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SUMMARY
In this report, the effect of multiple scattering on coherent wave
propagation in discrete random media has been investigated. The medium
is modelled with a random distribution of spherical and non-spherical
scatterers. In the recent past, we have been concerned with theoretical

*

and numerical studies of electromaghetic wave propagation in discrete

1’2. Of particular interest to us was the frequency depend-

random media
ence of the attenuation and the phase velocity of coherent waves as a
function of vblume fraction, size and shape of scatterers distributed in

a host medium. We used a self-consistent multiple scattering theory wherein
the reéponse of & single scatterer was described bty & T-matrix and several
forms of the pair correlation function were used to take into account
concentrations greater than 1%. Our results compared very favorably for a
wide range of frequencies (ka from 3 to 84) and concentrations from O to

3

50% with the experiments of Ishimaru and Killey and Meeten h.

a) One of the objectives of the past year's efforts was to concentrate
on anisotropic effects resulting from waves propagating at asrbitrary angles
to randomly distributed, aligned, pair-correlated, non-spherical scattererss.
Such problems have been studied by Twersky 6 wherein he has presented ana-
lytical results in the long-wavelength approximation. In Ref. 5, the simi-
larity between Twersky's and our approaches is discussed. Although both
formalisms are quite different, they result in the same dispersion equation.
Cur formulation is, however, more suited for‘numerical computations at
higher frequencies. We havg‘discussed this at some length in Ref. 7 wherein

we have performed numerical computations of Twersky's equations for the

acoustic case and compared it with computations for our equations. In Ref. 5,

...............
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the calculations performed are quite complicated since all values of the
azimuthal index contribute in the expansion of coherent electromagnetic
field in vector spherical functions. Our computed results > are in excellent
agreement with those obtained by Twersky 6. Average frequency dependent -
properties are also studied and presented. For comparison purposes, we

have also investigated the electromagnetic wave propagation through randomly
distributed and oriented scatterers by introducing the concept of a rotation
matrix along with the T-matrix 8.

b) The close agreement between our theory and experiments, although
very encouraging, calls for further research on specific issues such as
(i) the range of validity of the Quasi~Crystalline Approximation (QCA) as
well as corrections to it, and (ii) the generation of non-spherical two
point correlation functions so that dense concentrations of non-spherical
particles can be considered.

In order to determine the two point correlation functions for both
spherical and non-spherical scatterers, we are developing a computer algo-
rithm to solve the Percus -~ Yevick equations as well as Monte Carlo,
techniques 9. In Ref. 9, two-dimensional Percus - Yevick equations are
solved numerically with excellent comparisons with Monte Carlo calculations.
For low concentrations, Twersky 10 has developed pair correlation functions
purely based on geometry which agree with our computer generated values. In
the Monte Carlo simulation, the computer is instructed to perform a series
of small random displacements on the particles. If any displacement results
in two "hard" particles overlapping, it is relected; otherwise, it is accept-

ed. The program is run for several million such displacements and an appro-
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priate selection of the resulting data is utilized to evaluate aversges.
To implement this algorithm for a specific system one needs to define a
"shape' which allows the computer to determine whether or not particle
overlap has occurred. The implementation of the "physics" of the system
and orientations of non-spherical particles is being pursued and the results
will be reported in our future reports.

¢) Secondly, our effort was also to have a clear physical understanding
of QCA used by Twersky and us. The QCA is used to break the heirarchy of
equations for the ensemble average of the field exciting a particular
scatterer. As a result only a knowledge of the two particle correlation
function is required. In a recent paper ll, we have shown what type of
multiple scattering processes are included in the QCA and which ones are
neglected. Explicit improvements to the QCA are also presented. We are
currently implementing this improvement in our numerical algorithm. We have
also performed some computations for various lossy and lossless dielectric
scatterers to understand the effects of properties on wave attenuation,see Figs.1-8.
We wish to coq}inue this work further by studying the QCA and any corrections
to it more closely so as to understand why it works as well as it does.

d) Thirdly, a general mﬁltiple scattering theory based on spatial

stochastic system is developed to study wave propagation in discrete random

12’13. Using the concept of an "equivalent spatial stochastic system"

media
and the joint probability distribution of scatterers, a general expression

of the space correlation function and the intensity of the multiply scattered

fields is established. The intensity calculations using this method compare kﬁ;

with those of Twersky at long wavelengths. The method, héwever, seems to .f
1L,

provide excellent comparison with experimental datsa
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e) A propagator model was developed to study coherent and incoherent
intensities of electromagnetic wave propagation in discrete random media h,lS‘
Lax's QCA with suitable averaging techniques and the T-matrix of a single
scatterer have been employed in the analysis. Pair correlation functions
éenerated by Monte Carlo simulation have been utilized in these computations.
This model also provides a dispersion equation which is solved for both
phase velocity and coherent attenuation as a function of frequency for
various scatterer concentrations. Numerical results obtained show excellent
agreement with the experimental measurements of Killey and Meeten 16. This
approach also shows excellent comparison with experimental data for scalar
problems 17.

f) In addition, we have also developed a hybrid T-matrix method and a
QR factorization scheme, which are ideally suited for scatterers of high

aspect ratios 18-20. These methods will enable us to study scatteming by

such objects as discs, long thin finite cylinders, etc. We have also .=
developed a finite element algorithm for handling arbitrarily shaped
inhoﬁogeneous scatterers 21. Recently, we have formulated an efficient
scheme which overcomes the Rayleigh hypothesis in the abplication of the

T-matrix approach for scattering by rough surfaces 22.

These additional efforts will eventually help us in applying our various

multiple scattering approaches to compare with the actual field measurements ::Fj;ﬂ

for various kinds of debris. ‘

Y

Various publications resulting from our investigations are enclosed.
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For identical scatterers, we obtain

where p(;, ‘;:) is the conditional probability distribution function and

o -~
<1; >i is the conditional expectation of an with the i-th scatterer located

>

at r,
i.

The average exciting field is assumed to propagate with the wavenumber K

of the effective medium. K = Kl+iK2 is a complex frequency dependent function

unlike the wavenumber k=w/c of the host medium. Thus,
. r -
" tho'ri

<0(ﬂ>1: = Xn e (9)

when substituted into Eq. (8) permits us to evaluate a portion of the integral

. . . > -+ . -> ->
for impenetrable particles i.e., p(rjl ri)=0 if \ r, - rili 2a and
e — >
(F T =L -
J 1 v 1

of the system such that n, = N/V,the number density is finite. For details

> - > .
rj!) for ] ri - rjl>2a where V is the large volume

we refer to our earlier work in Ref. 9, the difference in this case being

~

k0 # 2.
If the zcatterers are rotationally symmetric, then the T-matrices are
diagonal in the azimuthal index, i.e. m' =m" . In this case we can assume
without loss of generality that Qo is in the x-z plane since there is complete
symmetry in the x-y plane. further there is a very simple relationship
between the dispersion equations that result for wave propagation with
polarization parallel tc¢ the x-z plane and perpendicular to the x-z plane.
For this case Eq. (9) when substituted into (8) results in the following

equations for the coefficients x and x

12mo 24mo *

Stete
e et
b b otk
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where ri denotes the center of the i-th scatterer, 'a' is the radius of

the circumscribing sphere and

Re Jp(kE)
s = Vv Y (s, . v -1 Ux¥y (5)
qﬂema (7 ) tmo ¢)) ’ 1P2l’ma' n xyilrrw'

Ou ht(k)

1)

where j2 and h(l are Bessel and Hankel function:, Ylmo are normalized
spherical harmonics, k=w/c is the wavenumber, £ €[o,*] and m €[o,%], 0= even
or odd.
Using the extended boundary condition method5 we can derive a T-matrix

to relate the unknown coefficients @ and f as follows:

Jci = i , D(i, .

imo  ¢'m's télme, t'l'm'e’ tém'oc (6)
where Ti, the T-matrix of the i-th scatterer depends only on the freqguency
w and the geometry and nature of the scatterer. It 1s independent of the

direction of the incoming field and the observation point.

Substituting Eqs. (3), (4) and (6) in (2) and using the translation

addition theorem for the vector spherical functions, we obtain

ol coamitAdkye Ot . s

- - J
. 2, O TN T & )
J t n' n

n t n'n n”

>
where the abbreviated index 'n' represents the set {T1,%,m,0}, An are vector

17" oo 27 B
9 o

matrix”. e d

> > > >
spherical harmonics, A and A_=rxA, and On'n is the translation

A configurational average is performed in Eq. (7) over the random

9

positions of the scatterers and the GCA is invocked in the usual manner”. e
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presented for aligned spheroidal scatterers as a function of frequency,

volume fraction of scatterers and the direction of propagation.

Wave Propagation in Media with Aligned Non-Spherical Scatterers

Consider an isotropic medium chacterized by a refractive index /€
in which aligned rotationally symmetric scatterers are randomly distributed.
The rotational axis of symmetry is taken to be the z-axis. Although the
formalism is applicable even if there is no rotational axes of symmetry,
numerical results are presented only for spheroids. For the general case

2

we refer to Twerskyl for explicit, long wavelength results. Plane harmonic

waves of frequency w, propagate in the direction ko(ot,B)- If —GO, -{Ii and
_flsi specify the incident field, the field exciting the i-th scatterer and the

response to this field respectively, then self-consistency require that

if there are N scatterers, the total field -L)JtOt is given by

—tp t —» S - - .
ot . Tl 30 - ULt (1)
i 1 i t .
or
Up = 0% 3 T (2)

The exciting and scattered field are expanded in a basis of vector

spherical functions as follows:

2
7e - >
Ux(r) = X 2> « Re r . T Fl < 2a
t =1 {mo témo 1’::fmd'(r ) ? l tl (3)

UXF 3 i . > - -
Uui(?Y) = Ou (1’_?. . 7.2l s 2a
z( ) ‘CZ:i gna’ f.‘r(ma' %‘(ma' t) ’ l ’

(4)
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INTRODUCTION

It is well known that in a medium with microstructure in the form
of discrete random inhomogeneities, electromagnetic waves undergo attenuation
as well as dispersion. If the inhomogeneities are either spherically symmetric
or randomly oriented, the medium is macroscopically or on the average isotropic.
The attenuation and phase velocity are independent of the direction of
propagation. However, the medium can be effectively anisotropic if the
scatterers are non-spherical and aligned. In this case the propagation
characteristics of the medium are a function of the angle with respect to
the axis of alignment (taken as the z-axis).

Such problems have been studied in detail by Twerskyl’2 for both acoustic
and electromagnetic waves. He has presented analytical results for elliptical
cylinders and ellipsoids in the long wavelength approximation including the effects
of the pair correlation function. The formulation that we present is quite
similar but is however more suited3 for numerical computations at higher
frequencies requiring smaller matrices to yield convergent results. The
dispersion equation that we solve numerically is compared to that obtained
by Twersky. Both treatments rely on the quasi-crystalline approximation (QCA)
to break the heirarchy of equations for the ensemble average of the field
exciting a particular scatterer. As a result only a knowledge cf the two
particle correlation function is required. In a recent report4 we have

shown what type of multiple scattering processes are included in the QCA

and which ones are neglected. The response of a single scatterer to the field
exciting it is characterized by a T-matrix. The T-matrix is numerically

generated in a basis of vector spherical functions using Waterman's extended f?

PP SO Y W VLYY

boundary condition method5’6. Earlier work using this general scheme was

restricted to randomly oriented non-spherical scatterers or for wave propagation

8,9,10,11

restricted to the alignment axis Numerical results are '
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FREQUENCY DEPENDENCE OF THE ATTENUATION OF ELECTROMAGNETIC
WAVES IN MEDIA WITH ANISOTROPY INDUCED BY MICROSTRUCTURE

V. V. Varadan, Y. Ma and V. K. Varadan
Department of Engineering Science and Mechanics
The Pennsylvania State University
University Park, PA 16802

*

ABSTRACT

Electromagnetic wave propagation in a medium containing a random
distribution of aligned, pair-correlated non-spherical scatterers is studied
using the T-matrix to characterize the single scatterer response, the quasi-
crystalline approximation and the two point pair correlation function. The
resulting dispersion equation for the average medium is numerically solved
as a function of frequency and the direction of propagation. Numerical results
are presented for the attenuation of electromagnetic waves versus frequency,

concentration and direction of propagation.
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The four quantities Bll", B22", B12", le" are vestiges of the -
translation matrix after the angular and radial parts have been absorbed ;;‘
’
in the integration. Expressions for them may be found in terms of the .
Wigner coefficients and are given below j:
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Equations (10a) and (10b) may be written in vector matrix notation in {
the form ;
Xp =My %y (15) -
The dispersion equation for the effective medium then becomes Q:
n 3
. - L(w, K k = .
l 6q Nﬂj( r o O)I 0 (16) "
where Mijitself is an infinite matrix for each i,j. The determinantal M
equation must be solved numerically using suitable forms of the pair correlation -
function g(x), for given w, ko’ no and T. It is seen that the solution will o
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depend explicitly on the direction of wave propagation ko’ rendering the

medium effectively anisotropic.

Relationship to Twersky's Dispersion Equation ::5

In a series of papers, Twerskyl’2 has derived the dispersion equation
invoking the quasi-crystalline approximation and including the effects of
L>' ;' pair correlation for both acoustic and electromagnetic wave propagation in
pair correlated random distributions of aligned scatterers. For spherically
symmetric statistics, i.e. requiring a spherical excluded volume even for
non-spherical scatterers, we can show that the dispersion derived by Twersky2
*b r is identical to Egs. (10a) and (10b) when the scattered field is written as T‘“m

Lf - an expansion in vector spherical harmonics.

In Bef. 2, Eq. (81), the dispersion equation for electromagnetic wave

! propagation in aligned, random distributions is given as -
S mu at At
. -~ Ct’lm =T ?; D(nv [ @1 ( vies ) cst - GZ( vis ) B.Sf.} T
l MY [S
mu -M |t - 'AI‘f
+ Byl ¢ ( V , s) e t @1( v ) Bst]} (17a)

- and -

'Bnm = -é {r:\lzﬂ @1(—/:]2) Cst - @2(—/:!:) Bst]
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where in our notation
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are the scattered field coefficients,
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o Pmﬁ 1 !
nvy av
- mp AL — 21 22
m
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is the T-matrix of an individual scatterer and the two symbols Gﬁ and
(4 are related to the Fourier transform of the product of the pair correlation
function and the translation matrix as in Eq. (8).

3 In the notation of the present paper and the abbreviated index notation

!
ﬁ we may write Twersky's equation, Egs. (1Ta,b) in the form
(18)
21 22
X, T T G, G, X,

We note that Eqs. (10a,b) may be multiplied from the left by the T-matrix,

so that the dispersion equation is in terms of the average scattered field

coefficients rather than the exciting field. Then using <f; >ij X <f; > = x%;Kkéri
we can rewrite the dispersion equation in the form
~ —ip
= a_ +n fo*,,r.. e r.. r..
n n on’zz-z" nn’ n'n” z]) n” g Y J (19)

We further note that using the integral representation of the vector spherical

functions the translation matrix can be written in the form _;fj}f
N - « " -
A kY. x

o (kX) = 2Jd?‘ Xn(r). ;\;A?)[i (1-5”,)(—1)T+ drer] e’
Cs

-




where c, are the contours

- ',_- > _ -> . s ~ P
- Further An = ATQmo are the vector spherical harmonics, erzmo for 1=1 and
E ' ;;xVYzmo for 1=2.Using the properties of the scalar products of vector

spherical harmonics of the same argument as given for example by Twerskyg,

Eq. (77), we can show that

L iKke¥ @ -C
fﬁ'm,(kx) e g(I1x1) dx - (21)

as defined in Eq. (80) of Ref.2so that the dispersion equation derived here is

I “ identical to that of Twersky.
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Results and Discussion

l[ The dispersion equation (16) was programmed on an IBM 370. The main
parts of the program consist of subroutines that a) generate the T-matrix

for a given w and shape of scatterer, b) set up the matrix Gi - M

J ij’

] c) special function programs d) determinant solver e) complex root finder

based on Miellers Method and a main program that specifies the parameters

W, no, a, ko and the shaps and nature of the scatterer. The root finder

that renders |§, | = 0. This is

13~ My

then the complex, frequency dependent effective wavenumber of the medium.

returns the value of K = Kl + i K2

Although simple relations exist between the dispersion equations for parallel

r
and perpendicular polarization, the resulting wavenumbers K”

and KL are
in general different.
The truncation size of both T and M is varied till convergence is obtained.
.' The computation 1s more time consuming than for the case when l:o = : because
an additional summation on the azimuthal index is involved i.e., the azimuthal
modes are no longer uncoupled. This involves the storage of fairly large
matrices. Typical computation times for an oblate spheroidal dielectric

~

scatterer of aspect ratio 2:1 with e&::aso.nd € =1 for a given w nO and ko is 60

1

Secs after the program has been tested for the correct matrix size.

. We now present results in the form of plots of K K2 and <e> = eg_ +1i ¢ -4

li R I’
the real and imaginary parts of the effective dielectric constant as a function

AR
of k a= w a/c, ﬁo (0.,B0) and ¢ = n_ L a3/3 where 'a' is the semi-major jﬂjﬁ

axis of the oblate spheroid of aspect ratio 2:1, and 1.25:1. We recall

o that <€> = K2/k2.
In Fig. 1, the phase velocity Re(k/K) is plotted as a function of
frequency for both parallel and perpendicular polarization for o = 58.3° and

" ¢ = 0, 21.There is approximately 2% difference between the two cases except
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at ka ~ 1.7 when a cross-over occurs. In Fig. 2, the attenuation given by
Im (X/k) is plotted as a function of ka for both parallel and perpendicular
polarization for a = 58.3° and ¢=0.21. There is approximately 2% difference
between the two cases except at ka ~ 1.7 when a cross-over occurs. In Fig.
2, the attenuation given by Im (K/k) is plétted as a function of ka for
both parallel and perpendicular polarization for o = 58.3° and ¢=0.21. Also
included in the figure is the attenuation for o=0 and aspect ratio 1.25:1.
In Figs. 3 and U the attenuation is plotted as a function of o varying from
0° to 90°. The attenuation is a slowly varying function of o and is maximum
for 0=0°. 1In Fig. 5, the attenuation and Re<e> are plotted as a function of
angle o for parallel polarization, ¢=0.052and ka=0.05 for an aspect ratio -
1.25:1. In Fig. 6, the real part of <e> is plotted as a function of fregquency
(ka) for several cases. The phase velocity for o=0° and a:b = 1.25:1 is
significantly higher than the other three cases considered.

In Fig. 7, the complex plane plot of the effective dielectric constant
is plotted for both parallel and perpendicular polarization for a/b = 2.0
and should be compared with Fig. 8 for a/b = 1.25. In Fig. 9, the complex .
plane plots of <e€> are shown for 0=58.3° for parallel and perpendicular ‘

polarization. Figure 10 shows the comparison of our results with those by other methods.;lj

In conclusion, we have demonstrated a scheme for computing the complex
propagation characteristic's of a medium that is effectively anisotropic.

Although, the effects are not dramatic, there is significant (measurable)

et .
hendhdnd d e

difference between the results for parallel and perpendicular polarization. The
effect of polarization is more significant than that of propagation direction. i;fn
Finally we have also discussed how our dispersion equation for a medium
with pair corfelated aligned scatterers compares with Twersky's equation

for the same system.
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FIGURE CAPTIONS

Plot of phase velocity vercus normalized wavenumber for a
distribution of aligned spheroids for wave propagation at Q= 58.5

for both parallel and perpendular polarization of the waves.

Plot of attenuation versus normalized wavenumber for a distribution

(o]
of aligned spheroids for wave propagation at a= 58.3 and a = 00.

Plot of attenuation versus direction of wave propagation for

aligned spheroids, parallel polarizatiom.

Plot of attenuation versus direction of wave propagation for

aligned spheroids, perpendular polarization.

Plot of attenuation and the real part of the dielectric constant

of wave propagation in aligned spheroids.

Plot of the real part of the dielectric constant versus normalized

wavenumber for aligned and randomly oriented spheroids.

Complex plane plot of the dielectric constant at different frequencies

for aligned and randomly oriented spheroids.

Complex plane plot of the dielectric constant at different frequencies

for aligned spheroids.

Complex plane plot of the dielectric constant at different frequencies
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2
functions (Hankel functions) and functions regular at the origin (Bessel
functions). We dispense with vector notation and the abbreviated index
may denote n > T,2,m,0; T = 1,2,3;% €lo,#]; m € [0,2]. Thus the present
discussion can apply equally well to acoustic (T=l only), electromagnetic
(t=2,3 only) or elastic (t=1,2,3) wave propagation.

At a field point ; in the host medium, the incident, scattered and
exciting fields are expanded as follows,
o, ->
= R
u(r) =t a Re wn(r) (3)
with for example
. ~%
a =1 ch(ﬁo) (%)

for plane acoustic waves propagating along Ro and YQmO are spherical harmonics;

e >y _ i +_—> . —::»
u; (r) =Z a Rey (r-r ); | z r, | < 2a (5)
and
S F) =L tfouy F-F); | F-F > 2a (6)
i nn i i

' is the radius of

where ;i denotes the center of the i-th scatterer, and 'a
i i

the sphere circumscribing any scatterer. The coefficients f; and dn are

unknown but are however related via the T-matrix, which can be numerically

calculated for scatterers of arbitrary shape using “aterman's extended boundary

condition method.18 Thus,

f‘.=ZA,T.a, (7)
where we have assumed that all scatterers are identical.

Substituting Egqs. (5) = (7) in (2) and using the translation-addition
theorems for spherical wavefunctions and the orthogonality properties of

spherical harmonicsl3, we obtain
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INTRODUCTION

Studies of wave propagation in discrete random media is of interest in

acoustics, elastodynamics and electromagnetics and dates back to the studies of

Rayleigh. In more recent times Foldyz, Laxl, TwerskyS-lo, Vezzetti and
Kellerll and Bedeaux and Ma,zur12 have made significant contributions to
13-17

our understanding in this area. Computational techniques that have
been developed to solve the dispersion equation in dense random media at

wavelengths comparable to scatterer size, are for the most part based on

Refs. 1-12.

THE QUASI-CRYSTALLINE APPROXIMATION

Consider wave propagation in an infinite medium of volume V + ® containing
a random distribution of N scatterers, N + « such that n, = N/V, the number
density is finite. Plane harmonic waves of frequency w propagate in the
. . . tot o] e s
medium and undergo multiple scattering. Let u y U, u, and u; denote
respectively the total field, the incident field, the field exciting the i-th

scatterer and the field scattered by the i-th scatterer. Then self consistency

requires the following relationships between the fields.

tut o J s e

u =u + 2 u, =u, + u? (1)
. i i
i=1
and
u? =% + 7 u? (2)
i . 4s
J#1

Although a general dispersion equation can be derived as in TwerskyS_T,-
in order to obtain explicit results for particular shapes of scatterers, one
has to expand the exciting and scattered fields in a convenient set of basis

functions, such as spherical wavefunctions. Let ;:wn generally denote outgoing

LI W T W Y

- . -
A
PP R 2 S
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THE QUASI-CRYSTALLINE APPROXIMATION AND MULTIPLE
SCATTERING OF WAVES IN RANDOM MEDIA

Vasundara V. Varadan and Vijay K. Varadan
Department of Engineering Science and Mechanics

The Pennsylvania State University
University Park, PA 16802

ABSTRACT

The Quasi Crystalline Approximation (QCA) was first introduced by
Laxl to break the infinite heirarchy of equations that results in studies
of the coherent field in discrete random media. It simply states that the
conditional average of a field with the position of one scatterer held
fixed is equal to the conditional average with two scatterers held fixed
i.e. <w>ij = <w>i. The QCA has met with great success2 for a ;ange of
concentrations from sparse to dense and for long and intermediate wavelengths.
In this paper, the QCA is interpreted as a partial resummation of the multiple
scattering series that includes only two body correlations. An explicit
expression is derived for the propagation in such a medium that yields

the same dispersion equation as obtained using the QCA. Improvements

to the QCA are suggested that still require only a knowledge of the two

body correlation function.

- -3

K

-

RIEAE!
8

LY

<N

SO0

B

SN

T

.3

.Y

9

DR

LT Tt S O T SR TP U B e TS P I S

e et T e T e e N T T T T e e T T e T T T T T
PPN LA RPN, d RPN P DA A VR R TR P P P e i T P PR Sy bl ol - £a Py




VARADAN ET AL.: COHERENT WAVES 1449

part of dielectric constant (Re &) is always less in the
case of random orientation for the frequency range
considered. At higher frequencies. there is a remark-
able difference in the behavior of dielectric properties
as depicted by 'F 1gures 3 and 4.
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Fig. 2. Coherent attenuation vs. ka for spheroidal ice particles:
solid lines parallel orientation. dashed line. random orientation:
a/b = 2.0 (c is the effective spherical concentration).

differentiation with respect to the argument. The ex-
pressions for a and b occurring in (14) are related to
the Wigner 3-j symbols and are given by Cruzan
[1962]. Now the singular value of the coefficient
matrix generated from (14) can be solved for the
average propagation constant K = K, + jK,. The
real part K, is related to the phase velocity while the
imaginary part K, is related to the coherent attenu-
ation. Once K is known, one can also compute the
normalized average complex dielectric constant as
given by

2 =c* + je* = (K/k)? (16)

COMPUTATION

The procedure for computing coherent attenu-
ation. phase velocity and average complex dielectric
properties is similar to the one presented by Varadan
and Varadan [1980]). For a given value of ka. the
T-matrix of the scatterer is computed. A proper. T-
matrix size is chosen for a given ka to satisfy the
unitary and symmetry properties. Retaining as many
as 20 simultaneous equations for Y and Z in order to
obtain proper convergence, we computed the com-
plex determinant of the coefficient matrix corre-
sponding to Y and Z of (14a) and (14b). The roots
(K = K, + iK,) of the resulting transcendental equa-
tion are obtained by Miiller’s complex root searching

_ﬁm‘ Ty

'''''

VARADAN ET AL.: COHERENT WAVES

algorithm. We start from a low value of ka(=0.01)
for which the values obtained from Twersky [1978]
are used in our root searching algorithm. The values
of ka are increased by small increments of the order
of 0.05.

For illustration purposes, we have presented
sample calculations only for concentration ¢ = 0.2.
The c refers to the effective spherical concentration;
actual oblate spheroidal concentration equals to 0.1
for ar aspect ratio a/b = 2.0. In Figures | and 2, the
coherent attenuation is plotted as a function of ka for
oblate spheroidal ice particles in free space with
a/b = 1.25 and 2.0, respectively. The solid curve cor-
responds to that of aligned scatterers when the inci-
dent wave with vertical polarization is along the
symmetry (minor) axis of the scatterer (8 = 0°), while
the dotted curve corresponds to that of randomly
oriented scatterers. At higher frequencies, the results
indicate that there is a significant difference in coher-
ent attenuation between aligned and randomly ori-
ented scatterers. For vertical polarizations, one could
also perform computations when the wave is incident
along symmetry (major) axes of aligned scatterers
(0 = 90°). The corresponding attenuation in this case
is lower than that of the randomly oriented case. In
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Fig. 3. Complex piane locus of the effective dielectnic constant
for a system of spheroidal (a:h = 1.25) ice particles: solid linas
parallel orientation: dashed line. random ornentition (¢ is the ef-
fective spherical concentration).
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Thus, the actual concentration may be quite different
from the effective spherical concentration for scat-
terers of large aspect ratio. For an exact calculation
of a very dense system, assumption of spherical sta-
tistics for nonspherical particles may lead to con-
siderable error. Twersky [1983] has considered non-
spherical statistics for spheroidal scatterers in the
sparse concentration limit. Extending this model to
dense systems and numerically implementing it for
high frequencies will be a problem of interest to the
research community.

Performing the configurational averaging and in-
voking the quasi-crystalline approximation as out-
lined in Twersky [1978] and Varadan et al. [1979,
1980], we obtain the average scattered field coef-
ficients as follows:

[(B.‘...X]____[(T“) <T'2)][<¢'i.-.>] (10)
{Comdi (T T L hm?

where
, 2 + 1 ern
; = —— " — [ 1), -
<wn|n||> n‘(n‘ + l)’ 2' [ "y, 1 + n[(nl + )6 1. l]
1 N © ny
+= Z’ Z Z [(anuuu)B::::(rl - 'j)
4 j®s1l m=0 mym -ny JV'
+ (C{,,_,)C‘.}:}(r, ~r)lglir, — r;|) dr; (e
and
. 2n, +1 e
mymy? = " —— [0, 1 + iy + 16, _4]

nn, + 1) 2

l N T ny
+72 L I | KBLCRmn~-T)

ji=1 9220 my= ~n3 JV'

+(Chom ) BRTHT — 1))l T, — ;) (12)
In (11) and (12), V' denotes the volume of the
medium excluding a sphere of radius 2a. For identi-
cal scatterers, Y ;L, = N — | and 4n(N — 1)a’/3V =
¢. the volume concentration of “scatterers,” provided
N is large enough.

To find the average propagation constant K for
the bulk medium, we assume a plane wave propagat-
ing with the effective wave number K in the incident
wave direction with unknown amplitudes Y and Z:

(Bid, = Yoo

; . (13
(Comdi = Zome™™

Equation (13) is substituted into (10) and the extinc-
tion theorem can be invoked to cancel the incident
wave term on the right-hand side of (11) and (12).
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L ¢ 02 4
'I
16t L / i
acaw Im{K) - ]
Reli) [ ]
Ly 1
: %
‘dl i S |
[] [+8.} -0 -5 20

ka

Fig. 1. Coherent attenuation vs. ka for spheroidal ice particies:
solid line, parailel orientation; dashed lines random orientation:
a/b = 1.25.

The resulting equations are

LI Y © £l

Yom = z )

¢=a1~n2 # =0 n2=0

.Z' E (— 1) ™G, W H),
= —ay wpe—mg

KT Dy @Ry 1y, gl 1y [ =y, ()

=Ty DNz, 1y, Qhalmy, nyt —mynylq,q — 1]

+ 2 i [<T' ) pmym @25 1y, Qhalmy, 13| — my, 7yl q)

AT i PR3 1y, Qalmy, ny | —my, nilg,q — 1]}
(14a)

and

Zy = (14b)

where (14b) can be obtained from (14a) by replacing
(T''y and (T'?) by {T*'> and (T??). respectively.
The term (JH), is given by

(JH), = [2kaj(2Ka)h(2ka)

6¢
ka)® — (Ka)?
— 2Kah (2ka)j{2Ka)]

+ 24c f 'xz[gix) — 11h2kax)j(2Kax) dx (15
1

In (14) and (15). j, and h, are the spherical Bessel and
Hankel functions, respectively, and the primes denote
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we obtain, see Varadan et al. [1979] and Varadan
and Varadan [1980],

2n+1 Ll
T[S, + i+ 16, ]
-1

bnlil P

" nin+ 1)

N © a
+ Z' z z [B:m]B:'-.'('t"‘ g

J=t ;=0 my = —-m
+ CROCUM(r, — 1)) Q@

. 2m+1 et
L1 - S 5 { _
L] "n + l)l 2i [ L9 + ”(" + )Ju. l]

+3 Y Y [BRUCRMn-—t)

j®l a1 =0 my = ~n;
+ CoPBRMr, — )] 3

where Y denotes j # i, J,, is the Kronecker delta,
and k is the wave number of the host medium. B and
C are the scattered field coefficients, while b and ¢ are
the exciting field coefficients. The quantities BR\"
and Co.™ are the functions resulting from the trans-
lation theorem of the vector spherical functions.

We introduce next the T-matrix of a single scat-
terer which relates the scattered field expansion coef-
ficients to the exciting field expansion coeflicients as
follows {Varadan and Varadan, 1980]:

()-[r )Q-m()- @

For aligned scatterers, if the T-matrix is computed
with respect to xyz axes, then the T-matrix of all the
N scatterers is the same. However, if the orientation
of each scatterer with respect to the xyz axes is de-
fined by the Euler angles x;, B;, v:, then the T-matrix
of the ith scatterer is a function of the Euler angles
and is defined by

T=Dp1D" (5)

Here. T'is the T-matrix of a scatterer evaluated with
respect to the set of coordinate axes natural to the
scatterer (X YZ axes) and is independent of position
and orientation (hence, the same for identical scat-
terers) and D is the rotation matrix given by Edmonds
[1957], i.e.

Dol B. ) = €™dy (Ble™" )

where

_ 1.2 LAL
Ao B) = [_____—(n + min = m)! ] (cos E)

(n + m(n —m)! 2

: <sin g) Pl = micos ) N
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In (7), P is the Jacobi polynomial which can be ex-
pressed in terms of the associated Legendre poly-
nomials [see Edmonds, 1957].

The T-matrix averaged over all possible orienta-
tions of the scatterer may then be written as

i 2 2% x )
(Towm? = WJ; da J; dy J;dﬁ sin B

“ Y (Do B N o s D™ Vgl B, )]

L IR )
1
n+1

If (2) and (3) are multiplied by (T) from (8). we
obtain a set of coupled equations for the scattered
field expansion coefficients which are averaged over
all possible orientations.

Thus, only the diagonal elements of the T-matrix
of a nonspherical scatterer contribute to the average
T-matrix. This has also been observed by Twersky
[1978]. We note here that aithough the scatterers are
nonspherical, because of their random orientations,
the medium is effectively isotropic and is hence
characterized by an isotropic dielectric tensor.

It remains now to perform an average over all
possible positions. To this end, one can introduce a
probability density function of finding the first scat-
terer at r,, the second scatterer at r,, and so forth by
plry, ry, - -+, ry) which in turn may be expressed in
terms of conditional probability, pir;|r,), of finding a
scatterer at r; if a scatterer is known to be at r;. The
two point joint probability function p(r;ir;) is in turn

o One (8)

defined in terms of radial distribution function
gl r; — r;]) as follows:
1
P",'I"i)=7y“rj"'.‘|) ir;=v|22a
0 [rj=r]<la {9)

Here, V is the large but finite volume occupied by the
scatterers and 2a is the largest dimension of the scat-
terer. Several models of g(r) are available and are
briefly outlined in Varadan et al. [1983]. The radial
distribution functions obtained by using the self-
consistent approximation which is a linear combi-
nation of the Percus-Yevick and Hypernetted Chain
approximations seem to be good for a wide range of
concentrations, and are also used in our compu-
tations here. It must be noted here. that our model
assumes that although the particles are nonspherical
with respect to an incident wave, statisticaily each

particle is equivalent to a sphere of diameter equal to .

the largest diameter of the nonspherical particle.
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Coherent electromagnetic wave propagation through randomly distributed
and oriented pair-correlated dielectric scatterers
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Coherent attenuation of electromagnetic waves by randomly distributed and oriented pair-correlated
dielectric scatterers is studied as a function of frequency and volume concentration of scatterers.
Average frequency dependent dielectric properties are also studied. The results indicate that the attenu-
ation and hence the effective properties differ considerably from those of aligned scatterers.

INTRODUCTION

In our carlier papers Bringi et al. [1982a, b], a
multiple scattering formalism was given for the scat-
tering and propagation of vector electromagnetic
waves in a medium containing three-dimensional,
identical, dielectric scatterers randomly distributed
but having a single preferred orientation (aligned
scatters). The extended integral equation or T-matrix
method developed by Waterman (see for example
Varadan and Varadan [1980]), in conjunction with
suitable statistical averaging procedures and pair-
correlation functions had been employed in such a
study. Analytical dispersion relations were obtained
at low frequencies in terms of the T-matrix of a
single scatterer. At higher frequencies. numerical
values of coherent attenuation and complex effective
dielectric properties were presented for spheroidal
scatterers for various concentrations when the inci-
dent wave propagated parallel to the minor axis of
the scatterers. The computed results were found to be
in good agreement with experimental findings of Ishi-
maru and Kuga [1982] as depicted in our paper
[Varadan et al., 1983]. We also cite the work of
Tsang and Kong [1983] who have used exactly the
same formz'.sm for spherical scatterers.

