HD-A131 357 RESEARCH IN NETWORK HHNRGEHENT TECHNIQUES FOR TRCT]CHL 1/3
DATA COMMUNICATION. . (U) POLYTECHNIC INST OF NEW YORK
BROOKLYN R BOORSTYN ET AL. @1 SEP 82 CECOM- 80 -8979-F
UNCLASSIFIED DRAAK88-88-K-8579 F/G 5/1




LA A el e h et s -
I

A S s men S

J e B R man et

2L

NATIONAL BUREAU Of STANDARDS 1963

i AT 2

MICROCOPY RESOLUTION TEST CHART

T
F e

s

28 it ie

A

PV DR

——



...................

R ESEARCH AND DEVELOPMENT TECHNICAL REPORT
ECOM ,
POLYTECHNIC INSTITUTE OF NEW YORK
RESEARCH IN COMPUTER COMMUNICATIONS
US ARMY (CECOM)
September 1980 to August 1982
|
‘ Principal Investigato; .
|
: Robert Boorstyn
{ Aaron Kershenbaum DT 'C
-
: Basil Maglaris (:‘
- w NG 12883
' Philip Sarachik , .
. N\
| -
| Polytechnic fnstitute of New York 4
: 333 Jay Street
| Brooklyn, New York 11201 .
| X

CECOM

U S ARMY COMMUNICATIONS-ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 07703

33 08 12 025

. VR VY A A AT LAY S AL A ia P . - . P N

'L‘—‘¥‘4_4_‘._A! P

ny

o




DA R i el i Jhar et s s Jhath it it SeniicSens Zhutec Shugs Mk Bk S Joesy |

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
CECOM =

POLYTECHNIC INSTITUTE OF NEW YORK -
RESEARCH IN COMPUTER COMMUNICATIONS S

US ARMY (CECOM)

September 1980 to August 1982

f

|

|

|

|

|

|

|

|

|

|

|

. B
z Principal Investigators: -
. | R
: Robert Boorstyn 'i
| Aaron Kershenbaum ﬂ
3 Basil Maglaris ‘
|

|

|

|

|

|

|

|

Philip Sarachik

Polytechnic Institute of New York .1
333 Jay Street
Brooklyn, New York 11201

CECOM .
U'S ARMY COMMUNICATIONS-ELECTRONICS COMMAND ]
FORT MONMOUTH, NEW JERSEY 07703 __

il R S PP > A A & o N P T N )




}
|
1
A
}
1
1

. [~ i AP i asnt e ot ARt M e Ik A A N S S fac B A At AP - S M e

'
i

JO0 JOR

e, DEPARTMENT OF THE ARMY e
| IS‘\\\'!//Z%{ HEADQUARTERS UN!TED STATES ARMY COMMUNICATIONS

b

-

{
-
|
°

K J RESEARCH AND DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703 -

. ) /{é' 143;044f5;21
Polytechnic Institute of New York ‘

333 Jay Street
Brooklyn, NY 11201

! DRSEL-COM-RF-2 g 5 Nrv 1982
’ YT com #20/94

Gentlemen:

The inclosed draft of the _ﬁlﬂﬁl_I_E.ChnlCﬂl__ Report under Contract DA = = =h=

has been reviewed and found acceptable. The draft, as amended, is approved for reproduction and distributicn,

In accordance with contractual requirements, it is requested that the report be distributed according to:

[C] Attached distribution list [X] Previously forwerded - [[J Attached changes
distribution list to previous list

A copy of the distribution list should be inserted inside the back cover of esch report distributed,

Upon depositing the requisite copies cf the report, properly addressed and with sdequate postage, in the U. S,
Mail systen:, one copy of this letter of approval shall be endorsed with a certificate of mailing, dated, signed
by the Contractor and returned to the undersigned as evidence that distribution has been completed. In
addition, one (1) copy of the indorsement covering mailing of requisite copies of report will be submitted
with the invoice to the Finance and Accounting Officer specified in the contract,

w This letter is subject to the understanding that it does not authorize any incresse in cost to the Govermnment
| or clisnge in delivery schedule, and no action taken by you thereunder will result :n any such change. Frompt
notification of eny decrease in cost shell be fumished to the Contracting Officer,

Sincerely ycurs,

Copy Fumished:
Contr Off, AMSEL =

Date -

This is to certify that this organization on the above date msiled, in the manner prescribed above, the requisite

coples of - Report under Contract DA to all addresseetr on - ",
the distribution list, -

Contractor

By —
fSupemseci - E7OM FL ', 1 Dec 64) ESC.FM 1043. 70

AMSEL FL &
MAY 71




NOTICES R

Discloimers

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approvsl of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.

. - [}
a 4‘14.;-4!. A A .s_a_4.

HISA-FM-633-78




SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

)
BFPORT DOCUMENTATION PAGE mgggbcmggggg":m
1. REPORT NUMBER 2. GOVT ACCESSION No.‘ 3. RECIPIENT'S CATALOG NUMBER
CECm =80 0579 —p~ |AD 113357
. and Subtitle, .
‘RggeLaEr‘ch‘ 1nml'!¢)etwork Management Techniques for ® TYPE OF REPORT & PERIOD Coveneo
) Tactical Data Communications Networks Final 1 Sept 80 - 31 Aug 82
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
Dr. Robert Boorstyn, et al DAAK-80-80-K-0579
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Polytechnic  Institute of New York AREA & WORK UNIT NUMBERS
333 Jay Street
Brooklyn, NY 11201
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
CDR USA CECOM 1 Sept 8?2
DRSEL-COM-RF-2 (CHARLES J. GRAFF) T3, NUMBER OF PAGES
Fort Monmouth, NJ 07703 285
(T4, MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Office) | 15. SECURITY CLASS. (of thia report)
UNCLAS
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Cleared for Public Release
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

/ Network Management, Network Control, Routing, Packet Switching, Network

o, . ... 9

3q. ABSTRACT (Continue an reverse side If neceseary and Identify by block munber)

“This 1s the final technical report for work performed on network management
techniques for tactical data networks, It includes all technical papers that
have been published during the control perfod. Research areas include Packet
Network modelling, adaptive network routing, network design algorithms,
network design techniques, switching techniques, and local area networkgf

w . ';::‘n "73 COITION OF ! NOV 68 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

i .
) By oo
‘o _.A_,’ ._.._._4..;4_.._.! Lao'a'a' -




........

"

TABLE OF CONTENTS

T TN
/7 orie ‘\

Summary of Report

Leer
NP ITEN

Personnel
Activities
Research Reports : /9[?/ :
A. Packet Radio Networks S
A.1 Throughput Analysis of Multihop Packet Radio Networks
Boorstyn, Kershenbaum, and Sahin
Accepted for Publication in IEEE Transactions on
Communications
A.2 Throughput Analysis of Multihop Packet Radio
Boorstyn and Kershenbaum
IEEE International Conference on Communications,
June 1980, Seattle
A.3 A New Acknowledgment Protocol for Analysis of Multi-
hop Packet Radio Networks
Boorstyn, Kershenbaum, and Sahin
IEEE COMPCON, September 1982, Washington
A.4 Extensions to the Analysis of Multihop Packet Radio
Networks
Maglaris, Boorstyn, and Kershenbaum
IEEE INFOCOM '83, April 1983, San Diego
A.5 Multiple Access Techniques with Arbitrary Packet
Length Distributions

Third Semiannual Technical Report, March 1982

[



A.6 Evaluation of Throughput in Multihop Packet Radio

Networks with Complex Topologies

° Kershenbaum and Boorstyn
A.7 Optimal Transceiver Deployment in Multihop Packet
° Radio Networks with Capture*
Maglaris and Kaminer
NSF Final Report, October 1981
® B. Adaptive Routing

B.1 A Technique for Adaptive Routing in Networks
IEEE Transactions on Communications, April 1981
Boorstyn and Livne
B.2 A Simulation Study of a Dynamic Routing Scheme
Chu, Boorstyn, and Kershenbaum
IEEE National Telecommunications Conference, November
1981, New Orleans
B.3 Stable Routing Patterns
Third Semiannual Technical Report, March 1982

B.4 Decentralized Dynamic Clearing of Congested Multi-

;‘;.'.;4__!4_‘- i V) 4‘_‘. ‘.

Destination Networks¥*

Sarachik

¢
b

Allerton Conference on Communication, Control, and

Computing, October 1981, Urbana
- B.5 An Effective Local Dynamic Strategy to Clear Congested .4.
Multi-Destination Networks* :

Sarachik

IEEE Transactions on Automatic Control, April 1982




L2 aniadh St el Al vt

B.6 A Dynamic Alternate Route Strategy for Traffic Net-

works

Sarachik
IEEE Conference on Decision and Control, December

1982, Orlando

¢ B.7 Optimal Control of M/M/2 Queues
Maglaris
C. Algorithms
¢ C.1 A Shortest Path Algorithm for the Solution of the
Simple Knapsack Problem and Extensions
Kershenbaum
v Second Semiannual Technical Report, September 1981
C.2 A Network Shortest Path Approach to the Knapsack
Problem
®
Kershenbaum
IEEE International. Conference on Circuits and
Computers, October 1980, New York
¢ C.3 Generalized Augmenting Paths for the Solution of
Combinatorial Optimization Problems
Kershenbaum
h Tenth IFIPS Conference on System Modeling and Opti-
mization, August 1981, New York, Proceedings
published by Springer-Verlag, 1982
* C.4 A Note on Finding Shortest Path Trees
Kershenbaum
Networks Journal, 1981
-’
-4-
v

;- s PRSI NI P S PRSPPI W P WS DAL P WoU W Y W W WP

A




. - I o i R SRS S S . L " R A R R A . B A

N
e

C.5 Probabilistic Analysis of Algorithm Performance

e First Semiannual Technical Report, March 1981 Py

C.6 Probabilistic Analysis of Algorithms ' }
Second Semiannual Technical Report, September 1981 _
P D. Network Design j,*“i

D.1 Second-Order Greedy Algorithms for Centralized Tele-

processing Network Design

°® Kershenbaum, Boorstyn, and Oppenheim
IEEE Transactions on Communications, October 1980
D.2 Centralized Teleprocessing Network Design

Kershenbaum and Boorstyn

-
To be published in Networks Journal
D.3 Network Design with an Objective Function Including
® a Fixed Charge (Revised)
Kershenbaum
IEEE International Conference on Communications, June
Py 1982, Philadelphia
D.4 An Algorithm for Designing Circuit Switched Networks¥*
Kershenbaum, Schneider, and Frisch
- IEEE International. Conference on Circuits and
Computers, October 1980, New York
D.5 Optimization of Telephone Networks Using the New
@ WATS Tariff* _
Kershenbaum and Kozicki -
Journal of Telecommunication Networks, Summer 1982 i
o r.:i
) -5- Q;




