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ABSTRACT

A general theory and method is developed by which more accurate

and efficient summation approximations can be derived for any of the

integral transformations of geodesy. The theory and method are applied

to the well-known Stokes' and Vening-Meinesz' Integrals and improved

summations are determined which have lower rms discretization errors

than the approximations presently in use, even though only rudimentary

optimization algorithms are employed. Thus the validity of the theory

and the feasibility of the method are numerically demonstrated.

The theory is based upon spherical spectral analysis# a branch of

mathematics describing the spectral (or frequency domain) roperties

of data and linear operators defined over spherical coordinates. It

parallels Fourier analysis for cartesian coordinates. The scarcely-

known Legendre transform is shown to be the fundamental spectral trans-

form in spherical coordinates, converting the spherical spatial domain

into the spherical frequency domain and converting spherical convolution

into ordinary multiplication.

-- The integral transformations of geodesy are revealed as two-

dimensional spherical convolutions, and their discrete summation approxi- ...

mations are interpreted as spherical digital filters with a number of

adjustable parameters determined by the underlying template. The spheri-

cal 'transfer functions of the integral transformations and of their

discrete summation approximations are derived and shown to be close but

not exactly equal to each otherp as-axpected$. An analytic expression

for the partial derivative of the discrete summation transfer function

with respect to its parameters is derived and used in a Gauss-Newton

optimization process wvich ajusts the parameters incrementally so that

the approximating trans er function of the summation matches the ideal

transfer function of the integral as well as possible in a least-squares

sense. This is equivalent to minimizing the rms discretization error

of the approximation, and may be interpreted as spherical digital filter

design for geodetic transformations.
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FOREWORD

This document is not, and is not intended to be, a treatise of

mathematics nor of geodesy nor of signal processing. Rather it is

meant as a readable and understandable survey of the application of a

branch of mathematics to an important part of geodesy using signal

processing concepts, and as a demonstration of the possibility of

obtaining useful practical results from such cross-fertilization. In

point of fact, it was the desire for practical results which led to

the realization that the underlying problem had to be attacked from a

combined mathematical, geodetic, and signal-processing viewpoint.

Although many subjects are covered in the document, an attempt

was made to present sufficient detail (especially for the classical

transformations) so as to provide the reader with an appreciation of

the texture and richness of the material.

iv



PERSONAL ACKNOWLEDGEMENT

The author wishes to acknowledge his intellectual debt to Dr. Peter

Meissl through the report "A Study of Covariance Functions Related to

the Earth's Disturbing Potential" (Meissl, 1971). It was a reading

of this report which enlightened the author with the fundamental ideas

of the spectral theory of classical geodetic integrals and which led to

the elaboration and extension of the theory presented herein.

The author also wishes to recognize Mr. A.R. DiDonato for his

development of simple recurrence relations for the indefinite integrals

of the associated Legendre functions (DiDonato, 1977). These formulae

were essential in the numerical implementation of the author's theory,

permitting the spectrum of discrete summation transformations to be

rather easily computed for higher frequencies.

The author especially wishes to express his gratitude and appre-

ciation to Ruth Erickson for her talent and care in the typing and

physical preparation of both volumes of this document.

V



TABLE OF CONTENTS

Section Page

1 INTRODUCTION AND SUMMARY OF RELATED WORK .... ........ 1-1

2 SPECTRAL THEORY OF DATA AND OPERATORS ... ......... .. 2-1

2.1 Introduction ....... .................. .. 2-1

2.2 Spectral Analysis of Data and Operators ...... .. 2-1

2.3 Cartesian Spectral Transforms .... .......... .. 2-5

2.4 Spherical Spectral Transforms .............. .2-8

2.5 Convolution Expressions ... ............ 2-11

3 SPECTRAL THEORY OF THE INTEGRAL TRANSFORMATIONS

OF GEODESY ......... ....................... 3-1

3.1 Introduction ....... .................. 3-1

3.2 Isotropic Geodetic Transformations .. ....... 3-1

3.3 Anisotropic Geodetic Transformations . ...... 3-31

3.4 Transformations Involving Outward Surface
Partial Derivatives ...... ............... .. 3-41

4 SPECTRAL THEORY OF THE DISCRETE SUMMATION
TRANSFORMATIONS OF GEODESY ...... ............... .. 4-1
4.1 Introduction ....... .................. .. 4-1

4.2 Bull's-Eye Templates and Discrete
Summation transformations ..... ............ .. 4-2

4.3 Stokes' Discrete Summation Transformations . . 4-3

4.4 Vening-Meinesz' Discrete Summation .......
Transformations 4-18

4.5 Inner Zone Operators and Their Spectra
for First Order Geodetic Transformations .... 4-29

5 SPECIFIC TEMPLATES AND EXAMPLES OF SPECTRA ........ .5-1

5.1 Specific Templates ....... ................ 5-1

5.2 Examples of Spectra .... .............. 5-14

vi



(TABLE OF CONTENTS continued)

Section Page

6 TEMPLATE OPTIMIZATION METHODS AND DISCRETE
SUMMATION TRANSFORMATIONS ....... ............... 6-1

6.1 Introduction ...... ................. 6-1

6.2 Global RMS Discretization Error .... ......... 6-3

6.3 Optimization Algorithm .... ............. 6-6

7 TEMPLATE OPTIMIZATION RESULTS .... ............. 7-1

7.1 Summary .................... 7-1

7.2 Results for the Stokes' Transformation ..... 7-3

7.3 Results for the Vening-Meinesz' Transformation. 7-11

7.4 Results Using Variations in the Optimization
Algorithm ....... ................... 7-21

8 SUMMARY AND CONCLUSIONS ..... ................ 8-1

9 RECOMMENDATIONS FOR FURTHER INVESTIGATION . ....... . 9-1

Appendix

A DEFINITIONS AND NOTATIONS FOR THE ASSOCIATED LEGENDRE
FUNCTIONS ......... ....................... A-I

B RECURSION RELATIONS FOR THE INDEFINITE INTEGRALS OF

THE ASSOCIATED LEGENDRE FUNCTIONS ... ........... B-1

B.1 Shepperd-Robertson Recursion .. .......... B-1

B.2 Robertson-Clenshaw Recursion .. .......... B-9

B.3 DiDonato Recursion ..... ............... B-12

B.4 Paul Recursion ...... ................. B-13

C LISTINGS OF THE COMPREHENSIVE FILTER DESIGN COMPUTER
PROGRAM .......... ........................ C-i

D EXPLANATION OF THE COMPREHENSIVE FILTER DESIGN
COMPUTER PROGRAM ....... ................... D-I

E DISCUSSION OF THE EXCLUSION OF SMALL RING RADII FROM
THE DIFFERENTIAL ADJUSTMENT PROCEDURE .. ......... E-I

F DERIVATION OF ALGORITHM FOR CALCULATING THE STOKES'
EQUAL RING CONTRIBUTION TEMPLATE ... ............ F-I

LIST OF REFERENCES ......... ....................... R-1

vii



LIST OF FIGURES

Figure Page

2.5-1 Relationship of Points on a Spherical Surface
for Interpretation of Spherical Convolution . . . . 2-14

3.2-1 Summary of Mathematical Relationships for the
Classic Stokes' Integral Transformation ....... .. 3-9

3.2-2 Summary of Mathematical Relationships of the
Analog of the Stokes' Integral Transformation
for Surface Layer Density .... ............. ... 3-10

3.2-3 Summary of Mathematical Relationships for the
Molodenskii Integral Transformation .. ........ . 3-11

3.2-4 Summary of Mathematical Relationships for the
Truncated Stokes' Integral Transformation ..... ... 3-12

3.2-5 Summary of Mathematical Relationships for the
Cap-Averaging Integral Transformation ......... 3-13

3.2-6 Schematic Diagram for the Interpretation of
the Generalized Anomaly of Type "k" . ......... ... 3-15

3.2-7 Closed Form Expressions for the Generalized
Stokes' Function ........ .................. .. 3-17

3.2-8 Summary of Mathematical Relationships for the
Generalized Stokes' Integral Transformation . . . . 3-19

3.2.3-1 Flow Diagram of Basic Geodetic Transformations
and Their Spectra ...... ................. .. 3-20

3.2.4-1 Summary of Mathematical Relationships for the
Identity and Upward Continuation Integral
Transformation ........ ................... .. 3-23

3.2.5-1 Summary of Mathematical Relationships for the
Gravity Anomaly Vertical Gradient Integral
Transformation ....... .................. .. 3-26

3.2.5-2 Flow Diagram of Eigenvalues of Vertical Gradient
Geodetic Transformations .... ............. . 3-28

viii



FigureP

3.2.5-3 Summary of Mathematical Relationships for the
Vertical Stress Gradient Integral Transformation . 3-30

3.3.1-1 Summary of Mathematical Relationships for the
Classic Vening-Meinesz' Integral Transformation. . . 3-34

3.3.1-2 Summary of Mathematical Relationships for the
Vertical Shear Gradient Integral Transformation. . . 3-36

3.3.1-3 Summary of Mathematical Relationships for the
Horizontal Stress and Shear Gradient Integral
Transformations ....... .................. .3-39

3.3.2-1 Flow Diagrams of Spectra of Various Other
Geodetic Transformations ..... .............. .3-40.

3.4-1 Geometry of the Outward Surface Partial
Derivative ......... ..................... .3-42

3.4-2 Summary of Mathematical Relationships for
Malkin's Integral Transformation .... .......... .3-44

3.4-3 Summary of Mathematical Relationships for the
Second Molodenskii Integral Transformation ...... .. 3-45

3.4-4 Values of Some Wallis Coefficients .. ......... ... 3-48

4.2-1 Bull's-Eye Template ...... ................ .. 4-3

4.3.1-1 Stokes' Midpoint Averaging Function S(p) ....... .4-6

4.3.2-1 Stokes' Integrated-Mean Averaoing Function S(i). . 4-10

4.3.3-1 Stokes' Comb Function S() ..... ............. .. 4-13

4.3.4-1 Summary of Relationships for the Discrete
Stokes' Summation Trnasformation Using Midpoint
Weighting ........ ..................... .4-15

4.3.4-2 Summary of Relationships for the Discrete Stokes'
Summation Using Integrated-Mean Weighting ..... ... 4-16

4.3.4-3 Summary of Relationships for the Discrete Stokes'
Summation Transformation on Point Gravity
Anomalies ........ ..................... .. 4-17

4.4.1-1 qning-Meinesz' Midpoint Averaging Function
VM(t) .......... ........................ .4-20

4.4.2-1 Vening-Meinesz' Integrated-Mean Averaging
Function VM ( ) . ..... .................. 4-22

4.4.3-1 Summary of Relationships for the Discrete Vening- -

Meinesz' Summation Using Midpoint Summation . . . . 4-27

ix



Figure Pg

4.4.3-2 Summary of Relationships for the Discrete Vening-
Meinesz' Summation Using Integrated-Mean Weighting 4-28

4.5-1 Summary of Mathematical Relationships for the
Single Dipole Finite Difference Operator ........ .. 4-30

4.5-2 Summary of Mathematical Relationships for the
Double Dipole Finite Difference Operator . ..... .. 4-31

4.5-3 Summary of Mathematical Relationships for the
Rice Weighted Quadruple Dipole Operator ........ .. 4-32

4.5-4 Summary of Mathematical Relationships for the
Truncated Vening-Meinesz' Transformation ........ .4-35

5.2.1-1 Spectra of Stokes' Transformation (34-Ring
Pick-Picha-Vyskocil Template) ... ........... .. 5-16

5.2.1-2 Spectra of Stokes' Transformation (101-Ring
Circularized AGEMIT Template) .... ........... .. 5-20

5.2.2-1 Spectra of Vening-Meinesz' Transformation
(23-Ring Equal Contribution Template) ........... .. 5-26

5.2.2-2 Spectra of Vening-Meinesz' Transformation
(125-Ring Equal Contribution Template) .. ....... .. 5-27

6.1-1 Example of Iterative Decrease of the Discreti-
zation Error ......... .................... .6-2

6.3.4-1 Example of Output Weighting .... ............ .. 6-16

7.1-1 Summary of Basic Optimization Results ........ ... 7-2

7.2.1-1 Summary of 34-Ring Template Optimization
for the Classic Stokes' Transfcrmation ......... .7-5

7.2.1-2 Summary of 66-Ring Template Optimization
for the Classic Stokes' Transformation
Beginning with an Equal Ring Contribution
Template .......... ...................... .7-6

7.2.1-3 Summary of 101-Ring Template Optimization
for the Classic Stokes' Transformation ......... .. 7-7

7.2.2-1 Summary of 34-Ring Template Optimization
for the Stokes' Transformation Analog ........ ... 7-10

7.3.1-1 Summary of 23-Ring Template Optimization
for the Vening-Meinesz' Analog Transfor-
mation, Beginning from an Equal Ring
Contribution Template ..... ............... .. 7-12

7.3.1-2 Summary of 23-Ring Template Optimization
for the Vening-Meinesz' Analog Transfor-
mation, Beginninj from the Pick-Picha-
Vyskocil Template ....... ................. .7-12

x



Figure Page
7.3.2-1 Summary of 125-Ring Template Optimization for

the Vening-Meinesz' Analog Transformation,
Beginning from an Equal Ring Contribution
Template. (Damping = 0.5) ..... ............. .7-14

7.3.2-2 Summary of 125-Ring Template Optimization for
the Vening-Meinesz' Analog Transformation,
Beginning from an Equal Ring Contribution
Template. (Damping = 0.z5) .... ............ .7-16

7.3.2-3 Summary of 125-Ring Template Optimization for
the Vening-Meinesz' Analog Transformation,
Beginning from Circularized AGEMIT Template . . . . 7-18

7.4.1-1 Comparison of Vening-Meinesz' Optimization
Using Increment Damping Variation ... ......... .7-22

7.4.1-2 Comparison of Vening-Meinesz' Optimization
Using Increment Damping Variation ... ......... .7-24

7.4.1-3 Comparison of Vening-Meinesz' Optimization
Using Increment Damping Variation ... ......... .7-26

7.4.2-1 Iterations of a Stokes' Optimization Run
Using Output Weighting ..... ............... ... 7-30

E-1 Example of Large Increments (Vening-Meinesz,
23 rings, maximum degree 50) .... ........... E-2

E-2 Example of Large Increments (Stokes, 34 rings,
maximum degree 50) ....... ................. .E-3

E-3 Example of Large Increments (Stokes, 34 rings,
maximum degree 500) ....... ................. .E-3

E-4 Example of Large Increments (Stokes, 101 rings,
maximum degree 1000) ....... ................ .E-4

E-5 Example of Large Increments (Vening-Meinesz,
23 rings, maximum degree 1440) .... ........... .. E-5

E-6 Example of Large Increments (Vening-Meinesz,
125 rings, maximum degree 1440) ... ........... .. E-5

E-7 Example of Large Increments (Vening-Meinesz,
125 rings, maximum degree 1440) ... .......... .. E-6

E-8 Summary of Cases for Small Ring Radii

Exclusion ........ ..................... .. E-7

F-l Sub-areas Under the Curve S(ip)sin ........... .. F-2

F-2 Dead-bands around the Zeros of S(f)sin ....... .F-2

F-3 Nature of Solution ....... ................. ..F-4

F-4 Solution for Ab = 0 ....... ................. ..F-5

F-5 Solution for Aa =0 ....... ................. ..F-6

xi



i~~ . :t..I I i '.S .. , , .... . ... .

LIST OF TABLES

Table Page

5.1.1-1 Pick-Picha-Vyskocil Template Parameters for the
Stokes' Transformation ..... ............... ... 5-4

5.1.1-2 Pick-Picha-Vyskocil Template Parameters for the
Vening-Meinesz' Transformation ... ........... .. 5-5

5.1.1-3 The Original Rice Inner Zone Template Parameters . 5-6

5.1.1-4 Kazansky Inner Zone Template Parameters ....... .5-6

5.1.2-1 Template Parameters for the 23-Ring Equal
Contribution Template with W0 = the initial
radius of Pick-Picha-Vyskocil ... ........... ... 5-12

5.1.2-2 Template Parameters for the 125-Ring Equal
Contribution Template with *0R = 235 meters . . . . 5-12

5.1.3-1 Template Parameters for the Circularized
AGEMIT Template ...... .................. .. 5-13

5.1.3-2 Template Parameters for the 125-Ring "Rice-
DMAAC" Template ...... .................. .. 5-15

6.2-1 Discretization Error of Various Templates for
Stokes' Transformation ..... .............. . 6-5

6.2-2 Discretization Error of Various Templates for

Vening-Meinesz' Transformation ... .......... . 6-6

B-I The bn,k coefficients ..... ............... ... B-4

B-2 The cn,k coefficients ..... ............... ... B-6

B-3 The dk coefficients ..... ................ ... B-7

B-4 Estimates of certain bn,k coefficients . ...... . B-8

B-5 The B.j, coefficients ..... ............... ... B-10

B-6 The hlk coefficients ..... ............... ... B-li

D-1 Major Inputs to FITFILT .... .............. ... D-3

xii



GLOSSARY OF SYMBOLS

Symbol Section Page

A ij Surface area of the (i,j)th compartment on 4.3the unit sphere 4.4

C Si,. Integrated-mean values of the cosine and 4.4.2 4-23
ij Jsine functions in the (i,j)th compartment

dg Gravity variation (dg = d0g) 3.2.2 3-14

do Element of surface area on unit sphere 3.2 3-2
(da = sin ' dPdx)

dkg Generalized gravity anomaly of type "k" 3.2.2 3-14

f(,a), Input geodetic quantity to an integral 3.2 3-2

fIN( ,a) transformation 3.3 3-31

fOUT' Output of integral transformation corres- 3.2 3-2

fOUT(j, ponding to input f(*,c) or fIN( ,a) 3.3 3-31

Fn, Fnm Fourier or Legendre coefficients of the 2.3 2-4
function "f" 2.4 2-8

Fm_ Fm
n n

F2D[ 1
'  Two-dimensional Fourier transform and Inverse 2.3 2-5

F-l[ ] Fourier transform of quantity in brackets

G Nominal value of earth's gravity 3.2 3-3

H[ ], Hankel transform and Inverse Hankel transform 2.3 2-6

H-l[ of quantity in brackets

k(cos f), Kernel of an isotropic geodetic transforma- 3.2 3-2

K(cos i) tion

xiii



Symnbol Section Page

L{ , Legendre transform of quantity in braces 2.4 2-8

L [ or brackets

L{ }, Inverse Legendre transform of quantity in 2.4 2-8

-l[ braces or brackets

m Spherical harmonic order 2.4 2-8

M() Specific kernel function related to Molo- 3.2.1.3 3-6

denskii transformation

n Spherical harmonic degree 2.4 2-8

(n) or n the nth spherical harmonic of the main- 3.2.5 3-24
(subscript] line quantity

P cnm(Cs P) Associated Legendre function (Ferrers' Appendix A-2
convention) A

pm(cos i) Associated Legendre function (Hobson Appendix A-1
n convention) A

P Integrated-mean value of the tegendre 4.3.2 4-11
n~) polynomial Pn (cos fl)in the kt ring 4-11

m Integrated-mean value of the Hobson 4.4.2 4-25
n associated Legendre function over the

ith ring

qn(P0 )  Cook coefficients 4.5.3 4-34
6.3.3 6-12

Qn(00)  Molodenskii coefficients 3.2.1.4 3-7
6.3.3 6-12

R Nominal value of earth's radius 3.2 3-3

s Linear distance from point of evaluation 4.5.2 4-33
Is = R*p

S(, Stokes' function 3.2.1.1 3-3

S (cos i)

xiv



Symbol Section Page

Residual Stokes' function (=S(M) for 3.2.1.4 3-7
ip0 < < 7r, otherwise 0)

S(M) Truncated Stokes' function (=S(M) for 3.2.1.4 3-7
0 < <%0, otherwise 0)

S(M) Stokes' Midpoint Weighting function 4.3.1 4-5

S( ) Stokes' Integrated-Mean Averaging function 4.3.2 4-8

Sk(*) Generalized Stokes' function of type "k" 3.2.2 3-16

Sn Sequence like Wallis coefficients 3.4.1 3-41
[S = 1/In )] 3.4.2 3-50

S Integrated-Mean Value of Stokes' function 4.3.2 4-8
S(i) in the ith ring

S{ }, Spectral transform of quantity in braces 2.2 2-3

S[ I or brackets

S-1{ , Inverse spectral transform of quantity in 2.2 2-3

s-l[ I I braces or brackets

t Sine of half the spherical arc distance 4 5.1.2 5-8

T Anomalous potential 3.2.2 3-32

Tzx, Tzy, Partial derivatives of the anomalous 3.3.1.2 3-35

T T potential with respect to subscript 3.3.1.3 3-37
yy, xx, variables

Txy

VM(0) Classical Vening-Meinesz function 3.3 3-32
VM (COS P) [VM(*) =aS(O//p]

VM(W) Vening-Meinesz' midpoint averaging func- 4.4.1 4-18
tion

vM(4') Vening-Meinesz integrated-mean averaging 4.4.2 4-21
function

xv



Symbol Section Page

VMi  Integrated-mean value of Vening-Meinesz 4.4.2 4-21
function in the ith ring

Wn  Wallis coefficient 3.4 3-43

x, xi  Cosine of spherical arc distance i or
1 spherical ring boundary radius i

x, , * Sets of template parameters considered as 6.3.1 6-7
a parameter vector

Spherical azimuth angle from local north 2.5 2-13
to generic point measured at point of
evaluation

a 3..Spherical compartment boundary azimuth in 4.2 4-3
the ith ring

L 2D() Two-dimensional Dirac Delta Function 3.2.1.3 3-6

Agij Mean gravity anomaly in the (i,j)th 4.3 4-7compartment 4.4 4-19

Ax Increment in template parameters x 6.3.1 6-8

AX(x) Residual Spectrum considered as a 6.3.1 6-7
function of the template parameters x

, £ Vertical Deflection vector Ic =(Cq)] 3.4 3-4;

Ck Neumann factor (0 =i, Ek =
2 for k3O0) 2.3.2 2-7

e Colatitude (900 -latitude) 2.5 2-13

X n{ 1, Spectrum of the isotropic kernel included 3.2 3-2

I[ in braces or brackets or not specifiedn n explicitly

{ }, Spectrum of the anisotropic kernel 3.3 3-31
xm Am included in braces or brackets or not
-n -n specified explicitly

xvi



i .. . . . .. i I - . .. . ..

Symbol Section Page

mfIN -1fO , Spectrum of the transformation
n IN O converting the input f into the
n IN OUT output fOUT, and havin kernel K.

X_( Spectrum of a discrete summation 6.3.1 6-7
transformation with template
parameters x

2a2{ n Degree variances of quantity in 6.3.1.1 6-9n braces

,) Surface layer density (single layer) 3.2.1.2 3-4

Spherical arc distance on a unit 2.5 2-13
sphere from the point of evalua-
tion. "Spherical radius".

*0 Spherical radius of small spherical 3.2.1.4 3-7
cap around point of evaluation 4.2 4-3

*i Spherical ring boundary radius 4.2 4-3

'LIMIT Spherical radius for exclusion of 6.3.3 6-13
small ring radii adjustment

(! Schuster's Factorial 3.4.2 3-46
(2n! = 2.4-6 -.. (2n)
(2n-1)1! = 1-3-5 -.- (2n-l)

rms Global root-mean-square value of 6.2 6-3
quantity in braces

Convolution operator 2.2 2-3
2.5 2-11

xvii

. i I I - I I l I l l l



SECTION 1

INTRODUCTION
AND

SUMMARY OF RELATED WORK

1.1 Introduction

The numerical evaluation of certain spherical geodetic transfor-

mations, such as the Stokes', Vening-Meinesz', and Molodenskii Integrals,

is performed frequently and repeatedly in various research facilities

which desire a knowledge of the earth's external gravitational field.

The computation is required in order to convert known geodetic/gravimetric

quantities, such as surface gravity anomaly measurements, into other

geodetic/gravimetric quantities, such as geoid height or gravity dis-

turbance vectors at altitude. The computer algorithms carrying out

the computation are by necessity finite summations which only approximate

the mathematically rigorous integral transformations of geodetic theory

to various degrees of accuracy.

Due to the computational burden involved, it is highly desirable

to make the algorithms as efficient as possible, with the highest

accuracy attainable for the smallest amount of computer time. Geodesists

have long known that it is inefficient to sum these integrals over grid

patterns or templates whose compartments are equally-spaced over the

whole earth. Various non-equally-dimensioned grids or templates have

therefore been empirically devised which provide more efficient approxi-

mations of the theoretical transformations. However, no research has

been carried out to derive optimum summation schemes or grids from

fundamental mathematical principles.

Besides reducing the computation time, it is even more important

that the summation approximations preserve as well as possible the

spectral (frequency domain) properties of the integral transformations,

since it is only in this manner that output quantities can be obtained

from the summations with nearly correct frequency characteristics.

Otherwise results might be obtained in which certain spatial frequencies

had been unknowingly eliminated or distorted.
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To achieve these objectives, it is natural to expect that the

mathematical techniques involved would include modern signal-processing

and filtering theory, appropriately adapted to spherical geometry.

The present data-processing situation for spherical geodetic

transformations is rather analogous to that for planar gravimetric

and magnetic transformations during the 1930's and 1940's in the early

years of scientific geophysical exploration for oil and gas. During

that period, a number of summation approximations were developed and

applied,* especially for calculating the second vertical derivative

of the anomalous potential (which emphasizes local features and removes

some regional trends) and the downward continuation of anomalies (which

yields estimates of subterranean masses). However, as Nettleton

remarks:** "For the first 20 years or so of their use, second deriva-

tives and the related upward and downward continuation were treated as

mathematical operations in themselves and not as filtering functions.

Millions of square miles were mapped with second derivative contours ...

apparently without realizing that the systems used did not come close

to actually determining the mathematical quantity implied."

At about the same time, Norbert Wiener of M.I.T. was developing

the theory of prediction and filtering of stationary time series on

a highly rigorous level. The possibility of the practical application

of this theory in seismic analysis led to the formation of the M.I.T.

Geophysical Analysis Group in 1952, and in particular to the thesis of

Enders A. Robinson (1954) which "could serve as the framework for a

logical development of the entire subject of digital processing."***

As a result of these mathematical advances, the various gravimetric and

magnetic summations in use were analyzed in the late 1950's and early

1960's from the signal processing or filtering point of view. It was

quickly realized why they possessed certain inherent qualities and how

desired qualities could be designed into new summation operators.

Nettleton (1976, pp. 158-170) provides a nice review of these developments.

While the spherical geodetic summations of today are presumably

determining much more accurate approximations of the mathematical

quantities involved than the early planar summations mentioned by

Nettleton, the present transformations are still largely conceived of

Nettleton (1976, pg. 140) gives some early references.
**
Op. cit., pg. 137.

As Flinn (1967, pg. 412) has observed.
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as mathematical procedures in themselves (i.e. computer subroutines)

and not as filtering operations.

it is the purpose of the present study to change this viewpoint.

The concepts and techniques of spectral analysis and signal processing

are modified and adapted for the underlying spherical geometry. The

integral transformations of geodesy are shown to be two-dimensional con-

volution operators, and their associated summation approximations are

interpreted as linear shift-invariant transformations on the input

datae i.e. as spherical digital filters. The characteristics of the

transformations in the frequency domain are investigated through the

determination of their spectra (transfer functions, frequency responses).

And an attempt is made to design optimum spherical summation approxi-

mations to the Stokes' and Vening-Meinesz' Integrals by mathematically

adjusting the grid or template parameters in the summation so that its

resulting spectrum will match as well as possible the ideal spectrum of

the corresponding theoretical integral transformations.

In particular, a brief review of the spectral theory of data and

operators over both two-dimensional cartesian and two-dimensional

spherical coordinates is presented in Chapter 2 so as to summarize the

results and emphasize their analogies. Chapter 3 develops the spectral

theory of the theoretical spherical integral transformations of geodesy,

providing many examples of the "ideal" transfer functions of these

transformations. A similar theory for the discrete summation approxima-

tions of the Stokes' and Vening-Meinesz' Integrals is carried out in

Chapter 4. The details of a number of specific templates are described

in Chapter 5, and plots are presented to illustrate the small but sig-

nificant differences between the ideal transfer functions and those of

the approximating summations. In Chapter 6, a description is given of

the constrained optimization algorithm and certain variations thereof

which were used to incrementally adjust template parameters to reduce

the rms discretization error, and the improved results which were

obtained are presented in Chapter 7. The conclusions of the study are

given in Chapter 8, and recommendations for further investigation in

Chapter 9. The six appendices provide mathematical details of the

associated Legendre functions, a listing and explanation of the compre-

hensive filter design computer program, and discussions of other parti-

culars too lengthy to be included in the text. Volume II is a catalog

of the spatial and frequency domain representations of approximately

100 spherical integral transformations, of which about 85 have an expli-

citly geodetic interpretation.

1-3



1.2 Related Work

The author is aware of only a few other people who are studying

or who have published papers on the spectral theory of spherical geodetic

transformations. Only one of these has (indirectly) investigated the

effect of the discretization of an integral transformation to a finite

summation transformation, although summations are always used in practice.

A brief review of the published work of these authors is given in

the following paragraphs.

Meissl (1971) has unquestionably laid the foundation for the

application of functional analysis and spectral theory to spherical

geodetic transformations. In his report, the fundamental definitions

and formulae for the spectrum of a transformation are given, with a

number of specific examples. However, Meissl's developments are pri-

marily oriented toward isotropic (zeroth-order) operators, and no

discrete summation transformations are discussed. Nevertheless the

fundamental relationships all appear (in a Hilbert space setting), and

the present author has benefited greatly from Meissl's ideas.

Neyman (1974) has also approached the study of spherical geodetic

transformations from the functional-analytic or spectral-theoretic

point of view. He has given definitions of the spectrum of such trans-

formations which are equivalent to Meissl's and to those of the present

document (exclusive of a normalizing factor). Moreover, he has briefly

considered anisotropic transformations and their spectra, and has

sketched in a few paragraphs the idea of approximating transfer

functions over subregions of a sphere. Neyman's paper was brought to

the attention of the present author by Louis Decker of the Defense

Mapping Agency in January 1978 after the present theory was well

developed (Robertson, 1977a, 1977b). It is very likely that Neyman

has further results which have not yet appeared outside the original

Russian literature.

Molodenskii (1962) has extensively investigated the mathematical

properties of the Stokes' and Vening-Meinesz' transformations, especially

the truncated versions of these transformations and the effect of the

regions remote from the point of evaluation. Clearly he is aware of

the spectral properties of these transformations, although his mathe-

matics is not formally cast in spectral analysis terminology. While he

has derived more rapidly convergent expressions for the classic geodetic
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integral transformations, he does not consider discrete summation approxi-

mations. Molodenskii's work is pioneering and contains many ideas

whose consequences have not yet been fully explored or appreciated.

Colombo (1977) has attacked a very specific problem in geodetic

computations, namely how to adjust the kernel function of a spherical

geodetic transformation when the integral is to be carried out only

over a spherical cap rather than the entire sphere, in order that the

mean square error of such an approximation may be minimized. While

Colombo does not explicitly define spectra of operators or develop a

general theory, it is obvious that he is aware of the frequency domain

interpretation of spherical geodetic transformations. As he says in

his abstract, "The technique can be regarded as a method of designing

two-dimensional filters to transform signals distributed on the surface

of a sphere." All of Colombo's results are for the isotropic Stokes'

and Molodenskii Integrals. The present author became aware of Colombo's

work from the abstract appearing in EOS in December 1977, and received

Colombo's paper in June 1978.

Zondek (1977) is the only other researcher who has (indirectly)
investigated the effect of the discretization of a spherical geodetic

integral transformation. Specifically he has studied the effect of

compartmentally averaging the output of the Stokes' Integral rather than

the input. Since the compartmental averaging operator and the Stokes'

Integral operator are commutative, Zondek's results may be immediately

interpreted in terms of a discretization of the Stokes' Integral. To

carry out the numerical calculations, Zondek uses DiDonato's (1977)

algorithm which was specifically developed for this purpose. The present

author also uses DiDonato's algorithm and became aware of it through

reading Zondek's paper in early 1978.

Potter and Frey (1967) have examined the mathematical and statis-

tical properties of spherical "rotation-invariant" linear operators

and probability distributions, defining their spectra, exhibiting the

one-dimensional convolution theorem, and proving that the power spectrum

is positive. In particular, they have applied their approach to the

Poisson kernel, and shown that the spherical upward continuation convo-

lution may be represented by a single integral involving a complete

elliptic integral. While their results are limited to isotropic kernels,

Potter and Frey have developed many fundamental ideas in their short

terse paper. The present author became aware of their work just before

this document was finished.
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General expositions of the spectral theory of linear operators

are given by Liusternik and Sobolev (1961), Kato (1966), and Dunford

and Schwartz (1958 and 1963). The geodetically-oriented reader is likely

to find these treatises rather formidable. Nevertheless they show how

far and how deeply the mathematics of this theory has been developed.

The symbol "A" for the spectrum of an operator is inherited from such

treatises.
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SECTION 2

SPECTRAL THEORY OF DATA AND OPERATORS

2.1 Introduction

A brief summary of the most important concepts and formulae of

spectral theory for data and for operators in both two-dimensional car-

tesian spaces and two-dimensional spherical spaces is presented in this

chapter. The analogies of the ideas and the results for both types of

"inputs" and for both types of spaces are stressed in order to show the

fundamental unity and generality of the theory. It is assumed that most

readers will be familiar with at least the spectral theory of data in one

or two dimensional cartesian spaces, but may never have considered the

continuation of the theory to operators or to spherical spaces. The

engineering reader, however, may actually have knowledge of some of the

results of the spectral theory of c )erators in one-dimensional cartesian

space, namely the use of transfe functions, without realizing that this

is a part of a more general theory.

2.2 Spectral Analysis of Data and Operators

Of fundamental importance in the spectral theory is the concept

of tne spectrum, which has a meaning both for data and for linear

operators.

Data, or "signals" as data is often called in electrical engineering,

are values of one or more dependent variables associated with each value

of one or more independent variables such as time or position. Thus

data are functions in the ordinary sense having individual numbers as

input ari as output.

Linear operators are mathematical transformations which linearly

transform sets of input data into sets of output data. Thus they are

"functions of functions", having functions as input and as output.

They are called "operators" by mathematicians to distinguish them from

functions. An example is the operator which yields the derivative of

any (arbitrary) input function.
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The spectrum of a set of data is a mathematical description of the

strengths and phases of the frequencies or periodicities present in the

data. The data may be distributed in time or in single or multi-

dimensional space; the spectrum will then represent the time or spatial

frequencies respectively. The values of the spectrum are obtained by

performing a "spectral transform" on the data. In the case when the

independent variables of the data are cartesian, the spectral transform is

the well-known Fourier transform, and the spectrum is sometimes called

the set of Fourier coefficients of the data. Ohen the independent vari-

ables form a spherical coordinate system, the spectral transform is

the scarcely-known Legendre transform. The explicit mathematical expres-

sions for the spectral transform in two-dimensional cartesian and spherical

spaces will be exhibited in later sections of this chapter.

The spectrum of a linear operator or transformation is a mathematical

description of the (multiplicative) strengths and the (additive) phases

by which the operator respectively amplifies/attenuates and shifts the

frequencies present in the input data as the operator transforms this data

into output data. In other words, the spectrum describes the ratios of

the strengths, and the differences of the phases, of the output frequencies

to the input frequencies. Individual values of the spectrum are called

eigenvalues. The spectrum of a very wide and important class of linear

operators, namely convolution operators, may be obtained by performing

a spectral transform on the kernel function of the integral representing

the convolution. This is in direct analogy to the case of data. Again in

the operator case, the spectral transform is the Fourier transform when

the independent variables are cartesian and the Legendre transform when

the independent variables are spherical. In electrical engineering

terminology, the spectrum of an operator is called its frequency response

or transfer function and the kernel of a convolution operator is called

its impulse response.

It is common to speak of examining data or operators in both the

"time or spatial domain" and the "frequency domain". The former refers

to the original data or operator explicitly expressed in terms of time or

spatial parameters, while the latter refers to the spectrum of the data

or the operator and is therefore expressed as a function of (time or

spatial) frequency.

Just as the data or the operator may be decomposed (or expanded)

into its constituent frequencies or spectrum by a spectral transform,

so may the original data or convolution operator kernel be recovered from
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its spectrum by an inverse spectral transform on the spectrum. The actual

formulae exhibiting the reciprocal relationships will soon be presented.

The process of convolution and the spectral transform are intimately

related by the fact that the spectral transform converts convolution in the

spatial domain into (ordinary) multiplication in the frequency domain.

It is this fundamental property, plus the fact that so many linear

operators may be represented by a convolution transformation, which is

at the base of the theory and its applicability.

Of particular importance for geodetic theory is the fact that all

of the classical (and non-classical) geodetic integral transformations

are convolutions in one- or two-dimensional spherical space. For example,

the Stokes' Integral is the convolution of the Stokes' function S(*) with

the gravity anomalies Ag(OP,).

To be more specific, let "k" and "f" represent functions, let

"k*f" represent their convolution, and let S{ } represent the spectral

transform of the function within the braces. Then the fundamental

relationship is expressed as

S{k*f} = S{k} *S{f}.

It can also be shown (Bracewell, 1965, pg. 110) that

S{k f}= S{k} *S{f}

and from these relations it is deducible that if K and F are functions

in the frequency domain and S-1 is the inverse spectral transform,

then

S-l{K*F} - S-i{K} -IS1 {F}

and

- {K F} = S- {K} *S-1 {F}

However, the last three relations are not of interest here.

Several properties of the spectrum are:

a) The spectrum of the sum of two (or more) linear convolution

transformations is equal to the sum of the spectra of the

transformations. This is due to the linearity of the

transformations and of the spectral transform.
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b) The spectra of a composite transformation formed by the

sequential application of one transformation on the output

of another transformation is the product of the spectra
of the individual transformations. This may be seen as

follows. Let kl(x) and k2(x) be the kernels of the two

transformations. Suppose g2 (x) = k2 *f 2 = k2 *(k, *f l).

Then

S{g 2 } = S{k 2 } S {k, * } =

= S{k 2 } S {k11 S {fl}

c) The elements of the spectrum of an inverse transformation
are the reciprocals of the elements of the forward transfor-

mation. This follows immediately from the above property.

d) An element of the spectrum of a transformation is zero if
and only if the transformation eliminates the corresponding

input frequency while generating the output. This is a

direct consequence of the fundamental property.

e) The magnitudes of the elements of the spectrum equal the
amplification/attenuation factors of the transformation on

the global root-mean-square values of the corresponding

frequencies of the input:

{gn}rms Snn W {fnirms

where the subscript "n" indicates the nth frequency or

harmonic. This is a direct consequence of the fact that the

global mean-square value of data of a single frequency is
equal to the global mean-square value of the spectrum of the

data at that frequency.

also known as the gain function
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2.3 Cartesian Spectral Trans'.nrms

In the case when the independent variables form a cartesian coor-

dinate system, the spectral transform is the standard Fourier transform.

The Fourier transform and its inverse assume several slightly different

forms depending upon whether the data or the operator is periodic or non-

periodic over the infinite line or plane. For simplification, only the

two-dimensional case and the one-dimensional specialization when the

data or the operator kernels are radially symmetric (isotropic about

the origin) will be considered. The extension to a higher number of

dimensions is relatively straightforward, but in this document there

will be no need for this generality.

The following notational conventions will be used in the expres-

sions for cartesian spectral transforms:

. Lower-case letters denoting functions (especially f(x,y)

and f(r)] represent data or operator kernels in the spatial

domain.

• Upper-case letters denoting functions [especially F(u,v)

and F(q)] represent the corresponding data or operator

kernels in the frequency domain.

. The independent variables x and y, and r = V'rx2 +y 2 are

spatial distance parameters and hence have units of length,

while the variables u and v, q = Vu2 +v 2 are spatial fre-

quency parameters and have units of inverse length or more

intuitively cycles per unit length.

2.3.1 Infinite (Non-Periodic) Case

When the data or the operator kernel f(x,y) extends infinitely

in both dimensions, the (two-dimensional) spectral transform is the

infinite two-dimensional Fourier transform:

F2 [D f(x~y) = f f e -i (ux+y) f(x, y) dxdy = F (u,V)
-W -00

and the (two-dimensional) inverse spectral transform is the infinite

two-dimensional inverse Fourier transform:

F1[F (u,v) ffe+i2rux+vY)Fu,vdudv = f(x,y)
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That the inversion formula is correct, or in other words that the original

function f(x,y) is regained from the spectrum F(u,v) through the applica-

tion of the inverse transform is shown in most classical texts on the

Fourier Transform, e.g. Titchmarch (1948), where the precise restric-

tions on the function f(x,y) are also stated.

When the data or operator kernel f(x,y) is radially symmetric

about the origin, in other words when f(xy) may be written as a function

f(r) of the single radius variable r = +y2 , then it may be shown

(Bracewell, 1965, pg. 247) that the spectrum F of f(r) is also radially

symmetric having the form F(q) where q = u2 +V2 and is given by the Hankel

transform (or zeroth order) of f(r):

F2 D[f(xy)] = f[f(r)] 21 f r J0 (2 7rq)f(r)dr = F(q)

0

and the inverse spectral transform is likewise the inverse Hankel

transform of F(q):

F2[F(u,V)] = H f(q)] = 2rf qJ 0 (2qr)F(q)dq = f(r)

0

From the above relationships, it is evident that the spectrum

may be continuous as opposed to discrete, in that it may assume values

for every frequency u and v or q.

2.3.2 Finite (Periodic) Case

When the data or the operator kernel f(x,y) is doubly periodic

with periods 2X and 2Y in the x and y directions respectively, then the

(two-dimensional) spectral transform is the two-dimensional finite

Fourier transform (Rektorys, 1969, pg. 703).

+X +Y i2 r(n +d.

F2D(f (x'y)I en ECm -f f2 f (x'y)% 2Y nm
-X -Y

and the inverse spectral transform is the two-dimensional inverse

Fourier transform summation:

2D[F] = Fe = f(x,y) .

n=0 m=0
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where
i when k = 0

12 when k O 0

and is called the Neumann factor (Magnus-Oberhettinger, 1949, pg. 64;

Morse-Feshbach, 1953, Vol. 1, pg. 774).

When the data or operator kernel f(x,y) is radially symmetric

about the origin,* or in other words when f(x,y) may be written as a

function f(r) of a single radius variable r = 1x2 +y2, then it may be

shown (Rektorys, 1969, pg. 720) that the spectrum of f(r) is also

radially symmetric having the form F(q) where q = 1u2 +v2 and is given

by the finite Hankel transform (or zeroth order) of f(r):

R
R J 0  (2  w q n  r )  

d
F2 D(f(xy)I = H[f(r)] = 2wf rJ(2wqnR) jf(r) iRdr = Fn

and the inverse spectral transform is likewise the inverse Hankel

transform of F(q):

- = = Fn Jl(2w qnR) fr)
2D nm n n I ( n R)J

n= 0

where the qn are the roots of J0 (21T qR) 0 and J0 and J are Bessel

functions.

From all the above relationships it may be seen that in the

finite case the spectrum is discrete as opposed to continuous, in that

it has values only for certain discrete frequencies. This is a direct

consequence of the fact that the fundamental wavelengths 2X and 2Y are

finite. Only integral multiples of the fundamental frequencies corres-

ponding to these wavelengths can be present.

In the formulae, the normalization factors 2X and 2Y, corresponding

to the total lengths of the intervals over which integration is per-

formed, have been grouped with the differential elements dx and dy.

The author has found that this convention brings out essential character-

istics of the relationships by removing "extraneous" factors. In particular,

the Neumann factor(s) naturally appear(s) before the forward transform

expression. T.his convention is rarely adhered to in the literature.

as well as doubly periodic and hence radially symmetric about the
center of each repetitive block.
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2.4 Spherical Spectral Transforms

In the case when the independent variables form a spherical

coordinate system, the spectral transform is the Legendre transform.

Since a sphere is finite and a function defined on the sphere may be

considered doubly periodic with period 2r in the "longitude" variable

and period 7 in the "latitude" or "co-latitude" variable, the spherical

spectral transform has only one type, namely the finite periodic type,

and consequently the spectrum is discrete.

The following notational conventions will be used in the expres-

sions for spherical geodetic transforms:

In agreement with traditional geodetic symbolism,* the

variables ' and a denote "spherical arc distance" or
"spherical radius" and "spherical azimuth of an arbitrary

point on the sphere" from "origin", also on the sphere.

For geodetic transformations, the origin is the point at

which the value of the output is desired. When the ori-

gin is the North Pole, then the spherical radius ' is

identical to colatitude and the spherical azimuth a is

identical to west longitude.

The two-dimensional Legendre transform is defined by:

2n cosm F m
L= (n-i_! f ( Co) jPm(cos ) sin* d da =
L2D~f'~) ~M (n+m)! I f f Wc n 4' -r

0 0 Isin ma Fn

and the inverse two-dimensional Legendre transform by:

n

L1 tFn,Fm] = co m a +Fms m)(2+l) (n-i)! P (cos *) = (,)
2D n' n I. . nco m ns n (n+m)! n

n=0 m=O

That the inversion formula is correct, or in other words that theFm m
original function f(,a) is regained from the spectrum (Fn and Fm )

through the inverse Legendre transform is shown in Heiskanen-Moritz

(1969, pp. 29-30).

When the data or operator kernel f(,a) is radially symmetric

("isotropic") about the origin, or in other words when f(p,a) is a

*

Heiskanen-Moritz, 1967, pg. 95.
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function of the spherical radius i only, then all of the discrete

eigenvalues n and Fn vanish except for the Fn and the spectral trans-

form expression and its inverse simplify to single integrals:

L~f( )] = f f(*) Pn (cos F) sinn d =Fn

0

+1

f (CosflP Cos ( ) d(cos q)=/fco )Pn (cs) 2

-i

L-1 [F] = Fn (2n+l) Pn (cos ') f()

n=0

where the standard notational simplifications

PO(cos P) P (cos ) ;F Fn n n n

have been used. In the above equation no distinction has been made

between f() and f(cos ') as functions of ', although strictly they
are not the same function "f" of a single argument.

The definitions given above for the two-dimensional Legendre

transform and its inverse utilize the associated Legendre functions

pm(cos ) of n t h degree and mth order, which are defined in Appendix A.n

Very little seems to have been published about Legendre trans-

forms and "Legendre analysis" explicitly, in contrast to the plethora

of results and publications about the Fourier transform and Fourier

analysis. In fact, the very words "Legendre transform" may be unknown

to many readers. Apparently the earliest paper in which the idea of

the Legendre transform as used in this document was defined and utilized

was that of Tranter (1950). The convolution theorem in one-dimensional

spherical space was developed by Churchill and Dolph (1954), and the

basic results of the operational calculus of Legendre transforms were

published by Churchill (1954).

It should be noted that the forward and inverse Legendre trans-

form relations given above differ slightly from those customarily

given in the literature, specifically in the placement of the factor

(2n+l). This difference is a consequence of the author's choice
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between two desirable but conflicting properties: the use of truly

orthonormalized basis functions versus the spectrum of the identity

transformation equaling unity. Most other authors have selected the

former, while this document has chosen the latter.

