R-1181
SPHERICAL GFODETIC TRANSFORMATIONS
VOLUVE I OF II
SPECTRAL THEORY AND
OPTIMAL TEMPLATE DESIGN
by
William M. Robertson
Septernber 1978

Prepared for:
Dafense Mapping Agency Aarospace Center (STT)
St. Louis Air Force Station, Missouri 63118
Monitoring Office:
Space and Missile Systems Orgenization (MNCA) Norton Air Force Base, California 92409

The Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts 02139

Approved for public release; distribution unlimited.

Unclassified
secuntr Clasgification of This page romm deno Enioned

REPORT DOCUMENTATION PACE	READ EISTRUCTIONS BEFORE COMPLETMG FORM
	2. MECITIENT'S CATALOG NUMEE
a. PITLE (and suretito) SPHERICAL GEODETIC TRANSFORMATIONS VOLUME I OF II - SPECTRAL THEORY \& OPTIMAL TEMPLATE DESIGN	5. TYPE OF REPORT \& REMOD COVERED FINAL 9/30/77 thru 9/30/78 6. PERFORMING ORG. REPORT NUMEER
7. AUTHOR(O) William M. Robertson	8. CONTRACT OR GRANT NUMEEE(O) F04704-78-C-0002
5. Pinforming orgamization name and adoress The Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts 02139	10. PNOGTAM ELEMENT PMOJECT, TABK AARA C WOAK UNIT WUMIENS Services Line Item 0003; Task 3.12
11. COMTROLLING OFFICE NAME ANO ADDRESS Defense Mapping Agency Aerospace Center (STT) St. Iouis Missouri 63118	12. Repont date September 1978 13. Mumerabpages 315
Space and Missile Systems Organization Air Force Systems Command (MNCA) Norton Air Force Base, California 92409	iB. sECUNITY CLASS. (of this repore) Unclassified TBE DECLABSIFICATIONTCOWNGAKOING
16. OISTRICUTION STATEMENT (ol info Repart) Approved for public release; distr	ibution unlimited.
17. DISTRIEUTION STATEMENT for the abatreet antered in blook 20, $1 /$ dilforent mam	Reporr)
Ti. Supplementany notes	
```Geodesy Vening-Meine Spectral Analysis Spherical Digital Filters Stokes' Integral```	sz' Integral
20. ABSTRACT (Continue on reverac oido il necoouedy end ldentity by block number) (see page iii of document)	
DD. FOnm 14373 EDition of 1 nov is is oesolete	Unclassified

$$
R-1181
$$

## SPHERICAL GEODETIC TRANSFORMATIONS

VOLUME I OF II

SPECTRAL THEORY
AND OPTIMAL TEMPLATE DESIGN
by
William M. Robertson

September 1978


The Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts 02139


## ACKNOWLEDGEMENT

This report was prepared by the Charles Stark Draper Laboratory, Inc. for the Defense Mapping Agency Aerospace Center under Task \#3.12 (DMA Geodesy Studies), Services Line Item No. 0003 of Contract F04704-78-C-0002 with the Space and Missile Systems Organization of the Air Force Systems Command.

Support for the performance of the work described in this Report has been provided under the following contracts between U.S. Government agencies and The Charles Stark Draper Laboratory, Inc.:

Task \#3.12 (DMA Geodesy Studies), Services Line Item No. 0003 of Contract F04704-78-C-0002 with the Space and Missile Systems Organization of the Air Force Systems Comand.

Task \#3.12 (DMA Geodesy Studies) of Change Order p00073 of Contract F04701-73-C-0277 with the Space and Missile Systems Organization of the Air Force Systems Comand.

Task \#ll50 (4320) (Gravity Model) of Contract N00030-78-C-0100 with the Strategic Systems Project Office of the U.S. Navy. Task \#4300 (Guidance System Initialization) of Contract N00030-77-C-0070 with the Strategic Systems Project Office of the U.S. Navy.

The author especially wishes to acknowledge the support provided by the U.S. Navy under the last contract listed above. This support came at a very early stage in the author's work, and was the enabling force for the subsequent development and application of the theory as described in this document.

Publication of this report does not constitute approval by the Defense Mapping Agency or the U.S. Air Force or the U.S. Navy of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

## ABSTRACT

- A general theory and method is developed by which more accurate and efficient summation approximations can be derived for any of the integral transformations of geodesy. The theory and method are applied to the well-known Stokes' and Vening-Meinesz' Integrals and improved summations are determined which have lower rms discretization errors than the approximations presently in use, even though only rudimentary optimization algorithms are employed. Thus the validity of the theory and the feasibility of the method are numerically demonstrated.

The theory is based upon spherical spectral analysis, a branch of mathematics describing the spectral (or frequency domain) properties of data and linear operators defined over spherical coordinates. It parallels Fourier analysis for cartesian coordinates. The scarcelyknown Legendre transform is shown to be the fundamental spectral transform in spherical coordinates, converting the spherical spatial domain into the spherical frequency domain and converting spherical convolution into ordinary multiplication.
$\rightarrow \rightarrow$ The integral transformations of geodesy are revealed as twodimensional spherical convolutions, and their discrete summation approximations are interpreted as spherical digital filters with a number of adjustable parameters determined by the underlying template. The spherical "transfer functions" of the integral transformations and of their discrete summation approximations are derived and shown to be close but not exactly equal to each other, as-expected. An analytic expression for the partial derivative of the discrete summation transfer function with respect to its parameters is derived and used in a Gauss-Newton optimization process, which adjusts the parameters incrementally so that the approximating transfer function of the summation matches the ideal transfer function of the integral as well as possible in a least-squares sense. This is equivalent to minimizing the rms discretization error of the approximation, and may be interpreted as spherical digital filter design for geodetic transformations.

## FOREWORD

This document is not, and is not intended to be, a treatise of mathematics nor of geodesy nor of signal processing. Rather it is meant as a readable and understandable survey of the application of a branch of mathematics to an important part of geodesy using signal processing concepts, and as a demonstration of the possibility of obtaining useful practical results from such cross-fertilization. In point of facr, it was the desire for practical results which led to the realization that the underlying problem had to be attacked from a combined mathematical, geodetic, and signal-processing viewpoint.

Although many subjects are covered in the document, an attempt was made to present sufficient detail (especially for the classical transformations) so as to provide the reader with an appreciation of the texture and richness of the material.

The author wishes to acknowledge his intellectual debt to Dr. Peter Meissl through the report "A Study of Covariance Functions Related to the Earth's Disturbing Potential" (Meissl, 1971). It was a reading of this report which enlightened the author with the fundamental ideas of the spectral theory of classical geodetic integrals and which led to the elaboration and extension of the theory presented herein.

The author also wishes to recognize Mr. A.R. DiDonato for his development of simple recurrence relations for the indefinite integrals of the associated Legendre functions (DiDonato, 1977). These formulae were essential in the numerical implementation of the author's theory, permitting the spectrum of discrete summation transformations to be rather easily computed for higher frequencies.

The author especially wishes to express his gratitude and appreciation to Ruth Erickson for her talent and care in the typing and physical preparation of both volumes of this document.

TABLE OF CONTENTS
Section Page
1 INTRODUCTION AND SUMMARY OF RELATED WORK ..... 1-1
2 SPECTRAL THEORY OF DATA AND OPERATORS ..... 2-1
2.1 Introduction ..... 2-1
2.2 Spectral Analysis of Data and Operators ..... 2-1
2.3 Cartesian Spectral Transforms ..... 2-5
2.4 Spherical Spectral Transforms ..... 2-8
2.5 Convolution Expressions ..... 2-11
3 SPECTRAL THEORY OF THE INTEGRAL TRANSFORMATIONS OF GEODESY ..... 3-1
3.1 Introduction ..... 3-1
3.2 Isotropic Geodetic Transformations ..... 3-1
3.3 Anisotropic Geodetic Transformations ..... 3-31
3.4 Transformations Involving Outward Surface Partial Derivatives ..... 3-41
4 SPECTRAL THEORY OF THE DISCRETE SUMMATION TRANSFORMATIONS OF GEODESY ..... 4-1
4.1 Introduction ..... 4-1
4.2 Bull's-Eye Templates and Discrete Summation transformations ..... 4-2
4.3 Stokes' Discrete Summation Transformations ..... 4-3
4.4 Vening-Meinesz' Discrete Summation Transformations ..... 4-18
4.5 Inner Zone Operators and Their Spectra
for First Order Geodetic Transformations ..... 4-29
5 SPECIFIC TEMPLATES AND EXAMPLES OF SPECTRA ..... 5-1
5.1 Specific Templates ..... 5-1
5.2 Examples of Spectra ..... 5-14
(TABLE OF CONTENTS continued)
Section Page
6 TEMPLATE OPTIMIZATION METHODS AND DISCRETE SUMMATION TRANSFORMATIONS ..... 6-1
6.1 Introduction ..... 6-1
6.2 Global RMS Discretization Error ..... 6-3
6.3 Optimization Algorithm ..... 6-6
7 TEMPLATE OPTIMIZATION RESULTS ..... 7-1
7.1 Summary ..... 7-1
7.2 Results for the Stokes' Transformation ..... 7-3
7.3 Results for the Vening-Meinesz' Transformation ..... 7-11
7.4 Results Using Variations in the Optimization Algorithm ..... 7-21
8 SUMMARY AND CONCLUSIONS ..... 8-1
9 RECOMMENDATIONS FOR FURTHER INVESTIGATION ..... 9-1
Appendix
A DEFINITIONS AND NOTATIONS FOR THE ASSOCIATED LEGENDRE FUNCTIONS ..... A-1
B RECURSION RELATIONS FOR THE INDEFINITE INTEGRALS OFTHE ASSOCIATED LEGENDRE FUNCTIONSB-1
B. 1 Shepperd-Robertson Recursion ..... B-1
B. 2 Robertson-Clenshaw Recursion ..... B-9
B. 3 DiDonato Recursion ..... B-12
B. 4 Paul Recursion ..... B-13
C LISTINGS OF THE COMPREHENSIVE FILTER DESIGN COMPUTER PROGRAM ..... C-1
D EXPLANATION OF THE COMPREHENSIVE FILTER DESIGN COMPUTER PROGRAM ..... D-1
E DISCUSSION OF THE EXCLUSION OF SMALL RING RADII FROM THE DIFFERENTIAL ADJUSTMENT PROCEDURE ..... E-1
F DERIVATION OF ALGORITHM FOR CALCULATING THE STOKES' EQUAL RING CONTRIBUTION TEMPLATE ..... F-1
LIST OF REFERENCES ..... R-1

## LIST OF FIGURES

Figure Page
2.5-1 Relationship of Points on a Spherical Surface for Interpretation of Spherical Convolution . . . . 2-14
3.2-1 Summary of Mathematical Relationships for the Classic Stokes' Integral Transformation ..... 3-9
3.2-2 Summary of Mathematical Relationships of the Analog of the Stokes' Integral Transformation for Surface Layer Density ..... 3-10
3.2-3 Summary of Mathematical Relationships for the Molodenskii Integral Transformation ..... 3-11
3.2-4 Summary of Mathematical Relationships for the Truncated Stokes' Integral Transformation ..... 3-12
3.2-5 Summary of Mathematical Relationships for the Cap-Averaging Integral Transformation ..... 3-13
3.2-6 Schematic Diagram for the Interpretation of the Generalized Anomaly of Type "k" ..... 3-15
3.2-7 Closed Form Expressions for the Generalized Stokes' Function ..... 3-17
3.2-8 Summary of Mathematical Relationships for the Generalized Stokes' Integral Transformation ..... 3-13
3.2.3-1 Flow Diagram of Basic Geodetic Transformations and Their Spectra ..... 3-20
3.2.4-1 Summary of Mathematical Relationships for the Identity and Upward Continuation Integral Transformation ..... 3-23
3.2.5-1 Summary of Mathematical Relationships for the Gravity Anomaly Vertical Gradient Integral Transformation ..... 3-26
3.2.5-2 Flow Diagram of Eigenvalues of Vertical Gradient Geodetic Transformations ..... 3-28
Figure Page
3.2.5-3 Summary of Mathematical Relationships for the Vertical Stress Gradient Integral Transformation ..... 3-30
3.3.1-1 Summary of Mathematical Relationships for the Classic Vening-Meinesz' Integral Transformation ..... 3-34
3.3.1-2 Summary of Mathematical Relationships for the Vertical Shear Gradient Integral Transformation. . . 3-36
3.3.1-3 Summary of Mathematical Relationships for the Horizontal Stress and Shear Gradient Integral Transformations ..... 3-39
3.3.2-1 Flow Diagrams of Spectra of Various Other Geodetic Transformations ..... 3-40
3.4-1 Geometry of the Outward Surface Partial Derivative ..... 3-42
3.4-2 Summary of Mathematical Relationships for Malkin's Integral Transformation ..... 3-4 4
3.4-3 Summary of Mathematical Relationships for the Second Molodenskii Integral Transformation ..... 3-45
3.4-4 Values of Some Wallis Coefficients ..... 3-48
4.2-1 Bull's-Eye Template ..... 4-3
4.3.1-1 Stokes' Midpoint Averaging Function $\vec{S}^{\prime}(\psi)$ ..... 4-6
4.3.2-1 Stokes' Integrated-Mean Averaaing Function $\grave{\mathrm{S}}(\psi)$. . . 4-10
 ..... 4-13
4.3.4-1 Summary of Relationships for the Discrete Stokes' Summation Trnasformation Using Midpoint Weighting ..... 4-15
4.3.4-2 Summary of Relationships for the Discrete Stokes' Summation Using Integrated-Mean Weighting ..... 4-16
4.3.4-3 Summary of Relationships for the Discrete Stokes' Summation Transformation on Point Gravity Anomalies ..... 4-17
4.4.1-1 Yening-Meinesz' Midpoint Averaging Function VM ( $\psi$ ) ..... 4-20
4.4.2-1 Vening-Meinesz' Integrated-Mean Averaging Function VM( $\psi$ ) ..... 4-22
4.4.3-1 Summary of Relationships for the Discrete Vening- Meinesz' Summation Using Midpoint Summation ..... 4-27
FigurePage
4.4.3-2 Summary of Relationships for the Discrete Vening-
Meinesz' Summation Using Integrated-Mean Weighting . 4-28
4.5-1 Summary of Mathematical Relationships for the Single Dipole Finite Difference Operator ..... 4-30
4.5-2 Summary of Mathematical Relationships for the Double Dipole Finite Difference Operator ..... 4-31
4.5-3 Sumary of Mathematical Relationships for the Rice Weighted Quadruple Dipole Operator ..... 4-32
4.5-4 Summary of Mathematical Relationships for the Truncated Vening-Meinesz' Transformation ..... 4-35
5.2.1-1 Spectra of Stokes' Transformation (34-Ring Pick-Picha-Vyskocil Template) ..... 5-16
5.2.1-2 Spectra of Stokes' Transformation (l0l-Ring Circularized AGEMIT Template) ..... 5-20
5.2.2-1 Spectra of Vening-Meinesz' Transformation (23-Ring Equal Contribution Template). ..... 5-26
5.2.2-2 Spectra of Vening-Meinesz' Transformation (125-Ring Equal Contribution Template) ..... 5-27
6.1-1 Example of Iterative Decrease of the Discreti- zation Error ..... 6-2
6.3.4-1 Example of Output Weighting ..... 6-16
7.1-1 Summary of Basic Optimization Results ..... 7-2
7.2.1-1 Summary of 34-Ring Template Optimization for the Classic Stokes' Transfcrmation ..... 7-5
7.2.1-2 Summary of 66-Ring Template Optimization for the Classic Stokes' Transformation Beginning with an Equal Ring Contribution Template ..... 7-6
7.2.1-3 Summary of 101-Ring Template Optimization for the Classic Stokes' Transformation ..... 7-7
7.2.2-1 Summary of 34-Ring Template Optimizationfor the Stokes' Transformation Analog7-10
7.3.1-1 Summary of 23-Ring Template Optimization for the Vening-Meinesz' Analog Transfor- mation, Beginning from an Equal Ring Contribution Tenplat ..... 7-12
7.3.1-2 Summary of 23-Ring Template Optimization for the Vening-Meinesz' Analog Transfor- mation, Beginning from the Pick-Picha- Vyskocil Template ..... 7-12

Figure	Page
7.3.2-1	Summary of 125-Ring Template Optimization for the Vening-Meinesz' Analog Transformation, Beginning from an Equal Ring Contribution Template.   (Damping $=0.5$ )
7.3.2-2	Sumnary of 125-Ring Template Optimization for the Vening-Meinesz' Analog Transformation, Beginning from an Equal Ring Contribution Template. (Damping $=0.25$ ) . . . . . . . . . . . . 7-16
7.3.2-3	Summary of 125-Ring Template Optimization for the Vening-Meinesz' Analog Transformation, Beginning from Circularized AGEMIT Template . . . . 7-18
7.4.1-1	Comparison of Vening-Meinesz' Optimization   Using Increment Damping Variation . . . . . . . . 7-22
7.4.1-2	Comparison of Vening-Meinesz' Optimization   Using Increment Damping Variation . . . . . . . . . 7-24
7.4.1-3	Comparison of Vening-Meinesz' Optimization   Using Increment Damping Variation . . . . . . . . . 7-26
7.4.2-1	Iterations of a Stokes' Optimization Run   Using Output Weighting . . . . . . . . . . . . . . . 7-30
E-1	Example of Large Increments (Vening-Meinesz,   23 rings, maximum degree 50) . . . . . . . . . . . E-2
E-2	Example of Large Increments (Stokes, 34 rings, maximum degree 50) . . . . . . . . . . . . . . . . E-3
E-3	Example of Large Increments (Stokes, 34 rings, maximum degree 500). . . . . . . . . . . . . . . . . E-3
E-4	Example of Large Increments (Stokes, 101 rings, maximum degree 1000) . . . . . . . . . . . . . . . . E-4
E-5	Example of Large Increments (Vening-Meinesz,   23 rings, maximum degree 1440) . . . . . . . . . . . E-5
E-6	Example of Large Increments (Vening-Meinesz,   125 rings, maximum degree 1440 ). . . . . . . . . . . E-5
E-7	Example of Large Increments (Vening-Meinesz,   125 rings, maximum degree 1440) . . . . . . . . . . E-6
E-8	Summary of Cases for Small Ring Radii   Exclusion . . . . . . . . . . . . . . . . . . . . . E-7
F-1	Sub-areas Under the Curve $\mathrm{S}(\psi) \sin \psi$. . . . . . . . F-2
F-2	Dead-bands around the zeros of $S(\psi) \sin \psi$. . . . . . F-2
F-3	Nature of Solution . . . . . . . . . . . . . . . . . F-4
F-4	Solution for $\mathrm{\Delta b}=0$. . . . . . . . . . . . . . . . . $\mathrm{F}-5$
F-5	Solution for $\Delta \mathrm{a}=0$. . . . . . . . . . . . . . . . . $\mathrm{F}-6$

## LIST OF TABLES

## Table

Page

5.1.1-1	Pick-Picha-Vyskocil Template Parameters for the   Stokes' Transformation . . . . . . . . . . . . . . . 5-4
5.1.1-2	Pick-Picha-Vyskocil Template Parameters for the   Vening-Meinesz' Transformation . . . . . . . . . . . 5-5
5.1.1-3	The Original Rice Inner Zone Template Parameters . . 5-6
5.1.1-4	Kazansky Inner Zone Template Parameters . . . . . 5-6
5.1.2-1	Template Parameters for the 23-Ring Equal   Contribution Template with $\psi_{0}=$ the initial   radius of Pick-Picha-Vyskocil . . . . . . . . . . 5-12
5.1.2-2	Template Parameters for the 125-Ring Equal   Contribution Template with $\psi \mathrm{O}_{\mathrm{R}}=235$ meters . . . . 5-12
5.1.3-1	Template Parameters for the Circularized AGEMIT Template . . . . . . . . . . . . . . . . . 5-13
5.1.3-2	Template Parameters for the $125-$ Ring "RiceDMAAC" Template . . . . . . . . . . . . . . . . . 5-15
6.2-1	Discretization Error of Various Templates for Stokes' Transformation
6.2-2	Discretization Error of Various Templates for Vening-Meinesz' Transformation . . . . . . . . . . 6-6
B-1	The $\mathrm{b}_{\mathrm{n}, \mathrm{k}}$ coefficients . . . . . . . . . . . . . B-
B-2	The $\mathrm{c}_{\mathrm{n}, \mathrm{k}}$ coefficients . . . . . . . . . . . . . . . $\mathrm{B}-6$
B-3	The $\mathrm{d}_{\mathrm{k}}$ coefficients . . . . . . . . . . . . . . . . B-7
B-4	Estimates of certain $\mathrm{b}_{\mathrm{n}, \mathrm{k}}$ coefficients . . . . . . $\mathrm{B}-8$
B-5	The $B_{j, \ell}$ coefficients . . . . . . . . . . . . . . B-10
B-6	The $h_{n, k}$ coefficients . . . . . . . . . . . . . B-11
D-1	Major Inputs to FITFILT . . . . . . . . . . . . D-3

## GLOSSARY OF SYMBOLS

Symbol		Section	Page
$A_{i j}$	Surface area of the $(i, j)$ th compartment on the unit sphere	$\begin{aligned} & 4.3 \\ & 4.4 \end{aligned}$	
$\dot{c}_{i j}, \dot{s}_{i, j}$	Integrated-mean values of the cosine and sine functions in the ( $i, j$ ) th compartment	4.4 .2	4-23
dg	Gravity variation ( $\mathrm{dg}^{\prime}=\mathrm{d}_{0} \mathrm{~g}$ )	3.2 .2	3-14
d $\sigma$	Element of surface area on unit sphere $(d \sigma=\sin \psi d \psi d \alpha)$	3.2	3-2
$d_{k} g$	Generalized gravity anomaly of type "k"	3.2 .2	3-14
$\begin{aligned} & \mathrm{f}(\psi, \alpha), \\ & \mathrm{f}_{\mathrm{IN}}(\psi, \alpha) \end{aligned}$	Input geodetic quantity to an integral transformation	$\begin{aligned} & 3.2 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3-2 \\ & 3-31 \end{aligned}$
$\begin{aligned} & \mathbf{f}_{\text {OUT }} \\ & \text { f }_{\text {OUT }}(0,0) \end{aligned}$	Output of integral transformation corresponding to input $f(\psi, \alpha)$ or $f_{I N}(\psi, \alpha)$	$\begin{aligned} & 3.2 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3-2 \\ & 3-31 \end{aligned}$
$\begin{array}{ll} F_{n}, & F_{n m^{\prime}} \\ F_{n}^{m}, & F_{n}^{m} \end{array}$	Fourier or Legendre coefficients of the function "f"	$\begin{aligned} & 2.3 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2-4 \\ & 2-8 \end{aligned}$
$\begin{aligned} & F_{2 D}[], \\ & F_{2 D}-\frac{1}{D}[ \} \end{aligned}$	Two-dimensional Fourier transform and Inverse Fourier transform of quantity in brackets	2.3	2-5
G	Nominal value of earth's gravity	3.2	3-3
$\begin{aligned} & H[\text { ], } \\ & H-1[\text { ] } \end{aligned}$	Hankel transform and Inverse Hankel transform of quantity in brackets	2.3	2-6
$\begin{aligned} & k(\cos \psi), \\ & K(\cos \psi) \end{aligned}$	Kernel of an isotropic geodetic transformation	3.2	3-2


Symbol		Section	Page
$L\},$ L[ ]	Legendre transform of quantity in braces or brackets	2.4	2-8
$\begin{aligned} & L^{-1}\{ \}, \\ & L^{-1}\{ ] \end{aligned}$	Inverse Legendre transform of quantity in braces or brackets	2.4	2-8
m	Spherical harmonic order	2.4	2-8
$M(\psi)$	Specific kernel function related to Molodenskii transformation	3.2.1.3	3-6
n	Spherical harmonic degree	2.4	2-8
$(\mathrm{n})$ or n [subscript]	the $n^{\text {th }}$ spherical harmonic of the mainline quantity	3.2 .5	3-24
$P_{n m}(\cos \psi)$	Associated Legendre function (Ferrers' convention)	$\begin{aligned} & \text { Appendix } \\ & \text { A } \end{aligned}$	A-2
$P_{n}^{m}(\cos \psi)$	Associated Legendre function (Hobson convention)	$\underset{\text { A }}{\text { Appendix }}$	A-1
$\grave{P}_{n(k)}$	Integrated-mean value of the Legendre polynomial $P_{n}(\cos \psi)$ in the $k^{\text {th }}$ ring	4.3.2	$\begin{aligned} & 4-11 \\ & 4-11 \end{aligned}$
$\stackrel{p}{l}_{\text {n,i }}^{m}$	Integrated-mean value of the Hobson associated Legendre function over the ith ring	4.4 .2	4-25
$q_{n}\left(\psi_{0}\right)$	Cook coefficients	$\begin{aligned} & 4.5 .3 \\ & 6.3 .3 \end{aligned}$	$\begin{aligned} & 4-34 \\ & 6-12 \end{aligned}$
$Q_{n}\left(\psi_{0}\right)$	Molodenskii coefficients	$\begin{aligned} & 3.2 .1 .4 \\ & 6.3 .3 \end{aligned}$	$\begin{aligned} & 3-7 \\ & 6-12 \end{aligned}$
R	Nominal value of earth's radius	3.2	3-3
s	Linear distance from point of evaluation [s = R $\psi]$	4.5.2	4-33
S ( $\psi$ ),	Stokes' function	3.2.1.1	3-3
$S(\cos \psi)$			


Symbol		Section	Page
$\overline{\mathbf{S}}(\psi)$	Residual Stokes' function (=S $(\psi)$ for $\psi_{0}<\psi \leq \pi$, otherwise 0 )	3.2.1.4	3-7
$\tilde{S}(\psi)$	Truncated Stokes' function $(=S(\psi)$ for $0 \leq \psi<\psi_{0}$, otherwise 0 )	3.2 .1 .4	3-7
$\widetilde{s}^{2}(\psi)$	Stokes' Midpoint Weighting function	4.3 .1	4-5
$\overline{\mathrm{S}}(\psi)$	Stokes' Integrated-Mean Averaging function	4.3.2	4-8
$S_{k}(\psi)$	Generalized Stokes' function of type "k"	3.2 .2	3-16
$S_{n}$	Sequence like Wallis coefficients $\left[S_{n}=1 / \sqrt{n(n+1)}\right]$	$\begin{aligned} & 3.4 .1 \\ & 3.4 .2 \end{aligned}$	$\begin{aligned} & 3-41 \\ & 3-50 \end{aligned}$
$\grave{S}_{(i)}$	Integrated-Mean Value of Stokes' function in the $i^{\text {th }}$ ring	4.3.2	4-8
$\begin{aligned} & S\}, \\ & S[1] \end{aligned}$	Spectral transform of quantity in braces or brackets	2.2	2-3
$\begin{aligned} & S^{-1}\{ \}, \\ & s^{-1}\{ \} \end{aligned}$	Inverse spectral transform of quantity in braces or brackets	2.2	2-3
t	Sine of half the spherical arc distance $\psi$	5.1 .2	5-8
T	Anomalous potential	3.2 . 2	3-32
$\begin{aligned} & \mathrm{T}_{z x^{\prime}} \mathrm{T}_{z y^{\prime}} \\ & \mathrm{T}_{y y^{\prime}} \mathrm{T}_{\mathrm{xx}}, \\ & \mathrm{~T}_{\mathrm{xy}} \end{aligned}$	Partial derivatives of the anomalous potential with respect to subscript variables	$\begin{aligned} & 3.3 .1 .2 \\ & 3.3 .1 .3 \end{aligned}$	$\begin{aligned} & 3-35 \\ & 3-37 \end{aligned}$
$\begin{aligned} & \mathrm{VM}(\psi), \\ & \mathrm{VM}(\cos \psi) \end{aligned}$	Classical Vening-Meinesz function $[V M(\psi)=\partial S(\psi) / \partial \psi]$	3.3	3-32
$\widehat{V M}(\psi)$	Vening-Meinesz' midpoint averaging function	4.4.1	4-18
VM ( $\psi$ )	Vening-Meinesz integrated-mean averaging function	4.4 .2	4-21


Symbol		Section	Page
$\mathrm{VM}_{\mathrm{i}}$	Integrated-mean value of Vening-Meinesz function in the ith ring	4.4 .2	4-21
$W_{n}$	Wallis coefficient	3.4	3-43
$\mathrm{x}, \mathrm{x}_{\mathrm{i}}$	Cosine of spherical arc distance $\psi$ or spherical ring boundary radius $\psi_{i}$		
$\underline{x}, \underline{\hat{x}}, \underline{\hat{\mathbf{x}}}$	Sets of template parameters considered as a parameter vector	6.3 .1	6-7
$\alpha$	Spherical azimuth angle from local north to generic point measured at point of evaluation	2.5	2-13
$\alpha_{i j}$	Spherical compartment boundary azimuth in the $i^{\text {th }}$ ring	4.2	4-3
$\delta_{2 D}(\psi)$	Two-dimensional Dirac Delta Function	3.2.1.3	3-6
$\overline{\Delta g}_{i j}$	Mean gravity anomaly in the (i,j)th compartment	$\begin{aligned} & 4.3 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 4-7 \\ & 4-19 \end{aligned}$
$\Delta \mathrm{x}$	Increment in template parameters $\underline{x}$	6.3 .1	6-8
$\Delta \lambda(\underline{x})$	Residual Spectrum considered as a function of the template parameters $\underline{x}$	6.3 .1	6-7
$\stackrel{+}{\varepsilon}, \underline{\varepsilon}$	Vertical Deflection vector $[\vec{\varepsilon}=(\xi, n)]$	3.4	3-4:
$\varepsilon_{k}$	Neumann factor $\left(\varepsilon_{0}=1, \varepsilon_{k}=2\right.$ for $\left.k \neq 0\right)$	2.3.2	2-7
$\theta$	Colatitude (90 - latitude)	2.5	2-13
$\begin{aligned} & \lambda_{n}\{ \}, \\ & \lambda_{n}\left[1, \lambda_{n}\right. \end{aligned}$	Spectrum of the isotropic kernel included in braces or brackets or not specified explicitly	3.2	3-2
$\begin{aligned} & \lambda_{n}^{m}\{ \}, \\ & \lambda_{-n}^{m}\left[1, \lambda_{-n}^{m}\right. \end{aligned}$	Spectrum of the anisotropic kernel included in braces or brackets or not specified explicitly	3.3	3-31


$\begin{aligned} & \lambda_{-n}^{m}\left\{f_{I N} \rightarrow f_{\text {OUT }}\right\}, \\ & \lambda_{-n}^{m}\left\{K: f_{I N} \rightarrow f_{\text {OUT }}\right\} \end{aligned}$	Spectrum of the transformation converting the input $f_{\text {IN }}$ into the output $f_{\text {OUT }}$, and having ${ }^{N}$ kernel $K$.		
$\underline{\lambda}(\underline{x})$	Spectrum of a discrete summation transformation with template parameters $\underline{x}$	6.3 .1	6-7
$\sigma_{n}^{2}\{ \}$	Degree variances of quantity in braces	6.3.1.1	6-9
$\mu(\psi, \alpha)$	Surface layer density (single layer)	3.2.1.2	3-4
$\psi$	Spherical arc distance on a unit sphere from the point of evaluation. "Spherical radius".	2.5	2-13
$\psi_{0}$	Spherical radius of small spherical cap around point of evaluation	$\begin{aligned} & 3.2 .1 .4 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 3-7 \\ & 4-3 \end{aligned}$
$\psi_{i}$	Spherical ring boundary radius	4.2	4-3
$\psi_{\text {LIMIT }}$	Spherical radius for exclusion of small ring radii adjustment	6.3.3	6-13
( ) ! !	Schuster's Factorial $\begin{aligned} & (2 n)!!=2 \cdot 4 \cdot 6 \cdots(2 n) \\ & (2 n-1)!!=1 \cdot 3 \cdot 5 \cdots(2 n-1) \end{aligned}$	3.4 .2	3-46
\{ \} ${ }_{\text {rms }}$	Global root-mean-square value of quantity in braces	6.2	6-3
*	Convolution operator	$\begin{aligned} & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2-3 \\ & 2-11 \end{aligned}$

## SECTION 1

INTRODUCTION<br>AND<br>SUMMARY OF RELATED WORK

### 1.1 Introduction

The numerical evaluation of certain spherical geodetic transformations, such as the Stokes', Vening-Meinesz', and Molodenskii Integrals, is performed frequently and repeatedly in various research facilities which desire a knowledge of the earth's external gravitational field. The computation is required in order to convert known geodetic/gravimetric quantities, such as surface gravity anomaly measurements, into other geodetic/gravimetric quantities, such as geoid height or gravití disturbance vectors at altitude. The computer algorithms carrying out the computation are by necessity finite summations which only approximate the mathematically rigorous integral transformations of geodetic theory to various degrees of accuracy

Due to the computational burden involved, it is highly desirable to make the algorithms as efficient as possible, with the highest accuracy attainable for the smallest amount of computer time. Geodesists have long known that it is inefficient to sum these integrals over grid patterns or templates whose compartments are equally-spaced over the whole earth. Various non-equally-dimensioned grids or templates have therefore been empirically devised which provide more efficient approximations of the theoretical transformations. However, no research has been carried out to derive optimum summation schemes or grids from fundamental mathematical principles.

Besides reducing the computation time, it is even more important that the summation approximations preserve as well as possible the spectral (frequency domain) properties of the integral transformations, since it is only in this manner that output quantities can be obtained from the summations with nearly correct frequency characteristics. Otherwise results might be obtained in which certain spatial frequencies had been unknowingly eliminated or distorted.

To achieve these objectives, it is natural to expect that the mathematical techniques involved would include modern signal-processing and filtering theory, appropriately adapted to spherical geometry.

The present data-processing situation for spherical geodetic transformations is rather analogous to that for planar gravimetric and magnetic transformations during the 1930's and 1940's in the early years of scientific geophysical exploration for oil and gas. During that period, a number of summation approximations were developed and applied,* especially for calculating the second vertical derivative of the anomalous potential (which emphasizes local features and removes some regional trends) and the downward continuation of anomalies (which yields estimates of subterranean masses). However, as Nettleton remarks:* "For the first 20 years or so of their use, second derivatives and the related upward and downward continuation were treated as mathematical operations in themselves and not as filtering functions. Millions of square miles were mapped with second derivative contours ... apparently without realizing that the systems used did not come close to actually determining the mathematical quantity implied."

At about the same time, Norbert Wiener of M.I.T. was developing the theory of prediction and filtering of stationary time series on a highly rigorous level. The possibility of the practical application of this theory in seismic analysis led to the formation of the M.I.T. Geophysical Analysis Group in 1952, and in particular to the thesis of Enders A. Robinson (1954) which "could serve as the framework for a logical development of the entire subject of digital processing."*** As a result of these mathematical advances, the various gravimetric and magnetic summations in use were analyzed in the late 1950's and early 1960's from the signal processing or filtering point of view. It was quickly realized why they possessed certain inherent qualities and how desired qualities could be designed into new summation operators. Nettleton (1976, pp. 158-170) provides a nice review of these developments.

While the spherical geodetic summations of today are presumably determining much more accurate approximations of the mathematical quantities involved than the early planar summations mentioned by Nettleton, the present transformations are still largely conceived of

[^0]as mathematical procedures in themselves (i.e. computer subroutines) and not as filtering operations.

It is the purpose of the present study to change this viewpoint. The concepts and techniques of spectral analysis and signal processing are modified and adapted for the underlying spherical geometry. The integral transformations of geodesy are shown to be two-dimensional conyolution operators, and their associated summation approximations are interpreted as linear shift-invariant transformations on the input data: i.e. as spherical digital filters. The characteristics of the transformations in the frequency domain are investigated through the determination of their spectra (transfer functions, frequency responses). And an attempt is made to design optimum spherical sumation approximations to the Stokes' and Vening-Meinesz' Integrals by mathematically adjusting the grid or template parameters in the summation so that its resulting spectrum will match as well as possible the ideal spectrum of the corresponding theoretical integral transformations.

In particular, a brief review of the spectral theory of data and operators over both two-dimensional cartesian and two-dimensional spherical coordinates is presented in Chapter 2 so as to summarize the results and emphasize their analogies. Chapter 3 develops the spectral theory of the theoretical spherical integral transformations of geodesy, providing many examples of the "ideal" transfer functions of these transformations. A similar theory for the discrete summation approximations of the Stokes' and Vening-Meinesz' Integrals is carried out in Chapter 4. The details of a number of specific templates are described in Chapter 5, and plots are presented to illustrate the small but significant differences between the ideal transfer functions and those of the approximating summations. In Chapter 6, a description is given of the constrained optimization algorithm and certain variations thereof which were used to incrementally adjust template parameters to reduce the rms discretization error, and the improved results which were obtained are presented in Chapter 7. The conclusions of the study are given in Chapter 8, and recommendations for further investigation in Chapter 9. The six appendices provide mathematical details of the associated Legendre functions, a listing and explanation of the comprehensive filter design computer program, and discussions of other particulars too lengthy to be included in the text. Volume II is a catalog of the spatial and frequency domain representations of approximately 100 spherical integral transformations, of which about 85 have an explicitly geodetic interpretation.

### 1.2 Related Work

The author is aware of only a few other people who are studying or who have published papers on the spectral theory of spherical geodetic transformations. Only one of these has (indirectly) investigated the effect of the discretization of an integral transformation to a finite summation transformation, although sumations are always used in practice.

A brief review of the published work of these authors is given in the following paragraphs.

Meissl (1971) has unquestionably laid the foundation for the application of functional analysis and spectral theory to spherical geodetic transformations. In his report, the fundamental definitions and formulae for the spectrum of a transformation are given, with a number of specific examples. However, Meissl's developments are primarily oriented toward isotropic (zeroth-order) operators, and no discrete summation transformations are discussed. Nevertheless the fundamental relationships all appear (in a Hilbert space setting), and the present author has benefited greatly from Meissl's ideas.

Neyman (1974) has also approached the study of spherical geodetic transformations from the functional-analytic or spectral-theoretic point of view. He has given definitions of the spectrum of such transformations which are equivalent to Meissl's and to those of the present document (exclusive of a normalizing factor). Moreover, he has briefly considered anisotropic transformations and their spectra, and has sketched in a few paragraphs the idea of approximating transfer functions over subregions of a sphere. Neyman's paper was brought to the attention of the present author by Louis Decker of the Defense Mapping Agency in January 1978 after the present theory was well developed (Robertson, 1977a, 1977b). It is very likely that Neyman has further results which have not yet appeared outside the original Russian literature.

Molodenskii (1962) has extensively investigated the mathematical properties of the Stokes' and Vening-Meinesz' transformations, especially the truncated versions of these transformations and the effect of the regions remote from the point of evaluation. Clearly he is aware of the spectral properties of these transformations, although his mathematics is not formally cast in spectral analysis terminology. While he has derived more rapidly convergent expressions for the classic geodetic
integral transformations, he does not consider discrete summation approximations. Molodenskii's work is pioneering and contains many ideas whose consequences have not yet been fully explored or appreciated.

Colombo (1977) has attacked a very specific problem in geodetic computations, namely how to adjust the kernel function of a spherical geodetic transformation when the integral is to be carried out only over a spherical cap rather than the entire sphere, in order that the mean square error of such an approximation may be minimized. While Colombo does not explicitly define spectra of operators or develop a genezal theory, it is obvious that he is aware of the frequency domain interpretation of spherical geodetic transformations. As he says in his abstract, "The technique can be regarded as a method of designing two-dimensional filters to transform signals distributed on the surface of a sphere." All of Colombo's results are for the isotropic Stokes' and Molodenskii Integrals. The present author became aware of Colombo's work from the abstract appearing in EOS in December 1977, and received Colombo's paper in June 1978.

Zondek (1977) is the only other researcher who has (indirectly) investigated the effect of the discretization of a spherical geodetic integral transformation. Specifically he has studied the effect of compartmentally averaging the output of the Stokes' Integral rather than the input. Since the compartmental averaging operator and the stokes, Integral operator are commutative, Zondek's results may be immediately interpreted in terms of a discretization of the Stokes' Integral. To carry out the numerical calculations, zondek uses DiDonato's (1977) algorithm which was specifically developed for this purpose. The present author also uses DiDonato's algorithm and became aware of it through reading Zondek's paper in early 1978.

Potter and Frey (1967) have examined the mathematical and statistical properties of spherical "rotation-invariant" linear operators and probability distributions, defining their spectra, exhibiting the one-dimensional convolution theorem, and proving that the power spectrum is positive. In particular, they have applied their approach to the Poisson kernel, and shown that the spherical upward continuation convolution may be represented by a single integral involving a complete elliptic integral. While their results are limited to isotropic kernels, Potter and Frey have developed many fundamental ideas in their short terse paper. The present author became aware of their work just before this document was finished.

General expositions of the spectral theory of linear operators are given by Liusternik and Sobolev (1961), Kato (1966), and Dunford and Schwartz (1958 and 1963). The geodetically-oriented reader is likely to find these treatises rather formidable. Nevertheless they show how far and how deeply the mathematics of this theory has been developed. The symbol " $\lambda^{\prime \prime}$ for the spectrum of an operator is inherited from such treatises.

## SECTION 2

SPECTRAL THEORY OF DATA AND OPERATORS

### 2.1 Introduction

A brief summary of the most important concepts and formulae of spectral theory for data and for operators in both two-dimensional cartesian spaces and two-dimensional spherical spaces is presented in this chapter. The analogies of the ideas and the results for both types of "inputs" and for both types of spaces are stressed in order to show the fundamental unity and generality of the theory. It is assumed that most readers will be familiar with at least the spectral theory of data in one or two dimensional cartesian spaces, but may never have considered the continuation of the theory to operators or to spherical spaces. The engineering reader, however, may actually have knowledge of some of the results of the spectral theory of oserators in one-dimensional cartesian space, namely the use of transfe functions, without realizing that this is a part of a more general theory.

### 2.2 Spectral Analysis of Data and Operators

Of fundamental importance in the spectral theory is the concept of tne spectrum, which has a meaning both for data and for linear operators.

Data, or "signals" as data is often called in electrical engineering, are values of one or more dependent variables associated with each value of one or more independent variables such as time or position. Thus data are functions in the ordinary sense having individual numbers as input ard as output.

Linear operators are mathematical transformations which linearly transform sets of input data into sets of output data. Thus they are "functions of functions", having functions as input and as output. They are called "operators" by mathematicians to distinguish them from functions. An example is the operator which yields the derivative of any (arbitrary) input function.

The spectrum of a set of data is a mathematical description of the strengths and phases of the frequencies or periodicities present in the data. The data may be distributed in time or in single or multidimensional space; the spectrum will then represent the time or spatial frequencies respectively. The values of the spectrum are obtained by performing a "spectral transform" on the data. In the case when the independent variables of the data are cartesian, the spectral transform is the well-known Fourier transform, and the spectrum is sometimes called the set of Fourier coefficients of the data. bhen the independent variables form a spherical coordinate system, the spectral transform is the scarcely-known Legendre transform. The explicit mathematical expressions for the spectral transform in two-dimensional cartesian and spherical spaces will be exhibited in later sections of this chapter.

The spectrum of a linear operator or transformation is a mathematical description of the (multiplicative) strengths and the (additive) phases by which the operator respectively amplifies/attenuates and shifts the frequencies present in the input data as the operator transforms this data into output data. In other words, the spectrum describes the ratios of the strengths, and the differences of the phases, of the output frequencies to the input frequencies. Individual values of the spectrum are called eigenvalues. The spectrum of a very wide and important class of linear operators, namely convolution operators, may be obtained by performing a spectral transform on the kernel function of the integral representing the convolution. This is in direct analogy to the case of data. Again in the operator case, the spectral transform is the Fourier transform when the independent variables are cartesian and the Legendre transform when the independent variables are spherical. In electrical engineering terminology, the spectrum of an operator is called its frequency response or transfer function and the kernel of a convolution operator is called its impulse response.

It is common to speak of examining data or operators in both the "time or spatial domain" and the "frequency domain". The former refers to the original data or operator explicitly expressed in terms of time or spatial parameters, while the latter refers to the spectrum of the data or the operator and is therefore expressed as a function of (time or spatial) frequency.

Just as the data or the operator may be decomposed (or expanded) into its constituent frequencies or spectrum by a spectral transform, so may the original data or convolution operator kernel be recovered from
its spectrum by an inverse spectral transform on the spectrum. The actual formulae exhibiting the reciprocal relationships will soon be presented.

The process of convolution and the spectral transform are intimately related by the fact that the spectral transform converts convolution in the spatial domain into (ordinary) multiplication in the frequency domain. It is this fundamental property, plus the fact that so many linear operators may be represented by a convolution transformation, which is at the base of the theory and its applicability.

Of particular importance for geodetic theory is the fact that all of the classical (and non-classical) geodetic integral transformations are convolutions in one- or two-dimensional spherical space. For example, the Stokes' Integral is the convolution of the Stokes' function $S(\psi)$ with the gravity anomalies $\Delta g(\psi, \alpha)$.

To be more specific, let " $k$ " and "f" represent functions, let " $k$ *f" represent their convolution, and let $S\}$ represent the spectral transform of the function within the braces. Then the fundamental relationship is expressed as

$$
S\{k * f\}=S\{k\} \cdot S\{f\}
$$

It can also be shown (Bracewell, 1965, pg. 110) that

$$
S\{\mathbf{k} £=S\{\mathbf{k}\} * S\{\mathbf{f}\}
$$

and from these relations it is deducible that if $K$ and $F$ are functions in the frequency domain and $s^{-1}\{ \}$ is the inverse spectral transform, then

$$
S^{-1}\left\{K^{*} F\right\}=S^{-1}\{K\} \cdot S^{-1}\{F\}
$$

and

$$
S^{-1}\{K F\}=S^{-1}\{K\} * S^{-1}\{F\}
$$

However, the last three relations are not of interest here.
Several properties of the spectrum are:
a) The spectrum of the sum of two (or more) linear convolution transformations is equal to the sum of the spectra of the transformations. This is due to the linearity of the transformations and of the spectral transform.
b) The spectra of a composite transformation formed by the sequential application of one transformation on the output of another transformation is the product of the spectra of the individual transformations. This may be seen as follows. Let $k_{1}(x)$ and $k_{2}(x)$ be the kernels of the two transformations. Suppose $g_{2}(x)=k_{2} * f_{2}=k_{2} *\left(k_{1} * f_{1}\right)$. Then

$$
\begin{aligned}
S\left\{g_{2}\right\} & =S\left\{k_{2}\right\} S\left\{k_{1} * f_{1}\right\}= \\
& =S\left\{k_{2}\right\} S\left\{k_{1}\right\} S\left\{f_{1}\right\}
\end{aligned}
$$

c) The elements of the spectrum of an inverse transformation are the reciprocals of the elements of the forward transformation. This follows immediately from the above property.
d) An element of the spectrum of a transformation is zero if and only if the transformation eliminates the corresponding input frequency while generating the output. This is a direct consequence of the fundamental property.
e) The magnitudes* of the elements of the spectrum equal the amplification/attenuation factors of the transformation on the global root-mean-square values of the corresponding frequencies of the input:

$$
\left\{g_{\mathrm{n}}\right\}_{\mathrm{rms}}=S_{\mathrm{n}}\{k\} \cdot\left\{\mathrm{f}_{\mathrm{n}}\right\}_{\mathrm{rms}}
$$

where the subscript " $n$ " indicates the $n{ }^{\text {th }}$ frequency or harmonic. This is a direct consequence of the fact that the global mean-square value of data of a single frequency is equal to the global mean-square value of the spectrum of the data at that frequency.

[^1]
### 2.3 Cartesian Spectral Transf رrms

In the case when the independent variables form a cartesian coordinate system, the spectral transform is the standard Fourier transform. The Fourier transform and its inverse assume several slightly different forms depending upon whether the data or the operator is periodic or nonperiodic over the infinite line or plane. For simplification, only the two-dimensional case and the one-dimensional specialization when the data or the operator kernels are radially symmetric (isotropic about the origin) will be considered. The extension to a higher number of dimensions is relatively straightforward, but in this document there will be no need for this generality.

The following notational conventions will be used in the expressions for cartesian spectral transforms:

- Lower-case letters denoting functions [especially $f(x, y)$ and $f(r)$ ) represent data or operator kernels in the spatial domain.
- Upper-case letters denoting functions lespecially $F(u, v)$ and $F(q)]$ represent the corresponding data or operator kernels in the frequency domain.
- The independent variables $x$ and $y$, and $r=\sqrt{x^{2}+y^{2}}$ are spatial distance parameters and hence have units of length, while the variables $u$ and $v, q=\sqrt{u^{2}+v^{2}}$ are spatial frequency parameters and have units of inverse length or more intuitively cycles per unit length.


### 2.3.1 Infinite (Non-Periodic) Case

When the data or the operator kernel $f(x, y)$ extends infinitely in both dimensions, the (two-dimensional) spectral transform is the infinite two-dimensional Fourier transform:

$$
F_{2 D}[f(x, y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i 2 \pi(u x+v y)} f(x, y) d x d y=F(u, v)
$$

and the (two-dimensional) inverse spectral transform is the infinite two-dimensional inverse Fourier transform:

$$
F_{2 D}^{-1}[F(u, v)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{+i 2 \pi(u x+v y)} F(u, v) d u d v=f(x, y)
$$

That the inversion formula is correct, or in other words that the original function $f(x, y)$ is regained from the spectrum $F(u, v)$ through the application of the inverse transform is shown in most classical texts on the Fourier Transform, e.g. Titchmarch (1948), where the precise restrictions on the function $f(x, y)$ are also stated.

When the data or operator kernel $f(x, y)$ is radially symmetric about the origin, in other words when $f(x, y)$ may be written as a function $f(r)$ of the single radius variable $r=\sqrt{x^{2}+y^{2}}$, then it may be shown (Bracewell, 1965, pg. 247) that the spectrum $F$ of $f(r)$ is also radially symmetric having the form $F(q)$ where $q=\sqrt{u^{2}+v^{2}}$ and is yiven by the Hankel transform (or zeroth order) of $f(r)$ :

$$
F_{2 D}[f(x, y)]=H[f(r)]=2 \pi \int_{0}^{\infty} r J_{0}(2 \pi r q) f(r) d r=F(q)
$$

and the inverse spectral transform is likewise the inverse Hankel transform of $F(q)$ :

$$
F_{2 D}^{-1}[F(u, V)]=H^{-1}[f(q)]=2 \pi \int_{0}^{\infty} q J_{0}(2 \pi q r) F(q) d q=f(r)
$$

From the above relationships, it is evident that the spectrum may be continuous as opposed to discrete, in that it may assume values for every frequency $u$ and $v$ or $q$.

### 2.3.2 Finite (Periodic) Case

When the data or the operator kernel $f(x, y)$ is doubly periodic with periods $2 X$ and $2 Y$ in the $x$ and $y$ directions respectively, then the (two-dimensional) spectral transform is the two-dimensional finite Fourier transform (Rektorys, 1969, pg. 703).

$$
F_{2 D}[f(x, y)]=\varepsilon_{n} \varepsilon_{m} \int_{-X}^{+X} \int_{-Y}^{+Y} e^{-i 2 \pi\left(n \frac{x}{2 X}+m \frac{y}{2 Y}\right)} \quad f(x, y) \frac{d x}{2 X} \frac{d y}{2 Y}=F_{n m}
$$

and the inverse spectral transform is the two-dimensional inverse Fourier transform summation:

$$
F_{2 D}^{-1}\left[F_{n m}\right]=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} F_{n m} e^{i 2 \pi\left(n \frac{x}{2 x}+m \frac{y}{2 Y}\right)}=f(x, y)
$$

where

$$
\varepsilon_{k}=\left\{\begin{array}{l}
1 \text { when } k=0 \\
2 \text { when } k \neq 0
\end{array}\right.
$$

and is called the Neumann factor (Magnus-Oberhettinger, 1949, pg. 64; Morse-Feshbach, 1953, Vol. I, pg. 774).

When the data or operator kernel $f(x, y)$ is radially symmetric about the origin,* or in other words when $f(x, y)$ may be written as a function $f(r)$ of a single radius variable $r=\sqrt{x^{2}+y^{2}}$, then it may be shown (Rektorys, 1969, pg. 720) that the spectrum of $f(r)$ is also radially symmetric having the form $F(q)$ where $q=\sqrt{u^{2}+v^{2}}$ and is given by the finite Hankel transform (or zeroth order) of $f(r)$ :

$$
F_{2 D}[f(x, y)]=H[f(r)]=2 \pi \int_{0}^{R} r\left(\frac{J_{0}\left(2 \pi q_{n} r\right)}{J_{1}\left(2 \pi q_{n} R\right)}\right) f(r) \frac{d r}{\pi R^{2}}=F_{n}
$$

and the inverse spectral transform is likewise the inverse Hankel transform of $F(q)$ :

$$
F_{2 D}^{-1}\left[F_{n m}\right]=H^{-1}\left[F_{n}\right]=\sum_{n=0}^{\infty} F_{n}\left(\frac{J_{0}\left(2 \pi q_{n} r\right)}{J_{1}\left(2 \pi q_{n} R\right)}\right)=f(x)
$$

where the $q_{n}$ are the roots of $J_{0}(2 \pi q R)=0$ and $J_{0}$ and $J_{1}$ are Bessel functions.

From all the above relationships it may be seen that in the finite case the spectrum is discrete as opposed to continuous, in that it has values only for certain discrete frequencies. This is a direct consequence of the fact that the fundamental wavelengths $2 X$ and $2 Y$ are finite. Only integral multiples of the fundamental frequencies corresponding to these wavelengths can be present.

In the formulae, the normalization factors $2 X$ and $2 Y$, corresponding to the total lengths of the intervals over which integration is performed, have been grouped with the differential elements $d x$ and $d y$. The author has found that this convention brings out essential characteristics of the relationships by removing "extraneous" factors. In particular, the Neumann factor(s) naturally appear(s) before the forward transform expression. This convention is rarely adhered to in the literature.

[^2]$$
2-7
$$

### 2.4 Spherical Spectral Transforms

In the case when the independent variables form a spherical coordinate system, the spectral transform is the Legendre transform. Since a sphere is finite and a function defined on the sphere may be considered doubly periodic with period $2 \pi$ in the "longitude" variable and period $\pi$ in the "latitude" or "co-latitude" variable, the spherical spectral transform has only one type, namely the finite periodic type, and consequently the spectrum is discrete.

The following notational conventions will be used in the expressions for spherical geodetic transforms:

- In agreement with traditional geodetic symbolism,* the variables $\psi$ and $\alpha$ denote "spherical arc distance" or "spherical radius" and "spherical azimuth of an arbitrary point on the sphere" from "origin", also on the sphere. For geodetic transformations, the origin is the point at which the value of the output is desired. When the origin is the North pole, then the spherical radius $\psi$ is identical to colatitude and the spherical azimuth $\alpha$ is identical to west longitude.

The two-dimensional Legendre transform is defined by:

$$
L_{2 D}[f(\psi, \alpha)]=\varepsilon_{m} \sqrt{\frac{(n-m)!}{(n+m)!}} \int_{0}^{2 \pi} \int_{0}^{\pi} f(\psi, \alpha)\left\{\begin{array}{l}
\cos m \alpha \\
\sin m \alpha
\end{array}\right\} p_{n}^{m}(\cos \psi) \frac{\sin \psi d \psi d \alpha}{4 \pi}=\left\{\begin{array}{l}
F_{n}^{m} \\
F_{n}^{m}
\end{array}\right.
$$

and the inverse two-dimensional Legendre transform by:

$$
L_{2 D}^{-1}\left[F_{n}^{m}, F_{n}^{m}\right]=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(F_{n}^{m} \cos m \alpha+F_{n}^{m} \sin m \alpha\right)(2 n+1) \sqrt{\frac{(n-m)!}{(n+m)!}} p_{n}^{m}(\cos \psi)=f(\psi, \alpha)
$$

That the inversion formula is correct, or in other words that the original function $f(\psi, \alpha)$ is regained from the spectrum ( $F_{n}^{m}$ and $F_{n}^{m}$ ) through the inverse Legendre transform is shown in Heiskanen-Moritz (1969, pp. 29-30).

When the data or operator kernel $f(\psi, \alpha)$ is radially symmetric ("isotropic") about the origin, or in other words when $f(\psi, \alpha)$ is a

[^3]function of the spherical radius $\psi$ only, then all of the discrete eigenvalues $F_{n}^{m}$ and $F_{n}^{m}$ vanish except for the $F_{n}^{0}$, and the spectral transform expression and its inverse simplify to single integrals:
\[

$$
\begin{aligned}
L[f(\psi)] & =\int_{0}^{\pi} f(\psi) P_{n}(\cos \psi) \frac{\sin \psi d \psi}{2}=F_{n} \\
& =\int_{-1}^{+1} f(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2} \\
L^{-1}\left[F_{n}\right] & =\sum_{n=0}^{\infty} F_{n}(2 n+1) P_{n}(\cos \psi)=f(\psi)
\end{aligned}
$$
\]

where the standard notational simplifications

$$
P_{n}^{O}(\cos \psi) \equiv P_{n}(\cos \psi) ; F_{n}^{o} \equiv F_{n}
$$

have been used. In the above equation no distinction has been made between $f(\psi)$ and $f(\cos \psi)$ as functions of $\psi$, although strictly they are not the same function " $f$ " of a single argument.

The definitions given above for the two-dimensional Legendre transform and its inverse utilize the associated legendre functions $P_{n}^{m}(\cos \psi)$ of $n^{t h}$ degree and $m^{\text {th }}$ order, which are defined in Appendix $A$.

Very little seems to have been published about Legendre transforms and "Legendre analysis" explicitly, in contrast to the plethora of results and publications about the Fourier transform and Fourier analysis. In fact, the very words "Legendre transform" may be unknown to many readers. Apparently the earliest paper in which the idea of the Legendre transform as used in this document was defined and utilized was that of Tranter (1950). The convolution theorem in one-dimensional spherical space was developed by Churchill and Dolph (1954), and the basic results of the operational calculus of Legendre transforms were published by Churchill (1954).

It should be noted that the forward and inverse Legendre transform relations given above differ slightly from those customarily given in the literature, specifically in the placement of the factor ( $2 \mathrm{n}+1$ ). This difference is a consequence of the author's choice
between two desirable but conflicting properties: the use of truly orthonormalized basis functions versus the spectrum of the identity transformation equaling unity. Most other authors have selected the former, while this document has chosen the latter.

The motivation in the former case is very strong. By defining normalized associated Legendre functions $\overrightarrow{\mathrm{P}}_{\mathbf{n}}^{\mathbf{m}}(\cos \psi)$ by

$$
\vec{P}_{n}^{m}(\cos \psi)=\sqrt{\varepsilon_{m}(2 n+1) \frac{(n-m)!}{(n+m)!}} P_{n}^{m}(\cos \psi)
$$

it follows that

$$
\int_{0}^{\pi}\left[\overrightarrow{\mathrm{P}}_{\mathrm{n}}^{\mathrm{m}}(\cos \psi)\right]^{2} \frac{\sin \psi \mathrm{~d} \psi}{2}=\varepsilon_{m}
$$

and

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi}\left[\overline{\mathrm{P}}_{n}^{\mathrm{m}}(\cos \psi) \cos m \alpha\right]^{2} \frac{\mathrm{~d} \sigma}{4 \pi}=1 \\
& 2 \pi \\
& \int_{0}^{\pi} \int_{0}^{\pi}\left[\overrightarrow{\mathrm{P}}_{n}^{m}(\cos \psi) \sin m \alpha\right]^{2} \frac{\mathrm{~d} \sigma}{4 \pi}=1
\end{aligned}
$$

which results in the following beautifully symmetric forward and inverse transform formulae:

$$
\begin{aligned}
& \tau_{2 D}[f(\psi, \alpha)]=\iint f(\psi, \alpha) \vec{P}_{n}^{m}(\cos \psi)\left\{\begin{array}{l}
\cos m \alpha \\
\sin m \alpha
\end{array}\right\} \frac{d \sigma}{4 \pi}=\left\{\begin{array}{l}
\vec{F}_{n}^{m} \\
\vec{F}_{n}^{m}
\end{array}\right. \\
& T_{2 D}^{-1}\left[\vec{F}_{n}^{m}, \vec{F}_{n}^{m}\right]=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left[\vec{F}_{n}^{m} \cos m \alpha+\vec{F}_{n}^{m} \sin m \alpha\right] \vec{P}_{n}^{m}(\cos \psi)=f(\psi, \alpha)
\end{aligned}
$$

In these formulae no extraneous constant factors appear since they have all been embedded in the normalized associated Legendre function $\vec{P}_{n}^{m}$. However under this convention, the "Legendre transform" of the Dirac Delta kernel (which corresponds to the identity operator) is

$$
\begin{array}{ll}
\vec{F}_{n}^{0}=\sqrt{2 n+1} & \bar{F}_{n}^{0}=0 \\
\vec{F}_{n}^{m}=0 & \bar{F}_{n}^{m}=0
\end{array}
$$

This would imply, under a signal processing interpretation, that the strengths of zonal* harmonics of the input are amplified by the factor $\sqrt{2 n+1}$ by the identity transformation - a patently erroneous result.

To preclude this problem, this document has chosen the property that the spectrum of the identity transformation is unity as a fundamental assumption. The somewhat unsymmetrical forward and inverse Legendre transform relations first given above then result, with the factor of $(2 n+1)$ appearing only in the inverse transform relation.

### 2.5 Convolution Expressions

There are different expressions for the convolution operation, as well as for the spectral transform, depending upon the dimensionality of the space and the type of coordinate system.

