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Preface

The purpose of this study was to explore the possible

application of a thrust vector control law constraining

either the radius of apogee or perigee to transfers between

circular and eccentric orbits for continuous, lcw thrust

spacecraft. I have tried to include as many details as

possible in the analysis to aid anyone who may want to

perform similar or follow-on research.

To prove the validity of the assumptions made in this

study, I thought it necessary to perform a separate

performance analysis of the more promising electrical

propulsion systems (Appendix A). I am truly grateful to Mr

Mike Patterson (NASA Lewis), Capt Wayne Schmidt (AFAL), and

fellow Boilermaker, Mr Joe Cassady (Rocket Research Company)

for providing me with the data I needed to put together a

reasonably valid performance estimate of an Ammonia arciet

and Xenon ion propulsion system.

My sincere thanks goes to Dr William Wiesel, my thesis

advisor, for his assistance and patience over the past

several months. Also, I thank my wife, Mary, and my

children, Bethany, Dustin, and Brandon, for their under-

standing and support during those many hours that I spent

away from them over the past year.

I dedicate this thesis in memory of my grandparents, the

late Ora and Rita Beeker.
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Abstract

The purpose of this study was to investigate the Av

requirements of a continuous, low thrust spacecraft perform-

ing coplanar orbit transfers that are constrained by either

constant radius of apogee, perigee, or a combination of the

two. The transfers were separated into two timescale

problems. The fast timescale involved an optimization of

the planar thrust control angle, a, to produce the maximum

change in eccentricity or semimajor axis over a single

revolution. The slow timescale applied the fast timescale

results to complete the transfer through many revolutions

about the primary body. The constrained radii control laws

developed provide optimal circular-to-eccentric and

eccentric-to-eccentric orbit transfers. However, when

applied to circular-to-circular transfers, the resulting Av

is nearly twice that obtained using the most optimal

continuous thrust control law (a = 0), i.e.."spiral".

Future recommended studies include the development of

control la,,-i to provide specified changes in apogee,

perigee, and the argument of periapsis.

xi



CONTINUOUS, LOW THRUST COPLANAR ORBIT TRANSFERS

WITH VARYING ECCENTRICITY

I. Introduction

The United States' decision to construct a space

station within the next decade has launched this country

into a new era in which it will be accessing space more than

ever before. With this new era comes an increasing need for

an energy efficient orbit transfer vehicle to act as a

freighter between low and high earth orbit - a vehicle vital

in reducing the work loads of supporting expendable boosters

and the Space Transportation System.

A transfer vehicle equipped with a continuous, low

thrust, electric propulsion system, such as the ion systems

currently in development at NASA Lewis Research Center or

the arciet systems at the Air Force Astronautics Laboratory,

could provide for this need, greatly reducing fuel and

support requirements (4; 6; 10:457-467). However, low

thrust systems of this type require many revolutions to

complete their transfer and are therefore limited to

missions where extended transfer times (months) are accept-

able. In addition, the electronics of the transfer vehicle

and payload must be able to endure the extended exposure to

the high radiation within the lower Van Allen belt.
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Alfano (1) addressed the problem of locating an optimal

thrust profile for noncoplanar transfers performed by a

continuous, low thrust vehicle between circular orbits.

However, the more complex problem of locating an optimal

thrust profile for transfers between eccentric orbits has

never been addressed, although there are many useful

applications, such as, the placement of communications

*• satellites into Molniya orbits.

To provide an initial investigation into the eccentric

transfer problem, this research examines coplanar, eccentric

* transfers constrained by holding the radius of apogee or

perigee constant ouer each orbit. The development of this

problem is simplified by dividing the derivation between a

fast and slow timescale, similar to that done by Alfano.

The fast timescale problem involves an optimization of the

change in the orbital elements over one revolution while

implementing the constraint relation and holding the vehicle

mass and acceleration constant. The slow timescale problem

combines the fast timescale results with the changing mass

and acceleration to complete the transfer over many

revolutions.

The development of the fast timescale solution in

chapter two shows this constraint relationship is unique

since it provides two control laws for the planar thrust

angle, o, (one for maximizing Aa and the other for

maximizing Ae) which result in identical changes to the

1-2



orbit's semimajor axis and eccentricity. Thus, either of

these two control laws are applicable to any coplanar

transfer, whether the transfer involves a change in

eccentricity, the semimajor axis, or both. However, these

results (and the slow timescale problem of chapter three)

indicate that utilizing these control laws for transfers

between coplanar circular orbits is much less efficient than

the spiral (o = 0) control law.

1-3
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II. The Fast Timescale Problem

Problem Statement

The fast timescale analysis performed by Alfano (1:3-23)

included an optimization of the out-of-plane thrust angle,

e, for each of the two orbital parameters involved, the

change in semimajor axis, Aa, and the change in inclination,

Ai, maximizing one parameter for any given value of the

other. Optimization problems involving transfers between

eccentric orbits become more complex due to the addition of

the planar thrust angle, ct, eccentricity, e, and argument of

periapsis, w. Thus, the fast timescale analysis includes an

optimization of both t and e for each of the four parameters

involved, Aa, Ai, Ae, and Aw.

This problem can be simplified by considering only

coplanar transfers and by placing no restrictions on Aw.

This results in an optimization of t only (since e = 0) for

the parameters Aa or Ae (Ai = 0). However, the application

of the resulting control law would produce uncontrollable

changes in the radius of perigee, possibly allowing an

impact with the primary body. Therefore, the problem

constraints should include the radius of perigee instead of

the eccentricity or semimajor axis.

The coplanar transfer problem addressed by this study

is constrained by holding the radius of apogee or perigee

constant. Thus, the optimization is further simplified

2-1



since the constraint relationship is no longer dependent on

the total transfer and allows the Lagrange multiplier, X, to

be found in the fast, rather that the slow timescale

problem. Given these constraints, the fast timescale

problem involves an optimization of o in order to maximize

the magnitude of Aa or Ae for one orbit about the primary

body (Earth).

The formulation of the fast timescale problem

is based on the following three assumptions:

First, the problem is restricted to two bodies,

the earth and the spacecraft, which are modeled as point

masses.

Second, since electric propulsion systems have

very low propellant mass flow rates, the percent change in

mass of the spacecraft over one orbit is small. Thus, the

spacecraft's mass will be considered constant. Appendix A

provides data in support of this assumption, showing that a

5000 kg transfer vehicle system (vehicle and payload) has a

change in mass over one orbital period of less than 3% if

equipped with the proposed arcjet propulsion system and less

than .25% if equipped with the ion system.

Finally, the low thrust associated with electric

propulsion systems produces such small accelerations on the

spacecraft that the changes in the orbital elements occur

very slowly. This leads to the assumption that these these

parameters vary so little during the period of one orbit

2-2



that they can be treated as constants. Appendix A also

provides justification by showing the maximum acceleration

as seen by the proposed TVS is approximately 4.5 
x 10- m/s 2

using the arcjet system and 1.3 x i0- m/s 2 using the ion

system.

Derivation

Coordinate System Definition. The coordinate system

utilized throughout this analysis (2:397,398) is located at

the center of mass of the transfer vehicle, with its

principle axis, R (unit vector R), located along the

instantaneous radial vector, r. The second axis, S (unit

vector S), is located in the orbital plane perpendicular

to R in the direction of increasing true anomaly, P. The

third axis, W (unit vector W), is perpendicular to both R

and S, forming an orthogonal triad where W R S. Thus,

this coordinate system is rotated by an angle v with respect

to the perifocal coordinate system. Figure 2-1 defines the

geometric relationships among the spacecraft (RSW),

perifocal (PQW), and geocentric-equatorial (IJK) frames

(2:53-59).
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Figure 2-i. Relationships among the Spacecraft,
Perifocal, and Geocentric-Equatorial
Coordinate Frames
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Vehicle Thrust Vector. The thrust vector, T, as

defined in the RSW coordinate system, is directed at an

angle e with respect to the orbital plane formed by the

radial unit vector, R, and the tangential unit vector,

(Figure 2-2). The projection of T on the orbital plane

is located at an angle a with respect tc S. The acceleration

vector lies along the thrust vector and is defined as

A= T = A R + aS + a W (2-1)
m rTVS

where

a A cos 0 sin a (2-2)

a A cos e cos a (2-3)

a A sin e (2-4)

0 5 ot 2n; < e :5
2 2

and
m mass of transfer vehicle system

T

to the Orbital Frame

2-5
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Perturbation Equations. In the defined coordinate

system, the rate of change in the orbital elements can be

found utilizing the Lagrange planetary equations in their

acceleration component form (2:397-407):

da 2e sin v + a (2-5)
n / - z nr

nn

de _-e 2  sin v
dt na r

a 1e2) 1+ -e_ 2 -- rr a (2-6)
2s*na e rj

di r cos (+t.C) (2-7)

dC i ~i) a(2-8)

dt
na 2 l-e i

d O r s in ( c+ p)a(2 8
dt

n a 2 /1- in i

dw /l-e2 cos v
dt nae r

+ )/l7e sin 1 + e 1• + ~nae 1+1+e cos - -

r cot a (2-9)

na 2/l-e2
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dMO 1 [ 2 r  1_- ez 2]o

*= - a e COslJa

nae a[~S

+ 3nt da (2-10)

Where:

a = radial component of acceLerat ton

a= taneentia component of acceleration
S

a = normlZ cormponent of acceleration
V

Using the relation for the distance from the primary

body (2:20,24)

r p a [l-e 2 (2-11)
r = 1 + e cos ' 1 + e cos v

the Lagrange equations can be expressed in terms of the

orbital elements and the true anomaly only. Thus, substi-

tuting this relation, equations (2-5) thru (2-10) become

da = 2e sin v + 2 (1 + e cos ) a (2-12)
r

n / l-_e2' n / -e 2

de - l-e sin P a
dt na r

+ 1-e I 1 +[ osa1-ea

+ 1 + e cos v - a (2-13)nae + e cos

di 1-e 2 cos (+P)
dt na (1 + e cos ) a (2-14)
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dD 1 -e s  sin (w0+v)

dt na ( + e cos v) sin i -v

CL 1 l-e z  CosV

t nae r

+ 1-e 2  sin P (2 + e cos P)
nae (1 + e cos v) s

/77e cot i sin ( +i-i)
co i c~)a (2-16)

na (1 + e cos P) (

dMo 1 i-e2  
1 

2  ]
dt na 1 + ecos v e r

(1-e 2) sinP

S (1nae(l + e P) (2 + e cos ) a

The independent variable can be changed from time, t,

to the true anomaly, P, using the following relation for the

angular momentum (2:17,28)

h = Irxvl =r2 du

(2-18)

h = na2/l-e 2

Solving for the time rate of change in the true anomaly

du na2-/ I-e2 na /11e (1+e o
7 e r na 2l-e 2n(1 + e cos

n (1 + e cos ) 2 (2-19)
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Multiplying equations (2-12) thru (2-19) by (-' results in

the final form of the perturbation equations which define

the changes in the orbital elements with respect to v

da 2e sin v G-+ 2 (1-e2)(22-i"- = 2 r+ a (2-20)
n (1 + e cos v) n (1 + e cosv

2de Cl-e 2 sin v

*v n a (1 + e cos P)

2

+ (-e r 1 - -e a

n ae (1 + e cos P) (1 + e cos v) ]
(2-21)

di = (1-e2 2 cos (w+v) a (2-22)
di-' n a (4, + e cos V)

dO_ 1-e( 2 ) 2 sin (+u) (2-23)
2u 3 Vn a (I + e cos P) sin i

- 1l-e2 iCOS V a

n 2 ae (1 + e cos P)

+ (1- e2) sin v (2 + e cos P) a2

n ae (1 + e cos v)

2

l-e cot i sin (a+v) (2-24)2
n a (1 + e cs P)
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1-e 5/2 2 co I
n 2 a (1 + e cos v)2 + e Cos V j r

1-e 2) 5/2(2 + e cos v) a

n ae (1 + e cos P)

+ 3nt da (2-25)

Integrating equations (2-20) to (2-25) with respect to

v over one orbit (from 0 to 2n) will produce the changes in

the orbital elements over one revolution of the transfer

orbit. Thus, in integral form, these changes are

Aa T 2e sin v (l-e2Aa = A cos e sin

n ( + e cos W)2

+ A cos e cos o dp (2-26)
n (1 + e cos z)

Ae = 2rl (l-e2) sin v A cos e sin a
n a (1 + e cos P)

+ 1 l-e (1-e2) cos e cos a d1

(1+ e cos 1) n ae A + e cos )

(2-27)

o r (-e 2+cos A sin e du (2-28)
n a (1 + e cos V)0

2 - sin (w+v) A sin e dv (2-29)
n a ( + e cos v) 3 sin i

2-10



/ 27- (i-e2)cos V A cos e sin ot

n ae (1 + e cos P)

+ 1-e Sin v (2 + e cos P) A cos e cos o
n ae (i + e cos P)

_ l-e2 cot i sin ((+v) A sin e du (2-30)
n a (1 + e cos VI) ]

:!T
Mo =_1-e 2)5,2 A cos e sin _ 2 cos P

S(1 + e cos P) 2 + C V
1ieJ A CO co ,2 [e CsI C

5/ 2

_ 1-e2) sin P (2 + e cos A cos cos cx
2

n ae (1 + e cos P)

3nt da du (2-31)2 2a dvu

where the components of acceleration have been expressed in

terms of the control angles.

Since the thrust is constant, and the mass is assumed

to be constant over one orbit, the vehicle acceleration may

be moved outside the integrals. In addition, with the

assumption that the orbital elements can be treated as

constants over one orbit, they too can be moved outside the

integrals, where possible. Thus, the equations for the

change in the orbital elements become

2-11



A 2 r1z [e sin v) sin at(u)
211

n 1 (1 + e cos P)

cos a0-u) 1
+ (1 + e cos u) J cos e(p) dv (2-32)

e ~ ~ '"

Ae sin sin o() cos e()
n a e (1+ e cos V)

277

+2 1-ez cosi sin ( ) coem v

I a+ e co B (2-34)os
n a e (1+ e cos

(2-33)

27

Ai= 2 -cos ( ~v) sin o((o)

n a -e 0 (1 + e Cos V) d

0

=A (1-e 2 27 sin (w+v) sin emu dlu (2-35)

n i ( - ( + e cos c)s

Aw : A -e( 2! 2Cos tj sin o((P)

n ( + e cos P)

cn ae Bi o~i' isin (2 + e cos () 2
(1 + e cos v)I

cot i sino(w+v)~ sin em) du (2-36)

2-12



2r

= A ([)2e - cos P (1 + e cos P) sin o(P)
•n ae

0

+ sin V (2 + e cos P) cos 01(p) 1 Cos e() du
1 (1 + e cos P)

3nt
+ --- Aa (2-37)

Since this study does not address noncoplanar trans-

fers, the out-of-plane control angle, e, will be considered

to be zero making equation (2-34) for Ai and equation (2-35)

for An also equal to zero. In addition, only the changes in

the semimajor axis and eccentricity are applicable to the

remaining derivation, eliminating the need of equation

(2-36) for Aw and equation (2-37) for AMo.

Nondimensional Form. The dependence of equations

(2-32) and (2-33) on the semimajor axis and acceleration

can be removed by introducing the nondimensional variables

2
* nAa = Aa

2 (2-38)
Ae= n aAA

resulting in

217

Aa = 2rl-el e sin v sin ct(p) + c (u) du0a (1 + e cos P) ( + e cos P )

(2-39)

S 21T

Ae* = e2 1a -aLl - eCos a(LI) du) (2-40)
*e =- -2e e (1 + e cos P)

2-13



Equations (2-39) and (2-40) represent the primary governing

equations for the fast timescale problem. Singularities

occur in them when the eccentricity is equal to zero or one,

e.g., if e = 0 equation (2-40) has a singularity. If e = 1,

both equations (2-39) and (2-40) each have a singularity

when P = n. However, only the singularity at e = 0 is of

concern since e = 1 represents a parabolic trajectory.

These singularities are removed in the final algorithm of

the following section by extrapolation of the data obtained

from these equations.

Planar Thrust Angle Optimal Control Laws

Unconstrained Problem. Before discussing an

optimal control law for the constrained problem, we should

first consider the unconstrained problem to gain insight

into the maximum changes in the semimajor axis and eccentri-

city that are possible in the coplanar problem. While the

unconstrained optimal control laws will provide useful

comparison data, they are obviously impractical since they

optimize one variable while allowing unrestrained changes in

the others.

The optimal control laws for the planar thrust control

angle, a, which maximize the change in the semimajor axis

and the eccentricity over one orbit in the unconstrained

case can be obtained using the performance indices given by

(3:4.7-48)
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Zn

J = Aa = - da (2-41)

J = Ae = f -e dv (2-42)
UC Idv

The magnitude of these performance indices can be

maximized by first taking their variation resulting in

2z

6J = a da 6o, dw (2-43)
uc

0

6J ![de 6a du (2-44)

0

* where the variations in the derivatives of the semimajor

axis and eccentricity derived from equations (2-20) and

(2-21) are

a da 2e sin Pl-e2) A cos e cos at
n (1 + e cos P)

2 (1-e !o- A cos 9 sin a (2-45)

2
a de - (1-e 2 sin v A co csc

n a (1 + e cos )

-(Ie2) A Cos e sin a 1 -1-e

2A (o+ e cos

n ae (1 + e cos v) + e c

• (2-46)
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A stationary point (preferably a minimum or maximum) is

* obtained when the variance of the performance index equals

zero (6J = 0) for all possible values of the optimizing

variable (6Ot). This is only true if the integrands of equa-

* tions (2-43) and (2-44) are zero (3:49). Thus,

B da - = 2e sin i- (l-e2)
9 d =  0 ( 1 P e c )_ A cos e cos ct'3 03 TV-n 2(1 + e cos P)2

2 -e2 A cos e sin c (2-47)
n (1 + e cos v)

and

a de (I-eZ) sin P A cos e cos o(
n a (1 + e cos

Iej 2)ACos asin e1- I-e 2
2 V )2]

n ae (1 + e cos P) (1 + e cos V)

(2-48)

Solving these two equations for ct(p) yields the following

two optimal control laws for the planar thrust angle in the

unconstrained problem

t(P) =tan- [ (1 + e cos &j) e sin t, (2-49)
1 (1 + e Cos W)s -l-e 2

ot() = tan- [ e sin V (2-50)
. 1 + e cos v 2

Equation (2-49) represents the optimal control law for

maximizing the change in the semimajor axis and equation
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(2-50) represents the optimal control law for maximizing the

change in eccentricity. These two control laws are inde-

pendent of the vehicle acceleration, the orbit semimajor

axis, and the out of plane thrust control angle (e), making

them valid for any coplanar or noncoplanar transfer. Direct

substitution into equations (2-39) and (2-40) will result in

the maximum possible change in the magnitude of the nondi-

mensional semimajor axis or eccentricity over one orbit of a

coplanar transfer.

Constrained Problem. The fast timescale problem

is constrained by forcing the distance between the primary

focus (Earth's center) and the transfer orbit perigee or

apogee position to remain constant. This distance is

defined as (2:25)

r a ( 1 ± e) (2-51)CP

where the "+" sign is used for the radius of apogee, r , and

the "-" sign for the radius of perigee, rp'

The time rate of change in r is given by
a, p

dr, da de
S-t(1 ± e) ± a d- (2-52)

dt dt

As was done previously for the orbital element perturbation

equations, the independent variable can be changed from t to

i by multiplying by d -1
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dr
__P _ da ded(1 t e) t+ a !L- (2-53)

*v dl du-

Integrating this expression over one orbit results in

Ar 2T (d-La ( 1 t e d -a dv (2-54)

Applying the assumption that the orbital elements and

acceleration are constant, equation (2-54) simplifies to

Ar Aa (1 t e) t a Ae (2-55)

This expression can be nondimensionalized in the same manner

as done previously for Aa. Thus, a new nondimensional

parameter can be defined by multiplying equation (2-55) by

(n2/A) producing

2 2 2* n Ar = Aa (1 t e) t n a Ae (2-56)

By direct substitution of equation (2-38) all dependence on

the vehicle acceleration and the orbit semimajor axis can be

removed resulting in the final form of the constraint

relationship:

Ar = Aa (1 ± e) ± Ae (2-57)

The optimal control laws for a which will maximize the

magnitude of the change in semimajor axis or eccentricity

can be obtained by using the performance indices
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0

2Tr

= Aa = du (2-41)

* 0

2 Tr

-= Ae = de du (2-42)

00

However, we must now add the constraint relationship

described for r , making these indices of the form (3:48)

12 IT ! + X dr M Ar CI

[ [d d (2-58)
C du dr Ar

=ap a d (2-59): d dv 27r

c 0

* where X and X are the Lagrange multipliers. Substituting

equation (2-52) into these two performance index relations

[T a da d ArI
S-a 7 +~ d.(1 + e) + a d!i- dv

C -
-

du dudu2Tv
2+ XT + e) da + X de Ar P

(2-60)

2 de da de Ar C
-da (l+e) ± a du J ] duf d d-u -d- 2r

2e da Ar
-(± a) ! -+X ±e) !i- CLI ] dvf du du 2n

(2-61)
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Taking the variance of equations (2-60) and (2-61), noting

that Ar is constant (equal to zero), and setting the

integrands to zero (3:49) yields

[i k(i e 0 da -0 de
1 + dX1te)]T + X a - d- 0 (2-62)

a de @d
( +  a) yd + (1 ± e)- 0 (2-63)

where the variations in the derivatives of the semimajor

axis and eccentricity are defined in equations (2-45) and

(2-46). Solving these equations for c(v) produces

e sin P (I + e cos v) F- ]=tan- i  (1+ -(2-64)() I+ e cos V)2 F it - F 2t

where, for the control law ct(v) which maximizes the change

in semimajor axis, the functions F and F are

F C= 2e+X [2e (1±e) ± (1-e2) (2-65)

2

F 2I e2) (2-66)

and, for the control law a(&), which maximizes the

eccentricity,

F = i-e 2) + Xa ( 2e (1 ± e) ±(1- e 2) (2-67)

2

F (1 X a) i _ e2)2 (2-68)
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By introducing a new nondimensional parameter

X = X a

equations (2-67) and (2-68) can be rewritten as

F i- e 2 + X* ( 2e (l ± e) ± (1 - e 2 (2-69)
2

F = (l±) I e) (2-70)
20

Thus, with the constrained radii, two control laws have

been found, one maximizing the change in semimajor axis

• [equations (2-64) thru (2-66)] and the other maximizing the

change in eccentricity [equations (2-64), (2-69), and

(2-70)), that are independent of the vehicle acceleration,

* orbit semimajor axis, and out-of-plane thrust control angle.

The final solution to the fast timescale problem can be

found by substituting these control laws into equations

(2-39) and (2-40) to find values of X and X* which will
CL 0

drive equation (2-57) for Ar or Ar* to zero. The~p

relationship between Ar* and Ar given by (2-56) shows

* Ar and Ar will also be zero for these values of the~p

Lagrange multipliers, thus satisfying the given constraint

relationship.

* With the constrained radii control laws derived, the

definition of even and odd functions (5:475) can be applied

to evaluate equations (2-36) and (2-37) for the change in

the argument of periapsis, Aw, and mean anomaly at epoch,
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AMo. The constrained control laws are odd functions (refer

* to Figure 2-9). With e set to zero, insertion of any of the

control laws into equation (2-36) makes the remaining two

terms odd. Since the integral of an odd function over its

* total period is zero, both terms are zero. Thus, over one

orbit, Aw = 0. Insertion into equation (2-37) results in

the first two terms being odd, leaving ero equal to -n Aa.
2a

Resulting Algorithms and Solutions

Two computer programs were written that numerically

solved equation (2-39) for Aa and equation (2-40) for Ae

determining Ar as a function of the Lagrange multipliers

(for values of eccentricity ranging between zero and one).