In this paper, we extend the treatment to randomly
oriented pair-correlated scatterers. For randomly dis-
tributed and oriented scatterers, two averages have
to be performed. an ensemble average over the posi-
tions of the scatterers and the second an average on
the T-matrix of a scatterer over orientations. Coher-

Copyright 1984 by the American Geophysical Union.

Paper number 450970.
0048-6604. 84. 0045-0970%08.00

ent attenuation is studied for dielectric scatterers in
free space for different scatterer concentrations and
range of frequencies. The results are compared with
those obtained for aligned scatterers. At higher fre-
quencies, the results indicate that there is a signifi-
cant difference in phase velocity and attenuation be-
tween aligned and randomly oriented scatterers.
Average frequency dependent properties are also pre-
sented in this study.

OUTLINE OF THEORY

Consider an incident electromagnetic wave propa-
gating along = direction in an infinite lossless. back-
ground (host) medium of ¢, . uo containing a random
distribution of identical randomly oriented N
number of dielectric nonspherical scatterers of &, u,
which are referred to a Cartesian coordinate system
xyz. Let XYZ be the set of coordinate axes natural
to the scatterer. For spheroidal scatterers, for exam-
ple. the XYZ axes coincide with the symmetry axes
of the spheroid.

The total electric field at any point in the host
medium is the sum of incident field and the fields
scattered by all the scatterers. The field that excites a
given scatterer, (say. the ith scatterer). E{, however, is
the incident field, E™, plus the fields scattered from
all the other scatterers. E:

A
Efn=E™n+ YEr-r)

1%

(h

where r and r, are position vectors of the observation
point and the center of the jth scatterer. respectively.
Expanding all the fields in terms of vector spherical
functions as a basis and employing the transiation
theorem and the orthogonality of the basis functions,
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‘ -
_i where ’
> - _ t > > > >
ouy (FF)) = By oy, GyFp)  rew GF) (©)

and Onn' is the translation matrix for spherical wavefunctions. u

Equation (8) is averaged over the positions of the scatterers to yield ’
an equation of the form
<ai>i= ari1 + 04 L Tn,n..fcrnn,(?J-?i) <ai">ij p(—;j [?i)d?j (10) i
where
>
ai =a eikﬁo°ri, B
»
p(;jl ;i) is the conditional probability distribution and <oc;];,,>ij is the ‘;
conditional average of ag" with the positions of both the i-th and j-th j;
scatterers held fixed. %;
It is obvious that Eq. (10) results in an infinite heirarchy because s
<ag">ij is rela£ed to <0L§>ijk and so on. The QCA first invoked by Lax2 and j&
also independently by Twersky3 simply states that g-
<0Lj,,>.. ~ <0tj..>. (11) ;.l
n" iJ n J o
i.e., the conditional expectation of ai is independent of the position of ;:
the i-th scatterer. This would be an exact statement if the system was i
perfectly crystalline,because, in this case the position of every scatterer in ii
the system is fixed and the neighborhood of every scatterer is the same. ;
‘I‘wersky3 has commented on the connection between the QCA and partial sums of ?
the multiple scattering series. The QCA neglects back and forth scattering i
between a fixed pair of scatterers, thus in ‘any term of the multiple scattering :
series, each scatterer appears only once and only two scatterers participate )
in a given scattering process, i.e. this would require only a knowledge of
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two body correlations. In the next section we make this more clear by a
diagrammatic Trepresentation of the multiple scattering series.

Substituting Eq. (11) in (10) and noting that

0; |T,-r, | < 2a
;] Jil

-> ->
p(rjl r ) =
1 > . -> - ->
;‘S(lrij 1)s Ej-ril Irij | > 2a (12)
we obtain
i _ i > J -> >
<OLn ITe TR Tn'n" %an' (rij)<an" 3 & ‘rij') er (13)
V-v

In Eq. (12), g(x) is the radial distribution function assuming spherically
symmetric statistics even for non spherical particles, i.e. the exclusion
volume of the impenetrable particles is assumed to be spherical. In Eq. (13),
the summation convention is used, and if the particles are identical 23 = N-1zN
when N is large and v is the exclusion volume equal to hn(2a)3/3.

We now assume that the average field in the medium is a plane wave
propagating in the direction ﬁo of the original plane wave in the host medium,
however, the average field propagates in an effective or average medium which is
homogeneous and characterized by an effective propagation constant K = K_+iK

1 2

which is complex and frequency dependent. Thus

<a;>.=x et Ty (14)

A > A~

iKk * r, ikk * r, iKk -r, iKk -r
Xe © 1=Ae © l+n L e ° l{fo |(; e ° ji‘*
n'n nn ij dr
X " V-v j

n
L iKk T (15)
+ Xy J %o (Fyyle ° [jjf T..|)-1] dr, }
-v SARRES J




DA A R A B iy .

T Coat Wt . e -’ - - - L e v

The second term on the RHS of Eq. (15) can be converted into a surface integral
using the divergence theorem and surface integral on S, which defines the
boundary of the system,cancels the incident wave term on the RHS of Eq. (15).

Thus Eq. (15) simplifies to
24"
Y Dnn, ()x)[2kaj>\(2Ka)h)'\(2ka)—2Kaj}'\(2Ka)h>\(2ka)]

Xn = no n n"X "
e

[&(x)-114y (Kx) b, (kx)x"dx (16)

) +
K; Vv

c where Dnn,(k) is the vestige of the translation matrix after the spatial and
*. angular parts have been absorbed in the integration., Different expressions

result depending on whether we are discussing acoustic, electromagnetic

or elastic wave propagation. Equation (16) can be rewritten as

(8 =M ,)X

nn nn n' - 0 (a7) j:z

The dispersion equation for the effective medium is then simply

‘ ‘Snnv - Mnnl l(k,K,no,v,T,g) =0 (18)
which depends on k=w/c, the effective wavenumber K, the number density T

no, the exclusion volume v, the T-matrix or the scatterer characteristics

and a model for the radial distribution function. By assuming values for

s

all variables but X, the determinantal equation can be solved numerically

- to yield the value of the effective propagation constant.
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MULTIPLE SCATTERING SERIES
n- If we substitute Egs. (8) in (5) and then(l) and iterate we obtain
the following:
tot > o, -> > i o> > -
- u’ (r)=u (;)f%ouwn(r—ri)Tnn,an' + ig'ouwn(r-ri)Tnn'on'n"(riJ)Tn"n”'an"'
-> >
LAY - - e o - - - - -
+ ?; z ouwn(r ri)Tnn' + (19)
ij k

Equation (19 can be averaged over the positionsof the particleé to yield
tot > o,> > > i + (=
< > = + -
u - {r) u (r) § Tnn' ouwn(r ri)anp(ri)dri

S + ' T +T
y [ 1j nm' n

|

oW (FFp)a 0 () s B(E) oG | F))dF dE, (20)

J

+ - - - -

We note that Eq. (20) involves all orders of joint probability functions.

Each term in Eq. (20) represents beginning with the second term, scattering

from one inhomogeneitys at a time scattering from two inhomogeneities at a time etc.

We note that sums of the form ZI'Z' involve the selection of three particles

ij k
. at a time from N particles, the prime on §' indicates j # i, L' indicates L. 9
. k #J but k =i is permitted, i.e. particle 'i' can participate in the 3 -3
:: ﬁ_ body process more than once. Thus the three body process can include any
) - !

number-of scattering in any order between the three objects. .

Equation (20) can be rewritten in a different manner, defining the T-

. . Coat )
LS T S WL

matrix of 2, 3, 4 etc.particle configurations. Denoting by T(2), T(3),

T(4),etc. the T-matrix of 2, 3, b particle configurations we get

ASL ST
— -




«wPPF)p = O(r) + nf;uw(';.;’o (1) &' p(¥ JaF,

+ N(N-l)fouw(;-;') T (2) a' p(l,.Z')d-ztld.r’2
2

(21)
. + N(N-l)(N-2>j'ouw(?-?' )T (3)a'p(1,2,3)dr, dF,dF,
| T
+ - - - -

where r' denotes the common origin for the multiple object configuration
p(1,2,3...) are joint probability functions. We must note that in Eq. (21),
the T-matrices must be included under the integral sign unlike Eq. (20) because
T(2), T(3) etc. depend explicitly upon the relative position of the particles.
To solve Eq. (20) or (21) is a formidable task and it is not surprising

that the QCA was introduced at an early stage by I_.za,xl and Twersky3. To

l show the connection between Eq. (20) and Eq. (16) we now place some severe
restrictions on the allowed multiple scattering processes. First of all we
require that each particle can contribute only once to any term of the

‘ multiple scattering series. Further we do not permit any back and forth

_scattering between a pair of scatterers. Finally only two body correlations

are permitted so that the restricted form of Eq. (20) can be represented

-- diagrammatically as - ?

<ut0t(—1>')> - uo(‘;) + é__‘_é_ + (___m—«-
(22) - s
+ é_m—é- + == 7 :;ZEE;_':

whereé’ denotes the incident plane wave, ® denotes a scatterer, o<€—e@
1 2 O

denotes scattering from particle 2 to particle l,ﬁ denotes the correlation i
1l 2 AR

)

.,

.
’\.




between the positions of particles 1 and 2 and finally gh'if denotes

“ the propagation from particle 1 to the observation point -1*' In equation (22)
& will be replaced by a.n, each 0-(0 will be replaced by TOT where O

the translation matrix accounts for the propagation of waves from one scatterer
to another gnd 1 > will be replaced by p(1,2). Hence the explicit form

of Eq. (22) is then
«®F)» = w0 F) + Nu[ouW(r-rl)Talp(rl)&;l
+ N2 ouy(r-r_)To(r )Tazp(l 2)dr.dr
1 12 ’ 12

(2,3)

. Nif;uw(r-rl)To(rlz)p(l,e)To(r23)p

3
Ta drldredr3 (23)

+ Nt[;uw(r-rl)Tc(rle)p(l,2)To(r23)p(2,3)T

o(r3h)p(3,h)Tahdr .dr,

1
- - -
{
' In Eq. (23), we have removed the restrictions in sums like Zg'z'
ij k
etc. by noting that p(1,2) is automatically zero if r2=rl. Any inaccuracies
introduced by this procedure becomes smaller as N + ., For spherical
' statistics, we note that
L. p(1,2) = p(r.,r,) = = g( [e.-r,|) =
pley)=g s PRS0 T PArpTo) =y 81T s
[ N
We now introduce spatial fourier transforms of the translation matrix - m

and the radial distribution functions and denote them by T (k) and

z(k) respectively. Using the convolution theorem, Eq. (23) can be simplified to




T — P———— T

<% (r)> = u°(r)+nJouw(?—?l)T{l + nOOg(K) T+n§o-g(?.)'rog(?)fr

(2k)
* 0B RBEEGEET + - - =) e ¥ 2 a2
where
ow® = Joatl T Dei¥iy (25)

The terms on the RHS of Eq. (24) can be summed formally and we can rewrite

Eq. (24) as
tot ,»> > > >
<t (r)> = () + ouwn(r-rl)Tnn.
(26)
k- (r,-1,)
o(r, ~-r
e JYNU B A M- e
no‘!{l—noog(K)T} e a w dKdr.dr,

This new form of the average field can be interpreted as an incident
plane wave propagsting through an effective medium of propagation constant

K and propagator {l—é%f}—l undergoing scattering from a particle at T
(n
o

and then propagating to the observation point r with the wavenumber of the

host medium. In Eq. (26) we note that

. > > > >
iKe(r, -r iKer
2" 2 _ 1
any = e a n
n n

e

so that if

- nO@T}'l(To = H(&) (27)
then

tot > o] > > - C -5
<u >=u +0n {oup (r-r') T H ‘r')a ,dr'
(r) o) an( ) nn| n'nn / nn

The dispersion equation in the model medium are given by the zerces of
ﬁ'(K) which yields the effective propagation constant of the medium. We
recall that the propagator in the host medium has a Fourier transform of the

form 1/(k24»2/c2) which has a pole at k=w/c. The poles ©Of the new propagator

a
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are then detgrmined by the roots of the determinantal egquation

1-nOEE (x)T| = o. (28)

We observe that Eq. (28) and Eg. (18) are identical since

Mnn'(k,K,no, v, T,y &)

(29)

=no Unnng(K) Tn"n'

Thus the QCA is exactly equivalent to summing the class of multiple
scattering diagrams denoted in Eq. (22). This has also been qualitatively
discussed by Twersky3. We can now proceed to improve the QCA. Since we
are somewhat limited in our knowledge of the higher order correlation functions
at the moment we will restrict ourselves to improvements that do not require
knowledge of higher order correlations.

We start with Eq. (21), which is a multiple scattering series written
in terms of the T-matrix of clusters of particles which are then averaged
over the positions and relative spacing of the particles in the cluster.

We begin by noting that T(2), the T-matrix of a two particle configuration
depends only on the relative position of the two particles and takes the form,

18)

(see Peterson and Strom

~—

©(2) = Relo(3 ) (1 ~ o (5,5 )10 (b, -b,)T1 ™ 14,5, )TRe (0B, -5,))]

Re(O(;Bl)): + {12} (30) 5;5-

-> - .

where the second term is obtained by interchanging Ol and 02, El’ 52 are S

the positions of the two particles relative to a common origin which is -ib
-

- > >
located at r' i.e., r, = r' + pi, i=1, 2. T

Terms of the form (1-0ToT)™1 denote repeated back and forth scattering o

between particles 1 and 2. In addition to other more complicated terms,
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these 'ping-pong' terms are explicitly neglected by the QCA. The QCA

can be improved by including these terms in the multiple scattering series.
The price is not too great to pay since only a knowledge of two particle
correlations is still required.

The 3-body T-matrix must be simplified as follows:
T(3) = 7(1,2,3) = T(1,2) T(2,3) (31)

We note that we have neglected terms of the form T(1,3) since particles
1 and 3 would appear out of order in the chain and hence prevent us from
summing the series using convolution techniques. The 3-body Jjoint probability

function is approximated as follows:

p(1,2,3) = p(1)p(2 [1)p(3]2) (32)
which we note is different from Kirkwood's superposition approximation for
the 3-body correlation function.

Using Eqs. (31) and (32) and similar approximations for the higher

order terms, Eq. (21) can be written as

« ot ;o)> = u°+§/;uW(O,l)Ta'p<l)drl

+N2fouw(o,1)qr 0(1,2)7 [1-6(2,1)T 0(1,2)117" p(1) & p(2]1) ar.ar,

3 -1 (33)
+8°[ ouyp(0,1)T o(1,2)T [1-0(2,1)T o(1,2)T] ~ o(2,3)T
[1-0(3,2)T0(2,3)7) L &> p(1) p(2]1) p(3]2) drl dr, dr,

P e - - - -
Let

T(1,2) = 0(1,2)T [1-0(2,1)To(1,2)T]'l

> >
which is a function of rl r2 only.
We denote by > > > )
ike(r_ -r
n, T(1,2) &(21) (k) =wa(1,2)p<2|l>e bo%a,r) (34)

R SN
.....
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then
<« t(re)> = u° +-j;uw(0,l)T (1 - nOT(l,2)g]-l(K)
(35)
R o 2> > >
elk (rl-re) a drl dr2 dK

The major difference between Eq. (26) and Eq. (35) is that 0(1,2)T
has been replaced by o(l,e)T[l-c(z,l)Tc(l,e)T]‘l. The hole correction
integral is not as simple as before since a complicated matrix inverse

also enters the integrand. The propagation constant for this improved version

of the effective medium are determined by the zeroes of

|1 -0 T(1,2)e(k) | = 0 (36)
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CONCLUSION

In this paper we have shown that the QCA is a partial resummation
of the multiple scattering series that omits back and forth scattering between
fixed pairs of scatterers. An expression for the propagation in such a
medium is derived whose poles are the same as those obtained by solving
the roots of the determinental equations obtained invoking the QCA.

The difference between Eq. (28) and Eq. (36) can only be tested by actual
computation of the effective wave-number for a given system. The QCA has
already met with much success in explaining the experimentally measured
attenuation of electromagnetic waves for a distribution of latex spheres in
water for concentration up to 407 and wavelengths comparable to scatterer size.
It may be reasonably asked if any improvements can be achieved by including
additional multiple scattering processes as in Eq. (36). A logical way to
answer this before implementing improvements on the QCA in the multiple
scattering algorithm is to study electromagnetic scattering from a fixed pair of
scatterers as a function of frequency varying the distance between the scatterers
and the material properties of the scatterers with respect to the host. This
will give us important insight as to the importance of such processes in

wave propagation in random media.
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race Cross Correlation Function of Successive Scattered Fields

ross Correlation

Consider two sequences of scatterers {jl,jz,...,jm} and {kl,kz,...,kn},
hich do not overlap each other, and do not repeat in each series, f.e. no
ny pair among jl"'°jm’k1""’kn is equal. The space cross correlation
unction of the successive scattered fields pjl...jm(4) and pkl...kn(r)

s defined by
kl...kn
K (r),15) =¢‘[oj1

Jyoedp

...jm(rl)pk .kn(rz)} (5.1)

1°°

here 8 is the mathematic expectation operator.
Let S, ,S, ,...,S, be the rezions occupied by j th,jzth, ceey j”~
I 3 Im L -
icatterers with mass center at origin, respectively. Thenwith rather high

iccuracy we can make the following approximation

~ik(p, ) '

b 1 ] P 1
u(oj +r') = w(oj e 3 , pr'e SJ. (5.3)
1 1 1
05149 41
L J141 r!
Sk o
(. - p. +ri, k, 6,0 = [ (o, - o, ,ki,ej de Ji+l T34
NETS IR ¥} I3 Jim1 34 i
r!lesS, , i=1,2,...,m. (5.4) :
1 3 o
Thea (3.15) can be simplified to 3
r r 2L B
L (r) = W(p, -0, ,k (0. ),8, ) (o, -p. , 1712—— 8, ) -
Pipooigg ) = V0 ) TR, "0 b (g 010y 0 TRy 70y, P, 71,1 I ]
]
Ps.=05 03 -0+ e
33732 Jm-1 “Im-2 ]
r(p -0, ,kI 3 e. ) oo r(p -0, Py ‘l\ K e- ) (5-5) - P
14 337 133 ijI 13 jm Im-1 !pjm_l Pim-21  Im-1 S )
o
8} -Dj _ )
l—'(rm_ojm, k.'%n__il__l , ej )
jm~Pim-1 m _
. e e it e U g o
o T S e e '1'-';'--l‘f;-‘;'-';’-";3-;3'."3'.'};;f::l‘;'-:';'-:'--:'--:1~‘;'.-';I-'.'l-"1-"3'-‘-l—‘-‘
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[f we note that

) =R

[\ D¢

when i=n. (4.20)

i+k 3

°1+k

Figure 7 shows the case of i=n-3. The shaded area denotes the region

n-1i

C
e k=lDDi+k(ei’ei+k)

It can be proved that if any one of the following conditions

1 Om<<a, where Om is the maximum deviation of the surface of each
scatterer with a spherical surface, which encloses the same volume as a
single scatterer, a is the radius of this sphere.

2 V1;f<1, where V is the volume of a single scatterer, Ym=max{Y(o),p€R3}~

3 9 <<11, where 0 is the standard deviation of random vector ej:

2 2
o = [61]6.-G10.1] nt (4.21)
3 3
is satisfied, then (4.19) can be simplified to )
n-1i
= yY(p,) =c
Flopsenesp s 8150es8)) TT Fg0) —17 o i)X(oi, N Dpi+k), (4.22)
i=1 k=1
where D . R .
Piek 18 the mathematical expectation of Dpi+k(ei, ei+k) as defined

by a similar expression as (4.14). The conditions 1, 2 and 3 mean that
respectively:

1. the shape of each scatterer closes to sphere,

2. the scatterers in space are not very dense, and

3. all the scatterers have about the same orientation.
It should be noticed that, equation (4.22) holds as long as only one of

these conditions is satisfied. 1It, however, does not require all’'of then

are satisfiéd.

............ .o - e e e et et et S TP
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Again, as in Part II[Z], it can be proved that

f;-Z(pn-len-l’o 9

n’en-z’en-l’ n

Yo ) o, elD (8 D, (8 ,,0)1°
- n-2 , n-2 Pp-1 B0~ 2’ n-1 pn" n-2 (4.15
z—z pn-2 € DDn-l(en 2’ n- l)U D ( n) ’ '
or
fh—z(pn—zlpn-l’pn’en-Z’en—l’en)
Yo, o)

p¢ ) D (8 ., 8)), (4.16)

vz F P PG fad) By Caezt

and, even more generally

fi(pilpi"'l’.. . ’pn ei’ei+1"' "en)

(4.17)
Y(Di)

n-i
C N
F(a-1) © Py {:I Doi+k(ei’ei+k))

i=1, 2, ..., n-1

Therefore, (4.4) becomes

f(019' --,On,el,...,en)

n-1
Yo,) 7o)
i c o
TT | T s ¥ @0 %, Cudd)| = 1
i=1 k=1

and (4.18) can also be written as

n v(0.) n-1i

i c
FLseeasf s 810eeeys 8 = TT o gy ¥(oyp D o Crfind) (419
1=1 =1




.............

en_l - 6n, i.e. on the relative orientation of these two scatterers.
c
Dpn is the complement set of Dpn’ i.e.
c
4,
Dpn(en-l’ en) 3/Dpn( n-1, en) ’ (4.7)

In terms of the characteristic function of set Dp then let

I Dpn(en_l, Gn),

n-1*> “pn en—l, en) = (4.8)

Y®__) .
Fo1(PpglPs8 g 8 = —Fo7— X(o ;DS (B, 8)) (4.9)

We define
Fa-10Pp-11? /]ﬁl 1Pyl 8 )fg(6,_{)fe(6, )46 _,d6  (4.10)

and by substituting (4.9) in (4.10), we obtain

v, _¢) c
Fao e _1lp) = —5o7— %o _1» D), (4.11)
where
cy - ¢
X(oy_y D) '/];“"n-v DS (81,802 Fg(8, ) F(0.)a0 a6 (4.12)
Further, by means of the relation
X(p,D) = 1 - X(0,D%) (4.13)

(D can be any set) and using the properties of probability distribution

density, from (4.2) we get

X(Py-12 Don) fX(pn 1900 By 8 Fg (8 _)fg(8 )40, a8 (4.14)
This shows that the region Dpn is the mathematical expectation of the region

(® ),

DDn n-1’"n

]
R .4
ARBRRE
! 4
> 9
::‘ - ‘j\
AN
o <
V. R
v ]
. "::v
SRR
e
SR
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~ _Y(Py) = '
f;(pn) = — P, € R3 ’ | (4.3)

where V(p) is the mathematical expectation (or mean value) of the volume

density of the mass centers (representative points) of scatterer (or number

of representative points[zl in unit volume) and N is the total number of

scatterers.
Strictly speaking, when the shape of each scatterer is not spherical,

the mass center positions pjl""’ pn are not independent of the orientation

angles le,...,

OOy enes Py Byseney 8 = F(Bysueny 018 ,0uey B F(By,enny B)

ejn’ and (4.2) should be replaced by

= fi(°1|°z'°'°’ Py, 8 seeey 8) fé(pz|p3..., Os Oyseess8))

(4.4)
SN CIN IO TN IS N I _los 8 g 8 Fo(00)
Fg(8)) Fo(8,)...F5(8),
and from the assumption 1 mentioned above
flo 18 = f (o) : | (4.5)

Expression (4.4) is the more general expression when the assumption 2 has
been removed, or only under the assumptions 1 and 3. The following derivation
will be done also under only assumption 1 and 3.

By following the procedures used in Part II[Z] it can be proved that

’

v, ;) o__,€ D (6

n-1 o)

f 8) =

lp n-1’ 'n
n- 1 n- ’ n-l’ n N-1 ’

(4.6)
0 Pn-15 DDn(en-l’ en)

where Dp (en_l, Gn) is the region enclosed by the locus of the mass center

n

of scatter (pn_l, en-l) which is just tangent with the scatterer (on, en),

as shown in Figure 6. Obviously this region Dp depends on the orientation
n

angles en-l and Gn. The shape of Dp(en_l) depends only on the vector difference

O I SRR q_..
.. -'\‘.\._ - I_",(\




Multi-Demensional Joint Probability Distribution of Scatterers

In order to calculate the correlation function and intensity of multiple

scattered field, the expression of multi-dimensional joint probability

- - -

distribution function or density of random vectors pjl’ pj2""’ pjn and
ejl, sz,..., ejn, (51,..., 5;, 61,..., en) is needed. 1In this paper, we

assume

1 The orientation and the mass center position for each scatterer
are mutually independent, (in unconditional distribution).

2 The orientation of each scatterer is also independent of the mass
center position of other scatterers.

3 The orientationangles § ., 6. ,..., 6, of any n scatterers from

j1 j2 jn

N scatterer are jointly independent, and have the same probability

distribution.
From these assumptions, f(51,..., 5;, 61,...,9n) can be written as
f(ol,..., %1, 61,..., en) = fb(pl"“’ On) fb(el) fé(ez)...fb(en) (4.1)

where fb(Si,..., 3&) is the joint probability distribution density of 531,

-

ij""’ pjn’ and fb(e) is the probability distribution density of ejl

(or 6j2’ or 6 ).

FELREE
f 5’,..., 0o ) can be expressed in terms of the conditional probability
oY1 n

densities as
FolPyseees 0) = £100110g50ees B) £5(5,104,000,0) F3(0410,,.00, B)

e fy (P10 £ (4.2)

where fi(31l Bé,..., Bn) is the conditional probability density of 6 under

j1
the condition oj2 = 0y oj3 = Pgseces and pjn =0, fé, f3,~--, n-1

denote similarly. fh(B;) is the unconditional probability distribution

- ’ -{
density of pjn' By using the methods employed in Part II[Z] it can be , -

easily proved that
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The expressions (3.15) and (3.16) are the general expressions of the successive
scattered field, in terms of the incident wave y and the scattering functions
g, of each single scatterer, g is called the unit impulse response functions,
" is called wave-vector response. All of them are similar to the Green's
function. The function pjl...jm (F) is called the successive field of the

scatters jl’ j2’ cees jm.




Finally, considering scatterers j, to jm’ we obtain

m
—~A—
> = > >, g >, -, -> vy -, -,
pjl..-jm(rm) f °--f U)(Djl*r )g(p_‘jz pj1+r1’ r, eJl)g(sz pjz*rZ’ rl’ejz)
R3

N % ., 8. )gE -F,,F ., 6. ) df dF,'...dF
In dpa* m-1° "m-2 Jpo1 m In m-1 In 1 m-1
(3.15)
or
P. . (BT + T ) = p. . (T) =
Jl...Jm in m-1 Jl...Jm m
m
f‘—".—-\
- ) oo e TR <13
Ry
! e T T T T g g
...g(rm_z,rm_z,ejm-l)g(rm pjm’rm-l’ ejm) dr dr1 cee drm_1 (3.16)
where (see Figure 5)
— - . = - _ -
ri in +r -1 or r:_l r2 pji
- = - —.' ' - — _ —
Tier T g T O Fiar T Tia T Py
Ty =B -B; +FL i=L 2, ...m (3.17)
i+l i .
Let
- — _"."' -
FEL R, e) - fg(r", 1, 8) e KT g, (3.18)
R3
Then
- ._—.-" -t
g(F, ', 8) = —1 raE, T oe) e T g (3.19)




or

g Yy = g e Fn R =g
N Py (B + ¥ = [+ FraE, T, 0 oF (3.8)
Similarly, or the jzth scatterer with orientation angle ejz, and mass

center of which is located at sz, when incident wave is pj1(¥3, the scat-

tered wave °5152(;3 can be expressed as

Ty = -»> = - 7 T gl
lejz(rz) prl(sz + rl )g(rz pjz: rl s 932) drl (3.9)
or
ng My = e ) T T '
_ lejz("jz + ") f le("jz + T )g(r1 » Ty ejz) dr, (3.10)
r
Substituting (3.7), (3.8) into (3.9) and (3.10) respectively, we have (note
T = '
that pjl + " ij + T 1)

- -~ T T o g | g I P
2(rz) ff W(ojlﬂ' )g(oj2 Pi*Ty's T ,ejl)g(r2 Pizr Tp ,ejz)dr dr,
(3.11)
or

el S L Tl T - >
L P52 R = ] V(& TIRENT, 85 Da(F)LT]L0,,) AT (3.12)

Rs

- Similarly, if a third scatterer, i.e., the jsth one, is now added in this

analysis, then

Ty = = roEr e T4t > T T T
pjlijstrs) yf“"jl*r )g(pj2 P51*T1 T ejl)g(pj3 P3p*Tys T1s ejz) (3.13)
A 3
. b giing Tt Tt odr t d7 !
. g(r3 °j3’ r2 , ejs) dr dr1 dr2

and
.- - - " - - - - - - —
. pjlijs(pjs + rz ) }[ W(Djl + r')g(r"’ r', ejl)g(rl"l rl'! ejz)

© (T T, 0,p) dF dT) " AT (3.14) S

«
R oy
LIPS K
RN TN

........
............




3. Successive Scattering Formula

Suppose the jith scatterer is located as in Figure 4. Its mass center is

at p.., and its orientation angle is

- 1
. = A .
. egi (8, Ays 85)
Then the unit impulse response of its equivalent system can be expressed as
g(?l, ?, 551, ejl) and the scattered wave pjl(;), when the incident wave is
V() (suppressing eIMt), can be expressed from (2.1) as
P @) = [ @ e, F 5, 6 & (3.1)
R
f 3
Let
-~ = -'--' " = - -...
T T 51° T T °j1 (3.2)
. Then
t? - = p 3 -b' — = e -." - = ”'
E T °j1 +1', T pji + 7", dr = dr (3.3)
! and (3.1) becomes
g My = > xy ~ T o> T
pjlcpjl + ) fw(pjl +T )g(c>j1 YT ey T By ejl) dr'(3.4)
R
. 3
- Obviously,
, gF+ T, F+T, 7, 0) = gF, T, 0) (3.5)
o g(¥, T', 0) = g(¥, ) (3.6)
so that (3.4) becomes ;5}
- - .'.j;
- = ~ -" -v--’ ] 0' .
: VAR RTOHES DHCEANE IR (3.7) ]
. R3 :1
T o e o e S L e T e T ]




3

It should be noticed that: 1) this "equivalence" is only for the scat-
tered field outside the scatterer, and 2) the "equivalent scatterer'" and the
"equivalent spatial stochastic system" do not really exist. They are only
for the convenience of calculation.

" (r,k) can be called wave-vector response function of the scatterer or
of the system, and from (2.3),

g(r,r) = 1 7 f r @ 0e o g (2.4)

(2m) K,

where RS is the 3-dimensional wave-vector space, and dk is the volume element

in it.
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in Figure 2. When this scatterer is immobile and the incident wave is a mono-

chromatic plane wave with unit amplitude and wave-vector k, the scattered

wt

wave, can be expressed as p(fﬁf)el , where (ffi) is complex amplitude of
P

the scattered wave and can be expressed in terms of a scattering matrix.
Consider another "imaginary scatterer' or a ''spatial stochastic system'

with the following properties: 1) It is totally transparent to the incident

wave, and incident wave can penetrate it without damping, 2) it has the same

shape as the real scatterer mentioned above. When the incident wave is

G(r-ro)e wt, the scattered wave can be expressed as g(r,ro)e mt’ and when the

.. . . - iwt .
incident wave is any monochromatic wave s(T)e (not necessarily plane wave),

the scattered wave (output of this system) can be expressed as

p(?‘)=f s(F ) g(F,7)dr , (2.1)

Ry

where g(f,f;) is the unit impulse response function of the first kind[l] of

the system, and R, is the real 3-dimensional space. The factorewt will be

3

omitted from now on. When s(r) is a uniform plane monochromatic wave with

unit amplitude and wave-vector,

s(D) = kT (2.2)

the scattered wave can be expressed, from (2.1), as

p® = [ R g(F,7)dF_ = [(F,5). (2.3)
R
3

If F'(fﬁf) is just equal to the p(?,f) mentioned above, then this imaginary
scatterer is called the "equivalent scatterer'" of the original scatterer, and

this spatial stochastic system is called the "equivalent spatial stochastic

system'" of this original scatterer.

g

U I
[P

g
B

[l 2R
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1. Introduction

The problem of multiple scattering of discrete scatterers randomly distri-

buted in space appears frequently in various applications and has been treated

“i o by many authors in various ways, for example, Varadan and Varadan"'_8 and o
]

Twersky.g-ll

-

In this paper, this problem will be treated based on the general theory

. X 1-
of spatial stochastic systems, 3

and the general.multiple scattering theory?’3

We consider the following problem: scatterers of any shape and size randomly '
distributed (not necessarily uniformly in some region) in space. All the
scatterers have the same shape, same size and the same scattering property
individually and are motionless. The orientation of scatterers is also not
necessarily uniformly distributed. Therefore they also can be in the same
orientation when orientation angle distribution is S-function. The total num-
ber of scatterers can be finite or infinite. The region occupied by the scat-
terers can be bounded or unbounded, or the whole 3-dimensional real space R3, ;:;

wt can have an arbitrarily

see Figure 1. The incident monochromatic wave w(?)ci
shaped wave-front. We are going to find out the multiple scattered field A
- P(;)eiwt and its space correlation function and intensity in the whole space, -;5;
(except inside each scatterer) inside as well as outside the region in which
the scatterers are distributed.
For more complex media involving, for example, several kinds of scatterers,

we can use the system decomposition method (mutual feedback connection case) f'ﬁ;

and solve it in terms of the results obtained in this paper.

2. Equivalent Spatial Stochastic System

Consider a single scatterer having a given shape and known scattering

properties, and establish a coordinate system at its center of mass, as shown

SRR KA
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'h . Abstract

In this paper, a multiple scattering theory based on spatial stochastic

' ' system is presented to study wave propagation in discrete random media.

Using the concept of an '"equivalent spactial stochastic system" and the deri-
vation of the expressions for the joint probability distribution of scatterers
and the successive scattered fields, a general expression of the space corre-

lation function and the intensity of multiple scattered field is established.

