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St~~Lv1AEY

In this report, the effect of multiple scattering on coherent wave

propagation in discrete random media has been investigated. The medium

is modelled with a random distribution of spherical and non-spherical

scatterers. In the recent past, we have been concerned with theoretical
tL

and numerical studies of electromagnetic wave propagation in discrete

random media 1,2 Of particular interest to us was the frequency depend-

ence of the attenuation and the phase velocity of coherent waves as a

function of volume fraction, size and shape of scatterers distributed in

a host medium. We used a self-consistent multiple scattering theory wherein

the response of a single scatterer was described by a T-matrix and several

forms of the pair correlation function were used to take into account

concentrations greater than 1%. Our results compared very favorably for a

wide range of frequencies (ka from 3 to 84) and concentrations from 0 to

3 450% with the experiments of Ishimaru and Killey and Meeten

a) One of the objectives of the past year's efforts was to concentrate

on anisotropic effects resulting from waves propagating at arbitrary angles -

5to randomly distributed, aligned, pair-correlated, non-spherical scatterers

Such problems have been studied by Twersky wherein he has presented ana-

lytical results in the long-wavelength approximation. In Ref. 5, the simi-

larity between Twersky's and our approaches is discussed. Although both

formalisms are quite different, they result in the same dispersion equation.

Our formulation is, however, more suited for numerical computations at

higher frequencies. We have discussed this at some length in Ref. 7 wherein

we have performed numerical computations of Twersky's equations for the

acoustic case and compared it with computations for our equations. In Ref. 5,

a .* . . . . . . .
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the calculations performed are quite complicated since all values of the

azimuthal index contribute in the expansion of coherent electromagnetic

field in vector spherical functions. Our computed results are in excellent

agreement with those obtained by Twersky . Average frequency dependent

properties are also studied and presented. For comparison purposes, we

have also investigated the electromagnetic wave propagation through randomly

distributed and oriented scatterers by introducing the concept of a rotation
8

matrix along with the T-matrix

b) The close agreement between our theory and experiments, although

very encouraging, calls for further research on specific issues such as

(i) the range of validity of the Quasi-Crystalline Approximation (QCA) as

well as corrections to it, and (ii) the generation of non-spherical two

point correlation functions so that dense concentrations of non-spherical

particles can be considered.

In order to determine the two point correlation functions for both

spherical and non-spherical scatterers, we are developing a computer algo-

rithm to solve the Percus - Yevick equations as well as Monte Carlo.

9techniques . In Ref. 9, two-dimensional Percus - Yevick equations are

solved numerically with excellent comparisons with Monte Carlo calculations.

10For low concentrations, Twersky has developed pair correlation functions

purely based on geometry which agree with our computer generated values. In

the Monte Carlo simulation, the computer is instructed to perform a series

of small random displacements on the particles. If any displacement results

in two "hard" particles overlapping, it is rejected; otherwise, it is accept-

ed. The program is run for several million such displacements and an appro- -

*... .... ... .... .... ... .... .... ...
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priate selection of the resulting data is utilized to evaluate averages.

To implement this algorithm for a specific system one needs to define a

"shape" which allows the computer to determine whether or not particle

overlap has occurred. The implementation of the "physics" of the system

and orientations of non-spherical particles is being pursued and the results

will be reported in our future reports.

c) Secondly, our effort was also to have a clear physical understanding

of QCA used by Twersky and us. The QCA is used to break the heirarchy of

equations for the ensemble average of the field exciting a particular

scatterer. As a result only a knowledge of the two particle correlation

function is required. In a recent paper , we have shown what type of

multiple scattering processes are included in the QCA and which ones are

neglected. Explicit improvements to the QCA are also presented. We are

currently implementing this improvement in our numerical algorithm. We have

also performed some computations for various lossy and ibssless dielectric

scatterers to understand the effects of properties on wave attenuation,see Figs.l-8.

We wish to continue this work further by studying the QCA and any corrections

to it more closely so as to understand why it works as well as it does.

d) Thirdly, a general multiple scattering theory based on spatial

stochastic system is developed to study wave propagation in discrete random

media 12,13 Using the concept of an "equivalent spatial stochastic system"

and the joint probability distribution of scatterers, a general expression

of the space correlation function and the intensity of the multiply scattered

fields is established. The intensity calculations using this method compare

with those of Twersky at long wavelengths. The method, however, seems to

provide excellent comparison with experimental data l]4.

• . '...''..'' ' "'j ""..v -" ," . ."-. 2 ', . - ' : ".".".:* . .,' .'''.,''.-. .,5 , ".'**." "-'2 ." ". , . . . ."" . . .,. . ,, .
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e) A propagator model was developed to study coherent and incoherent

4,15
intensities of electromagnetic wave propagation in discrete random media

Lax's QCA with suitable averaging techniques and the T-matrix of a single

scatterer have been employed in the analysis. Pair correlation functions

generated by Monte Carlo simulation have been utilized in these cbmputations. "

This model also provides a dispersion equation which is solved for both

phase velocity and coherent attenuation as a function of frequency for

various scatterer concentrations. Numerical results obtained show excellent
16

agreement with the experimental measurements of Killey and Meeten This

approach also shows excellent comparison with experimental data for scalar

problems 17

f) In addition, we have also developed a hybrid T-matrix method and a *.

QR factorization scheme, which are ideally suited for scatterers of high --

18-20
aspect ratios . These methods will enable us to study scattering by

such objects as discs, long thin finite cylinders, etc. We have also

developed a finite element algorithm for handling arbitrarily shaped

21
inhomogeneous scatterers Recently, we have formulated an efficient

scheme which overcomes the Rayleigh hypothesis in the application of the

22 ..
T-matrix approach for scattering by rough surfaces 2

These additional efforts will eventually help us in applying our various

multiple scattering approaches to compare with the actual field measurements

for various kinds of debris.

Various publications resulting from our investigations are enclosed.

.................................................4 .... 4. .
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For identical scatterers, we obtain

A.. ^ k.o. ri

Ji r" n ° j n
(8)'

where p (r. Ir.) is the conditional probability distribution function and

<xi >. is the conditional expectation of c with the i-th scatterer located
n 1 n

at r.1.

The average exciting field is assumed to propagate with the wavenumber K

of the effective medium. K = K +iK 2 is a complex frequency dependent function

unlike the wavenumber k=w/c of the host medium. Thus,

A
fit i<i Y, k 0 . ri <

ti L Xn e 9 ..

when substituted into Eq. (8) permits us to evaluate a portion of the integral

for impenetrable particles i.e., p(ri ri)=O if Ir. - r j< 2a and
(L ,ri - r 1) for r -r.j>2a where V is the large volume

V ' l j 
.

of the system such that n = N/Vthe number density is finite. For details

we refer to our earlier work in Ref. 9, the difference in this case being

k z.

If the s-catterers are rotationally symmetric, then the T-matrices are

diagonal in the azimuthal index, i.e. m' m In this case we can assume

without loss of generality that k is in the x-z plane since there is complete

symmetry in the x-y plane. Further there is a very simple relationship

between the dispersion equations that result for wave propagation with

polarization parallel tc the x-z plane and perpendicular to the x-z plane.

For this case Eq. (9) when substituted into (8) results in the following

equations for the coefficients Xl mO and X2 mO:

".'i. ">i-. "i-..-- -. -. ----. ,-.- . .".- .-.... ......................- '. .-..,., .-..- ,--. -".-. ... .-. .-. . ,,...-.,-.-.-....-.-....,.,
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where r. denotes the center of the i-th scatterer, 'a' is the radius of

the circumscribing sphere and

Re J (kr)
IVXY (e,p - (5)

Cema) eme- 2M9 kv..
cxc h- (kr)

where J, and h(l) are Bessel and Hankel function-, Y are normalized

spherical harmonics, k9L/c is the wavenumber, Z c[o,] and m c[o,Z], (3= even

or odd.

Using the extended boundary condition method5 we can derive a T-matrix

to relate the unknown coefficients a and f as follows:

: T
T, I (6 )

where T , the T-matrix of the i-th scatterer depends only on the frequency

w and the geometry and nature of the scatterer. It is independent of the

direction of the incoming field and the observation point.

Substituting Eqs. (3), (4) and (6) in (2) and using the translation

addition theorem for the vector spherical functions, we obtain

oO 41j%. k > T,, tx1 ,
4Tr A (k(7)

n' n l nn n

where the abbreviated "ndex 'n' represents the set {T,Z,m,, n are vectorn

spherical harmonics, AI=rVY1mG and A 2=rxA1 and n/n is the translation

9matrix

A configurational average is performed in Eq. (7) over the random

positions of the scatterers and the QCA is invoked in the usual manner 9 .

>1

.

',d. ".,
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presented for aligned spheroidal scatterers as a function of frequency,

volume fraction of scatterers and the direction of' propagation.

Wave Propagation in Media with Aligned Non-Spherical Scatterers

Consider an isotropic medium chacterized by a refractive index VIT _

in which aligned rotationally symmetric scatterers are randomly distributed.

The rotational axis of symmetry is taken to be the z-axis. Although the

formalism is applicable even if there is no rotational axes of symmetry,

numerical results are presented only for spheroids. For the general case

we refer to Twersky1 '2 for explicit, long wavelength results. Plane harmonic

-+o -*e
waves of frequency w, propagate in the direction ko (Cc'). If U , U and

1t

U. specify the incident field, the field exciting the i-th scatterer and the

response to this field respectively, then self-consistency require that

~-tot
if there are N scatterers, the total field U is given by

-tot O-
U =U.. J + (1)+

or

-0 (2)
U. L + LY.

I 3

The exciting and scattered field are expanded in a basis of vector

spherical functions as follows:

2

L 'r~I £d 120* ema-~ t(3)

Ui~~il O2.'2r F

o'.o .--.Lp

t~I ei#A



INTRODUCTION

It is well known that in a medium with microstructure in the form

of discrete random inhomogeneities, electromagnetic waves undergo attenuation

as well as dispersion. If the inhomogeneities are either spherically symmetric

or randomly oriented, the medium is macroscopically or on the average isotropic.

The attenuation and phase velocity are independent of the direction of

propagation. However, the medium can be effectively anisotropic if the

scatterers are non-spherical and aligned. In this case the propagation

characteristics of the medium are a function of the angle with respect to

the axis of alignment (taken as the z-axis).

Such problems have been studied in detail by Twersky1 ,2 for both acoustic

and electromagnetic waves. He has presented analytical results for elliptical

cylinders and ellipsoids in the long wavelength approximation including the effects

of the pair correlation function. The formulation that we present is quite

similar but is however more suited3 for numerical computations at higher

frequencies requiring smaller matrices to yield convergent results. The

dispersion equation that we solve numerically is compared to that obtained

by Twersky. Both treatments rely on the quasi-crystalline approximation (QCA)

to break the heirarchy of equations for the ensemble average of the field

exciting a particular scatterer. As a result only a knowledge cf the two

particle correlation function is required. In a recent report 4 we have

shown what type of multiple scattering processes are included in the QCA

and which ones are neglected. The response of a single scatterer to the field

exciting it is characterized by a T-matrix. The T-matrix is numerically

generated in a basis of vector spherical functions using Waterman's extended

boundary condition method5 '6  Earlier work using this general scheme was

restricted to randomly oriented non-spherical scatterers or for wave propagation

restricted to the alignment axis8 '9' I0 ' II Numerical results are



FREQUENCY DEPENDENCE OF THE ATTENUATION OF ELECTROMAGNETIC
WAVES IN MEDIA WITH ANISOTROPY INDUCED BY MICROSTRUCTURE

V. V. Varadan, Y. Ma and V. K. Varadan
Department of Engineering Science and Mechanics

The Pennsylvania State University
University Park, PA 16802

ABSTRACT

Electromagnetic wave propagation in a medium containing a random

distribution of aligned, pair-correlated non-spherical scatterers is studied

using the T-matrix to characterize the single scatterer response, the quasi-

crystalline approximation and the two point pair correlation function. The

resulting dispersion equation for the average medium is numerically solved

as a function of frequency and the direction of propagation. Numerical results

are presented for the attenuation of electromagnetic waves versus frequency,

concentration and direction of propagation.
p "'
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The four quantities BII ±, B2 2 "  B1 2 ', B2 1 ' are vestiges of the

translation matrix after the angular and radial parts have been absorbed

in the integration. Expressions for them may be found in terms of the

Wigner coefficients and are given below .-.Z

11Bl + 22,± _+ '± 7 1/2

B i t (TrnEM, /4E ) 
.

(e e'*A )/2 1(-1) [ ,+,(2t+)(2e', i)C2A+,) (13

+1 ('+) V'1)' +)") (1)

a0 
0 0 m n in

1± 21± m±r / 4
B =B =G) (TrE Er C, /4 E /2 .f+ i

and in.r

I£ [. (ze+i)(21+'+)(2A,1) ]112 ' )

"EC£+i) e'(t'+ 0) 0 0 M rn Mrn

+ 1)2 2li -[ <  (e'2)}" [ ( e'+ e +) -A 1/'2 :
- - 2 (14).

" Equations (lOa) and (lOb) may be written in vector matrix notation in

the form

X =M X (15)
i i "j

The dispersion equation for the effective medium then becomes

i.jU, X, ko) (16)

- where M itself is an infinite matrix for each i,j. The determinantal
ij

.- equation must be solved numerically using suitable forms of the pair correlation

f function g(x), for given w, k0, n and T. It is seen that the solution will.; " o .'-



depend explicitly on the direction of wave propagation ko, rendering the

I [medium effectively anisotropic.

..Relationship to Twersky's Dispersion Equation

a In a series of papers, Twersky '
2 has derived the dispersion equation

invoking the quasi-crystalline approximation and including the effects of

pair correlation for both acoustic and electromagnetic wave propagation in

pair correlated random distributions of aligned scatterers. For spherically

symmetric statistics, i.e. requiring a spherical excluded volume even for

non-spherical scatterers, we can show that the dispersion derived by Twersky2rd

is identical to Eqs. (10a) and (10b) when the scattered field is written as

an expansion in vector spherical harmonics.

In Eef. 2, Eq. (81), the dispersion equation for electromagnetic wave

propagation in aligned, random distributions is given as

MAL

"-" and-

£ C a - -I o

nrnrL~
AV

rimM/ A \dS

-. &r0 2 t U i V a (17b)

+ B

where in our notation

na .a, i l i. I . . ..
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f[M - iX1  tnz X n fMO , mrO1

are the scattered field coefficients,

0( T1

AVA

;fllA £ 2f 21

is the T-matrix of an individual scatterer and the two symbols and

LF are related to the Fourier transform of the product of the pair correlation

function and the translation matrix as in Eq. ()

In the notation of the present paper and the abbreviated index notation

we may write Twersky's equation, Eqs. (l7a,b) in the form

[2T21 T221

2 J L--- (• L

We note that Eqs. (l0a,b) may be multiplied from the left by the T-matrix,

so that the dispersion equation is in terms of the average scattered field

i i

coefficients rather than the exciting field. Then using <fl> <fi > =x iKk~r,
n j n ne 0

we can rewrite the dispersion equation in the form

XL a ~r 0  ,,f n(i.) nik (19)

We further note that using the integral representation of the vector spherical

functions the translation matrix can be written in the form

f T r*

2 A (r) A r~+dr~

nnA X n n 20

isteT-arx fa idvdalsatee ndteto yblsC+d -"
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II
where c+ are the contours

Further A = Atm are the vector spherical harmonics, rVYm for T=l and
n

-rxVY km for r=2.using the properties of the scalar products of vector

2
spherical harmonics of the same argument as given for example by Twersky

Eq. (77), we can show that

tA

* jXI~'.Z -. 2 T

as defined in Eq. (80) of Ref.2so that the dispersion equation derived here is

" ~identical to that of Twersky.

.1 .* . . . .•
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Results and Discussion

The dispersion equation (16) was programmed on an IBM 370. The main

parts of the program consist of subroutines that a) generate the T-matrix

for a given w and shape of scatterer, b) set up the matrix 6 - M

c) special function programs d) determinant solver e) complex root finder

based on Miellers Method and a main program that specifies the parameters

w, no, a, k and the shape and nature of the scatterer. The root finder

returns the value of K = K1 + i K2 that renders 16ij - Miji = o. This is

then the complex, frequency dependent effective wavenumber of the medium.

Although simple relations exist between the dispersion equations for parallel

and perpendicular polarization, the resulting wavenumbers K and K are

in general different.

The truncation size of both T and M is varied till convergence is obtained.
A A-- -

The computation is more time consuming than for the case when k = z because

an additional summation on the azimuthal index is involved i.e., the azimuthal

modes are no longer uncoupled. This involves the storage of fairly large

matrices. Typical computation times for an oblate spheroidal dielectric

scatterer of aspect ratio 2:1 with E 3.I66 aad F_ for a given w 1 n and k is 60

Sees after the program has been tested for the correct matrix size.

We now present results in the form of plots of K1, K2 and <E> = £R 
+  is

the real and imaginary parts of the effective dielectric constant as a function

of k a= w a/c, £ (cx=0) and c = n 47 a3 /3 where 'a' is the semi-major
0 0

axis of the oblate spheroid of aspect ratio 2:1, and 1.25:1. We recall

2 2
that <> K /k

In Fig. 1, the phase velocity Re(k/K) is plotted as a function of

frequency for both parallel and perpendicular polarization for a = 58.30 and

c = 0. 21.There is approximately 2% difference between the two cases except



ll1

at ka ~ 1.7 when a cross-over occurs. In Fig. 2, the attenuation given by

I m(K/k) is plotted as a function of ka for both parallel and perpendicular

polarization for a = 58.30 and c=0.21. There is approximately 2% difference

between the two cases except at ka 1.7 when a cross-over occurs. In Fig.

2, the attenuation given by Im (K/k) is plotted as a function of ka for

both parallel and perpendicular polarization for a = 58.30 and c=0.21. Also

included in the figure is the attenuation for a=0 and aspect ratio 1.25:1.

In Figs. 3 and 4 the attenuation is plotted as a function of a varying from

00 to 900. The attenuation is a slowly varying function of a and is maximum

for a=00 . In Fig. 5, the attenuation and Re<c> are plotted as a function of

angle a for parallel polarization, c=0.052and ka=O.05 for an aspect ratio

1.25:1. In Fig. 6, the real part of <E> is plotted as a function of frequency

(ka) for several cases. The phase velocity for a=00 and a:b = 1.25:1 is

bsignificantly higher than the other three cases considered.
In Fig. 7, the complex plane plot of the effective dielectric constant

is plotted for both parallel and perpendicular polarization for a/b = 2.0

and should be compared with Fig. 8 for a/b = 1.25. In Fig. 9, the complex

plane plots of <E> are shown for a=58.30 for parallel and perpendicular

polarization. Figure 10 shows the comparison of our results with those by other methods.

In conclusion, we have demonstrated a scheme for computing the complex

propagation characteristic's of a medium that is effectively anisotropic.

Although, the effects are not dramatic, there is significant (measurable)

-difference between the results for parallel and perpendicular polarization. The

effect of polarization is more significant than that of propagation direction.

Finally we have also discussed how our dispersion equation for a medium

with pair correlated aligned scatterers compares with Twersky's equation

for the same system.

........... J.-...........-..-.'.-. .-.-.-
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FIGURE CAPTIONS

Fig. I Plot of phase velocity vercus normalized wavenumber for a
0

distribution of aligned spheroids for wave propagation at af= 58.3

for both parallel and perpendular polarization of the waves.

Fig. 2 Plot of attenuation versus normalized wavenumber for a distribution -o
0 0

of aligned spheroids for wave propagation at a= 58.3 and af- 0.

Fig. 3 Plot of attenuation versus direction of wave propagation for

aligned spheroids, parallel polarization.

Fig. 4 Plot of attenuation versus direction of wave propagation for

aligned spheroids, perpendular polarization.

Fig. 5 Plot of attenuation and the real part of the dielectric constant

of wave propagation in aligned spheroids.

Fig. 6 Plot of the real part of the dielectric constant versus normalized

wavenumber for aligned and randomly oriented spheroids.

Fig. 7 Complex plane plot of the dielectric constant at different frequencies

for aligned and randomly oriented spheroids.

Fig. 8 Complex plane plot of the dielectric constant at different frequencies

for aligned spheroids.

Fig. 9 Complex plane plot of the dielectric constant at different frequencies

for aligned spheroids.

Fig. 10 Comparison of our results with those by other methods at ka = 0.05

. 7.. .
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functions (Hankel functions) and functions regular at the origin (Bessel

functions). We dispense with vector notation and the abbreviated index

may denote n4. T,Z,m,; T = 1,2,3;k 6[o,o]; m C [o,Z]. Thus the present

discussion can apply equally well to acoustic (T=I only), electromagnetic

(T=2,3 only) or elastic (T=1,2,3) wave propagation.

At a field point r in the host medium, the incident, scattered and

exciting fields are expanded as follows,

uo ( ) a Re in(r) (3)

with for example

a = i Y 9m(o) ()0

for plane acoustic waves propagating along 1o and Y are spherical harmonics;

u() i Re r-r.); -r (5)

and

U. (r) 2 f ou tP (r -r.) (6)>2
1 n n n

4.

where r. denotes the center of the i-th scatterer, and 'a' is the radius of

the sphere circumscribing any scatterer. The coefficients f and I are
n n

unknown but are however related via the T-matrix, which can be numerically

calculated for scatterers of arbitrary shape using W.,aterman's extended boundary

18
condition method. Thus,

fi i (7)
n n nn' n'

where we have assumed that all scatterers are identical.

Substituting Eqs. (5) - (7) in (2) and using the translation-addition

theorems for spherical wavefunctions and the orthogonality properties of

spherical harmonics 1 3 , we obtain



INTRODUCTION

Studies of wave propagation in discrete random media is of interest in

acoustics, elastodynamics and electromagnetics and dates back to the studies of

2 1 3-10
Rayleigh. In more recent times Foldy , Lax1 , Twersky -

, Vezzetti and

Keller and Bedeaux and Mazur1 2 have made significant contributions to

13-17
our understanding in this area. Computational techniques that have

been developed to solve the dispersion equation in dense random media at

wavelengths comparable to scatterer size, are for the most part based on

Refs. 1-12.

THE QUASI-CRYSTALLINE APPROXIMATION

Consider wave propagation in an infinite medium of volume V containing

a random distribution of N scatterers, N ' such that n = N/V, the number0

density is finite. Plane harmonic waves of frequency w propagate in the

tot o e s
medium and undergo multiple scattering. Let u , u , u. and u. denote

respectively the total field, the incident field, the field exciting the i-th

scatterer and the field scattered by the i-th scatterer. Then self consistency

requires the following relationships between the fields.

tut o N s e s
u :u + U u +u (i)

i=1 i 1 i

and

e o s
u. u + F u. (2)
1 ~ j~i J  i

5-7
Although a general dispersion equation can be derived as in Twersky

in order to obtain explicit results for particular shapes of scatterers, one

has to expand the exciting and scattered fields in a convenient set of basis

ou
functions, such as spherical wavefunctions. Let +U generally denote outgoing

Re n



THE QUASI-CRYSTALLINE APPROXIMATION AND MULTIPLE
SCATTERING OF WAVES IN RANDOM MEDIA

Vasundara V. Varadan and Vijay K. Varadan

Department of Engineering Science and Mechanics
The Pennsylvania State University

University Park, PA 16802

ABSTRACT

The Quasi Crystalline Approximation (QCA) was first introduced by

Lax1 to break the infinite heirarchy of equations that results in studies

of the coherent field in discrete random media. It simply states that the

qonditional average of a field with the position of one scatterer held

fixed is equal to the conditional average with two scatterers held fixed

i 2
i.e. <> . The QCA has met with great success for a range of

ij i

concentrations from sparse to dense and for long and intermediate wavelengths.

In this paper, the QCA is interpreted as a partial resummation of the multiple

scattering series that includes only two body correlations. An explicit

expression is derived for the propagation in such a medium that yields

the same dispersion equation as obtained using the QCA. Improvements

to the QCA are suggested that still require only a knowledge of the two

body correlation function.

. . .. -. .. -. ... .. .. .. .. .
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6ko.20 part of dielectric constant (Re rc* is always less in the
case of random orientation for the frequency range
considered. At higher frequencies. there is a remark-
able difference in the behavior of dielectric properties
as depicted by Figures 3 and 4.
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14? algorithm. We start from a low value of ka(=0.Ol) -

for which the values obtained from Twersky [1978]
r  are used in our root searching algorithm. The values

a/b.2o / of ka are increased by small increments of the order

io" C • 0.2 /of 0.05.
/For illustration purposes, we have presented

Ia(K) / sample calculations only for concentration c = 0.2.
eiK- * The c refers to the effective spherical concentration;

actual oblate spheroidal concentration equals to 0.1for an aspect ratio a/b = 2.0. In Figures 1 and 2. the

coherent attenuation is plotted as a function of ka for
oblate spheroidal ice particles in free space with
a/b = 1.25 and 2.0, respectively. The solid curve cor-

16s responds to that of aligned scatterers when the inci-
dent wave with vertical polarization is along the
symmetry (minor) axis of the scatterer (0 = 0°), while
the dotted curve corresponds to that of randomly

6 oriented scatterers. At higher frequencies, the results
o.5 o1. indicate that there is a significant difference in coher- .ent attenuation between aligned and randomly ori-

Fig. 2. Coherent attenuation vs. ka for spheroidal ice particles: ented scatterers. For vertical polarizations, one could
solid lines parallel orientation, dashed line. random orientation: also perform computations when the wave is incident
a/b - 2.0 Ic is the effective spherical concentration). along symmetry (major) axes of aligned scatterers

(0 = 90). The corresponding attenuation in this case
differentiation with respect to the argument. The ex- is lower than that of the randomly oriented case. In
pressions for a and b occurring in (14) are related to
the Wigner 3-j symbols and are given by Cruzan
[1962]. Now the singular value of the coefficient ..-
matrix generated from (14) can be solved for the ,6' k - -

average propagation constant K = K, +jK 2 . The -

real part K, is related to the phase velocity while the e. 3.s.6 8

imaginary part K2 is related to the coherent attenu- a/b 1.25

ation. Once K is known, one can also compute the C 0.2 . -
normalized average complex dielectric constant as
given by

* =' + jr*" = (K,k)2  (16) Im e/

COMPUTATION

The procedure for computing coherent attenu-
ation. phase velocity and average complex dielectric
properties is similar to the one presented by Varadan
and Varadan [1980]. For a given value of ka. the
T-matrix of the scatterer is computed. A proper.T- ko.5
matrix size is chosen for a given ka to satisfy the
unitary and symmetry properties. Retaining as many
as 20 silnultaneous equations for Y and Z in order to L22 .24 126 28 '30 1 32 134
obtain proper convergence, we computed the com- Re e-.
plex determinant of the coefficient matrix corre- Fig. 3. Complex plane locus of the effective dielect,- consant
sponding to Y and Z of (14a) and (14b). The roots Fg .Cmlxpaelcso h letv ilcrccntfor a system of spheroidal (a b = 1.251 ice particles: solid fin"
i K = K, + iK 2) of the resulting transcendental equa- parallel orientation: dashed line. random orient. tion ic is the ef-
tion are obtained by M6ller's complex root searching fective spherical concentraton?.

................ *-'' * ~ ~ *<. **~..**.4. * .*'*'-*. . •
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Thus, the actual concentration may be quite different id.
from the effective spherical concentration for scat-
terers of large aspect ratio. For an exact calculation 6r s /
of a very dense system, assumption of spherical sta- a/b.1•25 .....-.
tistics for nonspherical particles may lead to con- C ..2 / " --0

siderable error. Twersky [1983] has considered non- ,/ " -.

spherical statistics for spheroidal scatterers in the
sparse concentration limit. Extending this model to a,,w m(K

dense systems and numerically implementing it for Re(K)
high frequencies will be a problem of interest to the
research community. I

Performing the configurational averaging and in- /
yoking the quasi-crystalline approximation as out-
lined in Twersky [1978] and Varadan et al. [1979,
1980], we obtain the average scattered field coef-
ficients as follows:

<B,'> 1-<),,> o< - 12s ,1s3,
> < 22 1 0 0 0.5 1-0 0-3 2.0

<c-.>,_ L<T'> <T2 >JL<X,,.,> (10)

where Fig. 1. Coherent attenuation vs. ka for spheroidal ice particles:
solid line, parallel orientation; dashed lines random orientation:

2n, + I e&'. a/b - 1.25.
<* n ,(n, + i) 2"6.,,, + n1(nI + 1

The resulting equations are

+ -I (,J r, - r. *m,, ,. o .z±-., . PH --.:li "

+ (CJ2,,,)cr:)?,r, - rj)]g(Ir1 - r, l) drf (l q1u 1 Mszl 2.

and (- 1)2 i"-"6 .... 2 JH).
2n, + I eihr .. ¥= ['T '....anz n,, q~zm,. n,I - mi,,n ql .;[)
f + 1 en , .

XA... n,(n, + 11 2i " -(T'2>..1.,1 b(n,, n,, q)a(m2, n2l - m,.nlqq - MI] ,;

+ - [+B.,)C>N.,(r, r ) + 2 2 .11 n,, q)OM 2, 121 - i. nIq)
- .=-o .--.= • <T"t}...,...btn2" nt, ,?)om2, nz I -rmi, nilq, q - 1]Il-

+(c., 2>B ,:(r, - r,)Ml r, - r, 1) drj (12) -.. -(14al " ...

In (11) and (12), V' denotes the volume of the and
medium excluding a sphere of radius 2a. For identi-
cal scatterers, = N - I and 4nN - I)a 3!3V Z. ... (14b)
c. the volume concentration of "scatterers," provided where (14b) can be obtained from (14at by replacing
N is large enough. <T''> and (T"2 > by <T > and (T''>. respectively. -

To find the average propagation constant K for The term (JH) is given by
the bulk medium, we assume a plane wave propagat-
ing with the effective wave number K in the incident (JH), 6c 2kaj,12Ka)h,2kal
wave direction with unknown amplitudes Y and Z: (ka(2 - Kal[

< BM>j --=" YN , ( --) 2Kah,(2ka)jq(2Kal)](13)

<c;i>,= Z.. e ...
+ 24c x2(gMx - 1lhq(2kaxlj( 2Kax) dx (15)

Equation it 3) is substituted into (10) and the extinc-
tion theorem can be invoked to cancel the incident In (14) and (15). j. and h, are tht. spherical Bessel and
wave term on the right-hand side of (II) and (12). Hankel functions, respectively, and the primes denote
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we obtain, see Varadan et al. [1979] and Varadan In (7), P is the Jacobi polynomial which can be ex-
and Varadan [1980], pressed in terms of the associated Legendre poly-

2n + 1 e ',r nomials [see Edmonds, 1957].
--- [. +ton + I., The T-matrix averaged over all possible orienta-

nn+1) 2 tions of the scatterer may then be written as

+. N.o 2-.,-(T.. > daf dy f df sin P

+ C I O Ca,' ( r , - r fl ( 2 ) " [ D . 1 ( i , . ) t n i , ..2 ( D ' ) (. , , ) J

2n +2ne1-c, ,- 6.1+ on+ ok-1
,n+ 1) 2i[.1 1  6 S

+ [B C''(r1 - rj) If (2) and (3) are multiplied by (T> from (8). we

obtain a set of coupled equations for the scattered
at _B r - rJ] (3) field expansion coefficients which are averaged over

where Y' denotes j # i, 6.,, is the Kronecker delta, all possible orientations.
and k is the wave number of the host medium. B and Thus, only the diagonal elements of the T-matrix
C are the scattered field coefficients, while b and c are of a nonspherical scatterer contribute to the average .
the exciting field coefficients. The quantities B-a" T-matrix. This has also been observed by Twersky
and C. " are the functions resulting from the trans- [1978]. We note here that although the scatterers are
lation theorem of the vector spherical functions. nonspherical. because of their random orientations,.

We introduce next the T-matrix of a single scat- the medium is effectively isotropic and is hence .

terer which relates the scattered field expansion coef- characterized by an isotropic dielectric tensor.
ficients to the exciting field expansion coefficients as It remains now to perform an average over all
follows [Varadan and Varadan, 1980]: possible positions. To this end, one can introduce a

probability density function of finding the first scat-
(B [TI, T 2 ](b) (T).(") (4) terer at r1 , the second scatterer at r2 , and so forth by

C LT TIJc] C p(r,, r2 , . r.) which in turn may be expressed 'in

For aligned scatterers, if the T-matrix is computed terms of conditional probability, prj I r), of finding a .

with respect to xyz axes, then the T-matrix of all the scatterer at rj if a scatterer is known to be at ri. The

N scatterers is the same. However, if the orientation two point joint probability function/prj I r,) is in turn

of each scatterer with respect to the xyz axes is de- defined in terms of radial distribution function

fined by the Euler angles 2j, #,, ,, then the T-matrix g(I rj - r 1) as follows:

of the ith scatterer is a function of the Euler angles
and is defined by p(r,Ir,) = r Ir - rI) 1ri - ri 2a

T = DtD-' (5) 0 Ir - rI < 2a (9)

Here. tis the T-matrix of a scatterer evaluated with Here, V is the large but finite volume occupied by the
respect to the set of coordinate axes natural to the scatterers and 2a is the largest dimension of the scat-
scatterer (XYZ axes) and is independent of position terer. Several models of g(r) are available and are "
and orientation (hence, the same for identical scat- briefly outlined in Varadan et al. [1983]. The radial
terers) and D is the rotation matrix given by Edmonds distribution functions obtained by using the self-
[1957], i.e., consistent approximation which is a linear combi-

D:,.(2. P,) : e"dnr.,(Pi)e"  (6) nation of the Percus-Yevick and Hypernetted Chain
approximations seem to be good for a wide range of -.

where concentrations, and are also used in our compu-

,,n + m!(n - in)! 2 tations here. It must be noted here. that our model
( COS ~ assumes that although the particles are nonsphericaln + m')!(n -in')!'. -with respect to an incident wave. statistically each

(sn -m (7)- ,.m, particle is equivalent to a sphere of diameter equal to .' -.

n _the largest diameter of the nonspherical particle.

.. ,* .. . . . .

.~.- .. .. . .*
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Coherent attenuation of electromagnetic waves by randomly distributed and oriented pair-correlated
dielectric scatterers is studied as a function of frequency and volume concentration of scatterers.
Average frequency dependent dielectric properties are also studied. The results indicate that the attenu-
ation and hence the effective properties differ considerably from those of aligned scatterers.

