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ACOUSTIC SCATTERING CROSS-SECTIONS FOR

TRULY COMPOSITE WIND-WAVE SURFACES:
SCATTERING WITHOUT BUBBLES*

by

David Middleton**

1. Introduction

The study of scattering from random rough surfaces and in particu-

lar here, acoustic scattering from moving random, wind-generated wave

surfacesis a venerable subject [1-[41, [6], [7]-[13], which is of

continuing interest and importance. This is true scientifically, be-
cause of both analytical and physical problems. The former center

around methods of approximation needed for explicit theoretical results;

the latter in choosing physical models appropriate to the wave-surface

in question. Scattering from such surfaces is also of critical concern

in applications, where reverberation is often a controlling factor,

including under-ice, ocean surface, bottom and similar active underwater

acoustic environments. Analogous problems and applications arise in the

scattering of electromagnetic waves from the atmosphere-ocean interface.

Here we are concerned primarily with determining the intensity of

underwater acoustic radiation scattered from random moving wave surfaces.

In particular, our first aim is to derive explicit relations for the

coherent and incoherent (acoustic) scattering cross-sections for such

* surfaces, by somewhat different procedures and assumptions from those

used in previous work. Both mono- and bi-static cross-sections are

included.

Our second goal is to construct a surface wave model which, when

applied to our cross-sectional results, has the potential for explaining

*Work supported under contracts with Naval Underwater Systems Center,

New London, Conn., 1983, Contract N00140-83-M-NA11 (1983), and in part

under Contracts N00140-83-C-KA23, and N00140-84-M-LZ39 (1983, 1984).

*Contractor, Physics and Applied Mathematics, 127 E. 91 St., New

York, NY 10128.
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2

the discrepancies between theory and experiment in the important regimes in-

volving backscattering at high frequencies and small grazing angles [1]-[4],

without recourse to a bubble mechanism [1]-[4].

Here the dominant scatter contribution is no longer provided by the

specular-point (or "facet") scatter [5], but by the small-scale surface com-

4ponents (e.g., Bragg scatter), which now strongly dominates the former, pro-

vided, of course, that there is an adequate small-scale component in the first

place. This second aim is stimulated by the fact that backscatter data ex-

hibiting the above discrepancies can occur without bubbles [6], [7]. It is

also encouraged by the additional observation that in most of the earlier re-

ported data [1], [3], [4] there appears to be no quantitative verification

of the presence (or absence) of near-surface bubble layers, sufficient to

account for the noted discrepancy. In addition, the empirical scatter data

vary with (input signal) frequency in a way not adequately predicted by ear-

lier theoretical models. Furthermore, comparisons of (above-surface) radar

and (below-surface) acoustic (backscatter) data [4] are not really convincing,

because they were obtained for different oceans (at different times), and with

unknown or inadequate "ground-truth": for example, without simultaneous deter-

mination of bubble densities below the surface and above-surface water droplet

populations, which latter can noticeably affect refraction and the scatter

. intensity.

In short, we consider it reasonable to state that, at the least, bubble

mechanisms are not necessarily the explanation of the aforementioned dis-

crepancies between theory and observation (particularly in the absence of

bubbles!). In fact, there is evidence for a wave surface mechanism which can

possibly account for the observed scatter levels (at high frequencies and

0 small grazing angles), within the generally available theoretical methods

employed earlier, and witi the generalizations employed here. The postulated

* * scattering mechanism (suggested by R. H. Mellen [14]) is the ensemble of soli-

ton-ripples [cf. Sec. 2.1 ff.]. These are generated by the near-surface wind

impinging on the (irregular) gravity-capillary wave surface, upon which ride

the soliton-ripples. (These solitons are found to be the limiting solution

of the Korteweg-de Vries equation and are discussed in some detail by Light-

hill [16], see also [47].) "Solitons," here "hydraulic jumps," are, among
other things, characterized by the fact that they preserve their shape and

speed [16]; [47]; Sec. Il1. Preliminary investigations [17]-[21] suggest

that these hydraulic jumps not only embody the non-linear mechanisms

.-'-
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whereby the wave surface itself can be generated by the wind, but

may also be sufficiently large to produce the observed scattering

levels. What we have here is a truly two-component surface: the soliton

ripples ride upon the gravity-capillary wave surface which is their

(quasi)-equilibrium result. Unlike the latter, these ripples* are non-

dispersive and essentially move down-wind locally, and travel with the same

velocity 0(0.4 m/sec, [15], [47]). For acoustic and electromagnetic analyses

* Nof two- (or more-) component surfaces, see [2], [4], [21]-[26], [29].

The usual difficulties with the theory arise in the inevitable

approximations: the Tangent-Plane or Kirchoff approach used for the

(moving) large-scale wave surface components [34], and perturbations

[1]-[3], [8]-[11], [29], or other modifications (as used by the author

here, cf. Sec. 7 ff.) for the small-scale surface elements. However,

the resulting discrepancies can be shown to be quite small 0(1-2.5 db)

vis-a-vis the uncorrected Kirchoff method ([4], for example). Diffraction

terms are usually neglected in the analysis, but can also be shown to be

negligible in most cases with respect to the principal, direct-scatter

contributions [cf. Sec. 3.3 ff.]. As we shall see in the text following,

the various current theoretical procedures yield analytical results which

are formally very similar. However, they can diverge numerically because

of different choices of the physical scatter mechanism: capillary waves

do not provide sufficient cross-section, for instance, to account for

the high-frequency, low-grazing angle discrepancies in (backscatter)

cross sections, which have been observed empirically. Their (Bragg-

scatter) contributions are 0(10-20 db) too small. Thus, we shall con-

clude that the observed difficulties stem not from fundamental inade-

Aquacies of theory and approximation thereto, but rather from the selection

*- of a suitable physical model. As noted above, our proposed solution

is the soliton-ripple mechanism for the principal Bragg scatter contri-

butions, without the intervention of a bubble mechanism.

Our analytical innovations here are: (1) the use of a physically

independent scatter surface (the solution-ripples) riding on the gravity-

capillary wave surface which in turn is generated by the energy trans-

ferred nonlinearly via these ripples [14]-[12], with a non-vanishing

"tilt-factor"--produced by the large-scale surface--now determined by:

(2) the Kirchoff approximation applied to the development of the Bragg

*Often called "cat's paw" in the initial stages of wind-wave surface

excitation, [15].
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scatter terms (instead of a perturbational approach [4]). This removes

the restrictions of small rms heights and slopes required in the per-

turbation procedures when applied to the small-scale components, and

permits calculation of higher order Bragg-scatter terms if needed [24].

(3) We treat the gravity-capillary wave surface component as the single

surface it is, and use the approximate but justifiable technique of

splitting this surface into low- and high-frequency components. (The

associated "tilt-factor" here, however, vanishes with vanishing grazing

angle (eoT ' '/2.) An insightful justification of this procedure,

from a more general theoretical viewpoint, has been given recently by

Bahar, Barrick, and Fitzwalter [24], [25], in the analogous but more

complex situation of electromagnetic scattering from (simple, i.e.,

single component) wave surfaces. (4) We develop, and employ, a corre-

lation function and corresponding intensity wave number spectrum for the

soliton waves, obtaining estimates which indicate the potentiality of the

new mechanisms here.

This Report is organized as follows: Section 2 provides a de-

tailed analytical summary of the mono- and bi-static scattering cross

sections, for high and low frequencies (i.e., large and small Rayleigh

numbers), and includes comparisons with the results of Tolstoy and

-"- Clay [9], McDaniel and Gorman [4], Kur'yanov [21], [1], and Bahar et al.

[25). In Section 3 some preliminary numerical results are obtained,

based on the soliton wave model described in Sec. 2.1. Included also

are comparisons with backscatter from capillary waves and a short

account of the potential contributions from diffraction effects, which

*are seen to be negligible. Section 4 completes Part I with a concise

.4 review of the principal new results and some next steps in the experi-

mental and theoretical analysis of this class of scattering problems.

Part II consists of Sections 5-8, where the mathematical details of

O this study are developed;(see the Table of Contents).

Finally, we emphasize that bubble mechanisms can (and in some

instances, do) account for the observed larger (back-) scattering

cross sections observed at high frequencies and small grazing angles.

However, here we offer a competing mechanism, in the form of soliton

ripples [11J-[19]. Preliminary observations and the present analysis

vi.
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indicate that these ripples can potentially account for the observed

data when bubbles are absent [6], [7]. Further experimental results

are needed to establish this possibility conclusively, but already the

work of Roderick ([6], and Table 3.2 ff.) indicates encouraging

potential support for this mechanism.

Part I. Acoustic uScattering Cross Sections

2.ss Sections for Comp osite Wave Surfaces

As noted above (and subsequently in Sections 7, 8) the principal

aim of this initial study is to obtain analytic expressions for the

acoustic scattering cross sections of a truly two-component or composite

moving wave surface. This includes an initial numerical demonstration

that values comparable to those observed experimentally can be obtained

with the introduction of a suitable physical model, without having to

postulate a bubble-scattering mechanism [3], [4]. This is particularly

important in situations where no (or negligible) bubbles are found to
be present [6].

2.1 The New Wave-Surface Model: Surface Elevation

We postulate the following potential mechanism for the small-scale

scattering component of a typical wind-wave surface: ensembles of solitons,

or hydraulic jumps, produced, as shock waves, by the impact of the local wind

on the gravity-capillary wave structure. These solutions, which mathe-

matically are the limiting solution of the Korteweg-de Vries equation

for cnoidal waves ([16), pp. 465-467), travel in all directions on the

rough, large-scale surface, with constant speed. They travel on a thin

viscous layer and probably represent the principal (and nonlinear)

mechanism whereby wind energy is transferred to the overall wave sur-

face. On initially still surfaces they appear as the familiar "cats-paw"

effect and have rather many ripples in a typical "wave" packet. As the
surface builds a wave structure, with the transfer of energy from these

soliton trains progressively into the small (capillary and then gravity)

wave numbers, the wave surface becomes quite irregular and the soliton

packets lose their directionality and structure, becoming essentially

a collection of individual solitons traveling over the new rough gravity-

1



6

capillary surface. (See, for example the illustration in [26] opposite

the inside book title page.) Here we are concerned with the amplitudes

and durations of these solitons (as discussed in Sec. 3.1 ff.) from the

present viewpoint of acoustical scattering, rather than with their

*oceanographic implications for wave generation. (See Mellen [14], [15];

also [17], [20], and in particular, Lighthill [16); also, generally, [47].)

Unlike the soliton-ripple component, which is nondispersive, rides

upon, and is essentially independent of the underlying gravity-capillary

'wave surface, this latter (or "G"-surface) is a single, directional

surface, with a wave structure obeying the dispersion law ws =

[qK s + (ZI/Pw)K3]P, with Ks = 2i/s, where fs (= W"/2n) is the frequency
bof a typical fourier component of the (moving) G-wave surface [26)-[28J

and ' is the surface tension (force x distance) coefficient of water,

with Pw the water density. It is convenient to divide this wave surface

spectrally into a large-scale or "gravity-wave" component (g) and anL'.5-

essentially independent small-scale "capillary" component (c), at some

representative wave number, kD. This, of course, is a mathematical

device, since there is no abrupt transition between the gravity wave

number domain and the capillary domain. This surface is really a

single rough surface, where the "capillary" component consequently does

not ride upon the gravity component.

With the above in mind we can write for the wave surface elevation
2,r t) o"g t + c )

z&(r,t) = Eg(rlt) +cvt) + nGr,t) cS(r,t), r = ixX + y (2.1)
* . I ,I

where G ( g+c) denotes the single capillary-gravity wave surface and

S indicates the elevation of the soliton-ripples, which ride on i C

- zcf. Fig. 2.1. Here nG is the normal [at (Lt)] to the

G-surface, viz.,

.- "nG " 0 y~ +x y) }  = 2x - etc.),
-X- + - y G=g+c g' ax '

.. (2.2a)
with general ly

2 2- (.b
5x y Q - cx + yy (2.2b
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Fi. 2.1. Cross section of a moving wind-wave surface, showing soliton ripples

are small, cf. Eqs. (7.18)-(7.18a). Here g and c are, respectively,

the elevation of the "gravity" and "capillary" components, in our

artificial division of the single wave surface G The equilibrium

surface* is < > = 0.

The spectral division of the G-surface is formally indicated by the

(surface) wave-number-time (intensity) spectrum W( IT), here with T = 0.

WG(kIO) = Wg (kIO), 0 < II I , IkoI. (

SDI -(2.3)

The two components of WG have a common directional character, determined

by

WG -O) WG(fs)<ts[k/ 2 " - Ks(&)/2r]>a dfs, f s 0, (2.4a)

*Since the solitons, or hydraulic jumps, are one-sided [16), we

see that < > = <GhX<S>, <zS> > 0: the equilibrium surface is < > = 0.

For practical purposes, <CS> << <r>', so that we may regard <> -0

here, as we shall do henceforth.
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f fsD W (f s)<6 (_K ()I2f)>a dfs
g0 s = -

(2.4b)

+ f Wc(fs)< (v -Ks()/2f)>& dfs ,

sD

where =k/2i and K = Ks(fs)iw, in which w is the unit vector for
wave components of frequency fsp e.g., iw = x cos & +i sin , and

-x .2y sna n

obeys a probability density w1() & 0, w /2 < & < + 7/2;= 0

elsewhere;(there are no g,c-waves against the mean wind in this model).
In fact, from D, Sec. 7.3, we have explicitly

<6('- is ))>/ - 2 (/ .) (f -LgK + (Tw)K 3  ( )w(c-c), (2.5)

*4.P w

which when applied to (2.4b) gives the desired wave number intensity

spectrum of the G-surface, in terms of its two (artificially) desig-

nated components (g,c). The quantity WG(fs) is the point-, or direction-

less intensity spectrum of the G (=g+c) surface elevation G= g + c"

One choice for WG is the Pearson-Moskowitz spectrum (8]. (For a wave

number spectrum of the soliton ripples, see (3.6b) and Section 3.1B ff.)

2.2 Scattering Cross-Sections: Definitions

There is a number of variations on the concept and definitions of

scattering cross section.. It is therefore important to define the

term explicitly, so that the different definitions can be calibrated

with one another, as we shall need to do in order to effect comparisons
with both the analytic results of others and the corresponding measure-
ments (cf. Secs. 2.A,B and Sec. 3 ff.).

We begin with:

SE.
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A A. Incoherent Scattering Cross Sections, G(0)-- inc:

Here we define

0-) 1.(k=O) (scattering at receiver R) .R 2

inc Iincident(at surface) AREF '[(path loss) g ]

(2.6)

where inco h, Iincident are, respectively, the intensities of the scat-

tered and incident fields at the points indicated. The basic concept

of the scattering cross section (for surfaces) is to eliminate the

effects of source level and propagation, i.e., the effects of the

medium--which are handled separately--when computing energy loss, and

to focus on the effects of the random scattering surface itself. For

this reason path loss (absorption), beam pattern gains (gT' g)9' signal

levels, and source and receiver distances are removed, where possible,

as (2.6) indicates. To keep aYO dimensionless, a reference "illumina-inction" area, AREF, is employed, whose specific form is suggested by the

. composite beam pattern projection on the reference or equilibrium sur-

face<c>" 0: So. Figure 2.2 shows the relevant geometry.

'(r-t- 0 0

* 6.

__' _
( " 'o o

Fi.22. ()Bcct G r (i s

,'-,.(a) /(b) €oR

.. Fig. 2.2. (2a) gackscatter Geometry (far-field): Monostatic scattering

(R@T), vide Fig. 5.1; (b) Bistatic Scattering (R#T); "for-
ward" or oblique scattering geometry; vide Fig. 5.1.

5,,.
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'' The various factors in Eq. (2.6) are given by

(2.7a) (Oh (scat. at receiver) =() intensity of the (in-

coherent) scattered field at the

receiver (R), cf. Sec. 7.2 et seq.;

Sec. 8 ff.;

(2.7b) Iincident(at surface) = 0 (O)in /(4nRoT) 2 = intensity of the in-

cident field at OS' on the equilibrium

scattering surface So;

(2.7c) gT=gR 
= the aperture "gain" of the trans-

mitting and receiving systems, cf.

_(6.3), (6.7);

(2.7d) AREF = a reference area on the equi-

librium surface Sol cf. Fig. 2.2,

projected by the composite T and R

beam patterns. (See C ff.);

-2aw 2c T
(2.7e) "path loss" = e 0  c0 To = RoT + RoR; cf. Sec. 5.3, Eq.

1 (absorption) (5.18); wo (-2Tfo ) is the (angular)
frequency of the emitted signal; a is

an absorption coefficient; co = (mean)

wave front speed of sound in the

water medium;

(2.7f) RoR= distance of the receiver (origin) from 0S ,
Fig 2.2;

(2.7g) R = distance of the transmitter (origin) fromRoT 0,

Fig. 2.2;

(2.7h) (r,t) = (vector) wave surface elevation, cf.
(21),

km". •
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The definition (2.6) for the incoherent scattering cross section,

and those similar to it ([3-[53, [83, [93, [233-[253, [291, for example)

are formally independent of range (ROT, RoR). This is not an inherent
property of the definition, however; it is a direct consequence of the

far-field assumption, whereby the effective coherent scattering area is

sufficiently small vis-A-vis source and receiver distances (ROT, RoR)

and dimensions, cf. Sec. 5.5 and Eq. (5.31). It also depends on the

correlation distances (Z x' ) of the (components of the) random wave
surac. hu C(O) i y

surface. Thus, o1
On is implicitly a function of geometry, where care

must be taken in its use to ensure that the conditions governing the

derivation of Incoh (=M ) X>(O)), (2.7a), are obeyed

A complete definition of the incoherent scattering cross section

includes the effects of diffraction

^w

inco0 + L k(2.8)incoh incoh 'o
k= 1

where the y(k) k(0)co
incoh' k 1 , are formally given by (2.6), with ino h

replaced by the scattering intensitiesc(kl) = M(k) (0), cf. Secs.
incoh X-.X>

7.2C, 8.5 ff.
Preliminary estimates (Sec. 3.3 ff.) of the magnitude of the

leading diffraction component, a(1) (>> ;(k02)) indicate that it
incoh incoh '

is ordinarily considerably smaller than the components of the "classical"
term, o(0)

incoh' so that in this study we shall be able to neglect the

diffraction contributions.

*The factors 41T in (2.7a), (2.7b), and in (2.9), (2.10b) ff., etc.,

arise because of our definition of the green's function, (5.8), and

source function (5.3a) in the equations of propagation (here a Helmholtz

medium). Thus, our acoustic field is aM = a/4n, where a is derived from

a green's function source of the form -47r6(R-R')6(t-t'). However,

because of the particular form of the definition of Y(01" used here and

generally, the scaling of the field is immaterial, as is required in

any useful definition.
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B. Coherent Scattering Cross Sections, a
coh"

The coherent scattering cross section, oa0 is formally the samecoh'
as Oioh, (2.6), except that now the incident intensity (2.7b) becomes

Iincident(at the receiver)coh =4(R + oR (2.9)

which is the "mirror reflection" term. Thus, lincd-coh

(1/4)1incidincoh , cf. (2.7b). In addition, k= is replaced by

the coherent component MX(O), cf. Sec. 7.2B, Eq. (8.7). Since only

the "classical" or (k=O) component of the scattered field,contains a

potentially coherent contribution (excluding any direct field which may

be received under certain mutual geometries), the complete coherent

scatter cross section is now specifically
I0)(scattering at R) R 2

^(0) a Rpath loss x -  (
coh Iincid(at the receiver R) AREF ((2.1a)

or

R(0) = R2 47R( R R 2 M(O),o)

OR oR +RoT) <X> (2.10b)
coh (gTgR)2 AREF Ko(O)in - (path loss)

C. The Reference Area, AREF:

The reference area, AREF, appearing in the above definitions of the

scattering cross sections, (2.6), (2.10), while arbitrary, is dependent

on the beam pattern projections on So. From Section 6.5 IV, (6.56), our

choice of reference area is specifically

AREF = A1/2, A1 = 2T/ vAB(oT) (2.11)
,

where A1 is the projected area (on S of the combined gaussian-omni-

directional beam pattern used specifically in this study.
S

.~'. *5* ~~~*~d J\5 f 4 S : *~* q *%~ * % .
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2.3 "High-Frequency'Scattering Cross Sections:

By "high-frequency" we mean here large Rayleigh numbers, e.g.,
2Rg (k0ba 1, specifically for the large-scale gravity component

of the wave surface. Thus, we have for the elements of R

ko = 2 /X o = 27rfo/c o = wave number (rad.meter- ) of the (central)

frequency of the applied (narrow-band)

signal;

(2.12)

bo = cos 
6)oT + cos eoR; cf. Fig. (5.1) and Sec. 5.4 ff.;

. 2 -  , the mean-square (gravity-capillary) wave surface
-height, about <4G> = 0.

Accordingly, from the results of Sections 8.1, 8.3, 8.4 for the
,' scatter intensities

Sscae i t(O) , (0) applied directly to the scatter

cross sections as defined by (2.6), (2.10b), with the reference area
given here by (2.11), we get the following "high-frequency" forms:

2 21'/ (2aox)2 + (2a )2

2 2O + 2 2 ox o2y 2 oz e
(ri0 0 e 2 bo C(2YI + 2co

incoh Rg o 0 z/2  8nb2o y
'o .x 4y

+ 2 -*' 20 )inc Wc (2-oko x,y JG

k.kNo(o) (oI i WcS(okol 10)S NGS Y)inc 'XSy

(2.13)

4. , i -r r • lp = . . - - - - - - - -
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where we have used (8.6), (8.7), extended to (8.29), with =ix,y

(~x,coy), a two-dimensional vector in the reference (x,y-) or So-plane.

The terms in I IG represents the results of the "physical-optics" cum

"perturbational" approach, cf. Sec. 7.3 for the single gravity-capillary

wave surface, while the remaining term embodies thle contribution of the

soliton-ripples. [See (2.17)-(2.20) below for explicit descriptions

of the various elements in (2.13).]

Here, gS and g are respectively the "tilt factors" for the

capillary and soliton-ripple components of the wave surface.

Specifically, from (7.33) we have here (0oT = T/2)

(0) 2aoxx + 2cOy y 2Ooz ) 4

gS (g0 incoh

(2.14a)

• 4 4 2 2 2 4
S16 {aoy<CGy> + 6aoyaoz<Gy> +ioz }

2 = 2 -1

since n (1 + + Gy) =1 i- 1 for the accuracy needed
sicnz 4GX Gy0(02

here. Similarly, we get

N(0) =<(2c + 2aoyy -2 2 >G(2aoz ) 2

gc ()incoh ( x

(2.14b)
2 2 2 2 2 2 2

6 0 (cioyaGy +a 0 ) , a yz~>= 6oz~a G o) Gy -<Gy>

cf. (8.28a). For the gaussian gravity wave elevations assumed here,

we have < >= 3a. We note that the tilt-factor for the capillary

component, (2.14b), vanishes as eOT -P /2 (zero grazing angle), because

o is really part of a single surface: the capillary waves do not "ride"

on the gravity components, cf. (2.1) above. On the other hand, the

"tilt-factor" N(0 ) (2.14a), for the soliton-ripples is nonvanishing (as
0oT n/2), as expected, since these ripples, or hydraulic jumps, do ride

upon the gravity-capillary surface, cG* These "capillary" and ripple

components show up as Bragg (or resonant) scatter terms (~ wave number

%*.,. - - % ", "W "- "w ", 'W '=W 
' ' °

" - " w = - ' • . , , , • - ' -" ' '
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spectra at k= 2k o xy) ([1], [2), [21]-[23), etc.). These are first-

order scatter components, since ac' Y << 1, with small-scale spatial

correlations [24]. The specular-point term in (2.13) is independent

of frequency, generally, in this "physical-optics" limit.

Also, we have for all R > 0 in the coherent cases (8.7), (8.21),

b_ 2C -R2 aox /A + 2oy

2o o (2z2 - oKO G  0 x 0-*:"hi-fre"

(2.15)

2 22
where a2 >> c2  S2 since R >> 1 here: very rough surfaces destroy

g c g
coherence, as expected. [In addition, since A,B << 1, cf. (6.32),

the second exponential also ensures the vanishing of acoh , unless the

Snell angle (a = ay = 0) is chosen.] Note that this coherent-scatter

cross section depends on the area illuminated (via A1), as distinct

from the incoherent cases, (2.13), which are always area-independent,

subject, of course, to the conditions (2.20) ff.

In compact fashion, we can rewrite (2.13) as

^(0) =(0) R+ > (0) 1+ -(0) = (0) + 1(0)
incoh g-inc c-inc S-inc 0G-inc S-inc (2.16)

where the first two terms of (2.13) correspond to(0) , and the last," G-inc'

to that portion of the scattering cross section attributable to the

soliton-ripple component. Our results (2.13)-(2.16) hold for arbitrary

directions of illumination and observation.

The various elements of (2.10), (2.13) are specifically:

R2 = mean-square, mean, reflection coefficients (=I, for

water/air interfaces);
(2.17) 2 , $ =mean-square, mean, shadowing function, see Sec. 7.4C.

El I

.~ !
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y2 = 2 2 > (C etc.): mean-square slopes of

2the gravity-capillary wave component, cf. Sec. 7.4B;

U2 <aC>: mean-square height (about <y = 0) of the
(2.17) c c

"capillary" wave surface;

<: mean-square height of the soliton humps;
-.S

Wc = surface wave number intensity spectrum of c (cf. (2.3)) with

a2 (Ar,) f W(kjO ) cos(k*Ar) 2L cf. (8.25);G2c k D .

