

vivulabSLELLU
SECURITY CLASSIFICATION OF TH!S PAGE (H7: D Duta Emered),

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17. DISTRIBUTION STATEMENT (Of the abstract enterad in Block 20, If dilferent from Report)
18. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1
WNN E. WOLAVER 26 Dean for Research and Professional Development AFIT/NR
19. KEY WORDS (Continue on reverso sido ll nocessary and ldentlfy by block number)
20. ABSTRACT (Contlme on reverse side ll necessary and idently by block number) ATTACHED

ABSTRACT OF DISSERTATION

UAN DER WAALS CLUSTERS OF
AROMATIC MOLECULES STUDIED USING
SUPERSONIC MOLECULAR JET SPECTROSCOPY
van der Waals (vdW) clusters of aromatic solutes with various solvents
are studied in the gas phase using supersonic molecular jet spectroscopy. Calculations involving ground state cluster binding energy, geometry, and intermolecular vibrational structure are also presented to complement the experiments. The analyses include: spectroscopic studies and theoretical modeling of the intermolecular vibronic structure of benzene solvated by argon, methane, water, and ammonia; spectroscopic studies and theoretical modeling of the intermolecular vibronic torsional structure in benzene solvated by methane, deuteromethane, and carbon tetrafluoride; solvation of pyrazine and pyrimidine by both small hydrocarbon and hydrogen bonding solvents; the study of pyrazine and pyrimidine dimers; and the solvation of macrocycles such as free base phthalocyanine ($\mathrm{H}_{2}^{\top} \mathrm{Pc}$) and magnesium phthalocyanine ($\mathrm{MgP} \mathrm{P}_{\mathrm{c}}$) by small hydrocarbon solvents, hydrogen bonding solvents, and carbon dioxide. $_$.........

The benzene/solvent studies lead to the elucidation of the detailed nature of the intermolecular vibrational structures and the geometries/symmetries present in the clusters. These studies reveal that the majority of the intermolecular vibronic transitions observed involve vall bending and torsional motion parallel to the solute pi cloud. Furthermore, the clusters behave rigidly with regard to internal rotation of the cluster subunits and the clusters possess unique equilibrium geometries.

The pyrazine and pyrimidine/solvent and dimer studies demonstrate the detailed effects of the solute ring mitrogens on cluster geometry and on the role of hydrogen bonding in the clusters.

The $\mathrm{H}_{2} \mathrm{Pc}$ and $\mathrm{MgPc} / \mathrm{solvent}$ cluster experiments and models suggest that stable solute solvation sites are located over the phthalocyano core and not over peripheral ring centers. Forbidden low frequency cluster chromophore out-of-plane vibronic transitions are also induced by solvation in both the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clusters.

Primary References:

1. J. A. Menapace and E. R. Bernstein, Journal of Physical Chemistry: 1987, 91, 2843.
2. J. A. Menapace and E. R. Bernstein, Journal of Physical Chemistry, 1987, 91, 2533.
3. J. A. Menapace and E. R. Bernstein, Journal of Chemical Physics, 1987, 86, 0000.
4. J. Wanna, J. A. Menapace, and E. R. Bernstein, Journal of Chemical Physics, 1986, 85, 777.
5. J. Wanna, J. A. Menapace, and E. R. Bernstein, Journal of Chemical Physics, 1986, 85, 1795.

Secondary References:

1. M. Schauer and E. R. Bernstein, Journal of Chemical Physics, 1985, 82, 726.
2. K. S. Law, M. Schauer, and E. R. Bernstein, Journal of Chemical Physics, 1984, 81, 4871.
3. J. Wanna and E. R. Bernstein, Journal of Chemıcal Physics, 1986, 84, 927.

Joseph Arthur Menapace, Capt, USAF
Doctor of Philosophy
Depintment of Chemistry
Colorado State Unaversity
Fort Collins, CO 80523
Summer 1987
Dissertation: 339 Pages

VAN DER WAALS CLUSTERS OF

 aromatic molecules studied using SUPERSONIC MOLECULAR JET SPECTROSCOPY
Submitted by

 Joseph Arthur Menapace Department of ChemistryIn partial fulfillment of the requirements for the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 1987

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPERVISION BY JOSEPH ARTHUR MENAPACE ENTITLED VAN DER WAALS CLUSTERS OF AROMATIC MOLECULES STUDIED USING SUPERSONIC MOLECULAR JET SPECTROSCOPY BE ACCEPTED AS FULPILLING IN PART THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OP PHILOSOPHY.

Committee on Graduate Work

> Advisor

Department Head

ABSTRACT OF DISSERTATION

VAN DER WAALS CLUSTERS OF

AROMATIC MOLECULES STUDIED USING

 SUPERSONIC MOLECULAR JET SPECTROSCOPYvan der Waals (vdW) clusters of aromatic solutes with various solvents are studied in the gas phase using supersonic molecular jet spectroscopy. Calculations involving ground state cluster binding energy, geometry, and intermolecular vibrational structure are also presented to complement the experiments. The analyses include: spectroscopic studies and theoretical modeling of the intermolecular vibronic structure of benzene solvated by argon, methane, water, and ammonia; spectroscopic studies and theoretical modeling of the intermolecular vibronic torsional structure in benzene solvated by methane, deuteromethane, and carbon tetrafluoride; solvation of pyrazine and pyrimidine by both small hydrocarbon and hydrogen bonding solvents; the study of pyrazine and pyrimidine dimers: and the solvation of macrocycles such as free base phthalocyanine ($\mathrm{H}_{2} \mathrm{Pc}$) and magnesium phthalocyanine (MgPc) by small hydrocarbon solvents. hydrogen bonding solvents, and carbon dioxide.

The benzene'solvent studies lead to the elucidation of the detailed nature of the intermolecular vibrational structures and the geometries/symmetries present in the clusters. These studies revenl that the majority of the intermolecular vibronic transitions observed
involve vdW bending and torsional motion parallel to the solute π cloud. Purthermore, the clusters behave rigidly with regard to internal rotation of the cluster subunits and the clusters possess unique equilibrium geonetries.

The pyrazine and pyrimidine/solvent and dimer studies demonstrate the detailed effects of the solute ring nitrogens on cluster geometry and on the role of hydrogen bonding in the clusters.

The $\mathrm{H}_{2} \mathrm{Pc}$ and $\mathrm{MgPc} /$ solvent cluster experiments and models suggest that stable solute solvation sites are located over the phthalocyano core and not over peripheral ring centers. The $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon cluster results parallel those obtained for the benzene and N-heterocycle/ hydrocarbon clusters. The $\mathrm{H}_{2} \mathrm{Pc}$ and $\mathrm{MgPc} / \mathrm{alcohol}$ cluster spectra and calculated geometries suggest that the solvent OH groups are intimately involved in the intermolecular interactions. Forbidden low frequency cluster chromophore out-of-plane vibronic transitions are also induced by clustering. This low frequency motion is characterized using an out-of-plane normal coordinate analysis on the $\mathrm{H}_{2} \mathrm{Pc}$ moiety.

Joseph Arthur Menapace Department of Chemistry Colorado State University Fort Collins, CO 80523 Summer 1987

ACKNOWLEDGMENTS

I would like to extend my thanks to a number of people whose assistance and support have proved invaluable in making graduate school a worthwhile experience for me. Uppermost of those who have spurred by interest in the details of molecular spectroscopy is Elliot R. Bernstein. I am deeply indebted to Elliot for his constant encouragement and generous advice in my research. His clear insight and helpful discussions were of ten the only reasons why explanations for several of the effects discussed in this manuscript were pursued.

I am grateful to the members of my Graduate Advisory Committee for taking the time to participate in my research endeavors.

I would like to thank Dr. Joseph Wanna and Dr. Mark Schauer for teaching me the "tricks of the trade". Without them this dissertation would not be nearly as impressive.

I am extremely grateful to Lt. Col. Chester Dymek, the staff at Frank J. Seiler Research Laboratory, and the people behind the United States Air Force Academy Faculty Program for making it possible for me to pursue my education in conjunction with my Air Force career.

Most of all, I would like to thank my lovely wife Lisa, my son Joe Jr., and my daughter Deanna. I am deeply indebted to them for the sacrifices they made and for their encouragement and emotional support during this period of endeavor in my life.
\qquad

Ida M. Menapace,
Janet J. Juranek, and
John E. Juranek Sr.,

With Love... Joe

TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTORY COMMENTS AND OVERVIEW

Introduction.

The material contained in this dissertation is largely presented in five publications. In the spirit of completeness and accuracy, these papers are incorporated directly into the dissertation. The first three papers appear as chapters in the body of the manuscript. The remaining two papers appear in reprint form as appendices. The rest of the dissertation entails the introductory comments and overview, unpublished results, future'proposed experiments, conclusions, and the computer programs utilized in this work.

The introductory comments and overview are meant to tie together the body of the dissertation since directly presenting the publications tends to fragment the discussion. They will also provide the reader with the general notions underlying the work presented in detail in each major section or chapter of the dissertation.

The unpublished results contain mostly those data which are not important enough to appear in papers, or data which need additional work to interpret. The data are presented in the dissertation to establish a record of the research conducted in specific areas and to provide future investigators with a basis for further study

The future'proposed experiments involve both theoretical and experimental studies of solute'solvent cluster systems similar to 1 hose
presented in this dissertation. The primary motivation in these proposed experiments is to provide for continued research on cluster systems using the models, procedures, and experlmental set-ups currenty available in the Bernstein group laboratory.

The presentation of the computer programs used in the cluster studies is largely for the convenience of future investigators. The programs serve as easy references for those conducting research in the same or similar areas as well as provide documentation on the "how to's" of the models used in the studies.

Overview.
The five publications incorporated into this dissertation are divided into five chapters. The work covers: 1) the experimental study and theoretical modeling of the intermolecular vibronic structure of benzene solvated by argon, methane, water, and ammonia; 2) the experimental study and theoretical modeling of the intermolecular vibronic torsjonal structure in benzene solvated by methane, deuteromethane, and carbon tetrafluoride; 3) the detailed study of the solvation of pyrazine and pyrimidine by both small hydrocarbon and hydrogen bonding solvents:

1) the study of pyrazine and pyrimidine dimers; and 5) the solvation of macrocycles such as free base phthalocyanine and magnesium phthalo cyanine by small hydrocarbon solvents, hydrogen bonding solvents, and carbon dioxide. This overview is intended to tie together the major results of these studies and to create a sense of unity and purpose for the studies

The Vibronic Structure of Solute Solvent ran der waals clustars
A large body of data has been accumulated in this laboratory for small aromatic molecules such as benzene, prazine. and primidine solvated
with small hydrocarbon solvents such as methane, ethane, and propane, and hydrogen bonding solvents such as water and ammonia. These spectroscopic studies yield observables such as spectral shift which can be related to the difference between the cluster binding energy between the ground and electronic excited states and to cluster geometry. In the majority of the cluster spectra, intermolecular vibronic transitions are observed which can be used to elucidate the cluster symmetry/geometry, electronic state mixing, and the intricacies of the intermolecular potential surface.

Modeling of the intermolecular interaction between the cluster constituents also complements the spectroscopic studies. These calculatinns allow one to elucidate some physical properties of the clusters such as ground state cluster binding energy and geometry. The calculations always yield results consistent with experimental observations in regard to the number of cluster configurations observed, their respective binding energies, and their qualitative geometries. Modeling of the intermolecular vibronic structure in these molecules adds to the understanding of the cluster systems as it allows one to obtain detailed information on cluster geometry/symmetry and to elucidate the intricacies of the potential established hetween the cluster constituents.

Presently, little information is available, either experimentally or theoretically, on the details of the intermolecular vibrational structure in the solute/solvent cluster systems. Furthermore, the van der Waals (vdW) modes are interesting as they play a key role in dynamical energy transfer processes in the clusters as well as represent precursors to a variety of motions occurring in liquids and solids.

The modeling of the intermolecular vibrational strurture in this study is approached by extending the empirical models previously used in
calculate cluster ground state geonetry and binding energy to include modeling of the ground state vdw motion. The vdW vibrational structure is modeled using a normal coordinate analysis in which the clusters are treated as "giant molecules" whose motion is governed by a force field describing both the intra- and intermolecular motion. The intermolecular force field is based upon an atom-atom lennard-Jones potential function including general non-bonding (6-12), hydrogen honding (10-12). and monopole charge (1) terms.

Using this model, the eigenvalues and eigenvector normal modes for the vdW motion nccurring in benzene $\left.(\mathrm{Ar})_{1}, /\left(\mathrm{CH}_{4}\right)_{1}, /\left(\mathrm{H}_{2}\right)_{1}\right)_{1}$, and $/\left(\mathrm{NH}_{3}\right)_{1}$, and s-tetrazine $(\mathrm{Ar})_{1}$ are calculated. The results of these calculations are then used to assign the vdw motions ohserved in vibronic spectra of the aforementioned cluster systems which are obtained using 1-and 2 -color time-of-flight mass spectroscopy (TOPMS). Agreement between the calculations and experiments is excellent for cluster binding energies, symetries, and vdw frequencies. Essentially, the S_{1} - S_{0} vibronic transition of the clusters are completely assigned based upon these calculations.

A number of approximate "diatomic molecule" models are also considered in this study to analyze the vdW structure in benzene(Ar) $)_{1}$ The cluster vdW modes are modeled using three methods: 1) a Taylor series expansion of the intermolecular potential along the vdw stretching and bending coordinates; 2) a Morse potential fit to the intermolecular potential along the vdw stretching and bending coordinates; and 3) a semi-classical energy level fit to the intermolecular potential using the .JWKB method. The models essentially treat the clusters as simple two particle systems whose motions are restricted ${ }^{\prime \prime}$
the principle axes of a Cartesian coordinate system and can, thereby, be analyzed using a diatomic molecule type approximation. These models are considered to show the consistency of the calculations between each diatomic molecule model and the intermolecular normal coordinate analysis.

The experimental and theoretical studies on the benzene/solvent systems give rise to several interesting notions which involve the detailed nature of the intermolecular interaction. First, the studies reveal that the weak vdW potential between the cluster solute and solvent is, for the most part, the same for the ground and excited electronic states. Second, the majority of the observed vdw vibronic transitions observed in the cluster spectra are those involving vdW bending and torsional motions parallel to the aromatic π system. Third, these modes are quite active in the Herzberg-Teller vibronic coupling mechanism. And fourth, vdW motions for which the cluster solvent penetrates the aromatic π system of the solute have high frequencies and are typically not observed.

The Intermolecular Vibronic Torsional Structure in Solute/Solvent vdw Clusters: Benzene/Methane, /Deuteromethane, and /Carbon Tetra-
fluoride - The modeling of the intermolecular motion in the vdW clusters discussed above is basically approached using, more or less, a rigid molecule bound energy well approximation. This approach seems quite reasonable for the vdw stretching and bending degrees of freedom which are essentially translations of the cluster constituents relative to one another. The vdw torsional modes, on the other hand, could in principle not be oscillatory. They could be free or hindered rotation of the cluster solvent relative to the cluster solute. In this regard the
intermolecular normal coordinate analysis may not faithfully reproduce the $v d W$ torsional motion present in the clusters.

To study this possibility, we chose to analyze benzene clustered with methane, deuteromethane, and carbon tetrafluoride. The motivation for studying this "isotopic" cluster solvent series centers upon the elucidation of the vd W torsional structure. Two limiting cases can be proposed in regard to the torsinnal structure in benzene $\left(\mathrm{CH}_{4}\right)_{1}$, benzene $\left(\mathrm{CD}_{4}\right)_{1}$, and benzene $\left(\mathrm{CF}_{4}\right)_{1}$. In one case, the clusters can possess free internal rotation in which the cluster solvent freely rotates in three dimensions against the benzene frame and the system can be considered internally non-rigid. In the other case, the clusters possess torsinnal oscillations for which the cluster solvent librates against the benzene frame with a residence time long enough to give rise to "vibration like" motion in an internally rigid molecule regine. Understanding the vdw torsional motion is particularly interesting in these systems as the limiting cases pose questions regarding the physics gnverning the vdW torsional structure: 1) do the clusters posses free/ hindered internal rotation or do they possess torsional nscillations; and 2) in either case, what is the dependence of the intermolecular potential upon the relative orientation of the cluster constituents?

In the studies, the clusters are probed spectroscopically using supersonic molecular jet expansion and 2 -color TOFMS techniques. The cluster S_{1} - S_{0} intermolecular vibronic structures are then chararterized hy calculational modeling of the vdW motion. The calculations include: 1) an intermolecular normal coordinate analysis which treats all six vdW modes under a harmonic oscillator assumptinn; and 2) a three-dimensional hindered rigid rotor analysis which treats only the intermolecular torsional motion.

In the experimental and theoretical studies on the benzene $\left(\mathrm{CH}_{4}\right)_{1}$. henzene $\left(\mathrm{CD}_{4}\right)_{1}$, and benzene $\left(\mathrm{CF}_{4}\right)_{1}$ systems, several interesting results are obtained. Pirst, the cluster vibronic spectra show that the clusters are at least semi-rigid systems with regard to internal rotation of the cluster subunits and that the clusters possess unique equilibrium geometries. Second, the spectra demonstrate that the intermolecular motion present in the systems is oscillatory and, through the "isntopic" shifts observed, that the low-jying eigenstates are nearly harmonic. They are not admixtures of vdW bends, stretches, and free internal rotation as would occur if the clusters were internally nonrigid. Third, both the intermolecular normal coordinate analysis and the three-dimensional hindered rigid rotor analysis indicate that the vdW torsional structure is oscillatory and that the motion is constrained by an orientationally dependent intermolecular potential whose barrier height is on the order of the cluster binding energy.

Hydrogen Bonded and Non-Hydrogen Bonded vdW Clusters: Comparisnn between Clusters of Pyrazine, Pyrimidine, and Benzene with Various Solvents - The study of the solvation of pyrazine, pyrimjdine, and benzene hy both small hydrocarbon and hydrogen bonding solvents has led to detailed information about the structure and energetics present in the solute/solvent systems. Our chief motivations for studying these clusters center upon the elucidation of the effects of the ring nitrogen atoms in pyrazine and pyrimidine solutes on cluster geometry and on the role of hydrogen bonding in the pyrazine, pyrimidine, and benzene cluster systems. These studies are of interest as hydrogen bonding interactions are known to play an important role in the intra- and Intermolecular interactions responsible for secondary and tertiary
structure, molecular dynamics, and ionic and molecular solvation. Assignment of the spectra obtained in these studies is accomplished through the determination of the cluster spertral shifts, innization energies, relative intensities, molecular forbidien cluster transitions, and intermolecular potentjal/cluster geometry calculations. Computer modeling of the cluster systems has proven essential to the understanding of the spectroscopic data. Through the interplay of the computer moreling of these rlusters and the spectroscopic data, it is nossible to assign probable genmetries to many of the spertroscnpic features. In many rases this allows one to find the spectral shift corresponding to a specific geometry of a cluster. The assignment of a geometry to the spectral shifts leads to some general conclusions about the types of interactions responsible for the spertral shifts.

In these studies we find that the clusters fall into two general categories: 1) a conventional set containing the aromatic solute/ hydrocarbon solvent clusters; and 2) henzene, pyrimidine, pyrazine ammonia and benzene water clusters. The aromatic solute/hydrocarbon cluster spectra are quite similar to one another in that they all possess bathychromic shifts with respect to the isolated chromophore transition. The cluster binding energies and calculated geometries are also similar. The presence of the nitrogen atoms in the aromatic ring of the pyrazine and pyrimidine solutes has a relatively small although discernible effect on the overall intermolecular interaction. In par tirular, the solvent hydrogen atoms preferentially orient towards the solute nitrogen atoms.

The solute/hydrogen bonding solvent rluster systems, on the other hand, possess vibronic spectra which are all unique and surprisingly
erratic. In these rlusters the spectral shifts range from - 100 to $500 \mathrm{~cm}^{-1}$, the vdW vibronic motion $j n$ the systems range from nonexistent to intense, the vdW modes are in some cases highly perturbing to the solute vibronjc structure and energy, and the number of unique cluster geometries range from one to three in an apparently random fashion. In spite of these differences the models used to calculate the raster geometries and binding energies corroborate the experiments as far as the comparison can be made in regard to cluster symmetry, number of configurations observed, and red and blue shifts in regard to hydrogen bonding. The hypsochromjc shifts observed in the pyrazine and pyrimjdine ammonia clusters suggest that hydrogen bonding between the ring nitrogen and the solvent hydrogens may be contributing to some extent to the total intermolecular interaction responsible for cluster formation/ stabilization. The benzene/ammonia and benzene/water spectra seem to suggest that some type of hydrogen bonding may be occurring in the benzene/water system between the aromatic π cloud and the solvent moiety as the benzene $\left(\mathrm{H}_{2}{ }^{\mathrm{n}}\right)_{1}$ spectral shift is hypsochromic whereas the benzene $\left(\mathrm{NH}_{3}\right)_{1}$ spectral shift is bathychromic.

Supersonic Mojecular Jet Studies of the Pyrazine and Pyrimidine Dimers - The understanding of the solute/solute interactions in the pyrazine and pyrimidine dimer systems is of interest for a number of reasons. Pirst, the dimers serve as model systems for condensed phase structure, dynamics, and nucleation and growth of molecular aggregates. Second, the dimers provide insight into the understanding of the second ary and tertiary structures present in more complicated molecules. And third, studying these clusters in the gas phase yields information on the major interactions responsible for dimer formation and what types of
dimer geometries are most prohable in an isolated environment free from the extraneous perturbations present in liquid and solid phases.

The pyrazine and pyrimidine dimers are analyzed using supersonic molecular jet expansion and 2-color TOFMS techniques for which the mass selected optical spectra of the first excited singlet $n \pi^{*}$ transitions of the dimers are observed. On the basis of what we have learned from the study of the simple solute/solvent clusters, we are able to analyze the dimer systems using cluster ionization energy, vibronic structure, spertral shift, and modeling of the intermolecular potential between the cluster subunits. The interplay of the spectroscopic data and the calculations allows us to obtain a consistent set of genmetries for the dimers present in the supersonic expansion.

In the pyrazine dimer system, the experiments and calculations suggest that the both parallel hydrogen honded and perpendicular dimers are present in the supersonic expansion. The ralculations also predict a parallel stacked $/ 90^{\circ}$ rotated dimer which is not observed. This species most likely forms an excimer in the excited state with a short lifetime and a large red shifted and broad spectrum. The major distinction between the twn ohserved dimer species is determined to be the difference in the involvement of the π clouds in the overall dimer interaction as evidenced by differences in the cluster ionization energy between the two cluster species.

In the pyrimidine dimer, the calculations yield four planar hydrogen bonded species and a parallel stacked/displared species. The ohserved dimer vihronic spectra are consistent with these calculated geometries. As in the pyrazine dimer, the ionizatinn energy proves to be an important contribution in determining the number of different
dimer genmetries responsible for the ohserved spectra. Additionally, we find that the dimer spectral shifts depend upon the specific cluster genmetry. A bathychrnmic shift is associated with the parallel stacked/ displaced dimer and hypsochromic shifts are associated with the planar hydrogen bonded dimers.

To explore further the agrepment between the experiments and calculations on the dimer systems, we also conducted calculations on the tetrazine dimer. Three calculated geometries are obtained for the tetrazine dimer: a parallel stacked $/ 90^{\circ}$ rotated species, a planar hydrogen bonded species, and a perpendicular species. In this study we find that the calculated geometries are in agreement with geometries determined from rotational analysis.

Computer modeling is determined to be an essential component to the study of these dimer systems. The spectroscopic data are needed to validate the computer modeling techniques, and the calculations help to assign spectra which are otherwise quite puzzling. In this way the interplay between spectroscopy and computer modeling leads to a better understanding of the structure and energetics of the solute/solute systems.

Supersonic Molecular Jet Studies of Phthalocyanines and Their vdw Clusters with Small Molerules - In these studies, free base phthalocyanine $\left(\mathrm{H}_{2} \mathrm{Pc}\right)$ and magnesium phthalocyanine (MgPr) clustered with solvents such as small hydrocarbons $\left(C_{n} H_{2 n+2}(n=1,2,3)\right)$, hydrogen bonding solvents $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{EtOH}\right)$, and CO_{2} are analyzed in an isolated ultracold molecular environment. The clusters are generated using a high temperature continuous supersonic molecular jet especially designed for efficient generation and study of the species in the gas phase. The
advantages of the supersonic molecular jet are exploited in these studies as the complicated phthalocyanine spectra are dramatically simplified and the solvent or environmental perturbations present are controlled in a set and reproducible manner.

Our basic motivation for studying these systems centers upon elucidation of the solvation properties of the macrocycles in a controlled and well-defined environment. In this regard, supersonic molecular jet investigations on the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc solute/solvent clusters can contribute to the resolution of a number of important concerns dealing with the behavior of the systems on the microscopic scale. Questions that we considered in these cluster studies are 1) what are the ground and excited state binding energies between the phthalocyanines and various solvents, 2) what are the preferential interaction sites on the phthalocyanine moiety, 3) what are the most favorable cluster geometries, 4) what types of interactions are important in the intermolecular interaction established between the solute and the solvent, and 5) are changes to the chromophore symmetry/geometry induced by clustering.

The $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc solute/solvent clusters are characterized by analysis of their gas phase fluorescence excitation spectra and modeling of the intermolecular potential between the cluster solutes and solvents. In these studies, we find that forbidden cluster chromophore out-of-plane motion is induced by clustering and that elucidation of the nature of this out-of-plane motion is essential to the understanding of the cluster spectra and in the identification of the number of different clusters of a specific composition observed. This prompted us to conduct an out-of-plane normal coordinate analysis on $\mathrm{H}_{2} \mathrm{Pc}$ to
characterize the motion. The comparison between these calculations and the experiments makes possible the identification of specific species/ geometries responsible for the cluster vibronic transitions observed in the spectra.

Several interesting results are obtained from the cluster studies. First, the cluster vibronic spectra and calculations suggest that stable $H_{2} P c$ and $M g P c$ solvation sites are located over the phthalocyano core. Local minima over peripheral ring centers are either nonexistent or too shallow to accommodate minimum energy bound state geometries. Second, the $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon cluster experimental and theoretical results parallel those obtained for benzene and the N heterocycle/hydrocarbon clusters. The spectral shifts observed in these solvent series are all bathychromic and the magnitudes of the spectral shifts increase with increasing solvent size and polarizability. Third, the $\mathrm{H}_{2} \mathrm{Pc}$ and $\mathrm{MgPc} / \mathrm{alcohol}$ cluster spectra and calculated geometries suggest that the solvent $O H$ group is intimately involved in the intermolecular interactions and contributes significantly to the observed spectral shifts. Fourth, MgPc clusters display weak vdW interactions between the cluster solute and solvent. Actual complexation in which the solvent donates electron density to the solute does not occur. Pifth, excited electronic state splitting may occur in the MgPc clusters due to the reduction in system symmetry upon cluster formation. The degenerate Q band in the isolated $M g P c$ spectrum appears to split into its two components, Q_{x} and Q_{y}, in the cluster spectra. Finally, forbidden low frequency cluster chromophore out-of-plane motion is induced by clustering in both the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc systems. Intensity of this motion arises from the reduction of the chromophore symmetry in the clusters.

THE VIBRONIC STRUCTURE OF SOLUTE'SOLVENT' VAN DER WAALS CLUSTERS

Introduction.

The combination of laser spectroscopy and supersonic molecular jet expansions has made possible the study of a wide array of weakly bound van der Waals (vdW) molecules in the gas phase. These clusters. formed in the jet expansion, are stable in the post-expansion region and can be studied as isolated molecules. They are interesting both theoretically and experimentally because of their unique characteristics such as low binding energies, large intermolecular equilibrium distances, and low frequency intermolecular vibrational modes. Furthermore, the vdW clusters only slightly perturb the individual properties of their molecular constituents. ${ }^{1}$ These characteristics set the vdW cluster apart as a distinct phase of matter to be explored and understood.

The electronic-vibrational spectroscopy of aromatic molecules like benzene ${ }^{2-4}$ and s-tetrazine ${ }^{5}$ clustered with various solvents reveals interesting information regarding unique cluster characteristics. Specifically, the studies show detalled information pertaining to the intermolecular energetics and dynamics of cluster interactions, espec ially in the area of the clusters' low frequency viw vibrational modes. These modes are of considerable interest since they represent the pro cursors of a variety of condensed phase elgenstates such as phonons in
liquids and solids. They are also key factors in cluster dynamics as they play a major role in the energy transfer processes of intramolecular vibrational redistribution (IVR) and vibrational predissociation (VP).

Presently, little information is available concerning the do tailed intermolecular vibrational structure in molecule-molecule clusters either experimentally or theoretically. The majority of the theoretical work on cluster energetics and dynamics to date is focused upon the intermolecular modes in simple atom-molecule systems. The energetic studies range from quantitative treatment of the vdw stretch and qualitative discussion of the vdw bends ${ }^{1,6,7}$ in the atom-molecule clusters to full quantitative treatment of both the vdw bends and stretch ${ }^{16}$ in systems for which the intermolecular potential is easily modeled. In dynamical studies. ${ }^{6,7}$ primary emphasis is placed upon the $v d W$ stretching mode since it is presupposed that this motion is the major contributor to $I V R$ and $V P$ processes. The _lusters are thereby treated quantitatively using a "dumbbell" approximation in which the intermolecular motion is restricted to a stretching mode form. Within this approximation, neglecting the quantitative contributions of the bending'torsional vdw modes in the dynamical scheme seriously limits the application of theoretical treatments to IVR and VP phenomena occurring in molecule-molecule clusters. The stretching mode "restriction" dictates that only certain energy transfer processes can he modeled. specifically those which involve the vdw stretch. Experimental evidence of the theory's Iimitation is found in the observation of energy transfer from prepared states tangential to the vdw stretching motion. Part of the difficulty of incorporating the vdW bending and/or torsional modes into the theory is that no model has been demonstrated which
describes adequately either their energetics or mode nature in moleculemolecule clusters.

In previous publications, ${ }^{8}$ we have used theoretical calculations to elucidate structure and binding energy in the vdw cluster ground state. Combining these calculations with experimental observables such as binding energies, ionization energies, spectral shifts, relative feature intensities, and the appearance of cluster constituent, symmetry forbidden. transitions has aided considerably in spectral assignment and understanding. The calculations always yield results consistent with experimental observations in regard to the number of cluster configurations observed, their respective binding energies, and their qualitative geonetries.

In the majority of the cluster spectra studied, vdw vibronic features are observed and sometimes assigned based upon overtone and combination band analysis. In other cases, however, these vibronic features are numerous and complex, making elucidation of the mode fundamentals difficult and sometimes impossible. The vdW vibronic feature assignments have been made based upon the assumptions that the vdW stretch occurs at higher frequency and with greater intensity than vdW bends and torsions. Assigning spectra using these assumptions is a difficult task without a priori knowledge of vibronic mode nature since one must consider that, in nonlinear polyatomic molecule-molecule clusters. six vdW modes exist of which only one is a stretching mode. (In a non-linear atom-polyatomic molecule cluster, three vdw modes exist).

The studies reported in this publication involve the calculation of complete set of ground state vdW vibrational modes for
benzene $(\mathrm{Ar})_{1}, \mathrm{~s}$-tetrazine $(\mathrm{Ar})_{1}$, benzene $\left(\mathrm{CH}_{4}\right)_{1}$, benzene $\left(\mathrm{H}_{2} \mathrm{O}_{1}\right.$, and benzene $\left(\mathrm{NH}_{3}\right)_{1}$. The calculations are performed using a selfconsistent pairwise atom-atom intermolecular potential developed by Scheraga, et al. ${ }^{9}$ containing general nonbonding (6-12), general hydrogen bonding (10-12), and monopole charge parameters. The calculated ground state vdW modes are compared with cluster vibronic spectra previously studied in this ${ }^{2,3}$ and other laboratories. ${ }^{5}$ Consequently, a number of spectral reassignments are suggested. Vibronic selection rules governing the vdW cluster $S_{1} * S_{0}$ transitions are also derived based upon calculated ground state cluster mode symmetry, cluster geometry, and experimental observation. Within this framework, ramifications of Herzberg-Teller vibronic coupling are discussed as they pertain to experimental observations of Franck-Condon forbidden transitions.

The calculated vdW vibrations are presented for all systems considered as eigenvector normal modes and eigenvalue energies determined via normal coordinate analysis of the entire vdw cluster. ${ }^{10}$ In performing the calculations, the high frequency intramolecular vibrations of the cluster constituents are assumed to be completely uncoupled from the low frequency vdW modes.

Simpler models are also considered in studying the vdW transitions of benzene(Ar) ${ }_{1}$. The system is studied using four methods: 1) a Taylor series expansion of the intermolecular vdW potential along the three Cartesian axes in which the term coefficients are related to the vibrational frequencies in these directions; 2) a Morse potential fit to the intermolecular vdW potential along each of the three Cartesian axes;
3) a Morse potential fit to the intermolecular vdW potential using
$\beta=\frac{6}{R_{0}}: 1,6,7$ and 4$)$ a semi-classical energy level fit to the
intermolecular vdW potential using the JWKB method. These studies are presented to show the consistency of the calculations and to reveal the advantages and pitfalls of the models. The four models involve treating the vdw clusters as simple two particle systems whose motions are restricted to the principle axes of the Cartesian coordinate system. The intermolecular vdW potential surfaces are thereby reduced to onedimensional potential functions which can be analyzed in a diatomic molecule approximation.

The above outlined approaches are all based more or less on a rigid molecule, bound potential energy well approximation. This approach would seem quite reasonable for the stretching(s) and bending (b_{x} and b_{y}) degrees of freedom which are essentially translations of the components of the vdW molecules with respect to one another. Torsional modes (t_{x}, t_{y}, t_{z}), on the other hand, could in principle be modeled by a free/hindered rotor formalism. ${ }^{11,12}$ A one-dimensional "free rotor" description has been applied to the symmetry axis (z) torsional motion of benzene and toluene $\left(\mathrm{CH}_{4}\right)_{1},\left(\mathrm{CD}_{4}\right)_{1}$ and $\left(\mathrm{CF}_{4}\right)_{1}$ and compared to the experimental observations. Preliminary results suggest that this approach does not faithfully reproduce the experimentally observed spectra for this "isotopic" series in terms of line shapes, intensities. major features, and the number of observed transitions. A three dimensional "free rotor" model has also been applied to this problem in order to treat all torsional modes (t_{x}, t_{y}, t_{z}) simultaneously. Similar difficulties are experienced in fitting the experimentally observed spectra. An account of these studies will be submitted for publication in the near future.

The driving motivation in these studies is to answer the fol lowing questions: 1) if parametric calculations involving cluster
geometry and binding energy are consistent with experiment, can the same data set be utilized to calculate intermolecular vibrational modes; and 2) what are the advantages and pitfills of the various models in regard to the complexity of calculation, the approximations made, and the nature of the results obtained?

Experimental Procedures.

Experimental data pertaining to the benzene(Ar) ${ }_{1}$ vdW vibronic spectrum are obtained employing the experimental apparatus and procedures similar to those used previously to study vid clusters. ${ }^{8}$ The benzene $(A r)_{1} S_{1}-S_{0}$ spectrum is recorded using a pulsed supersonic molecular jet expansion in combination with l-color time-of-flight mass spectroscopy (TOFMS). A single $\mathrm{Nd}^{+3} /$ YAG pumped LDS 698 dye laser whose output is frequency doubled and then mixed with the $\mathrm{Nd}^{+3} / \mathrm{YAG} 1.064 \mu \mathrm{~m}$ fundamental is used to probe the 6_{o}^{1} region of the benzene(Ar) $)_{1}$ cluster. A 5\% Ar in He mixture is placed inline with liquid benzene in a trap maintained at room temperature. This three component gas mixture is then expanded using a pulsed nozzle maintained at 100 psig backing pressure. Apparatus chamber pressure is maintained at or below 4×10^{-6} torr during the experiment.

Theoretical Considerations.
The normal coordinate analyses of the vdW clusters are conducted employing the GF methods of Wilson. ${ }^{10}$ These methods involve solving the characteristic equation of $3 N-6$ coupled harmonic oscillators for its $3 N-6$ non-zero eigenvalues and eigenvectors. The approach is to treat the vdW cluster as a "giant molecule" and treat both the intramolecular vibrational modes and the intermolecular vdw modes simultaneously. The
intermolecular vdW potential field used in the analyses is expressed in an intermolecular coordinate system. In this coordinate system, the intermolecular force field is diagonal in the 3 N dimensional space.

The cluster constituent intramolecular vibrational frequencies are considerably higher than those of the vdW modes. A reasonable approximation in this context then is to assume that the intramolecular modes are completely uncoupled from the low frequency vdW modes. Thus, the intramolecular modes are taken to be those of the cluster constituents. The constituent force fields are generated using the central force approximation ${ }^{11}$ including out-of-plane motion terms. Since the vdW modes arise from the restriction of cluster constituent translations and rotations and the central force approximation adequately reproduces these degrees of freedom, the necessary uncoupling of the intramolecular modes and the intermolecular vdW modes is maintained along with providing adequate vdW mode calculational results. Other, more sophisticated force field approximations are tested in the calculations; the central force approximation is determined to be adequate for calculations of the vdW modes. The only restriction which applies is that the intramolecular field yields mode eigenvalues in the proper frequency regions.

Within the central force approximation, the force field contains only diagonal terms in the internuclear coordinate system. This diagonal force field provides a simple and convenient means of using approximate force constants for intramolecular motion in the calculations. The intramolecular force constants chosen are those pertaining to general functional group stretches and bends. 11

The most convenient choice for a coordinate system as the working: basis for matrix diagonalization is the Cartesian system. This
coordinate system is chosen since it is the system used in the present cluster configuration calculations, and more importantly, it is the coordinate system in which the \underline{G}^{-1} matrix is diagonal and obvious.

In order to combine the intermolecular and intramolecular force fields algebraically, the force fields are transformed into the Cartesian coordinate system. The transformation yields two 3 N dimensional \underline{F} matrices. The intramolecular E matrix is designated as \underline{F}_{o} and the intermolecular E matrix is designated as F^{\prime}. The F_{0} matrix consists of two diagonal blocks containing the coordinates of cluster constituent intramolecular motion. The \underline{F}^{\prime} matrix contains two off-diagonal blocks and diagonal entries corresponding to the "perturbations" yielding the vdW motion. Adding these two matrices results in the "giant molecule" F matrix of order $3 N$. This matrix is left-multiplied by the \underline{G} matrix and numerically diagonalized with the eigenvalues and eigenvectors being determined in the usual fashion. Upon diagonalization, the eigenvalues and eigenvectors of intramolecular motion are identified along with those corresponding to cluster translation and rotation. These modes are discarded and the remaining modes are the eigenvalues and eigenvectors of the ground state vdW modes.

The intermolecular force constants used in the normal coordinate analysis are generated from the intermolecular vdW potential by making a harmonic oscillator approximation. Within this approximation, the force constant is simply the second derivative of the potential function. ${ }^{9}$

$$
\begin{align*}
U\left(r_{i j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{m}\left[\left\{\frac{A^{k l}}{r_{i j}^{12}}-\frac{C^{k l}}{r_{i j}^{B}}\right\}\left(1-\delta_{H B}^{i j}\right)+\frac{332.0 q_{i} q_{j}}{D r_{i j}}+\right. \\
& \left.\left\{\begin{array}{l}
A^{\prime k l} \\
r_{i j}^{12}
\end{array}-\frac{C^{\prime k l}}{r_{i j}^{10}}\right\} \quad \delta_{H B}^{i j}\right]=U\left(r_{i j}\right)_{N B}+U\left(r_{i j}\right)_{M C}+U\left(r_{i j}\right)_{H B}
\end{align*}
$$

The potential function contains a general nonbonding potential (NB), a monopole charge potential (MC), and a general hydrogen bonding potential (HB) ns a general nonbonding potential (NB), a monopole charge potential (MC), and a general hydrogen bonding potential (HB) in a Lennard-Jones (6-12-1-10-12) form. The total intermolecular interaction is taken as a sum of pairwise atom-atom interactions over all the atoms of each cluster constituent. The $r_{i j}{ }^{\prime} s$ are the atom-atom distances between atom i on constituent k and atom j on constituent l. The $r_{i j}$'s represent the coordinates in which the intermolecular force field is diagonal. The second derivative of Equation 2.1 with respect to $r_{i j}$ gives the force constant of the atom-atom interaction as,

$$
K_{j j}\left(r_{i j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left[\left\{\frac{12 \cdot 13 \cdot A^{k l}}{r_{i j}^{14}}-\frac{6 \cdot 7 \cdot C^{k l}}{r_{i j}^{8}}\right\} x\right.
$$

$$
\left.\left(1-\delta_{H B}^{i j}\right)+\frac{2 \cdot 332.0 q_{i} q_{j}}{D r_{i j}{ }^{3}}+\left\{\frac{12 \cdot 13 A^{\prime k l}}{r_{i j}^{14}}-\frac{10 \cdot 11 \cdot C^{\prime k l}}{r_{i j}^{12}}\right\} \delta_{H B}^{i j}\right]
$$

in which the $K_{i j}$'s are elements of the \underline{F}^{\prime} matrix expressed in intermolecular coordinates. These terms are evaluated at the equilibrium configuration of the cluster assuming that the cluster constituents are frozen with regard to intramolecular motion. The potential term coff ficients used in the configurational and intermolecular vibrational moder calculations (Equations 2.1 and 2.2) on the systems studies are derived from the theory and data set described by Scheraga et al. ${ }^{9}$

Three additional models are employed to study the benzene(Ar), vdW cluster as a test case. In these models, the vdw cluster is assumed to be a "diatomic molecule" in the sense that the system is considered to be composed of two particles, the benzene molecule (solute) and the
argon atom (solvent). The vdW modes are assumed to arise from restric ted one-dimensional motion of the benzene molecule relative to the argon atom. Only the atom-molecule benzene(Ar) cluster will be considered using these models since its vdW modes are easily characterized by simple translations along any of the three Cartesian axes. The vdw stretching mode is taken as motion restricted to the one-dimensional translation moving the cluster constituents apart in opposite directions. The vdW bending modes are considered to be motions restricted to one-dimensional translations which move the cluster constituents parallel to one another in opposite directions.

In the first model considered, one-dimensional potential curves are mapped out by translating the solvent atom relative to the solute molecule in one of the three Cartesian directions. The intermolecular vdw potential is assumed to be represented by a Taylor serjes expansion about the equilibrium intermolecular distance, R_{o} in the form,

$$
\begin{aligned}
U(R)=U\left(R_{0}\right) & +\left(\frac{d U}{d R}\right)_{R=R_{0}} R+\frac{1}{2}\left(\frac{d^{2} U}{d R^{2}}\right)_{R=R_{0}} R^{2}+ \\
& \frac{1}{6}\left(\frac{d^{3} U}{d R^{3}}\right)_{R=R_{0}} R^{3}+\frac{1}{24}\left(\frac{d^{4} U}{d R^{4}}\right)_{R=R_{0}} R^{4}+
\end{aligned}
$$

The expansion coefficients are evaluated by a polynomial fit to the potential curves taking the displacement vector R as the independent variable and $U(R)$ as the dependent variable. The second order poly nomial fit coefficient determines the effective harmonic force constant governing the frequency of bound state motion. The enerey of this motion is given by 12

$$
\omega_{e}=\frac{1}{2 \pi c}\left(\frac{k_{\text {eff }}}{\mu}\right)^{1 / 2}
$$

with

$$
\begin{gathered}
k_{\text {eff }}=\left(\frac{d^{2} U}{d R^{2}}\right)_{R=R_{O}}=2(\text { second-order coefficient }) \\
\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \\
m_{1}=\text { solute mass } \quad m_{2}=\text { solvent mass }
\end{gathered}
$$

The third and fourth order polynomial fit coefficients represent an anharmonic correction term to the energy. From perturbation theory, the correction can be written to first order as ${ }^{12}$

$$
\omega_{\mathrm{e}} x_{\mathrm{e}}=\frac{3 \mathrm{~h}^{2}}{32 \pi^{4} \omega_{\mathrm{e}}{ }^{2} \mu^{2} c^{2}}\left(\frac{5 \mathrm{~g}^{2} \mathrm{~h}}{8 \pi^{2} \omega_{\mathrm{e}}{ }^{2} \mu c}-j\right)
$$

with

$$
\begin{aligned}
& g=(\text { third-order coefficient })=\frac{1}{6}\left(\frac{d^{3} U}{d R^{3}}\right)_{R=R_{0}} \\
& j=(\text { fourth-order coefficient })=\frac{1}{24}\left(\frac{d^{4} U}{d R^{4}}\right)_{R=R_{0}}
\end{aligned}
$$

Higher order terms are neglected in the anharmonic corrections since $\omega_{\mathrm{e}} \gg \omega_{\mathrm{e}} x_{\mathrm{e}} \gg$ other corrections. A polynomial least squares fit to tenth order in R is determined to be sufficient to faithfully reproduce the ne-dimensional potential curves generated via translation. In passing we note that the Taylor series expansion could also be evaluated directly by taking successive derivatives of Equation 2.1. This may be the method of choice if one is only interested in the lowest order terms in evaluating Equation 2.4 or 2.5 or if one is interested in a more "exact" reproduction of the potential curves in the vicinity of the dissoriation limit.

The second model considered involves fitting the one-dimensional potential energy curves, derived in the same manner as previously discussed, to a Morse function of the form, ${ }^{15}$

$$
\begin{equation*}
U(R)=D_{e}\left(e^{-2 \beta\left(R-R_{o}\right)}-2 e^{-\beta\left(R-R_{o}\right)}\right) \tag{26}
\end{equation*}
$$

The energy levels and anharmonic corrections are evaluated using

$$
\begin{gather*}
\omega_{e}=\beta\left(\frac{D_{e} h}{2 \pi^{2} c \mu^{\prime}}\right) \\
\omega_{e^{\prime} \chi_{e}}=\frac{\beta^{2} h}{8 \pi^{2} c \mu}
\end{gather*}
$$

The last model used involves an energy level fit based upon the semi-classical JWKB method. ${ }^{13}$ In this model, the energy levels are determined from the quantization of the action integral according to the Bohr-Sommerfeld restrirtions. The governing equation is

$$
I=(2 \mu)^{-1 / 2} \Phi\left[E-U_{e f f}(R)\right]^{1 / 2} d R=h(v+1 / 2) \quad 2.9
$$

Energy level determination is accomplished by numerical integration of (2.9) taking $U_{\text {eff }}(R)$ as the one-dimensional intermolecular vdw potential in a tenth order polynomial form. The path of integration is taken over one complete motion cycle with the boundary conditions established by the intermolecular potential at a specific energy E.

The three "diatomic molecule" models are similar to the linear oscillator model described by Leutwyler et al ${ }^{16}$ in all of the approxi mations, the atommolecule systems are assumed to be composed of thrin uncoupled linear oscillators. The potential surface in these degrees ut frepdom can thereby be modeled by one-dimensional potential functions

The models presented here differ from that present in ref. 16 in the respect that the linear oscillator model ${ }^{16}$ treats the system as strongly anharmonic; the Taylor series expansion, and Morse fit models treat anharmonicity from the perturbational standpoint. In this respect, the JWKB method is probably the most similar to the linear oscillator model since both approximations fit the intermolecular mode energies using the physical boundary conditions established by the intermolecular potential.

Results.
A. Benzene $(\mathrm{Ar})_{1}$.

Figure 2.1 and Table 2.1 present the benzene(Ar) ${ }_{1}$ vdW cluster ${ }^{1} B_{2 u} *{ }^{1} A_{1 g}$ spectrum recorded in the region between $38561 \mathrm{~cm}^{-1}$ and $38710 \mathrm{~cm}^{-1}$ using 1 -color TORMS. The cluster 6_{0}^{1} is "red shifted" by $21 \mathrm{~cm}^{-1}$ with respect to the benzene $6{ }_{0}^{1}$. The bathychromic shift is indicative of the greater binding energy in the cluster S_{1} state relative to the cluster S_{o} state. Three vibronic features are observed to the blue of the cluster $6_{0}^{\mathbf{1}}$. No features are observed in the symmetry "forbidden" benzene 0_{0}^{0} region; therefore, the cluster must have at least a three-fold axis of symetry.

Figure 2.2 and Table 2.2 contain the calculational results of the ground state configuration and vdW modes of benzene(Ar) ${ }_{1}$. Configurational calculations yield a single geometry of minimum energy for the cluster possessing $C_{6 v}$ symmetry, Figure 2.2. In this geometry, the argon atom lies 3.44 A above the benzene molecular plane along the z (six-fold) axis. The ground state cluster binding energy is calculated at $287 \mathrm{~cm}^{-1}$ which makes the excited state binding energy $308 \mathrm{~cm}^{-1}$. The calculated intermolecular distance of $3.44 \AA$ compares well with that of

Pigure 2.1

Mass selective $S_{1} \leqslant S_{n}$ spectrum and calculated ground state $v d W$ modes of
 (38587.6 cm^{-1}). Nozzle backing conditions: $P_{0}=100 \mathrm{psig}, T_{0}=300 \mathrm{~K}$. Feak positions and assignments as per Table 2.1 and Pigure 2.2.
vdW spectal features in benzene(Ar) σ_{0}^{1} region and calculated ground state vdW modes (refer to Figure 2.1).

Energy Relative to Cluster $6_{0}^{1}\left(\mathrm{~cm}^{-1}\right)$	Calculated Ground ${ }^{\text {a }}$ State Energy (cm^{-1})	Assignment ${ }^{\text {a }}$
0 (38587.6)		$6{ }_{0}^{1}$
	$13\left(b_{x y}\right)$	
30.0		$6_{0}^{1} \mathrm{~b}_{\mathrm{xyo}}{ }^{2}$
39.7	40 (s_{z})	$6{ }_{0}^{1} \mathrm{~s}^{2}{ }_{0}^{1}$
61.8		$6_{0}^{1} b_{x y o}^{4}$

a) vdW mode representations as per Figure 2.2.

BENZENE-ARGON
 Cov

Figure 2.2

Calculated ground state minimum energy configuration (a) and eigenvalue/ efgenvector vdW modes (b)-(d) for benzene(Ar) ${ }_{1}$. Cluster symmetry is $C_{6 v}$ with an equilibrium intermolecular distance of 3.44 A . Eigenvectors are normalized and displayed at $2 x$ magnification ($2 \AA$ total displacement).

TABLE 2.2

Calculated ground state vdW mode energies for benzene(Ar) ${ }_{1}$

Model	$\mathrm{s}_{z}\left(\mathrm{~cm}^{-1}\right)^{a}$	$\mathrm{~b}_{\mathrm{xy}}\left(\mathrm{cm}^{-1}\right)^{a}$
Taylor Series	$40.88(1.51)$	$9.80(.03)$
Morse Fit.	$39.47(1.36)$	$10.54(.10)$
JWKB	$40.05(1.43)$	$9.71(.02)$
Normal Coordinate Analysis	40.0	11.0

a) Energy presented is for a harmonic oscijlator model. Values in parentheses are first order anharmonicity corrections calculated from "diatomic molecule" models. vdW mode representations as per Figure 2.2.
$3.45 \pm .2 \AA$ obtained from rotational analysis, ${ }^{15}$ adding independent proof to the adequacy of the calculations in predicting detailed information on cluster structure.

The eigenvalue energies from the normal coordinate analysis of benzene $(A r)_{1}$ are $40 \mathrm{~cm}^{-1}$ and $11 \mathrm{~cm}^{-1}$ for the $v d W$ stretch and $v d W$ bends, respectively. The eigenvector normal modes, Figure 2.2, reveal that the vdW stretch entails purely perpendicular motion of the argon atom relative to the benzene molecular plane. Furthermore, the calculations reveal that the two-fold degenerate vdW bending mode involves some combination of motion parallel to the benzene molecular plane. Both of these eigenvector results are consistent with group theoretical arguments as expected.

The "diatomic molecule" model calculations yield three sets of vdW mode energies. The average mode frequencies are $40 \mathrm{~cm}^{-1}$ for the vdW stretch, $s_{z}\left(a_{1}\right)$ and $10 \mathrm{~cm}^{-1}$ for the $v d W$ bends $b_{x y}\left(e_{1}\right)$. Figures 2.3 and 2.4 show the details of the one-dimensional potential curve mappings and the results of the model calculations. Note that the z-direction potential curve modeling the vdW stretch looks surprisingly similar in form to that of a typical diatomic molecule. All models yield both adequate potential curve fits and consistent vibrational energy level structures.
B. \quad s-Tetrazine (Ar) \mathbf{I}_{1}.

Pigure 2.5 presents the results of the ground state configuration and vdW mode analysis of s-tetrazine(Ar) 1_{1}. Only the normal coordinate analysis vibrational calculation is presented since this method yields the most informative results for our purposes and the consistency between the eigenvalue/eigenvector results and the "diatomic: molecule" results has already been shown for the benzene(Ar) case. Configurational calculations yield a single cluster geometry of minimum

Pigure 2.3

z-direction (vdw stretch) potential energy mapping of benzene(Ar) . Coordinate system is as shown in Pigure 2.2. Translation is along z the axis with x and y coordinates at equilibrium intermolecular distance values. Translation is displayed relative to equilibrium intermolecular distance, $3.44 \AA$. (6-12) potential energy mapping is represented by 0 : Taylor series expansion and energy levels are represented by --; Morse fit potential energy curve is represented by ---. Vibrational mode constants as per Table 2.2.

Figure 2.4
$x(y)$-direction (two-fold degenerate vdW bend) potential energy mapping of benzene(Ar) $)_{1}$. Coordinate system is as shown in Pigure 2.2. Translation is along $x(y)$ axis with z and $y(x)$ coordinates at equilibrium Intermolecujar distance values. Translation is displayed relative to equilibrium intermolecular distance 3.44 A . (6-12) potential energy mapping is represented by o; Taylor serles expansion and energy levels are represented by -; Morse fit potential energy curve is represented by ---. Vibrational mode constants as per Table 2.2.

s-TETRAZINE-ARGON $C_{2 v}$

Pigure 2.5
Calculated ground state minimum energy configuration (a) and eigenvalue/ eigenvector vdW modes (b)-(d) for s-tetrazine(Ar) ${ }_{1}$. Cluster symmetry is $C_{2 v}$ with an equilibrium intermolecular distance of 3.45 A . Eigenvectors are normalized and displayed at $2 x$ magnificatjon ($2 A$ total displacement.).
energy possessing $C_{2 v}$ symmetry, Figure 2.5. In this geometry, the argon atom lies $3.45 \AA$ above the s-tetrazine molecular plane along the z (twofold) axis. The calculated ground state cluster binding energy is $295 \mathrm{~cm}^{-1}$. The calculated intermolecular distance of $3.45 \AA$ compares extremely well with the intermolecular distance of $3.45 \AA$ obtained from rotational analysis. The calculated binding energy of $295 \mathrm{~cm}^{-1}$ also lies within the experimental limits of $254<\mathrm{D}_{\mathrm{\prime}}^{\prime \prime}<332 \mathrm{~cm}^{-1} .5$ Again, the calculations and experiment are in exact agreement.

The normal coordinate analysis eigenvalues are $41.0 \mathrm{~cm}^{-1}$ for the vdW stretching mode $s_{z}\left(a_{1}\right), 9 \mathrm{~cm}^{-1}$ for the vdW bending mode $b_{y}\left(b_{1}\right)$, and $12 \mathrm{~cm}^{-1}$ for the $v d W$ bending mode $b_{x}\left(b_{2}\right)$. The eigenvector normal modes. Figure 2.5 show that the $v d W$ stretch is restricted to motion perpendicular to the s-tetrazine molecular plane while the vdw bends are restricted to motion parallel to the molecular plane. As in the benzene(Ar) $)_{1}$ analysis, these results are consistent with group theoretical arguments.
C. Benzene $\left(\mathrm{CH}_{4}\right)_{1}$.

The ground state configuration and vdW eigenvalues/eigenvectors for benzene $\left(\mathrm{CH}_{4}\right)_{1}$ are shown in Figure 2.6. The results presented for the geometry and binding energy of benzene($\left.\mathrm{CH}_{4}\right)_{1}$ are in good agreement with previous reports from this laboratory using an exponential-six and Lennard-Jones potential form. ${ }^{2}$ In this geometry. Figure 2.6, the methane center-of-mass lies at $3.47 \AA$ ahove the benzen.. molecular plime an the principle z (three-fold) axis. The cluster ground state binding energy is $540 \mathrm{~cm}^{-1}$. The normal coordinate analysis reveals six vdW vibrations, two being two-fold degenerate. The grount state vibrational energies are $82 \mathrm{~cm}^{-1}$ for the vodw stretch $\mathrm{s}_{7}\left(\mathrm{a}_{1}\right)$.

Figure 2.6
Calculated ground state minimum energy configuration (a) and eigenvalue/ eigenvector $v d W$ modes $(b)-(g)$ for benzene $\left(\mathrm{CH}_{4}\right)_{1}$. Cluster symmetry is $C_{3 v}$ with an equilibrium intermolecular distance of 3.47 A. Eigenvectors are normalized and displayed at $2 x$ magnification ($2 \AA$ total displacement).
$16 \mathrm{~cm}^{-1}$ for the vdW bends $b_{x y}(e)$, and $28 \mathrm{~cm}^{-1}$ and $89 \mathrm{~cm}^{-1}$ for the vdW torsions $t_{z}\left(a_{2}\right)$ and $t_{x y}(e)$, respectively. The eigenvector normal modes. Figure 2.6, transform as the translational and rotational representations of the $C_{3 v}$ point group, as indicated. The vaw stretching mode transforms as the translation of the cluster constituents away from one another along the z (three-fold) axis. The vdw bending modes transform as some combination of cluster constituent translations in opposite directions perpendicular to the three-fold axis in the xy plane. One vdW torsion mode transforms as rotation of the cluster constituents about the z (three-fold) axis in opposite directions. The remaining two vdW torsions transform as rotations about orthogonal axes perpendicular to the three-fold axis.
D. Benzene $\left(\mathrm{H}_{2}{ }^{\mathrm{O}}\right)_{1}$.

The calculated benzene $\left(\mathrm{H}_{2} 0\right)_{1}$ geometry used in the normal coordinate analysis is similar to that calculated previously. ${ }^{3}$ only one minimum energy configuration, which has a binding energy of $504 \mathrm{~cm}^{-1}$, is found. As shown in Figure 2.7, the cluster geometry possesses C_{S} symmet ${ }^{+y}$ with the $H_{2} 0$ center-of-mass located $3.15 \AA$ above the benzene molecular plane.

Six ground state vdw vibrations are calculated for the re clustel geometry. Their corresponding eigenvalues and eigenvectors are shown in Figure 2.7. The six vdW modes consist of a vdw strotchat $159 \mathrm{~cm}{ }^{1}$, two vdW bends at $14 \mathrm{~cm}^{-1}$ and $18 \mathrm{~cm}^{-1}$, and three vaw torsions at 40 cm . 50 cm^{-1}, and $156 \mathrm{~cm}{ }^{-1}$. The eigenvector normal modes transform as the translational and rotational representations of the coint proup: the vdW stretch transforms as a z translation; the valw bends transform as x and y translations: and the vdw torsions transform as $R_{x} . R_{y}$, and R_{z} rotations.

(f)

2

Figure 2.7

Calculated ground state minimum energy configuration (a) and eigenvalue/ eigenvector vaw modes (b)-(g) for benzene $\left(\mathrm{H}_{2}{ }^{\mathrm{O}}\right)_{1}$. Cluster symmetry is C_{S} with an equilibrium intermolecular distance of $3.15 \AA$. Eigenvectors are normalized and displayed at $2 x$ magnification (2 A total displacement).
E. Henzene $\left(\mathrm{NH}_{3}\right)_{1}$.

Configurational calculations on the benzene $\left(\mathrm{NH}_{3}\right)_{1}$ cluster reveal two minimum energy geometries similar to those obtained previously. ${ }^{3}$ One cluster geometry possesses $C_{3 v}$ symmetry with a binding energy of $711 \mathrm{~cm}^{-1}$ while the other possesses C_{s} symmetry and a binding energy of $608 \mathrm{~cm}^{-1}$. In the $\mathrm{C}_{3 \mathrm{v}}$ cluster, Figure 2.8 , the NH_{3} center-ofmass is located $3.23 \AA$ above the benzene molecular plane along the z (three-fold) axis. In the C_{s} cluster, Figure 2.9 , the NH_{3} center-ofmass is located $3.29 \AA$ above the benzene molecular plane.

Using the potential surfaces generated from these two configurations, six ground state vdW vibrations are calculated for each geometry. Their corresponding eigenvalues and ejgenvectors are shown in Figures 2.8 and 2.9. The $C_{3 v}$ cluster ground state normal modes transform in the same manner as those of benzene $\left(\mathrm{CH}_{4}\right)_{1}$. In the C_{S} cluster, the ground state normal modes transform similar to those of benzene $\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$.

Discussion.

To compare the calculated and experimentally observed vdW modes. we assume that the intermolecular potential surface of the cluster is identical in both S_{o} and S_{1} electronic states. This assumption is justifiable if one considers that cluster fluorescence excitation and dispersed emission spectra are similar for the vdW vibronic transitions. ${ }^{4}$ Furthermore, the small spectral shifts of the chromophore and the weak intensity of the vdW modes signify only small changes in cluster binding energy. This is probably indicative of only slight variations of the potential surface between S_{0} and S_{1} electronic states

Comparisons between calculation and experiment are made using group theoretical arguments based on the selection rules governing the
BENZENE-AMMONIA

$\underset{2}{(c)}$

Figure 2.8
Calculated ground state minimum energy configuration (a) and eigenvalue/ eigenvector vdW modes (b)-(g) for benzene $\left(\mathrm{NH}_{3}\right)_{1}$. Cluster symmetry is $\mathrm{C}_{3 \mathrm{v}}$ with an equilibrium intermolecular distance of 3.23 A . Eigenvectors are normalized and displayed at $2 x$ magnification ($2 \&$ total dispJacement.).

Figure 2.9
Calculated ground state minimum energy configuration (a) and eigenvalue/ ejgenvector $v d W$ modes $(b)-(g)$ for benzene $\left(\mathrm{NH}_{3}\right)_{1}$. Cluster symmetry is C_{S} with an equilibriun intermolecular distance of 3.29 A. Eigenvectors are normalized and displayed at $2 x$ magnification ($2 A$ total displacement).
vibronic transitions. Specifically, transition moment matrix elements are qualitatively analyzed using the crude adiabatic approximation for which the vibrational mode dependence on the electronic wave function is explicit. In this case, a standard Herzberg-Teller (HT) expansion and adiabatic wave functions are used ${ }^{14}$ with the electronic wave function vibrational mode dependence truncated at second order.

Using this expansion, two unique types of spectra can be generated. First, one could consider that the vdW modes do not participate in the vibronic coupling scheme (Case I) and that they merely enter into the expansion as an additional scalar product (overlap integral). This argument dictates that only totally symmetric Pranck-Condon progressions and combination band, are spectroscopically observed. Furthermore, the intensities of these features are solely derived from the cluster chromophore vibronic mode with which they are in combination. Alternately, one could consider the vdW modes to be capable of vibronic coupling (Case II). In this case, they enter into the HT transition moment equation in the same manner as other vibronically active modes. The operator responsible for these transitions would be of the form

$$
\left(\frac{\partial^{2} U}{\partial Q_{8} \partial q_{v d W}}\right)_{Q_{8}=Q^{\circ}{ }_{6}, q_{v d W}=q_{V d W}} Q_{6} q_{v d W}
$$

in which Q_{6} is the cluster U_{6} vibrational mode and $q_{v d W}$ is a specific cluster vdw mode. This argument allows the possibility of observing nontotally symmetric viW fundamentals with "borrowed" intensity due tn interelectronic state mixing.

In the individual cluster discussions, the above two castes are considered in order to assign and understand the observed cluster vibronic spectra.
A. Benzene (Ar) ${ }_{1}$.

Comparison of the calculated ground state vdW vibrations of benzene(Ar) $)_{1}$ and the experimental ${ }^{1} B_{2 u}+{ }^{1} A_{1 g}$ vibronic spectrum, Figure 2.1. Table 2.1, and Table 2.2, shows that vibronic assignments can be made based upon calculations for all models analyzed. Considering the transition moment matrix elements for the benzene(Ar) $S_{1} * S_{0}$ transition under $C_{6 v}$ symmetry, one should expect to observe totally symmetric combination bands of the vdw stretch built upon the cluster 6_{0}^{1}. The selection rule for these conbination bands is $\Delta v=0, \pm 1, \pm 2, \ldots$ Also, one should expect to observe nontotally symmetric vdW bend combinations with the 6_{0}^{1} with the selection rule being $\Delta v=0, \pm 2, \pm 4 \ldots$ These selection rules hold for both Case I and Case II type spectra and imply that the vdW modes do not enter into the vibronic intensity borrowing mechanism.

The calculated $v d W$ stretching mode at $40 \mathrm{~cm}^{-1}$ compares quite well with the experimental vibronic feature at $39.7 \mathrm{~cm}^{-1}$ to the blue of the benzene(Ar), 6_{0}^{1}. Thus, this feature is assigned to the benzene(Ar) $v d W$ stretch/cluster 6_{0}^{1} combination band $\sigma_{0}^{1} s_{7}\left(a_{1}\right)_{0}^{1}$ based upon the $\Delta v=0$. $\pm 1,+2 \ldots$ selection rule.

For vdW bending modes, only odd overtones are expected to be observed as pointed out above. The experimentally observed features at $30.9 \mathrm{~cm}^{-1}$ and $61.8 \mathrm{~cm}^{-1}$ to the blue of the cluster 6_{0}^{1} correspond to overtone features of the vdW bends: using the $\Delta v=0, \pm 2, \pm 4 \ldots$ selection rule, the former feature is the first overtone of the vdw bends and the latter is the third. Considering the $30.9 \mathrm{~cm}^{-1}$ feature as the first overtone places the symmetry forbidden bend fundamental dt about $15.5 \mathrm{~cm}^{-1}$. This energy lies close to the calculated two-fold
degenerate ground state vid bend at $11 \mathrm{~cm}^{-1}$. Thus these two spectral features are assigned to the benzene (Ar) viw bends first and third

Ramifications of Herzberg-Teller vibronic coupling in the
benzene(Ar) cluster are obvious. From the derived vibronic selection rules and experimental observation, the benzene(Ar), cluster spectrum is best assigned based upon benzene Herzberg-Teller coupling (i.e., the 6_{0}^{l} feature is allowed) with vdW totally symmetric modes and combinations forming short, weak Franck-Condon progressions built upon the intense benzene transition. In addition, the calculated and observed ${ }^{15} \mathrm{C}_{6 \mathrm{v}}$ cluster symmetry is verified by the vaw vibronic structure.
B. s-Tetrazine (Ar) 1 .

The selection rules governing the s-tetrazine(Ar) ${ }_{1}$ vdW vibronic transitions under $C_{2 v}$ symmetry arise from Case I FranckCondon arguments. The totally symmetric vdW stretch should be observed to the blue of the cluster 0_{o}^{0} following a $\Delta v=0, \pm 1, \pm 2, \ldots$ selection rule. The $v d W$ bends should only be observed in odd overtones $(\Delta v=0$, $\pm 2, \pm 4 \ldots)$ built on the allowed s-tetrazine 0_{o}^{o} transition. As in the benzene(Ar) 1 cluster, no Case II distinction can be made for s-tetrazine(Ar), and thus no vdW Herzberg-Teller vibronic coupling is expected. Unfortunately, a complete experimental spectrum showing the details of the s-tetrazine(Ar) $)_{1}$ vdW modes is not, as yet, available. The only information in this regard is the identification of the vdw stretching mode at $44 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{o}^{o} by Levy et al. ${ }^{5}$ other vaw features at $66 \mathrm{~cm}^{-1}$ and $108 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{0}^{0} are observed, but they are neither assigned nor are their spectra published. Figure 2.10 and Table 2.3 compare the calculated ground state viw mode frequencies with those observed in the s tertrazine(Ar) ${ }_{1}{ }^{1} B_{3 u}{ }^{1}{ }^{1} A_{k}$
s-TETRAZINE-ARGON
$T O_{0}^{0}$

Pigure 2.10

Schematic ${ }^{1} B_{3 u}-{ }^{1} A_{g}$ spectrum (from ref. 5) and calculated ground state vdW modes of s-tetrazine $(\mathrm{Ar})_{1}$. Energy scale is relative to s-tetrazine(Ar) $)_{1} 0_{0}^{0}$ transition ($18104.9 \mathrm{~cm}^{-1}$). Relative feature intensities are not shown. Feature positions and assignments as per Table 2.3 and Figure 2.5. vdW bends are represented by b_{1} in schematic spectrum (see text for explanation).

TABLE 2.3

vdW vibronic spectrum. The experimentally assigned vdW stretch at 44 cm^{-1} to the blue of the cluster 0_{0}^{0} corresponds to the $41 \mathrm{~cm}^{-1}$ calculated ground state stretch. This motion, like that in the benzene(Ar) ${ }_{1}$ cluster, involves perpendicular motion of the argon atom relative to the s-tetrazine molecular plane. Based upon ground state calculations, the feature $66 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{0}^{0} probably corresponds to a vdW stretch/vdW bend overtone combination band, $s_{z}\left(a_{1}\right)_{o}^{1} b_{x}\left(b_{2}\right)_{o}^{2}$ or $s\left(a_{1}\right){ }_{o}^{1} b_{y}\left(b_{1}\right)_{o}^{2}$; the feature at $108 \mathrm{~cm}^{-1}$ probably corresponds to the next allowed bend overtone/stretch combination band $s\left(a_{1}\right)_{0}^{1} b_{x}\left(b_{2}\right)_{o}^{4}$ or $s\left(a_{1}\right)_{o}^{1}$ $b_{y}\left(b_{1}\right)_{0}^{4}$. No speculation with regard to which band is responsible for the features observed will be made since no spectra of sufficient sensitivity are available for analysis.
C. Benzene $\left(\mathrm{CH}_{4}\right)_{1}$.

In a previous analysis of the benzene $\left(\mathrm{CH}_{4}\right)_{1}$ cluster. ${ }^{2}$ three major vdW vibronic features were reported in the cluster 6_{o}^{1} region: these features were assigned to a bend fundamental ($27.3 \mathrm{~cm}^{-1}$), a stretch fundamental ($32.3 \mathrm{~cm}^{-1}$), and a stretch nevertone ($51.4 \mathrm{~cm}^{-1}$). The assignments were made based upon the assumptions described in the Introduction.

Considering the $H T$ transition moment matrix elements and assuming a Case I type spectrum, the selection rules for the benzene $\left(\mathrm{CH}_{4}\right)_{1}$ vdW vibronic transitions are $\Delta v=0, \pm 1, \pm 2, \ldots$ for the $v d W$ stretch and Δv $=0, \pm 2, \pm 4, \ldots$ for the $v d W$ bends and torsions when in combination with the cluster $6{ }_{0}^{1}$.

The selection rules involved in Case Il can be viewed in two ways. The selection rules can be derived using the calculated cluster symmetry of $C_{3 v}$, or they can be derived by considering the cluster
symmetry is $C_{6 v}$. The latter situation arises since the methane center-of-mass is calculated at $3.47 \AA$ above the benzene molecular plane. At this distance, the methane could be viewed as a sphere above the benzene molecular plane and, hence, the use of the $C_{6 v}$ point group to represent the vdW mode symmetries could be warranted.

In $C_{3 v}$ symmetry Case II, the selection rules for viw mode combinations with the cluster $6{ }_{0}^{1}$ are $\Delta v=0, \pm 1, \pm 2, \ldots$ for all six $v d W$ modes. If $C_{3 v}$ is the correct cluster physical symmetry and $H T V d W$ coupling exists, all modes can be observed in the cluster 6_{o}^{1} region. In $C_{6 v}$ symmetry, Case II, the selection rules for the vdW mode combinations with the cluster 6_{0}^{1} are $\Delta v=0, \pm 1, \pm 2, \ldots$ for the vdw stretch $s_{z}\left(a_{1}\right)$ and torsion $t_{Z}\left(a_{2}\right)$ and $\Delta v=0, \pm 2, \pm 4, \ldots$ for the two-fold degenerate vdW bends $b_{x y}\left(e_{1}\right)$ and torsions $t_{x y}\left(e_{1}\right)$. In this approximate high symmetry, only the cluster 6^{1} and vdW mode t_{z} are capable of vibronic coupling for the 6_{0}^{1} transition.

Comparison of the experimental 6_{0}^{1} vibronic spectrum of benzene $\left(\mathrm{CH}_{4}\right)_{1}$ and the calculated ground state vdw vibrations is shown in Figure 2.11 and Table 2.4. The observed feature at $27.3 \mathrm{~cm}^{-1}$ to the blue of the cluster 6_{0}^{1} corresponds to the t_{2} torsion calculated at 28 cm^{-1}. Thus, this feature and its observed overtones at $51.4 \mathrm{~cm}^{-1}$ and $73.5 \mathrm{~cm}^{-1}$ are reassigned to 6_{0}^{1} vdW torsion combination bands $6_{0}^{1} t_{z}\left(a_{2}\right)_{0}^{1}$. $6_{o}^{1} t_{2}\left(a_{2}\right)_{o}^{2}$, and $6{ }_{0}^{1} t_{7}\left(a_{2}\right)_{o}^{3}$, using the $C_{3 v}$ Case II or $C_{6 v}$ Case II $\Delta v=0$, $\pm 1, \pm 2, \ldots$ selection rule. The $\Delta v=0, \pm 1, \pm 2, \ldots$ selection rule suggests that for the benzene $\left(\mathrm{CH}_{4}\right)_{1}$ system vdW mode Herzberg-Teller vibronic coupling is an important component of the overall intensity mechanism. In the present case, the occurrence of the nontotally symmetric t_{z} torsion progression implies that the vdw modes are

Pigure 2.11

Mass selective $S_{1} \leftarrow S_{0}$ spectrum (ref. 2) and calculated ground state vdW modes of benzene $\left(\mathrm{CH}_{4}\right)_{1}$. Energy scale is relative to benzene $\left(\mathrm{CH}_{4}\right)_{1} 6_{0}^{1}$ transition ($38567.6 \mathrm{~cm}^{-1}$). Feature positions and assignments as per Table 2.4 and Figure 2.6 .
vdW spectral features in benzene $\left(\mathrm{CH}_{4}\right) 1_{0}^{1}$ region and calculated ground state vdW modes (refer to Figure 2.1i).

Energy Relative to	Calculated Ground		
Cluster $6_{0}^{1}\left(\mathrm{~cm}^{-1}\right)$		\quad	State Energy $\left(\mathrm{cm}^{-1}\right) \mathrm{b}$
:---			

$0(38567.6)$		$6{ }_{0}^{1}$
16.1	16 (b_{xy})	$6_{0}^{1} h_{\text {xyo }}$
27.3	$28\left(t_{z}\right)$	$6{ }_{0}^{1} \mathrm{t}_{\mathrm{zo}}{ }^{1}$
32.3		$6_{0}^{1} \mathrm{~b}_{\mathrm{xyo}}{ }^{2}$
48.4		$6{ }_{0}^{1} \mathrm{~b}$ xyo ${ }^{3}$
51.4		$6{ }_{0}^{1}+{ }_{0}^{2}$
64.6		$6{ }_{0}^{1} h_{x y s}^{4}$
73.5		$6{ }_{0}^{1} \mathrm{t}_{2}{ }_{0}^{3}$
	$\begin{aligned} & 82\left(\mathrm{~s}_{z}\right. \\ & 89\left(\mathrm{t}_{\mathrm{xy}}\right) \end{aligned}$	

a) From Reference 2 and unpublished spectra.
b) vdW mode representations as per Figure 2.6.
vibronically active and that assuming them to be nonparticipants in the coupling mechanism oversimplifies the physics necessary to explain the cluster's spectroscopy.

The intense feature at $32.3 \mathrm{~cm}^{-1}$ to the blue of the cluster 6_{0}^{1} corresponds to the first overtone of the two-fold degenerate vdW bending mode, $6_{0}^{1} b_{x y}(e)_{0}^{2}$, calculated at $16 \mathrm{~cm}^{-1}$. This identification is based upon the observation of a feature at $64.6 \mathrm{~cm}^{-1}$ which corresponds to the third overtone of the bends. Furthermore, weak intensity features are observed at about $16.1 \mathrm{~cm}^{-1}$ and $48.4 \mathrm{~cm}^{-1}$ which could correspond to the $v d W$ bend fundamentals and second overtones. The observation of these features adds proof to the arguments suggesting that the vdW modes are, at least, minor participants in the Herzberg-Teller vibronic coupling scheme. The cluster symmetry and, hence, spectroscopy are thereby also best described using the calculated $C_{3 v}$ point group in conjunction with Herzberg-Teller coupling rather than the approximate $C_{6 v}$ point group. Based upon this, the features at $32.3 \mathrm{~cm}^{-1}$ and $64.6 \mathrm{~cm}^{-1}$ are reassigned to vdW bend overtone combinations with the cluster $6_{0}^{1} ; \sigma_{0}^{1} b_{x y}(e)_{0}^{2}$ and $6_{0}^{1} b_{x y}(e)_{0}^{4}$ using the $C_{3 v}$ selection rule $\Delta v=0, \pm 1, \pm 2, \ldots$ The features are assigned in Table 2.4 and Figure 2.11. The weak features at $16.1 \mathrm{~cm}^{-1}$ and $48.4 \mathrm{~cm}^{-1}$ are assigned to $6_{0}^{1} b_{x y}(e)_{o}^{1}$ and $6_{0}^{1} b_{x y}(e)_{o}^{3}$ Based upon the relative intensities displayed in the spectrum, vdW vibronic coupling is an important factor in the intensity of this progression involving the e symmetry bending modes.

Neither the vdW stretch $s_{z}\left(a_{1}\right)$ nor the two-fold degenerate torsions $t_{x y}(e)$ are observed in the 6_{o}^{1} spectrum. This could be due to poor Franck-Condon factors for these vibronic transitions since they are both calculated to be at relatively high energies (ca. $82 \mathrm{~cm}^{-1}$ and
$89 \mathrm{~cm}^{-1}$, respectively). Moreover, these modes could be participating in VP since the total energy $6{ }_{o}^{1} s_{z}\left(a_{1}\right)_{o}^{1}$ or $6_{o}^{1} t_{x y}(e)_{o}^{1}$ is close to that of, if not above, the cluster's S_{1} binding energy. Both the vdw stretch and $t_{x y}$ torsions involve motion perpendicular to the benzene molecular plane: this motion could couple well to the VP process.
D. Benzene $\left(\mathrm{H}_{2} \mathrm{O}_{1}\right.$. The $S_{1}-S_{0}$ vibronic spectrum of benzene $\left(H_{2} 0\right)_{1}$ previously observed in this laboratory ${ }^{3}$ possesses two unique spectral regions located around the cluster 0_{0}^{0} and 6_{0}^{1} containing vdw vibronic features. No vdW vibronic assignments were made in either region and no correlation between the regions was suggested.

Examination of the $H T$ transition moment matrix elements using $C_{\text {s }}$ symmetry and Case I considerations leads to the selection rules $\Delta v=0, \pm 1, \pm 2, \ldots$ for the $v d W s_{z}$ stretch, b_{y} bend, and t_{x} torsion and $\Delta v=0, \pm 2, \pm 4, \ldots$ for the b_{x} bend, t_{y} and t_{z} torsions. Under Case II arguments, the selection rule is $\Delta v=0, \pm 1, \pm 2$. ... for allsix vdw modes: all modes are capable of vibronic coupling.

Vibronic spectra of benzene $\left(\mathrm{H}_{2}\right)_{1}$ in both cluster 0_{0}° and 6_{0}^{1} regions are reproduced in Figure 2.12 along with the calculated ground state vdW mode energies. The observed feature at $5.2 \mathrm{~cm}^{-1}\left(4.8 \mathrm{~cm}^{-1}\right)$ to the blue of the cluster $0_{o}^{o}\left(6_{0}^{1}\right)$ transition corresponds to the $v d W b_{x}$ bend fundamental calculated at $14 \mathrm{~cm}^{-1}$. The observed feature at 16.2 $\mathrm{cm}^{-1}\left(15.8 \mathrm{~cm}^{-1}\right)$ to the blue of the cluster $O_{0}^{\circ}\left(6_{0}^{1}\right)$ transition corresponds to the calculated totally symmetric $v d W b_{y}$ bend at $18 \mathrm{~cm}^{-1}$. Additionally, the observed features at $34.6 \mathrm{~cm}^{-1}\left(34.6 \mathrm{~cm}^{-1}\right)$ and $49 \mathrm{~cm}^{-1}$ $\left(48.4 \mathrm{~cm}^{-1}\right)$ to the blue of the cluster $0_{0}^{o}\left(6_{o}^{1}\right)$ transition are associated with the $t_{z}\left(a^{\prime \prime}\right)$ and $t_{x}\left(a^{\prime}\right)$ torsion fundamentals calculated at $40 \mathrm{~cm}^{-1}$

Figure 2.12
Mass selective $S_{1}-S_{0}$ spectra (ref. 3) and calculated ground state vdW modes of benzene $\left(\mathrm{H}_{2}{ }^{\mathrm{O}}\right)_{1}$. Energy scale is relative to benzene $\left(\mathrm{H}_{2}{ }^{0}\right)_{1} 0_{0}^{0}$ and 6_{0}^{J} transitions ($38168.6 \mathrm{~cm}^{-1}$ and $38655.4 \mathrm{~cm}^{-1}$, respectively).

Peature positions and assignments as per Table 2.5 and Figure $2.7 . \quad S_{7}$ and t_{y} vdw modes are not shown.
and $50 \mathrm{~cm}^{-1}$, respectively. The occurrence of the nontotally symmetric fundamentals implies that the $\Delta v=0, \pm 2, \pm 4, \ldots$ selection rule for Case I in which the vdW modes are not vibronically coupled is violated. The violation suggests that the vdW modes participate in the vibronic coupling scheme and that the $\Delta v=0, \pm 1, \pm 2, \ldots$ selection rule should apply to all six vdW modes (Case II). Based upon this, the spectra are best assigned, Table 2.5 and Figure 2.12, using both nontotally and totally symmetric vdW progressions.

Assigning the benzene $\left(\mathrm{H}_{2}{ }^{0}\right)_{1}$ spectra using the C_{s} point group representations corroborates the calculated cluster geometry. Treating the cluster in approximate high symmetries, such as $C_{2 v}$, leads to selection rules which are clearly violated when applied to spectral observation and assignment. Specifically, the bend and torsion fundamentals are forbidden under these higher symmetry approximations. Furthermore, the spectral assignments using C_{s} symmetry arguments suggest that the water constituent is likely located above the benzene molecular plane.

Neither the $v d W s_{z}$ stretch nor the t_{y} torsion are observed in either spectral region. This as in the benzene $\left(\mathrm{CH}_{4}\right)_{1}$ case, probably results from poor Franck-Condon factors for these particular modes; they are both calculated to be at relatively high energies (ca. $159 \mathrm{~cm}^{-1}$ and $156 \mathrm{~cm}^{-1}$, respectively). Moreover, in the 6_{0}^{1} region, these modes could be participating in VP since the total energy of the system at these levels $\left(486.8+159 \mathrm{~cm}^{-1}\right.$ for the stretch; $486.8+156 \mathrm{~cm}^{-1}$ for $\left.t_{y}\right)$ is close to, if not above, the cluster binding energy (ca. $=500 \mathrm{~cm}^{-1}$). The decrease in the hypsochromic shift and the shift of intensity maximum in the vdw manifold in going from the cluster 0_{0}^{0} to the 6_{o}^{1} may also be indicative of the $V P$ process.
vdW spectral features in benzene $\left(\mathrm{H}_{2}{ }^{0}\right)_{1} 0_{o}^{0}$ and 6_{o}^{1} region and calculated ground state vdW modes (refer to Figure 2.12).