INTRODUCTION ent attenuation is studied for dielectric scatterers in

In our earlier papers Bringi et a!. [1982a, b], a free space for different scatterer concentrations and
multiple scattering formalism was given for the scat- range of frequencies. The results are compared with
tering and propagation of vector electromagnetic those obtained for aligned scatterers. At higher fre-
waves in a medium containing three-dimensional, quencies, the results indicate that there is a signifi-
identical, dielectric scatterers randomly distributed cant difference in phase velocity and attenuation be.
but having a single preferred orientation (aligned tween aligned and randomly oriented scatterers.
scatters). The extended integral equation or T-matrix Average frequency dependent properties are also pre-
method developed by Waterman (see for example sented in this study.
Varadan and Varadan [1980]), in conjunction with
suitable statistical averaging procedures and pair- OUTLINE OF THEORY
correlation functions had been employed in such a Consider an incident electromagnetic wave propa-
study. Analytical dispersion relations were obtained gating along: direction in an infinite lossless. back-
at low frequencies in terms of the T-matrix of a ground (host) medium of E,, o containing a random
single scatterer. At higher frequencies. numerical distribution of identical randomly oriented N
values of coherent attenuation and complex effective number of dielectric nonspherical scatterers of c. p0
dielectric properties were presented for spheroidal which are referred to a Cartesian coordinate system
scatterers for various concentrations when the inci- xy:. Let XYZ be the set of coordinate axes natural
dent wave propagated parallel to the minor axis of to the scatterer. For spheroidal scatterers, for exam-
the scatterers. The computed results were found to be pie, the XYZ axes coincide with the symmetry axes
in good agreement with experimental findings of Ishi- of the spheroid.
maru and Kuga [1982] as depicted in our paper The total electric field at any point in the host
[Varadan et al., 1983]. We also cite the work of medium is the sum of incident field and the fields
Tsang and Kong [1983] who have used exactly the scattered by all the scatterers. The field that excites a
same form&-,;m for spherical scatterers. given scatterer, (say, the ith scattererl. E,'. however, is

In this paper, we extend the treatment to randomly the incident field. E'"', plus the fields scattered from
oriented pair-correlated scatterers. For randomly dis- all the other scatterers. E':
tributed and oriented scatterers. two averages have J .
to be performed, an ensemble average over the posi- Er- E'"'r + E'4r - r,) II)
tions of the scatterers and the second an average on
the T-matrix of a scatterer over orientations. Coher- where r and r, are position vectors of the observation

point and the center of the jth scatterer. respectively.
Copyright 1984 by the American Geophysical Union. Expanding all the fields in terms of vector spherical

Paper number 4S0970. functions as a basis and employing the translation
00,"-660484 004S-0970808.00 theorem and the orthogonality of the basis functions,
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n' n j#in'r ' nn' n n" 'n"

where

ou p(r-r. (r -rat Re,(-r)(9Un nn

and a , is the translation matrix for spherical wavefunctions.nn'

Equation (8) is averaged over the positions of the scatterers to yield

an equation of the form

>n +n F iJ E rp(rj Iri)drj (10)
<a = ai + , (rj-ri) <pj>i i (

w e e n 1 n J oi n 
,  n n " n

where

i ik o'ri,
n n e

p(rI r.) is the conditional probability distribution and <a "i> is the

n j
conditional average of c- ,, with the positions of both the i-th and j-th

[ scatterers held fixed.

It is obvious that Eq. (10) results in an infinite heirarchy because

"'Jijn is related to < n ijk and so on. The QCA first invoked by Lax
2 and

* also independently by Twersky3 simply states that

<Ot <cx ,>*(1

<an'P ij z n" < i(i .

i.e., the conditional expectation of a nis independent of the position ofn

the i-th scatterer. This would be an exact statement if the system was

perfectly crystalline,because, in this case the position of every scatterer in

- the system is fixed and the neighborhood of every scatterer is the same.

Twersky 3 has commented on the connection between the QCA and partial sums of

the multiple scattering series. The QCA neglects back and forth scattering

between a fixed pair of scatterers, thus in any term of the multiple scattering

series, each scatterer appears only once and only two scatterers participate

-"  in a given scattering process, i.e. this would require only a knowledge of

.

0- . I°o .
•

.. - " om, - " . ' ." ,.. .Q '• ' , . ° - . ,• ' .' . o- .
•

o " . ° . ' • - 'o - . ' .o. " ,- ° o ° ,*- °
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two body correlations. In the next section we make this more clear by a

diagrammatic representation of the multiple scattering series.

Substituting Eq. (11) in (10) and noting that

S.. 0;~ rlj-'ri < 2a
• ' p(rj ri)

gR 1); r i j j. 2a (12)

we obtain
• i rn~ (gJ (

<nn > na + n T ) r dg( (13)

n i n n nJnnJ iJ

In Eq. (12), g(x) is the radial distribution function assuming spherically

symmetric statistics even for non spherical particles, i.e. the exclusion

volume of the impenetrable particles is assumed to be spherical. In Eq. (13),

the summation convention is used, and if the particles are identical E. = N-lN

3j
when N is large and v is the exclusion volume equal to 47(2a) 3/3.

We now assume that the average field in the medium is a plane wave

propagating in the direction k of the original plane wave in the host medium,
0

however, the average field propagates in an effective or average medium which is
homogeneous and characterized by an effective propagation constant K = K +iK2

which is complex and frequency dependent. Thus

A 4.
<• > = X nei o i (14)

•n 3i n

and Eq. (13) can hence be written as

•A - ^ -A A -+ . ^ -4

iKk• r. ikk r. ik iKk-r
Xe A e + n T eo a (r )en n o nn rij dr

iKk "r (15)0 ji

n+)e [ nn [g( Irij I)-i] dr }

*~~~~ .. . . .....................

7.o



The second term on the RHS of Eq. (15) can be converted into a surface integral

using the divergence theorem and surface integral on S , which defines the

boundary of the syCtem,cancels the incident wave term on the RHS of Eq. (15).

-"Thus Eq. (15) simplifies to 91--9"

X n n oTnn,, fix"'T Dn n ' (X)[2kaj X(2Ka)h (2ka)-2Kaj (2Ka)h,(2ka)]

+f[g(x)-l]ji(Kx) h,(kx)x2 dx (16)

V-v

where D ,(X) is the vestige of the translation matrix after the spatial and

angular parts have been absorbed in the integration. Different expressions

result depending on whether we. are discussing acoustic, electromagnetic

or elastic wave propagation. Equation (16) can be rewritten as

(6 ,-M ,) X,= 0 (17)
- nn nn n

The dispersion equation for the effective medium is then simply

S6nn' - Mn (kKno'vTg) : 0 (18)

. which depends on k=(./c, the effective wavenumber K, the number density

no, the exclusion volume v, the T-matrix or the scatterer characteristics

and a model for the radial distribution function. By assuming values for

all variables but K, the determinantal equation can be solved numerically

to yield the value of the effective propagation constant.

* . ... .



n1 n U nn n -- . -

ij• k

MULTIPLE SCATTERING SERIES ...

If we substitute Eqs. (8) in (5) and then(l) and iterate we obtaind
the following: i:"

ut~t( l=u°( l+ZouP ( -'.)Tn ai  , -+EOUI )TnOw i

'U n'r) +''r +.0~~-iTn(nn Z T ij)Tn(n"' aan"' )dr.

1 n n ij n

T rE'' Or (-r iTn(19)
ij k ~ T

Equation (19 can be averaged over the positions of the particles to yield-.

. =<U ( )u (r) + l T, °U4n i P+id i i [[ ..

EE+ .7' T I n(-i)i I(ij) a,, P( i ) p( )djdr. (20)

SK iJ Tnn ' n"n 00 n( ' n ' ------n

We note that Eq. (20) involves all orders of joint probability functions.

I Each term in Eq. (20) represents beginning with the second term, scattering

from one inhomogeneityat a time scattering from two inhomogeneities at a time etc.

We note that sums of the form EE'V' involve the selection of three particles
ij k

U * at a time from N particles, the prime on ' indicates j $ i, E' indicates

k $ j but k i is permitted, i.e. particle 'i' can participate in the 3

body process more than once. Thus the three body process can include any

ID
number-of scattering in any order between the three objects.

Equation (20) can be rewritten in a different manner, defining the T-

matrix of 2, 3, 4 etc. particle configurations. Denoting by T(2), T(3),

T(h),etc. the T-matrix of 2, 3, 4 particle configurations we get

S..-..............................-"'
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tot r+ -<u (r)> = u°(r) + NjouP(rAr T(l) a P(r1 )dr1

+ N(Nl)rou (r-r') T (2) a' p(1,2)drlr 2 :
21

(21)

+ N(N-1)(N-2) oui(F-' )T (3)a'p(1,2,3)d 1d 2 1 "3

where r' denotes the common origin for the multiple object configuration

p(1,2,3...) are joint probability functions. We must note that in Eq. (21),

the T-matrices must be included under the integral sign unlike Eq. (20) because

T(2), T(3) etc. depend explicitly upon the relative position of the particles.

To solve Eq. (20) or (21) is a formidable task and it is not surprising

1 3that the QCA was introduced at an early stage by Lax and Twersky3 . To

show the connection between Eq. (20) and Eq. (16) we now place some severe

restrictions on the allowed multiple scattering processes. First of all we

require that each particle can contribute only once to any term of the

multiple scattering series. Further we do not permit any back and forth

scattering between a pair of scatterers. Finally only two body corelations

are permitted so that the restricted form of Eq. (20) can be represented

diagrammatically as

<ut~ ('r) r A>
>= u0()

(22)

o e 2.. 3 ""

where denotes the incident plane wave, e denotes a scatterer, e- ...

denotes scattering from particle 2 to particle l, denotes the correlation
1 2•.-.
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between the positions of particles 1 and 2 and finally 4'- 4 denotes
0 1

the propagation from particle 1 to the observation point r. In equation (22)

will be replaced by a 2 each o( will be replaced by TOT where an "

the translation matrix accounts for the propagation of waves from one scatterer

to another and will be replaced by p(l,2). Hence the explicit form1 2

of Eq. (22) is then

tot ~ 0-<utt(r)> = u°() + Nfou(r-rl)Talp(rl)dr
I

123

+ N ou ( r-rI )TO( r1 )Ta p (1i,2 )drldr2

+ Nfu (r-r )TO( r 2 )p(l,2)Tu(r2 3 )p(2,3)T

Ta3 drl1dr 2dr 3  (23)

• ~+ N u ,l'-rlTC~rl2,Pl,2 ,TO(r23)P,2,3 )T _-

mh

(r 3h)P(3,4)Ta 4dr drh

In Eq. (23), we have removed the restrictions in sums like EE 'E'
iJ k

. etc. by noting that p(1,2) is automatically zero if r2=r. Any inaccuracies

introduced by this procedure becomes smaller as N + . For spherical

• .statistics, we note that

p(rl) ; = gp(1,2) = p(rl,r2 ) 1 g( r1V V 12 2

We now introduce spatial fourier transforms of the translation matrix

and the radial distribution functions and denote them by T (k) and

g(k) respectively. Using the convolution theorem, Eq. (23) can be simplified to

.... '--.

A .A..P .. .... ". .
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* Utot(r)> =uo(r)+n oUipCr-' )T{J. + n 'a()Tn2, )Toa g(f, T

(24)

3n Fg(j)Tog( Tag-- +---} ) 2
o + e K l 2a d dr 1 dr 2

where 7

iK4.

Og(K) = a( Ix)g( I)e d, (25)

The terms on the RHS of Eq. (2h) can be summed formally and we can rewrite

Eq. (2h) as

<utOt(r )> = u° (r ) + oun (; -r )T,

(26)

-1W1TK (r 1r22r22
no f{l-nog(K)T}-I e a n,, dKdr dr2

This new form of the average field can be interpreted as an incident

plane wave propagating through an effective medium of propagation constant

K and propagator {1-OgT}-  undergoing scattering from a particle at r1

and then propagating to the observation point r with the wavenumber of the

host medium. In Eq. (26) we note that

4. -1

iK( r2  2 iK-r1 a ,
e a ,, e a,,n n

so that if

{1 - n ogT}-(-K) = H(-K) (27)
0

then

<utOt(r)> = u + n ouIP(r-r') T nnnn, an,,d

The dispersion equation in the model medium are given by the zeroes of

(K) which yields the effective propagation constant of the medium. We

recall that the propagator in the host medium has a Fourier transform of the

form 1/(k2 -w2 /c2) which has a pole at k=w/c. The poles of the new propagator

I
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are then determined by the roots of the determinantal equation

I 1-nog (K)TI = 0. (28)

We observe that Eq. (28) and Eq. (18) are identical since

Mnn,(k,K,no, v, T, g) ((29)
= nn ,,g(K) T nt

=o n Tnn,

Thus the QCA is exactly equivalent to summing the class of multiple

scattering diagrams denoted in Eq. (22). This has also been qualitatively

3
discussed by Twersky . We can now proceed to improve the QCA. Since we

are somewhat limited in our knowledge of the higher order correlation functions

at the moment we will restrict ourselves to improvements that do not require

knowledge of higher order correlations.

We start with Eq. (21), which is a multiple scattering series written

in terms of the T-matrix of clusters of particles which are then averaged

over the positions and relative spacing of the particles in the cluster.

We begin by noting that T(2), the T-matrix of a two particle configuration

depends only on the relative position of the two particles and takes the form,

(see Peterson and Strom

T(2) Re[a(O' )]{T[ I - a (p2-Pl Ta(- -P )T [+4-P)TRe(a(pI-))]

Re(a(-p ) + {+2}(30)

-* 4. 4.-4.

where the second term is obtained by interchanging P1 and P2 ' P1 9 P2 are

the positions of the two particles relative to a common origin which is

located at r' i.e., ri = r' +p i i2.

Terms of the form (1-OTaT) - denote repeated back and forth scattering

between particles 1 and 2. In addition to other more complicated terms,



these 'ping-pong' terms are explicitly neglected by the QCA. The QCA

can be improved by including these terms in the multiple scattering series.

The price is not too great to pay since only a knowledge of two particle

correlations is still required.

The 3-body T-matrix must be simplified as follows:

T(3) = T(1,2,3) = T(1,2) T(2,3) (31)

We note that we have neglected terms of the form T(1,3) since particles

1 and 3 would appear out of order in the chain and hence prevent us from

summing the series using convolution techniques. The 3-body joint probability

function is approximated as follows:

p(1,2,3) p(l)p(211)p(312) (32)

which we note is different from Kirkwood's superposition approximation for

the 3-body correlation function.

Using Eqs. (31) and (32) and similar approximations for the higher

order terms, Eq. (21) can be written as

</tot(. )> 0Nf )(,1)Ta'p(1)dr 1

2f 1l 2+N ou(O,)T G(I,2)T [1-0(2,1)T a(I,2)T]I p(l) a p(211) dr drJ~ 12

+NfouP(O,)T G(l,2)T [1-0(2,1)T O(l,2)T]- I G(2,3)T

-l3[l-G(3,2)TG(2,3)T]-1 a p(l) p(211) p(312) dr dr dr
12 3

Let

T(1,2) 0 (l,2)T [l-a(2,l)Ta(l,2)TJ1

-4. -,

which is a function of r1 r 2 only.

We denote by i -.-

n T(1,2) g(2F1) (k) =NfT(l,2)p(2j1)e d(r -r 1 ) (34)
S2-. 1
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then

tot 0~ 1
<u (r.)> =u

0 + fouoP(Q,l)T [1 - n 0T(l,2)gl (K) (5

ik (r 1-r 2 a dr 1dr 2dK

The major difference between Eq. (26) and Eq. (35) is that 0(1,2)T

has been replaced by 0(1,2)T[1-oG(2,1)TOY(1,2)T] 1 . The hole correction

integral is not as simple as before since a complicated matrix inverse

also enters the integrand. The propagation constant for this improved version

of the effective medium are determined by the zeroes of

1-n 0T(1,2)g(k) 036
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CONCLUSION

In this paper we have shown that the QCA is a partial resummation

of the multiple scattering series that omits back and forth scattering between

fixed pairs of scatterers. An expression for the propagation in such a

medium is derived whose poles are the same as those obtained by solving

the roots of the determinental equations obtained invoking the QCA.

The difference between Eq. (28) and Eq. (36) can only be tested by actual

computation of the effective wave-number for a given system. The QCA has

already met with much success in explaining the experimentally measured

attenuation of electromagnetic waves for a distribution of latex spheres in

water for concentration up to 40% and wavelengths comparable to scatterer size.

It may be reasonably asked if any improvements can be achieved by including

additional multiple scattering processes as in Eq. (36). A logical way to

answer this before implementing improvements on the QCA in the multiple

scattering algorithm is to study electromagnetic scattering from a fixed pair of

scatterers as a function of frequency varying the distance between the scatterers

and the material properties of the scatterers with respect to the host. This

will give us important insight as to the importance of such processes in

wave propagation in random media.

................................................... *
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:)ace Cross Correlation Function of Successive Scattered Fields

ross Correlation

Consider two sequences of scatterers {i1~j2 l** 'i~ n {k, 2, n ,

hiich do not overlap each other, and do not repeat in each series, i.e. no

ny pair among J1 ,...Jmok1,.*.k nis equal; The space cross correlation

unction of the successive scattered fields p j1... .(4) and Pkl .. .kn(r)

s defined by

k 1-kn

n-

here is the mathematic expectation operator.

th th
'Let S. S. .,S. be the re-ions occupied by jt ,j 2 '~

31 J2 J
catterers with mass center at origin, respectively. Thenwith rather high

Lccuracy we can make the following approximation

-(p )ek(Q ) r'(.)

,p(P. +r') ' .)e P r'E: S.(53

~~iil . 1+1 j' . +1i '

rj S. ,i i=l,2,. ..,m. (5.4)

Then (3.15) can be simplified to

p. .(r M ) (P. ) rc(Q1  P ,k (. ),8. )Fl(P -P. 3 0e
2 im ml J3 2 2' P. 2~ -P J1 j

4 i m-jPji m - i.1J

(r.. 
.*-.im 1............
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if we note that

n-i

D c  (eitk) = R when i=n. (4.20)
k=l i+k iJk 3

Figure 7 shows the case of i=n-3. The shaded area denotes the region

n-i1) Dc (B,0 _ )

k=l Pi+k i i+k

It can be proved that if any one of the following conditions

1 0 <<a, where a is the maximum deviation of the surface of each

scatterer with a spherical surface, which encloses the same volume as a

single scatterer, a is the radius of this sphere.

2 VY<<I, where V is the volume of a single scatterer, y =max{y(p),pcR3}M 3

3 a <<11, where a is the standard deviation of random vector 0.:

00e [{j- C[e 2 1/2  (4.21)

is satisfied, then (4.19) can be simplified to

n-i

(pl 0) = yffe(0.) X(p1 , ( i D ), (4.22)

i=l N-(n-i) k=l i+k

where D ,--0
Pi+k is the mathematical expectation of DPi+kgi, ai+k ) as defined

by a similar expression as (4.14). The conditions 1, 2 and 3 mean that

respectively:

1. the shape of each scatterer closes to sphere,

2. the scatterers in space are not very dense, and

3. all the scatterers have about the same orientation.

It should be noticed that, equation (4.22) holds as long as only one of

these conditions is satisfied. It, however, does not require all'of thd""

are satisfidd.



[211

Again, as in Part II [2] a b proved that

fn-2n-2 Pn-lPn-jn-2' n-i' an

Y( P ED (0 2' )U D (6 e
n- n- Pn-l n-2 n-i pn n-2 n(41

N-2 Pn-2 :D Pn-l (e n2G '8nI)U D O (0 n20e)

or

fn-2 Pn-2 Pn-i On'n-2' n-i' n

-(n2 x (P D c (e e) D (en e ),(4.16)
N-2 n-i' Pn-l n-2' n-i On n-,n

and, even more generally

y~pI~ n-i(4.17)

N-(n-i) X (Pi, ()'~ D P (0 ,e i)
k-ilik i+k

Therefore, (4.4) becomes

nnIY n-i 1 r(PT7~ f (j.[F N7-- e~ nC ( 021- (4.18)
_ i_) X ' (p,, Dc e i-

k= 1

and (4.18) can also be written as

n n-i

f(pl...,~ 0p el.. e TT f(0)l C ee (.9
in '.' n = iN-(n-i) K( Di(0, 4.9

i-l k=l i-Ik
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e - 0 i.e. on the relative orientation of these two scatterers.
n-i n1

Dc is the complement set of D i.e.

D c (6 ) RID (0 0) (4.7)
p11 n-1 nl P11 n-1, n1

In terms of the characteristic function of set D then let
P

n-ln- Pn n-i, n 48

and (4.6) can be expressed as

y (Pn-)
Jnl~~l~l~l/ Ni ~p Dc (8 ) (4.9)f l(nl1nn ,'n N- n-i , Pn n-1,n

We define

f (~IP)=I~ (~I~e~~f()f )d IdO (4.10)fn-i~n-iln) jjfn-ln-ln, n-lnf(n-lf(n )dn-Ien

and by substituting (4.9) in (4.10), we obtain

f (P' 1P) n- (4.11)fn-i n-i d1 N-i 'Pn-l' Dn)

where

c) 1x(P Dc (e ,0 )) 0  if )d~n-IdO (4.12)
n-1, n jj n..' Pn n-i' n))6'-~e'

Further, by means of the relation

X(p,D) 1 X(p,Dc) (4.13)

(D can be any set) and using the properties of probability distribution

density, from (4.2) we get

X(Pn-l D pn) =f (nl9 P(nln)f(e1-)fO(en)den-den (4.14)

This shows that the region D is the mathematical expectation of the region
pn

D (B ,e)

Pn.. n-l n



)= ---N- ' n ER 3 , (4.3)

where v(p) is the mathematical expectation (or mean value) of the volume

density of the mass centers (representative points) of scatterer (or number

of representative points [2  in unit volume) and N is the total number of

scatterers.

Strictly speaking, when the shape of each scatterer is not spherical,

the mass center positions Pill . n are not independent of the orientation

angles jl,... n' and (4.2) should be replaced by

f(pl".., ' el' ,en)= 1 6n!el ' , an) fe(el,... en)

f fl(ljIP2 " . n, el,- en) f 2(P2 1P3 ... n' e2''"en

(4.4)

•f3(P31P 4 ,..-'P n' e3,---, n)...fnl(Pn-I 1n' enI , en) fn(Pn )

• fe(el) .f'(e2) •... 4(6d),

and from the assumption I mentioned above

(4.5)
fn(Pnlen) - f'(pn)

Expression (4.4) is the more general expression when the assumption 2 has

been removed, or only under the assumptions I and 3. The following derivation

will be done also under only assumption 1 and 3.

[2]
By following the procedures used in Part II , it can be proved that

f (P e = Y(Pn-1 ) Pn-E D (en-l' n)fn-l(n-l1P n9 n-l' n) f N-1 "
0 0n-lE DOn (enl ' en) (4.6)

where Do (en1 , en) is the region enclosed by the locus of the mass center

of scatter (On-l, e ) which is just tangent with the scatterer (p en )"-n-l n n

as shown in Figure 6. Obviously this region D depends on the orientation
Pn

angles en- and e . The shape of V (,n_) depends only on the vector difference-'-"

. . . .. . . . -. . . . .
. . . . . . . . . . . . . . . . . . . . . . ..
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Multi-Demensional Joint Probability Distribution of Scatterers

In order to calculate the correlation function and intensity of multiple

scattered field, the expression of multi-dimensional joint probability

distribution function or density of random vectors pI, P2,  and

e e e , (I Pn el"" e) is needed. In this paper, we
J19 j2'' jn I' n l'' n

assume

1 The orientation and the mass center position for each scatterer

are mutually independent, (in unconditional distribution).

2 The orientation of each scatterer is also independent of the mass

center position of other scatterers.

3 The orientationangles e.l, ej2 ..., jn of any n scatterers from

N scatterer are jointly independent, and have the same probability

distribution.

From these assumptions, f('•''.... n •• can be written as

fW 1.... . l" 15~p~i~ 61 e 0 01  (4.1)Y( l'• • P" 81'•" n) f P(PI"' • n) f8(el) fe(e2l ... fe(en) (.)".-

where f(P ).... is the joint probability distribution density of 7.1.I

j2....'p ~jn' and fe(e) is the probability distribution density of 0.1

(or 6j2' or Oj3,,••)-
a -

f0(pi,..., n can be expressed in terms of the conditional probability

densities as

fP( ''' ) ff fl(- 1I 2' ..'  f2n) 2 f3 (_314" ' . n)  -

... fn-l(PnIPn) nfn (4.2)

where fl(pll p2 ,..., pn) is the conditional probability density of pJl under

the condition P = 0, and P = P • f -n"lJ2"'Pj 3*" jn n' f2 3" 'f-

denote similarly. fn( P) is the unconditional probability distribution

[2]
density of p By using the methods employed in Part II[ ]  it can be

jn"

easily proved that

.. ...... .. .. .. .•......... -.. -.. .. ....... .. ........ .......-.- - .--.-.. '.- .- ...-.- - ,",
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The expressions (3.15) and (3.16) are the general expressions of the successive

scattered field, in terms of the incident wave i and the scattering functions

g, of each single scatterer, g is called the unit impulse response functions,

r is called wave-vector response. All of them are similar to the Green's

function. The function Pjl...jm (r) is called the successive field of the

scatters jl, j21 ... Im"

. . . . . . .. -U . . . . . . . . . . . .. . . .- .

**%~U U . - - - . . . ~ ..* .*.**~~U .~* . . . . -2

. X. '... ... .... .... ~ U
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Finally, considering scatterers j, to j , we obtain
rrn

p rn ... jmm j jj 1' jlj3 j2+2 1 J2

R3

... 9( rr r rn2 g )(r r ., dr df
im ri_+ m2 rn-i m r rn-m im 1 rnI

(3.15)

or

In

R3

g(r"_ )g,8 .8 r npj rrn..i d 1. rn1-i (3.16)
rnpm-'i-i rn m rnei

where (see Figure 5)

r . + ril or-i i-i r p.
1 -11

+ or r'1 r. i-i j2'

p - j. I!, i =1, 2, m.,r. (3.17)
h~l ji

Let

F P' k, ) Jg(P', "7, 6) e- dr', (3.18)

Then

g (P'' T 1) 3~ fk, 8) e+ ik d k, (3.19)
(27r)

"3
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or

PJl(.jl j ) = f i +  ji ')g( "" ' ) dr" (3.8)

th

Similarly, or the j2 scatterer with orientation angle Oj2, and mass

center of which is located at P32, when incident wave is Pjl(f), the scat-

tered wave p jl 2 ( ) can be expressed as

= j (-'' g 4 "" - " P, dr1  (3.9)..

Pjlj2 2 P(j 2  1 )g(r2-.j2 ' rl j2) 1' (

or

+ r1 ) = f Pj(% 2 + r1 )g(r 1 " r1  8.2) dr' (3.10)

Substituting (3.7), (3.8) into (3.9) and (3.10) respectively, we have (note
that l+ '7 2 +

Pjlj 2 (~ = f 1? ' ) g  2 1+ ' O)g e 2- j2' r1 "j 2 )d'dS'

3 (3.11)

or

232+rl")= ff p(3")g(F',"', Oj)g(','j8 2 ) d "d!1I (3.12)

R3
thSimilarly, if a third scatterer, i.e., the j3 one, is now added in this

analysis, then

r3= P( 1 +r )g( 2 - 1+-j, ', Ojl)g( , 3 -j 2 + r2,-i, Oj2 (3.13)
Pj j 3 3 , -6 -g,

d-1' dg ;73' r2 ' ) d. 6' 23 r 1_2

and

P j l j 2 j 3 ( 0' 3 + 2 ) = f f f i ( l " ' ) g ( r , ; ' , 8 9 g ( 1 " , , 8 )
R3 -

9 2(" 2~' 0j3) dr d~' dr 2 (3.14)

............................
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3. Successive Scattering Formula
" ~th "-

Suppose the ji scatterer is located as in Figure 4. Its mass center is

at i' and its orientation angle is

e.. = (el 2 3"-

3 01 (61 A,0 ,3).

Then the unit impulse response of its equivalent system can be expressed as

g(,rl' r, 0jjl) and the scattered wave Pjl(r), when the incident wave is

i( ) (suppressi-e e i t), can be expressed from (2.1) as

Rj~p g -l-,p a dr 31

r 3
Let

= r-jr"r= j (3.2)

b Then

= jl + ' i =ji + " dr = d'r (3.3)

and (3.1) becomes

j + = f 1 + )g( 1 + ji + io- . i

3
. Obviously,

g + G7 , + P', ;, 0) = g(?,, i', 0) (3.5)

g(r", r', 0) = g(r", ') (3.6)

so that (3.4) becomes

Pjl( I) = J 1 + r')g(1--0 1' r e jl) dr' (3.7)

z ". z -z- -

,- .-., .,-.% ,;,- %.¢ ..- ,. ....,.......,-............. .-,, ,-,...,...,...,,.... •,...-,...,,......,.,..,. .....-... ,.... .. -.-,.... ,.... . ,.. ,.,,



It should be noticed that: 1) this "equivalence" is only for the scat-

tered field outside the scatterer, and 2) the "equivalent scatterer" and the 5

"equivalent spatial stochastic system" do not really exist. They are only

for the convenience of calculation.

Fr(r,k) can be called wave-vector response function of the scatterer or S

of the system, and from (2.3),

g(r,r 0 3 f F " r, k)e - k  dk (2.4)

(2x) K3

where K is the 3-dimensional wave-vector space, and dk is the volume element
.3

in it.

.,. ,. . . . . . . .. .-.. . . .



in Figure 2. When this scatterer is immobile and the incident wave is a mono-

chromatic plane wave with unit amplitude and wave-vector k, the scatteredi-w !
wave, can be expressed as p(",)e i where p(fk) is complex amplitude of

the scattered wave and can be expressed in terms of a scattering matrix.

m Consider another "imaginary scatterer" or a "spatial stochastic system"

with the following properties: 1) It is totally transparent to the incident

wave, and incident wave can penetrate it without damping, 2) it has the same

shape as the real scatterer mentioned above. When the incident wave is
.. . iwt -. iwt

(rro)et, the scattered wave can be expressed as g(i,ro)e , and when the

incident wave is any monochromatic wave s(I).et (not necessarily plane wave),

the scattered wave (output of this system) can be expressed as

f S(r-)g(f,r)di, (2.1)P(T 0 0hr 0
R1 3

where g(-,r) is the unit impulse response function of the first kind [1' of
0

the system, and R is the real 3-dimensional space. The factor Q will be
3

omitted from now on. When s(r) is a uniform plane monochromatic wave withU
unit amplitude and wave-vector,

i-

s(r) = er, (2.2)

the scattered wave can be expressed, from (2.1), as

i' e r -f 1 (Fk). (2.3)
0 0

If F'(Fi) is just equal to the p(-,k) mentioned above, then this imaginary

scatterer is called the "equivalent scatterer" of the original scatterer, and

this spatial stochastic system is called the "equivalent spatial stochastic . -.

L. system" of this original scatterer.

* ..-.......
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1. Introduction

The problem of multiple scattering of discrete scatterers randomly distri-

buted in space appears frequently in various applications and has been treated

4-8" by many authors in various ways, for example, Varadan and Varadan and

Twersky. 9 1 1

In this paper, this problem will be treated based on the general theory

1-3 2,3
of spatial stochastic systems, and the general multiple scattering theory.

We consider the following problem: scatterers of any shape and size randomly

distributed (not necessarily uniformly in some region) in space. All the

scatterers have the same shape, same size and the same scattering property

individually and are motionless. The orientation of scatterers is also not

necessarily uniformly distributed. Therefore they also can be in the same

orientation when orientation angle distribution is S-function. The total num-

ber of scatterers can be finite or infinite. The region occupied by the scat-

terers can be bounded or unbounded, or the whole 3-dimensional real space R

iwtsee Figure 1. The incident monochromatic wave (f)le can have an arbitrarily

3 shaped wave-front. We are going to find out the multiple scattered fieldiwt

p(r)e and its space correlation function and intensity in the whole space,

(except inside each scatterer) inside as well as outside the region in which

the scatterers are distributed.

For more complex media involving, for example, several kinds of scatterers,

we can use the system decomposition method (mutual feedback connection case)

and solve it in terms of the results obtained in this paper.

2. Equivalent Spatial Stochastic System

Consider a single scatterer having a given shape and known scattering

properties, and establish a coordinate system at its center of mass, as shown

-......
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Abstract

In this paper, a multiple scattering theory based on spatial stochastic

system is presented to study wAve propagation in discrete random media.

Using the concept of an "equivalent spactial stochastic system" and the deri-

vation of the expressions for the joint probability distribution of scatterers

and the successive scattered fields, a general expression of the space corre-

lation function and the intensity of multiple scattered field is established.

This expression shows that as long as the scattering characteristics of each
V

constituent scatterer excited by a plane monochromatic wave are known along

* with the volume distribution density of the scatterers, the space correlation

function and the intensity of the field multiply scattered by the scatterer

distribution excited by an arbitrary monochromatic wave can be calculated

rather simply.

..................



* where k = is the wave number of incident wave.
c

U From (5.5) and (4.22), the space cross correlation function of the

* successive scattered field can be expressed as

k... .n mn 

-K (r1,r 2 ) =j.f ..f (l)4(Pi) r-(P 2-P1,k(p1) 1)

_______ * m-l-Pm-2
(P p-Tp j (P -P2ml, rn1-i Pm-21 m-1

F r P m M-1 e (p'.P' ,k(P)r P- 2 1 e')

r~imm m- 2 1 )r(; ;. 2

nP n-I-' ' I -~Y eQ Fr 2-Pn, kIPh , en

iT~ 0)Y(P) X (Pi, n\ Tc
TT e V N-CnN-n-i Pi+k

£ ~i= l ~

*dp. .dp dp'... .dp' del ...dOmdO ..dO' (5.6)
I- rn 1 n n

where

P P

M+1 ip m+2j'"' .. p~=n

m+2=m~ n1"P =

Let (D(r~k)- JF(r,k,e)f0 (e) d6 (5.7)
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* and is called the "average wave-vector response function" of a single scatterer

with respect to its random orientation. Then (5.6) becomes

k1. k ~ m+n

K (l~r .. *P~mi)( (P k(p1)

* P2_Pl Pm-lPM-2

*P m

rD( P k 0 -. k, (D ('-P

(DP-P -n -2 (r ~n n-I

m+n m+n-i

TT Y(Pi) x (P n 5c dp1 *ddi.dp-

N-(m+n-i) Pik 1 p dp.. .n (5.8)t

i=l k= I

Let

P-p ______-

I, f (i((2P k(p 1)) (D (P3-P 2 1 TYI N-(m+n-l)(59

m+n-I

k=l lk

By means of DeMorgan's Law and the properties of the characteristic

function of sets, it is easy to show that

m-4n-lI m+n-l

=1P -XpC =I D XPl ~c c

k~l k~l

,.-. ..