In one-dimensional cartesian space, the convolution $k * f$ of two functions $k(x)$ and $f(x)$ is given by

$$
\begin{aligned}
g(x)=k * f & =\int_{-\infty}^{\infty} k\left(x^{\prime}\right) f\left(x-x^{\prime}\right) d x^{\prime} \\
& =\int_{-\infty}^{\infty} k\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

The convolutional linear operator represented by this integral has the kernel $k(x)$ and maps the input data function $f(x)$ into the output data function $g(x)$. The spectral transform of the output will thus be

$$
S\{g\}=S\{k\} \cdot S\{f\}
$$

In the two-dimensional cartesian space, the convolution $k * f$ of two functions $k(x, y)$ and $f(x, y)$ is given by

$$
\begin{aligned}
g(x, y)=k * f & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k\left(x^{\prime}, y^{\prime}\right) f\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k\left(x-x^{\prime}, y-y^{\prime}\right) f\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
\end{aligned}
$$

[^4]In one-dimensional spherical space, the convolution of two functions $k(\cos \theta)$ and $f(\cos \theta)$ is given by*

$$
g(\cos \theta)=k * f=\int_{0}^{2 \pi} \int_{0}^{\pi} k(\cos \psi) f\left(\cos \theta^{\prime}\right) \frac{\sin \theta^{\prime} d \theta^{\prime} d \lambda^{\prime}}{4 \pi}
$$

where

$$
\cos \psi=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\lambda-\lambda^{\prime}\right)
$$

or by

$$
g(\cos \theta)=k * f=\int_{0}^{2 \pi} \int_{0}^{\pi} k(\cos \psi) f\left(\cos \theta^{\circ}\right) \frac{\sin \psi d \psi d \alpha}{4 \pi}
$$

where $\quad \cos \theta^{\prime}=\cos \theta \cos \psi+\sin \theta \sin \psi \cos \alpha$

In two-dimensional spherical space, the convolution of two functions $k(\cos \theta, \lambda)$ and $f(\cos \theta, \lambda)$ is given by the following equation in "geographic" coordinates.
$g(\cos \theta, \lambda)=k(\cos \theta, \lambda) * f(\cos \theta, \lambda)=\int_{0}^{2 \pi} \int_{0}^{\pi} k(\cos \psi, \alpha) f\left(\cos \theta^{\prime}, \lambda^{\prime}\right) \frac{\sin \theta^{\prime} d \theta^{\prime} d \lambda^{\prime}}{4 \pi}$
where

$$
\begin{aligned}
\cos \psi & =\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\lambda-\lambda^{\prime}\right) \\
\cos \alpha \sin \psi & =\sin \theta \cos \theta^{\prime}-\cos \theta \sin \theta^{\prime} \cos \left(\lambda-\lambda^{\prime}\right) \\
\sin \alpha \sin \psi & =\sin \theta^{\prime} \sin \left(\lambda-\lambda^{\prime}\right)
\end{aligned}
$$

or by the following equation in "local spherical polar" coordinates
$g(\cos \theta, \lambda)=k(\cos \theta, \lambda) * f(\cos \theta, \lambda)=\int_{0}^{2 \pi} \int_{0}^{\pi} k(\cos \psi, \alpha) f\left(\cos \theta^{\prime}, \lambda^{\prime}\right) \frac{\sin \psi d \psi d \alpha}{4 \pi}$
where

$$
\begin{aligned}
\cos \theta^{\prime} & =\cos \theta \cos \psi+\sin \theta \sin \psi \cos \alpha \\
\cos \left(\lambda-\lambda^{\prime}\right) \sin \theta^{\prime} & =\sin \theta \cos \psi-\cos \theta \sin \psi \cos \alpha \\
\sin \left(\lambda-\lambda^{\prime}\right) \sin \theta^{\prime} & =\quad \sin \psi \sin \alpha
\end{aligned}
$$

[^5]While the spherical convolution formulae appear complicated, they are rather simple when visualized. See Figure 2.5-1. The spherical convolution of two functions is the integral of the product of the two functions evaluated over all constant "spherical shifts" of the independent parameters, just as the cartesian convolution is the same integral of a product evaluated over all constant "linear shifts" of the independent parameters. The trigonometric expressions in the spherical formulae merely relate the shifted values of the coordinates of two points on a sphere.

In traditional geodetic notation, the convolution integrals are written slightly differently, but the meaning is exactly the same. Specifically the function values $f\left(\cos \theta^{\prime}\right)$ or $f\left(\cos \theta^{\prime}, \lambda^{\prime}\right)$ are denoted by $f(\psi)$ or $f(\psi, \alpha)$. Both expressions refer to the value of the function " $f$ " at the generic point $P$ ' on the sphere, the difference being in whether the actual functional form of " $f$ " is given in geographic coordinates or local spherical polar coordinates. Throughout the rest of this document, the traditional geodetic notation will be used.

As has been mentioned, the validity of the one-dimensional spherical convolution theorem was established by Churchill and Dolph (1954). Their proof is based upon the addition theorem for the Legendre polynomials. In the two-dimensional spherical case, the author is not aware of an explicit proof of the convolution theorem but is convinced that the proof will be based on the addition theorem of the associated Legendre functions. As pointed out by Kaula (1967, pg. 90), this area of knowledge seems to be studied principally by quantum physicists, such as Wigner (1959) and Edmonds (1957).


Figure 2.5-1. Relationship of Points on a Spherical Surface for Interpretation of Spherical Convolution.

## SECTION 3

SPECTRAL THEORY OF THE INTEGRAL TRANSFORMATIONS OF GEODESY

### 3.1 Introduction

In this chapter, the theoretical "continuous" integral transformations of geodesy and their spectra will be examined. The term "continuous" here implies that the input data to the transformation is assumed to exist at every point on the surface of the sphere and hence to be continuously or densely distributed over the sphere as opposed to a discrete distribution. Thus an integral expression is truly required in the description of the transformation in order to take into account "every" piece of data.

The theoretical Stokes' and Vening-Meinesz' Integrals are precisely of this type. Mathematically they require that point gravity anomalies must be known continuously or densely over the entire surface of the earth. In reality of course this is not possible. Moreover in practical computations, the integral must be approximated by a summation.

However, since only the theoretical "continuous" integral transformations of geodesy are rigorously correct,* the spectral theory of these transformations will be developed to provide an idealized standard against which any approximations may be compared.

### 3.2 Isotropic Geodetic Transformations

Isotropic geodetic transformations are geodetic transformations whose kernel is independent of the azimuth $\alpha$. The classical example is Stokes' Integral. They are more properly called "zeroth-order" geodetic transformations, which distinguishes them from the "firstorder" geodetic transformations whose kernel contains the two-dimensional vector $(\cos \alpha, \sin \alpha)$, such as the Vening-Meinesz' Integral, and in general from "m'th-order" geodetic transformations whose kernels contain the vector $(\cos m \alpha, \sin m \alpha)$.

[^6]The general form for an isotropic geodetic transformation is

$$
\begin{aligned}
\mathrm{f}_{\text {OUT }}(0,0) & =\iint K(\cos \psi) f(\psi, \alpha) \frac{d \sigma}{4 \pi} \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} K(\cos \psi) f(\psi, \alpha) \frac{\sin \psi d \alpha d \psi}{4 \pi} \\
& =\int_{-1}^{+1} \int_{0}^{2 \pi} K(\cos \psi) f(\psi, \alpha) \frac{d \alpha}{2 \pi} \frac{d(\cos \psi)}{2}
\end{aligned}
$$

Since the kernel is independent of the azimuth $\alpha$, the double integral may be simplified to a single integral on the mean value $\bar{f}(\psi)$ of the input $f(\psi, \alpha)$ around the spherical radius $\psi$ :

$$
\begin{aligned}
\mathrm{f}_{\mathrm{OUT}}(0,0) & =\int_{0}^{\pi} \mathrm{K}(\cos \psi) \overline{\mathrm{f}}(\psi) \frac{\sin \psi \mathrm{d} \psi}{2} \\
& =\int_{-1}^{+1} K(\cos \psi) \overline{\mathrm{f}}(\cos \psi) \frac{\mathrm{d}(\cos \psi)}{2}
\end{aligned}
$$

where

$$
\bar{f}(\psi)=\int_{0}^{2 \pi} f(\psi, \alpha) \frac{d \alpha}{2 \pi}
$$

In other words, the output of an isotropic geodetic transformation is directly dependent only on the mean value of the input around each (infinitesimally wide) spherical radius $\psi$ and not on the explicit value of the input at each point on each of the spherical radii.

From the fundamental Legendre transform relations, it follows as a special case that the spectrum of an isotropic geodetic transformation is given by

$$
L\{K(\cos \psi)\}=\int_{-1}^{+1} K(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2}=\lambda_{n}[K]
$$

where $P_{n}(\cos \psi)$ are the Legendre polynomials, $n$ is a non-negative integer, and $K(\cos \psi)$ is the kernel of the transformation.

Conversely, the kernel of the geodetic transformation is expressed in terms of the spectrum $\lambda_{n}$ by

$$
L^{-1}\left\{\lambda_{n}[K]\right\}=K(\cos \psi)=\sum_{n=0}^{\infty} \lambda_{n}(2 n+1) p_{n}(\cos \psi)
$$

Since the output $f_{\text {OUT }}(0,0)$ is the spherical convolution $K * f$, of the kernel $K(\cos \psi)$ with the input data function $f(\psi, \alpha)$

$$
\mathrm{f}_{\text {OUT }}=\mathrm{K} * \mathbf{f}
$$

it follows from the convolution theorem

$$
L\left\{f_{\text {OUT }}\right\}=L\{K\} \cdot L\{f\}
$$

and the global mean-square value property for individual frequencies or harmonics that the global mean-square value of the output is

$$
\left\{f_{\text {OUT }}\right\}_{\text {rms }}^{2} \equiv \sum_{n=0}^{\infty}\left\{\left.f_{\text {OUT }}^{(n)}\right|_{\text {rms }} ^{2}=\sum_{n=0}^{\infty}\left|\lambda_{n}\{K\}\right|^{2}\left\{f_{(n)}\right\}_{\text {rms }}^{2}\right.
$$

in terms of the spectral coefficients and the global mean-square values of the input data function frequencies.

### 3.2.1 S me Examples of Isotropic Geodetic Transformations

A umber of examples will now be given of the foregoing theory to illust ate its application to common transformations. A rather extensive catalog of spherical geodetic transformations and spectra is given in volume II of this document.

### 3.2.1.1 Stokes' Integral

The classical Stokes' Integral is an isotropic geodetic transformation having the gravity anomaly $\Delta g$ as input and the geoid height N as output:

$$
\mathrm{N}=\frac{\mathrm{R}}{\mathrm{G}} \iint \mathrm{~S}(\psi) \Delta \mathrm{g}(\psi, \alpha) \frac{\mathrm{d} \sigma}{4 \pi}
$$

where $R$ and $G$ are nominal values of the earth's radius and gravity, and $S(\psi)$ is the Stokes' function

$$
S(\psi)=\frac{1}{\sin \psi / 2}-6 \sin \frac{\psi}{2}+1-5 \cos \psi+3 \cos \psi \ln \left(\sin \frac{\psi}{2}+\sin ^{2} \frac{\psi}{2}\right)
$$

The kernel of this transformation is

$$
\frac{\mathrm{R}}{\mathrm{G}} \mathrm{~S}(\psi) .
$$

Following the convention of this document, the normalizing factor $4 \pi$ has been grouped with the differential element d $\sigma$ of spherical surface area since it is the total surface area of the unit sphere. Some authors, such as Pick-Picha-Vyskocil (1973), write Stokes' Integral over the surface of a sphere having the earth's radius. In this case, the differential surface area element $d S=R^{2} d \sigma$, and the normalizing factor is $4 \pi R^{2}$, so it is immediately obvious that the $R^{2}$ factors cancel when the normalizing convention is followed.

The spectrum of the Stokes' integral transformation is:

$$
\mathcal{L}\left\{\frac{R}{G} S(\cos \psi)\right\}=\frac{R}{G} \lambda_{n}\{S\}=\frac{R}{G} \begin{cases}0 & \text { for } n=0,1 \\ \frac{1}{n-1} & \text { for } n \geq 2\end{cases}
$$

and the Stokes' kernel has the well-known expansion

$$
\frac{R}{G} L^{-1}\left\{\lambda_{n}[S]\right\}=\frac{R}{G} S(\psi)=\frac{R}{G} \sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}(\cos \psi)
$$

Since the magnitudes of the spectral coefficients decrease in value with increasing spherical harmonic degree $n$, the higher frequencies present in the input become more damped than the lower frequencies during the transformation of the input into the output. Hence the Stokes' Integral is a "smoothing" transformation. This corresponds to our physical intuition that the geoid height has smoother characteristics than gravity anomalies.

### 3.2.1.2 Stokes Integral Analog for Surface Layer Density

Analogous to the classical Stokes' Integral is an isotropic geodetic transformation having the surface layer density $\mu$ as input and the geoid height $N$ as output:*

[^7]$$
N=\frac{R}{G} \iint \frac{2 \mu(\psi, \alpha)}{\left(2 \sin \frac{\psi}{2}\right)} \frac{d \sigma}{4 \pi}
$$

The factor $2 \sin \psi / 2$ in the denominator has been emphasized to remind the reader that it is the linear distance (through the sphere) from the point of evaluation to the generic point ( $\psi, \alpha$ ) of integration at a spherical arc distance $\psi$.

The spectrum of this integral transformation is:

$$
\mathcal{L}\left\{\frac{R}{G} \frac{1}{\sin \frac{\psi}{2}}\right\}=\frac{R}{G} \lambda_{n}\left\{\frac{1}{\sin \frac{\psi}{2}}\right\}=\frac{R}{G} \frac{1}{n+\frac{1}{2}}=\frac{R}{G} \frac{2}{2 n+1}
$$

as may be deduced from the spectral expansion of the kernel:*

$$
L^{-1}\left\{\frac{R}{G} \lambda_{n}\right\}=\frac{R}{G} \frac{2}{\left(2 \sin \frac{\psi}{2}\right)}=\frac{R}{G} \sum_{n=0}^{\infty} 2 P_{n}(\cos \psi)=\frac{R}{G} \sum_{n=0}^{\infty} \frac{2}{2 n+1}(2 n+1) P_{n}(\cos \psi)
$$

### 3.2.1.3 Molodenskii's Integral

Molodenskii's Integral** is an isotropic geodetic transformation which converts geoid height $N$ into gravity anomaly $\Delta g:$

$$
\Delta g_{0}=-\frac{G}{R} N_{0}-2 \frac{G}{R} \iint \frac{\left(N-N_{0}\right)}{\left(2 \sin \frac{\psi}{2}\right)^{3}} \frac{d \sigma}{4 \pi}
$$

where the zero subscripts indicate quantities at the point of evaluation (origin). Thus this transformation has the reverse inputs and outputs of Stokes' Integral, and may be considered to be the inverse of Stokes' Integral. Consequently it will have reciprocal values for its spectral coefficients to those of Stokes' Integral, namely:

$$
\lambda_{n}=\frac{G}{R}\left\{\begin{array}{cc}
? & \text { for } n=0,1 \\
(n-1) & \text { for } n \geq 2
\end{array}\right.
$$

[^8]The spectral coefficients for the zeroth and first degree harmonics must be investigated separately. Stokes' Integral is known (HeiskanenMoritz; l967, pg. 92) to automatically remove the zeroth and first degree harmonics while calculating the output from the input. Therefore its zeroth and first-degree spectral coefficients $\lambda_{0}$ and $\lambda_{1}$ must be zero. However in Molodenskii's Integral if the input geoid height is chosen to be a pure zeroth harmonic ( $N=N_{0}$ ) or a pure first harmonic ( $N=N_{0} \cos \psi$ ), the respective outputs will be

$$
\Delta g_{0}=-\frac{G}{R} N_{0} \quad \text { and } \quad \Delta g_{0}=0
$$

implying respectively that

$$
\lambda_{0}=-\frac{G}{R} \quad \text { and } \quad \lambda_{1}=0
$$

so that the spectral coefficients of Molodenskii's Integral are

$$
\lambda_{n}=\frac{G}{R}(n-1) \quad n=0,1,2, \ldots
$$

and the expansion of the Molodenskii kernel is formally

$$
\frac{G}{R} \sum_{n=0}^{\infty}(n-1)(2 n+1) P_{n}(\cos \psi)
$$

The Molodenskii kernel may be written symbolically as

$$
\frac{G}{R}\left[-\delta_{2 D}(\psi)+M(\psi)\right]
$$

where $\delta_{2 D}(\psi)$ is the two-dimensional spherical Dirac Delta function having the property that

$$
\iint \delta_{2 D}(\psi) f(\psi, a) \frac{d \sigma}{4 \pi}=f(0,0)
$$

and where $M(\psi)$ is a "function" with the property that

$$
\iint M(\psi) f(\psi, \alpha) \frac{d \sigma}{4 \pi}=\iint \frac{-2[f(\psi, \alpha)-f(0,0)]}{\left(2 \sin \frac{\psi}{2}\right)^{3}} \frac{d \sigma}{4 \pi}
$$

The $M(b)$ transformation will be useful in other contexts.

### 3.2.1.4 Truncated Stokes' Integral

The truncated Stokes' Integral is an isotropic geodetic transformation identical to the classical Stokes' Integral except that the integration is carried out only over a spherical cap of spherical radius $\psi_{0}$ rather than over the entire sphere:

$$
N_{\left(\psi_{0}\right)}=\frac{R}{G} \int_{0}^{2 \pi} \int_{0}^{\psi_{0}} S(\psi) \Delta g(\psi, \alpha) \frac{\sin \psi d \psi d \alpha}{4 \pi}
$$

If the truncated Stokes' function $\tilde{S}(\psi)$ is defined by*

$$
\tilde{S}(\psi)=\left\{\begin{array}{cc}
S(\psi) & \text { for } 0 \leq \psi \leq \psi_{0} \\
0 & \text { for } \psi_{0}<\psi \leq \pi
\end{array}\right.
$$

then the transformation may also be written

$$
N_{\left(\psi_{0}\right)}=\frac{R}{G} \iint \tilde{S}(\psi) \Delta g(\psi, \alpha) \frac{d \sigma}{4 \pi}
$$

The spectrum of this transformation is

$$
L\left\{\frac{R}{G} \tilde{s}\right\}=\lambda_{n}\left\{\frac{R}{G} \tilde{s}\right\}=\frac{R}{G} \begin{cases}0-\frac{1}{2} Q_{n}\left(\psi_{0}\right) & \text { for } n=0,1 \\ \frac{1}{n-1}-\frac{1}{2} Q_{n}\left(\psi_{0}\right) & \text { for } n \geq 2\end{cases}
$$

where the $Q_{n}\left(\psi_{0}\right)$ are the Molodenskii functions, defined in Molodenskii (1962, pg. 147) or Heiskanen-Moritz (1967, pg. 260-263). The proof of this spectral relationship is straight-forward using the definitions of the Legendre transform and the Molodenskii functions. From the relationship it is seen that the Molodenskii functions have a very elegant spectral-theoretic interpretation. The factor of one half appears due to the normalization convention used in this document for the Legendre transform. Following this convention the normalized Molodenskii functions $\hat{Q}\left(\psi_{0}\right)=\frac{1}{2} Q_{n}\left(\psi_{0}\right)$ would be a more natural choice

[^9]of fundamental function, but the unnormalized ones have become established in the literature.

### 3.2.1.5 Averaging Over a Spherical Cap

The transformation which calculates the integrated-mean value of a quantity over a spherical cap is an isotropic transformation having the form

$$
\begin{aligned}
\bar{f}_{\left(\psi_{0}\right)} & =\int_{0}^{2 \pi} \int_{0}^{\psi_{0}} \frac{2}{1-\cos \psi_{0}} f(\psi, \alpha) \frac{d \sigma}{4 \pi} \\
& =\int_{0}^{2 \pi} \int_{0}^{\psi_{\sin ^{2}} \frac{\psi_{0}}{2}} f(\psi, \alpha) \frac{d \sigma}{4 \pi}
\end{aligned}
$$

where $f(\psi, \alpha)$ is the input data function and $\bar{f}\left(\psi_{0}\right)$ is mean value of the data over the cap of spherical radius $\psi_{0}$. For $0_{0}$ example, the input data might be point gravity anomalies; then the output would be mean gravity anomalies. The transformation has this explicit representation because the surface area of the spherical cap of radius $\psi_{0}$ on a unit sphere is

$$
\frac{1-\cos \psi_{0}}{2} 4 \pi=\sin ^{2} \frac{\psi_{0}}{2} 4 \pi
$$

The spectrum of this transformation is

$$
\begin{aligned}
\lambda_{n} & =\frac{1}{1-\cos \psi_{0}} \int_{\cos \psi_{0}}^{1} P_{n}(x) d x \\
& =\frac{P_{n-1}\left(\cos \psi_{0}\right)-P_{n+1}\left(\cos \psi_{0}\right)}{\left(1-\cos \psi_{0}\right)(2 n+1)}
\end{aligned}
$$

where $P_{-1}\left(\cos \psi_{0}\right) \equiv 1$.
This quantity can be shown* to be of the order of $n^{-3 / 2}$. In other words the transformation is a smoothing operator (as expected!) but with stronger smoothing than the Stokes' transformation.

[^10]
### 3.2.1.6 Summary of Isotropic Examples

The mathematical relationships for the examples of isotropic geodetic transformations which have just been described are summarized in Figures 3.2-1 through 3.2-5.

- TRANSFORMATION: STOKES INTEGRAL INPUT: $\quad \Delta g$ (GRAVITY ANOMALY) OUTPUT: $N$ (GEOID HEIGHT)
- EXPLICIT FORM

$$
N=\frac{T}{\mathbf{G}}=\frac{R}{\mathbf{G}} \iint S(\psi) \Delta g \frac{d \sigma}{4 \pi}
$$

- EIGENVALUES

$$
\lambda_{n}=\frac{R}{G}\left\{\begin{array}{cl}
0 & \text { FOR } n=0,1 \\
\frac{1}{n-1} & \text { FOR } n \geqslant 2
\end{array}\right.
$$

- SPECTRAL EXPANSION OF KERNEL

$$
K(\cos \psi)=\frac{R}{G} S(\psi)=\frac{R}{G} \sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}(\cos \psi)
$$

Figure 3.2-1. Summary of Mathematical Relationships for the Classic Stokes' Integral Transformation.

- TRANSFORMATION:


## ANALOG OF STOKES FOR SURFACE LAYER DENSITY

INPUT: $\mu$ (SINGLE LAYER SURFACE DENSITY) OUTPUT: $N$ (GEOID HEIGHT)

- EXPLICIT FORM

$$
N=\frac{R}{G} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{2 \mu}{\left(2 \sin \frac{\psi}{2}\right)} \frac{d \sigma}{4 \pi}
$$

- EIGENVALUES

$$
\lambda_{n}=\frac{R}{G} \frac{2}{2 n+1}=\frac{R}{G} \frac{1}{n+1 / 2}
$$

- SPECTRAL EXPANSION OF KERNEL

$$
K(\cos \psi)=\frac{R}{G} \frac{2}{\left(2 \sin \frac{\psi}{2}\right)}=\frac{2 R}{G} \sum_{n=0}^{\infty} P_{n}(\cos \psi)
$$

Figure 3.2-2. Summary of Mathematical Relationships of the Analog of the Stokes' Integral Transformation for Surface Layer Density.

- TRANSFORMATION: MOLODENSKII (INVERSE STOKES) INPUT: $N$ (GEOID HEIGHT) OUTPUT: $\Delta g$ (GRAVITY ANOMALY)
- EXPLICIT FORM

$$
\Delta g_{0}=-\frac{G}{R} N_{0}-2 \frac{G}{R} \iint \frac{\left(N-N_{0}\right)}{\left(2 \sin \frac{\psi}{2}\right)^{3}} \frac{d \sigma}{4 \pi}
$$

## - EIGENVALUES

$$
\lambda_{n}=\frac{G}{R}\left\{\begin{array}{cl}
-1 & \text { FOR } n=0 \\
0 & \text { FOR } n=1 \\
n-1 & \text { FOR } n \geqslant 2
\end{array}\right.
$$

- SPECTRAL EXPANSION OR DECOMPOSITION OF KERNEL

$$
K(\cos \psi)=\frac{\mathbf{G}}{\mathbf{R}}[-\delta(\psi)+M(\psi)]=\frac{\mathbf{G}}{\mathbf{R}} \sum_{n=0}^{\infty}(n-1)(2 n+1) P_{n}(\cos \psi)
$$

Figure 3.2-3. Sumnary of Mathematical Relationships for the Molodenskii
Integral Transformations.

- TRANSFORMATION: TRUNCATED STOKES

$$
\binom{\text { CLASSICAL STOKES INTEGRATED ONLY }}{\text { OVER A CAP OF SPHERICAL RADIUS } \psi_{0}}
$$

INPUT: $\Delta \mathrm{g}$
OUTPUT: $\mathbf{N}\left(\psi_{\mathbf{0}}\right)$

- EXPLICIT FORM

$$
\begin{aligned}
& \mathbf{N}\left(\psi_{0}\right)=\frac{\mathbf{R}}{\mathbf{G}} \int_{0}^{2 \pi} \int_{0}^{\psi_{0}} S(\psi) \Delta g \frac{d \sigma}{4 \pi} \\
&=\frac{R}{\mathbf{G}} \int_{0}^{2 \pi} \int_{0}^{\pi} \widetilde{\mathbf{S}}(\psi) \Delta g \frac{d \sigma}{4 \pi} \\
& \text { WHERE } \widetilde{\mathbf{S}}(\psi)=\left\{\begin{array}{l}
S(\psi) \text { FOR } 0 \leqslant \psi \leqslant \psi_{0} \\
0 \text { FOR } \psi_{0}<\psi \leqslant \pi
\end{array}\right.
\end{aligned}
$$

- EIGENVALUES

$$
\lambda_{n}=\frac{R}{G} \begin{cases}0-\frac{1}{2} Q_{n}\left(\psi_{0}\right) & \text { FOR } n=0,1 \\ \frac{1}{n-1}-\frac{1}{2} Q_{n}\left(\psi_{0}\right) & \text { FOR } n \geqslant 2\end{cases}
$$

WHERE $Q_{n}\left(\psi_{0}\right)$ ARE MOLODENSKII'S FUNCTIONS (HEISKANEN-MORITZ, PAGES 259-263)

- SPECTRAL EXPANSION OF KERNEL

$$
\frac{R}{\mathbf{G}} \widetilde{S}(\psi)=\sum_{n=0}^{\infty} \lambda_{n}(2 n+1) P_{n}(\cos \psi)
$$

Figure 3.2-4. Summary of Mathematical Relationships for the Truncated Stokes' Integral Transformation.

- TRANSFORMATION: AVERAGING OVER CAP

INPUT: $f$ (ANY QUANTITY)
OUTPUT: $\bar{f}\left(\psi_{0}\right)$ (AVERAGE OF THE QUANTITY OVER CAP OF SPHERICAL RADIUS $\psi_{0}$ )

- EXPLICIT FORM

$$
f_{\left(\psi_{0}\right)}=\int_{0}^{2 \pi} \int_{0}^{\psi_{0}} \frac{2}{1-\cos \psi_{0}} f(\psi, \alpha) \frac{d \sigma}{4 \pi}
$$

- EIGENVALUES

$$
\begin{aligned}
& \lambda_{n}=\frac{1}{1-\cos \psi_{0}} \int_{\cos \psi_{0}}^{1} P_{n}(t) d t \\
&=\frac{P_{n-1}\left(\cos \psi_{0}\right)-P_{n+1}\left(\cos \psi_{0}\right)}{\left(1-\cos \psi_{0}\right)(2 n+1)}=0\left(\frac{1}{n^{3 / 2}}\right) \\
& \text { WHERE } P_{-1}=1
\end{aligned}
$$

- SPECTRAL EXPANSION OF KERNEL

$$
\begin{aligned}
K(\psi) & =\left\{\begin{array}{cc}
\frac{2}{1-\cos \psi_{0}} & \text { FOR } 0 \leqslant \psi \leqslant \psi_{0} \\
0 & \text { FOR } \psi_{0}<\psi \leqslant \pi
\end{array}\right\} \\
& =\sum_{n=0}^{\infty} \lambda_{n}(2 n+1) P_{n}(\cos \psi)
\end{aligned}
$$

Figure 3.2-5. Summary of Mathematical Relationships for the Cap-Averaging Integral Transformation.

### 3.2.2 Generalized Gravity Anomalies

A large number of formulas may be simplified and consolidated through the concept of the "generalized gravity anomaly of type 'k'". This concept embraces the traditional gravity anomaly $\Delta g$, the gravity disturbance $\delta g$, and the surface layer density $\mu$, as special cases.

The generalized gravity anomaly of type " $k$ " is defined by:

$$
d_{k} g=-\frac{\partial T}{\partial r}+(k-1) \frac{T}{r}
$$

where $T$ is the traditional disturbing potential, $r$ is the radius (from the center of the earth), and $k$ is any real number.

By comparing this formula with those for $\Delta g$ (Heiskanen-Moritz, pg. 89, eqn. 2-154), for $\delta \mathrm{g}$ (Heiskanen-Moritz, pg. 85, eqn. 2-146'), and for $\mu$ (Heiskanen-Moritz, pg. 237, eqn. 6-55), and by defining the "gravity variation dg" as

$$
d g=-\frac{\partial T}{\partial r}-\frac{T}{r},
$$

it is immediately seen that

$$
\left.\begin{array}{rl}
\Delta g & =d_{(-1)} g
\end{array}\right) \text { gravity anomaly } \quad \begin{aligned}
& d g=d_{0} g \quad \text { gravity variation (new) } \\
& \mu=d_{1 / 2} g=\text { surface layer density } \\
& \delta g=d_{1} g \quad=\text { gravity disturbance }
\end{aligned}
$$

These relations may be represented schematically as shown in Figure 3.2-6.


Figure 3.2-6. Schematic Diagram for the Interpretation of the Generalized Anomaly of Type " $k$ ".

This figure indicates by how much the gravity disturbance at a point must be "reduced" to convert it to the other gravimetric quantities, or equivalently by what distance the points $P$ and $Q$ are separated when the generalized gravity anomaly is calculated by differencing actual gravity at point $P$ and reference gravity at point $Q$. For the traditional gravity anomaly $P$ and $Q$ are separated by the geoid height, while for surface layer density they are separated by only one quarter of the geoid height.

Consider now the analog of Stokes' Integral when the input to the integral is the generalized gravity anomaly $d_{k} g$ of type " $k$ ". Let $S_{k}(\psi)$ denote the generalized Stokes' function which will be the kernel of this integral:

$$
N=\frac{T}{G}=\frac{R}{G} \iint S_{k}(\psi) d_{k} g(\psi, \alpha) \frac{d \sigma}{4 \pi}
$$

It may be shown that $S_{k}(\psi)$ has the following spectral expansion:

$$
S_{k}(\psi)=\sum_{n=n_{\min }}^{\infty} \frac{(2 n+1)}{n+k} P_{n}(\cos \psi)
$$

where $n_{\min }$ is zero or the first positive integer such that the denominator ( $n+k$ ) is always positive. This result implies that the spectrum of the generalized Stokes' transformation is

$$
\lambda_{n}\left(\frac{R}{G} S_{k}(\psi)\right)=\frac{R}{G} \begin{cases}0 & n<n_{\min } \\ \frac{1}{n+k} & n \geq n_{\min }\end{cases}
$$

Explicit expressions for these functions are given in Figure 3.2-7. The expressions have been obtained from the rather complete table in Pick-Picha-Vyskocil (1973, pg. 476ff). In an effort to achieve clearer notation, the following symbology has also been used for the generalized Stokes' functions in the catalog (Volume II of this document).

$$
\begin{aligned}
& S_{-1}(\psi) \equiv S_{(\psi)} \\
& S_{0}(\psi) \equiv S_{d g}(\psi)
\end{aligned}
$$

$$
\begin{aligned}
s_{1 / 2}(\psi) \equiv s_{\mu}(\psi) \\
s_{+1}(\psi) \equiv s_{\delta g}(\psi)
\end{aligned}
$$

A summary of the explicit mathematical relationships of the generalized Stokes' transformation is given in Figure 3.2-8.

- $\Delta \mathrm{g}: S_{-1}(\psi)=\frac{1}{\sin \frac{\psi}{2}}-6 \sin \frac{\psi}{2}+1-5 \cos \psi-3 \cos \psi \ln \left(\sin \frac{\psi}{2}+\sin ^{2} \frac{\psi}{2}\right)$
- dg: $S_{0}(\psi)=\frac{1}{\sin \frac{\psi}{2}}-2-3 \cos \psi-\ln \left(\sin \frac{\psi}{2}+\sin ^{2} \frac{\psi}{2}\right)$
- $\mu: S_{1 / 2}(\psi)=\frac{1}{\sin \frac{\psi}{2}}$
- $\delta \mathrm{g}: S_{1}(\psi)=\frac{1}{\sin \frac{\psi}{2}}-\ln \left(1+\frac{1}{\sin \frac{\psi}{2}}\right)$

Figure 3.2-7. Closed Form Expressions for the Generalized Stokes' Function.

- TRANSFORMATION: GENERALIZED STOKES

INPUT: $\quad d_{k} g$ OUTPUT: $\mathbf{N}$
(GENERALIZED GRAVITY ANOMALY) (GEOID HEIGHT)

## - EXPLICIT FORM

$$
\begin{aligned}
\mathbf{N}=\frac{\mathbf{T}}{\mathbf{G}}= & \frac{R}{\mathbf{G}} \iint S_{\mathbf{k}}(\psi) d_{k} g(\psi, \alpha) \frac{d \sigma}{4 \pi} \\
\text { WHERE } S_{k}= & \text { STOKES' FUNCTION ANALOG FOR } \\
& \text { THE GENERALIZED GRAVITY } \\
& \text { ANOMALY OF TYPE } k
\end{aligned}
$$

- EIGENVALUES

$$
\lambda_{n}=\frac{R}{G} \frac{1}{n+k}
$$

- SPECTRAL EXPANSION OR DECOMPOSITION OF KERNEL

$$
K(\cos \psi)=\frac{R}{G} S_{k}(\psi)=\frac{R}{G} \sum_{n=0}^{\infty} \frac{2 n+1}{n+k} P_{n}(\cos \psi)
$$

Figure 3.2-8. Summary of Mathematical Relationships for the Generalized Stokes' Integral Transformation.

### 3.2.3 Flow Diagrams of Transformations

It is very enlightening conceptually to represent the spectra of geodetic transformations in a flow diagram such as Figure 3.2.3-1. The nodes of the flow diagram are geodetic quantities, and the lines between the nodes represent the transformation (in either direction) between the pair of quantities which a line connects. A direction is arbitrarily specified for each line, and the spectrum of the transformation corresponding to this direction is written beside the line. The spectrum of the inverse transformation is the reciprocal of the spectrum of the forward transformation.

For example, at the extreme left of Figure 3.2.3-1, the transformation from geoid height $N$ to gravity anomalies $\Delta g$ in the direction of the arrow is Molodenskii's transformation which has the spectrum ( $G / R$ ) ( $n-1$ ). Its inverse is the traditional Stokes' Integral with the spectrum* $R / G(n-1)$.

Since the transformation from geoid $N$ to gravity disturbances $\delta \mathbf{g}$ has the spectrum $\lambda_{n}=(G / R)(n+1)$, it may be inferred using the sequential transformation spectrum multiplication rule that the transformation converting gravity anomalies $\Delta g$ into gravity disturbances $\delta g$ has the spectrum

$$
\lambda_{n}\{\Delta g+\delta g\}=\frac{n+1}{n-1}
$$

Quantities of approximately equal "smoothness" have been positioned on the same horizontal line in the flow diagram. The geoid height is the smoothest quantity and is placed at the top. The gravity anomalies, disturbances, and surface layer densities are "rougher" in the sense that for a specified spectrum of the geoid height these quantities will have spectra whose higher frequencies have been amplified since the transformations from geoid height to these quantities all have spectra of the order of the spherical harmonic degree $n$, i.e., the $n{ }^{\text {th }}$ harmonic of the input is multiplied by (approximately) $n$ to form the $n^{\text {th }}$ harmonic of the output. However the transformation between any pair of generalized gravity anomaly quantities has a spectrum of the order of 1 , so that the strengths of the higher frequencies are neither amplified nor attenuated, implying that these quantities have approximately equal smoothness.

[^11]

Figure 3.2.3-1. Flow Diagram of Basic Geodetic Transformations and
Their Spectra.

### 3.2.4 Spectra of Spherical Geodetic Transformations with Upward Continuation

It is desired to obtain an expression for the spectrum of an "extended" geodetic transformation, that is, a transformation whose output is a geodetic quantity at an altitude above the surface of the reference sphere and whose input are geodetic quantities on the sphere.

It may be shown (Heiskanen-Moritz, 1967, pg. 20) that any harmonic function* $h(r, \psi, \alpha)$ in the space outside of a reference sphere may be expressed in terms of its "boundary" values $h(R, \psi, \alpha)$ on the surface of the sphere by the relation

$$
h(r, \psi, \alpha)=\sum_{n=0}^{\infty}\left(\frac{R}{r}\right)^{n+1} h_{n}(\psi, \alpha)
$$

where $h_{n}(\psi, \alpha)$ is the $n^{\text {th }}$ degree surface spherical harmonic term

$$
h_{n}(\psi, \alpha)=\sum_{m=0}^{n}\left(H_{n}^{m} \cos m \alpha+H_{n}^{m} \sin m \alpha\right)(2 n+1) \sqrt{\frac{(n-m)!}{(n+m)!}} P_{n}^{m}(\cos \psi)
$$

and where

$$
\left.\begin{array}{l}
H_{n}^{m} \\
H_{n}^{m}
\end{array}\right\}=\varepsilon_{n} \sqrt{\frac{(n-m)!}{(n+m)!}} \iint h(R, \psi, \alpha)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} p_{n}^{m}(\cos \psi) \frac{d \sigma}{4 \pi}
$$

By forming the two-dimensional Legendre transform at altitude, namely on an "outer" sphere of radius $r$, to derive the spectrum of the function $h(r, \psi, \alpha)$ at altitude, it is found that

$$
L_{2 D}\{h(r, \psi, \alpha)\}=\left(\frac{R}{r}\right)^{n+1} L_{2 D}\{h(R, \psi, \alpha)\}
$$

Thus the spherical upward continuation operator of a harmonic geodetic quantity has the spectrum

$$
\lambda_{n}\{h(R, \psi, \alpha)+h(r, 0,0)\}=\left(\frac{R}{r}\right)^{n+1}
$$

$\overline{\text { a harmonic function }}$ is by definition a solution of Laplace's equation

For example, the geoid height N is harmonic, since it is proportional to the disturbing potential $T$ by Brun's Theorem. The gravity anomaly $\Delta g$ and gravity disturbance $\delta g$ are not harmonic; however the quantities ( $r \Delta g$ ) and ( $r \delta g$ ) are harmonic.* Hence, the operator which upwardcontinues $\Delta g$ or $\delta g$ to altitude from surface values of these same quantities has the spectrum

$$
\lambda_{n}\{\Delta g(R, \psi, \alpha) \rightarrow \Delta g(r, 0,0)\}=\left(\frac{R}{r}\right)^{n+2}
$$

which may be derived by applying the preceeding relation to the harmonic quantities ( $x \Delta g$ ) and ( $r \delta g$ ) and collecting the radius factors.

A summary of the mathematical relations for the upward continuation transformation of harmonic functions is given in Figure 3.2.4-1. When the output radius $r$ equals the input radius $R$, the identity transformation occurs. This has the spectrum of unity.

In this document, the spectra of surface transformations have generally been investigated since the spectra of corresponding transformations with upward continuation can be obtained trivially by multiplying the surface spectra by the appropriate radius ratio factor (provided the harmonicity condition is satisfied). An important exception to this technique is the class of truncated geodetic transformations.

[^12]- TRANSFORMATION: IDENTITY, UPWARD CONTINUATION INPUT: $h(R, \psi, \alpha) \quad$ ON SURFACE OF RADIUS $R$ OUTPUT: $h(r, 0,0) \quad$ AT RADIUS $r$ WHERE $h$ IS ANY HARMONIC FUNCTION (e.g., $r \Delta g$ )


## - EXPLICIT FORM

$$
h(r, 0,0)=\iint \frac{R\left(r^{2}-R^{2}\right)}{\left(r^{2}-2 R r \cos \psi+R^{2}\right)^{3 / 2}} h(R, \psi, \alpha) \frac{d \sigma}{4 \pi}
$$

## - EIGENVALUES

$$
\lambda_{n}=\left(\frac{R}{r}\right)^{n+1} \text {, HENCE } \lambda_{n}=1 \text { WHEN } r=R
$$

- SPECTRAL EXPANSION OR DECOMPOSITION OF KERNEL

$$
\begin{aligned}
K(\cos \psi, r, R) & =\frac{R\left(r^{2}-R^{2}\right)}{\left(r^{2}-2 R r \cos \psi+R^{2}\right)^{3 / 2}} \\
& =\sum_{n=0}^{\infty}\left(\frac{R}{r}\right)^{n+1}(2 n+1) P_{n}(\cos \psi)
\end{aligned}
$$

HENCE

$$
\delta(\psi)=\operatorname{Lim}_{r \rightarrow R} \frac{R\left(r^{2}-R^{2}\right)}{\left(r^{2}-2 R r \cos \psi+R^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty}(2 n+1) P_{n}(\cos \psi)
$$

Figure 3.2.4-1. Summary of Mathematical Relationships for the Identity and Upward Continuation Integral Transformation.

### 3.2.5 Vertical Gradients of Geodetic Quantities

Heiskanen and Moritz (1967, pg. 115, eqn. 2-216) have shown that the vertical gradient of gravity anomalies at the surface may be expressed. as

$$
\frac{\partial \Delta g}{\partial r}=-\frac{1}{R} \sum_{n=0}^{\infty}(n+2) \Delta g_{n}
$$

where $\Delta g_{n}$ are the gravity anomaly harmonics (Heiskanen-Moritz, pg. 97)*

$$
\Delta g_{n}=\iint \Delta g(\psi, \alpha) p_{n}(\cos \psi) \frac{d \sigma}{4 \pi}=L_{n}\{\Delta g\}
$$

Hence the spectrum of the transformation from gravity anomalies $\Delta g$ to their vertical gradient at the surface is

$$
\lambda_{n}\left\{\Delta g+\frac{\partial \Delta g}{\partial r}\right\}=-\frac{1}{R}(n+2)
$$

An explicit expression for the calculation of the vertical gradient of the gravity anomaly has been derived by Heiskanen-Moritz (1967, pg. 115, eqn. 2-217):

$$
\frac{\partial \Delta g}{\partial r}=-\frac{2}{R} \Delta g_{0}+\frac{2}{R} \iint \frac{\left(\Delta g-\Delta g_{0}\right)}{\left[2 \sin \frac{\psi}{2}\right]^{3}} \frac{d \sigma}{4 \pi}
$$

The kernel of this transformation may be represented symbolically by

$$
-\frac{1}{\mathrm{R}}\left[2 \delta_{2 \mathrm{D}}(\psi)+M(\psi)\right]
$$

where the two-dimensional Dirac Delta function $\delta_{2 D}(\psi)$ and the function $M(\psi)$ have the properties

$$
\begin{aligned}
\iint \delta_{2 D}(\psi) f(\psi, \alpha) \frac{d \sigma}{4 \pi} & =f(0,0) \\
\iint M(\psi) f(\psi, \alpha) \frac{d \sigma}{4 \pi} & =\iint \frac{-2[f(\psi, \alpha)-f(0,0)]}{\left(2 \sin \frac{\psi}{2}\right)^{3}} \frac{d \sigma}{4 \pi}
\end{aligned}
$$

[^13]The mathematical relationships for the gravity anomaly vertical gradient transformation are summarized in Figure 3.2.5-1.

From the above spectrum and the spectrum of the Molodenskii Integral, it is easy to see that the spectrum of the transformation having the kernel $M(\psi)$ is

$$
\lambda_{n}\{M(\psi)\}=n
$$

since

$$
\lambda_{n}\left\{\delta_{2 D}(\psi)\right\}=1
$$

This result about $\lambda_{n}\{M(\psi)\}$ is due to Meissl (1971, pg. 22, eqn. 3-11).
It will now be shown that the transformation from any generalized gravity anomaly to its vertical gradient at the surface has the same spectrum

$$
\lambda_{n}\left\{d_{k} g+\frac{\partial d_{k} g}{\partial r}\right\}=-\frac{1}{R}(n+2)
$$

The quantity ( $r d_{k} g$ ) is harmonic. Hence

$$
\left[r d_{k} g(r)\right]=\sum_{n=0}^{\infty}\left[\frac{R}{r}\right)^{n+1}\left[R d_{k} g(R)\right]_{(n)}
$$

or

$$
d_{k} g(x)=\sum_{n=0}^{\infty}\left(\frac{R}{x}\right)^{n+2}\left[d_{k} g(R)\right](n)
$$

Differentiating with respect to $r$ :

$$
\begin{aligned}
\frac{\partial d_{k} g(r)}{\partial r} & =\sum_{n=0}^{\infty}(n+2)\left(\frac{R}{r}\right)^{n+1}\left(\frac{-R}{r^{2}}\right)\left[d_{k} g(R)\right](n) \\
& =\sum_{n=0}^{\infty}\left(-\frac{n+2}{r}\right)\left(\frac{R}{r}\right)^{n+2}\left[d_{k} g(R)\right](n)
\end{aligned}
$$

The last line is the spectral representation of the vertical gradient in terms of the (input) generalized gravity anomaly. It is seen that the strengths of the constituent frequencies of the input are multiplied

## - TRANSFORMATION:

## VERTICAL GRADIENT OF GRAVITY ANOMALIES (AT SURFACE)

INPUT: $\quad \Delta \mathrm{g}$
OUTPUT: $\left.\frac{\partial \Delta g}{\partial r}\right|_{r}=R$

- EXPLICIT FORM

$$
\frac{\partial \Delta g}{\partial r}=-\frac{2}{R} \Delta g_{0}+\frac{2}{R} \iint \frac{\left(\Delta g-\Delta g_{0}\right)}{\left(2 \sin \frac{\psi}{2}\right)^{3}} \frac{d \sigma}{4 \pi}
$$

- EIGENVALUES

$$
\lambda_{n}=-\frac{1}{R}(n+2)
$$

- SPECTRAL EXPANSION OF KERNEL

$$
K(\psi)=-\frac{1}{R}[2 \delta(\psi)+M(\psi)]=-\frac{1}{R} \sum(n+2)(2 n+1) P_{n}(\cos \psi)
$$

FORMALLY

Figure 3.2.5-1. Summary of Mathematical Relationships for the Gravity Anomaly Vertical Gradient Integral Transformation.
by the factor $-(n+2) / R$; hence, this quantity is the spectrum of this transformation.

A flow diagram of the spectra of the vertical gradient transformations is given in Figure 3.2.5-2, from which a very interesting result may be inferred: The spectrum of the transformation from the generalized gravity anomaly of type 2

$$
d_{2} g=-\frac{\partial T}{\partial r}+\frac{T}{r}
$$

to the vertical gradient $\frac{\partial}{\partial r} d_{k} g$ of the generalized gravity anomaly of type $k$ is equal (within a constant) to the spectrum of the transformation from the geoid height to the generalized gravity anomaly of type $k$. Hence, the transformations themselves are identical (within the same constant): If the generalized Stokes' transformation $L$ maps geoid height $N$ to the generalized gravity anomaly $d_{k} g$ :

$$
L: N \rightarrow d_{k} g
$$

then the negative of this transformation divided by the nominal value $G$ of gravity maps the generalized gravity anomaly $d_{2} g$ into the vertical gradient $\partial d_{k} g / \partial x:$

$$
\left(-\frac{1}{G}\right) L: d_{2} g \rightarrow \frac{\partial d_{k} g}{\partial r}
$$

### 3.2.6 Vertical Stress Gradient Spectrum

The "extended" Stokes' Integral, which expresses the disturbing potential $T(r)$ at altitude in terms of the surface gravity anomalies, may be differentiated with respect to the radial direction parameter (the radius $r$ ) to obtain the gravity disturbance $\delta g(r)$ at altitude. This is carried out by Heiskanen-Moritz (1967, pg. 233ff). The resulting transformation has the kernel

$$
-R \frac{\partial S(r, \psi)}{\partial r}
$$

where $S(r, \psi)$ is the "extended" Stokes' function. The analytic expression for this transformation may again be differentiated with respect to the radial direction parameter to obtain the vertical stress gradient quantity:



$$
-\frac{\partial^{2} r}{\partial r^{2}}=\frac{\partial \delta q}{\partial r}
$$

which is one of the components of the gravity gradient tensor. This transformation is isotropic and has the kernel

$$
-R \frac{\partial^{2} S(r, \psi)}{\partial r^{2}}
$$

The analytic expression for this second partial derivative is given by Reed (1973, pg. 71). From the flow diagram of spectra for vertical gradient transformations, it can be determined that the spectrum of this transformation at the surface is

$$
\lambda_{n}\left\{\Delta g \rightarrow \frac{\partial \delta g}{\partial r}\right\}=-\frac{(n+2)(n+1)}{R(n-1)}
$$

The mathematical relations for this transformation are summarized in Figure 3.2.5-3. The other components of the gravity gradient tensor are generated by anisotropic transformations and their spectra will be derived in the section pertaining to such transformations.

- TRANSFORMATION: VERTICAL STRESS GRADIENT (AT SURFACE)

$$
\begin{aligned}
& \text { INPUT: } \quad \Delta \mathrm{g} \\
& \text { OUTPUT: }-\mathrm{T}_{\mathrm{zz}}=\frac{\partial \delta \mathrm{g}}{\partial \mathrm{r}}
\end{aligned}
$$

- EXPLICIT FORM

$$
-T_{z z}=-R \iint \frac{\partial^{2} S(r, \psi)}{\partial r^{2}} \Delta g \frac{d \sigma}{4 \pi}
$$

## - EIGENVALUES

$$
\lambda_{n}=-\frac{1}{R}\left\{\begin{array}{cl}
0 & \text { FOR } n=0,1 \\
\frac{(n+2)(n+1)}{(n-1)} & \text { FOR } n \geqslant 2
\end{array}\right.
$$

- SPECTRAL EXPANSION OF KERNEL

$$
-\left.R \frac{\partial^{2} S(r, \psi)}{\partial r^{2}}\right|_{r=R}=-\frac{1}{R} \sum_{n=2}^{\infty} \frac{(n+2)(n+1)}{(n-1)}(2 n+1) P_{n}(\cos \psi)
$$

Figure 3.2.5-3. Summary of Mathematical Relationships for the vertical Stress Gradient Integral Transformation.

### 3.3 Anisotropic Geodetic Transformations

Anisotropic geodetic transformations are geodetic transformations whose kernels depend on the local azimuth $\alpha$. The classic example is the Vening-Meinesz' Integral which provides the two components of the deflection of the vertical from a knowledge of the gravity anomaly. Each vertical deflection component depends upon the spatial distribution of the gravity anomaly values in azimuth around each spherical radius rather than merely on their mean value.

Anisotropic geodetic transformations are more properly but less intuitively called "non-zeroth-order" geodetic transformations.

The general form of an anisotropic geodetic integral transformation is

$$
\begin{aligned}
\underline{E}_{\text {OUT }}(0,0) & =\iint K(\cos \psi)\left\{\begin{array}{l}
\cos M \alpha \\
\sin M \alpha
\end{array}\right\} f(\psi, \alpha) \frac{d \sigma}{4 \pi} \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} K(\cos \psi)\left\{\begin{array}{l}
\cos M \alpha \\
\sin M \alpha
\end{array}\right\} f(\psi, \alpha) \frac{\sin \psi d \psi d \alpha}{4 \pi} \\
& =\int_{0}^{2 \pi} \int_{-1}^{+1} K(\cos \psi)\left\{\begin{array}{l}
\cos M \alpha \\
\sin M \alpha
\end{array}\right\} f(\psi, \alpha) \frac{d(\cos \psi)}{2} \frac{d \alpha}{2 \pi}
\end{aligned}
$$

From the fundamental Legendre transform relations it follows that the spectrum $\lambda_{n}^{m}$ of an anisotropic integral transformation is given by

$$
L_{2 D}\left\{K(\cos \psi)\left\{\begin{array}{l}
\cos M \alpha \\
\sin M \alpha
\end{array}\right\}\right\}=\frac{\lambda}{n}_{m}^{n}
$$

$$
=E_{m} \sqrt{\frac{(n-m)!}{(n+m)!}} \iint K(\cos \psi)\left\{\begin{array}{l}
\cos M \alpha \\
\sin M \alpha
\end{array}\right\}\left\{\begin{array}{l}
\cos m \alpha \\
\sin m \alpha
\end{array}\right\} P_{n}^{m}(\cos \psi) \frac{d \sigma}{4 \pi}
$$

where $K(\cos \psi)\left\{\begin{array}{c}\cos M \alpha \\ \sin M \alpha\end{array}\right\}$ is the kernel of the transformation.

Conversely, the kernel of the anisotropic geodetic transformation is expressed in terms of the spectrum by:
$K(\cos \psi)\left\{\begin{array}{c}\cos M \alpha \\ \sin M \alpha\end{array}\right\}=L^{-1}\left\{\begin{array}{c}\lambda_{n}^{M} \\ -n\end{array}\right\}=\sum_{n=0}^{\infty} \lambda_{-1}^{M}(2 n+1) \sqrt{\frac{(n-M)!}{(n+M)!}} P_{n}^{M}(\cos \psi)\left\{\begin{array}{l}\cos M \alpha \\ \sin M \alpha\end{array}\right\}$

### 3.3.1 Some Examples of Anisotropic Geodetic Transformations

A few examples will now be given of anisotropic geodetic transformations and their spectra. A rather extensive catalog of spherical geodetic transformations and spectra is given in Volume II of this document.

### 3.3.1.1 Vening-Meinesz' Integral

The Vening-Meinesz' Integral is an anisotropic geodetic transformation having the gravity anomaly $\Delta g$ as input and the deflections of the vertical (or equivalently the two horizontal gravity disturbance components) as output. The kernel of the transformation is

$$
\frac{\partial S(\psi)}{\partial \psi}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}
$$

which is separable into local "radial" and azimuthal parts. By differentiating the spectral expansion of Stokes' kernel

$$
S(\psi)=\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}(\cos \psi)
$$

and making use of the fact that

$$
\frac{\partial P_{n}(\cos \psi)}{\partial \psi}=\frac{\partial P_{n}(x)}{\partial x}(-1) \sin \psi=P_{n}^{1}(\cos \psi)
$$

it follows that

$$
V M(\psi) \equiv \frac{\partial S(\psi)}{\partial \psi}=\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}^{1}(\cos \psi)
$$

or

$$
\frac{\partial S(\psi)}{\partial \psi}=\sum_{n=2}^{\infty} \frac{\sqrt{n(n+1)}}{n-1} \frac{2 n+1}{\sqrt{n(n+1)}} P_{n}^{1}(\cos \psi)
$$

Recalling the definition of the spectrum of anisotropic geodetic transformations and noting that

$$
\frac{1}{\sqrt{n(n+1)}}=\sqrt{\frac{(n-1)!}{(n+1)!}}
$$

we see that the spectrum $\lambda_{-n}^{1}$ of the traditional Vening-Meinesz' transformation* is:

$$
\stackrel{\lambda}{n}^{1}\left\{\begin{array}{l}
G \xi \\
G \eta
\end{array}\right\}=\lambda_{n}^{1} \begin{cases}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} & \text { for } G \xi \\
\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} & \text { for } G \eta\end{cases}
$$

where the "gain" is

$$
\lambda_{n}^{1}=\frac{\sqrt{n(n+1)}}{n-1}
$$

The mathematical relations for this transformation are summarized in Figure 3.3.1-1.

[^14]- TRANSFORMATION: VENING-MEINESZ

INPUT: $\Delta \mathrm{g}$
OUTPUT: $\mathbf{G} \vec{\epsilon}=(\mathbf{G} \xi, \mathbf{G} \boldsymbol{\eta})$
= HORIZONTAL GRAVITY DISTURBANCE VECTOR

- EXPLICIT FORM

$$
\left.\begin{array}{ll}
\mathbf{G} \xi \\
\mathbf{G} \eta
\end{array}\right\}=\iint \frac{\partial \mathbf{S}(\psi)}{\partial \psi}\left|\begin{array}{l}
\mid \cos \alpha \\
\mid \sin \alpha
\end{array}\right| \Delta \mathrm{g} \frac{\mathrm{~d} \boldsymbol{g}}{4 \pi}
$$

- EIGENVALUES

$$
\lambda_{n}^{1}=\left\{\begin{array}{cl}
0 & \text { FOR } n=0,1 \\
\frac{\sqrt{n(n+1)}}{n-1} & \text { FOR } n \geqslant 2
\end{array}\right.
$$

- SPECTRAL EXPANSION OF KERNEL

$$
\left.\begin{array}{rl}
\frac{\partial S}{\partial \psi}\left|\begin{array}{ll}
\cos \alpha \mid \\
\sin \alpha
\end{array}\right| & =\sum_{n=2}^{\infty} \frac{\sqrt{n(n+1)}}{n-1} \frac{(2 n+1)}{\sqrt{n(n+1)}} P_{n}^{1}(\cos \psi) \quad\left\{\begin{array}{l}
\cos \alpha \\
\mid \sin \alpha
\end{array}\right\}
\end{array}\right]
$$

Figure 3.3.1-1. Summary of Mathematical Relationships for the Classic Vening-Meinesz' Integral Transformation

### 3.3.1.2 Vertical Shear Gravity Gradient

The transformation by which the vertical "shear" gradients are generated from gravity anomalies is a second example of an anisotropic geodetic transformation. The vertical shear gradients are two components of the gravity gradient tensor* and are defined to be the spatial partial derivatives (gradients) of the gravity disturbance in the local north $(\alpha=0)$ and local east $\left(\alpha=90^{\circ}\right)$ directions. In the local cartesian osculating coordinate system ( $x=$ local north, $y=$ local east, $z=$ local down), the vertical "shear" gradients would be represented by $+T_{2 x}$ and $+T_{2 y}$ using the traditional notation with subscripts denoting partial derivatives with respect to the indicated variables.

Thus

$$
+T_{z X}=\frac{\partial \delta g}{R \partial \psi_{\alpha=0}} ;+T_{z Y}=\frac{\partial \delta g}{R \partial \psi_{\alpha=90^{\circ}}}
$$

The explicit form of the integral transformation is derived by differentiating the extended Stokes' Integral with respect to the radius $r$ and with respect to spherical radius $\psi$. Thus the kernel of the transformation is

$$
\frac{\partial^{2} S(r, \psi)}{\partial r \partial \psi}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}
$$

An explicit expression for this kernel has been derived in Reed (1971, pg. 71).

By using the sequential transformation spectral multiplication rule on the Vening-Meinesz' and vertical gradient transformations, it is easily derived that the spectrum of the transformation converting gravity anomalies into vertical shear gravity gradients is the product of

$$
-\frac{1}{R}(n+2) \quad \text { and } \quad\left\{\begin{array}{cl}
0 & \text { for } n=0,1 \\
\frac{\sqrt{n(n+1)}}{n-1} & \text { for } n \geq 2
\end{array}\right.
$$

[^15]The mathematical relations for this transformation are summarized in Figure 3.3.1-2.

- TRANSFORMATION: VERTICAL SHEAR GRADIENTS

INPUT: $\Delta \mathrm{g}$
OUTPUT: $\quad T_{Z x}=\frac{\partial \delta g}{R \partial \psi_{(\alpha=0)}}$ AND $T_{z y}=\frac{\partial \delta g}{R \partial \psi\left(\alpha=90^{\circ}\right)}$

- EXPLICIT FORM

$$
\left.\begin{array}{l}
+T_{z x} \\
+T_{z y}
\end{array}\right\}=\iint \frac{\partial^{2} S(r, \psi)}{\partial r \partial \psi} \Delta g\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \frac{d \sigma}{4 \pi}
$$

- EIGENVALUES

$$
\lambda_{n}^{1}=-\frac{1}{R}\left\{\begin{array}{cl}
0 & \text { FOR } n=0,1 \\
\frac{n+2}{n-1} \sqrt{n(n+1)} & \text { FOR } n \geqslant 2
\end{array}\right.
$$

- SPECTRAL EXPANSION OF KERNEL

$$
\left.\frac{\partial^{2} S(r, \psi)}{\partial r \partial \psi}\right|_{r=R}\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\}=\frac{1}{R} \sum_{n=2}^{\infty} \frac{-(n+2)}{(n-1)}(2 n+1) P_{n}^{1}(\cos \psi)\left|\begin{array}{l}
\cos \alpha \\
\mid \sin \alpha
\end{array}\right|
$$

Figure 3.3.1-2. Summary of Mathematical Relationships for the Vertical Shear Gradient Integral Transformation.

### 3.3.1.3 Horizontal Differential Stress and Horizontal Shear Gradients

The transformation by which the horizontal differential stress gradient and horizontal shear gradient are generated from the gravity anomalies is a third example of an anisotropic geodetic transformation and the first example of a second-order transformation.

