

PERFORMANCE ANALYSIS OF A MICROCOMPUTER-BASED SINGLE-LOOP DIGITAL CONTROL SYSTEM

M. Gauder

Data Acquisition Group
Technology Branch

April 1986

FINAL REPORT FOR PERIOD AUGUST 1982 - AUGUST 1984

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

H. I. BUSH

Director
Turbine Engine Division
Afro Propulsion Laboratory
"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POTX , W-PAFB, OH 45433-6563 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AD-A167914

SECURITY CLASSIFICATION OF THIS PAGE

Block 19. (Cont)
"The subject of this thesis is the design, development, and analysis of a 16-bit microprocessor based digital control system. The purpose of the study is threefold:

1. To show that a hybrid computer system, consisting of l6-bit single board microcomputer and an analog computer, can be used effectively for digital control studies.
2. To evaluate the frequency response of the hybrid system.
3. To identify and evaluate the error contributors which can effect the performance of digital control systems.

TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1
2. DESIGN OF THE DIGITAL CONTROL SYSTEM 3
2.1 Selection of the Microcomputer and Analog Computer. 3
2.2 Digital Control System Configuration. 3
2.3 Derivation of the Control Algorithms 7
2.4 Implementation of the Control Equation on the Micro- computer 7
2.5 Simulation of Plant Parameters on the Analog Computer 11
2.6 Interface Between the Microcomputer and Analog Computer 13
3. 1 CONTROL LOOP PERFORMANCE ANALYSIS. 16
3.1 Response to a Step Input. 16
3.2 Response to Sinusoidal Inputs 19
3.3 Frequency Response and Phase Angle Measurements 19
3.4 Improved A/D Conversion 22
3.5 Step Responses of a Tustin Based Controller 22
3.6 Comparison Between the Tustin-Based and Rattan-Based Controllers 25
4.1 ERROR CONTRIBUTORS 28
4.1 Analog Computer 28
4.2 D/A Blasing 28
4.3 A/D and D/A Quantization. 29
4.4 Word Length 29

TABLE OF CONTENTS (CONTINUED)

Page
4.5 Computation Delay 30
4.6 Truncation and Round Off. 34
5.6 PLANT SIMULATION ON TEXAS INSTRUMENTS (TI) TMS32010 DIGITAL SIGNAL PROCESSING CHIP 36
5.1 Rationale 36
5.2 Plant Digitization. 37
5.3 Control Loop Configuration 37
5.4 Implementation of the Plant on the Texas Instruments TMS 32010 EVM Microcomputer 39
5.5 Step Response of the TMS32010 Plant 39
5.6 State Space Representation of the Plant 43
6. CONCLUSIONS. 48
APPENDICES
AI Program Listing: 8-bit $A / D ; 8-b i t D / A$ 50
A2 Program Listing: 8-bit A/D; 12-bit D/A. 52
A3 Program Listing: 12-bit A/D; 12-bit D/A 54
A4 Program Listing: Computational Delay 56
A5 Program Listing: Round Off Routine. 58
A6 Program Listing: TMS $32 \emptyset 10$ Digitized Plant 60
B1 Circuit Diagram: Interface Circuit 8-bit $A / D ; 8-b i t D / A$ 62
B2 Circuit Diagram: Interface Circuit 8-bit A/D; 12-bit D/A. 63
B3 Circuit Layout and Diagram: Interface Circuit 12-bit A/D; 12-bit D/A 65
C1 Wiring Diagram: Analog Computer Patch for Uncompensated Plant. 70

TABLE OF CONTENTS (CONTINUED)

Page
REFERENCES. 71

1

LIST OF FIGURES

Figure Page

1. Block diagram of a sampled-data control loop. 4
2. Block diagram of a digital control loop with $H(s)=1$ 5
3. Block diagram of a digital control loop used for this study 6
4. Flow chart of the software package for the digital controller. 10
5. Analog computer patching configuration. 12
6. Interface circuitry for interconnecting the MEX68RECB and the analog computer 14
7. Experimental unit step response of the uncompensated plant with unity feedback. 17
8. Unit step responses with an 8 -bit A / D converter and two different D/A converters 18
9. Experimental sinusoidal response of the digital control system 20
1円. Frequency response demonstrating improvement of results with 12-bit D/A converter 21
10. Unit step responses demonstrating improvement of results with 12-bit A/D converter 23
11. Comparison between unit step responses of Rattan- and Tustin- based controllers with 8-bit A/D converter 26
12. Comparison between unit step responses of Rattan- and Tustin- based controllers with 12-bit A/D converter. 27
13. Computation delay results for Rattan-based controller 31
14. Computation delay results for Tustin-based (T=0.04 sec) controller 32
15. Computation delay results for Tustin-based (T=0.15 sec) controller 33
16. Unit step response. Truncation versus round off. 35
Figure Page
17. Block diagram of a MC68 $\emptyset \emptyset \emptyset / T M S 32 \emptyset 1 \emptyset$ digital control loop 38
18. Flow chart of the TMS 320 software package for the digitized plant. 40
2ø. Unit step response of TMS $32 \emptyset 1 \emptyset$ Plant at $T=15 \mathrm{sec}$ 42
19. State space representation of the plant 44
20. Alternative state space representation of the plant 45

ACRNOWLEDGEMENTS

Abstract

I wish to express my sincere appreciation to Dr. Kulip S. Rattan, Department of Engineering, Wright State University, for his contribution to my academic growth and the guidance he provided throughout this project. I would also like to thank Alok Sarwal, a fellow graduate student, for his help at certain points in the project. Special thanks to Gloria J. Chrisman for typing the manuscript, Betty J. Baldwin for proofreading, and to Robert R. VanHook for producing the schematic diagrans. Thanks to the Graphics Department at Wright State University for producing the data traces.

1.0 INTRODUCTION

Interest in digital control has expanded rapidly as a result of Low cost 16 -bit microprocessors and assoclated support devices being introduced. Digital control is an attractive alternative when consider ing a control strategy. Therefore, it is important that the capabilities and shortcomings of microprocessor based controllers be fully understood before they are put into service.

It is well known to designers of control systems that major difficulties are found in mechanization of the control algorithm. Mechanization means the selection of digital equipment, such as the Analog-to-Digital (A/D) and Digital-to-Analog (D/A) converters and the word length of the computer; the actual programing of the algorithm; and analysis of various error sources and the effects each has on the dynamics of the controller.

The digital control configuration, used for this study, consists of: a digital controller, implemented on a Motorola MC68 $\emptyset \emptyset \emptyset$ based microcomputer board; in series with an analog plant, simulated on an analog computer.

The steps needed to meet the stated objectives are:

1. Selection of the digital processing components.
2. Generation of the software package which implements the control algorithm on the microcomputer system.
3. Simulation of the analog plant on an analog computer, and interconnection of the microcomputer and analog computer.
4. Evaluation of the performance of the control loop forseveral configurations.
5. Identification of items which cause degradation in theperformance of the control loop.6. Demonstration of a totally digital control loop configu-

ration where the plant is digitized and simulated on a high speed microcomputer.
The results of this study will demonstrate the effectiveness of using a microprocessor based system for digital control.

2. 0 DESIGN OF THE DIGITAL CONTROL SYSTEM

2.1 SELECTION OF THE MICROCOMPUTER AND ANALOG COMPUTER

The resources for performing digital control studies should be readily available and moderate in cost. The equipment used for this study was available for use at Wright State University. The Comdyna GP-6 and Electronics Associates, Inc., (EAI) TR-20 were the analog computers used throughout the digital control study effort. The processor chosen for the digital controller was the Motorola MC68000 16-bit microprocessor. This chip is representative of the many 16-bit microprocessors on the market, but it has several attributes which made it more suitable for the control study. The Motorola MEX68KECB Educational Circuit Board, a low cost MC6800D based microcomputer board, was used as the digital controller. This computer board was purchased for this project and several other digital control studies which will follow.

