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SECTION I

INTRODUCTION

A space based radar (SBR) that vmust search for and track targets

moving close to the earth's surface must be designed to discriminate be- k

t1ween these targets and radar clutter caused by the undesired signal

returned from the earth, For targets that are very close to the earth,

clutter and target returns can appear at the same range in the radar re-

cei ver. If this condition occurs, an MTI or a pulse doppler radar may be

used to discriminate on the basis of doppler measurements. However, since

the clutter return usually exceeds the target return by many orders of

inagni tude, care imust be taken during the coherent processing to avoid ef -

fects such as aliasing and spectral leikage. Thus an accurate simulation

of a space hased radar mrust include an accujrate model of land and sea

clutter in order to evaluate the performance of different coherent proces-

sing techniques.

The purpose of this report is to descrihe a clutter model inten-

,led for implementation in a pulse doppler tracking radar simulation. A

standard approach to clutter modeling (e.g. Reference 1) involves division

of the ground area illuminated by the radar antenna into a number of

cells. A discrete scatterer of known cross section, amplitude, doppler

frequency and location is assigned to each cell to represent all returns

froin a differential area elpment. Theseý discrete scatterers or clutter

targets then er'ttr a receiver simulation in thp same way as returns from

any other target. (e.g. an aircraft). Advantages Of this approach are that

it is straightforward to implement and that it can be made increasingly

accujrate by Using a greater number of cells. Unfortunately, because of

thp large area ililuininated hy an SBR, the large doppler extent, and the

3.,5
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resolution required, an unacceptably high number of clutter targets would %

be required.

Here a second approach has been adopted. This technique con-

sists of modeling the clutter as a random process with mean power, mean

doppler, and doppler spread determined from experimental measurements and

from physical and geometrical quantities pertinent to the radar location,

look angle, beam pattern, etc. The above three quantities are used to de-

fine the clutter spectrum observed at a given radar range gate, and a sta-

tistical signal generation technique is employed to generate a realization

or sample function of the instantaneous clutter signal observed. This

method permits simple interpretation of results and reduces simulation

running time since only one target requires processing. The accuracy can

be increased with the level of detail of the analytic clutter model.

"5:2:
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SECTION 2 - .. ..

MODELING APPROACH

The goal of this work is to provide a clutter model appropriate

to a high resolution pulse doppler SBR. It is desired that the model -

provide realizations or sample functions of the clutter video; that is,
the model should provide the clutter voltage and phase as a function of

range gate for all the pulses of a coherent pulse train. It is convenietit
* to separate the clutter signal returned through the main beam of tie .0

antenna from that returned through the antenna sidelobes. The footprint
". on the earth's surface defined by the 3 dB contour of the two-way antenna

pattern defines the area that contributes to the main beam signal; the
remaining area contributes to the sidelobe signal. Of course the

illuminated areas are further limited by range gating, and ambiguous range
"returns must be accounted for. These effects are discussed in Section 4.

Because of the fortunate statistics of the clutter signal

observed by the radar, it is possible to utilize a simple Fourier
transform technique to generate realizations of the clutter video signal

"observed at a range gate. Given an analytical or numerical description of
the mean clutter spectrum, in this technique a realization or sample

function of the clutter voltage is obtained by taking the discrete Fourier
transform of a specified random sequence. The necessary mathematics and

justification of this method are fully described in the Appendix. An

essential assumption is that the quadrature components of the clutter

"voltage are uncorrelated Gaussian variates.

In order to simplify the sea clutter model developed herein,
it is assumed that the clutter power spectruL is well represented as a ".

7-.. * "*,* ;Q .'..-?:-:*--";*?> .



Gaussian in frequency whose power and spectral spread may be computed on

the basis of the SBR-earth geometry with consideration of the illumination '

and receiving pattern of the SBR antenna.

The clutter return has been found to be uncorrelated from one ....

burst waveform to another when the RF carrier frequency is changed by at

least the reciprical of the pulse width 2. Since the normal mode of opera-

tion of an SBR is to change radar frequency between pulse trains, this de-

correlation property is retained here in the generation of the clutter for

successive pulse trins.

In practice, the mean clutter spectrum is obtained in the simu-

lation at the start of each dwell or coherent pulse train. It is assumed

that the geometry does not change during the coherent integration time

(dwell duration) so that the clutter spectrum is constant during this

period. For each dwell a sequence of numbers is drawn from a random num-

her generator and a realization of the clutter signal is generated as

described in the Appendix. Succeeding dwells are assumed to utilize a

different radar frequency and thus require a new sequence of random num-

bers to generate independent clutter signals. Thus, for each coherent

pulse train, the clutter signal at a particular range bin is determined

using a statistical signal generation technique.

The above discussion applies to clutter observed through the an-

- tenna main beam as well as to clutter that enters the receiver through the

"antenna sidelobes. In the case of sidelobe clutter, it will he shown that

a flat power spectrum is appropriate and only the clutter power is re-

quired. In addition, simpler signal generation techniques are feasible

that do not require Fourier tranforms.

Our discussion thus far has focused on modeling the signal in

a single range bin. When range tracking is performed, the signals in

8
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several adjacent bins must be modeled and it is important to include the

effect of bin-to-bin correlation. For sea clutter, experimental data

reported over a wide ranqe of pulse widths and carrier frequencies demon-

strates that the clutter returns decorrelate over a range displacement of

about one pulse length, when the range is measured in units of delay .