——— Al B e S S R e bt e e JRote Jenc B b i e A L S et St Sandh i dant g

D.6 Design of Survivable Circuit-Switched Communication
Networks*
Natarajan, Walters, and Maglaris
IEEE MILCOM, September 1982, Boston
Switching Techniques
E.1 Delay and Overhead in the Encoding of Data Sources
Hayes and Boorstyn
IEEE Transactions on Communications, November 1981
E.2 Delay and Overhead in the Encoding of Bursty Sources
Boorstyn and Hayes
IEEE International Conference on Communications,
June 1980, Seattle
E.3 An Optimal Strategy for Packetization
Tsao, Kershenbaum, and Boorstyn
E.4 Optimal Fixed Frame Multiplexing in Integrated Line-
and Packet-Switched Communication Networks*
Maglaris and Schwartz
IEEE Transactions on Information Theory, March 1982
E.5 Satellite Access Methods for a General Purpose Packet
Network with a Time Critical Traffic Component*
Maglaris and Lissack
To be published in Journal of Telecommunication Net-

works

PRy Y LS T VAP PRI U A W S W, W 1 S i AP L NP AT PRI W WU Y. PG W i TP S WPy

N3V

bk e h

]

! g ‘ .
a PO IV el

»




A st At i ST iR I SO AR A A i A TSP A \w‘_“.—"""w""‘vﬁf’ N
R
= - 3
* @
; .
p R
; F. Local Area Networks b
o F.1 End-to-End Delay Analysis on Local Area Networks: '.‘
A
1 An Office Building Scenario ]
! Maglaris, Lissack, and Austin 1
[ IEEE National Telecommunications Conference, November .‘1
1981, New Orleans
F.2 Performance Evaluation of Interface Units for Broad- B

® cast Local Area Networks*
IEEE COMPCON, September 1982, Washington

Maglaris and Lissack

-
® 2
o -ef
b 10
- .
Y 1
d =@

* Research supported by other agencies.

L 4 -7- - @
]
.




-

.......

S

PN

SUMMARY OF REPORT

The report consists of papers written in six research areas.
Most of these papers have been published in journals or conference
proceedings, or are soon to be published. A few are taken from
earlier semi-annual reports.

The six research areas are Packet Radio Networks, Adaptive
Routing, Algorithms, Network Design, Switching Techniques, and
Local Area Networks.

In the area of Packet Radio Networks, our results on the
throughput analysis of Multihop Packet Radio Networks was first
presented at ICC'80 (A.1). An expanded version with extensions has
been accepted for publication in the IEEE Transactions on Communica-
tions (A.2). Further extensions are presented in papers A.3, A.4,
and A.5. In this work we developed an algorithm for finding the
throughput of Multihop Packet Radio Networks with arbitrary
topologiés, sizes, connectivities, traffic requirements, and routings.
Details of the algorithm are given in paper A.6.

Our work on Adaptive Routing was first presented at NTC'76.
It was further reported on in the IEEE Transaction on Communications
in an invited paper in April 1981 (B.1). Extensions to this work are
presented in papers B.2, B.3, B.6, and B7. Our approach involved
two levels for adaptive routing - a slowly varying global level and a
dynamic local level. This partition produced a stable routing that
was amenable to analysis. We showed that significant performance
improvements were obtainable. A control theoretic approach applied

to traffic networks is presented in papers B.4 and B.S5.
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Our work in the area of algorithms has focused on finding ap-
proaches to solving intractable problems which arise in the design and
analysis of networks. Several of these papers (C.1, C.2, and C.4)
deal with the solution of specific fundamental problems. Others (C.5,
C.6) deal with the application of probabilistic methods to the solution
of a broad class of problems. Finally, in C.3, we present a method
of directly trading computational complexity for solution accuracy in
the solution of combinatorial optimization problems.

Our work in the area of Network Design has led to solutions to
specific problems in several areas including centralized networks
(D.1, D.2), and circuit switched networks (D.4, D.5, and D.6). It
has also resulted in the development of a facility location algorithm
(D.3) which has been applied to the location of earth stations and
packet radio repeaters in broadcast networks.

In section E, we present our work on an Information Theoretic
approach to communications in networks (E.1 and E.2), on a compari-
son of packet switching and character switching, including an optimum
packetization strategy (E.3), on optimal multiplexing in Integrated
Switching schemes (E.4) and on Integrated Satellite Access (E.5).

In papers F.1 and F.2, we present some work on Local Area
Networks for which we evaluate performance and assess the impact of
user interface architecture.

Most of the work reported upon here was supported by the US
ARMY (CECOM). Portions of this work were also supported by the
National Science Foundation, by Network Analysis Corporation, by
General Telephone and Electronics, and by IBM's Federal Systems

Division. Research not supported under this grant is indicated by an
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asterisk in the table of contents and is included to complement the
® other research reports and provide a more complete record of our
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Papers published

Almost all of the papers published during this contract are in-

cluded in this report and listed in the Table of Contents.

Talks presented

A paper on "Analysis of Multihop Packet Radio Networks," was
presented by Professor Boorstyn at the URSI Conference, Boulder,
January 1981. He also gave a talk on Dynamic Routing at Carleton
University, Toronto at an all-day seminar on Networks co-sponsored
by Carleton University, the IEEE Toronto Chapter, and Bell Northern
Research. He also gave a talk on Analysis of Multihop Packet Radio
Networks at Bell Laboratories. Professor Boorstyn was a panelist at

IEEE INFOCOM'82, Las Vegas, April 1982 and spoke on Analysis of

" Packet Radio Networks. The panel discussed Analytic Techniques for

Networks. Talks were also given at the University of Waterloo,

Canada, CCNY, and Stevens Institute of Technology.

Professor Kershenbaum gave a talk on Multihop Packet Radio at
the Packet Radio Symposium, UCLA, August 1982. He also gave talks
on combinational optimization at the University of Rcchester and at

Stevens Institute of Technology.

Professor Sarachik gave talks on Decentralized Dynamic Clearing

of Congested Multi-Destination Networks at an Engineering Foundation

Conference-Workshop on "Issues in Control of Large Scale Urban
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Traffic Systems," at Hennicker, N.H. in July 1981; and at a joint EE

Department - IEEE Control System Society Colloquium held at Ohio

State University in October 1981.

Professional activities

Professor Boorstyn has been the Chairman of the Computer
Communications Committee of the IEEE Communications Society. He is
on the Steering Committee of the IEEE INFOCOM Conferences. He is
also Associate Editor of Networks Journal.

Professor Kershenbaum is the Editor for Network Analysis and
Design Techniques for the Journal of Telecommunication Networks and

is an Associate Editor of Networks Journal.

Theses completed

Paul Chu, 1981, A Dynamic Routing Scheme in Packet Switching
Networks .

William Chuang, 1982, Probabilistic Models for Large Scale Optimization
Problems.

Veli Sahin, 1982, Analysis of Multihop Packet Radio Networks.

David Tsao, 1982, A Comparison of Switching Techniques for Data

Networks.
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A.1 Throughput Analysis of Multihop Packet Radio Networks
Boorstyn, Kershenbaum, and Sahin

Accepted for Publication in IEEE Transactions on

Communications
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THROUGHPUT ANALYSIS OF MULTIHOP PACKET RADIO NETWORKS*
:: Robert R. Boorstyn and
N Aaron Kershenbaum Veli Sahin
) Polytechnic Institute of Bell Laboratories
New York Holmdel, New Jersey 07733

333 Jay Street,
Brooklyn, New York 11201

ABSTRACT

2 TR VP T S

We consider the problem of obtaining exact expressions for throughput and blocking
probabilities in multihop packet ratio networks operating under CSMA. We obtain exact results
for a general class of message lengths, for general topologies, and for perfect capture. These
results are obtained by assuming perfect acknowledgments.

Y

I. INTRODUCTION

We consider the problem of obtaining exact expressions for throughput and blocking
probabilities in multibop packet radio networks operating under carrier sense multiple access
(CSMA). Procedures are developed which can be used to analyze general topologies for a

general class of packet length distribution. Examples of chains, rings, and stars are presented.

II. THE NETWORK MODEL

We consider the problem of analyzing the throughput capability of a multihop packet
radio network operating under carrier sense multiple access (CSMA). Thus, we assume that
the network is comprised of terminals equipped with radio transponders suitable for

broadcasting data over a limited distance. In general, the source and destination terminals

® This research was partially supported by USARMY CENCOMS under contract DAAK 80-80-K-0579, and by the
Natonal Science Foundation under grant ENG-79-08210.
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cannot hear each other directly, and the data has to be relayed by one or more intermediate
devices. A separate set of devices, called repeaters, may exist for this purpose, or the terminals

themselves may relay messages for one another.

Control of the network is completely distributed, i.c., no station or central control
mechanism is assumed to exist. Rather, we assume that each source terminal has prestored
one or more routes to all destinations and includes all necessary routing information in the
packets if transmits. These assumptions are made merely to simplify the presentation. In fact,
the results presented are valid for networks using alternate routing as long as routing changes
are not made over short time intervals. One of the motivations for this study came from a
consideration of the design of routing procedures for such networks. It was necessary,

however, to first develop an understanding for the throughput of various topologies.

Exogenous traffic is modeled as independent Poisson processes arriving at each
source node, with appropriate rates and packet lengths. The topology is specified by a listing of
which terminals (or repeaters) can hear each other. In the remainder we will not distinguish
between terminals and repeaters and will refer to them collectively as either terminals or nodes.
In general the transmissions of one terminal can be heard by many other terminals. The

routing will specify which terminal is to repeat the -packet, if necessary.

If two or more transmissions are simultaneously heard by a terminal (called a
*collision”) at least one, and possibly both, is "lost” and must be retransmitted. We assume
retransmissions are scheduled at a random instant in time sufficiently far in the future so as to
preserve the Poisson nature of the combined traffic stream, which now consists of exogenous
traffic and rescheduled traffic. For this study, we assume that a packet can be retransmitted as
many times as is necessary, i.e., that there is no maximum allowable number of

retransmissions.

At any time, terminals may either transmit or receive, they cannot do both

simultaneously. Before transmitting, a terminal senses the channel. If it detects that any of its
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neighbors (i.e., terminals that it can hear) are transmitting (by, e.g., sensing a carrier) it
reschedules the transmission as for collided packets above. If at the scheduled time for a
transmission, the terminal is alrcady engaged in transmitting a packet, the new packet is also
rescheduled as above. Thus packets are continually rescheduled until they are successfully
delivered to the next terminal on their route. We assume that the total stream of traffic
scheduled by any terminal is a Poisson process. This includes originating traffic and packets
rescheduled eitber due to collisions or due to the channel having been sensed busy. This
scheme is called carrier sense multipie access (CSMA). The Poisson assumption is valid for the
assumptions made above and will yield accurate results for throughput. Compromises will have

to be made, however, if an accurate picture of time delays is to be considered.

