

CONTRCL ELECTRONICS FOR AN ION MASS FILTER
 IN THE LOWER IONOSPHERE PAYLOAD DEVELOPMENT PROGRAM
 by

Raimundas Sukys
J. Spencer Rochefort

NORTHEASTERN UNIVERSITY
360 Huntington Avenue Boston, Massachusetts 02115

30 September 1985

FINAL REPORT
15 September 1981 - 30 September 1985

Approved for public release: distribution unlimited.

Prepared for

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731
"This technical report has been reviewed and is approved for publication."

FOR THE COMMANDER

This report has been reviewed by the ESD Public Affairs office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractural obligations or notices on a specific document requires that it be returned.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

1. AEPOAT SECURITY CLASSIFICATION Unclassified	10. AESTRICTIVE MARKINGS			
24. SECUAITY CLASSIFICATION AUTHOAITY 20. DE CLASSIFICATIONIOOWNGAADING SCHE DULE	3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.			
4. PERFORAING ORGANIZATION REPORT NUMEER(S)	5. MONITORING ORGANIZATION REPORT NUMEER!SI AFGL-TR-86-0170			
6. vame of performing organization Northeastern University Electronics Research Lab. BD. OFFICE SYMBOL If epplicable,	73. NAME OF MONITORING ORGANIZATION Air Force Geophysics Laboratory			
6c. AODRESS ICity. Siste and RIP Code) 360 Huntington Avenue Boston, MA 02115	70. LDOAESS iCity. Stote and ZIF Code) Hanscom Air Force Base Bedford, MA 01731			
6. NAME OF FUNDINGiSPONSOAING ORGANIZATION Air FORCE Geophysics Lab. eo OFFICE SYMBOL III applicable, LI	9. PROCUREMENT INSTRUMENT IDENTIFICATION VUMBER F19628-81-C-0162			
ec AOORESS ICily. Siole and IIP Codel	10 SOUACE OF FUNDING NOS.			
Hanscom Air Force Base Bedford, MA 01731	PROGRAM ELEMENT No.	$\begin{gathered} \text { PROJECT } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	$\underset{\text { NO }}{\text { NGRKIT }}$
11. TITLE Inciude security Clapalifation Control Electronig Eor an Ion Mass Fifer in the Lower Iong anhere payload Development program	S 61102 F	2310	G 3	AW
2. PERSONALAUTHOR(S) R. Sukys, J.S. Rochefort				
13. TYPE OF REPOAT Final Report 13D. TIME COVEAED FROM $9 / 15 / 8$ lto9/30/85	14. OATE OF REPORT (YR. Mo. Day' 15. PAGE COUNT 1985 September 30 90			

16. SUPPLEMENTARY NOTATION

TABLE OF CONTENTS

Page
INTRODUCTION. 1
I. LIPD OVERVIEW 3
II. CIRCUITS 7
A. Digital Circuits. 7
B. The Amplifiers. 11
C. The AC Exciter. 12
D. HV Bias Circuits. 14
E. Support Circuits. 15
F. The Power Supply. 17
III. FIRMWARE 17
IV. APPENDIX A - PCM FRAME. 31
V. APPENDIX B - COMMAND CODES 33
VI. APPEXDIX C - EEPROM DATA FORMAT 35
VII. APPEVDIX D - FLOW CHARTS 37
VIII. APPENDIX E - PROGRAY. 47
IX. PERSONNEL 83
X. RELATED CONTRACTS AND PUBLICATIONS 84

FIGl'RE PAGE

1. DIGITAL BOARD 23
2. EXCITER CONTROL. 25
3. BIAS CIRCUIT 26
4. RF CONTROL 27
5. HV SLPPLY AND CHARGE AMPLIFIER 28
6. MONITOR BOARD 29
7. POWER SL'PPLY 30

INTRODUCTION

The contract $F 19628-81-C-0162$ was written for the design, fabrication, modification and testing of prototye research instrument systems for ongoing AFGL measurement programs. Field engineering and technical support during flight systems checks at various field sites and test ranges was also required.

During the life of the contract the emphasis was placed on the design and development of specialized control electronics for ion mass spectrometers. Some work was also done on thermosonde/radiosonde systems for the measurement of the optical atmospheric turbulance. Yost of the electronic systems were developed to control airborne instruments. Although a few subsystems were fabricated to control instruments flow on satelites and the shuttle, balloon and sounding rocket applications predominated.

A typical control system for a mass filter included a microprocessor or a microcontroller to manage preprogrammed commands, control parameters and data. Digital to analog interface circuits converted the control parameters into the basic analog signals necessary for the operation of a quadrupole ion mass filter. From these base signals the bias voltages and the quadrupole excitation was generated. For that purpose various amplitier configurations and high voltage supplies were employed. An oscillator whose amplitude could be varied with a great degree of precision over a wide range provided the ac excitation component for the quadrupole mass filter. The
spectral data collected by electron multiplier devices, either in a current or a pulse mode, were conditioned by logarithmic current-to-voltage converters or pulse counters respectively. In either case, the data was converted into a PCY bit stream for transmission through a telemetry link. larious monitor and data identification signals were included to facilitate data reduction and interpretation. The control system was powered by a multiple output power converter tailored to the needs of the system.

Variations of the basic approach accommodated special requirements. Electron beam ionization generators and control circuits were added to the instruments intended to measure neutral constituents. Instruments capable of switching between positive and negative ion measurements during a flight were built. Circuits to control the potential difference between the vehicle and the instrument were provided when needed. The PCM data subsystems were omitted from a few of the mass spectrometers.

Ground support equipment was also provided. The support equipment consisted mainly of control consoles for laboratory tests and launch operations. Included among the ground support equipment were units designed to interface with a control and data processing computer used to direct the operation of a balloon-borne instrument system during a flight. These units provided a partial real time data processing that reduced the burden placed on the computer freeing it for a more efficient incoming data analysis necessary for the interaction between the ground based
scientist and the airborne instrument. A command interface between the computer and the transmitting equipment of the ground station was also provided by the units.

Some of the development work has been described in Scientific Reports 1,2 and 3 issued under this contract and listed in the publications section. Other tasks and services rendered were reported only in the Quarterly Status reports or were communicated to the contract monitor as drawings, descriptions, specifications and operating instructions.

This final report describes a control system for a switchable ion mass filter designed as a part of the Lower Ionosphere Payload Development (LIPD) project. The system provided the necessary control functions and bias voltages for a miniature cryogenically pumped ion mass filter intended to make measurements in the 40 to 60 kilometer altitude range. The control circuits included a complete PCM data system. The development has been carried through an operational breadboard stage ready to be tested with the mass filter.

I. LIPD OVERVIEW

The objective of the Lower Ionosphere Payload Development (LIPD) project was to design a lightweight cryogenically pumped Ion Mass Spectrometer for the exploration of the ionosphere at the altitude between 40 and 70 kilometers. The instrument was to be carried on a 11.4 cm diameter Superarcus rocket fired from a portable launcher. The Ion Mass Spectrometer, a nosecone ejection
mechanism, a battery and the telemetry was to be packaged into a 100 cm long payload including a 53 cm ogival nosecone and weighing less than 9 kilograms.

The development of the control unit for the positive/negative ion quadrupole mass filter capable of detecting ions up to 150 atomic mass units was assigned to this contract. Telemetry and the mechanical design including payload packaging and integration were the responsibility of the contracts F19628-83-C-0037 and Fl9628-81-C-0029 respectively. To conserve weight and space, the mass filter control unit also provided the timing signals for the nosecone ejection and formatted the mass filter data and the payload monitor signals into a PCM data stream ready to modulate an $F M$ transmitter. A 200 milliwatt S-band $F M$ transmitter and a stripline band antenna satisfied the $T L M$ requirements. A single lithium battery pack was chosen to provide power to the whole payload. The mass filter, cryogenic pump and the ion/electron detection devices were the responsibility of $A F G L$.

The design of the mass filter control unit was based on an eight-bit microcontroller with a built in EEPROM. The operating system program was stored in the EEPROM. Flight and/or the test parameters to control the filter were stored in an EEPROM accessible from the outside through the communications port of the microcontroller. A block of 16 eight-bit instructions defined up to three atomic mass units through which the mass filter could be
stepped while maintaining the same offsets, biases and the ratio between the ac and the dc components of the quadrupole excitation signal. A total of 126 such blocks were available for the definition of a flight program that could be repeated indefinitely.

Two twelve-bit DAC's were employed to generate the quadrupole excitation control signal and to set the ratio between the $a c$ and the $d c$ components of the excitation. A domain of one atomic mass unit was defined by twenty-seven levels of the control signal. Offset control for the excitation signals was provided by three 8-bit DAC's receiving their inputs from the mass filter control program. Two of the signals were primarily intended to eliminate the offset voltages of the power amplifiers producing the two dc components of the quadrupule excitation. The third signal controlled the offset of the ac component. Four bipolar digitally controlled bias signals generated by 8-bit DAC's and two fixed high voltage supplies to bias the ion detectors completed the list of signals required by the mass filter.

The mass spectrometer dwelled 10 ms at each selected atomic mass unit. The data in form of a pulse count was collected during the last 9 ms of the dwell time. The first millisecond was allotted for the stabilization of the quadrupole excitation after the selection. A sixteen-bit counter was used. The data collection process and the PCY telemetry were synchronized. The ion data collected during a PCM frame was transmitted together with the support data
during the following frame. Each frame consisted of 20 eight-bit words, MSB first. The word assignments within a frame are tabulated in Appendix A. Data, atomic mass unit identification and the ratio information were transmited as two consecutive 8 -bit words, the most significant byte first. The remaining words carried other support and monitor data. Analog monitor signals were converted into the digital form by an 8-channel data aquisition system. The l6kbps PCY data stream was converted into the Bi-phase Level form for transmission through the FM link.

The ac excitation for the quadrupole was generated by an oscillator whose frequency was determined primarily by a resonant circuit consisting of the secondary winding of the output transformer and the capacitance of the quadrupole. The generator was able to produce an output signal that ranged from -.5 volts to 450 volts peak at $2.3 M H z$ into a 94 pF capacitive load. This amplitude range exceeded the quadrupole requirements to detect ions between 10 and 150 atomic mass units.

An oscillator-driven, non-saturating, dc-to-dc converter provided $\pm 110, \pm 15$, and +5 volt outputs to meet circuit requirements. The converter operated at a nominal $\therefore j k H z$ frequency and required between 0.6 and 1 at 28 volts. The two current limits occurred when the filter was set to process ions at the two extreme atomic mass units of 10 and 150 respectively. Battery voltage to the converter was pre-regulated at +20 volts.

The instrument could be armed in a preparation area before being transported to the launcher. Applying an arming pulse through a small connector in the skin of the payload latched a relay that connected the battery to the pullaway circuits only. Power to the control circuits and the transmitter remained blocked as long as an external connection carrying approximately lmA of current from the payload battery to the pullaway circuits was in place. Upon launch the external connection was broken. At that time power became available to the transmitter and to the control circuits. The ac exciter and the HV supplies were activated after a pre-programmed time interval during the Elight when the nosecone of the vehicle had been ejected and the mass spectrometer had been exposed to the atmosphere.

II. CIRCLITS

In this chapter a brief description of the circuits in the mass filter control unit is presented. The descriptions include, where appropriate, the function of an individual component and its relationship to other components during the execution of a control task. Whenever possible, a block of circuits contributing to the execution of a given control function or functions are presented together in a single circuit diagram.

A. Digital Circuits

The circuits generating and/or responding to digital commands and intended for packaging as a functional unit
are shown in figure l. The design of the control unit was based on an INTEL 8751 (Ul) microcontroller (uC). The micro-controller operated at 6.144 MHz and contained the operating system program in its internal EPROM. The mass filter control program and the timing information was stored in the EEPROM (U2). Multiplexed bus structure was used to address and to transfer data to and from the other integrated circuits. The microcontroller ports zero and two were used for that purpose.

The EEPROM was the only component connected to the bus that required an external address latch. 44 latched the lower byte of the address for the PROM.

The serial $I / 0$ port of the microcontroller was utilized in a full-duplex configuration to communicate with external devices in an asynchronious mode. Through this port the EEPROM could be programmed and the other devices connected to the bus could be accessed. The remainder of the $I / 0$ pins were used to generate individual discrete commands to control other circuits in the payload or to provide the chip select and control functions for other integrated components on the bus. To augment the available microcontroller I / O pins for the chip control functions a 3 to 8 line decoder (U3) was used.

A watchdog circuit was employed to guard against a program crash. The circuit consisted of a counter ($1 / 2$ of (13) driven by a 16 kHz input and the NAND gates U15X. A pulse generated at $Y 7$ of $U 3$ under the software control of the microcontroller cleared the counter (pin 12 of 413)
every 500us. The pulse propagated through $U 15 C$ and the $R C$ network. Failure to clear the counter produced a positive enabling pulse at pin 8 of U 13 and $62.5 u s$ later a pulse of the same duration at loUl3. That latter pulse passed through the coincidence gates to the reset pin of the microcontroller. Since the most likely period of time for a noise induced program crash could be anticipated to be during the lift-off, the watchdog circuit could restore the system to a proper operation with a minimum loss of the data window. The reset at power-on was generated by the $R C$ circuit at pin 5 of l'l5B.

The analog signals to control the quadrupole excitation were generated by 12 -bit A / D converters. The converter $\mathbb{C l} 6$ generated the ac excitation control signal while the Ul7 established the ratio between the ac and the dc components of the excitation. Each atomic mass unit domain was resolved into 27 levels differing one from the other by 1 significant bit. The converter output covered a nominal range from zero to +10 volts. The $-10 v$ reference for the converter was derived from the monolytic source U21.