2.2 DIGITAL CONTROL SYSTEM CONFIGURATION

A single-loop sampled data control configuration is shown in Figure 1. The primary components of the loop are: $D_{f}(2)$, the digital controller which receives and transmits control data at sampling instant T; $G_{h o}(s)$, a zero order hold device; $G(s)$, the plant or device which is to be controlled; and $H(s)$, the feedback element which takes the output of the plant to a suming function where the difference between the set point and plant output, or the amount of error remaining to be corrected, is fed back to the controller input.
\rightarrow

Figure 1. Block diagram of a sampled data control loop
Figure 2. Block diagram of a digital control loop with $H(s)=1$

Figure 3. Block diagram of a digital control loop used for this study

The digital control loop used for this control study is similar to the configuration of Figure 1 , except that the feedback element, $H(s)$, was set equal to one. Figure 2 shows this configuration. Figure 3 is a block diagram representation of the control system as implemented.

The plant $G(s)$, the unity feedback element $H(s)$, and the summing junction were implemented on an analog computer. The digital controller was implemented on the Motorola MEX68KECB computer board. The signal conversion devices, the A / D and D / A converters, were part of an interface board which was developed for this project.

The system characteristics are the following:

$$
\begin{align*}
& G(s)=\frac{6000}{s\left(s^{2}+40 s+300\right)} \tag{1}\\
& H(s)=1 \tag{2}
\end{align*}
$$

2.3 DERIVATION OF THE CONTROL ALGORITHM

The pulse-transfer function of the first order digital controller, used with the control loop, was obtained using the computer aided frequency matching method of Rattan [1]. The equation for $T=0.15$ seconds is given by:

$$
\begin{equation*}
D_{c}(z)=0.154 \frac{z-0.523}{z-0.425} \tag{3}
\end{equation*}
$$

This control equation will be the reference control algorithm to which other algorithms (under evaluation) will be compared.
2.4 IMPLEMENTATION OF THE CONTROL EQUATION ON THE MICROCOMPUTER

The digital control equation $D_{c}(z)$ must be implemented on microcomputer. One method that is readily adaptable to computer application
and the method chosen for this study is the representation of $D_{c}(2)$ as a difference equation. Equation (3) can be written as:

$$
\begin{equation*}
\frac{Y(z)}{X(z)}=\frac{0.154 z-0.081}{z-6.425} \tag{4}
\end{equation*}
$$

Cross-multiplying equation (4), multiplying this result by z^{-1}, and solving for $Y(z)$, we get:

$$
\begin{equation*}
Y(z)=0.425 z^{-1} Y(z)+0.154 X(z)-0.081 z^{-1} x(z) \tag{5}
\end{equation*}
$$

Taking the inverse z-transform of equation (5) yields:

$$
\begin{equation*}
Y(K)=0.425 * Y(K-1)+0.154 * X(K)-6.081 * X(K-1) \tag{6}
\end{equation*}
$$

To implement the first-order difference equation given in equation (6) on aicroprocessor, the coefficients have to be scaled to a convenient base for ease of numerical calculation. Since the word length of the MC6800 is essentially 16 bits, and none of the coefficients in the difference equation are greater than one, $32767\left(2^{15}\right)$ was chosen as the base for all coefficients to maximize word length utilization (1 sign bit/l5 magnitude bits). The resulting scaled integer coefficients were then converted to hexidecimal, and the resulting equation (7) is given by:

$$
\begin{equation*}
Y(K)=3666 * Y(K-1)+13 B 6 * X(K)-\not \subset A 5 E \star X(K-1) \tag{7}
\end{equation*}
$$

where the coefficients for equation (7) were obtained by:

$$
\begin{align*}
& 3666_{16}=0.425 * 32767 \tag{8}\\
& { }_{13 B 6_{16}}=0.154 * 32767 \tag{9}\\
& { }_{16} \mathrm{AE}_{16}=\emptyset .081 * 32767 \tag{10}
\end{align*}
$$

Now that a control equation is in a form that can be implemented on the microprocessor, a software package must be written to instruct the microprocessor to execute a sequence of steps in order to achieve the desired output. The software package developed for the digital controller consists of four sections:

1. Inftialization section
2. Interrupt servicing and data input section
3. Algorithm section
4. Data output section

The initialization section establishes the appropriate configuration for the microprocessor and its support chips. Some of the operations performed are: programing the peripheral interface adapters (PIAs), initializing the programable interrupt timer (PI/T), and setting initial conditions for the control equation. The last operation of the initialization section is to enable interrupts, enter the halt mode, and wait for an interrupt to occur.

The interrupt service and data input section, which begin at each sampling instant by acknowledging the interrupt, resets the interrupt device and reads the data value, $X(R)$, to be processed.

The algorithm section calculates $Y(K)$ based on the control equation programmed on the microprocessor, outputs the results to the D / A for use by the plant, and stores appropriate values of $Y(K-1)$ and $X(K-1)$ for the next enumeratipn. The last operation performed is again enabling interrupts, forcing the processor to enter the wait mode until the next sampling instant. The flow chart of the software package is shown in Figure 4.

Figure 4: Flow chart of the software package for the disital controller

2.5 SIMULATION OF PLANT PARAMETERS ON THE ANALOG COMPUTER

The analog computer provides a convenient method for implementing the suming junction, the unity feedback element, and the plant characteristics. It contains a variety of active and passive components which can be externally configured through a patchboard to simulate the desired transfer function. The transfer function of the plant can be converted into an analog computer program as follows:

$$
\begin{equation*}
G(s)=\frac{C(s)}{Y(s)}=\frac{60 \phi 0}{s^{3}+40 s^{2}+3 \rho 0 s} \tag{1}
\end{equation*}
$$

Cross multiplying equation (11), we get:

$$
\begin{equation*}
s^{3} C(8)+4 \emptyset s^{2} C(8)+3 \emptyset 巾 s C(s)=6 \emptyset \sigma \sigma Y(8) \tag{12}
\end{equation*}
$$

Inverse Laplace-transform of equation (12) yields:

$$
\begin{equation*}
\frac{d^{3} C(t)}{d t^{3}}+40 \frac{d^{2} C(t)}{d t^{2}}+300 \frac{d C(t)}{d t}=6000 Y(t) \tag{13}
\end{equation*}
$$

In order to assure that the rate of change of $C(t)$ is consistent with the dynamic properties of the analog computer and X-Y plotter, equation (13) needs to be "time scaled" before it can be implemented on the anslog computer. A time scaling of $5 \emptyset$ resulted in the following equation:

$$
\begin{equation*}
s^{3} C(s)=-0.8 s^{2} C(s)-0.12 \mathrm{sC}(8)+\emptyset .048 Y(s) \tag{14}
\end{equation*}
$$

This Laplace-transform representation of $C(s)$ can now be patched on the analog computer using the configuration shown in Figure 5.

Figure 5. Analog computer patching configuration

2.6 INTERFACE BETWEEN THE MICROCOMPUTER AND ANALOG COMPUTER

Interface circuitry, which would permit interconnection of the microcomputer board and the analog computer, was developed for this study. This circuitry consisted of: the A / D and D / A converters and associated circuitry; two Peripheral Interface Adapters (PIA), one programmed as an input port (PIAl) and one programed as an output port (PIA2); and devices used for chip enable circuits. Figure 6 shows a block diagram representation of the interface circuit. Interconnection between the interface circuit and the microcomputer was accomplished with 50 pin ribbon connectors and two specially made patchcords for connection to the analog computer. The interface circuit was easily modifiable for different A / D and D / A configurations. Let us take a closer look at each of the blocks of Figure 6. A substantial amount of time went into the design of the interface circuitry so a little more detailed description is called for at this time.