This is understood by realizing that since many independent scatterers Y. .

contribute to sea clutter returns, the correlation for two returns separ--

ated in ranQe is approximately equal to the fraction of illuminated ground

area which is shared by the returns. For rectangular pulses with low

sidelobes, the correlation is triangular and qoes to zero at a range

displacement equal to a pulse length. Thus the sea clutter returns will

be uncorrelated for ranqe bins separated by more than a (compressed) pulse

length.

In general, the effects of ambient refraction are unimportant

for the clutter model descrihed here. Even for low altitude orbits the

path lenqth over which refraction occ,,rs comprises a verY small fraction

of the total satellite to earth path. Thus, the fractional change in

radar ranqe is very small and will not siqnificantly impact calculation of

the illuminated areas or the radar range equation. The largest effect is

an increase of clutter reflectivities that occurs with increasing grazing %

angle. This effect is important only for qrizing angles less than a few

deqrees; fortunately this range is outside that currently under considera-

tion for SRR operation. If SBR operation it very small grizinq angles is O

to he included here, the calculation of grazing angles must be modified to

include deviations caused by refraction.

Sianal doopler effects are deoendent on the earth's surface

rotational vlocitv and this has been included in our formulation. First ,

for the sake of simplicity, we treat the doppler effects under the assumo-

tion of a non-rotatinq earth. later, the approach is extended to the case

_of a rotating earth. In this regard the radar look anqles are measured

relative to the satellite's velo.city vector which lies in the horizontal

9
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plane as shown it) Figure 1. In conformance with the later discussion

which includes the effects of rotation of the earth and of vertical

satellite motion, the elevation angle (EL) is negative for a downward

I looking line-of-sight (LOS).

A pulse doppler radar is able to mitigate the effects of clutter

by separating target and clutter in the doppler* frequency doinain through

p the use of a large number of coherent pulses repeated in ti1ne at a high

*pulse repetition frequency (PRF). An inct t:-;, ir, te PRF gives an

*increase in the total doppler bandwidth surveyed. in increiase in the

* ~number of pulses increases the power as well as5 the doppler resolution.

- Pulse amplitude weightinq on receive is utilized to suppress doppler side-LOl
*lobes associated with the coherent processinql. The effect of a particular

clutter target depends upon the radar velocit~y, wavelength and the angle

* of the clutter from the antenna bores igF-t. Since returns from clutter are

wiighted by the antenna pattern, impro~enlent in clutter rejectiojn can be

*obtained by narrowing the antenna beali. This technique not only realizes

* less overall clutter power but also decreases the spectral spread of the

*clutter contribution by selectively removing ret.irns fr,-n high of f-axis

angles.

A quadratic phase shift applied on a pulse-to-pulse basis ran be

implemented in order to mitiqate the spredd in the main bearn Clutter

signal due to ambiquous range returns (Reference 2). Quadratic phase

shift processing (QPSP) is discussed in detail in Section 4. Improvement

in cbiutter rejection can be larqe arnd depends upon the SSR look angle and

the relative importance of platformi inotion on the clutter spectral width.

Another technique for reducinq platform -notion calised diippler

* sprei'J which is not invest iqated here is the use of displaced phase cent~er

ancennaý (Skolnik, Reference A. iKnopp and flcina, R~eference 5).0

10
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A, Illuminated area of
the compressed pulse.

Mainheam footprint

Figure 1. Clutter calculation geomietry.



SECTION 3

SEA CLUTTER REFLECTIVITY MODEL

Sea clutter is the radar echo received as a result of reflec-

* tions from the sea's surface. The effective radar cross section (RCS) of

m the sea echo may be predicted by taking the product of the sea reflectivi-

" ty and the area that contributes to the echo strength. Sea clutter re-

flectivity is usually reported in terms of the parameter oo, the mean

radar cross section per unit area of illuminated surface. Thus, a value
of 0o = -30 dB corresponds to an average reflectivity of 1U- 3 . co is a

-- function of grazing angle (defined as the angle between the tangent to the

surface and the radar LflS), polarization, frequency, and sea state.

U Because of the wide range of SBR look angles of interest, a ma-
del of 00 over the range of grazing angles from a few degrees up to normal

incidence is required. Data at high grazing angle is necessary to esti-
, :, * ..

- mate the sidelobe altitude return, although the SBR main beam would be

. overwhelmed by clutter at grazing angles greater than 50 or 60 degrees.

* The model we have determined for ao is shown in Figure 2 as a function of

. grazinq angle at L-band (1.5 GHz). Two curves are shcwn, the high wind

* (fHW) and low wind (LW) models, with the difference in the two representing

the effect of heavy and light seas. respectively. The equations for this

model are

00 7.0,10"6 ,V"° + 0.841 exp J-(I/2-ý) 2 /.0247"1 HW (1)

"co 3.6, 10-+@2" 2 2.810 exp i-(?/2-l)2/.0149}; LW (2)

"where ' is the grazing angle in radians. The first terms in the ahovw are

Sthe high wind, low wind models of Tomlinson6 Pvaluated at L-hand. WP have

"12
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10.0 .

0.0 NW = High Wind LW
LW = Low Wind

NW

-10.0

-. 3-0.0

-40.