To generate the four bias signals a quad 8 bit A/D converter l'l9 was used. Same type of a converter (Cl 18) generated three dc signals to compensute for excitation amplifier offset voltages or to introduce, if needed, some offsets into the excitation signals. To eliminate possible loading problems while operating over a wide range of
temperatures, separate reference sources (U22 and U23) were provided for each converter.

The ion spectral data appearing in the form of pulses was accumulated during a 9 ms period for each atomic mass unit in the 16 -bit binary counter 48 and 49 . The counters had the tri-state output capability and, therefore, could be connected directly to the bus. The count was transfered into the PCY data stream every 10 ms and, at that time, the counters were also cleared. The various analog monitor signals were converted into an 8 -bit digital data by the 8 channel data acquisition component $U 20$. The converter received its 256 kHz clock from a crystal oscillator Ul2.

The 16 kHz PCI clock was also derived from the same crystal oscillator through a 4 bit binary scaler (1/2 U13) and the l'ljD gate. The formatting of the PCM frame was under firmware control. A frame consisted of twenty 8-bit words. The words were loaded into the parallel-to-serial shift register l'6 by the microcontroller. The microcontroller was interrupted to load a new word every juOus by a timing signal generated at pin 9 of U 13 . The same inter rupt was also used to control the scan rate of the mass filter. The timing for the nosecone ejection and for the activation of the $H V^{\prime}$ supplies and the ac exciter was based on the accumulated count of the interrupts.

The nosecone ejection commands were transmitted through L'5. Four descrete commands were provided. Each line was capable to sink 200 mA at 28 volts and was intended to drive a relay. To insure that all lines were in the
high impedance state during the power-on interval, the same reset signal used to initialize the microcontroller was employed to clear the relay driver. Only after the reset pulse to the microcontroller had been removed, the clear signal was allowed to decay to zero. The transient suppressor line shown in the figure was connected to the relay power source.

B. The Amplifiers

The circuits used to condition and to amplify the dc signals generated by the digital to analog converters are shown in Figures 2 and 3 . The exciter control signals were processed by the circuits of Figure 2 while the bias signals were converted to the required polarity and then amplified to the desired levels by the circuits of figure 3 .

The ac exciter control signal was buffered by the unity gain inverting amplifier A_{31} before being passed on to the ac excitation generating circuits. The signal from the multiplying $D A C$, that controlled the ratio between the ac and the de components of the quadrupole excitation, was processed by the amplifier circuits $A_{21} . A_{22}, A_{1}$ and A_{2}. These circuits produced the positive and the negative dc components of the excitation. The two dc signals were very closely matched in magnitude. A common quadrupole bias Q_{B} was also added to the dc signals through the high roltage amplifiers A_{1} and A_{2}. The offset voltages of the amplifiers could be digitally nulled. The bipolar offset control signals were introduced at the inverting inputs of the amplifiers A_{21}, A_{22} and A_{31}. The first two signals
were primarily intended to cancel the dc offsets of the output amplifiers A_{1} and A_{2}. The third signal could be used to manipulate the dc offset requirements of the ac exciter circuits.

One of the four similar bias voltage amplifiers is shown in Figure 3. The unipolar signal generated by an 8 bit DAC was offset and amplified to produce a bipolar signal between -30 and +50 volts with proper choice of $R 25$. (U'sing look as illustrated produces an output bias range of $\pm 50{ }^{\prime}$ when the DAC output ranges from 0 to lov.) MOSFET's were used to boost the operational amplifier outputs to the desired levels. The common supply voltages to all four bias amplifiers were derived from the ± 10 volts required by the dc excitation amplifiers.

C. The AC Exciter

The circuits generating the ac component of the quadrupole excitation signal are shown in Figure 4. The opposite phase signals for the two sets of the quadrupole electrodes here obtained from the secondary windings of the oscillator transformer. The free running oscillator design frequency of $2.3 M H z$ was primarily set by the resonant circuit consisting of the output inductance of the windings and a capacitive load. The major contributor to the load capacitance was the quadrupole itself. Additional loading was introduced by the capacitive divider (C5, C7) and ${ }^{C}$ TRIM used to balance the output amplitude at the two windings. The signal to control the amplitude of the oscillator was obtained from the capacitive divider. It
was clamped by the circuit of $C 4, C R 7$ and $C R 8$. The diode CR8 provided some offset and temperature compensation. The clamped signal was filtered, inverted, attenuated and summed at pin 2 of $A l$ with the exciter control signal. The output of the amplifier provided the drive for Q_{1} wich in turn controlled the series pass transistor Q_{2}. This power transistor supplied the collector voltage for the tho oscillator drivers Q_{3} and Q_{4}. The dc base drive was also derived from the collector voltage, while the ac feedback signal to the base was obtained through the capicitors C 9 and ClO from the feedback windings of the transformer. The transformer was wound on a phenolic toroid 2.4 cm high with the outside diameter of 5 cm and an inside diameter of 3.8 cm . Amplitude control of the oscillator output could be maintained from a minimum of 2.5 to a maximum of 450 peak volts at a power supply voltage of 22 volts. The current requirements varied between 100 to 500 mA at the two output extremes.

The power to the oscillator could be cut-off by pulling the gate of Q_{1} to a ground potential. This circuit was utilized by the digital control subsystem during the initial stages of flight. The oscillator was turned on after the nosecone was ejected. in addition, two protective circuits were introduced into the exciter to inter rupt power to the oscillator to prevent damage when a danger to the driver transistors was sensed. One of the protection circuits A3A monitored the oscillator current. When the current exceeded la the power was periodically
inter rupted until the current was reduced. This protection was primarily intended to avoid long periods of a high power dissipation in the transistors when the circuit was accidentally prevented from oscillation. The other circuit (A2A) was tripped by a temperature sensor $C R 1$ when the oscillator base plate temperature exceeded approximately $80^{\circ} \mathrm{C}$. The oscillator was activated again when the temperature dropped below $50^{\circ} \mathrm{C}$. Amplifier circuits $A 2 \mathrm{~B}$ and A3B provided temperature and ac excitation amplitude monitor signals.
D. HV Bias Circuits

The high voltage circuits to bias the Channel Electron Yultipliers (CEM) are shown in Figure 5. The two CEM devices, one to measure the positive ions, the other for the negative ion data, were biased by separate HV supplies. The supplies whose outputs were proportional to the input voltages here operated at their maximum output of 3,000 rolts. The required input power at 12 volts was derived from the preregulated power supply voltage of 20 volts by the operational amplifier $A 6 X$ and the two MOSFET's Q_{17} and Q18. The power to the $H V$ supplies could be interrupted by the same circuit $\left(Q_{19}\right)$ which controlled the power flow to the ac exciter. Therefore, the $H V$ supplies and the ac exciter were alway activated at the same time. Power to the selected supply was switched through a relay which was under the digital circuit control.

The outputs of the $H V$ supplies were connected to the CEM's through two $1 M$ resistors and a capacitor providing
some additional filtering of the output ripple. The status of the two outputs were monitored through a 100 M resistors terminated by diodes for safety and circuit protection.

A single charge amplifier A2, AMMP-TECH A-101, mounted on the standard $P C-1 l$ test board was used to amplify the incoming spectral data. The same relay, which actirated the selected $H V$ power supply also switched the anplifier to the appropriate CEM device. Separate ac neutralization circuits were used for the data originating at the two CEM's. The neutralizing signal was derived from the two ac excitation components of the quadrupole. The potentiometer and the centertapped variable capacitor provided the amplitude and the phase control for the neutralizing signals to cancel the interferring ac signal appearing at the input of the amplifier.

E. Support Circuits

Figure 6 is a collection of the various monitor, communications interface and power control circuits.

The arming and power control circuit is shown in the upper left corner of the drawing. The latching relay connected the flight battery to the series pass transistor Q 2 which blocked the power to the rest of the control circuits as long as R_{27} and R_{28} were connected together. When in this configuration, the current drain from the battery was a nominal $2 m A$. The transistor Q_{1} was saturated, Q_{3} and Q_{2} were cut-off. lihen the connection between the two resistors was broken Q_{1} became cut-off and the pass transistor Q_{2} supplied power to the control
circuits. Thus, the payload could be armed before the installation into the launcher provided a short between R_{27} and R_{28} was maintained. Closure of the relay could be verified by a voltage measurement. The active OFF circuit was chosen to insure that upon launch the broken safety connection between the two resistors could short to the vehicle without upsetting the operation of the control electronics.

The group of circuits in the lower right part of the drawing are the communications interface circuits. They include the circuits (Ul, LUA) to convert the NRZ PCA: data into a bi-phase signal suitable to modulate an fy transmitter. The deviation of the transmitter could be adjusted by selecting the resistor R. A monitor output to observe and to use the $P C M$ data stream in the laboratory was also provided (L2B)

The interface circuits to control the operation of the mass spectrometer in the laboratory environment are shown in the lower part of that section. The U2C and L 2 D circuits were used to interface the microcontroller communications ports with a laboratory control unit. The circuit associated with Q_{5} was used to indicate to the microcontroller whether a laboratory test or a flight program was being run. The rest of the circuits shown in the Figure were the various monitors. A_{11} and A_{12} converted the $H V$ monitor currents into the voltage signals suitable for the A to D converter. The absolute value circuit A_{23}, A_{24} and A_{14} monitored the combined bias
voltages. Both dc components of the quadrupole excitation signal were monitored as a combined signal by A_{21} and A_{22}. The common bias component Q_{B} was subtracted in the monitor circuit from the $\pm D C$ voltages. The other two circults (10 S 5 and MON 6) were used to monitor the batery voltage and the ± 15 volt supply respectively.

F. The Power Supply

The power supply is shown in Figure 7 . It was based on a non-saturating squarewave driven transformer design. The pot core transformer was driven by the power YOSFET's Q_{1} and Q_{2} at approximately 25 kHz . The low impedence gate drivers Q_{j} to Q_{8} received their symetrical base signals from the FF U2 which was clocked by a jokHz signal generated by Ul.

The battery power to the converter was pre-regulated at 20 volts by VR1. VR2 provided the required +15 volts to the circuits directly from the pre-regulated power. All other voltages were derived from the transformer outputs and regulated by the circuits shown.

III. FIRMWARE

The operating system was stored in the EPROM of the microcontroller. Exclusive of the initialization process, the firmware provided three distinct modes of operation. The first mode controlled the payload in the beginning of the flight. At that time the primary task of the microcontroller was to provide the timing for the ejection of the nosecone and the activation of the $H \mathcal{H}$ and ac exciter
circuits. when that task was completed, the microcontroller entered the data gathering mode. In that mode it provided control signals for the mass filter and formatted the $P C M$ data. The third mode, intended for laboratory use, was command oriented. An external control source could access and modify the existing mass filter control firmware stored in an EEPROM. Also, various other control circuits could be directly accessed. Data read-out could be requested and the operation could be transferred into the data gathering mode. Only the timing functions to eject the nosecone and to automatically activate the HV and the exciter circuits were not accessable for safety reasons.

All communications to the microcuntroller from the external source were initiated with a command code. The command was followed by either an address code or a data code or both. The instructions were transmitted at 1200 bits per second using an asynchronious mode. A start bit and one stop bit with no parity were used.

The command codes were 8 -bit binary numbers with a ONE in the MSB position. The MSB was used to differentiate betheen a command and the address or data codes. The addresses and data were transmitted as 8-bit ASCII characters representing the hexadecimal numbers o through F. Each character thus defined four binary bits of an address or a data word in the same order of significance as received.

All transmissions to the microcontroller were immediately echoed back for verification. The end of transmission code initiated the execution of the just received command. When a command requested data to be sent back to the external control source, that data was transmitted in the binary code only. All communications from the microcontroller, except for the echo of an "ESCAPE" were followed by the end of transmission code. The command codes and the accessible memory locations are listed in Appendix B.

Upon launch, when the control unit became actire, the microcontroller proceeded through an initialization process which included activity to prevent a premature ejection of the nosecone. The externally introduced FLIGHT OR TEST flag was checked. When in the flight mode the microcontroller established a counter and loaded it with the first timing byte stored in the EEPROY. The interrupts from the PCM circuits served as clock pulses to decrement the counter. When the contents of the counter were reduced to zero the second byte was loaded. lihen the count once again reached zero, a command was generated to eject the nosecone and to remove the seal from the orifice of the mass spectrometer. The primary command was followed by a backup command a short interval later. After an additional delay the $H V$ supplies and the quadrupole exciter circuits were activated.

The codes specifying the flight time to nosecone ejection and the other events were stored in the EEPROM.

The binary code specifying the elapsed time between events was determined by taking the required number of seconds and multiplying that number by 10 . The longest time interval to be specified was the time between the launch and the primary command. to remove the nosecone. Therefore, two address locations in the EEPROM were assigned to time the primary command. The times for the back-up command and the command to activate the mass filter control circuits were referenced to the primary command. The number of seconds specified in the second byte were added to the time specified by the first byte. Thus, these two timed commands required only one memory location for each code.

Until the time that the mass filter exciter and $H V$ supplies were activated no meaningful data, except for the frame synchronization words (EB9OH), were present within the PCY frame. Once the instrument was activated, the microcontroller loaded the mass filter control circuits with the first set of the stored parameters. The data counters were activated lms later. The timing for the operations continued to be provided by the interrupts from the PCM. The support and monitor data was gathered and stored in a bank of temporary storage registers for transmission during the next frame. The ion data was collected during an interval of 9 ms in which 18 PCM data words were transmitted. The interval began with the second frame sync word and terminated with the onset of word 18 . At that time the data was also transferred into two holding registers. The mass filter control parameter transfer into
the circuits also was accomplished during word 18. Therefore, approximately lms of setting time was allowed before data gathering resumed with the filter set for a new atomic mass unit.