Motorola MC6821 Peripheral Interface Adapters (PIA) were used as the bus interface devices since the $M C 68 \emptyset \emptyset \emptyset$ contained control ines which would permit easy interconnection and operation. When a memory location above $10 \eta \emptyset \emptyset$ Hex was accessed on the MEX68RECB, the MC68øøø microprocessor would enter the synchronous mode of operation. The Valid Memory Address (VMA*), an active-low signal was used as on chip enable signal for each PIA. Once a PIA was selected, a negative-going edge of the Enable (E) signal would cause the transfer of data. Three address lines (A1, A2 and A3) were used to select the proper PIA and the peripheral register. Each PIA needed to be initialized before it could be used to transfer data. Writing the proper data to the Control Registers and Data Direction Registers would set up each bit of the selected port

-
as an input or output. Bits PAD through PA7 were programed as input lines on PIAl. Bits PB4 through PB7 were also used when a 12-bit A / D converter was to be connected into the circuit. PBG of PIAl was used to provide a start convert signal to the $12-b i t A / D$ converter. PIA2 was programmed in a similar manner as PIAl except the peripheral ports were used as output lines. The Read/Write (R/W*) would determine the direction of the data transfer. When the R / W^{*} line was a high logic level, data was transferred from the A / D converter, to a CPU register. When this line was a low logic level, data was transferred from a CPU register to the D/A converter.

The 8-bit devices used for the first hardware configuration were National Semiconductor ADC $¥ 8 \square$ 8-bit successive approximation A / D converter; the D/A converter was the 8-bit DACø8円8. The 12-bit D/A converter selected for the second configuration was the National Semiconductor DAC1218. The 8-bit A / D converter of the two previous arrangements was replaced with an Analog Devices AD572 12-bit successive approximation A / D converter. These conversion devices were selected for use since they vere representative of current technology and readily available for use in the laboratory.

3. CONTROL LOOP PERFORMANCE ANALYSIS

3.1 RESPONSE TO A STEP INPUT

There were three signal conversion configurations used for this control study. The first configuration was an 8-bit A / D converter and an 8-bit D / A converter arrangement. The second configuration was similar to the first except that the 8 -bit D / A converter was replaced with a l2-bit D / A converter. The final arrangement consisted of a 12-bit A / D converter and a 12-bit D / A converter. As will be shown later, the third arrangement provided the best performance, consequently, a permanent interface card was wire-wrapped.

The first step response to be measured was that of the uncompensated plant. Figure 7 shows the response obtained when the uncompensated plant was subject to a unit step input. Notice that the step response demonstrates the classical overshoot and oscillations associated with an underdamped system. Also notice that the steady-state value of the plant output is not 1 volt, but slightly less. This fact will be discussed further in Section 4.1.

The unit step responses of Figure 8 are for the compensated plant for the first- and second-signal conversion configurations. The overshoot is reduced significantly, as would be expected with a compensated plant. The steady-state oscillations observed will be discussed more thoroughly in Section 4.3.

Figure 8. Unit step responses with 8-bit A/D converter and two different D/A converters

3.2 RESPONSE TO SINUSOIDAL INPUTS
 One of the goals of the study effort was to experimentally evaluate the control loop response to sinusoidal inputs. This would provide a means of determining the frequency response of the digital control system. Sinusoidal inputs of frequency between \square and $\omega_{s / 2}$ were applied to the set point input of the control loop. Due to the amount of time scaling involved for the plant simulation, the frequency range needed for the sine waves was lower than that obtainable with waveform generators available in the laboratory. It was then necessary to use a second analog computer which generated the desired sine wave. The Laplace transform of the sine function is given by:

$$
\begin{equation*}
F(s)=\frac{\omega}{s^{2}+\omega^{2}} \tag{15}
\end{equation*}
$$

The analog computer was configured for equation (15) and different values for ω were programed to yield the proper input frequency. Figure 9 shows the results obtained for one of the input frequencies. Results for both 8-bit D / A and 12 -bit D / A converters are shown on the same plot, along with the input frequency. Notice the magnitude attenuation and phase shift associated with each response. The magnitude attenuation is greater with the 8 -bit D / A converter than with the 12-bit D / A converter. Comparison of the phase shifts for each D/A configuration shows little difference between them.

3.3 FREQUENCY RESPONSE AND PHASE ANGLE MEASUREMENTS

The results obtained for frequency response and phase angle measurements are shown in Figure 10. Data for both D / A converter configurations are plotted together with the theoretical responses. The theoretical responses for magnitude and phase angle were obtained using

Figure 10. Frequency response demonstrating improvenent of results with 12-bit D/A converter
the interactive control analyais program TOTAL. The theoretical data curves provide a reference to which the experimental results can be compared. The magnitude plot shows that the frequency response with the 12-bit D / A converter follows the theoretical frequency response more closely than with the 8-bit D / A converter. Results from the phase angle plot demonstrate that little differences exist between the phase plots for the 8-bit D / A and $12-b i t ~ D / A$ converters, except at the highest frequencies where the 8-bit D/A converter exhibited more deviation from the theoretical phase angle curve.

3.4 IMPROVED A/D CONVERSION

All of the performance analysis of the control loop thus far has been with an 8-bit A / D converter. There was an improvement in control system accuracy when the 8 -bit D / A converter was replaced with the 12-bit D/A device. The 8-bit A/D converter will be replaced with a 12-bit A/D converter, resulting in the third control system configuration, that is, 12-bit A / D and $12-b i t ~ D / A ~ c o n v e r t e r s . ~ T h e ~ r e m a i n i n g ~$ performance tests were based on this configuration. Figure 11 contains step responses, one where the loop uses an 8-bit A / D converter and one where the loop uses a $12-b i t A / D$ converter. The step response associated with the ${ }^{12}$-bit A / D device exhibits slightly less steady-state oscillation than with the 8-bit A / D converter. The improvement in control loop performance (obtained with improved A/D conversion) is not as pronounced as the improvement demonstrated with improved D / A conversion.

3.5 STEP RESPONSES OF A TUSTIN BASED CONTROLLER

Control loop performance was demonstrated with several different hardware configurations, but all of them with the Rattan-based control

Figure 11. Unit step responses demonstrating improvement of results with 12-bit A/D converter
algorithm. The Tustin transformation or bilinear transformation [4] as it is commonly known, provides another means of obtaining a discrete system from the continuous system. The continuous controller on which the Rattan algorithm was based is given by:

$$
\begin{equation*}
G(8)=0.322 \frac{(8+1.914)}{(8+0.616)} \tag{16}
\end{equation*}
$$

Substituting:

$$
\begin{equation*}
s=\frac{2}{T} \frac{z-1}{z+1} \tag{17}
\end{equation*}
$$

into equation (16) and using the appropriate value for the sampling period (T), the result obtained is a digitized controller of the same order. The Tustin-based controllers for $T=0.15$ seconds and $T=0.04$ seconds are given by equations (18) and (19), respectively as:

$$
\begin{align*}
& D(z)=0.352 \frac{(z-0.749)}{(z-0.912)} \tag{18}\\
& D(z)=0.330 \frac{(z-0.926)}{(z-0.976)} \tag{19}
\end{align*}
$$

The Tustin controller equations can be rearranged and the coefficients converted to hexidecimal, as previously demonstrated with the Rattan controller, to obtain the control algorithms:

$$
\begin{align*}
& Y(K)=74 B 2 Y(R-1)+2 D \emptyset 4 X(K)-21 B 7 X(K-1) \tag{20}\\
& Y(K)=7 C E 3 Y(R-1)+2 A 4 \emptyset X(K)-2721 X(K-1) \tag{21}
\end{align*}
$$

for $T=\emptyset .15$ seconds and $T=\emptyset .04$ seconds, respectively. The Tustin control algorithms were implemented on the digital controller by changing the memory locations, which contained the associated coefficients.

