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ORIENTATION

This is Part III of a six-part report on the results of an

investigation into the problem of determining the scattered field

resulting from the interaction of a given electromagnetic incident

wave with a perfectly conducting body executing specified motion and

deformation in vacuum. Part I presents the principal results of the

study of the case of a general motion, while Part II contains the

specialization and completion of the general reasoning in the situation

in which the scatteringbody is stationary. Part III is devoted to

the derivation of a boundary-integral-type representation for the

scattered field, in a form involving scalar and vector potentials.

Parts IV, V, and VI are of the nature of appendices, containing the

proofs of numerous auxiliary technical assertions utilized in the'

first three parts. Certain of the chapters of Part I are sufficient

preparation for studying each of Parts III through VI. Specifically,

the entire report is organized as follows:

Part I. Formulation and Reformulation of the Scattering

Problem

Chapter 1. Introduction

Chapter 2. Manifolds in Euclidean Spaces.
Regularity Properties of Domains
[Summary of Part VII

Chapter 3. Motion and Retardation

[Summary of Part VI

S.]
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Chapter 4. Formulation of the Scattering Problem.
-' .* Theorems of Uniqueness

Chapter 5. Kinematic Single Layer Potentials
[Summary of Part IV]

Chapter 6. Reformulation of the Scattering Problem

Part II. Scattering by Stationary Perfect Conductors
[Prerequisites: Part I]

Part III. Representations of Sufficiently Smooth Solutions
of Maxwell's Equations and of the Scattering

[Prerequisites: Section [1.1.4], Chapters [1.2
and 3], Sections [1.4.1] and [1.5.1-10]]

Part IV. Kinematic Single Layer Potentials
[Prerequisites: Section [1.1.4], Chapters [1.2
and 3]]

Part V. A Description of Motion and Deformation. Retardation

of Sets and Functions
[Prerequisites: Section [1.1.4], Chapter [1.2]]

Part VI. Manifolds in Euclidean Spaces. Regularity
Properties of Domains[Prerequisite: Section [1.1.4]]

The section- and equation-numbering scheme is fairly self-

explanatory. For example, "[I.5.4]" designates the fourth section of

Chapter 5 of Part I, while "(1.5.4.1)" refers to the equation numbered

(1) in that section; when the reference is made within Part I,

however, these are shortened to "[5.4]" and "(5.4.1)," respectively.

Note that Parts II-VI contain no chapter-subdivisions. "[IV.14]"

indicates the fourteenth section of Part IV, "(IV.14.6)" the equation

numbered (6) within that section; the Roman-numeral designations are

never dropped in Parts II-VI.
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A more detailed outline of the contents of the entire report

appears in [1.1.2]. An index of notations and the bibliography are

also to be found in Part I. References to the bibliography are made

by citing, for example, "Mikhlin [34]." Finally, it should be

pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in [1.1.4].
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PART III

REPRESENTATIONS OF SUFFICIENTLY SMOOTH SOLUTIONS

OF MAXWELL'S EQUATIONS AND SCATTERING PROBLEMS

[111.1] 0 R I E N T A T I 0 N. We wish to provide motivation for

an ankatz made in [1.6.1] in the process of reformulating the scatter-

ing problem, as well as expose the natural origins of the functions

which we have dubbed "kinematic single-layer potentials," by deriving

a necessary form for any sufficiently smooth solution of a sufficiently

regular scattering problem. This representation is reminiscent of

those already familiar from the theory of elliptic partial differential

equations, involving (in the case of a homogeneous equation) "boundary

integrals," containing a fundamental solution of the elliptic equation

and values of the solution being represented, along with, usually,

those of various of its derivatives, on the manifold over which the

integrations are taken. The analogues which we are about to obtain

for the case of a hyperbolic system are, in some respects, more

complicated, due to the completely different geometry associated with

the hyperbolic case; the ideas of retarded set and retarded function,

introduced in Chapter [1.3], closely connected with the characteristic
zS

cones for Maxwell's equations, play a central role in the derivation.

It is interesting to observe that the final form of the representation

(cf., (111.9.7, 8), iktSAa) is precisely that which is obtained in any

.
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basic text on electromagnetic theory, involving scalar and vector

potentials (cf., e.g., Jones [23]).

It should also be noted that representations of smooth

solutions of the wave equation in non-cylindrical domains can be

constructed by manipulations similar to those employed here for

Maxwell's equations; the result in this case is a direct generaliza-

tion of the well-known Kirchhoff formula (cf., Sobolev [49] or

Baker and Copson [2]).

Following the statement of a simple "advanced-calculus" type

of result (a weaker form of which is noted in Apostol [1]), we

shall develop representations of sufficiently regular solutions of

the nonhomogeneous Maxwell equations in the open sets 1B and

&I associated with a sufficiently smooth motion Af. Subsequently,

we shall consider the special case of a solution to a scattering

. problem.

[111.21 L E M M A. Let Q be an open set in 6Ro, some

n >_ 20 and g: 9 -3K. Suppose that, 6o4 .6ome i~j E {1,...,n}
4.

wLth i # j, gi exists in 2, white g,. and g'ij ate in

C(C). Then gj ext6t in s and equats g, .

P R 0 0 F. Cf., Appendix III.A. 0.

[111.31 P R 0 P 0 S I T I 0 N. Let M be a motion in IM(2), cund
i i i.:

Fl, F2 , Gj, and G2  be unctionz in COB) 6uch that FI 4 ,

F GI, and G ate abco in COB). Suppose %hc t that
2,4' 1,4P 2,4

'U']

I
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Eand B a~.e eteynent6 oj C OB )CB) 6uch tha-tE 4adB4
4o

a-'e aZC~o i.n c CB Y'C$1), wiZth

Ek +Ii F
cijk$j+ c BV4 -F(1

c Bk -E 1 c -F (2)
ijk 'j c '4 2'

c

Elfli JB0. (3)
j 1

and

B G (4)
'j 2

Let (X, t) E ]BcJQ'0 Then

f- fl2 rxi*G 2 [xstI 12 £ijkTXj [2 [X tI- cr x I1 41 jX tl
EB(X,t) 'X

+ -I~-r -[G c r][ 1, fdX
cr x X,f 2,4 X,CI cr x ijkX 2,4[fX,tI 3

4~~ij-, [B.ijqk]r1 r [Bt](5
x~jB]x + (x Ii 4 X,t]

13 (X tC ~ a](t

-c Pr,,lrve I r [B%]~
cr x 

(5

I0- (X,t) C-

4TrB MXO, i6 (x) J 0 p

and

3z
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1B(X, t) rx ,i" I [X t - r X e krX'j 1 [X~t+ r , 24 [X,t]+ I 1 [. .[_t

-Ir rX'[ G1 4[X,tG- £ ikrX,j [F [x,t] dX

+r X X'i 1 4 jkXkpq Ecr I X c x'l

+ [ q ][X,t] - [EpB(Xt) 0
1 [Eq-E 1 k6)

cr ijkkpqrx,j '4 [X,tij rX ,i 4 [X,t

+ i [B I VP
crX ipk [X i t] 3IB(X,t) dX [(Mt)

0, (xt) E a ,

4TE (X,t), i6 (X,t) EIB' .Joi (,r Ei

1 1T~ ~) (Xt e 0 .

PR 0 F. We have i E E CI(B ° ) *and g,4 j E C(1 ° ) so Ej4
1 0~

exists and equals E , 4j in lB , by Lemma [111.2]. The corresponding

result for Bi  is, of course, also true. It is then permissible

to write, from (1)-(4), noting the properties of FI , F, , and
F1, 2' 1

G 2 ,

kc Ii i
uk '4j + c B'44 1 1,4' (7)

*k i i i

C B - -E =F (8)
ijk g4j c E44 2,4'

c 
0

S'4j 1 1,4 ,  in 1B (9)

and

BJ4j 2,4

• , G 2,.~ (10)-..
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For a function u defined in ]B° , recall the definition of the

function [u] [Xlt] in the 2-regular domain B0 (X,t) =]B(X,t) °

(cf., (I.3.17.i]), viz.,

[U] (Y) := u(Y, M- rx(Y)) for each Y EIB(X,t)° . (11)
[X,t] cX

Obviously, various properties of [u][ can be deduced from
[x'tI

those of u. For example, if u E C OB ), then we have (at least)

[U][x,t] E C l0B(X,t)°fl{X}'), with

1 in ]B(. Nr{X}' (12)
" [u'i,t] c rxi u4[X t]

• u[x,t], i  Xt

simple consequences of the chain rule. In this regard r ill that

X E]B(X,t)°  iff (X,t) E]B° . In particular, we may apply these
ni i From -M and M-(10),

statements to Ei, B, E,4, and B, 4 F (1)

we see first that

kc 1[

£ijk[Ej] t]+ c [B'4][X,t [Ix,t]'

k [ ic i

k[BY X - 2 E'4][X,t]'

[ZB [X~t] = [Xt ] ,

[ [x,t] [G2I[xt].