W = wave number spectrum of the soliton-ripple
S

S2~ = ik*Ar=Sw S  f Ks(ArI O)ei-- d(Lr)

and S = l2 = normalized spectrum;

A = Eq. (2.11);

! bo 0= cos eoT + cos eOR, (2.12).

The directional vector 22Lo is (cf. Sec. 5.5, Fig. 5.1)9

R-o -oT -oR (I + R- cos oT sin OoT

Y OR
,+i { ROT sn o sineOo -Lo/RoR +zbo
'-.y noR~)i% 0 o z

(2.18)

for arbitrary angles of illumination and observation.

Important special cases of (2.18) are:

(i). Backscatter (R@T): (L.= 0; eoR = OT;-1oR = - oT; RoR = oT;

hR= hT; OR =oT + 7/2; cf. Fig. 2.2).

O, ""*2a = 2(6- cos 0oT sin 6oT +Jy sin 4oT sin 0  + i cos e-0 x o o + o o -+-z °oT);

(2.18a)2 +2 + %z 2 /o r (2.18b)
(a ox +  oy z oz/2 2/cos oT.

4 %

..

;. *,#'
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(ii). Bistatic at the Snell Angle (R # T): L 0

""oR)x = (IoT)x when oT = '/2 = (coR- n/2);
^ Snell

-(R)y = 1oT)y when Lo= (ROT + RoR) sin eoT; (2.19a)

"(oRz = -(,oT)z when 0oR = OoT.

2ot o = 2iz cos eOT, or = cos eoT; (2.19b)

S2 2 2(ax + a C 2=y o

Otherwise, (2.18) is the general relation.

The principal assumptions and approximations pertaining to our

general high-frequency results(2.13), (2.15), are:

(1). Far-field (Fraunhofer) geometries, cf. Sec. 5.5;

(2). Narrow-band signals (so that we may treat time parametricilly

in the moving wave surface vis-6-vis the acoustic signal);

' . cf. remarks after Eq. (5.21b);
(3). Narrow beams (cf. Sec. 6.6); at least one narrow-beam;

(4). Neglects diffraction terms: k=1: "Diffuse" scatter; k2:

multiple scatter (cf. Sec. 3.3; also Sec. 8.5);

(5). Small Rayleigh numbers for the small-scale surfaces, CcS:~2

* (2.20) RcS (koboac,s) < 1;

(6). The capillary and soliton surfaces (;cgS) are "small-scale,"

e.g., cS << g: the correlation distance of the gravity-

. wave component is much larger than that of the capillary

and soliton waves;

(7). The small-scale surfaces are statistically independent of

the gravity wave surface component (vide remarks in Sec. 7.3A,

Eq. (7.19) et seq.);

(8). Both components of the wave surface are essentially homogeneous

and stationary, at least over the "illuminated" area and for

times long compared to the duration of the incident signal.
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[For a more detailed discussion, see Secs. 5.5, 6.6, and Sec. 7.]

A. Backscatter (R@T)

First, by (2.15) the coherent backscatter cross section 8
(0 )

• coh

vanishes for these high frequencies. On the other hand, the incoherent

backscatter cross section, 80 ), is clearly nonvanishing. It is
obtained

obtained at once from (2.18) in (2.13). On setting OoT = n/2, cf.

Fig. 2.2a, we have

2 2
-(tan eoT )/22

%, a(0) R 2 S2 e
i R@ = >> o 8[e cos6oT Gx Gy

4%4

k g
* + °16v N2(O(oT)inc Wc(O 2koSineoTIO) IG

(2.21)

+ k4 N(O)(eoT)incoS(O, 2kosineoTIO) J
+ o GS o~n3oI

18{(o) + amo }ea (2.21a)
g-nc + incG S-inc

The first term of (2.21), 8(0 )  is independent of frequency in this

high-frequency approximation, which is recognized as the "specular-

point," facet-, or geometrical acoustics solution form of the full-wave

approach of Bahar [23], [24], [30], [31] and Barrick et al. [5], [22], [24),

[25. The second term, nc embodies the (first-order) Bragg scatter

associated with the small-scale small Rayleigh number capillary wave sur-
face, while the third term, 8(0)

'S-inc' gives the Bragg scatterdue to the
soliton ripples. Whereas the specular-point contribution 8(u. is

g-inc
the dominant part of the cross section at moderate angles (eOT <60)

* it rapidly vanishes for small grazing angles (eoT -+ 1T/2), cf. Fig. 3a

-of [5) , leaving ac0 n and a0) of which only the latter remains
c-inc S-inc'

nonvanishing*as eOoT ' '/2, cf. (2.14). In fact, as we shall presently
(0)see (Sec. 3), for (eoT 700), where (O) 09 8(O) dominates c-n

or g-inc S-inc (0) c-inc
by 0(10 or more db). It is this latter component, a( nc, with which
O,-inc t

*Apart from the shadowing function ;, which 0 0, of course, as eoT-w/2.
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we are chiefly concerned here. Some preliminary numerical evaluations

and comparisons are given in Secs. 3.1, 3.2, following. In particular,

from (7.33) we easily find for the isotropic cases that (0oT = '/2)
S.T

N(O) 16 cos 2  (y=x) sin Cos 2  (2.22a)

Gc-back (oT g oT + oT)

and

N( ) c 16 (3 a sin 4  2 2 + cos 4 OT}

GS-back(yx) eo+ g(x=y) cos oT 2oT 4

(2.22b)

(For the more general, nonisotropic cases we must use (2.14a,b).)

B. Bistatic Scatter in the Snell Direction (ROT)

Here we use (2.19) in (2.13) [with the help of (8.14) alternatively

in (2.6)], since a = oy = O, = cos eoT, to get directly[k W(OO) o 4

2° 1 ccs oT W (0100
incoh ROT:Snell Ro S 8TOr 4O cos 4R >>-1 GxGuy co oT

g

k4

+ Cos 4 eOT (0,010)'
T 2 o 'sO S

(2.23)

At small grazing angles (eoT '/2) the facet term vanishes because of

shadowing and the Bragg scatter terms likewise go to zero, not only

because of shadowing but also because their "tilt-factors" vanish.

There is no coherent component, of course, since R >>1, cf. (2.15).
g

However, off the Snell angle, although the facet term vanishes

radpily (as eoT - n/2), cf. (2.15), the Bragg terms remain (eoT (850),

where shadowing becomes strong, and S2 - 0 as eoT - w/2, since
2 2 f 3.b

(xoy) 0 0. The quantity w(O,O 0) is proportional to Z SZ cf. (3.6b).
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2.4 "Low-Frequency" Acoustic Scatter Cross Sections

Here we apply the results of Sections 8.2, 8.4, especially Eq.

(8.9), where R-o2 " R2" 1 and 2 - 2  1 (for OT < 850), so that0 0
ARs - 0, (8.9a), for these cases of small Rayleigh numbers g,c,S < 1.

We obtain the following incoherent and coherent cross sections, from

(2.6), (2.10):

k 0r4 2I(01  b 42 22 Ix' 0)
. ~inc Rg~c,S<<I -T 1629ogg2 k~

-Oo-a(2.24)
.-.'=

where - <i2 >, and (2.14) gives the respective tilt-factors, N(0 ),
g g

cf. (7.32)-(7.33) for details. When gravity waves are present, the

contributions of the "capillary" component andthe soliton-ripples can

usually be neglected, so that (2.24) reduces to

4b4kO o kb o 2-
8M0) n 0012g (2ko 0). (2.24a)
incIR « <1 62 agwg (2OOxyj)

Other combinations of the various terms of (2.24) are possible, accord-

ing to the presence or absernce of the soliton ripples or the gravity-

capillary wave surface.

Here all components of the composite surface appear as Bragg (or

-..' resonance) scatter terms, as expected. However, at extreme grazing

angles S -+ 0, so that (2.24), (2.24a) vanish because of shadowing.

* At somewhat larger grazing angles (0 = 10*, say) the gravity-wave com-

ponent can be ignorable vis-a-vis the soliton-ripple contribution,
4 4because of the factor b0 (=(cos eOT + cos eOR)4 ) cf. Eq. (3.2c) ff.,

which in turn is considerably larger than the "capillary" contribution.

The latter can be important, however, if the local wind conditions are

.1.
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such that there are no ripples. As long as eoT (< 0(850)) we may expect
(2.24) to be nonvanishing, with S -1.

For the coherent scatter cross section we apply (8.7) to (2.10b)

to obtain

2 .-2 3k2  (2a_)2 (20oy

&(0) o e (RT + R°R) S R0 Al  a - [ x 48 2]B
coh "low freq" R2 42 oz

OT

Rg << 1.

(2.25)

Here again we are sufficiently in the far-field to set ITR = 0, cf. (2.20).From (6.11a), (6.12a), (6.17), we note that A 2ao 2 oR 2 o T
A z -( o T+co eR) co oT

generally. Since A,B <<1, cf. Sec. 6.3, Eq. (6.17), the exponential term

(2.25) ensures that a 0 ) is very smallo unless (ox oy 0)II ~~coh = o"

Accordingly, in special cases we have:

A. Backscatter

From (2.18) we have e0R = 66T; 06T = 7r/2 again, so that aox = 0,

a. = sin eoT, and RR = ROT, etc., with (6.18). Equation (2.24) reduces

directly to

" 2 [16 2 cos 4 e (0, 2k sin EO 10)incoh R@T R 0 -.r [ g oT Wg oT
"low-freq" 1

+ (0) (6 oT )  si n 6 oT 0)]
O+ N oT)incWc(,2ko

+ N((oT 2ws(0,2ko sin oTI 0)

(2.26)

4%,~

'""""''ii' %. ,,'' . ' //' - ,, . ;'4' ', , " -



22

where now the tilt-factors are given by (2.14a,b) and (7.32)-(7.33).
q- .'o

For the coherent component of backscatter, we see that, similarly,

(2.2 ) reduces to

-3k2 sin2 /B('
o(0) =iR2 = 1t( cos 2 eoTe
coh R S A (eoT)

"1ow-freq"

R 1,
g

(2.27)

which reduces still further with the help of (6.11) in (6.18), to

1coh Ro2 cos2 e Cos
.A T oT + s oT)  c oT

-3k 2 tan 2 6 /2A(a 2 Cos 2  b + 2 sin 2 6
* e o oT T oT + T oT)" (2.27a)

This in turn reveals the explicit dependence on BoT. In particular,

A = 2A /R 2  <<I, so that d(0) here is always small, unless o = 0T OT coh oT(vertical incidence), cf. Fig. 2.2a. Then (2.27), (2.27a) become*

I(0)' - A1  - -A Rg "1, (2.28)coh vert A 1(6oT _0)lrAaT
.oT=0

0S since S = 1 and L - 1: there is no shadowing at vertical incidence

and IROI " 1 for these water/air interfaces. Of course, for large

% Rayleigh numbers (R >1), (O0) - 0 according to (2.15) as expected:
'5' henthesuraceis coh

when the surface is rough, coherence is destroyed.

*For aT, bT9 see Eqs. (6.7), (6.11a), (6.12a); 0 < a T 4 1; 0 < bT < 1.

P.9

" . .g 4 f ,.4 *N.-*S * ,- ,S.
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B§. Bistatic Scatter in the Snell Direction

From (2.19) we have here eoR = eaT; eoT = /2 = foR-/2), with

a Ox =a = 0; a = cos eoT, Lo> 0. Thus, with the help of (6.19) we
see that (2.24) for the incoherent scatter cross section reduces directly

to

k4 CO 4

7 20 e0'a(0) "-S-LT 2_ {k 0gOOO Co W (OOO)}
a incohI Snell S 2 {agwg9(0o0O) + W0,0I0)}G

I"low-freq"

+ 0i s(0,0 0)]
'a'S

(2.29)

with the help of (2.14a,b). This is the "low-frequency" (R «1) ana-g
logue of (2.24) above, showing again the (first-order) Bragg scatter

contributions of both wave surface components, e.g., the gravity-

capillary surface (G) and the soliton-ripples(S),which ride upon it.
Here from (2.14), N(0) = N(0 ) = 16 a4 = 16 cos 4 e The normalized

Gc GS oy oT*
spectra, w, are seen to be proportional to the (mean-square) correlation
scales of the respective surfaces. Because of the small Rayleigh numbers

for the large-scale component (g), the tilt effects are negligible here.

As grazing incidence is approached (eT )T/2), 6'0 )h vanishes both

because of the cos 4 eoT factor and from the fact that S - 0, ultimately.

For the coherent scatter cross section in the Snell direction,

(2.25) now reduces to

R 0+ 2~(0) oT + RoR A 2
coh nell ROT 4 2

low-freq" ) 41e

2 2-2
R R(RoT + RoR) S cos OoT

I R2  + -2 4A 2 A o + b2 sin 2

OT ROR 4T AT6. o 2 oT T eT

(2.30)

w
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(*-2 " 1), R << 1, where we have used (6.19) again. Equation (2.30)
( 0  g

also vanishes as eoT ' '/2, as expected. In the special case where

RoR = RoT, (2.30) simplifies further to

(0) --2 R2  a+
coh Snell S oT cos e 2 2o b 2 s )

hI~wfrq 21T A oT(a TCos2  bT sin2  oT)
low-req T (2.31)

Rg << 1.

In the special case where 0oT = 0 we get the backscatter result (2.28).

2.5 Analytic Comparisons with Recent Results

Analytic comparisons with earlier work now provide us with various

checks on the accuracy and assumptions of the present analysis. In

addition, they indicate a variety of differences, which stem mainly

from our different choice of physical model, as well as a number of

technical differences in the analysis and some definitions. These

will become apparent as we continue:

A. Tolstoy and Clay [9)

We consider first incoherent backscatter. From Eq. (6.75) of [9],wherein <V,2>= G2 = k2 Cos e 2/2y2= ( a2 2 2

> x=y) ' Yback 0  coT ox oy c  o'
in our notation, with 'oT = '/2, here, so that aox = 0, aoy sin %T'
we see at once that oy 0oTotan 2 OT

o2R 2  e 2 G(y=x)

(back: OT+C,incRg> - Eq. (6.75 )IT+C = e Gyxoo4

I 8  ffGGy Gx cos oT

_tan 2 a OT) (2.32)

R e oT e s2  2
- R(e 2  T = 2G(x=y)'

which is just the first term of our more general result for truly two-
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component surfaces, (2.21) above, for the now isotropic (gravity) wave

surface at "high-frequencies."

Moreover, since our

2 9 2
a OX L OY oz _ 2f(e)T, Eqs. (6.23), (6.25), [9], (2.33)

oz /2 )T+C

we readily see that the Tolstoy and Clay result (6.74) [9] for general

bistatic (incoherent) scattering in the "high-frequency" regime

becomes

(bistatic): 8 ( 0 ) - Eq. (6.74) =S-T+Cinc Rg >>
tan2.-.. r$-4b° oT)

(a 2 + a2 +2 R2
ox o o (2.34)

a /2 2 22

2 0g(x=y)

which is, again, precisely the first term of our result (2.21). n the

earlier work the effects of shadowing are neglected, e.g., S = S - 1.

Similarly, for the "low-frequency" cases (Rg <<1) we have in our
tm ly-+ R//2, cf. (6.56), [9], so that (with R2 rein-.'-. 'terminology, rolT+C 0