The first program utilized the constrained control law, a
0o

given by equations (2-64) thru (2-66) to maximize Aa (Aa)

The second program utilized thp ccrstriti-l --ntrol law, a

given by equations (2-64), (2-69), and (2-70) to maximize Ae

(Ae*). Both programs incorporate the composite Simpson's

rule (13:156) to solve the integrals found in the equations
0 *

for Aa and Ae . Thus, ignoring the truncation error, the

equation used to solve each integral is given by

Integral = -Li {I(u=0) + 41(P=Av) + 21(P=2Av)

+ 41v=3AP) + 21(v=4,&P) +

+ 2I(v=2(r,--Av) + 4I(v=2r-,&v)

+ I (2T)} (2-71)
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where

-0I = Integrand

AU = - (n even)n

*The value of n used in the above relation was set to 360 in

each of the runs of these programs to allow the planar

thrust angles (control laws) to be calculated at one degree

* intervals around the orbit. Higher values of n did not

improve the accuracy within the limits of the machine used

(1 .E-16).

* These two programs were used to obtain a rough estimate

of the range of the Lagrange multipliers, X and X (X )

where the the functions Ar and b- cross the X axis (equal

to zero). Sample data (plotted in Figures 2-3 thru 2-6)

shows that the desired values of these parameters lie

between t 1. This range provided the initial guesses to the

secant method routine of Program DELAMAX2 (Appendix B-l) and

Program DELEMAX2 (Appendix B-2), expansions of the original

two programs. Given two initial guesses in the vicinity of

the solution the next guess of is found from (13:265)

= -Ar [ - 1 (2-72)
j+t i 'CP Ar -Ar *

where the subscript j represents the current value of the

parameter. Thus, with this routine, these two programs
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solved the fast timescale problem, providing X , X, &a*

and Ae as functions of e, while holding Ar or Ar equal toCL p

zero. Resulting plots of these parameters are provided in

Figures 2-7 thru 2-9.

The uniqueness of the particular constraints imposed is

seen in the plots of &a ±Ae ±Aa, and Ae displayed in

Figures 2-8 and 2-9. Notice that imposing each of the two

constraints results in identical changes in the magnitudes
0 *

of Aa and Ae , whether these changes were obtained from the
*

control law t which maximizes Aa or the control law o
*

which maximizes Ae . However, while the magnitudes of these

resulting changes are the same for each of the two control

0 1.00

0.75

0.50

0.25

-0.25 X*_ (Ar(=-)

X. (Arp=O)
-0.75

- 1.00 -I....... I ....... I ..... ..l I.......l

0.00 0.20 0.40 0.60 0.80 1.00
e

Figure 2-7. Lagrange Multiplier as a Function of
Eccentricity for Constant Apogee
and Perigee
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laws, when constrained by Ar = 0, a produces changes of

opposite sign (negative) to those found using & .

Two similar programs incorporating the composite

Simpson's rule algorithm, DELAMAXUC (Appendix B-3) and

DELEMAXUC (Appendix B-4), provide the solutions to equations

(2-39) and (2-40) for the unconstrained problem utilizing

the control laws defined in equations (2-49) and (2-50).

The first program (utilizing a ) provides the maximumauc

possible changes in the nondimensional semimajor axis, Aa

and the associated residual changes in the eccentricity
*

parameter, &e , as functions of eccentricity. The second

(utilizing a ) provides the maximum possible values of the

changes in the eccentricity parameter, Ae, and the

associated changes in the nondimensional semimajor axis,
*

Aa:, as functions of eccentricity.

The data obtained from these two programs is plotted in

Figures 2-8 and 2-9 for comparison with the constrained

results. The plots show the maximum obtainable changes in

the nondimensional semimajor axis or eccentricity parameter

are reduced as eccentricity is increased. In addition, it

can be seen that utilizing a to increase the semimajor
a uc

*

axis of eccentric orbits results in negative values in Ae

driving the eccentricity to zero. Once the orbit is
*

circularized, Ae becomes zero and the maximum change in the

nondimensional semimajor axis (Aa = 4n) is obtained. This

maximum value is identical to the result obtained by Alfano
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for spiral transfers between coplanar circular orbits where

* both and e are constant and equal to zero. Thus, this

control law is ideal to increase the semimajor axis while

circularizing an eccentric orbit. There is never a threat

* of impact with the primary body, since the changes in Ar

and Ar are both positive. On the other hand, utilizingp

this control law to decrease the semimajor axis (thrusting

• in the opposite direction) results in an uncontrollable

increase in the eccentricity and decrease in Ar and Ar ,d

making it impractical.

Utilizing t to increase the eccentricity of a cir-

cular or eccentric orbit produces positive changes in the

semimajor axis. However Ar is negative, leading to ap

possible impact with the primary body. Thrusting in the

opposite direction decreases both the eccentricity and

semimajor axis of an eccentric orbit. However, Ar is

negative while Ar is positive, making an application top

circularizing eccentric orbits possible if the uncontrol-

lable changes in the semimajor axis were acceptable.

Unfortunately, the constraint relationship imposed in

this study provides results significantly less than the

optimal. Figure 2-8 shows when e = 0, the magnitude of

change in the semimajor axis is slightly higher than one

half (t 2.2rr) of that obtained in the unconstrained case.
*

As e --4 1, the magnitude of Aa constrained by Ar = 0p

approaches the unconstrained value while the magnitude of

2-29



Aa constrained by Ara = 0 decreases to zero. Figure 2-9

* shows similar results for Ae* When e = 0, the magnitude of

change in the eccentricity is exactly the same as the change

in semimajor axis and approximately two thirds of the

unconstrained value. As e --+ 1, the magnitude of Ae*

constrained by Ar = 0 approaches the unconstrained value
am

while the magnitude of Aa constrained by Ar = 0 diverges
p

toward zero.

The data from Figures 2-8 and 2-9 can be used in

conjunction with the vehicle accelerations derived in

Appendix A to validate that the changes in eccentricity and

semimajor axis over one orbit are small. Utilizing the

maximum values of Aa * and Ae for the unconstrained control

laws (4rr and f 3.1n, respectively) and the maximum value of

acceleration seen by the arciet TVS at low earth orbit (LEO)

and geosynchronous orbit (GEO), equation (2-38) for the

dimensional values of Aa and Ae can now be solved:

Aa = Aa* Aaa * = Aa (4n)n 2 P 0 3.986 x 10' 4 mS2

2 2

-(3.153 x10-' -' Aa

A Aa * Aa 2

Ae = - Ae = Ae - (3.1r)
n 2  a i0 3.986 x MS2

(2.443 x 10
- 
1 m-2) A a2

At LEO (a = 6.68 x 106m, A = 00446 m/s2 ) these equationsmax

yield a change in semimajor axis of f .6% of its original
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value and a total change in eccentricity is 2 .005. At GEO

(a = 4.22 x 107m, A = .00257 m/s 2 ), the change in

semimajor axis has increased to 14.5% of its original

value and the total change in eccentricity is up to .112.

Thus, as expected, the original assumption is valid near

LEO, but becomes much less accurate as the semimajor axis

increases to GEO.

The programs of Appendices B-1 and B-2 were also used

to obtain the changes in the constrained planar thrust angle

(control laws), a,, as the spacecraft proceeds around an

orbit of given eccentricity. Data for orbits with eccentri-

cities of .01, .4, and .8 is plotted in Figure 2-10.

360

315 / /I ji,/

a .01,I

270 -= .40 ,
I / I I/ --., .80 I/

I I I

225 i / / ", I 7 1r/

a.
(Dog) 180  A •

135 ,4 ,a ao c /
I, I/ I ,i- .01 -- ,.01 II

90 o a - .40 - .40 / /
i / I I I4 5 / I .80 I /

0 I I ,/

45 "'

0 45 90 135 180 225 270 315 360
V (Dog)

Figure 2-10. Constrained Thrust Vector Angle as a
Function of the True Anomaly for
Various Eccentricity
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For the constraint relationship Ar = 0, the plots ofp

a and a only differ slightly at e = .01 and become

indistinguishable as the eccentricity becomes larger. When

apogee is constrained (Ar = 0), the plots of a and a

differ by a shift of ±180 degrees (again, slightly more for

lower values of e). This "phase shift" explains the

difference in signs of Aa and Ae obtained by these two

control laws earlier (see Figures 2-8 and 2-9) when apogee

was constrained. By simply shifting the curves for one of

the control laws by 180 ° to more closely agree with the

curves of the other we can obtain the change in sign of Aa*

and Ae needed to make the results match. Thus, even though

the two control laws differ slightly at lower eccentri-

cities, they do in fact produce identical results for the

changes in these two parameters (magnitude and sign).
* *

A final point regarding the plots of Aa and Ae in

Figures 2-8 and 2-9 involves their significance when related

to a desired transfer. For example, to increase the radius

of a circular orbit (increase a) using the specified

constraints, perigee is first held constant while pushing

apogee out to the larger radius. This would result in an

increase in eccentricity since we are basically "stretching"

the original orbit from a circular to an elliptical shape.

To complete the transfer, apogee is held constant while

raising perigee to the final radius, decreasing the

eccentricity until the orbit was circularized (e = 0). On
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the other hand, to decrease the radius of a circular orbit

(decrease a), this procedure is reversed. First, apogee is

held constant and perigee is lowered to the desired radius,

increasing the eccentricity. Then, perigee is held constant

while apogee is pushed down to the final radius, decreasing

the eccentricity to zero. Therefore, it is expected that

the control laws constrained by maintaining perigee constant

will produce changes in the parameters Aa* and Ae* which are

of the same sign (±), while the control laws constraining
* *

apogee produce changes of the opposite sign (±Aa and TAe ).

Figures 2-8 and 2-9 show this is exactly what has been

found. For both control laws, constraining perigee results
* *

in positive changes in Aa and Ae . If a is put "in phase"

with a., constraining apogee produces positive changes in

Aa and negative changes in Ae* for both control laws.

Thrusting in the opposite direction (shifting c. ±1800)

changes the sign of all of the parameters making both Aa

and Ae* negative when constraining perigee, and Aa negative
*

and Ae positive when constraining apogee.

To better illustrate the final four control laws (o.

and at± 180 ° for each of the two constraints), Figures

2-11 (a) and 2-11 (b) provide sketches of the required

thrust vector control for a single orbit utilizing the data

(e = .40) provided in Figure 2-10. When perigee is

constrained [Figure 2-11 (a)], the direction of the thrist

vector changes very rapidly near apogee. When apogee is
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Figure 2-11. Spacecraft Thrust Vector Control (e =.40)
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constrained (Figure 2-11 (b)], the rapid change occurs near

perigee. These characteristic can also be seen in the

slopes of the plots of a. in Figure 2-10.

To complete the short timescale problem, a final

program, Program INTERPO (Appendix B-5), was written to

provide a solution for The X. , Aa, and Ae* for any given

value of eccentricity less than one. This includes

solutions at e = 0 that were unobtainable in the previous

programs due to the singularity in equation (2-40). A

Newton formula (13:92-98) was incorporated to produce an

t~h
interpolating or extrapolating n order polynomial to

calculate the values of the parameters between the data

points obtained from the earlier programs which solved

equations (2-39) and (2-40). This program is utilized as a

subroutine in the slow timescale solution algorithm to

provide an efficient method of calculating Aa and Ae as

functions of eccentricity.
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III. The Slow Timescale Problem

Problem Statement

The slow timescale problem provides for the complete

"* transfer of a spacecraft from an initial tc final orbit

through many revolutions about the primary body. Changes in

the orbital elements found in the fast timescale problem of

- chapter 2 are included, as well as the changes in the

vehicle mass due to propellant expulsion.

Derivation

Perturbation Equations. The period of an elliptical

orbit is found from (2:33)

I = 2n (3-1)
n

Given the low thrust assumption, the changes in the semi-

major axis and eccentricity with respect to time can be

approximated from the single orbit case of the fast time-

scale solution by

da = A a na A &a* (3-2)

de ~Ae - Ae A n A *d- + -= + A = Ae (3-3)
n a

where the nondimensional parameters, Aa and Ae , are given

in equations (2-39) and (2-40). The "sign" of each equation
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is dependant on the change in the unconstrained radii

desired (increase or decrease) and the control law chosen

(a or a ). To remove the dependence of the above two

equations on the vehicle acceleration, the independent

variable can be changed from time to velocity:

da ( _ d ( = ± ( (3-4)
dv Ldt J dt A 2Lrn 2nn (-4

de dv de + (e-
dv dt dt 27zna

Based on the initial semimajor axis, a , and initial mean

anomaly, n , we can define three nondimensional variables:

- _ aa - -
a

0

- _ nn = - (3-6)
n

0

- _ v-- Vv -= -

a n

where

*n P4 (3-7)
0a

0

Substituting these parameters into equations (3-4) and (3-5)

produces the final form of the two governing equations:

° [ Aa Aa* 2r

da I_ = + -a- a (3-8)-va! _ n +-e
dv J3-2n

3-2



and

* * 1/2 *e

de 1 Ae Ae - - Aed + ] - + _ + a 2- (3-9)dv - 1 2rrna 22nn

a n
0 0

In addition, substitution into equation (2-51) for the

radius of apogee and perigee results in a new nondimensional

form of the radii equation:

* r
r - a ( 1 ± e) (3-10)

CLp a
0

Mass Flow Rate/Acceleration Relation. The vehicle mass

and acceleration are related through Newton's second law of

motion (2:3-4):

T = m(t) A(t) (3-11)

where

T - vehicle thrust (constant)

m(t) vehicle mass at time t

A(t) vehicle acceleration at time t

At the beginning of the transfer (t = t. = 0),

equation (3-11) can be written in terms of the initial

vehicle mass and acceleration:

T = m A (3-12)
0 0

Additionally, the vehicle mass at time t can be expressed in

terms of the initial mass and propellant mass flow rate,

m, using the relation

M(t) = m - m t (3-13)0
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Assuming constant thrust implies the mass flow rate is also

constant.

Combining equations (3-11) thru (3-13) the vehicle

acceleration can now be modeled in the slow timescale

problem as

dt - A0 (3-14)A(t) = t ( - Mt)

where M is the specific mass flow rate, m/m

Total Transfer Velocity Change/Time Relation. The

total accumulated velocity change is found by integrating

equation (3-14) between 0 and tf resulting in

A
v(tf) - v = Av(t f) = - i ln (1 - Mtf) (3-15)

Solving this expression fcr the total transfer time provides

the final equation

= l- exp I~v 1 (3-16)

where
Aig = 0

Resulting Algorithms

Slow Timescale Constraint Application. One method of

completing the transfer of the slow timescale problem

involves applying the results of the fast timescale problem

for each constraint over an extended period to relocate the
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perigee and apogee positions separately. Program TRANSMUL,

Appendix C-i, was written to perform the complete transfer

by constraining one radii (apogee or perigee) over many

revolutions until the other radii matches the final orbit.

For example, if final perigee is higher than that of the

original orbit, it is first held constant while apogee is

increased or decreased, as required, to its final value.

The transfer is completed by constraining apogee as perigee

is raised to its final position. On the other hand, if

final perigee is lower, apogee is first constrained while

perigee is lowered, then perigee is constrained while apogee

is raised or lowered to complete the transfer. This

procedure applies to any transfer, including circular-to-

circular transfers. Thus, given the initial and final orbit

semimajor axes and eccentricities, primary body gravita-

tional parameter and radius, and vehicle parameters

(specific impulse, initial mass, and propellant mass flow

rate), this program calculates the total accumulated

velocity change and time for the constrained radii transfer.

The program incorporates an ordinary differential

equations integrator equipped with a fourth order predictor-

corrector algorithm, to numerically solve equations (3-8)

and (3-9). In addition, as stated in chapter two, the final

algorithm of the fast timescale problem (Appendix B-5) has

been incorporated to provide nondimensional changes in the

orbital elements needed to solve equations (3-8) and (3-9).
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Given the current value of the orbit eccentricity and the

constraint condition (either constant r or r ), values ofS p

Aa and Ae are generated from data obtained using the

constrained control law that maximizes Ae () . The other

constrained control law that maximizes Aa (a) could have

been used since it provides identical results.

As a comparison in circular-to-circular transfers,

this program also provides the Av requirements of spiral

and Hohmann transfers. For planar spiral transfers, the

velocity change is given simply by the difference between

the velocities associated with each orbit (10:463):

AV.L= iv - vi (3-17)

where (2:165-166)

p.
V -

The subscripts (1) and (2) in the above relation refers to

the initial and final orbit, respectively. For Hohmann

transfers, the total velocity change is obtained from

(2:163-166)

AVHohmCn n  A v I + Av2 (3-18)

where

AV. = .

r r + r

and r is the orbit radius.
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Fast Timescale Constraint Application. Figures 2-8 and

2-9 show when the eccentricity is zero, the changes in the

nondimensional semimajor axes resulting from each constraint

are equal in magnitude and sign while the changes in the

* eccentricity parameters are equal in magnitude, but opposite

in sign. This means that if we apply one constraint for one

orbit, then the other constraint during the next orbit, over

two revolutions, the eccentricity can be held nearly

constant ( 0) as the semimajor axis is increased or

decreased. Program TRANSALT, Appendix C-2, utilizes this

idea to complete the slow timescale transfer by applying the

fast timescale results to two revolutions of the transfer at

a time, instead of one as was done in the previous program.

Perigee is constrained during one of the two revolutions and

apogee during the other. All routines of the previous

program have been incorporated, as well as the following

modified versions of equations (4-8) and (4-9) to evaluate

the average change in the orbital elements occurring during

the two orbits:

S./2 *a0 A*d a (a) P aL
di - 2) 2a (3-19)

dv 2n 2 J

I 2 A e T A
de (a) P CL (3-20)

dv 2 (± 2

where the subscripts (a) and (p) refer to constrained

perigee or apogee, respectively. The "signs" in these
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relations assume the control law a is utilized. The upper

* signs are used for transfers to higher orbits, while the

lower signs are used for transfers to lower orbits. This

combination of constraints keeps each of the revolutions

_• nearly circular as the orbit radius is raised or lowered,

making this routine valid for circular-to-circular transfers

only.

* As an example, consider a transfer to a higher orbit.

During the first revolution of the transfer, perigee is

constrained while apogee is raised. At the beginning of the

* second revolution, the constraint is switched making apogee

constrained while perigee is raised. By the end of the

second revoluition, the orbit has been recircularized at a

higher radius. This procedure is repeated until the radius

matches that of the fina. desired orbit.
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IV. Results

Circular-to-Circular Transfers

Computer runs were performed for ratios of the final to

* initial orbit semimajor axes between 0 and 100. Utilizing

the data obtained, a comparison among the nondimensional Av

requirements for each of the constrained radii, spiral, and

* Hohmann transfers is shown in Figure 4-1 below. Sample data

for the LEO to GEO transfer performed using the slow and

fast timescale algorithms is provided in Appendices D-1 and

* D-2, respectively. As expected after reviewing the results

of the fast timescale problem, the Av requirements for the

2.00 . . . . . . . . . . . .

1.50 onstrined Radii (Fast Aopli)
Cosrand Radii (Slow Appli)

AV/(an) 1.00

-------------------------------- --- --- ---
- - -Spiral

' -- LHohmann

0.00 20.00 40.00 60.00 80.00 100.00
Of/ao

Figure 4-1 Nondimensional Total Accumulated Velocity
Change for Ratios of Final to Initial
Semimajor Axis
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constrained radii transfers are higher than those of the

spiral transfer.

The plots of Figure 4-1 show the Av requirements

resulting from applying each constraint separately during

the slow timescale problem are slightly lower than those

obtained by applying a combination of the constraints in the

fast timescale problem. The reason for this difference can

be seen by referring to the plots of Aa in Figure 2-8.

While the fast timescale application keeps the eccentricity

near zero, the slow timescale application allows the eccen-

tricity to increase. Figure 2-8 shows higher eccentricity
*

results in larger values of Aa when perigee is constrained

and lower values of Aa* when apogee is constrained. How-

ever, the data obtained using the slow timescale application

show. apogee is constrained less than 30% of the total

transfer time. This means that during nearly 70% of the

total transfer, the change in semimajor axis per revolution

is greater than that obtained from the transfer using the

fast timescale application where the eccentricity is

continually kept near zero. Thus, the application of the

constraints separately in the slow timescale problem result

in a quicker and less expensive transfer.

Figure 4-2 shows the resulting trajectory of a transfer

between LEO and GEO using the slow timescale application of

the constrained radii control law. Unfortunately, this
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transfer is still nearly 1.75 times more expensive to

perform than a spiral transfer.

Figure 4-2. Trajectory of Transfer Between Leo (300 km)
and GEO (35,863 km) using the Constrained
Radii Control Law. Perigee is fixed as
apogee is raised to GEO. Then, apogee is
fixed as perigee is raised to complete
the transfer to GEO.

Note: The revolution number is indicated where possible.
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Circular-to-Eccentric Transfers

The most feasible application of the constrained radii

transfer is to transfers between circular and eccentric

orbits. One such transfer is that needed by communications

satellites designed to provide coverage of the northern

hemisphere (9:54.3.1-54.4.5). These satellites are placed

into Molniya orbits, named after the Soviet communications

satellites that first used them in the 60's. Molniya orbits

are highly elliptical (e : .73, depending on application)

with a period of 12 hr and an inclination of 63.4 degrees.

The inclination of Molniya orbits is specifically

chosen to maintain the argument of periapsis, w, at 270

degrees, k~epinq apogee directly above the northern

hemisphere. The major perturbation influencing satellites

in earth orbit is due to the earth's oblateness, the J term

in the geopotential (14:46,86-91). By substituting the

secular terms from the J disturbing function into the

disturbing function form of the Lagrange planetary equation

for

=~ 3n Jz r: 25 z
25

- 3 J 2  * 2( - sin -2 ] (4-1)-2 az (1 - e )2 i 4I

it can be seen that by choosing an inclination of 63.4 ° ,

the right hand term becomes zero, driving w to zero. Thus,

this critical inclination eliminates the influence of the

earth's oblateness on the spacecraft.
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A simulated transfer to a Molniya orbit was performed

using the 5000 kg arcjet transfer vehicle (discussed in

Appendix A). The transfer assumed an initial 807 km circular

orbit (a = 7185 ki) with inclination of 63.4*. Thrusting

begins at w = 270 ° using the constrained perigee control law

(P = 0, initially) and continues until the semimajor axis

and eccentricity are increased to the final Molniya orbit

(a = 26,610 km and e = .73). Data obtained from the comput-

er run is included in Appendix D-3. In addition, Figure 4-3

below provides a plot of the spacecraft trajectory obtained

to illustrate the transfer performed.

The data obtained indicates the transfer to the Molniya

orbit required a total Av of 5.83 km/sec and took approxi-

Figure 4-3. Spacecraft Trajectory for Transfer
to Molniya Orbit using Constrained
Radii Control Law

Note: The revolution number is indicated where possible.
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mately 72.4 days to complete. With these values known,

using equation (A-15) the total propellant used is

m = mt = (.398 x 10 kg/sec)(3.13 x 106 s) = 1244 kgp

For comparison, consider executing this transfer with a

chemical system. Only the first half of the Hohmann

transfer needs to be performed, thus from equation (3-18)

the total Av is found by

Av = Iv -vC.I

where r and r are the final orbit radius of apogee and= p

perigee, respectively. This equation yields a Av of 2.35

km/sec. The total propellant needed can be found using

equation (A-7)

m = mT 1- exp -PgC))

Thus, assuming an I of 300 sec, this equation gives asp

propellant mass of 2749 kg, over twice that needed by the

arciet propelled vehicle.
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Eccentric-to-Eccentric Transfers

While the slow timescale constraint application

algorithm was designed for application to eccentric-to-

eccentric orbit transfers, it provides no control of w other

than keeping it constant. Thus, it is only useful for

eccentric transfers which require no change in w. The

resulting trajectory for such a transfer would be similar to

the circular-to-circular transfer shown in Figure 4-2.
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V. Conclusions and Recommendations

Two optimal control laws for a continuous, low thrust

spacecraft, each resulting in identical changes in the

orbital elements have been derived. Constrained by constant

radius of perigee or apogee, these control laws can be

applied to provide an optimal coplanar circular-to-eccentric

or eccentric-to-eccentric (Aw = 0) transfer, supplying

needed control of the perigee and apogee heights. Appli-

cation to circular-to-circular transfers is not feasible

since it is much more expensive (larger Av) and complex

[a = (v)] to perform than the optimal spiral control law

(a = 0).