The explicit form of the transformation may be obtained by differentiating the Vening-Meinesz' Integral with respect to the spherical radius $\psi$, evaluating the results along the azimuths $\alpha=0^{\circ}$ or $\alpha=90^{\circ}$, and calculating

$$
\begin{aligned}
-\left(T_{Y Y}-T_{X X}\right) & =-\frac{G}{R}\left(\left.\frac{\partial \eta}{\partial \psi}\right|_{\alpha=90^{\circ}}-\left.\frac{\partial \xi}{\partial \psi}\right|_{\alpha=0^{\circ}}\right) \\
2 T_{x y} & =2 \frac{G}{R}\left(\left.\frac{\partial \xi}{\partial \psi}\right|_{\alpha=90^{\circ}} \text { or }\left.\frac{\partial \eta}{\partial \psi}\right|_{\alpha=0^{\circ}}\right)
\end{aligned}
$$

The kernel of the transformation will be found to be [Malkin (1933, pg.56)]:

$$
\frac{1}{R}\left(\frac{\partial^{2} S(\psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial S(\psi)}{\partial \psi}\right)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}
$$

The easiest way to derive the spectrum of the transformation is to find the spectral expansion of the kernel directly and then identify the spectral coefficients in the expansion. By differentiating the spectral expansion of the Stokes' Integral kernel twice with respect to $\psi$,

$$
\left(\frac{\partial^{2} S(\psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial S(\psi)}{\partial \psi}\right)=\sum_{n=2}^{\infty} \frac{2 n+1}{n-1}\left(\frac{\partial^{2} P_{n}(\cos \psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial P_{n}(\cos \psi)}{\partial \psi}\right)
$$

and using the relation that

$$
\frac{\partial^{2} P_{n}(\cos \psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial P_{n}(\cos \psi)}{\partial \psi}=P_{n}^{2}(\cos \psi),
$$

it is seen that the kernel of the transformation has the expansion:

$$
-\frac{1}{R}\left(\frac{\partial^{2} S(\psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial S(\psi)}{\partial \psi}\right)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}=-\frac{1}{R} \sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}^{2}(\cos \psi)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}
$$

By comparing this result with the general kernel expansion formula, it is immediately deduced that the spectral coefficients are

$$
\lambda_{n}^{2}=-\frac{1}{R}\left\{\begin{array}{cc}
0 & \text { for } n=0,1 \\
\frac{\sqrt{(n+2)(n+1) n(n-1)}}{n-1} & \text { for } n \geq 2
\end{array}\right.
$$

The mathematical relations for this transformation are summarized in Figure 3.3.1-3.

### 3.3.2 Flow Diagram of Spectra

A flow diagram of the spectra of some of the anisotropic transformations discussed in the preceding sections is given in Figure 3.3.2-1. As in the previous flow diagrams, geodetic quantities of approximately equal "smoothness" are drawn on the same horizontal line.

- TRANSFORMATION: HORIZONTAL STRESS AND SHEAR GRADIENTS

INPUT: $\Delta g$
OUTPUT: $\quad\left(T_{y y}-T_{x x}\right.$ ) AND $T_{x y}$

- EXPLICIT FORM

$$
\left.\begin{array}{rl}
-\left(T_{y y}-T_{x x}\right) & =-\frac{G}{R}\left(\frac{\partial \eta}{\partial \psi_{\alpha=90^{\circ}}}-\frac{\partial \xi}{\partial \psi_{\alpha=0^{\circ}}}\right) \\
2 T_{x y} & =\frac{G}{R} 2\left(\frac{\partial \xi}{\partial \psi_{\alpha=90^{\circ}}} O R \frac{\partial \eta}{\partial \psi_{\alpha=0^{\circ}}}\right)
\end{array}\right\}
$$

## - EIGENVALUES

$$
\lambda_{n}^{2}=-\frac{1}{R}\left\{\begin{array}{cl}
0 & \text { FOR } n=0,1 \\
\frac{\sqrt{(n+2)(n+1) n(n-1)}}{n-1} & \text { FOR } n \geqslant 2
\end{array}\right.
$$

- SPECTRAL EXPANSION OF KERNEL

$$
K(\psi) \quad\left|\begin{array}{l}
\cos 2 \alpha \\
\mid \sin 2 \alpha
\end{array}\right|=\sum_{n=2}^{\infty} \frac{(2 n+1)}{(n-1)} P_{n}^{2}(\cos \psi)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}
$$

Figure 3.3.1-3. Summary of Mathematical Relationships for the Horizontal Stress and Shear Gradient Integral Transformation.


Figure 3.3.2-1. Flow Diagram of Spectra of Various Other Geodetic Transformations.

### 3.4 Transformations Involving the Outward Surface Partial Derivative

A number of transformations have appeared in the literature which have as input the outward surface partial derivative of various geodetic quantities from the point of evaluation. For example, Malkin's transformation converts the outward surface partial of the geoid height, usually denoted by $\partial N / \partial \psi$, into geoid height $N$.

These transformations have limited practical use due to the complicated nature of their input and its dependence on the point of evaluation. Nevertheless they are of theoretical interest and in this section they and their spectra will be examined briefly. It will turn out that their spectra all involve a sequence of numbers which had been studied by the English mathematician John Wallis (1616-1703) in his book "Arithmetica Infinitorum" which appeared in 1655. For this reason the author has called these numbers "Wallis coefficients" and denoted them by $W_{n}$. A relationship involving the even Wallis coefficients has been called the "Wallis formula" in Abramowitz and Stegun (1964).

### 3.4.1 The Outward Surface Partial Derivative - Malkin's and Molodenskii's

The geometry involved in the definition of the outward surface partial derivative is illustrated in Figure 3.4-1. The partial derivative is evaluated along the surface of the (unit) sphere in the radially outward direction from the point of evaluation (the origin of the $\psi$ and $\alpha$ coordinate system). The outward surface partial derivative of the geoid height is equivalent to the component of the deflection of the vertical which lies in the outward direction. In the figure, the symbol $\boldsymbol{t}$ represents the vector vertical deflection at the generic point $(\psi, \alpha)$, while its outward component is $\frac{1}{R} \frac{\partial N}{\partial \psi}$.

Malkin's transformation is the primary example of the use of outward surface partial derivative data. This transformation is isotropic and has $\partial N / \partial \psi$ as input and the geoid height $N$ as output:

$$
N=\iint\left(-\cot \frac{\psi}{2}\right) \frac{\partial N}{\partial \psi}(\psi, \alpha) \frac{d \sigma}{4 \pi}
$$

This was originally derived by Malkin (1933) and may also be found in Pick-Picha-Vyskocil (1973, pg. 245, eqn. 713).

The same transformation also converts the outward surface partial derivative of gravity anomalies into the gravity anomaly at the point of evaluation:

## OUTWARD SURFACE PARTIAL DERIVATIVE



Figure 3.4-1. Geometry of the Outward Surface Partial Derivative.

### 3.3.1.3 Horizontal Differential Stress and Horizontal Shear Gradients

The cransformation by which the horizontal differential stress gradient and horizontal shear gradient are generated from the gravity anomalies is a third example of an anisotropic geodetic transformation and the first example of a second-order transformation.

The explicit form of the transformation may be obtained by differentiating the Vening-Meinesz' Integral with respect to the spherical radius $\psi$, evaluating the results along the azimuths $\alpha=0^{\circ}$ or $\alpha=90^{\circ}$, and calculating

$$
\begin{aligned}
-\left(T_{Y Y}-T_{X X}\right) & =-\frac{G}{R}\left(\left.\frac{\partial \eta}{\partial \psi}\right|_{\alpha=90^{\circ}}-\left.\frac{\partial \xi}{\partial \psi}\right|_{\alpha=0^{\circ}}\right) \\
2 T_{X Y} & =2 \frac{G}{R}\left\{\left.\frac{\partial \xi}{\partial \psi}\right|_{\alpha=90^{\circ}} \text { or }\left.\frac{\partial \eta}{\partial \psi}\right|_{\alpha=0^{\circ}}\right\}
\end{aligned}
$$

The kernel of the transformation will be found to be [Malkin (1933, pg.56)]:

$$
\frac{1}{R}\left(\frac{\partial^{2} S(\psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial S(\psi)}{\partial \psi}\right)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}
$$

The easiest way to derive the spectrum of the transformation is to find the spectral expansion of the kernel directly and then identify the spectral coefficients in the expansion. By differentiating the spectral expansion of the Stokes' Integral kernel twice with respect to $\psi$,

$$
\left(\frac{\partial^{2} S(\psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial S(\psi)}{\partial \psi}\right)=\sum_{n=2}^{\infty} \frac{2 n+1}{n-1}\left(\frac{\partial^{2} P_{n}(\cos \psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial P_{n}(\cos \psi)}{\partial \psi}\right)
$$

and using the relation that

$$
\frac{\partial^{2} P_{n}(\cos \psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial P_{n}(\cos \psi)}{\partial \psi}=p_{n}^{2}(\cos \psi)
$$

it is seen that the kernel of the transformation has the expansion:

$$
-\frac{1}{R}\left(\frac{\partial^{2} S(\psi)}{\partial \psi^{2}}-\cot \psi \frac{\partial S(\psi)}{\partial \psi}\right)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}=-\frac{1}{R} \sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}^{2}(\cos \psi)\left\{\begin{array}{l}
\cos 2 \alpha \\
\sin 2 \alpha
\end{array}\right\}
$$

By comparing this result with the general kernel expansion formula, it is immediately deduced that the spectral coefficients are

$$
\lambda_{n}^{2}=-\frac{1}{R}\left\{\begin{array}{cc}
0 & \text { for } n=0,1 \\
\frac{\sqrt{(n+2)(n+1) n(n-1)}}{n-1} & \text { for } n \geq 2
\end{array}\right.
$$

The mathematical relations for this transformation are summarized in Figure 3.3.1-3.

### 3.3.2 Flow Diagram of Spectra

A flow diagram of the spectra of some of the anisotropic transformations discussed in the preceding sections is given in Figure 3.3.2-1. As in the previous flow diagrams, geodetic quantities of approximately equal "smoothness" are drawn on the same horizontal line.

- TRANSFORMATION: MOLODENSKII \#2

$$
\text { INPUT: } \quad \partial \Delta g / \partial \psi
$$

OUTPUT: $\Delta \mathrm{g}$

- EXPLICIT FORM

$$
\Delta g=\iint\left(-\cot \frac{\psi}{2}\right) \frac{\partial \Delta g}{\partial \psi} \frac{d \sigma}{4 \pi}
$$

- EIGENVALUES

$$
\lambda_{n}=-W_{n} \text { WHERE } W_{n} \text { ARE THE WALLIS COEFFICIENTS }
$$

- SPECTRAL EXPANSION OF KERNEL

$$
-\cot \frac{\psi}{2}=-\sum_{n=0}^{\infty} W_{n}(2 n+1) P_{n}(\cos \psi)
$$

Figure 3.4-3. Summary of Mathematical Relationships for the Second Molodenskii Integral Transformation.
in a rather tight manner from above and from below respectively. This may be seen numerically in Figure 3.4-4 of the next section. The sequence $S_{n}$ is the set of reciprocals of the spectrum of the transformation which converts geoid height into deflections

$$
\lambda_{n}^{1}\left\{\frac{N}{R} \rightarrow \xi \text { or } n\right\}=\sqrt{n(n+1)}=\frac{1}{S_{n}}
$$

Hence the inverse transformation has the spectrum

$$
\lambda_{n}\left\{\xi \text { or } n \rightarrow \frac{N}{R}\right\}=\frac{1}{\sqrt{n(n+1)}}=S_{n}
$$

But the magnitudes of the spectrum of Malkin's transformation

$$
\left|\lambda_{n}\left\{-\cot \frac{\psi}{2}\right\}\right|=w_{n}
$$

approximately equal $S_{n}$, implying that Malkin's transformation and the transformation converting deflections to geoid height are approximately the same. This result agrees with intuition since the input to Malkin's transformation is the outward deflection.

### 3.4.2 Mathematical Properties of the Wallis Coefficients

The even and odd Wallis coefficients have the closed-form expressions:*

$$
W_{n}=\left\{\begin{array}{l}
\frac{\pi}{2}\left[\frac{1 \cdot 3 \cdot 5 \cdots(n-1)}{2 \cdot 4 \cdot 5 \cdots(n)}\right]^{2}=\frac{\pi}{2}\left[\frac{(n-1)!!}{n!!}\right]^{2} \\
\frac{\pi}{2}\left[\frac{1 \cdot 3 \cdot 5 \cdots(n)}{2 \cdot 4 \cdot 6 \cdots(n+1)}\right]^{2} \frac{n+1}{n}=\frac{\pi}{2}\left[\frac{n!!}{(n+1)!!}\right]^{2} \frac{n+1}{n}\left[\begin{array}{c}
n \\
\text { ODD }
\end{array}\right]
\end{array}\right.
$$

where the double factorial indicates a factorial with alternate numbers deleted.

Using the binomial coefficient notation, the even and odd Wallis coefficients may also be expressed (elegantly!) as:

[^16]\[

W_{n}= $$
\begin{cases}\frac{\pi}{2} \frac{1}{4^{n}}\binom{n}{\frac{n}{2}}\left\{\begin{array}{l}
n \\
\frac{n}{2}
\end{array}\right) & \text { [n even] } \\
\frac{\pi}{2} \frac{1}{4^{n}}\binom{n-1}{\frac{n-1}{2}}\binom{n+1}{\frac{n+1}{2}} & \text { [n odd] }\end{cases}
$$
\]

Finally using Pochammer's symbol

$$
(a)_{\mathrm{m}}=\frac{\Gamma(a+m)}{\Gamma(a)}
$$

the even and odd Wallis coefficients have the representation:

$$
\begin{aligned}
W_{2 m} & =\frac{\pi}{2}\left[\frac{\left.\left(\frac{1}{2}\right)_{m}\left(\frac{1}{2}\right)_{m}\right]}{m!m!}\right] \\
W_{2 m+1} & =\frac{\pi}{2}\left[\frac{\left(\frac{1}{2}\right)_{m}\left(\frac{1}{2}\right)_{m+1}}{m!(m+1)!}\right] \quad[m=0,1,2, \ldots]
\end{aligned}
$$

Here the index $m$ has been used to emphasize the distinction between this form (where $W_{2 m}$ and $W_{2 m+1}$ are given) and the previous form (where $W_{n}$ is given).

Explicit expressions and numerical values for the first six Wallis coefficients are presented in Figure 3.4-4. The circled numbers indicate by what fraction the current coefficient is multiplied to obtain the next coefficient.

Several integral expressions for the general Wallis coefficients $W_{n}$ were given in the last section. Several more for the even and odd coefficients are (Erdélyi, 1954, Vol. II, pg. 276):

$$
\begin{aligned}
W_{2 m} & =\int_{-1}^{+1} \frac{1}{\sqrt{1-x^{2}}} P_{2 m}(x) \frac{d x}{2}=\int_{0}^{\pi} P_{2 m}(\cos \psi) \frac{d \psi}{2} \\
W_{2 m+1} & =\int_{-1}^{+1} \frac{x}{\sqrt{1-x^{2}}} P_{2 m+1}(x) \frac{d x}{2}=\int_{0}^{\pi} \cos \psi P_{2 m+1}(\cos \psi) \frac{d \psi}{2}
\end{aligned}
$$


Figure 3.4-4. Values of Some Wallis Coefficients.

The even Wallis coefficients have a number of special properties. In particular*

$$
\begin{aligned}
\sqrt{\frac{2}{\pi} W_{2 m}} & =(-1)^{m} P_{2 m}(0)=(-1)^{m} \frac{P_{2 m+1}^{\prime}(0)}{2 m+1} \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} \sin ^{2 m} x d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos ^{2 m} x d x
\end{aligned}
$$

And they are closely related to Erdélyi's "gn" quantities

$$
\frac{2}{\pi} w_{2 m}=\left(g_{m}\right)^{2}
$$

which figure in trigonometric expansions of the Legendre polynomials:**

$$
P_{n}(\cos \psi)=\sum_{k=0}^{n} g_{k} g_{n-k} \cos (n-2 k) \psi
$$

The author is not yet aware of any analogs of the above properties for the odd Wallis coefficients.

From the integral expression previously stated and the orthogonality of the Legendre polynomials, the following expansions may also be deduced:

$$
\begin{aligned}
& \frac{1}{\sqrt{1-x^{2}}}=\sum_{k=0}^{\infty}\{2(2 k)+1\} W_{2 k} P_{2 k}(x) \\
& \frac{x}{\sqrt{1-x^{2}}}=\sum_{k=0}^{\infty}\{2(2 k+1)+1\} W_{2 k+1} P_{2 k+1}(x) \\
& \frac{1+x}{\sqrt{1-x^{2}}}=\frac{\sqrt{1-x^{2}}}{1-x}=\sqrt{\frac{1+x}{1-x}}=\sum_{k=0}^{\infty}(2 k+1) W_{k} P_{k}(x) \\
& \text { ARCSIN } x=\sum_{k=0}^{\infty} W_{2 k}\left\{P_{2 k+1}(x)-P_{2 k-1}(x)\right\}
\end{aligned}
$$

[^17]**Erdelyi, loc. cit.; also see Frank and von Mises (1961, pg. 434ff).

The relationship of the Wallis coefficients $W_{n}$ to coefficients $S_{n}$ of the sequence

$$
s_{n}=\frac{1}{\sqrt{n(n+1)}}
$$

will now be described. It is easily deduced that:

$$
\overbrace{n \text { EVEN }}^{\sqrt{\left(\frac{W_{n}}{W_{n-2}}\right)}(\overbrace{n \text { ODD }}^{W_{n-2}})}=\sqrt{\frac{W_{n}}{n} \frac{n-1}{n+1}}=\frac{s_{n}}{S_{n-2}}
$$

This may be interpreted in words as: the factor by which the harmonic mean of odd and even Wallis coefficients decreases over a double step is equal to the factor by which the coefficients in the sequence $1 / \sqrt{n(n+1)}$ decrease over the same double step. Less precisely but more intuitively, this may be rephrased as: the sequences $W_{n}$ and $S_{n}$ are decreasing at the same rate in the harmonic mean over double steps.

It is known* that

$$
\sqrt{W_{2 m}} \sim \frac{1}{\sqrt{2 m}}\left[1-\frac{1}{4(2 m)}+\frac{1}{32(2 m)^{2}}-\cdots\right]
$$

Hence, for even $n$

$$
W_{n} \sim \frac{1}{n}\left[1-\frac{1}{2 n}+\frac{1}{8 n^{2}}-\cdots\right]
$$

From this it is immediately deduced that

$$
\frac{\pi}{2}=\frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot 9 \cdots}
$$

which was stated by Wallis in 1655.

[^18]SECTION 4
SPECTRAL THEORY OF THE DISCRETE SUMMATION TRANSFORMATIONS OF GEODESY

### 4.1 Introduction

In the previous chapter, the spectral theory of the theoretical "continuous" integral transformations of geodesy has been described. In the present chapter, the approximate "discrete" summation transformations of geodesy and their spectra will be examined. Here the term "discrete" implies that the input data to the transformation consists only of a finite set of individual pieces of data over which the summation is made, and that these data are not continuously or densely distributed.

The computer algorithms for the actual evaluation (strictly, approximation) of the Stokes' and Vening-Meinesz' Integrals over mean gravity anomalies are examples of discrete summation trarsformations.

The conversion of a theoretical "continuous" integral transformainto a discrete summation transformation will be called "discretization". Discretization always introduces some error since some form of approximation must be made to convert the rigourously correct integral expression into a practically implementable summation. If the discretization is made "judiciously", the error introduced thereby will be negligitle. One of the main purposes of this entire study is to develop a mathematical theory by which judicious discretizations can be derived from basic principles for any spherical geodetic transformation.

In the present chapter, the spectral theory of discretized geodetic transformations will be developed. Mathematical expressions for the spectra of such transformations will be derived. As may be expected, it will turn out that the numerical values of such spectra will approximate, but not exactly equal, those of the spectra of the corresponding theoretical integral transformation. The difference between the true
and approximate spectra will provide a means of determining the global rms error due to discretization, and of calculating improved discrete summation approximations for which the discretization error is smaller. This will be accomplished by making the approximate spectrum agree as well as possible with the true spectrum, which is equivalent to making the discrete summation transformation agree as well as possible with the true integral transformation in the frequency domain. In this way, even though the transformations may have very different representations in the spatial domain, they will have approximately the same effect in the frequency domain, attenuating and amplifying the appropriate frequencies present in the input data while converting them into output data.

### 4.2 Bull's-Eye Templates and Discrete Summation Transformations

Let a point be selected on the sphere at which it is desired to calculate the output of a transformation. This point will be called the point of evaluation. Let the surface of the sphere then be partitioned into rings centered around the point of evaluation, and let each ring be further partitioned into compartments. If the point of evaluation were the North Pole of the sphere, then the compartments would be blocks bounded by parallels of latitude and meridians of longitude. In the general case however, the boundaries of the compartments will be lines on the sphere for which spherical radius $\psi$ and the local azimuth $\alpha$ from the point of evaluation assume various constant values $\psi_{i}$ and $\alpha_{i j}$ respectively. The index " $i$ " will be associated exclusively with spherical radii or spherical rings, and the index " $j$ " with spherical azimuths or spherical sectors. The double indexing of the compartment boundary azimuths $\alpha_{i j}$ will permit full generality in allowing different numbers of compartments in different rings.

In the neighborhood of the point of evaluation, the partition of the spherical surface into rings and compartments resembles a bull'seye target, as shown in Figure 4.2-1. Hence this type of (spherical) partition will be called a bull's-eye template.

The values of the compartment boundary parameters for a number of bull's-eye templates will be given in Chapter 5.


Figure 4.2-1. Bull's-Eye Template.

The following conventions on the spherical radii and azimuth numbering and the spherical ring and compartment numbering will be used in this document:
a)

The initial spherical radius will be represented by $\psi_{0}$. When there is no inner zone, such as in a Stokes' summation, $\psi_{0}$ equals zero and is equivalent to the point of evaluation. When there is an inner zone, such as in a Vening-Meinesz' summation, $\psi_{0}$ is the truncation radius in accordance with traditional geodetic symbology (Heiskanen-Moritz, 1967, pp. 121 and 259).
b) The ring bounded by the inner radius $\psi_{0}$ and the outer radius $\psi_{1}$ will be indexed as ring number 1 , and similarly for successive rings. Hence the ring number index will always equal the index of the outer spherical boundary radius of the ring, and the number of rings equals the maximum value of the spherical radius index, although physically there is one more spherical radius, namely $\psi_{0}$.
c) The initial spherical azimuth $\alpha_{i 0}$ of each ring equals zero, and the final spherical azimuth $\alpha_{i j} \max$ of each ring equals $2 \pi$ or $360^{\circ}$.
d) The compartment bounded by the lower azimuth $\alpha_{i 0}$ and the upper azimuth $\alpha_{i l}$ will be indexed as compartment (i,l) and similarly for successive compartments.

A discrete summation geodetic transformation over a bull.'s-eye template has the explicit form

$$
f_{\text {OUT }}=\sum_{i} \sum_{j} w_{i j} f_{i j}
$$

where

- $f_{i j}$ is the value of the input geodetic quantity in the (i,j)th compartment,
- $w_{i j}$ is the transformation weight associated with the (i,j)th compartment,
- $f_{\text {OUT }}$ is the output geodetic quantity at the template origin (point of evaluation).

The summation is to be carried out conceptually over a set of indices corresponding to compartments which cover the entire sphere. In practice, some of the weights $w_{i j}$ may be zero and can be omitted from the computed implementation of the summation.

Such a transformation is a linear shift-invariant transformation, i.e., a digital filter. The shift invariance property results from the fact that the template and its associated weights shift without change when the point of evaluation is shifted.

Discrete summation transformations may be derived from continuous integral transformations by choosing the kernel $K(\psi, \alpha)$ :

- constant in each compartment, for compartmental averaging of the point input data to the integral transformation,
- with a Dirac Delta spike in each compartment for direct sampling of point input data to the integral transformation,
- with other mathematical properties, for other types of compartmental preprocessing of the point input data to the integral transformation.

In most of what follows the kernel $K(\psi, \alpha)$ will be chosen constant in each compartment in order to obtain transformations whose inputs are mean geodetic quantities.

### 4.3 Stokes' Discrete Summation Transformations

As indicated in the preceeding section, discrete summation transformations may be derived from their continuous integral counterparts in several ways. Moreover even when the kernel is held constant in each compartment, the value to which the kernel is set in each compartment may itself be selected in many ways. Two ways are presented in some detail in the following paragraphs, followed by a short description of choosing the kernel as a Dirac Delta spike.

### 4.3.1 Midpoint Weighting

Let the Stokes' midpoint averaging function $\bar{\Omega}(\psi)$ be the staircaselike (piecewise constant) function which assumes the constant value over each ring of the actual Stokes' function evaluated at the mid-point of that ring measured in spherical distance. Thus,

$$
\stackrel{\Omega}{S}(\psi)=\left\{\begin{array}{cc}
s\left(\frac{\psi_{0}+\psi_{1}}{2}\right) & \text { for } \psi_{0} \leq \psi<\psi_{1} \\
s\left(\frac{\psi_{1}+\psi_{2}}{2}\right) & \text { for } \psi_{1} \leq \psi<\psi_{2} \\
s\left(\frac{\psi_{2}+\psi_{3}}{2}\right) & \text { for } \psi_{2} \leq \psi \leq \psi_{3} \\
\text { etc. } &
\end{array}\right.
$$

The value of the function $\mathcal{S}(\psi)$ at any particular spherical radius $\psi$ will of course depend in general upon the choice of the spherical ring radii $\psi_{i}$; however, these are assumed to be chosen a priori (or are assumed to be parameters) so the dependence is not explicitly shown in the notation. A typical graph of $\vec{s}(\psi)$ is provided in Figure 4.3.1-1 for a particular choice of spherical ring radii. It will be noticed* that the smooth curve of the Stokes' function $S(\psi)$ passes through the midpoint

[^19]
$\Omega(\psi)$ : Stokes' Midpoint Averaging Function
$S(\Psi)$ : Classical Stokes' function

Figure 4.3.1-1. Stokes' Midpoint Averaging Function $\mathfrak{S}(\psi)$.
of each constant "piece" of the Stokes' midpoint averaging function $\stackrel{-}{ }(\psi)$. This is precisely this function's characterizing property (since the graph is plotted uniformly in the variable $\psi$ ).

When the Stokes' midpoint averaging function $\Omega(\psi)$ is substituted for the classical Stokes' function $S(\psi)$ in the explicit integral form of the Stokes transformation, the double integral on the (denselydistributed) point gravity anomalies $\Delta g(\psi, \alpha)$ simplifies to a double summation on a finite number of discrete mean gravity anomalies $\overline{\Delta g}_{i j}$

$$
N=\frac{R}{G} \iiint^{-}(\psi) \Delta g(\psi, \alpha) \frac{d \sigma}{4 \pi}=\frac{R}{G} \sum_{i} s\left[\frac{\psi_{i-1}+\psi_{i}}{2}\right) \sum_{j} \frac{A_{i j}}{4 \pi} \overline{\Delta g}_{i j}
$$

where $A_{i j}$ is the surface area of the $(i, j)$ th compartment. This is precisely the formula sought.

Hence the digital filter representation of this transformation may be written

$$
N=\frac{R}{G} \sum_{i} \sum_{j} \stackrel{\Omega}{w}_{i j} \overline{\Delta g}_{i j}
$$

where the weights are

$$
{\stackrel{\Omega}{w_{i j}}}^{\Omega_{i j}} s\left(\frac{\psi_{i-1}+\psi_{i}}{2}\right) \frac{A_{i j}}{4 \pi}
$$

The spectrum of this transformation may also easily be derived by again substituting $\mathcal{S}(\psi)$ for $S(\psi)$, this time in the spectral equation which again reduces to a summation:

$$
\lambda_{n}\left\{\Omega: \bar{\Delta}(\bar{g} \rightarrow N\}=\frac{R}{G} \int_{-1}^{+1} \Omega(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2}=\frac{R}{G} \sum_{i}\left[S\left(\frac{\psi_{i-1}+\psi_{i}}{2}\right) \int_{x_{i}}^{x_{i-1}} P_{n}(x) \frac{d x}{2}\right]\right.
$$

where $x \equiv \cos \psi, x_{i} \equiv \cos \psi_{i}$
The partial derivatives $\partial \lambda_{n} / \partial x_{k}$ of the elements of the spectrum with respect to each of the template spherical ring boundary radii (or rather with respect to their cosines) may also be derived. These quantities will be necessary in the implementation of at least squares optimization algorithm which will "acjust" the ring radii to minimize the total rms
error between the spectrum of the Stokes' integral transformation and that of the discrete sumation approximation. The partial derivatives $\partial \lambda_{n} / \partial x_{k}$ are obtained directly by differentiating the equation for the spectrum, yielding

$$
\begin{aligned}
& \frac{\partial \lambda_{n}\left\{\frac{\curvearrowleft}{S}\right\}}{\partial x_{k}}=\frac{R}{2 G}\left[\frac { \partial S ( x ) } { \partial x } | ( \frac { x _ { k } + x _ { k - 1 } } { 2 } ) ^ { \int _ { x _ { k - 1 } } ^ { x _ { k } } P _ { n } ( x ) \frac { d x } { 2 } + \frac { \partial S ( x ) } { \partial x } | } | \left(\left.\frac{x_{k+1}+x_{k}}{2}\right|_{x_{k}} ^{\int_{k+1}} P_{n}(x) \frac{d x}{2}\right.\right. \\
& +s\left(\frac{x_{k}+x_{k}-1}{2}\right) P_{n}\left(x_{k}\right)-s\left(\frac{x_{k+1}+x_{k}}{2}\right) P_{n}\left(x_{k}\right)
\end{aligned}
$$

Since the initial radius $\psi_{0}$ and the final radius $\psi_{i_{\text {max }}}$ are not adjustable, the index $k$ assumes values only between (and including) one and ( $i_{\text {max }}-1$ ).

### 4.3.2 Integrated-Mean Weighting

Let the Stokes' Integrated-Mean Averaging Function $\dot{S}(\psi)$ be the staircase-like (piecewise constant) function which assumes the constant value over each ring of the integrated mean value of the Stokes function on that ring. Thus,

$$
\grave{s}(\psi)= \begin{cases}\frac{1}{\cos \psi_{0}-\cos \psi_{1}} \int_{\cos \psi_{1}}^{\cos \psi_{0}} s(\cos \psi) d(\cos \psi) & \text { for } \psi_{0} \leq \psi<\psi_{1} \\ \frac{1}{\cos \psi_{1}-\cos \psi_{2}} \int_{\cos \psi_{2}}^{\cos \psi_{1}} s(\cos \psi) d(\cos \psi) & \text { for } \psi_{1} \leq \psi \leq \psi_{2} \\ \text { etc. }\end{cases}
$$

For notational simplification, the integrated-mean values will be denoted by the symbols $\mathbf{S}_{(i)}$

$$
\grave{S}(\psi)= \begin{cases}\hat{S}_{(1)} & \text { for } \psi_{0} \leq \psi<\psi_{1} \\ \dot{S}_{(2)} & \text { for } \psi_{1} \leq \psi<\psi_{2} \\ \text { etc. } & \end{cases}
$$

The grave accent symbol is used in the notation to evoke an average, since the traditional average symbol (a superscript bar) has another meaning in geodesy when used with a kernel, namely truncation of the kernel at a specified spherical radius.

Values of the $\grave{S}_{(i)}$ may be easily calculated from the analytic expression for the indefinite integral of the Stokes' function:

$$
-\int S(\psi) \sin \psi d \psi=-4 t+5 t^{2}+6 t^{3}-7 t^{4}+6 t^{2}\left(1-t^{2}\right) \ln t(1+t)
$$

where $t=\sin \frac{\psi}{2}$. See Heiskanen-Moritz (1967, pg. 263, equation for $Q_{0}$ ). The value of the function $\grave{S}(\psi)$ at any particular spherical radius $\psi$ will of course depend in general upon the choice of the spherical ring radii $\psi_{i}$; however, these are assumed to be chosen a priori, so the parametric dependence is not explicitly shown in the notation. A typical graph of $\mathrm{S}(\psi)$ is provided in figure 4.3.2-1 for a particular choice of spherical ring boundary radii. The shaded region in this figure indicates the area under the Stokes' function curve between two ring radii. The constant value of Stokes' integrated-mean averaging function between these same ring radii is caiculated so that the rectangular area under its value (+2 in the figure) is equal to the shaded area.

When the Stokes' integrated-mean averaging function $\mathbf{S}(\psi)$ is substituted for the classical Stokes' function in the explicit integral form of the Stokes' transformation, the double integral on the (denselydistributed) point gravity anomalies $\Delta g(\psi, \alpha)$ simplifies to a double summation on a finite number of mean gravity anomalies $\overline{\Delta g}_{i j}$ :

$$
N=\frac{R}{G} \iint \dot{S}(\psi) \Delta g(\psi, \alpha) \frac{d \sigma}{4 \pi}=\frac{R}{G} \sum_{i} \grave{S}_{(i)} \sum_{j} \frac{A_{i j}}{4 \pi} \overline{\Delta g}_{i j}
$$

where $A_{i j}$ is the surface area of the $(i, j)$ th compartment on the unit sphere.

Hence, the digital filter representation of this transformation may be written:

$$
N=\frac{R}{G} \sum_{i} \sum_{j} \hat{w}_{i j} \overline{\Delta g}_{i j}
$$

where the weights are

$$
\hat{w}_{i j}=\grave{s}_{(i)} \frac{A_{i j}}{4 \pi}
$$


$\bar{S}(\Psi)$ : Stokes' Integrated-Mean Averaging Function
$S(\psi)$ : Classical Stokes' Function

Figure 4.3.2-1. Stokes' Integrated-Mean Averaging Function $\grave{\mathrm{S}}(\psi)$.

The spectrum of this transformation may also be easily derived by again substituting the $\dot{S}(\psi)$ for $S(\psi)$, this time in the spectral equation which again reduces to a sumation:

$$
\lambda_{n}\{\grave{S}: \overline{\Delta g} \rightarrow N\}=\frac{R}{G} \int_{-1}^{+1} \dot{S}(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2}=\frac{R}{G} \sum_{i}\left[\grave{S}(i) \quad \int_{x_{i}}^{x_{i-1}} P_{n}(x) \frac{d x}{2}\right]
$$

where $x \equiv \cos \psi$ and $x_{i}=\cos \psi_{i}$.
The partial derivatives $\partial \lambda_{n} / \partial x_{k}$ of the elements of the spectrum with respect to each spherical ring boundary radius of the template (or rather with respect to the consines thereof) may be obtained by differentiating the equation for the spectrum, yielding after some manipulation:

$$
\begin{gathered}
\frac{\partial \lambda_{n}\left\{\grave{S}_{:}: \overline{\Delta g}+N\right\}}{\partial x_{k}}=\frac{R}{2 G}\left[\grave{S}_{(k)} \dot{P}_{n(k)}-\dot{S}_{(k+1)} \dot{P}_{n(k+1)}\right. \\
\left.+S\left(x_{k}\right)\left[-\dot{P}_{n(k)}+\dot{P}_{n(k+1)}\right]+P_{n}\left(x_{k}\right)\left[-\dot{S}_{(k)}+\dot{S}_{(k+1)}\right]\right]
\end{gathered}
$$

where

$$
\dot{P}_{n(k)}=\frac{1}{x_{k-1}-x_{k}} \int_{x_{k}}^{x_{k-1}} P_{n}(x) d x
$$

is the integrated-mean value of the Legendre polynomial over the $k^{\text {th }}$ ring. The seemingly unsymmetric indices $(k)$ and ( $k+1$ ) in the partial derivative expression for $\partial \lambda_{n} / \partial x_{k}$ are actually symmetric because they refer to the rings which are separated by the spherical radius $\psi_{k}$. The ring and radius indexing convention causes this apparent asymmetry.

The analytic partial derivative expression is extremely simple to implement in a computer algorithm because all of the quantities which enter into it have already been calculated for the evaluation of the spectrum itself with the exception of $S\left(x_{k}\right)$ and $p_{n}\left(x_{k}\right)$ which are relatively easy to obtain. Hence only a few multiplications and additions are necessary for the computation of the analytic partial. This fortuitous situation is in contrast to most analytic partial derivative evaluations which generally require more computational expense than the evaluation of their primitive. In the present case, the situation results from the use of the integrated-mean, so that higher derivatives do not occur in the partial expression, because of the a priori integral.

### 4.3.3 Dirac Delta Weighting

Let the Stokes' comb function $\stackrel{\mu}{S}(\psi)$ be defined to be the comb-like function which consists of a linear combination of a finite set of Dirac Delta functions weighted according to the value of the Stokes' function at each spike.

$$
\frac{\mu}{S}(\psi)=\sum_{i} S\left(\psi_{i}^{\text {spike }}\right) \delta\left(\cos \psi-\cos \psi_{i}^{\text {spike }}\right)
$$

The spherical radii at which the spikes are located will be denoted by $\psi_{i}^{\text {spike }}$. The Dirac Delta function $\delta(x)$ has the property that it is zero everywhere except when the argument is zero, in which case the function is infinite in such a way that its integral is unity:

$$
\int_{-1}^{+1} \delta(x) d x=1
$$

A graph of a typical Stokes' comb function is given in Figure 4.3.3-1.
When the Stokes' comb function $\frac{\mu}{S}(\psi)$ is substituted for the classical Stokes' function $S(\psi)$ in the explicit integral form of the Stokes' transformation the double integral on the densely distributed point gravity anomalies reduces to a summation on the arc-average gravity anomalies $\overparen{\Delta g_{i}}$ around each spike radius $\psi_{i}^{\text {spike }}$ :

$$
N=\frac{R}{G} \iint \frac{\mu}{S}(\psi) \Delta g(\psi, \alpha) \frac{d \sigma}{4 \pi}=\frac{R}{G} \sum_{i} S\left(\psi_{i}^{\text {spike }}\right) \frac{1}{p} \Delta \widehat{g}_{i}
$$

where $P$ is the total number of spikes. The factor ( $1 / \mathrm{P}$ ) plays the same role in this formula as the factor ( $A_{i j} / 4 \pi$ ) plays in the previous formulae, namely as the ratio of the weight (area) of current compartment or point to the weight of all compartments or points (before the Stokes' function weighting is applied).

Hence, the digital filter representation of this transformation may be written:

$$
N=\frac{R}{G} \sum_{i} \frac{\mu}{w_{i j}}\left\langle\overparen{g}_{i}\right.
$$




쓴( $(\psi)$ : Stokes' Comb Function, indicated by the VERTICAL ARROWS WHOSE VALUES ARE ACTUALLY infinite but whose relative weighting is SHOWN BY THEIR RELATIVE HEIGHT,
$S(\psi)$ : Classical Stokes' Function, indicated by THE SMOOTH CURVE.

Figure 4.3.3-1. Stokes' Comb Function $\stackrel{\mu}{\mathrm{S}}(\psi)$.
where the weights are

$$
{\stackrel{\mu}{w_{i j}}}^{s}=s\left(\psi_{i}^{\text {spike }}\right) \frac{1}{\mathbf{p}}
$$

The spectrum of this transformation may also be derived:

$$
\begin{aligned}
\lambda_{n}\{\stackrel{\mu}{S}: \Delta g \rightarrow N\} & =\frac{R}{G} \int_{-1}^{+1} \frac{m}{S}(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2} \\
& =\frac{R}{G} \frac{1}{2 P} \sum_{i} S\left(\psi_{i}^{s p i k e}\right) P_{n}\left(\cos \psi_{i}^{\text {spike }}\right)
\end{aligned}
$$

making use of the property of the Dirac Delta function. When using this equation to evaluate the spectrum, care should be taken that a sufficient number of spikes are chosen in a well-distributed manner so that a sufficient number of data points enter into the computation. Otherwise aliasing of the spectrum may result from undersampling. This problem is well-known to workers in the field of sampled-data processing. It will not be dealt with here since the input of mean gravity anomalies rather than arc gravity anomalies is more common in geodesy. This example is provided only to show that the spectral theory of discrete summation transformations can include summation over arc anomalies and even point anomalies (by an obvious generalization).

### 4.3.4 Summary of Discrete Stokes' Transformations

A summary of the mathematical relationships for the various discrete Stokes' summation transformations is given in Figures 4.3.4-1 through 4.3.4-3.

- TRANSFORMATION: DISCRETE STOKES' SUMMATION USING MID-POINT STOKES' WEIGHTING Input: $\quad \overline{\Delta g}_{\mathrm{ij}} \quad$ (mean gravity anomaly for each compartment) Output: N (geoid height)


## - EXPLICIT FORM

$$
\begin{aligned}
& \mathbf{N}=\frac{\mathbf{R}}{\mathbf{G}} \iint \frac{\Omega}{\mathbf{S}}(\psi) \Delta \mathrm{g}(\psi, \alpha) \frac{\mathrm{d} \sigma}{4 \pi}=\frac{\mathbf{R}}{\mathbf{G}} \sum_{\mathrm{i}} \mathbf{S}\left(\psi_{\mathrm{i}}{ }^{\mathrm{mid}}\right) \sum_{\mathrm{j}} \frac{\text { AREA }_{\mathrm{ij}}}{4 \pi} \overline{\Delta g_{i j}} \\
& N=\frac{R}{G} \sum_{i} \sum_{j} \boldsymbol{w}_{i j}^{\Omega} \overline{\Delta g}_{\mathrm{ij}} \quad \text { where } \bar{w}_{\mathrm{ij}}^{\Omega}=\mathbf{S}\left(\psi_{\mathrm{i}} \mathrm{mid}^{\mathrm{m}}\right) \frac{\text { AREA }_{\mathrm{ij}}}{4 \pi}
\end{aligned}
$$

## - EIGENVALUES

$$
\begin{aligned}
\lambda_{n} & =\frac{R}{G} \int_{-1}^{+1} \frac{\Omega}{S}(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2} \\
& =\frac{1}{2} \frac{R}{G} \sum_{i}\left[S\left(\psi_{i}{ }^{\text {mid }}\right) \int_{\cos \psi_{i}}^{\cos \psi_{i-1}} P_{n}(t) d t\right]
\end{aligned}
$$

Figure 4.3.4-1. Summary of Relationships for the Discrete Stokes' Summation Transformation Using Midpoint Weighting.

- TRANSFORMATION: DISCRETE STOKES' SUMMATION USING INTEGRATED-MEAN WEIGHTING
Input: $\quad \overline{\Delta g}_{\mathrm{ij}} \quad$ (mean gravity anomaly for each compartment)
Output: N (geoid height)


## - EXPLICIT FORM

$$
\begin{aligned}
& \mathbf{N}=\frac{\mathbf{R}}{\mathbf{G}} \iint \grave{\mathbf{S}}(\psi) \Delta \mathrm{g}(\psi, \alpha) \frac{\mathrm{d} \sigma}{4 \pi}=\frac{\mathbf{R}}{\mathbf{G}} \sum_{\mathrm{i}} \stackrel{\grave{\mathbf{S}}}{(\mathrm{i})}^{\sum_{\mathrm{j}}} \frac{\text { AREA }_{\mathrm{ij}}}{4 \pi} \overline{\Delta g}_{\mathrm{ij}} \\
& N=\frac{R}{G} \sum_{i} \sum_{j} \bar{w}_{i j} \overline{\Delta g}_{i j} \quad \text { where }^{\bar{w}_{i j}}=\grave{S}_{(i)} \frac{\text { AREA }_{i j}}{4 \pi}
\end{aligned}
$$

- EIGENVALUES

$$
\begin{aligned}
\lambda_{n} & =\frac{R}{G} \int_{-1}^{+1} \dot{S}(\cos \psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2} \\
& =\frac{1}{2} \frac{R}{G} \sum_{i}\left[\dot{S}_{(i)} \int_{\cos \psi_{i}}^{\cos \psi_{i-1}} P_{n}(t) d t\right]
\end{aligned}
$$

Figure 4.3.4-2. Summary of Relationships for the Discrete Stokes' Summation Using Integrated-Mean Weighting.

- TRANSFORMATION: DISCRETE STOKES' SUMMATION ON ARC GRAVITY ANOMALIES Input: $\quad \widehat{\Delta g}_{i} \quad$ (arc gravity anomalies) Output: $\mathbf{N} \quad$ (geoid height)
- EXPLICIT FORM

$$
\begin{aligned}
& \mathbf{N}=\frac{\mathbf{R}}{\mathbf{G}} \iiint \stackrel{\mu}{\mathbf{S}}(\psi) \quad \Delta \mathrm{g}(\psi, \alpha) \quad \frac{\mathrm{d} \sigma}{4 \pi}=\frac{\mathrm{R}}{\mathbf{G}} \sum_{\mathrm{i}} \mathbf{S}\left(\psi_{\mathrm{i}}{ }_{\mathrm{i}}^{\text {spike }}\right) \frac{1}{\mathbf{P}} \widehat{\Delta \mathbf{g}_{\mathrm{i}}} \\
& N=\frac{R}{G} \sum_{i}{\stackrel{\mu}{w_{i j}}}_{w_{i j}}^{\Delta g_{i}} \quad \text { where } \stackrel{\mu}{w_{i j}}=S\left(\psi \psi_{i}^{\text {spike }}\right) \frac{1}{\mathcal{P}}
\end{aligned}
$$

## - EIGENVALUES

$$
\begin{aligned}
\lambda_{n} & =\frac{R}{G} \int_{-1}^{+1} \frac{\mu}{S}(\psi) P_{n}(\cos \psi) \frac{d(\cos \psi)}{2} \\
& =\frac{1}{2 P} \frac{R}{G} \sum_{i} S\left(\psi_{i}^{\text {spike }}\right) \quad P_{n}\left(\cos \psi{ }_{i} \text { spike }\right) \quad\left[\begin{array}{l}
\text { where } P \\
\text { denotes } \\
\text { total number } \\
\text { of spikes }
\end{array}\right]
\end{aligned}
$$

## BEWARE OF ALIASING INTRODUCED BY UNDERSAMPLING

Figure 4.3.4-3. Summary of Relationships for the Discrete Stokes' Summation Transformation on Arc Gravity Anomalies.

### 4.4 Vening-Meinesz' Discrete Summation Transformations

Discrete summation approximations to the Vening-Meinesz Integral will now be derivc. which will transform mean gravity anomalies over compartments intu the two horizontal gravity disturbance components or equivalen $1 y$ the two deflections of the vertical. Also the spectra corresponding to these summations will be derived. The method used for the derivations will be to select judiciously chosen approximations to the kernel of the Vening-Meinesz' Integral which will reduce the integral to a summation on mean gravity anomalies. The Vening-Meinesz' kernel consists of a spherical radial portion and an azimuthal portion:

$$
\underline{K}(\psi, \alpha)=V M(\psi)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}
$$

Approximations to each of these portions will be required. Two such judiciously chosen approximations are presented.

### 4.4.1 Midpoint Weighting

Let the Vening-Meinesz' midpoint averaging function $\sqrt{\mathrm{M}}(\psi)$ be the staircase-like (piecewise constant) function which assumes the constant value $V M_{i}$ over the $i^{\text {th }}$ ring of the classical Vening-Meinesz' function evaluated at the midpoint of that ring $\psi_{i}^{M I D}$ measured in spherical distance $\psi$ between the inner and outer spherical ring boundaries. Thus

$$
\sqrt[\sim]{\operatorname{VM}(\psi)}= \begin{cases}\mathrm{VM}\left(\psi_{1}^{\mathrm{MID}}\right) & \text { for } \psi_{0}<\psi<\psi_{1} \\ \operatorname{VM}\left(\psi_{2}^{\mathrm{MID}}\right) & \text { for } \psi_{1}<\psi<\psi_{2} \\ \text { etc. } & \end{cases}
$$

where $\psi_{i}^{M I D}=\left(\psi_{i-1}+\psi_{i}\right) / 2$ following the convention that the index of a ring or the midpoint $\psi_{i}^{M I D}$ of the same ring are the same as the index of the outer ring boundary. Thus

$$
\sqrt[\Omega]{\operatorname{V}}(\psi)= \begin{cases}\widehat{\mathrm{V}}_{1} & \text { for } \psi_{0}<\psi<\psi_{1} \\ \widehat{\mathrm{~V}}_{2} & \text { for } \psi_{1}<\psi<\psi_{2} \\ \mathrm{etc} . & \end{cases}
$$

As described in the discrete Stokes' summation sections, the midpoint averaging functions depend not only upon $\psi$ but also upon the underlying spherical ring radii boundaries of the template, al.though the dependence is not explicitly indicated in the notation.

A graph of a typical Vening-Meinesz' midpoint averaging function is given in Figure 4.4.1-1 for an arbitrary selection of ring boundary radii.

Similarly, let the cosine and sine midpoint averaging functions $\stackrel{\pi}{\cos } \alpha$ and $\sin \alpha$ be the staircase-like (piecewise constant) functions which assume the constant value over each compartment of the actual cosine and sine functions evaluated at the mid-azimuth of that compartment.

$$
\left\{\begin{array}{c}
\pi \\
\cos \alpha \\
\sin \alpha
\end{array}\right\}=\left\{\begin{array}{c}
\cos \alpha_{i, j}^{M I D} \\
\sin \alpha{ }_{i, j}^{M I D}
\end{array}\right\}=\left\{\begin{array}{l}
\tilde{C}_{i j} \\
\\
\frac{\Omega}{S_{i j}}
\end{array}\right\} \text { for } \alpha_{i, j-1} \leq \alpha<\alpha_{i, j}
$$

where $\alpha_{i j}^{\text {MID }}=\left(\alpha_{i, j-l}+\alpha_{i, j}\right) / 2$

When the Vening-Meinesz' and the cosine and sine midpoint averaging functions are substituted for the corresponding classical functions in the Vening-Meinesz' Integral, the double integral on the densely distributed point gravity anomalies reduces to a double summation on the mean gravity anomalies over each compartment:

Hence, the digital filter representation of this transformation may be written:

$$
\left\{\begin{array}{l}
G \xi \\
G \eta
\end{array}\right\}=\sum_{i} \sum_{j}{\underset{\underline{w}}{i j}}^{{\underset{w}{j}}^{\Delta g}} \underset{i j}{ }
$$


$\widehat{V}(\psi)$ : Vening-Meinesz' Midpoint Averaging Function
$V M(\psi)$ : CLassical Vening-Meinesz' Function

Figure 4.4.1-1. Vening-Meinesz' Midpoint Averaging Function $\overrightarrow{\mathrm{V}}(\psi)$.
where the weights are

The spectrum of the transformation is

$$
\begin{aligned}
& \lambda_{n}^{1}=2 \sqrt{\frac{(n-1)!}{(n+1)!}} \iint \operatorname{rn}^{-}(\psi)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} P_{n}^{1}(\cos \psi) \frac{d \sigma}{4 \pi} \\
= & \frac{2}{\sqrt{n(n+1)}} \sum_{i} \overrightarrow{V M}_{i}^{\Omega} \int_{x_{i}}^{x_{i-1}} P_{n}^{1}(x) \frac{d x}{2} \sum_{j}\left\{\begin{array}{c}
\widetilde{C}_{i j} \\
\widetilde{S}_{i j}
\end{array}\right\} \int_{\alpha_{i, j-1}}^{\alpha_{i, j}}\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \frac{d \alpha}{2 \pi}
\end{aligned}
$$

where $x_{i} \equiv \cos \psi_{i}$

### 4.4.2 Integrated Mean Weighting

Let the Vening-Meinesz Integrated Mean Averaging Function Vim $(\psi)$ be the staircase-like (piecewise constant) function which assumes the constant value $V M_{i}$ over the $i^{\text {th }}$ ring of the integrated-mean value of the classical Vening-Meinesz' function over that ring.

$$
\dot{\operatorname{VM}(\psi)}= \begin{cases}\dot{V M}_{1} & \text { for } \psi_{0}<\psi \leq \psi_{1} \\ \dot{V M}_{2} & \text { for } \psi_{1}<\psi \leq \psi_{2} \\ \dot{V M}_{3} & \text { for } \psi_{2}<\psi \leq \psi_{3} \\ \text { etc. } & \end{cases}
$$

where

$$
\hat{V M}_{i}=\frac{1}{x_{i-1}-x_{i}} \int_{x_{i}}^{x_{i-1}} V M(x) d x
$$

and $x=\cos \psi_{i}$.
A typical graph of $\overline{\mathrm{VM}}(\psi)$ is given in Figure 4.4.2-1 for a particular choice of spherical ring boundary radii. From the definition of this function, the area of the shaded region under the classical Vening-Meinesz' function between each pair of successive ring boundary radii must equal the area of the rectangular block between these radii whose ordinate is the constant value $\mathrm{VM}_{i}$.


V̀M $(\psi)$ : Vening-Meinesz Integrated-Mean Averaging Function VM( $(4)$ : Classical Vening-Meinesz Function.

Figure 4.4.2-1. Vening-Meinesz' Integrated-Mean Averaging Function $\hat{\mathrm{M}}(\psi)$.

Similarly let the cosine and sine integrated-mean averaging functions $\cos \alpha$ and sin $\alpha$ be the staircase-like (piecewise constant) functions which assume the constant value over each compartment of the integrated-mean value of the actual cosine and sine functions over that compartment.

$$
\begin{aligned}
\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} & =\frac{1}{\alpha_{i, j}-\alpha_{i, j-1}} \int_{\alpha_{i, j-1}}^{\alpha_{i, j}}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} d \alpha \\
& =\frac{1}{\alpha_{i, j}-\alpha_{i, j-1}}\left\{\begin{array}{l}
\sin \alpha_{i, j}-\sin \alpha_{i, j-1} \\
-\cos \alpha_{i, j}+\cos \alpha_{i, j-1}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
\grave{c}_{i j} \\
\grave{s}_{i j}
\end{array}\right\} \quad \text { for } \alpha_{i, j-1} \leq \alpha<\alpha_{i, j}
\end{aligned}
$$

When the Vening-Meinesz', and the cosine and sine integratedmean averaging functions are substituted for the corresponding classical functions in the Vening-Meinesz' Integral, the double integral on the densely-distributed point gravity reduces to a double summation on the mean gravity anomalies over each compartment:

$$
\left\{\begin{array}{c}
G \xi \\
G \eta
\end{array}\right\}=\iint \operatorname{VM}(\psi)\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \Delta g(\psi, \alpha) \frac{d \sigma}{4 \pi}=\sum_{i} \hat{V i M}_{i} \sum_{j}\left\{\begin{array}{l}
\grave{C}_{i j} \\
\dot{S}_{i j}
\end{array}\right\} \frac{A_{i j}}{4 \pi} \overline{\Delta g}_{i j}
$$

Hence the digital filter representation of this transformation may be written:

$$
\left\{\begin{array}{l}
G \xi \\
G \eta
\end{array}\right\}=\sum_{i} \sum_{j} \stackrel{\dot{w}}{i j} \overline{\Delta g}_{i j}
$$

where the weights are

$$
\stackrel{\underline{w}}{i j}=\hat{V M}_{i}\left\{\begin{array}{l}
\grave{C}_{i j} \\
\grave{S}_{i j}
\end{array}\right\} \frac{A_{i j}}{4 \pi}
$$

The spectrum of the transformation is:

$$
\begin{aligned}
& \lambda_{n}^{1 .}=2 \sqrt{\frac{(n-1)!}{(n+1)!}} \iint \operatorname{Vin}(\psi)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \mathrm{P}_{\mathrm{n}}^{1}(\cos \psi) \frac{d \sigma}{4 \pi} \\
& =\frac{2}{\sqrt{n(n+1)}} \sum_{i} V_{i} \int_{x_{i}}^{x_{i-1}} P_{n}^{l}(x) \frac{d x}{2} \sum_{j}\left\{\begin{array}{l}
\grave{c}_{i, j} \\
\grave{c}_{1, j}
\end{array}\right\} \int_{\alpha_{i, j-1}}^{\alpha_{i, j}}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \frac{d \sigma}{2 \pi} \\
& =\frac{2}{\sqrt{n(n+1)}} \sum_{i} \mathrm{vi}_{i} \int_{x_{i}}^{x_{i-1}} p_{n}^{1}(x) \frac{d x}{2} \sum_{j} \frac{1}{2 \pi\left(\alpha_{i, j}-\alpha_{i, j-1}\right)}\left\{\begin{array}{l}
\left(\sin \alpha_{i, j}-\sin \alpha_{i, j-1}\right)^{2} \\
\left(\cos \alpha_{i, j}-\cos \alpha_{i, j-1}\right)^{2}
\end{array}\right\} \\
& =\frac{2}{\sqrt{n(n+1)}} \sum_{i} \text { VM }_{i} \int_{x_{i}}^{x_{i-1}} p_{n}^{1}(x) \frac{d x}{2} \sum_{j} \ell_{i j}\left\{\begin{array}{l}
\cos ^{2}\left[\left(\alpha_{i, j-1}+\alpha_{i, j}\right) / 2\right] \\
\sin ^{2}\left[\left(\alpha_{i, j-1}+\alpha_{i, j}\right) / 2\right]
\end{array}\right\}
\end{aligned}
$$

ohere

$$
\ell_{i j}=\frac{\sin ^{2}\left[\left(\alpha_{i, j}-\alpha_{i, j-1}\right) / 2\right]}{\pi\left[\left(\alpha_{i, j}-\alpha_{i, j-1}\right) / 2\right]}
$$

and

$$
x_{i}=\cos \psi_{i}
$$

The lengthy but straight-forward steps in the derivation of these expressions have been omitted.

The partial derivatives $\partial \lambda_{n}^{1} / \partial x_{k}$ of the elements of the spectrum with respect to each of the template spherical ring radii (or rather with respect to their cosines) may also be derived. As mentioned in the Stokes' section, these quantities will be necessary in the implementation of a least squares optimization algorithm for the determination of "improved" values of the template ring radii.

By direct differentiation of the equation for the spectrum above,

$$
\begin{aligned}
& \underline{\ell}_{i}=\sum_{j} \ell_{i j}\left\{\begin{array}{l}
\cos ^{2}\left[\left(\alpha_{i, j}+\alpha_{i, j-1}\right) / 2\right] \\
\sin ^{2}\left[\left(\alpha_{i, j}+\alpha_{i, j-1}\right) / 2\right]
\end{array}\right\} \\
& x_{i}=\cos \psi_{i}
\end{aligned}
$$

and

$$
\dot{P}_{n, i}^{1}=\frac{1}{x_{i-1}-x_{i}} \int_{x_{i}}^{x_{i-1}} P_{n}^{1}(x) d x
$$

While this equation looks forbidding, it is extremely simple to implement in a computer program since almost all of the quantities appearing in it will already have been computed during the computation of the spectrum $\lambda_{n}^{l}$ itself. Hence only the few additional multiplications and additions of these quantities as indicated by this equation are necessary to obtain the analytic partial. Again this is an exceptionally fortuitous situation. It avoids the approximate incremental method of calculating the partial, and it avoids the generally prohibitively expensive calculation of the partial.

Similarly, the partial derivatives $\partial \lambda_{-1}^{l} / \partial \alpha_{i j}$ of the elements of the spectrum with respect to each of the template compartment boundary azimuths may also be derived. These quantities will be necessary if the azimuths will be adjusted in an optimization program to derive templates with "improved" values of the azimuths.

Again by direct differentiation of the first component of the equation for the spectrum of the discrete Vening-Meinesz' transformation,

$$
\frac{\partial \lambda_{n}^{1}}{\partial \alpha_{i, j}}=\frac{2}{\sqrt{n(n+1)}} \sum_{i} \operatorname{vi}_{i} \int_{x_{i}}^{x_{i-1}} P_{n}^{1}(x) \frac{d x}{2} \frac{\partial \ell_{i}}{\partial \alpha_{i, j}}
$$

where

$$
\begin{aligned}
& \frac{\partial \ell_{i}}{\partial \alpha_{i, j}}=\frac{1}{2 \pi}\left[\left(\frac{\sin \alpha_{i, j+1}-\sin \alpha_{i, j}}{\alpha_{i, j+1}-\alpha_{i, j}}\right)-\left(\frac{\sin \alpha_{i, j}-\sin \alpha_{i, j-1}}{\alpha_{i, j}-\alpha_{i, j-1}}\right)\right] \\
& {\left[\left(\frac{\sin \alpha_{i, j+1}-\sin \alpha_{i j}}{\alpha_{i, j+1}-\alpha_{i, j}}\right)+\left(\frac{\sin \alpha_{i, j}-\sin \alpha_{i, j-1}}{\alpha_{i, j}-\alpha_{i, j-1}}\right)-2 \cos \alpha_{i, j}\right] }
\end{aligned}
$$

A similar expression could be derived for the partial of the second component of $\lambda_{-n}^{l}$.
4.4.3 Summary of Discrete Vening-Meinesz' Transformations

A summary of the mathematical relationships for the discrete Vening-Meinesz' summation transformations is given in Figures 4.4.3-1 and 4.4.3-2.

## - TRANSFORMATION

DISCRETE VENING-MEINESZ' SUMMATION USING MIDPOINT WEIGHTING

Input: $\quad \bar{\Delta} g_{i j} \quad$ (mean gravity anomaly in each compartment) Output: G $\epsilon$ (horizontal gravity disturbance vector)

## - EXPLICIT FORM

$$
\begin{aligned}
& \mathbf{G} \underline{\epsilon}=\left\{\begin{array}{l}
\mathbf{G} \xi \\
\mathbf{G} \eta
\end{array}\right\}=\iint \sqrt{\mathrm{VM}}(\psi)\left\{\begin{array}{c}
\boldsymbol{\Omega} \\
\cos \alpha \\
\sin \alpha
\end{array}\right\} \Delta \mathrm{g}(\psi, \alpha) \frac{\mathrm{d} \sigma}{4 \pi}=\sum_{\mathrm{i}} \sum_{\mathrm{j}} \tilde{\mathrm{w}}_{\mathrm{ij}} \overline{\Delta g}_{\mathrm{ij}} \\
& \underline{w}_{i j}=\operatorname{VM}\left(\psi_{i}^{m i d}\right)\left\{\begin{array}{l}
\cos \alpha_{i j}^{m i d} \\
\sin \alpha_{i j}^{m i d}
\end{array}\right\} \frac{\text { AREA }_{i j}}{4 \pi}
\end{aligned}
$$

- SPECTRUM (TRANSFER FUNCTION)

$$
\begin{aligned}
& \lambda_{n}^{1}=2 \sqrt{\frac{(n-1)!}{(n+1)!}} \iint \Omega_{M}(\psi)\left\{\begin{array}{c}
\Omega_{0}^{2} \alpha \\
\cos \alpha \\
\sin \alpha
\end{array}\right\}\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} P_{n}^{1}(\cos \alpha) \frac{d \sigma}{4 \pi} \\
&=\frac{2}{\sqrt{n(n+1)}} \sum_{i} V M\left(\psi_{i}^{\text {mid }}\right) \int_{x_{i}}^{x_{i-1}} P_{n}^{1}(x) \frac{d x}{2} \\
& \cdot \sum_{j}\left\{\begin{array}{l}
\cos \alpha_{i j}^{\text {mid }} \\
\sin \alpha_{i j}^{m i d}
\end{array}\right\} \int_{\alpha_{i, j-1}}^{\alpha_{i, j}}\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \frac{d \alpha}{2 \pi} \\
& \text { where } x_{i}=\cos \psi_{i}
\end{aligned}
$$

Figure 4.4.3-1. Summary of Relationships for the Discrete Vening-Meinesz' Summation Using Midpoint Weighting.