50.

b-.30.0

- .0

*(degrees)

Figure 2. Mo~deled sea reflectivity vs. grazing angle and wind
conditions at 1-band. (Froum Tomlinson Reference 6
and Long Reference 7.)
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SECTION 4

MAIN BEAN CLUTTER MODEL *.~

Implementation of the method outlined above requires calculation

of the mean power and doppler spectrum of the clutter signal. Temporarily

neglecting the effect of range ambiguities, the illuminated area depicted

in Figure I is defined in azimuth by the beamwmidth and in elevation by the

smaller of the elevation beaniwidth or pulse length. These angular

variations cause a doppler spread in the clutter signal through coupling

to the SBR platform motion in the doppler equation

2v
f = Scos(EL) cos(AZ) (3)

AfZ cov5 L sin(AZ) MAZ (4) ..

AZ

2v
*f ~EL = -~sin (EL) cos(AZ) AFL .(5)

Equation 3 gives the mean doppler frequency as a function of the antenna

geometry. Equations 4 and 5 give the 3dB spectral widths in azimuth and

elevation, respectively. In the above equations

AAZ -3 dB two-way azimuth beamwidth (AZ3)7
vsVsatellite velocity

and

A JL minimum (EL 1 ,CT tan(4')/2R) (6)

15



where

EL3 = 3 dB two-way elevation beamwidth

c =speed of light

c compressed pulse length

R = slant range

Because of the high satellite velocities, the coupling between -

beamwidth and platform motion is usually the most important effect in

determining doppler bandwidth. Since the antenna gain inay be approximated

by a Gaussian dependence, the azimuth and elevation doppler spreads are

also Gaussian and their variances may be summed to yield a net spectral

spread due to beamwidth effects

0+2 2 2 (7)
B AZ EL
UI

where the standard deviations are related to the 3 dB spectral widths by

A= . 4 2 Az (8) A

0 . 4  AfEL . (9)

Internal or wave motion of the sea also broadens the doppler

spectrum. Many measurements of sea clutter have yielded a Gaussian spec---_

trum whose spread is related to the internal velocity spectral width of

spa clutter, a as

~ (10)

' This author is not aware of a good data hase to predict values of o
V

r that ar? applicable to the large illuminated areas viewed by an SBR.

Existing measurements of the mear( doppler shift and spectral spread util-

ize the smaller resolution cells of airborne and ground based radars.

16
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Figures 3 and 4 show data for the spread, a and mean shifts respectively

as a function of sea state. Typical high wind values for the spread and

mean velocities are seen to be about I m/sec and 3 m/sec, respectively.

Roughly speaking. for an SBR the mean shifts will be converted to a spec-

trum spread through the integration of a large number of smaller sized

cells. Thus we can estimate an internal velocity spread of 3 or 4 m/sec

for sea clutter viewed by an SBR. These numbers are consistent with the

value of 5 m/sec suggested by Tomlinson6. The accuracy of this estimate

will be improved as SBR measurement data becomes available.

Combining the effects of platform motion and Internal motion

yields a net doppler variance given by rj

2 2 2 (1"
,f I

We now consider the effects of ambiguous range returns. Figure

5a depicts the illuminated arpas associated with the ambiguous range

roturns for a particular range bin. Doppler spectra are associated with

the signal power returned from each one of these ambiguous clutter returns

as discusspd ahove. The signal voltage for this range bin is the sum of

tho signal voltages from the ambiguous returns. In the following we will

refer to this simply as the sum voltage and to its doppler spectrum as the

sum spectrum. Rather than generate statistical signal samples represent-

ing each ambiguous return and perform this sum directly, here we analyti-

cally compute the sum spectrum so that only the sum voltage requires '"
statistical sampling on a pulse-to-pulse hasis.

Riturning again to thp individual spectra of the ambiguous

returns, we note that. hecause of the dependence of elevation angle on

range and also thp dpperdencp of doppler frequency on Plevation angle, the

,,ean doppler or center frequency of thpse spectra will vary over the

17
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Figure 3. Variation of spectral spread for coherently detected
sea clutter signals. (Data from Hicks et al.,
Kovaly et al., Currey, and Pidgeon, References 8-12).
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Figure 5a. Main beam footprint showing the illuminated areas.
of amtbiguous range returns.

Ranqe

k k'I

Figures 5b. Doppler spectra of the ambiguous returns with
quadradic phase shift processing.
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ambiguous returns. There exists a signal processing technique, QPSP, that

can eliminate this doopler shift between ambiguous range returns. An

explanation of how QPSP can be implemented will be given at the end of
this section. For now we assumne that QPSP can mitigate the doppler shifts

ihetween ambiguous returns as stated1, anid continue to investigate the

properties of the suni signal.

Without QPSP the doppler spectral width of the sun signal due to

ambiguous returns is determnined by the antenna elevation beamn-width, since

the center frequencies of the ambiguous returns vary with elevation

angleJ. Since the individual spectra are independent, the net power is the
sum of the individual powers of all the ambiguous returns.

With optiiijn i:nplementation of QPSP, the spectra of the ambigu-
ous returns have identical center frequjencies as shown in Figure 5b. For

this case the net power is still the suto of the individual powers, but the

doppler spread of the strii siqrldl is the same as that computed for one

ambiguous return. This may be seen in the following.