cijk[E'4j][Xt]+ c [B'44 ][Xt] = [F, 4][Xt]'k i [G

ijk[B'4j][Xt]- 1ct[
C

I [EF](t

[zJ4j [X,t] [ [B 4][Xt ]'

and

• "*1 '' v - '., '.." .-," .../,2'J'''' ..,.. ' .""'""""' - .)""- ,:." .,' "."." ,' . ''" .- '' -'''"""" . .2,,,,v ,'', ,'
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[B 4j [xt] = [C 2,4 x

each holding in IB(X,t)0 . Use of the appropriate form of (12) in

each of the latter equalities produces

£ijk E[Xpt]i+j c £jkrXj jE 4 [Xt]+ c- [B 4 )Ix~t Ir [xt] (13)

i k 1[1 1 (14)

[El]c r [Ej c [G (15)
[X,t],j+ c X,j '4 [X,tI 1 [x,tI'

(Ba] +i.1r [Bj I -G (16)

jx't],j c X'j '14 [x,t) [ 2 [Xt]'

SEk c +1 E r [ c 1 1 B

(17)

=[Fl 4U i

k + kE 1 c

* ijk[B 4 [x,t]g C Ejkr [B 4 4] [x,t] C [E 44] [X
(18)

2,~4]tx,ti,

-*(Es +'1r [Ei C = G, (19)
'4][X,rI,j+ c X'j '44 [X'tl 1,4 [X,t]'

* and

4[B 4 +-r [Bi+ I rc1.i4[xt [
'4C [xt, ~ 4 xt 2,4 LX,tJ'

(20)

in IB (X't) OnI{X}'

Now, from (14),

U 7 V -



1 C1c r B

c ijkckpq X'j X'p '4 [X,tI

CijkrX'j [ 2] [x~t]

-C jkkrXj[F ijk 2 [X,t~

C+ j ckqr ' [ B ] rX t , -Xi B 1X t~

1 [B! [tX,],iG I~[,4 [

= c 4[~ 2 1t

-C ijk rpX,j [t2 ]PrXI [

the latter inequality following from (16); with this relation, (13)

shows that

c ijk [E c ][x,tI,j +Cijk'kpq rX,J[Bq [X,t],p- rX'i [ I[X,t],j

-[Ft ~~+ri [G I -Xt Ekr j[F][] k 0 (21)

in IB(X,t)%i{X}'.

In like manner, it is also found that

(22)

[F]Xt-XIG + [ t 10,
1P [Xt j ' Xt
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Ci [E)4]rxtl4[BlrC[BV
ijk 4 l~t]j~cj4 pq 4 [~t1p Xi 4Ix~],i (23)

-[F,4[X,tIX,i[ I rX[F2,4 [X,t] ijk Xj2 ,4 [X,tl 0

and

1. k

in JB (X, t) 0fl{X}'

(22) following from (13)-(15), (23) from (17), (18), and (20), and

(24) from (17)-(19).

4.,- We continue by deriving further relations from (2l)-(24):

first, multiplying in (21) by r~ , we are led to

1 EkC -C [Bq [Ba]

12ij {[1[t.ri[G]( ~ cjrk[Fp[Xq r 0,t]

rr [l[~t-XG2 1xt +E ijkk r x~t [F~ 21 [x~tlJ,

2~ -Ej~~p[~ [Et k [4' (1- E=0q[; ,

hr the lastt j t rm on the p left] ar eqa to
5-x

Sk
{[ pX t -X.[ I + '' [

r Nt j xt
p.'

+ r jk Ekpq B q [BP [x~] 0

dll pi

hee th las tw term on. th left areequl..

. . .. . p
9

4 -
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[Bj B'] X, t- ij[Bj [Xt]

which vanishes in L(X,t) 0 ,'{X}'. Thus,

1 [XC, (E kjj~p [B][,c {: [B ] [Bp X, t,

-2 ijk r1 ijkkq [')

+ -{[F[]-r[G]2 1[xt 2 [X,t]r X (25)

in ]B(X,t)fl{Xl'.

Repetition of these manipulations, beginning instead with (22),

produces

1 k =xt~ H1I [Ek-kp fi l[E1]

~ JrJJ 2 ,tJ r,,G pqt

X (26)

in 3B(X, t) 0 n{X)'

Next, after multiplying in (23) by rX we come to



I-A

q X

-(F.]4[Xtl £ijk kt4]Xt] rxj iktkpq[B][x't

r 1 4 2r 4 [~t"1 j 2=0[~

inEC] L Jxt)r'{X}'. p [94[xt

The last three terms on the left here can be rewritten as

r, 2r&-xj ijk [E 94 1 [x,tltr xr x~ijJ [B94[x,t]

(L rXjj [B4 rXi [B I4[Xtrx4[X~tI~trx '4 9 Xt

1Ec 1 i
ra 2-- ijkrX' E 4I[X,1 ri 2 'B4][xt]

x x

=-- r£ .Cijk [E I [xltj+c r 2 [F4] [x,t]'
x r

.4.s having used (13) to achieve the final equality, and having noted that

%-r~j a r~ rx ,+ I.. x~ rj

A. x

and

r I rX4rX-+ 2 .1

2 rx

(since txjr 2rU, in &Rnlx}'. We conclude that

I~j x
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2 Cijk [E [X,t] ,jr X

1 [EXkC I [Bq]
= c y Cipk[E4] [Xt]+ rX £ijk'kpqrxj 4 [X,t]

1 [xiBP ixi+ L_(FI]xt (27)r x rx, i 4[Xlt] ' , r 2rx [~

p x

cr F,4 [X,t]-rX,i[G2,4 IX, t+CjkrX,j , X,t

in IB(X, t)°,M X}I'

We can retrace this argument, mwtaLi mutancU4, beginning instead

with (24), resulting in

1 ki_. ik[B ]

2 ijkL [X,t] ,j

- c ipk [B'4 [X,t] rX ijk'kpqrXj 4 [X,t]

+,i4] + L- [Fx][Xt (28)
rpr

1 F { [Fit]+[G I rXF k lI
crx  2,4 [X,t]x, I,[X,t]-ijkX,j ,4 [X,t]

in IB(X, t)°n{X}'.

Upon equating the right-hand sides of (25) and (27), and of (26)

and (28), we arrive at the important relations4,

4, 4 " . ,*""""", ,". . . . ,c"""-"•"r"•"-"-"• ' "-" ' ' "-"."."."• ". '". '. '"""...2 "'"" . 2"""" " • •.,
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- CG~ IriG2 [t]c rXj[F kX~]

k

+{~- £jFCip ][~]r,[~ [xE r ~~[~](9

cr 1 4 24[ t1 p ' Xt

.ijC r [B] + - r [BP]
cr~ Xikkpq X,J14 [X,t] cr.X i 4 X~t]

cr ipktE'4 [Xtlf,x p

and

1XJ[ k
- - {r, Xi [Gl1J[Xlt] cijkr~ IF [X't]

r k

{F [ X~ lr , [ CjjCp qCJ( [kt 1) [

-r qC ,41'1- 1 + r [Er]l

cr[E qLINq J ' [X,t -[1~ X,i[E'4 [X,t

*cr ipk )4[XtIJ,
x p

% each holding in ]B (X, t) '-{X)'

Now, we intend to exploit (29) and (30), in conjunction with

the divergence theorem, to produce the desired equalities (5) and

(6). According to [I.3.27.vi.21, M(XOt is a 2-regular domain,

*1z
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since M 61(2) and (Xt) GIBOUQ0. Also, a]B(X,t) is compact.

Then, as in [1.2.43], for each sufficiently small positive c, the

set

M(X,t)°  :- {Y Em(X,t)°l dist (Y,@]B(X,t)) > E} (31)

is a 1-regular domain, and the map G-E: MB(X,t) -IR3 given by

G-C(Y) :- Y-C.v a(X,t)(Y), Y E a]B(X,t), (32)

is a 1-imbedding carrying alB(X,t) onto a{]B(X,t) O}, with

-- -1
D{]B(X, t)o} M (X, t) ' (33)

and

lm0+ JG- = 1 uniformly on alB(X,t). (34)
C -~ 0+

Suppose first that (X,t) E Q so X E Q B(Xt)', and

.. (29) and (30) hold in B(X,t)°. Then, for any sufficiently small

positive c, we may integrate in (29) over B(X,t)°E and apply the

divergence theorem, which results in

S2 X {rX i[GIx,t]- ijkrX [FX [X,t]

IB(X, t)

1 F -X , 4 [xt]-rXi[G 2 4 ][Xt+EjkrXj[F 4][xt]} d
cr x 141I24[qt j , Xt 3

B

By [1.2.41.b], ]B(X,t) °  is a normal domain.