## DISCRETE VENING-MEINESZ' SUMMATION <br> USING INTEGRATED-MEAN WEIGHTING

Input: $\quad \Sigma_{a_{i j}} \quad$ (mean gravity anomaly in each compartment)
Output: $G_{t} \quad$ (horizontal gravity disturbance vector)

- EXPLICIT FORM

$$
\begin{aligned}
G_{\underline{\epsilon}}=\left\{\begin{array}{l}
G \xi \\
G_{\eta}
\end{array}\right\} & =\iint V M(\psi)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \Delta g(\psi, \alpha) \frac{d \sigma}{4 \pi} \\
& =\sum_{i} \sum_{j} \dot{w}_{i j} \bar{\Delta} g_{i j} \text { where } \dot{w}_{i j}=V M_{i}\left\{\begin{array}{l}
\dot{c}_{i, j} \\
\dot{s}_{i, j}
\end{array}\right\} \frac{\text { AREA }_{i, j}}{4 \pi}
\end{aligned}
$$

- SPECTRUM

$$
\begin{aligned}
& \underline{\lambda}_{n}^{1}=2 \sqrt{\frac{(n-1)!}{(n+1)}} \iint \operatorname{vin}(\psi)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\}\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} P_{n}^{1}(\cos \psi) \frac{d \sigma}{\pi \pi} \\
&=\frac{2}{\sqrt{n(n+1)}} \sum_{i} \operatorname{vim}_{i} \int_{x_{i}}^{x_{i-1}} P_{n}^{1}(x) \frac{d x}{2} \sum_{j}{l_{i j}}\left\{\begin{array}{l}
\cos ^{2}\left[\left(\alpha_{i, j-1}+\alpha_{i j}\right) / 2\right] \\
\sin ^{2}\left[\left(\alpha_{i, j-1}+\alpha_{i j}\right) / 2\right]
\end{array}\right\} \\
& \text { where } l_{i j}=\frac{\sin ^{2}\left[\left(\alpha_{i, j}-\alpha_{i, j-1}\right) / 2\right]}{\left[\left(\alpha_{i, j}-\alpha_{i, j-1}\right) / 2\right]} \quad \text { and } \quad \text { whare } x_{i}=\cos \psi_{i}
\end{aligned}
$$

Figure 4.4.3-2. Sumnary of Relationships for the Discrete Vening-Meinesz' Summation Using Integrated-Mean Weighting.

### 4.5 Inner Zone Operators and Their Spectra for First Order Geodetic

In the numerical evaluation of the discrete Vening-Meinesz' summation at the surface, a small circular region or "cap" centered at the point of evaluation is always excluded due to the singularity of the Vening-Meinesz' kernel at the origin. This spherical cap is called the "inner zone". The contribution of the inner zone in the computation of the deflections or horizontal gravity disturbances is then accounted for by other methods, usually* through the use of the first finite differences of the input quantity to the transformation. The spectra of such operators will now be derived and compared to the theoretical spectrum of a truncated integral transformation.

### 4.5.1 Dipole Operators and Their Spectra

The simplest case is a "single dipole" finite difference operator which transform an arbitrary input $f(\psi, \alpha)$ into the finite difference

$$
f\left(\psi_{0}, \alpha\right)-f\left(\Psi_{0}, \alpha+\pi\right)
$$

of the two values of the input which lie radially opposite each other at a spherical radius $\psi_{0}$ along a diameter having azimuth $\alpha$. Such an operator may be put into the form of an integral transformation through the use of two Dirac Delta functions.

In the case when the dipole lies in the north-south direction, the spectral results shown in Figure 4.5-1 are deducible. By combining these results with analogous ones for an east-west dipole, the "double dipole" spectrum given in Figure 4.5-2 are obtained. And with another slight generalization, the spectrum of the Rice quadruple dipole operator is derived as specified in Figure 4.5-3.

These finite difference operators and their spectra will be used in the next section to determine the spectra of geodetic inner-zone deflection operators.

### 4.5.2 Inner zone Deflection Operators and Their Spectra

Heiskanen-Moritz (1967) have shown that to a low-order approximation the contribution of the inner zone to the two components of the horizontal gravity disturbance is given by:*

[^20]- TRANSFORMATION: NORTH-SOUTH DIPOLE

Input:
Output:

0\end{array}\right\}=\left\{$$
\begin{array}{c}f\left(\psi_{0}, 0\right)-f\left(\psi_{0}, \pi\right) \\
0\end{array}
$$\right\}\)

- EXPLICIT FORM

$$
\left\{\begin{array}{c}
f_{N}-f_{S} \\
0
\end{array}\right\}=\iint\left[\delta_{N}-\delta_{S}\right]\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} f(\psi, \alpha) \frac{d \sigma}{4 \pi}
$$



- SPECTRUM

$$
\begin{aligned}
\underline{\lambda}_{n}^{1} & =\frac{2}{\sqrt{n(n+1)}} \iint\left[\delta_{N}-\delta_{S}\right]\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} P_{n}^{1}(\cos \psi)\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \frac{d o}{4 \pi} \\
& =\frac{2}{\sqrt{n(n+1)}} P_{n}^{1}\left(\cos \psi_{0}\right)\left\{\begin{array}{l}
2 \\
0
\end{array}\right\} \\
& \approx-\sqrt{n(n+1)} \sin \psi_{0}\left[1-\frac{(n-1)(n+2)}{2} \sin ^{2} \frac{\psi_{0}}{2}+\ldots\right]\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} 2 \\
& \approx-\sqrt{n(n+1)} \psi_{0}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}
\end{aligned}
$$

Figure 4.5-1. Summary of Mathematical Relationships for the Single Dipole Finite Difference Operator.

- TRANSFORMATION: NORTH-SOUTH, EAST-WEST DOUBLE DIPOLE

$$
\begin{aligned}
& \text { Input: } \left.\begin{array}{l}
f\left(\psi_{, \alpha}\right) \\
\text { Output: } \\
\qquad\left\{\begin{array}{l}
f_{N}-f_{S} \\
f_{E}-f_{W}
\end{array}\right\}=\left\{\begin{array}{l}
f\left(\psi_{0}, 0\right)-f\left(\psi_{0}, \pi\right) \\
f\left(\psi_{0}, \frac{\pi}{2}\right)-f\left(\psi_{0}, \frac{3 \pi}{2}\right)
\end{array}\right\}
\end{array}\right\} .
\end{aligned}
$$

- EXPLICIT FORM

$$
\left\{\begin{array}{l}
f_{N}-f_{S} \\
f_{E}-f_{W}
\end{array}\right\}=\iint\left[\left(\delta_{N}-\delta_{S}\right)+\left(\delta_{E}-\delta_{W}\right)\right]\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} f(\psi ; \alpha) \frac{d \sigma}{4 \pi}
$$

- SPECTRUM

$$
\begin{aligned}
\lambda_{-n}^{1} & =\frac{2}{\sqrt{n(n+1)}} P_{n}^{1}\left(\cos \psi_{0}\right)\left\{\begin{array}{l}
2 \\
2
\end{array}\right\} \\
& \approx-\sqrt{n(n+1)} \sin \psi_{0}\left[1-\frac{(n-1)(n+2)}{2} \sin ^{2} \frac{\psi_{0}}{2}+\ldots\right]\left\{_{1}^{1}\right\} 2 \\
& \approx-\sqrt{n(n+1)} \psi_{0}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} 2
\end{aligned}
$$



Figure 4.5-2. Summary of Mathematical Relationships for the Double Dipole Finite Difference Operator.

- TRANSFORMATION: RICE's "THREE-GRADIENT" OR "EIGHT-POINT" METHOD

Input: $f(\psi, \alpha)$

$$
\text { Ourput: }\left\{\begin{array}{l}
\frac{1}{2}\left(f_{N}-f_{S}\right)+\frac{\sqrt{2}}{4}\left(f_{N E}-f_{S W}\right)+\frac{\sqrt{2}}{4}\left(f_{N W}-f_{S E}\right) \\
\frac{1}{2}\left(f_{E}-f_{W}\right)+\frac{\sqrt{2}}{4}\left(f_{N E}-f_{S W}\right)-\frac{\sqrt{2}}{4}\left(f_{N W}-f_{S E}\right)
\end{array}\right\}
$$



- SPECTRUM

$$
\begin{aligned}
\lambda_{n}^{1} & =\frac{2}{\sqrt{n(n+1)}} \frac{P_{n}^{1}\left(\cos \psi_{0}\right)}{2}\left\{\begin{array}{l}
4 \\
4
\end{array}\right\} \\
& \approx-\sqrt{n(n+1)} \sin \psi_{0}\left[1-\frac{(n-1)(n+2)}{2} \sin ^{2} \frac{\psi_{0}}{2}+\ldots\right]\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\} 2 \\
& \approx-\sqrt{n(n+1)} \psi_{0}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}_{2}
\end{aligned}
$$

Figure 4.5-3. Sumary of Mathematical Relationships for the Rice Weighted Quadruple Dipole Operator.

$$
\left\{\begin{array}{c}
G \xi \\
G \eta
\end{array} \int_{\substack{\text { INNER } \\
Z O N E}}^{2 \pi} \int_{0}^{s} 0\left(-\frac{2}{s^{2}}\right)\left\{\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \Delta g \frac{s d s d \alpha}{4 \pi}\right.
$$

where s represents the linear distance $\mathrm{R} \psi$ on the surface of a sphere of radius $R$. By expanding $\Delta g(s, \alpha)$ in a two-dimensional Taylor series, and performing the integration shown above on the result, HeiskanenMoritz derive that the leading term in the inner zone contribution is*

$$
\left\{\begin{array}{c}
G \xi \\
G \eta
\end{array}\right\}_{\substack{\text { INNER } \\
\text { ZONE }}}=-\frac{s_{0}}{2}\left\{\begin{array}{ll}
\frac{\partial}{\partial x} & \Delta g \\
\frac{\partial}{\partial y} & \Delta g
\end{array}\right\}+\ldots
$$

where $x$ and $y$ are linear distances along the local north and east directions respectively.

The partial derivatives above may be approximated using the double dipole finite difference operator or the Rice weighted quadruple dipole operator of the previous subsection:

$$
\begin{gathered}
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\frac{\partial}{\partial x} \Delta g \\
\frac{\partial}{\partial y} \Delta g
\end{array}\right\} \approx\left\{\begin{array}{l}
\frac{\Delta g_{N}-\Delta g_{S}}{2 s_{0}} \\
\frac{\Delta g_{E}-\Delta g_{W}}{2 s_{0}}
\end{array}\right\}=\frac{1}{2 s_{0}}\left\{\begin{array}{l}
\Delta g_{N}-\Delta g_{S} \\
\Delta g_{E}-\Delta g_{W}
\end{array}\right\} \\
\left\{\begin{array}{l}
\frac{\partial}{\partial x} \Delta g \\
\frac{\partial}{\partial y} \Delta g
\end{array}\right\} \approx\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{\Delta g_{N}-\Delta g_{S}}{2 s_{0}}\right)+\frac{1}{4}\left(\frac{\Delta g_{N E}-\Delta g_{S E}}{\sqrt{2} s_{0}}\right)+\frac{1}{4}\left(\frac{\Delta g_{N W}-\Delta g_{S W}}{\sqrt{2} s_{0}}\right) \\
\frac{1}{2}\left(\frac{\Delta g_{E}-\Delta g_{W}}{2 s_{0}}\right)+\frac{1}{4}\left(\frac{\Delta g_{N E}-\Delta g_{N W}}{\sqrt{2} s_{0}}\right)+\frac{1}{4}\left(\frac{\Delta g_{S E}-\Delta g_{S W}}{\sqrt{2} s_{0}}\right)
\end{array}\right\}\left(\frac{1}{2}\left(\Delta g_{N}-\Delta g_{S}\right)+\frac{\sqrt{2}}{4}\left(\Delta g_{N E}-\Delta g_{S W}\right)+\frac{\sqrt{2}}{4}\left(\Delta g_{N W}-\Delta g_{S E}\right)\right.
\end{array}\right\} \\
\approx \frac{1}{2 s_{0}}\left\{\begin{array}{l}
\frac{1}{2}\left(\Delta g_{E}-\Delta g_{W}\right)+\frac{\sqrt{2}}{4}\left(\Delta g_{N E}-\Delta g_{S W}\right)-\frac{\sqrt{2}}{4}\left(\Delta g_{N W}-\Delta g_{S E}\right)
\end{array}\right.
\end{gathered}
$$

[^21]Consequently, from the spectral results for these dipole operators, it is quickly deduced that the spectrum of the transformation yielding the contribution of the inner zone to the horizontal gravity disturbances via the two approximations is:

$$
\lambda_{n}^{1}=\frac{2}{\sqrt{n(n+1)}} \frac{P_{n}^{1}\left(\cos \psi_{0}\right)}{(-4)}\left\{\begin{array}{l}
2 \\
2
\end{array}\right\} \approx \sqrt{n(n+1)} \frac{\psi_{0}}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
$$

Thus the inner zone can have a rather large effect on the spectrum of a Vening-Meinesz' transformation, especially for high spherical harmonic degree $n$ and large truncation radii $\psi_{0}$.

Just as the transformations involving the double dipole or Rice quadruple dipole operators are approximations to the continuous integral Vening-Meinesz' transformation truncated to a spherical cap, so must the spectrum of these transformations approximate the spectrum of the theoretical truncated Vening-Meinesz transformations. This will be shown to be true (to first order in $\psi_{0}$ ) in the next subsection.

It should be noted, however, that quite a few approximations have been made in the above discussion. Specifically, at the beginning the Vening-Meinesz' Integral was "localized" to a neighborhood of the origin, then the gravity anomalies were expanded in a Taylor series which was truncated, and finally partial derivatives were approxinated by finite differences. In a series of papers, Prado (1977a, 1977b) and Adams and Prado (1978) have examined the analogous "flat-earth" transformation converting vertical gravity disturbances $\delta g$ into horizontal gravity disturbances $(\mathrm{G} \xi, \mathrm{G})$ ) and placed the spectral theory of this planar transformation on a much more rigorous basis, showing in fact that the outputs and inputs are related by a two-dimensional Hilbert transformation. Their papers also give further references to the mathematical and engineering literature.
4.5.3 The Truncated Vening-Meinesz' Transformation and Its Spectrum

Cook (1951) and deWitte (1967) have investigated, the mathematical properties of the truncated Vening-Meinesz' transformation and have calculated some estimates of the contributions of the excluded regions. DeWitte has provided graphs* of the low degree Cook coefficients $q_{n}\left(\psi_{0}\right)$

[^22]which are closely related to the spectrum of the residual* Vening-Meinesz' transformation, and are analogous to the Molodenskii coefficients $Q_{n}\left(\psi_{0}\right)$ for the Stokes' kernel. While the Cook coefficients provide theoretically correct expressions describing the spectrum for all truncation radii $\psi_{0}$, the properties of the truncated Vening-Meinesz transformation for small $\psi_{0}$ may be more easily seen in a power series expansion about the origin in powers of $\Psi_{0}$. The mathematical results are exhibited in Figure 4.5-4.

From the power series in the figure it is seen that indeed the spectrum of the theoretical truncated Vening-Meinesz' transformation matches through first order the spectrum of the inner zone deflection transformations involving the double dipole or Rice quadruple dipole operators.

- TRANSFORMATION: Vening-Meinesz over a circular cap of spherical radius $\psi_{0}$ around the origin
- EXPLICIT FORM:

$$
\left\{\begin{array}{l}
G \xi \\
G \eta
\end{array}\right\}=\int_{0}^{2 \pi} \int_{0}^{\psi_{0}} V M(\psi)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \Delta g(\psi, \alpha) \frac{\sin \psi d \psi d \alpha}{4 \pi}
$$

- SPECTRUM

$$
\begin{aligned}
\lambda_{n}^{1} & =\frac{2}{\sqrt{n(n+1)}} \int_{0}^{\psi_{0}} V M(\psi) P_{n}^{1}(\cos \psi) \frac{\sin \psi d \psi}{2} \\
& \approx \frac{2}{\sqrt{n(n+1)}} \int_{0}^{\psi_{0}} \frac{-1}{2 \sin ^{2} \frac{\psi}{2}} P_{n}^{1}(\cos \psi) \frac{\sin \psi d \psi}{2} \text { for small } \psi_{0} \\
& \approx \sqrt{n(n+1)} \frac{\psi_{0}}{2}\left[1-\frac{(n-1)(n+2)}{6}\left(\frac{\psi_{0}}{2}\right)^{2}+\frac{(n-2)(n-1)(n+2)(n+3)}{180}\left(\frac{\psi_{0}}{2}\right)^{4}-\ldots\right]
\end{aligned}
$$

Figure 4.5-4. Summary of Mathematical Relationships for the Truncated Vening-Meinesz' Transformation.

[^23]In the comprehensive filter design program (Appendix C), the negative of the series expansion through third order has been incorporated as a correction to the theoretical Vening-Meinesz' spectrum for the entire sphere, since the small spherical cap around the origin is being omitted in the calculation of the spectrum of the discrete VeningMeinesz' summation transformation. It is thereby tacitly assumed for the purpose of optimal template design that in the actual Vening-Meinesz' summation an almost error-free inner-zone deflection operator has been implemented. More realistic cases could be considered by deriving more accurate approximations to the spectra of the Rice quadruple dipole operator, for instance, and incorporating these expressions instead into the spectral computations.

## SECTION 5

## SPECIFIC TEMPLATES AND EXAMPLES OF SPECTRA

This chapter describes a number of specific bull's-eye templates for the Stokes' and Vening-Meinesz' discrete summation transformations, and gives tables of values of their compartment boundary parameters. Graphs and listings of the numerical values of the spectra for some of these summation transformations, as well as for the corresponding integral transformations, are also presented to provide an intuitive feeling for these quantities.

### 5.1 Specific Templates

The values of the compartment boundary parameters for almost all of the bull's-eye templates which have been published in the literature have been derived using the concept of the "equal contribution" of each template subdivision. Since many of the specific templates to be described in this chapter fall into this category and since the relatively good quality of the equal contribution template can be partially explained by spectral theory, the equal contribution concept will be examined in some detail. Templates with parameters determined by other methods will be described in a later subsection entitled "Other Templates".

Under the equal contribution concept, the spherical ring boundary radii and compartment boundary azimuths are selected so that the individual contributions from the template subdivisions to the total output will all be equal in magnitude in the hypothetical case when the subdivision inputs to the summation are all equal. For example, in the Stokes' or Vening-Meinesz' transformations, the boundaries of the subdivisions would be selected so that each subdivision would contribute equally (in magnitude) to the geoid height or deflection of the vertical when the input mean gravity anomaly over each subdivision in one milligal.

Traditionally, the word "subdivision" has meant "compartment". However, "subdivision" is purposely being used here to allow the equal contribution concept to be extended to complete rings or complete sectors rather than being restricted to compartments. In fact, it will be shown that the equal contribution of complete rings and sectors are more natural concepts than that for compartments. Historically, however, before the advent of electronic computers, an equal compartment contribution template (in the form of a physical template to be laid on a gravity anomaly map) would have been a very useful computational aid.

### 5.1.1 Templates with Compartmental Equal Contribution

In the standard method of implementing the compartmental equal contribution concept, the number of compartments in each ring is chosen a priori according to some ad hoc scheme or "educated guess". Then the spherical ring boundary radii are determined so that each compartment will contribute equal outputs for equal inputs. This involves calculating the total contribution of each ring and dividing by the number of compartments in the ring to find the compartmental contribution. Hence, the contribution of a complete ring will be proportional to the number of compartments in the ring. Finally, for non-zeroth-order transformations only, the spherical sector boundary azimuths are determined so that again each compartment will contribute equal outputs for equal inputs. Examples of the computations are given in Pick-Picha-Vyskocil (1973, pp. 255 and 265-267).

The number of compartments in each ring is often chosen so that it is approximately proportional to the trigonometric sine of the spherical radius $\psi$ of the midpoint of the ring. This is motivated by the fact that the element of area on the surface of the (unit) sphere is

$$
d \sigma=\sin \psi d \psi d \alpha
$$

so that with such a choice the compartments have approximately equal area (if the sector boundary azimuths are uniformly partitioned), and approximately equal dimensions (namely $\sin \psi d \alpha$ and $d \psi$ when the proportionality constant relating the maximum number of compartments in the $\psi=90^{\circ}$ ring to the total number of rings is correctly chosen), and hence have approximately equi-distant midpoints.

Other considerations are also often involved in the a priori choice of the number of compartments in each ring, such as the condition that
the number be divisible by four so that the template can be made bilaterally symmetric.

It should be noted however that the selection of the number of compartments in each ring by the method outlined above requires a preexisting knowledge of the ring boundary radii, which are precisely the quantities to be determined. In other words, the number of compartments in each ring and the ring boundary radii are mutually dependent quantities under the compartmental equal contribution concept. Thus an exact determination of these quantities would necessitate an iterative solution. This is why published methods are rather ad hoc or based upon "educated guesses".

### 5.1.1.1 Pick-Picha-Vyskocil Templates

Pick-Picha-Vyskocil (1973) have given values of the template parameters for a $34-r i n g$ Stokes' template and a $23-r i n g$ Vening-Meinesz template. These are reproduced in Tables 5.1.1-1 and 5.1.1-2. The VeningMeinesz' temp:ate has been derived under the compartmental equal contribution concept, while the Stokes' template has been derived under a modified form of this concept in which the close rings (those with $\psi<2.9610^{\circ}$ ) are more finely subdivided* into compartments and these smaller compartments contribute one tenth that of the compartments in the far rings for equal inputs.

### 5.1.1.2 Rice and Kazansky Inner Zone Templates

Rice (1952) and Kazansky (1935) have developed templates for the inner zone of the Vening-Meinesz' transformation based on the equal contribution concept. Since the templates are for use only in the inner zone, the Vening-Meinesz'.function was approximated by its leading term which permitted the analytical solution for the spherical ring radii

$$
\psi_{i}=a^{i} \psi_{0}
$$

where "a" is a constant.
In the original Rice paper, $\psi_{0}$ corresponds to the distance of 100 meters on the surface of the earth and $a=1.1864$. With 36 compartments in each ring, each compartment contributes one milli-arc-second to the total deflection of the vertjeaj when the compartmental mean gravity anomaly input is one milliga;. The values of the original Rice Inner zone Template parameters are given in Table 5.1.1-3.

[^24]Ring Boundary Radil

No. of rings	$w^{\circ}$	$r(\mathrm{~km})$	No. of sectors   in ring
1	0.0684	7.606	4
2	0.1753	19.493	6
3	0.3078	34.23	8
4	0.4474	49.75	8
5	0.7116	79.13	16
6	0.9758	108.5	16
7	1.2348	137.3	16
8	1.4883	165.5	16
9	1.9860	220.8	32
10	2.4780	275.5	32
11	2.9610	329.3	32
12	4.148	461	8
13	5.884	654	12
14	8.180	905	16


15	10.488	1166	16
16	12.85	1430	16
17	15.99	1778	20
18	20.17	2243	24
19	25.30		24
20	33.90		24
21	52.0		28
22	61.0		40
23	72.0		64
24	82.3		64
25	94.2		64
26	106.3		42
27	126.3		20
28	135.9		20
29	142.7		20
30	149.0		20
31	155.4		20
32	162.9		20
33	176.4		1
34	180.0		

Table 5.1.1-1. Pick-Picha-Vyskocil Template Parameters for the Stokes' Transformation.

Ring Radil

No. of rings	$\boldsymbol{v}^{2}$	$r(k m)$	$k$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 0.044 \\ & 0.063 \\ & 0.089 \\ & 0.128 \\ & 0.183 \\ & 0.261 \\ & 0.372 \\ & 0.530 \\ & 0.753 \\ & 1.069 \end{aligned}$	$\begin{gathered} 4.893 \\ 7.005 \\ 9.897 \\ 14.23 \\ 20.35 \\ 29.02 \\ 41.4 \\ 58.9 \\ 83.7 \\ 118.9 \end{gathered}$	16
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{gathered} 1.069 \\ 1.794 \\ 2.966 \\ 4.821 \\ 7.591 \\ 11.47 \end{gathered}$	$\begin{aligned} & 118.9 \\ & 199.5 \\ & 329.8 \\ & 536.1 \\ & 844 \\ & 1275 \end{aligned}$	24
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 11.47 \\ & 18.55 \\ & 28.3 \\ & 40.8 \\ & 65.3 \end{aligned}$		33
$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \end{aligned}$	$\begin{array}{r} 65.3 \\ 98.9 \\ 114.4 \\ 130.5 \\ 180.0 \end{array}$		23


SECTOR AZIMUTHS			
Rings 1-10		Rings 10-15	
$k$	E	$k$	$\alpha$
0	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	0	$0^{\circ} 00^{\prime} 00^{\circ}$
1	142840	1	93540
2	300000	2	192820
3	483530	3	300000
4	900000	4	414840
		5	562630
		6	900000
	15-19		19-23
1	$3^{\circ} 28^{\prime} 30^{\prime \prime}$ *	1	$4^{\circ} 59^{\prime} 20^{\circ}$ *
2	102830	2	150720
3	173830	3	254620
4	250610	4	372940
5	330320	5	513000
6	414840	6	730240
7	515920	7	1193530
8	652250	8	1355520
9	1040820	9	1483300
10	1215710	10	1593840
11	1332030	11	1695900
12	1424140	12	1800000
13	1505950		
14	1584030		
15	1655810		
16	1730220		
17	1800000		

- As the rings contain an odd number of sectors, the division into sectors does not begin in the zero azimuth.

Table 5.1.1-2. Pick-Picha-Vyskocil Template Parameters for the VeningMeinesz' Transformation.

In Kazansky's paper, $\psi_{0}$ corresponds to 5 km , and $\mathrm{a} \approx 1.25$. The values of Kazansky's Inner Zone Template parameters* are given in Table 5.1.1-4.

$$
\text { ( } n=\text { circle number; } r=\text { inner radius) }
$$

$n$	$r, k m$										
0	0.100	10	0.554	20	3.068	30	16.94	40	92.22	50	465.5
1	0.119	11	0.657	21	3.641	31	20.09	41	109.0	51	541.5
2	0.141	12	0.780	22	4.320	32	23.83	42	128.7	52	628.1
3	0.167	13	0.926	23	5.125	33	28.25	43	151.9	53	725.9
4	0.198	14	1.099	24	6.081	34	33.48	44	179.1	54	835.9
5	0.235	15	1.304	25	7.216	35	39.67	45	210.9	55	958.5
6	0.279	16	1.547	26	8.560	36	47.00	46	248.0	56	1094.3
7	0.331	17	1.836	27	10.15	37	55.66	47	291.2		
8	0.393	18	2.179	28	12.05	38	65.90	48	341.2		
9	0.467	19	2.586	29	14.29	39	77.97	49	399.0		

Table 5.l.1-3. The Original Rice Inner Zone Template Parameters.

$$
\text { (n = ring number; } r=\text { inner radius) }
$$

n	$\mathrm{r}, \mathrm{km}$						
1	5.0	7	20.9	13	86.4	19	341
2	6.4	8	26.5	14	109.1	20	424
3	8.1	9	33.6	15	138	21	524
4	10.2	10	42.6	16	173	22	645
5	13.0	11	54.0	17	218	23	788
6	16.5	12	68.3	18	273	24	955

Table 5.1.1-4. Kazansky Inner Zone Template Parameters

### 5.1.2 Template with Ring or Sector Equal Contribution

In the method of implementing the ring or sector equal contribution concept, the template subdivisions from which equal contributions are desired are chosen to be complete rings when the compartment boundary radii are being determined, or complete sectors when the compartment boundary azimuths are being determined. Thus the two dimensions are decoupled from each other in the determination of equal contribution ${ }^{\star}$ The author is indebted to Mr. Patrick J. Fell for providing these values.
values of the template parameters. This is consistent with the fact that the Laplace equation, which all harmonic functions satisfy, is separable* in three-dimensional spherical coordinates with the threedimensional solution being a linear combination of the product of the individual solutions in each separate dimension.

Expressed in mathematical notation, the ring and sector equal contribution concepts impose the conditions:

$$
\left|\int_{\psi_{i-1}}^{\psi_{i}} K(\psi) \sin \psi d \psi\right|=\begin{aligned}
& \text { the same constant } \\
& \text { value for all } i
\end{aligned}
$$

and

$$
\left|\int_{\alpha_{i, j-1}}^{\alpha_{i, j}} \underline{A}(\alpha) d \alpha\right|=\begin{aligned}
& \text { the same constant } \\
& \text { vector value for all } j
\end{aligned}
$$

where $K(\psi)$ and $\underset{A}{A}(\alpha)$ are the radial and azimuthal parts of the kernel of the transformation

$$
\underline{K}(\psi, \alpha)=K(\psi) \underline{A}(\alpha)
$$

For first-order transformations, the sector equal contribution condition becomes

It is interesting to compare this condition with the condition that

$$
\left|\frac{\sin \alpha_{i, j}-\sin \alpha_{i, j-1}}{\alpha_{i, j}-\alpha_{i, j-1}}\right|=\begin{aligned}
& \text { the same constant } \\
& \text { value for all } j
\end{aligned}
$$

which may be shown to be a sufficient condition for a partition of the azimuths to yield the lowest possible rms discretization error. The validity of this statement may be established by setting the partial derivative $\partial \lambda_{n}^{1} / \partial \alpha_{i, j}$ of the spectrum with respect to the azimuths equal to zero, but the details will be omitted.

[^25]It has been found experimentally that the equal contribution templates for complete rings or sectors yield discrete summation transformations with relatively low rms discretization errors. The discretization error, which will be described in Chapter 6, is a measure of the error introduced solely through the approximation of continuous integral transformation by a discrete summation. The equal contribution templates are certainly not optimal templates in the sense of minimizing the rms discretization error. Nevertheless they appear to be good initial guesses in a filter design program.

### 5.1.2.1 Equal Contribution Calculations for the Stokes' Integral

The problem is to find the values $\psi_{i}$ of the spherical ring boundary radii such that

$$
\left|\int_{\psi_{i}}^{\psi_{i+1}} S(\psi) \sin \psi d \psi\right|=\begin{aligned}
& \text { the same constant } \\
& \text { value for all } i
\end{aligned}
$$

where $S(\psi)$ is the classical Stokes' function. It may be shown that the integral

$$
-\int_{0}^{\psi} S(\psi) \sin \psi d \psi=-4 t+5 t^{2}+6 t^{2}-7 t^{4}+6 t^{2}\left(1-t^{2}\right) \ln t(1+t)
$$

where $t=\sin \frac{\psi}{2}$.
Since the Stokes' function has two distinct zeros while sin $\psi$ is always positive between 0 and $\pi$, the integrand will have two distinct zeros, meaning that there will be regions in which cancellations will occur and the integral could have a zero value for the appropriate choices of the $\Psi_{i}$. For an exact solution these must be removed. An algorithm for performing the computation has been developed by Stanley W. Shepperd,** and is included in PL/I code under the procedure name EQUI_INTEGRAL_PSI_CALC_STOKES. The algorithm will calculate the values of the boundary radii $\psi_{i}$ which yield an equal contribution for each complete ring for any even number of rings. An even number is necessary

[^26]because of the two zeros of the integrand. The derivation of the algorithm is given in Appendix $F$.

### 5.1.2.2 Equal Contribution Calculations for the Analog of Stokes' Integral on Surface Layer Density

The problem of calculating the values of the ring boundary radii for a ring equal contribution template in the transformation converting surface layer densities into geoid height is considerably easier* than in the classical Stokes' transformation due to the facts that the kernel has no zeros and is easily integrable.

The explicit form of the transformation is

$$
N=\frac{R}{G} \iint \frac{2}{\left(2 \sin \frac{\psi}{2}\right)} \mu(\psi, \alpha) \frac{d \sigma}{4 \pi}
$$

Hence, it is desired to find the $\psi_{i}$ such that

$$
\begin{aligned}
\left|\int_{\psi_{i}}^{\psi_{i+1}} \frac{2}{\left(2 \sin \frac{\psi}{2}\right)} \sin \psi d \psi\right| & =\left|4 \sin \frac{\psi_{i+1}}{2}-4 \sin \frac{\psi_{i}}{2}\right| \\
& =\text { the same constant for all } i
\end{aligned}
$$

Now the total integral from 0 to $\pi$ has the value 4 which must be equally divided among $R$ rings, so each ring contributes $4 / R$. Hence the condition to be satisfied is

$$
\left|4 \sin \frac{\psi_{i+1}}{2}-4 \sin \frac{\psi_{i}}{2}\right|=\frac{4}{R}
$$

with $\psi_{0}=0$ and $\psi_{R}=\pi$. The solution is

$$
\psi_{i}=2 \arcsin \frac{i}{R} .
$$

### 5.1.2.3 Equal Contribution Calculations for the Vening-Meinesz' Integral

The problem is to find the values $\psi_{i}$ of the spherical ring boundary radii such that

$$
\left|\int_{\psi_{i}}^{\psi_{i+1}} V M(\psi) \sin \psi d \psi\right|=\begin{aligned}
& \text { the same constant } \\
& \text { value for all } i
\end{aligned}
$$

*The author wishes to draw attention to his finding that almost all expressions involving surface layer densities are much simpler and more tractable than those operating on the other geodetic quantities.
where $V M(\psi)=\partial S(\psi) / \partial \psi$ is the classical Vening-Meinesz' function. The author is not aware of any closed-form expression for this integral. Pick-Picha-Vyskocil (1973, page 261) give an expression which involves an infinite series naving coefficients which are functions of the Bernoulli and Euler numbers, but this does not appear to be usable practically.

If the classical Vening-Meinesz' function is approximated by discarding all but the "leading" term

$$
\frac{-\cos (\psi / 2)}{2 \sin ^{2}(\psi / 2)}
$$

then a solution is possible. This is described in the next section since the resulting kernel is the mathematically exact one for surface layer densities.

### 5.1.2.4 Equal Contribution Calculations for the Analog of Vening-Meinesz' Integral on Surface Layer Density

The problem of calculating the values of the ring boundary parameters $\psi_{i}$ for a ring equal contribution template in the transformation converting surface layer densities to deflections of the vertical (or equivalently horizontal gravity disturbances) is not difficult due to the facts that the kernel has no zeros and is easily integrable.

The explicit form of the transformation is

$$
\left\{\begin{array}{l}
G \xi \\
G \eta
\end{array}\right\}=\iint \frac{-2 \cos \frac{\psi}{2}}{\left(2 \sin \frac{\psi}{2}\right)^{2}} \mu(\psi, \alpha)\left\{\begin{array}{l}
\cos \alpha \\
\sin \alpha
\end{array}\right\} \frac{d \sigma}{4 \pi}
$$

Hence it is desired to find the $\psi_{i}$ such that

$$
\left|\int_{\psi_{i}}^{\psi_{i+1}} \frac{-2 \cos \frac{\psi}{2}}{\left(2 \sin \frac{\psi}{2}\right)^{2}} \sin \psi d \psi\right|=\begin{aligned}
& \text { constant } \\
& \text { for all } i
\end{aligned}
$$

The indefinite integral may be expressed in closed form as

$$
\int \frac{-2 \cos \frac{\psi}{2}}{\left(2 \sin \frac{\psi}{2}\right)^{2}} \sin \psi d \psi=-2\left[\log \left|\tan \frac{\psi}{4}\right|+\cos \frac{\psi}{2}\right]
$$

The total definite integral from 0 to $\pi$ is infinite due to the secondorder pole at $\psi=0$. However the total definite integral from a nonzero initial spherical radius $\psi_{0}$ to $\pi$ has the value

$$
\int_{\psi_{0}}^{\pi} \frac{-2 \cos \frac{\psi}{2}}{\left(2 \sin \frac{\psi}{2}\right)^{2}} \sin \psi d \psi=2 \log \left|\tan \frac{\psi_{0}}{4}\right|+2 \cos \frac{\psi_{0}}{2}
$$

This value must be equally divided among $R$ rings, so the contribution of each ring is

$$
I=\left[2 \log \left|\tan \frac{\psi_{0}}{4}\right|+2 \cos \frac{\Psi_{0}}{2}\right] / R
$$

Thus, the ring radii $\psi_{i}$ are related by the conditions

$$
\begin{gathered}
-2 \log \left|\tan \frac{\psi_{i+1}}{4}\right|-\cos \frac{\psi_{i+1}}{2}=I-2 \log \left|\tan \frac{\psi_{i}}{4}\right|-2 \cos \frac{\psi_{i}}{2} \\
i=0,1,2, \ldots(R-1)
\end{gathered}
$$

Once the truncation radius $\psi_{0}$ is chosen, the solution of this transcendental equation for each i may be accomplished by a Newton iteration scheme. The author has found that a good initial guess for the iteration is

$$
\psi_{i+1} \approx 1.2 \psi_{i}
$$

An algorithm for accomplishing this has been coded in PL/I and incorporated into the comprehensive filter design program listed in an appendix under the procedure name EQUI_INTEGRAL_PSI_CALC_VM_DEN.

Thus the sequence of computations is:

1) Select $\psi_{0}$ and $R$
2) Compute I
3) For $i=0,1, \ldots(R-1)$ successively,
a) Make initial guess of $\psi_{i+1}$ using $\psi_{i+1}=1.2 \psi_{i}$.
b) Solve the ring boundary radii conditions equation iteratively by a Newton iteration scheme for $\psi_{i+1}$.
The results of the computation of the ring radii in the 23 and 125-ring cases is given in Tables 5.1.2-1 and 5.1.2-2. The last ring
$\stackrel{4}{\ddagger}$

[^27] Template Parameters for the $23-$ Ring Equal Contribution Template with $\psi_{0}$
initial radius of Pick-Picka-Vyskocil.


radius in these tables should be exactly $180^{\circ}$, rather than the values shown which resulted from the termination criteria used in the Newton iteration scheme. The termination criteria worked very well for all spherical ring radii except the last.

### 5.1.3 Other Templates

Two templates have been developed by, and are in use at, the Defense Mapping Agency Aerospace Center, St. Louis, Missouri. While the templates are not of the bull's-eye type but are rather of the rectangular grid type, they may be "converted" to bull's-eye type by determining what their form would be if the point of evaluation were the north pole (of the earth) and the spherical radius $\psi$ and spherical azimuth $\alpha$ were identified with colatitude and longitude (on the earth) respectively. In the following sections, this technique will be called "circularization".

### 5.1.3.1 The Circularized AGEMIT Template

When the circularization process is applied to the surface rectangular grid template employed in the DMAAC AGEMIT computer program, a template with 101 rings is obtained, excluding any inner zone. The rings in this template fall naturally into four groups according to the spherical radius increment between rings. The values of the increments and the starting and terminating index and radius for each group are given in Table 5.1.3-1.

	RING BOUNDARY RADII GROUPS				
RING	i $_{\text {START }}$	i $_{\text {END }}$	$\psi_{i_{\text {START }}}$	$\psi_{i_{\text {END }}}$	INCREMENT
GROUP					

Table 5.1.3-1. Template Parameters for the Circularized AGEMIT Template.

### 5.1.3.2 The "Rice-DMAAC" Template

This l25-ring template is a combination of modified forms of the Rice Inner zone template and the circularized AGEMIT template. In the modified Rice template, the first five and the last sixteen rings have been omitted, so that the initial radius corresponds to 235 meters and the final radius to 92,220 meters. An earth radius of $6,371,032$ meters is assumed implying that the last spherical ring boundary radius is about $0.829^{\circ}$. In the modified form of the circularized AGEMIT template, the ring boundary radii less than $1^{\circ}$ are omitted.

A listing of the actual numerical values of the spherical ring boundary radii of this template is given in Table 5.1.3-2.

### 5.2 Examples of Spectra

In this section, examples are presented of calculations of actual spectra both for theoretical integral transformations and for discrete summation transformations based on some of the templates described in the previous section. It will be seen that just as the summation transformation is an approximation to the integral transformation in the spatial domain so is the spectrum of the summation transformation an approximation to the spectrum of the integral transformation in the frequency domain. It will also be seen that the values of the template parameters greatly affect the closeness of the approximation in the frequency domain just as it is obvious that they do in the spatial domain.

### 5.2.1 Stokes' Transformation

Plots have been generated of the spectra of the discrete Stokes' summation transformation for two templates, namely the 34-ring Pick-PichaVyskocil template and the lol-ring circularized DMAAC template, as well as of the spectra of the continuous (theoretical) Stokes' integral transformation. The plots show the fundamental characteristics of the spectra, specifically that the spectrum of the summation transformation is "close" to that of the integral transformation but not exactly equal to it. The plots are presented in Figures 5.2.1-1 and 5.2.1-2.


Table 5.1.3-2. Template Parameters for the 125-Ring "Rice-DMAAC" Template.

Figure

$$
\begin{aligned}
& \text { - THEORETICAL INTEGRAL TRANSFORM (SMOOTH LINE) } \\
& \text { - DISCRETE SUMMATION TRANSFORM (JAGGED LINE) }
\end{aligned}
$$


$\qquad$ $\bar{T}$

 Template).

Figure 5.2.1-1c.

1


- THEORETICAL INTEGRAL TRANSFORM (SMOOTH LINE)
- DISCRETE SUMMATION TRANSFORM (JAGGED LINE)


Figure 5.2.1-2c. Difference in spectra of Stokes' Transformation (101-Ring Circularized AGEMIT


The plots of the spectra are presented in four ways for each template:
a) The actual values of the spectra of the theoretical and the discrete are plotted on a linear scale.
b) The actual values of the spectra of the theoretical and the discrete are plotted on a logarithmic scale.
c) The difference of the spectrum of the discrete summation from the spectrum of the continuous integral is plotted on an enlarged linear scale.
d) The relative difference of the spectrum of the discrete summation from the spectrum of continuous integral is plotted on an enlarged linear scale. The relative difference is the actual difference divided by the "true" value, which is the value of the continuous integral transformation spectrum in this case. These plots are useful for quickly determining percentage errors.

### 5.2.2 Vening-Meinesz' Transformation

Plots have not yet been generated of the spectra of the discrete Vening-Meinesz' summation transformation for various templates. However, many computer-generated tabular listings of the spectral values and other associated quantities have been made during the course of this work. Excerpts of two representative listings for the analog of the Vening-Meinesz' transformation on surface layer densities are presented in Figures 5.2.2-1 and 5.2.2-2. Plots of these data would have many of the same features as the plots of the Stokes' spectra in the previous section.

In the figures, the following information is provided by columns:
N: Spherical Frequency (Spherical Harmonic Degree)
ACTUAL SPECTRUM: The numerical value of the spectrum of the discrete summation transformation for the specified spherical frequency.

IDEAL SPECTRUM: The numerical value of the spectrum of the theoretical integral transformation for the specified spherical frequency.

RESIDUAL SPECTRUM: The difference between the actual and ideal spectra.

WEIGHT: The power spectrum of the input to the transformation; specifically, the Tscherning-Rapp degree variances for surface layer densities.

SIGMA(N): The square root of the residual power spectrum of the output of the transformation. This quantity is the product of the square of the residual spectrum and the weight. It is the global rms value of the error in the output of the transformation which is introduced by using the summation rather than the integral for the specified frequency.

SIGMA(N) CUM: The cumulative value of SIGMA(N) up to and including the specified frequency, where cumulative is interpreted in a root-sum-square sense.
解 $-0.0523281581700$ 0.053414359635
-0.009949778582
 in
0
0
0
0
0


 0.0001490636350
0.011619724075 no


 0.0134672299027
0.0117308087647 0.017308087047
0.0000201110379 -0.0063606994913
-0.0087115280330

 .0047197416425
.0137318324060 .0137318324060
.014476392553
.0068602450192 $-0.0056871920824$ $-0.0010069836862$ 0.0000845665975
0.006809746847

 7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$i$
$i$







K ₹

囬









## SECTION 6

## TEMPLATE OPTIMIZATION METHODS <br> FOR

DISCRETE SUMMATION TRANSFORMATIONS

### 6.1 Introduction

In the previous chapters on the spectral theory of discrete summation transformations, it was shown both by analytical expressions and by numerical examples that the spectrum of such a transformation depends parametrically upon the values of the spherical ring boundary radii and the spherical compartment boundary azimuths of the underlying bull's-eye template. Several reasonable ways of selecting the values of these parameters were described under the general concept of the equal contribution of subdivisions of a spherical surface.

In this chapter a method is presented for iteratively deriving the "best" or "optimal" values of these parameters for any transformation. The method is based upon incrementally adjusting the values of the parameters until a particular scalar function of them, the global rms discretization error, has been minimized. The number of rings and the number of compartments in each ring are chosen a priori and held constant during the iterative process.

The minimization of the global rms discretization error is equivalent to the process of making the spectrum of the discrete summation transformation approximate as well as possible the spectrum of the theoretical integral transformation in a weighted least-squares sense. This process of adjusting the parameters in a linear shift-invariant transformation so that its approximate spectrum agrees as well as possible with an ideal spectrum is known in engineering terminology as digital filter design. Hence the derivation of optimal discrete summation approximations to geodetic integral transformations may be called spherical geodetic digital filter design.

To illustrate ideas, an example of the intermediate results of such a filter design computation is presented in Figure 6.1-1. Here the figure-of-merit, namely the global rms discretization error in the
total horizontal gravity disturbance, is decreased at each iteration from an initial value of 0.754 mgal to a final value of 0.519 mgal by means of the incremental adjustment of the spherical ring boundary radii numbered 9 through 22. (The reason that the radii numbered 1 through 8 were not adjusted will be explained in Section 6.3.3 and Appendix E). It is seen in the figure that the radii parameters change gradually during the course of the computation with larger changes occuring in the larger radii. These radii are more directly related to the low frequencies for which the input power spectral density is greater, and thereby have a greater effect upon the total rms discretization error.

Summary of complete run

FIGURE OF MERIT
7.54E-01 $6.63 E-01 \quad 6.09 E-01 \quad 5.78 E-01 \quad 5.59 E-01 \quad 5.46 E-01 \quad 5.36 E-01 \quad 5.29 E-01 \quad 5.24 E-01 \quad 5.19 E-01$

VALUES OF PARAMETERS

RING:	SFHERICAL	RING RADII	(DEGREES)							
0	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
1	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061
2	0.085	0.085	0.085	0.085	0.085	0.085	0.685	0.085	0.085	0.085
3	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118
4	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
5	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228
6	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316
7	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439
8	0.610	0.610	0.610	0.610	0.610	0.610	0.610	0.610	0.610	0.610
9	0.847	0.843	0.849	0.850	0.850	0.851	0.851	0.952	0.852	0.853
10	1.177	1.177	1.277	1.178	1.178	1.178	1.178	1.179	1.179	1.179
11	1.634	1.635	1.635	1.635	1.635	1.635	1.635	1.636	1.636	1.636
12	2.270	2.271	2.271	2.271	2.271	2.271	2.271	2.271	2.271	2.271
13	3.154	3.154	3.155	3.155	3.155	3.155	3.255	3.155	3.155	3.155
14	4.392	4.383	4.383	4.383	4.384	4.384	4.384	4.384	4.384	4.384
15	6.091	6.092	6.092	6.092	6.093	6.093	6.093	6.093	6.093	6.093
16	8.470	8.471	8.472	8.472	8.472	8.472	8.472	8.472	8.472	8.471
17	11.790	11.792	11.792	11.793	12.793	11.792	11.792	11.791	11.791	11.790
18	16.445	16.445	16.445	16.444	16.443	26.442	16.441	16.440	16.439	16.439
19	23.031	23.018	23.019	23.005	23.003	23.004	23.007	23.012	23.020	23.030
20	32.523	32.450	32.427	32.434	32.463	32.510	32.571	32.645	32.759	32.822
21	46.780	46.527	46.744	47.207	47.785	48.408	49.033	49.636	50.204	50.728
22	70.639	74.568	77.654	80.082	82.030	83.622	84.943	86.054	86.997	87.804
23	179.932	179.932	179.932	279.932	179.932	279.932	179.932	179.932	279.932	179.932

Figure 6.1-1. Example of Iterative Decrease of the Discretization Error.

The global rms discretization error is only one of a number of scalar quantities which could be chosen as a figure-of-merit of the accuracy of the sumation approximation to the theoretical integral transformation. The global maximum discretization error, namely the maximum error in the output of summation transformation over the whole sphere, is another such quantity. Both of these discretization error types have the distinct advantage of possessing a useful physical interpretation. However, the rms error has the additional advantage of being closely related to spectral quantities of the transformation through the Parseval Theorem, and hence of being easy to compute when the residual spectrum and input power spectral density are known. The global rms discretization error and its properties will now be described.
6.2 Global RMS Discretization Error

The global rms discretization error of a discrete summation transformation is the global rms value of the error in the output of the transformation due solely to the use of the summation approximation rather than the rigorously correct integral expression. The rms discretization error depends upon the strengths of the various spherical harmonic frequencies which occur in the input to the transformation; a nominal model such as the Tscherning-Rapp degree variance model is assumed. The term "global" means that the root-mean-square is taken over the whole surface of the (unit) sphere.

The global rms discretization error is given by

$$
\left\{f_{\text {OUT }}^{\text {APPROX }}-f_{\text {OUT }}\right\}_{\text {rms }}=\left[\iint\left[f_{\text {OUT }}^{\text {APPROX }}-f_{\text {OUT }}\right]^{2} \frac{d \sigma}{4 \pi}\right]^{\frac{1}{2}}
$$

By the Parseval Theorem, it is known that

$$
\left\{f_{\mathrm{OUT}}\right\}_{\mathrm{rms}}^{2}=\sum_{n=0}^{\infty}\left|\lambda_{\mathrm{n}}\right|^{2}\left\{f_{\mathrm{IN}(\mathrm{n})}\right\}_{\mathrm{rms}}^{2}
$$

and

$$
\left\{f_{\text {OUT }}^{\text {APPROX }}\right\}_{r m s}^{2}=\sum_{n=0}^{\infty}\left|\lambda_{n}^{\text {APPROX }}\right|^{2}\left\{f_{I N(n)}\right\}_{r m s}^{2}
$$

Similarly, for the difference transformation

$$
\left\{f_{\text {OUT }}^{\text {APPROX }}-f_{\text {OUT }}\right\}_{r m s}^{2}=\sum_{n=0}^{\infty}\left|\lambda_{n}\left\{k^{\text {APPROX }}-k\right\}\right|^{2}\left\{f_{I N(n)}\right\}_{\text {rms }}^{2}
$$

where $\lambda_{n}\left\{k^{\text {APPROX }}-k\right\}$ is the spectrum of the difference transformation. But by the linear property of the spectrum,

$$
\begin{aligned}
\lambda_{n}\left\{k^{\text {APPROX }}-K\right\} & =\lambda_{n}\left\{K^{\text {APPROX }}\right\}-\lambda_{n}\{k\} \\
& =\lambda_{n}^{A P P R O X}-\lambda_{n}
\end{aligned}
$$

So the global rms discretization error is

$$
\left\{f_{\text {OUT }}^{\text {APPROX }}-f_{O U T}\right\}_{r m s}=\left[\sum_{n=0}^{\infty}\left|\lambda_{n}^{\text {APPROX }}-\lambda_{n}\right|^{2} \sigma_{n}^{2}\left\{f_{I N}\right\}\right]^{1 / 2}
$$

### 6.2.1 Examples

The global rms discretization errors for a number of specific templates are presented in Table 6.2-1 for the Stokes' transformation and in Table 6.2-2 for the Vening-Meinesz' transformation.

The following points may be observed from these tables:
For the discrete Stokes' transformation:
a) The global rms geoid height discretization error is substantially lower in the analog transformation from mean surface layer densities to geoid height than in the classical transformation from mean gravity anomalies to geoid height for the $34-r i n g$ template, even though the input power spectral density for surface layer density is larger for each frequency than that for gravity anomalies.
b) The 66-ring Equal Ring Contribution Template seems to have a relatively large discretization error for a template with this many rings. The $34-r i n g$ Pick-Picha-Vyskocil template has a slightly lower absolute error for a more gross partition of the spherical surface.

$$
6-4
$$

c) As the number of rings increases, the contribution of the higher frequencies (above spherical harmonic degree 30) becomes relatively greater.

For the discrete Vening-Meinesz' transformation analog which converts mean surface layer densities to deflections:
a) The 125-ring Rice/AGEMIT template has a discretization error almost half that of the 125 -ring equal ring contribution template.
b) The reduction of the value of the truncation radius $\psi_{0}$ towards zero does not necessarily decrease the discretization error. This would imply that there may perhaps exist an optimum (non-zero) value of $\Psi_{0}$.

Table 6.2-1. Discretization Error of Various Templates for Stokes' Iransformation.

Type	Rings	Max   Degree	rms   Error
CLASSICAL STOKES			
Pick-Picha-Vyskocil	34	30	1.29 m
Pick-Picha-Vyskocil	34	1440	1.34 m
Equal Ring Contribution	66	30	1.30 m
Equal Ring Contribution	66	1440	1.64 m
Circularized AGEMIT	101	30	0.108 m
Circularized AGEMIT	101	1440	0.165 m
PNALOG STOKES			
Pick-Picha-Vyskocil	34	1500	0.668 m
Pick-Picha-Vyskocil	34	0.689 m	

The "RMS ERROR" column gives the global rms discretization error in the geoid height.

Table 6.2-2. Discretization Error of Various Templates for Vening-Meinesz' Transformation.

Type	\# Rings	$\psi_{0}$ (deg)	Max   Degree	rms   Error
Pick-Picha-Vyskocil	23	$10^{-5}$	30	0.445 mgal
Pick-Picha-Vyskocil	23	0.030	1440	0.714 mgal
Equal Ring Contribution	23	0.044	1440	0.754 mgal
Circularized AGEMIT	101	0.030	1440	1.115 mgal
RICE/AGEMIT	125	0.002	1440	0.075 mgal
Equal Ring Contribution	125	0.002	1440	0.133 mgal
Equal Ring Contribution	125	0.001	1440	0.145 mgal

The "RMS ERROR" column gives the global rms discretization error in the total horizontal gravity disturbance.

### 6.3 Optimization Algorithm

There are a number of algorithms which could be used to determine the values of the template parameters which minimize the global rms discretization error under the inequality constraints that the ring boundary radii and the compartment boundary azimuths must not overlap. Descriptions of such algorithms may be found, for example, in the constrained minimization sections of Luenberger (1973, Part III), Lawson and Hanson (1974, Chapter 23), Dornby (1975, Chapters 7 and 3), and Avriel (1977, part II). A survey of recent developments in optimization theory is given in Jacobs (1977, Part III).

Under the present effort, however, a simple and quickly implementable algorithm has been employed, namely a Gauss-Newton* scheme to perform an unconstrained minimization step, followed by a "projection" technique to force the satisfaction of inequality constraints. Due to certain convergence difficulties with this algorithm, three simple and also easily implementable variations of it were experimented with additionally. This section describes the main algorithm and the variations.

While neither the algorithm nor the variations provided reductions of several orders of magnitude in the rms discretization error as had *The Gauss-Newton algorithm is well-known in satellite orbit determination work as "differential correction".
been hoped, the algorithm and the variations did possess sufficient computational power to demonstrate that the spectral theory of spherical geodetic operators as described in the earlier chapters of this document is valid and that it is feasible to derive improved values of the template parameters by means of this theory.

### 6.3.1 Gauss-Newton Minimization

A brief mathematical description of this process will be given in the notation and terminology of this document for the present application.

Let the P-dimensional vector $x$ denote the template parameters, such as the ring boundary radii and compartment boundary azimuths, whose values are to be varied during the optimization. Let the components of the $N$-dimensional vectors $\underline{\lambda}_{\text {IDEAL }}$ and $\underline{\lambda}(\underline{x})$ represent the values of the spectrum for each spherical harmonic frequency $n$ of the continuous integral transformation and a discrete summation approximation thereof, respectively. In principle $N$ would be infinite, but in practice $N$ is a sufficiently large number, such as 1440 which would include the contributions of all wavelengths longer than 15 arc-minutes. Further let the residual spectrum vector $\underline{\Delta \lambda}(\underline{x})$ be the difference $\underline{\lambda}(\underline{x})-\underline{\lambda} I_{D E A L}$. It is desired to make the residual spectrum as small as possible in a weighted least squares sense, that is to find the solution $x^{*}$ of the weighted least squares problem

$$
W \underline{\Delta \lambda}(\underline{x})=\underline{0}
$$

where $W$ is the weighting matrix, or equivalently to minimize the scalar function

$$
\phi(\underline{x})=[W \underline{\Delta \lambda}(\underline{x})]^{T}[W \underline{\Delta \lambda}(x)]
$$

Since the residual spectrum $\Delta \lambda(\underline{x})$ depends non-linearly on the parameter vector $\underline{x}$, an iterative solution is necessary. Suppose an estimate or initial guess $\hat{\underline{x}}$ of the solution $\underline{x}^{*}$ is available. By linearizing the residual spectrum about the estimate,

$$
\underline{\Delta \lambda}(\underline{x})=\underline{\Delta \lambda}(\underline{\hat{x}})+\frac{\partial}{\partial \underline{x}}[\underline{\lambda}(\underline{x})](\underline{x}-\underline{\hat{x}})+\ldots
$$

and solving the resulting linearized problem

$$
w \frac{\partial[\underline{\lambda}(\underline{x})]}{\partial \underline{x}}(\underline{x}-\underline{\hat{x}})=-W \Delta \lambda(\hat{x}
$$

in a least-squares sense, an improved estimate

$$
\underline{\hat{\hat{x}}}=\underline{\hat{x}}+(\underline{x}-\underline{\hat{x}})
$$

of the solution $x^{*}$ of the non-linear problem is obtained. A new residual spectrum $\Delta \lambda(\underline{\hat{x}})$ is now computed based on the improved estimate and the process is repeated.

The solution of the linearized weighted least-squares problem may be written explicitly* as:

$$
\underline{\Delta x}=(\underline{x}-\underline{\hat{x}})=-\left[\left(\frac{\partial \lambda}{\partial \underline{x}}\right)^{T} W^{T} W\left(\frac{\partial \lambda}{\partial \underline{x}}\right)\right]^{-1}\left(\frac{\partial \underline{\lambda}}{\partial \underline{x}}\right)^{T} W^{T} W \underline{\Delta \lambda}(\underline{x})
$$

However to preserve accuracy in actual computation, the least-squares solution for $\Delta x$ should be obtained by a robust numerical method** applied directly to the overconstrained system, rather than through the theoretical expression above which would involve the inversion of a $P \times P$ matrix. In the present study, the subroutine MLSQ from the IBM Scientific Subroutine Package (IBM, 1968) was used to perform this function.

### 6.3.1.1 Standard (Input) Weighting

By taking the weighting matrix $W$ used in the solution of the weighted least-squares problem of the previous section to be the diagonal matrix whose elements are the degree standard deviations of the input geodetic quantity $f_{I N}(\psi, \alpha)$,

$$
W_{n n}=\sigma_{n}\left\{f_{I N}\right\}
$$

it will result that the scalar objective function to be minimized

$$
\phi(\underline{x})=[W \underline{\Delta \lambda}(\underline{x})]^{T}[W \underline{\Delta \lambda}(\underline{x})]
$$

is the global mean-square discretization error in the output. Under this scheme of weighting, heavier emphasis is assigned to those spherical harmonic degrees which contribute more to the input power.

This is the most natural choice for the weighting matrix $W$. However, other choices are of course possible. Some of these will be examined in sections 6.3.4.2 and 6.3.4.3.

[^28]A degree variance model widely cited in the literature is that of Tscherning and Rapp (1974, pg. 30, eqn. 68). It is given by any of the following equivalent forms:

$$
\begin{aligned}
& \sigma_{n}^{2}\{N\}=\frac{R^{2}}{G^{2}}\left\{\begin{array}{ll}
0 & n \\
A^{\prime} & n /(n-1)(n-2)(n+24) \\
\sigma_{n}^{2}\{\Delta g\} & =\frac{R^{2}}{G^{2}} \begin{cases}0 & n \\
A^{\prime} & n \geq 3 \\
A(n-1) /(n-2)(n+24)\end{cases} \\
\sigma_{n}^{2}\left\{d_{k} g\right\} & =\frac{R^{2}}{G^{2}} \begin{cases}0 & n=0,1 \\
A^{\prime}(2+k)^{2} & n \\
A(n+k)^{2} /(n-1)(n-2)(n+24) & n \\
0 & n \geq 3\end{cases} \\
\end{array} \begin{array}{l}
n=0,1
\end{array}\right. \\
&
\end{aligned}
$$

where $A^{\prime}=7.6 \mathrm{mgal}^{2}$ and $A=425.28 \mathrm{mgal}{ }^{2}$. This model was used in the comprehensive filter design computer program.