The results of the application of the constrained radii

control laws in the slow timescale problem inherently become

1e Accurate as the semimajor axis increases. This is due

to the associated increase in orbital period which slowly

makes the change in semimajor axis more and more signifi-

cant. Therefore, the assumption of the fast timescale which

states that the changes in the orbital elements are small

eventually becomes invalid. However, as was the case with

the control law derived by Alfano (1:52), in actual appli-

cation, a closed loop guidance scheme would be implemented

during the latter part of the transfer using actual values

of the orbital elements. This would also eliminate any

errors accumulated during the earlier part of the transfer.
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A recommendation to further this study is to add the

* change in the argument of periapsis, Aw, to the constraint

relationship. This would allow for control of w during

transfers between planar eccentric orbits that is not

* included by this analysis. In addition, other approaches to

optimizing the eccentric transfer problem should be consid-

ered in hopes of achieving better performance. For example,

* the development of an optimal control law to provide

specified changes in perigee, apogee, and the argument of

periapsis. However, successful completion of such

• analyses would depend on the complexity of the slow

timescale problem.
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Appendix A: Performance Analysis of Proposed Electrical

Propulsion Systems for an Earth Orbiting Transfer Vehicle

The following analysis utilizes information provided in

a paper presented to the 1985 Joint Army-Navy-NASA-Air Force

Propulsion Meeting by Smith and Knowles discussing studies

of electrical propulsion systems (10:457,463-467). Supple-

mental information on systems currently in development was

provided by Rocket Research Company and two leading electric

propulsion research centers: NASA Lewis Research Center for

ion systems and the Air Force Astronautics Laboratory for

arciet systems.

The purpose of this analysis is to estimate the maximum

acceleration placed on the transfer vehicle system (TVS) and

the maximum percent change in mass of the TVS over one

orbit. The analysis considers a typical transfer vehicle

mission of delivering a payload from low earth orbit (LEO

300 km) to geosynchronous orbit (GEO - 35,863 km), then

returning to LEO in preparation for the next mission. For

comparison, two types of electrical propulsion systems are

considered for use by the transfer vehicle: an Ammonia

(N2H 4 ) arciet system and a Xenon (Xe) ion system.

The Solar Array Flight Experiment (SAFE) flown on

STS-41D has demonstrated that a solar power system can be

built to provide a mass-to-power ratio ol approximately 15

kg/kW (7) . Based on current technology (8; 12), the arciet
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propulsion system could be equipped with one 27 kW N H2 4

thruster having a mass of approximately 4 kg, specific

impulse (I P), of 863 sec, and an efficiency of 37%. With

the given performance parameters, this thruster delivers

3.367 N of thrust (10:456,Table IV). It may be possible for

the power conditioning unit (PCU) associated with this

thruster to have an efficiency of 95% and a mass as little

as 15 kg. Cooling of the PCU could be performed by heat

exchange with the propellant, eliminating the need for

radiators. Thus, assuming 10% of the available power is

needed for supporting electronics and losses in the PCU, the

total power requirement for the arciet transfer vehicle is

30 kW. This makes the mass of the supporting power system

approximately 450 kg. Allowing an additional 6 kg for

connecting hardware, the total propulsion system mass is 25

kg and the dry mass of arciet transfer vehicle, excluding

fuel tanks and structure, becomes 475 kg.

For the transfer vehicle equipped with a Xe ion

propulsion system, five 10.87 KW thrusters will be

considered, each with an Ip of 4267 sec and an efficiency

of 75%, providing 389 mN thrust (6) . With the associated

power processing units (PPU) and interface hardware, the

mass of this propulsion system is approximately 506 kg.

Again, no radiators are considered, since the PPUs are

assumed to provide adequate radiation exchange. With an

additional 10% for electronics and PPU losses, the ion
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transfer vehicle requires 60 kW, making the power system

• mass approximately 900 kg. Thus, the dry mass of the ion

transfer vehicle is approximately 1406 kg, again excluding

fuel tanks and structure.

* TVS Mass Calculations. To calculate the desired

parameters we must first estimate the vehicle mass

breakdown. For the first leg of the mission, the initial

• mass of the TVS leaving LEO is given by

m = + m +in + m (A-1)I P P L (Ai
GEO LEO

* where

m P Mass of Propellant required for transfer to GEO
GEO

m L Mass of Propellant required for return transfer
to LEO

m L Mass of Payload

m v Mass of Transfer Vehicle (propulsion system,

power system, fuel tanks, structure, and

electronics package)

After releasing the payload at GEO, at the beginning of

the return leg to LEO, the total mass is

m = m + m (A-2)R P V
LEO

The propellant masses can be found from the relation

(11:137)
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0M

Av =Is gC in (m (A-3)

where g is the gravitational constant (9.81 m/s2 ) and Av is

the total change in velocity required between the two

orbits. This velocity change can be obtained using the

Edelbaum approximation (10:463) for a continuous spiral

trajectory between two orbits

Av= / + v - 2v v 2 cos -- (A-4)
i 2 2 2

which, for planar transfers (Ai=O), simplifies to

Av = v - v (A-S)

However, the total velocity change required using the

constrained radii control law discussed by this study is

nearly 1.75 times higher than that given by the spiral

transfer. Thus, the total Av will be increased by this

factor in further calculations.

The velocity of the transfer vehicle in circular orbit

about the Earth is given by (2:34)

v = (A-6)e+ h

where
5km s

= 3.986012 x l0k 2
sec

r,= 6378.145 km

h altitude
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Using the values of the altitude at LEO and GEO, the

* velocities are

v LEO = 7725.76 m/s

v CE = 3071.86 m/s

and the magnitude of the velocity change required to

transfer between LEO and GEO, including the scale factor for

the constrained radii transfer, is

l&vI = 1.75 IVLEO - VGEO

= 8144.33 m/s (4653.90 m/s)

where the value in parenthesis is for the spiral transfer.

Solving equation (A-3) for the mass of the propellant

m = mT 1 - exp(isAvl j  (A-7)

Rewriting this equation in terms of the masses at the

beginning of the initial transfer to GEO

M m1  1 exp (-Av, ) (A-8)
CEO S

Assuming an initial mass of 5000 kg for both the ion and

arcjet TVS, this equation yields
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m = 3089 kg (2115 kg)
0EO

m = 884 kg (526 kg)
P
GEO

If an additional 10.5% of the propellant mass is assumed to

be needed for the fuel tanks and structure of the arciet

propulsion package, and 14.5% for the ion, the transfer

vehicle dry masses increase to

mr = 475 kg + .105 (3089 kg)
V

= 799 kg (697 kg)
"or

mv  1406 kg + .145 (884 kg)

1534 kg (1482 kg)

The difference between the two mass fractions arises due to

the additional tank structure required to support the

pressurized Xe.

Rewriting equation (A-7) in terms of the propellant

required for the return trip to LEO and substituting

equation (A-2) yields

mr  mR  1 - exP(-isr g
PLEO j - UJR I A.LI9

m + m f1exp(I gj]
LEO SP

mv E exp Iis gc

A-6C (A-9)
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Since the additional tank mass required to support the

return fuel has not yet been included in the vehicle mass,

equation A-9 must be rewritten as

LEO I P LEO ]sP C

m[ exp (1'ALL- 1

= 1 SP(A-10)

1 - x exp CiJ

where the parameter x is equal to .105 for the arciet system

and .145 for the ion system.

Solving equation (A-10) for each system provides return

propellant masses of

m LEOc 1557 kg (553 kg)P
LEO

mLo = 340 kg (177 kg)
LEO

making the final total transfer vehicle dry masses

m arc 799 kg + .105 (1557 kg)

= 963 kg (755 kg)

St on 1534 kg + .145 (340 kg)

= 1584 kg (1508 kg)

The only unknown masses remaining are the those of the

payloads. Solving equation (A-i) for the payload mass
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m = m - m - m - m (A-li)
L I P P V

GEO LEO

Substituting for the arcjet system

c~rc

mL = -609 kg (1577 kg)

0L

and the ion system

"on

mL = 2192 kg (2789 kg)
0L

Thus, it is obvious that the constrained radii transfer,

with its much larger Av requirement, cannot be performed by

the arcjet TVS.

Table (A-i) provides a summary of the final breakdown

of mass for each of the two 5000 kg transfer vehicle

systems. With these quantities known, the maximum percent

change in the vehicle mass over one orbit can now be

estimated. This maximum change should occur at GEO, after

the payload has been released, and the transfer vehicle is

beginning its return trip to LEO. At this point, the

orbital period is maximum (24 hr) and the TVS total mass

reduced to the mass of the transfer vehicle and the fuel

required for the return trip.

The mass expelled from the TVS over this orbit can be

calculated knowing the mass flow rate (constant) and the

orbital period (111). The mass flow rate of each system is

given by (11:29)

Fm = (A-12)
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where F is the total vehicle thrust. Using this equation,

the mass flow rate of each TVS is

*rc = 3.367 N398
(9.81 m/s2 ) (863 sec)

t on 5 (389 inN) .046 x i0- kg/sec
(9.81 m/s2) (4267 sec)

TRANSFER VEHICLE
TVS MASS BREAKDOWN ARCJET ION

Transfer Vehi.cLe Mass 9 kg i5e4 kg

(755 kg) (i5os kg)

Fuel Mass (Transfer to GE) 994 kg

(2115 kg) (526 kg)

* 940 kg
Fuel Mass (Return to LEO)

(553 kg) (177 kg)

Paytaod Mass 2 192 kg

(1577 kg) (2739 kg)

TotaL Mass 5000 kg 5000 kg

Table A-I. Transfer Vehicle System Mass Distribution
required for a Constrained Radii of
Perigee and Apogee Transfer

Note: 0 refer to quantities for a spiral transfer

•Arciet transfer vehicle incapable of mission
using constrained radii control law
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The change in mass (mass expelled) over one orbit can

be obtained using

Am = m ira (A-13)

where UPD is the period of one orbit. Thus, for each

• propulsion system

AM = m iU = (.000398 kg/sec) (24 hr) (3600 sec/hr)

= 34.36 kg

Am t ° = (.000046 kg/sec)(24 hr)(3600 sec/hr)

= 4.01 kg

giving a final estimate of the maximum percent change in

masses over one orbit as (spiral transfer only for arciet

TVS)

S(100%) 34.36 kg (100%) = (2.63%)

mR (1 308 kg)

AM 10 _ 4.01 kg (100%) = .21% (.24%)
mR (100%) 1924 kg

Maximum Acceleration Calculations. The acceleration of

the TVS is given by

A- F (A-14)
m

For comparison, we will calculate the anticipated maximum

acceleration on the TVS at both LEO and GEO.

LEO. The maximum acceleration experienced by the

TVS during the mission occurs upon final return of the TVS

A-10



to LEO. At this point, since all fuel has been consumed,

the TVS's mass has been reduced to that of the transfer

vehicle dry weight. Thus, the instant the last of the fuel

is consumed, the acceleration on the arciet system (spiral

* transfer only) is

Aarc = (F.l c 3.367 N (.04 /2)ax (755 kg) (.00446 r/s )

•= (.45 x 10 - g

and the ion system

A ion F 5 (389 inN)- 00123 rns 2  (00129 /2
max = myv 1584 kg

= .13 x 10-  g's (.13 x 10-3 g's)

• GEO. The largest acceleration experienced at GEO

occurs just after the release of the payload, when the TVS

begins the final return leg of the mission. For the arciet

propulsion system, this acceleration (spiral only) is

ar c

Aarc = [ E ] 3.367 N (.00257 r/s 2
max m R (1308 kg)

= (.26 x 10-g's)

and the ion system

t on

A = 51924 (389kg mN) .00101 m/s 2  (.00115 m/s )

.10 x 10 -  g's (.12 x 10-9 g's)
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TVS Transfer Times. For a continuous thrust propulsion

system, the mass flow rate is constant allowing the transfer

time to be calculated using the relation

m
t = xp (A-15)

m

where m is the total mass expelled. Thus, the transfer
enp

times for each TVS can be estimated by simply dividing the

total fuel mass expelled on each leg of the mission (LEO to

GEO, and return to LEO) by the total mass flow rate. This

results transfer times to GEO of

(t0OE) ar P r cEm c

*(2114 kg) f 1 hr 1day
.000398 kg/sec 13600 sec 2 4 hrs

= (61.53 days, spiral only)

m
(tO3E O] Lon 

m 3 E o

884 kg 1 hr 1[lday]
.000046 kg/sec 3600 sec 24 hrs

- 220.21 days (131.05 days)
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and return to LEO

(tEO] armmf ~

- (553 kg) 1 hr 1f 1a
.000398 kg/sec 3600 sec 24 hrs

- (16.10 days, spiral only)

S(EOf on

340 kg 1 hr 1mday
.000046 kg/sec 3600 sec 24 hrs

- 84.72 days (44.17 days)

Summary of Results. Table (A-2) provides an outline of

the propulsion system and vehicle performance parameters,

mass distribution, and transfer times for the N2H 4 arcjet

and Xe ion transfer vehicles. As a comparison, this data

includes the results of utilizing the constrained radii of

apogee/perigee transfer and the spiral transfer.

A-13



SYSTEM CONSTRAINED RADII SPIRAL
PAR AMET ERS arc jet ton arc jet .Lon

Thruster Perform.

Specific Impulse 063 soc 4267 sec 969 sec 4267 sec

Efficiency 35 9 75 9 35 9 75 %

Power/'Thruster 2d.0 kw 10.87 kW 26.0 kw £0.07 kv

Thrust/Thruster 3. 3d7 N 38 mN 3.367 N 399 mN

# of Thrusters 1 5 £ 5

Power System

Mass/Power 15 kg/kw I5 kg/kw 15 kg/kw 15 kg,'kw

Mass Distrb-t ion

Propulsi.on Sys 25 kg 506 kg 25 kg 5Od kg

Power System 450 kg 00 kg 450 kg 900 kg

Tanks/Structure 1 £78 kg 280 kg iO2 kg

Fuel * 1224 kg 2668 kg 703 kg

Payload * 2192 kg 1577 kg 2789 kg

Total* 5000 kg 5000 kg 5000 kg

Max %Am/Orbit * 0.21 9 2.63 % 0.24 96

Mass FLow Rate .000398 .000046 .0003 9 . 000046

(km/sec)

Max Acceleration

LEO .00013 .00045 .00013(g's)
OEO * .00010 .00026 .00012

Transfer Tim+e

Leg 1: LEO-EO * 220 days 62 days 131 days
Log 2: OEO-LEO 8 95 days I6 days 44 days

Table A-2. Performance Parameters and Mass Distribution of
Ammonia Arcjet and Xenon Ion Transfer Vehicles
for Constrained Radii and Spiral Tranfers.

*Arciet TVS incapable of constrained radii transfer

** Total mission includes transfer of payload from LEO
(300 kin) to GEO (35,863 kin) and return of "empty"
transfer vehicle to LEO.
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Appendix B-1: Program DELAMAX2

C
C * *

C * PROGRAM DELAMAX2
C I *
C Capt Gregory Beeker *
C Air Force Institute of Technology *

C * May 1988 *

C * *

C
C The following program solves for the maximum change in the
C magnitude of the nondimensional semimajor axis for the contin-
C uous thrust orbit transfer problem in which the distance to
C perigee (Rp) or apogee (Ra) is held fixed. Simpson's rule
C is used in subroutine integrate to solve the integral
C equations for the change in the nondimensional semimajor
C axis (delta a*) and eccentricity (delta e*) given values of
C a, e, nu, and the Lagrange multiplier, lambda. The secant
C method is used to find the value of lambda which will drive
C the value of delta-Rp or delta-Rp to zero.
C
C

IMPLICIT DOUBLE PRECISION (A-fl,L-Z)
DIMENSION ALPHAI(361),NUI(361)
COMMON E,DELR,DELA,DELE,LAMBDA,IDIV,SIGN,ALPHAI,NUI

C
C * INPUT INITIAL DATA *

C
C

WRITE (*,*) 'Please enter the initial and final values'
WRITE (*,*) 'of the eccentricity, e, dear.'
READ (*,*) EO,EF
WRITE *,*) 'Enter the number of steps between the initial'
WRITE (*,*) 'and final values of eccentricity.'
READ (*,*) INUME
WRTTE (*,*) 'Do you wish to keep the distance to
WRITE (*,) 'apogee constant, or the distance to'
WRITE (*,) 'perigee constant ?'
WRITE (i,*) '(Type: -1.0 for perigee; 1.0 for apogee)'
REit (*,) SIGN
WRITE (*,*) 'Enter the number of pieces Subroutine'
#RITE (*,*) 'Integrate is to dissect the integals into.'
WRITE (*,) '(Must be an even number, 360 maximum)'
READ (*,*) IDIV
WRITE (.,*) 'Enter t he initial and second guess of the
WRITE (*,*) 'parameter lambda.'
READ (*,*) LAMBDAO,LAMBDA1
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WRITE (,)'Eniter the maximum number of iterations to be'
WRITE ** 'Performed by secant method routine.'
READ (,)IMAX

* WRITE (,)'Enter the tolerance of delta-Ra/p.'
READ (,)TOLR
WRITE (,)'What type of print out do you wish?'
WRITE (,)'(0 for document data, 1 for plot data)'
READ (,)IPNT
WRITE (,)'If document data was selected, do you wish'
WRITE (,)'to print the thrust angle around the orbit?'
WRITE (,)'(0 - no, 1 - yes)'
READ (,)ITANG

C
C Print Initial Data
C
C

IF ((IPNT.EQ.1).AND.(SIGN.LE.0.)) THEN
OPEN (UNIT=11, STATUS ='NEW' ,FILE = 'APLAM.DAT')
OPEN (UNIT=12, STATUS ='NEW' ,FILE ='APDELA.DAT')
OPEN (UNIT=13, STATUS ='NEW' ,FILE ='APDELE.DAT')

* ENDIF

IF ((IPNT.EQ.1).AND.(SIGN.GT.O.)) THEN
OPEN (UNIT=11, STATUS = 'NEW' ,FILE = 'AALAM.DAT')
OPEN (UNIT=12, STATUS ='NEW' IFILE ='AADELA.DAT')
OPEN (UNIT=13, STATUS = 'NEW' ,FILE ='AADELE.DAT')
ENDIF

C
IF (IPNT.EQ.0) THEN
OPEN (UNITlO0, STATUS ='NEW' IFILE ='AMAX2.OUT')
WRITE (10,12) IMAX
WRITE (10,15) IDIV

* WRITE (10,*)
IF (SIGN.GT.0) WRITE (10,18) TOLR
TF (SIGN.LT.O) WRITE (10,19) TOLR
WRITE (10,*)
WRITE (10,25)
END IF

* C
WRITE (6,12) IMAX
WRITE (6,15) IDIV
WRITE (6,*)
IF (SIGN.GT.O) WRITE (6,18) TOLR
IF (SIGN.LT.O) WRITE (6,19) TOLR

* WRITE (6,*)
WRITE (6,25)

C
12 FORMAT (3X,'Max * of iterations to be performed '

+ 'by Secant Method Routine is ',14)
15 FORMAT (3X,'Number of divisions for each integral is ',14)

* 18 FORMAT (3X, 'Apogee Distance Fixed with a tolerance of ' ,E8. 1)
19 FORMAT (3X,'Perigee Distance Fixed with a tolerance of ',E8.1)
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25 FORMAT (6X,'e',13X,'Lambda',16X,'Delta a*',14X,'Delta e*')
C

ESTEP= (EF-E0) /INUME
• E=EO

C
C * BEGIN INITIAL LOOP WHICH INCREMENTS ECCENTRICITY *
C
C

LAMBDA=LAMBDAO
CALL INTEGRATE
IF (ABS(DELR).LE.TOLR) GO TO 45
DELRM1 =DELR
LAMDM1 =LAMBDA
LAMBDA=LAMBDA 1

30 CALL INTEGRATE
IF (ABS(DELR).LE.TOLR) GO TO 45

C
C * BEGIN ITERATIONS OF SECANT METHOD

CC
DO 40 I=I,IMAX

LAMDP1=LAMBDA-DELR* (LAMBDA-LAMDM1) / (DELR-DELRM1)
DELRM1 =DELR
LAMDM1 =LAMBDA
LAMBDA=LAMDP 1
CALL INTEGRATE
IF (ABS(DELR).LE.TOLR) GO TO 45

40 CONTINUE
C

IF (IPNT.EQ.0) THEN
WRITE (10,*)
WRITE (10,42) E,TOLR
WRITE (10,*)
ENDIF

C
WRITE (6,*)
WRITE (6,42) E,TOLR
WRITE (6,*)

* C
42 FORMAT (3X,'e = ',F8.4,3X,'Secant Method did not converge',

+ ' within given tolerance of ',E15.7)

GO TO 60
C
C
C * PRINT FINAL DATA
C
C

45 WRITE (6,48) E,LAMBDA,DELA,DELE
IF (IPNT.EQ.0) WRITE (10,48) E,LAMBDA,DELA,DELE
IF (IPNT.EQ.1) THEN
WRITE (11,49) E,LAMBDA
WRITE (12,49) E,DELA
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WRITE (13,49) EDELE
END IF

IF ((IPNT.EQ.O).AND.(ITANG.EQ.1)) THEN
*WRITE (6,*)

WRITE (10,*)
WRITE (6,50)
WRITE (10,50)
WRITE (6,*)
WRITE (1O,*)

*DO 46 I=1,(IDIV.1)
WRITE (6,51) NUI(I). ALPHAICI)
WRITE (10,51) NUI(I), ALPHAI(I)

46 CONTINUE
WRITE (6,*)
WRITE (10,*)

0 ENDIF
C

48 FORMAT (3X,Fe.4,3X,E20.13,3X,E20.13,3X,E20.13)
49 FORMAT (3X,E20.13,3X,E20.13)
50 FORMAT (7X,'NU',8X.'ALPHA')
51 FORMAT (3X,F7.2,5X,F7.2)

DIFF=EF-E
IF (ABS(DIFF).LE.1E-lO) GO TO 60

C
E=E+ESTEP
GO TO 30

60 STOP
END

C
C

* C
C
C
C
C SUBROUTI NE INTEGRATE
C

* C
SUBROUTINE INTEURATE
IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION ALPHAI (361) ,NUI (361)
COMMON E,DELR,DELA,DELE,LAMBDA,IDIV,SIGN,ALPHAI,NUI

C
* NU=O.