4
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a-.. + J 4flJ Eijk kpq[Bq] [X,tl 'i i [

a{E(X, t)°o}

r [B q4 ]+ I r [BP4
crX CiJk'kpqrx,j '4[X,t) crx [' ]X,t]

1 [ k VP dX 0.
crX  ipk[E43 Xt] 9{B(X,t)o } a{B(X,t) }

Consider allowing e - 0+ in each term on the left in (35): the

integrand of the first term is continuous on IB(X,t), hence bounded

there, and it is clear that lim+ A O(Xt)O) = X 3B(X,t));

with these facts, one can easily show that the limit of the first
0+

term as e - 0 is just the corresponding integral over IB(X,t).

If we denote the function within the brackets in the integrand of

the second term by F we can rewrite this term as

I F .vp  dX
B(IB( Xm~,t)

°€) a{IB(,0*C B(X, t)°O'}

- f (Fpv p  )oG -JG-c dXaB(Xt) (36)

3{](X~tt)

having used (33). Now, from (32), it is obvious that

lim G -E = (

the identity on aE(X,t), uniformly on 3B(X,t); since

Ug
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F E CcB(X,t)), it follows that
P

im + F pOG - F 3]B(X,t)

uniformly on a]B(X,t). With (34), it is now plain that

lim f F oGC. VPJGC dX )
3z(Xt)

S F V p  dX
p MB(X, t) MB(x,t)

aM(Xt)

In view of the latter result and (36), upon allowing c - 0+  in

(35), we obtain (5) in this case in which (X,t) E Qo. Similarly,

starting instead from (30), we arrive at (6) in this case.

Assume next that (X,t) E B° , so X E B(X,t)°; (29) and

(30) hold, of course, in IB(X,t)°(I{X}'. Selecting any 6 E

(0, dist (X,aB(X,t))), we may integrate in (29) over B(X,t)°€ BX)

apply the divergence theorem, and let c - 0+ , reasoning essentially

as in the preceding case, to derive the equality

r x {rI[G2] [xtl-cijkrX jL[k[Xt]
mB(x'Lt B6(X)-

I i k
-- [F I t-rX [0 +C + Xr (F ) Icr 1,4 [X,t x,i 2,4 [X,t] ijk X,j 2,4 [X,t] 3 3rX

[B ][X't]-[xt]

M (X, t)

1 q 1r jB, xt] - [B%]crX jk'kpqrx,j [X,t]+ cr x [X,t]

S,
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- [E, 4  .VPm  t (37)
cr X  ipk 4[M 1.t]B(Xlt) d3B(X,t

+ E i k B IL [BP]rj kckpq [X,t]--l, ' i xt

1 -- 1 [BP4I
cr jk Ckpqrx,j [X,t] r i 4 Ix,t]

1 [,] • )d - 0.

crX C ipk X,t]} (-rx p d B (X)

Now, (37) is true for all sufficiently small positive 6; let us

examine the possibility of allowing 6 - 0+  there. The integrand

of the first term on the left in (37) is in L OB(X,t)), as one can

easily check, so we can construct an argument based upon the dominated

convergence theorem in order to prove that the limit of this term,

as 6 - 0+, is simply the corresponding integral taken over all of

B(X,t). Proceeding to the third term, it is easy to see that the

limit in question is, in turn, equal to

1j;m + C~~p [B q)
6 -0 f fXj p xt]

aB3(X)

lira

lim0 -{r r [BJ ] [ x ' t ] -r x ' J r x ' j [B

-rx'i rx'j [BJ ][x,t ] } d 3
B(XaB6 (X)
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lim + [B

6 6 o 3 Ix,t] dB
3

B (X) B6()

6

- [4.[Bi] [Xt](X)

- -4.Bi (X,t), (38)

the penultimate equality here following from the continuity of

i[Bi[x,t] at X, by a standard line of reasoning. With these facts

in hand, we can in fact take the limit as 6 - 0+  in (37), whence

the equality (5) results in this case in which (X,t) EGB ° . In the

same way, we can begin with (30) to derive (6) under the same

assumption on the position of (X,t). 0.

[111.4] R E M A R K. As an application of [111.3], let M EIM(2), and

suppose that {EB I C C (01) is an incident field as in [1.4.1],

SI Cm 4 being an open set containing B. If we also assume that the

restrictions of E!4  and B,4  to B are in CIOB°), then

(111.3.5 and 6) hold with Ei and Bi replaced therein by Eli

and B respectively, and with F i . Fi G . G = 0. In
1 2 1 2

particular, we obtain a representation for such an incident field

at each (X,t) E B ° , in terms of the values of the incident field

and its 4-derivatives at the points of aEC_(X,t), each of which

has its 4-coordinate, or time-coordinate, less than t.

We next provide a statement in the exterior setting which

is an analogue of [111.3]. As we shall see, the unboundedness of

each set QO(X,t) causes a modification in the form of the
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representation which is obtained. In the interest of avoiding

certain technical difficulties, we shall present a simplified

version of a more general result which could be of use in other

investigations (cf., Remark [111.6], in6ta).

- ." ' . . . . . .

[111.5] P ROPOS ITIO 0N. Le~t M be amotion in ]M(2), and

F1', 2' 1' an G2 be 6nctioas~ in c(2c ) uch -that F1,4,
i-a-F2., V Grersn and G2,4 oAe ano n C(the Spp e f theA that

Ei n Bi a)e etenent6 o6 Cl (O)flC(2 a) ucdi -thaTt Ed and

4, ceti'4hia ifiutew hl peetasmlfe

B,4  ate a ro in C()C -)wth

-"4%"*'F , ' , 'G ,

kc I i
E ijk 'j+ c B'4 F'

k 1 ic
SijkBj - E,4  F (2)

c n a
E'j Gil'3

4 and

B,- G 2  (4)

Let (X,t) ]BU 2a. Chooe p > 0, depending on (x,t), .o that '

"B(X,t) C B X). (5)

Then

tRecall that B(X,t) is bounded.

*% >

*'.4

. . - -. . . ..-.-.-- .-. .4.. - . -.... .....-.. ......-. % .- ,.-..-.*-..-,.-,.. . * %.:.-., -,, -'; -.. , - , U,-.N



-r I -r G] rX [F]

J Ir 2 X,i 2 [X,tI 2 -ijk Xj 2 [X,tI

0f (X, t)(B~ 3X M xX

1 i 1 1&~k
-[F 1  4]( + - r~ [G2 4 ~ E - krX~j[ *2,41(XtI d)3cr(X t c

3k CX

2~i kpqr 4B dX [
[B]rX ] [% [X,t+- ij '4 [xa M

1P p dXlt

and~~~ (rBXX~) Z, tX) E~

q 3

cr r [F2 kp 4UX ] '~[G4 [Xt] cr Xij 4 dX3t

+ ' r 'ip[E4 - . rX1[Xt]JvM(X )d aB(

0. (X t 1]'

p~ [E X~ [1t] cp f4 X,tJ- rp 2 ijk 1~ ' [X,tIJ 3 X

3 k

+ Fr [ [-] rr ((i ij r ]~ F1, 1d
cr - 2 47 [jjE~p[E+ cr , ~ , x[l

alB(Xt) -

I
+ 4' P [E11CDc X [9d

f. 44l Xt+ ij i 4f~t ;

DB 3

31B (X , t
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""+c ci[Eq4 + r [EP4

."cr x  ijkkpqrx,j '4[X,t] cr-- xXi '4[X,t]

+ cr x Eipk [B'4 ][X't] aB(X t) (X,t)

0 , i6 (X, t B

-4TE E(X,t), i6 (X,t) E Qo..

P R 0 0 F. We shall prove (6); the reasoning required to establish

(7) will be obvious from the verification of (6). Moreover, many

of the arguments used here shall be merely sketched, similar ones

having been laid out in detail in the course of proving [111.3].

Using (l)-(4) and the regularity hypothesized for the

functions appearing there, we can proceed essentially as in the proof

of [111.3]. to show that (111.3.29) holds in 0a (X,t)fl{X}. Since Mj E

I(2) and (X,t) EIB°UQ20 , we know that QG(X,t) is a 2-regular

domain, whence the set

a
Q2 (Xt) : {Y E Q2(X,t)I dist (Y, aB(X,t)) > 0}

is a 1-regular domain for each sufficiently small positive E,

and the map G 3IB(X,t) -R given by

G E(Y) : +. Y B(lt (Y), Y E ]B(X, t) (8)

=r a (Xx t) E

is a 1-imbedding carrying Q (X,t) = aB(X,t) onto {(t ,

with

.9

.Y~ % ~~ ~.'
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v -V (  -l (9)" . .: - 'M ( X , t )t )

and

im JGc - 1 uniformly on aB(X,t). (10)
E -+0

Suppose first that (X,t) E B0 , so X E B(X,t), and (111.3.29) holds

a
in all of 2 (X,t). Taking into account (5), it is clear that

Q (X,t)r.B 3(X) is a normal domain for each sufficiently small
P

positive e; upon integrating in (111.3.29) over this domain and

applying the divergence theorem, there results

4r J, 2 [XBq] [BIX,t
'. ,j Ikkq[X,t]-rXG I + XjFkId

+1 fB E 1+ 'i[BP4]
- B 3 M i kE kr x jL k4J[X [i~X, i4[rX ~ t

1. kc}r [ q raB (x

-- _-crx ilpk[E4][X't] rx p daB3(X)

+ fEii~p (B q] [x t]i ,[Bp][Xt

4hd 0

a {Q.. t.C r ,j i j k c k p q 
[ B  [ X , t -  r i9 [ X , t ]

Cf., [1.2.43]; note that 3QG(X,t) 3IB(Xt) is compact.

thtCB(')i
p. 