Energy Relative to	
Cluster $0_{\alpha_{1}}^{o}\left(\mathrm{~cm}^{-1}\right)$	Calculated Ground
or $6 \underset{0}{1}(\mathrm{~cm})$	State Energy $\left(\mathrm{cm}^{-1}\right) \quad b \quad$ Assignment

0 (38168.6)		0_{0}^{0}
5.2	$14\left(b_{x}\right)$	$\mathrm{b}_{\mathrm{x}}{ }^{1}$
16.2	18 (by)	$\mathrm{b}_{\mathrm{yo}}{ }^{1}$
21.4		$\mathrm{b}_{\mathrm{xO}} \mathrm{l}^{1} \mathrm{yo}$
25		$\mathrm{b}_{\mathrm{xo}}{ }^{2} \mathrm{~b}$ yo ${ }^{1}$
31.9		$\mathrm{h}_{\mathrm{yo}}{ }^{2}$
34.6	$40\left(\mathrm{t}_{\mathrm{z}}\right)$	$\mathrm{t}_{\mathrm{zO}}{ }^{1}$
39.4		$\mathrm{t}_{\mathrm{z}}{ }^{1} \mathrm{~b} \mathrm{xo}^{1}$
45.7		$\mathrm{b}_{\mathrm{yo}}{ }^{3}$
49	$50\left(\mathrm{t}_{\mathrm{x}}\right)$	t. ${ }_{1}^{1}$
50.8		$\mathrm{t}_{\mathrm{zo}}{ }^{1} \mathrm{~b}$ yo ${ }^{1}$
67.4		$\mathrm{t}_{\mathrm{xo}}{ }^{1} \mathrm{~b}$ yo ${ }^{1}$
70.3		$\mathrm{r}_{\mathrm{zo}}{ }^{2}$
99.5		$\mathrm{t}_{\mathrm{x}}{ }^{2}$
103.5		${ }^{4} \begin{array}{r}3 \\ 0\end{array}$
-	156 (t_{y})	
-	$159\left(s_{2}\right)$	
0 (38655.4)		$6{ }_{0}^{1}$
4.8	14 (b_{x})	$6_{0}^{1} b^{1}{ }^{1}$
15.8	18 (by)	$6_{0}^{1} \mathrm{~b} y{ }^{1}$

TABLE 2.5 (Continued)

25.5		$6{ }_{0}^{1} \mathrm{~b}_{\mathrm{xo}} \mathrm{b}_{\mathrm{yo}}{ }^{1}$
30.3		$\mathrm{G}_{0}^{1} \mathrm{~b}$ yo ${ }^{2}$
34.6	$40\left(t_{z}\right)$	$6_{0}^{1} \mathrm{t}_{2}{ }^{1}$
39.6		$6_{0}^{1} \mathrm{t}_{\mathrm{z}}{ }_{0}^{1} \mathrm{~b} \times{ }_{0}^{1}$
48.8	$50\left(\mathrm{t}_{\mathrm{x}}\right)$	$6_{0}^{1} \mathrm{t}_{\mathrm{x}}{ }^{1}$
60.5		$6{ }_{0}^{1} \mathrm{~b}$ yo ${ }^{4}$
97.8		$6{ }_{0}^{1} \mathrm{t}_{\mathrm{x}}{ }^{2}$
101.0		$6{ }_{0}^{1} \mathrm{t}_{\mathrm{z}}{ }^{3}$
	156 (t_{y})	
	159 (s_{z})	

a) From Reference 3 .
b) vdW mode representations as per Figure 2.7.
E. Benzene $\left(\mathrm{NH}_{3}\right)_{1}$.

Benzene $\left(\mathrm{NH}_{3}\right)_{3}$ clusters recently ohserved in this laboratory ${ }^{3}$ yield spectra in both the cluster 0_{0}^{0} and 6_{0}^{1} regions. Two cluster geometries are calculated for the system, one possessing C_{s} symmetry and the other possessing $C_{3 v}$ symmetry. From symmetry arguments the C_{s} symmetry cluster is the only contributor to the 0_{o}^{0} spectrum while both cluster geometries contribute to the σ_{o}^{1} spectrum. Neither of these spectra were analyzed nor assigned in the initial observation since they are so complicated. They were merely presented as an indication of the notion that cluster vibronic spectra can sometimes be very extensive and congested.

The benzene $\left(\mathrm{NH}_{3}\right)_{1} \mathrm{C}_{5}$ symmetry cluster follows the same vdW vibronic selection rules as derived for the benzene $\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$ cluster. In this symmetry, the selection rules for Case I are $\Delta v=0, \pm 1, \pm 2, \ldots$ for the $v d W$ stretch, b_{y} bend, and t_{x} torsion and $\Delta v=0, \pm 2, \pm 4, \ldots$ for the b_{x} bend, t_{y} and t_{z} torsions. In Case II the selection rule is $\Delta v=$ $0, \pm 1, \pm 2, \ldots$ for all six vdW modes. Furthermore, the calculated cluster geometries are qualitatively similar. Hence, their 0_{0}^{o} spectra should be qualitatively similar: this is borne out in both experimental results and vibrational mode calculations.

The benzene $\left(\mathrm{NH}_{3}\right)_{1} \mathrm{C}_{3 v}$ symmetry cluster follows the same vibronic selection rujes as presented for benzene $\left(\mathrm{CH}_{4}\right)_{1}$. Here the selection rules are either $\Delta v=0, \pm 1, \pm 2, \ldots$ for the vdw stretch and $\Delta v=0 \pm 2, \pm 4, \ldots$ for the $v d W$ bends and torsions (Case I) or $\Delta v=0, \pm 1, \pm 2, \ldots$ for all six $v d W$ modes (Case II).

The calculated ground state vibrational energies and the observed cluster 0_{0}^{0} and $6{\underset{0}{1}}_{1}^{0}$ vibronic spectra are compared in Figure 2.13. Dur to

Figure 2.13
Mass selective $S_{1}-S_{o}$ spectra (ref. 3) and calculated ground state vdw modes of benzene $\left(\mathrm{NH}_{3}\right)_{1}$. Energy scale is relative to benzene $\left(\mathrm{NH}_{3}\right)_{1} 0_{0}^{\circ}$ and 6_{0}^{1} transitions for C_{s} cluster $\left(38021.1 \mathrm{~cm}^{-1}\right.$ and $38514.7 \mathrm{~cm}^{-1}$, respectively). Feature positions and assignments as per Table 2.6 and Figure 2.8 and 2.9. $C_{3 v}$ cluster s_{z} and $t_{x y}$ modes are not shown.
the complex nature of the spectra which possibly results from hot bands. only tentative assignments of the vdW mode progressions are made. The tentative assignments are based upon both vibrational mode calculations and upon inference from the benzene $\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$ and benzene $\left(\mathrm{CH}_{4}\right)_{1}$ cluster spectra.

In the n_{0}^{0} spectrum, the most intense low energy feature is assigned to the origin of the cluster's $S_{1}-S_{0}$ transition. The smaller intensity features to the red of this feature are thus hot bands which yield the sequence structure in the 0_{0}^{o} region. The observed feature at $8.8 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{0}° corresponds to the nontotally symmetric vdW b_{x} bend fundamental calculated at $15 \mathrm{~cm}^{-1}$. Additionally, the observed features at $15.0 \mathrm{~cm}^{-1}, 45.1 \mathrm{~cm}^{-1}, 54.2 \mathrm{~cm}^{-1}, 99.6 \mathrm{~cm}^{-1}$, and $127.7 \mathrm{~cm}^{-1}$ correspond to the calculated b_{y} bend ($21 \mathrm{~cm}^{-1}$), t_{z} torsion $\left(44 \mathrm{~cm}^{-1}\right), t_{x}$ torsion (48 cm$\left.{ }^{-1}\right)$, stretch $\left(112 \mathrm{~cm}^{-1}\right)$, and t_{y} torsion $\left(125 \mathrm{~cm}^{-1}\right)$. The occurrence of the nontotally symmetric fundamentals suggests that the vdW modes participate in vibronic coupling (Case II) and that the $\Delta v=0, \pm 1, \pm 2, \ldots$ selection rule should apply to all six vdW modes. Using this sejection rule, the spectrum is best assigned, Table 2.6, using both nontotally and totally symmetric vdW progressions.

In the 6_{0}^{1} spectrum, the most intense low energy feature is assigned to the cluster 6_{o}^{1} vibronic origin. This assignment bears a resemblance to the benzene $\left(\mathrm{H}_{2} 0\right)_{1} 6_{o}^{1}$ spectrum in the respect that the 6_{0}^{1} features for both clusters are red shifted relative to that observed at the $S_{1} * S_{o}$ origins (ca. $25 \mathrm{~cm}{ }^{-1}$ for benzene $\left(\mathrm{NH}_{3}\right)_{1}$ and $35 \mathrm{~cm}^{-1}$ for benzene $\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$.

Table 2.6 presents the C_{s} symmetry geometry assignments in the G $_{0}^{1}$ region. The assignments are made using the vdW fundamentals identified
vdW spectral features in benzene $\left(\mathrm{NH}_{3}\right)_{1} 0_{0}^{0}$ and 6_{0}^{1} region and calculated ground state vdW modes (refer to Figure 2.13).

Energy Relative to ${ }^{\text {a }}$
Cluster $0_{0_{1}}^{0}\left(\mathrm{~cm}^{-1}\right)$
or $6_{0}^{1}\left(\mathrm{~cm}_{1}\right)$
Calculated Ground
State Energy ($\mathrm{cm}{ }^{-1}$)
Assignment b, c
-39.2
$b_{y 2}$
-36.7
-33.4
$b_{x}{ }^{o} b_{y}{ }^{0}$
-31.3
$b_{y 2}{ }^{0}{ }_{x}{ }^{1}$
-29.6
-26.7
$b_{x}{ }_{1}^{0} b_{y 1}^{o}$
-19.2
-6.7
$b_{y}{ }_{1}^{o}$
-3.8

0 (38021.1)
8.8
15.0
$15\left(b_{x}\right)$
$21\left(b_{y}\right)$
17.9
24.2
26.7
29.0
32.1
34.2
37.6

	$\mathrm{b}_{\mathrm{y}} \mathrm{o}$
	$\mathrm{b}_{x}{ }^{0} \mathrm{~b}_{\mathrm{y}}{ }_{1}^{0}$
	$b_{y 2} b_{x}{ }_{0}^{1}$
	$b_{x}{ }_{1}^{o} b_{y 1}^{o}$
	$b_{y}{ }_{1}^{o}$
	$b_{\times 1}{ }_{1}$
	$0_{0}^{\text {o }}$
15 (b_{x})	$h^{1}{ }^{1}$
21 (by)	$\mathrm{b}_{\mathrm{yo}}{ }^{1}$
	$\mathrm{b}_{\mathrm{x}}{ }^{2}$
	$\mathrm{b}_{\mathrm{x}}{ }_{0}^{1} \mathrm{~b} \text { yo }$
	$\mathrm{b}_{\times 0}{ }^{3}$
	$\mathrm{b}_{\mathrm{yo}}{ }^{2}$
	$\mathrm{b}_{\mathrm{x}}^{2} \mathrm{~b}_{\mathrm{y}} \frac{1}{o}$
	$\mathrm{b}_{\mathrm{xc}}^{4}$
	$b_{x o}^{1} b^{4} y^{2}$
44 (t_{7})	$1 \begin{array}{r}1 \\ 20\end{array}$

45.1
$44\left(t_{z}\right)$

TABLE 2.6 (Continued)

50.9		
54.2	$48\left(t_{x}\right)$	$\mathrm{tr}_{\mathrm{x}} \begin{aligned} & 1 \\ & 0\end{aligned}$
59.7		$\mathrm{t}_{20}{ }^{\mathbf{j}} \mathrm{h}_{\mathrm{yo}}{ }^{\text {d }}$
64.7		$\mathrm{t}_{\mathrm{x}}{ }_{0}^{1} \mathrm{~b} \times 0$
70.4		$\mathrm{t}_{\mathrm{xo}} \mathrm{h}^{1} \mathrm{yo}^{1}$
75.5		$\mathrm{t}_{\mathrm{x}}{ }_{0}^{1} \mathrm{~b} \times 0$
77.2		
80.1		$\mathrm{t}_{\mathrm{xo}}{ }^{1} \mathrm{~b}_{\mathrm{xO}}{ }^{1} \mathrm{~b}$ yo
83.8		$t_{x 0}^{1} h_{y o}^{2}$
99.6	$112\left(s_{z}\right)$	$\mathrm{s}_{\mathrm{zO}}{ }^{1}$
101.8		$\mathrm{t}_{\mathrm{XO}} \mathrm{t}_{2}{ }_{0}^{1}$
107.2		$s_{z 0}^{1} t_{x 0}^{1}$
111.8		$\mathrm{t}_{\mathrm{x} \cap}{ }^{1} \mathrm{r}_{\mathrm{o}} \mathrm{l}_{\mathrm{x}}{ }^{\frac{1}{n}}$
114.3		$\mathrm{s}_{\mathrm{zo}} \mathrm{O}_{\mathrm{yo}}{ }^{1}$
119.3		$\mathrm{t}_{\mathrm{x}}{ }^{1} \mathrm{t}_{\mathrm{zo}} \mathrm{h}_{\mathrm{x}}{ }_{0}^{2}$
122.7		$\mathrm{s}_{\mathrm{zo}}{ }^{1} \mathrm{bo}{ }^{1} \mathrm{~b}$ yo ${ }^{1}$
127.7	125 (t_{y})	t_{yo}
- 9.0		$6{ }_{0}^{1} h_{x}{ }^{1}$
-4.9		
-2.0		
0 (38514.7)		$\sigma_{0}^{1}\left(C_{s}\right)$
2.0		
9.0	15 (b_{x})	${ }_{6}^{1} \mathrm{~h} \times \mathrm{c}$
13.3	21 (hy)	$60_{0}^{1} \mathrm{~b}_{\mathrm{yo}}$

TABLE 2.6 (Continued)
26.2
29.5
32.0
34.4
37.3
45.1
48.7
53.7
55.3
58.6
61.0
64.7
68.8
$72.9[0(38587.6)]$
74.6
79.5
83.3
87.9
98.7
100.4
103.9
107.1
111.9
114.0
123.4
$6{ }_{0}^{1} h_{x}^{3}$
$6_{0}^{1} \mathrm{~h}$ yo ${ }^{2}$
$6_{0}^{1} b_{x}{ }_{n}^{2} b_{y o}^{1}$
$6{ }_{0}^{1} h_{x}{ }_{0}^{4}$
${ }_{6}^{1}{ }^{1} \mathrm{~b}_{\mathrm{yo}}{ }^{2} \mathrm{~b} \mathrm{x}_{\mathrm{n}}^{1}$
$6{ }_{0}^{1}+7.0$
${ }_{6}^{0}{ }_{0} \mathrm{t}_{7,0}^{1} \mathrm{~h} \times{ }^{1}$
$6_{0}^{1} t \times{ }^{1}$
$\mathrm{K}_{\mathrm{O}}^{1} \mathrm{t}_{\mathrm{zO}}{ }^{1} \mathrm{~h}$ yo
$6_{0}^{1} \mathrm{t}_{\mathrm{zi}}{ }^{1} \mathrm{~b}_{\mathrm{x}}{ }^{2}$
$6_{0}^{1} t_{x 0}^{1} h_{x}^{1}$
$6_{0}^{1} \mathrm{t}_{\mathrm{x}}{ }^{1} \mathrm{~b} \mathrm{yo}$
$6_{0}^{1}\left(C_{3 v}\right)$
$6{ }_{0}^{1} t_{x}{ }_{0}^{1} b_{x}{ }_{0}^{2}$
$\mathrm{K}_{0}^{1} \mathrm{t}_{\mathrm{x}}^{0}{ }^{1} \mathrm{~h}_{\mathrm{x}}^{0}{ }_{0}^{1} \mathrm{~h}_{\mathrm{yo}}^{1}$
$60_{0}^{1} \mathrm{t}_{\mathrm{n}} \mathrm{b}_{\mathrm{yo}}{ }^{2}$
$6_{0}^{1} h_{x y o}^{1}\left(C_{3 v}\right)$
$6_{n}^{1} s_{z o}^{1}$
$60_{0}^{1} \mathrm{ran}^{1} \mathrm{t}_{\mathrm{z}}{ }^{1}$
$6{ }_{0}^{1} h_{x y o n}^{2}\left(\mathrm{C}_{3 \mathrm{~V}}\right)$
${ }_{6}^{1} s_{2}{ }_{0}^{1} h_{x}{ }_{0}^{1}$
${ }_{6}^{1} \mathrm{t}^{1} \mathrm{xn}^{1} \mathrm{Zan}^{1} \mathrm{~b} \mathrm{xo}^{1}$
$\mathrm{K}_{\mathrm{o}} \mathrm{s}_{2} \mathrm{O}_{0}^{1} \mathrm{~h}$ yo ${ }^{1}$
$6_{0}^{1} \mathrm{~s}_{\mathrm{zi}}{ }^{1} \mathrm{~b}_{\mathrm{x}}{ }^{1} \mathrm{~h} \mathrm{yol}^{1}$

TARLE 2.6 (Continued)
125.9
$44\left(t_{z}\right)$
$97\left(s_{z}\right)$
$152\left(t_{x y}\right)$
$44\left(t_{z}\right)$

$$
6_{o}^{1} t_{z n}^{1}\left(C_{3 v}\right)
$$

$$
97\left(s_{z}\right)
$$

$$
152\left(t_{x y}\right)
$$

a) From Reference 3.
b) vdW mode representations as per Figure 2.8 and 2.9.
c) $C_{3 v}$ cluster 6_{0}^{1} contributions tabulated relative to C_{s} culuster 6_{0}^{1} origin as in Figure 2.13.
in the 0_{0}^{0} spectrum and $\Delta v=0, \pm 1, \pm 2, \ldots$ selection rule for all six vdW modes (Case II).

The contribution of the $\mathrm{C}_{3 v}$ symmetry benzene $\left(\mathrm{NH}_{3}\right)_{1}$ cluster to the 6_{0}^{1} spectrum is observed starting with the feature at $72.9 \mathrm{~cm}^{-1}$ to the blue of the C_{s} cluster κ_{0}^{1}. Assignment of this feature to the $C_{3 v}$ cluster 6_{o}^{1} is based upon the observation that no intense features are seen in either the henzene $\left(\mathrm{NH}_{3}\right)_{1} 0_{0}^{\mathrm{o}}$ or the benzene $\left(\mathrm{H}_{2} \mathrm{O}\right)_{1} 6_{0}^{1}$ spectra at this energy. The observed feature at $15 \mathrm{~cm}^{-1}$ to the blue of the $C_{3 v}$ cluster $6{ }_{0}^{1}$ corresponds to the two-fold degenerate vdW $b_{x y}$ bends at $19 \mathrm{~cm}^{-1}$. The observed feature at $53 \mathrm{~cm}^{-1}$ to the $h l u e$ of the $C_{3 v}$ cluster 6_{0}^{1} is associated with the calculated t_{z} torsion at $44 \mathrm{~cm}^{-1}$. As in the benzene $\left(\mathrm{CH}_{4}\right)_{1}$ case, the observation of the $b_{x y}$ and t_{z} fundamentals implies that the vdw modes participate in the vibronic coupling mechanism (Case II) and that the $\Delta v=0, \pm 1, \pm 2, \ldots$ vibronic sefection rule applies for all vdW modes. Based upon this, the best assignments for the $C_{3 v}$ cluster vdW vibronics are tabulated in Table 2.6.
F. Morse ${\underset{\bar{R}}{0}}_{\frac{6}{R_{0}}}$ Model.

Calculations of the ground state vdW modes of benzene(Ar) ${ }_{1}$
are also conducted using a model described by Jortner et al. ${ }^{1,7}$ This model contains a main feature which, at first glance, appears to make it generally applicable in predicting vdW stretching mode frequencies from calculated cluster binding energies and equilibrium intermolecular dis tances. However, the model turns out to be incorrect in this applira tion. The model employs a simple relationship betwern the rluster equilibrium intermolecular distance R_{0} and the Morse potential parametpr B. The relation is derived by equating the second derivative of Equation 2.6 with the second derivative of a single term (6-12)
potential function. This derivation yields the relation $\beta=\frac{6}{R_{0}}$ which can be used to predict the vdW stretching mode frequency by diatomic Morse fit methods.

Substituting $\beta=\frac{6}{R_{0}}$ and the calculated ground state cluster binding energy into Equation 2.7 yields a vdw stretching mode energy of $47 \mathrm{~cm}^{-1}$ for benzene(Ar) ${ }_{1}$ employing Scheraga's potential paraneters. Even though the calculated vibrational energy is qualitatively correct. Figures 2.14 and 2.3 show that the $\beta=\frac{6}{R_{0}}$ relation results in an inadequate reproduction of the potential curve, especially in the critical region near the equilibrium intermolecular distance. At R_{0}, the $\beta=\frac{6}{R_{0}}$ fit overestimates the curvature of the potentia? by about 33% with respect to the curvature calculated from the one-dimensional potential energy mapping ($1746 \mathrm{~cm}^{-1} / \AA^{2}$ versus $1312 \mathrm{~cm}^{-1} / \AA^{2}$) and, therefore, overestimates the stretching mode energy. Additional calculations using the potential data described in ref. 1 and the above approximate model also result in an inadequate potential curve reproduction, Figure 2.15. The potential curvature at R_{0} using the $\beta={\underset{R}{R}}_{\boldsymbol{G}}$ fit is overestimated by about 37\% with respect to the corresponding curvature calculated via potential energy mapping ($2322 \mathrm{~cm}^{-1} / \AA^{2}$ versus $1695 \mathrm{~cm}{ }^{1} / \AA^{2}$). In this case. the vdW stretching mode is calculated at $55 \mathrm{~cm}^{-1}$

The failure of the model under both data sets suggests that the model itself is inadequate in this application. The model fails in this application since the $\beta=\underset{R_{0}}{6}$ relation holds exactly only in systems in which the molecule atom lennard dones parameters have been determined directly. Applying this approximate model to a rase in which the porrol tial function is represented by pairwise atomatom potentials does nu: take into arcount the differing contributions of each interaction 10 the

Figure 2.14
z-direction (vdW stretch) potential energy mapping of benzene(Ar), and $\beta={\underset{R}{R}}_{6}^{6}$ Morse fit. Translation is relative to equilibrium intermolecular distance, 3.44 A. (6-12) potential energy mapping using data set from ref. 9 is represented by 0 ; Taylor series expansion and energy levels are represented by $\quad \beta={\underset{R}{R}}_{\boldsymbol{R}}^{6}$ Morse fit potential energy curve is represent by ---. Taylor series vibrailonal mode constant as per Table 2.2. $\beta={\underset{R}{R}}_{6}^{G}$ Morse fit vibrational constants are $\omega_{e}=47.22 \mathrm{~cm}^{-1}, \omega_{e} x_{e}=$ $1.94 \mathrm{~cm}^{-1}$

Pigure 2.15
z-direction (vdW stretch) potential energy mapping of benzene(Ar) ${ }_{1}$ and $\beta=\underset{R_{0}}{6}$ Morse fit. Translation is relative to equilibrium intermolecular distance, 3.5 A. (6-12) potential energy mapping using data set from ref. 1 is represented by 0 ; Taylor series expansion and energy levels are represented by - with $\omega_{e}=46.68 \mathrm{~cm}^{-1}$ and $\omega_{\mathrm{e}} \mathrm{X}_{\mathrm{e}}=1.81 \mathrm{~cm}^{-1} ; \beta={ }_{\mathrm{R}}^{6}$ Morse fit potential energy curve is represented by $\cdots, \beta={\underset{R}{R}}_{6}$ Morse pit vibrational mode constants are $\omega_{e}=54.84 \mathrm{~cm}^{-1}$ and $\omega_{e} x_{e}=1.90 \mathrm{~cm}^{-1}$
potential energy and the equilibrium intermolecular distance. In this more complicated situation, no analytic relationship between β and R_{0} exists.

Comparing the vdW stretching mode energies calculated using Jortner's and Scheraga's data sets sliggests that a significant difference exists between the two data sets. Benzene(Ar) 1_{1} configurational calculations using Jortner's data set yield a single cluster geometry of $C_{6 y}$ symmetry with the argon atom located $3.5 \&$ above the benzene molecular plane. In this case, the ground state cluster binding energy is $395 \mathrm{~cm}^{-1}$. This binding energy is $108 \mathrm{~cm}^{-1}$ greater than that calculated using Scheraga's data set. The binding energy of $287 \mathrm{~cm}^{-1}$ calculated using Scheraga's data set is probably more accurate since the benzene(Ar) $)_{1}$ ground state binding energy should be very similar to that calculated for s-tetrazine $(A r)_{1}$. In the latter case, the calculated ground state binding energy of $295 \mathrm{~cm}^{-1}$ compares well with that observed experimentally, $254<\mathrm{D}_{\mathrm{o}}^{\prime \prime}<332 \mathrm{~cm}^{-1}{ }^{5}$ Furthermore, generating LennardJones parameters using the data set of ref. 1 yields a binding energy of $359 \mathrm{~cm}^{-1}$ for s-tetrazine $(\mathrm{Ar})_{1}$ which is clearly not as accurate as the binding energy reported in this work. The difficulty is due to the consolidation of atom-atom parameters from different data sets. In this respect, great caution must be taken when consolidating parameters since each parameter set is, in general, only self-consistent and may have no meaning when combined with parameters from other sets.

Conclusions

TOFMS studies have been employed to determine the general geo metry and symmetry of vdW clusters in the gas phase. Through computer modeling, a correlation between the details of the cluster geometry and
spectral features has been demonstrated. Specifically, the parametric calculations yield useful information regarding cluster geometry, binding energy, and the vdW vibrations. These calculated results are consistent with experiment and serve as predictive and analytic tools which can be used to elucidate and understand the details of vdw cluster energetics.

Of the several models considered in studying the intermolecular vdW modes, simple diatomic approxinations yield adequate results when applied to atom-molecule clusters. On the other hand, for molerulemolecule clusters a normal coordinate analysis is essential. The normal coordinate analysis is especially useful for analyzing systems which have little or no symmetry since no a priori knowledge of vdw mode nature is necessary to generate potential energy surface mappings.

Reassignments of and assignments to cluster vdW modes have been made based upon the knowledge gained from calculation. From comparison of calculation and experiment, several conclusions result. First, the actual excited state normal mode vdW frequencies are well fit by the calculated ground state cluster potential. This conclusion, though not surprising, gives independent proof of the invariance of the weak vdW potential between ground and excited electronic states as well as providing a means of using ground state vdW vibrational structure to predict vdW vibronic structure. Second, in the majority of the clusters analyzed, the observed vdw vibrations are those involving bending and torsional motions parallel to the aromatic π system. Furthermore, these modes are, in general. quite active in the Herzberg-Teller vibronic coupling mechanism and significant interelectronic state mixing results. Third, vdW motions which penetrate the aromatic π system have high
frequencies and are only observed in systems in which the Franck-Conoinn factors and binding energies are favorable. Finally, the observed vibronic structure supports the calculated cluster geometry in all cases.

Acknowledgment

We wish to thank Professor W. Klemperer for a number of helpful, informative, and stimulating discussions concerning van der Waals molecules and the nature of their vibrational spectra.

REFERENCES

1. M.J. Ondrechem, Z. Berkovitch-Yellin, and J. Jortner. J. Amer. Chem Soc. 103, 6586 (1981).
2. M. Schauer and E.R. Bernstein, J. Chem. Phys. 82, 726 (1985).
3. J. Wanna, J.A. Menapace and E.R. Bernstein. J. Chem. Phys., 85, 1795 (1986).
4. T.A. Stephenson and S.A. Rice. J. Chem. Phys. 81, 1083 (1984).
5. D.V. Brumbaugh, J.E. Kenny, and D.H. Levy, J. Chem. Phys. 78, 3415 72(1983).
6. M.L. Sage and J. Jortner, J. Chem. Phys. $8 \underline{2} 5437$ (1985).
7. J.A. Beswick and J. Jortner, J. Chem. Phys. $6 \underline{8}$, 2277 (1978); $\underline{69}$, 512 (1978); 74, 6725 (1981); 714737 (1979).
8. J. Wanna and E.R. Bernstein, J. Chem. Phys. 84, 927 (1986), and ref. 2 and 3 , for example.
9. F.A. Momany, L.M. Carruthers, R.F. McGuire, and H.A. Scheraga, J. Phys. Chem. 78, 1595 (1974); G. Nemethy, M.S. Pottle, and H.A. Scheraga, J. Phys. Chem. 8 그․ 1883 (1983).
10. E.B. Wilson Jr., J.C. Decius, and P.C. Cross. "Molecular Vibrations. Theory of Infrared and Raman Vibrational Spectra," (McGraw-Hill Book Co., Inc.. 1955).
11. G. Herzberg, "Molecular Spectra and Molecular Structure: II In frared and Raman Spectra of Polyatomic Mulecules." (Van Nostrand Reinhold Co.. 1945).
12. S. Herzberg, Molecular Spectra and Molpralat itrorthra: I Spertia of Diatomic Molecules." (Van Nostrand Roinhold Co. 1950)
 Modern Molecolar spectroscopy." (MIT Press. 1978)
 and Nuclear Motions." (Arademic Press inat!
 (1981).
S. Leutwyler and A. Schmeizer. J. Chem. Phys. 79. 4385 (1983); J Boesiger and S. Leutwyler, Chem. Phys. 126. 283 (1986)

THE INTERMOLECULAR VIBRONIC TORSIONAL STRIICTURE IN SOLITE/SOLVENT VAN DER WAALS CLUSTERS: RENZENE/METHANE, /DEUTEROMETHANE, AND /CARBON TETRAFLUORIDE

Introduction.
van der Waals (vdW) complexes of aromatic molecules with hydrocarbon solvents form a class of supramolecular systems whose intermolecular bonding has several interesting features. First, the intermoiecular interaction is small and is dominated hy long-range dispersive attractions and short-range exchange repulsions. These two features allow the interaction to be modeled using an intermolecular potential of known functional form. For example, the interaction can be modeled by additive atom-atom potentials set in a Lennard-Jones or an Exponential Six format. ${ }^{1}$ Second, the interaction potential surface only changes slightly, if at all, upon electronic excitation of the cluster chromo phore. Thus, small spectral shifts of the chromophore electronic transition and weak intensity intermolecular vdW mode vibronic transi tions are observed. ${ }^{2,3}$ Third, the interaction results in the formation of specific minimum energy cluster configurations. These geometrirs ar. intreresting since they give insight into the nucleation processas and solvation geometry occurring in both gas and condensed phase systems Fourth. the small binding energy of the complex and the low frequrloy

intramolecular vibrational redistribution（IVR）and vibrational predis－ sociation（VP）cluster dynamic energy transfer processes．${ }^{4}$ And fifth， cluster structure，binding energy，vdW modes and dynamics（IVR and VP） are essentially dependent on the actual cluster structure and the intricacies of the intermolecular interaction．${ }^{3.5}$

In this paper．we report the spectroscopic results of the benzene／deuterated methane $\left(\operatorname{ben}\left(\mathrm{CD}_{4}\right)_{1}\right)$ and benzene／carbon tetrafluoride （ben（ $\left(F_{4}\right)_{1}$ ）clusters together with calculated modeling of selected cluster characteristics．The spectroscopic results include the $\pi^{*} * \pi$ vibronic spectra of the clusters in their respective benzene ronstituent $\sin _{0}^{1}$ regions

The calculated results include the geometry，the binding enerig and the full eigenvalue／eigenvector intermolecular vibrational structure for the plectronic ground state of pach clustar The intermolerular ground state vibrational structure is modeled by two mpthods 111 th

$1140 \cdot 1$
$1.1 \times \cdots$

がいい！！！＇い。
ramifications of Herzberg-Teller ($H-T$) coupling for the observation of "forbidden" vibronic transitions.

The motivation for studying these systems concerns the elucida tion of the $v d W$ torsional structure. Two limiting cases can be proposed in regard to the torsional structure of ben $\left(\mathrm{CH}_{4}\right)_{1}$, ben $\left(\mathrm{CD}_{4}\right)_{1}$, and ben $\left(\mathrm{CF}_{4}\right)_{1}$. In one case, the clusters possess free internal rotation between the cluster solute and solvent. The cluster solvent $\left(\mathrm{CH}_{4}, \mathrm{CD}_{4}\right.$, or CF_{4}) rotates freely in three dimensions against the benzene framework and the system is considered nonrigid. In the other case, the clusters possess torsional oscillations for which the cluster solvent librates apaingt the benzene frame with a residence time long enough to give rise to "vibration like" motion in a rigid molecule regime

Fluridation of the vid torgions is of particular interest in thesr subtrms since phe aformentoned limiting cases pose yuestions

mixed with the $\mathrm{Nd}^{+3} / \mathrm{YAG} 1.064 \mu \mathrm{~m}$ fundamental is used to probe the clusters' $S_{1}-S_{0}$ transition in the isolated benzene σ_{0}^{1} region $\left({ }^{1} B_{2 u}-{ }^{1} A_{1 g} ; \pi^{*} \leftarrow \pi\right)$. Subsequent ionization of the clusters is accomplished using a R590 dye laser whose output is frequency doubled and mixed with the $\mathrm{Nd}^{+3} / \mathrm{YAG} 1.064 \mu \mathrm{~m}$ fundamental. The ionization laser output is set at $45112 \mathrm{~cm}^{-1}$. A $5 \% \mathrm{mixture}$ of deuterated methane or carbon tetrafluoride in helium is placed inline with liquid benzene in a trap at room temperature. The three component mixture is expanded using a pulsed molecular jet nozzle having a 500 micron orifice while maintaining 100 psig backing pressure. Apparatus chamber pressure is maintained a^{+}or below 5×10^{-6} torr during the experiments

Theoretical Considerat ions

The NCAs are conducted using the same methods as desctibed in our previous publication on viw rlaster vibronic stracture' for bendili, the ralrulated rluster ground state geometry fure fald and badime

cluster solvent rotates freely in three dimensjons against a fixed cluster solute framework. Application of a specified perturbation field results in the eventual restriction of this free rotation to torsional oscillation as the perturbation field magnitude is increased; that is. rotation ceases and vibrational oscillatory motion begins as the residence times of the solvent in the torsional potential well becomes longer.

In the $3 \mathrm{D}-\mathrm{HRRA}$, both cluster constituents are assumed internally rigid, their respective internal geometries remaining constant and at "equilibrium". The cluster solvents are taken as the rotating portions of the clusters since their zero field rotational constants are orders of magnitude greater than those of the cluster solute. The hindered solvent rotations are presupposed to contribute to the spectral features observed along with the intermolecular bending and stretching modes.

The $3 D$-HRRA involves setting up a molecule fixed roordinate system (x.y.z) and a space fixed coordinate system ($\xi, \eta, \%$ on the rluster solvent as shown in Figure 31 Roth systems have their origill At the muclear renter of mass of the rlaster solient The molerale

Figure 11

of the rotational coordinates. Since a solvent rotation is periodio over 360 degrees, the potential can be expressed by an even function Fourier series written as ${ }^{7}$

$$
V(q)=v_{0} / 2+\sum_{p=1}^{\infty} A_{p} \cos (p q)
$$

with q a function of the rotational coordinates and v_{n} taken as the barrier height to internal rotation. The function q is determined by the potential dimensionality and the number of minima in the potential along each of the rotational coordinates. The first cosine term in the series describes the major form of the potential, and the rest of the terms in the series "fine tune" the potential shape. Since the coff. ficients A_{p} in these terms are assumed to be small, the serips can be truncated at its first cosine term without sacrificing the general potential shape Doing ihis yields the mathematlially convenient potent -i:1) form

\qquad
potential magnitude depends upon the relative displacements of all three rotational coordinates as.

$$
q=2 \theta+2 x+\phi
$$

Inserting Equation 3.3 into Equation 3.2 yields the three dimensional potential function used in the calculations:

$$
v(\theta, \phi, x)=\frac{V_{o}}{2}[1-\cos (2 \theta+2 x+\phi)]
$$

in which V_{0} is the barrier height to internal rotation. The rotational wavefunctions chosen as the basis set for the calculation are the rigid rotor symmetric top wavefunctions which depend on the curvilinear coordinates and on the quantum numbers J, k and m. Under zero field conditions. these wavefunctions are solutions to the spherical top Schrodinger equation, ${ }^{8}$

$$
\frac{\mathrm{H}}{\hbar^{\prime}}{ }^{12} 1 . \mathrm{km}>\quad \mathrm{E}_{\mathrm{rot}}^{j} 1 / \mathrm{km}
$$

$$
35
$$

$$
\begin{array}{ll}
\left|J^{\prime}-J^{\prime \prime}\right| \leq 2 & 3.7 \\
\left|k^{\prime}-k^{\prime \prime}\right|=2 & 3.8 \\
\left|m^{\prime}-m^{\prime \prime}\right|=1 . & 3.9
\end{array}
$$

Diagonal matrix elements contain only the zero fielu spherical top energies and a $V_{0} / 2$ potential term.

The resulting matrix is diagonalized for a selected value of V_{0} yielding eigenvalues corresponding to the solvent torsional eigenstates at the specified perturbation. The perturbation is varied until a reasonable fit with the experimental spectrum is obtained. The calculations are performed on a Cyber 205 computer using a basis set consisting of 680 wavefunctions to ensure convergence of the lowest eigenstates at their proper eigenvalues. Only the torsional structures of ben $\left(\mathrm{CH}_{4}\right)_{1}$ and ben $\left(C O_{4}\right)_{1}$ are calculated since their respective rotational constants are large enough that the coupling of the rotational levels does not require an extremely large basis set to Insure convergence. Matrix flements are determined via numerical integration using a nonadaptive integration routine. The matrix is prediagonalized into a tridiagonal form using orthogonal similarity transformations ${ }^{9}$ and diagonalized using ill implicit (q. method 10 The rotational constants used for methane duld

Hosilla

1 H.1.1.1.1.1

Migure ?
Two onoor TOFMS $S_{1} \cdot S_{a}$ speritum and ialculated ground qtate vidw modeq

 - (2...
table 3.1

[^0]- are corcoentaliona ev por pigure 32
difference between S_{1} and S_{0} for ben $\left(C_{D_{4}}\right)_{1}$ is nearly identical to that of ben $\left(\mathrm{CH}_{4}\right)_{1}$. Ten pronounced intermolecular vibronic features are observed to the "blue" of the cluster 6_{0}^{1}. As in the rase of the ben $\left(\mathrm{CH}_{4}\right)_{1}$ cluster, no features are observed in the symmetry forbidden benzene 0_{o}° region. Thus, the cluster geometry must possess at least a three-fold axis of symmetry.

The calculated ben $\left(\mathrm{CD}_{4}\right)_{1}$ geometry (Figure 3.3) is assumed to be the same as that ralculated for ben $\left(\mathrm{CH}_{4}\right)_{1}$. The geometry possesses $C_{3 v}$ point group symmetry. In this geometry, the C_{4} center-of-mass lies 3.47 \& above the benzene molecular plane along the three-fold rotational axis. The ground state binding energy in this configuration is calculated at $540 \mathrm{~cm}^{-1}$. Using the cluster "red shift" of $41.2 \mathrm{~cm}^{-1}$, the excited state binding energy is calculated to be $581 \mathrm{~cm}^{-1}$.

The NCA reveals six vdW vibrations (Figure 3.3 and Table 3.1), two being two-fold degenerate. The ground state vibrational energies are $75 \mathrm{~cm}^{-1}$ for the vdW stretch $\mathrm{s}_{2}\left(\mathrm{a}_{1}\right), 15 \mathrm{~cm}^{-1}$ for the bends $\mathrm{b}_{\mathrm{x}}(\mathrm{y}(\mathrm{e})$. and $20 \mathrm{~cm}^{-1}\left(t_{7}\left(\mathrm{a}_{2}\right)\right)$ and $64 \mathrm{~cm}^{-1}\left(t_{x y}(\mathrm{e})\right)$ for the udw torsions. The migenvector normal modes (Figure 3.3) transform in an idential fashion
 as the translation of the cluster ronst thants iway from ane thather

$\overbrace{5}^{(g)} 63 \mathrm{~cm}^{-1}$

'y'orsion (e)

The 30 HRRA results are also included in Table 3.1 for the lowest eigenstates in the torsional manifold. The torsional mode strurture is calculated for $V_{0}=300 \mathrm{~cm}^{-1}$ and $B=2.6 \mathrm{~cm}^{-1}$. This perturbation results in a reasonable fit for the torsional features observed experimentally. The torsional "zero point energy" is $75 \mathrm{~cm}^{-1}$. Two distinct torsional manifolds result from the calculations: one manifold has eigenvalues grouped quartically (nearly four-fold degenerate located at approximately $21 \mathrm{~cm}^{-1}, 46 \mathrm{~cm}^{-1}$. and $75 \mathrm{~cm}^{-1}$ above the zero point energy) and the other manifold has eigenvalues grouped octally (nearly eightfold degenerate located at approximately $68 \mathrm{~cm}^{-1}$ above the torsional zero point energy).

For comparison, the observed vibronic features for ben $\left(\mathrm{CH}_{4}\right)_{1}$ are reproduced in Table 3.1 along with the results of the NCA and the 3D-HRRA. The NCA results for ben $\left(\mathrm{CH}_{4}\right)_{1}$ are those reported previously. ${ }^{3}$ The $30-H R R A$ torsional structure is calculated for $V_{0}=300 \mathrm{~cm}^{-1}$ and $B=5.2 \mathrm{~cm}^{-1}$. This perturbation is chosen since it is assumed that the barrier to internal rotation is nearly identical in the two systems as they only differ in isotopic substitution and have the same electronic strutare additionally, using the same potential barrier of eler

B
$\operatorname{Ren}\left(\mathrm{CF}_{4}\right)_{1}$
Figure 3.1 and Table 3.2 present the ben(CF $)_{1}$ cluster spectrum recorded using 2 -color TOPMS in the region hetween $38578.6 \mathrm{~cm}^{-1}$ and $38702.6 \mathrm{rm}^{-1}$ UnIike the ben $\left(\mathrm{CO}_{4}\right)_{1}$ and ben $\left(\mathrm{CH}_{4}\right)_{1}$ cluster f_{0}^{1} transitions. the ben $\left(\mathrm{CF}_{4}\right)$, cluster $\mathrm{G}_{\mathrm{o}}^{1}$ is blue shifted by $6.1 \mathrm{~cm}^{-1}$ with respect to the benzene 6_{0}^{1}. The small hypsochromic shift indicates that the binding energies in the S_{o} and S_{1} states are nearly identical with the ground state binding energy being slightly greater. The relative displacement between the two potential surfaces is also small since only 5 vdW transitions are observed and their intensities decrease abruptiy at about $50 \mathrm{rm}^{-1}$ above the rluster $6 \frac{1}{o}$ origin. No cluster spertrum is nbserved in the forhidden benzene 0_{o}^{n} region indicating that the rluster possesses at least a three-fold rotation axis. This result js not unexpecter since the same observation is made for the ben $\left(\mathrm{CH}_{4}\right)_{1}$ and ben $\left(C D_{4}\right)_{1}$ systems. The ground state configuration and vdW eigenvalues/ eigenvectors are shown in Figure 3.5 and Table 3.2. Only one minimum energy geometry is calculated for the cluster. The geometry has $C_{3 v}$ point group symmetry with the CF_{4} center-of-mass at $3.43 \AA$ above the benzene molecular plane along the three-fold axis. The cluster ground state binding energy is $1064 \mathrm{~cm}^{-1}$.

The NCA reveals six vdW vibrations. Their ground state vibrational energies are $69 \mathrm{~cm}^{-1}$ for the vdw stretch $\mathrm{s}_{z}\left(\mathrm{a}_{1}\right), 11 \mathrm{~cm}^{-1}$ for the vdW bends $b_{x y}(e)$, and $13 \mathrm{~cm}^{-1}\left(\mathrm{t}_{\mathrm{z}}\left(\mathrm{a}_{2}\right)\right)$ and $36 \mathrm{~cm}^{-1}\left(\mathrm{t}_{\mathrm{xy}}(\mathrm{e})\right)$ for the vilw torsions The eigenvector normal modes transform as the translational and rotational representations of the $\mathcal{C}_{3 v}$ point group as indicated and in the same manner as those for ben $\left(\mathrm{CH}_{4}\right)_{1}$ and ben $\left(\mathrm{CD}_{4}\right)_{1}$.

Figure 3.4
Two-color TORMS S_{1} - S_{0} spectrum and calculated ground state vdW modes (NCA) of ben $\left(\mathrm{CF}_{4}\right)_{1}$. Energy scale is relative to ben $\left(\mathrm{CF}_{4}\right)_{1} \mathbf{6}_{0}^{1}$ transition ($38614.7 \mathrm{~cm}^{-1}$). Feature positions and assignments as per Table 3.2 and Figure 3.5.
vdW spectral features in ben $\left(\mathrm{CF}_{f}\right){ }_{1} \sigma_{0}^{1}$ region and calculated
ground state vdW modes (refer to Figure 3.4). ground state vdW modes (refer to Figure 3.4).

Observed ${ }^{\text {a }}$	NCA ${ }^{\text {a }}$	Assignment ${ }^{\text {b }}$
0(38614.7)	0	$6{ }_{6}^{1}$
15.7	11 ($\mathrm{bxy}^{\text {) }}$	$6_{0}^{1} b_{x y o}^{1}$
17.4	13 (t_{z})	$6{ }_{0}^{1} t_{z o}^{1}$
32.3		$6_{0}^{1} b_{x y o}^{2}$
35.4		$6{ }_{0}^{1} t_{z 0}^{2}$
39.5	$36\left(t_{x y}\right)$	$6{ }_{0}^{1} t^{\text {xyo }}$
	$69\left(s_{z}\right)$	

a) Energies are reported in cm^{-1} relative to the 6_{o}^{1} cluster origin.
b) vdW mode representations as per Figure 3.4.

(g)

Figure 3.5
Calculated ground state minimenergy configuration (a) and NCA eigenvalue/eigenvector normal modes (b) - (g) for ben $\left(\mathrm{CF}_{4}\right)_{1}$. Cluster symmetry is $C_{3 v}$ with an equilibrium intermolecular distance of $3.43 \AA$. Eigenvectors are normalized and displayed at $2 x$ magnification (2 A totil displacement).

In comparing the calculated ground stite vid vibrationil will ture and experimental vaw vibronic structure, we dssume that the intar molecular potential surfaces of the relusters studird are identiral in both the s_{1} and s_{n} electronic states. Additionally. we litillize the group thenretical arguments developed in our previous publication ${ }^{3}$ on vdW cluster vibronic structure to assign and understand the observed cluster spertra.
A. $\operatorname{Ben}\left(\mathrm{CD}_{4}\right)_{1}$.

The calculated ground state vdW vibrations (NCA) of hen $\left(C D_{4}\right)_{1}$ and the experimental vibronic spectrum is shown in Figure 3.2 and Table 3.1. As previously, the assignments are made by direct comparison between the calculations and the experjmental vibronic spectra. The intense feature at $22.5 \mathrm{~cm}^{-1}$ to the blue of the cluster 6_{0}^{1} corresponds to the t_{z} torsion calculated at $20 \mathrm{~cm}^{-1}$. Thus this feature and its observed overtones at $48.4 \mathrm{~cm}^{-1}, 70.5 \mathrm{~cm}^{-1}$, and $100 \mathrm{~cm}^{-1}$ are assigned to
 The features at $32 \mathrm{~cm}^{-1}$ and $62.7 \mathrm{~cm}^{-1}$ to the blue of the rluster 6_{o}^{1} correspond to the first and third nuertones of the two-fold degenerate vdW bending modes whose fundamental is calculated at $15 \mathrm{~cm}^{-1}$. They are assigned to the f_{0}^{1} combination bands $f_{n}^{1} b_{x y}(e)_{0}^{2}$, and $\sigma_{0}^{1} b_{x y}(e)_{0}^{4}$ respec tively. The feature at $58.1 \mathrm{~cm}^{-1}$ to the blue of the cluster $6 \frac{1}{0}$ is assigned to a two-fold degenerate $t_{x y}$ vid torsions/cluster $6_{0}^{1} \mathrm{com}-$ bination band. $\operatorname{for}_{0}^{1} t_{x y}(e)_{0}^{1}$. The $t_{x y}$ torsion fundamental is calculated al $64 \mathrm{~cm}^{-1}$. With this assignment and that of the t_{z} torsion, the feature at $84 \mathrm{~cm}^{-1}$ is assigned to the $6_{0}^{1} t_{x y}(e)_{0}^{1} t_{2}\left(a_{2}\right)_{0}^{1}$ combination band. The vdW stretch is calculated at $75 \mathrm{~cm}^{-1}$. This mode is identified in the

Clinster vibronic spretrum at $729 \mathrm{rm} \mathrm{I}^{\prime}$ to the blue of the rluster fi, origin and is thus assigued as 6_{0}^{1} s.gia $)_{0}^{\prime}$ Under this scheme. we dssint The features at $93.3 \mathrm{~cm}{ }^{1}$ and 97.5 cm as $6_{0}^{1} \mathrm{~s}_{2}\left(\mathrm{a}_{1}\right)_{0}^{1} \mathrm{~b}_{\mathrm{x}}(4)_{0}^{1}$ and $\operatorname{fin}_{0}^{1} z_{2}\left(a_{1}\right)_{0}^{1} \gamma_{z}\left(A_{2}\right)_{n}^{1}$ combination bands

The torsional structure resulting from the 30 - HRRA for hen $\left(C D C D_{4}\right)_{1}$. (Table 3.1). confirms the torsional assignments made using the NCA. The quartically grouped torsional levels at $21 \mathrm{~cm}^{-1}, 46 \mathrm{~cm}^{-1}$ and 75 cm 1 correspond to those associated with the t_{z} torsion and its overtones in the cluster spectrum at $22.5 \mathrm{~cm}^{-1}, 48.4 \mathrm{~cm}^{-1}$ and $70.5 \mathrm{~cm}^{-1}$. The octally grouped torsional levels at $68 \mathrm{~cm}^{-1}$ correspond to the t^{t} y torsion assigned at $58.1 \mathrm{~cm}^{-1}$.

The correspondence betwpen these levels and those calculated using the NCA can be understood as follows. In the 3D-HRRA, four symmetrically equivalent minima exist in the torsional potential surface. These minima correspond to the four ways of placing the solvent tetrahedron upon the solute with a tetrahedral face toward the solute molecular plane. If the barrier between these minima is infinitely high, penetration of the local wavefunctinns through the barrier separ ating the potential minjma does not take place. In this case, each "well" contains eigenstates corresponding to intermolecular torsions which occur with small amplitude about each potential well minimum Since the four "potential wells" are dentical in shape and depth, a four fold "structural" degeneracy exists in which all four potential walls contain identical torsional structure. Thus. for axample, a mon degenerate torsional eigenstate actually has a four fold structural degeneracy ote
ransibering: the arthal situation in which the potential barrial is finite. tunneling occurs and the "structural" degeneracy is liftwd via interaction of the local wavefunctions through the potential barrier. The eigenstate splitting due to this tunneling mas. or may not. be observed depending on the experimental resolution and the relative difference between the eigenstate energy and the barrier height. Splitting of the "structural" degeneracy in the lower portion of the potential well is minimal unless the barrier is low. Based on the calculations, energy level splittings of the first few sets of eigenstates should not be observed unless the barrier is below $150 \mathrm{~cm}^{-1}$. At moderate barriers (about $300 \mathrm{~cm}^{-1}$), the eigenstates in the lower portion of the well are nearly degenerate and behave more or less harmonically. For all practical purposes, we can assume these levels to be degenerate. The torsional level structure can then be determined from the eigenstates in one of the minima. Thus, the 3D-HRRA torsional structure calculation simplifies into the NCA. Physically, the cluster can be considered at least "semi-rigid" in the respect that it has a definable equilibrium conflguration. The potential energy barrier separating one minimum from the others in the potential surface is large and may be of the order of the cluster binding energy.

The vibronic structure in both the ben $\left(\mathrm{CH}_{4}\right)_{1}$ and ben $\left(\mathrm{CD}_{4}\right)_{1}$ spectra suggests that the systems are more or less rigid. None of the observed vibronir state energies follow a free rotor formalism for whirh the eneryy level structure is described by Equation 3.2. If the systems behated monrigidly, the free rotor eipenstates would lite at approxi mately $2.6 .1(J+1) \mathrm{cm}^{1}$ and $5.2 . J(I+1) \mathrm{cm}^{1}$ for ben(CO) $)_{1}$ and ben(CH1). respertively, and a $1 J$ i selection rule would govern the transitions:
[n the ben(CH $)_{1}$, and ben(CD $)_{1}$ systems. the t_{z} torsional mode shifts by 17.6 \% upon deuterium substitution of the cluster solvent Both the NCA and 3D-HRRA models predict a 28.6% frequency shift for $1,$. while the free rotor model would predict a 50% frequency shift for \boldsymbol{t}_{2} upon deuteration. Considering that only one mode is taken into account and the mode couplings may be different in the protonated and deuterated clusters. we conclude that torsional tunneling does not take place in the lower levels of the ben $\left(\mathrm{CH}_{4}\right)_{1}$ and ben $\left(\mathrm{CD}_{4}\right)_{1}$ cluster potential wells and that the clusters can be considered to be rigid.

The negligible isotopic red shift in the $b_{x y}$ bends also suggests that the cluster is rigid and that the entire observed spectrum is not solely due to internal rotation. The same rationale holds for the vdW stretch: its observation also dispels the notion that only rotor modes occur in the spectrum. No experimental isotopic shift can be determined for the stretching mode, however, since it is not observed in the ben $\left(\mathrm{CH}_{4}\right)_{1}$ system. Theoretically, the mode should red shift by 8.5% upon deuteration of the cluster solvent. The ben $\left(\mathrm{CH}_{4}\right)_{1}$ stretch should then be at about $80 \mathrm{~cm}^{-1}$ in the vibronic spectrum based upon the observed stretch in the ben $\left(C D_{4}\right)_{1}$ system. (The ben $\left(\mathrm{CH}_{4}\right)_{1}$ stretch is calculated by the NCA to be at $82 \mathrm{~cm}^{-1}$).

The ben $\left(\mathrm{CD}_{4}\right)_{1}$ cluster spectrum is also substantially richer than the ben $\left(\mathrm{CH}_{4}\right)_{1}$ spectrum in the respect that both the vodw stretch and ${ }_{x y}$ torsions are observed along with well developed t_{z} torsion and bend progressions. This is probably due to more favorahle Franck-Condon factors in the ben $\left(\mathrm{CD}_{4}\right)_{1}$ case resulting from the isotopir substitution

As is the case for ben $\left(\mathrm{CH}_{1}\right)_{1}, \mathrm{H}-\mathrm{T}$ coupling influences the vibronic intensities (selection rules) in the ben(rif), spectrum. The
nontotally symmetric modes $t_{z}, t_{x y}$ and $b_{x y}$ all appear in the spectrum with $\Delta v=0, \pm 1, \pm 2, \pm 3 . \ldots$ selection rules as can be seen infigure 3.2 and Table 3.1.
B. $\operatorname{Ben}\left(C_{F_{1}}\right)_{1}$.

Comparison of the calculated ground state vdW vibrations (NCA) of ben $\left(\mathrm{CF}_{4}\right)_{1}$ and the experimental cluster spectrum is presented in Figure 3.4 and Table 3.2. The intense feature at $17.4 \mathrm{~cm}^{-1}$ to the blue of the ben $\left(\mathrm{CF}_{4}\right)_{1} 6_{o}^{1}$ corresponds to the t_{z} torsion calculated at $13 \mathrm{~cm}^{-1}$ Thus, this feature and its first overtone at $35.4 \mathrm{~cm}^{-1}$ are assigned to the $6_{o}^{1} v d W$ combination bands $6_{0}^{1} t_{z}\left(a_{2}\right){ }_{o}^{1}$ and $6_{0}^{1} t_{z}\left(a_{2}\right)_{0}^{2}$. The shoulder feature at $15.7 \mathrm{~cm}^{-1}$ to the blue of the cluster 6_{o}^{1} corresponds to the vdw two-fold degenerate $b_{x y}$ bend fundamental calculated at $11 \mathrm{~cm}^{-1}$. Taking this feature as the combination band $6{ }_{0}^{1} b_{x y}(e)_{o}^{1}$ leads to the assignment of the $b_{x y}$ bend first overtone $6{ }_{o}^{1} b_{x y}(e)_{o}^{2}$ at $32.3 \mathrm{~cm}^{-1}$. Finally, the spectral feature at $39.5 \mathrm{~cm}^{-1}$ in the ben $\left(\mathrm{CF}_{4}\right)_{1}$ spectrum corresponds to the $t_{x y}$ torsion calculated at $36 \mathrm{~cm}^{-1}$. Thus, the feature is assigned to the combination band $6{ }_{0}^{1} t_{x y}(e)_{0}^{1}$.

The ben $\left(\mathrm{CF}_{4}\right)_{1}$ spectrum, like the ben $\left(\mathrm{CD}_{4}\right)_{1}$ and ben $\left(\mathrm{CH}_{4}\right)_{1}$ spectra, suggests that the system is rigid. Since the rotational constant for $C F_{4}$ is small (ca. $0.18 \mathrm{~cm}^{-1}$), the free rotor energy level structure should appear at about $.37 \mathrm{~cm}^{-1}$ intervals. This structure is not observed. Instead, the spectrum possesses oscillatory torsional structure commensurate with the NCA theoretical predictions. These theoretical and experimental results demonstrate the rigidity of the systems.

The $S_{1}-S_{0}$ excitation of the ben $\left(C F_{4}\right)_{1}$ cluster involves very little change in cluster geometry. In this spectrum, the progression
intensitios decrease dramatically at entergies rereatrer than the fil cluster origin. In the lowest two vaw mode propressions. the jnten sities decrease approximately 13% between the mode fundamentals and thr first overtones. Furthermore. the high energy vdW stretch calculated it $69 \mathrm{~cm}^{-1}$ is not observed. At these high energies. the Franck condon factors must be very small.

The observation of the nontotally symmetric vid $b_{x y}$ bends and the t_{z} torsion progressions with a $\Delta v=0, \pm 1, \pm 2 \ldots$ selection rule suggests that interelectronic state mixing ($H-T$ coupling) is an important contributor to the mode intensity mechanism. As in the ben($\left.\mathrm{CH}_{4}\right)_{1}$ and ben $\left(\mathrm{CD}_{4}\right)_{1}$ cases. $H-T$ coupling becomes apparent in the low lying vdw modes of the ben $\left(\mathrm{CF}_{4}\right)$, system. In fact, the interelectronic state mixing is substantial in the ben $\left(\mathrm{CF}_{4}\right)_{1}$ system and can be demonstrated by the observation of the well defined bend fundamental at $15.7 \mathrm{~cm}^{-1}$ and by the observation of the $t_{x y}$ torsion fundamental (39.5 cm^{-1}). Both of these latter features should not be observed if $H-T$ coupling is not. present.

Summary and Conclusions.
Two-color TOFMS and supersonic molecular jet techniques have been employed to study the $S_{1} \leftarrow S_{0}$ vibronic spectra of ben $\left(C D_{4}\right)$ and ben $\left(\mathrm{CF}_{4}\right)_{1}$ vdW clusters. These studies reveal detailed information regarding the geometries, the intermolecular energetics, and the physical nature of the $v d W$ interactions present in the systems. The experimental observations demonstrate that the clusters are at least semi-rigid systems possessing unique equilibrium geometries and that the intermol" cular motion present in the systems is oscillatory. Through comparison of these spectra with those of ben $\left(\mathrm{CH}_{4}\right)_{1}$ previously studied in this

 would oreur if the clusters betidued momtifidjy

The rigidity of the rlusters is further demonstrated by pheor. cal treatment of the intermolecular motion. Both the NCA and $3 \boldsymbol{H}$ HKth models indicate that the intermolecular torsional motion is oscillaturs and that the motion is constrained by an orientationally dependent intermolecular potential. Detailed analysis of the intermolecular interaction reveals that the torsional motion is governed by a three diaensional potential possessing torsional barriers on the order of the cluster binding energy. At this barrier magnitude. torsional tunneling in the lower portions of the potential is inimal and the residence time of the cluster constituents in a particular well minimum is substan tially longer than the timescale of experimental observation

The assignment of geometry and identification of the intermole cular modes using the theoretical models has also proven useful in understanding the physics governing the spectroscopic properties of the clusters. The observation of nontotally symmetric intermolecular mode fundamentals and combination bands in the vibronic spectra suggest that interelectronic state mixing ($H-T$ coupling) is an important factor in the overall intensity mechanism governing the transitions. Addition ally, the interelectronic state mixing is most important for the low lying intermolecular bending and torsional modes.

Both the NCA and the 3D-HRRA adequately model the intermoleculat modes in the systems studied: however. the NCA is the more useful hero

num dimensional rotation wocurang in "at tached tops" such as toluene 11
Acknowledgmant
We wish to thank Professor w Klemperer for many helpful discussions ind supgestions concerning the rifidity of ritw molecules.

REFERENCES

1. M. Schauer and E.R. Bernstein, J. Chem. Phys. 82, 726 (1985); M. Schauer, K.S. Law and E.R. Bernstein, J. Chem. Phys. 82, 736 (1985); J. Wanna and E.R. Bernstein, J. Chem. Phys. 84. 927 (1986).
2. T.A. Stephenson and S.A. Rice. J. Chem. Phys. 81, 1083 (1984).
3. J.A. Menapace and E.R. Bernstein, J. Phys. Chem. 90, 000 (1987) and references therein.
4. J.A. Beswick and J. Jortner, J. Chem. Phys. 74, 6725 (1981) and references therein; D.F. Kelley and E.R. Bernstein, J. Phys. Chem. (to be published).
5. D.F. Kelley and E.R. Bernstein, J. Phys. Chem. 90, 5461 (1986).
6. T.M. Miller and B. Bederson, Adv. At. Mol. Phys. 13, 1 (1977); "Handbook of Chemistry and Physics" 53rd Ed. (CRC Press, 1973); G. Nemethy, M.S. Pottle and H.A. Scheraga, J. Phys. Chem. 87, 1883 (1983) and references therein.
7. B.L. Crawford Jr., J. Chem. Phys. 8, 273 (1940); K.S. Pitzer and W.D. Gwinn, J. Chem. Phys. 10, 428 (1942); G. Herzberg, "Molecular Spectra and Molecular Structure: II. Infrared Raman Vibrational Spectra", (McGraw-Hill Book Co., Inc. 1955).
8. P.R. Bunker, "Molecular Symmetry and Spectroscopy", (Academic Press, 1979).
9. R.S. Martin, C. Reinsch and J.H. Wilkinson, Num. Math. 11. 181 (1968).
10. R.S. Martin and J.H. Wilkinson. Num. Math. 12, 377 (1968); A. Dubrille, Num. Math. 15, 450 (1970).
11. P.J. Breen, J.A. Warren, E.R. Bernstein and J.I. Seeman. J. Chem Phys. (to be published).

CHAPTER FOUR

HYDROGEN RONDED AND NON-HYDROGEN RONDED VAN DER WAALS CLUSTERS: COMPARISON BETWEEN CLUSTERS OF PYRAZINE. PYRIMIDINE.

AND BENZENE WITH VARIOUS SOLVENTS
(Reprint contained in Appendix One)

```
SUPERSONIC MOLECIILAR JET STUNIES OF THE PYRAZINE AND
    PYRIMIDINE DIMERS
    (Reprint contained in Appendix Two)
```


SUPERSONIC MOLECULAR JET STUDIES OF PHTHALOCYANINES AND

THEIR VAN DER WAALS CLUSTERS WITH SMALL MOLECULES

Introduction.

Supersonic molecular jet spectroscopy can be utilized to study weakly bound solute/solvent van der Waals (vdW) clusters in the gas phase. ${ }^{1}$ These investigations have increased our understanding of the intra- and intermolecular energetics and dynamics present in the solute! solvent systems as well as the nucleation and growth of small clusters. ${ }^{2-11}$ The vdW clusters studied in our laboratory thus far center around aromatic hydrocarbon and N-heterocycle solutes clustered with small hydrocarbon and hydrogen bonding solvents. We are currently expanding our studies of solute/solvent systems to include clusters of small molecules with macrocycles, such as free-base phthalocyanine $\left(\mathrm{H}_{2} \mathrm{Pc}\right)$ and magnesium phthalocyanine (MgPc).

Considerable interest exists in phthalocyanine ($P \mathrm{P}$) compounds as coloring agents, photosensensitizers, organic semiconductors, and as model systems for biologically important species, such as porphyrins. Pc's have exceptional color, chemical, temperature, and solubility char acteristics which make them attractive for use as coloring agents in commercial dyeing and painting processes. ${ }^{12}$ The unique electrical pro perties of Pc's serve as bullding blocks in a number of important tech nical applications involving electronic devices. For example, thin film
sandwich photovoltaic cells containing Pc's have been fabricated which possess photocurrent quantum efficiencies of as much as $10 \%{ }^{13}$ Pc films have also been shown to possess both n - and p - type semiconductor properties. ${ }^{14}$

Of particular interest are the interactions between Pc's and other molecular species. Pc films have been observed to respond electrically to the presence of vapors such as $\mathrm{BF}_{3}, \mathrm{NO}_{2}$, and $\mathrm{NH}_{3} .{ }^{15}$ Interaction between the film surface and the vapors produces reversible and reproducible film conductivity changes which make the measuring of molecular concentrations of these species at the ppm to ppb levels possible. Pc's and porphyrins have also been studied as photocatalysts for the reduction of water to hydrogen. ${ }^{16}$ Photochemical generation of hydrogen from water is a very attractive goal for photochemical storage of solar energy. Since water does not absorb at solar wavelengths present at the earth's surface, the photoreductive reactions must be sensitized by dyes. Pc's are good candidates as dyes in this respect since they absorb in the visible spectrum where peak solar radiation occurs. ${ }^{17}$ The elucidation of the trapping and transduction mechanisms of solar energy into useful chemical energy is of particular importance in these systems as it may yield insight into the understanding of the basic process of photosynthesis in binlogically active systems such as green plants and bacteria. ${ }^{18}$ Studying the interactions between Pc's and small "solvents" may also prove useful in understanding the transport and storage of small molecules and the transfer of electrons in a variety of biologically active species such as hemoglobin, myoglobin, and cytochromes. ${ }^{19}$

Supersonic molecular jet investigations can contribute to the resolution of a number of important concerns dealing with the behavior of Pc/solvent systems on the microscopic scale. Questions that can be considered are (1) what are the ground and excited state interaction energies between Pc and various solvents, (2) what are the preferential intermolecular interaction sites on the Pc molety, (3) what are the most favorable cluster geometries, (4) what types of interactions are important in the intermolecular potential established between the solute and solvent, and (5) are changes in the chromophore symmetry/geometry induced by clustering. The answers to these questions will certainly be helpful to those employing Pc's or related systems in reactions and other chemical processes.

In this paper, we report the spectroscopic results of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clustered with hydrocarbon solvents $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}\right.$, and $\left.\mathrm{C}_{3} \mathrm{H}_{8}\right)$, hydrogen bonding solvents $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{EtOH}\right)$, and CO_{2} along with the calculated modeling of selected cluster characteristics. The spectroscopic results include the $\pi^{*} \leftarrow \pi$ fluorescence excitation (FE) spectra of the clusters near the $P c 0_{0}^{0}$ transition. The calculated results include the ground state geometry and the binding energy for each of the cluster systems studied. The $H_{2} P c$ cluster spectra and calculated geometries and binding energies are compared with those obtained for the MgPc clusters.

Differences and similarities between the $\mathrm{H}_{2} \mathrm{Pc}(\mathrm{MgPc}) \mathrm{clusters}$ and the aromatic hydrocarbon and N-heterocycle clusters are discussed. Specifi cally, trends in spectral shifts, relative solute; solvent orientations. and binding energies are noted. Finally, the results of an out-of plame normal coordinate analysis for Pc are discussed and compared to both Pr and cluster spectra within the first few hundred wavenumbers of the origin transition.

Experimental Procedures.

The majority of the apparatus used in these experiments has been previously described; ${ }^{2-7}$ therefore, only a description of the equipment and procedures unique to the present studies will be discussed. A high temperature continuous supersonic nozzle fabricated to generate and analyze the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clusters in shown in figure 6.1. The expansion region is constructed by welding a stainless steel pinhole (Micro Engineering) A onto a $1 / 4$ inch tube connector gland (Cajon VCR) B. The pinhole/gland is attached to the nozzle backing region C using a $1 / 4$ inch tube connector (Cajon VCR) D. Stainless steel gaskets are used to insure proper connector sealing throughout the nozzle operating temperature range. This setup allows different size pinhole assemblies (nozzle throats) to be attached to the nozzle to obtain various peak experimental backing pressure and gas throughput conditions. A 100 micron pinhole is used to perform the expansion in the $\mathbf{H}_{2} \mathbf{P c}$ and MgPc cluster experiments. The nozzle backing region is constructed from 1 ' 2 inch stainless steel tubing. The tubing extends through the vacuum chamber wall E passing through a vacuum quick disconnect. (MDC Vacuum) F. Con nection of the nozzle to the expansion gas line is accomplished using a stainless steel tube connector (Swagelok) G. Solid samples are placed in the nozzle backing region using a quartz "boat" H which ran be Inserted into the nozzle through the expansion gas line ronnection rhe "bont" facilitates access to the nozzle backing region while the nofllo is in the vacuum chamber and is heatad. It allows for easy inspertion of the sample during and after an experiment without nozzie removal ot nozzle coollng. The nozzle is heated using two heating roils (ARI Industries) I located around the expansion and backing regions. The

Pipure 6.1
High temperature continuous supersonic molecular jet nozzle (see text).
heaters are capable of maintaining the nozzle at temperature up to $650^{\circ} \mathrm{C}$. The heaters are independently controlled using two transformer assemblies. Nozzle temperature is monitored using two iron-constantan thermocouples (Omega) J placed around the expansion and backing regions The nozzle'heater assembly is enclosed in a stainless steel shield K to minimize heat loss and to maintain uniform nozzle heating.

PE spectra of the $\mathrm{H}_{2} \mathrm{Pc}, \mathrm{MgPc}$, and their respective solvent clusters are obtained using a Nd^{+3} /YAG pumped DCM (Exciton) dye laser. Dye laser output is $46-60 \mathrm{~mJ} / \mathrm{pulse}$ in the vicinlty of the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc 0_{0}^{o} transitions. Total excited state fluorescence is collected using a $f / 1.25 \mathrm{~cm}$ lens focused at $5-8 \mathrm{~mm}$ in front of the nozzle throat and decected by a water cooled RCA C31034 photomultiplier tube. The photomultiplier tube output is amplified $10 x$ using an Ortec 9301 amplifier. The signal is then sent to a boxcar/computer for averaging and digital storage. Fluorescence wavelength calibration is provided by an optogalvanic cell with iron and neon lines as standards.
$\mathrm{H}_{2} \mathrm{Pc}(\mathrm{Aldrich})$ and MgPc (Eastman Kodak) are purified by vacuum sublimation before use. The solid samples are pelletized prior to insertion into the nozzle to mimize consumption. Granular samples placed in the nozzle are consumed at a rate of ca. $45 \mathrm{mg} / \mathrm{hr}$. Pelletization reduces sample consumption by about a factor of thirty without significant loss in fluorescence intensity.

The $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc solid samples are heated to $380-640^{\circ} \mathrm{C}$ to provide sufficient vapor density to perform the spectroscopy. Methanf. ethane, propane or carbon dioxide is doped into helium carrier gas at concentrations of up to 1% (partial pressure). The gas is then mixed with the $\mathrm{H}_{2} \mathrm{Pc}$ or MgPc In the nozzle backing region and expanded using
pressures ranging from $100-200 \mathrm{psig}$. Water, methanol, or ethanol is seeded into the hellum carrier gas by passing the carrier gas through an inline trap containing the liquid solvent.

Calculations of the ground state cluster binding energies and geometries are conducted using an empirical intermolecular potential generated from additive atom-atom potentials set into a Lennard-Jones format. The potential includes general non-bonding (6-12), monopole charge (1), and hydrogen bonding (10-12) terms. ${ }^{20}$ The $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc structures used in the calculations are obtained from crystal structure data. ${ }^{21}$ The atom-atom potential for magnesium is approximated using experimentally determined polarizabilities ${ }^{22}$, interatomic distance ${ }^{23}$, and the Slater-Kirkwood approximation ${ }^{24}$. Atomic partial charges employed to model the monopole charge interaction are taken from extended Huckel ${ }^{25}$ calculations. The hydrocarbon and water structures are those previously used in studying benzene and N-heterocycle clusters. ${ }^{2,8-10}$ The $\mathrm{CO}_{2}, \mathrm{MeOH}$, and EtOH structures are taken from ref. 26, 27, and 28 , respectively.

The out-of-plane normal coordinate analysis for $\mathrm{H}_{2} \mathrm{Pc}$ is conducted using the FG matrix method of Wilson et. al. ${ }^{29}$ The details of the analysis will be reported elsewhere. ${ }^{30}$ Briefly, the nuclear motion is modeled using a set of 82 internal coordinates; $48 \mathrm{C}-\mathrm{C}(\mathrm{N})$ bond torsions, $18 \mathrm{C}(\mathrm{N})-\mathrm{H}$ bond wags, and $16 \mathrm{C}-\mathrm{C}(\mathrm{N})$ bond wags. The valence force field for the F matrix consists of the diagonal force constants describing the out-of-plane ground state motions in benzene. ${ }^{31}$ In this gross approximation, all $\mathrm{H}_{2} \mathrm{Pc}$ bond torsions force constants are assumed to be the same as the $C-C$ torsions in benzene. All bond wag force constants are assumed to be the same as the benzene $C-H$ wags. The secular equation
describing the nuclear motion is symmetry factored into four species sets ($B_{1 u}, A_{u}, B_{2 g}$, and $B_{3 g}$) under the $D_{2 h}$ point group. The factored equations are individually diagonalized to yield $15 \mathrm{~B}_{1 \mathrm{u}}, 13 \mathrm{~A}_{\mathrm{u}}, 13 \mathrm{~B}_{2 \mathrm{~g}}$, and $14 \mathrm{~B}_{3 \mathrm{~g}}$ out-of-plane frequency eigenvalues and eigenvector normal modes. (See Table 6.1).

Results.
A. Isolated Ultracold Molecular FE Spectra of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc.

Pigure 6.2 presents the $P E$ spectrum of the $H_{2} P C S_{1}-S_{0}$ transition $\left(Q_{x}\right.$ band) in the vicinity of the 0_{0}^{0}. The spectrum is taken at 200 psig helium backing pressure $\left(P_{0}\right)$, a nozzle expansion region temperature (T_{e}) of $570^{\circ} \mathrm{C}$, and a nozzle backing region temperature (T_{b}) of $460^{\circ} \mathrm{C}$. The general nature of the spectrum has been previously described. ${ }^{32}$ The purpose of its reproduction in this paper is 1) to present a detailed account of the low frequency vibronic transitions observed in the vicinity of the 0_{0}^{0} which have not been previously reported in the literature Table 6.2, and 2) to provide an isolated chromophore spectrum which can be compared to the cluster spectra, all of which are taken under nearly identical experimental conditions.

The $F E$ spectrum of the $\operatorname{MgPc} S_{1}-S_{0}$ transition (Q band) in the vicinity of the 0_{0}^{0} is shown in Figure 6.3. The spectrum is taken using $P_{o}=120 \mathrm{psig}$ helium, $\mathrm{T}_{\mathrm{e}}=630^{\circ} \mathrm{C}$, and $\mathrm{T}_{\mathrm{b}}=397^{\circ} \mathrm{C}$. Table 6.3 lists the energies of the vibronic transitions observed in this portion of the spectrum
B. Hydrocarbon Clusters: $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$. and $\mathrm{C}_{3} \mathrm{H}_{8}$.

The $H_{2} \mathrm{Pc} /$ hydrocarbon cluster FE spectra observed in the vicinity of the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{\circ}$ are presented in figure 6.4. The energies of

TABLE 6.1

Calculated out-of-plane mode frequencies for $\mathrm{H}_{2} \mathrm{Pc}$.

$\begin{aligned} & \text { Calculated } \\ & \text { Mode Energy } \\ & \quad\left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{2 h} \\ & \text { Symmetry } \\ & \text { Species } \end{aligned}$	```Observed Overtone a Energy (cm-1)```	Mode Designation
14.8	$\mathrm{B}_{1 \mathrm{u}}$	31.2 (15.6)	A
24.5	B_{14}	51.8 (25.9)	B
84.0	${ }^{8} 10$	163.7 (81.9)	C
33.1	A_{u}	71.4 (35.7)	D
71.7	A_{u}	141.7 (70.9)	E
38.6	$\mathrm{B}_{2 \mathrm{~g}}$	85.4 (42.7) or 100.6 (50.3)	F
72.1	$\mathrm{B}_{2 \mathrm{~g}}$	$176(88)$ or 203.1 (101.6)	G
38.2	$\mathrm{B}_{3 \mathrm{~g}}$	$85.4(42.7)$ or $100.6(50.3)$	H
71.4	$\mathrm{B}_{3 \mathrm{~g}}$	176 (88) or 203.1 (101.6)	J

a) Values in parentheses are forbidden fundamental mode energies inferred from overtone transitions

Pigure 6. 2

PE spectrum of 0_{0}^{0} region of $H_{2} P c$ taken at $T_{e}=570^{\circ} \mathrm{C}, T_{b}=460^{\circ} \mathrm{C}$, and $P_{0}=200$ psig He. Peak assignments are given in Table 6.2.

TABLE 6.2

Observed vibronic transitions in the vicinity of the $\mathrm{H}_{2} \mathrm{Pc} 0_{o}^{o}$

$\begin{aligned} & \text { Energy } \\ & \text { (vac. cm }{ }^{-1} \text {) } \end{aligned}$	Wavelength (vac. A)	Energy Relative to $0_{0}^{o}\left(\mathrm{~cm}^{-1}\right)$	Assignment ${ }^{\text {a }}$
15131.8	6608.6	0	0_{0}^{0}
15163.0	6595.0	31.2	A_{0}^{2}
15183.6	6586.1	51.8	B_{0}^{2}
15193.9	6581.6	62.0	A_{0}^{4}
15203.2	6577.6	71.4	$\mathrm{D}_{\mathrm{o}}^{2}$
15215.6	6572.2	83.8	$\mathrm{A}_{0}^{2}+\mathrm{B}_{0}^{2}$
15217.2	6571.5	85.4	$\mathrm{F}_{\mathrm{O}}^{2}$ or $\mathrm{H}_{\mathrm{O}}^{2}$
15225.8	6567.8	93.9	(b)
15228.0	6566.9	96.2	$A_{0}^{1}+C_{0}^{1}$
15232.4	6564.9	100.6	$\mathrm{F}_{\mathrm{o}}^{2}$ or H_{0}^{2}
15258.7	6553.6	126.9	(b)
15273.5	6547.3	141.7	E_{0}^{2}
15290.5	6540.0	158.7	$126.9+A_{0}^{2}$
15295.5	6537.9	163.7	c_{0}^{2}
15307.8	6532.6	176	G_{0}^{2} or J_{0}^{2}

a) Assignments based on normal coordinate analysis results (see Table 6.1).
b) Modes possibly due to in-plane motion.

Pigure 6.3

PE spectrum of 0_{0}^{n} region of MgPc taken at $\mathrm{T}_{\mathrm{e}}=630^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{b}}=397^{\circ} \mathrm{C}$, and $P_{0}=120$ psig He. Peak assignments are given in rable 6.3.

Observed vibronic transitions in the vicinity of the $\operatorname{MgPc} 0_{0}^{\prime \prime}$

$\begin{aligned} & \text { Energy } \\ & \left(\text { vac. } \mathrm{cm}^{-1}\right) \end{aligned}$	Wavelength (vac. A)	Energy Relative to $0_{0}^{0}\left(\mathrm{~cm}^{-1}\right)$	Assignment ${ }^{\text {a }}$
15612.1	6404.5	0	0_{0}^{0}
15643.0	6392.6	30.9	A_{0}^{2}
15666.7	6383.0	54.6	B_{0}^{2}
15673.2	6380.3	61.1	A_{0}^{4}
15704.4	6367.6	92.3	$\mathrm{P}_{\mathrm{O}}^{2}$ or H_{0}^{2}
15709.0	6365.8	96.9	(b)
15714.6	6363.5	102.5	$\mathrm{F}_{\mathrm{O}}^{2}$ or $\mathrm{H}_{\mathrm{O}}^{2}$
15742.1	6352.4	130.0	
15750.1	6349.2	138.0	E_{0}^{2}
15778.0	6337.9	165.9	
15783.5	6335.7	171.4	
15786.0	6334.7	173.9	(b)

a) Assignments based on normal coordinate analysis results (see Table 6.1).
b) Modes are due to in-plane motion.

Figure 6.4
PE spectra of $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ clusters in the vicinity of the $\mathrm{H}_{2} \mathrm{Pc} \mathrm{O}_{\mathrm{O}}^{\circ}$. The $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CH}_{4}\right)_{1}$ spectrum (A) is taken at $\mathrm{T}_{\mathrm{e}}=540^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{h}}=430^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{n}}=200$ psig He, and . $18 \mathrm{CH}_{4}$. The $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$ spectrum (B) is taken at $\mathrm{T}_{\mathrm{e}}=$ $540^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{b}}=430^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{o}}=160 \mathrm{psighe}$, and $.18 \mathrm{C}_{2} \mathrm{H}_{6}$. The $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)_{1}$ spectrum (C) is taken at $T_{e}=580^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{b}}=435^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{o}}=160 \mathrm{psig} \mathrm{He}$. and .1\% $\mathrm{C}_{3} \mathrm{H}_{8}$. Peak assignments are given in Table 6.4.
the observed cluster transitions are listed in Table 6.4. In these experiments, solvent concentration is varied between .07 and 18 and the backing pressure is varied between 0 and 300 psig. Below .078 solvent concentration, no cluster transitions are observed; above about .3\%, the cluster spectra appear broad and featureless to the red of the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{0}$. Below 50 psig backing pressure, the spectra become broad; at 100 psig to 300 psig, no new cluster transitions emerge in the region probed.

Sharp spectra of $\mathrm{MgPc} /$ hydrocarbon clusters could not be generated. Through the range of .06 to 3% solvent concentration, the spectra vary from no observable cluster transitions to broad cluster bands which extend some $60 \mathrm{~cm}^{-1}$ to the red of the MgPc origin.

The ground state geometries calculated for the $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon clusters are shown in Figure 6.5. The cluster binding energies and solute/solvent center-of-mass coordinates are listed in Table 6.5. For $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$, a geometry nearly isoenergetic with geometry II is calculated but not shown. The geometry is largely the same as II but has the $\mathrm{C}_{2} \mathrm{H}_{6}$ long axis rotated by 90° about the $\mathrm{H}_{2} \mathrm{Pc}$ symmetry z axis with respect to geometry II. The geometry has a binding energy of $1564 \mathrm{~cm}^{-1}$. For $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)_{1}$, two additional cluster geometries are calculated and not shown. Geometry III is similar to geometry II in that the solvent C_{2} axis lies perpendicular to the $H_{2} P c$ molecular plane; however, the $\mathrm{C}_{3} \mathrm{H}_{8}$ is inverted in this geometry with respect to geometry I. The cluster binding energy is $1975 \mathrm{~cm}^{-1}$. Geometry IV is nearly isoenergetic with geometry I. The geometry is largely the same as II but has the $\mathrm{C}_{3} \mathrm{H}_{8}$ rotated by 90° about the $\mathrm{H}_{2} \mathrm{Pc}$ symmetry z axis. This geometry has a binding energy of $2202 \mathrm{~cm}^{-1}$.
$\mathrm{H}_{2} \mathrm{Pc} /$ Hydrocarbon cluster transitions in the vicinity of $\mathrm{H}_{2} \mathrm{Pc} \mathrm{O}_{0}^{\mathrm{o}}$.