Abstract

3.6 COMPARISON BETWEEN THE TUSTIN BASED AND RATTAN BASED CONTROLLERS

The step responses of Figures 12 and 13 demonstrate the significant response variations between the Rattan and Tustin control algorithms. The lessons learned from this indicate that for a given hardware configuration, variations in the control algorithm can have a significant effect on the overall performance of the control loop. The Tustin control algorithms seem to be more sensitive to the size of the signal conversion device than the Rattan algorithm. It is best to use the largest bit sized conversion device possible when implementing a Tustin based controller to insure proper control loop operation.

Figure 12. Comparison between unit step responses of Rattan- and Tustin-besed controllers with *-bit A/D converter

$\stackrel{y}{*}$

Figure 13. Comparison between unit step responses pf Rattan- and Tustin-based controllers with 12-bit A / D converter

4. 0 ERROR CONTRIBUTORS

4.1 ANALOG COMPUTER

The transfer function of equation (1) is of type 1 , which means that the theoretical steady-state error is equal to zero. However, the plant, as implemented on the analog computer, was found to have an error of +50 millivolts $(m V)$ when configured with unity feedback and a set point of 1 volt, (v), hence, it was necessary to establish a D/A bias at "digital zero," which resulted in a $+5 \emptyset \mathrm{mV}$ output from the controller. This D/A bias would, in effect, compensate for the analog computer error.

$4.2 \mathrm{D} / \mathrm{A}$ BIASING

The use of $a+5 \emptyset \mathrm{mV} D / A$ bias is in itself an induced error, since it is desirable to have "digital zero" to the D / A represent a true value of zero volt. Two problems closely related to the D/A biasing error are over/under D / A biasing and D / A bit size. If the bias was set to some value other than $+5 \emptyset \mathrm{mV}$, excessive steady-state oscillations would occur. Care was taken to insure the setting of the proper D / A bias prior to any data collection. Proper setting of the required D / A bias was difficult at best with the 8-bit D/A converter, but became less of problem when the 12 -bit D / A converter was used. Establishment of the proper D/A bias insured that the overall plant response wold be correct.

4.3 A/D AND D/A QUANTIZATION

An 8-bit converting device has 256 discrete values, whereas, a 12bit converting device has 4096 discrete values associated with it. For a reference voltage range of $10 \mathrm{~V}(\pm 5 \mathrm{~V})$, the resolution for an 8 -bit and a 12 -bit converters are 39 mV and 2.44 mV , respectively. Due to D / A quantization, the plant output oscillated between the D/A output levels, which drove it positive or negative. As the D / A size was increased, the number of quantization levels also increased, which resulted in smaller increments between the output levels, therefore, less steady-state oscillation. Similarly, an increase in A / D bit size increased the digital accuracy and reduced the input quantization approximation error.

A comparison of the D / A output quantization effects can be seen in the unit step plots of Figure 8. The reduction in oscillation of the 12-bit configuration is very evident. The step response plots of Figure 11 demonstrate that further improvement in plant response was observed with a l2-bit A / D converter, although this improvement is not as significant as seen with the D / A converter change.

4.4 WORD LENGTH

Another source of system error is the finite word length of the computer. As seen previously, the size of the signal conversion components has a significant effect on the performance of the control loop. The coefficients of the control algorithm are scaled values based upon a binary fixed-point numerical representation. As the internal precision of the word length of the computer goes up, so does the resolution of the coefficfents. This increased precision propagates throughout the calculations so that the upper word of the final computed value is a more accurate representation than what would have been
obtained using lower precision numerical representation. It is the upper word of the final value which is sent to the D / A converter. The 16-bit word length of the $M C 68 \varnothing \emptyset$ found to be more than sufficient for producing acceptable accuracy.

4.5 COMPUTATION DELAY

The control algorithm takes a finite amount of time to produce an output based upon a given input. This delay is the amount of time it takes to calculate the control output at a given sampling instant from an error input taken simultaneously. The effects of computation delay on control loop performance may or may not be significant. If the ratio of computation delay to sample rate is small, then computation delay should not be a problem. As this ratio becomes larger, the effects of computation delay on loop performance should become apparent. To experimentally determine computation delay, it was necessary to place a delay routine in the control algorithm. The length of the delay was controlled by a specific value, placed in a register, which was decremented until it was zero. Computation delay values of $1 / 4 \mathrm{~T}$ and $1 / 2 \mathrm{~T}$ were used. Figures 14 and 15 show results obtained for the Rattan based and Tustin-based ($\mathrm{T}=\emptyset .04 \mathrm{sec}$) controllers. The plots for computation delays of $1 / 2 T$ show that during transient periods, the plant will tend to overshoot more when compared to the plots with computation delay of $1 / 4 \mathrm{~T}$. A comparison of computation delays of $1 / 16 \mathrm{~T}$ and $1 / 8 \mathrm{~T}$ for the Tustin-based ($T=\emptyset .15 \mathrm{sec}$) is given in Figure 16 . The effects of smaller computation delays are more noticable with this longer sampling period than with the $T=\emptyset .04$ sec. controller. This is an indication that the plant is sensitive to a fixed amount of computation delay since $1 / 16 \mathrm{~T}$ of the $\mathrm{T}=0.15 \mathrm{sec}$. controller is approximately equal to $1 / 4 \mathrm{~T}$ of

Figure 15. Computation delay results for Tustin-based ($\mathrm{T}=0.04 \mathrm{sec}$) controller

the $T=0.04$ sec. controller. As the plant approaches steady-state, the effects of computation delay diminish. For the control configurations of this study, it appeared that computation delay did not effect the control loop significantly; however, this may not be true for other types of reference inputs. 4.6 TRUNCATION AND ROUND OFF

Truncation is the process of ignoring all bits less than the least significant bit, whereas, round off is the process of selecting a number which is closest to the unrounded quantity. For example, the decimal number 1.96 will be truncated to a value of 1.9 and rounded to 2.0 for two significant digits of accuracy. The procedures of truncation and round off for binary numbers are the same. All of the control algorithms so far have used truncation of the final output result. The final result obtained was either a 24 -bit or a 28 -bit result, depending on the size of the A / D converter used. The most significant 8- or 12bits for the final value were passed to the D / A converter, depending on the size of the D/A device. The remainder of the lower significant bits did not contribute to the magnitude of the final output value. A rounding routine was written for the 12 -bit $A / D, 12$-bit D / A control configuration to include the effects on these lowest bits in the final value. Figure 17 shows unit step responses of the plant; one with rounding, one without. For the configuration used in this control study, rounding did not provide significant improvement in loop performance as anticipated. However, the step response of the control algorithm with rounding did seem to have a steady-state value slightly closer to the value of 1 volt.

5. 6 PLANT SIMULATION ON THE TEXAS INSTRUMENTS (TI) TMS 3201 DIGITAL SIGNAL PROCESSING (DSP) CHIP

5.1 RATIONALE

The plant for the control study thus far has been simulated on an analog computer, which has a time scale factor of 50 . This time scaling equates to a sampling period of 7.5 seconds. There could be several advantages in replacing the analog computer with a digital computer such as; more flexibility, elimination of offset error and elimination of time scaling. The sampling period of the control loop whould then be 0.15 seconds instead of 7.5 seconds. The requirement is that the plant must be able to be simulated on computer, which would permit proper operation of the control loop at the desired sampling rate. One approach is to digitize the plant using the Tustin transform with a sampling period of 0.015 seconds and implement the resulting digital transfer function on a high speed digital signal processing computer. The computer considered for plant implementation was the Texas Instru0 ments (TI) TMS 32010 Evaluation Module (EVM) and the TI TMS 32010 Analog Interface Board (AIB). The EVM board is an evaluation microcomputer board based upon the TI TMS 32010 digital signal processor chip. The AIB is a support board which provides the necessary l2-bit signal conversion so that the EVM board can be used for signal processing spplications. The combination of these bodrds would provide everything needed for "real-time" digital simulation of the plant.