The autocorrelation of the voltaqe from the k'th ambiguouisr
return may he expressed as

R 01~) =Pk R' 0 12

~k(t) xk'(t+[Y(1)

where
Pk=:ni po)wer of the k'tn return

Akzvoltige of the k'tri return.

rhlis fjriiuij'in is an explicit staL,?1qent thit. the sha3pe of thie individual

spe~ctrca are id,,nticil ind hencel the shape of the aujto.corr-flation functions

21 -
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are also identical since the antenna azimuth beamwidth is approximately
constant over the antenna main lobe. The Pk's are not all equal since
they depend on the antenna elevation gain which varies with ambiguous
ranqe. The autocorrelation of the sun siqnal from the combined ambiq'ious
returns is then

RE( = < ( xk(t))(E X,(t, )> (14)
k k '

: <E xk(t) xk (t+t)> (15)
k

since the ambiguous returns are independent. Making use of Equations 12
and 13, the autocorrelation of the sum voltaqe with QPSP may be expressed
as

R T() = R(T) Z Pk (16)

Since the shape of the autocorrelation function qiven by Equation 16 is
the same as that of the individual autocorrelation function, the shape of
the sum spectrum will be the same as that of the individual spectrum.
Therefore our inodelinq assumption is verified.

We now list the alqorithms and equations needed to imolement
the above formulation.

4.1 MAIN BEAM CLUTTER POWER IN THE M'TH RANGE BIN

In this subsection an expression is given For the clutter
contribution to the power received in the in'th ranqe bin From all clutter
sources within the footprint of the main beam. Several prerequisite
calculations are first performed.

22



The range to the center of the main beam footprint is given by ..

R (r 0+h) si n(EL 0) - (r 0+h)
2 sin2(EL 0)-(2h+i) 17

where

r. earth's radius

h satellite altitude

EL0  elevation angle of the LOS

The grazing angle at the footprint center is

T sin-I h~ (1+h/2r0 ) -Rc (1-
~Rc 2rfl

and the change in range over the elevation beaiiwidth is

AR ?R Isin(?Y) sin(FL 3/2) 1 / cks(FL 3)- COS (24')} (10)
EL r

The minimum and mnaximumrq anges to the footprint are

R ziRn AR 1L2  (20)

max RC+ REL!?(1

* The unambiguous range interval is

a c/(2*PRF) (22)

where PRF is the pulse repetition frequency. The ncxnber of range bins in

an unamnbiguous range interval is then

M Q (23)0

23
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where Ar is the range bin size a~id is determined by the radar video

sampling rate. The range bin index for ranae Rmin is

3mmi TNT I(MOD[R,. RIJ)M/R 1 (24)

where MOD(x,y) is equal to the remainder of the division x/y, and INT(x)

* is equal to the largest integer whose mnagnitude does not exceed x.

* ~The minimum~s range contributing to the 'n'th range bin

R R. + rn-rn. M a)r (25)

R =R + (M'+i-n-rn )r; in < m (26)
mo ini ini min

We can now determine if the range bin of interest (ie. the

bin wit~i bin index mn) is illuminated by the mnain bea~n. I f e.m' is

qredter than the inain b~eanj does not return any :]utter in binl
n umTbor -n. If I~, is less than or equal to Rmax there will be one or

More amhiguoius returns in bin m.If the numxber of ambiguous range returns

i' , mall1, t his me--thod does not transition smoothly with respect to bins

just inside ind outside the beam footprint. If deired, the transiti~on

iniy be made :norr- accurate by considering the fraction of the transmitted

pulse which overlaps thie footprint.

The number of contributing ambhiguous range returns is

INT- ARF/R) (27)

Th-? r ange, grazing angle, and elevaticrm anqle2 to the k'th ambiguous area

that contribut;es to the i'n th rangeý bin are given by

24



~'rnk -/ -- (29

h~(1 h R rnk •OW

ELk = s n- 2r h +h h2  + R ink 2(30)EL sin- :-a -- (30)
mk2 ?Rrk (r~ + h)

The illuminated area for the k'th ambiguous ranqe and m'th range bin is S4
given by

Rik EL 3Rmk
A rk R EL 3 AZ 3 csc(Ik) • tan ( rk) > (31)4 c T 12

c

FLOTC EL 3R,nk 2-1."
Ak Rk AZ3 -- sec( IF,) ; tan (-k) < (32)

2 c 'r/2.

where i C time djration of the received compressed pulse.

The fnean RCS for this area is

RCS 0 1(• " (33) et.-

*where co is l~valuated usinq Equation 1 or 2. The mean power for the m'th

"ranqe bin is then qiven by the sun of the power fromn the contributing

' 8dreas

p t t G., FL - F.Lo) R /R 4 (34)"
rn-- (4i1 3tc ink "n" mk

• . ,4 -. 7-

whero Pt transmirt ted p')w,?r"' ~t
' nt f nn, n -way p) ;qer qi in.

t di iration of th;, tr-ns:ni..t id nulse.
t
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We wish to remark at this time that the above algorithms are

valid in a statistical sense only. While we have decided deterministical-

ly whether a particular range bin is illuminated by the main beam, we have

neglected to account for certain effects such as atmospheric refraction

which would cause an offset in range bin position relative to the main

beam footprint. In support of this approach, we note that one range bin

has no greater importance than any other as far as radar trarking perfor-

mance is concerned; we are concerned only with the statistical effect on

any one bin.

4.2 MAIN BEAM DOPPLER CENTER FREQUENCY
(neglecting the earth's rotation)

Without implementation of QPSP, the mean doppler frequency of

the main beam clutter spectrum for the in'th range bin is given by

2Vf cos(ELm) cos(AZo) (35)

fm

where

I K-1 . . .

EL - EL (36)Em K k=O-''""

7 .is the average elevation angle of the ambiguous returns for the m'th range

bin. Equation 36 gives the elevation angle as the average over the 1

returns from the K ambiguous ground areas that arrive simultaneously to

contribute to the m'th range bin.