### 6.3.2 Satisfaction of the Inequality Constraints

After a tentative differential correction $\Delta x$ to the current estimate $\hat{\underline{x}}$ of the parameter vector has been determined from the GaussNewton scheme, it remains to check whether the new estimate $\underline{\hat{\mathbf{x}}}=\underline{\hat{x}}+\Delta x$ satisfies the inequality constraints that parameters of the same type do not overlap.

For example, if the parameters in the parameter vector $x$ are all cosines of the spherical ring boundary radii $\psi_{i}$ with

$$
x_{i}=\cos \psi_{i}
$$

then the inequality constraints on $x$ will be of the form

$$
x_{0}>x_{1}>x_{2}>\ldots>x_{I}
$$

corresponding to the "natural" inequalities

$$
\psi_{0}<\psi_{1}<\psi_{2}<\cdots<\psi_{I}
$$

If the components of the new estimate do not initially satisfy such inequalities, then the algorithm described in the following paragraphs is used to force satisfaction.

The inequality constraint satisfaction scheme is composed of two main subcases, namely the cases when the tentative adjacent increments which cause overlapping are in opposite directions or in the same direction.

Case la: When the adjacent increments are in opposite directions (i.e. have opposite sign) and are directed towards each other, then the two increments will each be reduced by the same constant fraction or percentage so that the overlap is not only eliminated but also so that a gap is introduced between the new estimates of adjacent independent parameters. The size of the gap is taken to be a fixed fraction of the total interval between the adjacent parameters.

Mathematically, let $\Delta x_{i}$ and $\Delta x_{i+1}$ be the overlapping increments directed towards each other. For definiteness, assume $\Delta x_{i}<0$ and $\Delta x_{i+1}>0$. Then the overlapping is expressed by the condition: $x_{i}+\Delta x_{i}<$ $x_{i+1}+\Delta x_{i+1}$, as shown by the sketch:


Let $\Delta x_{i}^{\prime}$ and $\Delta x_{i+1}^{\prime}$ indicate the increments which will be used in place of $\Delta x_{i}$ and $\Delta x_{i+1}$ so that there will not be overlap and so that:
i) the relative strength of the original increments will be preserved:

$$
\frac{\Delta x_{i}}{\Delta \mathbf{x}_{i+1}}=\frac{\Delta x_{i}^{\prime}}{\Delta x_{i+1}^{\prime}}
$$

ii) a "gap" will be left between the new estimates ( $x_{i}+\Delta x_{i}^{\prime}$ ) and $\left(x_{i+1}+\Delta x_{i+1}^{\prime}\right)$ which is a fixed fraction of the difference between the previous estimates $x_{i}$ and $x_{i+1}$ :

$$
\left(x_{i}-x_{i+1}\right) a=\left(-\Delta x_{i}+\Delta x_{i+1}^{\prime}\right)
$$

By solving these equations for $\Delta x_{i}^{\prime}$ and $\Delta x_{i+1}$ it is found that

$$
\Delta x_{i}^{\prime}=\Delta x_{i}\left[\frac{\left(x_{i}-x_{i+1}\right) a}{\left(-\Delta x_{i}+\Delta x_{i+1}\right)}\right]
$$

and

$$
\Delta x_{i+1}^{\prime}=\Delta x_{i+1}\left[\frac{\left(x_{i}-x_{i+1}\right) a}{\left(-\Delta x_{i}+\Delta x_{i+1}\right)}\right]
$$

Case 1b: When the adjacent increments are in opposite directions (i.e. have opposite sign) but are directed away from each other, there cannot be overlapping as seen in the sketch:

so this case is non-existent.
Cases 2a and 2b: When the adjacent increments are in the same direction (i.e., have the same sign) and one of the increments is so large in magnitude that overlapping occurs as shown in the sketches:

then the larger increment (in magnitude) is set to a specified fraction of the current difference between adjacent estimates.

Mathematically,

$$
\mathbf{x}_{i}+\Delta \mathbf{x}_{i}<\mathbf{x}_{i+1}+\Delta \mathrm{x}_{\mathrm{i}+1}
$$

is the overlapping condition in both subcases, although in subcase 2 a both $\Delta x_{i}$ and $\Delta x_{i+1}$ are negative, while in subcase $2 b$ both $\Delta x_{i}$ and $\Delta x_{i+1}$ are positive. Then

$$
\begin{aligned}
& \text { if } \Delta x_{i}<0, \Delta x_{i}^{\prime}=-b\left(x_{i}-x_{i+1}\right) \\
& \text { if } \Delta x_{i}>0, \Delta x_{i}=+b\left(x_{i}-x_{i+1} ;\right.
\end{aligned}
$$

This assumes that pairs of increments are being checked in order of increasing i.

The foregoing algorithm to force the satisfaction of the inequality constraints is certainly not the best method of handling constrained minimization, but it is quickly and easily implementable in a computer program.

### 6.3.3 Exclusion of Small Ring Radii Parameters from Differential Adjustment

As has been mentioned, only the contributions of the spherical harmonic degrees up through a finite number $N$ are included in the actual numerical computations. Consequently, the contributions of the higher degrees, or equivalently the higher frequencies or shorter wavelengths, are neglectea. Therefore any parameters which are principally related to these neglected degrees should be held fixed during the iterative optimization process, because no information is being obtained to permit the rational adjustment of these parameters and because small random errors in the computations could induce large erroneous increments in them.

The spherical boundary radii close to the origin are indeed principally related to the higher harmonic degrees. In fact, it may be shown that if the Stokes' or Vening-Meinesz' Integrals are carried out only over a spherical cap having a spherical radius $\psi_{0}^{(n)}$ which is the smallest zero of the Molodenskii function $Q_{n}(\psi)$ or the Cook function $q_{n}(\psi)$ respectively, then the contribution of the $n{ }^{\text {th }}$ spherical harmonic frequency is completely accounted for in the mean; the contribution of the neglected part of the sphere is identically zero for this frequency (in the mean). The first zeros of the Molodenskii function $Q_{n}(\psi)$ and
the Cook function $q_{n}(\psi)$ are approximately $1 /(n-1)$ and $2 /(n-1)$ radians respectively for $n$ larger than 10 or so.

Computational examples will be exhibited in Appendix E which show numerically that large erroneous increments do indeed occur for the close ring boundary radii, and that the higher the degree $N$ of spherical harmonics considered, the smaller the spherical radius separating the unreasonable increments from the reasonable increments, as would be expected.

An approximate rule-of-thumb for the limiting spherical radius $\psi_{\text {LIMIT }}$ inside of which all spherical ring boundary parameters $\psi_{i}$ should be excluded from dif. rentic l adjustment is:

$$
\psi_{\text {LIMIT }}=\frac{900^{\circ}}{\mathrm{N}}
$$

In some cases, especially those with a small total number of rings (e.g., 23), $\psi_{\text {LIMIT }}$ may be too large, perhaps by as much as a factor of two. In other cases, especially those with a large number of rings (e.g., 125), $\psi_{\text {LIMIT }}$ may be too small, perhaps by as much as a factor of one third. However, the rule-of-thumb provides roughly the right order of magnitude.

The exclusion of the close spherical ring boundary radii from differential adjustment during the iterative optimization procedure has the byproduct of reducing the overall computational burden. Not only is the (fairly short) calculation of the partials of the spectrum with respect to the radii avoided, but also the dimensions of the least-squares normal equations are decreased and hence so is the execution time required for their solution. For the Stokes' transformation, the reduction is not great since typically only about $5 \%$ to $10 \%$ of the ring radii will lie inside the limiting radius $\psi_{\text {LIMIT }}$. However, for the Vening-Meinesz' transformation, the reduction is often substantial since $30 \%$ to $60 \%$ of the ring radii typically lie within $\psi_{\text {LIMIT }}$.

### 6.3.4 Variations in the Optimization Algorithm

Due to various difficulties in the convergence of the optimization process, three easy-to-implement variations in the optimization algorithm were experimented with. These variations generally worked in the expected manner, alleviating some of the problems encountered, but usually for only a few iterations. They are no substitute for more powerful optimization algorithms.

The three variations are original with the author, and are described in the following subsections.

### 6.3.4.1 Damping of the Increments

The differential correction $\Delta x$ in the independent parameters which is produced by each iteration of the Gauss-Newton optimization process does not always lead to a decrease in the rms discretization error. Sometimes it causes an increase. This is because the GaussNewton method is not rigorously a "descent" method such as Steepest Descent or Conjugate Gradients. In descent methods, the figure of merit is always decreased at each iteration; however the calculations are generally more involved.

In some Vening-Meinesz' cases, especially those with a large number of parameters, it was observed that several descent steps occurred followed by one or more ascent steps followed by more descent steps, etc. Sometimes a parameter oscillation developed with several parameters assuming alternate values ir alternate iterations. It was conjectured that better progress to the true minimum could be made if a slower but non-oscillatory descent could be achieved.

To implement such an idea, the partial derivatives in the VeningMeinesz case were adjusted (specifically, made larger) by changing the multiplicative factor

$$
\frac{2}{\sqrt{n(n+1)}}
$$

appearing at the front of the exact expression to the factor

$$
\frac{2}{[n(n+1)]^{P}}
$$

where $\mathrm{p}<0.5$. With larger than normal partial derivatives, the algorithm calculates that a smaller than normal increment $\Delta x$ is required to counteract the same observed residuals. Thus the increments are damped and the descent to the minimum is slowed.

The increment damping variation of the optimization algorithm generally works computationally as expected, as will be shown by examples in Section 7.4.1.

### 6.3.4.2 Output Weighting

Rather than using the degree standard deviations of the input geodetic quantity $f_{I N}(\psi, \alpha)$ to the transformation as the weights in the (diagonal) weighting matrix of the least squares problem

$$
W_{n n}=\sigma_{n}\left\{f_{I N}\right\}
$$

the Output Weighting Variation of the optimization algorithm uses the degree standard deviations of the output geodetic quantity $f_{\text {OUT }}$ :

$$
\begin{aligned}
W_{\mathrm{nn}} & =\sigma_{n}\left\{f_{\text {OUT }}\right\} \\
& =\left|\lambda_{n}^{\text {APPROX }}-\lambda_{n}\right| \sigma_{n}\left\{f_{I N}\right\}
\end{aligned}
$$

The idea of using this weighting scheme came from a study of the details of the algorithm of Kahng (1972) for general least $p^{\text {th }}$ power approximation with $2<p<\infty$. Kahng's method for the general problem is based upon iteratively solving a weighted least-squares sub-problem where the weights are the $(p-2)$ power of the absolute values of the residuals resulting from the previous iteration. In other words, the weights used in the next iteration are a power of the output errors of the present iteration.

Output weighting is more directly suggested by the fact that rms discretization error is the root-sum-square of the output degree standard deviations. Hence it will be more quickly minimized if the weights for each degree are chosen proportional to the output contribution for the degree in question.

A numerical example is provided by Figure 6.3.4-1. The degree variances $\sigma_{n}^{2}\{\mu\}$ of the input surface layer density $\mu$ based on the Tscherning-Rapp model are listed in mgal ${ }^{2}$ in the column "DEG VAR IN". The rms discretization error contributed by the current spherical harmonic degree and by all degrees up through the current degree are listed in mgal in the columns "SIGMA" and "CUM SIGMA" respectively.* From the SIGMA column it is seen that degrees three through six each introduce very large values into the cumulative rms discretization error. In fact, the total discretization error through degree 1440 is 0.13321 of

[^29]

Figure 6.3.4-1. Example of Output Weighting.
which 0.12839 is already contributed by degrees one through six. Thus in a minimization it is imperative to quickly reduce the contributions of these degrees.

In the standard implementation, the input degree variances $\sigma_{n}^{2}\{\mu\}$ would be used as weights, while in the variant implementation the outputrelated quantites

$$
W_{n n}^{2}=\left\{\left|\lambda_{n}^{A P P R O X}-\lambda_{n}\right|^{2} \sigma_{n}^{2}\{\mu\} 10^{6}\right\}
$$

listed in the "WEIGHT" column are used.*
It is seen immediately that in the standard implementation the weights for degrees three through six are not sufficiently large to counteract the effect of the 1436 other degrees whose weights are smaller but still non-negligible. On the other hand, in the variant implementation, the weights for degrees three through six are much larger and do counteract the other 1436 degrees.

In actual optimization computer runs, this heuristic explanation is vindicated numerically. Specific examples will be given in Section 7.4.2.

### 6.3.4.3 Power Emphasis of the Input or Output Weighting

As an additional means of emphasizing or de-emphasizing certain of the weights of the weighted least-squares procedure, an idea is borrowed from the increment damping variation and from Kahng's original $p^{\text {th }}$ power algorithm, namely that the preliminary weight as calculated by either the input or output weighting methods be raised to a specific power and the result used as the actual weight. This provides a simple and convenient way of smoothly increasing and decreasing the weights to adjust them relatively for specific purposes while still maintaining the underlying input or output weight orderings. The actual power to which the preliminary weights are raised provides the user with a oneparameter family of possible "distortions" of the underlying weighting.

As with the other two variations in the optimization algorithm, the power emphasis variation is a quickly implementable ad hoc scheme. The results of using this variation will be discussed in Section 7.4.3.

[^30]
## SECTION 7

## TEMPLATE OPTIMIZATION RESULTS

### 7.1 Summary

The basic template optimization results which have been achieved during the course of the present work are summarized in figure 7.1-1. All of these results have been attained using the optimization algorithm and variations described in the previous chapter.

From the figure, it is seen that moderate reductions in the global rms discretization error have been obtained for both the Stokes' and Vening-Meinesz ${ }^{\circ}$ discrete summation transformations for several choices of the number of rings in the template. Specifically, the reductions have been from the values listed "current" column, which correspond to a published or a currently-used template, to the values listed in the "reduced" column, which correspond to the improved template.

In some cases, further reduction of the discretization error seems likely since this figure-of-merit was still being consistently reduced in each iteration at the time the optimization process was halted (due to computer time limitations or other extraneous reasons). In other cases, further reduction appears stymied. This may be due to a contorted shape of the multi-dimensional surface on which the minimization is being performed or to the lack of powerfulness of the optimization algorithms used. Alternatively, the minimum rms discretization error corresponding to the optimal template may actually have been reached.* This possibility is suggested by the fact that variations in the optimization algorithm yielded very similar results. However, it is not yet known whether any of the values in the "reduced" column are the true minima.

[^31]It had been hoped that reductions of several orders $n f$ magnitude in the global rms discretization error would be achieved. It is still possible that this will be true.

Details of the optimization results presented in the figure, as well as several related results and the results of the experimentation with the optimization algorithm variations, are presented in the following sections.
$\frac{\text { RMS Discretization Error }}{\text { CURRENt }}$

- Stokes' Transformation
(mean gravity anomalies to geoid height)
- 34-ring case: $\quad 1.336 \mathrm{M} \rightarrow 0.434 \mathrm{M}$
- 101-ring case: $0.165 \mathrm{M} \rightarrow 0.097 \mathrm{M}$
- Stokes' Transformation Analog
(mean surface layer densities to geoid HEIGHT)
- 34-ring case:
0.687 M
$\rightarrow 0.219$ M
- Vening-Meinesz' Transformation Analog (mean surface layer densities to horizontal gravity disturbances)
- 23-ring case:
$0.754 \mathrm{MGAL} \rightarrow 0.519 \mathrm{MGAL}$
- 125-ring case (Equal-Integral) $0.133 \mathrm{MGAL} \rightarrow 0.082 \mathrm{MgAL}$
- 125-Ring case (DMAAC-Rice) $0.075 \mathrm{MGAL} \rightarrow 0.063 \mathrm{MGAL}$

Figure 7.1-1. Summary of Basic Optimization Results.

### 7.2 Template Optimization Results for the Stokes' Transformation

Four main results have been obtained for the discrete Stokes' summation transformation, in particular three for the classic transformation converting gravity anomalies to geoid height and one for the analog transformation converting surface layer densities to geoid height. The three results for the classic transformation are for templates with 34, 66, and 101 rings, while that for the analog transformation is for a template with 34 rings.

### 7.2.1 Classic Stokes' Transformation

Summaries of the intermediate results during the optimization process on a discrete classic Stokes' summation transformation are given in Figures 7.2.1-1, 7.2.1-2, and 7.2.1-3 for templates of 34, 66 and 101 rings, respectively.

The following points may be noted from these figures:
a) In the $34-r i n g$ case, the rms discretization error is being reduced steadily but has not achieved a minimum after 10 iterations.
b) Both of the two "gaps" of about $20^{\circ}$ in the initial template parameters around the zeros of the classic Stokes' function have been eliminated during the course of the optimization. Even though the Pick-Picha-Vyskocil template is not an equal ring contribution template, it has been derived on equal contribution considerations and hence has these gaps (around $39^{\circ}$ and $118^{\circ}$ ).
c) In the 66-ring case, the rms discretization error appears to have reached a plateau after two or three iterations at a level of about 1.00 meter. This is much larger than expected, as is the initial discretization error of 1.64 meters, for a template with so many rings. Intuitively, the more rings in the template the lower the discretization error is expected to be, at least for "reasonable" spherical boundary radii partitions.
d) In the 66-ring case, the exact equal integral template has a "gap" between the ring boundary radii \#19 and \#20 of about $20^{\circ}$ corresponding to the first zero of the classic Stokes'
function at $39^{\circ}$, and a ring boundary radius (\#52) equaling the second zero of the function near $118^{\circ}$ with the adjacent ring radii being about $10^{\circ}$ away on each side. During the course of the optimization, the first gap is eliminated, the ring radius at the second zero remains fairly constant and the distances to the adjacent ring radii are both reduced slightly to about $8.5^{\circ}$ as if the "virtual" gap at this radius were being eliminated.
e) In the lol-ring case, the rms discretization error seems to have been reduced to a minimum of about 0.100 meters, which scarcely changed during the last five iterations. However, in reality, almost all of the ring radii increments between ring \#18 and \#52 are being severely restricted so as not to overlap by the inequality constraint algorithm. When this severe restriction occurs, the optimization is greatly hindered, so the value attained is probably not the minimum possible.

In the figures, a horizontal line indicates the division between the parameters which were and were not allowed to vary, while a vertical line indicates the division between convergence and divergence of the iteration process.

$$
7-4
$$

SUlmãy of complete run


FIGURE OF MERIT									
1.336	0.729	0.559	0.506	0.485	0.471	0.462	0.454	0.446	0.442

RING\# SPHERICAL RING RADII (DEGREES)

0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068
2	0.175	0.175	0.175	0.175	0.175	0.275	0.175	0.175	0.175	0.175	0.175
3	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308
4	0.447	0.447	0.447	0.447	0.447	0.447	0.447	0.447	0.447	0.447	0.447
5	0.712	0.712	0.712	0.712	0.712	0.712	0.712	0.712	0.712	0.712	0.712
6	0.976	0.912	1.009	1.053	1.180	1.226	1.142	1.307	1.242	1.360	1.277
7	1.235	1.177	1.310	1.402	1.680	1.582	1.801	1.742	1.986	1.826	2.063
8	1.488	1.771	1.646	1.971	2.116	2.460	2.346	2.601	2.553	2.853	2.712
9	1.936	2.117	2.435	2.527	2.923	3.054	3.438	3.305	3.624	3.595	3.927
10	2.478	2.585	3.116	3.453	3.684	4.058	4.247	4.587	4.534	4.876	4.833
11	2.961	3.641	3.937	4.461	4.720	5.095	5.403	5.680	5.928	6.039	6.335
12	4.148	4.745	5.241	5.628	6.052	6.370	6.763	7.070	7.369	7.595	7.825
13	$5.884^{4}$	6.260	6.722	7.188	7.602	8.018	8.394	8.776	9.102	9.401	9.665
14	8.180	8.143	8.637	9.116	9,573	10.021	10.440	10.844	11.218	11.557	11.867
15	10.483	10.517	11.050	11.548	12.041	12.522	12.968	13.396	13.794	14.106	14.510
16	12.850	13.606	14.027	24.626	15.136	15.642	16.101	16.540	16.948	17.336	17.693
17	25.990	17.075	17.856	18.473	19.018	19.524	19.975	20.404	20.803	21.186	21.549
18	20.170	21.502	22.613	23.329	23.856	24.327	24.736	25.126	25.492	25.848	26.191
19	25.300	27.563	28.746	29.4008	29.853	30.216	30.536	30.852	31.259	31.467	31.773
20	33.500	35.955	36.808	37.062	37.200	37.363	37.545	37.758	37.986	36.229	38.479
21	52.000	43.782	47.976	46.330	46.061	45.930	46.019	46.119	46.263	46.430	46.613
22	61.000	59.534	57.965	57.144	56.883	56.629	56.632	56.621	56.705	56.783	56.889
23	72.000	80.662	79.977	84.426	81.896	84.120	82.966	83.787	83.412	83.645	83.549
24	82.000	86.084	89.601	90.333	91.679	91.570	91.939	91.945	92.088	92.123	92.191
25	¢4.200	95.903	97.365	99.171	99.962	100.391	100.633	100.781	100.893	100.975	101.044
25	106.300	103.313	109.165	209.686	110.038	110.267	110.406	110.501	110.569	110.622	110.664
27	126.300	123.921	122.568	121.911	121.592	121.440	121.353	121.304	121.269	121.244	121.223
28	135.900	135.620	134.898	134.222	133.730	233.406	133.181	133.016	132.583	132.770	132.667
29	142.700	144.309	145.592	145.939	145.875	145.726	145.556	145.375	145.194	145.013	144.834
30	149.000	251.420	154.589	157.105	158.116	158.387	158.365	158.215	158.015	157.780	157.528
31	155.400	157.846	161.058	164.191	166.793	169.674	171.254	171.401	171.274	170.989	170.650
32	162.900	165.654	170.283	175.611	178.017	178.281	178.430	178.509	178.647	178.792	178.871
33	176.400	178.390	179.280	179.678	179.856	179.001	178.780	178.684	179.411	179.153	179.050
34	180.000	180.000	180.000	180.000	180.000	280.000	180.000	100.000	180.000	180.000	180.000

Figure 7.2.1-1. Summary of 34-Ring Template Optimization for the Classic Stokes' Transformation.

## sumtary of complete run

ITERE O ITERZ 1 ITER菤 2 ITER 3

FIGURE OF MERIT			
$1.64 E+00$	$1.12 E+00$	$1.02 E+00$	$1.01 E+00$

values of parameters
RING SFHERICAL RING RADII (DEEREES

0	0.000	0.000	0.000	0.000
1	1.510	1.510	1.510	1.510
2	2.918	2.467	2.955	2.726
3	4.274	3.066	3.328	3.402
4	5.602	4.570	$3.460^{\circ}$	3.670
5	6.916	5.888	4.863	4.755
6	8.2 ¢8	7.198	6.172	6.646
7	9.545	8.507	7.415	8.626
8	10.877	9.826	10.570	9.364
9	12.231	11.161	12.261	12.141
10	13.618	12.521	14.237	13.271
11	15.046	16.242	15.262	16.267
12	16.528	17.780	16.692	17.895
13	18.080	19.403	19.973	18.249
14	19.721	20.113	20.822	21.531
15	21.482	20.995	21.705	22.474
16	23.406	21.879	22.662	23.446
17	25.569	23.853	23.638	26.440
18	26.116	26.097	28.832	29.324
19	31.449	34.997	35.517	35.235
20	50.091	46.266	43.652	43.599
21	52.792	54.650	50.751	49.807
22	55.108	56.777	57.105	54.297
23	57.189	58.727	59.375	60.105
24	59.107	59.561	60.282	60.377
25	60.909	60.462	60.660	60.566
66	62.623	61.254	61.057	61.067
$\hat{6}$	64.269	62.954	64.264	63.471
28	65.862	64.539	65.858	64.584
27	67.413	66.173	66.561	65.999
30	68.933	67.719	67.334	66.716
31	70.429	69.234	68.023	69.004
32	71.908	70.726	71.908	70.946
33	73.375	72.202	73.376	73.903
34	74.837	73.669	74.035	74.218
35	76.298	75.130	74.763	74.583
36	77.764	76.592	75.423	74.897
37	79.240	78.060	76.886	77.686
33	60.732	81.110	78.673	80.746
39	82.244	81.867	81.262	81.856
40	\&3.785	82.553	82.004	82.691
42	65.361	84.101	82.853	83.912
42	86.932	85.964	87.047	86.003
43	63.658	87.317	87.778	87.193
44	90.402	89.007	85.623	87.547
45	¢2. 233	90.768	89.359	89.770
45	34.174	92.621	91.158	92.815
47	96. 659	96.623	93.235	93.620
43	93.541	97.969	98.036	09.115
49	101.10s	99.053	101.177	101.717
50	104.133	101.710	105.691	105.441
51	108.063	112.337	108.992	109.069
52	117.662	118.496	117.458	117.554
53	127.798	124.958	125.714	125.729
54	132.308	135.209	134.309	134.302
55	135.958	136.752	135.515	138.098
56	139.209	138.377	139.512	139.429
57	142.241	239.800	143.542	144.236
58	145.155	147.432	149.713	148.288
59	143.024	150.308	150.622	150.704
60	150.904	153.243	150.725	150.715
61	153.853	156.303	157.087	156.340
62	156.953	159.603	158.733	157.409
63	160.316	161.200	159.912	158.964
64	164.133	163.101	165.383.	161.652
65	168.915	175.049	$166.882^{\circ}$	166.753
66	180.000	180.000	180.000	180.000

Figure 7.2.1-2. Summary of 66-Ring Template Optimization for the Classic Stokes' Transformation Beginning with an Equal Ring Contribution Template.
sumpary of complete run
 fIGURE OF MERIT

0.132	0.118	0.125	0.108	0.103	0.101

$0.101 \quad 0.099 \quad 0.100 \quad 0.097$ values of parameters VALUES OF PARAMETERS
RING: SPHERACL
STMN RADII (DEGREES)


Figure 7.2.1-3. Summary of 101-Ring Template Optimization for the Classic Stokes' Transformation.

51	6.750	6.683	7.127	7.210	7.684	8.035	7.974	7.793	7.624	8.027	8.268
52	7.000	7.463	7.817	7.874	8.182	8.298	8.128	8. 316	8.354	8.651	8.777
53	8.000	0.235	0.457	8.846	8.326	8.628	8.956	8.938	8.708	8.809	8.914
5.6	9.000	9.060	9.285	9.216	9.314	9.136	9.589	9.554	9.621	9.475	9.553
55	10.000	9.915	10.170	9.675	9.629	10.035	10.368	10.317	10.277	10.357	10.103
56	11.000	10.670	10.909	10.765	11.063	11.043	11.050	11.035	10.940	10.984	11.020
57	22.000	11.783	11.962	11.979	11.805	12.049	11.910	11.725	11.773	11.657	11.623
59	13.000	12.701	12.648	12.793	12.569	12.039	12.638	12.719	12.660	12.275	12.488
59	14.000	13.690	13.721	13.612	13.635	13.788	13.783	13.646	13.395	13.549	13.461
00	15.000	14.701	14.831	14.536	14.776	14.624	14.646	14.475	14.328	14.423	14.466
61	16.000	15.923	15.730	15.680	15.672	15.524	15.607	15.523	15.556	15.488	15.552
62	17.000	16.597	16.643	16.878	16.617	16.672	16.738	16.629	16.708	16.671	16.758
63	18.000	17.797	17.724	17.758	17.955	17.891	17.836	27.823	17.823	17.849	17.966
64	19.000	13.730	18.772	18.827	19.104	19.103	19.037	19.155	19.247	19.257	19.253
65	20.000	19.895	20.050	20.202	20.304	20.433	20.575	20.700	20.719	20.681	20.432
$6{ }^{6}$	21.000	30.655	20.527	20.440	20.810	20.579	20.912	21.160	21.217	21.493	21.841
67	22.000	21.586	21.727	21.754	22.027	22.222	22.620	22.834	23.089	23.298	23.564
68	23.000	22.568	23.050	23.560	23.977	24.178	24.499	24.814	25.054	25.285	25.456
69	24.000	23.770	24.846	25.490	26.063	26.469	26.726	27.044	27.307	27.550	27.721
70	25.000	26.247	27.354	27.973	28.586	29.005	29.317	29.598	29.842	30.069	30.265
71	30.000	30.194	30.707	31.192	31.606	31.967	32.253	32.490	32.717	32.916	33.084
72	35.000	34.687	34.736	34.893	35.079	35.331	35,558	35.740	35.915	36.077	36.216
73	40.005	39.475	39.180	39.097	39.050	39.153	39.239	39.350	39.459	39.551	39.640
74	45.030	44.371	43.901	43.652	43.480	43.378	43.324	43.328	43.346	43.399	43.420
75	50.000	49.306	45.783	48.420	48.155	47.954	47.792	47.658	47.613	47.587	47.561
76	55.000	54.325	53.825	53.431	53.141	52.813	52.545	52.343	52.258	52.180	52.226
77	60.000	59.594	59.055	58.647	58.419	58.070	57.672	57.523	57.414	57.357	57.344
78	65.000	65.319	64.734	64.573	64.278	64.070	63.637	63.630	63.341	63.461	63.372
79	70.000	74.853	78.385	75.438	77.560	75.972	78.541	76.522	78.382	77.1446	78.073
80	75.000	79.252	79.660	82.017	80.696	81.539	80.879	82.747	81.695	82.242	61.761
81	80.100	81.973	83.799	84.171	85.611	84.780	85.252	85.388	85.957	85.568	85.844
82	85.000	35.624	87.031	87.861	88.348	86.879	88.735	89.910	89.200	89.363	89.282
E3	90.000	90.274	90.926	91.459	91.960	92.295	92.497	92.641	92.801	92.952	93.147
$\varepsilon 4$	95.000	75.170	95.311	95.534	95.982	96.198	96.328	96.463	96.576	96.778	96.925
85	100.000	99.887	99.989	100.054	100.250	100.415	100.475	100.602	100.655	100.790	100.871
86	105.000	104.805	104.729	104.808	104.847	104.853	104.860	104.939	105.012	105.020	105.086
67	110.000	199.786	109.621	109.625	109.623	109.543	109.516	109.504	109.598	109.555	109.669
83	115.000	114.772	114.633	114.541	114.445	114.364	114.367	114.309	114.320	114.289	114.307
69	120.000	119.789	119.654	119.531	119.409	119.320	119.294	119.252	119.163	119.157	119.063
90	125.000	124.776	124.667	124.508	124.413	124.342	124.304	124.232	124.144	124.103	124.071
91	130.000	129.8.8	129.725	129.632	129.550	129.468	129.365	129.317	129.280	129.197	129.140
92	135.000	134.979	134.856	134.743	134.667	134.635	134.536	134.492	134.454	134.423	134.397
93	140.000	140.066	139.599	139.851	139.849	139.859	139.791	139.762	139.741	139.768	139.764
94	145.000	145.110	145.164	145.128	145.147	145.232	145.187	145.194	145.197	145.198	145.191
95	150.000	150.299	150.401	150.580	150.658	150.734	150.776	150.817	150.798	250.745	350.678
96	155.000	155.518	155.692	255.947	156.267	156.257	156.386	156.445	156.400	156.303	156.239
97	160.000	160.738	161.254	161.576	162.152	161.947	162.200	162.238	162.168	161.997	161.921
93	165.000	165.924	166.936	167.113	168.064	167.752	168.077	168.007	167.748	167.574	167.233
99	170.000	170.904	172.262	172.937	174.502	173.028	173.349	173.172	172.532	173.499	172.190
100	175.000	177.765	178.693	177.457	175.278	174.875	174.250	173.837	176.404	178.392	174.863
101	180.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000	160.000	100.000

Figure 7.2.1-3. (continued)

### 7.2.2 Analog Stokes' Transformation

A summary of the intermediate results during the optimization process on a 34-ring discrete Stokes' summation for the analog transformation converting surface layer densities to geoid height is given in Figure 7.2.2-1. The initial estimate of the template parameters is that of the Pick-Picha-Vyskocil template (for the classic Stokes' summation).

The following points may be noted from the figure:
a) The spherical ring boundary radii numbered 28 through 33 have merged together by the tenth iteration to the approximate value $153.2^{\circ}$. Hence five of the parameters have become "locked". If the program had the astuteness to recognize this situation, remove the "locked" variables, and insert them as five new independent variables throughout the range of variation, an entirely different set of results might have been obtained.
b) As in the classic Stokes' case, the "gap" between the ring boundary radii around the first zero in the classic Stokes' function was eliminated during the optimization.

### 7.2.3 Discussion of Stokes' Transformation Results

The optimization process for the discrete Stokes' summation transformation generally appears tc be working well. Moderate decreases in the global rms discretization error have been achieved in all cases. Certainly, larger decreases are desired, but it is not yet clear how close the results are to the true minima.

SUMMARY OF COMPLETE RUN
ITER\# 0 ITERF1 ITER*2 ITER* 3 ITER\# 4 ITER* 5 ITER* 6 ITER* 7 ITER* 8 ITER* 9 ITER\# 10

FIGURE OF MER $+T$								
0.689	0.318	0.243	0.226	0.219	0.230	0.222	0.220	0.220


of Parditeters											
FING*	SPHERICAL	FiNG RAO	( DEGREES								
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
1	0.053	0.068	0.058	0.068	0.068	-0.068	0.063	0.068	0.000 0.058	0.000	0.000
2	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.058 0.175	0.068	0.058
3	0.303	0.303	0.303	0.303	0.303	0.308	0.308	0.308	0.1708	0.175	0.175
4	0.447	0.447	0.447	0.447	0.447	0.447	0.447	0.447	0.308 0.447	0.308	0.303
5	0.712	0.712	0.712	0.712	0.712	0.712	0.712	0.712	0.447 0.712	0.447	0.447
6	0.976	0.924	1.201	1.123	1.131	1.269	1.179	1.420	1.336	1.443	1.331
7	1.235	1.192	1.326	1.456	2.825	1.654	1.903	1.939	1.336 2.234	1.443 1.954	1.331 2.236
8	1.438	1.887	1.670	2.056	2.272	2.814	2.586	2.858	2.844	3.293	2.236 3.030
9	1.985	2.211	2.630	2.650	3.155	3.494	4.041	3.858	2.844 4.125	3.293 4.124	3.030 4.640
10	2.478	2.664	3.350	3.931	4.082	4.607	4.909	5.415	5.200	5.124	4.640 5.672
11	2.951	3.941	4.301	5.150	5.267	5.833	6.021	6.600	6.593	7.062	7.033
12	4.148	5.091	5.960	6.396	7.297	7.098	7.871	8.133	9.035	8.520	9.200
13	5.8 .4	6.630	7.546	6.574	8.826	9.893	9.591	10.469	10.645	8.520 11.553	9.200 11.015
14	3.180	8.400	9.840	10.547	11.634	11.865	12.815	12.551	10.645 13.528	11.553	11.015 14.439
15	10.438	10.865	12.350	13.180	14.352	14.572	15.478	15.464	13.228 16.130	13.514 16.299	14.439 16.973
16	12.850	14.777	15.129	17.127	17.130	18.564	16.207	19.423	18.866	19.950	16.973 19.692
17	15.970	18.411	19.734	20.704	21.633	21.905	22.720	22.657	23.468	23.168	23.973
28	20.170	22.698	25.140	25.087	26.354	26.147	27.037	26.986	27.499	27.637	27.828
19 20	25.300 33.900	28.886 36.549	30.558	31.435	31.111	31.963	31.655	32.294	32.140	32.566	32.576
20	33.900 52.000	36.549 48.222	37.752 45.098	37.610 45.363	37.757	37.634	37.886	37.849	38.038	35.095	38.257
22	61.000	48.222 53.951	$45.9 ¢ 8$ 55.974	45.363 54.561	45.028	44.884 53.830	44.835	44.832	44.842	44.915	44.987
23	72.00	70.026	55.974 67.499	54.561 65.903	53.968 65.083	53.830 64.611	53.465	53.352	53.307	53.327	53.356
24	82.000	81.281	80.275	79.525	65.083 78.930	64.611	64.343	64.162	64.046	64.008	63.987
25	94.200	94.980	95.854	86.091	95.849	78.482	78.162	77.927	77.757	77.641	77.557
26	106.300	109.178	110.817	113.039	114.292	95	95.263	95.038	94.852	94.668	94.522
27	126.300	124.879	127.307	130.773	133.664	114.892 135.575	115.1	115.149	115.103	114.971	114.819
23	135.900	135.502	138.366	143.667	147.603	135.575 150.548	136.73	137.393	137.727	137.639	137.856
29	142.700	143.056	145.078	148.655	251.326	152.173	157.0410	153.614	152.925	153.101	153.116
30	149.000	149.150	149.602	152.030	152.339	152.971	152.810	153.003	153.145	153.159	153.144
31	155.400	155.180	152.667	153.491	153.119	152.971	153.052	153.181	153.199	153.185	153.164
32	162.900	161.317	156.120	155.215	153.828	153.649	153.213	153.251	153.234	153.242	153.197
33	176.400	168.580	162.532	163.602	162.291	159.882	153.355	153.327	153.266	153.258	153.245
34	180.000	180.000	180.000	180.000		159.882	155.777	153.831	153.427	153.298	153.266
				180.000	180.000	180.000	180.000	160.000	180.000	180.000	180.000

Figure 7.2.2-1. Summary of 34-Ring Template Optimization for the Stokes' Transformation Analog.

### 7.3 Template Optimization Results for the Vening-Meinesz' Transformation

Five main results have been obtained for the discrete VeningMeinesz' summation transformation, all of the five being for the analog transformation converting surface layer densities to deflections (strictly, to horizontal gravity disturbance components). Two of the five main cases are for transformations with $23-r i n g$ templates, while the other three are for $125-r i n g$ templates.

### 7.3.1 Vening-Meinesz' 23-Ring Template

The two results for the $23-r i n g$ case begin with different initial values of the estimated spherical ring boundary radii, one using the equal ring contribution template and the other using the Pick-PichaVyskocil template. A summary of the intermediate results of the iterative optimization process for these cases is given in Figures 7.3.1-1 and 7.3.1-2.

The following observations may be made from these figures:
a) For a small number of spherical ring boundary radii, the equal ring contribution template is a better starting point for the optimization process than the Pick-PichaVyskocil template in the sense that the optimization progresses faster to a lower rms discretization error in spite of starting at a slightly higher value of this figure-ofmerit.
b) The optimum values of the spherical ring boundary radii do not seem to have been reached when the runs were terminated, as the rms discretization error was still decreasing consistently at this point.

SUMMARY OF COMPLETE RUN

figure of merit
7.54E-01 6.63E-01 $6.09 E-01 \quad 5.78 E-01 \quad 5.59 E-01 \quad 5.46 E-01 \quad 5.36 E-01 \quad 5.29 E-01 \quad 5.24 E-01 \quad 5.19 E-01$
values of parameters

RINE:	SFHERICAL 0.044	RING RADII 0.044	(DEGREES) 0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
1	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061
2	0.085	0.065	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
3	0.118	0.118	0.118	0.118	0.218	0.118	0.118	0.118	0.118	0.118
4	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
5	0.228	0.220	0.228	0.223	0.228	0.228	0.228	0.228	0.228	0.228
6	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316
7	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439
8	0.610	0.610	0.620	0.610	0.610	0.610	0.610	0.610	0.620	0.610
9	0.847	0.848	0.849	0.850	0.850	0.851	0.851	0.052	0.852	0.853
10	1.177	1.177	1.177	1.178	1.170	1.178	1.178	1.179	1.179	1.179
11	1.634	1.635	1.635	1.635	1.635	1.635	1.635	1.636	1. 636	1.636
12	2.270	2.271	2.271	2.271	2.271	2.271	2.271	2.271	2.271	2.271
13	3.254	3.154	3.155	3.155	3.155	3.155	3.155	3.155	3.155	3.155
14	4.332	4.333	4.383	4.353	4.384	4.384	4.384	4.384	4.384	4.384
15	6.091	6.092	6.092	6.092	6.093	6.093	6.093	6.093	6.093	6.093
16	8.470	8.471	8.472	8.472	8.472	8.472	8.472	8.472	8.472	8.471
17	11.790	11.792	11.792	11.793	11.793	12.792	11.792	11.791	11.791	11.790
18	16.445	16.445	16.445	16.444	16.443	16.442	16.441	16.440	16.439	16.439
19	23.031	23.018	23.010	23.005	23.003	23.004	23.007	23.012	23.020	23.030
20	32.523	32.450	32.427	32.434	32.463	32.510	32.571	32.645	32.729	32.822
21	46.780	46.527	45.744	47.207	47.705	48.408	49.033	49.636	50.204	50.728
22	70.639	74.560	77.654	80.092	82.030	83.622	84.943	86.054	86.997	87.604
23	179.932	179.932	179.932	179.732	179.932	279.932	179.932	279.932	279.932	179.932

Figure 7.3.1-1. Summary of 23-Ring Template Optimization for the VeningMeinesz' Analog Transformation, Beginning from an Equal Ring Contribution Template.

SUMmARY OF COHPLETE RUN
ITER\# 0 ITER\# 1 ITER解 2 ITER\# 3 ITER\# 4 ITER\# 5

FIGURE	$\begin{aligned} & \text { OF MERIT } \\ & 7.14 E-01 \end{aligned}$	6.72E-02	6.48E-01	6.34E-01	6.27E-01	6.24E-01
values	of pararieters					
RING\%	SFHERICAL	RING RADII	(DEGREES)			
0	0.030	0.030	0.030	0.030	0.030	0.030
1	0.044	0.044	0.044	0.044	0.044	0.044
2	0.063	0.063	0.063	0.063	0.063	0.063
3	0.089	0.089	0.089	0.039	0.089	0.069
4	0.128	0.128	0.128	0.129	0.128	0.128
5	0.183	0.183	0.183	0.183	0.183	0.183
6	0.261	0.261	0.261	0.261	0.261	0.261
7	0.372	0.372	0.372	0.372	0.372	0.372
8	0.530	0.530	C. 530	0.570	0.530	0.330
9	0.753	0.753	0.753	0.753	0.753	0.753
10	1.069	1.103	1.130	1.152	2.170	1.185
11	1.754	1.799	1.807	1.819	1.831	1.842
12	2.966	2.955	2.847	2.943	2.942	2.9142
13	4.821	4.787	4.758	4.755	4.716	4.701
14	7.591	7.540	7.502	7.471	7.444	7.420
15	11.470	11.553	11.597	11.607	11.598	11.575
16	18.550	16.399	10.252	18.126	18.028	17.946
17	28.300	28.059	27.844	27.649	27.489	27.359
18	40.800	41.159	41.367	41.570	41.664	41.691
19	65.300	64.958	64.744	64.494	64.191	63.852
20	98.600	97.762	96.499	95.025	93.656	92.407
21	114.400	115.725	116.621	117.133	117.460	117.637
22	130.500	129.357	128.799	128.807	129.002	129.535
23	180.000	180.000	180.000	180.000	180.000	160.000

Figure 7.3.1-2. Summary of 23-Ring Template Optimization for the VeningMeinesz' Analog Transformation, Beginning from the Pick-Picha-Vyskocil Template.

### 7.3.2 Vening Meinesz' 125-Ring Template

The three results for the $125-r i n g$ case consist of two results which begin with an equal ring contribution template and one which begins with the circularized AGEMIT template. A summary of the intermediate results of the optimization process is given in Figures 7.3.2-1, 7.3.2-2, and 7.3.2-3.

The following points may be noted from these figures:
a) While the circularized AGEMIT template has a lower initial rms discretization error than the equal ring contribution template for this relatively large number of spherical ring boundary radii, and while this lower figure-of-merit is consistently maintained throughout the optimization process, neither template seems to lead to an optimization run with a large reduction of discretization error. This may be due to the nature of the response surface in the vicinity of the template parameter values (which may be relatively "far" from their optimum values), or to the lack of powerfulness of the optimization algorithm for large dimensions.
b) The optimization beginning with the equal ring contribution template may have reached a local minimum on the sixth iteration with an rms discretization error of about 0.082 mgal. The likelihood of this being the case is strengthened by the rough agreement of the independent optimization run (Figure 7.3.2-2) which converges to approximately the same minimum ( 0.084 mgal ) although the steps are different due to the use of a variant algorithm. Both optimization runs begin to diverge or oscillate after this point.

SUMmARY OF COMPLETE RUN

	ITER\# 0	ITER* 1	ITER* 2	ITER* 3	ITER 4	ITERS 5	ITER\# 6	ITER* 7	ITER ${ }^{8}$	ITER 9	ITERH10
FIGURE	Of MERIT										
	1.33E-01	1.21E-01 2	2.13E-01	1.02E-01	9.13E-02	8.49E-02	0.21E-02	8.22E-02	8.64E-02	8.99E-02	9.04E-02
VALUES	of parame										
RING:	SPHERICAL	RING RADII	(DEEREES)								
0	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
2	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
3	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
4	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
5	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
6	0.004	0.004	$0.004^{\text {. }}$	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
7	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
8	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
9	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
10	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
11	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
12	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
13	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
1.4	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
15	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
16	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
17	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.007	0.009
18	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
19	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
20	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
21	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
22	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
23	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
24	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
25	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
26	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
27	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
28	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
29	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
30	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
31	0.029	0.029	$0 . r \geq 9$	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029
32	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
33	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
34	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.039	0.033	0.030
35	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
36	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045
37	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
39	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053
39	0.058	0.058	0.058	0.053	0.058	0.058	0.058	0.058	0.058	0.058	0.058
40	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063
41	0.068 0.074	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.063	0.068	0.068
42	0.074 0.081	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074
44	0.081 0.088	0.081	0.081	0.081	0.081	0.081	0.081	0.081	0.081	0.001	0.081
45	0.096	0.008 0.096	0.088 0.096	0.088 0.096	0.088 0.096	0.088 0.096	0.008	0.008	0.088	0.088	0.088
46	0.104	0.104	0.104	0.104	0.104	0.104	0.096 0.104	0.096 0.104	0.096 0.104	0.096 0.104	0.090 0.104
47	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
43	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124
49	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134
50	0.146 0.159	0.146 0.159	0.146 0.759	0.146	0.146	0.146	0.146	0.146	0.146	0.146	0.146
51 52	0.159 0.173	0.159 0.173	0.159 0.173	0.159 0.173	0.159 0.173	0.159 0.173	0.159	0.159	0.159	0.159	0.159
52 53	0.173 0.189	0.173 0.189	0.173 0.189	0.173 0.189	0.173 0.189	0.173 0.189	0.173	0.173	0.173	0.173	0.173
54	0.205	0.205	0.205	0.189 0.205	0.187 0.205	0.189 0.205	0.189 0.205	0.189 0.205	0.189	0.189	0.189
55	0.224	0.224	0.224	0.224	0.224	0.225	0.224	0.205 0.224	0.205 0.224	0.205 0.224	0.205 0.224
56	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243
57	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0.265	0.265
58 59	0.283	0.238	0.283	0.288	0.288	0.288	0.208	0.288	0.288	0.288	0.208
59	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314

Figure 7.3.2-1. Summary of 125-Ring Template Optimization for the veningMeinesz' Analog Transformation, Beginning from an Equal Ring Contribution Template. (Damping $=0.5$ )


Figure 7.3.2-1. (continued)

SUTMARY OF COMPLETE RUN
ITERE 4 ITER\# 5 ITER* 6
FIGURE OF MERIT
1.33E-01 1.02E-01 6.48E-02 1.23E-01 1.31E-01 1.08E-01
values of parameters


Figure 7.3.2-2. Summary of 125-Ring Template Optimization for the VeningMeinesz' Analog Transformation, Beginning from an Equal Ring Contribution Template. (Damping $=0.25$ )

-0	0.342	$0.3+2$	0.342	0.342	0.342	0.342
61	0.373	0.372	0.375	0.372	0.372	0.372
62	0.405	0.405	0.405	0.405	0.405	0.405
63	0.440	0.440	0.440	0.440	0.440	0.440
64	0.479	0.479	0.479	0.479	0.479	0.479
65	0.512	0.522	0.522	0.522	0.522	0.522
66	0.568	0.503	0.568	0.568	0.568	0.568
67	0.613	0.613	0.618	0.618	0.618	0.618
68	0.673	0.673	0.673	0.673	0.673	0.673
69	0.732	0.732	0.732	0.73 ?	0.732	0.732
70	0.797	0.915	0.844	0.925	0.933	0.777
71	0.868	0.550	0.944	0.958	0.950	0.937
72	0.954	0.956	0.999	0.996	0.964	0.953
73	1.028	1.003	1.113	1.024	1.184	1.012
74	1.117	1.14\%	1.184	1.221	1.239	1.248
75	1.218	1.194	1.325	1.291	1.274	1.265
76	1.325	1.356	1.403	1.341	1.301	1.279
77	1.443	1.414	1.568	1.437	1.609	1.368
78	1.570	1.604	1.622	1.650	1.654	1.671
79	1.709	1.674	1.656	1.668	2.673	1.676
50	1.850	1.724	1.700	1.689	1.604	1.631
31	2.025	1.208	1.871	1.893	1.897	1.934
82	2.204	2.063	2.070	2.073	2.065	2.071
83	2.359	2.264	2.287	2.255	2.290	2.301
84	2.611	2.531	2.534	2.541	2.536	2.546
85	2.043	2.784	2.797	2.803	2.799	2.609
E	3.094	3.067	3.068	3.069	3.066	3.074
87	3.363	3.740	3.353	3.357	3.362	3.371
88	$3.666^{\circ}$	3.661	3.657	3.657	3.658	3.659
89	3.991	3.904	3.995	3.997	3.999	3.997
S0	4.344	$4.3 \div 5$	4.346	4.346	4.347	4.346
91	4.729	4.729	4.723	4.728	4.730	4.730
92	5.148	5.1'6	5.149	5.150	5.149	5.149
93	5.604	5.598	5.599	5.604	5.606	5.610
94	6.101	6.100	6.097	6.099	6.101	6.102
95	6.642	6.6 .5	6.639	6.637	6.633	6.633
95	7.231	7.235	7.225	7.222	7.219	7.217
97	7.273	7.8 .5	7.877	7.880	7.874	7.877
98	8.572	8.575	8.579	8.582	3.580	8.580
99	9.335	9.335	9.742	9.343	9.341	9.341
100	20.166	10.163	10.170	10.172	10.165	10.164
101	11.071	11.069	11.067	11.066	11.065	11.064
102	12.059	12.059	12.057	12.056	12.054	12.050
103	13.137	13.133	13.136	13.139	13.142	13.141
104	14.314	14.317	14.315	14.315	14.320	14.320
105	15.599	15.601	15.602	15.598	15.608	15.609
106	17.093	16.993	17.007	17.015	17.025	17.034
107	18.539	18.535	18.544	18.543	18.549.	18.557
108	20.250	20.227	20.230	20.233	20.233	20.242
109	22.062	22.071	22.005	22.089	22.087	22.090
110	24.084	24.096	24.100	24.113	24.121	24.130
111	26.307	26.319	26.326	26.333	26.341	26.348
112	28.755	28.775	28.789	28.792	28.797	28.790
113	31.457	31.483	31.487	31.493	31.485	31.493
114	34.451	34.474	34.469	34.478	34.491	34.501
115	37.779	37.773	37.788	37.818	37.837	37.840
116	41.496	42.495	41.502	41.483	41.447	41.407
117	45.674	45.701	45.633	45.566	45.512	45.448
118	50.408	50.356	50.307	50.237	50.170	50.117
219	55.830	55.608	55.450	55.338	55.281	55.253
120	62.132	61.926	61.817	61.911	62.070	62.213
221	69.617	69.877	70.179	70.185	70.110	70.044
122	78.811	78.860	78.677	78.544	78.458	78.392
123	90.780	91.525	93.204	94.325	94.904	95.253
124	108.470	113.447	117.084	119.626	121.557	122.842
125	180.000	280.000	180.000	180.000	180.000	180.000

Figure 7.3.2-2. (continued)

SUMMATYY OF CCITPLETE RUN

FICURE OF HERIT
7.49E-02 $\quad 7.02 E-02 \quad 6.91 E-02 \quad 6.71 E-02 \quad 6.55 E-02 \quad 6.42 E-02 \quad 6.33 E-02$

VALUES OF PARAIIETERS

RITIE:	SFHEFICAL	RI:G RADII	(DEGREES)				
0	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1	0.003	0.003	0.003	0.003	0.003	0.003	0.003
2	0.003	0.003	0.003	0.003	0.003	0.003	0.003
3	$0.00{ }^{\prime}$	0.004	0.004	0.004	0.004	0.004	0.004
4	0.004	0.004	0.004	0.004	0.004	0.004	0.004
5	0.005	0.005	0.005	0.005	0.005	0.005	0.005
6	0.006	0.006	0.006	0.006	0.006	0.006	0.006
7	0.007	0.007	0.007	0.007	0.007	0.007	0.007
8	0.008	0.003	0.008	0.003	0.008	0.008	0.008
9	0.010	0.010	0.010	0.010	0.010	0.010	0.010
10	0.012	0.012	0.012	0.012	0.012	0.012	0.012
11	0.014	$0 . C 14$	0.014	0.014	0.014	0.014	0.014
12	0.017	0.017	0.017	0.017	0.017	0.017	0.017
13	0.020	0.050	0.020	0.020	0.020	0.020	0.020
14	0.023	0.023	0.023	0.023	0.023	0.023	0.023
15	0.020	0.058	0.028	0.028	0.028	0.028	0.028
16	0.033	0.033	0.033	0.033	0.033	0.033	0.033
17	0.039	0.039	0.039	0.039	0.039	0.039	0.039
13	0.046	0.046	$0.0 \% 6$	0.046	0.046	0.046	0.046
19	0.055	0.0 .5	0.055	0.055	0.055	0.055	0.655
20	0.055	0.065	0.065	0.065	0.065	0.065	0.065
21	0.077	0.077	0.077	0.077	0.077	0.077	0.077
22	0.051	0.091	0.091	0.091	0.091	0.091	0.091
23	0.103	0.100	0.109	0.103	0.108	0.108	0.103
24	0.129	0.129	0.129	0.129	0.129	0.129	0.129
25	0.152	0.152	0.152	0.152	0.152	0.152	0.252
26	0.151	0.161	0.161	0.181	0.181	0.131	0.161
27	0.214	0.214	0.214	0.214	0.214	0.214	0.214
23	0.254	0. 25.4	0.254	0.254	0.254	0.254	0.254
29	0.301	0.301	0.301	0.301	0.301	0.301	0.301
30	0.357	0.357	0.357	0.357	0.357	0.357	0.357
31	0.423	0.423	0.423	0.423	0.423	0.423	0.423
32	0.501	0.501	0.501	0.501	0.501	0.501	0.501
33	0.593	0.593	0.593	0.593	0.593	0.593	0.593
34	0.701	0.701	0.701	0.701	0.701	0.701	0.701
35	0.359	0.830	0.850	0.830	0.830	0.830	0.830
36	1.000	0.994	0.971	0.908	0.934	0.951	0.977
37	1.003	1.0.'s	1.cミ0	1.076	1.076	1.074	1.074
38	1.167	1.157	1.157	1.173	1.173	1.176	1.175
39	1.250	1.270	1.239	1.231	1.231	1.288	1.230
40	2.333	1.893	2.329	1.335	1.334	1.336	1.334
41	1.417	1.437	1.432	1.425	1.423	1.424	1.426
42	1.500	1.479	1.481	1.486	1.485	1.469	1.489
43	1.503	1.620	1.626	1.629	1.631	1.631	1.632
4.4	1.667	1.647	1.639	1.636	1.634	1.633	1.633
45	1.750	1.751	1.753	1.752	1.749	1.740	1.746
45	1.833	1.844	1.649	1.853	1.859	i. 663	1.867
47	1.917	1.904	1.856	1.891	1.886	1.063	1.079
49	2.000	2.005	2.010	2.010	2.009	2.000	2.007
49	2.033	2.033	2.088	2.039	2.093	2.095	2.099
50	2.157	2.157	2.152	2.149	2.146	2.143	2.141
51	2.250	2.258	2.265	2.267	2.268	2.268	2.268
52	2.333	2.329	2.364	2.326	2.327	2.328	2.329
53	2.417	2.417	2.416	2.410	2.407	2.404	2.402
54	2.500	2.499	2.501	2.508	2.512	2.517	2.521
55	2. 533	2.587	2.590	2.585	2.581	2.575	2.571
56	¢. 667	2.657	2.650	2.652	2.654	2.657	2.659
57	2.730	2.712	2. 773	2.779	2.780	2.782	2.780
58	2.833	2.323	2.015	2.007	2.535	2.603	2.6.C5
59	2.017	2.912	2.918	2.920	2.919	2.919	2.918

Figure 7.3.2-3. Summary of 125-Ring Template optimization for the VeningMeinesz' Analog Transformation, Beginning from Circularized AGEMIT Template.

-							
60	3.000	3.003	3.007	3.012	3.015	3.018	3.021
61	3.250	3.240	3.247	3.246	3.245	3.245	3.245
62	3.500	3.501	3.501	3.501	3.501	3.501	3.501
63	3.750	3.747	3.746	3.745	3.743	3.742	3.742
64	4.003	4.001	4.002	. 4.003	4.003	4.004	4.004
65	4.250	4.247	4.245	4.244	4.242	4.241	4.241
66	4.500	4.501	4.502	4.503	4.504	4.505	4.506
67	4.750	4.747	4.746	4.744	4.743	4.741	4.7.40
68	5.000	4.955	4.955	4.955	4.995	4.995	4.986
69	5.250	5.643	5.239	5.237	5.234	5.232	5.230
70	5.500	5.498	5.497	5.498	5.453	5.498	5.495
71	5.750	5.745	5.743	5.742	5.740	5.733	5.736
72	6.000	6.000	6.000	6.091	6.002	6.003	6.005
73	6.250	6.244	6.240	6.237	6.234	6.231	6.228
74	6.500	6.478	6.490	6.493	6.497	6.497	6.497
75	6.750	6.749	6.744	6.750	6.751	6.752	6.753
76	7.000	7.016	7.033	7.050	7.066	7.030	7.085
77	8.000	7.958	7.931	7.977	7.973	7.971	7.970
78	9.050	8.973	8.984	8.977	8.970	8.965	8.959
79	10.000	9,953	9.935	9.979	9.973	9.968	9.501
80	11.000	10.902	10.78 .5	10.979	10.974	10.969	10.055
31	12.000	11.988	11.950	11.974	11.968	11.963	11.960
82	13.000	13.006	13.013	13.018	13.021	13.024	13.027
83	3.000	13.971	13.946	13.955	13.905	13.890	13.678
Q:	15.000	15.012	15.050	15.041	15.048	15.056	15.065
85	16.000	15.972	15.946	25.924	15.903	15.062	25.062
86	17.000	17.002	$17.00 \%$	17.008	17.014	17.020	17.026
67	13.000	18.003	18.007	18.015	18.054	18.029	18.032
63	19.000	18.970	18.542	18.923	18.909	$18.85{ }^{4}$	18.870
89	20.600	20.023	20.044	20.071	20.104	20.132	20.154
90	21.000	20.971	20.948	20.928	20.933	20.890	20.669
91	22.000	21.995	21.992	21.954	21.997	22.000	22.cca
92	23.000	22.995	22.997	23.005	23.014	23.022	23.029
93	こ\%. 090	23.955	23.925	23.910	23.903	23.502	23.903
94	55.000	25.153	25.294	25.422	25.538	25.642	25.735
95	30.000	30.009	30.004	29.959	29.932	29.900	29.073
96	25.000	34.949	34.905	34.853	34.821	34.780	34.738
97	40.000	39.966	39.943	39.935	39.921	39.905	39.864
93	45.000	44.901	44.953	44.946	44.927	44.906	44.806
97	50.000	49.957	49.930	49.908	47.837	49.866	49.647
100	55.000	54.893	54.807	54.728	54.656	54.593	54.535
101	60.000	59.910	59.845	59.735	59.753	59.716	59.684
102	65.020	64.922	64.873	64.049	64.831	64.813	64.793
103	70.000	69.525	69.977	69.850	69.829	69.810	69.793
104	75.060	74.946	74.916	74.909	74.897	74.091	74.806
105	i3.000	79.947	79.913	79.673	79.877	79.661	79.645
icos	6s.ers	8.6.510	$6 \% .900$	64.0.73	84.052	c4.0.49	84.830
$10 \%$	30.cio	89.933	89.893	89.874	89.851	89.650	69.641
193	5.5000	94.923	54.075	94.853	04.840	9.\%.829	94.829
109	100.000	07.920	99.871	$99.3 \%$	99.627	9.9 .814	99.802
110	105.000	104.911	104.853	104.022	10.4 .802	104.765	104.772
111	110.000	109.921	109.874	109.843	109.832	109.822	109.014
112	115.000	114.939	114.907	114.006	$114.89{ }^{\circ}$	114.874	119.096
113	120.000	$119.95{ }^{\circ}$	119.935	119.939	119.949	119.958	119.986
114	125.009	10.4.cid	124.950	124.964	124.984	125.002	125.017
115	130.000	129.949	129.922	129.913	129.909	129.906	129.903
116	135.000	134.98 .3	134.943	134.932	134.926	134.921	134.918
117	16,0.000	139.904	139.978	139.977	139.978	139.930	139.503
113	145.000	145.019	145.037	145.051	145.063	145.073	145.030
119	150.000	150.049	150.079	150.093	150.096	150.008	150.075
120	155.000	155.053	155.133	155.151	355.160	155.150	155.144
121	160.000	159.909	159.940	159.873	159.797	159.724	159.659
122	165.000	164.681	164.433	164.432	164.555	164.634	164.714
123	170.000	169.960	169.970	169.892	169.737	169.644	169.615
$1 \hat{124}$	175.000	174.772	174.822	174.915	174.924	174.912	174.969
125	180.000	180.000	180.000	160.000	180.000	100.000	180.000

Figure 7.3.2-3. (continued)

### 7.3.3 Discussion of Vening-Meinesz' Transformation Results

The optimization process for the discrete Vening-Meinesz' summation transformation has been demonstrated to work. However, only marginal to mediocre decreases in the global rms discretization error have generally been obtained. Nevertheless, the feasibility of the process has been proven and one or two fairly good runs indicate that the possibility of some significanc reductions do exist.

