 0. This equation is essentially the same as Equation (11) in Snyder [Ref. 20,

p. 12691. As usual, though. there is a difference in sign in the right-hand side.

To obtain a-solution to the series expressions ol Equations (462) and (463) requires

finding the coefficients aq(z). These can be obtained by solving the differential Equation

(467) when the perturbing field V in the unknown medium is specified.

E. Z-COMPONENT OF THE FIELD IN AN ARBITRARY MEDIUM

We have confined our attention so far to the transverse fields of the unknown

system. It is time-to include the component along the z-axis, too. We can represent the

complete Field as a linear combination of components in the transverse plane and along

the z-axis:

(468)

and

S- + (. 469)

We already have the expansions for the first term, the transverse term. in each of these

equations from Equations (462) and (463). We need to find the second term in each of

Equations (468) and (469). We can get the z-component of by projecting it onto a

unit vector i in the z-direction. But we can relate V to 11" by the use of Equation

(436). The z-component of the curl of a vector A is given by
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[VxA] -[VxA].-.

-AY IA. (470)

ax Oy

'We define the transverse divergence by

A = ALAY. (471)
Oa ax a

If we take the transverse divergence of the cross-product of the unit vector in the z-

direction and the transverse component-of A, we get

V,(ixA,) -V,(-A + A9)

ax Oy (472)

- -. (VxA)

- -(VxA),.

Combining Equations (436)-and (472) gives

_ (Vxfl).

-Jw " (473)

jwE"

This expresses the z-component of the electric field in the unknown medium in terms of

the transverse component of the known magnetic -field. We can substitute Equation

(463) into Equation (473) to get
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V " xaq(z)hq,)

We can expand :this equation by applying Equation (438)zto it.

- [(,aq(z)h{V i a,(z)h)f, .(475)

The first term in the numerator is zero, for the unit vector is a constant and-has no curl

of any kind, let alone a transverse curl. -In- the second term in the numerator, we can

bring the transverse curl operation inside-the sum and right past the coefficient aq(Z),

since a function of z is a constant with respect to taking the transverse curl. Thus we

have

q (476)

jwF

The transverse curl is parallel to i. so the dot product of with it is a nonzero scalar.

By applying -Equation (436) to this expression, we get

Saq(z)j eeq" (477)

Note that the tr .asverse curl operation extracted only the z-component of e,,. Dividing

this out yields

= +4 aq(z)eq (478)
qq

* since, for a lossless system,
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e = e. (479)

This-is different from Equation (12a) in Snyder [Ref. 20. p. 12701. Although the

difference in sign we:have consistently mentioned has mysteriously evaporated, Snyder's

version of this equation has the-permittivities inverted. i.e., his version-of the equation is

.= ~ aq!z)eqz" (480)
e q

This is, presumably. a typographical error.

F. COMPLETE FIELD INVAN ARBITRARY MEDIUM

We can now substitute Equation (478) into Equation (468).

2,~ --E

= E aq(Z~e + 4. aq(Z)eq. (481)

a (z) , + -f:eq.1
q

The corresponding expression for 1:i is almost identical, but because the magnetic

permeabilities in glass and in free space are nearly equal. the leading ratio of permeabil-

ities is one, and so can be suppressed.
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q +
' ft. -t zt + 

q (482)

- aq(Z4h; h]
q

-- aqz)h;.
q

This expression is identical to Equation (12b) in Snyder [Rel. 20, p. 12701.

We now can-substitute Equation (481)-into the right side-of Equation (467).

da()+ jll-a (z) L~fe *epd
dz 2 .(e-)ePI'dA

= ±z)fA(e- )eP- ([aqe+ qdA (483)

qq

= iF, a4(z) .2fA (e-*) (epr-e; + _P-,_dj

Again, this differs from Snyder's formulation in sign, and now, too, by the inversion:of

the ratio of-permittivities. which we discussed earlier. Wc-now adopt the usual expedient

in dealing with a troublesomely complex equation: we define a new symbol for most of

it! In keeping with Snyder's notation, we shall call everything within the square -brackets

Cp, the coupling coefficient. The resultant differential equation is

da,(z) + jp,,a(z) = jE a(z)C . (484)
dz q

This is identical to Equation (13) in Snyder [Ref. 20, p. 12701, but of course, our

definition of-C. dil'thrs-as already discussed. This differential equation is applicable when

the optical fiber is either irregular or only slightly lossy, that is. when the perturbation to

the electric fields is slight.
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G. SOLUTION IN PARALLEL UNIFORM OPTICAL FIBERS

In an optical fiber coupler, we no longer have just one fiber to consider. Several-

nearlyidentical fibers are laid alongside one another and fused together. For n fibers,

the modal expansion method will lead to n- equations like Equation (484). Because of the

similarity of the fibers and the orthogonality of the modes expressed in Equation (452),

the pth mode of fiber k can only couple with the pth mode of fiber s. The coupling

between fiber k and fibers is then given by the following set of differential equations.

We continue to use subscripts to denote the modes of the waves, but introduce

superscripts in parentheses to denote the fiber under consideration.

dap(" t)(k) =..- (s)C~k)(s)
+ jp,k) - i j PPa• (485)

dz
sok

This is identical to-Equation (18) in Snyder [Ref. 20, p. 12711, except we usej for f/T.

where-Snyder uses-i: and we use k in place of Snyder's indexj. The coupling-coefficient

is

S W- e)p .(48(s)'6At~p - 2 sA(''-  a .

The difference in permittivities that appears in this expression is that between the

permittivity in fiber j and- that of the surrounding medium, namely the cladding of the

fiber. Because coupling is limited- to the same modes p, there is no strict necessity to

retain the subscripts p. (If we restrict our attention to single-mode optical fiber, which

is the case under consideration, then there are no other modes anyway.) The superscripts

can-be moved down and become subscripts, and the result of this notational shift is
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da.
-+ jja.j raCj. (487)

dz-
sok

This is the key result of Snyder's work, and it is used in Chapter III for the analysis o

2X2 and 3x3 optical fihe couplers in optical fiber interferometers.
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APPENDIX-C. AN ANALOG INTERFEROMETRIC SIMULATOR

In this- appendix, we describe an analog-electronic simulator which can be used to-

generate a facsimile of one of" the outputs of-an optical-liber interferometric sensor. The

idea for this simulator came from Tveten et al. IRef 211. The implementation

in this appendix is based very closely on one designed -by Litton Industries. A block

diagram for the simulator is shown-in Figure 72. A schematic diagram for the-simulator

is shown in-Figure 73.

A. CIRCUIT DESCRHIION

The heart of thecircuit is integrated circuit U2, which is an Analog Devices AD639

Universal Trigonometric-Function Converter. It-is configured in the simulator to furnish

the sine of its input. An-input of I V is treatedlas the equivalent of a 500 angle. To put

this another way, the input scale factor of -the AD639 is 50oN = 0.873 rad/V. It is

somewhat more convenient in interferometric work that-the simulator have a scale factor

which is an integral number of radians per volt, and I radjV is the humber which was

chosen by Litton's designer. To obtain this scale factor we must multiply the inputsby

gain 110.873 = 1.15.

An approximation to this necessary gain is provided by operational ampliier-UIB

to the main inputs to the simulator, marked SENSOR I and SENSOR 2. The choice of

resistors R., R, and R,, shown in the schematic drawing actually provides a gain of

5.6 kfl/5.1 kfl = 1.10, a little less than the level needed. With these values, we can

predict that the scale factor will he

_ _ _ _ _ - 9 5 8 - m a (4 8 8 )
5.1 kQ V 1800 ) V

The simulators we used averaged 918 mradfV. The measurements on which-we based

this conclusion will be given later in this appendix.
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SENSOR1 --- R =5001_ _-_ _ _
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(8%/-V) 2 k2- 0.18

Figure 72 Block diagram of the-Analog Interferometric Simulator.