Species	$\begin{aligned} & \text { Energy } \\ & {\text { (vac. } \quad \mathrm{cm}^{-1} \text {) }}^{\text {and }} \end{aligned}$	$\begin{gathered} \text { Cluster } \\ 0_{o}^{o} \text { Rela- } \\ \text { tive to } H_{2} \mathrm{Pc} \\ 0_{0}^{0}\left(\mathrm{~cm}^{-1}\right) \end{gathered}$	Energy Relative to Cluster $0_{0}^{0}\left(\mathrm{~cm}^{-1}\right)$	Assignment
$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CH}_{4}\right)_{1}$	15117.2	-14.6	0	0_{0}°
	15148.5		31.3	A_{0}^{2}
	15163.5		51.3	B_{0}^{2}
$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$	15105.9	-25.9	0	10_{0}^{0}
	15121.5		15.6	A_{0}^{1}
	15138.6		32.7	A_{0}^{2}
	15113.0	-18.8	0	I I 0_{0}°
	15144.3		31.3	A_{0}^{2}
$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)_{1}$	15098.4	-33.4	0	10_{0}^{0}
	15113.2		14.8	A_{0}^{1}
	15106.7	-25.1	0	II 0_{0}^{0}
	15122.4		15.7	A_{0}^{1}
	15138.1		31.4	A_{0}^{2}

A

I

III

B

I

II

C

Figure 6.5

Calculated minimum energy geometries for $\mathrm{H}_{2} \mathrm{Pc}_{\left(\mathrm{CH}_{4}\right)_{1}(\mathrm{~A}), \mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}, ~}^{\text {m }}$ (B), and $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)_{1}$ (C). The cluster binding energies and solute/ solvent center-of-mass coordinates are given in Table 6.5.
table 6.5
Cojculated ciuster binding energles. solvent center-of-aess positions. and solvent orientation specifics

C. $\mathrm{H}_{2} \mathrm{O}$. MeOH. and EtOH Clusters with $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc.

Figures 6.6 and 6.7 and Table 6.6 present the $H_{2} O$, MeoH, and EtOH, solute/solvent cluster spectra observed in the vicinity of their respective $\mathrm{H}_{2} \mathrm{Pc}$, and $\operatorname{MgPr} \mathrm{O}_{0}^{\mathrm{O}}$ transitions. The $\mathrm{H}_{2} \mathrm{Pc}$ cluster spectra are observed using $P_{0}=150$ psig helium, $T_{e}=570^{\circ} \mathrm{C}$, and $T_{b}=135^{\circ} \mathrm{C}$. The MgPc cluster spectra are observed using $P_{o}=135 \mathrm{psig}$ helium, $\mathrm{T}_{\mathrm{e}}=630^{\circ} \mathrm{C}$, and $\mathrm{T}_{\mathrm{b}}=480^{\circ} \mathrm{C}$.

The ground state geometries calculated for the above mentioned cluster series are shown in Figures 6.8 and 6.9. The cluster binding energies and geometry specifics are listed in Table 6.5. For $H_{2} \operatorname{Pc}(E t O H)_{1}$, a geometry similar to geometry i is calculated but not shown. The cluster binding energy is $2053 \mathrm{~cm}^{-1}$. This geometry has the Et OH rotated by 90° about the $\mathrm{H}_{2} \mathrm{Pc}$ symmetry z axis with respect to I.
D. CO_{2} Clusters of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc .

The $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{CO}_{2}$ and $\mathrm{MgPc} / \mathrm{CO}_{2} \mathrm{FE}$ spectra observed in the vicinity of the cluster chromophore 0_{0}^{0} transitions are shown in figure 6.10. The cluster transition energies are listed in Table 6.7. In these experi ments, both backing pressure and CO_{2} concentration are varied. As in the $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon cluster experiments, no new or additional sharp cluster transitions are observed under these conditions. The ground state cluster geometries for $\mathrm{H}_{2} \mathrm{Pc}_{\mathrm{CO}}\left(\mathrm{CO}_{2}\right)_{1}$ and $\mathrm{MgPr}\left(\mathrm{CO}_{2}\right)_{1}$ are shown in Figure 6.11. The cluster binding energies are listed in Table 6.5. Discussion.

Before anclyzing the individual cluster systems in detail. we will discuss the low frequency out-of plane vibrational motion of isolated $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc. Elucidation of the out of plame motion in thes. molecules is essential to the understanding of the cluster spectra and

Pigure 6.6

PE spectra of $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{ROH}$ clusters in the vicinity of the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{0}$. The spectra are obtained using $T_{e}=570^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{b}}=435^{\circ} \mathrm{C}$, and $\mathrm{P}_{\mathrm{o}}=150 \mathrm{psig}$ He. Traces (A), (B), and (C) correspond to $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{H}_{2} \mathrm{O}_{1}, \mathrm{H}_{2} \mathrm{Pc}(\mathrm{MeOH})\right.$, and $\mathrm{H}_{2} \mathrm{Pc}(\mathrm{EtOH})_{1}$, respectively. Peak assignments are given in Table 6.6.

Pigure 6.7

FE spectra of $\mathrm{MgPc} / \mathrm{ROH}$ clusters in the vicinity of the $\mathrm{MgPc} \mathrm{O}_{\mathrm{o}}^{0}$. Traces (A), (B), and (C) correspond to $\mathrm{MgPc}\left(\mathrm{H}_{2} \mathrm{O}_{1}, \mathrm{MgPc}(\mathrm{MeOH})_{1}\right.$, and $\mathrm{MgPc}(\mathrm{EtOH})_{1}$ respectively. The spectra are taken at $T_{e}=630^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{b}}=480^{\circ} \mathrm{C}$, and $P_{0}=135 \mathrm{psig} H e$. Peak assignments are given in Table 6.6. The arrows indicate cluster transitions.

TABLE 6.6
$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}, \mathrm{H}_{2} \mathrm{Pc}(\mathrm{MeOH})_{1}, \mathrm{H}_{2} \mathrm{Pc}(\mathrm{EtOH})_{1}, \mathrm{MgPc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}, \mathrm{MgPc}(\mathrm{MeOH})_{1}$, and MgPc (EtOR), cluster transitions in the vicinities of the chrumophore 0_{0}°

Species	$\begin{aligned} & \text { Energy } \\ & \text { (vac. } \mathrm{cm}^{-1} \text {) } \end{aligned}$	Cluster 0_{0}^{0} Relative to to $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{MgPc}$ $0_{0}^{0}\left(\mathrm{~cm}^{-1}\right)$	Energy Relative to Cluster $0_{0}^{0}\left(\mathrm{~cm}^{-1}\right)$	Assignment
$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$	15060.6	-71.2	0	0_{0}°
	15076.3		15.7	A_{0}^{1}
	15091.8		31.2	A_{0}^{2}
	15108.2		47.6	A_{0}^{3}
	15115.7		55.1	B_{0}^{2}
$\mathrm{H}_{2} \mathrm{Pc}(\mathrm{MeOH})_{1}$	15049.8	-82.0	0	0_{0}^{0}
	15066.1		16.3	A_{0}^{1}
	15081.2		31.4	A_{0}^{2}
$\mathrm{H}_{2} \mathrm{Pc}(\mathrm{EtOH})_{1}$	15040.9	-90.9	0	I 0_{0}^{0}
	$15035.3{ }^{\text {a }}$		15.8	A_{0}^{1}
	$15051.7{ }^{\text {a }}$		32.2	A_{0}^{2}
	15048.5	-83.3	0	II 0_{0}^{0}
	15064.6		16.1	A_{0}^{1}
	15080.2		31.7	A_{0}^{2}
$\mathrm{MgPc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$	15658.7	46.6	0	00
	15672.6		13.9	A_{0}^{1}
	15683.0			
	15687.8		29.1	A_{0}^{2}
	15696.4		37.7	$\mathrm{Fo}_{0}^{\mathrm{O}}$ or H_{0}^{1}
	15?15.8		57.1	H_{0}^{2}

TABLE 6.6 (Continued)

Species	$\begin{aligned} & \text { Energy } \\ & \text { (vac. cm } \end{aligned}$	$\begin{aligned} & \text { Cluster } \mathrm{o}_{\mathrm{o}}^{0} \\ & \text { Relative to } \\ & \text { to } \mathrm{H}_{2} \mathrm{Pc} \mathrm{MgPc}^{(\mathrm{MgPc}} \\ & 0_{\mathrm{o}}^{\mathrm{o}}\left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Energy Relative to Cluster $0_{0}^{0}\left(\mathrm{~cm}^{-1}\right)$	Assignment
$\mathrm{MgPc}(\mathrm{MeOH})_{1}$	15660.4	48.3	0	0_{0}^{0}
	15674.6		14.2	A_{0}^{1}
	15690.2		29.8	A_{0}^{2}
	15701.0		40.6	$\mathrm{P}_{\mathrm{O}}^{1}$ or H_{0}^{1}
	15717.3		56.9	B_{0}^{2}
	15658.4	46.3	0	0_{0}^{0}
	15672.5		14.1	A_{0}^{1}
	15687.9		29.8	A_{0}^{2}
	15696.8		38.4	F_{0}^{1} or H_{6}^{1}
	15713.7		55.3	B_{0}^{2}
	15660.4	48.3	0	0_{0}°
	15674.8		14.4	A_{0}^{1}
	15690.3		29.9	λ_{0}^{2}
	15701.2		40.8	$\mathrm{F}_{\mathrm{o}}^{1}$ or H_{1}^{1}
	15717.8		57.4	B_{0}^{2}
$\operatorname{MgPc}(\mathrm{EtOH})_{1}$	15661.7	49.6	0	0_{0}^{0}
	15676.3		14.6	A_{0}^{1}
	15684.7			
	15700.6		38.9	$\mathrm{F}_{0}^{1} \mathrm{OH} \mathrm{H}_{0}^{1}$
	15714.6		52.9	R_{0}^{2}

a) Weak features (Figure 6.6) - assignment must be considered tentatir"

A

B

I

II

C

Pigure 6.8

Calculated minimum energy geometries for $H_{2} \operatorname{Pc}\left(\mathrm{H}_{2} \mathrm{O}_{1}(\mathrm{~A}), \mathrm{H}_{2} \mathrm{Pc}(\mathrm{MeOH})_{1}\right.$ (B). and $\mathrm{H}_{2} \mathrm{Pc}(E t \mathrm{OH})_{1}(\mathrm{C})$. The cluster binding energies and solute/ solvent center-of-mass coordinates are given in Table 6.5.

A

B

C

Pigure 6. 9

Calculated minimum energy for $\operatorname{MgPc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}(\mathrm{~A}), \operatorname{MgPc}(\mathrm{MeOH})_{1}$ (B), and $\operatorname{MgPc}(E t O H)_{1}(C)$. The cluster binding energies and solute/solvent center-of-mass coordinates are given in Table 6.5.

Pigure 6.10
FE spectra of $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$, and $\mathrm{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$ in the vicinities of the cluster chromophore 0_{0}^{0} transitions. The $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$ spectrum (A) is taken at $T_{e}=5000 \mathrm{C}, \mathrm{T}_{\mathrm{b}}=485^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{o}}=150 \mathrm{psighe}$, and. $2 \% \mathrm{CO}_{2}$. The $\operatorname{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$ spectrum (B) is taken at $\mathrm{T}_{\mathrm{e}}=443^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{b}}=412^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{o}}=150$ psig He and $2 \% \mathrm{CO}_{2}$. Peak assignments are given in Table 6.7. The arrows indicate cluster transitions.

TABLE 6.7

$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$ and $\mathrm{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$ ciluster transitions in the
vicinity of the chromophore 0_{0}^{0}.

Species	$\begin{aligned} & \text { Energy } \\ & \text { (vac. } \mathrm{cm}^{-1} \text {) } \end{aligned}$	Cluster 0_{o}° Relative to to $\mathrm{H}_{2} \mathrm{Pc} \mathrm{MgPc}_{1}$ $0_{0}^{0}\left(\mathrm{Cm}^{-1}\right)$	Energy Relative to Cluster $0_{0}^{0}\left(\mathrm{~cm}^{-1}\right)$	Assignment
$\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$	15145.8	14.0	0	$0{ }_{0}^{0}$
	15161.2		15.4	A_{0}^{1}
	15176.5		30.7	A_{0}^{2}
$\mathrm{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$	15630.0	$17.9{ }^{\text {a }}$	0	0_{0}°
	15649.9		19.9	A!
	15664.6		34.6	λ_{0}^{2}
	15634.7	$22.6{ }^{\text {a }}$	0	$0{ }_{0}^{0}$
	15655.8		21.1	${ }^{1}$
	15667.0		323	$1{ }_{6}^{2}$

a) Transitions correspond to same cluster species isee text)

.

\qquad

\begin{abstract}

Abstract

\qquad

\end{abstract}

\qquad
\qquad
\qquad
\qquad
\qquad

$$
0
$$

\qquad

\qquad

in the identification of the number of different clusters of a specific composition observed. The nature of molecular motion associated with each spectral feature is determined by using the results of an out-ofplane normal coordinate analysis for isolated H_{2} Pc. Table 6.1 lists the nine lowest energy out-of-plane modes calculated. Given the qualitative nature of the force field used in the analysis, the calculated vibrational energies compare quite well with the fundamental energies inferred from the observed overtone transitions presented in Figure 6.2 and Table 6.2.

Three $B_{1 u}$ fundamentals are calculated at $14.8,24.5$ and $84.0 \mathrm{~cm}^{-1}$.
In the isolated H_{2} Pc spectrum, these vibrations are observed as symmetric overtones at $31.2\left(A_{o}^{2}\right), 51.8\left(B_{o}^{2}\right), 62.0\left(A_{o}^{4}\right)$, and $163.7\left(C_{o}^{2}\right) \mathrm{cm}^{-1}$. The symmetry forbidden fundamentals are thus located at. 15.6, 25.9 and $81.9 \mathrm{~cm}^{-1}$ using a harmonic oscillator assumption. Two A_{u} modes calculated at 33.1 and $71.7 \mathrm{~cm}^{-1}$ correspond to the forbidden out-of-plane fundamentals at 35.7 and $70.9 \mathrm{~cm}^{-1}$ which are observed as overtones at $71.4\left(\mathrm{D}_{\mathrm{o}}^{2}\right)$, and $141.7\left(\mathrm{E}_{\mathrm{o}}^{2}\right) \mathrm{cm}^{-1}$. The two $\mathrm{B}_{2 \mathrm{~g}}\left(\mathrm{~B}_{3 \mathrm{~g}}\right)$ modes calculated at 38.6 (38.2) and $72.1(71.4) \mathrm{cm}^{-1}$ correspond to the fundamentals of the observed overtone transitions at 85.4 and $100.6\left(\mathrm{~F}_{0}^{2}\right.$ or $\left.\mathrm{H}_{0}^{2}\right) \mathrm{cm}^{-1}$ and at 176 and $203.1\left(G_{0}^{2}\right.$ or $\left.J_{0}^{2}\right) \mathrm{cm}^{-1}$. The low energy out-of-plane vibronic transitions in the vicinity of the MgPc origin are similarly assigned (Figure 6.3 and Table 6.3).

Five out of the nine lowest energy out-of-plane vibrations are responsible for the vibronic transitions observed in the first 100 cm of the $H_{2} \mathrm{Pc}_{1}$ manifold. These f ive modes involve large amplitude displacements of the four isoindole groups comprising $H_{2} P c$. The qualitative forms of the motion can be described by the two sets of
operations indicated in Figure 6.12: (a) the tilt of the isoindole groups around the line A through the pyrrole α carbons; and (b) the rotation of the isoindole groups around the line B between the inner ring nitrogens and the midpoint between outer benzene carbons. The $\mathrm{B}_{1 \mathrm{u}}$ vibration calculated at $14.8 \mathrm{~cm}^{-1}$ corresponds to (a) type motion in which a set of opposite isoindole groups tilts out of the molecular plane in one direction and other set of opposite isoindole groups tilts out of the plane in the opposite direction. The $B_{1 u}$ vibration calculated at $24.5 \mathrm{~cm}^{-1}$ is similar to the $14.8 \mathrm{~cm}^{-1}$ mode; however, all the isoindole groups tilt out of the plane about the A axis (Figure 6.12) in the same direction. The mode form looks similar to the forming of a "bowl" out of the phthalocyano skeleton. The A_{u} mode ($33.1 \mathrm{~cm}^{-1}$) involves type (b) motion of adjacent isoindole groups in one direction and the other two adjacent isoindole groups in the opposite direction. The motion looks like "ruffling" of the molecular skeleton. The $\mathrm{B}_{2 \mathrm{~g}}$ mode ($38.6 \mathrm{~cm}^{-1}$) corresponds to (a) and (b) type motions of opposite isoindole groups. The vibration form is such that one set of the opposite groups tilts out of the molecular plane about A in different directions. The other set of opposite groups rotates about B in the same direction. Overall, the motion looks similar to the forming of a "chair" out of the phthalocyano moiety. The $\mathrm{B}_{3 \mathrm{~g}}$ mode $\left(38.2 \mathrm{~cm}^{-1}\right)$ form is similar to that associated with the $B_{2 g}$ mode. The motion is the same in both cases: however, the (a) and (b) motion is exchanged between the two opposite groups in the $B_{3 g}$ mode with respect to the motion in the $B_{2 g}$ mode. Chromophore out-of-plane fundamental and/or overtone transitions are observed in the vicinity of the cluster origins (vide infra) for all of the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc systems discussed below. The observation of the

Pigure 6.12
Operations showing qualitative out-of-plane vibrational motion in $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{MgPC}$.

Cluster rhromophore out of plane fundamentals in the cluster spertra call be rationalized using the results of the above normal coordinate analt sis and group theoretical arguments: rlusters have reduced symmery with respect to the isolated chromophore $\mathrm{H}_{2} \mathrm{Pc}$ or MgPc but nearly lden-
 the symmetry is reduced from $D_{2 h}$ to, at most. $C_{2 v}$ (see Figure 6.8) Under this reduced symmetry, the forbidden $B_{1 u}$ fundamental vibrations in isolated $H_{2} \mathrm{Pc}$ correlate to A_{1} vibrations in $\mathrm{C}_{2} v$. The modes are there fore fully allowed by symmetry and should, in principle. be observed if Frank-Condon factors are favorable.
vdW vibrational mode eigenvectors and eigenvalues have been calculated for a number of different solute/solvent systems, including benzene, pyrazine, etc. with many of the same solvents employed in this work. ${ }^{10,11}$ Based on these previous studies, we can estimate that the lowest energy vdW modes for the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc 'soivent systems are ca. $50 \mathrm{~cm}^{-1}$. Thus, features between cluster origins and ca. $+50 \mathrm{~cm}^{-1}$ are most likely not vdW vibronic modes of the clusters. Moreover, these same studies demonstrate that high energy vdw modes (>50 cm^{-1}) do not have large intensity due to poor Franck-Condon factors. A fuller dis. cussion of these issues is presented below.

On the basis of the above notions. the cluster spectra are analyzed using four premises. First. the cluster transitions are identified as those features not associated with the isolated $H_{2} P \mathrm{C}$ or MgPr moiety. Second, the cluster origins are assigned to be the lowest eneryy cluster transitions observed. Third, the rluster vibronic mani folds associated with each of the origins should. and do. exhibit chromophore out of plane fundamental and overtone transitions
commensurate with those observed and or calculated for isolated $H_{2} P$ or MgPc. And fourth, due to the similarity between the vdw poteritial surfaces for the chromophore S_{0} and S_{1} states and the relatively large energies (see below) of the vdW modes in these systems, little if any vdW vibronic mode intensity should be observed.
A. Hydrocarbon Clusters of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc .

The $H_{2} \mathrm{Pc}^{\prime}$ methane spectrum. Figure 6.4 a and Table 6.4. exhibits a cluster transition at $14.6 \mathrm{~cm}^{-1}$ to the red of the $H_{2} \mathrm{Pc} 0_{0}^{0}$. This transition is assigned to the 0_{o}^{0} of a single $\mathrm{H}_{2} \mathrm{Pc} /$ methane species. As discussed above, features 31.3 and $51.3 \mathrm{~cm}^{-1}$ to the blue of the cluster O_{o}^{o} correspond to cluster chromophore out-of-plane symmetric overtones. A_{0}^{2} and B_{0}^{2}. Both transitions are shifted by $-14.6 \mathrm{~cm}^{-1}$ with respect to their corresponding transitions in the isolated $H_{2} \mathrm{Pc}$ spectrum. The A_{o}^{1} transition is not observed as it may be weak and/or within the linewidth of the $\mathrm{H}_{2} \mathrm{Pc}$ isolated molecule 0_{0}^{O}.

The cluster transitions are most likely due to $\mathbf{H}_{2} \mathbf{P c}\left(\mathrm{CH}_{4}\right)$ since no new additional sharp transitions are observed when either the CH_{4} concentration or the backing pressure is increased. Increasing the CH_{4} concentration and/or backing pressure should yield higher order clusters. From prior experience with other solutefsolvent cluster systems, ${ }^{2-9}$ higher order clusters typically yield more than one set of cluster transitions. Additive shifts are also observed in most cases resulting from inhomogeneous nucleation processes in which solvent mole cules bind symmetrically to opposite sides of the chromophore moleculat plane.

The predominance of $1: 1$ solute/solvent clusters in the expansion may be rationalized on the basis of large solute/solvent binding enerps
versus small solvent dimer binding energy. In the systems presently studied, the solute'solvent binding energies are sufficiently large that when a solvent dimer collides with a solute molecule, the dimer dissipates some of the cluster binding energy via vibrational predissociation. This interactive collision leaves one solvent molecule bound to the solute while the other solvent carries off enough of the cluster energy to stabilize the $v d W$ bond until further collisional cooling can take place. These notions would lead one to conclude that $1: 1$ solute/ solvent clustering predominates in the other clusters systems analyzed as well.

The existence of a single $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CH}_{4}\right)_{1}$ geometry responsible for the cluster origin in the spectrum is further corroborated by the ground state configuration calculation depicted in Figure 6.5a. In this geometry, the CH_{4} cluster subunit is situated above the $\mathrm{H}_{2} \mathrm{Pc}$ plane and is coordinated to the π-cloud of the aromatic ring. The cluster geometry is interesting in the respect that the cluster solvent uniquely' lies nearly over the $H_{2} P c$ core: none of the several potential cluster sites located over each of the $H_{2} P c$ closed ring subunits is apparently a true local minimum. One can envision three distinct cluster sites on the H_{2} Pc moiety: 1) above the $H_{2} P c$ core (most stable); 2) above one of its four five-membered rings; or 3) above one of its four six-membered rings (least stable). If all three of these sites were physically accessible, three different cluster spectral shifts should be observed corresponding to the three distinct sites. Since the single cluster origin in the spectrum suggests that only one geometry is stable, two nut of the three speculated minima are either nonexistent or not suf ficiently deep to accommodate bound state geometries. The observed
cluster origin at $\cdot 14.6 \mathrm{~cm}^{-1}$ from the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{0}$ probably corresponds to a geometry very similar to the calculated one (Figure 6.5a).
$\mathrm{H}_{2} \mathrm{Pc}$ clustered with ethane, Figure 6.4 b and Table 6.4 , reveals two cluster origins at 25.9 and $18.8 \mathrm{~cm}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{0}$. Two weak transitions to the blue of the $H_{2} \mathrm{Pc} 0_{0}^{0}$ correspond to cluster chromophore out-of-plane vibrations A_{o}^{2} built upon the two cluster origins. The transition at -10.3 corresponds to the fundamental of the out-of-plane cluster chromophore vibration $A_{o}^{1}\left(15.6 \mathrm{~cm}^{-1}\right)$ built upon the origin at $-25.9 \mathrm{~cm}^{-1}$. The cluster chromophore fundamental built upon the cluster origin at $-18.8 \mathrm{~cm}^{-1}$ is not observed as it may be weak and/or within the linewidth of the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{\mathrm{O}}$.

These cluster manifolds most likely correspond to $\mathrm{H}_{2} \mathrm{Pc}_{\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)}^{1}$ clusters since, as in the $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CH}_{4}\right)_{1}$ case, as both concentration and backing pressure are varied, the spectrum does not yield any additional sharp transitions. Furthermore, no additive spectral shifts are observed indicative of higher order clusters with ethane subunits situated above and below the $H_{2} P c$ plane. The same arguments used to rationalize the predominance of $1: 1$ clusters in the $H_{2} \mathrm{Pc}\left(\mathrm{CH}_{4}\right)_{1}$ case are applicable to this system as well.

The two $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$ cluster geometries shown in Figure 6.5b support the assignment of two cluster geometries. Both geometries have the $\mathrm{C}_{2} \mathrm{H}_{6}$ situated over the center of the $\mathrm{H}_{2} \mathrm{Pc}$ core as found for $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CH}_{4}\right)_{1}$. Geometry I should yield a larger spectral shift than geometry II based upon polarizability arguments previously discussed for single ring cluster systems. ${ }^{2,8}$ Briefly, the species with the larger spectral shift is associated with the solute/solvent relative orienta tion for which the direction of the large solvent polarizability is
perpendicular to the solute molecular plane. Using this argument, a geometry similar to I would be associated with the cluster origin $25.9 \mathrm{~cm}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{Pc} 0_{\mathrm{o}}^{\mathrm{o}}$. As mentioned in the Results Section, two specific solvent orientations are consistent with the qualitative solute/solvent geometry of calculated $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, configuration II (see fig 6.5b). One would not expect a spectroscopic difference between the two geometries as they differ by a 90° rotation about the symmetry z axis of $H_{2} \mathrm{Pc}$. These two directions as far as the $\mathrm{H}_{2} \mathrm{Pc}$ moiety is concerned should be roughly equivalent in terms of polarizabilities and π-cloud overlap.

The $\mathrm{H}_{2} \mathrm{Pc} /$ propane clusters, Figure 6.4 c and Table 6.4, are assigned on the basis of similar arguments presented for the other two hydrocarbon clusters studied. In the spectrum, two $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)_{1}$ cluster origins appear at 33.4 and $25.1 \mathrm{~cm}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{0}$. Two cluster vibronic manifolds to the blue of each origin are assigned to cluster chromophore vibronic fundamentals and first overtones. For the cluster manifold beginning at $-33.4 \mathrm{~cm}^{-1}$, the A_{o}^{1} occurs at $14.8 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{0}^{0}. For the cluster manifold beginning at $25.1 \mathrm{~cm}^{-1}$, the A_{o}^{1} and A_{o}^{2} occur at 15.7 and $31.4 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{o}^{0}.

Geometries similar to those shown in Figure 6.5 c could be associated with the two observed cluster manifolds. Different spectral shifts for the two geometries most likely result from difference in $\pi-c l o u d$ solvation. The propane solvent interacts less with the $H_{2} \mathrm{Pc}$ π-cloud in geometry il than in geometry l since ther r_{2} axis of the cluster solvent (direction of small polarizability) is perpendicular (o) the $\mathrm{H}_{2} \mathrm{Pc}$ molecular plane in geometry II but parallel to the plane in
geometry I. A geometry similar to I could thus be responsible for the cluster manifold beginning at $-33.4 \mathrm{~cm}^{-1}$ and a geometry similar to II could be associated with the mandfold beginning at $-25.1 \mathrm{~cm}^{-1}$.

The $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$ and the $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)_{1}$ spectra exhibit A_{o}^{1} transitions which are forbidden in isolated $H_{2} \mathrm{Pc}$. A similar change in selection rules upon clustering has been reported for the benzene/solvent systems. 2,9-11 In the latter systems, the observations suggest that the presence of the cluster solvent over the solute molecular plane is sufficient to induce the forbidden benzene 0_{0}^{0} transition if the threefold rotation axis of the solute is destroyed. Furthermore, the selection rules governing the intermolecular vdw motion follow the reduced symmetry of the cluster systems. This minimum perturbation may also be the driving force which induces the vibronic transitions in the $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon clusters. The perturbation in the present instance may even be large enough to cause the cluster chromophore to adjust its geometry in an attempt to wrap itself around the cluster solvents to establish optimal π-cloud overlap. The observation of the $B_{1 u}$ fundamental at $15 \mathrm{~cm}^{-1}$ serves as evidence supporting this notion as molecular displacement along this coordinate appears to yield favorable FranckCondon factors. The A_{o}^{1} transition is also observed in all the other $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clusters studied as well. These observations would lead one to conclude that the clusters are not planar in the excited electronic state.

In general the H_{2} Pc/hydrocarbon cluster series is similar the benzene and N-heterocycle'hydrocarbon cluster series previously studied. ${ }^{2,8,10,11}$ The H_{2} Pc/hydrocarbon clusters S_{1} - S_{o} transitions ill exhibit bathychromic shifts with respect to the cluster chromophore
transition. The direction of the shifts is the same as that observed in the single ring cluster systems. These shifts indicate that the binding energies of the clusters become larger in the electronic excited state than in the ground state. Upon excitation, the cluster chromophore π-cloud expands and becomes more diffuse. The π cloud can thus participate more effectively in intermolecular bonding. The net result is stabilization of the vdw bond and a larger binding energy in the cluster s_{1} state relative to the S_{0} state.

As in the single ring cluster systems, the $H_{2} P c$ hydrocarbon cluster spectral shifts and calculated binding energles increase with increasing solvent size and π-cloud overlap. The shifts also depend upon the relative orientation of the cluster solute and solvent. The spectral shifts for the $\mathrm{H}_{2} \mathrm{Pc}$ hydrocarbon series are about a factor of two smaller than those observed in the single ring aromatic/hydrocarbon systems. The difference in the spectral shift magnitudes can be attributed to smaller changes in the intermolecular interaction resulting from smaller overall π-cloud overlap between the solute and the solvents at the $\mathrm{H}_{2} \mathrm{Pc}$ core site. The conjugated r-electron path in $\mathrm{H}_{2} \mathrm{Pc}$ circles around the core yielding a π-cloud "void" at the central core of the molecule. Thus, cluster solvents situated over the core do not overlap with the solute π-cloud as much as they do in single ring systems. The large size and extensive delocalization of the solute π-cloud may also be contributing factors since they minimize electron density changes at the binding site when an electron is promoted from a $\quad \pi$ - and a π^{*}-orbital.

The claster geometries calculated for the $\mathrm{H}_{2} \mathrm{Pc}$ 'hydrocarbon series compare well with the geometries calculated, and in some cases
experimatitally verified, for the single ring cluster series as far as the cluster solvent orientations are concerned. The geometries, howerer. are unique in the respect that both the spectra and the calculations suggest that the favorable binding site is the $H_{2} P c$ core and is not at peripheral ring centers.

The one major difference between the $\mathrm{H}_{2} \mathrm{Pc}$ 'hydrocarbon cluster spectra and the benzene/hydrocarbon cluster spectra is the absence of observable intermolecular vdw mode intensity in the $H_{2} P c$ cluster spectra. The lowest energy vdw motion (bending) is expected to be observed at about $50 \mathrm{~cm}^{-1}$ to the blue of the cluster origins based upon calculational modeling of intermolecular mode energetics. ${ }^{10,11}$ The vdW stretch is expected to occur at about $100 \mathrm{~cm}^{-1}$ above the cluster origin. The absence of $\Delta v= \pm 1 v d W$ mode transitions in the H_{2} Pc clusters may be due to poor Franck-Condon factors. The large size and extensive delocalization of the $H_{2} \mathrm{Pc} \pi$-cloud yields little change in the electron density at the cluster site when a single electron is promoted from $a \pi$ - to a π^{*}-orbital. Thus, one might expect that the intermolecular potential surfaces of the two states are nearly superimposable even though the binding energy of the excited state is slightly different (ca. 1\%) than that of the ground state. The net result is the observation of vad sequence structure $(\Delta v=0)$ giving rise to cluster origins and cluster chromophore vibrations only. These arguments probably hold for all the cluster systems investigated in this study as well.
B. $\mathrm{H}_{2} \mathrm{O}$, MeOH . and EtOH Clusters of $\mathrm{H}_{2} \mathrm{PC}$ and MgPc $\mathrm{H}_{2} \mathrm{Pr}$ clustered with $\mathrm{H}_{2} \mathrm{O}$. Figure 6.6a and Table 6.6, yields a spectrum exhibiting a single cluster vibronic manifold with an origin $71.2 \mathrm{em}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{Pr} 0_{0}^{0}$. The single eluster (chromophore)
vibronic manifold suggests that one $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{H}_{2} \mathrm{O}$ species is responsible for the observed spectrum. The spectrum is assigned to $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{1}$ based upon the same arguments developed for the $H_{2} \mathrm{Pc} /$ hydrocarbon clusters. The assignment is supported by the ground state configuration calculatione for which a single geometry is obtained. Figure 8a. In this geometry, the $\mathrm{H}_{2} \mathrm{O}$ is situated over the $\mathrm{H}_{2} \mathrm{Pc}$ core. The transitions at 15.7, 31.2 , and $47.6 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{0}° correspond $\mathrm{H}_{2} \mathrm{Pc}$ out-of-plane vibrations A_{o}^{1}, A_{o}^{2} and A_{0}^{3}. The feature at $55.1 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{o}^{o} corresponds to the B_{o}^{2} cluster chromophore transition.

Clustering $\mathrm{H}_{2} \mathrm{Pc}$ with MeOH yields a cluster spectrum, Figure 6.6 b and Table 6.6, associated with $\mathrm{H}_{2} \mathrm{Pc}(\mathrm{MeOH})_{1}$ which has an origin $82.0 \mathrm{~cm}^{-1}$ to the red of the $H_{2} \mathrm{Pc} 0_{0}^{n}$. The cluster chromophore out-of-plane vibrations A_{o}^{1} and A_{o}^{2} are observed at 16.3 and $31.4 \mathrm{~cm}^{-1}$ to the blue of the cluster 0_{0}^{0}. The assignment of a single cluster manifold is supported by the single calculated ground state geometry obtained (Figure 6.8b).
$\mathrm{H}_{2} \mathrm{Pc}$ cluster with EtOH, Figure 6.6 c and Table 6.6, yields a spectrum exhibiting two cluster (chromophore) vibronic manifolds which can be assigned as due to two $\mathrm{H}_{2} \mathrm{Pc}(\mathrm{EtOH})_{1}$ species. The first cluster origin is at $90.9 \mathrm{~cm}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{PC}_{\mathrm{C}} \mathrm{O}_{\mathrm{o}}^{\mathrm{o}}$ and the second cluster manifold begins at $83.3 \mathrm{~cm}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{Pc} \mathrm{O}_{\mathrm{O}}^{\mathrm{o}}$. The cluster chromophore vibrations A_{0}^{1} and A_{0}^{2} can be identified in these manifolds at 16.1 and $31.7 \mathrm{~cm}^{-1}$.

The two $\mathrm{H}_{2} \mathrm{Pc}(\mathrm{EtOH})_{1}$ cluster species responsible for the observed spectrum can be assoclated with geometries similar to those shown in Figure 6.8c. In geometry I the EtOH solvent interacts more with the $\mathrm{H}_{2} \mathrm{Pc} \pi$-cloud than in geometry II and, therefore, geometry I should
exhibit a larger spectral shift. Thus a geometry similior rul with for
 similar to II could be associated with the cluster whose oripin $1=1$ $-83.3 \mathrm{~cm}^{-1}$ with respect to the $\mathrm{H}_{2} \mathrm{Pc} 0_{0}^{\circ}$.

The $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{H}_{2} \mathrm{O}$, $/ \mathrm{MeOH}$, and 'EtOH cluster spectra suggest that the solvent $O H$ group is intimately involved in the Intermolecular interat tion. The red shifts for all three clusters are similar and larger than those observed in the $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon systems. The MeOH and EtOH cluster shifts are larger than that observed in the $H_{2} \mathbf{O}$ cluster sugges ting that the shifts are dependent upon the combined effects of the $O H$ group and the hydrophobic portions of the cluster solvents. If, on the other hand, the alkyl groups were pointing toward the solute, one would expect the spectral shifts for $M e O H / E \subset O H$ clusters to be similar to those observed in the hydrocarbon clusters. In these geometries, the alkyl groups would be the major contributors in the intermolecular interaction.

The large spectral shifts, the interaction of the OH group with $\mathrm{H}_{2} \mathrm{Pc}$, and the ground state configuration calculations lead one to postulate that hydrogen bonding may be occurring in these cluster systems. Hydrogen bonding can occur to some extent between the solute inner ring nitrogens and/or pyrrole hydrogens and the solvent OH group: the $H_{2} \mathrm{Pc}$ inner ring nitrogens have large electron density ${ }^{19,33}$ which litl enhance the hydrogen bonding of solvent $O H$ groups. Since the observed chromophore transition is $\pi^{*} \cdot \pi$, a large red shift can be expected The $\operatorname{MgPc}\left(\mathrm{H}_{2}{ }^{\mathrm{O}}\right)_{1},(\mathrm{MeOH})_{1},(E t O H)_{1}$ cluster spectra, Figure 6.7 and Table 6.6, are very similar to one another. The Mgec($\left.\mathrm{H}_{2} \mathrm{O}\right)_{1}$ spertrum be assigned as arising from two different cluster manifolds with atbin
 wit if plane vibrations are ubserved for both manifolds. The A_{o}^{1} and the Áareobserved at $1: 3(112) \mathrm{cm}^{1}$ and $29.1(29.8) \mathrm{cm}^{-1}$ to the blue of the origins B_{f}^{2} transitions are observed at 57.1 (56.9) cm^{-1}. The MgPr(Mo(OH), and MgPr(EtOH), spertra are similarly assigned. The MgPciROH), series differs from the $H_{2} \mathrm{Pc}(\mathrm{ROH})_{1}$ series in three aspects. First. the MgPc(ROH), spectra exhibit hypsochromic shifts with respect to the isolated MgPc spectrum. The direction of the spectral shifts indicate that the solute and solvents interact more strongly in S_{0} than in S_{1}. The major difference between the two solute systems studied is the phthalocyano core environment: the pyrrole hydrogens in $H_{2} \mathrm{Pc}$ are replaced by a magnesium in MgPc. The hypsochromic shift suggests that the core is responsible for the larger ground state interaction. The greater stabilization in the ground state can, in principle, be due to interactions ranging from weak nonbonded vdw interactions to actual complexation in which the solvent donates an electron pair to the solute via the central metal atom. ${ }^{19}$ On the basis of the size of the spectral shifts observed, the interaction is most likely due to weak vdw interactions. If the solvent were to donate significant electron density to the central Mg atom in MgPc (a coordina tion bond formation) or if the Mg were to move significantly out of the Pc molecular plane, ${ }^{34}$ cluster formation would drastically perturb the chromophore electronic environment and yield relatively large spectral shifts. Observation of weak vdW interactions between MgPc and $\mathrm{H}_{2} \mathrm{O}$. EtOH. and phenol in the IR region leads to similar conclusions. ${ }^{35}$ Second. the spectral shifts in the $\operatorname{MgPc}(R O H)_{1}$ series are vir thally identiral. This observation suggests that the of group is
intimately involved in the interaction and, furthermore, is largely responsible for the observed spectral shifts. The ground state configuration calculations, Flgure 6.9 , support the notion that the $O H$ group is the major contributor to the interaction. All three calculated geometries depicted in Figure 6.9 have the solvents situated so that the OH groups point towards the MgPc core. Moreover, one would not expect to observe sharp cluster transitions if the hydrophobic portions of the solvents were the major contributors to the interaction.

Third, the $\operatorname{MgPc}(\mathrm{ROH})_{1}$ spectra show two nearly isoenergetic cluster origins and vibronic manifolds. These cluster features could be due to either two cluster species which are nearly spectroscopically identical or they could be due to the splitting of the two-fold degenerate chromophore S_{1} state via vdW cluster formation. The former situation probably does not occur since these doublets are present in all the MgPc clusters observed. One would not typically expect to see this type of coincidence in the different cluster systems especially when two solvent series are considered. In MgPc clusters, clustering reduces the system symmetry (see Figure 6.9 for example) and the fourfold symmetry axis of the MgPc chromophore is destroyed. The degenerate Q band $\left(E_{u}\right.$ in $\left.D_{4 h}\right)$ may thus split into Q_{x} and Q_{y} bands ($B_{2 u}$ and $B_{3 u}$ in $\mathrm{D}_{2 h}$); the splitting is small, however, due to the small perturbation caused by vdW clustering. Similar removal of degeneracies occurs for benzene clusters. ${ }^{2.9,10}$ and for ground state vibrations of $\mathrm{MgPc} / \mathrm{H}_{2} \mathbf{0}$. /EtOH, and/phenol systems. 35
C. CO_{2} Clusters of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc .
$\mathrm{H}_{2} \mathrm{Pc}$ clustered with CO_{2}. Figure 6.10 a and Table 6.7, yields a spectrum with a single cluster origin blue shifted by $14 \mathrm{~cm}^{-1}$ with
respect to the isolated $\mathrm{H}_{2} \mathrm{Pc} \mathrm{O}_{0}^{\mathrm{o}}$. The cluster manifold is assigned to a $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$ species. Cluster chromophore out-of-plane vibrations A_{0}^{1} $\left(15.4 \mathrm{~cm}^{-1}\right)$ and $A_{o}^{2}\left(30.7 \mathrm{~cm}^{-1}\right)$ built upon the cluster origin are also observed. The calculated ground state geometry, Figure 6.11a, further supports the existence of a single cluster species responsible for the spectrum. In this geometry, the CO_{2} moiety is situated over the $\mathrm{H}_{2} \mathrm{Pc}$ core.

The $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$ spectrum is different than the other $\mathrm{H}_{2} \mathrm{Pc}$ clusters studied in that it is the only system exhibiting a hypochromic shift. The exact nature of the interaction responsible for the spectral shift in this system is not known and more work on CO_{2} solute/solvent systems is necessary to establish a firm argument. On the basis of the interactions responsible for the spectral shifts in the hydrocarbon and hydrogen bonded solute/solvent systems, the major interaction responsible for the shift appears to involve solvent/solute π-cloud overlap. In the ground state, the solute and solvent most likely interact through $\pi-\pi$ interactions. Upon excitation the diffuse nature of the solute π^{*} state reduces the interaction between the π systems and results in a loss in S_{1} binding energy relative to S_{0}.

MgPc clustered with CO_{2}, Figure 6.10 b and Table 6.7, reveals a cluster spectrum with two parallel vibronic progressions. The appearance of the two cluster manifolds is probably due to the same type of electronic state splitting that occurs in the $\operatorname{MgPc}(R O H)_{1}$ systems. The cluster origins are blue shifted by 17.9 and $22.6 \mathrm{~cm}^{-1}$ with respect to the $\mathrm{MgPc} \mathrm{O}_{0}^{\mathrm{o}}$. As in $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$, well defined cluster chromophore vibronic transitions are observed. The A_{0}^{1} and A_{o}^{2} transitions built upon the origin at $17.9 \mathrm{~cm}^{-1}$ occur at 19.9 and $31.1 \mathrm{~cm}^{-1}$ to the blue of this
origin. The A_{o}^{1} and A_{o}^{2} transitions built upon the $22.6 \mathrm{~cm}^{-1}$ origin occur at 21.1 and $32.3 \mathrm{~cm}^{-1}$ to the blue of the origin. The existence of a single $\operatorname{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$ species responsible for the cluster transitions is supported by the ground state configuration calculation shown in Figure 6.11b.

The $\operatorname{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$ cluster spectrum differs from that of the other MgPc clusters studied in that the magnitude of the hypsochromic shift is smaller for $\operatorname{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$. This difference can possibly be attributed to the difference in the major mode of interaction between the solute and solvent. In $\operatorname{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$, the major interaction may be due to the same type of π-cloud interaction as suggested for the $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$ interaction as the spectral shifts are comparable for the two systems. If the solvent oxygen/solute magnesium interaction were the major contributor, one could expect a larger hypsochromic shift comparable to those found for the $\operatorname{MgPc}(\mathrm{ROH})_{1}$ systems.

Summary and Conclusions.
FE spectroscopy is used to probe the optical spectra of vdW clusters of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc in the vicinity of the cluster 0_{0}^{O} transitions A continuous supersonic molecular jet capable of operating at temperi tures up to $650^{\circ} \mathrm{C}$ is employed to generate the ultracold molecular beam Spectroscopic observables, such as spectral shift and forbidden chromo phore vibronlc transitions, combined with computer modelling of ground state cluster intermolecular interactions, allow for the elucidation of the nature of the intermolecular potential and qualitative geometry of the $H_{2} \mathrm{Pc}$ and MgPc clusters studied. The ronclusions drawn from this work are as follows:

1) The cluster vibronic spectra and theoretical calculations suggest that stable $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clusters have solvents situated over the center of the phthalocyano core. Local minima over peripheral solute rings are either nonexistent or too shallow to accommodate minimum energy bound state geometries;
2) $\mathrm{H}_{2} \mathrm{Pc} /$ hydrocarbon clusters are similar to the benzene and N-heterocycle/hydrocarbon clusters previously studied. The spectral shifts in these solute/solvent series are all bathychromic. The magnitudes of the spectral shifts increase with increasing solvent size and polarizability. The qualitative cluster geometries responsible for the observed spectra are similar with respect to solute/solvent orientation is concerned;
3) In both $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clusters, the $\mathrm{H}_{2} \mathrm{O}$, MeOH, and EtOH moieties are situated over the $P c$ core in such a manner that the $O H$ groups are intimately involved in the intermolecular interactions and contribute significantly to the spectral shifts;
4) Hydrogen bonding may be occurring to some extent between $\mathrm{H}_{2} \mathrm{Pc}$ and solvent ROH moleties;
5) MgPc clusters display weak vdw interactions between the cluster solute and solvent. Actual complexation in which the solvent donates an electron pair to the solute does not orcur:
6) Porbidden low frequency cluster chromophore out-of plane vibronic transitions are induced by clustering in both $\mathrm{H}_{2} \mathrm{Pr}$ and MgPr systems. Intensity due to this motion arises from the reduction of the chromophore symmetry in the clusters. The perturbation may be large ellough to callse the cluster chromophore geometry to change in an attenft to maximize π-cloud overlap with the solvent: and
7) Excited electronic state splitting occurs in the MgPc clusters due to the reduction in system symmetry upon cluster formation. The degenerate Q band appears to split into its two components, Q_{X} and Q y

REFERENCES

1. D.H. Levy, L. Wharton and R.E. Smalley, "Chemical and Biochemical Applications of Lasers," (Academic Press, New York, 1977) Vol. II.
2. M. Schauer and E.R. Bernstein, J. Chem. Phys. 2, 726 (1985).
3. M. Schauer, K.S. Law and E.R. Bernstein, J. Chem. Phys. 2, 736 (1985).
4. K.S. Law and E.R. Bernstein, J. Chem. Phys. 82, 2856 (1985).
5. K.S. Law, M. Schauer, and E.R. Bernstein, J. Chem. Phys. 8 , 4,4871 (1984).
6. E.R. Bernstein, K. Law, and M. Schauer, J. Chem. Phys. 80, 207 (1984).
7. M. Schauer, K. Law, and E.R. Bernstein, J. Chem. Phys. 81, 49 (1984).
8. J. Wanna and E.R. Bernstein, J. Chem. Phys. 84, 927 (1986).
9. J. Wanna, J.A. Menapace, and E.R. Bernstein, J. Chem. Phys. $\underline{8}_{5}$, 1795 (1986).
10. J.A. Menapace and E.R. Bernstein. J. Phys. Chem. 91, 0000 (1987).
11. J.A. Menapace and E.R. Bernstein, J. Phys. Chem.. to be published (1987).
12. F.H. Moser and A.H. Thomas, "The Phthalocyanines", (CRC Press Bocia Raton, 1983) Vol. I and II.
13. R.O. Loutfy, C.K. Hsiao, and R. Ho, Can. J. Phys. 61, 1416 (1983): P.C. Rieke and N.R. Armstrong, J. Phys. Chem. 89. 1121 (1985): T.J. Klofta, P.C. Riecke, C.A. Linkous. W.J. Buttner. A. Nanthakumar, T.D. Mewborn and N.R. Armstrong, J. Electrochem. Soc., 132. 2134 (1985): M. Shimura and A. Toyoda. Jpn. J. App. Phys. Part 1 2 3,1462 (1984).
14. M. Maitrot, G. Guillad. B. Bondjema, J.-J. Andre. H. Straflerka. J. Simon and R. Even, Chem. Phys. Lett. 133. 59 (1987).
15. H. Wohltjen, W.R. Barger. A.W. Snow and N.L. Jarvis, IEEE Transactions on Electron Devices, 32, 1170 (1985): S. Baker, G.G. Roberts and M.C. Petty, IEEE Proc. Part I, Solid State Electron Devices 130, 260 (1983); R.L. van Ewyk, A.V. Chadwick and J.D. Wright, J. Chem. Soc. Far. I, 76, 2194 (1980).
16. J.R. Darwent, Chem. Commun., 805 (1980); T. Tanno, D. Wohrle. M Kaneko, and A. Yamada. Ber. Bunsen. Physik. Chem. 84. 1032 (1980); G. Melendon and D.S. Miller. Chem. Commun., 533 (1980); I. Okura, M. Takeuchi and N. Kimthuan, Chem. Lett. 765 (1980).
17. J.R. Bolton, Solar Energy, 20, 181 (1978).
18. J. Barber, "Primary Processes of Photosynthesis", (Elsevier, New York, 1977).
19. D. Dolphin, "The Porphyrins" (Academic Press, New York, 1979), Vols. III, V, and VII; J.E. Falk, "Porphyrins and Metalloporphyrins", (Elsevier, New York, 1964).
20. F.A. Momany, L.M. Carruthers, R.F. McGuire and H.A. Scheraga, J. Phys. Chem. 78, 1595 (1974); G. Nemethy, M.S. Pottle, and H.A. Scheraga, J. Phys. Chem. 87, 1883 (1983).
21. B.F. Hoskins and S.A. Mason, Chem. Commun., 554 (1969); The phthalocyano skeleton in MgPc is assumed to be the same as $\mathrm{H}_{2} \mathrm{Pc}$ in the calculations. The $H_{2} \mathrm{Pc}$ imino hydrogens are replaced by a magnesium atom at the center-most position to model the MgPc structure.
22. T.M. Miller and B. Bederson, Adv. At. Mol. Phys. 13, 1 (1977).
23. A. Bondi, J. Phys. Chem. 68, 441 (1964).
24. R.A. Scott and H.A. Scheraga, J. Chem. Phys. 45, 2091 (1965).
25. A. Henriksson and M. Sundbom. Theor. Chim. Acta. (Berl.) $2 \underline{7}, 213$ (1972): A.M. Schaffer, M. Gouterman, and E.R. Davidson, Theor. Chim. Acta. (Berl.) 30, 9 (1973).
26. G. Herzberg, "Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules" (van Nostrand, New York, 1966).
27. R.F. McGuire, F.A. Momany, and H.A. Scheraga, J. Phys. Chem. 76. 375 (1972).
28. P. Jonsson. Acta. Cryst. B32, 232 (1976).
29. E.B. Wilson Jr., J.C. Decius, and P.C. Cross. "Molecular Vibra tions: Theory of Infrared and Raman Vibrational Spectra" (McGraw-Hill Book Co.. Inc.. 1955).
30. P.C. Painter and J.L. Koenig, Spectrochim. Acta. 33A, 1019 (1977) .
31. P.S.H. Fitch, C.A. Haynam, and D.H. Levy, J. Chem. Phys. 73, 1064 (1980).
32. H.C. Longuet-Higgins, C.W. Rector and J.R. Platt, J. Chem. Phys. 18, 1174 (1950).
33. M.S. Fischer, D.H. Templeton, A. Zalkin and M. Calvin, J. Am. Chem. Soc. 93, 2622 (1971).
34. B. Stymne, F.X. Sauvage and G. Wettermark, Spectrochim. Acta. 35A, 1195 (1979).

UNPUBLISHED RESULTS

This chapter discusses the results of an out-of-plane normal coordinate analysis on $\mathrm{H}_{2} \mathrm{Pc}$ and the results of the 2 -color TOFMS experjments on $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc . These results are presented to establish an up-to-date record of our work in these areas and to outline the basir approaches used in the analyses.

Out-of-Plane Normal Coordinate Analysis on Isolated $\mathrm{H}_{2} \mathrm{Pc}$.
Out-of-plane fundamental and/or overtone vibronic transitions are observed in the vicinity of the 0_{0}^{0} transitions in the $H_{2} \mathrm{Pc}$ and MgPc spertra as well as in all the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc solute/solvent van der Waals clusters presented in Chapter 6. Elucidation of the out-of-plane motion in these molecules has proven useful in the understanding of the cluster spectra and in the identification of the number of different clusters of a specific composition observed. In this section, we report the details of the out-of-plane normal coordinate analysis on isolated $H_{2} P$. This normal coordinate analysis is used to determine the nature of the molecular motion occurring in both the $\mathrm{H}_{2} \mathrm{Pc}(\mathrm{MgPc})$ molecule and $\mathrm{H}_{2} \mathrm{PC}(\mathrm{MgPc})$ cluster spectra.

The out-of-plane normal coordinate analysis on $H_{2} \mathrm{Pc}$ is conducted using the $F G$ matrix methods described by Wilson et al. ${ }^{1}$ These methods essentially involve expressing the secular equation of $N-3$ coupled harmonic oscillators describlng the out of - plane motion in matrix form
and solving for its $\mathrm{N}-3$ non-zero eigenvalues and eigenvectors. To simplify the calculations, the molecular symmetry of $H_{2} P c$ is utilized to symmetry (block) factor the potential energy ($\underline{\mathrm{F})}$ and kinetic energy (\underline{G}) matrices to yield "submatrices" each of which describes a particular species of vibrational motion dictated by the vibrational symmetry. The analysis is set up by 1) determining the symmetry of the vibrational motion, 2) selecting a complete set of internal coordinates to describe the motion, 3) obtaining the elements of the \underline{E} and \underline{G} matrices in this coordinate scheme, 4) constructing normalized symmetry coordinates using the complete internal coordinate set as a basis, and 5) symmetry factoring the \underline{F} and \underline{G} matrices using the symmetry coordinates.

The $\mathrm{H}_{2} \mathrm{Pc}$ molecule is depicted in Figure 7.1a. This planar molecule contains 18 hydrogen atoms, 32 carbon atoms, and 8 nitrogen atoms, and has 55 nut-of-plane normal vibrations that are distributed among the following irreducible representations under the $D_{2 h}$ point group:

$$
\Gamma_{v i b}=15 B_{1 u}+13 A_{u}+13 B_{2 g}+14 B_{3 g}
$$

Two types of internal coordinates are used to describe the $H_{2} \mathrm{Pr}$ out-of-plane vibrational motion. bond torsion and out-of-plane bond wagging. The bond torsion coordinate, Figure 7.1h. is defined in the situation when the atoms (2 and 3) at each end of a bond are also bonded to additional atoms (1 and 4) by bonds not colinear with the bond connecting atoms 2 and 3 . The terminal bonds taken together with the connecting bond define two planes. Nuclear deformation may thus be expressed by the angle $=$ defined as the dibedral angle betweren the two

(b)

(c)

Figure 7.1

a) Out-nf-plane internal conrdinates used in $H_{2} P C$ NCA. Coordinates a-n are bond torsions and coordinates o-w are bond wags. b) Definition of bond torsion : in terms of bond lengths and bond angles. c) Definition of bond wag y in terms of bond lengths and bond angles.
planes. The displacement of the atoms in this internal coordinate for atoms 1-4 bonded in sequence is expressed by the following surtors. $7.1 a \quad \tilde{s}_{\Sigma_{1}}=\frac{-\hat{e}_{12} \times \hat{e}_{23}}{r_{12} \sin ^{2} \phi_{2}}$
$7.1 \mathrm{~b} \quad \vec{s}_{\tau 2}=\frac{r_{23}-r_{12} \cos \phi_{2}}{r_{23} r_{12} \sin \phi_{2}} \frac{\hat{e}_{12} \times \hat{e}_{23}}{\sin \phi_{2}}-\frac{\cos \phi_{3}}{r_{23} \sin \phi_{3}} \frac{\hat{e}_{13} \times \hat{e}_{32}}{\sin \phi_{3}}$
$7.1 \mathrm{c} \quad \bar{s}_{\tau_{3}}=[(14)(23)] \bar{s}_{\tau_{2}}$
$7.1 \mathrm{~d} \bar{s}_{z_{4}}=[(14)(23)] \bar{s}_{=1}$
for which the terms in square brackets are permutation nperators fqua tions 7.1 c and 7.1 d thereby state that the s, and s , vectors fan be obtained by permutation of atoms 1 and 4 . and 2 and 3 in the pxpressinn. for $\bar{s}_{z_{1}}$ and \bar{s}_{z}

The out-of-plane wagging coordinate. Figurn 711 in fofinod it an atom for which three coplanar bonds are roillidpht rhe dofirmit.".
 atomic displacements in this internal coordinate are l
$7.2 \mathbf{a} \quad \overline{\mathbf{s}}_{Y_{2}}=\frac{1}{r_{41}}$
$7.2 b$

$$
\bar{s}_{r_{2}}=\frac{\sin \phi_{2}}{r_{42} \sin \phi_{1}}
$$

The 14 out of plane wagging coordinates are located in 9 symmetry

Plgure 72

Geometric parameters used in $\mathrm{H}_{2} \mathrm{PC}$ NCA. Bond lengths are expressed in angstroms and bond angles are in degrees. The parameters are averaged to D_{4} h symmetry to simplify the calculations

Table 7.1

Kinetic Energy (\underline{G}) Matrix Elements for $\mathrm{H}_{2} \mathrm{Pc}$ Out-of-Plane Motion ${ }^{\text {a }}$

$\begin{aligned} & \text { Matrix Element } \\ & (A-g / \text { mol })-1 \end{aligned}$		$\begin{aligned} & \text { Matrix Element } \\ & (A-g / m o l)-1 \end{aligned}$		$\begin{aligned} & \text { Matrix Element } \\ & (A-g / m o l)^{-1} \end{aligned}$	
G(alal)	. 56889	G(b1bl)	. 56889	G(clcl)	56689
G(a1b1)	-. 45351	G(b1b2)	. 22878	G(c1c2)	22678
G(alb2)	-. 45351	G(b1c1)	-. 45351	G(c1dl)	-. 45351
G(a1c1)	. 22876	G(b1c2)	-. 11338	G(clel)	-. 21223
G(a1c2)	. 22878	G(bidi)	. 22878	O(c1e2)	-. 18273
G(a1d1)	-. 11338	G(b1e1)	. 08088	G(c1f1)	. 09890
G(a101)	. 47094	G(b1e2)	. 05107	G(c1f2)	. 04945
G(a102)	-. 47094	G(blel)	-. 04945	G(c101)	28002
G(a1p1)	-. 28002	G(b101)	-. 47094	G(c102)	-. 04900
G(a1p2)	. 26002	G(b102)	. 26002	G(c1pl)	-. 47094
G(a1t1)	. 04809	O(b1p1)	. 47094	O(c1p2)	. 04909
G(a1t2)	-. 04909	G(b1p2)	-. 04909	G(c1t1)	. 39084
		G(blel)	-. 22615	O(c1t2)	-. 20143
		G(b1t2)	. 03674	G(ciul)	-. 07794
		O(blul)	. 03897	O(clu2)	. 03897
G(didi)	. 56889	O(01el)	. 32338	G(1191)	33332
G(diel)	. 28331	a(ele2)	. 10282	G(f1f2)	-. 27330
G(d1e2)	. 26331	O(elfi)	-. 26292	O(P1g1)	29100
O(d1f1)	-. 09890	G(e1t2)	. 10302	O(f1E2)	-. 21388
G(d1f2)	-. 09880	G(elgi)	-. 25421	G(1h1)	-. 09307
G(d101)	-. 04909	G(elg2)	. 05108	O(tin2)	. 05879
G(d102)	. 04909	G(elh1)	. 09148	G(P1pl)	-. 04283
G(d1pl)	. 26002	G(e1pl)	. 06978	O(f1t)	17404
G(d1p2)	-. 26002	G(e1p2)	-. 04423	G(1)t2)	00738
G(dit1)	-. 37849	G(-1t1)	-. 27833	G(P1ul)	- 29377
G(d1t2)	. 37849	G(elt2)	. 16750	G(f1u2)	- 18581
G(diul)	. 07794	O(elu1)	. 28850		
G(d1u2)	-. 07794	G(0142)	00059		
G(glgl)	. 76450	G(hinl)	76450	G(1111)	56689
G(g1g2)	-. 06129	G(hih4)	-. 06129	G(1111)	45351
G(gini)	-. 59954	G(hie3)	05108	G(11)21	45351
G(g1m4)	09148	G(h1-4)	-. 25421	G(11k1)	22876
G(g1n3)	. 05879	O(hin3)	-. 21488	G(1)k2)	22676
G(gln4)	-. 09307	G(hin4)	29100	G(1111)	11338
G(E122)	04786	G(hise)	-. 25909	G(1191)	47094
G(E1t1)	10364	G(hiti)	-. 04687	G(1192)	47094
G(glui)	-. 48542	G(hiul)	25929	G(11r1)	26002
G(Elu2)	-. 04284	G(hive)	- 10364	G(11r2)	28002
G(giva)	04667	G(himu)	04284	G(llvi)	04909
G(glwa)	- 25929	G(hiw4)	48542	(111v2)	04909

TABLB 7.1 (Continued)

Matrix Element$(A-g / m o l)^{-1}$		$\begin{aligned} & \text { Matrix Element } \\ & (A-g / m o l)^{-1} \end{aligned}$		$\begin{aligned} & \text { Matrix Element } \\ & \text { (A-g/mol) } \end{aligned}$	
G(11才1)	. 56689	G(k1ki)	. 58689	G(1111)	58689
G(11)22)	22878	G(k1k2)	. 22870	G(11mi)	26331
G(J1k1)	-. 45351	G(k111)	-. 45351	G(1102)	26331
G(j1k2)	-. 11338	G(k1mb)	-. 21223	G(11n])	-. 0989 n
G(J1-1)	. 08058	G(k1n1)	. 09890	G(11n2)	- 09890
G(J1m2)	05107	G(kin2)	. 04945	G(1191)	- 04909
G(j1n1)	-. 04948	G(k1q1)	28002	G(1192)	04909
G(J1q])	-. 47094	G(k1g2)	-. 04900	G(11ri)	26002
G(j1q2)	. 26002	G(k1r1)	-. 47094	gilliri)	- 26002
G(j1r1)	. 47094	G(k1r2)	. 04909	Q(11vi)	-. 37849
O(J1r2)	-. 04000	O(k1v1)	. 39084	O(11v2)	37849
G(J1v1)	-. 22615	O(k1v2)	$-.20143$	O(1)w1)	07794
G(J1v2)	03674	G(k1w1)	-. 07794	G(11wa)	-. 07794
G(JIm1)	03897	G(kime)	. 03897		
G(minl)	. 32338	G(nini)	33332	O(0101)	140434
G(0102)	. 10282	$0(n) n 2)$	-. 27330	0(0102)	- 28030
O(minl)	- . 26292	$\theta(n 1 r 1)$	-. 04283	O(01p1)	- 28030
G(01na)	10302	O(n1a1)	31472	G(01p2)	04252
G(metri)	06978	O(nivi)	17404	O(clt)	04252
O(01r2)	-. 04423	O(n1v2)	. 00738		
O(a1:1)	-. 19027	B(nlvi)	- 20377		
O(01vi)	-. 27683	G(nima)	-. 18881		

G(miv2)	16750
G(m1w1)	28850
G(miv2)	$n 0050$

$G(p 1 p 1)$	1.40434
$G(p 1 t 1)$	-.23096
$G(p 1 t 2)$	03182
$G(p 1 u 1)$	03375

O(qlal)	1.40434	giriri)	40434
O(qlaz)	- 28030	O(rivi)	25008
O(q1ri)	28030	G(rivz)	71182
O(qlira)	04252	G(rimi)	07379
o(quil)	04252		
a(t)t)	38645	G(ulul)	12! ${ }^{\text {a }}$
G(t)t2)	16585	;) ${ }^{\text {(aluz) }}$	209
O(t)ul)	18887	ciulual	14

Givivil	38645	G(x)w1)	12178
g(v)vz)	10385	(im1*2)	02904
g(vivi)	18867		
g(vime)	02525		

The elements of the \underline{F} matrix in terms of the bond torsion and out-of-plane wagging coordinates. Table 7.2. are simply expressed as valence force constants F_{t}, for which t and t^{\prime} correspond to the two internal coordinates in question. For the purpose of this calrulation. the E matrix eloments are taken as the dagonal force constants destrib ing the out of plane motion of benzene in this appoximation. all
 corresponding to ther forsions in henzene The out of plane wagging force ronstants are tisumed to be the same is those rorresponding to bentebe gut of plane f wates All off dagonal furce ronstants are

\qquad

TABLE 7.2

Matrix Element (adyn-A/rad ${ }^{2}$)		Matrix Element (mdyn-A/rad ${ }^{2}$)		Matrix elemegt (mdyn-A/rad	
P(alal)	1190	P(b)bi)	. 1190	P(clcl)	. 1190
P(didi)	1190	P(ele1)	1190	P(P1P1)	. 1190
P(elel)	1190	P(nini)	. 1100	P(1111)	. 1190
(1)11)	1190	$P(k 1 k 1)$. 1180	P(1111)	. 1190
P(0101)	1190	$P(n) n!)$	1190	P(0101)	3237
$P(p 1 p 1)$	3237	P(qigi)	3237	P(riri)	3237
P(8101)	3237	P(t)t)	3237	P(ulus)	3237
Plvivil	3237	$P\left(\begin{array}{l\|l\|l}\end{array}\right.$	3237		

TABLE 7.3

Normallzed Symmetry Coordinates for $\mathrm{H}_{2} \mathrm{Pc}$ in Terms of Bond Torsion and Out-of-Plane Wagging Coordinates.

${ }^{8} 1 u^{\text {: }}$	$B=1 / 2(b 1-b 2+b 3-b 4)$	$\mathrm{B}_{2 \mathrm{~g}}$:	$B=1 / 2(b 1-b 2-b 3+b 4)$
	$C=1 / 2(c 1-c 2+c 3-c 4)$		$C=1 / 2(c 1-c 2-c 3+c 4)$
	E-1/2(e1-e2+e3-e4)		$E=1 / 2(e 1-e 2-e 3+e 4)$
	P=1/2(f1-f2+f3-f4)		$\mathrm{P}=1 / \mathrm{l}(\mathrm{f} 1-\mathrm{f} 2-\mathbf{2} 3+\mathrm{f} 4)$
	$\mathrm{G}=1 / 2(\mathrm{~g} 1-\mathrm{g} 2+\mathrm{g} 3-\mathrm{g} 4)$		$\mathrm{G}=1 / 2(\mathrm{~g} 1-\mathrm{g} 2-\mathrm{g} 3+\mathrm{g} 4)$
	$\mathrm{H}=1 / 2(\mathrm{~h} 1-\mathrm{h} 2+\mathrm{h} 3-\mathrm{h} 4)$		$\mathrm{H}=1 / 2(\mathrm{~h} 1-\mathrm{h} 2-\mathrm{h} 3+\mathrm{h} 4)$
	$J=1 / 2(j 1-j 2+j 3-j 4)$		$I=1 / \sqrt{2}(11-12)$
	K=1/2(k1-k2+k3-k4)		$\mathrm{J}=1 / 2(\mathrm{j} 1+\mathrm{j} 2-\mathrm{j} 3-\mathrm{j} 4)$
	$\mathrm{M}=1 / 2(\mathrm{~m} 1-\mathrm{m} 2+\mathrm{m} 3-m 4)$		
	$N=1 / 2(n 1-n 2+n 3-n 4)$		$\mathrm{L}=1 / \sqrt{ }$ (11-12)
	$0=1 / 2(01+02+03+04)$		$M=1 / 2(m 1+m 2-m 3-m 4)$
	$p=1 / 2(p 1+p 2+p 3+4 p)$		$N=1 / 2(n i+n 2-n 3-n 4)$
	$Q=1 / 2(q 1+q 2+q 3+q 4)$		$0=1 / 2(01+02-03-04)$
	$R=1 / 2(r 1+r 2+r 3+r 4)$		$p=1 / 2(p 1+p 2-p 3-p 4)$
	$\mathrm{S}=1 / \sqrt{2}(\mathrm{~s} 1+\mathrm{s} 2)$		$Q=1 / 2(q 1-q 2-q 3+q 4)$
	$T=1 / 2(t 1+t 2+t 3+t 4)$		$\mathrm{R}=1 / 2(\mathrm{r} 1-\mathrm{r} 2-\mathrm{r} 3+\mathrm{r} 4)$
	$u=1 / 2(u 1+u 2+u 3+u 4)$		$T=1 / 2(t 1+t 2-t 3-t 4)$
	$v=1 / 2(v 1+v 2+v 3+v 4)$		$\mathrm{U}=1 / 2(\mathrm{u} 1+\mathrm{u} 2-\mathrm{u} 3-\mathrm{u4})$
	$W=1 / 2(w 1+w 2+w 3+w 4)$		$v=1 / 2(v 1-v 2-v 3+v 4)$
			$W=1 / 2\left(w 1-w^{2}-w^{3}+w^{4}\right)$
$A_{\mathbf{u}}$:	$A=1 / \sqrt{2}(\mathrm{al} 1+\mathrm{a} 2)$	$\mathrm{B}_{3 \mathrm{~g}}$:	$A=1 / \sqrt{2}(\mathrm{a} 1-\mathrm{a} 2)$
	$B=1 / 2(b 1+b 2+b 3+b 4)$		$B=1 / 2(b 1+b 2-b 3-b 4)$
	$C=1 / 2(c 1+c 2+c 3+c 4)$		$\mathrm{C}=1 / 2(\mathrm{c} 1+\mathrm{c} 2+\mathrm{c} 3+\mathrm{c} 4)$
	D=1/2 ($/ \mathrm{d} 1+\mathrm{d} 2$)		$D=1 / \sqrt{2}(\mathrm{~d} 1-\mathrm{d} 2)$
	$E=1 / 2(e 1+e 2+e 3+e 4)$		$\mathrm{E}=1 / 2(\mathrm{e} 1+\mathrm{e} 2-\mathrm{e} 3-\mathrm{e} 4)$
			P=1/2(1 1+P2-P3-P4)
	$\mathrm{C}=1 / 2\left(\mathrm{~g} 1+\mathrm{g}^{2}+\mathrm{g} 3+\mathrm{g} 4\right)$		$\mathrm{G}=1 / 2(\mathrm{~g} 1+\mathrm{g} 2-\mathrm{g} 3-\mathrm{g} 4)$
	$H=1 / 2(h 1+h 2+h 3+h 4)$		$H=1 / 2(h 1+h 2-h 3-h 4)$
	$1=1 / \sqrt{2}(11+12)$		$J=12(J 1-j 2-13+34)$
	$j=1 / 2(j 1+j 2+j 3+j 4)$		$k=1 / 2(k 1 k 2 k 3+k 4)$
	K=1/2(ki+k2+k3+k4)		$M=1$ 2(mi-m-m+m)
	$L=1{ }^{\prime}$ (2) $\left.11+12\right)$		$N=1 / 2(n)-n 2 \times n+n)$
	$M=1^{\prime} 2(-1+m 2+m+m 4)$		$f)=12(010203+04)$
	$N=1 / 2(n)+n 2+n 3+n 4)$		$p=1$ 2(p1-p2 $\mathrm{p}^{(1+p 4 \text {) }}$
	$0=1$ 2(01 02*03 04)		$Q=12(q)+q 2 q^{(q 4)}$
	$P=12(p 1$ p2.p3 p4)		$R=12(r i+r 2 r 3 r 4)$
	Q-1 21q1 q2*q3-q4)		$\mathrm{S}=1.2(\mathrm{~s} 1 \mathrm{~s} 2)$
	R-1 $2(r 1$ r2+r3 r4)		T 1 2itl $12+3+4)$
	T-1 2(t) t2+13 t4)		(1) 2 (u) $42 \mathrm{u} 3+441$
	1) $12(11)$ 42.43 44)		
	V-1 2\|v1 v2.v3 v4l		
	w-1 $2 \backslash w 1$ w2.mi w4		

TABLE 7.4

Observed and calculated frequencies and tentative assignments of the out-of-plane vibrations in $\mathrm{H}_{2} \mathrm{Pc}$.

Mode	$\begin{gathered} \mathrm{CaIC} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Obsd }^{\mathrm{a}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Mode	$\begin{gathered} \text { Calc } \\ \left(c m^{-1}\right) \end{gathered}$	$\text { Obsd }_{\left(\mathrm{cm}^{-1}\right)}{ }^{\mathrm{a}}$
$\mathrm{B}_{1 \mathrm{u}}{ }^{1}$	14.8	15.6	$\mathrm{B}_{2 \mathrm{~g}} 29$	38.6	42.7/50.3
2	24.5	25.9	2 SO	72.1	88/101.6
3	84.0	81.9/90	31	154.5	
4	145.3	127	32	185.2	
5	158.9	140	33	317.2	
6	230.5	282	34	343.1	
7	333.7	342	35	510.1	
8	362.3	342	36	686.8	
9	608.3		37	737.4	
10	735.3	725	38	791.1	
11	739.6	725	39	889.0	
12	777.5	775	40	968.1	
13	962.7	945	41	1146.3	
14	967.8	945			
15	1014.4				
$A_{u} 16$	33.1	35.7	$\mathrm{B}_{3 \mathrm{~g}} 42$	38.2	42.7/50.3
	71.7	70.9	${ }^{3} 43$	71.4	88/101.6
18	136.4		44	147.2	
19	310.4		45	183.3	
20	321.0		46	315.8	
21	427.6		47	339.5	
22	593.2		48	498.1	
23	690.5		49	648.3	
24	747.9		50	728.4	
25	884.5		51	740.7	
26	891.8		52	887.2	
27	1148.1		53	962.7	
28	1146.6		54	1013.2	
			55	1046.3	

a) Pron Chapter 6 and References 5-7
frequencies obtained from the vibronic spectrum discussed in chapter 6 and from infrared spectra. ${ }^{5-7}$ The comparison between the experimental vibronic transitions and the calculated mode frequencies is made on the premise that the ground and excited state potential surfaces are nearly superimposable. This notion is demonstrated experimentally by FE and DE spectra of $\mathrm{H}_{2} \mathrm{Pc}$ for which the vibrational energies in the S_{1} and S_{0} states differ by at most $5-10 \%{ }^{8}$ Overall, the calculated frequencies compare quite well with those observed given the qualitative nature of the force field used in the analysis. Based upon this calculation, we propose tentative out-of-plane mode assignments for the experimentally observed out-of-plane modes.

The eigenvectors corresponding to the calculated vibrations are listed in Table 7.5. From the eigenvector normal mode forms, the out-of-plane motion can be qualitatively categorized into 1) macrocycle ring deformation, 2) isoindole ring deformation, and 3) $\mathrm{C}(\mathrm{N})-\mathrm{H}$ out-of-plane wagging motion types.

The $0-100 \mathrm{~cm}^{-1}$ region is dominated by macrocycle ring deformation for which large amplitude out-of-plane motion of the four isnindole subunits occurs. This motion is located principally at the pyrrole α carbun/bridge nitrogen bonds (internal coordinates gand h). Modes 1. 2. 29, and 42 possess potential energy distributions (PED's) ranging, from 40-70\% in these coordinates. ${ }^{9}$ From the $\mathrm{H}_{2} \mathrm{PC}$ vibronic spectrum presented in Chapter f, these modes are observed as symetric over

TABLE 7.5

Out-of-Plane Eigenvector Normal Modes Calculated for $\mathrm{H}_{2} \mathrm{Pc}$.

Mode Eigenvector in Terms of Symmetry Coordinates a

$\mathrm{B}_{14}{ }^{1}$	-. 1925	E+. 3323	F-. 5829	G-. 5838	H+. 1920	M-. 3315	
2	+. 1445	E-. 2212	P-. 4510	G+. 4565	H+. 1508	M-. 2315	N
	$-.1601$	T-. 4253	U-. 1593	$V-.4301$	W		
3	$-.1407$	B+. 1407	C+. 2406	E-. 3954	P-. 2622	G-. 2505	H
	+. 1249	J-. 1249	K-. 2630	$\mathrm{M}+.4325$	N-. 1782	T-. 3704	U
	+. 1546	$V+.3658$	W				
4	$+.2500$	B-. 2500	$\mathrm{C}+.1753$	E-. 2864	P+. 4221	J-. 4221	K
	+.2154	M-. 3503	$\mathrm{N}+.2378$	T+. 3941	V		
5	-. 4540	B+. 4540	C-. 1235	E+. 1986	$\mathrm{F}+.3185$	G+. 2819	H
	+. 2686	J-. 2686	K-. 1022	$\mathrm{N}-.3632$	T+.2143	V	
6	-. 2158	B+. 2158	C +.2602	E-. 4307	$\mathrm{P}+.3443$	6-. 3574	H
	-. 2686	J+. 2686	K+.2611	M-. 4326	N		
7	$+.4007$	B-. 4007	C+. 1469	$\mathrm{P}+.1347$	G+. 2009	H-. 4019	
	$+.4019$	K-. 1001	$N-.1467$	P+. 1469	R-. 3105	$T+.3080$	V
8	+. 3543	B-. 3543	C-. 1204	$\mathrm{F}+.3123$	G-. 3064	H+ 3398	
	-. 3398	K-. 1220	N-. 1550	P- 1486	R-. 3523	T-. 3374	\checkmark
9	-. 2060	E+. 3418	P+. 3697	H+. 2649	M-. 4400	$N-1226$	R
	+. 3238	S+. 1214	T-. 2491	U-. 1993	$V+4342$	W	
10	+. 1423	P+. 2272	G-. 1518	$\mathrm{H}+7619$	(1) 4266	P. 2763	Q
	+. 1549	R-. 1440	0				
11	+ 2943	$0+1455$	P 8353	Q 4128	R		
12	-. 2613	$E+4334$	P. 5511	C 3320	H 2233	() ittict	
	+. 1401	T . 1163	U 1263	w			
13	- 2919	J. 2919	$k+1121$	P 4025	1.74.17	R. isti	
	1314	v					
11	- 3040	B-3040	10103	11. Thin	P 1213	H 10?	
15	-1864	1) 3675	H 2153	4.15れ?	\checkmark 1896	\boldsymbol{k} - 101	
	- 1115	V 2899	W				

TABLE 7.5 (Continued)

Mode Elgenvector in Terms of Symmetry Coordinates a

$A_{u} 16$	+.1503 -.1503	$C-.1656$ $\mathrm{~K}+.1656$	$\begin{aligned} & \mathrm{D}+.3721 \\ & \mathrm{~L}-.3721 \end{aligned}$	$\begin{aligned} & E-.1410 \\ & M+.1410 \end{aligned}$	$\begin{aligned} & \mathrm{P}-.3954 \\ & \mathrm{~N}-.3513 \end{aligned}$	$\begin{aligned} & \mathrm{G}+3954 \\ & \mathrm{U}+3513 \end{aligned}$	H W
17	+. 1385	A-. 2577	C+. 2891	D-. 4917	$E+.1849$	P-. 1825	G
	-. 1825	H+. 1385	I-. 2577	$\mathrm{K}+.2891$	L-. 4917	$M+1849$	N
	+. 1189	U+. 1189	W				
18	$+.1640$	A-. 2530	C+ 2932	D-. 3954	$E+1482$	P-. 3436	G
	+. 3436	H-. 1640	I + 2530	K-. 2932	L + 3954	M-. 1482	N
	-. 1435	$\mathrm{U}+.1435$	W				
19	-. 4671	A+ 4560	B-. 1114	D-. 4671	$1+.4560$	3-. 1114	L
	+. 1435	0+.1435	$Q+1147$	$\mathrm{U}+1147$	ω		
20	+ 4538	A- 4675	B+ 1189	C+ 1184	E-. 4538	I + 4674	J
	- 1189	K-1184	M- 1480	0+1480	Q		
21	1059	A+ 2007	B- 3027	C. 2501	D-1274	E. 2660	i
	- 2660	H- 1059	1-2007	J-3027	K+2501	L-1274	M
	1197	P-1197	R 4232	U-4232	W		
22	2790	C. 2637	D. 1224	E. 21.57	C) 44.57	H. 2790	k
	2637	L. 1224	M. 2217	P. 2217	R 2228	T 1-26	1
	- 2228	v V 1726	w				
23	2202	C. 21.54	11. 1039	F 1:41	F 2202	K. 2154	
	- 3039	M 1141	- 1916	P 1936	R 2859	T. $\because!$,	
	2859	V. 2103	ω				
$\therefore 1$	2115	E. 4645	1. int	4. $!$! 9	M. : 1:9		-
	1175	O 321	R. 14is	- ¢ +11!	:114	. . 0	-

TABLE 7.5 (Continued)

Mode Eigenvector in Terms of Symmetry Coordinates a

$\mathrm{B}_{2 \mathrm{~g}} 29$	$\begin{aligned} & +.1179 \\ & -.2328 \end{aligned}$	$\begin{aligned} & \mathrm{B}-.1179 \\ & \mathrm{M}+.2209 \end{aligned}$	$\begin{aligned} & C+.7966 \\ & T+.3514 \end{aligned}$	$\begin{gathered} \mathrm{G}+.2358 \\ \mathrm{U}+.1308 \end{gathered}$	$\begin{aligned} & \mathrm{H}-.1072 \\ & \mathrm{~W} \end{aligned}$	$K+.1191$	L
30	+. 1944	E-. 3189	$\mathrm{P}+.1762$	I-. 3289	K+. 3688	L-. 6348	M
	+. 2386	$\mathrm{N}-.2474$	$\mathrm{U}+.1803$	W			
31	+. 4865	B-. 4865	C+. 2356	E-. 3831	P-. 1991	G-. 2474	H
	+. 4174	T-. 1334	U				
32	-. 2591	B+. 2591	C+. 2861	E-. 4743	$\mathrm{F}+.3997$	G-. 3046	H
	-. 1695	I +.2071	K-. 2518	L+. 2789	M-. 1045	$\mathrm{N}-.1103$	T
	+. 2327	W					
33	+. 1522	B-. 1522	$C+.1101$	$\mathrm{F}+.1459$	H-. 6255	$1+.6320$	J
	-. 1268	K-. 1341	$\mathrm{M}+.1997$	Q+. 1220	W		
34	+. 5224	B-. 5224	C+. 2598	G+. 1907	I-. 2203	J+. 1214	K
	-. 2029	P-. 4420	T+. 1149	ω			
35	+. 1951	E-. 3237	P+. 1469	G-. 5439	H+. 1498	J-. 3424	K
	+. 3102	L-. 1786	R-. 1474	$\mathrm{T}+.1811$	U-. 1829	V-. 4103	ω
36	+. 1769	E- 2934	P-. 1897	G+. 2833	K-. 2768	L-. 3744	4
	+ 1406	$\mathrm{N}+1104$	Q+. 4846	$\mathrm{R}+2496$	$\mathrm{U}+.3592$	$v-.2422$	w
17	- 1404	G-. 1394	$\mathrm{H}+8457$	$0+.4460$	P+. 1139	R	
18	- 2411	E- 3999	P- 5561	G +4052	$\mathrm{H}+1672$	0-1267	v
	2127	R- 1237	T+3913	U- 1936	W		
14	14.37	C. 1652	H. 1397	13067	K. 3357	L. 2825	$*$
	1061	v- 5692	Q. 3794	R 2486	V. 1822	W	
4.	- 3071	H 3071	(306?	11. 5041	P 1.05	T	
$1:$	1!68	1. 1124	1424	K. こ1?	$1 \cdot 1: 1$	4 "4?	
	- 4Pa4	H : 410	\checkmark				

TABLE 7.5 (Continued)

Mode Eigenvector in Terms of Symetry Coordinates

45	+. 1615	A-. 2996	C+. 2421	D-. 2706	E. 1013	P 2789
	+. 4128	H-. 3138	J +.3138	K+. 2646	M- 4396	N- 2149
	-. 1479	V				
46	+. 6131	A- .6148	B+. 1105	C+. 1002	D+ 1202	E- 1396
	+. 1985	J-. 1985	K+. 1148	$\mathrm{N}-.1941$	O-. 1218	T. 1240
47	+. 2509	A- 2843	B+. 1431	C+ 1198	E-. 2690	H-4985
	+. 4985	$\mathrm{K}+.1890$	$\mathrm{R}+.1240$	$\mathrm{U}+.4040$	v	
48	-. 1501	$\mathrm{B}+.3268$	C-. 2935	D-. 4908	G+. 2145	M- 3564
	+. 1623	P+. 1237	S+.1631	T+. 4080	$U-.2014$	$V+2426$
49	+. 2737	C-. 2640	D-. 2379	E-. 2581	$\mathrm{G}+.4123$	H-. 1837
	$\begin{aligned} & +.3052 \\ & -.3401 \end{aligned}$	$\mathrm{N}+.3212$	P+. 1007	R-. 3008	S+. 2819	T+.1333
50	$+.1284$	C-. 1271	D-. 2979	E+. 1118	P+. 4455	G-. 3629
	-. 1031	$\mathrm{N}+.1451$	0+.4155	P-. 2352	Q-. 1579	R+. 2259
	+. 2291	T-. 3401	$\mathrm{U}+.1628$	W		
51	$+.1861$	G-. 1684	H+. 1407	$\mathrm{P}+.8176$	Q+. 3895	$\mathrm{R}+.1560$
	$-.1236$	U-. 1071	$\mathrm{V}+.1140$	W		
52	-. 1411	A+. 3139	C-. 3430	D-. 2800	E+. 1051	F+. 1211
	-. 5828	0-. 3970	$\mathrm{P}+.3518$	T-. 1677	U	
53	-. 2953	J+. 2953	K+. 4070	Q-. 7522	R-. 2439	S+. 1332
54	-. 1645	G+. 3629	H-. 2170	M+. 3595	N-. 1909	$R+.7091$
	+. 1130	V-. 2908				
55	+. 3167	A-. 4127	B+ . 3424	C-. 2172	D-. 1148	E+. 5470
	-. 4583	$\mathrm{P}+.1911$	T			

a) Symmetry coordinates contributing less than 1% to the potential energy distribution are not included.