_( 1, U D

.. . . . . . . . . ....
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m+n-l rn-1- m+n-1

=1 2 X(P19DP k)l + X( k~ l DP +)
Ik=1I k=l I fLik

kO t

m+n-1 rn-1- m+n-l

-X19 n z5 n3 X~ 1 ~fD )..(5.10)

___ q1 Pk+l Pe +1i q
W~, eNq, q~k

Substituting (5.10) in (5.9), we have

+ 42)+ I + .. = 1~ (..~ 1r (5.11)
n=0

where

3 T~~V N-(m+n-I

rn--

1 N-(mIn-i) 1 2-1,N~k(IJ1 ~\3- 21' N D (5.13)1

Pk+1

* - r~mn-- rn--

I N-(m+n-1) fvL. 2-i 2p,~ 1) 3-2 Q -

3

.Y(P) X (pig (\ )do (5.14)
Q1+1

1 ... (similar and omited)

Let P2 - p1 =l then P - u, and (5.12) and (5.13) transform

to the following expressions respectively:

fo f) 7.- el L4) k H Y(el, du, (5.15)
* 1 tJ-(m~n-D

N (ni+ n .3



Since the function O (u, k) rapidly attenuates with u and i-'s "effective 17

domain " k( ) and t( ) can be troated as constants, we le
ik(p2).ul ik(02)_u I -•

(? 2 -u) = *( 2)e , P*(-)= (2)e (5.16)

and (5.15) becomes

0)_ 1 1 *l -ik(p2).uS N-(m+n-l) ( (Ulk(p2 )) (P3-0P2 2k'-j e I du (5.17)

It can be shown that, in the summation of (5.13), only the first term plays

* the main rule, and the summation of other terms is much smaller than the

first term and can be neglected. Thus,

I0(P) 1 f kIp 2Il, (5.18)
1 N-(m+n-l) f 1 2-P19(1))J (p3-P2,k i 1d8

P2

By similar reasons as it was used in the drivations of (5.17), (5.18) becomes

(1)mn1)* r *0*2) 1(-ik)*u*(5.19) . -."u
=P )Y P r ( (Ul~k(P2))(D (P14- 2k )e duI .i '

Now, it can be shown that the series (5.11) converges rapidly and

n-2(-) n)1I I)1 -1) (5.20)

- Therefore, from (5.17), (5.19), taking 1 -(0) i(1)
1 1 1 ,wehave

I N-(m+n-l) * (P ) f 4 (Ulk(p ))D (P3kJ2 -)e du (5.21)

30G

Let

uI -ik(P 2).u
( 3 -P2 ,k(P2 )= J (ulk(P2))*(p3-2, e I du (5.22)

3f2. .

""U,
•

: .-¢ < -- -< .-. '< ."- --¢ --. : - ' ; '- .---. 'i ' ."- 2 " " '- ..--' % ' " -•. .-' -- .' -.- ' '. -- ' ' ' -% % i N : '- ' .' ." ," , -.--.,\'/ -' " " ,



Then (5.21) becomes

N--(m+n-1) lp 2 ,~ 2 k 2 3-p2 ,k 2)). (.3

Next, let

m+n-2

2 L 4-P1 3P N-(m+n-2) X(P2, /) D k+2 )P

Substituting (5.23) into (5.24), by the similar steps as above, we obtain -

I 2 = -9-mn1 .- mn2 IP) 2P 3(PA PI *3) (5.25)

where

ct3(p4...p3,~~~~~ kp)=I 4( 2 kP)c(PP 3 kj[eik(P3).~u 2 (.6

3 3p0

Similarly

1 I I P )y *3 * P kp)(.7
r3 N-(m+n-l) N-(m+n-2) N-(m+n-3) 4 4 ( 4 ~4(P5-P 4 1 k~ 4 )(.7

where

f ik(P ).u3
( 5 04 k(p)= (D (u39 kQ)40 4 k--i2 ) e du3  (5.28)

3 PO

Continuing this,L

m-2

m- L N-(rn+n-k)J ~r- Mr-1~ml~r~-'kp), (.9

k= I

* where



rn~~f WO (ukirnI
rn -i ( m m- m-lk(p M)) fRD m2 M-2 (m-'k -1)DPP-l u 2 Ik~ ).Ua-

3 pO

du 2  (5.30)

However, the derivations of I and I will be slightly different.

pp (pn+l

(r-p -- 1t,5 )d
rn -2 lrni-PTWP-11 N-.(m+n-(m-l)] rn-I Pk+n-l rn-i

3~ (5.31)

Substituting (5.29) into (5.31), similarly, one has

rn-1

Ll T T I ] *(pm)-yrl(pm)(*(r -p k(p)), (5.32)
m 1 N-(rn+n-k)MIM

where

~rn~r~rnk(Pr)) fUMn1 ik(p).u 1 rn-
(D (r -P (k(P ( (um lk(pr))(D(r -Prlk )e d

R\
3 pm (.3

n

Ir J(m 'r- (P,/ n~ 5 dp (5.34)
R3 m- N-(, +n-A) km kPrn

Substituting (5.32) into (5.34), in view of the fact that the field point

ris not inside any scatterer, we get

rn k~i J(Pm)YM( ((r7P ,k(p ))dp (5.35)

3

. . . . . . ... . .
. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . .
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Next, we proceed the later half part of the integration in (5.8), similarly.

Let

P1 n-l

Ic j1P(P )(D(p2-p',k(P)>D(P-p 2,i,~ kp 1, T, )dP (5.36)
'213 -' N---1 k Il

so that finally we get an expression similar to (5.23):

2I -nl N-PP(-2) 3 3 (;--pk~p)), (5.38)

i -n-1 2 2. 2

2 N(nk) nnnn5;)D3P'-3

n

I, T I-nk (Pi_)yn(pi~ri~?)p .( (5.39)

n-l

n = (,r) n Nn(m2-k

J TTi~ 1yi )Ynpn k(r1-Qdp (5.42)

n )'n 2 n n

R 3 3

k.1 j..., kk, m ,~n

J,~~. .. 
. ~
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Auto-Correlation

When the two sequences {j1, ..., j}m and {k1 ,,...,k} are completely

kk

the cross correlation function K 1".(I.I becomes the auto-correlation
... 1m r, 2)

function of pjl ... M (r) defined as

K. (r1,r) =&pl. 4 (r) p. (r2 . (5.43)

Substituting (5.5) into (5.43) and using (4.22), we get K.j-i (r1,r 2

2 ~ -p22 1

2 P 0F(P. k 1 3_P2 e ...' I-(). -P. k Jlm-2 a

imm- im-2

(r4~ k m I ,m-l f'(r

m y( 2  i-

11')r k (p 12 0_ k21 W
iR 1 f(2 1Nm-)1' 1~ ~ d1 . 3 2d d 1  .d _ (5 44

3 . . . . . . . . . . . . . .
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Let

T(r,k)= fi(r,k,6) 12f(e)de , (5.45)

0t
T (ri'r 2 'k) =f F(rlk,e) F(r 2,k,6)fe(6)de (5.46)

Then (5.44) becomes

m P -P'

K j (rlr 2) =f'" 2(p) 12 (P2 P 1k( P) ) ( 3 , I02-2 1 ).

R3

0 3 -0 2 P° -.m -

k r -I k m-l-Om-2 k (5.47)
.p3~~p~j) ... - m-l- m-21

Om-Pm m y(O i ) mn-i-c T

Pm-m-i (i) -c
. c (rl-P0, r 2 -Pm, k 10mPm i T Nm)X(0i, C D )dP...dPm

mmI i=1 k=1 i-L- I

Following derivations of Section 5.1, let

0P(P )12 T(p k( P kp-2-01 Y(l) (5.48)

i 1 13 2 -Q IT -(m-1)R3  [[ 2-.

rn-i " '

-C

x( , () D ) dp I

k=l k+l .

Comparing (5.48) with (5.9), one can see that they have the same form, and

the only difference is that the , 4 m+n in (5.9) become Il 2 , T, m in (5.48),

respectively. Seeing that the function D (u,k) attenuates with u even faster

thanfunction D (u,k) does, and from (5.16),

2 i~2k(P ).ui
[4 (PH-Ul) = (p e=I(P)2 (5.49)

where u is in the "effective domain" of (u,k), finally, we get

* .* , . -.
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J= N-Cm-l) Pp)Iy(p2) f (ul,k(p2 )) T (p 3- 2 ,k ) du (5.50)
R3\ DO

Let

J )e~u 1 2 k ( P 2 ) ." u l  ''"

T 2(p3 p2, k(p2)) J '(ul,k(p 2))T(p 3-P2, k 21 l. (5.51)

R3\D 
0

Then

Jp(2)2y(2) 2(3-2' k(p2)) (5.52)

Similarly, let
m-2 :

P3-P2 Y(P2 ) "( Tc

J = f J1 T(p4 -p3 ' kF03-2) N-(m-2) X(2' ( l) dP2  (5.53)

Then

1 i 1 P3I22 ( (5.54)

2 N-(m-l) N-(m2) .- -3'3P4-P3 kP 3/)

where

u2

T 3(p4 P3  k(p3)) = T ' 2(u 2,k(P3))'(p 4-P3, k "2 du2  (5.55)

R3\ D . 1..

Going on in this way, finally, let

rm-l m-2 ) m-2______
rn-2 = --3 l(m-Pm-l' k m_ N-(m-2)

R3

2 (5.56)

*X(p 2, \' ) d~2
k~ k+m-2k-l

...............-...................-................................
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mn-2

TT Il 1 rn)12 -2 p_, _P-m_ k(_)', (5.57)

k= 1

where

Trn-i rnp-l rn ( PM-)) f T 'M-2 (urn-23k(pm_1))P (pMP-' uM-21dm_
R3\ Do(5.58)

Let

I.p -p p
Jcrfm r k -m wfM~ nr-i M- 5C )dp (5.59

rn-1 JM~r-2 ~cLHn 2-Pn k1TT- I N-i rnp-I' p rn-1

Then

rIT (p yT N-(n-k (pm1 ( r-pr- k(pm)), (5.60)

k= 1

where

T~n (r -P ,r -P k(Pr) T r- (urni k(Pr)

TC(r i-P. r 2-PM, k li) dui- (5.61)

Finaiiy,

...j C r1 ,r2) j m = NM dpr (5.62)

Kl'JM( fi*"J m~ r2 (5.63)

m

TT N-Yk )T I~ 2 p) 2 mp rc Crl-pm,r2- 9k(pm))dpm

k-i P
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pace Correlation Function of Multiple Scattered Field

By means of the system decomposition method in the spatial stochastic

ystem theory [i, it can be proved that the space correlation function of . . -,

he multiple scattered field p(r)

KP(rig r2) =4{p*(r1 )P(r2)} (6.1)

an be expressed in terms of the space cross correlation function of the

iuccessive scattered field as

N N N N k k
K 2 "EE ... E 1"kE k 4II K. .n (r ,r)Krlr)m7--Inr-l J=l ml 1 1-i"

Ji#ji- 1
, i=2,...,m, k kzl, Z=2,...,n. (6.2)

this is a general relation. Here the set {j1, j2' ...9 jm} and the set

{N1  k2, -9 k } can overlap with each other, i.e. the intercept {k, .. kn

(jig "... j } is not necessarily to empty set; and inside the set {jl,... "
n

}, the elements can be the same, or can be repeated any number of times,
m.

provided that all the pairs of a,'jacent elements are all different; and so

does the set {k,, ... , k} "

Now let us divide K (r r into three parts:

p 1' r2)notreprs

(a) (b) (c)
Krr 2 -)=K (rlr2)+K0  (r I r )+K (rl,r 2), (6.3)

where K (a)(rl'r2 ) denotes that part, which consists those terms in the summation

(6.2), where the sequence {jl ... , jim and sequence {kl, ..., kn} do not

overlap at all, or do not have any common element as shown in Figure 9, i.e.

N N N N k ...k
K(a)( " KI .nrl,r2)(r l' r2 m=l nrlj= EI J= I kl=l ekI il . m"....."2

n

. :.;:.._:.-.,.:..-;-.. .., . . .,;...............,..-.......- ................. ................... ,.....-..-. -.................-. ....



26

!quence {j,.1...,ji } and sequence {k ... .,k n completely coincide with each

:her, as shown in Figure 10.

c)N N N N k ...kr(c) .. K lI .n(r.1,r)
p '2 r-3 im=' k1=*

iii-i i=2, ... , m, k,,#kg,_, Z=2,.. .,n

m-n, jiki, i=1,2,. ..m.

00 N N 31 -3m
E . K. (r,r) (6.5)

M--l j 1 =1  im1 J ~ 1 .. i 2

i j i=2, .. ,m

he part K (r r )denotes the sum of those terms, in which, the sequence.-
p 1 2

jig... Iandfk m .... k I are partially overlapping. In the next part
1 m 1 n

f this paper, it will be shown that this part k b (ri r )can be neglected
p 1'2

nd the error of this neglect will be estimated.
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erivation of k (a) (r r 2

In the derivation of k (a) (r, r ) we neglect the contribution of

hose terms, where {i I ... j } or {kl . k } have repeat element,
1 ' "' n

ust as Twersky did (111. (The correctness of this neglect has been shown

oy Twersky.] Thus, from (6.4), we have

N N-m
K(a) (rlr 2 ) = E N(N-)(N-2)... (N-m+l)(N-m)(N-m-l)... (N-mO(nOl)].

~, I m1- n1l

*Kkl...k r~
"K. : (rl~ 2

.1 m

N N-m m+n k k
Z1 { iT [N-(+n-k)]} K .1 'n(rlr)

mI n=1 k=l 3J 1 i 2

r

N N-m
K(a)(rl,r ) = m n f ( ),'m(p) *(r l-,k(p))d'

p '2 m=l r1 (Id
R 
3

f (p,)yn(p,), (r2P',k(p'))dp' (6.6)
R 3

-

when N >> 1, the upper limits of the summation in (6.6) can be replaced

be infinity, and (6.6) becomes

K a)(rlr 2 ) = El fl I()ym() (rl,
P 2 m-- =l f m IQ~)d

R3 (6.7)

" f '(P')yn(P'), (r2-p' k(p'))dp'

R 3~

rhis is the required general expression of the first term of the space

zorrelation function of the multiple scattered field when the incident

Eield is a monochromatic wave !P(r). Clearly, the evaluations of the function

D ( will be the main problems in finding k (rI  r). Now we are going
m n p ' 2

to proceed with this calculation.

....; • . : . . . . . . . . . . . . . . . . . . .
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Because throughout this paper, the frequency of the incident wave is

[ fixed, the function (u, k(p)) can be defined in another form O(u, n(p)) or

simply 0(u, n), where n(p) is the unit vector in the direction of k(Q).

Thus, (5.22) can be changed to

2= J ((u,,n(p 2 ))(u 2, ec 2 ) du. (6.6)R3 70 TTec

Research shows that, for a single scatterer with any shape and for any

incident frequency, the function t(u,n) is always separable, (far field

approximation) i.e. D(u,n) can be written as the form

,(ul,n) = W(u1 )A(nl,n) (6.7)

where uI = jU1 , and n I = Ul/ IUlf is a unit vector. Substituting (6.7)'

2into (6.6)', and using duI  u1  dQidul, where di is the solid angle element

(see Figure 10), we get

,)= f f W(ul)A(nl,n(P 2 ))W(u2) A(n2, n)

0 E( 1 )-

ei--n(P 2) "nlu u I dQnduI

.. - W(u2) A(nl,n(p2 ))A(n2 nl)

e1-n(p )n U(6)2 ic-- (2) 1n 1 (6.8)

J W(u u e c 2 1 du dSI

,... E(n1 )

where Q is the whole solid angle space, E(n) is the set, which consists

* of those points in the direction of nI and outside the region D . The
0

integral limit 1E(n) usually can be replaced by the simpler form

if every half radial line has only one intersection point with the surface

of region D %
0

P'A. -7 O
b. . ..". .. . .. . . .. . .

................ . .. -. ...- .. .
,ff-- _£... . . '._ _ _ t,. . . ... . . . . .... . . . . . . . . . . . . .]a t' |

i i I l

-4 . . . . .. .. .. . . .. . . .
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Obviously, the integral in the square brackets in (6.9) is a function

of n1 and n(P ) and is independent of u1  Therefore, let
1 2

U~1,~p))= Wu 1  
2 ei-n(P ).nu u (6.9)

2 1
E(n)

and (6.8) becolhes

S2 (u 2,n(P 2)) =W(u 2 )A 2(n 2 'n(P 2)), (6.10)

where

A (n n) = A(n n)U(nin)A(n n )dQ2 (6.11)

2 29 f l 1 2 1 n.

ro

A (n2,n) A f (n1 ,-n)A(n 2,n) dQ2 (A *OA)(n 0n) (6.12)

*if we let

A1(n1~n) = An 1,n) U(n1,n). (6.13)

If the integral in (6.12) is called "angular convolution of A and A,

and denoted by symbol *,then (6.12) can be written as

A 2 A 1*A (A) A (6.14)

* Substituting (6.7) and (6.10) into (6.14), using the similar steps, finally,

we get

(P( ( W(u )A (n3,n(p3 , (6.15)

where

A (n3,n) A fA(n 2,n)U(n2,n)A(n3,n) d% 6.6

=((A 2U)* eA](n 3 $n),
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or

3 (A 2U A,(6.17)

A [(U)* AU*A (6.18)

A3  {[A)e A] 60 A

Similarly, it can be proved that

I - D%(u4,n(P) W(U )A (n4,n) (6.19)--

and

A4  ({[({AU}*eA)U]* A}U)*A (6.20)

going on in the same way, until mn, we get

P ~(u n) W(u)A (n n), (6.21)
mmg m m m

and

A m(n ,n) A A(n n)Un_ ,nAnmn )d~n(.2f M1 -I, (nn.In)1 n

A= (AU)*eA)U)* A) ..U)* A (6.23)

lE Let us define a linear operator L such that

L f =(fU)* A (6.24)

Then

A =L... LA Lm-lA (6.25)
m

In the separation expression of (D, (6.7), W(u )is called attenuation

function, and A (n.,n) to be dimensionless and normalized, that is

fA(n,,n)d~nml (6.26)
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Now let

A ~ J W(. )(U~ du1  (6.27)

Then f rom (6.9),

IU(n1,n)19A, V nit nep2

Define

U 0(n,n) m~ f W(u I)u2  ineC IIu (6.28)

E(n)

then

U0 (n,,n) - -U(n 1,n) U(n~n)=AU0 (nl,n) (6.29)

Then U 0 (ri,n) is dimensionless and

lU (n,,n)I9I V' n,nE:R (6.30)

We define another linear operatori such that

= Uf 8A (6.31)

Then

C f =AI~/ (6.32)

A =A A (6.33)
m 0

4) (u ,r(P ) Am M 1W(u) )(tm I A)(nrl(p )) (6.34)Mm m m 0 m r

With the help of (6.26) and (6.30), from (6.12), (6.13), (6.16), (6.22)

and (6.33), it can be proved that

fA (n n)dQ ic A, Vn ES,(6.35)

I~2



32

A3 (n 3 ,n)d2n3 2 V neA, (6.36)

f Am(n n)dQ < Am-I V nES (6.37)

m '- -- '
m

Therefore

eLo-1A) (n n)dn- <, V n (6.38)
0 m

This shows that, CO is a bounded operator when m--o, and the norm m

A is also bounded. On the other hand, convolution always expands the domain

of the function and makes it more uniform and flat. Successive convolution

always makes a function more and more uniform and finally makes it tend

to a constant. Therefore, it is reasonable to regard A as a constant

lim m-1A = a (6.39)

and (6.34) becomes

urn rnn n(A- i -

lim Cu 0n()) f a A W(u ) (6.40)
mM-." m ,

Applying (6.34) to (6.5), finally, we get

(a)W-0 n-pK(a) rlr2 = E fR_ *(P)Am-l*(In-pI)(X0lA)*(T-- 7 n(p) )dp

p l2 M=l nl R0n

(6.41)

,(Pn-i -l, r-r2 0 2-0'"0-I-

This is the final required result. From this expression, it is easy to see

that, the convergence of this infinite series mainly depends on the

attenuation function W(u) of each single scatterer and the volume density

function v(p) of the scatterers in view of the convergence of omA and the

expression (6.27) of A.

... ,. :.".. ....- ........ , ....-.... ,...,....,-...................-........,". ... ........ ,............. .. ... * .- ..-.- :..-. . .,
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Derivation of k(c)rl, r2  and k (r1 , r2)

In deriving k(c) (rI r2), and also neglect the contribution of those

terms, where {Jll ... J} has repeat elements. Then from (6.5),

N
K(c) (r r2r = E N(N-1)(N-2). ..(N-(m-l)) K. (r", r
P 2 m-l 3l ."Jm 2

N m (6.44)

=m __ { [N-(m-k)]} K. C r2)"

Substituting (5.63) into (6.44), changing N into in the upper limit of

summation for sufficient charge N, we have

(c) , ()1 2 ,mp (rl-P
K (r I , r2) 1 m c p, r2 -P, k(p)) dp (6.45)l 3

Because in this paper, only monochromatic waves are considered, so the

variable k can be replaced by the unit vector n k/k in the function r

(ul, k, 0). Usually F (ul, n 0) is separable, i.e. one can set

(u I , n, 0) = W(uI ) A0 (ni, n, 6), (6.46)

where A0 (ni, n, e) is dimensionless and normalized and ni 1 = u, U .

Substituting (6.46) into (5.45) and (5.46), one has

T(u I , n)= IW(u 1)2 L (ni, n), (6.47)

U' (u 2 n)= W*(u) W(u K A(nl n2 , (6.48)

where

L (n i , n) I 1A(n l , n, 0) 2 "f(e) de, (6.49)

KA(nlt n n) A (nl, n, 0) A(n2, n, 0) f8(0) dO (6.50)

From (5.7) and (6.7)', we have

A(nI, n) = A0 (nl, n, 0) f0 (e) d6 (6.51)

.......................J...... ....-- ,-'.'
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Applying (6.47) to (5.51), one has

T 2(u 21 n(P2) f f, ( )IW(Ul)[2 L(nl,n( 2 )IW(u 2 )1 L(n 29 nl 1..,.,

ul dSanl dl = IW(u2)12 fa L(ni n(p2) L(n2, n 1 ".

.[fE(nl) W(ul~l2 2 du dn (6.52)

Let

V(nI) - JE(nl)IW(ul ) 12 u2 duI  (6.53)

The (6.52) becomes

'I2(u2, n(p2) = IW(u2)1 
2 L2 (n2, n(P 2 )) (6.54)

where

L2(n2, n) = f,, L(nl, n) V(nl) L(n2, nI) dan1  (6.55)

Let

Ll(nl,n) = L(n1 , n) V (n1). (6.56)

Then (6.57)

L2(n n) --f2 Ll(nl, n) L(n2, n) n = (LI " L)(n 2, n),

and

L = L * L (LV) * L
2 10 a

By the similar way, with Section 6.1, one can get

T 3(u39 n(p3)) IW(U3  L3 (n 3 , n(P3)) (6.58)

where

L3 (n3, n) J, L2 (n2, n) V(n2) L(n3, n2) d2n2  (6.59)
3. 3 .. 2.
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and

L3 (L2 V) * L = {[(LV) * LI V} L (6.60)

Going on in this way, finally, we get

T m1(u Mi, n(p 1) = IW(uM-1) 12 Lm_1 (nm_1, n(pm 1)), (6.61)

where

L l(nm, n) = Lm_2 (nrn2, n) V (n 2 ) L(nmnl, n 2 ) dfn 2  (6.62)

and

S... (LV) *0L) V) *L) ...V) *L (6.63)m-i

Define a linear operator .fas

Al (Vf) *0L (6.64)

then

L -, ." 1 L =-'- 2L (6.65)
m l• 9- -,

Substituting (6.61) and (6.48) into (5.61), we have

T ,u", n(p )

mc r m m
= fa c W2(Um 1)'12 Lml(nm 1, n(0 ) W*(U') W(u")""

"2 E(n - - - m

i2 - n( ) nmlUm-I 2  (6.66)
A m , ' n-i r -I r n-i- r-

- W*(u') W(u) f L _(nm 1' n(p)) V (n 1 )) • K (n' , n", n 1 )dan 1

Let

Lk(n', n', n) L Ll(nm ln ) V(nm~, KA(n',n" , nm) dP~nm_ .

(6.67)
- [(L mIV) *' KAI (n', n', n)

-. 1 6
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Then

T (u', u", n(p )) =W*(u') W(u") L (n', n", n(p (6.68)mc Um m ' " k in( m

Lk [(Mm-'2 L)V] *' KA (6.69)

Here *' is called angular convolution of the second kind, and defined as

S*; 4 ) W, n", n) = f2 1(n, n (n, n", n) dn (6.70)

1 1

Applying (6.68) and (6.69) to (6.45), using (6.3), (6.14) and the analysis
K(b)

about (rI , r2 ) we get the final result:

Kp(r1 , r2) = J I3(p)1IYm(p) W* (1r,-pI) W (Ir2-PI)
mffil 3

a-2 1 .

{[Jum 2L)V] K r(P r2- n(p)) dp + M* (r) M (r) (6.71)'fI ' r1 r2

where

Mr(r) f fR W()Ym(p)A n Ir-p)(L - A)(r , n(p)) dp (6.72)

m=l 3 Ir-. .

If we define normalized attenuation function W (u) and normalized V function as
0

1 1-Z ~l
Wo(u) = - W(u) Vo(n 1 )  V(n (6.73)

A 0A7~1

and normalized linear operator MO as

J1o f f (Vof) *6 L (6.74)

then

Vo~~nl ~ ~I) fn) o(Ul ) 12u2

n) f nuI duI  (6.74)

Z A JV (6.75)

and (6.71) and (6.72) become

------------------------------------------------~.. .. .. "."-
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KP mri l r A f3 0  (Ilp)Oi ' -

MO Cr)O *eK{pnp) p+r)M(r2 (6.78)
pp

Sttiang be prve rha in (6.7), we gest the gateeral expesion ofetesy

of multiple scattered field defined by

(2)M' (zr) =[ 0 K (r,r) (6.79)
P p

Seeing that

KA(nl~nl,n) =L(n ,n) ,(6.80)
A1

We get

(~2~) 2m M 1)1~yt Ct(III2Mp ()M Tl Am fR 3M l P 1 0 1 ~lr-p 1,

(,rt~1 )( 1 pjn(p)) dp + IM (r)1 (6.81)

Expressions (6.76), (6.81) and(6.77) are the general expression of the

space correlation function, intensity and mathematical expectation of multiple

scattered field p(r) (complex amplitude) respectively.

We can prove that the linear operator is also bounded as m-, and

1 im Mn
0L b9

7%*1
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b is a constant, which is independent of nI and n. Therefore, the convergence

of the summation in (6.76) and (6.81) mainly depends on the density function

y(p) and the constant A (which is just similar or proportional to the so called

"scattering cross section").

2. L
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Conclusion

The general expressions of the space correlation function, intensity

and mathematical expectation of the (complex amplitude of) multiply scattered

field caused by randomly distributed scatterers of any shape, any volume

density distribution and any orientation distribution, excited by an

arbitrary monochromatic incident wave are obtained and shown in (6.76),

(6.81) and 6.77) respectively. These expressions in their series form

show the dependence of the space correlation function, intensity and mathematical

expectation of multiply scattered field on all of the following factors:

i. the complex amplitude of incident wave (r),

2. the volume distribution density of scatterers v(r),

3. the constant A defined in (6.27) and (6.46), which denotes the

scattering cross section of each scatterer and the total attenuation,

4. the directivity function A0 (nl, n, 0) [see (6.46)] through

A (nI , n) [see (6.51)], L (nl, n) [see (6.49)] kA (nl, n2, n)

[see (6.50)], and the linear operators L and4 ° defined by (6.74),0 0

(6.73), (6.53), (6.31), (6.29) and (6.9), and finally

5. the attenuation function W (u) defined by (6.73) and (6.46),0

where the angular convolution operation *0 and are defined by (6.57)

and (6.70) respectively. As long as these factors are given, the space

correlation function, intensity and mathematical expectation of the multiple

scattered field can be calculated through a single summation, a single

volume integration and a successive convolution operation.

The space correlation function, the intensity and the mathematical

expectation of the multiply scattered field strongly depend on i) the volume

density function )(r) of scatterers and ii) the constants A (including the

7. .. ... .. . . . . .." "
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1. INTRODUCTION

At any point in a random medium, the total wave fields can be considered

as a sum of two components, viz, a coherent or an average wave and an in-

coherent component due to change in scatterer positions and states from

configuration to configuration. The averages of the square of magnitude

of the coherent and incoherent fields are called the coherent and in-

coherent intensities, respectively. For a plane wave incident on a medium

containing a random distribution of scatterers, the coherent intensity

attenuates due to scattering and absorption. Incoherent scattering

effects introduce 'noise' into the system and cause fluctuations in the

coherent amplitude and phase. In many practical applications, it is

important to assess the incoherent scattered intensity relative to the

total intensity in order to relate theoretical and experimental results.

Propagation of the coherent wave is generally expressed in terms of a

1-6bulk propagation coefficient characterizing the scatterer filled medium

Incoherent effects are usually determined by solving 'approximate' integral

7equations or by solving special forms of the radiative transfer equations.

Such formulations are generally valid under conditions of sparse concen-

trations and for weak multiple scattering for either Rayleigh scatterers

or large scatterers which' scatter primarily in the forward direction. To

overcome such limita'ions, a Propagator model has been presented for

studying both coherent and incoherent intensities in Ref. 8. Lax's quasi-

crystalline approximation (QCA) with suitable averaging techniques and

the T-matrix of a single scatterer has been employed in the analysis.

Pair correlation functions generated by Monte-Carlo simulation have been

used in the computatioj.

S................... .................... ...... ................ ..



ABSTRACT

This paper treats discrete scatterers randomly distributed in a

host medium as a random medium with discontinuous property. First, the

wave equation with random discontinuous coefficient is reduced to a

random integral equation of Fredholm type and its solution is obtained

in terms of Neumann series. Then, the expressions of the mean value,

mean square value and the space correlation furntion of the scattered

field are obtained in terms of the space correlation function or space

spectrum of the random field a(r,w) which depends on the properties,

shape, size and concentration of scatterers and the properties of the

surrounding medium For spherical scatterers, the space correlation

function is obtained, and the mean square value of the scattered field

is expressed as a function of concentration of scatterers. The results

obtained by the present theory are compared with some available

experimental results.

..........................
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contribution of the "scattering cross section and the attenuation) of

[ each single scatterer, and weakly depend on the directivity function A

(n., n, 6) of each scatterer. In other words, the size and density of the

%:  scatterers play much more important role than the shape and orientation.

This is reasonable from the physical concept.

V'

I"

a
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In this paper, we propose an alternative approach of adopting a

* contemporary field of mathematics in solving the classical problem

of discrete random media. We treat the discrete random media as a random

medium with discontinuous property. First, the wave equation with random

-m discontinous coefficient is reduced to a random integral equation of

Fredholm type and its solution is obtained in terms of Neumann series.

Then, the expressions of the mean value, mean square value and the space

* correlation function of the scattered field are obtained in terms of the

random field 6(r,w) which depends on the properties, shape, size and

concentration of scatterers and the properties of the surrounding medium.

* For spherical scatterers, the space correlation function is obtained, and

the mean square of the scattered field is expressed as a function of

concentration of scatterers. The results obtained using this approach

I iare also compared with some available experimental results.

The advantage of the present approach are : a) it is applicable over

a wide range of concentration of scatterers (from very low to closest

* packing), b) the scattering property of a single scatterer is not needed;

the discontinuous stochastic field S(r,w) and the space correlation function

K (r,w) play important role which depend on the shape and size of each

-scatterer and the concentration a of scatterers. For simplicity, we first

present the theory only for scalar problem. The vector problem will be

*studied in our subsequent reports. For general electromagnetic wave

scattering problem, we follow the steps outlined in Varadan .

..................... "
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- 2. DISCONTINUOUS STOCHASTIC FIELD r,w)

We consider a random distribution of a large number of identical

* correlated scatterers embeded with a region R in a homogeneous matrix medium.

The wave speeds in the scatterer and the matrix are denoted by cI and c2,

respectively. Let S denotes the region occupied by a scatterer. If we
-

define the random field c(r,w),rC R3 , we as follows

c r C S (i)

L c2 , r S

where R3 is ordinary 3-dimensional space, 0 is the probability space, then

the total wave field p(r,w,t) will satisfy the random wave equation with

t random coefficient c(r,w)

2 1 a2  4
V p(r,w,t) (2 -) 2 p(r,w,t) 0 (2)

C (r,w) at
Here, the position vector r can either be inside or outside the scatterer.K

We assume that the size of R is much larger than the size of each

scatterer, and c(r,w) is a homogeneous (stationary) stochastic field in R.

The one dimensional probability distribution density c(r,w) may then be

given by

f (x,r) = (6Cx-c1) + (l-0)6(x-c ) = f x) (3)
C 2 C

where 6( ) is the Dirac Delta function and a is the concentration of

scatterers.

Now, we define another discontinuous stochastic field B("w) as follows

-- 2
C c0  -4. E(r) 2 r 0- R (4)
c (rw)

where c0 is a constant defined by

c = c cc 2 + (1-a)C 2 1/2 (5)
0 1-

". ....- **..**.****.**
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Physically, c 0 is some kind of mean value of c(r,w). Then, it is easy to

r show that the mean or expected value of a(r,w) is zero, i.e.,

E {~rw} =0 , re R (6)
p

and 4

r L r S (7)

where

a= (l-a)(c -c M/ ayc + (l-a)c)
12 1 2 1 (8)

= 2 2 2 2
=Gc- c M/ ac2 + (l-C7)c)

The one dimensional probability distribution density of $(r~w) may be

41 written as

f (x,C) =C76(x-a~ +- (l-C)6(x-B2 = W8 x (9)

a

.7
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3. NEUMANN SERIES SOLUTION OF STOCHASTIC EQUATION

Let po(",t) denote the solution of the non-random wave equation

: .. ~ ~ Vpo(r-,t) (1/c) ( rp t) 2  (10) .::.