It is possible, due to non-zero propagation delay, that collisions of transmissions
from neighboring terminals may still take place despite the CSMA strategy. This will occur if a
terminal senses the channel before another terminal’s transmission is received. This effect is
small if terminals are reasonably close or are not transmitting at high speed. We will ignore this

phenomena here, and assume that all transmissions are instantly heard by their neighbors.

A passive acknowledgment is used for transmission to neighbors. The transmitting
terminal listens to the channel to hear if a packet is being rebroadcast by a neighbor. If after a
prespecified time interval, the transmitting node does not hear the packet rebroadcast, it
retransmits the packet. But the packet may have been successfully received by the neighbor
even though the originator does not hear the rebroadcast. Duplicate packets may be
transmitted and deleted only at the final destination or they may be detected and deleted earlier.
An end-to-end acknowledgment is returned to the originator from the final destination. In this
paper we assume that passive acknowledgments are always heard and ignore the effect of end-
to-end acknowledgments. Alternately, these acknowledgements could have been added to the

required traffic. (In a sequel paper, the effect of passive acknowledgements will be studied).

We depict the topology of the network by a graph where terminals are represented
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by nodes. The nodes are connected by a link if they éan hear each other’s transmissions, i.e., if
they are neighbors. As an example see Figure 1. Node A can hear node B, but not node C.
Node B can hear both nodes A and C. Node C can hear node B, but not node A. If node A is
transmitting to node B and node C begins transmitting, then the transmission from A to B may
be lost depending upon the "capture” assumptions we make. A conservative assumption is that
the A to B transmission is lost - this is known as zero capture. Alternatively, perfect capture
assumes that this transmission is successfully received. Half-amplitude capture assumes that
the transmission is lost if C dominates A at B. This can happen if C is closer to B than A is to
B, or has a greater signal strength perceived at B than A has. If A dominates C, then the
transmission is successful. However, in all cases of a collision we assume the later transmission
is lost. Thus if C is transmitting to B, this packet is lost in all cases. We will consider only
perfect capture situations below. Note that under CSMA if node B is transmitting, neither A or

C is allowed to transmit.

We assume that a routing has been specified. This takes the form of deciding which
of the neighbors are to rebroadcast a packet from a particular source to a particular destination.

Thus the amount of traffic that a terminal wishes to send to its neighbor can be computed. If

these rebroadcast packets are scheduled at a random time far in the future the Poisson
assumption for traffic streams is preserved. We assume that the traffic between neighbors is
Frm specified and form independent Poisson processes. We assume that the packet length is
reassigned independently at each hop. This is analogous to the "independence assumption” in
queuing networks.

‘.'. The details of CSMA for a single bop network can be found in the papers by Tobagi
(2)

and Kleinrock(l). Tobagi has also developed some simple models fdr two-hop networks

A A Bl e’ G )
S
et

Details of a packet radio network can be found in a paper by Kahn(3). A discussion of routing
_! in multihop packet radio can be found in the paper by Gitman, Van Slyke, and Frank“). An
‘ carlier version of this paper was presented at ICC'80(5). More details can be found in the
E thesis of Sahin(6).
1 @




(Y

III. GENERAL RESULTS

In this section we develop some expressions that are valid for the packet radio
network we have modeled above using CSMA and with an arbitrary packet length distribution.
Let i be a node, m; one of its neighbors, N; the set of all the neighbors of i, and N; the set of
all i’s neighbors, including i. Let g, be the total rate (in packets/sec) of all scheduled traffic at
node i. This includes originating traffic and all rescheduled traffic and is assumed to be Poisson.
Let 1/u; be the average length of packets transmitted by node i. Let G, = 5 /u, be a

normalized rate.

Node i is either busy (transmitting) or idle. It will transmit a scheduled packet if at
the instant it is scheduled all nodes in N; are idle. Let A be a set of nodes. Let P(A) be the
probability that at a random instant all nodes in A are idle. The nodes not in A may or may
not be idle. Similarly P(i), P(i,A), P(A,B) are the probabilities that i is idle, node i and nodes

in A are idle, and all nodes in A and B are idle.

Since traffic is scheduled at node i with a Poisson rate g;, will be transmitted only if

N; is idle, and transmissions have average length 1/4,, the probability that i is busy is given by
1-P(i) = G,P(N;) (n

If 1 is busy then under ‘CSMA. n, must be idle. Then since

P(n;) = P(n i) + P(nmli busy)[1—P (i)}

and P(n;|i busy) = ), we have

i9
—

P(n.i)=P(n)+P(i) = (

Similarly, if 4 C N/,

..4




YT
- .. .

v

e

6 - -9
Piauy=Pl4)+PU)— 1 (3
-‘;
letting 4 = N, in equation (3), and using N
P{N') = P(N))/P(IN) 3
"“,’4
- 1
we get 4
1
PN = 1 (4) :"i
! 1+G, ’
Equation (4) is often found in CSMA literature. _:
A packet from i to n; will be transmitted when it is scheduled if N, is idle. During "’"
the transmission all nodes in AN, will be idle. It will be successfully received at n; if all ]
neighbors of n; not in N, are also idle at the beginning of transmission. Otherwise a collision ]
4
will occur. Let s; , be the rate in packets/sec, determined by the routing and assumed Poisson, *‘"ﬁ
3
of the traffic that | wishes to send to n,. This is the required throughput or offered traffic. Let 1
8 . be the rate of all scheduled traffic from i to n,. We have also assumed that all these
-
streams are Poisson and independent. Of these g, packets per second, s, must be k
successful. Thus
Sl.ﬂ' Si,n, "1
— = = P(N;.N,) )
&n  Gin ‘ !
)
"
A
where Sl.ll, = 5,’,,‘/‘4., and Gl,n = gA_n‘/“v :
1 1 B '.'!~
The total scheduled traffic (normalized) at a node is given by B
Go= S G, (6) ,
S -,
From equations ‘1) through (6) we wi.n 1o denve a relation between the S, , and G,. and
c'.
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determine the maximum S"-": the network can support. This we call the (maximum)

throughput or capacity. In the next section we develop this relationship for exponential packet
lengths and arbitrary topologies. Later we extend the analysis to a general class of packet

length distributions.

IV. EXPONENTIALLY DISTRIBUTED PACKET LENGTHS

If the packe} lengths are exponentially distributed, then the system can be viewed as
a Markov process w'l;ere the states are identified by which nodes are idle and which are busy.
Let D be a set of busy nodes. Because of CSMA, no nodes in D may be neighbors of each
other. Let Q(D) be the probability that at an instant of time, all nodes in D are busy, and all
nodes not in D, are idle. Then each set, D, represents a state in a Markov system, and Q(D) is

the state probability. In particular, the null set D = ¢, represents the state that all nodes are

}dle.

Assume the system is in state D. It will leave the state if any ieD stops
transmitting. This happens with rate u;. Thus the transition to state {D-i} occurs with rate yu,.
The only other way to leave state D is for one of the idle nodes that is not a neighbor of any
ieD to begin to transmit. This occurs with rate g;. Let Np be the set of all neighbors of all
nodes in D. Then the transition from D to {D+j}, jeNp, occure with rate g;. The global
balance equations for this system are

T+ T g2D)=F g QD=+ T u; QD)) )
ieD j.‘ Np ieD A Wy

where D is one of the special sets defined above.

It is easy to see that thesx equations are satisfied by

Q(D)-i—'Q(D—i)-G,Q(D—i).uD (8)
{
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Thus

Q(D) = (1 G,) Q(4) 9

where we adopt the convention that I G, = 1. Summing over all D, we get
ieo

2 eWD)=3 (0 o] =1 (10)
all D all p P

In the previous section we found we were interested in quantities like P(A), where

A is any set of nodes, and P(A) is the probability that all nodes in A are idle, and all nodes not

in A may or may not be idle. This can be found by summing Q(D) over all sets D that do not

contain nodes in A. Thus

Z (0G)
PA) = Q(p)-i&“_“__ (11)
Dot o@zv (PD G:)

where D CA° refers to all such sets contained in the complement of A and N is the set of all

nodes. We adopt the shorthand notation.

SP(B)= 3 (_%Gi) (12)

pce 't

where SP refers to sum of products. Thus
P(A) =SP(A°)/SP(N) (13)

Equations (5), (6), and (11) can be used for any topology to generate the solution

to our problem. The equations relating the S, ,. G, », and G, can be solved iteratively. For

example, equation (5) now becomes

z
o
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Gia  SP(N)

(14)

where by A+B we mean the union of A and B.

Evaluation of sums of products in equation (12) are made easier by the following
two rules. Consider two sets of nodes A and B such that no node in A can hear any node of B.

Then

SP(A+B)=SP(A)SP(B), A\ B =¢ (15)

Also,

SP(A) =SP(A—i) + G;:SP(A—N;), i¢A (16)

To prove these rules just consider all products. We have successfully evaluated many complex

topologies with these procedures.

There are other relations which will be found useful in extending our model to more
complex situations. We prove some of these below. Let C be a cut, i.c., a set of nodes that
divides the network into three parts A, B, and C, where A and B have no neighbors in common

as in equation (15). Let A=4,+ 4,, B = B, + B, where A4, = BB, = ¢. Then

P(A4,C.,B)) - SP(A,+8,) - SP(A,)
P(C,B)) SP(A+B;) SP(A)

P(A,|C.B)) =

But

P(A4,.C) - SP(A,+B) - SP(A)y)
P(C) SP(A+B) SP(A)

P(A,C) =

Thus

L
¢l

.9
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P(A\C.B)=P(4,|C).Ca cu (17)
we also have
P(4,B,IC) = P(4,|C)P(B,IC). C a cu (18)
In particular if C = N, then
PGIN;.B) = P(iIN;), BCNf (19)

V. A GENERAL CLASS OF PACKET LENGTH DISTRIBUTIONS

In this section we extend the results just proven to include a general class of
distributions for the packet length. We will show that the procedures developed for perfect
capture are independent of packet length distribution. To prove this we start with a simpler
extension. In the above we assumed that all packet lengths are exponentially distributed and
have the same mean when transmitted by a node to any of its neighbors. Different nodes may
transmit different average length packets, however. Now assume that while all packet lengths
are still exponentially distributed, the average length packet transmitted from a node may be
different to each of its neighbors. This will be useful in analyzing different protocols (to be

presented in a sequel paper) but is presented here as the first step in the desired extension.