.I

.4. e
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_ 1 ri[Bp
cr X  ijkckpqrX,j t4[Xt]+r rx LA4 [X,t]

kc

krX C ip [* t s2I aQ(X,t)E} dX 1  0 (11)crx  ipk 4[X,t]j 8a(~) a{£2O(X,t) }

Following the proof of [111.3], one can easily evaluate the limits as

E 0+ of the first and third terms on the left in (11), using

(8)-(10) in the consideration of the third term. In fact, letting

C - 0+ in (11) and simplifying the second term on the left, we obtain

00

(6) in this case in which (X,t) C ]3°

Next, let (X,t) E 0o, so that X CE 0(X,t). Selecting

any 6 E (0, dist (X,aB(X,t))), we integrate in (111.3.29) over the

normal domain £0(X,t)£flB3 (X)flB3(X)-' for any sufficiently small

positive c, apply the divergence theorem, and let c - 0+

which yields

: , , i __~L { r x [ G 2 [ t ] k r X , j [ F k ]  X t

Q a(x,t))B 3(X)r)B 3 X) -P 6

1~ {[Fi t] -r[G I +E [F k ' dA
cr 1 [X,t]x 2,4 [X,tl+ijkX,j ,4 [X,t] 3

+iB [B'1 I r _ [E,4 ]  dX

+ {2i ] [t]+'- [X,t] c ijkrXj 4[Xt] dB 3 (X)
3B (X)
P

Rf ,. Eijk t kpq [B][x,t]- r ' [X,t]a1B(x , t) X

1 ([B41 r [BP4 ]

crx ijk'kpqrx,j '4[X,t]+ crX rx 'i [X,t]

.9"

A,2 2 2 2'2 £ ... ,2""'.2 "2:. .j'.i .2',? .'-,..' ' ' '-,.,,.% '$ '..' .'. '', '. .'. .. '.... ,,
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k p
.-- ,

ariv at (6 inthpcs (E9]X't BMt) d X. m0. ,

i 1k2'.',: 1[][X,t]+ "6 4 [X~t]- c6 ijkrX,j [ 4 [X,t]l dB 3

a .' B (X)

--. =0. (12)

p.;'Letting 6 - 0 in (12), evaluating the limits of the first and

:'I,'.'fourth terms on the left by arguing as in the proof o'f [111.3]9 we

.arrive at (6) in the case (X,t) r= 2. 03.

-' "-[111.6] R E M A R K. We maintain here the setting and notation of

Proposition [111.5], supposing, for simplicity, that F = F2 
= G =

G 2 = 0 in S2 . Let (X,t) E QO. We have, in (111.5.6 and 7),

representations for E (X,t) and B (X,t) in terms of values of

Ei  and Bi  and their 4-derivatives at times preceding t, viz.,

at the points of 1BF1C (X,t) and aB3(X)x{t- - p}. Thus, if% , _ ~ P c-p.Tuf

i i a i i

.and B are known on Q_ ,o for some to, and E, B
( x, t 1 o1

-- i i
E 4, and B,4  are known on 33B, and we suppose that t > to,

then E i(X,t) and B i(X,t) can be expressed in terms of known

quantities by simply choosing p so large that both (111.5.5) and

1
t- . p <to hold. This observation is exploited in the proof of

"-"':'[111.7], infra.

To amplify the remark made immediately preceding [111.5],

i i i i
4*. assume that E i  B E and B are known on B and on

s4' 4

.o B' x(t} and we wish to express E (X,t) and B (Xt): t 0
0o 0

.N.

.4°°,.

St-,•
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in terms of these known quantities, where (X,t) E 00 with t > t
0

An inspection of the proof of [111.5] shows that we should then choose

1
P not as in (111.5.5), but so that t- - p = t . For this value

c o
of P, if Q O (X,t)',-B 3(X) is a normal domain for all sufficiently

p

small positive e, then we can derive a modified form of (111.5.6

and 7) which achieves the stated objective.

[111.7] C 0 R 0 L L A R Y. Let M be a motion in IM(2). Suppo.se
i an 1B i

-tat Ei and Bi ae in cl()c( - , with E and 4

a.Lo in Cl( O) C( c -), and

Ei =Bi =0 on (-)( , (1)

kc I

EijkE + B4 0? (2)
k 'j c

Bk Iic =0

ijk'j c '4

jc Zn (4)
E =0,

and

Bi =0 (5)

Let (X,t) E IBurQ2. Then

C

.4

14'

". %-4 ,. , , , , ," " " " " " " " " " " "" - "" " " " "" ' " " " " " " " " " " " " ' " ' " " " " " " " " " " " " " "
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1B1 Bp [ ]
a]B (X, t) j zkckpq [Bq] [X, t] '

- cr-- £ijkEkpqrX,j LJ[X,t rx , [Xt]

(6)
k kc  } p
[E, V d

cr Xipk 4] [X 'tl B(Xt) aB(X,t)

0 I X (xt) e 0o,.

-4TrB (X't), (X,t) E Q'c,

'.nd

[E [Ep c

fr j ijkckpq [ X 'i [X,t]
aM (X, t[

r Eqc r Ec,1q4C + -ip,-
crx £ijkEkpqrX,j '4 [X,t]c+ c r, 'i 4 [Xt]

(7)
1 Pkp

+cr ipk[B4] [X,t] VB(X,t) daB(X,t)
0 , i6 ( x,t) E 3° ,

"M .

I. -4rE 1 (X,t), i6 (X,t) E QG.

P R 0 0 F. For the given (X,t), choose p so that t- p < 0
C

and (111.5.5) holds. (111.5.6 and 7) are true, with F1 = F1 = G
1 2

G2  0. Also, by (1) and the choice of p, it is easy to see that

- i i i i.
[E J[X,t], [B] [X,t], [E4,] , and [B'4][X,t] vanish on

. aB (X) C SfI(X,t), since, for example,
%' P

*4V
4; Q

. -4+ " " 4 , - , , . . , • - -' . - -' ' . . ' ' . - - . + . .
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.. ,,,.

[E (Y E (Y t ) if Y e aB3(X).

[X,t] c P M

Consequently, (111.5.6 and 7) lead directly to (6) and (7), respec-

tively. 0.

[111.8] R E M A R K. Again, let EI EM(2). Suppose that u is a

function in C2 (n)nCi (Q'-), with

u 0 in So

and

Su -0 in .

This is an example of a setting in which one can obtain a representa-

tion result via manipulations of the same sort as those already

employed for Maxwell's equations. In fact, let (X,t) eG°IB 0 .

It can be checked that

,.[ur [X,t],ii - - -rx "[u,4], X,t]J in Q(Xt)r{X)

with which one can easily show that

Or.1 f[r [X,t- r [Xt]Nm ,x t) BIB (XX t)

r " u'41 [X't] d~a1B(X, t)- X rx'v am(X,t)

S0 , if (Xt) E]B°,

u(X,t), if (X,t) E Q

5-,%
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wherein () t denotes differentiation in the direction of, ' a (X, t)

the exterior normal on aB(X,t). This result is a generalization

of the well-known Kirchhoff representation of a solution of the

4wave equation in the exterior of a cylinder in R

[III.9] REPRESENTATION OF A SCATTERED

F I EL D BY MEANS OF K I NE MAT I C S I N GI E

L A Y E R P O T E N T I A L S. Let us begin here by supposing

that M is a motion in IM(2) and {E i,B i} C CI(Q1) is an

incident field, as in [1.4.1], such that also {E 14, B'4} C CIW);

"-- here, of course, I CIR is an open set containing lB. Further,

let {E0 , B } C c ()fl)C( -) be a solution of the scattering

problem generated by {E , BI and M for which it is also true
0i Gi 1

that {E, 4 , B,4 } C Cl(2 )"C(2 ). We define the "total field"

Ti. Ti. G- I
{E , B }  in n° M'2 by

E := E I+E 
i

in 0 Q- r.