The mass filter control program was stored in the EEPROM. The first two address locations contained the frame synchronization words for the PCY data. The next four locations stored the time codes for the ejection of the nosecone and the activation of the mass filter. Remaining 10 address locations were left in reserve for other uses which could include an identification code and some other descriptive data for the stored program. The remainder of the $2 k$ byte EEPROM was reserved for the control program.

Sixteen locations were used to describe the parameters which stepped the filter through up to 3 atomic mass units. Common bias and ratio conditions were used for the operation in the three mass domains. When the present task was completed, the program advanced into the next block of 16 locations for new instructions. Thus, a total of 127 different parameter combinations could be stored before the flight program repeated. The control parameters and the sequence in which they were stored in the EEPORM are listed in Appendix C. The flow charts and the program of the operating system are presented in dppendix D and E respectively.

\square NEUTRALIZATION NETVIORK
TELECYNE 4I2D

REVISIONS

BYMEOL	DESCRIPTION	DATE	APPROVAL

APPENDIX A

PCY FRAME

```
HORD 1 AML CONTROL DATA MSBYTE
WORD 2 AMU CONTROL DATA LSBYTE
WORD 3 RATIO CONTROL DATA YSBYTE
WORD 4 RATIO CONTROL DATA LSBYTE
WORD 5 SPECTRA COLYTER DATA MSBYTE
WORD 6 SPECTRA COLNTER DATA LSBYTE
WORD 7 AC MONITOR
HORD & HV1 YOSITOR
WORD 9 HV2 YONITOR
WORD 10 COMBINED BIAS YONITOR
WORD 11 \pm DC MONITOR
WORD 12 + 15V MONITOR
GORD l }3\mathrm{ BATTERY V. MONITOR
WORD 14 TEMPERATURE YONITOR
WORD 15 QUADRUPOLE BIAS CONTROL DATA
WORD 16 BIAS 2 CONTROL DATA
WORD 17 BIAS 3 CONTROL DATA
WORD 18 BIAS 4 CONTROL DATA
GORD 19 FRAME SYNC GORD I
HORD 20 FRAYE SYNC HORD 2
```


APPESDIX B

COYMAND CODES

Command codes are given in the decimal notation. The address (A) and the data (D) represent hexadecimal numbers.

C. 9 D	1	128;	AAA; DD	-	Enters data into the EEPROY.
CYD	2	129;	AAA	-	Sends data from the EEPROY.
C.MD	3	131);	AA	-	Sends data from a selected monitor.
C.YD	4	131;	DDD	-	Enters data into the Control DAC.
C.MD	5	132;	DDD	-	Enters data into the Ratio DAC.
C.4D	6.	133;	AA; DD	-	Enters data into the selected Bias DAC.
C.YD	7	$134 ;$	AA; DD	-	Enter data into the selected Offset DaC.
C.MD	8	135;	AA	-	Sends data from the RAY.
C.MD	9	136;	Ad; DD	-	Enters data into the RAY.
C.MD	10	137;		-	RF/HV ON
C.MD	11	138		-	RF/HV OFF
C.YD	12.	139		-	Positive Ion liode
C.MD	13	140		-	liegative Ion Mode
C.MD	14	141;	AAA	-	Executes a segment of a mass filter program and sends one to three frames of data through the serial link.
CMD	15	142		-	Transfers control to the flight program.
C.VD	16.	168		-	End of transmission code.
C.YD	17	127		-	Reset
$C \cdot \mathrm{D}$	$1 \times$	2うう		-	This code is sent back to the external control to indicate an error in the recaived instruc-

COMMAND ADDRESS ASSIGNMENTS

CYD 182 EEPROM rJOH-7FFH
CYD 3 YOSITORS:

1. COMBINED BIAS (JUH 01 H
$2 .+15 V$
$2 .+15 V$
2. $\overline{\mathrm{H}} \mathrm{H} 1$ 02 H
3. HV2 U 3 H
4. \pm DC 04 H
5. BATTERY 05 H
-. AC AMPLITUDE 06 H
\&. TEMPERATLRE 0) 7 H
COD 0 BIAS:
6. DAC A (QUADRUPOLE) OOH
2 DAC B U1H
7. DAC C (12H
8. DAC D 13 H
CYD - OFFSET:
9. DAC A $(+D C)$ 00 H
10. $D A C B(-D C)$ 01 H
11. DAC C (AC) 02 H
(MD $8 \quad \& \quad 9$ RAM
$00-7 \mathrm{FH}$
CYD 14 EEPROM PROGRAM BLOC (010 X N) H
WHERE OlH $\leq N \leq 7 F H$

APPESDIX C

EEPROY DATA FORYAT

リOOH
001 H
002 H
() 3 H 004 H
005 H
1006H TO UOFH
XXOH
$x \mathrm{XIH}$
XX 2 H
XX 3 H
XX4H
$X X 5 H$
XX 6 H
XX 7 H
$\mathrm{XX8H}$
XXYH
XXAH
$X \mathrm{XBH}$
XXCH
XXDH
XXEH
$X X F H$

```
FRAYE SYXC. NORD 1 (EBH)
FRAYE SYYC. WORD \(2(90 H)\)
VOSECONE EJECT TIME: FIRET
INTERVAL
+ SECOND INTERVAL
BACk-l'P NOSECONE EJECT TIME
HV AND AC EXCITER ON TIYE AVAIIABLE FOR COMMENTS
```

```
HI-BYTE CONTROL DAC (ls: A`il)
LO-BITE CONTROL DAC
HI-BYTE RATIO DAC
HI-BITE RATIO DAC
OFFSET DAC A
OFFSET DAC B
OFFSET DAC C
BIAS DAC A (QLADRUPOLE)
BIAS DAC B
BIAS DHC C
BIAS DAC D
HI-BYTE CONTROL DAC (2nd. AYN)
LO-BYTE COSTROL DAC
HI-BYTE CO.VTROL DAC (3rd. AMI')
LO-BYTE CONTROL DAC
ESD OF PAGE/PROGRAY FLAG (OOH FEH)
```

YOTE: \quad. Control and ratio DAC data l - bits left justified.
2. UOH in locations XXBH, XXDH and XXFH adrances the program to the next page. [p. XXOH to p. ($X X+1$) UH].
3. $F F H$ in locations $X X B H, X X D H$ and $X X F H$ returns program to the first page [p.XXOH to p. UlSH].

APPESDI:D

FLOW GRAPHS

-46-

APPENDIX E

PROGRAM

LOE BES SME SOURCE
$=122$ SERIAL_RCOT CODE SEEMENT SODE $=: \quad 2 ?$ PROFILE E!TTCOR SESWENT CNDE
$=1: 34$ SEJECT
\therefore OR: \quad :VE Enures


```
Ces:
:ITEF:ME!POP:
```



```
SOCAL TO_DONE
```



```
                                    ."
            Dush 3,
            Pygh O!
            mov ro, toue
            MOV 21, BQUES
            INC ?!
            Miv 07.8 0T0
            IJN: RT.tFiFC
            SMP :TTEDONE
            : : : F0:
            mov A. PF!
            mov erotin
            INC D!
            INC RE
            DJM 5 -2:5:
        :Tosme:
            mov 2RT, Bim
            MEC 日ETE
            DRO :!
            Ono jnis
```



```
    CN: "a 20 :
    LOTA: He! DNE RS
    dach ? done
    : \(\because\)................. WA!T WA! \({ }^{\top}\) IME/10 SECONDS ....................................
            PUSH ACL
            DUSH NOM
            PuSg i!
            mov 21.\%WA:T:TME
        TO_DEST
            nov A.:
            \(\because\) TTO DOME
            yor 00.81000
            SETG TME HI
    :WH:T QNE MS:
                T!ME B!:.
```