1:1)

respurticuly The far infrared studias also show that the band obseremt
 bridge nitropen motions. The eigenvertor form for mode if rorrobotater. this assignment as it possesses a bell of about 25% a the pyrale a carbon bridge nitrogen torsion coordindtes (p, and h)
 dominates. From the eigenvector normal mode forms, the $C-H$ vibrations are, for the most part, uncoupled from the H_{2} Pe ring modes as the out of-plane wagging coordinates o-r account for between 71 and 97% of the PED's responsible for the motions. The infrared spectrum of $\mathrm{H}_{2} \mathrm{HC}$
posisesses bimits at 725.775 , and $945 \mathrm{~cm}{ }^{1}$ which can be attributed to $B_{1 u}$ type out-of-plane $\left(\because H\right.$ wagging. ${ }^{7}$ The normal coordinate arralysis reveals $C-H$ wagging mode frequencies in this vicinity at 735.3 (mode 10). 739 € (mode 11), 777.5 (mode 12), $962(\operatorname{mode} 13)$, and $967.8 \mathrm{~cm}^{-1}(\operatorname{mode}$ 14). The only large discrepancy between the calculated frequencies and the experimental data involves out-of-plane ($\mathrm{B}_{1 \mathrm{l}}$) wagging motion of the imino hydrogens. This mode is calculated to occur at 1014.4 C用 (mode 15) with a PED of 49% in the s internal coordinate, but it has been assigned to a band observed in the vicinity of $700 \mathrm{~cm}-16,7$ based upon isotopic substitution. Intramolecular hydrogen bonding between the imino hydrogens and adjacent core nitrogen atoms may account for the large difference between the calculated and observed! dssigned modes. However, mode 9 calculated at $608.3 \mathrm{~cm}^{-1}$ is near the assigned N H ont of plane wagging frequency and exhibits and 11\% PED rontribution from the N-H wagging coordinate, s. and 20\% from the pyrole torsion coordinate. m. Performing the normal coordinate analysis using deuterons at the pyrole nitrogens results in mode 9 rell shifting to $536.3 \mathrm{~cm}{ }^{1}\left(\cdot H^{\prime} \because D=1.13\right)$ and mode 15 red shifting to 916 $\mathrm{rm}^{1}(\nu H / \omega D=1.11)$ These results suggest that the mode responsible for the band observed at $711 \mathrm{~cm}^{1}$ could be due to highly coupled motion betwern the $N \cdot H$ group and the pyrole ring and not to charac teristic $N-H$ motion which should occur in the $900-1000 \mathrm{~cm} \mathrm{~m}^{1}$ region.

SIMMMARY AND CONCLUSIONS:

An out-of plane normal conrdinate analysis is conducted on $H_{2} P_{r}$ to characterize the large amplitude low frequency motion present in both the isolated $H_{2} P C$ and $M g P r$ moieties as well as their respective vdW clusters with small solvents (see Chapter 6). The out-of-plane normal
coordinate analysis is conducted using the FG matrix method. The nuclear motion is modeled by a set of 82 internal coordinates; $48 \mathrm{C}-\mathrm{C}(\mathrm{N})$ bond torsions, $18 \mathrm{C}(\mathrm{N})-\mathrm{H}$ bond wags, and $16 \mathrm{C}-\mathrm{C}(\mathrm{N})$ bond wags. The force field used in the model consists of the diagonal force constants describing the out-of-plane motion in benzene. The resulting eigenvalues and eigenvector normal modes are compared with experiment and tentative assignments are proposed based upon the calculations. In the comparison, observed vibronic symmetric overtone transitions and infrared active $B_{1 u}$ vibrational transitions are utilized. Overall, agreement between the observed and calculated frequencies is excellent given the qualitative nature of the force field used in the analysis and the fact that the force field is not refined/fit to the experiments.
$\mathrm{H}_{2} \mathrm{Pc}$ AND MgPc 2-Color TOPMS Experiments:
Ultracold 2-color TOFMS spectra of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc could not be observed with the current experimental apparatus configuration available in the laboratory. In initial attempts to obtain 2-color TOFMS spectra of the macrocycles, spectra were observed which were not tunable when the pump laser frequency was varied. Both hellum and argon carrier gases were employed to expand the molecules into the vacuum apparatus however, the spectra were significantly broadened. These results are somewhat surprising since ultracold 2 -color TOFMS spectra of small aromatic molecules such as benzene, pyrazine, and aniline have been observed in the existing apparatus. ${ }^{10-12}$ One possible explanation for lhe nontunability is that the molecules are vibrationally/rotationally hot when they reach the section of the apparatus where the spectra are taken. In this case, molecular heating may occur in the section of the apparatus between the supersonic nozzle and the TOFMS flight tube.

In the existing apparatus. ${ }^{12}$ Figure 7.3. the supersonic expansion is sampled using a compound angle conical skimmer. ${ }^{13}$ The sampled portion of the supersonic expansion then travels about 50 cm to the TOFMS ionization area where it is optically probed. Based upon the aforementioned experimental observations, the expansion could be disturbed to some extent by the presence of the skimmer in the supersonic flow path. In order to understand the interferences in the supersonic flow which result in molecular heating, it is instructive to look at the physical properties of the supersonic expansion before, at, and after the skimmer.

Assuming that the expansion proceeds in an adiabatic and isentropic manner and that the expanding gases can be considered ideal, the centerline translational temperature T_{1}, the centerline static pressure P_{1}, and the centerline static density ρ_{1} of the expansion before the skimmer can be described by ${ }^{14}$
7. 4 a

$$
T_{1}=\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{-1} T_{0}
$$

$7.4 b$

$$
P_{1}=\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{\frac{-Y}{\gamma-1}} P_{0}
$$

7.4c

$$
\rho_{1}=\left(1+\frac{\gamma \cdots 1}{2} M_{1}^{2}\right)^{\frac{-1}{\gamma-1}} \rho_{0}
$$

as a function of centerline Mach number M_{1}. nozzle backing region stagnation temperature T_{0}. stagnation pressure P_{0}. stagnation density ρ_{n}. and $Y=C_{p}{ }^{\prime} C_{v}=5 \cdot 3$ for monatomic carrier gases. The centerline Mach

Figure 7.3
Supersonic molecular jet apparatus. I - PE chamber. OVBP - ofl vapor booster pump. N - nozzle. S - skimmer. PMT - photonultiplier tube. Ti 2 inch tubing. T2-31/2inch tubing. GV - 3 inch gate valve. II TOPMS chamber. FT - flight tube. IA - Ionization area. DP - diffusion pump.
 - 111 1\% " 75

for which x is the centerline downstream distance and D is the super sonic nozzle throat diameter. Since the vacuum chamber pressure is finite, acceleration of the expansion will cease at a terminal Mach number which can be determined using Equation $7.4 a$ and 14
$7.6 \quad \frac{T_{1}}{T_{0}}=\left(\frac{P_{1}}{P_{0}}\right)^{\frac{Y-1}{Y}}$
for which P_{i} is the vacuum chamber static pressure. For the continuous supersonic nozzle used in the experiments, typical nozzle backing pressures are around 150 psig. The static pressure in the vacuum chamber at this backing pressure is about 2×10^{-3} torr. The nozzle throat diameter is typically 100 microns. Using Equations 7.4a, 7.5 and 7.6. the centerline terminal Mach number for the expansion is calculated to be at $M_{t}=36$ and is reached at about 4 mm downstream of the nozzle throat.

The supersonic flow properties are described by Equations 7.4-6 until the flow encounters the skimmer or until the flow passes through the Mach disk which is located at a downstream position determined by ${ }^{15}$
$7.7 \quad X_{M D}=.670\left(\frac{P_{0}}{F_{i}}\right)$

Figure 74 presents the centerline temperature profiles for
supersonic expansions begiming at $T_{0} \quad 773 \mathrm{~K}$ and $\mathrm{T}_{0}=298 \mathrm{~K}$ as a function of downstream distance x calculated using Equations 7.4 and 7.5 with the centeriine terminal Mach number taken at 36 . On the basis of the calculations. the temperature profiles for supersonic expansions beginning at elevated temperatures ($T_{0}=773 \mathrm{~K}$) are largely the same as those beginning at room temperature $\left(\mathrm{T}_{\mathrm{o}}=298 \mathrm{~K}\right)$. Thus, $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc should, therefore, be nearly as internally cold before the skimmer as other species observed in the supersonic molecular jet generated by using room temperature expansions assuming that rotational and vibrational temperatures equilibrate near the translational temperature. ${ }^{15,16}$ These notions are corroborated experimentally in $F E$ for which ultracold spectra of $\mathrm{H}_{2} \mathrm{Pc}, \mathrm{MgPc}$, and their respective solute/solvent clusters are observed. (The FE spectra are taken between 4 and 8 mm from the nozzle throat, well upstream of the Mach disk.)

Large deviation from isentropic flow may occur at the skimmer which can result in molecular heating. The interferences from the skimmer can be attributed to shock waves forming in the expansion as the flow passes through the skimmer. The physical properties of the supersonic flow after passing through the shock waves can be expressed as a function of upstream conditions and the angle of the shock waves with

Pigure 7.4

Downstream distance versus centerline translational temperature for supersonic expansions beginning at 773 K and 298 K .
respert to the flow direction. The centerline downstream translational temperature T_{2}. static pressure P_{2}, and statio density ρ_{2} are ${ }^{1 /}$
$7.8 a$

$$
T_{2}=\left(\frac{2 \gamma}{\gamma+1} M_{1}^{2} \sin ^{2} \varepsilon \frac{\gamma-1}{\gamma+1}\right)\left(\frac{\gamma-1}{\gamma+1}+\frac{2}{(\gamma+1) M_{1}^{2} \sin ^{2} \varepsilon}\right) T_{1}
$$

$7.8 b$

$$
P_{2}=\left(\frac{2 \gamma}{\gamma+1} M_{1}^{2} \sin ^{2} \varepsilon-\frac{\gamma-1}{\gamma+1}\right) P_{1}
$$

$7.8 \mathrm{c} \quad \rho_{2}=\left(\frac{(\gamma+1) M_{1}^{2} \sin ^{2} \varepsilon}{2+(\gamma-1) M_{1}^{2} \sin ^{2} \varepsilon}\right) \rho_{1}$
for which M_{1} is the Mach number just upstream of the shock wave and ε is the flow deflection angle between the shock wave and the flow direction. Downstream/upstream translational temperature ratio versus flow deflection angle for an upstream Mach number of 36 is plotted in Figure 7.5. The plot demonstrates the severe heating effects that can occur in the flow as it passes through the shock wave. The most severe case is at $\varepsilon=90^{\circ}$ which corresponds to a normal shock wave. Here, the downstream temperature is about 405 times the upstream temperature. Even at smaller flow deflection angles (oblique shock waves), the heating is significant. For example at $\varepsilon=10^{\circ}$. the downstream temperature is a factor of 13 greater than the upstream temperature.

Bier and Hagena have shown, by Schlieren photographs, the types of possible skimmer interferences present in the expansion. ${ }^{17}$ At larger nozzle/skimmer distances, the shock wave system in the expanding jet far Is similar to that depicted in Figure 7.6a, for which the supersonic flow is contained in oblique and normal shock (Mach disk) waves. In

Figure 7.5

Flow deflection angle versus downstream/upstream centerline translatlonal temperature ratio for flow across a shock wave at an upstram Mach number of 36 .

5
(a)

(d)

(b)

(c)

(f)

Pigure 7.6
Shock wave system in a supersonic molecular jet expansion in the presence of a skimmer downstrean of the nozzle throat.

```
the normal sho:k wis.
```


 the skimmer are in subsonic flow and internally hot As the moritr ir moved towards the skimmer, the shock system in the jert stream is deformed, and the shock wates move towards the nozzle. Figures 7 ib 7.6c. Here, the normal shock wave is still detached from the skimmer orifice and results in "shock beam" formation. On further approach of the nozzle to the skimmer, the normal shock wave attaches to the skimmer orifice, Figures 7.6d-7.6f. The normal shock wave becomes obllque shock waves on both the upstream and downstream sides of the skimmer. The obilque shock wave upstream of the skimmer should not affect the supersonic flow at this nozzle'skimmer distance unless the skimmer mount or chamber walls are in close proximity of the skimmer orifice. Molecules entering the skimmer are in supersonic flow and may be subsequently heated upon traversing the oblique shock waves downstream of the skimmer. The amount of heating which occurs in the downstream oblique shock system depends upon the static pressure behind the skimmer and upon the flow deflection angle.

Molecular heating which occurs in the shock wates call he thoupht of as a sequence of collisional energy transfer processes up the mob. cular vibrational and rotational manifolds. Fach elementary ithp lavolves the deposition of a small amount of vibritional and rotationit energy at the expense of translational onerey sifice single far: systems yield ultracold 2 color forms spectra and the macrocycles do not, differences must exist between the collisional enerey transfor
 rhe shock system. First, the macrocycles are about 3 times larger in diametor than the singlering systems. Approximating the molecules as hard spheres, one finds that $H_{2} P_{C} M g P C$ will undergo between 6 and 9 times more collisions in the shock system than the single ring molecules depending upon whether they collide with carrier gas molecules or with other macrocycles. Second, $H_{2} P c$ and MgPc possess a large number of vibrational modes compared to the single ring systems (168 for $\mathrm{H}_{2} \mathrm{Pc}$ versus 30 for benzene); in particular, many of these modes are of low frequency. $H_{2} P c$ has nine ground state vibrational modes with energies below $100 \mathrm{~cm}^{-1}$. These low-lying vibrational levels may facilitate heating of the macrocycles. As the large molecules pass through the shock system, the interconversion of small amounts of translational energy into vibrational energy should be more efficient than in the single ring systems for which the lowest ground state vibrational lerels lie at about $400 \mathrm{~cm}^{-1}$. Either or both of these two factors may rontributa to the molecular heating of the matrotycres.

Since the skimmer used in the initial wxperiments did not perform satisfactorily in maintaining, intrrnally rold H, Pe MgPe beams, a new skimmer was destgned to minimize the shock wave efferts on the super
 skimmer. the diameter af the skimmer orifice dad the interior amit axterior skimming: aryslas.

The length of the skimmer is important since the skimmer must be sufficiently long so that the oblique shock wave system does not cause flow perturbations about the skimmer orifice due to skimmer mount or vacuum chamber wall interactions. These interactions tend to degrade supersonic beam skimming by creating a boundary layer at the skimmer mount or chamber walls which rotates the attached shock wave towards a critical angle (more normal to the supersonic flow) which could yield shock wave detachment and the formation of bow shock wave similar to that shown in Figure 7.6b-7.6c. ${ }^{17,18}$

The diameter of the skimmer orifice dictates the gas throughput of the skimmer. ${ }^{19}$ Too large a skimmer diameter will cause TOFMS chamber pumping problems as well as an increase in the intensity of the oblique shock wave system downstream of the skimmer orifice.

The internal skimming angle must be as large as possible to insure that molecules entering the skimmer orifice and striking the skimmer walls can be pumped away fast enough to minimize scattering/ heating of the beam molecules. ${ }^{19,20}$ Too small an internal skimming angle will cause skimmer choking and boundary layer formation which results in an increase in the oblique shock wave intensity downstream of the skimmer orifice, similar to that occurring if the skimmer orifice diameter is too large.

The exterior skimming angle determines the upstream flow deflec tion caused by the skimmer. The angle must be kept small enough so that the oblique shock wave will not detach from the skimmer orifice and destroy the supersonic flow before the molecules pass through the skimmer. The maximum flow deflection angle $\varepsilon_{\text {max }}$ which can be negutialfod by a supersonic flow without shock wave detachment is given by ${ }^{14}$
7.9

$$
\sin ^{2} \varepsilon_{\max }=\frac{1}{\gamma_{1}^{2}}\left(\frac{\gamma+1}{4} M_{1}^{2}-1+\left[(\gamma+1)\left(1+\frac{\gamma-1}{2} M_{1}^{2}+\frac{\gamma+1}{16} M_{1}^{4}\right)\right]^{1 / 2}\right)
$$

as a function of Mach number M_{1} at the skimmer orifice. The maximum flow deflection angle is related to the maximum exterior skimming angle $\delta_{\text {max }}$ and skimmer Mach number by ${ }^{14}$
$7.10 \quad \frac{1}{\tan } \delta_{\text {max }}=\left(\frac{9(\gamma+1)}{20} \frac{M_{1}^{2}}{M_{1}^{2} \sin ^{2} \varepsilon_{\max }-1}-1\right) \tan \varepsilon_{\max }$

The maximum flow deflection angle and the maximum exterior skimming angle are plotted versus Mach number in Figure 7.7.

From Figure 7.7, the maximum flow deflection angle and the maximum exterior skimming angle approach limiting values at Mach numbers above 6. The high Mach number of the supersonic flow used in the experiments thus makes it possible to use a skimmer with exterior skimming angles of up to $46^{\circ} .41^{\circ}$ was selected for the exterior skimming angle used in the new skimmer to provide a safety factor to avoid the occurrence of a normal detached shock upstream of the skimmer orifice. A 35° interior skimming angle was selected for the new skimmer as $1 t$ was the largest feasible angle with respect to the exterior skimming angle that the skimmer could be ground without causing structural problems. The skimmer shape was chosen as conical. The length of the skimmer was selected at 47 mm using the exterior skimming angle and a skimmer base diameter of 35 mm . This length is about a factor of 2 larger than that of the skimmer utilized in the initial TOFMS experi ments. This larger skimmer should minimize possible upstream boundary layer and chamber wall effects. $14,19,20$ The maximum diameter of the skimmer orifice was selected at 2 mm to avoid TOPMS chamber pumping

Pigure 7.7
Maximum flow deflection angle ($\varepsilon_{\text {max }}$) maximum skimming angle ($\delta_{\text {max }}$) versus skimmer Mach number.
problems. Three skimmers were fabricated possessing the above length, skimming angles, and orifice diameters of .5, 1 , and 2 mm in order to determine the optimal skimmer configuration since no theoretical relationshlp exists between skimmer orifice diameter and supersonjc flow characteristics. These skimmers should give an indication of the interference caused by the oblique shock system downstream of the skimmer. The intensities of the shock waves should decrease with decreasing skimmer orifice diameter on the basis of skimmer throughput, boundary layer, and skimmer choking arguments.

2-color TOFMS spectra of $\mathrm{H}_{2} \mathrm{Pc}$ taken using the three skimmers are shown in Figure 7.8. The spectra are taken using $428^{\circ} \mathrm{C}$ nozzle backing region temperature, $560^{\circ} \mathrm{C}$ nozzle tip temperature, 25 mm nozzle/skimmer distance, and 2.5 psig argon nozzle backing pressure. On decreasing the skimmer orifice from 2 to .5 mm , the spectra evolve from being broad and featureless (trace $A)$ to being "quasi" cold (trace C). In both traces B and C, the $H_{2} \mathrm{Pc} \mathrm{O}_{0}^{\mathrm{O}}$ and A_{0}^{2} are observed; however, the spectra are smeared out by rotational broadening and vjbrational sequence congestion. The sequence structure in trace C is about $40 \mathrm{~cm}^{-1}$ wide and peaks at about $16 \mathrm{~cm}^{-1}$ to the red of the $\mathrm{H}_{2} \mathrm{Pc} 0_{n}^{o}$. Similar sequence structure is also observed to the red of the A_{0}^{2}. Assuming a 10% decrease in vibrational frequency between the ground and excited states for $H_{2} \mathrm{Pc}$, a vibrational temperature of about 150 K can be estimated from the observed sequence structure.

These experiments identify the skimmer as being the major sourrea of interference in the supersonic expansion. In particular, the ob servations suggest that the downstream oblique shock system is responsible for the molecular heating since the interference decreases with

Pigure 7.8

2-color TOPMS of $H_{2} \mathrm{Pc}$ in the vicinity of the Q_{X} band 0_{0}°. Trace A taken using a 2 mm skimmer orifice. Trace B taken using a 1 mm skimmer orifice. Trace C taken using a .5 mm skimmer orifice.
decreasing skimmer orifice diameter. The maintenance of at least some degree of cold internal temperatures in the spectrum taken using the . 5 mm orifice skimmer (trace C) demonstrates that the downstream shock wave intensity is still large enough to cause observable skimmer interference in the supersonic flow. This notion is corroborated by experiments using higher backing pressures of argon carrier gas (up to 50 psig) which yield broad spectra that can be attributed to an Increase in the downstream skimmer interferences similar to those observed using the 2 mm orifice skimmer.

As mentioned above, the intensity of the downstream oblique shock wave depends upon the static pressure in the vacuum chamber directly downstream of the skimmer. In order to minimize the interference caused by the downstream shock system, the static pressure in this area should be kept lower than the upstream static pressure so that skimmer choking and boundary layer formation does not occur. $14,19,20$ In the existing apparatus (Figure 7.3), the region between the skimmer and the TOFMS chamber is constructed using two lengths of 2 inch diameter (4 $1 / 3$ inches long) and $31 / 2$ inch diameter ($41 / 3$ inches long) tubing and a 3 inch gate value assembly (4 $1 / 3$ inches long). The region directly downstream of the skimmer is displaced by about 70 cm from the TOFMS chamber diffusion pump. The tubing between the two vacuum chambers essentially forms a "dead end" region with a leak provided by the skimmer which may not be adequately evacuated by the TOFMS chamber pumping system. A pressure gradient may thus be present in this region which may give rise to the shock system interference nbserved.

Other vacuum systems ${ }^{21}$ which utilize skimmers to sample the supersonic expansion differ In design from our existing apparatus.

These systems possess two key design features that minimize the effects of the downstream shock waves. First, the vacuum systems are designed for the efficient removal of gas molecules from the post-skimmer region by pumping directly downstream of the skimmer with pumps capable of sustaining static pressures of about 10^{-6} torr. Second, the systems allow for minimization of chamber wallyoundary layer effects in the post-skimmer region by making the chambers large and divergent with respect to the skimmer base. Neither of these features is incorporated in the existing apparatus design.

A proposed modification to the existing apparatus which incorporates the aforementioned design features is shown in Figure 7.9. The modification involves replacing the 3 inch gate valve, the interchamber tubing, and the 6 Inch chamber connecting ports with 12 inch connecting ports and a 16 inch port flange with a divergent hole bored in its center. The 12 inch connecting ports will provide for more than adequate divergence downstream of the skimmer as well as provide for more efficient pumping of the region by the existing TOFMS pumping system. The 16 inch flange serves as both a chamber divider and as a skimmer mounting surface. The skimmer can be mounted in the chamber by clamping its base over the hole in the 16 inch flange with a small flange assembly. For $F E$ experiments, the skimmer can be removed a sealing plate can be placed over the flange hole to isolate the fe chamber from the TOFMS chamber. The connecting ports can be constructed with different lengths so that the 16 inch flange.'skimmer assembly can be located closer to the TOFMS flight tube. This will allow for an overall shorter nozzle' TOFMS ionization area distance which should increase the molecular density at the ionization area by a factor of $2500^{\prime} \mathrm{Y}_{2}$ for which X is the nozzle'TOFMS ionization arfa distance in cm .

Figure 7.9

Proposed supersonic molecular jet apparatus. I - PE chamber. OVBP oll vapor booster pump. N - nozzle. S - skimmer. PMT - photomultiplier tube. F - 16 inch Flange. II - TOFMS chamber. FT - flight tube. IA - ionization area. DP - diffusion pump.
summary and conclusions:
Initial attempts to obtain ultracold 2-color TOFMS spectra of $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc yielded negative results. Both helium and argon carrier gases were employed to expand the macrocycles into the vacuum apparalus; however the spectra were significantly broadened. The nontunability of the spectra with varying pump laser frequency was attributed to molecular heating of the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc moieties by shock waves in the vicinity of the skimmer used to sample the supersonic expansion. New skimmers were designed to minimize the shock wave effects on the supersonic flow. "Quasi" cold 2-color TOFMS spectra of $\mathrm{H}_{2} \mathrm{Pc}$ were obtained using these skimmers. Experiments identified the skimmer as being the major source of interference in the molecular expansion. In particular, the observations suggest that a downstream (Chamber II) oblique shock system is responsible for the molecular heating. Through identification of key apparatus design factors which should minimize the downstream shock wave effects, proposed modifications to the existing laboratory apparatus are suggested. The proposed modifications involve enlarging the region downstream of the skimmer to allow for more effective pumping and to minimize skimmer choking and boundary layer effects in the postskimmer region.

REFERENCES

1. E.B. Wilson Jr., J.C. Decius, and P.C. Cross, "Molecular Vibrations, Theory of Infrared and Raman Vibrational Spectra," (McGraw-Hill Book Co., Inc., 1955).
2. J.C. Decius, J. Chem. Phys. 17, 1315 (1949).
3. B.F. Hoskins and S.A. Mason, Chem. Comm., 554 (1969).
4. P.C. Painter and J.L. Koenig, Stectrochimica Acta. 33A, 1019 (1977) .
5. T. Kobayashi, Spectrochimica Acta. 26A, 1313 (1970).
6. T. Kobayashi, F. Kurokawa, N. Uyeda, and E. Suito, Spectrochimica Acta. 26A, 1305 (1970).
7. B. Stymne, F.X. Sauvage, and G. Wettermark, Spectochimica Acta. 35A, 1195 (1979).
8. P.S.H. Fitch, C.A. Hayman, and D.H. Levy, J. Chem. Phys. $\underline{7}^{3} 1064$ (1980).
9. The PED's are calculated by using o PED $=100 \times\left|C_{i}\right|^{2}$ for which C_{i} is the eigenvector coefficient for symmetry coordinate in the eigenvector normal modes.
10. J. Wanna and E.R. Bernstein, J. Chem. Phys. 85, 1795 (1986); J. Wanna, J.A. Menapace and E.R. Bernstein. J. Chem. Phys. 85, 1795 (1986) .
11. E.R. Bernstein, K. Law and M. Schauer, J. Chem. Phys. 8 0, 634 (1984); M. Schauer and E.R. Bernstein, J. Chem. Phys. ́ㅡㅇ. 726 (1985).
12. M. Schauer, Ph.D. Thesis, Colorado State University, 1984. E.R. Bernstein. K. Law and M. Schauer, J. Chem. Phys. 80, 207 (1984).
13. The skimmer used in the experiments is a model 1 skimmer purchased from Beam Dynamics, 623 E. 57th Street, Minneapolis, Minnesota 55417 .
14. W.C. Reynolds and H.C. Perkins. "Engineering Thermodynamics." (McGraw-Hill Book Co., Jnc.. New York, 1977); M.J. Zucrow and J.D. Hoffman, "Gas Dynamics," Vol. I (J. Wiley and Sons, Inc.. New York, 1976).
15. P.P. Wegener. "Molecular Beams and Low Density Gas Dynamics." (Marcel Dekker. Inc.. New York, 1974).
16. A. Amirav, U. Even, J. Jortner, Chem. Phys. 51, 31 (1980).
17. K. Bier and O. Hegena, "Rarefied Gas Dynamics," edited by J.A. Laurmann (Academic Press, New York) Vol. I, p. 478-496. 1963.
18. U. Bossel, Entropic 30, 11 (1969).
19. A. Kantowitz and J. Grey, Rev. of Scientific Instruments 22. 328 (1957).
20. K. Bier and 0. Hegena, "Rarefied Gas Dynamics," edited by J.H. el Leeuw (Academic Press, New York) Vol. II, p. 260-278, 1966.
21. M.G. Liverman, S.M. Beck, D.L. Morts, and R.E. Smalley, "Rarefied Gas Dynamics" edited by R. Campargue (Academic Press, New York) Vol. II, p. 1037-1048, 1979; D.H. Levy, L. Wharton, and R.E. Smalley, "Laser Spectroscopy in Supersonic Jets," in Chemical and Biological Applications of Lasers, Vol. II, edited by C. Bradley Moore (Academic Press, New York) 1977; J.B. Fenn and J. Deckers, "Rarefied Gas Dynamics," edited by J.A. Laurmann (Academic Press, New York) Vol. I, p. 497-515. 1963; J.G. SkoFronick, Review of Scientific Instruments, $\underline{38} 1628,1967$.

CHAPTER EIGI!T

FIJTURE EXPERIMENTS AND CONCLUSIONS

This chapter presents the basic ideas and motivations for future experiments which can be conducted using the techniques and experimental set-ups currently available in the Bernstein group laboratory. The proposed studies entail those experiments that will extend or complement the work presented in this dissertation. This chapter also summarizes the conclusions drawn from the work accomplished on the molecules and clusters presented in Chapters 2-7. The conclusions include the most important results obtained from the work. For specific conclusjons pertaining to each of the systems studies, the appropriate chapters in the dissertation should be consulted.

Future Experiments.
Effects of Macrocycle Ring Substitution on Solvation - The high temperature supersonic molecular jet techniques utilized to study $\mathrm{H}_{2} \mathrm{PC}$. MgPc, and their respective vdw clusters with small solvents (Chapter 6) also gives us the opportunity to study the effects of ring substitution in the macrocycles on their solvation properties in an ultracold iso lated environment. For example in the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc cluster studies. major differences exist between the two cluster solutes in that the $H_{2}{ }^{\prime}$ clusters exhibit enhanced stabilization in the s_{1} state relative to the S_{0} state whereas the MgPc rlusters exhibit enhanced stabilization in the
S_{o} state relative to the S_{1} state. This difference appears to be due to the magnesium substitution in the phthalocyano core. Furthermore, the spectra suggest that the intermolecular interactions between MgPc and solvents having lone electron pairs possess major contributions from the central magnesium atom and the solvent electron pairs.

These observations pose several questions pertaining to the physics and chemistry responsible for the solvation properties of the phthalocyanines (Pc's). Questions that can be considered include: 1) are the solvation properties of Pc's dependent upon the specific metal atom present in the phthalocyano core; 2) does the relative stabilization of one electronic state over another depend upon the specific central metal atom; 3) do cluster geometries and solute solvation sites change significantly with different central metal atoms; and 4) are the central metal atoms in the P moieties responsible for a major portion of the intermolecular interaction.

To explore the effects of central metal atom substitution in Pc's, initial experiments can be conducted on zinc phthalocyanine (ZnPc). The fluorescence quantum yield for ZnPc is about .3 which is comparable to those for $H_{2} \mathrm{Pc}(.7)$ and $\operatorname{MgPc}(.6) .{ }^{1}$ This quantum yield is large enough to allow for observation of ZnPc and its respective vodw clusters in fluorescence excitation experiments. The experiments could initially entail clustering ZnPc with solvents such as those used in the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc studies. By comparing the ZnPc cluster spectra and calculated cluster geometries with those for the MgPc cluster systems, the effects of the central metal atom on cluster properties can be explored. Subsequent experiments in this area could include spectroscopic and modeling studies on Pc's containing cadmium, sodium, and lithlum.

Another set of experiments which can be conducted to study the effects uf ring substitution on the P solvation properties involves the analysis of a tetrabenzoporphyrin (TBP) solute series clustered with various solvents. Macrocycles which can be initially studied in this class include free base tetrabenzoporphyrin (H_{2} TBP), magnesium tetrabenzoporphyrin (MgTBP), and zinc tetrabenzoporphyrin ${ }^{2}$ (ZnTBP). This class of compounds offers the opportunity to study the effects of the solute bridge nitrogens on the solvation properties of the Pc class as $H_{2} T B P$. MgTBP, and ZnTBP differ from their respective Pc analogues only by replacement of the bridge nitrogens in Pc by methine bridges in TBP. The TBP compounds proposed for study also possess fluorescence quantum yields (. 46 for H_{2} TBP, .55 for MgTBP, and .35 for $\left.Z n T B P\right)^{1}$ which are favorable for observation in a supersonic molecular jet fluorescence excitation experiment. Through the analysis of the cluster spectral shifts, chromophore vibronic structures, and calculational modeling of the cluster geometries and binding energies, the effects of the bridge nitrogens on the macrocycle solvation properties may be established. Cluster studies using the $T B P$ solutes are interesting and inportant as they will provide the link between the Pc's and their biologically active analogues, the porphyrins, in regard to cluster geometry, binding energy, preferred solute solvation sites, and major interaction types responsible for solvation.

Aromatic Solute/Aromatic Solvent Clusters - All the aforementioned Pc and TBP solutes can be clustered with a number of small aromatic solvents such as benzene, pyrazine, pyrimidine, and pyridine Studying these clusters gives us the opportunity to explore cluster
energetics and dynamics from the point of view of both the cluster solute and solvent. Supersonic molecular jet studies can be conducted by probing both the $\mathrm{Pc} / \mathrm{TBP}$ solute and the benzene/N-heterocycle solvent optical transitions. The studies will yield insight into the importance of the solvent aromatic π cloud and/or nonbonded electron pairs on solvation. For example, clustering MgPc with pyrazine should provide detailed information on the participation of the solvent nonbonded electron pairs with the magnesium central metal atom. If the solvent nonbonded electron pairs are major contributors in cluster formation' stabilization, the $n \pi^{*}$ transition in pyrazine should not exist or be highly perturbed (blue shifted). The cluster systems are also interesting in the respect that they may allow one to determine if changes in the cluster binding energy upon electronic excitation depend on the specific electronic excitation analyzed. In particular, one could ask the question: will the change in cluster binding energy be different in magnitude if the cluster solvent optical transition is probed rather than the cluster solute optical transition? Furthermore, these studies may yield information on differtures in the relative stabilization of the solute and solvent electronic states. Do the spectral shifts observed when probing the solvent optical spectrum differ in sign than those observed when probing the cluster solute spectrum; that is. are the spectral shifts both bathychromic or hypsochromic or is the solvent spectral shift bathychromic and the solute shift hypsochromic (or vice versa)?

Phthalocyanine and Porphyrin Vibronic Structure - Up to this point, we have only considered analyzing the Pc and TBP macrocycles in cluster systems. The vibrational spectroscopy of these molecules is
also important in the understanding of the vibrational structure present in biologically significant systems. In particular, elucidation of the vibrational structure in the $P C$ and $T B P$ systems may yield valuable information regarding which portions of the macrocycles participate in the various vibrational motions. Supersonic molecular jet studies on isolated Pc and TBP can contribute to the resolution of the excited state energetics present in the systems since the techniques greatly simplify the vjbronic spectra and thus facilitate their interpretation. As discussed in Chapter 6 , the low frequency motion present in the $H_{2} P c$ and MgPc vibronic spectra is characterized using the results of an out-of-plane normal coordinate analysis; and in Chapter 7, the calculations on $\mathrm{H}_{2} \mathrm{Pc}$ are compared to infrared data. These studies make it possible for us to determine the detailed nature of the out-of-plane motion occurring in specific regions within the $H_{2} P c$ vibrational manifold. In order to obtain a complete understanding of the macrocycles vibrational structure, the in-plane motion should be characterized. The vibronic spectra of the Pc and TBP molecules presented above can be analyzed using the results of both in-plane and out-of-plane normal coordinate analyses. In these studies, the in-plane motion can be modeled using a refined force field determined from normal coordinate analyses on the in-plane motion occurring in porphyrins. ${ }^{3-7}$ The combination of calculational modeling and spectroscopic studies on these systems should increase our understanding of the structural changes (nuclear motion) occurring in the various electronic states as well as the extent of interelectronic state mixing (vibronic coupling) between the different electronic states in the macrocycles. These studies will also be useful in the basic understanding of the spectroscopy in more complex systems such as substituted Pc's and porphyrins.
$\equiv=\underline{-}$ Solute/Solvent Interaction in Clusters - The MgPc(CO $)_{1}$ and $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$ clusters presented in Chapter 6 exhibit vibronic spectra with distinctive spectral shifts. The $H_{2} \mathrm{Pc}^{\left(\mathrm{CO}_{2}\right)}{ }_{1}$ cluster is the only cluster observed with $\mathrm{H}_{2} \mathrm{Pc}$ which possesses a hypsochromic shift upon excitation to the S_{1} state. The $\operatorname{MgPc}\left(\mathrm{CO}_{2}\right)_{1}$ oluster also exhibits a hypsochromic shift comparable to that observed in $\mathrm{H}_{2} \mathrm{Pc}\left(\mathrm{CO}_{2}\right)_{1}$. The exact nature of the intermolecular interaction responsible for the spectral shifts is not known; however, based upon cluster experiments with alcohol and hydrocarbon solvents, it is possible to speculate that $\pi-\pi$ solute/solvent interactions may be responsible for the observed spectral shifts. To study this behavior, a series of experiments on single ring solutes such as benzene, pyrazine, and pyrimidine solvated by carbon dioxide, carbon monoxide, and oxygen can be conducted using 2-color TOFMS techniques. The benzene/solvent vibronic spectra will reveal whether the solvents orient perpendicular or parallel to the solute molecular plane through the observation of forbidden cluster chromophore transitions. In these studies, the spectral shifts may be related to particular cluster geometries which may yield information on the major interactions contributing to the intermolecular potentials between the solutes and solvents. The pyrazine and pyrimidine/solvent clusters may tell us about the effects of the ring nitrogens on the cluster geometry. binding energy, and solute solvation. Computer modeling of cluster geometry, binding energy, and intermolecular vibrational structure may also aid in the understanding of the intricacies of the intermolecular interactions present in these systems.
vdW Vibrational Structure in N-Heterocjcle Dimers and Solute Solvent Clusters - Calculation of the intermolecular vibrational struc ture for the N-heterocycle dimers and solute/solvent clusters discusserl
in Chapters 4 and 5 can also be conducted. The modeling studies of the N -heterocycle solute/solvent clusters are interesting since they may show the effects of the solute nitrogen atoms on the intermolecular vibrational structure when compared to the analogous benzene solute/solvent clusters. Furthermore, the studies are important as little to no intermolecular vibronic structure is observed in the cluster spectra. In this regard the studies will yield predictions of the frequencies of those $v d W$ modes not observed in the spectra as well as aid in assigning the weak features present in some of the spectra. Intermolecular vibrational structure modeling of the N-heterocycle dimer systems could serve as a major contribution to the understanding of their spectroscopy. The studies may be useful in the determination, confirmation of the dimer geometries responsible for the observed spectra as well as help to elucidate the nature of the intermolecular energetics and dynamics present in the systems. of particular interest is the elucidation of the vdW torsional structure present in the planar dimers, especially for the vdw torsional coordinate in which the cluster subunits rotate/librate about an axis joining their centers-of-mass. This motion is similar to torsional motion occurring in polyring systems such as biphenyl and biphridyl. Studying the torsional motion in the clusters may yield information concerning the long-range (r-electron effects) and short-range (hydrogen-hydrogen repulsions) interactions present between the cluster subunits which may be considered precursors to the interactions responsible for the potential well shape in the polyring systems. The studies will also contribute to the understanding, of hydrogen bonding interactions in the cluster systems and how it affects cluster geometry and intermolecular energetics.

Conclusions.
Supersonic molecular jet expansion, TOFMS, and FE spectroscopic techniques have been employed to study the gas phase optical spectra of a wide array of weakly bound vdW clusters in an ultracold isolated molecular environment. The techniques have proved useful in studying the vdW clusters of aromatic molecules ranging from benzene and its N -heterocyclic analogues to macrocycles such as $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc solvated by small hydrocarbons/fluorocarbons, small alcohols, water, ammonia, argon, and carbon dioxide. The studies reveal detailed information regarding the geometries/symmetries, the intermolecular energetics, and the physical nature of the vdW interactions present in the cluster systems. Spectroscopic observables, such as cluster spectral shifts, forbidden cluster chromophore vibronic transitions, vdw motions, and cluster ionization energies, combined with computer modeling of cluster ground state binding energies, geometries, and intermolecular energetics proves essential in the analysis and understanding of the physics involved in cluster formation. stabilization. and behavior.

The experimental and theoretical studies of the benzene/solvent clusters reveal detailed information regarding cluster geometries. symmetries, and the nature of the intermolecular vibronic motion presfrit in the systems. In these studies, we found that the preferred benzene solvation site is located over the aromatic π cloud where solute'solvent vdW interaction is maximal. Through computer modeling, we have demonstrated the correlation between cluster geometry and spectral features Specifically, we showed that the calculations yield useful information regarding cluster geometry, binding energy, and intermolecular vibrational structure. These calculated results are consistent with
experiment and can be used to elucidate the details of vdW cluster energetics. By comparing the calculations and the experiments, we are able to assign cluster vibronic transitions to specific cluster geometries and to specific vdW vibrations.

Detailed experimental and theoretical studies of the intermole cular torsional structure in the benzene/solvent clusters show that the clusters are rigid systems with regard to internal rotation of the cluster subunits. In this regard, the clusters possess unique equilibrium ganmetries for which the intermolecular motion is oscillatory. The motion is not an admixture of vdW bends. stretches, and free internal rotations as would occur if the clusters were internally nonrigid.

The N-heterocycle/solvent cluster studies demonstrate that the solute ring nitrogen atoms influence, to some extent, both the cluster geometry and spectroscopy. In the N-heterocycle/hydrocarbon clusters. we find that the presence of the nitrogen atoms in the aromatic rings has a small but discernible effect on the intermolecular interaction. In particular, the solvent hydrogen atoms preferentially orient towards the solvent nitrogen atoms. The overall behavior of these clusters with regard to geometry, binding energy, and spectroscopy, however, is very similar to that found in the benzene/hydrocarbon clusters.

The N-heterocycle/water and ammonia clusters, on the other hand. clearly demonstrate major interactions between the ring nitrogens and the solvent hydrogens. These studies suggest that hydrogen bonding is present between the ring nitrogens and the solvent hydrogens as evidenced by the hypsochromic spectral shifts present in the cluster spectra.

The single ring'solvent clusters also exhibit spectra and calculated geometries consistent with the notion that the intermolecular potential is primarily composed of solute'solvent π cloud interactions. In this regard, the preferred solvation sites on the cluster solutes are located over the aromatic π clouds. Thus, the cluster geometries are such that the solvents lie over the center of the solutes unless other large intermolecular interactions are present which may alter this behavior. In particular, hydrogen bonding interactions present in the N -heterocycle and benzene/solvent systems appear to cause geometrical changes in the clusters. The changes range from simple reorientation of the solvents to minimize solute ring nitrogen/solvent hydrogen distance or solvent hydrogen/solute π cloud distance to large reorganization of the cluster geometry from a "sitting atop" configuration to planar hydrogen bonded geometries as suggested by pyrimidine/ammonia and N -heterocycle dimer studies.

The spectroscopic studies of phthalocyanines and their respective vdW clusters with small molecules take advantage of the characteristics of the supersonic molecular jet. This technique makes it possible to simplify the complicated phthalocyanine spectra and to control the solvent and environmental effects on the chromophores in a set and controlled manner. The interplay of spectroscopy and an out-of-plane normal coordinate analysis enables us to characterize the low-lying out-of-plane motion present in $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc . The correlation between the spectra and the calculations is excellent which allows for the elucidation of the motion types observed in the first few hundred wavenumbers of the $\mathrm{H}_{2} \mathrm{Pc} / \mathrm{MgPc} \mathrm{S}_{1}$ manifolds. The correlation also makes possible the identification of specific species geometries responsible for the
cluster vibronic spectra observed in the vicinities of the chromophore Q band origins.

In the cluster studies, we find that the H_{2} Pc.'hydrocarbon cluster experimental and theoretical results parallel those observed for the benzene and N-heterocycle/hydrocarbon clusters. The cluster geometries favor forms for which solvent/solute π cloud overlap is maximal. The spectral shifts are all bathychromic and the magnitudes of the shifts increase with increasing solvent size and polarizability. The $H_{2} P c$ and MgPc/water and /alcohol clusters exhibit spectra and calculated geometries which demonstrate that the solvent $O H$ groups are large contributors to the spectral shifts and intermolecular interactions. In all the cluster systems studies, the preferred $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc solvation sites are located over the phthalocyano core. As in the benzene/water and benzene/ammonia clusters, the $\mathrm{H}_{2} \mathrm{Pc}$ and MgPc clusters exhibit reduced symmetry with respect to the isolated chromophores. This reduction in symmetry is demonstrated by the observation of forbidden chromophore transitions and S_{1} state splitting in the clusters.

Overall, computer modeling proved to be an essential component of the studies on both the isolated molecules and the cluster systems. The spectroscopic data obtained are necessary to validate and refine the models used, and the calculations help to assign and understand spectra which are otherwise difficult, if not impossible, to uniquely interpret. In this way, the combination of spectroscopy and computer modeling leads to an increased understanding of the behavior of the molecules and clusters over what could be obtained by either study alone.

REFERENCES

1. Martin Gouterman. Optical Spectra and Electronic Structure of Porphyrins and Related Rings, in "The Porphyrins" edited by David Dolphin (Academic Press, New York) Vol. III, 1978.
2. Uzi Even, Jacob Magen, and Joshua Jortner, J. Chem. Phys. 77, 4384 (1982).
3. S. Sunder and H.J. Bernstein. J. of Raman Spectros. 5, 351 (1976).
4. M. Abe, T. Kitagawa, and Y. Kyogoku, J. Chem. Phys. 69, 4526 (1978).
5. C.A. Melandres and V.A. Maroni, J. of Raman Spectros. 15, 319 (1984).
6. L.L. Gladkov and K.N. Solovyov, Spectrochimica Acta. 41, 1437 (1985) ; 41, 1443 (1985); 42, 1 (1986).
7. L.L. Gladkov, A.T. Gradyushko, A.M. Shulga, K.N. Solovyov, and A.S. Starukhin, J. of Molecular Structure 47, 463 (1978).

APPENDIX ONE
hydrogen bonded and non-hydrogen ronded van der wails clusters: comparison retwfen clusters of pyrazine, pyrimidine, and benzene with various solvents

Hydrogen bonded and non-hydrogen bonded van der Waals clusters: Comparison between clusters of pyrazine, pyrimidine, and benzene with various solvents a)

J. Wanna, J. A. Menapace, and E. R. Bernstein
Deparment of Chemstry, Condensed Matter Sciences Laboratory, Colorado State University. Fort Collins, Colorado 80523

(Received 13 December 1985; accepted 1 May 1986)

Abstract

Solute-solvent clusters of pyrazine, pyrimidine, and benzene (solutes) and $\mathrm{C}_{n} \mathrm{H}_{2 n+2}(n=1,2)$. NH_{3}, and $\mathrm{H}_{2} \mathrm{O}$ (solvents) are studied by the techniques of supersonic molecular jet spectroscopy and two-color time-of-fight mass spectroscopy (two-color TOFMS). Spectral shifts, van der Waals (vdW) modes, dissociation energies, and vdW mode-solute mode vibronic couplings are characterized for most of the observed clusters. Based on these data and previous results for hydrocarbon systems, cluster geometries can be suggested. Lennard-Jones potential (6-12-1) calculationa are also performed for these clusters and in all instances for which comparisons can be readily made, calculated and experimentally estimated geometries and binding energea agree completely. Clusters of N -heterocyclic solutes and $\mathrm{H}_{2} \mathrm{O}$ are not observed experimentally. Systematics and trends amons the clusters reported herein and those previously reported are discussed and analyzed.

I. INTROOVCTKON

Supersonic molecular jet spectroncopy has made posajble the study of a wide variety of weakly bound, solute-solvent van der Waals (vdW) clusters in the gas phase. Cluster investigations have enhanced our understanding of intrsand intermolecular interactions and potentials, vibrational enersy dynamics and chemical reactions, structural propertien of small aggregates of solute and solvent molecules, and nucleation and growth of small clusters. Clusters can also be considered as model systems for condensed phase behavior. Moreover, these vdW systems can be thought of as an important new state of matter in which the static and dynamic properties of small aggregates of weakly coupled molecules can be studied.
vdW clusters, after being produced in a supersonic jet expansion, can be probed by three distinct techniques: tluorescence excitation (FE), dispersed emission (DE), and two-color tume-of-light mass spectroecopy (two-color TOFMS). The latter technique is employed most often in our studies of clusteps because it givea unique cluster identifcation, brackets the cluater binding energies, and elucidates cluster vibrational energy dymamics and vibrational predissociation.

In the past few years, we have reported several studies of vdW clusters using the three spectroscopic techniques mentioned above. ${ }^{1-7}$ Cluster geometry, binding energy, nucleation and growth dynamics, and limits on the vibrational energy dynamics and vibrational predissociation times have been determined. The vdW solute-solvent clusters investigated initially are for the most part restricted to aromatic hydrocarbon solutes (e.g., benzene and toluene) and small alkane solvents ($\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{\infty}$ and $\mathrm{C}_{3} \mathrm{H}_{n}$) in which only one type of interaction, that is one potential form, is found to be

[^1]important for the solute-solvent coordination. Expanding on these previous studie we are now exploring solute-solvent clusters with \boldsymbol{N}-heterocyclic solutes (e.g., pyrazine and pyrimidine) and alkane solvents and N-heterocyclic solutes with hydrogen bonding solvents (e.s., water and ammonia). The initial report of this efort for pyrazine and methane. ethane and propane clusters has already appeared.'

In this paper we discuss the two-color TOFMS study of pyrimidine clustered with CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ pyrazine and pynmidine clustered with NH_{3}, and benzene clusters with $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}. The pyrimidine-alkane clusters are presented for comparison with the previously published' pyrazine-alkane data: The effect of the ring aitrogen atoms on the cluster geometry can thereby be evaluated. The pyrazine and pynmidine ammonia clusters reveal the role of bydrogen bonding interactions in simple clusters. Benzene-water and -ammonia clusters serve as an exampie of clusters with these more complicated solvent systems (i.e., two possible interaction potentials) interacting with aromatic hydrocarbons. Theoretical and expenmental studies of such a senes of systems should eventually lead to a fuller understanding of so-lute-solvent coordination structure, dynamics, and the hydrogen bonding interaction

Although extensive efforts were made and a wide variety of experimental conditions explored, pyrazine and pynmidine clusters with water were not observed. Both FE and two-color TOFMS detection techniques were employed. A broad feature (roughly $50 \mathrm{~cm}^{-1} \mathrm{FWHM}$) was observed in FE at $580 \mathrm{~cm}^{-1}$ to the blue of pyrazine 0_{0}^{0} transition in pyrazine and water expanded with helium. Xir signal, however, was observed at the pyrazine water mass channel for two-color TOFMS. We must thus conclude that the F: : 1 . zine and the pyrimidine water clusters have not been, h. served. Either the excited $n \pi^{*}$ state of the cluster is dissociauve or internal conversion or intersystem crossing is so rapud for these clusters that the lifetime of the $n \pi^{*}$ state is greatly reduced (-0.1 ps). Pyrimidine-fluonnated alcohol clusters
also exhibit broad features and reduced lifetimes. ${ }^{\text {. }}$
Hydrogen bonding interactions are known to play an important role in intra- and intermolecular interactions important for secondary and tertiary molecular structure. molecular dynamics, and tonic and molecular solvation. Hydrogen bonding interactions have received attention in previous supersonic molecular jet spectroscopic studies: These systems include phenol clustered with various proton accepting molecules, ${ }^{4}$ indole and 2 -aminopyndine clustered with various solvents, ${ }^{10}$ benzoic acid dimers," s-tetrazine dimers. ${ }^{12}$ 1.4-dihydroxyanthraquinone, ${ }^{13}$ and methyisalicylate. ${ }^{14}$ In most instances blue-shifted cluster spectra are found due to the cluster stabilization of the ground state and destabilization of the excited state. ${ }^{19}$

In this and our other cluster studies. the experimental data are supplemented by potential energy Lennard-Jones (LJ) atom-atom (6-12-1) calculations of cluster structure, binding energy, and internal motion. The calculations and the potential are discussed thoroughly in our previous studies.' The LJ calculations produce identical geometries but slightly lower binding energies than the exp-6 potential form used in earlier calculations. ${ }^{-\rightarrow}$ The $W J$ hydrogen bonding (LJ-HB) potential form proves to be more versatile than the exp-6 form since many more constants for different types of atom-atom interactions have been independently reported for the LJ potential. ${ }^{16}$ None of the potential parameters employed in this work is fit to the cluster data.

An is well known and widely accepted, geometries of isolated molecules and clusters are best obtained through spectroecopic observation of rotational structure. In fact, rotational structure of a number of simple clusters has been obeerved under molecular jet conditions: s-tetrazine and iodine with He and Ar ${ }^{17}$ and aniline with Ne and Ar. ${ }^{18}$ The resolution avaulable to us at present is $0.08 \mathrm{~cm}^{-1}$; at this resolution only rotational envelopes are observable which do not lend themselves readily to a unique interpretation of cluster structure. We calculate that $0.005 \mathrm{~cm}^{-1}$ resolution would be required to resolve rotational structure for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\left(\mathrm{NH}_{3}\right)$, etc., under the reatriction of a rigid geomeiry. We are thus for the present forced to employ less direct methods to obtan cluster geometry. Assignment of the spectra is accomplished through the determination of ionization energres, spectral shifts, relative intensities, (molecular) symmetry forbidden cluster transitions, and potential calculations. The understanding of these more complex systems reats heavly on the previous data obtained for other clusters. ${ }^{1-7}$ For all systems discuseed in this paper, complete agreement between spectroscopic data. calculations, and results for previously analyzed solute-solvent clusters is found.

II. EXPERIMENTAL PROCEDURES

The experimental apparatus and procedures are similar to those used previously for the study of vdW clusters. The vacuurn system consists of two chambers with a pulsed nozzle and mass detection system in the second chamber. A skimmer separates the pulsed nozzle and the time-of-fight mass spectrometer. The first chamber contains either a pulsed or cw nozzie. the molecular beam from which can be
taken into the second chamber through a skimmer. FE and DE expenments are carned out in the first chamber.

The two independent lasers used in the two-color TOFMS expermments are .Vd ${ }^{-1} /$ YAG pulsed lasers the doubled output of which pumps two dye lasers. The dye laser output can be mixed with the $1.064 \mu \mathrm{~m} . \mathrm{Nd}^{-1} / \mathrm{YAG}$ funda. mental, frequency mixed and doubled. or just doubled using vanous nonlinear KDP crystals. The laser output can be extended from greater than 4.5 to $-0215 \mu \mathrm{~m}$. One laser is employed to excite the cluster to its first excited $n \pi^{*}$ or $\pi \pi^{*}$ electronic state and the second laser then ionizes this cluster starting from the S, vibronic manifold. The maxumum tonization energy achievable with this second laser is roughly $46500 \mathrm{~cm}^{-1}$.

The solute or cluster chromophore is typically placed in an in line trap or filter cup directly behind the pulsed valve. Water is placed in a trap before the valve and solute; the helium carner gas passes over both materials and into the valve. Gaseous solvents are premixed with the helium carrier gas in a holding tank (-2000 pai) at concentrations varying from 2.0 to $0.1 \mathrm{~mol} / \mathrm{mol} \%$.

The $I J$ potential function (6-12-1) with the additional HB form is described in detail in a previous publication.' Table I contains a list of the previously unreported constants employed with this potential form. Pyrazine and pyrimidine structures used in the calculations are obtanned from Ref. 19.

TABLE I. Parameters for the energy expresion in the computer modeling.

	$\begin{gathered} E_{y}=1.16 \times 1 \\ A\left(\frac{\mathrm{~cm}^{-1} \AA^{12}}{\mathrm{~mol}}\right) \end{gathered}$	$\begin{aligned} & C+A_{v} / r_{4}^{\prime 2}-C_{v} r_{v}(\omega) \\ & C\left(\frac{\mathrm{cma}^{-1} \lambda^{*}}{\operatorname{mol}}\right) \end{aligned}$
Aminearomatic		
$\mathrm{N}-\mathrm{N}$	1.312×10^{6}	1403×10^{9}
$\mathrm{N}-\mathrm{C}$	1.728×10^{6}	1579×10^{9}
$\mathrm{N}-\mathrm{H}$	2.523×10^{7}	$4527 \times 10^{\circ}$
H-C	$2.749 \times 10^{\prime}$	$5217 \times 10^{\circ}$
H-H	3.872×10^{6}	$1590 \times 10^{\circ}$
H-N	1990×10^{7}	4527×10^{0}
Water-aromatic		
$\mathrm{O}-\mathrm{N}$	7548×10^{7}	1021×10^{1}
O-C	9868×10^{7}	1130×10^{9}
O-H	1.363×10^{7}	$3.162 \times 10^{\circ}$
H-C	$3.160 \times 10^{\prime}$	5217×10^{4}
H-H	$4537 \times 10^{\circ}$	$1590 \times 10^{\circ}$
H-N	$2.297 \times 10^{\prime}$	$4527 \cdot 10^{4}$
	$E_{y}=1.16 \times 10^{4} 9.9, / 2 r_{v}+A / P_{v}^{\prime 3}-B / r_{10}^{(0)}(\mathrm{HB})$	
	H $\left(\frac{\mathrm{cm}^{-1} \mathbf{A}^{12}}{\mathrm{~mol}}\right)$	$B\left(\frac{\mathrm{~cm}^{-1} \dot{A}^{\text {º }}}{\mathrm{mol}}\right)$
H... N	$1.150 \times 10^{\prime}$	$2382 \times 10^{\circ}$
NH, $\quad \mathbf{N}$	$\begin{gathered} 9 \\ -0438 \end{gathered}$	
NH,	+0146	
$\mathrm{H}_{2} \mathrm{O}$:	-0 034	
	+017	
$\mathrm{C}_{\mathbf{4}} \mathrm{H}_{4} \mathrm{~N}_{4}$	-0)182	
	-0091	
	0	
$\mathrm{C}_{6} \mathrm{H}_{0}$:	- 000074	
	+ 00074	

also exhibit broad features and reduced lifetimes. ${ }^{\text {a }}$
Hydrogen bonding interactions are known to play an important role in intra- and intermolecular interactions important for secondary and tertiary molecular structure. molecular dynamics, and ionic and molecular solvation. Hydrogen bonding interactions have received attention in previous supersonic molecular jet spectroscopic studies: These systems include phenol clustered with various proton accepting molecules, ${ }^{9}$ indole and 2 -aminopyridine clustered with various solvents, ${ }^{10}$ benzoic acid dimers. ${ }^{11}$ s-tetrazine dimers, ${ }^{12}$ 1,4-dihydroxyanthraquinone, ${ }^{13}$ and methylsalicylate. ${ }^{14}$ In most instances blue-shifted cluster spectra are found due to the cluster stabilization of the ground state and destabilization of the excited state. ${ }^{\text {is }}$

In this and our other cluster studies, the experimental data are supplemented by potential energy Lennard-Jones (LJ) atom-atom (6-12-1) calculations of cluster structure, binding energy, and internal motion. The calculations and the potential are discussed thoroughly in our previrsus studies. ${ }^{7}$ The LJ calculations produce identical geometries but slightly lower binding energies than the exp-6 potential form used in earlier calculations. ${ }^{1 \rightarrow}$ The LJ hydrogen bonding (LJ-HB) potential form proves to be more versatile than the exp-6 form since many more constants for different types of atom-atom interactions have been independently reported for the IJ potential. ${ }^{16}$ None of the potential parameters employed in this wort is fit to the cluster data.

As is well known and widely accepted, geometries of isolated molecules and clusters are best obtained through spectroecopic observation of rotational structure. In fact, rotational structure of a number of simple clusters has been observed under molecular jet conditions: s-tetrazine and iodine with He and Ar ${ }^{17}$ and aniline with Ne and Ar. ${ }^{18}$ The resolution available to us at present is $0.08 \mathrm{~cm}^{-1}$; at this resolution only rotational envelopes are observable which do not lend themselves readily to a unique interpretation of cluster structure. We calculate that $0.005 \mathrm{~cm}^{-1}$ resolution would be required to resolve rotational structure for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\left(\mathrm{NH}_{3}\right)_{1}$ etc., under the restriction of a rigid geometry. We are thus for the present forced to employ lese direct methods to obtain cluster geometry. Assignment of the spectra is accomplished through the determination of ionization energies, spectral shifts, relative intensities, (molecular) symmetry forbidden cluster transitions, and potential calculations. The understanding of these more complex systems rests heavily on the previous daca obtained for other clusters. ${ }^{1-7}$ For all systems discussed in this paper, complete agreement between spectroscopic data, calculations, and results for previously analyzed solute-solvent clusters is found.

II. EXPERIMENTAL PROCEDURES

The experimental apparatus and procedures are similar to those used previously for the study of vdW clusters. The vacuum system consists of two chambers with a pulsed nozzle and mass detection system in the second chamber. A skimmer separates the pulsed nozzle and the time-of-night mass spectrometer. The first chamber contains either a pulsed or cw nozzle, the molecular beam from which can be
taken into the second chamber through a skimmer. FE and DE experiments are carned out in the first chamber.

The two independent lasers used in the two-color TOFMS experiments are $\mathrm{Nd}^{+3} / \mathrm{YAG}$ pulsed lasers the doubled output of which pumps two dye lasers. The dye laser output can be mixed with the $1.064 \mu \mathrm{~m} \mathrm{Nd}{ }^{-3} / \mathrm{Y} A G$ fundamental, frequency mixed and doubled, or just doubled using various nonlinear KDP crystals. The laser output can be extended from greater than 4.5 to $-0.215 \mu \mathrm{~m}$. One laser is employed to excite the cluster to its first excited $n \pi^{*}$ or $\pi \pi^{*}$ electronic state and the second laser then ionizes this cluster starting from the S_{1} vibronic manifold. The maximum ionization energy achievable with this second laser is roughly $46500 \mathrm{~cm}^{-1}$.

The solute or cluster chromophore is typically placed in an in-line trap or filter cup directly behind the pulsed valve. Water is placed in a trap before the valve and solute; the helium carrier gas passes over both materials and into the valve. Gaseous solvents are premixed with the helium carrier gas in a holding tank ($\sim \mathbf{2 0 0 0}$ pai) at concentrations varying from 2.0 to $0.1 \mathrm{~mol} / \mathrm{mol} \%$.

The LJ potential function (6-12-1) with the additional HB form is described in detail in a previous publication.' Table I contains a list of the previously unreported constants employed with this potential form. Pyrazine and pyrimidine structures used in the calculations are obtained from Ref. 19.

TABLE 1. Parameters for the energy expreasion in the computer modeling.

	$\begin{gathered} E_{y}=1.16 \times \\ A\left(\frac{\mathrm{~cm}^{-1} \mathrm{~A}^{12}}{\mathrm{~mol}}\right) \end{gathered}$	$\begin{aligned} & +A_{V} / r_{V}^{12}-C_{v} / R_{V}(\mathrm{~L}) \\ & C\left(\frac{\mathrm{~cm}^{-1} \lambda^{6}}{\mathrm{~mol}}\right) \end{aligned}$
Amine-aromatic 1.312×10^{0}		
N-N	1.312×10^{6}	1.403×10^{9}
$\mathrm{N}-\mathrm{C}$	1.728×10^{6}	1.575×10^{3}
$\mathrm{N}-\mathrm{H}$	2.523×10^{7}	4.927×10^{6}
H-C	2.749×10^{7}	5.217×10^{4}
H-H	3.872×10^{0}	1.990×10^{8}
H-N	1.990×10^{7}	4.327×10^{4}
Weter-aromatic		
O-N	7.548×10^{7}	1021×10^{5}
$0-1$	9.868×10^{7}	1.130×10^{4}
O-H	1.363×10^{7}	3.162×10^{0}
H-C	3.160×10^{7}	5.217×10^{6}
H-H	4.537×10^{8}	1.590×10^{4}
H-N	2.297×10^{7}	4.527×10^{0}
	$E_{4}=1.16 \times 10^{\circ}$	$A^{\prime} / r_{v}^{12}-B / r_{v}^{10}(\mathrm{HB})$
	$A \cdot\left(\frac{\mathrm{~cm}^{-1} \dot{\Lambda}^{12}}{\mathrm{~mol}}\right)$	$B\left(\frac{\mathrm{~cm}^{-1} \dot{A}^{\prime 0}}{\mathrm{~mol}}\right)$
H...N	1.150×10^{7}	$2.882 \times 10^{\circ}$
NH, ${ }_{\text {: }}$ N	$\begin{gathered} 9 \\ -0.438 \end{gathered}$	
NH,	+0.146	
$\mathrm{H}_{2} \mathrm{O}$:	-0.34	
	+0.17	
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{4}$:	-0.182	
	+0.091	
	0	
$\mathrm{C}_{6} \mathrm{H}_{4}$:	-0.0074	
	+0.0074	

III. RESULTS

This section contans the expernmental and calculational results for the various clusters investigated. We first present pynmidine with methane and ethane for comparison with the previously reported pyrazine clusters.' Pyrimidine and pyrazine ammonia clusters are then discussed and benzene water and ammonia clusters are presented for a comparison with the V-heterocyclic systems. Based on previous experience with a number of different clusters. ${ }^{1-7}$ we have not made an extensive expenmental study of the binding energies of these clusters. We rely on the calculations which have always fallen within the range bracketed by the expenmental two-color TOFMS data. Prelimunary checks made on both pyrazine and pyrimidine clusters are in agreement wuth the calculations. Vibrational vdW modes observed in the spectra will not be assigned in this publication. Future publications will assign them as bends, stretches, torsions, and combinations unlizing a normal coordinate calculational analyses. ${ }^{\circ}$

A. Pyolmidine-methens

Figure I and Table II present the data for the pyrimidine $\left(\mathrm{CH}_{4}\right)_{1}$ and $\left(\mathrm{CH}_{4}\right)_{2}$ complexes taken near the pyrimidine 0_{5}^{∞} transition ($31073.0 \mathrm{~cm}^{-1}$). The cluster of pyrimidine (CH_{4}), has a spectral shift of $-56.6 \mathrm{~cm}^{-1}$ and a low frequency mode at $4.5 \mathrm{~cm}^{-1}$ from this origin. These spectra are obtained by two-color TOFMS. Hints of other vdW modes can also be seen in the trace in Fig. I but we are hesitant to report such weak transitions. Pyrimidine $\left(\mathrm{CH}_{4}\right)_{2}$ spectra clearly show two clusters, similar to previously reported clusters for other aromatic systems. ${ }^{1-7}$ The feature at $-112.1 \mathrm{~cm}^{-1}$ in Fig. 1 is assigned as the 0_{0}^{0} transution of the isotropic (symmetric), additive shif cluster and the feature at $-47.2 \mathrm{~cm}^{-1}$ is attributed to the 0_{0}° transition of the anisotropic (asymmetric) cluster with both methanes on the same side of the aromatic ring. Note that without both mass and energy resolution, the spectra of pyrimidine $\left(\mathrm{CH}_{4}\right)$, and $\left(\mathrm{CH}_{4}\right)_{2}$ would not be resolved and the clusters could not be separated and uniquely identified. A vaW mode at $5.1 \mathrm{~cm}^{-1}$ from the isotropic cluster origin is observed.

Potential energy calculations using L D potentials for these ciusters generate geometries and binding energes comparable to those previously reported for other aromatic-al-

FIG I. Two-color tume-of-fight mase spectre (iwo-color TOFMS) of pynmidure (CH_{4}), and pyranduae $\left(\mathrm{CH}_{4}\right)_{2}$ in the regon of the pyrumdine ongan ($31073.0 \mathrm{cma}^{-1}$).
kane systems and in complete accord with the above expenmental Andings (see Fig. 2). Calculations for pynmidine (CH4), clusters yield oaly one geomerry for which the methane is coordinated with the aromatic π systern of the pynmidine ring. The calculated binding energy for this cluster is $514 \mathrm{~cm}^{-1}$. The methane-carbon atota is above the ring at 3.5 $\dot{\AA}$ and is shifted $-0.1 \dot{\AA}$ from the ring center toward the nitrogen atoms. The three bydrogen atoms of methane that point down toward the ring are equidistant from the ring at $3.1 \boldsymbol{\AA}$; two of these hydrogens point directly at the ring nitrogen atoms. Again in agreement with the main expenmental observations for these clusters, the calculations for pyrimidine $\left(\mathrm{CH}_{4}\right)_{2}$ clusters yield two distinct geometrical arrangements. The isotropic cluster has a calculated binding energy of $1029 \mathrm{~cm}^{-1}$ and the anistropic cluster has a calculated binding energy of $879 \mathrm{~cm}^{-1}$.

B. Pyrinkdino-athane

The pynmidine ($\mathrm{C}_{2} \mathrm{H}_{6}$), spectrum is quite complicated. consisting of a number of low intensity features and an intense feature at $-60.7 \mathrm{~cm}^{-1}$ with respect to the pynmidine

TABLE II Oberved peaks in the spectre of pynmidine-methase clustern.

Specrea	$\begin{gathered} \text { Energy } \\ \left(\text { vac. } \mathrm{cm}^{-1}\right) \end{gathered}$	Eneryy relatuve to pynmadse α_{0} ($\mathrm{cm}^{-1)}$	Energy relative to cluster 0_{0}° (cm ${ }^{-1}$)	Assgrment
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{1}\left(\mathrm{CH}_{4}\right)_{1}$	31016.4	-56.6	0	(0
	31020.9	- 32.1	45	
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{\mathbf{\prime}}\left(\mathrm{CH}_{4}\right)_{2}$	309609	- 112.1	0	1500
	309660	-1070	51	
	310258	-472	0	aniso 0 \%

[^2]

FIG. 2. Minimum energy conffguraions and binding enerpies for pyrimidine (CH_{4}), and pyrnmidipe $\left(\mathrm{CH}_{4}\right)_{2}$ as obreuned uang the $L J$ potential calculation deteribed in the teat.
origin (see Fig. 3). We might expect that little vdW vibronic intensity would be observed, based on pyrazine and other pyrimidine clusters. In order to begin to interpret these features we must consult the vapor phase room temperature pyrimidine monomer spectrum. ${ }^{2 t}$ In these reports, features at - 156 and $+22 \mathrm{~cm}^{-1}$ are assigned as the $16 a ;$ and 166 ; sequence bands, respectively. The feature that appears in Fig. 3 at - $39.1 \mathrm{~cm}^{-1}$ may be assigned as the 166 ! sequence band of the pyrimidine ($\mathrm{C}_{2} \mathrm{H}_{6}$), cluster built on the intense $-60.7 \mathrm{~cm}^{-1}$ cluster origin. If this identification is correct, then the clusters of pyrimidine ($\mathrm{C}_{2} \mathrm{H}_{6}$), are hot ($T_{\text {wot }} \approx 260$ K) and the features in Fig. 3 and Tabie II at -153.5 , -99.3, - 86.9, and $-75.4 \mathrm{~cm}^{-1}$ may well be hot beads ascociated with the cluster origins at $-71.4,-60.7$, and - $52.7 \mathrm{~cm}^{-1}$. Apparently the cluster formation process for pyrimidine ethane tends to warm the cluster. Table III sumamarizes these results.

Supersonic expansion of pyrimidine apparently does not produce the expected cooling for vibrational modes 16b, and $16 a_{1}$. Vibrational temperatures for the $16 b_{1}$ mode have been reported to be in excess of 200 K . Ito and co-workers ${ }^{21 d}$ have also observed the 166 ; tramsition for pyrimidine clustered with argon and nitrogen. In the present work, changes in backing pressure from 10 to 120 pai do not change the rela-

F1O. 3. Two-color TOFMS of pyrimidine ($\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4}$ in the repon of the pyrimidise ongin.
tive band intensities: apparently these modes present a bortleneck for vibrational cooling.

As can be seen in Fig. 4, three different configurations are calculated to be stable for the pyrimidine ($\mathrm{C}_{2} \mathrm{H}_{6}$) cluzter. Configuration I has the long axis of ethane perpendicular to the plane of the pyrimidine ring. Configurations II and III have the ethane molecule long axis more or less paralle! to the plane of the ring; for configuration II, the axis of ethane lies between a nitrogen and a carbon and for configuration III this axis lies between two carbon atoms. In each instance a CH_{3} group liss more or less over the ring center.

C. Pyrimidine-ammonia

The pyrimidine (NH_{3}), two-color TOFMS spectrum in the range 300 to $500 \mathrm{~cm}^{-1}$ to the blue of the pyrumidine origin is presented in Fig. 5. The three features are associated with the O_{0}^{f} transitions of the pyrimidine (NH_{3}), clusters. The lack of significant vdW vibrational mode intensity indicates that the ground and excited state vdW potentials are nearly identical. The large cluster blue shift implies a strong hydrogen bonding interaction between the pyrimidine and the ammonia. The spectrum of Fig. 5 is taken with an ionıza-

TABLE III. Obverved peaks in the spectre of pyrimidino-ethane clusters.

Specter	Enersy	Energy reladive to pyrimidine of $\left(\mathrm{cm}^{-1}\right)$	Energy relauve 20 cluster 0_{6}^{8} (cm- ${ }^{-1}$)	Tenlative assignment
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{\mathbf{2}}\left(\mathrm{C}_{\mathbf{2}} \mathrm{H}_{6}\right)_{1}$	309195	- 193.5		
	30973.9	-993		
	30986.1	-86.9		
	309976	-794		
	31001.6	- 71.4	0	10_{0}°
	31012.3	- 60.7	0	110_{0}°
	31020.3	- 52.7	0	III 0_{0}°
	31033.9	- 39.1	21.6	II 160;

Wanna, Menapace and Bernstenn Hyorogen bonded Clusters
PYRIMIDINE $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{\text {I }}$

I
$-566 \mathrm{~cm}-1$

II
$-669 \mathrm{~cm}^{-1}$

III
$-676 \mathrm{~cm}^{-1}$

FIG. 4. Minimum energy conficurations and bunding energee for pynmidine $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$ as obtaned using a $L J$ potential calculation.
tion energy of $45110 \mathrm{~cm}^{-1}$; lowering the ionization energy to $\sim 42000 \mathrm{~cm}^{-1}$ the two nearly degenerate features at $+367 \mathrm{~cm}^{-1}$ decrease in intensity much more rapidly than the feature at $+496 \mathrm{~cm}^{-1}$. Table IV gives the energies and assiguments for the pyrimidine (NH_{3}), clusters. Based on the idea that the three features in this spectrum are associated with three different pyrimidine (NH_{3}), cluster geometries, the two nearly isoenergetic configurations must be quite similar. The feature at $+496 \mathrm{~cm}^{-1}$ must correspond to a different (more hydrogen bonded) geometry.

Three different configurations are calculated for the pyrimidine (NH_{3}), cluster using the L-HB potential form (see Table I and Ref. 7). Two of these configurations have the ammonia above the pyrimidine plane and the third configuration has the NH_{3} molecule not above the ring. These clusters are presented in Fig. 6 along with the calculated cluster binding energies. Configuration I has the ammonia N -atom $3.2 \AA$ above the pyrimidine ring with the three am-

FIG. 5. Two-color TOFMS of pynmiduge (NH_{4}), th the repron $300-500$ cm^{-1} to the blue of the pynmidine ongin. An insert ts shown of the first iwo features with as expended scale.
monia hydrogen atoms pointing down toward the π cloud. The two closest hydrogen atoms of the ammonia in this configuration are $2.7 \boldsymbol{\lambda}$ from the pyrimidine plane. In configura: tion II, the ammonia nitrogen atom is $3.2 \dot{\AA}$ above the nigg plane and points in the general direction of the ring N atoms. The closest two ammonia hydrogen atoms to the ring are at 2.7 \AA. This cluster has a somewhat lower binding energy than cluster I ($667 \mathrm{vs} 689 \mathrm{~cm}^{-1}$). In the third pynmidine $\left(\mathrm{NH}_{3}\right)_{1}$ configuration, the ammonia molecule does not reside over the pyrimidine ring: the NH_{3} has a $\mathrm{N}-\mathrm{H}$ bond in

TABLE IV Pynmidine ($\mathbf{N H},)_{1}$.

$\begin{aligned} & \text { Energy } \\ & \left(\text { vac. } \mathrm{cm}^{-1}\right) \end{aligned}$	Energy relative to correspondias pyrmodine feature (cm^{-1})	Energy relative to correspondint pyrmodineammonis femture (cm^{-1})	Assignment
31378.2	305.2	-60.9	
31439.1	366.1	0	10_{0}^{*}
31441.0	368.0	0	II 0
31485.7	412.7	46.6	
31520.0	44.0	80.9	
315352	462.2	96.1	
31561.3	488.3	122.2	
31568.9	495.9	0	[11 0
31979.3	306.3	10.4	
31610.1	5371	41.2	
316851	612.1	116.2	
320446	360.6	0	$16 a_{0}^{1}$
12050.8	366.8	0	II $\boldsymbol{a b}_{n}^{1}$
320972	355.2	0	$160{ }^{\frac{1}{3}}$
321082			
321215	3795	0	11 66 :
32162.6			
321761	492.1	0	1JI 6an
322249	4827	0	III $6 b^{\prime}$,

FIG. 6. Minimum energy conffurations and binding energies for pyrnmidine (NH_{3}) ; as obtaned using a \mathbf{L} plus HB pocential calculatice.
the plane of the pyrimidine ring with the H atom pointing to one of the pyrimidine nitrogens, $2.23 \AA$ from it. The arnmonia nitrogen is dispiaced in the $x y$ piane by 3.3 and $2.8 \AA$ along the x axis and y axis, respectively, as shown in Fig. 6, configuration III. This configuration has a calculated binding energy of $537 \mathrm{~cm}^{-1}$.

D. Pyrazine-ammonia

The pyrazine $\left(\mathrm{NH}_{3}\right)$, spectra in the $00,10 a_{0}^{1}$, and $6 a_{0}^{1}$ regions are presented in Fig. 7. One first notices the signifcant difference between these data and those of pyrimidine ($\left.\mathrm{NH}_{3}\right)_{1}$. The spectra all strongly suggest that only one configuration is present for the pyrazine ($\left.\mathbf{N H}_{3}\right)_{1}$ system. The intense feature in the 0_{0}^{0} spectrum is the cluster origin at $+117 \mathrm{~cm}^{-1}$ from the pyrazine 0_{0}^{0} transition. The remaining features of this spectrum are vdW vibrational modes of the cluster. They will be analyzed in a future publication. ${ }^{20} \mathrm{Ta}$ ble V gives the energies and the features observed in the spectrum. In this case, the ground and excited state potential surfaces must be significantly different.

The cluster $10 a_{0}^{\prime}$ transition is quite different from the cluster 0_{0}^{∞} or $6 a_{0}^{1}$ transitions. From this one concludes that strong vdW-internal mode coupling exists for the $10 a^{1}$ out of plane ring mode. ${ }^{22}$ The vdW overtones and combination bands extend to more than $180 \mathrm{~cm}^{-1}$ from the $10 a_{0}^{1}$ cluster origin feature. This is particularly striking in comparison with the $6 a_{n}^{:}$vibronic band.

Only one configuration is calculated for the pyrazine (NH_{3}), cluster using the LJ plus HB potential function, in agreement with expectations from the spectra. The ammonia molecule hydrogen bonds to the ring nitrogens,

FIG. 7. Twocolor TOFMS of pyranse (NH,), at the ongin, $10 a_{n}^{\prime}$ and $\infty a_{\text {; }}$; requons are shown. The cluater ongen $\left(0 \mathrm{~cm}^{-1}\right)$ is $+117 \mathrm{~cm}{ }^{-1}$ to the blue of the pyravine ongan.
through two ammonia hydrogens. The nutrogen atom of the ammonia molecule is 3.2 A above the ring plane with all three hydrogens pointing toward the ring. This geometry is depicted in Fig. 8. The calculated binding energy of the cluster is $677 \mathrm{~cm}^{-1}$.

E. Benzene-ammonla

The origin and σ_{0}^{1} transitions of the $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{NH}_{3}\right)_{1}$ cluster are observed in two-color TOFMS. One can immediately conclude that at least one configuration of this cluster does not retain the benzene threefold axis. The spectra are traced inFig. 9 . The spectra for both transitions are far more complicated than any other cluster previously reported from our laboratory. Regions with similar structure can be found in the 0_{0}^{∞} and 6_{0}^{1} spectra; in particular, the regions around +20 , -20 and $-60 \mathrm{~cm}^{-1}$ in each spectra bear some resemblance to one another. Nonetheless, features appeaning in one spectrum do not appear in the other, and therefore at least two clusters of different geometry are probably responsible for the σ_{0}^{1} transition. The 0_{0}^{0} transition could arise from one reduced symmetry cluster. Since very little a priori spectroscopic analysis seems possible in this situation at the present time. great stock must be placed in the calculations.

Two different configurations are calculated for the $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{NH}_{3}\right)_{1}$ cluster and both of them have the NH_{3} molecule placed over the ring. Configuration I in Fig. 10 preserves the benzene C_{3} axis and configuration II does not. The high symmetry cluster has the \mathbf{N} atom $3.3 \dot{\AA}$ from the ring plane and the three H atoms of NH , are $2.9 \dot{A}$ above the ning plane. Configuration II has the N atom $3.3 \AA$ above the plane and slightly shifted from the ning center. Two H atoms of the

Wanna. Menapace, and Bernstem Hydrogen bonded clusters

TABLE V Pyrazine ($\left.\mathrm{NH}_{1}\right)_{1}$.