This expression shows that as long as the scattering characteristics of each

constituent scatterer excited by a plane monochromatic wave are known along
H;. f{ with the volume distribution density of the scatterers, the space correlation
function and the intensity of the field multiply scattered by the scatterer
til . distribution excited by an arbitrary monochromatic wave can be calculated

;nl oo rather simply.
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w
where k = <

is the wave number of incident wave.
F u From (5.5) and (4.22), the space cross correlation function of the "

successive scattered field can be expressed as

b ky.. .k min  min . .
- X (r,r) = [+f  fof wloputen) Mo,mp, ko)), 8))
{' : jl. . d R3 ®

r (p,- 8.) o - Pn-1""n-2 6 .)
3°2’k|oz-p,|’ 2 e D (Py=0p s b5 B

m-1 "m-2

f_ [
Pr=Pq

- t_At 10! ] PR -
[ Gy=op ¥o o T Gm)l"(p2 P k(py), 8,) [M(pj-03, ST 65)

't At 1_nt
p! =P PPl 1 '

-1 "n-2
r’(p"p' ? }-\nv [] ] 9' ) r'(r - " [ ] L e )
n ‘n-1* "|p n1"P"n2 n-1 2 " n lpn_pn-l n

mn-1

m+n

Y(p1) X, [\ D
-7 fo Of) W-(men-1 i k=1 Oi+k
i=1

C

)

] L ]
. dpl...dom dpl...don del...demdei...den (5.6)

where

4

—' = =p'
pm+1_pi’ P2 oi""’om+n n

—‘ =l =n"' -
em+1—ei’ F'\m+2 e2""’Dm+n Pn -

Let ®(r,k)=]r(r,k,8)fe(e) e , (5.7)
)
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and is called the "average wave-vector response function” of a single scatterer

with respect to its random orientation. Then (5.6) becomes

Ky k min

eee I — * %

K Y &t EACRUICRLACR ST CR)
Jpeeedg Ry

6" (0 _o Py=Pq ) ®t Pn-1"Pm-2 y
32 ln2"’1l R e S lpm-1'°m-2
p_-p p3=24
* m m-1 2 "1
o (r,-p , ) $(p,-p., k(p,)) ® (p3-0',, )
1 "m kIpm-pm_1 iPi i 37F 2 klpz-oll

'
' ]

] p -0 P_=-P
-1 "n-2 n n-1
. 0(pl-p o, kflr‘——ﬂ——jﬁ ¢ (r,-p', kT—T——T“T
n "n-1 pn—l-pn—Z 2 'n pn_pn—l
m+n min-1i
Y{py) 5C '
TT sty X vy N Dpi+k) do;...d0 do,...do; .
i=1 k=1
Let
0,-0
_ _ _ 2 1 y(r1)
R
3
m+n-1
X (o, [\ D5 ) de,
1 Oe 1L
k=1

By means of DeMorgan's Law and the properties of the characteristic

function of sets, it is easy to show that

mn-1 mn-1
X, N D5 ) =1 =xtep, TN D5 19
k=1 k+1 -1 Kk
mn-1
=] -X(p,, D
U P

................................
....................
pcm et ety Lt e e T (Te e )
R e T S e e "

: PO PR )
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mn~ min-1 mn-1

1
- - X(p,,D )+Z me,b N o
! Z o1 0k ]

=1 k=1 f=1
k#t

mtn-1 m+n-1 mn-

1
- Xpe,,D. ND NAD ) + ... (5.10)
S Y Xt N % e
k=1 ¢=1 gq=1 R

k#l, #q, gk

Substituting (5.10) in (5.9), we have

_0) (1) (2)_ ,(3) - _ynr(n) 511
I=I;7 -0 + 0%- 07 4 L IE’O( ntI) (5.11)
where
(0)_ % * * Py=Py v(p;)
I 7= f V(o) @ (py=py, k(py)) @ (pg-p,, k To, sl F=Cwn-1 dp, (5.12)
Ry

min-1 0. -0

(L_ 1 . * * % 271

I = N-(mn-1) Z f vile) @ (oz-ol,k(ol))¢(p3-oz,1¢W) (5.13)
k=1 R

3

.Y(Ol) X (Dl,D ) do

Pr+1 1

m+n-1 mn-1

0,=0

(2)_ 1 * * * 2771

I1 = N-(mtn-D) Z Z fw (ol) ® (oz-ol,k(ol)) ® (03—02,k-[—~—|-02_01 )
k=1 1=1 33

Y X (py, B N D, ) dp (5.14)
k+1 1+1
(3)_
I1 = ... (similar and omited)

Let Py - pl =u,, then pl = 02 - u, and (5.12) and (5.13) transform

to the following expressions respectively:

(o)= ! f 1}4‘(?2-“/) ﬁ"(ul;k((’z‘ul)) ¢*(?3—94,“ %’,) Y(ez-u,) dy, (5‘15)
1 N-(m+n-D) 723
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Since the function @(u, k) rapidfy attenuates with u and its “effective

17
domam k() and Y( ) car be trested as constants, we let
ik(p,) .u ik(p,)-u
27771 % * 2
p (6,-u) = V(pe s U p,mu)=t (0,) (5.16)
and (5.15) becomes
(0)_ 1 Y1 —ik(p,).u
1O eviey [ ¢y, k0,))0% (0500, ey D, e
R
3
It can be shown that, in the summation of (5.13), only the first term plays
the main rule, and the summation of other terms is much smaller than the
first term and can be neglected. Thus,
e L [ 6% 0 ke "21 Lo yap. (5.18)
1 N—(m+n i) )% (Py=0y, %0y P3=P2>kTp At K B
D
©2
By similar reasons as it was used in the drivations of (5.17), (5.18) becomes
-ik(p,) .u
(1)_ 1 Y 27°%1 . (5.19)
I3 N-(atn-1) o (0,)v(py) f o* (ul,k(pz))<1> (01=0,,k T_r’e du,
D
0
Now, it can be shown that the series (5.11) converges rapidly and
n .(n) (0)_,(1)
| ng’z(-n ™ <<= (5.20)
_(0)_ (1) -
Therefore, from (5.17), (5.19), taking I1 I1 -I1 , we have 1
1 j' uy  -ik(p,).uy R
L= YD o* (py)v(P) o* (u,,k(p, »e" (p5-0,, k-|—|—)e du,  (5.21) o]
RND
Let
x * . u, -ik(P,) vy .
¢2(03—02,k(02)- f- ¢ (ul,k(pz)w (03-02,k-‘—q]- e Jlﬁ (5.22) o
R
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Then (5.21) becomes

1

% *
L= = v (0,)Y(0,) 2, (P3-0,,k(p,)) . (5.23)
Next, let
f X P4=P, Y(o,) win-2 o
I) @ (oymp, | o, pT N—(arn=2) %Py N Dpk+2)d02 - .(5.24)
R k=1

3

Substituting (5.23) into (5.24), by the similar steps as above, we obtain

I = e (0072 (0,) 05 (0, =04, k(D)) (5.25)
2" N-(mn-1) N-(mtn-2) 3)Y (P3)%8,5(0,=P4, 3 .
where
/ u, 1k(p5).u,
R\D
3" 0g
Similarly
1 . 1 . 1 * 3 *
Ly o@D F@od)  F@ran3) ¥ PPV (P8, (p5-0,, k(p,))(5.27)
where
J[ u, ik(04).u3
oo (05 94, k(ol‘)) o) (u3,k(04))¢>(ps p4,k-|—-l—) e du3 (5.28)
R\D
p0
Continuing this,
m-2
- 1 *
m-—2— [ TT N—(m+n-k)] w (pm .J‘ (p 1) m~ l(p pm 1’ k(Om_l)), (5-29)
k=1
where

‘‘‘‘‘‘‘‘‘‘‘‘‘

PE Bl A e e
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u ik(p
m-2 m
' q)m-l(pm_om-l’k(om))_f_ ®m—2(um-2(um—2’k(pm-1))(D(om_pm-l’ um_2|)e
%3 Poo

du (5.30)
m-2
However, the derivations of Iﬁ-l and Iﬁ will be slightly different.
+1
p_~p Y(o__.) n
* m m"l m-l -C
1= [ 1, e e i e B G, N DS e
R m m-1 k=1 k+m-1
3 (5.31)
Substituting (5.29) into (5.31), similarly, one has
m-1
= * m-1 *
L I 1= [ T ___1______] Y (Om)Y (Dm)¢m(r1-pm,k(pm)) , (5.32)
N-(m+n-k)
k=1
where
u ik(p_).u
m-1 m’ " m-1
Qm(rl-pm’(k(pm))_ j_ q)m—l(um-l’k(pm))Q(rl-pm’km)e dum-l
R;\me (5.33)
n .
- Y (om) =c
I /Im-1 N=(tady PN Dy ) 4oy (5.34)
R k=1 k+m

3

Substituting (5.32) into (5.34), in view of the fact that the field point

r, is not inside any scatterer, we get

1
m
_ 1 * m * _
I= TT—————N_(M_k) jw (p)Y (0 )8 (ry-P k(P ))dp (5.35)
k=1 R

~— T W T WS v
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Next, we proceed the later half part of the integration in (5.8), similarly.

Let
03-p] o1
= Y] ' ' LR 21 Y(P3) ' BT
R k-1
3
so that finally we get an expression similar to (5.23):
= __1__,_ ' t ' [ [
)= —% L 0 eYE 1), (p!-0%,k(03)) (5.38)
2 N-(n-1) ° N-(n-2) 3 37738 T3 3770 )
n-2
. 1 ' n-2 ' ) t
Iﬁ-ZS T N-(n-k) W(pn-l)Y (on-l)¢n-1(pn-pn-1’k(pn-1))’ (5.39)
k=1
n-1
' = T 1 weDY e (ry-0!,k(ol), (5.40)
N-(n-k)
k=1
n
\J - 1 L n ] - \J \] A
o= T 5o VDY (0 (x,-00,k(p)))dp) (5.41)
k=1 R3
By means of (5.35) and (5.36), (5.8) becomes
k...k mn
n 1.
O LS = =
. k=1
jl...Jm
f 0 (0 )¥Y™(p )0  (r =0 ,k(p ))dp (5.42)
m mm 1 m® m m ° ’
By

1 n t t L 4 L}
«f W(Dn)Y (on)¢n(r2-on,k(pn))don ,

for
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Auto-Correlation

When the two sequences {j,,..., j_} and {k,,...,k } are completely
1 m 1 n

conincident with each other, i.e. m=n and j1 = kl’ i, = k2’ cesy jm = km,
the cross correlation function K;l"'gn (rl,rz) becomes the auto-correlation
100 3g

function of p.....; (r) defined as
j1 m

J

s .. .jm(rl’rz) =5{le. 3

3y (ry) pjl...jm(rz)}. (5.43)

m

Substituting (5.5) into (5.43) and using (4.22), we get X, j (rl,rz)
Rk I

=E&llwo, )12 T (o k(p; ), © )lzlr’(p -p kp' 6, )
i 3,710 By 15704,

-p
2 I PR LU B P

Pso=0= P s
J3 "12 2 j 3
. =P, , k D' - -=m=1 ‘m-2
]r‘(ou iy 1——-,—le o0, 633)] II"(pJ.m P m—l’k e 8 )l
3 §0-1"P
Jm-1 "3p

P -m—pjm_l

P, -P;
Jm  Ip-1

jo Pim-1

[ (e;-p_, k 0
jm

8, )}

p
[y e. e k
Jm) [M Gy~ s i

jm-1

m m -
P=P1

= f [f w(ol.)zlr' (Py-0y, k(py), 91)lz|r (040, k-W , 62)|2.

=
w
@

P o -0
2 m-1 "m-2 2
' r (04—03, 03_02 ’ 93) | L l r (pm.—pm—l’ k.rp___—r’ em—l) I )

m-l-pm-Z

N D5 ) dgy...d db...d8 (5.44)




Let

Y(r,k)= f]r(r,k,e)|2fe(e)de , (5.45)
®
( 6 (5.46)
¥ (ry,r,,k) =] r'(rl,k,e) I (x,,k,8)fy(6)d .
®

Then (5.44) becomes

X (r.,r.) =]f-[ W20, [2¥(0,~p, k(0 )¥(po=0 P21
peeedg Ty12%2 1 27 P12 3 Z’kloz-oli
R
3

p3-02 pm-l_pm—Z

. - cee - 47
¥(p,-py, k TB;:EZT) Yo ~0 1> k TB;:I:B;:;T) (5.47)

-i
p_-p n Y(p,) e
m m-1 i
1-pm’ r2-pm’ k ID -p l) T N—(m—i)X(oi’ £31

m m-1 i=1

J

. Wc(r Ydp ...dDm

i+k 1

Following derivations of Section 5.1, let

y PPy y Y(0,) (5.48)
[py~0,1" ¥-(m-1)

R,

m-1
c

. Xy, N D, ) dp

p 1
k=1 k+1

Comparing (5.48) with (5.9), one can see that they have the same form, and

the only difference is that the ¥, ® mtn in (5.9) become ,wlz, Y., m in (5.48),
respectively. Seeing that the function ¢ (u,k) attenuates with u even faster
thanfunction ¢ (u,k) does, and from (5.16), j?(}

iZk(DZ).u - -

where u is in the "effective domain" of (u,k), finally, we get
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N S 12 f !
I) = §oaDy V(P 1Y (ey) i ¥(uy,k(0,)) ¥ (p4=0,,k WJ) du; (5.50)
ENDg
Let
j Ul iZk(Dz).ul
\Pz(p3-pz, k(pz)) = i W(ul,k(pz))\l’(%-—oz, kTu_lT)e dul. (5.51)
RND,
Then
I, = ——i|u(o )IZY(D ) ¥, (p,-0,, k(0,)) (5.52)
1  N-(m-1) 2 2 273 "2 2 *
Similarly, let
[ p3-02 Y(pz) m-z =C
I, = | I, ¥(o,3s h@_pzl) a2y ¥(Pps N Dpk+1) dp, .Y
R3 n=1
Then
1 . 1 2.2
= ) -
Iy N-(m-1) N_(m_z)lw(p:;)l Y (03,‘P3(04 P, k(py)) (5.54)
where
J ¥z
‘P3(o4-o3, k(py)) = ‘!’Z(uz,k(p3))‘l’(04-o3, k-m-z—‘—) du, (5.55)
Going on in this way, finally, let S
p__,=P Y(o_ ) RS
- _ m-1 "m-2 m-2
Jm_2 = Jm_3 ‘P(Om Pp-1° k o =p j) N tm=?) 1
m-1 "m~2
R
3
2 (5.56) T
=C - ’-.’._'_:'J
) X(pm—Z’ /\ Dpi(+m_2) don_l-z ’ -':*
k=1 AN i




m-2

1 2 m-2 )
Joo= T oo 1V 1Y o, DY, (o =0, 10 k(o 1)), (5.57)
k=1

where

u
= m-2
Wm-l(pm-pm—l’ k(pm—l)) B *[ wm-Z(um-Z’k(pm-l))w (pm-pm—l’k T;;:;T) dum—Z

END, (5.58)
Let
p_-p y(p_ )
- _ - L m m-l m-1 =C
Jm—l B -[ Jﬁ-Z wc(rlpm’ T2 P “lo -p [ N-1 X(pm-l’Dp )dpm-l’ (5.59)
R m m-1 m
3
Then
w-1 1 2 m-1
J o1 =[ T m} |v (om)l Y (oY (ry-p ,r,=0 , k(p )), (5.60)
k=1
where
¥ e (£1=0,Tp=0, k(P)) = J[_ ¥ G g, k()
ND,
um—1
‘i’c(rl-pm, r,=P k'{;m_'—lr) dum—l (5.61)
Finally,
f Y(Om)
Kﬁl"'Jm (rl,r2)= Jm = Jﬁ-l N dpm (5.62)
R3 1
Y
( ) jl...jm( ) (5.63) ]
K r,,r,)= r.,r . R
jl"'jm 1’72 ?1...jm 1°72 o]
DG
m R
1 2 2 m NENOh
]T N_(m_k) j l\y (pm)l Y (pm)\ymc(rl-om’rz_om’k(pm))dpm :_-‘._:
k=1 R3 )
R
.._.q
DR SO N
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pace Correlation Function of Multiple Scattered Field

By means of the system decomposition method in the spatial stochastic
ystem theory [l], it can be proved that the space correlation function of

he multiple scattered field p(r)

= *
Kp(rl, r,) &lo (rl)D(rz)} (6.1)
.an be expressed in terms of the space cross correlation function of the

wuccessive scattered field as

o « N N N N ky.k
K(,,x,)=2L £ & """,z L _ """ L K, . (r,,r.).
pr1L2 m=lr=l j=1 Jm—l k1—1 k =1 A PEEE 1’72
ji*ji-l’ i=2,...,m, kz#kg_l, 2=2,...,n. (6.2)

This is a general relation. Here the set {jl’ j2, cens jm} and the set

k., k,, ..., kn} can overlap with each other, i.e. the intercept {kl’ ...kn}

1* 72

{jl, ceey jn} is not necessarily to empty set; and inside the set {jl, ceny
jm}, th? elements can be the same, or can be repeated any number of times,
provided that all the pairs of a’'jacent elements are all different; and so

does the set {kl, ceey kn}.

Now let us divide Kp(rl, r2) into three parts:

_(a) (b) (c)
Kp(rl,rz)-Kp (rl,r2)+Ko (rl,r2)+Kp (rl,rz), (6.3)

where Kéa)(rl,rz) denotes that part, which consists those terms in the summation

(6.2), where the sequence {jl’ ceey jm} and sequence {kl, cens kn} do not

overlap at all, or do not have any common element as shown in Figure 9, i.e.

N N N N ky.ook

(a) . e 1 n
£ ,rp= £ T3 L I I K (r ,r,)
0 1’727 el 01 451§ 51 kl-; k=1 "§;...3 1°72

S SR R S R A
2 -

-------------------

AR e

...........

25

..............
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1M 0172, cemy kyFky L0=2,..0,0 (6.4)

{jl,...,jm} {x kn} =0 .

EARRE

;c)(rl,rz) denotes that part, which consists of those terms, where the
rquence {jl,...,jm} and sequence {kl...,kn} completely coincide with each

:her, as shown in Figure 10.

YRRy
kn=1 1 m

©) _ N N N
Ko pr) = ok §=13{'=1 g1k e

ifigq 172, e my ko kg o, 2=2,..00n

m=n, ji=k i=1,2,...m.

i’
N N J,.-.3
=% £ ...,z k! ,m(rl,rz) (6.5)
m=1 Jl—l jm=1 31...Jm
31#31_1’ i=2, ..., m .
he part K;b)(rlrz) denotes the sum of those terms, in which, the sequence

A PERRRF jm} and &im cee, kn} are partially overlapping. In the next part

(®)
1

f this paper, it will be shown that this part kp s r2) can be neglected

nd the error of this neglect will be estimated.

nd o i

EER - . . o el e e e e e
- e . . LRt I IR L I L TR SR IS SR Tt B . . -
a’ e N P A A R A A AR e PP WP PP L e
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erivation of kp(a) (rl, rz)

In the derivation of kp(a) (rl, rz), we neglect the contribution of
hose terms, where {11, ees jm} or {kl’ ey kn} have repeat element,
ust as Twersky did ([11]. ([The correctness of this neglect has been shown

yy Twersky.] Thus, from (6.4), we have

(a) N N-m
K (r,,r.) = T T N(N-1)(N-2)... (N-m+1)(N-m) (N-m-1)...(N-m0(nO1)].
P 1 2 n=1 n=1
k.. ky
K31 ..Jm(rl,r )
N N-m m+n kl kn
= m§1 nZ1 { IT [N~ (m+n-k) ]} K&lo..jm(rl,rz),
bl g
N N—m
K;a)(rl,rz) 21 o1 f ¥ (p) . (o)¢> (r 170 k(p))dp
2y
f ‘P(o')vn(o'mn(rz—o',k(o'))do' (6.6)
Ay

#hen N >> 1, the upper limits of the summation in (6.6) can be replaced

be infinity, and (6.6) becomes

K(a)(r r,) = T ¥ j’w*(O) ¢ )Q*(r -p,k(p))d
o ‘F1T2) T mE1 nf1 Y A8 try =0, kiR))dp
Ry (6.7)
: f‘b(o')Y“(o'W (rz-o', k(p"))dp'
Ry n

This is the required general expression of the first term of the space

correlation function of the multiple scattered field when the incident
field is a monochromatic wave (r). Clearly, the evaluations of the function

gn’ ¢n will be the main problems in finding kp (rl, rz). Now we are going

.".‘:'-_

to proceed with this calculation.

.
'
)
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Because throughout this paper, the frequency of the incident wave is
fixed, the function ®(u, k(0)) can be defined in another form ®(u, n(p)) or —
simply ¢(u, n), where n(p) is the unit vector in the direction of k(p). g

Thus, (5.22) can be changed to

j ! iZ n(p.) 'u
& ?,(u,,n(p,)) = ) ?(u,,n(p,))¢(u,, -F;l—r ec 27 71 du. (6.6)
BN\ D,
i: . Research shows that, for a single scatterer with any shape and for any -
{ incident frequency, the function %(u,n) is always separable, (far field
1
approximation) i.e. ¢(u,n) can be written as the form
A '> -
kl @(ul,n) = W(ul)A(nl,n) (6.7) 7
where uy = Iull, and n = u1/ Iull is a unit vector. Substituting (6.7)' f;:j
into (6.6)', and using du1 = ul2 dindul, where d? is the solid angle element }}I
(see Figure 10), we get -
¢2(u2,n(02)) =_[ /;W(ul)/\(nl,n(oz))W(uz)/\(nz,nl) -';:::if
Q E(nl) L
*(0,) a0 d o
, ec" P2l MY vy nj %1 B
= Wlu) [ Ma (o)) A0, ,0))
Q
® -
in(p,).n,u
[ f W) w2 e 2 11du]d§2 (6.3)
> 1 1 1 nl O
E(nl) -

where ! is the whole solid angle space, E(n) is the set, which consists

of those points in the direction of n, and outside the region D . The
o

1
4 If

- t

7 ‘ integral limit E(n) usually can be replaced by the simpler form jR(n)

b . if every half radial line has only one intersection point with the surface

AL of region D . e
_ o
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Obviously, the integral in the square brackets in (6.9) is a function

of n, and n(Dz), and is independent of u, - Therefore, let

@
2 1 . 6.9
vaae) = [ W) o D MY g (69
h E(nl)
n &
b and (6.8) becotes
[
¢2(u2,n(02)) = W(uz)Az(nz,n(Dz)), (6.10)
where
Ayn,,0) = [ Ala ,0)0(n ,0)ACn,,n0,)) a, (6.11)
' Q
r
or
- Aay,m = [ (a,mAny,n) a9, = (A *60) (a,,0)| (6.12)
. lt o
- if we let
Al(nl,n) = A(nl,n) U(nl,n). (6.13)
R
- If the integral in (6.12) is called "angular convolution of Al and A,
and denoted by symbol *e, then (6.12) can be written as
gy A2 = A1 *GA = (AU)*eA (6.14)

Substituting (6.7) and 6.10) into (6.14), using the similar steps, finally,

we get

?3(uy,n(03)) = Wlug)Ay(ny,n(p,)), (6.15)

where

Ayny,n) = fAz(nz,n)U(nz,n)A(n3,n2) a
Q

(6.16)

= [(AZU)*eAl(n3.n).




|
™.

or

A3 = (A2U)*e A,

Ay = {[CAW)*, AUI*g A,
Similarly, it can be proved that
and

A, = (LTHAUY* M) U *AYU) *A

going on in the same way, until m, we get

$ (u ,n)
m m

W(Um) Am(nm, n) s

and

- Q
A_(a_,n) fAm_l(nm_l,n)U(nm_l’n)A(nm,nm_l)d -
Q ’

A = (...(AU)*OA)U)*GA)...U)*QA
Let us define a linear operator L such that

Lf-= (fU)*eA

Then

A =L - L A=1"1g
m

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

(6.

In the separation expression of 9, (6.7), w(ul) is called attenuation

function, and A (nl,n) to be dimensionless and normalized, that is

fA(nl,n)dQn1=1
Q

(6.

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

ek




]
i

......

..............
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2

Now let

_/ lW(ul)(ui dul

Fo

Then from (6.9),

IU(nl,n)lSA, an, neq

Define

then

Uo(nl,n) = % U(nl,n) U(nln)=AU0(n1,n)

Then Uo(nl,n) is dimensionless and

{Uo(nl,n)lsl VY n,neQ

We define another linear operator ‘O such that

247 = @ vy

Then

L5=adyf

_ m=1 m-1
Am = A 0 A

o (uya(e)) = A" W))@oY (n,nlo))

With the help of (6.26) and (6.30), from (6.12), (6.13), (6.16),

and (6.33), it can be proved that

fAZ(n n)dQ <4, VW neq

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.22)

(6.35)
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-y

105,000 A2, YV nen, (6.36)
373 n
Q 3
| {
A (n_ n)de < A%l neq (6.37)
f m m n
- 1 m
. Q
Therefore
-‘ .
m-1
f(zo N(n_ n)d@ <1 , Y neq (6.38)
Q 1 m
This shows thar:,.(‘(')l is a bounded operator when m>®, and the norm Lom-l
A is also bounded. On the other hand, convolution always expands the domain
. of the function and makes it more uniform and flat. Successive convolution
' always makes a function more and more uniform and finally makes it tend
to a constant. Therefore, it is reasonable to regard Ibm-l A as a constant
lim [ m-1 '
K we 0 T (6.39)
- and (6.34) becomes
lim m-1
] o Sp(Ugn(P)) = a4 W(u ). (6.40)
Applying (6.34) to (6.5), finally, we get
(a) ® @ m-1 m-1 -
KD ey =% 8 [ w@a™ x(a-oh A)*(T_Tn E— a(p) )d
.. P 1727 pa n=1 ik 0 oo () )

(6.41)
1 n ' n-1 ' -1 r2— ! ' )
fRBw(o Jvi(p")4 W(Irz-o !)(f.g A)(T—]—rzfp. » n(p")) do

This is the final required result. From this expression, it is easy to see
:{ that, the convergence of this infinite series mainly depends on the
- attenuation function W(u) of each single scatterer and the volume density

function V(p) of the scatterers in view of the convergence of my and the
o

expression (6.27) of A.

e
PP VT |
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Derivation of k(c)(r

k(s rz) and EE,(rl’ rz)

In deriving kéc) (rl, rZ), and also neglect the contribution of those
terms, where {jl, cees jm} has repeat elements. Then from (6.5),

K (e, £y =3 B@E-1)W-2)... (-(a-1)) K.

Pl 2 : i1

m=1

..jm(rl’ r)

N o (6.44)

=m§l {k=l [N-(m-k) ]} Kjl---jm(rl’ r2).

Substituting (5.63) into (6.44), changing N into « in the upper limit of

summation for sufficient charge N, we have
(c) q_°°f 2 m (r.- -
K, (e, r2) = L R, [ [y (¥ (r;-p, T,-0, k(p)) dp (6.45)

Because in this paper, only monochromatic waves are considered, so the
variable k can be replaced by the unit vector n = k/k in the function T

(ul, k, 8). Usually I (ul, n 6) is separable, i.e. one can set

[M(ups 0, 8) = W(u)) Ay (ny, m, 0), (6.46)
where Ae (nl, n, 9) is dimensionless and normalized and n, = ul/u, u = Uy
Substituting (6.46) into (5.45) and (5.46), one has
_ 2
¥(u,, n)= IW(ul)l L (n, n), (6.47)
Wc(ul, Uy, n) = W*(ul) W(uz) KA(nl’ n,, n), (6.48)
where j;f;;
L, m=f |AG, n, 8)]% 7 do (6.49) :
1, @ e l’ ’ e 9 .
_ *
Kp(nys ny, m) = [ ASCGa, m, 8) Mny, m, 8) fo(8) 48 (6.50)

. (7}
From (5.7) and (6.7)', we have

A(nl, n) =.£ Ag (nl, n, 6) fé(e) de (6.51)




Applying (6.47) to (5.51), one has

2
¥y Gy 00,0 = fo [o 3 1H@ 1% L@apano) 7)) Leny, a))

ui dSZn1 dul = |W(u2)|2 fQ L(nl, n(pz)) L(nz, nl).
.[jb(n1)|W(ul)|2 o? du;) aon, . (6.52)
Let
- 2 9
V(n)) = fé(nl)lw(“l)l u? au, (6.53)

The (6.52) becomes

¥,y 0y)) = [W(u,) (% Ly(n,, np,)) (6.54)
where

Ly(ny, n) = fo L(n;, m) V(n) L(ny, n,) d0n, (6.55)
Let

Ll(nl,n) = L(nl, n) V (nl). (6.56)
Then (6.57)

Ly(n,, n) = jb Ly(a;, o) L(ny, n)) dn = (L, *; D)(n,, n),
and

L2 L1 9 L (LV) 8 L

By the similar way, with Section 6.1, one can get

¥y(uy, 0y = [WCu) |? L (ag, nloy) (6.58)

where

Ly(ng, 0) = Jo L,(ny, 0) V(n,) L(ng, n,) d0n, (6.59)




Ly = (LZV) * L={[a@W *e L] v} *g L

Going on in this way, finally, we get

y|2 ),

(n_ ., n(om_

m~1 Lm—l m-1 1

where
Lm-l(nm-l’ n) = jb Lm—Z(nm—Z’ n) v (nm—Z) L(nm—l’ nm-Z) dQnm-2

and

L _,= (;:i(LV) *gL) V) *gL) --eV) % L

Define a linear operator /M as
Mf = (V) *, L

then

L =M. M=
m-1 —

Substituting (6.61) and (6.48) into (5.61), we have
t 11
Wmc(um, ut, n(Om))
= J 12 ' "
/q E(nm_l)lwz(um_l)l L1 (g0 00D WAD) W)

122 n(p ) np_qup-y 2
1 "t _1 -—
KA(nm, nm, nm—l) e ¢ m Ul dQnm—l . dum_1

L ”" 1 11)
Wr(ut) W(u) ]5 L (g 0o ) Vln 1))« Kp(n' o, 0, n o
Let

t L - * "
Lk(n , n', n) = fb Lm_l(nm_l,n) V(nm_l,) . KA(n ,n", nm_l) dQnm

= (@, ) * K] @', ', n)

-1

)dQn
m—

ot .
Y

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

................
----------------

. % .
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. e
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Then

¥ e (u’, u;, n(pm)) = W*(ut;) W(u;) L, (n, n;. n(om)), (6.68)
-2 .
L, = (™ “L)yv) *L Ky (6.69)

Here *6 is called angular convolution of the second kind, and defined as

@, % P @ a ) = [P (n, w Ba', 0", n) don (6.70)
Applying (6.68) and (6.69) to (6.45), using (6.3), (6.14) and the analysis
about kP

> (rl, rz) we get the final result:

Kp(rl, r,) =m°§ {3 Iw(o)lzvm(p) W (lrl-ol) W (Ir2-0|)

1
rl—p r')_p

-~

m-2 '
AWML V] % K, Te=oT * Trpol n(p)) do + M* (r)) M _(r,) (6.71)

where
My =% [ v oA W je-p) @™t 1y (E2 n(p)) dp (6.72)
r m=1 R3 0 r-o| ’
If we define normalized attenuation function Wo(u) and normalized V function as :*;“i
]
-1 -1 ' ;
Wb(u) =3 W) , Vb(nl) =17 V(nl), (6.73) ]

and normalized linear operator MO as

Mf = VN * L (6.74)
then
_ 2 2 . ]
Vo(nl,n) = fE(nl)lWO(ul)l u] du; (6.74) -1
M= A,Mo . _ (6.75)

and (6.71) and (6.72) become
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]
1
]
@ 2 2 ]
K (e xp) = ¥ 4 ROl OR AR R DTAIEA -1
U2 vl %k 3E2D |, 220 G0 oM () (6.76) :
’ 0 0" 8 "A n-p|’ T}z—pl’ e prp(n p- 2 : S
where :' -3
4
1
=% m _ n-1,, r=p -
HpT) = L A Ig b)Y (@Wlr=0) &y 1) (57 » nle))do (6.77) :
It can be proved that Mb(r) is just the mathematical expectation of N ;
random field p(r), ie §
M_(r) =&{p(r)} (6.78)

P

Setting I, =r,=r in (6.76), we get the general expression of entensity

of multiple scattered field defined by

M;’Z) @ =€H' ™} = & (r,0) (6.79)

Seeing that

KA(nl,nl,n) = L(nl,n) . (6.80)

We get

) 2 2
1,20 < Fy 47 fp WO @ (o) |2

m-1 -p 2
My D 7+ ne) do + U (0)] (6.81)

Expressions (6.76), (6.81) and(6.77) are the general expression of the
space correlation function, intensity and mathematical expectation of multiple

scattered field p(r) (complex amplitude) respectively.

e e S e

.
it 8 At A

v
’:' ) ° S
3 A

m
We can prove that the linear operator.ﬁ% is also bounded as mP>~, and

cat sl )
e
o

EANAT I

falale ak

lim m
m*wJ!O

L =b,

1
.‘_.-“‘.‘ '.‘_'{’—.'_ ."'-‘..-'.."..-' _'—'\ ;_‘- . .‘._..‘_‘-
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b is a constant, which is independent of n, and n. Therefore, the convergence
of the summation in (6.76) and (6.81) mainly depends on the density function
Y(p) and the constant A4 (which is just similar or proportional to the so called

"scattering cross section”).
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Conclusion
Pt ———— ]

The general expressions of the space correlation function, intensity
and mathematical expectation of the (complex amplitude of) multiply scattered
field caused by randomly distributed scatterers of any shape, any volume
deﬁsity distribution and any orientation distribution, excited by an
arbitrary monochromatic incident wave are obtained and shown in (6.76),
(6.81) and 6.77) respectively. These expressions in their series form
show the dependence of the space correlation function, intensity and mathematical
expectation of multiply scattered field on all of the following factors:
1. the complex amplitude of incident wave Y(r),
2. the volume distribution density of scatterers v(r),
3. the constant A defined in (6.27) and (6.46), which denotes the
scattering cross section of each scatterer and the total attenuation,
4. the directivity function /\e (nl, n, 9) [see (6.46)] through
A (nl, n) [see (6.51)], L (nl, n) [see (6.49)] kA (nl, n,, n)
[see (6.50)], and the linear operators Lb andfﬂo defined by (6.74),
(6.73), (6.53), (6.31), (6.29) and (6.9), and finally
5. the attenuation function wo(u) defined by (6.73) and (6.46),
where the angular convolution operation *8 and *'e are defined by (6.57)
and (6.70) respectively. As long as these factors are given, the space
correlation function, intensity and mathematical expectation of the multiple
scattered field can be calculated through a single summation, a single
volume integration and a successive convolution operation.
The space correlation function, the intensity and the mathematical
expectation of the multiply scattered field strongly depend on i) the volume

density function ¥(r) of scatterers and ii) the constants A (including the
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1. INTRODUCTION
At any point in a random medium, the total wave fields can be considered
as a sum of two components, viz, a coherent or an average wave and an in-
coherent component due to change in scatterer positions and states from
configuration to configuration. The averages of the square of magnitude
of the coherent and incoherent fields are called the coherent and in-
éoherent intensities, respectively. For a plane wave incident on a medium
containing a random distribution of scatterers, the coherent intensity
attenuates due to scattering and absorption. Incoherent scattering
_effects introduce 'noise' into the system and cause fluctuations in the
coherent amplitude and phase. 1In many practical applications, it is
important to assess the incoherent scattered intensity relative to the
total intensity in order to relate theoretical and experimental results.
Propagation of the coherent wave is generally expressed in terms of a
bulk propagation coefficient characterizing the scatterer filled mediuml-
Incoherent effects are usually determined by solving 'approximate' integral
equations or by solving special forms of the radiative transfer equations?
Such formulations are generally valid under conditions of sparse concen-
trations and for weak multiple scattering for either Rayleigh scatterers
or large scatterers which scatter primarily in the forward direction. To
overcome such limita’ions, a propagator model has been presented for
studying both coherent and incoherent intensities in Ref. 8. Lax's quasi-
crystalline approximation (QCA) with suitable averaging techniques and
the T-matrix of a single scatterer has been employed in the analysis.

Pair correlation functions generated by Monte-Carlo simulation have been

used in the computation.
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ABSTRACT

This paper treats discrete scatterers randomly distributed in a
host medium as a random medium with discontinuous property. First, the
wave equation with random discontinuous coefficient is reduced to a
random integral equation of Fredholm type and its solution is obtained
in terms of Neumann series. Then, the expressions of the mean value,
mean square value and the space correlation furn~tion of the scattered
field are obtained in terms of the space correlation function or space
spectrum of the random field B(?,w) which depends on the properties,
shape, size and concentration of scatterers and the properties of the
surrounding medium For spherical scatterers, the space correlation
function 1is obtained, and the mean square value of the scattered field
is expressed as a function of concentration of scatterers. The results
obtained by the present theory are compared with some available

experimental results.
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contribution of the "scattering cross section and the attenuation) of

'; each single scatterer, and weakly depend on the directivity function A

| (nl, n, 6) of each scatterer. In other words, the size and density of the
scatterers play much more‘important role than the shape and orientation.

- This is reasonable from the physical concept.

- -




In this paper, we propose an alternative approach of adopting a
contemporary field of mathematics in solving the classical problem
of discrete random media. We treat the discrete random media as a random
medium with discontinuous property. First, the wave equation with random
discontinous coefficient is reduced to a random integral equation of
Fredholm type and its solution is obtained in terms of Neumann series.
Then, the expressions of the mean value, mean square value and the space
correlation function of the scattered field are obtained in terms of the
random field B(;,w) which depends on the properties, shape, size and
concentration of scatterers and the properties of the surrounding medium.
For spherical scatterers, the space correlation function is obtained, and
the mean square of the scattered field is expressed as a function of
concentration of scatterers. The results obtained using this approach
are also compared with some available experimental results.