AINT1=O .0
AINT2=0 .0
EINT=O.O
ESQU=1.-E**2
PI=DBLE(ACOS(-1.0))

*C WRITE (*,*) PI
DELNU=2. *PI/IDIV
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F1=2. *E+LAMBDA* (2. iE* (1 .+SIGN*E) +SIGN*ESQU)
F2= SIGN*LAIMBDA*ESQU**2

C WRITE (*,*) F1,F2
C

DO 100 I=1, (IDIV+1)
CNU= 1. +E*DCOS (NU)
SNU=DSIN(NU)

C
C 'CALCULATE THRUST VECTOR ANGLE
C
C

NUMERE*SNU*CNU*F1
DENOM=CPJU**2*Fl-F2

C WRITE (*,*) NUMERIDENOM
* C

IF ((DABS(NUMER) .LE.l.E-15) .AND. (DABS(DENOM)
+ .LE.l.E-15)) THEN

WRITE (6,80)
IF (IPNT.EQ.0) WRITE (10,80)

*80 FORMAT (3X,'The denominator argument of the',
+ 'ARCTAN function was equal to or near 0.')

WRITE (6,85) NUMER,DENOM,F1,F2,NU
IF (IPNT.EQ.0) WRITE (10,85) NUMER,DENOM,F1,F2,NU

85 FORMAT (3X,'NUM = ',E15.8,3X,'DEN = ',El5.8,3X,
+ -Fl = ',El5.8,3X,'F2 = ',E15.8,3X,

*+ 'NU = ',E15.8,' Rad')
ALPHA=O.0
GO TO 88
END IF

ALPHA=DATAN2 (NUMER ,DENOM)
*88 ALPHAI(I)=180.*ALPHA/PI

IiUI(I)=180.*NU/PI
IF (ALPHAI(I).LT.O.) ALPHAI(I)=360.+ALPHAI(I)
CALPHA=DCOS (ALPHA)
SALPHA=DSIN(ALPHA)

C
* C

C *CALCULATE INTEGRALS OF DELTA A AND DELTA E
C
C

CONST= 2.0
IF ((I/2*2).EQ.I) CONST=4.0

* IF ((I.EQ.1).OR.(I.EQ.(IDIV+1))) CONST=1.O
AINT1=AINT1 +CONST*SNU/CNU**2*SALPHA
Al NT2=AINT2 +CONST*CALPHA/CNU
EINT=EINT+CONST*CALPHA/CNU**3

C
NUS NU+ DELNU

* C
100 CONTINUE
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C
C

AINT1=DELNU/3. *AINTI
* AINT2=DELNU/3.*AINT2

EINT=DELNU/3. *EINT
C
C *CALCULATE VALUES OF DELTA-A, DELTA-E, AND DELTA-Ra/p
C
C

* DELA=2. *ESQJ* (E*AINT1+AINT2)
DELE=ESQU/2. /E*DELA-ESQU**3/E*EINT
DELR=DELA' (1 4SIGN*E) +SIGN*DELE

C
RETURN
END
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Appendix B-2: Program DELEMAX2

0 C
C *

C * PROGRAM DELEMAX2
C *

C * Capt Gregory Beeker *

C * Air Force Institute of Technology *

C May 1988 *

C *

C
C
C The following program solves for the maximum change in the
C magnitude of the nondimensional eccentricity for the contin-
C uous thrust orbit transfer problem in which the distance to
C perigee (Rp) or apogee (Ra) is held fixed. Simpson's rule
C is used in subroutine integrate to solve the integral
C equations for the change in the nondimensional semimajor
C axis (delta a*) and eccentricity (delta e*) given values of
C a, e, nu, and the nondimensional Lagrange multiplier, lambda*.
C The secant method is used to find the value of lambda* which
C will drive the value of delta-Rp or delta-Rp to zero.
C
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION ALPHAI(361),NUI(361)
COMMON E,DELR,DELA,DELE,LAMBDA,IDIV,SIGN,ALPHAI,NUI

C
C * INPUT INITIAL DATA *

C
C

WRITE (*,*) 'Please enter the initial and final values'
WRITE (*,*) 'of the eccentricity, e, dear.'
READ (*,*) E0,EF
WRITE (*,*) 'Enter the number of steps between the initial'
WRITE (*,*) 'and final values of eccentricity.'
READ (,,) INUME
WRITE (*,*) 'Do you wish to keep the distance to
WRITE (*,*) 'apogee constant, or the distance to'
WRITE (*.*) 'perigee constant ?'
WRITE (*,*) '(Type: -1.0 for perigee; 1.0 for apogee)'
READ (*,*) SIGN
WRITE (*,*) 'Enter the number of pieces Subroutine'
WRITE (*,*) 'Integrate is to dissect the integrals into.'
WRITE (*,*) '(Must be an even number, 360 maximum)'
READ (*,*) IDIV
WRITE (*,*) 'Enter the initial and second guess of the
WRITE (*,*) 'parameter lambda* (Lagrange multiplier,'
WRITE (*,w) 'lambda, times the semimajor axis, a).'
READ (*,*) LAMBDAO,LAMBDAI
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WRITE (,)'Enter the maximum number of iterations to be'
WRITE (,)'Performed by secant method routine.'
READ (,)IMAX

* WRITE (,)'Enter the tolerance of delta-Ra/p.'
READ (,)TOIJR
WRITE (*,*),'What type of print out do you wish?'
WRITE (,)'(0 for document data, 1 for plot data)'
READ (,)IPNT
WRITE (*)'If document data was selected, do you wish'

* WRITE (,)'to print the thrust angle around the orbit?'
WRITE (,)'(0 - no, 1 - yes)'
READ (,)ITANG

C
C *Print Initial Data
C

* C
IF ((IPNT.EQ.1).AND.(SIGN.LE.0.)) THEN
OPEN (UNIT=11, STATUS = 'NEW' ,FILE = 'PLAM.DAT')
OPEN (UNIT=12, STATUS = 'NEW' ,FILE = 'PDELA.DAT')
OPEN (UNIT=13, STATUS = 'NEW' IFILE = 'PDELE.DAT')
END IF

* C
IF ((IPNT.EQ.1).AND.(SIGN.GT.0.)) THEN
OPEN (UNIT=11, STATUS = 'NEW' IFILE = 'ALAM.DAT')
OPEN (UNIT=12, STATUS = 'NEW' ,FILE = 'ADELA.DAT')
OPEN (UNIT=13, STATUS = 'NEW' ,FILE = 'ADELE.DAT')

* ENDIF
IF(PTE.)TE
OPE (NT 1O, TATS'E'ENL EMX.U'
WRIE (N102 STATU NWIE 'MX.U
WRITE (10,15) IDIV
WRITE (10,1) I
IF(IG.)WRITE (10,18TL
IF (SIGN.LT.0) WRITE (10,18) TOLR
WITE (1O,*LT.) WRT X,1 O
WRITE (10,25)
WEND 1,2F

0 WR~~I(,2)IA

WRITE (6,15) IDIV
WRITE (6,1) I
IF(IG.)WRITE (6,18TL
IF (SIGN.LT.0) WRITE (6,18) TOLR
IF(INT0 WRITE (6,19 L
WRITE (6,25)
WRTC(,5

12FRAC3,Mx~o trtost epromd'

+ 'by Secant Method Routine is '.14)
15 FORMAT (3X,'Number of divisions for each integral is ',14)

* 18 FORMAT (3X,'Apogee Distance Fixed with a tolerar:e of ',E8.1)
19 FORMAT (3X,'Perigee Distance Fixed with a tolerance of ',E8.1)
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25 FORMAT (6X,'e',13X,'Lambda*',16X,'Delta a*',14X,'Delta e*')

C
ESTEP= (EF-EO) /INUME

• E=EO
C
C ' BEGIN INITIAL LOOP WHICH INCREMENTS ECCENTRICITY *

C
C

LAMBDA=LAMBDAO
* CALL INTEGRATE

IF (ABS(DELR).LE.TOLR) GO TO 45
DELRM1 =DELR
LAMDM1 =LAMBDA
LAMBDA=LAMBDA 1

30 CALL INTEGRATE
IF (ABS(DELR).LE.TOLR) GO TO 45

C
C * BEGIN ITERATIONS OF SECANT METHOD
C
C

DO 40 I=1,IMAX
LAMDP 1 =LAMBDA-DELR* (LAMBDA-LAMDM1) / (DELR-DELRM)
DELRMI =DELR
LAMDM1=LAMBDA
LAMBDA=LAMDP1
CALL INTEGRATE
IF (ABS(DELR).LE.TOLR) GO TO 45

0 40 CONTINUE
C

IF (IPNT.EQ.0) THEN
WRITE (10,*)
WRITE (10,42) E,TOLR
WRITE (l0,*)
ENDIF

C
WRITE (W,*)
WRITE (6,42) E,TOLR
WRITE (6,*)

42 FORMAT (3X,'e = ',F8.4,3X,'Secant Method did not converge',
+ 'within given tolerance of ',E15.7)
GO TO 60

C
C
C * PRINT FINAL DATA
C
C

45 WRITE (6,48) E,LAMBDA,DELA,DELE
IF (IPNT.EQ.0) WRITE (10,48) E,LAMBDA,DELA,DELE
IF (IPNT.EQ.1) THEN
WRITE (11,49) E,LAMBDA
WRITE (12,49) E,DELA
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WRITE (13,49) E,DELE
ENDIF

IF ((IPNT.EQ.O).AND.(ITANG.EQ.1)) THEN
*WRITE (6,*)

WRITE (1O,*)
WRITE (6,50)
WRITE (10,50)
WRITE (8,*)
WRITE (10,*)

*DO 46 I=1,(IDIV+1)
WRITE (6,51) NUI(I, ALPHAI(I)
WRITE (10,51) NUI(I), ALPHAI(I)

46 CONTINUE
WRITE (6,*)
WRITE (10,*)

* ENDIF
C

48 FORMAT (3X,F8.4,3X,E20.13,3X,E20.13,3X,E20. 13)
49 FORMAT (3X,E20.13,3X,E20.13)
50 FORMAT (7X,'NU',8X,'ALPHA')

*51 FORMAT (3X,F7.2,5X,F7.2)

DIFF=EF-E
IF (ABS(DIFF).LE.1E-1O) GO TO 60

C
E=E+ESTEP

* GO TO 30

60 STOP
END

C
C
C
C
C
C
C SUBROUTINE INTEGRATE
C

SUBROUTINE INTEGRATE
IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION ALPHAI (361) ,NUI (361)
COMMON E,DELR,DELA,DELE,LAMBDA,IDIV,SIGN,ALPHAI,NUI

C
* NU=0.

AINT1=0.O
AINT2=0.0
EINT=0.0
ESQU=1.-E**2
PI=DBLE(ACOS(-1 .0))

*C WRITE (*,*) PI
DELNJ=2. *PI/IDIV
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F1=ESQU+LAMEDA* (2. *E* (1 .+SIGN*E) +SIGN*ESQU)

F2= (1 .+SIGN*LAMdBDA) *ESQU**2
C WRITE (*.,) F1,F2

* C
DO 100 I=l, (IDIV+1)

CNU= 1 .+E*DCOS (RU)
SNU=DSIN (NU)

C
C *CALCULATE THRUST VECTOR ANGLE*

* C
C

NUMdER=E*SNFU*CNT*F 1
DENOM=CNU**2*F1-F2

C WRITE (*,*) NUMER,DENOM
C

* IF ((DABS(NUMER) .LE.l.E-15) .AND. (DABS(DENOM)
+ .LE.l.E-15)) THEN

WRITE (8,80)
IF (IPNT.EQ.0) WRITE (10,80)

80 FORMAT (3X,'The denominator argument of the',
*+ 'ARCTAN function was equal to or near 0.')

WRITE (6,85) NUMER,DENOM,F1,F2,NU
IF (IPNT.EQ.0) WRITE (10,85) NUMER,DENOM,Fl,F2,NU

85 FORMAT (3X,'NUM =',E15.8,3X,'DEN =',E15.8.3X,
+ -Fl = ',E15.8,3X,'F2 = ',E15.8,3X,
+ 'NU = ',E15.8,' Rad')

* ALPHA=0.0
GO TO 88
END IF

C
ALPHA=DATAN2 (NUNER, DENOM)

88 ALPHAI (I) =180.*ALPHA/PI
* NUI(I)=180.*NU/PI

IF (ALPHAI(I).LT.O.) ALPHAI(I)=360.+ALPHAI(I)
CALPRA=DCOS (ALPHA)
SALPHA=DSIN (ALPHA)

C
C
C *CALCULATE INTEGRALS OF DELTA A AND DELTA E*
C
C

CONST=2 .0
IF ((I/2*2).EQ.I) CONST=4.0
IF ((I.EQ.1).OR..(I.EQ.(IDIV+1))) CONST=1.0
AINiT1=AINT1+CONST*SNU/CNU**2*SALPHA
Al NT2=AI NT2+CONST*CALPHA/CNU
EINT=EINT+CONST*CALPHA/CNU* *3

C
NU=NU+DELNU

100 CONTINUE
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0c

C
C IT=ENU3*IT

AINT1=DELNU/3. *AINT2

EINT=DELNU/3.*EINT
C
C CALCULATE VALUES OF DELTA-A, DELTA-E, AND DELTA-Ra/p
C
C

* DELA=2.*ESQU*(E*AINT1+AINT2)
DELE=ESQU/2. /E*DELA-ESQU**3/E*EINT
DELR=DELA* (1 +SIGN*E) +SIG!N*DELE

C
RETURN
END
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Appendix B-3: Program DELAMAXUC

C
C *
C PROGRAM DELAMAXUC
C * *

C * Capt Gregory Beeker *

C * Air Force Institute of Technology *

C * August 1988
C * *

C
C
C The following program solves for the maximum change in the
C magnitude of the nondimensional semimajor axis for the contin-
C uous thrust orbit transfer problem. Simpson's rule is used
C in s'iroutine integrate to solve the integral equations for
C the change in nondimensional semimajor axis (delta a*) and
C eccentricity (delta e*) given values of a, e, and nu.
C
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION ALPHAI(361),NUI(361)
COMMON E,DE!RA,DELRP,DELADELE,IDIV,ALPHAI,NUI

C
C * INPUT INITIAL DATA *

C
C

WRITE (*.*) 'Please enter the initial and final values'
WRITE (*,*) 'of the eccentricity, e.'
READ (*,*) EO,EF
WRITE (*,*) 'Enter the number of steps between the initial'
WRITE (.,*) 'and final values of eccentricity.'
READ (*,*) INUME
WRITE (*,*) 'Enter the number of pieces Subroutine'
WRITE (*,*) 'Integrate is to dissect the integrals into.'
WRITE (*,*) '(Must be an even number, 360 maximum)'
READ (*,*) IDIV
WRITE (*,*) 'What type of print out do you wish?'
WRITE (*,*) '(0 for document data, 1 for plot data)'
READ (I,) IPNT
WRITE (*,*) 'If document data was selected, do you wish'
WRITE (*,*) 'to print the thrust angle around the orbit?'
WRITE (*,*) '(0 - no, I - yes)'
READ (*,*) ITANG

C
C * Print Initial Data

C
C

IF (IPNT.EQ.1) THEN
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OPN0NT1,SAU NWIE='CDL.A'

OPEN (UNIT=13, STATUS = 'NEW' ,FILE = 'UCADELA.DAT')
OPEN (UNIT=13, STATUS ='NEW',FILE = 'UCADELE.DAT')
OPEN (UNIT14, STATUS ='NEW' ,FILE ='UCADELRA.DAT')

END IF
C

IF (IPNT.EQ.O) THEN
OPEN (UNIT=1O, STATUS = 'NEW' ,FILE = 'UCAMAXF.OUT')
WRITE (10,15) IDIV

* WRITE (1O,*)
WRITE (10,25)
END IF

C
WRITE (6,15) IDIV
WRITE (6,*)

* WRITE (6,25)
C

15 FORMAT (3X,'Number of divisions for each integral is ',14)
25 FORMAT (6X,'e',13X,'Delta a*',14X,'Delta e*',14X,'Dolta ra*',

+ 15X,'Delta rp*')
C

* ESTEP= (EF-EO) /INUME
E=EO

C
C

30 CALL INTEGRATE
C

* C
C *PRINT FINAL DATA
C
C

45 WRITE (6,48) E,DELA,DELE,DELRA,DELRP
IF (IPNT.EQ.O) WRITE (10,48) E,DELA,DELE,DELRA,DELRP

* IF (IPNT.EQ.1) THEN
WRITE (12,49) E,DELA
WRITE (13,49) E,DELE
WRITE (14,49) E,DELRA
WRITE (15,49) E,DELRP

* END IF

IF ((IPNT.EQ.O).AND.(ITANG.EQ.1)) THEN
WRITE (6,*)
WRITE (1O.*)
WRITE (6,50)
WRITE (10,50)
WRITE (6.,)
WRITE (10,*)
DO 46 I=1,(IDIV.1)

WRITE (6,51) NUI(I), ALPHAI(I
WRITE (10,51) NUI1(I), ALPHAI(I)

46 CONTINUE
WRITE (6,*)
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WRITE (1O,*)
END IF

C
*48 FORMAT (3X,F6.4,3X,E20.13,3X,E20.13,3X,E20.13,3X,E20.13)

49 FORMAT (3X,E20.13,3X,E20.13)
50 FORMAT (7X,'NtJ',8X,'ALPHA')
51 FORMAT (3X,F7.2,5X,F7.2)

C
DI FF =EF -E

* IF (ABS(DIFF).LE.1E-1O) GO TO 60
C

E=E4ESTEP
GO TO 30

C
60 STOP

* END
C
C
C
C
C

* C
C SUBROUTINE INTEGRATE
C
C

SUBROUTINE INTEGRATE
IMPLICIT DOUBLE PRECISION (A-H,L-Z)

* DIMENSION ALPHAI(361),NUI(361)
COMMON E,DELRA,DELRPDELA,DELE, IDIV,ALPHAI ,NUI

C
NU=0.
AINT1=0.0
AINT2=O.0
EINT=O.0
ESQU=1.-E**2
PI=DBLE(ACOS(-1 .0))

C WRITE (*,*) PI
DELNU=2. IPI/IDIV
DO 100 Ic1, (IDIV.1)

0 CfU= 1. +E*DCOS (NU)
SNU=DSIN (Nil)

C
C CALCULATE THRUST VECTOR ANGLE
C

NUMER=E*SNU
DENOM= ONU

C WRITE (*,*) NUMER,DENOM
C

IF ((DABS(NUMER) .LE.I.E-15).AND. (DABS(DENOM)
* + .LE.I.E-15)) THEN
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WRITE (8, 80)
IF (IPNT.EQ.0) WRITE (10,80)

80 FORMAT (3X,'The denominator argument of the',
*+ 'AERCTAN function wag equal to or near 0.')

WRITE (6,85) NUMERDENOM,NU
IF (IPNT.EQ.0) WRITE (10,85) NUNER,DENOM.PJU

85 FORMAT (3X,'NUM = ',E15.8,3X.'DEN = ',E15.8,3X,
+ 'NU =',E15.8,' Rad')

ALPHA=0 .0
*0 GTO088

END IF
C

ALPHA=DATAN2 (NUMdER ,DENOM)
88 ALPHAI(I)=180.*ALPHA/PI

NUI (I)=180.*NFU/PI
* IF (ALPHAI(I).LT.0.) ALPHAI(I)=360.+ALPHAT(I)

CALPHA=DCOS (ALPHA)
SALPHA=DSIN (ALPHA)

C
C
C *CALCULATE INTEGRALS OF DELTA A AND DELTA E

* C
C

CONST=2 .0
IF ((I/2*2).EQ.I) CONST=4.0
IF ((I.EQ.1).OR.(I.EQ.(IDIV+1))) CONST=1.O
AINTI=AINT1 +CONST*SNU/CNU**2*SALPHA

* AINT2=AINT2.COMST*CALPIIA/CNU
EINT=EINT+CONST*CALPHA/CNU* *3

C
NU=NUI+DELNU

C
100 CONTINUE

* C
C

AINT 1DELNU/3. *AINTl
AINT2=DELNU/3. *AINT2
EINT=DELNU/3. *EINT

C
* C *CALCULATE VALUES OF DELTA-A, DELTA-E, AND DELTA-Ra/p

C
C

DELA=2. *ESQU* (E*AINTI+AINT2)
DELE=ESQU/2. /E*DELA-ESQU**3/E*EINT
DELRA=DELA* (1. +E) +DELE
DELRP=DELA*(1.-E)-DELE

C
RETURN
END
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Appendix B-4: Program DELEMAXUC

C
C I

C PROGRAM DELEMAXUC
C I *

C * Capt Gregory Beeker
C * Air Force Institute of Technology *

C * August 1988
C *

C
C
C The following program solves for the maximum change in the
C magnitude of the nondimensional eccentricity for the contin-
C uous thrust orbit transfer problem. Simpson's rule is used
C in subroutine integrate to solve the integral equations for
C the change in nondimensional semimajor axis (delta a*) and
C eccentricity (delta e*) given values of a, e, and nu.
C
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION ALPHAI(361),NUI(361)
COMMON E,DELRA,DELRP,DELA,DELE,IDIV,ALPRAI,NUI

C
C * INPUT INITIAL DATA
C
C

WRITE (*,m) 'Please enter the initial and final values'
WRITE (I,*) 'of the eccentricity, e, dear.'
READ (*,*) EO,EF
WRITE (1,1) 'Enter the number of steps between the initial'
WRITE (*,*) 'and final values of eccentricity.'
READ (*,*) INUME
WRITE (*,*) 'Enter the number of pieces Subroutine'
WRITE (*,*) 'Integrate is to dissect the integrals into.'
WRITE (*,*) '(Must be an even number, 360 maximum)'
READ (*,*) IDIV
WRITE (I,*) 'What type of print out do you wish?'
WRITE (*,*) '(0 for document data, I for plot data)'
READ (*,*) IPNT
WRITE (*,*) 'If document data was selected, do you wish'
WRITE (*,*) 'to print the thrust angle around the orbit?'
WRITE (*,*) '(0 - no, 1 - yes)'
READ (*,*) ITANG

C
C I Print Initial Data I

C
C

IF (IPNT.EQ.1) THEN
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OPEN (UNIT=12, STATUS = 'NEW' ,FILE = 'UCEDELA.DAT')
OPEN (UNIT=13, STATUS = 'NEW' ,FILE = 'UCEDELE.DAT')
OPEN (UNIT=14, STATUS = 'NEW' ,FILE = 'UCEDELRA.DAT')

* OPEN (UNIT=15, STATUS = 'NEW' IFILE = 'UCEDELRP.DAT')
ENDI F

C
IF (IPNT.EQ.0) THEN
OPEN (UNIT=10, STATUS = 'NEW' ,FILE = 'UCEMAXF.OUT')
WRITE (10,15) IDIV

* WRITE (10,*)
WRITE (10,25)
ENDIF

C
WRITE (6,15) IDIV
WRITE (6,')

* WRITE (8,25)
C

15 FORMAT (3X,'Number of divisions for each integral is ',14)
25 FORMAT (6X,'e',13X,'Delta a*',14X,'Delta e*',14X,'Delta ra*',

+ 15X,'Delta rp*')

* ESTEP= (EF-EO) /INUNE
E=EO

C
C

30 CALL INTEGRATE
C
C
C *PRINT FINAL DATA
C
C

45 WRITE (6,48) E,DELA,DELE,DELRA,DELRP
IF (IPNT.EQ.0) WRITE (10,48) E,DELA,DELE,DELRA,DELRP
IF (IPNT.EQ.1) THEN
WRITE (12,49) E,DELA
WRITE (13,49) E,DELE
WRITE (14,49) E,DELRA
WRITE (15,49) E,DELRP
END IF

IF ((IPNT.EQ.O).AND.(ITANG.EQ.1)) THEN
WRITE (6,*)
WRITE (10,*)
WRITE (6,50)

*WRITE (10,50)
WRITE (6,*)
WRITE (10,.)
DO 46 1=I,(IDIV+1)

WRITE (6, 51) NUI (), "iPHAI (1)
WRITE (10,51) NUI(I), ALPHAI(I)

