DTIC FILE COPY

AFOEHL REPORT 90-045EQ00047DSC

Combined Wastewater Characterization and Hazardous Waste Survey Davis-Monthan AFB AZ

> ROBERT D. BINOVI, Lt Col, USAF, BSC NANCY S. HEDGECOCK, 1Lt, USAF, BSC CHARLES ATTEBERY, 1Lt, USAF, BSC

> > April 1990

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC) Human Systems Division Brooks Air Force Base, Texas 78235-5501

90 05 23 008

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any other obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available for the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161.

(bert 1) Bui

ROBERT D. BINOVI, Lt Col, USAF, BSC Chief, Environmental Quality Division

REPORT DOCUMENTATION. PAGE			Form Approved OMB No: 0704-0188	
Public reporting burden for this collection of information is estimated to average 1 nour per response including the time for reviewing instructions, searching existing data source gathering and maintaining the data needed, and completing and reviewing the collection of information is end comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden. It is a source to the collection of information, including suggestions for reducing this burden to Washington Headquarters Services. Directorate for information Diporations and Keports. It is offered and the other of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. C (2003)				
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1990		ND DATES COVERED 19 Jun – 7 Jul 89	
4. TITLE AND SUBTITLE Combined Wastewater Chan Waste Survey, Davis-Mont	racterization and 1	Hazardous	5. FUNDING NUMBERS	
6. AUTHOR(S) Lt Col R./Binovi, lLt N.	Hedgecock, 1Lt C	.Attebery		
7. PERFORMING ORGANIZATION NAM AF Occupational and Env Brooks AFB TX 78235-5501	ironmental Health 1	Laboratory	 B. PERFORMING ORGANIZATION REPORT NUMBER AFOEHL Report 90-045EQ00047DSC 	
9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES		<u></u>		
N/A				
12a. DISTRIBUTION / AVAILABILITY ST/	ATEMENT A		126. DISTRIBUTION CODE	
Unlimited; Approve	d for public relea	ase		
members of the AFOEHL En June to 7 July 1989. The the wastewater and prov pretreatment plant. Fla samples taken at 60 loca waste disposal practice Recommendations include the contents, (2) action should continue, (3) con	nvironmental Quali he purpose of the ide basic data for ow measurements we ations. A total o s. (1) some separat n to change phenol ntinue restriction pretreatment syste organic compounds, itary sewer system	ty Division, at Da survey was to fir the subsequent of re taken at 17 lo f 39 shops were a ors need cleaning analysis method s on use of compo m should include and (5) eliminat , as it may be co	and proper disposal of for compliance monitorin punds containing forms of processes for the remova the discharge of puntibuting to the	
14. SUBJECT TERMS Wastewater Character1st Davis-Monthan Binov		ndustrial Wastes	15 NUMBER OF PAGES 267 16. PRICE CODE	
17. SECURITY CLASSIFICATION 16. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	15. SECURITY CLASS	FICATION 26. LIMITATION OF ABST	
UT NEFORI	U- THU FAUL	S SECTIONS!		

_

NSN 7540-01-280-5500

Acknowledgments

The authors greatly appreciate the technical expertise and hard work provided by the other members of our survey team, without whose valuable assistance this survey could never have been accomplished.

We also acknowledge 1Lt Paul Legendre and the staff of the Bioenvironmental Engineering Section for the support given us during the survey. Thanks for making our time at Davis-Monthan AFB enjoyable and worthwhile.

Acces	sion Fo	T	
NTIS	GRA&I		
DTIC	TAB		
Unann	ounced		0
Justi	Justification		
By Distribution/			
Availability Godes			
	Avail	•	OF
Dist	Spec	ial	
1-1			
1			

CONTENTS

Page

1

	SF Form 298 Acknowledgment Illustrations	i iii v
I.	INTRODUCTION	1
II.	DISCUSSION	1
	A. Background B. AFOEHL Wastewater Characterization C. Hazardous Waste Survey	1 3 10
III.	RESULTS	21
	A. Wastewater Characterization B. Summary of Waste Disposal Practices at Davis-Mo	nthan AFB 35
IV.	CONCLUSIONS	36
v.	RECOMMENDATIONS	40
	References	42
	APPENDIX A Chemical Waste Disposal Form B Summary of Waste Disposal Practices For Eac C Wastes Disposed As Hazardous Waste At Davis D Wastes Discharged to the Sanitary Sewer At E Master List of Shops F Disposal Practices by Shop for Davis-Montha G Wastewater Analytical Data H Industrial Wastewater Bench Scale Laborator I Volatile Organic Results J Sample Report of Analysis	-Monthan AFB 61 Davis-Monthan AFB 65 69 n AFB 73 85
	Distribution List	261

.

iv

ILLUSTRATIONS

Table	Title	Page
1	Pretreatment Discharge Limits	2
2	Flow Monitoring Sites	5
3	Sample Site Locations	6
4	Wastewater Characterization Analytical Methods	9
5	Annual Forecasted Quantities of Waste Generated at	
	Davis-Monthan AFB	11
6	Flow Results	23
7	Phenol Results by Method	37
8	Candidates for Connection to Industrial Pretreatment System	38

Figure

•
8
22
30

I. INTRODUCTION

On 12 May 1989, HQ TAC/SGPB sent a message requesting AFOEHL conduct a basewide wastewater characterization study at the earliest possible date. The study was needed to support a Military Construction Project (MCP) to construct a wastewater treatment plant needed to meet the Pima County Discharge Ordinance Industrial Wastewater Discharge Limits. A request for a waste minimization survey at ALC/AMARC had also been received by AFOEHL and combined into the scope of this survey.

The objectives of the survey were to determine the sources of phenols in the wastewater through sampling and hazardous waste surveys, provide basic design data, and perform a waste minimization survey at AMARC as requested.

The survey was conducted from 19 June to 7 July 1989 by the following members of the Environmental Quality Branch, Consultant Services Division:

LTC Robert Binovi Cpt David Goldblum 1Lt Shelia Scott 1Lt Charles Attebery 2Lt Nancy Hedgecock MSgt John Randall MSgt Ben Hernandez SSgt Mary Fields SSgt Roberto Rolon Sgt Pete Davis

II. DISCUSSION

- A. Background
 - 1. Base Description

Davis-Monthan AFB, the home of the 355th Tactical Training Wing, located near Tucson, in the eastern portion of Pima County, in the southern part of the State of Arizona. Base population is about 10,000. The weather is characteristically sunny and hot. The average high temperature during the period of the survey was 103 degrees, the average low was 74 degrees, 0.05 inches of rain fell during this timeframe.

2. Wastewater Regulations

Pima County regulates the discharge of industrial wastewater by permit 2R 10760, which expired on 1 January 90. The permit regulates combined industrial and sanitary wastewater at manhole 111 (First St and Durango St), hospital wastewater at manhole 376, and combined sanitary and industrial wastewater from the Aerospace Maintenance and Regeneration Center (AMARC). Discharge limits are presented in Table 1.

arameter	3	<u>MH 111</u>	Location MH376	MH337
рН		6-9	6-9	6-9
Arsenic	(mg/L)	2.0	NR	2.0
Barium	(mg/L)	10.0	10.0	10.0
Cadmium	(mg/L)	0.1	NR	0.1
Chromium	(mg/L)	2.77	NR	2.77
Copper	(mg/L	2.7	NR	2.7
Lead	(mg/L	0.5	NR	0.5
Mercury	(mg/L	0.05	0.05	0.05
Nickel	(mg/L	3.98	NR	398
Silver	(mg/L)	NR	5.0	NR
Zinc	(mg/L)	2.6	NR	2.6
Phenols	(mg/L)	0.05	0.05	0.05
Cyanide	(mg/L)	1.0	NR	1.0
	xic Organics hods 624 & 625)	SNR	NR	SNR
Purgeabl	e Halocarbons	NR	SNR	NR
Biochemi	cal Oxygen Demand	NR	SNR	NR
Chemical	Oxygen Demand	NR	SNR	NR
Oil & Gr	ease (mg/L)	100	NR	NR

Table 1. Pretreatment Discharge Limits

NOTE: NR = Sampling not required, no limits established SNR = Samples required, no limits established

The base has expended considerable effort in trying to meet the phenol and metals limits. The base banned the use of certain phenoxyl detergents and pine oil by stock number in an October 1986 836th AD/CC policy letter. (1) The base set up a system to test products for phenolic concentrations after it was issued a notice of violation for exceeding the limit. Despite these efforts, phenols were still exceeding Pima County pretreatment limits. Controversy over which method of phenol analysis should be used to monitor compliance resulted in base and Pima County officials petitioning the State to change the method from EPA Method 420 to EPA Method 604. Their petition was denied, despite information from detergent and photographic manufacturers that the EPA Method is subject to false positive readings from petroleum hydrocarbons and hydroquinones.(2,3)

3. Previous Surveys

A study by CWC-HDR, Inc., Irvine, California (4) was conducted in the Spring of 1988 with the stated purpose of determining whether organic and phenol discharges to the sanitary sewer system are from readily identifiable sources, and whether source control or localized pretreatment plants can be utilized. Of particular concern to CWC-HDR were total phenols and total toxic organics as measured by EPA Methods 624 and 625. The report stated that Pima County Wastewater Management Department (PCWMD) had notified the base that no concentrations of total toxic organics would be permitted in the near future, and that the limitation of 50 μ g/L total phenol applies to the industrial wastewater discharge, and thus the discharge limitation should be adjusted downward to factor out the influence of domestic flow. Based on an assumed ratio of 50% domestic and 50% aircraft related flows, PCWMD proposed the limitation be reduced to 25 mg/L.

The contractor concluded that phenols were problematic throughout the system, with pentachlorophenol the most significant. Also total toxic organics were not present in high concentrations. Source control or separation of sources and treatment would not result in significant reduction of the phenol concentrations.

Specifically, from the Phoenix Street Sewer and Flight Line Sewer (AFOEHL sites 16-40), methylene chloride was entering between manholes 258 and 262. Trichloroethylene was entering between manholes 262 ND 267-B. Phenols were entering between manholes 258 and 267-B, with pentachlorophenol being found. The flight line was relatively free of toxic organics except for a sample found to have significant concentrations of methylene chloride and dichloroethylene from manhole 470. Contributions of organics after the confluence of the flight line and Phoenix Street sewers on First Street did not appear to be significant.

AMARC area (AFOEHL sites 50-59) had consistently low toxic organics and high phenolic concentrations. Pentachlorophenol was consistently found.

B. AFOEHL Wastewater Characterization

1. Basis for Characterization

A characterization of Davis-Monthan AFB wastewater can be facilitated by comparing the characteristics to results from previous surveys at Davis-Monthan AFB and with similar surveys at other bases. The AFOEHL has performed more than twenty such characterizations in the past four years.

2. Flow Measurement

Flow rates are calculated using data collected with flumes and ISCO Automatic Flowmeters. Flume choice is predicated by the size of the sewer line. Survey flumes include; 6" Manning, 8" Manning, 12" Plastifab, and 15" Plastifab Palmer Bowlus flumes (PBF). PBFs are governed by the equation:

Q = kH exp 1.9

The flow Q is in cubic feet per second (cfs). The head H is the height of water in the flume throat (narrow part) in feet. The scaling factor k is the maximum flow rate at the maximum flume fluid height and is dimensionless. The respective design flow equations along with the maximum heads are:

Palmer Bowlus Flow Equations

PBF	Equation	H max (ft)
6"	Q = 2.18 H exp 1.9	0.392
8"	$Q = 2.60 H \exp 1.9$	0.525
12"	Q = 3.31 H exp 1.9	0.730
15"	Q = 3.79 H exp 1.9	0.910

The ISCO Flow Meter (Model 2870) measures the pressure head in a flume and integrates over time to determine flow. The meter also tabulates total volume. Average flow rates are calculated by dividing the total volume by the time interval, and converting the results into the appropriate flow rate units (cfs or gpd). The scaling constant is dialed onto a computer module which is attached to the flow meter. The scaling constants for the 6, 8, 12, and 15 inch flumes are 0.367, 0.764, 1.83, and 3.17 cfs, respectively. Figure 1 shows the meter set up at Site 16.

The flow through manholes 119, and 298 represent the total flow going off the base. Wastewater from AMARC, Frank-Borman Housing, and the Commissary flow through MH 298. Wastewater from the flightline, Hospital, Lowell-Smith Housing, Base Exchange (BX), BX Service Station, Burger King, as well as the intermediate area between 1st and 5th Streets flows through MH 119. Water meters (WM) were placed at the hose bibs of the aircraft washrack adjacent to MH 468. Flow monitoring sites are presented in Table 2.

Figure 1. Flow Meter Set Up At Site 16

Table 2. Flow Monitoring Sites

MH	LOCATION		
17	Base Exchange (7th & Granite Sts.)		
68	3rd & Durango Sts.		
82	BX Service Station (Commanchee St.)		
102	1st & Jeddito Sts.		
115	1st & Bola Sts.		
119	Sunglow Road		
215	Commissary (7th & Arizola Sts.)		
261	Transportation (Phoenix & Flagstaff Sts.)		
276	41st Line (Phoenix St.)		
298	Sunglow Road (Near Swan Gate)		
315-0	Frank Borman Housing Softball Field		
31 9	Frank Borman Housing open field (Quijota Blvd.)		
342	AMARC		
376	Hospital (Alamo Ave. & Oro St.)		
411-A	Lowell Smith Housing (Ironwood St.)		
468	Flight line (Phoenix & Douglas Sts.)		
WM	Aircraft Washrack (Phoenix & Douglas Sts.		

3. Wastewater Characterization Sampling

Wastewater sample site locations are presented in Table 3. These were selected to include regulated monitoring points, significant industrial and commercial discharge points, and operations possibly requiring pretreatment. Samples were taken continuously for at least 24 hours, some locations for multiple days, except at oil/water separator where a grab sample was tvoically taken. Samples were taken with either ISCO or SIGMA wastewater sampling equipment. Samples were collected in 3-gallon glass containers, surrounded by ice in the wastewater sampler. The samples were transported to AFOEHL on-site laboratory set up in building 4819 and segregated by analysis method. A photograph of the on-site laboratory is included as Figure 2. Some analyses were performed on-site, others sent to AFOEHL, Brooks AFB, Texas. Analytical and preservation methods and analyzing laboratory locations are presented in Table 4.

Site Number	Main Base Sewers
1	
I	MH 123 Near Swan Gate
2	MH 100 Arizola St.
3	MH 215 Commissary, bldg 2615
4	MH 77 Burger King, bldg 2521
5	MH 17 BX, bldg 2441
6	Laundromat, bldg 5000
7	MH 119 N. of North Ramp
8	MH 270C, Auto Hobby Shop, bldg 4531
9	MH 23, NCO Club, bldg 4455
10	Dining Hall, bldg 4100
11	o/w sep., GLCM AGE, Cor. Control, bldg 72
12	o/w sep., GLCM, bldg 73
13	o/w sep., GLCM, bldg 74
14	o/w sep., CAMS, Propulsion Washrack, bldg 1360
15	o/w sep., Entomology, bldg 5319

Table 3.	Sample	Site	Locations
----------	--------	------	-----------

Site Number	Industrial Area Sewers
16	MH 115 First St.
17	MH 258 Phoenix St.
18	MH 274A S.E. Phoenix St.
19	23 CAMS Corrosion Control, bldg 5255
20	o/w sep., 41 ECS Engine Shop, bldg 133
21	o/w sep., Fire Station, bldg 4821
22	o/w sep., Bulk Storage, bldg 115
23	o/w sep., 41 ECS AGE shop, bldg. 125
24	o/w sep., Trans, Fire Truck Maint., bldg 4823
25	o/w sep., 355 AGS AMU, bldg 4809
26	o/w sep., 355 EMS AGE, bldg 4712
27	o/w sep., 836 TRANS Refueling Maint., bldg 4812
28	o/w sep., 836 TRANS Refueling Maint., bldg 4815
29	o/w sep., 355 EMS AGE, bldg 4712
30	o/w sep., 23 CAMS AC Maint., bldg 1711
31	o/w sep., 23 CAMS Fuel Systems Shop, bldg 5256
32	o/w sep., 23 CAMS Corrosion Control, bldg 5255
33	o/w sep., 255 AGS AMU, bldg 5251
34	o/w sep., 355 AGS Propulsion Branch, bldg 5245
35	o/w sep., AMU, bldg 5430
36	o/w sep., 836 Trans. Vehicle Ops., bldg 4701
37	o/w sep., Transportation, bldg 4705
38	o/w sep., 355 EMS Inspection, bldg 5607
39	o/w sep., 255 EMS Armament, bldg 4710
40	MH 468, Aircraft Washrack
Site Number	Housing, Hospital, and Test Stand Sewers
41	MH 298 Near Swan Gate
42	MH 376 Hospital, Alamo Ave
43	MH 502 Quijota Blvd
44	MH315A Housing Branch near mair gate
45	MH 13 Housing, Davenport
46	o/w sep., Test stand, bldg 224
47	o/w sep., Test stand, bldg 225
48	o/w sep., Test stand, bldg 225 (NTR)
49	o/w sep., Test stand, STRP
Site Number	AMARC
Site Number	AMARC
Site Number 50	AMARC MH 342 AMARC Aircraft Storage Area
Site Number 50 51	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack
Site Number 50 51 52	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning
Site Number 50 51 52 53	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning o/w sep., AMARC Out Processing, bldg 7408
Site Number 50 51 52 53 54	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning o/w sep., AMARC Out Processing, bldg 7408 o/w sep., AMARC NDI, bldg 7401
Site Number 50 51 52 53 54 55	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning o/w sep., AMARC Out Processing, bldg 7408 o/w sep., AMARC NDI, bldg 7401 o/w sep., AMARC, bldg 7340
Site Number 50 51 52 53 54 55 55 56	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning o/w sep., AMARC Out Processing, bldg 7408 o/w sep., AMARC NDI, bldg 7401 o/w sep., AMARC, bldg 7340 o/w sep., AMARC, Washrack, bldg 7425
Site Number 50 51 52 53 54 55 55 56 57	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning o/w sep., AMARC Out Processing, bldg 7408 o/w sep., AMARC NDI, bldg 7401 o/w sep., AMARC, bldg 7340 o/w sep., AMARC, Washrack, bldg 7425 o/w sep., AMARC, Support Equipment, bldg 7222
Site Number 50 51 52 53 54 55 56 57 58	AMARC MH 342 AMARC Aircraft Storage Area AMARC Washrack MH 364, AMARC, Small Parts Cleaning o/w sep., AMARC Out Processing, bldg 7408 o/w sep., AMARC NDI, bldg 7401 o/w sep., AMARC, bldg 7340 o/w sep., AMARC, Washrack, bldg 7425 o/w sep., AMARC, Support Equipment, bldg 7222 o/w sep., AMARC, In Processing, bldg 7448A

Officer's Club, bldg 2050

Figure 2. On-site Laboratory, Building 4816

4. Industrial Wastewater Laboratory Study

Subsequent to the July 1989 survey, the base had received a Notice of Violation for discharging cadmium above the pretreatment limit of 100 μ g/L. A sample of wastewater from AMARC, building 7401 NDI oil/water separator was sent to AFOEHL/EQ in October 89 and bench scale jar testing was performed to assess the effect of chemical addition in removing heavy metals.

Aluminum sulfate (alum) was added to 1.5 liter aliquots of wastewater in bell jars at a Phipps Bird apparatus. The chemical was rapidly mixed at 40 rpm for two minutes, then slowly mixed at 15 rpm for 10 minutes. Sufficient alum was added to obtain 25, 50, 100, and 150 mg/L. The samples were allowed to settle for one hour and supernatant withdrawn from the top and submitted to AFOEHL/SA for ICP metals analyses. The experiment was repeated with no alum addition but with an addition of sodium hydroxide (40 mL) to raise the pH to 12.0.

Minim	um Detected		•••	Who
Analysis	Conc.	Methd	Where	Who
	10 mg/L	A403	on-site	AFOEHL
Alkalinity	0-14 units	A423	on-site	AFOEHL
pH	-	E170.1	on-site	AFOEHL
Temperature	10	A408E	on-site	AFOEHL
Chlorine Residual	10 μg/L	A400B	on-site	AFOEHL
Dissolved Solids	1 mg/L	E405.1	on-site	AFOEHL
BOD5	10 mg/I	Hach Mod.	on-site	AFOEHL
COD	10 mg/L 1 mg/L	A209A	on-site	AFOEHL
Total Suspended Solids		A209B	on-site	AFOEHL
Total Dissolved Solids	1 mg/L	E413	Brooks AFB	AFOEHL
Oil and Grease	0.3 mg/L	E418	Brooks AFB	AFOEHL
Ext. Petr. Hydrocarbons	1.0 mg/L	E350	Brooks AFB	AFOEHL
Ammonia	0.2 mg/L		Brooks AFB	AFOEHL
Nitrate	0.05 mg/L	E353	Brooks AFB	AFOEHL
Nitrite	0.02 mg/L	E353	Brooks AFB	AFOEHL
Total Kjeldahl Nitrogen	0.2 mg/L	E305	Brooks AFB	AFOEHL
Total Phosphorous	0.05 mg/L	E365 E604/E420	Brooks AFB	AFOEHL
Phenols	5 µg/L		Brooks AFB	AFOEHL
Arsenic	100 µg/L	E200.7	Brooks AFB	AFOEHL
Barium	100 µg/L	E200.7	Brooks AFB	AFOEHL
Cadmium	100 µg/L	E200.7	Brooks AFB	AFOEHL
Chromium	100 µg/L	E200.7	Brooks AFB	AFOEHL
Chromium, hexavalent	100 µg/L	E200.7	Brooks AFB	AFOEHL
Copper	100 µg/L	E200.7		AFOEHL
Iron	100 µg/L	E200.7	Brooks AFB	AFOEHL
Lead	100 µg/L	E200.7	Brooks AFB	AFOEHL
Manganese	100 µg/L	E200.7	Brooks AFB	AFOEHL
Mercury	2 μg/L	E200.7	Brooks AFB	AFOEHL
Nickel	100 µg/L	E200.7	Brooks AFB	AFOEHL
Selenium	100 µg/L	E200.7	Brooks AFB	
Silver	100 µg/L	E200.7	Brooks AFB	AFOEHL
Zinc	100 μg/L	E200.7	Brooks AFB	AFOEHL
Calcium	100 µg/L	E200.7	Brooks AFB	AFOEHL
Magnesium	100 µg/L	E200.7	Brooks AFB	AFOEHL AFOEHL
Potassium	100 µg/L	E200.7	Brooks AFB	
Sodium	100 µg/L	E200.7	Brooks AFB	AFOEHL
Aluminum	100 µg/L	E200.7	Brooks AFB	AFOEHL
Beryllium	100 µg/L	E200.7	Brooks AFB	AFOEHL
Chloride	2 mg/L	E325	Brooks AFB	AFOEHL
MBAS	0.1 mg/L	E425.1	Brooks AFB	AFOEHL
Boron	0.2 mg/L	A404A	Brooks AFB	AFOEHL
Cyanide	5 µg/L	A412D	Brooks AFB	AFUEHL
Sulfides	1 mg/L	E376	Brooks AFB	AFOEHL
Volatile Organic Compound	is *	E624	Brooks AFB	AFOEHL
Base, Neutral, Extract.	*	E625	DataChem	Salt La
• •				

Table 4. Wastewater Characterization Analytical Methods

A indicates Standard Methods for the Examination of Water and Wastewater, 1985 (5)

E indicates EPA Methods for Chemical Analysis of Water and Wastes (6)

* for VOC results, see Appendix I

C. Hazardous Waste Survey

1. Procedure

The first step of the survey was to review the base hazardous waste management plan and the Bioenvironmental Engineer's industrial shop folders to determine which shops generate chemical wastes. This was followed by visits to shops to observe industrial operations, discuss chemical waste disposal practices with shop personnel, and hand out chemical disposal survey forms (see Appendix A). These forms, which were completed by shop personnel, were reviewed by the survey team and provided additional information for subsequent discussions with shop personnel. The following individuals were contacted to discuss their responsibility and involvement in the hazardous waste program:

1Lt Legendre, Chief, Bioenvironmental Engineering, SGPB, AV 361-5369 Mr Thompson, Chief, Environmental Quality Branch, 836 CSG/DEQ, AV 361-5372 Mr Hague, Environmental Specialist, AMARC/MAQ, AV 361-5079 Mr Ellison, Environmental Specialist, 836 CSG/DEQ, AV 361-5897

Based on the data from the completed chemical disposal survey forms, the annual forecasted quantities for nine categories of waste were determined and are summarized in Table 5. From Table 5, Column 3, 37.3% of the total waste generated consists of waste oil and fluid; however, these wastes are not considered hazardous waste. Eighteen percent of the total amount of waste generated is drummed and disposed of as hazardous waste through the Defense Reutilization and Marketing Office (DRMO). Itemized listings of wastes (including categories, shop, amount of waste, and disposal method) are found in Appendix B. Appendix C lists wastes disposed of as hazardous waste. Appendix D lists wastes discharged to the sanitary sewer.

2. Hazardous Waste Program

The hazardous waste program at Davis-Monthan AFB is working well. The Environmental Quality Branch in Civil Engineering, 836 CSG/DEQ, is responsible for the management of the entire program. The DRMO is responsible for contractual removal of wastes. The Bioenvironmental Engineering (BEE) Shop helps to monitor the program through industrial shop surveys and is responsible for waste sampling.

Individual shops are responsible for identifying, segregating, handling, packaging, and labeling the wastes generated by the shop. Wastes are usually placed in a 55-gallon drum located at a designated accumulation site or placed in a 55-gallon drum and taken directly to DRMO.

When wastes need to be disposed, the shop hazardous waste manager partially completes an AF Form 2005 and submits it to DEQ (Mr Ellison), who completes the form and checks it for accuracy. The manager then takes the form to Supply who generates a DD Form 1348-1 using the information contained on the AF Form 2005. The DD Form 1348-1 is then submitted to DEQ for signature (indicating that funds are available for disposal of the waste). Finally, the generator submits the DD Form 1348-1 to DRMO who arranges for a waste disposal contractor to pickup the wastes.

PRODUCT (GAL/YR)	TOTAL	% TOTAL	DISPOSED OF AS HAZ WASTE	% TOTAL HAZ WASTE
Oil & Fluid	22,531	37.3	360	3.4
Safety Kleen	1,140	1.9		
Paints, Thinners & Strippers	s 10,386	17.2	9,026	84.8
Fuel	2,351	3.9		
Antifreeze	180	0.3		
Soap	5,856	9.7		
Photo & NDI	1,813	3.0	180	1.7
Solvents	4,322	7.1	1,077	10.1
Misc Chemicals	11,878	19.7		
Total:	60,457	100.0	10,643	100.0

Table 5. Annual Forecasted Quantities of Waste Generated at Davis-Monthan AFB

Any unknown wastes are analyzed before disposal. The BEE shop has the responsibility for sampling unknown wastes and other waste streams on an as needed basis. Samples are sent to the AFOEHL/SA for analysis and results are sent back to the BEE who notifies DEQ of the results.

3. Description of Industrial Activities. Thirty-nine industrial shops (Master Listing Contained in Appendix E) were surveyed and their chemical waste handling practices were documented. The findings for each industrial shop follow (see Appendix B for a shop-by-shop listing of waste disposal practices).

a. 23 Consolidated Aircraft Maintenance Squadron (23 CAMS)

Shop: E	Engine	Bldg: 13	58
Contact:	: MSgt Steel	AUTOVON:	361-4534

Engine Shop personnel maintain J-85-17A jet engines. The shop repairs approximately two engines per month. Approximately eight quarts of synthetic oil are drained from each engine. Waste synthetic oil (48 gallons/ year) is stored in a 55-gallon drum and disposed as petroleum oil and lubricants (POL) through DRMO. Rinsolve 140 is used for degreasing engine parts. Dirty rags are disposed as municipal waste. A washrack for parts cleaning is provided at building 1360. Shop: Phase Dock Contact: TSgt Johnson Bldg: 1447 AUTOVON: 361-5120

Phase Dock personnel perform minor maintenance and schedule regular inspections on OV-10 and A-10 aircraft. Waste hydraulic fluid (18-21 gallons/ month) and synthetic oil (13-20 gallons/month) are stored in 55-gallon drums. When full, the drums are taken to the accumulation site near Bldg 1541. AMU personnel in Bldg 1541 are responsible for the management of the accumulation site. Large fuel spills are cleaned up by AGE Roadrunner Operations. Small oil spills are cleaned up with Speedy Dry or rags. VAL 800 spray lubricant is used for lubricating aircraft parts. Spent Speedy Dry, used rags, and VAL 800 aerosol cans are disposed as municipal waste.

Shop: Aircraft Maintenance	Bldg: 1541
Contact: 2Lt Banks	AUTOVON: 361-2194

Aircraft Maintenance personnel oversee the operation of the CAMS maintenance function. The shop is responsible for maintaining the accumulation site located next to building 1541. At the time of the survey, the accumulation site and storage drums were maintained in accordance with 40 CFR 261. Personnel transport waste drums (approximately 2 drums/month) as necessary to the DRMO waste storage facility.

Shop: Corrosion Control	Bldg: 5255
Contact: MSgt Koernig	AUTOVON: 361-5275

Shop personnel treat and refinish A-10 and OV-10 aircraft and support equipment. Approximately four aircraft are sanded and repainted each week. All waste paints and thinners (590 gallons/month) are mixed together, put into 55-gallon drums, and disposed through DRMO as hazardous waste. Small parts are stripped inside the shop in two heated paint stripping tanks (220-gallon capacity each). Waste paint stripper (10 gallons per month) is drummed and disposed through DRMO as hazardous waste. The paint stripping tanks are cleaned out every 6-8 months; the waste is drummed and disposed as hazardous waste through DRMO.

Shop personnel also maintain the aircraft washrack. Four aircraft per day are washed. The aircraft soap is applied at a 4:1 to 8:1 dilution ratio. Rinse water from the washrack discharges to an oil/water separator connected to the sanitary sewer system.

Shop: Fuel Systems	Bldg: 5256
Contact: MSgt Barnett	AUTOVON: 361-3134

Shop personnel remove, repair, and replace aircraft fuel system components such as fuel bladders and external tanks. JP-4 drained from fuel tanks (approximately 100 gallons per month) is stored in a bowser for use by the Aerospace Ground Equipment (AGE) Shop. The shop floor drains were dry, and an inspection of the oil/water separator indicated very low flow. b. 355 Equipment Maintenance Squadron (355 EMS)

Shop:NDIB1Contact:TSgt JohnsonAU'

Bldg: 5406 AUTOVON: 361-4477

Shop personnel perform nondestructive inspection processes including magnetic particle, dye penetrant, and x-ray inspection processes. Magnaflux magnetic particle solution (10 gallons/3 months) containing iron fillings is drummed and disposed through DRMO. About 100 gallons per year of 1,1,1-tri-chloroethane (TCA) are drummed and disposed as hazardous waste through DRMO. Dye penetrant (55 gallons/6-8 months) is drummed and disposed of as hazardous waste through DRMO. Spent emulsifier (55 gallons/6-8 months) and developer (55 gallons/6-8 months) are discharged down the drain to the sanitary sewer.

The shop also has a x-ray developing room. Waste fixer (0.5 - 50 gallons/day) is processed through a silver recovery unit before being discharged to the sanitary sewer. The silver recovery cartridge is disposed through DRMO. The developer (0.25 - 50 gallons/day) is discharged down the drain to the sanitary sewer. The shop has a contract with a local linen service for cleaning rags.

Shop: AG	E	Bldg: 4712
Contact:	SMSgt Morris	AUTOVON: 361-5352

AGE personnel service, maintain, and dispatch flight line support equipment. Waste 83282 hydraulic fluid (55 gallons/month) and synthetic bil (55 gallons/month) are stored in 55-gallon drums and disposed as POL through DRMO. Waste JP-4 (83 gallons/quarter) drained from the equipment during servicing operations is drummed and either used at the Fire Training Pit (FTP) or disposed as POL through DRMO. AGE equipment is washed by steam cleaning (without any soap) on the washrack. The water is rinsed down the drain to an oil/water separator connected to the sanitary sewer. Small oil spills are cleaned up with Speedy Dry or rags. Speedy Dry is disposed as municipal waste; used rags are cleaned by a local linen contractor, Industrial Uniform Services. Spray paint is used for touch-up painting. Empty aerosol cans are disposed as municipal waste. Small parts are cleaned in a solvent spray tank containing Rinsolve 140. The tank is changed out every six months; the waste (110 gallons/year) is drummed and disposed as POL through DRMO.

Shop: Armament	B1dg: 4710
Contact: MSgt Tilden	AUTOVON: 361-4432

Armament personnel perform maintenance on A-10 and OV-10 aircraft gun systems and missile launchers. Spray paint is used for stenciling labels on weapons. The empty aerosol cans are disposed as municipal waste. LA 175 soap (55 gallons/quarter) used for cleaning equipment is discharged down the drain to an oil/water separator connected to the sanitary sewer. Dirty rags and coveralls are sent to Industrial Uniform Services for cleaning. Shop: Wheel and Tire Contact: SrA Nalley Bldg: 4809 AUTOVON: 361-3978

Wheel and Tire personnel assemble, disassemble, and clean wheels and tires for A-10 and OV-10 aircraft. The shop has two Rinsolve 140 tanks (120-gallon and 30-gallon capacity) for cleaning bearings and wheels. The tanks are cleaned out every six months. The waste Rinsolve 140 (300 gallons/year) is drummed and disposed as POL through DRMO. TCA is used for cleaning small parts; none is disposed. Dirty rags are sent to Industrial Uniform Services for cleaning.

c. 836 Transportation Squadron (836 TRANS)

Shop:	General & Special Purpose	Maint Bldg: 4	507
Contac	t: Mr Moffitt	AUTOVON:	361-5394

General and Special Purpose Maintenance personnel perform regularly scheduled and unscheduled maintenance on all base vehicles and heavy equipment. Waste transmission fluid (25 gallons/quarter) and motor oil (600 gallons/month) are drummed, stored at the accumulation site located behind Bldg 4507, and disposed as POL through DRMO. The shop has two 25-gallon Rinsolve 140 tanks that are changed out every 60 days. The waste is drummed, stored at the accumulation site, and disposed as POL through DRMO. Lead-acid batteries are rinsed with water and poured down the drain to a limestone neutralization tank which is connected to the sanitary sewer. The limestone sludge is allowed to dry before disposal as hazardous waste through DRMO. Dirty cleaning rags (approximately 40 bundles/month) are disposed as municipal waste. Oil spills are washed down the drain to an oil/water separator connected to the sanitary sewer. Vehicles are washed with Steam-It soap; the water and soap are discharged down the drain to an oil/water separator connected to the sanitary sewer.

Shop:	Allied	i Trades	Bldg: 47	05
Contact	: Mr	Moffitt	AUTOVON:	361-4987

Shop personnel perform painting and bodywork on all base vehicles. The shop mixes only the amount of paint required to accomplish the work. Small amounts of thinner are used for cleaning painting equipment. The shop has a dry paint booth. The filters are changed out once per week and disposed as municipal waste.

Shop:	Refueling Maintenance	Bldg: 48	12
Contac	t: Mr Knight	AUTOVON:	361 - 3288

Shop personnel maintain and repair aircraft refueling vehicles. JP-4 is analyzed by POL personnel. If possible, the fuel is blended back into the base fuel supply. If the fuel is contaminated, it is disposed of as POL through DRMO. Transmission oil and motor oil (1800 gallons/year) are drummed and disposed of as POL through DRMO. CALLA 800 soap and Rinsolve 140 are used for cleaning the vehicles. The waste is discharged to the sanitary sewer through an oil/water separator. Cleaning rags are disposed of as municipal waste. Shop: Fire Truck Maintenance Contact: Mr Scheets Bldg: 4823 AUTOVON: 361-5001

Shop personnel maintain the Davis-Monthan AFB firefighting fleet. Waste oil (55 gallons/month) and antifreeze (5 gallons/month) are drummed and taken to the 836 TRANS accumulation site located at Bldg 4507. Dirty rags are disposed as municipal waste. Spray paint is used for touch-up painting on the equipment. Empty aerosol cans are disposed as municipal waste.

d. 836 Civil Engineering Squadron (836 CES)

Shop: Refrigeration	Bldg: 5309
Contact: TSgt Moore	AUTOVON: 361-4694

Shop personnel maintain air conditioning and refrigeration equipment throughout the base. The cooling tower discharge is released into the air or discharged down the drain to the sanitary sewer. The chemical additives contained in the cooling discharge are inhibitor (NSN 6850 0059 2537 and 6850 0059 2937) and Cooling Tower Treatment CT 320.

Shop: Power Production	Bldg: 5122
Contact: MSgt Terry	AUTOVON: 361-4520

Power Production personnel perform preventive maintenance on diesel generators. Waste hydraulic fluid, diesel, and motor oil (350 gallons/year, total) are drummed, stored at the accumulation site located on the south side of Bldg 5122, and disposed as POL through DRMO. Spray paint is used for touch-up painting. Empty aerosol cans are disposed as municipal waste. Paint thinner is used in process. Dirty rags are disposed as municipal waste.

Shop: Entomology	Bldg: 5319
Contact: TSgt Figueredo	AUTOVON: 361-5368

The Entomology Shop is responsible for pest control throughout the base. This shop does not generate any waste chemicals. All chemicals are used in process. Nutrasol is used to deactivate and clean tanks of chemical residues. When empty tanks and sprayers are cleaned, a small amount of rinse water is discharged to the sanitary sewer system.

Shop: Liquid Fuels	Bldg: 5309
Contact: Mr Rogalski	AUTOVON: 361-4983

Liquid Fuels personnel maintain stationary fuel systems and clean aboveground and underground storage tanks. Five aboveground tanks at the bulk storage area are cleaned every five years on a rotating basis. There are an additional 45 underground storage tanks which are inspected annually and physically entered every three years. The main source of waste is the JP-4 fuel/sludge mixture generated during tank cleaning operations. Each cleaning operation generates about 275-300 gallons of sludge which is drummed and disposed as POL through DRMO. Shop: Heating PlantBldg: 5309Contact: Mr EstradaAUTOVON: 361-3139

Shop personnel service, maintain and repair high- and low-pressure steam boilers and hot water boilers. Inorganic phosphate, sodium bisulfite, and cyclohexylamine are used to control scaling and corrosion. Approximately 200 gallons per week of these chemicals are used for the blowdown of boiler water tanks. An acid vat, located near Building 5309, is used for descaling heating coils. About 115 gallons of sulfamic acid is used per month in the vat. The acid is diluted and discharged to a marble chip neutralization tank before being discharged to the sanitary sewer system.

e. 868 Tactical Missile Maintenance Squadron (TMMS)

Shop: A	GE	Bldg: 7	2
Contact:	TSgt Walker	AUTOVON:	361-3201

Shop personnel perform all maintenance and periodic inspections on AGE assigned to 868 TMMS. Waste diesel fuel (20 gallons/month), 7808 oil (20 gallons/month), lube oil (220 gallons/year), and other waste oils and fluids are segregated in 55-gallon drums and disposed as POL through DRMO. Dirty rags and Speedy Dry are put into plastic bags and disposed as municipal waste. Batteries (6/year) are taken to the TRANS Battery Shop for electrolyte neutralization and disposal.

Shop: Corrosion Control	Bldg: 72
Contact: TSgt Korzenaski	AUTOVON: 361-5199

Shop personnel perform corrosion treatment and paint associated parts and support equipment assigned to 868 TMMS. Waste polyurethane paint, thinner, and MEK (5 gallons/2 months) are stored in a 5-gallon can and disposed as hazardous waste through DRMO. Empty aerosol spray cans and paint brushes are disposed as municipal waste. Waste oil and fluid (110 gallons/3 months) are drammed and disposed of as POL through DRMO.

Shop: Vehicle Maintenance	Bldg: 72
Contact: TSgt Brown	AUTOVON: 361-4994

Snop personnel perform routine maintenance on all vehicles and heavy equipment assigned to 868 TMMS. Waste engine oil (350 gallons/2 months) is stored in a 550-gallon underground waste storage tank and pumped out every two months by a contractor. Dextron II transmission fluid (125 gallons/year) is stored in 55-gallon drums and disposed through DMRO. The shop has one 30-gallon Safety Kleen degreasing tank that is serviced every two months by the contractor. Biogenic 5E 377C Soap (110 gallons/year, diluted 20:1) used for steam cleaning parts and equipment is discharged down the drain to an oil/water separator connected to the sanitary sewer. f. 41 Electronic Combat Squadron (ECS)

Shop: Fuel System Repair Contact: SrA Winter Bldg: 136 AUTOVON: 361-4640

Shop personnel clean and repair fuel systems for the EC 130H aircraft. Waste JP-4 (3 gallons/month) is taken to the 41 ECS accumulation point (Bldg 125) and poured into a 550-gallon waste fuel bowser. The bowser is pumped out periodically by a contractor. Petroleum lubricants (2 gallons/year) are used for sealing O-rings. MEK is used in process for cleaning metal surfaces and removing fuel tank sealant from parts and equipment. Dirty rags and Speedy Dry are disposed as municipal waste. General purpose soaps are used for cleaning parts and equipment. Batteries from flashlights and electronic equipment are disposed as municipal waste.

Shop:	Hydraulic	Bldg: 136	
Contac	t: Sgt Mundy	AUTOVON: 361-5847	

Shop personnel inspect, service, repair, overhaul, and bench check hydraulic and pneumatic components. Waste hydraulic fluid (2 gallons/month) is accumulated in 55-gallon drums, taken to the 41 ECS accumulation point, and disposed through DRMO. The shop has a 160-gallon Rinsolve 140 tank that is changed out every six months. The waste is drummed, taken to the 41 ECS accumulation site, and disposed as POL through DRMO. Dirty rags are disposed as municipal waste. There are no floor drains in the shop.

Shop: Isochronal	Bldg: 136	
Contact: SSgt Linkous	AUTOVON: 361-5845	

Shop personnel perform periodic inspections and repairs on C-130 aircraft. There are no wastes generated in the shop.

Shop: Electric Bldg: 129		129	
Contact	: TSgt Van Vranken	AUTOVON	: 361-5878

Shop personnel inspect and maintain electrical systems on the C-130 aircraft. Liquid oxygen (200 gallons/month) is used in process. Dibromomethane fire agent (5 gallons/month) is put in the aircraft. MEK (1 gallon/month) is used in process to clean CO_2 bottles. Turbine engine oil (2 gallons/year) and other waste oil are put into the waste oil bowser located at the 41 ECS accumulation site. Speedy Dry is disposed as municipal waste. Dirty cleaning rags are either washed and reused or disposed as municipal waste.

Shop: Propulsion	Bldg: 133
Contact: TSgt Tiensvold	AUTOVON: 361-5741

Shop personnel build-up and repair jet engines for C-130 aircraft. 23699 engine oil (110 gallons/month) and hydraulic fluid (55 gallons/2 months) are drummed, taken to the 41 ECS accumulation point and disposed as POL through RMO. Toluene and MEK are used in process for wiping down parts. PD-680 (23 gallons/2 months) is drummed, taken to 41 ECS accumulation point, and disposed through DRMO as hazardous waste. Bio-Franklin soap (2 cups/3 gallons water) is used for cleaning the floor. The shop floor drains have been covered. Dirty rags are disposed as municipal waste. Shop: Corrosion Control Contact: MSgt Thunstrum Bldg: 136 AUTOVON: 361-4151

Shop personnel perform corrosion treatment, paint aircraft, do touch-up painting on the flight line, associated aircraft parts and support equipment, and wash aircraft. Polyurethane and enamel paint (6-8 gallons/ month) and thinners (5 gallons/month) are stored in 5-gallon cans, taken to the 41 ECS accumulation site, and disposed as hazardous waste through DRMO. Filters (36/month) used in the dry paint booth are put in a cardboard box and disposed as municipal waste. Soap (440 gallons/month) is discharged down the drain to an oil/water separator connected to the sanitary sewer. Dirty rags are disposed as municipal waste.

Shop: AGE	B1dg: 125	
Contact: SSgt Holyfield	AUTOVON: 361-3988	

Shop personnel service, maintain, and dispatch flight line support equipment. Hydraulic fluid (55 gallons/month), synthetic engine oil (55 gallons/month), and motor oil (55 gallons/month) are drummed, taken to the 41 ECS accumulation site, and disposed as POL through DRMO. Rinsolve 140 is drummed, taken to the 41 ECS accumulation site, and disposed as POL through DRMO. PD-680 (4 gallons/month) is drummed and disposed as hazardous waste through DRMO. Dirty rags are disposed as municipal waste. Speedy Dry is put into a plastic bag and disposed as municipal waste. Aircraft soap (55 gallons/ month, diluted 20:1) is discharged down the drain to an oil/water separator connected to the sanitary sewer. The oil/water separator is pumped out by a contractor every four months. Batteries (2-3/month) are taken to the TRANS Battery Shop for electrolyte neutralization and disposal.

Shop: A	lircraft Maintenance	Bldg: 139	
Contact:	MSgt Bagwell	AUTOVON: 361-5995	

Shop personnel maintain and issue tools and equipment required to perform flight line maintenance on C-130 aircraft. PD-680 (5 gallons/2 months) is stored in a 5-gallon can, taken to the 41 ECS accumulation site, and disposed as hazardous waste through DRMO. Waste hydraulic fluid (1 gallon/ month), engine oil (15 gallons/month), and turbine oil (2 gallons/month) are taken to the 41 ECS accumulation point and disposed as POL through DRMO. Dirty rags and Speedy Dry are disposed as municipal waste.

g. Aerospace Maintenance and Regeneration Center (AMARC)

Shop: Washrack		Bldg: 7425	
Contac	t: Mr Wilson	AUTOVON:	361-3263

Corrosion/paint personnel are responsible for light painting and corrosion prevention on AMARC aircraft. The shop generates one 55-gallon drum/year containing 50% paint stripper, 40% paint residue, and 10% plastic and rags. The waste is disposed as hazardous waste through DRMO. Shop: Materials Lab Contact: Mr Stutz Bldg: 7615 AUTOVON: 361-3387

Shop personnel analyze hydraulic and engine oil for particulates and sediment. 1,1,1-Trichloroethane (TCA) is used in hydraulic fluid analysis. Waste hydraulic fluid containing TCA (30 gallons/month) and engine oil (30 gallons/month) are drummed separately and disposed through DRMO. The hydraulic fluid is disposed as hazardous waste through DRMO, and the engine oil is disposed as POL through DRMO. Freon (5 gallons/month) used for washing equipment is stored in a 5-gallon can and disposed as hazardous waste through DRMO. Nitric acid (1 gallon/month) and hydrochloric acid (1 gallon/month) are used in process.