Then, the Fourier transform of pO(r,t)

p0 ( ,v) : f po(r,t)e-Vtdt (11)

satisfies the non-random Helmholtz equation

v2 o(r,v) + k 2 (,v) = 0 ; k V/cO  (12)

We define

Pt(r,t,W) = p(rt,W) - PO(rt) (13)

p l(*r,v,w1 Or , t,wle-:iv tdt

(14)' f- °)eiv td
,. p(r,v ) = p(+,tw~ "-.

which yield

p(r,v = ) PO (rv (, ) (15)

Using these definitions and taking Fourier transform of Eq.(2) with

respect to t, we get

-(7 2+ k2 )plCvw) = k2a(_,m) p)(pk) + pl(rV,W) (16)

the solution of which may be written as
.k' r" 28t.-4 -

pl(r,v,w) = (e-ikF r 4 - '1 )k ,)pO(r', )dr'0 (17)
ik4 r r - 7'~ 2a (-f,)Pl(r',v,w)dr' : 'I

+ e-ikJ - 47Tr -(1)

loll1
This is a stochastic integral equation of Fredholm type I ' since it can

be written in the form

p1 (lr,v) = p(rVW) + f KCt, ' )pl',V,W)Cd' (18)

R
where the forcing function y'yC,Vx,) and the kernel K(tt',V,w) are

defined by

..- ..- * * * - *. . * .. * °°

. . .

-.-' -.-,.. .. . .. .-.,....,. ,. . .-..,. ..-,. .. .. .. ... . • . .. . : - ...- .. ...... . .-. . . ...-... ..... .. ....-.-..- '



-ikir - r rf = r - 0' (()p(rv)dr' (19)
R

K(rr',v,) =(e-ikl - r'r/4'iI - I ')k 2 8(r',w) (20)

The solution of Eq.(20) may be obtained in the form of Neumann

10
series

p"(r,v,w) = '(r,vw) + YE (r,'r'v,w)T(',,)d" (21)m=l1 M

or

.= '(,Vw) + f(',',v,w)'(rY',v,w)d ' (22)
R

where K (rr',V,w), m = 1,2,..., are defined by the recurrence formula
(r r' " " 'r

(r,r',v,w) = K(rr',vw)K 'r v)d'' 2,3,4,... (23)

and

K (r ,r',v,w) = K(r,r',v,W)
(24)

[I F(r,r',v,w) = ' K (r,r',v,w)
M-1 m

The inverse Fourier transform of Eq.(21) gives

p('r,t,W) = (,r,t,w) + (1/2T) Z ff'K (r,r',v,w)Y(,v,w)e dr'dv (25)m=1R- m

or
iv:t

p(r,t,w) =Y(r,t,w) + (1/2nT)f f(r,'',V,w)'T( ', )v,w)eitdr I dv (26)R" !
where the following definition of inverse Fourier transform has been

used.

"" (t,W) (1/2Tr)f:(r,,)eit dv (27)

S. .. . . . . S .- . . .
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4. MEAN VALUE, MEAN SQUARE VALUE AND SPACE CORRELATION FUNCTION
OF SCATTERED FIELD

I ~ a) Mean value

Let M (r,t), M (r,t) denote the mean (expected) value of pl(r,t,w),.
* - p1

"' '(r,tw), respectively, i.e.,

H (r,t) - E{pl(rtw)} , M,(r,t) E{'(r,t,w } (28)
p1

The expected value of the scattered field pl(Y,t,w) may be written using

Eqs.(25) and (28)

00 c 4-ivt+
M (r,t) M,(r,t) + (1/2r) m ff[ E{K (rr',v , )(,v,w)e dr' dv (29)
P" m

Since

E{8(r',w)} = 0 -r R (30)

we see that

E{8(r,t,w)} = 0 (31)

The first term in the series given by (29) can be expressed as

-ikir-r'J -ikir" -r'(o ~ e e-ij' - 4 6) ivt--,
O2 O 4 - K r r4)or(rMe dr'drdv (32)

where

K - "1 = E{8(w',w1 ( )',w)} (33)-

is the space correlation function of 6(r,w). If 8(r,w) is isotropic,

then K ( ' -a') = K(I ' - ' )

b) Space-time correlation function

From Eq.(26), one can get the general expression of the space time

correlation function of the scattered field given by

. V(, 2 ,t,t 2 ) E,)P(2,t2,)}

= K" (r 1, 2 ,tt 2)

* +(1/2n)f . E[T ,rltlw)r(29",v s)CT )eV t2dw) 2 d-.
R • -

..-. ,..........................................................................................................................................
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+(l/E{ (rr , lw)T (r ,w,)r(r2 r2

I x(2 , ) e- tleiv2t2ddr'dv dv (34)e2 2 "" 11l 2 1dld 22
1212,1

where

K (rjr 2 't't 2) 
ffi E{(r I , tl,W)T(r 2 , t2 ,W)} (35) ->

and ' ' denotes conjugate. From Eq.(24), one could write

SE{' (r,tl,w)K (r,r ,rv,w) (r',v,w) (36)

In Eq.(36), the first term (m=l) can be derived using Eq.(19) and (20)

as follows

E{T*(rl,t,w)K(r 29r,',)T(r ,W,)}

00 (ll27){I [e rl - r  I/co e-iVr 2 -r'/cO e- i v r ' - r"'/co 6
3- -), 4. ,.2\ 4p * ., I *II. .-+,

1 E{8(rw) (r",w) (r"' ,w) } e-iV tl dr"dr"'dV' (37)

Similarly, other terms in Eq.(36) can be expressed as the integral

consisting of higher order moments of stochastic field $(r,w).

c) Mean square value

The mean square value of the scattered field pl(r,t,w)

M( 2 ) (r,t) = E{Jpl(rt,W)12 } (38)Pl

can be obtained directly from the space-time correlation function of

i the scattered field by setting rI = r2 and tI = t 2 , i.e.,

" ((,t) = K (rr,t,t) (39)•Pl Pl

It is to be noted that the mean value of the scattered field is always

" much smaller than its root mean square value, and also, in practice, only

the mean square value is measured.

.... -- :- ~~~~...... :.'-.............. - .. ,-. .--- . --.. ,-.-..... -,--, . -,,:.--"-",.-."
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5. SCATTERING OF CONTINUOUS INCIDENT WAVE

Obviously, the non-random field pO(r,t) may be regarded as the incident

wave (or field). When po(r,t) is continuous field, it can be written as

p (rt) PO('r)eO (40)

where p0 (r) is its complex amplitude, v0 is the angular frequency. Then,

P0 
(rv) = 27rp0 (r)C(v-v0) (41)

Now, we consider only far field backscattering and the incident

wave to be a plane wave propagating in the direction n (fi is a unit vector),

see Fig. 1 with amplitude A. Then,

p0 (r,t) Aei(0nr/C (42)

and

p0 (r,v) = 2 TAe iV 0 n '/c 0  0(-v0) (43)

Substituting Eq.(43) into Eq.(29), we get

T(r,t,w) = A(V02c 0  f[0V 0 )e 0 f0r)/4TI -'1]6(r',w)dr' (44)

R
Since Y(r,t,w) is also a monochromatic wave field, we write

T(r,t,w)= T(,w)e O t  (45)

where T(r,w) is its amplitude. By using Eq.(45) in (44), we get

T(rw) = A(V0 /c0 )
2 0[e-iV0 /4 + 6 (46)

Let the correlation function k as

K ( , 2) = E{'('rw)'(rw)} (47)

K lr2,t1 t2 K 24.4 iV (t-t) (48)
K~(1 r, 1 t)= K(r,r 2 )e 0 -iil

By employing (46) in the above equations, we obtain

e0(n2 2 2 [e r + Ir r1)/c0 e-IV0 (n." + ir 2 -r" I/c 0
K r V r 21  (AV 0/4rc 01/ [e 0 - 0rl0

/Irl-r I I 2 r"I]K (r"-r')dr'dr" (49)

-~ 4. -~ .- *..4.. . .

Let = 2-r 1 and consider only the case of 1 1<r , 1'2 1.

Using the following approximations

............................................



ir r'J IrI +I-r'Iosen Ir'Icose

1r-rI I -1r1I + I-r'IcosO1  nr I 1r, o

1r2 I Irl I + IZ cosel

letting r I, I r, p Z "r' 0, as
1~ 2'

shown in Figure 1, and considering that the radius of each scatterer and

the correlation radius of a(r,w) are much smaller than the size of region

R and E{B(r,w)} 0, we finally get

K'(r,3L 2 21~t/c . 2 (1

K;('~t) (AV 0 /47Tc 0) e 0 0 VRY ~2ko)/r (1

where

K~2k) fK(P)ei 0O dp (52)

is just the space spectrum density of the stochastic field 6(r~w), V R is

4.

the volume of R and k = V fi/c is the wave vector of the incident wave.
0 0 0

Here, we changed the function form K4'(r1,r) into K (r ',r -r i.e.,

K~/r~) =(53)

If the scatterers in space are distributed non-directional, then the

6,w) will be isotropic implying

K B(P) = K 6(IPI) = K (P) (54)

Then from Eq.(52), we obtain

K (2k0 = 77r(c /V co~ pK (p)sin(2-v P/c )dp (55)
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6. SCATTERING OF IMPULSE INCIDENT WAVE

Consider an impulse monochromatic plane wave with frequency V 0 9

propagation direction n , duration T and amplitude A

PO(r,t) =Aei( 0n c 0 Vt) u.r/c0 - t0 (56)

where u(t) is the "rectangular" function defined by

1 t ce[ -r/ 2 , T/2]
u(t) =(57)

0o t T - /2, T/21

The spectrum (Fourier Transform) of u(t) may be written as

u~t) = o~ u(t)e -itdt = 2sin(TV/2)/v (58)

P 0 (r,V) can be expressed as

PO (r,V) = Ae iVn/ 0 2sin[T(V - V 0)/21/(V V V) (59)

For narrow bandy T >>/V 0, one can show that

Y(r,t,w)= A(V /c )iVt f [e 0 0O ( Ir-r' 1 .)/Q4j 1II
0 0 R

xarI~t(r-~ + i^.r')/cldr' (60)

We also notice that if u(t) is not a "rectangular" function, but an

"arbitrary" function with duration T> l/V0 then the expression(60)

still holds.

If the radiation system of incident wave has a narrow directivity,

then using the same approximation as (50), we obtain the mean square

value of 'Y(r,t,w):

M 2 (r,t) =(AVO/4Tco) Tr R c 0Ka(2i 0)/2r2  (61)

where

H 2 (r,t) =E{h(r,t,w) 1}(62)

*and R is the radius of the illuminated area of scatterer region by the
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incident wave. In this derivation, the illuminated area is not

necessarily to be a circular one. If we use S to denote this area,

then (61) takes the form

(2 2 2 2 + 2
M (r,t) =(AV /4Tc) Ac K (2k )/2r (3

Comparing (63) with the formula for continuous wave

2 22VK(iI)r(2)2 2 " 2

2)(r,t) = (AV 0 /4Tc 0) VR K (2k0)/r (64)

which is obtained from Eq.(51) when we let Z = 0, we can see that they are

completely similar, Ac 0T/2 just plays the role of VR. This seems

physically reasonable.

0

7 . . ..
'°
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7. SPACE CORRELATION FUNCTION FOR SPHERICAL SCATTERER

From the previous section, we see that the space correlation function

K8 (Z) or the space spectrum density K8(k) plays important role in the

calculation of the statistical moments of the scattered field. K Q. .

depends on the shape and size of each scatterer and the concentration

a of scatterers. The calculation of K (k) or Ks(k) here is based on

geometrical probability.

Obviously, the stochastic field a(r,w) is ergodic. Therefore, for

any sample (realization) (r, wi), we have

K lim (I/V(D)) f ( (r--'Wi)dr (65)
V(D)- -D

where D is a region with any shape in R and V(D) is the volume of D.

Assume that the distance from any sphere to the nearest sphere is

the random variable E(w), see Figure 2, and E(w) has the exponential

probability distribution density

f e(x) = / xt [0, )  (66)

where E0 is the mean value of E(w), i.e.,

= E{ (w)} (67)
0

Using Eqs. (9), @5) and 06 ) from geometry, we get

2 1/3 1/3 O 2K()= O82 [a - 201 / + a Z I0Q.,a,j)]/(l -G ) 681 jZO(68)

where

Jo int{ Z/2a - 1} (69)

J0-( Jja/ I E k k ,[.(., )(-21a)/% J e 0  [ [e 0 (Z-2(j+l)a) k/
0= k 0.'::

T~n~~j~0 ek=0

+ 2 a/E k k 2(k2ja) k/k
+ea o (Z-2(0-)a) /E0 .-.ja.

0 0.-.
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-[Z-2(j+l)ale - ( 0- 2j a ) /  E1 (1/kI)[e WE 0 (Z-2(j+l)a) k k 
- (k-2ja) k/k

k=O
+[-(-~~-(Z-2ja)/E oJZ 1 (1/k j) [(t- 2 ja ) k /Ek  -e2a/o R2jlak/ k]

k=O
j < Z/2a- 1 (70)

2a-9 2.e[0,2a]

I(X.,f, 0) = (71)
0 k _>2a

In Eq.(6 9); int{ } denotes the integer part of{ 1. We may be able to

write Eq.(68) in the form

K (k ) = be-Y9 (1 + cos2Tr2./k 0) (72)

On thte other hand, for small values of Z, ( 2 S 2a), from geometry,

we get exact expression of Ka (k) given by

2 3 3 2
K (k,) = l[(-c)-3P./4a + 2 /16a 31(i-a) k <5 2a (73)

From Eq.(72), we find

adK0 (2) I2.=0 =-2yb , K (0) 2b (74)

while from Eq.(65), we find

"dKR(2) 1 = 3 2/4(1-(Y)2a K(0) = 1/(1- )  (75)

dt Z=O 1 
'

Comparing Eqs.(74) and (75), we obtain expressions for b and y given by

b = o/I2(1-a) ; y 3/4(1-u)a (76)

Substituting Eq.(76) into (72), we finally obtain an expression for

K (9.) as

2 -39./4(1-Y)a 1/3
K (9) (a/2(I-a))81 e [1 + cos(7 a 2 /a)] (77)

. ...
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8. RESULTS AND CONCLUSION

In this section, we present the final expression for mean square
(2) ( 0

value M 2  and space spectrum density K (2k ). Substituting Eq.( 77".
0•)

into Eq.(64), integrating the resulting expression and again substituting

the result into Eq.( 70), we finally obtain for narrow band pulse (r>> 1/v 0

K (2kO) = (4/3)3 ( rc /V )a2 a(l-) 2  f{ 4k a
00 0 1 0

2k 0a + To1/3

[ + (4/3)2 (-a) 2(2k 0a + ira /3)2 2  (78)

2k 0a - MI1
/3

1 + (4/3)2 (-) 2(2k0a -ra 1/3)2] 2

and

23 2  2 2 2 2 2 2 4 4. 4M I2(r,t) = (2A20 R2 Ta /27r )(c0 (c2-cI) IC C2 a(l-a) {4k a

2k 0a + 13"

+2 2 1/32 2
I + (4/3) (1-a) (2k0a + Tia )2] (79)0 (79).

2k a - 7T
1 / 3

+2 2 1/32 2
1 + (4/3) (1-a) (2k0a - 7a/)2]

To the author's knowledge, extensive experimental results are not

available on incoherent intensity from random media, except that of some

controlled laboratory experiments in acoustics 1 3  In Ref. 13, some

backscattering measurements were reported for a random distribution of

fluid particles dispersed in another fluid. The wave speeds of the scatterers

and of the host medium considered in their experiments are cl = 1596 m/sec

and c = 1499 m/sec. For such a system, B 1,2<< 1 and S(rw)<< 12

V r e R, wE 0 . This suggets that we could neglect higher order moments

(The theory presented, however, is general) resulting in the following

.........:.'-- .. ' .'f-.. . '; . ... . ... : .... :..............-....................
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5. V.V. Varadan and V.K. Varadan, The quasi-crystalline approximation and multiple scattering of

waves In random media, submitted to IEEE Trans. Antennas and Propagation.

6. A. Killey and G.H. Keeten, Optical extinction and refraction of concentrated latex dispersions,

J. Chem. Soc., Faraday Trans. 2, 587-599. 1981.
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Figure 1. Phase velocity vs. concentration c for A 546 nm.
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Figure 2. Coherent attenuation vs. concentration c for A 410 nm, 546 nm.
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The first set of the above diagrams represents a partial summation of OCA type terms incorporating two

body correlations while the second set represents the convetitional ladder diagrams. In both sets of

diagrams, we can use so called "dressed propagators" obtained from Eq. (6) between scatterers instead

of "bare propagators". This means that K from (6) can be used as the wave number characterizing the

medium between scatterers involved in calculation of the spectral density, i.e.. the other scatterers

that participate in only one or other of the field lines are averaged over separately and replaced by K.

NUMERICAL RESULTS

The numerical procedure is described in detail in Refs. 3-4, and will not be repeated here. The

effective wave number K(-K +K2 ) is computed for Revacryl spheres in distilled water for a range of

frequencies and concentrations of scatterers. The real part K[ is related to the phase velocity while

the imaginary part K2 is related to coherent attenuation. We have also calculated the coherent and

incoherent intensity for electromagnetic wave propagation through ice particles (c = 3.168) in free
r

space using the first term of the two series of diagrams given in Eq. (8).

In Figs. 1 and 2, the real and imaginary parts of the coherent field are compared with the

experimental measurements of Killey and Meeten 6 . In Fig. 3, calculations of the coherent intensity

for a suspension of Revacryl spheres in distilled water show excellent comparison with measurements

6of Killey and Heeten

In Fig. 4, the incoherent intensity is plotted as a function of ka for c = 0.0524 and for various

angles 0. It is interesting to note that as ka increases, the leading term of the incoherent intensity

approaches a constant value for all values of 0. Figure 5 displays the incoherent intensit, as a

function of the observation angle 0, and the intensity reduces to zero at q = 90* as expected. .-
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functions g (given by p([r 1I) g (r .))which are denoted by a (K) and g (K), respectively, and

using the convolution theorem, we obtain
iKi

0 •l (rl-2) (2)
<E(r)> - E (r) + O ( ) Tnn, no f-n ° Og (K) TI

- 1 
e a 2(5)

This new form of the average field can be interpreted as an incident plane wave propagating through

an effective medium of propagation constnat K and propagator fl-n ° Og (K)T) undergoing scattering

from a particle at r1 and then propagating to the observation point r with the wave number of the host

medium. The dispersion equation in thme model medium can be obtained by setting the determinant of the

propagator equal to zero:

( -n, g(K) TI 0 (6)

This equation is identical to the one obtained by us earlier using the self-consistent multiple

scattering approach, see Ref. 4.

The field fluctuations AE may now be given by

6 E - <> (7)

and can be represented as a multiple scattering series which may be represented by the following diagrams

where denotes propagation of the field from one point to the other and 0 denotes a scatterer.

If two ore more scatterers are enclosed in an area such as arbitrary m.liple scattering

any number of times and in any order can go on between scatterers 1, 2 and 3.

Along these lines, we define the incoherent intensity or the spectral density C ,(Rwu) at position

R. for field polarization in the direction (.

G (R.W) E 2>
= 4

+ + +

+ + +

~tH
• • • . o.3



eometries without much difficulty.

FORMULATION

Consider wave propagation in an infinite medium of volume V . containing a random distribution

of N scatterers, N + , such that no = N/V, the number density of scatterers is finite. Plane harmonic

waves of frequency w propagate in the medium and undergo multiple scattering. Let E, E0, Ei. and

is denote respectively the total field, the incident field, the field exciting the i-th scatterer and
i

the field scattered by the i-th scatterer. Then self consistency requires the following relationships

3,4
between the fields

E-E0 + EE

and

E ~E (2)

I J#i

The configurational average of the total field results in

<E()> E (r) +E Ou (r-ri) an p(r) d ii
nn '  

n

+ ' Ou 0(r-r) ) a
j
, ; dr d i  . (3)T nn' Tn"n"'. n' pI] pnj i n. i n

In Eq. (3), T,, is the T-matrix of an isolated scatterer, a
i 
are the known coefficients of

nn9 kn

expansion of the incident field at the site of the i-th scatterer, on,(Yr) is the translation matrix
on y

for vector spherical functions and describes the propagation of waves from r to r . The functions

p(j), p(rjI i)... etc. are the single particle, two particle conditional probabilities distribution

functions. We have shown
5 

that invoking the OCA implies that tile coherent field and the resulting

dispersion equation were limited to terms of the form

<>QCA 0 ++(4

00. , .

where denotes positional correlation between two scatterers and it is clear from the diagrams

that each scatterer participates only once In a given term, there is no back and forth scattering and

all scattering is sequential and only sequential positional correlations are allowed.

Introducing spatial Fourier transforms of the translation matrix 5 and the radial distribution

2



PROGRESS IN RESEARCH ON WAVE PROPAGATION AND SCATTERING
IN DISCRETE RANDOM MEDIA USING MULTIPL.E SCATTERING THEORY

V.K. Varadan and V.V. Varadan
Department of Engineering Science and Mechanics

Wave Propagation Laboratory
The Pennsylvania State University

University Park, PA 16802

ABSTRACT
This paper is concerned with a propagator model for multiple scattering and wave propagat.ion In

discrete random media. The coherent acid incoherent intensity of a time harmonic electromagnetic field
in such a medium are calculated and compared with available experimental results showing good agreement.
This work has been published and submitted for publication as follows:

V.V. Varadan and V.K. Varadan,"The Quasi-Crystalline Approximation and Multiple Scattering of Waves
in Random Media", IEEE Trans. A and P.,submitted for publication.

V.K. Varadan and V.V. Varadan, "A Propagator Model for Multiple Scattering and Wave Propagation in
Discrete Random Media", Radio Science, submitted for publication.

V.K. Varadan, Y. Ma and V.V. Varadan, "Coherent Electromagnetic Wave Propagation Through Randomly
Distributed and Oriented Pair-correlated Scatterers", Radio Science, in press.

V.V. Varadan, Y. Ma and V.K. Varadan, "Frequency Dependence of the Attenuation of Electromagnetic
Waves in Media with Anisotropy Induced by Microstructure", IEEE Trans. A and P., submitted.

INTRODUCTION

We consider the propagation of plane coherent electromagnetic waves in n0 infinite medium containing

identical, loss less, randomly distributed particles. Our aim here is to characterize the random medium

by an effective complex wave number K (which would be a function of particle concentration, the electri-

cal size, and the statistical description of the random positions of the scatterers), and to study both

,oherent and incoherent intensities as a function of frequency for various values of concentration c

(the fractional volume occupied by the scatterers). Although the formulation is generally valid for non-

spherical, aligned or randomly oriented scatterers, initial calculations are confined to spherical

scatterers which generally gives us a better picture of the order of magnitude of the different contri-

butions to the intensity without the additional complications of non-snherical geometry and orientation.

1-2Extensive work by Twersky has laid the foundation for multiple scattering theory in discrete

random media. A related approach using the T-matrix of a single scatterer together with configurational

averaging procedures, has been used bv the authors to develop a computational method for electromagnetic

3-4wave propagation problem in inhomogeneous media
-

. Lax's quasi-crystalline approximation (qCA) is used

in conjunction with suitable models for the pair-correlation function to obtain an effective wave number

K(-KI+iK2 ) which is complex and frequency dependent. The real part K1 is related to the phase velocity

while the imaginary part K is related to coherent attenuation. In this paper, we present a propagator
2

3-4
model which is shown to present the same dispersion equation as the one obtained in our ,rcvious papers .

In addition, this model enables us to compute both coherent and incoherent intensities for more realistic

"" " " " "" " " ". . . . . . . . . . . " " " . .. " ''' . . .. .% ." .", ". . .-. "... "... ... '.''-i. . . . .*. .x
". . . .'.. % % ,'' - ., . %' 'Q.'. %°."-'.= % % % , . % % , % . .. • . '. .-. , ,, . .
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observations

4. 444
K p(rlr 2,t1,t2) K (ri,r 2,tlt 2)

K K (80)
P I

- Pl (rt0 = M (r,t)

The mean square value of the scattered field M(2 r,t) may then be calculated
P1

from Eq.(7 9 ). The results are shown in Figs. 3 and 4 wherein the

backscattering intensity is plotted as a function of concentration for a

fixed frequency of 7.5 MNz. The agreement between theory and experiment

is very good.

..
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ABSTRACT

A propagator model is presented for studying both coherent and incoherent

intensities of the electromagnetic field in a discrete random medium.

* Lax's quasi-crystalline approximation (QCA) with suitable averaging techniques

and the T-matrix of a single scatterer has been emeployed in the analysis.

Pair-correlation functions generated by Monte-Carlo simulation have been used

in the computation. This model also provides a dispersion equation which

is solved for both phase velocity and coherent attenuation as a function

of frequency for various values of concentrations of scatterers. Numerical

results obtained show excellent agreement with experimental measurements

of Killey and Meeten (J. Chem. Soc., Faraday Trans. 2., Vol. 77, pp. 587-599,

* 1981).

5 |
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INTRODUCTION

5. We consider the propagation of plane coherent electromagnetic in an

infinite medium containing identical, loss less, randomly distributed particles.

" Our aim here is to characterize the random medium by an effective complex

-wave number K (which would be a function of particle concentration, the electrical

size, and the statistical description of the random positions of the scatterers),

and to study both coherent and incoherent intensities as a function of

frequency for various values of concentration c (the fractional volume occupied

by the scatterers). Although the formulation is generally valid for non-

spherical, aligned or randomly oriented scatterers, initial calculations are

confined to spherical scatterers which generally gives us a better picture of

the order of magnitude of the different contributions to the intensity without

the additional complications of non-spherical geometry and orientation.

IL Extensive work by Twersky1- 5 has laid the foundation for multiple scattering

* . - theory in discrete random media. A related approach using the T-matrix of

6
a single scatterer together with configurational averaging procedures,has

* been used by the authors to develop a computational method for electromagnetic

7-9 ,10
wave propagation problem in inhomogeneous media 7

. Lax's quasi-crystalline

approximation (QCA) is used in conjunction with suitable models for the pair-

correlation function to obtain an effective wave number K(=K +iK2) which

is complex and frequency dependent. The real part K1 is related to the phase

velocity while the imaginary part K2 is related to coherent attenuation.

In this paper, we present a propagator model which is shown to present the

same dispersion equation as the one obtained in our previous papers 7 -  In

. addition, this model enables us to compute both coherent and incoherent

intensities for more realistic geometries without much difficulty.

• - 1

........ ................... ........................ • ;.................." " ° % %" .- .- -." %°.. °, %"°" °.'°.°Z ' ° ." ". °° -°.................................'...-..-................................-.......-.........................- • ".



FORMULATION

--" [ Consider wave propagation in an infinite medium of volume V

containing a random distribution of N scatterers, N , such that n N/V,

the number density of scatterers is finite. Plane harmonic waves of frequency

0 -"-4e- w propagate in the medium and undergo multiple scattering. Let E, E , E and

E denote respectively the total field, the incident field, the field exciting

the i-th scatterer and the field scattered by the i-th scatterer. Then self

consistency requires the following relationships between the fields

i--iN 4.

E _E + E E (2)
iiil

" " [2 -functions regular at the origin (Bessel functions). We dispense with vector i[

notation and the abbreviated index may denote n T, Z, M, 0; T --2,3; "-'
I £ Z [0,-o]; M E. [0,Z], see Refs. 7-9.-

.- At a field point r in the host medium, the incident, scattered and exciting -.'
fields are expanded as follows

N () E a Re (()

n n n.

si fi j

u(r) z a Re ; jr-r I

where ri denotes r the ogin i-th scatterer, and is the radius of the

n sphere circumscribing any scatterer. The coefficients a are known while

n

Atih aoeffiields poind i th hs-mdum heicietsateedad xit

"f" are unknown but arehowever, related through the
n n

T-matrix6  -''

n n n (6)

n n n

2

_,.-. ._' , - ' .- , ' . .'_; " . . . . _ ".',' _'.'.'. ; . " '. : , '.,. ' :i ' _' ,-L '..,.-, .,' _ .,..'_._.' " . ,.--'..4.'.';.-.'



Substituting Eqs. (3)-(6) in (2) and using the translation-addition

theorems for spherical wavefunctions and the orthogonality properties of

spherical harmonics , we obtain

a + E l,, (rj-ri) T (7)
n n j~i n1 n nn j n n" n"

where

Ou n(r-r) E (rj-r i) Ren (r-ri) (8)

n j n nn'~

and a is the translation matrix for spherical wavefunctions.

If we substitute Eqs. (7) and (5) in (1) and iterate, we obtain0E~)=E ) + Zou4 'n(- ,,

E( (r)n (r Tn an  + Z, Ou *n 
(; -;  ..

ij
(9)

T, (r T a fit + Z V P Ou in ( TTnn' n'n(ij) Tn"n" n" i j k n ..'....

- 4. 4. 4

where rij =(r j-ri).

The first term in Eq. (9) is the incident field reaching the observation

point r denoted by P in Fig. la. The second term of Eq. (9). is a sum of

N contributions each of which can be represented by a diagram of the type

shown in Fig. lb. The thin line represents the incident field E0 and the

thick solid line represents the "propagator", Ou tn (r-ri) Tn which propagates
n i n

the field from scatterer i to observation point r. The sum of all N diagrams

of this type is termed single scattering. The third term of Eq. (9) is a

sum of N(N-I) contributions, each involving a pair of particles, and is

represented by the diagram of Fig. lc. There are also N(N-1) terms of the

form given in Fig. ld which involve only a pair of particles. There are

N(N-I) (N-2) terms of the type shown in Fig. le. As seen from Fig. 1, the

three body process can include any number of scattering in any order between

-* the three objects.

3
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Equation (9) can be averaged over the positions of the particles to yield

<E(-)=E)> E (') + n  Ou r(-) a p(r) d
nnj n i

+ ' Tn , Tn,,,,, Ou n i nn, an,, p(ri) p(r) (10)

4..- ~-
p(r jri) dr i ...

which involves all orders of joint probability functions, P(ri) , P(r Ii), etc.

10
We have shown that invoking the QCA implies that the coherent field and the

resulting dispersion equation were limited to terms of the form

<E> + -~ - +
QCA<E~cA -o------,J-.--.-,-------

where denotes positional correlation between two scatterers and it is

Iclear from the diagrams that each scatterer participates only once in a given

term, there is no back and forth scattering and all scattering is sequential

and only sequential positional correlations are allowed.

Introducing spatial Fourier transforms of the translation matrix a

and the radial distribution functions g (given by p(ri r g
i Vii-j

* which are denoted by I (K) and g(K), respectively, and using the convolution

theorem, we obtain

<E( )> EO(r j+fOu n(-i)Tnn, nfo [1-n 0 T= (K) TI- 1

iK"( 1 -r 2 ) (2 r (12)
e a,, dK dr1 dr2n 1 2-

This new form of the average field can be interpreted as an incident

plane wave propagating through an effective medium of propagation constant

-1.K and propagator [1-n 0 (K)T] undergoing scattering from a particle at

r and then propagating to the observation point r with the wave number of

the host medium. The dispersion equation in the model medium can be obtained

4



by setting the determinant of the propagator equal to zero:

Il-n O-g(K) T =0 (13)

This equation is identical to the one obtained by us earlier using the self-

consistent multiple scattering approach, see Ref. 9.

The field fluctuations AE may now be given by

AE = E - <E> (14)

and can be represented as a multiple scattering series which may be represented

by the following diagrams

4- +
0 + t__ _ __ _ _ (15)'-

where - denotes propagation of the field from one point to the other and

0 denotes a scatterer. If two or more scatterers are enclosed in an area

such as arbitrary multiple scattering any number of times (16)

and in any order can go on between scatterers 1, 2 and 3.

Along these lines, we define the incoherent intensity or the spectral

density G (R,w) at position R, see Fig. 2 frequency w for field polarization

in the direction as (see Fig. 5 for the definition of a).
<1^ -12>

.(R,w) = < " AEI
+ +

= - ,- --.

'"-0- .- 0 ., - - - 1 ) .

_+_.. _ _._ (17)

,.. (18)

. . ...

5. -. -"5
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'

The first set of the above diagrams represents a partial summation of QCA

type terms incorporating two body correlations while the second set represents

the conventional ladder diagrams. In both sets of diagrams, we can use so

called "dressed propagators" obtained from Eq. (13) between scatterers instead

of "bare propagators". This means that K from (13) can be used as the wave

number characterizing the medium betweeW scatterers involved in calculation

of the spectral density, i.e., the other scatterers that participate in only

one or other of the field lines are averaged over separately and replaced by

K.

6



NUMERICAL RESULTS

The numerical procedure is described in detail in Refs. 6-9, and will

not be repeated here. The effective wave number K(=K +iK is computed for
1 2

Revacryl spheres in distilled water for a range of frequencies and concentrations

of scatterers. The real part K1,is related to the phase velocity while the

imaginary part K is related to coherent attenuation. We have also calculated
2

the coherent and incoherent intensity for electromagnetic wave propagation

through ice particles (er = 3.168) in free space using the terms of the two

series of diagrams given in Eq. (18) that make up our approximation using

the pair correlation functions to the spectral intensity.

In Figs. 2 and 3, the real and imaginary parts of the coherent field

are compared with the experimental measurements of Killey and Meeten .

In Fig. 4, calculations of the coherent intensity for a suspension of Revacryl

spheres in distilled water show excellent comparison with measurements of

11Killey and Meetenl
. In Fig. 5, the geometry for the computation of incoherent

intensity is given. In Fig. 6, the incoherent intensity is plotted as a

function of ka for c = 0.0524 and for various angle e (see Fig. 5 to see how

6 is measured).

In Figs. 7 and 8, similar results are presented for higher concentrations.

Figure 9 displays the incoherent intensity as a function of the observation

angle 6, and the intensity reduces to zero at e = 900 as expected while in

Fig. 10, we have plotted the back scattering intensity as a function of

ka for a concentration of .0524. There are two minima in the intensity spectrum.

7
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FIGURE CAPTIONS

Fig. 1 A diagramatic representation of multiple scattering processes.

Fig. 2 Phase velocity vs concentration c for Revacryl dispersions

in distilled water at A = 546 nm.

Fig. 3 Coherent attenuation vs concentration c for Revacryl dispersions
in distilled water at X = 410 nm and 546 nm.

Fig. 4 Coherent intensity as a function of propagation depth z for various
values of c at X = 546 nm.

Fig. 5 Scattering geometry.

Fig. 6a Incoherent intensity as a function of ka for c = 0.0524 and for
various angles of observation 0.

Fig. 6b Expanded version of Fig. 6a for the frequency range 1.0 < ka < 2.0.

Fig. 7 Incoherent intensity as a function of ka for different values of

c at 0 = 608.

Fig. 8 Incoherent intensity as a function of ka for c = 0.157 at 6 = 600;
the dotted line is the contribution due to the ladder diagram only.

Fig. 9 Incoherent intensity as a function of observation angle 6 for
c = 0.105 and ka = 1.0.