serted in (2.24))we get

~~~~(0) fooo'

(bistatic): Eq. (6.58), [91 2 WC(0)16,
<-Rg - 1 (2.35)

e "  1 ,

This is once more just the first term of our more general result

=0" (2.24). (Here we have replaced 2f(e)T+C by bo  cos OoT cos eoR,

,P.;
.4..

-p..

, . -. . - . . .U . . W- ¢. . % ,v .. %% % %. - l-
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B

with y = b /2, since in these low-frequency cases we do not integrate

by parts (e.g., (7.27d), etc. vs. p. 198, [9]), employing essentially
the Eckart approximations g 2 =/n -2aoz, [32].)

The coherent scatter cross sections (with fT+C = bo/2 againAT~c =

A1 ) at all frequencies, e.g., Eq. (6.61) of Tolstoy and Clay [9] vs.

(2.15) above likewise agree, except in the directional exponential: our

result is

3k2R2
0ko 2 2 22 2 2e 2 (ox +  , -2y)  (coc y

vs. e 2 ox o T+C (2.36)

The discrepancy arises because no approximations are made in the

evaluation of our beam pattern integrals, cf. I(220), (6.38), (6.39),

whereas approximations are made in the former (T+C) evaluation.

In general, Tolstoy and Clay [9] also employ the familiar Tangent

Plane (Kirchoff) approximation in arriving at their results, as do we

here. Since they assume a single-scale wave surface, they, of course,

do not obtain the capillary and nonvanishing (as eoT 1 T/2) (ripple-)

components with decreasing grazing angle ( n = /2 -eOT), cf. the second

and third terms of (2.13) above.

B. McDaniel and Gorman [3], [4]

Using a two-scale surface model, McDaniel and Gorman [3], [4] omit

the specular-point contribution (viz., the first term of (2.21)) and

concentrate on the small-scale capillary wave component, which is

dominant at high-frequencies and small grazing angles in their model

(but not in ours). Their evaluation of the backscatter cross section

for this capillary term embodies a Kirchoff approximation for the

large-scale gravity wave surface component, and a perturbation tech-
nique [requiring small rms heights (a 2 <<I) and slopes (2x,y << 1

(c « cx
for the small-scale component. Moreover, they replace the "tilt-factor"

N(0 ) in (2.21) by an average over a local grazing angle (as suggested

by Bachmann [29)) which contains an estimate of the shadowing effects.

Their treatment postulates the capillary waves to be a separate wave

structure from the gravity wave component, on which the former con-

® e

DB
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sequently ride [so that if this were the case the appropriate "tilt-
()(0)factor" would have the form of NG(S=c) (2.14a), now, rather than N(0)G(Sc)' Gc

(2.14b)]. Our physical model [cf. Sec. 2.1] treats the so-called

"capillary" waves as part of the continuous gravity-capillary wave

surface regime, where the former evolves naturally into the latter via

the (nonlinear) mechanism of the soliton-ripples generated locally by

the near-surface wind.

Noting [cf. Sec. 7.3 and (2.2a,b)] that our tilt-factor N( ) is
derived from

<(A 2) 4 /n Gg+c - 16 <(A G" back)4G 16<(A -k)4>s  (2.37)

in the McDaniel-Gorman notation (cf. (25), [4] and from (16), [4]), and

that their wave number surface spectral density W(2 .)McD+G

(2T)-lWc(kIO)Mid , cf. (7.51), we find at once that, formally,

[3- term of (2.21) ;(0) - <(fi kk)4
S 

2k)MD+G
S-inc -- _-nG S 21L

(2.38)
-~<(ii 1 ) 4> WS(2k)DG- T S W(k)McD+G•

Here our actual ripple-surface (S) replaces the "capillary" component,

which in their model rides on the gravity-wave structure. [McDaniel and

Gorman, of course, use W c(2k)McD+G in place of WS(21kL)McD+ G , where
2c <2 , cf. Secs. 3.1, 3.2, and omit the soliton-ripples.]

Thus, our small-scale results (in (2.21)) reduce essentially (but

not exactly) to that of McDaniel and Gorman [3], [4] if we were to

replace our ripple-surface by a similarly generated, now independent,

capillary wave surface (S - c), and drop the "capillary" component in

(2.21), so that only the specular-point scatter term and the (S c)

small-scale terms remain. [Since high frequencies and small grazing

angles are primarily considered in their work, the specular-point

scatter contributions may be dropped as negligible vis-i-vis the other

components, cf. (3.1) ff.] The various analytic differences between

the two treatments arise from the following:
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(i). Our approach uses the Tangent Plane (Kirchoff) method on

the total surface, including the soliton ripples. This

leads to a "tilt-term" of the form (2.37) above, which,

however, reduces here to the simple result,4
~G Z>d

in all such cases, since nz = 0(1), cf. (2.2b), (2.14a),

etc.

(ii). Reference [4] also outlines a similar approach, employing

the Kirchoff method on the total surface, vide Appendix

A, [4]. Moreover, a tilt-factor of the form N( 0 ) (2.14b),• Gc '

is correctly obtained (however, with a factor k2 omitted
0* in Eq. (A14), [4], because of a corresponding omission in

going from Eq. (A1O) to (A12) in the analysis [4]). This

tilt factor, of course, is incapable of ensuring a non-

vanishing result (as OoT - n/2), as we have already

remarked above, (2.14b) et seq., and also the discussion

in Sec. 2.1. There is now no separate ripple-term, how-

ever, in the analysis [4), Appendix A. What was the

separate "capillary" wave surface has now been absorbed

properly into the gravity-capillary wave continuum. This

approach does not require small slopes, or small heights,

unlike the perturbation techniques [4], [33).

(iii). We perform the "tilt"-averaging directly on (2G" 2) 4

etc. (as does Kur'yanov [21], [33]), without the ad hoc

introduction of a local grazing angle, 0 1 which, more-

.4- over, does not account for the general anisotropy of the

wave surface slopes.
-- 4

(iv). In the present treatment the shadowing and reflection

coefficients are handled by the (approximate) methods of

Sec. 7.4k, based on Bass and Fuks [1] as indicated. (Un-

less we are dealing with angles larger than 850 (say 88),

the shadowing effects are all small and S = 2 ± 1.
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The really critical difference between our approach and that of

McDaniel and Gorman [3], [4] lies in the choice of physical model, since

there are no major differences resulting from the iarious analytic

methods employed. We choose a soliton-ripple mechanism, in addition

to the gravity-capillary wave surface, as explained in Sec. 2.1. They

employ only the latter, treating the "capillary" component as a sepa-

rate component riding on the gravity-wave structure, rather than as a

continuous, high-frequency part of this wave surface as a whole. They

explain observed discrepancies between experimental and theoretical

cross sections in terms of a near-surface bubble mechanism. This is

certainly a possible mechanism, but not necessarily the only one, par-

ticularly when (sufficient) bubbles are not present [6]. (See Secs.

1 and 4.1 ff.)

C. Kur'yanov [21], [33]

Kur'yanov employs a two-scale wave surface model, implicitly in

the form (2.13) (where we omit the "capillary" term). He uses the per-

turbation technique, which requires small (rms) wave heights and slopes.

For the contribution of the small-scale surface, whatever the physical

mechanism may be, he obtains a tilt-factor of the form (in our notation)

16 <(i )4/n> . 4/ 2

1 G . o-back"G -G o-back ) nzG-Mid

(2.39)

16 /n4 >2G -0-back z G

- cf. Eq. (33.22) of [1], again since nG = ixcGx + iyG - z' Cf.

(2.2b) here. This, in turn with the fact that Kur'yanov's and our

(normalized) wave number spectra are related by "(k J =O) k=U O)Mi d ,

reduces our result (the third term of (2.21) here) directly to the

form (2.38) above, with W(2 j.)McD+G replaced by 2To2 S(k10)K, or to

Eqs. (33.16), (33.22) of [1]. Thus, Kur'yanov's result and ours (2.21)

are essentially equivalent analytically, although different methods' (e.g., Kirchoff vs. perturbation) are used to achieve them. Of course,

physically, Kur'yanov says nothing about the specific soliton-ripple

. . .. .. . ..4 . .. . . . .". . .
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mechanism itself, nor does he consider the gravity-capillary wave sur-

face directly, and split it into two separate physical components, in

the calculation of the small-scale Bragg scatter component.

_. Barrick and Bahar [5], [22], [23], [25]. [30], [31]

A little later than Tolstoy and Clay [9], and by a different ap-

proach, Barrick [5] obtained the high-frequency or "optimal-limit"

contribution, namely the so-called "specular-point" scattering com-

ponent of the total scattering cross section This is theincoh*
first term of (2.13). Subsequently, by a more general approach,

Bahar [23], [30], [31] has shown that for the conditions assumed here

(cf. (2.20)), the two-component (gravity-capillary) portion of our

"--2 ("three-component") result (2.13) can be alternatively derived, and

* similarly for the third, independent component postulated here. In

these papers Bahar has considered the more general problem of

electromagnetic (EM) scattering from random rough surfaces.

If we associate formally Bahar's (and Barrick's) results for hori-

zontal polarization (HH) with our results for acoustic scattering, we

see that the various components of (2.13) are essentially identical, in

form, to the corresponding EM results, provided that we note that the

definitions of the scattering cross sections in the EM case contain a

factor 4t (sterradians), cf. (32) of [30] with (2.6), (2.10) here.

Moreover, the relationship between Bahar's and our surface wave number

spectra is n 2 W(tIO)B = W(kLjO)Mid, cf. (43) of [30], with (7.39),

(7.41) ff.
.As a specific example, let us consider again the case of back-

Sscatter, cf. (2.21). Thus, for weak shadowing (S2  I now) we have

from (2.13), omitting the additional soliton-ripple term,

. o o(oI
incoh back incoh back

-. Bahar-Barrick Mid

) )itan 2 o

e.s 1- ( )W( .0
. t T o Gc c( O)Bahar(240)

s s cs +oT '

.i



31

2

for isotropic gravity-capillary wave surfaces in which s2 = 2a2xy,

etc., cf. (2.32). With very small slopes the tilt factor in (2.40)

reduces to cos 4 eoT, so that the second term becomes precisely the

horizontal polarization component of Eqs. (47), (69) of [30], while

the first term of (2.40) is just Barrick's result (136), [5], or Eq.

(72) of [30], where oT = "/2, = (0, 2k0 sin 0oT).

With the alternative two-scale model in which the small-scale

component actually rides upon the large-scale surface, the tilt factor

has the form N(O) (2.14a), which is non-vanishing as eT + "/2. (The

counterpart of this in Bahar's results appear in his shadowing terms

1s(PQ=HH)>, cf. Section 4 of [23], and Eqs. (44c) et seq. therein.)

Thus, in general our approach yields results equivalent to the more

general (and less explicitly tractable) analysis of Bahar [23], [30],

based on a "full-wave" theory development, where now Tangent Plane

(i.e., Kirchoff) methods can be employed and the small-scale wave sur-

face components have small rms heights (but not necessarily small

slopes), as is the case of our model here. We remark, however, that

in the case of ocean wave-surfaces, Bahar et al. [25] use a single

(i.e., gravity-capillary) wave surface, which is then artificially

split into two components for analytic convenience (cf. [23], [24),

also). The small-scale component cannot then be considered as riding

upon the large-scale component, cf. our discussion in Sec. 2.1 above.

Finally, we remark that except for our and Tolstoy and Clay's [9]

analyses, and that of Clay and Medwin [11], which explicitly introduce

(gaussian) beam patterns, e.g., specific apertures (cf. Sec. 6 ff.),

the other treatments cited here assume uniform beam patterns over some

solid angle, vanishing outside this angle. [This is implicit in the

choice of reference area, AREF [(2.7d) and Sec. 2.2C], in the defini-

tion of the scattering cross section, d(0), cf. (2.6), (2.10).] Recon-

ciliation between these different choices of beam pattern is achieved

through (2.11), i.e., by appropriate choice of AREF in the definition

of 8(0 ).
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a. PreliMinary Numerical Results:
Ki Ii~ Frxealuenci-es and Small Grazing Angles

Since we are concerned in this study primarily with the possibility

* of obtaining reasonable agreement between theory and experiment without

* the intervention of scattering by bubbles, as explained above in Section 1,

we shall consider only the high-frequency, small grazing angle regime,

where the discrepancies between earlier theory and experiment are most

pronounced [1]-[4]. Moreover, it is sufficient to consider one typical

situation numerically in order to illustrate such discrepancies and

potential agreements.

Accordingly, we shall treat the following specific example: (inco-

herent) backscatter, with eoT = 800 (€ = 100 grazing angle) with 0oT =

7r/2, fo = 20 kHz, central signal frequency; average near-surface wind

* velocity v = 10 m/sec (A 20 knots), cf. Fig. 2.1a. Equation (2.21) is

the appropriate relation here for the (back-) scattering cross section

) Furthermore, in this example we may ignore the negligible con-incoh"
tribution of the specular-point (or facet) scattering term, to write

(2.21) as

82 r± + 00 N(eO)in Wc(usLko sin 10incoh R@T Ro2 S2 [: 0 +Gc o0 inc WoT
R 9<<i 67

+ -2 (eoT)in 2 (0,2k sin o
2~i GS o~n~ S 0 eoTIO)]

(3.1)

where the tilt-factors N(0) N(0 ) are given by Eqs. (2.14a,b); (the
Gc GS

unnormalized two-dimensional wave number spectra are Wc,S = ocsWcs ,

respectively). As noted above (Sec. 2.3) the (non-zero) initial term

6 of (3.1) provides the first-order Bragg-scatter contribution of the

high-frequency, or capillary portion of the underlying single wave sur-

face, while the last term gives the (Bragg-) scatter associated with the

essentially independent, omni-directional soliton ripples, or "hydraulic

jumps" [cf. Sec. 2.1), which ride upon the gravity-capillary wave surface.

Our task here is to evaluate (3.1) and compare the numerical results
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with surface models which do not include the soliton ripple mechanism

(cf. Sec. 2.5).

3.1 Backscatter with Soliton Ripples: Numerical Examples

In order to compare with currently listed experimental data [4] we

shall renormalize our wave number spectra via the relation W(klO)Mid =

2
TiW(kIO)McD+G , cf. (7.51b). In addition, for our specific *numerical

example we need the following:

A. Calculations: [fo =20 kHz; OT =800; v = 10 m/sec]

(1). ko0 -2= 2wfo/c° = (27r) 20. 103/(1.5)103 = 83.78 rad m 1

0 0

;" 4  (4.93)107 (rad m-1)4  (3.2a)

(2). *oT = "/2: e = 80 a;0 x 0; %y= sin eoT = 0.985, [cf. Eq. (2.21)]

(3.2b)

" 2  4
sin eoT = 0.985; sin 6oT = 0.970; sin 4 eoT = 0.941

cos aT 2 0.174; cos2 eoT = 3.02 -102; Cos
4 6T =  .9 10-4;(3.2c)

(3). From Cox and Munk [35), esp Eq. (6.76) of [9), we have for the

mean-square slopes:

,2 = (3.0 + 5.12v)10 3" = 5.42 •10 -2 ; (3.2d)
-~~ 

0g(x=y) I.

(4). From (2.14a) and (7.56a) we get here specifically

@-P N 16 {3(5.42)210-4(0.941)

GS-inc

+ 6(5.42 * 10"2 )(0.970)(3.02 10-2) + 9.09 10- 4

- 16 { 8.29 * 10-3 + 9.53 10-3 + 0.91 *10
3}

X 16(1.87 •10-  (3.2e)

%J

4- V W* '~~1 ~ * U* ~ ~ -~%



.- %

34

In the same way we have from (2.14b)

-2 i2 2
GcN( 0 )  = 16 {[(5.42. 10" )(0.970) + 3.02 10- 2  3.02. 10- 21,.....Gc-inc

[-.=16(2.50- 1 .3(3.2f)

,3. Wave Number Spectra

For the set of soliton ripples, or hydraulic jumps, which ride upon

the rough gravity-capillary wave surface, we develop the following ele-

mentary second-moment model.

* .~.'.. A reasonable approximation of the wave shape, or "hump," is given

by the gaussian wave form, for a typical wavefront traveling in some

direction , viz:

Sr 4r2 2

S 2 . y2

where -ir = ix cos + iv sin €, r = Vx + Y, and where Al is a unit

distance "window" which moves along with the soliton, at speed cS. It
is nonzero for Ir - c <tI 4 2L, where 2L is the spread of the hump to,
say, within e (1 2%) of its maximum value, cf. Fig. 16, [16), p. 465, etc.

We determine the second-moment functions for an (ensemble of) single

typical humps from

. Ms(4r,t )  =_ <(rl,tl) • j (r1+A,t1+At)> (3.4a)

S2 -4r1/L2  -4(rl+Ar) 2/L2

= -<f= e *e dr1> <A1 1 A12> t

22 224Ar -8(r +rlAr)L 2

=L PL(T) e f e dr1  (3.4b)

where

pL(T) 1= 2L ' CSTI 4 2L; = 0, otherwise. (3.4c)

L L.

V ,
V=•%..° " w e , - - , , " . " ' ' " • -' ° , ' , . . "' ' " " " "' ' i
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Since we are interested here in the intensity, we set T = 0 in (3.4c),

e.g., PL(O) . Moreover, since we have in reality a sum of such inde-

pendent solitons traveling in all directions on the broken, large-scale

surface, we evaluate (3.4b) and write finally in this isotropic case

Ar2/29 2

Ms(.r,0) = 2 e a 2 = N -2 tS = L/2, Ar2 = Ax2+Ay 2 ,

(3.5)

where N average number of solitons overlapping at any instant and posi-

tions. Not surprisingly, from a gaussian waveform we obtain a gaussian

second-moment function. (Note the "d.c." component embodied in (3.5),

since <L >L > 0.)

From (7.36), (7.41) we obtain the corresponding two-dimensional wave

number spectrum

i®gr2 [ (2kox S) +(2koy S)]/2

Ws(kIO) f Ms( r,O)e d(ar) = 2l fiz5 e2
-® (3. 6a)

which reduces here, cf. (3.2), specifically to

-2(kt sin )2

Ws(O, 2 ko sineoT 10) = 2n2Z e- 2 ( k° 9S sin oT (3.6b)

Our next step is to note from (7.51b) that

2 2 -2(koXS sin 2oT) 2

WS(klO)Mid = 2irW s(tl)McD+G = {a S L s  e }, (3.7)

so writing N( onr secon (no

I gS-inc gS-inc w

vanishing) term of (3.1) to the backscatter cross section attributable

to the soliton ripples in the McD-G normalization:

o(0) - % ) 2 __2 1 2 2 -2(k0os sine o 2

S-incI k o gS-inc oT)  Ro } .e3.8)

ic+
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It is this result we next examine numerically for our specific example

above.

.Q. A Numerical Example

Preliminary (though sparse) observations [14], [15], [17], [18] sug-

gest the following ranges of values for 2L, aS:

Fj ~ j : L =1.-.cmL 2Z = 42- Ls s = 08- 1. 0 cm. (39a

S:-.L = 1.13-1.41 cm.

0.2-1.0 c. 4106 m-2_10-4 m;2 (3.9b)
her 2

L is the "correlation distance," where Ar2 = L is such that

SMS = e-1 of its maximum value.

For our example we select as representative values:

L .. m.,• ", ZS 0.90 cm. ; S = 0.2-1.0 cm. (3.10)

Moreover, at eoT = 800, S 1, and for the water/air interface, = 1.

Combining (3.2a,d,e) in (3.8) thus gives us, with (in meters)

212 e -2(ko9 S sin 6oT)
2  = (0.90 102)2e0 2)(0.985)}2

(0.10w 10 ) e-10-5 "2(0.743) 2-5 110

= (8.1" l05)e = 8.1"10 (e

= (8.1• 10"5)(0.332) = 2.69" 10. m2 , (3.11)

the following expressions for the soliton scatter cross section, since

* 2/ = 0.637:

a S-inc =1(0.637)(4.93. (1.87 1 0 (2.69. (3.12a)

2/r 4 A(0)
0 gS wSIMcD+G

4-.. J*"' Sc2 " 1.58 "10 2 (3.12b)- S-incJ20 kHz

.4
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Using (3.9b) we may construct the following short Table:

Table 3.1: Eg. (3.12b); z = 0.90 cm; v = 10 m/sec; fo 20 kHz]:---
S

2(m) (0) (b)(d)
(cm) 2 (M O)) (db) ,S (db): with Kirchoff

S SS corrections=+2.5 db

0.2 4 • io-6 6.32. 10 -42.0 -39.5

0.3 9 o-6  1.42 10 -38.5 -36.0

0.4 1.6. 10 2.53- 10 -36.0 -33.5
-------------------------------------------------------------- ----------------------------------------------------

0.5 2.5- 103 3.95. 10-4 -34.0 -31.5
0.6 3.6- 1 5.69- 10 3. 2.

0.8 6.4- 10°-° 1.01 ' 0 : -30.1 -27.54 -4- o /i-
1.0 1.0 10-4  1.58 10-3 -28.0 -25.5

[The Kirchoff correction used here is taken from Fig. 13 of [4]; see the

discussion in Section V of [4].) This correction factor arises because of

the failure of the "flatness" condition (i.e., large radius of curvature,

b0koP > 1) as grazing angles (6oT > 600) are approached.]

Experimental results for the frequency (fo = 20 kHz), grazing angle

(EoT = 800), and wind speed (v = 10 m/sec = 20 knots) chosen here (cf.
Aabove) are cited in Table 3.2 below:

Table 3.2: Experimental Results* [at fo = 20 kHz; aoT = 800; v = 10 m/sec]
"" (0)

Source &0
Soreback-incoh

1. Galubin [36); also Fig. 1.26 of [2] -30 db (19 knots)

*. Lilly and McConnell [37] -29 db (21 knots)

Hoover and Kaprocki [38] -27.5 db (20.5 knots)

Roderick [6], at o = 810 -30(±1)db(20 knots)
*See Fig. 4 of [4].

On the assumption that the data of Table 3.2 were obtained in an
essentially bubble-free environment (there was no "ground-truth" to es-

tablish this fact one way or the other), we see on comparison with

Table 3.1 that for values of as > 0.4 an acceptable agreement (within a

few db) between theory and experiment is obtained when the scattering

mechanism is the soliton ripples. [As shown below in Section 3.2,



%38

scattering from the capillary component of the single wave surface is

0(10+ db) smaller.]

It has also been observed that the scatter cross section (for com-

paratively small grazing angles (eoT > 600)) increases with frequency
(Fig. 1.26 of [2), and [3]). Let us consider the cases fo = 10 kHz,

20 kHz and compare with Galybin's data (Fig. 1.26 of [2)). From (3.8)

we write

a 2- @ 0 k z 4.e-1.104+0.276 _24 e-0.828-1 S-inc(@ 10 kHz) = = 7.0 = 8.4 db. (3.13)

This compares acceptably with a -7.5 db estimated difference from Fig.

1.26, [2), and with Roderick's recent results [6].

3.2 Backscatter from Capillary Waves

It remains to examine the effects of the capillary component,

c-inc' in the total backscatter cross section (3.1) at these high fre-

quencies and small grazing angles. Here the physical mechanism is dif-

ferent: the capillary extension of the gravity wave surface is directional

and dispersive, with dispersion governed by surface tension forces, unlike

the soliton-ripple surface above, which rides upon the former. In what

follows we consider very briefly several spectral models of the single

wave surface (g + c). From these we estimate ac, the rms capillary wave

4 height, and the back-scatter cross section c-(.) in (3.1).

- A. Phillips' Spectrum [39]

From Sec. 4.5 of [39] we have Phillips capillary wave number spectrum,

, VWkc = -,kB' co-i/2 < a < n/2+co; B' = 1.5 102; (3.14)

cf. Eq. 4.5.9, £39). Since (21T) a(kL'O)Mid " 2aQkO)McD+G'

cf. (7.51), we see that 8(0) in (3.1) becomes
S

(() U4 44) 1 B'sln - 3.2" 106 -54.9 db

c-inc ogc coT' "'c gc oT " "

a(3.15)

V .
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where we have used (3.2f), and N(0 )  :160 ) with (3.14), (3.2), etc.
g-inc gc

This back-scatter cross section is much smaller than our soliton-ripple

results (Table 3.1) and the empirical data (Table 3.2). Furthermore,

it is independent of frequency, nor does it take into account the disper-

sive character of the capillary waves, as used here. However, it agrees

quite well with Bahar et al.'s results (-55 db) in Fig. 11b, [25], for
the case of horizontal polarization (which is the EM analogue of our

acoustical case here). [We must subtract 11 db ( 4n) from a(HH ) in

Fig. 11b, because of Bahar's definition of a(HH), cf. (2.40) above.)

B. Brown's Spectrum [40]; (Bahar et al., [251)

Since what primarily is important in the wave number spectra appearing

in the scattering cross sections, cf. (3.1), is not specific spectral
2shape but rather the intensity (a ) and spectral spread (k02 ), we-,c,S

) adsetasped(oc,S),w

shall use Brown's spectrum (Eqs. (23), (24) of [25]; [40]) to determine
a2 from Eq. (26) of [25] and apply the result to (3.8), with vr2 S
C =
1.27 cm again, cf. (3.10), as a reasonable correlation distance (e- ) for

these capillary waves. Taking kd = 1.0 rad cm1 as the wave nimber at

which the (continuous) gravity-capillary wave surface splits into "high"-

and "low"-frequency components ([25], discussion and Table 1 therein),
we obtain

02 z B _ 4.6 *"10-3 7 -
= 2.3"107 m2 :.a = 4.8"104 cm =nMM.

c 2k2  2(10+ 2 rad m'1) 2  2

(3.16)

Applying (3.16) with c = 1.27 cm, fo = 20 kHz, (v = 10 m/sec) in (3.8),

with (3.2f) replacing N g since the wave surface is a single surface

[e.g., the capillary structure is part of the wave surface, not a

separate entity riding on the gravity-wave component (cf. Sec. 2.1)],

we get from (3.12a)

~(0)
ac-Inc =2.10 a? 4.86 .10 -631d(.7

which is clearly too small.
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Alternatively, using Brown's spectrum, WT, Eq. (23) of [25],'

directly in (3.1), with (3.2f) and the conversion relation WMid =
T2 WB+B=Brown , cf. (7.51c), we get

.(0) 2B (O) = (0.637)(4.6 _10"3)(2.50 .10-3 ) = 7.3 .10-6 -51.4 db,
c-inc r gc = " =

(3.18)

"-%. which is -40.4 db in Bahar et al.'s [2qJ definition of scatter cross
1section, which in turn is 4Txd( 0 ) here, cf. (2.6). Comparing this(HH)i ncoh

with a(" ), Fig. 11b, [25], we see that (3.18) is about 3.5 db larger

than the cross section for horizontal polarization,a(HH )" the radar ana-

logue of the acoustic scatter cross section. (The difference is attribut-
able to the particular "tilt-factor" used here.)

* In any case, these models give noticeably too small results (in this

second instance independent of frequency), and all lack the spectral

character appropriate to the particular dispersive nature of capillary

waves, cf. Eqs. (7.52) et seq.

C. McDaniel's and Gorman's Results [3], [4]

In two recent papers, [3], [4], McDaniel and Gorman have obtained

back scatter cross sections, which are -42 db (including the Kirchoff

corrections) for our example above (A), cf. Fig. 4 of [4 ], and are

noticeably below the empirical results, cf. Table 3.2. Their very ex-

tensive analysis takes into account the dispersive character of the small-

scale, or capillary component, but does not include the suggested inde-

pendent soliton-ripple mechanism. Moreover, they also show that

diffraction effects (including multiple scatter) are quite negligible

(Sec. VI, [ 4]), as we note below in Sec. 2.3 also. We refer the reader

to these papers [3], [4] for details; (see also the discussions in Secs.

1, 4 here).

3.3 Backscatter from Diffraction Terms (k > 1)

Applying (8.17) to our definition (2.6) we see at once that the back-

(and, in fact, omni-directional) scatter cross section for the diffuse

diffraction component (k = 1) in our theory [41]-[43] becomes (cf. Sec.

8.6 ff.)
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-incoh 1672 {<cglJgI> + 2 + 2I s

(3.19)
2

a x y - xyla

which is put to the same scale as the principal contribution 8(O)
incoh'

(3.8), for comparison with the data of Table 3.2 and the example of 3.1C,

by the relation 21Ta (1) = cf. (3-7).
incoh McD+G' "

Some simple numerical estimates of (3.19) may be obtained by re-
placing <c2 IJI> by <i2>T ]. We suggest that

2=0( 1  i 2 );1- -2 2ICIJgl = 0(10-6 m>2 ) "< g21Jlg>- 0(10- 7 = -70 db);

(3.20a)

C= O(10-5 m2 ic2 = 0(100-10-1) < C Id Ic> 0(10-510-6)

c m -1 .2

0 O(-50 to -60 db);

(3.20b)

c-= (2 - 10- m2 ); Ii s = 0(10 - ) IJ IS> - 0(10-6) = 0(-60 db);
(3.20c)