Shop:	Pneudraulics	Bldg: 1	
Contac	t: Mr Berry	AUTOVON	: 361 - 5636

Pneudraulics shop personnel maintain aircraft pneudraulic components. Waste hydraulic fluid (440 gallons/year) is drummed and disposed as POL through DRMO. Rinsolve 140 (165 gallons/year) is drummed and disposed as POL through DRMO. Dirty rags are disposed as municipal waste.

Shop: NDI	Bldg: 7401	
Contact: Mr Machado	AUTOVON: 361-3670	

Shop personnel perform nondestructive inspections on AMARC aircraft structural components using dye penetrant, magnetic particle and x-ray inspection methods. The x-ray process is a real-time x-ray process. No developer or fixer is used.

Dye penetrant inspection is an open system which uses penetrant, emulsifier, and developer. Parts are sequentially dipped into the penetrant and the emulsifier, then rinsed and allowed to dry. Next, the part is dipped into the developer, passed through a drying oven, inspected, and rinsed. Spent penetrant (55 gallons/7 years), developer (55 gallons/7 years), and emulsifier (55 gallons/7 years) are drummed and disposed as hazardous waste through DRMO. Magnetic particle solution (30 gallons/year) is drummed and disposed through DRMO.

Shop: S	mall Parts Cleaning	Bldg: 7401
Contact:	Mr Gunderson	AUTOVON: 361-5402

Shop personnel clean small parts from AMARC aircraft. The shop has a 700-gallon hot paint remover tank (Mil R-83936B) and a 700-gallon carbon remover tank that are changed out every 5 years. The wastes are drummed and disposed as hazardous waste through DRMO. The shop also has a 400-gallon alkaline rust remover tank (NaOH) and a 200-gallon TCA vapor degreasing tank that are never changed out.

Glass and plastic beads used for blasting paint from aircraft parts are disposed as municipal waste. The wastes have been analyzed for hazardous waste characteristics and determined to be nonhazardous. Rinsolve 140 is used in a tank in the solvent room for degreasing parts. When dirty, the Rinsolve 140 is added to soap (NSN 6850-01-1817178). The mixture makes a paste which is used for cleaning parts on the washrack. Another soap (30 gallons/month, NSN 6850-01-2378004) is used in a steam cleaner on the washrack for cleaning parts. The waste is discharged down the drain to an oil/water separator connected to the sanitary sewer.

Phosphoric acid (5 gallons/year) is used for cleaning engine bolts. The waste is drummed and disposed as hazardous waste through DRMO.

h. 836 AD Hospital

Shop:	Clinical/Pathology Lab	Bldg: 40	00
Contac	t: Sgt Powell	AUTOVON:	361-4732

Shop personnel perform clinical analysis for the hospital. Xylene (2-3 gallons/month) is drummed, stored for up to 90 days, and taken to DRMO for disposal as hazardous waste. Alcohol (12 ounces/day) is either used in process or discharged down the drain to the sanitary sewer. Formalin (10%, 200 gallons. year) is discharged down the drain to the sanitary sewer.

Shop: Dental Clinic	Bldg: 400
Contact: MSgt Soufert	AUTOVON: 361-5005

Shop personnel perform dental care for military, retired military, and dependent personnel. Spent x-ray fixer (1-2 gallons/month) is processed through a silver recovery unit before being discharged down the drain to the sanitary sewer. Developer (1-2 gallons/month) is discharged down the drain to the sanitary sewer. Vapo-steril solution (2 gallons/month), dialdehyde solution (10 gallons/month), ultrasonic cleaner (1 gallon/month), Vacuucleaner (40 gallons/ month), and dental wax solvent (6 quarts/year) are discharged down the drain to the sanitary sewer. Chloroform (1 cup/year) and acetone (1 pint/ year) are used in process. Potassium cyanide (<1 pint/year) is diluted with water before being discharged down the drain to the sanitary sewer.

i. 355 Component Repair Squadron (355 CRS)

Shop: Pneudraulics	Bldg: 5045
Contact: TSgt Amick	AUTOVON: 361-4331

Pneudraulics personnel inspect, service, repair, overhaul, and bench check hydraulic and pneumatic components on A-10 and OV-10 aircraft. The shop has one Rinsolve 140 tank for parts cleaning and one hydraulic test stand. Spent Rinsolve 140 (160 gallons/quarter) and waste hydraulic fluid (9 gallons/ quarter) are drummed separately and disposed as POL through DRMO. Used rags are disposed as municipal waste.

Shop: Propulsion	Bldg: 52	45
Contact: MSgt South	AUTOVON:	361-5376

Shop personnel perform maintenance on TF34 jet engines, GTCP36-50 auxiliary power units, non-powered AGE, and engine accessories. The shop services about 16 engines per month. Waste JP-4 (10 gallons/month) is drummed for disposal as POL through DRMO. Empty aerosol cans are disposed as municipal waste. The chemical cleaning room has four tanks (165-gallon capacity each) containing Rinsolve 140 (Stoddard Solvent), carbon remover, paint stripper (BB3100), and hot water. The tanks are drained and cleaned on a quarterly basis. The waste chemicals are pumped from the tanks into 55-gallon drums and disposed of through DRMO as hazardous waste. The hot water tank drains into an oil/water separator connected to the sanitary sewer system. Most of the waste routinely generated in this area results from drag-out (dripping) of various chemicals from parts dipped into the tanks. Upon inspection, there was evidence of carbon remover in the oil/water separator.

j. 836 Combat Support Group (836 CSG)

Shop:	Auto Hobby	Bldg: 45	31
Contact	t: Mr Booker	AUTOVON:	361-3614

The Auto Hobby Shop is housed in a "garage type" building containing equipment for maintenance and repair of privately owned vehicles. Waste oil (250 gallons/month) is drained from vehicles into drip pans and poured into 55-gallon drums. The drums are emptied into a 1000-gallon underground waste oil storage tank. The waste oil is pumped out every five to six weeks by Metro Oil Company. Morale, Welfare, and Recreation (MWR) receives 8 cents/gallon for the oil. The shop has two Safety Kleen degreasing units (20-gallon capacity) and one Safety Kleen carburetor cleaning unit (20-gallon capacity) that are serviced by the contractor twice per month. Waste antifreeze (10 gallons/month) is disposed through Metro Oil Company. Albrite carwash soap (2.5 gallons/month, diluted 50:1) and Roughneck tire cleaner (3 gallons/month, diluted 30:1) are discharged down the drain to an oil/water separator connected to the sanitary sewer.

The shop has a dry paint booth. Paint filters (20/month) are disposed as municipal wastr. The intake filters (20) are cleaned and reused. All paint wastes are taken home by the patrons; none is disposed by the shop.

k. 355 Aircraft Generation Squadron (355 AGS)

Shop: 355 AMU	Bldg: 5251
Contact: MSgt Williams	AUTOVON: 361-5025

Shop personnel perform general aircraft maintenance and servicing. Spray cans of Citrikleen are used for cleaning small parts. The empty aerosol cans are disposed of as municipal waste. Waste hydraulic fluid (55 gallons/ month) and waste synthetic oil (55 gallons/month) are drummed and disposed as POL through DRMO. Waste JP-4 is collected in a fuel bowser and turned over to the Fire Department for use at the fire training pit for training purposes.

III. RESULTS

A. Wastewater Characterization

1. Flows. Wastewater flows are included in this report to aid in the design of a treatment system for industrial effluent. Daily flow rates are calculated using data obtained using Palmer-Bowlus flumes, water meters and ISCO Flow Meters. Flow results are presented in Table 6. Figure 3 is a sketch of the distribution of flow through the base.

2. Wastewater Analytical Results. In this section the results of the wastewater characterization study will be reviewed site by site. Each site will be evaluated as if regulated under the Pima County permit 2R 10760, however, as previously mentioned, only three locations are regulated. MH 111 (our site number 16, manhole 115), MH 376 (our site number 42) and MH 337 (our site 50, manhole 342). Complete site-by-site analytical results are included as Appendix G.

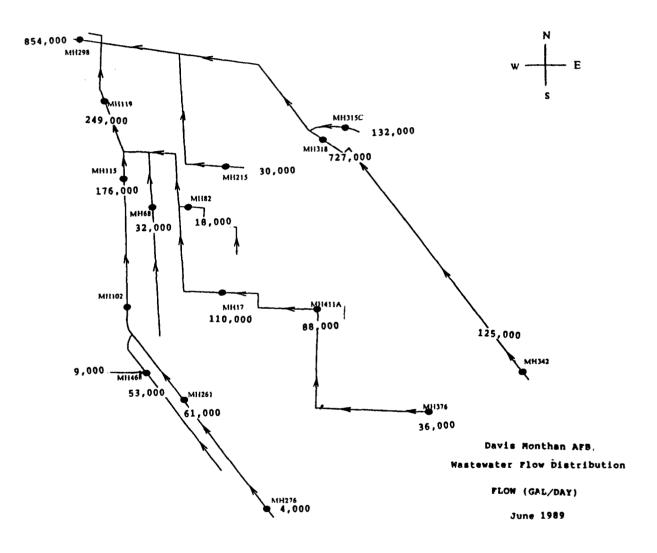


Figure 3. Wastewater Flow Distribution

Table 6. I	low Res	sults
------------	---------	-------

MH	SITE DESCRIPTION	FLOW (GAL/DAY)
17	Base Exchange (7th & Granite Streets)	110,000
68	3rd & Durango Streets	32,000
82	BX Service Station (Commanche Street)	18,000
102	1st & Jeddito Streets	34,000
115	1st & Bola Streets	176,000
119	Sunglow Road	249,000
215	Commissary/BEE Shop (7th & Arizola Streets)	30,000
261	Transportation (Phoenix & Flagstaff Streets)	61,000
276	41st Line (Phoenix Streets)	4,000
298	Sunglow Road (Near Swan Gate)	854,000
315-C	Frank-Borman Housing West Field (North Fence)	132,000
318	Frank-Borman Housing West Field (Quijota Blvd)	727,000
342	AMARC	125,000
376	Hospital (Alamo Avenue & Oro Street)	36,000
411-A	Lowell-Smith Housing (Ironwood Street)	88.000
468	Flight Line (Douglas and Phoenix Sts.	53,000
WM	Aircraft Washrack (Phoenix & Douglas Streets)	9,000

a. Main Base Sewers

(1) Site 1, MH 123: Sewage from main base, housing, AMARC, and other industrial areas passes through manhole 123. The average phenol concentration (29.4 μ g/L) met the current limit (50 μ g/L). However, this concentration exceeded the proposed limit of 25 μ g/L. The phenol concentration measured by EPA Method 604 is 8.2 μ g/L. This method identifies only toxic phenolic compounds while EPA Method 420 is a screen of all phenolic and nontoxic phenoxy compounds. The BOD/COD ratio (122/309 mg/L) was .39. Volatile organic compounds (VOCs) present include methylene chloride (53 μ g/L) and 1,3-dichlorobenzene (14 μ g/L). The average oil and grease concentration (75.3 mg/L) was below the limit (100 mg/L). All regulated toxic metal concentrations were below the limits.

(2) Site 2, MH 100, Arizola Ave: Sewage from main base and housing passes through manhole 100. The average phenol concentration (43.7 μ g/L) met the current limit (50 μ g/L). However, this concentration exceeded the proposed limit of 25 μ g/L. The phenol concentration measured by EPA Method 604 was 15 μ g/L. The BOD/COD ratio (169/645 mg/L) was 0.26. Volatile organic compounds (VOCs) were present at low concentrations. The average oil and grease concentration (17 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.12 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations are below the limits. The wastewater flowing through manhole 100 was characterized by a high suspended solids, chemical oxygen demand, and moderate biochemical oxygen demand. Average total phenol (EPA Method 420) and phenol (EPA Method 604) suggested that most of the phenols were biodegradable. These were usually phenoxy compounds found in soaps or cleaning compounds. (3) Site 3, MH 215, Commissary, building 2615: The Commissary is connected to the sanitary sewer system at manhole 215. The phenol concentration (55 μ g/L) exceeded the current limit (50 μ g/L). The phenol concentration measured by EPA Method 604 was 29 μ g/L. The BOD/COD ratio (141/530 mg/L) was 0.27. Volatile organic compounds (VOCs) were not detectable. The average oil and grease concentration (4.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.015 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(4) Site 4, MH 77, Burger King, building 2521: Burger King is connected to the sanitary sewer system at manhole 77. The phenol concentration (74 μ g/L) exceeded the current limit (50 μ g/L). The phenol concentration measured by EPA Method 604 was 20 μ g/L. The COD/BOD ratio (122/480 mg/L) was 0.25. The average oil and grease concentration (4.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(5) Site 5, MH 17, BX, building 2441: The BX is connected to the sanitary sewer system at manhole 2441. EPA Method 420 was not performed due to an insufficient sample. The phenol concentration measured by EPA Method 604 is 13 μ g/L. The BOD/COD ratio (209/200 mg/L) of 1.0 showed the wastewater was domestic. Volatile organic compound (VOC) concentrations were below the analytical detection limit. The average oil and grease concentration (1.9 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.02 mg/L) was below the limit (1 mg/L).

(6) Site 6, Laundry Facility, building 5000: The laundry facility is connected to the sanitary sewer system at an undesignated manhole near building 5000. The phenol concentration (40 μ g/L) met the current limit (50 μ g/L). However, this concentration exceeded the proposed limit of 25 μ g/L. The phenol concentration measured by EPA Method 604 was 33 μ g/L. The BOD/COD ratio (224/600 mg/L) was 0.37. The average oil and grease concentration (896 mg/L) exceeded the limit (100 mg/L). The average cyanide concentration (0.015 mg/L) was below the limit (1 mg/L). The wastewater flowing from the laundry facility is characterized by a moderate chemical oxygen demand and biochemical oxygen demand. High oil and grease concentrations along with low petroleum hydrocarbon concentrations point more to a greasy waste typical of food service activities. High boron and surfactant levels are typical of laundry facility wastes.

(7) Site 7, MH 119, N. of North Ramp: A nearly equal amount of wastewater from industrial area and main base passes through manhole 119. The average phenol concentration ($30 \mu g/L$) met the current limit ($50 \mu g/L$). However, this concentration exceeded the proposed limit of 25 $\mu g/L$. The phenol concentration measured by EPA Method 604 was 13 $\mu g/L$. The BOD/COD ratio (166/548 mg/L) was 0.30. Volatile organic compounds (VOCs) present included methylene chloride (24.6 $\mu g/L$). The average oil and grease concentration (27.3 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits. Methylene chloride is used in solvents and paint strippers; however, shop personnel stated it is not discharged to the sanitary sewers. (8) Site 8, MH 270C, Auto Hobby Shop: The Auto Hobby Shop is connected to the sanitary sewer system at manhole 270C. The phenol concentration (59 μ g/L) exceeded the current limit (50 μ g/L). The BOD/COD ratio (204/850 mg/L) was 0.24. Volatile organic compounds (VOCs) present included ethyl benzene (7.0 μ g/L) found in gasoline. The average oil and grease concentration (96 mg/L) approached the limit (100 mg/L).

(9) Site 9, MH 23, NCO Club, building 4455: The NCO Club and the Golf Course Snack Bar contribute to the flow in manhole 23. The phenol concentration (37 μ g/L) met the current limit (50 μ g/L). However, this concentration exceeded the proposed limit of 25 μ g/L. The BOD/COD ratio (255/975 mg/L) was 0.26. The oil and grease concentration (4 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.005 mg/L) was below the limit (1 mg/L).

(10) Site 10, Dining Facility, building 4100: The dining facility is connected to the sanitary sewer system through a grease trap. This sample was taken from the clean-out portal. The average phenol concentration (15 μ g/L) met the current limit (50 μ g/L). This concentration also met the proposed limit of 25 μ g/L. The BOD/COD ratio (412/1500 mg/L) was 0.27. The average oil and grease concentration (40,800 mg/L) exceeded the limit (100 mg/L). High concentrations of oils and grease can be attributed to disposal of waste oil and fat through the sewer system. Cyanide was not detected. All regulated toxic metal concentrations were below the limits.

(11) Site 11, Oil/water separator, 868 TMMS AGE, Corrosion Control, building 72: Separator effluent contained high surfactant (150 mg/L) and moderate phenol (28 mg/L) concentrations. The BOD/COD ratio (467/900 mg/L) was 0.52.

(12) Site 12, Oil/water separator, 868 TMMS, Vehicle Maintenance, building 73: Separator effluent contained high surfactant (300 mg/L) and high phenol (1150 μ g/L) concentrations. The BOD/COD ratio (35,027/45,000 mg/L) was 0.78. The oil and grease (912 mg/L) and total extractable petroleum hydrocarbons (512 mg/L) concentrations were high. Small amounts of methylene chloride (8.1 μ g/L) and 1,2-dichloroethane (7.4 μ g/L) were present in the waste. All regulated toxic metal concentrations were below the limits. Results suggest that a phenoxyl surfactant is being used for vehicle washing and that emulsified petroleum products are being washed into the sewer through the oil separator.

(13) Site 13, Oil/water separator, 868 TMMS, building 74: Total phenols (<10 μ g/L) were low. The BOD/COD ratio (17/500 mg/L) was 0.034. Oil and grease (0.6 mg/L) and total extractable petroleum hydrocarbons (0.6 mg/L) concentrations were low. Small amounts of 1,2-dichloroethane (13 μ g/L) and 1,1,1-trichloroethane (13 μ g/L) were present in the waste. All regulated toxic metals concentrations were below the limits.

(14) Site 14, Oil/water separator, 23 CAMS, Propulsion Washrack, building 1360: The total phenol (28 μ g/L) concentration was low. The BOD/COD ratio (86/500 mg/L) was 0.17. Oil and grease (42 mg/L) and total extractable petroleum hydrocarbons (8.4 mg/L) concentrations were low. Large amounts of 1,3-dichlorobenzene (2989 μ g/L) and 1,2-dichloroethane (896 μ g/L)

25

were present in the wastewater. These compounds are typically found in carbon removers and levels were high enough to suggest improper disposal. All regulated toxic metal concentrations were below the limits.

(15) Site 15, Oil/water separator, Entomology Shop, building 73: Separator effluent contained phenol (183 μ g/L). The BOD/COD ratio (129/500 mg/L) was 0.26. Oil and grease (3.4 mg/L) and total extractable petroleum hydrocarbons (1.3 mg/L) concentrations were low. Small amounts of methylene chloride (4.7 μ g/L), ethylbenzene (14 μ g/L), and toluene (2.4 μ g/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.

b. Industrial Area Sewers

(16) Site 16, MH 115, First Street: Sewage from most of the flight line industrial shops passes through manhole 115. The flow through this manhole is regulated under the Pima County Pretreatment Discharge Ordinance. The average phenol concentration $(21.8 \ \mu g/L)$ met the current limit $(50 \ \mu g/L)$. This concentration also met the proposed limit of 25 $\mu g/L$. The phenol concentration measured by EPA Method 604 was 6.9 $\mu g/L$. The BOD/COD ratio $(62/310 \ mg/L)$ was 0.2. Volatile organic compounds (VOCs) present included 1,3-dichlorobenzene (one-day concentration of $64 \ \mu g/L$) and 1,4-dichlorobenzene (one-day concentration of $31 \ \mu g/L$). These possibly could be originating from site 14, the CAMS Propulsion Branch washrack. The average oil and grease concentration (.01 mg/L) was below the limit (100 mg/L). The average cyanide concentration (.01 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(17) Site 17, MH 258, Phoenix St: Sewage from industrial shops located on the NE side of Phoenix St. passes through MH 258. The average phenol concentration (27.7 μ g/L) met the current limit (50 μ g/L). This concentration exceeded the proposed limit of 25 μ g/L. The phenol concentration measured by EPA Method 604 was 26 μ g/L. The BOD/COD ratio (167/1082 mg/L) was 0.15. Several volatile organic compounds (VOCs) were present at low concentrations. The average oil and grease concentration (7.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(18) Site 18, MH 274A, SE Phoenix St.: Sewage from the F-16 alert area and EC-130H aircraft industrial shops passes through manhole 274A. The phenol concentration (<10 μ g/L) met the current limit (50 μ g/L). This concentration also met the proposed limit of 25 μ g/L. The phenol concentration measured by EPA Method 604 is <10 μ g/L. The COD/BOD ratio (25/425 mg/L) was 0.06. The oil and grease concentration (3.0 mg/L) was below the limit (100 mg/L). The cyanide concentration (0.005 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(19) Site 19, Corrosion Control, building 5255: The 23 CAMS Corrosion Control Shop is connected to the sanitary sewer system at an undesignated manhole. The phenol concentration (100 μ g/L) exceeded the current limit. The BOD/COD ratio (72/<1mg/L) was not calculated as the COD result was questionable. The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metals concentrations were below the limits. The phenol was probably from washing, not paint stripping, since with paint stripping methylene chloride usually can be found also. (20) Site 20, 41 ECS Engine Shop, building 133: Sewage from the 41 ECS Engine Shop is connected to the sanitary sewer system at an undesignated manhole. The phenol concentration (50 μ g/L) equaled the current limit (50 μ g/L). However, this concentration exceeded the proposed limit of 25 μ g/L. The BOD/COD ratio (51/550 mg/L) was 0.09. Volatile organic compound (VOCs) concentrations were below the analytical detection limit. The oil and grease concentration (28.8 mg/L) was below the limit (100 mg/L). All regulated toxic metal concentrations were below the limits.

(21) Site 21, Oil/water separator, Fire Station, building 4821: Separator effluent contains phenol (15 μ g/L). The BOD/COD ratio (7/450 mg/L) of 0.020 was questionable. Oil and grease (51.2 mg/L) and total extractable petroleum hydrocarbons (44.8 mg/L) concentrations were low. Volatile organic compound (VOC) concentrations were below the analytical detection limit. All regulated toxic metal concentrations were below the limits.

(22) Site 22, Oil/water separator, Bulk Fuel Storage, building 4821: Separator effluent contained no phenol (<10 μ g/L). The BOD/COD ratio (1.1/40 mg/L) indicates the wastewater is not concentrated. Oil and grease (28.6 mg/L) and total extractable petroleum hydrocarbons (27.4 mg/L) concentrations were low. A trace of methylene chloride (0.5 μ g/L) was present in the wastewater. All regulated toxic metal concentrations were below the limits.

(23) Site 23, Oil/water separator, 41 ECS AGE shop, building 125: Separator effluent contained phenol (105 μ g/L). The BOD/COD ratio (1585/6000 mg/L) was 0.26. Oil and grease (10.8 mg/L) and total extractable petroleum hydrocarbons (5.7 mg/L) concentrations were low. Trans-1,2-dichloroethane (3 μ g/L) was present in the wastewater. Surfactant (1900 mg/L) levels were high. All regulated toxic metal concentrations were below the limits.

(24) Site 24, Oil/water separator, Fire Truck Maintenance, building 4823: Separator effluent contained high surfactant (1750 mg/L) and high phenol (820 ug/L) concentrations. The BOD/COD ratio (6,150/9,000 mg/L) was 0.68 oil and grease (1176 mg/L) and total extractable petroleum hydrocarbons (256 mg/L) concentrations were high. Small amounts of benzene (0.8 μ g/L) and 1,1,1-trichloroethane (5.5 μ g/L) were present in the wastewater. All regulated toxic metal concentrations were below the limits. High total phenol and surfactant concentrations, with traces of zinc and titanium, suggest the use of an aggressive cleaner, like aircraft surface contact cleaner.

(25) Site 25, Oil/water separator, 355 AGS AMU, building 4809: Separator effluent contained low surfactant (14 mg/L) and moderate phenol (91 µg/L) concentrations. The BOD/COD ratio (401/2,250 mg/L) was 0.18. Oil and grease (72.8 mg/L) and total extractable petroleum hydrocarbons (42 mg/L) concentrations were moderately low. Small amounts of 1,1,1-trichloroethane (5.9 µg/L), 1,2-dichloroethane (5.3 µg/L), and chlorobenzene (49 µg/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.

(26) Site 26, Oil/water separator, 355 EMS AGE, building 4712: Separator effluent contained high surfactant (210 mg/L) and high phenol (510 μ g/L) concentrations. The BOD/COD ratio (298/1,400) was 0.14. Oil and grease (75.2 mg/L) and total extractable petroleum hydrocarbons (66 mg/L) concentrations were high. Small amounts of trans-1,2-dichloroethane (6.7 μ g/L) and a significant concentration of methylene chloride (501 μ g/L) were present in the wastewater. The cadmium level (481 μ g/L) exceeded the permit limit. Paint stripping wastes typically contain cadmium, zinc, methylene chloride and phenols. All other regulated toxic metal concentrations were below the limits.

(27) Site 27, Oil/water separator, 836 TRANS Refueling Maintenance, building 4812: Separator effluent contained moderate surfactant (110 mg/L) and phenol (50 μ g/L) concentrations. The BOD/COD ratio (381/1,000 mg/L) was 0.38. Oil and grease (80.4 mg/L) and total extractable petroleum hydrocarbons (75.6 mg/L) concentrations were approaching the limit. Volatile organic compounds detected in the wastewater included: benzene (234 μ g/L), 1,3-dichlorobenzene (627 μ g/L), ethylbenzene (607 μ g/L), and toluene (367 μ g/L). These volatiles, except for 1,3-dichlorobenzene, a solvent, were from fuel. All regulated toxic metal concentrations were below the limits.

(28) Site 28, Oil/water separator, Refueling Maintenance, building 4815: Separator effluent contained low surfactant (29 mg/L) and low phenol (20 μ g/L) concentrations. The BOD/COD ratio (49/200 mg/L) was 0.25. Oil and grease (2.6 mg/L) and total extractable petroleum hydrocarbons (2.6 mg/L) concentrations were low. All regulated VOCs concentrations were within the limits. All regulated toxic metal concentrations were below the limits.

(29) Site 29, Oil/water separator, 355 EMS AGE, building 4712: No phenols analyses were recorded. The BOD/COD ratio (298/1400 mg/L) was 0.21.

(30) Site 30, Oil/water separator, 355 CRS Fuel Systems Repair, building 5256: Separator effluent contained low surfactant (<0.1 mg/L) and phenol (<10 μ g/L) concentrations. The BOD/COD ratio (19/250 mg/L) was 0.08. Oil and grease (<0.3 mg/L) and total extractable petroleum hydrocarbons (<0.3 mg/L) concentrations were low. Small amounts of methylene chloride (4.3 μ g/L) and trichlorofluoromethane (4.7 μ g/L) were present in the waste. All regulated toxic metal concentrations were below the limits.

(31) Site 31, Oil/water separator, 355 CRS Fuel Systems Repair, building 5256: Separator effluent contained low surfactant (1.3 mg/L) and phenol (<10 μ g/L) concentrations. The BOD/OD ratio (36/500 mg/L) was 0.07. Oil and grease (2.9 mg/L) and total extractable petroleum hydrocarbons (1.3 mg/L) concentrations were low. Small amounts of methylene chloride (5.6 μ g/L) and trichlorofluoromethane (4.1 μ g/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.

(32) Site 32, Oil/water separator, 23 CAMS Corrosion Control, building 5255: Separator effluent contained low surfactant (0.4 mg/L) and high phenol (243 µg/L) concentrations. The BOD/COD ratio (53/600 mg/L) was 0.09. Oil and grease (2.7 mg/L) and total extractable petroleum hydrocarbons (2.9 mg/L) concentrations were low. Several VOCs were present in the wastewater including: methylene chloride (2993 µg/L), tetrachloroethylene (153 µg/L), ethylbenzene (308 µg/L), toluene (356 µg/L), cis-1,2-dichloroethene (30 µg/L), and 1,4-dichlorobenzene (4.4 µg/L). All regulated toxic metals concentrations were below the limits. These results suggest that paint stripper was being washed off parts and into the drains and the separator, contrary to what shop personnel told the hazardous waste survey team. (33) Site 33, Oil/water separator, 255 AGS AMU, building 5251: Separator effluent contained low surfactant (3.6 mg/L) and phenol (42 µg/L) concentrations. The BOD/COD ratio (45/200 mg/L) was 0.23. Oil and grease (6.2 mg/L) and total extractable petroleum hydrocarbons (4.6 mg/L) concentrations were low. A small amount of methylene chloride (29 µg/L) was present in the wastewater. All regulated toxic metals concentrations were below the limits.

(34) Site 34, Oil/water separator, 355 CRS Propulsion Branch, building 5245: Separator effluent contained high surfactant (1650 mg/L) and phenol (380 µg/L) concentrations. The BOD/COD ratio (1,633/17,500 mg/L) was 0.09. Oil and grease (206.4 mg/L) and total extractable petroleum hydrocarbons (51.2 mg/L) concentrations were high. Small amounts of methylene chloride (12 µg/L), trans-1,2-dichloroethene (11 µg/L), 1,1-dichloroethene (7.5 µg/L), and 1,1,1-trichloroethane (7.7 µg/L) were present in the wastewater. Large concentrations of toxic metals including zinc (64,790 µg/L), cadmium (110 µg/L), lead (1,190 µg/L), and titanium (13,000 µg/L) were present in the wastewater. The zinc, cadmium, and lead levels exceeded the permit limits.

(35) Site 35, Oil/water separator, 355 AGS AMU, building 5430: Separator effluent contained low surfactant (18.5 mg/L) and high phenol (157 µg/L) concentrations. The BOD/COD ratio (430/900 mg/L) was 0.47. Oil and grease (568 mg/L) and total extractable petroleum hydrocarbons (136 mg/L) concentrations were high. Small amounts of methylene chloride (5.0 µg/L) and larger concentrations of the decarbonizing solvent, 1,3-dichlorobenzene (37 µg/L) were present in the wastewater. The cadmium level (128 µg/L) exceeded the permit limit. Paint stripping wastes and wastewater from aircraft washing, typically contained cadmium. Aircraft washing could be responsible for the high concentrations of petroleum hydrocarbons. All other regulated toxic metals concentrations were below the limits.

(36) Site 36, Oil/water separator, Transportation, building 4701: Separator effluent contained low surfactant (0.6 mg/L) and phenol (11 µg/L) concentrations. The BOD/COD ratio (7/500 mg/L) was 0.01. Oil and grease (0.6 mg/L) and total extractable petroleum hydrocarbons (0.6 mg/L) concentrations were low. Small amounts of toluene (1.4 µg/L) were present in the wastewater. All regulated toxic metal concentrations were below the limits.

(37) Site 37, Oil/water separator, Allied Trades, building 4705: Separator effluent contained high surfactant (126 mg/L) and phenol (112 μ g/L) concentrations. The BOD/COD ratio (981/3250 mg/L) was 0.30. Oil and grease (70.4 mg/L) and total extractable petroleum hydrocarbons (70.4 mg/L) concentrations were low. All regulated toxic metal concentrations were below the limits.

(38) Site 38, Oil/water separator, 355 EMS Inspection, building 5607: Separator effluent contained low surfactant (2.4 mg/L) and phenol (15 μ g/L) concentrations. The BOD/COD ratio (46/500 mg/L) was 0.09. Oil and grease (23.7 mg/L) and total extractable petroleum hydrocarbons (2.6 mg/L) concentrations were low. Small amounts of 1,4-dichlorobenzene (9.3 μ g/L), trans-1,2- dichloroethene (16 μ g/L), and 1,1,1-trichloroethane (2.1 μ g/L) were present in the wastewater. All regulated toxic metal concentrations were below the limits.

(39) Site 39, Oil/water separator, 355 Armament, building 4710: Separator effluent contained high surfactant (380 mg/L) and phenol (105 µg/L) concentrations. The BOD/COD ratio (694/2,000 mg/L) was 0.35. Oil and grease (132 mg/L) and total extractable petroleum hydrocarbons (84 mg/L) concentrations were high. Small amounts of methylene chloride (7.9 µg/L), chloroethane (20 µg/L), and 1,1-dichloroethane (46 µg/L) were present in the wastewater. Some washoff from parts degreasing was entering the drains to the separator. The lead level (498 µg/L) approached the permit limit. All regulated toxic metal concentrations were below the limits.

(40) Site 40, MH 468, Aircraft Washrack: Wash water from the aircraft washrack passes through manhole 468. The average phenol concentration (79 μ g/L) exceeded the current limit (50 μ g/L). The phenol concentration measured by EPA Method 604 was 7 μ g/L, indicating the influence of phenoxyl detergents on the phenols results. The BOD/COD ratio (160/329 mg/L) was 0.49. The average oil and grease concentration (4.3 mg/L) was below the limit (100 mg/L). A small amount of 1,3-dichlorobenzene (9 μ g/L) was present in the wastewater. The average cyanide concentration (0.02 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits. Figure 4 shows the aircraft washrack and industrial treatment plant (separator) discharging into MH 468.

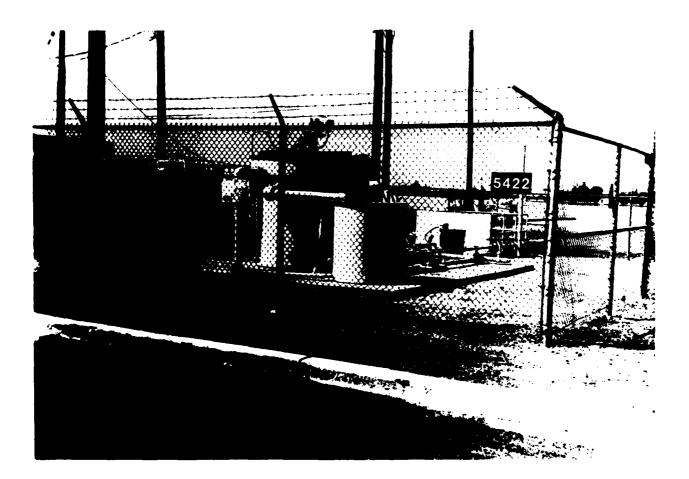


Figure 4. Aircraft Washrack and Separator, Site 40

c. Housing, Hospital, and Test Stand Sewers

(41) Site 41, MH 298, Near Swan Gate: Wastewater from housing, main base, hospital, and 868 TMMS passes through manhole 298. The average phenol concentration (26 μ g/L) met the current limit (50 μ g/L). However, this concentration does not meet the proposed limit (25 μ g/L). The phenol concentration measured by EPA Method 604 was 5.9 μ g/L. The BOD/COD ratio (240/240 mg/L) was 1.0. The average oil and grease concentration (13.25 mg/L) was below the limit (100 mg/L). Several VOCs including 1,3-dichlorobenzene (1-day concentration, 58 μ g/L), ethylbenzene (5-day average concentration, 2.7 μ g/L) were present in the wastewater. The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(42) Site 42, MH 376, Alamo Ave: Wastewater from the hospital passes through manhole 376. The average phenol concentration (40.75 μ g/L) met the current limit (50 μ g/L). However, this concentration would exceed the proposed limit (25 μ g/L). The phenol concentration measured by EPA Method 604 was 5 μ g/L. The BOD/COD ratio (280/847 mg/L) is 0.33. The average oil and grease concentration (8.5 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.005 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(43) Site 43, MH 502, Quijota Blvd: Wastewater from the housing area passes through manhole 502. The average phenol concentration (38 μ g/L) met the current limit (50 μ g/L). However, this concentration would exceed the proposed limit (25 μ g/L). The phenol concentration measured by EPA Method 604 was 20 μ g/L. The BOD/COD is (152/280 mg/L) was 0.54. The average oil and grease concentration (36 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.006 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(44) Site 44, MH 315A, Housing Branch: Wastewater from the housing area passes through manhole 315A. The average phenol concentration (34 μ g/L) met the current limit (50 μ g/L). However, this concentration exceeded the proposed limit (25 μ g/L). The phenol concentration measured by EPA Method 604 was 8 μ g/L. The BOD/COD ratio (159/293 mg/L) was 0.54. The average oil and grease concentration (8.4 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(45) Site 45, MH 13, Davenport St: Wastewater from the housing area passes through manhole 13. The average phenol concentration $(44 \ \mu g/L)$ met the current limit (50 $\mu g/L$). However, this concentration exceeded the proposed limit (25 $\mu g/L$). The phenol concentration measured by EPA Method 604 is 8 $\mu g/L$. The BOD/COD ratio (152/590 mg/L) was 0.27. The average oil and grease concentration (45 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

31

(46) Site 46, Oil/water separator, Test Stand, building 224: Separator effluent contained low surfactant (0.1 mg/L) and high phenol (70 µg/L) concentrations. The BOD/COD ratio (29/220 mg/L) was 0.13. Oil and grease (103 mg/L) and total extractable petroleum hydrocarbons (56.8 mg/L) concentrations were high. Several VOCs including 1,1-dichloroethene (52 µg/L), 1,1-dichloroethane (199 µg/L), trans-1,2-dichloroethene (166 µg/L), trichloroethylene (479 µg/L), and 1,1,1-trichloroethane (1309 µg/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits. The VOC results suggested improper disposal of solvents since the use of trichloroethylene has been discontinued for some years.

(47) Site 47, Oil/water separator, Test Stand, building 225: Separator effluent contained low surfactant (0.1 mg/L) and high phenol (725 µg/L) concentrations. The BOD/COD ratio (8,308/15,000 mg/L) was 0.55. Oil and grease (13.4 mg/L) and total extractable petroleum hydrocarbons (7.3 mg/L) concentrations were low. Several VOCs including methylene chloride (32 µg/L), 1,4-dichlorobenzene (39 µg/L), and 1,1,1-trichloroethane (14 µg/L) were present in the wastewater. The lead level (579 µg/L) exceeded the permit limit. All other regulated toxic metal concentrations were below the limits. Results indicate paint stripping or paint stripping waste disposal had occurred at this location.

(48) Site 48, Oil/water separator, Test Stand, building 225 (NTR): Separator effluent contained low surfactant (3.4 mg/L) and phenol (35 µg/L) concentrations. The BOD/COD ratio (138/750 mg/L) is 0.18. Oil and grease (13.6 mg/L) and total extractable petroleum hydrocarbons (2.9 mg/L) concentrations were low. Amounts of trans-1,2-dichloroethene (93 µg/L) and 1,1,1-trichloroethane (5.3 µg/L) were found in the waste. Degreasing or disposal of degreasers has occurred at this location. All regulated toxic metals concentrations were below the limits.

(49) Site 49, Oil/water separator, Test Stand, South Taxiway Run-up Pad: Separator effluent contained low surfactant (1.2 mg/L) and phenol (17 μ g/L) concentrations. The BOD/COD ratio (45/600 mg/L) was 0.08. Oil and grease (1.6 mg/L) and total extractable petroleum hydrocarbons (<0.3 mg/L) concentrations were low. All regulated toxic metal concentrations were below the limits.

d. AMARC

(50) Site 50, MH 342, AMARC Aircraft Storage Area: Wastewater from the AMARC Storage Area passes through manhole 342. The average phenol concentration $(24 \ \mu g/L)$ met the current limit (50 $\mu g/L$). This concentration also meets the proposed limit (25 $\mu g/L$). The phenol concentration measured by EPA Method 604 was 13 $\mu g/L$. The BOD/COD ratio (73/485 mg/L) was 0.15. The average oil and grease concentration (12 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.012 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(51) Site 51, AMARC Washrack: Wastewater from the AMARC washrack is connected to the sanitary sewer system at an undesignated manhole. The average phenol concentration (12.5 μ g/L) met the current limit (50 μ g/L). This concentration also meets the proposed limit (25 μ g/L). The BOD/COD ratio (119/392 mg/L) was 0.30. The average oil and grease concentration (4 mg/L) was below the limit (100 mg/L). The average cyanide concentration (0.007 mg/L) was below the limit (1 mg/L). All regulated toxic metal concentrations were below the limits.

(52) Site 52, MH 364, AMARC, Small Parts Cleaning: Wastewater from AMARC Small Parts Cleaning passes through manhole 364. The phenol concentration (580 μ g/L) exceeded the current limit (50 μ g/L). The phenol concentration measured by EPA Method 604 was 170 μ g/L. The oil and grease concentration (21.6 mg/L) was below the limit (100 mg/L). Several VOCs including methylene chloride (10 μ g/L), 1,2-dichloroethane (8.2 μ g/L), and 1,1,1-trichloroethane (10 μ g/L) were present in the wastewater. The cyanide concentration (0.03 mg/L) was below the limit (1 mg/L). The cadmium level (464 μ g/L) exceeded the permit limit. Paint stripping wastes typically contained cadmium. All other regulated toxic metal concentrations were below the limits.

(53) Site 53, Oil/water separator, AMARC Out Processing, building 7408: Separator effluent contained low surfactant (1.4 mg/L) and phenol (30 µg/L) concentrations. The BOD/COD ratio (45/400 mg/L) was 0.11. Oils and grease (13.8 mg/L) and total extractable petroleum hydrocarbons (11 mg/L) concentrations were low. Small amounts of 1,3-dichlorobenzene (45 µg/L), chloroform (1.2 µg/L), dichlorodifluoromethane (1.5 µg/L), and toluene (0.8 µg/L) were present in the wastewater. All regulated toxic metals concentrations were below the limits.

(54) Site 54, Oil/water separator, NDI, building 7401: Separator effluent contained low surfactant (32 mg/L) and high phenol (870 μ g/L) concentrations. The BOD/COD ratio (183/1150 mg/L) was 0.16. Oil and grease (568 mg/L) and total extractable petroleum hydrocarbons (211 mg/L) concentrations were low. Small amounts of 1,1-dichloroethane (0.6 μ g/L), methylene chloride (7.9 μ g/L), and 1,1,1-trichloroethane (9.3 μ g/L) were present in the wastewater. The cadmium level (407 μ g/L) exceeded the permit limit. Paint stripping wastes typically contained phenols, methylene chloride, and metals including cadmium. All other regulated toxic metal concentrations were below the limits.

(55) Site 55, Oil/water separator, AMARC, Engine Can Yard, building 7340: Separator effluent contained low surfactant (48 mg/L) and high phenol (2550 µg/L) concentrations. The BOD/COD ratio (2167/6250 mg/L) was 0.35. Oil and grease (235 mg/L) and total extractable petroleum hydrocarbons (156.8 mg/L) concentrations were high. Several VOCs including carbon tetrachloride (28 µg/L) and 1,1,1-trichloroethane (76 µg/L) were present in the wastewater. The cadmium (326 µg/L) and lead (985 µg/L) levels exceeded the permit limits. All other regulated toxic metals concentrations were below the limits. However, the zinc concentration (2.33 mg/L) approached the limit of 2.6 mg/L. (56) Site 56, Oil/water separator, AMARC Washrack, building 7425: Separator effluent contained high surfactant (440 mg/L) and moderate phenol (40 µg/L) concentrations. The BOD/COD ratio (987/4250 mg/L) was 0.23. Oil and grease (504 mg/L) and total extractable petroleum hydrocarbons (408 mg/L) concentrations were high. Small amounts of methylene chloride (46 µg/L) and tetrachloroethylene (22 µg/L) were present in the waste. The cadmium level (766 µg/L) exceeded the permit limit. Paint stripping wastes typically contained phenols, methylene chloride, and cadmium. All other regulated toxic metal concentrations were below the limits.

(57) Site 57, Oil/water separator, AMARC Support Equipment, building 7222: Separator effluent contained low surfactant (4.9 mg/L) and high phenol (227 µg/L) concentrations. The BOD/COD ratio (222/1000 mg/L) was 0.222. Oil and grease (156.8 mg/L) and total extractable petroleum hydrocarbons (145.6 mg/L) concentrations were high. Small amounts of 1,1-dichloroethene (11 µg/L), 1,2-dichloroethane (4.3 µg/L), and toluene (14 µg/L) were present in the waste. The cadmium level (135 µg/L) exceeded the permit limit. Paint stripping wastes typically contained metals such as zinc and cadmium, phenols and methylene chloride. All other regulated toxic metal concentrations were below the limits.

(58) Site 58, Oil/water separator, AMARC In Processing, building 7448A: Separator effluent contained low surfactant (9.2 mg/L) and high phenol (109 μ g/L) concentrations. The BOD/COD ratio (5/575 mg/L) was questionable due to the low BOD result. Oil and grease (110.4 mg/L) and total extractable petroleum hydrocarbons (103.2 mg/L) concentrations were high. All regulated toxic metals concentrations were below the limits.

(59) Site 59, Oil/water separator, AMARC In Processing, building 7448B: Separator effluent contained low surfactant (9.4 mg/L) and phenol (105 μ g/L) concentrations. The BOD/COD ratio (69/900 mg/L) was 0.08. Oil and grease (48 mg/L) and total extractable petroleum hydrocarbons (19 mg/L) concentrations were low. Small amounts of 1,2-dichloroethane (8.6 μ g/L), 1,1-dichloroethene (5.6 μ g/L), 1,1,1-trichloroethane (5.4 μ g/L), and carbon tetrachloride (6.0 μ g/L) were present in the waste. All regulated toxic metals concentrations were below the limits.

(60) Site 60, Officer's Club: The Officer's Club is connected to the sanitary sewer system through a grease trap. This sample was from the clean-out portal. The average phenol concentration (177 μ g/L) exceeded the current limit (50 μ g/L). This concentration also exceeded the proposed limit of 25 μ g/L. The BOD/COD ratio (1800/1850 mg/L) of 0.97 showed the wastewater is domestic. The average oil and grease concentration (115.2 mg/L) exceeded the limit (100 mg/L). Cyanide (0.022 mg/L) met the limit of 1 mg/L. All regulated toxic metal concentrations are below the limits.

3. Industrial Wastewater Laboratory Results. The results indicated that cadmium which averaged 110 μ g/L in the sample was reduced to less than 100 μ g/L in all cases. The zinc concentration was reduced from 335 μ g/L to less than 100 μ g/L and iron reduced from an average of 3300 to 352 μ g/L with NaOH. Unfortunately, the ICP metals screen sensitivity was not sufficient to determine percent removal, however, either alum or sodium hydroxide addition appears to reduce the target metal, cadmium below the limit. Analytical results are presented in Appendix H.

34

B. Summary of Waste Disposal Practices at Davis-Monthan AFB. The waste disposal practices for different categories of waste are summarized in this section. A summary of disposal practices for each waste category is contained in Appendix B.

1. Waste oils and fluids are placed in bowsers, 55-gallon drums or underground waste oil storage tanks and stored at the designated accumulation site. The waste is transported from the accumulation sites to DRMO and stored until the waste oil contractor picks it up. In some cases, waste oils and fluids are discharged to oil/water separators that are periodically cleaned out by a contractor. Currently, waste oils and fluids are sold as POL. The payment received is based on demand at the time of disposal.

2. Waste paints and thinners are generally placed in 5-gallon cans or 55-gallon drums and stored at the appropriate accumulation site. The waste is then transported to DRMO for storage until it is picked up by a contractor for disposal as hazardous waste.