Typically, one generates a test signal by applying a sine wave to one of the two

sensor inputs and leaves the other one unconnected. If both inputs are used, their effects

are additive, for applying a voltage to either input generates a current through either R$

or R9 and these currents are added at the virtual ground of operational ampiifier UIB.

A third current input also is added in at this node. It is a *static phase

contribution dictated by the setting of potentiometer R16. The name was chosen by

analogy with the static phase contribution in a real optical fiber interferometric sensor,

which is caused by variations in temperature, pressure, and other factors. The difference

is that the static phase in a real interferometer tends to drift with time, but the setting

of the potentiometer in the simulitor is generally set at a desired position and left there.

The size of the resistors R, and Rs was 1.5 kPl in the Litton design; we reduced them to

250 fi in order to increase the range over which the static phase might be varied. This
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Figure':73 Schematic drawiig-of the Analog Interferometri Simulator.

static voltage can range between -10 V and + 10 V with these smaller resistors. The-DC

gain ofthe summing amplifier far this input is 5.6 kfI/(10-kf + 10 kfI) = 0.28. Thus the

output from the-summing amplifier can vary between -2.8 V and +2.8 V due to changes

in -the setting of the static -phase 'potentiometer. These extremes correspond- to

t(2.8 V)(50°1V) =±1400 -_-±2.44-rad adjustment" in the static phase. This level-of
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variability is-sufficient to permit three simulators to provide three facsimiles of an

interferometrie output. each one-separated by 1 200 in phase from the next. With 1.5 kl

resistors for R, and R, the voltage from the potentiometer is limited to ±3.75 V. which

leads to ±1.05 V from the amplifier UI B, or ±52.50 , which is suffcient to provide two

interferometric outputs 900 from each other, but not three outputs 1200 from each

other.

The other signal input to -the simulator is the one marked- PZT MOD on the

schematic. This input is applied to operational amplifier U IA. which is configured- to

provide a non-invertinggain of (1 + (750 f±/1.5 kf))= 1.15. This, of course, is the gain

we computed- above to convert I V to the equivalent of a I rad input to the AD639.

This signal-is then provided to pin I of the AD639.

The AD639 actually computes the function

W = U sin(Xl -X2) (489)
sin(Y, -Y7)

when Z, (pin 13) and W (pin 14), are connected together. with Z, (pin 12) left grounded.

Because Y, (pin 7) is- connected -to V,, (pin-6) at 1.8 V and Y, (pin 8) is grounded, the

denominator in Equation (489) is 1. Input U, (pin 3) receives a variable voltage

-depending -on the setting of potentiometer R,,. and input U, is grounded. so this

potentiometer functiofis-as an amplitude control for the interferometric simulation. If the

final input-to the simulator. theone marked AM, is left open. then operational amplifier

U3A operates as a buffer of gain one, so the maximum voltage on the potentiometer R,,

then is fixed and equal -to the 1.8-V supplied by V,, (pin 6).

If the AM input is not left open, then U3A no longer functions as a unity-gain

buffer. Instead, it operates on-the reference voltage V, (pin 6) with gain I +RI.R, . =

1.18 and it operates on the AM input with gain -R,.R,? = -0.18. Thus, with the AM

input in-use, tl,.e signal applied to potentiometer R,, is

300



1.18 VR-O.1 8 VAU = 2 .12-O.1 8 VAM. (490)

We-can interpret this to mean that a 1 V change in V,.1 induces a -0.18/2.12 = -8.5%

change in the voltage applied to resistor R,,, which, reca l. is the maximum voltage

d 'livered by the AD639.

The output of the AD639 is buffered by operational amplifier U3B whose purpose

is to provide current drive capability to the simulator. A 47 fl resistor R,5 provides

roughly a 501 output impedance -to the circuit, to make it compatible with standard

instrumentation interfaces.

B. MEASUREMENT OF THE SCALE FACTOR

The easiest way to-measure the-phase shift-in an intcrferometric output is toapply

two of them to the X and Y inputs of an oscilloscope. The resultant waveform is -an

elliptical Lissajous figure whose aspect ratio is determined by the phase shift- between the

two outputs. For 1200 phase shill, the-major axis is inclined.along -the 1350-450 axis.
When more than ±w- ra of phase shift is present. the ellipse is-closed because

sin(x) retraces -itself if.v spans at least 2-r rad. The ellipse is open with less phase shift

than- this present. By noting how many volts we must -apply to the inputs or -the

simulators to achieve an integral number of closures of the~ellipse, we can easily -obtain

the-scale factor of the simulator.

If we average the three slopes shown in the table, we find that the average scale

factor is 918±4 mradiV. which is the value we use in the rest of this dissertation when

inferring the phase-shift generated-by the-Analog Interferometric Simulators-for a given

input voltage.

The simulators proved very helpful to us before we had a real interferometer

available. Generally speaking. if one's interest is confined to demodulators, the

simulators are a satislactory substitute for an interferometric source o1 signals only if

phase shifts below around ±2 rad are required. The AD639 cannot generate phase shifts

beyond this level. For measuring demodulator noise, however, where -signals of small

amplitude are desired anyway, the simulators are very helpful, particularly since, by
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Table XLI Measurements to determine the scale factor of the three Analog
Interferometric Simulators we used.

Simulator Number of Phase Required l.east-squares fit

# S Closures Shift- Input and
._#_Closures S Voltage corrclation coefficient r.

0 0 0V
-- (925±2 mradlV) V,.v +(-4±10 mrad)

II 7r 3.41 V

2 27r 0.79 V = 0.99997

() () 0 V
(921.3 mrad/V) VtS

2I r 3.41- V
= I exactIv

2- 2v 6.82 V

0 0 0
(906.7±0.8 mrad/V) /.1 . + (2.±3 mrad)

!3 I 3.46 V

0 = .9999997
2 2r- 6.93 V

varying the static phase-adjustment. the even harmonics of the rundamental frequency

can be eliminated from the output.,
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APPENDIX D. A DIGITAL INTERFEROMETRIC SIMULATOR

In this appendix we describe briefly a new simulator of interferometric outputs. We

developed this simulator in order to make interferometric signals available to a fringe-rate

demodulator before we had built a real optical fiber interferometric sensor. This

simulator outputs an-in-phase and quadrature signal (separated by 900, not 1200), and

the waveforms are square pulses, not smoothly-rounded waves of the sort emitted by real

interferometers. For a fringe-rate demodulator, this is not a limitation, since it only

responds to transitions-of itsinput (the interferometric output) through zero anyway.

Crooker [Ref. 10, p. 451-also used-a simulator to produce square-waves, 900 apart

in phase. Hers was-based on the-use- of a-pendulum and an-optical shaft encoder. Her

design was-liriited tofrequencies of one or two hertz, but could generate phase shifts of

-up to 100 -or so- radians. To get large phase shifts with this apparatus requires large

displacements of the-pendulum, The motion of a pendulum only approximates simple

harmonic motion when the angle of displacement is very small. For large displacements,

the motion becomes more complex. even-chaotic. Non-linearities are introducedinto the

phase shift-under these circumstances. A phase shift which is linear with the amplitude

of the stimulus is a-much more desirable characteristic of-a simulator. since real-sensors

are designed to produce-a linearly increasing phase shift with-increasing amplitude of the

signal of interest.