Fig. 10 Backscattering intensity as a function of ka for c = 0.0524.
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INTRODUCTION

The intensity measurements are quite common in many physical problems

dealing with the wave scattering. In order to compare the field measurements

with the theoretical calculations one needs to carefully introduce the

incoherent intensity into consideration, which proved to be significant

enough as the frequency increases. In this paper the intensity calculation

based on the energy principle for nonabsorbing scatterers, which has been

well investigated by Twersky (1957), is discussed, and the rule of conser-

vation of energy serves as a guideline to check the numerical accuracy. We

shall, however, consider only sparse distribution of scatterers so that

higher order scattering can be neglected although the interactions rmong

scatterers are still considered. The incorporation of the multiple s ',ring

theory so as to accomodate denser concentrations of scatterers is

explained and the computational scheme involving the pair correlation

function is also introduced. In addition, any given size distribution of

scatterers can be handled following Ma et al (1983). However, only uniform

and Rayleigh size distributions have been used to perform the calculations.

......................................................

.......................................................
. ~ A 2 _______ . 4°* .
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e Scattering angle

W Angular frequency

Solid angle

P Area number density

a Scattering cross section

V Gradient operator

* Denotes scalar multiplication of two vectors

Wave function

< > Configurational average

< > i Configurational average holding jth scatterer fixed

< >jk Configurational average holding jth and kth scatterers fixed

SUBSCRIPTS

a Amplitude

i Refers to incident wave

m,n indices (integer)

s Refers to scattered wave

SUPERSCRIPTS

• Complex conjugate

- vector sign

+ z > 0 plane

- z < 0 plane

:: .1

................... . . - . . . . . . . . . . . . ., .-- o
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LIST OF SYMBOLS

a Size of oarticle

C+ Coherent reflection coefficient

C Coherent transmission coefficient

c Speed of wave propagation

e r Unit radial vector in spherical coordinates

ez Unit vector in the positive z direction in rectangular coordinates

f(a,8) Scattering function

H Distance from receiver

h (2)  Spherical Hankel function of the 2nd kindn

I Wave intensity (energy flux)

Im( ) Imaginary part of ( )

i Imaginary unit (i = -1)

) Spherical Bessel function

k Wave number

N Total number of scatterers

O( ) Order of ( )

P (cose)Legendre polynomials
n

Pressure

R Distance between particle and receiver

Re( ) Real part of ( )

r Distance between particle and the reference origin

U Total scattered field

u Individual scattered field

v Velocity vector

x,y,z, Rectangular coordinates

y( ) Spherical Neumann function

n.

. . . . . . . . .. . . . . . . . . .
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ABSTRACT

In this paper, the configurational averages of the wave function i,

2
and the wave energy flux S are derived for planar distributed par-

ticles excited by a normally incident plane wave. Although the higher

order scattering terms are neglected for sparse distributions of particles,

the interactions among them are still considered, using the multiple

scattering theory, to perform the numerical calculations. Both the

reflection and transmission coefficients for the rough plane are inves-

tigated. Relations between the coherent and incoherent energy flux are

obtained using the principle of conservation of energy. Computations

of the intensity are presented as a function of frequency for different

concentrations of particles with uniform and Rayleigh size distributions.

.
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THE CONFIGURATIONAL AVERAGE OF THE WAVE FUNCTION, <i>

Consider a plane wave normally incident upon a plane covered by

particles (see Figure 1). The total coherent field is then given by

Nr < > =q< > + <E u >
[" .jul

• ikz
= ei + <U>,

where i and U are the incident and total scattered field, respectively,

and a is the amplitude of the incident wave. The average scattered field

<U> is defined to be, following Foldy (1945),

r -4.

<U> = PF(aj,e.) P (r.)> dri (2)

where F(ajG ) = (]/k)% [(2n+1)/(l+iCn)inh 2 ) (k R-r. )P (cosG )

. n n n

L _

F(ajI)e = F(a.e0)q(a)da
i I oJ i

q(a) = the size distribution function

and C is related to the T-matrix of the scatterer.
n

Physically speaking, the average scattered field can be expressed

as a combination of a reflected wave and a transmitted wave due to the

plane wave excitation (Twersky, 1957). Therefore, for the present case

(normal incidence), <U> may be expressed as

<U>lz>O=<U>+ = C+ "aeikz

, - - ikz
<U>< =<U> =C ae (3)

Z(O a

ir <U> = C ., e ik ,
a

+where " U- and <U> are the normally upward and downward going plane

.- " -.-. ".-"--'--" .. -.- - - - - - - - - --.- :----.-- --- ----
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waves characterized by the coherent reflection coefficient C and the

transmission coefficient C

However, the coherent field <l,> on the bottom plane, i.e. z 0,

* is constant attributed to both halves of the upward and downward going

waves (including the incident wave) and can be reasonably written following - -

* -Twersky (1957)

<qP> (r )>I z=O < 1i> (xf,y,0) + [(<U>+x )/2](,jyj0)

(4)

M a + C+  C 2

Substituting Eq. (4) into Eq. (2) yields

<U> fF(a , )[ 1 + ( C + C )/2 ]dr . (5)

At large distance from nodules (kR-r !>>Il) and using the polar coordinates

for integration, the far-field expression for Eq. (5) becomes

<U> = 2TrpJ exp (-ikIR-r I IR-r I) f (a e )[l+(C +C )/21 r dr, (6)

* where
c

f(aje.) = (1/k) E [(2n+l)i/(l+iC ](- 1 )nP (CosOe)
% n n n j

and IR-I = H/cosG. (see Figure 2). We can rewrite Eq. (6) in terms of

the integration as

<U> = 2T f ([I+C12]fa e )+(C / 2 )f(a,Tr-ej))eikHlcos"-

S(HanO /cose )d
i ii

" (2ral i/k) [(l+C-/4 ,A)+(C+/2) ,A)AdA, (7)

- where A = -ikH/cos-..
3

In order to solve Eq. (7) for kH>> 1, the principle of stationary

. *.A. •...
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phase (Lamb, 1932) is used. The solution can thus be written in terms

of the stationary phase angle y as

<U> (2 7rpi P (l+C-/2)f(-aj,)+(C72)f(aj,ry)]eikIC5)/k. (8)

The stationary phase angle y is obtained by solving

dA/de -ikHtanG /cose 0

and found to be Y nnr(n -0, 1, 2, .. )for this case.

One sees from the geometry (Figure 1) that <U> +can be solved,

by integrating e0 from 0 to 7r/2 (6 is the so-called meridian angle in the

spherical coordinates and is defined as 0< e <nr/2 for z>O) using Eq. (7).

The only appropriate phase angle in this region is zero, so <U> +is found

by using Eqs. (1) and (3) at z =H,

<U 2Ti a [(l+C /2)f(a ,0)+(C+/fa7 e k= +, -ikH (9

* Similarly,

ikH C e .(10)
aU 7i (+ /2)f(ai.,n)+(C /2)f(a.,0)]e /k a

The two unknowns C and C can now be solved simultaneously from.the above

* . two equations using Cramer's rule:

[1 + ( 2 +2 ()/)

2 2 2
C C [(6+ 6)/21)/[ 1 - + (a + B )/41, (12)

Tr T 0 7T iT

where,

6=2Trpif(aj,0)/k
0

-
6t=2Trpif(aj,7T)/k.

L + -

Substituting the expressions for C and C into Eqs. (9) and (10)

respectively, we obtain
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<U> B 0 + a0 8+ 0(3)1,eikz, z>O (13)

<U> -1 +(8 + 2 )/2 + 0(s 3 eikz z<O (14)

The first terms on the RHS's of Eqs.(13) and (14) are due to the single

scattering whose excitation is the incident plane wave li only. This

can be obtained simply by substituting i (z=O) for <*k( )> in Eq. (2).

The second term is obtained using the self-consistent approach which

is essentially Picard's process of successive approximation in the present

case. Foldy (1945) introduced this method to explain the orders of

scattering since the higher order scattering is approximated by iteration

using the previous one (i.e. lower order scattering). The idea is that

the average scattered field <U> (or <U>) can be obtained from a

Neumann series which is, in this case

++

<U._ > = 1 u-L , (15)m=2 % .

"'] where ""
+ (j um_ -  - (r ikR-r !Id;j

u= f j ,ej)[ + (rj + ))/2][e- 1_ -m 3 1 U m-i .]j

+ -ikz
and u- --8Pae z>O

ikz

u= 8'e , z<O

One sees from Eq. (15) that m = 1, 2, and 3 correspond to single,

double and triple scattering respectively.

Generally speaking, in Eqs. (13'and (14) the successive terms

are smaller compared to the previous terms for a sparse distribution

of particles. Therefore, the higher order scattering can be neglected

in the approximation of the average scattered field <U> for a loosely

packed planar area.
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CONFIGURATIONAL AVERAGE OF <p 2>

Since particles are randomly distributed, the scattered field U is not

constant. This is because scatterers make an otherwise homogeneous medium

inhomogeneous. The magnitude and phase of U will fluctuate in a random

manner. Thus the total field at R, i.e. I (R), is also a random function

and can usually be divided into average field < > and the fluctuating field

The square of the magnitude of the coherent field 1<ip> 2 is the coherent

component and the average of the square of the magnitude of the incoherent

field is the incoherent component. The sum of the coherent and incoherent

components is the average of the square of the magnitude of the acoustic

field, i.e.

<I 2> = < 2+ <j ' 2 > (16)

where is related to U as = U - <U>

or

12 <>2 12
< > <1U 1 >- U> (17)

5 2The coherent component 1<P1 can be obatined directly from the coherent

field <4> which is known (Eq. (4)). It is of interest to find here the

incoherent component <hP' 12> only. Substituting the expression for U (i.e.
N

j. into Eq. (17) yields

2 > <Euj Euk> -E<uj> <uk> (18)

* 2*
E Z<u u.> + E <Iu I> - E Z<u.><u.>
jk k k j k

The above equation can also be written in the following form

. .- . ..
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<i, 12> P ff[ (N- l) <uj uk>jk/N - <u>j k k Jk () k

(19)-- '

Ifuj1 2>jd ,

by using the definition of the configurational average (see Varadan and

Varadan (1980)). In order to calculate the incoherent component <o' 12>

in Eq. (19) two approximations were also introduced. First, (N-l)/N is

replaced by unity which is certainly valid for large N. Secondly, we use

< uk> j k <uj>j <uk>k (20)

as suggested by Twersky (1957). Eq. (20) may be interpreted physically

as neglecting contributions to the excitations of a scatterer arising from

the fluctuations of the average radiation scattered by the other scatterers.

It should be noted from Eqs. (18) and (19) that actually jFk<U. Uk>

can be approximated using I<U>f12. This implies that j~k k <u.(7I-ik)uk>'

i.e. the average of the jth scattered field multiplied by the gradient

of the kth scattered field can be estimated as

+ +12
SE <u -iUk> I<U> +  e z>O (21)

j#k k

• u - I<U>-1 2  ,z<O (22)

j#k k

where e is the-unit vector in the positive z direction. Although, the

gradient of u gives a radial direction, the average direction should be

in the z direction as expected from the symmetry of the problem (energy

flux is cancelled out along x and y directions). Both Eqs. (21) and (22)

are, thus, important approximations in considering the energy conservation.

A: % .r..

.....................................- *.



THE CONFIGURATIONAL AVERAGE OF ENERGY FLUX, <S>

The energy flux (intensity) is defined as (Morse and Ingard, 1968),

4. 4
S - (p v + p v )/2 (23)

which is an important quantity in wave propagation theory for considering

energy conservation. Since we define

v= (24)

from potential theory and thus we obtain

p = iWP0  (25)

from linearized momentum equation. Therefore the energy flux can be expressed

in terms of i as:

4. * *•

S ipo(k Vi - V' )/2. (26)

The configurational average of the energy flux becomes

<S>= iW0Po[< Vq> - <1Viq >]/2 (27)

and it contains, now, both coherent and incoherent components.

Since P = + U, then substituting it into Eq. (27) gives, taking

the real part for magnitude,

4i i <U <U>V> 
<S> wp i-F 'e -i + V<U> + + ] (28)

a ik -ik -ik -ik

in which the following relationship (Foldy, 1945)

<VU> - V<Ur> (29)

has been employed.

One expects <S> for scattered waves to be going outward away from the

plane on which partlelew lie. Since the scattering characteristics are

. . . ..

-" ." . ..- . " - . . . . .- . -*- . . " . .."" - .- - - . " - -..- - . . ' -" - . " , , .-. "- - " - - -" - "-0": :
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different in the positive and negative z directions, it is necessary to

separate <S> into two parts for consideration. Let, therefore,

<S> <S> z>0 (30)

+0 4.-
<S> <S> , z<0 (31)

+ .where the expressions for <S> and <S> are as follows,

<-> WP kRe[ + -c <U> + + - (32)
wp~~e -k ik -1k -i

tpi * <U *VU>-

S - + - <U> i+ ] (33)
<s> = pO0ke[ _k+kV<u> + -1k -ik

On substituting the expressions for i, <U>+ and <U> into Eqs. (32) and

(33) one obtains
* + ....

,<U VU>
<S> W ok e e + Re :-k ) (34)

2 2

<S> ~WP k tP e - (C +C e + Re( - "U> (35)
a z a z -ik

The second term on the RHS of Eq. (34) (or the third term on the RHS

of Eq. (35))can be further separated into two parts. Thus,

* * 4-. ,.
<U 7U>- F E 7 + 7

>UU 4 E <u-u (36)
-iOk J k <uj-ik> - J-1k-uj >

.

Using Eqs. (36), (21) and (22), the average energy flux <S> become
<-.)-+l- 2 2", )

<+ WP k [2() + a(I<U>+ 2e + (37)

S>7 wp0 k - e- + (2 +C *()< - (- z) + 1-] (38)
0 a z a z a tj z

where

I Re(Z <u ) = Re(--> <uj 7 u> ) 39)
*j ii i -ik .i i J i

-e( <.i R>) = e( <u V uj> drj) (hO)
ij -ik j -ik j i Ji
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The energy principle simply states that the mean energy outflow for

nondissipative scatterers, from any enclosed volume vanishes (Twersky,

1957)

dA= 0 (4)

In order to verify this a simple control volume is assumed (see Figure 3).

For the upper half plane (z>0), we have

d = k 2  - + (,<U>-e2)^]'.,>+" --Pok  [ ̂  e I l<e^" (42)

+ Pokf dA

-while for the lower half plane (z<O), we have

4.2 e c~ + 2 1*( 12) (43> d = WPok) [(-e) + (C +C )(3 >
PS0a zz z~ z

+ W kJI-. dA

A:::llyone sees from Figure 3 that the total average energy flux has two

separate parts. One is the coherent energy flux which has components either

in positive or negative z direction but not in x and y directions. The

other is thepower scattered into all directions (specified by e^ ) and

called the incoherent energy flux, i.e. Iand I .After adding Eq. (43)

to (142) it gives

S> d WPk$2 [(c+C) + (< 1 + <U>2

(144)

+ WP k]I dA.

+*Po - - *(.i

-'he term u - ue apparing in I and I in the p p term is related to the
j -ik -j s

scattering cross section (see Appendix), and one can show that

-~ -+2
a

to h2 fit ive "-''..a
f 

.')

I &A Pa = O k [ ( -+ -) +(2 1 < -2

k a ..}•
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cnd -1. . 2(* 2 )1and I dA =p a+ + F)T a p .a

where a q(a)da.

After dividing Eq. (44) by 2 WP k and neglecting the terms I<U>+ 12 and
a 0±

-2 +±2I<U>-l (of order IC I which are small compared with ICI), we obtain

P= (C- + C ) + p5 (46)

The first term on the RHS of Eq. (46), using Eq. (12), then becomes

(C + C-*) = -47rp Im(f aT,7))/k. (47)

Substituting Eq. (47) back into (46) one sees, using the forward scattering

theorem (Morse and Ingard 1968)

* dA = p[a - 4TrImf(a,7))/k] = 0 (48)

Eq. (48) states that the energy flux coherently transmitted is cancelled

out by that incoherently scattered which verifies the energy principle

for nonabsorbing scatterers as mentioned by Twersky (1957).

.........................................
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RESULTS AND DISCUSSIONS

In Figures 4 and 5 we present the computed values of the intensity,
m2 ,2,

which has been normalized by w P06a/c, versus the nondimensional frequency

ka for sparse distributions of particles. One sees from Figures 4 and 5

that the contribution of the coherent intensity toward the total back-

scattered intensity is quite small; therefore, it can be neglected for

high values of ka. As expected, the coherent intensity is hundred times

larger when the concentration changes from 0.002 to 0.02 while the total

intensity is only ten times bigger. The size distribution seems to affect

the intensity little which may be due to the reason that it is a Rayleigh

distribution and the cutoff size is limited in our case. However, this

should be investigated further for an even denser distribution. Moreover,

the randomness in shape can also be included in the configurational average

consideration through the T-matrix for arbitrary scatterer if it is required.

The present study takes into account the interactions among scatterers

but the higher order scattering terms are ignored due to the sparse dis-

tribution and low concentration of scatterers. For high concentrations of

scatterers, the complete introduction of the higher order scattering terms

plus the appropriate distribution function are required to analyze the

problem using the multiple scattering theory and it is discussed in the

Appendix.
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APPENDIX

2
The configurational average of 42 presented in this paper is for

sparsely distributed scatterers on a plane. In other words, the intensity

calculation based on Eqns. (16-19) is valid only for a moderate con-

centration of particles. As can be seen in Varadans' previous work,

in order to accurately compute the-scattering response from a dense

distribution of scatterers, the pair correlation function which is a

necessary description of the relative position of one scatterer to the

other must be taken into account in the multiple scattering theory. The

introduction of the pair correlation function not only enables us to

physically explain the results but also compare the results quite well

with the available experimental measurements. In fact, the single

scattering theory or several modified multiple scattering estimation

without considering the pair correlation function yields unphysical

numerical results which inevitably exist when plotting against either

frequency or concentration.

To describe the positions of the scatterers in a monolayer, a two

dimensional distribution function specified by p(IRI) for randomly dis-

tributed impenetrable disks is to be introduced here for the intensity

calculation for high concentration of particles. Since the top view of

the scatterers on a plane is essentially that disks distributed in a

monolayer, we may assume that the cross section of each scatterer which

can be arbitrary in shape is enclosed by a circular disk lying on a plane.

To this end, hard disk pair correlation functions p(IRl) are obtained for

2
pd up to 0.7 ( 'd' is the diameter of the disk ) by solving Percus-Yevick

equations in two dimensions.

The modification of equations for the intensity calculation for high

......................................... ........
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concentrations of scatterers is only through Eq.(19) by introducing

the two dimensional pair correlation function p(T). One should notice

that R is now a planar vector connecting centers of two circular disks

of the same size. The pair correlation function for non-circular hard

disks as well as a size distribution of circular disks can also be imple-

mented in the intensity calculation for monolayer scatterers, however,

they are beyond the scope of this paper. The modified equation using

Eq.(19), after some manipulation, for ,2 is thus written as

[*1> (R )k-(u> <fuk>f du d k + Of<ju.i 2> .dr., (Al)i12 = 2f(jk>j k P k i 3 k ]

which can be found its equivalent form in Twersky's work [1983]. The

remaining part is then to carry out the integral numerically on the computer

to obtain the incoherent intensity for the interested concentrations and

frequencies. The procedures involved are explained in the main text and

will not be repeated here.

There are a number of approximate integral equations as well as quasi-

exact approaches to obtain the pair correlation for hard spheres and the.

details can be founf elsewhere. However, for hard disks, a published table

of pair correlation function for various concentrations is incomplete, at

least to our interest. In order to obtain a table of pair correlation

function P(11) for a wide range of concention, we used the following

procedures as mentioned in Steele's paper [1975]. For hard disks,

p(IRI) = exp[ -u(IRI)/kT ]y(IRI), (A2)

where u(I11) is the inter-scatterer potential, k is the Boltzmann constant,

T is the temperature and y(IRI) is generated using the two dimensional
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Percus-Yevick equation which can be written as

y(IRij1) f 1 + ik )[y(IRk -d)-l]dtdk dk (.)
:"j ik -ik

* where a is the angle between R and R and H(x) is the Heavyside
ik jk

* function equal to zero for x <0 and unity for x >0.

The pair correlation function can thus be obtained using Eq.(A2)

through the direct numerical iteration for y(IRI) in Eq.(A3). Several

sets of the pair correlation function p(IRI) for different concentrations

as a function of the separation distance between disks are presented in

Tables 1-VII and graphically in Figure 6.

... . . ..................
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(1) a 27 2w R sin Od9/ 1p11 for spherical coordinates

(2)l a2 1 p12 R2sin 1d/I~2

(3) a- 27rf211 R inedie/l

+ -2
(4 a-a -(w/ )~ (2f)/1I-

2in
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(3) q 2a) = R2 in74 ) e/ /1.4
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2TABLE I. Pair correlation function p(R) for pd 0.1

R/d p(R) R/d p(R)

1.02 1.13220 1.04 1.12775
1.06 1.12351 1.08 1.11935
1.10 1.11503 1.12 1.11093
1.14 1.10674 1.16 1.10282
1.18 1.09908 1.20 1.09524
1.22 1.09126 1.24 1.08769
1.26 1.08351 1.28 1.07968
1.30 1.07647 1.32 1.07283
1.34 1.06848 1.36 1.06532
1.38 1.06208 1.40 1.05864
1.42 1.05509 1.44 1.05199
1.46 1.04878 1.48 1.04569
1.50 1.04248 1.52 1.03981
1.54 1.03701 1.56 1.03424
1.58 1.03114 1,60 1.02847
1.62 1.02561 1.64 1.02297
1.66 1.02059 1.68 1.01824
1,70 1.01569 1.72 1.01362
1.74 1.01150 1.76 1.00955
1.78 1.00735 1.80 1.00553
1.82 1.00391 1,84 1.00215
1,86 1.00048 1.88 0.99903
1.90 0.99778 1.92 0.99668
1.94 0*99569 1,96 0.99506
1.98 0.99462 2.00 0.99469
2.02 0.99494 2.04 0.99525
2.06 0.99557 2.08 0.99589
2.10 0.99619 2.12 0.99649
2.14 0.99677 2.16 0.99703
2.18 0.99728 2.20 0.99752
2.22 0.99775 2.24 0.99796
2.26 0.99816 2.28 0.99835
2,30 0.99853 2,32 0.99870
2.34 0.99885 2.36 0.99900
2.38 0.99913 2.40 0.99926
2.42 0.99937 2.44 0.99948
2.46 0.99958 2.48 0.99967
2,50 0.99975 2.52 0.99982
2.54 0.99988 2.56 0.99994
2.58 0.99999 2.60 1.00004
2.62 1.00007 2.64 1.00011
2.L66 1.00013 2.68 1.00016
2.70 1.00017 2.72 1.00019
2.74 1.00019 2.76 1.00020
2.78 1.00020 2.80 1.00020
2.82 1.00019 2.84 1.00019
2.86 1.00018 2.88 1.00017
2.90 1.00016 2.92 1.00014
2.94 1.00013 2.96 1.00012
2.98 1.00010 3.00 !.00007

~ ** .**. .** * . . .,.



2TABLE II. Pair correlation function p(R) for pd = 0.2

R/d p(R) R/d p(R)

1.02 1.29095 1.04 1.27949
1.06 1.26944 1.08 1.25876
1.10 1.24888 1.12 1.23853
1.14 1.22793 1.16 1.21872
1.18 1.20935 1.20 1.19986
1.22 1,19033 1.24 1.18011
1.26 1.17152 1.28 1.16310
1.30 1.15373 1.32 1.14629
1.34 1.13745 1.36 1.12885
1.38 1.12067 1.40 1.11269
1.42 1.10561 1.44 1.09781
1.46 1.09068 1.48 1,08384
1.50 1.07634 1.52 1.06903
1.54 1.06278 1.56 1.05628
1.58 1.05053 1,60 1.04441
1,62 1.03855 1.64 1.03308
1.66 1.02712 1*68 1.02210
1.70 1.01686 1.72 1o01272

1.74 1.00824 1.76 1.00342
1.78 0.99988 1.80 0.99615
1.82 0.99259 1.84 0.98888
1.86 0.98631 1.88 0.98427
1.90 0.98173 1.92 0.97950
1.94 O.97831 1.96 O.97760
1.98 0.97739 2.00 0.97814
2.02 0.97970 2.04 0.98142
2.06 0.98310 2.08 0,98464
2.10 0.98604 2.12 0.98740
2.14 0.98862 2.16 0.98986
2.18 0.99093 2.20 0.99200
2.22 0.99299 2.24 0.99380
2.26 0.99470 2.28 0.99544
2.30 0.99621 2.32 0.99690
2.34 0.99751 2.36 0.99809
2.38 0.99858 2.40 0.99908
2.42 0.99946 2.44 0.99982
2,46 1.00013 2.48 1.00037
2.50 1.00067 2.52 1.00088
2,54 1.00103 2.56 1.00116
2.58 1*00127 2.60 1.00136
2.62 1.00141 2.64 1.00144
2.66 1.00149 2.68 1.00147
'.170 1.00145 2.72 1,00139
2.74 1.00133 2.76 1.00126
2.78 1.00118 2.80 1.00109

.. .. .."
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TABLE II. --- continue

R/d p(R) R/d p(R)

2.82 1.00099 2.34 1.00088
2.86 1.00077 2#88 1.00066
2.90 1.00055 2.92 1.00045 ""
2.94 1,00035 2.96 1.00025
2.98 1.00017 3.00 1.00009
3.02 1.00002 3.04 0.99996
3.06 0.99991 3.08 0.99986
3.10 0.99982 3.12 0.99979
3.14 0.99976 3.16 0.99974
3.18 0,99972 3.20 0*99971
3.22 0.99970 3.24 0.99970
3.26 0,'9969 3.28 0.99969
3.30 0.99970 3.32 0.99970
3.34 0.99971 3.36 0.99972
3.38 0.99973 3,40 0,99974
3.42 0.99975 3.44 0.99977
3*46 0.99978 3.48 0.99979
3.50 0.99981 3.52 0,99982
3.54 0.99984 3.56 0.99985
3.58 0.99986 3.60 0.99988
3.62 0.99989 3,64 0.99990
3.66 0.99991 3.68 0.99992

3,70 0.99993 3.72 0.99994
3.74 0.99995 3.76 0.99996
3.78 0.99997 3.80 0.99997
3.82 0.99998 3,84 0.99999
3.86 0.99999 3.88 0.99999
3.90 1,00000 3.92 1.00000
3.94 1.00000 3.96 1.00000
3.98 1.00001 4.00 1.00001

4 . -. . -
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TABLE III. Pair correlation function p(R) for pd = 0.3

R/d p(R) R/d p(R)
1.0:2 1.500.77 1.04 1.47856
1,06 1.45764 1.08 1.43728
1.10 1.41595 1.12 1.39604
1.14 1,3763 1.16 1.35800

1.18 1.34087 1,20 1.32312
1.22 1.30466 1.24 1.28858
1.26 1.26908 1.28 1.25196

1.30 1.23820 1,-32 1.22204
1.34 1.20216 1.36 1.18897
1.38 1.17537 1.40 1.16095
1.42 1.14610 1.44 1.13362
1.46 1.12055 1.48 1.10848
1.50 1.09578 1,52 1.08604
1.54 1.07560 1.56 1.06532
1.58 1.05314 1,60 1.04323
1.62 1.03232 1.64 1.02283
1.66 1,01476 1.68 1,00682
1.70 0*99786 1.72 0.99158
1.74 0,98496 1,76 0*97916
1.78 0.97199 1.80 0.96681
1.82 0.96261 1.84 0.95763
1.86 0.95304 1.88 0.94960
1.90 0.94710 1.92 0.94539
1,94 0.94421 1.96 0.94481
1498 0.94636 2*00 0,95034
2,02 0.95502 2.04 0.95980
2.06 0.96438 2.08 0.96875
2.10 0.97284 2,12 0.97664
2.14 0.98017 2.16 0.98346
2,18 0.98649 2.20 0.98930
2.22 0.99185 2.24 0.99419
2.26 0.99630 2.28 0.99823
2.30 0.99994 2.32 1.00148
2.34 1.00283 2.36 1.00402
2.38 1.00505 2.40 1.00592
2.42 1.00666 2.44 1.00726

2.46 1.00773 2.48 1.00809
2.50 1.00833 2.52 1.00849

2.54 1.00854 2.56 1.00852
2.58 1,00840 2.60 1.00821
2.62 1.00796 2.64 1.00764
2.66 1.00727 2.68 1.00687
2.70 1.00642 2. 72 1.00595
2.74 1.00544 2.76 1.00493
2.78 1.00440 2.80 1.00386
2.12 1.00332 2.84 1.00278
2.86 1 00225 2.88 1.00174

.90 1.00125 2.' 92 1. ,)o .',
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BUBBLES IN WATER

1.41 REVACRYL DISPERSIONS IN OISTILLED WATER

.6x O •EXPERIMENT (KILLEY 8 MEE TEN!

(1957) -THEORY IVARADAN of al.)

37 100 -:

Z 0 10 20 0 40

0 ~c(%)

Z Fig. 3 Phase velocity vs concentration for electro-

Imagnetic wave propagation through Revacryl

dispersions in distilled water. Experimental

10 
data points are from Ref. [31].

t, 2.0

10

10-3 10-2 I0- 1

k a 
4 10m

p

Fig. 2 Coherent attenuation vs compressional wave 546nm

number for bubbles in water. Experimental

data points are from Ref. [29].

We now present some results for electromagnetic 02 30

ave propagation through a composite media consisting
f Revacryl spheres dispersed in distilled water. The
efractive index of the scatterers is 1.48 while that Fig. 4 Coherent attenuation vs concentration for
f the distilled water is 1.334. Figure (3) shows an the case given in Fig. 3.
xpamle of the behavior of real part of refractive index,

(which is related to the phase velocity) as a function
f volume fraction occupied by the scatterers(c), while
igure (4) shows the variation of the imaginary part of
efractive index n" (which is related to the coherenta
ttenuation) as a function of concentration c of the * EXPERIMENT KILLEY S MEETEN)
catterers for two different wavelengths X = 410nm and - THEORY IVARAOAN .! a1.)
46nm. The agreement between our theory and the experi-
ent of Killey and Meeten[31J is excellent even for the a.OOnm
ense system. Figure (5) shows again an excellent agree- .14
ent between theory and experiment for coherent intensity X-546n"

or various values of concentration for wavelength
* 5

4
6nm. To show that the theory presented here is C.0.0461

alid even fur very high frequencies we have plotted the _6
esults of coherent attenuation versus concentrationc 2

or latex spheres in water even for k a = 83.352 where C -"

is the wavenumber of the electromagnetic wave in water, 0
ee Figure 6. The attenuation is normalized with respect
o single scattering approximation and is denoted by y. -3
he agreement between our theory and the experiment
easurements of Ishimaru and Kuga[321 is quite good. For c0.262 c.0.491.
ther dielectric-dielectric composite media with spheri-
al and non-spherical inclusions, we have shown excellent 4
greement between our theory and experiments of lshimaru 0 200 400 600
nd Kuga[17]. z(nm)

For the study of wave propagation in elastic compo-
ite media, we have taken a model of a particulate Fig. 5 Coherent intensity vs propagation depth z.
omposite containing a random distribution of lead Experimental data points are from Ref. [311

pheres in EPON 828-Z.

. . . .: .
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ariables but K, the determinantal equation can be RESULTS AND CONCLUSION
3lved numerically to yield the value of the effective
ropagation constant. Using the theory outlined in previous sections, we

present some numerical results for a variety of three-
Equation (27) can be written in its expanded form dimensional problems in all three wave fields and compare

s follows: them with some laboratory experimental measurements to
, In In+mI m n 

q  
show the broad applicability of our multiple scattering -

In q n-mI m0 p-m o= ml--n apoh

11 ZP In the Rayleigh or low frequency limit, the size of

Ml+rP+q-nl6 I m ( -p,mq) the scatterers is considered to be small when compared
mlp I to the incident wavelength. It is then sufficient to

13 ip take only the lowest order coefficient in the expansion
+lqX 2 nl[(T )n a(nl1 mq)a(mlnlI-p'mjq) - (T )nm pf the fields. At resonance and higher frequencies, we

must in general consider higher powers in k a which

1 13 EP implies that a larger number of terms (X n) must be kept
b(nlm,q)a(mlnl-P,mlq, q-l)I+X3 1 [(T ) (28a) in the bxpansion of the average field. umerical proce-

12 t
p 
3n1dure is outlined in det;.il in our previous papers and

a(nl,m,q)a(ml,nl_-p,mq)-(T ) nmb(nl,m,q) hence will not be repeat-d here.

I In Figutes 1 and 2, we have plotted the phase
a(ml,nlI-P,m~q,q-l)]I velocity and attenuation coefficients for bubbles in

water. The dots in these figures are the experimental
measurements by Silberman[29]. The agreement between

2n (28b) our tbeory and experiment is extremely good. For this2 .composite media, "breathing mode" resonances of the
X Z (28c) bubbles and the associated marked variation of coherent
3n .... attenuation and'phase velocity occur. The curve of phase

velocity versus wavenumber in water (matrix medium) shows
quation (28b) can be obtained from (28a) by replacing an oscillating behavior in the resonance region. The

T
1  

by T
2

, T
2

, T
2 3 

while (28c) can be oscillations in the phase velocity occur even for such

,b1ained by replacing T
II, 

12
, 13  

31
, 

32 33 low concentration between the "acoustic" and "optical"
T T by T T . and T branches as evidenced in Figure 1. It is interesting

to note that the coherent attenuation reaches a maximum
In equations (28a,b,c), the contributions due to value at the "breathing mode" resonance in the "acoustic"

air-correlation functions are given by the expression branch. However, there is not any evidence of the loca-
(T=1,2) as follows: tion of the "optical branch" in the attenuation versus

q the wavenumber plot, see Figure 2. It is to be noted
I (K,k ,c) 6c [2k a I (2Ka)hl(2kT that the imaginary part K2 of the effective wavenumber

(kTa)2-(Ka)
2  

becomes greater than the real part K I . This causes the

propagating wave in the composite media to be damped out

2Ka h (2k a)j (2Ka)J+24c x [g(x)-1jh (k x) (29) over a distance smaller than a wavelength. This so
q q x.1 q T called "superviscous" propagation has also been noted bv

Chaban[30] and Varadan et al[20] for voids in rubber-like
materials. It is worth mentioning at this state that

q the Kuster and Toksdz model even with the giant monopole

resonance included does not present satisfactory results

'or acoustic wave problem, we get uncoupled equation for in the "optical branch".