where in (3.20b,c) the curvature is comparatively large. Since

(167 ) = -21.2 db, we see that even if these scatter terms are 10 db, or

even 20 db, too large, they are ignorable compared to the main capillary

(and gravity) contributions 6-0), a (0) unless there is a special align-c 'g
Bent of the former which renders it essentially zero, e.g., at OoT = n/2,
and & = 0, so that the mean direction of the gravity-capillary wave

V 0
surface is directed at right angles to the beams in backscatter, cf.

SS
Fig. 2.la. The main contributions of the soliton ripples, 8(0)", however,

dominates the above in any case, and is essentially directional as

well.

We may expect the multiple-scatter terms, &' ', in the scattering

cross section (2.8 to be even smaller than the diffuse scatter terms

'S. (k = 1) above. This corresponds to their negligible contributions as

computed by perturbation theory (when the slopes of the capillary and
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ripple waves may be regarded as small), cf. Sec. VI of [4]. Thus, when

a truly two-component wave surface (in the sense of our present model)

is illuminated, we may neglect the diffraction terms (k > 1) vis-a-vis

the Bragg-scatter contributions, as noted in (3.1), for example.

V4.- Conclusions and Next Steps

As we have already noted in Section 1 above, our principal results

are fundamentally theoretical, combined with selected numerical compari-

sons of our new model with earlier theory and experiment. We summarize

below the general new features of this study (Sec. 4.1 ff.) and suggest

needed further theoretical and experimental efforts (Sec. 4.2 ff.).

4.1 Principal Results
0. The new features of our work here are:

(1). The identification of a potential mechanism for the second component

of a composite wind-wave surface which may resolve the often ob-

served discrepancy between theory and experiment at high frequencies

and small grazing angles without our postulating a bubble mechanism

[3], [4].

This alternative mechanism is the ensemble of soliton ripples,

or hydraulic jumps, riding on the main gravity-capillary wave sur-

face, by which the latter is itself generated through the nonlinear

action of local near-surface winds, or "cats-paws" [cf. Sec. 2.1 and

[14]-[18].] These ripples, broken up into solitons on the wind-

driven, rough gravity wave surface, travel with constant speed and

* are nondispersive, unlike the gravity and capillary waves, cf. Secs.
2.1, 3.1 above, and are direct-ional, according to the local near-

surface wind. They disappear when the lecal wind (momentarily) stops,
but are otherwise generated much of the time in usual seas.

0O Preliminary numerical estimates (Sec. 3.1) indicate quantitatively

that this ripple mechanism can account for the previously observed

discrepancies between theory and experiment at high frequencies and

. small grazing angles, when there are no bubbles.

'~ O,

,.O

',-
-a-€'



(2). The development of a truly two-component wave surface model, where

the above ripple surface is essentially independent of the single

gravity-capillary wave surface on which these soliton-ripples ride.

Analytically, the practical, approximate theory requires three

scattering components: (i), large-scale gravity waves ("low"-frequen-

cy); (ii), the capillary continuation of these gravity waves ("high"-

frequency); and (iii), the independent soliton or hydraulic "jump"

ripples, generated by the local wind action.

The divisions of the wave surface into components (i) and (ii)

is an insightful technical device [as Bahar et al. [25] have noted,

for examplel while (iii) is a separate phenomenon. The former yield

specular-point scatter (i), which dominates at large grazing angles,

and (first-order) Bragg scatter (here) (ii), while (iii) also

generates a first-order Bragg scatter, which, however, we suggest is

significantly 0(10+ db) larger than the capillary contribution (ii),

cf. Sections (3.1), (3.2). Of course, in those intervals when there

are no local interacting winds, the capillary component dominates,

unless there are sufficient near-surface bubbles. For example, these

latter can be comparable to the soliton ripples, producing 0(3 db)

increase in the scattering level, which are probably not resolvable

within the accuracy of previous experiments. See also [6].

(3). Verification of the general analytical agreement between the various

principal approximate results for the scattering crobs sections

obtained in the literature [cf. Sec. 2].

• Thus, the Kirchoff-Perturbation approaches of [4], [21), [33],

for example, and the author's "Kirchoff-Kirchoff" method (cf. Sec.

7.3 ) yield essentially the same form of Bragg scatter component,

_ albeit with somewhat different "tilt-factors," (cf. (2.37), (2.39)).

*O In most instances these tilt-factors are approximately equal,

because the rms slopes of the large-scale gravity-wave component are

themselves quite small, e.g., 2 = 0(2,3.10-2). An excep-' ' gx~y (0)tion, however, is the tilt-factor, N%, associated with the arti-

gcficial split of the gravity-capillary wave surface into low- and

.'
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high-frequency components: the tilt-factor here vanishes with zero

grazing angle, unlike the situations where there is truly a second,

separate wave mechanism riding on the first surface, as presented

here.

Numerical differences [cf. Sec. 3.2] between the earlier results

stem principally from the choice of a wave spectrum model, which in

turn depends quite critically on what is the underlying physical

mechanism.

Corrections for the well-known limitations of the Kirchoff or

Tangent-Plane method are small 0(1-3 db), cf. [4], Section VI, at

small grazing angles, vis-i-vis the general level of scattering cross

.-. section determined through these earlier models, as they are also

when our present wave surface model is employed.

(4). The observation that the diffraction terms (diffuse scatter (k = 1),

and multiple-scatter (k>.2), cf. (3.20), are generally well below

[0(15-20 db, cf. Sec. 3.3] the main contributions of the direct

scatter components, e.g., the specular-point scatter components

"" -(important at large grazing angles) and the Bragg-scatter terms,

which dominate at small grazing angles (eoT > 600), and high-fre-

quencies. This agrees with recent results [4] using different theor-

etical methods (i.e., perturbation techniques).

(5). From the above it is therefore clear that the large discrepancies

between theory and experiment at these critical regions of small

grazing angles and high frequencies are to be explained by the proper

choice of physical model: the problem is not fundamentally analytical.

We emphasize again that a bubble mechanism can explain the observed

* discrepancies between theory and experiment, provided, of course, bubbles

are actually present in sufficient numbers. Moreover, if bubbles are so

present, their effect should add only 0(3 db = factor 2) to that already

produced by the independent "ripple" surface (on the assumption both

* ,mechanisms are comparable scatterers). The presence of bubbles, however,

J" "
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was unfortunately not quantifically verified in most of the experimental

data cited earlier for comparison with theory, cf. Table 3.2 and refs.

We also emphasize that our proposed soliton-ripple mechanism, al-
though an observed phenomenon, has only been measured to a limited extent,

particularly on gravity wave surfaces: our numerical estimates have been

inferred from very limited data so far. Thus, while the reliability of

the analytical procedures is not in question [cf. (3) above], it has not

yet been established that the soliton-ripple mechanism fully explains the

observed scattering levels in the absence of bubbles. Further experimental

work is required [cf. Sec. 4.2 ff.], to obtain the needed dimensions

(height and length) of this mechanism. [We remark that whenever inde-

pendent measurements verify this mechanism quantitatively, we can then

apply acoustic (back-) scattering techniques like those described in de-

tail here to obtain the desired scale and size of these ripple effects

in subsequent applications.]

Other new features of our analysis include: (1) explicit development

of the r6le of gaussian and omni-directional beam patterns; (2) general

second-moment and covariance functions, from which we shall subsequently

determine wave surface spectra and related (i.e., doppler) effects;

(3) general narrow-band signals and absorptive phenomena; (4) numerical

estimates of diffraction contributions; and (5) an extensive discussion

of the various approximations, and their conditions, which underly the

analytical results.
Finally, we note that our aeneral model here can be applied at once

* to such special cases which may occur physically as:

(i). no soliton ripples, just the gravity-capillary wave surface

(no local winds): one drops the "S-terms" in our results.

(ii). soliton-ripples and bubbles: one may use the additional

bubble contributions, for example, as treated in [3]. Their

effects, of course, will depend strongly on the bubble den-

sity, whether or not they are ignorable to, comparable to,

or dominate the soliton ripples.
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4.2 Suggested Next Steps

The following is a necessarily incomplete list of suggested next

steps in the ongoing treatment of surface scattering. It is convenient

to separate the list into Experimental and Theoretical topics, although

the two are closely related here. We have:

A. Some Experimental Topics

(1). Measure directly the rms height and the mean duration of the

soliton-ripples, under various near-surface conditions, [14]-

[18], including no to full gravity-wave development;

(2). Mean (back-) scatter intensities under (1), simultaneously,

with particular attention to the possible presence of bubbles;
(3). "Forward" and bistatic scatter generally, also under (1), (2)

above;

(4). Develop acoustic techniques, based on the associated theory

here and below (8), for measuring the relevant parameters of

the small-scale scatter components.

Nj. Theoretical Extensions

(1). Apply results of (1)A above to the analysis developed here;

(2). Calculate representative (backscatter) cross sections for all

scattering angles (0 < 6oT < n/2), and selected surface ripple

parameters;

(3). Apply Bahar's general "full-wave" approach [44] in detail to
relate the former to the approximate solution obtained here.

* (4). Determine the doppler spectrum of the composite wave surface

in our general model and compare with experiment [6];

(5). Examine the contributions of higher-order Bragg scatter;

(6). Develop further, and apply to quantitative estimates, the con-

tributions of the diffraction terms vis-a-vis higher-order

approximations in the direct scatter theory;

(7). Generalization of the results to anisotropic surfaces;

(8). Examination of various corrections to the Kirchoff or Tangent

Plane approaches.

Finally, we stress once more the need for carefully controlled experi-

mentation, where "ground truth" regarding surface phenomena is fully ob-

tained, and where the subtleties of the associated signal processing are

both understood and applied [6].
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Part II. Analytical Models

5. The Received S tterd Feld

Here we present the analytical features of random wave-surface scat-

tering when the incident radiation is acoustic propagation from a direc-

tional source. A directional receiver is employed, in the manner of

Figure 2.2 above. While much of the present theory is well-known [1],

[2], [8], [9], [21], (22], [33], we shall also include here a number of new

features and results. Our treatment, however, is intentionally concise: we

refer tne reader to other references (see Section 1) for many of the details,

in the interest of brevity and attention to the main problem at hand, viz.,

the determination of back- and forward-scatter intensities, along with their

attendant assumptions and approximations.

5.1 The Received Scattered Field, I: Formulation

For the total scattered field c(a,t) at a point P(R,t) in a linear,

inhomogeneous, and possibly random medium, or on its boundaries, we can

write generally [12), [43], [41], in operator form

{i(Rt) T , MQ, (5.1)

where aH [=M,(-GT)] is the homogeneous or unscattered field component and

the brackets I } denote the ensemble of such (random) media. Here -GT is

the source distribution (which includes the sensor array), and MO is the

integral operator whose kernel is the green's function g(!,tjR',t'). for an

infinite, unbounded medium (except for source regions), which is also homo-

geneous (but not necessarily lossless). The operator, ,, is the field-

renormalization operator, where 6, cf. (5.1), embodies the scattering mech-

anisms appropriate to the physical situation. Here, for example, we have

Q Q + QV (5.2)

where QS represents the scattering effects of the air-water boundary, or

wave surface, while QV describes any volume inhomogeneities. The specific
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form of M® is, of course, determined by the (usually differential) propa-

gation equation for the medium, without inhomogeneities.

Next, we shall make the following assumptions:

I. The medium supports an (extended) Helmholtz equation of propa-

gation, e.g.,

(v2  1 2
S-  = -GT (5.3a)

with co = sDeed of wavefront proDagation in the medium.

II. The medium (except for boundaries, here the surface) is therefore

homogeneo us

Q=0 . (5.3b)

III. Only local surface scattering interactions are significant, so

that Eq. (5.1) becomes on developing the Perturbation Theoretical

Series (PTS) [42)

m0

ijn) (.c
"" =H + n H "IH + MQSH (5.3c)

and

a= aH + a; :I.OI I M.QScaH' (5.3d)

The approximation (5.3c), which neglects coupling of the scattered field

to the scattering elements (embodied in QS), e.g., terms O([MQJ (2 ) ) or

higher are dropped, is a form of Born approximation. This appears to be

eminently acceptable in practice, since scattering from wave to wave over

more than neighboring wave structures is negligible provided, for c =

• c0 + cl(z), that vc 0: only "nearest neighbor" wave surfaces will

support multiple scatter (diffraction) effects. Consequently, we call

" (5.3c):

Sa H +MQs H (5.4)

-' -U. ~ -fl S - .

'&g.U U-~k*s l
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the field for an "Exact" Wave Surface Theory,* under the conditions

(5.3b) [and (5.3a) if we restrict ourselves to (Helmholtz) medial [We

shall remove this restriction presently, cf. Sec. 5.3 ff.]

The received scattered field is

Xi(t) = RaI = RMXQSaH, with aH Moo(-GT) (5.5)

where now R is the operator for the receiving aperture**, viz.

i +d (>0) st ds
RfB A s e Im s 2Tif , (5.6)

VR Br1:
(=-i+d)

where (', d are vectors and their coordinates, assocated with the re-

ceiving aperture, in the volume VR2 and AR is an aperture weighting

function.

For the narrow-band signals and far-field (i.e., Fraunhofer) condi-

tions [cf. (2.20)] postulated in our present work, R, (5.6), reduces to the

much simpler form

n.b. "o Br I

where

-R -Rfo -oR oRfo/Co = "steering" wave number. (5.7a)

*We drop the bracket { } notation henceforth, remembering that a is

a random process, since Q is also; aH' M., of course, are deterministic.
**Here Br1 is a Bromwhich contour (--i+d, -i+d): all singularities

of the integrand are at Re(s) 4 0. For steady-state excitations d = 0 and

the result is the well-known Fourier transform, with s = 2rif, f = (real)

frequency. For transient excitation, d < 0, and one has a Laplace trans-

form.
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Here fQ is the central frequency of the original (narrow-band) signal,

and iR ,  are (inward) unit vectors, with.oR along the main axis of the
R4'.R

(complex) receiving beam, Q , cf. Fig. 5.1. (We note also that the beam

patterns are functions of frequency, generally, Sec. 6.1). For the omni-

directional receiver used in the experiments [6], QR = R(fo ) a complex

constant, [cf. Eq. (6.14) ff.].

5.2 The Unscattered Field

For the Helmholtz media (obeying (5.3a)) it is well-known that
0o

M-(RtIR',t') - dt' B )R',t' dR' g0 (,tiR',t');
- (5.8)

with g. = 6(t-t'-p/c )/4np I p-=R'-Rj
0

so that the homogeneous, i.e., unscattered field component aH (5.5),

becomes at once the familiar result [41], [42]

H(f,t) = T GT(t-P/co,R') i , GT C VTI (5.9)4V T

where VT is the source domain and R lies outside VT. In the far-field

we getin straightforward fashion [34] for narrow-band signals:

A IS. (s))e(t-T/c o )ds47 r (]T(UT -ioT]So/2i 27tin())

H(R,t) f.f. =  R Bo 2Boi
in.b. (5.10)

Q TT IR ' . - = R) (5.10a)

where now is the generalized beam pattern [12] (with R' ¢ ff.)

0s Cif f°i~°) c A 2rif o  (5.11)
OQ. = I AT(. So)Sin(sl )e d& , (so  ,

VT 
0

in which ioT is a "steering" (unit) vector, cf. (5.7a). Here

Sn(Sl&) = AoS1n(slF) = AoWt{s(t)} (5.12)
in0 n 9
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is the amplitude spectrum of the (here narrow-band) signal S in(t) = St;

(it = fWo e-st( )dt, Re(s) >0). The quantity A is the (peak) amplitude

of Sin(t), e.g. <Sin> = ! . <s2>, <s2>= 1, where < > time average (as

T + >), or over the finite interval (to, t0+T < -) if Sin(t) is of finite

duration.

Like AR, (5.6), AT is the aperture weighting associated with the

transmitter, at each element dL where the signal is applied. In the gen-

eral case different signals may be applied at different locations (t) on

the aperture: hence, Sin = AoSin(SJE)' cf. (5.12). However, we shall

assume with little loss of generality that the same signal drives each ele-

ment, so that Sin(Si ) = S Then (5.11) reduces to

So (iT-aioT)" /c 0SL = i(s) f AT(, o  e soTJT)/od (5.13a)

= Sin(s)aLT(T- oT;fo), IT = iTfo/Co, etc.) (5.13b)

where now O F is the (complex) beam pattern of the transmitting aperture,

in these far-field situations.* Applying (5.13) to (5.10) then allows

us to write for the (as yet) unscattered field the not unexpected result

AOQLT (s)et-RC 0 ) ds

H(ERt) f.f. S4rr fBr in 2-1 ' (5.14)

H n.b. 1

subject to the uniform drive condition Sin(sli ) = Sin(s), with OT given

by (5.13b) as defined in (5.13a).

5.3 Absorption and Doppler
Although so far we have assumed that the medium of propagation is

lossless, in reality there is some attenuation, mainly because of molecular

absorption at the frequencies employed here (<40 kHz). In general,

*In the "near-field" or Fresnel regions the "beam pattern" becomes

range-dependent, as a consequence of the quadratic terms in the expansion

of P = IR- I, To avoid this, a useful far-field condition is

TL 2 /o<<R, where L is the largest dimension of the aperture and Xmax o max 0
(=Co/fo) is the wavelength of the (central) frequency of the postulated

narrow-band signals.

*~ .% % *9 *.*.*4* 4. ~. . . . .--
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absorption affects the beam patterns and waveforms. But with narrow-band

excitations the general relations simplify greatly, reducing to d simple

N.. attenuation factor.

To see this we use the transform Yo, {g.} of the green's func-oh-w t
tion solution to the basic propagation equation for relaxation absorption

[42], viz.

a: 2 1 322
.[(1 + T ]g. 6 ,RR ,  (5.15)

ox c-t) 2 t = -tt

so that Y obeys

[(1 + T S)V2 " s2/c2 ]Yo = R (;,s ',t') = Yo(RsIR'),,e- t

0 (5.15a)

For this it is readily found ([41], I) that

5..,. - PS( I+T S) -- st'
c ox-e, C0  OX

=YO e+ ,O X /C0 (5.16)

',:*.For typical oceans the relaxation time T of the medium is T

0(10-6 ox2 ox TMgS 4
= 0(10-6 secs), so that for weak absorption, e.g., (ToxISD)2 << 1, fmax

( IsI/27) is 0(40 kHz). For frequencies less than 0(40 kHz) the medium

is essentially purely absorptive and nondispersive. In fact, we can re-

write (5.16) as
_ pS - . -'52

y e = e (5.17a)
o ' +ox

;'.:- 2e(e e °oxl2cO )ps2 -os p(oxl/2c

(Y0" ()Helmholtz, le] (Yo,o)Helm e , (5.17b)

where- {g.= Eq.(5.8)1giveS.
since for narrow band signals s - 2nif o , where T{g = Eq. (5.8) gives

. (Yo,)Helm, the first factor of (5.17a). For fo = 20 kHz, Vl+ToxlsI

1.06 1 1, and for fo = 40 kHz, /l+Toxls = 1.12 ; 1, also: the s-depeadent

denominator is effectively unity. Accordingly, for narrow-band signals
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and positions in the far-field of the source we simply scale the signal

amplitude An by the factor exp(-aw 2q, viz.

A A , a T /2c = 0(3.7 1010 sec2/meter). (5.18)

0 0A ox

Equation (5.18) shows the well-known result of attenuation exponentially

dependent on distance and on the square of the frequency for media where

. relaxation absorption governs propagation, in the manner of Eq. (5.15)

above.

The effects of doppler are, however, more complex than the ("low-

frequency") attenuation. Doppler produces a frequency modulation of the

original signal. The principal mechanisms for this in underwater studies

-i are platform movement and the motion of the ocean wave-surface. As long

* as the doppler velocities are comparatively small [e.g., v/c0  0.10, say],

a practical theory is possible, cf. £34]. In our present study, cf. Fig.
Il.

.:e. 2.2, both the transmitting and receiving platforms are effectively sta-

tionary in space, so that only the wave motion modulates the incident

radiation in the course of scattering. The effect of this is to introduce

a time-delay AtdS, in the time-variable quantities which appear in the

expressions for the received, scattered field, as noted below in Eqs.

5.22. This time delay is a function of a time-variable position, depen-

dent on the moving wave surface.

5.4 The Received Scattered Field, II: Canonical Forms and Geometry

Before we go on to consider explicit wave-surface models, which will

dictate the specific nature of our attack on the problem [cf. Sec. 6 ff.],

let us obtain a canonical series development for the received, surface-

" scattered field represented here by (5.5).

This is done by observing that the field renormalization operator,

L (= MWQs), cf. (5.1), can be expanded in some suitable hierarchy of

.. (linear) operators of increasing complexity, as represented by the sum

= (5.19)
00 ® =0

,1g-
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since the scattering process is linear. The quantity a zis an expansion

coefficient, whose specific form is determined jointly by the physical

.W. nature of the scattering surface and ty the particular method with which
a specific expansion is to be carried out.

For example, in the usual perturbation technique (Perturbation

Method _=P.M.) here, the boundary, e.g., scattering surface E, is per-

turbed or expanded with respect to some appropriate reference surface S

[4]. In recent treatments [33), [4] where a two-scale wave surface is
postulated, the reference surface is chosen to be the large-scale, or

gravity-wave component. The perturbation is then embodied in the expan-

.* sion of M. inT,,, where M. is defined on E and expanded on S, cf. Sec.

I of [4], while QSis likewise defined now* on S. Thus, (5.19) becomes

* T~,= aM. Q. (5. 19a)

The expansion coefficients, a9,, become now a,. = a =(k a ) with the con-
- :dition k 0a r,< 1, a2; <C2>, which is required for practical convergence

of series like (5.19). In addition, the radii of curvature of the small-
scale surface component must be large compared to Ic, the magnitude of

the elevations of the small-scale surface component on S, so that the

expansion (of M,,) is unique. This is equivalent to requiring that the

slopes of c c be small, also, a condition, however, not generally met

here [cf. Remarks, Sec. 1].

Accordingly, we employ an alternate method of expansion, based on

-P the structure of the (local) surface scatter operator 6s (on E), rather

* than on the expanded projection of the (non-local) integral operatorM,

on S. The expansion coefficients, a.,, are now based on certain statis-

tics of the numbers of different orders of (multiple) scattering inter-

actions. This type of expansion turns out to be essentially independent
* of both local elevation and slope conditions, cf. above. Instead of

(5.19a) we have

*In a one-scale wave surface, S =So, = <c> =0: the reference sur-

face is the equilibrium (mean) wave surface.
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Tr1 4 = b bM tS ,or b (5.19b)

The kernels, or weightings, of these surface scatter operators
S

are given by Qs](R',), where R'G - , the (composite) wave surface

and t' is a doppler-delayed epoch. As we shall see presently, cf. Sec.

7, the lower orders (t=0,1) generally represent direct scattering com-

ponents here, while the higher orders (z >- 2) embody the multiple-scatter,

or diffraction contributions.

The integral operator M, cf. (5.8), applied to 6S3 which is itself

applied to aH (5.14) on the actual wave surface, E, in the same way aH
was obtained, gives us in the far-field of the surface, the scattered
field a This becomes with the help of (5.7) in (5.5) the following

general (complex) result:

00

IM = YX()(t), (5.20)
9.=0

where, canonically, we find that, along with (5.18) for absorption,

A(9,) A f(s(,t) fo)eSt ds
b f.f. Br1  in 27i SRT R' ' '  

N--T

.. 1(5.21a)

and

(9.) e(O9

S OR(_RoR;fo)O-T4T-oT;fo)QS (r',t')
0

1SoS(T-.R)'!' Ico ea(I2T+E I +13R+c I ) dS oe Ts R) e (5.21b)

(4) 2RTRRnz

where (r',t') are cobrdinates associated with the wave surface E. (Here

F())is a degenerate form of what we call the Total Surface Spreading
Function (TSSF) F(Z)(s',s-s'), where we regard the moving

wave surface as a time-variable filter. The slow (temporal) varia-

tions of the surface (elevation) c vis-a-vis the acoustic signal permit
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* this "parametric" form of the TSSF where now C is explicitly time-variable,I
as are all factors which contain c and its various spatial derivatives.
The geometry of the general (far-field) source-surface-receiver configura-

tion is shown in Fig. 5.1.I
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The various elements of (5.21) are described below. We have

As = effective "illuminated" surface area, by joint beam pro-

jection in So, cf. Sec. 6.3, Fig. 6.1 ff. (5.22)

dSo = dr= dx'dy' = dxdy on So: C = 0; with dz = dSo/nz; (5.22a)

X'- + r',where,' is always on the wave surface, E; (5.22b)

E Ixx + i; [(x',y')-system is simply a translation of the

(x,y)-system] (5.22c)

To = (RoT + RoR)/co: time-delay from 0T - 0S - OR: (5.22d)

IoT' oR = RoT,oR/I~oT' RoRI: unit vectors; (5.22e)

2T' !q !T,R/IBT,RI: unit vectors, to projection of scattering

point on E upon S (5.22f)

RT. RR9 ROT,.. = IRTI, IRRI, etc., distances; (5.22g)
= t - = doppler-shifted epoch; (r',t') are on the

wave surface E; (5.22h)