The alternative we describe here uses digital logic to produce the same effect.

Central to-its operation is a voltage controlled oscillator (VCO) whose output frequency

is proportional to the input voltage. Figure 74 shows a block diagram of the simulator.

The derivative of the signal of interest is proportional to the rate of change of the desired

output phase shift. However, an interferometric output -is the same whether the signal

of interest is rising or- falling. so we use an absolute value circuit removes the information

about the direction of change. This information is required later in the circuit, however,

in order to allow the digital quadrature pulse generator to decide whether the Q output
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Figure 74 Block-diagram o" a Digital Quadrature Phase Modulation Simulator.

should lead the I output or vice versa. Consequently-a signurn -circuit outputs a TRUE

signal -level when -the -derivative -is positive and a FALSE signal when it is-negative.

The fixed offset shown in-the figure must only be added in ir the VCO (such as the

EXAR XR2206 that we used) requires unipolar inputs. Adding in this offset ensures that

this is--the case. The output of the VCO thus has a high frequency when the signal of

interest is rising or falling through zero, and it has a low frequency when the signal of
interest reaches an-extremum. An optical fiber interferometric sensor terminated with

a 2x2 optical fiber-coupler produces an output whose frequency varies-in this manner.

!oo.

The dgital quadrature pulse generator uses-the frequency output of the VCO and

the lead/lag information from the signum circuit to create two square pulse trains, I (in-

phase) and Q (quadrature). I leads Q (that is, changes from high to low. or vice versa

before Q changes)-when the !ead/lag signal is TRUE and -it lags Q otherwise.

Not shown-in the block diagram, but present in our implementation or it was -some

level-shifting and buffering circuitry following the digital quadrature pulse generator.

Since its presence is not essential to understanding the technique. it is omitted in our

discussions here.
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While we Shall not detail the implementation of the DQPMS, we shall show the

logic of the digital quadiature pulse generator. This circuit was implemented with an

Altera EP310 Erasable Programmable Logic -Device (EPLD). Internally, the previous

state of the I and Q outputs-was preserved in a-flip-flop. When the current state of the

lead/lag signal also is present, this is enough information to generate-the next I and Q

data. Figure 75 shows a Karnaugh map for the generation of I and Q.

LEAD/LAG I0.) QOL11  LEAD/LAG

IOLD QOt)t) 1Y I ()

0 0 0 1 0 0 1 0

0 I 1- 0 0 1 1 0

1 1 1 0 1 1 0 1

1 0 0 1 1 0 0 1

I Q

Figure 75 Karnaugh map-of logic needed to generate in-phase I and quadrature-Q data
for the DigitalQuadrature Phase Shift Modulator.

For example, suppose Ipresently leads Q and the old values of I and Q were 0 and

1 respectively. The LEAD/LAG signal was I before. If it stays at this level, then Qmust

follow I to 0 before anything else happens. Wesee in the Karnaugh map that the new

outputs are /=0-and Q=0. But if the LEAD/LAG signal switches to I. then I should

follow Q now. We see in the Karnaugh map that the new outputs are I= 1 and Q= 1.

The other values in the map were completed in the same way. Two logical

equations describing the outputs are

I = LL E Q and Q = LL EI (491)

The DQPMS is a useful simulator for testing fringe-rate demodulation schemes.

It is not suitable for testing other demodulators because its outputs are square, not

smooth. However. it is a very simple circuit and provides a much larger range of
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frequencies of the signal-ol interest than were feasible with Crooker's pendulum-based

simulator.
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APPENDIX E. BEHAVIOR OF THE BESSEL~FUNCTI1ON

I1n: this appendix, we-presenL graphs which give some intuitive -grasp of the Bessel

function Jk('A). 'Since the, interferometric -output resulting when a simple sinusoidal

stimulus impinges on an optical-fiber interferometfic sensor can be~expressed as a Foufier

series whose coefficients; are Bcssel-function s, t-is useful-to decvelop some-fceling for how

:they vary with k and-A.

Gecnerally speaking, t he-Bessel functions -are significant--in magnitude only for values

of k -less than -A. As A increases, this implies- that -there are more and more Bessel

function coefficients-which matter. In, pthur-wotd&, there are more and-more harmonics

of the -fundamentLaifreq uency contai ned- int theifttefferomet ric output, In-deciding-how

'much1 bandwidth is -required within- a demodulator. then. a- choice of- ALy and ].jf.L
diciates the highest- significant frequency confiponents -present in -the interferometric

output.

For example. -ii* A were 100 rad at most. and f were 200 Hz at most. then

frequencies which were integiral multiples of the- fundamental frequency at- 200 Hz would

:be present, -up to -around 200 x 100= 20 kHz.-
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Figure 78 The Bessel functio-nsJi,(I50) and J,,(200) as functions of n.
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APPENDIX F. NOISE ANALYSIS, SYMMETRIC ANALOG DEMODULA TOR

In this appendix, we present a detailed analysis of the noise levels within the

Symmetric Analog- Demodulator and at its outputs. The noise sources are assumed to

he Gaussian. Johnson (thermal) noise from resistors and shot noise from diodes are

assumed to be white noise over-the frequencies of interest. The noise sources associated

with integrated circuits are generally not white. The specifications-of some such circuits

provide graphs, giving the noise-spcctral density over a continuous range of frequencies.

Those for other circuits quote the Poise spectral density at discrete frequencies, usually

I'requencies which are integral powers of 10. The operation of the demodulator itself

changes what white noise there is according to the characteristics of the transfer functions

which it comprises. For example, white noise is converted to "pink" noise (in which

lower frequencies-are enhanced and higher frequencies are attenuated) upon passing

through an integrator.

The reader should refer to the schematic diagram-,of the Symmetric Analog

Demodulator on page 134 for a complete view of the demodulator. However. we shall

show each stage separately as we conduct the analysis. In the following sections. we

lirform general algebraic analyses of the noise performance of each of the various

classes of circuitswhich exist-in the Symmetric Analog Demodulator. After collecting the

results, we apply them to the Symmetric Analog Demodulator specifically by replacing the

algebraic symbols with actual values.

A brief explanation o" our method of analysis generally is in order here. To avoid

the cumbersome expressions associated with working with the integro-differential

equations by which lumped-parameter circuits may be modelled, we work in the Laplace

,ransform domain, the s-domain. We shall only work with resistances and capacitances.

To find the quantity in the Laplace domain which is analogous to a resistance R we can

take the Laplace transform of the implicit definitioi of R given by v(t)=i(t)R:
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VI[(t= V(s) = 9[i(t)R = fi(oRe dt = RI(s). (492)

We see that in the Laplace-domain, R is defined implicitly by the equally simple relation

R= V(s)/I(s).

Similarly, we can obtain-the quantity in the Laplace domain which is analogous to

a capacitance C by taking the Laplace transform of thc equation which defines a

capacitor:

i(t) = C d t. (493)

dt

The-Laplace transform F.v)sof a wave form f(u is defined by

F(s) = fote'-dt. (494)

Applying this definition to- the definition of if) we find

IS) = = f'dv(te'-dt. (495).10 dt

This- expreission can be integrated by parts if -we let

p = e st  and dq = dv()dt =d, t). (496)
di

Differentiating p and integrating dq yields

dp= -se'-dr and q = i(t). (497)

So we-find
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I(s) =pq fqdp

C -vte i (498)

=C[v(0)+SV@S)].