3. Uncontaminated fuel is taken to POL for reclamation. Fuel contaminated with less than 10% water is used at the FTP. Other contaminated fuel is drummed and disposed as POL through DRMO.

4. Used lead-acid batteries are drained into sinks and rinsed out with water. The spent electrolyte and rinse water are neutralized before being discharged down the drain to the sanitary sewer.

5. Waste petroleum-based solvents (e.g., Rinsolve 140) are drummed and disposed as POL through DRMO. Other solvents (e.g., TCA, toluene, and MEK) are either used in process or drummed and disposed as hazardous waste through DRMO.

6. Waste fixers are processed through a silver recovery unit before being discharged down the drain to the sanitary sewer. All other photo chemicals are discharged down the drain to the sanitary sewer.

7. Waste dye-penetrant and magnetic particle solution generated at NDI shops are drummed and disposed through DRMO. Waste emulsifier and developer are discharged down the drain to the sanitary sewer.

8. Dirty cleaning rags from most shops are disposed as municipal waste. The 355 EMS has a contract with Industrial Uniform Services for cleaning rags.

9. Paint filters from the dry paint booth at 836 TRANS Allied Trades, 836 CSG Auto Hobby, and 41 ECS Corrosion Control are disposed as municipal waste.

10. Speedy Dry, used to clean up small spills, is disposed as municipal waste.

11. Empty aerosol cans are disposed as municipal waste.

12. Waste antifreeze is stored in 55-gallon drums and disposed through DRMO.

13. Rinse water generated from triple-rinsing pesticide and herbicide containers and cleaning equipment is used for mixing the chemicals. A small amount of triple-rinse water is discharged down the drain to the sanitary sewer.

14. Soaps and cleaning compounds are discharged down the drain to oil/water separators connected to the sanitary sewer.

15. Chemicals used in heating and cooling facilities are discharged down the drain to the sanitary sewer.

16. Chemicals used at the Dental Clinic are diluted with water and discharged down the drain to the sanitary sewer.

17. Plastic bead blasting media is disposed as municipal waste. Baseline waste analyses have been performed; the waste was determined to be nonhazardous.

IV. CONCLUSIONS

A. The wastewater flowing through site 1 (manhole 123) is characterized by moderate biochemical oxygen demand and moderate chemical oxygen demand. Phenol levels are below the permit limits. However, this concentration will not meet the proposed limit. Total phenol (EPA Method 420) and phenol (EPA Method 604) concentrations suggest that most of the phenols are nontoxic. These are usually phenoxy compounds found in soaps or cleaning compounds. Shop personnel throughout the base maintain that paint stripping chemicals (i.e., methylene chloride and phenol) are not discharged to the sanitary sewer. However, levels found in the wastewater flowing off-base and in several oil/water separators suggest strippers are being rinsed off and allowed to enter the shop drains in significant quantities. Wastewater from sites 26 and 32 contains significant amounts of methylene chloride. Wastewater from sites 8, 33, and 47 contains lower levels.

Oil and grease concentrations at site 1 are below the permit limits but are significant. Total extractable petroleum hydrocarbons account for 22 percent of the oil and grease total. This implies the oil and grease waste is domestic (cooking grease). Wastewater from sites 6, 10, 12, and 24 contains large amounts of oil and grease. Wastewater from sites 33, 35, 39, 54, 55, 56, and 57 contains lower levels. It is likely the levels vary with the dining facility clean-up schedules. These samples are representative of "after breakfast (0800 - 0900)" sewage. Significant amounts of several phthalates are present in the wastewater. Phthalates are plastisizers that can leach from our plastic Tygon tubing used to take samples or from plastic pipe used in sewers and water lines.

B. As mentioned, comparison of phenols by EPA Methods 420 and 604 indicates that the phenols, in most cases, are not chlorinated (as toxic). Chlorinated phenols are typically used in industrial applications. Nonchlorinated phenols (C6H6O), are common ingredients in paint strippers, commercial cleansers and disinfectants. EPA Method 420 detects both chlorinated phenols as well as substituted phenols (such as nonyl phenol ethoxylate which is used as a nonionic surfactant). Analytical results show nonchlorinated substituted phenol levels are significantly higher than

36

chlorinated toxic phenol levels. A comparison of the EPA Method 420 and EPA Method 604 results which exceeded the proposed limit of 25 μ g/L is presented in Table 7. Complete phenol results are tabulated in Appendix G.

EPA Method 604 is not a complete analysis of all chlorinated phenols. However, the method does detect those considered priority pollutant chlorinated phenols. Davis-Monthan AFB apparently has limited the use and subsequent disposal of these types of chlorinated phenols. The increased levels of phenol detected by EPA Method 420 are presumed attributable to commercially available compounds containing phenols and organic compounds containing the phenoxy radical such as surfactants and disinfectants and compounds interfering with the EPA Method 420.

	PHENOL CONC		***********************	PHENOL CONC	ENTRATION
SITE	EPA 420	EPA 604	SITE	EPA 420	EPA 604
	(µg/L)	(µg/L)		(µg/L)	(µg/L)
1	29.4	8.2	34	380	NR
2	43.7	15	35	157	NR
2 3 4	55	29	37	112	NR
	74	20	39	105	NR
6	40	33	40	79	7
7 8	30	13	41	26	5.9
8	59	NR	42	40.8	5
9	37	NR	43	38	20
12	1150	NR	44	34	20
14	28	NR	45	44	8
15	183	NR	46	70	NR
17	27.7	26	47	725	NR
19	100	NR	48	35	NR
20	50	NR	52	580	170
23	105	NR	53	30	NR
24	820	NR	54	870	NR
25	91	NR	55	2550	NR
26	510	NR	56	40	NR
27	50	NR	57	227	NR
32	243	NR	58	109	NR
33	42	NR	59	105	NR
			60	177	NR

Table 7. Phenol Results by Method

NR = Not reported, no sample analyzed

Phenol concentrations, analyzed by EPA Method 420, at manholes 115, 376 and 342 (sites 16, 42, 50) met existing pretreatment limits. However, the hospital area (manhole 376) would not meet the proposed reduced limit without pretreatment.

"Apparent" phenol use is widespread. In fact, the wastewater from 43 of 60 sites exceeded the proposed limit (if EPA Method 420 is utilized). High phenol concentrations seem to correlate with washing and parts cleaning and stripping operations locations. The highest phenol concentrations are found in the effluents from the oil/water separators connected to parts cleaning facilities such as AMARC (building 7340), GLCM (building 73), AMARC NDI, and Transportation Fire Truck Maintenance (building 4823).

C. Toxic organic compounds such as methylene chloride and 1,3- and 1,4-Dichlorobenzene are discharged to the sanitary sewer in significant quantities. Discharge points that need to be included in the pretreatment system are presented in Table 8. Most toxic organic discharges are associated with parts cleaning operations (propulsion shops) and paint stripping operations (corrosion control shops). A limit for toxic organic discharge of any toxic organic compounds, is being considered. Federal pretreatment discharge regulations (40 CFR 400) apply which limit the discharge of total toxic organics (TTO) to 2.13 mg/L. Although complete TTO analysis was not performed at every oil/ water separator, indications are that discharge from the separators meet this standard.

	RELATIVE		REASON FOR	CONNECTION	
SITE	FLOW	HIGH PHENOL	HIGH ORGANICS	HIGH METALS	OIL & GREASE
FLIGHT	1.TNF				
14	M	x	x		
23	M	x	4		
24	M	x			x
25	L	x	x		~
26	H	x	x	x	
27	M	x	x	ň	
32	H	x	x		
33	L	x	x		
34	М	x	-	x	x
35	L	x	x		x
37	L	x			
39	L	х	x		x
40	Н	x			
HOSPITA	L				
42	Н	x			
AMARC					
53	L	x	x		
54	М	x		x	x
55	М	x	x	x	x
56	Н	x	X	x	x
57	Μ	x		x	x
58	L	x			x
59	L	x			

Table 8. Candidates for Connection to Industrial Pretreatment Syste	Table {	8.	Candidates	for	Connection	to	Industrial	Pretreatment	Syste
---	---------	----	------------	-----	------------	----	------------	--------------	-------

D. Regulated toxic metals concentrations are below the permit limits at the three Pima County monitoring points. However, several point sources exceed the limits for cadmium, zinc, and lead. Further, the zinc level exceeds the Federal standards for characteristic hazardous waste (40 CFR 260) in the effluent from the oil/water separator connected to 355 AGS Propulsion Branch (building 5245). Federal pretreatment discharge regulations (40 CFR 400) also limit metals discharge for several industrial operations. The results of the bench scale laboratory analyses confirmed reduction of metal concentrations below the limit could be achieved by alum or sodium hydroxide addition.

E. Several industrial shop oil/water separators from the flight line and AMARC, as well as the hospital should be connected to a pretreatment system to ensure future compliance with the Pima County Discharge Permit. The following shop oil/water separators are chosen to be connected to the separate industrial lines because of high phenol, organics, or metals concentrations. Determining actual flow rates from each shop requires additional study due to the need of monitoring water use over periods longer than this survey. However, subjective flow rates (high, medium, low) from observations are included in Table 8. The overall flows from the flight line, AMARC, and the hospital were 176,000 GPD, 125,000 GPD, and 36,000 GPD, respectively. An estimated 30% of these combined flows represent industrial operations from the flight line and AMARC.

F. PD-680 usage has been almost eliminated by using Rinsolve 140 rather than PD-680 in degreasing tanks. This saves on hazardous waste disposal costs, as waste PD-680 sometimes fails characteristic hazardous waste tests for ignitability. Rinsolve discharge to the sanitary sewer may add to the apparent phenol concentrations if EPA Method 420 is used. The solvent contains 5.4% (54,000 mg/L) aromatics, benzene and is heavier in molecular weight. Benzene rings may register as phenols using this method. In analytical tests performed by AFOEHL/SA on the product, the undiluted solvent resulted in concentrations off scale. Diluting in aqueous solution (Rinsolve is essentially unsoluble) resulted in concentrations in the 100 to 300 mg/L range, most probably around 120 mg/L in rinsewater (Appendix J).

G. The Hazardous Waste Specialist is responsible for training shop supervisors and accumulation site managers, who, in turn train shop personnel. The training course is given annually as required by RCRA.

H. The 355 EMS shops utilize the service of a local linen contractor for cleaning dirty rags. This saves the base the cost of disposing the rags as hazardous waste.

I. It does not seem possible to significantly reduce the quantity of hazardous waste generated at AMARC. The AMARC industrial facilities do not generate large quantities of hazardous waste on a frequent basis. The majority of the hazardous waste is generated during chemical tank cleaning procedures. These chemical tanks are typically changed out every five to seven years.

V. RECOMMENDATIONS

A. Several separators contain evidence of paint stripping wastes, containing high phenol concentrations, methylene chloride and metals. Chemical stripping should be replaced with other abrasion methods, such as plastic media bead blasting or better sodium carbonate blasting. Tests indicate the contents of these separators should be disposed of as characteristic hazardous waste. The contents of the 355 CRS Propulsion Branch (building 5245) oil/water separator should be disposed of as hazardous waste.

B. Davis-Monthan AFB should continue petitioning regulators to accept and use EPA Method 604 in place of EPA Method 420 for reporting phenol levels. The base would meet current and proposed limits if EPA Method 604 could be used.

C. Until a pretreatment system is constructed, soaps and cleaners widely used on base should be analyzed by EPA Method 420. Those containing high levels of phenol (phenoxyl, nonyl) should be replaced by nonphenol soaps.

D. The use of "paste" on the AMARC small parts cleaning washrack should be reconsidered. Paste is a made-in-house mixture of soap and discarded solvent. Although the mixture is not a hazardous waste, it adds to the wastewater's phenol levels.

E. The Davis-Monthan AFB pretreatment plant which was designed to treat industrial wastes from selected shops on the flight line, AMARC, and the hospital needs to have the ability to remove TTO and metals as well as reducing phenols.

F. 23 CAMS Corrosion Control should consider using an alternate stripping method such as sodium bicarbonate blasting or plastic media blasting. Either of these stripping methods should reduce the amount of hazardous waste generated by the shop and would also eliminate the need for the hot paint stripping tanks.

G. All shops that use Speedy Dry should consider using an alternate absorbent material such as one that is siliceous-based. This type absorbent material reduces clean-up time, requires less absorbent and reduces quantity of waste generated.

H. DRMO should be contacted to determine if it is possible to find a local contractor who will accept wet lead-acid batteries. This would eliminate the need for neutralizing, sampling, analyzing, and disposing the spent electrolyte.

I. All shops on base should consider the possibility of establishing a contract with the local linen contractor for supplying cleaning rags. This option may not be feasible in all situations but may prove to be beneficial in others.

J. The Hazardous Waste Specialist should ensure that all accumulation site and waste oil storage area primary and alternate managers receive hazardous waste training before assuming the position. K. The used paint filters at 836 TRANS Allied Trades, 836 CSG Auto Hobby, and 41 ECS Corrosion Control should be analyzed to determine whether or not they are hazardous. If they prove to be nonhazardous, the filters can continue to be disposed as municipal waste.

L. Rinsolve should not be washed into the sanitary sewer system as it contributed to the apparent phenolic concentrations when EPA method 420 was used.

REFERENCES

1. Brown, Lester P. Brigadier General, Letter to Subordinate Organizations, Davis Monthan AFB AZ, (30 October 1986).

2. Roudebush, John, Brulin & Company, Inc., Letter to Major Lurker, Indianapolis IN, (16 Oct 1985).

3. Leanord, B.F., E.I. du Pont de Nemours & Co., Letter to Mark Grushka, Willmington DE (22 July 1986).

4. CWC-HDR, Inc., Deficiency Analysis Report For Wastewater Characterization Study and Final Design Material for Project No. DMT 37-0143, Wastewater Treatment System, Irvine CA, (November 1988).

5. APHA, Standard Methods for the Examination of Water and Wastewater, 16th Ed., American Public Health Association, Washington DC, (1985).

6. USEPA, Methods for Chemical Analysis of Water and Wastewater, EPA-600/4-79-020, March 1983.

APPENDIX A

CHEMICAL WASTE DISPOSAL FORM

(This page left blank)

PLEASE HAVE THIS FORM READY FOR PICKUP BY:

Motor Oil

Synthetic Oil

SHOP:		BLDG:			
CONTACT:		AUTOVO	N:		
Please fill out this form as accurately and completely as possible. If you have any questions on filling it out, please call Lt Hedgecock at X5369.					
Examples:	Tank Capacity	Change Out Frequency	Method of Disposal		
PD-680 used in tank	60 gal	4/year	55-gal drum		
Comments: 1/2 gal of MEK pe process for parts cleaning.			on/wipe off		
OILS & FLUIDS					
	Amt of Was	te Dispos	al Method		
Brake Fluid	6 gal	plac	ed in		
Transmission Fluid	10 gal	same	600-gal		
Hydraulic Fluid	3 gal	bows	er		

Synthetic Oil 8 gal 55-gal drum

45

50 gal 500-gal UGT

QUESTIONS: If question does not apply to this shop put "N/A" beside it.

Does this shop have any underground storage tanks?

If yes: How many?_____

Capacity?_____

What is stored in the tank?_____

How often is it cleaned out?_____

Has it ever been leak-tested?_____

2. Do the floor drains of the shop lead to an oil/water separator?

If yes: How often is it cleaned out?____

3. Does the shop have any Safety Kleen units?_____

If yes: How many?_____

Tank capacity?_____

How often are they serviced?_____

4. What does the shop do with dirty rags?_____

5. What does the shop do with used "Speedy Dry"?_____

6. Describe shop activities and responsibilities below:

PAINT WASTE AND THINNERS

PAINTS		Amount of Wa generated/mo			Disp Met	osal hod
Latex						
Polyur	athane					
Enamel						
Other						
Commen						
THINNE	RS (list	below)				
Commen						
Name o	f Strippe	r National Stock #	Amount per	of Waste Month	OR Tank Size	Change Out Freg

ACIDS Name of Acid Manufacturer Amount of Waste Method of generated/month Disposal
Name of Acid Manufacturer Amount of Waste Method of generated/month Disposal
generated/month Disposal
BATTERIES
Type of Battery #/Month Neutralized in Shop or Turned in Wet
Comments:
SOAPS/CLEANERS
Name of Soap Dilution Ratio National Stock# Amt Used Disposa / month Method
Comments
OILS AND FLUIDS

	Amt. of Waste Generated/month		Disposal	Method
Brake Fluid			~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Transmission Flu				_
Hydraulic Fluid				
Motor Oil				
Synthetic Oil				
Other				
Comments				
SOLVENTS/DEGREAS				
Name of Chemical	Amt. of Wa generated	ste OR Tan /mo. Size	k Change Out Fre	e Disposal eq Method
Carbon Remover				
PD-680 used in t	 ank			
Pd-680 used on w	ashrack			
Other:				
Comments				
PHOTO CHEMICALS				
Name of Chemical	Manufacturer	Amt/mo OR	Tank Char Size Out	nge Disposal freq Method

Is the fixer processed through a silver recovery unit before disposal? NDI Chemicals Name of Chemical Manufacturer National Tank Change Disposal Stock # Size Out Freq Method Change Disposal Emulsifier Dye Penetrant Developer Comments ______ FUELS _____ Name of Fuel Disposal Method Amount/Month ANTIFREEZE Amount/Month Disposal Method

1

÷

OTHER CHEMICALS (Please list any chemicals that contain phenols) Name of Chemical Manufacturer National Tank Change Disposal Stock # Size Out Freq Method

Signature of person filling out this form

(This page left blank)

APPENDIX B

٠

SUMMARY OF WASTE DISPOSAL PRACTICES FOR EACH WASTE CATEGORY

(This page left blank)

. •

SUMMARY OF WASTE DISPOSAL PRACTICES FOR EACH WASTE CATEGORY

WASTE: Oils and Fluids

SHOP	WASTE	QTY(GAL/YR)	DISPOSAL
23 CAMS Engine	Synthetic Oil	48	DN H
868 TMMS Vehicle Maintenance	Trans Fluid	125	DN H
41 ECS Hydraulic	Hydraulic Fluid	24	DN H
41 ECS Propulsion	Hydraulic Fluid	330	DNH
868 TMMS Corrosion Control	Oil and Fluid	440	DNH
836 Auto Hobby	Motor Oil	3000	DNH
836 TRANS Gen/Spec Purp Maint	Motor Oil	7200	DNH
868 TMMS Vehicle Maintenance	Engine Oil	2100	UGT
23 CAMS Phase Dock	Synthetic Oil	240	DNH
355 EMS AGE	Synthetic Oil	660	DNH
355 AGS AMU	Hydraulic Fluid	660	DNH
41 ECS Propulsion	Engine Oil	1320	DNH
355 AGS AMU	Synthetic Oil	660	DNH
41 ECS Aircraft Maint	Hydraulic Fluid	12	DNH
836 TRANS Gen/Spec Purp Maint	Trans Fluid	100	DMH
836 CES Power Production	Hydraulic Fluid	50	DNH
41 ECS Aircraft Maint	Engine Oil	180	DN H
41 ECS AGE	Hydraulic Fluid	660	DN H
868 TMMS AGE	7808 011	240	DNH
AMARC Pneudraulics	Hydraulic Fluid	440	DNH
868 TMMS AGE	Motor Oil	220	DNH
AMARC Materials Lab	Hydraulic Fluid	360	DH
41 ECS Aircraft Maint	Turbine Oil	24	DNH
41 ECS AGE	Synthetic Oil	660	DNH
41 ECS Electric	Engine Oil	2	DNH
836 CES Power Production	Motor 011	150	DNH
355 CRS Pneudraulics	Hydraulic Fluid	36	DNH
836 TRANS Fire Truck Maint	Motor 0il	660	DN H
23 CAMS Phase Dock	Hydraulic Fluid	250	DN H
41 ECS AGE	Motor 011	660	DNH
AMARC Materials Lab	Engine Oil	360	DN H
355 EMS AGE	Hydraulic Fluid	660	DNH

TOTAL: 22531

WASTE: Safety Kleen

SHOP	WASTE	QTY(GAL/YR)	DISPOSAL
836 Auto Hobby	Carburetor Clnr	480	SBC
836 Auto Hobby	Safety Kleen	480	SBC
868 TMMS Vehicle Maintenance	Safety Kleen	180	SBC

WASTE: Paint, Thinner, and Stripper

aint Waste pray Paint oly & Enamel Paint aint Filters aint Filters ead Blast Media pray Paint insewater	220 NQ 96 240* NQ NQ NQ 660	DH UIP DH T T UIP OWS
oray Paint oly & Enamel Paint aint Filters aint Filters ead Blast Media pray Paint insewater	96 240* NQ NQ NQ 660	DH T T UIP
oly & Enamel Paint aint Filters aint Filters ead Blast Media pray Paint insewater	240* NQ NQ NQ 660	T T T UIP
aint Filters aint Filters ead Blast Media pray Paint insewater	240* NQ NQ NQ 660	T T UIP
aint Filters ead Blast Media pray Paint insewater	NQ NQ 660	UIP
pray Paint insewater	NQ 660	UIP
pray Paint insewater	660	
insewater		OWS
dat Masta		
aint Wastes	30	DH
aint Thinner	NQ	UIP
aint Filters	432*	Т
aint Stripper	660	DN H
••	700	DH
••	60	DH
pray Paint	NQ	UIP
	-	DH
tripper	880	DH
	aint Thinner aint Filters aint Stripper aint Stripper hinners pray Paint aints and Thinners tripper	aint Filters432*aint Stripper660aint Stripper700hinners60pray PaintNQaints and Thinners7080

TOTAL: 10386

* Not included in quantity of waste per year

WASTE: Fuel

SHOP	WASTE	QTY(GAL/YR)	DISPOSAL
23 CAMS Fuel Systems	JP-4	1200	REC
355 AGS AMU	JP-4	NQ	FTP
836 CES Liquid Fuels	Fuel Sludge	275	DNH
355 EMS AGE	JP-4	330	DNH
868 TMMS AGE	Diesel	240	DNH
355 CRS Propulsion	JP-4	120	DNH
836 CES Power Production	Diesel	150	DNH
41 ECS Fuel System Repair	JP-4	36	DN H

TOTAL: 2351

WASTE: Antifreeze

SHOP	WASTE	QTY(GAL/YR)	DISPOSAL
836 CSG Auto Hobby 836 TRANS Fire Truck Maint	Antifreeze Antifreeze	120 60	DD DD
وبار مرد اد فر بینهایی د ۰ ۰ و میزینی کرد و ۲ م مالی بر ۲۰۰ م میکورد.	ب برویست از بر با با میرون از این والد	يوي ويونون ويوني و و چو چو بيو وي	

WASTE: Soap

SHOP	WASTE	QTY(GAL/YR)	DISPOSAL
AMARC Small Parts Cleaning	Soap	NQ	OWS
41 ECS Fuel System Repair	Soap	NQ	OWS
41 ECS Corrosion Control	Soap	4800	OWS
23 CAMS Corrosion Control	Aircraft Soap	NQ	OWS
868 TMMS Vehicle Maintenance	Biogenic Soap	110	OWS
355 EMS Armament	LA 175 Soap	220	OWS
41 ECS Propulsion	Bio-Franklin Soap	NQ	UIP
836 TRANS Gen/Spec Purp Maint	Steam-It Soap	NQ	OWS
836 Auto Hobby	Albrite Soap	30	OWS
836 Auto Hobby	Roughneck Soap	36	OWS
41 ECS AGE	Aircraft Soap	660	OWS

TOTAL: 5856

WASTE: Speedy Dry

SHOP	WASTE	DISPOSAL	
41 ECS Electric	Speedy Dry	Ť	
41 ECS AGE	Speedy Dry	Т	
23 CAMS Phase Dock	Speedy Dry	Т	
355 EMS AGE	Speedy Dry	Т	
41 ECS Fuel System Repair	Speedy Dry	Т	
868 TMMS AGE	Speedy Dry	Т	
41 ECS Aircraft Maint	Speedy Dry	T	

WASTE: Batteries

SHOP	WASTE	QTY(#/YR)	DISPOSAL
41 ECS AGE	Batteries	36	NDD
868 TMMS AGE	Batteries	б	NDD
836 TRANS Gen/Spec Purp Maint	Batteries	NQ	NDD

WASTE: Rags

SHOP	WASTE	DISPOSAL	
41 ECS Hydraulic	Rags	Т	
355 EMS AGE	Rags	SBC	
41 ECS Corrosion Control	Rags	Т	
836 TRANS Fire Truck Maint	Rags	Т	
355 EMS Wheel and Tire	Rags	SBC	
355 CRS Pneudraulics	Rags	Т	
836 CES Power Production	Rags	Т	
23 CAMS Phase Dock	Rags	Т	
41 ECS Electric	Rags	Т	
AMARC Pneudraulics	Rags	Т	
355 EMS Armament	Rags	SBC	
41 ECS Fuel System Repair	Rays	Т	
41 ECS Aircraft Maint	Rags	Т	
868 TMMS AGE	Rags	Т	
23 CAMS Engine	Rags	Т	
41 ECS Propulsion	Rags	Т	
355 EMS NDI	Rags	SBC	
836 TRANS Gen/Spec Purp Maint	Rags	Т	
41 ECS AGE	Rags	т	

WASTE: Photo & NDI

SHOP WASTE		QTY (GAL/YR)	DISPOSAL	
355 EMS NDI	Dye Penetrant	110	DH	
AMARC NDI	Penetrant	55	DH	
836 HOSP Dental Clinic	X-Ray Fixer	24	SRDD	
355 EMS NDI	X-Ray Fixer	600	SRDD	
355 EMS NDI	Emulsifier	110	DD	
355 EMS NDI	Developer	110	DD	
AMARC NDI	Emulsifier	55	DH	
836 HOSP Dental Clinic	X-Ray Developer	24	DD	
AMARC NDI	Developer	55	DH	
355 EMS NDI	X-Ray Developer	600	DD	
AMARC NDI	Mag Particle Soln	30	DH	
355 EMS NDI	Mag Particle Soln	40	DH	

WASTE: Solvent

SHOP	WASTE	QTY (GAL/YR)	DISPOSAL
355 EMS NDI	TCA	100	DH
41 ECS Propulsion	MEK	NQ	UTP
355 EMS AGE	Rinsolve 140	110	DNH
836 TRANS Gen/Spec Purp Maint	Rinsolve 140	300	DNH
41 ECS Propulsion	Toluene	NQ	UIP
41 ECS Hydraulic	Rinsolve 140	320	DNH
355 CRS Propulsion	Carbon Remover	660	DH
355 EMS Wheel and Tire	TCA	NQ	٩IU
AMARC Materials Lab	Freon	60	DH
41 ECS AGE	Rinsolve 140	NQ	DNH
355 AGS AMU	Citrikleen	NQ	UIP
AMARC Small Parts Cleaning	Carbon Remover	700	DH
836 HOSP Clinical Lab	Xylene	36	DH
41 ECS AGE	PD-680	48	DH
AMARC Materials Lab	Nitric Acid	1	UIP
41 ECS Aircraft Maint	PD-680	30	DH
AMARC Small Parts Cleaning	Phosphoric Acid	5	DH
41 ECS Propulsion	PD-680	1 38	DH
AMARC Materials Lab	Hydrochloric Acid	12	UIP
355 CRS Pneudraulics	Rinsolve 140	640	DNH
AMARC Small Parts Cleaning	Rinsolve 140	NQ	OWS
355 EMS Wheel and Tire	Rinsolve 140	300	DN H
355 CRS Propulsion	Rinsolve 140	660	DN H
41 ECS Fuel System Repair	MEK	NQ	UIP
AMARC Pneudraulics	Rinsolve 140	165	DN H
23 CAMS Engine	Rinsolve 140	NQ	DNH
AMARC Small Parts Cleaning	NaOH	NQ	REP
836 HOSP Clinical Lab	Alcohol	25	DD
41 ECS Electric	MEK	12	UIP
AMARC Small Parts Cleaning	TCA	NQ	REP

WASTE: Misc Chemicals

SHOP		WASTE	QTY(GAL/YR)	DISPOSAL
836 HOSP Dental Clinic		Acetone	NQ	UIP
836 HOSP Dental Clinic		Vapo-Steril		DD
836 HOSP Clinical Lab		Formalin		DD
836 HOSP Dental Clinic		Ultrasonic Clea	iner 12	DD
836 HOSP Dental Clinic		Dialdehyde	120	DD
836 HOSP Dental Clinic		Potassium Cyani	de NQ	DD
41 ECS Electric		Dibromoethane	60	UIP
836 HOSP Dental Clinic		Wax Solvent	2	DD
836 HOSP Dental Clinic		Chloroform	NQ	UIP
836 HOSP Dental Clinic		Vacuucleaner	480	DD
836 CES Heating Plant		Phosphate	2400	DD
836 CES Refrigeration		Inhibitor	NQ	DD
836 CES Refrigeration		Cooling Tower T	reat NQ	DD
836 CES Heating Plant		Sodium Bisulfit	e 2400	DD
836 CES Heating Plant		Sulfamic Acid	1380	NDD
41 ECS Electric		Liquid Oxygen	2400	UIP
836 CES Heating Plant		Cyclohexylamine	2400	DD
			TOTAL: 11878	
LEGEND: SEPARATOR	T	- TRASH	OWS -	OIL/WATER
	DD	- DOWN DRAIN		FIRE TRAINING PIT
REC - RECYCLED REP - REPLENISHED UGT - UNDERGROUND TANK DNH - DRUMMED NON HAZ WASTE	DH SBC NDD SRDD	 DRUMMED HAZ W. SERVICED BY CO NEUTRALIZED TI SILVER RECOVED DOWN DRAIN 	ONTRACTOR HEN DOWN DRAIN	USED IN PROCESS

APPENDIX C

WASTES DISPOSED AS HAZARDOUS WASTE AT DAVIS-MONTHAN AFB

(This page left blank)

SHOP	BLDG	PRODUCT	QTY (GAL/YR)
AMARC Materials Lab	7615	Hydraulic Fluid	360
			بوالقائل المالي فرق فروا والمراجع بالمراجع والمراجع

Type of Waste: Hydraulic Fluid

TOTAL: 360

Type of Waste: Paint, Thinner, & Stripper

SHOP	BLD #	PRODUCT QI	Y (GAL/YR)
AMARC Corrosion/Paint	7425	Paint Waste	220
355 CRS Propulsion	5245	Paint Stripper	660
41 ECS Corrosion Control	136	Thinners	60
23 CAMS Corrosion Control	5255	Paints and Thinners	7080
41 ECS Corrosion Control	236	Poly & Enamel Paint	96
868 TMMS Corrosion Control	72	Paint Wastes	30
23 CAMS Corrosion Jontrol	5255	Stripper	880
AMARC Small Parts Cleaning	7401	Paint Stripper	770*

TOTAL: 9726

Туре	of	Waste:	NDI

7401	Developer	55 **
5406	Mag Particle Soln	40
7401	Penetrant	55**
7401	Mag Particle Soln	30
7401	Emulsifier	55**
5406	Dye Penetrant	110
	5406 7401 7401 7401	5406Mag Particle Soln7401Penetrant7401Mag Particle Soln7401Emulsifier

SHOP	BLDG	PRODUCT	QTY (GAL/YR)
AMARC Small Parts Cleaning	7401	Carbon Remover	700*
AMARC Small Parts Cleaning	7401	Phosphoric Acid	5
41 ECS Propulsion	133	PD-680	1 38
836 HOSP Clinical Lab	400	Xylene	36
355 CRS Propulsion	5245	Carbon Remover	660
41 ECS Aircraft Maint	139	PD-680	30
41 ECS AGE	125	PD-680	48
AMARC Materials Lab	7615	Freon	60
355 EMS NDI	5406	1,1,1-TCE	100

Type of Waste: Solvent

TOTAL: 1777

* Changed out every 5 years
** Changed out every 7 years

APPENDIX D

WASTES DISCHARGED TO THE SANITARY SEWER AT DAVIS-MONTHAN AFB

(This page left blank)

WASTES DISCHARGED TO THE SANITARY SEWER AT DAVIS-MONTHAN AFB

Type of Waste: Rinsewater

SHOP	BLDG	PRODUCT	QTY (GAL/YR)
355 CRS Propulsion	5245	Rinsewater	660
			TOTAL: 660
	Type of Waster	Antifreeze	

Type of Waste: Antifreeze

SHOP	BLDG	PRODUCT	QTY (GAL/YR)
836 TRANS Fire Truck Maint	4823	Antifreeze	60
836 Auto Hobby	4531	Antifreeze	120

TOTAL: 180

SHOP	BLDG.	PRODUCT	QTY (GAL/YR)
23 CAMS Corrosion Control	5255	Aircraft Soap	NQ
836 TRANS Gen/Spec Purp Maint	4507	Steam-It Soap	NQ
AMARC Small Parts Cleaning	7401	Soap	NQ
41 ECS AGE	125	Aircraft Soap	660
355 EMS Armament	4710	LA 175 Soap	220
836 Auto Hobby	4531	Albrite Soap	30
868 TMMS Vehicle Maintenance	72	Biogenic Soap	110
836 Auto Hobby	4531	Roughneck Soap	36
41 ECS Fuel System Repair	136	Soap	MQ
41 ECS Corrosion Control	136	Soap	4800

Type of Waste: Soap

TOTAL: 5856

Type of Waste: Sulfuric Acid

Shop	BLDG	PRODUCT	QTY (#/YR)
868 TMMS AGE	72	Batteries	6
41 ECS AGE	125	Batteries	36
836 TRANS Gen/Spec Purp Maint	4507	Batteries	NQ

TOTAL: 42

Туре	of	Waste:	Photo	&	NDI
------	----	--------	-------	---	-----

SHOP	BLDG	PRODUCT	QTY (GAL/YR)
355 EMS NDI	5406	X-Ray Developer	600
355 EMS NDI	5406	X-Ray Fixer	600
355 EMS NDI	5406	Developer	110
836 HOSP Dental Clinic	400	X-Ray Fixer	24
836 HOSP Dental Clinic	400	X-Ray Developer	24
355 EMS NDI	506	Emulsifier	110

Type of	Waste:	Solvent
---------	--------	---------

SHOP	BLDG	PRODUCT	QTY (GAL/YR)
AMARC Small Parts Cleaning	7401	Rinsolve 140	NQ
836 HOSP Clinical Lab	400	Alcohol	25

TOTAL: 25

Type of Waste: Misc	: Chemicals
---------------------	-------------

SHOP	BLDG	PRODUCT QI	Y (GAL/YR)
836 CES Refrigeration	5309	Inhibitor	NQ
836 CES Refrigeration	5309	Cooling Tower Treat	NQ
836 CES Heating Plant	5309	Sodium Bisulfite	2400
836 CES Heating Plant	5309	Phosphate	2400
836 HOSP Dental Clinic	400	Potassium Cyanide	NQ
836 HOSP Dental Clinic	400	Wax Solvent	2
836 HOSP Dental Clinic	400	Vacuucleaner	480
836 HOSP Dental Clinic	400	Ultrasonic Cleaner	12
836 CES Heating Plant	5309	Cyclohexylamine	2400
836 HOSP Clinical Lab	400	Formalin	200
836 CES Heating Plant	5309	Sulfamic Acid	5309
836 HOSP Dental Clinic	400	Dialdehyde	120
836 HOSP Dental Clinic	400	Vapo-Steril	24

TOTAL: 9418

APPENDIX E

MASTER LIST OF SHOPS

.

(This page left blank)

MASTER LIST OF SHOPS

Shop	CONTACT	BUILDING	EXTENSION
823 CAMS	······································		
Engine Phase Dock Aircraft Maint Corrosion Control Fuel Systems	MSgt Steel TSgt Johnson 2Lt Banks MSgt Koernig MSgt Barnett	1358 1447 1541 5255 5256	5120 2194 5275
355 EMS			
NDI AGE Armament Wheel and Tire	TSgt Johnson SMSgt Morris MSgt Tilden SrA Nalley	5406 4127 4710 4809	5352 4432
836 TRANS			
Gen & Spec Maint Allied Trades Fire Truck Maintenance	Mr Moffitt Mr Moffitt Mr Scheets	4705 4705 4823	4987
823 CES			
Refrigeration Power Production Entomology Liquid Fuels Heating Plant	TSgt Moore MSgt Terry TSgt Figueredo Mr Rogalski Mr Estrada	5309 5122 5319 5309 5309	4520 5368
868 TMMS			
AGE Corrosion Control Vehicle Maint	TSgt Walker TSgt Korzenaski TSgt Brown	72 72 72	3201 5199 4994
41 ECS			
Fuel System Repair Hydraulic Isochronal Electric Propulsion Corrosion Control AGE Aircraft Maint	SAmn Winter Sgt Mundy SSgt Linkous TSgt Van Vranken TSgt Tiensvold MSgt Thunstrum SSgt Holyfield MSgt Bagwell	136 136 129 133 136 125 139	4640 5847 5845 5878 5741 4151 3988 5995
AMARC			
Corrosion/Paint Materials Lab Pneudraulics NDI Small Parts Cleaning	Mr Wilson Mr Stutz Mr Berry Mr Machado Mr Gunderson	7425 7615 7415 7401 7401	3387 5636 3670

836 AD HOSP

Pathology Lab Dental Clinic	Sgt Powell MSgt Soufert	400 400	4732 5005
355 CRS			
Pneudraulics Propulsion	TSgt Amick MSgt South	5045 5245	4331 5376
836 CSG			
Auto Hobby	Mr Booker	4531	3614
355 AGS			
AMU	MSgt Williams	5251	5025

APPENDIX F

DISPOSAL PRACTICES BY SHOP FOR DAVIS-MONTHAN AFB

(This page left blank)

DISPOSAL PRACTICES BY SHOP FOR DAVIS-MONTHAN AFB

SHOP :	23	CAMS	Corrosion	Control		Buildi	ng: 5255
WASTE PRODUCT					QTY (GAL/Y	R) DISP	SAL
Stripper Aircraft Soap Paints and Th		ers			880 NQ 7080	DH OWS DH	
				TOTAL:	7960		9
SHOP :	23	CAMS	Engine			Buildi	ng: 1348
WASTE PRODUCT					QTY(GAL/YE	() DISPO	DSAL
Synthetic Oil Rinsolve 140 Rags					48 N Q N Q	DN H DN H T	
				TOTA	L: 48		
SHOP :	23	CAMS	Fuel System	ns		Buildig	1 g: 5256
WASTE PRODUCT					QTY (GAL/Y	R) DISPO	SAL
JP-4					1200	RE C	
				TOTAL:	1200		-
SHOP :	23	CAMS	Phase Dock			Buildir	ng: 1447
WASTE PRODUCT					QTY (GAL/YR) DISPO	SAL
Rags Speedy Dry Synthetic Oil Hydraulic Flui	d				NQ NQ 240 250	T T DN H DN H	
<u></u>			₩ <i>₽</i> ₩₩₩ <u>₽₩₩₽₩₩₽₩</u>	TOTAL	: 490	* • • • • • • • • • • • • • • • • • • •	

SHOP:	355	AGS	AMU	

Building: 5251

WASTE PRODUCT	Ç	TY(GAL/YR)	DISPOSAL
Hydraulic Fluid Synthetic Oil JP-4 Citrikleen		660 660 NQ NQ	DNH DNH FTP UIP
	TOTAL:	1 320	
SHOP: 355 CRS Pneudraulic	25		Building: 5045
WASTE PRODUCT	C	TY(GAL/YR)	DISPOSAL
Rags Hydraulic Fluid · Rinsolve 140		NQ 36 640	T DNH DNH
	TOTAL:	676	
SHOP: 355 CRS Propulsion			Building: 5245
WASTE PRODUCT	Q	TY(GAL/YR)	DISPOSAL
Rinsewater Rinsolve 140 Paint Stripper JP-4 Carbon Remover		660 660 660 120 660	OWS DNH DH DNH DH
	TOTAL:	2760	
SHOP: 355 EMS AGE			Building: 4127
WASTE PRODUCT	Q	TY(GAL/YR)	DISPOSAL
Speedy Dry Synthetic Oil Rags JP-4 Rinsolve 140 Hydraulic Fluid		NQ 660 NQ 330 110 660	T DNH SBC DNH DNH DNH
	TOTAL:	1760	

		Building: 4710
WASTE PRODUCT	QTY(GAL/YR)	DISPOSAL
LA 175 Soap	220	OWS
Spray Paint	NQ	UIP
Rags	NQ	SBC
	TOTAL: 220	
	101AL: 220	
SHOP: 355 EMS NDI		Building: 5406
WASTE PRODUCT	QTY(GAL/YR)	DISPOSAL
Mag Particle Soln	40	DH
TCA	100	DH
Dye Penetrant	110	DH
X-Ray Developer	600	DD
X-Ray Fixer	600	SRDD
Emulsifier	110	DD
Rags	NQ	SBC
Developer	110	DD
	TOTAL: 1670	
SHOP: 355 EMS Wheel an	nd Tire	Building: 4809
		DISPOSAL
WASTE PRODUCT	QTY(GAL/YR)	DISFORE
		۵۰۵ ± ۵۰۰ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹
Rinsolve 140	300	DN H
WASTE PRODUCT Rinsolve 140 Rags TCA		۵۰۵ ± ۵۰۰ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹
Rinsolve 140 Rags	300 NQ	DNH SBC
Rinsolve 140 Rags TCA	300 NQ NQ	DNH SBC
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE	300 NQ NQ	DNH SBC UIP
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT	300 NQ NQ TOTAL: 300	DNH SBC UIP Building: 125
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil	300 NQ NQ TOTAL: 300 QTY(GAL/YR)	DNH SBC UIP Building: 125 DISPOSAL
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil Speedy Dry	300 NQ NQ TOTAL: 300 QTY(GAL/YR) 660	DNH SBC UIP Building: 125 DISPOSAL DNH
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil Speedy Dry Batteries	300 NQ NQ TOTAL: 300 QTY(GAL/YR) 660 NQ	DNH SBC UIP Building: 125 DISPOSAL DNH T
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil Speedy Dry Batteries Rags Rinsolve 140	300 NQ NQ TOTAL: 300 <u>QTY(GAL/YR)</u> 660 NQ 36	DNH SBC UIP Building: 125 DISPOSAL DNH T NDD
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil Speedy Dry Batteries Rags Rinsolve 140	300 NQ NQ TOTAL: 300 QTY(GAL/YR) 660 NQ 36 NQ	DNH SBC UIP Building: 125 DISPOSAL DNH T NDD T
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil Speedy Dry Batteries Rags Rinsolve 140 Aircraft Soap	300 NQ NQ TOTAL: 300 QTY(GAL/YR) 660 NQ 36 NQ NQ NQ	DNH SBC UIP Building: 125 DISPOSAL DNH T NDD T DNH
Rinsolve 140 Rags TCA	300 NQ NQ TOTAL: 300 <u>QTY(GAL/YR)</u> 660 NQ 36 NQ NQ NQ 660	DNH SBC UIP Building: 125 DISPOSAL DNH T NDD T DNH OWS
Rinsolve 140 Rags TCA SHOP: 41 ECS AGE WASTE PRODUCT Motor Oil Speedy Dry Batteries Rags Rinsolve 140 Aircraft Soap Synthetic Oil	300 NQ NQ TOTAL: 300 <u>QTY(GAL/YR)</u> 660 NQ 36 NQ NQ NQ 660 660 660	DNH SBC UIP Building: 125 DISPOSAL DNH T NDD T DNH OWS DNH

SHOP :	41 EC	S Aircraft Maint		Building:	1 39
WASTE PRODUCT			QTY(GAL/YR)	DISPOSAL	
Hydraulic Flu	id		12	DNH	
Engine Oil			180	DNH	
Speedy Dry			NQ	Т	
PD-680			30	DH	
Rags			NQ	Т	
Turbine Oil			24	DNH	
		TOTA	L: 246		
SHOP :	41 EC:	6 Corrosion Control		Building:	136
WASTE PRODUCT			QTY(GAL/YR)	DISPOSAL	
Soap			4800	OWS	
Rags			NQ	Т	
Poly & Enamel	Paint		96	DH	
Paint Filters			432	Т	
Thinners			60	DH	
		TOTAL	: 5388		
Shop:	41 EC	S Electric		Building:	129
WASTE PRODUCT			QTY(GAL/YR)	DISPOSAL	
Liquid Oxygen			2400	UIP	
Dibromethane			60	UIP	
1EK			12	UIP	
lags			NQ	Т	
Speedy Dry			NQ	Т	
Engine Oil			2	DN H	

SHOP: 4	ECS Fuel System	Repair		Building:	136
WASTE PRODUCT			QTY(GAL/YR)	DISPOSAL	
JP-4 Soap Speedy Dry Rays MEK			36 NQ NQ NQ NQ	DNH OWS T T UIP	
		TOTAL	: 36		
SHOP: 4	I ECS Hydraulic			Building:	136
WASTE PRODUCT			QTY(GAL/YR)	DISPOSAL	
Hydraulic Fluid Rags Rinsolve 140			24 NQ 320	DN H T DN H	-
		TOTAL:	344		
SHOP: 4	ECS Propulsion			Building:	133
WASTE PRODUCT		······································	QTY(GAL/YR)	DISPOSAL	
Engine Oil Hydraulic Fluid Toluene MEK PD-680 Bio-Franklin Soa Rags	ар		1 320 330 NQ NQ 1 38 NQ NQ	DNH DNH UIP UIP DH UIP T	
		TOTAL:	1788		
SHOP: 83	36 Auto Hobby			Building:	4531
WASTE FRODUCT			QTY(GAL/YR)	DISPOTAL	
Antifreeze Carburetor Clear Albrite Soap Roughneck Soap Safety Kleen Paint Filters Motor Oil	ner		120 480 30 36 480 240 3000	DD SBC OWS OWS SBC T DN H	
		TOTAL	4386		

SHOP:	836 C	ES	Heating Plan	t		Building:	5309
WASTE PRODUCT	********	·····		·	QTY(GAL/YR)	DISPOSAL	
Cyclohexylami Sulfamic Acid Phosphate Sodium Bisulf					2400 1380 2400 2400	DD NDD DD DD	
				TOTAL:	8580		
SHOP :	836 C	ES	Liquid Fuels			Building:	5309
WASTE PRODUCT					QTY(GAL/YR)	DISPOSAL	
Fuel Sludge					275	DNH	
				TOTAL	275		
SHOP :	836 C	ES	Power Produc	tion		Building:	5122
WASTE PRODUCT					QTY (GAL/YR)	DISPOSAL	
WASTE PRODUCT Diesel Hydraulic Flu Motor Oil Spray Paint Rags Paint Thinner					QTY(GAL/YR) 150 50 150 NQ NQ NQ	DISPOSAL LNH DNH DNH UIP T UIP	
Diesel Hydraulic Flu Motor Oil Spray Paint Rags				TOTAL :	150 50 150 NQ NQ NQ	LNH DNH DNH UIP T	
Diesel Hydraulic Flu Motor Oil Spray Paint Rags Paint Thinner SHOP:	id	ES	Refrigeration		150 50 150 NQ NQ NQ 350	LNH DNH DNH UIP T UIP Building:	5309
Diesel Hydraulic Flu Motor Oil Spray Paint Rags Paint Thinner	id	ES	Refrigeration		150 50 150 NQ NQ NQ	LNH DNH DNH UIP T UIP	

SHOP: 83	6 Hosp Clinical Lab		Building: 400
WASTE PRODUCT		QTY(GAL/YR)	DISPOSAL
Xylene		36	DH
Formlin		200	DD
Alcohol		25	DD
	TOTAL	.: 261	
SHOP 836	HOSP Dental Clinic		Building: 400
WASTE PRODUCT	میرون است. میرون است بین میشون است است است است این است این است	QTY(GAL/YR)	DISPOSAL
X-Ray Developer		24	DD
Vapo-Steril		24	DD
Acetone		NQ	UIP
Ultrasonic Clean	er	12	DD
Dialdehyde		120	DD
Potassium Cyanide	2	NQ	DD
X-Ray Fixer	-	24	SRDD
Vacuucleaner		480	DD
Wax Solvewnt		2	DD
Chloroform		NQ	UIP
	TOTAL	.: 686	
SHOP: 830	5 TRANS Allied Trades		Building: 4705
WASTE PRODUCT		QTY(GAL/YR)	DISPOSAL
Paint Filters		NQ	Τ
Shop: 830	5 TRANS Fire Truck Maint	;	Building: 4823
WASTE PRODUCT		QTY (GAL/YR)	DISPOSAL
Motor Oil		660	DN H
Antifreeze		60	DD
Rags		NQ	т
Spray Paint		NQ	UIP
	TOTAL	: 720	. <u> </u>

SHOP:	836	TRANS	Gen/Spec	Purp Main	5	Building:	4507
WASTE PRODUCT				QI	Y(GAL/YR)	DISPOSAL	
Rinsolve 140 Batteries Motor Oil Rags Trans Fluid Steam-It Soap					300 NQ 7200 480 100 NQ	DNH NDD DNH T DNH OWS	
				TOTAL:	8080		
Shop:	868	TMMS	AGE			Building:	72
WASTE PRODUCT				Q	TY(GAL/YR)	DISPOSAL	
Batteries 7808 Oil Diesel Motor Oil Speedy Dry Rags					6 240 240 220 NQ NQ	NDD DNH DNH DNH T T	
				TOTAL:	706		
SHOP:	868	TMMS	Corrosion	Control		Building:	72
WASTE PRODUCT				Q	Y(GAL/YR)	DISPOSAL	
Oil and Fluid Paint Wastes					440 30	DN H DH	
				TOTAL:	470		
SHOP :	868	TMMS	Vehicle M	aintenance		Building:	72
WASTE PRODUCT				Q	TY(GAL/YR)	DISPOSAL	
Safety Kleen Biogenic Soap Trans Fluid Engine Oil					180 110 125 2100	SBC OWS DNH UGT	
				TOTAL:	2515		

SHOP:	AMARC Corrosion/Pa	aint		Building:	7425
WASTE PRODU	CT	QI	Y(GAL/YR)	DISPOSAL	
Paint Waste			220	DH	
		TOTAL:	220		
SHOP :	AMARC Materials La	ab		Building:	7615
WASTE PRODU	СТ	Q	Y(GAL/YR)	DISPOSAL	
Hydrochlori Engine Oil Hydraulic F Freon Nitric Acid			12 360 360 60 1	UIP DNH DH DH UIP	
		TOTAL:	793		
SHOP :	AMARC NDI			Building:	7401
WASTE PRODU	ĊŢ	QT	Y(GAL/YR)	DISPOSAL	
Emulsifier Mag Particl Penetrant Developer	e Soln		55 30 55 55	DH DH DH DH	
		TOTAL:	195		
Shop:	AMARC Pneudraulics	i		Building:	7415
ASTE PRODUC	СТ	QT	Y(GAL/YR)	DISPOSAL	
Rags Hydraulic Fi Rinsolve 14(NQ 440 165	T DN H DN H	
		TOTAL:	605		

SHOP: AMARC Small Parts Cleaning

Building: 7401

WASTE PRODUCT	QTY(GAL/YR)	DISPOSAL	
Phosphoric Acid	5	DH	
Carbon Remover	700	DH	
Paint Stripper	700	DH	
Bead Blast Medía	NQ	Т	
Soap	NQ	OWS	
NaOH	NQ	REP	
TCA	NQ	REP	
Rinsolve 140	NQ	OWS	

TOTAL: 1405

LEGEND:	Т	-	TRASH	
	DH	-	DRUMMED HAZ	WASTE
	DD	-	DOWN DRAIN	
	REP	-	REPLENISHED	
	DNH	-	DRUMMED NON	HAZ WASTE
	REC	-	RECYCLED	
	UGT	-	UNDERGROUND	TANK

- OWS OIL/WATER SEPARATOR
- FTP FIRE TRAINING PIT
- UIP USED IN PROCESS
- SBC SERVICED BY CONTRACTOR
- NDD NEUTRALIZED THEN DOWN DRAIN SRDD - SILVER RECOVERY THEN DOWN DRAIN

APPENDIX G

.