AtdS = I T '(,t) = i { + r(r,t-RR/Co)} RR = RoR " -oR ;(5.22i)

L tJ= (vector) elevation of the wave surface, vs. c = 0,

the plane So; (5.22j)

a = T0 /2co = absorption coefficient (sec- 2/meter), cf. (5.18);

2 .2-

nz = +(1 x2 + y) y = surface slopes (5.23a)

(outward) normal to surface E,= (ix x + ycy - z)nz;

(inward normal = -z )  (5.23b)

'oT' oR = beam-steering wave numbers, cf. (5.13b), (5.7a); (5.23c)

RTR = Lo+ Iz(hT-hR), cf. Fig. 5.1; vector distance between

0T and 0R. (5.23d)

From Fig. 5.1, it is readily shown that the unit vectors iT' R become

for these bistatic configurations
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I-TIS -T/1-RTI = ix cosCT sinoT + sinfT sinOT + z cose (5.24a)

SR S RRR - RT cO T sine + i(R sin T sine -Lo)+ izhR}/R R

RI / 2 T Cos4T T si, - }R

(5.24b)

where
R=( 2  .2 2 h2 '_R ="(R T sin aT + L 0 2RTLosin4T sifnT + h2 , and

(5.24c)

* (o)T = 4(o)R - n/2.

[For loTJR we simply replace RT by RoT, T oT, etc. in (5.24).] We

also find it convenient to write
0-

2a= i(1 + RT/RR) costT sineT

+ i {(1 + RT/RR) sinOT sineT -Lo/RR}

+ iz(CoseT + cosOR), (5.25)

cf. the exponent in (5.21b). [Again, for the reference vectors 1oT" -2oR'.
RoT, etc., we set RT - RoT, o T oT, etc. in (5.25), to get 2co = -oT -i oR'

cf. (5.27) et seq. below.]

.. A critically important simplification of our canonical results (5.20),

(5.21) results from the ability to employ "narrow beams" kN.B.), e.g.,

beams narrow enough so that the mutually "illuminated" surface z (= SO)o0
0 (i.e., the shaded region in Fig. 5.1, for example) is sufficiently small

that the spatial geometry (-RT, RR, etc.) for source and receiver change

little over the "illuminated" surface region (- So). Thus, we can replace
RT by RoT, aT by eoT, etc., and most important, note that the angle-

dependent quantities in F( ), (5.21b), can also be replaced by the (con-s (oT ,
stant) reference quantities -oT' 4 oT, etc. This results in a "factoring"

of the beam patterns, in that they now will depend only on their projec-

tions on the surface about Os, and not on the co6rdinates of the wave

surface away from OS . [For details, see Section 6 ff.]

. ---
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Accordingly, we have i T t-oT' etc., so that the TSSF (5.21b) can now

be expressed in the ultimately much more usable form (where the results

of Sec. 6.2 are included):

F(l) dxdy

S n."b. f (4i1)2R Rn R(_Rfo/co _ oR'fo O)T(Tfo/co-_oT;fo)bf.f. S0 4)RoTR z

N.B. -aw2c T -(s/c )[(r+C)2ct +T cO]

Q )(r't')e 00 00 0 [  "  (5.26)

where c = t(r,t') is a slowly-varying function of time, vis-a-vis the

signal in X(l)(t), cf. (5.21a) and remarks ff. Eq. (5.21b).

Important special geometries of operation are:

I. Monostatic Operation: R @ T: (Lo= 0 ;OR eoT, CuR = -+oT' 1 oR ='oT

RR = RT;(RoR = ROT); hR = hT)

2aox = 2 cOSoo T sineoT; 
2aOy = 2 sinooT sineuT; 2ooz = 2 cOseoT, (5.27)

with associated quantities of subsequent interest (cf. (7.28)):

2( 2ox + 2 + a2 )/a 2/cose oT

(n/nz)- 2a, = 2( x cos~oT sineoT + Cy sinooTsineoT - coseoT); (5.28)

Specular: eoT = 0: ".2aox = 2aoy = 0; 2aoz = 2.

II. Bistatic Operation (R t T): (Lo 0; Eqs. (5.24), (5.25), RT -, RoT,

etc., generally) (5.29)

Il1. Bistatic Operation at Snell (or Specular) Angles: Los 0

Lo= (RoT + RoR) sineoT insures (loR)Y =y ( i oT) y

coplanar

OoT = OoR - 1T/2 = n/2 insures (_oR)x = LoT)x (5.29a)

SeOR =eo T insures (io = doT): Snell in plane
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Then we have

2aoz *= 2 cOse OT

2(a2 + a2 + a2 )/a 2cose (5.30)
ox oy oz oz oT

(n/nz)- 2 o  (1 + R oT/RoR)sineoT -Lo/RoR) - 2 cOseoT = -2 cOseoT

' this last from (5.29). [These results, cf. (5.28), (5.30), agree, as

expected with Eqs. (6.25) et seq. of Tolstoy and Clay [9], who use a

geometry with Os, Fig. 5.1, as the primary reference system.]

5.5 Discussion and Critique

At this stage we have carried the analysis for the received scattered

field, X(t), to the point where the central physical problem is to de-

termine the analytic structure of the surface-scatter kernels, Q2),"

on the surface z. The approximations and assumptions governing (5.26)

in (5.21a) so far, are:

(i). narrow-band these permit us to separate the signal compon-
signals ents from the wave surface velocity k: the total

(ii). Snell surface spreading function F (-s',s-s') is
doppler - 6(s-s'), to yield F(2)(s,tI..) in (5.21a),

S "

(5.26)

(iii). far-field < R R where I i max
conditions mamax o oT' oR max

LO (rms) correlation distance of the (illuminated)

wave surface; Lmax = maximum dimension of the

transmitter (receiver) aperture. This permits

us to define beam patterns, which are inde-

pendent of range.

(iv). small surface
displacements vis-a-vis RoT, RoR: (part of (iii), really)

(v . "narrow beams, S '1(v. " bas S 2  R2 . beam patterns are independent
(N.B.) aO < oT, RoR,

of angle variations and can be referred to a

single point (0s) on the "illuminated" wave
surface. [If the "narrow-beam" condition is
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not satisfied, (5.21b) is to be used in place
of (5.26).]

(vi). vc = 0: c(z) = c0 , a constant: no velocity gradients in the

(vi.volume;

(vii). - = 0: no volume inhomogeneities, random or deter-

ministic, cf. Eq. (5.3b);

(viii). Only local surface scatter interactions: the scattered
field does not couple to the scattering ele-

ments, cf. (5.3c,d) et seq.

(ix). M M : the scattering surface is sufficiently re-

moved not to affect the pressure distribution

.9% over the aperture of the driving signal

source, cf. (5.1). (This condition is always

obeyed in practice unless the boundary is

very close to the aperture and the source

level is very high 41, I]).

(x). A non-dispersive, lossy medium is assumed, so that the

Helmholtz equation (5.3a) for the propagating
field is obeyed, with only a frequency and

range-dependent attenuation factor applied
• "- to the emitted signal amplitude, Ao , cf.

(5.18), in conjunction with (i) above. For

. practical oceans this requires f0  0(40 kHz).

(xi). Slowly moving surfaces vis-a-vis co and the time-scale of

the injected signal. This permits us to

treat the time-variability of (L,t') para-

metrically in (5.21) and subsequently.

So far, no boundary conditions, and therefore, boundary approximations,

have been explicitly invoked. These, for the moment, are implicit in the

(surface-scatter kernels, Q ) including such important factors as re-

flection coefficients and shadowing functions. We shall consider the

Q( specifically in Section 7. Of the approximations and assumptions

used to obtain the basic (total) surface spreading function F (5.26),

.. the most critical are (i), (iii), (v), (x). The others are normally well-
% 'P. satisfied physically. An important exception could be (vii), Q = 0: this

.5 %V
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implies that bubbles, and particularly bubble layers near the surface

are negligible in their effects on the surface scatter process. Certainly,

in some cases, notably when there is a great deal of wave-breaking ac-

tivity, bubbles become important. But in many others they appear to be

"invisible." (This point is discussed concisely in Section 1 earlier.)

In our present treatment we shall exclude bubbles, accordingly.

Finally, our present formulation so far contains several generali-

zations over earlier treatments. These are:

(1). time-variable wave-surfaces,,c, with doppler delays, cf. (5.22i);

(2). general (narrow-band) signals;

(3). steered (complex) beams;

(4). a canonical scattering structure (kernel) which can be de-

veloped to include a variety of approximation procedures,

including diffraction effects, for different classes of wave

surface.

This latter is considered explicitly in Section 7 ff. The specific time-

variability of the surface elevation, C, is critically important. It

quite naturally provides the expected "tilting" effect in our subsequent

two-scale theory, whereby the small-scale surface is "modulated" by

the large-scale or gravity-wave component, without recourse to the ad

hoc mechanisms used in previous analyses [Sec. II of [4] and Sec. III

of [29], for example.]

6. Beam Patterns and Apertures

The aperture structure [cf. ATs AR, (5.11), (5.6) above] and the

associated beam patterns playa critical r6le in the practical applica-

tion of the theory. We must, therefore, examine their effects in

specific detail. Accordingly, for our beam patterns in (5.26) we shall

begin by observing that, in our postulated far-field "narrow-beam "

N.B.) operation [(iii), (v), (5.31)], we can write*

(r /c R'- (6.1)T oT)fo/CoRoT R R - ro oR'o 0 0K

*These results are achieved by noting that 1T ( oTt)/I-oT-

ioT + " (r. " T)/RoT, etc., in the far-field.

" ""'-" "'
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whereto is the vector distance (on So' of the point of intersection

of RoR from Os (for ROT . When the main axes of the T- %nd R-beams coin-

cide at 0S, thenro = 0 (and %R = RoR), and the beams are said to "over-

lap at maximum gain." (It is assumed that the beam-maxima lie along T'

HeretoT, aoR, are dyadics (= second-rank tensors), specifically

a O~' aOI A R'R (6.1a)"'"" ~~-aoT -- J-oT-oT; aoR' --- D10 IoR^,' .a

in which I is the unit dyadic [6..], (i,j = 1,2,3). The aoT, aoR are

also called the Fresnel dyadics for 1oT, .oR" respectively. The con-

. ditions for (6.1) are

I-Irmax /RoT<< 1; Ar = r-rol/RoR, < . (6.2)

0

To obtain the elements of a aoR,, we use (5.24) with 'T 4 oT' ¢R

RT - RoT, etc. therein. We call (6.2) the "narrow-beam" (N.B.) conditions,

as we shall see in Sec. 6.3 ff.

6.1 Beam Patterns and Projections

We select as a convenient and reasonable beam pattern structure
the so-called (general) aussian beam pattern (see (6.5) below):

J -21 (2n)2a- v+iPT

"= ) - ge -- T (6.3)

where g beam gain (> 0) and A is the associated aperture dyadic

--A=A. I axy (xz4a""... a a2  iA , I det il 0; A O , (6.4)
-'.- - a~xy ayz|- A>

a..., b2

" xz ayz

and where PT is a constant phase here, for the moment. Since v=O(L),

A is OL 2) and is thus a measure of the physical area of an equivalent

planar aperture; (the actual aperture may, of course, be three-dimen-

* i sional). The "beam" O ) described by (6.3) is not necessarily N.B.

When the beam patterns fall on the reference surface So of the

wave surface E, cf. Fig. 5.1, the wave number arguments of (6.3) become

N 04.

-' 1 4 44** 944%4 . .
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those given in (6.1) for these now far-field situations and N.B. con-

ditions. Accordingly, we have

. 1 12 2
. ,- ) =gT~fe k[AT/RoT ( _AoT r)+i'T(f )

AoT -aoT .a T 2 oT

(6.5)
k = w / C

Irlmax/RoT< 1

and
""1k2A 2 (

0L R(_-_RoR;fo) " gR(f0)e ko[ R /RoR (.ro) A oR , L -. ro)+i'R(fo

-AoR' = oR' 2R4R (6.6)

Ir-rolmax/RoR, < 1

where aTATA -AR have the generic form (6.4).

We chall confine our attention here to elliptical or circular

* . (conical) beams. Then, all the off-diagonal elements of a in (6.4)

vanish, and a b for elliptical cones and a = b for cones with cir-

cular cross-sections.* Thus, we write

*In fact, a in (6.4) represents an ellipsoid in the volume, any plane

. - section of which is an ellipsoid. Setting the off-diagonal elements of a

equal to zero (and adjusting a - a', b - b' accordingly) is equivalent to

a diagonalizing or principal-axis transformation. Our specification of a

by (6.7) simultaneously, in each sperture coordinate system (0T, 
0 R) usu-

ally requires that (0T' 0 S ' R  0R) form a plane perpendicular to the

(x,y)-plane, cf. Fig. (5.1 , e.g., ooT=0 ,n/2 (e. 0R=7/2,n, cf. (5.24a)

More generally, we can always choose the orientation of the co6rdinate

system for the beam at 0T to insure the vanishing of the off-diagonal'I terms in-§T' but we cannot, then, simultaneously require this for the off-

diagonal terms of aR, when the condition of the perpendicular plane is

not satisfied: the projection of the (elliptical) receiving beam on So

will be a "tilted" el.lipse in the OsRcoordinate system. An exception

is the case where one or both apertures are point sources, cf. (6.14) ff.
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0 a2  0 . (6.7)

0 0 b2

Moreover, for analytic convenience here and without any fundamental

reduction in overall generality, we shall henceforth require the receiving

beam (unless it is omni-directional, cf. (6.14)) to be so oriented that
0 ST, 

0SR (= 0s  if ro = 0), along with 0T and OR form a plane perpendicular

* ", to the basic xy-reference plane of 0T, cf. Fig. 5.1 (with %T = 0 or f/2).

(This is also consistent with the experimental configuration of the associ-

ated experiments [6).) Thus, (6.7) applies for both0 T , GR , (6.5), (6.6),

simultaneously,* where now a - aT, aR; b bT, bR, for the appropriate

(diagonal) elements of aT,R. We call such beams "perpendicular co-

* planar" (- .coplanar) beams.

With omni-directional beams, which are produced by (single) point-

sources, we have for the source weighting, AT = gT(fo)6(Q-.C) at a point

.E1 ,so that the resulting beam pattern is

OT omni = kVT g )e2 X1V = gTe (6.8)

Consequently, with . given by (iT-IoT)fo/co, (iR-ioR)fo/co [cf. (5.26)

with ro = 0), we obtain at once the following beam patterns

4..4. ilk0 (r) "oT
) %§o

:"61= g T(fo )e (
-omni

-" gR o ( i(r)-!oR) "(Liz[ hT'h R])
Oi!(RI omni =  ;R(0) (6.9)

ko = 2 r/X0 = 2rf0/C° .

Unlike the gaussian beams above, these omni-directional beams are "broad-

beams" (B.B.) since (6.2) does not generally apply: iT(r)-i.T, etc.,

cannot usually be approximated as in (6.1);(however, see (6.14) ff. in

the case of random surfaces).

44g€ *See footnote on page 64.

'S]
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Since E has no z-component, we can set the z-components of AoT,
^oR' equal to zero without changing the projected ellipses .,oT-,

(-ro)"-AoR" (r-o) on So . For additional simplification we choose the

coordinate system (0S) so that the y-axes of 0T' 0S coincide, i.e.,

oT = 7r/2 (.-o = r). Using (5.24) we readily find for (6.1a) that now

oT= /2):

10 0
a-T = 0 coS2 0oT sir- cos0o1
4T1 sin *2oT oT

0 sineoT cOSeoT sin 6oT

(6.10)

1 0 0

=RoTsine°T-L 02 (R°TSine°T-LdhR
a° = 0 1Ro

oR R
O =0 oR

0 RoTsine°TLhR 1 (hR

oR 1- R

with

RoR ={(RoTsineoT- 2 + h2} (6.10a)

here.*

Consequently, we see that, for (6.7),

100 1 0"~o = 2l o~ 2 aTOO) (6.11)
AT 0 a TCos 6 oT+b TCos a oTsin ne oT Ix =  0 a2(eoT) (.1

0 x ix

and so that

*We note that det -oT = 0, but det aoR # 0 (unless R @ T, cf. mono-

static operation); also ioT.aoT = 0, etc.; cf. (6.1a): IoT minimizes the

scalarioT aoT oT (=0), etc.

" 4 - '.' ' . . ''.;. 
"

" " "" " " w . " ." .-. -, . -.. w- . .- . .%%,.% ..
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a(Eo - (a o sinOTo uOO o ( 0). (6.1a)U

T. -=" 2 + Tb2 2 0 o28o' )

Similarly, we get (, = 0):

AoR 0 a2[1 (RTsinT-L'2]2  h 2 RoTsin'oT-Lo
_-l _ oR O oR oR

L (6.12)

10

a (OoT;L hR)

where now

where now RoTsinOT'L2 2 +2hR 2(RoTsinoT4 Lo (k0

RoR'oRJ " oR ! 0

(6.12a)

From (6.11), (6.12) we see at once that the T and R beam patterns form (a

continuum of) elliptical projections on the mean surface S (=( > = 0), e.g.,

r - IS = x2 + a2(poT)y2 = constant (> 0) ; (6.13a)

1 R~R1  a'hR~y2
r  SA0= x + a (oLh )Y = constant (> 0); ro = 0. (6.13b)

6.2 Remarks

A variety of features of these beam patterns is to be noted:

(1). The gaussian beam patterns [(6.3), (6.5), (6.6)], which have

no "side lobes," can be well approximated in practice by the

beam patterns produced by parametric transmitters (and re-

ceivers), which likewise have ignorable side lobes.

(2). The use of these side-lobeless patterns provides significant

analytic and computational simplification, particularly in

the evaluation of scatter intensities, cf. Sec. 8 ff. These

4.. .,. ,.-€. - ... ., , . .. -. ;. - , ,,,
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"lobeless" patterns also enable us to distinguish, and avoid

confusion with, the diffraction-grating patterns produced by

scattering from any swell components in the wave surface (a

point noted earlier by Tolstoy and Clay, p. 197, [9]).

(3). A far-field condition is also required here, cf. (6.1), to

enable us to replace the various angle-dependent quantities

(e.g., a) with "central" values (20) defined at 0~ (and OS)
and thus greatly simplify the subsequent evaluations. Other-

wise, the exact expressions for4 ,T IR9 etc. must be used,*

as in the case of the omni-directional beams (6.9) with bi-

static operation* (R # T).

With mn-ttcoeain(R @ T), hwvrJ+zh-howeverT j+ ThR)
Lo= 0 (by choosing 0T at =0) and then ~Ton

*QRJomni = R
Also, if either transmitter or receiver employs a "narrow-

beam" (N.B.) while the other is "broad-beam" (B.B.) like

~ lmniin (6.9), for example, the narrow-beam is always con-
trolling in the product 07f0 RJomni* Thnv = _vRoR_!
Eq. (6.1), (r =0) specifically in (6.9), e.g., i~()j,

J(rIOR)f /c RR, so that now*

ik ra,)/R

QRlomni 9R~( 0) 0 -- o (6.14)

R =Eq. (5.23d), RR= Eq. (6.10a),

[TR o.

when, say, wit is described by (6.5). Moreover, it is no

longer necessary that 0TlOsto dR form a plane perpendicular
to the xy-plane, since the projections of an omnidirectional

beam on a plane are always circles.

*Actually, if the maximum correlation distance of the (here random)

wave surface is small compared to the minimum distances to the trans-

mitter and receiver, the "illuminated" portion of the surface is split

up into essentially independent r6gimes, each of which is in the far-
field, so that Eq. (6.14) for omnidirectional beams can be employed.

static-operation* ( * T).

[.-Soo

'."Wihmoosatcoprtin( @T, oevr ;iT- R
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In effect, the far-field condition here requires that the

V Iarea1 of joint "illumination" by the transmitter (and "viewing,"

by the receiving beam), over which the resultant beam pattern

magnitude is significant, be small compared to the distances

RoT, ROR. Quantitatively, this may be expressed by

aa-I<= Rr (- a)<RoT, RoR, (6.15)

where a, d are respectively the major and minor semi-axes of

the elliptical projection on So, at some level, Nbdb, down from

the maximum joint beam gain gTgR , cf. (6.17), and III, Sec. 6.5 ff.

(4). A reasonable generalization of (6.5), (6.6) is to replace the

constant phase terms PT' (R by the linear terms (in v):

TP 2"r -T(fo); (R = 2nv'R(fo)' (6.16)

OL where now v is given by (6.1) in these N.B. cases, and tT,R

has the dimension [L.

(5). We note the dependence of the beam patterns on frequency (-ko,):

this is a direct consequence of the definition of beam pattern

as the spatial fourier transform of the (physical) aperture

weightings AT( i), AR(, ), cf. (5.6), (5.12), (5.13). [Tolstoy

and Clay, however ([91, Sec. 6.3 et seq.), do not explicitly

include this frequency dependence, which leads to a somewhat

different interpretation of scattering intensity.) Moreover,

as (6.3), (6.5), (6.6) show, the beam patterns behave as ex-

pected vis-i-vis aperture size and frequency. Then, as AT,

AR cf. (6.5), (6.6), are made larger, the beam patterns become

sharper or "narrower." Similarly, as the signal frequency (-fo)

is increased, so also do the beam patterns contract: as wave-
length (xo) is decreased, the (fixed) physical aperture becomes

(acoustically) larger. In addition, the beam gains [gT(fo)j

gR(fo)], and phase parameters (oT' R)' are also frequency-

dependent.
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6.3 The "Narrow-Beam" Case

In order to simplify the evaluation of the Total Surface Spreading

Functions (TSSF's), (5.26), as noted above we must use beams (or at least

one beam, here QT) which are sufficiently "narrow" that their effective

projections on the sea surface (specifically on SO), are invariant of

angle variations over that projected area, cf. remark (3) above, Sec. 6.2.

These projections, of course, depend on the surface distance r, cf.

Fig. 5.1.

Here we shall give the conditions relating aperture size (-AT, AR),
frequency (k ), and distance (RT, o R) which permit this replacement

of angle-quantities by these single values established at 0S on SO . This
be 0

is what we mean by "factoring of the beam patterns." Accordingly, we

begin with the elliptical,.L-coplanar beams of Sec. 6.1, where ro = 0

so that 01 SR coincide. From (6.5) and (6.6), with (6.11), (6.12),

we can wrile for the combined gaussian beam patterns

1 ~2(A 2  2
RTigauss = 2 o +By )+ik (Cx+Dy)

where (6.16) is used, and where

AAT AR. 2 A R
A R2 + - B a (e) T + 2 A), (6.17a)

oT oR RoT OR

C = (oT *.T)x/RoT + (aoR "*9R)X/RoR;

(6.17b)

D (aT T)y /R oT + (aoR 'IR)y/RoR

2 2with a 2 , a 2 given by (6.11a), (6.12a).

We distinguish two principal geometries:

A. Backscatter Geometry: R@T (identical beams)

A 2AT/R2T B 2aT( oT)AT/RoT .2.B = a2(6oT)A. (6.18)
T TT TTOTTo
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In addition, with circular (conical) beams bT = T and thus a T (OoT) ]aTcS oT, cf. (6.11a).

B. Forward Scatter Geometry: Specular Direction (identical beams)

In this case (5.29) applies and again aR(eoTI . . . ) a=Ta(6oT),

(6.11a), with

= 2 2 2, 2 2 2

A =AT(1/Ro + 1/R2 ) B = I 6) / / A(.9T( OT OR)' T oTAT( /OT + /OR) T aT(OTA (.9

for these identical beams. Here, however, RoR RoT usually.
For the somewhat more specialized beam choices of the Roderick

experiments [6], where the receiving beam is omni-directional, cf. (6.9)

and (6.14), we have (6.17) for the combined beams, where now R =

i oR*-TR/RoR' T 0 . Thus, the parameters (6.17a,b) of the combined

beams are now

2 2 2

A AT/RoT ; B a T (oT)AT/RT

C = LaoT'&T)x/RoT + (o/RoR)sin€L; (6.20)

S(RoTsine oT-'a

D = aoT.T)y/RoT + R- R /%c0sL

For the .L-coplanar condition, L = 0, consistent with oT = 7/2, cf.

Fig. 5.1. However, since the receiving beam is omnidirectional, (6.14),

this condition can be relaxed, and eL does not necessarily vanish. For

the back- and forward-scatter geometries of (6.18), (6.19), we find that

(6.20) reduces to:

C. Backscatter Geometry (Gauss x Omni): ,L = 0

A A A/R2T B = a 2(eo )A; C*Tx/RoT

2(6.21)

2 2D CosTyCOS oT/RoT cos e
Ty . oT + oT *
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D. Forward Scatter Geometries (Gauss x Omni),
in the Specular Direction

Here we have OL = 0, oT = N/2 = i and A, B, C, D are readily

found to reduce to (6.21), provided we invoke (5.29), as required for the

specular direction. Off the specular direction, of course, C and D

differ from (6.21).

Our next step is to relate an effective beam width, AB, to: (i)

the beam parameters (AT, ko, ...); (ii) the "narrow-beam" conditions (6.2)

above. This is done by choosing some distance (rb-max) on S0 where the

maximum projection of the beam falls to b-1 of its maximum value (gT),

(6.3), in the manner of Fig. 6.1.

5z...

CTT

SS

-

• "x. rb-max

00

rba-RT 1.hoig lumnO n y"hrt uss

.'.oT

'"':01 i ( oT)

0.

F 6. .G of e c beam width, A

p5. in the fa field,

rbma/ oT< ,sown luiato y"hot•uss
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For the gaussian beam (6.5) we get (in the far-field)

I(LT(-Rb_ OT;fo)' = gTexp {- oAb(x2+a( oT) 2y)/RT} = gT/b (6.22)

Taking the largest projection on S viz. Yb' (aT< 1) and solving

(6.22) for Yb/RoT, xb = 0, we get directly

S/R = (2 log b/ATa2( OT)ko) 2<< 1, (6.23)

where we recall the far-field condition (6.2). From the far-field

geometry of Fig. 6.1 it is easily seen that the effective beam width is

now (in the far-field)

I . ICOOo

A* T,b 2 ,bcoseoT (6.24)

subject to the condition

rbma/RT l 1ogbT ko T~b
Yb b-max2 b/AT/koaT(oT) - <<1, b > 1. (6.24a)2csoT

Here (6.11a) gives aT(oT) = aT cOseoT2(COS2eT + bT/aT)2 sin 2 T)2

( a T coseoT for circular beams, aT = bT).

E. Example

These data are obtained from experiment [6]. We have

AST,b = 50 @ -10 db (:b = 10) = 8.73- i0-2 rad.
- 0.358. (6.25a)

0oT = 830 = minimum grazing angle used.

which is not very small. We should have Yb -< O(10 -2) comfortably.

Since hT/CoseoT = RoT, we easily find that for hT = 28.7 m, RoT = 235 m,

and '.rb 84.3 m, from (6.24a). (This is approximate, since Yb' (6.25a),

does not obey (6.24a) very well.) The effective bandwidth of 50 at -10 db

(from gT) is measured at 20 kHz. This permits us to estimate the equi-

valent aperture cross section AT, under the assumption of fully circular
beams [aT = bT (= 1)]. Since



74

AT 1..(a. kb) 2 log eb (6.25b)

from (6.24a), we find that at fo= 20 kHz, or o= (3/40) m, *-AT = 6.16 m

(b = 10), cf. Fig. 6.1.

Now Yb ~ 0.36, cf. (6.25a), does not very well satisfy the far-field

requirements. To overcome this critical defect (which otherwise greatly

increases the practical complexity of our results, vide Sec. 6.2, and

above), we can achieve the desired effectively narrow beams by using

suitably "short" signal pulses, so that only a comparatively small por-
tion of the projected beam area on So is illuminated at any given in-

stant, cf. Fig. 6.1. If T is the pulse duration, then

rbbmax  -Arb-max I 2TsCo/CoseoT; b-Arb-max/RoT<< 1, (6.26a)

as required, where 2T sC0 is the pulse distance in the medium. The new

effective beam width is

S= Arb-max cosoT/RoT = 2Tco/RoT. (6.26b)

Thsfo. -3
Thus, for s= 10 sec, Arbmax = 24.6 m, and-* Arb ma/R = 0.10,

which is better. Still better are pulses with Ts = 4 10 secs, say,

as then the far-field condition becomes Arb-max/RoT = 0.04 <<1, acceptably.

However, there is a limit to how short a signal duration can be

tolerated before our postulated "narrow-band" conditior [(5.31), (i)]

breaks down and we must then account for the fact that our apertures are

frequency-variable, i.e., they act like (linear) filters, cf. (5.6). We

discuss this point in Sec. 6.4 following.

6.4 Beam Convolutions

To appreciate the filtering action of the aperture in its response

to signals of finite bandwidth, let us consider (5.9) and (5.10) once

more, now with driving signals of arbitrary temporal structure. We con-

sider for the moment the unscattered field ctH" Instead of (5.10) in

the frequency domain ( now with so  s), we can write in the time domain
the temporal convolution

1hill



* 75

,...... F

"L f dT f AT(j,t-T+t*(J))Si (T, ) d; t* - .FIco - R /c
HV Tin -T o oT o

"" VT (6.27a)

Alternatively, this may be expressed, for Sin(T,&) = S in(T): uniform

-drive, as

s(t-RoT/C)
a f e '" Sin(2-) (S'(iTioT)/Co,S) ds (6.27b)

Br1

where Sin (2-) is the (amplitude) spectrum of the applied signal, cf.

(5.12), (5.13). Equations (6.27a) and (6.27b) may be described, func-

tionally, as

(6.27a): aH - aperture weighting * driving signal waveform;
(6. 27c)

(6.27b): H ~F.T.(beam pattern x driving signal's spectrum)df,

where ® denotes (here temporal) convolution, and F.T., the fourier transform.

For narrow-band signals (about so = 27rfo) we have Sin(S'+sO) 2i