The motivation in the former case is very strong. By defining

normalized associated Legendre functions Pn(cos i) by

P M(Cos 4' L(n (-rn)! Pm (Co
n m (n+m)! nco

it follows that

(Cos ) 2 sind =

0

and
2 2J ([ cos4')cosmx -1 -

27T n 2
f J[r'(cos a) sin 4 - 1

0 0

which results in the following beautifully symmetric forward and inverse

transform formulae:

Cos mot1 Fn
T f (4, a)1 ff f(p, Co I (Cos 1P) .dc =
2D iin {47mxrn

2D n' nh. ~ n cns nx5mc]P(o4)=fi~x
n=O m=O

In these formulae no extraneous constant factors appear since they have

all been embedded in the normalized associated Legendre function PMn
However under this convention, the "Legendre transform" of the Dirac

Delta kernel (which corresponds to the identity operator) is

FO /2n+l F=0n n

0 0 0n n
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This would imply, under a signal processing interpretation, that the

strengths of zonal* harmonics of the input are amplified by the factor

/2n+l by the identity transformation - a patently erroneous result.

To preclude this problem, this document has chosen the property

that the spectrum of the identity transformation is unity as a funda-

mental assumption. The somewhat unsymmetrical forward and inverse

Legendre transform relations first given above then result, with the

factor of (2n+l) appearing only in the inverse transform relation.

2.5 Convolution Expressions

There are different expressions for the convolution operation,

as well as for the spectral transform, depending upon the dimensionality

of the space and the type of coordinate system.

In one-dimensional cartesian space, the convolution k*f of

two functions k(x) and f(x) is given by

g(x) = k*f = f k(x') f(x-x')dx'

= f k(x-x') f(x')dx'

The convolutional linear operator represented by this integral has the

kernel k(x) and maps the input data function f(x) into the output

data function g(x). The spectral transform of the output will thus

be

Sigi = S{k} .S{f}

In the two-dimensional cartesian space, the convolution k*f

of two functions k(x,y) and f(x,y) is given by

g(x,y) = k*f f f k(x',y') f(x-x',y-y') dx' dy'
-00 -00W _0

- f f k(x-x',y-y')f (x',y')dx' dy'
-= -C0

those for which m =0
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In one-dimensional spherical space, the convolution of two functions

k(cos 8) and f(cos 8) is given by*

g(cos85 = k*f = f fk(cosf)f(cos ') sine d''d'
4 -f

0 0
where

cos 4) = cos 0 cosO' + sin e sine' cos(X-X')

or by 2w i

g(cos) = k*f k f (cos 0 f(cos Vt) sin dipd

0 0

where cos 0, = cose cos4' + sine sin* cosa

In two-dimensional spherical space, the convolution of two

functions k(cos 8, X) and f(cos 8, X) is given by the following equation

in "geographic" coordinatez.

2 ir iT

g(cos 8, X) = k(cos e, X) *f(cos 8, X) f fklcos P, a)f(cos 61, x Isine' O d'd '

0 0

where

cos cosO cose' + sine sine' cos(X-A')

cos osintp = sin8 cosO' - cose sine' cos(X-X')

sin a sin*j = sine' sin(X-X')

or by the following equation in "local spherical polar" coordinates

27 iTf f 4si 1Tg(cose, X5 = k(cos e, 5 * f(cos e, X = f k(cos *,e)fccose,isi' doc

0 0

where

cos 0' cos8 cosp + sine sinip cosI

cos(X-X')sin8' = sine cosy - cosO sin cosi

sin(X-A')sin 8' - sinip sine

See Churchill and Dolph (1954)
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While the spherical convolution formulae appear complicated, they

are rather simple when visualized. See Figure 2.5-1. The spherical

convolution of two functions is the integral of the product of the two

functions evaluated over all constant "spherical shifts" of the inde-

pendent parameters, just as the cartesian convolution is the same

integral of a product evaluated over all constant "linear shifts" of

the independent parameters. The trigonometric expressions in the

spherical formulae merely relate the shifted values of the coordinates

of two points on a sphere.

In traditional geodetic notation, the convolution integrals are

written slightly differently, but the meaning is exactly the same.

Specifically the function values f(cos ') or f(cos e', A') are denoted

by f(W) or f(qj,a). Both expressions refer to the value of the function

"f" at the generic point P' on the sphere, the difference being in

whether the actual functional form of "f" is given in geographic coor-

dinates or local spherical polar coordinates. Throughout the rest of

this document, the traditional geodetic notation will be used.

As has been mentioned, the validity of the one-dimensional spheri-

cal convolution theorem was established by Churchill and Dolph (1954).

Their proof is based upon the addition theorem for the Legendre poly-

nomials. In the two-dimensional spherical case, the author is not

aware of an explicit proof of the convolution theorem but is convinced

that the proof will be based on the addition theorem of the associated

Legendre functions. As pointed out by Kaula (1967, pg. 90), this area

of knowledge seems to be studied principally by quantum physicists, such

as Wigner (1959) and Edmonds (1957).
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N

64

P (6 ,X)

N = North Pole
P(8,X) = Point P with colatitude e and longitude A

P'(',X) = Point P' with colatitude 8' and longitude A'
= Spherical Arc length from P to P'

a = Spherical Angle NPP'

Figure 2.5-1. Relationship of Points on a Spherical Surface for Inter-
pretation of Spherical Convolution.
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SECTION 3

SPECTRAL THEORY OF THE INTEGRAL TRANSFORMATIONS OF GEODESY

3.1 Introduction

In this chapter, the theoretical "continuous" integral transfor-

mations of geodesy and their spectra will be examined. The term
"continuous" here implies that the input data to the transformation is

assumed to exist at every point on the surface of the sphere and hence

to be continuously or densely distributed over the sphere as opposed

to a discrete distribution. Thus an integral expression is truly

required in the description of the transformation in order to take

into account "every" piece of data.

The theoretical Stokes' and Vening-Meinesz' Integrals are precisely

of this type. Mathematically they require that point gravity anomalies

must be known continuously or densely over the entire surface of the

earth. In reality of course this is not possible. Moreover in prac-

tical computations, the integral must be approximated by a summation.

However, since only the theoretical "continuous" integral trans-

formations of geodesy are rigorously correct,* the spectral theory of

these transformations will be developed to provide an idealized stan-

dard against which any approximations may be compared.

3.2 Isotropic Geodetic Transformations

Isotropic geodetic transformations are geodetic transformations

whose kernel is independent of the azimuth a. The classical example

is Stokes' Integral. They are more properly called "zeroth-order"

geodetic transformations, which distinguishes them from the "first-

order" geodetic transformations whose kernel contains the two-dimensional

vector (cos a, s4a c), such as the Vening-Meinesz' Integral, and in

general from "m'th-order" geodetic transformations whose kernels con-

tain the vector (cos ma,sin m) .

neglecting ellipsoidal effects
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The general form for an isotropic geodetic transformation is

fOU(0,0) = Klcos fl f( , a) -OU ff1,-. 47)
24w

it 21T

= f f K(cos ) f(,,a) s i n dcd4 i
0 0

+1 27
= fK(cos *) f(*,a) - (cosJ

-l 0

Since the kernel is independent of the azimuth a, the double integral

may be simplified to a single integral on the mean value f(f) of the

input f(p,a) around the spherical radius *:

fT(00) =0K(cos )r(f)sin2 d

+1

= f K(cos 4) F(cos ) d(cos i)

-i

where 2w
f() f ( ao,

0

In other words, the output of an isotropic geodetic transformation is

directly dependent only on the mean value of the input around each

(infinitesimally wide) spherical radius * and not on the explicit value

of the input at each point on each of the spherical radii.

From the fundamental Legendre transform relations, it follows as

a special case that the spectrum of an isotropic geodetic transformation

is given by

+1

L{K(cos f) } = f K(cos d n(cos ) 2 (o s Xn [ K]

-i
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where Pn(cos ) are the Legendre polynomials, n is a non-negative

integer, and K(cos *) is the kernel of the transformation.

Conversely, the kernel of the geodetic transformation is expressed

in terms of the spectrum An by

00-1{An [K] = K(cos 4) X (2n+l)Pn(co s

n= n

Since the output fOUT (0,0) is the spherical convolution K*f,

of the kernel K(cos *) with the input data function f( ,i)

fOUT K f

it follows from the convolution theorem

L{f OUT = L{K} L{f)

and the global mean-square value property for individual frequencies

or harmonics that the global mean-square value of the output is

f 2f{K } 12 f n  2

fOUTi rms I OUT) = n rms

in terms of the spectral coefficients and the global mean-square values

of the input data function frequencies.

3.2.1 S-me Examples of Isotropic Geodetic Transformations

A umber of examples will now be given of the foregoing theory

to illust ate its application to common transformations. A rather

extensive catalog of spherical geodetic transformations and spectra is

given in Volume II of this document.

3.2.1.1 Stokes' Integral

The classical Stokes' Integral is an isotropic geodetic trans-

formation having the gravity anomaly Ag as input and the geoid height

N as output:

N S W S)Ag ( , a)
N RffS,41T(~d
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where R and G are nominal values of the earth's radius and gravity,

and S() is the Stokes' function

S(P) sin/2 -6sink +1 -5cos , +3cos 2n(sin + sin2  )

The kernel of this transformation is

RG S(p) .

Following the convention of this document, the normalizing factor 47

has been grouped with the differential element do of spherical surface

area since it is the total surface area of the unit sphere. Some

authors, such as Pick-Picha-Vyskocil (1973), write Stokes' Integral

over the surface of a sphere having the earth's radius. In this case,

the differential surface area element dS = R2 do, and the normalizing
2 2factor is 47r R , so it is immediately obvious that the R factors

cancel when the normalizing convention is followed.

The spectrum of the Stokes' integral transformation is:

0 for n =0,1

L S(cosX = G n =

1 for n >2

and the Stokes' kernel has the well-known expansion

o

= R -G n-1 Pn (cos 1.

n=2

Since the magnitudes of the spectral coefficients decrease in

value with increasing spherical harmonic degree n, the higher fre-

quencies present in the input become more damped than the lower fre-

quencies during the transformation of the input into the output. Hence

the Stokes' Integral is a "smoothing" transformation. This corres-

ponds to our physical intuition that the geoid height has smoother

characteristics than gravity anomalies.

3.2.1.2 Stokes Integral Analog for Surface Layer Density

Analogous to the classical Stokes' Integral is an isotropic geo-

detic transformation having the surface layer density p as input and

the geoid height N as output:*

Heiskanen-Moritz (1967, pg. 237, eqn. 6-58)
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N R ff 2  a(,) do
G (2 sin J2) 47

2

The factor 2 sin ip/2 in the denominator has been emphasized 
to remind

the reader that it is the linear distance (through the sphere) from the

point of evaluation to the generic point (4,a) of integration at a

spherical arc distance p.

The spectrum of this integral transformation is:

L _ R RA 1lR 1 R 2L[ R  l GRtsin }-J n+z -

sin n  G +i G 2n+l

as may be deduced from the spectral expansion of the kernel:*

L.G-n1 - R 2_ R 2 2 (cos__

G (2 sin G  P = G 2nl ( 2 n+l)Pn(cos

T n=O n=O

3.2.1.3 Molodenskii's Integral

Molodenskii's Integral** is an isotropic geodetic transformation

which converts geoid height N into gravity anomaly Ag:

A go G2 (N -N 0 ) doRg = 0 - 2R (2 sink) 3 41T

n2

where the zero subscripts indicate quantities at the point of evalua-

tion (origin). Thus this transformation has the reverse inputs and

outputs of Stokes' Integral, and may be considered to be the inverse

of Stokes' Integral. Consequently it will have reciprocal values for

its spectral coefficients to those of Stokes' Integral, namely:

I? for n=0,1

An R

n-l) for n >2

Pick-Picha-Vyskocil (1973, pg. 476, eqn. 1545)
**Molodenskii (1962, pg. 50, eqn. 111.2.4). Also Pick-Picha-Vyskocil

(1973, pg. 243, eqn. 697)
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The spectral coefficients for the zeroth and first degree harmonics

must be investigated separately. Stokes' Integral is known (Heiskanen-

Moritz, 1967, pg. 92) to automatically remove the zeroth and first

degree harmonics while calculating the output from the input. There-

fore its zeroth and first-degree spectral coefficients X0 and A1 must

be zero. However in Molodenskii's Integral if the input geoid height

is chosen to be a pure zeroth harmonic (N=N 0) or a pure first harmonic

(N=N0 cos), the respective outputs will be

0

Ago =-2NO  and Ag0  0

implying respectively that

G
G and X1  0

so that the spectral coefficients of Molodenskii's Integral are

An = 2(n-1) n-,12..

and the expansion of the Molodenskii kernel is formally

G I (n-l)(2n+l) P(cos4).
n=0

The Molodenskii kernel may be written symbolically as

G
[-62D() + S(i)]

where 62D( ) is the two-dimensional spherical Dirac Delta function

having the property that

f(2D) f,a) = f(0,0)

and where M() is a "function" with the property that

f f(,a) ff 2 (f (*,a) -fo(0,0) do
(f ) f(ia) f- f = (2 sin k)3  4-r

2

The M(P) transformation will be useful in other contexts.
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3.2.1.4 Truncated Stokes' Integral

The truncated Stokes' Integral is an isotropic geodetic trans-

formation identical to the classical Stokes' Integral except that the

integration is carried out only over a spherical cap of spherical

radius 0 rather than over the entire sphere:

R 0 ] 0 sin* dp da
NOP0 f f

0 0

If the truncated Stokes' function S(p) is defined by*

S (f) for 0 <_ <*

0 for *0 <  < 7T

then the transformation may also be written

N = R dF

G4

The spectrum of this transformation is

= 0  Qn 4 0) for n =0,1

G R
G- 2 Qn G1 for n >2

where the n( 0) are the Molodenskii functions, defined in Molodenskii

(1962, pg. 147) or Heiskanen-Moritz (1967, pg. 260-263). The proof

of this spectral relationship is straight-forward using the definitions

of the Legendre transform and the Molodenskii functions. From the

relationship it is seen that the Molodenskii functions have a very

elegant spectral-theoretic interpretation. The factor of one half

appears due to the normalization convention used in this document for

the Legendre transform. Following this convention the normalized

Molodenskii functions (0 ) = would be a more natural choice

The tilde notation is used sothat there will be some similarity but
especially no conflict with the bar notation of Molodenskii and
Heiskanen-Moritz (1967, pg. 260). Thus S() = S(P) +S(f).
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of fundamental function, but the unnormalized ones have become established

in the literature.

3.2.1.5 Averaging Over a Spherical Cap

The transformation which calculates the integrated-mean value
of a quantity over a spherical cap is an isotropic transformation

having the form

T ff 2 do
(f 0) 1 -cos F00 0

27r
f 1 (0,4)do
00 sin 2 -2'~

where f(O,c) is the input data function and f is mean value of the
data over the cap of spherical radius 0. For example, the input data
might be point gravity anomalies; then the output would be mean gravity
anomalies. The transformation has this explicit representation because

the surface area of the spherical cap of radius 0 on a unit sphere is

i -cos i0  2 *0
2 47 = sin - 47r.

The spectrum of this transformation is

1 P(x) dx
n = -cos J

cos 0

_ n-l (cos Y - Pn+l (cos0
(1 -cos *0) (2n+l)

where P- 1 (COs 0 E 1.

This quantity can be shown* to be of the order of n-3 2 . In other words
the transformation is a smoothing operator (as expected!) but with
stronger smoothing than the Stokes' transformation.

Meissl (1971, pg. 24)
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3.2.1.6 Summary of Isotropic Examples

The mathematical relationships for the examples of isotropic

geodetic transformations which have just been described are summarized

in Figures 3.2-1 through 3.2-5.

" TRANSFORMATION: STOKES INTEGRAL

INPUT: Ag (GRAVITY ANOMALY)

OUTPUT: N (GEOID HEIGHT)

* EXPLICIT FORM

N =T =! 0)ARuG fJfw 4 7 r

* EIGENVALUES

0 FOR n = 0,1
n 1 FO > 2

FORn

* SPECTRAL EXPANSION OF KERNEL

K(cos ) = S(4) = g - 1 2n+1

n=2n Pn(CoSP)

Figure 3.2-1. Summary of Mathematical Relationships for the Classic
Stokes' Integral Transformation.
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*TRANSFORMATION:

ANALOG OF STOKES FOR SURFACE LAYER DENSITY

INPUT: g (SINGLE LAYER SURFACE DENSITY)
OUTPUT: N (GEOID HEIGHT)

*EXPLICIT FORM

N=~ f T  (2M do

" EIGENVALUES

R 2 R 1
n a~ In +1 a n+i

* SPECTRAL EXPANSION OF KERNEL

KcsR 2 211 0 Pn (cos~
F~o~~ 2sin! ~ n=O

2

Figure 3.2-2. Summary of Mathematical Relationships of the Analog of
the Stokes' Integral Transformation for Surface Layer
Density.
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" TRANSFORMATION: MOLODENSKII (INVERSE STOKES)
INPUT: N (GEOID HEIGHT)
OUTPUT: Ag (GRAVITY ANOMALY)

* EXPLICIT FORM.

G G (N-N o) do

Ago  G N JJ (2sin2)3 T r

* EIGENVALUES

(-1 FOR n = 0n -G 0 FOR n=1
n-1 FORn >2

* SPECTRAL EXPANSION OR DECOMPOSITION OF KERNEL

K(cos 1) = G[_6(6)+M(4i)] = G £ (n-l)(2n+l, Pn(cOs1)
n= 0

FORMALLY

Figure 3.2-3. Summary of Mathematical Relationships for the Molodenskii
Integral Transformations.
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.7.MIt.2 
, . . . .

s TRANSFORMATION: TRUNCATED STOKES
CLASSICAL STOKES INTEGRATED ONLY

OVER A CAP OF SPHERICAL RADIUS 4o0

INPUT: Ag

OUTPUT: N(0 0 )

* EXPLICIT FORM

R f 2 w 0" o do

N (00) g0 fo S(60)Ag w

R f 2"r f" -( do
Rf~ fWI) Agd

-
4w

WHERES(/) = {S(,) FOR<<o 0

0 FOR 0 < o < o

" EIGENVALUES

0-i Qn( 0o)  FORn = 0,1
n = R n 1 1 n( )  FOR n > 2

WHERE Qn (4o) ARE MOLODENSKII'S FUNCTIONS
(HEISKANEN-MORITZ, PAGES 259-263)

* SPECTRAL EXPANSION OF KERNEL

S(0) = , Xn(2n+1 ) P n (cOs4)
n=O

Figure 3.2-4. Summary of Mathematical Relationships for the Truncated
Stokes' Integral Transformation.
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* TRANSFORMATION: AVERAGING OVER CAP
INPUT: f (ANY QUANTITY)
OUTPUT: To) (AVERAGE OF THE QUANTITY

OVER CAP OF
SPHERICAL RADIUS 0,)

* EXPLICIT FORM

0 0o 1 -Cos 4w

* EIGENVALUES

1 PXn1-Cos 00 fcS 10 0 )"

Pn-1 (cos Oo) - Pn+l (cos Oo)  0_1
01 - cos 0) (2n + I1)7T

WHERE P-1 = 1

* SPECTRAL EXPANSION OF KERNEL

=I
K() 1 -Cos 00

0 FOR 0o < 0 <v

E X ?n( 2n+1)P n (cos,)
n=O

Figure 3.2-5. Summary of Mathematical Relationships for the Cap-Averaging
Integral Transformation.
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3.2.2 Generalized Gravity Anomalies

A large number of formulas may be simplified and consolidated

through the concept of the "generalized gravity anomaly of type 'k'".

This concept embraces the traditional gravity anomaly Ag, the gravity

disturbance 8g, and the surface layer density U, as special cases.

The generalized gravity anomaly of type "k" is defined by:

d 3T + (k-l) T

where T is the traditional disturbing potential, r is the radius (from

the center of the earth), and k is any real number.

By comparing this formula with those for Ag (Heiskanen-Moritz,

pg. 89, eqn. 2-154), for dg (Heiskanen-Moritz, pg. 85, eqn. 2-146'),

and for p (Heiskanen-Moritz, pg. 237, eqn. 6-55), and by defining the
"gravity variation dg" as

dg aT T3g r r

it is immediately seen that

Ag = d (_1 )g = gravity anomaly

dg = dog = gravity variation (new)

= d1/2g = surface layer density

6g = dig = gravity disturbance

These relations may be represented schematically as shown in Figure 3.2-6.
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-GEOID

Figure 3.2-6. Schematic Diagram for the Interpretation of the Generalized
Anomaly of Type "k".
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This figure indicates by how much the gravity disturbance at a

point must be "reduced" to convert it to the other gravimetric quan-

tities, or equivalently by what distance the points P and Q are separated

when the generalized gravity anomaly is calculated by differencing

actual gravity at point P and reference gravity at point Q. For the

traditional gravity anomaly P and Q are separated by the geoid height,
while for surface layer density they are separated by only one quarter

of the geoid height.

Consider now the analog of Stokes' Integral when the input to
the integral is the generalized gravity anomaly dkg of type "k".

Let Sk( () denote the generalized Stokes' function which will be the

kernel of this integral:

N _G Gff!k ( ) dk g(J 'c) 47r

It may be shown that Sk (4) has the following spectral expansion:

S M (2n+l) Pn(CosSk(4 ) = n+k n

n=nmin

where nmin is zero or the first positive integer such that the denominator
(n+k) is always positive. This result implies that the spectrum of the

generalized Stokes' transformation is

G ) n <smin

[ G Sk( = 1 n >

n -nmi n n

Explicit expressions for these functions are given in Figure 3.2-7.

The expressions have been obtained from the rather complete table in
Pick-Picha-Vyskocil (1973, pg. 476ff). In an effort to achieve clearer

notation, the following symbology has also been used for the generalized

Stokes' functions in the catalog (Volume II of this document).

SOW- Sdg
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S 1/2() Es ( )

S+1 ) /- S/g()

A summary of the explicit mathematical relationships of the generalized

Stokes' transformation is given in Figure 3.2-8.

W 6 i: S (+) - i
-1n 2 22

1

Sdg: S(w) -2 -3cos n(sin + 2

Sin

1
* ;A:S11A(4f) si

Sil2

29 Sifl +

Figure 3.2-7. Closed Form Expressions for the Generalized Stokes'
Function.
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* TRANSFORMATION: GENERALIZED STOKES
INPUT: dk g (GENERALIZED GRAVITY ANOMALY)
OUTPUT: N (GEOID HEIGHT)

* EXPLICIT FORM

01)~ du(O 0

WHERE Sk" = STOKES' FUNCTION ANALOG FOR
THE GENERALIZED GRAVITY
ANOMALY OF TYPE k

* EIGENVALUES

R1
fn = n+k

o SPECTRAL EXPANSION OR DECOMPOSITION OF KERNEL

K(cos 41) = RSk) = 2 n+1
G n- f+k n (COS4~

n0O

Figure 3.2-8. Summary of Mathematical Relationships for the Generalized
Stokes' Integral Transformation.
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3.2.3 Flow Diagrams of Transformations

It is very enlightening conceptually to represent the spectra of

geodetic transformations in a flow diagram such as Figure 3.2.3-1.

The nodes of the flow diagram are geodetic quantities, and the lines

between the nodes represent the transformation (in either direction)

between the pair of quantities which a line connects. A direction is

arbitrarily specified for each line, and the spectrum of the trans-

formation corresponding to this direction is written beside the line.

The spectrum of the inverse transformation is the reciprocal of the

spectrum of the forward transformation.

For example, at the extreme left of Figure 3.2.3-1, the trans-

formation from geoid height N to gravity anomalies Ag in the direction

of the arrow is Molodenskii's transformation which has the spectrum

(G/R)(n-l). Its inverse is the traditional Stokes' Integral with the

spectrum* R/G(n-1).

Since the transformation from geoid N to gravity disturbances 6g

has the spectrum An = (G/R)(n+l), it may be inferred using the sequential

transformation spectrum multiplication rule that the transformation

converting gravity anomalies Ag into gravity disturbances 6g has the

spectrum

X nAg _6g} = n+l
n n-l

Quantities of approximately equal "smoothness" have been positioned
on the same horizontal line in the flow diagram. The geoid height is the

smoothest quantity and is placed at the top. The gravity anomalies,

disturbances, and surface layer densities are "rougher" in the sense

that for a specified spectrum of the geoid height these quantities will

have spectra whose higher frequencies have been amplified since the

transformations from geoid height to these quantities all have spectra

of the order of the spherical harmonic degree n, i.e., the nth harmonic

of the input is multiplied by (approximately) n to form the n th harmonic

of the output. However the transformation between any pair of generalized

gravity anomaly quantities has a spectrum of the order of 1, so that the

strengths of the higher frequencies are neither amplified nor attenuated,

implying that these quantities have approximately equal smoothness.
*

For simplicity, the zeroth and first degree spectral coefficients,
X0 and X., are neglected.
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N T
F1 (_-)g n+( n+2

-n -I

Gn fn+ ) n+1 + +2)

n 2

Figure 3.2.3-1. Flow Diagram of Basic Geodetic Transformations and
Their Spectra.
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3.2.4 Spectra of Spherical Geodetic Transformations with Upward
Continuation

It is desired to obtain an expression for the spectrum of an
"extended" geodetic transformation, that is, a transformation whose

output is a geodetic quantity at an altitude above the surface of the

reference sphere and whose input are geodetic quantities on the sphere.

It may be shown (Heiskanen-Moritz, 1967, pg. 20) that any harmonic

function* h(r, ,a) in the space outside of a reference sphere may be

expressed in terms of its "boundary" values h(R,,a) on the surface of

the sphere by the relation

h(r,*,a) = n+l hn (p,ci)

n=O

thwhere hn (,a) is the n degree surface spherical harmonic term

n

hn (*, () ~H mcosm a+ Hn sinm aj (2n+l) [(n-m)! n (o
m= 0

and where

Hm Cos ai

(n m h (R,c) Po(Cos !L d
nHf (nmi[( sin a "(

By forming the two-dimensional Legendre transform at altitude,

namely on an "outer" sphere of radius r, to derive the spectrum of the

function h(r,*,a) at altitude, it is found that

L2 D{h(r,W,a)} = [ DL{h(R, ,,)}

Thus the spherical upward continuation operator of a harmonic geodetic

quantity has the spectrum. ll
X fh(R, ,ac) -h(r,0,0)} -

a harmonic function is by definition a solution of Laplace's equation
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For example, the geoid height N is harmonic, since it is proportional

to the disturbing potential T by Brun's Theorem. The gravity anomaly

Ag and-gravity disturbance 6g are not harmonic; however the quantities

(r Ag) and (r 6g) are harmonic.* Hence, the operator which upward-

continues Ag or 6g to altitude from surface values of these same

quantities has the spectrum

(Ag(R,, a) .Ag (r,0,0) } 
=

n r

: which may be derived by applying the preceeding relation to the harmonic

quantities (r Ag) and (r 6g) and collecting the radius factors.

A summary of the mathematical relations for the upward continua-

tion transformation of harmonic functions is given in Figure 3.2.4-1.

When the output radius r equals the input radius R, the identity

* transformation occurs. This has the spectrum of unity.

In this document, the spectra of surface transformations have

generally been investigated since the spectra of corresponding trans-

formations with upward continuation can be obtained trivially by multi-

plying the surface spectra by the appropriate radius ratio factor (pro-

vided the harmonicity condition is satisfied). An important exception

to this technique is the class of truncated geodetic transformations.

Heiskanen-Moritz (1967, pg. 88). In particular, equations 2-155 and
2-153 show that these two quantities may be expanded in a spherical
harmonic series.
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" TRANSFORMATION: IDENTITY, UPWARD CONTINUATION

INPUT: MR, X, c ) ON SURFACE OF RADIUS R

OUTPUT: h(r, 0, 0) AT RADIUS r

WHERE h IS ANY HARMONIC FUNCTION (e.g., r Ag)

" EXPLICIT FORM

/ (r R0r2 R0 )  h (R, ,ot) dh(r,0,0) = f 2 _2Rr cos +R2)3 12 4v

* EIGENVALUES

Xn  r ,HENCE Xn  I WHENr= R

* SPECTRAL EXPANSION OR DECOMPOSITION OF KERNEL

K(cos i, r, R) = R(r2 - R2 )
(r2 - 2Rr cos 0 + R2 )3 / 2

E= r (2n + 1) Pn (cos 1-

n=O
HENCE

LIM R(r 2 -R 2 ) n + 1) P. (cos ;)
r-*R (r2 -2Rr cos-0 + R2)3 / 2

n=0

Figure 3.2.4-1. Summary of Mathematical Relationships for the Identity
and Upward Continuation Integral Transformation.
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3.2.5 Vertical Gradients of Geodetic Quantities

Heiskanen and Moritz (1967, pg. 115, eqn. 2-216) have shown that

the vertical gradient of gravity anomalies at the surface may be expressed

as

(n+2)Ag5r R I n
n=O

where Agn are the gravity anomaly harmonics (Heiskanen-Moritz, pg. 97)*

do L
ffAg( ,a) P cos ) - Ag}

Hence the spectrum of the transformation from gravity anomalies Ag to

their vertical gradient at the surface is

xn  ar = n+)i

An explicit expression for the calculation of the vertical gradient

of the gravity anomaly has been derived by Heiskanen-Moritz (1967,

pg. 115, eqn. 2-217):

DAg 2 + (Ag -Ag0 ) do

ar igo R ff[2 sin .) 3 4,

The kernel of this transformation may be represented symbolically by

R[262D M~) +M(1P)]

where the two-dimensional Dirac Delta function 6 2D(*) and the function

M(*) have the propertiesfIff62D f (0, a)- f f(0, 0)

ffM. f d( )L ff-2 [f (0,a) - f (0,0) ] doM4 T(, ) -r (2 sin 4) 3  4-T

2

Note that Heiskanen-Moritz use a different definition of the spectral
coefficients, specifically grouping the term (2n+l) differently.
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The mathematical relationships for the gravity anomaly vertical

gradient transformation are summarized in Figure 3.2.5-1.

From the above spectrum and the spectrum of the Molodenskii

Integral, it is easy to see that the spectrum of the transformation

having the kernel M(P) is

x {M( )} = n

since

n {6 2Xn{2D(S)} =1

This result about X {M()} is due to Meissl (1971, pg. 22, eqn. 3-11).
n

It will now be shown that the transformation from any generalized

gravity anomaly to its vertical gradient at the surface has the same

spectrum
ad g

Xr }d= -(n+2)

The quantity (r dkg) is harmonic. Hence

(rdkg(r)] = 1 (1) (Rdkg(R)

n=0

or

dg(r) = (R)](n)
n=0

Differentiating with respect to r:

d kg (r ) ( [R n+l [ d..]
Br I rn+ 2) -R[kg R] (n)

n=0r

n+2 n+2... . E [dk (R) ](n
r )(r kgr(n

i =O

The last line is the spectral representation of the vertical gradient

in terms of the (input) generalized gravity anomaly. It is seen that

the strengths of the constituent frequencies of the input are multiplied
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" TRANSFORMATION:

VERTICAL GRADIENT OF GRAVITY ANOMALIES (AT SURFACE)

INPUT: Ag
OUTPUT: aAg

ar Ir = R

* EXPLICIT FORM

arg R g0  -Ago) d

* EIGENVALUES

n 1

* SPECTRAL EXPANSION OF KERNEL

=~~~~ -[(,)Mw)J -(n +2) (2n +1) Pn(COS 0)

FORMALLY

Figure 3.2.5-1. summary of Mathematical Relationships for the Gravity
Anomaly Vertical Gradient Integral Transformation.
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by the factor -(n+2)/R; hence, this quantity is the spectrum of this

transformation.

A flow diagram of the spectra of the vertical gradient transfor-

mations is given in Figure 3.2.5-2, from which a very interesting result

may be inferred: The spectrum of the transformation from the generalized

gravity anomaly of type 2

d 2T. + T
d29 = r r

aT
to te vetica graien . dg of the generalized gravity anomaly of

type k is equal (within a constant) to the spectrum of the transformation

from the geoid height to the generalized gravity anomaly of type k.

Hence, the transformations themselves are identical (within the same

constant): If the generalized Stokes' transformation L maps geoid

height N to the generalized gravity anomaly d:kg

L : N - dkg

then the negative of this transformation divided by the nominal value G

of gravity maps the generalized gravity anomaly d2g into the vertical

gradient adkg/ar:

d2 g

3.2.6 Vertical Stress Gradient Spectrum

The "extended" Stokes' Integral, which expresses the disturbing
potential T(r) at altitude in terms of the surface gravity anomalies,

may be differentiated with respect to the radial direction parameter

(the radius r) to obtain the gravity disturbance 6g(r) at altitude.

This is carried out by Heiskanen-Moritz (1967, pg. 233ff). The

resulting transformation has the kernel

-R aS(r, )ar

where S(r,) is the "extended" Stokes' function. The analytic

expression for this transformation may again be differentiated with
respect to the radial direction parameter to obtain the vertical stress

gradient quantity:
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U:. - I l _ iU . .. .lim i Il! I I ° I i ! ! ! , .4J
a2 6g

3r 2  ar

which is one of the components of the gravity gradient tensor. This

transformation is isotropic and has the kernel

-R a2

ar

The analytic expression for this second partial derivative is given

by Reed (1973, pg. 71). From the flow diagram of spectra for vertical

gradient transformations, it can be determined that the spectrum of this

transformation at the surface is

(n+2) (n+l)

n Ag ' = R(n-l)

The mathematical relations for this transformation are summarized in

Figure 3.2.5-3. The other components of the gravity gradient tensor

are generated by anisotropic transformations and their spectra will be

derived in the section pertaining to such transformations.
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e TRANSFORMATION: VERTICAL STRESS GRADIENT (AT SURFACE)
INPUT: Ag
OUTPUT: -T a bg

* EXPLICIT FORM

a2S~rdo
2=-R ff Ag d

* EIGENVALUES

= 0 FOR n 0,1
n R (n+2)(n+1) FORn > 2(n - 1)

* SPECTRAL EXPANSION OF KERNEL

_____ 0 1 (n +2)(n +1
2R a 2 = = (n -11)-

r=R

Figure 3.2.5-3. Summary of Mathematical Relationships for the Vertical
Stress Gradient Integral Transformation.
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3.3 Anisotropic Geodetic Transformations

Anisotropic geodetic transformations are geodetic transformations

whose kernels depend on the local azimuth a. The classic example is

the Vening-Meinesz' Integral which provides the two components of

the deflection of the vertical from a knowledge of the gravity anomaly.

Each vertical deflection component depends upon the spatial distribution

of the gravity anomaly values in azimuth around each spherical radius

rather than merely on their mean value.

Anisotropic geodetic transformations are more properly but less

intuitively called "non-zeroth-order" geodetic transformations.

The general frm of an anisotropic geodetic integral transformation

is

rcos Ma
f -UT(0,0 = ( s ) f l, (-O

=sin Ma

2T7r iTcos Ma

f f K(cos 1 sinV dV da

0 0 Isin M a

2 7T +1 o os MaSf fR (cos ){} dfcos ip)cdc
ff fa 2 2 Tr

0 -1 sin Ma

From the fundamental Legendre transform relations it follows that

the spectrum m of an anisotropic integral transformation is given by

Cos M a

L K(cos ) 
m

2D [sin Ma =

m 
M c 

n+m- 1(cos(cos)d
cos Mesin Ma sin ma

(Cos Mal
where K(cos i) is the kernel of the transformation.

sin Ma
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Conversely, the kernel of the anisotropic geodetic transformation

is expressed in terms of the spectrum by:

K c Cos M a M -L(2n+l ) P M cos )

-n (n-+M)!n
Isin Ma n=O Isin Mal

3.3.1 Some Examples of Anisotropic Geodetic Transformations

A few examples will now be given of anisotropic geodetic trans-

formations and their spectra. A rather extensive catalog of spherical

geodetic transformations and spectra is given in Volume II of this

document.

3.3.1.1 Vening-Meinesz' Integral

The Vening-Meinesz' Integral is an anisotropic geodetic trans-

formation having the gravity anomaly Ag as input and the deflections

of the vertical (or equivalently the two horizontal gravity disturbance

components) as output. The kernel of the transformation is

incos ai
[sin "

which is separable into local "radial" and azimuthal parts. By differen-

tiating the spectral expansion of Stokes' kernel

>7 2n+l
S(I) = (cos n-)

n=2

and making use of the fact that

aPn (cos ap) n (x) (- )sin = 1 (

nx n

it follows that

VM() E aS(i)= > 2n+l pl (cos 4)ao n-i n
n=2
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or

as OP /n(n+) 2n+i 1(CosP)
n=2 -i in(n+)

Recalling the definition of the spectrum of anisotropic geodetic trans-

formations and noting that

1 - (n-1)!
rn n+l) \(n+)!

we see that the spectrum X of the traditional Vening-Meinesz' transfor-

mation* is:

GE {0 for GE
Ag = X1

n
{0} for G "

where the "gain" is

n n-i

The mathematical relations for this transformation are summarized

in Figure 3.3.1-1.

*4

expressed in terms of horizontal gravity disturbances rather than
deflections
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- 4

* S TRANSFORMATION: VENING-MEINESZ

iNPUT: Ag
OUTPUT: G = (Gt,Gi?)

= HORIZONTAL GRAVITY DISTURBANCE VECTOR

* EXPLICIT FORM
Gt fi 4= cosa do
QG a? I sin a I T -

* EIGENVALUES

0 FOR nO-,1
n(n-+ 1) FORn > 2
n-i1

* SPECTRAL EXPANSION OF KERNEL

aS 1cosl \/, n n(n+l) (2n+1) 1 ;coscf
7W Isin an -1 vn(n-+l Pn o sin

E 2n + IPIo 10 o
n=2 n P (cos-1) nosina

Figure 3.3.1-1. Summary of Mathematical Relationships for the Classic
Vening-Meinesz' Integral Transformation

3-34



3.3.1.2 Vertical Shear Gravity Gradient

The transformation by which the vertical "shear" gradients are

generated from gravity anomalies is a second example of an anisotropic

geodetic transformation. The vertical shear gradients are two components

of the gravity gradient tensor* and are defined to be the spatial partial

derivatives (gradients) of the gravity disturbance in the local north

(c%=O) and local east (a=90*) directions. In the local cartesian

osculating coordinate system (x =local north, y = local east, z = local

down), the vertical "shear" gradients would be represented by +Tz and

+T using the traditional notation with subscripts denoting partialzy
derivatives with respect to the indicated variables.

Thus

= _ -6 +z _ 6g
+Tzx+ x=0 zy R =90

The explicit form of the integral transformation is derived by

differentiating the extended Stokes' Integral with respect to the

radius r and with respect to spherical radius *. Thus the kernel of

the transformation is
2 cosci

a2 S(rj) I
ar3}

sin c

An explicit expression for this kernel has been derived in Reed (1971,

pg. 71).

By using the sequential transformation spectral multiplication

rule on the Vening-Meinesz' and vertical gradient transformations, it

is easily derived that the spectrum of the transformation converting

gravity anomalies into vertical shear gravity gradients is the product

of

0 for n =0,1

- (n+2) and

V I for n >2n-1i

*I

when the tensor is represented in a local vertical coordinate system
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The mathematical relations for this transformation are summarized

in Figure 3.3.1-2.

* TRANSFORMATION: VERTICAL SHEAR GRADIENTS
INPUT: Ag a 6 N a8

OUTPUT: T -A0 AND T

0 EXPLICIT FORM

T+x ITa2S(r, L) AcOsc do
+TzY jJ r Isinod o

0 EIGENVALUES

(0 FOR n ,1

= n+2/n+l) FORn > 2

* SPECTRAL EXPANSION OF KERNEL

82S(r.p) I  lcos Of 1 n2 -(n + ) (2n.1) P1 cosl
oro, rR ( asin =a (n -1) n (sin a

Figure 3.3.1-2. Summary of Mathematical Relationships for the Vertical
Shear Gradient Integral Transformation.

3-36



3.3.1.3 Horizontal Differential Stress and Horizontal Shear Gradients

The transformation by which the horizontal differential stress

gradient and horizontal shear gradient are generated from the gravity

anomalies is a third example of an anisotropic geodetic transformation

and the first example of a second-order transformation.

The explicit form of the transformation may be obtained by

differentiating the Vening-Meinesz' Integral with respect to the spherical

radius *, evaluating the results along the azimuths a =0* or a =90*, and

calculating

yy xx 2 Io90

2Txy 2 =90 * or= 1

The kernel of the transformation will be found to be [Malkin (1933, pg.56)]:
• , II cos 2a

a2 s(_ ) - cotlp c

R ,2 
sin 2oL J

The easiest way to derive the spectrum of the transformation

is to find the spectral expansion of the kernel directly and then iden-

tify the spectral coefficients in the expansion. By differentiating

the spectral expansion of the Stokes' Integral kernel twice with respect

to i,

a2as M 2n+l[; 2 Pn (cos aPnt c O s2 ( -cot, - = 2 ._ _ __ _- cot,
a2 n-1 1 2

n=2

and using the relation that

a2 Pn (Cos) aPn (cos 2
- cotip = pn(cos),

it is seen that the kernel of the transformation has the expansion:
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i

2S( ) cos I _ 2 (cos 2a12 a _ Coto nlP2(O
R - Cti R nFi-*I n~cs

12sin 2a n= sin 2a

By comparing this result with the general kernel expansion formula,

it is immediately deduced that the spectral coefficients are

0 for n =0,1

12 _ -1
n K {(n+2)(n+l)n(n-l)

n-i for n >2

The mathematical relations for this transformation are summarized

in Figure 3.3.1-3.

3.3.2 Flow Diagram of Spectra

A flow diagram of the spectra of some of the anisotropic trans-

formations discussed in the preceding sections is given in Figure 3.3.2-1.

As in the previous flow diagrams, geodetic quantities of approximately

equal "smothness" are drawn on the same horizontal line.
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* TRANSFORMATION: HORIZONTAL STRESS AND SHEAR GRADIENTS
INPUT: Ag
OUTPUT: (Tyy - Txx) AND Txy

* EXPLICIT FORM

-(T,,,-Txx) -)
=a = 0  K Aq cos 2a d

2Txy = G2(., oOR .)_oa =- fK ( ,  sin 2o ' r
2T 2 a ~ o=OR ~

* EIGENVALUES

2 i- $ 0 FOR n = 0,1
R =-/(n + 2)(n + 1) n(n -1) FOR n > 2

* SPECTRAL EXPANSION OF KERNEL

K(O) cs2a = (2n+11 2 (cos+1 cos 2a
Ssin2c n=2 sin 2a

Figure 3.3.1-3. Summary of Mathematical Relationships for the Horizontal
Stress and Shear Gradient Integral Transformation.
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3.4 Transformations Involving the Outward Surface Partial Derivative

A number of transformations have appeared in the literature which

have as input the outward surface partial derivative of various geodetic

quantities from the point of evaluation. For example, Malkin's trans-

formation converts the outward surface partial of the geoid height,

usually denoted by aN/a, into geoid height N.

These transformations have limited practical use due to the

complicated nature of their input and its dependence on the point of

evaluation. Nevertheless they are of theoretical interest and in this

section they and their spectra will be examined briefly. It will turn

out that their spectra all involve a sequence of numbers which had

been studied by the English mathematician John Wallis (1616-1703) in

his book "Arithmetica Infinitorum" which appeared in 1655. For this

reason the author has called these numbers "Wallis coefficients" and

denoted them by Wn. A relationship involving the even Wallis coefficients

has been called the "Wallis formula" in Abramowitz and Stegun (1964).

3.4.1 The Outward Surface Partial Derivative - Malkin's and Molodenskii's

Transformations

The geometry involved in the definition of the outward surface

partial derivative is illustrated in Figure 3.4-1. The partial derivative

is evaluated along the surface of the (unit) sphere in the radially

outward direction from the point of evaluation (the origin of the * and

a coordinate system). The outward surface partial derivative of the

geoid height is equivalent to the component of the deflection of the

vertical'which lies in the outward direction. In the figure, the

symbol represents the vector vertical deflection at the generic

point (,a), while its outward component is 1 aN

Malkin's transformation is the primary example of the use of

outward surface partial derivative data. This transformation is isotropic

and has aN/ai as input and the geoid height N as output:

N = ff(-cot 2N d

This was originally derived by Malkin (1933) and may also be found in

Pick-Picha-Vyskocil (1973, pg. 245, eqn. 713).

The same transformation also converts the outward surface partial

derivative of gravity anomalies into the gravity anomaly at the point

of evaluation:
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OUTWARD SURFACE PARTIAL DERIVATIVE

ac (cos a, sina)

EXAMPLE: 8 (4a c e- U = R Q cos a +qsin a)

Figure 3.4-1. Geometry of the outward surface Partial Derivative.
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3.3.1.3 Horizontal Differential Stress and Horizontal Shear Gradients

The cransformation by which the horizontal differential stress
gradient and horizontal shear gradient are generated from the gravity

anomalies is a third example of an anisotropic geodetic transformation

and the first example of a second-order transformation.

The explicit form of the transformation may be obtained by

differentiating the Vening-Meinesz' Integral with respect to the spherical

radius P, evaluating the results along the azimuths a =00 or a =900, and

calculating

- T = I = 9 0 * - 1 - c = 0o

2Txy = G2 I or221.
xy R a90 ci=q,

The ~ ~ ~ ~ ~ ~ a-0 kenlo h rnfrainwl efudt ealkn 103 p.6)

1 - cot , }
sin 2a

The easiest way to derive the spectrum of the transformation

is to find the spectral expansion of the kernel directly and then iden-

tify the spectral coefficients in the expansion. By differentiating

the spectral expansion of the Stokes' Integral kernel twice with respect

to 4,

r n--2 nt2 2 P ) _2n.l co %(cos 0) 3p (co s J)
c-co n = p cotf 3 2 s(~)n=2

and using the relation that

a 2 pn (Cos 4)) aPn (cos 2'o
2 o a P n k

it is seen that the kernel of the transformation has the expansion:
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t cs 2a = 2n+l 2( cos 2c2
R 2 ()-coR --1- n

sin 2a n=2 sin 2ca

By comparing this result with the general kernel expansion formula,

it is immediately deduced that the spectral coefficients are

0 for n =0,1

2 -1n

(n+2) (n+l)n (n-l) for n >2
n-f n

The mathematical relations for this transformation are summarized

in Figure 3.3.1-3.

3.3.2 Flow Diagram of Spectra

A flow diagram of the spectra of some of the anisotropic trans-

formations discussed in the preceding sections is given in Figure 3.3.2-1.

As in the previous flow diagrams, geodetic quantities of approximately

equal "smoothness" are drawn on the same horizontal line.
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* TRANSFORMATION: MOLODENSKII #2
INPUT: a Ag/a 41

OUTPUT: Ag

* EXPLICIT FORM

Ag = ff -cot 3) a A do

* EIGENVALUES

X = -Wn WHEREWn ARE THE WALLIS COEFFICIENTS

* SPECTRAL EXPANSION OF KERNEL

00

-cot 2 - Wn (2n+1)P n (cOs4)n=0

Figure 3.4-3. Summary of Mathematical Relationships for the Second
Molodenskii Integral Transformation.
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in a rather tight manner from above and from below respectively. This

may be seen numerically in Figure 3.4-4 of the next section. The

sequence Sn is the set of reciprocals of the spectrum of the transfor-

mation which converts geoid height into deflections

A n or -- -n+ S
n

Hence the inverse transformation has the spectrum

X or rS+l
njE RI rnn+-, n

But the magnitudes of the spectrum of Malkin's transformation

n{-Cot J} = Wn

approximately equal Sn, implying that Malkin's transformation and the

transformation converting deflections to geoid height are approximately

the same. This result agrees with intuition since the input to Malkin's

transformation is the outward deflection.

3.4.2 Mathematical Properties of the Wallis Coefficients

The even and odd Wallis coefficients have the closed-form ex-

pressions:

Tr[ -3 - .. - ) 2 rT ( n 1
72 (n) _n_ [EVEN]

W =
n n[1"3 5 (n) 2 n+l 2 1

2-4 2 6 .. (n1) 2(n+) nl DD

where the double factorial indicates a factorial with alternate numbers

deleted.