Ultimately our intecrest is in steady-state solutions, i.e., in the Fourier-transformed

variables., These are obtained by assuming-all effects-due to the-initial conditions-v(O)

eventually die away, and hy -replacinig the complex Laplace 'variable s by the purely

imaginary frequencyjw=j27-rf. For now, we-shall retain- ihe-',ariable . and drop the initial

conditions. If we then take the ratio~of V~s) to I(s), we-obtain

V(s) - 1 (499)
i(S) SC

S64a , we-have beeni-carefu[- to-u-se lower case letters to- signiry-variables of time

tand upp-er case lthuerS to signify -ariables of the complex frequency s~. From here-on,

-we shall not maintain this~distinction. All of our analysis will be in the Laplace domain

*s or. in- the fourier, domain- s =jox wo we shall- feel free to use lower case letters.-for

-variables in these -domains.

We also- shall usually! -assume -that the operational amplifiers arc ideal. An ideal-

opraioalafp-tr has ini t nut impedance, zero output impedance, and has

infinite gain. As a Aes'jlt. it-will draw no-current, will supply as much current as required,

and keepsboth- it-srinputs at: the same-voltage by-the operation ofI- negative -feedback. The

assumnption of- infinite gain N~ fairly accurate- at the low frequencies Conside-ed- in:- this

ciissertat'ipon In-reality,. the -gain is- on,,th order of several hundred- thousand or so, and

-begiris to- decline at -the eute of 2OzdB-,per decade incre-ase in frequency at frequencies

above 10-Hz or so; The decline increases at even-high r frequencies, (in the ord.-r-of

S0kHztoafdw %4Hi;

SeveraltAimes in this appendix, -these sirnplif~'ing assumptionst do not make obvious

the output -of a- circuit. Wht~n this occurs, we shall call the gain of the- opel ational
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amplifier A, ignoring 1s lquency dependence. and we shall express the amplifier's

output -as

VOoT = A(v _v-) (500)

where.V* is the voltage applied-to the non-inverting terminal of the operational amplifier

andV " is the voltage applied to its inverting terminal. When wehave finished doing this,

we shall always let A be very large, and it invariably vanishcs frob -the results.

A. RECEIVERS WITH LOWPASS FILTERING

In Figure 79 is a schematic drawing of a receiver consisting-of a photodiode with

a transimpedance amplifier -built around an operational amplifier. Together, they

constitute a receiver with a -lowpass characteristic. There are two-noise voltage sources

and two-noise current sources in this figure.

The source i, is a noise current due to shot noise in the photodiode of the receiver

(we neglect additional effects-due to dark current). Its current spectral density -is -given

by-

2qL (501)

In this expression, I is the current flowing-through the-diode, the current which gives rise

to the shot noise in the first place. and q=1.602x 10- I C is the charge on an electron.

The~current I can be expressed in terms of the responsivity 8 of the photodiode, given

in units of amperes per watt of incident optical power (AIW), and the incident optical

power P, given in units of watts (W). So we can rew:rite Equation (501) as

it= s2qP. (502)

The noise source i,,t models the current noise at the inputs of the operational

amplifier. We show it as acting at the inverting input.

The voltage noise source -,,t models the voltage noise at the inputs of the

operational amplifier. We show it as acting at the non-inverting input.
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Figure'79 General schematic of an optical receiver using a photodiode and a
trasimpedance amplifier with lowpass filtering.

The voltage-noise source eRt is-due to the Johnson (thermal) nioise of resistor R.

It-has noise voltage spectral density

et =Vr4-TR.(503)

The constant k is Boltzmann's constant, 1.381x10-'-joules per kelvin (J/K). The

temperature T is measured in kelvins and we shall take it as 300 K throughout -this
appendix. The resistance R is measured in ohms (fl).

We shall perform the analy.;is in this and all subsequent sections by suppressing

every source but one, deducing the output voltage spectral -density e,," due to the

remaining source, and summing all these individual contributions as the square root of

the-sum of the squares of the individual contributions. This is appropriate if we assume

all the noise sources are independent of each other and that the noise spectral density

is the standard deviation- (square root of the variance) of the underlying probability

distribution function. for the variance of the sum of uncorrelated random variables is the

sum of their individual variances.
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That is, if the kth of n random variables- has variance 0k', then the variance a of the

sum of all-n random variables -is

2 = 2 -(504)
k-k,,0

The standard deviation of* thesum of the random variables is just the square root of this

sum. (This is not the same as-the standard deviation o1 a sampling from a single random

variable.)

If we take the shot noise current source first. then we:see thatfor an operational

amplifier with very large input- impedance, essentially all the noise current flows through

the feedback network consisting of resistor R in parallel-with capacitor C. Since the

operational- amplifier is in an--inverting configuration, it attempts to keep the-inverting

terminal and the non-inverting terminal at the same voltage. With the amplifier's noise

voltage source-e,,t suppressed. this voltage is zero. Therefore the shot noise contribution

to .the output noise is

=~1- = qcR. = l~~r~ 505)e,,, = Si i - -11+sR

Note that-while we retain the negative sign here. it will be of no account when we square

this noise term in computing the overall output noise due to all the noise sources.

Next we consider the noise due to the amplifier's voltage noise-source acting alone.

Since there is now no current available to flow through the fecdback network, the voltage

at the inverting terminal and the output terminal must be identical, and since the

"inverting and non-inverting terminals are held at essentially the same voltages by the-

amplifier, the output noise spectral density is

t t (506)e 02 = el.

For the operational amplifie,, .Aise current source acting alone, all the current

must pass through the feedba,. ,twork. Since the voltage at both input terminals of

-the operational amplifier are held equal to each other at 0 V, the output noise spectral
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Figure- 80 Noise from the transimpedance amplifier considering just the thermal noise
from the feedback resistor.

density from this contribution is

et = (RII) it= R i t (507)
1o3 +sCR

There is no negative sign here. -as there was when the signal source provided a noise

current, by virtue of our -definition of the direction of noise current flow. Again,

however, the later squaring-of this contribution would eliminate a negative sign resulting

from a different choice of current direction.

Finally we consider the noise due to resistor R acting alone. To do this analysis,

we shall:redraw the schematic as in Figure 80 with just this source acting.

Here we have interchanged the positions of the resistor and its voltage source -to

make it clear that the resistor and capacitor form a voltage divider. The output noise

voltage spectral density is thus given by
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Ct e~)t
04 (R+ SC) (508)

-eR-

I +ScR I +sR

When we add the elfccts-of all four independent noise-sources together, we-get-the

total output-noise voltage spectral density

eo 4

k(509)

p t __ R 2 4kTR-1 +CR) (1 sCR i

B. INVERTING SCALING- ADDERS

In Figure 81 is a generalized summing-amplifier with n :inputs. As before- we shall

consider the effects of each noise source in isolation. Note :that the resistance of the

source-of input k-is assumed to be negligible. However. if this assumption were wrong,

it could be-lumped in with Rk in computing transfer functions (although not in computing

the thermal noise attributable to Rk itself.)

The noise due to source k is amplified by- the feedback resistance -R, divided by the

input resistance R4. The sum of all- such contributions is

t = R (510)

When only the amplifier's current noise source is present, there is no voltage

across any of the input resistors Rk because both inputs of the operational amplifier are
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Figure 81 Schematic drawing or it summing amplifier with -noise sources included.

held at zero by the amplilier's feedback. Thus all the noise current flows through the

feedback resistor and the contribution-to the output noise voltage spectral density is

eo2 = in  (511)

When only the-amplifier's input voltage noise is present, the amplifier is configured

as a non-inverting amplifier. The input resistance-then is the parallel-combination of all

n input resistors. The contribution to the output noise is then

tR

We have used here a shorthand notation for the parallel combination of all n input

resistors, namely
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Rrn ll~k.(513)
k.I

It is common. to take-allthe input resistances as equal to each other and to the value R.