With QPSP the mean frequency of the ambiguous returns depends

upon the pulse to which the inverse phase processing is matched. For

modeling purposes the exa't value is not important and as a convention we-

let .

2vs
fm cos',ELmO] cos 'A7 o (37)
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4.3 MAIN BEAM DOPPLER SPREAD
(neglecting the earth's rotation)

The doppler standard deviation due to internal motion is given L
by Equation 10 with av nominally 4 rn/sec.

Doppler standard deviations due to platform motion are given by

.84v

~A =cos (EL) sin(AZ )AZ3  (38)

a .84L sin(EL 0  cos(AZ 0  AEL (39)

where

AEL Maximum ( K mlEL KEL ii T Ctan(41)/2R) (40)

without QPSP, and

aAEL =Minimum (EL3, cr tan (*,)2R) (41)

with QPSP.

The net variance of the spectrum is obtained by summing the

variances due to platform motion and to internal motion (Equations 7 and

4.4 DOPPLER EFFECTS INCLUDING THE EARTH'S ROTATION

Referring to Figures 6a and 6b, it is assumed that the SBR

D. location is given in geocentric coordinates by

27
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01 SBR longitude (i < 1 1)
and that the azimuth, elevation angles of the SBR LOS are given in the x,

y, z tangent plane coordinate system by

S AZ: LOS azimuth
EL LOS elevation (negative when looking down)

The tangent-plane coordinate system is a cartesian coordinate

system with x directed to the east, y to the north, and z vertically.

We must first find the geocentric coordinates (a2,;2) of the LOS

intersection with the earth's surface.

The location of the intersection in the x', yin, z' cartesian

coordinate system is given by

X2 IR sin(;,) sin(EL) -R tan(o1) cos(EL) sin(AZ)

- R cos(c 1 ) cos(EL) cos(AZ) + (h+r-) sin(-°i

/{cos(ol) 1 sin(ol) tan(OI)l (42)

y2'= R cos(EL) sin(AZ)/cos(oj) + tan(al) X2  (43)

for oi ,/I or I'l>3,/4 (case a) and by

Y2' = R sin(41) sin(EL) + R cot(Oi) cos(EL) sin(AZ)

-R cosi.41) cos(EL) cos(AZ) + (h+rc)' sin'4 1J11

X2j= R cos(EL) sin(AZ',/sin',O1) + cotV'31 LY2, (45)
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for w/4 < 1611 < 31/4 (case b) where R is the slant range found

through Equation 17 and

Z2' r 0
2 

- (x 2 ' ) . (Y2' )212 (46)

The geocentric coordinates of the intersection point ((2,42) are

then

02 = tan- 1(y 2 '/x 2' 1 (47)

c2 Cos- (Z 2 '/r 0 ) (48)

4.5 MAIN BEAM DOPPLER CENTER FREQUENCY

The doppler frequency of a point on the earth's surface is ,.'.'
,..-.>:-.':

2 , (49)

where . . .
vs satellite velocity vector

v earth's surface rotational velocity

R unit vector along the LOS.

The satellite velocity vector in the x, y, z coordinate system is assumed

to be known and is given by

- x + V S 7 s (50)

R is found to be

P sin(AZ) c.,)s(FL)x + cos(AZ) cos(EL)x + sin(EL)z . ( 1).
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In the geocentric coordinate system

va w ro sin(C 2)0 (52)

where we is the earth's radian frequency of rotation.

By transforming 7e to the x, y, z coordinate system th-- dot product in

Equation 49 may be evaluated to obtain

2
f (v -wr0 sin (42) COS(e 2-01)) sin(AZ) cos(EL)

+ ("syw ero sin(;2) COS(r-1) sin(e 2-@1)) cos(AZ) cos(EL)

+ (v +w ro s ln(ý.) sin(cl) sin(e2-01)) sin(EL)1

(53)

4.6 MAIN BEAM DOPPER SPREAD

Doppler spread due to beamwidth effects mnay be found by taking

the deriative of Equation 49 with respect to AZ arid EL.

~A 42 V'fm/~AZI AZ3  (54)

0E 42 3fm/aEL1 'EL (55)

where AEL is given by Equation 40, without QPSP or by 41 if QPSP is

implemented.

Referring to Equations 53 and 42 through 48, fm depends ~ -

implicitly on AZ, EL through 02 as well as explicitly. Expressing

fm in the form

2~~

f JA sin(AZ) cos(EL) + B cos(AZ) cos(EL) + C sin(ELfl (5b)
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where

A = v sx- w ero sin(ý 2) COS(02-01) (57)

= y v sin (ý2) cos( cl)s in (e2-el) (58)

C v z+ w ero Sin(; 2) sinLý,) sin(e2-0,) (59)

The doppler spread due to azimuth bearnwidth is

.84 A3 IA cos(AZ) ccs(EL) -B sin(AZ) cos(EL) + sin(AZ) cos(EL)

'AZ

W i~r rcii cos((0C(261 -2. 1  + w o in(EL) sn6-1
euZ L aA

Co[ ( AZ) cos( EL) r n 01 Csi(e, 2-) Co(;) i(221 4

+ WR E '-A s in(AZ) CS(Cl(E) CO )-01 2] +o( sin(EL) +Ccs LAlA

a42

+ weru sinj sin(41' 362~2 -csA) o(L

'ý2 COS(32-6)(0

-aAZ6



iwero cos(ý 2) cos(4 1) sin(6 2-7 2 8-...
2EL

+,eOsin({ 2 ) cos(¢ 1 ) cos(8 2-01 )@_ +__nEL_-.---;__":
+ W ro ___2 26) "- + sin(EL)

aEL

r0 cos(r,2 ) sin(;,) sin(e 2..d) aC2
XEL

+ w er sin(; 2 ) sin({1 ) cos(e 2- 1 ) (61)