Using the binomial coefficient notation, the even and odd Wallis

coefficients may also be expressed (elegantly!) as:

Gradshteyn-Ryzhik (1965, pg. 822, equations 7.226.1 and 7.226.2)
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Tr n n even)

w = -
Wn

?r n- n~l (n odd]
T 4 n njin+l1

Finally using Pochammer's symbol

( = (a+m)(a)m r(a)

the even and odd Wallis coefficients have the representation:

2i [ m 21m]1
W2m 2 m!

W L m 2 m+l

W2m+l = 2 mi (m+l)!J

Here the index m has been used to emphasize the distinction between this

form (where W2. and W2m+i are given) and the previous form (where Wn is

given).

Explicit expressions and numerical values for the first six Wallis

coefficients are presented in Figure 3.4-4. The circled numbers indicate

by what fraction the current coefficient is multiplied to obtain the

next coefficient.

Several integral expressions for the general Wallis coefficients

Wn were given in the last section. Several more for the even and odd

coefficients are (Erdelyi, 1954, Vol. II, pg. 276):

+1 1T

w 1 xP2 (x) (COS ) d
2m f -2 2 2 2m 2

-1 0

+I7

-x P2ml (x Cos P2  (cos

-1 0
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The even Wallis coefficients have a number of special properties.

In particular*

Wm (-i)m  P' (0))
477T W~m2m 2

i/2 12/2

= 2fsin 2mxdx= f cos2m xdx

0 0

And they are closely related to Erd~lyi's "g " quantities

2 W =(g) 2

if 2m m

which figure in trigonometric expansions of the Legendre polynomials:

n

PCs4' = ( gCgnlcos(n-2k)*

k=0

The author is not yet aware of any analogs of the above properties for

the odd Wallis coefficients.

From the integral expression previously stated and the orthogonality

of the Legendre polynomials, the following expansions may also be deduced:

1 = {2(2k) +1) W2 kP 2 k(x)
f7 k=O

x -= {2(2k+l) +i} W2k+lP 2k+l(x)

k-0

k=0=

7 -x2 = JxIx = kx

Ck:

k--O

Erd~lyi (1953, Vol. II, pg. 180); Dwight (1961, pg. 215).

Erd4lyi, loc. cit.; also see Frank and von Mises (1961, pg. 434ff).
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The relationship of the Wallis coefficients Wn to coefficients Sn

of the sequence

Si

n -

will now be described. It is easily deduced that:

n= n 2 n-i _ Sn

4n.21! n-2, n n+l Sn 2

n EVEN n ODD

This may be interpreted in words as: the factor by which the harmonic

mean of odd and even Wallis coefficients decreases over a double step

is equal to the factor by which the coefficients in the sequence

l/n(-n+l) decrease over the same double step. Less precisely but more

intuitively, this may be rephrased as: the sequences Wn and Sn are

decreasing at the same rate in the harmonic mean over double steps.

It is known* that

V7 1  i-4(2m) +32(2m)
2

Hence, for even n

Wn 41 -2n ---..
8n2

From this it is immediately deduced that

n 2.2.4.4 -6.6.8.8 .... I

2 1-3.3.5.5.7.7o9 ....

which was stated by Wallis in 1655.

Abramowitz-Stegun (1965, pg. 258, eqn. 6.1.49)
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SECTION 4

SPECTRAL THEORY OF THE DISCRETE SUMMATION TRANSFORMATIONS
OF GEODESY

4.1 Introduction

In the previous chapter, the spectral theory of the theoretical
"continuous" integral transformations of geodesy has been described.

In the present chapter, the approximate "discrete" summation transforma-

tions of geodesy and their spectra will be examined. Here the term

"discrete" implies that the input data to the transformation consists

only of a finite set of individual pieces of data over which the

summation is made, and that these data are not continuously or densely

distributed.

The computer algorithms for the actual evaluation (strictly,

approximation) of the Stokes' and Vening-Meinesz' Integrals over mean

gravity anomalies are examples of discrete summation transformations.

The conversion of a theoretical "continuous" integral transforma-

into a discrete summation transformation will be called "discretization".

Discretization always introduces some error since some form of approxi-

mation must be made to convert the rigourously correct integral expres-

sion into a practically implementable summation. If the discretization

is made "judiciously", the error introduced thereby will be negligible.

One of the main purposes of this entire study is to develop a mathemati-

cal theory by which judicious discretizations can be derived from basic

principles for any spherical geodetic transformation.

In the present chapter, the spectral theory of discretized geodetic

transformations will be developed. Mathematical expressions for the

spectra of such transformations will be derived, As may be expected,

it will turn out that the numerical values of such spectra will approxi-

mate, but not exactly equal, those of the spectra of the corresponding

theoretical integral transformation. The difference between the true
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and approximate spectra will provide a means of determining the global

rms error due to discretization, and of calculating improved discrete

summation approximations for which the discretization error is smaller.

This will be accomplished by making the approximate spectrum agree as

well as possible with the true spectrum, which is equivalent to making

the discrete summation transformation agree as well as possible with

the true integral transformation in the frequency domain. In this way,

even though the transformations may have very different representations
in the spatial domain, they will have approximately the same effect in

the frequency domain, attenuating and amplifying the appropriate fre-

quencies present in the input data while converting them into output

data.

4.2 Bull's-Eye Templates and Discrete Summation Transformations

Let a point be selected on the sphere at which it is desired to
calculate the output of a transformation. This point will be called the

point of evaluation. Let the surface of the sphere then be partitioned

into rings centered around the point of evaluation, and let each ring

be further partitioned into compartments. If the point of evaluation

were the North Pole of the sphere, then the compartments would be blocks

bounded by parallels of latitude and meridians of longitude. In the

general case however, the boundaries of the compartments will be lines

on the sphere for which spherical radius * and the local azimuth a from

the point of evaluation assume various constant values *i and aij
respectively. The index "i" will be associated exclusively with spherical

radii or spherical rings, and the index "j" with spherical azimuths

or spherical sectors. The double indexing of the compartment boundary

azimuths aij will permit full generality in allowing different numbers

of compartments in different rings.

In the neighborhood of the point of evaluation, the partition of

the spherical surface into rings and compartments resembles a bull's-

eye target, as shown in Figure 4.2-1. Hence this type of (spherical)

partition will be called a bull's-eye template.

The values of the compartment boundary parameters for a number of

bull's-eye templates will be given in Chapter 5.
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Figure 4.2-1. Bull's-Eye Template.

The following conventions on the spherical radii and azimuth

numbering and the spherical ring and compartment numbering will be used

in this document:

a) The initial spherical radius will be represented by 0.

When there is no inner zone, such as in a Stokes' summation,

10 equals zero and is equivalent to the point of evaluation.

When there is an inner zone, such as in a Vening-Meinesz'

summation, 0 is the truncation radius in accordance with

traditional geodetic symbology (Heiskanen-oritz, 1967,

pp. 121 and 259).

b) The ring bounded by the inner radius p0 and the outer radius

4i will be indexed as ring number 1, and similarly for

successive rings. Hence the ring number index will always

equal the index of the outer spherical boundary radius of the

ring, and the number of rings equals the maximum value of

the spherical radius index, although physically there is one

mre spherical radius, namely 0*
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C) The initial spherical azimuth a of each ring equals zero,

and the final spherical azimuth a .a of each ring equals

2ff or 3600.

d) The compartment bounded by the lower azimuth ai0 and the

upper azimuth ail will be indexed as compartment (i,l)

and similarly for successive compartments.

A discrete summation geodetic transformation over a bull's-eye

template has the explicit form

f OUT =3 3 w.. f..

where

- f is the value of the input geodetic quantity in the

(i,j)th compartment,

- wij is the transformation weight associated with the (i,j)th

compartment,

- fOUT is the output geodetic quantity at the template origin

(point of evaluation).

The sunuration is to be carried out conceptually over a set of indices

corresponding to compartments which cover the entire sphere. In practice,

some of the weights wij may be zero and can be omitted from the computed

implementation of the summation.

Such a transformation is a linear shift-invariant transformation,

i.e., a digital filter. The shift invariance property results from the

fact that the template and its associated weights shift without change

when the point of evaluation is shifted.

Discrete summation transformations may be derived from continuous

integral transformations by choosing the kernel K(',a):

- constant in each compartment, for compartmental averaging

of the point input data to the integral transformation,

- with a Dirac Delta spike in each compartment for direct

sampling of point input data to the integral transformation,

- with other mathematical properties, for other types of com-

partmental preprocessing of the point input data to the

integral transformation.
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In most of what follows the kernel K(4,a) will be chosen constant

in each compartment in order to obtain transformations whose inputs are

mean geodetic quantities.

4.3 Stokes' Discrete Summation Transformations

As indicated in the preceeding section, discrete summation trans-

formations may be derived from their continuous integral counterparts

in several ways. Moreover even when the kernel is held constant in

each compartment, the value to which the kernel is set in each compart-

ment may itself be selected in many ways. Two ways are presented in

some detail in the following paragraphs, followed by a short description

of choosing the kernel as a Dirac Delta spike.

4.3.1 Midpoint Weighting

Let the Stokes' midpoint averaging function S(f) be the staircase-

like (piecewise constant) function which assumes the constant value

over each ring of the actual Stokes' function evaluated at the mid-point

of that ring measured in spherical distance. Thus,

S for 0 < < I

s'2 for
(' '2 1 23

S [ 2 + 3 f o r IP 2  < i~ 3

etc.

The value of the function (*) at any particular spherical radius j will

of course depend in general upon the choice of the spherical ring radii

*i; however, these are assumed to be chosen a priori (or are assumed

to be parameters) so the dependence is not explicitly shown in the nota-

tion. A typical graph of S(f) is provided in Figure 4.3.1-1 for a

particular choice of spherical ring radii. It will be noticed* that the

smooth curve of the Stokes' function S(*) passes through the midpoint*
In the figure there are actually two rings between * z620 and p z 851
although it appears that these angles subtend only one ring. The
intermediate spherical radius separating these rings falls at p Z730.
To the precision shown in the graph the Stokes' function has the same
mid-point value in each of these rings.
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Figure 4.3.1-1. Stokes' Midpoint Averaging Function S( ).
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of each constant "piece" of the Stokes' midpoint averaging function

S(p). This is precisely this function's characterizing property (since

the graph is plotted uniformly in the variable i).

When the Stokes' midpoint averaging function ( ) is substituted

for the classical Stokes' function S(f) in the explicit integral form

of the Stokes transformation, the double integral on the (densely-

distributed) point gravity anomalies Ag( ,) simplifies to a double

summation on a finite number of discrete mean gravity anomalies --ij

ffg-1 , do, ~ R Sr1 i-l ' i] giA.

i j

where Aij is the surface area of the (i,j)th compartment. This is

precisely the formula sought.

Hence the digital filter representation of this transformation

may be written

G =gij
i j

where the weights are

wij 2 4 Tr

The spectrum of this transformation may also easily be derived

by again substituting 9() for S(4), this time in the spectral equation

which again reduces to a summation:

+iL -,--N Ld(o S[i-i +  i, 'l()

An{g: g -N} = G f S (cos t) Pn(COS p) d(cosn 2Co) 2 G 2 S P n
-ii1

X.

where x - cos i, x i = cos i

The partial derivatives 3Xn/ X,,k of the elements of the spectrum with

respect to each of the template spherical ring boundary radii (or rather

with respect to their cosines) may also be derived. These quantities will

be necessary in the implementation of at least squares optimization

algorithm which will "acjust" the ring radii to minimize the total rms
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error between the spectrum of the Stokes' integral transformation and

that of the discrete summation approximation. The partial derivatives

axn/aXk' are obtained directly by differentiating the equation for the

spectrum, yielding

n R DS- r k Xk dX x + s (X) xk+l PWdx
axk 2Gj J_ n 2 ax n 2-~-

Since the initial radius 0and the final radius 'P.a are not adjustable,

the index k assumes values only between (and including) one and (i -1).

4.3.2 Integrated-Mean Weighting

Let the Stokes' Integrated-Mean Averaging Function S(f) be the

staircase-like (piecewise constant) function which assumes the constant

value over each ring of the integrated mean value of the Stokes' function

on that ring. Thus,

1cos 0
1 Cos P S(cos f) d(cos P) for <  <  icos* 0 -COS 1 J0

Cos* I

cos 1 _CO sij 2  1 S(cos *) d(cos f) for P1 
<-' <-P2cos" 2

etc.

For notational simplification, the integrated-mean values will be

denoted by the symbols S(i)

S(1 for i0 < <1

) (2 ) for *I < <1P2

etc.
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The grave accent symbol is used in the notation to evoke an average,

since the traditional average symbol (a superscript bar) has another

meaning in geodesy when used with a kernel, namely truncation of the

kernel at a specified spherical radius.

Values of the S W may be easily calculated from the analytic

expression for the indefinite integral of the Stokes' function:

-JS(W)sin- dp = -4t +5t 2 +6t 3 -7t 4 +6t2(l-t2)£n t (l+t)

where t = sin -. See Heiskanen-Moritz (1967, pg. 263, equation for Q0).

The value of the function S( p) at any particular spherical radius 4 will

of course depend in general upon the choice of the spherical ring radii

4i; however, these are assumed to be chosen a priori, so the parametric

dependence is not explicitly shown in the notation. A typical graph

of S(p) is provided in Figure 4.3.2-1 for a particular choice of spheri-

cal ring boundary radii. The shaded region in this figure indicates

the area under the Stokes' function curve between two ring radii. The

constant value of Stokes' integrated-mean averaging function between

these same ring radii is calculated so that the rectangular area under

its value (+2 in the figure) is equal to the shaded area.

When the Stokes' integrated-mean averaging function (*) is

substituted for the classical Stokes' function in the explicit integral

form of the Stokes' transformation, the double integral on the (densely-

distributed) point gravity anomalies 6g(,a) simplifies to a double

summation on a finite number of mean gravity anomalies Agi:

R S(f Ag (p, a) -a = E-- (i) j gij

N = Tg G 4 i
i j

where Ai is the surface area of the (i,j)th compartment on the unit

sphere.

Hence, the digital filter representation of this transformation

may be written:

iij

where the weights are A i.
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Figure 4.3.2-1. Stokes' Integrated-Mean Averaging Function Si)
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.,,r The spectrum of this transformation may also be easily derived by

again substituting the S( ) for S('), this time in the spectral equation

which again reduces to a summation:

X ~gN} = fScs)Pco')d (cosq,) (x) dx
nG ' S(cos f) Pn(cos G dcos

-1 i xi

where x cos and xi = cos 'i"

The partial derivatives an /aXk of the elements of the spectrum

with respect to each spherical ring boundary radius of the template (or

rather with respect to the consines thereof) may be obtained by differen-

tiating the equation for the spectrum, yielding after some manipulation:

I -ax n{S: Ag N} R
n xk  =iG F(k)k) -S(k+l) Pn(k+l)

+ S(xk (k) nW n (k+l)]I + P n(x)4-S(k)+ (k+l)]

where Xk-i

Pn(k) Xk_ 1 -xk Pn (x)dx

xk

is the integrated-mean value of the Legendre polynomial over the kth

ring. The seemingly unsymmetric indices (k) and (k+l) in the partial

derivative expression for aXn /axk are actually symmetric because they

refer to the rings which are separated by the spherical radius k" The

ring and radius indexing convention causes this apparent asymmetry.

The analytic partial derivative expression is extremely simple

to implement in a computer algorithm because all of the quantities which

enter into it have already been calculated for the evaluation of the

spectrum itself with the exception of S(xk) and Pn(Xk) which are

relatively easy to obtain. Hence only a few multiplications and addi-

tions are necessary for the computation of the analytic partial. This

fortuitous situation is in contrast to most analytic partial derivative

evaluations which generally require more computational expense than the

evaluation of their primitive. In the present case, the situation results

from the use of the integrated-mean, so that higher derivatives do not

occur in the partial expression, because of the a priori integral.
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4.3.3 Dirac Delta WeightingV
Let the Stokes' comb function S(p) be defined to be the comb-like

function which consists of a linear combination of a finite set of Dirac
Delta functions weighted according to the value of the Stokes' function

at each spike.

6c spk spikeS( S( s i k e  6 (Cos -Cos

i

The spherical radii at which the spikes are located will be denoted by
spike
i . The Dirac Delta function 6(x) has the property that it is zero

everywhere except when the argument is zero, in which case the function

is infinite in such a way that its integral is unity:

+1

f 6(x)dx = 1
-i

A graph of a typical Stokes' comb function is given in Figure 4.3.3-1.

When the Stokes' comb function S(O) is substituted for the classical

Stokes' function S() in the explicit integral form of the Stokes'

transformation the double integral on the densely distributed point

gravity anomalies reduces to a summation on the arc-average gravity

anomalies Agi around each spike radius spike

r! 4) Ag(4, ) _O spike 1 Ag
i

where P is the total number of spikes. The factor (l/P) plays the same

role in this formula as the factor (Ai /47) plays in the previous formulae,

namely as the ratio of the weight (area) of current compartment or point

to the weight of all compartments or points (before the Stokes' function

weighting is applied).

Hence, the digital filter representation of this transformation may

be written:

G = ij 6gi

4i1
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INFINITE BUT WHOSE RELATIVE WEIGHTING IS
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S(P): CLASSICAL STOKES' FUNCTION, INDICATED BY

THE SMOOTH CURVE.

Figure 4.3.3-1. Stokes' Comb Function S(p).

4-13



where the weights are

= s~pike 1wi S P

The spectrum of this transformation may also be derived:

+1 R [ ~ ~~ (cos ~o
An{S: Ag -N} = S(COS 4) P (Cos f

-1 -

R 1 s(,pike ) Cs spike.
= i  n (C°Si )

i

making use of the property of the Dirac Delta function. When using

this equation to evaluate the spectrum, care should be taken that a

sufficient number of spikes are chosen in a well-distributed manner so

that a sufficient number of data points enter into the computation.

Otherwise aliasing of the spectrum may result from undersampling. This

problem is well-known to workers in the field of sampled-data processing.

It will not be dealt with here since the input of mean gravity anomalies

rather than arc gravity anomalies is more common in geodesy. This

example is provided only to show that the spectral theory of discrete

summation transformations can include summation over arc anomalies and

even point anomalies (by an obvious generalization).

4.3.4 Sumnmary of Discrete Stokes' Transformations

A summary of the mathematical relationships for the various

discrete Stokes' summation transformations is given in Figures 4.3.4-1

through 4.3.4-3.
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* TRANSFORMATION: DISCRETE STOKES' SUMMATION
USING MID-POINT STOKES' WEIGHTING

Input: "g i j (mean gravity anomaly for each compartment)

Output: N (geoid height)

* EXPLICIT FORM

N Rf ARid) AREAi
G 47Zg( ,w . - W(-mid 4w E' gij J|

i j

N = rwij Zgij where wij= S(;Pimid) A 1 -G~47r

* EIGENVALUES

d (cos 0)
Xn= S (cos ) Pn (cos P)

Ii

Figure 4.3.4-1. Summary of Relationships for the Discrete Stokes'
Summation Transformation Using Midpoint Weighting.
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* TRANSFORMATION: DISCRETE STOKES'SUMMATION
USING INTEGRATED-MEAN WEIGHTING

Input: -gij (mean gravity anomaly for each compartment)

Output: N (geoid height)

* EXPLICIT FORM

N ffA(),&g (c, c) do . RE
G 4 R .GS~ 4wr "gij

~ AREA.-
I j

N = vij 2w ij where w*ij S(i) AREA

" EIGENVALUES

R- + d (cos~k
n - S(cos )Pn (cos 0) d2

iR [ os P M t ]

2G (i) dt]

Figure 4.3.4-2. Summary of Relationships for the Discrete Stokes'
Summation Using Integrated-Mean Weighting.
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* TRANSFORMATION: DISCRETE STOKES'SUMMATION

ON ARC GRAVITY ANOMALIES

Input: A i (arc gravity anomalies)

Output: N (geoid height)

* EXPLICIT FORM

Rff AL dE S-0 #ke 1, "',N : j S( ) ,g(0,&a) -

N R

Wij 19i where wij S(p ) ike

• EIGENVALUES

+1 " dcos%)
Xn =S (4j) Pn(coOG f 2 whereP

|denotes /
total number

s -~pPk)of spikes
=1 GB ES(o nik )P(COS ip ike )Lo ik _

2PG i

BEWARE OF ALIASING INTRODUCED BY UNDERSAMPLING

Figure 4.3.4-3. Summary of Relationships for the Discrete Stokes'
Summation Transformation on Arc Gravity Anomalies.
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4.4 Vening-Meinesz' Discrete Summation Transformations

Discrete summation approximations to the Vening-Meinesz Integral

will now be derivk. which will transform mean gravity anomalies over

compartments into the two horizontal gravity disturbance components

or equivalentiy the two deflections of the vertical. Also the spectra

corresponding to these summations will be derived. The method used for

the derivations will be to select judiciously chosen approximations to

tne kernel of the Vening-Meinesz' Integral which will reduce the integral

to a summation on mean gravity anomalies. The Vening-Meinesz' kernel

consists of a spherical radial portion and an azimuthal portion:

K(p, a) = VM()

~sin c

Approximations to each of these portions will be required. Two such

judiciously chosen approximations are presented.

4.4.1 Midpoint Weighting

Let the Vening-Meinesz' midpoint averaging function VM() be

the staircase-like (piecewise constant) function which assumes the

constant value VMi over the i
t h ring of the classical Vening-Meinesz'MID

function evaluated at the midpoint of that ring *iM measured in spherical

distance between the inner and outer spherical ring boundaries.

Thus

MID
VM( I ) for 0 < < ,

VM() = VM(P2  ) for I < 2

letc.

where MID = Oi + t.)/2 following the convention that the index of
=i i-l . IMID

a ring or the midpoint *i of the same ring are the same as the index

of the outer ring boundary. Thus

{VM I for ipO <'P J

VM() - VM2  for i < ) < P2

etc.
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As described in the discrete Stokes' summation sections, the midpoint

averaging functions depend not only upon p but also upon the under-
lying spherical ring radii boundaries of the template, although the

dependence is not explicitly indicated in the notation.

A graph of a typical Vening-Meinesz' midpoint averaging function
is given in Figure 4.4.1-1 for an arbitrary selection of ring boundary

radii.

Similarly, let the cosine and sine midpoint averaging functions

cos a and sin ct be the staircase-like (piecewise constant).functions
which assume the constant value over each compartment of the actual
cosine and sine functions evaluated at the mid-azimuth of that compart-

ment.

JL ~ MID _cos a cos ai,j

for a. <a <i.

sin a sin a S

MMID
where a = (aij- + .L )/2

When the Vening-Meinesz' and the cosine and sine midpoint averaging
functions are substituted for the corresponding classical functions in
the Vening-Meinesz' Integral, the double integral on the densely dis-
tributed point gravity anomalies reduces to a double summation on

the mean gravity anomalies over each compartment:J_ ISl IL
.Ldo .1

6EW r sin a! S 47Tj,

Hence, the digital filter representation of this transformation may be

written:

Gn => 
3 w

4-1_
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VM(41): CLASSICAL VENING-MEINESZ' FUNCTION

Figure 4.4.1-1. Vening-Meinesz' Midpoint Averaging Function VM(tp).
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where the weights are

C ~ij~ A..
-1)-1

I Sijj

The spectrum of the transformation is

() d

- (n--)! Cos al

/nFn-+l IT i f n 2x) _M f i-

1 Xi  ij i'j - dsina

where xi - cos i

4.4.2 Integrated Mean Weighting

Let the Vening-Meinesz Integrated Mean Averaging Function VM(m)

be the staircase-like (piecewise constant) function which assumes the

constant value VMi over the i
t h ring of the integrated-mean value of the

classical Vening-Meinesz' function over that ring.

fVlM1  for 0 < < % 1

VM2  for 1 <S _ <--P2
im(op) = I

IVM 3  for i 2 < ' <--"3

etc.

where

1 
1xi1VMi xi-ixi f VM(x)dx _

and x = cos Si"

A typical graph of VM(p) is given in Figure 4.4.2-1 for a parti-

cular choice of spherical ring boundary radii. From the definition

of this function, the area of the shaded region under the classical

Vening-Meinesz' function between each pair of successive ring boundary

radii must equal the area of the rectangular block between these radii

whose ordinate is the constant value VM.
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VM(4i): VENING-MEINESZ INTEGRATED-MEAN AVERAGING FUNCTION

VMOqi): CLASSICAL VENING-MEINESz FUNCTION.

Figure 4.4.2-1. Vening-meinesz' Integrated-Mean Averaging Function VMi).
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Similatly let the cosine and sine integrated-mean averaging func-

tions cos a and sin a be the staircase-like (piecewise constant) func-

tions which assume the constant value over each compartment of the

integrated-mean value of the actual cosine and sine functions over

that compartment.

= ~ 1 a ' os a d aI os i) j - 1 ioj-i f

sincal 1, , ij-in a

1 Isin aii J- sinai'j-1
i,j -,i,j- -cosi, + Cosi,j l

{-05z1 j ci'j. 1}

i j.

= for i,j-i <a c< i,jS ilJ

When the Vening-Meinesz', and the cosine and sine integrated-

mean averaging functions are substituted for the corresponding classical

functions in the Vening-Meinesz' Integral, the double integral on the

densely-distributed point gravity reduces to a double summation on the

mean gravity anomalies over each compartment:

G & f V M ( . c o s a ICg* a oi j A j 2 gdoT V'Mi  4 1Tgi

G 'nisin a" ' iji}

Hence the digital filter representation of this transformation may be

written:

I ~ ij 9i
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where the weights are

! j VMi{ 4 7

The spectrum of the transformation is:

cOSQ a Cos a
A 2 (n-')! Vf (i 1 Pn1 (cos 4_0n (n+7 TsJ n 4 T

Xi  j [ 1,fl icj sinin

/nT--Tx. 
f .cos cLId

- a___ iVMjPsinya

2 im 1 W x1 (sinsaij -sina i j 1 ) 2

,'n~n~l fl n 27osr, (aoct~..i1 n T ij' --

2 - V'Mi 7 i -l l~x~n  2O(i, ijl (Cos el j Coseijl

2 '- .d\ ijfcos2 Haii 'j -I +a i j )/2]

i Xni  lsin2 Hij-1 +a jj)/2J

w;he re 
sin (ai, -i )/2]

13 j 7T (a i,j -a il, j-1l)/21

and
xi = cos i"

The lengthy but straight-forward steps in the derivation of these

expressions have been omitted.

The partial derivatives a/ x of the elements of the spectrum
with respect to each of the template spherical ring radii (or rather with

respect to their cosines) may also be derived. As mentioned in the

Stokes' section, these quantities will be necessary in the implementation
of a least squares optimization algorithm for the determination of

"improved" values of the template ring radii.
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By direct differentiation of the equation for the spectrum above,

-1 + 1 M2!il(Vi~ln ,i+l + - ii n,i:

~ax1 1
-n _ 2 + VM(x) [+--i p -

+ Pnl f-i+l ni+l n
i =n(n+i

+ p (xH+-9it VM TZ VMn n 2 i+1 i+ 2-i i

where .=

-)

x. = Cos~J

implement in a computer program since almost all of the quantities

appearing in it will already have been computed during the computation
of the spectrum X 1 itself. Hence only the few additional multiplica-

n
tions and additions of these quantities as indicated by this equation

are necessary to obtain the analytic partial. Again this is an

exceptionally fortuitous situation. It avoids the approximate incre- _

mental method of calculating the partial, and it avoids the generally

prohibitively expensive calculation of the partial.

Similarly, the partial derivatives an/3ai of the elements of

the spectrum with respect to each of the template compartment boundary
azimuths may also be derived. These quantities will be necessary if the

azimuths will be adjusted in an optimization program to derive templates

with "improved" values of the azimuths.
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Again by direct differentiation of the first component of the

equation for the spectrum of the discrete Vening-Meinesz' transformation,

a-n 2 N vMi f Pl'dx 2.
aci, - T____IT_ i 2n(x.* 'j

1

where

[sin a i'1+ - sini 1a } sin aij sin ai,'j-1

=r L i -,+1 i,) i, j- Ii ,j-i

_______ sin. a-,j1-sin ai snajsna..)1 osij) +i,j~ °ij a ij , j-1

A similar expression could be derived for the partial of the second

component of Xi.

4.4.3 Summary of Discrete Vening-Meinesz' Transformations

A summary of the mathematical relationships for the discrete

Vening-Meinesz' summation transformations is given in Figures 4.4.3-1

and 4.4.3-2.
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" TRANSFORMATION

DISCRETE VENING-MEINESZ' SUMMATION

USING MIDPOINT WEIGHTING

Input: Tgij (mean gravity anomaly in each compartment)

Output: Ge (horizontal gravity disturbance vector)

" EXPLICIT FORM
J-L

GtCos ad
GE =  = f 1  Ag(4,,) EE,

G77 sina IJ
(mid

mid) cos Cij AREAij
hr i sin omid 4w

ii

" SPECTRUM (TRANSFER FUNCTION)

1 [(n-1 J. osa os 1 do2n 2 (n+1)! 1VM() J-L P (Cosa).7

since (sin a) I

2 E VM( , mid) f Xi- P 1l dx
yn(n+1)I -( mid.a ("

Cosa. t1mi cj Cosa0

jsin omid (.)j1 ino

where x i = cos i

Figure 4.4.3-1. Summary of Relationships for the Discrete Vening-Meinesz'
Summation Using Midpoint Weighting.
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* . .... S. a - .. .~ . .. .•, ,m . -

" TRANSFORMATION

DISCRETE VENING-MEINESZ" SUMMATION
USING INTEGRATED-MEAN WEIGHTING

Input: 2Oij (mean gravity anomaly in eath compartment)
Output: Gt (horizontal gravity disturbance vector)

* EXPLICIT FORM

G ),,f'i ~C~s A) ( do

Ge - fsJJVM(whom 4id - Vii 4w

" SPECTRUM

i nrw )i fr S( a oUws O n (s do

•i ixi" sin2  _(ai j-1 + a1)/2J

$in 2 [(a1j -ci_1 12J n bvx

where Qij - x[(aij -a4_1)/2 and wham XI - COS Pi

Figure 4.4.3-2. Summary of Relationships for the Discrete Vening-Meinesz'
Summation Using Integrated-Mean Weighting.
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4.5 Inner Zone Operators and Their Spectra for First Order Geodetic
Transformations

In the numerical evaluation of the discrete Vening-Meinesz'

summation at the surface, a small circular region or "cap" centered at

the point of evaluation is always excluded due to the singularity of

the Vening-Meinesz' kernel at the origin. This spherical cap is called

the "inner zone". The contribution of the inner zone in the computation

of the deflections or horizontal gravity disturbances is then accounted

for by other methods, usually* through the use of the first finite

differences of the input quantity to the transformation. The spectra

of such operators will now be derived and compared to the theoretical

spectrum of a truncated integral transformation.

4.5.1 Dipole Operators and Their Spectra

The simplest case is a "single dipole" finite difference operator

which transform an arbitrary input f(,a) into the finite difference

f(tp0
'Iz) - f(4 0 , a +T)

of the two values of the input which lie radially opposite each other

at a spherical radius * 0 along a diameter having azimuth a. Such an

operator may be put into the form of an integral transformation through

the use of two Dirac Delta functions.

In the case when the dipole lies in the north-south direction,

the spectral results shown in Figure 4.5-1 are deducible. By combining

these results with analogous ones for an east-west dipole, the "double

dipole" spectrum given in Figure 4.5-2 are obtained. And with another

slight generalization, the spectrum of the Rice quadruple dipole

operator is derived as specified in Figure 4.5-3.

These finite difference operators and their spectra will be used

in the next section to determine the spectra of geodetic inner-zone

deflection operators.

4.5.2 Inner Zone Deflection Operators and Their Spectra

Heiskanen-Moritz (1967) have shown that to a low-order approxima-

tion the contribution of the inner zone to the two components of the

horizontal gravity disturbance is given by:*

Heiskanen-Moritz, 1967, pp. 120-122; Pick-Picha-Vyskocil, 1973,
pp. 262-264.

paqe 121, equation 2-232.
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" TRANSFORMATION: NORTH-SOUTH DIPOLE N

Input: Uj *, 0) ~~
Output: { fN 0 fs If(4'0 0)0 f(o,

* EXPLICIT FORM

N - fS i -5 do 

0 sin a

" SPECTRUM

-1 2 -6S1 a pn do
-nf ~nn 1 N - 47w~/n sin a (sin a

- 2 P1(o
Vnn+1) 0

_-Vn~fl'1) l_-(n-1)(n+2) ,i2 0 2

t-Vn nl1f p, 2

Figure 4.5-1. Summary of Mathematical Relationships for the Single
Dipole Finite Difference Operator.
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" TRANSFORMATION: NORTH-SOUTH, EAST-WEST DOUBLE DIPOLE N

Input: f(,a)

Output: fN-fS fJ( 40, 0) - f(0,z

* EXPLICIT FORM

fE -fw (N - 6 S ) + OE - sn f; 4 w1

" SPECTRUM

2 P C s 4 0 2 1 ~
-n ''nv---- -- Pl cO 2o J:

n~ ~ ~ ,+nj 112

-V/ T sin so 1-(nL) (n+2sin2"4 ' + ".

Figure 4.5-2. Summary of Mathematical Relationships for the Double
Dipole Finite Difference Operator.
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* TRANSFORMATION: R ICE's "THREE-GRADIENT" OR "EIGHT-POINT" METHOD

Input: t(I', 0)

Output: ON - fS) O-1 NE - fSW) 4 (N - 0SE

E-fW+4(fNE-fSW1 -q(fNW -f

* SPECTRUM

1

Figure 4.5-3. Summary of Mathematical Relationships for the Rice
Weighted Quadruple Dipole operator.
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G4 21 s 0 2 I Ag s dsd

{G INNER 0 0 }sin a
Z ONE

where s represents the linear distance R4) on the surface of a sphere

of radius R. By expanding Ag(s,a) in a two-dimensional Taylor series,

and performing the integration shown above on the result, Heiskanen-

Moritz derive that the leading term in the inner zone contribution is*

GE Ag

IGn INER = t i
ZONE

where x and y are linear distances along the local north and east

directions respectively.

The partial derivatives above may be approximated using the double

dipole finite difference operator or the Rice weighted quadruple dipole

operator of the previous subsection:

Ag {-gE..Ag

A-g (T -1(EA ) 1 ( f -60Sksw
a \Ag AW2o / - n /

a Ag { (AgE - - 1ASw E -Ag )

(AGN - tAgS) +-Ag A9W) + (AgNW -9SE))

2 1 s (

page 122, equation 2-235.
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Consequently, from the spectral results for these dipole operators,

it is quickly deduced that the spectrum of the transformation yielding

the contribution of the inner zone to the horizontal gravity disturbances

via the two approximations is:

1n n2 1
- 2 Pn (Cos 0 [

Thus the inner zone can have a rather large effect on the spectrum

of a Vening-Meinesz' transformation, especially for high spherical

harmonic degree n and large truncation radii 0*

Just as the transformations involving the double dipole or Rice

quadruple dipole operators are approximations to the continuous integral

Vening-Meinesz' transformation truncated to a spherical cap, so must

the spectrum of these transformations approximate the spectrum of the

theoretical truncated Vening-Meinesz transformations. This will be

shown to be true (to first order in i 0) in the next subsection.

It should be noted, however, that quite a few approximations have

been made in the above discussion. Specifically, at the beginning the

Vening-Meinesz' Integral was "localized" to a neighborhood of the origin,

then the gravity anomalies were expanded in a Taylor series which was

truncated, and finally partial derivatives were approxiated by finite

differences. In a series of papers, Prado (1977a, 1977b) and Adams

and Prado (1978) have examined the analogous "flat-earth" transformation

converting vertical gravity disturbances 6g into horizontal gravity

disturbances (GE, Gn) and placed the spectral theory of this planar

transformation on a much more rigorous basis, showing in fact that the

outputs and inputs are related by a two-dimensional Hilbert transformation.

Their papers also give further references to the mathematical and engi-

neering literature.

4.5.3 The Truncated Vening-Meinesz' Transformation and Its Spectrum

Cook (1951) and deWitte (1967) have investigated, the mathematical

properties of the truncated Vening-Meinesz' transformation and have

calculated some estimates of the contributions of the excluded regions.

DeWitte has provided graphs* of the low degree Cook coefficients qn( 0)

in his Figures 10 and 11
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which are closely related to the spectrum of the residual* Vening-Meinesz'

transformation, and are analogous to the Molodenskii coefficients Q00)

for the Stokes' kernel. While the Cook coefficients provide theoreti-

cally correct expressions describing the spectrum for all truncation

radii 0, the properties of the truncated Vening-Meinesz transformation

for small 0 may be more easily seen in a power series expansion about

the origin in powers of *0. The mathematical results are exhibited in

Figure 4.5-4.

From the power series in the figure it is seen that indeed the

spectrum of the theoretical truncated Vening-Meinesz' transformation

matches through first order the spectrum of the inner zone deflection

transformations involving the double dipole or Rice quadruple dipole

operators.

0 TRANSFORMATION: Vening-Meinesz ovw a circular cap of spherical radius Po around the origin

* EXPLICIT FORM:Go 2 Oo.Cos.a
~fI fOVM(') A a sin da

* SPECTRUM

=. 2 f
-n =  J VM(0) P (cos 0) sin

2 -1 p1 (cos 0) sid i for small Vso

*V~ +1'0 In-) In+2) *0 o2 +I-2) In-1) (n+2) fn+3) (1

Figure 4.5-4. Summary of Mathematical Relationships for the Truncated
Vening-Meinesz' Transformation.

The term "residual" refers to the "outer zone" where O<i < ' while
"truncated" refers to the "inner zone".
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In the comprehensive filter design program (Appendix C), the

negative of the series expansion through third order has been incorporated

as a correction to the theoretical Vening-Meinesz' spectrum for the

entire sphere, since the small spherical cap around the origin is being

omitted in the calculation of the spectrum of the discrete Vening-

Meinesz' summation transformation. It is thereby tacitly assumed for

the purpose of optimal template design that in the actual Vening-Meinesz'

summation an almost error-free inner-zone deflection operator has been

implemented. More realistic cases could be considered by deriving more

accurate approximations to the spectra of the Rice quadruple dipole

operator, for instance, and incorporating these expressions instead

into the spectral computations.
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SECTION 5

SPECIFIC TEMPLATES AND EXAMPLES OF SPECTRA

This chapter describes a number of specific bull's-eye templates

for the Stokes' and Vening-Meinesz' discrete summation transformations,

and gives tables of values of their compartment boundary parameters.

Graphs and listings of the numerical values of the spectra for some of

these summation transformations, as well as for the corresponding

integral transformations, are also presented to provide an intuitive

feeling for these quantities.

5.1 Specific Templates

The values of the compartment boundary parameters for almost all

of the bull's-eye templates which have been published in the literature

have been derived using the concept of the "equal contribution" of each

template subdivision. Since many of the specific templates to be

described in this chapter fall into this category and since the relatively

good quality of the equal contribution template can be partially explained

by spectral theory, the equal contribution concept will be examined in

some detail. Templates with parameters determined by other methods will

be described in a later subsection entitled "Other Templates".

Under the equal contribution concept, the spherical ring boundary

radii and compartment boundary azimuths are selected so that the indivi-

dual contributions from the template subdivisions to the total output

will all be equal in magnitude in the hypothetical case when the sub-

division inputs to the summation are all equal. For example, in the

Stokes' or Vening-Meinesz' transformations, the boundaries of the sub-

divisions would be selected so that each subdivision would contribute

equally (in magnitude) to the geoid height or deflection of the

vertical when the input mean gravity anomaly over each subdivision in

one milligal.
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Traditionally, the word "subdivision" has meant "compartment".

However, "subdivision" is purposely being used here to allow the equal

contribution concept to be extended to complete rings or complete sectors

rather than being restricted to compartments. In fact, it will be shown

that the equal contribution of complete rings and sectors are more

natural concepts than that for compartments. Historically, however,

before the advent of electronic computers, an equal compartment contri-

bution template (in the form of a physical template to be laid on a

gravity anomaly map) would have been a very useful computational aid.

5.1.1 Templates with Compartmental Equal Contribution

In the standard method of implementing the compartmental equal

contribution concept, the number of compartments in each ring is chosen

a priori according to some ad hoc scheme or "educated guess". Then

the spherical ring boundary radii are determined so that each compart-

ment will contribute equal outputs for equal inputs. This involves

calculating the total contribution of each ring and dividing by the

number of compartments in the ring to find the compartmental contribu-

tion. Hence, the contribution of a complete ring will be proportional

to the number of compartments in the ring. Finally, for non-zeroth-order

transformations only, the spherical sector boundary azimuths are determined

so that again each compartment will contribute equal outputs for equal

inputs. Examples of the computations are given in Pick-Picha-Vyskocil

(1973, pp. 255 and 265-267).

The number of compartments in each ring is often chosen so that it

is approximately proportional to the trigonometric sine of the spherical

radius ' of the midpoint of the ring. This is motivated by the fact

that the element of area on the surface of the (unit) sphere is

do = sinqp d da

so that with such a choice the compartments have approximately equal

area (if the sector boundary azimuths are uniformly partitioned), and

approximately equal dimensions (namely sin* d and dip when the pro-

portionality constant relating the maximum number of compartments in the

' = 900 ring to the total number of rings is correctly chosen), and

hence have approximately equi-distant midpoints.

Other considerations are also often involved in the a priori choice

of the number of compartments in each ring, such as the condition that
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the number be divisible by four so that the template can be made bilaterally

symmetric.

It should be noted however that the selection of the number of

compartments in each ring by the method outlined above requires a pre-

existing knowledge of the ring boundary radii, which are precisely the

quantities to be determined. In other words, the number of compart-

ments in each ring and the ring boundary radii are mutually dependent

quantities under the compartmental equal contribution concept. Thus

an exact determination of these quantities would necessitate an iterative

solution. This is why published methods are rather ad hoc or based

upon "educated guesses".

5.1.1.1 Pick-Picha-Vyskoc il Templates

Pick-Picha-Vyskocil (1973) have given values of the template para-

meters for a 34-ring Stokes' template and a 23-ring Vening-Meinesz tem-

plate. These are reproduced in Tables 5.1.1-1 and 5.1.1-2. The Vening-

Meinesz' tem ate has been derived under the compartmental equal con-

tribution concept, while the Stokes' template has been derived under a

modified form of this concept in which the close rings (those with

< 2.96100) are more finely subdivided* into compartments and these

smaller compartments contribute one tenth that of the compartments in the

far rings for equal inputs.

5.1.1.2 Rice and Kazansky Inner Zone Templates

Rice (1952) and Kazansky (1935) have developed templates for the

inner zone of the Vening-Meinesz' transformation based on the equal con-

tribution concept. Since the templates are for use only in the inner

zone, the Vening-Meinesz' function was approximated by its leading term

which permitted the analytical solution for the spherical ring radii

a

where "a" is a constant.

In the original Rice paper, ip0 corresponds to the distance of

100 meters on the surface of the earth and a =1.1864. With 36 compart-

ments in each ring, each compartment contributes one milli-arc-second

to the total deflection of the vertj.e.. when the compartmental mean

gravity anomaly input is one milliga'. The values of the original

Rice Inner Zone Template parameters are given in Table 5.1.1-3.

apparently by a factor of ten
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RING BOUNDARY RA II IS 10.488 1166 16
No. of" rings r (kin) No. of sectors 16 12.85 1430 16

in ring 17 15.99 1778 20

18 20.17 2243 24
19 25.30 24

1 0.0684 7.606 4 20 33.90 24
2 0.1753 19.493 6 21 52.0 28
3 0.3078 34.23 8 22 61.0 40
4 0.4474 49.75 a 23 72.0 64
5 0.7116 79.13 16 24 82.3 64
6 0.9758 108.5 16 25 94.2 64
7 1.2348 137.3 16 26 106.3 42
8 1.4883 165.5 16 27 126.3 20
9 J.9860 220.8 32 28 135.9 20

10 2.4780 275.5 32 29 142.7 20
II 2.9610 329.3 32 30 149.0 20

12 4.148 461 8 31 155.4 20
13 3.884 654 12 32 162.9 20
14 8.180 905 16 33 176.4 20

34 180.0 1

Table 5.1.1-1. Pick-Picha-Vyskocil Template Parameters for the Stokes'
Transformation.
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RING RADII

No. of rings w r (km) k

SECTOR AZIMUTHS
I 0.044 4.893
2 0.063 7.005 Rings 1-10 Rings 10-15

3 0.089 9.897
4 0.128 14.23 k k a

5 0.183 20.35 16 0 0°00'0
"  

0 0100W'
6 0.261 29.02 1 142840 1 93540
7 0.372- 41.4 2 300000 2 192820

8 0.530 58.9 3 48 35 30 3 300000
9 0.753 83.79 069 83.7 4 900000 4 41 4840

10 1.069 318.9 5 56 26 30

6 900000

10 1.069 118.9 Rings 15-19 Rings 19-23

11 1.794 199.5
2.966 329.8 24 328'30 1 4*59'20'

13 4.821 536.1 2 102830 2 150720

14 7.591 844 3 173830 3 254620
15 11.47 1275 4 250610 4 372940

5 330320 5 51 3000
6 41 4840 6 73 02 40

15 11.47 7 51 5920 7 119 3530

16 18.55 8 652250 8 135 5520

17 28.3 33 9 1040820 9 148 3300

18 40.8 10 121 57 10 10 159 38 40

19 65.3 if 133 2030 11 1695900
12 1424140 12 100000
13 150 5950

19 65.3 14 1584030

20 98.9 Is 165 58 10
16 173 02 20

21 114.4 23 17 1800

22 130.5

23 180.0

" As the rngs contain an odd number of sectors, the division into
sectors does not begin in the zero azimuth.

Table 5.1.1-2. Pick-Picha-Vyskocil Template Parameters for the Vening-
Meinesz' Transformation.
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In Kazansky's paper, *0 corresponds to 5 kin, and a Zl.25. The

values of Kazansky's Inner Zone Template parameters* are given in

Table 5.1.1-4.

(n = circle number; r = inner radius)

n r,km n r,km n r,km n r,km n r,km n r,km

0 0.100 10 0.554 20 3.068 30 16.94 40 92.22 50 465.5
1 0.119 11 0.657 21 3.641 31 20.09 41 109.0 51 541.5
2 0.141 12 0.780 22 4.320 32 23.83 42 128.7 52 628.1
3 0.167 13 0.926 23 5.125 33 28.25 43 151.9 53 725.9
4 0.198 14 1.099 24 6.081 34 33.48 44 179.1 54 835.9
5 0.235 15 1.304 25 7.216 35 39.67 45 210.9 55 958.5
6 0.279 16 1.547 26 8.560 36 47.00 46 248.0 56 1094.3
7 0.331 17 1.836 27 10.15 37 55.66 47 291.2
8 0.393 i8 2.179 28 12.05 38 65.90 48 341.2
9 0.467 19 2.586 29 14.29 39 77.97 49 399.0

Table 5.1.1-3. The Original Rice Inner Zone Template Parameters.

(n = ring number; r = inner radius)

n r,km n r,km n r,km n r,km

1 5.0 7 20.9 13 86.4 19 341
2 6.4 8 26.5 14 109.1 20 424
3 8.1 9 33.6 15 138 21 524
4 10.2 10 42.6 16 173 22 645
5 13.0 11 54.0 17 218 23 788
6 16.5 12 68.3 18 273 24 955

Table 5.1.1-4. Kazansky Inner Zone Template Parameters

5.1.2 Template with Ring or Sector Equal Contribution

In the method of implementing the ring or sector equal contribu-

tion concept, the template subdivisions from which equal contributions

are desired are chosen to be complete rings when the compartment boundary

radii are being determined, or complete sectors when the compartment

boundary azimuths are being determined. Thus the two dimensions are

decoupled from each other in the determination of equal contribution

The author is indebted to Mr. Patrick J. Fell for providing these values.
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values of the template parameters. This is consistent with the fact

that the Laplace equation, which all harmonic functions satisfy, is

separable* in three-dimensional spherical coordinates with the three-

dimensional solution being a linear combination of the product of

the individual solutions in each separate dimension.