*46 CONTINUE
WRITE (6,*)
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WRITE (1O,*)
END IF

C
*48 FORMAT (3X,F6.4,3X,E20.13,3X,E20.13,3X,E20.13,3X,E20.13)

49 FORMAT (3X,E20.l3,3X,E20.13)
50 FORMAT (7X,KIU',X,'ALPHA')
51 FORMAT (3X,F7.2,5XF7.2)

C
DIFF=EF-E

* IF (ABS(DIFF).LE.lE-10) GO TO 60
C

E=E+ESTEP
GO TO 30

C
60 STOP

* END
C
C
C
C
C

* C
C SUBROUTINE INTEGRATE
C
C

SUBROUTINE INTEGRATE
IMPLICIT DOUBLE PRECISION (A-H,L-Z)

* DIMENSION ALPHAI(361),NUI(361)
COMMON E,DELRA,DELRP,DELA,DELE,IDIV,ALPHAI ,NUI

C
NU=O.
AINT1=0.0
AINT2O0.0

* EINT=0.0
ESQU=1.-E**2
PI=DBLE(ACOS(-1 .0))

C WRITE (*,*) PI
DELNtJ=2. *PI/IDIV
DO 100 I=1, (IDIV+1)

CNU= 1 . E*DCOS (NU)
SNU=DSIN (NU)

C
C *CALCULATE THRUST VECTOR ANGLE
C

0 C ?UMER=E*SNU*CNU

DENOM=CNU**2-ESQU
C WRITE (*,*) !JTTW.R,DENC)M
C

IF ((DABS(NUMER) .LE.1.E-15) .AND. (DABS(DENOM)
+ .LE.I.E-15)) THEN
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WRITE (6,80)
IF (IPNT.EQ.O) WRITE (10,80)

80 FORMAT (3X,'The denominator argument of the',
+ 'ARCTAN function was equal to or near 0.')

WRITE (6,85) NUMER,DENOM,NU
IF (IPNT.EQ.0) WRITE (10,85) NUMER,DENOM,NU

85 FORMAT (3X,'NUM = ',El5.8,3X,'DEN = ',El5.8,3X,
+ 'NU = ',E15.8,' Bad')

ALPHA=0.0
*0 GTO 88

END IF
C

ALPHA=DATAN2 (NUMER ,DENOM)
88 ALPRAI (I)=18O.*ALPHA/PI

NUI(I)=180.*NU/PI
* IF (ALPHAI(I).LT.0.) ALPHAI(I)=360.+ALPHAI(I)

CALPHA=DCOS (ALPHA)
SALPHA=DSIN (ALPHA)

C
C
C *CALCULATE INTEGRALS OF DELTA A AND DELTA E

* C
C

CONST=2.0
IF ((I/2*2).EQ.I) CONST=4.0
IF ((I.EQ.1).OR.(I.EQ.(InIV+1))) CCMST=1.0
AINT1=AINT1+CONST*SNU/CNU**2*SALPHA

* AINT2=AINT2+CONST*CALPHA/CNU
EINT=EINT+CONST*CALPHA/CNU* *3

C
NU= NJ+ DELNU

C
100 CONTINUE

* C
C

AINT1=DELNU/3. *AINT1
AINT2=DELNU/3. *AINT2
EINT=DELNIJ/3.*EINT

C
* C *CALCULATE VALUES OF DELTA-A, DELTA-E, AND DELTA-Ra/p

C
C

DELA=2. IESQU* (E*AINT1+AINT2)
DELE=ESQU/2. /E*DELA-ESQU**3/E*EINT
DELRA=DELA* (1 .+E) +DELE

* DELRP=DELA*(1.-E)-DELE
C

RETURN
END
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Appendix B-5: Program INTERPO

C
C *

C * PROGRAM INTERPO
C

C Capt Gregory Beeker
C Air Force Institute of Technology *
C June 1988

C

CC

C * The following program utilizes the Newton formula to *

C * interpolate/extrapolate from the given data sets *

C * utilizing an nth degree interpolating polynomial.
C
C
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION E(100),LAMBDA(100),DELA(100),DELE(100)
CHARACTER LAMBDAT *10
CHARACTER DELADAT *10
CHARACTER DELEDAT *10
CHARACTER OUTFILE *10

C
C * INPUT INITIAL DATA
C
C

WRITE (*,*) 'Please specify the name of the Lambda*'
WRITE (*,*) 'data file to be used.'
READ (*,'(A)') LAMBDAT
WRITE (*,*) 'Please specify the name of the Delta a*'
WRITE (*,*) 'data file to be used.'
READ (*,'(A)') DELADAT
WRITE (*,*) 'Please specify the name of the Delta e*'
WRITE (*,*) 'data file to be used.'
READ (*,'(A)') DELEDAT
OPEN (UNIT=15, STATUS = 'OLD',FILE = LAMBDAT)
OPEN (UNIT=16, STATUS = 'OLD',FILE = DELADAT)
OPEN (UNIT=17, STATUS = 'OLD',FILE = DELEDAT)
WRITE (*,*) 'Is this data based on keeping the distance to
WRITE (*,*) 'apogee constant, or the distance to'
WRITE (*,*) 'perigee constant ?'
WRITE (*,*) '(0 - apogee; 1 - perigee)'

READ (*,*) ID
WRITE (*,*) 'Please specify the number of data points contained'
WRITE (*,*) 'in each of the data files.'
READ (*,*) IDATA
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WRITE 'Please specify the min and max values of
WRITE (,)'eccentricity for the range to be evaluated.'
READ (,)EMIN, EMAX

* WRITE ( )'Please enter the number of values of eccentricity'
WRITE (,)'to be evaluated within the specified range'
WRITE (,)'(excluding the initial value).'
READ (,)IE
WRITE (,)'Please specify the degree of the interpolating'
WRITE (,)'polynomial to be used (cannot exceed n-1, where'

* WRITE (,)'n is the number of data points.)'
READ (*)IDEG
REWIND (15)
REWIND (16)
REWIND (17)
DO 5, I=1,IDATA

* READ (15,*) E(I),LAMBDA(I)
READ (18,*) E(I),DELA(I)
READ (17,*) E(I),DELE(I)

5 CONTINUE
WRITE (*,*) 'Please specify the name of the output file.'
READ (*,'(A)') OUTFILE

* C
OPEN (UNITz1O, STATUS ='NEW' ,FILE =OUTFILE)

C
IF (ID.EQ.O) THEN

WRITE (6,18)
WRITE (10,18)

* ENDIF
IF (ID.EQ.1) THEN
WRITE (6,19)
WRITE (10,19)
ENDIF

WRITE (6,*)
* WRITE (1O,*)

WRITE (6,20) IDEG
WRITE (10,20) IDEG

C
18 FORMAT (3X.'Apogee Distance Fixed')
19 FORMAT (3X,'Perigee Distance Fixed')
20 FORMAT (3X,'Interpolating/Extrapolating Polynomials are of '

+ 'degree ',12)
C

WRITE (6,#0
WRITE (10,*)
WRITE (6,110)
WRITE (10,110)
WRITE (6,E)
WRITE (1O,w)

C
DELTAE= (EMAX-EMIN) /IE
IEP1=IE~l
EBAR=EMIN
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C
C
C *EVALUATE FUNCTION AT SPECIFIED VALUES OF ECCENTRICITY

* C
C

DO 100 ICOUNT=1,IEP1
C
C *Check location of data point
C

* DO 30 Izl,IDATA
DIFF=EBAR-E (I)
IF (ABS(DIFF).LE.l.E-15) THEN
LAM=LAMBDA (I)
DA=DELA(I)
DE=DELE(I)

* GO TO 40
END IF

IF ((I.EQ.1).AND.(DIFF.LT.0.)) THEN
IMIN=l
IMAX=IMIN+IDEG
GO TO 35

* ENDIF
IF ((I.EQ.IDATA).AND.(DIFF.GT.0.)) THEN

IMAX=IDATA
IMIN=IMAX-IDEG
GO TO 35
END IF

* ILEFT=I
IF (DIFF.LT.O.) GO TO 31

30 CONTINUE
C

31 IDEGP1=IDEG+l
IDEGL=IDEGP1/2

* IMIN=ILEFT+1-IDEGL
IMAX=IMIN+IDEG
IF (IMIN.LT.1) THEN

IMIN=1
IMAX=IMIN.IDEG
ENDIF

IF (IMAX.GT.IDATA) THEN
IMAX=IDATA
IMIN=IMAX-IDEG
END IF

C
C *Evaluate Polynomial*
C

35 CALL INTERP(IDLG,IMIN,IMAX,EBAR,E,LAMBDADELA,DELE,LAM,DADE)
C
C
C *PRINT DATA
C
C
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40 WIE(,2)0AAAD

40 WRITE (10,120) EBAR,LAM,DA,DE
WRTC1,2)EAAAD

C

EBAR= EBAR+ DELTAE
100 CONTINUE

C
C

110 FORMAT (13X,'e',19X,'Lambda*',15X,'Delta a*',15X,'Delta e*')
*120 FORMAT (3X,E20.13,3X,E20.13,3X,E20.13,3X,E20.13)

C
CLOSE (10)
CLOSE (15)
CLOSE (16)
CLOSE (17)

* C
STOP
END

C
C
C

* C
C
C *SUBROUTINE INTERP
C
C
C The following algorithm evaluates an interpolating

* C *nth degree polynomial
C
C
C

SUBROUTINE INTERP(IDEG,IMIN,IMAX,EBARELAMBDA,
+ DELA,DELE,LAM,DA,DE)

* C
IMP~LICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION E(100) ,LAMBDA(100) ,DELA(100) ,DELE(100)
DIMENSION X(100) ,D(100) ,P(100)

C
IDEGP1=IDEG+ 1

0 DO 200 I=1,3
DO 150 J=IMIN,IMAX

X=J-IMIN+1
IF (I.EQ.1) D(K)=LAMBDA(J)
IF (I.EQ.2) D(K)=DELA(J)
IF (I.EQ.3) DCK)=DELE(J)
X(K)=E(J)

150 CONTINUE
DO 155 K=1,IDEG

DO 155 J=(K+1),IDEGPL
J1=IDEGPl-J+(K+1)
D(Jl)=(D(J1) -D(J1-1) )/(X(J1)-X(J1-K))

0155 CONTINUE
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C
Z=EBAR-X(l)
P(1)=D(1) +D(2) *Z

* DO 160 J=2,IDEG
Z=Z* (EBAR-X(J))
P(J) =P(J-1) +D(J+1)*Z

160 CONTINUE
C

IF (I.EQ.1) LAM=P(IDEG)
* IF (I.EQ.2) DA=P(IDEG)

IF (I.EQ.3) DE=P(IPEG)
C

200 CONTINUE
C

RETURN
* END
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Appendix C-i: Program TRANSMUL

C
C *
C Program TRANSMUL
C *

C * Captain Gregory Beeker
C Air For !e Institute of Technology
C July 1988 *

C

C
C
C The following program was written to solve the long timescale
C problem to determine the total transfer delta v and transfer
C time of a spacecraft traveling between two planar orbits. The
C program takes a spacecraft from an initial orbit to a final
C orbit though many revolutions while constraining one of the
C two radii (perigee (rp) or apogee (ra)). Subroutine Haming is
C incorporated to solve the differential equations for the non-
C dimensional changes in eccentricity and semimajor axis
C (dabar/dVbar and de/dVbar). In addition, Program INTERPO, which
C provided the final solutions to the fast timescale problem, is
C also incorporated as a subroutine to provide the values of delta
C a* and delta e* as functions of eccentricity.
C
C
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION ISP, MUMANOMO, MANOM, MDOTBAR, MDOT,MO
DIMENSION X(4),VARI(4),VAR2(4),VAR3(4),VAR4(4),VAR5(4)
COMMON /HAM/ VBAR,Y(42,4),F(42,4),ERR(42),N,H,MODE
COMMON /RH/ RABAR(4),RPFBAR(4),ICASE,ICNT,MANOMO,AO,MDOTBAR,

+ ACCELO,PI2

C
C
C * INITIALIZATION OF PARAMETERS FOR HAMING
C
C

N=4
MODE=0

C
C
C * INITIAL DATA ENTRY
C
C
C * Primary Body Parameters
C

WRITE (*,*) 'Do you wish to change the value of the'
WRITE (*,*) 'gravitational parameter and radius of the'
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WRITE (*,*) 'primary body (currently set to those of'
WRITE (*,*) 'the Earth)? (0 - yes; I - no)'

READ (*,*) IP
* C

IF (IP.EQ.0) THEN
WRITE (*,*) 'Enter the new values of mu (km3/sec2) and r (km).'
READ (*,*) MU,R
ENDIF

IF (IP.EQ.1) THEN
90 MU=3.986012D5

R=6378.145D0
ENDIF

C
C * Orbit Data
C

WRITE (*,*) 'Specify the type of program run (0 or 1).'
WRITE (*,*)
WRITE (*,*) ' 0 - Single Transfer'
WRITE (1,,7 ' I - Multiple Transfers (Includes plot'
WRITE (*,*) ' data file of af/aO vs delta-V total)'
READ (,,) ITYP

* C
WRITE (*,*) 'Enter the eccentricity and semimajor axis (km)'
WRITE (*,*) 'of the initial orbit.'
READ (*,*) EO,AO

C
2 IF (AO.LE.R) THEN

WRITE(*,*) 'Initial orbit intersects the surface of the'
WRITE(*,*) 'primary body. Please select a new value.'
READ (*,*) AO
GOTO 2
ENDIF

C
WRITE (*,i) 'Enter the eccentricity and semimajor axis (km)'
WRITE (*,i) 'of the final orbit.'
READ (*,*) EF,AF

C
3 IF (AF.LE.R) THEN

WRITE(*,*) 'Final orbit intersects the surface of the'
WRITE(*,*) 'primary body. Please select a new value.'
READ (*,*) AF
GOTO 3
ENDIF

C
IF (ITYP.EQ.]' THEN

WRITE (*,*) 'Specify the number of transfers between'
WRITE (*,*) 'the initial and final orbits.'
READ (*,*) NTRANS
ENDIF

C
C ' Vehicle Parameters
C
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MO=2000
MDOT=4.0D-4
MDOTBAR=MDOT/MO
ISP=5000

WRITE (i,*) 'Do you wish to change the value of the vehicle mass'
WRITE (u .) 'and mass flow rate parameters? (0 - yes; 1 - no)'
WRITE (*,*)
WRITE (*,*) 'Current Settings:'
WRITE (*,ll) MO
WRITE (*,12) MDOT
WRITE (*,13) MDOTBAR
READ (*,*) IM

C
IF (IM.EQ.0) THEN

* WRITE (.,*) 'Enter the new values of the mass flow rate (kg/s)'
WRITE (w,*) 'and initial vehicle mass (kg).'
READ (.,*) MDOT,MO
MDOTBAR=MDOT/MO
WRITE (*,13) MDOTBAR
ENDIF

* C
WRITE (*,*) 'Do you wish to change the value of propulsion'
WRITE (*,14) ISP
WRITE (*,*) '(0 - yeg; I - no)'
READ(*,*) IISP

C
* IF (IISP.EQ.O) THEN

WRITE (*,*) 'Enter the new value of Isp.'
READ (*,*) ISP
ENDIF

C
ACCELO=ISP*9.81*MDOTBAR/1000.

C
C * Integration Data
C

WRITE (*,*) 'Enter the step size of the independent'
WRITE (*,*) 'variable, V-bar.'
READ (*,*) H

* WRITE (i,*) 'Enter the maximum number of iterations to be'
WRITE (*,*) 'performed by Haming on each half transfer.'
READ (*,*) IMAX

C
C * Output Parameters
C

* IF (ITYP.EQ.1) THEN
IOUT=2
OPEN (UNIT = 10, STATUS = 'NEW', FILE = 'EDELVBAR')
OPEN (UNIT = 11, STATUS = 'NEW', FILE = 'SDELVBAR')
OPEN (UNIT = 12, STATUS = 'NEW', FILE = 'HDELVBAR')
GO TO 8

* ENDIF
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C
WRITE (N.*) 'Enter output code.'
WRITE (.,N) '(0 for screen. I for file and screen)'

* READ ( IM) IOUT
C

8 IF (IOUT.GE.l) THEN
WRITE (*,*) 'Specify the name of the data output file.'
READ (*,'(A)') TRANSOUT
OPEN (UNIT = 9, STATUS = 'NEW', FILE = TRANSOUT)
ENDIF

C
IPNT=O
IF (IOUT.LE.1) THEN
WRITE (.,i) 'Enter the number of steps between each'
WRITE (*.*) 'data printout.'

* READ (*,*) IPNT
ENDIF

C
C

C * INITIALIZE ORBIT PARAMETERS (NONDIMENSIONAL)

C

C N State Vector
C

Y2F=AF/AO
Y2FCK=Y2F* c
IF (ITYP.EQ.1) THEN
DELAF=(AF-AO)/NTRANS
Y2F=I.DO

ENDIF
C0 0 IF (ITYP.EQ.1) Y2F=Y2F+DELAF/A0

C
C e e (de/dvbar)

Y(1,1)=EO
C * a bar, dabar/dvbar

Y(2,1)=AO/AO
C * t (dt/dvbar)

Y(3,1)=O.O
C * nu (dnu/dvbar)

Y(4,1)=O.O
* C

C
C * Initial Mean Anomaly
C

MANOMO=DSQRT (MU/Ao**3)
C

PI=DBLE(ACOS(-I.))
P12=2.0*PI
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C
C
C *Initialize ra* & rp*

* C
RABAR(1)=Y(2, 1)*(1.DO+EO)
RABARI=RABAR( 1)
RABARF=Y2F' (1.DO+EF)
RPBAR(1) =Y(2, 1) *(1 .DO-EO)
RPBARI =RPBAR (1)

* RPBARF=Y2F*(l.DO-EF)
C
C
C
C *PRINT INITIAL DATA
C

* C
IF (IOUT.EQ.1) THEN
WRITE (9,*) 'Orbit Data'
WRITE (9,*)'
WRITE (9,*)
WRITE (9,15) EO,AO,Y(2,I)

*WRITE (9,18) EF,AF,Y2FCK
WRITE (9,*)
WRITE (9,*)
WRITE (9,*) 'Primary Body Data'
WRITE (g,*)'
WRITE (9,')' 3 2'

*WRITE (9,17) MU,R
WRITE (9,*)
WRITE (9,')
WRITE (9,') 'Transfer Vehicle Data'
WRITE (9,*)'
WRITE (9,')
WRITE (9,18) MO,ISP
WRITE (9,19) MDOT,MDOTBAR
WRITE (9,')
WRITE (9,')
ENDIF

CIF (ITYP.EQ.1) THEN

WRITE (*,*)
WRITE (*,20) Y2F
WRITE (*,*)
WRIT' (9,*)
WRITE (9,20) Y2F
WRITE (9,*)
END IF

C
WRITE(,)
WRITE (*,21)

* ~WRITE(,)



IF (IOUT.GE.1) THEN
WRITE (9,*)
WRITE (9,21)

* WRITE (9,*)
ENDIF

C
11 FORMAT (3X,'Vehicle Initial Mass: ',Fg.2,' kg')
12 FORMAT (3X,'Propellant Mass Flow Rate: ',E13.7,' kg/icc')
13 FORMAT (3X.'Nondimengional Propellant Mass Flow Rate: ',E13.7,

* + '/sec')
14 FORMAT (1X,'gygtem Isp currently set at ',FO.1,' sec?'
15 FORMAT (3X,'Initial Orbit Eccentricity: ',F8.3,8X,'Initial '

+ 'Orbit Seminajor Axis: ',F1O.2,' km (',El3.7,')')
16 FORMAT (3X,'Final Orbit Eccentricity: ',F8.3,8X,'Final ',

+ 'Orbit Seminajor Axis: ',F1O.2,' km (',E13.7,')')
* 17 FORMAT (3X,'Gravitational Parameter: ',E13.8,' km /gec ',BX,

+ 'Radius: ',Fg.3,' kmn')
18 FORMAT (3X,'Total Initial Mass: ',Fg.2,' kg' ,6X,'Specific '

+ 'Impulse: ',Fg.2,' gec')
19 FORMAT (3X,'Propellant Mass Flow Rate: ',E13.7,'kg/gec C',

+ E13.7, ' /gec) ')
*20 FORMAT (3X,'AF/AO = ',E13.7)

21 FORMAT (3X,'Rev',5X,'Time (sec)',4X,'NU (Rad)',7X,'V-bar',14X,
+ e' 13X,'a-bar'12X,'ra-bar',IIX,'rp-bar')

C
C
C *BEGIN ITERATIONS OF STATE VECTOR

* C
C

NREV=1
Y4NU=Y(4,1)
VBAR=0.DO

C
*C * Identify Initial Transfer Procedure

C
C * CASE 11 - Increasing a and e
C * CASE 12 - Increasing a and Decreasing e
C * CASE 21 - Decreasing a and Increasing e
C * CASE 22 - Decreasing a and e

* C
FLAG=O
FLAG 1=-1
DIFFA=DABS (RABARF-RABARI)
DIFFP=DABS (RPBARF-RPBARI)
ICASE=21

* IF ((RPBARF.GT.RPBARI) .OR. (DIFFP.LT.1.E-3)) THEN
FLAG 1= 1
IF (DIFFP.LT.I.E-3) FLAG=FLAG+l
ICASEZI 1
IF (RABARF .LT. RABARI) ICASE= ICASE+ 11
IF (DIFFA.LT.1.E-3) GO TO 70
ENDIF
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C
25 NXT=O

I CMT=0
CALL HAMINGMNT)

IF ((NXT.EQ.O).AND.(H.LT.l.D-6)) THEN
WRITE (,)'H decreased to ',H,'.'
WRITE (,)'Earning gtill refused to initialize.'
STOP
END IF

IF (NXT.EQ.0) THEN
H=H/1. 1
IPNT=30
GOTO 25

* ENDIF

WRITE (*,130) NREV,Y(3,1),Y4NU,VBAR,Y(l,1),Y(2,1),
+ RABAR(l),RPBAR(l)
IF (IOUT.GE.1) WRITE (9,130) NREV,Y(3,1),Y4NU,VBAR,Y(l,1),

+ Y(2,1) ,RABAR(1) ,RPBAR(1)
* C

50 DO 100 I=1,IMAX
C

CALL HAMING(NXT)
C

NREV=1+INT(Y(4 ,NXT) /PI2)
* Y4NU=Y(4,NXT) -FLOAT (NREV-1)*PI2

C
IF (ICASE.EQ. 11) DIFF=RABARF-RABAR(NXT)
IF (ICASE.EQ.22) DIFF=RABAR(NXT) -RABARF
IF (ICASE.EQ. 12) DIFF=RPBARF-RPBAR(NXT)
IF (ICASE.EQ.21) DIFF=RPBAR(NXT)-RPBARF

*IF (DABS(DIFF).LT.1.D-13) GO TO 110
IF (DIFF.GT.O.DO) GO TO 90

C
C WRITE(*)
C WRITE (*,130) VBAR,Y(1,NXT),Y(2,NXT),RABAR(NXT),RPBAR(NXT)
C IF (IOUT.EQ.1) THEN

*C WRITE (9,*)
C WRITE (9,130) VBAR,Y(1,NXT) ,Y(2,NXT) .RABAR(NXT) IRPBAR(NXT)
C ENDIF
C

CALL HAMING(NXT)
C

* C WRITE(,)
C WRITE (*,130) VBAR,Y(1,NXT)PY(2,NXT),RABAR(NXT),RPBAR(NXT)
C WRITE (*,*)
C IF (IOUT.EQ.1) THEN
C WRITE (9,*)
C WRITE (9,130) VBAR,Y(1,NXT) ,Y(2.NXT) ,RABAR(NXT) ,RPBAR(NXT)