$\angle O C$ OBS
LINE
SOUPCE

$=!$	jNB	ITME．E！T， 5
$=$ ！	DJW：	
$=1$	DES	P！
$=$ ！	inc	：0＿0．！
$=$ ：	9T0．anc：	
＝：	por	014
$=1$	prob	Oti
$=$ ！	Pof	ACS
$=!$		
$=1 \quad 3$	：IDEFINE GE：	
$=!$	meir	
＝1	EV	
$=1$	IN：	jp？
$=$ ！	Heva	
$=!$	Wever	
$=$ ：	：40	
$=$ ！		
：$:$		
	MOY	22.105
	－\％	Cinaray
	GEET MEXT：	
	nev	4．apfota
	： C	n：-s
	M ${ }^{\text {c }}$	
	IMC	¢．
	DiN：	：\％SET YEV
$=$ ：		
＝：$!:$	THESTRESET	こごS！
$=$ ：	mun	4．日fpta
＝	ng	Di．asi
$=$ ：	MOV	
$=$ ！	40 V	$\mathrm{P}_{2}, \mathrm{t} 0$
$=1$	IN：	petp
$=1$	movx	A，eDP：R
$=1$	mov	PG．ACC
＝	mev	ご，IBIAS ！SELEET」！
＝1	Mov	8 O .100
$=$ ！	INC	Ifto
\cdots ：	mevr	S．egets
$=!$	nov	0）．ACC
$=1$	Mov	P2．BPIAS＿S SELECTS
\because ：	30 V	020
＝1	INC	DSTE
$=1$	nour	a，apipte
＝！	nov	O．AC：

```
MES-5 MACRN ASSEMELER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MCS-51 MACPO & \multicolumn{2}{|l|}{ASSEMELEC} & \multicolumn{3}{|l|}{: 1 PJ SJFES ARELS} & \(\therefore 8\) \\
\hline - 3 OBJ & & UINE & \multicolumn{2}{|l|}{SOUPCE} & & \\
\hline & \(=\) ! & 145 & ; & & & \\
\hline 0.3 & \(=\) : & \(14 t\) & \(0 \cdot 6\) & EYT: & & \\
\hline \multirow[t]{4}{*}{9013 ?} & \(=\) ? & 147 & \multicolumn{3}{|c|}{QET:} & \\
\hline & \(=\) : & ! 49 & \multicolumn{3}{|l|}{:} & \\
\hline & \(=\) ? & \(: 19\) & \multicolumn{3}{|l|}{:} & \\
\hline & \(=\) ? & !5i! & \multicolumn{3}{|l|}{:} & \\
\hline N023 & \(=1\) & !5: & DRE & S14] & & \\
\hline Ma? n20non & F \(=1\) & !5? & & jM9 & SERIAL & \\
\hline & \(=\) : & !5? & ; & & & \\
\hline & \(=\) : & \(\bigcirc 54\) & ; & & & \\
\hline \multirow[t]{6}{*}{0.35} & \(=\) : & 155 & \multicolumn{3}{|l|}{366 354} & \\
\hline & \(=!\) & !5t & \multicolumn{3}{|l|}{:} & \\
\hline & \(=1\) & 15: & \multicolumn{3}{|l|}{:} & \\
\hline & \(=\) : & -58 & \multicolumn{3}{|l|}{90809:} & \\
\hline & = & 150 & \multicolumn{3}{|l|}{:} & \\
\hline & \(=\) ! & 159 & \multicolumn{3}{|l|}{ICINE?} & \\
\hline 90:5 & \(=1\) & \(16!\) & & 510 & 95? & \\
\hline \(397 \mathrm{C2D4}\) & \(=\) : & 162 & & CL & E5! & \\
\hline \(\therefore 39\) 75400? & \(=1\) & \(: 63\) & & mov & \(c_{2, ~}^{2} 8004\) & : CIEAR JUT RESET SEAR \\
\hline 003 C 029 C & \(=1\) & 164 & & EETP & 0 & : PREVENT THE EGP PLOKING \\
\hline Cin3E [295 & \(=1\) & 165 & & C0 & STPOBE & : DONT STADBE ANVTINS :MTE TLE OFIVSE \\
\hline 0040 D285 & \(=1\) & 156 & & 55] & F5. 4 V & : TURM JFF THE VOUCAGES \\
\hline 6.942 C293 & \(=1\) & 167 & & Cle & MON_OE & \\
\hline \(0044 C 294\) & \(=!\) & : 68 & & C. & M M MLE & \\
\hline , 546 C290 & =: & 169 & & CL & 169 & \\
\hline \(0348 \mathrm{C2B8}\) & \(=\) : & 170 & & SETB & PYC & ; titititititititititititit \\
\hline 9C4A 0288 & \(=\) : & \(!7\) & & SETE & IT & ; REACY INTO FOE WATCH SCE PIFClI? \\
\hline 904C D2AE & \(=1\) & 172 & & SETE & EYO & \\
\hline O04E D2AF & \(=1\) & 173 & & SETB & EM & \\
\hline 00508289 & \(=\) : & \(!74\) & & SETB & - \(0^{6}\) &  \\
\hline 00520 & \(=!\) & : 75 & & NTD & & \\
\hline \(\therefore 5.90\) & \(=\) ! & \(!75\) & & NCF & & \\
\hline 0.54 Fi,400 & \(=1\) & :? & & -Jv & OFTR, 84000 H & : ENTEF THE ECM SYNE WORDS \\
\hline 0057 ES & \(=\) ! & 179 & & meyr & A. EDP TP & \\
\hline \(\therefore 5855: 9\) & \(=\) ! & 177 & & Mov & OLEUE.A & \\
\hline 965A A & \(=1\) & :90 & & In & C! P & \\
\hline O:58 En & \(=1\) & \(15!\) & & movi & A. QDFTe & \\
\hline 005C F53F & \(=1\) & 192 & & mov & OUEUE \(+1 . R\) & \\
\hline -.55 750830 & \(=\) ? & :9? & & Mov & DCM_POINT, AQUELE & \\
\hline 0001751100 & \(=\) : & 184 & & mov & CFP_SAFETY, 00 & :PEEVENT E.SMINE SE caf \\
\hline 9064 7580F5 & \(=\) ! & 195 & & Mej & PO. TOFF4 & :UESET ERATS IF AN ESCADE - \\
\hline 00 C 7 754000 & \(=\) ! & ! 26 & & Mev & P2. Bion & \\
\hline  & \(=\) ! & [57 & & mov & SF, SSTACK. &  \\
\hline & = ! & ! 38 & [11t & titnti & 11tit1itititits &  \\
\hline 3060020000 & \(5=\) : & 197 & & ;mL & EER: A - ECO: & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline － & & LIME & SCURCE & & \\
\hline 1925： & \(=\) ！ & \(\because 2\) & ANL & A．CAF Sinest & ：SAEETY FEATIRE \\
\hline \(\therefore\) ，5＝53 & \(=!\) & \(\because:\) & M M & Pu，A & \\
\hline \(\therefore\) ： 5 & ＝： & －2 & SETE & strgee & \\
\hline \(\bigcirc 0 \square \mathrm{Cac}\) & \(=1\) & SE & CLP & stroge & ：LATSH ！M THE Valae \\
\hline \(\because\) O\％ & \(=\) ： & T： & 215 & 95 &  \\
\hline O： & \(=1\) & ：9 & INC & 9F\％ & \\
\hline \multirow[t]{3}{*}{E8} & \(=1\) & 38 & Meivy & A．DDETE & \\
\hline & ＝ & \(\because:\) & \multicolumn{2}{|l|}{\％mis＇\({ }^{\text {a }}\)／} & ：H6T EEFROM 0.4 ds SECONDS \\
\hline & \(=!\) & S： & \multicolumn{2}{|l|}{} & \\
\hline S\％ & \(=!\) & 35： & Mi & 4．tife－ & \\
\hline \％\％¢¢ & \(=1\) & 5？ & 4 nc & m．CAF＿SAETT： & \\
\hline O：\(=\) ¢ & \(=:\) & 354 & Mov & 3 C & \\
\hline ：\(:=5\) & \(=\) ！ & －55 & SET3 & 35058 & \\
\hline マここ5 & \(=\) ： & 35 & CLR & SThOPE & ：CAF IS Plgun ir zifery \(2 \mathrm{SE}=1\) \\
\hline \(\because:\) & \(=!\) & 5\％ & ：NC & 9895 & \\
\hline \multirow[t]{2}{*}{\(\because:\)} & \(=\) ： & 358 & moiv & merete & \\
\hline & ＝ & \(\because 7\) & \multicolumn{2}{|l|}{Thair \({ }^{\text {a }}\)} &  \\
\hline E： 2 F & \(=:\) & 38： & Cr & 日F－4 &  \\
\hline \multirow[t]{4}{*}{E} & \(=\)＝ & 39： & 14： & 2P5F： & \\
\hline & & 28： &  & CE．Se5 & \\
\hline & \(=:\) & T & ： & & \\
\hline & \(=\) ： & 2s & ； & & \\
\hline E： & ＝ & －80 & SERTM－：＝JEM & mist & \\
\hline \multirow[t]{2}{*}{ミ：こ．} & \(=:\) & 37 & FUSH &  & \\
\hline & ＝ & －85 & ¢5\％ 0 & & \\
\hline ： & ＝： & ： & \(\therefore R\) & ce： & \\
\hline こ：-74 & ＝ & \(\because\) & CR & OS！ & \\
\hline \(\because: 2095 \%\) & ＝： & \(\because:\) & jE & Ri．RECIEVE &  \\
\hline \(\because: 20\) & \(=\) ： & \(\because\) & O： & \(\uparrow\) & \\
\hline  & \(5=\) ： & \(: 3\) & SAL： & x！ & ：ELSE Thnsmit ney ：\({ }^{\text {a }}\) queje \\
\hline ：\(: ~-\) & \(=!\) & ： 1 & Fer & F5W & \\
\hline \(\because:\) & ＝： & Se & POP & SCC & \\
\hline \multirow[t]{4}{*}{：\(\because\)} & ＝： & \(7{ }^{7}\) & QET！ & & ：ANT 5e bick io milicme \\
\hline & \(=\) ！ & 297 & ： & & \\
\hline & \(=\) ： & 9 & ： & & \\
\hline & ＝： & 390 &  & & \\
\hline \(\therefore\)－：-9 & \(=:\) & ： & C．5 & R！ & \\
\hline ：5 z5as & \(=\) ： & ：\(:\) & MOV & B．5BuF & ：Sive incoming im e \\
\hline \(\therefore:=-\cdots\) & ＝ & \(\because:\) & js & B．\({ }^{\text {C }}\)－ & Cump if a command is pecieved \\
\hline \(\because \therefore 201005\) & \(=\) ： & \(\because:\) & ： &  & ：If expecting a command and recieve \\
\hline & \(=\) ： & 4： & & & ；DHiÀ THEN ERR \\
\hline O込 & \(=\) ： & \(6{ }^{5}\) & \％ & 4．CME． \(\mathrm{CN}^{\text {T }}\) & \\
\hline ： A 94080 & \(=\) ！ & 11.2 & CIME & M．DOBH．NOLSR & ：\(:\) t to mant pieces jf thit errof \\
\hline & \(=\) ！ & \(40^{\circ}\) & REV＿ERR： & & \\
\hline \(\cdots \cdots\) & ＝＝： & 406 & IMP & EPR & \(i=8\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SOC OBJ & & LINE & SOURCE & & \\
\hline \(0: 105005\) & \(=1\) & 409 & NO ERE：JNC & T0．ERR & ： 8 \\
\hline \(61: 2 \mathrm{Et5} \mathrm{\%}\) & \(=\) ！ & 416 & MSV & \(\therefore\) A \({ }^{\text {a }}\) & \\
\hline 1．1：4 84479： & \(=1\) & 4！： & ［JME & A．t6，L＇ 5 & \\
\hline ．117 220000 & \(5=\) ！ & \(4: 2\) & T0．ERq：JM\％ & ER5 &  \\
\hline 91： 10 40？ & \(=\) ： & \(41:\) & LT5：IC & 1Sく「6 & ： 6 \\
\hline 3：10 22000 & \(5=1\) & 414 & jr & Efr & ：\(=5\) \\
\hline & \(=1\) & 415 & S＿6．6： & & \\
\hline 2115844003 & \(=1\) & 416 & UYE & A，\＃AA－IH，NOT L－ & \\
\hline 0122020600 & \(F=\) ！ & \(4!7\) & Inc & ERR &  \\
\hline & \(=\) ！ & 418 &  & & \\
\hline 12550 & \(=\) ！ & 417 & JNC & Ve！\(: 0\) & \(: \dot{H}=V=\) \\
\hline 1：27 84：A60 & \(=\) ！ & 420 & CiME &  & \\
\hline 0128020000 & \(F=\) ： & 42 ！ & JF & E6： & ： 9 ： \\
\hline ： 20 400： & \(=1\) & \(4: 2\) & －！\({ }^{9}\) ： & ：S！\({ }^{\text {\％}}\) & \\
\hline \(3: 25000\) & \(5=\) ： & 4 & des & ¢ 95 & ；08： \\
\hline & \(=\) ： & 424 & ！！－－ & & \\
\hline Cin E42E & ＝： & 425 & C：ME & 二bER－！－ET0 & \\
\hline \(\because 2502000\) & \(F=1\) & 125 & jM5 & E¢f & \\
\hline  & \(=\) ： & 427 & ETA it & － 0 &  \\
\hline 01540000 & F＝ & 49 & j： & ご： & ： \\
\hline & \(=\) ！ & \(4{ }^{29}\) & VA． V ： & & \\
\hline OTS E538 & \(=\) ： & 42 & － & \(\therefore \mathrm{CMD}\) Sm &  \\
\hline 0！2F 243！ & \(=\) ： & \(4: 3\) & 950 &  &  \\
\hline 14： 5 & \(=\) ： & \(1: 2\) & \(\cdots\) & \(\cdots\) & \\
\hline \(0: 12 \mathrm{EFO}\) & \(=1\) & 43： & \({ }^{3}\) & Fi & \\
\hline \(0: 14\) Fe & \(=!\) & 434 & Mev & \％er．a &  \\
\hline 6．45 0578 & \(=\) ！ & \(4: 5\) & ：N & ［40．3T &  \\
\hline \(\because 1712000\) & \(==\) ！ & 4.6 & Cil & こ0－9 & ：EOUn BLC THE EATM \\
\hline ata Dat & \(=\) ： & 457 & 03 F & －\({ }^{\text {\％}}\) & \\
\hline \(\therefore\) OS O0E） & \(=\) ： & 408 & cof & MS & \\
\hline T：4E 2 & \(=1\) & 479 & PET： & & ；AE＇jjoh fir more data of eic core \\
\hline & \(=1\) & 440 & ： & & \\
\hline & \(=\) ！ & 441 & ； & & \\
\hline & \(=\) ！ & 442 & XHiT： & & \\
\hline 9145 7FF： & \(=1\) & 443 & miv & ：7．10F5\％ &  \\
\hline C：51 DFFE & \(=\) ！ & 444 & Qjne & 57 &  \\
\hline 015：E54F & \(=\) ： & 445 & mov & 4，8975 &  \\
\hline 0155700 ？ & \(=1\) & 446 & in： &  & \\
\hline 0157 C21！ & \(=\) ！ & 417 & CLI & M \(\mathrm{EF}_{5}\) & ：Wothlm in the pancess je re：Me lu： \\
\hline \(3!592 \%\) & \(=1\) & 448 & RET & & \\
\hline & \(=1\) & 449 & Q＿NOT＿EMPTY： & & \\
\hline 9154853999 & \(=!\) & 450 & Mor & SELF．guede &  \\