$\begin{aligned} & \text { Energy } \\ & \left(\text { vac. } \mathrm{cm}^{-1}\right) \end{aligned}$	Enersy redative to corresponding pyrazine feature (cm ')	Energy relative to corresponding pyrazineammonia cluster $\left(\mathrm{cm}^{-1}\right)$	Assignment
309873	913	-25.7	
309930	1170	0	0_{0}^{0}
31000.8	1248	78	
31019.5	1435	265	
31036.5	100.5	4) 9	
31043.6	167.6	50.6	
31045.4	1694	52.4	
31067.3	191.3	74.1	
31070.0	194.0	77.0	
310774	201.4	84.4	
31089.9	213.9	96.9	
31093.7	217.7	100.7	
310992	233.2	106.2	
31378.7	119.7	0	$10 a_{0}^{1}$
31384.9	125.9	6.2	
31400.5	141.5	21.8	
31403.7	144.7	25.0	
31424.3	165.3	45.6	
31441.8	182.8	63.1	
31461.3	202.3	(82.6) ${ }^{\text {e }}$	
31467.5	208.5	(88.8)	
31507.5	248.5	128.8	
31513.7	254.7	135.0	
31539.5	280.5	160.8	
31559.7	300.7	181.0	
31580.2	120.5	0	$6 a_{0}^{1}$
31590.8	131.1	10.6	
31624.8	165.1	44.6	

- May be aseociated with other pyrazune features.
NH_{3} point towards $\mathrm{C}-\mathrm{C}$ bonds and one points away from the ring plane. The $\mathrm{NH}_{3} \mathrm{H}$-atoms in this configuration are at 2.9 (two of them) and $4.3 \AA$ from the ring. The calculated binding energies of these two configurations are given in Fig. 10. Configuration II alone must generate the 0_{0}^{9} spectrum in Fig. 9.

F. Benzene-water

The $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$, cluster O_{5}^{0} and 6_{6}^{1} are presented in Fig. 11. They are strikingly different from those of $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{NH}_{3}\right)_{\text {, }}$ (Fig. 9) but bear a strong resemblance to the pyrazine (NH ,), spectra displayed in Fig. 7 , as well as spectra of other systems studied in our laboratory. ${ }^{1-1}$ In partacular, a very clear vibronic progression is present for the \mathcal{O}_{n}^{0} spectrum and will be analyzed in a future publication. ${ }^{\text {io }}$ Table VI gives

PYRAZINE - AMMONIA

$-677 \mathrm{cm-1}$

FIG 8 Minimum energy configuration and binding energy for pyrtzine (NH_{1}), as obtained usingat L HB form potential calculation

FIC Two-color TOFMS of benzene (NH,), in the region of the henzene ary and a_{0} transutions.
BENZENE-AMMONIA

-711

11 -608

FIG. 10. Minimum energy configurations and bunding enerpiea for benzene (NH_{3}), as obrined using a L potental calculation.
these features and their energies. The 6_{0} spectrum of $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$, has a different shift ($+50 \mathrm{vs}+85 \mathrm{~cm}^{-1}$) and a different general pattern than the 0_{0}°. In addition. the σ_{0}^{1} origin is split by roughly $1 \mathrm{~cm}^{-1}$. Considerable vibronic coupling must occur between the in plane carbon-carbon stretch 6^{1} and the vdW modes. The $\mathrm{C}_{n} \mathrm{H}_{n}\left(\mathrm{H}_{2} \mathrm{O}\right)$, cluster two-color TOFMS spectra are observed only at a higher ionization energy than required to observe the 6_{0}^{1} spectrum of bare $\mathrm{C}_{6} \mathrm{H}_{6}$. The $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$, spectra depicted in Fig. 11 are taken with an ionization laser energy of $44480 \mathrm{~cm}^{-1}$ compared to $36100 \mathrm{~cm}^{-1}$ for the benzene monomer. The ionization energy for the benzene water cluster is $3300 \mathrm{~cm}^{-1}$ higher than that of the benzene monomer.

Only one geometry is calculated for the $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$, cluster employing the LJ potential. The configuration and binding energy are given in Fig. 12. The oxygen atom of water is roughly centered over the ring at 3.2 A above it and

FIG. 11. Two-cotor TOFMS of bendene ($\mathrm{H}_{3} \mathrm{O}$), th the repon of benzene organ 0_{6}^{f} and 6_{0}. An expanded scale unsert is shown of the 6_{0}^{\prime} ongan of the cluscer.
the water hydrogen atoms are at $3.0 \AA$ above the nig. The calculated water benzene binding energy is $505 \mathrm{~cm}^{-1}$

IV. DISCUSSION

Cluster geometry is determined through analysis of twocolor TOFMS data for individual clusters and through calculations of cluster geometry and binding energes using an augmented LJ potential. Calculated binding energes have

TABLE VI Benzene (H, O), .

Energy (vac. cm^{-1})	Energy retauve 10 correapondint benzene feture (cm^{-1})	Enerty relatuve to corresponding benzenewater feature (cm ${ }^{-1}$)	Asmbrment
∞			
381686	846	0	
381739	899	53	
381855	1015	169	
191910	1070	224	
382053	1213	36.7	
382216	1376	530	
382435	1595	749	
382749	1909	1063	
a			
		0	
38.5354	484	0	
386568	498		
386838	768	こ"	
186886	816	125	
388942	872	181	
18709 1	1021	510	
38:207	1139	446	
189021	1591	$11) 60$	

Shift taken with or at tol

$-505 \mathrm{~cm}-1$
F1G. 12. Minimum energy configuration and bunding eneryy for benzene ($\mathrm{H}_{2} \mathrm{O}$), as obraned using a L potential calculation.
always been roughly bracketed by the experimentally observable range defined by two solute molecule vibrationa (e.g., 520 to $850 \mathrm{~cm}^{-1}$ for the $1: 1$ complex). ${ }^{1-7}$

Before discussing the details of the clusters observed. some general remarks are in order. First, one should take note of the great apparent differences between the spectra of the various clusters studied: pyrazine and pyrimidine hyatrocarbon spectra show little vdW vibronic structure but intense origins; the pyrazine (NH_{3}) spectrum displays chaborate and well developed vibronic progressions with a +117 cm^{-1} cluster shift for a single cluster; the pyrimidine (NH_{3}) , spectra consist only of intense origins for three large shift ($+366,+368 .+496 \mathrm{~cm}^{-1}$) confgurations with no vdW vibronic development; the benzene ($\left.\mathrm{NH}_{3}\right)_{1}$ spectra are red shifted, and too complex to interpret without further calculations; and the benzene ($\mathrm{H}_{2} \mathrm{O}$), spectra are blue shifted with extensive vdW structure. Second, and perhaps even more astonishing, the LJ-HB (where appropriate) potential calculations parallel and reinforce these differences in all cases. That is, for example, the calculations suggest one hy-drogen-bonded configuration for pyrazine (NH_{3}), but three hydrogen-bonded configurations for pyrimidine $\left(\mathrm{NH}_{3}\right)_{1}$, in agreement with the straghtforward interpretation of the spectra. Third, the binding energies of the clusters seem relauvely insensitive to the detailed configuration of the cluster. Fourth. spectral shifts are found to be a sensitive function of the detailed geometry of the cluster. Proximity to the π system is important for cluster red shift, while hydrogen bonding yields in general cluster blue shifts with respect to the solute monomer orign

A. Pyrimidine-methane

In the pyrimidine $\left(\mathrm{CH}_{4}\right)$, cluster the CH_{4} molecule is situated above the pynmidine ang coordinated to the π cloud of the aromatie nig. The cluster has a simple spectrum with litile vdW vibronic intensity following the pynmidine
vibronic origins. The cluster spectrum is red shifted, indicating that the excited state cluster is more tightly bound than the ground state cluster by roughly $60 \mathrm{~cm}^{-1}$. The overall appearance of the spectrum is similar to that of pyrazine methane.

The additive shift features in the spectrum of pyrimidine ($\left.\mathrm{CH}_{4}\right)_{2}$ are attributed to the isotropic (symmetncal) geometry with a methane molecule on either side of the pyrimsdine ring. The feature at $-47.2 \mathrm{~cm}^{-1}$ in the pyrnmidine $\left(\mathrm{CH}_{4}\right)_{2}$ spectrum is attnbuted to the anisotropic configuration with boith CH_{4} molecules on the same side of the ning. In this asymmetric geometry, one methane is more or less above the ring, and responsible for most of the $\mathrm{CH}_{4}-\pi$-cloud interactions, and the other methane molecule is of the ning interacting prumarily with the first methane, contributing little to the cluster spectral shift.

The overall behavior of this cluster system with regard to geometry, binding energy, and cluster population in the beam is very sumilar to that found for benzene, toluene, and pyrazine methane species. ${ }^{1-7}$

B. Pyrindiline-othane

The pyrimidine $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{1}$ cluster is simular to the pyrazine $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, cluster:' both clusters have three geometrical configurations and each configuration of the two clusters has a similar binding energy. These configurations are also similar to those of the benzene $\left(\mathrm{C}_{2} \mathrm{H}_{8}\right)$, cluster with the exception that, in the N-heterocyclic systems, two parallel onentations of the $\mathrm{C}_{2} \mathrm{H}_{6}$ lons axis with respect to the ning plane are now possible.

The identufication of calculated geometries with the three distinct spectroscopic features is of course tentative but can be pursued in the spirit of the arguments and correlations employed with the benzene and pyrazine systems.'-7 Referring to Figs. 3 and 4, the feature at $-71.4 \mathrm{~cm}^{-1}$ can be associsted with configuration I, the intense feature at $-60.7 \mathrm{~cm}^{-1}$ can be associated with configuration II. and the $-52.7 \mathrm{~cm}^{-1}$ feature is associated with configuration III. The lack of vdW vibronic structure for these transitions must be due to the sumilarity between the ground and excited state potentials for the clusters.

C. Pyifmidine-ammonia

The pynmidine ($\mathbf{N H}$,), clusters have a unique spectrum which can only be interpreted as due to three distinct configurations with no vdW mode progression intensity following the well defined ongins. Calculations. as pointed out previously, give exactly these conclusions and identification of origans in the spectrum with configurations seems straightforward. Configurations I and Ii of Fig. 6 are associated with the features at 366 and $368 \mathrm{~cm}^{-1}$ in Fig. S. These two configurations are quite similar and have less hydrogen bonding interaction than the more blue-shifted single feature at $496 \mathrm{~cm}^{-1}$. The large spectral blue shifts of -365 and $-500 \mathrm{~cm}^{-1}$ must anse from the strong hydrogen bonding interactions. While none of these observations seem particularly striking in and of itself, in comparison with the pyrazine (NH_{3}), and benzene (NH_{3}), results. they are surpnsing; these will be discussed below.

D. Pyrazine-ammonia

The pyrazine (NH_{3}), cluster spectrum is completely different from that of pyrimidine (NH_{3}), The cluster 0_{n}^{0} is shifted $+117 \mathrm{~cm}^{-1}$ from the pyrazine 0_{n}^{0}, only one cluster geometry is present, and a rather extensive vdW vibronic structure is built upon the origin. The $6 a_{0}^{1}$ spectrum is quite similar. Two intense vdW vibronic transituons are associated with these cluster transitions. The $10 a_{n}^{1}$ vibration region of the pyrazine (NH_{3}), cluster, on the other hand. looks quite different from these other features and vibronic interactions between the out of plane $10 a^{1}$ carbon-carbon mode and the vdW modes are quite evident in the overall vibronic intensity pattern in the 100_{0}^{1} region.

Calculations predict only one configuration for this cluster system. The fact that the potential energy calculations can accurately parallel the spectral data for pyrimidine and pyrazine ammonia clusters which are clearly so different. gives us a high degree of confidence in the calculational process, the binding energies, and the potential form accuracy.

E. Benzeno-ammonia

Assignment of the benzene (NH_{3}), spectra has not been attempted as yet because the spectra are too complicated. We present them only as part of the general picture indicating what spectra of relatively simple clusters of such systems can be like. The benzene (NH_{3}), clusters yield much more complicated spectra than ether pyrazine or pynmudine ($\mathbf{N H}_{3}$), clusters do. In the benzene ($\mathbf{N H}_{3}$), cluster, strong vdW vibronic interactions must be important for the cluster transition intensity.

Both calculated configurations (Fig. 10) contribute to the G_{0}^{1} transition but only configuration II generates the 0_{0}^{0} spectrum. Note too, that both configurations most likely generate a red shift.

F. Benzene-water

Any $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$, cluster will in principle generate a σ_{0}^{∞} transition. The α_{0}^{∞} spectrum of $\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{t}$ (Fig. II) thus strongly suggests that only one cluster geometry is realized for this system. The $\mathrm{C}_{0} \mathrm{H}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right), \infty_{0}^{\infty}$ transition is much like the pyrazine (NH,), spectrum. Well developed vdW vibronic features are observed. The 60 spectrum implies strong vibronic mixing between the in plane carbon-carbon deformation 6^{\prime} and the $\mathrm{vd} W$ bends and torsions: the cluster shift is different for 6_{0}^{\prime}, as is the intensity pattern. The cluster shift at the 0_{0}^{0} transition is $+85 \mathrm{~cm}^{-4}$ which indicates that the cluster excited state is destablized with respect to the ground state. The blue shift may be related to the unique hydrogen bonding capabilities of the $\mathrm{H}_{:} \mathrm{O}$ molecule with the π system of benzene. The calculated binding energy is probably - 50 cm^{-1} low for this cluster because the σ_{0}^{\prime} transition at 0_{0}^{\prime} plus $\$ 20 \mathrm{~cm}^{-1}$ is observed. We have previously noted that the L potentual binding energy is roughly $50 \mathrm{c}: 7^{-1}$ low compared to exp- 6 and expenmental values.'

An infrared study of the $1: 1$ benzene-water complex in an argon matnx has been reported. " The work suggests that the water molecule hydrogen bonds to the benzene π system
in a manner nearly identical to that found in the calculations presented in Fig. 12.

V. CONCLUSIONS

The clusters studied in this work fall into two broad categories: a conventional set containing pyrimidine hydrocarbon clusters, the spectra of which are quite similar to those of other aromatic and pyrazine hydrocarbon systems. and benzene. pynmidine, and pyrazine ammonia and benzene water clusters. the spectra of which are all unique and surpnisingly erratic. In the latter grouping, spectral cluster shufts range from -100 to $+500 \mathrm{~cm}^{-1}$, vdW vibronic spectra range from nonexistent to intense, vdW modes can be highly perturbing to the solute vibronic structure and energy, and the number of cluster configurations vanes from one to three in an apparently arbitrary fashion. These differences notwithstanding, the Lennard-Jones (6-12-1) potential, augmented appropnately with hydrogen bonding interactions ($10-12$) as required, always gives geometry and binding energy results that are in complete agreement with the spectra as far as the comparison can be made (i.e., symmetry, numbers of configurations, red and blue shifts with regard to hydrogen bonding, etc). The atom-atom U potential form has been chosen for these calculations because a large number of parameters for different types of atoms are avalable in the literature.

The benzene (NH), and ($\mathrm{H}_{2} \mathrm{O}$), spectra are quite different from one another. The shifts for these two clusters and their geometries seem to emphasize the importance of hydrogen bonding in the benzene (H, O), cluster.

Pyrazine and pyrimidine water clusters are not found in these studies although they have been extensively investigated. These clusters are not observed perhaps because their excited states are dissociative, but more likely because of rapid excted state intersystem crossing and/or internal conversion.

[^3]M. Kasha. Discuss. Faraday Soc. 9. 14 (1950)
${ }^{10}$ (s) F. A. Momany. L. M. Carruthers. R. F McGuire. and H. A. Scheraga. J Phys. Chem. 78. iS95 (1974): (b) G. Vemethy. M. S Pottic, and H A Scheraga, cbat 87. 1883 (1983).
(a)C. A. Haynam. D V Brumbaugh, and D H Levy. J. Chem Phys. 80. 2296 (1984); (b) D V Brumbaugh. J. E. Kenny. and D. H. Levy, ibid. 78. 3+15 (1983): (c) K. E. Johnson. W Sharfin. and D. H. Levy, ibid. 74. 163 (1981); (d) K. E. Johnson. L. Wharton, and D. H. Levy, ibid. 69. 2719 (1978).
${ }^{7}$ K Yamanouchi. H. Watanabe. S. Kode S. Tsuchiya and K. Kuchitsu.

Chem. Phys. Lett. 107. 290 (1984)
(w) \& P J Wheatley. Acta Crystailogr 10. 182 (195?). (b) 13. 30 (1960)
") A. Menapace and E. R Bernstein. J Chem. Phys (to be published) '' (a) A. E. W Knight. C. M. Lawburgh. and C. S. Parmenter. J Chem Phys. 63. 4336 (1975); (b) I Knoth. H J. Neusser. and E. W Schlag. J Phys. Chem. 66. 891 (1982): (心) A. K. Jameson. H Salgusa and E. C Lim. ibid. 87. 3007 (1983): (d) H. Abe. Y. Ohyanagı. M. Ichıjo. N M1 kami, and M. Ito. ibid. 89. 3512 (1985).
M. L. Sage and J. Jortner. J. Chem. Phys. 82. 5437 (1985).
'A. Engdahl and B. Neiander, J. Phys. Chem. 89, 2860 (1985)

APPENDIX TWO

SUPERSONIC MOLECULAR JET STUDIES OF THE PYRATINE AND PYRIMIDINE DIMERS

Supersonic molecular jet studies of the pyrazine and pyrimidine dimers ${ }^{\text {a }}$

J. Wanna, J. A. Menapace, and E. R. Bernstein
Department of Chemusty. Condensed Matter Sciences Laboratory. Colorado State C'nuerstry. Fort Collins. Colorado 80523

(Received 13 December 1985; accepted 8 April 1986)
Mass selected optical spectra for the first excited singlet $n \pi^{*}$ states of the pyrazine and pyrimidine dimers are presented. The species are created in a pulsed supersonic jet expansion. The spectra are analyzed based on ionization energy, vibronic structure, and relative energy with respect to the isolated monomer (cluster spectroscopic shift). Calculations of binding energy and geometry for these dimers are carried out employing a Lennard-Jones (6-12-1) and hydrogen bonding (10-12-1) potential. In the case of pyrazine, calculations and experiments agree that both parallel planar hydrogen bonded and perpendicular dimers are present in the expansion. The calculations also predict a paraliel stacked and 90° rotated pyrazine dimer which is not observed. This latter species most likely forms an excimer in the excited state with a short lifetime and a highly red shifted broad spectrum. In the case of pyrimidine, calculations yield four planar hydrogen bonded species and a parallel stacked and displaced species. The spectra for the pyrimidine dimer are consistent with these configurations, in agreement with the calculations. No perpendicular configuration is calculated for the pyrimidine dimer and no spectroscopic features require postulating the existence of such a configuration. To explore further the agreement between calculated and experimental results for aromatic dimers, calculations are also presented for the tetrazine dimer. Three calculated geometries are obtained for the tetrazine dimer: a parallel stacked and 90° rotated species, a planar hydrogen bonded species, and a perpendicular species. Experimental spectra and calculations are in basic agreement for all dimers studied and, in general, support one another.

I. INTRODUCTION

Molecular dimers are of interest for a number of reasons. They can serve as model systems for condensed phase structure, dynamics, and nucleation and growth. Vibrational dynamics and reactions can be studied in clusters through the observation of vibrational dephasing or intramolecular vibrational redistribution (IVR) and vibrational predissociation (VP). Dimers also provide a model for higher order (i.e., secondary, tertiary, etc.) structure of more complex, flexible molecules. Finally, these small clusters can be treated as a new, weakly coupled state of matter appropriate in its own right for investigation and focused attention.

Small clusters or dimers are best studied by molecular jet techniques, ${ }^{1-6}$ as the species are thereby isolated and free of extraneous perturbations. Of the molecular supersonic jet spectroscopy techniques available, the most useful is twocolor time of flight mass spectroscopy' (2-color TOFMS) because many different clusters [e.g., dimers, trimers, dimers (He$)_{n}$, etc.] are simultaneously produced in the expansion process. Two-color TOFMS selects a cluster of particular mass, does not allow fragmentation of clusters to take place, thus maintaining mass integrity of the clusters, and yields a plot of cluster ion intensity in the chosen mass channel as a function of the cluster absorption spectrum.

Dimers of benzene, toluene, and benzene-toluene have been studied in our laboratory using the 2 -color TOFMS technique.' Coupled with the experimental findings, a potential energy calculation of the structure and binding ener-

[^4]gy of these dimers based on an exponential-six (exp-6) function has also been reported. ${ }^{2}$ Spectroscopic data and potential energy calculations have been analyzed to arrive at a set of consistent geometries for these dimers. The benzene dimer is suggested to have a parallel displaced structure and the toluene and toluene-benzene dimers are suggested to have both parallel displaced and perpendicular geometnes. The benzene dimer characterization rests on isotopic substıtution, absence of resolved splittings at the cluster 0_{0}^{0}, observation of only one feature, respectively, for $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$, ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)_{2}$, and $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{C}_{6} \mathrm{D}_{6}$ at the cluster O_{0}°, and calculations employing the observed molecular quadrupole moment of $\mathrm{C}_{6} \mathrm{H}_{6}$ to set partial and atomic charges and multipolar terms. In all instances, the experiments and calculations appear to arrive at self-consistent and independent conclusions which are in agreement with one another.

Molecular jet studies of other isolated dimers have also been reported. Rotationally resolved fluorescence excitation and dispersed emission spectra of tetrazine.' phenyltetrazine, ${ }^{4}$ and dimethyltetrazines dimers have been reported. Hydrogen bonded benzoic acid ${ }^{\circ}$ and benzoic acid- - -toluic acid' dimers have also been studied.

In this paper we report rotationally resolved 2 -color TOFMS of pyrazine and pyrimidine isolated molecules at a resolution of $0.08 \mathrm{~cm}^{-1}$. Unfortunately, this is insufficient resolution to obtain rotationally resolved 2 -color TOFMS of the pyrazine and pyrimidine dimers. Computer simulauons. based on a reasonable symmetnc top algonthm, predict \downarrow resolution of at least $0.005 \mathrm{~cm}^{-1}(150 \mathrm{MHz})$ is needed io observe rotational structure for the dimers, assuming thes are rigid.

In addition to the experimental spectroscopic methods used to study these dimers, potential energy calculations utilizing a Lennard-Jones ($\mathrm{L}: 6-12-1$) potential are performed to yield minimum energy geometnes and binding energies. This potential form is replaced with a LJ -hydrogen bonding (HB; 10-12-1) form for the approprate set of atoms. The calculation and parameters employed are discussed and presented in an earlier publication. ${ }^{y}$ These potentuals, with literature parameter values, give the same results as the exp-6 with dipole-dipole, dipole-quadrupole, and quadrupolequadrupole terms for the benzene, toluene, and benzene-toluene (and pyrazine and pynmidine) dimers. The major advantage of the $L J$ form presently used in our studies is that more atomic parameters are available in the literature' and experimental multipole moments are not required for each system.

Dimer geometry is determined through analysis of experimental (e.g., shifts, ionization energies, origin identification, vibronic analyses, etc.) and calculational results.

II. EXPERIMENTAL PROCEDURES

A pulsed valve supersonic molecular jet system is used to generate the dimers. The pulsed valve is mounted in the mass spectroscopy chamber of a two chambered vaccum system. Since the duty cycle of the valve is roughly 10^{-3}, the 10 in. diffusion pump on the chamber and the 6 in. diffusion pump on the TOFMS flight tube adequately handle the gas load and maintain the chamber pressure below 2×10^{-6} Torr. The system is described in previous publications. ${ }^{1.4}$ The beam passes through a skimmer and then into the ionization region of a TOFMS. Two separateiy tunable lasers provide the photons for the $S_{0} \rightarrow S_{1}$ transition and the $S_{1} \rightarrow$ cluster ion transition.

Rotationally resolved 2-color TOFMS are obtained through pressure tuning of the grating box of the pump ($S_{0} \rightarrow S_{1}$) dye laser oscillator cavity. The output of this laser is narrowed by an etaion placed between the dye cell and the grating in the oscillator cavity. The doubled output from this dye laser is $0.08 \mathrm{~cm}^{-1}$ in width. The laser can be scanned over roughly $20 \mathrm{~cm}^{-1}$ for a N_{2} pressure variation of 10 to 1500 Torr.

Pyrazine and pyrimidine are obtained from Aldrich Chemical Company and used without purification. The sample is placed in a trap behind the pulsed valve through which He flows at 120 psig.

The IJ potential energy function and calculational procedure have previously been deacribed. ${ }^{2}$ The additional constants needed for this work are the (aromatic) N... H hydrogen bonding values: $B=8.244 \times 10^{5} \mathrm{kcal} \AA^{10} / \mathrm{mol}$ and $A^{\prime}=3.2897 \times 10^{6} \mathrm{kcal} \mathcal{A}^{12} / \mathrm{mol}$. In order to check the LJ potential form, in particular for the pyrimidine dimer, LJ plus multipolar (i.e., dipole-dipole, dipole-quadrupole. and quadrupole-quadrupole) potential calculations are also performed. ${ }^{2}$ The pyrimidine dipole and quadrupole moments ${ }^{10}$ are taken to be $-2.97 \times 10^{-18} \mathrm{esu} \mathrm{cm}$ and -1.91×10^{-86} esu cm^{2}, respectively.

Calculations are also reported which simulate the rotational structure of pyrazine and pyrimidine monomers and dimers. A symmetric top model is employed for this fit be-
cause it is simple, reasonably accurate. and in general is weil suited to the purpose of roughly predicting the unresolved dimer structure. Both molecules are nearly symmetnc lops $(\kappa=0.9)$. The form of the equattons and methods employed are given by Herzberg. ${ }^{11}$ The rotational temperature achieved in our system is -2 K . The rotational constants used in the dimer rotational spectra calculations are found from the calculated LJ geometnes. The molecular geometries can be found in Ref. 12 for pyrazine and Ref. 13 for pyrimidine.

III. RESULTS

A. Pyrazine dimer

The spectrum of the pyrazine dimer at the 0_{o}^{0} transition is presented in Fig. I at two ionization energies, both of which are lower than the minimum ionization (second photon) energy of $44000 \mathrm{~cm}^{-1}$ required to observe the 2 -color TOFMS of the pyrazine monomer. Lowering the ionization energy from 43182 to $42185 \mathrm{~cm}^{-1}$ causes tinree of the dimer related peaks to disappear: these features are found at $-11.0,12.0$, and $26.2 \mathrm{~cm}^{-1}$ on the scale of Fig. 1 . From the nature and appearance of these features, the +12 and +26 cm^{-1} peaks are quite likely vibrations built on the -11 cm^{-1} origin of a given configuration cluster. The intense features that remain at the lower ionization energy are found at $-26.3,-5.8,+34.1$, and $50.7 \mathrm{~cm}{ }^{-1}$. From this variation of ionization energy one can determine that at least two configurations of the pyrazine dimer are present in the su-

FIG 1. Twocolor TOFMS of the pyrazine dimer in the region of the pirazine ongan at two different ionization energies. sop trace at an sonization energy of 43182 cm 'and the lower crace at an ionization energy of 4 : : s ? cm^{-1} The pyranine ongin at $30876 \mathrm{~cm}^{-1}$ hes at $0 \mathrm{~cm}^{-1}$ on the wale of the figure.

Nama Verapace and Bermstein Pi, azane and Dyrmore dimes

personic jet expansion. The pyrazine- d_{4} dimer 0_{0}^{0} spectrum at two different ionization energies is presented in Fig. 2: the similanty between the pyrazine- h_{4} and $-d_{4}$ dimer spectra is quite striking and reinforces our identufication of origins and vdW vibromic features. The features that vanish at lower ionization energy are found at - 11.5. 11.5, 25.5, and 64.1 cm^{-i} with respect to the pyrazine-d 0_{0}^{0} transition (31030.4 cm^{-1}). These should be compared with the numbers in Ta_{a} ble I. The features that remain with lower onization energy are iocated at $-26.9,-6.5,31.0$, and $45.9 \mathrm{~cm}^{-1}$.

The spectra of the pyrazine dimer at other pyrazine vibronic ongins are presented, along with the 0_{0}^{0} spectrum for comparison. in Fig. 3. The feature at roughly $+61 \mathrm{~cm}^{-1}$ in this figure ($+34.1 \mathrm{~cm}^{-1}$ in Fig. 1) is clearly an additional origin. The energy values and shifts for these features are presented in Table I. Since the pyrazie dimer is still observed at $10 a_{n}^{2}$, its binding energy is greater than $800 \mathrm{~cm}^{-1}$. No other features. appearing in the dimer mass channel, are found within $-400 \mathrm{~cm}^{-1}$ of the pyrazine 0_{0}^{0} transition. The spectra of the pyrazine- d_{4} dimer at these other vibronic monomer origins are again very similar to those of the pyrazineh_{4} dimer. We concluded from these spectra (not presented) that the third ongin for the deuterated dimer lies at 31.0 cm^{-1} from the α_{n}^{0} of the deuterated monomer.

Utilizing a Lennard-Jones potential function with a hydrogen bonding form, three configurations for the pyrazine dimer are calculated. Two of these configurations, a planar hydrogen bonded form and a perpendicular form, are displayed in Fig. 4. A parallel, stacked and 90° rotated structure

FIG. 3. Two-color TOFMS of the pyrazane dimer in the Q_{n}^{5}, $10 a_{n}^{i}$. and ∞a_{0}^{\prime} regaons. These spectra are taken at high ($-43200 \mathrm{~cm}^{-1}$) ionization ener. gy.

FIG: Two-color TOFMS of the pyrazine d, dimer in the region of the nyrazine $d_{\text {, origin }}$ Two different wization energies are presented The porazine-d. monomer ongin lies at ${ }^{\circ}$ am ' in the wale of the figure Compate io Fig I for the pyrazine.h. dimer

PYRAZINE DIMER

FIG 4 Minimum energy contigurations and binding energes ... o. .a. ie dimer as ohtained with a iJ plus HB potential abitation
is also found. The binding energies for the former two configurations are presented in the figure. In the planar geometry the ring centers are at 5.6 A from each other and the suggested C-H...N hydrogen bonds are $2.3 \AA$ Ả long. The pyrazine at the stem of the perpendicular configuration is situated in a symmetric position above the base pyrazine, with two of its hydrogens pointing to the base pyrazine nitrogens and equidistant from them. This perpendicular configuration has a $4.6 \AA$ A pyrazine center to center separation and apparent 2.6 $\AA \mathrm{A} \cdots \mathrm{N}$ bond lengths.

B. Pyrimidine dimer

Three segments of the pyrimidine dimer 2 -color TOFMS spectrum in the 0_{0}° region are displayed in Fig. 5 for two different ionization energies. Based only on the position and appearance of these segments we suggest that the features at -168 and $+296 \mathrm{~cm}^{-1}$ are each associated with different geometries. The grouping of features in the +170 cm^{-1} region must be associated with more than one dimer configuration. as these eight sharp, relatively intense features are clearly not vdW vibronic progressions built on a single O_{0}^{∞} origin. The minimum ionization energy for the pyrimidine monomer is near $44090 \mathrm{~cm}^{-1}$ above the ' $B_{1}\left(n \pi^{*}\right)$ excited state at $31073 \mathrm{~cm}^{-1}$. As can be seen from Fig. 5, features in two of the three regions displayed disappear as the ionization energy is lowered from 44363 to 42320 cm^{-1}.

Calculations using a $\mathrm{LJ}-\mathrm{HB}$ potential function yield four planar configurations, a parallel stacked head-to-tail displaced configuration, and a parallel stacked undisplaced configuration with the two pyrimidine molecules rotated 90° with respect to each other. The latter configuration most likely does not contribute to the observed dimer spectrum since it will probably form an excimer. No perpendicular geometry is calculated even with the $\mathrm{LJ}-\mathrm{HB}$ potential augmented with multipolar terms. Figures 6 and 7 give those calculated geometries for the pyrimidine dimer which can produce the observed spectral features. The parallel displaced geometry shown in Fig. 6 is head-to-tail displaced by

FIG. 5. Three segments of the 2 -color TOFMS spectra of the pynmudine dimer at two ionization energes. top irace at an ionization energy of 44363 cm^{-1} and the lower trace at an ionization energy of $42320 \mathrm{~cm}^{-1}$. The energy cale is relative to the pynmidine monomer $\mathcal{O}_{\mathrm{g}}^{\rho}$.

PYRIMIDINE DIMER

$-1478 \quad \mathrm{~cm}^{-1}$
FIG. 6. Minimum energy configuration and binding energy for the stacked pyrimidine dimer as obtaned with a L plus HB porential calculation.
$0.6 \AA$ along the $\mathrm{CH}-\mathrm{CH}$ line from the molecular center; the interplane separation is $3.3 \dot{\mathrm{~A}}$. The calculated binding energy for this dimer is $1478 \mathrm{~cm}^{-1}$.

The planar configurations are displayed in Fig. 7. Configuration I has a center to center distance of $5.5 \AA$, two $\mathrm{N}-\mathrm{H}$ hydrogen bonds ($2.3 \AA$ separation), and a calculated binding energy of $709 \mathrm{~cm}^{-1}$. Configurations II, III, and IV also display some hydrogen bonding but to a lesser extent than that displayed in configuration I. In these latter three cases, the less "acidic" hydrogens, not between the two N atoms, are involved in the "hydrogen bonds": the pyrimidine molecule center to center distance is $-6.0 \AA$ and the calculated binding energies range from 400 to $430 \mathrm{~cm}^{-1}$. substantially less than the binding energy for configuration I. Configuration II has two N--H hydrogen bonds each of 2.9 A. Configurations III and IV have a nitrogen atom of one pyrimidine equidistant from two hydrogens of the other pyrimidine with an apparent hydrogen bond distance of $2.9 \AA$. Planar configurations in which two nitrogens are facing each other are not stable.

FIG. 7 Minimum energy configurations and binding energies for the planst pynmidine dimers as obtained with a U plus HB potential calculation

C. Rotational structure

Rotationally resolved 2 -color TOFMS data can be obtained for the pyrazine and pynmidine monomers using the resolution presently available in our laboratory ($\Delta v-0.08$ cm^{-1}). The spectra are presented in Fig. 8. These well resolved spectra evidence a central Q branch with well developed R and P branches to the high and low energy sides. respectively. The calculated rotational structures for these transitions are presented in Fig. 9. In order to make the fit look reasonable, a $0.1 \mathrm{~cm}^{-1}$ Gaussian linewidth was incorporated in the calculated spectrum.

Considenng that a symmetnc top equation is used for the fit, the agreement between the calculated and expenmental results is excellent. The purpose of this exercise is to observe and calculate the rotational spectrum of a dimer. One can see from Fig. 10 (top) that the rotational structure of the pyrazine dimer is not evident at this laser linewidth. Similar conclusions anse from the spectra of the benzene dimer (see Fig. 11). Computer simulations of the pyrazine dimer spectrum (based on the symmetnc top calculations), show that a $-0.005 \mathrm{~cm}^{-1}$ laser linewidth is required to resolve rotetional transitions for the aromatic dimers (Fig. 10 bottom). An attempt to fit the rotational contours to parallel or perpendicular transtions of parallel or perpendicular dimers demonstrates that no convincing conclusions concerning dimer geometry can be reached in this manner. In fact, the spectra of the parallel and perpendicular pyrazine dimer origins do not appear different at this resolution. The calculated contours are found using rotational constants of $A^{*}=0.0611, B^{*}=0.0157$, and $C^{*}=0.0141 \mathrm{~cm}^{-1}$ for the perpendicular dimer and $A^{\circ}=0.0381, B^{\prime \prime}=0.0153$, and $C^{*}=0.0112 \mathrm{~cm}^{-1}$ for the parallel planar dimer.

FIG : Two-color TOFMS rotational spectra of the onguns of pyrnaine (top) and pynmidive (bottom) monomers.

FIO. 9. Simulated rotational specina of the pyranne and pyrumidine ongna

IV. DISCUSSION

A. Pyrazine dimer

In the following paragraphs, only the pyrazine- h_{4} dimer results will be discussed in detail. The similarity between the pyrazine- h_{4} and α_{4} dimer results obviates the need for discussion of these data separately.

One of the most important experimental observations concerning the pyrazine dimer is the change in the spectrum as a function of ionization laser or second photon energy. Lowering the ionization laser energy by $1000 \mathrm{~cm}^{-1}$ to $42185 \mathrm{~cm}^{-1}$ causes three features to disappear: two of these are assigned as vibrations buitt on a single origin (see Table I and Fig. 1). Further reduction of the ionization energy to $41721 \mathrm{~cm}^{-1}$ results in no observed TOFMS spectrum for the pyrazine dimer. At least two different geometries of the pyrazine dimer are therefore present in the beam. The dimer with the higher ionization energy is probably a symmetncal dimer with two symmetry equivalent molecules because only one origin is associated with the high ionization energy spectrum.

Different geometries will possess different ionization energies depending on the involvement of the π clouds in the overall dimer interaction. For exampic. a planar hydrogen bonded dimer would probably have a poor ion "solvation" or stabilization and might therefore have a higher ionization energy. This geometry would in addition have only one spec-

FIO. 10. Two-cotor TOFMS rotational spectrum of the pyrazine dimet onipis (top) and computer sumulated rotational spectro of the pyrazine dimer ongan (bottom). The ongan is ar $30849.5 \mathrm{~cm}^{-1}\left(-26.5 \mathrm{~cm}^{-1}\right.$ origin in Fig. (1). The FWHM is routhly $2 \mathrm{cmo}^{-1}$. The $30865.0 \mathrm{~cm}^{-1}$ origin looks nearty identical to thes one it the experimental resolution.
troscopic origin. A perpendicular geometry dimer would, on the other hand, probably evidence two features and a lower ionization energy due to the π-cloud involvement of the "horizontal" pyrazine in the stabilization of the ion.

The calculations give three general geometries for the pyrazine dimer: a parallel planar, a perpendicular, and a parallel stacked on 90° rotated geometry. The latter geometry is not discussed in this work because it likely is not important for any of the spectroscopic observations presented earlier. The remaining two configurations give rise to three separate spectra: one for the paraliel planar geometry (I) and two for the perpendicular geometry (base Ila and stem IIb).

BENZENE DIMER O:

FIG 11 Two-color TOFMS of the benzene dimer 0_{n}^{0} transition at 008 cm 'resolution Most of the "features" in this trace are noise and are not reproducible

TABLE I. Pyrazine dimer.

$\begin{gathered} \text { Energy } \\ {\text { (vac. } \mathrm{cm}^{-1} \text {) }}^{\text {m }} \end{gathered}$	Energy relative to corresponding pyrazine feature (m ')	Energy relative to corresponding pyrazine dimer feature (em)	Assignments*
30849.5	- 26.5	0	11 base v_{n}
10865.0	-110	0	10^{*}
30870.2	-5.8	20.7	
30879.1	3.1	296	
30888.0	12.0	23.0	
10891.4	15.4	\$1.9	
30898.7	22.7	492	
30902.3	26.3	373	
39910.1	34.1	0	II stem 0_{n}^{0}
30914.0	38.0	3.9	
30918.2	42.2	8.1	
30926.7	50.7	16.6	
31228.5	-30.5	0	II bese 10at
31238.5	-20.5	0	$110 a_{0}^{1}$
31245.4	-13.6		
31254.8	-4.2		
31289.4	30.4	0	II stem 10a!
31297.6	38.6		
31314.4	35.4		
31433.3	- 20.4	0	II base 60!
31445.1	-14.6	0	I $6 a_{0}^{1}$
31456.8	-2.9		
31467.8	8.1		
31481.7	22.0		
31488.9	29.2		
31493.2	33.5	0	II stem 6aio
31507.9	48.2		
31565.7	106.0		
31677.9	-21.1	0	II base 100
31686.1	- 12.9	0	I 100_{5}^{2}

${ }^{1}$ See Fig. 4.
Table I gives the assignment of the dimer spectra. The planar geomerry (I) is assigned to the origin at $-11 \mathrm{~cm}^{-1}$ (Fig. 1) since this single origin feature is associated with the higher ionization energy. The other two origins at - 26.5 and $+34.1 \mathrm{~cm}^{-1}$ (Fig. 1) with respect to the pyrazine monomer origin are assigned to the perpendicular dimer because they both show the same low ionization energy. The base (Ila) is associated with the red shifted origin and the stem (IIb) is associated with the blue shifted ongin. This latter correlation between spectra and calculated structures is based on the argument presented in previous publications': relating solvent cluster shifts and π-cloud involvement in the solute-solvent interaction: the larger the red shift, the more direct is the interaction between the system and the solvent Thus the base molecule should be expected to have a larges red shift than the stem molecule.

The pyrazine $6 a^{1}$ (in-plane C-C stretch) and $10 a^{\prime}$ (our-of-plane $\mathrm{C}-\mathrm{C}$ bend) vibrational modes show strong interactoon with the van der Waals modes (Fig. 3).

B. Pyrimidine dimer

The ionization energy for the pyrmidine dimer wiem is agan an imporiant prece of information used to he! ip deter mine the number of different contigurations tesponntite tir
s-tetrazine dimer

FIG. 12. Minimum energy configurations and binding energies for the tetrazine dimer as oblaned with a L plus HB potential calculation.
the observed spectra and, pertiapa, their geometry. Lowering the ionization by $2043 \mathrm{~cm}^{-1}$ to $42320 \mathrm{~cm}^{-1}$ causes the feature at $-168 \mathrm{~cm}^{-1}$ to disappear, the features at $\sim+175$ cm^{-1} nearly to disappear, and the feature at $+296 \mathrm{~cm}^{-1}$ to reduce in intensity. In addition, dimer spectral shifts can also be employed to associate calculated geometries with spectroscopic features: red shifted origins can be assigned to parallel stacked geometries, and blue shifted origins to planar hydrogen bonded forms. Perpendicular geometries can be responsible for both red and blue shifts depending on which molecule of the dimer is invoived.'

LJ-HB potential calculations suggest one parailel stacked head-to-tail displaced, one parallel stacked rotated, and four parallei plamar configurations for the pyrimidine dimer. No perpendicular geometry can be calculated using L-HB or a multipolar form. ${ }^{1,2}$ All calculations give nearly identical geometries and binding energies for the parallel planar and stacked configurations.

The features at $-168 \mathrm{~cm}^{-1}$ is suggested to be due to the parallel stacked and displeced head-to-tail geometry. One would expect this structure to have only one spectroscopically observed 0_{0}^{ρ} transition and a substential red shift. The remaining features in the spectra, due to their significant blue shifts, must be attributed to planar hydrogen bonded dimers. The feature at $+296 \mathrm{~cm}^{-1}$ is susgested to be due to configuration I shown in Fit. 7. This configuration of the pyrimidine dimer forms two hydrogen bonds both of which involve the hydrogen atoms between the two ring nitrogen atoms on each pyrimidine: these hydrogens are the most electropositive (acidic) hydrogens on the ring. This configuration also has the monomers closeat to each other ($5.5 \dot{\AA}$ compared to $6.0 \AA$ in the others). These factors suggest that configuration I gives rise to the most blue shifted feature in the spectra. The remaining three configurations II, III, and IV must generate the features in the $+175 \mathrm{~cm}^{-1}$ region. Configuration Il is a symmetrical dimer and will account for one feature while configurations III and IV each will account for two features since the pyrimidines in these last two configurations are not symmetry equivalent. Assigning these features to configurations II. III, and IV is a difficult task without further information: five of the eight major features in this region can, however, be associated with origins of configurations II, III, and IV.

The parallel pianar hydrogen bonded configuration I is assigned to the large blue shift, low ionization energy feature, and the parallel stacked displaced geometry is assigned to the large red shifted, high ionization energy feature. On the other hand, the parallel planar pyrazine dimer is assigned to the feature with the higher ionization energy (and also a small red shift). Clearly the two dimers have a very different electronic structure and the component monomers must interact in a different manner. A possible explanation for these apparent differences is that the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ motety of the pyrimidine system becomes the positive end of the molecular ion which is in turn well solvated in the parallel planar dimer thus lowering the ionization energy, and that the loss of electron density in the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ region in the $n \pi^{*}$ excited state reduces the hydrogen bond energy thus increasing the energy of the excited S_{1} state and causing a dimer blue shift. Similar arguments can be rendered to rationalize a negligible shift for the pyrazine systern. We caution, however, that all such qualitative reasoning is subject to verification by more rigorous quantum mechanical calculations.

To ensure that our $[J-H B$ potential can produce other perpendicular dimer configurations, we have calculated the geometries expected for the tetrazine system. The tetrazine dimer has been studied by Levy and co-workers, ${ }^{3}$ who have reported two geometries: a parallel planar configuration and a perpendicular configuration. These experiments involve rotationaily resolved fluorescence excitation spectra. Our calculations generate three geometries for this dimer: a parallel planar configuration, a parallel, stacked and 90° rotated configuration, and a perpendicular configuration, as shown in Fig. 12. The calculated perpendicular configuration has one hydrogen of the stem tetrazine pointing towards an $\mathrm{N}-\mathrm{N}$

FIG. 13. Calculated rotational contours of the parallel polanzed transition of the perpendicular tetrazine dimer centered at $182720 \mathrm{~cm}^{-1} 10 \mathrm{~cm}$ in the figure). The upper trace is calculated using the rotational consiants ibtaned from the perpendicular configuration repored in Ref $3(a)$ The iow. er trace is calculated using the rotational constants obianed from the perpendicular configuration reported in this work. A symmetnc iop madel is assumed for both calculations and the intensities used are those of Ref $3(a)$. The rotational constants employed are given in the text, in the simmetric top approxamation $\bar{B}^{*}=\left(B^{\circ}+C^{*}\right) / 2$.
bond of the base tetrazine. In this configuration the plane of the stem tetrazine bisects the two $\mathrm{N}-\mathrm{N}$ bonds of the base (etrazine. Levy's published perpendicular configuration ${ }^{3 / 4}$ has one hydrogen of the two $\mathrm{C}-\mathrm{H}$ bonds of the stem tetrazine pointing toward one $\mathrm{C}-\mathrm{H}$ bond of the base tetrazine and the plane of the stem tetrazine passing through the two C-H bonds of the base tetrazine. Rotational constants reported by Levy and obtanned from a rotational analysis of the perpendicular configuration for parallel polarization are $A^{*}=0.07287 \mathrm{~cm}^{-1}, \quad B^{\prime \prime}=0.01722 \mathrm{~cm}^{-1}, \quad$ and $C^{*}=0.01649 \mathrm{~cm}^{-1}$. Rotational constants obtained from our calculated perpendicular configuration are $A^{*}=0.06458 \mathrm{~cm}^{-1}, \quad B^{\text {f }}=0.01644 \mathrm{~cm}^{-1}$, and $C^{*}=0.018$ 466. These two sets of rotational constants render reasonably similar spectra, as can be seen in Fig. 13.

V. CONCLUSION

The analysis of the structure and properties of the pyrnzine and pyrimidine dimers is based on an interpretation of ionization energy dependence, van der Waals vibronic structure, dimer spectral shifts, and potential energy calculations with $\mathrm{LJ}-\mathrm{HB}$ and muitipolar forms.

Variation of the ionizing laser energy allows different configuration dimers of a particular species to be identified. The pyrazine (h_{4} and d_{4}) dimer has two identified geometries based on ionization energy dependence and vibronic analysis. Given the dimer spectral shifts and calculations, these have been associated with a planar parallel hydrogen bonded configuration and a perpendicular configuration. A third geometry, planar stacked and rotated 90°, is calculated but not observed probably due to excimer formation.

The pyrimidine dimers absorb in three spectral regions. The lowest energy feature is thought to be the calculated head-to-tail parallel stacked displaced geometry, the highest energy feature is assigned as a parallel planar strongly hydrogen bonded form in which the most electropositive \mathbf{H} atoms are involved in the hydrogen bonding. The features at $+175 \mathrm{~cm}^{-1}$ are attributed to different planar configurations which are only weakly hydrogen bonded through the less acidic hydrogens on the ringa

Dimer spectral shifts are expected to follow the rules determined previously for solute-solvent clusters: the major red shift mechanism is π-system coordination or overlap between the two molecules and the major blue shift mechanism is hydrogen bonding. Ionization energles can be rationalized in accordance with the general notions of ion solvation by either the π system in the case of pyrazine or the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ hydrogen bonding region in the case of pyrumidine.

Calculations are also presented for the tetrazine dimers to compare parallel planar and perpendicular spectroscopically assigned geometries and our calculations. Calculations predict, and experiments suggest, perpendicular geometnes for toluene, benzene-toluene, pyrazine, and tetrazine but not for benzene. Moreover, calculations predict, and expenments are consistent with, the absence of perpendicular geometries for the pyrimidine dimer. Perhaps one of the most remarkable results of this study is the rather large number of different, roughly equal binding energy configurations found for the N -heterocyclic aromatic dimers in general.
'K. S. Law, M. Schnver, and E. R. Bernetein. J. Chem. Phys. 81, 4871 (1984).
'M. Schaver and E. R. Bernstein, J. Chem. Phys. 02, 3722 (1985)
'(a). C. A. Haynam, D. V. Brumbugh, and D. H. Levy, J. Chem. Phya 79. 1581 (1983); (b). L. Youns, C. A. Hayman, and D. H. Levy, ibud. 79 1592 (1983).
${ }^{4}$ Y. D. Perk and D. H. Lery, J. Chem. Phyn II, 5327 (1984)
${ }^{3}$ D. V. Brumbagh, C. A. Hayaman, and D. H. Levy, J. Chem. Phys. 73, 5380 (1980).
${ }^{6}$ D. E. Poelti and J. K. McVey, J. Chem. Phys. 72, 4349 (1983).
'Y. Tomioth H. Abe, N. Mikami, and M. Ica, J. Phys. Chern. St 5186 (1984).
${ }^{\prime}$ J. Wana and E. R. Bernstein. J. Chem. Phys. A4, 927 (1986).
${ }^{\text {© }}$ (a). F. A. Momany, L. M. Carruthers, R. F. McOuire, and H. A. Scheragh J. Phys Chem. 75, 1595 (1974); (b) G. Nemethy, M. S. Potile. and H. A. Schernge, ibid. 57, 1881 (1983).
${ }^{10}$ F. Mulder, G. Van Dijk, and C. Huiszoon, Mol. Phys. 38. 577 (1979),
"G. Herzbers. Molecular Spectre and Molecular Structure II. Infrared and Raman Spectre of Polpatomic Molecules (Van Noatrand Reinhold. New York, 1945), Chaps. I and IV.
${ }^{12}$ P. J. Wheatley, Acta Crystallogr. 10. 182 (1957)
${ }^{1}$ 'P. J. Wheadey. Acta Crystallogr. 13, 80 (1960).