*C WRITE (9,*)
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C ENDIF
C

NXT 1 = NXT
* NXT= I

VBAR1 =VBAR
DO 55 J=1,4

J1=5-J
IF ((ICASE.EQ.11).OR.(ICASE.EQ.22)) X(J1)=RABAR(NXT1)
IF ((ICASE.EQ.12).OR.(ICASE.EQ.21)) X(J1)=RPBAR(NXT1)

*VAR I(J1) = VAR 1
VAR2(J1)=Y(1,NXT1)
VAR3(Jl)=Y(2,NXT1)
VAR4 (Ji) =Y(3 1NXT1)
VAR5(Jl)=Y(4,NXT1)
VBARI=VBARI-H

* NXT1=NXT1-1
IF (NXT1.EQ.0) NXT1=4

55 CONTINUE
IF (CICASE.EQ.11) .OR. (ICASE.EQ.22)) XBAR=RABARF
IF ((ICASE.EQ.12).OR.(ICASE.EQ.21)) XBAR=RPBARF
CALL INTERP3 (XBAR,X,VAR1,P)

* VBAR=P
CALL lNTERP3 (XBAR,X,VAR2,P)
Y(1,NXT)=P
CALL INTERP3 (XEAR,X,VAR3,P)
Y(2,NXT)=P
CALL INTEEP3 (XBAR,X,VAR4,P)

* Y(3,PJXT)=P
CALL INTERP3 (XBAR,X,VAR5,P)
Y(4,NXT)=P
IF ((ICASE.EQ.11).OR.(ICASE.EQ.22)) RABAR(NXT)=RABARF
IF ((ICASE.EQ.12).OR.(ICASE.EQ.21)) RPBAR(NXT)=RPBARF
NREV=1+INT(Y(4,NXT) /P12)

* Y4NU=Y(4 PNXT) -FLOAT (NREV-1) *P12
C

70 FLAG=FLAG+l
IF (FLAG.EQ.2) GOTO 80

C
ICASE= 12

* IF (FLAG1.LT.O) THEN
ICASE~ll
IF (RABARF.LT.RABARI) ICASE=ICASE+11
IF (DIFFA.LT.1.E-3) GO TO 70
END IF

*G GTO025
C
C

80 WRITE (*,130) NREV,Y(3,NXT),Y4NU,VBAR,Y(1,NXT)LY(2,NXT),
+ RABAR(NXT) IRPBAR(NXT)

WRITE (*,*)
IF (IOUT.GE.1) THEN
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WRITE (9,130) NREV,Y(3I,NXT),Y4NU,VBARY(1,NXT),Y(2,NXT),
+ RABAR(NXT) ,RPBAR(NXT)

WRITE (9,*)
ENDIF

GO TO 150
C
C

90 IF (IPNT.EQ.O) GO TO 100
IF ((I/IPNT*IPNT).EQ.I) THEN

* WRITE (*,130) NREV,Y(3,NXT),Y4NU,VBAD,Y(1,NXT),Y(2,NXT),
+ RABAR(NXT) ,RPBAR( NXT )

IF (IOUT.EQ.1) WRITE (9,130) NREV,Y(3,NXT),Y4NU,VBAR,
+ Y(1,NXT) ,Y(2,NXT) ,RABARt(NXT) ,RPBAR(NXT)

ENDIF
C

* C
100 CONTINUE

C
C

WRITE (,)'Maximum number of iterations reached.'
WRITE (,)'Program Terminated'

* GOTO 170
C
C
C

110 Y(1,l)=Y(1,NXT)
Y (2 , 1) = Y (2 , NXT)

* Y(3,1)=Y(3,NXT)
Y(4, 1)=Y(4,NXT)
RABAR (1) SABAR (NXT)
RPBAR(1) 2RPBAR(NXT)

C
GO TO 70

* C
C

130 FORMAT (3X,I3,3X,E14.7,3X,F8.3,3X,E14.7,3X,E14.7,3X,
+ E14.7,3X,E14.7,3X,E14.7)

135 FORMAT (3X,'de/dVbar = ',E20.13)
C

* 150 CONTINUE
C
C
C *TRANSFER TOTAL DELTA-V AND TIME CALCULATION
C
C

* DELV=VBAR*A0*MANOMO
DELVM=DELV* 1000.
TOF=1./MDOTBAR*(1.-DEXP(-DELV/(9.81D-3*ISP)))/3600./24.
TOFY=TOF/385. 25

C
C

* C *Comparison Data (Circular Orbits Only)
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0C

C

IF ((EO.LT.1.E-8).AND.(EF.LT.I.E-6)) GO TO 170
* C

C *Spiral Transfer
C

VCSI=DSQRT(UU/AO)
VCS2=DSQRT (MU/AO/Y2F)

C
* DELVSP=VCS1-VCS2

DEL VSM=DEL VSP* 1000.
VSPBAR= DEL VSP/ AOl MANOMO
TOFSP=1./MDOTBAR*(l.-DEXP(-DELVSP/(9.81D-3*ISP)))/3600./24.
TOFSPY=TOFSP/365. 25

C
* C

C *Hohmnann Transfer
C

V1=DSQRT(2*MU*(1./AO-l./(AO+AO*Y2F)))
V2=DSQRT (2*MU* (1./AO/Y2F- 1.1(AO+AO*Y2F)))
DELVHM= (Vl-VCS1) +(VCS2-V2)

* DEL VHMM=DEL VHM* 1000.
VHMBAR=DELVHM/AO /MANOMO

C
C

WRITE(,)
WRITE (*,160) DELV,DELVM

*WRITE (*,165) TOF,TOFY
WRITE(,)
WRITE(,)
WRITE (,)'Comparison Transfer Data'
WRITE(,)
WRITE(*)

* WRITE (,)'Spiral Transfer'
WRITE(,)
WRITE (*,160) DELVSP,DELVSM
WRITE (*,165) TOFSP,TOFSPY
WRITE (*,*)
WRITE (,)'Hohmann Transfer'
WRITE(*)
WRITE (*,160) DELVHM,DELVHMM
WRITE(,)
WRITE(*)
WRITE(*)

0 IF (IOUT.GE. 1) THEN

WRITE (9,*)
WRITE (9,160) DELV,DELVM
WRITE (9,165) TOFTOFY
WRITE (9,*)
WRITE (9.*)
WRITE (9,*) 'Comparison Transfer Data'
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WRITE (9.*) '

WRITE (9,*)
WRITE (9,') ' Spiral Transfer'
WRITE (9,')
WRITE (9,160) DELVSP,DELVSM
WRITE (9,165) TOFSP,TOFSPY
WRITE (9,')
WRITE (9,') ' Hohmann Transfer'
WRITE (9,')

• WRITE (9,160) DELVHM,DELVHMM
WRITE (9,')
WRITE (9,')
WRITE (9,')
ENDIF

C
• IF (ITYP.EQ.1) THEN

WRITE (10,') Y2F,VBAR
WRITE (11,*) Y2F,VSPBAR
WRITE (12,') Y2F,VHMBAR
ENDIF

C
* 160 FORMAT (3X,'Total Transfer Delta-V: ',F9.4,' km/s (',

+ F8.2,' m/s)')

165 FORMAT (3X,'Total Transfer Time: ',F9.3,' days (',
+ F6.2,' yr)')

C
C

• DIFFYF=Y2FCX-Y2F
IF (DABS(DIFFYF).GT.1.E-13) GOTO 10

C
C

170 CONTINUE
C
C

IF (IOUT.GE.1) CLOSE (9)
IF (ITYP.EQ.1) THEN
CLOSE (10)
CLOSE (11)
CLOSE (12)

* ENDIF
C
C

STOP
END

C
* C

C
C
C ' SUBROUTINE RHS
C

SUBROUTINE RHS (NXT)
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DOUBLE PRECISION MANOM0,MDOTBAR
COMMON /HAM/ VBAR,Y(42,4),F(42,4),ERR(42),N,H,MODE

* COMON /RH/ RABAR(4),RPBAR(4),ICASE,ICNT,MANOMOAO,MDOTBAR,
+ ACCELO,PI2

C
C * Specify ra = constant (ID=0) or rp = constant (ID=)
C

IF ((ICASE.EQ.11).OR.(ICASE.EQ.22)) ID=1
* IF ((ICASE.EQ.12).OR.(ICASE.EQ.21)) ID=0

C
CALL INTERPO(Y(1,NXT),DELA,DELE,ID,ICNT)
ICNT=ICNT+1

C
C * Define Derivatives

* C
IF ((ICASE.EQ.11).OR.(ICASE.EQ.21)) SIGN=1.0
IF ((ICASE.EQ.12).OR.(ICASE.EQ.22)) SIGN=-1.0

C
F(1,NXT)=Y(2,NXT)**.5*SIGN*DELE/PI2
F(2,NXT)=Y(2,NXT)**1.5*SIGN*DELA/PI2

* F(3,NXT)=(1.-MDOTBAR*Y(3,NXT))*MANOMO*AO/ACCELO
C

Y4NU1=Y(4,NXT)-FLOAT(INT(Y(4,NXT)/PI2))
C

F(4,NXT)=MANOMO/(Y(2,NXT)*(1.-Y(1,NXT)**2))**1.5*
+ (1.+Y(1,NXT)*DCOS(Y4NUI))**2*F(3,NXT)* C

C * Define Changes in ra-bar and rp-bar
C

RABAR(NXT)=Y(2,NXT) *(l .+Y(1,NXT))
RPBAR(NXT)=Y(2,NXT)*(i.-Y(1,NXT))

C

RETURN
END

C
C

SUBROUTINE HAMING (NXT)
C VERSION OF 11/20/1987
C PURPOSE
C HAMING IS AN ORDINARY DIFFERENTIAL EQUATIONS INTEGRATOR
C IT IS A FOURTH ORDER PREDICTOR-CORRECTOR ALGORITHM WHICH
C MEANS THAT IT CARRIES THE LAST FOUR VALUES OF THE STATE
C VECTOR, AND EXTRAPOLATES THESE VALUES TO OBTAIN A PREDICTED
C NEXT VALUE (THE PREDICTION STEP) AND EVALUATES THE EQUATIONS
C OF MOTION AT THE PREDICTED POINT, AND THEN CORRECTS THE
C EXTRAPOLATED POINT USING A HIGHER ORDER POLYNOMIAL (THE
C CORRECTION STEP).
C INPUT
C NXT -- IN THE CALL SPECIFIES WHICH OF THE FOUR VALUES OF
C THE STATE VECTOR IS THE CURRENT ONE. NXT IS UPDATED
C BY HAMING AUTOMATICALLY, BUT MUST BE SET TO ZERO ON
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C THE FIRST CALL.
C CALL ROUTINES
C RHS(NXT)
C REFERENCES
C WILLIAM WEISEL
C PROGRAMMER
C RODNEY D. BAIN
C PROGRAM MODIFICATIONS
C NONE
C COMMENTS
C TOL -- IS HAMING'S START UP TOLERANCE ... SET TO REASONABLE VALUE
C AS NECESSARY
C THE COMMON BLOCK CONTAINS:
C VBAR -- IS THE INDEPENDENT VARIABLE (OFTEN TIME)
C Y(42,4) -- IS THE STATE VECTOR, 4 COPIES OF IT, WITH NXT POINTING
C POINTING TO THE CURRENT ONE, THE LIMIT OF 42 EQUATIONS
C OF MOTION CAN BE CHANGED.
C F(42,4) -- ARE THE EQUATIONS OF MOTION EVALUATED AT THE SAME TIMES
C AS THE STATE VECTOR Y ... IT IS THE JOB OF SUBROUTINE
C RHS TO CALCULATE THESE.
C ERR(42) -- IS AN ESTIMATE OF THE ONE-STEP INTEGRATION ERROR
C N -- IS THE NUMBER OF ODES ... LIMIT IS 42 UNLESS YOU CHANGE
C THE COMMON BLOCK
C H -- IS THE TIMESTEP ... ONE CALL TO HAMING INCREMENTS X BY H
C MODE -- IS ZERO FOR EOM ONLY, 1 FOR EOM AND EOV
C THE USER MJST SUPPLY A MAIN PROGRAM, AND THE SUBROUTINE RHS(NXT) WHICH
C EVALUATES THE EQUATIONS OF MOTION.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /HAM/ VBAR,Y(42,4),F(42,4),ERR(42),N,H,MODE
DATA ZERO,ONE,TWO,THREE,FOUR/O.DO,1.DO,2.DO,3.DO,4.DO/
TOL=1.D-12

C
C CHECK IF THIS IS THE FIRST CALL ... HAMING (LIKE ALL PREDICTOR-
C CORRECTORS) NEEDS 'PREVIOUS' VALUES
C

IF(NXT) 190,10,200
C

C IT IS A PICARD INTERATION (SLOW AND EXPENSIVE) TO STEP BACKWARDS
C IN TIME THREE STEPS TO GET THE 4 PREVIOUS POINTS. A SUCCESSFUL
C STARTUP RETURNS NXT=I, AND TIME HAS NOT BEEN INCREMENTED. IF
C STARTUP FAILS, NXT WILL BE RETURNED AS ZERO.
C
10 XO=VBAR

HH=H/TWO
CALL RHS(1)
DO 40 L=2,4

VBAR=VBAR+HH
DO 20 Iz1,N

Y(I,L)=Y(I,L-I)+HH*F(I,L-1)
20 CONTINUE

CALL RHS(L)
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VBAR=VBAR+HH

DO 30 I=1,N
Y(I ,L)=Y(I ,L-1)+H*F(I ,L)

30 CONTINUE
CALL RHS(L)

40 CONTINUE
JSW=-10

50 ISW=1
DO 120 I=1,N

HH=Y(I,1)+H*(9.DO*F(I,1)+19.DO*F(I,2)-5.DO*F(I,3)
1 +F(I,4))/24.DO
IF(DABS(HH-Y(I,2)).LT.TOL) GOTO 70
ISW=O

70 Y(I,2)=HH
HH=Y(I, 1)+H* (F(I, I)+FOUR*F(I,2)+F(I,3) )/THREE
IF(DABS(HH-Y(I,3)).LT.TOL) GOTO 90
ISW=0

90 Y(I,3)=HH
HH=Y(I, 1) +H*(THREE*F(I, 1)+9.DO*F(I ,2) +9.DO*F(I,3)
I +THREE*F(I,4))/8.DO
IF(DABS(HH-Y(I,4)).LT.TOL) GOTO 110
ISW=0

110 Y(I,4)=HH
120 CONTINUE

VBAR=XO
DO 130 L=2,4

VBAR=VBAR+H
CALL RHS(L)

130 CONTINUE
IF(ISW) 140,140,150

140 JSW=JSW I
IF(JSW) 50,280,280

150 VBAR=XO
ISW=1
JSW=1
DO 160 I=1,N

ERR(I) =ZERO
180 CONTINUE

NXTl
GOTO 280

C
C A CALL TO HAMING WITH NXT=-NXT, AFTER A SUCCESSFUL STARTUP,
C WILL TURN OFF THE SECOND EVALUATION OF THE EQUATIONS OF MOTION
C FOLLOWING THE CORRECTOR STEP. IN SYSTEMS WHERE THE EQUATIONS OF
C MOTION ARE VERY EXPENSIVE, THIS CAN HALVE YOUR RUN TIME.
C
190 JSW=2

NXT=IABS (NXT)
C
C THIS IS THE PREDICTOR-CORRECTOR ALGORITHM ... FIRST THE INDICES
C ARE PERMUTED
C
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200 VBAR=VBAR+H
NP1-MOD(NXT, 4) +1
GOTO (210,230),ISW

210 GOTO '270,270,270,220),NXT
220 ISW=2
230 NM2=MOD(NP1,4)+1

NM1-MOD(NM2,4) +l
NPO-MOD(NM1,4) +1

C
C ... THEN THE PREDICTOR PART IS RUN TO FIND AN EXTRAPOLATED VALUE
C OF THE STATE VECTOR AT THE NEW TIME ...
C

DO 240 I=I,N
F(I ,NM2)=Y(I ,NP1) +FOUR*H*(TWO*F(I ,NPO) -F(I ,NM1)

I +TWO*F(I,NM2))/THREE
Y(I,NP1)=F(I,NM2)-0.925619835D0*ERR(I)

240 CONTINUE
C
C THE EQUATIONS OF MOTION ARE EVALUATED AT THE EXTRAPOLATED VALUE
C OF THE STATE VECTOR ...

C
CALL RHS(NP1)

C
C AND THE CORRECTOR ALGORITHM IS USED TO ADD THIS NEW INFORMATION
C AND OBTAIN A BETTER VALUE OF THE NEW STATE VECTOR ...
C

DO 250 I=I,N
Y(I,NPI)=(g.D0*Y(I ,NPO)-Y(I,NM2)+THREE*H*(F(I,NPI)

I +TWO*F(I,NPO)-F(I,NM1)))/8.DO

ERR(I)=F(I,NM2)-Y(I,NPI)
Y(I,NP1)=Y(I ,NPI) +0.0743801653D0*ERR(I)

250 CONTINUE
GOTO (260,270) ,JSW

* C
C FINALLY, THE EQUATIONS OF MOTION ARE RE-EVALUATED AT THE BETTER
C VALUE OF THE STATE VECTOR ... THIS CAN BE SUPPRESSED.
C
260 CALL RHS(NP1)
270 NXT-NP1
280 RETURN

END
C
C
C
C SUBROUTINE INTERP3
C
C * The following subroutine interpolates between four data
C * points using a third order polynomial.
C
C

SUBROUTINE INTERP3 (XBAR,X,D,P)
C
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IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION X(4) .P1(3) ,D(4)

C
DO 300 K=1,3

DO 300 J=(K+1),4
Jl=4-Je (K.1)
D(Jl)=(D(Jl)-D(Jl-1))/(X(J1)-X(J1-K))

300 CONTINUE
C

Z=XBAR-X (1)
Pl (1) =D( 1) +D (2) *
DO 310 J=2,3

Z=Z* (XBAR-X(J))
P1(J) :P1(J-1)+D(J+1)*Z

310 CONTINUE
C

P=P1 (3)
C

RETURN
END

C
C
C
C
C
C SUBROUTINE INTERPO
C
C
C
C * The following subroutine utilizes the Newton formula
C * to interpolate/extrapolate from the given data sets
C * utilizing a 4th degree interpolating polynomial.
C
C
C

SUBROUTINE INTERPO (EBAR ,DA, DE,ID, ICNT)
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION E(100) .LAMDA(100) ,DELA(lOO) ,DELE(100)

C

C *OPEN DATA FILES*
C
C
C *Constant ra Data
C

IF ((ID.EQ.0).AND.(ICNT.EQ.O)) THEN
OPEN (UNIT=15, STATUS ='OLD',FILE = 'ALAM.DAT')
OPEN (UNIT=16, STATUS ='OLD' IFILE ='ADELA.DAT')
OPEN (UNlT=17, STATUS ='OLD' .FILE ='ADELE.DAT')
IDATA=99
END IF
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C
C
C *Constant rp Data

* C
IF ((ID.EQ.1).AND.(ICNT.EQ.0)) THEN
OPEN (UNIT=15, STATUS = 'OLD' IFILE ='PLAM.DAT')
OPEN (UNIT=16. STATUS = 'OLD' IFILE ='PDELA.DAT')
OPEN (UNIT=17, STATUS = 'OLD' ,FILE ='PDELE.DAT')
IDATA=g8

* ENDIF
C
C

IF (ICNT.EQ.O) THEN
C

REWIND (15)
* REWIND (16)

REWIND (17)
C
C
C *INPUT INITIAL DATA
C

* C
DO 5, I=1,IDATA

READ (15,*) E(I),LAdDA(I)
READ (16,*) E(I),DELA(I)
READ (17,*) E(I),DELE(I)

5 CONTINUE
* C

IDEG=4
C

CLOSE (15)
CLOSE (16)
CLOSE (17)

ENDIF
C
C
C *EVALUATE FUNCTION AT SPECIFIED VALUES OF ECCENTRICITY
C
C
C *Check location of data point
C

DO 30 I=1,IDATA
DIFF=EBAR-E(I)
IF (ABS(DIFF).LE.1.E-15) THEN
LAM=LAMDA(I)
DA=DELA(I)
DE=DELE(I)
GO TO 40
END IF

IF ((I.EQ.I).APJD.(DIFF.LT.0.)) THEN
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IMIN1l
IMAX= IMIN+IDEG
GO TO 35

* ENDIF
C

IF ((I.EQ.IDATA).AND.(DIFF.GT.O.)) THEN
IMAX=IDATA
IMIN=IMAX-IDEG
GO TO 35

* ENDIF
C

ILEFT= I
IF (DIFF.LT.O.) GO TO 31

C
30 CONTINUE

* C
C

31 IDEGP1=IDEG+1
IDEGL=IDEGPl/2
IMIN=ILEFT+1-IDEGL
IMAX=IMIN+IDEG

* C
IF (IMIN.LT.1) THEN

IMIN=1
IMAX=IMIN+IDEG
ENDI F

C
* IF (IMAX.GT.IDATA) THEN

IMAX: IDATA
IMIN=IMAX-IDEG
ENDIF

C
C

* C *Evaluate Polynomial
C

35 CALL INTERP(IDEGIMIN,IMAX,EBAR,E,LAMDA,DELA,DELE,LAM,DA,DE)
C

40 CONTINUE
RETURN

* END
C
C
C
C
C
C *SUBROUTINE INTEEP*
C
C
C
C * The following algorithm evaluates an interpolating
C *nth degree polynomial
C

C-1. 18



C
SUBROUTINE INTERP(IDEG,IMIN,IMAX,EBAR,E,LAMDA,DELA,DELE,LAMDA,DE)

C
* IMPLICIT DOUBLE PRECISION (A-II,L-Z)

DIMENSION E(100) ,LAMDA(100) ,DELA(100) ,DELE(100)
DIMENSION X(100) ,D(100) ,P(100)

C
IDEGP1=IDEG+ 1

C
* DO 200 I=1,3

C
DO 150 J=IMIN,IMAX

K=J-IMIN+ 1
IF (I.EQ.1) D(K)=LAMDA(J)
IF (I.EQ.2) D(K)=DELA(J)

* IF (I.EQ.3) D(K)=DELE(J)
X(K) =E(J)

150 CONTINUE
C

DO 155 K=1,IDEG
Do 155 J=(K+1),IDEGP1

* J1=IDEGPI-J+ (K+1)
D(J1)=(D(J1)-D(J1-1) )/ (X(J1) -X(Jl-K))

155 CONTINUE
C

Z=EEAR-X(1)
P (1) =D (1) +D (2) *Z

DO 160 J=2,IDEG
Z=Z* (EBAR-X(J))
P(J)=P(J-1)+D(J+1)*Z

160 CONTINUE

CF(.Q1 A=(DG
IF (I.EQ.1') LAMP(IDEG)
IF (I.EQ.2) DA=P(IDEG)

C
200 CONTINUE

RETURN
END



Appendix C-2: Program TRANSALT

C
C *

C * Program TRANSALT
C * *

C * Captain Gregory Beeker
C * Air Force Institute of Technology *

C * July 1988
C *

C
C
C The following program was written to solve the long timescale
C problem to determine the total transfer time of a spacecraft
C traveling between two orbits. The program takes a transfer
C vehicle from an initial orbit to a final orbit though many
C revolutions. A combination of the fast timescale changes in the
C orbital elements for constant distance to perigee (rp) and apogee
C (ra) over two revolutions is implemented. Subroutine Haming
C is incorporated to solve the differential equations for the
C nondimensional changes in eccentricity and semimajor axis
C (dabar/dVbar and de/dVbar). In addition, Program INTERPO, which
C provided the final solutions to the fast timescale problem, is
C also incorporated as a subroutine to provide the values of delta
C aN and delta e* as functions of eccentricity.
C
C
C