WASTEWATER ANALYTICAL DATA

(This page left blank)

AVERAGE	309.17	122.00	57.00	75.30	32.21	0.12	0.04	41.07	6.32	17.33	0.01	0.01	11.50	26.33	<100	122.00	<100	<100	<50	<100	1353.00	31.00	<100	1.80	<100	<10	44.00	219.80	128.45	9.35	ETR	ERR	342_67	10.450
			42.00		30.00																													
<0.3	275.00	115.00	90.06	28.20	31.50	0.10	0.02	51.20	10.20	14.00	0.01			11.00	<100	<100	<100	<100	<50	<100	675.00	<20	<100	4	<100	<10	71.00	144.00	46.40	10.10			250,00	· · · · · · · · · · · · · · · · · · ·
1.30	280.00	83.00	68.00	12.20	36.00	0.12	0.07	49.60	6.20	13.00	0.02		11.00	15.00	<100	<100	<100	<100	<50	<100	1274.00	<20	<100	1.10	<100	<10	<10	342.00	48.40	9.20			201_00	
4.60	280.00	119.00	38.00	9.40	33.00	<.10	0.04	40.80	8.00	14.00	0.02			23.00	<100	<100	<100	<100	<50	<100	1638.00	<20	<100	1	<100	<10	<10	123.00	52.30	8.80			139.00	
1.90	220.00	192.00	68.00	3.60	32.00	0.16	0.04	37.60	0.33	20.50	0.02	0.02	12.00	47.00	<100	<100	<100	<100	<50	<100	874.00	<20	<100	1.40	<100	<10	<10	161.00	52.60	8.80			394,00	
32.40	400.00	57.00	58.00	86.40	33.00	0.12	0.02	37.20	7.60	25.00	0.01	0.01	12.00	20.00	<100	109.00	<100	<100	<50	<100	785.00	<20	<100	1.40	<100	<10	<10	<100	53.10	9.20			383,00	
70.40	400.00	166.00	35.00	312.00	30.00	0.10	<0.02	30.00	5.60	17.50	0.01	0.01	11.00	42.00	<100	135.00	<100	<100	<50	<100	2872.00	31.00	<100	3.30	<100	<10	17.00	325 .0r	61.20	10.00			689_00	•
			7 Julie Juli						2 Jon	Z	2/50	5 2 2 2 1 2 1	1/bn	Ър	7/bn	TVDn	TVBN	T/bn	¶7/bn	1/bn	The	1/bn	1/bn	1/bn	The	The	Typu	T/bn	1 J J J J J J J J J J J J J J J J J J J	7/5m	T∕6n	1/bu	110 A.	1
SITE 1 POT EXTR HVD	CHENICAL OXYGEN DEMAND	BIOCHEMICAL OXYGEN DEMAN	TOTAL ORGANIC CARBON	OIL & GREASE	AMONIA	NITRATE	NITRITE	TOTAL KJELDAHL NI TROGEN	PHOSPHORUS ortho PO4	PHOSPHORUS	CYANIDE	CYANIDE free	PHENOLS (EPA 604)	PHENOLS (MTH. 420)	ARSENIC	BARIUM	CADMITUM	CHROMITUM	CHROMIUM Hexavalent	COPPER	IRON	LEAD	MANCANESE	MERCURY	NICKEL	SELENTUM	SILVER	ZINC	CALCIUM	MAGNESIUM	POTASSIUM	MIDOS	ICP ALIMINA ALIMINAM	

AVERAGE	<100 1100.00	ERR 42.50 ERR	ERR 510.83	ERR 517.40 166.17	922.17 60.17 5.18	ERR <100 167.00 <100 <100 324.00	5.07 5.07 1.60 1.70	53.50 53.50 5.10 7.10 1.40 13.00
	<100 1450.00	47.00	464.00	305.00	929.00 64.00 9.80	<100 <100 <100 <100 370.00	4.00 2.40	
	<100 1700.00	48.00	675.00	508.00 163.00	8//.00 15.00 5.20	<100 <100 <100 333.00	6.20 1.30	
	<100 850.00	29.00	412.00	487.00 141.00	004.00 78.00 4.10	<100 104.00 <100 <100 269.00	5.00 2.20	
	<100 500.00	32.00	398.00	528.00 67.00	83.00 83.00 0.30	<pre><100 <100 <100 <100 <100 328.00</pre>	11.20 1.60	
	<100 1000.00	37.00	560.00	581.00 179.00 977.00	49.00	<pre><100 <100 <100 <100 333.00</pre>	0.80	75.00 5.10 6.80 7.10 13.00 140.00
	<100 1100.00	62.00	556.00 15.00	483.00 142.00 914 00	72.00	<pre><100 230.00 <100 <100 274.00</pre>		0.00 32.00 5.10 7.10 1.40 13.00 140.00
	1/6n 1/6n			で で い い い い に い の の の の の の の の の の の の の の		大 ち ち ち ち ち ち ち ち ち ち ち ち ち		y Con Y Con Y Con The The The The The The The The The The
1 3110	BERYILIUM BORON BURON Dissolved	CHLORIDE COLOR FLUORIDE	Residue Filterable (TDS) Residue Non (SS)	Residue Residue Volatile Specfic Conductance	SULFATE SURFACTANTS TURBIDITY	COBALT MOLYBDENUM TITZANIUM VANADIUM ALK TOTAL STURETORC	CHLOROFORM CHLOROPORM CHLOROMETHANE 1,4-DICHLOROBENZENE TRANS-1 2-DITCHLODOFFHEME	METHYLFNE CHLORIDE MAPHTHALENE NAPHTHALENE DIETHYL PHTHALATE DI-n-BUTYL PHTHALATE BROWOMETHANE BENZYL-BUTYLPHTHALATE BIS(2ETHYLHEXYL)PHTHALATE BIS(2ETHYLHEXYL)PHTHALATE

SITE 1

SITE 1 CONTINUED

14.00 4.67 1.93 1.20

AVERAGE

1.60	
2.20	А И Е И Е И Е И Е И Е И Е И Е И Е И Е И Е
, 2.00	A
4.90 3.50	
14.00 6.10 3.00	
<.5 3.06 <.3 1.20	, , , , , , , , , , , , , , , , , , ,
で 1 1 1 1 1 1 1 1 1 1 1 1 1	
1, 3-DICHLOROBENZENE 1, 4-DICHKIRIBENZENE ETHYL BENZENE TOLUENE	601 BROMOFORM BROMOFORM BROMOFORM BROMOFORM BROMOFORM CARBON TETRACHLORUDE CARBON TETRACHLORUDE CHLOROBENZENE CHLOROBENZENE CHLOROFTHANE 2-CHLOROBENZENE DIBEROMOCHLOROMETHANE 1, 3-DICHLOROBENZENE DIBEROMOCHLOROMETHANE 1, 3-DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROBENZENE DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 1, 2-TETRACHLOROETHANE 1, 1, 2-TETRACHLOROETHANE 1, 1, 2-TETRACHLOROETHANE 1, 1, 2-TETRACHLOROETHANE 1, 1, 2-TETRACHLOROETHANE 1, 1, 2-TERICHLOROETHANE 1, 1, 2-TERICHCOROETHANE 1, 1, 2-TERICHCOROETHANE 1, 1, 2-TERICHCOROETHANE 1, 1, 2-TERICHCOROETHANE 1, 1, 2-TERICHCOROETHANE

SITE 1 CONTINUED

AVERAGE

۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	
P C C C C C C C C C C C C C C C C C C C	
602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE FOLUENE	

N	
ម្ម	
Ξ.	
S.	

AVERAGE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134.00
2.20 390.00 811.00 811.00 255.50 255.50 255.50 255.50 255.50 255.50 20.03 34.80 34.80 34.80 34.80 255.50 0.03 34.80 0.03 255.50 0.03 257.50 0.03 257.50 0.03 257.50 250 250 250 250 250 250 250 250 250 2	632.00
$\begin{array}{c} 2.20\\ 144.00\\ 62.00\\ 62.00\\ 25.00\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.03\\ 13.50\\ 0.03\\ 13.50\\ 0.03\\ 13.50\\ 0.03\\ 0.25\\ 0.00\\ 11.90\\ (100\\ 0.19\\ 0.03\\ 13.50\\ 0.03\\ 0.03\\ 0.25\\ 0.00\\ 13.50\\ 0.03\\ $	213.00
EBEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	¶7∕6n
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL OXYGEN DEMAN OIL & GREAKE AMMONIA NITRATE NITRATE NITRATE NITRATE NITRATE AMMONIA NITRATE AMMONIA NITRATE AMMONIA NITRATE AMMONIA NITRATE AMMONIA NITRATE AMMONIA FHENCIS ORTHOR PO4 FHOSFHORUS ORTHOR PO4 FICON CALCUM MAGNESE MANGANESE M	ALUMINUM

3.07 645.00 169.17 81.00 17.00 17.00 17.00 17.00 17.00 118.67 18.67 18.67 18.67 18.67 18.67 19.60 119.00 (100 (100 (100 (100 (100 (100 (100)) (100) (1

SITE 2 CONTINUED

AVERAGE

<pre><100 616.67 54.00 ERR 54.00 ERR 444.67 4960.00 610.00 330.00 330.00 940.33 18.00 10.63 18.00 10.63 ERR 7100 <100 <100 <100 242.00 <100 242.00</pre>
<pre><100 600.00 72.00 610.00 994.00 994.00 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 353.00 353.00 353.00</pre>
<pre><100 550.00 40.00 40.00 240.00 2821.00 150.00 15.00 6.00 318.00 318.00 6.00</pre>
<pre><100 700.00 50.00 531.00 573.00 574.00 575.000</pre>
SE SE SESSESSESSESSESSESSESSESSESSESSESS
BERYLIUM BORON BORON Dissolved CHLORIDE COLOR FILUORIDE Residue Filterable (T Residue Non (SS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES

STITE 3			AVERAGE
FOT EXTR HYD	N	0.60	0.60
CHEMICAL OXYGEN DEMAND	2 V D II	530.00	530.00
BIOCHEMICAL OXYGEN DEMAN		141.00	141.00
TOTAL ORGANIC CARBON		88.00	88.00
OIL & GREASE	2750	4.50	4.50
APPONIA	J. Den	21.00	21.00
NITRATE	17 pm	1.24	1.24
NITRITE	1/Den	<.02	<.02
TOTAL KJELDAHL NITROGEN	P Q/P	64.00	64.00
PHOSPHORUS or the PO4	17 DE	5.60	5.60
SUNGHASOHA	P Da	11.00	11.00
CYANIDE		0.02	0.02
CYANIDE free	L Dia		ERR
PHENOLS (EPA 604)	Typu	29.00	29.00
-	1/bn	55.00	55.00
ARSENIC	1/bn		ERR
BARIUM	The		ERR
CADMITUM	Thu		ERR
CHROMIUM	Typu		ERR
CHROMIUM Hexavalent	Thu		ERR
COPPER	1/bn		ERR
IRON	1/bn		ERR
LEAD	1/bn		ERR
MANGANESE	7/5n		ERR
MERCURY	7/bn		ERR
NICKEL	1/bn	1	ERR
NULLENIUM	1/bn		EER
SILVER	Typu		ERR
ZINC	7/bn		ERR
CALCIUM	2/5		ERR
MAGNESIUM	J-Com		ERR
POTASSIUM	Ţ∕6n		ERR
SODIUM			
ALUMINUM	Ţ∕6n		NNA

SITE 3 CONTINUED

AVERACE

450.00	570.00 1002.00 413.00 1167.00 5.00	437.00
から で で で の の の の の の の の の の の の の の の の	(SOF) 2,555	7.5m
BERVIJUM BORON BORON Dissolved CHLORIDE COLOR	Residue Filterable (TDS) Residue Non (SS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANTUM	VANADIUM ALK TOTAL SULFIDES

ERR 450.000 ERR ERR ERR 570.00 413.00 413.00 413.00 1167.00 ERR ERR ERR ERR ERR ERR ERR ERR ERR

CTITE A			AVERAGE
DATE FOR HVD		1.00	1.00
CHENTCAL OXYGEN DEMAND		480.00	480.00
BIOCHEMICAL OXYGEN DEMAN		122.00	122.00
TOTAL ORGANIC CARBON		62.00	62.00
OIL & CREASE		4.50	4.50
AMMONIA	T/Den	21.00	21.00
NTTRATE	L pm	0.16	0.16
NITRITE		<0.02	<0.02
TOTAL KJELDAHL NITROGEN		48.00	48.00
PHOSPHORUS ortho PO4		4.20	4.20
SURGERACE		8.50	8.50
CYANIDE		0.01	10.0
CYANIDE free	17 Dat		ANE CONTRACTOR
PHENOLS (EPA 604)	1/bn	20.00	20.00
-	1/bn	74.00	74.00
ARSENIC	1/bn		
BARIUM	The		RK
CADMIUM	Typu		ERR
CHROMIUM	1/bn		ERR
CHROMIUM Hexavalent	1/bn		ERR
COPPER	The		ERR
IRON	Typu		NTE NOT
LEAD	Typu		ANA
MANGANESE	1/gn		
MERCURY	7/bn		AND A
NICKEL	Ţ∕fm		ERR
SELENTUM	7/bn		EKK (
SILVER	Uq J.		EKK
ZINC	7/bn		ERR
CALCTUM	7/bu		ERR
MAGNESTUM	と D 目		ERR
POTASSIUM	7/bn		ERR
SODIUM	5 DE		ERR
ICP METALS	*		ERR
ALUMINUM	1/bn		ERR
	ĥ		

SITE 4 CONTINUED

BERYLIUM	1/bn	466 DO
BURUN PORON Dissolved	ng/T	400.00
HLORIDE		
COLOR	8	
FLUORIDE		
Residue Filterable (TDS)	The	550.00
Residue Non (SS)		
Residue	1, Dat	441.00
Residue Volatile	T/be	168.00
Specfic Conductance	source	914.00
SULFATE	L/Dat	
SURFACTANTS	1/bu	6.50
TURBIDITY	E	
COBALT	¶7∕6n	
JOLYBDENUM	7/5n	
TT TANI UM	¶√6n	
MUICINNAN	1/bn	
ALK TOTAL	7.5m	309.00
SULFIDES	¶. J∕bu	

AVERAGE	Ka	
A		

ERR ERR ERR ERR ERR ERR ERR 441.00 914.00 914.00 914.00 6.50 ERR ERR ERR ERR ERR ERR ERR ERR

SITE 5

AVERAGE

POT EXTR HYD		1.60	1.60
CHEMICAL OXYGEN DEMAND		200.00	200.00
BIOCHEMICAL OXYGEN DEMAN		209.00	l
TOTAL ORGANIC CARBON			
OIL & GREASE	5/5	1.90	1.90
AMMONIA			
NITRATE	75		ANG
NITRITE	7/5		ERR
TOTAL KJELDAHL NITROGEN	5/50		ERR
PHOSPHORUS or tho PO4	5/50		RR
SURGERSORY	5/50		ERR
CYANIDE	1/Den	0.02	0.02
CYANIDE free			ERR
	The	13.00	13.00
PHENOLS (MTH. 420)	1/bn		ERR
ARSENIC	The		ERR
BARIUM	The		ETR
CADMIUM	Typu		ERR
CHROMIUM	Typu		ERR
CHROMIUM Hexavalent	1/bn		ERR
COPPER	Typu		ERR
IRON	The		EERR
LEAD	Thu		ERR
MANGANESE	Typu		ERR
MERCURY	The		ERR
NICKET	1/bn		ERR
SELENIUM	The		ERR
SILVER	Typu		ERR
ZINC	Thu		ERR
CALCTUM	II Du		ERR
MAGNESIUM	P		ERR
POTASSIUM	7 bn		EERR
WILLOS			ERR
ICP METALS			ERR
ALUMINUM	¶7/5n		ERR

SITE 5 CONTINUED

y y y g g g g g g g g g g g g g g g g g		alates 22253	
BERYLIUM	ruukuur	Specfic Conductance	MOLYBDENUM
BORON	Residue Filterable (TDS)	SULFATE	TITANIUM
BORON Dissolved	Residue Non (SS)	SURFACTANTS	VANADIUM
CHLORIDE	Residue	TURBIDITY	ALK TOTAL
COLOR	Residue Volatile	CORALT	SULFIDES

AVERAGE

SITE 6			AVERAGE
FOT EXTR HYD	J. par	64.40	64.40
CHEMICAL OXYGEN DEMAND	1/ben	600.00	332.20
BIOCHEMICAL OXYGEN DEMAN		224.00	224.00
TOTAL ORGANIC CARBON		95.00	95.00
OIL & GREASE		896.00	495.50
APPONIA	T/Den	13.50	454.75
NITRATE	L pa	0.12	6.81
NITRITE		0.03	0.08
TOTAL KJELDAHL NITROGEN		24.00	24.00
PHOSPHORUS or the PO4	L/Den	20.30	20.30
PHOSPHORUS	L'DE	36.50	36.50
CYANIDE		0.02	0.02
CYANIDE free			0.02
PHENOLS (EPA 604)	1/bn	33.00	33.00
PHENOLS (MTH. 420)	1/bn	40.00	36.50
ARSENIC	J/bn		40.00
BARIUM	T/bn		ERR
CADMITUM	1/bn		ERR
CHROMIUM	1/bn		ERR
CHROMIUM Hexavalent	1/bn		ERR
COPPER	1/bn		ERR
IRON	1/bn		ERR
LEAD	Thu		ERR
MANGANESE	Typu		EER
MERCURY	Thu		ERR
NICKEL	1/bn		ERR
SELENIUM	Typu		ERR
SILVER	Thu		ETR
ZINC	ng/L		ERR
CALCIUM	17 bei		ERR
MAGNESIUM	2/bii		ERR
POTASSIUM	Typu		ERR
MUIDOS	P/Del		ERR
ICP METALS	j		ERR
ALUMINUM	¶7/5n	257.00	257.00

SITE 6 CONTINUED

1900.00	1110.00	1303.00 494.00 1368.00	78.00		407.00
か ち ち ち ち ち ち ち ち ち ち ち ち ち			N N N N N N N N N N N N N N N N N N N	Y 6n Y 6n	
BERVIJUM BORON BORON DISSOlved CHLORIDE COLOR	Residue Filterable (TDS) Residue Non (SS)	Residue Residue Volatile Snecfic Conductance	SULFATE SURFACTANTS TURBIDITY	COBALT MOLYBUENUM TTTANTUM VANADTTM	ALK TOTAL SULFIDES

AVERAGE

SITE 7

AVERAGE

FOT EXTR HYD		25.20	0.60	1.00		8.93
CHEMICAL OXYGEN DEMAND		410.00	610.00	625.00		548.33
BIOCHEMICAL OXYGEN DEMAN		186.00	145.00			165.50
TOTAL ORGANIC CARBON	Z	70.00	70.00	61.00	51.00	63.00
OIL & GREASE	7 Julie Juli	72.80	4.00	5.10		27.30
AMPHONITA		35.50	33.00	30.00		32.83
NITRATE	Z	0.20	0.16	0.10		0.15
NITRUTE	L PE	0.02	0.02	0.02		0.02
Ę		38.40	38.40	47.20		41.33
PHOSPHORUS or the PO4	EQ.L	7.80	7.40	6.60		7.27
SUNOHASOHA	1/ba	22.00	20.50	11.00		17.83
CYANIDE		0.02	0.02	0.01		0.01
CYANIDE free						ERR
(EPA 6	nq/L	13.00				13.00
	The	30.00	30.00	30.00		30.00
	ng/L	<100	<100	<100		<100
BARIUM	Thu	<100	<100	<100		<100
CADMITUM	Typu	<100	<100	<100		<100
CHROMIUM	1/bn	<100	<100	<100		<100
CHROMIUM Hexavalent	Typu	<50	<50	<50		<50
COPPER	1/bn	<100	<100	<100		<100
IRON	Typu	2013.00	835.00	1060.00		1302.67
LEAD	1/bn	<20	<20	<20		<20
MANGANESE	Typu	<100	<100	<100		<100
MERCURY		6.40	1.60	1.50		3.17
NICKEL	7/bn	<100	<100	<100		<100
SELENTUM	Typu	<10	<10	<10		<10
SILVER	Typu	12.00	26.00	<10		19.00
ZINC	Typu	101.00	131.00	162.00		131.33
CALCIUM	1/ba	49.00	55.30	54.00		52.77
MAGNESIUM	л/Бш	8.80	06.6	9.90		9.53
POTASSIUM	Typu					ETRR
WINIDOS						ERR
ICP METALS	1					ERR
ALUMINUM	тури	137.00	257.00	376.00		19.952

.

SITE 7 CONTINUED

AVERAGE

.00 <1433.33	46	7	.00				154.00 (100 (100 315.33 20 3.33
<100 <100 1050.00 1750.00	35.00 39.00				20.00 44.00 5.60 6.00 6.00 5.60		<pre><100 <100 <100 <100 <100 <100 328.00 318.00 4.80 2.20</pre>
<100 <1500.00	66.00	580.00	003.00 142.00	988.00 78.00	78.00 7.80 7.80		154.00 < <100 < 300.00 < 3.00
		(SQI		e	1. pm	1√6n ΩL	7.50 7.50 7.50 7.50 7.50
BERYLIUM BORON BORON Di seolvæð	CHLORIDE COLOR FLIDRIDE	Residue Filterable (Residue Non (SS)	Residue Volatile	Specfic Conduct: SULFATE	SURFACTANTS	TURBIDITY COBALT	MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES

÷

.•

37.40	850.00	204.00		96.00										59.00																				
ло Лош										J. Dan	5/60	7/500	Typu	1/bn	7√5n	7∕6n	1/bn	1/bn	7/bn	1/bn	'I/fm	¶7/bn	¶√6n	1/bn	Thu	1/bn	17/bn	1/bn			T/bn			i
SITE 8 POT EXTR HVD	CHEMICAL OXYGEN DEMAND	BIOCHEMICAL OXYGEN DEMAN	TOTAL ORGANIC CARBON	OIL & GREASE	AMMONIA	NITRATE	NITRITE	TOTAL KJELDAHL NITROGEN	PHOSPHORUS ortho PO4	PHOSPHORUS	CYANIDE	CYANIDE free	PHENOLS (EPA 604)	PHENOLS (MTH. 420)	ARSENIC	BARIUM	CADMIUM	CHROMIUM	CHROMIUM Hexavalent	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	SELENTUM	SILVER	ZINC	CALCIUM	MAGNESIUM	POTASSIUM	WILLIOS	ICP METALS	

SITE 8 CONTINUED

ERR ERR	ERR 29.00	ERR	ERR	770.00	ANE	553.00	148.00	863.00	65.00	1.90	ERR	ERR	ERR	ERR	ERR	314.00	ERR	ERR	ERR	ERR	ERR	1.70	0.60	ERR	ERR	0.60	0.90	00.7	רעיע
	29-00			770.00		553.00	148.00	863.00	65.00	1.90						314.00													
	00.92			770.00		553.00	148.00	863.00	65.00	1.90						314.00						1.70	0.60			0.60	0.90	7.00	
1∕6n	J∕pu	8 18		T/bn (SCII)	7/6m		57 <u>6</u>	1/be	7/60	7/50	5	1∕6n	1/bn	T/bn	7∕6n	1 <u>7</u> 6	5/50	1/bn	T/bn		1/6n			Typu	Ì	7/60	1/50	之間	1/5m
BERYLIUM BORON	BORON Dissolved	COLOR		le	Residue Non (SS)	Residue	Residue Volatile	Specfic Conductance	SULFATE	SURFACTANTS	TURBIDITY	COBALT	MOLYBDENUM	TITANIUM	VANADIUM	ALK TOTAL	SULFIDES	CHLOROFORM	CHLOROMETHANE		1,4-DICHLOROBENZENE	TRANS-1, 2-DI CHLOROETHENE	METHYLENE CHLORIDE	BROMOMETHANE		1, 3-DICHLOROBENZENE	1,4-DICHKIRIBENZENE	ETHYL BENZENE	TOLUENE

AVERAGE 1.00 975.00 255.00 - 70.00	5.00 0.14 0.03	19.20 4.00 17.50	ERR ERR ERR	3/.00 EERR EERR	ERR ERR	ERR ERR	ERR ERR EDD	ERR	ERR	ERR	ERR	ERR ERR	ERR	ERR
1.00 975.00 255.00 4.00	5.00 0.14 0.03	19.20 4.00 17.50		37.00										
				y gn y gn	17 bn	1/bn	y bn		y bu y bu	T/bn	N S S	プ G I I I I I I I I I I I I I I I I I I	Z	¶⁄bn
SITE 9 FOT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON OIL & GREASE	AMMONIA NITRATE NITRETE	TOTAL KJELDAHL NITROGEN PHOSPHORUS or tho PO4 PHOSPHORUS	free (EPA 6	PHENOLS (MTH. 420) ARSENIC BARIUM	CADMIUM CHROMIUM	CHROMIUM Hexavalent COPPER	IRON LEAD	MANGANESE	NI CKEL SELENTUM	SILVER	CALCTUM	MAGNESTUM POTASSTUM	SODIUM TOP MENTS	ALUMINUM ALUMINUM

SITE 9 CONTINUED

ERR 350.00 , ERR	150.00 ERR	EKK 507.00 ERR	621.00 26.00	975.00	65.00 <.1	ANE ANE		EER 270.00
350.00	150.00	507.00	621.00 26.00	975.00 25.00	65.00 <.1			270.00
で で で の の		Type Type (Schr)	7.00 7.00 7.00			17 En	7/5n	7.6 7.6 6
BERYLIUM BORON BORON Dissolved	CHLORIDE COLOR FLUORIDE	Residue Filterable (TDS) (Residue Non (SS)	Residue Volatile	Specfic Conductance	SURFACTANTS	COBALT	MOLYEDENUM TITANIUM	VANADIUM ALK TOTAL SULFIDES

SITE 10	ł		AVERAGE
FOT EXTR HYD			
CHEMICAL OXYGEN DEMAND		1500.00	1500.00
BIOCHEMICAL OXYGEN DEMAN	-	412.00	412.00
TOTAL ORGANIC CARBON		20.00	20.00
OIL & GREASE		40800.00	40800.00
AMMONITA		1.14	1.14
NITRATE		0.74	0.74
NITRUTE		0.03	0.03
TOTAL KJELDAHL NITROGEN		8.70	8.70
PHOSPHORUS or tho PO4		2.20	2.20
PHOSPHORUS	2/bii	11.50	11.50
CYANIDE	7 Julie	.005	-005
CYANIDE free			ERR
PHENOLS (EPA 604)	Typu		ERR
PHENOLS (MTH. 420)	Thu	15.00	15.00
ARSENIC	1/bn	<100	<100
BARIUM	Typu	103.00	103.00
CADMITUM	1/bn	<100	<100
CHROMIUM	1/bn	<100	<100
CHROMIUM Rexavalent	1/bn	<50	<50
COPPER	1/bn	<100	<100
IRON	т/бn	776.00	776.00
TEAD	7/bn	<20	<20
MANGANESE	Ţ∕ɓn	<100	<100
MERCURY	7 J Date J	<1	4 7
NICKEL	т/бn	<100	<100
SELENTUM	7/bn	<10	<10
SILVER	1/bn	<10	<10
ZINC	1/bn	118.00	118.00
CALCIUM	2 V Del	91.10	91.10
MAGNESTUM	1/bii	15.70	15.70
POTASSIUM	1/bn		EER
SODIUM	1/ba		ERR
ICP METALS ALUMINUM	1∕bn	<100	ELECK <100
	\$		

SITE 10 CONTINUED

AVERAGE	<100 5900.00		EKK EKR 1460.00	ERR 2493 00	1072.00	1179.00	0.10	ERR	V100	<100	<100 100.00	XXT
	L <100 L 5900.00	د د	L L 1460.00			1179.00 104.00		۰.		<100		
SITE 10 CONTINUED		BORGN DISSOLVED UG/L CHLORIDE DISSOLVED DIG/L COLOR CI	le (TDS)			SULFATE CONDUCTANCE mg/	SURFACTANTS mg/l		WINE	TITANIUM UQ/L	.1	

CTINE 11			AVERAGE
POT EXTR HVD	Vba	9.40	9.40
CHEMICAL OXYGEN DEMAND		00.00	00.009
BIOCHEMICAL OXYGEN DEMAN		467.00	467.00
TOTAL ORGANIC CARBON	-		ERR
OIL & GREASE	Z	9.60	9.60
AMPIONITA	201		ERR
NITRATE			ERR
NITRITE	Y SE		ERR
TOTAL KJELDAHL NITROGEN			ERR
PHOSPHORUS or the PO4	200		ERR
SURIORIS			N N N N N N N N N N N N N N N N N N N
CZANIDE			ERR
CYANIDE free			NIG
PHENOLS (EPA 604)	7/bn		
PHENOLS (MIR. 420)	7/bn	28.00	28.00
ARSENIC	7/bn	<100	
BARJUM	™ Dn	<100	
CADMITUN	¶ √gu	<100	
CHROMITUM	7/bn	<100	
CHROMIUM Hexavalent	J∕bn		ERR.
COPPER	7/bn	<100	
IRON	7/bn	3083.00	3083.00
LEAD	7/bn	31.00	31.00
MANGANESE	7/bn	163.00	163.00
MERCURY	25	4	4
NICKEL	у Бл	<100	
WDINGTES	у Бл	<10	
SILVER	J Jon	<10	
ZINC	7/bn	311.00	311.00
CALCTUM		53.40	53.40
MAGNESTUM	ど 間	9.40	9.40
POTASSIUM	7/bn		NT3
SODIUM	J J J		A A A A A A A A A A A A A A A A A A A
LCP METALS ALUMINUM	¶70n	263.00	263.00

SITE 11 CONTINUED

BERYLIUM BORON BORON Dissolved CHLORIDE COLOR	755 755 755 700 700	<100	and And And And And And And And And And A
FLUCRIDE Residue Filterable (TDS) Residue Non (SS) Residue Residue Volatile Specfic Conductance SILFATE			
SURFACTANTS SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANTUM VANADIUM ALK TOTAL SULFIDES METHYLENE CHLORIDE	Let be a set of the se	150.00 <100 <100 <100 <100 5.90	150.00 ERR <100 <100 <100 <100 ERR ERR 5.90
601 BROWDI CHLOROMETHANE BROWDFORM BROWDFORM BROWOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE CHLOROMETHANE CHLOROMETHANE		4.205.200 4.205.000 8.80 8.80 8.80 8.80 8.80 8.80 8.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SITE 11 CONTINUED

DIBEROMOCHLOROMETHANE mc 1, 2-DICHLOROBENZENE mc 1, 3-DICHLOROBENZENE mc 1, 4-DICHLOROBENZENE mc DICHLORODIFLUOROMETHANE mc 1, 1-DICHLOROETHANE mc	ncg/t	<.9 ,	
HANE	25	Ţ	
HANE	,	1	
HANE	ncg/L	<.5	
	Inc <u>o</u> vi	<.7	
-	N CG/L	<.9	
	BCG/L	<.4	
	Incg/L	<.3	
	ncg/L	<.3	
ETHENE	Incg/L	<.5	
	Incg/L	<.3	
PENE	Incg/L	<.5	
\mathbf{z}	ncg/L	<.5	
		<.4	
1,1,2,2-TETRACHLOROETHAN mc	BCG/L	<.5	
	Incoll	<.6	
1,1,1-TRICHLOROETHANE mc	Incg/L	<.5	
	2	<.5	
	Incg/L	<.5	
TRU CHLOROLUOROMETHANE Inc	Incg/L	<.4	
VINYL CHLORIDE IIC	ncg/L	<.9	
602 Inc	mcq/L		
BENZENE	Incoll	<.5	
ENZENE	BCQ/L	<.6	
1, 2-DICHLOROBENZENE mc	Incort	<1	
	Inco/L	<.5	
1,4-DICHLOROBENZENE mc	Inco/L	<.7	
ETHYLBENZENE	Incg/L	<.3	
TOLUENE	mcq/L	<.3	

AVERAGE 512.00 45000.00 35027.00	ERR EER		1150.00 (100 (100 (100 (100	ERR (100 3596.00 3596.00 233.00 233.00 (112.00) (112.00	ERR 184 00
512.00 45000.00 35027.00	912.00		1150.00 <100 198.00 <100 <100	<pre><100 3596.00 3596.00 23.00 23.00 <112.00 <112.00 <110 <1138.00 2007.00 84.90 84.90</pre>	104 00
-				ĸ ĸ ĸ ĸ z z z z z z z z z z z z z z z z	1
SITE 12 POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN MOMAL OXYGEN DEMAN	IULAL UNALIUL UNALUN OIL & GREASE AMONIA NITTRATE	NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS OTTHO PO4 PHOSPHORUS CYANIDE CYANIDE free CYANIDE free	PHENOLS (MTH. 420) PRENOLS (MTH. 420) ARSENIC BARTUM CADMILUM CHROMILUM	CHROMILUM HEXAVALENT COPPER IRON ILEAD MANCANESE MERCURY NITCKEL SELENTUM SILVER ZINC CALCTUM FACNESTUM FOTASSTUM POTASSTUM	ICP METALS ALIMITMEM

.

GINILINO
E 12 C
LIS

	17 DA	<100	<100	
			ERR	
DATOSSIC NOROA				
			222	
			BEE .	
ruuruu Becidie Filterahle (TDS)			and a second	
resture filterate (100 Decidie Non (SS)			EXE	
Residue Int. (20) Residue			EXC	
Residue Volatile	- Z			
Specfic Conductance	J De		EK	
	D OAL		EKK	
SURFACTANTS		300.00	300.00	
THE TOTAL STATE	E		ERR	
	na A.	<100	<100	
	- Von	702.00	702.00	
		<100	<100	
VANADITER	navr	<100	<100	
ALE TOTAL			ERR	
			NG	
SULL TUES			ERR	
	יום ע.	7.40	7.40	
METHYLENE CHLORIDE	1 J S S	8.10	8.1(

SITE 13 FOT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON DIL & GREASE		0.60 500.00 17.00 0.60	AVERAGE 0.60 500.00 17.00 ERR 0.60
AMPONIA NITRATE NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS OTTAO PO4			
PHOSPHORUS CYANIDE CYANIDE free PHENOLS (EPA 604) PHENOLS (MTH. 420) ARSEMIC		<10 4100	
BARIUM CADMIUM CHROMIUM CHROMIUM Hexavalent COPPER	y bin y bin	 <100 <100 <100 <100 	<100 <100 <100 <100 <100
IRON LERON MANCANESE MERCURY NI CKEL SELENTIM		271.00 <20 <100 <100 <100 <100	271.00 271.00 271.00 271.00 2100 210
SILVER ZINC CALCTUM MAGNESTUM POTASSTUM SODTUM SODTUM ICP METALS ALUMINUM		27.00 51.80 10.60 <100	27.00 21.00 51.80 10.60 ERR ERR ERR

SITE 13 CONTINUED			AVERAGE	
BERYLIUM	Typu	<100	<100	
BORON	7/bn		ERR	
BORON Dissolved	7/bn		ERR	
CHLORIDE	2/50		ana	
COLOR	B		ERR	
FLUORIDE	7/50		ERR	
Residue Filterable (TDS)	7/6n		ERR	
Residue Non (SS)			ERR	
Residue	7/5m		ERR	
Residue Volatile	5/5		ERR	
Specfic Conductance			ERR	
SULFATE			ERR	
SURFACTANTS		<.1 .1	1.>	
TURBIDITY	B		ERR	
COBALT	TVbn	<100	<100	
MOLYBDENUM	1/bn	<100	<100	
TITANIUM	T/5n	140.00	140.00	
VANADTUM	7/bn	<100	<100	
ALK TOTAL	Z		ERR	
SULFIDES	1 Z S E		ERR	
	I		ERR	
1,2-DICHLOROETHANE	Ţ∕bn	13.00	13.00	
METHYLENE CHLORIDE	The		ERR	
1,1,1-TRICHLOROETHANE	•	13.00	13.00	
BENZENE		0.70	0.70	
601				
BRONDDI CHLOROMETHANE	mcq/L	4.4	<.4	
BROMOFORM	Incg/L	<.7	<pre>/.></pre>	
BROMOMETHANE	Incg/L	۰.9	6. >	
CARBON TETRACHLORIDE	Incg/L	<.5 .5	<.5 .5	
CHLOROBENZENE		6	9.0 	
CHLOROE LIHANE	IICG/I	۶ . ۶	6.>	

SITE 13 CONTINUED

2-CHLOROETHYIVINYL ETHER	Incg/L	۰.9	6. >
CHLOROFORM	Incg/L	<.3 .3	с. У
CHLOROMETHANE	Inco/L	<,8	<,8
DIBEROMOCHLOROMETHANE	ILCG/L	د.9	6. >
1,2-DICHLOROBENZENE	B Cg/L	¢	₽
1, 3-DICHLOROBENZENE	Incg/L	<. 5	<. 5
1,4-DICHLOROBENZENE	Incg/L	<.7	<.7
DI CHLORODI FLUOROMETHANE	BCG/J	<.9	6.>
1,1-DICHLOROETHANE	Incg/L	<.4	<.4
1,2-DICHLOROETHANE	Incg/J	ć. 3	<
1,1-DICHLOROETHENE	Incg/L	<.3	<
TRANS-1, 2-DICHLOROETHENE	Incovi	<.5 .5	<.5 <
1,2-DICHLOROPORPANE	Incg/L	<.3 .3	~ .3
CIS-1, 3-DICHLOROPROPENE	Incg/L	<. 5	<.5 .5
TRANS-1, 2-DICHLOROPROPEN	Inco/L	<.5 .5	<.5 <
METHYLENE CHLORIDE	Inco/L	<.4	<.4
1,1,2,2-TETRACHLOROETHAN	ICG/L	<.5 .5	<.5
TETRACHLOROETHYLENE	Inco/L	<.6	6. 6
1,1,1-TRICHLOROETHANE	Incovi	<.5 .5	<.5 <
1,1,2-TRICHLOROETHANE	Incg/L	<.5 .5	<.5 .5
TRICHLOROETHYLENE	Incg/L	<.5 <	<.5 .5
TRI CHLOROLUOROMETHANE	Incg/L	<.4	<.4
VINYL CHLORIDE	ncg/L	6.>	6. >
602	mcqA		
BENZENE	mcq/L	<.5	<.5 .5
CHLOROBENZENE	BCG/L	<.6	6.6
1, 2-DICHLOROBENZENE	Incg/L	41	Ċ
1, 3-DICHLOROBENZENE	Incg/L	<.5	<.5 .5
1,4-DICHLOROBENZENE	Incg/L	<.7	~ ~ ~
ETHY LIBENZENE TOLI JENE	ECG/L	· · ·	
	1 A M		•

STATE 14			AVERAGE
POT EXTR HYD		8.40	8.40
CHEMICAL OXYGEN DEMAND	2/2	500.00	500.00
BIOCHEMICAL OXYGEN DEMAN		86.00	86.00
TOTAL ORGANIC CARBON			ERR
OIL & GREASE		42.00	42.00
AMONITA			ERR
NITRATE			EER
NITRITE			ERR
TOTAL KJELDAHL NITROGEN			ERR
PHOSPHORUS ortho PO4			NT2
SURGENERIS			ERR
CYANIDE			REFE
CYANIDE free			ANT
PHENOLS (EPA 604)	1/bn		ERR
PHENOLS (MTH. 420)	1/bn	28.00	28.00
ARSENIC	1/bn	<100	<100
BARIUM	1/bn	<100	<100
CADMITUM	1/bn	<100	<100
CHROMITUM	7/bn	<100	<100
CHROMIUM Hexavalent	1/bn		ANE
COPPER	1/6n	<100	<100
IRON	¶√5n	579.00	579.00
LEAD	1/bn	<20	<20
MANGANESE	1/bn	<100	<100
MERCURY		1	₽ ;
NICKEL	¶√bn	<100	<100
SELENIUM	T/bn	<10	
SILVER	1/bn	<10	
ZINC	The	<100	
CALCIUM		54.60	54.60
MAGNESIUM		8.80	8.80
POTASSIUM	1/bn		ERR
SODIUM	77 ₅₀₀		EKK
ICP METALS ALUMINUM	¶7∕6n	<100	<100
1.WATTLEDIU	1		

SITE 14 CONTINUED			AVERAGE
REPVI.TI DE	Ng∕L	<100	<100
			RE
BORON Discolved	1/on		ERR
CHLORIDE		×	ERR
COLOR	8		ERR
FLUORIDE			ERR
Residue Filterable (TDS)	1/bn		ERR
Residue Non (SS)			ERR
Residue			ERR
Residue Volatile			ERR
Specfic Conductance			ERR
SULFATE			ERR
SURFACTANTS		21.00	21.00
TURBIDITY	B		ERR
COBALT	T/bn	<100	<100
MOLYBDENUM	7/bn	<100	<100
MUINALII	Thu	<100	<100
VANADIUM	1/bn	<100	<100
ALK TOTAL			ERR
SULFIDES			
			ETRR
1,2-DICHLOROETHANE	¶√bn	896.00	896.00
1.3-DICHLOROBENZENE	1/bn	2989.00	2989.00
METHYLENE CHLORIDE	T/bn	4.50	4.50
1.1.1-TRICHLOROETHANE	•		ERR
BENZENE			ERR
TRI CHLOROF LUOROME THANE		4.00	4.00
ETHYL BENZENE		22.00	22.00
601			
BROMOD I CHLOROMETHANE	ncg/L	4.4	4°~
BROMOFORM		<>	~ · · · · · · · · · · · · · · · · · · ·
BROMOMETHANE		. ^ . ۲	י א. י
CARBON TETRACHLORIDE			C. A
CHLOROBENZENE	ncg/1	9.2	0.2