Now the state of the network depends upon who is transmitting and to whom. We
can keep the same structure by breaking every node into a set of "micronodes”, one for each
neighbor. These nodes may be indexed by (¢,m;). If i is transmitting to »; then this node is
active, otherwise it is idle. Micronodes are connected in our topology if they can hear each
other. Since CSMA still prevails, all micronodes for a given node are fully connected.
Furthermore all micronodes for nodes that are connected in the original topology are also fully
connected. The analysis now proceeds as above since the Markovian property has been

maintained. For example, equation (14) still holds, but now N, and A, are collections of

et PP MIPE. P SV Sy . P P S v .

e

m s s M At e aca s RS 4 s 2

M,

-

U
.

LA




(aiils SoNE et ac-u air i gi

<11 -

micronodes. Note that NV, contains the full set of micronodes for i and all neighbors of i. S, ,
and G, . bave the same meaning as before. However they are normalized by 1/u,,. the

average packet length for packets going from i to #,. The terms in the sums of products are

G, », for the micronodes.
Let A contain full sets of micronodes and include the node i. Then from equation

(16)

SP(A) = SP[4—(i.n))] + G, , SP(A—N,) (20)

Here we have used the fact that N(i.a) = N, and the notation that N, is the set of all

micronodes of i and neighbors of i. Since this is equivalent to the original set of node

neighbors of i we keep the same notation. Repeating for all neighbors of i we get,

SP(A) = SP(A—i) + (E G,-_,.,)SP(A"NI) (21)
i
If we let
8i _
Gi = T = 2 Gi.ni = 2 g:,n‘/“'i.n, (22)
i "l H‘-

then equation (16) is preserved. In a similar manner all previously derived equations can be
maintained where G, takes on the definition in equation (22). Here 1/4; is an average packet
length, averaged over the different average packet lengths to different neighbors in proportion

to their scheduled rate.

We now prove our main theorem for this section. Assume that the length of

packets transmitted from i to n, has the density
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fl.u,(x) = E a:.n,.j “HBimy € (23)
J
where

a, ., = 0and 2 Gy =1
i

Thus the length is distributed as a positive sum of exponentials. Another way of looking at this

is that the a's are the probabilities of choosing the associated exponential density. Now create

micronodes for each triple (i.n.jJ). Here we use
Simd =St/ Bing where s, ; =0, ;Sia. The micronodes for some i and any n, ; are

fully connected as are the micronodes for neighboring nodes. Equations (20) and (21) now

become

SP(A) = SPIA = (i,.j)) + G, , ;SP(A=N;) (24)

and SP(A) =SP(A—i) +

2 G;,.,J}SP(A—N.-) (25)
nJ

In the same manner as above, we let

&i
G ‘T'E %y "2“' )
{ nJ ny Fimy

- E G""l'
R~y

These equations are used to find P(A) in terms of G, and are identical in form to those derived

for exponentially distributed packet lengths.

Equation (5) in turn comes from

P U P U TR YDA WD UL . U 1PN W)
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Sin, = Gin PINEN,). (27)
Summing over j, we get equation (5)
Sim =2 Sin; = GinP(N+N,) (28)

J

Thus all relations between the G's and the S’s are preserved. The actual nature of the problem

is taken into account by the relationship between the S’s and the normalization by the u’s.

We can now restate the above theorem. Let i be any node and jeN,, the
neighborhood of i. Let s;; be the successful (desired) rate from i to j, in packets/sec. Let the

density of the packet lengths be

gk X
Jij(x) =3 a; jxmijuexp 'Vt Twhere u; iy > 0,4 ;,=0,
k

and 3 g, ;. = 1.
k

Let 1y, ; = > a; jx/u; x be the average packet length, in seconds. Let S;; =s; ,/u; ;. Then
k

S;
L - P(N;UN,) = a funcion of (G.G,, - ")

A_' JVR

o,

TR

G,
where

R
P
1
G" - Z Gl_}" i
jQN“ !
®
Proof: 1
i
let 5,0 ™=a, 45, Py

Then 5,4 =a,, 45, =P(N,UN,))g
o
e et ot
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where G, e E G[.j =3 Egt./.k/“t.j.*'

R dhd
JaN, le‘. &

Dividing s; ; 4 by u, ;x and summing over k, we get

SiJ =P(N,UNJ)G‘J

VI. EXAMPLES OF THE PROCEDURE

As an example consider the chain of four nodes shown in Figure 2. We assume
S12=531=8S3=531=834=3543=3S for simplicity, and perfect capture. Also note that
Gi2=G, Gy3=G, and by symmetry G, =G, G;; = G3, and Gy3;=Gj. Also from

equaticn (6), Gy = G4, + G33 = G;. From equation (5), we have

S S S
—— = P(1,2,3) = =——, —=— = P(1,2,3,4
G, Pu2 =G, TrUY
But
SP(N) =3 (IG)) =1+ G, +G,+G3+G,+G,Gy,+G,G,+ GG,
ieD
=1+26G,+2G,+26,G,+GI=A
and

P(1,2,3,4) = 1/4, P(1,2,3) = (1+G,)/A = (1+G,)/A

Solving, we get

Gz - Gl(2+G|) and § = G](1+Gl)/A .

or

S = G,(1+G /(146G +7G }+2G }).
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We can now find the maximum value of S possible, the throughput of the chain, which is 128,

obtained when G, = 0.71.

In general the equations cannot be solved as simply as for this four node example.
Equation (11) is used to get expressions for P(A) in terms of G;. Then equation (14) is used
to get expressions for §;, in terms of G;, and P(A). Equation (6) provides the relation
between G, and Gia- The S,-,,,l are found from the offered traffic, the routing, and other
assumptions and are considered as inputs. The equations are iterated until a solution of G’s for
a set of S’s is found. The maximum set of S's possible is considered the throughput, or

capacity, of the network. For some modest size problems, as above, the equations can be

solved directly.

As a second example consider the star topology shown in Figure 5. Here assume
there are L legs of N = 2 nodes each. Denote the center node by O, the nodes one hop out by
1, and the other nodes by 2. Further assume symmetrical traffic in the nodes and
Sor = S10=512=5; =S. Then LS is the total traffic successfully transmitted by node 0. The

equations are

Soo LS _ S S SP(L—1# 2 nodes)
—_——— = e— = —— = P a”bwL—l#z”wes =
G Go Gy Gy ( ) SP(N)

= (1+Gj,)L~l/a

S, S S S SP(L—)\ legs) _
- - === P(0,1,2) = = (1+G,+G)t7'/Aa
G, G, Gy G, ( ) SP(N) ( 1+6G2)

where

A -SP(N) - (I+G|+Gz)l’ + G°(1+Gz)L

G =G0+ G

But Gig=Go/L and G|3= G,, 30 G, = G, + Gy/L. Thus we have two equations:

L 2 PPN S P S G WS W Y G . LY © Py .. S e o o gt LN e ¥ 2 a o PRI WP NP S e X
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LS/Go= (1+G3)L™'/a and $/G, = (1+2G +go/L) 7 Y/A

For any S < S pu\. they can be solved for Gg and G,. Alternatively for any G, we can find the

corresponding G, by solving

Go(1+G )L™ = G (142G 1 +G J) L' .

Then the relation between S and G, can be studied. We then find the maximum S, Sg,;,.

possible. LS, is the maximum throughput of the star.

For larger problems we will get several equations of the form

Go= LSA/(1+G)t™!

Gy=SA/(1+2G+GyL) ™!

For any S we solve these iteratively. Since Go= LS, G, = 2S, and G, = S, the lower
bounds are good starting points for G;. For S sufficiently less than S, we have found the
iteration converges monotonically and rapidly. As S approaches Spg,; from below the
convergence is still monotonic but slows appreciably. For S§ > S, the iteration does not
converge and often diverges dramatically. We have uncovered no serious numerical problems

with this procedure in the many examples we have evaluated.

VII. NUMERICAL EXAMPLES
We consider here three different topological structures with exponentially distributed
packet lengths and perfect capture. We assume all §; , = S, for all i, and take full advantage of

symmetry. The three topologies, shown in Figures 3, 4, and 5, are a chain, a ring, and a star,

all with various lengths. In each case we find the maximum throughput, S. These are given in

Table 1.

The maximum one way throughput for a long chain is S = .086. This throughput is

approached when the lengths of chains exceed 10. For smaller length chains the throughput is

P O S " SR SR : s ade PO PR Ay S S RPN P LRI . P

o




LA

N GrG st aael avi AL Jeeis et Bl SN JDAE Rulih 3 LN < - R Lol

-17 -

higher. In CSMA transmissions of neighbors may not overlap in time. Since each nodes
transmits successfully 28 packets per average packet transmission time, then we must have S <
1/5. The throughput is slightly smajler than half of this limit. The cause of the reduction is
collisions from transmissions two hops away, the so-called "hidden terminals". The throughput
of S = .086 for a chain, although the maximum possible, is not a useful operating point. As in
ALOHA, this is the point at which delays become infinite and the system is unstable. The

network would have to be operated at some lower level.

It is instructive to compare the performance of multihop CSMA with that of slotted
ALOHA. Let p be the probability of transmission in one direction at a node. Then S = p(l-
2;.\)2 for a long chain. Sg,, here is .074 which is approximately 14% less than that for CSMA.
There are two factors working here. CSMA will produce less collisions since neighbors will not
interfere with each other. Hidden terminals will still produce collisions. (All terminals are
hidden in ALOHA). But CSMA prohibits possible successful transmissions. For instance,
node 3 can transmit successfully to node 2 while node 4 is transmitting successfully to node 5.
This is possible in ALOHA but prohibited in CSMA. This is one of the prices paid to control

collisions.

We note that for a ring greater than 7 nodes the maximum throughput is the same
as that for a long chain. This is expected since the congestion is now in the middle and it is
unimportant whether or not the chain is closed. A star with two legs is just a chain with N for

the star replaced by 2N+1 for the chain.

Consider the star configuration as representing the center node (0) trying to transmit
to some node or nodes far away via many repeaters. For one leg, the maximum rate is .086.
For two legs, the maximum rate is 2S or .172, exactly twice. The results are shown in Table I1
where the throughput of the center node is given by LS. We see from Table Il that whereas
the throughput doubles for L = 2, it increases only by 20% when L=3, by 4-5% further when

L=4, and by 2% when L=15. Congestion at the central node is limiting its ability to increase its
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throughput. Additional legs, beyond three, are not really helpful.

We have investigated ways of reducing the congestion at the center node. For larger
L, the traffic in each leg is limited by congestion at the center. The collisions that cause most
problems are for transmissions from the first level of nodes (1, N+1, 2N+1,..., (L-1)N+1) to
the center. These are collided with by other first level nodes. To reduce these collisions we
considered connecting the first level nodes in a ring and then fully connecting them. These
results are also summarized in Table I. When the first level is unconnected the throughput
saturates at .229. When the first level is fully connected the throughput with 9 legs is .252, a
15% increase For four legs, the ring connected topology is best, providing some compromise

between reducing collisions and allowing simultaneous transmissions.