5.2 PLANT DIGITIZATION

The transfer function of the plant must be digitized before it can be implemented on the TMS 32010 EVM. The Tustin transformation, equation (17) must be substituted into equation (1). Keeping T unspecified so that a general equation can be derived and simplifying the resulting expression will give a digitized transfer function of:

$$
\begin{equation*}
G(z)=\frac{600 \emptyset \mathrm{~T}^{3}\left[z^{3}+3 z^{2}+3 z+1\right]}{8\left[z^{3}-3 z^{2}+3 z-1\right]+160 \mathrm{~T}\left[z^{3}-z^{2}-z+1\right]+600 \mathrm{~T}^{2}\left[z^{3}+z^{2}-z-1\right)} \tag{22}
\end{equation*}
$$

If T is set equal to 0.015 seconds, equation (22), when simplified becomes

$$
\begin{equation*}
G(z)=\frac{Y(z)}{X(z)}=\frac{\emptyset . \emptyset 2 \emptyset 25 z^{3}+\emptyset .06 \emptyset 75 z^{2}+0.06 \emptyset 75 z+\emptyset .02 \emptyset 25}{19.535 z^{3}-26.265 z^{2}+21.465 z-5.735} \tag{23}
\end{equation*}
$$

Equation (23) will be implemented in software on the TMS $32 \emptyset 1 \emptyset$ EVM board.

5.3 CONTROL LOOP CONFIGURATION

The control loop configuration (using the TMS $32 \emptyset 10$ EVM) is essentially the same as that of Figure 1 , except that now there is a digital plant instead of analog plant. Figure 18 is a block diagram of the control loop configuration needed for this portion of the control study. There are two major differences between the control loop of Figure 1 and the control loop of Figure 18; the summing junction is a difference amplifier located on the digital controller interface card and the plant transfer function, which is implemented on the TMS 32010 EVM/AlB combination, is a sampled data system operating one-tenth of the controller sample rate.

Figure 18. Block diagram of a MC68000/TMS 32010 digital control loop

5.4 IMPLEMENTATION OF THE PLANT ON THE TEXAS INSTRUMENTS TMS $3201 \emptyset$ EVM MICROCOMPUTER

Equation (23) must be converted to a difference equation so that the plant transfer function can be implemented directly on the EVM. Solving equation (23) for $Y(2)$ yields the following:

$$
\begin{align*}
Y(z)= & 2.493 z^{-1} Y(z)-2.037 z^{-2} Y(z)+\emptyset .544 z^{-3} Y(z)+\emptyset .00192 X(z) \\
& +0.06577 z^{-1} X(z)+\emptyset .00577 z^{-2} X(z)+\emptyset .00192 z^{-3} X(z) \tag{24}
\end{align*}
$$

Notice that the first two coefficients are larger than one, which means that scaling aust be employed to obtain functional values for the coefficients. The smallest number that is equal to 2^{n} and larger than all of the coefficients is 4 . Dividing all coefficients of equation (24) is effectively a normalization process. Taking the inverse 2-transform and converting the coefficients to their representative hexidecimal values which results in the following:

```
\(\frac{Y(K)}{4}=4 F C E * Y(K-1)+B E D 1 * Y(R-2)+1168 * Y(R-3)+\emptyset \emptyset 1 \emptyset * X(K) \emptyset \emptyset 2 F * X(R-1)\)
    \(+\emptyset 2 F * X(R-2)+\emptyset \emptyset 1 \emptyset * X(R-3)\)
```

Equation (25) can now be programmed directly into TMS 32010 assembly language, employing the same techniques as used when the digital control equation was implemented in software. Figure 19 is a flow chart for implementation of the digitized plant transfer function on the TMS 32010 EVM/AIB system.

5.5 STEP RESPONSE OF THE TMS 32010 PLANT

The unit step response of the uncompensated digital plant at T-\$. $\$ 15$ sec, was not obtainable for some unknown reason, so a search into the possible problems was conducted. The software was checked for

Figure 19. Flow chart of the TMS 32010 package for the digitized plant
any logic or programming errors, corrections were made, but the control loop still did not function properly. Once the program had been thoroughly checked, the next step was to try a slower sampling rate, in this case $T=15 \mathrm{sec}$. The unit step response of Figure 20 is that of the uncompensated digital plant in closed loop form with the slower sampling rate: The unit step response had proven that the program was indeed working, since there is little difference between this program and the program for the digitized plant operating at $T=0.015 \mathrm{sec}$. Furthermore, the plant is undersampled at $T=\emptyset . \emptyset 15$ sec., an indication that a higher sampling rate is definitely needed for proper plant representation. The major difference between the two plant programs is in the coefficients of the difference equation. Closer inspection of equation (24) shows that the ratio between the largest rgefficient and the smallest coefficient is approximately $130 \|$ to 1 . This large of a coefficient span was not represented accurately with the fixed point binary numbering scheme. The use of coefficient normalization apparently added to the problem. By comparison, the closed loop representation of the $T=\emptyset .15$ sec. plant required no coefficient normalization and the span of the coefficients was smaller.

The problem just discussed becomes worse as the sampling rate of a system is.increased. Direct implementation of a difference equation is not" feasible particularly when higher sampling rates are used. An alternative method of implementation that produces more manageable fixed b point coefficients is needed. One method which may work is to represent the plant as a set of discrete state equations.

Figure 20. Unit step response of TMS 32010 plant at $\dot{T}=0.15 \mathrm{sec}$.
5.6 STATE SPACE REPRESENTATION OF THE PLANT

The characteristics of the plant can be represented in standard state space form as:

$$
\begin{align*}
& \dot{x}=A x+B u \tag{26}\\
& y=C^{T} x \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
& A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -300 & -40
\end{array}\right] \tag{28}\\
& B=\left[\begin{array}{c}
0 \\
0 \\
6000
\end{array}\right] \tag{29}\\
& C^{T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \tag{30}
\end{align*}
$$

The block diagram of this system is shown in Figure 21. An equivaient system can be derived by changing the B and C^{T} matrices slightly. The reaulting matrices are:

$$
\begin{align*}
& B=\left[\begin{array}{c}
0 \\
100
\end{array}\right] \tag{31}\\
& C^{T}=[60 \oslash 0] \tag{32}
\end{align*}
$$

The block diagram of the alternative state space form is shown in Figure 22. The discrete state transition equatiops are given by:

$$
\begin{equation*}
\mathbf{X}(K+1)=X(K)+\theta u(K) \tag{33}
\end{equation*}
$$

Figure 22. Alternate state space representation of the plant

$$
\begin{equation*}
C(R)=D X(X) \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
& =\mathcal{L}^{-1}(S I-A)^{-1} \tag{35}\\
& \theta=\int_{0}^{T}(T-\tau) B d \tau \tag{36}
\end{align*}
$$

The alternative state apace representation can be implemented in the following manner. Portions of Figure 22 can be converted directly into discrete state space form. Forming a system including only the first two integraters will give:

$$
\begin{align*}
& A=\left[\begin{array}{cc}
0 & 1 \\
-30 \theta & -4 \theta
\end{array}\right] \tag{37}\\
& B=\left[\begin{array}{c}
0 \\
10 \theta
\end{array}\right], \tag{38}
\end{align*}
$$

Solving equation (35) and equation (36) yields:

$$
\begin{align*}
& =\left[\begin{array}{ll}
0.972 & 0.011 \\
-3.346 & 0.526
\end{array}\right] \tag{39}\\
& \theta=\left[\begin{array}{l}
0.009 \\
1.115
\end{array}\right] \tag{40}
\end{align*}
$$

The discrete atate equations of this system become:

$$
\left[\begin{array}{l}
x_{1}(x+1) \tag{41}\\
x_{2}(x+1)
\end{array}\right]=\left[\begin{array}{cc}
0.972 & 0.011 \\
-3.346 & 0.526
\end{array}\right]\left[\begin{array}{l}
x_{1}(x) \\
x_{2}(x)
\end{array}\right]+\left[\begin{array}{l}
0.009 \\
1.115
\end{array}\right] u(x)
$$

The remaining portion of the system to be implemented is:

$$
\begin{equation*}
y=\frac{60}{8} x_{1} \tag{42}
\end{equation*}
$$

Substituting equation (17) into equation (42) and using value of $T=0.015$ sec. will give:

$$
\begin{equation*}
y=0.45 X_{1}(R)+0.45 X_{1}(K-1)+y(K-1) \tag{43}
\end{equation*}
$$

Equation (41) and equation (43) totally discribe the system characteristics and can be implemented in software without the coefficient problems which were previously discussed. Verification of the discrete state space technique is left as an exercise for future control studies.