The advantage of the present approach are : a) it is applicable over

a wide range of concentration of scatterers (from very low to closest

" packing), b) the scattering property of a single scatterer is not needed;

the discontinuous stochastic field B(;,w) and the space correlation function
KB(;,w) play important role yhich depend on the shape and size of each
scatterer and the concentration O of scatterers. For simplicity, we first
present the theory only for scalar problem. The vector problem will be
studied in our subsequent reports. For general electromagnetic wave

scattering problem, we follow the steps outlined in Varadan?,
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2. DISCONTINUOUS STOCHASTIC FIELD B(;,w)

We consider a random distribution of a large number of identical

correlated scatterers embeded with a region R in a homogeneous matrix medium.

The wave speeds in the scatterer and the matrix are denoted by ¢y and Cys
respectively. Let S denotes the region occupied by a scatterer. If we

define the random field c(?,m),re R,, we€f as follows

3

c ; €S
> (10 F (1)
c(r,w)= {cz , Tés

where R3 is ordinary 3-dimensional space, {2 is the probability space, then

the total wave field p(;,w,t) will satisfy the random wave equation with

random coefficient c(;,m)

1 32 .
@ ol

-
Here, the position vector r can either be inside or outside the scatterer.

2 5 >
v p(rgw’t) - (r9w9t) =0 (2)

We assume that the size of R is much larger than the size of each
scatterer, and c(;,w) is a homogeneous (stationary) stochastic field in R.
The one dimensional probability distribution density c(?,m) may then be
given by

' £_(x,T) = 08(x—c)) + (1-0)6(x=c,) = £ (x)  (3)
where O( ) is the Dirac Delta function and ¢ is the concentration of

scatterers.

Now, we define another discontinuous stochastic field B(;¢u) as follows

2
- c
B(rw) = —5— -1 , TeER ()
¢ (rw)
where CO is a constant defined by
_ 2 2 . 1/2 -
¢y = C1c2/( Oc:.2 + (1-0)cl ) (5)
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Physically, o is some kind of mean value of c(;,w). Then, it is easy to

lL show that the mean or expected value of B(;,w) is zero, i.e.,
EP{B('{,w)} =0 , VreRr (6)
and > L
. , Te O
' B(E,w) = { L ™
2
where
B, = (1-0) (e - XY/ ( ae] + (1-0)eD) o :
B, = 0(c? = c2)/( oes + (1-0)ch)

The one dimensional probability distribution density of B(;,w) may be

U written as

= £g(x,0) = 08(x-B)) + (1-0)8(x-B,) = £o(x)  (9)
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3. NEUMANN SERIES SOLUTION OF STOCHASTIC EQUATION

l‘ Let po(?,t) denote the solution of the non-random wave equation -l

P, Ee) = (/ed) %o, ey /ach) (10)

Then, the Fourier transform of po(?,t)

- > . ™ > -ivt
po(r,y) = [, Pplrst)e ""rde (11)
satisfies the non-random Helmholtz equation
2 -~ 2 - .
Vo, (r,v) + kKp (r,v) =0 5 k= yle (12) L
0 0 4]
We define ' ']
- -
: pl(r,t,w) = P(r,t,w) - po({!t) (13) . :
SR > oo -1yt
k. ! P (Tovw) = [0 py(E,tw)e Vrde
g (14)
0o -iv
PGww) = [pE,twde ™ fat
» which yield
[ P(-{‘,vw) = Po({',\)) + Pl(?s\) ’(L\) (15)
Using these definitions and taking Fourier transform of Eq.(2) with
respect to t, we get
.b 2 2
| -(V2+ kp (avow) = K3 Faw) pgEaw) + o Gvw0)  (16)
- the solution of which may be written as
> ST b A | 2 - -
- P (rvw) = f(e T =Tz - 2k (', Wpy(r',Vdr' -3
= Sk -, 7 2.2 > - (7
tfe Jar|r - r' Dk (E,Wp, (r',V,W)dr! )
e 10,11
H. A This is a stochastic integral equation of Fredholm type since it can RN
be written 1in the form
py(Fww) = ¥(Ewaw) + 7 KEELW p)p (F1,V,000  (18)
R
1]
. where the forcing function \y(f“)*u) and the kernel K(®,t',V,w) are
ff o defined by

..............
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-+ >, N
Y(E,V,w) = f(e-ik‘r -t l/lml? -z |)k28(;,w)p0(r,\))d;' (19)
R

-+ ->, -
K@, 2,0, = klT -7 |/4n|r - T DRZBGE W) (20)

The solution of Eq.(20) may be obtained in the form of Neumann

serieslo H
pf(;,v,w) = ¥(r,viw) + T IR (LT, V,0)¥(E,v,w)dE! (21)
m=] MW
: or
- P, v,0) = ¥E,v,0) + L TET,0YE,v,0)dE (22)
‘ R

where Km(¥,;',v,m), m=1,2,..., are defined by the recurrence formula

K (,7',v,0) = { R(E,r',V,w)K_ ("', 2',v,wde"" ; m = 2,3,4,... (23)
m m-1
and
K (F,T7,0,0) = K(E,T',V,0)
(24)
I,z ,v,w) = % xm(?,?',v,m)
m=1 .

The inverse Fourier transform of Eq.(21) gives

p, (£,t,w) = ¥(F,t,0) + (1/2m) £ LK EE V0¥ (E,v,welVtdaTay  (25)
1 m=1R-w m

or

vt

p,(Ft,0) = ¥(T,t,0) + (1/ams LET v,0¥E,v,we™dr av (26

where the following definition of inverse Fourier transform has been

used.

T
AT
Lnde i h

YE W = (1200, v,welVt v (27)
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4. MEAN VALUE, MEAN SQUARE VALUE AND SPACE CORRELATION FUNCTION
OF SCATTERED FIELD

! [ a) Mean value
-> -> ES
Let Mp (r,t), Mw(r,t) denote the mean (expected) value of pl(r,t,w),
1
->
Y(r,t,w), respectiygly, i.e.,
ES
M (r,t) = elp, (r,t, 0} Mw(;,t) = E{¥(Z,t,w}} (28)
1
The expected value of the scattered field pl(?,t,w) may be written using

Eqs.(25) and (28)

!
r

Y]
Mo (f,) = M (F,0) + (1/2m) § LR GE 0,0 Ev,wet Vi av (29)
pl m=1
Since
) ! E{B(T,w)} = 0 vV reRr (30)
we see that
-
E{B(r’tpw)} = 0 (31)
i’ l The first term in the series given by (29) can be expressed as
> -> > >
-ik|r - r'| _-ik|r' - ¢''|
A e K@ - T p et ey (32)
_ R 4m|r - ' 4rie’ - ']
i ] where
Ko = £ = E(8(F,w) B0 ) (33)-
is the space correlation function of B(?’w)- If B(F,up is isotropic,
» then xs(?' - ) = k(T - ). )
b) Space-time correlation function ;;::
From Eq.(26), one can get the general expression of the space time i};j
» correlation function of the scattered field given by -1
.. * - ta
>
> >
- = Ky(rysrpatysty)
. 0 i t
, . +(1/21T)£ '[oo E{Wﬁl’tl’w)rﬁz’¥"\)’w)\y(f"\) ’(D)e v 2d;'d\) -‘,.-':
: SR
. -{Vg. - o
x +(A/2m)f L E{¥ Gz’tzm)r* Bt ) yTE e 1dr'dy ]
<
. . T
- ;f:j




2 2 o 00 * > >, w o>, > o,
+(1/ 2% ){zf[w[w E{T (rl,rl,vl,w)\lf (rl,vl,w)l"(rz,rz,\)z,w)

l X¥(T,,V,,0) e_""vltleintZd;id;édvldvz (34)
where
R, Froipetyoty) = BV G e 0¥, t,0) (35)
| . and ' ' denotes conjugate. From Eq.(24), one could write
EY(F b L0, E 0,08 Ev,0 )
P =m§1E{w*(¥l,tl,w)KmGz,?',v,w)w?',v,m) (36)

In Eq.(36), the first term (m=1) can be derived using Eq.(19) and (20)

as follows

E{?*(?l,t,w)K(;z,;',v,w)W(;',v,w)}
"> > > > >, >

- (1/2ﬂ)£f[:[eiv|r1—r"'I/CO ivlr,mrt /ey —iv|rt-r"' | /ey Cg

| peam (2 | [F, 22 1o 2t @ e v

| b E(BE ,0)BE",w)BE"",w)} e V't d2radhray’ (37

Similarly, other terms in Eq.(36) can be expressed as the integral

consisting of higher order moments of stochastic field B(;,w).

I i ¢) Mean square value

The mean square value of the scattered field pl(;,t,w)

2) -~ > 2
u? 2,0 = E{lpl(r,t,w)l } (38)
P1
can be obtained directly from the space-time correlation function of
the scattered field by setting ;1 = ¥2 and tl = t2’ i.e.,
D30 =k &5 (39)
. P Py
_ It is to be noted that the mean value of the scattered field is always }
:f much smaller than its root mean square value, and also, in practice, only ji
v the mean square value is measured. C
' =
‘ 1
T e e T L e e e e L T e N i
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5. SCATTERING OF CONTINUOUS INCIDENT WAVE
Obviously, the non-random field p0(¥,t) may be regarded as the incident

wave (or field). When po(;,t) is continuous field, it can be written as

p (£,t) = p_(PrelVot (40)
(4] 0]
where po(;) is its complex amplitude, Yo is the angular frequency. Then,
(t,v) = 2mp ()8 4
Po(r,V) = 2mp,(r)S(v-vy) (41)

Now, we consider only far field backscattering and the incident
wave to be a plane wave propagating in the direction A (A is a unit vector),

see Fig. 1 with amplitude A. Then,
A
Ae-i(\)on-r/c0 vot) (42)

(-)
Py r,t)
and

A—)
amae” Vol T/ 8(v-v,) (43)

(+
Py r,v)
Substituting Eq.(43) into Eq.(29), we get
z 2, 2, iv t -iv (’;-;'l + ﬁ-;') > > > >
¥(r,t,w) = A(vy/eg)e™ 0" fle 70 fem|T-T [18(r" ,w)dr’  (44)
R

Since W(;,t,w) is also a monochromatic wave field, we write

YT, t,w) = ¥(T,welvot (45)

where W(;,w) is its amplitude. By using Eq.(45) in (44), we get

¥Ew) = ay/eg? e olTE T+ B0 g n 2 s watr e

Let the correlation function k, as

]
> > > ->

Kw(rl,rz) = E{W(rl,w)W(r,w)} n 7

> > o > iV (ro-t)  (48) -]

Ky (r)srpat),t)) = Ky(ry,ry)e” 0772 71 _;%
By employing (46) in the above equations, we obtain }:'1;
K E2) = aviamedylry (efV@E + [T E D /ey ivgRE" + [T, D) /ey ]

w 1’ 2 = 0 CO £ . X

J17. | 22 1R, 0=ty i (49) L

1 2 B )

e <> -> - -5 - 4.'1

Let § = r,°T, and consider only the case of |Q‘<<Ir1|’ ‘le-

i by

Using the following approximations

.
E L
P B B




11
-> _-», - -> >, A'->' - >,
: |r1 r'| |r1| + |r |cosel sy DT [x |cosel
' (50)
i > > -+ > A > ->
Irz-r" = |r2| + lr"lcose2 , fDer" = lr"lcose2
I£,1 = It + IZ] cose
2 1' - 1 2
> > - -> > -
letting r, =r, Irll = Irl = r, p=rzx"'"-r', |g| = g Bi, 62, 8, as
shown in Figure 1, and considering that the radius of each scatterer and
the correlation radius of B(?,w) are much smaller than the size of region
>
R and E{B(r,w)} = 0, we finally get
> >
I = 2 2,2 1v . gen/c > 2
Kw(r, ) (Avoldﬂco) e 0 0 VRKB(ZkO)/r (51)
where
> > ~i2k D
Ko(2k ) = [ K (p)e 0" dp (52)
B*"70 R B
l is just the space spectrum density of the stochastic field B(;,w), VR is
the volume of R and ﬁb = voﬁ/co is the wave vector of the incident wave. R
H hanged the function form K (T,,r,) into K (f.,%.-T,), i i
ere, we changed the function form " T,sT,) into v T),T,-r,), i.e., :.:
KL(E.2) = K, (F,T4) (53) 1

If the scatterers in space are distributed non-directional, then the
B(;,w) will be isotropic implying
> >
- K = K = 4 4
(@ = Ka([o]) = Kg(p) (54) 4
Then from Eq.(52), we obtain

KB(Zﬁo) = T?.Tr(col\)o){°° pKB(p)sin(Zvop/co)do (55) :ffﬁ
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6. SCATTERING OF IMPULSE INCIDENT WAVE

Consider an impulse monochromatic plane wave with frequency VO,
propagation direction a, duration 1 and amplitude A

A l
-i(v.n -V
e'i( On r/c0 t)

po(?,t) = A u(ﬁ-;Yc - t) (56)

0

where u(t) is the "rectangular" function defined by

1 t € [- 1/2, 1/2]
u(t) ={ (57)
0 t ¢ [- T/2, T/2]
The spectrum (Fourier Transform) of u(t) may be written as
-ivV
u(t) = Jou(w)e I = 2sin(TV/2) /v (58)
PO(;,v) can be expressed as
A >
po(F.V) = A 0% T %0 2e1nT(v - v )/21/(V - V) (59)
For narrow band T >> l/Vo, one can show that
> 2,2, iV t -1V (-2 ] + AD) /e > >
¥(r,t,w) = A(VO/co)e 0 S [e 0 0/4T|r-r' |]
> > > A >
xB(r',wult-(|e-r'] + A-r?)/cldr’ (60)

We also notice that if u(t) is not a "rectangular" function, but an
"arbitrary" function with duration T>> 1/V0, then the expression(60)
still holds.

If the radiation system of incident wave has a narrow directivity,
then using the same approximation as (50), we obtain the mean square

value of Y(T,t,w):

Miz)(;,t) = (Avgléﬂcg)zﬂ R2c0 KB(zﬁb)/er (61)
where
Mﬁf’(?,c) - ¥, e w0 |2} (62)

and R is the radius of the illuminated area of scatterer region by the
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incident wave. In this derivation, the illuminated area is not
necessarily to be a circular one. If we use A to denote this area,

then (61) takes the form

Mu(,z)(;,t) = <Avf,/4nc§>_2ﬂcopraiO)/zrz (63)

Comparing (63) with the formula for continuous wave

(2)
My

which is obtained from Eq.(51) when we let E = 0, we can see that they are

> 2 2.2 > 2
(r,t) = (AvO/AWCO) VRKB(Zko)/r (64)

completely similar, J\cOT/Z just plays the role of V.. This seems

physically reasonable.
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7. SPACE CORRELATION FUNCTION FOR SPHERICAL SCATTERER

From the previous section, we see that the space correlation function

KB(Q) or the space spectrum density KB(ﬁ) plays important role in the
calculation of the statistical moments of the scattered field. KB(Q)
depends on the shape and size of each scatterer and the concentration
0 of scatterers. The calculation of KB(R) or KB(E) here is based on
geometrical probability.

Obviously, the stochastic field B(;,w) is ergodic. Therefore, for

any sample (realization) B(;,wi), we have

Ko@) =V%;?*£1/v<n)) 63(¥,w1)3<?;6,wi>d? (65)

where D is a region with any shape in R and V(D) is the volume of D.

Assume that the distance from any sphere to the nearest sphere is
the random variable £(w), see Figure 2, and £(w) has the exponential
probability distribution density

e = 0 g, , xelo, (66)

where 60 is the mean value of E(w), i.e.,

£ = E( £} (67)

Using Eqs.(9), 65) and 66 ), from geometry, we get

2 1/3 . 1/3 o . 2
Ka(9 = 0B8] [0~207"" +0 3501 (%0,3) 1/ (1 -0 ) (68)
where

_ i
1(2,0,1) = 36, BN 80 7 L 12250 (2grny el
k=0

+ e-2a/€O (R—Z(j—l)a)k/gg - Z(Q-Zja)k/gg]

....... N L et e m am at an e e e e e e ate e e
---------- \' 5. ‘.' - --' . - - - -
VAL YR P IR RO O A PP A IR T AR S tatatad e

. Ao .

ce e e
Aaaa’ o g2’ g

gl

et
PR PR e
NP S B SRR I
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j-1

-(2-2 .
~e-2(3+0ale” D80 (1 162250 (2D /EE - (2-230)*/E5)
k=0
~(2-2j izl k - k,. k }
+ie-2¢3-Dale” VST /iy 23 /gl - 2% k0 (-2¢5-na) Ve,
k=0
j<f%/2a~1 (70)
2a-2 2 €[0,2a] <
I1(2,0, 0) = { (71)
0 % 22a
In Eq.(6g), int{ } denotes the integer part of{ }. We may be able to . ;?
write Eq.(68) in the form 3
i
K. (2) = be Y*(1 + cos2me/n ) J
B 0 (72)
On the other hand, for small values of 2, ( 2 £ 2a), from geometry,
we get exact expression of KB(Q) given by R
2 3,,..3 2 :
KB(R) = 0.81[(1-0)-32/40 + 27/16a”1/(1-0)° , A& £ 2a (73) .
. ——
From Eq.(72), we find 1
dkg (V) = -2vb Kg(0) = 2b (74)
df 2 =0
while from Eq.(65), we find f‘”T
dRg (1) , = -308/4(1-0%a ,  Kg(0) = 0B3/(1-0)  (79)
s 2=0
Comparing Egs.(74) and (75), we obtéin expressions for b and vy given by 3
b= 0B2/2(1-0) Y = 3/4(1-0)a (76)
Substituting Eq.(76) into (72), we finally obtain an expression for j
KB(Q) as J
2 - - , o
Kg(® = (0/2(1-008; D2 11y costn PP sa) o)
S
R
o
l

................................................................
....................................................
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8. RESULTS AND CONCLUSION
In this section, we present the final expression for mean square
value M(z)

v
into Eq.(64), integrating the resulting expression and again substituting

->
and space spectrum density KB(Zko). Substituting Eq.( 77

the result into Eq.(70), we finally obtain for narrow band pulse (1>> 1/v0)

Kg(2k) = 4/3)3( ncO/vo)azo(l-o)z si{ 4k a

0
2koa + ﬂ01/3
+
[ 1+ @/3)2a-0)2(2kga + 10?322
(78)
2k ga - mot/3
+
[ 1+ (4/3)2(1-0)2(2koa - mot/3y2,2
and
Miz)(?,t) = (2A2v3 R2 Taz/27r2)(cg(c§~ci)2/cic3)0(1—0)4{4k0a
2k0a + W01/3
+
7 7 1/3.2.2
[ 1+ (4/3)7(1-0) (ZkOa + 717" 7)) (79)
ZkOa - n01/3
+
[ 1+ w/32a-0l @K - /3%

To the author's knowledge, extensive experimental results are not
available on incoherent intensity from random media, except that of some
controlled laboratory experiments in acoustics13. In Ref. 13, some

backscattering measurements were reported for a random distribution of

and of the host medium considered in their experiments are cl = 1596 m/sec ::3;1

i
fluid particles dispersed in another fluid. The wave speeds of the scatterers . ;i
1
v
<
and c2 = 1499 m/sec. For such a system, Bl<< 1, 32<< 1 and B(;,w)<< 1 b

\v Te R, w€ 2 . This suggets that we could neglect higher order moments

(The theory presented, however, is general) resulting in the following
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5. V.V. Varadan and V.K. Varadan, The quasi-crystalline approximation and multiple scattering of
waves in random media, submitted to IEEE Trans. Antennas and Propagation.

6. A. Killey and G.H. Meeten, Optical extinction and refractlon of concentrated latex dispersions,
J. Chem. Soc., Faraday Trans. 2, 587-399, 1981.
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The first set of the above diagrams represents a partial summation of QCA type terms incorporating two
body correlations while the second set represents the conventlonal tadder diagrams. 1o both sets of
diagrams, we can use so called "dressed propagators" obtained from Eq. (6) between scatterers instead
of "bare propagators'. This means that K from (6) can be used as the wave number characterizing the
medium between scatterers involved in calculation of the spectral density, i.e., the other scatterers

that participate in only one or other of the fleld lines are averaged over separately and replaced by K.

NUMERICAL RESULTS

The numerical procedure is described in detail in Refs. 3~4, and will not be repeated here. The
effective wave number K(-K1+K2) is computed for Revacryl spheres in distilled water for a range of
frequencles and concentrations of scatterers. The real part K  is related to the phase velocity while
the imaginary part KZ is related to coherent attenuation. We have also calculated the coherent and
incoherent intensity for electromagnetic wave propagation through ice particles (€r= 3.168) 1in free
space using the first term of the two series of diagrams given in Eq. (8).

In Figs. 1 and 2, the real and imaginary parts of the coherent field are compared with the
experimental measurements of Killey and Meeten6. In Fig. 3, calculations of the coherent intensity
for a suspension of Revacryl spheres in distilled water show excelleant comparison with measurements
of Killey and HeetenG.

In Fig. 4, the incoherent intensity is plotted as a function of ka for ¢ = 0.0524 and for varlous
angles 8. It is interesting to no;e that as ka increases, the leading term of the incoherent intensity
approaches a constant value for all values of 6. Flgure 5 displays the incoherent intensitv as a

function of the observation angle 0, and the intensity reduces to zero at A = 90° as expected.
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functions g (given by p(;JI;I) = % g (;lj)) which are denoted by 0 (K) and g (K), respectively, and
using the convolution theorem, we obtain

1K -+ (r,-r.)
0 - - -1 172 @) +
<E(T)> = E*(T) + Ou wn(t_;i) T . "of“‘"o og (K) T) " e ar(l,,) dk d?l at, (5)

This new form of the average field can be interpreted as an incident plane wave propagating through
an effective medium of propagation constnat K and propagator [l-no og (K)T)'1 undergoing scattering

from a particle at r. and then propagating to the observation point r with the wave number of the host

1
medium. The dispersion equation in the model medium can be obtained by setting the determinant of the

propagator equal to zero:

| l-n Og(K) T | =0 (k)

This equation is identical to the one obtained by us earlier using the self-consistent multiple
scattering approach, see Ref. 4.

The field fluctuations oE may now be given by

-

*> >
AE = E - <E> (7)

and can be represented as a multiple scattering series which may be represented by the following diagrams
i = =

where — denotes propagation of the field from one point to the other and 0 denotes a scatterer.
I1f two ore more gscatterers are enclosed in an area such as —@ arbitrary muluiple scattering
any number of times and in any order can go on between scatterers 1, 2 and 3.

Along these lines, we define the incoherent intensitv or the spectral density Cq(ﬁ.m) at position

R. for field polarization in the direction 4.

> 1 >.:2
G,(R,w) = 7 <|@ - AE|“>

. , oo, ...
i T

(8)
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reometries without much difficuley.

FORMULATION
Consider wave propagation in an infinite medium of volume V + = containing a random distribution
of N scatterers, N + », such that n, = N/V, the number densitv of scatterers is finite. Plane harmonic
xe

- (
waves of frequency w propagate in the medium and undergo multiple scattering. Let E, E). E1

Ei denote respectively the total field, the incident field, the field exciting the i-th scatterer and

, and

the field scattered by the i-th scatterer. Then self consistency requires the following relationships

between the fieldss'A.

N
E=E +% E: (0

and

= + I (2)
! [T
-
The configurational average of the total field results in
E@> =2 4T T, 0uy (i-7) al p(E) dF
r r) t an' O Wn ror.) a p(r) dr,
' —»_-» - j -> - > e - -> +

+ E Iji Tant Targm08 Vo (F=€)) O uu(r, ) an, plry) p(ry) p(rjlri) dr, dr, + ... 3

In Eq. (3), Tnn" is the T-matrix-of an isolated scatterer, ai are the known coefficients of
expansion of the incident field at the site of the i-th scatterer, onn'(;y) is the translation matrix
for vector spherical functions and describes the propagation of waves from ;i to ;j' The functions
p(;j), p(;jl;i)... etc. are the single particle, two particle conditional probabilities distribution

functions. We have shown5 that invoking the QCA implies that the coherent field and the resulting

dispersion equation were limited to terms of the form

- g
<E>_ ., = —O0—— + —&—+—b—""—3‘——)>—

QCA (4)

_(l""\‘.“""\,:l"h oy ee-

where S::B denotes positional correlation between two sucatterers and it is clear from the diagrams
that each scatterer participates only once in a given term, there 1s no back and forth scatterine and
all scattering is sequential and only sequential positional correlations are allowed.

Introducing spatial Fourier transforms of the translation matrix 0 and the radial distribution




PROGRESS IN RESEARCH ON WAVE PROPAGATION AND SCATTERING
IN DISCRETE RANDOM MEDIA USING MULTIPLE SCATTERING THEORY

V.K. Varadan and V.V. Varadan
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Wave Propagation Laboratory
The Pennsylvania State University
University Park, PA 16802

ABSTRACT
This paper is concerned with a propagator model for multiple scattering and wave propagatdon In
discrete random media. The coherent and incoherent iatensity of a time harmonic electromagnetic field
in such a medium are calculated and compared with available experimental results showing gond agreement.
This work has been published and submitted for publication as follows:

V.V. Varadan and V.K. Varadan,''The Quasi-Crystalline Approximation and Multiple Scattering of Waves
in Random Media", IEEE Trans. A and P.,submitted for publication.

V.K. Varadan and V.V. Varadan, "A Propagator Model for Multiple Scattering and Wave Propagation in
Discrete Random Media”, Radio Science, submitted for publication.

V.K. Varadan, Y. Ma and V.V. Varadan, "Coherent Electromagnetic Wave Propagatfon Through Randomly
Distributed and Oriented Pair-correlated Scatterers”, Radio Science, in press.

V.V. Varadan, Y. Ma and V.K. Varadan, "Frequency Dependence of the Attenuation of Flectromagnetic
Waves in Media with Anisotropy Induced by Microstructure", IEEE Trans. A and P., submitted.

INTRODUCTION

We consider the propagation of plane coherent electromagnetic waves in an infinite medium containing
identical, loss less, randomly distributed particles. Our aim here is to characterize the random medium
by an effective complex wave number K (which would be a function of particle concentration, the electri-
cal size, and the statistical description of the random positions of the scatterers), and to study both
coherent and incoherent intensities as a function of frequency for various values of concentration c
(the fractional volume occupied by the scatterers). Although the formulation is generally valid for non-
spherical, aligned or randomly oriented scatterers, initial calculations are confined to spherical
scatterers which generally gives us a better picture of the order of magnitude of the different contri-

butions to the intensity without the additional complications of non-spherical geometry and orientation.

Extensive work by Twerskyl-z has laid the foundation for multiple scattering theory in discrete
random media. A related approach using the T-matrix of a single scatterer together with configurational

averaging procedures, has been used bv the authors to develop a computational method for electrumagnetic

wave propagation problem in inhomogenenus mediax-h. Lax's quasi-crystalline approximation (QCA) is used

talaaa

in conjunction with suitable models for the pair-correlation function to obtain an effective wave number

K(=K1+iK2) which {s complex and frequency dependent. The rcal part K, is related to the phase velocity

1

while the imaginary part K2 is related to coherent attennatfion. In this paper, we present a propagator

3-4
model which 18 shown to present the same dlspersion equation as the one obtained in our nrevious papers .

In addition, this model enables us to compute both coherent and incoherent intensities for more realistic
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observations :

Kpl(rl,
KPG,E) = Kw('{,l) 80)

->
r2,t1,t2) = (r ,r2 2)

W@ G u@

p, R " (r,t)

The mean square value of the scattered field M;zz;,t) may then be calculated
1

from Eq.09 ). The results are shown in Figs. 3 and 4 wherein the

backscattering intensity is plotted as a function of concentration for a

fixed frequency of 7.5 MHz. The agreement between theory and experiment

is very good.
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ABSTRACT

A propagator model is presented for studying both coherent and incoherent
intensities of the electromagnetic field in a discrete random medium.
Lax's quasi-crystalline approximation (QCA) with suitable averaging techniques
and the T-matrix of a single scatterer has been emeployed in the analysis.
Pair-correlation functions generated by Monte-Carlo simulation have been used
in the computation. This model also provides a dispersion equation which
is solved for both phase velocity and coherent attenuation as a function
of frequency for various values of concentrations of scatterers. Numerical
results obtained show excellent agreement with experimental measurements
of Killey and Meeten (J. Chem. Soc., Faraday Trans. 2., Vol. 77, pp. 587-599,

1981).
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o INTRODUCTION
k l We consider the propagation of plane coherent electromagnetic in an
. infinite medium containing identical, loss less, randomly distributed particles.

Our aim here is to characterize the random medium by an effective complex

wave number K (which would be a function of particle concentration, the electrical

*

size, and the statistical description of the random positions of the scatterers),

and to study both coherent and incoherent intensities as a function of

frequency for various values of concentration c (the fractional volume occupied
by the scatterers). Although the formulation is generally valid for non-
spherical, aligned or randomly oriented scatterers, initial calculations are

confined to spherical scatterers which generally gives us a better picture of -

N
-1
{
Al
L}

the order of magnitude of the different contributions to the intensity without
the additional complications of non-spherical geometry and orientation.

Extensive work by 'l‘wer:skyl-5 has laid the foundation for multiple scattering
theory in discrete random media. A related approach using the T-matrix of

. 6 . .
a single scatterer together with configurational averaging procedures, has

been used by the authors to develop a computational method for electromagnetic -

wave propagation problem in inhomogeneous media . Lax'slo quasi-crystalline
approximation (QCA) is used in conjunction with suitable models for the pair-
correlation function to obtain an effective wave number K(=K1+1K2) which -

is complex and frequency dependent. The real part K, is related to the phase

1

velocity while the imaginary part K, is related to coherent attenuation.

2

In this paper, we present a propagator model which is shown to present the -
same dispersion equation as the one obtained in our previous papers "7, In
addition, this model enables us to compute both coherent and incoherent

intensities for more realistic geometries without much difficulty. T
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FORMULATION
g_ [ Consider wave propagation in an infinite medium of volume V + « .
containing a random distribution of N scatterers, N > «, such that n = N/V,
o the number density of scatterers is finite. Plane harmonic waves of frequency
I > 20 > =
I w propagate in the medium and undergo multiple scattering. Let E, E , Ei’ and
Ei denote respectively the total field, the incident field, the field exciting

the i-th scatterer and the field scattered by the i-th scatterer. Then self

L; consistency requires the following relationships between the fields7_9.

N
, =24+ 1 B (1)
: i=1 .
4 v -
P and

N

e-0. 5 2 (2)
i jfi 3
.' Let Ouwn generally denote outgoing functions (Hankel functions) and
Re

functions regular at the origin (Bessel functions). We dispense with vector
notation and the abbreviated index may denote n > T, &, m, 0; T = 2,3;

. £ € [0,°]; m e.[0,2], see Refs. 7-9. v

. At a field point ; in the host medium, the incident, scattered and exciting T;i;

fields are expanded as follows

- 0, _ o ' (3) .
E (r) = g an Re ¢n(r)
e > i > > -> >
. = - . - <
: E (1) E a Re Y (r-r.) ; |t ril 2a (4)
s - i -> - > >
= ' - . - >
E (r) E fn Ou wn(r ri) s |t ril 2a (5)
where ;i denotes the center of the i-th scatterer, and a is the radius of the
. sphere circumscribing any scatterer. The coefficients a are known while - -

the coefficients fz and ai are unknown but are, however, related through the
Trmatrix6:
’ ‘ £l T T, ol
' n' n

n ' an' n'
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Substituting Eqs. (3)-(6) in (2) and using the translation-addition
l; theorems for spherical wavefunctions and the orthogonality properties of

spherical harmonics6, we obtain

i i - > j
= + L, L,o0 r-r,) T o (7)
o % = % jii n' n" on' ( j i) n'n" "n"
where
- > t -+ > - >
- = - - 8
Ou Y (r-ry) =1L, 9, (r, r.) Rey , (r-r)) (8)
and onn' is the translation matrix for spherical wavefunctions.
If we substitute Eqs. (7) and (5) in (1) and iterate, we obtain
o -+ 0. - > > i - >
= - + ' -
r E(r) E(r) + § Ou wn(r ri) Tnn'an' Ej Ou wn (r ri)
(9
2z j ) > >
T cn'n"(rij) T e 8po + i ? E Ou ¥ (r ri) T qreeeteee
-> > >
| l where Tij " (rj-ri)-
The first term in Eq. (9) is the incident field reaching the observation
point T denoted by P in Fig. la. The second term of Eq. (9). is a sum of
| ‘ N contributions each of which can be represented by a diagram of the type o
shown in Fig. 1b. The thin line represents the incident field E0 and the 2:;
thick solid line represents the 'propagator", Ou wn (?-;i) Tnn' which propagates g
- the field from scatterer i to observation point T. The sum of all N diagrams 1

of this type is termed single scattering. The third term of Eq. (9) is a
sum of N(N-1) contributions, each involving a pair of particles, and is :;{i;
represented by the diagram of Fig. lc. There are also N{(N-1) terms of the T
form given in Fig. 1d which involve only a pair of particles. There are -E;k:
N(N-1) (N-2) terms of the type shown in Fig. le. As seen from Fig. 1, the

three body process can include any number of scattering in any order between

the three objects. .

]
N . N
et oo et
a o a o A K. oo b
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Equation (9) can be averaged over the positions of the particles to yield
-> 0. - -> > i -> ->
< > = -
E(r) E (xr) + § Tnn' Ou wn(r ri) an p(ri) dri
' ->_—> -> J - -
+ i § Tnn' Tnunvu Ou U)n(r ri) On'n"('rij) ann P(ri) P(rj) (10)

(+|;)d+ d—) +
pr:i 1 1:j r,

> > >
which involves all orders of joint probability functions, p(ri), p(rj|ri). etc.
We have shown10 that invoking the QCA implies that the coherent field and the

resulting dispersion equation were limited to terms of the form

:.'- l"'\ '.""‘ I"Y'iy.’h—: “'(..”'_\
<E>.. = —O— + —0—0— 4+ —o——8—0—
QcA
. rp"""’\;‘.!v::: :“""\ + e (11)
where 3—:; denotes positional correlation between two scatterers and it is

clear from the diagrams that each scatterer participates only once in a given
term, there is no back and forth scattering and all scattering is sequential
and only sequential positional correlations are allowed.

Introducing spatial Fourier transforms of the translation matrix o
and the radial distribution functions g (given by p(?j[?i) = % g (?ij))
which are denoted by T (K) and E(K), respectively, and using the convolution

theorem, we obtain

<E(;)> = Eo(¥) +fO0u wn(¥—;i) Tnn' nOJ-[l-n0 Tg (K) T]-1

- (r,-r >
e 172 D g a7
n 1 2

(12)

This new form of the average field can be interpreted as an incident

plane wave propagating through an effective medium of propagation constant

. K and propagator [l-no ?J'§(l()'1‘]”1 undergoing scattering from a particle at

r, and then propagating to the observation point r with the wave number of

the host medium. The dispersion equation in the model medium can be obtained
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by setting the determinant of the propagator equal to zero:
L | 1-n_0g(K) T | = 0 (13)

This equation is identical to the one obtained by us earlier using the self-
consistent multiple scattering approach, see Ref. 9.