B T i := B I+B0
i

Writing out the implications of Proposition [111.31 for the incident

field, and applying [111.7] to the scattered field, we can combine

the results to arrive at the following relations involving the total

field:

..J

4/---:.. .,.-.....,.;- ,-'-:. '., -;..-,.-, v v .- ;.,:.,,.,.; . --- .. -," -. . .-. " - - - .
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1 4, k q ) [X,t]-t

4r LrJj rJ [Ep

M (X, t) 
1 i

r. [E q I[X]+ 1 , [ETp c
cr i jkkpq X,j '4 [X,t crx  xi.-'4 

Ix ,t]

ITk p

-+ crx pk[B4x1t] VlB(X,t) dMX,) +EU (X,t) (1

{ 0 if (X,t) e B°,

ETiC(xt), if (X,t) E O'N' ,

and

r .T- 4r ,j £ijkCkpq [X,tl- r i[ [X,t]

am (x, t)
T'. 1 - T p i

[B9 + r [BP
cr X  ijk kpq X,j [4 [X,t]+ cr X,i '4 [X,tl

(2)
1 -( Tkc I Pd BiMt

cr x ipk E4 ][X,t] V(xt) d]B(X,t) +B (X't)

0 , if (X,t) E B ° ,

B Ti (Xt), if (X,t) E pa-Q

It is our objective in this section to show that, if the motion and

U.a-

the scattered field in 0 are "sufficiently regular," then the

preceding relations can be rewritten as, respectively,

46.

° '

* U.'

U.,.,
• ". . . . .... .* 1-". """•. ' "• .-.-'" " '.-.; ' "".".q.' "f. ' ''''"% ,"".. '"/

"'.".-'-'.'.-''.'" ". .'.--.',." "'-', ".' '4L% 
% ' ' ' , ° ' ' "

"""? *' ". ."* * k " - U . -.- U 4 \ I , 3
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-V{} (X t)- Vi} (X,t)+El M t)

0 if (X,t) E B ()

E { Xt), if (X,t) E S* r0 Qt ,

0 if (X, t) 1E B',

EijkV{p k },j(x,t)+B l i (X,t) (4)
B~~~t, if (X,t) E S20qo ,t

wherein the functions + and 'i on ]B are defined by

V := Jc I aEB, (5)

and

i .Tk cTic

C := EijkvJB I3B +u.Ec  I B. (6)

In particular, once (3) and (4) have been established, we should infer

that

EOi c  i IVO{'Pi}, 4 1 (7)

in S2
Gi 0 k'B i ijk V { },i (8)

Besides (7) and (8), the equalities (3) and (4) provide additional

clues concerning how one should proceed in attempting to achieve a

reformulation of the scattering problem as one for a system of

integro-differential equations. In Chapter 6 of Part I, we

exploit the guiding information contained in (3) and (4), for

precisely this purpose.

'P
%

.?

'I'. +.'2'.,:l ','t2tJ,4<-'-2'"-'-."."-,<% " +-"- -". "."-".-", ;-" ' " '-" _." .l.
':" 4 +- Lr p+ +. - '_ " > .. *..J'+' . P . ' .+ " qor .,. '.,_ ' , 4 +.,' .' 4+ ,', " t , " % m , " .
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On the other hand, none of the results of Chapter [1.6]

depends for its proof on the relations established here, so we choose

to carry out the verification of (3) and (4) in a rather informal

manner, although it would not be difficult to formulate our

assertion rigorously as a theorem.

We shall suppose, in addition to the hypotheses previously

listed, that E i , B e c( ° -). Since aB = a is a (3,4;2)-

manifold, we can then construct an open set £o containing Q

*-ci -ci Ui 0i
and extensions E , B of E , B , respectively, with

Eoi, Bi E CI ( ). Fix (X,t) E B°UQG, and let U be an open set

such that aB C U C ?ra2 , but (X,t) @ U. By setting

jTi := (Eli+i)i U,

E B (E ia U,

-Ti Ti

we obtain functions in c (U) and coinciding with ETi and BTi

respectively, on R a-(U. Moreover, it follows that U(X,t) is

an open neighborhood of aB(X,t), and, since X i U(X,t), we see

that and [BTi[ are in Cl(U(X,t)) and coincide* X,t1  jA,tJ

with [ETi][X,t] and [B Ti [X't] , respectively, on (0 a- r)(Xt) =

2a (X,t)-(X,t). Directly from the definitions of these retarded

functions,

~-Ti Ii 1 -T(10
[X,t], . [t[x,t]- c rX,'4[X,t] (9)



-31-

Since {E ,B i satisfies the homogeneous Maxwell equations in

I , {ETTi satisfies these equations in 20,"J, from which,

as in the derivation of (111.3.21 and 22), we can show that
,Tkc, =q 0, (ii

'-A
ik I' +E c rj'p'~ [tl p-rX 1X =' 0, (1

and

E ipkBk[x tp-ijkEkpqrXj [,Tq c] [Xt] ,p r X , ,T pc][Xt 0 (12)

hold in S (X,t)"fl(X,t), whence they are also true in

0 a (X,t)-hU(X,t), and so, in particular, on B(X,t).

Next, choosing a reference pair (R,X) for M as in [1.3.25],

following [I.3.23.b], we define Ti and gTi on aRxMR by

OTi Ti Ti -Ti
E (P, ) := E oX*(P, - E (X(p,), ) = TiE (X(,),F), (13)

and

0 Ti Ti Ti -Ti '
B T(P, ) := B cx*(P,C) = Bi(x(p, ),) = B (X(p, ), ), (14)

for each (P,i) E aRx].

The final equalities in (13) and (14), with the inclusions Ti,
-Ti E C ) Ti OTi

'(U), show that E and B,4  are in C('Rx]R), with
44

%Ti ._ -~ -Ti 9. Ti
, = E(P(X(P,,-),)',(P,))+ET((P,.),i), (15)

and

@1

"$*'* 1.'''' '- - . ''',""--. ' ;'\ -"; -""""5':. ''"'' - '% ',"." "-2 'i: v v . ''l. " ' '.£ -"v - ' '. - ."
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OTi -Ti .. ~Ti
B,4 = B,£(X(P,,)+ (P , (16)

for each (p ) E aRxiR.

'. Now, if P E DR, we have, for example,

- (,x(P, t-T(P;X,t)), t-(P;t(P;X,t) )

= ~Ti 1 r x(X(p t-T(P;X,t))))

repa c i E4by t-T(P'X,t))i c o)

O~~i -Ti 9 T

94 [IE, t]lx - X,]))(

M i' ]ot1 [X] (P) ;
4 [941 [X,t (Xt)

. replacing by t-T(P;X,t) in each of (15) and (16), and recalling

.-'..:definition [1.317.11], it is then clear that, on DR,

~and

Ti i-T Ti
tBo 4](X,t) a It ][xt-°[×(X't)[ i4(X1t)+ ad'4I x (x,t)" (18)

-Ti Tiand -Ti

We denote the continuous extensions of E,4ian B,4 to

the { re}ul again by the same symbols,es so that the equalities

, " E ,4 = E,4 ,  BT4 ffiTB, must hold on M]. Then, using (9) and (10)

e. to replace [EIt ]  and [iIxt]in (17) and (18), and solving

_wanthe resultant equalities for [E'4] X,t ] and [B'4iX t t here

result

Indeed, this has already been done in (1) and (2).
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T~T

[E'][xt] = [E 4 ] [Xt]

4 -1"l (x,t)4 Ix-1

'4 (X,t) ( 19) t)

1+r, s" [xS41 (x, t)} I (x,t)

-t T][X,t],z" [x%4 ] (X,t)° [X] (X t)}

and

4 [X,t] = [B 4][Xt]

_OTi _-

M.{ [B,](Xc)o[X](,t)

X,s x4 (X,t) (X,t) (20)

-Ti][t. [ ] o[x]-1

on M (X, t)t)

-1

[Xl(x,t) denoting, of course, the inverse of [XI(xt): aR aM(x,t).

Returning now to (1) and (2), denote the integrals appearing

i i
on the left-hand sides of these relations by IE(X,t) and I B(X,t),

respectively. Upon using (19) and (20) to replace [ETI]
'4 [X,t]

and [BTJiI[x t] on a]B(X,t), we can write

a (x, r) i

Xs" XS4 (X,t) (xl MO

i7 . .- .- '. '- .. ;.._ . .. . . -., ... .. . . -... .
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E r ~OTqj-rox
ijk kpq X,j '4 (X,t),X (X,t) ,X,i '4 (Xt), (X,t)

* * 
0Tk V-1xt

(21)

{Er J ipk [X,t,t- ijk Ekpq rX,j [X,tI,z

aB(,Tp, 4 r)) M
.p.. -1t,9

+ri[T 1[+rt £s I .x
:4~l, rX~t -1~

Introducing the function

Mt G (.;X,t)

2C I-1(22)
[ X, 4] (x,t)0 X LX~, t) on DIB (X, t) ,

o1xr Ix

and using (12), the second integral on the right in (21), which we

denote by i'(X,t), can be rewritten as

Eixt 1- { [ATk rXj[,Tq c

E~ ( Ort 4 3 ipk [Xt],Z-ijk'kpqrj 1[x,tI,z

ab (X, t)I

1 Q. m
-*GZ -6 *G v

r~ (Xlt)* aB(xlt)- p Mxt) MI(X,r) NB(X t)

47 {ik~ [X,t],z £ijkckpqrj [Xtl q,

;3B (X, t)
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c1

+r! [ j T p c  G s m A(3

X,i ][X,t],O }  r mnt nps (X,t) V~M(X,t) d6B(X,t) (23)

One can show that GM E CIB(X, since we are given that

M 11(2), so that [X](,t) 6 C2 (B(X,t) R 3), X, 4 E COR]R), and

T(.;X,t) E C2(OR); cf., [1.3.27], and recall that (X,t) E]B°UPc .