We shall do this in all applications of this analysis, so the parallel resistance reduces

simply-to Rin and-we can rewrite the noise contribution more simply as

[, ( flR) e]2j (514)

When. only -the thermal noise due to- the input resistors is present, that noise is

amplified in the same manner as the source noise voltage, giving

* " :R7 2  4T J 1 (515)+ IbkTRt [ R. |  4kTRf_ -k
e0  LtA~nk k=1 Rk

If, as before, we let R,=R for all k. then -this can be simplified to

e n 4kTR R (516)

The final contribution to the output noise comes from the-feedback resistor. No

current flows through the 'ccdback network. so this noise cOntribution is felt directly at

the output:

e4, = (517)

Summing all ive contributions to the noise as the square root of the sum ot squares

yields
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n' +(Rf i)2 +4kTRf (1 R) [1)+

* C. INVERTING SCALING ADDERS WITH LOWPASS FILTFERING

In-figure 82 is a schematic drawing very similar to-the one discussed-in the previous-

section. This one has a-capacitor in parallel with-the feedback -capacitor, however. Its

* function- is-to provide- lowpass filtering. A development similar-to those in thc previous

two sections. allows us to write the fiilowing~expression for the- output- noise of-this-circuit

by, inspection:

(e.) 2  e,( -~ i)+4kTRf 1 ~ C)J+ (RLR e]

-(519)-

D. DIFFERENTIATIORS AND I NTEGRATORS

The circuit-we shall use both--for differentiation and'integration was discussed-in an

earlier appendix. It is reproduced in Figure 83 with noise sources shown. -We shall

commence our analysis by defining two -functions which-willbe useful-in the-course of the

analysis. The first of these-is-the samie transfer function we derived earlier for-the entire

sub-circuit- It is

12 (R 2 \

H1(s) - 1C (50
Ri+ ( +cl (1 +SC1R1)(1 +SC2R2)

The second transfer function-is just the parallel combination ofR-. and C,:
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H2 (s) 21= 2(521)sC2 I +sC2 R 2

The noise-e*t from the input and that from the input resistor R, both are-amplified

by the transfer function-H,(s). Thus their contributions to the -noise are

e.,= Hn(s)et (522)

and

e = 4-TH,(s)  _(523)

-respectively.

The- noise source e,..t is-amplified-by a non-inverting configuration-of an amplifier,

and so the resultant contribution at the output-is

e_ [(1+/(,))e]" (524)

As we have seen in the- last -three sections, the noise from the feedback resistor R,

shows up at the output without amplification:

c,, = 2 4f .(525)

The remaining contribution to the output noise is due to the operational amplifier's

input current noise, i,,7. When this is the sole source of noise, the inputs to -the

operational amplifier both are zero, so no current flows through the input network

consisting of Rrand C,. All the-noise current flows through the:feedback network and

this network has the forward transfer function H,(s), so the contribution due to the noise

current source is
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Figure83 Schematic drawing of the standard circuit we use for differentiation and

integration'with noise sources shown.

E. INTEGRATORS WITH TEE-NETWORKS IN THE FEEDBACK

The output noise derived in the last section applies to integrators with a simple

resistor in the feedback, as shown in Figure 83. In order to-get a low-frequency cut-off

characteristic, however, we often would rather use a Tee-network in the feedback. as

shown in-an earlier appendix. in order to-get large values of effective feedback resistance

without having to use other than off-the-shelf resistor values. This more elaborate

version of the integrator is illustrated in Figure 84.

Two extra noise voltage spectral densities, et and et are shown in the diagram.

These are not sources; rather, they are the spectral densities present at the nodes shown

by the arrows.

When R,=R,=RR;, then the feedback resistance is approximately R2IRJ. Thus we

can modify the transfer function H,(s) of the last section to

324



R 2 tR t

btb

e R4 
R-

H e) R RC n _______

R1+...L 1 SC~) ( 1sii( SC1 2 )

3232



R2R3

H2(S)_ -(-R 2 - (529)-
R41) ] R

SC2 I_+C, R4

The noise-contrilutions from-the source signal and the input resistors are still gven

byEquations (522)-and-(523). but of course-these change-upon expansion. We shall not

perform the expansions. prel'crringto substitute numerical values for H,(s) later.

Similarly, -the contribution to the noise at the output-due to the input voltage-noise

spectral density e,.. of the operational amplifier still is given by Equation-(524). (526) and

the contribution due to the input current -spectral density i,,t is still given by Equa-

tion- (527).

A difference arises. however. -in- considering the thermal noise in the feedback

network. To- analyze this. we shall -make explicit use of the gain A of the operational

amplifier. Upon completion of the necessary algebraic manipulations. we shall use the

knowledge that A is-ver, large to simplify-the results.

First we consider ahe thermal noise e , from resistor R.. The voltage spectral

densitv-e at the inverting input of the operational amplifier induces a-current i7-noise

through resistor R, and capacitor C,:

1 1 +SCiR1  (5301RI + sCI

The potential difference between the output noise voltage spectral density e.! and

that at-the inverting input also induces a noise current ij through the feedback capacitor

C,:
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[e= ___Ae_,$ , (1 +A)s~2 ea,. -(531)

We -have takeh the -dircction of each of these currents to, he away from the invertin~g

termiinal-of their operational-amplitier. So their sum must flow into that terminal -through

the Tee-network. -Calling this current i, we have

its 1R +(1 +A)sC2j. (532)

This curren~t induces a voltage noise spectraldA.,Lsity across-resi stor R2 which,-when added

tothe- thermal, noise-spectral density- caused- byRBgives the volage noise spectral density

eb at-the junction of the- Tee-network:

t t it +e I [ sC1  ( +) tt 53
e. ea i.i -1,~ -1 jlR[tSC 1RV +(1 +A je,+eJ.

Note -that since the only random signal present here is due to--Thc thermal noise iR~t
these spectral- densities adid directly,-hot as-the square root of the sum or squares, which

-would be the-case for uncorrelated noise sources acting in-concert.

Knowing -the voltage spectral:density- at the junction permits calculation of the

current noise spectral density it downl through resistor -R,:

1' r et .
b ± 2  +(1 +A)s. ea _ (534)_

R4- R4 I .IJ,
The current noise spectral- density i 1 flowing through resistor R., into-. the- junction

of the Tee'is -given hy
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it it __r+I___C + SCAR +!A)sC2R2 iet + (535)5+scR, R4 R4(1+sCIR1 ) R4  R4

We can calculate the output noisc voltage spectral defisity e t from

t tt 56e= e+isR3 =-Ae.(3

So:

sC, 2  sCR 3+(1+A)sC2R2 +T+sC,R, 1 + sCIRI1+s1RP" 3 e (537)

Gathering the tcrm in , on one side and that in eJ on the oiler .side. then.

fmltiplying by -A lets us writc the contribution of' the thermal nloise of' R at the output

as

RR3

A-

1-A +1 +A 2€+ (538)

1 +sCI~t 1 +sC1 R1

;+(i +A)s R- sCR 2R3  +A -22

'"R4 ( +sCR ) (  R4

Now we divide -numerator an denominator by A, let A tend- to a large number, and
neglect any numbersin which A appears only as a denominator, obtaining
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et R3S4 a 5e t