The partial derivatives of 82, ;2 may be found from Equations 47 and 48

aY' Y2 x'

61 aAZ aAZ (.2)

aAZ 1 + (y2 '/x 2 '2 X 2' 2' )26

and similarly for
aEL

X 'I aX2 + Y26 aX2 '
_2__ aAZ 3AZ (63)

3AZ r 0 z 2 ' .- (z 2 !r 0 )2

andI similarly for ý42
3EL

The remaining chore is to solve for the p,•rtial derivatives of

*X 2', Y2' using Fqiqu3tions 4? throuqh 46. FirSt W, obtainj the derivatives

with respect ti azimuth. For case a we have ...- ,.

' ... a .--.
S2 _-q t~an(-3 ) cns(El_) os(AZ) + R ros l COS(FI.) Sin(AZ) .

aAz 1.

, t7O ts i 4 1tin 6 (64)
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aY 2' 3X 2

~Y' R cos(EL) cos(AZ)/cos(el) + tane, (65)
3AZ 3AZ

and for case b

{R cot (el) cos(EL) cos(AZ) + R cos (cl) cos(EL) sin(AZ) I
3AZ

SI~sin(ei) + cos(e 1) cot(OIfl (66)

2 =-Rcos(EL) cos(AZ)/sin (01) + cot(0)a~ (67)
3AZ ZAZ

*For the derivative with respect to elevation we first need

-R = - r~)cos(EL) -r~h) sin(EL) cos(EL)

//7r)2 sin (EL) -(2roh+h) . (68)

The elevation derivatives are then given for case a by

-p=jcos(ej) + sin (e1) tanej-
aEL

* sir,(4 1) sin(E-L) - tan(e,) cos(EL) sin(AZ)

-Cos (41) cos(EL) cos(AZ) I+ R [sin (41) cos(EL)

+ tan(ej) sirt(FL) sin(AZ) +cos (~)sin(EL) cos(Az)1

(69)

Y2 sec.(9i).{R/3FL. cos(FL) sin(AZ) -R sin(FL) sin(AZ)}

(70)
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and for case b by2.

2 Isin(61 ) + cos(el) cot(el)}-'9
ZEL

JA sin(ý,) sin(EL) + cot (el) cos(EL) sin(AZ)

- cos(Cl) cos(EL) cos(AZ) I + R [sin (cj) cos(EL)

- cot (e inE) i .4..A7' + cos (c si n )c CsIIAZ)JI

(71)

=csc (ej)Jý 'R.. cos(EL) i(Z+Rsn(LsnA)

3EL 3 EL snA) ~snA)
(72)

In sumnmary, these algorithmns may be used to find the doppler

spreads by first calculating 3R/EL and then the partial derivatives of
x2 ' and y2' with respect to AZ and EL. With these quantities the partial

derivatives of 68., ý2 with respect to AZ, EL may be computed and then used
* to solve for the doppler spread through Equations 54 and 55.

Practically speaking, it i s probably computationally less

j burdensome to solve for the doppler spreads by differencing Equation 53

over the beamwidths, although this approach does require solving for the

* four earth intersection points which define the mainbeam footprint. Before

choosing either method, the accuracy and computational efficiency of each

jshould be compared. For low altitude orbits the simpler equations derivedC

without inclusion of the earth's rotational effects are approximnately

* correct and may be utilized.
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4.7 QUADRATIC PHASE SHIFT PROCESSING (QPSP)

The purpose of QPSP is to reduce the dopp-ier spread of the main

beam clutter spectrum by compensating for the shift in doppler center

frequencies of the ambiguous range returns. Modeling the doppler spread

with or without QPSP was discussed earlier in this section. We now

describe the basis for the siqnal processing involved in QPSP.

In this technique the phase is shifted quadratically in one

direction as a function of pulse number on transmit, and in the opposite

direction on receive. We assume that a phase cnift -nodulation
Ep 2  (73)

1; imolemented on a pulse-to-pulse basis within a sequence of transmitted

pulses where p is pulse number. On receive, the range-gated signal may

contain main beani clutter power returned from one or more of the trans-

mitted pulses. When there is more than one contributing pulse, these

multiple and simultaneously received pulses are called ambiguous range

returns. We use the index k once again to designate the ambiguous range

number, with k increasing with increasing ranqe, and choose a time

reference such that the sampling time when the p'th pulse is the zeroth

ambiguous return is pT. As an example, in Figure 7 we show the relation

of pulse number to ambiguous range index and sampling time for the case

that there are five contributing ambiguous returns. Then the phase on the

k'th ambiguous return at tinme pT is given by
,* ;. -_..

1 tk(pT,k) = F(p-k) 2  (74)

We assume that a quadratic phase sh if t of the oppos ite s ign i s ap~pl ied on

receive

• (pT k) -- (p-Apl,2 (75)
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where the offset Ap reflects the fact that the inverse phase shift %

processing in general may not be matched to that of the transmitted phase

modulation.

The net phase modulation on the k'th ambiguous return at time pl

is then

*n(pTk) c (k 2 -Ap+2pAp-2pk) (76) P

.
net

and the doppler shift of the k'th ambiguous return is then

1 dnt(pY,k)
,Af(k) c- - Ap/iTT - ck/T. (77)

"2n dpT

QPSP is seen to impose a frequency shift that varies linearly with ambigu-

ous range index.