Thus, GXt) possesses an extension at which is of class
Mt(XMt)

C1 in some open neighborhood of a]B(X,t). Using this extension,

we can continue with the manipulation begun in (23):

~iixt )  I e [Ei X Tqc]
47t f mnk {i{pk[ Xt[] [X,t]

aB (X, t)
[Tc 1_ -s in

. +x,i ][X,t] " rx  npsG Mt)),k M B Mx t )  dI~B(X t)

+r ij ] 1
+ 2, + 1 1 L- s .[B Tk ]1 (24)4-r mn npsf ipkr (Xt) , [X,t]

aB (x, t)

-Eijkekpqr rX,jG(Xt)i ,

+1- r Gs 5  .[ETp } mld
1+r X,i(x,t)) ,X,t]I aB(X,t) aB(X,t)

an application of Stokes' theorem reveals that the first integral

on the right in (24) vanishes. Using the simplified equality (24)

in (21) then produces

I x . .i M t) Il [E ' Tqcx T
- -k)X~),j Iijkckpq ][X~t]-I 1i ][X,t]

M(X , t)

cr cX s ox-
l+rX, s*1 X 4](X,t)[x1(Xt)

. ..'. I , - : , , _W . , - ., : . .. - : - . .,. -_' ""." ' " " " _ , ' . ' - ,- -" ,
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r{ E ~ qC r ~f -rX 1 T 1  o[]-
iik kpq X'j '4 (X,t) (IX ,t) , '4 (XIt) (X, t)

-Eipk ~4 (Xt)o[lx]g ~ (21
(Xkt (25)t

K- ri as~ T

Z (-c rX IsXt- ),[~ dGX f'

We shall use the 2-regular transformation [x] (xt)' taking DR

onto a]B(X,t), to convert to integration over DR in (25).

Remembering that

r XOLA (x,t) - ct;X't), (26)

C -
{l+r O[N .XS ] I }- (7

X's (x,t)*L '4 Mxt) l-T; 4 (.Xt,(7

-lc(;X,t) - (28)

ct(.;X,t)

and, for example,

OTJ

* L'J [X,t]o DdX Mt) 0 fE MO(~t

(cf., Remark [1.3.24]), each holding on DR, (25) becomes

TpC1 q

EE
r 0[]( ,t Ap ]( ,t
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-E E6sX~~j',,,[X,(Xt),OTC

(29)

+[L c(.X,6t) 1e DO rXt) o~m

c -'Xt-Cijk Ekpq rX,j o~](X,t) '[E4 MXt)

-r ~x OTpJ - OTk
-X'i [Y (X't) 'E,4 (XMt) -Eipk[B, 4]XMt) }

In a similar manner, using (19) and (20) along with (11), one can

show that

Ii 1Xt L- [~OTq]

B 47t f~~hX, 'I(X,t)*Ej~p Xt
aR x

OO~kC

r kkmx r (,t() ) Xt

1 ~a *~k c~ox ~ m

1ncns i(.Xkt.{ x r o~x '4 (X,t) Mt

asTP O~kC+C~~t 4j m(r ~ (xlt), ONpk[Et) 1 BX t)1j'
Vtx

Vt~

#5.- X'a X t]'O X

r )*5* I 0

*.5.~.*****.~.**5**.*.** *-.*.*5 .. .5.*. -5. . V.... .
c (;Xt {cikckqrXj[X M t .. * , 4. ... t)4
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"P (30).am(xt)° [(x,t) J (x,t) aR

For the further development of (29) and (30), we observe

that [I.3.27.vi.4 and 5] can be combined to produce

aB(Xt) o[ (X,t) (X,t)

op oc

{-T;4(.;X't)).[jX](x,t).{[N ](X*t)+ ](X,t)rxp xMt)} (31)

on aR.

Gi OiNext, since we have supposed that {E ,B } is a solution of the

scattering problem associated with Pi and {E i,Bi }, the boundary

conditions are fulfilled:

SijkVJE TkC-u B = 0, (32)
Scon aB,

vJB T j = 0 (33)

whence it is clear that

ojoTk C ocoTi (4
ikv -ucB =0, on aRxlR,

qjBTj 0 J (35)

and so also

E. [Cjv E I(~) ](ut B 1O, (36)

on aR.

IV [° 1~(x't) =0 (37)
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Since M EII(2), we know that o and , exist and are con-

4 tinuous on aRxIR. Then, we may differentiate in (34) and (35),

which leads to

ojOTkc ocOTi oc OTi .J T k

S[ijkv E,4 I(X,t) - u B, 4 ](X,t) = ru'4B I(X, t)-f [ i 4 ](38)
-j 4 ,t))- ijkv'4 M,

and

ojOTj = 1oj OTj
Iv B 4 ](Xt) '4 (X, t) (39)

each holding on DR. Directly from the definition of the normal

velocity,

U(Z,C) := VJ(Z,).X (Xl(Z), ), (ZC) 3]B,

it is easy to see that

O(P,) := u(X(P,;),;) °J(P,).X, 4(P) P

from which the useful relation

[N(Xqt) ' IV X,41 (X,t)' on DR, (40)

follows. Further, let us denote by F a function which is of' ~~~~(X,t) afnto hc so

class C in an open set containing .B(X,t) and extends the map

[× 4 ](x o[X] r(Z) (which is in C (aB(X,t))). Then we can

4 ,t)e Xat)

suppose that
-~ -i

O(Xt) (41)
G(X, t)

' l+r, *F(Xt

in a neighborhood of alB(X,t). Note that, by (22) and (27),

.-
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&(X,t)o (Xr) x,t) (X,t) , 4[XAMOJ4 94 MO~t

(42)
on aR.

From (41), using also (26) and (27), one can easily show that

(X,t),(Xlt c.Xt) fx,j fx(X,t) '4MOt

X,.z (x,t) I4 MOX4 t)t

.5.c 
(43)

M 0(k XI +{l *-T;4(* ;X, t)}

.isX,t),9. (x t 4n

We now use (31), (42), and (43) in each of (29) and (30); following

extremely lengthy and rather tortuous computations which take into

account (36)-(40), as well as (27) and (1.3.22.3), we arrive at the

equalities

f {l--r; 4(.;X,t)} 1-X 4  (Xoj ~ t)

~E" cr f C2T2 (.;X,t) 04(X,t)* E* X t

c

+{l-T;4(.;X't)}-l{xtIXl4 O1 - [~OX1 4]( 2

* (X-t) [X;X4](X}t{+ OxX])I

4.4 Xt* ), Xt+ [c4M



oTk ocOTi d.[(F-ijk v B+UE )x (X'tOd a

1 {1-T; 4 &;Xlt)1 2 j.
+ Tt;Xt I[X)

CT('X~t)rt)'o (X,r)

Q oCJOTk ocOTiC.{(v B +uE ).JX]

+r x~o~xlx~t)*v 1E(X,t) (4

O[p X] ~t*rX o[x] I[ E *jx]
S.. (xlr),J (Xr Xj (Xt (X,t)

.4. 
opOTjc

(XtOlx] Xt*rX o[x] MW[v E *jx] Xt

.4 
C

+r O[]Xl.F x~),o [ *v E

Xti (xXt) ukpok*XIx

+ c rXj o[x] (X,t) M v ujB~kJ *(X,t)

+- E] oj 0 oi Tjc iX]+ I~ r xt ONM LV, TcX I' 4  (X,t) 4 (XOt

1 [( ojTk,oc oTic
c ijkV 4 4 MOJI xt

-- r O[N op.? T  * Jx] dI
c Xji (x,t)-I ',4 (X,t) A~

and

2 
O* 1 {C1 t+-T; 4 ( ~ )} " '[ct)}) 'j M
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Lijkckpq' ijk (X,t) aR

+ L- {l-Tr (.;X,t)1 2

* 4- f T'Xt 'O[I c (X] t

-r xl 0X cpOTq 8c ?Tkc ) Ix]
rX'jL(X~t)L ijkekpqVB+ ijk MXt)

oXt)x] ('t*r (C~ [oPvT-J] t) (45

o-xl r cx1 .1 opoTj.jX](t

(t)ik 1(')"' '4~t (Xt, B *Jx])

cM'4 (X,t)

(X,i (X,t)*Xi '4 I (X,t)cX (X,t)