6.0 CONCLUSIONS

The major objective of this control study was to demonstrate the effectiveness of using l6-bit microprocessors for digital control applications. Emphasis was placed on control implementation techniques and error identification rather than control algorithm analysis. Control loop performance was measured for several hardware configurations and several control algorithm variations.

Sources of errur which effect the performance of the control loop were identified. Methods were suggested which would reduce the error effects. Quantization error was the most troublesome error encountered. The use of larger bit-sized converters reduced quantization error significantly. Computation delay was shown to introduce a slight amount of error in the control loop during transients as the amount of delay increased. Computation delay did not seem to effect the steady-state behavior of the control loop. To insure proper performance, the microprocessor must be able to execute the control algorithm well within the sampling period so that the effects of the computation delay will be minimized.

The stated objectives of the control study were met. Digital con-trol using microprocessors is practical when considering a control strategy. The increased execution speed of the DSP chips will undoubtedly make these devices aven more suitable for more complex
digital control applications. It is recommended that additional control studies be performed which would exploit the full capabilities of the newer DSP chips.

APPENDIX A2 (CONTINUED)

THTPRe	1.14GFC20d800 JIEIDJ	${ }^{8} \mathrm{MONE}$ W ${ }^{\text {W }}$	
091004	4280	CLR.L	
001006	7204	MOVEO.L	44,01
101008	$13 \mathrm{Cece830083}$	MOVE. ${ }^{\text {a }}$	D0, 800036003
$0 \cdot 1005$	135000030097	MOVE. ${ }^{\text {P }}$	De, se0e30607
001014	13Ce8e83008	MOVE. B	D0, sese30008
0181A	13C00003009F	MOVE. 8	D0, 88803060%
001020	$13 \mathrm{Cap8036801}$	MOVE. B	D0, 508030801
001026	13C10083083	MOVE. B	D1, *e8036003
08102 C	$13 \mathrm{Ce80e30085}$	MOVE. ${ }^{\text {a }}$	De , 568036085
081032	13 C 100038907	MONE.B	D1,580830807
081038	4600	NOT. ${ }^{\text {B }}$	De
081034	13Ca00030009	MONE. ${ }^{\text {P }}$	De, 800030009
081040	1\%:100830908	MONE. ${ }^{\text {P }}$	D1,800030008
001846	13C86003088	MOUE. ${ }^{\text {P }}$	De, se0830000
60144 C	$13 \mathrm{Cles3688F}$	MOVE. B	D1, 5 e80306eF
001052	13FC8AB88083080D	MOVE. ${ }^{\text {P }}$	M128,88003000D
ceie5a	13FC80808830809	MOVE. B	*e,s80030809
081062	2e3cenoE4EIC	MOUE.L	M937500, D0
001068	207CB0010025	MOVE.L	M65573,A0
$0106{ }^{\text {c }}$	- IC8eser	MOVEP.L	De,80880(A0)
01872	13FCe0e800018335	MOVE.B	W0,58001033
-107A	4288	CLR.L	D0
-8107C	4281	CLR.L	D1
00107 F	4282	CLR.L	D2
-01080	4283	CLR.L	D3
00^{1082}	327 C2000	MOVE.W	wB192,AI
081086	347 C2002	MOVE.W	M8194, A2
01108	$367 C 2004$	MOVE.W	M8196, A3
061085	$387 \mathrm{C2010}$	MOVE.W	M8288,A4
001092	3 37c2020	MOVE.W	M8224,A5
001096	32853666	MOVE.W	W13926, (A1)
-109A	348 C 1386	MOVE.W	W5046, (A2)
06109E	36BCOASE	MOVE.W	M2654, (AS)
101042	4254	CLR.W	(A4)
001044	4255	CLR.W	(A5)
$0 \cdot 1846$	$13 F C 004000010023$	MOVE. ${ }^{\text {P }}$	M64,50e6 18023
-10AE	21FC00日esoc20 ${ }^{\circ}$	MOUE.L	M4290,500806188
001086	13FC8BA1000 10821	MOUE.B	M161,500010021
06108 E	4E71	NOP	
- 10 ce	COFC	BRA.S	\$60108E
-010C2	$13 F C 000100010035$	MOUE.B	41,8800 18035
-010CA	14390803008	MOVE. B	400830001,02
001000	143980030801	MOVE.B	\$80830861, ${ }^{\text {c }}$
C01006	6A820880	EOR. ${ }^{\text {B }}$	M128,02
010 da	4402	NEG.B	D2
$00^{10 D C}$	4882	EXT.W	D2
-10dE	4286	CLR.L	D6
-10E0	3215	MONE.W	(A5). ${ }^{\text {d }}$
- 1 ICE2	3614	MOVE.W	(A4), ${ }^{\text {d3 }}$
-10E4	3082	MONE.W	D2,(A4)
-10E6	C30 1	MULS.W	(A1), D1
0010EB	2 Cl 1	MOUE.L	D1,D6
-10EA	CSD2	MULS.W	(A2), 12
-0sez	DC32	ADD.L	D2,D6
-10EE	C703	MULS.W	(A3), D3
081850	9 C83	SUB.L	D3,06
011F2	E386	ASL.L	M1,06
$00^{10 F 4}$	2486	MOVE.L	O6, (A5)
$00^{10 f 6}$	4820	OM1. 8	6001118
00^{1078}	19C600 17	ESET	U23,06
$0018 F C$	E986	ASL.L	M4.D6
COIOFE	4846	SWAP.W	D6

APPENDIX A2 (CONTINUED)

081100	13C600e30809	MOVE. ${ }^{\text {d }}$	D6,500030009
001106	E886	ASR.L	44, D6
081108	13C60803909D	MOVE.B	D6, 688030800
0110E	4280	CLR.L	D0
001110	4281	CLR.L	D1
001112	4282	CLR.L	D2
001114	4283	CLR.L	D3
001116	4 4 73	RTE	
$0 \cdot 1118$	4886817	BCLR	123,06
0 0ilic	SODE	BRA. 5	S00 JOFC
TUTOR	,		

TUTOR

 001000 081004 cel006 001088 diea 101010 001016 0.1016 ele 22 $\theta 0102 \mathrm{E}$ 101034 $00183 A$ $103 C$ 101042 101054 1864 018 0107 0107 －107E 10102 108 －星 oivez 101092 － 10 A 10109E 1010A6 101048 － 1082 －1882 $0010 C 2$ $1010 \mathrm{C}_{4}$ 0810 C6 －10CE 1006 1010E 101022 COIOE4 1010EA 1010F6 orfar 10F6 lelefe 11104 101106 1108 ODilec $00110 E$$1>$ MO 1000144101
MONE.W M8192,SR
MOVEO.L MA,DI
MOVEQ.L M15,D2
HOVE.B D0,800930003
MOVE.B D0,8ece3cee7
MOUE. D , BE B 3
MOVE.B D0,800030881
MOUE.B D1,sce日3ece3
MOVE.B D2,se8e3e日es
MOVE.B Di,860030407
NDT. B D8
MOVE.B De,sees30es
MOVE.B D1,s00e3090日
MOVE,
MOVE.B M128,*08030ecD
Mo, secescee
, $937506 . D 0$
MOVEP.L De, 80000 (AO)
MOVE.B We, seees 1ee35
CLR.L
CLR.L D2
CLR.L D3
MONE.W MB192,A1
MOVE.W ME194,A2
MOVE.W ME196,A3
MOVE.W ME206,A4
MOUEW W129, NS
-13926. (A1)
MOVE.W 2654,(A3)
CLR.W (AA)
CLR.W (AS)
HONE, B64,000010023
MOVEL M4294,508080180
NOP
3RA. 5 sesiecz
MOVE. 8 M1,800010035
HOVE.8 M15,8e9830005
MOVE.B Me.808030005
.L Wo.D
ENE. 6 BelioE
MOUE.B E00030005,D2
MOVE.B 00030005,D2
EOR.B 128.02
D2
MSL.W A.D2
-
MOUE.E S01330081.02
CLR.L D6
(AS).D1
(A4).D3
MULS.W (Ai).DI
MOUE.L DI.D6