APPENDIY THREE

"ECCEMP2"


```
    Frogram name: ECCEMPZ
    This orogram cabculates ciluster binding erergy and geometr, aging an emoir:
    cal atom-atom Lenmara-jones potentaai. The dotentabl lmciuces 6-1 - general
    non-vonding, 10-12 general hyarogen bonding, and l monopole gmarge tarms.
    The program will perform calcudations on clusters comoosed of ur to three
    molecules (suounits).
    Geometry and binding energy odtimization is accomolisted by analyzing the
    forces and toraues on the cluster subunits whach result from the intermole
    cular potential between the cluster subunits. The molecules are translated
    In three dimensions and rotated about the thesr centerg-of-mass in three
    dimensions in response to the forces and torques. Binding energy and
    geometry optimization is achieved by simultaneously manıpulating the six
    degrees of freedom untal the forces and torques are zeroi that is, until
    minimum energy and optimal geometry are obtained.
    This orogram also calculates the zntermolocular force fleld for van der
    Waals vibrational mode modeling which can be conducted using the UDWNCA
    program. The ECCEMP2 program will determine the intermolecular force
    fleld for clusters contazming uv to 25 atoms total (solute+solvent).
```



```
|
OPTION BASE I
PRINTER IS I
OUTPUT 2:CHRS(255)8*K"1
DEG
11!1!!!111!!!!!1!1!1111111111111!1111111111111111111111111111111111111/
    Coordinate matrices for atoms composing cluster subunits.
320
330
inates.
I Hh(*)EHydrogen coordinates.
Nn(*)=Nitrogen coordinates.
Oo(*)=Oxygen coordinates.
    In(*)=User defined coordinates.
l (*)(subunit,atom *atom type,coordinates and charges and mydrogen
bonding flags).
```



```
I
DIM Co(3,44,5,5),Hh(3,44,5,5),Nn(3,12,5,5),00(3,12,5,5,.2nI =,12,5,5,
1
```



```
I N(*)=Number of atoms in cluster subunit. (*)*subumi:,a:om.at=m trce
| Ljpar(*)=non-bonding parameter matrix.(*)|(atom,atom lyoe.cobarizac.....as
    and electrons and intermolecular distances).
480 I Fdir(*)=Force matrix. (*)=(subunit,component,force and airez:izr
490 I indicator and last move direction indicatjr).
```



```
510 I Indicator and last direction indicator).
520 ( Tx(*), Ty(*),Tz(*)Translation matraces. (*)|(subumat).
```

```
R-(*), Fy(*), ユ=(*)=Rotation matrices. (*)=(subunıt).
```



```
    #stepi*)=Rotation steo matrix. (*)(sumunlt,directazm,
    Tgteg(*)aTranslation step matrix. (*)=(suounit, Jirec:: =r).
```



```
    Rl(eiaremporary rotation step matri*. . .i=(subunit,airect:an).
```



```
    OIM N(3,5,5),L;pari 5,5,J;
    OIM Falr(J,J,3),Md_r(3,3,3)
    OIM Tx(3),Ty(J),T\geq(3),Rx(3),Ry(3),Rz(3)
    DIM Ca(3,3),Rstep(3,3),Tsted}(3,3),T1(3,3),R1(3,3
    GCLEAR
    Look=7 1 Default graphics display limits set at 7 angstroms.
    Sol=1 ' Default flag which draws solute and solvents.
    Do=2 I Effective dielectric constant for monooole charge interaction.
    BEEP
    QS=*O"
    INPUT "Do you want expanded graohacs?".0s
    IF QSE"Y" THEN DUMP DEVICE IS 710.EXPANDED
    IF OS="N" THEN DUMP DEUICE IS 710
    IF QS<>"Y* AND QS<>`N" THEN 700
```



```
    PRINT **
    PRINT * Empirical vdW Cluster
        Configuration Energy
    PRINT * Minimization Program (ECCEMP)
    PRINT "*
    PRINT * *
    PRINT * version ECCEMP/2
                    by
Joseoh A. Menapace
    5 October 1986
    PRINT **
    PRINT **
    PRINT **
    PRINT * Daveloped from ECEPP/2
    PRINT ". G. Nemethy, M.S. Pottle. and H.A. Scheraga
    PRINT ". J.Phys. Chem. 87. 1883 (1983)
    FRINT * *
```



```
    l
```



```
        Main Menu:
        In Coef - Inouts non-bonding parameterg from disc storage file LJPARAM or
        - Plle created by the user. Subroutine used - Inputcf.
        In Coord - Inputs a cluster coordinate file from disc storage or from
        tne keyboard. Suproutıne used - Inoutco.
        Energy - Calculates the cluster binding energy at any geometry. Subrcut: ate
        used - Energy.
        Mimsmaze - Performs cluster geometry and binding erergy optimization.
        Subroutime used - Minimize.
        Move - Translates and rotates cluster subunits in three dimensions.
```

```
1100 1 Subrgutıne used - Hand.
1110
11こ0 (Oraw - Draws the cluster geometry in four ferspe:tbves. Eu=-2u:are
130
1140
150
il60
1170
1180 I Quit - Stops the subroutines and returns erecution to the Main Menu.
1190
1200 1
12101 Stor Con - Stores the cluster coordınates in user defined storage files.
Iここ0 I Subroutine used - File.
```



```
1240 1
1250 ON KEY O LABEL "In Coef",3 GOSUB Inputcf
1250 ON KEY I LABEL "In Coord"., GOSUB InDutco
1270 ON KEY 2 LABEL "Energy",3 GOSUB Energy
1280 ON KEY 3 LABEL "Minımize",3 GOTO Minimaze
1290 ON KEY 4 LABEL "Move*.3 GOSUB Hand
1300 ON KEY 5 LABEL "Oraw".3 GOSUB Draw
1310 ON KEY 6 LABEL "NCA",3 GOSUB Eigen
1320 ON KEY 9 LABEL "Qult",3 GOTO Quit
1330 ON KEY }7\mathrm{ LABEL "5tor Con",3 GOSUB File
1340 BEEP
1350 GOTO 1350
1360 1
```



```
1380 ! Subroutıne: Inputcf
1390 1
1400 ! Inputs non-bonding parameter data file from disc storage or from
1410 ! keyboard. Parameters are stored in Ljpar(*). Parameters include dolariza-
1420 l bilities, number of electrons, and intermolecular distances for the atoms
1430 ! in question.
```



```
1450 1
1460 Inputcf: PRINTER IS | !
1470 OUTPUT 2:CHRS(25S)8"K*:
1480 GOTO 1500
1490 CAT
1500 0S="0"
1510 INPUT "Do you want to start another COEFICIENT data flle?".QS
1520 IF QS="N* THEN 1830
1530 IF QS<>"Y" THEN 1500
1540 ON ERROR GOTO 1490
1550 1
15501111111111111111111111111:111111111111111111111111111111111111:11111:1
1570 ' This routine allows the user to enter and uodate data from the reyooarj.
15801111111111111111111111111111111111111111/11/1111111111111111111/
1590 1
1600 INPUT "What is your N E W COEFICIENT file name?",Coef$
1510 CREATE 8OAT COEf58":INTERNAL",75,8
1620 OFF ERROR
1630 GOSUB Atommenu
1540 INPUT "Select the atom.".Atomls
1550 GOSUB Attomenu
I660 INPUT "Select the atom type.",Attols
```

```
1670 G0Su6 Atomnumbers
1530 IE A:=ml=0 OF At!こl=0 THEN OISP "EAD SELECTION 111:
i590 IF Atoml=0 OR Attgl=0 THEN WAIT ?
1700 iF Atomi=0 OR Attol=0 THEN 15ड0
```



```
|
1720 INPUT "Enter the atom-stom effective electron number.", Ljfarimtemi,At:01, Z
1730 INPUT "Enter the atom-atom Dond distance (Angstroms).",LJpar(Atoml, A::D),J)
174005="0*
1750 INPUT "Are you done7".QS
1760 IF QS="Y" THEN 1790
1770 IF QS<`"N" THEN 1740
1780 GOTO 1630
1790 ASSIGN OCoef TO Coefs
1800 OUTPUT OCoefiljDar(*)
1810 ASSIGN PCoef TO *
1820 GOTO 1910
1830
1840 1111111111111111111111111111111:1111111111!111111111111111111111111
1850 ' This routine inputs LJPARAM or user defined non-bonding parameter file
1860 I from disc storage and displays it on the screen.
```



```
1880
1890 ON ERROR GOTO }149
1900 INPUT "What is your COEFICIENT data file name?".Coefs
19+0 OUTPUT 2,CHRS(255)&"K*;
1920 PRINT "Your COEFICIENT data file name 19",Coefs
1930 PRINT
1940 ASSIGN OCoef TO Coefs
1950 ENTER OCoefiljpar(*)
1960 ASSIGN OCoef TO *
1970 OFF ERROR
1980 PRINT USING 1990
1990 IMAGE "Atom",5X,"Type",6X,"Polar",4X,"Elect",4X,"O1st"
2000 PRINT USING 2010
2010 IMAGE 18X,*(10^24)*.12X,*(Ang)*
2020 PRINT USING 2030
2030 IMAGE 18X,"(cm "3)"
2040 PRINT
2050 PRINT
2050 FOR AtOml=1 TO 5
2070 FOR Attpi=1 TO 5
2080 GOSUB Atomnames
2090 IF LJpar(Atoml,Attpl.1)=0 THEN 2120
```



```
par(Atoml,Attol,3)
2110 IMAGE 2A,6X,5A,6X,20.20,4X,20.20,4x,20.20
2120 NEXT Attol
2130 NEXT AtOMI
2140 OISP "Here are your coeficients."
Z150 WAIT 1
2160 1
2170 1!1111111111111111111111111111111111111111111111111111111111
2180 ' This routine allows for Darameter changes andlor additions.
```



```
2こ00 1
2210 05="0"
```

```
2220 INPUT "Do you want to make changes or additlons?".0$
ここコ0 IF 2$*"N" THEN ここE0
2こ40 IF O$ふ"Y" THEN 2こ10
ここ50 GOTO 1630
ここ50 BEEP
ここ70 OUTPUT 2;CHR$(255)8"K";
ここ90 RETURN
2290 1
```



```
2310 1 Subroutane: Inputco
2320 1
2330 ! Inputs cluster coordinates, atomic charges, and hyorogen bonding flags
2340 I into coordinate matrices from disc storage or from the keyboard.
```



```
2360 !
2370 Inputco: !
2380 OUTPUT 2:CHRS(255)&"K":
2390 GOTO 2410
2400 CAT
2410 QS="Q"
240 INPUT "Do you want to start another COORDINATE fle name?",QS
2430 IF 0S="N" THEN 3890
2440 IF QS<>"Y" THEN 2410
2450 ON ERROR GOTO 2400
2460 !
```



```
2480 1 This routine allows the user to enter the coordinates. charges, and
2490 ! hydrogen bonding flags from the keyboard.
```



```
2510 !
2520 INPUT "What is your N E W COORDINATE file name7".Coords
2530 CREATE BOAT COORd&8":INTERNAL".9400.8
2540 OFF ERROR
2550 INPUT "Enter the total number of molecules." ,L
2560 IF L<< OR L>3 THEN 2550
2570 INPUT "What ligand are you working on (1 for solute)?",K
2580 IF K<1 OR K>3 THEN 2570
2590 INPUT "Center of mass X coordinate?",Cq(K,1)
2600 INPUT "Center of mass Y coordinate7",Ca(K,2)
2610 INPUT "Center of mass 2 coordinate?" ,Ea(K,3)
2520 GOSUB Atommenu
2G30 INPUT "What atom coords are you inoutting?",Atomis
2640 GOSUB Attpmenu
2650 INPUT "What is the atom type?",Attpls
2650 GOSUB Atomnumbers
2670 IF Atomlag OR Attpl=0 THEN DISP "BAD SELECTION ||।|"
2680 IF Atoml=0 OR Attpi=0 THEN WAIT 2
2690 IF Atoml=0 OR Attpl=0 THEN 2620
2700 INPUT "How many>",N(K,Atoml,Attpl)
2710 FOR J=1 TO N(K,Atoml, Attpl)
2720 OUTPUT 2;CHRS(255)&"K";
2730 GOSUB Atomnames
2740 PRINT AttD1$;" ",Atom1s;" Number":J
2750 PRINT
2750 1
2770 1111111111111:111111111111111111111111/111111111111111111111:1!:!1:!
2780 1 Inguts carbon coordinates, charges, ana nydrogen bonding flags fram tre
```

```
2790 1 keytcard.
```



```
こ8:0
2Oこ0 iF Atoml=1 THEN INPU
=3J0 IF Atoml=1 THEN PRINT
2340 IF AtOM1=1 THEN INPU
2850 IF Atomi=1 THEN PRINT
2860 IF Atoml=1 THEN INPUT "Enter Z coordanate.",Eo(k,j,Attol,j)
2870 IF Atoml=1 THEN PRINT "2 Coorcinate":Co(K,J,Attpl,J)
2880 IF Atoml=1 THEN INPUT "Enter atom charge.",Co(k,J,Attal,4)
2890 IF Atoml=1 THEN PRINT "Atom Charge":Co(K,J,Att口1,4)
2900 0S="0"
2910 IF Atoml=1 THEN INPUT "Is the atom a hydrogen tonder>",0s
2920 IF Atcml=1 AND QS="N" THEN Co(K,J,Attpl,5)=0
2930 IF Atoml=1 ANO QS="Y" THEN Co(K,J,At\D1,5)=1
2940 IF Ataml=1 AND Q$<>"Y" AND Q$<>"N" THEN 2900
2950 IF Atoml=1 THEN PRINT "Hydrogen Bonding":Co(K,J,Attpl,5)
2960
2970
2980
2990
3000
3010
3020 IF Atoml=2 THEN INPUT "Enter x coordınate.".Hh(K,J,Attpl, 1)
3030 IF Atoml=2 THEN PRINT "X Coordinate"iHh(K,J,Attol,1)
3040 IF Atoml=2 THEN INPUT "Ent_* Y coordinate.",Hh(K,J,Attpl,2)
3050 IF Atoml=2 THEN PRINT "Y Coordinate",Hh(K,J,Attal,2)
3060 IF Atoml=2 THEN INPUT "Enter 2 coordinate.",Hh(K,J,Attpl,3)
3070 IF Atoml=2 THEN PRINT "Z Coordinate"iHh(K,J,AttDI,3)
3080 IF Atoml=2 THEN INPUT "Enter atom charge.".Hh(K,J,Attpl,4)
3090 IF Atoml=2 THEN PRINT "Atom Charge"|Hh(K,J,Attol,4)
3100 QS="O"
3110 IF Atoml=2 THEN INPUT "Is the atom a hydrogen bonder?",QS
3120 IF Atoml=2 AND QS="N* THEN Hh(K,J,AttDI,5)=0
3130 IF AtOMl=2 AND QS="Y* THEN HH(K,J,Attpl,5)=1
3140 IF Atoml=2 AND QS<>"Y" AND QS<>"N" THEN 3100
3150 IF Atoml=2 THEN PRINT *Hydrogen Bonding*iHh(K,J,Attpl,5)
3160
3170 !1111111!111!1!1!1!1!1!1111111111111111111111111111111111111/1111111111111
3180 I Inputs ndtrogen coordinates, charges, and hydrogen bonding flags from the
3190 1 keyboard.
```



```
3210
3220 IF Atomi=3 THEN INPUT "Enter X coordinate.".Nn(K,J,Attpi,1)
3230 IF Atoml=3 THEN PRINT "X Coordinate";Nn(K,J,Atipl,i)
3240 IF Atoml=3 THEN INPUT "Enter Y coordinate.",Nn(K,J,Att口l,I)
3250 IF Atoml=3 THEN PRINT "Y Coordinate",Nn(K,J,Attol,I)
3260 IF Atoml=3 THEN INPUT "Enter Z coordinate.",Nn(k,J,Attol, J)
3270 IF Atoml=3 THEN PRINT "Z Coordinate",Nm(K,J,AttDl,3)
3280 IF Atoml=3 THEN INPUT "Enter atom charge.",Nn(K,J,AttD:,4,
3290 IF Atoml=3 THEN PRINT "Atom Charge";Nn(K,j,Attpi,4)
3300 05="0"
3310 IF Atoml=3 THEN INPUT "Is the atom a nydrogen bonder7", Qs
3320 IF Atoml=3 ANO O&="N" THEN Nn(K,J,Att口l,5)=0
3330 IF Atoml=3 AND Q5="Y" THEN NO(K,J,AttD1,5)=1
3340 IF ALOMI=3 AND OSC,"Y" AND QS:>"N" THEN 3300
3350 IF Atomi=3 THEN PRINT "Hydrogen Bonding":Nn(K,J,Attol,5)
```

```
3こ60
zj70 11111111:111111111111111111111111111111111111,1:1111111111
3330 1 Inouts oxygen coordinates, enarges, and hydrogen gontirg fiajs irgm :he
jうF0 1 keyboard.
```



```
340
3420 IF Atoml=4 THEN INPUT "Enter x coordinate.",Oo(k,J,AttD1,i)
3430 IF Atomi=4 THEN PRINT "X Coordinate";OO(K,J,Attol,l)
3440 IF Atoml=4 THEN INPUT "Enter Y coordinate.",Oo(k,J.Attpl, 2;
3450 IF Atoml=4 THEN PRINT "Y Coordinate":OO(K,J,Attol,Z)
3460 IF Atoml=4 THEN INPUT "Enter Z coordinate.`,Oo(K,J,Attpl,3)
3470 IF Atoml=4 THEN PRINT "Z Coordinate":O0(K,J,Attol,3)
3480 IF Atoml=4 THEN INPUT "Enter atom charge.",Oo(K,J,AttD1,4)
3490 IF Atomi=4 THEN PRINT "Atom Charge":Oo(K,J,Attpl,4)
3500 0S="0"
3510 IF Atoml=4 THEN INPUT "Is the atom a hydrogen bonder`", QS
3520 IF Atoml=4 AND 05="N" THEN Oo(K,J,Attol,5)=0
3530 IF Atoml=4 AND QS="Y" THEN Oo(K,J,Attol,5)=1
3540 IF AtOMl=4 AND OS<<"Y" AND OS<>"N" THEN }350
3550 IF Atoml=4 THEN PRINT "Hyarogen Bondıng*|Oo(K,J,Attpl,5)
3550 1
3570 1!11111111111111111111111111111111111111111!111111111111111111111111111
3580 I Inputs user defined coordinates, eharges, and hydrogen bondıng flags irom
3590 ! the keyboard.
3600
3610
3620
360 IF Atoml S THEN INPUT Enter x coordinata.,Znkk,J,Attal,l)
3530 IF Atoml=5 THEN PRINT "X Coordsnate"iZn(k,J,Attol,l)
3640 IF Atoml-5 THEN INPUT "Enter Y coordinate.",Zn(K,J,Attol,2)
3650 IF Atoml-5 THEN PRINT "Y Coordinate", Zn(k,J,Attpl,2)
3660 IF Atoml=5 THEN INPUT "Enter Z coordinate.",Zn(K,J,Attpl,3)
3670 IF Atoml=5 THEN PRINT 'Z Coordinate":Zn(K,J.Attol,3)
3680 IF Atomi=5 THEN INPUT "Entor atom charge.",Zn(K,J,Attpl,4)
3690 IF Atoml-5 THEN PRINT "Atom Charge",Zn(K,J,Attpl,4)
3700 QS="O"
3710 IF Atoml-5 THEN INPUT "Is the atom a hydrogen bonder?".0$
3720 IF Atoml=5 AND QS="N" THEN 2n(K,J,Attpl,5)=0
3730 IF Atoml=5 ANO Qs='Y* THEN Zn(K,J,Attpl,5)=1
3740 IF Atoml=5 ANO OS<>"Y. AND OS<>"N" THEN 3700
3750 IF Atoml=5 THEN PRINT "Hydrogen Bondıng"IZn(K,J,Attpl,5)
3760 NEXT J
3770 05="0.
3780 INPUT "Are you done with this molecule?",Qs
3790 IF QS=*N* THEN 2520
3800 IF QS<>'Y' THEN 3770
3810 05="0"
3820 INPUT "Are you done inautting7", Qs
3830 IF OS="N* THEN 2570
3840 IF OS<>"Y* THEN 3810
3950 ASSIGN OCoord TO COORO$
3860 OUTPUT Coord:L,Cq(*),N(*),CO(*),Hn(*),Nn(*),Oo(*),in(*)
3870 ASSIGN PCoord TO .
3880 GOTO 3970
3890 ON ERROR GOTO 2400
3900
3910 11111111!1111111111111111111111111111111111111111111111111/\
3920 ( Thıs routane ınputs a user defıned eluster coordınate f:le frem
```

```
3330 i disf s:orage and disolays bt on the sereen.
39:0
ごミつ
3750 INPUT "What ls your COCREINATE data fale name?", Ezorag
\XigT0 OUTPIST こ!CHR$(255)&"K";
IESO PRINT "YOUR COCROINATE data flie name 15",CoordS
SSYO ASSIGN OCOORd TO Cvords
4000 ENTER OCoordiL,Ca(*),N(*),Co(*),Hh(*),Nn(*),O0(*),Zn(*)
4010 ASSIGN OCOORd TO.
4020 OFF ERROR
4030 FOR mi=1 TO L
4 0 4 0 ~ P R I N T ~ T
4050 IF K=1 THEN PRINT "Solute"
4060 IF K>1 THEN PRINT "Ligand ";K-1
4 0 7 0 ~ P R I N T
4080 PRINT "Center of mass",Cq(K,1);CQ(K,2):Ca(K,3)
4 0 9 0 ~ P R I N T
4100 FOR AtOM1=1 TO 5
4110 FOR At:pl=1 TO 5
4120 FOR J=1 TO N(K,Atoml,Attgl)
4130 GOSUB Atomnames
4140 IF Atoml=1 THEN PRINT Attpl$;* *Atoml$;JiCo(K,J,Attpl,I):Co(K,J,Attpl,Z):C
o(K,J,Attol,3):
4150 IF Atoml=1 THEN PRINT Co(K,J,Attpl,4),Co(K,J,Attpl,5)
```



```
h(K,J,Attpl,3)!
4 1 7 0 ~ I F ~ A t o m l = 2 ~ T H E N ~ P R I N T ~ H h ( K , J , A t t p 1 , 4 ) , H h ( K , J , A t t p l , 5 )
4180 IF Atoml-3 THEN PRINT Attp1S!" "|AtomISiJiNn(K,J,Attpl,1)iNn(K,J,Attpl,Z):N
n(K,J,Attol,3);
4190 IF Atoml=3 THEN PRINT Nn(K,J,Attol,4),Nn(K,J,Attpl,5)
4200 IF Atoml=4 THEN PRINT Attols:" ":Atomls;J1Oo(K,J,Attpl,1):Oo(K,J,Attpl, 2):O
O(K.J.AttDI,3),
4210 IF Atoml=4 THEN PRINT Oo(K,J,Attpl,4),Oo(K,J,Attpl,S)
4220 IF Atoml=5 THEN PRINT Attols:" "AtomlsiJ:Zn(K,J,Attpl,1):Zn(K,J,Attpl,2):Z
n(K,J,Attol,3):
4230 IF Atoml=5 THEN PRINT Zn(K,J,Attpl,4),Zn(K,J,Attpl,S)
4240 NEXT J
4250 NEXT Attpl
4260 NEXT AtOMI
4 2 7 0 ~ N E X T ~ K
4280 DISP "Here are your coordinates."
4290 WAIT I
4300 05="0"
43101
```



```
4330 1 Thas routine allows for coordinate, charge, and hydrogen bonding fiag
4340 1 changes and/or additions.
```



```
4350 1
4370 INPUT "Do you want to make changes or additions?",GS
43B0 IF Q$="N* THEN 5390
4350 IF 0$:>"Y" THEN 4300
4400 OS="な"
44:0 INPUT "DO you want to add or change ENTIRE lıgands?",Qs
4420 IF OE="N" THEN 4450
4430 [F OS "V" THEN 4400
4440 GOTO 2450
```

```
4 4 5 0 ~ I N P U T ~ " E n t e r ~ m o l e c u l e ~ n u m b e r ~ ( 1 ~ f o r ~ s o l u t e ) . " . K
4460 IF K:I OR ri.z THEN $450
4470 Q5="0"
4480 INPUT "Do you want to change the center of mass?",0s
4490 IF OS="N" THEN 4550
4500 IF QS<>"Y" THEN 4470
4510 INPUT "Center of mass X coordinate"",Cq(K,1)
4520 INPUT "Cente of mass Y coordinate?",Cq(k,2)
4530 INPUT "Center of mass 2 coomainate?",CQ(k,3)
4540 GNTO 4300
4550 büSulg Atommenu
45E, iNP:J: "What atom coordinates?",Atomls
457% BuSUB Attpmenu
4580 INPUT "What is the atom type?",Attol$
4590 INPUT "What number is the atom chosen?",J
4600 GOSUB Atomnumbers
4610 IF Atoml=0 OR Attpl=0 THEN OISP "BAD SELECTION !!!!"
4620 IF Atoml=0 OR Attol=0 THEN WAIT 2
4630 IF Atoml=0 OR Attpl=0 THEN 4550
4640 OUTPUT 2:CHRS(255)8*K";
4650 G0SUB Atomnames
4650 PRINT Attp15;" "Atom1s:" Number*;J
4670 QS="Q"
4 6 8 0 ~ I N P U T ~ " D o ~ y o u ~ w a n t ~ t o ~ c h a n g e ~ t h e ~ c h a r g e ? " , Q S
4690 IF QS="N" THEN 4810
4700 IF QS<>"Y" THEN 4670
4710 IF Atoml=1 THEN INPUT "Enter atom charge.",Co(K,J,Attpl,4)
4 7 2 0 ~ I F ~ A t o m l = 1 ~ T H E N ~ P R I N T ~ " A t o m ~ C h a r g e " , C o ( K , J , A t t p l , 4 )
4 7 3 0 \text { IF Atoml=2 THEN INPUT "Enter atom charge.",Hh(K,J,Attp:,4)}
4740 IF Atoml=2 THEN PRINT "Atom Charge";Hh(K,J,Attol,4)
4 7 5 0 ~ I F ~ A t o m l = 3 ~ T H E N ~ I N P U T ~ " E n t e r ~ a t o m ~ c h a r g e . " , N n ( K , J , A t t p 1 , 4 )
4760 IF Atoml=3 THEN PRINT "Atom Charge",Nn(K,J,Attpl,4)
4 7 7 0 \text { IF Atoml=4 THEN INPUT "Enter atom charge.",Oo(K,J,Attpl,4)}
4 7 8 0 \text { IF Atoml=4 THEN PRINT "Atom Charge",Do(K,J,Attpl,4)}
4790 IF Atoml=5 THEN INPUT "Enter atom charge.",Zn(K,J,Attpl,4)
4800 IF Atoml=5 THEN PRINT "Atom Charge"IZn(K,J,Attpl,4)
4810 05="0"
4 8 2 0 ~ I N P U T ~ " D o ~ y o u ~ w a n t ~ t o ~ c h a n g e ~ h y d r o g e n ~ b o n d i n g ~ c a p a b ı l ı t y 7 " , 0 \$ ~
4830 IF QS="N" THEN 4990
4840 IF OS<>"Y" THEN 4810
4850 05="O"
4850 INPUT "Is the atom a hydrogen border?" ,QS
4870 IF OS="Y" AND Atoml=1 THEN Co(K,J,Attol,5)=1
4880 IF QS="Y" AND Atoml=2 THEN Hh(K,J,Attpl, S)=1
4890 IF OS="Y* ANO Atoml=3 THEN Nn(K,J,Attpl,5)=1
4900 IF OS="Y" AND Atoml=4 THEN Oo(K,J,Attol,5)=1
4910 IF OS="Y" AND Atoml=5 THEN Zn(K,J,Attol,5)=1
4920 IF OS="Y" THEN 4990
4 9 3 0 ~ I F ~ O S \ll " N " ~ T H E N ~ 4 8 5 0 ~
4940 IF Atoml=1 THEN Co(K,J,Att01,5)=0
4950 IF Atoml=2 THEN Hh(K,J,AttDI, 5)=0
4960 IF Atoml=3 THEN Nn(K,J,AttD1,5)=0
4970 IF Atoml=4 THEN Oo(K,J,Attal,5)=0
4980 IF Atoml=5 THEN Zn(K,J,Attol,5)=0
4990 IF Atoml=1 THEN PRINT "Hydrogen Bondıng":Co(K,J,Attol,5)
5 0 0 0 ~ I F ~ A t o m l = ? ~ T H E N ~ P R I N T ~ " H y d r o g e n ~ B o n d ı n g " ; H h ( K , J , A t t D I , S ) ,
5010 IF Atoml=3 THEN PRINT "Hydrogen Bonding"iNn(K,J,AttDI,5)
```

```
5020 IF AtOMl=4 THEN FRINT "Hyarogen Bonding":00ix,j,A::= . 三,
```



```
5040 05="0゙
```



```
5060 IF QS="N" THEN 4300
5070 IF QS<>"Y" THEN 5040
5030 IF Atoml=1 THEN INPUT "Enter x coordinate.".Coi*.\therefore.At:='.
5050 IF Atoml=1 THEN PRINT "x Coordinate":Co(k,J.Attol,i)
5100 IF Atoml=1 THEN INPUT "Enter y coordinate.".Cork,J,Attol,:)
5110 IF Atoml=1 THEN PRINT "Y Coordinate":Co(k.J.Attol,I)
5 1 2 0 ~ I F ~ A t a m l = 1 ~ T H E N ~ I N P U T ~ " E n t e r ~ Z ~ c o o r d i n a t e . " . C o ( k . J . A t t o l , 3 )
5130 IF Atoml=1 THEN PRINT " 2 Coordinate",Co(k,J,Attol, J)
5140 IF Atoml=2 THEN INPUT "Enter x coordinate.*.Hh(K,J,Attpi,1)
5150 IF Atoml=2 THEN PRINT * X Coordsnate"iHh(K,J,Attpl, 1)
5160 IF Atoml=2 THEN INPUT "Enter y coordinate.",Hh(K,J,Attol,Z)
5170 IF Atoml=2 THEN PRINT "Y Coordinate":Hh(k,J,Attpl,Z)
5180 IF Atoml=2 THEN INPUT "Enter 2 coordinate.',Hh(K,J,Attpl,3)
5190 IF Atoml=2 THEN PRINT * 2 Coordinate`1Hh(K,J,Attpl, 3)
5200 IF Atoml=3 THEN INPUT "Enter x coordinate.".Nn(k,J,Attpl,1)
5210 IF Atoml=3 THEN PRINT "x Coordinate"INn(K,J,Attpl,i)
5220 IF Atoml=3 THEN INPUT EEnter y coordinate.',Nn(K,J,Attpl,2)
5230 IF Atoml=3 THEN PRINT "Y Coordinate":Nn(K,J,Attol,Z)
5240 IF Atoml=3 THEN INPUT "Enter 2 coordinate.",Nn(K,J,Attpl,3)
5250 IF Atoml=3 THEN PRINT '2 Coordinate"INn(K,J,Attol,3)
5260 IF Atoml=4 THEN INPUT "Enter x coordinate.*,Oo(K,J,Attpl,1)
5270 [F Atoml=4 THEN PRINT -x Coorginate"IOo(K,J,Attpl,1)
5 2 8 0 \text { IF Atoml=4 THEN INPUT "Enter Y coordinate.".Oo(K,J,AttDI,2)}
5290 IF Atoml=4 THEN PRINT "Y Coordinate";Oo(K,J,AttpI,2)
5300 IF Atoml=4 THEN INPUT "Enter z coordinate.".Oo(K.J.Attpl,3)
5310 IF Atoml=4 THEN PRINT "Z Coordinate"100(K,J,Attol,3)
5320 IF Atoml=5 THEN INPUT *Enter x coordinate.",Zn(k,J,Attol,1)
5330 IF Atoml=5 THEN PRINT *x Coordinate"izn(k,J,Attpl,i;
5340 IF Atoml=5 THEN INPUT EEnter Y coordinate.`,Zn(k,J,Attpl,2)
5350 IF Atoml=5 THEN PRINT "Y Coordinate*iZn(K,J,Attol,2)
5360 IF Atoml=5 THEN INPUT "Enter 2 coordinate.".In(K,J,Attpl,3)
5370 IF Atoml=5 THEN PRINT 'Z Coordinate":Zn(k,J,Attpl,3)
5380 60TO 4300
5 3 9 0 ~ A S S I G N ~ C O O R d ~ T O ~ C o o r d s ~
5400 OUTPUT CoordiL,Cq(*),N(*),CO(*),Hh(*),Nn(*),OO(*),Zn(*)
5410 ASSIGN Coord TO *
5420 BEEP
S430 OUTPUT 2:CHR$(255)8*K":
5440 RETURN
5450 1
5460 1111!1111!1!11!111!1111111111111111111111111111111111111!1111:1
5470 ! Subroutine: Print
5 4 8 0
5490 I Prints the binding energy, forces, moments(torques), and ccordinates for
5 5 0 0 ~ I ~ t h e ~ o d t i m s z e d ~ c l u s t e r ~ g e o m e t r y ~ o n ~ t h e ~ D a p e r ~ p r i n t e r . ~
```



```
5520 1
5530 Print: '
5540 ALPHA ON
5550 GRAFHICS OFF
5560 PRINT
5570 PRINT "Filename: ";Coords
5 5 8 0 ~ P R I N T ~ T
```

```
5 5 9 0 ~ P R I N T ~
```



```
コ19.
55iJ iF Ecc=1 AND Bhb=0 THEN FRINT "Potential=tenrarc-jones+irarges
```



```
550 IF Bcc=0 AND Bhb=0 THEN FRINT "Potentlal=Lennard-jones
S640 PRINT
5550 FOR K=1 TO L
5560 IF K=1 THEN PRINT "Solute"
5670 IF K>I THEN PRINT "Ligana":K-1
5680 PRINT
5690 PRINT "Center of Mass=";Cq(K,1):Cq(K,2):Cq(K,3)
5 7 0 0 ~ P R I N T
5710 FOR AtOMl=1 TO 5
5720 FOR Attpl=1 TO 5
5730 FOR J=1 TO N(K,Atoml,Attal)
5740 goSUB Atomnames
5750 PRINT AttplS:" ":Atomlsi
5760 IF Atoml=1 THEN PRINT Co(K,J,Attal,1),Co(K,J,Attpl,Z):Co(K,J,Att01,3):
5770 IF Atoml=1 THEN PRINT Co(K,J,Attpl,4),Co(K,J,Attpl, S)
5780 IF Atoml=2 THEN PRINT Hh(K,J,Attol,1):Hh(K,J,Attol, 2);Hh(K,J,Attol, 3);
5790 IF Atoml=2 THEN PRINT Hh(K,J,Attol,4),Hh(K,J,Attol,5)
5800 IF Atoml=3 THEN PRINT Nn(K,J,Att口1,1):Nn(K,J,Attpl,Z);Nn(K,J,Attpl,3):
5810 IF Atoml=3 THEN PRINT Nn(K,J,Attpl,4)iNn(k,J.Attpl,5)
5820 IF Atoml=4 THEN PRINT Oo(K,J,Attpl,1):Oo(K,J,Attpl,2):Oo(K,J,Attpl,3);
5830 IF Atoml=4 THEN PRINT Oo(K,J,Attal,4),Oo(K,J,Attpl,5)
5840 IF Atoml=5 THEN PRINT Zn(K,J.Attpl,1):Zn(K,J,Attpl,Z):Zn(K,J,Attpl,3):
5850 IF Atoml-5 THEN PRINT Zn(K,J,Attol,4),Zn(k,J,Attol,5)
5860 NEXT J
5870 NEXT AttDI
5880 NEXT Atoml
5890 PRINT
5900 NEXT K
5910 PRINT "Mınımum Energy=",E
5920 PRINT
5930 FOR J=1 TO L
5940 IF J=1 THEN PRINT "Solute Forces *:"Fx=":Fdır(J.1,1):"Fy=";Fdir(J.2,1):"Fz=
*:FGar(J,3,1)
5950 IF J>1 THEN PRINT "Lıgand":J-1;"Forces ":"Fx=";Fdır(J,l,1);"Fy=";Fdır(J,Z.1
);"Fz=";Fdir(J,3,1)
5960 IF J=1 THEN PRINT "Solute Moments ":"Mx=";Mdrr(J,l,1);"My="iMorr(J,, ,1):"M=
=":Mdsr(J.3.1)
5970 IF J>l THEN PRINT "LIgand":J-1:"Moments ";"Mx=":Mdir(J,l,1):"My=";Fdır!`,Z,
1):M年="MMdr(J,3,1)
5980 PRINT
5990 NEXT J
6000 PRINT "Potentıal Curvature ";"Kax=";Cvx;"Kyym";Cvy:"Kzz=":Cvz
6010 PRINT
E#ZO PRINT
60J0 PRINTER IS I
6040 RETURN
6050 ।
```



```
5070 ' Subroutane: Energy
6080
5090 ' Calculates the cluster binaing energy, forces, and torques for a spez:'::
6ido ' ciuster geometry. Also calculates the intermolecular force fiela
```

```
6110 1 for VCWNCA.
E:こ01いいいいいいいい
51%0'
6i40 Energy: 1
6150 1
```



```
6:70 ' Inltyalization of variables to start routane.
6180 !!11111111!1!111111111111!1111111111111111111111111111111111/1/1
6190 1
E200 E=0 | Cluster binding energy.
6210 Elj=0 ! non-bonding term energy.
6220 Eqq=0 ! Monodole charge term energy.
6230 Ehb=0 ! Hydrogen bonding term energy.
6240 Cvx=0 ! Curvature x-x direction.
5250 Cvy=0 ! Curvature y-y direction.
6260 Cvz=0 ! Curvature z-z direction.
6 2 7 0 ~ F O R ~ J = 1 ~ T O ~ L ~
6280 FOR DITI=1 TO 3
6290 Fdar(J,Dirl,1)=0
6300 Mdir(J,Dirl,1)=0
6 3 1 0 ~ N E X T ~ D i r l ~ I
6 3 2 0 ~ N E X T ~ J ~
6330 Row=1 ! Control varsables for intermolecular force field disc storage.
6340 Fg=75 ! routine. Force field is stored in file: H2OEIG.
6350 !
6300!!!!!!1!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!1!!!!!!!!!!!!1!!!1!!!!!!!!!!!!1111111
6370 ! Summation over all atom-atom interactions between solute and solvents por
6380 ! intermolecular potential calculation.
6390 !!!!!!!!!!!!1!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!1!!1!!!!!!!!!!!!!!!!!1!11111
6400 !
6410 FOR K1=1 TO L
6420 FOR Cl=1 TO 5
6430 FOR Al=1 TO 5
8440 FOR Jl=1 TO N(KI,Cl,A1)
6450 FOR K2=2 TO L
6460 FOR C2=1 TO 5
6470 FOR A2=1 TO 5
6480 FOR J2=1 TO N(K2,C2,AZ)
5490 IF K2<=K1 THEN 11630
6500 D=0 ! Intermolecular distance indtialization for atoms in question.
6510 !
6520 11!111!11!1!!!1!1!1!!1!1!1!1!11111!1111111111111111111111111111111111111111
6530 1 Determines coordinates, charges, and hydrogen bonding flags for atoms
6540 ! involved in atom-atom potential terms.
6550 !!!!!!!!!!!!!!!!!!!11!!!!!11!111!1111111111111111111111111111/
650 !
```



```
6580 ' Carbon coordinates, sharges, and hydrogen bonding flags.
6590 1111111!1!11111111!11!1!11!111111!11111111111111111111111111/.
6 6 0 0 ~ 1
6610 IF Cl=1 THEN Coordil=Co(K1,J1,A1,1)
6620 IF Cl=1 THEN Coordi2=Co(Kl,J1,A1,2)
6630 IF Cl=1 THEN Coordl3=Co(Kl,J1,A1,3)
6540 IF Cl=1 THEN COOROI4=Co(Kl,J!,A1,4)
6650 IF Cl=1 THEN CoordI5=Co(K1,J1,A1,5)
6560 IF C2=1 THEN Coora2l=Co(kZ,Jこ,A2,1)
6570 IF C2=1 THEN Coord22=CO(K2,J2,A2,こ)
```

```
6530 iF ここ=1 THEN Coordここ=Co(k\Omega,Jこ,Aこ,コ)
5530 IF E==1 T-EN Cooroこt=Co(M2,Jこ,Aこ,4)
6000 IF C==1 THEN Coord25=Co(kこ.ここ.Aこ.\Xi;
57:0 1
```



```
E750 1 Hydrcgen coordinates, =harges, and hydrogen bonding fizgs.
```



```
6 7 5 0 ~ 1
6760 IF Cl=2 THEN Coordil=Hh(K1,j1,Al,1)
6770 IF Cl=2 THEN Coordl2=Hh(K1,J1,A1,2)
6780 IF Cl=2 THEN Coordl3=Hh(KI, J1,A1,3)
6790 IF Cl=2 THEN Coordl4=Hh(K1,J1,A1,4)
6800 IF Cl=2 THEN Coordl5=Hh(Kl,Jl,Al,5)
6810 IF C2=2 THEN Coord21=Hh(K2,J2,A2,1)
6820 IF C2=2 THEN Coord22=Hh(K2,J2,AZ,2)
6830 IF C2=2 THEN Coord23=Hh(K2,J2,A2,3)
6840 IF C2=2 THEN Coord24=Hh(K2, 32,AZ,4)
6850 IF C2=2 THEN Coord25=Hh(K2,J2,A2,5)
6860 !
```



```
6880 ! Nstrogen coordinates, charges, and hydrogen bonding flags.
6890 1!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!11!1!
6 9 0 0
6910 IF Cl=3 THEN Coordil=Nn(Kl,Jl,A1,1)
6920 IF Cl=3 THEN Coordl2=Nn(K1,JI,A1,2)
6930 IF Cl=3 THEN Coordi3-Nn(Kl,J),Al,3)
8940 IF Cl=3 THEN Coordl4=Nn(Kl,JI,AI,4)
6550 IF Cl=3 THEN Coordl5=Nn(K1,J1,A1,5)
6960 IF C2=3 THEN Coord21=Nn(K2,J2,A2,1)
6970 IF C2=3 THEN Coord22=Nn(K2,J2,A2,2)
8980 IF C2=3 THEN Coord23=Nn(K2,J2,A2,3)
6990 IF C2=3 THEN Coord24=Nn(K2,J2,A2,4)
7000 IF C2-3 THEN Coord25=Nn(K2,J2,A2,5)
7 0 1 0
```



```
7030 ! Oxygen coordinates, charges, and hydrogen bonding flags.
7040!!!1!!!11!!!!!!!!!!1!!1!!!!!!!!!!1!!!!!!!!!!!1!!!!!111!!!1!1!1111111111
7 0 5 0 ~ 1
7060 IF CI=4 THEN Coordll=00(K1,JI,A1,1)
7070 IF C1=4 THEN Coord12m00(KI,JI,Al,2)
7080 IF Cl=4 THEN Coordl3=00(K1,J1,A1,3)
7090 IF Cl=4 THEN Coordl4=00(KI,JI,Al,4)
7100 IF C1=4 THEN Coord15=00(K1,J1,A1,5)
7110 IF C2=4 THEN Coord21=O0(K2,J2,AZ,1)
7120 IF C2=4 THEN Coord22=00(KZ,JZ,AZ,2)
7130 IF C2=4 THEN Coord23=00(k2,J2,A2,3)
7140 IF C2=4 THEN Coord24=O0(K2,J2,A2,4)
7150 IF C2=4 THEN Coord25=00(k2,J2,A2,5)
7160 1
7170 1111111111111111111111111111111111111111111111111111111111111111..1
7180 1 User defined atom coordinates, charges, and mydrogen bonding flags.
```



```
7200 1
7210 IF Cl=5 THEN Coordll=2n(Kl,J1,Al, 1)
72こ0 IF Cl=5 THEN Coordlz=2n(KI,JI,A,',2)
7330 IF Cl=5 THEN Coordl3=2n(kI,J:,Al,3)
7240 IF Cl=5 THEN Coordi4=2n(KI,JI,Al.4)
```

```
7こ50 IF こ!=5 THEN Courdl5=2n(K1,J1,A1,5)
ここコ := ここ=5 THEN Coorgこ1=2nirこ,Jこ,A己,1)
ここの0:= こ==う THEN Cooraここ=2n(H2,Jこ,AZ,Z)
-230 i5 にこ=5 THEN CoordこJ=2n(以こ,J2,AZ,う)
7こЭ0 !F Cこ=5 THEN Coordこ4=2n(K2,Jこ,A2,4)
Tこ00 IF C==5 THEN Coordこ5=In(K2,Jこ,Aこ,5)
7310
7320 11111111111111111111111!!!11!!11!11!1111111111111111111111111:1/
7330 1 Calculates atom-atom distances for atoms in question.
```



```
7350 1
7360 D=(Coordこ1-Coordl1)`2+(Coord22-Coordl2)^2+(Coord23-Coordl3)"2
7 3 7 0 \text { Dr=0^.5}
7380 IF Dr=0 THEN 11500
7 3 9 0
7400 !1!111111111!1111!1!11!!111111!!11111!!!!!!!1!1111111111!!!111111!11!
7410 ! Calculates unst posstion vectors in each cartessan direction.
7420 !11111!!!111!!1!!1!!!!!1!1!1!!!!!!!!!!!!!!!!!!!1!!!!!!!!1!1!1!1!1111
7430 !
7440 Dx=(Coord21-Coordl1)/Dr
7450 Dy:(Coord22-Coord12)/Dr
7460 Dz=(Coord23-Coord13)/Dr
7 4 7 0
7480 1111!1!1!1111!11!11!1111111!111111!!11!11!1111!!1!!!1!1111!111111111111
7490 ! Calculates moment arm comDonents in each cartesian direction. Moment arms
7500 ! are calculated relative to the cluster subunit center-of-mass.
7510 !!!!1!11!!111!1111!1!!!!11!!!!!!1!!1!!1!111111111!1!!!1!!!!!!!!!11111!
7520!
7530 0m\times2=Coord21-Ca(k2,1)
7540 Dmy2=Coord22-Ca(k2,2)
7550 Dmz2=Coord23-Cq(K2,3)
7560 Dmxl=Coordll-Cq(kl,1)
7570 Dmy1=Coordl2-Ca(Kl,2)
7580 Dmzl=Coordl3-Cq(Kl,3)
7590 '
7 6 0 0
7610 I Initialization of variables for routzne loopang.
```



```
7630 1
7640 Ehb=0
7650 Fhb=0 1 Force of hydrogen bondsng snteraction.
7650 Chb=0 1 Curvature of hydrogen bondıng interaction.
7670 Elj=0
7680 Flj=0 ! Force of non-bonding interaction.
7590 Clj=0 ! Curvature of non-bonding interaction.
7700 Eqa=0
7710 Faq=0 1 Force of monopole charge interaction.
7720 Cagv=0 I Curvature of monopole charge interaction.
7730 Ha=0 1 Hydrogen bonding redulsive parameter.
7740 Hb=0 l Hydrogen bonding attractive parameter.
7750 Aa=0 I Non-bonding repulsive parameter.
77E0 Cc=0 I Non-bonding attractive parameter.
7770 1
7780 111111111111111111111111111111111111111111111111111111111111:1
T?90 ( Caleulates atom-atom non-bonding parameters using the Siater-kırtw=0d
7900 ' aporoximation.
```



```
こッツ:こ,Aこ,こ)).5
```



```
45.ご9.54
7570 Ce=-J=onst.L!num/Ljdenom
```



```
7990 A3=Cc/2*(LJrad)`6
7300 IF Coorals=0 OR COORO25=0 THEN 8550
7910 Ha=0
7920 Ho=0
7 9 3 0
7940 '
7950 ' Selects nyarogen bondsng parameters to use in calculations.
7950 11!1111111111111111111111111!1!1111!!1!!11!11!!1!111111111111111
7970 1
7980 |11111111111111111111111111111111!!!!!!1111!!11!!111!111111111111
7990 I Amın hydrogen/amın mıtrogen hydrogen bondıng parameters.
```



```
8 0 1 0 ~ 1
8020 IF Cl=2 AND Al=2 AND C2=3 AND A2=1 THEN Hb=8244*349.64
8030 IF Cl=2 AND Al=2 AND C2=3 AND A2=1 THEN Ha=3.2897E+4*349.64
8040 IF Cl=3 AND Al=1 AND C2=2 AND A2=2 THEN Hb=8244*349.64
8050 IF Cl=3 AND AI=1 AND CZ=2 AND A2=2 THEN Ha=3.2897E+4*349.64
8060
8070 1111111111!!11!1!11!!!!!11!!!!1111!1!1111!!11111111!!1111111111
8080 I Carb hydrogen/amin nitrogen hydrogen bonding parameters.
8090 11111111!11111!!1111!!1!!!!!1!1111!!11111!1111!!1!1111111111111111
8100 1
8110 IF CI=2 ANO AI-4 AND CZ=3 AND A2-1 THEN Hb=8244*349.64
8120 IF Cl=2 AND Al=4 AND CZ=3 AND A2=1 THEN Ha=3.2897E+4.349.64
8130 IF Cl=3 AND Al=1 AND C2=2 AND A2=4 THEN Hb=8244-349.64
8140 IF Cl=3 AND AI=1 AND C2=2 AND A2=4 THEN Ha=3.2897E+4*349.64
8150 1
8160 11111111111111111111111111111111111111111111111111111111111111111
8170 1 Amın hydrogen/carb oxygen hydrogen bonding parameters.
```



```
8190 1
8200 IF C1=2 AND AY=2 AND C2=4 AND AZ=1 THEN Hb=4014*349.54
8210 IF Cl=2 AND AI=2 AND C2-4 AND A2=1 THEN Ha=1.2040E+4.349.64
8220 IF C1=4 AND Al=1 AND C2=2 AND A2=2 THEN Hb=4014*349.64
92こ0 IF Cl=4 AND Al=1 AND C2-2 AND A2=2 THEN Ha=1.2040E+4.349.64
8240 1
8250 111111111111111111111111111111111111111111111111111111111111111111/1
8260 1 Hydr hydrogen/carb oxygen hydrogen bonding parameters.
```



```
8280 '
8290 IF C1=2 AND Al=4 AND C2=4 AND A2=1 THEN Hb=5783.349.64
8こC0 := C1=2 AND Ai=4 ANO CZ=4 AND AZ=1 THEN Ha=1.3344E+4*549.64
8310 IF C1=4 AND Al=1 AND C2=2 AND A2=4 THEN HG=5793.349.54
8こ20 IF Cl=4 AND Al=1 AND CI=2 AND A2=4 TMEN Ha=1.3344E+4*349.54
830 1
8340 い1H111111111111111111111111111111111111111111111111/1
8350 1 Amın hydrogen/hydr oxygen hydrsger bonding parameters.
```



```
8コ70
```



```
j4:0 := こ'=4 AND Al=こ AND ここ=こ AND Aこ=こ TNEN Ha=5.390E+3*E43.54
34こ0
8470
8440 ' Hyar mydrogen/hydr oxygen hydrogen bonding parameters.
```



```
8460
8470 IF Cl=2 AND Al=4 AND C2=4 AND A2=2 THEN HE=4610.349.64
8480 IF Cl=2 AND Al=4 AND C2=4 AND A2=2 THEN Ha=1.122E+4*349.64
8490 IF Cl=4 AND Al=2 AND C2=2 AND A2=4 THEN Hb=4610.349.64
8500 IF CI=4 AND Al=2 AND CI=2 AND A2=4 THEN Ha=1.122E+4.349.64
8510
8520 1111111111111111111111111111111111111111111111111111111111111111
8530 ( Calculates hydrogen bonding interaction between atoms in question.
8540 111!!1!!11111111111111111111111111111111111111!1!1!!!!!!!!!1!
8550
8550 Ehb=8hbe(Ha/Dr^12-Hb/Or^10)
8570 Fhb=Bnb*(12*Ha/Dr^13-10*Hb/Or^11)
8580 Chb=8ht*(12.13*Ha/Or*14-10.11*Hb/Or^12)
8590 IF Ehb<>0 THEN 8730
8500
8610 l111111'11111111111111111111111111111111111!!!!111!1!11111111!
8620 I Calculates mon-bonding interaction between atoms in question.
```



```
8540 1
8650 Elj=Aa/Dr`12-Cc/Dr"6
8660 Flj=12*Aa/Dr^13-6.Ce/Dr^7
8670 ClJ=12*13*Aa/Or^14-6*7*Cc/Or^8
8680 '
8 6 9 0
8700
8 7 1 0
8720
8730 Eqq*Bcc*Coord14*Coord24/Do/Or.332.349.64
8740 FqQ=Bcc*Coord14*Coord24/Oo/Or`2.332.349.64
8750 Caqv=8cc*Coord14*Coord24*2/Do/Dr^3*332*349.64
8760 IF Elj=0 AND EHb-0 THEN DISP "NO PARAMETER IN THE POTENTIAL |1,""
8 7 7 0 ~ I F ~ E l j = 0 ~ A N O ~ E H G = 0 ~ T H E N ~ W A I T ~ 2 , ~
8780 IF ElJ=0 AND EnG=0 THEN GOTO Qust
8790
8800
8810 ! Determines total interaction energy, force, and curvature.
```



```
8830
8840 E=E+Elj+Eqq+Enb
8850 Force=F1J+FQQ+Fnb
880 IF Cutoff=0 THEN }890
8870 IF CIJ<O THEN Clj=0
8880 IF CQav< THEN CQQv=0
8890 IF CHO O THEN ChO=0
8300 Curve=Clj+Caqu+Cho
8910 IF Eigen=0 THEN 11350
8 9 2 0
8930
```



```
' Calculates monopole charge interaction between atoms in question.
```



```
|
!
```



```
|
    |111111111111111111111111111111111111111111111111111111:11/1/1
```

```
8940
2350
8960
9970
8980
8990
9000
9010
9020
9030
9040
9050
9060
9070 ASSIGN DDest TO "HZOEIG*
9080 CONTROL Dest,5:(Column-1)*Fg+Column
9090 ENTER QDest;Matel
9100 CONTROL Dest,5:(Column-1)*Fg+Column
9110 Forcon=Curve*(0x^2)
9120 OUTPUT DestiForcon+Matel
9130 CONTROL DDest,5:(Row-1)*Fg+Column
gl40 ENTER ODestiMatel
9150 CONTROL ODest,5:(Row-1)*Fg+Column
9160 Forcon=-Curve:(0x^2)
9170 OUTPLIT CDest;Forcon+Matel
9180 CONTROL ODest.5:(Column-1)*Fg+Row
9190 ENTER ODest;Matel
9200 CONTROL Dest.5:(COLUMn-1).Fg+ROW
9210 Forcon=-Curve*(Dx)^2
9220 OUTPUT ODest;Forcon+Matel
9230 CONTROL ODest.51(Row-1)*Fg+Row
9240 ENTER DestiMatel
9250 CONTROL Dest,S:(Row-1)*Fg+Row
9260 Forcon-Curve*(Dx^2)
9270
9280
9290
9300
9 3 1 0
9 3 2 0 ~ O U T P U T ~ D e s t , F o r c o n + M a t e l ~ ( 1 )
9330 CONTROL DDest.5:(Column-1)^Fg+Column+1
9340 ENTER QDestiMatel
9350 CONTROL Dost,5:(Column-1)*Fg+Column+1
9360 Forcon=Curve* (Dx*Oy)
9370 OUTPUT eDestiForcon+Matel
9380 CONTROL Dest.5:(Column-1)*Fg+Row+1
9390 ENTER CDestiMatel
9400 CONTROL QDest,5:(Column-1)*Fg+ROw+1
9410 Forcon=-Curve*(0x*Dy)
9420 OUTPUT QDest:Forcon+Matel
9430 CONTROL Dest.5:(Row-1)*Fg+Column+1
9440 ENTER ODest;Matel
9450 CONTROL Dest,5:(Row-1)*Fg+Column+1
9460 Forcon=-Curve*(0x*Oy)
9470 OUTPUT QDest;Forcon+Matel
9480 CONTROL Dest.5;(ROw-1)&Fg+Row+1
9490 ENTER ODest;Matel
9500 CONTROL ODest,5;(ROW-1)*Fg+Row+1
```

```
9510 Forcon=Curve*(0.*Oy)
95こ0
9530
9540 1 Faree constant in x-= direstion.
```



```
9550 1
9570 SUTPUT QDest;Foreon+Matel
S580 CONTROL OEst,5:(Column-1)*Fg+Column+2
```



```
9500 CONTROL ODest,5:(Column-1)*Fg+Column+2
9610 Forcon*Curve*(D**Dz)
9620 OUTPUT QDest;Forcon+Matel
9630 CONTROL ODest,5:(Column-1)*Fg+Row+2
9540 ENTER ODestiMatel
9650 CONTROL Dest. S:(Column-1)*Fg+Row+2
9660 Forcon=-Curve*(Dx*Dz)
9E70 OUTPUT ODestiForcon+Matel
9580 CONTROL Dest,5i(Row-1)*Fg+Column+2
9690 ENTER ODest:Matel
9700 CONTROL Dest,5:(Row-1)*Fg+Column+2
9710 Forcon=-Curve*(Ox*Oz)
9720 OUTPUT Dest,Forcon+Matel
9730 CONTROL Rest,5;(Row-1)*Fg+Row+2
9740 ENTER DCestiMatel
9750 CONTROL Dest.5;(Row-1)*Fg+Row+2
9768 Forcon=Curve*(Dx*Dz)
9770 ।
9780 !1!!!!!1!11!!!11!1!1!!!!!!!!!!!!!!!!1!!!!!1!1!!!!!1!!!!!!!!1!1!1111
9790 1 Force constant in y-x diraction.
9800 !1!!!!!!1!!1111!1!!!!!!!!!!1!!1!!!!!1!!!!!!!11!11!1!!1!!!!!!1!!!!11111
9 8 1 0 ~ 1
9820 OUTPUT DDest;Forcon+Matol
9830 CONTROL DDest,5:(Column+1-1)*Fg+Column
9840 ENTER CDest;Matel
9850 CONTROL DDest,5:(Column+1-1)*Fg+Column
9860 Forcon=Curve*(Oy*Dx)
9870 OUTPUT Dest;Forcan+Matel
9880 CONTROL ODest,5:(Column+1-1)*Fg+Row
9890 ENTER ©Destimatel
9900 CONTROL ODest,5i(Column+1-1)*Fg+Row
9910 Forcon=-Curve-(Dy*Dx)
9920 OUTPUT EDest,FForcon+Matel
9930 CONTROL ODest,51(Row+1-1)*Fg+Column
9940 ENTER ODestiMatel
9950 CONTROL ODEst,5:(ROw+1-1)*Fg+Column
9950 Forcon=-Curve*(Dy*Dx)
9970 OUTPUT DDestiForcon+Matel
9980 CONTROL Dest,5:(Row+1-1)*Fg+ROW
9990 ENTER Dest;Matel
10000 CONTROL ODest,5:(Row+1-1)`Fg+Row
10010 Forcon=Curve*(Dy*Dx)
10020
10030 111111111111111111111111111111111111111111111111111111111111
10040 / Force constant in y-y direction.
```



```
10060
10070 OUTPUT QDest;Forcon+Matel
```

```
10080 CONTROL QDest,5:(Column+1-1)*Fg+Column+1
10090 ENTEF dDest;Matel
10100 CONTROL QOest,5:(Column+1-1)*Fg+Column+1
10110 Forson=Curve.(Dy*2)
10120 OUTPUT ODest;Forcon+Matel
10130 CONTROL ODest,5:(COlumn+1-1)*Fg+Row+1
10140 ENTER @DestiMatel
10150 CONTROL Oest,5:(COlumn+1-1)*Fg+Row+1
10160 Forcon=-Curve*(Oy`2)
10170 OUTPUT QDest:Forcon+Matel
10180 CONTROL Dest,5:(Row+1-1)*Fg+Column+1
10190 ENTER ODestimatel
10200 CONTROL Dest.5:(Row+1-1)*Fg+Column+1
10218 Forcon=-Curve*(Oy`2)
10220 OUTPUT ODest;Forcon+Matel
10:30 CONTROL PDest.5:(Row+1-1)*Fg+Row+1
10240 ENTER Dest:Matel
10250 CONTROL ODest,5:(Row+1-1)*Fg+Row+1
10250 Forcon=Curve*(Dy^2)
10270!
10280 1!!!!!!1!!111!1!!!!!!11!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!1!!!1!!1!1
10290 I Force constant in y-z direction.
10300 1!1!!!1!1!11!11111!!!11!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!
10310 1
10320 OUTPUT Dest,Forcon+Matel
10330 CONTROL ODest.5:(Column+i-1)*Fg+Column+2
10340 ENTER EDestiMatel
10350 CONTROL ODest,5:(Column+1-1)*Fg+Column+2
10350 Forcon=Curve*(Dy*Dz)
10370 OUTPUT QDest,Forcon+Matel
10380 CONTROL COest,5i(Column+1-1)*Fg+Row+2
10390 ENTER Dest;Matel
10400 CONTROL eDest.51(COlumn+1-1)&Fg+Row+2
10410 Forcon=-Curve*(Dy*Oz)
10420 OUTPUT QDestiForcon+Matel
10430 CONTROL Dest.5;(Row+1-1)&Fg+Column+2
10440 ENTER DestiMatel
10450 CONTROL Dest,5:(Row+1-1)*Fg+Column+2
10460 Forcon=-Curve•(Dy*Dz)
10470 OUTPUT ODestiForcon+Matel
10480 CONTROL Dest,5,(Row+1-1)*Fg+Row+2
10490 ENTER DDestiMatel
10500 CONTROL ODest.5,(Row+1-1)*Fg+Row+2
10510 Forcon=Curve*(Dy*Dz)
10520!
10530 111!11!11!11111111111111111111111111:111111111111111111111111111
10540 l Force constant in z-x direction.
```



```
10560 1
10S70 OUTPUT DDest,Forcon+Matel
10580 CONTROL PDest.5:(Column+2-1)*Fg+Column
10590 ENTER Q0st;Matel
10500 CONTROL ODest,5:(Column+2-1)*Fg+Column
10510 Forcon=Curve*(0z*Ox)
10520 OUTPUT QDest:Forcon+Mate!
10E30 CONTROL DDest.5i(Column+2-1)0Fg+Row
10540 ENTER QDest:Matel
```

```
10650 CONTPOL OOEst.5;(C01umn+2-1)*Fg+Row
10550 Farcon=-Curve*(0=*0.)
10570 OUTPUT @Dest;Forcon+Matel
10680 CONTROL ODest,5:(Row+2-1)*Fg+Column
10690 ENTER ODest;Matel
10700 CONTROL Dest,5:(Row+?-1)*Fg+Column
10710 Forcon=-Curve*(0\geq•0x)
10720 OUTPUT @Dest;FORCOn+Matel
10730 CONTROL ODest,5:(Row+z-1)*Fg+Row
10740 ENTER ODest:Matel
10750 CONTROL ODest.5;(Row+2-1)*Fg+Row
10750 Forcon=Curve•(Dz*D*)
10770:
10780 !!1!!1!111111111111111111111111+111!!!11111!1111111111!111111111
10790 ! Force constant in x-y direction.
l0800 1!1!!111!!!11!!!111111111!1!!!11111!!111!!11111111!1!1111111111
10810 '
10820 OUTPUT @Dest:Forcon+Matel
10830 CONTROL PDest.5:(Column+2-1)-Fg+Column+1
10840 ENTER Dest;Matel
10850 CONTROL ODest,5:(Column+2-1)-Fg+Column+1
10860 Forcon=Curve*(Dz*Dy)
10870 OUTPUT QDest;Forcon+Matel
10880 CONTROL PDest.5:(Column+2-1)0Fq+Row+1
10890 ENTER CDestiMatel
10900 CONTROL Dest.5:(Column+2-1)=Fg+Row+1
10910 Forcon=-Curve*(Dz*Dy)
10920 OUTPUT DOStIFORCON+Matel
10930 CONTROL ODest,5:(Row+2-1)*Fg+Column+1
10940 ENTER Dest;Matel
10950 CONTROL Dest,S|(Row+2-1)*FQ+Column+1
10960 Forcon=-Curve*(Dz*Dy)
10970 OUTPUT QDest:Forcon+Matel
10980 CONTROL Dest.5;(Row+2-1)*Fq+Row+1
10990 ENTER DestiMatel
11000 CONTROL ODest,Si(Row+2-1)*Fg+Row+1
11010 Forcon=Curve*(Dz*Dy)
11020
11030 !!11111111111!!!!1!111!1!1!1111!1!1111!11111111111111111111111111111
11040 ! Force constant in z-z direction.
11050 !1111!1!!!111!11!1!1!!!1!!11111111!11111111111111111111111111111
11050
11070 OUTPUT Nest;Forcon+Matel
11080 CONTROL DDest,5i(Column+2-1)*Fg+Column+2
l10g0 ENTER QDestiMatel
11100 CONTROL Dest.5:(Column+2-1)*Fg+Column+2
11110 Forcon=Curve?(Dz^2)
11120 OUTPUT QDest;FOrcon+Matel
11130 CONTROL Dest,S:(Row+2-1)*Fg+Column+2
11140 ENTER ODest;Matel
11150 CONTROL ODest,5:(Row+2-1)*Fg+Column+2
11160 Forcon=-Curve*(0z`こ)
11170 OUTPUT QDest;Forcon+Matel
11180 CONTROL Dest.5:(Column+2-1)*Fg+Row+2
11190 ENTER DestiMatel
11200 CONTROL Dest.5:(Column+2-1)*Fg+Row+2
11210 Forcon=-Curve*(Dz)^2
```

```
11ここ0 OUTPIST ODest:Forcon+Matel
```



```
11こय\partial ENTER ODest;Matel
1:こ50 CONTROL DOEst,5:(ROW+こ-1)*Fg+ROw+2
i:こ60 Forcon=Curve*(Dz`こ)
1:こ70 OUTPUT ODEst;FOrcon+Matel
11280 Column=Column+3
11こ90 IF Column=Last THEN Column=Began
11300
1/310 111111111111111111111111111111111111111!11111111111111111111
11320 1 Calculates force and curvature components in the three cartesian
11330 ! directions.
11340 11111!111111111!!111111111111!1111!!!111111111!11111111111111111
11350 1
11350 Fdir(k2,1,1)=Fd_r(k2,1,1)+Force*Ox
11370 Falr(K2,2,1)=Fdar(K2,2,1)+Force*Oy
11380 Fglr(K2,3,1)=Fdir(K2,3,1)+Force*Dz
11390 Cvx=Cvx+Curve*Dx*2
11400 Cvy=Cvy+Curve•Dy^2
11410 Cvz=Cvz+Curve*Dz^2
11420 IF Kl<>1 THEN Cvx=Cvx+Curve^0x^2
|1430 IF K|<>| THEN Cvy=Cvy*Curve.Dy"2
11440 IF Kl<>1 THEN Cvz=Cvz+Curve•Oz^2
11450 IF Kl<>1 THEN Fdir(Kl,l,l)=Fdir(Kl,l,l)-Force*Dx
11460 IF Kl<>1 THEN Fdir(K1,2,1)=Fdir(K),2,1)-Force*Dy
11470 IF K:<>1 THEN Fdir(Kl,3,1)=Fdir(K1,3,1)-Force*Dz
11480 !
11490 !1!!1!!1!!!!!!!111!1!!!!!!!!!!!1!!1!1!!!!!!111!!!!!!!!!!!!!!!!!1!111!!
11500 ( Calculates the moments (torques) about the cartesian axes. Moments are
11510 ! determined relative to the eluster subunit center-of-mass.
11520!!111!1!1!!!!1!!!!!!!!11!!!!!!!111!1!!!!!!1111!!!1111!11!!1!111!111!111
11530 !
11540 Mdir(kz,1,1)=Mdir(k2,1,1)+(Dmy2*Force*Dz-Dmz2*Force*Dy)
11550 Marr(k2,2,1)=Mdir(K2,2,1)+(0mz2*Force*Dx-Dmx2*Force*Dz)
11560 Mdir(K2,3,1)=Mdir!K2,3,1)+(Dmx2*Force*Dy-Dmy2*Force*Dx)
11570 IF Kl<>1 THEN Mdir(Kl,i,1)=Mdir(KI,l,1)+(Dmy1*(-Force)*Dz-Dmzl*(-Force)*Dy
,
11580 IF K1<>1 THEN Mdir(K1,2,1)=Mdir(Kl,2,1)+(Dmz1*(-Force)*Ox-Dmxl*(-Force)*Dz
,
11590 IF K1<)1 THEN Mdir(K1,3,1)=Mdir(K1,3,1)+(Dmx1*(-Force)*Dy-Dmy1*(-Force)*Dx
,
11600 NEXT J2
116:0 NEXT AZ
11620 NEXT C2
11630 NEXT K2
11540 Row=ROw+3
11650 NEXT JI
11660 NEXT AI
11670 NEXT CI
11880 NEXT K.1
11690 ASSIGN QOest TO.
11700 IF Elgen=1 THEN RETURN
11710 IF Done=1 THEN RETURN
11720 IF Handl=0 THEN OUTPUT こ;CHRS(255 18"K';
11730 1
11740 11111111111111111111111111111111111111111111111:111111111.111.1.1.1.11/1
11750 1 Prints the binding eneroy, forces, moments, and curvature on the sereem.
```

```
11750
    1-7.
1.Ted pRiNT "Energy iE
17日ロ FFINT
11300 Fうa j=こ TO
11 310 PRINT "Forces on Ligand "; J-1;" (x,y, z:
```



```
\(118 ذ 0\) PRINT
11940 PRINT "Moments on Ligand ":J-1:" (X,Y,Z)"
11950 PRINT MGir(J,!,1)iMCir(J, こ, l):Maır(J,3,1)
11860 PRINT
11870 NEXT J
11880 PRINT "Potential Curvature \((X, Y, Z)\) "
11890 PRINT CvxiCvy:Cvz
11900 PRINT
11910 RETURN
11920
\(119301111111111111111111111111111!!1!1!11!!11111111111111111+11\)
11940 I Subroutane: Minamıze
11950
11950 I Performs binding energy and geometry optimization by analyzing the
119701 forces and moments on cluster subunits.
```



```
11990
12000 Minimize: PRINTER IS 1 I
12010 Eskıp=1
12020 Passes=0 I Initialize number of interations.
12030 Flag2=1
12040 OUTPUT 2,CHR\$(255)8"K*
12050 GRAPHICS OFF
12060 OFF KEY
12070
\(1208011111111111111!!!1!1!1!!111!11!11!1111!1!!1!11!1!11111111\)
120901 Optimization Graphics Menu:
12100
12110 I Sketch \(Y\) - Activates cluster geometry drawing routine during
12120 ! opt2mızation. Subroutane used - Sketchy.
12130
1こ140 1 Sketch N - Deactivates cluster geometry drawing routine during
12150 ! optimization. Subroutine used - Sketchn.
12160
12170
12180
12190
12500
12210
122201 Solute \(N\) - Draws solvent only during optimization. Subroutine
12230 1 used - Soluten.
12240
122501 Quit - Stops optimization and returns program to Main Menu. Subroutine
sed - Qu:t.
1ここ50 1 Subroutine used - Quit.
1ここの
```



```
1ここの日 1 uses - !nce:
12300
```



```
12320 1 used - Decpac.
```



```
Iこう40 1
12350 ON KEY O LABEL "Sketch Y", J GOSUB Sketchy
12350 ON KEY 5 LABEL "Sketch N",3 GOSUB Sketchn
12370 ON KEY 2 LABEL "Gclear".3 GOSUB Wape
12380 ON KEY 3 LABEL "Solute Y",3 GOSUB Solutey
12390 ON KEY 8 LABEL "Solute N",3 GOSUB Soluten
12400 ON KEY 9 LABEL "Qust",3 GOTO Quit
12410 ON KEY I LABEL "Inc Pic".3 GOSUB Incpic
12420 ON KEY g LABEL "Dec P1e",3 gOSUB DecDic
12430 !
12440 !!!!1!!!!!!!!!!!!!11!!1!1!!1!1!!!!!!!!!11!!!1!!!1!!!!1!!1!111!111111!1
2450 ) Inttialization of variables before optimszation.
12460 !!!!!!!1!!!!!!11!!!1!1!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!111111
12470 !
12480 FOR J=1 TO L
12490 Tx(J)=0
12500 Ty(J)=0
12510 Tz(J)=0
12520 Rx(J)=0
12530 Ry(J)=0
12540 Rz(J)=0
12550 FOR DIrl=1 TO 3
12560 FOR Dir2=1 TO 3
12570 Fdir(J,0ir1, Dir2)=0
12580 Mdir(J,Dir1,Dir2)=0
12590 NEXT Dir2
12600 NEXT Dirl
12510 NEXT J
12620 FOR J=1 TO L
12630 FOR Dirl=i TO 3
12540 T1(J,O1r1)=1
12550 R1(J,Dirl)=1
12660 Tstep(J,D1r1)=0
12670 Rstep(J,DIr!)=0
12680 NEXT Oirl
12690 NEXT J
12700 Cutoff=0
1 2 7 1 0 \text { Bcc=0}
12720 Bnb=0
12730 05="0*
12740 INPUT "Do you want to include charges?", QS
12750 IF Qs="Y" THEN Bcc=1
12760 IF Qs="Y" THEN 12780
12770 IF OS<>"N" THEN 12730
12780 QS="0"
12790 INPUT "Do you want to include hydrogen bonding?",0$
12800 IF Q$="Y" THEN Bhb=1
12810 IF QS="Y" THEN 12830
12820 IF QS<>"N" THEN I2780
12830 05="0"
12840 INPUT "Do you want to cut off the negative curvature?", QS
12850 IF QS="Y" THEN Cutoff=1
12860 IF QS"*Y" THEN 12880
12970 IF OS<<"N" THEN 12830
12880 SET TIME 0
```

```
12390 GOSu日 Energy
:こ900
```



```
1こ320 , Determines force and moment direction eharge between current move
izs30, and last move to calculate translation and rotation step sizes iar
:2940 1 cluster subunsts.
```



```
12960 '
12970 FOR J=2 TO L
12980 FOR Darl=1 TO 3
12990 IF FdIr(J,O&r!,2)=0 THEN 13020
```



```
13010 IF ABS(Fdsr(J,Dırl,2)-Fdar(J,Dırl,3)<<2 THEN T|(J,Dırl)=Tl(J,Dıri)-.05
13020 IF Mdir(J.Dir!, =)=0 THEN 13110
```



```
13050
13060 !!1!11!!!!!!!11!1!!!!11!!1!!111!1!1!1!1111!!11!111111!1!111111111
13070 ! Determınes translation and rotation step sizes. Maximum translation step
13080 ! size is .l angstroms. Maximum rotation step size is 10 degress.
!3090 !!!!!!!!!!!!1!!!!!!1!!!1!!!1!1!!!1!!!!!!!!!!!!!!1!!1!1!!!!!!!!!!1!1!!!1!1
13100 !
13110 IF T1(J,OIFI)<1 THEN T1(J,Dirl)=1
13120 IF R1(J,D&FI)<1 THEN RI(J,DIFI)=1
13130 Tstep(J.0irl)=1/1000*10^(-.5.T1(J.01r1)+2.5)
13140 Rsted(J,Dir1)=1/10*10^(-.5*R1(J,Diri)+2.5)
13150 Fdir(J,Dir),3)-Fdir(J,Oirl,2)
13160 Mdir(J,Oiri,3)=Mdir(J,Dirl,2)
13170 NEXT DIFI
13180 NEXT J
13190 FOR S-2 TO L
13200 GOSUB Trans
13210 NEXT S
13220 60SUB Energy
13230 M2n=0
13240 PassesmPasses+1
13250 FOR J=2 TO L
13260 FOR DIFI=1 TO 3
13270
13280 !!!!1!!11!1!!!!!!!!!!!!1!!!!11!1!!!!11!1111111111111111111111111!1!1
13290 ' Determsmes current fores and moment directions and determanes which
13300 I degrees of freedom are optimized. Ootimization is accomplished when
13310 1 forces and torques are less that or equal to +/-.01.
13320!!!1!!1!1!!!!!!!!!!!!!111111111!11!1111111111111111111111111111111/1
13330!
13340 IF Fdir(J,Dirl,1)>0 THEN Fdır(J,D1r1,2)=1
13350 IF Fd_r(J,Dirl,1)<0 THEN Fd&r(J,D1r1,2)=-1
13360 IF ABS(Fdir(J,Dirl,l)<=.01 THEN Fdir(J,Dirl, =)=0
13370 IF Fdir(J,O2rl,2)=0 THEN M1n=M1n+1
13380 IF Mdir(J.O1r',1)>0 THEN Mdir(J,O_rl,2)=1
13390 IF Mdir(J.O_rl,1)<0 THEN Mdir(J.Dirl,2)=-1
13400 IF ABS(Mdir(J,Dırl,1)<=.01 THEN Mdır(J,Dirl, 2)=0
13410 IF Mdir(J,D1rI, =)=0 THEN M1n=M1n+1
13420 NEXT DITI
13430 NEXT J
13440 1
```



```
13460 ( Cetermines if all degrees of freedom are optimszed and if so termbnates
13470 ' the routine.
```



```
13490
13500 IF MIn=6*L-6 THEN 13520
13510 IF 5k=1 THEN GOSUB Oraw
13520 IF M1n=6*L-6 THEN GOSUB Draw
13530 IF MIn=6*L-6 THEN 13550
13540 GOTO 12970
13550 BEEP
13550 DISP "Done 1111"
13570 T1m=(TIMEDATE MOD 85400)/60
13580 Done=1
13590 Eck=E
13600 Iter=1
13610 Handl=1
13620 !
13830 !!!1!!!!!1!!!11!1!1!!!!1!1!!!!!!!!!!!!!!!!!!1!!111!!1!1!1!!!!!!!11!!!!
13640 I Checks final geometry for minimum energy by translatang and rotating
13650 ! about the minimum energy cluster configuration.
13660 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!1!!!!!!!!!!!!1!!!!!!!!!1
13670 ।
13680 FOR S=2 TO L
13690 FOR Xxx=1 TO 3
13700 Tstep(S,Xxx)=.001
13710 GOSUB 22000
13720 !
13730 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!1!!!!!!1!!!!!!!!1!!!
13740 ! Translation checks in threa directions.
13750 !!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!111111!!11111!!!11!1!111111
13760!
13770 IF }\mp@subsup{X}{xx=1 AND E>=Eck THEN PRINT * +X Minimum",}{
13780 IF Xxx=1 AND E<Eck THEN PRINT * +X Not M&n":
13790 IF Xxx=2 AND E>=Eck THEN PRINT * +Y MImimum*'
13800 IF }\mp@subsup{X}{xx=2 AND E<Eck THEN PRINT - +Y Not M1n":}{1
13810 IF Xxx=3 AND E>=Eck THEN PRINT - + + Minımum"
13820 IF Xxx=3 AND E<Eck THEN PRINT * +2 Not M&n"
13830 Tstep(S, Xxx )=-.002
13840 60SUB 22000
13850 IF Xxx=1 AND E>-Eck THEN PRINT * -x MImımum",
13860 IF }\mp@subsup{X}{xx=1 AND E<Eck THEN PRINT - -x Not M& M"1}{
13870 IF }\mp@subsup{X}{xx=2 AND E>-ECk THEN PRINT - -Y M1mımum"}{
13880 IF Xxx=2 AND E<Eck THEN PRINT * -Y NOt M:1n*
13890 IF Xxx=3 ANO E>-Eck THEN PRINT - -2 MIM&MUm",
13900 IF }\mp@subsup{X}{xx=3 AND E<ECk THEN PRINT " -2 Not M: M";}{
13910 Tstep(5,Xxx)=.001
13920 GOSUB 22000
13930 Rsteq(S,Xxx)=.001
13940 GOSUB 22380
13950
```



```
13970 I Rctation checks in three directions.
```



```
12990 1
14000 IF XXx=1 AND E.=ECk THEN PRINT * tRx M\MIMUM
14010 IF }\mp@subsup{x}{xx=1 AND E ECk THEN PRINT - +Rv NC: MIm.}{
140こ0 IF }\mp@subsup{x}{xx=2 AND E =Eck THEN PRINT " tRy MIMIMUM";}{
```

```
14030 IF x*x=2 AND E:ESK. THEN FRINT " +Ry Not MIn";
14040 !F X:x=3 AND E==ECK THEN PRINT " +RZ MIMIMLMM";
14050 IF Xax=3 AND E`Eck THEN PRINT " +FI= NOt MIn";
14060 Rstep(S, X\timesx)=-.002
14070 GOSUB 22380
14080 IF }\mp@subsup{x}{xx}{}=1\mathrm{ AND E;=Eck THEN PRINT " -Rx Mınımum";
14090 IF }\mp@subsup{x}{xx=1 AND E'Eck THEN PRINT " -R* Not MIn";}{
14100 IF Xxx=2 AND E>=Eck THEN PRINT " -Ry MInsmum";
14110 IF Xxx=2 AND E Eck THEN PRINT " -Ry Not M&n";
14120 IF }\mp@subsup{x}{xx}{}=3\mathrm{ AND E:=ECk THEN PRINT " -Rz M&nımum"
14130 IF Xxx=3 AND E<Eck TKEN FRINT " -Rz Not Mın"
14140 Rstep(S,Xxx)=.001
14150 GOSUB 22380
14160 NEXT XXX
14170 NEXT S
14180 Done=0
14190 Handl=0
14200 Min=6+L-6
14210 0S="0"
14220!
14230 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14240 ! Prepares calculation for paper printout and/or disc storage.
14250 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!1!!!!!!!!!!!
14250!
14270 INPUT "Do you want a printout?", Qs
14280 IF QS="N" THEN 14520
14290 IF Q3<>"Y" THEN 14210
14300 0S="0"
14310 INPUT "Do you want to store the configuration?",Q$
14320 IF Q$="Y" THEN GOSUB F1le
14330 IF OS<>"N" AND O$<>"Y" THEN }1430
14340 PRINTER IS 710
14350 GOSUB Print
14350 PRINTER IS 710
14370 PRINT "Calculation Time (Min:Sec)=":INT(Tim):":"INT((T1m-INT(Tim))*E0):"
    Iterations=":Passe
14380 PRINT
14390 QS="O"
14400 INPUT "Do you want to change the drawing?",0s
14410 IF 0S="N" THEN }1447
14420 IF OS<>"Y" THEN 14390
14430 Flag2=0
14440 GOSUB Draw
14450 Flag2=1
14460 60TO 14390
14470 DUMP GRAPHICS $710
14480 PRINT
14490 PRINT
14500 PRINT
14510 PRINTER 15 1
14520 Flag2=0
14530 M1n=0
14540 OFF KEY
14550 60TO 1250
14560 ।
14570 1111111111111111!11!111111111111111111111111111111111111/|
14580 ' Subroutime: Trans
```

```
14590
14600 1 Translates anc rotetes the sluster subunits in trree zimersizns.
```



```
146こ0
146j0 Trans: !
14640 1
```



```
14660 : Determines the force and moment magnitudes.
```



```
14680
14690 Fmag=(Fdrr(S,1,1)^2+Fg1r(S,2,1)^2+Fd_r(S,3,1)^2)^.5
14700 Mmag=(Md_r(S,1,1)"2+Mdır(S.2,1)^2+Mdır(5,3,1)`こ)^.5
14710 IF Fmag=0 THEN 14800
14720!
14730!!11!!11111!!1!!!11!1111111!11!1111!!11111!11!111111111111111111/
14740 1 Translates the cluster subundt screen parameters.
14750 !!!!!!11!!!!1!!!!1!11!!!1!!1!11!!1!!!1!1!!!!!!1!111111!1!11111111111
14750!
14770 Tx(S)=Tx(S)+Fdir(S.1, 2)*Tstep(S,1)*ABS(Fdir(S,1,1)/Fmag)
14780 Ty(S)=Ty(S)+Fd_r(S,2,2)*Tsted(S,2)*ABS(Fd_r(S,2,1)/Fmag)
14790 Tz(S)=Tz(S)+Fdir(S,3,2)\bulletTstep(S,3)*ABS(Fdir(S,3,1)/Fmag)
14800 IF Mmag=0 THEN 14890
14810
14820 !!!!!!!!!!!!!!!1!!1!!!!!!1!!!1!!!!!!!!!!!!!!!!!!!!!!!1!!!1!!1!1!!11!11111
14830 ! Rotates the eluster subunit screen parameters.
14840 !!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!1!1!!111111
14850 !
14860 Rx(S)=Rx(S)+Mdır(S,1,2)*Rstep(S,1)*ABS(Mdır(S,1,1)/Mmag)
14870 Ry(S)=Ry(S)+Mdir(S,2,2)*Rsteo(S,2)*ABS(Md2r(S,2,1)/Mmag)
14880 Rz(S)=Rz(S)+Mdir(S , 3,2)*Rstep(S,3)*ABS(Mdir(S, 3,1)/Mmag)
14890 IF Rx(S)>=360 THEN Rx(S)=Rx(S)-360
14900 IF Rx(S)<=-360 THEN Rx(S)=Rx(S)+360
14910 IF Ry(S)>=360 THEN Rx(S)=Rx(S)-360
14920 IF Ry(S)<=-360 THEN Rx(S)=Rx(S)+360
14930 IF Rz(S)>=360 THEN Rx(S)=Rx(S)-360
14940 IF Rz(S)<=-360 THEN Rx(S)=Rx(S)+360
14950 IF Done=1 THEN 15080
14950 IF Handl=1 THEN OUTPUT 2;CHRS(255)8"K";
14970 I
14980 !1!1111!!1!!!1!!!!1!!!!!!!!!!!!1!1!!1!!111!!11111111111111111111111111
14990 ! Prints the translation and rotation of the cluster subunits on the
15000 ! screen display.
15010 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!11!!1!!!!1!!1!111!11111111111111111114
15020 !
15030 PRINT "Translation of Ligand":S-1
15040 PRINT USING "530.40*iTx(S)ITy(S):Tz(S)
IS050 PRINT -Rotation of Ligand":S-1
15050 PRINT USING "530.40"IRx(S):Ry(S):Rz(S)
15070 PRINT
15080 IF Fmag-0 THEN 15600
15090
15100 1111111111111111111111111111111111111111111111111:11111111111/1
15110 ' Translates the cluster subundt coorginates.
```



```
15130 1
15140 FOR C=1 TO 5
15150 FOR A=1 TO 5
```

```
15'g0 FOR J=1 TO N(S,C,A)
15:-0 =CR x=1 TO J
15150
```



```
:5200 / Translates carbon atcms.
```



```
15:20 1
```



```
(Fmag)
13240 (
15250 |111111111111111:11111111111111111111111111111111111111/1.1,1/1
15260 ( Translates nydrogen atoms.
15270 11!111111111111111111111111111111111111111111111111111111111
15280 1
15290 IF C=2 THEN Hh(S,J,A,X)=Hh(S,J,A,X)+Fdir(S,X,2)&Tstep(S,X)*ABS(Fdir(S,X,1)
/Fmag)
15300 1
15310 111111111!111111111111111111111!11!11!1|111111111!111!1!111111111
15320 1 Translates matrogen atoms.
5330 l|||11111111111111111111111111111111111111111111111111111111111111111
15340 1
15350 IF C=3 THEN Nn(S,J,A,X)=Nn(S,J,A,X)+Fd&r(S,X,2)*Tstep(S,X)*ABS(Fd&r(S,X,1)
(Fmag)
15360 !
15370 !!111!!111111111111!11!11!!!11111!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!1!1!11
15380 ! Translates O,ygen atoms.
15390 1!1!!!!11!1!11!1!11!11!!1!!!1!!1!1!111!!!!!!!!!!!!!1!!!!!!!1!!!1!!111
15400 !
154:0 IF C=4 THEN Oo(S,J,A,X)=DO(S,J,A,X)+Fd:r(S,X,2)*Tstep(S,X)*ABS(Fdir(S,X,1)
/Fmag)
15420 |
15430 !11!1!1111!1!1!111!11!!1!!!1!1!!!!!!11!11!11!!!!1!!11!1!!1!1!1!!!1!11111
15440 ! Translates user defined atoms.
15450 !!!!!!!!!1!11!!!!!!!!1!!!!!1!1!1!!!!1!!11!!!!!!!1!!!1!!!!!!!!11!111
15460 !
15470 IF C=S THEN Zn(S,J,A,X)=2n(S,J,A,X)+Fdır(S,X,Z)*Tstep(S,X)*ABS(Fdır(S,X,1)
/Fmag)
15480 NEXT X
15490 NEXT J
15500 NEXT A
15510 NEXT C
15520
15530 !!111!!!!!1!!!!!!!11!1!!!!!1111111!111111!11111111111111111111111111
15540 ' Translates the cluster subunit center-of-mass.
15550 111!1!!!11!11!1!1111111111111111111111111111111111111111111111.1.1
15560 ।
15570 FOR X=1 TO 3
15580 Ca(S,X )=Cq(S,X)*Fdar(S,X,2)*Tstep(S,X)*ABS(Fd:r(S,X,1)/Fmag)
15590 NEXT X
15600 IF Mmag=0 THEN 16990
15610 Munitx=ABS(Mdzr(S.1,1)/Mmag)
15620 Munsty=ABS(Mesr(S,2,1)/Mmag)
15530 Munst==ABS(Md_r(5,3,1)/Mmag)
15640 1
```



```
15650 I Rotates the cluster subungts about thear centerg-sf-mass.
```



```
15530 1
15530 FOR G=1 TJ 5
15700 FCR A=1 T0 5
:ST10 FOR J=1 TO N(S,C,A)
15720 IF C=1 THEN 15820
15730 IF C=2 THEN 16060
15740 IF C=3 THEN 16300
15750 IF C=4 THEN 15780
15760 IF C=5 THEN 16540
15770 1
15780 111111111111!1111111111111111111111!!1!!1!!!1!11111111111111
15790 I Rotates carbon atoms about molecular center-of-mass.
15800 1111111111111!111!1111111!!!!1!!!!!!!!!!1!1!!!!1!11111!1111111
15810 1
15820 Col=Co(S.J,A,2)-Ca(S.2)
15830 CaI=Co(5,J.A,3)-Ca(5,3)
15840 Co(S,J,A,2)=Col-COS(Mdır(S,1,2)*Rstep(S,1)*Munitx)-Co2*SIN(Mdır(S,1,2)*Rst
eg(5,1):Munstx)
15850 Co(S,J,A,3)=Col*SIN(Mdsr(S,1,2)*Rsted(S,1)*Munitx)+Co2*COS(Mdir(5,1,2)*Rst
ep(S.1)-Munitx)
15860 Co(S,J,A,Z)=Co(S,J,A,2)+Cq(S,2)
15870 Co(S,J,A,J)=Co(S,J,A,3)+Ca(S,3)
15880 Col=Co(S,J,A,3)-Ca(S,3)
15890 Co2=Co(S.J.A,1)-Ca(5,1)
15900 Co(S,J,A,3)=Col*COS(Mdir(S,2,2)*Rsted(S,2)*Muntty)-Co2*SIN(Mdir(S,2,2)*Rst
e0(5,2)\bulletMuntty)
15910 Co(S.J,A,1)=Col*SIN(Mdsr(S,2,2)*Rstep(S,2)*Munity)+Co2*COS(Md.r(S,2,2)*Rst
ep(S.2).Munsty)
15920 Co(S,J,A,3)=Co(S,J,A,3)+Ca(5,3)
15930 Co(S,J,A,1)=Co(S,J,A,1)+Ca(S,1)
15940 Col=Co(S,J,A,1)-Ca(S,1)
15950 Co2=Co(S,J,A,Z)-Ca(S,2)
15950 Co(S,J,A,1)=Col*COS(Md_r(5,3,2)\bulletRstep(5,3)*Munstz)-Co2*SIN(Mdır(5, 3,2)\bulletRst
ep(S,3)*Munitz)
15970 Co(5,J,A,2)=Col*SIN(Md_r(S,3,2)\bulletRstep(S,3)\bulletMunıtz)+Co2*CO5(Mdır(5,3,2)*Rst
ep(S,3)*Munitz)
15980 Co(S,J,A,1)=Co(S.J,A,1)+Cq(S,1)
15990 Co(S,J,A,2)=Co(5,J,A,2)+CQ(S,2)
16000 60TO 16960
16010 1
16020 111111111!!1!!!!!!!!!!!!!!!!!111!!!!111111111111111111111111111111
15030 ' Rotates hydrogen atoms about molecular center-of-mass.
15040 1111!1!!!!1!!!!!!!!!!!!!!!!!!1!!!!!!1111!111111111!1!111111111111
16050 1
15050 Col=Hh(5.J.A.2)-Ca(5.2)
16070 CoZ=Hn(S,J,A,3)-Ca(S,3)
15080 Hh(S,J,A,2)=Col*COS(Mdsr(S,1,2)*Rstep(S,1)*Munitx)-CO2*SiN(Md{r(S,1,Z)|Rs:
eg(S.1):Munstx)
16090 Mh(5,J,A,3)=C01*SIN(Mdir(S,1,2)*Rstep(S,1)*Munitx)+Co2*COS(MOIT(S,1,2:.25:
ep(5.1)*Munitx)
16100 Hh(S,J,A,2)=Hh(S,J,A,2)+Ca(5,2)
15110 Hh(S,J,A,3)=Hn(S,J,A,3)+Ca(S,3)
1E120 Col=Hh(S,J,A,J)-Ca(S,J)
16130 Co2=Hh(S,J,A,1)-Ca(5,1)
```



```
eo(S.2).munity)
```



```
    'E:ED こol=Hh(S,J,A,1)-Ca(5,
    :G!90 こここ=4M(S,J,A,I)-Ca(S,I
```



```
&\(S,J)*Munltz)
```



```
ep(S,3)\bulletMun+tz)
16ここ0 Hn(S,J,A,1 i=4n(S,J,A,!:+Ga(5,1)
16230 Hh(S,J,A,工)=Hh(5,J,A,工)+Ca(5,こ)
16240 GOTO 16960
16250
16250 1111111111111111111111111111111111111111111111111111111111111111111111111
15270 ( Rotates nitrogen atoms about molecular center-of-mass.
```



```
16290
16300 Col=Nn(S.J,A,ミ)-Ca(S,Z)
16310 C02=Nn(5,J,A,3)-CQ(S,j)
16320 Nn(S,J,A,工)=Col*COS(Md_r(S,1,工)*Rstep(S,1)*Munitx)-Co2*SIN(Mdir(S,1,2)*Rst
ep(S,1)\bulletMunitx)
16330 Nn(S,J,A,3)=Col*SIN(Mdsr(S,1,2)*Rstep(S,1)*Munitx)+Coz*COS(Mdir(S,1,2)-Rst
ep(S.1;:Munztx)
16340 Nn(S,J,A,I)=Nn(S,J,A,2)+Ca(5,2)
16350 Nn(S,J,A,3)=Nn(5,J,A,3)+Ca(5,3)
16360 Col=Nn(S,J,A,3)-Ca(S,3)
15370 Co2=Nn(S,J,A,1)-Ca(S,1)
16380 Nn(S,J,A,3)=Col*COS(Mdir(S,2,2)*Rstep(S,2)*Muntty)-Coz*SIN(Mdir(S,2,2)*Rst
ep(S.2)*Munaty)
16390 Nn(S.J,A,1)=Col*SIN(Mdır(S,Z,z)*Rstep(S,2)*Muntty)+Coz*COS(Mdtr(S,2,2)*Rst
eo(5,2)*Munzty)
16400 Nn(S,J,A,3)=Nn(S,J,A,3)+Ca(S,3)
16410 Nn(S,J,A,1)=Nn(S,J,A,1)+Ca(S,1)
16420 Col=Nn(S,S,A,1)-Ca(S,1)
16430 Co2=Nn(S,J,A,2)-Ca(S,2)
l6440 Nn(S,J,A,1)=Col*COS(Mdsr(S,3,2)*Rsted(S,3)*Munıtz)-CoI*SIN(Md&r(S,3,こ)*Rst
eq(S,3)*Munit: )
16450 Nn(S,J,A,2)=Col*SIN(Mdsr(S,3,2)*Rstep(S,3)*Munıtz)+Caz*COS(Md:r(S,3,2)-Rst
ed(5,3)*Munstz)
16460 Nn(S,J,A,1)=Nn(S,J,A,1)+Ca(S,1)
16470 Nn(S,J,A,2)=Nn(S,J,A,2)+Ca(S,工)
16480 GOTO 16960
16490
```



```
16510 1 Rotates user defined atoms about molecular center-of-mass.
```



```
16530 1
15540 Col=2n(S,J,A,こ)-Ca(5,2)
15550 Co2=Zn(S.J,A,j)-Ca(S,j)
```



```
eq(S,1)*Mun_ta,
```



```
eg(S,1)\bulletMunit:)
16580 Zn(S,J,A,こ)=Zn(S,J,A,こ)+Cq(5,こ)
15590 2n(5,J,A,3)=こn(5,J,A,3)+C口(5, З)
16600 C)l=In(S,J,A,J)-Ca(S,J)
1EБ10 EOこ=2n(S,J,4,1,MCa(5,1)
```

```
16620Zn(S,J,A,3)=Col*COS(Md{r(S,Z,Z)*Rsteg(S,Z)*Munaty)-COZ*SIN(Md{r(S,Z,Z)*Rst
ev(弓,:)*Munz:y)
```



```
ep(S,Z)MMunsty)
18640 2n(S,J,A,3)=In(S,J,A,3)+Ca(5,3)
16650 2n(S,J,A,1)=2n(5,J,A,1)+Ca(5,1)
16560 Col=2n(S,J,A,1)-CQ(S,1)
16670 C02=2n(S,J,A,2)-CQ(S,Z)
18680 Ln(S,J,A,1)=Col*COS(Matr(S,3,Z)*Rstep(S,3)*Mundtz)-COZ*SIN(Mdsr(S,J,Z)*Rst
ep(5,3)*Munstz)
16690 Zn(S,J,A,Z)=Col*SIN(Mdsr(S,3,Z)*Rstep(S,3)*Munstz)+Coz*COS(Mdsr(S,J,Z)*Rst
ep(5,3)*Munstz)
16700 Zn(5,J,A,1)=2n(5,J,A,1)+Ca(5,1)
15710 2n(5,J,A,2)=2n(5,J,A,Z)+Ca(S,2)
16720 GOTO 16950
16730 !
16740 !!!!!!!!1!!!1!!!1!1!1111!1!!!!!!!!!!!!!!!!!!1!!!1!!1!!!!!!1!1111!1111
16750 ! Rotates oxygen atoms about molecular center-of-mass.
```



```
15770 !
16780 Col=00(S,J,A,2)-Ca(S,2)
16790 C02=00(5,J,A,3)-Ca(5,3)
16800 00(S,J,A,2)=Col*COS(Mdir(S,1,2)*Rstep(S,1)*Munitx)-CO2*SIN(Mdir(S,1,2)*Rst
00(5,1)*Mun+tx)
16810 Oo(S,J,A,3)=Col*SIN(Mdir(S,1,2)*Rstep(S,1)*Munltx)+Co2*COS(Mdir(S,1,2)*Rst
e0(S,1)=Munstx)
16820 O0(S,J,A,Z)=00(S,J,A,2)+Ca(S,2)
16830 O0(S,J,A,3)=Oo(S,J,A,3)+Ca(S,3)
16840 Col=00(S,J,A,3)-Cq(5,3)
16850 Co2=00(S,J,A,1)-CQ(S,1)
16860 Oo(S,J,A,3)=Col*COS(Mdir(S,2,2)*Rstep(5,2)*Munzty)-Co2*SIN(Mdzr(S,2,2)*Rst
ep(S,Z)*Munaty)
16870 Oo(S,J,A,1)=Col*SIN(Mdir(5,2,2)*Rstep(S,2)*Munıty)+Coz*COS(Mdir(S,2,2)*Rst
ep(S,2)&Munity)
16880 Oo(S,J,A,3)=00(5,J,A,3)+Ca(5,3)
16890 00(5,J,A,1)=00(S,J,A,1)+Cq(S.1)
16900 Cal=00(S,J,A,1)-Ca(S,1)
16910 Co2=Oo(S,J,A,2)-Ca(S,2)
16920 Oo(5,J,A,1)=Col*COS(Mdir(S,3,2)*Rstep(S,3)*Munstz)-Coz*SIN(Mdir(S,3,2)*Rst
ep(5,3)|Mun+tz)
16930 Oo(S,J,A,2)=Col*SIN(Mdir(S,3,2)*Rstep(S,3)*Munatz)+Co2*COS(Mdsr(S,3,2)*Rst
eo(5,3)\bulletMunitz)
16940 Oo(S.J,A,1)=00(S,J,A,1)+Ca(S,1)
16950 Oo(S,J,A,2)=OO(S,J,A,Z)+Ca(5,Z)
16960 NEXT J
16970 NEXT A
16980 NEXT C
16990 RETURN
17000
```



```
17020 1 Subroutane: Draw
17030
17040 ( Oraws the cluster geometry in four perspectives: 3-dimensional. tod vien
17050 , end view, and ssde view.
```



```
17070 1
17080 Draw: I
```

```
17090 IF Flag==1 THEN 1T400
17100 ZFF r.EY
17110
```



```
17130 1 Drawang Menu:
17140
17150 ) Gelear - Clears the graphics display. Subroutine used - Wipe.
17160
17170 ' Solute Y - Jraws the solute and solvent. Sibroutine used - Eolutey.
17180
17190
17200
17210
17220
17230
17240
17250
17250
17270
17280
17290 ! No Draw - Stops drawing at any time.
17300 !!!1!!1!!1!11111!1111!1!11!1!!!!!!!!!!!!!1!1!1!!!1!!!!1!!!!11111!11
17310 1
17320 ON KEY O LABEL "Gclear".g GOSUB WIDe
17330 ON KEY I LABEL "Solute Y",9 GOSUB Solutey
17340 ON KEY 6 LABEL "Solute N",g GOSUB Soluten
17350 ON KEY 2 LABEL "Inc Pic",g GOSUB Incpic
17360 ON KEY }7\mathrm{ LABEL "Dec P1c".9 GOSUB Decpic
17370 ON KEY 5 LABEL "Draw -,9 GOTO 17400
17380 ON KEY 9 LABEL "NO Oraw".9 GOTO 19240
17390 GOTO 17390
17400 GRAPHICS ON
17410 ALPHA OFF
1 7 4 2 0 ~ I F ~ M I n = L \& 6 - 6 ~ T H E N ~ G I N I T ~
17430 IF M_n=L+6-6 THEN SOI=1
17440 FOR PIC=1 TO 4
17450 !
17460 !!!1!1!!!!!1!111!!!!!!1!!!!!!!!!!!1!!11!!!!!!1!1111!!!!111111111!111
17470 ! 3 dimensional perspective.
17480 11111!1!!1!1!1!!!!!!!11!!!1!1!!11111!1!1!1111111111!111111111111;
17490 I
17500 IF Pic=1 THEN UIEWPORT 0,65,0,50
17510 IF P1c=1 THEN Dwx=-10
17520 IF P1C=1 THEN DW2=15
17530 ,
17540 11111111111111111111111111111111!1111111111111111111111111111111:1
17550 ( Top vaew perspective.
```



```
17570 !
17580 IF P1c=2 THEN UIEWPORT 66,133,0,50
17590 IF P1C=2 THEN DWx=0
17600 IF P1C=2 THEN DWz=90
17610 1
```



```
17630 1 End view perspectave.
```



```
17550 1
```

```
17660 IF P:==j THEN UIEWFIRT 0,6E,50,100
17570 IF F:E=j THEN \w&=-90
17530 IF P1C=3 THEN OWz=0
17590 1
17700 11111111111111111111111111111111111111111111111111111/1/|
17710 ' Side vaew Derspective.
```



```
17730 !
17740 IF P1C=4 THEN UIEWPORT 66,153,50,100
17750 IF P}\mp@subsup{P}{1}{
17760 IF P1C=4 THEN DW }z=
17770 SHOW -LOOK,LOOK,-LOOK,LOOK
17780 FRAME
17790 !
17800 1111111111111111111111111111!111!!!1!111!11111111!111111111111111111
17810 ) Draws cartesian axes on graphics disolay.
17820 !!!!!!!!1!11!11!1!111!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!111!!!1!!!111!1111
17830 !
17840 LINE TYPE 3
17850C&1(1)=-5*LOok*COS(D\omegax)
17860 Cel(2)=-5*Look*SIN(Dwx)
17870 Cf2(1)=5*1-00k*COS(DWx)
17880 Ce2(2)=5•Look*SIN(Dwx)
17850 Cfl(3)=Ce1(2)*SIN(DWz)
17900 Cf2(3)=Ce2(2)=SIN(Dwz)
17910 MOVE CFI(1),Cf1(3)
17920 DRAW CF2(1),C&2(3)
17930 Cfi(1)=5*Look*SIN(Dwx)
17940 Cel(2)=-5*LOOk*COS(Dwx)
17950 Cf2(1)=-5*Look*SIN(Dwx)
17960 Ce2(2)=5*Look*COS(Dux)
17970 Cfl(3)=Cel(2)*SIN(Dwz)
17980 CfZ(3)=Ce2(2)*SIN(DWz)
17990 MOUE Cf1(1),Cf1(3)
18000 ORAW CF2(1),CF2(3)
18010 Cfl(1)=0
18020 Cel(2)=0
18030 C12(1)=0
18040 Ce2(2)=0
18050 Cf1(3)=-5*LOOK•COS(D\omegaz)
18060 Cf2(3)=5*Look+\operatorname{COS(DWz)}
18070 MOVE CPI(1),CP1(3)
18080 DRAW Cf2(1),C&2(3)
18090 LINE TYPE I
18100 1
```



```
18120 ' Draws cluster geometry using balls and sticks.
18130 1111111111111111111111111111111111111111111111111111111111111/
18140 (
18150 FOR K=501 TO L
18160 FOR Cl=1 TO 5
18170 FOR AI=1 TO 5
18180 FOR Jl=1 TO N(K,CI.A1)
18190 FOR C2=1 TO S
18200 FOR AZ=1 TO S
18210 FOR J2=1 TO N(K,CZ,AZ)
18:200=0
```

```
ほこここ0
1ここ+コ
    E\SigmaS0 ( Cetermines atoms to be connected by bonds.
```



```
ミご0 ।
```



```
13230 I Carbon atom coordinates.
18300 11111111111111111111111!1!!1111!111111111111111111!111111111
18310 1
18320 IF Cl=1 THEN Coordll=Co(K,J1,A1,1)
18330 IF Cl=1 THEN Coordi2=Co(k,J\,A1,Z)
18340 IF Cl=1 THEN Coordl3=Co(K,Ji,A1,3)
18350 IF Cこ=1 THEN CoordZ1=Co(K,J2,AZ,1)
18360 IF C2=1 THEN Coord22=Co(K,J2,A2,2)
18370 IF C2=1 THEN CoordZ3=Co(K,J2,A2,3)
18380 1
18390 !!!1!1!1!!11!!!!!!!1!!11!!1!!!!!!!!!!!!!!!1!!!!!1!!!!!!!!1!!1!!!!1!111
18400 1 Hydrogen atom coordinates.
184!0 !!!!!!!!!1!!!!!!!!1!!!!!!!!!1!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!1!!1
18420 !
18430 IF Cl=2 THEN Coordll=Hh(K,Jl,Al,1)
18440 IF Cl=2 THEN Coordl2=Hh(K,J1,Al,2)
18450 IF Cl=2 THEN Coordl3=Hh(K,J1,A1,3)
18460 IF C2=2 THEN Coord21=Hh(K,J2,A2,1)
18470 IF C2=2 THEN Coord22=Hh(K,J2,A2,2)
18480 IF CZ=2 THEN Coord23=Hh(K,J2,AZ,3)
18490!
18500 1!!1!1!1!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!
18510 ! Nitrogen atom coordinates.
```



```
18530 !
18540 IF Cl=3 THEN Coordll=Nn(K,J I,Al, 1)
18550 IF Cl=3 THEN Coordl2=Nn(K,J),A1,2)
18560 IF Cl=3 THEN Coordl3=Nn(K,JI,A1,3)
18570 IF C2=3 THEN Coord21=Nn(K,J2,A2,1)
18580 IF C2=3 THEN Coord2Z=Nn(K,J2,AZ,2)
18590 IF C2=3 THEN Coord23=Nn(K,J2,AZ,3)
18600 I
18510 !1!1111411!!!!!!!!11!!!!!!!!1!!11!11!1!!1!1!1!!1!11!!!!1!1!111!1111
18520 1 Oxygen atom coordinates.
18630 111!!!!!!!!!!!!!!!!!!!!!!!!!!11!!!!1!!!1111!1111!1111111111111111111!
18640!
18650 IF Ci=4 THEN Coordll=Oo(K,J1,A1,1)
18560 IF Cl=4 THEN Coordl2=00(K,Jl,Al,Z)
18670 IF C, =4 THEN Coordl 3=00(K,J1,Al,3)
18680 IF C2=4 THEN Coord21=00(K,JZ,A2,1)
18590 IF C2=4 THEN Coord22=00(K,J2,AZ,2)
18700 IF C2=4 THEN Coord23=00(K,J2,A2,3)
187101
18720 1111111111111111111111111111111111111111111111111111111111111.1
187こ0 l User defined atom coordinates.
```



```
18750 1
18750 IF Cl=5 THEN Coordll=2n(K,J),Al,1)
13770 IF Cl=5 THEN CoordI2=2n(K,J),A1,Z)
18780 IF Cl=5 THEN Coordl3=2n(K,Jl,Al,3)
13790 IF C==5 THEN CoordZ1=2n(K,J2,A2,1)
```

```
18800 IF C2=5 THEN Coord22=?n(k,JZ,AZ,2)
18810 IF C2=5 THEN Coore23=?n(K,J2,A\Omega,j)
18820
```



```
18840 ( Determanes ball sizes for specific atoms.
```



```
18860 1
18870 IF C:=1 THEN 52:=.3
18880 :F C2=2 THEN S: ==.18
18890 IF C==3 THEN Sız=.24
18900 IF C2=4 THEN S12=.28
18910 IF C2=5 THEN 512=.32
18920 D=(Coord21-Coord11)^2+(Coord22-Coord12)^2+(Coord23-Coord13)^2
18930 Or=0^.5
18940!
18950 11!!!11!1111!!!!11!!!1!!1111!!!!!!!!!!1!!!!1!!1!!!!1111111111111!1111
18950 (Determines 2 dimensional projections for drawing 3 dimensional
18970 ! representations of elusters.
18980 !!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!1!1!1!1!!!111!1!1
18990
19000 IF Cl=2 THEN GOTO 19190
19010 Cf1(1)=Coord11*COS(Dwx)-Coord12*SIN(Dwx)
19020 Cel(2)=Coordl1.SIN(Dwx)+Coordl2.COS(Dwx)
19030 Cf2(1)=Coord21*COS(Dwx)-Coord22*SIN(Owx)
19040 Ce2(2)=Coord21.SIN(Dwx)+Coord22.COS(Dwx)
19050 Cf1(3)=Cel(2)*SIN(Dwz)+Coordl3*COS(Dwz)
19050 Cf2(3)=Ce2(2)*SIN(Dwz)+Coord23*COS(Dwz)
19070 MOUE Cf1(1),Cf1(3)
19080 IF Or>1.7 THEN 19140
19090 DRAW Cf2(1),Cf2(3)
19100 FOR Cir=0 TO 360 STEP 30
19110 IF Cir=0 THEN MOUE Cf2(1)+51z*SIN(C3r),C&2(3)+51z*COS(Cir)
19120 DRAW Cf2(1)+512*SIN(CIr),Cf2(3)+512*COS(Cir)
19130 NEXT CIr
19140 NEXT J2
19150 NEXT A2
19160 NEXT C2
19170 NEXT J1
19180 NEXT A1
19190 NEXT C1
19200 NEXT K
19210 NEXT P1C
19220 GRAPHICS OFF
19230 ALPHA ON
19240 IF Flag2=1 THEN 19410
19250 OFF KEY
19250 ।
19270 11111111111111111111H11111111111111111111111111111111111/1
19280 ( Sets up Main Menu for use after geometry and banging energy of:ima:a::am
19290 ' is complete.
```



```
193:0
153:0 ON KEY O LABEL "in Eoef". 3 GOSUB InDu:cf
IG3JD ON KEY I LAEEL "In Coord".3 GOSUB InDutco
19340 ON HEY 2 LABEL "Energy", J GOSUB Energy
IG350 ON WEY z LABEL "M1m1maze".3 GOTO M2rimize
19350 ON NEY 4 LABEL MOve", J GOSUE Hand
```

```
19コ70 ON REY 5 LABEL "Draw", j gOSus Oraw
15350 ON KEY 6 LABEL "NCA",3 GOSUB Eigen
1E3g0 ON KEY G LABEL "Qurt".j GOTO Qust
19400 ON KEY 7 LABEL "Stor Con",3 GOSUQ F:le
19410 RETURN
194こ0 1
19430 1111111111111111111111111111111111111111111111111111:1:1:1:1/:
19440 | Subroutane: Atomnames
19450 I
19460 Assigns atomic symbols and atom types to the atoms composing the
19470 1 clusters. Used in oaper print and screen display routines.
```



```
19490 !
19500 Atomnames: 1
19510 !
```



```
19530 1 Assigns atomic symbols.
```



```
19550 !
19560 IF Atoml=1 THEN Atom15=" C*
19570 IF Atoml=2 THEN Atomls=" H"
19580 IF Atoml=3 THEN Atom1$=* N*
19590 IF Atoml=4 THEN Atoml$=" 0"
19600 IF Atoml=5 THEN Atom1$=* Zn*
19610 IF Atoml=1 THEN 19720
19520 IF Atoml=2 THEN 19780
19530 IF Atoml=3 THEN 19840
19640 IF AtOMl=4 THEN 19900
19550 IF Atomi=5 THEN 19960
19560 RETURN
19670 !
19880 !!!!!!!!!1!!!!11!!!!!!!!!!!!!!!!1!!!!1!!11!!!11!1!!!1111111!1!!1!1111!1111
19890 1 Assigns atom types.
```



```
19710 !
19720 IF Attol=1 THEN Attol$=" Al10"
19730 IF Attpl=2 THEN Attpis=" Carb"
19740 IF Attpl=3 THEN Attp1$=" Arom"
19750 IF Atto!=4 THEN Attp1$=" YYYY*
19760 IF Attpl=5 THEN Attp1$=" ZZZZ"
19770 RETURN
19780 IF Attol=1 THEN Attols=" Al10"
19790 IF Attpl=2 THEN Attpl$="AM1ח"
19800 IF Attol=3 THEN Attol$=" Arom"
19810 IF Attolm4 THEN AttD1$=" Carb"
19820 IF Attpl=5 THEN Attp1s=* ZZZZ"
198J0 RETURN
19840 IF AttDl=1 THEN AttD1$=" Amın"
19950 IF AttD1=2 THEN Attp1$=" WWWW"
19360 IF AttDl=` THEN Attp1$=" XXXX"
19870 IF At:D =4 THEN At:O1$=" YYYY"
19880 IF AtTD:=5 THEN AttDIF=" ZZIZ"
19890 RETURN
19900 IF Attロl=1 THEN AttD1$=" Carb"
!9910 !F AttE!=こ THEN AttD!$=" Hydr"
199こ0 IF Attpl=3 THEN AttDI5=" KXXX"
19930 IF AttDI=4 THEN AttDI涪" YYYY"
```

```
19940 IF At:ol=5 THEN Attpis=" 22こZ"
19950 PETURN
19960 IF At:D)=1 THEN AttDIS=" AlID"
19970 IF Attpl=2 THEN Attp!5=" WWWW"
19980 IF Attpl=3 THEN Attol$=" KXXX"
19990 IF Attpl=4 THEN Attpl$=" YYYY"
20000 IF Attp!=5 THEN Attol$=" ZZ2Z"
20010 RETURN
200こ0
20030 11111111111111111111111111111111111111111111!11111111111111111
20040 1 Subrouttne: Atomnumbers
20050
20060 ! Assigns atoms and atom types to numbers for array element
20070 1 identification.
20080 111!111!!1!11!1!111111!!!!111!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!1111!1!1!11
20090 !
20100 Atomnumbers: 1
20110 AtOM1=0
20120 Attpl=0
20130 !
20140 11!11111!1!1111111!1!!!!1!1!11!!!!!!!!!!!!!!!1!1!1!1!1!1!!1!!!!!!!!!1!1!
20150 ! Assign numbers to atoms.
```



```
20170!
20180 IF Atom1s="C" THEN Atoml=1
20190 IF Atom15="H" THEN Atoml=2
20200 IF Atom15m"N" THEN Atoml=3
20210 IF Atomls="0" THEN Atoml=4
20220 IF Atom1s='Z" THEN Atoml=5
20230 IF Atom15*"C" THEN 20340
20240 IF Atom1s="H" THEN 20400
20250 IF Atom1s="N" THEN 20460
20260 IF Atom1s="0" THEN 20520
20270 IF Atom/s="Z" THEN 20580
20280 RETURN
20290 !
20300 !!!1!11111!1!!111!11!1!1!1!111111!11111111141111111111!!11!111111111
20310 1 Assign numbers to atom types.
20320 !!!111111!!!11!11!1111!111111111!1111111111111111111111111111
20330!
20340 IF Attois="ALIP" THEN Attpi=1
20350 IF Attp1$="CARB" THEN Attpl=2
20360 IF Attp1s="AROM" THEN Attpl=3
20370 IF Attpis="YYYY" THEN Attpl=4
20380 IF Attol$="2Z2Z" THEN Attpl=5
20390 RETURN
20400 IF Attp19="ALIP" THEN Attol=1
20410 IF Attpl$="AMIN" THEN AttDl=こ
20420 IF Attpls="AROM" THEN AttD)=3
20430 IF Attols="CARB" THEN A:tD!=4
20440 IF Attpl$="22Z2" THEN At:DI=5
20450 FETURN
20460 IF AttD!\Phi="AMIN" THEN At:El=1
20470 IF At:D1$="WWWW" THEN At:D'=2
20480 :F At:D'$="XXXX" THEN At:D)=亏
20490 IF At:D1g="YYYY" THEN A:tDI=4
20500 IF Attpl$="Z2こZ" THEN Attロl=5
```

```
20510 RETURN
2x5?0 IF Attpl$="CARB" THEN Attpl=1
205j0 IF A:士口\s="HYOR" THEN At:口l=?
=3540 IF Attolm="XXXX" TMEN Attロ1=3
20550 IF At:pls="YyYY" THEN AttDl=4
20550 IF Attp1s="ここここ" THEN Att口1=5
20570 RETURN
20580 IF Attpl$="ALIP" THEN Attol=1
20590 IF Attols="WWWW" THEN Attpl=2
20500 IF Attpl$="xXXX" THEN Attpl=3
20510 IF AttD:S="YYYY" THEN AttDI=4
205こ0 IF Attpl$="Z2ZZ" THEN Attpl=5
20630 RETURN
20640
20650 !111111!!111111111!111111!11!111!111!1111111111111111111111111111
20560 , Subroutane: Atommenu
20670
20680 1 Atom menu for parameter and coordinate input routines.
20690 1!!1!11!11111111!1!11!!1!!1!!11!1!1!!!!1!!1!!1!!!!!11111!!!11!111111
20700 1
20710 Atommenu: I Selects atoms
20720 OUTPUT 2,CHRS(255)&"K";
20730 PRINT " Atom Selection*
20740 PRINT .
20750 PRINT
20760 PRINT " C - Carbon"
20770 PRINT
20780 PRINT " H - Hydrogen"
20790 PRINT
20800 PRINT * N - Nitrogen*
20810 PRINT
20820 PRINT * O - Oxygen"
20830 PRINT
20840 PRINT * Z - zinc/Other"
20850 RETURN
20860
```



```
20880 1 Subroutıne: Attpmenu
20890 ।
20900 1 Atom type menu for parameter and coordinate input routines.
```



```
20920 1
20930 At!pmenu: 
20940 OUTPUT 2,CHR$(255)8"K*:
20950 IF Atom1s="C" THEN 21000
20960 IF Atomls="H" THEN こ'1130
20970 IF Atom/S="N* THEN =1250
20980 IF Atom/S="O" THEN 21390
22000 IF A:0M19= ご THEN こ'5こ0
zlece PRINT . Larbon Atom lyces"
=10.0 DEIMT
ここここ FR:NT
2lazo faint A_:F - Tetranedral Alinnati=
21040 02:% 
```



```
=1052 DE:ST
21070 DE:N+ "ARJM - ArOms:1= or C=C"
```

```
こlCEO FEINT
こ:へ\exists0 FQINT "YYYY - YYYY"
こ:100 PFINT
こ||| PRINT "ここZこ - こここご
こ:1こ0 RETURN
こilこO FRINT " Hydrogen Atom Types"
こ1140 PRINT
21150 PRINT
Z1160 PRINT "ALIP - Aliphatıc"
21170 PRINT
21180 PRINT "AMIN - Amine or 1(こ) Degree Amide"
21190 PRINT
z1200 PRINT "AROM - Aromatic or Sulfhydryl"
21210 PRINT
21220 PRINT "CARB - Hydroxyl or Carboxylic Acid"
21230 PRINT
21540 PRINT *ZZZ2 - 2Z22"
21250 RETURN
21260 PRINT " N_trooen Atom Types"
21270 PRINT
21280 PRINT
21290 PRINT "AMIN - AMIne or Amide*
21300 PRINT
21310 PRINT "WWWW - WWWW"
こ!3こ0 PRINT
21330 PRINT "XXXX - XXXX"
21340 PRINT
21350 PRINT "YYYY - YYYY"
21360 PRINT
21370 PRINT * 2222-2222*
21380 RETURN
21390 PRINT " Oxypen Atom Types"
21400 PRINT *
21410 PRINT
21420 PRINT "CARB - Carbonyl or Carboxylle Acid"
21430 PRINT
21440 PRINT "HYDR - Hydroxyl, Carboxylıc ACid, or Ester"
21450 PRINT
Z14G0 PRINT * XXXX - xXXX*
I1470 PRINT
2:480 PRINT -YYYY - YYYY"
=1490 PR:NT
21500 DRINT こここてZ - Zここて*
21510 RETURN
=1520 PRINT I Ianc/Other Alcm TyDes
=1530 PQINTT
=1540 PQ:NT
=1550 D|:A. Al:E - A!ipnatic
こ552 0&:H
こ与"2 E=:口*
こ与全 cの:"T
ごミミa &o:1-
```



```
ごこご =E:N"
```



```
=542 EE* FAM
```

```
21650
```



```
2!670 | Subroutıne: Hand
21680 1
21690 ( Allows user to translate and rotate cluster subunits.
```



```
21710 1
21720 Hand: 1
21730 ON ERROR GOTO 21750
21740 OUTPUT 2;CHR$(255)8"K":
21750 INPUT "What molecule are you working on (| for solute)?",S
21760 INPUT "Do you want to rotate or translate?",Rts
21770 Handl=1
21780 IF Rt$="R" THEN 22250
21790 IF Rt$="T" THEN 21860
21800 IF Rt$く\"T" AND Rt\Phiく`"R" THEN 21760
21810
21820 !!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!1!1!
21830 ! Cluster subunst translation routane.
21840 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1
21850!
21850 INPUT "What direction for translation?",Dts
21870 IF Dts="X" THEN Xxx=1
21880 IF Dts="Y* THEN Xxx=2
21890 IF Ot5="2" THEN Xxx=3
21900 IF Dts<>"x" AND Dts<>"Y" AND Dts<>`Z" THEN 21860
21910 INPUT "What interval?",Tstep(S,Xxx)
21920 INPUT "How many iterations?", Iter
21930 Eskip=0
21940 OS="O*
21950 INPUT "Do you want to calculate the energy?",QS
21960 IF Qs="Y" THEN Eskip=1
21970 IF QS="Y" THEN 21990
21980 IF OS<\"N" THEN 21940
21990 OFF ERROR
22000 FOR 6=1 TO Iter
22010 Fmag=1
22020 Mmag=1
22030 FOR J=1 TO L
22040 FOR Xx=1 TO 3
22050 FOR Y=1 TO 3
22060 Fdsr(J,Xx,Y)=0
22070 Mdir(J,XX,Y)=0
22080 NEXT Y
22090 NEXT Xx
22100 NEXT J
22110 Forr(S,Xxx, 1)=1
22120 Fd&r(S,Xx*,2)=1
22130 GOSUB 14710
2こ140 IF Esh10=0 THEN 2こ:160
22150 GOSUB Energy
2こ160 IF Done:1 THEN こ2:90
ここ170 GOSub Oraw
22!80 NEXT G
2こ190 GOT0 ここ570
こここ00
```



```
2こここ0 1 Cluster subunlt rotation routane.
```



```
こここ40
22250 INPUT "What axss of rotatson?",Dts
こここ50 IF Dtg="X" THEN XXx=1
2ここ70 IF Dt5="Y" THEN Xxx=2
こここ80 IF Dt$="こ" THEN Xxx=3
22290 IF Dts<<"x" AND DtS<>"Y" AND Dt$<>"Z" THEN 22250
2こ300 INPUT "What interval7",Rstep(S,X\timesx)
2こ310 INPUT "How many ıteratıons?",Iter
2こ320 Esk10=0
22330 Q5="Q"
22340 INPUT "Do you want to calculate the energy?.",0S
22350 IF QS="Y" THEN Esk10=1
22360 IF 0S="Y" THEN 22380
22370 IF Qs<>"N" THEN 22330
22380 FOR G=1 TO Iter
22350 Fmag=1
22400 Mmag=1
22410 FOR J=1 TO L
22420 FOR Xx=1 TO 3
22430 FOR Y=1 TO 3
22440 Fd&r(J, XX,Y)=0
22450 Mdir(J,Xx,Y)=0
22460 NEXT Y
22470 NEXT XX
22480 NEXT J
22490 Mdır(S,Xxx,1)=1
22500 Mdır(S,Xxx, 2)=1
22510 605UB 14710
22520 IF Eskip=0 THEN 22540
22530 60SUB Energy
22540 IF Done=1 THEN 22570
22550 GOSUB Draw
2 2 5 6 0 \text { NEXT 6}
22570 Handl=0
2580 RETURN
22590 !
22600 !!1111!1!!!!!!!!!!!!!!1!!!!!!!11!!!!!1!1!!!1!11!111111111!1111111111111
22610 1 Subroutane: Eigen
22620 ।
22630 ! Sets up the parameters for calculation and storage of the intermolecular
22540 l force fleld for use in UDWNCA.
22650 1!111!!!!1!!!!!!!!!!!!!!!!!111111111111111111111111!1!1!1111!1
22660 ।
22670 Elgen: 1
22680 OUTPUT 2:CHR$(255)&"K":
22690 PRINT "Place in storage disc containing H2OEIG or a disc with space to cre
ate HZOEIG."
ここ700 PRINT
22710 PRINT "To create a new HבOEIG. Type in the following command at this time:
ここフこ0 PRINT
2こ730 PR:NT "CREATE BOAT (QUCTESIHIOEIG:INTERNAL(QUOTES),7S00.8"
2こ740 DISP "Press contınue to proceed.
2こ750 PAUSE
22760 Eigen=1
```

```
22770 INPUT "What matrix row does solvent began7", Segan
ここ7e0 Column=8eg:n
ここ790 INPUT "What matrix row dces solvent end7".Lastm
Z2300 Last=Lastm+1
22810 QS="Q"
2こ8こ0 INPUT "Do you want charges?",0$
ここ8j0 IF QS="Y" THEN Bce=1
22840 IF QSC:"Y" AND QS: "N" THEN 22810
こ2850 0S="0"
22860 INPUT "Do you want hydrogen bondıng?".,Qs
22870 IF QS="Y" THEN BhD=1
22880 IF OS\`"Y" AND OS:`"N" THEN 22850
22890 GOSUB Energy
22900 Eigen=0
25910 RETURN
22920 1
22930 !!1!11!!1!!111!111!!1!!1!!!1!11!1!!!!!!!!!!1!!!!!!!!!11!!!1!1!111!!!!111111
22940 | Subroutine: File
22950 !
22960 ! Stores the coordinates of a specific cluster geometry in a disc file.
22970 !!!!!!!1!!!!!!1!!!!!!1!1!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!1!11!!1111
22980 1
22990 File: !
23000 0S="0.
23010 ON ERROR GOTO 23000
23020 INPUT "Do you want to start another COORDINATE P1le?",0s
23030 IF QS="N" THEN 23070
23040 IF QS<>"Y" THEN 23020
23050 INPUT "Enter your N E W COORDINATE file name.",Coords
23060 CREATE BDAT Coords8":INTERNAL",9400.8
23070 60SUB 5390
23080 OFF ERROR
23090 RETURN
23100 1
231!0!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!1!1!!!1!!!111111111111111111111111
23120 ! Subroutane: Quit
23130!
23140 ! Stops subroutine exacution and returns program to Main Menu.
```



```
23160 1
23170 Oult: 1
23180 OFF REEY
2こ!90 Fla02=0
23200 60TO 1250
232101
```



```
23230 ' Subroutane: Sketehy
23240
2z=50 ( A=tivated the graphics display during geometry and ginding energ,
こここ50 ( oDtimszation.
```



```
こここ80
こここ90 Stet=ny: '
23フ00 5,=1
z3z10 EISD -Grapmzes a<t:vated.
ここここる FETLFN
ここここ0
```



```
E=こ50 , SuErcutane: Sfet=nn
ここここ0
ここゴつ ( Deactivates the graphics display during geometry and binding energy
こここきコ ( =Dtmmaation.
```



```
230001
こう410 Sretchn: I
2こ420 5k=0
23430 DISP "Grapnics deactivated."
こう440 RETURN
23450
2J450 1111111!1!111!111111!1!1!11!!!1!!!!!1!!!!1!11!!1!111!!111111111!
23470 | Subroutane: Wape
23480 !
23490 1 Clears the graphics display.
23500 1!!!11!!!!!1!!!111111!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!1!1111!11!11!
23510 1
23520 Wipe: !
23530 6INIT
23540 OISP "Clear sereen."
23550 RETURN
23560
23570 !!!1!1!1!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!1!1111
23580 ! Subroutine: Solutey
23590 I
23600 I Allows he user to draw the cluster solute and solvent.
23610 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1111
23620 !
23630 Solutey: !
23640 Sol=1
23650 DISP "Draw solvent and solute."
23650 RETURN
23670 !
23680 !!11111!11!!11!!1!!!1!!!1!!!!!!!!1!!!!1!!1111!11!111111!1111111111111:
23690 1 Subroutine: Soluten
23700 !
23710 ' Allows the user to draw the solvent only.
```



```
23730
23740 Soluten: 1
23750 Sol=2
23760 DISP "Draw solvent only."
=3770 RETURN
23780
23790
=3800 ' Subroutıne: Incole
23810 1
2こ820 , Decreases the graphics display limits by l angstrom.
```



```
ここล40
=こeso ince:c: ,
```



```
Zこ870 !F LOOV I THEN LOOk=1
こr860 AOPHA ON
Z3890 CISF "Eraphics lims:s are ":Loot:" angstroms.
=3900 RETUAN
```

```
2こコ10
```



```
ここうこ0 ( Eubroutane: Decpic
ここ940 ।
2こ3S0 (Increases the graphics alsplay limats ey l angstrom.
```



```
こう970 ।
ここ980 Decolc:
23990 LOOk=LOOk+1
24000 ALPHA ON
24010 DISP "Graphics limlts are "iLook;" angstroms."
24020 RETURN
24030 ENO
```