Expressed in mathematical notation, the ring and sector equal

contribution concepts impose the conditions:

the same constant
f value for all i

and OLi'J A ad l

f i)da the same constant
-ij-l =vector value for all jcij,j-i1

where K(P) and A(a) are the radial and azimuthal parts of the kernel

of the transformation

K -(p, a) K (fl A (a)

For first-order transformations, the sector equal contribution

condition becomes

ci. .|icosn j~ Isinci i~- sinij-l1 =
a d J 1,) _ the same constant

f value for all j
isin a Icos itj - cosai j_ 1 J

It is interesting to compare this condition with the condition that

sin ai, - siniaj-l the same constant
a "ij = value for all j

which may be shown to be a sufficient condition for a partition of

the azimuths to yield the lowest possible rms discretization error.

The validity of this statement may be established by setting the

partial derivative a_/3ci j of the spectrum with respect to the

azimuths equal to zero, but the details will be omitted.

i.e. multiplicatively decoupleable
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It has been found experimentally that the equal contribution tem-

plates for complete rings or sectors yield discrete summation transforma-

tions with relatively low rms discretization errors. The discretiza-

tion error, which will be described in Chapter 6, is a measure of the

error introduced solely through the approximation of continuous integral

transformation by a discrete summation. The equal contribution templates

are certainly not optimal templates in the sense of minimizing the rms

discretization error. Nevertheless they appear to be good initial guesses

in a filter design program.

5.1.2.1 Equal Contribution Calculations for the Stokes' Integral

The problem is to find the values i of the spherical ring boundary

radii such that

p il sn - the same constantS(f)sin dp = value for all i
'p.

where SlM) is the classical Stokes' function. It may be shown* that

the integral

SS(f)sin d = -4t +5t 2 +6t 2 7t 4 + 6t2(l-t 2 )9.n t(l+t)

0

where t = sin

Since the Stokes' function has two distinct zeros while sin

is always positive between 0 and 7, the integrand will have two distinct

zeros, meaning that there will be regions in which cancellations will

occur and the integral could have a zero value for the appropriate

choices of the *i For an exact solution these must be removed. An

algorithm for performing the computation has been developed by Stanley

W. Shepperd,** and is included in PL/I code under the procedure name

EQUIINTEGRALPSICALCSTOKES. The algorithm will calculate the values

of the boundary radii *i which yield an equal contribution for each

complete ring for any even number of rings. An even number is necessary

see Heiskanen-Moritz (1967, pp. 262-263)
**Staff Member, Charles Stark Draper Laboratory, Inc.
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because of the two zeros of the integrand. The derivation of the

algorithm is given in Appendix F.

5.1.2.2 Equal Contribution Calculations for the Analog of Stokes'

Integral on Surface Layer Density

The problem of calculating the values of the ring boundary radii

for a ring equal contribution template in the transformation converting

surface layer densities into geoid height is considerably easier* than

in the classical Stokes' transformation due to the facts that the

kernel has no zeros and is easily integrable.

The explicit form of the transformation is

N=Rff d 0,)
N = Gf( 2 sin do)

2

Hence, it is desired to find the i such that

*i+l (2 in2 j, dI -4i~ si"
2! sin d* 4 sin i - 4 sin !

f (2 sin) 2i----

- the same constant for all i

Now the total integral from 0 to n has the value 4 which must be equally

divided among R rings, so each ring contributes 4/R. Hence the condition

to be satisfied is

4 sin -- l - 4 sin =

with -0 
= 0 and iR = 7T. The solution is

i
2 arcsin

5.1.2.3 Equal Contribution Calculations for the Vening-Meinesz' Integral

The problem is to find the values i. of the spherical ring boun-

dary radii such that

di+l - the same constant

VM() s1n4d - value for all i

'Pi

The author wishes to draw attention to his finding that almost all
expressions involving surface layer densities are much simpler and
more tractable than those operating on the other geodetic quantities.
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where VM(oi) ; aS(p)/3 is the classical Vening-Meinesz' function. The

author is not aware of any closed-form expression for this integral.

Pick-Picha-Vyskocil (1973, page 261) give an expression which involves

an infinite series having coefficients which are functions of the Bernoulli

and Euler numbers, but this does not appear to be usable practically.

If the classical Vening-Meinesz' function is approximated by dis-

carding all but the "leading" term

-cos( /2)

2 sin 2 (/2)

then a solution is possible. This is described in the next section since

the resulting kernel is the mathematically exact one for surface layer

densities.

5.1.2.4 Equal Contribution Calculations for the Analog of Vening-Meinesz'

Integral on Surface Layer Density

The problem of calculating the values of the ring boundary para-

meters for a ring equal contribution template in the transformation

converting surface layer densities to deflections of the vertical (or

equivalently horizontal gravity disturbances) is not difficult due to
the facts that the kernel has no zeros and is easily integrable.

The explicit form of the transformation is

G -2 cos *L cos I do

2( sin i))
GJ 2 sin a

Hence it is desired to find the 'i such that

i+l -2 cos
T sin d = constant

(2 sin _)2  for all i
(i 2

The indefinite integral may be expressed in closed form as

-cos Ia~
f " sin dp = -2[log +tan 1 +cos-
(2 sin) 2  4522
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The total definite integral from 0 to n is infinite due to the second-

order pole at tp =0. However the total definite integral from a non-

zero initial spherical radius 0 to n has the value

7T -2 cos 2 0o2 sin-) 2 sin dp = 2 log I tan -i +2 cos

o 2

This value must be equally divided among R rings, so the contribution

of each ring is

I = [2 log ftan !0 +2cos - /R

Thus, the ring radii i are related by the conditions

1+

-2 log tan -I -cos 2 I-2 log Itanfl- 2cos -

i = 0,1,2 .... (R-l)

Once the truncation radius 10 is chosen, the solution of this transcen-

dental equation for each i may be accomplished by a Newton iteration

scheme. The author has found that a good initial guess for the

iteration is

oi+l fo 1.2 i

An algorithm for accomplishing this has been coded in PL/I and incor-

porated into the comprehensive filter design program listed in an

appendix under the procedure name EQUIINTEGRALPSICALC VM DEN.

Thus the sequence of computations is:

1) Select 0 and R

2) Compute I

3) For i =0,1,...(R-l) successively,

a) Make initial guess of i i+l using ti+l = 1.2 ti"

b) Solve the ring boundary radii conditions equation

iteratively by a Newton iteration scheme for i+l"

The results of the computation of the ring radii in the 23 and

125-ring cases is given in Tables 5.1.2-1 and 5.1.2-2. The last ring
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radius in these tables should be exactly 1800, rather than the values

shown which resulted from the termination criteria used in the Newton

iteration scheme. The termination criteria worked very well for all

spherical ring radii except the last.

5.1.3 Other Templates

Two templates have been developed by, and are in use at, the

Defense Mapping Agency Aerospace Center, St. Louis, Missouri. While

the templates are not of the bull's-eye type but are rather of the

rectangular grid type, they may be "converted" to bull's-eye type by

determining what their form would be if the point of evaluation were the

north pole (of the earth) and the spherical radius p and spherical

azimuth a were identified with colatitude and longitude (on the earth)

respectively. In the following sections, this technique will be called
"circularization".

5.1.3.1 The Circularized AGEMIT Template

When the circularization process is applied to the surface rectangu-

lar grid template employed in the DMAAC AGEMIT computer program, a

template with 101 rings is obtained, excluding any inner zone. The rings

in this template fall naturally into four groups according to the spheri-

cal radius increment between rings. The values of the increments and

the starting and terminating index and radius for each group are given

in Table 5.1.3-1.

RING BOUNDARY RADII GROUPS
RING i_
GROUP START END iSTART 'iEND INCREMENT

I 0 35 5' 300 '  51

II 35 51 3001 700 '  15'

III 51 69 70 250 10

IV 69 101 250 1800 50

Table 5.1.3-1. Template Parameters for the Circularized AGEMIT Template.
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5.1.3.2 The "Rice-DMAAC" Template

This 125-ring template is a combination of modified forms of the

Rice Inner Zone template and the circularized AGEMIT template. In the

modified Rice template, the first five and the last sixteen rings have

been omitted, so that the initial radius corresponds to 235 meters and

the final radius to92,220 meters. An earth radius of 6,371,032 meters

is assumed implying that the last spherical ring boundary radius is

about 0.8290. In the modified form of the circularized AGEMIT template,

the ring boundary radii less than 1* are omitted.

A listing of the actual numerical values of the spherical ring

boundary radii of this template is given in Table 5.1.3-2.

5.2 Examples of Spectra

In this section, examples are presented of calculations of actual

spectra both for theoretical integral transformations and for discrete

summation transformations based on some of the templates described in

the previous section. It will be seen that just as the summation trans-

formation is an approximation to the integral transformation in the

spatial domain so is the spectrum of the summation transformation an

approximation to the spectrum of the integral transformation in the

frequency domain. It will also be seen that the values of the template

parameters greatly affect the closeness of the approximation in the

frequency domain just as it is obvious that they do in the spatial

domain.

5.2.1 Stokes' Transformation

Plots have been generated of the spectra of the discrete Stokes'

summation transformation for two templates, namely the 34-ring Pick-Picha-

Vyskocil template and the 101-ring circularized DMAAC template, as well

as of the spectra of the continuous (theoretical) Stokes' integral trans-

formation. The plots show the fundamental characteristics of the spectra,

specifically that the spectrum of the summation transformation is "close"

to that of the integral transformation but not exactly equal to it.

The plots are presented in Figures 5.2.1-1 and 5.2.1-2.
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The plots of the spectra are presented in four ways for each tem-

plate:

a) The actual values of the spectra of the theoretical and the

discrete are plotted on a linear scale.

b) The actual values of the spectra of the theoretical and the

discrete are plotted on a logarithmic scale.

c) The difference of the spectrum of the discrete summation

from the spectrum of the continuous integral is plotted on

an enlarged linear scale.

d) The relative difference of the spectrum of the discrete

summation from the spectrum of continuous integral is plotted

on an enlarged linear scale. The relative difference is

the actual difference divided by the "true" value, which is

the value of the continuous integral transformation spectrum

in this case. These plots are useful for quickly determining

percentage errors.

5.2.2 Vening-Meinesz' Transformation

Plots have not yet been generated of the spectra of the discrete

Vening-Meinesz' summation transformation for various templates. However,

many computer-generated tabular listings of the spectral values and
other associated quantities have been made during the course of this

work. Excerpts of two representative listings for the analog of the

Vening-Meinesz' transformation on surface layer densities are presented
in Figures 5.2.2-1 and 5.2.2-2. Plots of these data would have many

of the same features as the plots of the Stokes' spectra in the previous

section.

In the figures, the following information is provided by columns:

N: Spherical Frequency (Spherical Harmonic Degree)

ACTUAL SPECTRUM: The numerical value of the spectrum of

the discrete summation transformation for the specified

spherical frequency.

IDEAL SPECTRUM: The numerical value of the spectrum of the

theoretical integral transformation for the specified

spherical frequency.
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RESIDUAL SPECTRUM: The difference between the actual and

ideal spectra.

WEIGHT: The power spectrum of the input to the transformation;

specifically, the Tscherning-Rapp degree variances for surface

layer densities.

SIGMA(N): The square root of the residual power spectrum
of the output of the transformation. This quantity is the

product of the square of the residual spectrum and the

weight. It is the global rms value of the error in the
output of the transformation which is introduced by using

the summation rather than the integral for the specified

frequency.

SIGMA(N) CUM: The cumulative value of SIGMA(N) up to and
including the specified frequency, where cumulative is

interpreted in a root-sum-square sense.
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SECTION 6

TEMPLATE OPTIMIZATION METHODS
FOR

DISCRETE SUMMATION TRANSFORMATIONS

6.1 Introduction

In the previous chapters on the spectral theory of discrete

summation transformations, it was shown both by analytical expressions

and by numerical examples that the spectrum of such a transformation

depends parametrically upon the values of the spherical ring boundary

radii and the spherical compartment boundary azimuths of the underlying

bull's-eye template. Several reasonable ways of selecting the values

of these parameters were described under the general concept of the

equal contribution of subdivisions of a spherical surface.

In this chapter a method is presented for iteratively deriving

the "best" or "optimal" values of these parameters for any transforma-

tion. The method is based upon incrementally adjusting the values of

the parameters until a particular scalar function of them, the global

rms discretization error, has been minimized. The number of rings and

the number of compartments in each ring are chosen a priori and held

constant during the iterative process.

The minimization of the global rms discretization error is equiva-

lent to the process of making the spectrum of the discrete summation

transformation approximate as well as possible the spectrum of the

theoretical integral transformation in a weighted least-squares sense.

This process of adjusting the parameters in a linear shift-invariant

transformation so that its approximate spectrum agrees as well as possible

with an ideal spectrum is known in engineering terminology as digital

filter design. Hence the derivation of optimal discrete summation

approximations to geodetic integral transformations may be called

spherical geodetic digital filter design.

To illustrate ideas, an example of the intermediate results of

such a filter design computation is presented in Figure 6.1-1. Here

the figure-of-merit, namely the global rms discretization error in the
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total horizontal gravity disturbance, is decreased at each iteration
from an initial value of 0.754 mgal to a final value of 0.519 mgal by
means of the incremental adjustment of the spherical ring boundary
radii numbered 9 through 22. (The reason that the radii numbered 1
through 8 were not adjusted will be explained in Section 6.3.3 and
Appendix E). It is seen in the figure that the radii parameters
change gradually during the course of the computation with larger
changes occuring in the larger radii. These radii are more directly
related to the low frequencies for which the input power spectral
density is greater, and thereby have a greater effect upon the total
rms discretization error.

SUMMARY OF COMPLETE RUN

ITER* 1 ITER* 2 ITERI 3 ITERS 4 ITER* 5 ITERt 6 ITER8 7 ITERS 8 ITER* 9 ITER#IO

FIGURE OF MERIT
7.54E-01 6.63E-01 6.09E-01 5.78E-01 5.59E-01 5.46E-01 5.36E-01 5.29E-01 5.24E-01 5.19E-01

VALUES OF PARAMETERS
RING# SPHERICAL RING RADII (OEGREES)

0 044 044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061

2 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085
3 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118
4 0.164 0.164 0.164- 0.164 0.164 0.164 0.164 0.164 0.164 0.164
5 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
6 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316
7 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439
8 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.6109 0.847 0.843 0.849 0.850 0.850 0.851 0.851 0.852 0.852 0.853
10 1.177 1.177 1.177 1.178 1.178 1.178 1.178 1.179 1.179 1.179
11 1.634 1.635 1.635 1.635 1.635 1.635 1.635 1.636 1.636 1.636
12 2.270 2.271 2.271 2.271 2.271 2.271 2.271 2.271 2.271 2.271
13 3.154 3.154 3.155 3.155 3.155 3.155 3.155 3.155 3.155 3.155
14 4.382 4.383 4.383 4.383 4.384 4.384 4.384 4.384 4.384 4.304
15 6.091 6.092 6.092 6.092 6.093 6.093 6.093 6.093 6.093 6.093
16 8.470 8.471 8.472 8.472 8.472 8.472 8.472 8.472 8.472 8.471
17 11.790 11.792 11.792 11.793 11.793 11.792 11.792 11.791 11.791 11.790
18 16.445 16.445 16.445 16.444 16.443 16.442 16.441 16.440 16.439 16.439
19 23.031 23.018 23.010 23.005 23.003 23.004 23.007 23.012 23.020 23.030
20 32.523 32.450 32.427 32.434 32.463 32.510 32.571 32.645 3Z.7Z9 32.822
21 46.780 46.527 46.744 47.207 47.785 48.408 49.033 49.636 50.204 50.728
22 70.639 74.568 77.654 80.082 82.030 83.622 84.943 86.054 86.997 87.804
23 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932

Figure 6.1-1. Example of Iterative Decrease of the Discretization Error.
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The global rms discretization error is only one of a number of

scalar quantities which could be chosen as a figure-of-merit of the

accuracy of the summation approximation to the theoretical integral

transformation. The global maximum discretization error, namely the

maximum error in the output of summation transformation over the whole

sphere, is another such quantity. Both of these discretization error

types have the distinct advantage of possessing a useful physical

interpretation. However, the rms error has the additional advantage of

being closely related to spectral quantities of the transformation

through the Parseval Theorem, and hence of being easy to compute when

the residual spectrum and input power spectral density are known. The

global rms discretization error and its properties will now be described.

6.2 Global RMS Discretization Error

The global rms discretization error of a discrete summation trans-

formation is the global rms value of the error in the output of the

transformation due solely to the use of the summation approximation

rather than the rigorously correct integral expression. The rms

discretization error depends upon the strengths of the various spheri-

cal harmonic frequencies which occur in the input to the transforma-

tion; a nominal model such as the Tscherning-Rapp degree variance model

is assumed. The term "global" means that the root-mean-square is taken

over the whole surface of the (unit) sphere.

The global rms discretization error is given by

APPROX _ rFAPROX - do 2

f(U f O UTms VJffLfOUT f~UT 47

By the Parseval Theorem, it is known that

fOUT } = IAnI 2 fIN(n) rm

f rms =O rmsn=0

and fAMO12
P RO X 2ms = I IAPPROX}2

3n= rms
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Similarly, for the difference transformation

fAPPROX - f OUT s 0 KAPPROX - {fIN(n)}rs

r n=0 m

where X nKAPPROX - K} is the spectrum of the difference transformation.

But by the linear property of the spectrum,

A n{K "PROX _ K}I A n{K APROX} - A{~fK}

= XAPPROX - A
n n

So the global rms discretization error isr
{APPROX - OTJm -_ APPROX 12 02f 1/2
ffooT sn -n oI

6.2.1 Examples

The global rms discretization errors for a number of specific
templates are presented in Table 6.2-1 for the Stokes' transformation

and in Table 6.2-2 for the Vening-Meinesz' transformation.

The following points may be observed from these tables:

For the discrete Stokes' transformation:

a) The global rms geoid height discretization error is substan-

tially lower in the analog transformation from mean surface

layer densities to geoid height than in the classical trans-

formation from mean gravity anomalies to geoid height for

the 34-ring template, even though the input power spectral

density for surface layer density is larger for each fre-

quency than that for gravity anomalies.

b) The 66-ring Equal Ring Contribution Template seems to have

a relatively large discretization error for a template with

this many rings. The 34-ring Pick-Picha-Vyskocil template

has a slightly lower absolute error for a more gross

partition of the spherical surface.
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c) As the number of rings increases, the contribution of the

higher frequencies (above spherical harmonic degree 30)

becomes relatively greater.

For the discrete Vening-Meinesz' transformation analog which con-

verts mean surface layer densities to deflections:

a) The 125-ring Rice/AGEMIT template has a discretization error

almost half that of the 125-ring equal ring contribution

template.

b) The reduction of the value of the truncation radius *0

towards zero does not necessarily decrease the discretiza-

tion error. This would imply that there may perhaps exist

an optimum (non-zero) value of *0"

Table 6.2-1. Discretization Error of Various Templates for Stokes'
Transformation.

Max rms
Type # Rings Degree Error

CLASSICAL STOKES

Pick-Picha-Vyskocil 34 30 1.29 m

Pick-Picha-Vyskocil 34 1440 1.34 m

Equal Ring Contribution 66 30 1.30 m

Equal Ring Contribution 66 1440 1.64 m

Circularized AGEMIT 101 30 0.108 M

Circularized AGEMIT 101 1440 0.165 m

ANALOG STOKES

Pick-Picha-Vyskocil 34 30 0.668 m

Pick-Picha-Vyskocil 34 1500 0.689 m

The "RMS ERROR" column gives the global rms
discretization error in the geoid height.
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Table 6.2-2. Discretization Error of Various Templates for Vening-Meinesz'
Transformation.

Max rms
Type # Rings 0 (deg) Degree Error

Pick-Picha-Vyskocil 23 10- 5  30 0.445 mgal

Pick-Picha-Vyskocil 23 0.030 1440 0.714 mgal

Equal Ring Contribution 23 0.044 1440 0.754 mgal

Circularized AGEMIT 101 0.030 1440 1.115 mgal

RICE/AGEMIT 125 0.002 1440 0.075 mgal

Equal Ring Contribution 125 0.002 1440 0.133 mgal

Equal Ring Contribution 125 0.001 1440 0.145 mgal

The "RMS ERROR" column gives the global rms dis-
cretization error in the total horizontal gravity
disturbance.

6.3 Optimization Algorithm

There are a number of algorithms which could be used to determine

the values of the template parameters which minimize the global rms

discretization error under the inequality constraints that the ring

boundary radii and the compartment boundary azimuths must not overlap.

Descriptions of such algorithms may be found, for example, in the con-

strained minimization sections of Luenberger (1973, Part III), Lawson

and Hanson (1974, Chapter 23), Dornby (1975, Chapters 7 and 8), and

Avriel (1977, Part II). A survey of recent developments in optimization

theory is given in Jacobs (1977, Part III).

Under the present effort, however, a simple and quickly implemen-

table algorithm has been employed, namely a Gauss-Newton* scheme to

perform an unconstrained minimization step, followed by a "projection"

technique to force the satisfaction of inequality constraints. Due

to certain convergence difficulties with this algorithm, three simple

and also easily implementable variations of it were experimented with

additionally. This section describes the main algorithm and the varia-

tions.

While neither the algorithm nor the variations provided reductions

of several orders of magnitude in the rms discretization error as had

The Gauss-Newton algorithm is well-known in satellite orbit determina-
tion work as "differential correction".
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been hoped, the algorithm and the variations did possess sufficient

computational power to demonstrate that the spectral theory of spherical

geodetic operators as described in the earlier chapters of this document

is valid and that it is feasible to derive improved values of the template

parameters by means of this theory.

6.3.1 Gauss-Newton Minimization

A brief mathematical description of this process will be given

in the notation and terminology of this document for the present applica-

tion.

Let the P-dimensional vector x denote the template parameters, such

as the ring boundary radii and compartment boundary azimuths, whose

values are to be varied during the optimization. Let the components of

the N-dimensional vectors A-IDEAL and X(x) represent the values of the

spectrum for each spherical harmonic frequency n of the continuous integral

transformation and a discrete summation approximation thereof, respectively.

In principle N would be infinite, but in practice N is a sufficiently

large number, such as 1440 which would include the contributions of all

wavelengths longer than 15 arc-minutes. Further let the residual spec-

trum vector AX(x) be the difference X(x) - A L It is desired toL-IDEAL
make the residual spectrum as small as possible in a weighted least

squares sense, that is to find the solution x* of the weighted least

squares problem

WAX(x) = 0

where W is the weighting matrix, or equivalently to minimize the scalar

function

0 (x) = [WAX (x)]T (WAX(x)]

Since the residual spectrum AX(x) depends non-linearly on the

parameter vector x, an iterative solution is necessary. Suppose an

estimate or initial guess x of the solution x* is available. By

linearizing the residual spectrum about the estimate,

AX(x) = AX(+) + ... (x)1(x-) +

and solving the resulting linearized problem

ax (x-x) = -W AA (k)
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in a least-squares sense, an improved estimate

x_--x + (x- )

of the solution x* of the non-linear problem is obtained. A new resi-

dual spectrum AA(x) is now computed based on the improved estimate and

the process is repeated.

The solution of the linearized weighted least-squares problem may

be written explicitly* as:

Ax = (x-x) 3 - wTw( _W A

However to preserve accuracy in actual computation, the least-squares

solution for Ax should be obtained by a robust numerical method** applied

directly to the overconstrained system, rather than through the theoreti-

cal expression above which would involve the inversion of a P xP matrix.

In the present study, the subroutine MLSQ from the IBM Scientific

Subroutine Package (IBM, 1968) was used to perform this function.

6.3.1.1 Standard (Input) Weighting

By taking the weighting matrix W used in the solution of the weighted

least-squares problem of the previous section to be the diagonal matrix

whose elements are the degree standard deviations of the input geodetic

quantity fIN(4,),

Wnn n IfIN)

it will result that the scalar objective function to be minimized

0(x) = [WAA (x)]T [WAA(x)]

is the global mean-square discretization error in the output. Under

this scheme of weighting, heavier emphasis is assigned to those

spherical harmonic degrees which contribute more to the input power.

This is the most natural choice for the weighting matrix W.

However, other choices are of course possible. Some of these will be

examined in Sections 6.3.4.2 and 6.3.4.3.

See Dahlquist and Bjork (1977, pg. 443).

such as one involving Householder transformations. See Lawson and
Hanson (1974, Chapter 11).
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A degree variance model widely cited in the literature is that of

Tscherning and Rapp (1974, pg. 30, eqn. 68). It is given by any of the

following equivalent forms:

0 n =0,1

a {N} G- A' (n 2
G [A/(n-l) (n-2) (n+24) n > 3

0 n = 0,1

a2{Ag R G-- A' n = 2

{A (n-1)/(n-2) (n+24 n > 3
n{ Ag = n=0 2

[0 n = 0,1

a 2 {d g} 2 Id A'(2+k)2 n = 2
nA(n+k)2/(n-l) 

(n-2) (n+24) n > 3

2 2where A' = 7.6 mgal and A = 425.28 mgal . This model was used in the

comprehensive filter design computer program.

6.3.2 Satisfaction of the Inequality Constraints

After a tentative differential correction &x to the current

estimate x of the parameter vector has been determined from the Gauss-

Newton scheme, it remains to check whether the new estimate x = x +Ax

satisfies the inequality constraints that parameters of the same type

do not overlap.

For example, if the parameters in the parameter vector x are all

cosines of the spherical ring boundary radii *i with

x i = cos q'i

then the inequality constraints on x will be of the form

x0 > xI > x 2 > ... > xI

corresponding to the "natural" inequalities

*0 < i <  2 < ... <6
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If the components of the new estimate do not initially satisfy

such inequalities, then the algorithm described in the following para-

graphs is used to force satisfaction.

The inequality constraint satisfaction scheme is composed of two

main subcases, namely the cases when the tentative adjacent increments

which cause overlapping are in opposite directions or in the same

direction.

Case la: When the adjacent increments are in opposite directions

(i.e. have opposite sign) and are directed towards each other, then

the two increments will each be reduced by the same constant fraction

or percentage so that the overlap is not only eliminated but also so

that a gap is introduced between the new estimates of adjacent indepen-

dent parameters. The size of the gap is taken to be a fixed fraction

of the total interval between the adjacent parameters.

Mathematically, let Axi and Axi+ 1 be the overlapping increments

directed towards each other. For definiteness, assume Axi <0 and

Axi+ 1 > 0. Then the overlapping is expressed by the condition: xi+ Axi <

xi+l + Axi+ I , as shown by the sketch:

Ax i
more more
positive negative

1x i+l i

Let Ax! and Ax! indicate the increments which will be used in place
1 1+1

of Axi and Axi+1 so that there will not be overlap and so that:

i) the relative strength of the original increments will be

preserved:

Ax. Ax!1

i+l i+l

ii) a "gap" will be left between the new estimates (x. + Ax!)
1 1

and (x 1 + Ax! 1 ) which is a fixed fraction of the dif-

ference between the previous estimates xi and xi+l:

(xi - xi 1 )a = (-Ax! + Ax!+ I)
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By solving these equations for Ax! and Ax' it is found that

Ax! = Ax. 1x 1)
1 i (-Ax i + Axi+l)]

and

A! = Ax ~[x ix i+ ):]I+l i+'L -Axi + Ax~)J7

Case ib: When the adjacent increments are in opposite directions

(i.e. have opposite sign) but are directed away from each other, there

cannot be overlapping as seen in the sketch:

xi  xi+l

so this case is non-existent.

Cases 2a and 2b: When the adjacent increments are in the same

direction (i.e., have the same sign) and one of the increments is so

large in magnitude that overlapping occurs as shown in the sketches:

Axi

x i X i+l

Ax i+l

Axxi

x i  xi+l

then the larger increment (in magnitude) is set to a specified fraction

of the current difference between adjacent estimates.

6-11



Mathematically,

xi + Axi < xi+ + Axi+1

is the overlapping condition in both subcases, although in subcase 2a

both Axi and Axi+ 1 are negative, while in subcase 2b both Axi and Axi+1
are positive. Then

if Axi <0, Ax! = -b(x1 1 1i~

if Axi >0, Ax! = +b(x X

This assumes that pairs of increments are being checked in order of

increasing i.,

The foregoing algorithm to force the satisfaction of the inequality

constraints is certainly not the best method of handling constrained

minimization, but it is quickly and easily implementable in a computer

program.

6.3.3 Exclusion of Small Ring Radii Parameters from Differential
Adjustment

As has been mentioned, only the contributions of the spherical

harmonic degrees up through a finite number N are included in the actual

numerical computations. Consequently, the contributions of the higher

degrees, or equivalently the higher frequencies or shorter wavelengths,

are neglected. Therefore any parameters which are principally related

to these neglected degrees should be held fixed during the iterative

optimization process, because no information is being obtained to permit

the rational adjustment of these parameters and because small random

errors in the computations could induce large erroneous increments in

them.

The spherical boundary radii close to the origin are indeed

principally related to the higher harmonic degrees. In fact, it may be

shown that if the Stokes' or Vening-Meinesz' Integrals are carried out
(n) which is theonly over a spherical cap having a spherical radius e0

smallest zero of the Molodenskii function Q (ip) or the Cook function
the te onriutonn th

qn () respectively, then the contribution of the n spherical harmonic
frequency is completely accounted for in the mean; the contribution of

the neglected part of the sphere is identically zero for this frequency

(in the mean). The first zeros of the Molodenskii function Qn (p) and

n1
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the Cook function q (;p) are approximately 1/(n-l) and 2/(n-l) radians

respectively for n larger than 10 or so.

Computational examples will be exhibited in Appendix E which show

numerically that large erroneous increments do indeed occur for the close

ring boundary radii, and that the higher the degree N of spherical har-

monics considered, the smaller the spherical radius separating the

unreasonable increments from the reasonable increments, as would be

expected.

An approximate rule-of-thumb for the limiting spherical radius

LIMIT inside of which all spherical ring boundary parameters i should

be excluded from dif. rentic 1 adjustment is:

9000
'LIMIT - N

In some cases, especially those with a small total number of rings

(e.g., 23), LIMIT may be too large, perhaps by as much as a factor of

two. In other cases, especially those with a large number of rings

(e.g., 125), LIMIT may be too small, perhaps by as much as a factor

of one third. However, the rule-of-thumb provides roughly the right

order of magnitude.

The exclusion of the close spherical ring boundary radii from

differential adjustment during the iterative optimization procedure

has the byproduct of reducing the overall computational burden. Not

only is the (fairly short) calculation of the partials of the spectrum

with respect to the radii avoided, but also the dimensions of the

least-squares normal equations are decreased and hence so is the execu-

tion time required for their solution. For the Stokes' transformation,

the reduction is not great since typically only about 5% to 10% of the

ring radii will lie inside the limiting radius LIMIT However, for

the Vening-Meinesz' transformation, the reduction is often substantial

since 30% to 60% of the ring radii typically lie within LIMIT'

6.3.4 Variations in the Optimization Algorithm

Due to various difficulties in the convergence of the optimiza-

tion process, three easy-to-implement variations in the optimization

algorithm were experimented with. These variations generally worked in

the expected manner, alleviating some of the problems encountered, but

usually for only a few itetations. They are no substitute for more

powerful optimization algorithms.
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The three variations are original with the author, and are described

in the following subsections.

6.3.4.1 Damping of the Increments

The differential correction Ax in the independent parameters

which is produced by each iteration of the Gauss-Newton optimization

process does not always lead to a decrease in the rms discretization

error. Sometimes it causes an increase. This is because the Gauss-

Newton method is not rigorously a "descent" method such as Steepest

Descent or Conjugate Gradients. In descent methods, the figure of merit

is always decreased at each iteration; however the calculations are

generally more involved.

In some Vening-Meinesz' cases, especially those with a large

number of parameters, it was observed that several descent steps occurred

followed by one or more ascent steps followed by more descent steps,

etc. Sometimes a parameter oscillation developed with several para-

meters assuming alternate values ir alternate iterations. It was

conjectured that better progress to the true minimum could be made if

a slower but non-oscillatory descent could be achieved.

To implement such an idea, the partial derivatives in the Vening-

Meinesz case were adjusted (specifically, made larger) by changing the

multiplicative factor

2

fn-(n+l)

appearing at the front of the exact expression to the factor

2

[n(n+l) ]P

where p <0.5. With larger than normal partial derivatives, the algorithm

calculates that a smaller than normal increment Ax is required to counter-

act the same observed residuals. Thus the increments are damped and

the descent to the minimum is slowed.

The increment damping variation of the optimization algorithm

generally works computationally as expected, as will be shown by examples

in Section 7.4.1.
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6.3.4.2 Output Weighting

Rather than using the degree standard deviations of the input

geodetic quantity fIN(p,a) to the transformation as the weights in the

(diagonal) weighting matrix of the least squares problem

Wnn = On{fi N

the Output Weighting Variation of the optimization algorithm uses the

degree standard deviations of the output geodetic quantity fOUT:

Wnn = OnT{fouT

= IXAPPROX - X I n {fi
n"n 0n IN

The idea of using this weighting scheme came from a study of the

details of the algorithm of Kahng (1972) for general least pth power

approximation with 2 <p <-. Kahng's method for the general problem is

based upon iteratively solving a weighted least-squares sub-problem where

the weights are the (p-2) power of the absolute values of the residuals

resulting from the previous iteration. In other words, the weights

used in the next iteration are a power of the output errors of the

present iteration.

Output weighting is more directly suggested by the fact that rms

discretization error is the root-sum-square of the output degree stan-

dard deviations. Hence it will be more quickly minimized if the weights

for each degree are chosen proportional to the output contribution for

the degree in question.

A numerical example is provided by Figure 6.3.4-1. The degree

22
Tscherning-Rapp model are listed in mgal in the column "DEG VAR IN".

The rms discretization error contributed by the current spherical har-

monic degree and by all degrees up through the current degree are listed

in mgal in the columns "SIGMA" and "CUM SIGMA" respectively.* From the

SIGMA column it is seen that degrees three through six each introduce

very large values into the cumulative rms discretization error. In

fact, the total discretization error through degree 1440 is 0.13321 of

SIGMA is the product of the absolute value of RESID SPECTRUM and the
square root of DEG VAR IN.
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N ACTUAL SPECTRUM IDEAL SPECTRUM RESI SPECTRUM REL RESI DEG VAR IN WEIGH1T SIGMA CUMI SIGMA
1 0.9380893307 0.9427829594 -0.0046936274 -0.004978 0.02230 0.49568 0.00070 0.00070
2 0.9787351945 0.9797507214 -0.0010155269 -0.001037 47.50000 48.98647 0.00700 0.00703
3 0.9975915764 0.98%794306 0.0079121441 0.007995 96.47556 6039.56250 .-7771 0.07803
4 0.9822894503 0.9937255109 -0.0114360601 -0.011508 51.26143 6704.14453 10.08188 0.11311
S 1.0050699120 0.9957581796 0.0093117319 0.009351 36.96759 3205.39795 0.05662 0.12649
6 0.9928660378 0.9969175069 -0.0040214658 -0.004034 29.94680 484.30493 0.02201 0.12839
7 0.9973264111 0.9976372892 -0.0003108780 -0.000312 25.72258 2.48596 0.0018 0.12840
8 0.9990Z52853 0.9981119038 0.0009133813 0.000915 22.86196 19.07294 0.00437 0.12847
9 0.9997336013 0.9984390333 0.0012945679 0.001297 20.76922 34.80725 0.00590 0.12861

10 0.9954361773 0.9986721390 -0.0032359615 -0.003240 19.15324 200.56207 0.01416 0.12938
11 1.0014201530 0.9988424806 0.0025776722 0.002581 17.85501 118.63570 0.01089 0.12984
12 0.9988563151 0.9989693281 -0.0001130130 -0.000113 16.78030 0.21432 0.00046 0.12984
13 0.9977083390 0.9990650854 -0.0013567463 -0.001358 15.86963 29.21217 0.00540 0.12995
14 0.9992986091 0.9991380299 0.0001605791 0.000161 15.08352 0.38894 0.00062 0.12995
25 1.0012229027 0.9991930572 0.0020290455 0.002031 14.39469 59.26331 0.00770 0.13018
16 0.9970427037 0.9992365898 -0.0021938859 -0.002196 13.78363 66.34245 0.00315 0.13044
17 0.9991801732 0.9992691346 -0.0000889613 -0.000089 13.23598 0.10475 0.00032 0.13044
18 1.0009A99754 0.9992936343 0.0016563410 0.001698 12.74090 36.66286 0.00605 0.13058
19 0.9990400305 0.9993116967 -0.0002716661 -0.000272 12.29007 0.90704 0.00095 0.13058
20 0.9972275907 0.9993245469 -0.0020969561 -0.002098 11.87692 52.22549 0.00723 0.13078
21 1.0010135907 0.9993331321 0.0016804504 0.001682 11.49624 32.46468 ' 0.00570 0.13091
22 1.0002755142 0.9993381933 0.0009373203 0.000938 11.14379 9.79060 0.00313 0.13094
23 0.9977786476 0.9993403178 -0.0015616701 -0,001563 10.81610 26.37845 0.00514 0.13104
24 0.9986157229 0.9993399750 -0.0007242518 -0.000725 10.51031 5.51308 0.00235 0.13106
25 1.0012364612 0.9993375444 0.0018989167 0.001900 10.22398 36.86649 0.00607 0.13121
26 0.9992123394 0.9993333352 -0.0001209958 -0.000121 9.95510 0.14574 0.00038 0.13121
27 0.9931728566 0.9993276014 -0.0011547448 -0.001156 9.70190 12.93685 0.00360 0.13126
0 0.999:060146 0.9993205531 -0.0001137386 -0.000114 9.46290 0.12242 0.00035 0.13126
29 1.0002488770 0.9993123657 0.0009365112 0.000937 9.23600 8.10116 0.00285 0.13129
30 0.9993987821 0.9993031859 0.0000955962 0.000096 9.02246 0.08245 0.00029 0.13129
31 0.9991105932 0.9992931379 -0.0001825447 -0.000183 8.81889 0.29387 0.00054 0.13129
32 0.9984196878 0.9992823268 -0.0008626387 -0.00063 8.62523 6.41843 0.00253 0.13131
33 0.9993189923 0.9992708424 0.0000481500 0.000048 8.44069 0.01957 0.00014 0.13131
34 1.0004383990 0.9992587616 0.0011796372 0.001181 8.26459 11.50053 M.00339 0.13136
35 0.9996457189 0.9992461507 0.0003995681 0.000400 8.09630 1.29261 0.00114 0.13136
36 0.9975240179 0.9992330670 -0.0017090491 -0.001710 7.93528 23.17775 0.00481 0.13145
37 0.9980512639 0.9992195602 -0.0003682962 -0.000369 7.78103 1.05543 0.00103 0.13145
38 1.0006642920 0.9992056738 0.0014586181 0.001460 7.63309 16.23990 0.00403 0.13151
39 0.9998057040 0.9991914456 0.0006143383 0.000615 7.49106 2.82721 0.00168 0.13153
40 0.9980680087 0.9991769091 -0.0010901003 -0.001091 7.35456 8.73956 0.00296 0.13156
41 0.9987382173 0.9991620935 -0.0004238761 -0.000424 7.22326 1.29701 0.00114 0.13156
42 0.9992352097 0.9991470249 0.0000881848 0.000088 7.09684 0.0519 0.00023 0.13156
43 0.9994373176 0.9991317262 0.0003055914 0.000306 6.97502 0.65137 0.00081 0.13157
44 0.9997404214 0.9991162179 0.0006242034 0.000625 6.85754 2.67190 0.00163 0.13158
45 0.9994038852 0.9991005182 0.0003033669 0.000304 6.74415 0.62067 0.00079 0.13158
46 0.9979211409 0.9990846434 -0.0011635025 -0.001165 6.63464 8.98157 0.00300 0.13161
47 0.9983296447 0.9990686081 -0.0007389633 -0.000740 6.52880 3.56516 0.00189 0.13163
48 0.9998228519 0.9990524253 0.0007704264 0.000771 6.42644 3.81446 0.00195 0.13164
49 1.0001335680 0.9990361070 0.0010974610 0.001099 6.32737 7.62081 0.00276 0.13167
50 0.9989787249 0.9990196637 -0.0000409388 -0.000041 6.23144 0.01044 0.00010 0.13167

Figure 6.3.4-1. Example of Output Weighting.
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which 0.12839 is already contributed by degrees one through six. Thus

in a minimization it is imperative to quickly reduce the contributions

of these degrees.

In the standard implementation, the input degree variances 2 {P}nwould be used as weights, while in the variant implementation the output-

related quantites

= (XAPPROX - A 12 C2{[01i06n

listed in the "WEIGHT" column are used.*

It is seen immediately that in the standard implementation the

weights for degrees three through six are not sufficiently large to

counteract the effect of the 1436 other degrees whose weights are

smaller but still non-negligible. On the other hand, in the variant

implementation, the weights for degrees three through six are much

larger and do counteract the other 1436 degrees.

In actual optimization computer runs, this heuristic explanation

is vindicated numerically. Specific examples will be given in Section

7.4.2.

6.3.4.3 Power Emphasis of the Input or Output Weighting

As an additional means of emphasizing or de-emphasizing certain of

the weights of the weighted least-squares procedure, an idea is borrowed

from the increment damping variation and from Kahng's original pth

power algorithm, namely that the preliminary weight as calculated by

either the input or output weighting methods be raised to a specific

power and the result used as the actual weight. This provides a simple

and convenient way of smoothly increasing and decreasing the weights to

adjust them relatively for specific purposes while still maintaining

the underlying input or output weight orderings. The actual power to

which the preliminary weights are raised provides the user with a one-

parameter family of possible "distortions" of the underlying weighting.

As with the other two variations in the optimization algorithm,

the power emphasis variation is a quickly implementable ad hoc scheme.

The results of using this variation will be discussed in Section 7.4.3.

The factor 106 serves no purpose other than to scale the WEIGHT values
for printing and possibly to prevent exponent underflow in the least
squares subroutine.
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SECTION 7

TEMPLATE OPTIMIZATION RESULTS

7.1 Summary

The basic template optimization results which have been achieved

during the course of the present work are summarized in Figure 7.1-1.

All of these results have been attained using the optimization algorithm

and variations described in the previous chapter.

From the figure, it is seen that moderate reductions in the global

rms discretization error have been obtained for both the Stokes' and

Vening-Meinesz' discrete summation transformations for several choices

of the number of rings in the template. Specifically, the reductions

have been from the values listed "current" column, which correspond to

a published or a currently-used template, to the values listed in the
"reduced" column, which correspond to the improved template.

In some cases, further reduction of the discretization error seems

likely since this figure-of-merit was still being consistently reduced

in each iteration at the time the optimization process was halted (due

to computer time limitations or other extraneous reasons). In other

cases, further reduction appears stymied. This may be due to a contorted

shape of the multi-dimensional surface on which the minimization is

being performed or to the lack of powerfulness of the optimization

algorithms used. Alternatively, the minimum rms discretization error

corresponding to the optimal template may actually have been reached.*

This possibility is suggested by the fact that variations in the optimi-

zation algorithm yielded very similar results. However, it is not yet

known whether any of the values in the "reduced" column are the true

minima.

Since some error must be introduced by the discrete summation approxi-
mation, the minimum rms discretization error has a non-zero value.
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It had been hoped that reductions of several orders n' magnitude

in the global rms discretization error would be achieved. It is still

possible that this will be true.

Details of the optimization results presented in the figure, as

well as several related results and the results of the experimentation

with the optimization algorithm variations, are presented in the following

sections.

RMS DISCRETIZATION ERROR

CURRENT REDUCED

" STOKES' TRANSFORMATION

(MEAN GRAVITY ANOMALIES TO GEOID HEIGHT)

- 34-RING CASE: 1,336 M -- 0,434 M

- 101-RING CASE: 0.165 M -- 0.097 M

" STOKES' TRANSFORMATION ANALOG
(MEAN SURFACE LAYER DENSITIES TO GEOID

HEIGHT)

- 34-RING CASE: 0.687 M ----- 0.219 M

" VENING-MEINESZ' TRANSFORMATION ANALOG

(MEAN SURFACE LAYER DENSITIES TO

HORIZONTAL GRAVITY DISTURBANCES)

- 23-RING CASE: 0,754 MGAL -- 0.519 MGAL

- 125-RING CASE (EQUAL-INTEGRAL) 0.133 MGAL -- 0.082 MGAL

- 125-RING CASE (DMAAC-RICE) 0.075 MGAL -- 0.063 MGAL

Figure 7.1-1. Summary of Basic Optimization Results.
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7.2 Template Optimization Results for the Stokes' Transformation

Four main results have been obtained for the discrete Stokes'

summation transformation, in particular three for the classic transfor-

mation converting gravity anomalies to geoid height and one for the

analog transformation converting surface layer densities to geoid height.

The three results for the classic transformation are for templates with

34, 66, and 101 rings, while that for the analog transformation is for

a template with 34 rings.

7.2.1 Classic Stokes' Transformation

Summaries of the intermediate results during the optimization

process on a discrete classic Stokes' summation transformation are given

in Figures 7.2.1-1, 7.2.1-2, and 7.2.1-3 for templates of 34, 66 and

101 rings, respectively.

The following points may be noted from these figures:

a) In the 34-ring case, the rms discretization error is being

reduced steadily but has not achieved a minimum after 10 itera-

tions.

b) Both of the two "gaps" of about 200 in the initial template

parameters around the zeros of the classic Stokes' function

have been eliminated during the course of the optimization.

Even though the Pick-Picha-Vyskocil template is not an equal

ring contribution template, it has been derived on equal

contribution considerations and hence has these gaps (around
390 and 1180).

c) In the 66-ring case, the rms discretization error appears to

have reached a plateau after two or three iterations at a

level of about 1.00 meter. This is much larger than expected,

as is the initial discretization error of 1.64 meters, for

a template with so many rings. Intuitively, the more rings

in the template the lower the discretization error is expected

to be, at least for "reasonable" spherical boundary radii

partitions.

d) In the 66-ring case, the exact equal integral template has a
"gap" between the ring boundary radii #19 and #20 of about

200 corresponding to the first zero of the classic Stokes'
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function at 390, and a ring boundary radius (#52) equaling

the second zero of the function near 1180 with the adjacent

ring radii being about 100 away on each side. During the

course of the optimization, the first gap is eliminated, the

ring radius at the second zero remains fairly constant and

the distances to the adjacent ring radii are both reduced

slightly to about 8.50 as if the "virtual" gap at this radius

were being eliminated.

e) In the 101-ring case, the rms discretization error seems to

have been reduced to a minimum of about 0.100 meters, which

scarcely changed during the last five iterations. However,

in reality, almost all of the ring radii increments between

ring #18 and #52 are being severely restricted so as not

to overlap by the inequality constraint algorithm. When this

severe restriction occurs, the optimization is greatly hin-

dered, so the value attained is probably not the minimum

possible.