R{ +sC2k%+SC 2R3 +S 2 R2 R3

Inasmuch as R, and-R. both aremuch smaller than-their product, we can lurther simplify

this-to-

-et  =k R- et

04.~{ sC2.R2R (540)

R,

We now go through asimilar exercise to obtain the output noise-contributed by the

thermal noise of resistor R,. The development is the same-up until Equation (533),_which

must be modifie d ' because -the noise source now is- in -the stem of the Tee.
et t t-_ [ sCA1

et = e.+S3R2 : 1 R+ +(1+A)sCRlet. (541)
1 +SCR(

The current -noise spectral- density down through R4 must be

t t t
t t [ sC1R sC, _ (542)

R4 R4 R4(1R ] a ,

Thecurtent noise spectral density flowing left through R., toward the junction of the Tee

then is

[ .44 1 .t 1 sC2 2  2 et,it +it = . +(l1+)sC2+-+ (+(1+A) lea - 543)
-ISIIR.R(1 +sCtR,) R, 4 R 4

The contribution of the thermal noise voltage spectral density eRt of resistor R. to the

output voltage noise spectral density is
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et -Aet t .t
0 = e = eb+15R3

1 SClR2 sCIR
I+ +(1 +A)sC2R2 + (544)

I+sC R1  I +sC IR I et 3e

SC R sk ea  R 4
+0 sC1R2R3 +(I+A) ""R+A)

-s R 40 +sCR-)  R

As-before, we gather the terms in e,,t on the left side. that in e4 on the right,

multiply-by -A and rearrange the equation to obtain

R3A
-et  R . . . 4 e~t

°_______ -sC1
-1+A+ +S +(1+A)sC P, 3+ (545)

1+sCR1  1 +sCR

+(1 +A)sq,_.+-R + SClR2R 3  sC2R2 R3

+44 +A(F+A 1 ) R4

Oncemore, we divide numerator and denominator bvA. and thew-neglect any term

ir which A only appears in the denominator. This yields the approximation

et  PR 3 et

o,0 R4( +sC, , +sC, +sC, -2_ (546)

We can also neglect the terms in R, and R.? individually. since their product is so much

larger, and this gives the final approximation

04b -e+C.R (547)

The final contribution to the output noise voltage spectral density with which we

must grapple is that from the thermal noise oIfRs. The analysis is the same as that for
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the thermal noise from resistor R, down to Equation (541). The current i,' is different,

however, since the noise source now is in the right-hand side of the top of the Tee:

et Aet = b 1 sC? +(I+A)sC2R]e._4 - - t(5

4'4R 4 R4(1 +sC1R1) R4.

The current noise spectral density i flowing left through resistor R. is

it it +i [ sC +( +A)s , + s R2 1_1+ t(1 A)sC (549)
5 3 53 L 1 +SCIRI R4 R4(1 +sCR,) 2 ea.(549)

Gathering like -terms, multiplying by -A, and rearranging gives us

t t tet =-Aet~e ye,+3eo, : b +IA +R

A et

[1 +.A + sClA sCR-----R3  - (550)
•[ I +SC R 2 1 +sCiR t

+(I ""X~ +13-+ _a(I +s t +(, +A)SC2 2 3
I~R( +(1--AC R1+-

~R4  'R4+C1 1

DiviL numerator and denominator by A and neglecting terms with A only in the

denominator, we find

et  t
= R .R (551)

1 +sC2R,+sC, R3+sC2 -

We also can neglect the terms in R, andR R since their product is so much larger than

either of them individually:
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04 1 te1 R23 . (552)
R4R

We can combinc-all the contributions to the output noise voltage spectral density

as-the square root ol the sum of the squares of each component:

I H,(s)(e +e,)-+[(I +H(s)) + +(H2(s)I ) -

+ H)tt)R1 (553)-
H,(,-') e +e,)+(RAe(s) et

--We-can expand this-to explicitly give the thermal noise due -to-the- resistors:

H(s)(et+4kTRi)+[(i-+Hi(s))et +(H(s)i)2

2 Pjt (5 5 4 )2 2 ,
.i+H;(s)4k -- R R4 *

F. ANALOG MULTIPLIERS

The analog multipliers we used produce a noise voltage spectral density at the

output whichis additional to that caused by multiplying the two inputs together. We shall

neglect this ccntribution at first and add it in later. The function performed by the

mu!tiplication function -is

Z -kM Y (555)

where-k. is the scale factor!(assumed to be-a constant) of the multiplier and X and Y are

the-random variables being multiplied. We shall assume that the means ol X and Y are
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px and p. respectively, and -that their -variances are ao2 and a,2. The expectation of the

output is

E[Zj = EtkX1I -- kME[XE[YI. (556)

The-separation of the mean of the products into the product of the means is-valid if X

and Y are statistically independent of one another, which we-shall assume to be true. So

E[Z] = k,.pxpy = pz. (557)

Next we compute the variance of the product. From the definition of the variance,

Va4Z = E~Z-z)2] ~ Et2I4(558)varZ tzj Az qZ-2zZp =_q(j-s)

Expanding this, we obtain

VarZJ = E[k , ,2Y]-4 -4,E[X2]E[Y2]-. (559)

This separation, too. is justified il" the random variables are statistically independent.

Using the identity

E[]X21- Va2X]+E+XI = ax+P2 (560)

we can expand-this to

Va4ZJ -- /)( , 2-

.2 2 2 2 2 2 2 2 2 2 21

1[ kaxrk+ 4+-c4Y4+P4,4-P4i4J (561)

&-21f22 2 2 2 2a

k4O.xOr+ Ox+ a x].

If the noise is small compared to the signal, then we can approximate this as
V,4j=L2fp2 2 p2a2"

Va4[Z] XOk Y+p X]. (562)

Now that we have seen how the analysis proceeds with a simple multiplier, let us

turn our attention to a multiplier with differential inputs, like the Analog Devices AD534.

It implements the function
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Z-- kU(V-W). (563)

where we assume -that the means and variances are known, as before. First we shall-

compute the-mean-of this product.

= E[Z] - E.,kU(V-W)]

= km(E[UVj -E[UW}. (564)

= ,4{pup-,iupw )

We-used the statistical independence of the three quantities U, K and W to convert the

mean of the products from the product of the means.

Next we-compute the variance of the product. Z.

Var[ZJ = E(Z-z)2  E[Z1-, .

2 k{U2V2 u2 V 2 2 2  2-2-
(565)

+2 42 2 ,,"2

Multiplying this out and- ca nclingrequal terms- with -opposite signs leaves

C= VMI[ZJ = 1- (566)

Now we can add in the output noise which is specified in the data sheets:

2 2 2 2 2 2
0

M0 o -ik4~(p a(/-w +(PW)(]+ 4)] + 2 (567)

In general, we can relate the noise voltage spectral density c.t of a random voltage

variable X to the variance 'a of X by the equation
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t X ax(568)

Thus the output noise spectral density of Z is

2t (569)

To get the output -noise spectral density of-a squaring device whose function is

described-by

Z = kMU 2  (570)

we shall use a slightly different approach. We shall assume that thi mean of U is zero.

as is the-case in theSymmetric Analog Demodulator at the-input -to the squaring circuit.

Taking U as U = Ju±ta u.we have

Z = kutau)-= k.u±2CUIu4.+) (571)

= kmput±2*morpu+kmaIu.

The-first term in this result is what we would expect the output to be if noise were not

present. We shall -identify the second two terms as a reasonable approximation to the

standard- deviation, that is.

44 k ,. (572)4k= p-' du +,au.