"VIWWNCA"

```
10
=0
20
4 0
5 0 ,
60 1
7 0
80,
90!
100!
110!
120!
130!
1401
1501
160
170!
180
190!
200 OPTION BASE I
210 PRINTER IS |
220 !
230
240
250!
260
270
280
290
300
310
320
330
3 4 0
350 DIM A(75,75),Evr(75),Eva(75),Vecr(75,75),Veci(75,75),Indic(75),Mol(75,4)
360 DEG
370 UIEWPORT 0,134,0,100
380 LORG 5
390 Paper=1
400 Look=6 1 Default graphics display limits set at 6 angstroms.
410 Dwx=-45 ( Defaul: x axis orientation for graphics disolay.
420 Dwz=20 i Default z axis orientation for graonacs display.
4\Xi0 Dwxy=1 I Default top view for force fleld graphics display.
4:0
```



```
450 I Marn Menu:
4 7 0
4 9 0
4 9 0
500:
5i0 1 OWN UAL - Al!:ws tre user to ingut F motrin etements from keyboart.
5こ0 ! Sugroutare usea - Ingown.
```

```
500 1
540, INT DATA - InDuts the intramolecular foree fielos inta Ale. from aata
statements. Subroutine used - Irodat.
EIGUALUE - Diagonalizes the FG matrix to ybeld ebgenvalues freauencies ary
esgenvector normal modes describing Eluster moti=n. Subroutire
used - Eigen.
OUTPUT - Print the NCA results on the screen or on a paper printer.
Subroutane used - Output.
INITIALI - Inıtzalizes the A(*) matrix and stores it in H2OEIG. Used when
generating a new force field. Subroutine used - Zero.
```



```
!
ON KEY 0 LABEL "LJ MAT ".l GOSUB Inplj
ON KEY I LABEL "OWN UAL ",I GOSUB InDown
ON KEY 2 LABEL "INT OATA", I GOSUB InDdat
ON KEY 3 LABEL "EIGUALUE", I GOSUB Eigen
ON KEY 7 LABEL "OUTPUT ".4 GOSUB Output
ON kEY 9 LABEL "INITIALI",' GOSUB Zero
BEEP
GOTO }75
I
!!!!!1!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    Subroutine: Inplj
Inputs the intermolecular force field into A(*) from disce storage file -
H2OEIG.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!1!!!!!!!!!!!!!!!!!!!!!!!!!!
!
InplJ:!
ASSIGN &Mat TO "H2OEIG*
ENTER OMat;A(*),Mdim
ASSIGN EMat TO *
BEEP
RETURN
I
```



```
    Subroutane: Inpown
I Inquts F matrix elements from the keyboard into A(*).
```



```
I
Inoown: I
INPUT "ENTER MATRIX DIMENSION*.MdIM
INPUT "ENTER ROW,COLUMN",N,M
INPUT "ENTER ELEMENT* A(N,M)
1010 PRINT "ELEMENT ROW":N;"COLUMN":M, =":A(N,M)
1020 INPUT "ARE YOU DONE".GS
1030 IF OS=*Y" THEN 1050
1040 G0TO 990
1050 BEEP
1060 RETURN
1070
```



```
1090 1 Subroutane: Inpdat
1:00
1110 I Inouts the irtramolecular force fields from data statemer:s. Trese for:e
1120 i fields are added to the intermolecular force fielo placez in A:...
```



```
1140 1
1150 Inpdat: I
1160 WINOOW -Look, LOok, -Look,Look
1170 GCLEAR
1:80 RESTORE
1190 INPUT "ENTER MATRIX DIMENSION",MdIM
1こ00 READ Numberdat
1210 FOR Y=1 TO Numberdat
1220 !
1230 !!!!1!!!!!!!!1!11111!1!!!11!1!!1!!!!!!1!!1!!!1!1!1!1!11111111!1!!11111!111/
1240 ! Reads coordinates and force constants from date statements.
1250 !!!!1!!!!!!!!!!!!!!!!!!!111!1!1!1!!!!!!!!!!!!!!!!!!!!!!1!1!!!!!!!!!1!1!!!!!
1260 !
1270 READ X1,Y1.,21
1280 READ X2,YZ,Z2
1290 READ FORC
1300 !
```



```
1320 ! Converts force constants from dynes/cm to wavenumbers/squere angstrom.
```



```
1340 !
1350 Forc=Forc/3.E+10/6.626E-27/1.E+16
1360!
1370 !!!!!!!!!!1!!1!!!!!!!!!!!!!!!!1!!11!!!!!!!1:1!11!!!111111!!1111!1111111111
1380 ! Reads matrix row and column from data statements.
```



```
1490 !
1410 READ Row
1420 READ COL
1430 !
```



```
1450 I Calculates undt position vectors.
```



```
1470!
1480 D=((XZ-X1)^Z+(YZ-Y1)^2+(Zこ-Z1)^Z)^.5
1490 DX=(X2-X1)/D
1500 Dy*(YZ-Y1)/D
1510 Dz=(ZZ-Z1)/D
1520 PRINT XIIYIIZI
1530 PRINT X2,Y2,Z2
1540 PRINT DxIDY10z
1550 PRINT Fore.D
1560 PRINT ROW,COL
1570
1580 1111111111111111111111111:1111:111
1590 i Orews tne antramolecular force fiela.
```



```
1610
15:0 GRAPHICS ON
1530 IF CWMY-1 THEN MOUE XI,Y1
1540 IF OWxy=1 THEN ERAW x2,YE
1550 IF DWxy=0 THEN MOVE x:,:1
```

```
1550
5`0
1593
|ミミ0
1730
i710
1720 A(Col,CO1)=Forc*(Ox)`.=+A(Col,Col)
17J0 A(Row,Col)=-Forc*(Dx)` =+A(Row,Col)
```



```
1740 A(Col,Row )=-Forc*(Ox)`2+A(Col,Row
1750
1770
1780
1790
1800
1810 A(Col,Col+1)=Forc*(Dx-Dy)+A(Col,Col+1)
1820 A(Col,Row+1)=-Forc*(Dx*Dy)+A(Col,Row+1)
1830 A(Row,Co1+1)=-Force(Dx*Dy)+A(Row,Col+1)
1840
1850 1!!!1!1!!1!!1!!11!!1!1!!!!1!!!!1!!!!!!!!!!!!!!!!!1!!!!!!!!1!!1!!!!!!!!!1
1850 I Force constant in x-2 direction.
    1870 !!!!!11!!!!1!!!!!!!!!!!1!!!!!!!!!!!!1!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!1!1
1880
1890 A(Row,Row+1)=Forc*(Dx*Dy)+A(Row,Row+1)
1900 A(Col,Col+2)=Fore*(Dx*Dz)+A(Col,Col+2)
    1910 A(Col,Row+2)=-Forc*(Dx*Dz)+A(Col,Row+2)
1920 A(Row,Col+2)=-Forc*(Dx*Dz)+A(Row,Col+2)
1930 A(Row,Row+2)=Fore*(Dx*Dz)+A(Row,Row+2)
1940
19501111!11!!111!1111111!1111!11!!11111111111111!!11111!1111111114/\
1960 I Force constant in y-x direction.
```



```
1980 1
1990 A(Col+1,Col)=Forc*(Dy*Ox )+A(CO1+1,Col)
2000 A(Col+1,Row)=-Forc*(Dy*Dx)+A(Col+1.Row)
    2010 A(Row+1,Co1)=-Forc*(Dy*Dx)+A(Row+1.Col)
```

```
2030
2040
2050
2050
2070
2080
=090
2100 A(Row+1.Col+1)=-Fore*(Oy`2)+A(Row+1.Col+1
C110
こ!こ0 1
2130
    Z!40 ' For=e =cnstant in y-z direct:0n
```



```
150
```



```
ここ!0
2ここ0
IF Cwry=0 THEN CRAW Xこ.:こ
O
|
    A(Col+1,Co1)=Fore*(Dy*Ox)+A(CO1+1,Co1)
    A(Row+1,Row)=Forc*(Dy*Dx)+A(Row+1,Row)
    I
```



```
    Force constant in y-y darection.
    1111111111111111111111111111111111111111:1,11,1,
    +
    A(COl+1,CO1+1)=Force(Dy`2)+A(COl+1,C01+1)
    A(Col+1,Row+1)=-Fore•(Oy`2)+A(C01+1.Row+!
    A!Row+1,Row+1)=Fore•(Cy`2)+A(Row+! , Few+1
|111111111111111111111111111111111!11111111111111111111111111111111
    Force constant in x-y direction.
```



```
    I
    !
    1111111111111+11111!111+1111,11,1,1
    |
```


こここ0 1 Forこe censtant im =-\& Jurectaon.
こここ0 1 Forこe censtant im =-\& Jurectaon.

ここ50
ここ50

ここ30 M(Pow+2,Col)=-Forc*(Dz*Ox)+A, Row+2,Ccl ;
ここ30 M(Pow+2,Col)=-Forc*(Dz*Ox)+A, Row+2,Ccl ;
=こ90 A(Row+I,Row)=For=*(0こ*D*)+A(Row+2,Row)
=こ90 A(Row+I,Row)=For=*(0こ*D*)+A(Row+2,Row)
ここO0
ここO0
ご目111111111111111111111111111111:111!1:111111111111111111:111:1:1:1
ご目111111111111111111111111111111:111!1:111111111111111111:111:1:1:1
ミ320 1 Force constant in =-y directzon.
ミ320 1 Force constant in =-y directzon.

2340 1
2340 1
2350 A(Col+2,Col+1:=Fore:(Dz*Dy)+A(Col+2,Col+1)
2350 A(Col+2,Col+1:=Fore:(Dz*Dy)+A(Col+2,Col+1)
=360 A(Col+2,Row+1)=-Fore*(Dz*Dy)+A(Col+2,Row+1)
=360 A(Col+2,Row+1)=-Fore*(Dz*Dy)+A(Col+2,Row+1)
2370 A(Row +2,Col+1)=-Fore*(0=*Oy)+A(Row+2,Col+1)
2370 A(Row +2,Col+1)=-Fore*(0=*Oy)+A(Row+2,Col+1)
2380 A(Row+2,Row+1)=Forc*(0z*Oy)+A(Row+2,Row+1)
2380 A(Row+2,Row+1)=Forc*(0z*Oy)+A(Row+2,Row+1)
2390
2390
2400 1111111411/
2400 1111111411/
2410 1 Force censtant in z-z girection.
2410 1 Force censtant in z-z girection.
24201111111111111111111111111111111111111:1111111111:11111111111/11:1/11/1
24201111111111111111111111111111111111111:1111111111:11111111111/11:1/11/1
2430
2430
2440 A(COl+2,Col +2)=Force(Oz^2)+A(COL+2,Col+2)
2440 A(COl+2,Col +2)=Force(Oz^2)+A(COL+2,Col+2)
こ450 A(Coi+2,Fow+2:=-For=*Oz2,+AiCoi+こ.Row+2;
こ450 A(Coi+2,Fow+2:=-For=*Oz2,+AiCoi+こ.Row+2;
2460 A(Row+2,Col+I)=-Force(Dz`こ)+A(Row+2,Col+2) 2460 A(Row+2,Col+I)=-Force(Dz`こ)+A(Row+2,Col+2)
2470 A(Row+2,Row+2)mFor=*(Dz'I:A(Row+2,Row+2)
2470 A(Row+2,Row+2)mFor=*(Dz'I:A(Row+2,Row+2)
2480 NEXT Y
2480 NEXT Y
=490 BEEP
=490 BEEP
こ508 FETIDN
こ508 FETIDN
-5:0
-5:0
25:0
25:0

=540
=540
こ550 こ.agcrai:zeg imef:ma:-..
こ550 こ.agcrai:zeg imef:ma:-..
-552
-552
ここ一つ
ここ一つ
ここう2E.うer
ここう2E.うer
ミご
ミご
*2?
*2?
= v
= v
\&-8
\&-8
-` -`
*: = !. . m-.
*: = !. . m-.
*
*


```
2800 111111111111!1111111111111111111!1111111111111111111111111111111
Z8:0 1 Converts the esgenvalues to frequencies expressed in wavenumbers.
```



```
29j0
2840 IF Evr(N))=0 THEN Evr(N)=ABS(Evr(N)*33.6795005012)`.5
2850 IF Evr(N)<0 THEN Evr(N)=-ABS(Evr(N)*33.5796005012)".5
2850 NEXT N
2870
2880 111/111111111111111!111111111!11!11111111111111111111111111111111,
2890 ! Shell sort of elgenvalues and exgenvectors.
2900 1 Sorted in inereasing order with respect to eigenvalue.
```



```
2920 1
2930 Pass=Mdim
2940 Pass=INT(Pass/2)
2950 IF Pess=0 THEN 3170
2960 FOR St=1 TO Pass
2970 II=5t
2980 Jj=St+Pass
2990 Sw=0
3000 IF Evr(If)<=Evr(Jj) THEN 3100
3010 Sw=1
3020 Avr=Evr(I!)
3030 Evr(Il)=Evr(JJ)
3040 Evr(Jj)=Avr
3050 FOR R=1 TO MdIm
3050 Avc=Vecr(R,I1)
3070 Vecr(R,II)=Vecr(R,Jj)
3080 Vecr(R,JJ)=Ave
3090 NEXT R
3100 I1-JJ
3110 JJ-Jj+Pags
3120 IF JJ<Mdim+1 THEN 3000
3130 IF Sw=0 THEN 3150
3140 60TO 2970
3150 NEXT St
3150 60TO 2940
3170 PRINT *DONE*
3180 BEEP
3190 RETURN
3200 1
3210 11111111111!11!!!1!!!!!!!11!!1!!!1!!!1!!!1!!!!!1!1!1!!!!!!!1!11111111
3220 ' Subroutine: Output
3230 '
3240
3250 ' Daper printer.
```



```
3270 1
3280 Output: 1
3290 1
3300 1111111111111111111111111111!111111111111111111111111111,1/1
3310 ' Graphies Menu:
3320
330 1 INC X - Increases the x axds orientation by I degree.
330 : Subroutıne used - Incx.
350
3360 1 DEC x - Decreases the x axis orientation by l degree.
```

```
ミ370 1 ミubrout:ne used - Decx.
ここうつ
```



```
3400 ' jubroutine used - Inc=.
3410
34こ0
34こ0
3440
3450 1 ODNE - Stops grawing the elusters. Subroutine used - Flag.
3450 11'11111/111111/11111!111111111111111111111111111111111111/1
3470
3480 OFF KEY
3490 ON KEY 0 LABEL "INC X",5 GOSUB Incx
3500 ON kEY 5 LABEL "DEC X".5 GOSUB Decx
3510 ON KEY 1 LABEL "INC z",5 GOSUB Inc=
3520 ON KEY 6 LABEL "DEC 2",5 GOSUB Decz
3530 ON KEY 9 LABEL "DONE",5 GOSUB flag
3540
3550 1!1!!1!111111!!11!1111!1111!11!!!!111!!!!!11!!!111111!1!!!1!1!!11!!1111
3560 ! Reads cluster subunit coordinates from data statements.
3570 !1!!!!!!1!1!!1111111!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!1!!1!1!
3580
3590 FOR N=1 TO Mdim/3
3600 FOR M=1 TO 4
3 6 1 0 ~ R E A D ~ M O L ( N , M )
3620 NEXT M
3630 NEXT N
3540 05="0"
3650 INPUT "OUTPUT TO PRINTER",QS
3660 IF OS="Y" THEN Paper=710
3670 IF 0S="Y" THEN 3700
3580 Paper=1
3690 IF QS<>"N" THEN 3650
3700 PRINTER IS Paper
3710 !
3720 !!1!!!1!11!!!!!!!!!!!!!!!!!!!!!!!!!!11!!!!111111111!1111111!1!11!111!
37j0 ! Prints eigenvalues.
3740 !!!!1!11!!!!!!!!!!!!!!!!!!1!!!111!111!11!1111111111111!1111111111!
3750 1
3760 PRINT
3770 PRINT "------------------------------ EIGENUALUES (Em-1) -----------------------
3780 PRINT
3790 FOR N=1 TO MdIM STEP 3
3800 IMAGE K,A,X,MZ.9DE, 3X,K,A,X,MZ. 9DE, 3X,K,A,X,MZ.9DE
3810 IF Paper=710 THEN PRINT USING 3800iN,".".Evr(N),N+1.".",Evr(N+1).N+2.".".E.
r(N+2)
3820 IF Paper=1 THEN PRINT USING 3830:Evr(N):Evr(N+1):Evr(N+Z)
3830 IMAGE MZ.9DE,MZ.9DE,MZ.gDE
3840 NEXT N
3850 PRINT
3550 05="0"
38T0 INPUT "OO YOU WANT EIGENUECTORS".OS
z880 IF QS="N" THEN 5080
3B90 IF 05^""Y" THEN 3870
z900 INFUT "WHAT EIGENUECTOR DO YOU WANT".M
3`10 IF M.O OR M MdIM THEN 3900
```

```
3920 1
```



```
j340 i Prints elgenvector for selected ezgenvalue.
```



```
3760 1
ذᄏ70 FRINT "-------------------------------- EIGENUECTORS 〈A`
---------*
3980 PRINT
3990 PRINT "EIGENUECTOR FOR EIGENUALUE":M;EvR(M)
4 0 0 0 ~ P R I N T
4010 FOR N=1 TO Mdim STEP 3
4020 IF Paper=710 THEN PRINT USING 3800,N,".",Vecr(N,M),N+1,".".Vecr(N+1,M),N+I,
".",Vecr(N+2,M)
4030 IF Paper=1 THEN PRINT USING 3830iVecr(N,M):Vecr(N+1,M)iVecr(N+2,M)
4 0 4 0 ~ N E X T ~ N
4 0 5 0 ~ P R I N T
4 0 6 0 ~ I F ~ P a p e r = 7 1 0 ~ T H E N ~ 3 8 7 0 ~
4 0 7 0 \text { GCLEAR}
4080 Flag=0
4090 !
4100 !!!!!!!!1!!!1!1!1!!!1!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11!
4110 ! Draws cluster geometry and elgenvector diplacement vectors using a stick
4120 ! model.
4!30 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!1!!
4140!
4150 GRAPHICS ON
4160 ALPHA OFF
4 1 7 0 \text { GCLEAR}
4180 VIEWPORT 0,123.0.100
4190 LORG 1
4 2 0 0 \text { SHOW -LOok,Look, Look,Look}
4210 MOUE -Look.LOok-1
4220 LABEL Owx:DwziM:Evr(M)
4 2 3 0 ~ L O R G ~ 5 ~
4240 LINE TYPE 3
4250 !
4250 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!1!!!!1!!!!!!!!!!!!!111!!1!!!111!
4 2 7 0 ~ ! ~ D r a w s ~ c a r t e s i a n ~ a x e s ~ o n ~ g r a p h i c s ~ d i s p l a y . ~
4280 1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!1!!!!!!!!!!!!1!1!1!!
4 2 9 0 ~ I '
4300 CfI(1)=-5*Look*COS(Dwx)
4310 Cel(2)=-5*Look*SIN(Owx)
4320Cf2(1)=5*Look*COS(Dwx)
4330 Ce2(2)=5*Look*SIN(Dwx)
4340 Cf1(3)=Cel(2)-SIN(Dwz)
4350C&Z(3)=CeZ(2)*SIN(Dwz)
4360 MOVE C&1(1),Cf1(3)
4370 DRAW C&2(1),Cf2(3)
4380 Cfl(1)-5*Look*SIN(Dwx)
4390 Cel(2)=-5*Look*COS(Dwx)
4400 Cf2(1)=-5*LOok*SIN(Dwx)
4410Ce2(2)=5*Look*COS(Dwx)
4420Cf1(3)=Cel(2)*SIN(Dwz)
4430CfI(3)=Ce2(2)*SIN(Dwz)
4440 MOUE Cf1(1),Cf1(3)
4450 DRAW CfI(1),Cf2(3)
4460 Cfl(1)=0
```

```
4470 Ce1:こ)=0
4\mp@code{C0CF(1)=0}
4490 こeこにこごも
4590 =61(こ)=-5+LOok•COS(Dwz)
4510 Cfこ(3)=5*L00k*COS(Dwz)
45こ0 MOUE Cf1(1),Cf!(3)
45j0 DRAW CFこ(1),Cfこ(う)
4540 LINE TYFE I
4 5 5 0
4560 11111111111111111111111111111111111111111111111111111111111111
4570 I Determines atoms in cluster subunits to be connected by bonds.
```



```
4 5 9 0 ~ I ~
4600 FOR Cl=1 TO MdIm/3
4610 FOR C2=1 TO MOIm/3
4 6 2 0 ~ 0 = 0
4630 Crdll=Mol(Cl,1)
4640 Crdiz=Mol(Cl,2)
4650 Crdi3=Mol(C1,3)
4650 Crd2)=Mol(C2,1)
4670 Crd22-Mol(C2.2)
4580 Cra23=Mol(C2,3)
4690 D=(Crd21-Crdl1)^2+(Crd22-Crd12)^2+(Crd23-Crdl3)^2
4 7 0 0 ~ O r = 0 ` . 5
4 7 1 0 ~ I F ~ M O L ( C l , 4 ) = 2 ~ T H E N ~ 4 8 2 0 ~
4720 Cfl(1)=Crall-COS(Dwx)-Crdl2.SIN(Dwx)
4730 Cal(2)=Crdll*SIN(Dwx)+Crd12*COS(Dwx)
4740 Cf2(1)=Crd21*COS(Dwx)-Crd22*SIN(Dwx)
4750 Ce2(2)*Crd21*SIN(Dwx)+Crd22*COS(Dwx)
4760 Cfl(3)=Cel(2).SIN(Owz)+Crdl3*COS(DWz)
4770Cf2(3)=Ce2(2)=SIN(Dwz)+Crd23-COS(Dwz)
4780 MOUE CF1(1),Cf1(3)
4790 IF Or>1.6 THEN 4820
4800 DRAW CF2(1),CF2(3)
4 8 1 0 ~ L A B E L ~ " O " ~
4 8 2 0 ~ N E X T ~ C 2 ~
4 8 3 0 ~ N E X T ~ C I ~
4 8 4 0 ~ 1
4850 111111111111111!1!1!11111!11111111111111111111111111111111111111111
4850 I Draws displacement vectors on atoms.
```



```
4 9 8 0 ~ 1
4 8 9 0 ~ F O R ~ C l = 1 ~ T O ~ M d i m / 3 ~
4900 Crdll=Mol(Cl,l)
4910 Crdi2=Mol(Cl,2)
4920 Crdi3=M01(Cl,3)
4930CrdZ1=Mol(Cl, 1)+Verr(3*C1-2,M)
4940 Crd22=Mol(Cl,2)+Vecr(3.C1-1,M)
4350 Crd23=M01(C1,3)+Vecr(3*C1,M)
4960 Cf1(1)=Crall-COS(Dwx)-Cralz-SIN(Dwx)
4970 Cel(2)=Crall.SIN(Dwx)+CrdI2.Cos(Dwx)
4980 Cf2(1)=Crd21*COS(Dwx)-Crd22*SIN(Dwx)
4990 Cez(2)=Crd2l-SIN(Dwx)+Crdここ*COS(Dwx)
5000 Cfl(3)=Cel(2)*SIN(Dwz)+Crdl3+COS(Dwz)
5010Cf2(3)=Ce2(2)*SIN(Dw2)+Craz3*COS(OW:)
50=0 MOUE CFI(1).CF1(3)
5030 ORAW CF2(1).Cf2(3)
```

```
5040 LABEL "**
5 0 5 0 ~ N E X T ~ C I ~
5060 IF Flag=0 THEN 4080
5070 G0T0 3870
5080 05="0"
5090 INPUT "DO YOU WANT TO LOOK AGAIN",QS
5100 IF QS="N" THEN 5I30
5110 IF QS<`"Y" THEN 5090
5120 GOTO 3640
5130 PRINTER IS I
5140 BEEP
5150 STOP
5!60 RETURN
5170 !
```



```
5190 ! Subroutine: Zero
5200 !
5210 ( Initializes the A(*) matrix and stores it in H2OEIG.
```



```
5230 !
5240 Zero: !
5250 FOR N=1 TO Mdim
5260 FOR M=1 TO Mdim
5270 A(N,M)=0
5280 NEXT M
5 2 9 0 ~ N E X T ~ N
5300 INPUT "ENTER MATRIX ORDER",MdIm
5310 ASSIGN MMat TO *H2OEIG*
5320 OUTPUT OMatIA(*),Marm
5330 ASSIGN OMat TO.
5340 BEEP
5350 RETURN
5360 !
5370 !!1!1111!1!!!111!!!!!!!!!1!!!!1!1!1!1!!!!111!111!1!!!1!1!!111111111111
5380 I Subroutine: Incx
5390 !
5400 I Increases x axis oriantation by l degree.
54|0 !1111!1!111!11!!!!!!11!!!1!!!!11!11111!11!1111111111111111111111111
5420 1
5430 Incx: 1
5440 DWx=0wx+1
5 4 5 0 ~ R E T U R N
5460
5470 1!1!!11!!!!!!1!1!!1!1!11111111111111111111111111111111111111111/
5480 I Subroutine: Decx
5490
5500 1 Decreases x axis orientation by l degree.
```



```
5520 |
5530 Decx: 1
5540 DW%=0Wx-1
5550 RETURN
5560
5570 1111111111111111111111111111111111111111111111111111111111/1
5580 1 Subroutane: Incz
5590 '
5600 1 Increases z axis orientation by 1 degree.
```

5610111
56151
55:0 Incz: 1
56:5 Dwz=0wz+1
5630 RETURN
5635

5645 i Subroutane: Decz
56501
5655 1 Decreases z axis orientation by 1 degree.
566 1:11!1111111111111111111
56651
5670 Decz: 1
5675 Owz $=0 w z-1$
5680 RETURN
5685

5695 ! Subroutıne: Flag
5700
5785 I stops drawing cluster geometry and displacement vectors.
5710 11!11111111111111!!!1!1!!! 57151
5720 Flag: 1
5725 Flag-1
5730 RETURN
5735 ।
$5740111111111111111111111!1!111111!111!11!1!1!111111!1!1!!111111111$ 5745 I Intramolecular force fields for cluster subunits.

5750
5755
5760
5765
5770
5775
The force fields are generated using the central force approximation and
expressed as force constants in cartesian coordinate system. The
following data statements are for the intramolecular force fields in
Benzene-(Methane)l. They are included to give an example on how the
force ilields are generated. Since the benzene subunit is planar. the
central force field constants must be modified to incorporate
out-of-olane motion. This is accomplished by setting the atoms composing
benzene glightly out-of-plane. One angstrom provides sufficient
out-of-plane displacement to account for the out-of-plane force field.
The force flelds are ontered as force constants between adjacent atoms
and between atoms disolaced by one intervening atom. The atoms in
each cluster subunit are numbered in the same order as used in the
ECCEMP 2 calculation. The force constants used are those corresponding $t=$
general Punctional group stretches and bends.
Order of data entries:
DATA X-Coord,y-Coord,Z-Coora for atom:.
OATA x-Coord, y-Coord, 2 -Coord for atom J.
DATA Force Constant, Atom $1 \times$-Coord Matrix Location, Atom J X-Coora matr:.
Location.

OATA 52 I Number of porce constants used in fields.


```
5895
5900
5905
5910 DATA -1.395.0.0
5315 OATA -.6975,1.208,0
5920 DATA 6.34E5,1,4
5925
```



```
S935 1 Benzene C-C force constant.
```



```
5945 1
5950 OATA -1.395.0.0
5955 OATA .6975,1.208.0
5950 OATA 1.054E5,1.7
5965
5970 !111111111!11111111111111111!11!11!1!1111111111111111111111111111111
5975 ! Benzene C-C force constant.
5980 !!1111!!!!!!1!1111111111!!!!11!1!1!!1!!!1!!1!111!111!11111!111111111
5985
5990 DATA -.6975.1.209.0
5995 DATA .6975,1.208.0
6000 DATA 6.94E5.4,7
6005 !
6010!!!!11!!!1!11!111!!!!!!!!!!!1!!!!!1!1!1111!!!1!1111!1!1!!!1!11!!1!1111111
6015 I Benzene C-C Porce constant.
6020 111!1!11!11!1!111!!!!!!!!!1!111!111!1!11!!1!!!1!11!!1!1!!!1111111111111!
6025 I
6030 DATA -.6975.1.208.0
6035 DATA 1.395.0.0
6040 OATA 1.054E5,4,10
6045 !
6050 !!!1!111111111111!!!1!!1!1!11!11!!1111!!111111111111111111111111111111
6055 I Benzene C-C force constant.
6060 !!111111!111!!!!!1!111111!111111111111111111111111111111111111111111
6 0 6 5 ~ !
6070 DATA .6975,1.208,0
6075 DATA 1.395,0,0
6080 DATA 6.94E5,7.10
6085 1
6090 11111111111!1!1!!1!1111!111111111111111111111111111111111111111.,
6 0 9 5 ~ 1 ~ B e n z e n e ~ C - C ~ P o r c e ~ c o n s t a n t . ~
6100 11111111111!111!1!!111!1!11111111111111111111111111111111111/1
6 1 0 5 ~ 1
6110 OATA .6975.1.208.0
6115 DATA .6975,-1.208.0
6120 OATA 1.054E5,7.13
6125 1
```



```
6135 1 Benzene C-C force constant.
```



```
6145 1
5150 OATA 1.395.0.0
6155 OATA .6975.-1.208.0
6160 OATA 6.9AES,10.13
6165 1
617011111111111111111111111111111111111111111111111111111,.1,
6175 1 Benzene C-C force constant.
```



```
5!85
5190 תATA 1.395,0,0
5195 OATA -.6975,-1.208,0
E=00 DATA 1.054E5,10,16
52.25 1
G\Omega10111111111111111111111111111111111111111111111111111111111111!111/11/1/1/
S215 1 Benzene C-C force constant.
```



```
6225 1
6230 OATA .6975,-1.208,0
E235 DATA -.6975,-1.208,0
6240 DATA G.94ES,13,16
5245!
```



```
6255 ! Benzene C-C force constant.
```



```
6255 1
6270 DATA .6975.-1.208.0
6275 DATA -1.395,0,0
6280 DATA 1.054E5,13,1
6285 !
6290 !1!111!11!1111111!!!!11!!!!!1!11!!!!!1!!!!!!!!!!!!!!!1!!!!1!!!!!!1!111111!1
6295 1 Benzene C-C force constant.
6300 !1!11!1!!!!!!11!!1!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!111111!
6305 !
6310 DATA -.5975,-1.208.0
6315 DATA -1.395,0,0
6320 DATA 6.94E5,16,1
6325
63301111111111!!!111!1!!!!111!!!1!!1!1!!!!!!!!!!!!11!1!!!1!!1!!!!!!1!1!!!1111!
6335 I Benzene C-C force constant.
```



```
6345 !
6350 DATA -.6975,-1.208.0
6355 DATA -.6975,1.208,0
6360 DATA 1.054ES,16,4
6365
```



```
6375 1 Benzene C-H Porce constant.
```



```
6 3 8 5 ~ ।
6390 DATA -2.479.0.0
6395 DATA -1.395,0,0
6400 DATA 5.508E5.19.1
6405
641011111111111111:1111111111111111111111111111111111111111111111111/111/1.1/1
6415 1 Benzene C-H force constant.
```



```
6 4 2 5 ~ 1
6430 OATA -2.479,0.0
6435 DATA -.6975,1.208.0
6440 CATA 1.093E5,19.4
6445 1
```



```
5455 1 Benzere C-H force constant.
```



```
E465 (
6470 DATA -2.4%9.0,0
5475 CATA -.5375,-1.208.0
5480 LATA 1.J93E5,19,16
5485 1
5490 111111111!11111111111|l|l11111!111111111111111111111111111
5495 1 Benzene C-H force constant.
F500 1|1111111111111111111111111!11111111111111111111111111111111111111,
6505 1
6510 DATA -1.24.2.147.0
6515 DATA -.6975,1.208,0
6520 DATA 5.508E5,22,4
6525 ।
6530 111111111111!111!!11111111!1!!11!1111111111111111111111111111111
5535 { Benzene C-H force constant.
6540 11111111!1111!11111!111111!11!1!1111111111!111!111!1111111111111111,
6545 1
6550 DATA -1.24.2.147.0
6555 OATA .6975,1.208,0
6560 DATA 1.093E5.22,7
6565 !
6570 1111111111111111111111!1111!!!!!1!1!1111111!1111111111111111111111111111
6575 1 Benzene C-H force constant.
6580 1+!11111111!!!1!1!!!1!!!!!!1!!111111!111!!1111111111111!11111111111111
6585 !
6590 DATA -1.24,2.147.0
6595 OATA -1.395,0.0
6600 DATA 1.093ES,22.1
6605
6610 1111!!11!11!!!!!1!1!1!1!11!1111111111!1111111111111111111111111111111
6615 ! Benzene C-H force constant.
6620 !1!1!1!1!!1!!!!!!!!!!!!!!!!!1!111!!1!11!!!!1111!!!11!!!!1!!!1!11111111
6625 !
6630 DATA 1.24.2.147.0
6635 DATA .6975.1.208.0
6640 DATA 5.508E5,25,7
6 6 4 5 ~ !
6650 11!111111!!!111!!!!!1!1!!!!!!!!1!!!111!!1!!111111111111!1111!1111111
6655 | Benzene C-H force constant.
6650 11111111:1!1!1!!11!!!!111!1!11111111111111111111111111111111111111.1
6655 ।
6670 DATA 1.24.2.147.0
6675 DATA 1.395,0.0
6580 DATA 1.D93E5,25.10
6 6 8 5
6690 11111111111111111111111111111111111111111111111111111111111111,.,
6595 , Benzene C-H force constant.
6700 1111!111!11!11111111111111111111111111111111111111111111111111,
6 7 0 5 ~ 1
6710 OATA 1.24,2.147.0
6715 DATA -.6975,1.208,0
6720 OATA 1.093E5.25.4
6 7 2 5
6730 111111111111111111111111111111111111111111111111111111111111
6735 ( Benzene C-H force constant.
6740 11111111111111111111111111111111111111111111111111111111111
6 7 4 5 ~ 1
```

```
5:ミJ こATA 2.479.0.0
5:55 RATA 1.こう5,0,0
5-6J DATA 5.5.こE5,こ`,!0
5?55
EフOO
\Xi775 1 Benzene こ-H force constant
\sigma
5785
6790 DATA 2.479.0.0
6795 DATA .6975,1.208,0
6800 DATA 1.093E5,29,?
6805
6810 11111111111111111111111111111111111111111111111!1111111111111
6 8 1 5 ~ ! ~ B e n z e n e ~ C - H ~ f o r c e ~ c o n s t a n t . ~
```



```
6 8 2 5 ~ 1
630 DATA 2.479,0,0
6835 DATA .5975,-1.208,0
6840 DATA 1.093E5,28,13
6 8 4 5 ~ ! ~
6850 !!1!11111111!11111!111111!!1|11111111111111!!1!1!!11!11!1111111111
6855 I Benzene C-H force constant.
6860 111111111!1111111111!11!1!1111111!1111111111111111!111!!1!1!1/1111111111
6 8 6 5 ~ !
6870 DATA 1.24,-2.147.0
6875 DATA .6975,-1.208,0
5880 DATA 5.508E5,31,13
6885 !
6890 11111111111!1111111111111111111111111111111111111111111111111111111
8895 I Benzene C-H force constant.
6900 11111111111111111111111111111111111111111111111111111111111111111
6905
6910 OATA 1.24,-2.147.0
6915 DATA 1.395,0.0
6920 DATA 1.093ES,31.10
6925 1
8930 111111111111!1111111111111111111111111111111111111111111111111
6935 I Benzene C-H force constant.
```



```
6945
6950 DATA 1.24,-2.147,0
6955 DATA -.6975,-1.208.0
6960 DATA 1.093ES.31.16
6955 !
```



```
6975 I Benzene C-H force constant.
6980 1
6985
6990 DATA -1.24.-2.147.0
6995 DATA -.5975,-1.208.0
7000 DATA 5.508E5,34.16
7 0 0 5 ~ 1
```



```
7015 & Eenzene C-H force constant.
```



```
70:5
7030 DATA -1.24.-2.147.8
```

```
735 2ATM .\Xi``5,-1.こ08,0
-340 OHTA !.3#EE5,Z4,13
-3:5
7050111:11111111111111111111111111111111/1
-a55 , Qenzere C-H forse constant.
```



```
7055
7070 OATA -1.24,-2.147.0
7075 DATA -1.395,0,0
7080 DATA 1.0G3E5,Z4,1
7 0 8 5
7090
7095
7095
7 1 0 0
7 1 0 5
7110 DATA -1.395,0,1
7115 DATA -.6975,1.208.0
7120 OATA EES,1,4
7 1 2 5
7130 !1111111!11!11111111111!!111111111!111!11111111111111111111111111111
7135 1 Benzene C-C out-of-olane force constant.
```



```
7 1 4 5 1
7150 OATA -.6975,1.208,1
7155 DATA .6975,1.208.0
71EO DATA IE5.4.7
7165
7!70 111!1111111!11111!1111111!1111111!11!111!11111111!1111!111111111111
7175 | Benzene C-C out-of-plane force constant.
7180 111111111!1!1!11111111!1!!1111!1111111111111111111111111111111111
7185
7190 DATA .6975.1.208.1
7195 DATA 1.395,0,0
7 2 0 0 ~ D A T A ~ I E S . 7 . 1 0 ~
7 2 0 5 ~ 1
7210 1111111111111111111111111111111111111111111111111111111111111/
7215 1 Benzene C-C out-of-plane force constant.
```



```
7 2 2 5
7230 OATA 1.395.0.1
7235 DATA .6975,-1.208,0
7240 OATA IES,10.13
7 2 4 5
7 2 5 0
7255 1 Berzene C-C out-of-plane force constant.
7260
7 2 6 5
7278 DATA .6975,-1.208,1
7275 DATA -.6975,-1.208,0
7230 CATA IES,13,16
7 2 9 5
7 3 9 0
7295 , Benzene C-C out-of-plane force constant.
7300
7205
7310 OATA -.5975,-1.208,1
7315 DATA -1.395,0.0
```

```
, , +
#
-?-5
```



```
-400 こata ES:ここ.4
725
-4.8
-415, Jenzere E-m =ut-zi-asane force cons:ans.
4:8
-4:5
7:0 こATA 1.こ4.2.:47.
735 SATA .E3-5.:.208.0
7440 EATA ES.25,7
744
7450
7455 , Senzere C-H sut-of-olane force constant.
750 
7465
74`D EATA 2.477.0.1
775 CATA 1.395.0.0
7480 JATA IE5,23.10
7 4 8 5
7490 11111111111111111111111111111111111111111111111111111111
705 , Eenzene C-H out-of-plane porco constont.
7500 111111111111111111111111111111111111111111111111111111111111
7505 
7510 SATA 1.24.-2.147.1
7515 CATA .5ミ`5.-1.208,0
フ5こ0 OATA 'ES,31,:3
75:5
フ5?%
7535 , Eenzene C-H out-of-plane force constant.
```



```
T545 1
7550 CATA -1.24,-2.147.1
755 CATA -.6975,-1.288,8
75ED OATA IES.34.'6
-555
```



```
-575 Metrare :-H force constant.
```



```
785 1
```



```
-595 こA:A -.3939.-.51392!505:24,3.134こ3237398
-E00 こATA 4.子JES,j7.10
```

```
7535
```



```
T5:5 ' Metnane E-H ioree constant.
```



```
`5.5
TOこ0 DMTA 0.7.793463!3175E-5,3.46941045213
7655 UATA .E983,-.519821585724,3.10438こ37398
7E40 DATA 4.79E5,37,43
7545
```



```
7555 1 Methane C-H force constant.
7550 1|1111111111111111111111111111111111111111111111111111,11,1,
7 6 6 5 ~ 1
7670 DATA 0.7.78346319178E-5,3.46941045213
7675 DATA 0,1.03987841578,3.1043966958
7680 OATA 4.79E5,37,46
7685 !
7690 !1111111111111111111!111!111!1!!11111111111111111111!111111111,
7695 ' Methane C-H force constant.
7700 !!!!!111!!1111!1!!1!!!!11!1!!11!1!111!!111111111111111111111111,
7 7 0 5 ~ 1
7710 DATA 0.7.78346319178E-5,3.46941045213
7715 OATA 6.77616018046E-21,.000106109702385.4.569371773828
7720 DATA 4.79E5,37.49
7725 !
7 7 3 0
7 7 3 5
7 7 4 0
7 7 4 5 ~ !
7750 DATA -.8989,-.518821585724,3.10438237398
7755 DATA .8989,-.518821585724,3.10438237398
7760 OATA 1.85E5,40,43
7765 !
7770 11|11111111111!!!!1!111!!1111111111111111111111111111111111111
7775 1 Methane H-H force constant.
7 7 8 0
7 7 8 5 ~ !
7790 DATA .8989,-.518821585724,3.10438237398
7795 DATA 0,1.03987841578,3.1043956958
7800 DATA 1.85E5,43.46
7 8 0 5 ~ 1
```



```
7815 ' Methane H-H force constant.
7820 111111!11111!!!!!!!!!1!11!11111111111111111111111111/1
7 8 2 5 ~ \|
7830 DATA 0,1.03987841578,3.1043966958
7835 DATA -.8989,-.518821585724,3.10438237398
7840 DATA 1.85E5,46,40
7445 1
```



```
7955 ' Methane H-H force constant.
```



```
7365
7370 OATA 0,1.03987841578,3.1043966958
7875 DATA 6.77616018046E-こ1,.000106109702385,4.569371-28こ3
7880 DATA 1.8SES,46,49
7885 (
```



```
-E95, Me:rame H-4 force constant.
```



```
-905
```



```
-75 こムT4 .3939,-.519821585724.3.104332こ7338
つきここ ごTA 1.ミ5E5,49.43
7925 
```



```
7935 1 Methane H-H force constant.
```



```
745 1
7950 DATA 6.77616018046E-21..000106109702385,4.56937173828
7955 DATA -.8999,-.518821585724.3.10438237398
7960 DATA 1.85E5,49,40
7965
7978 1111111111111111111111111:11111111111111111111111:11111111111111
7975 1 Data statements containing cluster subunit coordinates.
7980 ' The data is used to draw the eluster geometry and vdW mode disglacement
7985 I vectorg. The coordinates are entered as they are numbered in ECCEMP2.
7 9 9 0
7 9 9 5
8000
8005 I
8010 I DRTA X-Coord,Y-Coord,Z-Coord,Atom B.
8 0 1 5 ~ 1
8020 1 Atom : :
8025 1 1 - Carbon.
8030 1 2 - Hydrogen.
8035 1 3-N1trogen.
8040 1 4-Oxygen.
8045 1 S - User defined atom.
```



```
8055 1
8050 OATA -1.395.0.0.1
9065 DATA -.6975.1.208.0.1
8070 DATA .6975,1.200.0.1
8075 DATA 1.395,0,0,1
8000 DATA .6975,-1.208,0.1
8085 DATA -.6975,-1.200,0.1
8090 DATA - ..479,0,0,2
8095 DATA -1.24,2.147,0.2
8100 DATA 1.24,2.147,0.2
910S OATA 2.479,0,0,2
8110 DATA 1.24,-2.147.0.2
8115 DATA -1.24,-2.147.0.2
8120 DATA 0.0.3.4694,1
3125 DATA -.8989,-.5198.3.10438.2
8130 DATA .8989,-.5188,3.10438.2
8135 DATA 0.1.0398,3.10439.2
3140 OATA 0..000106.4.56937.2
8145 END
8150
9155
8!60
81E5
81-01
```

```
3175
ヨ'Э8
き!こう
319%
#195
3200
3205
32!0
3215
タここ0
8ここ5
8230
8こ35
8240
8こ45
8250
8255
```



```
8.65
8270
8 2 7 5 1
8280
8285
8290
8295
8300
9860
9870
9880
9890
9900
9910
9920
9930
9940
9950
9960
9970
9980
9990
10000 Veci(1, 1)=0
10010 Indze(1)=2
10020 GOTO 11200
10030 CALL Scale(N,A(*),Veci(*),Prfact(*),Enorm)
10040 Ex=EXP(-39*LOG(2))
10050 CALL Hesqr(N,A(*),Veci(*),Evr(*),Evz(*),Subdra(*),Indic(*),Egs,E*)
10060 J=N
10070 I=1
10080 Local'1)=1
10090 IF J=1 THEN i0160
*OQ IF AES:SUOE:a!J-1;!EpS THEN 101こ0
101:0:= = +1
0:こ0 Leこ』!:!=0
101こ0 J=j-1
10140 Local(j)=Coal:IM1
10150 IF J. I THEN 10100
10160 r=1
```

```
10170 Kon=0
10180 L=Local(1)
10190 M=N
10200 FOR I=1 TO N
10210 Ivec=N-I+1
10220 IF I < L THEN }1026
10230 k=k+1
10240 M=N-L
10250 L=L+Local(K)
10250 IF Indsc(Ivec)=0 THEN 10420
10270 IF Eva(Ivec)<>0 THEN 10370
10280 FOR KI=1 TO M
10290 FOR LI=KI TO M
10300 A(K1.LI)=Veci(K1,L1)
10310 NEXT LI
10320 IF Kl=1 THEN }1034
10330 A(K1,K1-1)=5ubdsa(K)-1)
10340 NEXT KI
10350 CALL Realve(N,M,Ivec,A(*),Vecr(*),Evr(*),Evi(*),Work(*),Indic(*),Eps,Ex
)
10360 60TO 10420
10370 IF Kon<>0 THEN 10410
10380 Kon=1
10390 CALL Comove(N,M,Ivec,A(*),Vecr(*),Veci(*),Evr(*),Evi(*),Indıc(*),Subdia
(*),Work(*),Eps,Ex)
10400 60TO 10420
10410 Kon=0
10420 NEXT I
10430 FOR I=1 TO N
10440 FOR J-I TO N
10450 A(I,J)=0
10460 NEXT J
10470 A(I,I)=1
10480 NEXT I
10490 IF N<-2 THEN 10640
10500 M=N-2
10510 FOR K=1 TO M
10520 L=K+1
10530 FOR J=2 TO N
10540 D1=0
10550 FOR I=L TO N
10560 OZ-Veci(I,K)
10570 D1=D1+D2*A(J,I)
10580 NEXT I
10590 FOR I=L TO N
10600 A(J,I)=A(J,I)-Veca(I,K)=DI
10510 NEXT I
10620 NEXT J
10630 NEXT K
10540 tor=1
10650 FOF 1=1 TO N
10660 L=0
10570 IF Eva(I)=0 THEN 107こ0
10680 L=1
10E90 IF HOn=0 THEN 10720
10700 Kon=0
10710 GOTO 11190
```

```
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
10860
10870
10880
10890
10900
10910
10920
10930
10940
10950
10960
10970
10980
10990
11000
11010
11020
11030
11040
11050
11050
11070
11080
11090
11100
11110
11120
11130 D2-Subdsa(J)
11140 Vecr(J,I)=(01*D3+D2*R1)/R
11150 Veci(J,1)=(02*03-D1*R1)/R
11160 Vecr(J,I-1)=Vecr(J,I)
11:70 veci(J,I-1)=-veci(J,1)
11180 NEXT J
11190 NEXT I
11200 SUBEXIT
112:0 SUEENDI
112こ0 SuE Scale(N,A(*),H(*),Frfact(*),Enorm)
H2EQ OETION EASE I
11248 INTEGEF I,I,Iter,NcOunt
1125C FOF I=1 TO N
11260 FOR J=1 TO iv
11270 H(I,J)=A(I,J)
```

```
11280 NEXT J
11290 Prfact(I)=1
11300 NEXT I
11310 Boundl=.75
11320 Bound2=1.33
l1330 Iter=0
11340 Ncount=0
11350 FOR I=1 TO N
11360 Column=0
11370 Row=0
11380 FOR J=1 TO N
11390 IF I=J THEN 11420
11400 Column=Column+ABS(A(J,I))
11410 Row=ROW+ABS(A(I,J))
11420 NEXT J
11430 IF COlumn=0 THEN 11480
11440 IF ROW=0 THEN 11480
11450 Q=Column/Row
11460 IF Q<Boundl THEN 11500
11470 IF Q>Boundz THEN 11500
11480 Ncount=Ncount+1
11490 60TO 11570
11500 Factor=SOR(O)
11510 FOR J=1 TO N
11520 IF I=J THEN 11550
11530 A(I,J)=A(I,J)\bulletFactor
11540 A(J,I)=A(J,I)/Factor
11550 NEXT J
11560 Prfact(I)-Prfact(I)&Factor
11570 NEXT I
11580 Iter=Iter+1
11590 IF Iter>30 THEN 11760
11600 IF Ncount <N THEN 11340
11610 Fnorm=0
1/620 FOR I=1 TO N
11630 FOR J=1 TO N
11640 O=A(I,J)
11650 Fnorm=Fnorm+0*0
11660 NEXT J
11670 NEXT I
11680 Fnorm-SQR(Fnorm)
11690 FOR I=1 TO N
11700 FOR J=1 TO N
11710 A(1,J)=A(1,J)/Fnorm
11720 NEKT J
11730 NEXT I
11740 Enorm-Fnorm
11750 GOTO 11830
11760 FOR I=1 TO N
11770 prfact(l)=1
11780 FCR J=1 TO N
            A(i,j)=m:I,j)
l180E NEXT I
1/510 NEXT :
11820 Enorm=1
11&こ0 EUEEv:T
11840 SUBENOI
```

```
11850 SUB Hesar(N,A(*),H(*),Evr(*),Evi(*),Subdsa(*),Indic(*),Eps,Ex)
11850 OPTION BASE I
11870 INTEGER I,J,K.L.M,Maxst,MI,Ns
11880 IF N-2<0 THEN 12460
11890 IF N-2>0 THEN 11920
11900 Subdsa(1)=A(2,1)
11910 60T0 12460
11920 M=N-2
11930 FOR K=1 TO M
11940 L=K+1
11950 5=0
11960 FOR I=L TO N
11970 H(I,K)=A(I,K)
11980 S=S+ABS(A(I,K))
11990 NEXT I
12000 IF S<>ABS(A(K+1,K)) THEN 12040
12010 Subdza(K)=A(K+1,K)
12020 H(K+1,K)=0
12030 60T0 12410
12040 5r2=0
12050 FOR I=L TO N
12050 Sr=A(I,K)
12070 Sr=Sr/S
12080 AlI.K)=Sr
12090 5r2-5r2+5r*5r
12100 NEXT I
12110 Sr=50R(Sr2)
12120 IF A(L,K)<0 THEN 12140
12130 5r=-5r
12140 Sr2=Sr2-5r.A(L,K)
12150 A(L,K)=A(L,K)-5r
12160 H(L,K)=H(L,K)-5ros
12:70 Subdia(k)=Sr*S
12180 X=S*SQR(Sr2)
12190 FOR I-L TO N
12200 H(I,K)=H(I,K)/X
12210 Subdza(I)=A(I,K)/Sr2
12220 NEXT I
12230 FOR J=L TO N
12240 Sr=0
12250 FOR I=L TO N
12260 Sr=Sr+A(I,K):A(I.J)
12270 NEXT I
12280 FOR I=L TO N
    12=90 A(I,J)=A(I,J)-Subda(II)SS
12300 NEXT I
1:310 NEXT J
12ここ0 FOF J=1 TO N
にここ0 5-=0
IEjar FOF I=L TO N
    !ここ50 Sr*srom:j.l.0A(I,r)
IEこER REP :
ミごダFOF i=! TON
    12こE0 AJ,\=A(J,l)-5ubdaa(I)*S-
    12390 NEX! l
12400 NEXTJ
```

```
12410 NEXT K
I2420 FOR K=1 TO M
12430 A(K+1,K)=Subdza(K)
1こ440 NEXT K.
12450 Subdia(N-1)=A(N,N-1)
1こ450 Eqs=0
12470 FOR K=1 TO N
1=480 Ind.c(K)=0
1こ490 IF M<iN THEN Ens=Eps+Subdia(K)^2
12500 FOF I=k TO N
12510 H(K.,I)*A(K.I)
        Eps=Eps+A(K,I)"2
    NEXT I
    NEXT K
    Eqs=Ex*SQR(EDS)
    Shift=A(N,N-1)
    IF N<=2 THEN Shift=0
    IF A(N,N)<>0 THEN Sn1ft=0
    IF A(N-1,N)<>0 THEN 5hlft=0
    IF A(N-1,N-1)<>0 THEN SMIft=0
    M=N
    Ns=0
    Maxst=N*10
    FOR I=2 TO N
        FOR K=I TO N
            IF A(I-1,K)<>0 THEN 12750
        NEXT K
    NEXT I
    FOR I=1 TO N
        Indic(I)=1
        Evr(I)=A(I.I)
        Evi(I)=0
        NEXT I
        60TO 13780
        K=M-1
        MI=K
        I=K
        IF K<0 THEN 13780
        12780 IF K<O THEN 13780
    12800 IF ABS(A(M,K))<=EDS THEN 13530
    12810 IF M-2=0 THEN 13580
    12820 I=I-1
    12日30 IF ABS(A(K,I))C-EDS THEN 12850
    12840-K=1
    12850 IF K,I THEN 12820
    12860 IF K=MI THEN 13580
    12870 S=A(M,M)+A(M),M\)+Sh1ft
    I2880 Sr=A(M,M)\bulletA(MI,M1)-A(M,M1)*A(M),M1+.こ5*SH2ft:Z
    1こ\varepsilon90 A N+E,*)=0
```



```
    にこここ F=AEEMM1+AEE*r
```



```
    =E4Z !F F=R THEN:こ\varepsilonER
```



```
    1:9E0 5r_ft=e
    1:970 NS=145*1
```

12980	FOR I $=K$ TO MI
12990	IF I＝${ }^{\prime}$ THEN 13050
13000	$x=A(I, I-1)$
13010	$Y=A(I+1, I-1)$
13020	$Z=0$
13030	IF I＋こ M THEN 13050
13040	$Z=A(I+Z, I-1)$
13050	Sr2＝ABS（X）＋ABS（Y）＋ABS（Z）
13050	IF Sr2＝0 THEN 13100
13070	$X=x / 5 r 2$
13080	$y=y / S r^{2}$
13090	$Z=Z / 5 r z$
13100	$S=S Q R(X * X+Y \bullet Y+Z * Z)$
13110	IF $x<0$ THEN 13130
13120	S $=-\mathrm{S}$
13130	IF I $=$ K THEN 13150
13140	A（I，I－1）$=5$－Sra
13150	IF 5 r $2 \ll 0$ THEN 13180
13160	IF I＋3 M M THEN 13500
13170	607013470
13180	Srel－x／5
13190	$5=x-5$
13200	$X=Y / S$
13210	$Y=2 / S$
13220	FOR J＝I TO M
13230	$S=A(I, J)+A(I+1, J) * X$
13240	IF I＋ $2>$ M THEN 13260
13250	S $=5+A(I+2, J) * Y$
13260	$5=5$ Sr
13270	$A(I, J)=A(I, J)-S$
13280	A（I＋1，J）$=$ A（I＋1，J）－5＊X
13290	IF $1+2) \mathrm{M}$ THEN 13310
13300	$A(1+2, J)=A(I+2, J)-S+Y$
13310	NEXT J
13320	$L=I+2$
13330	IF I＜MI THEN 13350
13340	L＝M
13350	FOR J＝K TO L
13360	$S=A(J, I)+A(J, I+I) * X$
13370	IF I＋ 2 ＞M THEN 13390
13380	S＝S＋A（J，I＋2）＊Y
13390	Sos．Sr
13400	$A(J, I)=A(J, I)-5$
13410	$A(J, I+I)=A(J, I+1)-5 * X$
13420	IF I +2 M THEN 13440
13430	A（J，I＋2）$=$ A（J，I＋2）－5＊Y
13440	NEXT J
13452	IF I＋J，M THEN 13500
13450	S＊－A（I）
13470	A：I＋E，I $=5$
13432	$A(1+J, I+1)=5 * X$
1345 ล	
13502	TiEx ${ }^{\text {P }}$
こごこ	IENSMayt THEN 1 $=780$
135こ0	G2TE こご52
$1 こ 530$	Evr（M）＝A）M，M
13548	Evi M ）$=0$

```
13550 Indre(M)=1
13560 M=k
13570 GOTO 12750
13580 R=.5*(A(K,K)+A(M,M))
13590 S=.5*(A(M,M)-A(K,K))
13500 S=5*S+A(K,M)*A(M,K)
13610 Indic(K)=1
13620 Indsc(M)=1
3630 IF S<0 THEN iJ710
13540 T=50R(5)
13650 Evr(K)=R-T
13660 Evr(M)=R+T
13670 Eva(K)=0
13680 Ev1(M)=0
13690 M=M-2
13700 GOTO 12750
13710 T=SQR(-S)
13720 Evr(K)=R
13730 Ev1(K)=T
13740 Evr(M)=R
13750 Ev1(M)=-T
13760 M=M-2
13770 GOTO 12750
13780 SUBEXIT
13790 SUBEND!
```

```
13800 SUB Realve(N,M,Ivec,A(*),Vecr(*),Evr(*),Evz(*),Work(*),Indıe(*),Eps,Ex)
```

13800 SUB Realve(N,M,Ivec,A(*),Vecr(*),Evr(*),Evz(*),Work(*),Indıe(*),Eps,Ex)
13810 Baddta=(N<=0) OR (M<=0) OR (Ivec<=0)
13810 Baddta=(N<=0) OR (M<=0) OR (Ivec<=0)
13820 IF Baddta=0 THEN 13860
13820 IF Baddta=0 THEN 13860
13830 PRINT FNLan$(2)""ERROR IN SUBPROGRAM Realve."
13830 PRINT FNLan$(2)""ERROR IN SUBPROGRAM Realve."
13840 PRINT "N=":N,"M=":M,"Ivec="ilveciFNLins(2)
13840 PRINT "N=":N,"M=":M,"Ivec="ilveciFNLins(2)
i3850 PAUSE
i3850 PAUSE
13860 OPTION BASE I
13860 OPTION BASE I
13870 ALLOCATE INTEGER Iwork(N)
13870 ALLOCATE INTEGER Iwork(N)
13880 INTEGER I,Iter.J.K,L,Ns
13880 INTEGER I,Iter.J.K,L,Ns
13890 Vecr(l.ivec)=1
13890 Vecr(l.ivec)=1
13980 IF M=1 THEN 14850
13980 IF M=1 THEN 14850
13910 Evalue=Evr(Ivec)
13910 Evalue=Evr(Ivec)
13920 IF Ivec=M THEN 14010
13920 IF Ivec=M THEN 14010
13930 K=Ivec+1
13930 K=Ivec+1
13940 R=0
13940 R=0
13950 FOR I=k TO M
13950 FOR I=k TO M
13960 IF Evalue<>Evr(I) THEN 13990
13960 IF Evalue<>Evr(I) THEN 13990
13970 IF Eva(I)<>0 THEN 13990
13970 IF Eva(I)<>0 THEN 13990
13980 R=R+3
13980 R=R+3
13590 NEXT I
13590 NEXT I
14000 Evalue=Evalue+R*E*
14000 Evalue=Evalue+R*E*
14010 FOR K=1 TO M
14010 FOR K=1 TO M
14020 A(H,k)=A(K,Ki-Evalue
14020 A(H,k)=A(K,Ki-Evalue
14020 NE:F +
14020 NE:F +
1404R %=M-1
1404R %=M-1
i40ミ0 FOE := i! k
i40ミ0 FOE := i! k
1<DE\& L=1+1
1<DE\& L=1+1
40? :w=r. i=0
40? :w=r. i=0
1403E IF mat+!, O O THEN 141こ0
1403E IF mat+!, O O THEN 141こ0
1405Q I= AI, \therefore Q TMEN 14こ40
1405Q I= AI, \therefore Q TMEN 14こ40
14100 A:I,I=EOS

```
14100 A:I,I=EOS
```

```
14110
141=0
14150
14140
14150
14160
14170
14180
14190
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300
14310
14320
14330 NexT 
14340 Ns=0
14350 Iter=1
14360 R=0
14370
14380
14390
14400
14410
14420
14430
14440
14450
14460
14470
14480
14490
14500
14510
14520
14530
14540
14550
145Ea
14570
14528.
14EER NEX: ;
14ECR T=AES
    4EV IFFF =O TMER :CE%O
14E=: F:=*
    OEZE NEN:
14E:2 IF I!er=| :MEN 14ES0
    4 4ESR I= Frev1S =E THE!: I AESO
14EEQ FSN I=1 TO M
    4E73 ve=r':.:vec:merb:l
```

```
146E0 NEXT I
14090 Frevis=R;
14700 IF Ns=1 THEN 14850
14710 IF Iter.G TMEN 14860
1\DeltaTこ0 Iter=iter+1
14`こ0 IF R:Bound THEN 14750
14740 NG=1
14750 r=M-1
14760 FOR I=1 TO K
14770 R=wori.(I+1)
14780 IF Iwori(I)=0 THEN 14820
14790 work(I+1)=work(I)+work(I+1)&A(I+I,I)
14800 Wort(I)=R
14810 GOTO 14830
14920 Work(I+1)=Work(I)\bulletA(I+I,I)+Work(I+1)
14830 NEXT I
14840 GOTO 14360
14850 Indsc(lvec)=2
14860 IF M=N THEN 14910
14870 J=M+1
14880 FOR I=J TO N
    Vecr(I,Ivec)=0
14890 Necr:
14910 SUBEXIT
14920 SUBEND
14930 5ub Compve(N,M,Ivec,A(*),Vecr(*),H(*),Evr(*),Evi(*),Indıc(*),Subdia(*),Wor
k(*),Eps,Ex)
14940 Baddta=(N<-0) OR (M<=0) OR (Ivec<=0)
14950 IF Baddta=0 THEN }1499
14960 PRINT FNLIn((2);"ERROR IN SUBPROGRAM Compve."
14970 PRINT "N=";N,"M=",M,"Ivec="IIveciFNLan$(2)
14980 PAUSE
14990 OPTION BASE I
15000 ALLOCATE INTEGER Iwork(N)
15010 ALLOCATE WORkI(N),WORk2(N)
15020 INTEGER I,II,I2,Iter.J.K,L,Ns
15030 Fksl=Evr(Ivec)
15040 Eta=Eva(Ivec)
15050 IF Ivec=M THEN 15160
15050 K=Ivec+1
15070 R=0
15080 FOR I=H TO M
15090 IF FH52:NEVR(I) THEN 15120
15100 IF ABS(Eta)<MAES(Ev1(1)) THEN 15120
15110 R=R+J
15120 NEYT I
151こ0 F=F*E.
IEI4C FVEI=F!5:+F
15:52 E:e=E:e+F
is!EQ F=F!E:OFIS:+E:E•E!?
```



```
!ごとて L="-`
!EiER =CE :=: ! M
!5こeこ F:= :=: + M
    Eこ!0 E=2
ほここと f(J,i)=!
```

```
15こ30
15240
15250
15250
15こ?0
15=30
15290
15300 FOR I=1 TO L
15310 R=Subdia(I)
15ここ0 A(I+1,I)=-5*R
15330 I 1=1+1
15540
15350 A(J,I)=A(J,I)+R*H(J,I+1)
15350 NEXT J
15370 IF I=1 THEN 15390
15380 A(I+1,I-1)=R.Su0dra(I-1)
15390 FOR J=I TO M
15400 A(I+!,J)=A(I+1,J)+R0H(I,J)
15410 NEXT J
15420 NEXT I
15430 K=M-1
15440 FOR I=1 TO K
15450 11=1+1
15450 I2=1+2
15470 Iwork(I)=0
15480 IF I-K THEN 15500
15490 IF A(I+2.I)<>0 THEN 15540
15500 IF A(I+1.I)<>0 THEN 15540
15510 IF A(I,I㣙O THEN 15770
15520 A(I.I)=EDS
15530 60T0 15770
15540 IF I=K THEN !5600
15550 IF ABS(A(I+1,I) )=ABS(A(I+2,I)) THEN 15500
15560 IF ABS(A(I,I) )}=ABS(A(I+2,I)) THEN 1570
15570 L-I+2
15580 Iwork(I)=2
15590 60TO 15630
15600 IF ABS(A(I,I)))=ABS(A(I+1,I)) THEN 15680
15610 L-I+1
15620 lwork(I)=1
15530 FOR J=I TO 
15E50 A(I,J)-A(L,J)
ISEER A(L,J)=R
15670
15580
15690
15700
    15-10
    ミここに
    ほこご
    5542
    NEXT J
    IF ISOK THEN IS700
    I2=1
    FOR L=11 TO I=
        F=-A(L,I)/A I,I)
        A.LI:F
            二⿺𠃊 \=:' TOM
```



```
    ミ゙ミこ
    15フE?
    15-0
```



```
    15752 4/m.M*EES
```

```
15800 FOF \(\mathrm{I}=1\) TO N
15510 I= I MM THEN ISESe
```



```
15をこも Veこr(I.Ivec-1) \(=1\)
15540 GOTO 15870
I5ESe veer(l, iveci=0
IS日e Vecr(i,ivec-1 \(=\) V
15ETO NEXT I
15880 Bound=.01/(E.*N)
\(15890 \quad N==0\)
15900 Iter=1
15910 FOR I=1 TO M
15ロこの Work(I)=H:I,I)-Fks!
15330 NEXT I
15940 FOR I=1 TO M
15950 -j=work(I)vecr(I, Ivec)
15950 IF \(I=1\) THEN 15980
15970 \(D=D+\) Subdia(I-I)*Vecr(I-1, Ivec)
\(15980 \quad L=I+1\)
15990 IF L >M THEN 16030
\(16000 \quad\) FOR \(K=L\) TO M
\(16010 \quad D=D+H(I, K)\) Vecr \(\quad(K, I v e c)\)
15020 NEXT K
\(15030 \quad \operatorname{Ver}(I . I v e c-1)=D-E t a+\operatorname{Vecr}(I\) IVec- 1\()\)
16040 NEXT I
\(16050 \quad K=M-1\)
18060 FOR I=1 TO K
\(15070 \quad L=I+I\) work(I)
16080 ReVecr(L.Ivec-1)
\(16090 \quad \operatorname{Vecr}(\mathrm{~L}\), Ivec-1) \(\operatorname{vecr(I,Ivec-1)~}\)
\(16100 \quad\) Vecr(I,Ivec-1)=R
\(16110 \quad \operatorname{Vecr}(I+1 . I \operatorname{vec}-1)=\operatorname{Vecr}(I+1, I \operatorname{Vec}-1)+A(I+I, I) \in R\)
16120 IF \(I=K\) THEN 15140
\(16130 \quad \operatorname{Vecr}(I+2, I \operatorname{Vec}-1)=\operatorname{Vecr}(I+2, I \operatorname{Vec}-1)+A(I+2, I) \notin\)
16140 NEXT I
16150 FOR I-1 TO M
\(16150 \quad \mathrm{~J}=\mathrm{M}-\mathrm{I}+1\)
16170 Devecr(J.Ivec-1)
16180 IF \(\mathrm{J}=\mathrm{M}\) THEN 16240
\(16190 \quad L=J+1\)
\(16200 \quad\) FOR \(K=L\) TO M
\(1 E 210 \quad D 1=A\left(J, r_{i}\right)\)
\(16220 \quad D=0-D 1\) Vecr (K, Ivec-1)
16230 NEXT \(F\)
\(16240 \quad\) Vecr (J.Ivec-1) \(=0 / A(J, J)\)
15250 NEXT I
IESGQ FOR I=1 TO M
1Eこう? D.Wort (ilvec-1 I Ivec-1)
iEEER IF \(I=1\) THEN \(16 \Xi 00\)
```



```
: ミこご L = : +
```



```
-ヒここの
・ここここ
リご路
```



```
1635R NExT 1
```

```
16370 L=1
1E380 E=0
16390 FOR l=1 TO M
15400 R=vecr(I,Ivec)`こ+Vecril,ivee-1)こ
164:0 IF RI=S THEN 16440
164:0 S=R
16430 L=I
16440 NEXT I
16450 U=Vecr(L,Ivec-1)
16460 U=Vecr(L,Ivec)
16470 FOR I=1 TO M
16480 B=Vecr(I,Ivac)
16490 R=Vecr(I,Ivec-1)
15500 Vecr(I,Ivec)=(R*U+B*U)/S
16510 Vecr(I.Ivec-1)=(B\bulletU-R*U)/S
16520 NEXT I
16530 B=0
16540 FOR I=1 TO M
16550 RaWork(I)*Vecr(I,Ivec-1)-Eta*Vecr(I,Ivec)
16550 U=Work(I)*Vecr(I,Ivec)+Eta*Vecr(I,IVec-1)
16570 IF I=1 THEN 16600
16580 R=R+Subdia(I-1)*Vecr(I-1,Ivec-1)
16590 U=U+Subdia(I-1)*Vecr(I-1,Ivec)
16600 L=I+1
16610 IF L>M THEN 16660
16620 FOR J=L TO M
16630 R=R+H(I,J)*Vecr(J,Ivec-1)
16540 U=U+H(I,J)*Vecr(J,Ivec)
16650 NEXT J
16560 U=R*R+U*U
16670 IF B>=U THEN 16690
15580 B=U
16690 NEXT I
16700 IF Iter=1 THEN 16720
16710 IF Previs<=日 THEN 16830
16720 FOR I=1 TO N
16730 Workl(I)-Vecr(I,Ivec)
16740 Work2(I)=Vecr(I,Ivec-1)
16750 NEXT I
16760 Previs=B
16770 IF Ng=1 THEN 16870
16780 IF Iter>6 THEN 16890
16790 Iter=Iter+1
16800 IF Bound>SQR(5) THEN 15940
16810 Ns=1
16820 GOTO 15940
16830 FOR I=1 TO N
16840 Vecr(I,Ivec)=Work1(I)
16850 Vecr(I,Ivec-1)=Work2(I)
16850 NEXT I
16870 Indsc(Ivec-1)=2
15880 Indsc(Ivec)=2
16890 SUBENDI
15900 DEF FNLIn$(x1)
16910 X=INT(X)+.5)
16920 IF }x=0\mathrm{ THEN RETURN CHRS(I3)
```

```
16930 EO15=CHRS(IJ)SCHRS(10)
```



```
:G350 MLLOCATE R\Phi[x-LEN(EOIF)]
15960 Rक=""
15970 FOR I=1 T0 x
15980 RG=R$8EO1$
16990 NEXT I
17000 RETURN FS
17010 FNEND '
```