The best that we can expect in the fully connected case is LS =< 1/3. This is
because all transmissions from the center node and all first level nodes cannot overlap. We will

discuss asymptotic results with even larger stars and chains in the next section.

VIII. ASYMPTOTIC RESULTS

We are interested in asymptotic results for several reasons. They provide us with
the limiting behavior of the finite networks previously studied. Since the behavior of these
networks seems to converge rapidly with their size, if asymptotic results are easier to obtain,
they would be useful. We are also interested in very large networks. A final reason is to verify

some of the bounding arguments on throughput made in the last section.

We first consider an infinitely long chain. Welet S, ., = S;,-; =S. Then all nodes

are identical. Also G, ;+) = G;,—, = G;/2. Thus with G, = G,

SP(—o0,....i—2)SP(i+3....,00) (29)

s 25 N
= G Pi—1,i,i+],it+2) SP(—oo....,00)

i

We can write the denominator as
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o SP(—00....,00)=SP (=0, - - - i=1)SP (i +1.....00)+G,SP (—co.....i~2)SP (i +2.....c0). 3
o

4
: SP(i—k,...,) SP(—00,....i+k) o
3 Now let - - :
E ow let Oy SP (.. ) SP(—o0...1) We observe that @, = 1 for k=0 and if it
: ]
converges is independent of i. Then equation (29) becomes y
@)
]
25 1
— U c—————— 30 b
¢ = 0:0:+GC, ¢30) 3
But ~
u A.‘!
0 = SP(—co....,itk—1) + G SP(_—o0,..,i+k—2) ;
k

SP(—oo,....i) =Qk-1 + G-, (31) .1

and Qo= 1. Thus @, = Q, + G. Therefore

1
25/G - ———————
2.(Q, +26)
or
G
S=—"t 32
20,(Q,+26) ©2)
We note that since Q_, = El—, from equation (31) we have
1
-
G G
=0 t——=1+—"— or
01=0Qo 0, 0.
G =0,/(Q-D (33)
@
Finally we have
Q,—1
S =—— =1 (34
b 20,(20,—1) @ )
The maximum value of S is .086, reached when @, = 1.70r G = 1.2.
L
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IX. EXTENSIONS AND CONCLUSIONS

We have presented a simple but fairly realistic model of a multihop packet radio
network and have obtained maximum throughputs for general topologies and packet lengths.
We have assumed perfect reception of acknowledgments and have not included additional traffic
due to end-to-end acknowledgments. Some aspects of acknowledgments can be included by
increasing the required traffic. We are investigating the effect of imperfect acknowledgments
and different retransmission strategies. The model should still be useful under these

extensions.
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Table |

Maximum One-Way Throughput (S)

Number Star
of Number of Legs, L

Nodes, N Chain Ring L=2 L=3 L=4 L=$§

1 1000 1000 .167 .103 .074  .058
2 500 500 111 076 057
3 167 167 097 072 0S5
4 128 073 092 070 .054
5 A1 .100 069 054 044
6 102 .083
7 097 087
3 8 094 085
- 9 092 .086
. 10 091 086
3
o 086 086 08 069 054 .044 :
e s
- ‘,
2
=
3
?,! a3}
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Table 11
Maximum One-Way Total Throughput of the

Central Node in a Large Star Arrangement

Maximum Throughput, LS

Center Arrangement

.086
172
.207 .198
216 228
.220 .230
.220

.198

216

.230

.240

.245

.248

252
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THROUGHPUT ANALYSIS OF MULTIHOP PACKET RALIO

Robert R. Boorstyn and Aaron Kershenbaum

Polytechnic Institute of New York
333 Jay Street, Brooklyn, NY 11201

ABSTRACT

We consider the problem of obtaining exact
expressions for throughput and blocking proba-
bilities in multihop packet ratio networks operat-
fng under CSMA. We obtain exact results for
exponential message lengths for general topoiogies
and for constant packet lengths for simple topol-
ogies. Both results are obtained by assuming
perfect acknowledgments.

1. INTRODUCTION

We consider the problem of obtaining exact
expressions for throughput and blocking proba-
bilities in multihop packet radio networks operat-
ing under carrier sense multiple access (CSMA).
By considering exponential packet lengths, proce-
dures are developed which can be used to analyze
general topologies. Examples of chains, rings,
and stars are presented. Extensions to non-
exponential and fixed packet lengths, and more
complex models are discussed.

1I. THE NETWORK MODEL

We consider the problem of analyzing the
throughput capability of a multihop packet radio
network operating under carrier sense multiple
access (CSMA). Thus, we assume that the net-
work {s comprised of terminals equipped with
radio transponders suitable for broadcasting data
over a limited distance. In general, the source
and destination terminals cannot hear each other
directly, and the data has to be relayed by one
or more intermediate devices. A separate set of
devices, called repeaters, may exist for this
purpose, or the terminals themselves may relay
messages for one another.

Control of the network is completely distri-
buted, i.e., no station or central control mechan-
ism is assumed to exist. Rather, we assume that
each source terminal has prestored one or more
routes to all destinations and includes all neces-
sary routing information in the packets it trans-
mits. These assumptlions are made merely to
simplhify the presentation. In fact, the results
presented are valid for networks using alternate
routing as long as routing changes are not made
over short ume intervals. One of the motivations
for this study came from a consideration of the
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design of routing procedures for such networks.
It was necessary, however, to first develop an
understanding for the throughput ot various
topologies.

Exogencus traffic is modeled as independent
Poisson processes arriving at each source nodc,
with appropriate rates and, initially, exponentially
distributed packet lengths. The topology s
specified by a listing of which terminals (ot
repeaters) can hear each other. In the remainder
we will not distinguish between terminals and re-
peaters and will refer to them collectively as
either terminals or nodes. In general the trans-
missions of one terminal can be heard by many
other terminals. The routing will specify which
terminal is to repeat the packet, if necessary.

If two or more transmissions are simultan-
eously heard by a terminal (calied a "collision™)
at least one, and possibly both, is "lost" and
must be retransmitted. We assume retransmis-
sions are scheduled at a random insfant in lime
sufficiently far in the future so as to preserve
the Poisson nature of the combined traffic stream,
which now consists of exogenous traffic and
rescheduled traffic. For this study, we assume
that a packet can be retransmitted as many times
as (s necessary, i.e., that there is no maximum
allowable number of retransmissions.

Terminals may either transmit or receive,
they cannot do both simultaneously. Betore
transmitting, a terminal senses the channel. [I! «t
detects that any of its neighbors (i.e., terminais
that it can hear) are transmitting (by. e.g.,
sensing a carrier) it reschedules the transmission
as for collided packets above. If at the sched-
uled time for a transmission, the terminal is
already engaged in transmitting a packet, the new
packet is also rescheduied as ahove. Thus pack-
ets are continually rescheduled until they are
successfully delivered to the next termnal on
their route. We assume that the total stream of
traffic scheduled by any terminal s a Paisson
process. Thus includes originaung troflic «nd
packets rescheduled either due 1o collisions or
due to the channel having been sensed busy.
This scheme is called carrier sense multiple access
(CSMA). The Poisson assumption is valid lor ihe
assumptions made above and will yield accurate
results for throughput. Compromises will have to
be made, however, il an accurate picture of tire
detays 1s to be considerced.
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It is possible, due lo non-zero propagation
delay, that collisions of transmissions from neigh-
boring terminals may still take place despite the
(’SMA strategy. This will occur if a terminal senses
the channel before another terminal's transmission is
received. This effect 1s small if terminals are
reasonably close or are not transmitting at high
speed. We will ignore this phenomena here, and
assume that all transmissions are instantly heard by
their neighbors.

A passive acknowledgment is used for trans-
mission  to neighbors. The transmitting terminal
listens to the channel to hear if a packet is being
rebroadcast by a neighbor. If after a prespecified
time interval, the transmitting node does not hear
the packet rebroadcast, it retransmits the packet.
But the packet may have been successfully received
by the neighbor even though the originator does
not hear the rebroadcast. We assume that duplicate
packets are transmitted and are deleted only at the
final destination. We assume an end-to-end acknowl-
edgment is returned to the originator from the final
destination. In this paper we assume that passive
acknowledgments are always heard and ignore the
effect of end-to-end acknowledgments. Alternately,
these acknowledgements could have been added to
the required traffic.

We depict the topology of the network by a
graph where terminals are represented by nodes,
The nodes are connected by a link if they can hear
each other's transmissions, i.e., if they are neigh-
bors. As an example see figure 1. Node A can
hear node B, but not node C. Node B can hear
both noaes A and C. Node C can hear node B,
but not node A. If node A is transmitling to node
B and node C begins transmitting, then the trans-
mission from A to B may be lost depending upon
the "capture" assumptions we make. A conservative
assumption is that the A to B transmission is lost -
this :s known as zero capture. Alternately, perfect
capture assumes that this transmission is success-
fully received. Half-amplitude capture assumes that
the transmission is lost if C dominates A at B.
This can happen if C is closer to B than A is to B,
or has a greater signal strength perceived at B
than A has. If A dominates C, then the transmis-
sion is successful. We will consider these different
capture situations below. Note that under CSMA if
node B is transmitting, neither A or C is allowed to
transmit.

We assume that a routing has been specified.
This takes the form of deciding which of the neigh-
pbors are to rebroadcast a packet from a particular
source 1o a particular destination. Thus the amount
of traffic that a terminal wishes to send to its
neighbor c¢an be computed. If these rebroadcast
pacrkets are scheduled at a random time far in the
tuture the Puisson assumption for traffic streams is
preserved. We assume that the traffic between
neighbors s specified and form independent Poisson
processes. When considering exponentially distri-
buted packet lengths we assume that the packet
length 15 reassigned independently at each hop.
Although this leads to some anamolies in interpret-

- - . . TR — P ——

ing the results it is a key assumption in the
model and s dnalagous to the "independence
assumption” 1n queuing networks.

The details of CSMA for a single hop net-
work can be found in the papers by Tobagi and

Kleinrock(l). Tobagi has also developed some

simple models for two-hop networks(Z). Details
of a packet radio network can be found in a

paper by Kahnd)‘ A discussion of routing in
multthop packel radio can be found in the paper

by Gitman, Van Slyke, and Frank(q).

I11. GENERAL RESULTS

In this section we develop some expressions
that are valid for the packet radio network we
have modelled above using CSMA and with an
arbitrary packet length distribution. Let i be a
node, n, one of its neighbors, N* the set of all

the neighbors of i, and Ni the set of all i's

neighbors and including i. Without loss of gene-
rality assume the average packet length at each
terminal is unity. Let G, be the total rate (in
packets/sec) of all schedliled traffic at node i.
This includes originating traffic and all resched-
uled traffic and is assumed to be Poisson.