>
The field fluctuations AE may now be given by

-

AE = E - <B> (14)
and can be represented as a multiple scattering series which may be represented

by the following diagrams

—_— (15)

where — denotes propagation of the field from one point to the other and
0 denotes a scatterer. If two or more scatterers are enclosed in an area
.; such as —fg:::g::jt}- arbitrary multiple scattering any number of times (16)
and in any order can go on between scatterers 1, 2 and 3.
Along these lines, we define the incoherent intensity or the spectral

density Gu(ﬁ,w) at position E, see Fig. 2 frequency w for field polarization

t
in the direction as (see Fig. 5 for the definition of &).
o 6, (Rw) =3 <la - aE|% |
Ve ——
- = :565}51 -+ ":::::O'-':==ﬂ—--,_.~ + j:f;zzza:=:a:ﬁ:: 4 e C 4
‘ o e
e . .
- 1 C
N T
- + + : | ' a”n S
e e - (Y et
3 — W ] ‘0‘7_» ’L'——o i
\_// .- .\A__,_____..__—_—d" ﬁ
..‘.1u‘n»\. B coenty ...-*..,>
N,y megmm—s + moT==bizow -
= F(& - - O——
’ + 4! [ANER} z
. . 4 e Py ]
+  onwo Sn * LI S 18 . -]
] .‘<v‘\V| " ‘ . ..-1
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The first set of the aboye diagrams represents a partial summation of QCA

type terms incorporating two body correlations while the second set represents
the conventional ladder diagrams. In both sets of diagrams, we can use so
called "dressed propagators' obtained from Eq. (13) between scatterers instead
of "bare propagators". This means that K from (13) can be used as the wave
number characterizing the medium betwéeﬁ.scatterers involved in calculation

of the spectral density, i.e., the other scatterers that participate in only
one or other of the field lines are averaged over separately and replaced by

K.
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NUMERICAL RESULTS

The numerical procedure is described in detail in Refs. 6-9, and will
not be repeated here. The effective wave number K(=Kl+iK2) is computed for
Revacryl spheres in distilled water for a range of frequencies and concentrations

of scatterers. The real part K ,is related to the phase velocity while the

1’
imaginary part K2 is related to coherent attenuation. We have also calculated
the coherent and incoherent intensity for electromagnetic wave propagation
through ice particles (sr = 3.168) in free space using the terms of the two
series of diagrams given in Eq. (18) that make up our approximation using
the pair correlation functions to the spectral intensity.

In Figs. 2 and 3, the real and imaginary parts of the coherent field
are compared with the experimental measurements of Killey and Meetenll.
In Fig. 4, calculations of the coherent intensity for a suspension of Revacryl
spheres in distilled water show excellent comparison with measurements of
Killey and Meetenll. In Fig. S,Ithe geometry for the computation of incoherent
intensity is given. 1In Fig. 6, the incoherent intensity is plotted as a
function of ka for ¢ = 0.0524 and for various angle O (see Fig. 5 to see how

0 is measured).

In Figs. 7 and 8, similar results are presented for higher concentrations.
Figure 9 displays the incoherent intensity as a function of the observation
angle 6, and the intensity reduces to zero at 6 = 90° as expected while in

Fig. 10, we have plotted the back scattering intensity as a function of

ka for a concentration of .0524. There are two minima in the intensity spectrum.
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FIGURE CAPTIONS
Fig. 1 A diagramatic representation of multiple scattering processes.

Fig. 2 Phase velocity vs concentration ¢ for Revacryl dispersions
in distilled water at A = 546 nm.

Fig. 3 Coherent attenuation vs concentration c for Revacryl dispersions
in distilled water at A = 410 nm and 546 nm.

Fig. 4 Coherent intensity as a function of propagation depth z for variopus
values of ¢ at A = 546 nm. '

Fig. 5 Scattering geometry.

Fig. 6a Incoherent intensity as a function of ka for c¢ = 0.0524 and for
various angles of observation 6.

Fig. 6b Expanded version of Fig, 6a for the frequency range 1.0 < ka < 2.0.

Fig. 7 Incoherent intensity as a function of ka for different values of
c at § = 60°.

Fig. 8 Incoherent intensity as a function of ka for ¢ = 0.157 at 8 = 60°;
the dotted line is the contribution due to the ladder diagram only.

Fig. 9 Incoherent intensity as a function of observation angle 8 for
c = 0.105 and ka = 1.0.

Fig. 10 Backscattering intensity as a function of ka for ¢ = 0.0524.
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INTRODUCTION

Thé intensity measurements are quite common in many physical problems
dealing with the wave scattering. In order to compare the field measurements
with the theoretical calculations one needs to carefully introduce the
incoherent intensity into consideration, which proved to be significant
enough as the frequency increases. In this paper the intensity calculation
based on the energy principle for nonabsorbing scatterers, which has been
well investigated by Twersky (1957), is discussed, and the rule of conser-
vation of energy serves as a guideline to check the numerical accuracy. We
shall, however, consider only sparse distribution of scatterers so that
higher order scattering can be neglected although the interactions cmong
scatterers are still considered. The incorporation of the multiple s * :-ring
theory so as to accomodate denser concentrations of scatterers is
explained and the computational scheme involving the pair correlation
function is also introduced. In addition, any given size distribution of.

scatterers can be handled following Ma et al (1983). However, only uniform

and Rayleigh size distributions have been used to perform the calculations.
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Scattering angle

Angular frequency

Solid angle

Area number density

Scattering cross section

.Gradient operator

Denotes scalar multiplication of two vectors

Wave function

Configurational average

Configurational average holding jth scatterer fixed

Configurational average holding jth and kth scatterers fixed

SUBSCRIPTS

Amplitude
Refers to incident wave

indices (integer)

Refers to scattered wave

SUPERSCRIPTS
Complex conjugate
vector sign
2 > 0 plane

z < 0 plane
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LIST OF SYMBOLS
Size of particle
Coherent reflection coefficient
Coherent transmission coefficient
Speed of wave propagation
Unit radial vector in spherical coordinatés
Unit vector in the positive z direction in rectangular coordinates

Scattering function

Distance from receiver
Spherical Hankel function of the 2nd kind
Wave intensity (energy flux)

Imaginary part of ( )

Imaginary unit (12 = -1)
Spherical Bessel function
Wave number

Total number of scatterers “¢h%

Order of ( )

Pressure 4

Distance betweenparticle and receiver
Real part of () : 5;;fu
Distance betweenparticle and the reference origin j- 1
Total scattered field -l;:?
Individual scattered field
Velocity vector . T

Rectangular coordinates s
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ABSTRACT

In this paper, the configurational averages of the wave function ¥,
wz, and the wave energy flux S are derived for planar distributed par-
ticles excited by a normally incident plane wave. Although the higher
order scattering terms are neglected for sparse distributions of particles,
the interactions among them are still considered, using the multiple
scattering theory, to perform the numerical calculations. Both the
reflection and transmission coefficients for the rough plane are inves-
tigated. Relations between the coherent and incoherent energy flux are
obtained using the principle of conservation of energy. Computations
of the intensity are presented as a function of frequency for different

concentrations of particles with uniform and Rayleigh size distributions.
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NORMALIZED INTENSITY
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THE CONFIGURATIONAL AVERAGE OF THE WAVE FUNCTION, <y>
Consider a plane wave normally incident upon a plane covered by
particles (see Figure 1). The total coherent field is then given by

N
<> = <wi> +‘;El uj>
: (1)

- Lpaeikz + <>,

where wi and U are the incident and total scattered field, respectively,
and wa is the amplitude of the incident wave. The average scattered field

<U> is defined to be, following Foldy (1945),

<P = Q/ZF(aj,Gj) ] (rj)>drj, (2)

) = (1/k)E [(2n+1)/(1+iCn)]inh

)
n=0 n

where F(aj,e (k}ﬁ-;j])Pn(COSS )

i 3

[+ ]

’e. = F .,6.
F(aj J) jo (aJ J)q(a)da

q(a) = the size distribution function
and Cn is related to the T-matrix of the scatterer.
Physically speaking, the average scattered field can be expressed
as a combination of a reflected wave and a transmitted wave due to the
plane wave excitation (Twersky, 1957). Therefore, for tbe present case

(normal incidence), <U> may be expressed as

+ + ~ikz
e

<y> = <> = i
v lz>0 v ¢ J‘)a
' _ - _ -, ikz
<> Iz<0 =<y> =C vbae (3)
+ + i 7
or gt = ¢ etk 21 #0,

+ -
where -U> and <U> are the normally upward and downward going plane
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‘waves characterized by the coherenf reflection coefficient C+ and the
transmission coefficient C .

However, the coherent field <y> on the bottom plane, i.e. z = 0,
i3 constant attributed to both halves of the upward and downward going
waves (including the incident wave) and can be reasonably written following

Twersky (1957)

- + -
<w>(rj)>lz=0 = <lpi>|(x.,y.,0) e+ < )/Zl(x Y. ,0)
h 31773
(4)
+ -
=y, +(CT Ty /2
Substituting Eq. (4) into Eq. (2) yields
—_— + - -
<U> = pwafF(aj,ej)[ 1+ (C +C )/2] drj. (5)

At large distance from nodules (kli—;j{>>l) and using the polar coordinates

for integration, the far-field expression for Eq. (5) becomes

<U> = 2mpy_ f exp (-ik I_ﬁ-;jl /{ﬁ-;jl) f(a

— e,
j,Gj)[l-i-(c +C )/2] rj
where
8,) = -1n°
f(aj, J,) (l/k)nio[(2n+1)i/(1+icn)]( 1) Pn(cosej)
and lﬁ-;jl = H/cosSj (see Figure 2). We can rewrite Eq. (6) in terms of

the integration as

<U>

m™ .
2npwaj° ([1+c‘/2]f(aj,ej)+(c'/2)f(aj,n-ej))e’lkH/“sej

x (Htanb,/cosb, )db

h| ivT]
™
= (Zﬂowai/k)fo[(1+c-"/.f’ (aj,A)+(c+/2)f(aj,/\)e1'/\d/\, €A

where A = —ikH/cos?j.

In order to solve Eq. (7) for kH>> 1, the principle of stationary

dr,,
3

(6)

.—e ey
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phase (Lamb, 1932) is used. The solution can thus be written in terms

of the stationary bhase angle vy as

j,Y)+(c'/z>f'<'aj,ﬁ:?)le““‘“’““)/k. (8)

The stationary phase angle Y is obtained by solving

<P = (2woiwa[1+c'/2)f(a

dA/dBj = -ikHtanGj/cosej =0

and found to be Y = a®(n = 0, 1, 2, ...) for this case.

One sees from the geometry (Figure 1) that <U>+ can be solved,

by integrating 8, from 0 to w/2 (6j is the so-called meridian angle in the

3

spherical coordinates and is defined as 0< 6 _<m/2 for z>0) using Eq. (7).

3

The only appropriate phase angle in this region is zero, so <U>+ is found

by using Eqs. (1) and (3) at z = H,

ywvvvr-
. [

ikH

< = 2moty [+ /D8 (e, ,00+(cH/2)E M le ¥ k= ¢ty e 9)

3 N

Similarly,

ikH, = c‘waeikH. (10)

< = 2npiwa[(1+c'/2)f(aj,n)+(c+/2)f(aj,0)]e /k

The two unknowns C+ and C can now be solved simultaneously from. the above

two equations using Cramer's rule:

ctagy /11848248004 (1)
T = (B-LCB2+ 80 )/2D/0 1 - 8+ 82+ 82 )41, (12)

where, : :ﬁ ‘
2= T i
B, = ani??Z;TFS/k. ?ﬁ;ig

Substituting the expressions for C+ and C into Eqs. (9) and (10)

respectively, we obtain

..............
.....




¥ = [ 8+ 88+ 08BN T, 250 (13)

| L ™ = 18 +82 + 82 )/2 + 08H 1y ™2, 2<0 (14)

The first terms on the RHS's of Eqs.(13) and (14) are due to the single
=T scattering whose excitation is the inc?dent plane wave wi only. This

can be obtained simply by substitutiﬁg wi (z=0) for <w(;j)> in Eq. (2).
The second term is obtained using the self-consistent approach which

is essentially Picard's process of successive approximation in the present
case. Foldy (1945) introduced this method to explain the orders of
scattering since the higher order scattering is approximated by iteration
using the previous one (i.e. lower order scattering). The idea is that

the average scattered field <U>+ (or <U> ) can be obtained from a

Neumann series which is, in this case

i~ 2 + ©
i L U@> =uw '+ o, (15)
1 m
m=2
where
* + > -> j_kl-ﬁ-> I 7 >
r _ — - - o S =S Pies
i 1 u_ ojf(aj,ej)[um_l(rj) +tu (rj))/2][e j/B-x,lr,
. + ikz
: and u; = Boyae , z>0
" - ikz
Y17 Bﬂwa » 20

One sees from Eq. (15) that m = 1, 2, and 3 correspond to single,

-{ double and triple scattering respectively.

Generally speaking, in Eqs. (13‘and (14) the successive terms

. e d
y are smaller compared to the previous terms for a sparse distribution }}:f
_ . AR
; : of particles. Therefore, the higher order scattering can be neglected )

in the approximation of the average scattered field <U> for a loosely }}ﬁﬁ

packed planar area.
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CONFIGURATIONAL AVERAGE OF <w2>

Since particles are randomly distributed, the scattered field U is not
constant. This is because scatterers make an otherwise homogeneous medium
inhomogeneous. The magnitude and phase of U will fluctuate in a random
manner. Thus the total field at i, i.e. ¥ (ﬁ), is also a random function
and can usually be divided into average field <y> and the fluctuating field
P'.
- The square of the magnitude of the coherent field |<\l)>[2 is the coherent
component and the average of the square of the magnitude of the incoherent
field is the incoherent component. The sum of the coherent and incoherent

components is the average of the square of the magnitude of the acoustic

field, i.e.
?
U E A L A (16)
1 ]
l- where Y 1is related to U as w' = U - <U>

or

12 2 2
<w % = <jup® - <> |® (an

The coherent component [<w>|2 can be obatined directly from the coherent
field <y> which is known (Eq. (4)). It is of interest to find here the

incoherent component <[w'|2> only. Substituting the expression for U (i.e.
N
U=2 u,)

j=1 ° into Eq. (17) yields

P
Tawal
2

v

.12 * * Lo
<|w'| > = <):uj Zuk> - Z<uj> Z<uk> (18) A

. ‘
[Py

jg = I 2<u*uk> + I <|u |2> -z Z<u_§<uk> e
a ik k g 4 k3

Rl ) B .
o tatate el )

The above equation can also be written in the following form

DA S SRR IO --.-

oSt
NSNS YIS %
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<Jy* |2> = psz[ (N-1) <u; u.k>jk/N - <uj>; <uk>k1d'§jd'r’k |
(19)

L2 2. >
+pﬁ|ujl >jdrj ,

by using the definition of the configurational average (see Varadan and
Varadan (1980)). In order to calcﬁlate the incoherent component <|w'|2>

in Eq. (19) two approximations were also introduced. First, (N-1)/N is .
replaced by unity which is certainly valid for large N. Secondly, we use

* *
<uj uk>‘jk ~ <uj>j <uk>k (20)

as suggested by Twersky (1957). Eq. (20) may be interpreted physically

as neglecting contributions to the excitations of a scatterer arising from

the fluctuations of the average radiation scattered by the other scatterers.
It should be noted from Eqs. (18) and (19) that actually j;k<u; uk>

can be approximated using l<U>12. This implies that jik E <uj(V/—ik)uk>,

i.e. the average of the jth scattered field multiplied by the gradient

of the kth scattered field can be estimated as

*
D) <u.-_;zk-uk>+ ~ |<U>+|2 az . 2>0 (21)
jfk k3
* - -
LI <u :‘%ulg - w2 e, z<o0 (22)
j#k k 2 : ]
where éz is the unit vector in the positive z direction. Although, the ST

gradient of u, gives a radial direction, the average direction should be ':ffjﬁ

h|
in the z direction as expected from the symmetry of the problem (energy

flux is cancelled out along x and y directions). Both Eqs. (21) and (22)

are, thus, important approximations in considering the energy conservation.
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THE CONFIGURATIONAL AVERAGE OF ENERGY FLUX, <35>

The energy flux (intensity) is defined as (Morse and Ingard, 1968),

*y *
S=@Gv+pv) (23)
which is an important quantity in wave propagation theory for considering

energy conservation. Since we define

V=W (24)

from potential theory and thus we obtain

P = lupg¥ (25)

from linearized momentum equation. Therefore the energy flux can be expressed

in terms of Y as:

$ = o (0T - vwy) /2. (26)

The configurational average of the energy flux becomes

<$> = iwpo[<w*vw> - <wvw*>]/z (27)

and it contains, now, both coherent and incoherent components.
Since Y = wi + U, then substituting it into Eq. (27) gives, taking

the real part for magnitude,

* * *
vV, Y <U>TyY *

r LS SRs SIS SRR i, <Uu Vo> . -
<§> = wp e 7 Tik V<> + T Y T oo 1, (28) -
in which the following relationship (Foldy, 1945) E
<YU> = V<> (29) ﬁ
has been employed. -
One expects <§> for scattered waves to be going outward away from the ;fff

plane on which partieleslie. Since the scattering characteristics are
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different in the positive and negative z directions, it is necessary to

->
separate <S> into two parts for consideration. Let, therefore,

<§> = <-§>+, z>0 (30)
<§> = <-§>—, 2z<0 . . (31)

*

where the expressions for <§>+ and <§5_ are as follows,

* * +* * 4
> ¥ beby Yy BT, W
<S> = wpokRe[—_ﬁ— + -—1EV<U> + -y + — ] (32)
*
* * SV,  <uvsT
e Viby ¥y - 1
> = prkRe [——Il-(-— + —_EV<U> + ik + e ] (33)

On substituting the expressions for wi, <U>+ and <U>" into Eqs. (32) and

(33) one obtains

St wpk [-14'15l e, + Re(qj’;zl");] (34)
. * -
BT uwogk 02 e, - @l a ¢ e (T, (35)
The second term on the RHS of Eq. (34) (or the third term on the RHS

of Eq. (35))can be further separated into two parts. Thus,

Wt r oz s v s

e T ik K <9j-ik u > 4 § <uj—ik uj> . ) (36)
Using Eqs. (36), (21) and (22), the average energy flux <-§>~ become

B = wogk 822 + ol he, ¢ 1) (37)

12

&= wp o [wi(-az) + pi (c‘+c‘*)(-éz) + wi(l<u>‘l2 (-8,) + 7] (38)

where
T* = Re(I <u, —=u.>") = Re(—2 <u: Vu>t dF)) (39)
3 d -k ~-ik J JJ3 ) )
- - - * v - _ o} * - -5
I Re(j uj rpn uj>) = Re( ik <uJ v uj>j drj) (Lo)
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The energy principle simply states that the mean energy outflow for

nondissipative scatterers, from any enclosed volume vanishes (Twersky,

/<-§> C =0 (31)

In order to verify this a simple control volume is assumed (see Figure 3).

1957)

For the upper half plane (2z>0), we have

J/;§5+. dA = wpokwi [(-éz) + (|<U>+|2)éz].é‘z (42)

+ wpoﬁlﬂf+ .

while for the lower half plane (z<0Q), we have

f<‘§>‘- dA = wpokwi [(<8,) + (cT+c” )(-e ) + ([<U>'|2)éz]-(é ) (L3)

+ wpok/-f' . &

~2%1ally one sees from Figure 3 that the total average energy flux has two
separate parts. One is the coherent energy flux which has components either
in positive or negative z direction but not in x and y directions. The

other is the power scattered into all directions (specified by €r) and

called the incoherent energy flux, i.e. I and I . After adding Eq. (43)
to (L2) it gives }ffﬁ-

*

f<§> k= wogrit [ () ([P T

(k)

- >

+ wp %/3:- dA.

0
* v . . b = -, »* .
The term uJ T u'j appearing in I and I in the PP, term is related to the 'gi«f
scattering ~ross section 0 (see Appendix), and one can show that

>+ -+ -
T . da = o5h? T
a .'~..‘~..'1
(45) DR

-
&
]
©
Q
<

.‘,...‘.:_.‘... ........ PRRRPRRERE ARSI LT Telel ..“‘_._...;__\ -,\._~._-.-.v
e Qe e - ,.\_. N oY, "\ Set ey e T et
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znd f”f . ak =0(5* + 57)¥2 = p5y°
a a
where o =—/:J q(a)da.
After dividing Eq. (Ll) by wi wpok and neglecting the terms |<U>+|2 and
+
- + =
| <> |2 (of order lC_lzwhich are small compared with |C|), we obtain
-> - . -
/<s>- dA= (CcT+C )+ opo (46)
The first term on the RHS of Eq. (46), using Eq. (12), then becomes
- _*
(¢ + ¢ ) = -bmp Im(£(a,m))/k. (47)

Substituting Eq. (47) back into (46) one sees, using the forward scattering

theorem (Morse and Ingard , 1968)

J[;§5 - dA = p[o - WnImf(a,m))/k] =0 (L8)
Eq. (48) states that the energy flux coherently transmitted is cancelled
out by that incoherently scattered which verifies the energy principle

for nonabsorbing scatterers as mentioned by Twersky (1957).
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RESULTS AND DISCUSSIONS ' C

In Figures 4 and 5 we present the computed values of the intensity,

which has been normalized by wzpowilc, versus the nondimensional frequency .
ka for sparse distributions of particles. One sees from Figures 4 and 5 Eiﬁiz
that the contribution of the coherent intensity toward the total back- f?{ﬁ
scattéred intensity is quite small; therefore, it can be neglected for ]

high values of ka. As expected, the coherent intensity is hundred times

larger when the concentration changes from 0.002 to 0.02 while the total

intensity is only ten times bigger. The size distribution seems to affect
the intensity little which may be due to the reason that it is a Rayleigh
distribution and the cutoff size is limited in our case. However, this
should be investigated further for an even denser distribution. Moreover,
the randomness in shape can also be included in the configurational average
consideration through the T-matrix for arbitrary scatterer if it is required.
The presen; study takes into account the interactions among scatterers
but the higher order scattering terms are ignored due to the sparse dis-

tribution and low concentration of scatterers. For high concentrations of

scatterers, the complete introduction of the higher order scattering terms
plus the appropriate distribution function are required to analyze the f;ff
problem using the multiple scattering theory and it is discussed in the ) ]

Appendix.
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APPENDIX

The configuratioﬁal average of wz presented in this paper is for
sparsely distributed scatterers on a plane. In other words, the intensity
calculation based on Eqns. (16-19) is valid only for a moderate con-
centration of particles. As can be seen in Varadans' previous work,
in order to accurately compute thé-écattering response from a dense
distribution of scatterers, the pair correlation function which is a
necessary description of the relative position of one scatterer to the
other must be taken into account in the multiple scattering theory. The
introduction of the pair correlation function not only enables us to
physically explain the results but also compare the results quite well
with the available experimental measurements. In fact, the single
scattering theory or several modified multiple scattering estimation
without considering the pair correlation function yields unphysical
numerical results which inevitably exist when plotting against either
frequency or concentration.

To describe the positions of the scatterers in a monolayer, a two

dimensional distribution function specified by p(lil) for randomly dis-

tributed impenetrable disks is to be introduced here for the intensity
calculation for high concentration of particles. Since the top view of
the scatterers on a plane is essentially that disks distributed in a
monolayer, we may assume that the cross section of each scatterer which
can be arbitrary in shape is enclosed by a circular disk lying on a plane.
To this end, hard disk pair correlation functions p(fﬁl) are obtained for :}:}

pd2 up to 0.7 ( 'd’' is the diameter of the disk ) by solving Percus-Yevick

»
. . e

e L
e A Aty 2 a o L

equations in two dimensions.

The modification of equations for the intensity calculation for high
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concentrations of scatterers is only through Eq.(19) by introducing

the two dimensional pair correlation function p(fﬁl). One should notice
that R is now a planar vector connecting centers of two circular disks

of the same size. The pair correlation function for non-circular hard
disks as well as a size distribution of circular disks can also be imple-
mented in the intensity calculation for monolayer scatterers, however,
they are beyond the scope of this paper. The modified equation using

2
Eq.(19), after some manipulation, for w' is thus written as

-

20 2 * - * - ‘ 2 -
OQVID> = ff[(ujuk)jk p(Rjk)-<uj>j <uk>lg drjdrk + pf<luj| > jdrj’ (A1)

which can be found its equivalent form in Twersky's work [1983]. The
remaining part is then to carry out the integral numerically on the computer
to obtain the incoherent intensity for the interested concentrations and
frequencies. The procedures involved are explained in the main text and
will not be repeated here.

There are a number of approximate integral equations as well as quasi-
exact approaches to obtain the pair correlation for hard spheres and the.
details can be founf elsewhere. However, for hard disks, a published table
of pai? correlation function for various concentrations is incomplete, at
least to our interest. In order to obtain a table of pair correlétion

function p(lil) for a wide range of concention, we used the following

procedures as mentioned in Steele's paper [1975]. For hard disks,

p(IRI) = exp[ -u(IRI)/KT JyORD), (A2)

-l
where u({R|) is the inter-scatterer potential, k is the Boltzmann constant, J

T is the temperature and y(lil) is generated using the two dimensional

- = - - -

- . -« . - .,
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Percus~Yevick equation which can be written as

- Tr -y - -y -y -
yUR ) =1+ prgfo y (R [y ORDBAR ) ~)-11dodT, oF, , (43)

R,, and R is th 1d
Ry @0 Rjk and H(x) 1is the Heavyside

function equal to zero for x <0 and unity for x >0.

where a is the angle between

The pair correlation function can thus be obtained using Eq.(A2)
through the direct numerical iteration for y(lil) in Eq.(A3). Several
sets of the pailr correlation function p(fﬁl) for different concentrations

as a function of the separation distance between disks are presented in

Tables I-VII and graphically in Figure 6.
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T
1) o= ZTrf Ipslz R%sin 646/ |P1|2 » for spherical coordinates
0 .

. . T

2) o= Zﬂf Ips |.2 R%sin ede/|p1|2
L
2
s 2
(3) o= 217]2 |Ps|2 R%sin 646/ |pi|
0]

(4) o= ot +0 = (lmlkz) b (2n+1)/(1+C§)
n=0

(5 q(a) = (2a°/0.763%)exp(-a*/1.483%)
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TABLE I. Pair correlation function p(R) for pd~ = 0.1

R/d p(R) R/d p(R)

1,02 1.,13220 1,04 1.12775

1.06 1.12351 1.08 1.11935

1.10 1.11503 1.12 1.11093

1.14 1.10674 1.14 1.10282

1.18 1.09908 1.20 1.09524

1.22 1.09124 1.24 1.08769

1.26 1,08351 1.28 1.07968

1,30 1.07647 1.32 1.07283

1.34 1.06848 1.36 1.06532

1.38 1.06208 1.40 1.05864

1.42 1.05509 1.44 1,05199

1.46 1.04878 1.48 1.045469

1.50 1.04248 1.52 1.03981

1,54 1.03701 1.56 1.03424

1.58 1.,03114 1.6C 1.02847

1.462 1.02561 1.64 1.02297

1.66 1.02059 1.68 1.01824

1.70 1.01569 1.72 1.01342

1,74 1.01150 1.76 1.00955

1.78 1.00735 1.80 1.00553

1.82 1.00391 1.84 1.00215

1.86 1.00048 1.88 0.99903

1.90 0.99778 1,92 0.99668

1.94 0.99549 1.96 0.99506 <
1.98 0.,99462 2.00 0.9946% e
2,02 0.99494 2.04 0.99529 5
2,06 0,99557 2.08 0.99589 N
2,10 0.99619 2.12 0.994649 N
2.14 0.99677 2.16 0.99703

2.18 0.99728 2,20 0.99752

2,22 0,99775 2.24 0.99796

2,26 . 0.99816 2,28 0.99835

2,30 0.99853 2.32 0.99870

2,34 0.99885 2,36 0.99900

2,38 0.99913 2.40 0.99926

2.42 0.999%7 2.44 0.99948 -
2.46 0.99958 2.48 0.99967 ;
2.50 0.9997% 2.52 0.99982 N
2.54 0.99988 2,56 0.99994 :ﬁ
2.58 0.99999 2,60 1.00004 ]
2.62 1.00007 2.64 1.00011 ]
2,66 1.00013 2.68 1.00016 »
2.70 1,00017 2.72 1.00019 g
2,74 1.00019 2.764 1.00020 "3
2.78 1.00020 2.80 1.00020 O
2.82 1,00019 2.84 1.00019 . SN
2.86 1,00018 2,88 1.00017 o]
2.90 1.00016 2.92 1.00014 5
2.94 1.00013 2.96 1.00012 RO
2.99 1.00010 3,00 1.00007 L
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TABLE II. Pair correlation function p(R) for pd2 = 0.2

R/d p(R) R/d p(R)
1.02 1.,2909S 1,04 1.27949
1.06 1.26944 1.08 1.25876
1.10 1.24888 1.12 1.23853
1.14 1.22793 1.16 1.21872
1.18 1.2093% 1.20 1.19986
1.22 1.19033 1.24 1.18011
1.26 1.17152 1.28 1.,16310
1.30 1.15373 1.32 1.14629
1.34 1.13745 1.36 1.12885
1.38 1.12067 1.40 1.11269
1.42 1.10561 1.44 1.09781
1.46 1.090648 1.48 1.08384
1.50 1.07634 1.52 1.06903
1.54 1.06278 1.56 1.05628
1.58 1.05053 1.60 1.04441
1.62 1.03855 1.64 1.03308
1.66 1.02712 1.68 1.02210
1.70 1.01686 1.72 1.01272
1.74 1.00824 1.76 1.00342
1.78 0.99988 1.80 C 0.99615
1.82 0.99259 1.84 0.98888
1.86 0.98631 1.88 0.98427
1.90 0.98173 1.92 0.97950
1.94 0.97831 1.96 0.97760
1.98 0.97739 2,00 0.97814
2,02 0.97970 2.04 0.98142 O
2.06 0.98310 2,08 0.98464 R
2.10 0.98604 2,12 0.98740 -
2.14 0.98862 2.16 0.98986 ]
2.18 0.99093 2.20 0.99200 ]
2.22 0.99299 2.24 0.99380
2.26 0.99470 2.28 0.99544 T
2,30 0.99621 2,32 0.99690 RIS
2.34 0,99751 2.36 0.99809 : N
2.38 0.99858 2,40 0.99908 e
2,42 0.99946 2.44 0.99982 ]
2046 1000013 2048 1000037 _ b
2.50 1.00067 2,52 1.00088 o
2,54 1.00103 2.56 1.00116 e
2,58 1.00127 2,60 1.00136 T
2.62 1.,00141 2.64 1.00144 e
2.66 1,00149 2,68 1.00147 T
2.70 1.00145 2.72 1.00139 o
2.74 1,00133 2.76 1.001264 o
T
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TABLE II.

R/d

2.82
2,86
2,90
2.94
2.98
3.02
3.06
3.10
3.14
J.18
3.22
3.26
3.30
3.34
3.38
3.42
3,46
3.50
3.54
3.58
3,42
3.66
3.70
3.74
3.78
3.82
3.86
3.50
3.94
3.98

-=—continue

p(R)

1.00099
1.,00077
1.00055
1,00035

©1.00017

1.00002
0.999921
0.99982
0.99976
0.99972
0.99970
0.99969
0.929970
0.99971
0.99973
0.99975
0.99978
0.99981
0.99984
0.99986
0.99989
0.99991

0.,99993

0.9999S
0.99997
0.99998
0.99999
1.00000
1,00000
1,00001

R/d

2.84
2.88
2.92
2.96
3.00
3.04
3.08
3.12
3.16
3.20
3.24
3.28
3.32
3:.36
3.40
3.44
3.48
3.352
3.56
3.80
3.64
3.68
3.72
3.76
3.80
3.84
3.88
3.92
2.96
4.00

p(R)

1.00088
1.00066
1.00045
1.00025
1.00009
0.99996
0.99984
0.99979
0.99974
0.99971
0.99970
0.99969
0.99970
0.99972
0.99974
0.99977
0.?729979
0.99982
0.99985
0.99988
0.99%990
0.999%2
0.99994
0.929996
0.929997
0.9999%9
0.,9292979
1.00000
1.00000
1.00001
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TABLE III. Pair correlation function p(R) for pd2 =0.3 -
R/d p(R) R/d p(R) Rt
1,02 1.50077 1.04 1.47856 N
1.06 1.45764 1.08 1.43728 -
1.10 1.41595 1.12 1.39604
1.14 1.375613 1.16 1.35800
1.18 1.34087 1,20 1.32312
1,22 1.30466 1.24 1,28858
1.26 1,26908 - 1.28 1.25196
1.30 1.23820 1,32 1.22204 -
1.34 1.20216 1.36 1.18897
1.38 1.,17537 1.40 1.16095
1.42 1.14610 1.44 1.13362
1.46 1.12055 1.48 1.10848
1.50 1.09578 1.52 1,08604 )
1.54 1.07560 1.56 1.,06532 -
1.58 1.05314 1,60 1,04323
1.62 1,03232 1.64 1.02283
1.66 1.01476 1.68 1,00682
1.70 0.99786 1.72 0.,99158
1.74 0.98496 1.76 0.97916 o
1.78 0.97199 1.80 0.96681 -
1.82 0.,96261 1.84 0.,95763 .o
1.86 0.95304 1.88 0.94960 R
1.90 0.94710 1.92 0.94539 gzjj
1.94 0.94421 1.96 0.94481 e
1.98 0,94636 2,00 0.95034 N
2,02 0.95502 2.04 0.95980 PR
2,06 0.,96438 2,08 0.96875 fo
2,10 0.,97284 2,12 0.97664 o
2,14 0.98017 2,16 0.98346 7
2,18 0.,98649 2.20 0.98930 S
2,22 0.99185 2.24 0.,99419 SR
2.26 0.99630 2.28 0.99823 0
2,30 0.,99994 2,32 1.00148 3
2,34 1.00283 2.36 1.00402 5
2,38 1,00505 2,40 1.00592
2.42 1.00666 2,44 1.00726
2,46 1.00773 2,48 1.00809
2.50 1.00833 2,52 1.00849
2.54 1.00854 2.56 1.00852 T
2.58 1.00840 2,60 1.00821 L]
2,62 1,00796 2.64 1.00764 N
2,66 1.00727 2.68 1.,00587 o)
2,70 1.00642 2,72 1.00595 RO
2,7 1.00544 2,76 1.00493
2.78 1.00440 2.80 1.00386 T
2.32 1.,00332 2.84 1.00278 S
DL Bé 1.00225 .88 1.00174 S
2,90 1.00125 2,92 1,00079 )
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BUBBLES IN WATER

3 AR AN 141 b REVACRYL DISPERSIONS (N DISTILLED WATER
-4 —
: $\c= -6x10 K o EXPERIMENT (KILLEY 8 MEETEN)
~
i A E. Silberman x
b — THEORY { VARADAN ot al.)
(1957) &
- 137+ a=100 nm
A=546nm
.
Nt
~
o 1ir
S 0 133 A S L '
z - o] 10 20 30 40
& - (%)
[
s X
& Fig. 3 Phase velocity vs concentration for electro-
g magnetic wave propagation through Revacryl
< E .dispersions in distilled water. Experimental
ot a data points are from Ref. [31].
10 p- -
r
L -
[ 20r
oot il Loy aaah " .
_ - - = T I
1072 1072 107! 3 L
k a 210 e A P 410nm
P E ",— -~ ‘*-54Gnm
Fig. 2 Coherent attenuation vs compressional wave | R4
number for bubbles in water. Experimental ’/’
data points are from Ref. [29]. 0 4 . , N L -
o] 10 20 30 40 50
We now present some results for electromagnetic %)

ave propagation through a composite media consisting

f Revacryl spheres dispersed in distilled water. The

efractive index of the scatterers 1s 1.48 while that Fig
f the distilled water is 1.334, Figure (3) shows an

xpamle of the behavior of real part of refractive index,

' (which is related to the phase velocity) as a function

f volume fraction occupied by the scatterers(c), while

igure (4) shows the variation of the imaginary part of

efractive index n" (which is related to the coherent 0
ttenuation) as a function of concentration c of the

catterers for two different wavelengths A = 410nm and

46nm. The agreement between our theory and the experi-

ent of Killey and Meeten[31] 1s excellent even for the

ense system. Figure (5) shows again an excellent agree- Al
ent between theory and experiment for coherent intensity
or various values of concentration for wavelength

= 546nm. To ghow that the theory presented here is
alid even for very high frequencies we have plotted the
esults of coherent attenuation versus concentration ¢

or latex spheres in water even for k a = 83.352 where

g 1s the wavenumber of the electromagnetic wave in water,
ee Figure 6. The attenuation is normalized with respect
o single scattering approximation and is denoted by 7. 3
he agreement between our theory and the experiment
easurements of Ishimaru and Kuga(32| is quite good. For
ther dielectric-dielectric composite media with spheri-
al and non-spherical inclusions, we have shown excellent

. 4 Coherent attenuation vs concentration for
the case given in Fig. 3.