In for electromagnetic problem we get coupled equa- BUBBLES IN WATER

:ions in terms of XZ and X for elastic wave problem, ,2n X3n X. . . ..-- -r

ie obtain coupled equations in terms of Xln, X2nandX 3n

quation (28) is a system of simultaneous linear homo-

;eneous equations for the unknown amplitudes XT  For
i nontrivial solution, we require that the deterthinant

if the truncated coefficient matrix vanishes, which

,ields an equation for the effective wave number K in En 0
°  

_-"

:erms of k and the T-matrix of the scatterer. This is 10
T

he dispersion relation for the scatterer filled medium. .

quation (28) is a general expression valid for any Q c 6.0x]O
- 4

irbitrary shaped scatterer, since the T-matrix is the - E
A E. Silbermannly factor that contains information about the exact (1957)

thape and boundary conditions at the scatterer. Thus

:he formalism presented here is valid for all the three
rave fields. The effective wave number K obtained in 10

:he analysis is a complex quantity, the real part of

ihich relates to the phase velocity, while the imaginary

)art relates to attenuation of coherent waves in the 10-3 10-2 iO-'

edium. Fig. I Phase velocity vs compressional wave number for

bubbles in water. Experimental data points are

from Ref. [291.

%..
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we obtain combined with an adjustable parameter D and the two
pressure equations were solved simultaneously for P and

I
<. >a + n 0T ,, n'(r j)<i t. This is called the self-consistent approximation

< a n on'n' Jnn'( i n'>  
(SCA) and it is valid for higher concentrations than the

V-v (19) PYA and HNC models. Twersky(281 has considered non-

spherical statistics for spheroidal scatterers in the
i(j)d sparse concentration limit. Extending this model to

dense systems and numerically implementing it for high
In equation (18), g(x) is the radial distribution func- frequencies will be a problem of interest to the research
tion assuming spherically symmetric statistics even for community. Pair-correlation functions by Monte-Carlo
non spherical particles, i.e. the exclusion volume of simulation were used in our numerical computations.
the impenetrable particles is assumed to be spherical.
In equation (19), the sumation convention is used, and PROPAGATION CHARACTERISTICS OF THE AVERAGE WAVES IN
if the particles are identical Z'JN-I-N when N is large THE MEDIUM
and v is the exclusion volume equal to 4w(2a)

3
/3.

To solve the integral equations given by (19), we
The joint probability density is defined as now assume that the average field in the medium is a

plane wave propagating in the direction k of the

); 1 2a original plane wave in the host medium, however, theg(]r-rl ir-riaverage field propagates in an effective or wverage

medium which is homogeneous and characterized by an
P( r~ir) = (20) 'ffective propagation constant K-K +iK which is complexp J and frequency dependent. Thus

0 ri> 2a -.

<cI>-X e iKko'r (23)
n n

Equation (20) implies that the particles do not inter-
penetrate and the excluded volume is a sphere of radius d uation (13) can hence be written as

2a although the particles themselves may be non-spherical. lkk iKk •r
A suitable non-spherical statistics may also be included i e +n

through Monte-Carlo calculation especially for non-spher- n n on'n n
'

ical scatterers. The function g(l 4 
1 1) is called the

pair correlation function and depends only on J- -ji I iKk .r. iKk "r.
fIlnn' (Ii~ dr- e i(4due to translational invariance of the system -e + nn'r V r

under consideration. V jdj -

Several models of g(x) are available. For uncorre- [g(]ijI)-lld"'
lated impenetrable particles I..;

1/(-c), x>l The second term on the RHS of equation (24) c'an be con-

verted into a surface integral using the divergence
g(x) (21) theorem and surface integral on S,, which defines the

boundary of the system, cancels the incident wave term
0, x<l on the RHS of equation (24). Thus equation (24)

simplifies to
This approximation for g(x) known as the well-stirred Z+-.
approximation (WSA) is expected to be valid for low X n T n X n 2kaj(2Ka)h'
values of concentration c, and as discussed by Bringi n -n n n n'n

et al(171. fails at c>0.125. Twersky[121 has used a " (2-)
virial expansion to obtain g(x) shown as (2ka)-2Kajj(2Ka)h (2ka)] + J[g(x)-li (25)"V-v'';

x<l (Kx)h X(kx)x2dx"

g(x) l (-_ l<x<2 (22)
where D ,() is the vestige of the translation matrix

1, x>2 after t le spatial and angular parts have been absorbed In

the integration. Different expressions result depending
which is valid at low concentrations, on whether we are discussing acoustic, electromagnetic

or elastic wave propagation. Equation (25) can be
Improved models of the pair correlation function rewritten as

valid for concentrations up to 40% are the Percus-Yevick
approximation (PYA) and the Hypernetted-Chain approxima- (6nn,-Mnn,)Xn,

=
0 (2h)

tion (HNC). The Percus-Yevick model[24] has been solved
analytically by Wertheim[25] for the case of hard impene- The dispersion equation for the effective medium is then
trable particles. It is expected to be somewhat better simply
than the HNC[261. One of the defects of the PYA is t hat
the two equations that can be derived for the pressure P, ,,-Mnjk,K,nov,T,g)=O (27)
in a fluid containing "hard" particles lead to different nnMnn o
answers when the PYA for g(x) are substituted in them.
Rowlinson[27] remedied this by assuming that the direct which depends on k'.,/c, the effective wavenumber K, the
correlation function which is the short range part of number densitv n . the exclusion volume v, the T-matrix
the correlation function is a linear combination of the or the scatterer characteristics and a model for th-
ones resulting from the PYA and HNC models. They were radial distribution function. Bv assuming values for all

%......

0. . .* .

..... .... .... .... .... .... .... ....



and
= V (acoustic waves in fluids) (4) r r 1>2a (12)

Cs = (elastic waves) (5)
where r denotes the center of the i-th scatterer, and"
' a' is the radius of the sphere circumscribing any

- C/~rr (electromagnetic waves) (6) scatterer. The coefficients f0 and qx are unknown but

are, however, related via the T-matrix, which can be
In equations (3) - (6), cp and cs refer to compression- numerically calculated for scatterers of arbitrary shape
al and transverse wave velocities, respectively, using Waterman's extended boundary condition method[231.
In equation (6), C refers to the velocity of light in Thus,
free space. The corresponding quantities inside the fi T (13)
scatterers are differentiated by subscript 1. For n n nn n'"
brevity, we use the notation k for the wave numbers;T 

-

T 1 corresponds to compressional wave while T - 2,3 where we have assumed that all scatterers are identical.
corresponds to shear wave.

Substituting equations (11) - (13) in (8) and using
The total field at any point in the matrix (outside the the translation-addition theorems for spherical wave-
scatterers) is the sum of the incident field and the functions and the orthogonality properties of spherical
fields scattererd by all the scatterers. This is harmonics[231, we obtain
written as fi,E 

oa
i 

+ E E, 1' (,rT (1-*O N as
+  

n n j i n nn ntn" n-
u(r) =u (r) + i E u i(r-ri) (7)n

where
where ui(r - ri) is the field scattered by the i-th (

scatterer to the point of observation '. This expres- ou p (r-r)= a , r )Re ' ' (15)
sion by itself does not provide a complete formulation n . n' nn j i

of the multiple scattering problem[22]. In order to
complete the formulation, we require an expression for n nn'
us which in turn depends on the field actually exciting functions[23].
i

on the i-th scatterer. The exciting field on the i-th
scatterer is the incident field uO plus the sum of the Eo
fields scattered by all the other scatterers: atterers to yield an equation of the form

-e = ,) + N .s .... <ct>'a8 +j ' 
' 
T, n n(r-r)

u r _ (r) jE i u (r-r.) , ar-r a (8) n n" n nn

<Cjj 'r r)dr*(16)

where 'a' is the radius of the imaginary sphere circum- n" ij j i j
scribing a scatterer. In this analysis, we have assumed
that there is no interpenetration of the imaginary where
spheres of radius 'a' which circumscribe each scatterer. i ikkor
The system of equation (7) and (8) provide one of the a -a e -o ' .
standard formulations of the multiple scattering problem. n n

p(r. Ir. is the conditional probability distribution .
Although a general dispersion equation can be de- and I ) is the conditional a y r iotin

rived as in Twersky[l01, in order to obtain explicit ande os fth e nit ava of awt h
results for particular shapes of scatterers, one has held fixed.

to expand the exciting and scattered fields in a con-

venient set of basis functions, such as spherical wave
functions. Let Ou 'Pn generally denote outgoing functions i t kiisha eue (16) to ian".

infinite heirarchy because <r,,>. . is related to.<, ' k

(Hankel functions) and functions regular at the origin and so on. The QCA first invokeiby Lax(3,41 and ilk
(Bessel functions). We dispense with vector notation also independently by Twersky[] simply states that -

and the abbreviated index may denote n-TP, m, 0; T-9 p, .l

2, 3, £ c [o,-]; m E [o, £1. Thus the present discus-,J < d,,>(1
sion can apply equally well to acoustic (T=I only), n ij n (17)
electromagnetic (T-2, 3 only) or elastic (T-1,2,3) wave
propagation. i.e., the conditional expectation of iJ is independent

n
of the position of the i-th scatterer . This would be

At a field point r in the host medium, the incident, an exact statement if the system was perfectlv crystal--
scattered and exciting fields are expanded as follows, line, because, in this case the position of every scat-

terer in the system is fixed and the neighborhood of
°(r) Revery scatterer is the same. The QCA required only a

n n knowledge of two body correlations.

with for example Substituting equation (17) in (16) and noting that

an Z -* Y mO(o) (10) C;r I1<2a

.for plane acoustic waves propagating along ko and
Y Zm are spherical harmonics: P( j'r.

i- n n r -1 (11) ' 1, (.r1 );Ir . 2a (18)

- . . v..... ......
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the single scattering approach neglecting multiple scat-

tering or interaction between scatterers. A multiple

WAVE PROPAGATION IN COtIOSITE MEDIA scattering formalism was introduced by Foldy[2j where he
had obtained a closed form expression for the effective
wsvenumber of the coherent wave for the case of point
scatterers. A quasicrystalline approximation was
developed by Lax[3,41 urhich involves two particle corre-
lation function. In a series of papers, Twersky[5-14] -
presented a thorough analysis giving various orders of

multiple scattering using various forms of pair-correla-
tion functions. Recently, Varadan et al and Bringi et al
[15-21] have presented a rigorous multiple scattering

approach which lends itself to a numerical computations
for a range of frequencies and concentrations and for
more realistic geometries of the scatterers. Pair-
correlation functions are used in these analyses using
Percus-Yevick Approximation (P-YA), Self-Consistent

Approximation (SCA) and "exact" Monte Carlo computations.

V. K. Varadan, V. V. Varadan and Y. Ma FORMULATION BASED ON SCATTERING THEORY
Wave Propagation Laboratory

Department of Engineering Science and Mechanics We consider N number of three-dimensional arbitrary
The Pennsylvania State University shaped scatterers randomly distributed in an elastic

University Park, PA 16802 (matrix) medium. The orientation of the scatterers may

be quite general. We describe the medium and :he scat-
terers for all three wave fields. For an acoustic prob-
lem, we consider fluid scatterers tnmersed in another

ABSTRACT fluid, bubbles in a fluid, elastic or viscoelasLic
scatterers immersed in a fluid, etc. For an electro-

A unified theory for acoustic, electromagnetic and magnetic scattering probiem, we consider dielectric
eiastic wave propagation in composite media is presented. scatterers in free space, dielectric scatterers emnbe,lded
The theory is based on multiple scattering formalism in a different dielectric medium. etc. For an elasti,-
developed by the authors which involves the T-matrix of wave scattering problem, we consider elastic i'r visc,-
a single scatterer, pair-correlation functions to elastic inclusions embedded in another elastic or visco-
account for the interaction between scatterers and a elastic material, stress free or fluid filled cavities
suitable configurational averaging procedures. Results and cracks in an elastic or viscoelastic material, Pr,:.

are presented for acoustic, electromagnetic and elastic The properties of the medium and the scatterers are wive
wave cases and are compared with experimental measure- in terms of Lame' constants A,u and density , for an"
ments. elastic material, compressibility )f and detisitv )f for

non-viscous f),Aids and relative dielectric constant vr
INTRODUCTION and permeabillt-, 1r with respect to free space describing

dielectric medium. We use subscript I to denote these .. .
In this paper, the term "composite media" is used qualities inside the scatterers.

to define a two phase system consisting of a continuous
phase, said to be the matrix (host) phase, with discrete A time harmonic plane wave of unit amplitude and
inclusions (scatterers) of general shape. When a wave frequency w is incident on the medium such that the
is incident in such composite media, it undergoes multi- direction of propagation of the incident waves is along
ple scattering thus reducing the amplitude of the coher- the z-axis. The incident wave field may then bt repre-
ent wave, and one is interested in studying the dynamic sented by
behavior of the composite media via the phase velocity, "-0 ei(k z - wt) i(kz - 't) Ii_
coherent attenuation, effective elastic or dielectric u =e p ) e-.x
properties, etc.

where kp and k are compressional (Longitudinal) and
The study of wave propagation and scattering in transverse (shear) wave numbers, respectively, dnd t is

composite media is growing at a rapid rate resulting in the time. The acoustic waves are purely coptTeSional
many theoretical developments and experimental measure- type and thus, the second term of equation (M) is set
ments. As with any rapidly expanding field, the contri- equal to zero; for electrnmagnetic waves which are trans-
butions are often diverse and sometimes fragmentary; verse type, the first term on the right hiati side of (1)
some theories are based on solid theoretical foundations Is zero; for elastic waves which contain both cmpres-
while others are based on no more than empirical fits sional and transverse types, ill the term of (I) are
to 11mited sets of data. Except for quasi-static case, present. For acoustic ind elastic wave problems, u; .
most of the available results by various theories dif- refers to the incident displacement field vector, while
fer widely that any clear interpretation of the dynamic for electromagnetic case, it refers to the incident
behavior of composite media can not be achieved over electric field vector. Tn eauatioi 1). we ,-~ the
a range of frequency. The aim of this work is to pre- superscript (a) to indicate an incident wave. The wave
sent a unified theory for all three wave fields, namely numbers k, and k are given bv

acoustic, electromagnetic and elastic cases and a com- s

putational scheme for obtaining such frequency dependent k - a/c ; k w/c , (2)
parameters including comparison with some experimental p p s

measurements. respectivelv, where

Lord Rayleigh(]) first iddressed the problem using c p ,-? - + i T77) (elastic wavus) (3)

2.%-L-L' ' _.' -'' '': ''. '. ." "'" ." "". ""-. ""-. . .' ," -" ",. .. -" " ' ." "' ",, -/ . . '.-.. .. '.-.; . '..' -. ,'. '....'.-. ' -'-p.



TABLE VII. ---continue

R/d p(R) R/d p(R)

2,.94 0 91460 2.96 0.92345
2.98 0.93330 3.00 0,94401
3.02 0,95538 3.04 0.96717
3.06 0.97910 3.08 0,99094
3.10 1.00244 3.12 1.01338
3.14 1.02362 3.16 1,03302
3.18 1.04147 3.20 1,04887
3.22 1,05516 3.24 1.06031
3.26 1.06432 3,28 1,06719
3.30 1.06895 3.32 1.06965
3.34 1.06934 3.36 1.06809
3,38 1.06600 3.40 1.06314
3,42 1.05961 3,44 1,05548
3,46 1.05085 3,48 1.04581
3,50 1.04044 3,52 1,03483
3.54 1.02905 3.56 1,02319
3o58 1,01733 3,60 1.01153'
3,62 1.00586 3,64 1,00038
3.66 0.99515 3.68 0.99021
3,70 0.98562 3.72 0.98141
3.74 0.97762 3.76 0.97429
3.78 0,97143 3.80 0.96907
3.82 0.96722 3,84 0.96588
3.86 0.96506 3.88 0.96474
3.90 0.96493 3.92 0.96560
3.94 0.96673 3.96 0.96827
3.98 0,97019 4.00 0.97241
4.02 0.97489 4.04 0.97760
4.06 0.98049 4.08 0.98353
4.10 0.98666 4.12 0.98984
4.14 0.99302" 4.16 0.99616
4.18 0.99919 4.20 1.00212
4.22 1.00485 4,24 1.00741
4.26 1,00976 4.28 1.01189
4.30 1,01375 4.32 1,01532
4.34 1.01662 4,36 1.01763'
4.38 1.01833 4.40 1,01875
4.42 1.01887 4.44 1.01873
4.46 1.01834 4,48 1.01773
4.50 1.01690 4.52 1.01590
4.54 1,01470 4.56 1.01334
4.58 1.01187 4.60 1.01033
4,62 1.00865 4.64 1.00694
4.66 1.00522 4.68 1.00348
4.70 1,00170 4,72 0,99996
4.74 0.99826 4.76 0.99668
1.78 0.99518 4.80 0.99380
4.82 0.99253 4.84 0,99140

4.86 0.99042 4,88 0.98967
4.90 0.93910 4.92 0.98876
4.94 0.98882 4.96 0.98972
1.93 0.99174 5.00 0.99444
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TABLE VII. Pair correlation function p(R) for pd = 0.7

R/d p(R) R/d p(R)

1.02 3.18014 1.04 2.99172
1.06 2o81434 1.08 2*64612
1,10 2.47818 1.12 2.32789
1.14 2.19006 1.16 2.06993
1.18 1.95757 1.20 1.84489
1.22 1.73154. 1,24 1.63373
1.26 1.52250 1,28 1,42857
1.30 1.35086 1*32 1.26750

1.34 1.17413 1.36 1.11397
1.38 1.05541 1.40 1.00031
1.42 0.94899 1.44 0.90819
1.46 0.86892 1.48 0.84083
1.50 0.81197 1,52 0.79580
1,54 0,77486 1,56 0.75438
1.58 0.72450 1,60 0.70315
1.62 0.67933 1,64 0,66582
1,66 0.66002 1.68 0.65606
1.70 0.64983 1,72 0.65584
1.74 0,65980 1,76 0.66709
1.78 0,66865 1.80 0.67782
1.82 0.68994 1.84 0,69967
1.86 0.71072 1.88 0.72816
1.90 0.75058 1.92 0.77849
1.94 0.81110 1.96 0.85256
1.98 0,89990 2,00 0.95574
2.02 1.01229 2.04 1.06555
2.06 1.11279 2,08 1.15341
2.10 1,18663 2.12 1.21284
2.14 1.23246 2.16 1.24624
2.18 1.25441 2.20 1.25775
2.22 1.25644 2.24 1.25124
2.26 1.24253 2028 1.23106
2.30 1.21714 2,32 1.20136
2.34 1.18393 2.36 1.16551
2.38 1.14626 2.40 1.12666
2.42 1010689 2,44 1.08726
2,46 1.06786 2.48 1.04908
2.50 1.03089 2.52 1.01356
2.54 0,99702 2.56 0.98134
2.58 0.96650 2.60 0.95271
2,62 0.93996 2.64 0.92844
2,66 0.91821 2.68 0.90936
2.70 0.90185 2.72 0.89576
2.74 0.89104 2,76 0.88772
2.78 0.88573 2.80 0.88504
2.82 0.88562 2.84 0.88744
2.86 0.89049 2.88 0.89476

'0 1 90021 2.92 0.90685

"-.7"%
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TABLE VI. ---continue

R/d p(R) R/d p(R)

2,94 0.94625 2.96 0,94855
2.98 0,95154 3.00 0,95519
3.02 0.95941 3.04 0.96407
3.06 0.96905 3.08 0.97424
3.10 0.97951 3.12 0.98477
3.14 0.98993 3.16 0.99492
3.18 0.99967 3.20 1,00415
3,22 1.00829 3.24 1.01206
3.2o 1.01544 3.28 1,01842
3,30 1,02098 3,32 1.02312
3,34 1,02484 3.36 1.02614
3.38 1.02705 3,40 1,02759
3.42 1,02776 3,44 1,02760
3.46 1.02712 3.48 1.02635
3.50 1,02532 3.52 1,02406
3.54 1,02259 3.56 1.02095
3.58 1,01916 3,60 1,01724
3.62 1.01524 3.64 1.01318
3.66 1.01109 3.68 1,00898
3.70 1,00689 3,72 1.00484
3.74 1.00285 3,76 1.00094
3.78 0.99913 3,80 0.99744
3.82 0.99588 3,84 0.99448
3.86 0.99323 3.88 0.99215
3.90 0,99125 3.92 0.99054
3.94 0.99001 3.96 0.98967
3.98 0,98950 4,00 0,98949
4.02 0.98962 4.04 0.98990
4.06 0.99029 4.08 0.99080

a 4,10 0.99140 4.12 0.99210
4,14 0.99286 4.16 0.99368
4.1.8 0.99454 4.20 0.99543
4.22 0.99633 4,24 0.99724

4,26 0.99814 4.28 0.99902
4.30 0,99986 4o32 1,00066
4.34 1.00142 4.36 1.00211
4.38 1.00273 4,40 1.00329
4.42 1.00378 4.44 1.00419 .'

4.46 1.00452 4,48 1.00478
4.50 1,00496 4.52 1.00508
4,54 1,00512 4,56 1.00509
4.58 1,00499 4.60 1600485
4.62 1.00463 4.64 1.00437
4.66 1.00407 4.68 100374
4.70 1.00335 4.72 1.00294
4.74 1.00251 4.76 1.00207
4.78 1.00162 4.80 1,00117
4.82 1.00072 4.84 1.00028
4.86 0.99985 4.88 0,99944
4,90 0.99906 4,92 0.99871
4.94 0.99842 4.96 0,99826
4.98 0.99824 5.00 0.99831

+-. .'.' ..4"-'.'. % +-.... . . . . . . . . . . -. . . . . . . . . ..-. . . . ..". ... . . . ..". . . ..-.".. . . . . ... o "o' '. ". o+ .' ° .% .. u ' '.'.
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TABLE VI. Pair correlation function p(R) for d= 0.6

R/d p(R) R/d p(R)

1.02 2o59123 1,04 2.47586
1.06 2.36728 1.08 2,26336
1.10 2.15679 1.12 2.06050
1.14 1,96996 1.16 1,89062
1.18 1,81600 1.20 1.73972
1.22 1.66165 1.24 1,59500
1.26 1.51582 1.28 1.44916
1.30 1.39524 1.32 1.33444
1.34 1.26279 1.36 1.21779
1.38 1.17245 1.40 1.12741
1.42 1.08350 1,44 1,04772
1,46 1.01157 1,48 0.98286
1.50 0.95278 1.52 0.93374
1.54 0.91126 1.56 0.88943
1,58 0,85999 1.60 0,83831
1.62 0,81392 1.64 0,79714
1.66 0.78632 1.68 0.77651
1.70 0.76402 1.72 0.76178
1.74 0.75792 1.76 0.756991 1.78 0,75111 1.80 0,75211
1,82 0.75595 1.84 0.75737
1.86 0.75977 1.88 0.76707
1.90 0.77795 1.92 079249
1.94 0.80989 1.96 0.83406
1.98 0.86248 2.00 0.89853
2,02 0.93586 2.04 0.97163
2.06 1.00404 2.08 1,03293
2.10 1.,05774 2.12 1.07874
2.14 1,09613 2,16 1.11038
2.18 1.12145 2.20 1.12982
2,22 1.13542 2.24 1.13870
2.26 1.13972 2.28 1.13895
2.30 1.13643 2.32 1.13252
2.34 1.12723 2.36 1.12096
2,38 1.11371 2.40 1.10578
2.42 1.09724 2.44 1.08829
2.46 1.07892 2.48 1.06945
2,50 1.05982 2.52 1.05029
2.54 1.04078 2.56 1.03139
2.58 1.02211 2.60 1.01312

2.62 1.00439 2.64 0,99609
2.66 0.98826 2.68 0.98101
2.70 0.97428 2.72 0.96820
2.74 0.96275 2.76 0.95798
2.78 0.95389 2.80 0.95047
2.82 0.94773 2.84 0.94569
2.86 0.94434 2.88 0.94373
2.90 0.94383 2.92 1.94468

I. -,,

.... ... ... ... .... ... . ..................................................................................-
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TABLE V. --- continue

R/d p(R) R/d p(R)

2.82 0.98841 2.84 0.98605

2.86 0.98396 2.88 0.98217
2.90 0.98068 2,92 0.97952
2.94 0.97868 2.96 0.97819
2.98 0,97804 3,00 0,97824
3.02 0.97875 3.04 0.97954
3.06 0.98056 3.08 0.98178
3.10 0.98315 3.12 0.98463

I - 3.14 0.98619 3.16 0.98781
3.18 0.98946 3.20 0.99110

3.22 0.99273 3.24 0.99431
3.26 0.99584 3.28 0.99730
3.30 0.99869 3.32 0.99998

_ 3.34 1.00117 3.36 1.00225
3.38 1.00323 3.40 1.00410

3.42 1.00485 3.44 1.00550
3.46 1.00603 3.48 1.00646
3.50 1.00678 3.52 1.00700
3.54 1.00712 3.56 1.00715

3.58 1.00709 3.60 1.00696
3.62 1.00675 3.64 1.00648
3.66 1.00615 3.68 1.00577
3.70 1.00534 3.72 1.00488
3.74 1.00439 3.76 1.00387
3.78 1.00334 3.80 1.00281

I 3.82 1.00227 3.84 1.00174
3.86 1.00122 3.88 1.00072
3.90 1.00025 3.92 0.99981
3.94 0,99942 3.96 0.99909
3.913 0.99880 4.00 0.99856
4,02 0.99836 4.04 0.99818
4.06 0.99803 4.08 0.99790
4.10 0.99782 4.12 0.99776

" 4.14 0,99773 4.16 0.99773
4.18 0,99776 4.20 0,99781
4.22 0.99789 4.24 0.99799
4,26 0.99811 4.28 0.99824
4.30 0.99838 4.32 0.99853

4.34 0.99869 4,36 0,99885

4.38 0,99901 4.40 0.99918
4.-42 0.99934 4.44 0.99950
4,46 0.99965 4.48 0.99979
4.50 0.99993 4.52 1,00006
4.54 1.00017 4 ,56 1.00028
4.58 1.00037 4.60 1,00045
4.62 1.00052 4.64 1.00058

4,66 1.00062 4.68 1,00066
4,70 1.00068 4.72 1.00069
4.74 1.00069 4,76 1.00068
.4.78 1,00066 4.80 1.00064
4.82 1,00060 4,84 1.00056

4.86 1.00052 4.88 1.00047
-1.90 1.00042 4.92 1.00037 V. -

4,94 t.00031 4.96 1.00026
1.00020 5.00 1.00014

. - . V - * . . . . . .
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2TABLE V. Pair correlation function p(R) for pd = 0.5

R/d p(R) R/d p(R)

1.02 2.10600 1.04 2.03906
1.06 1.97614 1.08 1.91556
1.10 1.85251 1,12 1.79487
1.14 1.73916 1.16 1.68965
1.18 1.64296 1.20 1.59479
1.22 1.54507 1.24 1*50272
1.26 1.45131 1.28 1.40759
1.30 1.37269 1,32 1.33220
1.34 1.28297 1.36 1.25185
1,38 1,21997 1.40 1.18719
1.42 1.15435 1.44 1.12724
1.46 1.09914 1.48 1,07510
1.50 1.04968 1.52 1.03208
1.54 1.01243 1.56 0,99342
1.58 0,96930 1.60 0.95090
1.62 0.93018 1.64 0.91407
1.66 0.90187 1.68 0.89016
1.70 0.87617 1.72 0.86933
1.74 0.86145 1.76 0.85573
1.78 0.84647 1.80 0.84225
1.82 0.84030 1.84 0.83653
1.86 0.83350 1.88 0.83371
1.90 0.83631 1.92 0.84117
1.94 0.84764 1.96 0.85865
1.98 0.87228 2.00 0.89157
2.02 0.91214 2.04 0.93226

5 2.06 0.95092 2.08 0.96811
2.10 0.98351 2.12 0.99721
2.14 1.00927 2.16 1.01991
2.18 1.02904 2.20 1.03691
2.22 1.04340 2.24 1.04875
2 .26 1.05293 2.28 1.05616
2.30 1.05840 2.32 1.05985
2.34 1.06044 2.36 1.06039
2.38 1.05966 2.40 1.05840
2.42 1.05662 2.44 1.05442
.46 1.05177 2.48 1.04886
2. 50 1.04562 2.52 1.04222
2.54 1.03862 2.56 1.03486
2.58 1.03095 2.60 1.02699
2.62 1.02296 2.64 1.01895
2.66 1,01497 2.68 1.01110
2.70 1.00731 2.72 1.00368
2.74 1.00021 2.76 0.99693
2 19 0.99386 1.80 0.99101

MINNOW



33

TABLE IV. ---continue

R/d p(R) R/d p(R)

2.82 1.00195 2.84 1.00051
2,86 0,99915 2,88 0,99788
2.90 0.99671 2.92 0.99566
2,94 0,99474 2,96 0,99395
2.98 0.99332 3,00 0.99284

- 3.02 0.99251 3.04 0.99232
3.06 0.99226 3,08 0.99230
3.10 0.99244 3,12 0,99267
3.14 0.99296 3.16 0.99331
3,18 0499371 3.20 0,99414
3.22 0.99461 3,24 0699509
3.26 0.99559 3.28 0.99609
3.30 0,99659 3.32 0.99709
3.34 0,99758 3.36 0.99805
3.38 0.99850 3.40 0.99893
3,42 0,99934 3,44 0,99972
3.46 1.00007 3.48 1.00039
3,50 1,00068 3,52 1,00094
3.54 1.00117 3.56 1.00136
3.58 1.00153 3.60 1.00166
3.62 1,00177 3.64 1,00185
3.66 1.00190 3.68 1.00192
3.70 1,00192 3.72 1.00189
3.74 1*00185 3.76 1,00178
3.78 1.00170 3*80 1.00160
3.82 1.00149 3.84 1.00137
3.86 1.00124 3.88 1400110
3,90 1,0.0096 3,92 1,00082
3.94 1.00067 3.96 1.00052
3.98 1,00038 4.00 1.00024

3d
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2
TABLE IV. Pair correlation function p(R) for pd = 0.4

R/d p(R) R/d p(R)

1.02 1.76705 1.'4 1.72725
1.06 1,69007 1.08 1.65417
1.10 1.61613 1,12 1.58131
1*14 1.54679 1.16 1.51608
1.18 1.48731 1,20 1.45729
1.22 1.42577 1.24 1,39944
1.26 1,36588 1,28 1,33725
1.30 1,31525 1.32 1,28878
1,34 1.25488 1.36 1,23445
1.38 1,21303 1.40 1,19023
1,42 1.16671 1,44 1.14763
1.46 1,12739 1,48 1.10963
1.50 1,09041 1,52 1.07702
1.54 1,06195 1.56 1,04728
1.58 1.02857 1,60 1.01439
1.62 0.99813 1,64 0.98483
1,66 0,97425 1.68 0.96387
1.70 0.95131 1.72 0.94403
1.74 0.93582 1,76 0,92926
1.78 0.91976 1*80 0*91405
1.82 0.91011 1.84 0.90453

1 1.86 0.89942 1.88 0.89653
1.90 0.89524 1.92 0,89534
1.94 0.89623 1.96 0.90033

1.98 0.90596 2.00 0.91592
2.02 0.92690 2*04 0.93780
2.06 0.94803 2.08 0.95764
2.10 0.96642 2.12 0.97446
2.14 0.98176 2.16 0,98844
2.18 0.99442 2,20 0.99984
2.22 1.00459 2.24 1,00881
2.26 1,01243 2.28 1.01559
2.30 1.01823 2,32 1.02047
2.34 1.02223 2,36 1.02367
2.38 1.02469 2.40 1.02541
2,42 1.02581 2.44 1.02595
".46 1,02579 2.48 1,02543

" . 2.50 1.02483 2.52 1.02409
- 2.54 1.02316 2.56 1.02208

2.58 1.02084 2.60 1.01949
2.62 1.01802 2.64 1.01648
2.66 1.01488 2.68 1.01326
2.70 1.01159 2.72 1,00992
2.74 1.00826 2.76 1.00662
7.78 1.00507 2.80 1.00346

.- -
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TABLE III. ---continue

R/d p(R) R/d p(R)

2,94 1.00036 2.96 0.99996
2.98 0,99961 3.00 0.99931

3.02 0,99905 3.04 0,99884
3.06 0.99866 3,08 0.99853
3.10 0.99843 3.12 0.99836
3,14 0*99832 3.16 0.99830
3418 0.99830 3.20 0.99832
3.22 0.99836 3.24 0.99841

- 3.26 0.99848 3.28 0.99856
3.30 0.99864 3.32 0.99873
3,34 0.99882 3.36 0,99892
3.38 0.99902 3.40 0.99912
3.42 0.99922 3,44 0.99932
3,46 0.99942 3.48 0,99951
3.50 0.99960 3,52 0.99969
3.54 0.99977 3.56 0.99985
3.58 0.99992 3.60 0.99998

3.62 1.00004 3.64 1.00009
3.66 1,00014 3.68 1.00018
3.70 1.00022 3.72 1.00025

I3,74 1.00027 3.76 1.00029
3.78 1.00030 3.80 1100031
3,82 1.00031 3,84 1,00031
3,86 1.00031 3.88 1.00030
3.90 1.00029 3.92 1.00028
3.94 1.00026 3.96 1,00024
3.98 1.00022 4.00 1.00020
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Fig. 6 Coherent attenuation normalized with respect 0 0.4 0.8 1.2 1.6 2.0 2.4
to single scattering approximation vs
concentration. Experimental data points are ka
from Ref. [32]. Fig. 7 Phase velocity vs compressional wave number

for elastic wave propagation through lead
, The experimental measurements were reported by Kinra[33] spheres in EPON 828-Z. Experimental data

only for the phase velocity as a function of frequency points are from Ref. [33].
for few values of concentration. In Figure (7), we have
shown the comparison of our theoretical results with
those of Kinra's experimental measurements. The agree-
ment is extremely good all the way both on "acoustical"
and "optical" branches. It should be noted that other 10
theories based on long wavelength approximation, for
exmaple that of Datta et al[341 do not predict this
anamoly in phase velocity, and the Kuster and Toks~z \\

model even with giant monopole term, does not provide
S-. reliable results in the "optical" branch. This draw-

back of using such simpler theories without multiple 10 / \ ._....
" scattering and pair-correlation between scatterers has , "

also been realized by Gaunaurd and Uberall[35]. In \.j'

Figure (8), we have plotted the corresponding coherent
3 attenuation as a function of frequency for Few values

* . of concentration. Other examples of elastic wave
propagation in elastic particulate composite has been
studied by us in Reference[21] wherin we had shown e 10

S .. excellent agreement between our theory and the
experimental results of Kinra and Adler. c

- 0.05
In conclusion, we have demonstrated that a rigor-

our multiple scattering theory with pair-correlation 
0.20

function is absolutely needed to study wave propagation 10O 0.20

for all wave fields (acoustic, electromagnetic and
elastic) in composite media. A unified theory such
as the one presented here also provides a basic tool
in studying the elastic wave propagation in an elastic
composite media containing piezo-electric inclusions
wherin elastic and electromagnetic wave coupling plays 10.
an important role in attenuation.