Node i is either busy (transmitting) or idle.
It will transmit a scheduled packet if at the
instant it is scheduled all nodes in Ni are idle.

Let A be a set of nodes. Let P(A) be the proba-
bility that at a random instant all nodes in A are
idle. The nodes not In A may or may not be
idle. Similarly P(i), P(i,A), P(A,B) are the
probabilities that i is idle, i and nodes in A are
idle, and all nodes in A and B are idle.

Since traffic is scheduled at node i with a
Poisson rate Gi' will be transmitted only if Ni is

idle, and transmissions have unity average
length, the probability that i is busy is given by

1-P(i) = GiP(Ni) 1)

If i is busy then under CSMA, n, must be 1idle.
Then since

P(n‘.) = P(nl.,i) + P(njli busy) (1-P(i))

and P(ni|i busy) = 1, we have

P(n..i) = P(n;) « P(i) - 1 2)
Similarly, if A C NI'.

P(A,i) = P(A) + P(Q) - 1 (3)

letting A = Nl' in equation (3), and us. .9
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P(N;*) = P(N,)/P(i|N;*)

we get
i

Equation (4) is often found in CSMA literature.

A packet from i to n, will be transmitted
when it is scheduled if Ni is idle. During the
transmission all nodes in Ni‘ will be idle. It will
be successfully received at n, if (1) all neighbors
of n; not in Ni are idle at the beginning of trans-

mission and (2) depending upon the capture
assumptions, none of these nodes begin transmit-
ting until i's transmission is ended. Otherwise a

collision will occur. Let S A, be the rate in

packets/sec, determined by the routing and as-
sumed Poisson, of the traffic that i wishes to

send to n,. This is the required throughput or

offered traffic. Let Gi n be the rate of all
scheduled traffic from |' ‘to n,. We have also

assumed that all these streams are Poisson and
independent. Of these G packets (per sec-

ond), Si n must be successful Thus
i

in,
i
c— < P(Ni'Nn,)P X 5)
l'ni 1
Let D be the nodes in N that dominate i at
n;. ’lhen P(X) is the probabnhty that no nodes
in Dl n, begin transmission during the transmis-

sion of' the packet from i to n, conditioned on
node 1 transmitting, all nodes in Ni‘ being idle

throughout the transmission, and all nodes m
Nn being idle, at least, initially. If Dl

empty or perfect capture is assumed then P(X)= 1

The total scheduled traffic at a node is
given by

Gi= b3 Gi, (6)

ni:Ni‘

From equations (1) through (6) we wish to derive
a relation between the 5, o, and G,, and deter-

1
mine the maximum S, the network can support.

This we call the (maxnmum) throughput or capa-
aity. In the next section we develop this rela-
tionship for exponential packet lengths and arbi-
trary topologies. Later we present some resuits
tor non-exponential lengths and simple topologies.

Iv. EXPONCNTIALLY DISTRIBUTED PACKET
LENGTHS

If the packet lengths are exponentially
distributed, then the system can be viewed as a
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Markov process where the states are identified by
which nodes are idie and which are busy. Let D
be a set of busy nodes. Because of CSMA, no
nodes 1n D may be nerghbors of each other. We
shall refer to such a set of non-neighbors (or
strangers) as being "strange." Let Q(D) be the
probability that at an instant of time, all nodes in
D, whiuch is strange, are busy, and ail nodes not
in D, are idle. Then each strange set, D, repre-
sents a state in a Markov system, and Q(D) is
the state probability. The collection, D, of all
strange sets, B, represents all the states in the
system. In particular, the null set D = ¢, re-
presents the state that all nodes are idle.

3
a
{
4

Assume the system is in state D. It will
leave the state if any icD stops transmitting.
This happens with rate B = 1. Thus the transi-

tion to state {D-i} occurs with rate b The only

other way to leave state D is for one of the idle
nodes that is a stranger to all icD to begin to
transmit. This occurs with rate Al. = Gj' (We

use Ch and A for the moment for clarity). Let
ND be the set of all neighbors of all nodes in D.
Then the transition from D to {D+j}, thD, ocecurs
with rate Ai. The global balance equations for
this system are

(2p; + D\ ) Q(D)= IA; Q(D-i)+ 2 ¥ QD) ()
icD |tN u:D )tN

where Ded} the collection of all strange sets.

It is easy to see that these equations are
satisfied by

A,
QD) = 7 QD-i) = GQD-i), ieD (8)
i
Thus
QD) = (NG Q(e) (9)
ieD
where we adopt the convention that 1 G, = 1.
Summing over all De 8, we get ico
2 Q) = 2 (NG) Qe) =1 10)
Dc B u;d

In the previous section we found we were
interested in quantities like P(A), where A is any
sel of nodes, and P(A) 1s the probability that all
nodes in A are idle, and all nodes not in A may
or may not be idle. This can be found by sum-
ming (D) over all sets D that do not contain
nodes in A. Thus

3 @ G)

DC AC ieD !
I (NG

DCHieD

P(A) = N CQ(D) = (11)
DCA

.
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where )0 A" refers to all strange sets contained in

the  complement of A. We adopt the shorthand
notation,

SP(B) = I (n Gi ) (12)
DCBieD
where SP refers to sum of products. Thus

P(A) = SP(A%)/SPew (13)
where is the set of all nodes.

As an example consider the chain of four
nodes shown in figure 2. We assume 512= SZl=
SZ3= 532: S34= 543= S for simplicity, and perfect
capture. Also note that Glz= G], G43= 64 and
by symmetry Gl= G4, G21= G34, and (323= G32.
Also from equation (6), Gz= 6210 G23= G3' From
equation (5), we have

S

= P(1,2,3) = o,
G G

Gs— £(1,2,3,4)
1

23

But

SP@e)= I (IIG) 1+G
DaﬂcD

10G2*630G +G G3*GzG +G 04

1¢zcozcz¢2GG~G2'

and
P(1,2,3.4)=1/5, p(i,2,3)=(1+c;4)/a=(1+cl)m.
Solving, we get
G, = G,(2+G;) and S = G (1+G,)/a .
or
S = G,(1 +G,)/(1 + 6G,+ 7G,%+ 2G,3)
1 1 1t 6 10

we can now {ind the maximum value of S possible,
the throughput of the chain, which is .128,
obtained when Gl= 0.71.

We can also consider half-amplitude or zero
capture. For example, consider zero capture.
Then when 2 1s transmitting to 3, 4 can inter-
fere. But 1, 2 and 3 are idle, and 4 is initially
idle. The transmission is successful if 2 finishes
iransmission before 4 starts. But these are
events occurring in exponential time.

1. 1
14G, 1+G
g 1 S_ .
= = P(1,2,3.4) - . is unchanged.
Ga3 TG Gy

(§- 1s a little harder to obtain, but is a straight-
1

forward calculation.

Now

Thus P{X) =
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FEquations (11) and (5) can be used for any
topology to generate the soiution to our problem.
The equations relating the S ., and, G; can be

solved iteratively. For example equatlon (5) now
becomes

S SP(INj*N D¢
L.n - i
- P(X) 149)
Gon, 3P

where by A+B we mean the union of A and B.
For perfect capture P(X)=1. For other capture
modes, the computations for P(X) are straight-
forward but can become tedious for complex
topologies.

Evaluation of sums of products in equation
(12) are made easier by the following two rules.
Consider two sets of nodes A and B such that no
node in A can hear any node of B. These sets
may be called non-communicating. Then

SP(A+B) = SP(A) SP(B),
A&B non-communicating (15)

Also,
SP(A) = SP(A-i) + GiS'r(A-Ni), icA (16)

To prove these rules just consider all products.
We have success[ully evajluated many complex
topologies with these procedures.

There are other relations which will be found
useful in extending our model to more complex
situations. We prove some of these below. Let C
be a cut, i.e., a set of nodes that divides the
network into three parts A,B, and C, where A
and B are non-ccmmunicating. Let A= Alﬁ A,, B
= B + B2 where A AAZ- B ~B -0 Then

P(A;.C.B)) SP(A,+B,) SP(A,)
P(A,]C.By)= P(C B) ~ SP(A*B) SF(A)

But

P(A;.C)  SP(A*B)  SP(A,)
P(A,]C) = BIC)- ° SP(A+BY " SPCRY

Thus P(A“C,Bl) = P(A1|C), Cacut (17)

We also have

P(A,, B [C) P(AIIC) P(BliC), C acut (18)

In particular if C = Ni" then

®
detdeadendndiie A
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POIN®, B) = P(i{N*), BC N© (19)

V Examples

We consider here three different topological
structures with exponentially distributed packet
lengths and perfect capture. We assume all

S, n, S, for all 1, and take full advantage of

symmetry. The three topologies, shown in fig-
ures 3,4, and 5, are a chain, & ring, and a star,
all with wvarious lengths. In each case we find
the maximum throuaghput, S. These are given in
Table I.

Note that for a ring greater than 7 nodes
the maximum throughput 1s the same as that for a
long chain. This is expected since the congestion
i1s now in the middle and it 1s unimportant whe-
ther or not the chain is closed. A star with two
legs is just a chain with N for the star replaced
by 2N+1 for the chain. Consider the star config-
uration as representing the center node (0)
trying to transmit to some node or nodes far away
via many repeaters. For one leg, the maximum
rate is .086. For two legs, the maximum rate is
25 or .172, exactly twice. The results are shown
in Table Il where the throughput of the center
node 1s given by LS. We see from Table 1l that
whereas the throughput doubles for L = 2, it
increases only by 20% when L=3, by 4-5% further
when L=4, and by 2% when L=5. Congestion at
the central node is limiting its ability to increase
1ts throughput. Additional legs, beyond three,
are not really helpful. We are evaluating other
topologies to find ways to increase the throughput
of a central node in such a configuration.

VI Nan-exponenual Packet Lengths

For non-exponential packet lengths, equa-
tions (1) through (6) are still valid but are
insufficient to solve for the G; and the §; . For

& three node chain and a star with any num%er of
legs but N = 1 we have been able to prove equa-
tion (19) for arbitrary packet length distribu-
t.ons.  The equations for P(A) are identical in
form as for exponential lengths but the terms
Y(X) tor half-amphtude and zero capture are
ditferent. For example, for constant packet

lengths instead of 1/(1+G) we now have e'G.
These 1wo simple topologies can be completely
analyzed tor any capture mode. Further details
wil not be given here.