© EXPERIMENT (KILLEY 8 MEETEN)

—— THEORY (VARADAN 2! ol.)
g« {00nm

X+5460m

e 0.0461

log (1/1,)

Y
greement between our theory and experiments of Ishimaru 0 200 400 600
nd Kuga[l7]. 2lnm}
For the study of wave propagation in elastic compo- ,
ite media, we have taken a model of a particulate Fig. 5 Coherent futensity vs propagation depth i.
ompos{te contafning a random distribution of lead Experimental data points are from Ref. [31]

pheres in EPON 828-Z.

3 - .- - Lttt A L s e ettt At N
. LIS A L TR TAt e Tt e s s e e T e L R T T P T I D e N )
- e L e e e e PR AP T e e e e e N e e e s T

AR . I T I I R
i S Syl W T

e DR Y N NI .
PR SIS LK AT Tl Sl Yol VAT WATLIE VAT AT S AP WA VI . WO ) g, Wy




ariables but K, the determinantal equation can be
>lved numerically to yield the value of the effective
ropagation constant.

Equation (27) can be written in its expanded form
s follows:
¢ ‘n1+m| ® m ) n)
X, =L r z z I
lan
q-]nl-ml m=0 p=-m n1=0 my=-ng

-0Pen?

n 11, %
(MlHmbq-ng ,IP x.1 (T l)nma(ml,nll—p,mlq)
mp

q 1nmy
’xzn [(le)lpa(nl.m,q)a(ml.n [-p,mfq) - (! ) am
Ep

b(n .m.q)a(ml,nll -p.uiq, q-1)1+x [(T (28a)
a(n;,m,q)a(m ,n |-p,m|q)- -t ) b(n LR
a(ml'nll-pvm,th'l)]

3
X2n = ... (Z?b)

! (28c¢)

Jn.”"

quation (28b) can be obtained from (2Ba) by replacing

10412 o130 121 122 123 hile (28¢) can be

btained by replacing '1‘ll 12, 'l'13 by T31 3{ and T33.

In equations (28a,b,c), the contributions due to
rair-correlation functions are given by the expression
;(1-1,2) as follows:

6c
I (K,k_,c)s ————=———— [2k_a j (2Ka)h'(2k_a)-
q T (k a)z_(Ka)Z T 1q q T )
T

. T2 ’
2Ka hq(ZkTa)Jq(ZKa)]+2&cxllx [g(x)-l]hq(ktx)

(29)

jq(Kx)dx

’?r acoustic wave problem, we get uncoupled equation for
[; i for electromagnetic problem, we get coupled equa-

1n e ¢
:ions in terms of X, and X

2n Iat for elastic wave problem,

9 2 2
re obtain coupled equations in terms of xln’ inand x3n.
iquation (28) is a system of simultaneous linear homo-
ieneous equations for the unknown amplitudes X For
| nontrivial solution, we require that the detefminant
»f the truncated coefficient matrix vanishes, which
rields an equation for the effective wave number K in
cerms of k_ and the T-matrix of the scatterer. This is
‘he dispersion relation for the scatterer filled medium.
iquation (28) is a general expression valid for any
irbitrary shaped scatterer, since the T-matrix is the
mly factor that contains information about the exact
thape and boundary conditions at the scatterer. Thus
:he formalism presented here {3 valid for all the three
rave fields. The effective wave number K obtained in
he analysis is a complex quantity, the real part of
thich relates to the phase velocity, while the imaginary
»art relates to attenuation of coherent waves in the
nedium.

RESULTS AND CONCLUSION

Using the theory outlined i{n previous sections, we
present some numerical results for a variety of three-
dimensional problems in all three wave fields and compare
them with some laboratory experimental measurements to
show the broad applicability of our multiple scattering
approach.

In the Rayleigh or low frequency limit, the size of
the scatterers is considered to be small when compared
to the incident wavelength. It is then sufficient to
take only the lowest order coefficient in the expansion
of the fields. At resonance and higher frequencies, we
must in general consider higher powers in k_a which
implies that a larger number of terms (X )Tmust be kept
in the ®xpansion of the average field. ﬁumerical proce-
dure is outlined in det~1l in our previous papers and
hence will not be repeat.d here.

In Figutes 1 and 2, we have plotrted the phase
velocity and attenuation coefficients for bubbles in
water. The dots in these figures are the experimental
measurements by Silberman{29]. The agrcement between
our theory and experiment is extremely good. For this
composite media, "breathing mode" resonances of the
bubbles and the associated marked variation of coherent
attenuation and phase velocity occur. The curve of phase
velocity versus wavenumber in water (matrix medium) shows
an oscillating behavior in the resonance region. The
oscillations in the phase velocity occur even f[or such
low concentration between the "acoustic' and "optical”
branches as evidenced in Figure 1. I+ is interesting
to note that the coherent attenuation reaches a maximum
value at the "breathing mode" resonance in the "acoustic"
branch. However, there is not any evidence of the loca-
tion of the "optical branch"” In the attenuation versus
the wavenumber plot, see Figure 2. It is to be noted
that the imaginary part K, of the effective wavenumber
becomes greater than the real part Kj. This causes the
propagating wave in the composite media to be damped out
over a distance smaller than a wavelength. This so
called "superviscous" propagation has also been noted by
Chaban[30] and Varadan et al{20] for voids in rubber-like
materials. It is worth mentioning at this state that
the Kuster and Toksoz model even with the giant monopole
resonance Iincluded does not present satisfactory results
in the "optical branch".

BUBBLES IN WATER
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Fig. 1 Phase velocity vs compresslonal wave number for AR
bubbles in water. Experimental data points are
from Ref. [29]. -
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we obtain

<ui>-al
a n

+n Tn.n:./' j)<<1j..

> - (19)
g(|rij|)dr

3

In equation (18), g(x) is the radial distribution func-
tion assuming spherically symmetric statistics even for
non spherical particles, 1.e. the exclusion volume of
the impenetrable particles is assumed to be spherical.
In equation (19), the summation convention is used, and
if the particles are identical L}=N-1=N when N is large
and v is the exclusion volume equal to 47(2a)-/3.

The joint probability density is defined as

1 i+ -+ +> >
¥ g(]rj—ril). |* -rilz 2a

J
p(r,IE)) = (20)
0 ; 1¥j-?1|> 2a

Equation (20) implies that the particles do not inter-
penetrate and the excluded volume is a sphere of radius

2a although the particles themselves may be non-spherical.

A suitable non-spherical statistics may also be included
through Monte~Carlo calculation especially for non-spher-
ical scatterers. The function g(|¥;-¥ ]) is called the
pair correlation function and depengs only on |¥ -r

due to translational invariance of the system i
under consideration.

Several models of g(x) are available.
lated impenetrable particles

For uncorre-~

1/(1-¢), x>1

g(x) = 21

o, x<1

This approximation for g(x) known as the well-stirred
approximation (WSA) is expected to be valid for low
values of concentration c, and as discussed by Bringi
et al{17], fails at ¢>0.125. Twersky[12] has used a
virial expansion to obtain g(x) shown as

01 x<1

1

2(x) = 1+8c(1-—-x+ Ix XY, lex<2 (22)

1, x>2

which is valid at low concentrations.

Improved models of the pair correlation function
valid for concentrations up to 40% are the Percus-Yevick
approximation (PYA) and the Hypernetted-Chain approxima-
tion (HNC). The Percus-Yevick model[24] has been solved
analytically by Wertheim[25]) for the case of hard impene-
trable particles. It is expected to be somewhat better
than the HNC{26]. One of the defects of the PYA is that
the two equations that can be derived for the pressure P
in a fluid containing "hard" particles lead to different
answers when the PYA for g(x) are substituted in them.
Rowlinson{27] remedied this by assuming that the direct
correlation fuanction which {s the short range part of
the correlation function is a linear combination of the
ones resulting from the PYA and HNC models. They were

effective propagation constant K=K

T T ———

combined with an adjustable parameter ¢ and the two
pressure equations were solved simultaneously for P and
$. This is called the self-consistent approximation
(SCA) and it 1is valid for higher concentrations than the
PYA and HNC models. Twersky[28] has considered non-
spherical statistics for spheroidal scatterers in the
sparse concentration limit. Extending this model to
denge systems and numerically implementing it for high
frequencies will be a problem of interest to the research
community. Pajir-correlation functions by Monte-Carlo
simulation were used in our numerical computations.

PROPAGATION CHARACTERISTICS OF THE AVERAGE WAVES IN
THE MEDIUM

To solve the integral equations given by (19), we
now assume that the average field in the medium is a
plane wave propagating in the direction k_ of the
original plane wave in the host medlum, however, the
average fleld propagates in an effective or average
medium which is homogeneous and characterized by an
+1K_ which is complex

1 72

and frequency dependent. Thus

“catsex otKo'Ty (23)
n n

and equation (13) can hence be written as
A >
1k, 2 tKky Ty

A >
iKk -r
i i e

° 0 T K

Xne -Ane

f R utﬁo-?“ . uq?o-;“
Onn' (¥, e i+ Jogn(r, e I x(24)
-y Y dry  goyn b

fe(leyy-1ldr,

The second term on the RHS of equation (24) can be con-
verted into a surface intepral using the divergence
theorem and surface integral on S ,, which defines the
boundary of the system, cancels the incident wave term
on the RHS of equation (24). Thus equation (24)
simplifies to

2+
X =n T '""xn"x.lg Q'lD .(l)g[ZkaJx(ZKa)h
(2ka)-2Kaj, (2Ka)h, (2ka) ] + f(g(x) 1}i, (25)
V-v
(Kx)hx(kx)xzdxg
where D ,(}) is the vestige of the translation matrix

after t“e spatial and angular parts have becn absorbed In
the integration. Different expressions result depending
on whether we are discussing acoustic, electromagnetic

or elastic wave propagation. Equation (25) can be
rewritten as

(26)

(Gnn'.Mnn')xn'=0

The dispersion equation for the effective medium is then
simply

"5 [

a s s -

-Mnn,lk.l(,no.v.‘l'.g)=0 (27) ;

nn -

which depends on k=2w/c, the effective wavenumber K, the I
number density noe the exclusion volume v, the T-matrix i
or the scatterer characteristics and a model for the - ‘1
radial distribution function. Bv assuming values for all T
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= v Xf7of (acoustic waves in fluids) (4)
cg = v ulo (elastic waves) (5)
= C// [T (electromagnetic waves) (6)

In equatiomns (3) - (6), c, and cg refer to compression-
al and transverse wave vefocities. respectively.

In equation (6), C refers to the velocity of light in
free space. The corresponding quantities inside the
scatterers are differentiated by subscript 1. For
brevity, we use the notation k_ for the wave numbers;

T = 1 corresponds to ‘compressional wave while T = 2,3
corresponds to shear wave.

The total field at any point in the matrix (outside the
scatterers) is the sum of the incident field and the
fields scattererd by all the scatterers. This is
written as

>g > >

um = %) + é’l ui(r)) %))

where 3:(; - ?i) is the field scattereg by the i-th -
scatterer to the point of observation r. This expres-
sion by itself does not provide a complete formulation
of the multiple scattering problem{22]. 1In order to
complete the formulation, we require an expression for
uS which in turn depends on the field actually exciting
on the i-th scatterer. The exciting field on the i-th
scatterer is the incident field u® plus the sum of the
fields scattered by all the other scatterers:

>

-+ > -0 N
u:(r) - uo(r) + j&i u 4

;(;—rj) . a3|?-?i|52a (8)
where 'a' is the radius of the imaginary sphere circum-
scribing a scatterer. In this analysis, we have assumed
that there is no interpenetration of the imaginary
spheres of radius 'a' which circumscribe each scatterer.
The system of equation (7) and (8) provide one of the

standard formulations of the multiple scattering problem

Although a general dispersion equation can be de-
rived as in Twersky{10], in order to obtain explicit
results for particular shapes of scatterers, one has
to expand the exciting and scattered fields in a con-
venient set of basis functions, such as spherical wave
functions. Let Qu ¥, generally denote outgoing functions
(Hankel functions) and functions regular at the origin
(Bessel functions). We dispense with vector notation
and the abbreviated index may denote n»+1, %, m, 0; T=1,
2,3, 2 € [o,); me [0, L]. Thus the present discus-
sion can apply equally well to acoustic (t=1 only),
electromagnetic (Tt=2, 3 only) or elastic (1=1,2,3) wave
propagation.

At a field point ; in the host medium, the incident,
scattered and exciting fields are expanded as follows,

o, -+ -
u (r) = I anRe bn(r) M

with for example

-2 ~
a =1 Ylmo(Kc) (10)
.for plane acoustic waves propagating along ﬁo and
Ylmo are spherical harmonics:

WE(D)=F _al Re w (F-F,):|F-T,|<2a (1n
i “n%n n i’ i

and
s ,> i > -+ -+ .
ut(r)-ann ou wn(r—ri),lr-riera (12)

>
where r 6 denotes the center of the i-th scatterer, and*®
'a' is éhe radius of the sphere circumscribing any
scatterer. The coefficlents fi and nl are unknown but
are, however, related via the T-matrix, which can be
numerically calculated for scatterers of arbitrary shape
using Waterman'’s extended boundary condition method([23].

Thus,

flay al, (13)
n n n

T
'“nn
where we have assumed that all scatterers are identical.

Substituting equations (11) - (13) in (8) and using
the translation-addition theorems for spherical wave-
functions and the orthogonality properties of spherical
harmonics[23], we obtain

. 1=i *_-» j
o =a +j£i E' g" onn'(rj ri)Tn'n"an" (14)
where
> > t > - > >
ou wn(r-rj) E'Onn,(rj-ri)Re bn,(r-ri) (15)

and 0., is the translation matrix for spherical wave-
functions(23].

Equation (14) is averaged over the positions of the
scatterers to yleld an equation of the form

wal> =l v o5, T, . 0 L (F-T)
i n gjn'n" nn nn i
i (16)
<at,»> (t.|r,)dr
11} ij p s i s
where
A >
ikk .r_,
a_=a o i
n

p(; l;i) is the conditional probability distribytion
andj <alw> . 1s the conditional average of ngw with
the positions™® of both the i-th and j-th scatterers
held fixed.

It is obvious that equation (16) results in an
infinite heirarchy because <ngu>.. is related to <“n)1'k
and so on. The QCA first invoked’by Lax[3,4] aund 1
also independently by Twersky([7) simply states that

3 . <qd
<an">ij X <an">j (17)

i.e., the conditional expectation of e is independent
of the position of the i-th scatterer. This would be

an exact statement if the system was perfectly crvstal--
line, because, in this case the position of every scat-
terer in the system is fixed and the neighborhood of
every scatterer is the same. The QCA required only a
knowledge of two body correlations.

Substituting equation (17) in (16) and noting that
> >
C;[rj-ri|<2a
- >
r(rj{r1 =

1 -~ . Ed _+ - -> N
7 g(|r”|).|rj ril |r1j|_ 2a (18)

Ad

&




WAVE PROPAGATION IN COMPOSITE MEDIA

By

V. K. Varadan, V. V. Varadan and Y. Ma
Wave Propagation Laboratory
Department of Engineering Science and Mechanics
The Pennsylvania State University
University Park, PA 16802

ABSTRACT

A unified theory for acoustic, electromagnetic and
elastic wave propagation in composite media is presented.
The theory is based on multiple scattering formalism
developed by the authors which involves the T-matrix of
a single scatterer, pair-correlation functions to
account for the interaction between scatterers and a
suitable configurational averaging procedures. Results
are presented for acoustic, electromagnetic and elastic
wave cases and are compared with experimental measure-
ments.

INTRODUCTION

In this paper, the term "composite media” is used
to define a two phase system consisting of a continuous
phase, said to be the matrix (host) phase, with discrete
inclusions (scatterers) of general shape. When a wave
is incident in such composite media, it undergoes multi-
ple scattering thus veducing the amplitude of the coher-
ent wave, and one is interested in studying the dynamic
behavior of the composite media via the phase velocity,
coherent attenuation, effective elastic or dielectric
properties, etc.

Tne study of wave propagation and scattering in
composite media is growing at a rapid rate resulting in
many theoretical developments and experimental measure-
ments. As with any rapidly expanding field, the contri-
butions are often diverse and sometimes fragmentary;
some thenries are based on salid theoretical foundations
while others are based on no more than empirical fits
to limited sets of data. Except for quasi-static case,
most of the available results by various theories dif-
fer widely that any clear interpretation of the dynamic
behavior of composite media can not be achieved over
a range of frequeacy. The ailm of tlily work is to pre=-
sent a unified theory for all three wave fields, namely
acoustic, electromagnetic and elastic cases and a com-
putational scheme for obtaining such frequency dependent
parameters including comparison with some experimental
measurements.

Lord Rayleigh(l} first addressed the problem using

the single scattering approach neglecting multiple scat-
tering or interaction between scatterers. A multiple
scattering formalism was introduced by Foldy{2] where he
had obtained a closed form expression for the effective
wavenumber of the coherent wave for the case of point
scatterers. A quasicrystalline approximation was
developed by Lax[3,4) which involves two particle corre-
lation function. In a series of papers, Twersky[5-14)
presented a thorough analysis giving various orders of
multiple scattering using various forms of pair-correla- .
tion functions. Recently, Varadan et al and Bringi et al S
[15-21] have presented a rigorous multiple scattering i
approach which lends itself to a numerical computations
for a range of frequencies and concentrations and for
more realistic geometries of the scatterers. Pair-
correlation functions are used in these analyses using
Percus-Yevick Approximation (P-YA), Self-Consistent : 1
Approximation (SCA) and "exact'' Monte Carlo computations.

FORMULATION BASED ON SCATTERING THEORY

.. We consider N number of three-dimensional arbitrary
shaped scatterers randomly distributed in an elastic - »j
(matrix) medium. The orientation of the scatterers may
be quite general. We describe the medium and the scat- j
terers for all threec wave fields. For an acoustic prob- ]
lem, we consider fluid scattercrs immersed in anothet 4
fluid, bubbles in a fluid, elastic or viscoelastic
scatterers immersed in a fluid, etc. For an electro-
magnetic scattering probiem, we cousider dielectric
scatterers in free space, dielectric scatterers embeihded -
in a different dielectric medium, etc. For an elastis
wave scattering problem, we consider elastic vr visco-
elastic inclusions embedded in another elastic or visco-
elastic material, stress free or fluid filled cavities
and cracks in an elastic or viscoelastic matertal, etc.
The properties of the medium and the scatterers are given
in terms of Lame” constants A,u and density ;» for an
elastic material, compressibility lf and deusity pf for
non-viscous fluids and relative dielectric constant v, -
and permeabi.{ry Uy with respect to free space describiung s
dielectric medium. We use subscript 1 to denote these
qualities inside the scatterers.

A time harmonic plane wave of unit amplitude and U
frequency w 1s incident on the medium such that the )
direction of propagation of the incident waves is along
the z-axis. The incident wave field may then b repre-

sented by ]
o . et(kpz - we)a, Gtk oz - wt)g (H o
vhere and k_ are compressional (longitudinal) and ‘::_f]

transverse (shéar) wave numbers, respectively, aud t is

the time. The acoustic waves are purely compressional

type and thus, the second term of equation (l) is set . P
equal to zero; for electromagnetic waves which are trans-

verse type, the first term on the right hand side of (1)

ls zero; for elastic waves which contain both compres=-

sional and transverse types, ill the term of (1) are
present. For acoustic and elastic wave problems, u”
refers to rhe {ncident displacement field verter, wiile
for electromagnetic case, it refers to the incident
electric field vector. Tn eauation (1), we use the
superscript (o) to indicate an incident wave. The wiave
numbers k, and ks are given bv

L]
~

k =wfc ; k =wlc . (
4 P S s

respectively, where

=S+ Do/n (3

c (elastic waves)

P




TABLE VII. -=~continue

R/d p(R) R/d p(R)
2.94 0 91460 2,96 0.92345
2.98 0.,93330 3.00 0.94401
3,02 0.,95538 3.04 0.96717
3.06 0.97910 3,08 0.,99094
3.10 1.00244 3,12 1.01338
3.14 1.02342 3.16 1.03302
3.18 1.04147 3.20 1.04887
3.22 1.05516 3.24 1.06031
3.26 1.06432 3.28 1.06719
3.30 1.06895 3.32 1.06965
3.34 1.06934 3.36 1.06809
3.38 1.06600 3.40 1.06314
3,42 1.05961 3,44 1.05548
3,46 1.05085 3.48 1.04581
3.50 1.04044 3,52 1.03483
3.54 1.02905 3.56 1,02319
3.58 1.01733 3.60 1.01153
3.62 1.00586 3.64 1.00038
3.66 0.99515 3.68 0.,99021
3.70 0.98562 3,72 0.98141
3.74 0.97762 3.76 0.97429
3.78 0.97143 3.80 0.96907
3.82 0.96722 3.84 0.96588
3.86 0.96506 3.88 0.96474
3.90 0.96493 3,92 0.96560
3.94 0.96673 3.96 0.96827
3.98 0.97019 4,00 0.97241
4,02 0.97489 4,04 0.97760
4,06 0.98049 4,08 0.98353
4.10 0.,98666 4,12 0.98984
4,14 0.99302 4,16 0.99616
4,18 0.99919 4,20 1,00212
4,22 1.00485 4,24 1,00741
4,26 1.00976 4,28 1.01189
4,30 1.01375 4,32 1,01532
4,34 1.01662 4,36 1.01763°
4,38 1.01833 4,40 1.01875
4,42 1.01887 4,44 1.01873
4,46 1.01834 4,48 1.01773
4.50 1.01690 4,52 1.01590
4,54 1.01470 4,56 1.01334
4,58 1.01187 4,60 1.01033
4,62 1.00865 4,64 1.00694
4,66 1.,00522 4,68 1.00348
4.70 1.00170 4,72 0.,99996 L
4,74 0.,99826 4,76 0.,99648 AN
4.78 0.99518 4,80 0.99380 SR
4,82 0,.99253 4,84 0.99140
4,86 0.99042 4,88 0.98967 R
4,90 0.98910 4,92 0.98876 R
4,94 0,98882 4,96 0.98972 S
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TABLE VII. Pair correlation function p(R) for pd™ = 0.7

‘
R/d p(R) R/d p(R)
1.02 3.18014 1.04 2.99172
- 1.10 2.47818 1.12 2.3278¢9
- 1.14 2.19006 1.16 2,06993
1.18 1.95757 1.20 1.84489
1.22 1.73154. 1.24 1.63373
1.26 1.52250 1.28 1.,42857
- 1.30 1.35086 1.32 1.26750
1.34 1.17413 1.36 1.11397
1.38 1.05541 1.40 1.00031
1,42 0.94899 1.44 0.90819
1.46 0.846892 1.48 0.84083
, 1.50 0.81197 1,52 0.79580
r 1.54 0.774864 1.56 0.75438
' 1.58 0.72450 1,60 0.70315S
1.62 0.67933 1,64 0.,466582
1.66 0.66002 1.68 0.65606
1.70 0.64983 1.72 0.65584
1.74 0.65980 1.76 0.66709
l 1.78 0.466865 1.80 0.67782
1.82 0.68994 1.84 0.69967
1.86 0.71072 1.88 0.72816
1.%90 0.75058 1,92 0.77849
1.924 0.81110 1.96 0.85256
1.98 0.89990 2,00 0.95574
2,02 1.01229 2,04 1.06555
' 2.06 1.11279 2,08 1.15341
S 2.10 1.,18663 2,12 1.21284
2.14 1.23246 2,16 1.24624
2.18 1.25441 2.20 1.25775
2,22 1.25644 2.24 1.25124
2,26 1.24253 2,28 1.23106
2,30 1.21714 2,32 1.20136
2.34 " 1.18393 2.36 1.16551
2.38 1.14626 2.40 1.12666
2.42 1.10689 2,44 1.08726
; 2,46 1.,067386 ‘ 2.48 1.04908
t 2,50 1.03089 2,92 1.,01356 o
2.54 0.99702 2,56 0.98134 ;;;;
2.58 0.96650 2,60 0.95271 e
2,62 0.93996 2.64 0.92844 , T
2,66 0.91821 2,68 0.90936 NN
-. 2.70 0.,9018S 2,72 0.89576
. 2.74 0.89104 2.76 0.88772 .
: 2.78 0.88573 2,80 0.88504 -
2.82 0.88562 2.84 0.88744 )
2.86 0.89049 2.88 0.89476 B
BN 4] 0.20021 2,92 0.9048S e
)
o0
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TABLE VI. ---continue

l R/d p(R) R/d p(R)
' 2,94 0.94625 2.96 0.,94855
2.98 0.,95154 3.00 0.95519
3.02 0.95941 3.04 0.96407
3.06 0.96905 3.08 0.97424
3.10 0.97951 3.12 0.98477
- 3.14 0.98993 3.16 S 0.99492
CoL 3.18 0.99967 3.20 1.00415
3.22 1.00829 3.24 1.01206
3.26 1.01544 3028 1.01842
3.30 1.02098 3.32 1.02312
- 3.34 1,02484 3.36 1.02614
3.38 1.02705 3.40 1.02759
3.42 1.02776 3.44 1.,02760
3.46 1.02712 3.48 1.02635
3.50 1.,02532 3.52 1.02406
, 3.54 1.02259 3.56 1.02095
' 3.58 1.,01916 3.60 1.01724
' 3.62 1.01524 3.64 1.01318
3,66 1.01109 3.68 1.00898
3.70 1.00689 3,72 1.00484
3.74 1.00285 3.76 1.00094
3.78 0.99913 3.80 0.99744
L 3.82 0.99588 3.84 0.99448
3.86 0.99323 3.88 0.99215
3.90 0.99125 T3.92 0.99054
3.94 0.99001 3.96 0.989467
3.98 0.98950 4,00 0.98949
4,02 0.98962 4,04 0.98990
4,06 0.99029 4,08 0.99080
L 4,10 0.,99140 4,12 0.99210
. : 4,14 0.99286 4,16 0.99368
4,18 0.99454 4,20 0.99543
4,22 0.99633 4,24 0.99724
4,26 0.99814 4,28 0.99902
4,30 0.99986 4,32 1.00066
4,34 1.00142 4,36 1.00211
4,38 1.00273 4,40 1.00329
4,42 1.00378 4,44 1.00419
4,46 1.00452 4,48 1.00478
. 4,50 1.00496 4,52 1.00508
‘ 4,54 1.00512 4,56 1.00509
4,58 1.00499 4,460 1.00485
4,62 1.00463 4,64 1.00437
4,64 1.00407 4,68 1.00374
4,70 1.00335 4,72 1.00294
4,74 1.00251 4,76 1.00207
: 4,78 1.00162 4,80 1.00117
' 4,82 1.00072 4.84 1.00028 . T
4.86 0.9998S 4,88 0.99944 AR
4,90 0.99906 4,92 0.,99871 e
4.94 0,99842 4,96 0.99826 e d
4,98 0.99824 5.00 0.99831 RN
e
et s Gt R L e e ettt e ettt e e et tatp e et e e e e e
N PP AL SO P E A S A S TP PRI AR P AP I A S A A G S Y VI VA I A v WA D Wi P e |



o ~p
'

TABLE VI. Pair correlation function p(R) for od2 = 0.6

R/d p(R) R/d p(R)
1.02 2.59123 1.04 - 2.47586
1,06 2,346728 1.08 2,26336
- 1.10 2.15679 1.12 2,06050
1.14 1.96996 1.16 1.,89062
1.18 1.81600 1.20 1.73972
1.22 1.66165 1.24 1.59500
1.26 1.51582 1.28 1.44916
- 1.30 1.39524 1.32 1.33444
1.34 1.,26279 1.36 1.,21779
1.38 1.17245 1.40 1.12741
1.42 1.08350 1.44 1.,04772
1.46 1.01157 . 1.48 0.98286
1.50 0.95278 1.52 0.93374
! 1.54 0.91124 1.56 0.88943
1.58 0.85999 1.60 0.83831
1.62 0.81392 1.64 0.79714
1.66 0.78632 1.68 0.77651
1.70 0.76402 1.72 0.76178
1.74 0.75792 1.76 0.75699
[ 1.78 0.75111 1.80 0.75211
. 1.82 0.75595 1.84 0.,75737
1.86 0.75977 1.88 0.76707
1.90 0.77795 1.92 0.79249
1.94 0.80989 1.96 0.83406
1.98 0.86248 2,00 0.89853
- 2,02 0.935864 2.04 0.97163
2.06 1.00404 2,08 1.03293
2.10 1.05774 2.12 1.07874
2.14 1.09613 2,16 1.11038
2.18 1.,12145 2,20 1.12982
2,22 1.13542 2.24 1.13870
2.26 1.,13972 2.28 1.13895S
2,30 1.13643 2.32 1.13252
2,34 1.12723 2.36 1.12094
2,38 1.11371 2740 1.10578
2,42 1.09724 2.44 1.08829
g 2.46 1.07892 2,48 1.06945
) 2.50 1.05982 2.52 1.05029 ]
2,54 1.04078 2,56 1.03139 .
2.58 1.02211 2,60 1.01312 T
2,62 1,00439 2.64 0,99609
2,46 0.988264 2,68 0.98101 RN
N 2,70 0.97428 2.72 0.96820 T
. 2,74 0.96275 2.76 0.95798 -
2.78 0.95389 2.80 0.95047 .
2,82 0.94773 2.84 0.94569 5
- 2,86 0.94434 2.88 0.94373 :
2.90 0.94383 2.92 n,94448 K
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TABLE V. ---continue
R/d p(R) R/d p(R)
2.42 0.98841 2.84 0.98605
. 2.86 0,98396 2.88 0.98217
' 2.90 0.98068 2,92 0.97952
2.94 0.97868 2.96 0.97819
) 2.98 0.97804 3.00 0.97824
T 3,02 0.97875 3.04 0.97954
- 3.06 0.98056 3.08 0.98178
: 3.10 0.98315 3.12 0.98463
| = 3,14 0.98619 .16 0.98781
3.18 0.98944 3.20 0.99110
3.22 0,99273 3.24 0.99431
3.26 0.,99584 3.28 0.99730
1,30 0.998469 3.32 0.99998
r o 3.34 1.00117 3.36 1.,00225
s 3.38 1.00323 3.40 1.,00410
3.42 1.00485 3.44 1,00550
3.46 1.00603 3.48 1.00646
3.50 1,00678 3.52 1.00700
3.54 1,00712 3.56 1.00715
' 3.58 1.0070% 3.60 1.00696
L 3,62 1.00675 3.64 1.00648
3.66 1.00615 3.68 1.00577
3,70 1.00534 3.72 1.00488
3.74 1.00439 3.76 1.00387
3,78 1.00334 3.80 1.00281
s I 3.82 1.00227 3.84 1.00174
s 3.86 1.,00122 3.88 1.00072
3.90 1.00025 3.92 0.99981
3.94 0.99942 3.96 0.99909
3.98 0.99880 4.00 0.99856
4,02 0.99836 4.04 0.99818
2 4.06 0.99803 4,08 0.99790
2= 4,10 0.99782 4.12 0.99776
R 4,14 0.,99773 4.16 0.99773
N 4,18 0.99776 4,20 0.99781
o 4,22 0.99789 4,24 0.99799
N 4,26 0.99811 4,28 0.99824
° 4,30 0,99838 4,32 0.99853
: 4,34 0.99869 4,36 0.99885
L 4,38 0.99901 4.40 0.99918
S 4,42 0.99934 4,44 0.99950
o 4,46 0,999485 4.48 0.99979
S 4,50 0.,99993 4,52 1,00006
° ' 4,54 1.00017 4,56 1.00028
, .58 1.00037 4,60 1.00045
b 4.42 1.00052 4,64 1.00058
' 1. 66 1.00062 4,68 1.00066
4,70 1.00048 4.72 1.00069
4,74 1,00049 4,76 1,00068
' 4,79 1,00066 4,80 1.00064
! 4,82 1,00060 4,84 1.00056
4,84 1,00052 4.88 1.00047
1,90 1.00042 4,92 1,00037
4,74 1.00031 4.96 1.0002¢
1, IR 1.00020 5.00 1.00014




TABLE V. Pair correlation function p(R) for od2 = 0.5

R/d P(R) R/d p(R)

1,02 2,10600 1,04 2,03906

1.06 1.97614 1.08 1.91556

1.10 ©1.85251 1.12 1.79487

1.14 1,73914 1.16 1,68945

1.18 1.64294 1.20 1.59479

1.22 1.54507 1.24 1,50272

1.26 1.45131 1.28 1.40759

1.30 1.37269 1,32 1.33220

1.34 1.28297 1.36 1.251385

1.38 1.21997 1,40 1,18719

1.42 1.15435 1.44 1,12724

1.46 1,09914 1.48 1,07510

1.50 1.04948 1.52 1.03208

1.54 1,01243 1.56 0.99342

1.58 0.96930 1,60 0.95090

1.42 0,93018 1.64 0.91407

1.66 0.,90187 1.68 0.89016

1.70 0.87617 1.72 0.86933

1.74 0.86145 1.76 0.85573

1.78 0.84647 1.80 0.84225

1.82 0.84030 1.84 0.83653

1.86 0.83350 1.88 0.83371

1.90 0.83631 1.92 0.34117

1.94 - 0,84764 1.96 0.85865

1.98 0.87228 2,00 0.89157

2,02 0.91214 2.04 0.93226

2,06 0.95092 2.08 0.946811

2.10 0.98351 2.12 0.99721

2.14 1.00927 2.16 1.01991

2.18 1.02904 2.20 1.03691

2.22 1.04340 2.24 1.04875 ;
2.26 1.05293 2.28 1,05616 :
2,30 1.05840 2,32 1.05985 - 4
2.24 1.06044 2.36 1.06039 C
2.38 1.05964 2,40 1.05840 P
2.44 1,05177 2,48 1.04884 )
2.50 1,04542 2.52 1.,04222 1
2.54 1.03842 2.56 1.03486 -4
2.58 1.03095 2,60 1.02699 L
2.62 1.,02296 2,644 1.01895 R
2.70 1.00731 2.72 - 1.00348 RN
2,74 1,00021 2.76 0.,99693 e

2.79 0.99386 2.80 0.99101 -




TABLE 1V. ~=-continue

R/d p(R) R/d p(R)
2.82 1.00195 2.84 1.00051 o
2,86 0.99915 2.88 0.99788 “
2,90 0.99671 2.92 0.99566 -
2.94 0.99474 2.96 0.99395
2.98 0.99332 3.00 0.99284
3.02 0.99251 3,04 0.99232
3.06 0.99224 3.08 0.,99230 -
3.10 0.99244 3,12 0.99267 -
3.14 0.,99296 3.16 0.99331 E
3.18 0.99371 3.20 0.99414
3,22 0.99461 3.24 0.99509
3.26 0.99559 3.28 0.99609
3.30 0.99659 3.32 0.99709 .
3.34 0.99758 3.36 0.99805 -
3.38 0.99850 3.40 0.,99893 :
3.42 0.99934 3.44 0.99972
3.46 1.00007 3.48 1.,00039
3.50 1.00068 3.52 1.00094
3.54 1.00117 3.56 1.00134 L
3.58 1,00153 3,60 1.00166 —
3.62 1.,00177 3.64 1.00185 T
3.46 1.,00190 3.68 1.,00192 ok
3.70 1.00192 3.72 1.00189
3.74 1,00185 3.76 1,00178
3.78 1.00170 3.80 1.,00160 y;
3.82 1.,00149 3.84 1,00137 —
3.86 1.00124 3.88 1.,00110 o
3.90 1.00096 3.92 1,00082 ‘
SR 3.94 1.00067 3.96 1.00052
b- ! : 3.98 1,00038 4,00 1,00024
L :_':
LI
' L}
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2 TABLE IV. Pair correlation function p(R) for pd2 = 0.4
K
SRS R/d p(R) R/d p(R)
E; 1.02 1.76705 1.°4 1.72725 .
A 1.06 1.69007 1.08 1.65417 ;
T 1.10 1.61613 1.12 1.58131 -
: 1.14 1.54679 1.16 1.51608
- 1.18 1.48731 1.20 1.45729
{ 1,22 1.42577 1.24 1.39944
s 1.26 1.36588 1.28 1.33725
! 1.30 1.31525 1.32 1.28878
_ 1.34 1.25488 1.36 1.23445 )
1.38 1.21303 1,40 1.19023
1,42 1.16671 1.44 1.14763
o 1.46 1.1273¢9 1.48 1.10963
; 1.50 1.09041 1.52 1.07702 E
[ 1.54 1,06195 1.56 1.04728 i
3 1.58 1.02857 1.60 1.,01439 ;
U 1.62 0.99813 1.64 0.98483 .
1.66 0.,97425 1,68 0.96387 :
1.70 0.95131 1,72 0.94403
1.74 0.93582 1.76 0.92926
1.78 0.91976 1.80 0.91405 <
1.82 0.91011 1.84 0.90453 -
K 1.86 0.89942 1.88 0.89653 .
e 1,90 0.89524 1.92 0.89534 .
1.94 0.89623 1.96 0.90033
1.98 0.,90596 2,00 0.91592
2,02 0.926%90 2.04 0.93780 5
2,06 0.94803 2,08 0.95764 -
2 2,10 0.96642 2412 0.97446 -
' 2.14 0.98176 2.16 0.98844 :
2.18 0.99442 2,20 0.99984
2,22 1.00459 2,24 1.00881
2.26 1.01243 2.28 1.01559
2.30 1.01822 2,32 1.02047
: 2,34 1.02223 2.36 1.02367 -
S 2,38 1.02469 2.40 1.02541 -
SN 2,42 1.,02581 2.44 1.02595
2.46 1.02579 2.48 1.02543
T 2.50 1.02483 2,52 1.02409
l.' 2.54 1.,02316 2:956 1.02208
2,58 1.02084 2.60 1.01949 . ~
2.62 1.01802 2.64 1.01648 -
.66 1.,01488 2.68 1.,01326
2,70 1.01159 . 2,72 1.00992
2.74 1.00826 2.76 1.006462

v 2,78 1.00507 2,80 1.,00346




gy arae are acanaiea e ekl

WY, T TR s T T

31

o TABLE III. ---continue

1K
R/d p(R) R/d p(R)

g 2.94 1.00036 2,96 0.99996

D . 2.98 0.99961 " 3,00 0.999312 .

n. 3.02 0.,99905 3,04 0,99884

- 3.06 0.99866 3.08 0.99853

3.10 0.99843 3.12 0.99836
3.14 0.99832 3.16 0.99830
3.18 0.99830 3.20 0.99832
3,22 0,99836 3.24 0.99841
3,26 0.99848 3.28 0.99856
3.30 0.99864 3.32 0.99873
3.34 0,99882 3,36 0.,99892
3.38 0.99902 3,40 0.99912
3,42 0.99922 3.44 0,99932
3.46 0.99942 3.48 0.99951
3.50 0.99960 3,52 0.99969
3,54 0.99977 3.56 0.99985
3.58 0.99992 3.60 0.99998
3,62 1.00004 3,64 1.00009
3.66 1.,00014 3.48 1.00018
3,70 1.00022 3,72 1.00025
3.74 1.00027 3.76 1.00029
3.78 1.,00030 3,80 1.,00031
3.82 1.00031 3,84 1.00031
3,86 1.00031 3.88 1.00030
3.90 1,00029 3,92 1.,00028
3.94 1.00026 3.96 1.00024

3.98 1,00022 4,00 1.00020
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Fig. 6 Coherent attenuation normalized with respect
to single scattering approximation vs
concentration. Experimental data points are
from Ref. [32].