I OE~k. O] kC ;,
!(EijkOkpV 4 + .Xt) E 4( t d)~aR

ijk kpq 4 ijk4 Mt A

0, On the other hand, in view of (5), (6), the properties of

OTi OTi 0i 0
E ,B , v ,and uj on aRxR, and the inclusion M EJM(2), from

[1.5.10] it is clear that V{T}' and V{i } are in C 1(B U0 M); the

partial derivatives of these functions can be calculated from

(IV.14.1 and 2), in which the appropriate partial derivatives Of K

are given by (IV.3.14 and 15). Accordingly, we find



f - 4-:X ) 1 i JT
24.ar 2 (x [ 4 I X X t)

C T , 4 (X) M t)

2
+{- ;4( {1.-t)}4 (X,Zo} 40T4) CXc

4i J 22 I['c'4(X,t)13

-[E jkv c + E (; t)hixt} XD

+ (-:X~)(Xr O

+1 47(.fX t)(r;~ o4 XxlM

(xt)R

2 c~ (xc)jt)

.X44](X,t) X,i ~x(X,t)*I (X,t)

oJOTk ocaTi
+[(E ijkv B -1-0 E )*Jx] (xt)I

o[((c ocBTE )*Jx)44](x,t) } dX((ijkv~

- 4 .IJand

E ijk V{*p k .(X~r)

1 U- {1; 4(.:X't)}2 LIcI {T

41T f 2 2(.;X,t)4 Xt+ 4(Xt)

.{1JEIX] 2I)r o[x]
.*4](X,t)3xi M

/4 c
oTq oc. E Tk d

LijkckpqVp B+ ijkE * (X,t) aR

7;: :
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% ,2
"" i+ 4i 24(;"--;4'X)}(47)

l aR c t(. ;x,t)

£c

S{ o (Xt)" [X,44 (X)X,J{I Xt)t)

£.op-Tq oc TkC
• tijkckpqop B u"ijk )'X(~)r~° (X't)

opOTq oc. °Tk c ^

[((ijkkpqV B +u " k )Jx) 41 (X,t) aR

Of course, we wish to demonstrate that the expressions appear-

ing on the right in (44) and (45) are respectively equal to the

right-hand members of (46) and (47). We shall do this under an

additional regularity assumption concerning the motion: it is

already known that aRxR] and at are (3,4;2)-manifolds, while

(P,;) I- X*(P,C) :- (X(P,;), ) is a 2-imbedding which carries

Rx]R onto B, with inverse given by X*-I (Z,) = (X (Z),4),

for (Z,;) C 3E. Moreover, Ix, 4 13 _ c* on aRx]. Let us suppose

now that

(i) X - aRx]P for some C 2 (Ux]R), where D is

an open neighborhood of 3R;

(ii) the map (Z,r) I-' X1 (Z) on R is the restriction of

some X-1 E C2(U), where U is open, with aMc U,

but (X,t) § LI;

(iii) the function (P,4)I1- (X(P, ), ) is a bijection of

"ecall that (X, t) E B0 USc.

.,
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UxR onto L, with inverse given by (Z,;) %-

(x1 (ZOO MO~ E 0;

and

(iv) jiX, 4 13 < c in UxE.

SV- To make use of these hypotheses, we note first that (iii) clearly

implies the relations

X(X-(z, ) ,) = Z for each (Z,;) E U, (48)

V
and

.'. x (X(P,),) = P for each (P, ) e TxR, (49)

so that, with the smoothness required in (i) and (ii),

k(6 for each (Z, ) E U, (50)
J jJ

and

x ,k((P,;),l)-x,4 ,)X ,xP,))=0
(51)

for each (p,4) E Ux)R.

From (50), there follows

%k

9 k Mo00 for each (MO E aR],

a> and so also

a. a.

a ,-

*, S *, .*,,,-
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k
X,k(P t ; X) (x(P,t-T(P;X,t)),t-T(P;X,t)) = 6.

(52)

for each P G R.(

Upon recalling that T(P;X,t) - rx(X](Xt)(P)), we see that (52)

can be rewritten to give

i[x,k](xt)*[X ,j]I[X,to[X](x't) = 6 on aR. (53)

Similarly, from (51) we can derive the relation

[X ,k][X o[x]( X t)[X, t +[X 1,4 Xo[(xt) = 0 on aR.(54)

Next, it is clear that we can use hypothesis (iv) to define

an extension i(.;X,t): U -IR of T(.;X,t): A1 -]R implicitly

via the requirement

rx(i(P,t-i(P;X,t))) = ci(P;X,t) for each P E U; (55)
,%

the reasoning here is essentially the same as in the original

construction of T in [1.3.14], (iv) serving to show that the map

'.r (X(Pt-0)) is a contraction on [0,-) into itself, for4c X

each p 6 U. Now, observe that

X € [XI(x,t)(U), (56)

wherein we have defined [X](X,t): U -I3 by

[(X, t)(P) := X(P,t- (P;X,t)) for each P E I. (57)

Indeed, if we suppose that X = i(Pxt-T(P x;X,t)) for some P 6 U,

* -x x ".x ,"¢?.% ' " '.%' " "' "" ""' .. .€ .. , -','-.-;v '.¢.',L.f €t,' "",;"
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then (55) shows that T(Px;Xt) = 0, so X = X(Px, t), which implies

that (X,t) E &, violating (ii). Then, (56) and the implicit

function theorem can be combined to produce the inclusion T(.;X,t) E

c 2(t), after which a simple calculation, starting from (55), can
-.

be carried out in order to verify that

•*X)-1 rkXJX) ' xt on U,(58)c ~£k

(;t l+rXk o[XI (Xt)" [X,4](xt)

with [X,4 ](Xt) and [4j](X,t) being defined on U just as
MO. X] is defined by (57). Since it is plain that X,4 = X'4

on 3Rx]R, we conclude, with (27), that

f- (;X,t) {1-T; 4(.;X,t)}.rxko[x](X t[x I on aR. (59)

S4XMi

We can now easily construct a smooth extension F f
(X,t) *ic -

the function [X,4](Xt)o[X](Xt) to a neighborhood of aB(X,t):

first, using the notation [[X],t 1 X - 1 r of

~c C

[1.3.20] and the equality [X]x-t = [x- established in
(X ,t) [X [X,tI

"-. [I.3.21.i], we have

[X](t (Z) [x- 1 (Z) :- X (Z) X (Zt- I r (Z))
( (X't1 cX,.'et- r r (Z)

(60)

.. for each Z E aB(X,t),

so that the function [x- l][x,tl: Q(X,t) -* U defined by

XI (Z) X (Zt- - r (Z)) for each Z E U(X,t) (61)

(x t -1 1*. ][X,t] ( z  "×lzt cX

A, ,.4 '~ ,j' Z'.J"".J:.Zije"r.',j -"-"-.j' '.", e '.j:,$', . ',,J $," - . : "-, ."-. -. . .'-".

p. , ,*. . o ._ : I ' ', . -, . m ,_ - - . " % % % " ". . , - "_"
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lies in C 2 (U(X,t)) and provides an extension of [X1_t) note(X~t

here that X~ §1 (X,t), since (X,t) ~ .Meanwhile, the map

P 1-+ i (P) X(P, t-i(P;X't)), pe ,
[X4 ](X't) '4

extends [X, 4](xt) from aR. Consequently, we may set

1' i
M(t) (Z) := [i, 41 (xt), [X I ][xlt](Z) for each Z E U(X,t), (62)

to obtain FXt E C (LI(X,t)) extending [X '4l(x't) [X(x't)

smoothly to a neighborhood of aIB(X,t). In view of (61), we can

compute

(X't)'X 4 (X~t on (X,t),I [Xt'

so, noting that [X ]Xt [= Xt on 3L(X,t), and using (54),

~(Xt)Z(Xt) [R I ,t),m 1 ~[X']otxl(X~t)+r) o[x](~t

Ax-l ,lrx~tl Xx,t) [x 4 (X't) (3

on aR.

Now, making use of (59),

01

.4

- ~ ~ -~ '~m % %q '* -,.'*. . . . .. ... ** ... .. -. --. :-~' * .-. :.*:.-fizz -
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4 x 4 (x, t),l m [X 4m1Xt] ~ (-Xt i p44] (X~t)

*. X4m MXt)- c -4(Xt

S (x,t)* ['441 (XIt on DR;

upon inserting this result into (63) and accounting for (53) and

(27), we obtain finally

i -c I Ik
F(Xt)Zox MOX(Xt [X 4m (x,t){[U X '0 X,tl ] (X,t)

+r o[X] *(X ,I C[X]
X, . (X,t) 'k [x,tl (xIt)

* x 4] MO {l-T;4(. ;X't)}PX4M

-rXjo[X](Xt {544 -r clX]
2.~) k X,2- (X,t)

[k C (64)

c M

+r ONx] -x I ox
X,z (X~t)*I 'k [X,tr] X Mxt)

.[xk I~xtl [X 41(XtyrX,ZO[X] xt

on DR.