\hline & \(=\) ！ & 451 & IPCo & &  \\
\hline ©978021！ & \(=\) ！ & 47 & Ser & （8） &  \\
\hline Ma：？ & \(=\) ： & 474 & P® & & ；AWE LEm， \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\therefore 88\) & & ITME & SOURCE & & \\
\hline & \(=1\) & 565 & EOT_CMI: & & \\
\hline \(\therefore 2 \leq 530\) & \(=1\) & 56 S & nov & A,CHD_S & :GET THE CHD'S VALUE \\
\hline 218 -5:0¢0 & \(=\) ! & \(5 i^{-}\) & nOV & CHD_BLT, 500 & : PEPLACE WITH A IERO ELAE \\
\hline 02:8 -02 & \(=\) ! & 565 & INI & ChD_SET & :IF NO SHD THEN ELP \\
\hline \(\therefore 10 \mathrm{gAT}\) & \(=1\) & 569 & jaf & ERR & : If CHD=O THE NO CHD SO EFP \\
\hline & \(=1\) & 59 & EMC_SET: & & \\
\hline 9t & \(=1\) & 571 & NO_OF CMDS & EQU : 40 & : 15 COMMANDS 0-14 ARE VALIO \\
\hline \(\therefore\) 亿\% 0257 & \(=1\) & 579 & SLR & ACC. \(?\) & :STR!P THE MSE \\
\hline O2, 3 & \(=\) ! & 57 & RL & 4 & \\
\hline 12n 25 & \(=1\) & 574 & FI & A & ;PROVIDE A X4 GFFSET \\
\hline \(\therefore\) an ziont & \(5=1\) & 575 & Mov & QPTR,TOP GF & -TBLE \\
\hline  & =1 & 575 & JMP & QA+DPTR & :JUNF TO PROPER VECTIF \\
\hline & \(=\) ! & 57 & TGP gr Imp tole: & & \\
\hline \(\therefore 2.69000\) & \(F=\) : & 578 & JMF & \(\mathrm{CHDO}^{\text {a }}\) & \\
\hline \(\because 2\) & \(=1\) & \(5 \cdot 5\) & 409 & & \\
\hline \(\because 250000\) & F \(=1\) & 580 & Iup & CM01 & \\
\hline 2 n ¢ & \(=1\) & 581 & NOF & & \\
\hline こ2F & c = 1 & \(58 \%\) & JMO & CMO2 & \\
\hline - ? \(\square^{3}\) & \(=1\) & 583 & WOP & & \\
\hline 6nze ianog & \(F=1\) & 584 & 3ne & CMD3 & \\
\hline \(\therefore \mathrm{Ca} 0\) & \(=1\) & 585 & 40P & & \\
\hline OT? 020000 & \(5=1\) & 595 & JMP & CHD4 & \\
\hline C7. 80 & \(=1\) & 587 & W0F & & \\
\hline  & \(F=1\) & 588 & Jup & CHDS & \\
\hline \(\because \mathrm{OE}\) W & \(=\) : & 539 & MOP & & \\
\hline O3F J2000 & \(F=1\) & 50 & JMP & CH06 & \\
\hline 3420 & \(=1\) & 50: & WJP & & \\
\hline -4? 3900 & = = & 592 & IMP & C.5 07 & \\
\hline -2t a & \(=\) ! & \(59 \%\) & 40 & & \\
\hline "7? 200 & \(E=1\) & 504 & inf & cmje & \\
\hline 912 & \(=\) ! & 505 & NOP & & \\
\hline \(\therefore\) - 4 : \(\because 6 \mathrm{Q}\) & 5 : & 56 & InP & Cudg & \\
\hline  & \(=\) : & 59 & NOP & & \\
\hline -at 230 b & F =: & 508 & Jup & CHD: & \\
\hline 13: 06 & \(\because\) : & 99 & NOP & & \\
\hline \(\therefore \therefore \mathrm{v} 2000\) & \(F=1\) & 800 & jup & CHDL: & \\
\hline \(\cdots \mathrm{Ec}\) & \(=1\) & ef: & WDF & & \\
\hline \(\therefore 5.3000\) & \(F=\) : & 692 & jup & CHD:2 & \\
\hline \(\because 54\) & ": & 515 & NOP & & \\
\hline S55 M0jo & \(5=1\) & 684 & Jwirn & CMDIS & \\
\hline \(\because 5 E \because\) & \(=\) ! & be & Nop & & \\
\hline CS5 \%ovot & \(c=\) ! & 600 & jup & CHDI4 & \\
\hline \(\because 920\) & \(=1\) & 0.7 & NOP & & \\
\hline 605 3 & \(=1\) & 608 & NOP & & \\
\hline 35406 & \(=1\) & ect & 4 NP & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 100 08j & & ！ME & SOURCE & & & \\
\hline 2306 6292 & ＝！ & 700 & & CLR & MON＿OE & \\
\hline （3）28 75A000 & \(=1\) & 701 & & Mov & \(02.00 \% 4\) & \\
\hline 0.0822 & \(=!\) & 702 & & QE ！ & & \\
\hline & \(=\) ！ & 703 & ， & & & \\
\hline & \(=1\) & \(7{ }^{3}\) & DECOOE： & & & \\
\hline 00008 & \(=\) ！ & 7.95 & & CLR & 5 & \\
\hline djad coeo & \(=1\) & 70.6 & & PuS & ACC & \\
\hline 03059441 & \(=1\) & 707 & & 5496 & \(4.14{ }^{\text {a }}\) & \\
\hline 051！ 4005 & \(=!\) & 708 & & J & 40？\(A_{-}{ }^{\text {a }}\) & \\
\hline Cis 240a & \(=\) ！ & 709 & & ADE & 4，idan & ：IF A－F CORGECT FOR OFFSET \\
\hline \(0: 15159\). & \(=1\) & ？11） & & DEC & SP &  \\
\hline 07972 & ＝！ & \(71!\) & & RE！ & & \\
\hline & \(=\) ： & 712 & NOT＿A－5： & & & \\
\hline \(0: 19\) dee & \(=\) ： & ？！ & & PCP & 2.0 & \\
\hline \(1: 19 \mathrm{C}\) & \(=1\) & 714 & & Cf & C & \\
\hline 1：1594：0 & \(=1\) & 2！5 & & SuFs & 2，12E & \\
\hline \(0: 10 \%\) & \(=!\) & 716 & & RE： & & \\
\hline & \(=\) ： & 717 & ； & & & \\
\hline & \(=\) ！ & 718 & ： & & & \\
\hline & \(=\) ： & 719 & cmas： & & & \\
\hline 031E ：2000 & \(==1\) & 729 & & Cali & 812＿BIT＿施CODE & \\
\hline 03215080 & \(=1\) & －21 & & PUSH & FO & \\
\hline \(0: 23853180\) & \(=:\) & 722 & & Mov & FN，CMD＿QUF +1 & \\
\hline 132 COMa & \(=1\) & 723 & & PUSH & 82 & \\
\hline 0528 75AODE & \(=1\) & 724 & & NOV & P？．4n58．8F & \\
\hline \(5: 28 \mathrm{DOH}\) & \(=!\) & 725 & & POP & 82 & \\
\hline 3320 853280 & \(=!\) & 725 & & MOV & PO，CMI，BUF +2 & \\
\hline 030 COAO & \(=1\) & 727 & & PUSH & P＂ & \\
\hline ． 3332759058 & ＝！ & 728 & & Mov & P2．flSB＿KF & \\
\hline 0335 DOA0 & \(=1\) & ＇29 & & 9 P & 02 & \\
\hline 0.357 dosé & \(=1\) & 730 & & POP & PO & \\
\hline いこ39 7550A8 & ＝！ & 731 & & MOY & B，1EOT，CDOE & \\
\hline 033 C ：20000 & \(F=1\) & 732 & & CALL & ECHO & \\
\hline 0335 C290 & \(=1\) & 735 & & OLP & XFR & \\
\hline 03410290 & \(=!\) & 734 & & SETE & XFR & \\
\hline 0543 22 & \(=1\) & 735 & & PET & & \\
\hline & \(=1\) & 736 & CMOS： & & & \\
\hline 0344120000 & \(F=1\) & 737 & & CALL & R：2＿81：gecode & \\
\hline 0347 Cosi & \(=!\) & 738 & & P！SH & F： & \\
\hline 0349853180 & \(=1\) & 779 & & moy & \(50 . \mathrm{CNO}\)＿ \(\mathrm{BUF}+1\) & \\
\hline 03aC COAO & \(=\) ！ & 740 & & Pusw & F2 & \\
\hline OJ4E 75A0EO & ＝！ & 341 & & nov & P2，14SB＿D & \\
\hline OJ51 dCAO & \(=\) ： & 742 & & POP & P？ & \\
\hline 935？853250 & \(=1\) & 74 & & 404 & \(\mathrm{PO}, \mathrm{CMD}, \mathrm{BUF}+2\) & \\
\hline 0356 COAC & \(=1\) & 744 & & FUSH & \(2 ?\) & \\
\hline
\end{tabular}
－65－
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MCE－51 macro ASSEMBLER} & \multicolumn{2}{|l|}{L！PD（SUPER ARCAS）} & \\
\hline Of SP： & & LINE & source & & \\
\hline C－52 50000 & \(=:\) & 74 & MCV & P2． 1.58 .94 & \\
\hline 3358 biac & \(=!\) & 740 & POP & \(\square_{:}\) & \\
\hline － ED D So & \(=:\) & 47 & Pre & E？ & \\
\hline Sefescing & \(=1\) & 748 & mev & F．HEOT．CODE & \\
\hline O5： 30006 & \(5=\) ！ & －49 & Call & SCHE & \\
\hline \(\because 55090\) & \(=1\) & 750 & CLP & PER & \\
\hline  & ＝： & 75： & SETB & fr & \\
\hline \multirow[t]{4}{*}{\(\because: 29\)} & ＝： & 752 & RET & & \\
\hline & ＝！ & 755 & ： & & \\
\hline & ＝ & 754 & ： & & \\
\hline & ＝： & 755 & R12＿9！T＿DECODE： & & \\
\hline こ¢ E5： & ＝1 & \(75 \pm\) & Mov & A．CAD＿BuFt & \\
\hline Sec ：2000 & \(F=\) ！ & 757 & CALL & DECODE & \\
\hline OS5 84 & ＝ & 758 & 5M \({ }^{2}\) & 4 & \\
\hline TT－ 55 & ＝ & 759 & Mov &  & \\
\hline \(\because 2 \mathrm{ES}\) ？ & \(=1\) & 766 & mov & A，CMD＿BJF＋2 & \\
\hline \(\because 4\) 2009 & \(F=1\) & 761 & CALL & DECOOE & \\
\hline 9－4 423： & ＝！ & 762 & 3PI & CME BUF +1.4 & \\
\hline \(\cdots \square\) & \(=1\) & 765 & nov & A，CMD＿BJF＋？ & \\
\hline ATE ： 500 m & \(F=1\) & 764 & CALL & DECODE & \\
\hline \(\because \mathrm{O}\) & \(=1\) & 765 & SuAp & A & \\
\hline \(\therefore 375\) & ＝！ & 760 & MOV & CMD＿BUF＋2， A & \\
\hline \multirow[t]{4}{*}{\(\therefore \mathrm{Cl}\) \％} & ＝！ & 76 & QET & & \\
\hline & \(=1\) & \(\checkmark 68\) & ： & & \\
\hline & ＝！ & 79 & ： & & \\
\hline & ＝： & \(\cdots\) & CW05： & & ：TFFSET／BIAS POKE \\
\hline T．Ex & \(=1\) & ？！ & mov &  & \\
\hline ¢04 ：20\％ & \(=1\) & 7 & CALL & decode & \\
\hline O28：446e & \(=1\) & 713 & 3FL & A，MRIAS＿O SELECT & \\
\hline OES＝5： & ＝！ & 774 & mov & CND＿EEPI，A & \\
\hline  & ＝！ & 75 & nov & A，CMD Pulf & \\
\hline O20 2000 & \(==1\) & －76 & CAL： & DECODE & \\
\hline ご介 & \(=1\) & \(\cdots\) & SWAP & 4 & \\
\hline \(\because=5\) & ＝！ & \(\cdots\) & mov & CM0 84F +2.9 & \\
\hline \(\because 23\) E5： & \(=!\) & 776 & nov & G，CMD SUF＋J & \\
\hline OE 120000 & \(F=1\) & 9 & CALI & DECODE & \\
\hline \(\therefore\) ： 423 & \(=1\) & 99： & gRL & Cun＿ELF＋2．f & \\
\hline ： 50.90 & \(=1\) & 9\％ & －15 & Po & \\
\hline －s \({ }^{\text {esen }}\) & \(=!\) & 9 & mov & Fi，Cun＿bifot & \\
\hline C35 Cla & ＝！ & －9 & PUSH & P？ & \\
\hline 941 5530 & ＝ & 785 & 4 m & P2．CMC＿BUF 4 ！ & \\
\hline O．34 2 S & \(=!\) & 786 & ¢09 & P2 & \\
\hline Tine Dot & ＝！ & 797 & POP & PO & \\
\hline Cins 75Fme & \(=1\) & 788 & nov & B，AECT＿CODE & \\
\hline 0：48 1：000j & \(5=1\) & 789 & CHEL & ECHO & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MCS-5! MACRO ASSEMELER} & \multicolumn{4}{|l|}{LIPD (SUPER ARCAS)} \\
\hline LOC OBJ & & LIME & SOURCS & & & \\
\hline \multirow[t]{4}{*}{OJAE 22} & \(=\) ! & 790 & & RET & & \\
\hline & \(=1\) & 791 & ; & & & \\
\hline & \(=!\) & 792 & ; & & & \\
\hline & \(=1\) & 793 & CMDb: & & & : BIAS:OFFSET POFE \\
\hline 03AF E531 & = & 794 & & HOV & A.CMD BUF+1 & \\
\hline ¢381 120000 & \(F=1\) & 795 & & SALL & DECODE & \\
\hline 43544470 & \(=1\) & 796 & & ORL & A. Abias_! select & \\
\hline 0386 F531 & \(=1\) & 797 & & MOV & CMD_SUF +1. \({ }^{\text {a }}\) & \\
\hline 03188 E532 & \(=\) ! & 798 & & nov & A, CMO_ BUF + ? & \\
\hline 0384 120000 & \(F=1\) & 799 & & CALL & DECODE & \\
\hline O3ED C4 & =: & 800 & & SWAP & A & \\
\hline USEE F532 & = & 801 & & MOV & CMD_BUF \(+2, A\) & \\
\hline O3CO E533 & \(=1\) & 802 & & MOV & A, CMD_ BUF 3 & \\
\hline C3C2 120000 & \(F=1\) & 803 & & CALL & OECODE & \\
\hline 03C5 4232 & \(=1\) & 804 & & ORL & CMD_BUF \(+2, A\) & \\
\hline 0.076080 & \(=1\) & 805 & & PUSH & Po & \\
\hline OSC9 853280 & \(=1\) & 806 & & HOU & PO,CMD_BUF+2 & \\
\hline OSCC COAO & \(=1\) & 807 & & PJSH & P2 & \\
\hline OJCE 8531A0 & \(=1\) & 808 & & MOV & P2,CMD_BUF+1 & \\
\hline O3D1 DCAO & \(=1\) & 809 & & POP & P2 & \\