•

SITE 14 CONTINUED

	1 1 1 1	c 、	c v
DI BERGROUCHLUCK		6. 2	7.7
1,2-DICHLOROBENZENE	Incg/L	41	4
1, 3-DICHLOROBENZENE		<.5	<.5 .5
1,4-DICHLOROBENZENE	BCG/L	<.7 <	<.7
DI CHLORODI FLUOROMETHANE	Inco/L	6.>	6.>
1,1-DICHLOROETHANE	BCG/1	<.4	4 . 4
1,2-DICHLOROETHANE	Incort	<.3	د. >
1,1-DICHLOROETHENE	Incg/L	<.3	~. 3
TRANS-1, 2-DICHLOROETHENE	Incg/L	<.5 </th <th><u>د.</u>5</th>	<u>د.</u> 5
1,2-DICHLOROPORPANE	BCG/L	<.3 .3	۰.»
CIS-1, 3-DICHLOROPROPENE	Incg/L	<.5	<. 5
TRANS-1, 2-DICHLOROPROPEN	Incg/L	<.5	<.5 <
	BCG/L	<.4	<.4
1,1,2,2-TETRACHLOROETHAN	ECG/L	<.5	<.5 <
	Incg/L	<.6	~. 6
1,1,1-TRICHLOROETHANE	B cg/J	<.5 </th <th>د.5</th>	د. 5
1,1,2-TRICHLOROETHANE	BCG/	<.5	<.5 <
TRI CHLOROETHYLENE	BCG/ J	<.5 </th <th><.5 .5</th>	<.5 .5
TRI CHLOROLUOROMETHANE	Incg/L	<.4	<.4
VINYL CHLORIDE	Ecg/L	۰.9	6. >
602	mca∕l.		
BENZENE	ECQ/1	<.5	<.5 .5
CHLOROBENZENE	BCG/L	<.6 <	~. 6
1,2-DICHLOROBENZENE	Bcg/L	41	4
1, 3-DICHLOROBENZENE	BCG/	<.5	<.5 .5
1,4-DICHLOROBENZENE	Ecg/1	<.7	<. '
ETHYLBENZENE	Incg/L		, v v
TULUENE	IICG/1	5. 3	·· ·

SITE 14 CONTINUED

HANE mcq/L <.9 <	IVINYL ETHER			mcq/L <.9		BCQ/L <.5	mcg/L <.7	HANE mcg/L	mcg/L <.4	mcq/L <.3	mcg/L <.3	ETHENE mcg/L <.5	mcg/L <.3	mcg/L <.5	N mcg/L <.5	mcg/L <.4	1,1,2,2-TETRACHLOROETHAN mcg/L <.5	mcg/L <.6	BLCG/L <.5	mcg/L <.5	mcg/L <.5	mcg/L <.4	mcg/L <.9		<.5 .5		LOROBENZENE mcg/L <1 <1	mcg/L <.5		mcg/L <.3	, ,
CHLOROETHANE	CHLOROETHYTVT	THI CRORORN	CHLOROMETHANE	DIBEROMOCHLOROMETHANE	1,2-DICHLOROBENZENE	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	I CHLORODI FLUOR	1,1-DICHLOROETHANE	1, 2-DICHLOROETHANE	1,1-DICHLOROETHENE	RANS-1, 2-DICHL	L, 2-DICHLOROPORPANE	IS-1, 3-DICHLOR	NNS-1, 2-DICHL	METHYLENE CHLORIDE	1,2,2-TETRACH	TETRACHLOROETHYLENE	1,1,1-TRICHLOROETHANE	1,1,2-TRICHLOROETHANE	TRICHLOROETHYLENE	TRICHLOROLUOROMETHANE	VINYL CHLORIDE	602	BENZENE	CHLOROBENZENE	1,2-DICHLOROBENZENE	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	ETHYLBENZENE	

N N	SITE 15 POT EXTR HYD		1.30 500 00	AVERAGE 1.30 500.00
ANTIC CARBON mg/L 3.40 ASIE mg/L 3.40 ASIE mg/L 3.40 ASIE mg/L 3.40 Mg/L mg/L 3.40 Mg/L mg/L 1.00 Sortho Pod mg/L 1.00 Sortho Pod mg/L 1.00 MTH. 4200 ug/L 1.00 Ug/L 1.00 1.100 MTH. 4200 ug/L 1.100 Ug/L 1.100 1.170 MG/L 2.111.00 1.170 Ug/L 1.170 1.170 Ug/L 1.170 1.170 Ug/L 1.170 1.170 Ug/L 1.170 1.170 Ug/L 2.1100 1.170 Ug/L 1.170 1.170 Ug/L 1.170 1.170 Ug/L 1.170 1.170 Ug/L 1.170 1.170 Ug/L 2.1100 1.170 Ug/L <th>CAL UXTGEN DEMANU</th> <th></th> <th>129.00</th> <th>129.00</th>	CAL UXTGEN DEMANU		129.00	129.00
IDAMIL NITROCEN mg/L IS ortho PO4 ug/L IS ortho PO4 ug/L IS ortho PO4 ug/L IS ortho PO4 ug/L IS ortho PO4 100 IS ortho PO4 11.70 IS ortho PO4 100 IS ortho PO4 100 IS ortho PO4 100 IS ortho PO4 10.70	, ORGANIC CARBON		3 VU	ERR 3_40
 K.VELDAHL NITROCEN mg/L K.VELDAHL NITROCEN mg/L HDORUS ortho FOd mg/L HE free mg/L KES (MTH. 420) ug/L KES (MTH. 420) ug/L	IIA) • • • • • • • • • • • • • • • • • • •	2123
 K.VELDAHL NITROCKEN MG/L K.VELDAHL NITROCKEN MG/L HORKUS ortho FO4 mg/L HORKUS ortho FO4 mg/L HORKUS mg/L I.B. (MTH. 420) ug/L I.B. (MTH. 420) ug/L I.B. (100 I.C. (100 I.				ERR
 KUELDAHEL NITROGEN MG/ HORUS ortho PO4 Mg/ HORUS ortho PO4 Mg/ HORUS ortho PO4 Mg/ Ele mg/ Lis (Erse 604) ug/ KIS (ErsA 604) ug/L 183.00 ug/L (100 UM Hexavalent ug/L (100 UM MSFE Mg/L 1.70 UM Mg/L 10.70 				ERR
HORGUS ortho PO4 mg/t HORGUS ortho PO4 mg/t ADRUS mg/t LE free mg/t LS (EFA 604) ug/t 183.00 LS (EFA 604) ug/t (100 LC ug/t (100 LC ug/t (100 LC ug/t (100 LCM Hexavalent U	C KUELDAHL NITROGEN			ERR
HORUS mg/t DE free mg/t LE free mg/t LS (EPA 604) ug/t LS (EPA 604) ug/t LS (EPA 604) ug/t LC 100 LC Ug/t LC Ug/t LC 100 LC Ug/t LC Ug/t	PHORUS or the PO4	7 Jon		R
DE free mg/ LS (EPA 604) ug/L LS (EPA 604) ug/L LS (FTH. 420) ug/L LC ug/L (100 LT ug/L (100 L	SUBJOH	7/50		ERR
DE free mgr ES (EPA 604) ugr ES (FTH. 420) ugr IC ugr, (100 IC ugr,	DE			ERR
RS (EPA 604) ug/L RS (MTH. 420) ug/L UN ug/L (100 UN				ERR
KLS (MTH. 420) ug/L 183.00 TIC ug/L (100 M ug/L (100 TUM ug/L (100 R ug/L (100 NESE ug/L (100 NESE ug/L (100 MESE ug/L (100 R ug/L (100 SIUM ug/L 10.70	-			ERR
IIC ug/L (100 IUM ug/L (100 <t< th=""><th>\sim</th><th></th><th>183.00</th><th>183.00</th></t<>	\sim		183.00	183.00
M ug/L (100 TUM ug/L <tr l<="" th=""> <tr l<="" tr=""> TUM</tr></tr>	NIC		<100	<100
UNIT Ug/L (100 ETUM Ug/L (100 ETUM Ug/L (100 R Ug/L (100 R Ug/L (100 R Ug/L (100 NESE Ug/L (100 NESE Ug/L (100 RY Ug/L (100 SILUM Ug/L (100 N Ug/L (100 SILUM Ug/L (100 R Ug/L (100 SILUM Ug/L (100 N Ug/L (100 SILUM Ug/L (100	E E		<100	<100
ICUM ug/L (100 ICUM Hexavalent ug/L (100 ICUM Hexavalent <t< th=""><th>LUM</th><th></th><th><100</th><th></th></t<>	LUM		<100	
IIIM Hexavalent ug/L R ug/L NESE ug/L N ug/L N ug/L N ug/L SIUM ug/L N ug/L SIUM ug/L N ug/L N ug/L N ug/L SIUM ug/L N ug/L N ug/L N ug/L N ug/L N ug/L SIUM ug/L N ug/L N ug/L N u N u N u N u N u N u N u N u N u N u N u	ALTUM		<100	<100
R ug/L (100 ug/L 211.00 211.00 ug/L 200 211.00 ug/L 200 200 ng/L 100 1.70 ng/L 100 1.70 ng/L 1.100 1.170 ng/L 1.100 1.170 ng/L 1.100 1.170 ng/L 1.100 1.170 ng/L 1.100 1.1.70 ng/L 1.100 1.1.70 ng/L 1.100 1.1.70 ng/L 54.80 1.0.100 strutt ug/L 1.0.100 ng/L 1.0.100 1.0.100 ng/L 1.0.100 1.0.100 <td< th=""><th>fium Hexavalent</th><th></th><th></th><th>AND CONTRACTOR OF CONTRACTOR OFC</th></td<>	fium Hexavalent			AND CONTRACTOR OF CONTRACTOR OFC
MESE ugh 211.00 MESE ugh 200 1. 20 1. 20 1. 20 1. 70 1. 70	H H	Typu	<100	<100
NESE ug/L <20		The	211.00	211.00
MESE ug/L (100 EV mg/L 1.70 EU ug/L (100 R ug/L (100 R ug/L (100 R ug/L (100 STUM mg/L 54.80 STUM mg/L 10.70 ETALS 104.00		The	<20	<20
RY Bg/L 1.70 L ug/L (100 LUM ug/L (100 R ug/L (10 UM ug/L (10 R ug/L (10 UM mg/L (10 SIUM mg/L 10.70 SIUM mg/L 10.70 BFALS 10.400 10.70	WESE	1/bn	<100	
E ug/L (100 EUM ug/L (100 R ug/L (100 UM ug/L (100 STUM mg/L 10.70 STUM mg/L 10.70 ETALS 104 00	JRY		1.70	1.70
FLUM ug/L <10	5	7/5n	<100	
R ug/L <10	MILIN	7/5n	<10	
UM ug/L <100 UM mg/L 54.80 SIUM mg/L 10.70 SIUM ug/L 10.70 M mg/L 10.00	Ki ki	7/5n	<10	<10
80 10.70 10.70 10.70 10.70 10.70 10.70 10.70		The	<100	<100
10.70 mg/l 10.70 vg/l 10.70 S	MID		54.80	54.80
	WILIS		10.70	10.70
TALS TO A OO	WINIS:	¶76n		ERR
LS	×	2/5		EKK
	LETALS VIEW	10 J.	104.00	104.00

SITE 15 CONTINUED

|--|

AVERAGE <100	570.7
-----------------	-------

 <100 570.77 ERR ERR ERR ERR ERR ERR 0.50 (100 (10	4.70
---	------

GIUNIT
500
Ч
SITE

SITE 15 CONTINUED			AVERAGE
BERVLIUM BORON DISSOlved CHLORIDE COLOR FILUORIDE COLOR FILUORIDE Residue Filterable (TDS) Residue Non (SS) Residue Non (SS) Residue Volatile Residue Volatile Specfic Conductance SULFATE SULFATE SULFATE SULFATE SULFATE SULFIDES TURBIDITY COBALT MOLYIDENUM TITTANTUM VANADTUM ALK TOTAL SULFIDES	usian an a	<pre><100 0.50 </pre>	
1, 2-DICHLOROETHANE 1, 3-DICHLOROBENZENE METHYLENE CHLORIDE 1, 1, 1-TRLCHLOROETHANE BENZENE TRICHLOROFLUOROMETHANE ETHYL BENZENE TOLLIENE	Ton Ton Ton Ton	4.70 14.00 2.40	ERR ERR 4.70 ERR ERR ERR 14.00 2.40
601 BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE		4. ~ 7. ~ 2. ~	4. 4. 2. 3.

SITE 15 CONTINUED

CHLOROBENZENE			6. v	
CHLOROETHANE			9. 2	
2-CHLOROETHYIVINYL ETHER	BCG/	<.9	6.>	
CHLOROFORM	acg/L	<.3	<.3 .3	
CHILOROMETHANE		<.8	<.8	
DI BEROMOCHLOROMETHANE	Inco/L	<.9	6.>	
1,2-DICHLOROBENZENE	PCG/L	41	1	
1, 3-DICHLOROBENZENE	ncg/L	<.5	< . 5	
1,4-DICHLOROBENZENE	Incg/L	<.7	<.7	
DI CHLORODI FLUOROMETHANE	BCG/L	<.9	6. >	
1,1-DICHLOROETHANE	Pcg/	<.4	<.4	
1, 2-DICHLOROETHANE	Ecg/	<.3	<.3	
1,1-DICHLOROETHENE	Ecg/L	<.3	<.3 .3	
TRANS-1, 2-DI CHLOROETHENE	BCG/L	<.5 <	< . 5	
1, 2-DI CHLOROPORPANE	B CQ/L	<.3	<.3	
CIS-1, 3-DICHLOROPROPENE	ICG/L	< . 5	<.5	
TRANS-1, 2-DI CHLOROPROPEN	BCG/L	<.5	< . 5	
METHYLENE CHLORIDE	Ecg/L	<.4	<.4	
1,1,2,2-TETRACHLOROETHAN	Incg/L	<.5 </th <th><"2</th> <th></th>	<"2	
TETRACHLOROETHYLENE	ILCG/I	<.6	<.6	
1,1,1-TRICHLOROETHANE	ncg/L	<.5	<.5	
1,1,2-TRICHLOROETHANE	ncg/L	<.5	<.5	
TRI CHLOROETHYLENE	Incg/L	<.5	<.5	
TRICHLOROLUOROMETHANE	Incg/L	<.4	<.4	
VINYL CHLORIDE	BCG/L	د.9	6.>	
602				
BENZENE	n cq/L	<.5	<.5 <	
CHLOROBENZENE	Incq/L	<.6	<.6	
1,2-DICHLOROBENZENE	Incq/L	4	4	
1, 3-DICHLOROBENZENE	llcg/l	<.5	<.5 <	
1,4-DICHLOROBENZENE		<.7	<.7	
etherical concernence of the second sec			~~~ ~	
TOTOTATE		C· Y	C.>	

Ŧ

1.00 5.10 0.90 170.00 300.00 375.00 3 82 50 58 00 51 00	56.00 37.00	45.60 1.30 4.20	41.50 35.50 35.00	0.10 0.10 0.10	<.02 <.02 <.02	42.00 39.20 40.00	4.00 4.40	8.50 13.00 6.50	0.02 0.01 0.01		34.00 20.00 25.00	<100 <100 <100	<100 143.00 <100	<100 <100 <100	<100 <100 <100	<50 <50 <50 <50 <50	<100 <100 <100 <100	1643.00 506.00 3489.00	<20 <20 <20 <20				<10 <10 <10 <10	<10 <10 <10 <10	148.00 438.00 <100	53.50 62.00 51.20	9.40 10.40 9.10	
(1)											25.00	<100	<100	<100	<100	<50	<100	3489.00	<20	<100 	₽;	<100	<10	<10	<100	51.20	9.10	
5.10 300.00 58.00	37.00	1.30	35.50	0.10	<.02	39.20	4.40	13.00	0.01		20.00	<100	143.00	<100	<100	<50	<100	506.00	<20	001>	₽,	<100	<10	<10	438.00	62.00	10.40	
1.00 170.00 82 50	56.00	45.60	41.50	0.10	<.02	42.00	4.00	8.50	0.02		34.00	<100	<100	<100	<100	<50	<100	1643.00	<20	<100 4100	1.20	<100	<10	<10	148.00	53.50	9.40	
26.90 275.00 84.00	45.00	12.00	15.20	0.10	<.02	18.40	3.40	11.00	0.00	6.90	27.00	<100	<100	<100	<100	<50	<100	1844.00	31.00		T./U	<100	<10	10.00	383.00	51.60	9.60	
0.60 390.00 47.00	4/.0029.00	1.90	30.00	0.10	<.02	34.40	3.40	10.00	0.01	6.90	15.00	<100	<100	<100	<100	<50	<100	252.00	65.00		1.90	<100	<100	19.00	129.00	53.90	9.60	
_	_			Z	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Z				7/5n	1/bn	1/bn	Т/бл	7/bn	1/bn	¶√6n	1/bn	7/bn	7/bn	7/bn	ng/L	1/bn	7/bn	7/bn	¶√bn			T/bu
pot extre hyd Chemical Oxygen Demand Pitothemical Oxygen Demant	TOTAL ORGANIC CARBON					TOTAL KJELDAHL NITROGEN	orthoPO4			604)	420)					HEXAVALENT												

0661 NVC 0 I

SITE 16 CONTINUED

HH -	
9	
2	
E	
2	
4	

BERYLIUM	na∕L	<100	<100	<100	<100	<100	<100	<100
BORON	Z	2800.00	800.00	3250.00	3250.00	2100.00	1200.00	2233.33
BORON DISSOLVED	1/bn							ERR
CHLORIDE		76.00	13.00	37.00	39.00	41.00	29.00	39.17
FLOURIDE								
RESIDUE FILTERABLE (TDS)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	552.00	330.00	650.00	465.00	240.00	428.00	444.17
RESIDUE NON (SS)		524.00						524.00
RESIDUE		520.00	431.00	557.00	456.00	500.00		492.80
RESIDUE VOLATILE	J J J D II	102.00	34.00	118.00	133.00	177.00	264.00	138.00
SPECIFIC CONDUCTANCE	MARO	982.00	590.00	941.00	1031.00	874.00	772.00	865.00
SULFATE		73.00	67.00	90.00	40.00	44.00	73.00	64.50
SURFACTANTS		7.60	0.10	5.60	5.70	22.00	6.00	7.83
TURBIDITY	B							ERR
COBALT	1/bn	<100	<100	<100	<100	<100	<100	<100
MOLYBDENUM	7/bn	129.00	348.00	271.00	201.00	549.00	<100	299.60
TT TPANTUM	1/bn	<100	<100	<100	<100	<100	<100	<100
MUTUM	1/bn	<100	<100	<100	<100	<100	<100	<100
ALK TOTAL		279.00	219.00	304.00	373.00	309.00	272.00	292.67
SULFIDES		1.00	1.00	0.40	1.00	3.00		1.28
	6							TATA
CHLOROETHANE		0.90						0.00
CHILOROFORM								EKR
CHLOROMETHANE	1/bn	32.00						32.00
CHLORIDBROMETHANE	1/bn							ERR
DI-n-BUTYLPHTHALATE	¶7∕5n	2.90	2.90					2.90
BENZYL-BUTYLPHTHALATE	7/fm	10.00	10.00					10.00
NAPTHALENE	7/5n	9.60						9.60
BIS(2-ETHYLHEXYL) PHTHALAT		42.00	42.00					42.00
THENE	7/bn	1.80						1.80
METHYLENE CHLORIDE	7/5n	1.90						1.90
TETRACHLOROETHYLENE		0.80	0.70					0.75

SITE 16 CONTINUED

SITE 16 CONTINUED									AVERAGE	
NAPTHALENE BIS(2-ETHYLHEXYL)PHTHALAT MEANS -1 2-DICET (DEFINENE)	y Sn	9.60 42.00	42.00						9.60 42.00 1.80	
TRANS-1,2-ULCRIDE	n Jon	1.90							1.90	
TETRACHLOROETHYLLENE DENVENE	١	0.80	0.70						0.75 Err	
1, 3-DICHLOROBENZENE	1∕bn	64.00				1			64.00	
1,4-DICHLOROBENZENE	7/6n	31.00	1.30	1.00	2.20	7.70	3.20	3.20	7.09	
ethyl Benzene Toluene	7/gn	3.00	7-60						3.00	
601			AVE	AVERAGE						
BROMODI CHLOROMETHANE	incq	<.4		<.4						
BRONOFORM		<.7		<.7						
BROMOMETHANE	acg	6.>		6.>						
CARBON TETRACHLORIDE	ncg	<.5		<. 5						
CHLOROBENZENE	incg	<.6		د و						
CHLOROETHANE	ncg.	<.8 .8		~. 8						
2-CHLOROETHYTVINYL ETHER	ncg	6 . >		6 . >						
CHLOROFORM	ncg	~ .3								
CHLOROMETHANE	ncg	<.8 .8		~. 8						
DIBROMOCHLOROMETHANE	ncg	6.>		6. 2						
1,2-DICHLOROBENZENE	nacg	<u>ت</u>		<u>ئ</u>						
1, 3-DICHLOROBENZENE	mcg	<<		•• •						
1,4-DICHLOROBENZENE	mcg	<.7		<.7						
DI CHLORODI FLUOROMETHANE	ncg	6°>		6.>						
1,1-DICHLOROETHANE	incg	4.4		4.						
1,2-DICHLOROETHANE	mcg	×.۳		~• ~						
1,1-DICHLOROETHENE	necg	ć. 3		×.3						
TRANS-1, 2-DICHLOROETHENE	mcg	< . 5		<. 5						
1,2-DICHLOROPROPANE	mcg	~. 3		ć. 3						
CIS-1, 3-DICHLOROPROPENE		< . 5		<.5 .5						
TRANS-1, 3-DICHLOROPROPENE	ncg	<. .5		<.5 .5						
METHYLENE CHLORIDE	ncg	<.4		<.4						
1,1,2,2-TETRACHLOROETHANE		~. 6		<.6						

10 JAN RUD

CONTINUED
16
SITE

AVERAGE

1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE 012	1000 1000 1000 1000 1000 1000 1000 100	<l< th=""><th>、、、、、、 、、、、、、 で、、、、、</th></l<>	、、、、、、 、、、、、、 で、、、、、
BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE FIHYLBENZENE FOLUENE	ncg ncg ncg ncg ncg	<pre><.5 <.5 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3</pre>	 4.5 4.5 4.5 4.3 4.3

SITE 17

AVERAGE

POT EXTR HYD CHEMICAL OXYGEN DEMAND PLOCHEMICAL OXYGEN DEMAND		1.60 475.00	4.60 750.00	1.60 2020.00		2.60 1081.67
TOTAL ORGANIC CARBON		59.00	140.00	00.02		149.00 90.00
OIL & GREASE		5.10	12.90	4.40		7.47
AMONIA		33.50	12.00	36.00		27.17
NITRATE		0.14	680.00	0.12		226.75
NITRITE		<.02	<.02	<.02		<.02
TOTAL KJELDAHL NITROGEN		59.20	22.40	42.40		41.33
PHOSPHORUS orthoPO4	7/ba	4.80	2.50	4.00		3.77
PHOSPHORUS	7/bu	16.00	3.00	7.50		8.83
CYMNIDE	Z Den	0.02	0.00	0.02		0.01
CYANIDE free						ERR
PHENOLS (EPA 604)	1/bn	49.00	29.00			39.00
PHENOLS (MTH. 420)	Typu	35.00	23.00	25.00	29.00	28.00
ARSENIC	1/bn	<100	<100	<100		<100
BARIUM	J/bn	123.00	<100	<100		<100
CADMIUM	ng/L	<100	<100	<100		<100
CHROMIUM	лд/Г	<100	<100	<100		<100
CHROMIUM HEXAVALENT	1/bn	<50	<50	<50		<50
COPPER	ng/L	<100	<100	<100		<100
IRON	7/bn	384.00	349.00	3142.00		1291.67
LEND	1/bn	67.00	67.00	<20	<20	67.00
MAGANESE	7/bn	<100	<100	<100		<100
MERCURY	1/bn	4.30	4	4		<100
NICKEL	1/bn	<100	<100	<100		<100
SELENIUM	1/bn	<10	<10	<10		<10
SILVER	7/bn	<10	<10	<10		<10
ZINC	ng/L	130.00	511.00	<100		<100
CALCIUM	Ind A	48.10	55.20	69.50		57.60
MAGNESIUM	J. Da	8.60	9.50	10.70	10.70	9.88
POTASSIUM	1/be					ERR
SODIUM	1/bu					ERR
ICP TOTALS ALIMINUM	ησΛ	116.00	482.00	<100		ERK 299.00

AVERAGE	<100 2283.33	ERR 35.33	ERR	455.33	29.00	620.00 245 33	822.67	66.33	26.33	ERR	<100	450.50	<100	ERR	298.67	0.67	ERR	ERR	9.80	ERR	0.50	30.48	9.30	ERR 16 00	0.00 DT0-01		7.40
																						100.00					
	<100 2500.00	46.00		325.00		253,00	963.00	67.00	56.00		<100	<100	<100	<100	333.00	0.60						7.30					
	<100 3550.00	20.00		456.00		601.00 271.00	573.00	62.00	10.00		<100	380.00	<100	<100	240.00	0.40						7.30					
	<100 800.00	40.00		585.00	29.00	639.00 212.00	932.00	70.00	13.00						323.00				9.80		0.50	7.30	9.30	16 00	2.70	1.40	•
	17 bn	り た ら 同	B 2 2				OHIM	L D D D D	T Del		7/6n	7/bn	7/bn	17 bn		1 J Dan		1	1/5n		I	1/bn	1/bn				
SITE 17 CONTINUED	BERYLIUM BORON BORON DI SCOTTERD	CHLORIDE	COLOR FLOURIDE	RESIDUE FILTERABLE (TDS)	RESIDUE NON (SS)	RESIDUE VOLATILE	SPECIFIC CONDUCTANCE	SULFATE	SURFACTANTS		CORALT	MOLYBOENEM	MUINALIT	MULTUNA	ALK TOTAL	SULFIDES		CHLURDE THANE		CHLOROPE LIANE	CALVER LIDERUMETHANE	1,4-DICHLOROBENZENE	ALLAND CHLORIDE	BENZIENE	1, 3-DICHLOROBENZENE	ETHYL BENZENE	TOLURNE

10 JAin will

SITE 17 CONTINUED

AVERAGE AVERAGE

AVERAGE

...4

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5

...5 10 JAN 1990

SITE 17 CONTINUED

AVERAGE

602 BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE ETHYLBENZENE		, 	
TOLUENE	ncg	<.3	

10 JAN 1290

Ļ

•

L

SITE 18

AVERAGE

425.00 25.00 30.00 30.00 30.00 20.55 0.16 ERR ERR ERR ERR ERR ERR ERR ERR ERR ER	7.00 ERR ERR ERR 175.00
425.00 25.00 30.00 30.00 30.00 30.00 30.00 30.00 47.5 41.00 41.00 46.10 46.10	7.00 175.00
	Non Non Non Non
FOT EXTR. HYD CHENICAL OXYGEN DEWAND BIOCHEMICAL OXYGEN DEWAND TOTAL ORGANIC CARBON TOTAL ORGANIC CARBON OIL & GREASE AMONIA NITRATE NITRITE NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS OrthoPO4 PHOSPHORUS OR	MACANESIUM POTASSIUM SODIUM ICP TOTALS ALUMINUM

CONTINUED
18
SITE

AVERAGE	ERR	3700.00	ERR	25.00	ERR	ERR	344.00	38.00	ERR	162.00	684_00	38.00	0.20	ERR	ERR	263.00	ERR	ERR	266.00	0 60	1.60		<.4	<.7	6. 2	c. >	0 a	o.>	<.3	<.8
																					2.30									
	<100	3700.00		25.00			344.00	38.00		162.00	684.00	38.00	0.20		<100	263.00	<100	<100	266.00	0.60	1.60		<.4	7.7	, v 1		8.2	6.>	с. У	~. 8
	The	7/5n	7/bn		B			7/5	Z					5	7/bn	776n	77fm	Иbn			\$ ™ bn		ncg						lacg	ncg
SITE 18 CONTINUED	BERYLIUM	BORON	BORON DISSOLVED	CHLORIDE	COLOR		RESIDUE FILTERABLE (TDS)	RESIDUE NON (SS)	RESIDUE	RESIDUE VOLATILE	SPECIFIC CONDUCTANCE	SULFATE	SURFACTANTS	TURBIDITY	COBALT	MOLYBOENUM	TTTANTUM	VANADIUM	ALK TOTAL	SULFIDES	1,4-DICHLOROBENZENE	601	BROMODI CHLOROMETHANE	BRUTOFORM RROWNETTEDNE	CARBON TETRACHLORIDE	CHLOROBENZENE	CHLOROETHANE	2-CHLOROETHYTVINYL ETHER		

SITE 18 CONTINUED

AVERAGE

<.9 <1 < 5</pre>< 5</pre>< 5</pre>< 5</pre>< 5</pre>< 5</pre>< 5</pre>< 5</pre><pr <.9<.5<.7<.9 •••• •••• •••• <...5.5 <..4 <.6 .5.5.4.9 ..5..5..3..3..3..3..3 acg acg by a bog boe **B**CG BCa **BCG bom BCG** bom D 5 Cal boa acq. 6 Cal Boa TRANS-1, 3-DI CHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE TRANS-1, 2-Di CHLOROETHENE DI CHLORODI FLUOROMETHANE CIS-1, 3-DICHLOROPENE I'R.I CHLOROFLUOROMETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROPROPANE 1,2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE METHYLENE CHLORIDE I'RI CHLOROETHYLENE VINYL CHLORIDE CHLOROBENZENE ETHYLBENZENE BENZENE TOLUENE 602

1 U JAN 1940

SITE 19

TIME OBCANTO CONDUMN	1		
CHEMCIAL OXYGEN DEMAND		72.00	
BIOCHEMICAL OXYGEN DEMAND		0.12	
AMONIA		72.00	
NITRATE	76	0.12	
NITRITE		<.02	
TKN	7/bu	80.00	
PHOSPHORUS ORTHO PO4		5.60	
PHOSPHORUS		15.00	
CYANIDE	J/Den	0.01	
PHENOLS	The	100.00	
IRON	The	46.70	
CALCIUM	J/Den	8.80	
MAGNELSUM		700.00	
BORON	1/bn	700.00	
CHLORIDE	1/Del	51.00	
RESIDUE FILTERABLE TDS		423.00	
RESIDUE	Z	461.00	
RESIDUE VOLATILE	J/pa	749.00	
SPECIFIC CONDUCTANCE	oqua	1204.00	
ALK TOTAL		427.00	
SULFIDES	J/Du	0.40	
SULFATE	6	84.00	
ARSENIC	¶7/bn	<100	
BARTUM	The	<100	
CADMITUM	T/bn	<100	
CHROMIUM	The	<100	
CHROMIUM HEXAVALENT	1/bn	<50	
COPPER	т/бn	<100	
IRON	Ţ∕bn	315.00	
LEAD	7/bn	<20	
MAGANESE	¶√5n	<100	
MERCURY	¶7/bn	4	
NICKEL	¶7/6n	<100	

SITE 19 CONTINUED

VER C C TUM MESTUM MIUM ALT YRDENUM ANTUM DIUM	<pre><10 <100 46.70 46.70 8.80 <100 <100 <100 <100 <100 <100 <100 <1</pre>	<pre><10 <100 46.70 46.70 6100 <100 <100 <100 <100 <100 <100 <10</pre>
601 BROMODICHLOROMETHANE BROMOPORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROCETHANE CHLOROCETHANE CHLOROCETHANE CHLOROCETHANE DIBROMOCHLOROBENZENE DIBROMOCHLOROBENZENE DIBROMOCHLOROBENZENE 1, 3-DICHLOROBENZENE DICHLOROBENZENE 1, 1-DICHLOROBENZENE DICHLORODETHANE 1, 1-DICHLOROBENZENE DICHLORODETHANE 1, 1-DICHLOROBENZENE DICHLORODETHANE 1, 1-DICHLOROBENZENE DICHLORODETHANE 1, 2-DICHLOROBENZENE DICHLORODETHANE 1, 2-DICHLOROBENZENE DICHLORODETHANE 1, 2-DICHLOROBENZENE DICHLORODETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,

DEET WHE OL

SITE 19 CONTINUED

SITE 19 CONTINUED	1,1,2,2-TETRACHLOROETHANE mcg 1,1,1-TRUCHLOROETHANE mcg 1,1,2-TRUCHLOROETHANE mcg TRUCHLOROETHYLENE mcg TRUCHLOROETHYLENE mcg TRUCHLOROFTLOROMETHANE mcg VINYL CHLOROFTLOROMETHANE mcg	602 BENZENE mcg CHLOROBENZENE mcg 1, 2-DI CHLOROBENZENE mcg 1, 3-DI CHLOROBENZENE mcg 1, 4-DI CHLOROBENZENE mcg 1, 4-DI CHLOROBENZENE mcg FIHYTBENZENE mcg
	, , , , , , ຄ.ບ.ບ.4. ຍ ເ	4.5 4.5 4.3 4.3 4.5 4.5
AVERAGE	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,

CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND	1/5m 1/5m	550.00 51.00	550.00 51.00
TOTAL ORGANIC CARBON			51.00
OIL & GREASE		28.80	28.80
AMONIA			
Struct In			ERR
TOTAL KJELDAHL NITROGEN			ERR
PHOSPHORUS orthoPO4			ERR
PHOSPHORUS			143.00
CYANIDE			ERR
CYANIDE free	7/5		ERR
STONEHA	1/bn	50.00	50.00
PHENOLS (EPA 604)	The		ERR
	1/bn	50.00	50.00
ARSENIC	Ţ∕6n		
BARIUM	ı∕bn	<100	<100
CADMIUM	Typu	<100	<100
CHROMIUM	The	<100	<100
CHROMIUM HEXAVALENT	1/bn		ERR
COPPER	1/bn	<100	<100
IRON	1/bn	475.00	475.00
LEAD	¶7/6n	<20	<20
MAGANESE	1/bn	<100	<100
MERCURY	¶7/5n	1.20	1.20
NICKEL	¶7/5n	<100	<100
SELENIUM	T/En	<10	<10 5
SILVER	1/bn	<10	<10
ZINC	¶7∕6n	346.00	346.00
CALCIUM		62.50	62.50
MAGNESIUM	7/bu	13.00	13.00
POTASSIUM			ERR
Sodium Tere monits	¶7∕5œ		ERR
ALUMINUM	¶√6n	<100	<100

SITE 20 CONTINUED			AVERAGE
BERYLIUM BORON BORON DISSOLVED	776n 776n	<100 <100	<100 <100 ERR
CHLORIDE COLOR	R R R R R R R		ERR
FLOURIDE RESIDUE FILTERABLE (TDS)			ERR
NON (SS)			ERR
RESIDUE VOLATILE SPECIFIC CONDUCTANCE	U-J-D-BHWW		ERR
SULFATE SURFACTANTS		104.00	ERR 104.00
TURBIDITY	E.		ERR
MOLYBDENUM	1 Jon	<100	2100 ×100
TITANIUM	1/bn	<100 <100	<100 100
ALK TOTAL SULFIDES		0015	<100 ERR FRD
601	l A		1
BROMODI CHLOROMETHANE BROMDFORM	nicg nica	<.4 <.7	4 • 4 • 7 • 4
BROMOMETHANIE	E C C	6.>	6.>
CARBON TETRACHLORIDE CHLORORENZENE	ncg 1	<.5 < 6	<.5 <
CHLOROETHANE		~.8 .8	• • • • • •
2-CHLOROFINYTVINYL ETHER CHLOROFORM	acg Bcg	<.9 <.3	6.> >
CHLOROMETHANE DI BROMOCHLOROMETHANE	ncg	<8<<9	

SITE 20 CONTINUED

.

	,
	,
ENZENE mcg ENZENE mcg ENZENE mcg THANE mcg THANE mcg THANE mcg THANE mcg THANE mcg ACPANE mcg ROPANE mcg ROPANE mcg ACPANE mcg ALOROPROPENE mcg ACCTHANE mcg ROETHANE mcg ROETHANE mcg ROETHANE mcg ROETHANE mcg ROETHANE mcg ROETHANE mcg ROETHANE mcg ROETHANE mcg	ncg anzene anzene anzene anzene anzene anzene ancg anzene ancg
1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE DICHLORODIFLJOROMETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROPTHANE 1, 2-DICHLOROPTHANE 1, 2-DICHLOROPTHANE 1, 2-DICHLOROPTHANE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPTHANE 1, 1, 2-TEITRACHLOROFTHANE 1, 1, 2-TEITRACHLOROETHANE 1, 1, 2-TRICHLOROETHANE 1, 1, 2-TRICHLOROETHANE 1, 1, 2-TRICHLOROETHANE 1, 1, 2-TRICHLOROETHANE TRICHLOROETHYLENE TRICHLOROFTUDRO	602 BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE ETHYLBENZENE FOLUENE

AVERAGE

SITE 21			AVERAGE
POT EXTR HYD CHEMICAL OXYGEN DEMAND		44.80 450.00	44.80 450.00
BIOCHEMICAL OXYGEN DEMAND		7.00	7.00
OIL & GREASE		51.20	51.20
AMONIA NITRATE	урш Урш		
NITRITE			
TOTAL KJELDAHL NITROGEN			
PHOSPHORUS or tho PO4 BHOSPHORUS OF CO4			
CYANIDE			
CYANIDE free			
(EPA			
-		15.00	15.00
ARSENIC		<100	<100
BARIUM		<100	<100
CADMIUM		<100	<100
		<100	<100
CHROMITUM HEXAVALENT			0017
COPPER		1069 00	1069 00
LEAD	1/bn	111.00	111.00
MAGANESE	1/bn	101.00	101.00
MERCURY	¶√bn	42 12	J.
NICKEL	1∕6n	<100	<100
SELENTUM	1/bn	<10	<10
SILVER	¶7/5n		
ZINC	T/bn	<100 22	
CALCIUM		45.40 6.50	45.40 0 EO
MULT STORE		00.00	00.0
WILLION WILLION			
ICP TOTALS	\$		
ALUMINUM	¶7/5n	<100	<100

142

Ċ • L

SITE 21 CONTINUED			AVERAGE
BERYLIUM BORON BORON DISSOLVED CHLORIDE CHLORIDE FLOURIDE RESIDUE FILTERABLE (TDS) RESIDUE NON (SS) RESIDUE NON (SS) RESIDUE VOLATILE RESIDUE VOLATILE	よれた ない ない ない ない ない ない ない ない ない ない	4100	<100
SULFATE SURFACTANTS	125日	19.00	19.00
TURBIDITY COBALT MOLYBDENUM TITZANIUM VZANADIUM ALK TOTAL SULFIDES	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<100 <100 <100 <100	<pre><100 <100 <100 <100 <100 <100</pre>
601 BROMOFICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CALOROBENZENE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYTIVINYL ETHER CHLOROFORM CHLOROFORM		* * * * * * * * * * * * * * * * * * *	4 - 0 - 7 - 2 - 2 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5

19.00

SITE 22 CONTINUED

<u>, Ч</u> , , , , , , , , , , , , , , , , , ,	4.5 4.5 4.3 4.3 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
៱ <u>៶</u> ៱៶ ៰ ៰ ៷ <i>Ⴑ</i> ៰៹៷៷៷៷៷៷៱៹៹៰៷៷៷៷៹	,
	acc acc acc acc acc acc acc acc acc acc
DIBROMOCHLOROMETHANE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROPENE TRANS-1, 2-DICHLOROPENE TRANS-1, 3-DICHLOROPENE TRANS-1, 1, 2-TETRACHLOROPENE TRANS-1, 2-TETRACHLOROPENE TRANS-1, 2-TETRACHLOROPENE TRANS-1, 2-TETRACHLOROPENE TRICHLOROFTHANE TRICHLOROFTHANE TRICHLOROFTHANE TRICHLOROFTHANE TRICHLOROFTHANE TRICHLOROFTHANE TRICHLOROFTHANE TRICHLOROFTHANE	602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE TOLUENE

AVERAGE

FOT EXTR HYD		27.40	27.40
chemical oxygen demand Biochemical oxygen demand		40.00	40.00
TOTAL ORGANIC CARBON		27.40	27.40
OIL & GREASE	2/5	28.60	28.60
AMONIA			
NITRATE	7/50	28.60	28.60
NITRITE	1/ba		
TOTAL KJELDAHL NITROGEN			
PHOSPHORUS orthoPO4			
SUBORIDA	1/5m		
CYANIDE			
CYANIDE free	7/ba		
PHENOLS (EPA 604)	The		
PHENOLS (MTH. 420)	I/bn	<10	<10
ARSENIC	Typu	<100	<100
BARIUM	7/bn	105.00	105.00
CADMIUM	r/bn	<100	<100
CHROMIUM	The	<100	<100
CHROMIUM HEXAVALENT	1/bn		
COPPER	1/bn	<100	<100
IRON	1/bn	114.00	114.00
LEAD	1/bn	<20	<20
MAGANESE	1/bn	<100	<100
MERCURY	Typu	<1	4
NICKEL	Typu	<100	<100
SELENIUM	1/bn	<10	<10
SILVER	Typu	<10	<10
ZINC	1/bn	<100	<100
CALCTUM		61.70	61.70
MAGNESIUM		6.00	6.00
POTASSIUM		61.70	61.70
SODIUM TCB TCTB TCTB	ло, Г	6.00	6.00
ALUMINUM	¶7/bn	<100	<100

SITE 22 CONTINUED			AVERAGE
BERYLIUM BORON	T/bn	<100	<100
BORON DISSOLVED			
COLOR	у.В л		
RESIDUE FILTERABLE (TDS)			
RESIDUE NUN (33)			
RESIDUE VOLATILE			
SPECIFIC CONDUCTANCE	OHIM		
SULFATE	7/5m		
SURFACTANTS		0.20	0.20
TURBIDITY	5		
COBALT	1/bn	<100	<100
MOLYBDENUM	Ţ/bn	<100	<100
TITANIUM	7/bn	<100	<100
VANADIUM	1/bn	<100	<100
ALK TOTAL			
SULFIDES			
TETRACHLOROETHYLENE	I	0.50	0.50
601			
BROMODI CHLOROMETHANE	ncg	<.4	<.4
BROMOFORM	ncg	<.7	<.7
BROMOMETHANE	ncg	<.9	6. >
CARBON TETRACHLORIDE	ncg	 .5 .5 	< . 5
CHLOROBENZENE	incg	 4.6 5.6 	9 ° °
CHLURDETHANE 2 CHI ODORTHYTTINYI ETHER		8° \	8.0
TURNER TINITATIUTAMONTA_7	5		

SITE 22 CONTINED

AVERAGE

∧∧́́́́́,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,
៱៱៹ <u>ឣ</u> ៓៱៹៱៹៱៹៱៹៱៹៹៹៹៹៹ ៷៙៙៓៷৮៙ឩ៷៷៷៷៷៷៱៹៰៷៷៷៵៹៰	4.5 4.5 4.3 4.3 4.3 4.3
ANE acq ANE acq ANE acq ANE acq ANE acq BCG CPENE acq CPENE ACq CP	
CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 3-DICHLOROBENZENE DICHLOROBENZENE 1, 4-DICHLOROBENZENE 1, 1-DICHLOROBENZENE 1, 1-DICHLOROBENZENE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-TEITRACHLOROFROPANE CIS-1, 3-DICHLOROPROPENE METHYLENE CHLORIDE METHYLENE CHLORIDE 1, 1, 2-TEITRACHLOROFRANE 1, 1, 2-TEITRACHLOROETHANE 1, 1, 2-TEITRACHLOROETHANE 1, 1, 2-TEITRACHLOROETHANE 1, 1, 2-TRUCHLOROETHANE 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 1, 2, 2-TEITRACHLOROETHANE 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	602 BENZENE CHLOROBENZENE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE ETHYLBENZENE TOLUENE

105.00 <100 <100 <100 <100 <100
2199.00
22199.00
129.00
129.00
</1
</pre> 5.70 6000.00 48.20 8.80 10.80 1585.00 7/6m J. Du Z The Z Z Z Z 17 En 1/ En BIOCHEMICAL OXYGEN DEMAND TOTAL KJELDAHL NITROGEN CHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON PHOSPHORUS or tho PO4 CHROMIUM HEXAVALENT PHENOLS (EPA 604) PHENOLS (MTH. 620) CVANIDE free POT EXTR HYD OIL & GREASE PHOSPHORUS POTASSIUM MAGNESIUM CHROMIUM MAGANESE SELENIUM NITRATE CYANIDE NITRITE ARSENIC CADMIUM CALCIUM SITE 23 MERCURY MONIA SILVER BARIUM NICKEL COPPER ZINC LEAD IRON

1 0 JÂN IUSU

280.00

280.00

Thu

Z

ICP TOTALS

MUIDOS

ALUMINUM

148

SITE 23 CONTINUED

<100 4100	1900.00	<pre><100 <100 <194.00 <100 3.00</pre>	4. 6. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
SAN			500 500 500 500 500 500 500 500 500 500
BERYLIUM BORON BORON DISSOLVED CHLORIDE COLOR FLOURIDE RESIDUE FILTERABLE (TDS) RESIDUE NON (SS) RESIDUE VOLATILE RESIDUE VOLATILE SPECIFIC CONDUCTANCE SIL FATE	SURFACTANTS TURBIDITY	CURALIT MOLYBDENUM TITTANTUM VANADTUM ALK TODAL SULFIDES TRANS-1,2-DICHLOROETHANE	601 BROMOFICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE

AVERAGE <100

<100	00.0061	<pre><100 <100 <100 194.00 <100</pre>	3.00	•••• •••• •••• •••••

SITE 23 CONTINUED

CHLOROFORM	mcg	<.3	~. 3
CHLOROMETHANE	nco	<.8	~. 8
DIBROMOCHLOROMETHANE	B CG	<.9	6. ^
1,2-DICHLOROBENZENE		1	1
L, 3-DICHLOROBENZENE	ncg	<.5	<.5 .5
L, 4-DI CHLOROBENZENE	B cg	<.7	<.7
DI CHLORODI FLUOROMETHANE	B CG	<.9	6. ^
1,1-DICHLOROETHANE	mcg	<.4	<.4
L, 2-DI CHLOROETHANE	ncg	<.3	<
l, 1-DICHLOROETHENE	Bicg	<.3	×
IRANS-1, 2-DI CHLOROETHENE	mcg	<.5	<.5 .5
L, 2-DI CHLOROPROPANE	Beg	<.3	<
CIS-1, 3-DICHLOROPROPENE	ncg	<.5	<.5 <
TRANS-1, 3-DI CHLOROPROPENE	ncg	<.5	<.5 <
METHYLENE CHLORIDE	the g	<.4	<.4
1,1,2,2-TETRACHLOROETHANE	ncg	<.6	<. 6
I, I, I-TRICHLOROETHANE	ncg.	<.5	<.5 .5
1,1,2-TRICHLOROETHANE	mcg.	<.5 <	<.5 <
TRI CHLOROETHYLENE	ncg	<.5	<.5 <
I'R I CHLOROF LUOROMETHANE	mcg	<.4	<.4
VINYL CHLORIDE	meg	6.>	۰.9
602			
BENZENE	mcq	<.5	<. 5
CHLOROBENZENE	ncd	<.6	~. 6
L. 2-DICHLOROBENZENE	mcq	4	1
L, 3-DICHLOROBENZENE	ncg	<.5	<.5 .5
1,4-DICHLOROBENZENE	ncg	<.7	<.'
anazvary term			, v v
IONIONENE	lacd	č. >	~

AVERAGE

SITE 24			AVERAGE
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND		256,00 9000,00 6150,00	256.00 9000.00 6150.00
TOTAL ORGANIC CARBON			
ULL & GREASE AMONIA		00.0/1T	11/0.00
NI TRATE NI TRITE			
TOTAL KJELDAHL NITROGEN			
PHOSPHORUS orthoPO4 PHOSPHORUS			
CYANIDE			
(EPA (J Dn		
PHENOLS (MTH. 620)	1/bn	820.00	820.00
AKSENIC	7/5n	\$100 \$100	001×
CADMILLM	n Vou		<100
CHROMIUM	J/bn	<100	4100
CHROMIUM HEXAVALENT	7 Jun		
COPPER	¶√bn	<100	<100
IRON	7/bn	1826.00	1826.00
LEAD	¶7∕5n	180.00	180.00
MAGANESE	¶. T∕Bu	<100	<100
MERCURY	7/bn		₽ ;
NICKEL	¶7/5n	<100	<100
SELENIUM	T/bn	20.00	20.00
SILVER	1/bn	32.00	32.00
ZINC	1/bn	951.00	951.00
CALCIUM		32.30	32.30
MAGNESIUM		36.30	36.30
POTASSIUM			
SODIUM ICP TOTALS	T/bu		
ALUMINUM	¶∕bn	1987.00	1987.00

10 JAn 198

AVERAGE	4100	1750.00	<100 <100 167.00 <100	0.80 5.50	4. 4. 6. 8. 8. 8.
	내일 수 내일 수 고 20 20 20 20 20 20 20 20 20 20 20 20 20 2		100 107 107 100 107 100 100 100	ыд.Л. 0.80 5.50	meg <.4 meg <.4 meg <.9 meg <.5 meg <.6 meg <.8
SITE 24 CONTINUED	BERYLIUM BORON BORON DISSOLVED CHLORIDE CHLORIDE COLOR FLOURIDE RESIDUE FILTERABLE (TDS) RESIDUE NON (SS) RESIDUE NON (SS) RESIDUE RESIDUE VOLATILE SPECIFIC CONDUCTANCE	ANTIS	ž u	SULFIDES BENZENE 1,1,1-TRICHOLORETHANE	601 BROMODI CHLOROMETHANE BROMOFORM BROMOMETHANE BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE

AVERAGE <.9 <.3	8.^ 2.^ (1	<.5 <.7	6.	m m *	۰.5 م.5	<.5 <.5	4.4	<.5 <.5	.5	<.5 <	5 .>	, , , , , , , , , , , , , , , , , , , ,
6.> 5.3	8.^ 2.9	<.5 <.7	6.9 4.2	6.3 6.3	<.5 <.3	<.5 <.5	<.4	<.5 <.5	<.5 <	<.5 < .	£.>	, , , , , , , , , , , , , , , , , , ,
ETHER mcg mcg	nacq nacq nacq		NE BCG					HANE mcg mcg				
NINI	CHLOROMETHANE DIBROMOCHLOROMETHANE 1.2-DICHLOROBENZENE	1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE	DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE	1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	TRANS-1, 2-DI CHLOROETHENE 1, 2-DI CHLOROPROPANE	CIS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE	METHYLENE CHLORIDE	1,1,2,2-TETRACHLOROETHANE	1,1,2-TRICHLOROETHANE	TRICHLOROETHYLENE	VINYL CHLORIDE	602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE TOLUENE

٠.