The doopler shift of the k'th ambiguuus return due to the eleva-

tion angle difference is given by

2v
AEL (k) = .W sln(EL0 ) cos(AZo) AEL(k) (78)

where

AEL(k) - R k tan(' 0o)/R (79)
a c

For ease of interpretation we have used the expression for 6fEL neglecting

= the earth's rotational effects. For the frequency shift from ;)rocessing

. to cancel that due to ambiguous range we require

AlfEL(k) = -ck/rT (80)
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since the first term in Equation 77 is a frequency offset which is

constant with respect to ambiguous range. Using Equations 78 and 79 to ,

solve Equation 77 for e we obtain

c= -2nv R T sin(ELO) cos(AZO) tan(oý)/XRc (81)
s a c

If we had used the expression for AfEL that accounted for the

earth's rotational effects in the above derivation, e would still have

been calculable in the same manner.

In summary, QPSP has been shown to be an effective technique for

mitigating the doppler shift of ambiguous returns. This has the desirable e

result of increasing the clutter free doppler bandwidth available to a .-.

pulse doppler radar. When applied in an optimum sense it requires imple-

mentation as a function of look angle. --

39

~-0. V

..... ..... ~ ** ..... ..... ....

.... .... .... .... .... .... .... .... ....



~. "p. -

SECTION 5

SIDELOBE CLUTTER MODEL

This section is devoted to the calculation of the clutter power

spectrum that is caused by returns from outside the main beam footprint. lo..

Because of an SBR's large field of view, the clutter signal received

through the antenna sidelobes will contain multiple ambiguous range

returns. The illuminated area for the sidelobe return in a given range

bin is a series of annular rings corresponding to the pulse length limited

areas of the ambiguous returns. Mean power of the sidelobe return may be

taken to be the same for all range bins, since the ambiguous returns for

different bins will sample essentially the same areal portion of the

earth's surface.

To calculate the mean power we must sun the power contributions

from the ambiquous returns. It is desirable to estimate the range at

which the power returned becomes negligible so that the number of

ambiquous returns to be summed may be reduced accordingly. The power per

ambiguous return falls off at least as fast as the reflectivity function '.

00. By referrinq to Figure 3 we see that for both the HW and LW models

oo has decreased by more than 20 dB from its peak value at a grazing angle

of 50 degrees. The range at which this occurs is given by

r50 = "rosin(50") + /To2sin2(50°) + (2r 0h+h 2) (82)50. 0

Thus, we need only consider returns for ranges less than R•O. As an Ex-

ample, for a low altitude (1400nm) orbit and a PRF less than 10 KHz, fewer

than 17 ambiguous returns are important for calculation of the required._°°__

power.
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The doppler spectrum of the sidelobe clutter return is not amen-

able to simple analytic treatment. For the special case of low altitude

%.. .I*%

orbits of primary concern here, the clutter spectral bandwidth will be ,2%.- 2

shown to be wider than the PRF. In addition, the sidelobe clutter may be 9 .

treated as being uncorrelated on a pulse-to-pulse basis.

The doppler spectral bandwidth is dominated by the coupling

between platform motion and the antenna beamwidth. Since the sidelobe -. xr.-

gain -nay be assumed to be omnidirectional, the beamwidth of interest is

defined by the angular section of the earth's surface contributing to the

sidelobe return as viewed by the SBR. Referring to Figure 8, the doppler

shifts of a return from a grazing angle 4 are given by .• -

J fs( = 2 vsr 0 cos( )IX(r0j+h) (83)

&fe(*) = 2 ve cos(4)/X (84)

where Afs(,ý) and Afe(F) are the shifts due to satellite and earth motion,

resoectively. The SBR orbit is assumed to be circular. These are the

shirts when the satellite and earth's surface velocity vectors lire

coplanar with the LOS and the nadir point so that they are the maximum

shifts for a given grazing angle.

Relying once again on consideration of the sea reflectivity as a

function of grazing angle, it is seen that the principle contribution to .

the sidelobe return results fromn grazing angles of 80 degrees and

larger. Ussing the doppler shifts for a grazing angle of 30 degrees to

estimate the spectral width, the minimnjn spectral width occurs when the

satellite and earth notion shifts subtract and is given by

ni = IAfs(80°) - 6fe(80°)t (85)

rk1
Fiqure q shows the doppler shifts predicted by Equations 83 and 84 for a

-. J..-..>

41

St.. . ... . .... . ...... .... ... .-. .



SBR

Iv

100S.

SBR bS...

.42



20..

N41

0- Af (800)aS

mi n

0f(8

0.10000. 20000. 30000. 40000.

ORBIT ALTITUDE (KILOMETERS)

Figure 9. Sidelobe clutter doppler shifts.

43



o . .

grazing angle of 80 degrees as a function of orbit altitude. Also shown on

the figure is the one sided spectral width ain" We note that the two
m.i

sided spectral width is greater than 10 KHz for orbit altitudes less then

-5,000 kilometers (-2,700 nm). Since we are primarily interested in this

range of orbits and for PRFs equal to about 10 KHz and smaller, the

sidelobe return may be modeled as a flat spectrum, similar to additive

white noise.

5.1 SIDELOBE CLUTTER POWER IN THE NITH RANGE BIN

The number of ambiguous range returns considered is

KSL= INTi(R5- h)/Ra1 (86)

where R50 is obtained through Equation 82.