The experimental measurements were reported by Kinra[33]
only for the phase velocity as a function of frequency
for few values of concentration. In Figure (7), we have
shown the comparison of our theoretical results with
those of Kinra's experimental measurements. The agree-
ment is extremely good all the way both on "acoustical”
and "optical™ branches. It should be noted that other
theories based on long wavelength approximation, for
exmaple that of Datta et al{34] do not predict this
anamoly in phase velocity, and the Kuster and Toksbz
model even with giant monopole term, does not provide
reliable results in the "optical” branch. This draw-
back of using such simpler theories without multiple
scattering and pair-correlation between scatterers has
also been realized by Gaunaurd and Uberall[35]. 1In
Figure (8), we have plotted the corresponding coherent
attenuation as a function of frequency for few values
of concentration. Other examples of elastic wave
propagation in elastic particulate composite has been
studied by us in Reference[2l] wherin we had shown
excellent agreement between our theory and the
experimental results of Kinra and Adler.

In conclusion, we have demonstrated that a rigor-
our multiple scattering theory with pair-correlation
function is absolutely needed to study wave propagation
for all wave fields (acoustic, electromagnetic and
elastic) in composite media. A unified theory such
as the one presented here also provides a basic tool
in studying the elastic wave propagation in an elastic
composite media containing pilezo-electric inclusions
wherin elastic and electromagnetic wave coupling plays
an important role in attenuation.
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The limitations of the T-matrix procedure or the extended boundary condition method (EBCM)

for wave scattering problems, when used for long slender objects, are due to the shrinking volume

over which the incident field is extinguished. The resulting ill-conditioning of the matrices

involved makes it impossible to invert them. For nondissipative objects only, we observe that the :
Reinforced Modified Gram-Schmidt (RMGS) orthogonalization procedure works best of all L
such unitary approaches investigated, but information about the surface and the internal fields is

lost in the process. An alternate approach, called the iterative EBCM (IEBCM) is more general in

its scope since it provides convergent surface and internal field values and can also work for

dissipative targets. This success of the IEBCM results because it extends the interior volume over

which the incident field is extinguished.
PACS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION

The transition matrix (T-matrix) approach or the ex-
tended boundary condition method (EBCM) has been exten-
sively utilized to describe acoustic, electromagnetic, and
clastic scattering by a variety of nonspherical three-dimen-
sional objects.'™ The various field quantities involved are
expanded in a suitable set of basis functions, and the integral
equations employed in the T-matrix formulation are con-
verted into a finite number of simultaneous equations to be
solved by truncating the field expansions appropriately. This
procedure is, however, subject to numerical limitations, par-
ticularly for objects of high aspect ratios. Therefore, in 1971
Waterman cleverly restructured the T-matrix formalism
into a form more tractable for computations by providing
explicit symmetry and unitarity constraints on the transition

*matrix.* In addition, by the introduction of the Schmidt
orthogonalization technique the computations were further
simplified by utilizing the unitary transformations of matri-
ces instead of matrix inversion operations. However, this
formulation was limited to acoustic scattering by impenetra-
ble objects, and to electromagnetic scattering by perfectly
conducting ones. Recently, Werby and Green have been able
to improve upon this formulation and have applied their
unitary method® to the case of acoustic scattering from elas-
tic shells for which the T-matrix has a much more complicat-
ed structure.

Nevertheless, these various formulations have still been
limited to objects of only moderately high aspect ratios. For
example, the solution of an acoustic problem involving hard
spheroids has been tackled for aspect ratios no larger than
2:1.° For the more complicated problems involving elastic
shells, even Werby and Green have not published results for
aspect ratios exceeding 5:3.3

Acoustic scattering by prolate spheroids can always, in

_principle, be solved for by utilizing prolate spheroidal func-
tions, which are the solutions of the wave equation in prolate
spheroidal coordinates. However, the generation of these

spheroidal functions is very tedious as well as prone to error,
and even Senior,” who has utilized them extensively, consid-
ers only the results for end-on incidence for highly aspherical
spheroids.

On the other hand, a new iterative technique applicable
for electromagnetic scattering by high-loss dielectric objects
has been recently proposed and examined.*® Although pub-
lished results are available for 6.34:1 spheroids,®® as yet this
technique has been successfully used for 8:1 spheroids in the
resonance and the post-resonance frequency ranges. For the
various features of this new procedure, called the iterative
EBCM (IEBCM) the interested reader is referred to Refs. 8
and 9.

Based on the IEBCM, this paper presents another way
of solving for the acoustic scattering by impenetrable bodies.
We shall restrict ourselves, in presenting the new formula-
tion, to acoustic scattering by sound-hard objects, though
similar procedures can easily be applied for acoustic scatter-
ing by sound-soft objects and to electromagnetic scattering
by perfectly conducting ones. Furthermore, in this initial
study, we shall consider only end-on incidence, in order to
illustrate the new technique, although there is no restriction
on the IEBCM as is clear from Refs. 8 and 9. It will also be
shown from the numerical results provided, that the new
IEBCM is computationally superior to the T-matrix ap-
proach. In contrast with the unitary methods, one strength
of the IEBCM lies in its ability to compute convergent values
of the fields induced on the surface and inside (if applicable)
the scattering target.

. FORMULATION

Consider a spheroidal scattering volume ¥ (which can
be replaced by any axisymmetric, elongated, convex volume
for this method) which has a surface $ on which Neumann
boundary conditions prevail, as shown in Fig. 1. If ¥ (7 is
the incident potential at any point 7indicated with respect to
an origin O suitably located inside V, it is easy to show that
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FIG. 1. The geometry of the IEBCM formulation.

the scattered potential ¥* (7} can be calculated in terms of the
surface potential ¥_ (7'

VA= fs A1V, P)

X V[explik [F —F|/|[F—7|lds’, FeV, (1)

where ¥ (7) is itself related to the incident potential by a
similar integral equation

= -1 fam.
W= Mj;n(?mm

X V{explik [F —7|/|[F —F|lds’, FeV. (2

In both of these equations, k = w/c, /i is a unit outward nor-
mal to S, the ubiquitous expression explik |[F — 7 |)/|F — 7| is
the Green's function, and Eq. (2) i is known as the extinction
theorem.

The solution of (1) and (2) is usually attempted using the
T-matrix approach outlined by Waterman.'® First, the three
potentials involved are expanded in terms of scalar harmon-
ies y, (%):

W@= 3 g, Re . kP,

vl

v, M= ﬁv; a, Rey, (k7), (3)
v |

N
vA=3 'f Ou y, (k7).

where N is some appropriate truncation size, and y, (X) is
defined as

Ou {n — m)! [h Nix)
v = (122 4+ 2= e m)!) o

even
odd

Theindex vis actually a triple index incorporating indices o,
m, n. The index o can take two values—even and odd, while
the indices m and n vary from O to «. The functions
Ou y, (%) and Re y, {x) differ only in the form of the radial
functions involved; while Ou y,(X) represents outgoing

rron{ZTh o-|
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waves, Re v, (%) is regular at the origin x = 0. The factor €,
is the Neumann factor.

Finally, the Green’s function is also expanded in terms
of these scalar harmonics:

exr-r LG - -

l_ 7 =ik z: [Ou x.(k7, Re x, (k7 }]. 4)
On substituting the expansions (3) and (4} into (1) and (2) and
on utilizing the orthogonalities of the scalar harmonics over
two spheres—one inscribed inside ¥, and the other circum-
scribing ¥—the integral equations (1) and (2) are converted
into two sets of N slmultaneous equations which can be ex-
pressed in matrix notation as'®

a= —iQa, f=iReQa, (5)
and which can now be solved using standard matrix proce-
dures':

f= —ReQQ 'a=Ta. (6)

For nondissipative objects it can be shown that the ma-
trix S = | + 2T satisfies the unitarity constraint

(STR)*S =1,
and the symmetry constraint
SR =8,

Consequently, if we are interested only in the scattered field
we can factorize Q as (see the Appendix)

Q=0aMm, (7

where Q is a unitary matrix and M is an upper triangular
matrix. This yields for the S matrix
= — Q4M*M-)Q™R)e.

Since M is an upper triangular matrix, so is M~'; therefore,
M*M~! is also upper triangular. Furthermore, in the limit-
ing case of infinite matrix size, S is symmetric, which re-
quires M*M~! to be so as well. This can happen only if
M*M~! = | (or, M is real) since we also enforce that the diag-
onal elements of M are real. With this in view, at some trun-
cation size we can obtain

f= —ReQQ™)*a=Ts, (8) 7
with (Q™)* being the conjugate transpose of Q. SO

In spite of this improvement, however, the T-matrix e
procedure fails to yield convergent expressions for ¥, , par-
ticularly for scattering volumes of large size parameters and
high aspect ratios. It is to be noted that similar problems are
also encountered in the implementation of the straightfor- o
ward T-matrix procedure for the problem of electromagnetic Sl
irradiation by lossy dielectric objects.*®'' These stability e
problems were considerably reduced by solving the integral -
equations iteratively and by the use of the multiple subse-
gional internal field expansion scheme®®; these two features
together lead to the establishment of the IEBCM mentioned
in the Introduction.

Based on the IEBCM, we shall now solve (2) iteratively,
for which purpose we rewrite it as

G
T
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where W~ " is a previous estimate of the surface potential
on S’ known from the (I — 1)th iteration, and A¢*! is an
incremental surface potential to be solved for in the / th iter-
ation. S’ is the surface of a spheroid of the same acoustic size
ka but a smalier aspect ratio than the spheroid under consi-
deration if / = |, but S’ = § for subsequent iterations. The
iteration process is now described in Secs. I A~C.

A. First iteration: Step 1

We begin the first iteration (/ = 1) by assuming %'~ "
to be known as the exact surface potential on a spheroid V'’
having the same acoustical size, but a smaller aspect ratio
than the spheroid ¥ being considered. Since the left-hand
side of (9) is known, and with the assumption that the surface
potentials for ¥and V'’ shall not be very differeat, we solve (9)
for the increment 4y*) using the regular Waterman proce-
dure'® mentioned earlier. The use of his method is justified
since we effectively compute for an error term (4¢*) ) so that
the resultant Q matrix from (9) is small in size and does not
involve Hankel functions of large orders. It must be men-
tioned here that the necessity of using large-order Hankel
functions in Q forces the matrix to become ill-conditioned
and thereby restricts the use of the regular T matrix.

With the calculation of 4¢/ in the (/ — 1)th iteration,
we obtain a revised estimate of the surface potential for the
volume V:

P o= Wi Al (10)
Ordinarily, for low aspect ratio objects, the surface po-
teatial W) = ¢/ would be obtained here, but for very
slender spheroids we can further reform it by using a multi-

ple subsurface re-expansion in the second step of each iter-
ation.

*

B. First iteration: Step 2

In the second step of each iteration (/> 1) the spheroidal
surface S is subdivided into a number of subsurfaces S; cen-
tered at points O, along the major axis of the spheroid, as
shown in Fig. 2. On each S, the surface potential ¥/, is
expanded in terms of the scalar harmonics centered at O;.
We estimate ¥"), on each S, by using a point-matching
technique

YIm=v".A FeS,. (1)
In addition, the continuity of the surface potential on S is

FIG. 2. Multiple subsurface potential ex-
pansion scheme employed in step 2 of each
iteration in the IEBCM.

T —— LA A TV

explicitly enforced by satisfying
VA =¥", P, TESAS., . (12)

at a suitable number of points in cach of the surface overlaps
SiAS; 4.

The expansions for the various %), obtained by using
(11) and (12) are thus highly convergent, because each of
these ¥"!, is used only on the corresponding subsurface .
Furthermore, the continuity of these expansions in the sur-
face overlaps is assured because the equations generated by
{11) guarantee it to be so. Regarding the number of subsur-
faces S;, we never used more than three for the calculations
presented in this paper; more numbers of S; were required
for objects of higher ratios. In addition, the number of points
used to enforce (11) and (12) was between six and 12 per
subsurface, the larger number being used for subsurfaces
having larger curvatures.

In this way, a re-expansion of ¢/ is used to determine
an improved representation ¥') of the surface potential,
which is more stable and computationally tractable than y/'!
itself. Although it is difficult to provide general criteria gov-
erning the expansion size for the various ¥ _ , it was found
that the required number generally depends on both the

acoustical size and curvature of the particular subsurface.

Larger acoustical sizes and curvatures usually required
more numbers of terms to obtain convergent solutions.

C. The iterative procedure

The rest of the iterations (/> 1} proceed exactly as the
first iteration. The iterative procedure continues until the
surface potential satisfies preset error criteria, or, equiv-
alently, until 4¢#) becomes negligibly small.

Once the surface potential has been satisfactorily com-
puted, the scattered potential is easily determined by the ap-
plication of (1), from which the various scattering param-
eters can be determined.
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FIG. 3. Surface potential on spheroids of semimajor axis a = 1.0 m and
aspect ratios a/b = 2,5, and 10 for end-on incidence. The dots represent the
values computed by Senior,” and the spheroidal parameter
cmkia? -5 =50
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FIG. 4. Backscattering cross section o for spheroids of semimajor axis a =« 1.0 m and aspect ratios (a} 2:1, (b} 5:1, and {c) 10:1 for end-on incidence. The
backscattering croms section o is normalized to its geometrical optics value #b */a?, and is plotted as a function of the size parameter ka. The dots represent the
values calculated using the IEBCM, while the dashed curves were computed by Senior.’

Il. NUMERICAL RESULTS AND DISCUSSION

A computer program to implement the IEBCM on the
VAX 11/730 was written and the surface potential and the
backscattering cross section were computed for spheroids of
unit semimajor axis and varying aspect ratios. Specifically,
we considered only the case of end-on incidence so that the

only nonvanishing azimuthal mode is m = 0.

In Fig. 3, the surface potential ¥, generated on hard
spheroids of selected aspect ratios is compared with the val-
ues obtained by Senior’ in 1966. It is to be recalled that while
Senior solved the boundary value problem involved in terms
of prolate spheroidal functions, the iterative procedure,
which is a modification of the T-matrix procedures, uses the
spherical harmonics as the basis functions. As can be ob-
served from Fig. 3, the correspondence between the two
techniques is excellent.

The backscattering cross section for these spheroids of
selected aspect ratios was also computed using the IEBCM
as a function of the size parameter ka. In Fig. 4(a)-{c) the
calculated backscattering cross-section o, normalized to its
geometrical optics value b */a?, is compared with the values
computed by Senior.” It should be noted that while the
IEBCM satisfied the extinction theorem and yielded stable
results for 2:1 spheroids up to ka = 14.5 and for 5:1 spher-
oids up to ka = 13.0, the iterations broke down for 10:1
spheroids after ka = 8.0. When compared with the applica-
tion of the regular T-matrix procedure on the same comput-
er, Fig. 4 reveals a considerable improvement in the solution
stability of the IEBCM vis-a-vis the T-matrix approach. Its
enhanced stability allowed the iterative procedure to handle
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much more aspherical objects, as is clearly demonstrated by
the computation of the surface potential on a 20:1 spheroid
in Fig. 5. ’

. Regarding the number of iterations in the calculations
discussed so far, the IEBCM actually utilized only two itera-
tions—the first iteration, in which an initial assumption was
used, and the second, in which the corrections were applied
using the incremental surface potential. We have already
mentioned the use of the surface potential on a *fatter”
spheroid as an initial assumption for the surface potential on

F1G. 5. Surface potential calculated using the IEBCM on a 20:1 spheroid
having a size parameter ka = 1.5. .
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FIG. 6. Comparison of the convergence of the backscattering cross section
as a function of A, the number of terms in the series representation of the
scattered potential. ——I1EBCM, ——regular T-matrix approach, and
~---Schmidt’s orthogonalization procedure.

l the spheroid being considered. However, the surface poten-
tial on the spheroid being considered at a higher or lower
frequency can also be, and was actually, employed as an
initial assumption to solve the boundary problem at the giv-
en frequency of interest. That this second type of an initial
assumption has already been employed for dielectric objects

g Sshouldbe noted.”

: With respect to the use of the multiple subsurfaces, not
more than two subsurfaces were required to express the sur-
face potential adequately in all of these computations. The
number of terms required in the expansion of the surface
potential for each subsurface varied from eight to 16, this
number being dependent both on the curvature and on the

—  acoustical size of the particular subsurface.

Finally, we also implemented the regular T-matrix pro-
cedure, as shown in (6), as well as the Schmidt orthogonaliza-
tion procedure, as in (8), on the same VAX 11/730 computer
and compared them with the IEBCM. In Fig. 6, we compare

s - thebackscattering cross section as a function of n, the size of

the spherical harmonic expansion of the scattered potential,

obtained from these two methods as well as from the

IEBCM. It is clear from this figure that while the conver-

gence of the regular T matrix may be somewhat dubious, the

orthogonalization procedure as well as the IEBCM have

achieved convergence at some comparable value of 1.

However, this convergence of the orthogonalization
procedure and of the IEBCM may be spurious, as shown in

Fig. 7 for spheroids of size parameter ka = 10 and of varying

aspect ratios. The results obtained from the two methods

agree satisfactorily up to a/b =7, but from there on there
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FIG. 7. Backscattering cross section computed using the IEBCM (-—) and
Schmidt’s orthogonalization procedure (——) as a function of a/b for
ka = 10. The stars represent the values calculated by Senior.’

are sharp differences between the two methods. Indeed, at
a/b = 10, neither of them is even close to the value comput-
ed by Senior.” Nevertheless, the redeeming feature of the
IEBCM is that it stops at a/b = 10, but the orthogonalization
procedure keeps on “converging” for even higher aspect ra-
tios.

It must be mentioned here that the Q matrix in (6) as
well as (8), which is essential to all the three procedures being
compared, is, in theory, symmetric.'® However, computa-
tionally it is not so. It is, therefore, of importance to realize
that the Q matrix must be artificially symmetrized for the
orthogonalization procedure to work; otherwise the ortho-
gonalization of the Q matrix in (8) brings no further improve-
ment in the calculation of the T matrix and is as computa-
tionally unstable as the regular T-matrix procedure. It is to
be emphasized here that the Schmidt orthogonalization of
the Q matrix should satisfy the condition that M is real, oth-
erwise the applicability of (8) is invalid. However, this condi-
tion may not always be satisfied, ' and therefore the use of (8)
should never be blindly made. Nevertheless, the *“‘conver-
gence” of (8) is not surprising since the symmetry and the
unitarity properties of the T matrix have been built into the
orthogonalization procedure. It is, therefore, the authors’
view that the orthogonalization of the Q matrix in order to
avoid its inversion should not be viewed as a new technique;
rather any pertinent factorization of the Q matrix {e.g., the
OR factorization) is just another way of handling the inver-

sion of this matrix. Furthermore, we have also observed that -

if Q has been artificially symmetrized, the regular T-matrix
procedure gives results identical to that obtained by using
(8).

To examine our contention further, we computed the
backscattering cross section when an electromagnetic plane
wave is end-on incident on a lossless dielectric spheroid
whose size parameter ka = 1.35, aspect ratioa/b = 4.0, and
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FIG. 8. Backscattering cross section, normalized to 7a?, for a dielectric
spheroid (ka = 1.35, a/b = 4, €, = 5); an clectromagnetic plane wave is
end-oa incident. Computations are made using (6), and using (8) with QR
factorization or Schmidt orthogonalization of the Q matrix.

relative permittivity ¢, = 5. The T matrix for this case is
identical in form to that given in 6}, but the Q matrix is not
symmetric. The solution was obtained using the regular T-
matrix formulation as shown in (6). Furthermore, the matrix
Q was first orthogonalized using the Schmidt orthogonaliza-
tion procedure (see the Appendix) and also it was factorized
using a QR transformation.' In both of the latter computa-
tions, the effect of M was ignored (i.e., M*M ™' was assumed
to be a unit matrix) and the solution was attempted using (8).
The resulting value of the backscattering cross section o is
plotted against the expansion size in Fig. 8. This plot most
eloquently points out the fact that the M matrix cannot be
ignored without inspecting whether it is real or not. Further-
more, if this matrix is left in the computation as in (7), the
resulting fields are identical to those computed using the
regular T-matrix procedure and no further improvement is
obtained in terms of either more slender objects or increased
size parameters. This would mean that the use of (8) is valid

TABLE 1. Extinction and backscattering cross sections for a prolate spher-
oidal diclectric object of ka = 1.35 and ¢, = 5.0 obtained using RMGS
orthogonalization procedure.

Spheroidal ratio

a:b Oppy /70 0,/ma
41 0.5790% 10~2 0.2219% 10?2
61 0.1012x 102 04157x107?
8:1 0.3042% 10-? 0.1283% 10-*
10:1 0.1213x 10} 0.5177x 10~-*
12:1 0.5753x 10~* 0.2678x 104
181 0.2321x10-* 0.1021% 104

20:1 0.7247x 10-3 0.3440% 10-3
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only for very simple problems in which Q is theoretically
symmetric.

Finally, in this comparison of procedures we consider a
reinforced modified Gram~Schmidt (RMGS) orthogonali-
zation procedure’® which we have recently found signifi-
cantly improves the regular T-matrix procedure. Consider a
dielectric prolate spheroid whose semimajor dimension
ka = 1.35and ¢, = 5.0. The T matrix is of the form (6). Here
we factorize the nonsymmetric Q matrix as

Q=0M,=0MM, =
where 0,. = Q,, +1 M, ;. 1, until we obtain a stable value of
Q. A similar repeated orthogonalization may also be per-
formed, if necessary, on the M matrix thus obtained, and the
process is carried out until the final form (7) is obtained and
the condition on M being real is satisfied. In Table I the
normalized extinction {o,,,) and backscattering (o, )} cross
sections are shown for aspect ratios as high as a/b = 20.0.
Such a high aspect ratio would not have been possible with a
simple Schmidt or QR factorization mentioned carlier.

In summary, it can be stated that the limitations of the
regular T-matrix procedure for wave scattering problems,
when applied to long slender objects, are due to the shrinking
volume over which the incident field is extinguished. The
resulting ill-conditioning of the Q matrices involved makes it
impossible to invert them. For nondissipative targets only,
we have found that the RMGS orthogonalization procedure
works best of all such methods investigated in this paper, but
all information about the surface and the internal (if applica-
ble)} fields is lost in the process. However, the IEBCM is more
general in its scope since it provides convergent values of the
internal (if applicable) and the surface fields, from which it
computes the scattered field. Consequently, it can be, and
has been, used for dissipative objects. This success of the
IEBCM is dueto the fact that it attempts to extend the interi-
or volume over which the incident field is extinguished.
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APPENDIX

There are two distinct orthogonalization procedures,
viz.

(i) @ = QM " (with M~ upper triangular), {Al) '

and

(ii) Q = MQ (with M upper triangular). (A2)
matrices, used scheme
(ii) while we have used scheme (i) throughout this paper.
There is a crucial difference between these {wo schemes:
while (i) works with the columns of Q beginning with the first
column, (i) orthogonalizes the row vectors of Q beginning
with the last row.
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Consequently, the matrix S = | + 2T in these two cases
works out to

HS=—Q*@Q™),
and
(ii) S = — (Q™)*Qe. (A4)

If, at this point, we constrain Q to be symmetric the two
schemes would yield identical results. This, however, would
hold only for certain cases, e.g., acoustic scattering by tar-
gets which are symmetric about all of the three planes x = 0,
» =0, and z = 0. It must be pointed out that the application
of any T-matrix method (including the present IEBCM) for
highly aspherical ellipsoidal targets tends to become un-
wieldy since the various azimuthal modes used in the field
expansions then do not decouple. On the other hand, the
Rayleigh hypothesis'* effectively prohibits the current usage
of these methods for targets with concavities.

Returning to our discussion on the orthogonalization
schemes we observe that the two schemes are not the same if
Q is nonsymmetric. Indeed, the validity of either of the
schemes would be governed by the satisfaction of two prop-
erties: (a) M should tend towards a real matrix, and (b) the
individual elements of @ should tend to have nonzero final
values as the truncation size increases. We have shown in
this paper that scheme (i) for symmetric as well as nonsym-
metric Q matrices does not always satisfy these conditions.
Furthermore, scheme (ii), which is the same as (i) for sym-
metric Q, suffers similarly, at least, for the cases studied. It
appears, however, from our calculations made using (i) for
the dielectric case and those made in Ref. 4 using (ii) that the
latter scheme is preferable numerically and yields better re-
sults.

Insofar as the computational asymmetry of the Q ma-
trix for spheroidal targets and the acoustic case studied is
concerned, that can be easily rectified, as noted earlier. It
does not, however, follow that for nonspheroidal targets
similar numerical errors do not occur or affect the orthogon-
alization scheme.

Notwithstanding the present discussion, it is our view

(AJ)
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_ that the IEBCM presented here and elsewhere®® ' provides

the only improvement currently available over the usual T-
matrix method for scattering by dissipative or viscoelastic
obstacles, and for which purpose any orthogonalization pro-
cedure would be in vain.
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Scattering by lossy dielectric nonspherical objects with nonvanishing

magnetic susceptibility
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Using the recently formulated iterative extended boundary condition method (IEBCM) it is
shown that the absorption mechanisms in a lossy dielectric object are enhanced by the presence of
a nonvanishing magnetic susceptibility. In addition, there is a corresponding reduction in the
backscattering cross section. The conditional convergence of the IEBCM algorithm is also

proved.

INTRODUCTION

An important development in the last few years in scat-
tering theory has been the T-matrix procedure, which incor-
porates certain elegant analytical properties and has, there-
fore, proved to be computationaily attractive. Since the
T-matrix formulation is fairly general, it has been used for
scalar and vector as well as tensor scattering problems, and a
unified approach to develop the field equations pertinent to
the theories of acoustic, electromagnetic, and elastic scatter-
ing is described elsewhere.'

However, in applications relating to lossy dielectric
spheroids, it was soon recognized that the internal fields in-
duced inside such objects could only be obtained at frequen-
cies below the resonance frequency.? The representation of
the internal fields by a single vector spherical harmonic ex-
pansion, as used in the T-matrix procedure, induces numeri-
cal instabilities in the matrix equations.? These instabilities
become seemingly insurmountable as the frequency ap-
proaches the resonance frequency. It hardly needs to be add-
ed that these ill-conditioning problems are more pronounced
if the object has a large aspect ratio, i.e., if the ratio of the
maximum object dimension to the minimum is large.

In order to overcome the convergence-related stability
problems in the T-matrix procedure, a new iterative tech-
nique called the iterative EBCM (IEBCM) has recently been
formulated.>* This method has two main features: firstly, it
requires an initial estimate of the tangential fields on the
object surface; and secondly, and more importantly, the
fields induced inside the object are represented by several
overlapping subregional expansions. For highly lossy dielec-
tric objects, the initial estimate may be obtained by replacing
the dielectric object by a perfectly conducting one of the
same shape and size. The use of the multiple subregional
internal field expansion scheme, on the other hand, yields
continuous and convergent internal field expansions
throughout the interior by a suitable subdivision of the ob-
ject volume into a number of overlapping subvolumes, in
each of which a separate field expansion is assumed. Such a
procedure for axisymmetric scatterers is superior to the use
of local basis functions utilized in the method of moments® in
that the internal fields can be obtained on a point-to-point
basis rather than in terms of the interpolants commonly used
in techniques which call for discretization of the scattering
volume.
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Since its inception, the IEBCM has largely been used to
compute scattering and absorption of homogeneous, lossy
dielectric spheroids representing humans and animals,
though an extension to lossless dielectric objects has been
examined as well. Nothing in the IEBCM formulation,
however, restricts its application for 2 more general prob-
lem, i.e., one which involves a scatterer characterized by all
of the three constitutive parameters ¢,, o, and g, . The scat-
tering properties of such targets have recently come into
prominence due to their ability to absorb EM radiation effec-
tively (e.g., Ref. 7). This being the case, in this paper we shall
use the IEBCM to examine the plane wave irradiation of
penetrable spheroids with nonvanishing conductivities, and
possessing dielectric as well as magnetic susceptibilities. We
shall, first, prove the conditional convergence of the IEBCM
algorithm, though for the details fo the IEBCM algorithm
itself, the interested reader is referred to Refs. 3 and 4.

CONVERGENCE OF THE IEBCM

The I th (I > 0) iteration of the total problem is divided
into two problems: (1) an external problem, in which the
surface fields on a perfectly conducting object of the same
shape and size as the actual object are solved, and {2) an
internal problem, in which the fields inside the actual object
are estimated using the resuits of the external problem pre-
viously solved as well as the multiple subregional internal
field expansion scheme described in Refs. 3 and 4. These
internal fields are then utilized to refine the estimate of the
surface fields in the external problem of the next [the
(I + 1)th] iteration. This iterative procedure continues until
preset error criteria on the internal fields have been satisfied.

Consider, therefore, a dielectric volume V character-
ized by a surface S, and described by given ¢,, x,, and o,
irradiated by a planewave {E',H'], as shown in Fig. 1. In the
external problem of the [th iteration, the equation to bx
solved is given by Refs. 3 and 4.

[E'tkor) + VX SsA)XEL " (kor|kor')ds’
1

— UXVX S5 ()XY - (ot kor')d )
Jw€y

= VXVX s ——h(e) x4 HIL- S (korlkor)ds’, (1)
JwE€y

where [El,; ",H{ "'} are the estimates of the fields induced
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FIG. 1. The geometry of the IEBCM formulation. The various electromag-
netic quantities involved are also shown.

inside the dielectric object from the {/ - 1)th iteration,
AxAHY) is an incremental electric current density on the
surface of the substitute perfectly conducting object, 7 is a
unit outward normal to S, ¥ (k.r|k,r') is the freespace trans-
verse dyadic Green's function,? ko= wJusc,. and
k= km/(e, + jo/wegu, . It is obvious that for the zeroth it-
eration, E; ¥ and HY " are identically zero and that
AxXAHY = axHY . The solution of the external problem
isaxH") =ax[H'"""+4HY ]

In the internal problem, on the other hand, the actual
properties of the object are utilized, and fresh estimates of
theinternal fields { E{’},H!"! ] are obtained following the pro-
cedure described in Secs. II C and II D of Ref. 3. The itera-
tive procedure thus carries on till the incremental surface
current density A4 H") calculated on the left-hand side of
Eq. (1) becomes almost zero, thereby meeting the preset er-
ror criterion. In this way the fields induced inside the object
can be determined.