Some possible reasons for the marginal to mediocre results are:
i) The optimization runs generally require extensive use of the "projection" algorithm to force satisfaction of the inequality constraints (i.e. to prevent overlapping of parameters). This is very detrimental to convergence.
ii) Typically, a much larger percentage of the ring boundary radii are closer to the origin in the Vening-Meinesz' case, and have therefore been excluded from adjustment during optimization. These parameters may have a larger effect than previously thought.
iii) The Gauss-Newton algorithm used in the optimization runs implicitly assumes a quadratic surface model in the neighborhood of the current values of the parameters. This is because of the linearization of the least-squares problem. A true Newton method involves a matrix of second partial derivatives in addition, which has been neglected in this implementation. This can be of importance if the response surface is highly non-linear.*

[^32]
### 7.4 Template Optimization Results Using Variations in the Optimization Algorithm

### 7.4.1 Increment Damping Variation

The variation of the optimization algorithm which involves the damping of the increments to the independent template parameters was described in Section 6.3.4.1. The increment damping varic -ion seems to perform well the function for which it was intended for templates with a relatively small number of ring radii, but gives the opposite behavior for templates with a relatively large number of ring radii.

The behavior of the optimization variation for $23-r i n g$ templates is illustrated by two principal cases which have as their initial estimate of template parameters the Pick-Picha-Vyskocil template and the equal ring contribution template.

In the Pick-Picha-Vyskocil case, the summary of the intermediate results of optimization process is given in Figure 7.4.1-1 ( $a, b, c$ ), from which it is seen that:
a) With no damping (figure a), the figure-of-merit decreases for two iterations and then increases for the following eight iterations. The ring boundary radii numbered 21 and 22 , seem to oscillate in alternate iterations between two regions of values, one of which is emphasized by circles in the figure. If the oscillation could be controlled, a minimum might be reached more easily.
b) With moderate damping (figure b), the figure-of-merit decreases monotonically for at least five iterations although at a much slower rate. The oscillation in ring boundary radii \#2l and \#22 has been suppressed as desired. The damping parameter value is 0.25 , which is slightly too strong; the spinerical ring radii parameter $\# 20$ is not making sufficiently rapid enough progress to a value of about $92^{\circ}$. [The computer printout of the summary is not available because the run stopped on maximum time before it had been printed; however, the values listed in the summary have been assembled from a more detailed listing of the run.l
C) With extremely high damping (figure c), the figure-of-merit decreases extremely slowly as the parameters change extremely slowly. The damping parameter has the value 0.0 , which occurred accidentally.

SLMMATY OF CCHPLETE RUN

	ITEF＊ 0	ITER 1	ITEP＊ 2	ITER ${ }^{\text {\％}} 3$	ITERA 4	ITER\＃ 5	ITER ${ }^{\text {\％}} 6$	ITER\＃ 7	ITER\＃ 8	ITER\＃ 9	ITERHIO
FIGCTE	OF MERIT										
	$7.14 \mathrm{E}-01$	6．3JE－01	6．36E－01 6	6．55E－01	6．70E－01	6．96E－01	7．11E－01	7．26E－01	7．33E－01	7．48E－01	7．48E－01
Values	OF phoparie	TERS									
RIVG\％	CPHERICAL	RItig rdoli	（ DEGREES）								
0	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
1	0.644	$0.04 \%$	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
2	0.053	0.003	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063
3	0.057	0.059	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.039
4	0.123	0.128	0.123	0.128	0.123	0.128	0.108	0.128	0.128	0.123	0.128
5	0.183	0.183	0.103	0.183	0.183	0.183	0.183	0.103	0.183	0.183	0.183
6	0.201	0.261	0.261	0.261	0.261	0.261	0.261	0.261	0.261	0.261	0.261
7	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372	0.372
8	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530	0.530
9	0.753	0.753	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
10	1.059	1.153	1.213	1.249	1.276	1.293	1.308	1.317	1.326	1.332	1.337
11	1.754	1.655	1.913	1.956	1.992	2.017	2.041	2.057	2.073	2.065	2.093
12	2.956	2．937	3.030	3.072	3.113	3.145	3.175	3.198	3.221	3.238	3.251
13	4.821	4.775	4.790	4.821	4.859	4.892	4.927	4.954	4.982	5.004	5.021
14	7.591	7.516	7.516	7.531	7.558	7.504	7.616	7.642	7.671	7.694	7.710
15	11.470	11.653	11.691	11.691	11.694	11.702	11.720	11.735	11.754	11.755	11.772
16	13.550	13.265	18．114	18.039	17.937	17.970	17.951	17.943	17.927	17.906	17.690
17	25.300	こう．03こ	27.780	27.657	27.528	27.492	27.395	27.351	27.254	27.171	27.119
18	40.890	42.106	42.271	42.235	42.020	41.945	41.696	41.505	41.340	41.172	41.078
19	65.300	$6 C .666$	64.277	63.951	63.619	63.177	62.790	62.444	62.128	61.911	61.760
20	93.600	92．944	92.839	$91.5^{75}$	92.107	90.140	90.635	89.170	89.970	89.269	89.019
21	114.400	127．026	116.627	127．559	109.118	127.806	113.438	129.772	113.552	133.550	107.697
22	130.500	153．418．	130.478	169.556	133.105	159.533	130.117	153.260	133.339	169．63	133.413
23	100.000	$160.000^{\circ}$	180.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000

Figure 7．4．1－la．Comparison of Vening－Meinesz＇Optimization Using Increment Damping Variation．No Damping（damping parameter $=0.50$ ）．

## SUMMARY OF COMPLETE RUN

ITER\＃ 0
ITER\＃1
ITER\＃ 2
ITER\＃ 3
ITER\＃ 4
ITER\＃ 5
Figure of Merit
.71433 .70587
.69903 .69422
.69037
$?$
Values of Parameters
Ring \＃Sperhical Ring Radii（Degrees）

						95.676
20	98.600	97.244	96.294	95.181	94.753	
22	114.400	117.809	121.985	123.970	124.641	124.660
23	180.000	180.000	180.000	180.000	180.000	180.000

Figure 7．4．1－1b．Comparison of Vening－Meinesz＇Optimization Using Increment Damping Variation．Moderate Damping（damping parameter＝ 0．25）．

SUMMARY OF COMPLETE RUN
ITER\# 0 ITER\# 1 ITER* 2 ITER\# 3 ITER\# 4 ITER\# 5


values	Of Patameters					
RING\#	SPKERICAL	RING RADII	(DEGPEES)			
0	0.030	0.030	0.030	0.030	0.030	0.030
1	0.044	0.044	0.044	0.044	0.044	0.044
2	0.063	0.063	0.063	0.063	0.063	0.063
3	0.639	0.089	0.039	0.039	0.089	0.009
4	0.125	0.128	0.128	0.128	0.128	0.128
5	0.183	0.183	0.153	0.183	0.183	0.183
6	0.261	0.261	0.261	0.261	0.261	0.261
7	0.372	0.372	0.372	0.372	0.372	0.372
8	0.530	0.530	0.530	0.530	0.530	0.530
9	0.753	0.752	0.751	0.751	0.750	0.750
10	1.059	1.069	1.069	1.069	1.059	1.069
11	1.794	1.794	1.754	1.784	1.794	1.794
12	2.965	2.956	2.956	2.966	2.965	2.965
13	4.511	4.821	$4.8 こ 0$	4.620	4.820	4.819
14	7.591	7.590	7.590	7.589	7.538	7.588
15	11.470	11.472	11.474	11.475	11.477	11.479
16	18.550	18.546	18.542	18.538	18.534	18.530
17	23.300	C3.296	28.291	28.287	28.283	28.278
18	40.650	40.822	40.843	40.864	40.884	40.905
19	65.300	65.272	65.244	65.217	65.150	65.163
20	96.600	98.472	98.344	98.217	98.090	97.965
21	114.400	114.467	114.535	114.606	114.679	114.753
22	130.500	130.653	130.807	130.963	131.120	131.280
23	180.000	180.000	180.000	180.000	180.000	180.000

Figure 7.4.1-lc. Comparison of Vening-Meinesz' Optimization Using Increment Damping Variation. Extremely High Damping (damping parameter $=0.00$ ).

In the Equal Ring Contribution Template case, an analogous situation occurs. A summary of the intermediate results of the optimization process is given in Figure 7.4.1-2(b, c)*, from which it may be observed that:

With modsrate damping (figure b), the figure-of-merit decreases slowly and nomotonically as do the values of the template parameters. The change is, however, slightly faster than that for the Pick-PichaVyskocil template (Figure 7.4.1-1b), although the dmaping parameter is stronger here than it is there.

With high damping (figure $c$ ), the figure-of-merit and the values of the parameters change more slowly than with moderate damping, as expected.

[^33]Sumtary of complete run
 FIGURE OF MERIT
7.54E-01 6.63E-01 $6.09 E-01 \quad 5.78 E-0: \quad 5.59 E-01 \quad 5.46 E-01 \quad 5.36 E-01 \quad 5.29 E-01 \quad 5.24 E-01 \quad 5.29 E-01$
values of parameters

RINS:	SPHERICAL	RING RADII	(0EGREES)							
0	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
1	0.061	0.061	0.061	0.061	0.061	0.062	0.061	0.061	0.061	0.061
2	0.085	0.085	0.085	0.085	0.085	0.005	0.085	0.085	0.085	0.085
3	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118
4	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
5	0.223	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228
6	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316
7	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439
8	0.610	0.610	0.610	0.610	0.610	0.610	0.610	0.610	0.610	0.620
9	0.847	0.848	0.849	6.850	0.850	0.851	0.851	0.852	0.852	0.853
10	2.177	1.177	1.177	1.178	1.178	1.178	1.178	1.279	1.179	1.179
11	1.634	1.635	1.635	1.635	1.635	1.635	1.635	1.636	1.636	1.636
12	2.270	2.271	2.271	2.271	2.271	2.271	2.271	2.271	2.271	2.271
13	3.154	3.154	3.155	3.155	3.255	3.155	3.155	3.155	3.155	3.155
14	4.332	4.333	4.383	4.383	4.384	4.384	4.384	4.384	4.384	4.384
15	5.091	6.092	6.092	6.092	6.093	6.093	6.093	6.093	6.093	6.093
16	8.470	8.471	8.472	8.472	8.472	8.472	8.472	8.472	8.472	8.471
17	21.790	11.792	12.792	11.793	21.793	11.792	11.792	11.791	11.791	11.790
18	16.445	16.445	16.445	16.444	16.443	16.442	16.441	16.440	16.439	16.439
19	23.031	23.018	23.010	23.005	23.003	23.004	23.007	23.012	23.020	23.030
20	32.523	32.450	32.427	32.434	32.463	32.510	32.571	32.645	32.729	32.822
21	46.780	46.527	46.744	47.207	47.785	48.408	49.033	49.636	50.204	50.728
22	70.639	74.568	77.654	80.082	62.030	83.622	84.943	86.054	86.997	87.804
23	179.932	179.932	179.932	179.932	179.932	379.932	279.932	279.932	179.932	179.932

Figure 7.4.1-2b. Comparison of Vening-Meinesz' Optimization Using
Increment Damping. Moderate Damping (damping parameter $=$ 0.20 )

SUMMARY OF COMPLETE RUN
 FIGURE OF MERIT
$7.54 E-01 \quad 7.26 E-01 \quad 7.01 E-01 \quad 6.78 E-01 \quad 6.59 E-01 \quad 6.42 E-01 \quad 6.29 E-01 \quad 6.17 E-01 \quad 6.08 E-01 \quad 6.00 E-01$
values of parameters

RING:	PHENICAL	RING RADII	(0EGREES)							
0	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
1	0.061	0.081	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061
2	0.035	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
3	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118
4	0.164	0.164	$0.164^{\text {. }}$	0.164	0.164	0.164	0.164	0.164	0.164	0.164
5	0.220	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228	0.228
6	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316
7	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439
8.	0.610	0.610	0.610	0.610	0.618	0.610	0.610	0.610	0.610	0.610
8	0.847	0.847	0.848	0.848	0.848	0.849	0.849	0.849	0.649	0.850
10	1.277	1.277	1.177	2.177	1.177	1.277	1.177	1.177	1.177	2.177
12	1.634	1.634	1.634	1.634	1.635	1.635	1.635	1.635	1.635	1.635
12	2.270	2.270	2.270	2.270	2.270	2.270	2.270	2.270	2.270	2.270
13	3.154	3.154	3.154	3.154	3.154	3.154	3.154	3.154	3.154	3.154
14	4.382	4.383	4.383	4.383	4.383	4.383	4.383	4.383	4.383	4.383
15	6.091	6.091	6.091	6.091	6.091	6.091	6.092	6.092	6.092	6.092
16	8.470	8.470	8.470	8.471	6.471	8.471	8.472	8.471	8.471	8.471
17	12.790	11.790	11.791	11.791	12.791	11.791	21.792	11.792	11.792	11.792
18	16.445	16.445	16.445	16.445	16.444	16.444	16.444	16.444	16.443	16.443
19	23.031	23.026	23.022	23.018	23.014	23.010	23.007	23.004	23.001	22.998
20	32.523	32.490	32.461	32.434	32.411	32.390	32.371	32.355	32.342	32.330
22	46.780	46.634	46.502	46.390	46.298	46.228	46.179	46.151	46.142	46.150
22	70.639	71.750	72.309	73.807	74.739	75.603	76.403	77.139	77.817	78.440
23	179.932	179.932	279.932	179.932	179.932	179.932	279.932	179.932	179.932	179.932

Figure 7.4.1-2c. Comparison of Vening-Meinesz' Optimization Using Increment Damping Variation. High Damping (damping parameter $=0.101$.

Finally, the results in a 125-ring case are exhibited in Figure 7.4.1-3(a,b). They are opposite to the previous results. In the "moderately damped" case (figure b) the figure-of-merit requires less than half as many iterations to achieve the same reduced values as in the "undamped" case (figure a). In particular, to reduce the figure-ofmerit from 0.133 to 0.102 , requires only one iteration in the damped case but three in the undamped case. And to reduce it from 0.102 to .0848 again requires only one iteration in the damped case but two iterations in the undamped case. The reasons for these contradictory results are not known.

SUTHARY OF COMPLETE RUN
 FIGURE OF MERIT
$1.33 E-01$ 1.21E-01 1.13E-01 1.02E-01 9.23E-02 6.49E-02 8.21E-02 8.22E-02 8.64E-02 0.99E-02 9.04E-02
values of pagameters
RING: SPHERICAL RING RAOII (DEEREES)


Figure 7.4.1-3a. Comparison of Vening-Meinesz' Optimization Using Increment Damping. No Damping (damping parameter $=0.50$ ).


Figure 7.4.1-3b. Comparison of Vening-Meinesz' Optimization Using Increment Damping. Moderate Damping (damping parameter $=0.25$ ).

### 7.4.2 Output Weighting Variation

The variation of the optimization algorithm which uses output weighting was described in Section 6.3.4.2. This variation performs well the immediate function for which it was intended, namely to reduce the rms discretization error more rapidly than the standard algorithm (using input weighting) by heavily overweighting large output residuals in the least squares solutions. However, the optimization variation seems to provide mixed final results, at least on the basis of the relatively few cases run.

In particular, in a Vening-Meinesz' case, the rms discretization error is rapidly reduced in one iteration to a level which previously required six iterations to attain, but the convergence then becomes unstable. In a Stokes' case, the convergence is consistent over three iterations but it does not seem to be as rapid as might be expected, although an examination of the detailed printout reveals the optimization variation is performing as designed.

Iterative rms errors are shown in Figure 7.4.2-1(a,b) for a 125ring Vening-Meinesz' optimization starting from a Circularized AGEMIT template. With standard input weighting (figure a), the figure-ofmerit decreases slowly from 0.1332 mgal to 0.0821 mgal in six iterations. However with output weighting (figure b), the figure-of-merit is reduced immediately to 0.0815 mgal in a single iteration, but subsequent iterations cause the figure-of-merit to oscillate at a iigher value.

SUMMARY OF COMPLETE RUN


Figure 7.4.2-1a. Example of Vening-Meinesz' Optimization Run Using Standard Weighting.


Figure 7.4.2-1b. Example of Vening-Meinesz' Optimization Run Using Output Weighting.

A more detailed set of results is given in Figure 7.4.2-2(a,b, $c, d)$ to illustrate how the output weighting variation works numerically. The sequence of four individual listings provides the low degree residuals on the first four passes of a 66-ring Classic Stokes' optimization, beginning with an equal ring contribution template. The following observations can be made:
a) On the initial pass (figure a), very large output residuals occur for degrees $3,6,7,8,11$, and 12 as shown in meters in the SIGMA column. These are heavily weighted by the corresponding weights shown in the WEIGKT column. Under the standard a priori weighting the residuals would only have been weighted by the values shown in the DEG VAR IN column.
b) On the first iteration (figure b), the very large output residuals have been much reduced although some medium large ones remain.
c) On the second iteration (figure c), the medium large residuals are reduced further.
d) Finally on the third iteration (figure d), no harmonic degree contributes more than 0.1 meter to the rms discretization error, and the contributions are more evenly spread throughout all degrees.

REL RESID	DEG VAR IN	WEIGHT	SIGMA	CUM SIGHA
0.000000	0.00000	0.00000	0.00000	0.00000
0.000000	0.00000	0.00000	0.00000	0.00000
-0.014470	322.03928	67432.00000	0.25967	0.25967
-0.029068	1334.86223	281976.06250	L0.53101	0.59112
-0.024964	965.39143	66847.62500	0.25855	人.04518
-0.008981	823.53518	4176.50781	0.06463	0.34841
0.059063	750.86000	104773.93750	0.32369	0.72471
0.123839	697.57316	297169.56250	0.54513	0.90685
0.094717	657.00250	120289.93750	0.34683	0.97091
0.042974	624.09143	18008.40625	0.15420	0.93014
-0.053137	596.27118	20785.26563	0.14417	0.99069
-0.185701	572.08381	197c62.18750	0.44416	1.08570
-0.202794	550.63067	187248.12500	0.43261	1.16371
-0.114944	531.32108	48748.75391	0.22079	1.18939
-0.007850	513.74632	187. 31750	0.01369	1.16946
0.138530	497.61136	48721.96875	0.22073	1.20977
0.203870	482.69572	89165.93750	0.29861	1.24608
0.153442	468.82966	43118.10156	0.20765	1.26326
0.037470	455.07929	2214.66943	0.04765	1.26414
-0.106414	443.73669	15508.77344	0.12453	1.207026
-0.174034	432.31334	36271.17969	0.19045	1.28446
-0.155345	421.53544	25431.44141	0.25947	1.29432
-0.132925	411.34070	26480.75391	0.12838	1.30067
-0.008061	401.67587	53.92427	0.00734	1.30069
0.057320	392.49500	2437.71729	0.04937	1.30163
-0.016192	383.75809	174.68588	0.01322	1.30169
0.013883	375.43000	115.77818	0.01076	1.30174
0.028777	367.47972	450.16504	0.02122	1.30191
-0.084999	359.87965	3566.64746	0.05972	1.30328
0.006163	352.60512	17.08258	0.00413	1.30329
0.059697	345.63397	1464.60254	0.03827	1.30385
-0.107917	338.94621	4386.02734	0.06623	1.30553
-0.098801	332.52372	3377.72217	0.05812	1.30682
-0.085408	326.35002	2324.77759	0.04822	1.30771
-0.257084	320.41009	29445.96484	0.13945	1.31512
-0.149010	314.69017	6044.41797	0.07775	1.31742
0.022833	309.17765	131.58554	0.01147	1.31747
-0.040255	303.86091	379.93994	0.01949	1.31761
0.045325	298.72925	448.27637	0.02117	1.31778
0.104662	293.77277	2237.07373	0.04730	1.31865
-0.104703	288.98230	2082.84277	0.04564	1.31942
-0,162635	284.34935	4700.64453	0.06856	1.32120
-0.124536	279.86600	2582.09717	0.05081	1. 32218
-0.225033	275.52489	7909.61328	0.08394	1.32517
-0.173091	271.31916	4396.33594	0.06630	1,32683
-0.069292	267.24239	662.78369	0.02574	1.32708
-0.114158	263.28857	1694.40967	0.04116	1.32771
-0.126644	259.45210	2966.57617	0.04435	1.32845
-0.092168	255.72768	983.43213	0.03136	1.32882
-0.124779	252.11033	1703.67896	0.04128	1. 32946
-0.108804	248.59554	1225.71362	0.03501	1.32993
-0.074168	245.17078	539.77271	0.02323	1.33013
-0.079909	242.85596	593.75635	0.02437	1.33035
-0.136792	238.62319	1651.29553	0.0496 .4	1.33097
-0.206777	235.47631	3504.28418	0.05937	1.33232
-0.256070	232,41332	5226.25701	0.07229	1.33428
-0.284878	229.42045	6155.17578	0.07845	1.33658
-0.257242	226.52208	4776.28750	0.06911	1.33337
-0.169092	203.69226	1968.53003	0.04437	1.33910

Figure 7.4.2-2a. Iteration \#0 of a Stokes' Optimization Run Using Output Weighting.

ACTUAL SPECTRUM	IDEAL SPECTRUA	RESID SPECTRUM	REL RESID	DEG VAR IN	WEIGHT	SIGMA	CUA SIGMA
-0.0000000000	0.0000000000	-0.0000000000	0.000000	0.00000	0.00000	0.00000	0.00000
-0.00C0434992	0.0000000000	-0.0000434992	0.000000	0.00000	0.00000	0.03000	0.00000
0.9918916901	1.0000000000	-0.0081083067	-0.003108	322.03928	21172.35156	0.14551	0.14551
0.4939430322	0.5000000000	-0.0060519651	-0.012104	1334.86223	48591.01953	0.22111	0.66469
0.3296772785	0.3333333333	-0.0036560546	-0.010968	965.39143	12904.12891	0.11365	0.28804
0.2464799639	0.2530000000	-0.0035200361	-0.014080	828.53513	10266.05984	0.10132	0.30534
0.2015902158	0.2000000000	0.0015902156	0.007951	750.85000	1898.76367	0.04357	0.30844
$0 . .722599395$	0.1666666667	0.0055932701	0.033560	697.57316	21823.34375	0.14773	0.34199
0.1477207036	0.1428571429	0.0048635602	0.034045	657.00250	15540.87500	0.12466	0.36400
0.1271832174	0.1250000000	0.0021832173	0.017466	624.09143	2974.69238	0.05454	0.35806
0.1094112718	0.1111111111	-0.0016999391	-0.015299	596.27118	1723.10010	0.04151	0.37040
0.0997503975	0.1000000000	-0.0002493024	-0.002496	572.08391	35.64156	0.00597	0.37045
0.0864487499	0.0909090709	-0.0044603385	-0.049064	550.63067	10954.57813	0.10466	0.38495
0.0780360517	0.0833333333	-0.0052472000	-0.062967	531.32108	14629.35938	0.12095	0.40350
0.0767456135	0.0769230769	-0.0001774634	-0.002307	513.74632	16.17953	0.00402	0.40352
0.0712810953	0.0714285714	-0.0001474762	-0.002065	497.61136	10.82266	0.00329	0.40354
0.0620251485	0.0666666667	-0.0046415180	-0.069623	482.69572	10399.04297	0.10198	0.41622
0.0640267975	0.0655000000	0.0015267974	0.024429	$488.8 \hat{666}$	1092.89307	0.03306	0.41753
0.0594731137	0.0553235294	0.0006495842	0.011043	455.87929	192.36264	0.01337	0.41776
0.0513928041	0.0555555556	-0.0041627511	-0.074930	443.73669	7689.20516	0.06769	0.42687
0.0537954989	0.0526315789	0.0021639199	0.022114	432.31334	595.65045	0.02420	0.42755
0.0510194499	0.0500000000	0.0010194487	0.020389	421.53544	438.09106	0.02073	0.42806
0.0476583643	0.0476190476	0.0000393167	0.000326	411.34070	0.63585	0.00080	0.42806
0.0476397604	0.0454545455	0.0021852148	0.048075	401.67587	2918.06763	0.04380	0.43030
0.0461539381	0.0434782609	0.0026756772	0.061541	392.49500	2809.96875	0.05301	0.43355
0.0456537202	0.0416666667	0.0039870515	0.095689	383.75009	6100.43359	0.07811	0.44053
0.0371018772	0.0400000000	-0.0008981228	-0.022453	375.43000	302.83081	0.01740	0.44067
0.0337591429	$0.03 \pm 4615335$	-0.0047023930	-0.122262	367.47972	8125.89063	0.09014	0.45000
0.0352940084	0.0370370370	-0.0027430284	-0.047062	359.87965	1093.36743	0.03307	0.45121
0.0249633480	0.0357142857	-0.0107504353	-0.301012	352.60512	40751.22 266	0.20107	0.49431
0.0260402707	0.0344827586	-0.0084424876	-0.244832	345.63397	24635.26172	0.15696	0.51863
0.0366164134	0.0333333333	-0.0007169199	-0.021508	338.94621	174.20950	0.01320	0.51880
0.0307558923	0.0322590645	-0.0015021721	-0.046567	332.52372	750.34668	0.02739	0.51952
0.0340529454	0.0312500000	0.0028029452	0.089694	326.35002	2563.95948	0.05064	0.52198
0.0357953663	0.8303030303	0.0054923333	0.181247	320.41009	9665.39844	0.09831	0.53116
0.0313703697	0.0294117647	0.0019506049	0.066593	314.69017	1207.19336	0.03474	0.53229
0.0268281526	0.0285714286	-0.0027432759	-0.061015	309.17765	939.59399	0.03065	0.53318
0.0221301075	0.0277777778	-0.0056476668	-0.203316	303.86091	9691.98828	0.09845	0.54219
$0.0207197563$	0.0270270270	-0.0063082688	-0.233406	298.72925	11837.70313	0.10903	0.55304
0.0203564050	0.0263157895	-0.0059593041	-0.226457	293.77277	10433.11719	0.10214	0.56240
0.0202260595	0.0256410256	-0.0054149628	-0.211184	288.98230	8475.48438	0.09205	0.56983
0.0235941251	0.0250000000	-0.0014158748	-0.056635	284.34935	570.03540	0.02388	0.57038
0.0248350630	0.0243902439	0.0004448190	0.018238	279.86600	55.37538	0.00744	0.57043
0.0233165203	0.0238095238	-0.0004930033	-0.020706	275.52489	66.96693	0.00818	0.57049
0.0233635488	0.0232558140	0.0001077348	0.004633	271.31916	3.14914	0.00277	0.57049
0.0237904004	0.0227272727	0.0010631275	0.046778	267.24239	302.04785	0.01738	0.57075
0.0213873737	0.0222222222	-0.0008348485	-0.037568	263.28857	183.50476	0.01355	0.57092
0.0215544019	0.0217391304	-0.0000847266	-0.003898	259.45210	1.86259	0.00136	0.57092
0.0221655972	0.0212765957	0.0008390014	0.041783	255.72760	202.10759	0.01422	0.57109
0.0180523013	0.0408333333	-0.0027810319	-0.133490	252.11038	1949.85645	0.04416	0.57280
0.0180453090	0.0204081633	-0.0023628536	-0.115780	248.59554	1387.92798	0.03725	$0.5740 i$
0.0171737427	0.0200000000	-0.0028260571	-0.141303	245.17878	1956.14429	0.04425	0.57571
0.0142163493	0.0156078431	-0.0053894930	-0.274864	241.85596	7025.09766	0.08382	0.58173
0.0159417545	0.0192307692	-0.0032890146	-0.171029	238.62319	2501.33398	0.05031	0.53400
0.0169903149	0.0188679245	-0.0018776094	-0.099513	235.47681	830.15391	0.02831	0.53471
0.0160192327	0.0185165185	-0.0024992e59	-0.134961	232.42332	2451.75342	0.03310	0.58595
0.0165556887	0.0181818182	-0.0016261293	-0.099437	229.42945	606.67920	0.02463	0.58646
0.0166142778	0.0175571429	-0.0012428649	-0.069600	226.52208	349.91138	0.01871	0.58676
0.0134139840	0.0175438596	-0.0241298755	-0.235403	223.68326	3815.19629	0.06177	0.59000

Figure 7.4.2-2b. Iteration \#l of a Stokes' Optimization Run Using Output Weighting.


Figure 7.4.2-2c. Iteration \#2 of a Stokes' Optimization Run Using Output Weighting.

ACTUAL SPECTRUM	IDEAL SPECTRUM	RESID SPECTRUM	REL RESID	DEG VAR IN
-0.0000000000	0.0000000000	-0.0000000000	0.000000	0.00000
0.0004841557	0.0000000000	0.0004841557	0.000000	0.00000
0.9952545462	1.0090000000	-0.0047454536	-0.004745	322.03928
0.4974255850	0.5020000000	-0.0025744180	-0.005149	2334.86223
0.3320486735	0.3333333333	-0.0012846598	-0.003854	965.37143
0.2472054452	0.2500000000	-0.0027145576	-0.010858	828.53518
0.6009227511	0.2000000000	0.0009227509	0.004614	750.86000
0.1690815426	0.1666666667	0.0024143759	0.014489	697.57316
0.1426045312	0.14 23571429	-0.0002526115	-0.001768	657.00250
0.1258340664	0.1250000000	0.0008340662	0.008673	624.09143
0.1101260353	0.1111111111	-0.0009850727	-0.008366	576.27118
0.0969339359	0.1000000000	-0.0030661109	-0.030661	572.08381
0.0882036311	0.0907090909	-0.0027054597	-0.029760	550.63067
0.0809784125	0.0833333333	-0.0023549208	-0.023259	531.32108
0.0745201954	0.0769230769	-0.0024028814	-0.031237	513.74632
0.0704429538	$0.0714 \hat{205714}$	-0.0009856124	-0.013799	497.61136
0.0666572395	0.0666666667	-0.0000094272	-0.000141	482.69572
0.0642332473	0.0625000000	0.0017332472	0.027732	468.52966
0.0578798178	0.0523235294	-0.0009437115	-0.016043	455.87929
0.6550750058	0.0555555556	-0.0004805496	-0.008550	443.73669
0.0525021321	0.0526315789	-0.0001294468	-0.002459	432.31334
0.0470022226	0.0500000000	-0.0029977772	-0.059956	421.53544
0.0451753587	0.0476190476	-0.0024436889	-0.051317	411.34070
0.0456629707	0.0454545455	0.0002084552	0.004585	401.67587
0.0422112099	0.0434782609	-0.0012670509	-0.029142	392.49500
0.0409585161	0.0426666667	-0.0007081504	-0.016996	383.75809
0.0400991117	0.0400000000	0,0000991117	0.002478	375.43000
0.0370635600	0.0397515335	-0.0013979783	-0.036347	367.47972
0.0557110617	0.0370370370	-0.0013259752	-0.035801	357.87965
0.0337472707	0.0357142857	-0.0019670150	-0.055076	352.60512
0.0330012655	0.0344827586	-0.0014814930	-0.042963	345.63397
0.0319311273	0.0333333333	-0.0014022058	-0.042066	330.94621
0.0296213093	0.0322580645	-0.0026367551	-0.081739	332.52372
0.0318331020	0.0312500000	0.0006331019	0.020259	326.35002
0.0297378408	0.0303030303	-0.0005651894	-0.018651	320.41009
0.0283954209	0.0294117647	-0.0010163437	-0.034556	314.69017
0.0305239516	0.0285714286	0.0019525229	0.068338	309.17765
0.0251169680	0.0277777778	-0.0026608116	-0.095739	303.86091
0.0230896865	0.0270270270	-0.0039373375	-0.145681	298.72925
0.0244410738	0.0263157895	-0.0016747156	-0.071239	293.77277
0.0205926229	0.0255410256	-0.0050484017	-0.196888	288.98230
0.0207709545	0.0253000000	-0.0042290427	-0.169162	294.34935
0.0263299107	0.0243902439	0.0019396667	0.079526	279.86600
0.0232471531	0.0239095238	-0.0005623705	-0.023680	275.52489
0.0223181334	0.0232558140	-0.0009376805	-0.040320	271.31916
0.0248106796	0.0227272727	0.0020834068	0.091670	267.24239
0.0194949918	0.0222222222	-0.0027272303	-0.122725	263.28857
0.0172438511	0.0217391304	-0.0074952780	-0.206783	059.45210
0.0181083200	0.0212765957	-0.0031682756	-0.148909	255.72768
0.0164031270	0.0503333333	-0.0044302046	-0.212650	252.11033
0.0166607179	0.0204081633	-0.0037474453	-0.183625	248.59554
0.0166174283	0.0200000000	-0.0013825712	-0.069129	245.17878
0.0135968459	0.0195078431	-0.0010109970	-0.051561	241.85596
0.0193953153	0.0192307692	0.0001650456	0.008552	238.6こ319
0.0172949938	0.0182579245	0.0004170693	0.022105	235.47581
0.0164765425	0.0125185165	-0.0020415760	-0.110245	232.41332
0.0155409079	0.0181818182	-0.0026400021	-0.145250	229.45945
0.0144733027	0.0176571429	-0.0033838400	-0.189495	226.52208
0.0123587018	0.0175438596	-0.0051851571	-0.295554	22..688:6


WEIGHT	SIGMA	CUM SIGMA
0.00000	0.00000	0.00000
0.00000	0.03000	0.00000
7252.10547	0.08516	0.08516
8846.96875	0.09406	0.12689
2593.23438	0.03992	0.13301
6105.32813	0.07814	0.15426
639.33398	0.02529	0.15632
4067.93535	0.06378	0.16883
41.92499	0.00647	0.16896
434.15918	0.02084	0.17024
578.60229	0.02405	0.17193
5378.17969	0.07334	0.18592
4030.34741	0.06349	0.19740
2946.52173	0.05428	0.20473
2966.28933	0.05446	0.21185
483.39502	0.02199	0.21299
0.04290	0.00021	0.21297
1406.43237	0.03753	0.21627
406.00195	0.02015	0.21721
102.47119	0.01012	0.21744
7.24405	0.00269	0.21746
3788.19897	0.06155	0.26600
2456.36316	0.04956	0.23137
17.44922	0.00418	0.23141
630.11616	0.02510	0.23277
192.44585	0.01397	0.23318
3.68790	0.00192	0.23319
718.18140	0.02690	0.23472
632.74365	0.02515	0.23607
1364.28125	0.03694	0.23894
758.60449	0.02754	0.24052
666.42920	0.02532	0.24190
2311.86328	0.04308	0.24664
130.80696	0.01144	0.24690
102.35149	0.01012	0.24711
325.06030	0.01803	0.24776
1178.69189	0.03433	0.25013
2151.31006	0.04638	0.25440
4631.08594	0.06805	0.26334
1032.48120	0.03213	0.26529
7365.10547	0.08532	0.27883
5005.52734	0.07131	0.28780
1052.94165	0.03245	0.28963
87.13765	0.00933	0.28978
238.55592	0.01545	0.29019
1159.98779	0.03406	0.29218
2958.20369	0.04425	0.29551
5242.87891	0.07241	0.30426
2566.98657	0.05067	0.30844
4948.69375	0.07034	0.31636
3491.11304	0.05909	0.32183
468.65967	0.02165	0.32256
247.20453	0.02572	0.32204
6.50018	0.00255	0.32こ95
40.96042	0.00640	0.32302
963.70605	0.03112	0.32451
1600.13159	0.04000	0.32597
2593.76196	0.05073	0.35071
6014.04688	0.07755	0.33930

Figure 7.4.2-2d. Iteration \#3 of a Stokes' Optimization Run Using Output Weighting.

### 7.4.3 Power Emphasis Variation

The power emphasis variation of the optimization algorithm was described in Section 6.3.4.3. Only two sets of comparison cases have been run, one with and without power emphasis of the input weighting, and the other with and without power emphasis of the output weighting. All cases were for a 125-ring analog Vening-Meinesz' optimization.

While the variation can be shown to be performing its function as expected in these cases, namely to reduce the larger residuals of a few harmonic degrees more rapidly than under standard optimization, the variation did not lead to significant improvements in the overall minimization of rms discretization error, and sometimes it led to worse errors, especially in the higher degree regime. Consequently the detailed results will not be presented here.

### 7.4.4 Discussion of the Results of the Optimization Algorithm Variations

The three ad hoc variations in the optimization algorithm did not provide any results which could not be obtained by the standard algorithm. However, the output weighting variation did strongly increase the rate of convergence.

## SECTION 8

SUMMARY AND CONCLUSIONS

A general theory and method have been developed by which more accurate and efficient sumation approximations can be derived for any of the integral transformations of geodesy. The theory and method were applied to the Stokes' and Vening-Meinesz' Integrals, and improved summations were determined which have lower rms discretization errors than those presently in use. While the results to date are not dramatic, they do indicate that the theory is valid and the method is feasible. The approach may be interpreted as spherical digital filter design for geodetic transformations.

In particular, during the course of this study a comprehensive spectral theory was derived for the spherical integral transformations of geodesy and for their spherical summation approximations. Many analytic and numerical examples of the spectra of such trarisformations were determined. A catalog of the spatial and frequency domain representations of about 100 spherical integral transformations was compiled. Analytic expressions for the first partial derivatives of the spectra with respect to the template compartment boundary parameters were derived for use in the Gauss-Newton optimization (filter design) process. A method of calculating the spherical ring boundary radii of an equal-ring-contribution template was developed for the Stokes' and VeningMeinesz' transformations. And an explanation of the longevity and relative success of the equal-ring-contribution template was found within the spectral theory of discrete summation transformations.

A comprehensive geodetic filter design computer program was formulated, coded, compiled, checked out, and executed which: a) computes and compares the spectra of various geodetic integral transformations and their associated discrete summation approximations, b) calculates the partial derivatives of the spectra with respect to the template parameters, c) numerically optimizes the template ring boundary radii by an iterative least-squares differential correction procedure. The
comprehensive filter design computer prcgram is highly structured for ease of modification, is written in PL/I, and uses mnemonic names extensively based on geodetic terminology to enable rapid comprehension by others.

The program was executed for the Stokes' and Vening-Meinesz' transformations for a variety of numbers of template rings using the main optimization algorithm and several variations. The rms discretization error of current templates (introduced by the use of the discrete summation rather than the integral transformation) was reduced by amounts between $16 \%$ and $68 \%$. Reductions of one or two orders of magnitude (908 or 998) are desired but were not attained in the results to date, primarily due to limitations in the optimization algorithm and in particular to the handling of the inequality constraints between the parameters. However, in certain cases there is circumstantial evidence that an actual minimum may have been reached. The optimization algorithm was intentionally rudimentary in order that most of the effort could be devoted to the development of the theory. Suggested improvements to it are recommended.*

In summary, the spherical integral transformations of geodesy and their discrete summation approximations have been interpreted from a spectral-theoretic or spherical digital filter viewpoint. Besides unfolding a deeper understanding of the data-processing being performed by the theoretical transformations and their approximations, the approach has the immediate benefit of enabling optimal templates to be determined for the discrete summations used in computer algorithms.

[^34]
## RECOMMENDATIONS FOR FURTHER INVESTIGATION

Based on the theory, results, and understanding which have been achieved to date, the following subjects are recommended for future research and study.

## General Theory

1) An investigation of the possibility of extending the spectral theory of discrete summation transformations to the case of rectangular grid patterns (based on latitude and longitude). Until now, only bull's-eye templates have been considered since it would seem that only these are shift-invariant with a change of the point-of-evaluation. However, it is possible to define convolution in either "geographic" or "local spherical polar" coordinates, and the spectrum is a double integral which may be evaluated in any surface coordinates. Thus it might be possible to develop a theory of discrete summations over rectangular grids.
2) An investigation of techniques for incorporating known statistical uncertainties in the input data into the design of optimal templates for discrete summation transformations. In the present design of optimal filters the input data is assumed to be perfect or errorfree.
3) An extension of the digital filter design optimization process to include adjustment of the filter weight parameters as well as the template parameters. Currently the filter weight parameters are held fixed at a pre-selected value (e.g. the integrated-mean value of a kernel over a compartment). In traditional filter design, it is the filter weight parameters which are adjusted rather than grid parameters.

## Specific Transformations

1) A derivation of the details of the spectral theory of discrete summation approximations to Molodenskii's Integral, and an application of the optimization (filter design) process to determine optimal templates for this summation. Molodenskii's transformation has greatly increased in importance in recent years due to the expanding availability of satellite altimetry data.
2) A development of a method of easily calculating the integral of the classical Vening-Meinesz' function, so that the integrated-mean weighting scheme can be applied to the discrete summation approximation of the classical Vening-Meinesz' transformation. Currently the analysis and optimization has been limited to the analog of the Vening-Meinesz' transformation having surface layer densities as input rather than gravity anomalies, due to the much more tractable nature of this transformation.
3) A derivation of the spectral theory of discrete summation approximations to the Poisson-deWitte transformation, and an application of the optimization process to determine optimal templates for this summation. DeWitte (1969) has described his recommended method of calculating the three anomalous gravity vector components at altitude, which is partially based on the Poisson kernel. However his investigations, documented in a series of papers, seem to have been generally overlooked by subsequent investigators.
4) A derivation of the partial derivatives of the spectrum of discrete summation transformations with respect to template parameters when the filter weights are chosen by methods other than the integratedmean value scheme. While the integrated-mean value method corresponds nicely to physical intuition and has the advantage that the partial derivative of the spectrum does not involve the partial derivative of the kernel, it has the disadvantage that the integral of the kernel must be known. Such an integral may be more difficult to compute than the partial derivative of the kernel.
5) An extension of the filter design process to non-traditional geodetic transformations such as those involving gravity gradient tensor components.

## Optimization Methods

1) A derivation of the second partial derivatives of the spectrum of the Stokes' and Vening-Meinesz' discrete summatians and incorporation of the resulting expressions into the optimization algorithm. The present Gauss-Newton method neglects the second derivative terms and hence is not a pure Newton method with second-order convergence. The difference can be significant when the relationship of the spectra to the parameters is highly non-linear.* Like the first partial derivative expressions, the second partials will seem complicated but should be relatively easy to compute from other quantities which have already had to be calculated in the determination of the spectrum. Moreover, the matrix of second partials will be tridiagonal, thus facilitating manipulations with it. Due to the relative simplicity of this approach, it appears to offer the possibility of a large gain (second-order convergence) for a small price.
2) The incorporation of alternative methods of handing the inequality constraints among the template parameters in the optimization algorithm. The present method, while quick and easy to implement, does not seem to work well especially when there are a large number of parameters.
3) The investigation of other non-linear optimization techniques which might improve computational efficiency in the filter design program. A detailed survey of such techniques is given in Avriel (1976), and recent developments in the non-linear least-squares case are described by Dennis (1977) and Gill and Murray (1978).
4) The replacement of the current least-squares optimization algorithm by a Chebyshev algorithm to minimize the maximum error between the ideal spectrum and the spectrum of the sumation approximation rather than the sum-of-squares error.
5) The inclusion of stopping criteria in the optimization algorithm. Currently, the user specifies the number of iterations to be executed. Stopping criteria might provide a rational means of determining whether the true minimum rms discretization error has been reached. It might also prevent the somewhat random divergence observed on some optimization runs after several convergent iterations. Dennis (1977, section 3, pg. 272ff) gives a specific criterion which he has found very reliable and which has a geometric interpretation.
[^35]As is apparent from the above, while much derelopment of the theory and its applications have been achieved, many possible areas of further research and development remain to be explored.

## APPENDIX A

## DEFINITIONS AND NOTATIONS

FOR THE ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre functions $p_{n}^{m}(x)$ of $n^{\text {th }}$ degree and $m^{\text {th }}$ order are defined by

$$
P_{n}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{n}(x)
$$

or equivalently by

$$
P_{n}^{m}(\cos \psi)=\sin ^{m} \psi \frac{d}{\sin \psi d \psi}\left(\frac{d}{\sin \psi d \psi}\left(\ldots \frac{d P_{n}(\cos \psi)}{\sin \psi d \psi}\right)\right)
$$

where $P_{n}(x)$ is the Legendre polynomial of $n^{\text {th }}$ degree.
This definition follows that of Hobson, and this family of functions is therefore called Hobson's associated Legendre functions.*

The explicit expressions for the first few associated Legendre functions are:

$$
\begin{aligned}
& P_{0}^{0}(\cos \psi)=P_{0}(\cos \psi)=1 \\
& P_{1}^{0}(\cos \psi)=P_{1}(\cos \psi)=\cos \psi \\
& P_{1}^{1}(\cos \psi)=-\sin \psi \\
& P_{2}^{0}(\cos \psi)=P_{2}(\cos \psi)=\frac{3}{2} \cos ^{2} \psi-\frac{1}{2} \\
& P_{2}^{1}(\cos \psi)=-3 \sin ^{2} \psi \cos \psi \\
& P_{2}^{2}(\cos \psi)=+3 \sin ^{2} \psi
\end{aligned}
$$

[^36]Numerical values of the coefficients in the expressions up to degree and order 25 have been given by Peasley (1976).

The associated Legendre functions satisfy a variety of threeterm recurrence relations:

$$
\begin{aligned}
& \text { - } p_{n}^{m+2}(x)+2(m+1) \frac{x}{\sqrt{1-x^{2}}} p_{n}^{m+1}(x)+(n-m)(n+m+1) p_{n}^{m}(x)=0 \\
& (0 \leq m \leq n-2) \\
& \text { - }(2 n+1) \times p_{n}^{m}(x)=(n-m+1) P_{n+1}^{m}(x)+(n+m) P_{n-1}^{m}(x)=0 \\
& (0 \leq m \leq n-1) \\
& \text { - }(2 n+1) \sqrt{1-x^{2}} p_{n}^{m-1}(x)=p_{n-1}^{m}(x)-p_{n+1}^{m}(x)
\end{aligned}
$$

A very complete list is given in Erdélyi (1953, Section 3.8, pp. 160-161).
The closely related functions $P_{n m}(x)$ used by many authors* differ only in sign for odd order $m$ :

$$
P_{n m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{n}(x)=(-1)^{m} P_{n}^{m}(x)
$$

or equivalently

$$
P_{n m}(\cos \psi)=(-1)^{m} P_{n}^{m}(\cos \psi)
$$

This family of functions is called Ferrers' associated Legendre functions.**
It should be noted that the notational convention for these two families of functions is not completely standardized in the literature. Some authors reverse the notations given above and use $p_{n}^{m}(x)$ to denote the Ferrers' family or $P_{n, m}(x)$ to denote the Hobson family. This document follows the convention of Magnus and Oberhettinger (1949), Erdelyi (1953), Courant and Hilbert (1953), Robin (1957), and Gradshteyn and Ryzhik (1965). However, the reverse convention is used by Frank and von Mises (1930), Jahnke and Emde (1945), Vogel (1953), Morse and *e.g. Heiskanen-Moritz (1967, pg. 22ff).
** See Whittaker and Watson (1927, pg. 323); Robin (1957, Vol. I, pg. 70 , 107).

Feshbach (1953), Pick-Picha-Vyskocil (1973), and DiDonato (1977). Therefore, when comparing equations or transformations in this document with other sources, the reader should always first ascertain from fundamental definitions which notational convention is being followed in the other source.

An example of the problems which can be encountered from the existence of two "nearly" identical families is found in Abramowitz and Stegun (1965). On page 334, equation 8.6.6 defines the associated Legendre functions following the Hobson convention; but on page 338, Figure 8.2 depicts a graph of three of these functions following the Ferrers convention.

The reader should also be warned that Erdélyi (1953) and Gradshteyn and Ryzhik (1965) use italics $\left[P_{n}^{m}(x)\right]$ to denote another form of associated Legendre functions defined in the complex plane. This document is concerned only with Legendre functions on the real interval between -1 and +1 , which these authors denote by roman characters $\left[P_{n}^{m}(x)\right]$.

The reader may wonder why the Hobson ( $P_{n}^{m}$ ) family has been chosen in the fundamental definition of the spherical spectral transform rather than the Ferrers $\left(P_{\mathrm{nm}}\right)$ family. The reason is based upon the spectral expansions of the Stokes' and Vening-Meinesz' kernels:

$$
\begin{aligned}
S(\psi) & =+\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}(\cos \psi) \\
\frac{d S(\psi)}{d \psi} & =+\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n}^{1}(\cos \psi)=-\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} P_{n 1}(\cos \psi)
\end{aligned}
$$

If the Ferrers' family were used in the spherical spectral transform definition,* the resulting spectrum of the Vening-Meinesz' integral transformation would be negative. To eliminate this inconvenience the Hobson family has been selected as fundamental.

If the vertical deflections $\xi$ and $\eta$ had been defined with the opposite sign convention, the corresponding Vening-Meinesz' integral

[^37]formulae would then carry an inelegant negative sign, but the deflections would then be the positive surface gradient of the geoid height, and the spectrum could be made positive by choosing Ferrers' family to be fundamental. Under the standard convention, the Vening-Meinesz' formula carry no negative sign, but the deflections must be the negative surface gradient of the geoid height [Heiskanen-Moritz (1967, pg. 114)].

## APPENDIX B

## RECURSION RELATIONS FOR THE INDEFINITE INTEGRALS OF THE ASSOCIATED LEGENDRE FUNCTIONS

In order to efficiently compute the spectrum of a discrete summation geodetic transformation for an arbitrary template, it is imperative to utilize recursion relations for the indefinite integrals of the associated Legendre functions. Such relations do not seem to have appeared in the classical or modern literature. However, very recently DiDonato (1977) has published elegant expressions for these recursion relations for arbitrary degree and order, and the derivations thereof. Also, Paul (1978) will soon publish his recursion relations.

At the time when the author was originally implementing his spectral theory of the discrete Vening-Meinesz' transformation in a computer program (late fall 1977), he was not yet aware of DiDonato's or Paul's work, nor was he able to derive similar recursions within a limited time.* Therefore because of the desirability of validating his theory quickly, the author instead derived a recursive computational procedure for the analytic expressions of the indefinite integral of the associated Legendre function $P_{n}^{1}(x)$ of arbitrary degree and first order. The derivation was based upon several fundamental ideas of his colleague Stanley W. Shepperd, whose contributions the author wishes to acknowledge. This procedure was programmed, verified and used in the early versions of the discrete Vening-Meinesz' spectral calculation subroutine.

Due to certain numerical difficulties with this procedure which occurred for higher degrees, an attempt was made to derive another recursive set of analytic expressions for the indefinite integrals of $P_{n}^{1}(x)$ based on slightly different principles and using Calvez and Genin's (1977) algorithm. Before this was completed, the author became aware of DiDonato's obviously superior recursion relations, and implemented them instead.

[^38]All of these recursion relations are described briefly in the following sections.

## B. 1 Shepperd-Robertson Recursion

The Shepperd-Robertson recursion relations for the analytic expressions of the indefinite integral of the associated Legendre functions $P_{n}^{1}(x)$ is based upon the validity of the following expansions:

$$
P_{n}^{1}(x)=-\sum_{k=0}^{n-1} b_{n, k} x^{k} \sqrt{1-x^{2}}
$$

and

$$
\int x^{k} \sqrt{1-x^{2}} d x=-\left(1-x^{2}\right)^{3 / 2} \sum_{j=0}^{k-1} c_{k, j} x^{j}+d_{k}\left(x \sqrt{1-x^{2}}+\arcsin x\right)
$$

where $b_{n, k}, c_{n, k}$, and $d_{k}$ are constants. Thus, upon inserting the second equation into the indefinite integral of the first and regrouping terms it is seen that the integral of $P_{n}^{l}(x)$ may be expressed as

$$
\int P_{n}^{1}(x) d x=+\left(1-x^{2}\right)^{3 / 2} \sum_{j=0}^{n-2} e_{n, j} x^{j}+f_{n}\left(x \sqrt{1-x^{2}}+\arcsin x\right)
$$

where

$$
\begin{aligned}
e_{n, j} & =\sum_{k=j+1}^{n-1} b_{n, k} c_{k, j} \\
f_{n} & =\sum_{j=0}^{n-2} b_{n, k} d_{k}
\end{aligned}
$$

Recursion relations will be developed for the $b_{n, k}, c_{k, j}$ and $a_{k}$ constants in the next subsection, and the $e_{n, j}$ and $f_{n}$ constants can be easily calculated therefrom. The definite integral over an arbitrary ring is then determined as the difference of two indefinite integral evaluations.

The Shepperd-Robertson recursion relations were coded into the earliest versions of the discrete Vening-Meinesz' spectrum calculation subroutine. They worked well up to about degree 50. Above this degree a numerical instability gradually began to set in with erroneous
digits first appearing in the least significant places and finally in all places. Nevertheless the algorithm enabled an early numerical verification of the author's theory of the discrete Vening-Meinesz' spectrum. A short analysis of the cause of the instability will be given in subsection B.1.2.

## B.1.1 Coefficients in the Shepperd-Robertson Recursion

The $b_{n, k}$ coefficients can be shown to have the values:

$$
b_{n, k}=\left\{\begin{array}{cc}
0 & {\left[\begin{array}{l}
n+k \text { even } \\
0 \leq k \leq n
\end{array}\right] \text { or }[k \geq n]} \\
\frac{n-k-1}{2} & (n+k+1)! \\
\frac{(-1)}{2^{n}\left(\frac{n+k+1}{2}\right)!\left(\frac{n-k-1}{2}\right)!k!} & {\left[\begin{array}{l}
n \geq 1 \\
n+k \\
0 \leq k \leq n-1
\end{array}\right]}
\end{array}\right.
$$

Several of the lower-indexed values of $b_{n, k}$ are listed in matrix form in Table B-1.

The $b_{n, k}$ coefficients can be shown to satisfy the following recursion relations:
n odd

$$
\begin{array}{ll}
b_{1,0}= & 1 \\
b_{n+2,0} & =-\frac{n+2}{n+1} b_{n, 0} \\
b_{n, k+2} & =-\frac{(n+k+2)(n-k-1)}{(k+2)(k+1)} b_{n, k} \\
& \text { where } k=0,2,4, \ldots
\end{array} \quad \text { (down left column) }
$$

n even

$$
\begin{aligned}
& b_{2,1}=3 \\
& b_{n+2,1}=-\frac{n+3}{n} b_{n, 1} \quad \text { (down left column) } \\
& b_{n, k+2}=-\frac{(n+k+2)(n-k-1)}{(k+2)(k+1)} b_{n, k} \\
& \text { where } k=1,3,5, \ldots \quad \text { (across row) }
\end{aligned}
$$

[^39]$$
P_{n}^{1}(x)=-\sum_{k=0}^{n-1} b_{n, k} x^{k} \sqrt{1-x^{2}} \quad[n \geq 1]
$$

	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	0	3	0	0	0
3	$-\frac{3}{2}$	0	$\frac{5 \cdot 3}{2}$	0	0
4	0	$-\frac{5 \cdot 3}{2}$	0	$\frac{7 \cdot 5 \cdot 3}{3 \cdot 2 \cdot 1}$	0
5	$\frac{5 \cdot 3}{4 \cdot 2}$	0	$-\frac{5 \cdot 3 \cdot 7 \cdot 2}{4 \cdot 2}$	0	$\frac{9 \cdot 7 \cdot 5 \cdot 3}{3 \cdot 4 \cdot 2}$
6	0	$\frac{7 \cdot 5 \cdot 3}{4 \cdot 2}$	0	$\frac{9 \cdot 7 \cdot 5 \cdot 3 \cdot 4}{4 \cdot 3 \cdot 2 \cdot 2}$	0

Table $B-1$. The $b_{n, k}$ coefficients.
B-4

The $c_{k, j}$ and $d_{k}$ coefficients can be shown to have the following values:*

$$
\begin{gathered}
c_{k, j}=\left\{\begin{array}{cl}
\frac{1}{k+2} \frac{(k-1)!!}{k!!} \frac{(j+1)!!}{j!!} & {\left[\begin{array}{l}
k \geq 1 \\
k+j \text { even } \\
0 \leq j \leq k-1
\end{array}\right]} \\
0 & {[k+j \text { odd }]}
\end{array}\right. \\
d_{k}=\left\{\begin{array}{cl}
\frac{1}{k+2} \frac{(k-1)!!}{k!!} & {[k \text { even }]} \\
0 & {[k \text { odd }]}
\end{array}\right.
\end{gathered}
$$

Several of the lower-indexed values of the $c_{n, k}$ and $d_{k}$ are listed in Tables B-2 and B-3.

The $c_{n, k}$ and $d_{k}$ coefficients are easily seen to satisfy the following recursion relations:

$$
\left.\begin{array}{rlrl}
\left\{\begin{aligned}
c_{k, k-1} & =\frac{1}{k+2} \\
c_{k+2, j} & =\frac{k+1}{k+3} \quad c_{k, j}
\end{aligned}\right. & \text { (diagonal) } \\
\left\{\begin{array}{ll}
\text { down columns } \\
\text { from diagonal }
\end{array}\right)
\end{array}\right\} \begin{aligned}
d_{0} & =\frac{1}{2} \\
d_{k+2} & =\frac{k+1}{k+3} d_{k}
\end{aligned}
$$

[^40]$$
\int x^{k} \sqrt{1-x^{2}} d x=-\left(1-x^{2}\right)^{3 / 2} \sum_{j=0}^{k-1} c_{k, j} x^{j}+d_{k}\left(x \sqrt{1-x^{2}}+\arcsin x\right)
$$


Table B-2. The $c_{k, j}$ coefficients.

$k$	$d_{k}$
0	$\frac{1}{2}$
1	0
2	$\frac{1}{4 \cdot 2}$
3	0
4	$\frac{3}{6 \cdot 4 \cdot 2}$
5	0
6	$\frac{5 \cdot 3}{8 \cdot 6 \cdot 4 \cdot 2}$

Table B-3. The $d_{k}$ coefficients.
B.1.2 Instability Analysis of the Shepperd-Robertson Recursion

The predominant cause of the numerical instability of the ShepperdRobertson recursion relations is the large magnitudes and relative magnitudes of the "polynomial" coefficients $b_{n, k}$ of the associated Legendre functión $p_{n}^{l}(x)$ which occur for large degree $n$.

It can be shown that the "diagonal" coefficient $b_{n, n-1}$ has the value

$$
b_{n, n-1}=\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots(n-1)}=\frac{2^{n}\left(n-\frac{1}{2}\right)!}{\sqrt{\pi}(n-1)!}
$$

while the "left column" coefficients $b_{n, 0}$ and $b_{n, l}$ have the magnitudes

$$
\begin{aligned}
& \left|b_{n, 0}\right|=\frac{(n+1)!}{2^{n}\left(\frac{n+1}{2}\right)!\left(\frac{n-1}{2}\right)!} \quad \text { [n odd] } \\
& \left|b_{n, 1}\right|=\frac{(n+2)!}{2^{n}\left(\frac{n+2}{2}\right)!\left(\frac{n-2}{2}\right)!} \quad \text { [n even] }
\end{aligned}
$$

Using Stirling's formula, the Legendre Duplication formula, and the asymptotic expression for the exponential,

$$
\begin{aligned}
n! & \sim n^{n+\frac{1}{2}} e^{-n} \sqrt{2 \pi} \\
(2 n)! & =\frac{1}{\sqrt{\pi}} 2^{2 n} n!\left(n-\frac{1}{2}\right)! \\
e^{x} & \sim\left(1+\frac{x}{n}\right)^{n}
\end{aligned}
$$

the following approximate expressions may be inferred:

$$
\begin{aligned}
& b_{n, n-1} \sim \frac{2^{n} \sqrt{n-1}}{\sqrt{\pi}} \\
& \left|b_{n, 0}\right| \sim \sqrt{\frac{2}{\pi}} \frac{n}{\sqrt{n-1}} \quad \text { [n odd] } \\
& \left|b_{n, 1}\right| \sim \sqrt{\frac{2}{\pi}}(n+1) \sqrt{n-2} \quad \text { [n even] }
\end{aligned}
$$

$\left\lvert\, \begin{gathered} \text { Degree } \\ n \end{gathered}\right.$	"Left columns"		$\begin{gathered} \text { "Diagonal" } \\ b_{n, n-1} \end{gathered}$	
	$b_{n, 0}$	$\mathrm{b}_{\mathrm{n}, \mathrm{l}}$		
25	4.1	93.6	9.3	$10^{7}$
50	5.7	273.5	4.4	$10^{15}$
75	7.0	507.8	1.8	$10^{23}$
100	8.0	785.8	7.1	$10^{30}$
125	9.0	1101.6	2.7	$10^{38}$
150	9.8	1451.1	9.8	$10^{45}$

Table B-4. Estimates of certain $b_{n, k}$ coefficients.

Some numerical values of these approximations are presented in Table B-4. It is immediately seen that around degree 50 numerical significance will begin to be lost in summations when the computations are carried out on a computer having about sixteen decimal digits of precision.

$$
B-8
$$

## B. 2 Robertson-Clenshaw* Recursion

In order to attempt to overcome the numerical difficulties encountered in the Shepperd-Robertson recursion relations, the possibility of expanding the indefinite integral of the associated Legendre function $P_{n}^{l}(x)$ in a linear combination of these functions themselves was investigated. In other words, an expansion of the form

$$
\int P_{n}^{1}(x) d x=+\left(1-x^{2}\right) \sum_{k=1}^{n-1} h_{n, k} P_{k}^{1}(x)+f_{n}\left(x \sqrt{1-x^{2}}+\arcsin x\right)
$$

was sought, where the $h_{n, k}$ are constant coefficients to be determined. If recursions could be derived for these ccefficients, then Calvez and Genin's (1977) algorithm could be used to perform the summation directly without separately recursing on the $p_{n}^{l}(x)$.