In the figures, a horizontal line indicates the division between

the parameters which were and were not allowed to vary, while a vertical

line indicates the division between convergence and divergence of the

iteration process.
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SUMMARY OF COMPLETE RUN

ITERS 0 ITERS 1 ITERS 2 ITERS 3 ITERS 4 ITERS S ITERI 6 ITERS 7 ITERI 8 ITERI 9 ITER4IO

FIGURE OF MERIT
1.336 0.729 0.559 0.506 0.485 0.471 0.462 0.454 0.446 0.442 0.434

VALUES OF PARAMETERS
RING# SPHERICAL RING RADIX CDEGREES)

o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068
2 0.17S 0.175 0.175 0.17S 0.175 0.175 0.175 0.175 0.175 0.175 0.175
3 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308
4 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447
5 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712
6 0.976 0.912 1.009 1.053 1.180 1.226 1,142 1.307 1.242 1.360 1.277
7 1.235 1.177 1.310 1.402 1.680 1.582 1.801 1.742 1.986 1.826 2.063
8 1.488 1.771 1.646 1.971 2.116 2.460 2.346 2.601 2.553 2.853 2.712
9 1.986 2.117 2.435 2.527 2.923 3.054 3.438 3.305 3.624 3.595 3.927

10 2.478 2.585 3.116 3.453 3.684 4.058 4.247 4.587 4.534 4.876 4.C83
11 2.961 3.641 3.957 4.461 4.720 5.095 5.403 5.680 5.928 6.038 6.333
12 4.148 4.745 5.241 . S.628 6.052 6.370 6.763 7.070 7.369 7.593 7.825
13 5.884 6.260 6.722 7.188 7.602 8.018 8.394 8.776 9.102 9.401 9.665
14 8.10 8.143 8.637 9.116 9.573 10.021 10.440 10.844 11.218 11.557 11.067
13 10.488 10.517 11.050 11.548 12.041 12.522 12.968 13.396 13.794 14.166 14.510
16 12,850 13.606 14.027 14.626 15.136 15.642 16.101 16.540 16.948 17.336 17.693
17 15.990 17.075 17.856 18.473 19.018 19.524 19.975 20.404 20.803 21.186 21.549
18 20.170 21.502 22.613 23.329 23.856 24.327 24.736 25.126 25.492 25.848 26.191
19 CS.300 27.563 28.746 29.428 29.853 30.216 30.336 30.852 31.159 31.467 31.773
20 33.900 35.935 36.108 37.062 37.200 37.363 37.545 37.758 37.986 38.229 38.479
21 52.000 48.782 47.076 46.330 46.061 45.930 46.019 46.119 46.263 46.430 46.613
22 61.000 59.534 57.965 57.144 56.883 56.629 56.632 56.621 S6.705 56.783 56.809
23 72.000 80.662 79.977 84.426 81.896 84.120 82.9&6 83.787 83.412 83.645 83.549
24 82.000 86.084 89.601 90.333 91.679 91.570 91.939 91.945 92.088 92.123 92.191
25 Q4.200 95.903 97.86S 99.171 99.962 100.391 100.633 100.781 100.893 100.975 101.044
26 106.300 103.313 109.165 109.636 110.038 110.267 110.406 110.501 110.569 110.622 110.664
27 126.300 123.921 122.568 121.911 121.592 121.440 121.353 121.304 121.269 121.244 121.223
28 135.900 135.620 134.898 134.222 133.730 133.406 133.181 133.016 132.883 132.770 132.667
29 142.700 144.309 145.592 145.939 145.875 145.726 145.556 145.375 145.194 145.013 144.834
30 149.000 151.420 154.589 157.105 158.116 158.387 158.365 15S.215 158.015 157.780 157.528
31 155.400 157.846 161.058 164.191 166.793 169.674 171.154 171.401 171.274 170.989 170.650
32 162.900 165.654 170.283 175.611 178.017 178.281 178.430 178.509 178.647 178.792 178.871
33 176.400 178.390 179.280 179.678 179.856 179.001 178.780 178.684 179.411 179.153 179.050
34 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000

Figure 7.2.1-1. Summary of 34-Ring Template Optimization for the Classic
Stokes' Transformation.
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SUIMARY OF COMPLETE RUN

ITERS 0 ITERS 1 ITERI 2 ITERI 3

FIGURE OF MERIT
1.64E+00 1.12E#00 1.42E#00 1.01E#00

VALUES OF PARAMETERS
RING$ SPHERICAL RING RAOII (OEGREES)

0 0.000 0.000 0.000 0.000
1 1.510 1.510 1.510 1.510
2 2.918 2.467 2.955 2.726
3 4.274 3.066 3.328 3.402
4 5,602 4.570 3.420" 3.670
5 6.916 5.888 4.863 4.755
6 8.2:8 7.198 6.172 6.646
7 9.545 8.507 7.415 8.626
8 10.877 9.826 10.570 9.364
9 12.231 11.161 12.261 12.141

10 13.618 12.521 14.237 13.271
11 15.046 16.242 15.262 16.267
12 16.528 17.730 16.692 17.895
13 18.080 19.403 19.973 18.249
14 19.721 20.113 20.822 21.531
15 21.482 20.995 21.705 22.474
16 23.406 21.879 22.662 23.446
17 25.569 23.853 23.638 26.440
18 28.118 26.097 28.832 29.324
19 31.449 34.997 35.517 35.235
20 50.091 46.286 43.652 43.599
21 52.792 54.650 50.751 49.807
22 55.108 56.777 57.105 54.197
23 57.189 58.727 59.395 60.105
24 59.107 59.561 60.282 60.377
I5 60.909 60.462 60.660 60.566
26 62.623 61.254 61.057 61.867
27 64.269 62.954 64.264 63.471
28 65.862 64.539 65.858 64.584
29 67.413 66.173 66.561 65.999
30 68.933 67.719 67.334 66.716
31 70.429 69.234 68.023 69.004
32 71.908 70.726 71.908 70.946
33 73.375 72.202 73.376 73.903
34 74.837 73.669 74.035 74.218
35 76.298 75.130 74.766 74.583
36 77.764 76.592 75.423 74.897
37 79.240 78.060 76.886 77.686
38 60.732 81.110 78.673 80.746
39 82.244 81.867 81.262 81.856
40 63.785 82.553 82.004 82.691
41 65.361 84.101 82.863 83.912
42 86.932 85.964 87.047 86.003
43 68.658 87.317 87.778 87.193
44 90.402 89.007 63.623 87.947
45 c,.233 90.768 89.359 85.770
46 94.174 92.621 91.138 92.815
47 96.259 96.S28 93.235 93.620
43 93.541 97.969 98.C36 99.115
49 101.108 99.053 101.177 101.717
50 104.133 101.710 105.091 105.441
51 108.063 112.357 108.992 109.069
52 117.662 118.496 117.458 117.554
53 127.798 124.958 125.714 125.729
54 132.306 135.209 134.309 134.302
55 133.958 136.752 135.515 138.098
56 139.209 138.377 139.512 139.429
57 142.241 139.800 143.542 144.236
58 145.155 147.432 149.713 148.288
59 143.024 150.308 150.622 150.704
60 150.904 153.243 150.725 150.715
61 153.858 156.308 157.089 156.340
62 156.958 159.603 158.733 157.409
63 160.316 161.200 159.912 158.964
64 164.133 163.101 165.388 161.652
65 168.915 175.049 166.882 166.753
66 180.000 180.000 180.000 180.000

Figure 7.2.1-2. Summary of 66-Ring Template Optimization for the Classic
Stokes' Transformation Beginning with an Equal Ring
Contribution Template. AN
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SWSNARY OF COMPLETE RUN

ITER# 0 ITERI 1 ITERS 2 ITERS 3 ITERS 4 ITERS S ITERS 6 ITER 7 ITER8 8 ITER# 9 ITER#10

FIGURE OF MERIT
0.165 0.132 0.118 0.115 0.108 0.103 0.101 0.101 0.099 0.100 0.097

VALUES OF PARAMETERS
RING# SPHERICAL RING RADII (DEGREES)

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
2 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167
3 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 O.Z53
4 0.333 0.333 0.333" 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
5 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417
6 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
7 0.583 0.5q3 0.583 0.563 O.583 0.583 0.583 0.553 0.583 0.583 0.583
8 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
9 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

10 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833
11 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917
12 .00o 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
13 1.083 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017
14 1.167 1.101 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034
15 1.250 1.271 1.137 1.0s6 1.056 1.056 1.056 1.056 1.056 1.056 1.056
16 1.333 1.313 1.280 1.167 1.079 1.079 1.079 1.079 1.079 1.079 1.079
17 1.417 1.350 1.321 1.288 1.192 1.102 1.084 1.080 1.080 1.080 1.080
18 1.500 1.567 1.396 1.628 1.363 1.228 1.397 1.153 1.095 1.083 1.080
19 1.583 1.650 1.680 1.691 1.696 1.436 1.649 1.450 1.218 1.593 1.202
20 1.667 1.688 1.721 1.711 1.706 1.698 1.701 1.659 1.673 1.681 1.692
1 1.750 1.730 1.739 1.744 1.718 1.708 1.706 1.715 1.702 1.695 1.699

22 1.833 1.767 1.753 1.753 1.746 1.755 1.718 1.751 1.758 1.713 1.708
23 1.917 1.938 1.02 1.767 1.783 1.774 1.759 1.781 1.774 1.776 1.781
24 2.000 1.979 1.946 1.832 1.816 1.836 1.787 1.801 1.785 1.782 2.089
25 2.083 2.150 2.015 2.130 1.895 1.876 1.844 1.830 1.915 2.159 2.181
26 2.167 2.188 2.158 2.189 2.233 1.967 2.263 1.935 2.216 2.245 2.224
27 2.250 2.229 2.196 2.243 2.322 2.332 2.346 2.280 2.330 2.302 2.256
28 2.333 2.354 2.255 2.342 2.359 2.350 2.465 2.474 2.427 2.446 2.331
29 2.417 2.396 2.363 2.410 2.393 2.493 2.500 2.491 2.501 2.483 2.453
30 2.500 2.521 2.422 2.508 2.517 2.522 2.515 2.503 2.539 2.635 2.514
31 2.583 2.563 2.529 2.544 2.535 2.531 2.675 2.548 2.658 2.674 2.700
32 2.667 2.688 2.588 2.574 2.550 2.710 2.725 2.685 2.722 2.706 2.765
33 2.750 2.729 2.696 2.610 2.749 2.768 2.754 2.731 2.761 2.730 2.790
34 Z.633 2.854 2.755 2.782 2.825 2.806 2.828 2.769 2.704 2.792 2.805
35 2.917 Z.896 2.863 2.836 2.863 2.833 2.843 2.831 2.815 2.803 2.832
36 3.000 2.934 3.242 2.942 2.916 2.874 2.864 2.950 3.240 2.905 2.881
37 3.250 3.314 3.346 3.396 3.039 3.334 2.972 3.308 3.472 3.288 2.986
33 3.500 3.439 3.408 3.436 3.404 3.592 3.387 3.512 3.619 3.502 3.332
39 3.750 3.814 3.517 3.490 3.638 3.652 3.604 3.646 3.667 3.677 3.533
40 4.000 3.939 4.Z42 3.674 3.656 4.199 3.768 3.728 3.707 3.697 3.681
41 4.Z50 4.314 4.414 4.678 4.438 4.499 4.260 3.842 4.184 3.807 4.175
42 4.500 4.439 4.741 4.767 4.696 4.628 4.525 4.564 4.564 4.26Z 4.503
43 4.750 4.814 4.45 4.819 4.850 4.878 4.679 4.641 4.580 4.567 4.639
44 5.000 4.939 4.908 4.858 5.186 5.224 4.949 4.734 4.957 4.657 4.938
45 5.250 5.051 5.465 5.265 5.443 5.353 5.250 5.011 5.031 5.341 5.370
46 5.530 5.565 5.575 5.487 5.517 5.564 5.396 5.532 5.480 5.893 5.374
47 5.750 5.690 5.728 5.606 5.576 5.794 6.141 6.132 5.992 6.461 6.335
48 6.00 6.231 6.038 5.792 6.501 6.330 6.463 6.442 6.555 6.879 7.057
49 6.250 6.402 6.242 6.577 6.580 6.926 6.390 7.167 7.103 7.166 7.4R9
50 6.500 6.553 6.658 6.964 7.161 7.493 7.326 7.168 7.336 7.567 7.937

Figure 7.2.1-3. Summary of 101-Ring Template Optimization for the Classic
Stokes' Transformation.
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51 6.750 6.683 7.127 7.210 7.684 8.085 7.974 7.793 7.624 8.027 8.268
52 7.000 7.463 7.817 7.874 8.182 8.298 8.128 8.316 8.354 8.651 8.777
53 8.000 8.233 8.457 8.846 8.326 8.628 8.956 8.938 8.708 8.809 8.914
5 4 9.000 9.066 9.285 9.216 9.314 9.136 9.589 9.594 9.621 9.475 9.553
55 10.000 9.915 10.170 9.675 9.829 10.035 10.368 10.317 10.277 10.357 10.103
56 11.000 10.670 10.909 10.765 11.063 11.043 11.050 11.035 10.940 10.984 11.020
57 12.000 11.783 11.962 11.979 11.805 12.049 11.910 11.725 11.773 11.657 11.623
53 13.000 12.701 12.848 12.793 12,569 12.839 12.638 12.719 12.660 12.275 12.488
59 14.000 13.690 13.721 13.612 13.635 13.768 13.783 13.646 13.395 13.549 13.461
60 15.000 14.701 14.831 14.506 14.776 14.624 14.646 14.475 14.328 14.423 14.466
61 16.000 15.923 15.730 15.680 15.672 15.524 15.607 15.523 15.556 15.488 15.552
62 17.000 16.597 16.643 16.878 16.817 16.672 16.738 16.629 16.708 16.671 16.758
63 18.000 17.797 17.724 17.758 17.955 17.891 17.836 17.823 17.823 17.849 17.966
64 19.000 18.730 18.772 18.827 19.104 19.103 19.037 19.155 19.247 19.257 19.153
65 20.000 19.895 20.050 20.202 20.304 20.433 20.575 20.700 20.719 20.681 20.432
66 21.000 20.655 20.527 20.440 20.810 20.579 20.912 21.180 Z1.217 21.493 21.841
67 22.000 21.506 21.727 21.754 22.027 22.222 22.620 22.834 23.089 23.298 23.564
68 23.000 22.568 23.050 23.560 23.977 24.178 24.499 24.814 25.054 25.285 25.456
69 24.000 23.770 24.846 25.490 26.063 26.469 26.726 27.044 27.307 27.550 27.721
70 2S.000 26.297 27.354 27.973 28.586 29.005 29.317 29.598 29.842 30.069 30.265
71 30.000 30.194 30.707 31.192 31.606 31.967 32.253 32.490 32.717 32.916 33.004
72 35.000 34.687 34.736 34.893 35.079 35.331 35.558 35.740 35.915 36.077 36.216
73 40.000 39.475 39.180 39.097 39.050 39.153 39.239 39.350 39.459 39.551 39.640
74 45.000 44.371 43.901 43.652 43.480 43.378 43.324 43.328 43.346 43.399 43.410
75 50.000 49.306 48.783 48.420 48.155 47.954 47.792 47.658 47.613 47.587 47.561
76 55.000 54.3'5 53.825 53.431 53.141 52.813 52.545. 52.343 52.258 52.180 52.226
77 60.000 59.524 59.055 58.647 58.419 58.070 57.672 57.523 57.414 57.357 57.344
78 65.000 65.319 64.734 64.573 64.278 64.070 63.637 63.630 63.341 63.461 63.372
79 70.000 74.808 78.385 75.438 77.560 75.972 78.541 76.522 78.382 77.246 78.073
80 75.000 79.252 79.660 82.017 80.696 81.539 80.879 82.747 81.695 82.242 81.761
81 80.0oo 81.973 83.799 84.171 85.611 84.780 85.252 85.388 85.957 85.568 85.844
82 85.000 85.624 87.031 87.861 88.348 88.879 88.735 88.910 89.200 89.363 89.282
E3 90.000 90.274 90.926 91.459 91.960 92.295 92.497 92.641 92.801 92.952 93.147
84 95.000 95.170 95.311 95.534 95.982 96.198 96.328 96.463 96.576 96.778 96.925
85 100.000 99.887 99.989 100.004 100.250 100.415 100.475 100.602 100.655 100.790 100.871
86 103.000 104.805 204.729 104.808 104.847 104.853 104.860 104.939 105.012 105.020 105.066
87 110.000 109.786 109.621 109.625 109.623 109.543 109.516 109.504 109.598 109.555 109.669
83 115.000 114.772 114.633 114.541 114.445 114.364 114.367 114.309 114.320 114.289 114.307
89 ZO.000 119.789 119.654 119.531 119.409 119.320 119.294 119.252 119.163 119.157 119.063
90 125.000 124.776 124.667 124.508 124.413 124.342 124.304 124.232 124.144 124.103 124.071
91 130.000 129.828 129.725 129.632 129.550 129.468 129.365 129.317 129.280 129.197 129.140
92 135.000 134.979 134.856 134.743 134.667 134.635 134.536 134.492 134.454 134.423 134.397
93 140.000 140.066 139.999 139.881 139.849 139.859 139.791 139.762 139.741 139.768 139.764
94 145.000 145.110 145.164 145.128 145.147 145.232 145.187 145.194 145.197 145.198 145.191
95 150.000 150.299 150.401 150.580 150.658 150.734 150.776 150.817 150.788 150.745 150.678
96 155.000 155.518 155.692 155.947 156.267 156.257 156.386 156.445 156.400 156.308 156.239
97 160.00 160.738 161.254 161.576 162.152 161.947 162.200 162.238 162.168 161.997 161.921
98 165.000 165.924 166.936 167.113 168.064 167.752 168.077 168.007 167.748 167.574 167.233
99 170.000 170.904 172.262 172.937 174.502 173.028 173.349 173.172 172.532 173.499 172.190

100 175.000 177.765 178.693 177.457 178.278 174.875 174.250 173.837 176.404 178.392 174.863
101 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000

Figure 7.2.1-3. (continued)
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7.2.2 Analog Stokes' Transformation

A summary of the intermediate results during the optimization

process on a 34-ring discrete Stokes' summation for the analog trans-

formation converting surface layer densities to geoid height is given

in Figure 7.2.2-1. The initial estimate of the template parameters

is that of the Pick-Picha-Vyskocil template (for the classic Stokes'

summation).

The following points may be noted from the figure:

a) The spherical ring boundary radii numbered 28 through 33

have merged together by the tenth iteration to the approxi-

mate value 153.20. Hence five of the parameters have become

"locked". If the program had the astuteness to recognize

this situation, remove the "locked" variables, and insert

them as five new independent variables throughout the range

of variation, an entirely different set of results might have

been obtained.

b) As in the classic Stokes' case, the "gap" between the ring

boundary radii around the first zero in the classic Stokes'

function was eliminated during the optimization.

7.2.3 Discussion of Stokes' Transformation Results

The optimization process for the discrete Stokes' summation

transformation generally appears tc be working well. Moderate decreases

in the global rms discretization error have been achieved in all cases.

Certainly, larger decreases are desired, but it is not yet clear how

close the results are to the true minima.
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SUMMARY OF COMPLETE RUN

ITER4 0 ITER# I ITER4 2 ITERO 3 ITERS 4 ITER4 5 ITER9 6 ITERS 7 ITER4 8 ITERS 9 ITER#Ol

FIGURE OF MERIT
0.689 0.318 0.243 0.226 0.219 ) 0.230 0.222 0.220 0.220 0.231 0.223

VALUES OF PARAXIETER8
RING# SPHERICAL KiNG RADII (DEGREES)

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.068 0.068 0.068 0.068 0.068 '0.068 0.063 0.068 0.068 0.068 0.068Z 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.1753 0.303 0.308 0.308 0.303 0.308 0.308 0.308 0.308 0.308 0.308 0.3034 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.4475 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.71p 0.7126 0.976 0.024 1.001 1.123 1.131 1.269 1.179 1.420 1.336 1.443 1.3317 1.235 1.192 1.3Z6 1.456 1.825 1.654 1.903 1.939 2.Z34 1.954 e.236
8 1.438 1.8S7 1.690 2.056 2.272 2.814 2.586 2.858 2.844 3.293 3.0309 1.986 2.211 2.630 2.650 3.185 3.494 4.041 3.673 4.125 4.124 4.64010 2.478 2.664 3.350 3.931 4.082 4.607 4.909 5.415 5.200 5.606 3.67211 2961 3.941 4.301 5.150 5.267 5.833 6.021 6.600 6.593 7.062 7.033

12 4.148 5.091 5.60. 6.386 7.297 7.098 7.871 8.133 9.035 8.520 9.20013 5.884 6.630 7.546 8.574 8.826 9.893 9.591 10.469 10.645 11.553 11.01514 8.180 8.400 9.340 10.547 11.634 11.865 12.815 12.551 13.528 13.514 14.439
15 10.438 10.865 12.350 13.180 14.352 14.572 15.478 15.464 16.130 16.299 16.97316 12.850 14.777 15.129 17.127 17.130 18.564 18.207 19.423 18.866 19.950 19.69217 15.9?0 18.411 19.734 20.704 21.633 21.905 22.720 22.657 23.468 23.168 23.97318 20.170 22.698 25.140 25.087 26.354 26.147 27.037 26.986 27.499 27.637 17.82819 25.300 28.806 30.558 31.435 31.111 31.963 31.655 32.294 32.140 32.566 32.57620 33.900 36.549 37.752 37.610 37.757 37.634 37.886 37.849 38.038 3C.095 38.25721 52.000 48.222 45.928 45.363 45.028 44.884 44.835 44.832 44.842 44.915 44.987^2 61.000 53.951 55.974 54.561 53.968 53.630 53.465 53.362 53.307 53.327 53.35623 72.0C, 70.026 67.499 65.903 65.083 64.611 64.343 64.162 64.046 64.008 63.06724 82.000 81.281 80.275 79.525 78.930 78.482 78.162 77.927 77.757 77.641 77.55725 94.200 94.980 95.-54 96.091 95.849 95.550 95.263 95.038 94.E52 94.668 94.522
26 106.300 108.178 110.817 113.039 114.292 114.892 115.100 115.149 115.103 114.971 114.819Z7 I6.300 124.899 127.307 130.773 133.664 135.575 136.738 137.393 137.727 137.839 137.85628 135.900 135.502 138.366 143.667 147.603 150.548 151.841 152.614 152.925 153.101 153.11629 142.700 143.056 145-098 148.655 151.326 152.173 152.810 153.003 153.145 153.159 153.14430 149.000 149.150 149.602 152.030 152.339 152.971 153.052 153.181 153.199 153.185 153.16431 155.400 155.180 152.667 153.491 153.119 153.295 153.213 153.251 153.234 153.242 153.19732 162.900 161.317 156.120 155.215 153.828 153.649 153.365 153.327 153.266 153.258 153.24533 176.400 168.580 162.532 163.602 162.291 159.882 155.777 153.831 153.427 153.298 153.266
34 180.000 180.000 180.00 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000

Figure 7.2.2-1. Summary of 34-Ring Template Optimization for the Stokes'
Transformation Analog.
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7.3 Template Optimization Results for the Vening-Meinesz' Transformation

Five main results have been obtained for the discrete Vening-

Meinesz' summation transformation, all of the five being for the analog

transformation converting surface layer densities Lo deflections (strictly,

to horizontal gravity disturbance components). Two of the five main

cases are for transformations with 23-ring templates, while the other

three are for 125-ring templates.

7.3.1 Vening-Meinesz' 23-Ring Template

The two results for the 23-ring case begin with different initial

values of the estimated spherical ring boundary radii, one using the

equal ring contribution template and the other using the Pick-Picha-

Vyskocil template. A summary of the intermediate results of the iterative

optimization process for these cases is given in Figures 7.3.1-1 and

7.3.1-2.

The following observations may be made from these figures:

a) For a small number of spherical ring boundary radii, the

equal ring contribution template is a better starting

point for the optimization process than the Pick-Picha-

Vyskocil template in the sense that the optimization pro-

gresses faster to a lower rms discretization error in spite

of starting at a slightly higher value of this figure-of-

merit.

b) The optimum values of the spherical ring boundary radii do

not seem to have been reached when the runs were terminated,

as the rms discretization error was still decreasing con-

sistently at this point.
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SUMMARY OF COMPLETE RUN

ITERS 1 ITERS 2 ITERS 3 ITERS 4 ITERS S ITERS 6 ITERS 7 ITERS 8 ITERS 9 ITER*Ol

FIGURE OF MERIT
7.54E-01 6.63E-01 6.09E-01 5.78E-01 5.59E-01 5.46E-01 5.36E-01 5.29E-01 5.24E-01 5.19E-01

VALUES OF PARAMETERS
RIN3G SPHERICAL RING RADII (DEGREES)

0 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
1 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061
2 0.085 0.0S 0.08S 0.085 0.085 O.0L5 0.085 0.085 0.083 0.085
3 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118
4 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
5 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
6 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316
7 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.419 0.439
8 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0Q610
9 0.847 0.848 0.849 0.850 0.850 0.851 0.C51 0.852 0.8S2 0.853

10 1.177 1.177 1.177 1.178 1.178 1.178 1.178 1.179 1.179 1.179
11 1.634 1.635 1.635 1.635 1.635 1.635 1.633 1.636 1.636 1.636
12 2.270 2.171 2.271 2.271 2.271 2.271 2.271 2.271 2.271 2.271
13 3.154 3.154 3.155 3.155 3.155 3.155 3.155 3.155 3.155 3.153
14 4.332 4.333 4.303 4.333 4.384 4.384 4.384 4.384 4.384 4.384
1s 6.091 6.092 6.092 6.092 6.093 6.093 6.093 6.093 6.093 6.093
16 8.470 8.471 8.472 8.472 8.472 8.472 8.472 8.472 8.472 8.471
17 11.790 11.792 11.792 11.793 11.793 11.792 11.792 11.791 11.791 11.790
18 16.445 16.445 16.445 16.444 16.443 16.442 16.441 16.440 16.439 16.439
19 23.031 23.018 23.010 23.005 23.003 23.004 23.007 23.012 23.00 23.030
20 32.523 32.450 32.427 32.434 32.463 32.510 32.571 32.645 32.7'9 32.822
21 46.780 46.527 46.744 47.207 47.705 48.408 49.033 49.636 50.204 50.728
22 70.639 74.568 77.654 80.082 82.030 83.622 84.943 86.054 86.997 87.804
23 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932

Figure 7.3.1-1. Summary of 23-Ring Template Optimization for the Vening-
Meinesz' Analog Transformation, Beginning from an Equal
Ring Contribution Template.

SUMMARY OF COMPLETE RUN

ITER# 0 ITERI 1 ITERI 2 ITER# 3 ITERS 4 ITERI 5

FIGURE OF MERIT
7.14E-01 6.72E-01 6.48E-01 6.34E-01 6.27E-01 6.24E-01

VALUES OF PARAMETERS
RING# SFHERICAL RING RADII IEGREES)

0 0.030 0.030 0.030 0.030 0.030 0.030
1 0.044 0.044 0.044 0.044 0.044 0.044
2 0.063 0.063 0.063 0.063 0.063 0.063

3 0.009 0.089 0.089 0.089 0.089 0.009
4 0.128 0.128 0.118 0.128 0.120 0.128
5 0.183 0.183 0.163 0.183 0.183 0.183
6 0.261 0.261 0.2-61 0.261 0.261 0.t61
7 0.372 0.372 0.372 0.372 0.372 0.372
8 0.530 0.530 0.530 0.530 0.530 o.,30
9 0.753 0.753 0.753 0.753 0.753 0,753

10 1.069 1.103 1.130 1.15Z 1.170 1.185
11 1.754 1.799 1.809 1.819 1.831 1.842
12 2.966 2.955 Z.947 2.913 .942 2.942
13 4.821 4.787 4.758 4.735 4.716 4.701
14 7.591 7.540 7.502 7.471 7.444 7.420
15 11.470 11.553 11.597 11.607 11.598 11.575
16 18.550 18.399 18.252 18.126 18.028 17.946
17 28.300 28.059 27.844 27.649 27.489 27.359
18 40.800 41.129 41.389 41.570 41.664 41.691
19 65.300 64.9q8 64.744 64.494 64.191 63.852
20 98.600 97.762 96.499 95.025 93.656 92.407
21 114.400 115.7Z5 116.621 117.133 117.460 117.637
22 130.500 129.337 128.799 128.807 129.002 19.535
23 180.000 180.000 100.000 180.000 180.000 180.000

Figure 7.3.1-2. Summary of 23-Ring Template Optimization for the Vening-
Meinesz' Analog Transformation, Beginning from the Pick-
Picha-Vyskocil Template.
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7.3.2 Vening Meinesz' 125-Ring Template

The three results for the 125-ring case consist of two results

which begin with an equal ring contribution template and one which begins

with the circularized AGEMIT template. A summary of the intermediate

results of the optimization process is given in Figures 7.3.2-1, 7.3.2-2,

and 7.3.2-3.

The following points may be noted from these figures:

a) While the circularized AGEMIT template has a lower initial

rms discretization error than the equal ring contribution

template for this relatively large number of spherical ring

boundary radii, and while this lower figure-of-merit is

consistently maintained throughout the optimization pro-

cess, neither template seems to lead to an optimization run
with a large reduction of discretization error. This may be

due to the nature of the response surface in the vicinity of

the template parameter values (which may be relatively "far"

from their optimum values), or to the lack of powerfulness

of the optimization algorithm for large dimensions.

b) The optimization beginning with the equal ring contribution

template may have reached a local minimum on the sixth

iteration with an rms discretization error of about 0.082

mgal. The likelihood of this being the case is strengthened

by the rough agreement of the independent optimization run

(Figure 7.3.2-2) which converges to approximately the same

minimum (0.084 mgal) although the steps are different due

to the use of a variant algorithm. Both optimization runs

begin to diverge or oscillate after this point.
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SUMIMARY OF COMPLETE RUN

ITERI 0 ITERS I ITER6 2 ITERI 3 ITERS 4 ITER# 5 ITERS 6 ITERI 7 ITERI 8 ITERS 9 ITERIO

FIGURE OF MERIT
1.33E-01 1.21E-01 1.13E-01 l.02E-01 9.13E-02 8.49E-02 8.21E-02 8.22E-02 8.64E-02 8.99E-02 9.04E-02

VALUES OF PARAMETERS
RINGS SPHERICAL RING RADII (DEGREES)

0 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
1 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
3 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
4 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
5 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
6 0.004 0.004 0.004' 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
7 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
8 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
9 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

10 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
11 0.005 0.005 0.005 0.005 0.005 0.005 0,005 0.005 0.005 0.005 0.005
12 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
13 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
1'4 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
15 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
16 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
17 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
18 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
19 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
20 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
21 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
22 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
23 0.015 0.015 0.015 0.015 0.015 0.005 0.015 0.015 0.015 0.015 0.015
24 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
25 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018
26 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019
27 o.oai 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
I8 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
29 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
30 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027
31 0.029 0.029 0.(29 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029
32 0.032 0.03Z 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032
33 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035
34 0.038 0.038 0.038 0.038 0.038 0.030 0.038 0.038 0.038 0.033 0.030
35 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041
36 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
37 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049
38 0.053 0.053 0.053 0.053 0.033 0.053 0.053 0.053 0.053 0.053 0.053
39 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058
40 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063
41 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068
42 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074
43 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081

.44 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.008 0.088 0.08 0.038
45 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
46 0.104 0.104 0.104 0.104 0.304 0.104 0.104 0.104 0.104 0.104 0.104
47 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113
4S 0.1,4 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124
49 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134
50 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146
51 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159
52 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173
53 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189
54 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205
55 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224
56 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243
57 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265
58 0.2C3 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288
59 0.314 0.314 0o314 0.314 0.314 0.314 0.314 0.314 0.314 0.314 0.314

Figure 7.3.2-1. Summary of 125-Ring Template Optimization for the Vening-
Meinesz' Analog Transformation, Beginning from an Equal
Ring Contribution Template. (Damping = 0.5)
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60 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342 0.342
61 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372
62 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.405
63 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.40 0.440
64 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479 0.479
65 0.522 0.522 O.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522 0.522
66 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568 0.568
67 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618 0.618
63 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673 0.673
69 0.732 0.733 0.133 0.733 0.733 0.734 0.734 0.734 0.743 0.756 0.690
70 0.797 0.797 0.796 0.796 0.795 0.794 0.794 0.794 0.774 /0.765 0.801-
71 0.868 0.868 0.868 0.869 0.870 0.870 0.870 0.871 0.900 t' 0.902 ._0.870.
72 0.944 0.944 0.945 0.944 0.944 0.944 0.943 0.944 Q,.910 + 0.08* 1.015
73 1.028 1.028 1.027 1.027 1.027 1.027 1.027 1.027 1.052 1.040 1.064
74 1.119 1.119 1.120 1.120 1.120 1.121 1.121 1.122 1.105 1.109 1.090
75 1.218 1.217 1.217 1.216 1.216 1.216 1.216 1.216 1.226 1.224 1.237
76 1.325 1.326 1.326 1.327 1.327 1.327 1.327 1.328 1.323 1.325 1.313

*77 1.443 1.442 1.442 1.442 1.44Z 1.442 1.442 1.442 1.445 1.444 1.453
78 1.570 1.571 1.571 1.572 1.571 1.572 1.572 1.573 1.571 1.573 1.574
79 1.709 1.709 1.709 1.709 1.709 1.710 1.710 1.710 1.712 1.711 1.708
80 1.860 1.861 1.861 1.861 1.861 1.862 1.863 1.063 1.862 1.861 1.864
81 2.025 2.025 2.025 2.025 2.026 2.026 2.027 2.027 2.028 2.031 2.028
82 2.204 2.204 2.204 2.205 2.205 2.205 2.206 2.206 2.206 2.206 2.207
83 2.399 2.399 2.399 2.400 2.400 2.401 2.401 2.402 2.402 2.402 2.403
84 2.611 2.612 2.612 2.612 2.613 2.613 2.614 2.614 2.614 2.615 2.615
85 2.843 2.843 2.843 2.844 2.845 2.846 2.846 2.846 2.847 2.88 2.848
86 3.094 3.095 3.096 3.097 3.098 3.099 3.100 3.100 3.100 3.101 3.101
87 3.368 3.369 3.369 3.370 3.371 8.372 3.372 3.373 3.374 3.375 3.376
88 3.666 3.667 3.667 3.667 3.668 3.669 3.670 3.671 3.673 3.675 "3.676
89 3.991 3.991 3.991 3.991 3.993 3.996 3.997 3.999 4.001 4.003 4.004
90 4.344 4.344 4.344 4.344 4.346 4.349 4.351 4.355 4.357 4.359 4.360
91 4.729 4.729 4.730 4.733 4.736 4.738 4.740 4.741 4.742 4.743 4.743
92 5.148 5.148 5.149 5.153 5.157 5.159 5.160 5.161 5.161 5.163 5.165
93 5.604 5.605 5.609 5.611 5.614 5.616 5.618 5.620 5.624 5.626 5.632
94 6.101 6.104 6.107 6.110 6.113 6.117 6.121 6.124 6.125 6.127 6.133
95 6.642 6.648 6.652 6.655 6.660 6.665 6.669 6.671 6.672 6.677 6.681
96 7.231 7.235 7.238 7.242 7.248 7.254 7.259 7.262 7.265 7.272 7.276
97 7.873 7.376 7.877 7.879 7.883 7.889 7.894 7.897 7.906 7.911 7.915
98 8.572 8.576 8.576 8.577 8.580 8.584 8.588 8.596 8.602 8.606 8.609
99 9.335 9.332 9.334 9.339 9.344 9.347 9.354 9.362 9.365 9.368 9.369

100 10.166 10.169 10.165 10.172 10.180 10.192 10.214 10.227 10.237 10.247 10.256
101 11.071 11.076 11.074 11.076 11.001 11.105 11.119 11.128 11.134 11.140 11.144
102 12.059 12.072 12.075 12.078 12.101 12.115 12.124 12.129 12.132 12.135 12.137
103 13.137 13.144 13.144 13.156 13.185 13.205 13.221 13.234 13.244 13.253 13.260
104 14.314 14.308 14.314 14.335 14.356 14.373 14.390 14.402 14.412 14.422 14.432
105 15.599 15.596 15.600 15.605 15.615 15.624 15.627 15.629 15.629 15.627 15.626
106 17.003 17.022 17.059 17.104 17.144 17.173 17.193 17.204 17.211 17.217 17.219
ln7 13.539 13.609 18.662 18.714 18.766 18.807 10.842 18.866 18.084 18.902 10.9^4
108 20.220 20.294 20.296 20.289 20.312 20.356 20.403 20.454 20.510 20.570 20.63"
309 Z2.062 22.069 z2.090 22.097 22.100 22.082 22.044 21.989 21.929 21.868 21.607
110 24.004 24.103 24.112 24.153 24.215 24.,74 24.328 24.370 24.406 24.439 24.471
111 26.307 .26.238 26.195 26.180 26.199 26.242 26.286 26.313 26.329 26.341 26.352
112 28.755 28.059 28.929 28.983 29.017 29.024 29.013 28.999 28.984 28.971 28.959
113 31.457 31.591 31.741 31.907 32.050 32.172 32.282 32.383 32.498 32.615 32.718
114 34.451 34.606 34.717 34.057 35.073 + 35.318 4 35.588 35.894 4 36.014 4- 36.070 f-"6.099
115 37.779 37.775 37.508 37.155 36.910 f 36.741 + 36.576 '36.345 + 36.239 t 36.183 36.155
116 41.496 41.238 41.298 41.446 41.514 41.464 41.341 41.171 40.971 -40.768 40.580
117 45.674 45.771 45.793 45.999 46.309 46.671 47.038 47.379 47.691 47.980 48.246
118 50.408 50.562 50.721 50.813 50.926 51.043 51.128 51.146 51.118 51.063 1 50,987
119 55.830 . 56.600 57 'S 57.790 58.326 58.698 58.950 59.177 59.389 59.526 + 59.766
120 62.132 + 62.047 61.867 61.838 62.086 62.572 63.146 63.564 63.086 64.177 + 64.458
121 69.617 + 69.249 + 68.509 68.164 t 68.433 4 68.774 4 68.98 69.0684,- 69.112 + 69.202 # 69.385
122 78.811 4 79.1194- 80.433" 82.324 + 84.124 + 05.613 + 86.814 87.776 + 80.617 +. 89.409 + 90.204
123 90.780 + 93.236 94.147 94.449 94.925 95.325 95.550 95.508 95.339 95.093 94.755
124 108.470 + 110.141 111.377 113.269 115.635 117.644 119.155 120.112 120.709 121.349 11.854
125 179.997 179.997 179.99? 179.997 179.997 179.997 179.997 179.997 179.997 179.997 179.997

Figure 7.3.2-1. (continued)
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SUIKARY OF COMPLETE RUN

ITERI 1 ITERS Z ITERI 3 ITERG 4 ITER2 5 ITERI 6

FIGURE OF MERIT
1.33E-01 1.02E-01 8.48E-02 1.13E-01 1.31E-01 1.08E-01

VALUES OF PARAMETERS
PING# SPHERICAL RING RADII (DEGREES)

0 0.002 0.002 0.002 0.002 0.002 0.002
1 0.C0 0.002 0.002 0.002 0.002 0.002
2 0.003 0.003 0.003 0.003 0.003 0.003
3 0.003 0.003 0.003 0.003 0.003 0.003
4 0.003 0.003 0.003 0.003 0.003 0.003
5 0.003 0.003 0.003 0.003 0.003 0.003
6 0.004 0.004 0.004 0.004 0.004 0.004
7 0.004 0.004 0.004 0.004 0.004 0.004
8 0.004 0.004 0.004 0.004 0.004 0.004
9 0.005 0.005 0.005 0.005 0.005 0.005

10 0.005 0.005 0.005 0.005 0.005 0.005
11 0.005 0.005 0.005 0.005 0.005 0.005
12 0.006 0.006 0.006 0.006 0.006 0.006
13 0.006 0.006 0.006 0.006 0.006 0.006
14 0.007 0.007 0.007 0.007 0.007 0.007
15 0.008 0.008 0.008 0.008 0.008 0.008
16 0.008 0.008 0.008 0.008 0.008 0.008
17 0.009 0.009 0.009 0.009 0.009 0.009
18 0.010 0.010 0.010 0.010 0.010 0.010
19 0.011 0.011 0.011 0.011 0.011 0.011
20 0.012 0.012 0.012 0.012 0.012 0.012
21 0.013 0.013 0.013 0.013 0.013 0.013
22 0.014 0.014 0.014 0.014 0.014 0.014
23 0.015 0.015 0.015 0.015 0.015 0.015
24 0.016 0.016 0.016 0.016 0.016 0.016
25 0.018 0.018 0.018 O.01P 0.018 0.018

26 0.019 0.019 0.019 0.019 0.019 0.019
27 0.021 0.021 0.021 0.021 0.021 O.OZI
28 0.023 0.023 0.023 0.023 0.023 0.023
29 0.025 0.025 0.0^5 0.025 0.015 0.025
30 0.027 0.027 0.027 0.027 0.027 0.027
31 0.029 0.029 0.0:9 0.029 0.029 0.029
32 0.032 0.032 0.032 0.032 0.032 0.032
33 0.035 0.035 0.035 0.035 0.035 0.035
34 0.038 0.038 0.038 0.038 0.038 0.038
35 0.041 0.041 0.041 0.041 0.041 0.041
36 0.045 0.045 0.045 0.045 0.045 0.045
37 0.049 0.049 0.049 0.049 0.049 0.049
38 0.053 0.053 0.053 0.053 0.053 0.053
39 0.038 0.058 0.033 0.058 0.053 0.053
40 0.063 0.063 0.063 0.063 0.063 0.063
41 0.068 0.068 0.068 0.068 0.068 0.068
42 0.074 0.074 0.074 0.074 0.074 0.074
43 0.081 0.081 0.081 0.081 0.081 0.081
44 0.088 0.038 0.088 0.088 0.088 0.0c8
45 0.096 0.096 0.096 0.096 0.096 0.096
46 0.104 0.104 0.104 0.104 0.104 0.104
47 0.113 0.113 0.113 0.113 0.113 0.113
48 0.124 0.124 0.124 0.124 0.124 0.124
49 0.134 0.134 0.134 0.134 0.134 0.134
50 0.146 0.146 0.1A6 0.146 0.146 0.146
51 0.159 0.159 0.159 0.159 0.159 0.159
52 0.173 0.173 0.173 0.173 0.173 0.173
53 0.189 0.189 0.189 0.189 0.189 0.189
54 0.205 0.205 0.205 0.205 0.205 0.205
55 O.,24 0.224 0.224 0.224 0.224 0.224
56 0.243 0.243 0.243 0.243 0.243 0.243
57 0.265 0.1(5 0.265 0.265 0.265 0.265
58 0.233 0.223 0.2r8 0.280 0.238 0.288
59 0.314 0.314 0.314 0.314 0.314 0.314

Figure 7.3.2-2. Summary of 125-Ring Template Optimization for the Vening-
Meinesz' Analog Transformation, Beginning from an Equal
Ring Contribution Template. (Damping = 0.25)
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60 0.342 0.342 0.342 0.342 0.342 0.342
61 0.372 0.372 0.372 0.372 0.372 0.372
62 0.405 0.4C5 0.405 0.405 0.405 0.405
63 0.440 0.4c0 0.440 0.440 0.440 0.440

64 0.479 0.479 0.479 0.479 0.479 0.479

65 0.5:2 0.52Z 0.522 0.522 0.522 0.522

66 0.568 0.560 0.568 0.568 0.568 0.568
67 0.618 0.613 0.618 0.618 0.618 0.618

66 0.673 0.673 0.673 0.673 0.673 0.673
6q 0.732 0.732 0.732 0.73? n.732 0.732

70 0.797 0.815 0.844 0.92- 0.933 0.777

71 0.068 0.-50 0.444 0.958 0.950 0.937

72 0.qv4 0.936 0.999 0.956 0.964 0.953

73 1.028 1.0C3 1.113 1.024 1.184 1.012
74 1.11) 1.144 1.184 1.121 1.239 1.248

75 1.118 1.194 1.325 1.291 1.274 1.265

76 1.32S 1.3 6 1.403 1.341 1.301 1.279

77 1.443 1.414 1.568 1.437 1.609 1.368
78 1.570 1.6C4 1.622 1.650 1.664 1.671

79 1.709 1.67C 1.656 1.668 1.673 1.676

60 1.860 1.724 1.700 1.689 1.A04 1.631
81 2.025 1.E68 1.871 1.883 1.697 1.934
82 2.204 2.068 2.070 2.073 2.065 2.071
83 2.3q9 2.264 2.287 2.295 2.290 2.301

84 2.611 2.531 2.534 2.541 2.536 2.546
85 2.243 ^.7Q4 2.797 2.803 2.799 2.609
es 3.094 3.C67 3.C68 3.069 3.066 3.074
87 3.363 3.310 3.35S 3.357 3.362 3.371

88 3.666 3.661 3.657 3.657 3.658 3.659
89 3.991 3.9C4 3.995 3.997 3.999 3.997

90 4.344 4.3!5 4.346 4.346 4.347 4.346
91 4.729 4.729 4.723 4.728 4.730 4.730
92 5.148 5.146 5.149 5.150 5.149 !.149
93 5.604 5.598 5.599 5.604 5.606 5.610

94 6.101 6.100 6.097 6.099 6.101 6.102
95 6.642 6.645 6.639 6.637 6.633 6.633

96 7.231 7.235 7.225 7.222 7.219 7.217
97 7.873 7.873 7.877 7.880 7.874 7.877
98 8.572 8.575 8.579 8.582 8.580 8.580

99 9.335 9.333 9.342 9.343 9.341 9.341
100 10.166 10.168 10.170 10.171 10.165 10.164
101 11.071 11.069 11.067 11.066 11.065 11.064
102 12.059 12.059 12.057 12.056 12.054 12.050

103 13.137 13.133 13.136 13.139 13.142 13.141
104 14.314 14.317 14.315 14.315 14.320 14.320
105 15.599 15.601 15.602 15.598 15.608 15.609
106 17.003 16.998 17.007 17.015 17.025 17.034
107 18.539 18.535 18.544 18.543 18.549, 18.557
108 20.220 20.227 20.230 20.233 20.233 20.242
109 22.062 22.071 22.005 22.089 22.087 22.090
110 24.084 24.096 24.100 24.113 24.121 24.130
111 26.307 26.319 26.326 26.333 26.341 26.348
112 28.755 28.775 28.789 28.792 28.797 28.790
113 31.457 31.483 31.487 31.493 31.485 31.493
114 34.451 34.474 34.469 34.478 34.491 34.501
115 37.779 37.773 37.788 37.818 37.837 37.840
116 41.496 41.495 41.502 41.483 41.447 41.407
117 45.674 45.701 45.633 45.566 45.512 45.448
118 50.408 50.356 50.307 50.237 50.170 50.117
119 55.830 55.608 55.450 55.338 55.201 55.253
120 62.132 61.926 61.817 61.911 62.070 62.213

121 69.617 69.877 70.179 70.185 70.110 70.044
122 78.811 78.860 78.677 78.544 78.458 78.392
123 90.780 91.525 93.204 94.325 94.904 95.253
124 108.470 113.447 117.084 119.626 121.557 122.842
125 180.000 180.000 180.000 180.000 180.000 160.000

Figure 7.3.2-2. (continued)
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SU MARY OF COIPLETE RUN

ITEP# 0 ITEI 1 ITEPZ 2 IrERI 3 ITERS 4 ITER# 5 ITERS 6

FIGURE OF M(FRIT
7.49E-02 7.02E-02 6.91E-02 6.71E-02 6.55E-02 6.42E-02 6.33E-02

VALUES OF PARMIETEPS
gint: SF;ErICAL RING RADII (DEGREES)