\hline 03D3 0080 & \(=1\) & 810 & & POP & PO & \\
\hline \(630575 F 048\) & \(=1\) & 811 & & MSV & B, HEOT_CODE & \\
\hline 0308120000 & \(F=1\) & \(8: 2\) & & CALL & ECHO & \\
\hline \multirow[t]{2}{*}{CSDB 22} & \(=1\) & 813 & & PET & & \\
\hline & \(=1\) & 814 & CM07: & & & ;RAM FEEK \\
\hline (3DC E53! & \(=1\) & 815 & & MOU & A. CMO_ BuF +1 & \\
\hline O3DE 120000 & \(F=1\) & 916 & & CAL, & DECODE & \\
\hline VSE1 C4 & \(=\) ! & \(8: 7\) & & SWAP & A & \\
\hline O3E2 5531 & \(=1\) & 818 & & MOV & CMD_BUF+1, A & \\
\hline OJE4 E532 & \(=1\) & \(8!9\) & & nov & A.CHD BUF +2 & \\
\hline OJE6 120000 & \(F=1\) & 820 & & CALL & DECDDE & \\
\hline ¢ 3E9 4231 & \(=1\) & 82: & & ORL & CMD_BUF+1, A & \\
\hline O3EB C000 & \(=1\) & 822 & & PUSH & SOH & : FO FBO \\
\hline 97ED ABS! & \(=1\) & 825 & & MOV & RO, CMD_BuF +1 & \\
\hline OSEF E6 & \(=1\) & 824 & & Mov & A, PPO & \\
\hline GF50 D000 & \(=1\) & 825 & & POP & 00 & ;RO RBO \\
\hline 93F2 5550 & \(=1\) & 826 & & MOV & 8.4 & \\
\hline 3j54 120000 & \(F=1\) & 827 & & CALL & ECHO & \\
\hline 03F7 75F0A8 & \(=1\) & 828 & & mov & E. VEOT CODE & \\
\hline 03FA 120000 & \(5=1\) & 829 & & CALL & ECHO & \\
\hline \multirow[t]{4}{*}{O3FD 22} & \(=1\) & 830 & & RET & & \\
\hline & \(=1\) & 831 & ; & & & \\
\hline & \(=1\) & 832 & & & & \\
\hline & \(=\) ! & 833 & CHDB: & & & : RAM POKE \\
\hline O3FE E531 & \(=1\) & 834 & & HOV & A,CND_BUF+1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{MES-51 MACRO ASSEMRIER} & \multicolumn{3}{|l|}{SIPD (SUPER ARCAS)} & \\
\hline 10\% 083 & & LINE & SOURCE & & & \\
\hline 5400:20000 & \(F=1\) & 935 & & CALL & decode & \\
\hline 0408 : 4 & \(=!\) & gic & & Smap & A & \\
\hline -4;4 F531 & \(=1\) & 8:- & & MOV & CMD_BUF+1, A & \\
\hline : 95 E52 & \(=1\) & 838 & & mov & A,CMD \(\mathrm{BUFF}_{\text {- }}\) & \\
\hline 4.49 12600\% & \(F=1\) & \(89^{9}\) & & CALL & DECODE & \\
\hline 1494231 & \(=\) ! & 840 & & ORI & CMD_BUF+1, A & \\
\hline 34: 255 & \(=1\) & 841 & & mov & A,CMD BUF +3 & \\
\hline 3SOF 12000 & \(F=1\) & 842 & & CALL & DECOAE & \\
\hline 3412 Cl & \(=1\) & 943 & & SMAP & A & \\
\hline :4:3 5:3 & \(=1\) & 844 & & MOV & CMD_BUF \(+2, A\) & \\
\hline :4:5 5534 & \(=1\) & 845 & & mov & A, CMD BUF +4 & \\
\hline 34.7 120000 & \(F=1\) & 946 & & Cicli & DECODE & \\
\hline 94:4 4532 & \(=1\) & 947 & & DRL & A, CMD \(\mathrm{BUF}+2\) & \\
\hline -4: 2 coos & \(=1\) & 848 & & PUSH & 00 & :RO RBO \\
\hline 24!E m¢J! & \(=1\) & 849 & & MOV & RO, CNC_BUF+1 & \\
\hline  & \(=1\) & 850 & & nov & ERO, A & \\
\hline (42: Doon & \(=\) ! & 85! & & PCP & 00 & ; PO RBO \\
\hline 442: 75F0M8 & \(=1\) & 852 & & MOV & B. CEOT_CODE & \\
\hline \(\therefore 22612000\) & \(F=1\) & 853 & & CALL & डcho & \\
\hline \multirow[t]{5}{*}{489 22} & \(=1\) & 854 & & PET & & \\
\hline & \(=1\) & 855 & ; & & & \\
\hline & \(=1\) & 856 & ; & & & \\
\hline & \(=1\) & \(85 ?\) & : & & & \\
\hline & \(=1\) & 958 & CMD9: & & & :EMABLE HVPF \\
\hline 424585 & \(=1\) & 859 & & CiR & RF_ 4 H & \\
\hline 14: ? 5 SJAE & \(=1\) & geo & & MOV & B, iedt code & \\
\hline 12712090 & \(F=\) : & \(8: 1\) & & CALL & ECHO & \\
\hline \multirow[t]{5}{*}{-4: \(:\) ?} & \(=\) : & 862 & & PE! & & \\
\hline & = & 863 & : & & & \\
\hline & \(=1\) & 854 & : & & & \\
\hline & =! & 855 & : & & & \\
\hline & = ! & 360 & CMDIC: & & & : DISABLE RURF \\
\hline \(3435 \mathrm{D285}\) & \(=\) : & 867 & & SET8 & RF_HV & \\
\hline 01:5 759048 & \(=1\) & 968 & & MOY & B.tE0T_CODE & \\
\hline 24:8:20008 & \(F=\) ! & 869 & & CALL & ECHO & \\
\hline \multirow[t]{5}{*}{\(\bigcirc 4022\)} & \(=1\) & 870 & & RET & & \\
\hline & \(=\) ! & 371 & ; & & & \\
\hline & \(=1\) & 872 & , & & & \\
\hline & =: & 373 & : & & & \\
\hline & \(=1\) & 874 & Cmb11: & & & ;CLR POS MEG ION SELECT \\
\hline 343 C 297 & \(=1\) & 875 & & CLF & 10 M - CONT & \\
\hline (43E 75F0AS & \(=1\) & 876 & & MOV & B, HEDT CODE & \\
\hline 744!120050 & \(F=1\) & 877 & & CALL & ECHO & \\
\hline 044422 & \(=1\) & 876 & & RET & & \\
\hline & \(=1\) & 879 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{106085} & & LIME & \multicolumn{3}{|l|}{SOURCE} \\
\hline & \(=1\) & 880 & : & & \\
\hline & \(=1\) & 881 & ; & & \\
\hline & \(=\) : & 882 & CMD12: & & :SET PSS WES IOM SELECT \\
\hline 24450297 & \(=1\) & 883 & SETg & ION_COYT & \\
\hline -447 759028 & \(=\) : & 984 & Mov & 8. HEOT_CODE & \\
\hline . 44 A 120000 & \(F=1\) & 885 & CAS! & ECHO & \\
\hline \multirow[t]{5}{*}{944022} & \(=1\) & 986 & & \multicolumn{2}{|c|}{RET} \\
\hline & \(=1\) & 887 & : & & \\
\hline & \(=\) ! & 888 & ; & & \\
\hline & =: & 389 & ; & & \\
\hline & \(=\) : & 890 & CMD13: & & :STEP GERIA: COMMAND \\
\hline 944E E531 & \(=1\) & 891 & mov & A,CHE_BUF+1 & \\
\hline - 650 !20000 & \(F=1\) & 892 & CALL & DECDEE & \\
\hline -453 5583 & \(=1\) & \({ }^{893}\) & nov & :PH.4 & \\
\hline 2455 E5:2 & \(=\) ! & 894 & mov &  & : NI MIBPLE OPL \\
\hline 0457!20000 & \(F=\) ! & 895 & CA:L & decaje & \\
\hline \(\therefore 454\) & \(=\) : & 896 & SMAP & 4 & \\
\hline 9458 F5e2 & \(=1\) & 897 & nov & DPI.A & \\
\hline :45D E5: & : & 898 & Mov & A, CuI BuF +3 & \\
\hline ucf 120000 & \(5=\) : & 399 & Cu. & jecons & \\
\hline 040? 4:32 & \(=\) : & 3 So & ORL & DPL.A & \\
\hline (1454 0214 & \(=\) ! & 90: & SETE & SERIAL_STEP & \\
\hline 0466 ? 400 & \(F=1\) & 90.2 & MSV & A, TLOM (CALL & FILE) \\
\hline C46E CDE & \(=\) ! & 90: & PuSt & fict & \\
\hline 34647400 & \(F=1\) & 904 & mov &  & (ILE) \\
\hline 3468 CSES & \(=1\) & 905 & Erisu & ASC & \\
\hline 140E C215 & \(=1\) & 906 & Cif & Milicamu & \\
\hline \multirow[t]{3}{*}{347032} & \(=1\) & 907 & RETI & & :REtukn so as to be able to interupt via the \\
\hline & \(=1\) & 908 & ; & & SERIAL LINK \\
\hline & \(=1\) & 909 & \multicolumn{3}{|l|}{CALL_PROFILE:} \\
\hline \(047120!15 \mathrm{~F}\) & \(=\) : & \(9: 3\) & 38 & X \({ }^{\text {PF, }} \mathrm{S}\) & :LOCP UWTI: Quele is Enply \\
\hline \multirow[t]{2}{*}{0474120000} & \(F=1\) & 911 & CALL & FLIGHT_PROF! & \\
\hline & \(=1\) & \(9!2\) & \multicolumn{3}{|l|}{MEX STEF:} \\
\hline 0477 754F14 & \(=1\) & \(9:\) & Hov & Q PTR, 1200 & \\
\hline \multirow[t]{2}{*}{9474 029\%} & \(=1\) & 914 & SETB & I! & :CREATE A serial interupt \\
\hline & \(=1\) & 9:5 & \multicolumn{3}{|l|}{iprocessing interufis to Send autle} \\
\hline 647000 & \(=1\) & 916 & \multicolumn{3}{|l|}{NOP} \\
\hline 0470201150 & \(=!\) & 917 & 3 s & YEF, \({ }^{\text {S }}\) & :LOOP UNT!L ALl bita is Sent \\
\hline 0480301508 & \(=!\) & 918 & JNE & Multiamu, 5 & EXIT \\
\hline \(0483201: 50\) & \(=1\) & 919 & JF & XPF, 5 & \\
\hline 6486120000 & \(F=1\) & 920 & CALL & Entry & \\
\hline \multirow[t]{2}{*}{O489 80EC} & \(=1\) & 921 & jnp & NEX. STEP & \\
\hline & \(=\) ! & 7.2 & \multicolumn{3}{|l|}{STEP_ELIT:} \\
\hline 0488755048 & \(=1\) & 923 & \(n \mathrm{n}\) & 8.tEO? CODE & \\
\hline 04BE 120000 & \(r=1\) & 924 & Call & ECHO & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{FSS-51 MACAO ASSEMELER} & LIPD (SUPER ARCAS) & \\
\hline \multirow[t]{5}{*}{- 98J} & LIME & SOURCE & \\
\hline & \(=1\) 102: & ; & \\
\hline & \(=1 \quad 1082\) & : WORD 6 IS SENT BY FCM & \\
\hline & \(=1 \quad 1083\) & 26E \({ }^{\top}\), im \(^{\text {m }}\) & :GET TUE NEXT VALUES FDR AnU \\
\hline & \(=1\) 109: & ; & \\
\hline \multirow[t]{4}{*}{MEF 316FD} & \(=1.092\) & JME TIME_S!?, & \\
\hline & \(=1093\) & ; & \\
\hline & \(=11094\) & : WORD 7 IS SEMT EY FSM & \\
\hline & \(=1 \quad 1095\) & ; & \\
\hline OE2 740 & \(=1 \quad 1096\) & MOU A.BPF MON & \\
\hline \multirow[t]{2}{*}{\(\therefore 2150000\)} & \(F=1 \quad 1097\) & CALL RRC MOM & ; START AIAC CONVERSIOM OF RF MONITOG \\
\hline & \(=1 \quad 1098\) & ; & \\
\hline \multirow[t]{4}{*}{MiF 20.55} & \(=1 \quad 1099\) & J8 TMRE_E!T, & \\
\hline & \(=11100\) & ; & \\
\hline & \(=1 \quad 110!\) & ; HORE 9 IS SENT BY PCH & \\
\hline & \(=11102\) & : & \\
\hline \(\therefore 0\) a 2000 & \(F=1 \quad 1103\) & CALL ADAC & ;GET THE RF MONITDR VALJE \\
\hline OU=0 F54! & \(=1.1104\) & MOV QUELE \(+9, A\) & :ANC RESTORE NORE \\
\hline IGE PAOS & \(=1 \quad 1105\) &  & \\
\hline \multirow[t]{2}{*}{\(\therefore\) 为} & \(F=1 \quad 1: 00\) & CAL A ADC MON & :START ADAC CONUERSION OF HV I MONITOF \\
\hline & \(=1 \quad 1: 07\) & ; & \\
\hline \multirow[t]{4}{*}{034 30:5Fn} & \(=1 \quad 1108\) & 3NA TIME_6:7.5 & \\
\hline & \(=: \quad 399\) & ; & \\
\hline & \(=: \quad: 1: 5\) & : WORD 9 IS SEN+ EI FCM & \\
\hline & = ! : ! ! & ; & \\
\hline  & F = \(1 \quad: 1:\) & CALL ADAC & :GET THE NV ! MCNITCR VALLE \\
\hline  & \(=1.105\) & MOV CUEUE + C , & :AMD RESTORE NORE 9 \\
\hline  & =: : \(:\) : 4 & mov A, \#HV _ mon & \\
\hline \multirow[t]{2}{*}{} & \(5=1 \quad: 1: 5\) & CAL: ADC MEV & : START CONUERS:DM Of HV 2 MONITOF \\
\hline & \(=!\quad 1: 3 \leq\) & : & \\
\hline \multirow[t]{4}{*}{} & \(=1 \quad 1!!^{7}\) & JP TIME EIT.S & \\
\hline & \(=1 \quad: 30\) & : & \\
\hline & \(=: 111^{0}\) & : WORE : S IS SENT BY PCM & \\
\hline & \(=1.1120\) & ; & \\
\hline \(\therefore 2\) : 2000 & \(5=1 \quad 1: 21\) & CAL- ADAC & :GEt the hy 2 mon!top valie \\
\hline \(\cdots 5\) & \(=1 \quad 1: 32\) & MOV OUELE + ! O.A & : AND RESTORE WOFD ! ! \\
\hline \(\therefore \therefore 0-400\) & \(=1 \quad 115\) & HOV A, MCOME MON & \\