Throughout the formulation of the IEBCM, the various
field quantities involved, as well as the free-space Green’s
dyadic, are expressed in a complete set of suitable basis func-
tions ¥, (x) and Re¥, (x) (Ref. 4). Therefore, the solutions of
the external and the internal problems in each iteration are
- essentially operations involving infinite matrices.®

Consider, therefore, the expansion of the incident field
E'as

Elkor) = Ta, Re ¥, (ket). @

On solving the external problem in the zeroth iteration, we
have a similar expansion for A X H'? on the surface of the
substitute perfectly conducting object:

AXHT = 3BT Re ¥, (kor). 3)

In Eq. (3), the superscript on 8, represents the iteration num-
ber. Then, after solving for the internal fields in the internal
probiem of the zeroth iteration, and calculating the integro-
differential expressions bracketted with E'(k,r) on the right-
hand side of Eq. (1) we obtain
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1

+ VXX s ——A(r) X HO (ke')- & (kor kot ldS'
Jwéqy .
= Y72 Re ¥, (ko). (4)

In terms of actual matrices Q and R, we can represent the
process described in reaching Eq. (4) from Eq. (1) as

B = Qa,

7" =RB"™ = RQa. (5)
Next, in the first iteration, we can similarly write
B"=Qa - y%, (Sa)

?"=RQ(2F ~ RQ)a,
where f is the identity matrix. Continuing in this manner,
we obtain for the / th iteration:

g = Q((J flha-S r""). (6)

n=0

=[S = —RQ) " ]a,

from where, on simplifying the equation for 8! in Eq. (6) we
obtain

g=0(# + 3 -Rer)a )

A=
In order to investigate the behavior of the sequences
{B """}, aslincreases, Eq. (7) is recast into the following form:

1 -
g =0(s +1s — RS (F ~ROF )o@

A=0
where the summation over the index n can be easily recog-
nized to be representing a finite Neumann series. It can now
be shown® that this Neumnann series converges to (RQ )~ 'as/
increases, provided the maximum eigenvalue A of (¥ — RQ)
is such that |A | < 1; and the sequence {8""}, therefore con-
verges to S where,

B=Q[f +F —RQ)(RQ)']a
=R "'a, )

b

T

|

FIG. 2. A prolate spheroid characterized by ¢,, o,
and u, is exposed to a plane wave incident end on.
The vector quantities are in boldface.
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FIG. 3. Constitutive properties of the spheroid
used for the sample IEBCM computations as
functions of the size parameter ka.
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the same time the sequence {#/'], converges, as expected,
v, where

7=Rﬂ=a (10)

JIMERICAL RESULTS AND DISCUSSION

For our sample computations made using the IEBCM
:chose a prolate spheroid of semimajor axisa = 0.2 m and
ving an aspect ratio a/b = 3.096, being irradiated by a
ine wave | E' H'} incident end on as shown in Fig. 2. The
nstitutive properties of this hypothetical object are plotted
Fig. 3 as a function of the frequency. It must be pointed
t that for these computations, the conductivity and the
ative permittivity were kept independent of the frequency,
lile an idealized variation of the relative permeability was
sumed. This was done in order to explore the effects of
ving a nonvanishing magnetic susceptibility vis-a-vis the
te when the scatterer does not have any magnetic proper-
8. The properties selected, however, do not differ qualita-
ely from those experimentally determined for ferrite-im-

egnated plastics except that the value of u, in these
lculations is purely real.’

The absorption cross section o,,,, the back scattering
18 0, and the total scattering cross section g, were

absorplion cross-section

LA RALS

T
)

o3 13
ka

3. 4. Normalized absorption cross section vs size parameter for the
leroid used for the sampie IEBCM calculations. The irradiating plane
ve is incident end on.
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computed using the IEBCM for the case of this sample
spheroid exposed to a plane wave incident end on. These
quantities, non dimensionalized by 7a?, are plotted in Figs.
4-6 as functions of the size parameter. We also used the
IEBCM for making similar computations for a spheroid
with identical dimensions, relative permittivity, and conduc-
tivity but which does not possess any magnetic susceptibil-
ity. Itis clear from Fig. 4 that the absorption cross section is
greatly enhanced when the lossy dielectric object has a non-
vanishing magnetic susceptibility as well. This would imply
that the presence of magnetic properties enhances the ab-
sorption mechanisms in an otherwise lossy dielectric body.
Furthermore, there is a corresponding reduction in the back-
scattering as well. There is, indeed, a slight increase in the
total scattering cross section, but this slight increase is com-

back-scattering cross-section
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FIG. 5. Normalized backscattering cross section vs size parameter for the
spheroid used for the sampie IEBCM calculations. The irradiating plane
wave is incident end on.
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FIG. 6. Normalized total scattering cross section vs size parameter for the
spheroid used for the sample IEBCM calculations. The irradiating plane
wave is incident end on.

pletely overshadowed by the dramatic increase in the ab-
sorption. ‘

In order to understand this enhancement of power dis-
sipation in scatterers possessing 4, > | in addition to their
lossy dielectric properties, we computed the electric and the
magnetic surface current densities on a spheroid of size pa-
rameter ka = 0.6 and aspect ratio a/b = 3.096. The spher-
oid is characterized by €, = 35 and has a conductivity
0 =2.58742 ' m~". In the first instance, the scatterer had
no magnetic properties (i.c., z, = 1), and the current densi-
ties are shown in Figs. 7 and 8. Next, the spheroid was as-
sumed to have 4, = 10 also, and the surface currents are

) R -
N e
. \‘ \ ——— T ;I’
b kY \0 2 Y
4 e

N\ s
1 N\ e
AN N, --".- ” I
= N - .
T <X ]2
N W
b T ey T Y T T
o 2 0 [ ] ] 00 120 WO 180 180

o
FIG. 7. Surface electric current density J induced on a spheroid (ka = 0.6,
a/b = 3.096,¢, = 35,0 = 2.58712 ~' m~') computed using IEBCM for (a)
#, =1and by, = 10. The irndja_ting plane wave is incident end on and
J=J, cos ¢t + J, sin § ¢ in & (A,1,4 ) coordinate system.
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FIG. 8. Surface magnetic current density M induced on a spheroid
{ka = 0.6, a/b = 3.096, €, = 35, 0 =2.587 2 ~'m~') computed using
IEBCM for (a) 4, = 1 and (b) , = 10. The irradiating plane wave is inci-
dentendonand M = M, siné ¢ + M, cos ¢ 4 in a (A,1,4 ) coordinate sys-
tem.

compared in Fig. 7 and 8 with those plotted for the case
4, = 1. From these two figures, it can be observed that the
presence of magnetic susceptibility lowered the surface elec-
tric current density J, but it considerably increased the mag-
netic current density M on the surface of the spheroid. Since
J=nXH,, and M =E,, X#, where 7 is a unit outward
normal to the spheroid surface and {E,, ,H,,, | are the fields
computed in the interior of the object, it is obvious that the
electric field induced inside the body is increased while the
internal magnetic field is lowered by the presence of a mag-
netic susceptibility. Since the power dissipated inside the
lossy spheroid is equal to 1/20|E,,, |3, it is not surprising that
the absorption is considerably enhanced when u, > 1.

Itis also inferred from Figs. 7 and 8 that the lowering of
the surface electric current due to i, > 1 is somewhat over-
compensated by an associated increase in the magnetic cur-
rent density. For this reason, only a slight enhancement in
the total scattering cross section is observed as the relative
permeability is increased from unity. .
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Scallering by highly aspherical largets: EBCM o
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In a recent paper,! Iskander and Lakhtakia have demon-
strated the use of the iterative extended boundary condition
method (1KBCM) to compute the scattering of XM waves by . 4
low-loss or lossless, elongated, axisymmetric dielectric objects. -
T'he singular advantage of the LEBCM over the regular EBCM Lo
(REBCM)2 is that it yields numerically stable and convergent RS
fields induced inside and scatlered by such elongated objects S
for which purpose the latter technique is inadeguate.® This .
advantage is achieved at the expense of a considerable increase
in computation time as well as in programming effort. 4

If, however, the scattering volume does not absorb energy
(i.e., it is either lossless dielectric or perfectly conducting), the
a priori utilization of the known properties of the T-matrix i
generated in the RIFBCM can be used to effect a substantial Ry
improvement in the adequacy of the REBCM itself. 'This ST
improvement comes via certain orthogonalization procedures,
bul, in the process, all knowledge of the fields induced inside 4
and on the surface of the scatterer is lost. ‘This luss is, how.
ever, of little consequence if one is interested only in obtaining
the scattered fields. Furthermore, not only elongated nee-
dlelike targets can be handled but severely compressed disk- .
like scatterers can he considered with equal ease. This con.- e
trasts with the IEBCM whose use is presently constrained to 1

needlelike objects since it wtilizes the multiple subregional

licld expansion scheme to express the internal or the surface
fields. !
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Fig. 1

Fig. 2

Fig. 3

FIGURE CAPTIONS

Schematic of the problem.

Power reflection coefficients P ., P and P computed using

the present approach when a horizontdlly polérized EM wave
strikes a perfectly conducting half-space with a surface defined
by 2 = h cos (2mx/L). ©6,=15° and kL=Um. Comparison is made
with Holford's computations [5,6] for the acoustic response of
an acoustically soft surface.

Power reflection coefficients P., P and P computed when a
vertically polarized EM wave strikes a perfectly conducting
half-space with a surface defined by z=hcos(2mx/L). 63=15°

and kIL=4T. Comparison is made with Holford's computations

[5,6] for the acoustic response of an acoustically hard surface.
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upto about 0.2 this time. This is no doubt related to the instabilities
of the solution procedure which become more visible when Neumann boundary
conditions prevail on S than when Dirchlet boundary conditions do.

Again, we have been able to compare very favorably with the acoustic
response of an acoustically hard surface supplied to us by Holford [5,6].
In these calculations, as well as in several others made by us,
the conservation of energy was satisfied to within #0.5%. The efficacy
of using our surface field expansions, in conclusion, has been very well

demonstrated by us using the presented computations. We are currently

investigating the use of these expansions in related problems in electro-

magnetic as well as elastic wave scattering phenomena.
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III. NUMERICAL RESULTS

The derivation of the T-matrices in the previous section hold for -]
any arbitrary periodic boundary profile T': z=z(x). However, in presenting
our numerical results we confine ourselves to the sinusocidal surface ’;}:

z = h cos (2mx/L). These results were calculated on a DEC VAX 11/730 -

minicomputer.
In Fig. 2 we show the computed values of the power reflection
coefficients Pn as functions of the roughness parameter h/L when a

horizontally polarized EM wave is incident on S making an angle of

aa e oo

15° with the z-axis, the value of kL being fixed at 4m. The coefficient

Pn is defined as "“#

_ 2 B
Pn = | fn/ao| (14) S

but, in this figure we have suppressed P. in the interests of clarity.

1
It is to be noted that while the regular T-matrix procedure [1] would .

have been restricted by the Rayleigh hypothesis to h/p, < 1/1hk, we have

been able to compute upto h/p, = 0.26 using the Fourier expansion of the
surface field normalized by the incident field. Furthermore, since the
problem of scattering is a scalar one we have compared our'results with
those calculated [6] by Holford for the acoustic response of an acoustically
soft surface obtained using a boundary integral equation method [5].
The agreement between the two techniques could not be better.

Finally, in Fig. 3 we have shown Pn computed when a vertically
polarized EM field strikes the perfectly conducting rough half space.

The parameters for these calculations are otherwise identical to those

in Fig. 2. Our previous remarks relating to the regular T-matrix procedure

[1] again apply here, though we note we have been able to tackle h/L
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and the T-matrix is exactly the same in form as in the equations (10).

In obtaining (12a,b), the boundary condition ﬁ.V+u = 0 was enforced on
S to obtain

£.=- (1/21kL) fdgo 'W’(']E; . r Ju

~o' T+
r

and . (13a)
(rema) fag, Wl L, L
r
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Substituting (8) in (Ta,b) and enforcing o) = 1 wve get

| £=[0"a , a=[¢)a (8)
where the matrices[¢i]are defined by
L
' + T S .
¢ =% (/1) fdx Y, ©XP (-1 (lfm -k) . gol, (9a)
" 0
where
_1/2 dz
) Yoo = = (cosem coseo) [cosﬁ(J + sinqlaz ] (9v)
and
k; Ak (sinen X - cos6yZ) (9¢)
We can now obtain a T-matrix such that
£ =[T]a (10a)
with
+ -
L [T] = (s%] (671" (106)

provided the inverse of [ ]exists.

For the case of the vertically polarized field i.e. when the electric

TO_ A O .
1 field is polarized in the x-z plane,and H =-yu , the problem again reduces to a
scalar one, with the exception that the derivative of the total field 3
goes to zero on the surface [1]. The expansion of the surface field u, :f:fj
)
is given by . P
DRL)DEN SRR . (11) S
n . S ;
where QO is againun®:y; thel[d”] matrices are now defined by {q
L SR
+ —t + SR
. r_ ., + i(kE - k) . -
: O = QL) ./f d v exp [-i(k - k%) . r ], (12a) S
. b
- -\.b‘
mere the Y- i 7
“here the Y  are given as -
—'t -l/z dz \:-- _.
= - — .
Yo (c059m cosqj) [ smem it cosem), (12b)




P

~n " =~ : ~ max (5)

with fn being the unknown coefficients to be determined.
Now, following Waterman [1], we obtain a set of matrix equations for

the case of the horizontally polarized fields

fm = (1/2ikL) /dgo . [\p(-lf; . ;_0) V+u (6a)
r
and
am = -(1/2ikL)/ dgo . [lp(-lf; . Eo) V+u (6b)
T

where V u refers to the surface field, do_ = f do_ = dx(ﬁ—ﬁ%i), A

is a unit inward normal to the surface and T is one period of becundary
profile. In deriving these equations Waterman used the Huyghen's principle,
followed by the extended boundary condition, specifically, for (6b).

At this point we need a representation for i .V;u.which we obtain as

» .
A - 2: a T
A.9V, u=2 o A Wn (Eo)’ r € (1)

n

where the function.w; (ro) is defined as

'P; (1:0) = W(lja . {o) e in‘21Txo/L (Ta)

Equations (7) and (7a) together constitute a Fourier expansion of the
surface field normalized by the incident field at the surface S; consequently,
@, =1 is a reasonable assumption. We note here that by not using W(k; . ro)

in the expansion (7} we have effectively typassed the Rayleish hypothesis.

In order now to make (T7a) consistent with our basis functions we rewrite it as

| = ik(sin® - sin® )x (70)
b; (EO) - P(EO . EO) e n 0 o {
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IT. T-MATRIX EQUATIONS FOR A PERIODICALLY CORRUGATED SURFACE

“ Following the description given by Waterman [1], consider the periodic

boundary S described by z(x)= z(x+L), the geometry of which is shown in

?3 Fig. 1. First, let the surface be illuminated by an incident plane wave
; o] A O
- E(x) = §u(r):
_1/2 -
uO(r) = (cos 80)' exp(i ko.r) (1)
where EB = k (sin 60 X - cos 602), (2a)
5 1/2
and cos 60 = (1 - sin 60) (2b)
! is a positive real quantity. We begin by introducing a basis of Bloch functions
+ -1/2 .o
w(tkg . 3) = (cos en) exp (+1 kn.r), n=0,*1,..., (3a)
[ with kiék (sin® X *cos © Z) (3p)
- ~n n - n ’
o sin § = sin 8 + 2 /KL, (3c)
. 2 1/2 2
and cos 8 = (1 - sin® 8 ) , sin® 6 €1 (3d)
u *n n n
o 1/2
+i(sin2 8 -1) , sin2 8 >1 (3e)
n n
+
The functions W(kn . r) are the outgoing eigenfunctions, to be used to
= describe the scattered field, while W(k; . r) are the incoming eigenfunctions.
The equations (3d) and (3e) distinguish propagating and evanescent modes,
- respectively. We represent formally the incident field (1) as
)
fe) - -
u (r) =Za bk . r) (L)
-~ n’ o ~n ~
n
. with a = 6n0’ snn' being the Kronecker delta function. The scattered field
n
us, on the other hand, is now represented as
'-“-‘- - S -\ -"-\ '.',._..v,.. .

Ay '*.'\'\“-"..
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)
surface field normalized by the incident field on the surface. When j
4
! ‘] compared with Waterman's approach this does not entail any extra numerical ;Luaj
g )
v effort, but more deeply corrugated surfaces, i.e. those having maximum AN
j slopes of the order of 1.5, can now be considered. Our T-matrix approach
. is also similar to the formulation of acoustic.scattering by hard.and soft
- ¢ ‘

surfaces derived by DeSanto [U4] but while we use the extended boundary

condition {1] he did not.

In presenting this approach we shall restrict ourselves to the case

of a perfectly conducting half-space having « periodically corrugated

surface as shown in Fig. 1. Furthermore, we shall describe the derivation
for horizontally polarized electromagnetic fields so that the x-z plane

is the plane of incidence, E = g u({), r = XX + zZ and § is a unit

vector going into the plane of Fig. 1. The analysis for vertically polarized
fields proceeds similarly and shall, therefore, be mentioned only in

brief. We compare our calculations, made on a DEC VAX 11/730 minicomputer,

with those of Holford's integral equation technique {5,6]. We stress,

parenthetically, that Holford's method is much harder to implement

numerically.
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I. INTRODUCTION - Sl
The scattering of electromagnetic waves by an infinite rough surface

depends very strongly on the roughness of the surface as well as on the

IR (o RERMASRAREREREIPY IR
-1
i

angle of incidence. In addition to the specular scattering, which is

characteristic of reflexion from a smooth plane, scattering also occurs
at many different angles using the nonplaner nature of the surface.

When dealing with the scattering properties of an infinite, periodically
corrugated surface it is appropriate to use a planewave spectral representation
of the fields of interest, which, for the specific case of a perfectly
conducting surface, are the known incident field, and the unknown scattered
and surface fields. Two types of plane waves are used for this purpose.

The first set of plane waves propagate towards the surface (i.e., in the

-2 direction as shown in Fig. 1) and are directed symbolically by ¢ (E;'E)' L
Obviously, this‘set of plane waves is best suited to describe the incident
field. The scattered field, on the other hand, propagates away from the

surface, at least for all points such that z > h, 2h being the peak-to-

peak corrugation depth. These planewaves of the outgoing kind are denoted 5}{2;
+
by Yk, r).

It is the surface field whose representation poses a problem. Waterman

[1] who originally published a T-matrix to obtain the electromagnetic
(EM) response of a perfectly conducting half-space having a periodically
rough surface, considered the use of only the w(E;'f) functions to represent :;;ﬂ.
the surface field. Incidently, that was also the choice made by Rayleigh
[2]. This is, however, a hypothesis that limits the maximum slope of

the surface to less than 0.448 [3].

It is our objective in this communication to present a new T-matrix

formulation which involves a Fourier exponential representation of the
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A T-MATRIX APPROACH FOR EM SCATTERING BY A
" PERFECTLY CONDUCTING PERIODIC SURFACE

Akhlesh Lakhtakia, Vijay K. Varadan and Vasundara V. Varadan
Department of Engineering Science and Mechanics
The Pennsylvania State University '
University Park, PA 16802 .

ABSTRACT

The novel use of a Fourier exponential representation of the field induced
on a perfectly conducting periodic surface is shown to yield a T-matrix which
is numerically stable for deeply corrugated surfaces. Whereas the Rayleigh éil
hypothesis limited the maximum slope of the surface to less than 0.4L48 in
Waterman's original T-matrix scheme [1], our T-matrix is applicable even when Ei;

the maximum slopes are of the order of 1.5.
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ON AN IMPROVED T-MATRIX APPROACH TO STUDY THE
SCALAR SCATTERING RESPONSE OF DOUBLY PERTODIC
SURFACES

A. Lakhtakia, V.K. Varadan and V.V. Varadan
Wave Propagation Laboratory
Pennsylvania State University
University Park, PA 16802

ABSTRACT

In investigating the scattering response of a periodic surface, the
use of incomplete or inappropriate basis functions for representing the
field(s) induced on the scattering surface has given rise to what is now
called the Rayleigh Hypothesis (RH). Here we use normalised Fourier bases
for this purpose and develop a T-matrix which completely characterises
the scalar scattering response of such a surface. The Rayleigh limits are
effectively bypassed, and the obtained solutions are seen to cbey unitar-
ity as well as reciprocity constraints. We also show that the measurement
of the scattered field can lead to two different interpretations of the
nature of the scattering surface in inverse shape problems.

i




INTRODUCTION

y The scattering of waves --- be they acoustic, electromagnetic, or
“ elastic, --— by periodic surfaces h.s been the subject of much investigation
ever since Rayleigh studied the scattering response of sinusoidal reflection
gratings [1]. He expanded the incident and the scattered fields in terms
n of relevant incoming and outgoing planewaves, repsectively, and these
decampositions are used to this day in such problems. However, he expressed
= the field(s) generated on the periodic surface in terms of outgoing plane-
waves alone, a premise, -—— now called the Rayleigh Hypothesis (RH), -— -
which involves an incomplete basis set, and can, therefore, be used for
shallow corrugations. In a classic paper, Millar [2] has shown that
for 2-D scalar problems involving a surface S?: x, (x,,x,) = h cos (2mx, /L)
the RH is applicable for h/L ¢ 0.072. For the corresponéing 3-D problems,
we believe that Goodman's estimate [3] of h/L < 0.0504 is correct, the -
surface S°: x,(x,,%,) = h [cos (2mx,/L) + cos (2mx,/L)].

Since then several efforts have been made to bypass the above-mentioned
Rayleigh limits on the maximum gradient of periodic surfaces. Most of these
methods fall into two categories. Methods of the first kind involve the ]
solution of an integral equation (IE) [4,5]; while the second type are
essentially matrix procedures [3, 5-12]. Though the IE methods have been
very successful in dealing with highly corrugated S?, their use for S? is
extremely cumbersome because of tedious computations. Hence, matrix methods
offer the only choice for 3-D problems. In this connection, DeSanto A
[6] has formulated coupled integral equations which are converted into C e
matrix equations using relevant expansions for the fields of interest. A
more elegant approach is due to Waterman [12] who used the 'extinction'
theorem to fornulate a T-matrix which characterizes the scalar scattering
response of periodic S?. This method, known as the T-matrix procedure,
involves an understanding of the scattering problem fram first principles T
using the Huyghen's and the Love's equivalence principles. Recently, T
this approach has also been extended to elastic scattering problems as well
[8,9].

PR
A

O
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Nevertheless, the expansion of the surface field(s) in terms of only the
incoming planewave bewses for the T-matrix approach has proved to be a stumbl-
ing block in its application for highly corrugated surfaces. Such an expans-
ion is as incamplete as the one used by Rayleigh; consequently, this method
has suffered from the same limitations. Recently, however, using a hybrid
T-matrix - point-matching technique, wherein the surface field(s) is express-
ed in terms of both incoming and outgoing planewave bases, the applicability
of the method has been increased to higher corrugations than previously possi-
ble. We have used this hybrid technique for scalar [13] as well as elastic
[9] scattering problems involving S? surfaces.

. .
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Specifically for scalar problems, Fourier bases have been used for
representing the surface field(s) in the T-matrix framework (3] and with
success as evinced by the data published in [14]. On the other hand, using
these same Fourier bases for camputing elastic responses by Chuang and John-
son [8] has not lifted the T-matrix approach from within the Rayleigh limit
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on the maximum surface slope. However, the use of normalised Fourier bases

of [2,7] has been more promising as shown by our work on the scalar response
of s¢ [15]. : .

In this paper we present a T-matrix formalism for computing a stable and
accurate 'I‘;natrix which characterises the acoustic responses of hard and soft
periodic S° surfaces. Normalised Fourier bases will be used to express the
surface field; and the presented approach will also be valid for electromag-
netic problems, where the relevant fields will have to be decomposed into T™-
to and TE-to xj;fields. The use of these bases for elastic problems is still
under investigation and shall not be discussed here. From our results we shall
show that the presented T-matrix method is useful .for scalar problems involv-
ing surface slopes about 3 to 4 times the Rayleigh limits. We shall also
discuss a non~uniqueness in the inverse shape problem when the field scattered
by the periodic surface has been determined experimentally.

THEORY

Let Ox,x,x, denote a 3-D Cartesian co-ordinate system. The surface S® is
given by x, = F’(xl,xz) , where F is assumed to be a single-valued, differenti-
able, periodic function with periodicities L, and L,. This surface, in the
mean, should be the flat plane X, = 0.

The region V above the surface {x, > F(x,,x,)} is occupied by a non-
viscous compressible fluid and an incident planewave

¥ &) =y, exp (ik;.x) (1
is incident on S® with a temporal variation exp(-iwt). The surface can be

either acoustically soft (case S) or hard (case H), and the corresponding
boundary conditions on the total field apply. The notation is as follows:

k = w/c 50 = k(a,u + Bou,= Yg,u,)

o = sinb cos¢ B = sind sin¢ (2)
0 0 0 0 0 0

Yy = oosb XxX=xu+xu+xu
00 o - 11 27— 3™

wo = constant anplitude.
The relevant boundary condition are:

Case S:  ¥(x)|gs = 0 ' (3)
Case H: v ¢ W’(E)ls-’l =0 (4)
v = unit vector normal to S* into the fluid. (5)

The application of the Huyghens' principle, and the use of the free space
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Green's function G(x';x) = exp(ik|x'-x|)/47|x'-x|, leads to [12]:

L )
n\,(g')w(_:_:_') = wi(g') +‘ dx1 ‘ dxzo n
0 0 -
o {kG(x';x) V(x) - UX) T(x) v . VG(x';x)}, (6)

with H (x') = 1 if x' € V, and 0 otherwise; and
VR =kt @ v . Wi gy .
Ux) = y(x)]gs . (7)
o) = {1+ (B)2+ ()25, B = or/ax .

Bquation (6) for x' £ V is the ‘extinction theorem' [121, § = y, + V_:

The free space Green's function can be expanded as

o o0 -
G(x;x) = i/Z&L L) T (/)
- = 12 ps-@q--w m ¢ ;..
3 1. + [ + [
. . ex,p{:k[a.p(x1 xl) Bq(x2 x,) qu|x3 xall}, (8) L
with - —
ap -a0+2p1r/kLl, p=20, #1, £2,.... ' "
Bq = By + 2qT/KL , q = O, ;1, +2,.... (9) o
- {1- o? - 8217, Re >0, Im > 0. alnly
Yoq { o Bql (qu) >0, (qu) > ]
At this juncture we also define two groups of wave vectors ]
- d
+ -]
k- =k + t
Kpq = K00, + Belt, * Ypqu,) : (11 R
with whose help we define the incident and the scattered fields as R
g it + + . L “
b0 =12 I a, exp(ll_cpq . X)) (12) ]
i pa.oo q--oo .'1
- + [} g o '..1
wiﬂuapq=1p06p06q0andmﬂqmnapqtobedeterxm1ed. .
Let us first consider the case S. The boundary condition (3) would then ilj:i::;'.
apply and the Equations (6) would accordingly be modified. On substituting AN
the expansions (12) in the modified (6) we obtain a set of equations: .TZTZ':.'Z:
N
ERNRS
SN s
- i
=
........................................................................... 2
-..t‘f. -‘{.- ’\ l- ...... e e T T N T N T N e et e L G By I i \l .!. » I\ ................... . \
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+ g g .
an - L dxx ’0 dxz (1/2:1.kL1Lszq) *
- oX . {exp(-igéq.g) V+w(§)} ’ (13)

the vector
X= (-Fl'-FZ'l).

In order to solve the problem all we need now is the surface field represent-
ation, which we assume to be [6,15]

X99@ =2 £ a_x.V{emik 0} xes (14)

T}= 00 [Ma=-C0

with the wave vectors

*

&nﬂ = k (anl Bml -Yoo); (15)
finally, substitution of a truncated (14) in (13) leads to the matrix
equations

R Ry (16

a =Q5. Q97" a )
where the matrices Qé are

L L
. ‘z 2 . .
Qpgm =t e, So ax, [(vgo + o f | + BF VAL L 1o
R - *
oexp[-:.(l_<pq Ko Xl (17)

*

At this point we remark that replacingthel_gmnbyeitherofthegnvectors
would campletely debilitate the T-matrix procedure and subject it to the IR
Rayleigh limits. in its ability to handle deeply corrugated surfaces. »

Likewise, for the case H the boundary condition (4) is substituted in (6) :
as also the assumed surface field expansion

- -] (-] “te .
= .t . 3
bx) =2 I I o explik .X); xeS (18) » |

n==o mnpsa00
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which yields the solution

+ - -
a =g . (@)"a, (19)
where L L

1 2
+ _ - ° °
(Qn)pq,mn B t‘ dxx ‘ dx2[ (+qu + aPFl + Bsz)/quLlel.
0 0

. . _

Defining the energy carried by the (pg)th mode of the scattered field as
= + 12 2

P ™ ‘qu/Yoo’lapq' / 1vol*s (21)

provided, of course that qu is positive real, the conservation of energy
relation is cbtained by

E=Z IP_ =1 (22)
P qm

NUMERTCAL RESULTS

The system of equations (16) and (19) were programmed on a DEC vax 11/
730 minicomputer. The inversion of matrices involved was carried out using
a LU decomposition technique {16] via an IMSL subroutine IBQTI1C, our numerical
procedure being implemented in double precision arithmetic. The Q matrices,
themselves, were camputed using a two-dimensional Gauss-legendre quadrature
scheme [17], although for special cases of boundary profiles these matrices
can be evaluated in closed forms. Convergence of the solution was checked by
ensuring that the scattered field coefficients converged to within 0.5%. An

, additional check was also provided by (22) which had to be satisfied to be

within 20.005 of unity.

The general theory presented in the previous section holds for both S?
and S® surfaces having periodic boundary profiles. However, here we consider T ]
surfaces described by xa(xz,xl) = f(xz) + f(xl), f(x) = h cos(2mx/L); for S3,
f(xz) is set to zero. The boundary conditions prevailing on the surface can
be either Dirichlet or Neumann.

Consider, first, Fig.l where we have plotted the scattered for j--.jljﬂ

a S?, and have campared our calculations with those of Holford [5). As is T
clear from this figure, the improved T-matrix scheme is applicable for much :-:-.::-I
higher values of the parameter h/L than the Rayleigh limit of 0.072. DY
RN

-------
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Fig. 1. Reflected mode power P comguted using the presented i’i
approach for a sinusoiflal s ,when a planewave is incident o
at 6, = 15°, ¢, = 0°; KL = 47, Ref. 5 are the IE results. oo
(a) Dirichlet b.c., (b) Neumann b.c. ; :
Similarly, in Table I we consider a doubly sinusoidal S® surface, for which ol
case scattering is observed in 9 separate directions. Again, note that h/L s
= 0.15, which is roughly three times higher than Goodman's conjecture of
0.0504 for the Rayleigh limit. In these calculations, as in others made by us, A
we have been careful to tolerate only a 0.5% error in the check for the conser- Yy
vation of energy, and this seems to serve adequately as a check on the conver- L
gence of the scattered field coefficients as well. Reciprocity of the scatter- L
ing solution has also been confirmed as is shown by comparing the data in <
Table I. Scattering of a normally incident planewave from s%; gZQ
h = 0.426, L = 2.84, k = 3.5. Each entry represent -
P__ of (21). : SR
Pq PRI
o =
+P, +q Dirichlet b.c. Neumann b.c. D
: »
< 4
. 0.11534 0.52718 ey
'0} 0.03792 0.04348 ]
o,1 ;1
. 0.18407 0.07574 .i B
E 1.0033 1.0041 N
.
.— A <
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Tables II and III. First, from Table II we see that the scattered power in
the direction 6 = 62.2461°, ¢ = 0° is 0.13240 for the case S and 0.21042
for the case H, when a planewave is incident normally on S3. Next, in
Table III, the exciting planewave is incident at 0 = 62.2461°, ¢ = 0°.

For this latter excitation, the scattered power in the normal dlrection
was camputed to be 0.13231 for the Dirichlet b.c. and 0.21063 for the Neu-
mann b.c., thus demonstrating the satisfaction of the reciprocity constraints.

Table 1I. Same as Table I except h = 0.284, L = 2 84,

and k = 2.5,
ip, #q Case S Case H
0,0 0.47167 0.15755
3'2} 0.13240 0.21042
»
E 1.0012 0.9992

Table III. Same as Table II except the incident wave is
incident from 60 = 62.2461°, ¢° = 0°,

P, 4 Case S Case H - :ﬁj}
0,0 0.83265 0.43256 nL
-1,0 0.13231 0.21063 o
-1,%1 0.01476 0.11957 o]
-2,0 0.00818 0.11768 ' X
E 1.0027 1.0000 ]

3

As has been seen in the preceding sections, a periodic surface scatters
“an incident planewave in discrete well-defined directions. Same of these o
directions, for which Y is real, have scattered planewaves which go upto Coon

= o, Others, for th.ch, qu is imaginary, represent evanescent planewaves.
In the far zone, the reflection coefficients a;q can be measured for the

propagating planewaves; hence the reflected field can be obtained fram measure-
ments as

A NON-UNIQUENESS CF THE INVERSE SHAPE PROBLEM R {3}}3
mee)
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ws(xs,xl) =z apO exp{ikr cos(ep—e)}; kx  large (23)

" where we have cons:.dered, for the sake of brevity, only the 2-D problem;
ep = arctan(ap,ypo); 0= arctan(xi, xa); and r is the radial distance fram the

origin to the field point. The summation holds only for the propagating plane-
waves. However, in most situations, the scattering surface is finite of total

B. Hence, if the surface Sé were to be illuminated by a finite-aperture
field

w"(_:g = {exp(ik,.x), x € S?, -B/2 < x < B/2 _
0 , xe8?% |x|>B/2 (24)
then, for a sufficiently usual case when the Rayleigh-Wood ancmalies are
absent, the scattered field has been given by Jordan and Lang [7] to be
¥ (x) = kB (2nke) ™% expli (ke-m/4)] I a;o sinc(kB(sind ~sind)/2]. (25)
P
For (25) to hold, kB must be large; and only the propagating plane waves need
be accounted for.

Consider, next, a flat surface of the same expanse B which is illuminat-
ed also by the field (24). This flat surface has a periodic reflectivity
profile p of period L, the reflectivity function being dependent on the fre-
quency. The scattered field field can be easily set down as

WHx . x) I ax! p(x!)exp (ikx!sind )+
ik + (x —x!) };’1 2+ (x =xD)?) % (26)

where 90 = arcsin(ao) Because of the perlodlc nature of P thlS can be red-
uced to

p(x) = g Py exp(m;mc/L) AL (27a)
Plx ,x)= Zop L exp (-ik2Lsind ) dx' {x® + (x —x'+2L)2}_;i°
3 1 P P 2==N 0 1 3 1 1 }
-kL "
-exp(:ich; sj.nep)e:q:[ik{x: + (S{l—x;ﬂL)z}%], (27b) ;
and which, by approximating,
b+ (x - 40217 = [+ (x L) 217 - ]
- x! (x ML) [x3+ (x1+9,L)21"”. (27¢) ]
further reduces to
N
W'(x ,x) = Zop. L exp(-ikeLsin® )exp ik{x?+ (x +2L)2};’ r-;s- .
ER p P g=-N 0 3 1 ;:;ﬂ

*sinc{ (k1,/2) (sinep- (xl+R.L) [x§+ (xl+9.L) 2 ]-!5) } (28)
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with sinc(z) = sin(z)/z, and the ratio B/L = 2N+l is considered integral. The
factor vr is introduced since the measurements are made in the far zone.
Furthermore, by realizing that x = xatane, and on focussing our attention on

the arqument of the sinc fmct-_ion, we observe that this function reduces to
sinc{ (kL/2) (sinep—sine) }, (29a)
while the second exponential in (28) becames

expl ik4L(sind - sind )]. (29b)

Since these two are Fresnel-type approximations, £ must not assume high
enough values so as to render them invalid. Therefore, the somewhat restrictive
assumptions that the ratio B/L 5 10 while NL << x1 are necessary. However, the

product kB can be arbitrarily large. In effect, thus, this is also a high -
frequency analysis. -
Noting, however, that
N

I  exp(iff) = sinc[ (Wk)E] (24+1) /sinc (%) (30)
=N
further simplifies (28) to . e
Vixx) = (29D =) 2L 5 o (k) - o
« I pp S.'i.nc{kB(Sinep-sine)/Z} (31)

after some manipulation of the various sinc functions involved.

Formally, the scattered field y! is indistinguishable fram yg of (25). D
Furthermore, the Fourier components pp of the reflectivity p may be obtained

through a least-squares estimation procedure applied to repeated measurements
of the scattered field for different angles of incidence. Thus, experimental
measurements of the far scattered field for the purpose of determining the o
surface profile can lead to two different interpretations: oo

(a) the surface is periodically undulating, and
(b) the surface is flat with a periodic reflectivity profile.

. A et ot
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CONCLUSIONS

We have described a scalar T-matrix formalism which is applicable for
highly corrugated periodic surfaces and have shown that the solutions obtain- S
ed obey unitarity as well as reciprocity constraints. We have also shown s
that the measurement of the scattered field (which exists only in discrete PRV
well-defined directions) can give rise to two different interpretations of e
the nature of the scattering surface. Further work on extending the presented N
approach for bimaterial interfaces as well as for elastic scattering problems

is in progress.
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