Wce have not been able to derive a similar
refationchip for other topologies. However, we
feel that equations (17) through (19) are tempting

approximations to try. Fhen if together with
equatior< 1) through (¢) they are suificient to
Jetive enough equations 1o find the throughput,
tne resulting approximate solution has some ap-
peal we heve been able to de this for several

simpie topulogies but have not verified the ac-
curacy ot the approximation Consideration of
n-her than pertect capture in these cases hecomes
very diofticult,

W O TATE TE T - T - T T ™. w W _ w,w

VIl _Extensions_and Conclusions

we have precented a simple but fairly reabs-
tic model of a multihop packet radio network and
have obtdained maximum threcughputs fur general
topologies and exponenlial message lengths. The
procedures are easiest lo implement when perfect
capture is assumed. Other capture modes can be
handled 1n a straightforward but somewhat more
tedious manner. We have assumed perfect recep-
tion of acknowledgments ond have not included
addiuonal traffic due to end-to-end acknowledg-
ments. Some aspects of acknowledgments can be
included by increasing the required traffic. Wwe
are investigating the effect uf imperfect acknowl-
edgments and different retransmission strategies.
The model should still be wusef ' under these
extensions.

We have been able to derive results for
non-exponential packet lengths, but only for
simple topologies. Our procedure suggests a
simple, and probably good, approximation to be
used for more complex topologies. However,
imperfect capture becomes a more serious prob-
lem. We are investigating these extensions.

Finally, we are applying these techniques to
evaluate different routing strategies and trans-
mission schemes in a multihop packet radio net-
work.
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Table 1. Maximum throughput (S)

Number

of Star

Nodes, N Chain Ring L=2 L=3 L=4 L=5
1 1.000 1.000 .167 .103 .074 .058
2 .500 .500 .111 .076 .057

3 .167 .167 .097 .072 .055

| .128 .073 .092 .070 .054

) 111 .100 .069 .054 .044
6 .102 .083

7 .097 .087

8 .094 .085

9 .092 .086

10 .091 .086

® .086 .086 .086 .069 .054 .044

Table 11. Maximum Throughput of the Central
Node in a Large Star Arrangement.

Number of Legs Maximum Throughput

.086
172
.207
.216
.220

e W N

S

Figure |. A part of o network
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A NEW ACKNOWLEDGMENT PROTOCOL FOR ANALYSIS OF MULTIHOP PACKET RADIO NETWORKS*

' . Robert R. Boorstyn and Aaron Kershenbaum
Polytechnic Institute of New York, 333 Jay Street, Brooklyn, New York 11201

Veli Sahin
Bell Laboratories, Holmdel, New Jersey 07733

Abstract

We consider the problem of obtaining exact
expressions for throughput and blocking probabii-
itdes in multihop packet radio networks operating
under CSMA. We have obtained exact results for
a general class of message lengths, for general
topologies, and for perfect capture. These
results were obtained by assuming perfect ack-
nowledgments. Here, we extend these results to
include situations where acknowledgments are not
always heard. We also introduce and analyze a
new acknowledgment protocol that significantly
improves performance.

1. Introduction

We consider the problem of obtaining exact
expressions for throughput and blocking probabil-
ities in multihop packet radio networks operating
under carrier sense multiple access (CSMA).
Procedures have been developed to analyze gen-
eral topologies for a general class of packet

length distribution and perfect capture.* That
work assumed perfct acknowledgements. Here,
we extend these results to include situations
where acknowledgments are not always heard. We
also introduce and analyze a new acknowledgment
ptotocol that significantly improves performance.

I1I. The Network Model

We consider the problem of analyzing the
throughput capabilty of a multihop packet radio
network operating under carrier sense multiple
access (CSMA). Thus, we assume that the net-
work is comprised of terminals equipped with
radio transponders suitable for broadcasting data
over a limited distance. In general, the source
and destination terminals canno¢ hear each other
directly, and thus data has to be relayed by one
or more intermediate devices. A separate set of

® This research was partially supported by
USARMY CENCOMS under contract DAAK
80-80-K-0579 and by the National Science
Foundation under grant ENG-79-08120.

CH1796-2/82/0000/0383$00.75 1982 IEEE
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devices, called repeaters, may exist for this pur-
pose, or the terminals themselves may relay mes-
sages for one another.

Control of the network is completely distrib-
uted, i.e., no station or central control mech-
anism i1s assumed to exist. Rather, we assume
that each source terminal has prestored one or
more routes to all destinations and includes ail
necessary routing information in the packets it
transmits. These assumptions are made merely to
simplify the presentation. In fact, the resuits
presented are valid for networks using alternate
routing as long as routing changes are not made
over short time intervals.

Exogenous traffic is modeled as independent
Poisson processes arriving at each source node,
with appropriate rates and packet lengths. The
topology is specified by a listing of which termi-
nals (or repeaters) can hear each other. In the
remainder we will not distinguish between termi-
nals and repeaters and will refer to them coi-
lectively as either terminals or nodes. In general
the transmissions of one terminal can be heard by
many other terminals. The routing will specify
which terminal is to repeat the packet, if ne-
cessary.

If two or more transmissions are simulta-
neously heard by a teminal (called a "“collision")
at least one, and possibly both, is "lost" and
must be retransmitted. We assume retransmis-
sions are scheduled at a random instant in time
sufficiently far in the future so as to preserve
the Poisson nature of the combined scheduled
traffic stream, which now consists of exogenous
traffic and rescheduled traffic. For this study,
we assume that a packet can be retransmitted as
many times as is necessary, i.e., that there is no
maximum allowable number of retransmissions.

At any time, terminals may either transmit or
receive, they cannot do both simuitaneously.
Before transmitting, a terminal senses the chan-
nel. If it detects that any of its neighbors (i.e.,
terminals that it can hear) are transmitting (by,
e.g., sensing the carrier) it reschedules the
transmission as for collided packets above. I[f at
the scheduled time for a transmission, the termi-
nal is already engaged In transmitling a packet,
the new packet is also rescheduled as above.
Thus packets are continually rescheduled unul
they are successfully delivered to the next termi-
nal on their route. We assume that the total
stream of traffic scheduled by any terminal is a
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Poisson process. This includes originating traffic
and packets rescheduled esther due to collisions
or due to the channel having been sensed busy.
This scheme is called carrier sense multipie access
(CSMA). This Poisson assumption i1s valid for the
assumptions made above and will yield accurate
results for throughput.

It is possible, due to non-zero propagation
delay, that collisions oi transmissions from neigh-
boring terminals may still take place despite the
CSMA strategy. This will occur if a terminal
senses the channel before another terminal's
transmission is received. This effect is small If
terminals are reasonably close or are not trans-
mitting at high speed. We will ignore this phe-
nomena here, and assume that all transmissions
are instantly heard by their neighbors.

A passive acknowledgement is wused for
transmission to neighbors. The transmitting
terminal listens to the channel to hear if a packet
is being rebroadcast by a neighbor. If after a
prespecified time interval, the transmitting node
does not hear the packet rebroadcast, it retrans-
mits the packet. But the packet may have been
successfully received by t.e neighbor even
though the originator does not hear the rebroad-
cast. Duplicate packets may be transmitted and
deleted only at the final destination or they may
be detected and deleted earlier. An end-to-end
acknowledgment is returned to the originator from
the final destination. [In our original work we
assumed that passive acknowledgments were
always heard and ignored the effect of end-to-end
acknowledgments. The end-to-end acknowledg-
ments could easily be added to the required
traffic. In this paper we consider the situation
when passive acknowledgments may not always be
heard. We also introduce and analyze a new
acknowledgment pratocol.

We depict the topology of the network by a
graph where terminals are represented by nodes.
The nodes are connected by a link if they can
hear each other's transmissions, i.e., if they are
neighbors. As an example see Figure 1. Node A

o—0—°0

A B C

Figure 1
Network Topology

can hear node B, but not node C. Node B can
hear both nodes A and C. Node C can hear node
B, but not node A. If node A 1> ("ansmitting to
node B and node C begins transmitting, then the
transmission from A to B may he lost depending
upon the "capture" assumptions we make. A
conservative assumption 1s that the A to B ftrans-
mission is lost -- this 1s known as 2zero capture.
Alternatively, perfect capture assumes that this
transmission is successfully received. Half-
amplitude capture assumes that the transmission 1s
lost if C dominates A at B. This can happen it
is closer to B than A 1s to B, or has a greater
signal strength perceived at B than A has. It A
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dominates C, then the transniission 1s successful.
However, in all cases of a collisiofi we assume the
later transmission is lost. Thus if C ‘m~{rans-
mitting to B, this packet 1s iost 1n all cases. we
will consider only perfect capture situations
below. Note that under CSMA if node B is trans-
mitting neither A or C is allowed to transmit.

We assume that a routing has been specified.
Ttus takes the form of deciding which of the
neighbors are to rebroadcast a packet from a
particular source to a particular destination.
Thus the amount of traffic that a terminal wishes
to send to 1its neighbor can be computed. If
these rebroadcast packets are scheduled at a
random time far in the tuture the Poisson as-
sumption for scheduled traffic streams is pre-
served. We assume that the packet length is
reassigned independently at each hop. Although
we have extended the analysis to include non-
exponential packet length distributions, we
consider only exponential packet lengths here.
The resuits are similar.

The details of CSMA for a single hop net-
work can be found in the papers by Tobagi and

Kleinrock!. Tobagi has also developed some

simple models for two-hop networks?. Details of
a packet radio network can be found in a paper

by Kahn3. Details of our analytic procedure were
presented at ICC'80*. More details can be found
in the thesis of SahinS.

111.  Analytic Procedure

In this section we review the analytic pro-
cedure for perfect acknowledgments¢. Let i be a
node, n, one of its neighbors, N; the set of all
the neighbors of i, and Ni the set of all i's
Let g, be the total rate

(in packets/sec) of all scheduled traffic at node
i. This includes originating traffic and all re-
scheduled traffic and is assumed to be Poisson.
Let 1/y; be the average length of packets trans-

mitted by node i. Let Gi = gi/"'i be a normalized

rate.

Node i is either busy (transmitting) or idle.
It will transmit a scheduled packet if at the in-
stant it is scheduled all nodes in Ni are idle. Let

A be a set of nodes. Let P(A) ke the probability
that at a random instant all nodes in A are idle.
The nodes not in A may or may not be idle.
Similarly P(i), P(i,A), P(A,B) are the proba-
bilties that node i is idle, node i and nodes in A
are idle, and all nodes in A and B are idle.