0 0.002 0.002 0.002 0.002 0.002 0.002 0.002
1 0.003 0.003 0.003 0,003 0.003 0.003 0.003
Z 0.003 0.003 0.003 0,003 0.003 0.003 0.003
3 0.004 0.004 0.004 0.004 0.004 0.004 O.CO4
4 0.004 0.004 O.OC4 0.004 0.004 0.004 0.004
5 0.005 0.005 0.005 0.005 0.005 0.005 0.005
6 0.006 0.006 0.006 0.006 0.006 0.006 0.006
7 0.007 0.C07 0.007 0.007 0.007 0.007 0.007
8 0.008 0.008 0.008 0.008 0.008 0.008 0.008
9 0.010 0.010 0.010 0.010 0.010 0.010 0.010

10 0.012 0.012 0.012 0.012 0.012 0.012 0.012
11 0.014 0.C14 0.014 0.014 0.014 0.014 0.014

12 0.017 0.017 0.017 0.017 0.017 0.017 0.017
13 0.020 0.0c0 0.020 0.020 O.CZO 0.020 0.020
14 0.023 0.023 0.023 0.023 0.023 0.023 0.023
15 0.023 0.0^8 0.028 0.028 0.028 0.018 0.028
16 0.033 0.033 0.033 0.033 0.033 0.033 0.033
17 0.039 0.039 0.039 0.039 0.039 0.039 0.039
i1 0.046 0.046 0.046 0.046 0.046 0.046 0.046

19 0.A55 0. G-5 0.055 0.055 0.055 0.05 0. r5
20 0.025 0.065 0.065 0.0(5 0.065 0.065 0.065
21 0.077 0.077 0.077 0.077 0.077 0.077 0.077
2 0.091 0.091 0.091 0.091 0.091 0.091 0.091
23 0.103 0.108 0108 0.108 0.108 0.108 0.108
24 0.129 0.129 0.129 0.129 0.129 0.129 0.129
25 0.152 0.152 0.152 0.152 0.152 0.152 0.152
Z6 0.121 0.181 0.161 0.161 0.181 0.101 0.161
27 0.:14 0.214 0.214 0.214 0.214 0.214 0.214

.24 0-^54 0.254 0.254 0.254 0.254 0.254
29 0.301 0.301 0.301 0.301 0.301 0.301 0.301
30 0.357 0.357 0.357 0.357 0.357 0.357 0.357
31 0.423 0.423 0.423 0.423 0.423 0.423 0.423
32 0.501 0.501 0.501 0.501 0.501 0.501 0.501
33 0.593 0.593 0.593 0.593 0.593 0.593 0.593
34 0.701 0.701 D.701 0.701 0,701 0.701 0,701
35 O.829 0.830 0.8)0 0.830 0.830 0.830 0.830
36 1.000 0.994 0.991 0.98 0.930 0.9r1 0.977
37 1.033 1.0^ 1.0.0 1.076 1.076 1.074 1.074
33 1.167 1.157 1.167 1.173 1.173 1.176 1.175
39 1.250 1.270 1.239 1.231 1.231 1.218 1.230
40 1.333 1.^93 1.329 1.335 1.334 1.336 1.334
41 1.417 1.437 1.432 1.425 1.423 1.424 1.426
42 1.500 1.479 1.481 1.4&6 1.485 1.469 1.489
43 1.5Z3 1.620 1.626 1.629 1.631 1,631 1.632
44 1.667 1.647 1.639 1.636 1.634 1.633 1.633
45 1.750 1.751 1.753 1.752 1.749 1.740 1.746
4S 1.833 1.844 1.649 1.853 1.859 i.863 1.867
47 1.917 1.904 1096 1.891 1.886 1.083 1.079
4S 2.000 2.005 2.010 2.010 2.009 2.003 2.007
4q9 2.033 2.038 2.088 2.089 2.093 2.095 2.099
50 2.167 2.157 2.152 2.149 2.146 2.143 2.141
51 2.250 2.258 2.265 2.267 2.268 2.268 2.268

52 2.333 2.329 2.324 2.326 2.327 2.348 2.329
53 2.417 2.417 2.416 2.410 2.407 2.404 2.402
54 2.500 2.499 2.501 2.508 2.511 2.517 2.521
55 2.503 2.587 2.590 2.505 2.581 2.575 2.571
56 Z.667 2.657 2.650 2.652 2.654 2.657 2.659
57 Z.730 2.7,2 2.773 2.779 2.780 2.782 2.70
53 2.833 1.828 2.015 2.r07 2.806 2.803 2.2.05
59 2.917 2.912 2.918 2,920 2.919 2.919 2.918

Figure 7.3.2-3. Summary of 125-Ring Template Optimization for the Vening-
Meinesz' Analog Transformation, Beginning from Circularized
AGEMIT Template.
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60 3.000 3.008 3.009 3.012 3.015 3.018 3.01
61 3.250 3.248 3.247 3.246 3.245 3.245 3.245
62 3.500 3.501 3.501 3.501 3.501 3.501 3.501

63 3.750 3.747 3.746 3.745 3.743 3.742 3.742
64 4.000 4.001 4.002 4 4.003 4.003 4.004 4.004
65 4.250 4.Z47 4.245 4.244 4.242 4.241 4.241
66 .500 4.501 4.502 4.503 4.504 4.505 4.506
67 4.750 4.747 4.746 4.744 4.743 4.741 4.7,40
68 5.00 4.995 4.9S5 4.995 4.995 4.9 5 4.96

69 5.250 5.^43 5.239 5.237 5.234 5.232 5.230
.0 5.500 5.49f 5.497 5.48 5.498 5.498 5.495
71 5.750 5.745 5.743 5.742 5.740 5.733 5.736

72 6.000 6.000 6.000 6.031 6.002 6.003 6.005
73 6.250 6.244 6.240 6.237 6.234 6.231 6.228
74 6.500 6.478 6.493 6.493 6.497 6.497 6.497
75 6.750 6.749 6.749 6.750 6.751 6.752 6.753
76 7.000 7.016 7.033 7.050 7.066 7.030 7.095
77 8.000 7.95 7.981 7.977 7.973 7.971 7.970
78 9.030 8.993 8.9S4 8.977 8.970 8.965 8.959
79 10.00 9.93 9.q35 9.979 9.973 9.968 9.0.61
80 11.000 10.992 10.9t5 10.979 10.974 10.969 0.oAS5
81 12.000 11,988 11.960 11.974 11.968 11.963 13.960

82 13.000 13.006 13.013 13.018 13.0ZI 13.004 13.027

83 1..000 13.971 13.946 13.5z5 13.905 13.90 13.678
e4 13.000 15.012 15.028 15.041 15.048 15.056 15.065
85 16.000 15.972 15.946 15.924 15.903 15.002 15.862
C6 17.000 17.002 17.004 17.008 17.014 17.020 17.0^6
87 13.000 18.003 18.007 18.015 18.0'4 18.029 18.032

t8 19.000 18.970 18.942 18.923 18.909 18.094 10.878
09 00.000 20.023 20.044 20.071 00.104 20.132 20.154
90 2].000 20.971 20.948 20.9:8 20.903 20.890 20.069
91 22.000 21.995 21.992 21.994 21.997 22.000 22.0C4

92 23.000 22.995 22.997 23.005 23.014 23.022 23.029
93 :4.000 23.955 23.925 23.110 23.903 23.902 23.906
94 25.000 05.150 25.294 25.422 25.538 25.642 25.735
95 33.000 30.009 30.004 29.969 29.932 29.900 29.873

96 35.000 34.949 34.905 34.253 34.821 34.780 34.738
97 40.OCO 39.966 39.943 39.935 39.921 39.905 39.tC4
93 45.000 44.981 44.963 44.946 44.927 44.906 44.856
99 50.000 49.957 49.930 49.908 4;.837 49.866 49.847
100 55.000 54.893 54.807 54.728 54.656 54.593 54.535
101 60.000 59.910 59.845 59.775 59.733 59.716 59.684
102 65.000 64.922 64.873 64.049 64.831 64.813 64.793
103 70.000 69.925 69.877 69.r50 69.829 69.810 69.793
104 75.020 74.946 74.916 74. 40 74.897 74.891 74.826
105 e3.0;0 79.947 79.913 79.C93 79.877 79.861 79.845
106 15. 3 ,4.94"0 04.900 34.673 64.062 &84.8,49 84.830
107 .010 69.933 89.893 89.r74 89.861 89.850 69.841
170 -5.000 94.23 94.875 94. 03 04.840 94.829 94.e19
109 IO.Oo 99.920 99.871 99.3,v;' 99.027 99.814 99.802

110 105.000 104.911 104.853 104.82 10,4.802 104.765 104.772
ill 110.000 IP9.921 109.874 109.848 109.832 109.022 109.C14

112 115.000 114.939 114.907 114.3c6 114.894 114.89,; 114.696
113 1:0.020 119.954 119.935 119.939 119.949 119.958 119.9t6
114 125.003 I4.CUI 124.950 124.964 124.904 125.002 125.017
115 130.000 129.q49 129.922 129.913 129.909 129.906 129.;03
116 135.000 134.q63 134.943 134.932 134.926 134.921 134.918
117 140,000 139.904 139.978 139.977 139.978 139.980 139.983
118 145.000 145.019 145.037 145.051 145.063 145.073 145.030
119 150.000 150.049 150.079 150.093 150.0% 150.059 150.075
120 155,000 155.053 155.130 155.151 155.160 155.150 155.144

121 160.CO0 159.99 159.940 159.873 159.797 159.724 159.659

122 165.000 164.681 164.403 164.482 164.555 164.634 164.714
123 170.000 169.960 169.970 169.892 169.727 169.624 169.615
1Z4 175.000 174.772 174.822 174.915 174.924 174.912 174.969
125 180.000 180.000 180.000 180.000 180.000 180.000 180.000

Figure 7.3.2-3. (continued)
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7.3.3 Discussion of Vening-Meinesz' Transformation Results

The optimization process for the discrete Vening-Meinesz' summa-

tion transformation has been demonstrated to work. However, only mar-

ginal to mediocre decreases in the global rms discretization error have

generally been obtained. Nevertheless, the feasibility of the process

has been proven and one or two fairly good runs indicate that the

possibility of some significant reductions do exist.

Some possible reasons for the marginal to mediocre results are:

i) The optimization runs generally require extensive use of the
"projection" algorithm to force satisfaction of the inequality

constraints (i.e. to prevent overlapping of parameters).

This is very detrimental ta convergence.

ii) Typically, a much larger percentage of the ring boundary

radii are closer to the origin in the Vening-Meinesz' case,

and have therefore been excluded from adjustment during opti-

mization. These parameters may have a larger effect than

previously thought.

iii) The Gauss-Newton algorithm used in the optimization runs

implicitly assumes a quadratic surface model in the neighbor-

hood of the current values of the parameters. This is because

of the linearization of the least-squares problem. A true

Newton method involves a matrix of second partial deriva-

tives in addition, which has been neglected in this implemen-

tation. This can be of importance if the response surface

is highly non-linear.*

*i

Dahlquist-Bj6rk (1974, pg. 444); Dennis [1977, pg. 296, where the second
partial derivative term is called S(x)].
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7.4 Template Optimization Results Using Variations in the Optimization
Algorithm

7.4.1 Increment Damping Variation

The variation of the optimization algorithm which involves the

damping of the increments to the independent template parameters was

described in Section 6.3.4.1. The increment damping variz ion seems to

perform well the function for which it was intended for templates with

a relatively small number of ring radii, but gives the opposite behavior

for templates with a relatively large number of ring radii.

The behavior of the optimization variation for 23-ring templates

is illustrated by two principal cases which have as their initial estimate

of template parameters the Pick-Picha-Vyskocil template and the equal

ring contribution template.

In the Pick-Picha-Vyskocil case, the summary of the intermediate

results of optimization process is given in Figure 7.4.1-1(a,b,c), from

which it is seen that:

a) With no damping (figure a), the figure-of-merit decreases for

two iterations and then increases for the following eight

iterations. The ring boundary radii numbered 21 and 22, seem

to oscillate in alternate iterations between two regions of

values, one of which is emphasized by circles in the figure.

If the oscillation could be controlled, a minimum might be

reached more easily.

b) With moderate damping (figure b), the figure-of-merit decreases

monotonically for at least five iterations although at a much

slower rate. The oscillation In ring boundary radii #21 and

#22 has been suppressed as desired. The damping parameter

value is 0.25, which is slightly too strong; the sphericdl

ring radii parameter #20 is not making sufficiently rapid

enough progress to a value of about 920. [The computer

printout of the summary is not available because the run

stopped on maximum time before it had been printed; however,

the values listed in the summary have been assembled from a

more detailed listing of the run.]

c) With extremely high damping (figure c), the figure-of-merit

decreases extremely slowly as the parameters change extremely

slowly. The damping parameter has the value 0.0, which

occurred accidentally.
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5 UMMPY OF COMPLETE RUN

ITER% 0 ITER4 1 ITEP# 2 ITER2 3 ITERS 4 ITER# 5 ITER* 6 !TER# 7 ITER* 8 ITER# 9 ITER#10

FIGUPE OF MERIT
7.14E-01 6.37E-01 6.36E-01 6.5SE-01 6.70E-01 6.96E-01 7.11E-01 7.26E-01 7.33E-01 7.48E-01 7.48E-01

VALUES OF PAPAMETERS
RI;CG SPHERICAL RING RADII (OEGREES1

0 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.0,0 0.030
1 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
2 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063
3 0.08? 0.0S9 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.039
4 0.123 0.1Z 0.128 0.128 0.128 0.128 0.108 0.108 0.128 0.128 0.128
5 0.183 0.183 0.103 0.183 0.183 0.183 0.183 0.103 0.183 0.103 0.183
6 0.261 0.-61 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261
7 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372
8 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530 0.530
9 0.753 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

10 1.059 1.153 1.213 1.249 1.276 1.293 1.308 1.317 1.326 1.332 1.337
11 1.714 1.855 1.913 1.956 1.992 2.017 2.041 2.057 2.073 2.005 2.093
12 Z.966 0.9:.7 3.030 3.072 3.113 3.145 3.175 3.193 3.221 3.238 3."51
13 4.021 4.775 4.790 4.021 4,859 4.892 4.927 4.954 4.962 5.004 5.0c1
14 7.591 7.516 7.516 7.531 7.558 7.534 7.616 7.642 7.671 7.694 7.710
15 11.470 11.653 11.691 11.691 11.694 11.702 11.720 11.735 11.754 11.765 11.772
16 13.550 13.265 18.114 18.039 17.987 17.970 17.951 17.943 17.927 17.906 17.090
17 23.3C0 03.032 27.780 27.657 27.508 27.492 27.395 27.351 27.254 27.171 27.119
18 40.000 42.106 42.271 42.235 42.020 41.945 41.696 41.505 41.340 41.172 41.078
19 65.300 64.666 64.277 63.951 63.619 63.177 62.790 62.444 62.128 61.911 61.780
00 93.600 9^.944 92.839 91. 92.107 90 140 90.635 89.].If 89.970 89.19 89.019
21 114.400 lf 776 116.827 1e 109.118 F 113.438 29.77-2 113.552 133.550 107.697
S130.500 130478 169.561 133.105 5 130.117 1 1601 138.339 f169.63'1 138.413

23 130.000 00 .000 .000 180.000 180.000 180.000 180.000 180.000 160.000 180.000

Figure 7.4.1-1a. Comparison of Vening-Meinesz' Optimization Using Increment
Damping Variation. No Damping (damping parameter = 0.50).

SUMMARY OF COMPLETE RUN

ITER# 0 ITER# 1 ITER# 2 ITER# 3 ITER# 4 ITER# 5

Figure of Merit

.71433 .70587 .69903 .69422 .69037

Values of Parameters
Ring # Sperhical Ring Radii (Degrees)

20 98.600 97,244 96.294 95.676 95.181 94.753

21 114.400 117.809 121.985 123.970 124.641 124.660

22 130.500 135.509 142.189 147.264 149.403 149.924

23 180.000 180.000 180.000 180.000 180.000 180.000

Figure 7.4.1-lb. Comparison of Vening-Meinesz' Optimization Using Increment
Damping Variation. Moderate Damping (damping parameter =
0.25).
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p..

SUMMARY OF COMPLETE RUN

ITER4 0 ITER# I ITERZ 2 ITERS 3 ITER3 4 ITERS 5

FIGURE OF M!RIT
7.14E-01 7.14E-01 7.13E-01 7.12E-01 7.11E-01 7.11E-01

VALUES OF PATAMETERS
RING# SPHERICAL RING RADII (DEGREES)

0 0.030 0.030 0.030 0.030 0.030 0.030
1 0.04 0.044 0.044 0.044 0.044 0.044
2 0.063 0.063 0.063 0.063 0.063 0.063
3 0.C89 0.0I9 0.039 0.089 0.089 0.089
4 0.1^8 0.128 0.128 • 0.128 0.128 0.128
5 0.183 0.183 0.1S3 0.183 0.183 0.183
6 0.261 0.261 0.261 0.261 0.261 0.261
7 0.372 0.372 0.372 0.372 0.372 0.372
8 0.530 0.530 0.530 0.530 0.530 0.530
9 0.753 0.752 0.751 0.751 0.750 0.750

10 1.069 1.069 1.069 1.069 1.069 1.069
11 1.794 1.794 1.794 1.794 1.794 1.794
12 2.966 2.966 2.966 2.966 2.965 2.965
13 4.8Z1 4.821 4.eZ0 4.820 4.820 4.819
14 7.591 7.590 7.590 7.589 7.538 7.588
15 11.470 11.472 11.474 11.475 11.477 11.479
16 18.550 18.546 18.542 18.538 18.534 18.530
17 ^8.300 28.296 28.291 20.287 28.283 28.278
18 40.300 40.822 40.843 40.E64 40.884 40.905
19 65.300 65.272 65.244 65.217 65.190 65.163
,0 98.600 98.472 98.344 98.217 98.090 97.965
21 114.400 114.467 114.535 114.606 114.679 114.753
22 130.500 130.653 130.807 130.963 131.120 131.280
23 180.000 180.000 180.000 180.000 180.000 180.000

Figure 7.4.1-ic. Comparison of Vening-Meinesz' Optimization Using
Increment Damping Variation. Extremely High Dampinq
(damping parameter = 0.00).

In the Equal Ring Contribution Template case, an analogous situa-

tion occurs. A summary of the intermediate results of the optimization

process is given in Figure 7.4.1-2(b,c)*, from which it may be observed

that:

With modgrate damping (figure b), the figure-of-merit decreases

slowly and nomotonically as do the values of the template parameters.

The change is, however, slightly faster than that for the Pick-Picha-

Vyskocil template (Figure 7.4.1-ib), although the dmaping parameter is

stronger here than it is there.

With high damping (figure c), the figure-of-merit and the values

of the parameters change more slowly than with moderate damping, as

expected.

*
The 23-ring equal ring contribution case with no damping was not run,
so no Figure "a" appears.
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SUMMARY OF COMPLETE RUN

ITERS I ITERI 2 ITER* 3 ITERS 4 ITERS 5 ITERS 6 ITERS 7 ITERS 8 ITERS 9 ITER*1O

FIGURE OF MERIT
7.54E-01 6.63E-01 6.09E-01 5.78C-01 5.59E-01 5.46E-01 5.36E-01 5.29E-01 5.241-01 5.19E-02

VALUES OF PARAMETERS
RIN3 SPHERICAL RING RAOII (DEGREES)

0 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
1 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061
2 0.083 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085
3 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118
4 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
5 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
6 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316
7 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439
8 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610 0.610
9 0.e47 0.848 0.849 0.850 0.850 0.851 0.851 0.852 0.852 0.8S3

10 1.177 1.177 1.177 1.178 1.178 1.178 1.178 1.179 1.179 1.179
11 1.634 1.635 1.635 1.635 1.635 1.635 1.635 1.636 1.636 1.636
12 2.270 2.271 2.271 Z.Z71 2.271 2.271 2.271 2.271 2.271 2.271
13 3.154 3.154 3.155 3.155 3.155 3.155 3.155 3.155 3.155 3.155
14 4.332 4.333 4.383 4.383 4.384 4.384 4.384 4.384 4.384 4.384
15 6.091 6.092 6.092 6.092 6.093 6.093 6.093 6.093 6.093 6.093
16 8.470 8.471 8.472 8.472 8.472 8.472 8.472 8.472 8.472 8.471
17 11.790 11.792 11.792 11.793 11.793 11.792 11.792 11.791 11.791 11.790
18 16.445 16.445 16.445 16.444 16.443 16.442 16.441 16.440 16.439 16.439
19 23.031 23.018 23.010 23.005 23.003 23.004 23.007 23.012 23.020 23.030
0 32.523 32.450 32.427 3E.434 32.463 32.510 32.571 32.645 32.729 32.822

21 46.780 46.527 46.744 47.207 47.785 48.408 49.033 49.636 50.204 50.728
22 70.639 74.568 77.654 80.082 82.030 83.622 84.943 86.054 86.997 87.804
23 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932

Figure 7.4.1-2b. Comparison of Vening-Meinesz' Optimization Using
Increment Damping. Moderate Damping (damping parameter =
0.20).

SUMMARY OF COMPLETE RUN

ITER# I 1 TERN 2 ITERS 3 ITER8 4 ITERS 5 ITERI 6 ITERS 7 ZTER* 8 ITERS 9 ITER0lO

FIGURE OF MERIT
7.54E-01 7.26E-01 7.01E-01 6.78E-01 6.59E-01 6.42E-01 6.29E-01 6.17E-01 6.08E-01 6.00E-01

VALUES OF PARAMETERS
RING4 SPHERICAL RING RAOII (DEGREES)0 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044

1 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061
2 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085
3 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118
4 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
5 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228
6 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316
7 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439
8 0.610 0.610 0.610 0,610 b.610 0.AlO 0 n A &IO t % l n
9 0.847 0.847 0.848 0.848 0.848 0.849 0.849 0.849 0.949 0.850

10 1.177 1.177 1.177 2.177 1.177 12.177 1.177 1.177 1.177 1.177
11 1.634 1.634 1.634 1.634 1.63s 1.635 1.635 1.635 1.635 1.635
12 2.270 2.270 2.270 2.270 2.270 2.Z70 2.270 2.270 2.270 2.270
13 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154 3.154
14 4.382 4.363 4.383 4.383 4.383 4.383 4.383 4.303 4.383 4.383
15 6.091 6.091 6.091 6.091 6.091 6.091 6.092 6.092 6.092 6.092
16 6.470 8.470 8.470 8.471 8.471 8.471 8.471 8.471 8.471 8.471
17 11.790 11.790 11.791 11.791 11.791 11.791 11.792 11.792 11.792 11.792
18 16.445 16.445 16.445 16.445 16.444 16.444 16.444 16.444 16.443 16.443
19 23.031 23.026 23.022 23.018 23.014 23.010 23.007 23.004 23.001 22.998
20 32.523 32.490 32.461 32.434 32.411 32.390 32.371 32.355 32.342 32.330
11 46.70 46.634 46.502 46.390 46.298 46.228 46.179 46.151 46.142 46.150
22 70.639 71.750 72.309 73.807 74.739 75.603 76.403 77.139 77.817 78.440
23 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932 179.932

Figure 7.4.1-2c. Comparison of Vening-Meinesz' Optimization Using Incre-
ment Damping Variation. High Damping (damping para-
meter = 0.10).
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Finally, the results in a 125-ring case are exhibited in Figure

7.4.1-3(a,b). They are opposite to the previous results. In the

"moderately damped" case (figure b) the figure-of-merit requires less

than half as many iterations to achieve the same reduced values as in

the "undamped" case (figure a). In particular, to reduce the figure-of-

merit from 0.133 to 0.102, requires only one iteration in the damped

case but three in the undamped case. And to reduce it from 0.102 to

.0848 again requires only one iteration in the damped case but two

iterations in the undamped case. The reasons for these contradictory

results are not known.
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SUMMAR Y OF COMPLETE RUN

ITERS 0 ITERS I ITERI 2 ITER8 3 ITERO 4 ITERS $ ITERS 6 ITERS 7 ITERS 8 ITERS 9 ITER0O1

FIGURE OF MERIT
1.33E-01 1.21E-01 1.13E-01 1.02E-01 9.13E-02 8.49E-02 8.21E-02 8.22E-02 8.64E-02 8.99E-02 9.04E-02

VALUES OF PARAMETERS
RINGS SPHERICAL RING RADII (DEGREES)

68 0.673 0.673 0.673 0.673 0.673 0673 0.673 0.673 0.673 0.673 0.673
69 0.732 0.733 0.733 0.733 0.733 0.734 0.734 0.734 0.743 0.756 0.690
70 0.797 0.797 0.796 0.796 0.795 0.794 0.794 0.794 0.774 (0.765 4 0.801,
71 0.868 0.868 0.868 0.869 0.870 0.870 0.870 0.871 0 900 '4 'o.902., . 0.870
72 0.944 0.944 0.945 0.944 0.944 0.944 0.943 0.944 (..0.910 + 0.go8o.) 1I1s
73 1.018 1.028 1.027 1.027 1.027 1.027 1.027 1.027 1.052 1.040 1.064
74 1.119 1.119 1.120 1.120 1.120 1.121 1.121 1.122 1.105 1.109 1.090
75 1.218 1.217 1.217 1.216 1.216 1.216 1.216 1.216 1.226 1.224 1.237
76 1.3,5 1.326 1.326 1.327 1.327 1.327 1.327 1.328 1.323 1.325 1.313
77 1.443 1.442 1.41#2 1.442 1.442 1.442 1.442 1.442 1.415 1.444 1.453
78 1.570 1.571 1.571 1.571 1.571 1.572 1.572 1.573 1.571 1.573 1.574
79 1.709 1.709 1.709 1.709 1.709 1.710 1.710 1.710 1.712 1.711 1.708
80 1.060 1.861 1.861 1.861 1.861 1.862 1.863 1.863 1.862 1.861 1.864
81 2.025 2.025 2.025 2.025 2.026 2.026 2.027 2.027 2.020 2.031 2.020
82 2.204 2.204 2.204 2.205 2.205 2.205 2.206 2.206 2.206 2.206 2.207
83 2.399 2.399 2.399 2.400 2.400 2.401 2.401 2.402 2.402 2.402 2.403
84 2.611 Z.612 2.612 2.012 2.613 2.613 2.614 2.614 2.614 2.615 2.615
85 2.843 2.843 2.843 2.844 2.845 2.846 2.a46 2.846 2.847 2.848 2,848
86 3.094 3.095 3.096 3.097 3.098 3.099 3.100 3.100 3.100 3.101 3.101
87 3.368 3.369 3.369 3.370 3.371 5.372 3.372 3.373 3.374 3.375 3.376
88 3.666 3.667 3.667 3.667 3.668 3.669 3.670 3.671 3.673 3.675 3.676
89 3.991 3.991 3.991 3.991 3.993 3.996 3.997 3.999 4.001 4.003 4.004
90 4.344 4.344 4.344 4.344 4.346 4.349 4.351 4.355 4.357 4.359 4.360
91 4.729 4.729 4.730 4.733 4.736 4.738 4.740 4.741 4.742 4.743 4.743
92 5.148 5.148 5.149 5.153 5.157 5.159 5.160 5.161 5.161 5.163 5.165
93 5.604 5.605 5.609 5.611 5.614 5.616 5.618 5.620 5.624 5.6,6 5.632
94 6.101 6.104 6.107 6.110 6.113 6.117 6.121 6.124 6.125 6.127 6.133
95 6.642 6.648 6.652 6.655 6.660 6.665 6.669 6.671 6.672 6.677 6.681
96 7.231 7.235 7.238 7.242 7.248 7.254 7.259 7.262 7.265 7.272 7.276
97 7.873 7.876 7.877 7.879 7.883 7.889 7.894 7.897 7.906 7.911 7.915
98 8.572 8.576 8.576 8.577 8.580 8.584 8.588 8.596 8.60? 8.606 8.609
99 9.335 9.332 9.334 9.339 9.344 9.347 9.354 9.362 9.365 9.368 9.369

100 10.166 10.169 10.165 10.172 10.180 10.192 10.214 10.227 10.237 10.247 10.256
101 11.071 11.076 11.074 11.076 11.081 11.105 11.119 11.128 11.134 11.140 11.144
102 12.059 12.072 12.075 12.078 12.101 12.115 12.124 12.129 12.132 12.135 12.137
103 13.137 13.144 13.144 13.156 13.185 13.205 13.221 13.234 13.244 13.253 13.260
104 14.314 14.308 14.314 14.335 14.356 14.373 14.390 14.402 14.412 14.422 14.432
105 15.599 15.596 15.600 15.605 15.615 15.624 15.627 15.629 15.629 15.627 15.626
106 17.003 17.022 17.059 17.104 17.144 17.173 17.193 17.204 17.211 17.217 17.219
107 18.539 18.609 18.662 18.714 18.766 10.007 18.842 10.866 13.CCI 18.92 18.04
108 10.220 20.294 20.296 20.289 20.312 20.356 20.403 20.454 20.510 20.570 20.632
109 ^2.062 22.069 22.090 22.097 22.100 22.082 22.044 21.909 21.9^9 21.868 21.807
110 Z4.004 24.108 24.112 24.153 24.215 24.274 24.328 24.370 ^4.406 24.439 24.471
111 26.307 26.238 26.195 26.180 26.199 26.242 26.286 26.313 26.329 26.341 26.352
112 08.755 28.859 28.929 28.983 29.017 29.024 29.013 28.999 28.984 28.971 28.959
113 31.457 31.591 31.741 31.907 32.050 32.172 32.232 32.383 32.498 32.615 32.718
114 34.451 34.606 34.717 34.057 35.073 + 35.318 4 35.538 35.894 4' 36.014 + 36.070 1.36.099
115 37.779 37.775 37.500 37.155 36.910 f 36.741 + 36.576 136.345 + 36.239 +__ 36.183 36.155
116 41.496 41.233 41.298 41.446 41.514 41.464 41.341 41.171 40.971 40.768 40.56O
117 45.674 45.771 45.793 45.999 46.309 46.671 47.038 47.379 47.691 47.980 40.246
118 50.408 50.562 50.721 50.813 50.926 51.043 51.128 51.146 51.118 51.063 4 50.987
119 55.8304. 56.600 57.205 57.790 58.326 58.693 58.950 59.177 59.389 59.586 + 59.766
120 62.132 + 62.047 61.867 61.838 62.086 62.572 63.146 63.564 63.886 64.177 - 64.458
121 69.617 + 69.249 + 68.509 68.164 + 68.433 + 68.774 4 68.988 69.068,. 69.112 + 69.202 4 69.305
122 78.811 4t 79.219,U 80.433 r 82.324 + 84.124 +' 85.613 + 86.814 87.776 + 88.617 +J. 89.409 4 90.204
123 90.780 + 93.236 94.147 94.449 94.925 95.325 95.550 95.508 95.339 95.093 94.755
124 108.470 * 110.141 111.377 113,269 115.635 117.644 119.155 120.112 120.739 121.349 121.854
125 179.997 179.997 179.997 179.997 179.997 179.997 179.997 179.997 179.997 179.997 179.997

Figure 7.4.1-3a. Comparison of Vening-Meinesz ' Optimization Using Incre-
ment Damping. No Damping (damping parameter = 0.50).

7-26



SUtARY OP COMPLETE RUN

£TER I ITERS 2 ITERS 3 ITER8 4 ITERS 5 ITERS 6

-FIGURE OF MERIT I
1.33E-01 1.02E-01 8.48E-02 1.13E-01 1.31E-01 1.08E-01

VALUES OF PARAMETERS
RINGS SPHERICAL RZNG RADII (DE6REES

65 _ 0.673 0.673 0.673 0.673 0.673 0.673
69 0.732 0.732 0.732 0.732 0.732 0.73Z
70 0.797 0.815 0.844 0.925 0.933 0.777
71 0.860 0.C50 0.944 0.958 0.950 0.937
72 0.944 0.;56 0.999 0.986 0.964 0.953
73 1.028 1.008 1.118 1.024 1.184 1.012
74 1.119 1.144 1.184 1.221 1.239 1.248
75 1.218 1.194 1.325 1.291 1.274 1.265
76 1.325 1.356 1.403 1.341 1.301 1.279
77 1.443 1.414 1.568 1.437 1.609 1.368
73 1.570 1.604 1.622 1.650 1.664 1.671
79 1.709 1.674 1.656 1.668 1.673 1.676
c0 1.860 1.724 1.700 1.689 1.604 1.681
81 2.025 1.8 8 1.871 1.888 1.897 1.934
82 2.204 2.068 2.070 2.073 2.065 2.071
83 2.399 2.184 2.287 2.295 2.290 2.301
84 2.611 2.531 2.534 2.541 2.536 2.546
85 2.'43 2.794 2.797 2.803 2.799 2.809
&6 3.094 3.067 3.068 3.069 3.066 3.074
87 3.368 3.3'0 3.353 3.357 3.362 3.371
88 3.666 3.661 3.657 3.657 3.658 3.659
89 3.991 3.994 3.995 3.997 3.999 3.997
90 4.344 4.345 4.346 4.346 4.347 4.346
91 4.729 4.729 4.728 4.728 4.730 4.730
92 5.148 5.146 5.149 5.150 5.149 5.149
93 5.604 5.59a 5.599 5.604 5.606 5.610
94 6.101 6.100 6.097 6.099 6.101 6.102
95 6.642 6.645 6.639 6.637 6.633 6.633
96 7.231 7.235 7.225 7.22 7.219 7.217
97 7.873 7.875 7.877 7.880 7.874 7.877
98 8.572 8.575 8.579 8.52 8.580 8.580
99 9.335 9.335 9.342 9.343 9.341 9.341

100 10.166 10.168 10.170 10.171 10.165 10.164
101 11.071 11.069 11.067 11.066 11.065 11.064
102 12.059 12.059 12.057 12.056 12.054 12.050
103 13.137 13.1'8 13.136 13.139 13.142 13.141
104 14.314 14.317 14.315 14.315 14.320 14.320
105 15.599 15.601 15.602 15.598 15.608 15.609
106 17.003 16.998 17.007 17.015 17.025 17.034
107 18.539 18.535 18.544 18.543 18.549 18.557
103 20.220 20.227 20.230 20.233 20.233 20.242
109 22.0L2 22.071 22.005 22.089 22.087 22.090
110 24.084 24.096 24.100 24.113 24.121 24.130
111 26.307 26.319 26.326 26.333 26.341 26.348
112 28.755 28.775 28.789 28.792 28.797 28.790
113 31.457 31.483 31.487 31.493 31.485 31.493
114 34.451 34.474 34.469 34.478 34.491 34.501
115 37.779 37.773 37.788 37.818 37.837 37.840
116 41.496 41.495 41.502 41.483 41.447 41.407
117 45.674 45.701 45.633 45.566 45.512 45.440
118 50.408 50.356 50.307 50.237 50.170 50.117
119 55.830 55.608 55.450 55.338 55.281 55.253
120 62.132 61.926 61.817 61.911 62.070 62.213
121 69.617 69.877 70 179 70.185 70.110 7).044
122 78.811 78.660 78.67? 78.544 78.458 78.392
123 90.780 91.525 93.204 94.325 94.904 95.153
124 103.470 113.447 117.084- 119.626 121.557 122.842
Zs 180.000 180.000 180.oo 180.000 180.000 180.000

Figure 7.4.1-3b. Comparison of Vening-Meinesz' Optimization Using Incre-
ment Damping. Moderate Damping (damping parameter =0.25).
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7.4.2 Output Weighting Variation

The variation of the optimization algorithm which uses output

weighting was described in Section 6.3.4.2. This variation performs

well the immediate function for which it was intended, namely to reduce

the rms discretization error more rapidly than the standard algorithm

(using input weighting) by heavily overweighting large output residuals

in the least squares solutions. However, the optimization variation

seems to provide mixed final results, at least on the basis of the

relatively few cases run.

In particular, in a Vening-Meinesz' case, the rms discretization

error is rapidly reduced in one iteration to a level which previously

required six iterations to attain, but the convergence then becomes

unstable. In a Stokes' case, the convergence is consistent over three

iterations but it does not seem to be as rapid as might be expected,

although an examination of the detailed printout reveals the optimiza-

tion variation is performing as designed.

Iterative rms errors are shown in Figure 7.4.2-1(a,b) for a 125-

ring Vening-Meinesz' optimization starting from a Circularized AGEMIT

template. With standard input weighting (figure a), the figure-of-

merit decreases slowly from 0.1332 mgal to 0.0821 mgal in six iterations.

However with output weighting (figure b), the figure-of-merit is

reduced immediately to 0.0815 mgal in a single iteration, but subsequent

iterations cause the figure-of-merit to oscillate at a >igher value.

SUMIARY OF COMPLETE RUN

ITER# 0 ITER* I ITERS 2 ITERS 3 ITERS 4 ZTERO S ITERS 61 ITERS 7 ITERS 6 ITER* 9 ITER41O

FIGURE OF MERIT
1.33E-01 1.21E-01 1.13E-01 1.02E-01 9.13E-02 8.49E-02 8.21E-02 8.22E-02 8.64E-02 8.99E-02 9.04E-02

Figure 7.4.2-la. Example of Vening-Meinesz' Optimization Run Using
Standard Weighting.
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SLV.ARY OF COMPLETE RLN

!TERI 0 iTER# I ITERS 2 ITERS 3 ITERI 4 ITER# 5 ITERB 6 ITERI 7 ITERS 8 ITERS 9 ITERVIO

FIGURE OF MERIT
1.33E-01 8.15E-02 18.71E-02 8.99E-O2 9.39E-O2 1.45E-01 9.41E-02 8.98E-02 912E-02 1.OSE-01 1.O1E-01

Figure 7.4.2-lb. Example of Vening-Meinesz' Optimization Run Using
Output Weighting.

A more detailed set of results is given in Figure 7.4.2-2(a,b,c,d)

to illustrate how the output weighting variation works numerically. The

sequence of four individual listings provides the low degree residuals

on the first four passes of a 66-ring Classic Stokes' optimization,

beginning with an equal ring contribution template. The following obser-

vations can be made:

a) On the initial pass (figure a), very large output residuals

occur for degrees 3, 6, 7, 8, 11, and 12 as shown in meters

in the SIGMA column. These are heavily weighted by the corres-

ponding weights shown in the WEIGHT column. Under the stan-

dard a priori weighting the residuals would only have been
weighted by the values shown in the DEG VAR IN column.

b) On the first iteration (figure b), the very large output

residuals have been much reduced although some medium large

ones remain.

c) On the second iteration (figure c), the medium large resi-

duals are reduced further.

d) Finally on the third iteration (figure d), no harmonic degree

contributes more than 0.1 meter to the rms discretization

error, and the contributions are more evenly spread through-

out all degrees.
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N ACTUAL SPECTRUM IDEAL SPECTRUM RESID SPECTRUM REL RESID DEG VAR IN WEIGHT SIGMA CU SIGMA
0 -0.0000000000 0.0000000000 -0.0000000000 0.00c000 0.00000 0.00000 0.00000 0.00000
1 -0.0037093003 0.0000000000 -0.0037093002 0.000000 0.00000 0.00000 0.00000 0.00000
2 0.9855297639 1.0000000000 -0.0144702345 -0.014470 322.03928 67431.00000 0.25967 0.25967
3 0.4854659047 0.5000000000 -0.0145340934 -0.029068 1334.86223 281976.06250 0.591'i2
4 0.3250120262 0.3333333333 -0.0083213039 -0.024964 965.39143 66847.62500 0.25855 j.t'518
5 0.2477543190 0.2500000000 -0.0022451810 -0.008981 828.53518 4176.50781 ,.S.JAS6. 0.64841
6 0.2118126460 0.2000000000 0.0118126459 0.059063 750.Z6000 104773.93750 0.32369 0.72471
7 0.1873065575 0.1666666667 0.0206398889 0.123839 697.57316 297169.56250 0.5453 0.90685
8 0.1563881854 0.1428571429 0.0135310404 0.094717 657.00250 120289.93750 [D.34683 0.97091
9 0.1303717268 0.1250000000 0.0053717233 0.042974 624.09143 18008.40625 0.13420 0.98014
10 0.1052069804 0.1111111111 -0.0059041306 -0.053137 596.27118 20785.26563 0.14417 0.99069
11 C.0814208991 0.100000000 -0.0185700990 -0.185701 572.08381 197282.18750 F0T.IWnh 1.08570
lZ 0.0724732599 0.0909090909 -0.0184358Z84 -0.202794 550.63067 187148.12500 10.43261 1.16371
13 0.0737547066 0.0833333333 -0.0095786266 -0.114944 531.32108 48748.75391 0,Z2079 1.18939
14 0.0763192465 0.0769230769 -0.0006038302 -0.007850 513.74632 187.31750 0.01369 1.18946
15 0.0813236081 0.0714285714 0.0098950341 0.138530 497.61136 48721.96875 0.22073 1.20977
16 0.0302580257 0.0666666667 0.0135913566 0.203870 482.69572 89165.93750 0.29861 1.24608
17 0.0720900855 0.0625000000 0.0095900819 0.153441 468.82966 43118.10156 0.20765 1.26326
18 0.0610276208 0.0585235294 0.0022040913 0.037470 455.07929 2214.66943 0.04706 1.26414
19 0.0496436676 0.055535556 -0.0059118867 -0.106414 443.73669 15508.77344 0.12453 1.27026
20 0.0434718695 0.0526315789 -0.0091597065 -0.174034 432.31334 36271.17969 0.19045 1.28446
21 0.0422327270 0.0500000000 -0.0077672713 -0.155345 421.53544 25431.44141 0.15947 1.29432
22 0.0412892788 0.0476190476 -0.0063297674 -0.132925 411.34070 16480.75391 0,12838 1.30067
23 0.0450381462 0.0454545455 -0.0003663991 -0.008061 401.67587 53.92427 0.00734 1.30069
24 0.0459704136 0.0434782609 0.0024921526 0.057320 392.49500 2437.71729 0.04937 1.30163
25 0.0409919830 0.0416666667 -0.0006746836 -0.016192 383.75809 174.68588 0.01322 1.30169
26 0.0405553272 0.0400000000 0.0005553272 0.013883 375.43000 115.77818 0.01076 1.30174
27 0.0395683388 0.03Z4615385 0.0011068003 0.028777 367.47972 450.16504 0.02122 1.30191
23 0.0333889155 0.0370370370 -0.0031481213 -0.084999 359.87965 3366.64746 0.05972 1.30328
29 0.0359343921 0.0357142857 0.0002201064 0.006163 352.60512 17.08258 0.00413 1.30329
30 0.0365412629 0.0344827586 0.0020585041 0.059697 345.63397 1464.60254 0.038Z7 1.30385
31 0.0297360857 0.0333333333 -0.0035972474 -0.107917 338.94621 4386.02734 0.06623 1.30553
32 0.0290709279 0.0322580645 -0.0031871365 -0.098801 332.52372 3377.72217 0.05812 1.30682
33 0.0285809977 0.0312500000 -0.0026690022 -0.085408 326.35002 2324.77759 0.04822 1.30771
34 0.0225125925 0.0303030303 -0.0077904351 -0.257084 320.41009 19445.96484 0.13945 1.31512
3S 0.0250291219 0.0294117647 -0.0043826401 -0.149010 314.69017 6044.41797 0.07775 1.31742
36 0.0292238078 0.0285714286 0.0006523791 0.022833 309.17765 131.58554 0.01147 1.31747
37 0.0266595757 0.0277777778 -0.0011182020 -0.040255 303.86091 379.93994 0.01949 1.31761
38 0.0282520221 0.0270270270 0.0012249949 0,045325 298.72925 448.27637 0.02117 1.31778
39 0.0290753150 0.0263157895 0.0027595253 0.104062 293.77277 2237.07373 0.04730 1.31863
40 0.0229563447 0.0256410256 -0.0026846807 -0.104703 288.98230 2082.84277 0.04564 1.31942
41 0.0209341335 0.0250000000 -0.0040658638 -0.162635 284.34935 4700.64453 0.06856 1.32120
42 0.0213527790 0.0243902439 -0.0030374648 -0.124536 279.86600 2582.09717 0.05081 1.32218
43 0.0184515911 0.0233095238 -0.0053579323 -0.225033 275.52489 7909.61328 0.0,394 1.32517
44 0.0192304464 0.0232553140 -0.0040253662 -0.173091 271.31916 4396.33594 0.06630 1.32683
45 0.0211524440 0.0227272727 -0.0015748285 -0.069292 267.24239 662.78369 0.02574 1.32708
46 0.0196053811 0.0222222222 -0.0025360410 -0.114158 263.28857 1694.40967 0.04116 1.32771
47 0.0189859998 0.0217391304 -0.0027531306 -0.126644 259.45210 1966.57617 0.04435 1.32845
48 0.0193155695 0.0212765957 -0.0019610261 -0.092168 255.72768 983.43213 0.03136 1.32882
49 0.0182337808 0.0203333333 -0.0025995523 -0.124779 252.11038 1703.67896 0.04128 1.32946
50 0.0181876777 0.0204081633 -0.0022204854 -0.108804 248.59554 1225.71362 0.03501 1.32993
51 0.0185162384 0.0200000000 -0.0014837615 -0.074188 245.17878 539.77271 0.023Z3 1.33013
52 0.0180409969 0.0196078431 -0.0015668441 -0.079909 241.85596 593.75635 0.02437 1.33035
53 0.0166001588 0.0192307692 -0.0026306103 -0.136792 218.62319 1651.29858 0.040t.4 1.33097
54 0.0149664644 0.01FZ679245 -0.039014600 -0.206777 235.47681 3504.28418 0.05987 1.33Z32
55 0.0137764776 0.01C3185185 -0.0047420375 -0.256070 232.41332 526.25781 0.07229 1.33428
56 0.0130022218 0.0101818102 -0.0051795952 -0.284878 229.42945 6155.17578 0.07845 1.33658
57 0.0132653153 0.017e571429 -0.0045918263 -0.257142 226.52208 4776.18750 0.06911 1.33337
E0 0.0145773246 0.0175438596 -0.0029665348 -0.169092 273.65326 1968.53003 0.04437 1.31%10