IMPLICIT DOUBLE PRECISION (A-HO-Z)
DOUBLE PRECISION ISPMUMANOMOMANOMMDOTBARMDOTMO
DIMENSION X(4),VAR1(4),VAR2(4),VAR3(4),VAR4(4)
COMMON /HAM/ VBAR,Y(42,4),F(42,4),ERR(42),N,H,MODE
COMMON /RH/ RABAR(4),RPBAR(4),ICASE,ICNT,DIFF

C
C
C * INITIALIZATION OF PARAMETERS FOR HAMING *
C
C

N=2
MODE=O

C
C
C
C N INITIAL DATA ENTRY
C
C
C N Primary Body Parameters
C

WRITE (*,*) 'Do you wish to change the value of the'
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WRITE (*,*) 'gravitational parameter and radius of the'
WRITE (*,i) 'primary body (currently set to those of'
WRITE (*,*) 'the Earth)? (0 - yes; I - no)'

* READ (,,) IP
C

IF (IP.EQ.0) THEN
WRITE (*,i) 'Enter the new values of mu (km3/sec2) and r (km).'
READ (,,1 MU,R
ENDIF

* IF (IP.EQ.1) THEN
MU=3.986012D5
R=6378.145D0
ENDIF

C
C * Orbit Data

* C
WRITE (*,*) 'Specify the type of program run (0 or I).'
WRITE (*,*)
WRITE (,,) ' 0 - Single Transfer'
WRITE (I,) ' 1 - Multiple Transfers (Includes plot'
WRITE (*,*) ' data file of af/aO vs delta-V total)'

• READ (*,*) ITYP
C

WRITE (*,*) 'Enter the eccentricity and semimajor axis (km)'
WRITE (*,N) 'of the initial orbit.'
READ (*,*) EO,AO

C
• 2 IF (AO.LE.R) THEN

WRITE(*,*) 'Initial orbit intersects the surface of the'
WRITE(*,*) 'primary body. Please select a new value.'
READ (*,*) AO
GOTO 2
ENDIF

WRITE (',') 'Enter the eccentricity and semimajor axis (km)'
WRITE (*,*) 'of the final orbit.'
READ (*,*) EF,AF

C
3 IF (AF.LE.R) THEN

WRITE(*,*) 'Final orbit intersects the surface of the'
WRITE(*,*) 'primary body. Please select a new value.'
READ (*,*) AF
GOTO 3
ENDIF

IF (ITYP.EQ.1) THEN

WRITE (#,*) 'Specify the number of transfers between'
WRITE (i,*) 'the initial and final orbits.'
READ (#,,) NTRANS
ENDIF

C
C * Vehicle Parameters
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C
MO=2000
MDOT=4.OD-4
MDOTBAR=MDOT/MO
ISP=5000

C
WRITE (*,*) 'Do you wish to change the value of the vehicle mass'
WRITE (*,m) 'and mass flow rate parameters? (0 - yes; 1 - no)'
WRITE (i,*)

* WRITE (*,*) 'Current Settings:'
WRITE (*.11) MO
WRITE (*,12) MDOT
WRITE (*,13) MDOTBAR
READ (*,*) IM

C
IF (IM.EQ.0) THEN

WRITE (*,*) 'Enter the new values of the mass flow rate (kg/s)'
WRITE (*,*) 'and initial vehicle mass (kg).'
READ (*,*) MDOTMO
MDOTBAR-MDOT/MO
WRITE (*,13) MDOTBAR
ENDIF

C
WRITE (*,*) 'Do you wish to change the value of propulsion'
WRITE (*,14) ISP
WRITE (*,*) '(0 - yes; I - no)'
READ(* ,*.) I ISP

IF (IISP.EQ.0) THEN
WRITE (*,*) 'Enter the new value of Isp.'
READ (.) ISP
ENDIF

C
C * Integration Data
C

WRITE (m,*) 'Enter the step size of the independent'
WRITE (*,#) 'variable, V-bar.'
READ (*,i) H
WRITE (*,*) 'Enter the maximum number of iterations to be'
WRITE (*,*) 'performed by Haming during each transfer.'
READ (*,*) IMAX

C
C * Output Parameters
C

IF (ITYP.EQ.1) THEN
IOUT=2
OPEN (UNIT = 10, STATUS = 'NEW', FILE = 'EDVALT')
OPEN (UNIT = 11, STATUS = 'NEW', FILE = 'SDVALT')
OPEN (UNIT = 12, STATUS = 'NEW', FILE = 'HDVALT')
GO TO 8
ENDIF

C
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WRITE (*,*) 'Enter output code.'
WRITE (*,*) '(0 for screen, 1 for file and screen)'
READ (I,) IOUT

* C
8 IF (IOUT.GE.l) THEN

WRITE (*,) 'Specify the name of the data output file.'
READ (*,'(A)') TRANSOUT
OPEN (UNIT = 9, STATUS = 'NEW', FILE = TRANSOUT)
ENDIF

* C
IPNT=0
IF (IOUT.LE.1) THEN

WRITE (*,*) 'Enter the number of steps between each'
WRITE (,,) 'data printout.'
READ (*,*) IPNT

* ENDIF
C
C
C
C * INITIALIZE ORBIT PARAMETERS (NONDIMENSIONAL) *

C
* C

C * State Vector
C

Y2F=AF/AO
Y2FCK=Y2F

* IF (ITYP.EQ.1) THEN
DELAF=(AF-AO)/NTRANS
Y2F=l.DO
ENDIF

C
10 IF (ITYP.EQ.1) Y2F=Y2F+DELAF/AO

Y(1,1)=EO
Y(2, 1) =AO/AO

C
C
C * Initial Mean Anomaly
C

MANOMO=DSQRT (MU/AO**3)
C
C
C * Initialize ra* & rp*

RABAR(1)=Y(2,1)*(1.D0+E0)

RABARI=RABAR(1)
RABARF=Y2F*(I.DO+EF)
RPBAR(1)=Y(2,1)*(1.DO-E0)
RPBARI=RPBAR(1)

* RPBARF=Y2F*(I.DO-EF)
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C

C f Identify Orbit Type ,
C *f*ftftftftftftft *****ttt**

C
C * CASE 11 - Increasing a and a

C * CASE 12 - Increasing a and Decreasing e
C * CASE 21 - Decreasing a and Increasing e
C f CASE 22 - Decreasing a and a
C

ICASE= l
IF (AO.GT.AF) ICASE=ICASE+10

C
C
C * PRINT INITIAL DATA *
C ftftfftfttftfftfttftf *fftfftff

* C
IF (IOUT.EQ.1) THEN
WRITE (9,*) ' Orbit Data'
WRITE (9,*) ' *******ft'
WRITE (9,*)
WRITE (9.15) EO,AO,Y(2,1)

* WRITE (9,16) EF,AF,Y2FCK
WRITE (9,*)
WRITE (9,*)
WRITE (9 *) ' Primary Body Data'
WRITE (9,f) ' ftft**********'

WRITE (9,*)' 3 2'
WRITE (9,17) MU,R
WRITE (9,*)
WRITE (9,*)
WRITE (9,*) ' Transfer Vehicle Data'
WRITE (9,*) ' *******t***ftftft'
WRITE (9,*)
WRITE (9,18) MO,ISP
WRITE (9,19) MDOT,MDOTBAR
WRITE (9,*)
WRITE (9,*)
ENDIF

C
IF (ITYP.EQ.1) THEN
WRITE (*,*) ' ************ftftftft'
WRITE (*,20) Y2F
WRITE (*,*) ' f***t****** t***f*'
WRITE (9,*) ' *************ftftft'
WRITE (9,20) Y2F
WRITE (9,*) ' f***tt*******f**ft'

ENDIF

C
WRITE (*,2)
WRITE (*,21)
WRITE(ff)

C
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IF (IOUT.GE.1) THEN
WRITE (9,*0
WRITE (9,21)

* WRITE (9,*)
ENDIF

C
11 FORMAT (3X,'Vehicle Initial Mass: ',Fg.2,' kg')
12 FORMAT (3X,'Propellant Mass Flow Rate: ',E13.7,' kg/sec')
13 FORMAT (3X,'Nondimenuional Propellant Mass Flow Rate: ',E13.7,

+ 'Igec,)
14 FORMAT (lX,'system Isp currently get at ',F6.1,' sec ?')
15 FORMAT (3X,'Initial Orbit Eccentricity: ',F6.3,OX,'Initial '

+ 'Orbit Semimajor Axis: ',FlO.2,' km (',E13.7,')')
16 FORMAT (3X,'Final Orbit Eccentricity: ',F8.3,6X,'Final ',

+ 'Orbit Semimajor Axis: ',F10.2,' km (',E13.7,'))
017 FORMAT (3X,'Gravitational Parameter: ',E13.e,' km /sec ',6X,

+ 'Radius: ',9 'kin')
18 FORMAT (3X,'Total Initial Mass: ',Fg.2,' kg' ,6X,'Specific '

+ 'Impulse: ',Fg.2,' sec')
19 FORMAT (3X,'Propellant Mass Flow Rate: ',E13.7,'kg/sec C,

+. E13.7,' /sec)')
20 FORMAT (3X,'AF/AO =',E13.7)
21 FORMAT (1OX,'V-bar',21X,'e'2OX,'a-bar'ISX,'ra-bar',17X,'rp-bar')

C
C
C *BEGIN ITERATIONS OF STATE VECTOR

0 C
C

VBAR=O. DO
25 NXT:O

I CNTz 0
CALL HAMING(NXT)
IF (NXT.EQ.O) THEN

WRITE(*,*) 'HAMING DID NOT INITIALIZE'
STOP
END IF

C
WRITE (*,130) VBAR,Y(l,l),Y(2,I),RABAR(1),RPBAR(1)

* IF (IOUT.GE.1) WRITE (9.130) VBAR.Y(1,l),Y(2,1),
+ RABAR(1) ,RPBAR(1)

C
50 DO 100 I=1,IMAX

C
CALL HAMING(NXT)

* C
IF (ICASE.EQ. 11) DIFF=RABARF-RABAR(JXT)
IF (ICASE.EQ.21) DIFF=RPBAR(NXT) -RPBARF

C
IF (DABS(DIFF).LT.1.D-13) GO TO 60
IF (DIFF.GT.O.DO) GOTO 90

* C
C WRITE(,)
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C WRITE (*,130) VBAR,Y(I,NXT),Y(2,NXT)LRABAR(JXT),RPBAR(NXT)
C IF (IOUT.EQ.1) THEN
C WRITE (9,*)

*C WRITE (9,130) VBAR,Y(1UNXT),Y(2,NXT),RABAR(NXT),RPBAR(NXT)
C ENDIF
C

CALL HAMING(NXT)
C
C WRITE(*)

*C WRITE (*,130) VBAR,Y(1,NXT),Y(2,NXT),RABAR(NXT),RPBAR(NXT)
C WRITE (*,*)
C IF (IOUT.EQ.1) THEN
C WRITE (9,*)
C WRITE (9,130) VBARY(1,NXT) ,Y(2,NXT) ,RABAR(NXT) ,RPBAR(NXT)
C WRITE (9,*)

*C ENDIF
C

NXT 1 =NXT
VBAE1 =VBAR

C
DO 55 J=1,4

J1=5-J
IF (ICASE.EQ.11) X(J1)=RABAR(NXT1)
IF (ICASE.EQ.21) X(Jl)=RPBAR(NXT1)
VARi (Ji) =VBAR1
VAR2(Jl)=Y(1,NXTl)
VAR3(Jl)=Y(2,NXT1)
IF (ICASE.EQ.11) VAR4(J1)=RPBAR(NXT1)
IF (ICASE.EQ.21) VAR4(J1)=RABAR(NXT1)
VBAR1=VBAR1 -H
NXT1= NXT 1-1
IF (NXT1.EQ.O) NXT1=4

55 CONTINUE

CF(CS.Q11 BRRBR
IF (ICASE.EQ.11) XBAR=RABARF

CALL INTERP3 (XBAR,X,VAR1,P)
VBAR=P
CALL INTERP3 (XBAR,X,VAR2,P)
Y(1,NXT)=P
CALL INTERP3 (XBAR,X,VAR3,P)
Y(2,NXT)=P
CALL INTERP3 (XBAR,X,VAR4,P)
IF (ICASE.EQ.11) RPBAR(NXT)zP

* IF (ICASE.EQ.21) RABAR(NXT)=P
C

IF (ICASE.EQ.11) RABAR(NXT)=RABARF
IF (ICASE.EQ.21) RPBAR(NXT)=RPBARF

C
80 WRITE (*,130) VEAR,Y(1,NXT),Y(2,NXT),RABAR(NXT),RPBAR(NXT)

* ~WRITE(,*
C
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IF (IOUT.GE.1) THEN
WRITE (9,130) VBAR,Y(1,NXT) ,Y(2,NXT) ,RABAR(NXT) ,RPBAR(NXT)
WRITE (9,*)

* ENDIF
C

GO TO 150
C
C

90 IF (IPNT.EQ.0) GO TO 100
* IF ((I/IPNT*IPNT).EQ.I) THEN

WRITE (*,130) VBARY(1,NXT) ,Y(2,NXT) ,RABAE(NX) ,RPBAE(NXT)
IF (IOUT.EQ.1) WRITE (9,130) VBAR,Y(1,NXT),Y(2,NXT),

+ RABAR(NXT) ,RPBAR(NXT)
END IF

0 C
C

100 CONTINUE
C
C

WRITE (*)'Maximum number of iterations reached.'
WRITE (*)'Program Terminated'
GOTO 170

C
C

130 FORMAT (3X,E20.13,3X,E2O.13,3X,E20.13,3XE2O.13,3X,E20.13)
135 FORMAT (3X,'de/dVbar = ',E20.13)

150 CONTINUE

C
C
C *TRANSFER TOTAL DELTA-V AND TIME CALCULATION
C

0 DEL V=VBAR*AO*MANOMO

DELVMd=DELV* 1000.
TOF=1./MDOTBAR*(1.-DEXP(-DELV/(9.81D-3*ISP)))/3600./24.
TOFY=TOF/365. 25

C
* C

C * Comparison Data
C
C
C * Spiral Transfer
C

* VCS1=DSQRT(MU/AO)
VCS2=DSQRT (MU/AO/Y2F)

C
DEL VSP=VCS 1-VCS2
DEL VSM= DEL VSP* 1000.
VSPBAR=DELVSP/ AO/MANOMO

* TOFSP=1./MDOTBAR*(l.-DEXP(-DELVSP/(9.81D-3*ISP)))/3600./24.
TOFSPY=TOFSP/365.25
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C

C *Hohmann Transfer
* C

Vl=DSQRT(2*MU*(l./AO-1./(AO+A0'Y2F)))
V2=DSQRT (2*MU' (1 /AO/Y2F- 1. /(AO+AO*Y2F)))
DELVHM= (V1-VCS1) +(VCS2-V2)
DEL VHMM= DELVHN' 1000.
VHMdBAR=DELVHM/ AO /MANOMO

* C
C

WRITE(,)
WRITE (*,160) DELV,DELVM,VBAR
WRITE (*,165) TOF,TOFY
WRITE(,)

* ~WRITE(,)
WRITE (,)'Comparison Transfer Data'
WRITE(,)
WRITE(,)
WRITE (,)'Spiral Transfer'
WRITE(,)
WRITE (*.160) DELVSP,DELVSM,VSPBAR
WRITE (*,165) TOFSP,TOFSPY
WRITE (*,*)
WRITE (,)'Hohmann Transfer'
WRITE(,)
WRITE (*,160) DELVHM,DELVHMM,VHNBAR
WRITE(')
WRITE(,)
WRITEC,)

C
IF (IOUT.GE.1) THEN

WRITE (9,')
WRITE (9,180) DELV,DELVM,VBAR
WRITE (9,185) TOFITOFY
WRITE (9,')
WRITE (9,')
WRITE (9,') 'Comparison Transfer Data'

* WRITE (9,*)
WRITE (9,')
WRITE (9,') 'Spiral Transfer'
WRITE (9,')
WRITE 09,160) DELVSP ,DELVSM,VSPBAR
WRITE (9,165) TOFSP,TOFSPY

*WRITE (9,')
WRITE (9,') 'Hohmann Transfer'
WRITE (9,')
WRITE (9,160) DELVHM,DELVHMM,VHMBAR
WRITE (9,')
WRITE (9,')

*WRITE (9,')
ENDIF
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C
IF (ITYP.EQ.1) THEN
WRITE (1O,*) Y2F,VBAR

* WRITE (11.0) Y2F,VSPBAR
WRITE (12,*) Y2F,VHMBAR
END IF

C
160 FORMAT (3X,'Total Transfer Delta-V: ',F8.4,' km/B (',F8.2,

+ ' m/g)',6X,'Nondimengional Delta-V: ',F8.4,' /gec')
*165 FORMAT (3X,'Total Transfer Time: ',FQ.3,' days (0,

+ F7.3,' yr)')
C
C

DIFFYF=Y2FCK-Y2F

IF (DABS(DIFFYF).GT.l.E-13) GOTO 10

170 CONTINUE
C
C

IF (IOUT.GE.1) CLOSE (9)
IF (ITYP.EQ.1) THEN

CLOSE (10)
CLOSE (11)
CLOSE (12)
ENDIF

C
C

STOP
END

C
C

* C
C
C SUBROUTINE RHS
C
C

SUBROUTINE RHS (NXT)
* IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /HAW/ VBAR,Y(42,4),F(42,4),ERR(42),N,H,MODE
COMMON /RH/ RABAR(4) ,RPBAR(4) ,ICASEICNTDIFF

C
C

CALL INTERPOA(Y(1,NXT) ,DELAA,DELEA,ICNT)
* CALL INTERPOP(Y(1,NXT) ,DELAP,DELEP,ICNT)

ICNT=ICNT+ I
C
C *Define Derivatives
C

PI=DBLE(ACOS(-1.0))

IF (ICASE.LT.20) THEN
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DELE=DELEP
DELA=DELAP
F(1,NXT)=Y(2,NXT)**.5*(DELEP-DELEA)/(4.*PI)
F(2,NXT)=Y(2,NXT)**1.5*(DELAP-DELAA)/(4.*PI)
ENDIF

C
IF (ICASE.GT.20) THEN
DELE=DELEA
DELA=DELAA
F(1,NXT)=Y(2,NXT)**.5*(DELEA-DELEP)/(4.*PI)
F(2,NXT)=Y(2,NXT)**1.5*(DELAA-DALAP)/(4.*PI)
ENDIF

C
IF (F(1,NXT).LT.0.DO) THEN

F(1 ,NXT)=Y(2,NXT)**.5*DELE/(2.*PI)
F(2,NXT)=Y(2,NXT)**1.5*DELA/(2.*PI)
WRITE (*,50) Y(1,NXT),Y(2,NXT)
ENDIF

C
C * Define Changes in ra-bar and rp-bar
C

RABAR (NXT) =Y (2, NXT)* (i. +Y ( 1,NXT) )
RPBAR(NXT)=Y(2,NXT)*(1.-Y(i,NXT))

C
50 FORMAT (3X,'Single Orbit Performed at e = ',E13.7,' and abar =

+ E13.7)

RETURN
END

C
C

SUBROUTINE HAMING(NXT)
C VERSION OF 11/20/1987
C PURPOSE
C HAMING IS AN ORDINARY DIFFERENTIAL EQUATIONS INTEGRATOR
C IT IS A FOURTH ORDER PREDICTOR-CORRECTOR ALGORITHM WHICH
C MEANS THAT IT CARRIES THE LAST FOUR VALUES OF THE STATE
C VECTOR, AND EXTRAPOLATES THESE VALUES TO OBTAIN A PREDICTED
C NEXT VALUE (THE PREDICTION STEP) AND EVALUATES THE EQUATIONS
C OF MOTION AT THE PREDICTED POINT, AND THEN CORRECTS THE
C EXTRAPOLATED POINT USING A HIGHER ORDER POLYNOMIAL (THE
C CORRECTION STEP).
C INPUT
C NXT -- IN THE CALL SPECIFIES WHICH OF THE FOUR VALUES OF
C THE STATE VECTOR IS THE CURRENT ONE. NXT IS UPDATED
C BY HAMING AUTOMATICALLY, BUT MUST BE SET TO ZERO ON
C THE FIRST CALL.
C CALL ROUTINES
C RHS(NXT)
C REFERENCES
C WILLIAM WEISEL
C PROGRAMMER
C RODNEY D. BAIN
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C PROGRAM MODIFICATIONS
C NONE
C COMMENTS

* C TOL -- IS HAMING'S START UP TOLERANCE ... SET TO REASONABLE VALUE
C AS NECESSARY
C THE COMMON BLOCK CONTAINS:
C VBAR -- IS THE INDEPENDENT VARIABLE (OFTEN TIME)
C Y(42,4) -- IS THE STATE VECTOR, 4 COPIES OF IT, WITH NXT POINTING
C POINTING TO THE CURRENT ONE, THE LIMIT OF 42 EQUATIONS

* C OF MOTION CAN BE CHANGED.
C F(42,4) -- ARE THE EQUATIONS OF MOTION EVALUATED AT THE SAME TIMES
C AS THE STATE VECTOR Y ... IT IS THE JOB OF SUBROUTINE
C RHS TO CALCULATE THESE.
C ERR(42) -- IS AN ESTIMATE OF THE ONE-STEP INTEGRATION ERROR
C N -- IS THE NUMBER OF ODES ... LIMIT IS 42 UNLESS YOU CHANGE

* C THE COMMON BLOCK
C H -- IS THE TIMESTEP ... ONE CALL TO HAMING INCREMENTS X BY H
C MODE -- IS ZERO FOR EOM ONLY, I FOR EOM AND EOV
C THE USER MUST SUPPLY A MAIN PROGRAM, AND THE SUBROUTINE RHS(NXT) WHICH
C EVALUATES THE EQUATIONS OF MOTION.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /HAM/ VBAR,Y(42,4),F(42,4),ERR(42),N,H,MODE
DATA ZERO,ONE,TWO,THREE,FOUR/O.DO, I .DO,2.DO,3.DO,4.DO/
TOL=1.D-12

C
C CHECK IF THIS IS THE FIRST CALL ... HAMING (LIKE ALL PREDICTOR-
C CORRECTORS) NEEDS 'PREVIOUS' VALUES
C

IF(NXT) 190,10,200
C
C IT IS A PICARD INTERATION (SLOW AND EXPENSIVE) TO STEP BACKWARDS
C IN TIME THREE STEPS TO GET THE 4 PREVIOUS POINTS. A SUCCESSFUL
C STARTUP RETURNS NXT=l, AND TIME HAS NOT BEEN INCREMENTED. IF
C STARTUP FAILS, NXT WILL BE RETURNED AS ZERO.
C
10 XO=VBAR

HH=H/TWO
CALL RHS(1)
DO 40 L=2,4

VBAR= VBAR+HH
DO 20 I=I,N

Y(I,L)=Y(I ,L-l) +HH*F(I,L-l)
20 CONTINUE

CALL RHS(L)
VBAR=VBAR+HH

DO 30 I=1,N
Y(I ,L)=Y(I ,L-1) +H*F(I ,L)

30 CONTINUE
CALL RHS(L)

40 CONTINUE
JSW=-10
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50 ISW=1
DO 120 I=1.N

HH=Y(I,1)+H*(g.DO*F(I,1)+19.DO*F(I,2)-5.DOIF(I,3)
* 1 'F(I,4))/24.DO

IF(DABS(HH-Y(I,2)).LT.TOL) GOTO 70
IsW=0

70 Y(I,2)=HH

IF(DABS(HH-Y(I,3)).LT.TOL) GOTO 90
IsW=0

go Y(I,3)zHH
HH=Y(I,1)+H*(THREE*F(I,1)+g.DO*F(I,2)+g.D0*F(I,3)
1 +THREE*F(I,4))/8.DO
IF(DABS(HH-Y(I,4)).LT.TOL) GOTO 110

*110 1,)H
120 CONTINUE

VBAR=XO
DO 130 L=2,4

CALL RHS(L)
S130 CONTINUE

IF(ISW) 140,140,150
140 JSW=JSW+1

IF(JSW) 50,280,280
150 VBAR=XO

0 ISW=1
JsW=1
DO 180 I=1,N

ERR(I)=ZERO
180 CONTINUE

NXT= 1
* GOTO 280

C A CALL TO HANING WITH NXT=-NXT, AFTER A SUCCESSFUL STARTUP,
C WILL TURN OFF THE SECOND EVALUATION OF THE EQUATIONS OF MOTION
C FOLLOWING THE CORRECTOR STEP. IN SYSTEMS WHERE THE EQUATIONS OF
C MOTION ARE VERY EXPENSIVE, THIS CAN HALVE YOUR RUN TIME.