This approach offers the possibility that the $h_{n, k}$ might be "well-behaved", since the problems of large numbers might be entirely embedded in the $p_{n}^{l}(x)$ functions, which appear explicitly. This possibility is further suggested by the following heuristic argument: The associated Legendre functions $P_{n}^{1}(x)$ have the expansion

$$
P_{n}^{1}(x)=-\sqrt{1-x^{2}} \sum_{k=0}^{n-1} b_{n, k} x^{k}
$$

Thus from the integral expansion, the $h_{n, k}$ coefficients are determined by the equations

$$
\sum_{k=1}^{n-1} b_{n, k} \sum_{j=1}^{k-1} c_{k, j} x^{j}=\sum_{k=1}^{n-1} h_{n, k} \sum_{j=1}^{k-1} b_{k, j} x^{j}
$$

which is to hold for all values of $x$. By reordering the summation, and using matrix notation, this may be written as

$$
\mathrm{BC} \underline{\mathrm{x}}=\mathrm{HB} \underline{x}
$$

[^41]Hence $H=B C B^{-1}$, so that with the reasonable $c_{k, j}$ coefficients, it appears that the $h_{n, k}$ coefficients will also be reasonable, since intuitively large coefficients in the $B$ matrix will be counteracted by correspondingly small elements in the $B^{-1}$ matrix.

Let the elements of the $B^{-1}$ matrix be denoted by $B_{j, \ell}$. Some values of the lower-indexed $B_{j, \ell}$ and $h_{n, k}$ coefficients are listed in Tables $\mathrm{B}-5$ and $\mathrm{B}-6$.

	0	1	2	3	4	5
0	0	1	0	0	0	0
1	0	0	$\frac{1}{3}$	0	0	0
2	0	$\frac{1}{5}$	0	$\frac{2}{5 \cdot 3}$	0	0
3	0	0	$\frac{1}{7}$	0	$\frac{3 \cdot 2 \cdot 1}{7 \cdot 5 \cdot 3}$	0
4	0	$\frac{3}{7 \cdot 5}$	0	$\frac{2 \cdot 2}{9 \cdot 5}$	0	$\frac{3 \cdot 2 \cdot 2 \cdot 2}{9 \cdot 7 \cdot 5 \cdot 3}$
$\sqrt{1-x^{2}} x^{j}=-\sum^{j+1} B_{j, \ell} P_{\ell}^{l}(x)$						

Table B-5. The $B_{j, \ell}$ coefficients.

	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	-1	0	0	0
3	0	0	$-\frac{5}{8}$	0	0
4	0	$-\frac{19}{30}$	0	$-\frac{7}{15}$	0
$\sum_{k=1}^{n-1} h_{n, k} p_{n}^{1}(x)+\ldots$					

Table B-6. The $h_{n, k}$ coefficients.

The $\beta_{j, \ell}$ coefficients may actually be determined analytically. Beginning with the identity that

$$
\sqrt{1-x^{2}} x^{j}=-\sum_{\ell=1}^{n+1} \beta_{j, \ell} P_{\ell}^{1}(x) \quad\{j \geq 1\}
$$

and multiplying by $P_{n}^{1}(x)$ and integrating,

$$
\begin{aligned}
\int_{-1}^{+1} \sqrt{1-x^{2}} P_{n}^{1}(x) d x & =-\sum_{\ell=1}^{j+1} B_{j, \ell} \int_{-1}^{+1} p_{n}^{1}(x) P_{\ell}^{1}(x) d x \\
& =-\beta_{j, n} \frac{2}{2 n+1} \frac{(n+1)!}{(n-1)!}
\end{aligned}
$$

Thus

$$
B_{j, n}=\left\{\begin{array}{cc}
0 & {[j+n \text { even] }} \\
-2 \int_{0}^{1} \sqrt{1-x^{2}} x^{j}{ }_{P_{n}^{1}}^{1}(x) d x \cdot \frac{2 n+1}{2} \frac{(n-1)!}{(n+1)!}[j+n \text { odd }]
\end{array}\right.
$$

To evaluate the integral, use is made of Erdélyi (1954, Vol. II, pg. 313, eqn. 18.1.4). This yields, after some manipulation:

$$
B_{j, n}=\left\{\begin{array}{cc}
0 & {[j+n \text { even }]} \\
+\frac{\left(\frac{1}{2}\right)!}{2^{j}} \frac{2 n+1}{2} \frac{j!}{\left(\frac{j+2+n}{2}\right)!\left(\frac{j+1-n}{2}\right)!} & {[j+n \text { odd }]}
\end{array}\right.
$$

From this expression, recursion relations could be derived for the $\beta_{j, n}$ coefficients, and a computational procedure could undoubtedly be established for the $h_{n, k}$ coefficients.

At about this point in the development of a stable recursion for the indefinite integrals of the associated Legendre functions, the author became aware of DiDonato's algorithm.

## B. 3 DiDonato Recursion

DiDonato (1977) has stated and derived elegant recursion relations for the indefinite integrals of the Ferrers' associated Legendre function $P_{n m}(x)$ of arbitrary degree $n$ and order $m$.

Using the notation convention of this document they may be stated as follows for the first order:

$$
\begin{aligned}
P_{1}^{1}(\cos \psi) & =-\sin \psi \\
P_{2}^{1}(\cos \psi) & =-3 \sin \psi \cos \psi \\
P_{n+1}^{1}(\cos \psi) & =\left[(2 n+1)(\cos \psi) P_{n}^{1}(\cos \psi)-(n+1) P_{n-1}^{1}(\cos \psi)\right] / n
\end{aligned}
$$

[^42]Letting $I_{n}^{m}=\int P_{n}^{m}(x) d x$,

$$
\begin{aligned}
I_{1}^{1} & =-\left[\cos \psi \sin \psi+\arcsin (\cos \psi)+\frac{\pi}{2}\right] / 2 \\
I_{2}^{1} & =-\sin ^{2} \psi P_{1}^{1}(\cos \psi) \\
I_{n+1}^{1} & =\frac{(n-1)(n+1)}{(n+2)(n)} I_{n-1}^{1}-\frac{2 n+1}{(n+2)(n)} \sin ^{2} \psi P_{n}^{1}(\cos \psi)
\end{aligned}
$$

In a computer program it is necessary to run two recursions simultaneously, one for the odd indices, beginning with $I_{1}^{1}$, and one for the even indices beginning with $I_{2}$.

The notation $I_{n}^{m}$ is used here for the indefinite integral of Hobson's associated Legendre Function in order to distinguish this quantity from DiDonato's $s_{n}^{m}$ which denotes the indefinite integral of Ferrers' associated Legendre Function.

This algorithm has been implemented in the comprehensive filter design computer program (Appendix C), and the author has had no difficulties with its use. Although DiDonato also gives a normalized form of the recursive relations and states that it "may be needed in order to keep the results ... from becoming excessively large", the author has not found this to be necessary up through degree 1500.

## B. 4 Paul Recursion

The author has not yet seen Paul's (1978) recursion relations for the indefinite integrals of the associated Legendre functions.

# APPENDIX C <br> LISTING OF THE COMPREHENSIVE FILTER DESIGN COMPUTER PROGRAM 


nutiber Lev nt
SOUREE LISTING



$$
\begin{aligned}
& 00001060 \\
& 00001070 \\
& 0 n o n i n a n ~
\end{aligned}
$$

$$
\begin{aligned}
& 06000000 \\
& 08010000
\end{aligned}
$$

$$
00001100
$$

Gigig
Bo를
Bigi ie


00001160
00001170
웅․․
욱


든응
우웅
00001240
000001250
0
웅
우요응

$$
\begin{aligned}
& 1270 \\
& 1280 \\
& 120 \\
& 2
\end{aligned}
$$

000001310
00001320
00001330
00001330
00001340
00001350
우웅
웅
号


$$
\begin{aligned}
& 0000140 \\
& 00001440
\end{aligned}
$$

PL/I optimizing compiler fitfilt: proceoure(parameters) optionsimain) reorder;
number lev nt

97010 ALLOCATE_CORE:BEGIN;

$$
\begin{aligned}
& \text { O OCL SPECTRUT FLOAT BINARY(53); } \\
& 0 \text { OCL VARMAX FIXEA BIIARY: }
\end{aligned}
$$

CL VARMAX FIXED BIMARY;

RELATIVE-RESIDUAL FLOAT BINARY(53);

DCL (DEG_SIG_OUTPUT_RESIO,DEG_SIG_OUTPUT_RESID_CUM) FLOAT BINARY(S3):
OCL (OEG_VAR_CUTFUT_RESID,DEG_VAR_OUTPUT_RESID_CUM) FLOAT BINARY(53);


NNNNNNNNNNNN


$$
\begin{aligned}
& \text { dn Float ainary(53); } \\
& \begin{array}{l}
\text { OCL PSIIITERMIN:ITERMAX, } 0: \text { Imax) FLOAT BIMARY(53); } \\
\text { OCL COS_PIS(O:IMAX) FLOAT BINARY(53); }
\end{array} \\
& \begin{array}{l}
\text { OCL COS_PSI(O:IMAX) FLOAT BINARY(53); } \\
\text { DCL SIN_PSI(O:IMAX) FLOAT BINARY(53): }
\end{array}
\end{aligned}
$$


PLII OPTIMLZing COMpiler
number lev nt
00002080
00002090
0000200
00002110
00002120
00002130
0000210
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
00002260
100002270
00002280
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360
00002370
00002380
00002390
00002400
00002410 00002410
00002420
00002430
00002430



in
0
0
0
0
0
0
0






ロN足品능2180
2190
2200
22102230 2250 2270 2290
2350
2360 23
 F PRINT－LEVEL＞＝5 THEN DO；
2390
240023 IF ALPHA＿TEMPLATE＿TYPE＿NAME＝＇CONTINUOUS＇THEN
PUT SKIP（2）EOITT＇KERNEL VALUES AT SPHERICAL RING RADII PSI＇\｜A）
（KERNEL）（RIFLOAT＿FORMAT））；
PUT SKIP（2）EOIT（＇KERNEL MEAN－INTEGRATED VALUES BETHEEN RING RADII＇）（A
（MEAN＿KERNEL）（R（FLOAT＿FORMAT）？；
RING＿INIT：DD $1=1$ TO IMAX；
INTEGRAL＿KERNEL（I）＝KERNEL＿INTEGRAL＿INDEF（KERNEL＿NAME，COS＿PSI（I－1））
－KERNEL INTEGRAL＿INOEF（KERHEL NAME，COS＿PSI（I））； －KERNEL＿INTEGRAL＿INOEF（KERHEL＿NAME，COS＿PSIII
MEAN＿KERNEL（I）＝INTEGRAL＿KERNEL（I）／COS＿PSI（I－I）－COS＿PSI（I）； END RING＿INIT；



$$
\begin{aligned}
& \text { PSII ITER,W)=ACOS(COS_PSI)*RADTODEG: } \\
& \text { IF PRINT-LEVEL>O THEN DO; } \\
& \text { PUT PAGE EDIT('START OF ITERATION NU }
\end{aligned}
$$



2320 ..... END：
$\infty$ ..... 2320
2320 2 3 END：（INTEGRAL＿KERNELICRIFLOAT＿FORMAT））；

PUT SKIP（2）EOITI＇INTEGRAL OF KERNEL BETWEEN RING RADII＇）（A）
（INTEGRAL＿KERNEL）（R（FLOAT＿FORMAT））；


（INTEGRAL KERNEL）（R（FLOAT FORMAT））；
If KERNEL ORDER＝1 THEN DO；
NN2420
2430

PUT SKIP EDIT（＇RING NUMBER＇，II（A，F（B））
（IALPHA（ITER，I，J）\＃RADTOOEG DO $J=1$ TO JMAX（I）））IR（FIXED＿FORMAT））；
END；
END；
IF ALPHA＿TEMPLATE＿TYPE＿NAME＝＇CONTIMNOUS＇THEN
DO I＝1 TO IMAX；
OI＝1 TO IMAX；
RND ；
ELSE
ELSE I＝1 TO IMAX；
$\qquad$
$\qquad$
$\qquad$
$\rightarrow$8iz号枵品品品RING＿（ALPHA＿DIFF2）N＊2\＃COS（ALPHA＿SUM2）＊＊2／ALPHA＿DIFF2；
SIN（ALPH450

[^43]
PL/I OPTIMIZING COMPILER
355021 If iter=itermax then leave iter_loop;

page 13


FITFILT: PROCEDURE(PARAMETERS) OPTIONS(TAAIN) REORDER;


PL／I OPTIMIZING COMPILER FITFILT：PROCEDUREIPARAMETERS）OPTIONS（MAIN）REORDER；
NUMBER LEV NT


00 N＝1 TO NMAX；
DO VAR＝1 TO VARMAX；
PARTIAL（N，VAR）$=$ WEIGHT（N）MPARTIALIN，VAR）；END；
WEIGHTED＿RESIDUAL（N， 1$)=W E I G H T(N) * R E S I D _S P E C T R U M(N) ; ~ E N D ; ~$ WEIGHTED＿RESIDUAL（N，1）＝WEIGHT（N）WRESID＿SPECTRUM（N）；END：
CALL MSSGI $\quad$ PARTIAL，WEIGHTED＿RESIDUAL，NMHAX，VARMAX，
DO VAR＝1 TO VARMAX；DX（VAR）＝－WEIGHTED＿RESIDUAL（VAR，i）：END
F PRINT＿LEVEL＞＝8 THEN DO；
IF PRINT＿LEVEL＞$=8$ THEN DO；
PUT PAGE EDITI＇SUMMARY OF D
ST SKIP（4）EDIT（＇RAW INCREMENTS IN INDEPENDENT VARIABLES＇）（A）
（OX）（R（FIXED＿FORMAT）；
咅芸
號
VAR＝1 TO VARHAX；
IF X（VAR）$+0 \times(V A R 1<=X(V A R+1) \mid X(V A R)+O X(V A R))=X(V A R-1)$ THEN DO；
IF DX（VAR）$<00$ THEN OVERRATIO（VAR）$=-D X(V A R) /(X(V A R)-X(V A R+1) 1 ;$
IF OX（VAR）＜0 THEN OVERRATIO（VAR）$=-$ DX（VAR $) /(X(V A R)-X(V A R+1) 1 ;$
$E L S E ~ O V E R R A T I O(V A R)=+O X(V A R) /(X(V A R-1)-X(V A R)) ;$
IF PRINT＿LEVEL＞EB THEN
PUT SKIP EOITI＇INCREMENT ，VAR，O OVERSHOT BY A FACTOR OF－ OVERRATIO（VAR）$)(A, F(4), X(12), A, E(15,4)) ;$
OX（VAR）$=\operatorname{DX}(V A R)=O .8 / O V E R R A T I O(V A R 1 ;$官量

## 1F X（VAR）$+D \times($ VAR $)<=X(V A R+1)+0 X(V A R+1)$ THEN 00 ；

 OVERRATIO＿FIGHT（VAR）$=1$（－DX（VAR $)+D X(V A R+1) 1 /(X(V A R)-X(V A R+1)) ;$IF PRINT＿LEVEL $)=$ THEN

（A，F（4），A，F（4），X（2），A，E（16，4）I：
IF SIGN（DXIVAR））＝SIGN（DX（VAR＋1））THEN DO；

ELSE DX（VAR）$=0.8 * S I G N(D X(V A R)) *(X(V A R)-X(V A R+1)) ;$

> ENO; If PRINT_LEVELD=A THEN PUT SKIP(4) EDITC(FI
PUT SKIP（4）EDIT（＇FINAL INCREMENTS IN INDEPENDENT VARIABLES＇）（A）
（DX）（R（FIXED＿FORMAT）I；
PLI OPTIMIZING COMPILER

NMBER LEV NT ECTION COMHEN: SELECT(N);
HHEN(1) RETURN $1 E-2 *(N N+X) * * 2) ;$
HHEN(2) RETURN $7.6 *(N N+K) * * 2) ;$
OTHERWISE RETURTI(425.28*(NN+K)**2/( $(N N-1) *(N N-2) *(N N+24)) 1$;
END;
END DEG_VAR_INPUT;
5640
5650
5660
5670
5680
5690
5700
5710
5720
PLII OPTIMIZING COMPILER



$$
\begin{aligned}
& \text { KERNEL_FUNCTION_AT_SURFACE: } \\
& \text { FROCKERNEL_NAME,COS_PSI RETURNS(FLOAT BINARY(53)) REDUCIBLE; }
\end{aligned}
$$

NUMBER LEV NT DCL KERNEL_NAME CHAR(31) VARYING
DCL COS_PSI FLOAT BINARY(53); DCL SIN_HALF_PSI FLOAT BINARY(53) INITIAL((SQRT((1-COS_PSI)/21));
DCL COS_HALF_PSI FLOAT BINARY(53) INITIAL((SQRT((1+COS_PSI $1 / 21) ;$ IF COS_PSI=1 I SIN_HALF_PSI=0 THEN RETURN(O); ELSE
SELECT(KERNEL NAME): SELECT(KERNEL_NAME );
WHENI 'STOKES', 'HEIGKT_FROM_ANOMALY') GO TO STOKES;
WHEN 'HEIGHT FROM VARIATION') WHEN 'HEIGHT_FROM_VARIATION')
GO TO HEIGHT_FROM_VARIATION:
WHEN('HEIGHT_FROM_DENSITY')
WO TO HETGHT_FROM_ONT 'HEIGHT_FROY_DISTURBANCE' ) WHEN( 'MALKIN', 'HEIGHT_FROM_OUT_PARTIAL')
GO TO HEIGHT_FROM_OUT_PARTAL;
WHEN( 'VENING_MEINESZ','DEFLECTION_FROH_ANOHALY') WHENI 'HILBERT', 'CEFLECTION FROM DISTURBANCE' GO TO DEFLECTIOH_FROM_DISTURBANLEE;
WHEN 'OISTURBARCE_FROM_ATDOHAY')
GO TO OISTUPBANCE_FROM ANOMAIY:

$$
\begin{aligned}
& \text { HEIGHTFROM_VARIATION: } \\
& \text { RETURNTI/SIN_HALF_PSI- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RETURNI 1/SIN_HALF PSI I; } \\
& \text { HEIGHT_FROM_OISTUREARICE: }
\end{aligned}
$$

## $\circ$ 0 0

GO TO HEIGHT_FROM_DISTURBANCE;
WHENI 'HALKIN', 'HEIGHT_FROM_OUTPARTIAL'I WHEN( 'VENING_MEINESZ', DEFLECTION_FROH_ANOTALY
GO TO VENIHG_MEINESZ;
WHENI DEFLECTIOH_FROM_VARIATION' GO TO DEFLECTIOH_FROM_VARIATION;
WHENE 'OEFLECTION_FROM_DENSITY'? GO TO OISTURBANCE_FROM_ANOTALY;
WHENI 'DISTURBARCE FPOM_ YARIATION') GO TO DISTURBANCE_FROM_VARIATION:
WHENI 'DISTURBAHICE_FROH_DENSITY') ENO; 60 TO DISTURBANCE_FROM_DENSITY;

$$
\begin{aligned}
& \text { STOKES: HEIGHT_FROM_ANOMALY: } \\
& \text { RETURNY 1/SIN_HALF_PSI-6*SIN_HALF_PSI+1-5*COS_PSI } \\
& \text {-3*COS_PSI*LOGISIN_HALF_PSI+SIN_HALF_PSI*H2) ; }
\end{aligned}
$$

HEIGRT_FROM VARIATION:
RETURNI $1 / 5$ IN HALF PSI-2-3*COS_PSI-LOGISIN_HALF_PSI +
RETURN(1/SIN_HALF_PSI-2-3*COS_PSI-LOG(SIN_HALF_PSI+SIN_HALF_PSI**2)
HEIGHT_FROH_DENSITY: RETURN( 1 /SIN_HALF_PSI );
HEIGHT_FROM OISTUREAHCE:
RETURN(1/SIN_HALF_PSI-LOG( $1+1 /$ SIN_HALF_PSI )); RETURNT-COS_HALF_FSI/SIN_HALF_PSII; RETURN $\left(-C O S_{-} H A L F-F S I / S I N _H A L F _P S I I ;\right.$
DISTURBANCE_FROM_ANOTALY:
 $m$
 $\qquad$
$\stackrel{9}{9}$ 6160 RETURN(1/SIN_HALF_PSI-LOGI $1+2 /$ /SIN_HALF_PSI));
MALKIN:HEIGHT_FROM_OUT_PARTIAL: m m 00 0
$m$ 6230

$$
\begin{aligned}
& \text { HEIGHT_FROM_DENSITY: } \\
& \text { RETURNI } 1 / \text { SIN_HALF_PSI ); }
\end{aligned}
$$




## pla optimizing compiler

6450	2	0	KERNEL_FUNCTION_AT_ALTITUDE: PROC(KERNEL_NAME,COS_PSI, raOIUS_ratio) RETURNS(FLOAT BINARY(53)) REDUCIBLE;
6470	3	0	OCL KERNEL Name Char 31) varying
6480	3	0	dCl cos_psì float binary 53 );
6490	3	0	DCL SIN-MSI FLOAT BINARY(53);
6500	3	0	dCL RADIUS_PATIO float binaryis3);
6510	3	0	dCL d float binaryi53)   INITIALI(SGRTI 1-2*RADIUS RATIO*COS PSI+RADTUS RATIO**2)1);
6540	3	0	SElect(kernel_name);
6550	3	1	WHEN 'STOKES', 'HEIGHT_FROH_ANOHALY') GO TO STOKES;
6570	3	1	WHEN 'HEIEHT_FROM_VARIATION' ) gO TO HEIGHT_ FROH VARIATION;
6590	3	1	UHENI 'REIGHT_FROM OENSITY') GO TO HEIGGT_FROM_DENSITY;
6610	3	1	hHENE 'HELGHT_FROM_DISTURBANCE', GO TO HEIGHT FPOM DISTURBANCE;
6630	3	1	WHENI 'VEHINS_MEINESZ' ','DEFLECTIOH_FROM_ANOMALY'I GO TO VEHING_MEINESZ;
6650	3	1	WHENI 'DEFLECTION_FROM_VARIATION') GO TO DEFLECTION FROM VARIATION:
6670	3	1	WHENI DEFLECTION_FROM_DENSITY') 60 TO DEFLECTION_FROM_DENSITY;
6690	3	1	LMEM 'HILEERT', 'DEFLECTION FROM OISTURBANCE' 1 GO TO DEFLECTION FROM DISTURSANCE;
6710	3	1	WHENT 'DISTUPBANCE_FROM_ANOHALY' ' GO TO DISTURBANCE_FRCM_ANOTALY;
6730	3	1	LHENI 'DISTURBARCE_FROM VARIATION') GO TO DISTURBANCE_FROM_VARIATION;
6750	3	1	LHEN( 'DISTURBANCE_FRCM_DENSITY') GO TO OISTURBANCE_FROM_OENSITY;
6770	3	1	END;
6790	3	0	Stokes: height from anomaly:   RETURNTRADIUS_RATIO*I 2/0+1-3*D-RADIUS_RATIOWCOS_PSI* (5+3*LOGI(1-RADIUS_RATIOMCOS_PSI+D $1 / 2$ ) 11 );
6820	3	0	HEIGHT_FROM_VARIATION:- SIGNAL CONDITION( KERNEL_FUNCTION_NOT_KNOUN);
6830	3	0	HEIGHT_FROM_DENSITY: RETURN( 2 *RADIUS_RATIO/D);
6840	3	0	
6850	3	0	DISTURBANCE_FROM_ANOMALY:   RETURNI-RADIUS RATIO**2m( $11-$ RADIUS_RATIO**2 1/D**3+4/D+1-6*0   -RADIUS_RATIO*COS_PSI*(13+6*LOG(II-RADIUS_RATIO*COS_PSI*D)/2))?);
6890	3	0	oISturbance_from_variation:   SIGHAL COHDITIOH(KERNEL_FUNCTION_NOT_KNOWN);
6910	3	0	OISTURBANCE_FROM_DENSITY:   RETURH(-2*RADIUS_RATIO**2*(1-RADIUS_RATID*COS_PSI)/D**3);

plit optimizing compiler
70703 - ENO KERNEL_FUNCTION_AI_ALTITUDE;

NLMAER LEV NT
00007093

7090
昰号品夺
3 OCL SIN＿HALF＿PSI FLOAT BINARY（53）INITIAL（（SQRT（1－COS＿PSI）／2）13； SELECT（KERNEL＿NAME）
WHENI＇STOKES＇，＇HEIGHT＿FROM＿ANOMALY＇）
WHENI＇HEIGHT FROM＿VARIATION＇）
GO TO HEIGHT＿FROM VARIATION；
WHENT＇HEIGHT＿FROM＿DENSITY＇）
GO TO HEIGHT＿FROM＿OENSIMCE＇）
WHEN（＇HEIGHT＿FROM＿DISTURBANCE
GO TO HEEGHT＿FROM＿DISTUREAYCE；
WHENT＇MALKIN＇，＇HEIGHT＿FROY＿OUT＿PART
WHEN＇MALKIN＇，＇HEIGHT－FROH＿OUT＿PARTIAL＇）
GO TO HEIGHT＿FRCH＿OUT＿PARTIAL；
WHEN（＇VENING＿MEINESZ＇，＇DEFLECTION＿FROM＿ANOMALY＇）
GO TO VENING＿MEINESZ；
$G O$ TO VENING＿MEINESZ；
WHENI DEFLECTIOHIFROM＿VAR
WHEN＇DEFLECTIOH＿FROM＿VARIATION＇）
GO TO DEFLECTION＿FROM＿VARIATION；
WHEN（＇OEFLECTION＿FROM＿OENSITY＇？
GO TO DEFLECTION FPOM OENSITY；
WHENI＇HILBERT＇，＇DEFLECTIONEFROM＿DISTURBANCE＇） GO TO DEFLECTION＿FROM＿DISTURBANCE；
WHEN＇＇DISTURBANCE＿FROM＿ANOMALY＇）
GO TO OISTUREANCE FRCM＿AHOMALY；
WHENI＇DISTURBANCE＿FROM＿YARIATION＇）
GO TO DISTURBANCE＿FROM＿VARIATION：
WHENT＇DISTURBAHCE＿FROH＿DENSITY＇）
WHENTCOISTURBARICE＿FROM＿DENSITY
EO TO DISTURBATICE＿FROM＿OENSITY：


LOG（SIN＿HALF＿PSIE（I＋SIN＿HALF＿PSI）
ELSE RETUFNIO）；
HEHT＿FROM＿VARIATION：SIGNAL CONDITIONIKER
HEIGHT＿FROM＿VARIATION：SIGNAL CONDITION（KERNEL＿INTEGRAL＿NOT＿KNOLN ）；
HEIGHT＿FROM＿DEHSITY：RETURN（－4\＃SIN＿HALF＿PSI）；
HEIGHT＿FROM＿DISTURBANCE：SIGNAL CONDITION（KERNEL＿INTEGRAL＿NOT＿KNOWN）；


$\qquad$ o
709020 KERNEL＿INTEGRAL＿INDEF：PROC（KERMEL＿NAME，COS＿PSI）
옹묻
$\stackrel{8}{8}$品号 $\stackrel{\circ}{\sim}$ $\stackrel{\circ}{\sim}$ $\stackrel{9}{n}$ 웄 in $\stackrel{\circ}{\sim}$
$\qquad$ $m$ $\underset{\substack{9 \\ N \\ \hline}}{ }$

0
0
$N$
number lev nt

Fitfilt: procedure(parametersi options(hain) reorder;

PL/I OPTIMIZING COMPILER

MMBER LEV NT
 OEFLECTION_FROM_VARIATIOH:
ELSE RETURN(SGRT(NN*(NN+1))/NN-SMALL_CAP_SPECTRUM(N));
 HILRERT: OEFLECTIOH_FROH_DISTURBAHCE:
PETURN SCRT(AM)
ALL_CAP SPECTRUM: PROC(N) RETURNS(FLOAT BINARY(53));
AP_SPECTRUH:
C(N) RETURNS

$$
\begin{aligned}
& -(\text { NN }-1) \#(N H+2) \#(P! \\
& \text { L_CAP_SPECTRUH: }
\end{aligned}
$$

LLIS: PROC(N) RETUPNS(FLOAT BINARY(53));
EINARY; $\operatorname{BINARY(53)~INITIAL(N);~}$
$\qquad$

8200
8210
8230
8240
8260

8290
8300
8310
8320

8350
8370
8330
8390
8400
8420
PLI OPTIMIZING COMPILER
fitfilt: proceoure(parameters) optionsimain) reorder;


PL/I OPTIMIZING COMPILER FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER;
NUTBER LEV NT
NuTBER LEV NT
10710
1072010740
0 VALUES: PROCEDURE; $S=4-16 * T-24$
END VALUES;

4 - END EGUI_INTEGRAL_PSI_CALC_STOKES;


IF CASE=0 THEN COS_PSI(NNZ)=COS_PSIX;RETURN;
00021290
000011300
00011310
00011320
00011330
00021340
00011350
00011360

PL/I OPIIMIZING COMPILER FITFILT: PROCEDURE(PARAMETERS) OPTIONSIMAIN) REORDER;
3


FITFILT：PROCEDURE（PARAMETERS）OPTIONS（MAIN）REOROER；

PL／I OPTIMIZING COMPILER
NUMEER LEV NT
 OCL KERNEL＿NAME CHAR（31）VARYING；
DCL PSI＿TEMPLATE＿NAME CHAR（31）VARYING； SELECTIKERNEL NAME I；
WHEH：＇STOKES＇，＇HEIGHT＿FROM＿ANOMALY＇）
WHEN（＇HEIGHT FROM VARIATION＇）
GO TO HEIGHT＿FROM＿VARIATION，
WHEN（＇HEIGHT＿FROM OENSITY＇）
GO TO HEIEHT＿FROM＿DENSITY；
WHENI＇HEIGHI FROM DISTURBAHCE＇）
GO TO HEIGHT＿FROM＿OISTURBANCE；
WHENI＇VEMING＿MEINESZ＇＇＇OEFLECTION＿FR HHEN＇DEFLECTION＿FROM VARIATION＇） GO TO DEFLECTION＿FROM＿VARIATION
WHEN（ DEFLECTION＿FROM＿DENSITY＇）

GO TO DEFLECTION＿FROM＿DENSITY；
HHEN＇HILBERT＇，＇DEFLECTIONEFROH＿DIS LHEN（＇HILBERT＇，＇DEFLECTION＿FROH＿DISTURBANCE＇）
END；TO DEFLECTION＿FROM＿DISTURBANCE； STOKES：HEIGHT＿FROM＿ANOMALY：
HEIGHT＿FROM＿VARIATION：

HEIGHT－FROMDENSITY
SELECTI＇PSI＿TEMPLATE＿NAME）；
WHEN（＇DHAAC＇＇RE TURN（101）；
WHEN（＇EQUI＿INTEGRAL＇）RETURN（NRINGS）；
昗落
VENINS＿MEINESZ：DEFLECTION＿FROM＿ANOMALY：
DEFLECTION＿FROM－DENSITY：
SELECT（PSI＿TEMPLATE＿HAME ）；
WHEN（＇PICK＿PICHA＿VYSKOCIL＇）RETURN（23）；
WHEN（＇OHARC＇）RETURN（101）；
WHEN（EQUI＿INTEGRAL＇）RETURN（NRINGS）；
hilsert：
ENO IMAX＿SET；

2470

12500
12510
12530 응

12580 12620 12640 12660

12700

## 12720




12930

$$
\begin{aligned}
& \text { 。 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \&3TIdผ03 SNIZIWIIdO I/7d }
\end{aligned}
$$

attributes ano references

$$
4240,11620,11670
$$

$$
\begin{aligned}
& \text { AUTOMATIC ALIGNED INITIAL BINARY /\# DOUBLE \#/ FLOAT (53) } \\
& 9950,130.0150 .0160
\end{aligned}
$$

$$
0-1-2
$$

AUTOMATIC ALIGNED INITIAL BINARY /* DOUBLE \#/ FLOAT (53) 9950.10140,10250,20160

AUTOMATIC ALIENED BINARY FIXED $(15,0)$
$10170.3,10180.3,10260,10270,10300,10380,10410,10510,10590,10620,10710,10720$ AUTOMATIC ALIENED BINARY /* DOUBLE \#/ FLOAT (53)
11020,11050
/* STATEMENT LABEL CONSTANT :/
11490
12490
BUILTIN
$\mathbf{2 8 8 0 , 2 5 5 0 ,}$
$1880,2550,9610, \% 30,9790,9810,9860,9870,10980,10990,11090,11160$
AUTOMATIC ALIGNED INITIAL BINARY / \# OOUBLE \#/ FLOAT (53) AUTOMATIC ALIGNED INITIAL BINARY A OOUZLE \#/ FLOAT (53)
$5760,6200,6280,6280,6280,6280,6280,6280,6340,6380,6400$

AUTOMATIC ALIGNED INITIAL BINARY /* DOUBLE \#/ FLOAT (53)
7090,7640,7640,7640
(*)/\# PARAMETER \#/ ALIGNED BINARY /* DOUBLE \#/ FLOAT (53)
$9610,9630,9650,9790,9810,9860,9870,9890$
/* PARAMETER \#/ ALIGNED BINARY/* DOUBLE */ FLOAT (53)
$7090,7090,7430,7430$
(\#) /* PARAMETER \#/ ALIENED BINARY /\# DOVBLE \#/ FLOAT (53)
$10230,10240,10250,10260,10270,10360,10380,20470,10570,20590,10680,10710$,

10720 | 0 |
| :---: |
|  |
| -1 |

/* PARAMETER */ ALIGNED BINARY /* DOUBLE */ FLOAT (53)
$5760,5760,5830,6110,6110,6140$
5760,5760,5830,6110,6110,6140
/* PARAMETER */ ALIENED BINARY
P* PARAMETER */ ALIENED BINARY /U DOUBLE */ FLOAT (53)
$6450,6790,6790,6850,6850,6910,6950,6950,6970,6970,7010,7010$ (*) /* PARAMETER */ ALIGNED BINARY /* DOUBLE */ FLOAT (53)
$10980,11090,11110$
(*) AUTOMATIC ALIGNED BINARY /* DOUBLE \#/ FLOAT (53)

$$
\begin{aligned}
& \text { ₹ } \\
& \begin{array}{l}
\text { 岂 } \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ATTRIEUTES AND REFERENCES } \\
& \begin{array}{l}
1730,1760,1830,1840,1880,1970,2050,2050,2060,2080,2130,2130,2150,2150,2180, \\
2230,3620,3670,3670,3960,3960,4000,3,4030,4140,4140,4180,4200,4240,4240
\end{array} \\
& \begin{array}{l}
\text { AUTOMATIC ALIGNED BINARY/* DOUBLE \#/ FLOAT (53) } \\
10380,10590,10710,10720
\end{array} \\
& \begin{array}{l}
\text { 10380,10590,10710,10720 } \\
\text { AUTOMATIC ALIGNED INITIAL }
\end{array} \\
& \begin{array}{l}
\text { AUTOMATIC ALIGNED INITIAL BINARY } \# \# \text { OOUBLE } \# / \text { FLOAT (53) } \\
6450,6790,6790,6790,6830,6850,6850,6850,6850,6910,6970,6970,6970,6970,6970, \\
7030
\end{array} \\
& \begin{array}{l}
\text { (*,*) CONTROLLED ALIENED BINARY / \# DOUBLE */ FLOAT (53) } \\
1650,1650
\end{array} \\
& \begin{array}{l}
\text { AUTOHATIC ALIGNED BINARY/* OOUBLE */ FLOAT (53) } \\
\text { 11050,11060,11070 }
\end{array} \\
& \begin{array}{l}
\text { AUTOMATIC ALIGNED BINARY/* DOUBLE \#/ FLOAT (53) } \\
\text { 10250,10170,IO170.2,10220 }
\end{array} \\
& \begin{array}{l}
\text { AUTOMATIC ALIGNED INITIAL BINARY/* SINGLE } \# / \text { fLOAT ( } 21 .) \\
10,310,510,530,580,3060,3080
\end{array} \\
& \begin{array}{l}
\text { AUTOHATIC ALIGNED BINARY/* DOUBLE } \# \text { (FLOAT (53) } \\
10160.10170 .10180 .2,10220
\end{array} \\
& \begin{array}{l}
\text { /" STATEMENT LABEL CONSTANT */, } \\
5620,5640,5660,5670.2
\end{array} \\
& \begin{array}{l}
\text { /n statement label constant "/ } \\
9430
\end{array} \\
& \begin{array}{l}
\text { / StATEMENT LabEl CONSTANT "/ } \\
12660
\end{array} \\
& \begin{array}{l}
\text { /* STATEMENT LABEL CONSTANT */ } \\
12170
\end{array} \\
& \begin{array}{l}
\text { /* STATEMENT LABEL CONSTANT */ } \\
860
\end{array} \\
& \begin{array}{l}
\text { /* STATEMENT LABEL CONSTANT */ } \\
5990
\end{array} \\
& \begin{array}{l}
\text { \% STATEMENT Label Constant \%/ } \\
53800
\end{array} \\
& \begin{array}{l}
\text { /* STATEMENT LABEL CONSTANT */ } \\
7310
\end{array} \\
& \text { d3lIdwos onizimildo I/ld } \\
& \text { DCL NO. IDENTIFIER } \\
& \begin{array}{l}
\text { x } \\
\text { 最 } \\
\text { 揖 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { D } \\
\text { D_ALPHA }
\end{array} \\
& \begin{array}{l}
\text { n } \\
\text { a } \\
0
\end{array} \\
& \text { © } \\
& \text { DAMPING_POWER } \\
& 8
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { DEFLECTION_FROM_DENSITY } \\
\text { DEFLECTION_FROM_DENSITY }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { DEFLECTION_FROM_OENSITY } \\
& \text { DEFLECTION_FROM_DENSITY } \\
& \text { DEFLECTION_FROM_DENSITY }
\end{aligned}
$$

> | $\circ$ |
| :--- |
| -8 |

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{\circ} \\ & \end{aligned}$
$\begin{aligned} & 8 \\ & \underset{\sim}{8} \\ & \underset{\sim}{0}\end{aligned}$
8770
品
5650
$\begin{aligned} & \circ \\ & 0\end{aligned}$

$$
\begin{aligned}
& \text { attributes and references } \\
& 7920 \text { statement label constant */ } \\
& \text { /* statement label constant */ } \\
& \begin{array}{l}
\text { /" statement label constant */ } \\
13100
\end{array} \\
& \text { /4 STATEMENT LABEL CONSTANT \#/ } \\
& \begin{array}{l}
\text { /M STATEMENT LabEL CONSTANT */ } \\
12190
\end{array} \\
& \text { /* STATEMENT LABEL CONSTANT \#/ }
\end{aligned}
$$

/* StATEMENT LabEL CONSTANT
13120
/* STATEMENT LABEL CONSTANT */
6010
/* STATEMENT LABEL CONSTANT *//
7940 /6 STATEMENT LABEL CONSTANT \%/
/n statement label constant */
/* Statement label constant */,
7330 /* STATEMENT LABEL CONSTANT \#/
12680 /* STATEMENT LABEL CONSTANT

8630 | 9410 |
| :--- |
| 940 |
| statement label constant */ | /4 STATEMENT Label CONSTANT */

7900
 TY DEFLECTION_FROM_OENSITY dEFLECTION_FROM_DENSITY


 OEFLECTION_FROH_OISTURBANCE
 DEFLECTION_FROM_DISTURBANCE
 DEFLECTION_FROM_DISTURBANCE DEFLECTION_FROM_DISTURBANCE DEFLECTION_FROM_DISTRRBANCE

OEFLECTION_FROM_VARIATION OEFLECTION_FROM_VARIATION

OEFLECTION_FRON_VARIATION

 12400
$\stackrel{\square}{\square}$ $\circ$
0
0
8
8
8 $\stackrel{0}{\circ}$
©
-

5670 $\underset{\infty}{\circ}$ 7660 $\underset{\sim}{\text { ® }} \underset{\sim}{\circ} \underset{\substack{0 \\ \infty}}{\circ}$ $\underset{\infty}{0}$ 8210 | O |
| :--- |
| 8 |
|  |

44
page

FITFILT:
pL/s optimizing compiler
13160 DEFLECTION_FROM_VARIATION
deflection＿from＿variation
oeflection＿from＿variation
deflection＿from＿Variation
DEFLECTION＿FROM＿VARIATION
DEFLECTION＿FROM＿VARIATION DEG＿SIG＿OUTPUT＿RESID
 DEg＿var＿INPUT

DEG＿VAR＿OUTPUT＿RESID＿CUM oegtorad
oISTURBANCE＿FROH＿ANOMALY

oISturbance＿from＿anotaly

i
흥
13160
ํㅡㅇ
品
蓪
5630
宕
$\underset{-1}{9}$
$\stackrel{8}{3}$
5160
$\stackrel{8}{\underset{\sim}{7}}$
$\stackrel{8}{9}$
8
－
0
$\stackrel{0}{\infty}$
in
in


$$
\begin{aligned}
& \text { PAGE } 46
\end{aligned}
$$

$$
\begin{aligned}
& \text { ช3าIdW0J } \operatorname{sNIZIWILdO} \text { I/רd } \\
& \text { ocl no. identifier } \\
& \text { attributes and references } \\
& 12230 \\
& \begin{array}{l}
\text { /* statement label constant */ } \\
\text { b710 }
\end{array} \\
& \begin{array}{l}
\text { /* statement label constant */ } \\
6730
\end{array} \\
& \begin{array}{l}
\text { /* Statement label constant */ } \\
9490
\end{array} \\
& 9490 \\
& \begin{array}{l}
\text { (*) CONTROLLED ALIGNED BINARY /* DOUBLE */ FLOAT (53) } \\
\text { 1920,1920,3670,4610.2,46S0,4710,4710,4720,4720,4730,4770,4770,4810,4810, }
\end{array} \\
& \begin{array}{l}
1920,1920,3677,4687,2,4650480,4710,4720,4720,41,4940 \\
4820,4820,4870,4870,4880,4880,4890,4890,4910,4910,4940
\end{array} \\
& \begin{array}{l}
\text { /* statement label constant */ } \\
11530
\end{array} \\
& \begin{array}{l}
\text { ENTRY RETURNSIDEEIMAL /M SINGLE */ FLOAT (6)1 } \\
9650
\end{array} \\
& \text { Entry returnsidecimal /* single */ float (6)) } \\
& \begin{array}{l}
\text { /* STATEMENT LABEL CONSTANT */ } \\
11510
\end{array} \\
& \text { (*)/* IN PREV IN INTEGRAL_PNI_INOEF */ CONTROLLED ALIGNED BINARY } \\
& \begin{array}{l}
\text { /* OOSBLE */ FLOAT (53) } \\
4230,4290,4310
\end{array} \\
& \text { (*) /* IN NEXT IN INTEGRAL_PN__INDEF */ CONTROLLED ALIGNED BINARY } \\
& \begin{array}{l}
\text { (*)/* IN NEXT IN INTEGRA } \\
\text { /* DOUBLE */ FLOAT (53) } \\
4260,4290,4310,4380,4440
\end{array} \\
& \begin{array}{l}
\text { BUILTIN } \\
11020,11160
\end{array} \\
& \begin{array}{l}
\text { aUTOMATIC ALIGNED INITIAL BINARY /* DOUBLE */ FLOAT (53) } \\
10850,11030
\end{array} \\
& \begin{array}{l}
\text { ENTRY RETURNS(BIMARY/* DOUBLE */ FLOAT (53)) } \\
\text { 11020,11050,11210 }
\end{array} \\
& \begin{array}{l}
\text { ENTRY RETURNSIBIMARY /* OOUBLE */ FLOAT (53)) } \\
11050
\end{array} \\
& \text { (*) aUtomatic aligned binary /* Single \#/ float (21) } \\
& 3500,5050 \\
& \text { oIsturbance_from_Variation } \\
& \text { DISTURBANCE_FROH_VARIATION } \\
& \text { disturbance_from_variation } \\
& \text { ox } \\
& \text { equi_integral_psi_calc_stokes } \\
& \text { EQUI_INTEGRAL_PSI_CALC_MT_DEN } \\
& \text { EquI_SINE_DIFF } \\
& \begin{array}{l}
\text { even } \\
\text { even }
\end{array} \\
& \text { EXP } \\
& \text { FACTOR } \\
& \text { FCN } \\
& \text { FCN_deriv } \\
& \text { figure_of_merit } \\
& \text { - } \\
& 13710 \\
& 9950 \\
& 10850 \\
& 11580 \\
& 1220 \\
& 1220 \\
& 10950 \\
& 1430
\end{aligned}
$$

FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER;

PLI OPTIMIZING COMPILER
DCL NO. IDENTIFIER
FIXED_FORMAT
FIXED_FORMAT
floAt
FLOAT_FORMAT
苞
咢
HEICHT_COMMO


HEIGHT_FROM_DENSITY
hEIGHT_FROH_DENSITY
HEIGHT_FROM_DENSITY
HEIGHT_FROM_DENSITY
HEIGHT_FROM_DENSITY
HEIGHT_FROH_DENSITY
HEIGHT_FROH_DENSITY
HEIGHT_FROM_OISTURBANCE

 12290
6830 7500

9550 8770 8070 $\stackrel{\stackrel{\circ}{\sim}}{\stackrel{\circ}{\sim}}$ | 앙 |
| :--- |
| © |

7510

$$
\begin{aligned}
& \$ \\
& \text { 㮸 } \\
& \text { FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER; }
\end{aligned}
$$

height＿from＿oisturbance
height＿from＿disturbance
height＿from＿oisturbance
height＿from＿disturbance
height＿from＿disturbance
height＿from＿out＿partial
height＿from＿out＿partial
height＿from＿out＿partial
height＿from＿out＿partial
height＿from＿out＿partial
height＿from＿variation
height＿from＿variation
$\begin{array}{ll}\dot{\text { 욜 }} \\ \text { 뭉 }\end{array}$
웅
$\stackrel{\circ}{\circ}$
$\underset{\sim}{\sim}$
6180
프N
号 읏 品
in oir
9550
$\stackrel{\substack{N \\ \sim}}{\stackrel{\circ}{N}}$
12290
PAGE 49
FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER;
pl/I OPTIMIZING COMPILER

## attributes and references

/M STATEMENT LABEL CONSTANT \#/
5870
/ STATEMENT LABEL CONSTANT \#/
5280
(*) 52
/*550 Statement label constant */
/* STATEMENT LABEL CONSTANT */
6570
6570
/* statement label constant */
(*)/* IN INTEGRAL_PNL_INDEF */ CONTROLLED ALIGNED BINARY/* DOUBLE */
FLOAT (53)
$4120,4120,4240,4300,4370,4380,4440$
$4120,4120,4240,4300,4370,4380,4440$
AUTOMATIC ALIGNED BINARY FIXED 115,
AUTOMATIC ALIGNED BINARY FIXED $(15,0)$
$13210,13210,13220,13220,13220,13230,13230,13230,13240,13240,13240,13250$,
$13250,13250,13270,13270,13280,13300,13300,13310$
AUTOMATIC ALIGNED BINARY FIXED $(15,0)$
$10300,10300,20310,10360,10410,10410,10420,10470,10510,10510,10520,10570$,
$10620,10620,10630,10680$ $10620,10620,10630,10680$
AUTOMATIC ALIGNED BINARY
AUTOMATIC ALIGNED BINARY FIXED $(15,0)$
$11010,11010,11020,11030,11030,11050,11$
ALIOMATIC ALIGNED BINARY FIXED (15,0)
$1880,1880,1880,1890,2040,2040,2050,2050,2050,2060,2060,2080,2080,2120,2120$, $1880,1880,1880,1890,2040,2040,2050,2050,2050,2060,2040,2080,2080,2120,2120$,
$2130,2130,2130,2150,2150,2150,2150,2390,2390,2400,2400,2400,2450,2450,2470$,
$2490,2490,2510,2520,2530,2530,2540,2540,2550,2550,2580,2580,2810,2810,2840$, 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$N$
0
0
0
0
0
0 $2960,2960,2990,2990,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000$,
$3000,3000,3000,3000,3000,3000,3060,3060,3080,3080,3600,3600,3620,3620,3660$, $3660,3670,3670,3670,3690,3690,3710,3720,3720,3900,3900,3900,3900,3900,3940$,
$3940,3940,3940,3940,3960,3960,3960,3960,4000,4000.2,4000.3,4000,3,4020,4020$, $3940,3940,3940,3940,3960,3960,3960,3960,4000,4000.2,4000,3,4000.3,4020,4020$,
$4020.2,4020,2,4030,4030,4030,4030,4080,4080,4080,4080,4080,4120,4120,4120$, $4140,4140,4140,4140,4170,2,41403,4170.3,4180,4180,4180,4190.2,4190,2$,
$4190.3,4190.3,4200,4200,4200,4200,4230,4240,4240,4240,4240,4260,4260,4260$,
$4290,4290,4300,4300,4310,4310,4310,4310,4370,4370,4380,4380,4390,4390,4390$,
 $9650,9860,9860,9870,9870,11580,11580,11600,11610,11620,11620,11630,11630$,
$11650,11650,11660,11670,11670,11680,11680,11710,11710,11720,11730,11730$, $11650,11650,11660,11670$
$11770,11770,11780,11790$
/* Parameter */ aligned binary fixed ( 15,0 )

\section*{IOENTIFIER

HEIGHT_FROM_VARIATION
HEIGHT_FROM_VARIATION
hEIGHT_FROM_VARIATION


$\underset{\underset{\sim}{w}}{\stackrel{w}{\mathbf{w}}}$

H

\section*{OCL NO.

\section*{OCL NO. <br> 6140 <br> 恐 <br> 8770 <br> | O |
| :---: |
| $\infty$ |
| $\infty$ | <br> 8060}

1220
13030
10000

0
8
0
0
1

1010
PAGE 50


## attributes and references

11580,11710,11770
AUTOMATIC ALIGNED BINARY FIXED ( 15,0 )
AUTOMATIC ALIGNED BINARY FIXED $(15,0)$
$850,880,890,970,970,970,1650,1650,1650,1650,1650,1650,1650,1650,1650,1730$,
$1760,1780,1880,1910,2040,2120,2390,2450,2490,2810,2850,2990,3600,3660,3690$,
$1760,1780,1880,1910,2040,2120,2390,2450,2490,2810,2850,2990,3600,3660,3690$,
5090

> /* PARAMETER */ ALIGNED BINARY FIXED $(15,0)$ $13210,13270,13300$ ENTRY RETURNS(BINARY FIXED $(15,0))$
850
autom
1890,
AUTOMATIC ALIGNED BINARY FIXED 115,01
$1890,1910,2850,2850,2990,3000,3060,3060,3080,3080,3600,3620,3660,3670$ ENTRY RETURNS (BINARY FIXED (15.0))
3640
3640

$$
\begin{aligned}
& \text { AUTOMATIC ALIGNEO BINARY /* DOUBLE */ FLOAT (53) } \\
& 21000,11020
\end{aligned}
$$

(*) AUTOMATIC ALIGNED BINARY /* DOUSLE \#/ FLOAT (53)
2130,2150,2290 2840,3940,3960
ENTRY RETURNSIBINARY FIXED (15,0))
2830 ENTRY RETURNS (BINARY FIXED $(15,0))$
2950
(*)CONTROLLEO /* STRUCTURE */ 1650,1650 AUTOMATIC ALIGNED BINARY FIXED $(15,0)$
11040,11040
\&3าIdWOS 9NIZIWIIdo I/7d
DCL NO. IDENTIFIER
${ }_{i=1}^{x}$

$$
12470 \text { IMAX_SET }
$$

(*) automatic aligned bithary /* double */ float (53)
(*) CONTROLLED ALIGNED BINARY /* DOUBLE \#/ FLOAT (53)
$1650,1650,2960,4120,4140$
ENTRY RETURNSIBINARY FIXED ( 25,0$)$ )
4090,4110
AUTOMATIC ALIGNED BINARY FIXED $(155$
$1950,1950,1970,2180,2200,2210,2400$ $1950,1950,1970,2180,2200,2210,2400,2530,2530,2540,2540,3500,3550,3720,3720$,
$5020,5020,5020,5050,5050,5050,5100,5100,5100$


$$
23010 \quad \text { Imax }
$$


㔺

 INCREMENT_CALC INT
INTEGRAL_KERNEL INTEGRAL_PN INTEGRAL_PN_CALC INTEGRAL_PN1 INTEGRAL_PN1_CALC INTEGRAL_FN1_INDEF INTEGRAL_PNI_INDEF_CALC $\stackrel{\text { ロ }}{\stackrel{\text { ® }}{\leftrightarrows}}$
ITERATION $\begin{array}{ll}\circ \\ \stackrel{\circ}{\circ} & \stackrel{\sim}{7} \\ 0 & \end{array}$ 3890 $\stackrel{O}{\mathrm{~N}}$ 4070 $\stackrel{\circ}{0}$ 8
$\stackrel{0}{5}$
1
PAGE 51
PL/I OPTIMIZING COMPILER
IDENTIFIER
trerminitermin$\underset{5}{x}$Jmax_SETjmaxaxaxJRJR
$K$KERNEL



90
10000
10000
1010
11420
13020
860
12950
910
11440
5210
1080 KERNEL_FUNCTION
KERNEL_FUNCTION_AT_ALTITUDE
KERNEL_FUNCTION_AT_SURFACE KERNEL_FUNCTION
KERNEL_FUNCTION_AT_ALTITUDE
KERNEL_FUNCTION_AT_SURFACE
N
pl/i optimizing compile page
fitfilt: procedure(parameters) options(main) reorder:
pl/i optimizing compiler

$$
\begin{aligned}
& \text { }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { AUTOMATIC UNALIGNED INITIAL CHARACTER (31) VARYING } \\
10,310,580,840,85 C, 890,1730,1760,2060,2080,2130,2130,3170,3180,3180,3210,
\end{array} \\
& \begin{array}{l}
\text { AUTOMAIIC UNALIGNED INITIAL CHARACTER (31) VARYING } \\
10,310,580,840,850,890,1730,1760,2060,2080,2130,2130,3170,3180,3180,3210, \\
3240,3330,3330
\end{array} \\
& \text { /* parameter */ unaligned character (31) varting } \\
& \begin{array}{l}
7160 \\
\text { /* PaRameter */ unaligned character ( } 31 \text { ) Varying } \\
23050
\end{array} \\
& \text { /* Parameter */ unaligneo chapacter (31) varting } \\
& 7770 \\
& \begin{array}{l}
\text { 1* PARAMETER */ UNALIGNED CHARACTER (31) Vartins } \\
12020
\end{array} \\
& \begin{array}{l}
\text { /* parameter */ unaligned character (31) varying } \\
6540
\end{array} \\
& \begin{array}{l}
6540 \\
/ \times \text { PARA }
\end{array} \\
& \begin{array}{l}
\text { /* parameter */ unaligned character (31) varying } \\
5250
\end{array} \\
& \begin{array}{l}
\text { /* PARAMETER */ UNALIGNED CHARACTER (31) VARYING } \\
12530
\end{array} \\
& \underset{\substack{\text { ENTRY } \\
1780}}{\text { RETURNS (BINARY FIXED }} \mathbf{( 1 5 , 0 )} \\
& \text { generic } \\
& 1730,1760 \\
& \text { oll no. identifier }
\end{aligned}
$$

is
亗



#### Abstract

\section*{dCL no. identifyer}


7าIdWOD 9NIZIWIIdO IMd
FITFILT: PROCEDUPE(PARAMETERS) OPTIONSCMAINI REORDER;

54

binary /" Single \#/ float (21),ALIGMED binury fixed (15,0), aligned bimary FIXED $(15,0)$,ALIGNED BINARY FIXED $(15,0)$ RETURNSIBIMARY FIXED ( 15,01$)$ 4600

## BUILTIN 4210.10100

/W PARAMETER (W/ ALIENEO BIMARY FIXEO (15.0)
8290
/W PARAMETER \#/ ALIGNED BINARY FIXED (15,0)
$8440,8770.8770 .8870 .8870$
AUTOMATIC ALIENED BIMARY FIXED $\mathbf{1 1 5 , 0 1}$, $2750,2750,2760,2850,2850,3000,3060,3060,3080,3000,3170,3170,3180,3100,3160$,
$3210,3210,3240,3240,3260,3330,3330,3330,3330,3330,3330,3330,3330,3330,3990$,


## AUTOMATIC ALIENEO BINARY FIXED $(15,0)$ $12930,11930,11940,11940$

AUTOMATIC ALIGNED BYNAFT FIXED $(15,0)$
$10120,10130,10140,10220,10240,10620,10630$
/A PARAMETER \#/ ALIENED BINARY FIXED ( 15,0 )
/" PARAMETER M/ ALIGNED BINARY FIXEO (15,0)
$5160,5540,5680$
C" PARAMETER $w /$ ALIENED BINARY FIXED (15,0)
$7710,8040,8040,8060,8090,8110,8110,8130,8180,8160,0200,0210,8230,0240,8260$ AUTOMATIC ALIENED INITIAL BINARY FIXED $(15,0)$
$10,310,580,970,970,1640,1860,1920,2750,3510,4560,4600$
AUTOMATIC ALIGNED INITIAL BINARY FIXED $(15,0)$
$10,1630,1640,2750$ AUTOMATIC ALIGNED AUTOMATIC ALIGNED BINARY /4 DOURLE \#/ FLOAT (53)
$2760,2960,2960,3060,3060,3080,3080,3940,4030,4030,4030,4200,4310,4310,4310$,
$4310,4310,4310,4310,4450,4450,4450,4450,4450,4450,4450$ AUTOMATIC ALIGNED INITIAL BINARY/* DOUBLE */ FLOAT (53)
$8290,8320,8320,8320,8320$ aUTOMATIC ALIGNED INITIAL BINARY /* DOUBLE */ FLOAT (53) AUTOMATIC ALIGNED INITIAL BINARY /A DOUBLE M/ FLOAT (53)
$5160,5560,5570,5570,5570,5570,5690,5700,5710,5710,5710,5710$

## dCL no. toentifier

10030 | 8 |
| :--- |
| 0 |
| 0 | 8

 8 O

$$
\begin{aligned}
& \text { 出 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PL/I OPTIMIZING COMPILER }
\end{aligned}
$$

PAGE 56

$$
\begin{aligned}
& \text { FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER; } \\
& \text { attributes and references } \\
& \begin{array}{l}
\text { / DOVBLE */ FLOAT (53) } \\
4370,4390,4430,4450
\end{array} \\
& \begin{array}{l}
\text { (*) AUTOMATIC ALIGNED BINARY/* SINGLE \#/ FLOAT (21) } \\
4720,4730,4740,4770
\end{array} \\
& \begin{array}{l}
\text { (*) AUTOMATIC ALIGNED BIMARY /* SINGLE */ FLOAT (21) } \\
4820,4830,4880,4890
\end{array} \\
& \begin{array}{l}
\text { /a papaheter */ unaligned character (100) varying } \\
500,510
\end{array} \\
& \begin{array}{l}
\text { (*,*) COHTROLLED ALIGHED BINARY/\# SINGLE \#/ FLOAT (21) } \\
1920,1920,2850,3000,3060,3060,3080,3080,4530,4580,4600
\end{array} \\
& \text { 1920,1920,2850,3000,3060,3060,3000,3000,4530,4580,4600 } \\
& \begin{array}{l}
\text { AUTOMATIC ALIGNED INITIAL BINARY/* DOUBLE } \# / \text { FLOAT (53) } \\
10,10,1880,2580,4240,11630,11670,11680,11730
\end{array} \\
& \begin{array}{l}
\text { aUTOMATIC ALIGNED INITIAL BINARY FIXED } 125,0) \\
10,310,580
\end{array} \\
& \begin{array}{l}
\text { (4) AUTOMATIC ALIGNED BINARY /* DOUBLE */ FLOAT (53) } \\
2850,4000.2,4020,4020.2,4030
\end{array} \\
& \begin{array}{l}
\text { ENTRY RETURNSIDECTMAL// SINGLE */ FLOAT } 1611 \\
3910,3930
\end{array} \\
& \begin{array}{l}
\text { (*) AUTOMATIC ALIGNED DINARY/* DOUBLE */ FLOAT (53) } \\
3940,3940,4000.3,4020.2,4030
\end{array} \\
& \begin{array}{l}
\text { (\#) AUTOMATIC ALIGNED BINARY/* DOUBLE */ FLOAT (53) } \\
3940,3940,4000,4020,4030
\end{array} \\
& \begin{array}{l}
\text { (*) CONTROLLED ALIGNED BINARY/* DOUBLE \#/ FLOAT (53) } \\
1650,1650,3000,4170.3,4180,4190.2,4190.3,4200,4260,4310,4390,4450 \\
\text { (*) CONTROLLED ALIGNED BINARY /" DOUBLE } \% / \text { FLOAT (53) }
\end{array} \\
& \begin{array}{l}
\text { (*) CONTROLLED ALIGNED BINARY// DOUBLE } / \text { / FLOAT (53) } \\
1650,1650,4180,4190.3,4200
\end{array} \\
& \begin{array}{l}
\text { (*) CONTROLLED ALIGRED BINARY / DOUBLE / FLOAT (53) } \\
1650,1650,4170.2,4190.2,4200
\end{array} \\
& \begin{array}{l}
\text { AUTOMATIC ALIGNED INITIAL BINARY FIXED }(15,0) \\
10,310,580,2190,2360,2600,2650,3330,3330,3330,3330,3330,3510,4630,4740,4830, \\
4940,5000
\end{array} \\
& \begin{array}{l}
\text { * PARAMETER \#/ ALIGNED BINARY /* DOVBLE */ FLOAT (53) } \\
\text { 11160.11160 }
\end{array}
\end{aligned}
$$

a37LdHOS SNIZIHILdO $1 / 7 d$
DCL NO. IDENTIFIER
4530 OVERRATIO_FIEHT
parameters

 z PN_CALC
PN_NEXT
PN_PREY PN_PREY
PNI PNI_NEXT

水落 | 8 |
| :--- |
| 5 |
| 5 | 8 요 m i웅

$\underset{-}{9}$ $\stackrel{8}{8}$
$\stackrel{8}{m}$
$\underset{7}{9}$ 9
9
1200

## C N

11150

.