APPENDIX A3 (CONTINUED)

001110	C502	Muls.w	(A2), D2
081112	DC82	ADD. 1	02.06
01114	c703	MULS.W	(A3),03
011116	9 Ces	SUB.L	D3,06
081128	E386	ASL.L	M1,D6
00111A	2486	MOUE 12	D6, (A5)
01115	6815	M1. ${ }^{\text {c }}$	Selil3c
0-111E	$08560{ }^{\text {c }}$	BSET	-127,D6
061122	4646	SWAP.N	D6
001124	13C600030809	MOVE.B	D6,888036009
00112A	E836	ASR.L	M4, D6
10112C	13C60083000	MOVE.B	D6,808036eed
001132	4286	CLR.L	D0
101134	4281	CLR.L	D1
011136	4282	CLR.L	D2
001138	4283	CLR.L	D3
00113A	4287	CLR.L	D7
-0113C	$4 E 73$	RTE	
08113 E	08860018	BCLR	M27,06
001142	cees	BRA. 5	-6e1124

001000	46FE28880 14E；01	HOVE．W	$4 \mathrm{~A}, \mathrm{~B}, \mathrm{~B}, \mathrm{~L}, \mathrm{Sk}-7 / 2 / 84)$
$0 \cdot 1084$	4288	CLR．L	De
101086	7204	MOUED．L	14，01
061008	7405	MOUEO．L	W15，02
981004	13C080830003	MOUE．B	D0，88e8360e3
001010	13C000030007	MOVE．B	De，500830007
001016	13C000838008	MOVE．B	De，500030008
001016	13ceeer30eef	MOVE．B	D0，s0083800F
－81822	13C000030001	MOVE．${ }^{\text {P }}$	De， 800830001
081028	$13 C 108830083$	MOVE．B	D1，580830003
001025	$13 C 280038085$	MOVE．B	D2，806030085
$0 \cdot 1034$	13 Cl 188330097	MOVE．B	D1，${ }^{\text {ce8e30ee7 }}$
－8103A	4680	NOT． B	De
$60103 C$	$13 \mathrm{C808830899}$	MOVE．B	D0， 820030099
081042	13C108030908	MOVE． 8	D1，80803000B
P01048	13500003800 D	MOVE． 8	D0，seee38eed
601045	13C10003080F	MOVE．${ }^{\text {P }}$	D1，8000308eF
081054	13FC088088030日8	MOUE．B	4128，50883800D
001850	13FC00080830089	MOVE．B	Me，se8030889
001064	2e3CeeoEAEIC	MOUE．L	M937500，D8
001064	207ceodiee25	MOVE．L	M65373，Ae
081078	－1C80ese	MOVEP．L	D6，©8080（A0）
001074	13FC08880010035	MOUE．B	M日，＊00010335
08187 C	4280	CLR．L	D
00107 E	4281	CLR．L	D1
081080	4282	CLR．L	D2
081082	4283	CLR．L	03
001084	4287	CLR．L	D7
001086	$327 C 2088$	MOVE．W	M8192，A1
－01084	$347 \mathrm{C2002}$	MOUE．W	W8194，A2
00108 E	$367 C 2004$	MOUE．W	M8196，A3
061092	$387 C 2010$	MONE．W	M828B，A4
001096	$347 \mathrm{C2} 28$	MOVE．W	\％8224，A5
001094	32BC3666	MOVE．W	\＃13926，（A1）
－0109E	34BC1386	MOUE．W	\＃3046，（A2）
OP10A2	36BCaA5E	MOVE．W	W2654，（A3）
－01046	4254	CLR．W	（A4）
O日I0AB	4255	CLR．W	（AS）
Coibat	$13 \mathrm{FC0840080} 10823$	MOUE．B	M64，500010023
001082	21FC008010C60180	MOUE．L	W4294， 508080100
9018 BA	13FC0日A108010021	MOVE． B	4161，808018021
0010 Cz	4E71	NOP	
－010C4	$60 F 5$	BRA． 6	$88018 \mathrm{C2}$
08106^{6}	$13 \mathrm{FC000180010035}$	MOVE． $\mathrm{B}^{\text {d }}$	\％ 1,508018035
Colece	13FC008F8e830日es	MOVE．B	W15，800030085
081806	13FCe80008830085	MOUE．${ }^{\text {a }}$	He，808030805
Oe 10DE	7E06	MOVEG．L	W6，07
08100^{6}	5387	SUBQ．L	M1，D7
0010 e2	665 C	ENE． 5	\＄0010E0
0010 E	143900838005	MOVE．${ }^{\text {P }}$	\＄00838085，D2
0810 EA	143900830095	MOUE．B	\％00830805，D2
00^{1070}	04020980	EOR．B	128，02
delefa	4882	EXT．W	02
1010F6	E942	ASL．W	4，D2
00^{1078}	143909830001	Move．B	\＄00036801．02
06 10FE	143908038881	MOVE．B	\＄80030801，D2
001104	4286	CLR．L	D6
001106	3215	MOVE．W	（A5），D1
031108	3614	MOUE．W	（A4），D3
dilita	3882	MOVE．W	D2，（A4）
－6ilec	C301	MULS．N	（A1），D1
0110E	2C01	MOVE．L	D1，D6
001110	CSO2	MULS．W	（A2），D2
081112	OCE2	ADD．L	D2，06

APPENDIX A4 (CONTINUED)

081114	C703	MULS.W	(A3). ${ }^{\text {d }}$
081110	9683	SUB.L	D3,06
081118	E386	ASL.L	W1.D6
O日11A	2AB6	MOVE.L	D6, (A5)
0 011IC	682A	EM1. 5	8081148
0011]E	08580018	BSET	*27,06
001122	2E3C80003464	MOVE.L	W865380, 07
081128	5387	SUBC.L	W1, D7
00112a	66FC	ENE. 5	cee 1128
00112 C	4846	SHMP.W	D6
08112 E	13C600030009	MOVE. B	D6,400830089
001134	E886	ASR.L	*4,D6
081136	13C686830860	MOVE.B	D6,86083608D
001136	4280	CLR.L	De
08113 E	4281	CLR.L	D1
001140	4282	CLR.L	D2
081142	4283	CLR.L	D3
001144	4287	CLR.L	D7
081146	$4 E 73$	RTE	
001148	e88see 1B	BCLR	M27,D6
08114 C	60DE	BRA. 5	880112 C

TUTOR 1.1)