Figure 7.4.2-2a. Iteration #0 of a Stokes' Optimization Run Using
Output Weighting.
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N ACTUAL SPECTRUM IDEAL SPECTRUM RESID SPECTRUM REL RESID DEG VAR IN WEIGHT SIGMA CUM SIGMA
0 -0.0000000000 0.0000000000 -0.0000000000 0.000000 0.00000 0.00000 0.00000 0.00000
1 -0.00C0434992 0.0000000000 -0.0000434992 0.000000 0.00000 0.00000 0.0%000 0.00000
2 0.9918916901 1.0000000000 -0.0061083067 -0.008108 322.03928 21172.35156 0.14551 0.14551
3 0.4939480322 0.5000000000 -0.0060519651 -0.012104 1334.86223 48S91.01953 1.111 0.,6469
4 0.3296772765 0.3333333333 -0.0036560546 -0.010968 965.39143 12904.12891 0.1136 0.28804
S 0.2464799639 0.2530000000 -0.0035200361 -0.014080 828.53518 10266.08984 0.10132 0.30534
6 0.2015902158 0.2000000000 0.0015902156 0.007951 750.86000 1898.76367 0.04357 0.30844
7 0..722599395 0.1666666667 0.0055932701 0.033560 697.57316 21823.34375 0.14773 0.34199
8 0.1477207036 0.1420571429 0.0048635602 0.034045 657.00250 15540.87500 0.12466 0.36400
9 0.1271832174 0.1250000000 0.0021832173 0.017466 624.09143 2974.69238 0.05454 0.36806
10 0.1094111718 0.1111111111 -0.0016999391 -0.015299 596.27118 1723.10010 0.04151 0.37040
11 0.0997503975 0.1000000000 -0.0002496024 -0.002496 572.08331 35.64156 0.00597 0.37045
12 0.0864487499 0.0909090909 -0.0044603385 -0.049064 5S0.63067 10954.57813 0.10466 0.38495
13 0.070060517 0.0633333333 -0.0052472800 -0.062967 531.32108 14629.35938 0.12095 0.40350
14 0.0767456135 0.0769230769 -0.0001774634 -0.002307 513.74632 16.17953 0.00402 0.40352
15 0.0712810953 0.0714285714 -0.0001474762 -0.002065 497.61136 10.82266 0.00329 0.40354
16 0.0620251486 0.0666666667 -0.0046415180 -0,069623 482.69572 10399.04297 0.10198 0.41622
17 0.0640267975 0.06:5000000 0.0015267974 0.024429 468.82966 1092.89307 0.03306 0.41753
18 0.0594731137 0.05*3235294 0.0006495842 0.011043 455.87929 192.36264 0.01387 0.41776
19 0.0513928041 0.055555556 -0.0041627511 -0.074930 443.73669 7689.20516 0.06769 0.42687
20 0.0537954989 0.0526315789 0.0011639199 0.022114 432.31334 585.65845 0.02420 0.42755
21 0.0510194489 0.0500000000 0.0010194487 0.020389 421.53544 438.09106 0.0Z093 0.42806
22 0.0476583643 0.0476190476 0.0000393167 0.000326 411.34070 0.63585 0.00080 0.42806
23 0.0476397604 0.0454545455 0.0021852148 0.048075 401.67587 1918.06763 0.04380 0.43030
24 0.0461539381 0.0434782609 0.0026756772 0.061541 392.49500 2809.96875 0.05301 0.43355
25 0.0456537202 0.0416666667 0.0039870515 0.095689 383.75009 6100.43359 0.07811 0.44053
26 0.0391018772 0.0400000000 -0.0008981228 -0.022453 375.43000 302.83081 0.01740 0.44067
27 0.0337591429 0.0384615335 -0.0047023930 -0.122262 367.47972 8125.89063 0.09014 0.45000
28 0.0352940084 0.0370370370 -0.0017430264 -0.047062 359.87965 1093.36743 0 0.45121
29 0.0249633480 0.0357142857 -0.0107504353 -0.301012 352.60512 40751.22266 0.20107 0.49431
30 0.0260402707 0.0344827586 -0.0084424876 -0.244832 345.63397 24635.26172 0 0.51863
31 0.03Z6164134 0.0333333333 -0.0007169198 -0.021508 338.94621 174.20950 0.01320 0.51880
32 0.0307538923 0.032C530645 -0.0015021721 -0.046567 332.52372 750.34668 0.02739 0.51952
33 0.0340529454 0.0312500000 0.00280294S2 0.089694 326.35002 2563.96948 0.05064 0.52198
34 0.0357953663 0.0303030303 0.0054923333 0.181247 320.41009 9665.39844 0.09831 0.53116
35 0.0313703697 0.0294117647 0.0019586049 0.066593 314.69017 1207.19336 0.03474 0.53229
36 0.0268261856 0.0285714286 -0.0017432759 -0.061015 309.17765 939.59399 0.03065 0.53318
37 0.0221301075 0.0277777778 -0.0056476668 -0.203316 303.86091 9691.98828 0.09845 0.54219
38 0.0207187563 0.0270270270 -0.0063082688 -0.233406 298.72925 11837.70313 0.10903 0.55304
39 0.0203564050 0.0263157895 -0.0059593841 -0.226457 293.77277 10433.11719 0.10214 0.56240
40 0.0202260595 0.0256410256 -0.0054149628 -0.211184 288.98230 8473.48438 0.09205 0.56963
41 0.0235841251 0.0250000000 -0.0014158748 -0.056635 284.34935 570.03540 0.02388 0.57038
42 0.0248350630 0.0243902439 0.0004448190 0.018238 279.86600 55.37538 0.00744 0.57043
43 0.0233165203 0.0238095238 -0.0004930033 -0.020706 275.52489 66.96693 0.00818 0.57049
44 0.0233635480 0.0232558140 0.0001077348 0.004633 271.31916 3.14914 0.00177 0.57049
45 0.0237904004 0.0227272727 0.0010631275 0.046778 267.24239 302.04785 0.01738 0.57075
46 0.0213873737 0.0222222222 -0.0008348485 -0.037568 263.28857 183.50476 0.01355 0.57092
47 0.0216544019 0.0217391304 -0.0000847286 -0.003898 259.45210 1.86259 0.00136 0.57092
43 0.02216SS972 0.0212765957 0.0008890014 0.041783 255.72768 202.10759 0.01422 0.57109
49 0.01805.3013 0.0208333333 -0.0027810319 -0.133490 252.11038 1949.85645 0.04416 0.57280
50 0.0180453096 0.0204081633 -0.0023628536 -0.115780 248.59554 13t7.92798 0.03725 0.57401
51 0.0171739427 0.0200000000 -0.0028260571 -0.141303 245.17878 1958.14429 0.04425 0.57571
52 0.0142183498 0.01 6078431 -0.0053894930 -0.274864 241.85596 7025.09766 0.00382 0.58173
53 0.0159417545 0.0102307692 -0.0032890146 -0.171029 238.62319 2581.33398 0.05081 0.58400
54 0.0169903149 0.010!679245 -0.0018776094 -0.099513 235.47681 830.15331 0.02881 0.58471
55 0.0160192327 0.01 5165185 -0.0024992859 -0.134961 232.41332 1451.75342 0.03310 0.58595
56 0.0165556807 0.0181818132 -0.0016261293 -0.089437 229.42945 606.67920 0.02463 0.50646
57 0.0166142778 0.0178571429 -0.00124:8649 -0.069600 226.52208 349.91138 0.01871 0.58676
58 0.0134139640 0.0175438596 -0.0041298755 -0.235403 23.60026 3815.196Z9 0.06177 0.59000

Figure 7.4.2-2b. Iteration #1 of a Stokes' Optimization Run Using
Output Weighting.
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N ACTUAL SPECTRUM IDEAL SPECTRUM RESID SPECTRUM REL RESIO DEG VAR IN WEIGHT SIGMA CU1 SIGMA
0 -0.0000000000 0.0000000000 -0.0000000000 0.000000 0.00000 0.00000 0.00000 0.00000
1 0.0003421743 0.0000000000 0.0003421742 0.000000 0.00000 0.00000 0.00000 0.00000
2 0.9946647164 1.0000000000 -0.0053152815 -0.005315 322.03928 9098.32031 0.09539 0.09539
3 0.4969295715 0.5000000000 -0.0030704283 -0.006141 1334.06,23 12584.44922 0.1118" 0.14725
4 0.3313029576 0.3333333333 -0.0020303756 -0.006091 965.39143 3979.75342 0.06309 0.16020
5 0.2470288964 0.2500C00000 -0.0029711034 -0.011884 828.53518 7313.6--547 0.08552 0.18159
6 0.2007166341 0.2000000000 0.0007166339 0.003383 750.86000 385.61450 0.01964 0.18265
7 0.1691776363 0.1666566667 0.0025109695 0.015066 697.57316 4398.17578 0.06632 0.19432
8 0.1428901670 0.1426571429 0.0000330242 0.00031 657.00250 0.71652 0.000.5 0.19432
9 0.1259166178 0.1250000000 0.0009166177 0.007333 624.09143 524.35400 0.02290 0.19567

10 0.1108623794 0.1111111111 -0.0002487316 -0.002239 596.27118 36.88971 0.00607 0.19576
11 0.0975068791 0.1000000000 -0.0024931207 -0.024131 572.08381 3555.87280 0.05963 0.20464
12 0.0891384994 0.0901090909 -0.0017705914 -0.019477 550.63067 1726.22363 0.04155 0.20882
13 0.0416676648 0.0833333333 -0.0016656683 -0.019988 531.32108 1474.12402 0.03839 0.21232
14 0.0745244672 0.0769230769 -0.0023986096 -0.031182 513.74632 2955.75098 0.05437 0.21917
15 0.0696858707 0.0714285714 -0.0017427006 -0.024398 497.61136 1511.24805 0.03Z87 0.22259
16 0.0645091312 0.0666666667 -0.0021575354 -0.032363 482.69572 2246.92847 0.04740 0.22758
17 0.0620183503 0.06Z50C0000 -0.0004816495 -0.007706 468.82966 108.76202 0.01043 0.22782
18 0.0563832280 0.0588235294 -0.0024403012 -0.041485 455.87929 2714.79Z72 0.05210 0.23370
19 0.0542505052 0.0555555556 -0.0013050502 -0.023491 443.73669 755.75244 0.02749 0.23531
20 0.0526453575 0.0526315789 0.0000137786 0.000262 432.31334 0.08207 0.00029 0.23531
21 0.0473513324 0.05C0000000 -0.0026486674 -0.052973 421.53544 2957.25586 0.05438 0.24151
22 0.0457109521 0.0476190476 -0.0019080953 -0.040070 411.34070 1497.62036 0.03870 0.24459
23 0.0459112038 0.0454545455 0.0004566582 0.010046 401.67587 83.76414 0.00915 0.24477
24 0.0420074252 0.0434782609 -0.0014708354 -0.033829 392.49500 849.10620 0.02914 0.24649
25 0.0410798424 0.0416666667 -0.0005868240 -0.0140 4 383.75809 132.15186 0.01150 0.24676
ZS 0.0400749909 0.0400000000 0.0000749909 0.001875 375.43000 2.11128 0.00145 0.24677
27 0.0376363063 0.0384615385 -0.0008252321 -0.021456 367.47972 250.25664 0.01582 0.24727

28 0.0354807692 0.0370370370 -0.0015562677 -0.042019 359.87965 871.61719 0.02952 0.24903
29 0.0328894892 0.0337142857 -0.0028247964 -0.079094 352.60512 2813.60303 0.05304 0.25462
30 0.0327951007 0.0344827586 -0.0016876578 -0.048942 345.63397 984.43042 0.03138 0.25654
31 0.0318960430 0.0333333333 -0.0014372901 -0.043119 338.94621 700.19580 0,02646 0.25790
32 0.0301340726 0.03ZZ580645 -0.0021239917 -0.065844 332.52372 1500.12744 0.03873 0.26079
33 0.0319423351 0.0312500000 0.0006923350 0.022155 326.35002 156.42857 0.01251 0.26109
34 0.0300143329 0.0303030303 -0.0002886974 -0.009527 320.41009 26.70494 0.00517 0.26115
35 0.0289111303 0.0294117647 -0.0005n06343 -0.017022 314,69017 78,87227 0.00688 0.26130
36 0.0305064499 0.0285714286 0.0019350213 0.067726 309.17765 1157.65601 0.03402 0.26350
37 0.0260891950 0.0277777778 -0.0016885826 -0.060789 303.86091 866.40161 0.02943 0.26514
38 0.0244251641 0.0270270270 -0.0026018629 -0.096269 298.72925 2022.30444 0.04497 0.26893
39 0.0265386986 0.0263157895 0.0002229091 0.008471 293.77277 14.59711 0.00332 0.26896
40 0.0224877902 0.0256410256 -0.0031532352 -0.122976 288.98230 2873.31958 0.05360 0.274:4
41 0.0204003425 0.0250000000 -0.0045996569 -0.183986 284,34935 6015.93359 0.07756 0.28500
42 0.0267177032 0.0243902439 0.0023274592 0.095426 279.86600 1516.05249 0.03894 0.28765
43 0.0226402122 0.0233095238 -0.0009693115 -0.040711 275.52489 258.87329 0.01609 0.28810
44 0.0215243649 0.0232558140 -0.0017314488 -0.074452 271.31916 813.39160 0.02&52 0.28951
45 0.0237230023 0.0227272727 0.0009957294 0.043812 267.24239 264.96436 0.01628 0.28996
46 0.0167980894 0.0222222222 -0.0054241307 -0.244086 263.208857 7746.26172 0.08801 0.30303
47 0.0148733489 0.0217391304 -0.0068657808 -0.313826 259.45210 12230.29297 1 0.32258
48 0.0139816836 0.0212765957 -0.0072949119 -0.342861 255.72768 13608.73438 0.16 0.34302

49 0.0133866501 0.0208333333 -0.0074466802 -0.357441 252.11018 13980.28516 11824 0.36283
50 0.0153498242 0.0204081633 -0.0050553370 -0.247859 248.59554 6360.75391 0.07975 0.37149
51 0.0182Z22672 0.0200100000 -0.0017577326 -0.087887 245.17878 757.51001 0.02752 0.37251
52 0.0191535821 0.0196078431 -0.0004542610 -0.023167 241.85596 49.90768 0.00706 0.37258
53 0.0168414822 0.0192307692 -0.0003892870 -0.020243 230.62319 36.16199 0.00601 0.37262
54 0.0184541521 0.0183679245 -0.0004137722 -0.021930 Z35.47681 40.31535 0.00635 0.37265
55 0.0153749840 0.01851S5135 -0.0031435345 -0.169751 232.41332 2296.66382 0.04792 0.37575
56 0.0141606633 0.0181818182 -0.0040211529 -0.221163 229.42945 3709.79736 0.06091 0.38065
57 0.013768q207 0.0178571429 -0.0040365193 -0.228940 226.52208 3785.98315 0.06153 0.38559
58 0.0123186627 0.0175438596 -0.0052251965 -0.297836 223.6t826 6107.28516 0.07815 0.39343

Figure 7.4.2-2c. Iteration #2 of a Stokes' Optimization Run Using

Output Weighting.
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* I I I i i,

N ACTUAL SPECTRUM IDEAL SPECTRUM RESID SPECTRUM REL RESID DEG VAR IN WEIGHT SIGMA CUM SIGMA
0 -0.0000000000 0.0000000000 -0.0000000000 0.000000 0.00000 0.00000 0.00000 0.000co
1 0.0004841557 0.0000000000 0.0004841557 0.000000 0.00000 0.00000 0.03000 0.00000
2 0.9952545462 1.0000000000 -0.0047454536 -0.004745 322.03928 7252.10547 0.051k 0.08516
3 0.4974255820 0.5030000000 -0.0025744180 -0.005149 1334.86223 8846.96875 0.9!06 0.12688
4 0.3320486735 0.3333333333 -0.0012846598 -0.003854 965.32143 1593.23438 0.03992 0.13301
S 0.2472054422 0.2500000000 -0.00Z7145576 -0.010858 828.53518 6105.32813 0.07814 0.15426
6 0.,009227511 0.2000000000 0.0009227509 0.004614 750.86000 639.33398 0.02529 0.15632
7 0.1690815426 0.1666666667 0.0024143759 0.014489 697.57316 4067.93535 0.06378 0.16683
8 0.1426045312 0.1423571429 -0.0002526115 -0.001768 657.00250 41.92499 0.00647 0.16896
9 0.1258340664 0.1250000000 0.000834C662 0.006673 624.09143 434.15918 0.02084 0.17024

10 0.1101260353 0.1111111111 -0.00098507Z7 -0.008866 596.27118 578.60229 0.02405 0.17193
11 0.0969338389 0.1000000000 -0.0030661109 -0.030661 572.08381 5378.17969 0.07334 0.16692
12 0.0882036311 0.0909090909 -0.0027054597 -0.029760 550.63067 4030.34741 0.06349 0.19740
13 0.0809784125 0.0833333333 -0.0023549208 -0.028259 531.31108 2946.52173 0.05428 0.20473
14 0.0745201954 0.0769230769 -0.0024028814 -0.031237 513.74632 2966.28533 0.05446 0.21185
15 0.0704429538 0.0714t85714 -0.0009856124 -0.013799 497.61136 483.39502 0.02199 0.21299
16 0.0666572395 0.0666666667 -0.0000094272 -0.000141 482.69572 0.04290 0.00021 0.21Z91
17 0.064233Z473 0.0625000000 0.0017332472 0.027732 468.82966 1408.43237 0.03753 0.21627
18 0.0578798178 0.0523235294 -0.000943711S -0,016043 455.87929 406.00195 0.02015 0.21721
19 0.0550750058 0.0555555556 -0.0004805496 -0.008650 43.73669 102.47119 0.01012 0.21744
20 0.0525021321 0.0526315789 -0.0001294468 -0.00Z459 432.31334 7.24405 0.00:69 0.21746
21 0.0470022Z26 0.0500000000 -0.0029977772 -0.059956 421.53544 3788.19897 0.06155 0.22600
22 0.0451753587 0.0476190476 -0.0024436889 -0.051317 411.34070 2456.36816 0.04956 0.23137
23 0.0456629707 0.04545455 0.0002084252 0.004585 401.67587 17.44922 0.00418 0.23141
24 0.0422112059 0.0434782609 -0.0012670509 -0.029142 392.49500 630.11816 0.02510 0.23277
25 0.0409585161 0.0416666667 -0.0007081504 -0.016996 383.75809 192.44585 0.01357 0.23318
26 0.0400991117 0.0400000000 0.0000991117 0.002478 375.43000 3.68790 0.00192 0.23319
27 0.0370635600 0.0314615335 -0.0013979783 -0.036347 367.47972 718.18140 0.02650 0.23472
28 0.0357110617 0.0370370370 -0.0013259752 -0.035801 359.87965 632.74365 0.02515 0.23607
29 0.0337472707 0.0357142857 -0.0019670150 -0.055076 352.60512 1364.28125 0.03694 0.23894
30 0.0330012655 0.0344827586 -0.0014814930 -0.042q63 345.63397 758.60449 0.02754 0.24052
31 0.0319311273 0.0333333333 -0.0014022058 -0.042066 330.94621 666.42920 0.02582 0.24190
32 0.0296213093 0.0322580645 -0.0026367551 -0.081739 332.52372 2311.86328 0.04808 0.24664
33 0.0318331020 0.0312500000 0.0006331019 0.020259 326.35002 130.80696 0.01144 0.24690
34 0.0297378408 0.0303030303 -0.0005651894 -0.018651 320.41009 102.35149 0.01012 0.24711
35 0.0283954209 0.0294117647 -0.0010163437 -0.034556 314.69017 325.06030 0.01803 0.24776
36 0.0305239516 0.0285714286 0.0019525229 0.068338 309.17765 1178.69189 0.03433 0.25013
37 0.0251169660 0.0277777778 -0.0026608116 -0.095789 303.86091 2151.31006 0.04635 0.25440
38 0.0230896865 0.0270270270 -0.0039373375 -0.145681 298.72925 4631.08594 0.06805 0.26334
39 0.0244410738 0.0263157895 -0.0018747156 -0.071239 293.77277 1032.48120 0.03213 0.26529
40 0.0205926229 0.0256410256 -0.0050484017 -0.196088 288.98230 7365.10547 0.03532 0.27883
'1 0.0207709545 0.0253000000 -0.0042290427 -0.169162 284.34935 5005.52734 1.07131 0.28780
42 0.0263299107 0.0243902439 0.0019396667 0.079526 279.86600 1052.94165 0.03245 0.28963
43 0.0232471531 0.0238095238 -0.0005623705 -0.023620 275.52489 87.13765 0.00933 0.28978
44 0.0223101334 0.0232558140 -0.0009376805 -0.040320 271.31916 238.55592 0.01545 0.29019
45 0.0248106796 0.0227272727 0.0020834068 0.091670 267.24239 1159.98779 0.03406 0.29218
46 0.0194949918 0.0222222222 -0.0027272303 -0.122725 263.28857 1958.28369 0.04425 0.29551
47 0.0172438511 0.0217391304 -0.0044952780 -0.206783 259.45210 5242.87891 0.07241 0.30426
48 0.0181083200 0.0212765957 -0.0031682756 -0.148909 255.72768 2566.98657 0.05067 0.30844
49 0.0164031270 0.0208333333 -0.0044302046 -0.212650 252.11038 4948.09375 0.07034 0.31636
50 0.0166607179 0.0204081633 -0.0037474453 -0.183625 248.59554 3491.11304 0.05909 0.32183
51 0.0186174288 0.0Z00000000 -0.0013825712 -0.069129 245.17878 468.65967 0.02165 0.32256
52 0.0185968459 0.0196078431 -0.0010109970 -0.051561 241.85596 247.20453 0.01572 0.32Z04
53 0.0193938158 0.0192307692 0.0001650466 0.008582 238.62319 6.50018 0.00255 0.32295
54 0.0122349938 0.018Th79245 0.0004170693 0.022105 235.47681 40.96042 0.00640 0.32301
55 0.0164769425 0.01C5185185 -0.0020415760 -0.110245 232.41332 963.70605 0.03112 0.32451
56 0.0155409099 0.0181818182 -0.0026409001 -0.145250 229.42945 1600.13159 0.04000 0.32697
57 0.0144733027 0.0173571429 -0.0033838400 -0.189495 226.52208 2593.76196 0.05013 0.33021
58 0.0123587018 0.0175438596 -0.0051851571 -0.295554 Z2.68826 6014.04688 0.07755 0.33938

Figure 7.4.2-2d. Iteration #3 of a Stokes' Optimization Run Using
Output Weighting.
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7.4.3 Power Emphasis Variation

The power emphasis variation of the optimization algorithm was

described in Section 6.3.4.3. Only two sets of comparison cases have

been run, one with and without power emphasis of the input weighting,

and the other with and without power emphasis of the output weighting.

All cases were for a 125-ring analog Vening-Meinesz' optimization.

While the variation can be shown to be performing its function as

expected in these cases, namely to reduce the larger residuals of a few

harmonic degrees more rapidly than under standard optimization, the

variation did not lead to significant improvements in the overall

minimization of rms discretization error, and sometimes it led to worse

errors, especially in the higher degree regime. Consequently the detailed

results will not be presented here.

7.4.4 Discussion of the Results of the Optimization Algorithm Variations

The three ad hoc variations in the optimization algorithm did

not provide any results which could not be obtained by the standard

algorithm. However, the output weighting variation did strongly increase

the rate of convergence.
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SECTION 8

SUMMARY AND CONCLUSIONS

A general theory and method have been developed by which more

accurate and efficient summation approximations can be derived for any

of the integral transformations of geodesy. The theory and method were

applied to the Stokes' and Vening-Meinesz' Integrals, and improved

summations were determined which have lower rms discretization errors

than those presently in use. While the results to date are not dramatic,

they do indicate that the theory is valid and the method is feasible.

The approach may be interpreted as spherical digital filter design for

geodetic transformations.

In particular, during the course of this study a comprehensive

spectral theory was derived for the spherical integral transformations

of geodesy and for their spherical summation approximations. Many

analytic and numerical examples of the spectra of such trar.sformations

were determined. A catalog of the spatial and frequency domain repre-

sentations of about 100 spherical integral transformations was compiled.

Analytic expressions for the first partial derivatives of the spectra

with respect to the template compartment boundary parameters were derived

for use in the Gauss-Newton optimization (filter design) process. A

method of calculating the spherical ring boundary radii of an equal-

ring-contribution template was developed for the Stokes' and Vening-

Meinesz' transformations. And an explanation of the longevity and rela-

tive success of the equal-ring-contribution template was found within

the spectral theory of discrete summation transformations.

A comprehensive geodetic filter design computer program was

formulated, coded, compiled, checked out, and executed which: a) computes

and compares the spectra of various geodetic integral transformations

and their associated discrete summation approximations, b) calculates

the partial derivatives of the spectra with respect to the template

parameters, c) numerically optimizes the template ring boundary radii by

an iterative least-squares differential correction procedure. The
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comprehensive filter design computer prcgram is highly structured for

ease of modification, is written in PL/I, and uses mnemonic names exten-

sively based on geodetic terminology to enable rapid comprehension by

others.

The program was executed for the Stokes' and Vening-Meinesz'

transformations for a variety of numbers of template rings using the

main optimization algorithm and several variations. The rms discretiza-

tion error of current templates (introduced by the use of the discrete

summation rather than the integral transformation) was reduced by

amounts between 16% and 68%. Reductions of one or two orders of magni-

tude (90% or 99%) are desired but were not attained in the results to

date, primarily due to limitations in the optimization algorithm and in

particular to the handling of the inequality constraints between the

parameters. However, in certain cases there is circumstantial evidence

that an actual minimum may have been reached. The optimization algorithm

was intentionally rudimentary in order that most of the effort could be

devoted to the development of the theory. Suggested improvements to

it are recommended.*

In summary, the spherical integral transformations of geodesy and

their discrete summation approximations have been interpreted from a

spectral-theoretic or spherical digital filter viewpoint. Besides

unfolding a deeper understanding of the data-processing being performed
by the theoretical transformations and their approximations, the approach

has the immediate benefit of enabling optimal templates to be determined

for the discrete summations used in computer algorithms.

in the following chapter
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SECTION 9

RECOMMENDATIONS FOR FURTHER INVESTIGATION

Based on the theory, results, and understanding which have been

achieved to date, the following subjects are recommended for future

research and study.

General Theory

1) An investigation of the possibility of extending the spectral

theory of discrete summation transformations to the case of rectangular

grid patterns (based on latitude and longitude). Until now, only

bull's-eye templates have been considered since it would seem that only

these are shift-invariant with a change of the point-of-evaluation.

However, it is possible to define convolution in either "geographic" or

"local spherical polar" coordinates, and the spectrum is a double

integral which may be evaluated in any surface coordinates. Thus it

might be possible to develop a theory of discrete summations over

rectangular grids.

2) An investigation of techniques for incorporating known

statistical uncertainties in the input data into the design of optimal

templates for discrete summation transformations. In the present design

of optimal filters the input data is assumed to be perfect or error-

free.

3) An extension of the digital filter design optimization process

to include adjustment of the filter weight parameters as well as the

template parameters. Currently the filter weight parameters are held

fixed at a pre-selected value (e.g. the integrated-mean value of a

kernel over a compartment). In traditional filter design, it is the
filter weight parameters which are adjusted rather than grid parameters.
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Specific Transformations

1) A derivation of the details of the spectral theory of discrete

summation approximations to Molodenskii's Integral, and an application

of the optimization (filter design) process to determine optimal templates

for this summation. Molodenskii's transformation has greatly increased

in importance in recent years due to the expanding availability of

satellite altimetry data.

2) A development of a method of easily calculating the integral

of the classical Vening-Meinesz' function, so that the integrated-mean

weighting scheme can be applied to the discrete summation approximation

of the classical Vening-Meinesz' transformation. Currently the analysis

and optimization has been limited to the analog of the Vening-Meinesz'

transformation having surface layer densities as input rather than

gravity anomalies, due to the much more tractable nature of this trans-

formation.

3) A derivation of the spectral theory of discrete summation

approximations to the Poisson-deWitte transformation, and an application

of the optimization process to determine optimal templates for this

summation. DeWitte (1969) has described his recommended method of

calculating the three anomalous gravity vector components at altitude,

which is partially based on the Poisson kernel. However his investiga-

tions, documented in a series of papers, seem to have been generally

overlooked by subsequent investigators.

4) A derivation of the partial derivatives of the spectrum of

discrete summation transformations with respect to template parameters

when the filter weights are chosen by methods other than the integrated-

mean value scheme. While the integrated-mean value method corresponds

nicely to physical intuition and has the advantage that the partial deriva-

tive of the spectrum does not involve the partial derivative of the kernel,

it has the disadvantage that the integral of the kernel must be known.

Such an integral may be more difficult to compute than the partial deri-

vative of the kernel.

5) An extension of the filter design process to non-traditional

geodetic transformations such as those involving gravity gradient tensor

components.
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Optimization Methods

1) A derivation of the second partial derivatives of the spectrum

of the Stokes' and Vening-Meinesz' discrete summatiQns and incorporation

of the resulting expressions into the optimization algorithm. The

present Gauss-Newton method neglects the second derivative terms and

hence is not a pure Newton method with second-order convergence. The

difference can be significant when the relationship of the spectra to

the parameters is highly non-linear.* Like the first partial deriva-

tive expressions, the second partials will seem complicated but should

be relatively easy to compute from other quantities which have already

had to be calculated in the determination of the spectrum. Moreover,

the matrix of second partials will be tridiagonal, thus facilitating

manipulations with it. Due to the relative simplicity of this approach,

it appears to offer the possibility of a large gain (second-order con-

vergence) for a small price.

2) The incorporation of alternative methods of handling the

inequality constraints among the template parameters in the optimization

algorithm. The present method, while quick and easy to implement, does

not seem to work well especially when there are a large number of para-

meters.

3) The investigation of other non-linear optimization tech-

niques which might improve computational efficiency in the filter design

program. A detailed survey of such techniques is given in Avriel (1976),

and recent developments in the non-linear least-squares case are described

by Dennis (1977) and Gill and Murray (1978).

4) The replacement of the current least-squares optimization

algorithm by a Chebyshev algorithm to minimize the maximum error between

the ideal spectrum and the spectrum of the summation approximation rather

than the sum-of-squares error.

5) The inclusion of stopping criteria in the optimization

algorithm. Currently, the user specifies the number of iterations to

be executed. Stopping criteria might provide a rational means of deter-

mining whether the true minimum rms discretization error has been

reached. It might also prevent the somewhat random divergence observed

on some optimization runs after several convergent iterations. Dennis

(1977, section 3, pg. 272ff) gives a specific criterion which he has

found very reliable and which has a geometric interpretation.

Dahlquist-Bj6rk (1974, pg. 444); Dennis (1977, pg. 296).
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As is apparent from the above, while much devalopmenL of the

theory and its applications have been achieved, many possible areas of

further research and development remain to be explored.
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APPENDIX A

DEFINITIONS AND NOTATIONS
FOR THE ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre functions Pro(x) of nt h degree and mth ordernare defined by

P CM x) = (-l) m (1-x2)m/2d m P (x) 7A

or equivalently by

P n(cos ') sin 4 sinV dif sin * d- sin d -

where Pn (x) is the Legendre polynomial of nth degree.

This definition follows that of Hobson, and this family of functions

is therefore called Hobson's associated Legendre functions.*

The explicit expressions for the first few associated Legendre

functions are:

P 0(cosi) P0 (cos ) = 1

P0(cos ,) = P1 (c°S ) = cos

P1 (cos*) = -sin

0 3o 2 1

P2 (cos ) = -3 sin 2 cos

P2 (cos ) = +3 sin 2

See Whittaker and Watson (1927, pg. 325); Robin (1957, Vol. I, pg. 70,
107).
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Numerical values of the coefficients in the expressions up to degree

and order 25 have been given by Peasley (1976).

The associated Legendre functions satisfy a variety of three-

term recurrence relations:

" pm+2 (x) + 2(m+l)x P m+l(x) +(n-m)(n+m+l)Pm(x) = 0
n v/- n n

(0 <m<n -2)

" (2n+l)x Pr (x) = (n-m+l)P m (x) +(n+m)Pm (x) = 0
n )n+l (x) (m)nI

(0 <m <n -)

" (2n+l)1l /_x2 pm-l(x) = pm(X) - P, (x)n n- 1x n+l

A very complete list is given in Erdelyi (1953, Section 3.8, pp. 160-161).

The closely related functions P nm(x) used by many authors* differ

only in sign for odd order m:

Pnm (x ) = (l-x2 )m/2 dm Pn (x )  1 )m Pm(x)m  de n-

or equivalently

Pn(Cos p) = (-I)m Pm (coS )
n

This family of functions is called Ferrers' associated Legendre functions.**

It should be noted that the notational convention for these two

families of functions is not completely standardized in the literature.

Some authors reverse the notations given above and use P o(x) to denoten

the Ferrers' family or P n,m(x) to denote the Hobson family. This docu-

ment follows the convention of Magnus and Oberhettinger (1949), Erd4lyi

(1953), Courant and Hilbert (1953), Robin (1957), and Gradshteyn and

Ryzhik (1965). However, the reverse convention is used by Frank and

von Mises (1930), Jahnke and Erode (1945), Vogel (1953), Morse and

e.g. Heiskanen-Moritz (1967, pg. 22ff).

See Whittaker and Watson (1927, pg. 323); Robin (1957, Vol. I, pg. 70,
107).
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Feshbach (1953), Pick-Picha-Vyskocil (1973), and DiDonato (1977).

Therefore, when comparing equations or transformations in this document

with other sources, the reader should always first ascertain from funda-

mental definitions which notational convention is being followed in the

other source.

An example of the problems which can be encountered from the exis-

tence of two "nearly" identical families is found in Abramowitz and

Stegun (1965). On page 334, equation 8.6.6 defines the associated

Legendre functions following the Hobson convention; but on page 338,

Figure 8.2 depicts a graph of three of these functions following the

Ferrers convention.

The reader should also be warned that Erdelyi (1953) and Grad-

shteyn and Ryzhik (1965) use italics [Pm(x)] to denote another form of

associated Legendre functions defined in the complex plane. This docu-

ment is concerned only with Legendre functions on the real interval
m

between -1 and +1, which these authors denote by roman characters P (x)].
mn

The reader may wonder why the Hobson (p m) family has been chosen

in the fundamental definition of the spherical spectral transform rather

than the Ferrers (Pnm) family. The reason is based upon the spectral

expansions of the Stokes' and Vening-Meinesz' kernels:

= + 2n+lS( ) = +- Pn (Cos @

n=2

d + 2n+1 P1(cos@) - Z Pn(cos )a 7_ n I n-i Pnl

n=2 n=2

If the Ferrers' family were used in the spherical spectral transform

definition,* the resulting spectrum of the Vening-Meinesz' integral

transformation would be negative. To eliminate this inconvenience the

Hobson family has been selected as fundamental.

If the vertical deflections & and n had been defined with the

opposite sign convention, the corresponding Vening-Meinesz' integral
*i

as in the original exposition of the author's study, Robertson (1977a).
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formulae would then carry an inelegant negative sign, but the deflections

would then be the positive surface gradient of the geoid height, and

the spectrum could be made positive by choosing Ferrers' family to be

fundamental. Under the standard convention, the Vening-Meinesz' formula

carry no negative sign, but the deflections must be the negative surface

gradient of the geoid height [Heiskanen-Moritz (1967, pg. 114)].
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APPENDIX B

RECURSION RELATIONS FOR THE INDEFINITE INTEGRALS
OF THE ASSOCIATED LEGENDRE FUNCTIONS

In order to efficiently compute the spectrum of a discrete summation

geodetic transformation for an arbitrary template, it is imperative to

utilize recursion relations for the indefinite integrals of the asso-

ciated Legendre functions. Such relations do not seem to have appeared

in the classical or modern literature. However, very recently DiDonato

(1977) has published elegant expressions for these recursion relations

for arbitrary degree and order, and the derivations thereof. Also, Paul

(1978) will soon publish his recursion relations.

At the time when the author was originally implementing his

spectral theory of the discrete Vening-Meinesz' transformation in a

computer program (late fall 1977), he was not yet aware of DiDonato's

or Paul's work, nor was he able to derive similar recursions within a

limited time.* Therefore because of the desirability of validating his

theory quickly, the author instead derived a recursive computational

procedure for the analytic expressions of the indefinite integral of the

associated Legendre function P1(x) of arbitrary degree and first order.
n

The derivation was based upon several fundamental ideas of his colleague

Stanley W. Shepperd, whose contributions the author wishes to acknow-

ledge. This procedure was programmed, verified and used in the early

versions of the discrete Vening-Meinesz' spectral calculation subroutine.

Due to certain numerical difficulties with this procedure which

occurred for higher degrees, an attempt was made to derive another recur-

sive set of analytic expressions for the indefinite integrals of P (x)

based on slightly different principles and using Calvez and Genin's

(1977) algorithm. Before this was completed, the author became aware

of DiDonato's obviously superior recursion relations, and implemented

them instead.

He overly restricted his investigation to recursions involving only
integrals of functions of lower degree.
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All of these recursion relations are described briefly in the

following sections.

B.1 Shepperd-Robertson Recursion

The Shepperd-Robertson recursion relations for the analytic expres-

sions of the indefinite integral of the associated Legendre functions

P1(x) is based upon the validity of the following expansions:

n-l
1k
(x) =- bnk k x2

k=O

and

2/2k-lxkv-x 2 dx -(l_x 2 ) 3 2  ckj x + d k (x/l?-x 2 +arcsin x)

j=0

where bn,k, Cnk, and dk are constants. Thus, upon inserting the second

equation into the indefinite integral of the first and regrouping terms

it is seen that the integral of P (x) may be expressed as
n

n-2

P (x)dx +(l-x 2 ) 3/2 e xj + f (xjl x2 + arcsin x)

j =0

where n-l

en,j = n,k C k,j

k=j+l

n-2

fn I bn,k dk
j=0

Recursion relations will be developed for the bn,k, ck, j and dk

constants in the next subsection, and the en,j and fn constants can be

easily calculated therefrom. The definite integral over an arbitrary

ring is then determined as the difference of two indefinite integral

evaluations.

The Shepperd-Robertson recursion relations were coded into the

earliest versions of the discrete Vening-Meinesz' spectrum calculation

subroutine. They worked well up to about degree 50. Above this degree

a numerical instability gradually began to set in with erroneous
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digits first appearing in the least significant places and finally in

all places. Nevertheless the algorithm enabled an early numerical

verification of the author's theory of the discrete Vening-Meinesz'

spectrum. A short analysis of the cause of the instability will be

given in subsection B.1.2.

B.1.1 Coefficients in the Shepperd-Robertson Recursion

The bn,k coefficients can be shown to have the values:

rn +k eveno
0 0<k<n or k>n]

bk = n-k-l >_ 1
(-1) (n+k+l) n +k odd

2~~ 0 <k < -

Several of the lower-indexed values of bn k are listed in matrix

form in Table B-1.

The bn,k coefficients can be shown to satisfy the following

recursion relations:

n odd

bl, 0 = 1

b n+2 (down left column)

b =(n+k+2) (n-k-l)
n,k+2 (k+2) (k+l) bn,k

where k = 0,2,4, ... (across row)

n even

b 2,1= 3

b n+3 n (down left column)bn+2,1 n bn,

b (n+k+2) (n-k-l) b
bn,k+2 (k+2) (k+l) n,k

where k = 1,3,5, ... (across row)

Heiskanen-Moritz (1967, pg. 24, equation 1-62). Their expression has
to be reformulated to obtain the expansion used here.
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n-i
p1n() = - bnkxk1'-x 2  [n>11

k=O

0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 0 3 0 0 0

3 3 053 0

4 0 530 3-5-3 0

-2 -T- -2

5 5"3 05"3"7 "2 09-7-"5"3
44.2 .4.2

S 5 75.3 09.7-553-4

4- 4.3.2.2

Table B-i. The b coefficients.
n,k
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The Ck,j and dk coefficients can be shown to have the following

values: *

k1

1 (k-l)1! (j+l)!! 1k+j even

Ck, k+2 k1! j!I LO <j <k-i

0 [k+j odd]

(k-l)!! [k even]k+2 k! !

dk =

o [k odd]

Several of the lower-indexed values of the cn,k and dk are listed in

Tables B-2 and B-3.

The Cnk and dk coefficients are easily seen to satisfy the

following recursion relations:t°  1
k,k-1 k+2(diagonal)I k+l cdown columns

, k+3 C,j (from diagonal)

I d

dk+2 k+l d

The double factorial notation (1!) indicates that only Iternate integers
appear: 6!! = 6.4.2; 5!! = 5.3.1.
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k-i
(x 2 ) 1 j dkx -x2 + arcsin x)fxkl-x 2 dx I= -(lxx2) 3/ 2 k (Ck1j +

j=0

k0 1 2 3 4 5

0 0 0 0 0 0 0

1 1
110 0 0 0 0

2 0 1 0 0 0 0

2 1 0 0

403 1

40-] 0 10 0

4"2 0 40 1 0
7.5.3 7.5

6 5.3 5 18.6.4 8-6 0

Table B-2. The ck, j coefficients.
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kd

k

01

1 0

21

3 0

4 3
6"4"2

5 06 53

6 8.6.4.2

Table B-3. The dk coefficients.

B.1.2 Instability Analysis of the Shepperd-Robertson Recursion

The predominant cause of the numerical instability of the Shepperd-

Robertson recursion relations is the large magnitudes and relative magni-

tudes of the "polynomial" coefficients bnk of the associated Legendre

function p1 (x) which occur for large degree n.n

It can be shown that the "diagonal" coefficient bn,n 1 has the

value

2 n  L~
b1-3-5-7 ... (2n-l) 2(n-)
n,n-i 1.2.3-4 .. (n-l) /r(n-1)

while the "left column" coefficients bn,0 and bnl have the magnitudes

lb 0  = (n+l)! (n odd]

I = (n+2)! n even]
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Using Stirling's formula, the Legendre Duplication formula, and

the asymptotic expression for the exponential,

n+ nn! n 2n.e-n /2-,

(2n)! = 2  n!(nl)!

x )n

the following approximate expressions may be inferred:

2n (
bn,n-1

b'- -- n dd
n,O j n [n odd]

lbmI - 2f (n+l) n -2 [n even]

Degree "Left columns" "Diagonal"

n bnO bn,l bn,n- 1

25 4.1 93.6 9.3 107

50 5.7 273.5 4.4 1015

75 7.0 507.8 1.8 1023

100 8.0 785.8 7.1 1030

125 9.0 1101.6 2.7 1038

150 9.8 1451.1 9.8 104 5

Table B-4. Estimates of certain bn,k coefficients.

Some numerical values of these approximations are presented in Table B-4.

It is immediately seen that around degree 50 numerical significance will

begin to be lost in summations when the computations are carried out

on a computer having about sixteen decimal digits of precision.
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B.2 Robertson-Clenshaw* Recursion

In order to attempt to overcome the numerical difficulties encoun-

tered in the Shepperd-Robertson recursion relations, the possibility of

expanding the indefinite integral of the associated Legendre function

p (x) in a linear combination of these functions themselves was inves-n
tigated. In other words, an expansion of the form

n-i

fP n(x)dx = +(1-x 2) hn k x)+ + arcsinx)
k=1

was sought, where the hn, k are constant coefficients to be determined.

If recursions could be derived for these coefficients, then Calvez and

Genin's (1977) algorithm could be used to perform the summation directly

without separately recursina on the P (x).- n

This approach offers the possibility that the hn,k might be
"well-behaved", since the problems of large numbers might be entirely

embedded in the p1 (x) functions, which appear explicitly. This possi-n
bility is further suggested by the following heuristic argument: The

associated Legendre functions P (x) have the expansion
n

n-i
n xk

k=O

Thus from the integral expansion, the hn,k coefficients are determined

by the equations

n-i k-i n-l k-i

bnk ckj I k k,j x

k=l j=l k=l 3=m

which is to hold for all values of x. By reordering the summation, and

using matrix notation, this may be written as

BCx = HBx

Clenshaw's name is used because Clenshaw (1955) first suggested the
summation technique which Calvez and Genin's (1977) paper generalizes.
The Tscherning-Rapp (1974) covariance models use Clenshaw summation.
For a detailed description, see Luke (1975, pp. 475-482).
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Hence H = BCB -I , so that with the reasonable Ckj coefficients, it
appears that the hn,k coefficients will also be reasonable, since
intuitively large coefficients in the B matrix will be counteracted

by correspondingly small elements in the B-1 matrix.

Let the elements of the B-1 matrix be denoted by , £. Some
values of the lower-indexed jt and hn,k coefficients are listed
in Tables B-5 and B-6.

0 1 2 3 4 5

0 0 1 0 0 0 0

1
1 0 0 1 0 0 0

5.3.
2 03102201

5 5-0 .533

3 2 2 3 2 "2.2

4 0 3 0 2-2 0 3-2"2"2

j+l1
I,-x2 x j  -  

Sj,£ p(x)

Table B-5. The 8j coefficients.
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k
nl 0 12 3 4

0 0 0 0 0 0

1 0 0 0 0 0

2 0 -1 0 0 0

3 0 0 500

40 9 0

n-1
J i(x)dx =+(l-x

2)Y h P()+.
Pn n,kI Pnx

k1l

Table B-6. The hnk coefficients.

The Bjcoefficients may actually be determined analytically.

Beginning with the identity that

n+l

V'--x2 xi a Pi(W) U >1]

and multiplying by P (x) and integrating,

+1j+l +1

f 11-x Pl(x)dx =' f Pl P(x) Pl(x) dx

-1 2=1 -1

-- 8 2 (n+l)!
$j,n '2n+l (n-lfl
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Thus 0 [j+n even]

8J'n 1

f / 2 xj P1 2n+l (n-i)
-2 n 2 (n+) [j+n odd]

0

To evaluate the integral, use is made of Erd6lyi (1954, Vol. II,

pg. 313, eqn. 18.1.4). This yields, after some manipulation:

0 [j+n even]

BJ'n W ,

+1?4 2n+l j! [j+n odd]

From this expression, recursion relations could be derived for the Bj, n

coefficients, and a computational procedure could undoubtedly be estab-

lished for the hn,k coefficients.

At about this point in the development of a stable recursion for

the indefinite integrals of the associated Legendre functions, the author

became aware of DiDonato's algorithm.

B.3 DiDonato Recursion

DiDonato (1977) has stated and derived elegant recursion relations

for the indefinite integrals of the Ferrers' associated Legendre function

P nm(x) of arbitrary degree n and order m*.

Using the notation convention of this document they may be stated

as follows for the first order:

P l (cos ') = -sin
1

P(cos ') = -3 sin * cos ipP2

P 1 Cos ) [(2n+l) (cos ) PI(cos ') - (n+l) P I-(cos) J/n
n+l n n-i

The reader is warned that DiDonato uses the reverse notation convention.

B-12



Letting Im fP (x)dx,

os= sin +arcsin(cos) + /2

12 . 1
12 = -sin 2 ipP1(cosp)

1 (n-i) (n+l) iI 2n+l sin2  1l(cos )
In+l =  (n+2) (n) n-i - (n+2) (n) n

In a computer program it is necessary to run two recursions simultaneously,

one for the odd indices, beginning with I , and one for the even indices

beginning with 12*

The notation Im is used here for the indefinite integral of Hobson'sn
associated Legendre Function in order to distinguish this quantity from

DiDonato' s Sm which denotes the indefinite integral of Ferrers' associatedn
Legendre Function.

This algorithm has been implemented in the comprehensive filter

design computer program (Appendix C), and the author has had no diffi-

culties with its use. Although DiDonato also gives a normalized form

of the recursive relations and states that it "may be needed in order

to keep the results ... from becoming excessively large", the author

has not found this to be necessary up through degree 1500.

B.4 Paul Recursion

The author has not yet seen Paul's (1978) recursion relations for

the indefinite integrals of the associated Legendre functions.
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APPENDIX C

LISTING OF THE COMPREHENSIVE FILTER DESIGN
COMPUTER PROGRAM

PL/I OPTIMIZZING COMIPILER VERSION I RELEASE 3.0 PTF 64 PAGE

OPTIONS SPECIFIED

OBJGN.NEST,S.OPT( TIKE)

OPTIONS USED

AGGREGATE NOCOUNT ATTUISUTESSORT)
GONUM1ER NODECK CIARSET(60.EBCDICI
INCLUDE NOESO NCCOMPILE(S)
INSO.RCE NOFLOI FLAG(I)
LriESSAGE NOGaSTM' LINECOUNT 55)
MAP NOIrIPRECISE MARGINS(2,72,11
NEST NOINTERRUPT OPTIHIZE( TItlE)
NUMBDER NOLIST SEQUENCE(73,80)
OBJECT NOtIACRO SIZEt*99408)
OPTIONS NOIARGINI NOSYHTAX(SI
SOURCE N0flOECK XREF(SHORT)
STORAGE NOOFFSET TERMINAL( NOAGGREGATE.