Sin(2- where S. # 0, Is'I < Af<< f Then the general relation (6.27b)
in2iin o*

becomes

s' e fs'(t-RoT/co)ds,
cH B eSo(t-RoT/Co) I Si(2*m) O([T-,L)T](s'+so)/co;sO)e 2

(6.28)

Provided Sin is spectrally (considerably) narrower* than QT' LiT may here

be considered essentially constant (in s') vis-a-vis Sin' and so (6.28)

reduces to

s (t-RoT/C)

ciH "{ r([$T'-. oT]So/Co;So) f r 0in /t-iTec ) ds
H0 0 Br 1  i2 (/ e--T ' (6.29)

which is just the form of (5.14) earlier, as expected. This is the "narrow-

band" postulate of our analysis, generally.

--- -- --

*We may set k0 - k', (k'<(<)ko), in (6.5) and specifically compare

-i.T with Sin to establish a workable quantification of the term "narrow"

here.
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Accordingly, as long as the pulsed signals of Sec. 6.3, cf. (6.26a),

are not too "short," i.e., as long as T s Af' of Q , we can "factor"

the beam pattern and signal spectrally according to (6.29). The "scanning"

of the beam projection on S. in Fig. 6.1 is then automatically accounted

for by (5.26) in (5.21a) through the spectral structure of these narrow-

band "short" signals embodied in Sin (s/21i).

r, 6.5 Beam Integrals for Scatter Intensities

When the narrow-band condition for the signals is obeyed, the beam

patternQOand the signal spectrum, Sin' "factor," as in (6.29), (5.21a),

(5.26). When in addition we have gaussian and/or onni-directional beam

patterns of the type (6.5), (6.6), and particularly here, (6.17), in the

far-field, it is possible to evaluate a variety of integrals over So %

* which arise in the evaluation of the coherent and incoherent scatter
intensities (cf. Section 8 ff.). We summarize these results here.

The integrals in question involve the beam pattern products 0-AR -

QTR' With the help of (6.1) in (6.16), we see that (as long as one of

the beams is "narrow" in the sense of (6.2), now with ro =0)

I" TR " oR- /RR (6.30)}. T " koL*" AoT *"-T /R oT; =D R"akL- !R -R/noR

so that from (6.5), (6.6), we may write directly

1 2 TR +ikrL'.TR
L TR TR = gTgRe 0r (6.31)

where from (6.11), (6.12)
AT  A
AT + R 0

*AT AR R2  R2

-TR W2_ T +  oT oRA+ 2 2 AR
ROT noR 0 a2(o °T)R2T R hoR,

oT RR

(6:32a)

I I.(6.32b)

.%-

rO B

dfd~ % 9 *-
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Also, we have
bTx =C Eq. (6.17b)

or

R/o v D = Eq. (6.20)

Z Tx/RoT + 9Rx/RoR

9 .TyCos2oT+T , z OOTcoseoT 1 (RoTsinOoTl 2  / (RoTsineoT-) hR Rz

ROT R2  Ry/RoR + R3
SoT oR oR

0

- (6.33)

from (6.10), where we set the z-component of bTR to zero, since generally

lies only in the (x,y)-plane.

The integrals in question are
k 2

ik 2a .r-_0o Ar

12 ( _ ,D)_ _ (RT~Zrl )dr I f d(lr)QRT(rl+Ar)*e
2 -- -" (6.34)

6r r 2  - I

12(M=O); (6.35)

and
E3(,) - (6.36)

(Note that since rlAr have no z-components, we can set (2L )z -- 0 through-

out in what follows.)

Since 0 RT, (6.31), are (symmetric) quadratic forms exponentially, at

most,over infinite intervals, we can use the well-known result, Eq. (7.26)

of [45] (in vector, dyadic notation):
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IW = , ue2 (6.37)
I( U] e

= [det A]2N^

where A = dyadic form of the inverse square matrix A-1, e.g., .u u;
u-A-u= uu, where the elements of the matrix A are the various (xx, xy, ... )

components of the dyadic - Thus, det Adet , etc. Applying (6.37)

successively to (6.34) with (6.31) yields after considerable matrix manipu-

lation (on replacing dyadics by matrices, as convenient)*:

(gTgR) 222 _ _(2%bTR )(E-+ 1 'G.-H)(_bTR) (6.38)

12 k A P0E e -616
S. o

where

[d1211  12
E_ BT + DM= E; DM =DM (6.38a)

122

]12 '+ 22 [dl 2  d22J= 63a

det E = AB + (Bd11 + Ad22 ) + (d11d22 - d12) > 0;

Ud12 ^ (6.38b)

E. B'T +dTR 1T
E"1 = B+22 -d2  (det E)- 1  ;

-I -d12  -

H - 1 TR + E H (6.38d)

and only the (x and y) components of 2ao-bTR are used here.
Equation (6.38) is an exact result. Note that the exponent of (6.38)

*AlthoughBTR in (6.31) is diagonal, DM in (6.34) is not--hence the

* utility of the matrix technique here.

L N
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is independent of frequency.* This occurs here because of the explicit

frequency dependence of the beam patternsin our formulation [(6.3)-(6.6),

and (6.31)], which is required, realistically.

For II, (6.35), we find that since.DM = Q, E = BTR , and G = 1
21i -2B ( 2- 2 2- JTR'I

,stt -= 2F. , and since det2 R (1/2) det-2TR

we get directly from (6.38)

Go' OD= i k k o A r

Ii( o ) = -RT(.rl)dr I f d(A)RT(.LI+Ar) *eioo

2 3 (2-2-(gTgR)2 2 2 - o-TR)TR(o-TRko(g,.g A  •a- = II(ct-bTR) ,(6.39)

'" kAB Oi

since det BTR = AB, cf. (6.32b). Equation (6.39) is also exact.

For 13, (6.36), we get from (6.31)

4*.~~ ~ 1 2 ~-O~xA~yBJ-kTR'
-.

,2~ 3g g2 AB o e (x2+ (6.40) kbT.

We note the explicit role of the phase terms (~kTR (6.33)) [cf. (6.5),

(6.6); (6.16), (6.17)] in the above results (6.38)-(6.40). Again, only

the x- and y-components of 2a -bTRb TR' (6.33), are used here. Finally,

because ITR is diagonal, there are no "xy"-components in the exponents
of (6.39), (6.40).

A. Approximations

Let us consider the second (square) matrix in the exponent of (6.38), 12:

HG H + E4 )ITR - 2-TR- !TR)ITR + E -TRUL= (6.41)

*-. *This agrees with Tolstoy and Clay [9], cf. Eq. (6.74) et seq. therein.
( However, we note here the k 4factor in (6.38), rather than the k-2factor

of Eq. (6.74), [9]. The formulation of Tolstoy and Clay [9] does not in-

clude an explicit frequency dependence (-ko). (The insensitivity of the

exponent to frequency stems generically from its dimensionless character.)
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I f

d11, d22 "> A,B, cf. (6.38a) E- >> and E. = DM (6.42a)

if
S - (detD= dd2-d 2 ,) ". d>

Be (6.42b)

-HGH 1 = 0

I ~And we have (T~

".det GE det EBTR = det E det BTR AB det DM = AB(dlld22 - dl 2 ). (6.42c)

Consequently, (6.38) now reduces to
j^

(gTgR) 22 2 e- 2(2_o-bT)DMI(-o-R )

2(k-TRieoT)  0 /AB(dlld 2 2 -d 2  (6.43)

4 2det DM = d1 1d22 -d 1 2 (> 0),

which has "xy"-components in the exponent, since M is not usually

diagonal, cf. (6.39), (6.40) above. The inequalities above are reasonable

provided the grazing angle 4oT (=/2-eoT) is not too small, i.e., eoT is

not too close to 7/2. We must, of course, test (6.42a)-(6.42c) for actual

geometries, as used in the experiments of Roderick [6].

A.1. Change of Dimensions
2

Finally, we note that if ko is absorbed into A, B, and k into C, D,
0 0

of (6.17), (6.17a), i.e., A, B = O(L-2), C, D = O(L1 ) dimensionally, then

11, (6.39), and 12, (6.43), replace the k factor by k2 , while I (6.40),
2 in the denominator. Furthermore, in (6.39) we must then alsohas no 0ko emuttenas

2
insert a factor ko in the exponent. In this form the dependence of the

effective aperture size on frequency is disguised.
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B. Explicit Forms: bTR, 2ao -b
=T'-o -TR

The explicit general forms for bTR are given here by (6.33), for N.B.

patterns, in the usual far-field state. For the more general quantity

2-bR we combine (6.33) and (5.25), to obtain

2 o-bTR =JI x {(1 + RoTIRoR)cOoTsineoT - (Tx/RoT + 'Rx/RoR)}
( j.Tycos 2eoT+Tzsi neoTCoseoT

+ iy (1+ RoT/RoR)sinoTsineoT -Lo/RoR RoT

+ [1 _ (R oTs inoT-Y 2 1 +Y/ (R oTsine(oT-yh R Z RZ (6.44)
R2 [ _ + R3

Equation (6.44) can be simplified somewhat, depending on the geometry

of the (N.B.) arrays employed. For a vertical array we have

(i). Vertical array: -&V Z-Iz  (6.45a)

(ii). Horizontal array: Z= ix~x + y ; (6.45b)

and for a combined horizontal-vertical configuration (to form a beam of

effectively cylindrical shape), we can superpose (i) and (ii) to get

(iii). Cylindrical Beam: - + = + ly9y + 1 9. (6.45c)

=-x +it-z =0 : (6.45d)
* xx 1-Z z y

horizontal array axis on x).

Accordingly, we can set 1y = 0 in (6.44) for "cylindrical" beams.
y

In addition, we note that the maximum effective dimensions of the

array are small compared to the fundamental distances RoT, RoT, cf. Fig.

5.1, as required by the far-field or Fraunhofer condition imposed through-

out the present analysis. This means that Lx,y,z/RoTRoR<< 1, so that

for transmitting beams directed in the yz-plane (e.g., ooT = /2), we see

that (6.44) can be further simplified to

,,4.

U U U
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"iZo-bT R = x x-T/oT - Rx/RoR) J iy (+RoT/RoR)Sinl oT - o 6.6

(zTy = 0) .(6.46)

Also, from (6.33) we have here kTR given by (6.33), with 'Ty = 0. Whether

or not we can setkTR 0 in such expressions as (6.40), or even (6.39)

and (6.43), will depend on the components of TR and DM9 of course.

In the present experimental situation [6], where the receiving beam

is omnidirectional, (6.20) applies for ITR, e.g.,

bTR = xC + i yD; with (-aoT.1T)x =Tx;
(6.47)

(,oT &T)y = TycOS 2BoT + 9TzsineOTcOSeoT

which can be further reduced on setting ZTy = 0, cf. (6.45d).

C. Projected Beam Area on the Reference Wave Surface (<t> = 0)

From (6.17) et seq. it is clear that the composite beam pattern pro-

jected on the reference surface So: <t> = 0 is a series of concentric

ellipses, with the most intense beam levels occurring at x = y = 0, i.e.,

at Os, cf. Fig. 5.1. Thus, if b 1 is the level of the beam pattern (b > 1)

from the maximum, then the corresponding ellipse is described by

Ax2 + By2 = 2 log b, from b"1 =e , (6.48)

(where we have absorbed into A, B, so that A, B = O( -2 ) are inverse

areas). Rewriting (6.48) as

x2 2 x y2
2 +2 =1 or .+ Y! (6.49)

e/*2 109 D 2 + = 1or -x 2 1,f(i2lo-b ( ax ay

we recall that the area of this ellipse (on <c> = 0) is

Ab = naxay , (6.50)

so that we have directly from (6.49) in (6.50) here

.'* . .. . . . .
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A 2w log b (6.51)Ab vmuq

As we shall see presently (Sec. 8), the factor 2w//lAB shows up in the

calculation of scattering intensities. From (6.51), accordingly, let us

choose b = e, or log b = 1, i.e., we select the e"  level of pattern

relative to its maximum:

A _ 2T (6.52)

Thus, A1 is the projected joint beam area on So at the e
"1 level. This

particular analytic result, of course, stems from our original choice

of gaussian beam pattern, cf. (6.5), (6.6), (6.17).

D. The Reference Surface Area, AREF

The reference surface areas, AREF, which are employed in the defini-

tion of the scattering cross sections (2.6), (2.19a,b), are arbitrary and

may be chosen conveniently to simplify the result. In conventional prac-

tice (cf. [l]-[21], except [9]) the area AREF on the reference plane So:

<4> - 0 jointly "illuminated" by the projected beam patterns, RT' is

determined under the assumption that ORT' as projected, is uniform over

the reference area and zero outside it. The associated area, AREF, is
such that AR>> 9 (>> 2S), where Zgec,S are respectively the correla-

tion distances of the large- and small-scale wave surface components, cf.

Sec. 3. Thus, since from (6.3), (6.17), and Sec. 6.3 above, we have
specifically*

1 2-Ax2+By 2)+iko(Cx+Dy)(RT on So = gTgRe 2  
0  (6.53)

so that the beam-pattern integral 1 3(0), which appears in (8.1), (8.8),

etc. for the calculation of MO, cf. (2.6a), becomes

*With (6.17a,b) for A, ..., D, where we have absorbed the k2-factor

into the A, B, which in turn now have the dimensions [L'2
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3 (f)- I(IRT 2 drl = (gTgR)2AREF: uniform beams (6.54a)
1 _uniform_

I )2A,: gauss beams, (6.36) (6.54b)

Here A = 2f/V-_ABF, (6.52), namely, the projected area on SO0 of the

gaussian beam patterns, (2.11), (6.17), etc.

Similarly, we find that the associated integral [in (8.1)] becomes

(with the help of (6.37))

I,2ik ax -Ar - -rD *Ar
1I (2k ci~x ff r('R(:JndR(.r)*e 0-0- 2-I - d(Ar)

2 1 _F(2I 2 )2 (2:)

( b -  exp x _ +
0,.'' gy gY 2 gx g

(uniform beams) (6.55a)

=1 A (~~ 2  21 1 2cp~ + (2a O)2
2 T bo exp - 2b2  2 02

ogy gy gx gy

(gaussian beams). (6.55b)

Accordingly, our choice of reference area is

A REF =A 1/2 (6.56)

here. As we see in Secs. 2.3-2.5, this brings our results into agreement

with corresponding portions of earlier results, viz., various separate

and joint determinations of the large-scale and small-scale scattering

cross sections.

6.6 Summary Remarks

In Section 6 we have developed the role of the beam pattern in con-

siderable analytic detail. Particular attention has been given to the

'aussian pattern (6.3), because it approximates well the patterns pro-

duced by parametric transducers. Included also is the omni-directional

'A.
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*pattern, (6.8), (6.9), which is used in the receiver in the accompanying

experiments [6]. The product beam patterns, (QTR, are always "narrow-beam",

from a combined choice of geometry [cf. Fig. 5.1] and injected signal

waveform [cf. Sec. 6.3].
We note the following in summary:

(1). Projections: (i). ro = 0: axes of the beams coincide at 0S ,

cf. Fig. 5.1.

(ii). Elliptical beams, which are elliptical on

S(:<> = 0). Here 0T,  0 R form a plane

perpendicular to the plane of S, e.g.,

CoT = 0,T1/2, and--4oR = '/2,7.
(iii). Since the receiving beam is omnidirectional

in the experiments, we can relax the planar

constraint of (ii) above, cf. footnote ff.
Eq. (6.6).

(iv). The projected (composite) beam area on the

reference surface So (:<0> = 0) at the e
level vis-a-vis the maximum (at x=y=O) is

". A = 21T//A-B, cf. (6.52).

(2). Narrow-Beams (N.B.): this requires far-field geometries and

possibly gated (modulated) carriers [Sec. 6.3].
(3). Explicit dependence of beam patterns on frequency [Sec. 6.2].

. (4). Explicit results for N.B. cases in the forward and backscatter

. regimes [Sec. 6.3].

(5). Concept of "effective bandwidth" [Sec. 6.3].

* (6). The r le of the Fourier transform of the beam pattern with the

driving signal spectrum [Sec. 6.4], or when beam and signal

waveform are factorable, cf. (6.29). (The gated signal should
not be so short, i.e., its spectrum so broad, that (spectral)

factorization is not possible. "Beam-scanning" of the (wave)

surface is automatically accounted for here.)

(7). Various beam integrals needed in the evaluation of scatter

intensities are carried out [Sec. 6.5], which include the
-O effects of the phase terms in the complex beam patterns, cf.
4.9(6.3).

4.
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In general, the above results are independent of propagation and geometry

provided

(1). the medium is not dispersive, e.g., f < 0(40 kHz), only

absorptive at worst;

(ii). Vc 0: negligible velocity gradients. [However, the effects

of vc € 0 can be accounted for by suitable reconfiguration

into an equivalent geometry--to be considered in a later study.]

(iii). far-field conditions are valid, so that one can speak properly

of beam patterns, i.e., Fresnel corrections are negligible.

With the results of Section 6 we are now able to obtain explicit
expressions for the desired scatter intensities [Sec. 8], once the ap-

propriate local scattering model is implemented [Sec. 7 ff.]. See also

Section 5.5 for a summary of the basic structural conditions.0

7. Surface Models: General Scatter Intensit

From (5.26) in (5.20), (5.21) we can now write the received wave-

forms X(t) whose intensities we wish to determine for the back- and

forward-scatter cross sections which are the principal aim of the present

study. Specifically, we have (the complex) waveform

t"X"() (k)s St dsX(t) M AoB n S ,k (r,t),..1f )es d-=0" in 0 IT iWk= k=0 BrI1
. ., (7.1)

where the Total Surface Spreading Function (TSSF) Fk) is now

2 sTQ ( k ) awocoTo - -(r+4). 2% +COT°  d

F(k) f (k) r,t')e Co dxdy
= f5 0 RT (r o o o2o(t~. 2 oc~]______-(4 ) 2 RoTRoRn z

:,::)::(7.2)

subject to the various approximations and assumptions noted in Secs. 5.5,
6.6 above. The beam pattern product N lT is given explicitly by (6.17),
(6.31) here, cf. Remarks in Sec. 6.2 also, and t' = t-Atdsr r

cf. (5.22a,b).
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7.1 Wave Surface Models

As before, cf. Sections 2.1, 3.1, we shall employ a two-component wave

surface model, consisting of the single gravity-capillary wave surface as

one component (G), on which rides the soliton-ripple contribution (S),

as sketched in Fig. 2.1 above. For later analytical convenience (cf.

Sec. 8.6) we shall in addition split the former surface into a sum of large-

scale "gravity" (G) and small-scale "capillary" (S) contributions, so that

the surface elevation at Lr,t) on the reference surface, (SO) is, in detail,

!:tt= + Cc(,t) + nG( ,t)S(E,t) with cg = iz g £S = GS

(7.3)

where nG is the normal to the G (= g + c) surface, viz.

)n x x yY y zx etc.

={(xx + i Yy - .z)nz}G + 2 + 2 /G xtc.
G (7.4a)

However, for the present we use the two-component composite surface

i(r,t) = z4G(Lrt) + nGr,t)¢s(,t) (7.4b)

reserving to Sec. 8.6 ff. the further dichotomy of c. into a "gravity" (g)

and a "capillary" (c) component.

In our alternative approach, as noted in Sec. 5.4 above, we obtain the

following specific results for surface operator kernels QSk) ([41], II):

(0) I I(K (Q0,> r RYn* -) -s I (7.5)
°o-TR 0  

(75

and

(k (k)Ro + . (k)Ro
(k1: =og G o S Q (~z -G)AI"kRo19 + (i *S)

(7.6)

4
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Here Ro is a plane-wave reflection coefficient (for the water-air interface)

and s is a shadowing function (0 4 S < 1), whose statistical properties we

shall comment upon presently, cf. Sec. 7.7, C ff. The subscripts g, c in-

dicate the (moving) surface upon which the quantities in question are to be

evaluated. Our specific result (7.5) is based on the Tangent Plane (T.P.),

or Kirchoff approximation, cf. Chapter 7, Sections 19, 20, [1], in particular,

the discussions in Sec. 19.2. (See also, Bahar [23].) In (7.6) the Av k)

are the fluctuationsin the densities of the repsective k-coupled scattering

elements on E and Ec . [A full treatment of the cases k1 is described ing
Middleton [41, II, III].

Applying (7.5) to (7.2) then gives us directly for the TSSF

aw 2c

(k=O): FO) e 0S [ nRoTS i R)

S (47) 2RoTRoR so 0 n z G+S
(7.7)

(RTe(S/Co)[ / (r+)2o0 +c0 To] dxdy,

where all the conditions and approximations of Sec. 5.5 above are in force.

The result (7.7), with (7.1), is a generalization of Tolstoy and Clay([9],

Eq. (6.19), before integration by parts therein, cf. (7.27) ff. also), with

the inclusion of one or more of the following:

(i). doppler, in c(r,t');

(ii). general apertures;

(iii). general narrow band signals; (7.7a)

* (iv). shadowing;

(v). absorption.

Similarly, we find from (7.6) in (7.2) that the TSSF for the diffrac-

tion terms (k1) is

(k>1): F-I f e 0 ) /n + {RS(0)A (k)nG 0 { ')Av (k))
46. s (4n) 2RoTRoR SoSz-G G G}  0 nz S )G+S

e (s/c )[ (r+ )2o+ o] dxdy

(7.8)
where, as above, is given by (7.3).
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7.2 The Second-Moment Functions of the Received Scattered Field, X(t)

The second-moment function of the received scattered field is the sum

of the (k>O) second-moment functions, viz.

MX(T) I Mk(T) = iRe <X~ k)tXIKt> t t- , (.)
k=0 kO 2 1 2)> 21

since all k (>O) components of X, cf. (7.1), are statistically independent

and postulated here to be stationary, as well. [The averages < > are over

the epochs of the injected signal.]

Since S. (s/2 i) - Sin(s/2riI) here in (7.1), and since
in i

<S in(s /21Tilf)S in(S i2 1 *n I Sin(S1/2ri )126(- , (7.10)

with the signal independent of the scatter, we readily find on applying (7.1),

with (7.7), (7.8), to (7.9), that the various second-moment functions of

the received scattered field are now specifically:

A. Total "Classical" Component k = 0:

(k-): M(O) ( ) = Re {G()k (7.11)

where
2c,,',', , -2aw T O

GI)=e 000 2("geometric," or spreading factor); (7.11a)
(47r )'RoR 2

-iw 't A2ooR

Ko(T W(f)e in df'; win =  IS(f') 2; (f' = f-fo)
n winf) w.(f') T2in 0

for narrow
band signals;

(7.11b)

and, for the present,
0" 0 = i ko2-ao'--r

IM(O) (T I fo S )SRT 0 o=i f,"T11 dt ,OR~r+r o

IRRoS> /2-IL2 2 1(n 02 o 1 d(L)
OlO~l G+S 1Z n 1  nz2 G+S1'* 1; z + \£-z -k-- ! +s" ,... -,..

6i, ' *p '"**~*~455* J , . .* .- ~ ~ . *. ~* 5* . - P-
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where "r rx2- 1l,  = t2-tI , and here the composite wave surface c, (7.3),

is represented explicitly by

L, =  (rtl-RR1/Co); - = l+Artl+t-RR /C ); RR/co = (RoR-i-oR'r)/Co'
1(7.12)

this last from (5.22i), including doppler, where also we note again the time-

dependence of C. In (7.11c) we have made the further assumption that the

shadowing and reflection coefficients are essentially independent of the

surface elevation here. As the exhaustive analysis of Bass and Fuks shows

([1], Sections 22, 23), this is reasonable: the shadowing function depends

only on the statistics of the slopes of the surface, in the case of the in-

tensity calculations here, cf. [1], 5, p. 297. This is also approximately true

0 for mean amplitudes, )>, as long as the shadowing is not too heavy, [1], 5,
p. 297 again.

B. The Coherent Component (k = 0):

Our result (7.11) includes the coherent component, <a>, if any, of the

received scattered field. [We exclude throughout any direct (coherent)

propagation, cf. Fig. 5.1. This is very easily added, if needed.] The

second-moment function for -X> is readily obtained on setting T t+t 0 in

(7.11), etc., and letting t0 -+. The result is

=O: M(O)( = Re {G(1)k Ko(T)ine o0 (O)(wIfa k (7.13)

with now

/120~~ 2k * 0.\ 2
R G+S) e 02 A( (7.13a)RT n e A+RT(a-o) '

and

ART(4,o) f M RT(rl I fo) <(RorSl)E >drI f ORT(rI+rl fo)* <(Ro2 2 ) =G+S>

• e d(Ar). (7.13b)
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Equation (7.13a) follows from (7.11c) (as to -) because we have made the
it usual reasonable assumption that the random wave surface (as an ensemble)

is stationary and homogeneous (i.e., independent of (r1,tj)), at least over

periods comparable to the signal duration.

From (7.12) and (7.13) it follows that the total second-moment function

consist, of the sum of an incoherent and an (independent) coherent part:

(k) (0) (T ) =M() (0+ ( (7.14)

where now, specifically,

(k=O): M ( )X(T)= Re {G(1)k2Ko e T (T ) T - (7.14a)
Eq (7.11c) Eq. (7.13a)

C. Higher-Order (Diffraction) Terms (k>1):

In a similar way we obtain the second-moment functions for the dif-

fraction components (k)1), with the help of (7.8) in (7.1) and (7.9). We

have directly

(1): M(k)(T M() (- Re e K K(T)_e 0 (~ al_ M (4) .4R2 R2  o in "RT 0oL '

' oT oR 
_

(7.15)

where specifically

(k 10 k 2at *Ar
M(RT "'") = f f QRT(rll fo) QRT(rl1--rlfo)e i ° -0

(k (k)v.~
[S ('-CG- v ________-i)A

nz G nz 1)G+S 1 (7.16)

(~ () (k)1 G(~(z.SA k)) 2n, GzS
0 enk o" .2n" ) G S
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and the averages are carried out over all random variables: G' -' .-Gx,

etc., Ro , etc. [The averages over the reflection and shadowing coefficients

(RoS) are independent here of the other averages, as noted earlier, cf.

(7.12) et seq., above.] Since these diffraction components can contain no

coherent components--these are observed only in the "classical" (k=O) case,

cf. (7.14)--we have written Mx k)(T) = MX<X>(k) T), k 1, in (7.15). Generally,

these diffraction terms (k1) are comparatively small, vis-s-vis the classical

components (k=O), except possibly for certain transmitter-receiver geometries

and directional wave spectra where the classical components may vanish. [See

the remarks in Sec. 3.)

7.3 Explicit Surface Scatter Statistics: Two-Scale Models

Before we evaluate M(k O) in the above expressionsfor the second moment
RT

functions, let us introduce an approximation for (n/nz)G+SI cf- (7.7), (7.11c),

(7.13a).

Let zG be the surface expansion operator of a truly two-scale surface,

where the second-scale surface here isaGCS , cf. Fig. 2.1, which rides on

the single gravity-capillary wave surface, izG , cf. (7.46). Thus, we can

write

22
, G 1 + CS nG r)2 + (7.17)

provided <InG.Yr I2C> < 1, so that the series is (stochastically) convergent
(at all r,t). Physically, this means that <inG-V2> <<; and < «> <<,

(m.s.), which is not difficult to achieve here. Accordingly, applying

0~q (7.17) to nJnziG+S gives

(n/ n (n/nz)G (/nzG + ".G (n//n) G  (7.18)

since
^Cl x+ C ' )/ C +Cf2 2 +, 22

( x + x y (cxxy+ yCyy) =0 X OG y0yy0
GInzG + 2 2 1G 02 + yC~~2 2/ +'y l

(7.18a)

so that

"9 -. . -. . -. * - ,- ,-*g , *j -. ,** 9 -* - , . .. * .. .• , ,- , y ', '" '', "~,"~ -V % , "° "°i "- "- . "" "" " " w -
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2 S Gx Gxx) = (10"4.100.100'1) = 0(i0 4 ,10"3) << 1.

A. The Coherent Component (k=O)
Next, let us consider (7.13a) and note that the Rayleigh number,

[koS(coseOT+CoseoR)]2 is usually small compared to unity for the soliton-

waves. Thus, using (7.18) and (7.3) or (7.4b) we can write

MO I .) 2ik G2
RT "" \\ n z)/ e (1+2iko-o "nG IS - 22- 2 A

(7.19)

First, we note that for IG a gaussian random process, CG and its (first)

derivatives are statistically independent, so that exp(2ikoa0oG) and

(n.22o)/nz)G are likewise independent. Second, to a good approximation we may

treat the gravity and soliton-ripple waves as statistically independent.*

Using (7.20) and the fact that (n.22o)/nz)G = 2 aoxiGx+2aoyGy-2aoz , we see

that (7.19) reduces directly to

2
(0 ~ I~( 2 io&)(~~z 0 S GS(O"+.. RT 2 .. 2

M(O)('I. = I (2aokoG2aoz + a 2(O)" 2A - s (7.20)

since Cx = Cy 0, etc., where

Fl( 2 aoko)G = <e = characteristic function of (~ ); (7.21)

and, with the help of (7.4), we see at once that

i(0) - 029 A(~o ' 2 = 
2cOx~x + 2 a~y Iy - 2c )3 (722

G-coh \ n ) (IG-g'O) 2 2 (7.22)
I I ) + Cx + Iy >G

This latter may be considerably simplified if we remember that %Gx, Gy obey

a symmetrical pdf (since % is likewise symmetrically distributed. Then

(7.22) reduces to

*Of course, this is not strictly true, as the configuration of the large-

scale waves influences the local wind action which produces the ripple

structures whiCh ride upon them, [16).

.NZ

o 
Lg1 %* ~ ~ *' w F 9\ ~ ~ ~ ~ ~ .
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(0) -8o 2 2x') + 62 a' M 2/ +  2 +2 = NO
=-o 0 G ox 6Gyo oY3z) 4 +C y2aN )G-cob "8 4-- + 2 2+ {Gx + GG " oz G-coh

(7.22a)

so that (7.21) becomes

M( I) 2 F koS(O) 2 (7.23a)
kT os N(O) + --2-ART(2o)

2 k2 2N(O)(2o)ATG2  Ro S G-coh .2 2

(2a OZ) 2ARTIFlGI e o co aS << 1), (7.23b)

generaly, 2,() <<1, as it usually is. This [Eq. (7.23))generally,~ ~~ Sh ltewhnKSG-coh

is a new result, for general beam patterns where (7.13b) gives ART, where

specifically now

62 22 2N(0) -4 CxOX +6+ coN() 46 o +6 LO (7.24)
G-coh <1 + C2 + C2 G2Cx y -G

is the coherent "tilt-factor." This result is to be compared with (6.43),

p. 205 and (6.41a) of [ 9]. Here we have the additional effects of the

tilted ripple surface ( S), which somewhat further decrease coherence. But

n k2 2c(O) is small compared to unity, we can usually set the ex-sic oS, Gcoh

ponential equal to one in (7.23b). Also, in place of the angular illumina-