0 .4 .8 1.2 1.6 2.0 2.4
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Iterative extended boundary condition method for scattering by
objects of high aspect ratios

Akhlesh Lakhtakia, Vijay K. Varadan, and Vasundara V. Varadan
Department of Engineenn Science and Mechanim The Peensylania State Uniersity, University Park

K Pennsylvania 16802

(Received 6 November 1983; accepted for publication 21 May 1984)

The limitations of the T-matrix procedure or the extended boundary condition method (EBCM)
for wave scattering problems, when used for long slender objects, are due to the shrinking'volume
over which the incident field is extinguished. The resulting ill-conditioning of the matrices --
involved makes it impossible to invert them. For nondissipative objects only, we observe that the
Reinforced Modified Gram-Schmidt (RMGS) orthogonalization procedure works best Of all
such unitary approaches investigated, but information about the surface and the internal fields is
lost in the process. An alternate approach, called the iterative EBCM (IEBCM) is more general in
its scope since it provides convergent surface and internal field values and can also work for
dissipative targets. This success of the IEBCM results because it extends the interior volume over
which the incident field is extinguished.

PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION spheroidal functions is very tedious as well as prone to error,
The transition matrix (T-matrix) approach or the ex- and even Senior,7 who has utilized them extensively, consid-

tended boundary condition method (EBCM) has been exten- ers only the results for end-on incidence for highly aspherical

sively utilized to describe acoustic, electromagnetic, and spheroids.
elastic scattering by a variety of nonspherical three-dimen- On the other hand, a new iterative technique applicable
sional objects. " The various field quantities involved are for electromagnetic scattering by high-loss dielectric objects
expanded in a suitable set of basis functions, and the integral has been recently proposed and examined."'9 Although pub-
equations employed in the T-matrix formulation are con- lished results are available for 6.34:1 spheroids,"9 as yet this
verted into a finite number of simultaneous equations to be technique has been successfully used for 8:1 spheroids in the
solved by truncating the field expansions appropriately. This resonance and the post-resonance frequency ranges. For the

-. " procedure is, however, subject to numerical limitations, par- various features of this new procedure, called the iterative
ticularly for objects of high aspect ratios. Therefore, in 1971 EBCM (IEBCM) the interested reader is referred to Refs. 8
Waterman cleverly restructured the T-matrix formalism and 9.
into a form more tractable for computations by providing Based on the IEBCM, this paper presents another way
explicit symmetry and unitarity constraints on the transition of solving for the acoustic scattering by impenetrable bodies.

'matrix. 4 In addition, by the introduction of the Schmidt We shall restrict ourselves, in presenting the new formula-
orthogonalization technique the computations were further tion, to acoustic scattering by sound-hard objects, though
simplified by utilizing the unitary transformations of matri- similar procedures can easily be applied for acoustic scatter-
ces instead of matrix inversion operations. However, this ing by sound-soft objects and to electromagnetic scattering
formulation was limited to acoustic scattering by impenetra- by perfectly conducting ones. Furthermore, in this initial
ble objects, and to electromagnetic scattering by perfectly study, we shall consider only end-on incidence, in order to
conducting ones. Recently, Werby and Green have been able illustrate the new technique, although there is no restriction
to improve upon this formulation and have applied their on the IEBCM as is clear from Refs. 8 and 9. It will also be
unitary methods to the case of acoustic scattering from elas- shown from the numerical results provided, that the new

- tic shells for which the T-matrix has a much more complicat- IEBCM is computationally superior to the T-matrix ap-
ed structure. proach. In contrast with the unitary methods, one strength

Nevertheless, these various formulations have still been of the IEBCM lies in its ability to compute convergent values
limited to objects of only moderately high aspect ratios. For of the fields induced on the surface and inside (if applicable)
example, the solution of an acoustic problem involving hard the scattering target.

spheroids has been tackled for aspect ratios no larger than
2:1.6 For the more complicated problems involving elastic I. FORMULATION
shells, even Werby and Green have not published results for Consider a spheroidal scattering volume V (which can
aspect ratios exceeding 5:3. be replaced by any axisymmetric, elongated, convex volume

Acoustic scattering by prolate spheroids can always, in for this method) which has a surface S on which Neumann
principle, be solved for by utilizing prolate spheroidal func- boundary conditions prevail, as shown in Fig. I. If W (? is
tions, which are the solutions of the wave equation in prolate the incident potential at any point ? indicated with respect to -:
spheroidal coordinates. However, the generation of these an origin 0 suitably located inside V, it is easy to show that
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• " " waves, ReX,(!) is regular at the origin x =0. The factor e,,
is the Neumann factor.

Finally, the Green's function is also expanded in terms
T of these scalar harmonics:

-e,,F,-1k = [OuX,,(k , )ReX. (k <)]. (4)

On substituting the expansions (3) and (4) into (1) and (2) and
F on utilizing the orthogonalities of the scalar harmonics over

two spheres-one inscribed inside V, and the other circum-
scribing V--the integral equations (1) and (2) are converted
into two sets of N simultaneous equations which can be ex-

- Vpressed in matrix notation as 0

. a=-Oa, f=iReQa, (5)

and which can now be solved using standard matrix proce-
4t l dures'0 :

FIG. I. The geometry of the IEBCM formulation. f - Re Q.0-a = Ta. (6)

For nondissipative objects it can be shown that the ma-
the scattered potential 1P (n can be calculated in terms of the trix S = I + 2T satisfies the unitarity constraint

surface potential P,+(?),o: (STR)*S = I,

, .. ., and the symmetry constraint
STR = S.

XV[exp(ik fr-I)/a-7I]ds', 4 v, (1) Consequently, if we are interested only in the scattered field
we can factorize 0 as (see the Appendix)

where 0F'1. is itself related to the incident potential by a .
similar integral equation a (7)

lrh where ( is a unitary matrix and M is an upper triangular
-' ') = 4n').+(F ) matrix. This yields for the S matrixS=r I- _.(MM I (. T).

xV[exp(ikrr-7 )/lF-7 fds', FeV. (2) S
Since M is an upper triangular matrix, so is M ; therefore,

In both of theie equations, k = a,/c, A is a unit outward nor-
..-mat, the ubiquitous expression exp(ik - )/ - i M*M is also upper triangular. Furthermore, in the limit-"'-"oS, the ubqunious ne.rsiown ask the 'extinction ing case of infinite matrix size, S is symmetric, which re-fcnn.ntheorem. quires MOM to be so as well. This can happen only if

The solution ofr(em) and (2) is usuay attempted using the M* M = I (or, M is real) since we also enforce that the diag-

T-matrix approach outlined by Waterman. ° First, the three onal elements of M are real. With this in view, at some trun-
potentials involved are expanded in terms of scalar harmon- cation size we can obtain
ics,',}: f= - Re (.(T')*a =Ta, (8)

-. () = Re X, (kr), with (QTR) being the conjugate transpose of 0.
v=1 In spite of this improvement, however, the T-matrix

N procedure fails to yield convergent expressions for IP,, par-
+ (') = X a, Re X,(k), (3) ticularly for scattering volumes of large size parameters and

V,,-
N high aspect ratios. It is to be noted that similar problems are
"f. OuX,(kr), also encountered in the implementation of the straightfor-.-ward T-matrix procedure for the problem ofelectromagnetic

where N is some appropriate truncation size, and X, (2) is irradiation by lossy dielectric objects."',' These stability
defined as problems were considerably reduced by solving the integral

"",u 2 (n - m)! 1/ fh (x)1 equations iteratively and by the use of the multiple subte-

Re) (n E+ ) 1 . () gional internal field expansion scheme'; these two features
." + mi" together lead to the establishment of the IEBCM mentioned

.XPcosel[os M0, even in the Introduction.
Isin m4o = odd Based on the IEBCM, we shall now solve (2) iteratively,

The index v is actually a triple index incorporating indices for which purpose we rewrite it as

m, n. The index a can take two values-even and odd, while P () + A.T .() V T , r')V e'. ds ,
the indices m and n vary from 0 to o. The functions 4ir's' ,.." - 7,
OuX.,(2) and ReX, ,(2) differ only in the form of the radial _(').A¢/' ri'V[d- 9-
functions involved; while Ouxv(2) represents outgoing 4•.-s
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where P"9- is a previous estimate of the surface potential explicitly enforced by satisfying
on S' known from the (I - I)th iteration, and A Of is an
incremental surface potential to be solved forin theIth iter- , P '., + ,(, PeS1 AS+ 1, (12)
ation. S" is the surface of a spheroid of the same acoustic size
ka but a smaller aspect ratio than the spheroid under consi- at a suitable number of points in each of the surface overlaps

! deration if I = 1, but S' = S ror subsequent iterations. The SIAS,+ I.

iteration process is now described in Sees. I A-C. The expansions for the various +'S, obtained by using
(11) and (12) are thus highly convergent, because each of

A. First Iteration: Step I these W/1+, is used only on the corresponding subsurface S,.
, Furthermore, the continuity of these expansions in the sur-

face overlaps is assured because the equations generated by
to be known as the exact surface potential on a spheroid V (1I) guarantee it to be so. Regarding the number of subsur-

,, ,having the same acoustical size, but a smaller aspect ratio faces S1, we never used more than three for the calculations
than the spheroid V being considered. Since the left-hand presented in this paper; more numbers of S, were required
side of(9) is known, and with the assumption that the surface for objects of higher ratios. In addition, the number of pointspotntal forct ofn hiher notos be addiion difernt webe solv point
potentiasforVndV'shall not beverydifferent,wesolve(9) used to enforce (11) and (12) was between six and 12 per
for the increment 4~A'P using the regur Waterman p - subsurface, the larger number being used for subsurfaces

- duret' mentioned earlier. The use of his method is justified having larger curvatures.
since we effectively compute for an error term (A41 ) so that In this way, a re-expansion of rP is used to determine
the resultant 0 matrix from (9) is small in size and does notinvolve Hankel functions of large orders. It must be men- improved representation of the surfae potential,
tioned here that the necessity of using large-order Hanke which is more stable and computationally tractable than 1
functions in forces the matrix to become ill-conditioned itself. Although it is difficult to provide general criteria gov-
and thereby restricts the use of the regular T matrixo erning the expansion size for the various 'i +, it was found

dth the u s of the u T at io , that the required number generally depends on both the
With the calculation of (A in the (1- l)th iteration, acoustical size and curvature of the particular subsurface.

we obtain a revised estimate of the surface potential for the Larger acoustical sizes and curvatures usually required
volume V: more numbers of terms to obtain convergent solutions.

Ordinarily, for low aspect ratio objects, the surface po- C. The Iterative procedure
j1 tential P = would be obtained here, but for very The rest of the iterations (/> 1) proceed exactly as the

slender spheroids we can further reform it by using a multi- fist iteration. The iterative procedure continues until the
pie subsurface re-expansion in the second step of each iter- surface potential satisfies preset error criteria, or, equiv-
ation. alently, until A' becomes negligibly small.

S. First Iteretion Step 2 Once the surface potential has been satisfactorily com-
I t t Sputed, the scattered potential is easily determined by the ap-

In the second step of each iteration (I 1) the spheroidal plication of (1), from which the various scattering param-
surface S is subdivided into a number of subsurfaces S, cen- eters can be determined.
tered at points O, along the major axis of the spheroid, as
shown in Fig. 2. On each S,, the surface potential 1'0, is
expanded in terms of the scalar harmonics centered at 0,.
We estimate V'*,, on each S, by using a point-matching
technique M

In addition, the continuity of the surface potential on S is "

10:1["-

FIG. 2. Multiple subsurface potential ex-
• . ,  panion scheme employed in step 2of each2 1 iteration in the IESCM. -) - .-

f1' "FIG. 3. Surface potential on spheroids of semimajor axis a - 1.0 m and
0..-.i,, aspect ratios a/b = 2,5, and 10 fot end-on incidence. The dots represent the

% values computed by Senior,' and the spheroidal parameter
c - k (a' - b 2)'" - 5.0.
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values cajeulated using The IC, while the dashed curves wee computed by Senior.

If. NUMERICAL RESULTS AND DISCUSSION much more aspherical objects, as is clearly demonstrated byKA computer program to implement the IEBCM on the the computation of the surface potential on a 20:1 spheroid
VAX 11/730 was written and the surface potential and the in Fig. 5.
backcattering cross section were computed for spheroids of Regarding the number of iterations in the calculations

*unit semimajor axis and varying aspect ratios. Specifically, discussed so far, the IEBCM actually utilized only two itera-
we considered only the case of end-on inicidence so that the tions--the first iteration, in which an initial assumption was
only nonvanishing azimuthal mode is m = 0. used, and the second, in which the corrections were applied

*In Fig. 3, the surface potential V, generated on hard using the incremental surface potential. We have already
spheroids of selected aspect ratios is compared with the val mentioned the use of the surface potential on a "fatter"
ues obtained by Senior' in 1966. It is to be recalled that while spheroid as an initial assumption for the surface potential on

* Senior solved the boundary value problem involved in terms
of prolate spheroidal functions, the iterative procedure,
which is a modification of the T-matrix procedures, uses the
spherical harmonics as the basis functions. As can be ob-
served from lFig. 3, the correspondence between the two0
techniques is excellent. 1.001

The backscaering cross section for these spheroids of
selected aspect ratios was also computed using the IEBCM A-

as a function of the size parameter ka. In Fig. 44aHc) the tO
calculated backscatteng cross-section o, normalized to its 
geometrical optics value irb /2, is compared with the valuesI
computed by Senior. It should be noted that while the , ka

IEBCM satisfied the extinction theorem and yielded stable M
results for 2:1 spheroids up to ka = 14.5 and for 5:1 spher- 20:1
oids up to ka = 13.0, the iterations b"ke down for 10:1
spheroids after los = 8.0. When compared with the applica- 1 1 I I
tion of the regular T-matrix procedure on the same comput- .0
er, Fig. 4 reveals a considerable improvement in the solution Cd e
stability of the IEpCM vis-a-vis the T-matrix approach. Its FIG. 5. Surface potential calculated using the IECM on a 20:1 spherid
enhanced stability allowed the iterative procedure to handle havinga size parameter a - 1.5.
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FIG. 7. Backscanterng cross section computed using the IEBCM (--) and
Schmidt's orthogonalization procedure (-) as a function of a/b for
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0 5 10 1s 20

n

FIG. 6. Comparison of the convergence of the backscattering cross section are sharp differences between the two methods. Indeed, at
as a function of n. the number of terms in the series representation of the alb - 10, neither of them is even close to the value comput-
scattered potential. -IEBCM, -regular T-matrit approach, and.. hdtorthogonalization procedure. ed by Senior." Nevertheless, the redeeming feature of the ::.

IEBCM is that it stops at a/b = 10, but the orthogonalization

procedure keeps on "converging" for even higher aspect ra-
the spheroid being considered. However, the surface poten- tios.
tial on the spheroid being considered at a higher or lower It must be mentioned here that the 0 matrix in (6) as
frequency can also be, and was actually, employed as an well as (8), which is essential to all the three procedures being
initial assumption to solve the boundary problem at the giv- compared, is, in theory, symmetric. ,o However, computa-
en frequency of interest. That this second type of an initial tionally it is not so. It is, therefore, of importance to realize
assumption has already been employed for dielectric objects that the 0 matrix must be artificially symmetrized for the
should be noted.9  orthogonalization procedure to work; otherwise the ortho-

With respect to the use of the multiple subsurfaces, not gonalization ofthe Q matrix in (8) brings no further improve-
more than two subsurfaces were required to express the sur- ment in the calculation of the T matrix and is as computa-
face potential adequately in all of these computations. The tionally unstable as the regular T-matrix procedure. It is to
number of terms required in the expansion of the surface be emphasized here that the Schmidt orthogonalization of
potential for each subsurface varied from eight to 16, this the O matrix should satisfy the condition that M is real, oth-
number being dependent both on the curvature and on the erwise the applicability of(8) is invalid. However, this condi-
acoustical size of the particular subsurface. tion may not always be satisfied, 2 and therefore the use of(8)

Finally, we also implemented the regular T-matrix pro- should never be blindly made. Nevertheless, the "conver-
cedure, as shown in (6), as well as the Schmidt orthogonaliza- gence" of (8) is not surprising since the symmetry and the

tion procedure, as in (8), on the same VAX 11/730 computer unitarity properties of the T matrix have been built into the
and compared them with the IEBCM. In Fig. 6, we compare orthogonalization procedure. It is, therefore, the authors'

tthe backscattering cross section as a function of n, the size of view that the orthogonalization of the 0 matrix in order to
the spherical harmonic expansion of the scattered potential, avoid its inversion should not be viewed as a new technique;
obtained from these two methods as well as from the rather any pertinent factorization of the 0 matrix (e.g., the
IEBCM. It is clear from this figure that while the conver- QR factorization) is just another way of handling the inver-
gence of the regular T matrix may be somewhat dubious, the sion of this matrix. Furthermore, we have also observed that
orthogonalization procedure as well as the IEBCM have if 0 has been artificially symmetrized, the regular T-matrix
achieved convergence at some comparable value of n. procedure gives results identical to that obtained by using

However, this convergence of the orthogonalization (8).
procedure and of the IEBCM may be spurious, as shown in To examine our contention further, we computed the
Fig. 7 for spheroids of size parameter ka = 10 and of varying backscattering cross section when an electromagnctic plane
a spect ratios. The results obtained from the two methods wave is end-on incident ott a lossless dielectric spheroid
agree satisfactorily up to a/b = 7, but from there on there whose size parameter ka = 1.35, aspect ratio a/b = 4.0, and

910 J. Acoust. Soc Am., Vol. 76, No. 3. September 1984 Lakhtakia of al.: Scattering for high aspect ratio 910
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only for very simple problems in which 0 is theoretically
symmetric. 

"e

-"*"\ Finally, in this comparison of procedures we consider a
/ "reinforced modified Gram-Schmidt (RMGS) orthogonali-

zation procedure' 4 which we have recently found signifi-
cantly improves the regular T-matrix procedure. Consider a

10 dielectric prolate spheroid whose semimajor dimension
ka = 1.35 and e, =5.0. The T matrix is of the form (6). Here

i" we factorize the nonsymmetric 0 matrix as

/*
Of /"0I~,,,, = 6,M, =- (6,MAM .., :::

a ... h, where 6. =6 H + I Mo + ,until we obtain a stable value of
.W" 6. A similar repeated orthogonalization may also be per-

k- L3- formed, if necessary, on the M matrix thus obtained, and the
e/b-, process is carried out until the final form (7) is obtained and
a, = •the condition on M being real is satisfied. In Table I the

normalized extinction (a..) and backscattering (ob) cross
sections are shown for aspect ratios as high as a/b = 20.0.

.* Such a high aspect ratio would not have been possible with a
S. / """simple Schmidt or QR factorization mentioned earlier.

In summary, it can be stated that the limitations of the
regular T-matrix procedure for wave scattering problems,
when applied to long slender objects, are due to the shrinking

FIG. 1. Dackscauenng cross sectio, normalied to re. for a dielectric volume over which the incident field is extinguished. The
spheroid Ika - 1.35, alb -4, e, - S an electromagnetic plane wave is

end-on incident. Computations are made using 16), and using (8) with QR resulting ill-conditioning of the O matrices involved makes it
factorizatioa or Schmidt or hogoaalizatio of the Q matrix, impossible to invert them. For nondissipative targets only,

we have found that the RMGS orthogonalization procedure
works best of all such methods investigated in this paper, but

relative permittivity e, = 5. The T matrix for this case is all information about the surface and the internal (if applica-
identical in form to that given in 16), but the O matrix is not ble) fields is lost in the process. However, the IEBCM is more
symmetric. The solution was obtained using the regular T- general in its scope since it provides convergent values of the
matrix formulation as shown in (6). Furthermore, the matrix internal (if applicable) and the surface fields, from which it
0 was first orthogonalized using the Schmidt orthogonaliza- computes the scattered field. Consequently, it can be, and
tion procedure (see the Appendix) and also it was factorized has been, used for dissipative objects. This success of the
using a QR transformation. ' In both of the latter compute- IEBCM is due to the fact that it attempts to extend the interi- '.

tions, the effect of M was ignored (i.e., M*M- I was assumed or volume over which the incident field is extinguished.
to be a unit matrix) and the solution was attempted using (8).
The resulting value of the backscattering cross section a is ACKNOWLEDGMENTS
plotted against the expansion size in Fig. 8. This plot most " •
eloquently points out the fact that the M matrix cannot be This work was supported in part by the US Army Re-
ignored without inspecting whether it is real or not. Further- search Office under Contract no. DAAG 29-83-K0097. The

more, if this matrix is left in the computation as in (7), the use of the departmental VAX 11/730 minicomputer is grate-

resulting fields are identical to those computed using the fully acknowledged. We greatly appreciate the comments

regular T-matrix procedure and no further improvement is provided by one of the reviewers which resulted in the addi-

obtained in terms of either more slender objects or increased tion of the Appendix.
size parameters. This would mean that the use of(8) is valid

APPENDIX
TABLE 1. Extinction and backscatteing cross sections for a prolate spher- There are two distinct orthogonalization procedures,
oidal dielectric object of ka - I.35 and 4, -5.0 obtained using RMGS viz.orthogsliz-tion proced,,re...

_____________________________________(i) 6 QM - (with M ~'upper triangular), (Al1)

Spheroidal ratio
ff..Ife v.iraland

4:1 0.5790 I0 0.2 9 1 (ii) 0 = M6 (with M upper triangular). (A2)4:1 0.579OX 10- 2  0.2219X 10' - QT

6:1 0.1012X w0-1 0.4157x 10-' 'Waterman,' working with the QR matrices, used scheme 7

$:1 0.3042X 10-' 0.1283 X 10' (ii) while we have used scheme (i) throughout this paper.
10:1 O.I213XI0' 0.5177X10- There is a crucial difference between these two schemes:
12:1 0.5753x 10-' 0.2678X 10- 4

15:1 0.2321 x 10-' 0. 1021x 1 O-' while (i) works with the columns ofQ beginning with the first -.

201 0.7247X 10-' 0.3440x to-' column, (ii) orthogonalizes the row vectors of 0 beginning
with the last row.
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Consequently, the matrix S - I + 2T in these two cases that the IEBCM presented here and elsewhere"' "' provides
works out to the only improvement currently available over the usual T-

M s = - o* ia r ), (A3) matrix method for scattering by dissipative or viscoelastic
obstacles, and for which purpose any orthogonalization pro-

and cedure would be in vain.

(ii) S - (6TR)6*. (A4)

If, at this point, we constrain 0 to be symmetric the two
schemes would yield identical results. This, however, would 'V. K. Varadan and V. V. Varadan (Eds., Acoustic, Electromagnetic and
hold only for certain cases, e.g., acoustic scattering by tar- Elastic Wae Scanenng-Fous on the T-Matrnx Approach (Pergamon,
gets which are symmetric about all of the three planes x = 0, New York, 1980).
y = 0, and z = 0. It must be pointed out that the application 2P c Waterman, "Matrix Methods in Potential Theory and Electromnag-

net;i Scattering." J. Appl. Phys. 50, 4550.-4566 (1979).of any T-matris method (including the present IEBCM) for 'P. W. Barber and C Yeb, "Scattering of Electromagnetic Waves by Arbi.
highly aspherical ellipsoidal targets tends to become un- trarily-Shaped Dielectric Bodies," Appl. Opt. 14,2864-2872 (1978).
wieldy since the various azimuthal modes used in the field 'P. C. Waterman, "Symmetry. Unitarity. and Geometry in Electromagnet-
expansions then do not decouple. On the other hand, the to Scatterg" Phys. Rev. D 3,825-539(1971}.IM. F. Werby and L. H. Green, "An Extended Unitary Approach for
Rayleigh hypothesis"5 efectively prohibits the current usage Acoustical Scattering from Elastic Shells Immersed in a Fluid," J. Acoust.

of these methods for targets with concavities. Soc. Am. 74, 625-630(1983).
Returning to our discussion on the orthogonalization *V. K. Varadan and V. V. Varadan, "Computation of Rigid Body Scatter-

schemes we observe that the two schemes are not the same if in$ by Prolate Spheroids Using the T-matrix Approach," J. Acoust. Soc.
Am. 71, 22-25 (1982).

0 is nonsymmetric. Indeed, the validity of either of the 'T. B. A. Senior, "The Scattering from Acoustically Hard and Soft Prolate
schemes would be governed by the satisfaction of two prop- Spheroids for Axial Incidence," Can. J. Phys. 6. 655-667 (1966).
erties: (a) M should tend towards a real matrix, and (b) the 1M. F. IskarAer, A. Lakhtakia, and C. H. Dumey, "A New Procedure for

Improving the Solution Stability and Extending the Frequency Range ofindividual elements of 6 should tend to have nonzero final the EBCM," IEEE Trans. Antenna Propag. 31, 317-324(1983).
values as the truncation size increases. We have shown in 'A. Lakhtakia, M. F. Iskander, and C. H. Durney. "An Iterative Extended

this paper that scheme (i) for symmetric as weU as nonsym- Boundary Condition Method for Solving the Absorption Characteristics
metric 0 matrices does not always satisfy these conditions. of Losay Dielectric Objects of Large Aspect Ratios," IEEE Trans. Micro- .
Furthermore, scheme (ii), which is the same as (i) for sym- wave Theory Tech. 31, 640-647 (1983).

'Op. C Waterman, "New Formulation of Acoustic Scattering." J. Acoust.
metric 0, suffers similarly, at least, for the cases studied. It Soc. Am. 45, 1417-1429 (19691.
appears, however, from our calculations made using (i) for t"M. F. Iskander, P. W. Barber, C. H. Durney. and H. Massoudi, "Near-

the dielectric case and those made in Ref. 4 using (ii) that the Field Irradiation of Prolate Spheroidal Models of Humans," IEEE Tram.
Microwave Theory Tech. 2. 801-807 (1980).

latter scheme is preferable numerically and yields better re- '2F. Stenger, private communication.
Sn its -  

3G. Forsythe and C. B. Moler, Computer Solution ofLinear Algebraic Sys-
Insofar as the computational asymmetry of the 0 ma- tem, (Prentice-Hall, Englewood Cliffs, NJ, 1967).

trix for spheroidal targets and the acoustic case studied is J. R. Rice, "Experiments on Gram-Schmidt Orthogonalization." Math.
Comput. 20, 325-328 (1966.-concerned, that can be easily rectified, as noted earlier. It 5P. M. van den Berg and J. T. Fokkema. "The Rayleigh Hypothesis in the

does not, however, follow that for nonspheroidal targets Theory of Diffraction by a Cylindrical Obstacle" IEEE Trans. Antennas

similar numerical errors do not occur or affect the orthogon- Propag. 27, 579-583 (1979).

alization scheme. M. F. Iskander and A. Lakhtakia, "Extension of the Iterative EBCM to
Calculate Scattering by Low-loss or Losaless Elongated Dielectric Ob-

Notwithstanding the present discussion, it is our view ject," Appl. Opt. 23,894-953(1984).
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Scattering by lossy dielectric nonspherical objects with nonvanishing
magnetic susceptibility

Akhlesh Lakhtakia, Vijay K. Varadan, and Vasundara V. Varadan
Wave Propagatiw Laboratory Department of Engineering Science and Mechanics Pennsylvania State
Uniersity, Univernity Park Pennsylvania 16802

(Received 27 February 1984; accepted for publication 25 April 1984)

Using the recently formulated iterative extended boundary condition method (IEBCM) it is
shown that the absorption mechanisms in a lossy dielectric object are enhanced by the presence of
a nonvanishing magnetic susceptibility. In addition, there is a corresponding reduction in the
backscattering cross section. The conditional convergence of the IEBCM algorithm is also
proved.

INTRODUCTION Since its inception, the IEBCM has largely been used to

An important development in the last few years in scat- compute scattering and absorption of homogeneous, lossy
tering theory has been the T-matrix procedure, which incor- dielectric spheroids representing humans and animals,
porates certain elegant analytical properties and has, there- though an extension to lossless dielectric objects has been
fore, proved to be computationally attractive. Since the examined as well.' Nothing in the IEBCM formulation,
T-matrix formulation is fairly general, it has been used for however, restricts its application for a more general prob-
scalar and vector as well as tensor scattering problems, and a lem, i.e., one which involves a scatterer characterized by all
unified approach to develop the field equations pertinent to of the three constitutive parameters e,, a, and p,. The scat-
the theories ofacoustic, electromagnetic, and elastic scatter- tering properties of such targets have recently come into
ing is described elsewhere.' prominence due to their ability to absorb EM radiation effec-

However, in applications relating to lossy dielectric tively (e.g., Ref. 7). This being the case, in this paper we shall
spheroids, it was soon recognized that the internal fields in- use the IEBCM to examine the plane wave irradiation of
duced inside such objects could only be obtained at frequen- penetrable spheroids with nonvanishing conductivities, and

cies below the resonance frequency.2 The representation of possessing dielectric as well as magnetic susceptibilities. We

the internal fields by a single vector spherical harmonic ex- shall, first, prove the conditional convergence of the IEBCM
pansion, as used in the T-matrix procedure, induces numeri- algorithm, though for the details fo the IEBCM algorithm
cal instabilities in the matrix equations.2 These instabilities itself, the interested reader is referred to Refs. 3 and 4.
become seemingly insurmountable as the frequency ap-
proaches the resonance frequency. It hardly needs to be add- CONVERGENCE OF THE IEBCM
ed that these ill-conditioning problems are more pronounced
if the object has a large aspect ratio, i.e., if the ratio of the The I th (I ( 0) iteration of the total problem is divided

m imm object dimension to the minimum is large. into two problems: (1) an external problem, in which the
mai oet overmeion the onrgence-relae stabil surface fields on a perfectly conducting object of the sameIn order to overcome the convergence-related stability shp dsieateatulojtarslvani2an..-

problems in the T-matrix procedure, a new iterative tech- shape and size as the actual object are solved, and '2) an
called the iterative EBCM (IEBCM) has recently been internal problem,-in which the fields inside the actual objectnique aare estimated using the results of the external problem pre-

formulated.' " This method has two main features: firstly, it viously solved as well as the multiple subregional internal
requires an initial estimate of the tangential fields on the field expansion scheme described in Refs. 3 and 4. These
object surface, and secondly, and more importantly, the
fields induced inside the object are represented by several internal fields are then utilized to refine the estimate of the

surface fields in the external problem of the next [the i
overlapping subregional expansions. For highly lossy dielec- sf ld in Th eteral proem ote nt the
tric objects, the initial estimate may be obtained by replacing p t iterion th iteraie dure ontisuil

the ielctrc ojectby pefecly ondutin on ofthe preset error criteria on the internal fields have been satisfied.the dielectric object by a perfectly conducting one of the Consider, therefore, a dielectric volume V character- -'

same shape and size. The use of the multiple subregional ed Cons rf re, a decric ve V acer
internal field expansion scheme, on the other hand, yields by a ueaescEd by in F. .an ohe
continuous and convergent internal field expansions irradiated by a planewave I E',H' , as shown in Fig. I In the

throughout the interior by a suitable subdivision of the ob- external problem of the I th iteration, the equation to b

ject volume into a number of overlapping subvolumes, in solved is given by Refs. 3 and 4.

each of which a separate field expansion is assumed. Such a (E'(kor) + VXfsh(r')X 17 '41 (korlkor'ds'
procedure for axisymmietric scatterers is superior to the use
of local basis functions utilized in the method of moments' in - VXVXf s - (r')XH "..1(korJkr'ds'
that the internal fields can be obtained on a point-to-point '.'"

basis rather than in terms of the interpolanta omnmonly used = VXVXfs -h(r')X H,,l.~ (kokor ')s' (I)

in techniques which call for discretization of the scattering J° o
volume, where I5- "# l'- "I are the estimates of the fields induced
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- V ×sh(r') X (kr').Y(korlkor')ds'
+ VXVXIs --- A(r')XH1 (kr'4.(korlkor')ds'

- Re *(kor). (4)

In terms of actual matrices Q and R, we can represent the
process described in reaching Eq. (4) from Eq. (1) as

S, 
' 1 A =RQa. (5)

Z Next, in the first iteration, we can similarly write

FIG. I. The geometry of the IEBCM formulation. The various electromag- 6l - Q (2a - )O), (Sa)
netic quantities involved are also shown. 4il= RQ{2.f - RQ)c,

where f is the identity matrix. Continuing in this manner,
we obtain for the I th iteration:

inside the dielectric object from the (I - tIth iteration, ol)-4rJ+)a- 1 0 (6)

AXAH' is an incremental electric current density on the /,,J [-0 - (f - RQ)' + 'Ia,
surface of the substitute perfectly conducting object, h is a
unit outward normal to S, (kornkor) is the freespace trans- from where, on simplifying the equation forfl"' in Eq. (6) we

verse dyadic Green's function,2  ko o, and obtain

k = ko{, _+ jo'/1E)o,. It is obvious that for the zeroth it- 611= Q(, + I (J,-RQ)a (7)k, , " and HY" are identically zero and that , 1 (

A XAHW+ A X HIT. The solution of the external problem In order to investigate the behavior of the sequences
ishXH1 =AX[H"+ + H'2 ]. 4 1

1 aslincreases, Eq. (7) is recast into the following form:
In the internal problem, on the other hand, the actual ,-

properties of the object are utilized, and fresh estimates of 6l1 = Q ( -RQ) ( -RQ)'9a, (8) L

the internal fields I E.. I are obtained following the pro-

cedure described in Secs. II C and II D of Ref. 3. The itera- where the summation over the index n can be easily recog-

tive procedure thus carries on till the incremental surface nized to be representing a finite Neumann series. It can now

current density A x4 H" calculated on the left-hand side of be shown' that this Neumann series converges to (RQ)- 'as I

Eq. (1) becomes almost zero, thereby meeting the preset er- increases,provided the maximum eigenvalueA of (f - RQ)

ror criterion. In this way the fields induced inside the object is such that IA I < 1; and the sequence 1,6"')1 therefore con-

can be determined. verges to,6 where,
I~ . . "

Throughout the formulation of the IEBCM, the various = = Q [O.r + (Or - RQ) (RQ)- ]a
field quantities involved, as well as the free-space Green's
dyadic, are expressed in a complete set of suitable basis func- .'.. 'a.(9
tions *.(x) and ReW.{x) (Ref. 4). Therefore, the solutions of
the external and the internal problems in each iteration are
essentially operations involving infinite matrices.'