10 JAN 1990

AVERAGE	42.00 42.00 2250.00 2250.00 401.00 401.00	72.80	91.00 4100 142.00 4100 4100 4100 4100 4100 4100	<pre><100 2023.00 93.00 93.00 134.00 134.00 134.00 1.40 (10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <</pre>
		- 		
SITE 25	POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND TOTAL ORCANTC CAPRON	OIL & CREASE AMONIA NITRATE NITRITE NITRITE TOTAL KJELDAHL NITROGEN FHOSPHORUS or thoPO4 PHOSPHORUS CYANIDE CYANIDE		

• ~

ł

S) TE 25 CONTINUED			AVERAGE
BERYLIUM BORON BORON DISSOLVED CHLORIDE COLOR FLOURIDE RESIDUE FILITERABLE (TDS) RESIDUE NON (SS) RESIDUE NON (SS) RESIDUE VOLATILE SPECIFIC CONDUCTANCE STIT BAME	and the second sec	<100	<100
SURFACTANTS TURBIDITY		14.00	14.00
COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES	火雪 より なり なり なり なり な な な な な な な な な な な な な	<100 <100 349.00 <100	<100 <100 349.00 <100
1,1,1-TRICHOLORETHANE 1,2-DICHLOROETHANE CHLOROBENZENE		5.90 5.30 49.00	5.90 5.30 49.00
601 BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE	1000 1000 1000 1000 1000 1000 1000 100	х 4. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	4. 5. 6. 5. 8. 5. 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.

SITE 25 CONTINUED

AVERAGE

444555<l <.4 <.5 <.1 <.3 <.9 4.5 4.5 4.5 4.3 4.3 4.3 4.3 4.3 .5.7.4 <.5 <.6 6 .5.5.4.9 <.3 .5 <.4 ncg **B**CG **BCG** E Co Б С Ш С С ncg E C C C ncg ncg ncg **b**ou boa Boa ncg ncg ncg **B**CG b Sel ncg **BCG b**Ce **BCG** BCG B ncg 5 C C C C C C TRANS-1, 3-DI CHLOROPROPENE L, 1, 2, 2-TETRACHLOROETHANE TRANS-1, 2-DICHLOROETHENE 2-CHLOROETHYIVINYL ETHER DI CHLORODI FLUOROMETHANE CIS-1, 3-DICHLOROPROPENE TRI CHLOROFLUOROMETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE **DIBROMOCHLOROMETHANE** 1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1, 2-DICHLOROPROPANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE METHYLENE CHLORIDE I'RI CHLOROETHYLENE VINYL CHLORIDE CHLOROBENZENE CHLOROMETHANE **ETHYLBENZENE** CHLOROFORM BENZENE 602

10 JAN isw

TOLUENE

SITE 26			AVERAGE
FOT EXIR HYD		66.00	66.00
CHEMICAL OXYGEN DEMAND	_	1400.00	1400.00
BIOCHEMICAL OXYGEN DEMAND	_	298.00	298.00
		3E 30	31 20
		07.6/	07.6/
NITRATE			
NITRITE			
TOTAL KJELDAHL NITROGEN	1/be		
PHOSPHORUS orthoPO4			
SUMOHASOHA	1/ba		
CYANIDE free			
PHENOLS (EPA 604)	The		
PHENOLS (MTH. 620)	7/bn	510.00	510.00
ARSENIC	The	<100	<100
BARTUM	Typu	308.00	308.00
CADMIUM	7/bn	481.00	481.00
	Ţ∕6n	<100	<100
CHROMIUM HEXAVALENT	1/bn		
COPPER	The	<100	<100
IRON	Ţ∕6n	14720.00	14720.00
LEND	1/bn	330.00	330.00
MAGANESE	Typu	1161.00	1161.00
MERCURY	The	5.30	5.30
NICKEL	Typu	<100	<100
SELENIUM	1/bn	<10	<10
SILVER	1/bn	11.00	11.00
ZINC	The	7202.00	7202.00
CALCTUM		512.80	512.80
MAGNESIUM		27.70	27.70
POTASSIUM	7/6		
WILLOS	T/bu		
ICP TOTALS	i		
ALUMINUM	1/bn	3458.00	3458.00

.

SITE 26 CONTINUED			AVERRAGE
BERYLIUM BORON BORON DISSOLVED CHLORIDE COLOR FLOURIDE RESIDUE FILTERABLE (TDS) RESIDUE NON (SS) RESIDUE NON (SS) RESIDUE VOLATILE SPECIFIC CONDUCTANCE SPECIFIC CONDUCTANCE		<100	<100
SURFACTANTS SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITTANTUM VANADIUM ALK TOTAL SULFIDES	H H H H H H H H H H H H H H H H H H H	210.00 <100 <100 <100 <100	210.00 <100 <100 <100 <100
TRANS-1, 2-DI CHLOROETHENE METHYLENE CHLORIDE 601 BROMODI CHLOROMETHANE BROMODETHANE BROMONETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE	nd/T ncg ncg ncg ncg ncg ncg ncg ncg ncg ncg	6.70 501.00 <.4 <.7 <.9 <.5 <.6 <.8	6.70 501.00 <.4 <.7 <.5 <.6 <.6 <.8

SITE 26 CONTINUED

AVERAGE

6.>	<.3 <	<.8 .8	6. >	1	<.5 <	<.7	6. >	<.4	<.3 <	×.3	< . 5	<3 <	< . 5	<.5 <	<.4	<.6	< . 5	< . 5	< . 5	<.4	د.9		< . 5	<.6	ć 1	<.5	<.7	×.3 ۲	<. 3
bour	60 1	ncg	EC d	ncg	ncg	ncg	ncg	ncg	ncg	ncg	Bott	ncg	ncg		ncg		ncg	ncg i	ncg	mcg	mcg		ncg	la co	BCG	ncg.	ncg	ncg	ncg
2-CHLOROETHYIVINYL ETHER	CHLOROFORM	CHLOROMETHANE	DIBROMOCHLOROMETHANE	1,2-DICHLOROBENZENE	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	DI CHLORODI FLUOROMETHANE	1,1-DICHLOROETHANE	1,2-DICHLOROETHANE	1,1-DICHLOROETHENE	TRANS-1, 2-DICHLOROETHENE	1, 2-DICHL JROPROPANE	CIS-1, 3-DICHLOROPROPENE	TRANS-1, 3-DI CHLOROPROPENE	METHYLENE CHLORIDE	1,1,2,2-TETRACHLOROETHANE	1,1,1-TRICHLOROETHANE	1,1,2-TRICHLOROETHANE	TRI CHLOROETHYLENE	TRICHLOROFLUOROMETHANE	VINYL CHLORIDE	602	BENZENE	CHLOROBENZENE	1, 2-DICHLOROBENZENE	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	ETHYLBENZENE	TOLUENE

159

SITE 27			AVERAGE
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND	子 5月 17 5日 17 5日 17 5日	75.60 1000.00 381.00	75.60 1000.00 381.00
TOTAL ORGANIC CARBON		07 90	96 40
		00.40	00.40
NITRATE	T/bii		
NITRITE	17 bei		
PHOSPHORUS OF THOPOA			
PHOSPHORUS			
	1/bu		
	J/bu		
	1/bn		
PHENOLS (MTH. 620)	1/bn	50.00	50.00
ARSENIC	1√6n	<100	<100
BARIUM	1√6n	<100	<100
CADMIUM	1/bn	<100	<100
CHROMIUM	1∕6n	<100	<100
CHROMIUM HEXAVALENT	1∕bn		
COPPER	1√6n	<100	<100
IRON	1/bn	233.00	233.00
LEAD	T/bn	201.00	201.00
MAGANESE	The	<100	<100
MERCURY	¶7/6n	<1	4
NICKEL	¶7/6n	<100	<100
SELENIUM	1∕bn	<10	<10
SILVER	¶7/bn	<10	<10
ZINC	Ţ∕6n	286.00	286.00
CALCIUM		38.90	38.90
MAGNESIUM	1/bu	6.80	6.80
POTASSIUM	J/bu		
	1/bu		
ALCH LUTALS	¶√6n	215.00	215.00

TO JAN YAWA

SITE 27 CONTINUED

BERYLIUM BORON	1/6n	<100	<100
BORON DISSOLVED CHLORIDE	1/bn		
COLOR	'8		
FLOURIDE			
RESIDUE FILTERABLE (TDS)			
RESIDUE NUN (33)			
RESIDUE VOLATILE			
SPECIFIC CONDUCTANCE	CHIND		
SULFATE			
SURFACTANTS		110.00	110.0
TURBIDITY	2		
COBALT	1/bn	<100	<100
MOLYBDENUM	1/bn	<100	<100
TITANIUM	1/bn	<100	<100
VANADIUM	1/bn	<100	<100
ALK TOTAL	1/be		
SULFIDES	1/5m		
CHLOROFORM	1/bn	4.30	4.3
TRANS-1, 3-DI CHLOROETHANE	1/bn	5.60	5.6
METHYLENE CHLORIDE	1/bn	34.00	34.0
BENZENE		234.00	234.0
1, 3-DICHLOROBENZENE	7√6n	627.00	627.0
ETHYL BENZENE	1/bn	607.00 201	607.0
TOLUENE	7/bn	367.00	367.0

110.00

AVERAGE

DEL WAR OF

4.30 5.60 34.00

234.00 627.00 607.00 367.00

SITE 27 CONTINUED

AVERAGE

										·																	
4.4	<.7	۰.9	<.5	<.6	<.8	<.9	<.3	<.8	6.>	4	<.5	<.7	د.9	<.4	<.3	<.3	<.5	<. 3	< . 5	< . 5	<.4	<.6	<.5 .5	< . 5	<.5	<.4	<.9
BCC C	incq.	lacq.	anc g	ECG.	ncg	R mcg	mcg	mcg	E CO	ncg	ncg	Enco.	~	ncg	anco Biologia	mcg	E mcg	lanc <u>g</u>	incg.		ncg.	•••	incg.	10 10 10	inc g	ECG.	mcg
601 BROMODICHLOROMETHANE	BROMOFORM	BROMOMETHANE	CARBON TETRACHLORIDE	CHLOROBENZENE	CHLOROETHANE	2-CHLOROETHYIVINYL ETHER	CHLOROFORM	CHLOROMETHANE	DIBROMOCHLOROMETHANE	1, 2-DI CHLOROBENZENE	1, 3-DI CHLOROBENZENE	1,4-DICHLOROBENZENE	DI CHLORODI FLUOROMETHANE	1,1-DICHLOROETHANE	1, 2-DICHLOROETHANE	1,1-DICHLOROETHENE	TRANS-1, 2-DI CHLOROETHENE	1, 2-DICHLOROPROPANE	CIS-1, 3-DICHLOROPROPENE	TRANS-1, 3-DICHLOROPROPENE	METHYLENE CHLORIDE	1,1,2,2-TETRACHLOROETHANE	1,1,1-TRICHLOROETHANE	1,1,2-TRICHLOROETHANE	TRI CHLOROETHYLENE	TRI CHLOROFLUOROMETHANE	VINYL CHLORIDE

mca <.5		incg <1	mcg <.5	incg <.7	incg <.3	mcg <.3
602 Renzene	CHLOROBENZENE	1,2-DICHLOROBENZENE	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	ETHYLBENZENE	TOLUENE

r

ाल्डी राष्ट्र 9 1

SITE 28			AVERAGE
POT EXTR HYD		2.60	2.60
CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND		200.00 49.00	200.00 49.00
TOTAL ORGANIC CARBON			
OIL & GREASE		2.60	2.60
AMONIA	77 but		
NITRATE	J. Du		
NITRITE	Z		
TOTAL KJELDAHL NITROGEN	1/bil		
PHOSPHORUS orthoPO4	1/be		
PHOSPHORUS	T/Ge		
CYANIDE	17 pm		
CYANIDE free	L/pm		
PHENOLS (EPA 604)	T/bn		
PHENOLS (MTH. 620)	Typu	20.00	20.00
ARSENIC	T/Dn	<100	<100
BARIUM	1/bn	<100	<100
CADMIUM	¶7/5n	<100	<100
CHROMIUM	1/bn	<100	<100
CHROMIUM HEXAVALENT	1/bn		
COPPER	1√bn	<100	<100
IRON	1/bn	230.00	230.00
LEAD	¶7/5n	<20	<20
MAGANESE	1/bn	<100	<100
MERCURY	¶√In	ć 1	4
NICKEL	¶7/5n	<100	<100
SELENTUM	¶7_pu	<10	<10
SILVER	Ţ∕ɓn	<10	<10
ZINC	1/bn	<100	<100
CALCIUM		42.90	42.90
MAGNESIUM		5.90	5.90
POTASSIUM			
SODIUM			
ALUMINUM	1/bn	<100	<100
			+ > = r

•

SITE 28 CONTINUED			AVERAGE
BERYLIUM BORON BORON DISSOLVED CHLORIDE COLOR FLOURIDE RESIDUE FILTERABLE (TDS) RESIDUE NON (SS) RESIDUE NON (SS) RESIDUE VOLATILE SPECTFIC CONDUCTANCE	です。 ないです。 ないで、 ない ないで、 ない ない ない ない ない ない ない ない ない ない	<100	ζ100
SULFATE SURFACTANTS SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANTUM VANADIUM ALK TOTAL SULFIDES	a set se	29.00 <100 <100 <100 <100	29.00 4100 4100 4100 4100
CHLOROFORM 601 BROMOFICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE	nd/r nd/r	9.40 6.4 6.5 6.5 6.5 6.5 6.8	9. 4. 6. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9
			·· ·

SITE 28 CONTINUED

۰۰۰۰ ⁴ وندهون ۵۰۰۰ و ۵۰۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰	4.5 4.5 4.3 4.3 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
ᠵᠵᠵᡬᢩᡬᠵᡔᠵᠵᡔᠵᡔᠵᠵᠵᠵᠵ ᠦᡅᢁᡂᢆᡊᡄᢀ᠍ᡈ᠌ᡅᡅᡊᢍᠩᡢ᠌ᡆᠥᡊᡢᠩᢤᡜᠥ	 4.5 4.5 4.5 4.3 4.3 4.3 4.4 4.5 4.5
2-CHLOROFTHYTVINYL ETHER CHLOROFORM CHLOROFETHANE DIBROMOCHLOROMETHANE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE DICHLORODETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROFROPANE CIS-1, 3-DICHLOROPROPENE METHYLENE CHLORIOFROPENE METHYLENE CHLORIOFROPENE METHYLENE CHLORIOFROPENE METHYLENE CHLOROFTHANE 1, 1, 2-TERIRACHLOROETHANE 1, 1, 2-TERIRACHLOROETHANE 1, 1, 2-TERIRACHLOROETHANE 1, 1, 2-TERICACHOROETHANE 1, 1, 2-TERICALOROETHANE 1, 1, 2-TERICACHOROETHANE 1, 1, 2-TERICALOROETHANE 1, 1, 2-TERICACHOROETHANE 1, 1, 2-TERICACHOROETHANE	602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE TOLUENE

вол ехите нит	mr J.	
ICAL		1400.00
BIOCHEMICAL OXYGEN DEMAND		298.00
OIL & GREASE AMONTA		
NT TRATTE		
NI TRI TE		
TOTAL KJELDAHL NITROGEN		
PHOSPHORUS orthoPO4		
SUROHASOHA		
CYANIDE		
CYANIDE free		
PHENOLS	ng/L	
ARSENIC	1/bn	
BARIUM	7/bn	
CADMIUM	ng/L	
CHROMIUM	ng/L	
CHROMIUM HEXAVALENT	Typu	
COPPER	17 Din	
IRON	1/5n	
LEAD	1/bn	
MAGANESE	1/bn	
MERCURY	1/bn	
NICKEL	1√bn	
SELENTUM	7/bn	
SILVER	1∕bn	
ZINC	1/bn	
CALCIUM		
MAGNESIUM		
POTASSIUM		
WILLIOS	J. Dur	
ICP TOTALS	ŧ	
WONTWOTT	1/bn	

AVERAGE

1400.00 298.00

SITE 29 CONTINUED

		LVED				TERABLE (TDS)	(SS)		ATILE	UDUCTANCE									
BERYLIUM	BORON	BORON DISSOLVED	CHLORIDE	COLOR	FLOURIDE	RESIDUE FILTERABLE	RESIDUE NON (SS)	RESIDUE	RESIDUE VOLATILE	SPECIFIC CONDUCTANCE	SULFATE	SURFACTANTS	TURBIDITY	COBALT	MOLYBDENUM	TITANIUM	VANADIUM	ALK TOTAL	SULFIDES

	<.4	<.7	۰.۶	<.5	<.6	<.8	6.>
	B Cq	boel E	nec d	Enco Enco	Bicg	ncg	mcg
601	BROMODICHLOROMETHANE	BROMOFORM	BROMOMETHANE	CARBON TETRACHLORIDE	CHLOROBENZENE	CHLOROETHANE	2-CHLOROETHYIVINYL ETHER

4.4
4.5
4.5
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4

AVERAGE

10 JAN 1941

SITE 29 CONTINUED

<.3	<.8	6. >	4	<.5	C. >	6.>	4.4	< . 3	<.3 <.3	<"2	<.3	<.5	<.5	4.4	<.6	< . 5	<.5	<.5	6. 4	6.>		<.5 <	9->	, , , , , , , , , , , , , , , , , , ,	c.>	/· >	n n • ∖	
<.3	<.8	6.>	ć1	<.5	<.7	6.>	<.4	<.3	<.3	<.5	<.3	< . 5	<.5	<.4	<.6	<.5	<.5	<.5	<.4	6.>		<.5	9	, . ,	¢.∧	<.7	د.> د ر	C ••
	anco a	E D D E D E	Bog	ncg	ncg	ncg 1	Bicg	ncg	E E C d	E D E C E	ncg.	necg.	E CO	E CO	ECG.	BCG	na co	ncg	ncg	ncg		D CO		for a	БО <u>н</u>	ECG.		5.2
CHLOROFORM	CHLOROMETHANE	DIBROMOCHLOROMETHANE	1,2-DICHLOROBENZENE	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	DI CHLORODI FLUOROMETHANE	1,1-DICHLOROETHANE	1,2-DICHLOROETHANE	1,1-DICHLOROETHENE	TRANS-1, 2-DICHLOROETHENE	1, 2-DICHLOROPROPANE	CIS-1, 3-DICHLOROPROPENE	TRANS-1, 3-DI CHLOROPROPENE	METHYLENE CHLORIDE	1,1,2,2-TETRACHLOROETHANE	1,1,1-TRICHLOROETHANE	1,1,2-TRICHLOROETHANE	TRI CHLOROETHYLENE	TRI CHLOROFLUOROMETHANE	VINYL CHLORIDE	600 F	BENZENE	CHI ODORENZ ENE		I, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	ETHYLBENZENE	TOTOENE

AVERAGE

<.3 250.00 19.00 <.3 .3 <100 <.3 250.00 19.00 (100 558.00 558.00 (200 (100 (100 (100 (100 (100 (100)) **49.50** 7.20 ×... ¢10000 <100 훳퇺퇺퇺 성칭칭 Y Gan A Y Gan туби BIOCHEMICAL OXYGEN DEMAND TOTAL KJELDAHL NI TROGEN CHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON PHOSPHORUS orthoPO4 CHROMIUM HEXAVALENT PHENOLS (MTH. 420) PHENOLS (EPA 604) CYANIDE free POT EXTR HYD OIL & GREASE **PHOSPHORUS** ICP TOTALS POTASSIUM MAGNESIUM MAGANESE SELENTUM ALUMINUM CHROMIUM SITE 30 NITRATE NITRITE CYANIDE CADMIUM ARSENIC MERCURY CALCTUM MILIOS AMONIA COPPER NICKEL SILVER BARUUM ZINC LEND LINON

10 JAN Isau

SITE 30 CONTINUED

SITE 30 CONTINUED			AVERAGE
BERYLIUM	1/bn	<100	<100
BORON BORON DISSOTITED	Υ ^{δη}		
CHLORIDE			
COLOR	J,B		
6.1			
RESIDUE FILTERABLE (TDS)			
RESIDUE NON (SS)	7/bu		
RESIDUE			
RESIDUE VOLATILE			
SPECIFIC CONDUCTANCE	OHEN		
SULFATE	1/bu		
SURFACTANTS		<.1	<.1
TURBIDITY	B		
COBALT	1/bn	<100	<100
MOLYBDENUM	1/bn	<100	<100
TITANIUM	T/bn	<100	<100
VANADIUM	Thu	<100	<100
ALK TOTAL	T/bu		
SULFIDES	J/bm		
METHYLENE CHLORIDE	¶√5n	4.30	4.30
TRI CHLOROFLUOROMETHANE		4.70	4.70
109			
BROMOPICHLOROMETHANE BROMOFORM		<.4 <.7	<.4 <.7
BROMOMETHANE		9.×	€.> ⊓
ANDAR TELINALITAL	f Sum		

<100

SITE 30 CONTINUED

AVERAGE

9 8 9 M 8 9	₽. 13.1-9.4.W.W.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	v.1) v. v. v	、、、、、、、、、、、、 v.v.v.a.o.v.v.a.o.	<pre>4.5 4.5 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3</pre>
ETHER mcg mcg mcg	2000 2000 2000 2000 2000 2000 2000 200	ENE necg NE necg PENE necg PENE necg necg necg necg	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYTVTINYL ETH CHLOROPORM CHLOROMETHANE	DI BROFOCHLOROMETHANE 1, 2-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE DI CHLOROBI FLUOROMETHANE 1, 1-DI CHLOROETHANE 1, 1-DI CHLOROETHANE 1, 1-DI CHLOROETHANE	TRANS-1, 2-DI CHLOROETHENE 1, 2-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPENE TRANS-1, 3-DI CHLOROPROPENE METHYLENE CHLOROPROPENE METHYLENE CHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE TRI CHLOROETHYLENE TRI CHLOROETHYLENE TRI CHLOROFLUOROETHANE VINYL CHLOROFLUOROETHANE VINYL CHLORIDE	602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE TOLUENE

10 JAN 1490

ERR <100 3775.00 <20 <20 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 1.30 500.00 36.00 ERR ERR ERR ERR ERR ERR ERR ERR 2.90 ERR <10 <100
</pre> AVERAGE 1.30 500.00 36.00 2.90 <10 <100 <100 <100 <100 тури Z 7 gn 7 gn 7 gn ¶7∕6n T/bn 17 gn 1/bn BIOCHEMICAL OXYGEN DEMAN TOTAL KJELDAHL NITROGEN CHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON PHOSPHORUS or tho PO4 **CHROMIUM Hexavalent** PHENOLS (MTH. 420) PHENOLS (EPA 604) CYANIDE free POT EXTR HYD OIL & GREASE PHOSPHORUS MANGANESE MAGNESIUM MUIMORHE SELENIUM ALUMINUM BERYLIUM AIMONIA NITRATE NITRITE CYANIDE MERCURY ARSENIC MUIMDAT CALCIUM SITE 31 NICKEL BARIUM COPPER SILVER ZINC RON END

SITE 31 CONTINUED			AVERAGE
BORON BORON Dissolved CHLORIDE COLOR	ア ら 加 の		ERR ERR ERR
FLUORIDE Residue Filterable (TDS)			ERR
Non (SS)			ERR
Residue Volatile	T/gm		ERR
			ANIA EERR
SURFACTANTS TURBIDITY	Ч И С П С П	1.30	1.30 ERR
COBALT	¶7_Dn	<100	<100
MOLYBDENUM	1/bn	<100	<100
MUIDEN VANAANUM	1/bn	<100 <100	<100 <100
ALK TOTAL	1/bn		ERR
SULFIDES CARRON TRETRACHLORIDE	¶ T∕bn		ERR For
CHLOROBENZENE			ERR
METHYLLENE CHLORIDE	1/bn	5.60	5.60
TRI CHLOROFLUOROMETHANE CHLOROFORM	ncg	4.10 <.3	4.10 <.3
601 BROMODICHLOROMETHANE BROMOFORM BROMONETHANE CARBON TETRACHLORIDE CARBON TETRACHLORIDE CALLOROBENZENE CHLOROBENZENE CHLOROETHYTVINYL ETHER CHLOROFORM	2011 2011 2011 2011 2011 2011 2011 2011	4.~ 4.~ 6.~ 6.~ 6.~ 6.~ 8.~ 8.~	4.5 4.5 4.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2

SITE 31 CONTINUED

601			
CHLOROMETHANE	mcq	<.8	<.8
DI BROMOCHLOROMETHANE	mcq	6.>	6.>
1,2-DICHLOROBENZENE	anco a	t)	4
	ncg	<.5 .5	<.5 <
1,4-DICHLOROBENZENE	ncg	<.7	<.7
DI CHLORODFLUOROMETHANE	meg	6.>	<.9
1,1-DICHLOROETHANE	mcg	<.4	<.4
1, 2-DI CHLOROETHANE	ncg	<.3	ć. 3
1,1-DICHLOROETHENE	meg	<.3	<.3
TRANS-1, 2-DI CHLOROETHENE	mcg	<.5	<.5 .5
1, 2-DICHLOROPROPANE	meg	<.3	<.3
CIS-1, 3-DICHLOROPROPANE	incg	<.5	<.5 .5
TRANS-1, 3-DICHLOROPROPEN	mcg	<.5	<.5 .5
METHYLENE CHLORIDE	ncg	<.4	<.4
1,1,2,2-TETRACHLOROETHAN	mcg	<.5	<.5 <
TETRACHLOROETHYLENE	mcg	<.6	~. 6
1,1,1-TRICHLOROETHANE	mcg	<.5	<.5 .5
1, 1, 2-TRICHLOROETHANE	ncg	<.5	<.5 <
TRICHLOROETHYLENE	mcg	<.5	< . 5
TRICHLOROFLUOROMENTANE	mcg	<.4	<.4
VINYL CHLORIDE	ncg	<.9	<.9
602			
BENZENE	mcg	<.5	<.5 <
CHLOROBENZENE		<.6	<.6
1,2-DICHLOROBENZENE		1	1
1, 3-DICHLOROBENZENE 1 /-DICHIOROBENZENE		<.5 <.1	5° 1 ∧ 1
ETHYLBENZENE	BCG	3	~ ~

FUT EXIN HYD		4.80	1.00		2.90
CHEMICAL OXYGEN DEMAND	T/bu	600.00			600.00
BIOCHEMICAL OXYGEN DEMAN		53.00	29.00		41.00
TOTAL ORGANIC CARBON	T/bu	50.00			50.00
OIL & GREASE		<.3 <	5.10		5.10
AMMONIA	T/bu	72.00			72.00
NITRATE	T/bu	0.12			0.12
NITRITE		<.02			<.02
TOTAL KJELDAHL NITROGEN	ING/L	80.00			80.00
PHOSPHORUS or tho PO4	T/pm	5.60			5.60
PHOSPHORUS	J/pm	15.00			15.00
CYANIDE	J/bm	0.01			0.01
CYANIDE free	IL Du				ERR
PHENOLS (EPA 604)	1/bn	4.30	ć1	<1	4.30
	ng/L	385.00	100.00		242.50
ARSENIC	1√bn	<100			<100
BARIUM	1/bn	231.00			231.00
CADMIUM	1/bn	<100			<100
CHROMIUM	1/bn	937.00			937.00
CHROMIUM Hexavalent	1/bn				ERR
COPPER	Typu	<100			<100
IRON	nq/L	315.00	406.00		360.50
LEAD	uq/L	20.00			20.00
MANGANESE	ng/L	<100			<100
MERCURY	ng/L	ć 1			4
NICKEL	1/bn	<100			<100
SELENIUM	ng/L	<10			<10
SILVER	1√bn	<10			<10
ZINC	Ţ∕bn	<100			<100
CALCIUM	T/pm	46.70	49.20		47.95
MAGNESIUM	7/50	8.80	10.60		9.70
POTASSIUM					ERR
SODIUM	J/fu				ERR
ICP METALS	T/ba				ERR
MUNIMULA	1/bn	<100			<100

WERAGE	2.90 600.00 41.00 50.00 5.10 72.00	<pre><</pre>		105000 T	<pre><100 <100 <10 <10 <100 <100 <170 9.70 ERR ERR </pre>
AVE	-		~ ~	v v	· · · ·

SITE 32 CONTINUED

AVERAGE

BERYLIUM	1∕6n	<100		<100
BORON	7/bn	700.00		700.00
BORON Dissolved	1/bn			ERR
CHLORIDE		51.00		51.00
COLOR	B			ERR
FLUORIDE				ERR
Residue Filterable (TDS)		423.00		423.00
Residue Non (SS)				ERR
Residue		461.00		461.00
Residue Volatile		749.00		749.00
Specfic Conductance	oruno	1204.00		1204.00
SULFATE		84.00		84.00
SURFACTANTS		0.30	0.50	0.30
TURBIDITY	Ę			ERR
COBALT	1√6n	<100		<100
MOLYBDENUM	1/bn	<100		<100
TITANIUM	1/bn	<100		<100
VANADIUM	1/bn	<100		<100
ALK TOTAL	7/ba	427.00		427.00
SULFIDES	I/fu	0.40		0.40
1, 3-DICHLOROBENZENE	I			
METHYLENE CHLORIDE	Ţ∕bn	15.00	5971.00	2993.00
TETRACHLOROETHYLENE	i	153.00		153.00
BENZENE				ERR
1,4-DICHLOROBENZENE	¶. T∕bu	4.80	4.00	4.40
ETHYL BENZENE	The	308.00		308.00
TOLUENE	1/bn	356.00		356.00
CIS-1,2-DICHLOROETHENE	ncg	30.00		30.00
CHLOROBENZENE	ncg			
601				
BROMODI CHLOROMETHANE	ncg	<.4		4.4
BROMOFORM	Enco.	<.7		7. >
BRONOMETHANE Cardon teteracut or the	boen en	6. v		6 , 7
	file.	c•>		C* >

1 U JAN 1990

.

SITE 32 CONTINUED

CHLOROBENZENE CHLOROETHANE CHLOROETHANE CHLOROETHANE 2-CHLOROETHANE CHLOROMETHANE CHLOROMETHANE I, 2-DI CHLOROBENZENE I, 2-DI CHLOROBENZENE I, 3-DI CHLOROBENZENE I, 3-DI CHLOROBENZENE I, 4-DI CHLOROBENZENE I, 1-DI CHLOROETHANE I, 2-DI CHLOROPROPANE CIS-1, 3-DI CHLOROETHANE I, 2-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPANE I, 1, 2-TELRACHLOROETHANE I, 1, 2-TELRACHLOROETHANE I, 1, 2-TRI CHLOROETHANE I, 1, 2, 2-TERRACHLOROETHANE I, 1, 2, 2-TERRACHLOROETHANE I, 1, 2, 2-TERRACHLOROETHANE I, 1, 2, 2-TRI CHLOROETHANE I, 1, 2, 2-TRI CHLOROETHANE	ᠵᠵᠵᠵ᠘ ݥݸݸݭݞݸ ᡢ᠘ᡠᡜᡅᡅᡊᢑᡊᡢᡜᠩᠥᡊᠩᡆᢩ。	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ZENE DROBENZENE -DI CHLOROBENZENE -DI CHLOROBENZENE -DI CHLOROBENZENE -DI CHLOROBENZENE -1, 2-DI CHLOROETHENE -1, 2-DI CHLOROETHENE	 <.5 <.6 <.5 <.7 <.3 <.3 30.00 	1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

SITE 33			AVERAGE
POT EXTR HYD		4.60	4.60
CHEMICAL OXYGEN DEMAND		200.00	200.00
BIUCHEMICAL UXYGEN DEMAN		45.00 2.20	45.00
		0.00	0.00
UIL & GREASE		6.20	6.20
AMPONIA			ERR
NITRATE			ERR
TOPPA & LEY DAHT NITTEOCEN			ERR
TOTAL MELINIC CATES TO A			ERR
FRUSPHORUS OF LIDO FU4 PHOSPHORUS			ERR
CYANIDE			ERR
CYANIDE free			ERR
(EPA 6	The	647.00	647.00
PHENOLS (MTH. 420)	IJ_pu	42.00	42.00
ARSENIC	¶√6n	<100	<100
BARIUM	7∕bn	114.00	114.00
CADMILUM	¶76n	<100	<100
	¶7/bn	<100	<100
CHROMIUM Hexavalent	Ţ∕bn		ETRR
COPPER	¶√6n	<100	<100
IRON	Ţ∕6n	1692.00	1692.00
LEAD	1/bn	67.00	67.00
MANGANESE	¶7/5n	<100	<100
MERCURY	T∕bn	ć 1	1 2
NICKEL	¶76n	<100	<100
WUINETIS	¶√bn	<10	<10
SILVER	ī∕bn	<10	<10
ZINC	¶7/bn	217.00	217.00
CALCIUM	7/6m	52.00	52.00
MAGNESIUM		8.50	8.50
POTASSIUM			ERR
TCP METALS			ERR
ALUMINUM	1/bn	272.00	272.00
	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SITE 33 CONTINUED

AVERAGE

BERYLIUM PORON	J/bn	<100	<10
BORON Dissolved	1/bn		
CHLORIDE	5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
FLUORIDE	7/5		
Residue Non (SS)	77 _{pm}		
Residue	てい		
Residue Volatile	T/bu		
Specfic Conductance	oruno		
SULFATE			
SURFACTANTS	J/bu	3.60	
TURBIDITY	5		
COBALT	¶√bn	<100	<10
MOLYBDENUM	1/bn	<100	<10
TITANIUM	T/bn	117.00	1
VANADIUM	Typu	<100	<10
ALK TOTAL			
SULFIDES			
CHLOROBENZENE	ncg	<.6	
METHYLENE CHLORIDE	1/bn	29.00	
BENZENE	ncg	< . 5	
CHLOROFORM	mcg	<.3	
601			
BROMOD I CHLOROMETHANE	mcg	<.4	·
BROMOFORM		<.7 . 0 . 0	•
DRUMURE TRANE CARPON TETRACHI ORIDE		۲. × ۲. ×	

00 ERR ERR ERR ERR ERR	ERR ERR ERR ERR 3.60 ERR 3.60 117.00 100	<.6 29.00 <.5 <.3	4. 4 6. 7 6. 5
10	3373	••	

SITE 33 CONTINUED

AVERAGE

550.00 <.5 <.6 <1 ..5..4..3..3..3..3..3..3..3 .5< <. • <.9 ...3...3...9< J 76 6 Colling Colling ncg bou acg **B**CG bo **B**CG **b**ou **b**Cd ncg **BCG DCG** boa 6 C U **b**See **D**C **B**CG 5 C C C ncg ncg ncg **B**CG ncg р С С ncg 5 C **b**Sa 52 **b**Cd **BCG** 5g **B**CG **b**Sa ,1,2,2-TETRACHLOROETHAN 2-CHLOROETHYIVINYL ETHER TRANS-1, 2-DI CHLOROETHENE **FRANS-1, 3-DICHLOROPROPEN** CIS-1, 3-DICHLOROPROPANE DICHLORODFLUOROMETHANE TRI CHLOROFLUOROMEHTANE ,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE DIBROMOCHLOROMETHANE .2-DICHLOROPROPANE ETRACHLOROETHYLENE 1,2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1, 3-DICHLOROBENZENE L, 4-DICHLOROBENZENE 1,2-DICHLOROBENZENE METHYLENE CHLORIDE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TRI CHLOROETHYLENE VINYL CHLORIDE CHLOROBENZENE CHLOROMETHANE CHLOROBENZENE CHLOROETHANE ETHYLBENZENE CHLOROFORM BENZENE TOLUENE 602

, , , , , , , , , , , , , , , , , , ,	O • • • • •

 50.00 2.5	ۍ ر

с. Х

SITE 34			AVERAGE
POT EXTR HYD CHEMICAL OYVGEN DEMAND		51.20 17500 00	51.20 17500 00
BIOCHEMICAL OXYGEN DEMAN		1633.00	1633 00
TOTAL ORGANIC CARBON			>>···
OIL & CREASE		206.40	206.40
AMMONIA) 1 1 1
NI TRATE	P/6		
NUTRUTE TOTAL KJELDAHI NUTBOGEN			
PHOSPHORIES ortho PO4			
PHOSPHORUS			
CYANIDE	T/bill		
CYANIDE free			
	The	<100	<100
PHENOLS (MTH. 420)	7/bn	380.00	380.00
ARSENIC	The	<100	<100
BARIUM	1/bn	200.00	200.00
CADMIUM	1/bn	110.00	110.00
	7/fm	370.00	370.00
CHROMIUM Hexavalent	1/bn		
COPPER	77 bn	<100	<100
IRON	1/bn	8385.00	8385.00
LEAD	The	1190.00	1190.00
MANGANESE	1/bn	165.00	165.00
MERCURY	1/bn	25.00	25.00
NICKEL	1/bn	<100	<100
SELENIUM	Ţ∕6n	<10	<10
SILVER	1/bn	25.00	25.00
ZINC	Ţ∕6n	64790.00	64790.00
CALCTUM		84.50	84.50
MAGNESIUM		16.00	16.00
POTASSIUM			
ALLEVINUM		3390 00	00 000
	1		00.0505

SITE 34 CONTINUED			AVERAGE
BERYLIUM	¶7∕6n	<100	<100
BORON	TVbn		ERB
BORON Dissolved	The		EKE
CHLORIDE	7/50		ERF
COLLOR	S		EIKE
FLUORIDE			ERF
Residue Filterable (TDS)			ERF
Residue Non (SS)	17.6m		ERF
Residue	76		ERF
Residue Volatile	7/6m		ERF
Specfic Conductance	orium		ERE
SULFATE	T/bn		ER
SURFACTANTS	¶7/6n	1650.00	1650.00
TURBIDITY	B		ERE
COBALT	т/Бn	<100	<100
MOLYBOENUM	7/6n	<100	<100
TITANIUM	1/bn	13000.00	13000.00
VANADIUM	ng/L	<100	<100
ALK TOTAL	76日		ERE
SULFIDES	Z		ERF
TRANS-1, 2-DI CHLOROETHENE	The	11.00	11.00
METHYLENE CHLORIDE	1/bn	12.00	12.00
1,1-DICHLOROETHENE	The	7.50	7.50
1,1,1-TRICHLOROETHANE	¶7/6n	7.70	7.70
601			
BROMODI CHLOROMETHANE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<.4	<.4
BKUROFORM BDOMOMETRIANE		<.7 . 0 . 0	7. >
CARBON TETRACHLORIDE	mca mca	ריי היי	איא איא

<pre><100 ERR ERR ERR ERR ERR ERR ERR ERR ERR (100 13000.00 13000.00 111.00 12.00 7.50 7.7</pre>	• •
---	-----

SITE 34 CONTINUED

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , ,	,
ETHER mcg ETHER mcg ancg ANE mcg PANE mcg RCOPEN mcg	
CHLOROBENZENE CHLOROETHANE CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE CHLOROFORM CHLOROMETHANE DI BROMOCHLOROMETHANE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE 1, 1-DI CHLOROBENZENE 1, 1-DI CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 2-DI CHLOROETHANE 1, 2-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 1, 2, 2-TETRACHLOROETHANE TRI CHLOROETHALENE 1, 1, 2, 2-TETRACHLOROETHANE TRI CHLOROETHANE 1, 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 1, 2, 2-TETRACHLOROETHANE TRI CHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	602 BENZENE CHLOROBENZENE 1, 2-DI CHLOROBENZENE 1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE ETHYLBENZENE TOLUENE

AVERAGE

AVERAGE

POT EXTR HYD		136.00	136.00
CHEMICAL OXYGEN DEMAND	Z	900.00	900.006
BIOCHEMICAL OXYGEN DEMAN		430.00	430.00
TOTAL ORGANIC CARBON			ERR
OIL & GREASE	2/50	568.00	568.00
AMMONIA			ERR
NITRATE			ERR
NITRITE			ERR
TOTAL KJELDAHL NITROGEN			ERR
PHOSPHORUS or tho PO4	J/bu		ERR
SUROHASOHA			ERR
CYANIDE			ERR
CYANIDE free	2/200		ERR
PHENOLS (EPA 604)	The		EERR
PHENOLS (MTH. 420)	1/bn	157.00	157.00
ARSENIC	1/bn	<100	<100
BARIUM	1/bn	706.00	706.00
CADMILUM	1/bn	128.00	128.00
CHROMIUM	Typu	<100	<100
CHROMIUM Hexavalent	j∕bn		ERR
COPPER	J/60	<100	<100
IRON	7/bn	913.00	913.00
LEAD	Typu	234.00	234.00
MANGANESE	1/bn	<100	<100
MERCURY	T/bn	2.10	2.10
NICKEL	1/bn	<100	<100
SELENIUM	Typu	<10	<10
SILVER	T/bn	<10	<10
ZINC	1/bn	457.00	457.00
CALCTUM	J/Den	51.80	51.80
MAGNESIUM	J/G	10.30	10.30
POTASSIUM	J/Gu		ERR
SODIUM			ERR
ICP METALS			ERR 365 00
AUNTRUCK	л/Бш	00.605	00.005

10 JAN 1900

SITE 35 CONTINUED			AVERAGE
BERYLIUM BORON	¶7/bn	<100	<100 ERR
BORON Dissolved	1/bn		ERR
CHLORIDE	7/bu		ERR
COLOR	B		ERR
FLUORIDE			ERR
Residue Filterable (TDS)	76日		ERR
Residue Non (SS)	7/5m		ERR
Residue	J/Da		ERR
Residue Volatile	7/bii		ERR
Specfic Conductance	oruno		ERR
SULFATE	7/5m		ERR
SURFACTANTS	2/50	18.50	18.50
TURBIDITY	5		ERR
COBALT	1√6n	<100	<100
MOLYBDENUM	1∕bn	<100	<100
TITANIUM	1/bn	<100	<100
VANADIUM	1/bn	<100	<100
ALK TOTAL			ERR
SULFIDES			ERR
METHYLENE CHLORIDE	1/bn	5.00	5.00
1, 3-DI CHLOROBENZENE	¶7∕6n	37.00	37.00