The range, qrazinq angle, and illuminated area of the k'th

ambiguous return are given by

R = h + (k-i) R (87)
k a ~),'" Jv = s In- h I! h Rk •" " "".. .

• :. sin- + __ - - I(88).: -.-..
k 2r0  2r0 "

Ak = II c Rk (89),'"C k'" """

The mean power of the k'th return is

" t 2 G CkT )
t = . t 0 k

64P (90)
kk

i ~ ~64 Al Rk"''

where G is the average two-way antenna sidelobe gain.

The mean power in any range bin is then given by

KSII

, PK (91)-K 0.
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APPENDIX

A STATISTICAL SIGNAL GEWLRATION TECHNIQUE
FOR REALIZING THE SAILE CLUTTER VOLTAGE

(0. L. Knepp)

In this appendix, a numerical technique is described to generate

realizations or sample functions of the video clutter voltage received by a

pulse doppler SBR. The goal of this tech~nique is to generate the two quad-

rature components of the clutter siqnal as received at a sinqle range gate

for all the pulses of a coherent pulse train or coherent dwell. It will be

shown that this technique requi-es knowledge of the mean clutter spectrum

and depends upon the observation that the clutter voltage has a Gaussian

probability distribution with uncorrelated quadrature coxr~ponents. An iden-

tical statistical signal technique is used by Kneppi to generate realiza-

tions of the phase for a multiple phase screen propagation simulation.

Asstrne that there are N pulses oer coherent pulse train separ-

ated in time by the quantity T so that the pulse repetition frequency (PRF)

is l/T. As will be shown, the clutter voltage c(nT), is generated from

initial knowledge of its mean power spectrum. In continuous notation, the

clutter voltage may be written as the Fourier transform

c(t) - C(w)e itddw (A-1)

1. "Multiple Phase-Screen Calculation of the Temporal Behavior of Stochas-
tic Waves," Proc. IEFE, Vol. 71, No. 6, o~p. 722-737, June 1983.
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In the discrete* case, Equation A-I is written as -

N-1 .-.. '
C NnT) C(m i2'mann/N Aw n=O,...,N-l (A-2)

Now if the Fourier transform of the clutter spectrum was available, a

clutter voltage realization could be easily generated by using Equation

A-2. For the moment let us choose as the Fourier transform the quantity

C(mbw) rmjC(mAw)NT/2r] 1 / 2  (A-3)

where C(mAw) represents discrete values of the known desired mean clutter

power spectrum. In the following it is proven that this choice is

correct. Here Aw = 2w/NT, NT is the time durdtion of the dwell, and

therefore TAw = 2u/N. r is a complex number given as the sum of two inde-

pendent Gaussian random variables with zero mean and variances of unity.
I'. •. --

rm = vT7 (q m + ig 2 (A-4)

Successive values of gim and g2m may be obtained numerically by sampling

from a pseudo-random sequence of numbers with a Gaussian distribution. The

factor of 1112 is included so that

rnr = mn (A-5)

whero 6mn is the Kroneker delta function. It is apparent that with the

above choice for rm, c(nT) is the sum of a sequence of Gaussian variates

-~~; - -- ----- ---

* In this appendix all discrete sums are taken over a range of the index
from 0 to N-i.
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and thus its real and imaginary parts (i.e.. its quadrature components)

both have a Gaussian or normal probability distribution.

In order to prove the validity of the choice of Equation A-3 to

give a realization of the clutter video voltage it is convenient to

calculate the discrete autocorrelation function. Under the ergodic

hypothesis, ensemble averages or expectations of random fields may be

replaced by spatial averages. Thus the clutter autocorrelation function

may be written

NT
NTf c(t+r,)c*(t)dt (A-6)

In the discrete case of interest here

BR(kT) = c(nT+kT)c*(nT)T (A-7)

Now the Fourier transform of c and c* given by combining Equations A-? and

A-3 may be used in Equation A-7 to chtain

f3 (kT) =K (NT/2't) [C(MAu,)C*(M'AWIp /
c NT n m mn

x mm i2rm(n~k)/N e-i2nin'n/N AU2T (A-3)

Now

~i2nmn/N - i2rnm'n/N =N 1 (A-9)
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So that Equation A-8 becomes

.7

"Bc(kT) = Z C(mAw)ei2 kIN Irm (A-l0)N. m 1ru._.+

' A comparison of the above equation to the continuous relationship between

power spectrum and autocorrelation function as given by

Bc(t) C(w)e idw (A-il)

"shows that the power spectrum of the numerically generated clutter voltage

is C(maw)Irml 2 . It is apparent that different values of the index m corre-

spond to different radian frequency components of the power spectrum.

Since IrmV is the sum of the squares of two Gaussian variates, each of the

Fourier components of the power spectrum of an individual clutter realiza-

tion is a chi-squared variate with two degrees of freedom and a mean value

of C(mAw). Thus for any qiven clutter realization, the power spectrum will

' not, in general, be identical to the desired spectrum. However, the aver-

age power spectrun of many such clutter voltage realizationis may be ob- E"7

tained by taking the expected value of Equation A-I0. Since <IrmI 2> 1

?2 nimk IN
AVG[Bc(kT) : C(m)e i / (A-12)

- which may be compared to Equation A-lI. Therefore the average spectrum

obtained from many clutter voltaqe realizations is the desired power

spectrum, C(mw), and Equition A-3 iF correct.
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