\hline \multirow[t]{2}{*}{\(\therefore 1512000\)} & \(F=!\quad: 3: 3\) & CALL ADC MOM & :START CONVERS:ON OF COME WONITOR \\
\hline & \(=1 \quad: 3 \mathrm{St}\) & : & \\
\hline \multirow[t]{4}{*}{} & \(=1 \quad 1156\) & JWE TINE PIT, 5 & \\
\hline & \(=1 \quad 112 \%\) & : & \\
\hline & \(=11128\) & ; MORD 11 SENT OY PCM & \\
\hline & \(=1 \quad 1129\) & : & \\
\hline \(\because: 口\) ! 30000 & \(F=1 \quad 1130\) & CALL ADAC & :GET :HE COME MOWITOR VALUE \\
\hline \(3: 14554\) & \(=11131\) & HOV CUEUE 111.4 & :AND RESTORE MORD 11 \\
\hline ¢ \% \% 7404 & \(=1 \quad 1132\) & HOV \(A, B D C\) nom & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline LOC OBJ & LIME & SOURCE & \\
\hline D10A 75A060 & \(=1 \quad 1244\) & MOY &  \\
\hline 0101958040 & \(=1 \quad 1245\) & nov & QUEUE + 7 . PO \\
\hline 0150 75a000 & \(=: 1246\) & Mov & \(=2,100\) \\
\hline DEE 95104C & \(=1 \quad 1247\) & nov & BUEUE +17. BJAS_ 3 : FESTJRE WORD 19 \\
\hline OEE 201403 & \(=: 1248\) & J &  \\
\hline 0159020000 & \(f=!: 249\) & JMP & ENTRY :EYESTE YEYY FROFILE \\
\hline & \(=!1250\) & FROF:LE PETUPN: & \\
\hline OEE 22 & \(=1120\). & PET &  \\
\hline & \(=1.1252\) & : & \\
\hline & \(=\) : \(125{ }^{\circ}\) & ADC MON: & istar adar convepsiny \\
\hline 91ED C204 & \(=1 \quad 1254\) & CLP & MON_ALE \\
\hline CLEF 449? & \(=1.1255\) & OR! & A, HRON SELE.T \\
\hline 0!F! Coab & \(=!\quad!256\) & Pug & \(?\) \\
\hline AtFs F5A) & \(=!: 257\) & MOV & 02.4 \\
\hline \(0!550204\) & \(=!1258\) & SETE &  \\
\hline \(0: 570294\) & \(=1.256\) & CLF & MOM HE \\
\hline  & \(=\) : 125 & Fip & \(\bigcirc:\) \\
\hline 0.FB 8200 & \(=1\) 126! & SEIB & MON_STRT :START THE CONVEFSTO4 \\
\hline 01F0 C29: & \(=1 \quad 1252\) & CLR & MON_STRT \\
\hline ) 1 FF 22 & \(=1205\) & RET & \\
\hline & \(=1 \quad 1254\) & : & \\
\hline & \(=!\quad 1265\) & ; & \\
\hline & \(=1 \quad 1266\) & HAAC: & : get converted amalog value \\
\hline 9200 COAD & \(=1 \quad 1267\) & PUSH & \(P_{2}\) \\
\hline 0262 COBO & \(=11268\) & PUSH & PO \\
\hline 0204754000 & \(=1 \quad 1269\) & Mov & P2. \(\$ 00\) \\
\hline 0207758055 & \(=!1270\) & MOV & PO, ICFFH \\
\hline 920A D292 & \(=11271\) & SETB & mon_ob \\
\hline \({ }^{\text {2 } 20 C}\) E580 & \(=1.272\) & MOV & 4, fo \\
\hline 220E C.a2 & \(=1 \quad 1273\) & CLR & MOM_OE \\
\hline 211. D080 & \(=1: 274\) & POP & Pi \\
\hline 0212 10AO & \(=1 \quad 1275\) & POP & \({ }^{2}\) \\
\hline 021422 & \(=1 \quad 1276\) & RET & \\
\hline & \(=!\) !277 & ; & \\
\hline & \(=1 \quad 1278\) & ; & \\
\hline & \(=1 \quad 1279\) & - Into briven & Qutine for pch limk \\
\hline & \(=1 \quad 1296\) & PCM_ROUTINE: & \\
\hline 0215 CODO & =1 :28! & PUSH & PSW \\
\hline & \(=1 \quad 1282\) & USING: & : \\
\hline 3217 C204 & \(=: 1283\) & CLR & RS! \\
\hline 1219 D203 & \(=1 \quad 1284\) & SETB & RSO \\
\hline 1218 6090 & \(=1 \quad 1285\) & PUSH & \(P\) : \\
\hline 021D C292 & \(=\) ! 1296 & CLR & MON_OE \\
\hline Q2IF COEO & \(=: 1287\) & PUSH & ACC \\
\hline 0221 rome & \(=1288\) & PUSH & -2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline - CS-51 MACRO \(^{\text {a }}\) & gembler & \multicolumn{2}{|l|}{UPD (SUPER ARCAS)} & \multirow[t]{2}{*}{160} \\
\hline LOC 08: & LINE & \multicolumn{2}{|l|}{SOURCE} & \\
\hline \(0: 23080\) & \(=: 1289\) & PUSH & Po & \\
\hline 0225 Eb & \(=1290\) & nov & A, gen & :GET THE MEXT MORD \\
\hline 0228 & \(=1 \quad 125\) & INC & R 5 & ;POINT TO THE WEXT MORD \\
\hline ? 3 ? 880092 & \(=1292\) & CJME & RO, tQueut + ? 0 , & \\
\hline (12\% 90 & \(=1\) ! 29 & nov & rc, nouele & :REAL!5N IF DVEPFLOM \\
\hline & \(=: \quad 1294\) & \multicolumn{3}{|l|}{NO! OVERFLOM:} \\
\hline (2aC 35000 & \(=11295\) & nov & F2, 000 & \\
\hline C.22F 5589 & \(=1 \quad 1296\) & M3 & Pi, A & \\
\hline :2: T5AuTs & \(=:\) :29? & MOV & P2, APCM, LOAD & ;PLT THE MORD IMTO THE PCH STREAM \\
\hline 035459000 & \(=1 \quad 1298\) & MOV & P2, 100 & \\
\hline \(\because 8216\) & \(=11250\) & CPL & TIME_BIT & ;SHOM THAT THE WORD IS BEIMG SENT \\
\hline 22390080 & \(=1 \quad 1300\) & POP & PO & : PESTORE THE MAY SDUMD \\
\hline 23560040 & \(=1 \quad 1301\) & PDP & P? & \\
\hline Sas meo & \(=1 \quad 1302\) & pap & ACC & \\
\hline 350990 & \(=1 \quad 1003\) & PIP & P! & \\
\hline 284. 500 & \(=1 \quad 1304\) & POP & PSW & \\
\hline \(\because 43\) : & \(=11305\) & RETI & & : AND RETURN \\
\hline & 1306 & END & & \\
\hline
\end{tabular}

XREF SYMBOL TABLE LIST!MG

\begin{tabular}{|c|c|c|c|}
\hline CMD_CNT. & O ADDR & O¢3ar & A \\
\hline CMD_RDY. & 8 ADDP. & 0022 H .0 & A \\
\hline こnd_SET. & C ADDR & 021FH & K \\
\hline CMD. & C ADDR & O17EH & R \\
\hline chdo & C ADDR & 0260H & E \\
\hline CHD1 DECODED & C AdDis & 02B2H & F \\
\hline CH0! & C ADDR & O2AEN & 5 \\
\hline Choio. & C ADDR & 0433 & R \\
\hline CHOLI. & C ADDR & 043CH & F \\
\hline CMDI2. & C AdDr & 0445H & R \\
\hline CNDIS. & C ADDR & 04EH & R \\
\hline ChDI4. & C ADDP & 0494H & R \\
\hline CROIFLG. & 8 ADDF & 0022H. 2 & A \\
\hline CHD2 & C ADDR & 02C8H & R \\
\hline CMO3 & C ADDa & O31EH & Q \\
\hline
\end{tabular}

ATTQ:BUTES AND REFERENCES

\section*{E5 416307}




204 954 1095 1070 1085 \(1: 74\) :185 :21c
211757 10co 1071108811881219

826828852860868876884923
961150
981237238
751773102110241027 1030
?64 \(79698298: 992997\)
2510231228
\(264102612: 2\)
2710291247
SEG=SERIA﹎﹎BOOT_CODE 3514
SE6=3ERIAL_BOOT_CODE 3204
SEG=SERIAL_BOOT_CCDE OO2 9049091
\(1: 34\)
284184244248322353
SEG=SERIAL BOOT COOE C22 555




341234405450455493405555
42723140349 t 557850
SEG=SERIAL_BOOT_CODE 569 57\%
SEG=SERIAL BOOT COPE 402 478:
SEG=SERIAL_BOOT_CODE 578 521t
SEE=SERIAL_BOOT_CODE 6346564
SE6=SERIAL_B001_CODE 5806544
SES=SERIAL_BOOT_CODE 598 B66
SEG=SERIAL_BOOT_CDDE 600874
SEE=SERIAL_BOOT_CODE 602 9824
SE6=SERIAL_BDOT_CODE 604 8901
SE6=SERIAL_BOOT_CODE 6i6 930\%
44162! 634654
SEG=SERIAL BOOT CODE 582569
SE6=SERIAL_BOOT CODE 5E4 :194
\begin{tabular}{|c|c|c|c|c|c|}
\hline M AME & TYOE & \multicolumn{2}{|l|}{VALUE} & \multicolumn{2}{|l|}{ATTRIBUTES AND REFERENCES} \\
\hline Ches & C ADDA & 0344H & R & SE6=SERIAL_BOOT CODE & 5967364 \\
\hline [ \(=0\) & C ADDA & 0382 H & F & SEG=SERIAL_BOOT_CODE & 5887701 \\
\hline CMDo & C ADDR & CJAFH & R & SEG=SERIAL_BOOT_CODE & 5907931 \\
\hline CHD7 & [ ADDR & O30CH & \% & SE6=SERIAL_BOOT_CODE & 5928141 \\
\hline chcs & C ADDR & (i) FEH \(^{\text {d }}\) & R & SEG=SERIAL_BOOT_CODE & 5948331 \\
\hline Cmico & C ADDR & O42AH & \(R\) & SEG=SERIAL_BOOT_COOE & 596858 \\
\hline [ HT . & B ADD & 0090H. 1 & A & 57110511238 & \\
\hline CIMB MON & YUWE & 3 OOOH & A & 931123 & \\
\hline D_Hiju & NUM & CO48H & A & 6911240 & \\
\hline I Com. & Nuab & 2060H & A & 7019491244 & \\
\hline DS_MON & NUMB & 0004H & A & 941 113: & \\
\hline JEC.STN. & C ADDR & OCB:H & A & 1972031 & \\
\hline DECODE. & C ADDR & O3OCH & R & SEG=SERIAL BOOT CODE 780795799803816 & 6246286326366406716757041757761764772776 820835839842846892895899 \\
\hline DELA․ 2. & \ ADDF & OFA3H & A & 1141 & \\
\hline DELAY 3. & Y ADCF & OFAAH & A & 116 & \\
\hline  & C MDDR & 2000H & R & SEE=PROFILE FLT CODE & 3829369424 \\
\hline nes. & O ADDF & COBSH & A & 485487511642644 & 659893933 94t 10401048120712081212 \\
\hline DFL. & D ADDR & 1082H & A & 484488510643600 &  \\
\hline EM & S ADDF & 00ABH. 7 & A & 173254515 & \\
\hline E¢4 & C Modes & OICIH & R & \[
\begin{aligned}
& \text { SEG=SERIAL_800T CODE } \\
& \text { T } 69 \text { 8:: } 827829853
\end{aligned}
\] & 4364975045194544554649663665679681732749 861869877985924 \\
\hline SEPPR R R & ¢ Ancr & (2ash & R & SEG=SERIAL_BOO? CODE & 6471 \\
\hline EFrogn selsct. & nume & 9040H & A & 6986446589461212 & \\
\hline Entr. & C ADDK & 0023H & F & SES=PROFILE FLT CODE & 92096511249 \\
\hline ECT & C ADOR & 02164 & R & SEG=SERIAL_BOCT_CODE & 4865654 \\
\hline 50\% code & nur & DOABH & A & 1068483648664680 & (731748788811828852 860868876984970 \\
\hline Erc.cone & Ning & ACLTH & A & 1058553 & \\
\hline ES5. & C ADDR & AF5 & ? & SEG=SERIAL_BDOT_CODE & 4084124144174214234264285461569616 \\
\hline E5 & B ADDR & OWABH. 4 & A & 245247255 & \\
\hline E®こCM. & C ADDR & 01AAH & R & SEG=SERIAL_BDSt CODE & 4815021550 \\
\hline ES.CORE & NUME & O07FH & A & 1041480503549 & \\
\hline Elf. & E ADDR & 0048H.O & A & 172253 & \\
\hline Etre. & [ 4 DDR & 0303H & A & 143 & \\
\hline ExT:. & C ADER & 2013H & A & 146 & \\
\hline : \(: 314\) & C ADDR & 016DH & R & SEG=SERIAL_BOOT_CODE & 4594611466 \\
\hline 5! 6 64t_ 800 T . & C ADDR & 0226 & R & SEG=SERIAL_BCOT_CODE & 216246 \\
\hline FL:SHT_DROFILE & : ADDR & Oin 5 H & A & SES=PROFILE FLT CODE & \(911{ }^{\text {945 }}\) \\
\hline \(5 . *\) Pelat. & C ADDR & 003FH & R & SEG=SERIAL BOOT CODE & 2552650 \\
\hline FORCE RETURN & C ADDR & 020EH & - & SEG=SERIAL_BOO! CODE & 5584 \\
\hline FEAME MORD 0 & Y ADDR & 3 FAOH & A & 1118 & \\
\hline SRAME.MCRD_ & Y ADDS & PFA! \({ }^{\text {a }}\) & \(\dot{H}\) & 1124 & \\
\hline 3. & nunb & 00474 & A & 874111 & \\
\hline EET MIN. . & C ADDR & 02E6H & R & SEG=SERIAL BOOT CODE & 6776851 \\
\hline E5t MExT: & C ADOR & Oing OH & R & SES =PROFILE FIT_CODE & 972977 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mare & TYPE & \multicolumn{2}{|l|}{VALUE} & \multicolumn{2}{|l|}{attributes and referemces} \\
\hline \(55^{5} 0\) & C ADDR & 0138 H & R & SEG=SERIAL_BOOT_CODE & 4254274 \\