tion function f(e), (6.25) [9] we have 2aoz (=-2YT+C), as a result of the

direct evaluation of (7.7) in (7.19).

The beam pattern function, ART, insures a vanishingly small value of

M(O)(.... ) for scatter angles off the specular direction, since from

(7.13b) and (6.39) specifically,

A RT- (RoS)2 (gTgR)22 xp 3 2
k2AB 0exp (- [ ox AbTRx +( 2 a°Y~bTRY )2  , (7.25)

0

(where we have absorbed the k2-factor into the A, B's (and ko into bTR) ,

e.g., AT, AR are O(L2 ), viz., are effective aperture areas now, cf. Ia of

I,-
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Sec. 6.5; also note the factor in the exponent now). We have replaced

(RoS)E by R S (referred to the reference plane, SO 9 of the gravity wave

component) with the help of (7.17), using the fact that I<CSrGRoSl< 1,

cf. (7.18a). Since A-  = (Ro/AT + RoR/AR), cf. (6.32a,b), is large, only

when 2aox-bTRx , etc. is small will ART not effectively vanish. (Here we

use (6.44)-(6.46) for 2ao-JaTR in various configurations.) Thus, for the

near-specular directions only does ART differ from zero significantly.

Furthermore, for the gaussian gravity wave surface we have specifically

the familiar result
2ikoa ozk 2 2 2

-'= kFeG0=eG> = e .oGcoz (7.26)

As expected, for rough surfaces (2koOGoz) 2 >>1, F1G - 0 and the coherent

* component vanishes.

B. The Incoherent Component (k=O)

Our next concern is the incoherent component (7.14a), for which we

need now M(O)TI ... ), Eq. (7.11c). At this point we can simplify (7.llc)
RT

by the following series of modifications:

1). We begin by expanding the exponential term in (7.11c), using

(7.3) viz.:

2iko~' 1 2ikoo( 2- G)1+2ko(-GS-nGlp2

• e = e oz [1 + 2ik Oa•(a2G 2S-,a1G'1S)

S 2 2(2ao 0 S22 + (7.27a)0+ -ko2oG1)(2aobG2) 2S'1S -k o 0 (20 ].h

Using the postulated homogeneity and stationarity of each component of

-. the wave surface, we get

2i 0 -k 2(2a -f 2 2
-ei' a(c'-.i1 )  2ik°0 a z ( 2G- '1G) 0e ko(0o G) Is-

pe =e oo ~G1~ [eo o

+ 2iko o'( 2 ' . 1 lS) + k +(2a

(7.27b)
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2). Next, we reinsert the factors (n,2o)/nz )G back into the integrand
of ART in (7.11c) and then integrate each factor in ART by parts (one over

r and one over Ar withLl held fixed, since CG' ;S are stationary and homo-

geneous here, in the manner of p. 198 of [9], but only for the leading term

of the series (7.27b), to achieve the desired simplification. When the

"illuminated" portion of the surface is large compared to (the square of the
[acoustic]) wavelength, e.g., AS >>2, or k2A - 1, or more precisely

S 0 0 s
k2A >>1, cf. (6.52), we can neglect the terms containing the derivatives
Sd1

of the beam patterns. The result is, for the first term in (7.27b), where
we use also (7.18):

2 +a2 +2 12f, ox o J oz,n "z / _n , e a ao /2 . e
Z1I z2A L oz (7.27c)

k2  AI>> 1,
0' 1

We emphasize that Eq. (7.27c), et seq., applies basically in the "high-

frequency" regimes, where (2k a 0)2>> 1. In the alternative "low-

2 o oz
frequency" cases (2k0aoOG) 1<<, however, we may approximate the normal

factor (~i) by writing

( 4 - 1-z) oz (7.27d)

since the slopes ( Gx'Gy) are here small. This is Eckart's approximation
[32]. Then, integration by parts is not required.

3). Applying (7.27c) to (7.27b) in (7.11c) allows us to write for

the factors averaged over the various surface components CG1, CGx' ... etc.*

*This procedure is equivalent to a direct expansion of the exponential

containing the soliton-ripple component in (7.7) and then integrating

[n- (iT-ioR)/nz]G+S-_G by parts for the first term of the resulting series,

where again we require Asko >>I, or kA 1 >>I, cf. [ 9], p. 198. This is
0. 1i i

then followed by the indicated calculation of the second-moment in question.

% ,. --.....
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a 2 + 2 2 2k (( ) - ox o z F +<e 2 G-lG

(7.28)
k2 nl2.lnzl)GQn2.2Z/nz2)G(2o.ilG)(22o. 2G) 2S lS+..>G,S

where specifically we replace the (interior) exponential term in the series

(7.27b) by unity, since here 4k&a h. )2 cs2<<1, and where now
0 0 2Z

F2G= F2 (-2iozko,2ioko)G = exp {-bk 2 2[1 -T+Ar

(7.29)

-2 =<C2>; bo= cose ose

is the second-order characteristic function of the gaussian gravity-wave

component. Here PG is the normalized directional space-time covariance

function of CG' viz.

PG -KG(Ar,T+r'oR/CO) = ;Ar, )d (7.30)

where, of course, < = = . The quantity Ar.o/ represents

a doppler delay produced by the moving surface [34], (a delay which we can

usually ignore henceforth).

4). Since the correlation distance, tG, for the large-scale surface,

0G(Ne ... , is large vis-a-vis tS, P(iS, ' ' ) = e l  for the small-
scale surface, e.g., ZG >>tS' so that c2G = IG for all Ar - S(<< G),

we may set 2G = 1G in (7.28). The result is

"p2 /~+2 2 2 1 2n2
< > ox oY oz F + k2 If-. (2ca K (LArr .

CIG az/ 2  / 2G o-n JG 2. ) s

k2  

(7.31)% 
ko 1 >> 15

P n m1

where in more compact form we write
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98 2  +L2 2

OX< > \ oz F2 + k2N(0  ) K >> (i i (7.31a)

G oz / oG-inc -o KG

with now

(0) 2_0_2_N,--c(o) 0 j
('2z /G (2, (7.32)

the incoherent "tilt" factor, cf. (7.24). With the help of (7.4) we

find that

N(0) (2ao.=/ X x+2oyCy- 2(z7 43

'GS (o i nc (1++ 2  (7.33a)

= (c,0 ; 4x.oy 4 1ox x oy o(O)

1.21 G-inc' [general RtT
41 (1+x +CY) G (bistatic, etc.)]

(7.33b)

and specifically, cf. (5.28), (5.30), with symmetrical pdf's of CGx' Gy

[cf. (7.54) ff.]:

) =N
(°  16 1sin4 T)GS oT inc-back = 16 s oT( 1+ 2 G

+ 6 sin 2oT 2 + C (7.33c)
<1+ "++

N=l( 6 cos 40T \+ 2)/ (7.33d)
SNO)(o)incspec I R=/ 2  16 x yG

In fact, for the general case here (with oT = '/2) we get

(.0' GS inCioT /2 oy )+2 r + 2< 1 2+ 2 +c2+ 2)

NGS -'o 22 oy 02 2T x y G G

(7.33e)

(which are evaluated in (7.66) ff.).

MOO::
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5). Applying (7.31a) to (7.11), with (7.13) as it becomes (7.23b)

allows us to write specifically the second-moment function (7.14) for

the incoherent component (k = 0):

M( 0 ) IT) = Re{ k2G(1)Ko(T)ine RT "M •(T...

-4k2a 2 a2_ 2,2,(0)
- (2aOZ) 2ke o ozOGko SNG-coh ART]} (7.34)

where now

20) 2 2 2ik a Ar

RT (k2A >>1) R0  _
01

(a2 +a2 +Cox oy oz F (-2ik 2ik + k2N(0) K(Ar,T...)drld( r)
a oz 12 2 2 oz'2 ooZG o G-inc S
ci.Z )(7.34a)

-2--2 -2ik a .Ar -2-2
ART "Ro S fJRT e o-o - drld(Ar) = R S Ii(k(og), (7.34b)

with I, given explicitly by (6.39) here for the general gaussian beam patterns

of Sec. 6. Following Bass and Fuks [1], Sections 22, 23, we make the indicated

approximations of removing the averages of the reflection coefficients and

shadowing functions from under the integral operations, with the observation

* that these quantities are slowly varying over the regions in which QRT is

noticeably different from zero. (In fact, we can set R2 = 7-2 = 1 here for air-
0 0

water interfaces, but note that 2 , usually, cf. pp. 288, 291 vs.

pp. 308, 315 of [1].)

6). At this point we take advantage of the fact that F2G and Ks de-

pend only on the distance difference Ar, because of homogeneity. Thus we

can integrate over 1 in (7.34a), using (6.36), (6.40). In addition, be-

cause of the short correlation distance zS vis-a-vis the domain of "illumin-

ated" wave surface, i.e., the region on S0, Fig. 5.1, where 0 RT is non-

-S '
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negligible, we may set r = 0 in I3( ), (6.40), e.g., since A, B, (6.32),

are small compared to unity. The resulting expression for MRT)(TI...),

(7.34a), becomes (in (these "high-frequency") relations:

a2 +a2 +o2 i2k.4 %r

M(0 ) R2 S2  f J* T o oy oz0
RT o OZ/2

G2 o (0) 2iko or
+ I3(O)k N-inc (2 ) f Ks(r,T... )e d(Ar). (7.35)

The first term of (7.35) embodies the (non-diffractive) scattering

attributable to the large-scale or gravity-wave surface, where the Kirchoff

conditions are assumed to hold (cf. remarks after (7.6)). Here the "high-

frequency" condition [(koboaG)>>1J is assumed to apply cf. remarks in 2).

above. Otherwise, in the "low frequency" cases (k boaG)2 <<1, (7.27d) is

used directly, and the factor [( ox2 +a2,2 )/ r/2is replaced by (2aoz)2

in the first term of (7.35).

The second term of (7.35) gives the scattering due to the small-scale,

or soliton structure, which rides independently on the large-scale surface.

This is generally nonvanishing, since N(0) > 0 as e +/2, as we shallG-inc eoT '

see, cf. (7.56), because of the tilted surface (r 9). This component we

shall call a perturbational conponent, because of its small Rayleigh

number usually, even though we do not employ the standard perturbation
theory to derive it, cf. [4]. [In fact, if we were dealing with capillary

waves ( S) riding on the gravity wave surface, the slopes of these capillary

waves are steep, cf. Figs. 4.10, 4.17 of Phillips [27), so that conventional

perturbation techniques are not strictly valid, even though the elevations

themselves are suitably small, cf. remarks, Sec. 1.)

C. Remarks on Spectra and Covariance Functions

The last integral of (7.35) is recognized as a form of wave-number-

time intensity spectrum, here of the small-scale surface S Different
forms of such spectra, depending on the details of the definition, can

be obtained from the fundamental quantity, the covariance function, Ks
here.
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Accordingly, let us consider the following forms and definitions (for

two-dimensional wave numbers k = (k ,ky)):
x y

W a(1T) Ef Ka(ArT )e- ' - d(Ar), (7.36)

for surface (a). Here the fundamental definition is the space-time

covariance function:

Ka(.r,-[T) =_ <Ca(rl,t ) a(L+jr$t1+T> = la4 2a , <a > = 01 (7.37)

where, as before, we have assumed that the surface elevation, a' is both

homogeneous and stationary. The transform relation corresponding to (7.36)

1 is easily found by multiplying both sides of (7.36) by (2n) - 2 exp(-ik-Ar),

integrating over k, observing that

Seik-(.r' ) --- = 6 (r'-A r). (7.38)
i " (2")2 "

The result is

K (Ar,T) = f W (kLIT)e-ik A r(7...
a a (2")2 (7.39)

a

< Ka"(0'0) W (2.)2 W") - = c2 (7.40)

a '"; .Pa(00 -a(09,0)/oY a 1, (7.40a)

Swhen our spectral defintion (7.36) is used, as we shall do so here henceforth.

Consequently, the last integral in (7.35) is seen to be

G 2ikoo. a .(741
f 5 Ks(,r ,T+...)e d(r) = Ws(2koIT) a Sws(2k~o0 T), (7.41)



102

the wave-nomber-time spectrum of the small-scale surface; ws is the normalized

spectral density, both defined according to (7.36) above. We shall use

this result subsequently, in Section 8.

Next, let us consider the Wiener-Khintchine forms (Sec. 3.2-2, [45])

a(f)= 2f Ka (T)e-iwtdT 2f 0 dT fgo Ka(Ar,T)eik'Ar-i)Td
" -" " (7.42a)

w= 27f

with the inverse relation

f W f WT i k-A
K a(T) =2 fw(f)ei df = f Ka(Ar,T)e -- d(Ar). (7.42b)

Also, in terms of Wa(kIT), etc., we have the transform pairs

Wa.,w) f WakI T)e-iWTdT = f f Ka(Ar,T)eik'Ar-iwTd(Ar)d(a--k' f W -00- (7.43a)

= 2rf,

and

(~r~) =iWT-iktAr dKa(rT ff Wa (k,w)e i - (27- 2 (7.43b)i -- 2r (211)2'

so that

2 Ka(,O) kJ W(kw) - dW Lk1) (7.44)
*a a = aff (2) . (2,,)2

by (7.40).

Similarly, using, =k/21, f w/2n as the basic variables for spatial

frequency and frequency, respectively, we can write

a(v1T) f Ka(Ar,T)e 2i-r - d(jr) = Wa IT); v= k/2n, (7.45a)

"Ka(Ar,t) = f wa(ITl)e'27iv'Ar dv (7.45b)
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so that, again,

4 2 > = K (0,0) f 00 WvI)dV (7.46a)
a a W

*QJaOi) W W(kJO) =W(~T 0)d~W~.w (7.46b)

a (IT )f'Wi')21

Also, we have

- fle wItt e WT d 74 a
Wa., f) f Wa d(77

with

K ~ T fofW(fl nf vd(7.47b)

*and 
nvA-nf

*Wa(v,f) =2 f f K (ArT~ dT dA (7.47c)

Thus, (7.47b,c) are W-K transform pairs.

-. Other forms are also used:

I. Bass and Fuks. [1], Eq. (3.21):

*(P- r; T-); W B+F4Pa ) K (arT a 0P a (A,) a21 affW(') ei ~~wdkdu

W B+Fr~Wa IB+F 00 a(7.F48a)

a (k 1-;-~ f a (Ar,T )e1- h+wd(Ar)dT.
(2,T (7.48b)

* Therefore, from (7.43a,b), we have

-5-3 1
(2r ) Wa (kwB+ W (t~w); since Pa (Ar,T) = a(. r'T). (7.49)

ca

or Wkw)+ =

(2Lw)B) 2 Wakw)
27r 

a
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II. Phillips. [271; Sec. 4.1:

(.) .gr; t-'): Za(r.,T)P = <1a;2a> = Ka(rt) (7.50a)

Z~k; n-w X(k,w) = f I Za(Ar,T)pe i  - i k ' dr  r (7.50b)
a (2.,,)3

.- •.,, ® (2)3

X W(kw)p = Wa(,L/

"(k) W(k)p = (2n)- 2 Wa(k 10) W kW) 2 (7.51)
a-P a-a ( B+F P a*

D~(w) f ft ~~ = Wa 32 c' ) €, -fW(k,)pd~k- Wa(w)/ 2 nj  Wa (-k)/( 2n)3 a2 etc.

III. McDaniels and Gorman [41, Eq. (16):

€- =- 1 A r~

Wa{IO)McD+G - f® K(Ar,O)ei  d(Ar) vs. (7.41) (7.51a)

W: ;a W(kj O)McD+G = (2,)'lWa(kIO)Mid. (7.51b)

IV. Bahar [23), Eq. (14b):

-- 2

Wa(klO)B+B A 2  lO)Mi d  (7.51c)

.. B (7.51d).,. a(kIO)B+B., it 2 I)cD

D. Capillary Wave-Number Spectra

For the record it is instructive to summarize the specific results

for capillary wave-number spectra, which are needed in subsequent inves-

tigations.

Proceeding from the defining relation (7.36) we have

Wca(kx'kyO f KL Ka(L'r' 0)eikA~r d(t~r) (7.52a)-1i-

cap x y1 a

- W (fs) <6(v-Ks (6)/2n)X df s , v K 1s/2 ,, fs > 0,

(7.52b)

where Wc is the point (Intensity)-spectrum of the (pure) capillary surface,
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Cc% assumed here to homogeneous and stationary, and a is the wave direction.

Since in polar coordinates

&'- (v-Ks (&)) = 6(I - F(s))W( &) Ks 
= Ks(fs). w = 21Tfs, (7.53)

where K and fs are related by the dispersion law KS = 21T/x s = a 2/,-5 S 3C °
with ac = water', where pwater is the density of water (I gm/cm ) and

- J = surface tension (= 74 dynes-cm), we find that

1Ks (Ws)1 3 2 (f K 3/2 al/2 fs >'0. (7.54)

62 (u 1/2 s / c ,

c2a 
f

Thus, (7.52b) becomes directly, with k =k + k2 , = tan-1 (k /k):

x y y x

-)3' 3/2 112

Wcp( I = (o wc(f 5 Ks /2ra <6(o > f ; 0. (7.55),,Wcap~k%0 V 4afsK 1/2ac ) <a( L-  s

A'similar calculation for (pure) gravity waves, where Ks = W2/g is

the dispersion law, gives

= 3/2w (1

Wg(kLIO) = g K- 3 g/ /KWT ) J (K_-)>& , fs > 0. (7.56)

In the above we have

<(ov&)> = w(&&o); -/2 < < 7r/2CL 1 00(7.57)

= 0, elsewhere

where w1(&-&o) is the pdf of wavefront directions. No backward waves are

permitted here: (f s > 0) and (&-&o) < /2.

For our results above Ks2= 2v = 2k0 sineoT, oT = /2, e.g., kx = 0,

k 2k sine oTand K (k ik+k2 ~ with &
that the transmitting and receiving beams are cross-wind to the mean wave

direction (& = 0), W (k, 10) = 0, since w (n/2) = 0 here.

A variety of point spectra, w, is available. If we choose the Pearson-

Moskowitz spectrum [8], we can write specifically

Ab._.U,

I "a.
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B.'"' 10. -bs 10- 3g92 b O. 74g4/v4 ;

Wp.M(fs) = e• a = 8.10. * 0 ; b = 0.4~v;(.8
5(7.58)Ws v = m/sec, g = m/sec2.

3/2For the purely capillary cases we have, accordingly, ws = (K /ac)
while for the (purely) gravity wave situations, s = VK-g.

In the general case the dispersion relation of the combined gravity-

capillary wave is

Ws= (gKs + IK or fs 2Tr (gK + 1 K (7.59)

so that

6(v - F( s)) - 3 /2v6(f 1-[gK + K3 a (7.60)vi 2 aC s 21v s ac '

in (7.53) et seq.

7.4 Extensions

Here we summarize various additional results, needed in our analysis

above. These are:

A. The Diffraction Terms (k0 1)

These are obtained from (7.16) in (7.15), and clearly depend critically

on the statistics of <v(k)V(k) To date we have only evaluated the
1 2 R*

%. case k=1: diffuse (single-point) diffraction. For this we have found that

N[41 II, III]

. (k < AV M >R = IJl1l(ar-O), where IJI- -cxx yy -2 (7.61)

Thus, 1J1 is a measure of the surface curvature (at stationary phase

points). Here

IJIG+S JG 1 2 S 12 s = js (7.61a)
!k+ r r;Gx cGy I Gx {G

2 2 + ) I
since <(+~+ >= + (cGx) =1; (see below the coefficient of

J% % %' " * ' ,~ *~ e P,



107

coS4eoT in (7.66); also, IJGI<IJSI, because CGx' CGy are essentially con-

stant in the region in question about S, where c has (local) stationary

phase points. [Also, we can show formally that [41, II]]

S (k) (k) = (rt;rt2) (> 0), (7.62)

1A1  ~2 >R 12 -1 1--2t2) )
I(k)

where Rk) is proportional to the joint probability of having k-coupled

scatterers jointly at (rl,tl) and (r2,t2)
We remark, however, that in most cases these diffraction terms (k>1)

are considerably smaller than the (k=O) components, cf. remarks in Sec.
3.3. In any case, see Sec 8.5 for an evaluation of M(1)  .16).

e S a<n> (7.15), (7

The Evaluation of the "Tilt-Factor, N(0)
* he"tl-fctr G~ -i nc

The "tilt-factor" N y c' (7.33), can be readily evaluated in the

isotropic cases; (we reserve the general anisotropic case to a subsequent

study). Before we proceed to an evaluation, however, it is immediately

evident from (7.33c) that N (  >0 when 6 - Jr/2, or g = 0.-.. G-inc °oT €grazing

This nonvanishing result is qualitatively consistent with other results

[cf. Eq. (27), Eq. A.14 of [4], and (4) in (2) of [3); also Sec. III of

[29]], as eoT - T/2. However, these earlier results use an ad hoc mech-

anism: special modulation of the grazing angle--to account for the "tilt"

produced here naturally through the explicit (slow) time-variability of

nG, cf. (7.4) and the comments after Eq. (5.21).
.- Since C is gaussian, < G> = 0, the pdf of the slopes is likewise,

G- G
such that

2,22 2 2

e Gx/2aGx- Gy/ 2 aGy 2"iGxaG G; y o. (7.63)
w1(xGy) 2 7GxfGY rxy cGxaGy 0. (7.63

We use (7.63) in the isotropic case aGx for direct evaluation of

* the averages in (7.33c) for backscatter reqimes. We consider the integrals

x. 2 +Y 2x2+y 2 _
1(0),(2),(4) =e 224 e x1 y x xy

-CO 1+x +y 2 
Tra x

- dr f d[,r2 sin2,r 4 sin4,] e 2 rdrd

0 0 2"tx
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-r2/2a2

21 x 2f (27rr 2,31r4/4) re1 + r 2  (7.64)

These integrals may be expressed in termsof the exponential integral, e.g.,

0 -a 2y a 2

1f 2 2Sdy - 2 E(-a2 ) (7.65a)

0

Using the fact that a2 = 1/2a2>> 1, here, and the expansion
x

x 22 m 2)m 22-e Ei(-x) 2a (-1) m m.(2ox) ; x = a = 1/2O, (7.65b)xm=O x

we find finally that (7.33c) reduces to

(0) 21 22 4 2 i 2  oS 2  +
NGS (0 oT)inc-back l6{3(aGx) sin 8T+60G sin oT eoTco oT

(7.66a)

2(oT=/2) (OGx=OGy) ,

which becomes 48a 2(>0) when 3  -r/2, demonstrating its nonvanishingwhchbeoms 80x JoT it

nature, as noted above. Similarly, from (7.33b) and the above we get

directly

.1~16 1 +~~e). e , +o(2a )Cos (7.66b
GS oTinc-for-spec Oo= X-nI,' GA= 001~(76

LI

Similarly, for the general case we get from (7.33e) in these isotropic

situations:

N(O) \ ] - 2 2 4 + 2 2 2 4
GS o o 16{3(aGx) a2 6224 2 °Z+aZ} " (7.66c)

Here (7.66b unlike the backscatter cases, vanishes as eoT - n/2. Note,

however, from (5.24), (5.25) that Nc 0 ,T/2, cf.inc 0 , generally, as oT
(7.66c).
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C. Shadowing Functions S, S
2

The r6le of the shadowing functions S, is extensively discussed

in Sections 22, 23 of (1]. We summarize the principal results needed here.

The precise forms depend on whether monostatic (R@T) or bistatic (ROT)

operation is involved.

m. With a F(tane)/ox=y = coteoT /G , we have for S in the coherent
copoet. ctOTcx
component [(k=O): (7.13), (7.25)]

- @Twek haown e(a/v~i [1 - A a) I Eq. (22.39), [1], p. 288,"--. 5R@T weak shadowing a1 2>>

~(7.67a) "'a-' _ 2>>1 (7.67b)

(1 / -a /2)(1 - e-a2/2 ) 7 b__ a - a2>>1

a.' 2 2 2
. -2k~oOS2 Oo

SR@Ttstrong shadowing = {Eq. (22.52, [1], p. 291)/e oG C (7.68)

Here we have specifically

A =(a) '2 e a(1 - '(a/2"]) ) (x) - f e-t dt:
i~I N-a 0 ea/2}_

V71 0
error function. (7.68a)

These results also apply in the Snell direction for foreward scattering,

ROT, obeying (5.29).

For S , associated with the intensity of the incoherent components,

we find that

*- S-2 _ 1
2R@T =+AN(a) , Eq. (23.29a), p. 308, [1] (7.69a)

back- AN(a): strong shadowing;scatter a<1 (7.69b)

* = 1 - AN(a)jI  : weak shadowing, cf. pp. 308-311,[1].

forewr S-R7 T - , Eq. (23.40), p. 315, [1]:
__R__T I 1+ANTa)+A (b)'i"forewardN 

N

scatter cote cote (7.69c)

a = T b = oR)
I x=y xx-y

For details, see subsections 4,5 of Sec. 22, and pp. 304-315, of [1].

a,
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8. Limiting Cases of Scatter Intensities for
R-4andomj. Twod-5calIe Surfaceodel

The two limiting cases which we consider here are respectively (1) the

"high-frequency", large-scale gravity wave surface (G), where (kobooG =

k 2 2o(CoseoT+COSOoR)< 2>)2>1, and (2) the "low-frequency" condition, where

(koboOG)2 <<l, viz., large and small Rayleigh numbers for this large-scale

surface wave component. The small-scale, or soliton-ripple surface (S),
2

is such that its Rayleigh number is always small, e.g. (k0b0oS) << 1,
2 >. Moreover, critical to the specific results here is the fact that
5-

the correlation distance* of the small-scale surface is likewise small vis-

a-vis that of the large-scale component, e.g., JS <<zG" (This fact ensures
SS

the explicit separability of the two components in the detailed analysis,

cf. Sec. 7.)

'4 Our task here is to provide specific relations for the mean scatter

intensities under a variety of operating r~gimes: (1) "high-frequency" (G),

backward and "foreward" scatter, both incoherent and coherent; and (2) the

same for the "low-frequency" (G) cases, including specular (Snell) and non-

specular directions. These results, in turn, are employed in Section 2 to

give the desired scattering cross-sections, which are the ultimate analytical

goals of this initial study. For the most part, the diffraction terms (k1)

V. are ignorable vis-S-vis the "classical" (k=O) contributions studied here.

Before examining the various special cases above, let us note the

following general results:

8.1 Scattering Intensities: General Forms for "High Frequencies"

From (7.34) and (7.35) we have directly the following "high-frequency"

form for the incoherent scatter intensities (T=0) of these two-component

wave surfaces:

2 2 2 2 2
kb 2 M (0) G(I )K( R 2  2 2

SJ 4(O )

'.4

+ kN(O) (2c )I (O)Ws(kokolO)] (8.1)
o G-inc -o 3ds o I (

*For the moment we use an "isotropic" distance i =

to describe this quantity; generally, a wave surface has two correlation

distances, kx' y cf. [1l, Sec. 3.
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where the term M<X>\(o ...) + 0 in (7.34) for these high-frequency situations,

cf. A, Sec. 7.3, and A1 (=21//A-) is such that k2 A>>1 , cf. (7.27c) et seq. Here

and throughout, 2c±o = (2aox,2a oy ), cf. Ar-2a o in 12, 13: Ar has only x,y

components.

Since F2G (7.29) in (7.34a) becomes here for the gaussian gravity

wave surface, on expanding PG(ALO):

2l2"'." - ~(kobO ) _IPG[ rO)- -(k /2)Ar. .

F2G = ek( e ,(kobG) 2 >>I,

(8.2)

where now the dyadic

"2 2 2 b2 2o boGx bo xy oGx 0
'-D = " ;b=cso+O-R-M ox oxy b2 2  2 Pxy 0; o CoseoT+coseoR,

b ooxy b Gy G0 (8.2a)

and

SdetbDM b4 ' 2 2  2 4 2 2 > 0).
-M bD o aGx Gy xy b oOGxUGy (

0 I/cry (8.2b)

We see that 12 in (8.1) is specifically

2ik a - 2 r-

I2( 2 ao-_TR) = hQR.IflT e ,. ( dr d(Ar) (8.3a)

2 2 1
(gTgR)2 2 2  2 2a-bT-bT)

*. k2 VAB(B)det e (8.3b)

20

(with ko absorbed into A, B, cf. remarks (6.43) ff.), from (6.43) (subject

to the approximations (6.42)). Moreover, from (6.40) and (6.52), we have

13(0) = (g gR2 I = (g g24A/2. (8.4)

Applying (8.2b), (8.3b), (8.4) to (8.1) then yields the following general

high-frequency form for the incoherent scatter intensity for arbitrary

directions of incidence and observation, with the finite dimensions of theI. transmitting and receiving arrays taken into account:

%**~~~.~~~*- V. Zkf %*s - ~ *~
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-<)x>OI(HiFreq) G(1)K n o (gTgR ) 2  2

2 2 2 T x

I 2 bZ42 ~

/fox+ %yz} Lo0 ax 0 Eyo J
"'[\ cjbz/ 2  x bo

(,+ N O)(2%)inWs(2_%10)]. (8.5)

Generally, bTRx,y 0 0, if one is sufficiently in the far-field of the

scattering surface, so that here, cf. Fig. (5.1), (8.5) reduces to the

simpler result

(bTR'O) X10 O) c>(O) : G(1)K (O)in 02  TgRA 1%." (Hi-Freq) u ~

k2A >>1

2 2 2 2 2 exp Ox) 2 + (2a 
2

OL , oz /2 b 2 oo ox Gy

o+ i NO)(2oncWs (2koIO (8.6)

The first term of (8.6) represents the "geometrical acoustic" (i.e., high-

frequency, ko =) solution, for the specular point, or facet, (acoustic)

scatter from the large-scale gravity wave component. As expected, it is

independent of frequency. The second term of (8.6) represents the "per-

* turbational" or small-scale component solution through first-order Bragg

scatter (-Ws), which is always nonvanishing (k < -). (Various, less general

forms of (8.6) have been obtained by a number of authors recently; this

point is discussed more fully in Sections 2 and 4.]

The coherent component of the scatter intensity, M (0), is similarly

obtained from (7.23)-(7.26) in (7.13). The result is

% .%



113

M(O)(0) = G(1)K (0). 2 2 S2A2 ( 2

o inoo 1nTkR

( (2c~-)2  2
2(oTRx

e o o G o SG-coh e A B

12 e

(8.7)

which is valid for all frequencies (and the various other conditions of

Sec. 5.5 , Sec. 6). Here we have, cf. (6.32),

B A T 2 ARA e+ )R- = aT - + aR(e) , (8.7a)
ROT oR oT oR

cf. (6.11a), where we have absorbed the k2-factor in (6.17) into AT, AR,

so that these quantities represent the effective aperture (or array) areas

of the transmitter (T) and receiver (R). For the high frequency cases

F2considered here, b22k2 >>1, so that ,+)(O), 0, as noted above, cf.

(8.1) et seq.

8.2 Scattering Intensities: General Forms for "Low Frequencies"

For the "low-frequency" cases we use (7.27d), with (7.23b), (7.25),

to write for the incoherent scatter intensity (7.34) now, on expanding

F2G in (7.34a), with (a +a2 + /a /2)2 replaced by (-2az )2 since the
codtonGA>' a ox oy oz oz oz
condition k 2A >>1 may not hold:

' (k2b 2 2 ,e 2 2N(O)
M(O ()(O) 12 2 o oG R2S2 - R-2 -e'oS G-coh]
X-< low freq 0 0

1ko2io-Ar
" 1I( 2 o-TR 2 +R2o bk 4 KG(Ar,O)I 3 (Ar)e d(Ar)

T 2 1 (O) -inc Ws(220 kolO)} , (8.8)

where we have integrated over C to get I3(r), (6.36), (6.40) in the

second term. Since A, B, (8.7a) are small compared to the regions Ar
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where KG(.r,0) is significant, we can set r 0 in I3(r) without

noticeably changing the result. Accordingly, (8.8) reduces to the follow-

ing expression

M(O)(O) -G(1)Ko(0)i {As2+R 2 SA

-Low Freq 0oin 1RS(Zo) ( 2

4 0
• bWG(2ak ) + N(O incW (2aokolO)]} (8.9)

where 2b2 2 2 2

k kb2 2 -k2a 2N()RS(o) 2 2e  o oG _2 -s2  -2 -2 eoS G-coh)i 1 (8.9a)ARS 0 0b (0 2 _R 0  1 -_TR),

4 0, (2-O" bTR)x or y , koo G <<, (8.9b)

(6.39) (with k 0-factor absorbedand added in the exponent):2 -32(2°x-'TR) 2 (2a °y-bTR) 2]

(gg) A2 e2 OL -A + B (<AB«1).11(2_-_bTR) = 2_ (OAB1)
12 (8.9c)

Furthermore, when 1 = -2 - Ro (=1), usually here, and Y2 = 1 (weak

shadowing), with k«aNGOh -1, cf. (7.24), N(O 4a2 =b

2 2 2 2 G-o G-coh oz 0 otako a N oh kb oa <<1, then A = 0, even when 2ao-bTR = , as noted

in (8.9c).

8.3 (Monostatic) Backscatter Intensities

For the incoherent backscatter intensity at "high frequencies," we

get from (8.6) directly, with 2aox = 0, 2ao = 2sineoT, (o = w/2), and
~~~~o 0, th elknw eul wt oT