190 JSW=2
NXT= lABS (NXT)

C
C THIS IS THE PREDICTOR-CORRECTOR ALGORITHM ... FIRST THE INDICES
C ARE PERMUTED

* C
200 VBAR=VBAR+H

NPI=MOD(NXT,4)+l
GOTO (210,230) ,ISW

210 GOTO (270,270,270,220) ,NXT
220 ISW=2

*230 NM2=MOD(NP1,4)+1
NM1=MOD(NM2,4) +1
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NPO=MOD(NM1 ,4)+1
C
C ... THEN THE PREDICTOR PART IS RUN TO FIND AN EXTRAPOLATED VALUE

*C OF THE STATE VECTOR AT THE NEW TIME ...

C
DO 240 I=1,N

F(I ,NM2) =Y(I ,NPl)+FOUR*H* (TWO*F(I ,NPO) -F(I ,NMI)
1 +TWO*F(I,NM2))/THREE

Y(I ,NP1) =F(I ,NM2) -0.92561g835DO*ERR(I)
* 240 CONTINUE

C
C THE EQUATIONS OF MOTION ARE EVALUATED AT THE EXTRAPOLATED VALUE
C OF THE STATE VECTOR ...

C
CALL RHS(NP1)

C AND THE CORRECTOR ALGORITHM IS USED TO ADD THIS NEW INFORMATION
C AND OBTAIN A BETTER VALUE OF THE NEW STATE VECTOR ...

C
DO 250 I=1,N
1 Y(I,NP1)=(g.DO*Y(I,NPO)-Y(I,NM2)+THREE*H*(F(I,NPl)
1 +TWO*F(I,NPO)-F(I,NM1)))/8.DO
ERR(I)=F(I,NM2)-Y(I,NP1)
Y(I ,NP1) =Y(I ,NPI) +0.0743801653D0*ERR(I)

250 CONTINUE
GOTO (260,270) ,JSW

C
C FINALLY, THE EQUATIONS OF MOTION ARE RE-EVALUATED AT THE BETTER
C VALUE OF THE STATE VECTOR ... THIS CAN BE SUPPRESSED.
C
260 CALL RHS(NP1)
270 NXT=NP1

*280 RETURN
END

C
C
C
C SUBROUTINE INTERP3

* C
C * The following subroutine interpolateg between four data
C points using a third order polynomial.
C
C

SUBROUTINE INTERP3 (XBAR,X,D,P)
* C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION X(4) ,P1(3) ,D(4)

C
DO 300 K=1,3

DO 300 J=(X+1),4
* Jl=4-J+(K+1)

D(JI)=(D(JI)-D(JL-1) )/(X(J1)-X(JI-K))
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300 CONTINUE

C
Z=XBAR-X(1)
P* P(1) =D (1)+D(2) *Z
DO 310 J=2,3

Z=Z* (XBAR-X(J))
P1 (J)=Pl (J-1)+D(J+1)*Z

310 CONTINUE
C

* P=Pl(3)
C

RETURN
END

C
0 C

C
C
C
C SUBROUTINE INTERPO
C
C
C
C * The following subroutine utilizes the Newton formula
C * to interpolate/extrapolate from the given data sets
C * utilizing an 4th degree interpolating polynomial.
C
C
C

SUBROUTINE INTERPOA (EBAR IDA, DE, ICNT)
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION E(100) ,LAMDA(100) ,DELA(100) ,DELE(100)

C
C
C *OPEN DATA FILES
C
C
C *Constant ra Data

IF (ICNT.EQ.O) THEN
OPEN (UNIT=15, STATUS = 'OLD' ,FILE ='ALAM.DAT')
OPEN (UNIT=16, STATUS = 'OLD' IFILE ='ADELA.DAT')
OPEN (UNIT=17, STATUS = 'OLD' ,FILE = 'ADELE.DAT')
I DATA= gg

* ENDIF
C
C

IF (ICNT.EQ.0) THEN
C

REWIND (15)
* REWIND (18)

REWIND (17)
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C

C *INPUT INITIAL DATA
* C

C
DO 5, I=1,IDATA

READ (15,*) E(I) ,LAMDA(I)
READ (16,*0 E(I),DELA(I)
READ (17,*) E(I),DELE(I)

*5 CONTINUE
C

I DEG= 4
C

CLOSE (15)
CLOSE (16)
CLOSE (17)

C
ENDIF

C
C
C *EVALUATE FUNCTION AT SPECIFIED VALUES OF ECCENTRICITY*
C
C
C *Check location of data point*
C

DO 30 I=1,IDATA
DIFF=EBAR-E(I)
IF (ABS(DIFF).LE.l.E-15) THEN
LAM=LAMDA (I)
DA=DELA(I)
DE=DELE(I)
GO TO 40
ENDIF

IF ((I.EQ.1).AND.(DIFF.LT.O.)) THEN
IMIN2I
IMAX=IMIN4IDEG
GO TO 35

* ENDIF
C

IF ((I.EQ.IDATA).AND.(DIFF.GT.O.)) THEN
IMAX= IDATA
IMIN2IMAX-IDEG
GO TO 35

* ENDIF
C

ILEFT= I
IF (DIFF.LT.0.) GO TO 31

C
30 CONTINUE

* C
C
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31 IDEGP1=IDEG+1
IDEGL=IDEGPl/2
IMIN=ILEFT+ 1-IDEGL

* IMAX=IMIN+IDEG
C

IF (IMIN.LT.1) THEN
IMIN=1
IMAX= IMIN. IDEG
END IF

* C
IF (IMAX.GT.IDATA) THEN

IMAX=IDATA
IMIN=IMAX-IDEG
ENDIF

C
C
C *Evaluate Polynomial*
C

35 CALL INTERP(IDEG,IMINIIMAX,EBAR,ELA&IDA,DELA,DELE,LAM.DA,DE)
C

40 CONTINUE
RETURN
END

C
C
C

SUBROUTINE INTERPOP(EBAR,DA,DE,ICNT)

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION E(100) ,LAMDA(100) ,DELA(100) ,DELE(100)

C
C
C 'OPEN DATA FILES
C
C
C *Congtant rp Data
C

IF (ICNT.EQ.O) THEN
* OPEN (UNIT=18, STATUS = 'OLD' IFILE = 'PLAM.DAT')

OPEN (UNIT=19, STATUS = 'OLD' ,FILE = 'PDELA.DAT')
OPEN (UNIT=20, STATUS = 'OLD' ,FILE = 'PDELE.DAT')
IDATA=9B
END IF

C
* C

IF (ICNT.EQ.O) THEN
C

REWIND (18)
REWIND (19)
REWIND (20)

* C
C
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C *INPUT INITIAL DATA
C
C

* DO 5, I=1,IDATA
READ (18,*) E(I),LAMDA(I)
READ (19,.0 E(I),DELA(I)
READ (20,*) E(I),DELE(I)

5 CONTINUE
C

* IDEG=4
C

CLOSE (18)
CLOSE (19)
CLOSE (20)

0 ENDIF
C
C
C 'EVALUATE FUNCTION AT SPECIFIED VALUES OF ECCENTRICITY
C
C

0 C Check location of data point
C

DO 30 I=1,IDATA
DIFF=EBAR-E (I)
IF (ABS(DIFF).LE.1.E-15) THEN
LAM=LAMDA (I
DA=DELA(I)
DE=DELE(I)
GO TO 40
END IF

C
* IF ((I.EQ.1).AND.(DIFF.LT.0.)) THEN

IMIN:1
IMAX=IMIN+IDEG
GO TO 35
END IF

C
* IF ((I.EQ.IDATA).AND.(DIFF.GT.O.)) THEN

IMAX=IDATA
IMINSIMAX-IDEG
GO TO 35
END IF

C
* ILEFT=I

IF (DIFF.IJT.O.) GO TO 31
C

30 CONTINUE
C
C

* 31 IDEGP1=IDEG+1
IDEGL=IDEGPl/2
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IMIN=ILEFT+1-IDEGL
IMAX=IMIN+IDEG

C
* IF (IMIN.LTl1) THEN

IMIN=l
IMAX=IMIN+IDEG
END IF

C
IF (IMAX.GT.IDATA) THEN

* IMAX=IDATA
IMIN=IMAX-IDEG
ENDIF

C
C
C *Evaluate Polynomial
C

35 CALL INTERP(IDEG,IMIN,IMAX,EBAR,E,LAMDA,DELA,DELE,LAM,DA,DE)
C

40 CONTINUE
RETURN

C END

C
C

C SUBROUTINE INTERP
C

0 C
C
C * The following algorithm evaluateg an interpolating
C nth degree polynomial
C

SUBROUTINE INTERP(IDEG, IMIN,IMAX,EBAR,E,LAMDA,DELA,DELE,LAM,DA,DE)
C

IMPLICIT DOUBLE PRECISION (A-H,L-Z)
DIMENSION E(lO0) ,LAMDA(100) ,DELA(100) ,DELE(100)
DIMENSION X(1OO) ,D(10) P(1OO)

IDEOPI =IDEG~1
C

DO 200 I=1,3
C

DO 150 J=IMIN,IMAX
* X=J-IMIN~l

IF (I.EQ.l) D(K)=LAMDA(J)
IF (I.EQ.2) D(K)=DELA(J)
IF (I.EQ.3) D(K)=DELE(J)
X(K) =E(J)

150 CONTINUE
* C

DO 155 K=1,IDEG
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Do 155 J=(K+1),IDEGP1
J1=IDEGPl-J+ (K+l)
D(J1) =(D(J1)-D(J1-1) )/(X(Jl)-X(J1-K))

*155 CONTINUE
C

Z=EEAR-X( 1)
P1) =D( 1) +D(2) *Z

C
DO 160 J=2,IDEG

* Z=Z*(EBAR-X(J))
P(J)=P(J-1)+D(J+1)*Z

160 CONTINUE
C

IF (I.EQ.1) LAM=P(IDEG)
IF (I.EQ.2) DA=P(IDEG)

* IF (I.EQ.3) DE=P(IDEG)
C

200 CONTINUE
C

RETURN
END
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Appendix D-1: Program TRANSMUL Data - LEO to GEO Transfer

Orbit Data

Initial Orbit Eccentricity: 0.000 Initial Orbit Seninjor hxis: 8878.14 km (0.10000009+01)

Final Orbit Eccentricity: 0.000 Final Orbit Semimajor Axis: 42241.15 km (0.6325281E+01)

Primp Body Data
3 2

Gravitational Parameter: 398,801 km /sec Radius: 8378.145 km

Transfer Vehicle Data

Total Initial Mass: 5000.00 kg Specific Impulse: 863.00 sec

Propellant Mass Flow Rate: 0.39771001-03kg/sec (0.79542001-07 /sec)

Rev Tim (see) IM (Bad) VMar e a-bar ra-bar rp-bar

1 0.00001+00 0.000 0.0O000 0.0000E.00 0.1000E401 0.10001+01 0.10001+01
50 0.2723E+08 2.196 0.24001-01 0.2581-01 0.10261401 0. 10521+01 0.1000E+01

*100 0.58071+08 3.591 0.50001-01 0.5348E-01 0.10581+01 0.11131+01 0.1000E.01
150 0.8637E+06 3.084 0.78001-01 0.83331-01 0.10901.01 0.11811+01 0. 1000E+01
201 0.11901+07 0.554 0.10901+00 0.11621+00 0.11311+01 0.12631+01 0.10001+01
251 0.1527E+07 1.316 0.14201+00 0.1511E+00 0.11781+01 0.13561+01 0.100O01
301 0.18941+07 0.507 0.17901+00 0.18991+00 0.12341+01 0.14691+01 0.10001+01
349 0.22771+07 6.258 0.21901+00 0.2315E+00 0.13011+01 0.16021+01 0.1000E+01

*400 0.28551+07 4.517 0.28001+00 0.27381.00 0.13781+01 0.17531+01 0.10001+01
450 0.30541+07 4.556 0.30501+00 0.31901+00 0.14881+01 0.19371+01 0.10001+01
501 0.34201.07 0.235 0.34801+00 0.38171+00 0.158E1+01 0.21331+01 0.10001+01
550 0.38281+07 0.535 0.3980E+00 0.41021+00 0.1095E+01 0.23911+01 0.10001+01
800 0.42181+07 2.889 0.44801400 0.4574E#00 0.18431+01 0.2881+01 0.10001+01
850 0.48131+07 0.827 0.5010E+00 0.50581+00 0.20231+01 0.30471+01 0.1000E+01

*700 0.49951+07 1.249 0.55501+00 0.55331+00 0.22381+01 0.34771+01 0. 10001+01
750 0.54321+07 1.126 0.6200E+00 0.60781+00 0.25501+01 0.41001+01 0.1000E+01
775 0.58891+07 3.038 0.8570E+00 0.83751+00 0.27581+01 0.45171+01 0.10001+01
800 0.58921.07 6.011 0.6930E+00 0.6653E400 0.2988E+01 0.4977E401 0.10001+01
825 0.61021+07 3.337 0.72801+00 0.6914E+00 0.3241E.01 0.5482E+01 0.10001+01
849 0.63681+07 5.017 0.7740E+00 0.72431+00 0.36271+01 0.6254E+01 0.10001+01

*850 0.63891407 4.715 0.80851+00 0.72691+00 0.36821+01 0.63251+01 0.10001+01
855 0.65521.07 1.431 0.8376E.00 0.67101.00 0.3785E401 0.63251+01 0.12451+01
860 0.67851407 1.006 0.87721+00 0.58841+00 0.3082E+01 0.83251.01 0.18381+01
865 0.69921+07 0.781 0.92081+00 0.4893E+00 0.4247E+01 0.63251+01 0.2181+01
870 0.72501+07 3.835 0.97281+00 0.38241+00 0.46421+01 0.83251+01 0.29591+01
875 0.75261+07 0.281 0. 10311+01 0.21191.00 0.5219E+01 0.63251+01 0.4112E+01

*879 0.78781+07 4.915 0.11101+01 -0.30531-10 0.63251+01 0.63251+01 0.63251+01
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Total Transfer Delta-V: 8.5780 ku/s ( 8577.98 s/)
Total Transfer Tin: 92.682 days ( 0.25 yr)

CoMarison Transfer Data

Spiral Transfer

Total Transfer Delta-V: 4.6539 ku/s ( 4653.90 /e)
Total Transfer Tim: 61.534 days ( 0.17 y)

Hohmnn Transfer

Total Transfer Delta-V: 3.8937 ka/g ( 3893.75 a/s)
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Appendix D-2: Prga TRANSALT Data - LEO to GEO Transfer

Orbit Data

Initial Orbit Eccentricity: 0.000 Initial Orbit Seaimajor hxis: 8678.14 ka (0.10000001+01)
Final Orbit Eccentricity: 0.000 Final Orbit Sezimajor hig: 42241.15 ka (0.53252811+01)

Prm~ B data
3 2

Gravitational Parameter: 398,601 km /gee Radius: 6378.145 km

Transfer Vehicle Data

Total Initial Mass: 5000.00 kg Specific Impulse: 863.00 sec
Propelnt Mass Flow Rate: 0.39771001-03 kg/sec (0.79542031-07 /sec)

V-bar ea-bar ra-bar r~a

0. 00000000001+00 0.00000000001+00 0. 10OO0000+01 0.10000000001+01 0.10000000001+01
0.50000000001-01 0.13025314791-08 0.10557704061+01 0.10557704081+01 0.10557704051+01

0 . 1000O000+00 0.2603426238E-08 0. 11163308221+01 0. 1116339825E+01 0.11163398201+01
0. 15000000001+00 0.39026401161-08 0.11822750681.01 0.11822750731+01 0.1182275064E+01
0.20000000001+00 0.52001264391-08 0.1254229101E+01 0.12542291961+01 0.12542291831+01
0.2500000000K+00 0.64958358011-08 0.13329576901+01 0.133295769E1+01 0.1332957681E+01
0.30000000001+00 0.77897158091-08 0.1419338442E+01 0.1419338453E+01 0.14193384311+01
0.3500000000E+00 0.90817108091-08 '.1514396269E+01 0.15143962831+01 0.1514396255E+01

00.40000000001+00 0.1037176156E-07 0.18193334791+01 0.16193334961+01 0.16193334621+01
0.45000000001+00 0.11659804881-07 0.17355680731+01 0.17355680931+01 0.17355680521+01
0.50000000001+00 0.12945773251-07 0.18647818971+01 0.18647819211+01 0.1864781873E+01
0.5500000000E+00 0.14229594291-07 0.20089818291+01 0.2008981858E+01 0.20089818011+01
0.00000000001+00 0.15511190291-07 0.2170578175E+01 0.21705782091+01 0.21705781411+01

*0.65000000001+00 0.1679047753E-07 0.2352486046E+01 0.2352486085E+01 0.23524880061+01
0.7000000000E+00 0.18067385591-07 0.25582577561+0 1 0.25582578021+0 1 0.25582577091+01
0.75000000001+00 0.19341756461-07 0.27922575721+01 0.27922576261+01 0.27922575181+01
0.8000000000E+00 0.20613543581-07 0.30598950481+01 0.30598951111+01 0.30598949851+01
0.85000000001+00 0.21882010641-07 0.33679404931+01 0.33679405661+01 0.33679404191+01
0.90000000001+00 0.23148830161-07 0.37249573921+01 0.3724957478E+01 0.3724957306E+01

*0.95000000001+00 0.2441206177E-07 0.4141904050E+01 0.41419041511401 0.4141903949E+01
0.10000000001+01 0.25672150171-07 0.4632984627E+01 0.46329847461+01 0.46329845091+01
0,10500000001+01 0.2692892257E-07 0. 5218875095E+01 0.5218875236E+01 0.5218874955E+01
0.11000000001+01 0.2818218550E-07 0.59185254891+01 0.5918525656E+01 0.59185253221+01
0.11250949751+01 0.2880980737E-07 0.6325281014E+01 0.63252811971+01 0.6325280832E+01
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Total Transfer Delta-V: 8.6922 ku/s ( 8692.22 a/s) Iondimensional Delta-V: 1.1251 /ec

* Total Transfer Tim: 93.390 days ( 0.256 yi)

Comparison Transfer Data

Spiral Transfer

Total Transfer Delta-V: 4.6539 ku/s ( 4653.90 a/s) Iondimnsional Delta-V: 0.6024 /sec

Total Transfer Tim: 61.534 days ( 0.168 yr)

Hohmann Transfer

Total Transfer Delta-V: 3.8937 km/s ( 3893.75 m/s) Nondimensional Delta-V: 0.5040 /sec
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Appendix D-3: Program TRANSMUL Data - Transfer to Molniya Orbit

Orbit Data

Initial Orbit Eccentricity: 0.000 Initial Orbit Semimajor Axis: 7184.76 km (0.10000001+01)
Final Orbit Eccentricity: 0.730 Final Orbit Semimajor Axis: 26810.23 km (0.37037051+01)

Primar My Data
3 2

Gravitational Paramter: 398,601 km /gec Radius: 6378.145 km

Transfer Vehicle Data

Total Initial Mug: 5000.00 kg Specific Impulse: 863.00 gec
Propellant Maug Flow Rate: 0.39771001-03kg/sec (0.79542001-07 /sec)

Rev Tim (sec) ffU (Rad) V-b9-arra-ba M!ar

1 0.00001.00 0.000 0.00001+00 0.00001+00 0.10001+01 0.10001401 0.1000E+01
50 0.3059E+08 3.138 0.28001-01 0.2996E-01 0.1030E+01 0.10611+01 0.1000E+01

101 0.6359E+06 2.159 o.sgooi-oi 0.6308E-01 0.10671.01 0.1134E+01 0.10001+01
*150 0.9872E+06 0.332 0.91001-01 0.9716E-01 0.11071+01 0.12151.01 0.1000E+0l

200 0.1338E+07 1.554 0.1280E+00 0.13631.00 0.11571401 0.13151+01 0.10001+01
250 0.17461.07 0.156 0.1700E+00 0.1805E+00 0.12201+01 0.14401.01 0.10001.01
300 0.2148E.07 1.396 0.2130E+00 0.22531+00 0.12901+01 0.15811.01 0.1001+01
325 0.23301+07 2.174 0.23301+00 0.2459E+00 0.1326E.01 0.1652E+01 0.1O000
350 0.25441.07 3.604 0.25701+00 0.27051.00 0.13701.01 0.17411.01 0.10001.01

*376 0.27271.07 0.468 0.2780E.00 0.29191.00 0.14121+01 0.1824E+01 0. 1000E+01
400 0.29331+07 5.557 0.30201+00 0.31801+00 0.1482E+01 0. 1924E+01 0.10001+01
425 0.31341+07 3.548 0.32601.00 0.3400E.00 0.15151+01 0.2030E+01 0.10001+01
450 0.3340E+07 4.354 0.35101+00 0.36461+00 0.15741+01 0.21481+01 0.10001#01
475 0.35331.07 0.378 0.3750E+00 0.38801+00 0.16341+01 0.2281+01 0.10001+01
500 0.3768E+07 5.616 0.40501+00 0.41691.00 0.17151+01 0.2430E.01 0.1000E+01
525 0.4005E+07 4.157 0.43601.00 0.44621+00 0.18051+01 0.26111+01 0.10001.01
550 0.42571.07 3.334 0.47009+00 0.4777E.00 0.19141+01 0.28291.01 0.10001+01
575 0.44741.07 3.958 0.50001+00 0.50491+00 0.2019E+01 0.30391.01 0.10001+01
600 0.4692E+07 4.796 0.5310E.00 0.5321E+00 0.2138E.01 0.3277E+01 0.10001.01
625 0.49711407 2.469 0.57201+00 0.56781+00 0.23141+01 0.3628E+01 0. 10001.01
653 0.52471.07 4.174 0.81401+00 0.0029E+00 0.2518E+01 0.40371+01 0.10001+01
675 0.54691.07 2.338 0.64901+00 0.63111+00 0.2711E+01 0.4422E+01 0.10001.01
699 0.57261+07 6.155 0.6910E400 0.66381.00 0.2974E+01 0.4949E+01 0.10001+01
700 0.5732E+07 5.962 0.69201+00 0.6646E.00 0.2981E+01 0.4963E+01 0.1000E+01
725 0.59861+07 0.467 0.73501+00 0.89681+00 0.32961.01 0.55921+01 0.10001+01
745 0.62541+07 3.103 0.78221+00 .0.7300E+00 0.37031+01 0.64071+01 0.1000E+01

STotal Transfer Delta-V: 5.8264 km/s (5826.39 Wes)
Total Transfer Time: 72.394 days (0.20 yr)
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