Consider, therefore, the expansion of the incident field - - "

as T
E(kor) I a., Re '(kor). (2),.

On solving the external problem in the zeroth iteration, we /
have a similar expansion for n X H9+ on the surface of theJ
substitute perfectly conducting object:

FIG. 2. A prolate spheroid characterized by e,_ a,
AxH. O ! Re IV.(kor). (3) and p, is exposed to a plane wave incident end on.

The vector quantities are in boldface.
In Eq. (3), the superscript onflV represents the iteration num-
ber. Then, after solving for the internal fields in the internal
problem of the zeroth iteration, and calculating the integro-
differential expressions bracketted with E'(kr) on the right-
hand side of Eq. (1) we obtain H1.1 /
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FIG. 3. Constitutive properties of the spheroid
used for the sample IEBCM computations as
functions of the size parameter ka.

1 2 3 4 5 6 7 a 9 10 11 12 13
ka(. 10")

the same time the sequence ?A" converges, as expected, computed using the IEBCM for the case of this sample
e, where spheroid exposed to a plane wave incident end on. These

R= = a (10) quantities, non dimensionalized by ira2, are plotted in Figs.
4-6 as functions of the size parameter. We also used the
IEBCM for making similar computations for a spheroid

IMERICAL RESULTS AND DISCUSSION with identical dimensions, relative permittivity, and conduc-

For our sample computations made using the IEBCM tivity but which does not possess any magnetic susceptibil-

chose a prolate spheroid of semimajor axis a = 0.2 m and ity. It is clear from Fig. 4 that the absorption cross section is

v an aspect ratio a/b = 3.096, being irradiated by a greatly enhanced when the lossy dielectric object has a non-
vanishing magnetic susceptibility as well. This would imply

ine wave IEH incident end on as shown in Fig. 2. The that the presence of magnetic properties enhances the ab-
ostitutive properties of this hypothetical object are plotted sorption mechanisms in an otherwise lossy dielectric body.
Fig. 3 as a function of the frequency. It must be pointed Furthermore, there is a corresponding reduction in the back-t that for these computations, the conductivity and the scattering as well. There is, indeed, a slight increase in the
ative permittivity were kept independent of the frequency, total scattering cross section, but this slight increase is com-
tile an idealized variation of the relative permeability was
iumed. This was done in order to explore the effects of

ving a nonvanishing magnetic susceptibility vis-a-vis the
ie when the scatterer does not have any magnetic proper-
s. The properties selected, however, do not differ qualita- h,,,-., g eri m css-,ectlon
'ely from those experimentally determined for ferrite-im-
tgnated plastics except that the value of p, in these
Iculations is purely real.' ,> -..

The absorption cross section a,.,, the back scattering , -

ns ab, and the total scattering cross section a. were /,

i I ,'" • "

i ,

KY,. <. -: / - .......- - -- t

-. i55 -

I I i I IK I I '1 I I I
04 O 0.4 0.8 1.2

03 asE 01It 025 IM U he
. 4. Normalized absorption cross section vs size parameter for the FIG. 5. Normalized backscattering cross section vs size parameter for the

,arid used for the sample IEBCM calculations. The irradiating plane spheroid used for the sample IEBCM calculations. The irradiating plane
we is incident end on wave is incident end on.
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1.= . From these two figures, it can be observed that the
I ~presence of magnetic susceptibility lowered the surface elec-

10 1 1 1 1 1 I_ tric current density J, but it considerably increased the mag-
GO0 . OA0. 12 netic current density M on the surface of the spheroid. Since

Ike J = flXHin, and M = E,,, X A, where A is a unit outward
FIG. 6. Normalized total scattering cross section vs size parameter for the normal to the spheroid surface and I E,, Hin, Iare the fields
spheroid used for the sample IEBCM[ calculations. The irradiating plane cmue nteitro fteojci sovosta h
wave is incident end on. cmue nteitro fteojci sovosta h

electric field induced inside the body is increased while the
internal magnetic field is lowered by the presence of a mag-

pletly versadoed y th drmati inreae intheab- netic susceptibility. Since the power dissipated inside the
pletly verhadwedby he ramticinceas intheab- lossy spheroid is equal to 1/2oj E. 1', it is not surprising that
sorpion.the absorption is considerably enhanced when p,> 1.

In order to understand this enhancement of power dis- It is also inferred from Figs. 7 and 8 that the lowering of
sipation in scatterers possessingu p> 1 in addition to their tesraeeeti urn u o, ssmwa vr
lossy dielectric properties, we computed the electric and the. cmestdb nascae nraei h antccr

mgetic surf0.ac cur et enstison al speri of96 sze pa- rent density. For this reason, only a slight enhancement in
rameer w =0.6 nd spet raio /b .096 Th sper- the total scattering cross section is observed as the relative

oid is characterized by e, = 35 and has a conductivity permeability is increased from unity.
a = 2.587 12 -' m-'. In the first instance, the scatterer had
no magnetic properties (i.e., , = 1), and the current densi-
ties are shown in Figs. 7 and 8. Next, the spheroid was as-
sumed to have pu, =10 also, and the surface currents are ACKNOWLEDGMENT
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In a recent paper,' lskander and Laltakia have demon-
strated the use of thle iterative extended boundary condition
method (ll,13CM) (ocompulle the scattering of ENM waves bv
low-loss.- or lossless, elon'gated. axisymmnetric (dielectric object.
TIhe singular advantage of the IEBCCM over thie regular EB3CM
(IJEIJI'CM) 2 is that it yields, nunierivallY stahle mid convergent
fields induced inside and scattered b~y such eloiigated objects
for wh~ich ptirpime the latter technique is inadequate.:' This
advantage is achieved at the expense of a considerable increase-
in computation time as well as in p)rogramnming effort.

If, however, the scattering volume does not ahsorb energy
(i.e., it is either lossless dielectric or perfectly conducting), the
a priori utilization of the known p)roperties of the r-matrix
generated ini the RIKHCM can bie used to effect a substantial
improvement in thie adequiacy of the REIICM it-self. Trhis
implrovemnent comes via certain ort h moializ'ation 1)rocedhlr(',
but, in the process, all knowledge of the fields induced inside
andlon thie surfaice of thescatterer is lost. This loss is, how.
ever, mif little consequence if one is initerested only in obtaining
the scatteredl fields. Furthermore, not only elongatedl nee- .

dllplike targets can he handled hut severely compressed disk-
like s-atterers can ~e considered with equal ease. Thiscon-
rasts with the IEBCM whose tise is presently constrainled to

nee-(lelike ob~jects since it ut ilizes thte multile subregional
liel v hI p ainsin i scheine to ext ress the iii ternal o r thie su rface
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FIGURE CAPTIONS

Fig. 1 Schematic of the problem.

Fig. 2 Power reflection coefficients Po, P 1 and P computed using
-2 2

the present approach when a horizontally polarized EM wave
strikes a perfectly conducting half-space with a surface defined
by z = h cos (2nx/L). 6n=15' and kL=hr. Comparison is made
with Holford's computations [5,6] for the acoustic response of
an acoustically soft surface.

Fig. 3 Power reflection coefficients P_, P 1 and P 2 computed when a
vertically polarized EM wave strikes a perfectly conducting
half-space with a surface defined by z=hcos(2ffx/L). e0=15°
and kL=47. Comparison is made with Holford's computations
[5,6] for the acoustic response of an acoustically hard surface.

4
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upto about 0.2 this time. This is no doubt related to the instabilities

of the solution procedure which become more visible when Neumann boundary

conditions prevail on S than when Dirchlet boundary conditions do.

Again, we have been able to compare very favorably with the acoustic

response of an acoustically hard surface supplied to us by Holford [5,6]•'-
, I

In these calculations, as well as in several others made by us,

the conservation of energy was satisfied to within ±0.5%. The efficacy

of using our surface field expansions, in conclusion, has been very well

demonstrated by us using the presented computations. We are currently

investigating the use of these expansions in related problems in electro-

magnetic as well as elastic wave scattering phenomena.
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III. NUMERICAL RESULTS

The derivation of the T-matrices in the previous section hold for

any arbitrary periodic boundary profile r: z=z(x). However, in presenting

our numerical results we confine ourselves to the sinusoidal surface

z = h cos (27x/L). These results were calculated on a DEC VAX 11/730 -

minicomputer.

In Fig. 2 we show the computed values of the power reflection

coefficients P as functions of the roughness parameter h/L when an

horizontally polarized EM wave is incident on S making an angle of

150 with the z-axis, the value of kL being fixed at 47. The coefficient

P is defined as
n

P I f/a 12 (114)
n no

but, in this figure we have suppressed P in the interests of clarity.
1N

It is to be noted that while the regular T-matrix procedure [1] would

have been restricted by the Rayleigh hypothesis to h/L < 1/lh, we have

been able to compute upto h/L = 0.26 using the Fourier expansion of the

surface field normalized by the incident field. Furthermore, since the

problem of scattering is a scalar one we have compared our results with

those calculated [6] by Holford for the acoustic response of an acoustically

soft surface obtained using a boundary integral equation method r5].

The agreement between the two techniques could not be better.

Finally, in Fig. 3 we have shown P computed when a verticallyn

polarized EM field strikes the perfectly conducting rough half space.

The parameters for these calculations are otherwise identical to those

in Fig. 2. Our previous remarks relating to the regular T-matrix procedure

[1] again apply here, though we note we have been able to tackle h/L

.... .... . .................................................... .'.. -



and the T-matrix is exactly the same in fform as in the equations (10).

In obtaining (12a,b), the boundary condition n .Vu =0 was enfforced on

S to obtain

f (1/21kL) r~ (-' )fd -M *0 +

r

and (13a)

a (1/2ikL) f(d2 WVk(-k r ru
m 0.. mi -o +

r
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Substituting (8) in (7a,b) and enforcing O = i we get

f= , a [=-]a (8)

where the matrices[±+] are defined by

C-ra =  d(/L Y=n exp [-i (k -k ) r ] (9a) .i2iLjo..A n f -0

0

where 1/2

YM (cose cose0  [coseo + sine dz (b)

and

k* A k (sine - cose0 ) (9c)

We can now obtain a T-matrix such that

f =[T]a (lOa)

with

[T]=[s+1[-]-i (lob)

provided the inverse of[€-]exists.

For the case of the vertically polarized field i.e. when the electric

field is polarized in the x-z plane,and H =-yu , the problem again reduces to a

scalar one, with the exception that the derivative of the total field

goes to zero on the surface fl]. The expansion of the surface field u+

is given by

U+ 2E a * (ro), r P (1) 
Sn . -0

n
where a0 is again un y; the[-] matrices are now defined by

L
=P ± (I/L) d Y7 exp [-i(k± - k*) r (12a)

mn [ x mn -m -n -0

where the Ymn are given as

--!_ i ,/2 d
Y (cos cose [-sine cose); (12b)mn 0dt x m-''."
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f =k ,r) ; r ' r < zn -n ~ ~ "~ max 5

with fn being the unknown coefficients to be determined.

Now, following Waterman [1], we obtain a set of matrix equations for

the case of the horizontally polarized fields

f= (1/2ikL) fdo , [:(-k+ , r) V+u (6a)

and

a =-(l/2ikL) f da . [(-k . ro ) V u (6b)
m M -0 +

.̂ ^dz

where V u refers to the surface field, do = da° = dxlz-x( ), n

is a unit inward normal to the surface and P is one period of bcundary

profile. In deriving these equations Waterman used the Huyghen's principle,

followed by the extended boundary condition, specifically, for (6b).

At this point we need a representation for ^. V+u which we obtain as

T' -.(r
.+U= 2E a n ^ W (ro) r E F (7).--""
+.V n nZcnV -o -0(7

£ n

where the function" r is defined as
n -o

_ (ro ) = (k . r ) e in2rx0 /L (7a)

n -0 -0 -o

Equations (7) and (Ta) together constitute a Fourier expansion of the

surface field normalized by the incident field at the surface S; consequently,

a 0 = 1 is a reasonable assumption. We note here that by not using i(k- . r
.n -0

in the expan3ion (7) we have effectively bypassed the Rayleigh hypothesis. . ",

In order now to make (Ta) consistent with our basis functions-we rewrite it as
AI

ik(sin8 -sin6 )x
"-j* (r p(k r e n 0 o (T.)
n -0 -.0 -
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IT. T-MATRIX EQUATIONS FOR A PERIODICALLY CORRUGATED SURFACE

Following the description given by Waterman [1], consider the periodic

boundary S described by z(x)= z(x+L), the geometry of which is shown in

Fig. 1. First, let the surface be illuminated by an incident plane wave

E0 (x) y u 0 (r): -"

1/2-

u°(r) = (cos e ) exp(i ko.r) ()
0 O-

where k0 = k (sin e 0  - cos 0z), (2a)

2 1/2
and cos e0 = (- sine 0 (2b)

is a positive real quantity. We begin by introducing a basis of Bloch functions

V(+k -+  r) =(cos @ - exp (+i k.r), n -0 _ .., (3a)"
n n -n

with k =k (sin e ± cos e 0 ), (3b)
~n n n

sin 6 sine + 2 Tn/kL, (3c)
n 0

2 1/2 2
and cos 6= (1 - sin en) , sin e e n (3d)

21/2 2-.{
+i(sin 2  - ) , sin > 1 (3e)

n n

The functions iP(k . r) are the outgoing eigenfunctions, to be used to
-n

describe the scattered field, while i(k . r) are the incoming eigenfunctions.

The equations (3d) and (3e) distinguish propagating and evanescent modes,

respectively. We represent formally the incident field (1) as

uo(r) a n . r) (4)
n

with a = 6 5nn being the Kronecker delta function. The scattered field
n nO' nn'

5
u , on the other hand, is now represented as

"..... ....... -..... -. • . .. ...... . .... .. . . . . . . .. . .- . . . . . .. . . . .'
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surface field normalized by the incident field on the surface. When

. compared with Waterman's approach this does not entail any extra numerical

effort, but more deeply corrugated surfaces, i.e. those having maximum

-.* slopes of the order of 1.5, can now be considered. Our T-matrix approach

i is also similar to the formulation of acoustic scattering by hard and soft --

surfaces derived by DeSanto [h] but while we use the extended boundary

condition i1] he did not.

In presenting this approach we shall restrict ourselves to the case

of a perfectly conducting half-space having a periodically corrugated

surface as shown in Fig. 1. Furthermore, we shall describe the derivation

for horizontally polarized electromagnetic fields so that the x-z plane

is the plane of incidence, E = u(r), r xx + z and is a unit"

vector going into the plane of Fig. 1. The analysis for vertically polarized

I fields proceeds similarly and shall, therefore, be mentioned only in

brief. We compare our calculations, made on a DEC VAX 11/730 minicomputer,

with those of Holford's integral equation technique [5,6]. We stress,

z •parenthetically, that Holford's method is much harder to implement

numerically.

" -" -. '. ...--.- * - . .*,. .* 2" . *. 2 * ,. . .°- . .-
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II

I. INTRODUCTION

The scattering of electromagnetic waves by an infinite rough surface

depends very strongly on the roughness of the surface as well as on the

angle of incidence. In addition to the specular scattering, which is

characteristic of reflexion from a smooth plane, scattering also occurs

at many different angles using the nonplaner nature of the surface.

When dealing with the scattering properties of an infinite, periodically

- corrugated surface it is appropriate to use a planewave spectral representation

of the fields of interest, which, for the specific case of a perfectly

conducting surface, are the known incident field, and the unknown scattered

and surface fields. Two types of plane waves are used for this purpose.

The first set of plane waves propagate towards the surface (i.e., in the

-z direction as shown in Fig. 1) and are directed symbolically by ( (k-'r).

Obviously, this set of plane waves is best suited to describe the incident

field. The scattered field, on the other hand, propagates away from the

surface, at least for all points such that z > h, 2h being the peak-to-

peak corrugation depth. These planewaves of the outgoing kind are denoted
.5+

by (kn'r).

It is the surface field whose representation poses a problem. Waterman

[1] who originally published a T-matrix to obtain the electromagnetic

(EM) response of a perfectly conducting half-space having a periodically

rough surface, considered the use of only the (k "r) functions to represent

the surface field. Incidently, that was also the choice made by Rayleigh

[2]. This is, however, a hypothesis that limits the maximum slope of

the surface to less than O.hh8 [3].

It is our objective in this communication to present a new T-matrix

formulation which involves a Fourier exponential representation of the

V- 7



A T-MATRIX APPROACH FOR EM SCATTERING BY A
PERFECTLY CONDUCTING PERIODIC SURFACE

Akhlesh Lakhtakia, Vijay K. Varadan and Vasundara V. Varadan

Department of Engineering Science and Mechanics
-- The Pennsylvania State University

University Park, PA 16802

ABSTRACT

The novel use of a Fourier exponential representation of the field induced

on a perfectly conducting periodic surface is shown to yield a T-matrix which

is numerically stable for deeply corrugated surfaces. Whereas the Rayleigh

hypothesis limited the maximum slope of the surface to less than 0.48 in

Waterman's original T-matrix scheme [1], our T-matrix is applicable even when

the maximum slopes are of the order of 1.5.
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ON AN IMPO T-MATRf APPMAOI TO STUDY THE
SCALAR SCAflERIMG RESPONSE OF DOUBLY PERIODIC

a SUIW'ACES

A. takhtakia, V.K. Varadan and V.V. Varadan
Wave Propagation Laboratory

Pennsylvania State University
University Park, PA 16802

ABSTRACT

In investigating the scattering response of a periodic surface, the
use. of inconplete or inappropriate basis functions for representing the
field(s) induced on the scattering surface has given rise to what is now
called the Rayleigh Hypothesis (RH). Here we use normalised Fourier bases
for this purpose and develop a T-natrix which ormpletely characterises
the scalar scattering response of such a surface. The Rayleigh limits are
effectively bypassed, and the obtained solutions are seen to obey unitar-
ity as well as reciprocity constraints. We also show that the neAsurrent -
of the scattered field can lead to two different interpretations of the
nature of the scattering surface in inverse shape problems.

I
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The scattering of waves - be they acoustic, electromagnetic, or
elastic, -- by periodic surfaces h. been the subject of much investigation
ever since Rayleigh studied the scattering response of sinusoidal reflection
gratings [11. He expanded the incident and the scattered fields in terms
of relevant inoming and outgoing planewaves, repsectively, and these
decompositions are used to this day in such problems. Hoever, he expressed
the field (s) generated on the periodic surface in terms of outgoing plane-
waves alone, a premise, - now called the Rayleigh Hypothesis (RH), --
which involves an incomplete basis set, and can, therefore, be used for
shallow corrugations. In a classic paper, Millar [2] has shown that
for 2-D scalar problems involving a surface S2: x3 (x ,x,) h cos (21Txl/L)
the RH is applicable for h/L i 0.072. For the corresonding 3-D problems,
we believe that Goodman's estimate [3] of h/L 0.0504 is correct, the
surface S3 : x 3 (x2 ,x1 ) = h [cos (2Trx 2/L) + cos (2Trx/L) ].

Since then several efforts have been made to bypass the above-mentioned
Rayleigh limits on the maxinun gradient of periodic surfaces. Most of these
methods fall into two categories. Methods of the first kind involve the
solution of an integral equation (IE) [4,5]; while the second type are
essentially matrix procedures 13, 5-121. Though the IE methods have been
very successful in dealing with highly corrugated S2, their use for S3 is
extremely cumberscme because of tedious computations. Hence, matrix methods
offer the only choice for 3-D problems. In this connection, DeSanto
[6] has formulated coupled integral equations which are converted into
matrix equations using relevant expansions for the fields of interest. A
more elegant approach is due to Waterman [12] who used the 'extinction'
theorem to formulate a T-matrix which characterizes the scalar scattering
response of periodic S 2 . This method, known as the T-matrix procedure,
involves an understanding of the scattering problem from first principles
using the Huyghen's and the Love's equivalence principles. Recently,
this approach has also been extended to elastic scattering problems as well
[8,9].

Nevertheless, the expansion of the surface field(s) in terms of only the
in pning planewave bc-es for the T-matrix approach has proved to be a stumbl-
ing block in its application for highly corrugated surfaces. Such an expans-
ion is as incomplete as the one used by Rayleigh; consequently, this method
has suffered fron the sane limitations. Recently, however, using a hybrid -*
T-atrix - point-matching technique, wherein the surface field(s) is express-
ed in terms of both incoming and outgoing planewave bases, the applicability
of the method has been increased to higher corrugations than previously possi-
ble. We have used this hybrid technique for scalar [13] as well as elastic
[91 scattering problems involving S2 surfaces.

Specifically for scalar problems, Fourier bases have been used for
representing the surface field(s) in the T-matrix framework [31 and with
success as evinced by the data published in [141. On the other hand, using
these same Fourier bases for computing elastic responses by Chuang and John-
son [81 has not lifted the T-matrix approach from within the Rayleigh limit

............................................



on the maximum surface slope. Howver, the use of normalised Fourier bases
of (6,7] has been more promising as shown by our work on the scalar response
of S, [15].

In this paper we present a T-matrix formalism for computing a stable and
accurate T7-matrix which characterises the acoustic responses of hard and soft
periodic S surfaces. Normalised Fourier bases will be used to express the
surface field; and the presented approach will also be valid for electromag-
netic problem, where the relevant fields will have to be decomposed into T4-
to and TE-to x3 fields. The use of these bases for elastic problems is still
under investigation and shall not be discussed here. Fran our results we shall S
show that the presented T-matrix method is useful .for scalar problems involv-
ing surface slopes about 3 to 4 times the Rayleigh limits. We shall also
discuss a non-uniqueness in the inverse shape problem when the field scattered
by the periodic surface has been determined experimentally.

Let Ox)x 2x 3 denote a 3-D Cartesian co-ordinate system. The surface S3 is
given by x3 = F(xrX2), where F is assumed to be a single-valued, differenti-
able, periodic function with periodicities L, and L2 . This surface, in the S
mean, should be the flat plane x3 = 0.

The region V above the surface {x3 > F(x 1 ,x2 )1 is occupied by a non-
viscous compressible fluid and an incident planewave

ilW0= exp (i!.x) (1)

is incident on S3 with a temporal variation exp(-iwt). The surface can be
either acoustically soft (case S) or hard (case H), and the corresponding
boundary conditions on the total field apply. The notation is as follows:

k = w/c !0= k(aR+ 602- Y 0 113 )

a = sine coso S = sine sin (2)
o o 0 0 0 0

Y =cose x x u+ XU + xu
00 0 - -1 2-2 3-3

0= constant amplitude.

She relevant boundary condition are:

Case S: I(x) s  =0 (3)
I' p

Case H: v • V4(x)J 3 = (4)
- -s.

= unit vector normal to S' into the fluid. (5)

The application of the Huyghens' principle, and the use of the free space

J'-- .. *.. -.*. ..-



Green's function G(x';x) - exp(iklx'-x)/47r1x'-x, leads to (121:
L L

HV(x') (x') - i,(x') + dx dx
0 0

G{kG(x';x) V(x) - U(x) v(x) V . VG(x';x)}, (6)

with H(x') = 1 if x' e V, and 0 otherwise; and

V(X) W= k-  W(_ 2. ,(X)Is, ,

U ~ x W ( x IS 3 (7 Y -..

Z(x) ={1+ (P )2 + ( } , f =aF/ax.
-- 1 2flI

Equation (6) for x' % V is the 'extinction theorem' (12]? I = i +

The free space Green's function can be expanded as

G(x';x) = (i/2kL L ) E Z (/y pq)

Sex~p Lk(p (x'-x ) + (x'-x ) + yp-Ix'-x I (8)

with -

p aO + 2pr/kL , p = 0, ±1, ±2,....

q + 2qIr/kL q 0, ±1, ±2,.... (9)
q 0 29

Ypq 2 h2 Re 2] ,e(Y ) > 0, Im(Y >
pq P q pqpq

At this juncture we also define two groups of wave vectors
+-

k- = k(a u + 0 u ± U) (1)
-Pq p-1 q-2 pq-

with whose help we define the incident and the scattered fields as

W ( ) E a : exp (i _- .x ) (12) .,.-.

with a = 06 and unknown apq to be determined.

Let us first onnsider the case S. The boundary condition (3) would then
apply and the Bquations (6) would accordingly be nmodified. On substituting
the expansions (12) in the modified (6) we obtain a set of equations:

- --.:'



L L
2 2

apci dxi 2 (]/2in Ly )
p 1 1 2 12pq)

0 0

{exp( xq.) V+* (x)} 1 (13)

the vector

1 2

In order to solve the problen all we need now is the surface field represent-
ation, which we assme to be [6,15.

0S
x * .+(x) = 2 E Z x • V+{exp(Unm-x)}; x CS (14)

n=-- M _CO.

with the wave vectors

= k (an, a, -YO0); (15)

finally, substitution of a truncated (14) in (13) leads to the matrix
equations

+ + 1
a =,d* (Qd)- a (16)

where the matrices are
L L

2 2+ d dX [(y0 +F a)/y L L'
.()pqrm 1 2 00 n + + 1 .2--.--

0 ± 0

.exp[-i(k -k ).x]. (17)--pq -m-

At this point we remark that replacing the k by either of the k vectors

would completely debilitate the T-matrix procedure and subject it to the
Rayleigh limits. in its ability to handle deeply corrugated surfaces. 0

Likewise, for the case H the boundary condition (4) is substituted in (6)
as also the assumed surface field expansion

x) =2 Z E anm exp(ik_.x); x S (18) 6

r"m -•

* . .' * ..- "-2%.........,

'-':- ';'-"-" : ,v ." .... ;...'.* .-.. :.'.',....- •.*- *... *,-,."..-." . .' -'." . ............ '-... a . ..'.' 'w- ... .. .. .. .-:.: -:," ., "



which yields the solution
+ + a

a a Q~ (19)

where L L

( )n= -dx dx (+ + + 8F ] L L.-
zpq n d )2 p IL2 q-2 Pq 1 2

0 0

.exp[-i (k -k ).x]. (20),2oq -n
Defining the energy carried by the (p) th mode of the scattered field as

P (yy)I a1 2 I*012, (21) _pg ~00 pg
provided, of course that ypq is positive real, the conservation of energy

relation is obtained by

E = Z P =1. (22)
p q p-

NIERICAL RESULTS

The system of equations (16) and (19) were programmed on a DEC vax ii/
730 minicomputer. The inversion of matrices involved was carried out using
a U decomposition technique [16] via an IMSL subroutine L!UrIC, our numerical
procedure being implemented in double precision arithmetic. "Te Q matrices,
themselves, were computed using a tw-diinsional Gauss-Leqendre quadrature - -

schem [17], although for special cases of boundary profiles these matrices
can be evaluated in closed forms. Convergence of the solution was checked by
ensuring that the scattered field coefficients converged to within 0.5%. An
additional check was also provided by (22) which had to be satisfied to be
within ±0.005 of unity.

The general theory presented in the previous section holds for both S
2

and S3 surfaces having periodic boundary profiles. However, here we consider
surfacesdescribedbyx (xx) = f(x ) +f(x), f(x) =hcos(2x/L); for S2

3 21 2 1
f(x) is set to zero. she boundary conditions prevailing on the surface can

2
be either Dirichlet or Neumann.

O2Cnsider, first, Fig.1 where we have plotted the scattered powers for
a S2, and have compared our calculations with tbose of Holford [5J. As is . -.

clear from this figure, the improved T-matrix scheme is applicable for much
higher values of the parameter h/L than the Rayleigh limit of 0.072.



0. -*-- -l r "---' /
i. .- 0. 1 1 I .

-P -- P

ol22 -2" "  ', -

0. \% 0.2

0 j 'd, % *A 0

(a) b0.1 0.2 (b) 0 0.1 0.2
h/L h/L

Fig. 1. Reflected mode power P comuted using the presented
approach for a sinusoifal S ,when a planewave is incident
at 00 - 15, 0 - 0°; kL 4W. Ref. 5 are the IE results.

(a) Dirichlet b.c., (b) Neumann b.c.

Similarly, in Table I we consider a doubly sinusoidal S3 surface, for which
case scattering is observed in 9 separate directions. Again, note that h/L

0.15, which is roughly three times higher than Goodman's conjecture of
0.0504 for the Rayleigh limit. In these calculations, as in others made by us,
we have been careful to tolerate only a 0.5% error in the check for the oonser-
vation of energy, and this seems to serve adequately as a check on the conver-
gence of the scattered field coefficients as well. Reciprocity of the scatter-
ing solution has also been confirmed as is shown by comparing the data in

Table I. Scattering of a normally incident planewave from S
3;

h - 0.426, L = 2.84, k f 3.5. Each entry represents
P of (21).
pq-P-- - q- -- - - - - - --- -- - -- -- - -- -- - -- -- -

±P, ±q Dirichlet b.c. Neumann b.c.

0,0 0.11534 0.52718

0 1 0.03792 0.04348

1,1 0.18407 0.07574 D

E 1.0033 1.0041

----

"% ' ..
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Tables II and III. First, from Table II we see that the scattered power in
the direction 6 = 62.2461", = 00 is 0.13240 for the case S and 0.21042
for the case H, when a planewave is incident normally on S3. Next, in
Table III, the exciting planewave is incident at 0 = 62.2461, 0 = 0".0 0
For this latter excitation, the scattered power in the normal direction
was camputed to be 0.13231 for the Dirichlet b.c. and 0.21063 for the Neu-
mann b.c., thus demonstrating the satisfaction of the reciprocity constraints.

Table I. Same as Table I except h - 0.284, L - 2.84,
and k - 2.5.

±p, ±q Case S Case H

0,0 0.47167 0.15755

0 0.13240 0.21042

E 1.0012 0.9992 __

Table III. Same as Table II except the incident wave is
incident from e - 62.2461, * 00.

0 0 - - "--- --

p, q Case S Case H

0,0 0.83265 0.43256

-1,0 0.13231 0.21063

-1,-+ 0.01476 0.11957

-2,0 0.00818 0.11768

E 1.0027 1.0000

A NO-UNIQENESS CF THE INERSE SHAPROBE2
• *,:.1

As has been seen in the preceding sections, a periodic surface scatters
an incident planewave in discrete well-defined directions. Soma of these
directions, for which y is real, have scattered planewaves which go upto-

pq
z = . Others, for which, Ypq is imaginary, represent evanescent planewaves.

-"
In the far zone, the reflection coefficients a can be measured for thepq
propagating planewaves; hence the reflected field can be obtained frz.n neasure-
ments as



*s Nx,x,) = E a exp{ikr cos(Op-)}; kx large (23)P3 p0 p .

where we have considered, for the sake of brevity, only the 2-D problem;
0p = arctan( ) -z ; 8 = arctan(x , x ); and r is the radial distance from the - -

origin to the field point. The summation holds only for the propagating plane-
waves. However, in most situations the scattering surface is finite of total
expanse B. Hence, if the surface S were to be illuminated by a finite-aperture
field B

e(x) = exp( 0 )X, x <_ B/2

0 , x S2 , IxI> B/2 (24)

then, for a sufficiently usual case when the Rayleigh-wood anomalies are
absent, the scattered field has been given by Jordan and Lang [71 to be

s(X) = kB (21rkr) -  exp[i(kr-r/4)] E a;0 sinc[kB(sinOp-sine)/2]. (25)
p 

p

For (25) to hold, kB must be large; and only the propagating plane waves need
be acocmted for.

Consider, next, a flat surface of the same expanse B which is illuninat-
ed also by the field (24)-.-This flat surface has a periodic reflectivity
profile p of period L, the reflectivity function being dependent on the fre- " .
quency. The scattered field field can be easily set down as

1 ) . dx' p(x')exp(ikx'sin 0)

- exp[ik{x 2 + (x -x')2}h] {x2 + (x _X)2} -  (26)

3 1 1 3 1 1
where 8 = arcsin (a ). Because of the periodic nature of p, this can be red-0 0."-
uced to

p(x) = E p exp(ip2wx/L) L (27a)
N PL

,x ) = .p Z exp(-ik2Lsin8 ) dx {x2 + (x -x'+kL) 2f .
3 1 p =-N 1 3 1 .

•exp(ikx' sinO )expfik{x 2 + (x -x'+£L)92}], (27b)

p 3 1 1

and which, by approximating,

[x2+ (x- x'+£L)2 = [x2 + (x +£L) 2] -
3 1 1 3 1

x' (x +£L) [x2+ (x +pL) 2 ]- , (27c)
1 1 3 1

further reduces to
N [ - h .

0(x ) = E Pp . exp(-ikXLsine )exp ikx 2 + (x +-L) 2 }' r

-sinc{(kI/2) (sine - (x +LL) [x2+(x +9L)2 } (28)p i 3 1

......- 4, .- . . . a.a . . a.-O . .. .. . .. & . 2. . Xe . * -. - . . - • - . - . . o • , . - . - , . %



with sinc(z) = sin(z)/z, and the ratio B/L = 2N+l is considered integral. The
factor /r is introduced since the measurements are made in the far zone.
Furthermore, by realizing that x = x tane, and on focussing our attention on1 3
the argument of the sinc function, we observe that this function reduces to

sinc{ (kL/2) (sinE -sin) }, (29a)
P

while the second exponential in (28) becomes

exp[ikL(sin6 - sine ). (29b)0

Since these two are Fresnel-type approximations, £ must not assume high
enough values so as to render them invalid. Therefore, the somewhat restrictive
assumptions that the ratio B/L 3 10 while NL << x are necessary. However, the

1
product kB can be arbitrarily large. In effect, thus, this is also a high -
frequency analysis.

Noting, however, that
N
E exp(it&) = sinc[ (N+) ] (2N+l)/sinc(h ) (30)
Z=-N

further simplifies (28) to

ip' (x ,X) = (2N+l) (-)2N+I r-h exp(ikr).3 1•

• Z p sinc~kB(sine -sine)/21 (31)
p P

after some manipulation of the various sinc functions involved.

Formally, the scattered field i' is indistinguishable fran of (25).

Furthernrre, the Fourier components p of the reflect- vity p may be obtained
p

through a least-squares estimation procedure applied to repeated measurements
of the scattered field for different angles of incidence. Thus, experimental
measurements of the far scattered field for the purpose of determining the
surface profile can lead to two different interpretations:

(a) the surface is periodically undulating, and

(b) the surface is flat with a periodic reflectivity profile. -

CONCLUSIONS

We have described a scalar T-matrix formalism which is applicable for
highly corrugated periodic surfaces and have shown that the solutions obtain-
ed obey unitarity as well as reciprocity constraints. We have also sxown-
that the measurement of the scattered field (which exists only in discrete
well-defined directions) can give rise to two different interpretations of
the nature of the scattering surface. Further work on extending the presented
approach for bimaterial interfaces as well as for elastic scattering problem.
is in progress.
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