HEMICAL UXYGEN DEMAND A		0.00 500.00	0.60
AN		00.7	00.002 7.00 ERR
OIL & GREASE II AMMONIA		0.60	0.60
			NUT CONTRACTOR
NUTAL KJELDAHL NITROGEN D			ERR
	1/5		
PHOSPHORUS			ERR
CTANIDE Free			ERR
(EPA 604)			ERR.
(MTH. 420)	Typu	11.00	11.00
	2	100	100
	Z	226.00	226.00
	ЪЪ	<100	<100
•	27	<100	<100
CHROMIUM Hexavalent u	Ъ		ERR
	<u>1</u> /6	<100	<100
n	75	1802.00	1802.00
C.	Ъ	76.00	76.00
MANGANESE U	76	368.00	368.00
7	1/bn	ć1	<u>1</u>
ק	1/bn	<100	<100
RELENIUM U	The	<10	<10
P	J/6	10.00	10.00
7	J/6	230.00	230.00
		48.90	48.90
		6.20	6.20
POTASSIUM	2/50		ERR
			ERR
		1061 00	1061 00

SITE 36 CONTINUED

AVERAGE

BERYLIUM	11a/L	<100	
BORON			
BORON Dissolved	- 7/bn		FRR
CHLORIDE	7/bii		ERR
COLOR	B		ERR
			ERR
Residue Filterable (TDS)			ERR
Residue Non (SS)	7/511		ERR
Residue			ERR
Residue Volatile	1/bu		ERR
Specfic Conductance	oriun		ERR
SULFATE	T/pm		FRR
SURFACTANTS	2 Z D E	0.60	
TURBIDITY	, B,)))	ERR FRR
COBALT	1/bn	<100	<100
MOLYBDENUM	ng/L	<100	<100
TITANIUM	1/bn	<100	<100
VANADIUM	Typu	<100	<100 <100
ALK TOTAL	T/bil		FER
SULFIDES	L'pu		
TOLUENE	1/bn	1.40	1.40
601 BROMODI CHLOROMETHANE BROMOFORM	nicg nicg	<.4 <.7	<.4 <.7
BROMOMETHANE CARBON TETRACHLORIDE	nacg nacg	<.5 <.5	<.9 <.5

10 JAN 1990

SITE 36 CONTINUED

AVERAGE

CHLUROETHANE		×.×	
STHER	7		۲. ۷
	ticg.	6.>	6.>
CHLOROFORM	ncg	<. 3	<.3
CHLOROMETHANE	ncg	<.8	<.8
E	nco.	6.>	6.>
	EC.	₽ ₽	4
1, 3-DICHLOROBENZENE	ncg	<.5	<.5
4-DI CHLOROBENZENE	inc _g	<.7	<.7
DICHLORODFILUOROMETHANE	and a	6.>	6.>
1,1-DICHLOROETHANE		<.4	<.4
	B CG	<. 3	<.3
		<. 3	£.>
ETHENE		<.5 .5	<.5 <
		<. 3	ć. 3
PANE	incg.	<.5	<.5 <
z	incg	<.5	< . 5
	ECG.	<.4	<.4
1,1,2,2-TETRACHLOROETHAN	linc g	<.5	<.5
	5 E	<.6	<.6 .6
1,1,1-TRICHLOROETHANE	- 50	<.5	< . 5
	line of the second s	<.5	< . 5
TRI CHLOROFTHYLENE		<.5	.5
I'RI CHLOROFILUOROMEHTIANE	ncg	<.4	<.4
VINYL CHLORIDE	ncg.	د.9	6.>
I ING ZNG	D CQ	<.5	<.5
ENZENE		<.6	4.6
-		<1	<1
	BCG.	<.5	<.5 <
	inco.	<.7	<.7
	inc o	<. 3	.3
IOLUENE		<.3	

SITE 37			AVERAGE
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN		70.40 3250.00 981.00	70.4 3250.0 981.0
OIL & GREASE AMONIA		70.40	70.4
NITRATE NITRITE TOTAL KJELDAHL NITROGEN			
	2256 2256 2556		
PHENOLS (EPA 604) PHENOLS (MTH. 420) ARSENIC		112.00 <100	ER 112.0
BARIUM CADMIUM CHROMIUM CHROMIUM HAVAIIAlant		124.00 <100 <100	124.0 <100 <100
		105.00 2148.00 206.00	105.0 2148.0 206.0
MANCANESE MERCURY NI CKEL SET EATTIM	L L L L L L L L L L L L L L L L L L L	(100 (100 (100	
SILVER SILVER ZINC CALCIUM MAGNESIUM POTASSIUM SODIUM ICP METALS		20.00 692.00 53.90 9.30	20.0 692.0 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 633.9 635.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ALUMINUM	1/bn	645.00	645.0

SITE 3/ CONTINUED BERYLLUM BORON	1/6n 1/6n	<100	AVERAGE <100 ERR
BORTON DISSOLVED CHLORIDE COLOR			ERR ERR ERR
Residue Filterable (TDS) Residue Non (SS) Residue Residue Volatile Specfic Conductance			ERR ERR ERR ERR ERR ERR
SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TTTANTUM VANADIUM	ン	126.00 <100 <100 <100 <100	ERR 126.00 ERR <100 <100 <100
ALK TOTAL SULFIDES SULFIDES RESIDUE FILTERABLE (TDS) 601 BROMODICHLOROMETHANE BROMONETHANE BROMOMETHANE CARBON TETRACHLORIDE		4. × × × • • • • • • • • • • • • • • • •	ERR ERR ERR ERR *.4 *.7 *.9 *.5 *.5

SITE 37 CONTINUED

CHLOROBENZENE mcg CHLOROETHANE mcg	IVINYL ETHER		CHLOROMETHANE mcg	DIBROMOCHLOROMETHANE mcg				ANE	1,1-DICHLOROETHANE mcg			ETHENE	1,2-DICHLOROPROPANE mcg	PANE	PROPEN		1,1,2,2-TETRACHLOROETHAN mcg			HANE	TRICHLOROETHYLENE mcg	OMEHTANE	VINYL CHLORIDE mcg	DICHLORODIFLUOROMETHANE mcg	BENZENE	CHLOROBENZENE	1,2-DICHLOROBENZENE mcg			
សូដ្ឋ	י קי	5	ۍ ۲		-		۰ ۍ		ر م	, <u>5</u> ,	- J	5	5	ر م	- Dr	5	5	Б,	Б;	Б,	D:	Б,	Б,	5g						
<.6 <.9	6.>	<.3	<.8	<.9	41	<.5	<.7	<.9	<.4	<.3	<.3	<.5	<.3 .3	<.5	<.5	<.4	<.5	<.6	<.5	<.5	<. 5	<.4	<.9	<.9	<.5	<.6	<1	<.5	5.7	
6.5 6.9	6.2	<.3	<.8 .8	6. >	4	< . 5	<.7	<.9	<.4	~. 3	~. 3	< . 5	<.3 .3	< . 5	<.5 .5	<.4	<.5	<. 6	< . 5	<.5	< . 5	<.4	6. >	۰.۶	<.5 <		4	ר י		

0661 NAL 0 1

CHEMICAL OXYGEN DEMAND mg/L BIOCHEMICAL OXYGEN DEMAN mg/L TOTAL ORGANIC CARBON mg/L OIL & GREASE mg/L		7.00
	500.00 46.00	500.00 46.00
	23.70	EXK 23.70
-		ERR
		ERR
NUTAL KJELDAHL NITROGEN mg/L		ERR
ortho PO4		ERR
PHOSPHORUS mg/L CYANIDE mg/L		ERR
free		ERR
604)		ERR
(MTH. 420)		15.00
U	<100	<100
		179.00
CADMILUM UG/L		<100 100
Hexavalent		ERR
·	<100	<100
IRON UG/L		9484.00
TEAD UG/T		39.00
SE	.,	124.00
K		5.60
	~	<100
M		<10
8		<10
-	-	171.00
		69.30
	. 9.90	9.90
WDI		ER
		ERR
	267.00	267.00

E D JAN 16

ERR ERR ERR 9.30 16.00 2.10 ERR 4.44.5<l <100</pre> AVERAGE <100 <100 9.30 16.00 2.10 2.40 <.7<.5<.5<.6<.9<.9<.9 <.4 <100 I∕6n 7/bn 5 Con ncg **BCG** trans-1,2-Dichloroethene Residue Filterable (TDS) 1,1,1-Trichloroethane BROMODI CHLOROMETHANE CARBON TETRACHLORIDE 1,4-Dichlorobenzene Specfic Conductance SITE 38 CONTINUED Residue Volatile Residue Non (SS) BORON Dissolved CHLOROBENZENE BROMOMETHANE SURFACTANTS MOLYBDENUM BROMOFORM TURBIDITY ALK TOTAL TITANIUM VANADIUM FLOURIDE SULFIDES FLUORIDE BERYLIUM CHLORIDE SULFATE Residue COBALT SLOR BORON 601

10 JAN 1990

CHLOROETHANE

SITE 38 CONTINUED

2-CHLOROETHYIVINYL ETHER	meg	6.9	6. >
CHLOROFORM	ncg	<.3	~. 3
CHLOROMETHANE	ncg	<.8	<.8
DIBROMOCHLOROMETHANE		۰.9	6.>
1, 2-DICHLOROBENZENE		<1	ţ
1, 3-DICHLOROBENZENE		<.5	.5
1,4-DICHLOROBENZENE	ncg	<.7	<.7
DI CHLORODFLUOROMETHANE	ncg	<.9	6. ~
1, 1-DICHLOROETHANE	ncg	<.4	<.4
1, 2-DICHLOROETHANE	inc <u>g</u>	<.3	<.3 <
1,1-DICHLOROETHENE	mcg	<.3	<.3 .3
TRANS-1, 2-DICHLOROETHENE	mcg	<.5	<.5 .5
1, 2-DICHLOROPROPANE	mcg.	<.3	<.3
CIS-1, 3-DICHLOROPROPANE	mcg	<.5	< . 5
TRANS-1, 3-DI CHLOROPROPEN	incg	<.5	<.5 <
METHYLENE CHLORIDE	ncg	<.4	<.4
1,1,2,2-TETRACHLOROETHAN	mcg	<.5	<.5
TETRACHLOROETHYLENE	ncg	<.6	<. 6
1,1,1-TRICHLOROETHANE	ncg	<.5	<.5 .5
1,1,2-TRICHLOROETHANE	ncg	<.5	<.5 <
TRICHLOROETHYLENE	ncg	<.5	<. 5
TRI CHLOROFLUOROMEHTANE	and a	<.4	<.4
VINYL CHLORIDE	ncg	<.9	<.9
602			
BENZENE	ncg	<.5 .5	<.5 <
CHL/OROBENZIENE	ECG.	<.6	<. 6
1,2-DICHLOROBENZENE	mcg.	4	1
1, 3-DICHLOROBENZENE	mcg	<.5	د. ۲
1,4-DICHLOROBENZENE	ncg	<.7	<.7
ETHYLBENZENE TOLITENE	ECG ECG	 .3 . 	
	- The second se		. .,

AVERAGE

SITE 39			AVERAGE
POT EXTR HYD	J/pm	84.00	84.00
CHEMICAL OXYGEN DEMAND		2000.00	2000.00
BIOCHEMICAL OXYGEN DEMAN		694.00	694.00
IUIAL URGANIC CARBUN			
		132.00	132.00
APPROVID			ERR
NI TRATE NI TRETTE			ERR
TOTAL KJETDAHL NITERCEN			EKK
PHOSPHORUS or the PO4			
SUROHASOHA			ERR
CYANIDE	-T/Den		ERR
free			ERR
-	1/bn		ERR
PHENOLS (MTH. 420)	The	105.00	105.00
ARSENIC	Thu	<100	<100
BARIUM	¶7_fin	629.00	629.00
CADMIUM	¶√bn	<100	<100
	1√bn	<100	<100
CHROMIUM Hexavalent	¶√5n		ERR
COPPER	¶7/5n	<100	<100
IRON	The	7295.00	7295.00
LEAD	¶7/5n	498.00	498.00
MANCANESE	1/bn	684.00	684.00
MERCURY	¶7/bn	1.00	1.00
NICKEL	Ţ∕6n	101.00	101.00
SELENIUM	Ţ∕bn	<10	<10
SILVER	1/bn	26.00	26.00
ZINC	1√bn	1038.00	1038.00
CALCIUM	7Vbu	51.40	51.40
MAGNESIUM		10.00	10.00
POTASSIUM South W			ERR
TOD METAI C			ERR
ALUMINUM	1/bm	1743.00	ERR 1743_00
ı	1		>>->

1661 NAL 01

SITE 39 CONTINUED			AVERAGE
BERYLIUM BORON	1∕bn	<100	<100 ERR
BORON Dissolved			ERR
CHLORIDE			ERR
COLLOR FT_IDRTDF	B E		ERR ERR
Residue Filterable (TDS)			ERR
Residue Non (SS)			ERR
Residue			ERR
Residue Volatile			ERR
Specfic Conductance	orien		ERR
SULFATE			ERR
SURFACTANTS		380.00	380.00
TURBIDITY	5		EERR
COBALT	¶√5n	<100	<100
MOLYBDENUM	T/bn	<100	<100
TITANIUM	1/bn	<100	<100
VANADIUM	¶√6n	<100	<100
ALK TOTAL	2 Z Den		
SULFIDES	7/50		
Chloroethane	1/5n	20.00	20.00
I,I DICHLOROETHANE Methylene chloride	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	46.00 7.90	46.00

M M	POT EXTR HYD THEMICAL OXYGEN DEMAND		0.60	1.00	<.3 105 00	0.80
ORCANIC CARBON Mg/L 85.00 72.00 ILA Mg/L 45.00 67.50 ILA Mg/L 0.16 4.1 TEE Mg/L 0.16 4.1 TEE Mg/L 0.03 82.40 TEE Mg/L 0.03 82.40 HORUS ortho PO4 Mg/L 59.20 82.40 HORUS ortho PO4 Mg/L 7.00 7.60 HORUS ortho PO4 Mg/L 7.00 7.60 HORUS ortho PO4 Mg/L 7.00 7.60 HORUS ortho PO4 Mg/L 7.00 7.00 HORUS ortho PO4 Mg/L 6.00 0.03 HORUS ortho PO4 Mg/L 100 2.20.00 HORUS Mg/L 420 0.03 0.02 DE Free Mg/L 100 2.20.00 DE Free Mg/L 6.00 2.20.00 DE Free Mg/L 6.00 2.20.00 DE Mg/L	OCHEMICAL OXYGEN DEMAN		143.00	172.00	165.00	160.00
I.G. CREASE mg/L 4.60 2.20 I.A mg/L 45.00 67.50 I.T.E mg/L 0.16 4.1 T.T.E mg/L 0.03 0.03 I.T.E mg/L 0.06 0.03 I.T.E mg/L 0.05 0.03 HORUS mg/L 7.00 7.60 HORUS mg/L 7.00 7.60 HORUS mg/L 0.03 0.02 HORUS mg/L 0.03 0.02 HORUS mg/L 0.03 0.02 HORUS mg/L 0.03 0.02 IIC mg/L 0.03 0.02 IIC ug/L 100 100 IIC ug/L 100 22.00 IIC ug/L 100 238.00 IIC ug/L 100 100 IIC ug/L 100 100 IIC ug/L 100 100	TAL ORGANIC CARBON	7/5	85.00	72.00	68.00	75.00
I.A mg/L 45.00 67.50 CEE mg/L 0.16 (.1 CEE mg/L 0.06 0.03 HORUS ortho PO4 mg/L 7.00 7.60 HORUS ortho PO4 mg/L 7.00 7.60 HORUS ortho PO4 mg/L 59.20 82.40 HORUS ortho PO4 mg/L 7.00 7.60 HORUS ortho PO4 mg/L 0.03 0.02 DE free mg/L 100 0.00 DE free mg/L 0.03 0.02 DE free mg/L 100 0.00 DE free mg/L 100 100 DE free ug/L 100 100 DE </td <td>L & GREASE</td> <td></td> <td>4.60</td> <td>2.20</td> <td>6.20</td> <td>4.33</td>	L & GREASE		4.60	2.20	6.20	4.33
mg/L 0.16 <1 TEE mg/L 0.16 <1	MONIA	Z	45.00	67.50	69.00	60.50
TE mg/L 0.06 0.03 * KJELLAHL NITROCEN mg/L 59.20 82.40 #ORUS ortho PO4 mg/L 7.00 7.60 #ORUS ortho PO4 mg/L 59.20 82.40 #ORUS ortho PO4 mg/L 7.00 7.60 #ORUS ortho PO4 mg/L 0.03 0.02 DE free mg/L (100 27.00 DI ug/L 65.00 105.00 27.50 M ug/L 420 ug/L 585.00 27.50 M ug/L 100 100 100 100 M ug/L 100 100 <t< td=""><td>TRATE</td><td></td><td>0.16</td><td><.1</td><td><.1</td><td>0.16</td></t<>	TRATE		0.16	<.1	<.1	0.16
KJELIAHL NITROGEN mg/L 59.20 82.40 HORUS ortho PO4 mg/L 7.00 7.60 HORUS ortho PO4 mg/L 0.03 0.02 DE free mg/L 0.03 0.02 DE mg/L 0.03 0.03 0.02 DE mg/L 0.03 0.03 0.02 DE mg/L 0.03 0.02 0.02 DE mg/L 100 100 22.00 DE M ug/L 65.00 105.00 DE UN ug/L 65.00 238.00 UN ug/L 100 2100 200 NM ug/L 101.00 2100 200 NM ug/L 101.00 2100 2100 NM ug/L 101.00 2100 2100 NM ug/L 101.00 2100	TRITE		0.06	0.03	0.03	0.04
HORUS ortho PO4 mg/L 7.00 7.60 HORUS mg/L 0.03 0.02 HORUS mg/L 0.03 0.02 DE free mg/L 0.03 0.02 DE free mg/L 0.03 0.02 DE free mg/L (100 (100 LS (EFA 0.01 ug/L (100 22.00 LS (EFA 0.01 ug/L (100 22.00 LS (FIH. 420) ug/L (100 22.00 22.00 LUM UN ug/L (100 (100 22.00 R ug/L 100 (100 (100 23.00 R ug/L (100 (100 (100 100 R ug/L 101.00 (100 100 100 R ug/L 101.00 (100 100 100 R ug/L 101.00 1100 100 100 R ug/L 101.00 1100 100 100	TAL KJELDAHL NI TROGEN	J/Da	59.20	82.40	100.00	80.53
HORUS mg/L 8.50 27.50 DE free mg/L 8.50 27.50 DE free mg/L (100 (100 LS (FFA 604) ug/L (100 (100 LS (FFA 604) ug/L (100 (100 LS (FFA 604) ug/L (100 (100 LL 100 (100 (100 LL 100 (100 (100 LL 100 (100 (100 LL 101 00) 101.00 (100 LL 101 00 (100 RY 100 (100 (100 (100 RY 100 (100 (100 (100 RY 100 (100 (100 (100 RY 100 (100 (100 (100 (100 (100 (100 (100	OSPHORUS or the PO4		7.00	7.60	11.00	8.53
DE mg/L 0.03 0.02 DE free mg/L (100 (100 MLS (EPA 604) ug/L (100 22.00 MLS (EPA 604) ug/L (100 22.00 MLS (EPA 604) ug/L (100 22.00 MLS (mH. 420) ug/L 565.00 105.00 ML ug/L (100 (100 22.900 ML ug/L 585.00 229.00 238.00 ML ug/L (100 (100 (100 R ug/L 161.00 (100 (100 R ug/L 161.00 (100 (100 R ug/L 101.00 (100 (100 R ug/L (100 (100 (100 R	OSPHORUS	2 Jon	8.50	27.50	21.50	19.17
DE free mg/L IIC ug/L (100 (100 XLS (FTH. 420) ug/L (100 22.00 MI ug/L (100 (100 22.00 MI ug/L (100 (100 23.00 R ug/L (100 (100 (100 R ug/L (100 (100 (100 R ug/L 101.00 (100 (100 R ug/L (100 (100 R R	ANIDE		0.03	0.02	0.02	0.02
IIC ug/L (100 (100 LS (FFA 604) ug/L (100 22.00 NS (FFA 404) ug/L (100 22.00 NS (FFA 404) ug/L (100 22.900 NS (FFA 420) ug/L (100 229.00 NM ug/L (100 (100 229.00 R ug/L (100 (100 (100 R ug/L (100 (100 (100 R ug/L 161.00 (100 (100 R ug/L 101.00 538.00 538.00 NNESE ug/L 171.00 538.00 538.00 R ug/L 117.00 65.00 65.00 R ug/L 171.00 3419.00 538.00 NM ug/L 171.00 8.00 101.00 100 R ug/L 117.00 8.00 100 100 R ug/L 117.00 333.00 100 100 100 NM mg/L	ANIDE free	J				ERR
KLS (EPA 604) ug/L (100 22.00 MI 420) ug/L 565.00 105.00 M ug/L 565.00 105.00 229.00 M ug/L 565.00 229.00 229.00 M ug/L (100 (100 200 M ug/L (100 (100 (100 M ug/L (100 (100 (100 R ug/L 161.00 (100 (100 R ug/L 161.00 538.00 538.00 R ug/L 161.00 (100 (100 R ug/L 101.00 538.00 538.00 M ug/L 117.00 8.00 538.00 R ug/L 117.00 8.00 100 R ug/L 111.00 (100 100 R ug/L 111.00 (100 100 R ug/L 111.00 (100 100 R ug/L 111.00 100 100		Typu	<100	<100	<100	<100
KS (MTH. 420) ug/L 65.00 105.00 M ug/L 585.00 229.00 UM ug/L 585.00 229.00 LUM Hexavalent ug/L 100 (100 NESE ug/L 161.00 (100 NESE ug/L 101.00 (100 RY ug/L 101.00 (100 MESE ug/L 101.00 (100 MESE ug/L 101.00 (100 MESE ug/L 117.00 8.00 LUM ug/L 117.00 8.00 M mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 M mg/L 12.70 9.	-	17 bn	<100	22.00	<100	22.00
M ug/L 585.00 229.00 LUM ug/L 500 229.00 LUM ug/L (100 (100 (100 RUM ug/L 500 239.00 (100 <td>(MTH.</td> <td>1/bn</td> <td>65.00</td> <td>105.00</td> <td>67.00</td> <td>79.00</td>	(MTH.	1/bn	65.00	105.00	67.00	79.00
UM ug/L (100 (100 ILUM ug/L (100 (100 R ug/L (100 (100 R ug/L 161.00 (100 R ug/L 161.00 (100 R ug/L 161.00 (100 R ug/L 101.00 (100 NESE ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 17.00 9.00 RY ug/L 17.00 9.00 RY ug/L 12.70 9.60 SILUM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 NM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 SILUM mg/L 12.40 49.50 NOM mg/L	RIUM	7/bn	585.00	229.00	219.00	344.33
IIUM Hexavalent ug/L (100 (100 R ug/L (50 (50 R) 161.00 (100 R) 161.00 (100 R) 161.00 (100 R) 101.00 (100 R) 17.00 8.00 R) 100 8.00 R] 100	DMITUM	1/bn	<100	<100	<100	<100
IIUM Hexavalent ug/L 50 50 R ug/L 161.00 100 R ug/L 3419.00 538.00 ug/L 290.00 65.00 538.00 NESE ug/L 101.00 100 RY ug/L 101.00 65.00 RY ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 117.00 8.00 RY ug/L 117.00 8.00 RY ug/L 112.00 49.50 SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 NM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 NOM mg	ROMIUM	The	<100	<100	<100	<100
R ug/L 161.00 <100 ug/L 3419.00 538.00 538.00 ug/L 3419.00 538.00 538.00 NESE ug/L 101.00 65.00 RY ug/L 101.00 65.00 RY ug/L 101.00 65.00 RY ug/L 17.00 8.00 RY ug/L (100 (100 R ug/L 1443.00 333.00 UM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 NUM mg/L 1244.00 216.00	B	1/bn	<50	<50	<50	<50
ug/L 3419.00 538.00 ug/L 290.00 65.00 RY ug/L 101.00 100 RY ug/L 17.00 8.00 RY ug/L 17.00 8.00 RY ug/L 7100 100 RY ug/L 17.00 8.00 RY ug/L 7100 8.00 R ug/L (100 (100 SILUM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 NUM mg/L 1184.00 216.00	PPER	7/bn	161.00	<100	<100	161.00
NESE ug/L 290.00 65.00 RY ug/L 101.00 6100 RY ug/L 17.00 8.00 L ug/L 1700 8.00 L ug/L (100 (100 R ug/L (100 (100 SILUM mg/L 12.70 9.60 SILUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60	N	1/bn	3419.00	538.00	1107.00	1688.00
MESE ug/L 101.00 <100 RY ug/L 17.00 8.00 L ug/L 17.00 8.00 L ug/L 17.00 8.00 L ug/L 17.00 8.00 RY ug/L (10 (10) RUM ug/L (10 (10) R ug/L (10 (10) R ug/L (10 (10) SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 NM mg/L 12.70 9.60	P D	1/bn	290.00	65.00	112.00	155.67
RY ug/L 17.00 8.00 L ug/L (100 (100 LUM ug/L (100 (10 R ug/L (10 (10 SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60 NUM mg/L 12.70 9.60	NGANESE	Иди	101.00	<100	<100	101.00
I. ug/L <100	RCURY	Ţ∕6n	17.00	8.00	ć 1	12.50
IIUM ug/L <10 <10 R ug/L <10 <10 UM ug/L 1443.00 333.00 UM mg/L 73.40 49.50 SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 M mg/L ng/L 12.60 NUM mg/L ng/L	CKEL	The	<100	<100	<100	<100
R ug/L <10 <10 UM ug/L 1443.00 333.00 UM mg/L 73.40 49.50 UM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 SIUM mg/L 12.70 9.60 M mg/L 12.70 9.60 NUM mg/L 12.60 216.00	LENTUM	1/bn	<10	<10	<10	<10
UM ug/L 1443.00 333.00 UM mg/L 73.40 49.50 SIUM mg/L 12.70 9.60 SIUM mg/L M mg/L 12.80 216.00 NUM mcg 1184.00 216.00	LVER	The	<10	<10	<10	<10
mg/L 73.40 49.50 UM mg/L 12.70 9.60 UM mg/L 12.70 9.60 UM mg/L 12.70 9.60 ALS mg/L 12.70 9.60 M mg/L 12.70 9.60	NC	1/bn	1443.00	333.00	584.00	786.67
mg/L 12.70 9.60 mg/L mg/L mg/L mg/L mcg 1184.00 216.00	LCIUM		73.40	49.50	51.00	57.97
mg/L mg/L mg/L mcg/L 1184.00 216.00	MISEN	7/5	12.70	9.60	9.80	10.70
mg/L mg/L mcg 1184.00 216.00	DESSIUM	7/5m		•		ERR
mg/L mcg 1184.00 216.00	MUIC	7 <u>6</u>				ERR
mcg 1184.00 216.00	METALS					ERR
	MUNIM	ncg	1184.00	216.00	353.00	584.33

SITE 40 CONTINUED

BERYLIUM	1/bn	<100	<100		<100
BORON	1/bn	7000.00	8700.00	11700.00	9133.33
Device Dissolved	The				ERR
		48.00	50.00	60.00	52.67
FLUORIDE					ERR
Residue Filterable (TDS)		568.00	760.00	420.00	ER7 67
Residue Non (SS)	T/bu	74.00			10.200
Residue	T/bu	615.00	758.00		686.50
Residue Volatile		255.00	359.00	162.00	258.67
Specfic Conductance	umho	1140.00	1198.00	1284.00	1207.33
SULFATE		87.00	22.00	14.00	41.00
SURFACTANTS	1/Dui	2.40	2.20	1.30	1.97
TURBIDITY				9	ERR
COBALT		<100	<100	<100	<100
MOLYBDENUM		<100	<100	<100	<100 <100
TITANIUM		<100	<100	<100	<100
VANADIUM	Typu	<100	<100	<100	<100
ALK TOTAL		390.00	450.00	476.00	438.67
SULFIDES		1.20	4.00	1.80	2.33
					ERR
1,4-DICALOFODENZENE	T/bn	6.70	7.40	11.00	8.37
1,4-VICALOFODEAZENE	The	12.00	10.20	6.70	9.63
601					ANI
BROMOD I CHLOROMETHANE	ncg	<.4			<.4
BROMOFORM BROMOMETTERNE	ncg	7. 2			<.7
CARBON TETRACHLORIDE		~ ~ ~			6.×
CHLOROBENZ ENE		. v . v			c. v v
	١	1			D •/

AVERAGE

SITE 40 CONTINUED

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
mcg <.9	800 <.5
HER E E	1,1,2-TRICHLOROETHANE II TRICHLOROETHYLENE II VINYL CHLOROETHYLENE III VINYL CHLOROETJUOROMEHTANE III VINYL CHLOROENDERIE III 602 BENZENE III 602 BENZENE III 1,2-DICHLOROBENZENE III,3-DICHLOROBENZENE III],3-DICHLOROBENZENE II]],3-DICHLOROBENZENE II]]],3-D

|--|

SITE 41

SITE 41 CONTINUED

746.25 49.75 4.80	<pre><100 </pre>	<100 259.25	0.97	6.5	4.27	**	1.92	6.34	<.5	1.15	~. 6	**		3.10	380.00	<.5	58.00	1.00	6.58	ć. 3	4	8.00
		0	0.80	6.	6.	8	1.70	8.00											<. 3			
	100 100 100 100 100	<10(-	V	~	~	, • •	~											•			
759.00 39.00 4.20	<100 <100 <100	<100 279.00	1.00	6.>	α \	*	3.70	14.00	<.5 <	<.4	<. 6							1	7.20			
770.00 29.00 5.40	<pre>/100 /100 /100</pre>	<100 274.00	1.00 <.4	6.>	7.50		1.60	2.40	<.5 <	<.4	<.6								13.00			
	100 100 100						1.70	1.70	<.5 <	0.90	<.6		14.00				<.5 .5	<.6 2.6	2.40			
20	<pre><100 <100 <100 </pre>	00.			2.20 ^ 8	Ţ	06.0				<.6		14.00	3.10	380.00	<.5	58.00	1.00	3.70	۲ ۰ ۶	. ⊂	8.00
odanu J. par J. par	7 bn 7 bn	1/6n		a com					ne ug/L	1/bn	inco	#> 1/bur Hi	1/bn	1/bn	¶√gu A.	uq/L	T/bn	5/68	1/bn	J/bn	1/6n	1/bn
Residue Residue Volatile Specfic Conductance SULFATE SURFACTANTS	COBALT MOLYBDENUM TTTANIUM	VANADIUM ALK TOTAL	SULFIDES 1.1-DICHLOROFTHANE	Chloroethane	Chloroform Chloromethane	Chlorodibromomethane	1,4-Dichlorobenzene		trans-1,2-Dichloroethene ug/L	Methylene chloride	Tetrachloroethylene	4-CHLOROPHENYL-PHENYLETH mg/L	DI-n-BUTYL PHIHALATE	BENZYL-BUTYLPHTHALATE	BIS(2-ETHYLHEXYL) PHTHALA	Benzene	1, 3-Dichlorobenzene	Cholorobenzene	Ethyl benzene		1, 2-DICHLOROBENZENE	1,4-DICHLOROBENZENE

10 JAN 1990

	00	50	10	02	00	20	00	01			00					<100		00							80	50				00
	59.00				24.00						55.	<100	<100	<100	<100	<100	<100	219.	<20	<100	4	<100	<10	<50	40.	6.		<100	<100	350.
<pre><.3 1110.00 </pre>	208.00 38.00 2.90	10.00	0.52	<.02	21.20	1.50	2.50	<.01		4.10	23.00	<100	<100	<100	<100	<100	<100	359.00	<20	<100	1	<100	11.00	<50	55.40	8.40		132.00	<100	650.00
3.50 1130.00	331.00 121.00 13.60	8.50	0.10	<.02	21.20	3.80	6.50	0.01		7.80	37.00	<100	<100	<100	<100	<100	<100	815.00	<20	<100	7.50	<100	33.00	<50	44.50	6.50		198.00	<100	450.00
3.20 300.00 60.00	85.00 9.00	7.00	0.12	0.02	18.80	14.00	6.50	0.01		3.00	48.00	<100	120.00	<100	<100	<100	<100	285.00	<20	<100	1.60	<100	22.00	<50	38.70	5.60		130.00	<100	350.00
		L Del		7/6m	T/bu			T/be		1/bn	1/bn	1/bn	T/bn	Thu	Thu	Thu	1/bn	1/bn	1/bu	¶7/bn	¶7bn	¶7/bn	¶7/bn	1/bn	J/bu	7/bu		1/bn	¶√En	T/bn
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN	DICHLENICHI UNIGEN DENEN TOTAL ORGANIC CARBON OIL & GREASE	AMMONILA	NITRATE	NITRITE	TOTAL KJELDAHL NITROGEN	PHOSPHORUS or tho PO4	SURGERIA	CYANIDE	CYANIDE free	PHENOLS (EPA 604)		ARSENIC	BARIUM	CADMIUM		CHROMIUM Hexavalent	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	SILVER	ZINC	CALCIUM	MAGNESIUM	POTASSIUM SODIUM	ALUMINUM	BERYLIUM	BORON

AVERAGE

SITE 42

\vee \vee \vee \vee	(TDS) mg/L 21.00 26.00 mg/L 450.00 290.00 mg/L 535.00 418.00 mg/L 535.00 418.00 mg/L 535.00 418.00 mg/L 535.00 9100 mg/L 535.00 919.00 mg/L 535.00 919.00 mg/L 535.00 648.00 627.00 mg/L 22.00 9.00 9.00 mg/L (100 (100 9.00 ug/L (100 (100 100 ug/L (100 (100 100 ug/L (100 (100 100 ug/L 0.80 255.00 2.40

33.25 406.50 ERR 505.33 116.50 689.50 689.50 689.50 689.50 6100 <100 <100 <100 <100 <100 0.40 0.95 0.95

AVERAGE

43	
SITE	

SITE 43					AVERAGE	<u></u>
POT EXTR HYD		5.70	9.80	2.60	6.03	ñ
CHEMICAL OXYGEN DEMAND	2 2 2 2 2	0.25	200.00	390.00	196.75	75
BIOCHEMICAL OXYGEN DEMAN	22	118.50	147.50	188.00	151.33	33
TOTAL ORGANIC CARBON		59.00	48.00	60.00	55.67	57
OIL & GREASE	22	45.20	44.80	17.80	35.93	33
APPONTA		13.50	20.00	13.50	15.67	12
NITRATE		0.10	<.1	<.1	0.10	0
NITRITE	25	0.02	<.02	<.02	0.02	22
TOTAL KJELDAHL NI TROGEN	201	24.00	30.40	22.80	25.73	13
PHOSPHORUS or the PO4	2/5	6.20	8.60	6.25	7.02	22
SUNCHASOHA	7/50	44.00	18.50	13.50	25.33	33
CYANIDE		0.01	0.01	0.01	0.01	1
PHENOLS (EPA 604)	The	15.00	12.00	34.00	20.33	ŝ
PHENOLS (MTH. 620)	1/bn	25.00	34.00	55.00	38.00	8
ARSENIC	1/bn	<100	<100	<100	<100	~
BARIUM	7/bn	<100	<100	<100	<100	~
CADMIUM	7√6n	<100	<100	<100	<100	~
CHRONIUM	7/bn	<100	<100	<100	<100	~
CHRONIUM Hexavalent	1/bn	<100	<100	<100	<100	~
COPPER	1/bn	<100	<100	<100	<100	~
IRON	1/bn	217.00	219.00	295.00	243.67	5
LEAD	TVpu	<20	<20	<20	<20	~
MANGANESE	1/bn	<100	<100	<100	<100	~
MERCURY	77 fin	1	1	4	4	
NICKEL	7/bn	<100	<100	<100	<100	~
SILVER	1/bn	<10	<10	<10	<10	~
ZINC	The	<50	<50	<50	<50	~
CALCTUM	Z	40.70	40.80	39.40	40.30	õ
MAGNESIUM	75	6.40	6.50	6.40	6.43	13
ALUMINUM	7/bn	127.00	132.00	210.00	156.33	33
BERYLIUM	The	<100	<100	<100	<100	~

AVERAGE	AEA AA	12 23		04 00	500 500 505 50		100.33 701 32	00 22	16 50	100		<100 <100		203 32	う う た よ ろ の の ろ の の ろ の の の の の の の の の の の の の			EBB					0/ · 7	0 10 11					2.33		2.50
																						07 E	0								
																						1 80	•								
	350.00	32.00	504,00			285 00	784.00	81.00	14.00	<100	<100	<100	<100	292.00	1.00							3.50							4.10		
	600.00	34.00	265.00		448.00	121_00	714.00	00.6	13.50	<100	<100	<100	<100	279.00	4.60							2.10							0.60		
	400.00	64.00	558.00	96.00	563.00	159.00	846.00	00.6	22.00	<100	<100	<100	<100	309.00	2.00		0.80					3.10		0.40			0.50		2.30		2.50
	1/bn	J. Dan				Da/L		1/Ln	Typu	1/bn	1/bn	1/bn	7/bn	T/pm	1/Den	TVpn	T/bn	1/bn	Typu	Ton	ma /L	T/bn			7/50	1/bn	J/bn	T/bn	T/bn	7/6n	B
SITE 43 CONTINUED	BORON		Residue Filterable (TDS)	Residue Non (SS)	Residue	Residue Volatile	Specfic Conductance	SULFATE	SURFACTANTS	COBALT	MOLYBDENUM	TITANIUM	VANADIUM	ALK TOTAL	SILFIDES	MERCURY	1,1-DICHLOROETHANE	Chloroethane	Chloroform	Chloromethane	Chlorodibromomethane	1,4-Dichlorobenzene	trans-1,2-Dichloroethene	Methylene chloride	Tetrachloroethylene	ALUMINUM	Benzene	1, 3-Dichlorobenzene	Ethyl benzene	Toluene	1,2-DICHLOROBENZENE

44
SITE

POT EXTR HYD		1.90	1.00	0.30	1.(.07
CHEMICAL OXYGEN DEMAND		350.00	260.00	270.00	293.3	.33
BIOCHEMICAL OXYGEN DEMAN		142.00	148.00	188.00	159.33	.33
TOTAL ORGANIC CARBON		48.00	53.00	65.00	55.3	.33
OIL & GREASE		8.40	6.20	10.60	8.	.40
AMMONIA		19.00	26.00	31.50	25.1	.50
NITRATE	7/5m	0.16	0.10	<.1	0.1	.13
NITRITE		<.02	<.02	.02	0.0	.02
TOTAL KJELDAHL NITROGEN	L/De	34.40	38.00	44.00	38.6	.80
PHOSPHORUS ortho PO4		5.80	8.60	8.50	7.6	.63
SUNOHASOHA		25.00	18.50	14.00	19.1	.17
CYANIDE		0.01	0.01	0.01	0.0	.01
-	1/bu					ERR
(EPA 6	1/bn	19.00	4.70	<10	11.6	.85
PHENOLS (MTH. 420)	1/bn	41.00	40.00	20.00	33.(.67
ARSENIC	¶7/6n	<100	<100	<100	<10(00
BARIUM	¶7/bn	396.00	<100	<100	396.	00.
CADMIUM	1/bn	<100	<100	<100	<100	00
CHROMIUM	¶7√5n	<100	<100	<100	<10(00
CHROMIUM Hexavalent	¶7/bn	<100	<100	<100	<10(00
COPPER	Thu	<100	<100	<100	<100	00
IRON	T/bn	201.00	24820.00	312.00	8444.	.33
LEAD	T/bn	118.00	<20	<20	118.0	00
MANGANESE	1/bn	117.00	<100	<100	117.0	00
MERCURY	The	1.60	1	ć1	1.(.60
NICKEL	¶7/bn	<100	<100	<100	<10	00
SILVER	Ţ∕Бn	<10	<10	<10		10
ZINC	Thu	829.00	<50	<50	829.1	00
CALCIUM		41.70	111.50	39.30	. 64	17
MAGNESIUM		6.90	9.90	6.40		. 73
ALUMINUM	¶√bn	139.00	2037.00	156.00	.177	. 33
BERYLIUM	¶7/6n	<100	<100	<100	<10	00
BORON	¶7/5n	700.00	400.00	400.00	500.00	.00

INUET
ENOO
44
SITE

SITE 44 CONTINUED						AVERAGE	ы
CHLORIDE	T/bu	26.00	32.00	32.00			2
Residue Filterable (TDS)	2/5m	84.00	270.00	400.00		30.00 251 33	ະຕ
Non (SS)	7/fu	45.00					
	J J J G III	476.00	367.00			A71 50	
	J/Da	157.00	61.00	211.00		00 EV L	
Conductance	umho	821.00	753.00	895.00		00 CC0	
	7∕bn	53.00	10.00	77.00		00.620 AA A7	25
TANTS	Ţ∕6n	5.10	5.40	6.30			
	TVBN	<100	<100	<100			2
EM	1/bn	<100	<100	<100			
	7/bn	<100	<100	<100			
	1/bn	<100	<100	<100			
ц	The	309.00	304.00	322.00		211 67	
	2 Joan	2.00	0.60	< 01		10.11C	2 2
ETHANE	7/bn	0.80	1	1 1 1			
ne	1/bn						
	1/bn						59
	1/bn						e e
Chlorodibromomethane	ng/L						5 9
	T/bn	2.00	06.0	2 RU	0 0		ყ.
thene	7/bn		•		06.4	c1.2	ດເ
						ANG	ម
đ						ERR	ម
DEMANI						ERR	ម
Benzene						AND	ម្ល
hlorohanaana							
						ERR	ម
		1 30	, ED			ERR	ម
	1	00.1	00.17			1.90	0

45
SITE

AVERAGE

4.23 590.00 590.00 50.000 50.000 50.000 50.000 50.00000000	8.23 201.67 <100 966.67
26.00	
61.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.40 128.00 <100 1250.00
1.90 950.00 950.00 147.00 11.10 10.10 24.50 37.60 37.60 10.00 8.90 40.00 40.00 800.00 4100 4100 4100 4100 4100 4100 4100	8.00 250.00 <100 600.00
2220 2220 2220 22270 22270 22270 22270 222.00 222.00	8.30 227.00 <100 1050.00
ĨŜĨŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜŜ ĈſĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊ	フ ち り ち の
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON OIL & GREASE AMMONIA NITRATE NITRATE NITRATE NITRATE TOTAL KJELDAHL NITROGEN FHOSPHORUS ortho PO4 FHOSPHORUS ortho PO4 FHOSPHORUS ortho PO4 FHOSPHORUS ortho PO4 FHOSPHORUS ortho PO4 FHOSPHORUS ortho PO4 FHOSPHORUS (MTH. 420) AMMONIS (FFA 604) FHOSPHORUS (MTH. 420) ARSENIC BARIUM CYANIDE Free FHENOLS (FRA 604) FHOSPHORUS (MTH. 420) ARSENIC BARIUM CYANIDE CYANIDE CYANIDE FIER CYANIDE FIER CYANITUNIC	MAGNESIUM Aluminum Beryljum Boron

SITE 45 CONTINUED

AVERAGE	203

BORON Dissolved	1/bn					ERR
CHLORIDE	7/bill	36.00	30.00	30.00		32.00
Residue Filterable (TDS)	T/Den	500.00	290.00	476.00		422.00
Residue Non (SS)	1/ba	56.00				56.00
Residue		427.00	498.00			462.50
Residue Volatile		180.00	89.00	162.00		143.67
Specfic Conductance	oruno	965.00	846.00	833.00		881.33
SULFATE	J/bu	79.00	15.00	37.00		43.67
SURFACTANTS		0.40	11.00	8.00		6.47
COBALT	T/bn	<100	<100	<100		<100
MOLYBDENUM	1/bn	<100	<100	<100		<100
TITANIUM	The	<100	<100	<100		<100
VANADIUM	T/pu	<100	<100	<100		<100
ALK TOTAL	Thu	370.00	328.00	323.00		340.33
SULFIDES	1/5日	2.60	4.60	0.80		2.67
601						
1,4-Dichlorobenzene	¶7/6n	2.10	3.00	2.40	4.50	3.00
Methylene chloride	The	0.60	1.10			0.85
Ethyl benzene	¶√6n	2.20	2.50			2.35

Contract of 2

.