orlva'sntava	0059
TEISd	0506
E2ISd	0206
rotisd	0016
0432ISd	09801
0832ISd	002
301aISd	0226
	01521
$3 \mathrm{WVN}^{-31 \% 7 d W 31-15 d ~}$	02 T
$3 W W N^{-31 \% 7 d W 31-55 d ~}$	$0<68$
ISd	00251
15d	0nOt
ISd	06807
d3talinalit	- 20
837xawo smizin	do 1/7d



PL/I OPTIM	IZING COMPILER
OCL NO.	IDENTIFIER
8490	RADIUS_RATIO
190	RADIUS_RATIO
3840	RADIUS_RATIO_CALC
50	radtodeg
1370	RELATIVE_RESIDUAL
1360	RESID_SPECTRUM
1270	RING_FACTOR
5220	ROVERGSQ
20020	s
260	SAVE_RESULTS_SWITCH
********	SIEN
********	SIN
5800	SIN_HALF_PSI
.7130	SIN_HALF_PSI
6490	SIN_PSI
1060	SIN_PSI

page 59 050,2050,2960, 3060,3310,3320,6950,6950,7010,7010,8200,8230,8240,0260,8320 $2050,2050,2960,3060,3310,3320,6950,6950,7010,7010$
$5800,5810,6510,7130,7140$ / STATEMENT LABEL CONSTANT */
5850
/* statement label constant */
5260 8850 statement label constant */ 12 statement label constant */
7 mitatement label constant \#/
/n statement label constant */
12030
/4 statement label constant */
7780
/\# statement label constant */
9290
/4. statement label constant \#/

EXTERNAL FILE
$310,1030,1850$
ENTRY RETURNS(BINARY /* DOUBLE */ FLOAT (53))
$8200,8230,8240,8260$
7780
Fitfilt: proceduretparameters) options(main) reorder:

> ATtRIBUTES AND REFERENCES ENTRY RETURNS(BINARY /* DOUBLE */ FLOAT (53)) $8200,8230,8240,8260$ AUTOMATIC ALIGNEO BINARY /* DOUBLE */ FLOAT (53) $2770,2840,2840,2960,2960,3170,3330$

5850 Lith
stat
8 Page
FITFILT: PROCEOURE(PARAMETERS) OPTIONSIMAIN) REORDER;
$10610,10660,10660,10680,10780,10780,10790,10790,10790,10790,10790,10790$,
$10800,10800,10800,10800,10800$ $10800,10800,10800,10800,10800$
BUILTIN

ATTRIBUTES AND REFERENCES
,

## EXTERNAL FILE OUTPUT 1970

AUTOMATIC UNALIGNED INITIAL CHARACTER (10) VARYING
$10,310,580,1910,2980,3600,3650$
AUTOMATIC ALIGNED BINARY FIXED $(15,0)$
$1910,1920,1920,1920,4520,4570,4600,4610,4700,4800$
/* STATEMENT LabEL CONSTANT */
7270
/* STATEMENT LABEL CONSTANT */
12620
/* STATEMENT LABEL CONSTANT \#/
5950
/* statement label constant */
a3lIdwos onizintido Ind
OCL NO. IDENTIFIER

0
$\mathbf{0}$
$\mathbf{0}$
-1

0
0
0
0
0

$\begin{array}{ll}\text { 응 } \\ \stackrel{\circ}{-} & \text { 욱 } \\ -1\end{array}$
$\stackrel{0}{0}$
$\stackrel{\circ}{\circ}$
$\stackrel{8}{-}$

on
m


6280

8
$\mathbf{0}$

837TdWOS ONIZTWILdO IMT

## IDENTIFIER DEL NO.

VENING_MEINESZ
VENING_MEINESZ
VENING_MEINESZ
VENING_MEINESZ
VENING_MEINESZ
VENING_MEINESZ





 W $\circ$
$\vdots$ 8770 6950 13160
8180 5610
10020
A370
10020
1340 480 490 1330
FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER;

$$
\begin{aligned}
& \text { AUTOMATIC ALIGNEO GINARY /* DOUBLE */ FLOAT (53) } \\
& 10340,10450,10550,10660,10790
\end{aligned}
$$

ENTRY RETURNSIBINARY /* DOUBLE

$$
\begin{aligned}
& \text { ENTRY RETURNSIBINARY /* DOUBLE */ FLOAT (531) } \\
& \text { BO90 }
\end{aligned}
$$

(*) AUTOMATIC ALIGNED BINARY /* SINGLE */ FLOAT

$$
\begin{aligned}
& \text { AUTOMATIC ALIGNED BINARY /* DOUBLE */ FLOAT (53) } \\
& 10310,10340,10420,10450,10520,10550,10630,10660
\end{aligned}
$$

$$
\begin{aligned}
& \text { (*) AUTOMATIC ALIGNED BINARY /* SINGLE */ FLOAT (21) } \\
& 3240,3260,3330,4580,4590
\end{aligned}
$$

$$
\begin{aligned}
& \text { AUTOMATIC ALIGNED INITIAL BINARY /* SINGLE */ FLOAT (21) } \\
& 10,310,510,530,580,3240,3260
\end{aligned}
$$

$$
\begin{aligned}
& \text { AUTOMATIC UNALIGNED INITIAL CHARACTER ( } 6 \text { ) VARYING } \\
& 10,310,510,530,580,3230
\end{aligned}
$$

$$
\begin{aligned}
& \text { (*,1) AUTOMATIC ALIGNED BINARY /* SINGLE \#/ FLOAT (21) } \\
& 4590,4600,4610.2
\end{aligned}
$$

$$
\begin{aligned}
& \text { AUTOMATIC ALIGNED EINARY /* OOUBLE */ FLOAT (53) } \\
& 10220,10290,10310,10420,10520,10630
\end{aligned}
$$

$$
\text { PAGE } 61
$$

$$
\begin{aligned}
& \text { (*) CONTROLLEO ALIGNED BINARY /* DOUBLE \#/ FLOAT (53) } \\
& 1920,1920,3620,4710,4710,4710,4710,4720,4720,4730,4730,4810,4810,4820,4820, \\
& 4910,4910
\end{aligned}
$$



\footnotetext{



$\begin{aligned} & \frac{2}{3} \\ & \frac{3}{8} \end{aligned}$	$\begin{aligned} & \text { sa } \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { z } \\ & \text { a } \\ & \text { 苃 } \end{aligned}$	$\begin{gathered} \stackrel{-}{2} \\ \mathbf{n}^{\prime} \\ \underset{\sim}{\prime} \end{gathered}$	$\begin{aligned} & \text { H } \\ & n^{\prime} \\ & \mathbf{n}^{\prime} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \frac{1}{1} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \check{2} \\ & \text { og } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0^{\prime} \\ & 0_{0}^{\prime} \end{aligned}$	$\stackrel{3}{2}$			INTEGRAL＿KERNEL	z 2 a 2 2 2			$\begin{aligned} & \underset{\text { x }}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\text { X }}{\mathbf{\Sigma}} \end{aligned}$	$\begin{aligned} & x \\ & \underset{y}{\Sigma} \end{aligned}$	$\xrightarrow{\text { 山 }}$	
$\stackrel{\circ}{\circ}$	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\infty}{7} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\alpha} \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { 웅 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { © } \\ & \text { O } \\ & \hline \mathbf{1} \end{aligned}$	$\underset{\sim}{i}$	$\begin{aligned} & \text { © } \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ì } \\ & \text { N } \end{aligned}$	$\stackrel{8}{0}$	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \end{aligned}$	$\underset{\sim}{\mathbf{O}}$	$\begin{gathered} \text { O } \\ \text { 心 } \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{\circ}{\tilde{H}} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{m} \end{aligned}$	$\stackrel{O}{0}$	O   -8

Page 63


fitfilt: procedure(parameters) optiowstmin) reorder;
pl/t optinizing compiler

fitfilt：proceduretparameters）optionsituin）reorder；

$$
\begin{aligned}
& \text { DEG VAR INPUT }
\end{aligned}
$$




variable storage map



PL／I OPTIMIzing COHPILER
identifier

JMAXPAAX
KERNEL＿ORDER

물․․․

PRINT＿LEVEL

psizeso patio
VARIABLES


준 즐
줄준준
PI
DEG＿VAR＿OUTPUT＿RESID
DEG＿VAR＿OUTPUT＿RESID＿CUM EGGAR OUTPUT－RESID＿CUM
ESIG＿OUIPUT－RESID
 VARMAX
SPECTRUM
ALPMA＿SUMR
ALPMA＿IfF2
㜽造范


KERNEL_FUNCTION_AT_ALTITUDE   KERNEL_FUNCTION_at_Altitude   KERNEL_INTEGRAL_INDEF   KERHEL_INTEGRAL_TMEF   KERHEL_SPECTRUM_AT_SURFACE SMALL_CAP_SPECTRUM wallis























FITFILT: PROCEDURE(PARAMETERS) OPTIONS(MAIN) REORDER;

## 




## 



$\qquad$

$$
\begin{aligned}
& \text { L } \\
& \text { PAGE } 67 \\
& \begin{array}{l}
\text { optimizing compiler fitfilt: procedure(paraheters) optionsimain) reorder; } \\
\text { 'nolist' option has caused static map listing to be suppressed }
\end{array}
\end{aligned}
$$

PAGE 68
page

## APPENDIX D

## EXPLANATION OF THE COMPREHENSIVE FILTER DESIGN COMPUTER PROGRAM

FITFILT is the name of the comprehensive spherical filter design program for determining optimal template parameters of discrete summation geodetic transformations. Its major inputs are listed in Table D-l with short explanations of the possible choices. All inputs to the program have default values, so that at run-time the user only needs to specify those inputs which are special to the run.

The main portion of FITFILT consists of only nine pages of code (lines 10-3800). The remaining twenty-nine pages of code are listings of subprocedures (lines 3840-13380) nested within FITFILT.

After reading the inputs (line 310), printing them (line 580), and calculating a few preliminary parameters (lines 840-920), the program enters a BEGIN block in which storage is automatically allocated for a large number of arrays whose size depends upon the inputs and the preliminary parameters. Establishment of the initial template parameters begins at line 1720.

The outermost loop in the program is on the iteration number ITER, beginning at line 1950 and concluding at line 3760 . At the beginning of this loop a large number of variables which depend upon the current template parameter values (at this iteration) are initialized, between lines 2030 and 2710.

The second outermost loop is on the spherical harmonic degree $N$, beginning at line 2750 and concluding at line 3460 . At each pass through this loop the theoretical, actual, and residual spectrum of the transformation is calculated, as well as its partial derivatives.

The third outermost loop is on the ring or ring boundary index $I$, beginning at line 2810 and concluding at line 3130. At each pass the contribution of the respective ring to the spectral values is evaluated. The recursions on the integrals of the associated Legendre functions are
performed here (one for each ring). The partial derivative of the spectrum with respect to each ring radius is also calculated.

After the loop over all spherical harmonic degrees has been accomplished (iine 3460 ) during each iteration, the program calls the INCREMENT_ CALC subprocedure (line 3640 ) to determine the increments which are added to the current values of the template parameters (1ines 3660-3750) for use in the next iteration.

After all iterations have been completed (line 3760 ), the program prints a summary of the intermediate results of all iterations including the values of the figure-of-merit and of the template parameters.

The functions of the subprocedures should be fairly obvious from their (rather long) names.

## - KERNEL_NAME

(Name of the Spherical Geodetic Transformation)
'STOKES', 'HEIGHT_FROM_ANOMALY' (Default)
'HEIGHT_FROM_DENSITY'
' DEFLECTION_FROM_DENSITY'
Coding has been provided to recognize the following names, but sertain subroutines, calculating their kernel values,
integrals, or spectra are incomplete:
' HEIGHT _FROM_VARIATION'
' HEIGRT_FROM DISTURBANCE'
'MALKIN', 'HEIGHT_FROM_OUT_PARTIAL'
'VENING_MEINESZ', 'DEFLECTION_FROM_ANOMALY'
'DEFLECTION_FROM_VARIATION'
'HILBERT', "DEFLECTION_FROM_DISTURBANCE'
' DISTURBANCE_FROM_ANOMALY'
' DISTURBANCE_FROM_VARIATION'
'DISTURBANCE_FROM_DENSITY'

- PSI_TEMPLATE_NAME
(Name of the initial spherical ring template)
'PICK_PICHA_VYSKOCIL' (Default)
Either the 34-ring template for zeroth-order transformations, or the 23-ring template for first-order transformations. (Requires FSIZERO)
' DMAAC'
The 101-ring Circularized AGEMIT template. (Requires PSIZERO)
'RICE_DMAAC'
The 125-ring "Rice-DMAAC" Template
'EQUI INTEGRAL'
The Equal-Ring-Contribution template. (Requires PSIZERO and NRINGS to specify truncation radius and number of rings.)

Table D-1. Major Inputs to FITFILT.

- alpha_TEMPLATE_NAME
(Establishes number of compartments in each ring for nonzeroth order transformations.)
'PICK_PICHA_VYSKOCIL' (Default)
Pick-Picha-Vyskocil distribution (16, 24, 33, 23)
' DMAAC'
24 compartments in each ring*
'EQUI_SECTOR'
Equal number of compartments in each ring. (Requires NSECTORS to specify the number.)
- ALPHA_TEMPLATE_TYPE_NAME
(Name of the type of initial compartment template)
'CONTINUOUS' (Default)
No compartmental discretization is to be considered.
'EQUI_SINE_DIFF'
Compartment boundary azimuths are to be selected by the equal-sector-contribution method.
'EQUI_ALPHA'
Compartment boundary azimuths are to be equally (uniformly) distributed.
- PSIZERO
(The spherical truncation radius $\psi_{0}$ expressed in degrees) Default $=0.03^{\circ}$
- NRINGS
(The number of rings for an equal-ring-contribution template.)
- NSECTORS
(The number of sectors for an equal-sector-contribution template or a uniform azimuth template.)
${ }^{\bar{*} A}$ more elaborate scheme was originally planned for the 'DMAAC' distribution, but it has not yet been implemented.

Table D-1. (continued)

## APPENDIX E

DISCUSSION OF THE EXCLUSION OF SMALL RING RADII FROM THE DIFFERENTIAL ADJUSTMENT PROCEDURE

The reasons for the exclusion of the smaller ring boundary radii parameters from differential adjustment during the optimization process have been described in Section 6.3.3. This Appendix gives seven examples of numerical computations which illustrate the necessity for this exclusion. They also show the dependence of the spherical radius separating reasonable from unreasonable increments upon the maximum spherical harmonic degree considered and the number of rings in the template.

Each of the seven examples (Figures E-1 through E-7) is presented in an identical format consisting of three blocks of numbers. The first block gives the values of the spherical ring radii $\psi_{i}$ of the template in degrees. The second block gives the cosines $x_{i}$ of the radii $\psi_{i}$. The third block gives the raw increments $\Delta x_{i}$ in the cosines which have been computed by the Gauss-Newton algorithm, before any constraint checking.

As seen in the figures, the raw increments corresponding to the smaller ring radii are generally so large* that if they were to be added to the values of the independent variables, the results would not only overlap but they would also exceed the theoretical bound of $x=+1$ or $\psi=0$. Consequently, in order to exclude most of these cases, the increments corresponding to values of the spherical ring boundary radii which are less than $\psi_{\text {LIMIT }}$ are zeroed before they are submitted to the inequality constraint satisfaction algorithm.

A summary of the examples is presented in Figure E-8. In the last column of this figure, the ratio of the observed spherical radius corresponding the first reasonable increment to the "estimated" spherical radius given by the rule-of-thumb is listed.

[^44]Naturally, a value of one would mean that the rule-of-thumb is ideal. It is seen that for a small number of rings in the template, the rule-of-thumb is too large by about a factor of two, while for a large number of rings the rule-of-thumb is too small by a factor of one third or one fourth. Certainly there are other factors which influence these results, such as the kernel itself* and the initial values of the spherical ring radii parameters.

SPHERICAL RADII PSI (OEGREES)

0.000009997722	0.043979999761
0.260999977589	0.371999979019
2.965999603271	4.820999145508
40.799937792969	65.299937792969

0.062999963760
0.529999971390
7.590999603271
98.599990844727

0.088999996648	0.127999961376
0.752999961376	1.068999290466
11.469999313354	18.549987792959

$11.469999313354 \quad 18.549987792959$ $114.399993896484 \quad 130.500000000000$
0.182999468529
1.793999671936
28.299987792969 180.000000000000

INDEPENDE:TT VARIASLE VALUES $X$
1.000000000000 LUES 0.09999970
$0.999969624598 \quad 0.95997892298$
0.995680416065
0.7560 .996462124040
$0.756995194365 \quad 0.417857267361$

0.999999395487	0.999998793563	0.999997504577
0.999957216793	0.999913640343	0.999825952826
0.991236303723	0.980028961480	0.946046461376
-0.149535185451	-0.413104339813	0.649448048330

0.999994899340 0.999509844392 0.680477454515 $-1.000000000000$

RAW INCREMENTS IH INDEPENDERTT VARIABLES
$0.000000000000 \quad 0.000758638662$
$0.341212974621 \quad-0.350839265537$
$-9.500479886916 \quad 4.303641319975$
$-0.001500246929 \quad-0.002837406239$
-0.131530463696
-3.826305389404
-0.836096882820
-0.003046664875

-0.067849397659	-0.153551518917	-0.099590241909
2.078421592712	7.648271369934	3.694955825806
$0.07504 n 996075$	-0.011155508459	0.001902790740
-0.015168551356	-0.026527497917	0.000000000000

Figure E-1. Example of Large Increments (Vening-Meinesz, 23 rings, Maximum degree 30).

[^45]SPHERICAL RADII FSI (DEGREES)
4. 149000000000 20.170000005000 82.0C05050000:3 149.00000000000
1.234800000000

0000000 1.234800000000
5.854000000000 25.300000000000 $\$ 4.200000000000$
155.400000000000
0.175300000000 1.488300000000 8.180000000000 33.900000000000 106.300000000000 162.900000000000
0.307800000000 1.986000000000 10.488000000000 52.000000000000 126.300000000000 176.400000000000
0.447400000000 2.478000000000 12.850000000000 61.000000000000 135.900000000000 180.000000000000
0.711600000000
2.961000000000 15.990000000000 72.000000000000 142.700000000000

IHDEFẼNOENT VARIESLE VALUES X
1.00200 CONJ00S 0.99999928749
1.00.20000.3000
0.95935497 .339
0.997330535353
0.933673691819
0.139173109900
$-0.857167300702$
0.999999237415 0.999767779171 0.994731483424 $0.90405=549561$ -0.073233197128 -0.909336109047
0.999995319543 0.999662649558 0.989825957496 0.830012265095 -0.200666708922 $-0.955793014798$
0.999985570180 0.999399324740
0.983293053318
0.615661475326
$-0.592013178799$
$-0.998026728428$

### 0.999969513014

0.999064896577 0.974955645494
0.484809620246 -0.718126297763
$-1.000000000000$
0.999922875735 0.978664927363 0.951309789091
0.309016994375
$-0.795473480855$

INCR EMEHIS_IN INOEPE!TEENT VARIABLES
$0.09090006050\} 133033.5309207231309897064 .9947827130002032938 .5108394800001894403 .3141239900000100943 .640946900000$




Figure E-2. Example of Large Increments (Stokes, 34 rings, Maximum degree 50).

SPHERICAL RADII FSI (DEGREES)

0.000000000000	0.068400000000	0.175300000000	0.307800000000	0.447400000000	0.711600000000
0.975300090000	1.534800000000	1.488300000000	1.986000000000	2.478000000000	2.961000000000
4.145000000000	5.884000000000	8.180000000000	10.489000000000	12.850000000000	15.990000000000
20.170300000000	25.300000000000	33.900000000000	52.000000000000	61.000000000000	72.000000000000
82.000000000000	94.200000000000	106.300000000000	126.300000000000	135.900000000000	142.700000000000
149.003000000030	155.400000000000	162.900000000000	176.400000000000	180.000000000000	

independent variasle values $x$

1.090000009000	0.999999287415
0.999354977339	0.999767779171
0.997390535353	0.994731483424
0.933673591817	0.904032549661
0.139173109960	-0.073232197128
-0.857157302702	-0.909236109047

0.999995319543 0.999662649558 0.989825957496 0.830012285095 -0.280666709921 -0.955793014798

0.99930932470 0.9939324740 0.983293053318 $-0.592013178799$ $-0.793026728428$
0.999969513014
0.999064896577
0.974955645484
0.484809620246
$-0.718126297763$
-1.000000000000
0.999922875735 0.993664927363 0.961309769091 0.300016994375
-0.795473480855

IHCREMFHTS IH TH2FFEIDEHT VARIABLES
0.000000000005
-0.165163516973
$0.001-16155357$
0.016223310375
-0.012455124403
$0.0025554532+7$
2.172499656677 $0.0549+1506356$ $0.0549+1506356$ 0.001522401348 0.0235:7390212 0.013332936198 -0.0006ES3530E8


6.992014884949	$-0.0 / 5611027241$	0.344479382038
0.001437092200	0.000175711246	0.001105129020
0.001338778296	0.008145953877	0.012606538932
-0.050538759679	-0.030925475061	-0.032637000084
-0.019832070917	-0.004077050835	0.004928622395
-0.017202876505900000 .000000000000		

Figure E-3. Example of Large Increments (Stokes, 34 rings, Maximum degree 500).
. $\qquad$

| SPHERICAL RAOII PSI (DEGREES) |  |  |
| ---: | ---: | ---: | ---: |
| 0.000009797722 | 0.083333313465 | 0.166666626930 |
| 0.500000000000 | 0.533333313465 | 0.666666626930 |
| 1.000000000000 | 1.083333015442 | 1.166666030884 |
| 1.500000000000 | 1.583333015442 | 1.666666030884 |
| 2.000000000000 | 2.083333015442 | 2.166666030884 |
| 2.500000000000 | 2.583333015442 | 2.666666030884 |
| 3.000000000000 | 3.250030000000 | 3.500000000000 |
| 4.500000000000 | 4.750000000000 | 5.000000000000 |
| 6.000000000000 | 6.250000000000 | 6.500000000000 |
| 9.000000000000 | 10.000000000000 | 11.000000000000 |
| 15.000000000000 | 16.000000000000 | 17.000000000000 |
| 21.000000000000 | 22.000000000000 | 23.000000000000 |
| 35.000000000000 | 40.000000000000 | 45.000000000000 |
| 65.000000000000 | 70.000000000000 | 75.000000000000 |
| 95.000000000000 | 100.000000000000 | 105.000000000000 |
| 125.000000000000 | 130.000000000000 | 135.000000000000 |
| 155.000000000000 | 160.000000000000 | 165.000000000000 |

0.250000000000 0.750000000000 1.250000000000 1.750000000000 2.250000000000 2.750000000000 3.750000000000 5.250000000000 6.750000000000 12.000000000000 18.000000000000 24.000000000000 50.000000000000 80.000000000000 110.000000000000 140.000000000000 170.000000000000
0.333333313465 0.833333313465 1.333333015442 1.833333015442 2.333333015442 2.833333015442 4.000000000000 5.500000000000 7.000000000000 13.000000000000 19.000000000000 25.000000000000 55.000000000000 85.000000000000 115.000000000000 145.000000000000 175.000000000000
0.416666626930 0.916666666930 1.416666030884 1.916666030884 2.416666030884 2.916666030684 4.250000000000 5.750000000000 8.000000000000 24.000000000000 20.000000000000 30.000000000000 60.000000000000 90.000000000000 120.000000000000 150.000000000000 280.000000000000
independent variable values $x$

1.000000000000	0.999998942301
0.997961923064	0.999948173182
0.999847695156	0.999821254236
0.999657324976	0.999618194978
0.999390827019	0.999339010923
0.999048221582	0.998933723335
0.998629534755	0.998391670557
0.936917333733	0.996565502498
0.974521895368	0.994056338222
0.987688340595	0.984807753012
0.965925826289	0.961261695938
0.933550426497	0.927183854567
0.819152644289	0.766044443119
0.425618261741	0.342020143326
-0.037155742748	-0.173648177667
-0.573576436351	-0.642767609687
-0.906307787037	-0.939692620786

0.999995769200 0.999932308012 0.999792698311 0.999576950405 0.999285080844 0.998917111855 0.998134798422 0.996194698092 0.993571855677 0.981627183448 0.956304755963 0.920504853452 0.707106781187 0.258819045103 $-0.258819045103$
$-0.707106781287$
$-0.965925826289$
0.999990480721 0.999914327574 0.999762027080 0.999533590837 0.997229036241 0.998848386485 0.997858923239 0.995804927575 0.993068456955 0.978147600734 0.951056516295 0.913545457643 0.642787609687 0.173648177667 $-0.342020143326$ $-0.766044443119$ $-0.984807753012$
0.999983076860 0.999894231932 0.999729241309 0.999488117357 0.999170878516 0.998777548943 0.997564050260 0.995396198367 0.992546151641 0.974370064785 0.945518575599 0.906307787037 0.573576436351 0.087155742748 $-0.422618261741$ -0.819152044289 $-0.996194698092$
0.999973557637 0.999872021117 0.989694340728 0.999440529578 0.999110607162 0.998704598606 0.997250185099 0.994068518251 0.990266066742 0.970295726276 0.939692620786 0.866025403784 0.500000000000 0.000000000000 $-0.500000000000$ -0.866025403784
$-1.000000000000$

RAW INCREMENTS IN INDEPENDENT VARIABLES $0.000000000000-47.988937377930$ $-48.251251220703 \quad 735.539550781250$
$-2760.917480468750 \quad 21.843545359375$
-186.815216064453 9645.582031250000
-1451.775634765625 0.295540630817 0.001587652147 $-0.000505337240$ $-0.000131636730$ 0.091335446024 0.002139975782 0.003126074793 $-0.005657327930$
-0.002955768047
0.003201898653
$-0.003783527762$
-1067.657714843750
-4834.175781250000 2766.857421875000 $-0.062953969345$ -0.003705637995 -0.000292437384 0.000256956728 $0.00035 S 253794$ 0.002686601800 0.005856927484 -0.081308424473 0.002939212663 0.002295169754 -0.004327781498
-35.035934448242 1033.012207031250 4736.457031250000 -1013.688720703125 -506.852539062500 -2614.054199218750 0.013691093773 0.002750977874 $-0.000339779770$ 0.000429115258 0.002032726770 0.002922888380 0.007720775902 $-0.072332680225$ 0.003289061598 0.000262974994 $-0.004046395421$
161.058624267578 $-4312.964843750000$ $-4724.328125000000$ 2075.136474609375 1851.751953125000 2460.519042968750 $-0.008642513305$ 0.002967894543 0.000671830960 0.000780167757 0.001091106096 0.001625886187 0.009225688875 $-0.034014228731$ 0.003510709386 -0.000745280879 $-0.002617008286$
221.881027221680 4465.839843750000 323.026123046875 2173.812255859375 $-503.969970703125$ $-472.537646464375$ 0.001882606652 $-0.000358792255$ $-0.001016347436$
0.001158934145 0.001525897766 $-0.009800467640$ 0.009603582323 -0.010C62845927
0.003603029763 -0.001098564593 $-0.006218768656$
$-625.382812500000$ $-273.512935453125$ 2017.893066406250 $-8390.417963750000$ 64.457672119141 55.998321533203 $-0.003748088144$ 0.001531556397
-0.000573679379 0.001294402406 0.000627075555 $-0.001700285124$ 0.006275434047 -0.004778709263 0.003190943738 -0.002601768123 0.000000000000

Figure E-4. Example of Large Increments (Stokes, 101 rings, Maximum degree 1000).

SPhERICAL RADII PSI (DEGREES)


RAW IHICREMENTS IN INDEPENDENT VARIABLES

0.0000000	0.0000059	-0.0000180	0.0000194	-0.0000101	0.0000029	-0.0000007	-0.0000001	-0.0000003
-0.0005002	-0.0000001	-0.0000001	-0.0000002	-0.0000006	-0.0000003			
0.0066332	0.0032048	-0.0654269	0.0000000					

Figure E-5. Example of Large Increments (Vening-Meinesz, 23 rings, Maximum degree 1440).

SPHERICAL RRDII PSI (DEGREES)									
0.0021134	0.0023003	0.0025038	0.0027252	0.0029663	0.0032286	0.0035142	0.0038250	0.0041633	0.0045315
0.0079323	0.0053686	0.0058434	0.0063603	0.0069228	0.0075351	0.0082016	0.0089270	0.0097165	0.0105759
0.0115113	0.0325295	0.0136377	0.0148439	0.0161568	0.0175858	0.0191412	0.0208342	0.0226769	0.0246826
0.0268657	0.0292419	0.0318283	0.0346434	0.0377075	0.0410426	0.0446727	0.0486238	0.0529245	0.0576055
0.0627005	0.05aこ462	0.0742024	0.0808524	0.0880036	0.0957872	0.1042593	0.1134807	0.1235177	0.1341425
0.1463336	0.1592763	0.1733639	0.1896974	0.2053872	0.2235531	0.2433257	0.2648472	0.2882723	0.3137692
0.3415214	0.3717291	0.4046067	0.4403933	0.4793453	0.5217426	0.5678901	0.6181194	0.6727916	0.7322999
0.7970721	0.6575739	0.9443124	1.0278393	1.1187554	1.2177248	2.3254295	1.4426745	1.5702938	1.7092062
1.8604121	2.0253009	2.2041593	2.3591785	2.6114686	2.8425565	3.0941185	3.3679728	3.6661036	3.9906738
4.3440425	4.7237833	5.1477052	5.6038755	6.1006459	6.6416810	7.2309914	7.8729700	8.5724348	9.3346769
10.1655167	11.0713686	12.0593185	13.1372143	14.3137754	15.5987254	17.0029546	18.5387227	20.2199228	22.0623575
24.0342503	26.3067526	28.7546418	31.4574364	34.4507856	37.7785549	41.4959114	45.6740870	50.4080698	55.8297394
62.1319763	69.6173616	79.8107683	90.7798135	108.4698034	179.9999989				
imdeperdent variacle values $x$									
1.0000000	2. 0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
1.0060000	1.0000090	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
1.0900090	1.0005000	1.0000000	1.0000000	1.0000000	1.0000000	0.9999999	0.9999999	0.9999999	0.9997999
0.9999799	0.9099999	0.9999998	0.9999998	0.9997998	0.9999997	0.9999997	0.9999996	0.9999996	0.9999995
0.9989394	0.9999973	0.9999992	0.9999990	0.9999988	0.9999986	0.9999983	0.9999980	0.9999977	0.9959972
0.9999967	0.9799961	0.9999954	0.9799946	0.9999936	0.9999924	0.9999910	0.9999893	0.9999873	0.9999550
0.9999522	0.9999790	0.9999752	0.9999705	0.9999650	0.9999585	0.9999509	0.9999418	0.9999311	0.9999183
0.9999032	0.9993854	0.9998642	0.9998391	0.9998094	0.9997742	0.9997324	0.9996830	0.9996245	0.9995551
0.9994729	0.9793755	0.9992601	0.9991234	0.9989615	0.9987696	0.9985422	0.9982728	0.9979536	0.9975754
0.9971272	0.9965961	0.9559667	0.9952208	0.9943367	0.9932889	0.9920468	0.9905742	0.9888292	0.9867577
0.9343320	0.7313887	0.9779318	0.9738285	0.9689563	0.9631685	0.9562897	0.9481090	0.9363730	0.9267756
0.9129463	0.8964342	0.8766873	0.8530281	0.8246124	0.7903844	0.7490030	0.6987389	0.6373155	0.5616540
0.4674365	0.3482880	0.1940500	-0.0136099	-0.3168048	-1.0000000				

Figure E-6. Example of Large Increments (Vening-Meinesz, 125 rings, Maximum Degree 1440).

(1)	,	NT VARIABL							
0.0000000	-0.0004304	0.0016415	-0.0010854	-0.0015195	-0.001656C	-0.0070365	-0.0070622	0.0030737	0.0075004
-0.0025599	0.0302498	-0.0056651	0.0070101	c. 0156274	0. 5004403	0.0044232	-0.0007154	0.0097669	0.0080344
-0.0.667.08	-0.0066335	0.0068252	-0.0015491	$0.003635 \%$	0.0021265	-0.0212513	0.0290662	0.0129250	0.0268354
0.0013693	-0.0480833	-0.0551793	-0.0305502	-0.0771326	-0.1898146	0.0145926	-0.0086407	0.0468956	0.0239837
0.0735098	-0.0237839	-0.0720922	-0.0462631	0.0240415	-0.0168706	0.1179152	0.1037630	0.0313040	0.1623265
-0.0325536	-0.1051043	-0.2245467	0.0478108	0.0104654	0.0332987	-0.0188410	0.0260864	0.1274729	0.0396429
-0.3397384	0.1422613	0.1412255	-0.0031571	-0.2247467	0.1406184	0.1242039	-0.2695050	0.2313055	-0.1247967
0.0652842	-0.0098222	-0.0000629	0.0011810	-0.0006359	0.0002514	-0.0000662	0.0000314	0.0000043	0.0000121
$0.00 c 0101$	0.0200103	0.0000090	0.0000075	0.0000052	0.0000030	0.0000017	0.0000003	-0.0000002	-0.0000003
-0.0000066	0.0000003	-0.0000001	-0.0000007	0.0000002	-0.0000001	-0.0000003	-0.0000000	0.0000000	0.0000010
0.0000009	-0.0000002	-0.0000009	0.0000004	-0.0000023	-0.0000014	-0.0000007	0.0000005	-0.0000031	-0.0000074
-0.0000008	-0.0000035	-0.0600223	-0.0000402	-0.0000324	0.0000097	-0.0000222	-0.0001076	0.0000497	0.0002271
0.0003806	0.0000466	0.0004042	0.0009345	-0.0101885	0.0000000				

Figure E-6 (continued).

SPhLRICAL RAOII PSI (DEEREES)									
0.0021134	0.0023003	0.0025038	0.0027252	0.0029663	0.0032286	0.0035142	0.0038250	0.0041633	0.0045315
0.0049323	0.0053686	0.0053434	0.0063603	0.0069228	0.0075351	0.0082016	0.0089270	0.0097165	0.0105759
0.0115113	0.0125295	0.0136377	0.0148439	0.0161558	0.0175858	0.0191412	0.0208342	0.0226769	0.0246826
0.0268557	0.0292419	0.0318283	0.0346434	0.0377075	0.0410426	0.0446727	0.0486238	0.0529245	0.0576055
0.0627005	0.0632462	0.0742824	0.0808524	0.0880036	0.0957872	0.1042593	0.1134807	0.1235177	0.1344425
0.1463336	0.1592763	0.1733639	0.1886974	0.2053872	0.2235531	0.2433257	0.2648472	0.2882723	0.3137692
0.3415214	0.3717281	0.4046067	0.4403933	0.4793453	0.5217426	0.5678501	0.6181194	0.6727916	0.7322999
0.7970721	0.6675739	0.9443124	2.0278393	1.1187554	1.2177148	1.3254295	1.4426745	1.5702938	1.7092062
1.8604121	2.0250009	2.2041590	2.3991785	2.6114666	2.8425565	3.0941185	3.3679728	3.6661036	3.9906738
4.3440425	4.7287833	5.1477052	5.6038755	6.1006459	6.6416810	7.2309914	7.8729700	8.5724348	9.3346769
10.1655167	11.0713686	12.0593185	13.1372143	14.3137754	15.5987254	17.0029546	18.5307227	20.2199128	22.0523575
24.0942603	26.3067526	28.7545418	31.4574364	34.4507856	37.7785549	41.4959114	45.6740870	50.4080698	55.8297394
62.1319763	69.6173616	78.8107683	90.7798135	108.469803	179.9999989				



SAN INCREMENTS IN INJEPENDENT VARIABLES									
$0.0=00000$	-0.0022603	0.0066820	-0.0034697	0.0137664	-0.0111803	0.0016873	-0.0048678	-0.0006720	0.0986754
0.0064956	0.2422671	-0.0120776	0.2425094	0.1451166	-0.2636296	-0.0033999	-0.0020788	0.0516678	-0.2004985
-0.2937074	-0.2115872	0.0339952	-0.0960920	0.2033689	0.0400312	-0.4014489	0.2797658	0.4782538	-0.0282543
-0.1633011	0.1220964	0.1279842	0.0889321	-0.4573958	-0.3217300	-1.4391899	0.2029956	-0.6481801	-0.2833292
-1.1853624	-0.4598355	0.4411843	-0.1523405	0.0112345	0.3256243	0.6326106	0.6523260	-0.1341362	1.5530758
1.9512291	0.5210494	-0.6982923	-1.0705042	-2.4142294	-0.5616150	-0.6616700	1.1790876	1.7386065	1.2865305
-0.2449353	-3.0564563	-0.0774422	2.1904888	0.0297359	-0.3386355	-2.2155590	3.9365053	-3.5778694	2.3193910
-1.2194118	0.5516984	-0.2197874	0.0779063	-0.0246346	0.0071920	-0.0018397	0.0005654	-0.0000493	0.0001170
0.0500746	0.0000932	0.0000834	0.0000823	0.0000632	0.0000413	0.0000256	0.0000079	0.0000062	-0.0000042
-0.0000019	-0.0000004	0.0000028	0.0000092	0.0000007	-0.0000065	-0.0000079	-0.0000038	-0.0000056	-0.0000007
-0.0000073	0.0000069	-0.0000006	-0.0000044	-0.0000139	-0.0000128	0.0000245	0.0000203	-0.0000398	-0.0000590
-0.0000307	-0.0000911	-0.0001676	-0.0002336	-0.0002287	0.0000615	0.0000101	-0.0003312	0.0007015	0.0032009
0.0031733	-0.0042512	-0.0033486	-0.0130000	-0.0810918	0.0000000				

[^46]FIRST

Fig.	MAX DEGREE	RINGS	$\begin{gathered} \text { FIRST } \\ \text { REASONABLE } \\ \text { INCREMENT } \\ \text { AT } \end{gathered}$	$\Psi_{\text {LIMIT }}$	RATIO
E-1	30	23	$18.54{ }^{\circ}$	$30^{\circ}$	0.62
E-2	50	34	$33.9{ }^{\circ}$	$18^{\circ}$	1.83
E-3	500	34	$2.478^{\circ}$	$1.8{ }^{\circ}$	1.37
E-4	1000	101	$4.00^{\circ}$	$0.9{ }^{\circ}$	4.44
E-5	1440	23	$0.228^{\circ}$	$0.53^{\circ}$	0.43
E-6	1440	125	$1.325^{\circ}$	$0.53^{\circ}$	2.50
E-7	1440	125	$1.570^{\circ}$	$0.53^{\circ}$	2.96
$\psi_{\text {LIMIT }}=900^{\circ} / \mathrm{NMAX}$					

Figure E-8. Summary of Cases for Small Ring Radii Exclusion.

## APPENDIX $F$

DERIVATION OF ALGORITHM FOR CALCULATING THE STOKES' EQUAL RING CONTRIBUTION TEMPLATE
by
Stanley W. Shepperd

It is desired* to find values $\psi_{i}$ of the spherical ring boundary radii such that

$$
\left|\int_{\psi_{i}}^{\psi_{i+1}} S(\psi) \sin \psi d \psi\right|=\begin{aligned}
& \text { the same constant } \\
& \text { value for all } i
\end{aligned}
$$

It is well known that the Stokes' function $S(\psi)$ has two distinct zeros, and thus so does the integrand $S(\psi) \sin \psi$. Consequently, the total area $A$ lying under the curve of the integrand may be divided into three sub-areas, $A_{1}, A_{2}$, and $A_{3}$, as shown in Figure $F-1$. Since the to tal integral between 0 and $\pi$ is zero, the three areas must satisfy the relationship

$$
A_{2}=A_{1}+A_{3}
$$

where $A_{2}$ is considered positive by convention.
In a partition of the sphere into $n$ spherical rings in which each ring has the same "weight" (i.e. the area under the $S(\psi) \sin \psi$ curve is constant in magnitude), a ring containing a zero of the integrand will suffer some cancellation. In other words, there will exist a "deadband" around each of the zeros having no overall contribution, unless a boundary radius happens to lie exactly on the zero. These deadbands are illustrated in Figure $\mathrm{F}-2$. It is assumed that the remaining "active" sub-areas $\bar{A}_{1}, \bar{A}_{2}, \bar{A}_{3}$ are to be partitioned into $n_{1}, n_{2}$, and $n_{3}$ rings respectively. There are two possible locations for each of the radii $\psi_{\mathrm{nl}}$ and $\psi_{\mathrm{nl}+\mathrm{n} 2}$ because the shaded deadbands yield no net contribution.

[^47]

Figure $F-1$. Sub-areas under the curve $S(\psi)$ sin $\psi$.


Figure F-2. Dead-bands around the zeros of $S(\psi)$ sin $\psi$.

It is important to note that since each deadband is symmetric in terms of area about its zero, the area relationship is preserved

$$
\bar{A}_{2}=\bar{A}_{1}+\bar{A}_{3}
$$

And since the number of rings must be proportional to the area for equalring contribution, it must be true that

$$
n_{2}=n_{1}+n_{3}
$$

This in turn implies that the total number of rings must be even, specifically half in the positive areas and half in the negative area. Thus, the original problem reduces to a problem of choosing $n_{1}$ and $n_{3}$ subject to the following constraints.

$n_{1}, n_{3}$	are integers
$n_{1}+n_{3}$	is a known constant
$n_{1} \bar{A}_{3}=n_{3} \bar{A}_{1}$	for equal contribution

One final assumption is necessary to make the solution unique, namely that the total amount of "dead" area $(2 \Delta a+2 \Delta b)$ is to be minimized.

The equal-ring contribution constraint may be rewritten as

$$
n_{3} \Delta a-n_{1} \Delta b=n_{3} A_{1}-n_{1} A_{3}
$$

In ( $\Delta \mathrm{a}, \Delta \mathrm{b})$ space, this constraint is a straight line with positive slope having either a positive or negative intercept on the $\Delta b$ axis, as shown in Figure $\mathrm{F}-3$.


Figure F-3. Nature of Solution.

Since the areas $\Delta a$ and $\Delta b$ must be non-negative, there are two types of solutions to the problem of minimizing the total dead area $(2 \Delta a+2 \Delta b)$. Specifically $\Delta a=0$ or $\Delta b=0$. The details of these solutions are given in the following paragraphs. The correct solution will then be the one with the smaller dead area $\Delta \mathrm{a}$ or $\Delta \mathrm{b}$.

Once $\Delta a$ and $\Delta b$ are determined, the "weight" per ring is known

$$
\left[A_{1}+A_{2}+A_{3}-2(\Delta a+\Delta b)\right] / n
$$

and the ring boundary radii $\psi_{i}$ may be calculated iteratively from knowledge of this constant ring area.

Case $1 \quad \Delta b=0$

$$
\Delta a=A_{1}\left(1-\frac{n_{1}}{n_{3}} \frac{A_{3}}{A_{1}}\right)=A_{1}\left(1-\frac{n_{1}}{n_{2}} \frac{A_{2}}{A_{1}} \frac{n_{2}}{n_{3}} \frac{A_{3}}{A_{2}}\right)
$$

The minimum positive $\Delta a$ is determined by choosing

$$
\begin{aligned}
& n_{1}=\text { floor }\left(\frac{n_{2} A_{1}}{A_{2}}\right)=\text { round }\left(\frac{n_{2} A_{1}}{A_{2}}-\frac{1}{2}\right) \\
& n_{3}=\text { ceiling }\left(\frac{n_{2} A_{3}}{A_{2}}\right)=\text { round }\left(\frac{n_{2} A_{3}}{A_{2}}+\frac{1}{2}\right)
\end{aligned}
$$



Figure $\mathrm{F}-4$. Solution for $\Delta b=0$.

Case 2

$$
\begin{aligned}
& \Delta a=0 \\
& \Delta b=A_{3}\left(1-\frac{n_{3}}{n_{1}} \frac{A_{1}}{A_{3}}\right)=A_{3}\left(1-\frac{n_{2}}{n_{1}} \frac{A_{1}}{A_{2}} \frac{n_{3}}{n_{2}} \frac{A_{2}}{A_{3}}\right)
\end{aligned}
$$

The minimum positive $\Delta b$ is determined by choosing

$$
\begin{aligned}
& n_{1}=\text { ceiling }\left(\frac{n_{2} A_{1}}{A_{2}}\right)=\text { round }\left(\frac{n_{2} A_{1}}{A_{2}}+\frac{1}{2}\right) \\
& n_{3}=\text { floor }\left(\frac{n_{2} A_{3}}{A_{2}}\right)=\text { round }\left(\frac{n_{2} A_{3}}{A_{2}}-\frac{1}{2}\right)
\end{aligned}
$$



Figure F-5. Solution for $\Delta a=0$.

## LIST OF REFERENCES

Abramowitz, Milton, and I.A.Stegun (editors), (1964), Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series No. 55, U.S. Government Printing Office. Also reprinted by Dover, 1965, 1968.

Adams, M.B., and G. Prado, (1978) The Design of Two Dimensional Digital Filters for Geodetic Applications, CSDL Report R-1154, March 1978.

Avriel, M. (1976), Nonlinear Programming, Analysis and Methods, PrenticeHall, Inc., New Jersey.

Bracewell, Ron, (1965), The Fourier Transform and Its Applications, McGraw-Hill, New York.

Buglia, James J., (1976), The Effect of Remote zones on the Accuracy of Evaluating the Molodensky Integral, NASA TMX-72798, January 1976, National Technical Information Service Accession No. N-7617681.

Calvez, L.C., and R.Genin, (1977), "An Algorithm for Summing Series and Their Derivatives", Proceedings of the IEEE, 65, pp. 163-165, (January 1977).

Churchill, R.V., (1954), "The Operational Calculus of Legendre Transforms", Journal of Mathematics and Physics, 33 (1954), pp. 165178.

Churchill, R.V., and C.L. Dolph, (1954), "Inverse Transforms of Products of Legendre Transforms", Proc. Amer. Math. Soc., 5 (1954), pp. 93-100.

Clenshaw, C.W., (1955), "A Note on the Summation of Chebyshev Series", Mathematical Tables and Other Aids to Computation, 9 (1955), pp. 118-120.

Colombo, O.L., (1977), "Optimal Kernels for Band-Limited Data", Unisurv G27 (1977), pp. 77-87, University of New South Wales, Sidney, Australia. Presented as paper G6 at the AGU Fall Meeting 1977 in San Francisco (EOS, Vol. 58, page 1117). Available from: O.L. Colombo, Dept. of Geodesy, University of New South Wales, P.O. Box 1, 2033 New South Wales, Australia.

Cook, A.H., (1951), "The Calculation of Deflexions of the Vertical from Gravity Anomalies", Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 204 (1951), pp. 374-395.

Courant, Richard and David Hilbert, (1953), Methods of Mathematical Physics, Volume I, Interscience Publishers, New York.

Dahlquist, Germund and Åke Björk, (1974), Numerical Methods, PrenticeHall, Inc., New Jersey.
deWitte, L., (1967), "Truncation Errors in the Stokes and Vening-Meinesz Formulae for Different Order Spherical Harmonic Gravity Terms," Geophysical Journal of the Royal Astronomical Society, 12 (1967), pp. 449-464.
deWitte, L., (1969), "Altitude Extensions of the Three Anomalous Gravity Components", Bulletin Geodesique, No. 93 (1969). pp. 287-305.

Dennis, J.E., Jr., (1977), "Non-Linear Least Squares and Equations", pp. 269-312 of The State of the Art in Numerical Analysis, Jacobs, ed., Academic Press, New York.

DiDonato, A.R., (1977), Recurrence Relations for the Indefinite Integrals of the Associated Legendre Functions, NSWC/DL TN-DK-5/77, July 1977 , Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren, VA, 22448.

Dorny, C.N., (1975), A Vector Space Approach to Models and Optimization, John Wiley and Sons, New York.

Dunford, N., and J.T. Schwartz, (1958, 1963), Linear Operators, Part I: General Theory, 1958; Part II: Spectral Theory, 1963, Interscience Publishers, New York.

Dwight, H.B., (1961), Tables of Integrals and Other Mathematical Data, Fourth Edition, Macmillan Co.. New York.

Edmonds, A.R., (1957), Angular Momentum in Quantum Mechanics, Princeton University Press, New Jersey.

Erdélyi, A. (ed.), (1953), Higher Transcendental Functions, Volumes $I$, II, III, McGraw-Hill, New York.

Erdélyi, A. (ed.), (1954), Tables of Integral Transforms, Volumes I, II, McGraw-Hill, New York.

Flinn, E.A., (1967), "Foreword" to the Special Issue on the M.I.T. Geophysical Analysis Group Reports, Geophysics 32 (1967), Issue No. 3 (June), pp. 411-413.

Frank, Philipp, and Richard von Mises, (1930, 1961), Die Differentialund Integralgleichungen der Mechanik und Physik, Volume I (Mathematical Part), Vieweg and Son, 1930; Reprinted by Dover, 1961.

Gill, P.E., and W. Murray, (1978), "Algorithms for the Solution of the Non-Linear Least-Squares Problem", SIAM Journal of Numerical Analysis, 15 (1978), pp. 977-992.

Gradshteyn, I.S., and I.M. Ryzhik, (1965), Tables of Integrals, Series, and Products, Academic Press, New York.

Heiskanen, W.A.. and H. Moritz, (1967), Physical Geodesy, Freeman, San Francisco.

IBM, (1968), System/360 Scientific Subroutine Package (PL/I), Program Description and Operation Manual, International Business Machines Corporation, Document GH20-0586-0, First Edition, January 1968.

Jacobs, D., (ed.), (1977), The State of the Art in Numerical Analysis, Academic Press, New York.

Jahnke, Eugene, and Fritz Emde, (1945), Tables of Functions with Formulae and Curves, Dover, New York.

Kahng, S.W., (1972), "Best $L_{p}$ Approximation", Mathematics of Computation, 26 (1972), pp. 505-508.

Kato, Tosio, (1966), Perturbation Theory for Linear Operators, SpringerVerlag, New York.
Kaula, W.M., (1967), "Theory of Statistical Analysis of Data Distributed over a Sphere", Reviews of Geophysics 5 (1967), pp. 83-107.
Kazansky, I., (1935), "Ein praktischer Versuch der gravimetrischen Bestimmung der Lotabweichungen", Verh. Balt. geod. Komm., Tag. VII, Bd. 2, Helsinki 1935, p. 388.

Lawson, C.L., and R.J. Hanson, (1974), Solving Least Squares Problems, Prentice-Hall, New Jersey.

Liusternik, L.A., and V.J. Sobolev, (1961), Elements of Functional Analysis, Fredrick Ungar Publishing Co., New York.

Luenberger, David G., (1973), Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, MA.

Luke, Y.L., (1975), Mathematical Functions and Their Approximations, Academic Press, New York.

Magnus, Wilhelm, and Fritz Obergettinger, (1949), Formulas and Theorems for the Functions of Mathematical Physics, Chelsea, New York.

Malkin, N., (1933), "Über die Formeln von Vening-Meinesz, Calandreau und einige andere Formlen der höheren Geodäsie", Gerlands Beiträge der Geophysik, 38 (1933), pp. 53-63.

Meissl, Peter, (1971), A Study of Covariance Functions Related to the Earth's Disturbing Potential, Report No. 151, Department of Geodetic Science, Ohio State University, April 1971, AFCRL-TR-71-0240.

Molodenskii, M.S., Eremeev, V.F., and M.I. Yurkina, (1962), Methods for Study of the External Gravitational Field and Figure of the Earth, Israel Program for Scientific Translations, Jerusalem, 1962. (Available from the National Technical Information Service as document \#TT-61-31207.)

Morse, P.M., and H. Feshbach, (1953), Methods of Theoretical Physics, Volumes I and II, McGraw-Hill, New York.

Nettleton, L.L., (1976), Gravity and Magnetics in Oil Prospecting, McGraw-Hill, Inc., New York.

Neyman, Y.M., (1974), "Computation for Some Integral Transform in Physical Geodesy", Geodesy, Mapping, and Photogrammetry, 16 (1974), pp. 9-12. Originally published in Russian in: Izvestiya vuzov. Geodeziya i aerofotos' yemka, No. 4, 1974, pp. 49-54.

Paul, M.K., (1978), "Recurrence Relations for Integrals of Associated Legendre Functions", Bulletin Géodesique, 52 (1978), pp. 177-190.

Peasley, Q.D., (1976), Coefficients of Associated Legendre Functions, NASA Technical Note D-8200, Marshall Space Flight Center, Alabama, April 1976.

Pick, M., Picha, J., and V. Vyskocil, (1973), Theory of the Earth's Gravity Field, Elsevier Scientific, Amsterdam.

Potter, J.E., and E.J. Frey, (1967), Rotation Invariant Probability Distributions on the Surface of a Sphere, with Applications to Geodesy, Report RE-27, Experimental Astronomy Laboratory, Massachusetts Institute of Technology, May 1967. Presented at the International Colloquium on Dynamic Methods in Satellite Geodesy, Paris, May 1967.

Prado, G., (l977a), "The Role of the Hilbert Transform on Potential Theory Problems", CSDL Internal Memo \#AGS-4300-77-01, January 1977.

Prado, G., (1977b), "Calculating the External Gravity Field, A Signal Processing Approach", Proceedings of the National Aerospace and Electronics Conference (NAECON), Dayton, Ohio, May 1977.

Reed, G.B., (1973), Application of Kinematical Geodesy for Determining the Short Wave Length Components of the Gravity Field by Satellite Geodesy, Report No. 201, Department of Geodetic Science, Ohio State University, March 1973, AFCRL-TR-73-0535, AD768973.

Rektorys, Karel (ed.), (1969), Survey of Applicable Mathematics, M.I.T. Press, Cambridge, MA.

Robertson, William M., (1977a), Spectral Theory of the Integral Transformations of Geodesy, CSDL Report P-406, January 1977.

Robertson, William M., (1977b), Spectral Theory of the Discrete Summation Transformations of Geodesy. Part I: Stokes' Transformation, CSDL Report P-455 (Part I), March 1977.

Robertson, William M., (1978), Spectral Theory of the Discrete Summation Transformations of Geodesy, Part II: Vening-Meinesz' Transformation, CSDL Report P-455 (Part II), April 1978.

Robin, Louis, (1957), Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, Volumes I, II, III, Gauthier-Villars, Paris.

Robinson, E.A., (1954), "Predictive Decomposition of Time Series with Application to Seismic Exploration", M.I.T. Geophysical Analysis Group Report No. 7, July 1954; reprinted in Geophysics, 32 (1967), Issue No. 3 (June), sp. 418-484; also reprinted in Deconvolution, Geophysics Reprint Series No. 1, Society of Exploration GeoPhysicists, 1978, pp. 52-118.

Titchmarsh, E.C., (1948), Theory of Fourier Integrals, 2nd Edition, Oxford University Press, Oxford.

Tranter, C.J., (1950), "Legendre Transforms", Quart. J. Math. Oxford (2). 1 (1950), pp. 1-8.

Tscherning, C.C., (1977), Introduction to Functional Analysis with a View to Its Applications in Approximation Theory, Lecture Notes (38 pages), Second International Summer School in the Mountains, Ramsau, Austria, 23 August to 2 September 1977. Available from: C.C. Tscherning, Geodaetisk Institut, Gamlehave Alle 22, DK-2920 Charlottenlund, Denmark.

Tscherning, C.C., and R.H. Rapp, (1974), Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models, Report No. 208, Department of Geodetic Science, Ohio State University, AFCRL-TR-74-0231, May 1974.

Vogel, Theodore, (1953), Les Functions Orthogonales dans les Problèmes aux Limites de la Physique Mathematique, Centre National de la Recherche Scientifique, Paris.

Whittaker, E.T., and G.N. Watson, (1927), A Course of Modern Analysis, Fourth Edition, Cambridge University Press, Cambridge.

Wigner, E.P., (1959), Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York.

Zondek, B., (1977), Aggregation Errors of Cell-Averaged Geoid Height, Technical Report TR-3608, Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren, Virginia, 22448, May 1977.


[^0]:    *Nettleton (1976, pg. 140) gives some early references.
    **op. cit., pg. 137.
    ***As Flinn (1967, pg. 412) has observed.

[^1]:    also known as the gain function

[^2]:    *as well as doubly periodic and hence radially symmetric about the center of each repetitive block.

[^3]:    *Heiskanen-Moritz, 1967, pg. 95.

[^4]:    *those for which $\mathrm{m}=0$

[^5]:    $\overline{\text { See Churchill and Dolph (1954) }}$

[^6]:    *neglecting ellipsoidal effects

[^7]:    *Heiskanen-Moritz (1967, pg. 237, eqn. 6-58)

[^8]:    *Pick-Picha-Vyskocil (1973, pg. 476, eqn. 1545)
    **Molodenskii (1962, pg. 50, eqn. III.2.4). Also Pick-Picha-Vyskocil
    (1973, pg. 243, eqn. 697)

[^9]:    *The tilde notation is used so that there will be some similarity but especially no conflict with the bar notation of Molodenskii and Heiskanen-Moritz (1967, pg. 260). Thus $S(\psi)=S(\psi)+\overline{\mathbf{S}}(\psi)$.

[^10]:    *Meissl (1971, pg. 24)

[^11]:    *For simplicity, the zeroth and first degree spectral coefficients, $\lambda_{0}$ and $\lambda_{1}$, are neglected.

[^12]:    *Heiskanen-Moritz (1967, pg. 88). In particular, equations 2-155 and 2-153 show that these two quantities may be expanded in a spherical harmonic series.

[^13]:    ${ }^{*}$ Note that Heiskanen-Moritz use a different definition of the spectral coefficients, specifically grouping the term ( $2 n+1$ ) differently.

[^14]:    *expressed in terms of horizontal gravity disturbances rather than deflections

[^15]:    *when the tensor is represented in a local vertical coordinate system

[^16]:    ${ }^{\star}$ Gradshteyn-Ryzhik (1965, pg. 822, equations 7.226.1 and 7.226.2)

[^17]:    ${ }^{*}$ Erdélyi (1953, Vol. II, pg. 180); Dwight (1961, pg. 215).

[^18]:    *Abramowitz-Stegun (1965, pg. 258, eqn. 6.1.49)

[^19]:    In the figure there are actually two rings between $\psi \approx 62^{\circ}$ and $\psi \approx 85^{\circ}$ although it appears that these angles subtend only one ring. The intermediate spherical radius separating these rings falls at $\psi \approx 73^{\circ}$. To the precision shown in the graph the Stokes' function has the same mid-point value in each of these rings.

[^20]:    Heiskanen-Moritz, 1967, pp. 120-122; Pick-Picha-Vyskocil, 1973, pp. 262-264.
    **paqe 121, equation 2-232.

[^21]:    *page 122, equation 2-235.

[^22]:    ${ }^{*}$ in his Figures 10 and 11

[^23]:    *The term "residual" refers to the "outer zone" where $\psi_{0}<\psi \leq \pi$, while "truncated" refers to the "inner zone".

[^24]:    apparently by a factor of ten

[^25]:    *i.e. multiplicatively decoupleable

[^26]:    see Heiskanen-Moritz (1967, pp. 262-263)
    **Staff Member, Charles Stark Draper Laboratory, Inc.

[^27]:    $$
    { }^{\Psi} 0
    $$

    235
    

[^28]:    *See Dahlquist and Björk (1977, pg. 443).
    ** such as one involving Householder transformations. See Lawson and Hanson (1974, Chapter 11).

[^29]:    *SIGMA is the product of the absolute value of RESID SPECTRUM and the square root of DEG VAR IN.

[^30]:    ${ }^{\star}$ The factor $10^{6}$ serves no purpose other than to scale the WEIGHT values for printing and possibly to prevent exponent underflow in the least squares subroutine.

[^31]:    * Since some error must be introduced by the discrete summation approximation, the minimum rms discretization error has a non-zero value.

[^32]:    *Dahlquist-Björk (1974, pg. 444); Dennis [1977, pg. 296, where the second partial derivative term is called $\underset{\sim}{(x)] .}$

[^33]:    *The $23-r i n g$ equal $r i n g$ contribution case with no damping was not run, so no Figure "a" appears.

[^34]:    *in the following chapter

[^35]:    *Dahlquist-Björk (1974, pg. 444); Dennis (1977, pg. 296).

[^36]:    See Whittaker and Watson (1927, pg. 325); Robin (1957, Vol. I, pg. 70, 107).

[^37]:    *as in the original exposition of the author's study, Robertson (1977a).

[^38]:    *He overly restricted his investigation to recursions involving only integrals of functions of lower degree.

[^39]:    ${ }^{\star}$ Heiskanen-Moritz (1967, pg. 24, equation 1-62). Their expression has to be reformulated to obtain the expansion used here.

[^40]:    *The double factorial notation (!!) indicates that only lternate integers appear: $6!!=6 \cdot 4 \cdot 2 ; 5!!=5 \cdot 3 \cdot 1$.

[^41]:    *Clenshaw's name is used because Clenshaw (1955) first suggested the summation technique which Calvez and Genin's (1977) paper generalizes. The Tscherning-Rapp (1974) covariance models use Clenshaw summation. For a detailed description, see Luke (1975, pp. 475-482).

[^42]:    *The reader is warned that DiDonato uses the reverse notation convention.

[^43]:    1

[^44]:    *excluding the first increment which is always zero.

[^45]:    *The frequency domain explanation in Section 6.3 .3 implies that the separation radius for the Vening-Meinesz' kernel should be twice that for the Stokes' kernel in the mean.

[^46]:    Figure E-7. Example of Large Increments (Vening-Meinesz, 125 rings, Maximum degree 1440).

[^47]:    *See Section 5.1.2.1 of this document.