TUTOR - 1000		CROUNDOFF-7 MOUE.W	
001084	4280	CLR.L	D8
081086	7204	MOVEO.L	M4, ${ }^{1} 1$
801088	7405	MOUEO.L	M15,02
-0 186a	$13 C 808830803$	MONE. ${ }^{\text {P }}$	D6, 808030863
081810	$13 C 800030097$	MOVE.B	D0, \$80830e87
801016	13cener3080日	MOVE. B	D0, 88083008 B
$00101 C$	13C00003000F	MOVE. B	D0, $\$ 80838985$
001022	$13 C 800830001$	MOVE. 8	D0, 508030001
801028	$13 C 109038063$	MOVE. 8	D1, \$88836883
00102 E	13C200830805	MOVE. 8	D2,800030005
001034	$13 C 100030087$	MOVE.B	D1,508030807
$0 \cdot 183 A$	4689	NOT. ${ }^{\text {P }}$	D0
$0 \cdot 183 C$	$13 C 080830089$	MOVE. B	D8, 800030809
ee 1042	$13 C 18003008 \mathrm{~B}$	MOUE. B	D1, \$08030908
001848	$13 C 00003000 \mathrm{D}$	MOUE.B	D0, 50863000 D
08104 E	13C10083080F	MOVE. B	D 1, \$0e03600F
601054	$13 F C 88808803080 \mathrm{D}$	MOVE. 8	W128,\$0803800D
00103 C	$13 F 5000008030089$	MOVE.B	40,\$00030009
001064	203C080E4EIC	MOUE.L	M937560.06
001064	207C00810025	MOUE.L	W65573.40
001870	- 1C80880	MOUEP.L	D0, 80008 (A0)
801074	13FCe806880 10035	MOVE. 8	W0.8080 10835
-8107c	4280	CLR.L	De
081878	4281	CLR,L	01
01880	4282	CLR.L	D2
- 01882	4283	CLR.L	D3
081884	4287	CLR.L	07
- 1886	327C200	MOVE.W	W8192,A1
-188A	$347 C 2082$	MONE.W	W8194, A2
- 108 E	367 C2084	MOVE.W	WB196,A3
181092	$387 \mathrm{C20} 18$	MOUE.W	M8208,A4
$0 \cdot 1896$	3A>C2020	MOVE.W	\#8224,A5
00109A	328C3666	MOVE.W	M13926, (A1)
$0 \cdot 1095$	34BC1386	MOVE.W	-5046, (A2)
001042	36BCAASE	MOVE.W	W2654, (A3)
- 1806	4254	CLR.W	(A4)
$00^{18 a 8}$	4255	CLR.W	(A5)
8018 AA	13FC804808018023	MOVE. B	W64, \$02010023
$0 \cdot 1082$	21FC000010C60100	MOVE.L	W4294, 600800100
-9188A	13FC06A180810021	MOVE.E	4161,808610821
- 110 C 2	4E71	NOP	
$0 \cdot 100^{4}$	COFC	BRA. 5	\$0010c2
- 0 ecs	$13 F C 080100010835$	MOVE. 8	* 1.488810035
$0010 C E$	13FC008F80030805	MOVE. 8	wis,808030805
081006	$13 F C 880080936805$	MOVE. B	48, 408038085
0810 E	7E06	MOUEO.L	66,07
COIOEO	5387	SUBQ.L.	W1.07
- 10E2	$66 F \mathrm{C}$	ENE. 8	88018 E
08104^{4}	143900030085	MOVE. 8	\$00030005,02
- 1 -EA	143908030085	MOVE. B	\$08830085,02
0 10F0	04820080	EOR.B	-128, D2 ${ }^{\circ}$
$0 \cdot 10 F 4$	4882	EXT.W	D2
$00^{10 F 6}$	E942	ASL.W	*4, D2
$0 \cdot 10 F 8$	143900030001	MOUE. B	880830801.02
$0818 F E$	1439日0030081	MOUE. B	
001184	4286	CLR.L	D6
881186	3215	MOVE.W	(A5), D1
ctile8	3614	MOVE.W	(A4), D3
- 118 a	3882	MOUE.W	D2, (A4)
O110c	C301	MULS.W	(A1). D^{1}
Celiek	2 CO 1	MOVE.L	D1, D6
- 1118	CSO2	MULS.W	(A2), D2
001112	DC82	ADD.L	D2.06

APPENDIX A5 (CONTINUED)

081114	C703	MULS.W	(A3). 03
101116	9 983	SUB.L	03.D6
001118	E386	ASL.L	11.D6
0 0111A	2486	MOVE.L	D6, (A5)
001112	6B2A	BMI.S	8881148
18118	$0806080 F$	ETST	-15,06
-01522	673 C	BEO. 8	-801160
081124	5255	ADDO.W	M1.(AS)
001126	4846	EWAP.W	D6
081128	5246	ADDO.W	-1.06
08112A	18C60008	ESET	111,06
00112 L	13C608830089	MOVE.B	06,880838809
081134	E886	ASR.L	44,D6
021136	13C60483000D	MOVE, B	D6,88003000D
$00113 C$	4280	CLR.L	De
60113 E	4281	CLR.L	D1
001140	4282	CLR.L	D2
001142	4283	CLR.L	D3
001144	4287	CLR.L	D7
081146	$4 E 73$	RTE	
081148	8B86888F	BTST	M15,06
00114 C	661 A	ENE. 5	\&801168
08114 E	0 0478908	CMP.W	*0.07
081152	6714	BEQ. 5	¢081868
001154	5355	SUBQ.W	M1, (AS)
081156	4846	SWAP.W	D6
001158	5346	SUBO.W	M1.D6
081154	08868088	BCLR	M11.06
00115 E	60CE	BRA. 5	\&08122E
081160	08C60618	BSET	M27,06
001164	4846	SWAP.W	D6
081166	80C6	BRA. S	\$80112E
081168	88868018	BCLR	427,D6
06116 C	4846	SWAP.W	D6
60116E	cebe	BRA. 5	808112E

TUTOR 1.1\rangle

APPENDIX A6 (CONTINUED)

NUMBER OF ERRORS 00000 NUMRER OF MARNINES 00000
assembly complete

MODIFICATION TO CONTROLLER
FOR 12 BIT.D/A CONVERTER

```
APPENDIX B3 (CONTINUED)
```


40 PIN RIBBON CONNECTOR

 ON WIRE WRAP INTERFACE BOARD TO A/D MOTHERBOARD
50 PIN RIBBON CONNECTOR ON WIRE WRAP INTERFACE BOARD TO MEX68KECB CPU BOARD

n - hotive low

REFERENCES

1. Rattan, K. S.: "Computer-Aided Design of Sampled-Data Control Systems via Complex-Curve Fitting, " Dissertation, University of Kentucky, 1975.
2. Hartke, P. V.: "Hardware Implementation and Error Analysis of a Digital Control Loop," Master's Thesis, Wright State University, 1981.
3. Kuo, B. C.: Digital Control Systems, Holt, Rinehart and Winston, Inc., New York, 1980.
4. Katz, P.: Digital Control Using Microprocessors, Prentice-Hall International, New Jersey, 1981.
5. James, M. L.; Smith G. M.; Wolford, J. C.: Analog Computer Simulation of Engineering Systems, Intext Educational Publishers, Scranton, 1971.
6. MC68000 16-Bit Microcompressor User's Manual, 2nd Ed., Motorola Semiconductor Products, Inc., 1980.
7. MC68000 Educational Computer Board User's Manual, 2nd Ed., Motorola Semiconductor Products, Inc., 1982.
8. TMS32010 User's Guide, Texas Instruments, Inc., 1983.
9. TMS32010 Assembly Language Programmer's Guide, Texas Instruments, Inc., 1983.
10. TMS32010 Evaluation Module, Texas Instruments, Inc., 1983.
11. TMS32010 Analog Interface Board, Texas Instruments, Inc., 1983.
12. Gauder, M. J.; Rattan, K. S.; Sarwal, A,: "Microcompressor Based System for Evaluating Frequency Response of a Digital Control System," Paper, National Aerospace Electronics Conference (NAECON), 1983.

$$
\begin{aligned}
& \text { END } \\
& \text { DTIC } \\
& 6-86
\end{aligned}
$$