TR , the well-known result (with respect to the first term), cf.
Tolstoy and Clay ([9], Eq. 6.75),

,7A
,, (o) 2 (I

SoT=/ 2  G(Ko(O)in(gTgR)Ro 52AI

Ii-Freq tan
)ackk 4 onc

e+ N0(0) l (8.10)46 T G cos 0 T(2o)incWs(2ooi: L~ co oT ,
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The coherent backscatter scatter intensity <&(O) (8.7) vanishes, because

of the high-frequency condition, 4cos2O b2k 202 >>1: the number of coherent
oT o o G

"specular points," or facets, backscattering at eoT, and even as eT 0

(Snell angle), vanishes because of the extreme roughness of the surface.

The contributions from the incoherent "specular points" (first-term of

(8.10)) likewise rapidly vanish as eoT - 1r/2 (grazing), as their number,

effective at 8eT, becomes vanishingly small as 7eT r '/2. This is not the

-. *- case, of course, for the "tilted" contributionof the small-scale soliton

waves, since N(O) > 0, cf. (7.56a,b). Here, since ox=0 , aoy=sinE

Ws(2okolO) = Ws(O,2kosineoTIO). Particular models for WS , (7.41), are

discussed in Section 3 preceding.

Similarly, in the "low-frequency" cases we use (8.9)-(8.9c) (where

ARs'O), to get the incoherent backscatter intensity

X- R/2  0 n o 0 ggkc oTG( 0 kosinTnt

Low- Freq 4

T Ginc oT1O)]
{back2 G NOncWs(O,2kosineoO) ,

(8.11)

which reveals the expected first-order Bragg scatter terms (-WG, WS).

The corresponding coherent backscatter intensity is found directly

from (8.7), withbTR = 0, viz.: 2s2°

3k 0sin oT
()) p -2 2(ggfAk2 2C°S2 eTe B "-]

0 Low-Freq
back B< 1,

(8.12)

unless 0eT = 0 (vertical direction), whereupon (8.12) reduces at once to0 o

M(0 ) ' gg 2A2 2,

00) ~o~ 2  2G(1)Ko(0) inRo2 '7(gg k oT =0). (8.12a)

Low Freq
back:Snell
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8.4 (Bistatic) Scatter Intensities

With bistatic, or "forward" scatter, the facet terms vanish at high

frequencies, except for a small case about the specular, or Snell angle,

where 2a =2oy=O, cf. (5.29a), (5.30), since aGx, Gy <<, cf. (8.6),
oy G

where these facet terms become

' ) 2/b2  2"2oy) /bOGy
M(O) X 0 % n e T O

x Hi Freq 2 2 2 x = o =Hi Feq GxcFGy OGxOGy

Snell:¢oT=n/2  (8.13)-0 eoT < T.Y2 ,

cf. Bass and Fuks, (tl], Sec. 20, 1, 2, esp. Eqs. (20.28), (20.32); also

[5], Eq. (13a), where Y=O at the Snell angle). The complete high-frequency

incoherent intensity, (8.6), with forward scatter at the Snell angle, so

that (5.29a), (5.30) apply, becomes specifically for these two-scale

surface models

x>(0) oT=" 2  G 0 0in~ o
2 (g g) 2 Al Gx0 Gy

Hi-Freq

k2 >>1 + 8k 4coSoTWs(0,010)], (8.14)

,Snell

where by (7.56), inc 1 16cose62  and o < n/2. For eoT i/2, strong
G-icO oT oT-n/,srg

shadowing becomes dominant for the facet term, so that its contribution

vanishes. The small-scale term likewise disappears (See EI], Sec 20, (2)

for conditions). From (8.7), it is seen that the coherent term always

vanishes at these high frequencies.

With bistatic ("forward") scatter at low frequencies (8.7), (8.9) apply.

At the Snell angle, we again have 2aox = 2aoy 0, bo = 
2coseoT, so that

specifically (AR S 0)

M(O) >o) G() min -2 S22 ( g )2cos2O^ 81b

M X>(0 Low Freq 0 0 T(ggR)2A [ 0 oW(0,0I0)

Snell

+ N(O)(8.15a)

and (0 (1) 2 222 2 o 2eo.
MV%>'JJ LwFe GlKoOIn 0 10~~R)Cso' 81b

Snel

....................................
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As we see from (7.36),
i22

W (0,010) = J Ka (r,0)d(gr) nk 2 02 (8.16)
a a

where n = 0(100), and Ia is an (isotropic) correlation distance. (See

Section 3 for a discussion.)

-.-; 8.5 Scatter Intensity of the Diffuse Diffraction Term (k=l)

Applying (7.52) and (7.52a) to each term of (7.16) in (7.15), where we

note that -(k) (k) (k) (k) R 0, since the gravity wave and

soliton components are postulated to be independent, we get directly,

with the help of (7.52a):

M (01) I R s\L[(z GJ + I -- I J s I"T[=n- G I + S n 'etc.-

(8.16a)

where G, 2 (absolute) curvature of each surface (G,S),er G,sJ xxcyy-xyIG,S
m-)

cf. (7.52). Removing the 2 S from under the integral sign as before, and. • 0
using (7.3), (7.4) we get directly for (8.16a)

M(1)(01 ... R2 S2 13(0) {(1 +CF2  + y) I +RT 0' 3ox G

)2R2 S2  { IJGI + ;2IJs} (8.16b)

from (6.36), (6.40), (6.52): the fact that 13(0) = (gTgR)2A1/2, and the fact
that 02 9a2 «1 along with the statistical independence of CG, and (CGxCGy)

1.. for gaussian processes (at the same point in space-time).

Accordingly, from (7.15) the desired diffuse scatter intensity (k=1)

becomes

MM (0) = G(1)Ko(O)in(g gR)2 Al 1 22 {<2 I JGI> +<C2l sl>}] (8.17).x-<x> K(ingR T 0 [< oG

'+with G(1) given.as before by (7.11a). As expected, these diffuse diffraction

I. .. . . "I . 1 1N -
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terms (8.17) are (1), independent of frequency, and (2) independent of

directionality: there is no focusing of the scattered energy or dependence

on the angles of incidence and viewing, as in the "classical" case (k-O).

The former property, (1), stems from the "quasi-optical" character

of the scattering regions around each stationary phase point on each sur-

- face, while (2) is likewise a consequence of the fact that the local sur-

face has all possible slopes, considered over the ensemble of possible

stationary phase points, so that there is no dominant subset of *specular

points" at any given viewing angle (i.e., surface slope). This is quite

different from the high-frequency, specular-point or "speckle" situation

in the "classical" case (k-0), cf. (8.6), (8.10). (8.14), where only the

stationary phase-points with comparatively large local flat (i.e., tangent-

plane) areas (facets) are considered, sufficiently widely separated that

their reflected signals undergo large phase changes, and such that k00 >>1,

where P(- / r ) is the effective radius of curvature (rl, r2 being

the associated gaussian radii'of curvature). Then it is possible to dis-

tinguish numbers of such facets at any specified angle (apart from very

1, small grazing angles where shadowing conceals the facets), from which a

resultant, directional incoherent radiation is observed,.[5]. In our pres-

ent "quasi-optical: cases (k;01) we have koP< 1, rather than kP >() 1

for k=0, and there is no preferred direction of scattering (k-1). Direc-

tional scattering does, however, appear in the multiple-scatter terms (P)2),

in view of the directional character of the correlation function

12) (. ,tl;.,t2) cf. (7.53). See [41, II] for details.

*8.6 Extension to Include Explicit Capillary Waves

In our preceding wave surface models, cf. (7.4b), we have not ex-

plicitly distinguished the "capillary wave" component (c) fror the "gravity-
wave" component ({r) in the (single) continuous wave surface, 4G' 5f (7.3).

Although the so-called capillary term (when present) is small vis-a-vis

the gravity component and the separate, soltton ripples (cS), it cannot

A be neglected at small grazing angles and high frequencies, where the

geometrical acoustic" or specular-point scatter term itself becomes van-

Ishingly small.

Using (7.3) for 4G we consider first:

i'"-"
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A. The Coherent Component (k=)

Here we have now for (7.19) the following expression for the second-

moment function:

-",M ( 0 )  e ozc
= RT( " '  = (1+ 2ik.n + 2ikopo lz cRT _ o-oG S o-o -z C0

22 212\2 2
,! j

- . 0[ n- G( ' $;' 2 + (220:2z) + ()cC..J ."hl ART"

(8.18)

With Cg ' ;S taken to be statistically independent, wih cg+cc = cG

Qaussian*, so that ;G' ;Gx etc. are likewise statistically independent,

we see that (8.18) reduces to

(0,* k2  k2  2
RM(O)(=. ) =IF (2io k) {-2az + k 2 N(0) + Oc ccN(O) +. 1 AMS 1 0 0) oz 2 SNGS-coh T c Gc-cohRT

'K (8.19)

where now

M oz k -a2 k2 2

F = <e O'0> = c.f. of (- ) (= e Oz 0g), cf. (7.26). (8194

The "tilt-factor" N( O)  is given by (7.22), (7.22a), (7.24). Thei0 G-con h

"tilt-factor" N (0) is obtained fromC-coh

..." N(O) (iZ* 20) (023
N'()"2 -( ) ( . (8.20)

:--.:-. G " ,
G'--G

10 The other factors are given as before: cf. (7.25) for ART. Thus, (7.23)

is extended now to

.2 A 2b2c +k2 2 . 0 ) +k2O 2 2 (0),'.- ""M(O)(. ) 2,Z 2  e"0 o 9 o S G-cohN 0 c N c-coh
(2a ) ARTIFg=GI e (8.21)

where we can drop the terms k~v N(O) ke2N(O) 1) in the exponent,
%.Im~s sG 0 occ

*Note that I9' c are not individually gaussian, strictly, since c

.'- is certainly not gaussian. (However, in practice we may treat cg as an

approximately normal process, since cc is small vs. ;g, usually, and

g G )



120

and F F, since a2 c2 Thus, for the coherent component of scat-
(g 0)(01iG G g

tering (0) is now given by (8.7), with the exponential term of (8.21),. 2 22 ,2. 02
which is practically replaced by exp(-bok 0 G), 2 .0 2

B. The Incoherent Component k-0)

Our undification of the preceding results [Sec. 7.3B et seq.] starts

with (7.29). We employ the aforementioned technique of splitting the

"-"- wave-number spectrum, discussed in Sec. 2.1 above. We begin by rewriting

": the exponent of (7.29) as

b 22 2(1 2 0 2(1 + 2 2

. bok G oko G " c g c G; Gg c '

. (8.22)

* where PG(O,O) 1 is truly normalized, but 6g~c (0,04) 1. Further

rewriting gives

b2k2a2 (1 b2k2{o -Cy + a2(1-6d);
o o G G)  00 g c

-.c,2 2 (8.23)

g 2 g' c2 c
g c

Now 6;, c are properly normalized. Accordingly, we have for (7.29)

"' 2x 2L- 2 k k202o2,10 2 k2 2 ep[bk~ (1-Y]) (I + k2 b 2.2
F2G exp {boko G(1- G)} (exp [-b 0 20O C 0 0 -c (k. ) + .

e- 0 g g (  1 + 2 - k2 ,b ..
. c oo 0 c

2 2

~~et +ka(l~ 1k 2 b 2 02  +.J

2 2 1, (8.24)

since the capillary component is very small, even at high frequencies:

,k- a 83.78 radm (20 kHz), cos 80 * 0.174, ac = 0.5 nm. This gives
0 2(kob o) s [(83.78)'2"0.174"(5"10"4)] - 2.13"10"1, - 5.33 at

100 kHz, etc.

It " ' .% V
It *-'.
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The covariance functions g, %c are specifically, from (2.3),

02 5 g(Ar, TI) = -I )e=ik Wg(k I')e ik '- -  (8.25a)

(2kDg (2w)

a 2iac(Ar,T') = f Wc(T)e' A-r AL = f ko Wc(kIT)cos -..r (8.25b)
Gc' -" (2w)2 kD

AD

Equation (7.31) is now extended to

2 +a 2 +a 2_ 2 o -.,. ox oY oz + 2 2% 2Eq. (7.31) =  oz/2 b 0 kz /G &4c

+ 2 N(O) Ar9r') V (8.26)
o GS-incS-

,

where ,, and c are independent (cf. remarks following (8.18a) above)

and where N(s)inc is given by (7.32), (7.33), (7.65), (7.66), and
I be 2k2 2,(1_09 )

F2g = e °0 g (8.27)

for the essentially gaussian "gravity-wave" component. [Since G 2 !. 2

here, Og = g and Og(0,0) 1.] G

With (8.26) as the argument in ( I of (7.34a) we may proceed as in

(7.35), to get now

(zL / 2 2 2  2ikcE°Ar
M(O) RS2 o Y

".' () =R; 2f d(r)l ( -A °rT) z
RT 3 3(Ar)F2g( a oz/2

0t+ I ()k2N(O. ab 2 (r-)e2k4A d(Ar)00" 2 k a ar
Se+ I (Onk2N(O) 01

V+ I3(o)koNGsnco) f Ks(Ar,T )e d(Ar (8.28)
/ -er

~where
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() b2  - Q ( 2 G 2 N(o)Go-incn' 2') = 0' Gc-inc )z - GS-inc\o izcl\z2 G(8.28a)

At this point we proceed as in Section (8.1), using (8.25b) to write
finally the extended version of (8.6):

b ! = G(1)Ko(0). 2 2 (ggR)2

bTRO M >(O) "Hi-freq" in 0 TR

k2A1k;Al1>>1 
2 X 2

22 22 2 21 )

• ,y0 Gxo Gy

+,L N(0)1 W 2ako 10)2 Gc-inc Wc 0 x0y

+ ON(0) OW ko 10 , Og = G" (8.29)

4 0 GS-inc S xy

The coherent component is given by (8.21) in (8.7) (with a = G), for all

fre uencies.
b2k22

M(O> 0) = G(1)Ko(O).n12 $2 (gTg 2 2 2  (-2a z)2e b o G
o ~ Io o1 I'
2 _b 2rr 2.- 2ab 2

" (. L. TRT + 0  TOY (8.30)
e 4 A B

I Similarly, we find that the "low-frequency" version of (8.9) becomes

O. OLowFreq" G(1)K(On ARS(-O) + s2(ggR2A1

•(2 + 0) N(0)(2 ,wc (2o

g xy 2Gc -o inc X~cI

+-~ N°(2co)incWs(oo,<ko , 0)]s (8.31)
-II* I
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- where ARS(a) is given by (8.9a,b), etc.

We can now specialize (8.29)-(8.31) to the various scatter geometries,

as we may wish, e.g., "backscatter," forward scatter in the Snell direction,

etc. The results appear as the various cross-sections presented in Sections

2, 3 above. Finally, for the diffraction terms, cf. Sec. 8.5, the extensions

are directly made as given in Section 3.3.
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