APPENDIX FIVE

$$
" \mathrm{H}_{2} \mathrm{PCNCA} "
$$

```
101
20
30
40
5 0
5 0
70
80
90
100
110
120
130
140 OPTION BASE 1
150 PRINTER IS I
160!
170 !!!!11!!!!1!!!!!!!!!!!!!!!!!!!!1!!!!!!1!!!!1!!!!!!!!!!!!!1!!!!!!!!!!1!!1!!!!
180 ! Matrices used:
190
200
210 ! Evr(*)=Real Eigenvalue matrix.
220 ! Evi(*)=Imaginary Elgenvalue matrix.
230 ! Vecr( )=Real elgenvector matrix.
240 ! Veci(e)=Imaginary algenvector metrix.
250 ! Indic(*)mMatrix diagonalization indicator matrix.
260 ! F( )=Potential energy (F) matrix.
270 ! G(*)=Kinetic energy (G) matrix.
280 ! Ulb(*)=Vibrational frequency matrix
290 1 Fpert(*)aPerturbation matrix for vibrational mode fitting.
300 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!1!!1!!!1!1!111!1!
3101
320 DIM A( 30,30),Evr(30),Evi(30),Vecr( }30,30),\operatorname{Veci(30,30),Indze(30),F(30,30),G(30
,30),V2b(30)
330 OIM Fpert(30,2)
340 OUTPUT 2,CHR$(255)8.K";
350 Amp=1 ! Amplification factor for vibrational fitting routine.
360 Devel l Default printer set to the screen display.
370 N=23 1 Number of symmetry coordinates used in the NCA.
380
390 1!1!11111111111!1111111111111!1111111111111111111111111111111111111111111:1
400 I Selects those coordinates not needed in a particular symmetry in
410 ! the F and G metrices.
```



```
4 3 0 ~ 1
440 YI=19
450 Y2=0
460 Y3=0
470 Y4=0
480 Y5=0
490 Y5=0
500 Y7=0
510 Y8=0
```

```
520 Y9=0
530 Y10=0
5 4 0
550 111111111111111111111111111111111111111111111111111111111111111111
560 1 Reads in force field into F matrix from data statements.
5 7 0
50 | R=Row.
590 1 C=Column.
600 , Sd=Flag - 0 to add, I to subract.
5l0 1 Fell=Force constant 1.
620 1 Fel2=Force constant 2.
630 1111111111!11111111!1!111111+1111111111111111111111111111111111
6 4 0
650 READ R
650 IF R=9999 THEN }87
6 7 0 ~ R E A D ~ C , S a , F e l l , F e l 2 ~
680 IF Sd=0 THEN Fel=Fell+Fel2
690 IF Sd=1 THEN Fel-Fell-Fel2
7 0 0
710 !11!!!1!!1!!!111!!1!1!!1!1!1!!1!!!!!!!!1!1!!!!!!!!!!!!1!!!!1!1!11!111111
720 ! Deletes rows and columns in F matrix which are not needed.
730 11!!!1!!!!!!!!11!!1!!!!!!1!!!1!!!!!!!!!!!!!!!!!1!!!1!1!11!!!!1111!1111111
7 4 0
750 IF YI=R OR YI=C THEN Fel=0
760 IF YZ=R OR YZ=C THEN Fel=0
770 IF Y3=R OR Y3=C THEN Fel=0
780 IF Y4=R OR Y4=C THEN Fel=0
790 IF Y5=R OR Y5=C THEN FEI=0
800 IF YG=R OR Y6=C THEN Fel=0
810 IF Y7=R OR Y7=C THEN FEI=0
820 IF Y8=R OR Y8=C THEN Fel=0
830 IF Yg=R OR Yg=C THEN FEI=0
840 IF YIO=R OR YIO-C THEN FEI=0
850 F(R,C)=Fel
850 60TO 650
870 READ Fins
880 PRINT FInS
890 PRINT
900
910 1111111111111111!1!1!!1!11111111!!!1!111111!!1!111111!!1!!!1!!!11!111
920 1 Reads in G matrix elements from data statements.
930
940 | R=ROW.
950 ( C=Column.
950 ( Sd=Flag - 0 to add. I to subtract.
970 ( Gell=6 matrix element 1.
980 , Gel2=G matrix element 2.
```



```
1000
1010 READ F
10こ\ell jE f=g日ge TMEN Iこう0
10こ0 FEMこ C,Sc,Gel1,Gel2
1\42 i= S==0 TMEN Gei=Gel1+Ge!2
10ER I= Se=: THEN Gel=Gell-Ge:2
lQEO
1072
108? ( Leietes row and columns in G matri: which are not needez.
```

```
1090
1100
1110 IF YI=R OR YI=C THEN GEI=0
1120 IF Y=*R OR Y==C THEN GEl=0
ll30 IF Y3=R OR YE=C THEN Gel=0
1140 IF Y4=R OR Y \=C THEN Gel=0
1150 IF Y5=R CR Y5=C THEN Gel=0
1160 IF YE=R OR YG=C THEN GeI=0
1170 IF Y7=R OR Y7=C THEN GEI=0
1180 IF Y&=R OR Y8=C THEN GEI=0
1190 IF Y9=R OR Yg=C THEN Gel=0
1こ00 IF yIO=R OR YIO=C THEN Gel=0
1210G(R,C)=Gel
1220 GOTO 1010
1230 READ FIn$
1240 PRINT FIn$
1250 PRINT
1250
1270 |111111111:111111111111111111111111111111111!1111111111!1111111111
1280 ' Generates symmetrac F and G matrices.
1290 1111111111111111111111111111!11111111!1111!11!!1!11!1!11!1111111!111
1300 1
1310 FOR R=1 TO N
1320 FOR C=R TO N
1330 F(C,R)=F(R,C)
1340 6(C,R)=6(R,C)
1350 NEXT C
1350 NEXT R
1370 !
```



```
1390 I Removes zero rows and columns from F and 6 matrices and reduces their
1400 ' dimensions.
14101!!!!!!!!!!!!!!1!1!11111!111111!1!1111111111111111111!1111111111!1111
1420 1
1430 FOR C=I TO N
1440 Sum=0
1450 FOR R=1 TO N
1460 Sum=6(R,C )+5um
1470 NEXT R
1480 IF Sum<>0 THEN 1690
1490 FOR Z=C TO N
1500 FOR R=1 TO N
1510 IF Z=N THEN F(R.Z)=0
1520 IF 2=N THEN 6(R,2)=0
1530 IF Z=N THEN 1560
1540 F(R,Z)=F(R,Z+1)
1550G(R,Z)=G(R,Z+1)
1550 NEXT R
1570 NEYT ?
1580 FJF 2=C TO N
1590 FOF F=1 TO N
GGRZ IF z=N TMEN E:Z,f:=0
1E!R:F Z=1, INENG:,F:O
```



```
IESO NE:I F
```

```
1660 NEXT 2
1570 N=N-1
1650 50: 1+50
1590 NEN! C
1700
```



```
1730 dagonalization.
```



```
1750 1
1760 FOR R=1 TO N
1770 FOR C=1 TO N
1780 Sum=0
1790 FOR El=1 TO N
1800 Sum=G(R,E1)\bulletF(E1,C)+Sum
1810 NEXT E1
1820 A(R.C)=Sum
1830 NEXT C
1840 NEXT R
1850 1
```



```
1870 ' Call subprogram Eigen to diagonalize the FG matrix.
```



```
1890 '
1900 CALL Elgen(N,A(*),Evr(*),Evi(*),Vecr(*),Veci(*),Indse(*))
1910 BEEP
1920 1
```



```
1940 ' Sheld sorts the elgenvalues and elgenvectors.
1950 I Sortod in increasing order with respect to elgenvalue.
```



```
1970 1
1980 Pass=N
1990 Pass=INT(Pass/2)
2000 IF Pass=0 THEN 2220
2010 FOR St=1 TO Pass
2020 Il=5t
2030 JJ=5t+Pass
2040 5w=0
2050 IF Evr(I_)<=Evr(JJ) THEN 2150
2060 5w=1
2070 Avr=Evr(11)
2080 Evr(If)=Evr(JJ)
2090 Evr(JJ)=Avr
2100 FOR R=1 TO N
2110 Ave=Vecr(R.Is)
2120 Vecr(R,It)=Vecr(R,JJ)
2130 Veer(R,Jj)=Ave
2140 NEXT R
2150 11=JJ
2160 Jj=Jj+Pass
2170 IF JJ.N+1 THEN 2050
2:80 IF Sw=0 THEN ここ00
2190 GOTO 20:0
2200 NEXT St
2210 G0;0 1990
Z220 IF Periflg*1 THEN 4490
```

```
こここ0
ここ40
```



```
ここ0
ここ-2
こここる O-:NTEA IS Cev
ここう0 ごこNT
ここう0 RRINT
ここ!0 falNT Au Vigrational Modes for Free Base Phthalocyanine
こここO PRINT
こ330 PRINT
= 5% 
```



```
2350 1 Primts the F matri*.
```



```
2280 1
こう0 PRINT "------------------------------------------------------------------
2400 PRINT
2410 PRINT
2420L=INT(N/8)+1
2430 E=8
2440 2=
2450 FOR B=1 TO L
2460 IF B=L THEN E=N
2470 FOR C=2 TO E
2480 PRINT USING 2490:C
2490 IMAGE XX.DOD, XXXXXX.*
2500 NEXT C
2510 PRINT
Z520 FOR R=1 TO N
2530 J=2
2540 FOR C-Z TO E
2550 IF JV=E THEN PRINT USING 2560:F(R,C)
2560 IMAGE DO.ODODD
2570 IF J)=E THEN 2600
2580 PRINT USING 2590,F(R,C)
2590 IMAGE OD.DOODD, XX.*
2600 J=j+1
IG10 IF JVE THEN J=Z
2620 NEXT C
2630 NEXT R
2540 PRINT
2650 PRINT
2660 2-2-8
2570E=E+8
2580 NEXT B
ZEGO PAINT
=-DO PRINT
=?:0
でこ0 1.111:
=-20, Fr:mts tme G matrix
```



```
=75*
```



```
----------*
Zフーe PRIN:
```

```
2780 PRINT
2790 L=INT(N/8)+1
2800 E=8
2310 2=1
2820 FOR B=1 TO L
2330 IF B=L THEN E=N
2340 FOR C=L TO E
2850 PRINT USING 2860:C
2860 LMAGE XX,00D,XXXXXX.#
2870 NEXT C
2880 PRINT
2890 FOR R=1 TO N
2900 J=2
2910 FOR C=2 TO E
2920 IF J>=E THEN PRINT USING 2930:G(R,C)
2930 IMAGE DD.OODDD
2940 IF J\=E THEN 2970
2950 PRINT USING 2960:G(R,C)
2960 IMAGE OD.ODODO,XX,
2970 J-J+1
2980 IF J\E THEN J=2
2990 NEXT C
3000 NEXT R
3010 PRINT
3020 PRINT
3030 2-2+8
3040 E=E+8
3050 NEXT B
3060 PRINT
3070 PRINT
3080 !
3090 11111!11111111111111111111111111!11111111111111111111111111111111
3100 1 Prints the 6 matrix row/column sums.
```



```
3120 1
3130 PRINT "-------------------------------------------------------
3140 PRINT
3150 PRINT
3160 FOR C=1 TO N
3170 5um-0
3180 FOR R=1 TO N
3190 Sum=Sum+E(R,C)
3200 NEXT R
3210 PRINT USING 3220IC,Sum
3220 IMAGE ODOD.".".X.SD.11OE
3230 NEXT C
3 2 4 0 ~ P R I N T
3250 PRINT
3250 ।
```



```
3280 ( Printg the vibrational frequencies.
```



```
3300
3310 PRINT "-----.---------------- Norma! Coordinate Analysis Results -.--------
3320 PRINT
```

```
3330 PRINT
3J40 PRINT "Ulbrational Eigenvalues: Numbers 1 TO"iN:"in cm-1"
`350 PRINT
3360 FOR R=1 TO N
3う70 IF Evr(R):=0 THEN UIb(R)=(Evr(R)/1000*1.E+8*E.02E+23)^.5/2/PI/Z.E+10
Z380 IF Evr(R)<0 THEN VIO(R)=-(ABS(Evr(R))/1000.1.E+806.02E+23)^.5/2/P1/3.E+10
3390 PRINT USING 3400;R,VIb(R)
j400 IMAGE DDOD.".",IX,DDDOD.DOD
3410 NEXT F
3420 IF Dev=710 THEN 3450
3430 CISP "Press Contanue To Proceed"
3 4 4 0 ~ P A U S E
3450 DI5P
3460 FOR C=1 TO N
3 4 7 0 ~ P R I N T
3480 PRINT
3490 J=1
3500 FOR R=1 TO N
3510 IF RンI THEN 3590
3520
3530 !!1!11!1!11!!!11!11!!!!1111!!!1!!!!!!!!!!!!!!!!!!!!11!!1!1!!1!!1!11!1!
3540 I Prants the eagenvector normal modes.
3550 1!1!!1!1!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!!!!1!1!!1
3550 !
3570 PRINT "U2brational Eigenvector for Eigenvalue"iC:":":Vib(C):"cm-1"
3580 PRINT
3590 IF Vecr(R,C)>=0 THEN Mot=100*Vecr(R,C)^2
3600 IF Vecr(R,C)<0 THEN MOt=-100-Vecr(R,C)^2
3610 IF J>=8 THEN PRINT USING 3620;Mot
3520 IMAGE DODD.ODD
3630 IF J>=8 THEN 3660
3640 PRINT USING 3650:Mot
3650 IMAGE DODD.DDD.2X.%
3550 J=J+1
3570 IF J>8 THEN J=1
3680 NEXT R
3690 PRINT
3 7 0 0 ~ I F ~ D e v = 7 1 0 ~ T H E N ~ 3 7 3 0
3710 DISP "Press Continue To Proceed"
3720 PAUSE
3730 NEXT C
3740 OUTPUT 2:CHRS(255)8*K":
3750 0S="0"
3760 INPUT 'DO you want to fat vibrations", Q$
Z770 IF O5="Y" THEN 3970
3780 IF QS::"N" AND OS<>"Y" THEN 3750
3790 05="0
3800 INPUT "DO you want a DaDer prant",0S
ISiO IF OS='V' THEN Dev=710
こ\varepsilonこ0 IF 0.g="N" THEN Dev*1
3EZQ :F OS "Y" ANC OS ."N" THEN こ790
こと40 GこT:ここロ&
ここ5こ
ごEC
?E72 Eerfy-rg g vatrétoral frequency fat to odserved vibrations. F:: : ;
3EEC, pe-tgrme= usirig ferturbation theomy. ine aporcash assumes tha: ire E
```



```
3900 1 a ergenvalue fit is obtained.
```



```
3`こ0 1
jgj0 11111111111111111:1111111111111111111111111:11111:11:11:1:1:1/:
3940 ( Printg the elgenvalues to be seiected in tre fitting routine.
```



```
350
3970 PRINT "Viorational Eigenvalues: Numbers 1 to":N:"1n =m-1
3980 PRINT
3990 FOR R=1 TO N
4 0 0 0 ~ P R I N T ~ U S I N G ~ 4 0 1 0 : R , V I D ( R )
4010 IMAGE ODDD,".",1x,ODODO.ODD
4020 NEXT R
4 0 3 0 ~ P R I N T ~
4040 R=0
4050 :
4060 11!1111111111111!111111!111!1!111111!1111111111111111111111111111111
4070 ( Selects the elgenvalues to be used in fit and inputg the values which
4 0 8 0 ~ ! ~ a r e ~ t o ~ b e ~ f i t ~ t o . ~
```



```
4 1 0 0 ~ !
4110 INPUT "Eigenvalue Number(s) to be Fit: [CONT] to End",R
4120 IF R=0 THEN 4210
4130 IF R>N THEN 4040
4140 Fpert(R,2)=1
4150 PRINT "Eigenvalue"IR!" is to be fit"
4150 INPUT "Enter the NEW Eigenvalue",Fpert(R,1)
4170 PRINT "New:"iFpert(R,l):" Old:":VIt(R)
4180 IF Fpert(R,1)>=0 THEN Fpert(R,1)=(Fpert(R,1)*2*PI*3.E+10)*2/6.02E+23/1.E+8*
1000
4190 IF Fpert(R,1)<0 THEN Fpert(R,1)=-(ABS(Fpert(R,1))*2*PI+3.E+10)^2/6.02E+23/1
.E+8*1000
4200 GOTO 4040
4 2 1 0 ~ P R I N T
4 2 2 0 ~ F O R ~ P = 1 ~ T O ~ N
4230 IF Fpert(P,2)=0 THEN 4350
4240 :
```



```
4250 : Refines force constants using eigenvectors.
4270 11!111111!!111!!1!1111!!1!11111111111111111111111111111111111/1
4 2 8 0
4290 FOR R=1 TO N
4300 FOR C=1 TO N
4 3 1 0 ~ I F ~ R < > C ~ T H E N ~ 4 3 3 0
4320 F(R,C)=F(R,C)+(Fpert(P,1)-Evr(P))*Vecr(R,P)*Vecr(C,P)*Amp
4330 NEXT C
4 3 4 0 ~ N E X T ~ \& ~ \$
4 3 5 0 ~ N E X T ~ P ~
4 3 6 0 ~ P e r t f l g = 1
4370 1
```



```
4 3 9 0 ~ 1 ~ R e t u r n s ~ e x e c u t i o n ~ t o ~ o a r t ~ o f ~ p r o g r a m ~ w h e r e ~ F ~ a n d ~ g ~ m a t r i c e s ~ a r e
4400 ( multiplied and the FG matrix is diagonalized.
```



```
44:0
4430 GOTO 1750
4440
```

```
4450
$150
4470
44E0
4470
1500 IF Foert(R ?
450 \F Foert(R,2)=0 THEN 4560
```



```
45こ0 IF Foert(R,1)<0 THEN Pert=-(ABS(Fpert(R,1;);1000.1.E+E.5.0こE+ここ;.ミここ:こ.,
E+10
4530
4540 IF Evr(R):0 THEN Chk=-(ABS(Evr(R))/1000*1.E+8*E.0こE+23)".5/こ/P!/3.E+10
4550 PRINT "Sought:";Pert:" Present:":Chk
4550 NEXT R
4570 PRINT
4580 FOR R=1 TO N
4590 IF Fpert(R,2)=0 THEN 4650
4600 IF Fpert(R,1):=0 THEN Pert=(Fpert(R,1)/1000.1.E+8.6.02E+23)N.5/I/PI/3.E+10
4610 IF Fpert(R.1)<0 THEN Pert=-(ABS(Fpert(R,1))/1000*1.E+8*6.02E+23)*.5/2/PI/J.
E+10
4620
4630 IF Evr(R)<0 THEN Chk=-{ABS(Evr(R))/1000*1 E+8* E 02E+23)^ 5/2/P1/3
4640 IF ABS(Pert-Chk)>.01 THEN 4210
4650 NEXT R
4 6 6 0 ~ P e r t f l g = 0 ~
4 6 7 0 \text { 60TO 2280}
4 6 8 0
4 6 9 0
4 7 0 0
4 7 1 0
4 7 2 0
4 7 3 0
4740
4750
4 7 5 0
4 7 7 0
4 7 8 0
4 7 9 0
4800
4 8 1 0
4820
4830
4840
4850
4850
4 8 7 0
4880
4 8 9 0
4900
4 9 1 0
4920
4 9 3 0
4940
4950
4960
4970
4 9 8 0
4990 1111111111111111111111/11111111111111111111111111111:11'11111/1
```

5000＇Gmatra eiements．	
5330	1111111 Fow／Co！umn A 11111111111！11111：11！！
こご入	こa＊＊1，，0，．5658334こ4036，0
5050	EATA 1，こ，0，－．3こ0633347477，－． $2=0583347477$
ここち0	こんTA 1，3，0，．160341673フこ9，．160こ416737ご
5070	CATA 1，4，0．－．1：3373634807，0
5280	DATA 1，：ड，，．こここ005752504，－． 333005762504
5090	
5100	DATA ：． $0.1 . .0347149906857,-.0347149906857$
5110	
5120	DATA 2．2．0．．566893424036，．226757369615
5130	DATA こ． $3.0 .-.453514739229,-.113378684807$
5140	DATA 2．4．0，．Jこ0583347478，0
5150	DATA 2．5．0．．0805797038531．．0510728875983
5160	DATA 2．5．0，－．0494507276469．0
5170	DATA 2，15，1．－．470942679895，．26001854527
5180	DATA 2．16．1．．470942679895．－．0490944106454
5190	DATA $2,20.1,-.226146200577 . .0367387608396$
5200	DATA 2．21，1．．0389677051594，0
5210	H11111111 Row／Column C 1111111111111111111111111111111111
5220	DATA 3．3．0，．566893424036．．226757369615
5230	DATA 3，4，0．－．641366694954．0
5240	DATA 3，5，0．－．212232295405．－．18272547925
5250	DATA 3．6．0．0989014552938，．0494507276469
5260	DATA 3，15，1．．26001854527，－．0490944！05454
5270	data 3，16，1，－．470942579895，．0490944105454
5280	DATA 3，20，1．．390842340703．－．201434900966
5290	OATA 3．21．1．－．0779354103188．．0389677051594
5300	
5310	DATA 4，4．0．．565893424036，0
5320	DATA 4，5，0．．186184880494，．185184880494
5330	DATA 4．6．0．－．0699338897075，－．0699338897075
5340	DATA 4．15．1，－．0347149906857，．0347149906857
5350	DATA 4．15，1．．183850876595，－．183860876595
5360	DATA 4，20．1，－．257630505722，．267630505722
5370	DATA 4，21，1．．055108657131，－．055108557131
5380	
5390	OATA 5．5．0，．32337728364．． 10262392793
5400	DATA 5，6，0，－．262922216048，．103016745283
5410	DATA 5，7，0，－．254211554548，．0510773809802
5420	DATA 5，8，0，．0914781725126，0
5430	DATA 5，16．1，．0697840705662，－．0442304181914
5440	OATA 5．20．1．－．276334047244．．167501525476
5450	DATA 5，21，1，．28849914471，．000594132862558
5460	
5470	OATA 5．6．0．．333321393988，－．273298586424
5480	OATA 6．7．0，．290995674509，－．214876283361
5490	DATA 6，8，0，－．093065914028，．0587868211474
5500	DATA 6，16．1，－．0428255863778．0
5510	DATA 6，20，1，．174036720164，．00737992993753
55：0	DATA 5，21，1，－．29377409633，－．185808381849
5530	
5540	DATA 7．7．0，．754497398141，－．0612867429547
5550	DATA 7．8．0．－．539541002456．0
5500	OATA 7．13．0．0，．0914781725126 1111 1 AND 4

5570
5580
5ミヨ0
5600
56：0
56こ0
5 5 0
5540
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
5000
5010
6020
5030
6040
5050
6050
5070
5080
6090
6100
5110
6120
5：30
OATA 7,14.0,.0587868211474,-.0920653514029 1111: 2404
DATA 7,!9.1,0,.05758ここ!93445
DATA 了, 20.1..10こ535こ!?!こ5, 0

data 7,22.1,0..0465704801694 11111 ANO 4
OATA 7.23,1,0.-.25923j054322 11:1' ! AND 4
11111111111 RowiColumn H 1111111111
DATA 8,8, D..754497398141,-.06128674こ3547 11111 ARS 4
DATA B,13.0,.0510775809802,-.254211554548 1111 3 AND 4
DATA 8,14,0,-.214875283361,.290995674509 11113 ANO 4
DATA 8.19.1.0.-. 266404054596
DATA 8,20.1,-.0466704801694,0
DATA 8.21.1,..259293054322.0
OATA 8,22,1,0,-.103635317135 111111 AND 4
DATA 8,23.1,.0428370961158,.485418545828 11!! 3 AND 4

DATA 9.9.0..566893424036.0
DATA 9,10.0.-. $320683347477,-.320683347477$
OATA 9.11.0.. $160341673739, .160341673739$
data $9,12.0,-.113378684807,0$
DATA 9.17.1..333006752504,-. 333006762504
DATA 9.18.1,-.183850876595.. 183860875595
DATA 9,22,1,.0347149906857,-.0347149906857
111!1111111! Row/Column J !111!1!!1111111111!1111!1!!111!!111111111
DATA 10.10.0..556893424036..226757369615
DATA $10,11,0,-.453514739229,-.113378684807$
DATA 10,12,0,.320683347478,0
DATA $10.13,0, .0805797038531, .0510728876983$
DATA 10.14,0.-.0494507276469.0
DATA 10.17,1,-.470942679895,.26001854527
DATA $10,18,1, .470942679895,-.0490944105454$
DATA $10.22,1,-.225146200577, .0367387608395$
DATA 10.23.1..0389677051594.0
1111111111! Row/Column K 1!1111111111!!!1111111111111111111111111111
DATA 11.11,0,.566893424036,.226757359615
DATA 11.12.0.-.641366594954,0
DATA $11,13,0,-.212232295405,-.18272547925$
DATA 11,14.0..0989014552938..0494507276469
OATA 11,17,1..25001854527,-.0490944106454
DATA 11.18,1,-.470942679895,.0490944105454
DATA 11.22.1..390842340703.-.201434900966
OATA 11,23,1,-.0779354103188,.0389677051594

DATA 12.12,0..566893424036.0
DATA 12.13.0..186184880494..186184880494
OATA $12,14,0,-.0699338897075,-.0699338897075$
OATA 12.17.1,-.0347149906857,.0347149906857
DATA 12.18.1..183850876595,-. 183860876595
OATA 12.22.1.-.257530505722,.267630505722
OATA 12.こ2.1,.055108657131,-.0551086571318
(111:111111 Row/Column M11111111111111
DATA 13,13,0..323377こ9364..10262392793
DATA 13.14.0,-.252922216048,.103016745283
DATA 13.18,1..0597840705662,-.0442304181914
DATA 12.19.1.-.259094915899.0
OATA 13, こ2.1,-.こ76こ34047244,.167501525476
DATA 13.23.1..23249514471,.000594132852558

6140	1111!111!111 Row/Column N
5150	DATA 14,14,0,.3333こ1393988, -.273298586424
6150	DATA 14,18,1,-.8428255863778.0
6170	DATA 14,19,1,.445083571317,0
5180	DATA 14,22,1,.174036720164,.00737992993,53
6190	DATA 14,23,1,-.29377409633,-.185808381849
6200	
6210	DATA :5,15,1,1.4043443166,-.280297304107
6220	DATA 15,16.1,-.280297304107..0425170068027
5230	DATA 15.20,1,.0425170068027,0
6240	111!1111111 Row/Column P 111111111111111111111111111111111111
5250	DATA 16.16,1.1.4043443166.0
6260	DATA 16.20,1,-.250962993117..0318187001907
5270	DATA 16,21,1,.0337470225952,0
6280	!!!!!!!!!11! Row/Column Q !1111!!!1!!1!!!!11!!!!111!11111111111111
6290	OATA 17.17.1.1.4043443166, -. 280297304107
6300	DATA 17.18,1,-.280297304107,.0425170058027
6310	DATA 17,22,1..0425170068027,0
6320	!!!!!!!!!!!!! Row/Column R !!!!!1!!!!!!!!!!!!!!!!1!!!!!!!!11!!!!1!1!11
6330	DATA 18,18,1,1.4043443166,0
6340	DATA 18,22,1,-.250962993117..0318167001907
6350	DATA 18,23,1,.0337470225952,0
6360	!!!!!!!!!!!! Row/Column S !!!!!!!!!!!!!!!!!!!1!!!!!!1!!!!1!1!!1!1111
6370	DATA 19,19,1,1.55488461455,0
6380	DATA 19.22,0,.022697123287,.022697123287
6390	DATA 19,23,0,-.148555354853,-.148555354853
6400	!!!!!!!!!!!!! Row/Column T !!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!
6410	DATA 20,20,1,.386448961524,-.16585112319
6420	DATA 20.21.1, -.188670742999..0252538685337
5430	!!!!!!!!!!! Row/Column U !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!1111111
5440	OATA 21,21.1..421776560109,.0299414965597
6450	DATA $21,23,1,0, .0409943591762$!!!!! 1 AND 4
5460	!!!!!!!!!!!! Row/Column V !!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!!!!!1!11
5470	DATA 22,22.1..386448961524,-.16585112319
6480	DATA 22,23,1,-.188670742999,.0252538685337
6490	1!!!!!!!!!!! Row/Column W !!!!!1!1!11!1!!!!!!!1111111111!1111!111111
6500	DATA 23,23,1,.421776560109,.0299414955597
6510	DATA 9999
6520	data g Matrix Loaded
6530	END
6540	1
6550	1!1111111!11!!!!!!!!!!!!!!111111111111111111111111111111
6560	' Suborogram Eigen is attached at this point in the program. A listing
6570	! of Eigen is given at the end of UDWNCA.
6580	11!!1!!!!!!1!11!1!1!1!1111!11111111111111

$1 F$ and G matrix elements for free base phthalocyenine used to l calculate Blu vibrations in program HäPCNCA． 1

I F matrix elements．

1
DATA 1．1．0．．119．0 1 Row／Column A．
DATA 2．2．0．．119．01 Row／Column B．
DATA 3．3．0．．119．0 1 Row／Column C．
DATA 4，4，0．．119．0 1 Row／Column 0 ．
DATA 5．5．0．．119．0 1 Row／Column E．
DATA 6．6．0．．119．0 1 Row／Column F．
DATA 7．7．0，．119．0 1 Row／Column 6.
DATA 8，8，0，．119．0 1 Row／Column H ．
DATA 9．9．0．．119．0 1 Row／Column I．
DATA 10．10．0．．119．0 1 Row／Column J．
DATA $11,11,0,119,01$ Row／Column K．
DATA 12．12．0．．119．0（ Row／Column M．
DATA $13,13,0,119.01$ Row／Column N ．
DATA 14，14，0．．119，0 1 Row／Column 0.
DATA 15．15．0．．3237．0 I Row／Column P．
DATA 16．16．0．．3237．0 1 Row／Column 0.
DATA 17．17．0．．3237．0 1 Row／Column R．
DATA 18．18，0，．3237．0 1 Row／Column S．
DATA 19，19．0，．3237．0 1 Row／Column T．
DATA 20．20．0．．3237．0 I Row／Column U．
DATA $21,21,0 . .3237 .01$ Row／Column U．
DATA 22，22．0．．3237．0 1 Row／Column W．
DATA $23,23,0 . .3237 .0$ ！
DATA 9999
DATA F Matrix Loaded
1
16 matrix elements．
，
DATA 1．1．0．．566893424036．0
DATA $1,2,0,-.320683347477 .-.320683347477$
DATA 1．3，0．． $160341673739 . .160341673739$
DATA 1．4．0．－． 113378684807.0
DATA 1．15，1．．333006762504，－． 333006762504
DATA 1，16．1，－．183860876595，．183850876595
DATA $1,20,1, .0347149906857,-.0347149906857$
DATA＝，2．1，．555893424036，．226757369615
DATA＝，3，1，－．453514739229．－．113ラ7868480
［GTA＝．4．1．．ここ0E8ころ47478．0

11111111111111111111111！1111111111111111111111111111111111111

11

！11111111111111：111

1111111111 Row／Column A 11111：11111111111111111111111111111111111


```
530
540
550
5E0
570
580
590
6 0 0
610
6 2 0
5 3 0
6 4 0
550
650
670
680
690
700
710
720
7 3 0
740
7 5 0
7 6 0
7 7 0
7 8 0
7 9 0
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940 DATA 7.14.1..0587858211474,-.0930659514028 1!111 3 AND 4
950 DATA 7,19,0.0..0576832193445
960 OATA 7.20.0..103635317135,0
970 DATA 7.21,0,-.485418546828,-.0428370961158
980 DATA 7,22,0,0,.0466704801694 11111 I AND 4
    990 DATA 7.23.0,0,-.259293054322 11111 I AND 4
    1000 1111111111/Row/Column H 1111111111111111111111111111111111111111
1010 DATA 8,8,1,.764497398141,-.0612867429647 11111 I AND 4
1020 DATA E.13.1,.051077380980こ,-.254211554548 1111 3 AND 4
12J0 OATA 8,14,1,-.21487528こJE1,.290995674509 11111 3 AND a
1040 DATA 8,19,0,0,-.365404054595
1850 [GTA E,20,0,-.0465704801694,0
1050 DATA E,こ:,0,.259293054こここ,0
1ETC LATA E.E=,0.0.-.10JEZEこ17155 1111 I AND 4
1020 DATA E,Zこ,0,.0428J70961158,.485418546828 11111 ב AND 4
090
DATA 2.6.1.-.0494507276469.0
DATA 2.15.0,-.470942679895..26001854527
DATA 2,16.0,.470942679895,-.0490544106454
DATA =.20.0.-.225146200577..0367387608396
DATA 2,21.0..0389677051594,0
11111!11111 Row/Column C 1111!!!!!!1!1!11!!!1!1111111111111111111111
DATA 3.3.1,.566893424036,.226757359615
DATA 3.4.0.-.641365694954,0
DATA 3.5.1.-.212232295405,-.18272547925
DATA 3.6.1..0989014552938,.0494507276469
DATA 3.15,0..26001854527,-.0490944106454
DATA 3,16,0,-.470942679895,.0490944105454
DATA 3.20.0..390842340703.-.201434900966
DATA 3.21.0.-.0779354103188..0389677051594
11111!111111 Row/Column D 1!!!!!1!!1!!!!!!!!!!!!!!!!!!!1!!!!!11!!!11111
DATA 4.4,0..566893424036,0
DATA 4,5,0..186184880494..186184880494
DATA 4.6.0,-.0699338897075,-.0599338897075
DATA 4,15.1,-.0347149906857,.0347149905857
DATA 4.16,1..183850876595,-.183860876595
DATA 4,20,1,-.267630505722,.267630505722
DATA 4,21,1,.055108657131,-.055108657131
!1!!!1!1!!11 Row/Column E !!!!!!1!!!!!!!!!!!!!!!!!!!!!111!!!1!1!1!1!1!
DATA 5.5.1..32337728354..10262392793
DATA 5.6.1,-.262922216048,.103016745283
DATA 5,7,1,-.254211554548,.0510773805802
DATA 5,8,1,.0914781725126.0
DATA 5,16,0..0697840705662,-.0442304181914
DATA 5,20.0,-.276334047244..167501525476
DATA 5,21,0..28849914471,.000594132862558
!!!!!!!!!1!!! Row/Column F !!1!!!!1!!!!!!!!!!!!!!!!11!111!1!1!!!1111111!1
DATA 6,6.1,.333321393988,-.273298586424
DATA 5,7.1,.290995674509.-.214875283361
DATA E.8.1,-.093065314028,.0587868211474
DATA 6.16,0,-.0428255853778,0
DATA 6,20.0..174036720164,.007379992993753
DATA E.21,0,-.29377409633,-.185808381849
1!!!1!!!!!!!! Row/Column 6 !!!!!!!!1!!!!1!!!!!!!!1!!1!!1!!!!!1!111!1111!
DATA 7.7.1..764497398141,-.0612867429647
DATA 7.8.1,-.59954100245E.0
OATA 7.13,1,0,.0914781725126 !1111 I AND 4
    H.H!H!1H1 Row/Column I
```

```
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250 DATA 10,22.0.-.225145200577..0357387608395
1260 DATA 10,23,0,.0389677051594,0
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440 !1!!!!!!!!!! Row/Column M !!1!1!!!!!!1!1!!!1!1!!!!11!!1!!!1!!1!!!1!1111
1450 DATA 13.13.1..32337728364..10262392793
1460 DATA 13.14,1.-.262922216048,.103016745283
1470 DATA 13.18,0..0697840705662,-.0442304181914
1480 DATA 13.19.0,-.269084916899,0
1490 DATA 13.22,0,-.276334047244,.167501525475
1500 DATA 13.23,0..28849914471..000554132862558
1510 111:1111111! Row/Column N 1111111111111111111111111!1111111111111111
1520 DATA 14,14.1..333321393988.-.273298586424
1530 DATA 14.18.0,-.0428255863778.0
1540 DATA 14,19,0..445083571317,0
1550 DATA 14,22.0..174035720164,.00737992933753
1560 DGTA 14,23,0,-.29377409633,-.185808381849
1570 11111111111 Row/Column O 11+111111111111111111111111111111111111
1570 H1HH1111111 Row/Column O 11H1111111111
1590 DATA 15.16.0,-.280297304107..04251700580:7
IEOR [GTA 15,こ0,0,.04251700E8027.0
1E10
1Eこ0
18-
154
iESQ
! EEQ
DATA 13．19．0．－．269084916899，0
```

 Q4TA IE,IE,G,1.404J44?ISE,
 CATA IE,ZC,Q,-.こ5095290こ117,.0J1E16700190-
 CATA 1E.ご,Q,.&こごムフロここ5SEこ,0
    ```

```

DATA 5.9.1..566893424036,0
DATA 9.10,1,-.320583347477,-.320683347477
DATA 9,11,1,.160341673739,.160341673739
OATA 9,12,1,-.113378684807,0
DATA 9.17,0,.333006762504,-.333005762504
DATA 9,18,0,-.183860876595,.183860876595
OATA 9,22.0,.0347149906857.-.0347149906857
11111!!1111! Row/Column J l!!!!1!1!!!1!1!!1!1!111111!1111!111111111111
OATA 10.10.1,.566893424036,.226757369615
DATA 10,11,1,-.453514739229,-.113378584807
DATA 10.12,1,.320683347478,0
DATA 10.13,1,.0805757038531..0510728876983
DATA 10.14.1,-.0494507276469.0
DATA 10,17,0,-.470942679895,.26001854527
DATA 10,18,0..470942679895,-.0490944105454
11!11111111! Row/Column K !1111!1111111111!1111111111111111111111111111
DATA 11,11.1..566893424036..226757369615
DATA 11.12,1,-.641365694954,0
DATA 11.13.1,-.212232295405,-.18272547925
DATA 11.14,1,.0989014552938,.0494507276469
DATA 11.17.0..26001854527.-.0490944106454
DATA 11,18,0,-.470942579895,.0490944105454
DATA 11,22,0,.390842340703,-.201434900966
OATA 11.23,0.-.0779354103188,.0389677051594
111111111111 Row/Column L 111
DATA 12.12,1,.566893424036,0
DATA 12.13.1,.186184880494..185184880454
DATA 12.14,1,-.0699338897075,-.0699338897075
DATA 12.17.0,-.0347149906857..0347149906857
DATA 12,18,0..183860876595,-.183860876595
DATA 12,22,0.-.267630505722,.267530505722
DATA 12,23,0,.055108657131,-.0551086571318

```
```

1670 DATA 17.18,0,-.280297304107,.0425170058027
1E30 DATA 17,22,0..0425170068027.0
1590 11111111111 Row/Column R 111111111111111111111111111111111111111
1700 DATA 18.18.0,1.4043443166,0
1710 DATA 18.22.0.-.250562993117..0318167001907
1720 DATA 18,23.0,.0337470225952,0
1730 |1111111111 Row/Column S 11111!1!1111111111111111111111111111111
1740 DATA 19.19.0.1.55488461455.0
1750 IDATA 19.19.0,1.00085799405.0 IDEUTERATED
1760 DATA 19,22,0..022697123287,.022697123287
1770 DATA 19,23.0,-.148555354853,-.148555354853
1780 11:111111111 Row/Column T 111!111111111111111111111111111111111111
1790 DATA 20,20,0,.386448961524.-.16585112319
1800 DATA 20,21,0.-.188670742999..0252538585337
1810 111111111111 Row/Column U !111!111!1!!1!11111!11!11111!!1111111!1111111
1820 DATA =1,21,0..421776550109,.0299414965597
1830 DATA 21,23,0,0,.0409943591762 11111 1 AND 4
1840 11111111111 Row/Column U 11111!1!!!1!!1!1!!!11111111111111111111
1850 DATA 22,22,0,.386448961524,-.16585112319
1860 DATA 22,23.0.-.188570742999..0252538585337

```

```

1880 DATA 23,23,0..421776550109,.0299414965597
1890 DATA 9999
1900 DATA G Matrix Loaded
1910 END

```
\begin{tabular}{|c|c|}
\hline 10 &  \\
\hline こ0 & 1 F and \(G\) matrix elements for free base phtnalocyanine used to malculate \\
\hline 30 & ' 8 g vibrations in program HEPCNCA. \\
\hline 40 &  \\
\hline 50 & ) \\
\hline 50 &  \\
\hline 70 & F matrix elements. \\
\hline 80 &  \\
\hline 50 & 1 崖 \\
\hline 100 & DATA 1.1.0..119.0 1 Row/Column A. \\
\hline 110 & DATA 2,2,0,.119,0 1 Row/Column B. \\
\hline 120 & OATA 3.3.0..119,0 I Row/Column C. \\
\hline 130 & DATA 4.4.0..119.0 1 Row/Column 0. \\
\hline 140 & DATA 5.5.0..119.0 1 Row/Column E. \\
\hline 150 & DATA 5,6,0..113.0 1 Row/Column \(F\). \\
\hline 160 & OATA 7,7,0..119,0 ! Row/Column 6. \\
\hline 170 & OATA 8.8.0..119.0 : Row/Column H . \\
\hline 180 & DATA 9,9,0..119.0 1 Row/Column I. \\
\hline 190 & DATA 10,10.0..119.0 I Row/Column J. \\
\hline 200 & DATA 11,11,0..119,0 ! Row/Column k. \\
\hline 210 & DATA 12,12,0..119.0 : Row/Column L. \\
\hline 220 & OATA 13,13.0..119.0 R Row/Column M. \\
\hline 230 & DATA 14,14,0..119,0 1 Row/Column N . \\
\hline 240 & OATA 15,15,0..3237.0 1 Row/Column 0. \\
\hline 250 & OATA 16.16,0,.3237.0 1 Row/Column P. \\
\hline 260 & DATA 17,17,0..3237,0 1 Row/Column 0. \\
\hline 270 & DATA 18,18.0,.3237,0 ! Row/Column R. \\
\hline 280 & DATA 19,19,0..3237.0 1 Row/Column s. \\
\hline 290 & DATA 20,20,0..3237,0 1 Row/Column T. \\
\hline 300 & DATA \(21.21 .0 . .3237 .0\) 1 Row/Column u. \\
\hline 310 & DATA \(22,22,0, .3237,0\) I Row/Column U. \\
\hline 320 & DATA 23,23,0..3237,0 ! Row/Column w. \\
\hline 330 & DATA 9999 \\
\hline 340 & data f Matrix Loaded \\
\hline 350 & A \\
\hline 360 &  \\
\hline 370 & 1 g matrix elements. \\
\hline 380 &  \\
\hline 390 & \(!\) ! \\
\hline 400 & 111111111!1 Row/Column A 11111111111111111111111111111111.1.1.1.11 \\
\hline 410 & DATA 1,1,1,.565893424036,0 \\
\hline 420 & DATA 1, 2,0,-.320683347477,-.320683347477 \\
\hline 430 & DATA 1,3.0,.150341673739,.160341673739 \\
\hline 440 & DATA 1,4.1,-.113378684807.0 \\
\hline 450 & DATA 1, 15,1,.333006762504,-.333006752504 \\
\hline 460 & DATA 1,16.1,-.183850876595,.183860876595 \\
\hline 478 & DATA 1.20,1..0347149906857,-.0347149906857 \\
\hline 480 &  \\
\hline 98 & DATA 2,2.0..566893424036..226757369615 \\
\hline 00 & OATA 2,3,0,-.453514739229,-.113378684807 \\
\hline 510 & OATA 2,4,1,.320683347478,0 \\
\hline 20 & DATA \(2.5,0.0805797038531, .0510728876983\) \\
\hline
\end{tabular}
```

5 3 0
DATA 2.5,0,-.0494507こ76469,0
DATA 2.15,1,-.47094こ579895,.260018545こ7

```

```

 OA+A =,こ0.1,-.ここ514Eこ0057%,.0こ67ここ750Eここ5
 OATA =,=1,1,.0389677051594.0
 |111111111'RowiColumn [
 DATA 3.З.0..5663934こ40こ5..ここ5757353615
 DATA こ.4.1.-.541366E94354.0
 DATA 3.5.0.-.こ1こここここ95405,-.182`こ547925
 DATA 3.5.0..0989014552938,.0494507275469
 DATA 3.15.1..25001854527.-.0490544105454
 DATA 3,16,1,-.4709426798955,.0490944106454
 DATA 3.20.1,.390842340703.-.201434900966
 OATA 3.21,1,-.0779354103188,.0389677051594
 |11111111 Row/Column O |11111111111111111111111111111111111
 OATA 4,4,1,.565893424036.0
 DATA 4.5.0..186184880494,.186184880494
 DATA 4.6,0.-.0699338897075,-.0699338897075
 OATA 4,15.1,-.0347149906857..0347149906857
 DATA 4.16.1,.183860876595,-.183860876595
 DATA 4.20,1,-.267630505722,.267630505722
 DATA 4,21,1,.055108657131,-.055108657131
 |1111111111 Row/Column E |11111111111111111111111111111111111111/
 DATA 5,5,0,.32337728364.. 10262392793
 OATA 5.6.0.-.262922216048,.103016745283
 OATA 5,7,0,-.254211554548,.0510773809802
 DATA 5,8,0,.0914781725125,0
 DATA 5,16,1..0697840705662,-.0442304181914
 DATA 5,20,1.-.276334047244,.167501525476
 OATA 5,21,1,.28849914471,.000594132862558
 11111111111 Row/Column F 111111111111111111111111111111111111111
 DATA 6.6.0..333321393988,-.273298586424
 DATA 6,7,0..290995574509,-.214875283361
 DATA 6.8,0,-.093065914028,.0587868211474
 DATA 5.16.1.-.0428255863778.0
 DATA 6,20.1..174036720164,..80737992993753
 OATA 6,21,1,-.29377409633,-.185808381849
 111111111111 Row/Column 6 11
 DATA 7,7,0,.764497398141,-.0612867429647
 DATA 7.8,0,-.599541002456,0
 DATA 7.13.0.0.00914781725125 11111 1 AND 4
 OATA 7.14,0,-.0587868211474,-.0930659514028 11111 3 ANO 4
 DATA 7.19,1,0..0676832193445
 DATA 7,20.1..103635317135,0
 OATA 7,21,1,-.485418546828,-.0428370961158
 DATA 7,22.1,0..0466704801694 11111 I AND 4
 DATA 7.23,1,0.-.259293054322 1111 I AND 4
 11111111111 Row/Column H |11111111111111111:111111111111111/1
 DATA 8,8,1..764497398141,-.0612867429647 11111 1 AND 4
 DATA 8,13,0,-.0510773809802,-..554211554548 1111 3 AND 4
 DATA 8.14,0,.214876283361,.290995674509 11111 J AND 4
 DATA 8.19.1,0.-.365404054596
 DATA 8,20,1,-.0466704801594,0
 DATA 8,21,1,.259293054322.0
 DATA 8,22,1,0,-.103635317135 11111 1 AND 4
 DATA 8,23.1,-.0428370961158..485418546828 1111 3 AND 4
    ```

```

1100 CATA 9.3.0..565893424036,0
1!10 OATA 9,10,0,-.こここE33こ47477,-.ここ2683こ47177

```

```

 :こa cata 9,12,0,-.11こここ=EB4807.0
 1140 OATA 9.17.1,.ころこ00675こ504.,.こここ006"5ここ504
150 DATA 9.18.1,-.18386087E595,.1きこ55087ESES
1150 DATA 9.22,1..0347149906857,-.0こ47149908537

```

```

1180 [ATA 10.10.1,.566393424036,.2こ6757369615
1190 DATA 10.11.1,-.4535147392こ9.-.113J78684807
1200 DATA 10.13,1..0805797038531..0510728876983
1210 OATA 10.14,1,-.0494507275469.0
1220 DATA 10,17,0,-.470942679895..26001854527
1230 DATA 10.18.0..470942679895,-.0490944105454
1240 DATA 10.22.0.-.226146200577..0367387608396
1250 OATA 10.23.0..0389677051594.0
1250 11111111111 Row/Column K |11111111111111111111111111111111111111
1270 DATA 11,11.1..565893424036,.2こ6757369615
1280 OATA 11,13,1,-.212232295405,-.18272547925
1290 DATA 11.14.1,.0989014552938..0494507276459
1300 DATA 11.17.0..25001854527,-.0490944106454
1310 DATA 11.18,0,-.470942679895,.0490944105454
1320 DATA 11, 22,0..390842340703,-.201434900966
1330 DATA 11,23,0,-.0779354103188..0389677051594
1340 |11111!11111 Row/Column L 1111111!111!111!111!!1111111111!11111!1111
1350 DATA 12.12.0,.566893426036,0
1360 OATA 12,13,0,.186184880494,.186184880494
1370 DATA 12.14,0.-.0699338897075,-.0699338897075
1380 DATA 12.17.1,-.0347149906857..0347149906857
1390 DATA 12,18,1,.183860876595,-.183860876595
1400 DATA 12,22,1,-.267630505722,.267630505722
1410 DATA 12,23.1..055108657131.-.0551086571318
1420 !!1!!1!!!!!! Row/Column M !11!1!111!!!11!!!1!1!!1!1111!1!1!1111111111111
1430 DATA 13,13,1,.32337728364,.10252392793
1440 DATA 13.14,1.-.262922216048..103016745283
1450 DATA 13,18,0,.0697840705562,-.0442304181914
1460 DATA 13,19,1,-.269084916899.0
1470 DATA 13,22,0,-.276334047244,.167501525476
1480 DATA 13.23,0,.28849914471..00059413286I558
1490 |11111111!'Row/Column N !11!111111111111!111111111111111111111
1500 DATA 14,14,1..333321393988,-.273298586424
1510 DATA 14.18,0.-.0428255863778.0
1520 DATA 14.19,1..445083571317.0
1530 DATA 14,22,0,.174036720164,.00737992993753
1540 DATA 14,23,0,-.29377409633,~.185808381849
1550 111111111111 Row/Column O 11
1560 DATA 15,15,1,1.4043443166,-.280297304107
1570 DATA 15,16,1,-.280297304107,.0425170068027
1580 DATA 15.20,1,.0425170068027.0

```

```

600 DATA 16,16.1,1.4043443166,0
1610 DATA 16.20.1,-.250962993117..0318167001907
1620 OATA 16,21.1,.0337470255952.0

```

```

1640 DATA 17.17.0.1.4043443166.-.280297304107
1650 DATA 17,18,0.-.280297304107,.0425170068027
1560 DATA 17.2こ.0..0425170068027.0

```
```

$15 ? 0$
1590

```

```

1-20 こんTA $13,2 こ, 0,03 こ 7473 こ こ 5952,0$

```

```

$=-0$ DATA 19,19,1,1.5548346:455,0

```

```

1740 DATA $19,23,0,-.148555354853,-.148555354853$

```

```

1750 DATA $20,20,1, .385448961524,-.15585112319$
1770 DATA 20,21,1,-. $188570742999, .0252538685337$
1780
1790
1800
1810
1820
1830
1840
1850
1850
1870 OATA G M
1880 END

```


```

; F and G matrix elements for free base ghthalocyanine used to calculate

```
; F and G matrix elements for free base ghthalocyanine used to calculate
    EZg vibrations in HEPCNCA.
```

 EZg vibrations in HEPCNCA.
    ```


```

|11/!

```
|11111111111111111111111111111111111111111111111111111111111111/!
    \prime F matrix elements.
```

 \prime F matrix elements.
    ```


```

I

```
I
DATA 1,1,0,.119,01 Row/Column A.
DATA 1,1,0,.119,01 Row/Column A.
DATA こ,工,0,.119,0 1 Row/Column B.
DATA こ,工,0,.119,0 1 Row/Column B.
DATA 3.3,0,.119,0 1 Row/Column C.
DATA 3.3,0,.119,0 1 Row/Column C.
DATA 4.4.0..119,0 1 Row/Column D.
DATA 4.4.0..119,0 1 Row/Column D.
DATA 5,5,0,.119,0 ! Row/Column E.
DATA 5,5,0,.119,0 ! Row/Column E.
DATA 6,6,0,.119,0 ! Row/Column F.
DATA 6,6,0,.119,0 ! Row/Column F.
DATA 7,7,0,.119,0 I Row/Column 6.
DATA 7,7,0,.119,0 I Row/Column 6.
DATA 8.8,0,.119.0 1 Row/Column H.
DATA 8.8,0,.119.0 1 Row/Column H.
DATA 9,9,0,.119,0 ! Row/Columm I.
DATA 9,9,0,.119,0 ! Row/Columm I.
DATA 10,10,0,.119,0 ! Row/Column J.
DATA 10,10,0,.119,0 ! Row/Column J.
DATA 11,11,0,.119,0 ! Row/Column K.
DATA 11,11,0,.119,0 ! Row/Column K.
DATA 12,12,0,.119,0 ! Row/Column L.
DATA 12,12,0,.119,0 ! Row/Column L.
DATA 13,13,0..119,0 ! Row/Column M.
DATA 13,13,0..119,0 ! Row/Column M.
DATA 14,14,0,.119,0 1 Row/Column N.
DATA 14,14,0,.119,0 1 Row/Column N.
DATA 15,15,0,.3237.0 I Row/Column 0.
DATA 15,15,0,.3237.0 I Row/Column 0.
DATA 16,16,0,.3237,0 I Row/Column P.
DATA 16,16,0,.3237,0 I Row/Column P.
DATA 17.17.0,.3237,0 ! Row/Column 0.
DATA 17.17.0,.3237,0 ! Row/Column 0.
DATA 18,18,0,.3237.0 ! Row/Column R.
DATA 18,18,0,.3237.0 ! Row/Column R.
DATA 19,19,0,.3237,0 ! Row/Column S.
DATA 19,19,0,.3237,0 ! Row/Column S.
DATA 20,20,0,.3237,0 ! Row/Column T.
DATA 20,20,0,.3237,0 ! Row/Column T.
DATA 21,21.0..3237.0: Row/Column U.
DATA 21,21.0..3237.0: Row/Column U.
DATA 22,22,0.,3237,0 1 Row/Column U.
DATA 22,22,0.,3237,0 1 Row/Column U.
DATA 23,23,0..3237,0 ! Row/Column w.
DATA 23,23,0..3237,0 ! Row/Column w.
DATA 9999
DATA 9999
DATA F Matrix Loaded
DATA F Matrix Loaded
    I
```

 I
    ```


```

 ! 6 matrix elements.
    ```
```

 ! 6 matrix elements.
    ```


```

 l
    ```
    l
    |111111!!11 Row/Column A !!!!1111111111111111111111111111111111111
    |111111!!11 Row/Column A !!!!1111111111111111111111111111111111111
    OATA 1,1,1,.566893424036,0
    OATA 1,1,1,.566893424036,0
    DATA 1,2,0,-.320683347477,-.320683347477
    DATA 1,2,0,-.320683347477,-.320683347477
    DATA 1,3,0,.160341673739,.160341673739
    DATA 1,3,0,.160341673739,.160341673739
    DATA 1.4,1.-.113378684807.0
    DATA 1.4,1.-.113378684807.0
    DATA 1,15,1,.333006762504,-.333006762504
    DATA 1,15,1,.333006762504,-.333006762504
    DATA 1,16,1,-.183860876595,.183860876595
    DATA 1,16,1,-.183860876595,.183860876595
    OATA 1,20,1,.0347149906857,-.0347149906857
    OATA 1,20,1,.0347149906857,-.0347149906857
    |111111111111 Row/Column B 11111111111111111111111111111111111111111111:
    |111111111111 Row/Column B 11111111111111111111111111111111111111111111:
    OATA 2,2,1,.556893424036,.225757369615
    OATA 2,2,1,.556893424036,.225757369615
    DATA 2,3,1,-.453514739229,-.113378684807
    DATA 2,3,1,-.453514739229,-.113378684807
    DATA 2.4,1,.320683347478.0
    DATA 2.4,1,.320683347478.0
    OATA 2,5,1,.0805797038531,.0510728876983
```

 OATA 2,5,1,.0805797038531,.0510728876983
    ```
```

5 3 0
540
550
550
5-0
500
550
6 0 0
610
520
530
640
5 5 0
650
670
680
690
700
7 1 0
720
7 3 0
740
750
760
7 7 0
7 8 0
7 9 0
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
998
1000
1010
1020
1030
1040
1050
1060
1 0 7 0
1080

```


```

DATA $2,6,1,-.0494507276469 .0$

```
DATA \(2,6,1,-.0494507276469 .0\)
DATA こ.15, 0.-.470942579895,.25001954527
DATA こ.15, 0.-.470942579895,.25001954527
OATA \(=15,0, .470942679395,-.0430944106454\)
OATA \(=15,0, .470942679395,-.0430944106454\)
[ATA こ.20, 0,-.2こ5146こ00577,.0367357502うЭ6
[ATA こ.20, 0,-.2こ5146こ00577,.0367357502うЭ6
DATA 2.21,0..0389677051594,0
DATA 2.21,0..0389677051594,0
1111111111 Row/Column C l:1111111111111111111:11:i1.: 1..1.: :
1111111111 Row/Column C l:1111111111111111111:11:i1.: 1..1.: :
CATA \(3,3,1, .566893424036, .2=5757369515\)
CATA \(3,3,1, .566893424036, .2=5757369515\)
DATA 3.4,1,-.641366634954,0
DATA 3.4,1,-.641366634954,0
DATA 3.5,1,-.212こ32こ95405,-. 18272547925
DATA 3.5,1,-.212こ32こ95405,-. 18272547925
DATA 3,5,1,.0989014552938,.0494507276469
DATA 3,5,1,.0989014552938,.0494507276469
DATA 3.15.0..26001854527.-.0490944186454
DATA 3.15.0..26001854527.-.0490944186454
DATA 3.16.0,-.470942679895,.0490944105454
DATA 3.16.0,-.470942679895,.0490944105454
DATA 3,20,0,.390842340703,-. 201434900966
DATA 3,20,0,.390842340703,-. 201434900966
DATA \(3,21,0,-.0779354103188 . .0389677051594\)
DATA \(3,21,0,-.0779354103188 . .0389677051594\)
lll111111+1 RowiColumn D 11111!!111111111111111111111111111111111111
lll111111+1 RowiColumn D 11111!!111111111111111111111111111111111111
DATA 4.4.1..565893424036.0
DATA 4.4.1..565893424036.0
OATA \(4,5,0, .186184880494, .186184880494\)
OATA \(4,5,0, .186184880494, .186184880494\)
DATA 4,6.0.-.0699338897075,-.0699338897075
DATA 4,6.0.-.0699338897075,-.0699338897075
DATA 4.15.1.-.0347149906857..0347149906857
DATA 4.15.1.-.0347149906857..0347149906857
DATA 4.16.1..183860876595,-. 183860876595
DATA 4.16.1..183860876595,-. 183860876595
OATA 4,20,1,-.267630505722,.267630505722
OATA 4,20,1,-.267630505722,.267630505722
DATA 4.21,1,.055108657131,-.055108657131
DATA 4.21,1,.055108657131,-.055108657131
1111!!!!1!!! Row/Column E !!!!!!!!!!!!!!1!!1!!!!!11!!!1!!!!!!!!111111!!
1111!!!!1!!! Row/Column E !!!!!!!!!!!!!!1!!1!!!!!11!!!1!!!!!!!!111111!!
DATA 5,5,1,. \(32337728364, .10262392793\)
DATA 5,5,1,. \(32337728364, .10262392793\)
DATA 5,6,1,-.252922216048.. 103016745283
DATA 5,6,1,-.252922216048.. 103016745283
DATA 5,7.1.-. \(254211554548, .0510773809802\)
DATA 5,7.1.-. \(254211554548, .0510773809802\)
DATA 5,8.1,.0914781725126,0
DATA 5,8.1,.0914781725126,0
DATA 5,16,0..0597840705662,-.0442304181914
DATA 5,16,0..0597840705662,-.0442304181914
DATA 5,20.0.-.275334047244,. 167501525476
DATA 5,20.0.-.275334047244,. 167501525476
DATA 5,21,0..28849914471,.000594132852558
DATA 5,21,0..28849914471,.000594132852558
!!!!!!!!!!! Row/Column F !!11!!1!!1!!!!!!1!!!!!!!!!!!!!!!!!!1!!1111
!!!!!!!!!!! Row/Column F !!11!!1!!1!!!!!!1!!!!!!!!!!!!!!!!!!1!!1111
DATA 6.6,1,. \(333321393988,-.273298586424\)
DATA 6.6,1,. \(333321393988,-.273298586424\)
DATA 6.7.1..290995674509,-.214876283361
DATA 6.7.1..290995674509,-.214876283361
DATA 6.8.1.-.093055914028..0587868211474
DATA 6.8.1.-.093055914028..0587868211474
DATA 6,16,0,-.0428255863778,0
DATA 6,16,0,-.0428255863778,0
DATA 6,20,0,.174036720164,.00737992993753
DATA 6,20,0,.174036720164,.00737992993753
DATA 5,21.0.-.29377409633.-. 185808381849
DATA 5,21.0.-.29377409633.-. 185808381849
1!!!!1!!!!!! Row/Column 6 !!!!!!!!!!!!!!!!!1!!!!!!!!1!!!!!!1111!1111111
1!!!!1!!!!!! Row/Column 6 !!!!!!!!!!!!!!!!!1!!!!!!!!1!!!!!!1111!1111111
DATA 7.7,1,. \(764497398141,-.0612867429547\)
DATA 7.7,1,. \(764497398141,-.0612867429547\)
DATA 7.8.1.-.599541002456,0
DATA 7.8.1.-.599541002456,0
DATA 7.13.1.0..0914781725126 !!!11 | AND 4
DATA 7.13.1.0..0914781725126 !!!11 | AND 4
DATA \(7.14,1,-.0587868211474,-.0930659514028111113\) AND 4
DATA \(7.14,1,-.0587868211474,-.0930659514028111113\) AND 4
DATA 7.19,0.0..0675832193445
DATA 7.19,0.0..0675832193445
DATA 7,20,0..103635317135,0
DATA 7,20,0..103635317135,0
DATA 7.21,0,-.485418546828,-.0428370961158
DATA 7.21,0,-.485418546828,-.0428370961158
DATA 7,22,0,0,.0466704801694 11111 1 AND 4
DATA 7,22,0,0,.0466704801694 11111 1 AND 4
DATA 7,23,0,0,-.259293054322 11111 AND 4
DATA 7,23,0,0,-.259293054322 11111 AND 4
1111111!11! Row/Column H 111111111111111111111111111111111111111111
1111111!11! Row/Column H 111111111111111111111111111111111111111111
DATA 8,8,0..764497398141.-.0612867429647 11111 I AND 4
DATA 8,8,0..764497398141.-.0612867429647 11111 I AND 4
DATA 8,13.1,-.0510773809802,-. 25421155454811113 AND 4
DATA 8,13.1,-.0510773809802,-. 25421155454811113 AND 4
DATA 8,14,1..214876283361,.290995674509 111113 AND 4
DATA 8,14,1..214876283361,.290995674509 111113 AND 4
DATA 8,19,0.0.-.365404054596
DATA 8,19,0.0.-.365404054596
DATA 8.20.0.-.0466704801694.0
DATA 8.20.0.-.0466704801694.0
OATA 8.21,0..259293054322.0
OATA 8.21,0..259293054322.0
DATA 8,22,0,0,-.103635317135 11111 1 AND 4
DATA 8,22,0,0,-.103635317135 11111 1 AND 4
OATA 8,23.0.-.0428370961158..485418545828 11111 3 AND 4
```

OATA 8,23.0.-.0428370961158..485418545828 11111 3 AND 4

```
\begin{tabular}{|c|c|}
\hline 1100 & DATA 9．9，1，．566393424036，0 \\
\hline 1110 & DATA S， \(10.0,-.320683347477,-.320683347477\) \\
\hline 1120 & CATA 9，11，0，．15034i673739．．150341675739 \\
\hline 1： 12 & DATA 9．12．1，－．115378584807．0 \\
\hline 1140 & ［ATA 9，17，1，．33300676こ504，－．333006762504 \\
\hline 1150 & OATA \(9,18,1,-.183860876535 . .183860876555\) \\
\hline 1160 & CATA 9，22，1，．8347149906357，－．0347149906557 \\
\hline 1170 &  \\
\hline 1150 & DATA 10，10，0．．566393424036，．2こ6757369515 \\
\hline 1190 & DATA 10，11，0，－．4535147392こ9，－．113378684807 \\
\hline 1200 & DATA 10，12，1，．320683347478，0 \\
\hline 1210 & DATA 10，13，0．．0805797038531，．0510729876983 \\
\hline 1220 & DATA 10，14．0，－．0494507276469．0 \\
\hline 1230 & DATA 10．17，1，－．470942879895，．26001854527 \\
\hline 1240 & DATA 10，18，1，．470942579895，－．0490944106454 \\
\hline 1250 & DATA 10．22，1，－．226146200577．．0367387608396 \\
\hline 1260 & DATA 10，23，1，．0389677051594，0 \\
\hline 1270 & 111！111111！Row／Column K ！111！1！！！！！！！！！！111！！！！111111111111111 \\
\hline 1280 & DATA 11，11，0，．566893424036，．226757369615 \\
\hline 1290 & DATA 11，12，1，－．641365694954，0 \\
\hline 1300 & DATA 11．13．0，－．212232295405，－．18272547925 \\
\hline 1310 & DATA 11，14，0．．0989014552938，．0494507276469 \\
\hline 1320 & DATA 11，17，1．．26001854527，－．0490944106454 \\
\hline 1330 & DATA 11，18，1，－．470942679895，．0490944106454 \\
\hline 1340 & DATA 11，22，1，．390842340703．－．201434900966 \\
\hline 1350 & DATA 11，23，1，－．0779354103188，．0389677051594 \\
\hline 1360 & 1！111！1！！1！！Rov／Column L ！！！！！！！！！！！！！！！！！！！！！！！！！！！！！！！11111 \\
\hline 1370 & DATA 12，12，i，．566b33426036，0 \\
\hline 1380 & OATA 12，13，0，．186184880494，．186184880494 \\
\hline 1390 & DATA 12，14，0，－．0699338897075，－．0599338897075 \\
\hline 1400 & DATA 12，17，1，－．0347149906857，．0347149906857 \\
\hline 1410 & DATA 12，18，1，．183860876595，－．183860876595 \\
\hline 1420 & DATA 12，22，1，－．267630505722．．267630505722 \\
\hline 1430 & DATA 12，23，1，．055108657131，－．0551086571318 \\
\hline 1440 & ！！！！！1！！1！！！Row／Column M ！！！！！！！！！！！！！！！！！！1！1！！！1！！1！！1！11！111！1！111 \\
\hline 1450 & DATA 13，13．0．．32337728364，．10262392793 \\
\hline 1460 & DATA 13，14，0，－．262922216048，．103016745283 \\
\hline 1470 & DATA 13．18．1．．0697840705662．－．0442304181914 \\
\hline 1480 & DATA 13．19，1，－．269084916899，0 \\
\hline 1490 & DATA 13．22，1，－．276334047244，．167501525476 \\
\hline 1500 & DATA 13，23．1，．28849914471，．000594132862558 \\
\hline 1510 & 1111111！！！！！Row／Column N ！！！！11！1！！111！11！111111111！！！！1！1111111 \\
\hline 1520 & DATA 14，14，0，．333321393988，－．273298585424 \\
\hline 1530 & DATA 14．18．1．-0.0428255863778 .0 \\
\hline 1540 & DATA 14，19，1．．445083571317，0 \\
\hline 1550 & DATA 14，22，1，．174036720164，．00737992993753 \\
\hline 1560 & DATA 14，23，1，－．29377409533，－．185808381849 \\
\hline 1570 & 11111111！Row／Column 0 l111111111111！11111111111111111111 \\
\hline 1580 & DATA 15．15．0．1．4043443166，－．280297304107 \\
\hline 1590 & DATA 15，16，0，－．280297304107，．0425170068027 \\
\hline 1600 & DATA 15，20，0，．0425170068027，0 \\
\hline 1610 &  \\
\hline 1620 & Data 16，16．0．1．4043443166．0 \\
\hline 1630 & OATA 16．20．0．－．250962993117．．0318167001907 \\
\hline 1640 & OATA 16，21．0，．0337470225952，0 \\
\hline 1650 & 1111111111 Row／Column 0 11111111111111111111111111111111 \\
\hline 1660 & DATA 17．17，1，1．4043443166，－．280297304107 \\
\hline
\end{tabular}
```

:670 CATA 17.13,1,-.250297304107,.0425170068027
1580 [aTa , -, ここ,!,.04こ5170058027,0

```

```

\because20 =ATA :3,13,1,1,4043443165,0
\.J こATA 18,22.1,-.250962993117,.0318167001307
-こう [ata 1B,こ3,1,.0337470ここ5352,0

```

```

1-40 [ATA 19.19,0,1.55488461455,0
1750 DATA 19.ここ.0..0ここ697123287,.0ここ697123こ87
1760 DATA 19,こ3.0,-.148555354853.-.148555354853

```

```

1790 DATA 20.20.0..386448961524,-.15585112319
1790 DATA =0.21,0,-.188570742999,.0252538685337
1800 |1111111111 Row/Column U 111111111111111111111111111111111111111/1
1810 OATA 21.21,0..421776550109,.0299414965597
1820 DATA 21,23.0.0,.0409943591752 11111 1 AND 4
1830 11111111111 Row/Column V 111111111111111111111111111111111111111
1840 DATA 22,22,1,.386448951524,-.16585112319
1850 OATA 22.23.1,-.188670742999..0252538685337
1850 1111111111 Row/Column W 111111111111111111111111111111111111111
1870 DATA 23,23,1,.421776550109,.0299414965597
1880 DATA 9999
1890 DATA G Matrix Loaded
1980 END

```
"3DHRRA"
```

C Program: JDHRRA

```
C Program: JDHRRA
    C This program calculates voW torsional modes for benzene(methane)l type
    C This program calculates voW torsional modes for benzene(methane)l type
    C clusters. The torstonal modes are calculated for a speedfied
    C clusters. The torstonal modes are calculated for a speedfied
    C torsional barrier hesgnt and torsional dotential form. The
    C torsional barrier hesgnt and torsional dotential form. The
    C torstonal modes are treated using rigid rotor
    C torstonal modes are treated using rigid rotor
    C symmetric top wavefunctions as a basis set. Under free rotation, these
    C symmetric top wavefunctions as a basis set. Under free rotation, these
    C wavefunctions are solutions to the soherical too Schrodinger equation.
    C wavefunctions are solutions to the soherical too Schrodinger equation.
    C Upon apolication of the torsional potential, the torsional mode
    C Upon apolication of the torsional potential, the torsional mode
    C elgenvalues are obtained by diagonalizing the energy matrix
    C elgenvalues are obtained by diagonalizing the energy matrix
    C which describes the hindered rotational/librational motion.
    C which describes the hindered rotational/librational motion.
    C-
    C-
        PROGRAM 3DHRRA
        PROGRAM 3DHRRA
    C
    C
    C A(*)=Energy matrix to be dzagonalized.
    C A(*)=Energy matrix to be dzagonalized.
    C D(*)=Diagonal elements of tridiagonal matrix. or eigenvalues of
    C D(*)=Diagonal elements of tridiagonal matrix. or eigenvalues of
    C diagonalized matrix.
    C diagonalized matrix.
    C E(*)=Subdiagonal olements of tridiagonal matrix.
    C E(*)=Subdiagonal olements of tridiagonal matrix.
    C ZAP(*)=Orthogonal transformation matrix to tridiagonalize A(*).
    C ZAP(*)=Orthogonal transformation matrix to tridiagonalize A(*).
    C---------------------------------------------------------------------------------
    C---------------------------------------------------------------------------------
C
C
            OIMENSION A(680,680),O(680),E(680),ZAP(680)
            OIMENSION A(680,680),O(680),E(680),ZAP(680)
C
C
    c-------------------------------------------------------------------------------
    c-------------------------------------------------------------------------------
    C Identifies external functions for integrations subroutine.
    C Identifies external functions for integrations subroutine.
    C--------------------------------------------------------------------------------
    C--------------------------------------------------------------------------------
    C
    C
        EXTERNAL THINT,XINT,PHINT
        EXTERNAL THINT,XINT,PHINT
    C
    C
    C Sets uo common blocks.
    C Sets uo common blocks.
    C
    C
        COMMON /BIA/A/B2ZAP/ZAP/B3D/D/B4E/E/B5F/RJ,RK,RM,CJ.CK.CM
        COMMON /BIA/A/B2ZAP/ZAP/B3D/D/B4E/E/B5F/RJ,RK,RM,CJ.CK.CM
        * ,2A,2B,2C,2D,2E,2F,26,2H,FL61
        * ,2A,2B,2C,2D,2E,2F,26,2H,FL61
    C
    C
    C
    C
    C Declares integers.
    C Declares integers.
    C----------------------------------------------------------------------------
    C----------------------------------------------------------------------------
    C
    C
            INTEGER RE,CE,ROWTOT,ORDER,EJ,EIGULE,SJ,Z,FLGI
            INTEGER RE,CE,ROWTOT,ORDER,EJ,EIGULE,SJ,Z,FLGI
    C
    C
    C
    C
    C Determines the order of the energy matrix in terms of J quantum number.
    C Determines the order of the energy matrix in terms of J quantum number.
    C Sj=Starting J level.
    C Sj=Starting J level.
    C EJ Ending J level.
    C EJ Ending J level.
    C
    C
        5J=0
```

 5J=0
    ```

```

1!301
1501 C Inouts glagonal matrix elements into A(*).
11601
11701
1190
11901
12001
1こ10
12こ0
1230
12401
1250
12501
12701
12801
12901
13001
13101
13201
13301
13401
13501
13601
13701
1380!
1390!
14001
1410!
1420!
1430!
1440!
1450!
1460!
1470!
1480!
1490!
1500!
1510!
15201
1530!
1540!
15501
1560!
15701
1580!
1590!
16001
16101
16201
16301
16401
16501
16601
1670!
16801
16901
1700
17181
17201

```

11301
C

11601
11701
\(1190^{1}\)
11901
12001
ここし
12こ01
12301
12401
12501
12501
12701
12801
12901
13001
13101
13201
13301
13481
13501
13601
13701
\(1380!\)
1390 ！
14001
1420 ！
1430！
14401
1450 ！
1460 ！
1480 ！
1490 ！
1500！
1510！
15201
15301
1540！
15501
15701
15801
\(1590!\)
16001
16101
16201
16301
16401
16501
16601
\(1670!\)
16801
16901
1700
17201
0
IF（RE．EQ．CE）A（RE，CE）＝ROTCA＊RJ＊（RJ＋1．）＋UPERT／2．
IF（CE．GT．RE）GO TO 7

\section*{C}

C Selects possiole nonzero off－diagonal matrix elements in A（．）．
c
IF（ABS（RJ－CJ）．LE．2．AND．ABS（RK－CK）．EQ．2．AND．ABS（RM－CM）．EQ．
－1） 60 TO 18
60 TO 7
C
C Calculates normalization constants for matrix elements．
C
C
C
C
\(182 A=(2 \cdot R J+1) / 8 / P I / P I\)
DO 9 Z＝RJ＋RM．2，－1
\(2 A=2 A \cdot 2\)
9 Continue
ZA＝SQRT（2A）
28－1
DO 10 2＝RJ－RM，2，－1
ZB＝2B－2
10 continue
\(28=5 Q R T(2 B)\)
2C＝1
DO \(112=\) RJ + RK ，2，－1
\(Z C=2 C=Z\)
11 CONTINUE
ZC＝50RT（2C）
20＝1
DO 12 Z＝RJ－RK，2，－1
\(20=20+2\)
12 CONTINUE
ZD＝SORT（2D）
\(2 E=(2+C J+1) / 8 / P I / P I\)
DO \(13 Z=C J+C M, 2,-1\)
ZE＝2E•Z
13 continue
ZE＝SQRT（ZE）
2F＝1
DO \(14 \mathrm{Z}=\mathrm{CJ}-\mathrm{CM}, 2,-1\)
ZF＝2F：Z
14 CONTINUE
ZF＝SQRT（ZF）
2G＝1
DO \(152=\mathrm{CJ}+\mathrm{CK}, 2,-1\)
\(2 G=26 \cdot 2\)
15 continue
ZG＝SQRT（2G）
ZH＝1
DO \(162=C J-C K, 2,-1\)
\(Z \mathrm{H}=2 \mathrm{H} \cdot \mathrm{Z}\)
16 CONTINUE
\(Z H=S Q R T(Z H)\)


```

17301 0
17401 C--
17501 C Integrates over theta, phi, and chi coordinates.
17501
17701 C
17801 OO 17 FLGI=0.0
17901 C
18001 C--
18101 C Integration over theta coordinate between 0 and pi.
18201 C
C
P=0
B=PI
EPSABS=1.E-6
EPSREL=1.E-6
C
C Subroutine: STIT
C
C Tnis subroutine calculates an approximation result to a given definste
C integral. The function to be integrated is named THINT.
C The subroutine is from QUADPACK, a FORTRAN subroutine package for the
C numerical computation of definite l dimensional zntegrals.
C Authors: Robert Piessens and Elise de Doncker, Apgl. Math. and Progr.
C Div. - K.U. Leuven.
C The subroutine name in QUADPACK is QNG.
C---
C
CALL STIT(THINT,P,B,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,IER)
CADREI=RESULT
IF (CADREI.EQ.0) GO TO 20
C
C---
C Integration over chi coordinate between 0 and 2*Di.
C---
C
P=0
B=PI*2
EPSABS=1.E-6
EPSREL=1.E-6
C
C-------------~---
C Call subroutine STIT to integrate over the function XINT.
C
CALL STIT(XINT,P,B,EPSABS,EPSREL ,RESULT,ABSERR,NEVAL ,IER)
CADRE2=RESULT
IF (CADREZ.EQ.0) GO TO 20
C
c--
C Integration over phi coordinate between 0 and 2:01.
C------
B=PI•2
EPSABS=1.E-6
EPSREL=1.E-6
C
2310, C Call subroutine STIT to integrate over the function PHINT.
2320 1 c---

```
```

2330 1 C
2680 | C matrix by the implicit QL mathod.
2690 ! C This subroutine is from ElsPACK.
2700 ! C The subroutine is named IMTQLI in EISPACK.
2710 ! C Authors: Martin and Wilkinson, Num. Math. 12, 377-383(1968). Modıfıed
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2850
2870
2880
2890
2900
2910
2920

```

2340
こ350 こごロ
2370 2380 ここの 240 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520
25361 2540 2550 2560 2570 2580 2590
```

C
CALL STIT(PHINT,P,B,EPSABS,EPSREL,RESULT,ABSERR,NEVAL,IER)
CADPES=RESULT
=0 CADRE=CADREI*CADREZ*CADREJ
IF (AB5(CADRE:.LT.1.E-5) CADFE=0
IF (A(RE,CE).NE.D) A(RE,CE)=A(RE,CE)-CADRE*UFERT/2.
IF (A(RE,CE).EQ.0) A(RE,CE)=CADRE*(-1.)*UPERT/2.
17 CONTINUE
7 CONTINUE
6 CONTINUE
5 CONTINUE
3 continue
= CONTINUE
l continue
EIGULE=ORDER
C IF (ORDER.GT.200) EIGVLE=200
C
C--
C Subroutzne: TDIAG
C
C This subroutine reduces a real symmetric matrix to a symmetric
C tridsagonal matrix using and accumulating orthogonal simslarity
C transpormations.
C The subroutine is from EISPACK, a collection of FORTRAN subroutines
C for elgenanalysis of matrices.
C The program is called TRED2 in EISPACK.
C Authors: Martin, Reinseh, and Wilkinson. Num. Math. 11, 181-195(1968).
C
CALL TDIAG(ROWTOT.ORDER)
C
C---------------------
C
C This subroutine finds the eigenvalues of a symmetric tridiagonal
C by DuBrille. Num. Math. 15, 450(1970).
C
CALL OIAGIT(ORDER,IERR)
C
C Prints the results of the diagonalization.
C--
C
PRINT G0,ORDER,UPERT,ROTCA
90 FORMAT(///,IX,'MATRIX ORDER = '.I5.10X.' FOTENTIAL = 'FIO.5.
- IOX,'ROTATIONAL CONSTANT = ',F10.4./)
PRINT 91,EIGULE
91 FORMAT(IX,'FIRST '.IS,' EIGENUALUES:',N)
PRINT 80,(OLI),I=1,EIGULE)
80 FORMAT (10(1X,F10.4))
PRINT 96,EIGULE
g5 FORMAT (///, IX,'FIRST , IS,' EIGENUALUES RELATIUE TO Z.P.:'.')
DIFF=D(1)
PRINT 97,(O(I)-DIFF,I=1,EIGULE)
97 FORMAT (10(1X,F10.4))

```
```

23J0
2940
2950
2960
370 1 C Functıon: THiNT
=980 1 C
390 1 C Part of the symmetric top wavefunction that depends on treta.
j000 , C Also contatns the theta component of the torsional gotentiai.
z010 1 C This function ls zntegrated tetween the range of 0 and ol by ST:T.
2020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160!
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3300
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520

```



\[
\begin{aligned}
& \text { END } \\
& 12-87 \\
& D T I C
\end{aligned}
\]```


[^0]:    

[^1]:    " Supported in part by grana from ONR and the Philip Morms Corporstion.

[^2]:    - The $-112.1 \mathrm{~cm}{ }^{\prime}$ shif is ascociated wih two methenes added symmetncally above and below the pyrmi. dine ning (isotropic), st shown in Fig 2 The -472 cm ' shitt is agociated with the anisorropuc configuration, as shown in Fig. 2.

[^3]:    M Schaver and E. R Bernstein. J Chem Phys. 82. 226 (198s)
    M Schaver, K. S Law. and E. R. Bernsuewa. J Chem Phys 82. ${ }^{-10}$ (1985)
    'K S Law and E R Bernsteta, J Chem Phys 82. 2896 (1985)
     (1984)
    'E R Bernstein. K Law. and M Sihawer. J Chem Phys 80. 207 1 140t:
    ${ }^{*}$ M Schauer. K. Law and E R Bernsten. J Chem Phys 81. 49 : $1+x+1$
    '] Wanna and E. R Bernsten. / Chem Phys 44.927 1986)
    "M M. Carrabbe I E Kenny. W R. Moomaw. J Curdes, and M Denton. J Phys Chem ©. 674 (1985)
    (a) H Abe, $N$ Mikami, and $M$ tio. J Phvs Chem 86. 1768 (1082) 161 H Abe. N Mikami. M Ito. and Y L'dagawa brd ©6. 2507, 1982 $\quad 心$
    $K$ Fuke, $H$ Yoshiuchi. K Kaya. Y Achibe K Sato. and K Kimura. Chem Phys Lett 104. 179 (1984). (d) N Gonohe. H Abe, N Mikami. and M Ito. J Phys. Chem Es. 3642 11985)
    (a) J Hager and S C Wallace. J Phys Chem en 5513 (14k4). W. 89 3833 (1989)
    D E. Poelil and J K McVey, J Chem Phve 78.41s9 (1983)
    (a) C A Haynam. D V Brumbagh. and D H Levv. J Chem Prow *? $1581(1983)$. (b)L Yount. C A Haynam. and D H Levy ibid ${ }^{\text {º }}$, $v$ : 19831
    G Smulevich, A Amirav. V Even. and J Jortner. Chem Phis '3 (1982)
    'ia) PM Felter, $W$ R Lambert. and A H Zewall, J Chem Phiv" 1603(1982). biL A Hembrook.J E Kenny. B E Kohler ands, id Scott. J Phys Chem 17. 280 (1981)

[^4]:    - Supponed in part by granis from ONR and the Philip Morns Corpora-
    thon.