NOSTMT NOATTRIBUTES,
NOESD,
NOINSOURCE,
HOLIST,
NOVIAP.
NOOFFSET,
NOOPTIONS,
NOSOURCE,
NOSTOR AGE,
NOXREF)
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APPENDIX D

EXPLANATION OF THE COMPREHENSIVE
FILTER DESIGN COMPUTER PROGRAM

FITFILT is the name of the comprehensive spherical filter design

program for determining optimal template parameters of discrete summa-

tion geodetic transformations. Its major inputs are listed in Table D-1

with short explanations of the possible choices. All inputs to the

program have default values, so that at run-time the user only needs

to specify those inputs which are special to the run.

The main portion of FITFILT consists of only nine pages of code

(lines 10-3800). The remaining twenty-nine pages of code are listings

of subprocedures (lines 3840-13380) nested within FITFILT.

After reading the inputs (line 310), printing them (line 580),

and calculating a few preliminary parameters (lines 840-920), the

program enters a BEGIN block in which storage is automatically allocated

for a large number of arrays whose size depends upon the inputs and the

preliminary parameters. Establishment of the initial template parameters

begins at line 1720.

The outermost loop in the program is on the iteration number ITER,

beginning at line 1950 and concluding at line 3760. At the beginning of

this loop a large number of variables which depend upon the current tem-

plate parameter values (at this iteration) are initialized, between

lines 2030 and 2710.

The second outermost loop is on the spherical harmonic degree N,

beginning at line 2750 and concluding at line 3460. At each pass through

this loop the theoretical, actual, and residual spectrum of the transfor-

mation is calculated, as well as its partial derivatives.

The third outermost loop is on the ring or ring boundary index I,

beginning at line 2810 and concluding at line 3130. At each pass the

contribution of the respective ring to the spectral values is evaluated.

The recursions on the integrals of the associated Legendre functions are

D-1



performed here (one for each ring). The partial derivative of the spectrum

with respect to each ring radius is also calculated.

After the loop over all spherical harmonic degrees has been accom-

plished (line 3460) during each iteration, the program calls the INCREMENT

CALC subprocedure (line 3640) to determine the increments which are added

to the current values of the template parameters (lines 3660-3750) for

use in the next iteration.

After all iterations have been completed (line 3760), the program

prints a summary of the intermediate results of all iterations including

the values of the figure-of-merit and of the template parameters.

The functions of the subprocedures should be fairly obvious from

their (rather long) names.
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KERNELNAME

(Name of the Spherical Geodetic Transformation)

'STOKES', 'HEIGHTFROMANOMALY' (Default)

'HEIGHTFROMDENSITY'

'DEFLECTIONFROMDENSITY'

Coding has been provided to recognize the following names,

but -ertain subroutines, calculating their kernel values,

integrals, or spectra are incomplete:

'HEIGHT FROM VARIATION'

'HEIGHT FROM DISTURBANCE'

'MALKIN', 'HEIGHT FROM OUT PARTIAL'

'VENING MEINESZ', 'DEFLECTIONFROMANOMALY'

'DEFLECTION FROM VARIATION'

'HILBERT', "DEFLECTION FROM DISTURBANCE'

'DISTURBANCEFROMANOMALY'

'DISTURBANCEFROM VARIATION'

'DISTURBANCEFROMDENSITY'

* PSI TEMPLATENAME

IName of the initial spherical ring template)

'PICK PICHAVYSKOCIL' (Default)

Either the 34-ring template for zeroth-order trans-

formations, or the 23-ring template for first-order

transformations. (Requires PSIZERO)

'DMAAC'

The 101-ring Circularized AGEMIT template. (Requires

PSIZERO)

'RICEDMAAC'

The 125-ring "Rice-DMAAC" Template

'EQUIINTEGRAL'

The Equal-Ring-Contribution template. (Requires

PSIZERO and NRINGS to specify truncation radius

and number of rings.)

Table D-1. Major Inputs to FITFILT.
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0 ALPHA TEMPLATENAME

(Establishes number of compartments in each ring for non-

zeroth order transformations.)

'PICK PICHA VYSKOCIL' (Default)

Pick-Picha-Vyskocil distribution (16, 24, 33, 23)

'DMAAC'
24 compartments in each ring*

'EQUI_SECTOR'

Equal number of compartments in each ring. (Requires

NSECTORS to specify the number.)

* ALPHATEMPLATETYPENAME

(Name of the type of initial compartment template)

'CONTINUOUS' (Default)

No compartmental discretization is to be considered.

'EQUI_SINEDIFF'

Compartment boundary azimuths are to be selected by

the equal-sector-contribution method.

'EQUIALPHA'

Compartment boundary azimuths are to be equally

(uniformly) distributed.

* PSIZERO

(The spherical truncation radius *0 expressed in degrees)

Default = 0.030

0 NRINGS

(The number of rings for an equal-ring-contribution template.)

0 NSECTORS

(The number of sectors for an equal-sector-contribution

template or a uniform azimuth template.)

A more elaborate scheme was originally planned for the 'DMAAC' distri-
bution, but it has not yet been implemented.

Table D-1. (continued)
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APPENDIX E

DISCUSSION OF THE EXCLUSION OF SMALL RING RADII
FROM THE DIFFERENTIAL ADJUSTMENT PROCEDURE

The reasons for the exclusion of the smaller ring boundary radii

parameters from differential adjustment during the optimization process

have been described in Section 6.3.3. This Appendix gives seven examples

of numerical computations which illustrate the necessity for this exclu-

sion. They also show the dependence of the spherical radius separating

reasonable from unreasonable increments upon the maximum spherical

harmonic degree considered and the number of rings in the template.

Each of the seven examples (Figures E-1 through E-7) is presented

in an identical format consisting of three blocks of numbers. The first

block gives the values of the spherical ring radii qi of the template

in degrees. The second block gives the cosines xi of the radii i.

The third block gives the raw increments Ax. in the cosines which have1

been computed by the Gauss-Newton algorithm, before any constraint checking.

As seen in the figures, the raw increments corresponding to the

smaller ring radii are generally so large* that if they were to be added

to the values of the independent variables, the results would not only

overlap but they would also exceed the theoretical bound of x =+l or

= 0. Consequently, in order to exclude most of these cases, the

increments corresponding to values of the spherical ring boundary radii

which are less than LIMIT are zeroed before they are submitted to the

inequality constraint satisfaction algorithm.

A summary of the examples is presented in Figure E-8. In the last

column of this figure, the ratio of the observed spherical radius corres-

ponding the first reasonable increment to the "estimated" spherical

radius given by the rule-of-thumb is listed.

excluding the first increment which is always zero.
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Naturally, a value of one would mean that the rule-of-thumb is

ideal. It is seen that for a small number of rings in the template,

the rule-of-thumb is too large by about a factor of two, while for a

large number of rings the rule-of-thumb is too small by a factor of one
third or one fourth. Certainly there are other factors which influence

these results, such as the kernel itself* and the initial values of the

spherical ring radii parameters.

SPHERICAL RADII PSI (DEOREES)
0.000009997722 0.043999999761 0.062999963760 0.088999986648 0.127999961376 0.182999"68529
0.260999977589 0.371999979019 0.529999971390 0.752999961376 1.068999290466 1.793999671936
Z.965999603271 4.820999145508 7.590999603271 11.469999313354 18.549987792969 28.299987792969

40.799987792969 65.299987792969 98.599990844727 114.399993896484 130.500000000000 180.000000000000

INDEPENDENT VARIABLE VALUES x
1.000000000000 0.999999705130 0.99999939487 0.999998793563 0.999997504577 0.999994899340
0.99909624q8 0.999978922988 0.99995716793 0.999913640843 0.999825952826 0.999509844392
0.99S660416065 0.996462124040 0.991236303723 0.980028961480 0.948046461376 0.880477454515
0.756995194S65 0.417867267361 -0.149535185451 -0.413104332813 -0.649448048330 -1.000000000000

RAW INCREMENTS IN INDEPENDENT VARIABLES
0.C03000000000 0.n00796638662 -0.131530463696 -0.067849397659 -0.153551518917 -0.099590241909
0.341211974621 -0.350839265537 -3.826305389404 2.078421592712 7.848271369934 3.694955825806

-9.800479886916 4.303641319275 -0.836096882820 0.07504nQ96075 -0.011155508459 0.001902790740
-0.001500146929 -0.002837406239 -0.003046664875 -0.015168551356 -0.026527497917 0.000000000000

Figure E-1. Example of Large Increments (Vening-Meinesz, 23 rings,
Maximum degree 30).

|*

The frequency domain explanation in Section 6.3.3 implies that the
separation radius for the Vening-Meinesz' kernel should be twice that
for the Stokes' kernel in the mean.
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SPHERICAL RADII FSI (OEGREES)
0.0000000000co 0.068400000000 0.175300000000 0.307800000000 0.447400000000 0.711600000000
0.975CO000000 1.234800000000 1.488300000000 1.986000000000 2.478000000000 2.961000000000
4.1480000000C0 5.834000000000 8.180000000000 10.488000000000 12.850000000000 15.990000000000

20.170000001000 25.300000000000 33.900000000000 52.000000000000 61.000000000000 72.000000000000
82.OCC0000000:0 94.200000000000 106.300000000000 126.300000000000 135.900000000000 142.700000000000

149.0000000000. 155.400000000000 162.900000000000 176.400000000000 180.000000000000

INEPEnENT VRIASLE VALUES X
1.003000003000 0.999999Z87415 0.999995319543 0.999985570180 0.999969513014 0.999922875735
0.95354977339 0.999767779171 0.9996626495S8 0.999399324740 0.999064896577 0.998664927363
0.997330535358 0.994731483424 0.989825957496 0.983293053318 0.9749S5645484 0.961309789091
0.932673691S19 0.9040SZ346961 0.83001ZZ65095 0.615661475326 0.484809620246 0.309016994375
0.13S1731C0OD0 -0.073Z33197128 -0.200666708921 -0.592013178799 -0.7181Z6297763 -0.795473480855

-0.8571673OC702 -0.909236109047 -0.955793014798 -0.998026728428 -1.000000000000

!TNCR~ ~ IF0N VARIABLES
f,0.00000C0O 133033.53092072313 9897064.99478271300 "032938.51083948000 1894403.3141399000 0100943.640946900000

3C 6 , I5 57 116'. 33N 97. 56SS400000 7154874.72623103000 2ZC606.736206Z0000 678117. 97035100000 664614.933013:30000
7514106.70 516503 437472.244 7 556674 -65551.38600184972 10867.2834701:594 -639.17351703483: 26.41604745)364

-1.519114.0175 0.13426;0S535 0.05955432235 -0.00'94567359 -0.02911592654 -0.01C6r5791156
-0.031C:3z:.47 -0.0352.548113 0.0304032377 -0.09864196054 Q 111744 0.61Z819008185
0.7 2'e53 3223 0.53104322369 0,137:34SS5277 0.014910309471 CO000000

Figure E-2. Example of Large Increments (Stokes, 34 rings, Maximum
degree 50).

SPHERICAL RADII PSI (DEGREES)
0.00000000000 0.068400000000 0.175300000000 0.307800000000 0.447400000000 0.711600000000
0.9753000o0CO 1.:34800000000 1.488300000000 1.986000000000 2.478000000000 2.961000000000
4.1400000000 S.884000000000 8.180000000000 10.488000000000 12.850000000000 15.990000000000

20.170000000000 25.300000000000 33.900000000000 52.000000000000 61.000000000000 72.000000000000
82.00000000C000 q4.200000000000 106.300000000000 126.300000000000 135.900000000000 142.700000000000

Z49.000000000000 155.400000000000 162.900000000000 176.400000000000 180.000000000000

3111EPENOEtfT VARIABLE VALUES X
1.000200000000 0.999999287415 0.999995319543 0.999985570180 0.999969513014 0.099922875735
0.999:54977339 0.999767779171 0.999662649558 0.999399324740 0.999064896577 0.998664927363
0.99735053335S 0.994731483424 0.989825957496 0.983Z93053318 0.974955645484 0.961309769091
0.933673691819 0.90408Z549661 0.830012285095 0.615661475326 0.484809620246 0.300016994375

0.1391731060 -0.07323e197128 -0.28066670891 -0.592023178799 -0.718126297763 -0.795473480355

-0.85716730'70-2 -0.909236109047 -0.955793014798 -0.993026728428 -1.000000000000

INCREMENTS II IQPEOENT VARIABLES
'-"-.0 1.17Z499656677 -2.375228,81836 6.992014884949 -C.0/9611027241 0.344479382038
-0.1651635i6973 0.084 4 1506356 -0.002380404389 0.001437092200 0.000175711146 0.001105129020
0.001-1615 ,3 7 0.0015Z:401348 0.000674712704 0.001338778296 0.008145853877 0.01:606535532
0.016ZZ331C375 0.08527390212 0.026670992374 -0.050538759679 -0.030925475061 -0.032637000084

-0.01Z45512..03 0.01338:9361S8 0.031220365316 -0.019832070917 -0.004077083 0.004928622395
0.00255C*53Z49 -0.0006e8353038 -0.007685072720 -0.017Z02876 5 0 000.0 0!000000000

Figure E-3. Example of Large Increments (Stokes, 34 rings, Maximum
degree 500).
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SPHERICAL RAOI PSI (OEGREES)
0.000009997722 0.083333313465 0.166666626930 0.250000000000 0.333333313465 0.416666626930
0.500000000000 0.583333313465 0.666666626930 0.750000000000 0.833333313465 0.9166666Z6930
1.000000000000 1.083333015442 1.166666030884 1.250000000000 1.333333015442 1.416666030884
1.500000000000 1.583333015442 1.666666030884 1.750000000000 1.833333015442 1.916666030884
2.000000000000 2.083333015442 2.166666030884 2.250000000C00 2.333333015442 2.416666030884
2.500000000000 2.583333015442 2.666666030884 2.750000000000 2.833333015442 2.916666030864
3.000000000000 3.250030000000 3.500000000000 3.750000000000 4.000000000000 4.250000000000
4.500000000000 4.750000000000 5.00000000000 5.250000000C00 5.500000000000 5.750000000000
6.000000000000 6.250000000000 6.500000000000 6.750000000000 7.000000000000 8.000000000000
9.000000000000 10.000000000000 11.000000000000 12.000000000000 13.000000000000 14.000000000000

15.000000000000 16.000000000000 17.000000000000 18.000000000000 19.000000000000 20.000000000000
21.000000000000 22.000000000000 23.000000000000 24.000000000000 25.000000000000 30.00000000000O
35.000000000000 40.000000000000 45.000000000000 50.000000000000 55.000000000000 60.00000,0000000
65.000000000000 70.000000000000 75.000000000000 80.000000000000 85.000000000000 90.000000000000
95.000000000000 100.000000000000 105.000000000000 110.000000000000 115.000000000000 120.000000000000

125.OCOOOOOOOOOO 130.000000000000 135.000000000000 140.000000000000 145.000000000000 15.00000CO00000
155.000000000000 160.000000000000 165.000010000000 170.000000000000 175.000000000000 180.000000000000

INoEPEWENT VARIABLE VALUES X
1.000000000000 0.999998942301 0.999995769208 0.999990480721 0.999983076860 0.999973557637
0.999961923064 0.999948173182 0.999932308012 0.999914327574 0.999894231932 0.999872021117
0.999847695156 0.999821254236 0.999792698311 0.999762027080 0.999729241309 0.9996943407Z8
0.999657324976 0.999618194978 0.999576950405 0.999533590837 0.999488117357 0.999440529578
0.999390827019 0.999339010923 0.999285080844 0.999229036241 0.999170878516 0.999110607162
0.99904e221582 0.998983723335 0.998917111855 0.998848386485 0.998777548943 0.998704598606
0.998629534755 0.998391670557 0.998134798422 0.997858923239 0.997564050260 0.997250185099
0.926917333733 0.996F5502498 0.996194698092 0.995804927575 0.995396196367 0.994968518251
0.9:4S21895368 0.994056338222 0.993571855677 0.993068456955 0.992546151641 0.990268060742
0.987688340595 0.984807753012 0.981627183448 0.978147600734 0.974370064785 0.970295726276
0.9659Z5826289 0.961261695938 0.956304755963 0.951056516295 0.945518575599 0.939692620786
0.933580426497 0.9271$3854567 0.920504853452 0.913545457643 0.906307787037 0.866025403784
0.819152044289 0.766044443119 0.707106781187 0.642787609687 0.573576436351 0.500000000000
0.4:2618261741 0.342020143326 0.258819045103 0.173648177667 0.087155742748 0.000000000000

-0.087155742748 -0.173648177667 -0.258819045103 -0.342020143326 -0.422618261741 -0.500000000000
-0.573576436351 -0.642767609687 -0707106781187 -0.766044443119 -0.819152044289 -0.866025403784
-0.906307787037 -0.939692620786 -0.965925826289 -0.984807753012 -0.996194698092 -1.000000000000

RAW INCREMIENTS IN INOEPENOENT VARIABLES
0.000000000000 -47.988937377930 -35.035934448242 161.058624267578 221.881027221680 -625.382812500000

-48.251251220703 735.539350781250 1033.012207031250 -431Z.964843750000 4465.839843750000 -273.5129394531Z5
-2760.917480468750 21.843505859375 4736.457031250000 -4724.328125000000 323.026123046875 2017.893066406250
-186.815216064453 -1067.657714843750 -1013.688720703125 2075.136474609375 2173.81225585937S -8390.417968750000
9645.582031250000 -4834.175781250000 -506.852539062500 1851.751953125000 -503.969970703125 64.457672119141

-1451.775634765625 2766.857421875000 -2614.054199218750 1460.519042968750 -472.537646484375 55.998321533203
0.295540630817 -0.062960969345 0.013691093773 -0.008642S13305 0.001882606652 -0.003748088144
0.001587662147 -0.003705637995 0.002750977874 0.002967894543 -0.000358792255 0.0015S1556397

-0.000903337240 -0.000292437384 -0.000339779770 0.000671830960 -0.001016347436 -0.000573679379
-0.000131636730 0.0002569567C8 0.000429115258 0.000780167757 0.001158984145 0.001294402406
0.0013354460C4 0.000363253794 0.002032726770 0.001091106096 0.001525897766 0.000627075555
0.002139975782 0.002682601800 0.002922888380 0.001625886187 -0.009800467640 -0.0017002851Z4
0.003126074793 0.005856927484 0.007720775902 0.009225688875 0.009603582323 0.006275434047
-0.005059327930 -0.081308424473 -0.072332680225 -0.034014228731 -0.010C628459Z7 -0.004778709263
-0.002958768047 0.001939212663 0.003289061598 0.003510709386 0.003603029763 0.003190943738
0.003201898653 0.002296169754 0.000262974994 -0.000745280879 -0.001098564593 -0.002601768123

-0.003783527762 -0.004327781498 -0.004046395421 -0.002617008286 -0.006218768656 0.000000000000

Figure E-4. Example of Large Increments (Stokes, 101 rings, Maximum
degree 1000).
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SPHERICAL RAOII PSI (DEGREES)
0.0440000 0.0611177 0.0848950 0.117922S 0.1637990 0.2275235 0.3160396 0.4389928 0.6097818 0.8470203
1.1765695 1.6343682 2.2703009 3.1541283 4.3824956 6.0909150 8.4698169 11.7900031 16.4449830 23.0306519

32.5229409 46.7795315 70.6387639 179.9323089

INDEPENOENT VARIABLE VALUES X
0.9999997 0.9999994 0.9999989 0.9999979 0.9999959 0.9999921 0.9999848 0.9999706 0.9999434 0.9998907
0.9997&92 0.9995932 0.9992150 0.9984851 0.9970761 0.9943548 0.9890936 0.9789031 0.9590920 0.9202957
0.8431762 0.6848063 0.331529 -0.9999993

RAW INCREMENTS IN INDEPENDENT VARIABLES
0.0000000 0.0000059 -0.0000180 0.0000194 -0.0000101 0.0000029 -0.0000007 -0.0000001 -0.0000003 -0.0000003

-O.O00COOz -0.0000001 -0.0000001 -0.0000002 -0.0000006 -0.0000014 -0.0000034 -0.0000064 -0.0000013 0.0000892
0.0006832 0.0032048 -0.06S4269 0.0000000

Figure E-5. Example of Large Increments (Vening-Meinesz, 23 rings,
Maximum degree 1440).

SPHERICAL RADII PSI (DEGREES)
0.0021134 0.0023003 0.0025038 0.0027252 0.0029663 0.0032286 0.0035142 0.0038250 0.0041633 0.0045315
0.0049323 0.0053606 0.00DS434 0.0063603 0.0069228 0.0075351 0.0002016 0.0089270 0.0097165 0.0105759
0.0115113 0.0125295 0.0136377 0.0148439 0.0161568 0.0175858 0.0191412 0.0208342 0.0226769 0.0246826
0.0260657 0.0292419 0.0318283 0.0346434 0.0377075 0.0410426 0.0446727 0.0486238 0.0529245 0.0576055
0.0627005 0.082462 0.0742824 0.0808524 0.0880036 0.0957872 0.1042593 0.1134807 0.1235177 0.1344425
0.1463336 0.159:763 0.1733639 0.1886974 0.2053872 0.2235531 0.2433257 0.2648472 0.2882723 0.3137692
0.3415214 0.3717281 0.4046067 0.4403933 0.4793453 0.5217426 0.5678901 0.6181194 0.6727916 0.7322999
0.7970721 0.E675739 0.9443124 1.0278393 1.1187554 1.2177148 1.3254295 1.4426745 1.5702938 1.7092062
1.8604121 2.0250009 2.2041590 2.3991785 2.6114666 2.8425565 3.0941185 3.3679728 3.6661036 3.9906738
4.3440425 4.7237833 5.1477052 5.6038755 6.1006459 6.6416810 7.2309914 7.8729700 8.5724348 9.3346769

10.1655167 11.0713686 12.0593185 13.1372143 14.3137754 15.5987254 17.0029546 18.5387227 20.2199128 22.0623575
24.0642603 26.3067526 28.7546418 31.4574364 34.4507856 37.7785549 41.4959114 45.6740870 50.4080698 55.8297394
62.1319763 69.6173616 78.8107683 90.7798135 108.4698034 179.9999989

INDEPENDENT VARIACLE VALUES X
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.00^0000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.000000 1.0070000 1.0000000 1.0000000 1.0000000 1.0000000 0.9999999 0.9999999 0.9999999 0.9999999
0.9999999 0.909q999 0.9999990 0.9999998 0.9999998 0.9999997 0.9999997 0.9999996 0.9999996 0.9999995
0.9999394 0.9999993 0.9999992 0.9999990 0.9999988 0.9999986 0.9999933 0.9999980 0.9999977 0.9999972
0.9999967 0.9993961 0.9999954 0.9999946 0.9999936 0.9999924 0.9999910 0.9999893 0.9999873 0.9999850
0.9999522 0.9999790 0.9999751 0.9999705 0.9999650 0.9999585 0.9999509 0.9999418 0.9999311 0.9999183
0.9999032 0.q993854 0.9998642 0.9998391 0.9998094 0.9997742 0.9997324 0.9996830 0.9996245 0.9995551
0.9994729 0.9993755 0.9992601 0.9991234 0.9989615 0.9987696 0.9985422 0.9982728 0.9979536 0.9975754
0.9971272 0.9'65961 0.9959667 0.9952208 0.9943367 0.9932889 0.9920468 0.9905742 0.9808328 0.9867577
0.934332 0 0.9031307 0.9779318 0.9738285 0.9689563 0.9631685 0.9562897 0.9481090 0.9383730 0.9267756
0.91294;63 0.C64342 0.8766878 0.8530281 0.8246124 0.7903844 0.7490030 0.6987389 0.6373155 0.5616540
0.4674365 0.340O0 0.1940500 -0.0136099 -0.3168048 -1.0000000

Figure E-6. Example of Large Increments (Vening-Meinesz, 125 rings,
Maximum Degree 1440).
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RAN INCREMENTS IN INDEPENDENT VARIABLES
0.0000000 -0.0004304 0.0016415 -0.00108564 -0.001519S -0.001656C -0.0070365 -0.0070622 0.0030737 0.0075004

-0.0225599 0.0302498 -0.0036651 0.0070101 C.0156274 0.CMG.103 0.0044232 -0.0007154 0.0097669 0.0080344
-0.0267708 -0.006633S 0.0068252 -0.0015491 0.003635Z 0.0021265 -0.0212513 0.0290662 0.01292SO 0.02683S4
0.0013693 -0.0480833 -0.0:51793 -0.0305302 -0.0771326 -0.1898146 0.0145926 -0.0086407 0.0468956 0.0239837
0.0735098 -0.0237839 -0.0720922 -0.0462631 0.0240415 -0.0168706 0.1179152 0.1037630 0.0313040 0.1623265
-0.0325536 -0.1051043 -0.2245467 0.0478108 0.0104654 0.0332987 -0.0188410 0.0260864 0.1274729 0.0396429
-0.3397384 0.1422613 0.1412255 -0.0031571 -0.2247467 0.1406184 0.1242039 -0.2695050 0.2313055 -0.1247967
0.0452842 -0.0098222 -0.0000629 0.0011810 -0.0006359 0.0002514 -0.0000662 0.0000314 0.0000043 0.0000121
0.0000101 0.0000103 0.0000090 0.0000075 0.0000052 0.0000030 0.0000017 0.0000003 -0.0000002 -0.0000003

-0.00000C6 0.0000003 -0.0000001 -0.0000007 0.0000002 -0.0000001 -0.0000003 -0.0000000 0.0000000 0.0000010
0.0000009 -0.0000002 -0.0000009 0.0000004 -0.0000023 -0.0000014 -0.0000007 0.0000005 -0.0000031 -0.0000074
-0.0000008 -0.0000035 -0.0c00228 -0.0000402 -0.0000324 0.0000097 -0.0000212 -0.0001076 0.0000497 0.0002271
0.0003806 0.0000466 0.0004042 0.0009345 -0.0101845 0.0000000

Figure E-6 (continued).

SPHERICAL RADII PSI (DECREES)
0.0021134 0.0023003 0.0025038 0.0027252 0.0029663 0.0032286 0.0035142 0.0038250 0.0041633 0.0045315
0.0049323 0.0053686 0.0053434 0.0063603 0.0069228 0.0075351 0.0082016 0.0089270 0.0097265 0.0105759
0.0115113 0.0125295 0.0136377 0.0148439 0.0161568 0.0175858 0.0191412 0.0208342 0.0226769 0.0246826
0.0268i57 0.0292419 0.0318283 0.0346434 0.0377075 0.0410426 0.0446727 0.0486238 0.0529245 0.0576055
0.0627005 0.0632462 0.0742824 0.0808524 0.0880036 0.0957872 0.1042593 0.1134807 0.123S177 0.1344+425
0.1463336 0.I192763 0.1733639 0.1686974 0.2053872 0.2235531 0.2433257 0.2648472 0.2882723 0.3137692
0.3415214 0.3717281 0.4046067 0.4403933 0.4793453 0.5217426 0.5678901 0.6181194 0.6727916 0.7322999
0.7970721 0.8675739 0.9443124 1.0278393 1.1187554 1.2177148 1.3254295 1.4426745 1.5702938 1.7092062
1.8604121 2.0250009 2.2041590 2.3991785 2.6114666 2.8425565 3.0941185 3.3679728 3.6661036 3.9906738
4.3440425 4.7287833 5.1477052 5.603875S 6.1006459 6.6416810 7.2309914 7.8729700 8.5724348 9.3346769

10.1655167 11.0713686 12.0593185 13.1372143 14.3137754 15.5987254 17.0029546 18.5307227 20.2199128 22.0623575
24.08342603 26.3067526 28.7546418 31.4574364 34.4507856 37.7785549 41.4959114 45.6740870 50.4080698 55.8297394
62.1319763 69.6173616 78.8107683 90.7798135 108.4698034 179.9999989

INDEPENDENT VARIABLE VALUES X
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9999999 0.9999999 0.9999999 0.9999999
0.9999999 0.9999999 0.9999998 0.9999998 0.9999998 0.9999997 0.9999997 0.9999996 0.9999996 0.9999995
0.9i99994 0.9999993 0.9999992 0.9999990 0.9999988 0.9999986 0.9999983 0.9999980 0.9999977 0.9999972
0.9999967 0.9999961 0.9999954 0.9999946 0.9999936 0.9999924 0.9999910 0.9999893 0.9999873 0.9999850
0.9999822 0.9999790 0.9999751 0.9999705 0.9999650 0.9999585 0.9999509 0.9999418 0.9999311 0.999913
0.9999032 0.9998854 0.9996642 0.9998391 0.9998094 0.9997742 0.9997324 0.9996830 0.9996245 0.9995551
0.9994729 0.9993755 0,9992601 0.9991234 0.9989615 0.9987696 0.9985422 0.9982728 0.9979536 0.9975754
0.9971272 0.9965961 0.9959667 0.9952208 0.9943367 0.9932889 0.9920468 0.9905742 0.9888282 0.9867577
0.9843020 0.9513887 0.9779316 0.9738285 0.9689563 0.9631685 0.9562897 0.9481090 0.9383730 0.9267756
0.9129463 0.8964342 0.8766878 0.8530281 0.0246124 0.7903844 0.7490030 0.6987389 0.6373155 0.S616540
0.4674365 0.3482880 0.1940500 -0.0136099 -0.3168048 -1.0000000

RAN INCR7MENTS IN INOEPENDENT VARIABLES
0.0:00000 -0.0022603 0.0066820 -0.0034697 0.0137664 -0.0111803 0.0016873 -0.0048678 -0.0006720 0.0986754
0.0064956 0.2422671 -0.0120976 0.2425094 0.1451166 -0.2636296 -0.0033999 -0.0020788 0.0516678 -0.2004985

-0.2937074 -0.2115872 0.0339952 -0.0960920 0.2033689 0.0400312 -0.4014489 0.2797658 0.4782538 -0.0202543
-0.1633011 0.1220964 0.1279842 0.0809821 -0.4573958 -0.3217300 -1.4391899 0.2029956 -0.6481801 -0.2833292
-1.18506Z4 -0.4698355 0.4411848 -0.1523405 0.0112345 0.3256243 0.6326106 0.6523260 -0.1341362 1.5530758
1.9512291 0.SZ10494 -0.6982923 -1.0705042 -2.4142294 -0.5616150 -0.6616700 1.1790876 1.7386065 1.2865305

-0.2449353 -3.0S64563 -0.0774422 2.1904888 0.0297359 -0.3386355 -2.2155590 3.9365053 -3.5778694 2.3193910
-1.2194118 0.5516944 -0.2197874 0.0779063 -0.0246346 0.0071920 -0.0018397 0.0005654 -0.0000493 0.0001170
0.0000746 0.0000932 0.0000884 0.0000823 0.0000632 0.0000413 0.0000256 0.0000079 0.0000062 -0.0000042

-0.0000019 -0.0000004 0.0000028 0.0000092 0.0000007 -0.0000065 -0.0000079 -0.0000038 -0.0000056 -0.0000007
-0.0000073 0.0000069 -0.0000006 -0.0000044 -0.0000139 -0.0000128 0.0000245 0.0000203 -0.0000398 -0.0000590
-0.0000807 -0.0000911 -0.0001676 -0.0002336 -0.0002287 0.0000615 0.0000101 -0.0003312 0.0007015 0.0032009
0.0031733 -0.0042512 -0.0008486 -0.0130000 -0.0810918 0.0000000

Figure E-7. Example of Large Increments (Vening-Meinesz, 125 rings,
Maximum degree 1440).
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FIRST
REASONABLE

MAX # INCREMENT LIMIT RATIO
Fig. DEGREE RINGS AT

E-1 30 23 18.540 300 0.62

E-2 50 34 33.90 180 1.83

E-3 500 34 2.4780 1.80 1.37

E-4 1000 101 4.000 0.90 4.44

E-5 1440 23 0.2280 0.530 0.43

E-6 1440 125 1.3250 0.530 2.50

E-7 1440 125 1.5700 0.530 2.96

WLIMIT = 900 0/NMAX

Figure E-8. Summary of Cases for Small Ring Radii Exclusion.
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APPENDIX F

DERIVATION OF ALGORITHM FOR CALCULATING

THE STOKES' EQUAL RING CONTRIBUTION TEMPLATE

by

Stanley W. Shepperd

It is desired* to find values 4i of the spherical ring boundary

radii such that

i l the same constantf S()sin4, d value for all i

It is well known that the Stokes' function S(*) has two distinct zeros,

and thus so does the integrand S(f)sin 4. Consequently, the total

area A lying under the curve of the integrand may be divided into three

sub-areas, A, A2 , and A3, as shown in Figure F-1. Since the total

integral between 0 and ff is zero, the three areas must satisfy the

relationship
A 2 = A1 + A3

where A2 is considered positive by convention.

In a partition of the sphere into n spherical rings in which each

ring has the same "weight" (i.e. the area under the S(f)sin 4 curve is

constant in magnitude), a ring containing a zero of the integrand will

suffer some cancellation. In other words, there will exist a "deadband"

around each of the zeros having no overall contribution, unless a boun-

dary radius happens to lie exactly on the zero. These deadbands are

illustrated in Figure F-2. It is assumed that the remaining "active"

sub-areas Al, A2, A3 are to be partitioned into nI , n2, and n3 rings

respectively. There are two possible locations for each of the radii

4nl and 4nl+n2 because the shaded deadbands yield no net contribution.

See Section 5.1.2.1 of this document.
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It is important to note that since each deadband is symmetric in

terms of area about its zero, the area relationship is preserved

X2 = A1 + A3

And since the number of rings must be proportional to the area for equal-

ring contribution, it must be true that

n2 = n1 + n3

This in turn implies that the total number of rings must be even, speci-

fically half in the positive areas and half in the negative area. Thus,

the original problem reduces to a problem of choosing nI and n3 subject

to the following constraints.

nI, n3  are integers

n + n3  is a known constant

nlA 3 = n3A 1  for equal contribution

One final assumption is necessary to make the solution unique, namely

that the total amount of "dead" area (2Aa + 2Ab) is to be minimized.

The equal-ring contribution constraint may be rewritten as

n3Aa - nIAb = n3AI - nIA 3

In (Aa, Ab) space, this constraint is a straight line with positive

slope having either a positive or negative intercept on the Ab axis,

as shown in Figure F-3.
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Ab

I two types of constraint
= f(Aan 5 n-3)

Aa +Ab =const.

Figure F-3. Nature of Solution.

Since the areas Aa and Ab must be non-negative, there are two

types of solutions to the problem of minimizing the total dead area

(2Aa + 2Ab). Specifically Aa = 0 or Ab = 0. The details of these

solutions are given in the following paragraphs. The correct solution
will then be the one with the smaller dead area Aa or Ab.

Once Aa and Ab are determined, the "weight" per ring is known

[A1 + A 2 + A 3 - 2(Aa + Ab)]/n

and the ring boundary radii *i may be calculated iteratively from know-

ledge of this constant ring area.
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Case 1 Ab = 0

a=A 1 1 n3 A 1 3 n. A1 n2 A32

The minimum positive Aa is determined by choosing

= loor _T 11 = Aon 2 2-
n 2nAl3 n 2A1 3 1

n= ceilingl--_ = round{ . +_

S 1p) sin

2

0 nI  
2nl

,P n 1 n =

Figure F-4. Solution for Ab =0.
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Case 2 Aa = 0

Ab A 3 Al A n2A 1  A2

= 3(1 - ~- A3( -nl A in2 A

The minimum positive Ab is determined by choosing

= ceiling[ A round _A__ + 1

n2 A3  n2 A3 -1

n3 =floor- --J round(_ 2

S (ip) sin 4-

2

0 -___2n 1  n1l+n2 -

Figure F-5. Solution for Aa =0.

F-6



LIST OF REFERENCES

Abramowitz, Milton, and I.A.Stegun (editors), (1964), Handbook of

Mathematical Functions, National Bureau of Standards, Applied

Mathematics Series No. 55, U.S. Government Printing Office. Also

reprinted by Dover, 1965, 1968.

Adams, M.B., and G. Prado, (1978) The Design of Two Dimensional Digital

Filters for Geodetic Applications, CSDL Report R-1154, March 1978.

Avriel, M. (1976), Nonlinear Programming, Analysis and Methods, Prentice-

Hall, Inc., New Jersey.

Bracewell, Ron, (1965), The Fourier Transform and Its Applications,

McGraw-Hill, New York.

Buglia, James J., (1976), The Effect of Remote Zones on the Accuracy

of Evaluating the Molodensky Integral, NASA TMX-72798, January

1976, National Technical Information Service Accession No. N-76-

17681.

Calvez, L.C., and R.Genin, (1977), "An Algorithm for Summing Series

and Their Derivatives", Proceedings of the IEEE, 65, pp. 163-165,

(January 1977).

Churchill, R.V., (1954), "The Operational Calculus of Legendre Trans-

forms", Journal of Mathematics and Physics, 33 (1954), pp. 165-

178.

Churchill, R.V., andC.L. Dolph, (1954), "Inverse Transforms of Products

of Legendre Transforms", Proc. Amer. Math. Soc., 5 (1954),

pp. 93-100.

Clenshaw, C.W., (1955), "A Note on the Summation of Chebyshev Series",

Mathematical Tables and Other Aids to Computation, 9 (1955),

pp. 118-120.

R

R-1



. I

Colombo, O.L., (1977), "Optimal Kernels for Band-Limited Data", Unisurv

G27 (1977), pp. 77-87, University of New South Wales, Sidney,

Australia. Presented as paper G6 at the AGU Fall Meeting 1977

in San Francisco (EOS, Vol. 58, page 1117). Available from:

O.L. Colombo, Dept. of Geodesy, University of New South Wales,

P.O. Box 1, 2033 New South Wales, Australia.

Cook, A.H., (1951), "The Calculation of Deflexions of the Vertical

from Gravity Anomalies", Proceedings of the Royal Society of

London, Series A: Mathematical and Physical Sciences, 204 (1951),

pp. 374-395.

Courant, Richard and David Hilbert, (1953), Methods of Mathematical

Physics, Volume I, Interscience Publishers, New York.

Dahlquist, Germund and Me Bj6rk, (1974), Numerical Methods, Prentice-

Hall, Inc., New Jersey.

deWitte, L., (1967), "Truncation Errors in the Stokes and Vening-Meinesz

Formulae for Different Order Spherical Harmonic Gravity Terms,"

Geophysical Journal of the Royal Astronomical Society, 12 (1967),

pp. 449-464.

deWitte, L., (1969), "Altitude Extensions of the Three Anomalous Gravity

Components", Bulletin G~odesigue, No. 93 (1969), pp. 287-305.

Dennis, J.E., Jr., (1977), "Non-Linear Least Squares and Equations",

pp. 269-312 of The State of the Art in Numerical Analysis, Jacobs,

ed., Academic Press, New York.

DiDonato, A.R., (1977), Recurrence Relations for the Indefinite Integrals

of the Associated Legendre Functions, NSWC/DL TN-DK-5/77, July 1977,

Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren, VA,

22448.

Dorny, C.N., (1975), A Vector Space Approach to models and Optimization,

John Wiley and Sons, New York.

Dunford, N., and J.T. Schwartz, (1958, 1963), Linear Operators, Part I:

General Theory, 1958; Part II: Spectral Theory, 1963, Interscience

Publishers, New York.

Dwight, H.B., (1961), Tables of Integrals and Other Mathematical Data,

Fourth Edition, Macmillan Co., New York.

Edmonds, A.R., (1957), Angular Momentum in Quantum Mechanics, Princeton

University Press, New Jersey.

R-2



Erd6lyi, A. (ed.), (1953), Higher Transcendental Functions, Volumes I,

II, III, McGraw-Hill, New York.

Erd6lyi, A. (ed.), (1954), Tables of Integral Transforms, Volumes I, II,

McGraw-Hill, New York.

Flinn, E.A., (1967), "Foreword" to the Special Issue on the M.I.T.

Geophysical Analysis Group Reports, Geophysics 32 (1967), Issue

No. 3 (June), pp. 411-413.

Frank, Philipp, and Richard von Mises, (1930, 1961), Die Differential-

und Integralgleichungen der Mechanik und Physik, Volume I

(Mathematical Part), Vieweg and Son, 1930; Reprinted by Dover,

1961.

Gill, P.E., and W. Murray, (1978), "Algorithms for the Solution of the

Non-Linear Least-Squares Problem", SIAM Journal of Numerical

Analysis, 15 (1978), pp. 977-992.

Gradshteyn, I.S., and I.M. Ryzhik, (1965), Tables of Integrals, Series,

and Products, Academic Press, New York.

Heiskanen, W.A., and H. Moritz, (1967), Physical Geodesy, Freeman,

San Francisco.

IBM, (1968), System/360 Scientific Subroutine Package (PL/I), Program

Description and Operation Manual, International Business Machines

Corporation, Document GH20-0586-0, First Edition, January 1968.

Jacobs, D., (ed.), (1977), The State of the Art in Numerical Analysis,

Academic Press, New York.

Jahnke, Eugene, and Fritz Emde, (1945), Tables of Functions with Formulae

and Curves, Dover, New York.

Kahng, S.W., (1972), "Best Lp Approximation", Mathematics of Computation,

26 (1972), pp. 505-508.

Kato, Tosio, (1966), Perturbation Theory for Linear Operators, Springer-

Verlag, New York.

Kaula, W.M., (1967), "Theory of Statistical Analysis of Data Distributed

over a Sphere", Reviews of Geophysics 5 (1967), pp. 83-107.

Kazansky, I., (1935), "Ein praktischer Versuch der gravimetrischen

Bestimmang der Lotabweichungen", Verh. Balt. geod. Komm., Tag. VII,

Bd. 2, Helsinki 1935, p. 388.

R-3



4

Lawson, C.L., and R.J. Hanson, (1974), Solving Least Squares Problems,

Prentice-Hall, New Jersey.

Liusternik, L.A., and V.J. Sobolev, (1961), Elements of Functional

Analysis, Fredrick Ungar Publishing Co., New York.

Luenberger, David G., (1973), Introduction to Linear and Nonlinear

Programming, Addison-Wesley, Reading, MA.

Luke, Y.L., (1975), Mathematical Functions and Their Approximations,

Academic Press, New York.

Magnus, Wilhelm, and Fritz Obergettinger, (1949), Formulas and Theorems

for the Functions of Mathematical Physics, Chelsea, New York.

Malkin, N., (1933), "Uber die Formeln von Vening-Meinesz, Calandreau

und einige andere Formlen der h6heren Geodisie", Gerlands

Beitrige der Geophysik, 38 (1933), pp. 53-63.

Meissl, Peter, (1971), A Study of Covariance Functions Related to the

Earth's Disturbing Potential, Report No. 151, Department of

Geodetic Science, Ohio State University, April 1971, AFCRL-TR-

71-0240.

Molodenskii, M.S., Eremeev, V.F., and M.I. Yurkina, (1962), Methods

for Study of the External Gravitational Field and Figure of

the Earth, Israel Program for Scientific Translations, Jerusalem,

1962. (Available from the National Technical Information Service

as document #TT-61-31207.)

Morse, P.M., and H. Feshbach, (1953), Methods of Theoretical Physics,

Volumes I and II, McGraw-Hill, New York.

Nettleton, L.L., (1976), Gravity and Magnetics in Oil Prospecting,

McGraw-Hill, Inc., New York.

Neyman, Y.M., (1974), "Computation for Some Integral Transform in

Physical Geodesy", Geodesy, Mapping, and Photogrammetry, 16 (1974),

pp. 9-12. Originally published in Russian in: Izvestiya vuzov.

Geodeziya i aerofotos' yemka, No. 4, 1974, pp. 49-54.

Paul, M.K., (1978), "Recurrence Relations for Integrals of Associated

Legendre Functions", Bulletin Gdodesique, 52 (1978), pp. 177-190.

Peasley, Q.D., (1976), Coefficients of Associated Legendre Functions,

NASA Technical Note D-8200, Marshall Space Flight Center, Alabama,

April 1976.

A

R-4



Pick, M., Picha, J., and V. Vyskocil, (1973), Theory of the Earth's

*] Gravity Field, Elsevier Scientific, Amsterdam.

Potter, J.E., and E.J. Frey, (1967), Rotation Invariant Probability

Distributions on the Surface of a Sphere, with Applications to

Geodesy, Report RE-27, Experimental Astronomy Laboratory, Massa-

chusetts Institute of Technology, May 1967. Presented at the

International Colloquium on Dynamic Methods in Satellite Geodesy,

Paris, May 1967.

Prado, G., (1977a), "The Role of the Hilbert Transform on Potential

Theory Problems", CSDL Internal Memo #AGS-4300-77-01, January 1977.

Prado, G., (1977b), "Calculating the External Gravity Field, A Signal

Processing Approach", Proceedings of the National Aerospace and

Electronics Conference (NAECON), Dayton, Ohio, May 1977.

Reed, G.B., (1973), Application of Kinematical Geodesy for Determining

the Short Wave Length Components of the Gravity Field by Satellite

Geodesy, Report No. 201, Department of Geodetic Science, Ohio

State University, March 1973, AFCRL-TR-73-0535, AD768973.

Rektorys, Karel (ed.), (1969), Survey of Applicable Mathematics,

M.I.T. Press, Cambridge, MA.

Robertson, William M., (1977a), Spectral Theory of the Integral Trans-

formations of Geodesy, CSDL Report P-406, January 1977.

Robertson, William M., (1977b), Spectral Theory of the Discrete Summa-

tion Transformations of Geodesy, Part I: Stokes' Transformation,

CSDL Report P-455 (Part I), March 1977.

Robertson, William M., (1978), Spectral Theory of the Discrete Summation

Transformations of Geodesy, Part II: Vening-Meinesz' Transforma-

tion, CSDL Report P-455 (Part II), April 1978.

Robin, Louis, (1957), Fonctions Sph4rigues de Legendre et Fonctions

Sphiroldales, Volumes I, II, III, Gauthier-Villars, Paris.

Robinson, E.A., (1954), "Predictive Decomposition of Time Series with

Application to Seismic Exploration", M.I.T. Geophysical Analysis

Group Report No. 7, July 1954; reprinted in Geophysics, 32 (1967),

Issue No. 3 (June), vp. 418-484; also reprinted in Deconvolution,

Geophysics Reprint Seriec No. 1, Society of Exploration Geo-

Physicists, 1978, pp. 52-118.

R-5



Titchmarsh, E.C., (1948), Theory of Fourier Integrals, 2nd Edition,

Oxford University Press, Oxford.

Tranter, C.J., (1950), "Legendre Transforms", Quart. J. Math. Oxford (2),

1 (1950), pp. 1-8.

Tscherning, C.C., (1977), Introduction to Functional Analysis with a View

to Its Applications in Approximation Theory, Lecture Notes (38

pages), Second International Summer School in the Mountains,

Ramsau, Austria, 23 August to 2 September 1977. Available from:

C.C. Tscherning, Geodaetisk Institut, Gamlehave Alld 22, DK-2920

Charlottenlund, Denmark.

Tscherning, C.C., and R.H. Rapp, (1974), Closed Covariance Expressions

for Gravity Anomalies, Geoid Undulations, and Deflections of the

Vertical Implied by Anomaly Degree Variance Models, Report No. 208,

Department of Geodetic Science, Ohio State University, AFCRL-TR-

74-0231, May 1974.

Vogel, Thgodore, (1953), Les Functions Orthogonales dans les Prob16mes

aux Limites de la Physique Mathdmatique, Centre National de la

Recherche Scientifique, Paris.

Whittaker, E.T., and G.N. Watson, (1927), A Course of Modern Analysis,

Fourth Edition, Cambridge University Press, Cambridge.

Wigner, E.P., (1959), Group Theory and Its Application to the Quantum

Mechanics of Atomic Spectra, Academic Press, New York.

Zondek, B., (1977), Aggregation Errors of Cell-Averaged Geoid Height,

Technical Report TR-3608, Naval Surface Weapons Center, Dahlgren

Laboratory, Dahlgren, Virginia, 22448, May 1977.

R-6