SITE 46			AVERAGE
POT EXTR HYD CHEMICAL OXYGEN DEMAND		56.80 220.00	56.80 220.00
BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON		29.00	29.00
OIL & GREASE		103.20	103.20
APPONIA NTTRATE			ERR
NTRITE			ERR ERR
TOTAL KJELDAHL NITROGEN			ERR
PHOSPHORUS or the PO4			ERR
PHOSPHORUS CVANTOE	2 2 2 2		ERR
CYANIDE free			ANA
	17 bn		ERR
PHENOLS (MTH. 420)	The	70.00	70.00
ARSENIC	7/bn	<100	<100
BARIUM	The	<100	<100
CADMILUM	т/бn	<100	<100
CHROMIUM	17 fon	<100	<100
COPPER	17 bn	<100	<100
IRON	1/bn	1201.00	1201.00
LEAD	7/bn	76.00	76.00
MANGANESE	7/bn	<100	<100
MERCURY	1∕b n		1
NICKEL	T/bn	<100	<100
SILVER	T/bn		<10
			<>0 2 2 1 0 1 0 2
MACNESTIM		40.4U 7 RA	48.40
POTASSIUM			1.00 FRR
MUIDOS			ERR
ICP METALS	2 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ERR
ALUMINUM BERYLJUM	1∕6n 1∕6n	203.00 <100	203.00 <100
BORON	¶7/6n		

SITE 46 CONTINUED			AVERAGE
BORON Dissolved	Ţ∕bn		ERR
CHLORIDE			ERR
COLOR	8		ERR
			ERR
Residue Filterable (TDS)			ERR
Residue Non. (SS)			ERR
Residue			ERR
Residue Volatile	5/5m		ERR
Specfic Conductance	umho		ERR
SULFATE	T/5m		ERR
SURFACTANTS		0.10	0.10
TURBIDITY	Ŀ		ERR
COBALT	Ţ∕bn	<100	<100
MOLYBDENUM	¶7/5n	<100	<100
TITANIUM	¶7∕5n	<100	<100
VANADIUM	Ţ∕5n	<100	<100
ALK TOTAL	7/5n		ERR
SULFIDES			ERR
MAGNESIUM			ERR
1,1 DICHLOROETHENE	1/bn	52.00	52.00
1,1-DICHLOROETHANE	TVBN	199.00	199.00
trans-1,2-Dichloroethene	7/bn	166.00	166.00
Methylene chloride	T∕6n		ERR
Tetrachloroethylene			ERR
1,1,1-Trichloroethane	¶7∕bn	1309.00	1309.00
TRICHLOROETHYLENE	1/bn	479.00	479.00

POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN		7.30 15000.00 8308.00	7.30 15000.00 8308.00
DIL & GREASE ANNONIA		13.40	EKK 13.40 ERR
NITRATE NITRITE			ERR
TOTAL KJELDAHL NITROGEN			
PHOSPHORUS or the PO4	シ 目		ERR
CYANIDE			
	7/5m		ERR
(EPA (1/bn		ERR
PHENOLS (MIH. 620)	1/bn	725.00	725.00
AKSENIC		<100 A100 A100 A100 A100 A100 A100 A100	<100
CADMITUM	ug/u Ng/I.	439.00 <100	459.00
CHROMIUM	7/bn	<100	<100
COPPER		239.00	239.00
IRON		80160.00	80160.00
LEAD	1/bn	579.00	579.00
MANGANESE	¶7/5n	1205.00	1205.00
MERCURY	¶7/bn	4	¢1
NICKEL	¶7/5n	530.00	530.00
SELENTUM	7/bn		ERR
SILVER	J∕bn	10.00	10.00
ZINC	Ţ∕6n	851.00	851.00
CALCIUM	2/50	230.80	230.80
MAGNESIUM	25	17.60	17.60
POTASSIUM	7/6n		ERR
ICP METALS			
ALUMINUM	y fin	1576.00	1576.00
BERYLIUM	¶76n	<100	<100

SITE 47 CONTINUED			AVERAGE
BORON	7∕6n		ERR
CHLORIDE			ERR
COLOR	B		ERR
FLUORIDE			ERR
Residue Filterable (TDS)			ERR
Residue Non: (SS)	1/5m		ERR
Residue	7/ba		ERR
Residue Volatile	2/50		ERR
Specfic Conductance	orlum		ERR
SULFATE	1/bn		ERR
SURFACTANTS	1/bn	12.00	12.00
TURBIDITY	B		ERR
COBALT	1/bn		ERR
MOLYBDENUM	1/bn	301.00	301.00
TITANIUM	1/bn	<100	<100
MULTUM	¶. T∕Bu	<100	<100
ALK TOTAL	1∕bn		ERR
SULFIDES			ERR
Residue Volatile			ERR
1,1-DICHLOROETHANE	c u l o l u l o	5.70	5.70
1,4-Dichlorobenzene	1√bn	39.00	39.00
trans-1,2-Dichloroethene	1/bn	6.70	6.70
Methylene chloride	The	32.00	32.00
Tetrachloroethylene	7∕6n	7.00	7.00
1,1,1-Trichloroethane	T/bn	14.00	14.00
TOLUENE	Thu	<.3	<.3
Benzene	1/bn	< . 5	<.5
1,2-DICHLOROBENZENE	7/bu	<1	7
1,3-Dichlorobenzene	¶7∕6n	< . 5	<"2
1,4-Dichlorobenzene	¶√6n	<.7	<.7
Ethyl benzene	¶7/bn	<.3	<.3
Toluene	ncg	۰.×	с. , , , , , , , , , , , , , , , , , , ,
CHULDROBENZENE	lincg	0 *2	0 '>

-	7/50	2.90	2.90
-	7 <u>5</u>	750.00	750.00
EMAN		138.00	138.00
C CARBON	7/5		ERR
REASE	7/5	13.60	13.60
-	7/50		ERR
	7/50		ERR
-	J J J J J J J J J J J J J J J J J J J		ERR
TOTAL KJELDAHL NITROGEN	T/bu		ERR
PHOSPHORUS or the PO4 1	л Д		ERR
-	л Г ра		ERR
CYANIDE	л Л		ERR
CYANIDE free	DQ/L		FRR
(EPA 604)	ла/Г		
-	1/br	35.00	751.00
ARSENIC	л Г рг	<100	<100
BARIUM	J/br	<100	<100
-		<100	<100
- IND	J. Pu	<100	<100
23		<100	<100
	л <u>б</u> и	3861.00	3861.00
LEAD	J, pu	<20	<20
MANGANESE		274.00	274.00
MERCURY	J/br	¢	4
NICKEL	7 br	<100	<100
SILVER	J Dr	<10	<10
ZINC	L pu	<50	<50
CALCTUM		99.20	99.20
	7/50	3.90	3.90
_		<100	<100
WIL	T/bn	<100	<100
BORON	7/6r		ERR

AVERAGE

SITE 48 CONTINUED

AVERAGE	ERR ERR	EKK EKK EKK	981.00 ERR	ETR	ERR 3.40	ERK <100	<100 <100 <100	ERR ERR	ERR ERR	5.30 5.30
					3.40	<100 <100	<100 <100		93.00	5.30
SITE 48 CONTINUED	BORON Dissolved ug/L CHLORIDE mg/L COLOR CU	le (TDS)	Residue Non. (SS) mg/L Residue Residue Volatile	nce	NTS Y	ED ED	VANADIUM WORLD		trans-1,2-Dichloroethene ug/L Methylene chloride ug/L Tetrachloroethylene ug/L	Je Je

AVERAGE

ERR 600.00 45.00 ERR	1.60 ERR ERR	ERR ERR ERR ERR ERR	17.00 214.00 214.00 4100	(100 725.00 (20 (124.00 (100 (100	<50 74.40 1.50 <100 <100 ERR
60	444 1.6	। स स स स स स म	4444 17.00 214.00 214.00 214.00 214.00 200 200 200 200 200 200 200 200 200		そ そ 74.40 1.50 (100 (100 (100
POT EXTR HYD mg/l CHEMICAL OXYGEN DEMAND mg/l BIOCHEMICAL OXYGEN DEMAND mg/l TOTAL ORGANIC CARBON mg/l	OIL & GREASE mg/ AMMONIA MG/NIA mg/ NITRATE mg/ NITRITE mg/	JELDAHL NITROGEN RUS ortho PO4 RUS Free free (EPA 604)	(MTH. 420)	ULEAD UG/L LEAD UG/L MANGANESE UG/L MERCURY UG/L NICKEL UG/L	ZINC 21NC ug/ CALCTUM mg/ MAGNESTUM mg/ ALUMINUM ug/ BERYLIUM ug/ BORON ug/

DE JAN 1990

SITE 49 CONTINUED

	1.20	
CHLORIDE COLOR FLUORIDE Residue Filterable (TDS) Residue Non (SS) Residue	Residue Volatile Specfic Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM	VANADIUM ALK TOTAL SULFIDES

AVERAGE

ara Bra	ERR B	ERR ERR	ERR 1.20 ERR	ERR ERR	ERR ERR ERR

.

POT EXTR HYD	J/pm	1.30	2.60	12.20		5.37
CHEMICAL OXYGEN DEMAND	II DII	425.00	580.00	450.00		485.00
BIOCHEMICAL OXYGEN DEMAN		25.00	151.00	43.00		73.00
TOTAL ORGANIC CARBON	1/bm	57.00	21.00			39.00
OIL & GREASE	1/bii	2.20	7.00	26.90		12.03
AMMONIA	1/bu	32.00	5.20			18.60
NITRATE	T/bu	0.16	0.14			0.15
NITRITE	1/bu	0.04	<.02			0.04
TOTAL KJELDAHL NITROGEN	J/bu	40.00	8.40			24.20
PHOSPHORUS or tho PO4	T/Du	7.50	2.20			4.85
PHOSPHORUS	J-Com	14.00	8.50			11.25
CYANIDE	J-Den	0.02	0.01			0.02
CYANIDE free	J/Sun					ERR
PHENOLS (EPA 604)	ng/L	26.00	<10			26.00
PHENOLS (MTH. 420)	J/Bn	43.00	20.00	<10		31.50
ARSENIC	ng/L	<100	<100			<100
BARIUM	Thu	105.00	<100			105.00
CADMIUM	J/bn	<100	<100			<100
CHROMIUM	T/bn	<100	<100			<100
CHROMIUM Hexavalent	Thu	<50	<50			<50
COPPER	1∕6n	<100	<100			<100
IRON	¶√6n	692.00	306.00			499.00
LEAD	T/bn	30.00	<20			30.00
MANGANESE	1/6n	<100	<100			<100
MERCURY	1√6n	4	4			4
NICKEL	1/6n	<100	<100			<100
SILVER	1/bn	<10	<10			<10
ZINC	7/6n	177.00	<100			177.00
CALCIUM	T/bu	44.70	42.10			43.40
MAGNESIUM	7/6日	7.20	7.10	<100	<100	7.15
POTASSIUM	17 bu					ERR
WIIDOS	7.6m					
ICP METALS	J∕bn					
ALUMINUM REPVI.TTIM	ng/L	275.00	117.00 <100			196.00
	1	>>+	>>+/			>>+/

AVERAGE

SITE 50 CONTINUED

900.00 ERR 61.33 ERR 516.67 ERR 490.33 142.33 740.00 34.00 9.50 9.50 9.50 9.50 2.100 216.33 1.30 2.10 2.10	, , , , , , , , , , , , , , , , , , ,
22.00 22.00 420.00 591.00 591.00 46.00 15.00 15.00 <100 <100 <100 <100 <100	
400.00 12.00 460.00 475.00 475.00 475.00 0.50 0.50 <100 <100 <100 <100 0.50 0.40	
1400.00 150.00 670.00 711.00 210.00 1154.00 13.00 13.00 (100 (100 (100 (100 (100 (100 (100 (4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Hono Contraction of the second	
BORON Dissolved CHLORIDE COLOR FIJLORIDE COLOR FIJLUORIDE Residue Filterable (TDS) Residue Volatile Specfic Conductance SPECFIC Conductance SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES Methylene chloride Tetrachloroethylene	601 BROMODI CHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CALLOROBENZENE CHLOROBENZENE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DI CHLOROBENZENE

AVERAGE

CECT NY'N 6 0.

SITE 50 CONTINUED

AVERAGE

> > > > > > > > > > > > > > > > > > >	4.5 4.5 4.3 4.3 4.5 4.5 4.5 4.5 4.5
, , , , , , , , , , , , , , , , , , ,	<pre>4.5 4.5 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6</pre>
1, 3-DICHLOROBENZENE mcg 1, 4-DICHLOROBENZENE mcg DICHLORODIFLUOROMETHANE mcg 1, 1-DICHLOROETHANE mcg 1, 2-DICHLOROETHANE mcg 1, 2-DICHLOROETHANE mcg 1, 2-DICHLOROETHANE mcg TRANS-1, 2-DICHLOROETHANE mcg TRANS-1, 2-DICHLOROFROPENE mcg CIS-1, 3-DICHLOROPROPENE mcg TRANS-1, 2-DICHLOROPROPENE mcg 1, 2, 2-TETRACHLOROPROPENE mcg 1, 1, 2, 2-TETRACHLOROETHANE mcg 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	602 Benzene mg/L 1, 3-Dichlorobenzene ug/L 1, 4-Dichlorobenzene ug/L Toluene ug/L 1, 2-DICHLOROBENZENE ug/L

POT EXTR HYD	J/fm	6.70	<. 3		6.70
CHEMICAL OXYGEN DEMAND	J/pm	580.00	450.00	145.00	391.67
BIOCHEMICAL OXYGEN DEMAN		151.00	43.00	162.00	118.67
TOTAL ORGANIC CARBON	J/Du	8.00	21.00	16.00	15.00
OIL & GREASE	I	0.30	7.80		4.05
AMMONIA	1/bu	0.54	5.20	0.62	2.12
NITRATE		0.86	0.14	0.84	0.61
NITRITE	I/pm	<.02	<.02	<.02	<.02
TOTAL KJELDAHL NITROGEN	T/pm	3.30	8.40	2.50	4.73
PHOSPHORUS or tho PO4	II DII	0.30	2.20	0.34	0.95
PHOSPHORUS		0.24	8.50	0.43	3.06
CYANIDE	Type	0.01	0.01	0.01	0.01
CYANIDE free	mq/L				ERR
PHENOLS (EPA 604)	1/bn	<10			<10
PHENOLS (MTH. 420)	1/bn	10.00	20.00	<10	15.00
ARSENIC	1/bn	<100			<100
BARIUM	1/bn	<100			<100
CADMIUM	Typu	<100			<100
CHROMIUM	1/bn	<100			<100
CHROMIUM Hexavalent	1/bn	<50			<50
COPPER	1/bn	<100			<100
IRON	1/bn	<100			<100
LEAD	1/bn	<20			<20
MANGANESE	1/bn	<100			<100
MERCURY	Typu	4			4
NICKEL	1/bn	<100			<100
SELENTUM	1/bn	<10			<10 <10
SILVER	1/bn	<10			<10
ZINC	J/bn	<100			<100
CALCTUM	J/bill	41.00			41.00
MAGNESIUM	1/5m	6.20			6.20
POTASSIUM					ERR
SODIUM	1/bu				ERR
ICP METALS	ī∕bn				ERR
ALUMINUM	1/bn	<100			<100

AVERAGE

SITE 51 CONTINUED

<100 174.00 0.40 14.00 ERR ERR 287.67 72.33 39.33 5.30 0.90 0.90 0.90 366.67 ERR ERR 394.67 ERR 308.33 <100 <100 <100 <100 420.00 8.00 399.00 294.00 84.00 368.00 39.00 0.40 269.00 147.00 <.1 12.00 250.00 175.00 <.1 400.00 460.10 361.00 103.00 475.00 46.00 0.50 8.00 <100 450.00 196.00 208.00 30.00 341.00 33.00 15.00 200.00 0.90 22.00 0.40 <100</pre> t bou acg acg ncg ncg mcg 2-CHLOROETHYIVINYL ETHER Residue Filterable (TDS) BROMOD I CHLOROMETHANE CHLOROD I BROMOMETHANE CARBON TETRACHLORIDE DI BROMOCHLOROMETHANE Specfic Conductance 1,2-DICHLOROBENZENE Residue Volatile Residue Non (SS) BORON Dissolved CHLOROMETHANE CHLOROBENZENE CHLOROETHANE BROMOMETHANE SURFACTANTS CHLOROFORM MOLYBDENUM TURBIDITY BROMOFORM ALK TOTAL FLUORIDE **LI TANI UM** BERYLIUM CHLORIDE NANADIUM SULFIDES Residue SULFATE COBALT BORON COLOR 601

AVERAGE

SITE 51 CONTINUED

AVERAGE

, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,
、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	<pre><.5 <5 <3 <3 <4 </pre>
	7.6n 7.6n 7.6n 7.6n
1, 3-DI CHLOROBENZENE 1, 4-DI CHLOROBENZENE DI CHLORODI FLUOROMETHANE 1, 1-DI CHLOROETHANE 1, 2-DI CHLOROETHANE 1, 2-DI CHLOROETHANE 1, 2-DI CHLOROETHANE 1, 2-DI CHLOROETHANE 1, 2-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPANE CIS-1, 3-DI CHLOROPROPENE TRANS-1, 2-DI CHLOROPROPENE TRANS-1, 2-DI CHLOROPROPENE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2-TRI CHLOROETHANE 1, 1, 2-TRI CHLOROETHANE TRI CHLOROETHANE 1, 1, 2-TRI CHLOROETHANE TRI CHLOROETHANE	602 Benzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethyl benzene Toluene 1,2-DICHLOROBENZENE CHLOROBENZENE

0 JAN 1000

POT EXTR HYD		12.70	12.70
CHEMICAL OXYGEN DEMAND			ERR
TOTAL ORGANIC CARBON	7/58	116.00	116.00
OIL & GREASE		21.60	21.60
AMMONTA		8.50	8.50
NITRATE		0.16	0.16
NITRITE	17 be	0.06	0.06
TOTAL KJELDAHL NITROGEN		14.80	14.80
PHOSPHORUS or tho PO4	1/bill	0.85	0.85
SUROHACOHA	I Del	1.00	1.00
CYANIDE		0.03	0.03
CYANIDE free	L/Den		ERR
	1/bn	170.00	170.00
	Typu	580.00	580.00
ARSENIC	Thu	<100	<100
BARIUM	1/bn	<100	<100
CADMITUM	T/bn	464.00	464.00
CHROMIUM	The	<100	<100
CHROMIUM Hexavalent	¶7/6n	<50	<50
COPPER	Ţ∕bn	147.00	147.00
IRON	¶√10n	2333.00	2333.00
LEAD	1/bn	63.00	63.00
MANGANESE	¶√bn	<100	<100
MERCURY	¶7/bn	4	₽
NICKEL	¶√In	<100	<100
SILVER	¶7/bn	<10	<10
ZINC	¶76n	304.00	304.00
CALCIUM		43.30	43.30
MAGNESIUM	7/bu	6.60	6.60
POTASSIUM	7/5m		ERR
NUIDOS	T/bu		ERR
ICP METALS	√ bn		ERR
ALUMINUM	7/bn	184.00	184.00
BERYLLUM POPON		00 0010101	102000-00
	1	****	*******

AVERAGE

SITE 52 CONTINUED

AVERAGE

BORCN Dissolved CHLORIDE COLOR FLUORIDE Residue Filterable (TDS) Residue Non (SS) Residue Residue Volatile Specfic Conductance		8.00 770.00 524.00 1358.00	ERR 8.00 ERR 770.00 ERR 714.00 524.00 524.00 1358.00
SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANTUM VANADIUM ALK TOTAL SULFIDES	ン 5 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14.00 26.00 <100 <100 <100 <100 1.40	14.00 26.00 26.00 ERR <100 <100 <100 <100 1.40
1,2-DICHLOROETHANE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE	1√6n 1√6n 1√6n	8.20 10.00 10.00	8.20 10.00 10.00

0 JAN 1950

AVERAGE

11.00 45.00 45.00 13.80 ERR ERR ERR ERR ERR ERR ERR ERR ERR ER	<100
11.00 400.000 45.00 13.80 13.80 30.00 30.00 4100 4100 4100 410 514.00 166.40 184.80	<100
N N N N N N N N N N N N N N N _ N	ng⁄L
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN TOTAL ORGANIC CARBON OIL & GREASE AMMONIA NITRATE NITRATE NTRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS ORTHO PO4 PHOSPHORUS ORTHO PO4 PHOSPHORUS ORTHO PO4 PHOSPHORUS (MTH. 620) PHOSPHORUS (MTH. 620) PHENOLS (EPA 604) PHENOLS (EPA 604) PHENOLS (FPA 604) PHENOLS (CYANIDE CYANIDE Free PHENOLS (MTH. 620) ARSENIC BARTUM COMMUM HEXAVALENT COPPER IRON LEAD MANGANESE MA	ALUMINUM

CEL NYE 00

SITE 53 CONTINUED

 <100 EERR 116.00 	1.20 45.00 1.50 0.80 ERR	
88		
37.00 8.00		
15.00 11.00		
<100 1.40 1.40 <100 <100 <100 <100 <100 0.40	1.20 45.00 1.50 0.80	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
たたた た た で で で で で で で で で で で の で の で の	1/5n 1/5n 1/5n	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
BERYLIUM BORON Dissolved CHLORIDE CHLORIDE COLOR FLUORIDE COLOR FLUORIDE Residue Filterable (TDS) Residue Non (SS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SULFATE SULFATE SULFATE SULFIDES MOLYBDENUM TITANIUM VANPDIUM ALK TOTAL SULFIDES	CHLOROFORM 1, 3-DI CHLOROBENZENE DI CHLORODI FLUOROMETHANE TOLUENE	BROWOFORM BROWOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE 2-CHLOROBENZENE 1,4-DICHLOROBENZENE DIBROMOCHLOROMETHANE

AVERAGE

061 NAL 60

SITE 53 CONTINUED

1 4 8 6 7 4 8 6 7 7 4 8 7 7 7 7 7 7 7 7 7 7 7 7 7	4.6 4.5 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
Local acceleration of the second seco	大 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1, 2-DICHLOROBENZENE 1, 1-DICHLOROETHANE CHLOROMETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROPROPANE CIS-1, 3-DICHLOROPROPANE CIS-1, 3-DICHLOROPROPANE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE 1, 1, 2, 2-TETRACHLOROETHANE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE TRICHLOROETHYLENE TRANS-1, 2-DICHLOROETHANE VINYL CHLOROETHANE	602 Benzene 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE Toluene CHLOROBENZENE 1, 2-DICHLOROBENZENE

AVERAGE

211.20 1150.00 183.00	568.00		870.00 <100 <100 407.00 <100	125.00 2464.00 67.00 <100 <100	<pre><10 <10 <10 <139.00 <13.00 <6.70 </pre>
	7/58 7/58				
	TULAL UKAANLU CARGON OIL & GREASE AMMONIA NITRATE	NITRITE TOTAL KJELDAHL NITROGEN PHOSPHORUS ortho PO4 PHOSPHORUS CYANIDE CYANIDE Free PHENDIS (FPA 604)		. <u>E</u>	SELENTUR SILVER ZINC CALCIUM MAGNESIUM POTASSIUM SODIUM ICP METALS ALUMINUM

61	
ច	
S.	
日	
2	
A.,	

ELNAULT	211.20 1150.00 607.00 ERR	568.00 ERR	ERR ERR	ETRR ETRR	ERR	ERR	ĥ	<100	3	25.0	2464.00	5	<10 <10	<10 239.00	43	ERR	ERR ERR 166.00

SITE 54 CONTINUED			AVERAGE
BERYLIUM BORON Dissolved CHLORIDE COLOR FLUORIDE Residue Filterable (TDS) Residue Non (SS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE SULFATE SULFIDES TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES	aaagoogoogoogoogoogoogoogoogoogoogoogoog	<pre><10 32.00 <100 <100 <100 <100 <100 <100 <100 <</pre>	(10 ERR ERR ERR ERR ERR ERR ERR ERR ERR ER
1,1-DICHLOROETHANE METHYLENE CHLORIDE 1,1,1-TRICHLOROTHANE	IVGn IVGn IVGn	0.60 7.90 9.30	0.60 7.90 9.30
601 BROMODI CHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFTHANE 2-CHLOROETHYTVINYL ETHER CHLOROFORM CHLOROFORM CHLOROMETHANE		 4	<u>А</u> -С 0.0,000,000,000,000,000,000,000,000,000

SITE 54 CONTINUED

DIBROMOCHLOROMETHANE	mcg	6.>	6. >
1,2-DICHLOROBENZENE	Inc.	<1	1
1, 3-DICHLOROBENZENE	mcg	<.5	<.5 .5
1,4-DICHLOROBROZENE	mcg	۲.>	<.7
DI CHLORODI FLUOROMETHANE	mcg	<.9	6. >
1, 2-DICHLOROETHANE	mcg	<.3	ć. 3
1,1-DICHLOROETHENE	mcg	<.3	<
TRANS-1, 2-DICHLOROETHENE		<.5	<.5 .5
1,2-DICHLOROPROPANE	mcg	<.3	<3 <
CIS-1, 3-DICHLOROPROPENE	mcg	<.5	<.5 .5
TRANS-1, 2-DICHLOROPEN		<.5	د. ۲
1,1,2,2-TETRACHLOROETHAN		<.5	<.5 <
TETRACHLOROETHYLENE		<.6	<. 6
1,1,1-TRICHLOROETHANE	mcg	<.5<	<u>د.</u> 5
1,1,2-TRICHLOROETHANE	mcg	<.5	<.5 .5
TRICHLOROETHYLENE	mcg	<.5	<.5 .5
TRICHLOROFLUOROMETHANE	mcg	<.4	<.4
VINYL CHLORIDE	mcg	<.9	6. >
602			
Benzene	mcg	<.5	<.5 .5
1, 3-DICHLOROBENZENE	mcg	<.5	< . 5
1,4-DICHLOROBENZENE	mcg	<.7 	<
Toluene	mcg		n v V
CALURUBENZENE FTHYT RENZENE	mcg mcg		
1,2-DICHLOROBENZENE		 <td>; 4</td>	; 4
	•		

AVERAGE

BORON	Ţ∕6n		ERR
BORON Dissolved	1/bn		ERR
CHLORIDE	1/bu		ERR
COLOR	B		ERR
FLUORIDE	J. Du		ERR
Residue Filterable (TDS)			ERR
Residue Non (SS)	7/bu		ERR
Residue	J. Dat		ERR
Residue Volatile	Ing/L		ERR
Specfic Conductance	oruno		ETR
SULFATE	J. Du		ERR
SURFACTANTS		48.00	48.00
IURBIDITY	5		ERR
COBALT	1/bn	<100	<100
MOLYBDENUM	Typu	<100	<100
ri tani um	Typu	<100	<100
/ANADIUM	1/bn	<100	<100
ALK TOTAL	17 for		ERR
SULFIDES	7/6m		ERR
BROMOD I CHLOROMETHANE	1/bn	8.40	8.40
1,2-DICHLOROETHANE	1/bn	0.80	0.80
1, 2-DICHLOROPROPANE	1/bn	9.10	9.10
THLOROETHANE	1/bn	3.70	3.70
CHLOROFORM	Thu	1.20	1.20
CHLOROD I BROMOMETHANE	1/bn	11.00	11.00
TRANS-1, 2-DICHLOROETHENE		11.00	11.00
, 1-DICHLOROETHENE	1/bn	2.00	2.00
METHYLENE CHLORIDE	1/bn	2.40	2.40
1,1,1-TRICHLOROETHANE	1/bn	76.00	76.00
CARBON TETRACHLORIDE	1/bn	28.00	28.00
IOLUENE	1/bn	6.00	6.00

SITE 55 CONTINUED

<.7 <.9 6.5	6.> 6.>	<1 <.5		<.4 <.4	 	• • • • •	 	<.5	<.5	<.5	<.5 <	<.5 .5	<.4	6.>	<.5 .5	د.> ۲.>	6.6	×.3	41
ncg Bcg Bcg	ETHER			THANE mcg	ncg	ETHENE mcg						mcg		mcg		E BCG			E
601 BROMOFORM BROMOMETHANE CHLOROBENZENE	2-CHLOROETHYTVINYL E DIBROMOCHLOROMETHANE	1,2-DICHLOROBENZENE	1,4-DICHLOROBENZENE	DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE	1, 2-DICHLOROETHANE	I, I-UICHLOROETHENE TRANS-1.2-DICHLOROETHENE	1, 2-DICHLOROPROPANE	CIS-1, 3-DICHLOROPROPENE	TRANS-1, 2-DICHLOROPROPEN	1,1,2,2-TETRACHLOROETHAN	1,1,2-TRICHLOROETHANE	TRI CHLOROETHYLENE	TRI CHLOROFLUOROMETHANE	VINYL CHLORIDE	602 Benzene	1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	CHLOROBENZENE	ENERVIEN	1,2-DICHLOROBENZENE

AVERAGE

0851 NVC 6.0

	4250.00 4250.00		ERR	504.00 504.00		and a second sec	EDR	ERR	ERR	EKK	ERR	ERR	ERR		<100 <100			2.00 132.00		249.00 249	7.00 2477.00					0 <10		00.				ERR	ERR
mq./L 40			T/bu	mg/L 50		1/bu	1/bu	J/pm	T/Dut	T/Dan	17 <u>2</u>	T/bii														ug/L <10					T/bu	T/Dm	
POT EXTR HYD	CHEMICAL OXYGEN DEMAND	BIOCHEMICAL OXYGEN DEMAN	TOTAL ORGANIC CARBON	OIL & GREASE	AMMONILA	NITRATE	NITRITE	TOTAL KJELDAHL NITROGEN	PHOSPHORUS ortho PO4	SURGENER	CYANIDE	CYANIDE free	PHENOLS (EPA 604)	PHENOLS (MTH. 420)	ARSENIC	BARIUM	CADMIUM	CHROMIUM	CHROMIUM Hexavalent	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	SELENIUM	SILVER	ZINC	CALCIUM	MAGNESIUM	POTASSIUM	NUIDOS	ICP METALS

AVERAGE

CCI NAL 10

AVERAGE	<pre><100 EERR EERR EERR EERR EERR EERR EERR E</pre>	440.00 ERR <100 <100 <100 <100 ERR ERR <.9	, , , , , , , , , , , , , , , , , , ,
	<100	440.00 <100 <100 <100 <100 <100 22.00	, , , , , , , , , , , , , , , , , , ,
SITE 56 CONTINUED	BERYLIUM BORON Dissolved CHLORIDE COLOR FLUORIDE Residue Filterable (TDS) Residue Non (SS) Residue Volatile Specfic Conductance Sturbare	SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES METHYLENE CHLORIDE TETRACHLOROETHYLENE 601	BROMODI CHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROETHYTVINYL ETHER 2-CHLOROETHYTVINYL ETHER CHLOROFORM DIBROMOCHLOROMETHANE 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE

GEST NAU CO

SITE 56 CONTINUED

0 JAN 1690

BOT FXTR BYD	mq/L	145.60	145.60
CHEMICAL OXYGEN DEMAND	T/Du	10.00	10.00 TU.00
BIOCHEMICAL OXYGEN DEMAN	mg/L	222.00	222.00 FRR
TOTAL ORGANIC CARBON	T/bm		156 80
OIL & GREASE	L/Dm	156.80	FIRE
AMMONIA	7.6m		ERR
NITRATE			ERR
NITRITE			ERR
TOTAL KJELDAHL NITROGEN	mg/L		FRR
PHOSPHORUS or the PO4	J. Du		FRR
PHOSPHORUS	5-Com		ERR
CYANIDE	5/5m		ERR
CYANIDE free	J/Du		
PHENOLS (EPA 604)	T/bn		00 200
PHENOLS (MTH. 420)	1/bn	227.00	100
ARSENIC	1√bn	<100	0017
BARIUM	1/bn	<100	125 00
CADMIUM	1/bn	135.00	
CHROMIUM	T/Dn	<100	
CHROMIUM Hexavalent	1/bn		165 00
COPPER	J/bn	165.00	100.00
IRON	1/bn	5107.00	00 COC
[.FAD	1/bn	293.00	293.00
MANCANESE	1/bn	214.00	00.912
MERCURY	1/bn	<1	1.5
NICKEL	1/bn	<100	
SILVER	1/bn	<10	01 171 00
ZINC	1/bn	471.00	00.1/2
CALCIUM		48.80	
MAGNESIUM	1/511	7.90	aan
POTASSIUM			ERR
WILLIOS			ERR
ICP METALS ALUMINUM	1/6n	234.00	234.00
BERYLIUM	¶√5n	<100	0011

AVERAGE

• • JAN 1930

11.00 4.30 ERR ERR 6.> AVERAGE 100 100 100 100 100 11.00 4.30 14.00 4.90 <...
<...</l <100</pre><100</pre><100</pre><100</pre><100</pre></ Х Б Д Д Д Д Д Д ng/L bou ncg E C C C ncg ncg ncg mcg ncg ncg 2-CHLOROETHYIVINYL ETHER Residue Filterable (TDS) BROMODI CHLOROMETHANE CARBON TETRACHLORIDE DIBROMOCHLOROMETHANE Specfic Conductance 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE SITE 57 CONTINUED Residue Volatile Residue Non (SS) BORON Dissolved CHLOROMETHANE CHLOROBENZENE BROMOMETHANE CHLOROETHANE SURFACTANTS CHLOROFORM MOLYBDENUM TURBIDITY BROMOFORM ALK TOTAL WINDIUM FLUORIDE TITANIUM CHLORIDE SULFIDES Residue SULFATE TOLUENE COBALT BORON **SOLOR** 601

SITE 57 CONTINUED

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 5 5 3 3 3
RE ECG RE ECG RE ECG REC REC REC REC REC REC REC REC REC REC	n n n n n n n n n n n n n n n n n n n
1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1, 1-DICHLOROBENZENE 1, 1-DICHLOROBENZENE 1, 2-DICHLOROPENOPANE trans-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-TETRACHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-TRUCHLOROPENDENE TRANS-1, 2-TRUCHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1, 2-DICHLOROPENDENE TRANS-1	602 Benzene 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE CHLOROBENZENE ETHYLBENZENE 1, 2-DICHLOROBENZENE

AVERAGE

240

103.20 5.00 5.00 5.00 ERR ERR ERR ERR ERR ERR ERR ERR ERR E	ERR 317.00
103.20 525.00 5.00 110.40 110.40 100 100 100 100 100 100 100 100 100 1	317.00
S S S S S S S S S S S S S S S S S S S	1/6n
POT EXTR HYD CHEMICAL OXYGEN DEMAND BIOCHEMICAL OXYGEN DEMAN DIOTAL OKGANIC CARBON OIL & GREASE AWONIA NITRATE SELLINI	ICP METALS ALUMINUM

AVERAGE

AVERAGE	<pre>(100 ERR ERR ERR ERR ERR ERR ERR ERR ERR (100 (100 (100 (100 (100 (100 (100 (1</pre>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	<100 9.20 <100 <100 <100 <100 <100 <100	**************************************
	e i i i i i i i i i i i i i	LANE mcg LANE mcg MCG RCG MCG MCG MCG AANE mcg MCG MCG MCG MCG MCG MCG MCG MCG MCG MCG
SITE 58 CONTINUED	BERYLIUM BORON DISSOlved CHLORIDE COLOR FLUORIDE Residue Filterable Residue Non (SS) Residue Non (SS) Residue Volatile Specfic Conductance SULFATE SULFATE SURFACTANTS TURBIDITY COBALT MOLYBDENUM TITANIUM VANADIUM ALK TOTAL SULFIDES	601 BROMOFICHLOROMETHANE BROMORETHANE BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE 2-CHLOROBENZENE 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE 1, 4-DICHLOROBENZENE

LEET NAL 90

SITE 58 CONTINUED

•

6. <i>2</i>	۰.3 ۲.3	۰. ۲. ۲	<.5 <.5	< . 5	<.4	<.5	<.6	<.5 .5	<.5	<.5 .5	<.4	د.9		<.5	<.5	<.7	<.6	ć. 3	4
	ncg ncg				ncg	N mcg	nncg B	ncg	mcg	ncg	Bott	mcg		BCG	ECG.	mcg	Bott	ECG.	mcg
DI CHLORODI FLUOROMETHANE 1, 1-DI CHLOROETHANE	1, 2-DICHLOROETHANE 1, 1-DICHLOROETHENE	TRANS-1, 2-DICHLOROETHENE 1.2-DICHLOROPROPANE	CIS-1, 3-DICHLOROPROPENE	TRANS-1, 2-DICHLOROPROPEN	METHYLENE CHLORIDE	1,1,2,2-TETRACHLOROETHAN	TETRACHLOROETHYLENE	1,1,2-TRICHLOROETHANE	1,1,1-trichloroethane	TRI CHLOROETHYLENE	TRICHLOROFLUOROMETHANE	VINYL CHLORIDE	602	Benzene	1, 3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	CHLOROBENZENE	ETHYLBENZENE	1,2-DICHLOROBENZENE

4.9
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5

AVERAGE

19.00 900.00 64.00 ERR ERR ERR ERR ERR ERR ERR ERR ERR E	(100 (100 (100 (100 (100 (100 (100 (100
19.00 900.00 64.00 48.00 105.00 <105.00	<pre><100 <100 <100 <100 <100 <333.00 <133.00 <133.00 <100 <100 <10 <100 <100 <100 <100 <1</pre>
POT EXTR HYD mg/L CHEMICAL OXYGEN DEMAND mg/L BIOCHEMICAL OXYGEN DEMAND mg/L TOTAL ORGANIC CARBON mg/L OIL & GREASE mg/L MUTRATE mg/L NITRATE mg/L NITRATE mg/L NITRATE mg/L PHOSPHORUS ortho PO4 mg/L PHENOLS (420) ug/L	BARTUM CHROMITUM CHROMITUM CHROMITUM HEXAVALENT UGC CHROMITUM HEXAVALENT UGC ILEAD MANGANESE MAN

AVERAGE

AVERAGE	ERR ERR ERR ERR ERR ERR (100 (100 (100 (100 (100 (100 (100 (1	4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	9.40 4100 4100 4100 4100 5.60 6.00 6.00	, , , , , , , , , , , , , , , , , , ,
SITE 59 CONTINUED	BORON Dissolved ug/L CHLORIDE mg/L COLOR CULOR FLUORIDE mg/L Residue Filterable (TDS) mg/L Residue Non (SS) mg/L Residue Volatile mg/L Residue Volatile mg/L Residue Volatile mg/L Residue Volatile mg/L Residue Volatile mg/L Specfic Conductance umho SULFATE SULFATE mg/L SULFATE UNBIDITY UNBIDITY UNBIDITY UNBIDITY UNBIDITY UNBIDITY UNBIDITY 10 SULFATE SULFATE mg/L UNADIUM UNG/L ML TOTAL mg/L SULFIDES MG/L 1, 2-DICHLOROETHANE mg/L SULFIDES UG/L 1, 1-DICHLOROETHANE mg/L 1, 1, 1-TRICHLOROETHANE mg/L 1, 1, 1, 1-TRICHLOROETHANE mg/L 1, 1, 1, 1-TRICHLOROETHANE mg/L	601 BROMODICHLOROMETHANE mcg BROMORETHANE mcg BROMORETHANE mcg CHLOROBENZENE mcg CHLOROBENZENE mcg CHLOROETHANE mcg 2-CHLOROETHANE mcg CHLOROETHANE mcg 1, 2-DICHLOROBENZENE mcg 1, 3-DICHLOROBENZENE mcg 1, 4-DICHLOROBENZENE mcg

SITE 59 CONTINUED

AVERAGE

	、、、、、、 、、、、、、、 で、ひ、か、ひ、	 	 5 5 3 3 3 3
ROMETHANE mcg THANE mcg TLOROETHENE mcg XOPANE mcg	OPENE PROPEN OETHAN	KOETHANE mcg roethane mcg JENE mcg KOMETHANE mcg E	anzene mcg anzene mcg mcg mcg mcg mcg
DI CHLORODI FLUOROMETHANE 1, 1-DI CHLOROETHANE TRANS-1, 2-DI CHLOROETHENE 1, 2-DI CHLOROPROPANE	CIS-1, 3-DICHLOROPROPENE TRANS-1, 2-DICHLOROPROPEN METHYLENE CHLORIDE 1, 1, 2, 2-TETRACHLOROETHAN TETRACHLOROETHYLLENE	1,1,2-TRUCHLOROETHANE 1,1,1-Lrichloroethane TRICHLOROETHYLENE TRICHLOROFTUOROMETHANE TRICHLOROFTUOROMETHANE VINYL CHLORIDE	602 Benzene 1, 3-DICHLOROBENZENE 1, 4-DICHLOROBENZENE CHLOROBENZENE ETHYLBENZENE 1, 2-DICHLOROBENZENE

<

GEST NAL 8 0

246

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

APPENDIX H

INDUSTRIAL WASTEWATER BENCH SCALE LABORATORY RESULTS

Parameter	Sample	25mg/L	50 mg/L	100 mg/L	150 mg/L	NAOH
Molybedium	<.10	<.10	<.10	<.10	<.10	<.10
Cobalt	<.10	<.10	<.10	<.10	<.10	<.10
Titanium	<.10	<.10	<.10	<.10	<.10	<.10
Beryllium	<.10	<.10	<.10	<.10	<.10	<.10
Magnesium	6.2	5.8	5.8	5.9	5.9	1.0
Calcium	42.1	38.9	39.4	39.5	40.5	37.8
Zinc	•335	.287	<.10	.129	.247	<.10
Copper	<.10	<.10	<.10	<.10	<.10	<.10
Nickel	<.10	<.10	<.10	<.10	<.10	<.10
Iron	3.345	2.390	.984	1.111	1.966	.352
Manganese	<.10	<.10	<.10	<.10	<.10	<.10
Chromium	<.10	<.10	<.10	<.10	<.10	<.10
Cadmium	.110	<.10	<.10	· < . 10	<.10	<.10
Vanadium	<.10	<.10	<.10	<.10	<.10	<.10
Aluminum	<.10	1.54	1.16	2.50	7.00	<.10
Barium	<.10	<.10	<.10	<.10	<.10	<.10

Industrial Wastewater Bench Scale Laboratory Results

APPENDIX I

VOLATILE ORGANIC RESULTS

VOLATILE ORGANIC RESULTS (EPA Method 624)

_

Compound	Method Detection Limits (ug/L)
cis-1,3-Dichloropropene	5
2-Chloroethyl Vinyl Ether	10
Bromoform	5
2-Hexanoe	10
4-Methyl-2-Penganone	10
Tetrachloroethene	5
Toluene	5
Chlorobenzene	5
Ethyl benzene	5 5 5
Styrene	5
Xylenes (Total)	5
Chloromethane	10
Bromomethane	10
Vinyl chloride	10
Chloroethane	10
Methylene chloride	10
Acetone	40
Acrolein	20
Acrylonitrile	5
Carbon disulfide	5
1,1-Dichloroethene	5
1,1-Dichloroethane	5
1,2-Dichloroethene	5
Chloroform	5
1,2-Dichloroethane	5
Methylethyl ketone	10
1,1,1-Trichloroethane	5
Carbon Tetrachloride	5
Vinyl acetate	10
Bromodichloromethane	5
1,1,2,2-Tetrachloroethane	5
1,2-Dichloropropane	5
trans-1,3-Dichloropropene	5
Trichloroethene	5
Dibromochloromethane	5
1,1,2-Trichloroethane	5
Benzene	5

EPA Method 625

	Limits of Detection	
Analyte(s)		
Diethyl Phthalate	1.9	
4-Chlorophenyl-phenylether	4.2	
Fluorene	1.9	
2-Methyl-4,6-dinitrophenol	24	
n-Nitrosodiphenylamine	1.9	
4-Bromophenylether	1.9	
Hexachlorobenzene	1.9	
Beta-BHC	4.2	
Pentachlorophenol	3.6	
Phenanthrene	5.4	
Anthracene	1.9	
delta-BHC	3.1	
Heptachlor	1.9	
Di-n-butyl phthalate	2.5	
Aldrin	1.9	
Heptachlor Epoxide	2.2	
Fluoranthene	2.2	
Pyrene	1.9	
Endosulfan I	20	
4,4'-DDE	5.6	
Benzidine	44	
Dieldrin	2.5	
4,4′-DDD	2.8	
Endosulfan II	20	
Endrin Aldehyde	20	
Benzyl-butylphthalate	2.5	
4,4'-DDT	4.7	
Endosulfan Sulfate	5.6	
Bis(2-ethylhexyl)phthalate	2.5	
N-Nitrosodimethylamine	5.0	
Phenol	1.5	
Bis(2-Chloroethyl)ether	5.7	
2-Chlorophenol	3.3	
1,3-Dichlorobenzene	1.9	
1,4-dichlorobenzene	4.4	
1,2-Dichlorobenzene	1.9	
Bis(2-Chloroisopropyl)Ether	5.7	
N-Nitrosodi-n-propylamine	3.0	
Hexachloroethane	1.6	

Analyte(s)	Limits of Detection	
Nitrobenzene	1.9	
Isophorone	2.2	
2-Nitrophenol	3.6	
2,4-Dimethylphenol	2.7	
1,2,4-Trichlorobenzene	1.9	
Napthalene	1.6	
Hexachlorobutadiene	0.9	
4-Chloro-3-methylphenol	3.0	
Hexachlorocylopentadiene	5.0	
2,4,6-Trichlorophenol	2.7	
2-Chloronaphthalene	1.9	
Dimethylphthalate	1.6	
2,6-Dinitotoluene	1.9	
Acenaphtylene	4.2	
Acenaphthene	1.9	
2,4-Dinitrophenol	42	
4-Nitrophenol	2.4	
2,4-Dinitrotoluene	5.7	
Benzo(a)anthracene	7.8	
Chrysene	2.5	
3,3-Dichlorobenzidine	16.5	
Di-n-octyl phthalate	2.5	
Benzo(b)fluoranthene	4.8	
Benzo(k)fluoranthene	2.5	
Benzo(a)pyrene	2.5	
Indeno(1,2,3-cd)pyrene	3.7	
Dibenzo(a,h)anthracene	2.5	
Benzo(ghi)perylene	4.1	
Chlordane	40	
Toxaphene	40	
Aroclor 1015	40	
Aroclor 1221	30	
Aroclor 1232	40	
Aroclor 1242	40	
Aroclor 1248	40	
Aroclor 1254	36	
Aroclor 1260	40	

Appendix J

Sample Report of Analysis

AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY BROOKS AFB, TEXAS, 78235-5501

REPORT OF ANALYSIS

BASE SAMPLE NO:	GN900001			
SAMPLE TYPE:	NON-POTABLE WATER			
SITE IDENTIFIER:	NDOXXX	DATE RECE	IVED:	900125
DATE COLLECTED:	900125	DATE REPOR	RTED	900209
SAMPLE SUBMITTED	BY: 836 MEDICAL GR	OUP/SGPB		

PRESERVATION GROUP EDEHL SAMPLE NUMBER: 90005273TestResultsUnitsPhenol120ug/L

Comments:

SAMPLE GAVE POSITIVE RESULTS FOR PHENOL BY BOTH SPA METHODS \$20.1 AND 420.2.

This was a sample of Rensolve submitted to AFOEHLISA and placed in aqueous solution. aqueous solution extracted and simpled for plunder, with result indicated, LT Kenon

Approved by:

Duryl S. Bird, GS-12 Chief, Inorganic Analysis

T0:

AFOEHL/EQE BROOKS AFB TX 78235-5501 PAGE 1

Distribution List

.

HQ USAF/SGPA	Copies
Bolling AFB DC 20332-6188	2
HQ AFSC/SGP Andrews AFB DC 20334-5000	. 2
836 Medical Group/SGPB Davis-Monthan AFB AZ 85707-5300	3
836 CES/DEEV Davis-Monthan AFB AZ 85707-5000	3
HQ TAC/DEEV Langley AFB VA 23665-5578	2
HQ TAC/DEM Langley AFB VA 23665-5578	-
HQ TAC/SGPB Langley AFB VA 23665-55 1 8	2
AAMRL/TH Wright-Patterson AFB OH 45433-6573	1
7100 CSW Medical Center/SGB APO New York 09220-5300	1
CL AD, AFOEHL A ³ 0 San Francisco 96274-5000	1
USAFSAM/TSK/ED/EDH/EDZ Brooks AFB TX 78235-5301	' 1 ea
Lafense Technical Information Center (DTIC) Cameron Station	
Flexandria VA 22304-6145	2
HQ USAF/LEEV _ plling AFB DC 20330-5000	2
h) AFESC/RDV T/ndall AFB FL 32403-6001	2
H & HSD/XA Brooks AFB TX 78235-5000	1
HQ AFESC/DEMM Tyndall AFB FL 32403-6001	1

.

00-ALC/MME Hill AFB UT 84056-5000	1
OC-ALC/MME Tinker AFB OK 73145-5000	1
SA-ALC/MME Kelly AFB TX 78241-5000	1
SM-ALC/MME McClellan AFB CA 95652-5000	1
WR-ALC/MME Robins AFB GA 31098-5000	1

.

.