Because we have assume that the mean of U is zero, this can be simplified to

= =kM
2B (573)

or = kma' = kmex B

Expressing the-output-as a voltage-noise spectral density, and including the noise added

by the multiplier, we have the following expression for the output voltage noise spectral

density of a squaring device:
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e V V e(574)

G. ANALOG DIVDERS

In general, a divider-will provide some voltage spectral noise density at-the output

in addition to that caused by -the operation of division on the two inputs. We shall

approximate the -standard deviation as follows.

The operation-we want to compute with-the divider is-

Z kd- (575)
Y

where

X = klE 2  a, (576)_

y =k2E2,a, (577)

3k= - /k k[4k k , and (578)

= v!kkk.(579)

Recall that the definitions of k, and k, arose in the body of the dissertation in the

development of the symmetric demodulation algorithm. These constants depend on the

choice-of scaling constants at each stage of the demodulator.

We can write the product, then, as roughly
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- -580)

k2Ek, k-E[ ket [ x 01]

In the last line, we have dropped the products of variances as they can be assumed to be

negligible. Wetherefore can approximate the standard dcviation as

= L
2 E (kE2

~d0 X 2I~) 2 581)
Id-ay

dk2 kE2  4 2E1

Now we can- include the noise of the divider itself. and-convert all the standard

deviations into voltage noise spectral densities:

t~ (~~kks 4  (582)

H. CALCULATING THE NOISE: RECEIVERS

To calculate the actual noise-voltage spectral density output by the receivers, we

apply Equation (509). Since we are using Burr-Brown OPA- I Ils in the receivers, the

input noise voltage spectral density for the operational amplifier is
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40 -n for f=40 Hz;

15 nLV for. 100 Hz;
t (583)

en nV8 -Vfor f= kHz; and

6 nV for f=10 kHz.

The noise current spectral-density-or this operational amplifier is given as500 aA/JHz.

ResistorR in-the equation is resistor R,.=Rs=64.9 klfin-the schematic-drawing shown

in Figure 33-on page 133 and capacitor C in the equation-is capacitor C,=,=C,=10pF

in the schematic. We shall- take the responsivity 8=370 mAIW. and the optical power
P= 150 PW. The optical poe-r used here is an average valuc around which the

instantaneous power fluctuates. We find that

52 -- -for f--10 Hz;

36 nV -for f=100 Hz;
1* (584)

34 V-for f= I A ; and

33 --- for f=10 kHz.

The capacitors have no appreciable effect on the noise at these low frequencies. We

ignored the fluctuations in power around the central value D=P. This proved reasonable,

for the noise was totally dominated by the contributions -from the input noise voltage

spectral density of the operational amplifier and the thermal noise voltage spectral density

from the feedback resistor. The shot noise and the noise from the input noise current

spectral density of the operational amplifier were entirely negligible.
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I. CALCULATING THE NOISE: SUMMING AMPLIFIER U4A

To calculate the actual -noise- voltage spectral density output by integrated circuit

U4A in- the Symmetric Analog Demodulator, we apply Equation (519). The feedback

resistor Rf in the equation is resistor R7=34.8 kfl in the schematic. The input resistors

whose magnitude is R in the equation are R4=R5=R6 =102 kfl in the schematic. We

switched to using Analog Devices AD712s for all the sub-circuits except the receivers.

These devices have a specified noise voltage spectral density at their inputs of

45 n for f=40 Hz;

22 nV for f=100 Hz;
t H/-8 z (585)

ennV
- f18 for f=l kHz; and

16 -L-for f=10 kHz.
I/Hz

Their noise- current spectral density is- specified as 10 -IA'4Hz at I kHz: no data is given

for other frequencies. so we shall apply this same specification at each of the four

frequencies we use in our calculations. Usingthe results already found for the noise from

the receivers in Equation (584), we find

54 nV for f= 10 Hz;

22 nV -for f=100 Hz;
et X1 (586)

WA 18 nV for f= kHz; and

16 -for f=10 kHz.

The noise from this circuit was entirely dominated by the input noise voltage

spectral density of the AD712 operational amplifier: all-other sources were negligible by

comparison.
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J. CALCULATING TIlE NOISE: SUBTRACTORS U5A, U6A, U7A

To calculate the actual noise voltage spectral density output by integrated circuits

U5A, U6A, and U7A in 'he Symmetric Analog Demodulator, we apply Equation (518).

(Recall that (he purpose of these four sub-circuits is to remove the offset D from the

interferometric outputs:) The- feedback resistor R, in the equation is equal to resistors

Ri 0=Rj=R16=51.1 kfl in the schematic diagram. The inputzresistors Rk in the equation

-are all the same; in the schematic they are R., R., R,2 R,. R,,, and R15. with the value

13.7 kM. We still are using the AD712 here, with values for input noise voltage and

current given above. The inputs come from-one of the receivers and from the summing

amplifier U4A. The results-of the computations are

480 -nVYfor f=10 Hz:

260 for f=100 Hz-;
t,,Hz (587)

eU6A| = 230 -Vforf=1 kHz; and
eU7AJ

210 -nVforf=10 kHz.

As-in the-pre-ious sub-circuits considered. most of the noise was contributed by the

operational amplilier's-voltage noise input. The next largest contributors were the noise

from the previous stages aid the-thermal noise from the feedback resistors. The current

noise had a-negligible effect.

K - C.LCULATING THE NOISE: DIFFERENTLATORS USB, U6B, U7B

To-calculate the actual noise voltage spectral density output by integrated circuits

U5B, U6B, and U7B in the Symmetric Analog Demodulator. we apply Equation (527).

The input resistor R, in the equation corresponds to resistors R,-, R,, and R, in the

schematic, all with the value 464 fl. The input capacitor C, in the equation corresponds

to capacitors C,. C, and C in the schematic, all with the value 470 pF. The fecdback

resistor R., in -the equation corresponds to resistors R1, R.. and R.. in the schematic
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diagram, and they all have the value 1.91 kfl. The-feedback capacitor C, in the equation

corresponds -to capacitors C.;, C,, and C, in the schematic diagram. The operational

amplifier is an AD712 with the noise specifications given above. The results of the

computations are

45 nV for P-10 Hz;

etSB, 23 V-for f=100 Hz;

evt = VI (588)eWt 19 nVfor f=l kHz; and

21 nV-for f=10 kHz.

All noise sources except -the voltage noise spectral density of the operational

amplifiers were completely -negligible in these calculations, except for the thermal no,,

in the feedback resistors, which was still a lactor of four smaller than the noise injected.

by the operational amplifier.

L. CALCULATING THE NOISE: CROSS-MULTIPLIERS UI 1, U12, U13

To calculate the-actual noise voltage spectral-density output by integrated circuits

U1I, U12, and U13 in the- Symmetric Analog Demodulator. we apply Equation (569).

Because of -the operation of integrated circuits U5A, U6A. and U7A in removing the

fixed offset D from the:signals, the means of all the inputs in-the equation are zero when

the signal of interest generates significantly-more than r rad of optical phase shift. (In

the case of the differentiated signals, this is always true. It is not generally true for

smaller undifferentiated signals, however.). The gain constant of the AD534 multipliers

is 4=0.1 V . Their own contribution to the output noise is specified as between

L-1 pV/fHz at 10 Hz and 800:nV/iFHz at 10 kHz.

For the bandwidth B in the equation, we used 1.3 MHz. This figure was arrived

at by taking the gain (3.73) or the subtractor circuits USA, U6A, and U7A whose gain-

bandwidth product is 3 MHz. The ratio of these two gives a 3 dB bandwidth of 804 kHz.
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When multiplied -y r/2 to yieldthe equivalent noise bandwidth, the result was 1.3 Mhz.