We next take up the explicit computation of [V,41(t)

[U, 4](xt), and [(jx), 4](X,t) on DR. For this, we first define

N: aRx]R-'R 3via
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(P, ) E 99 (P, )Tt (P) 91 (P, )Tm(P)ijk ' 1 m 2 (65)

for each P E GR, E R,

whereiare I TT2:T P)±
wherein TV, T 2  a -I are constructed so that (T1(P),T2(P)}

constitutes a basis for T R(P) whenever P E aR. Then N(P,R )

is clearly in N B (X(P,C)) for (P,i) E aRx]R, and we can suppose

that T and T have been-adjusted so that M(P,) is an outer

1 2

normal to aBC at X(P,;). Thus,

oi i N(P1r(P
v Mp : V (x(P),)) , for (P, ) E DRxiR. (66)

Moreover, it is easily seen that

A I (P, ) 13

JX(P= :- Jx (P) for (P,;) E aRx]R. (67)
T(P)xT2(P)13

From the properties of j, it is certainly true that N'4 G

C(aRxR;R 3). Since N = we find• 3

1&13,4 - ,4,

whence, from (66) and (67), respectively,

N oJ
oi '4 oj 4 o(

, wrF -1- (68)

and

°x), = "4 (69)4 = 1TjxT2 13

0 oJj
Further, from the equality U V •

'.' -.-.-* ' '. ' -' .- ..-. '.' " ' '. '* '-'.' ' - ; • " ." : ' .' ... .. ,-," %" .' .:, ,' .' ,. w , -' ,, ," : . '. ""'4 '- , '



OC oj jc~
U v 4 'X94, 4  (70)

Thus,

it 1 14(Xt '4(oj 1(1
41 4. Mt) lX1t= j)----v ( T)* U('j -[V ](Xt)' 71f(X, t) 3 37~l

4(Xx) t) M (X,t). IT1XT21j3  9(2

and

oc oj C(XOc) C
[u, 4( MO=I,41~) [v41 (xt) *[XV I (X,t) 'X 44 (X,t)* (73)

5Evidently, we must examine [N 4 ](Xt)* For this purpose, we rewrite

* N from (65),

N £ijkX ,T 1  'm 2

=1{ i 2 .  MkX *T- k T .  Tm}le 2ijk '2.T 1 m. 2 _Eijk '2.T 1 'mT 2

j i k m(74)

2n- 'ij{ nim Enqs 'q Is IT1T2

2ijkcnqs IqX snZm 1T2  on 3R.

Consequently,

9 4 2C ij q ' 4 s +Eijk Cnqs q4}CnmT1 T2

(75)
CijkEnqsX '4q gsk.n~ T1T2 on a~x]R,

%I from which
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N4](X't) C t ijkcnqs [X"4qI (X,) 0 (X,t)*-nkm T1 T 2 on DR. (76)

We shall show presently that

[x , 4x~~) 
0 t

nqs 's (X,t) ntmT1 2  [xm 'm rl'tOfXJt

on DR.

Assuming for now that (77) has been established, we can combine it

with (76) to obtain the desired result

INI] MO C [j' XmI I .(t[X I Ix] *[N I Xt

94q])£ikkm 4 (X,t) [X ,t] X (X,t) (X

(78)

4 _i~] (~t' iI O R] (X,t)Mt

on DRe.

With the introduction of this result into (71), (72), and (73), a

bit of manipulation finally yields the respective equalities

oi ](t t[X1 q~)I
IV [v 4 ](Xt) -[V I(~) i41Xt-[_,i Xto[IM

+IV I (x,t)[XIR4q] (xt)* [x 'n m[X,t]o (XI MO~t (79)

.IV I MOIV 1(Xt0'

-(vI (xt) 0m] (x,tio Xt (80)

* ~~ ~(XtyL..IXJ t MO

VO

-I I' -. -- %* .,. * **1*
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and

[ou 4 ](X't) - - ](X,t)[X,4q](Xt)'[X ,mI [X,t][ (X,t) [,4(x,t)

'S(X't) X4q (X, t) mi tX,t]~x (X't)

S oo(81)
I I Mt) I )  ](X ,t) 441 (Xt)'

on A.

Let us return to establish (77): we begin by recalling that,

if (a is a 3x3 matrix, then
i j

{det (aP)). " n i - an (82)

%qq

while, if the matrix is nonsingular, its inverse (ca) is given by

f.,lwin ro [31. Teinf, from (3), the m o s

(X SIX 'k1  pXtO -d"t)Xijx)nik(mnak(84

t 2 det e (Xt)i

"(85)

[ ][n [x to

Using the latter result, (74), and (82),

" - -. ....-u..] (x t)
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kk~m[X- M]I[X,tlo [.I[N IMte (X,t)

1d Ck qijt] [i] (X,t) Mt)

4- det (dX, t))

1 ab
*£Mvwrsp [iXs] (X,t [Xp] (X,t) "rabTT2

1 k-

{C I *d IC }C {£

r. ,] qicrsp{ iw[ 'i ] ( X t ) [ × I (  2

[{2s] (xl l t)" [X 'p] ,t)- c i ](x, t)" x ,j T (x,t)
4-v 1  ~Ta

[XC s (X,t)" [Xp(X,t) rab T2

= {qjjrp p['] X )Ci~rpip[k (X )rabT1 2

1 2 -k [k] a b" {2 CqirEX~i](x t)- 2£qrj IXI(Xt))CrbTiT2

-k abqir ['i](X,t)'¢ rab 1T2

xki a b
Crqi [Ri](X,t).CrabTiT2 on aR,

which is Just (77).

The results (64) and (79)-(81) enable us to complete the

proof of the original claim. In fact, by using (64), (79), and
I

(81) in (44) and (45), and (79)-(81) in (46) and (47), one can

show that the expressions on the right in (44) and (46) coincide,

and that those in (45) and (47) are identical, as well; for the

verification of this statement, we once again employ (36), (37),

and (1.3.22.3). However, the details of the demonstration are quite
t u ,

~~tedious, offering no features of interest, so we omit them. :

,

p

.4
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We have shown that (3) and (4) obtain, at least in some

case in which the motion and the scattered field are sufficiently

regular, which was our stated goal.

'4
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III.A. APPENDIX

PROOF OF LEMMA [111.21

L E M M A. Let be an open .6et in e jor some n > 2,

and g: n2 -*K. Suppoze that, 6or Aome i,j e {l,...,n} wih

i # j, g,, eZxit6 in 0, white g, and gij are iln C(Q).

Then g'j -xi-Lt in p and equals g,j"

P R 0 0 F. The summation convention is suspended for this proof.

Choose x E 2.. Let a > 0 be such that the open cube

1- 1 n_ n(x -a,x +a)x...x(x -a,x +a) C Q. Set I a (-a,a) CIR. Whenevera

'E6]R, we define el]Rn by taking k c6 k ERn is

defined similarly. Let A: I xI a-*K be defined by
a a

A(s,t) :- g(x+si+t )-g(x+si)-g(x+tj)+g(x) for s,t E Ia  (1)

(since i # J, A is well defined). Further, we define the

function A: Ia xI -)K by setting

Aij(st) :- g(x+si+tj)-g(x+si  for s,t E Ia. (2)

Clearly,

A(s,t) Aij(s,t)-A ij(Ot) for s,t E I . (3)

Suppose that s and t are in I with s # 0, t # 0. Thena

JI

* 4' ?"' ;:, '..,: " '..€.. . .. :." . v ",. .,. ' ,. '
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% •ai~j (S, t)- ij (O, t) = s. ij, 1 ' ( t , t

= s.{g, i(x+9(t) i+t )-g,i(x+9(t)id) (4)

* = st*g,ij (x+(t)i+t (
fr m b

for some (t) between 0 and s (and depending upon t) and

~some t(s(t)) between 0 and t (and depending upon &(t));

we have applied the mean-value theorem to the differentiable

functions ij(.,t) and g,i(x+s(t) i+(-) ) on I a Using (3),

(4), and the continuity of g,.j in 2, we obtain

9-9gij W)- slim 0tlim 0g9ij (x+9(i +w)
s- 0t- 0(5)

= lim lim A(s,t)
0 t 0 sts-O t-*O S

(in which lim lim can be replaced by either lim lim
s -0 t-0 t -O s 0

or lim ). Next, define A I - IX via.-. a a
(s,t) - (0,0)

A ji (S't) :g(x+si+t)-g(x+t for s,t E I (6)

Then

A(s,t) L ji(s,t)-tji (s,O) for s,t G I a. (7)

Again for non-zero numbers s and t in a we can apply the

mean-value theorem to the differentiable function A..(s,.) on

I to write, for some t(s) between 0 and t (and depending
a

upon s),_...
'. -,
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L i()A j (,)-t ji,2(is)

-4. t{fg~j(x+s i+t(s) .) -g' j(x~i(s))}

whence the continuity of g,.i in 02 gives, with (5) and (7),

9 W :m limrn 't

li urn sr {g' (x+s +t(s) )-g,.(x+i(s).)

S -*O0s i

This shows at once that g,jj(x) exists and equals g,..(x. 0.
ji. 1j
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