\hline 671. & C ADDR & O1E4K & R & SES=SERIAL_BCOT_CODE & 5315325351 \\
\hline HV_1 HON & numb & 0002 \({ }^{\text {H }}\) & A & 9111105 & \\
\hline HV_2 2 HON & numb & 0003H & A & 9211114 & \\
\hline IEO. . & B ADIR & 0088H. 1 & A & 174 & \\
\hline IF_FLT & C ADDE & 0076H & A & 196199205 & \\
\hline 1 OM CONT & B ADDR & 0090H. 7 & A & 5418758831019 & \\
\hline IS_FLT & B ADDR & 0022H. 3 & A & 451 & \\
\hline 15_LT.9. & E ADDR & 0132H & R & SEG=SERIAL_BOOT CODE & 422424 \\
\hline IS_LT.6. & C ADDR & 0117 FH & R & SEG=SERIAL_BOOT_CODE & 4! 415 \\
\hline 190. & B ADDR & 0088H. 0 & A & !71 251 & \\
\hline JHP TC PRBFILE. & C ADDR & 049CH & H & SE6=SERIAL_BOOT_CODE & 9319354 \\
\hline KEEP_SAFET:. & C ADDR & O2O2CH & \% & SE6=SERIAL_BOOT_CODE & 247249 \\
\hline L58. DC & NuMB & 006OH & A & \(7317451013!195\) & \\
\hline !S8 \({ }^{\text {a }}\) & numb & 0058 & A & 711728 100? 1189 & \\
\hline LT. 9 & C ADDR & 0120H & R & SEG=SERIAL_BODT_CODE & 4204221 \\
\hline 156 & C ADDE & O11AH & R & SES=SERIAL_BOOT_CODE & 411413 \\
\hline MAY_FLIGH? & C ADDR & 0087H & A & 2131 & \\
\hline mon_ale. & 9 ADDR & 0090H. 4 & A & 5071686896901254 & 12581259 \\
\hline MON OE & 8 ADDR & 0090H. 2 & A & \(52 \pm 1676987001271\) & 127: 1286 \\
\hline MOn_SELECT & Numb & 0000H & A & \(81 \% 6868961255\) & \\
\hline MOH_STKT & 8 ADDR & 0090H. 3 & A & 51169169212611262 & \\
\hline MS8_DC & MUME & OOEOH & A & 774110101192 & \\
\hline MSB_RF & nume & OODBH & A & 72172410041186 & \\
\hline Mult! Anu. & B ADCR & 0022H. 5 & 4 & 474906918947966 & 117911821213 \\
\hline MEXT_STEP. & C ADDR & 0477H & \(k\) & SEG=SERIAL_BOOT, CODE & 9121921 \\
\hline NIM. & NUMP & 0039H & A & 898420 & \\
\hline H0_ERR & C ADDR & 0110H & R & SEG=SERIAL BOOT CODE & 4064091 \\
\hline NO_ESC_ERR & C ADDR & OIFEH & P & SE6=SERIAL_BOOT_CODE & 549551 \\
\hline NO.OF_CHDS & NUMB & OOOEH & A & 5718 & \\
\hline NOTA_F. . & C ADDR & 0318H & R & SE6=SERIAL_BOOT CODE & 7087124 \\
\hline NOT_EEPROH_RESET & C ADDF & OIAAH & R & SEG=PROF ILE FLT_CODE & 120912118 \\
\hline MJT_END PROFILE. & C ADDR & 016FH & R & SEG=PROFILE FLT CODE & 117711810 \\
\hline NOT EOT. & C ARDR & 0199H & R & SEG=SERIAL_BOOT_CODE & 48? 4921 \\
\hline 407 ESC. . & C Addr & 0186H & R & SEG=SERIAL_BDOT_CODE & 480482 \\
\hline NOT_LTA & C ADDR & 0125H & R & SEG=SERIAL BOOT CODE & 4164181 \\
\hline not_nulti_anu. . & C ADDR & 0198H & R & SEG=PROFILE FLT CODE & 1176118011998 \\
\hline NOT_OUERFLOM . . & C ADDR & 022CH & R & SEG=PROFILE_FLT_CODE & 12921294 \\
\hline OD. . . . . . . & 3 ADDR & 0090H. 6 & A & 601164326 & \\
\hline ? \(0 . . . . . .\). & D ADDR & 0080H & A & \[
\begin{array}{lllll}
185 & 323 & 354 & 687 & 697 \\
806 & 810 & 951 & 981 & 986 \\
1188 & 1191 & 1194 & 1239
\end{array}
\] & \begin{tabular}{l}
\(69972172272673073873974374 ? 782783787805\) \(99199610031006100910121020102310261029 \quad 1185\) \\

\end{tabular} \\
\hline PI . . . . . . & D ADDR & 0090H & A & \(505!5253545759\) & \(60128513: 3\) \\
\hline P2 . . . . . . & D ADDR & OOAOH & A & 581631866886936 74678478578680 ? & \begin{tabular}{l}
\(69670172372472572772872^{\circ} 74074174274475\) \\

\end{tabular} \\
\hline
\end{tabular}
mame type value
\begin{tabular}{|c|c|c|c|}
\hline PJ & D ADDK & (108OH & A \\
\hline \({ }^{9} \mathrm{CH}\) _LDAD & MHE & 0078H & A \\
\hline PCMPPOIMT. & Numb & 0008H & A \\
\hline PCM_ROUTIME. & C ADDR & 0215H & \(R\) \\
\hline PRE_ESC. & C ADDR & OICIH & R \\
\hline PROFILE_FIT_CODE & [ SE6 & 0244H & \\
\hline Profile_RETURN & C ADDR & O1ECH & R \\
\hline PRCFILE. & ADDR & OFBOH & A \\
\hline PS & B ADDR & 00884. 4 & A \\
\hline PSM. & D ADDR & DODOH & A \\
\hline pro. & B ADDR & оовен. 0 & A \\
\hline 9_BIAS & D ADDR & 0000H & A \\
\hline 9_FULL & C ADDR & O1E9H & R \\
\hline a_MOT_EMPTY. & C ADDR & 015AH & R \\
\hline Q PTR. & D ADDR & 004FH & A \\
\hline HEUE. & O ADD & 00394 & \\
\hline
\end{tabular}

\section*{ATtRIBUTES AKD REFEREMCES}

10051007100810101011101310141021102210241025102710281030


5556
7711297
1711832529601235
SEG=PROFILE FLT CODE 144 1280*
SE6=SERIAL_BOOT_CODE \(509513 \%\)
REL=UNIT 1234938
SEG=PROFILE_FLT_CODE 124812504
1188
243
\(3873944374894985601281 \quad 1304\)
170250
241101710201173
SE6=SERIAL_BOOT_CODE 5245401540
SEG=SERIAL_BOOT_CODE 4464491
369235445458469522523529530913

 12411245124712921293
SEG=SERIAL_BOOT_CODE 7207377551
221971100910771191
23 101210781194
SEG=SERIAL_BOOT_CODE 4034073
SEG=SERIAL_BOOT_CODE 3913994
218
551166381859867
9011096
242391400
SEG=SERIAL_BOOT_CODE 523525\#
1613891284
1623901283
491
401450
239
58:
REL=UNIT 122: 228
SEG=SERIAL_BOOT_CODE 1892122301
4619019251248
SEG=SERIAL_B00T_CODE 152 786
SE6=PROFILE_FLT_COBE 9669686
\(15!\)
187505559710
371187505559

\begin{tabular}{|c|c|c|}
\hline  & － 4 － & CW：ELTES ANC GEEEEENES \\
\hline  & 3g9\％ &  \\
\hline  &  &  \\
\hline  & ツ「い－ & ご ！！5\％ \\
\hline  & \(\cdots\) &  \\
\hline －－．．．．．．． & \(\therefore こ ゙\) & \(\cdots\) \\
\hline －1．．．．．．E－ \(\mathrm{c}^{\text {n }}\) &  & 24： \(2-5 \times 4\) 54： 3.4 \\
\hline  & －04． &  \\
\hline & &  \\
\hline & &  \\
\hline －．．．．．． & ？2nu & \(\because\) \\
\hline － & ソごー & \(\because=\) \\
\hline  &  & 2in 234 \\
\hline －¢－．．．－－， &  & －4． 150 \\
\hline  & 胢二 \(=\) &  \\
\hline ＊－： & \(\cdots\) &  \\
\hline \(\because\)－！－．． & \(\cdots\) \％ &  \\
\hline  & 乐场 &  \\
\hline －- NE：．． & Sintin＝ &  \\
\hline T－JE！．．．－－\％ & 里㐌 &  \\
\hline  & ソp？\({ }^{\text {a }}\) &  \\
\hline  & Mith＝ &  \\
\hline MSNE！．．．．\(=\)－Mrot & \(\therefore 374\) &  \\
\hline  & 3119 &  \\
\hline  & me80H 4 & 21：\(\square^{\prime}\) \\
\hline  &  &  \\
\hline PF．．．．．．，E CRE & \％984． 4 & 24. \\
\hline  & －5954 4 & \(\because\)－ \\
\hline  & \(\because \because \mathrm{Sm} 4\) \％ & E¢ \\
\hline  & \(\therefore\) OK＝ &  \\
\hline  & \(\therefore \mathrm{ar}\) & －51 1：4！ \\
\hline  & \(\therefore\) ごリ＝ &  \\
\hline  & inch＝ &  \\
\hline Wh：gne mise ，－ince & Onta＝ &  \\
\hline  & \(\because 9024=\) &  \\
\hline  & VAG＊＝ &  \\
\hline  & \(\cdots\) act &  \\
\hline  & O号号 &  \\
\hline  & C！5： &  \\
\hline  & 亿－2H：i &  \\
\hline  & morim，： & 5 t ：65 \\
\hline  & \(\therefore \mathrm{OFH}=\) &  \\
\hline こE．．．．．．．Gum & サー＊ & E3\％ 4.5 －：5 \\
\hline
\end{tabular}



le oftes mes is


\section*{IX. PERSONNEL}

A list of the engineers who contributed to the work reported is given below:
J. Spencer Rochefort, Professor of Electrical and Computer Engineering and Principal Investigator.

Raimundas Sukys, Senior Research Associate, Engineer.

\section*{X. RELATED CONTRACTS AND PUBLICATIONS}

F19628-74-C-0042
F19628-76-C-0256
F19628-78-C-0218
F19628-81-C-0162

1 Sept. 1973 through Oct. 1976
l Aug. 1976 through 31 Oct. 1978
15 Sept. 1978 through Sept. 1981
15 Sept. 1981 through Sept. 1985

Raimundas Sukys, Steven Goldberg, "Control Circuits for Rocket Payload Neutralization Experiment and Other Topics", Scientific Report No. 1 for Contract Fl9628-74-C-0042, October 1974, AFGRL-TR-74-0580, ADA008039.
R. Sukys, J. Spencer Rochefort, S. Goldberg, "Bias and Signal Processing Circuits for a Mass Spectrometer in the Project EXCEDE: SWIR Experiment", Scientific Report No. 2 for Contract F19628-74-C-0042, October 1975, AFGL-TR-760060, ADA026514.
J. Spencer Rochefort, Raimundas Sukys, "Instrumentation Systems for Maas Spectrometers", Final Report for Contract F19628-74-C-0042, September 1976, AFGL-TR-76-0200, ADAO32313.
J. Spencer Rochefort, Raimundas Sukys, "A Digital Control Unit for a Rocket Borne Quadrupole Mass Spectrometer", Scientific Report No. 1, for Contract Fl9628-76-C-0256, April 1978, AFGRL-TR-78-0106, ADA57251.
J. Spencer Rochefort, Raimundas Sukys, "Electronics for a Rocket Borne Quadrupole Cluster Ion Mass Filter", Final Report for Contract F19628-76-C-0256, October 1978, AFGL-TR-78-0292, ADA066289.

Gerousis, V.S., "A Programmable Control Unit for a BalloonBorne Mass Spectrometer Based on Intel 8085A
Microprocessor", Scientific Report No. 1, Contract AF19628-78-C-0218, September 1979, AFGL-TR-79-0225, ADA106398.

Palasek. T., "An RF Oscillator for Rocket-Rorne and
Balloon-Borne Mass Spectrometers", Scientific Report No. 2, Contract AF19628-78-C-0218, September 19:9, AFGL-TR-790226, ADAU78797.

Sukys, R. and Rochefort, J.S. "Control and Data Transmission System for a Balloon-Borne Ion Mass Spectrometer", Proceedings International Telemetering Conference, October 1980, Vol. XVI, pp. 335-341.

Sukys, R. and Rochefort, J.S. "Control and Data Transmission System for a Balloon-Borne Ion Mass Spectrometer", Scientific Report No. 3 Contract AF19628-78-C-0218, October 1980, AFGL-TR-81-0202, ADA104512.
J. Spencer Rochefort, Raimundas Sukys, "Control Electronics for Airborne Quadrupole Ion Mass Spectrometer", Final Report for Contract Fl9628-78-C-0218, October 1981, AFGL-TR-82-0056, ADA115399.

Sukys, R. and Rochefort, J.S. "GSE for Balloon Borne I.M.S.: Decommutator and D/A Units", Scientific Report No. 1 for Contract Fl9628-81-C-0162, October 1982, AFGL-IR-83-0095, ADA131845.

Sukys, R. and Rochefort, J.S. "Downrigger Instrumentation to Record Thermosonde Data", Scientific Report No. 2 for Contract Fl9628-81-C-0162, October 1983, AFGL-TR-85-0085, ADA161748.

Sukys, Raimundas, "Control and Signal Conditioning Circuits for E.I.R.M.A., Scientific Report No. 3 for Contract F19628-8I-C-0162, October 1984, AFGL-TR-85-0117, ADA166683.
```