The results of the calculations are

1.1 P forf=I0 Hz;

eU1-e 900 nV for f=100 Hz;

et vffnV (589)
800 -for f=1 kHz; and

800 nV for f=10 kHz.

The output noise is entirely dominated by the multiplier noise. One implication of

this -fact is -that there was no-need to use very-low-noise operational amplifiers in the

receivers. Sincethese low-noise amplifiers are expensive, this is- an area of potential

savings if quieter multipliers cannot be found.

M. CALCULATING THE NOISE: SQUARING MULi'IPLIERS U8, U9, Ul0

To calculate the actual noise voltage spectral density output-by integrated circuits

U8, U9, and U10 in the Symmetric Analog Demodulator. we apply-Equation (574). The

multipliers- are the same AD534s just described. The -results of the computations are

1.1 YVfor fP10 Hz;

eU8' 900 nV for f=100 Hz;

et = V (590)
I 800 -- for f=1 kHz; and

eU1J V~1z
nV800 -V for f=10 -kHz.

The noise from these circuits is exactly the same as the noise from the cross-

multiplying circuits. The-input noise contributions are totally negligible by comparison.
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N. CALCULATING THE NOISE: SCALING ADDER UI4A

To calculate- the -actual noise voltage- spectral- density output by integrated circuit

U14A in the Symmetric Analog Demodulator, we apply Equation (518). The feedback

,resistor R/in the equation now corresponds -to resistor -in the schematic and is

4.99 kfl. The input resistors R.=R in the equation correspond-to resistors R,,, R 5, and

R4, in the schematic diagram and they all are equal to 14.0 kfl. We again-are using-an

AD712 operational amplifier with noise specifications-mentioned above.

The results of the calculations are

-690 n-for f=10 Hz;

Vi
560 -!-for f=100 Hz;

t (591)

eI4A = 560 - for f=1 kHz; and

500 -Vfor f=10 kHz.

The multiplier noise from the previous sub-circuit still is dominant, although -its

magnitude has been reduced -somewhat. The reason for this is that the gain of the adder

isless than one.

0. CALCULATING-TIE NOISE: SCALING ADDER U4B

To calculate the actual noise voltage spectral density output by integrated circuit

U4B in the Symmetric Analog Demodulator, we apply Equation (519)- again. The

feedback resistor R, of the equation corresponds to resistor R1 7= 14.0 kfl in the schematic

diagram. The feedback capacitor C of the equation corresponds to capacitor C,0= 1.0 pF

in the schematic diagram. The input resistors R,=R in the equation correspond to

resistors R,6, R ,, and R. in the schematic diagram, each of which provides 10.5 kf.

resistance. Again we are using the AD712. The results of the calculations are
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1.9-L for f= 10 Hz;

0nV
240 - forf=100 -z;-

t = (592)
eU4B nV

28 - for f=1 kHz; and

nV-fo
16 -for f=10 kHz.

An interesting aspect of -these numbers is the way the noise drops off with

increasing frequency. The feedback capacitor was used in order to achieve this effect.

The very large noise-at-low frequencies is due to the noise of the three multipliers which

precede this sub-circuit. At the high frequencies, the noise of the operational amplifier

U4B finally dominates the multiplier noise. Which is attenuated at these frequencies by

the capacitor.

P.- CALCULATING TIE NOISE: THE DIVIDER U15

To calculate the actual noise voltage spectral density output by integrated circuit

U15Bin the Symmetric Analog Demodulator, we apply Equation (582). The constants

impliciilh-n iequation arc k,=: !0-V kA =3.73. kA, =7.2. kA =1.33 k. 1=03- '.,7-: 3.V.

kD= 9 0 ns, A= 100 rad. and f=200 Hz. Recall that A is the optical phase amplitude of

a simple sinusoidal test signal andf is the frequency of the test signal. The derivative ,

will never exceed A2irf, which is the upper limit we use in the calculations. The divider

has its own contribution to, the output noise voltage spectral density. This is

et=8.0 M.V/4Hz, a number an order of magnitude large than that of the multipliers,

which up to this point have been the noisiest components in the demodulator. The

results of the calculations are
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8.7 o f 0 I Iz
]llz

V 1fz (593)

8.1 t V for I kHz; andvlz

8.1 V "for 10 kHz.
1Hiz

--T116e r's ITsY show very clearly thai. ti this jinti at least. th divider creates Ihl

largcst ccntritmimi to noise 1' any sub-circuit it the Symmetric Analog Derdulator.

Q. CAL.CULATIN(; TIlE NOISE: TIE! INTEGRATOR UI14B

T( calculate the act ual noise voltage spectral density output hy integrated circuil

t1 413 !, th'c Symmetric Analog Demodulator. %kc apply Equation (553). using the

dcl;litims ()1* tt1(.6 and /.,m ()Io Equations (528) and (529). The inpu rcsist ,r R, and

cap' citor C, of the Clua0tions correspond to resistor R,,=309 kil and (,,
= 1.0 1iF in the

sch .'mat 1: diagram. The I cedhack capacitor (. in the equations corresp mnds to copacitw

(,470 rF in the schematic. The three resistors R.. R,. and R, iai the etiations

correspond to re!)i.stors R,?=76.8 kW. R ,=76,8 kW. and R,,= 10.2 1! rcspectivc&l in the

schema.w: The noise spect ral densities ol the operational amplilier ore tho., of the

AD712 x,,n earlier. The results ()I the calculations are

15.7 V for fl10 Hz;

1.57 -Vforf=!00 Hz;
tH~ (594)ew nV

158 -n-for f- I kHz, and04~z

15.8 .nY.for f-10 kHz.

By dividing these voltage noise spectral densities hy the scale Ihctor 31 m.rad, we

can raicr the cquivtlem phas, noise which would have to appear at the input to the

demcdulator to produce this ellcft. Doing ,,, yields
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Equivalent 510 .radfor f=10 Hz;

input 51 pradforf=100 Hz;
phase - H (595)

noise 5.1 -radfor f=I kHz; and

density 510- -for f=10 kHz.

The noise declinesrby 20 dB per decade increase in frequency, just as-wc would expect

from the integration of white noise. However, a comparison with Table XXIII -on

page 198 reveals that the observed noise is an order of magnitude -higher than the

predicted noise. Although the reasons for this are-unclear. itrsuggests that considerable

-improvementin the noise performance of the Symmetric Anaiog Demodulator should bc

possible without a major rcdcsign. The possibility of contamination from nearby circuits,

ground loops, or other causes should be investigated.

I. SUMMARY

In this appendix, we have performed a detailed noise analysis of the Symmetric

Analogue Demodulator. This rather tedious exercise has revealed that the most

significant sources of noise. in descending order of importance. are the analog divider and

the six-analog multipliers. If these could be replaced by quieter equivalents, then it might

become possible to-justify the use of expensive, low-noise operational amplifiers in the

receivers of the circuit. However. as matters stand presently, these amplifiers deliver

much quieter signals than necessary. In the absence of a reduction in the noise from the

divider and multipliers, this is a needless expense.

The equations derived in this appendix also make it feasible to compute a new

prediction of the noise if different components are substituted into the circuit. In fact,

the equations make it possible to explore various strategies for lowering the noise floor--

with a-consequent increase in dynamic range--without iraplementing them in a circuit.

Thus it should be -possible to fine-tune the performancd of the Symmetric Analogue

Demodulator by applying these-equations.
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