A packet from i to n, will be transmitted

neighbors, including i.

when it is scheduled if Ni is idle. During the

L 4
transmission, because of CSMA, ail nodes in Ni
will be idle.

if all neighbors of n, not in Ni are also idle at

It will be successfully received at n,

the beginning of the transmission. Otherwise

-»
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a collision will occur. Let Si n be the ra:e in
i
packets/sec, determined by the routing ot the

traffic that 1 wishes to send o n,. This 1s the

required throughput or offered traffic. Let 9 n
i
be the rate of all scheduled traffic from i to n.

wWe have assumed that all these streams are Pois-
son and independent. Of these g; n packets

per second, s must be successful. Thus

i,ni
si,ni Si,r\i
= = P(N,,N_ ) 1)
%.n, ci,n1 iy

where si,ni = si.ni/"i and Gi,n =9 n /”i'

i i
The total scheduled traffic (normalized) at a
node is given by

G, =

X )

I G
ti-ni
nit:Nl

If the packet lengths are exponentially
distributed, then the system can be viewed as a
Markov process where the states are identified by
which nodes are idle and which are busy. Let D
be a set of busy nodes. Because of CSMA, no
nodes in D may be neighbors of each other. Let
Q(D) be the probability that at an instant of
time, all nodes in D are busy, and all nodes not
in D are idle. Then each set, D, represents a
state in a Markov system, and Q(D) is the state
probability. In particular, the null set D = ¢,
represents the state that all nodes are idle.

We have shown* that
n Gi
Q(D) = '5—,%’— )
DcN jeD

where N is the set of all nodes and we consider
n Gi =1.
ied

We are interested in quantities like P(A),
where A is any set of nodes, and P(A) is the
probability that all nodes in A are idle, and all
nodes not in A may nor may not be idle. This
can be found by summing Q(D) over all sets D
that do not contain nodes in A. Thus

1 n Gi
C .
P(A) =1 Q)= BA D (4
1
DcAC DeN ieD

where DcAS refers to all such sets contained in
the complement of A. We adopt the shorthand
notation

SP(B) = & (N Gi) (5)
DcB ieD

LA R e
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where SP refers to sum of products. Thus
P(A) = SP(AT)/SHN) (6)

The above equations can be used for any
topology to generate the solution to our problem.
The equations relating the Si n. Gi n and (:.l

AN T
can be solved iteratively. For example, equation

{1) now becom:s

s, SP([N, + N_ |5
% T i n, (N
G. SP(N)

l,ni

We have also given many rules to make the writ-
ing of these equations easier®.

IV. Passive Acknowledgments

In this section we extend our previous work
on throughput in multihop packet radio networks
to include the effects of passive acknowledgments
not always being heard. Let node j be a neigh-
bor of node i. we have already seen that

S, .= Gi,jP(leNi)P(Ni) = Gi,jP(Ni'Nj) (8)

I',

When j transmits the packet to the next node
in the route, i can hear the transmission, and
thus receive a passive acknowledgment, 1t all of
its neighbors (except j) are idle. If it does not
hear the transmission, then after a suitable
time-out period it retransmits the packet. Pre-
viously we assumed all passive acknowledgments
were heard. Here we see that a passive ack-
nowledgment is heard with probability P(Nile).

We assume that the time-out period is seiected so
that all nodes have the opportunity of hearing
exactly one transmission. If they fail to hear it,
the packet is retransmitted. This is repeated
until an acknowledgment is heard. The assump-
tion that exactly one transmission may be heard
in a time-out period is equivalent to assuming
that the same time out period is used for all
nodes and that it is long enough to insure one
transmission.

The rate S“.

peated packets, t'Jecause of failure to hear ack-
nowledgments. Let Si‘]. be the rate of packets

for which passive acﬁnowledgments are heard.
Then

in equation (8) includes re-

St . (9)

ll’

"
=0
v

P(N,.N)
P(Ni|N,~) = —P—(Np (10)

where q; i

We have already shown how to solve sets of
equations like (8) for the Gi j

the Si ., and found the maximum possible Sll

which we defined as the throughput*. For ex-
ample, in a ~hain, all Sl | =S fory=rand 1 -1

as a function of

A A L i i i A L
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Here we see how to modify this procedure to

account for passive acknowiedgments. The Si‘j

are determined from the offered traffic and the
routing.

we identify two situations. Packets are
retransmitted if they are unsuccessfully trans-
mitted or if the passive acknowlzdgment is not
heard. In the latter case, a duplicate packet 15
sent. If the receiving node recognizes the dupli-
cate packet and deletes it, then Si‘l. is the de-

sired rate of traffic between i and ;. If a simpler
node does not have this capability, then duplicate
packets are retransmitted, and after several hops
many duplicates exist. In this latter case, si‘i

includes these duplicate packets and must be
related to the desired rate of traffic. We will
first consider a chain.

Consider the chain shown in figure 2 con-
sisting of n nodes. Assume that duplicate pack-
ets are not detected. We assume that node 1 and
n wish to send S packets per second to each
other. All other nodes are just repeaters. When
node 2 relays a packet to node 3, node 1 must be
idle, and all passive acknowledgments are always
heard. Thus qQ 5= 1 and,

51,251,278 an

At the other end, node n does not repeat the
packets, so passive acknowledgments are not
possible. However every transmission must be
successful since there are no interfering nodes.
Thus

* =
sn-l,n sn-l,n

Node i attempts to transmit all §; , ; suc-
cessful packets to itl. Thus

12)

S*...=S§

i,ivl i-1,i ’
Similarly, in the reverse direction, we have

i=2,....,n1 (13)

Sr‘\,n—l = sn,n-l =S
55'1 = 52'1 (14)
and S? =S . , i=2,...,n-1

itl,i i,i-1

Equations (11 to 14) relate Si i and Si j‘ to the

desired traffic, S. Note, by symmetry, we cbtain
relations like equations (14) by replacing i and j
by n-i+tl and n-j+l, respectively.

As an example we evaluate the throughcut of
a four node chain. First we assume perfect
reception of acknowledgments and use only equa-
tion (8) with all Si i=S. Then

§ = G;2P(1,2,3) = Gz3P(1,2,3,4) = G P(1.2.3)
(15

)86

We let Gy, = G, Gg; * Gy = G2, and note hy
symmetry that Gy = G, G, = Gy, and P(1,2,3) =
P(2,3,4). From our previous work we have

1+G,  1+G,
PAZH = 5 = -

P(1,2.3,4) = § (16)

2
D = 142G ,+2G2+2G,G+G} = (1¢G,) +25G;(1+G,)

Thus we get

G2 = Gy + G(1+G,) = G,(2+G,y)

G, G,

GG, - eaG Gy )

We can solve equation (17) for the maximum vaiue
of S, the throughput. We obtain smax = .128

when G, = .71.

To include the effects of passive acknow-
ledgments we use equations (9 to 13) to obtain
for arbitrary length chains,

$12=S

s .
S. . 2 ——— l=2,..-,n'z (18)
Litl  qy 3d3 4---9j jeg

sn-l,n = sn-2,n-1

Also,

slz‘ = 523‘ =S

) s | 19)

S, . . ¢ =
l,l’l qz’g...qi_l'i

Returning to the example for nz4 we use
equations (18) and (10) in (8) to obtain

S = Glzp(l,2,3) = Q23023P(1,2,3,4)
= q21G21P(1.2.3)

2
= G,,P(1,2.3) = Gyy LB ’12 3 %U = G,,P1,2.3,4)

(20)
or Gy = Gy(14G)*G,(1+G,)? = G,(14G,)(2+G,)

Thus
G‘ Gl
S e e 6T T T e ¢ T n Te Tern AR
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The throughput here is S = .098 when

max
Gy = .37, a reduction of 23%.

In Table 1 we compare the effects of passive
acknowledgments for various length chains. We
see that as the chain becomes long the through-
put vanishes. Also shown 1n that table is

Table 1. Effect of Passive Acknowledgments
Throughput
Length Perfect Duplicates Duplicates
of Chain Acknowledg. Detected_ Not Detected
4 128 106 .098
) 111 .083 .069
6 .102 .072 .053
7 .097 .066 .044
8 .0%4 .063 .038
9 .092 .061 .034
10 .091 .060 .031
o .086 .057 0

the throughput for chains when duplicate packets
are detected and not transmitted to the next
node. We analyze this case now.

If dlplicate packets are detected and not
transmitted further, then 5 *% is just the desired

traffic to be sent from i to 1 As before we find
S. .* from the offered traffic and the routing.

i,j
i, i+l sl’ll S for

For example, in a chain S¥
Thus equations (8 to 10) combine

i=1,...,n-1.
to give

(P(N'vN'lz

. i
5. * Si.j “PYN—,§‘ (22)

except at terminal nodes where no further trans-

mission is necessary and q = 1. This can be
solved as before to yield the G i as a function of
the S. ,‘ and then the maxlmum S * or through-

i,j
put can be found.

We present the analysis for the four node
chain analyzed above. Here S,

for i =1,2,3. Again we use symmetry to obtain
(1+Gy) . 14Gy
526G o~ =G rgyp - G
(23)
D = (14G;)? + 2G2(1+G))
as before.
But G; = G, + G‘(I’G‘)z, S0
G,
= (]46‘5026‘”0(14(;‘57] (24)
Solving we get Smax = .106 when G, = .42
The throughput for various length
chains are given in Table 1. We see here that
there is a 34% reduction in throughpu* for long

chains when the effects of passive acknowiedg-

. A . P I TSP YUY SUP AU DU U S S

| el mass s i el aue 2w SEES. asee S A et Rl Sa St AR

187

ments are included and duphcate
detected and not transmitted turther.

We next analyzc the effect of pussive ack-
nowledgments on throughput in star networks.
We will consider two topologies - one where all
legs are unconnected from each other, the second
where the nodes closest to the center are fully
connected. We have studied these networks in
our previous work and assumed there that all

packets are

passive acknowledgments were heard.* We assume
further here that duplicate packets are de-
tected and not retransmitted. See Figure 2
for the configuration of the star network with
zero connectivity, L legs, and K nodes in each
leg. For full connectivity the nodes 0,1,K+l,
2K+1,...,(L-1)K+1 are fully connected.

The equations used in the previous section
are still valid here. When duplicate packets are
detected, all Si * = S, the throughput in each

leg. The end conditions are

QpeL-1 (go1yk =1 - 2= 0.1 (25)

since transmissions to the end nodes are always
heard and passive acknowledgments are not sent.

This can be found from equation (10). We fur-
ther assume that
qquo:l , £=0,...,L-1 (26)

Transmissions to the center node are not always
heard. Retransmissions due to collisions are
included in our analysis. However since the

Figure 2
A star network with L legs and zero connectivity.

(L-1)K+2

(L-1)K+1
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center node doeoes nol retransmit, passive ack-
nowledgments are not available. We assume a
perfect end-to-end acknowledgment i1s operating.

Equations 8 v 10 have been solved with
perfect passive acknowledgments and wilh imper-
fect passive acknowledgments and duplhicate packet
detection. Two topologies have been studied -
2zero connectivity and full connectivity around the
center. The resultant maximum throughputs per
leg are shown in Tables 2 and 3. The maximum
throughput from the center node 1s given 1in
Table 4. We see from these results that there 1s
again a 34% reduction in throughput for long legs
and z2ero connectivity. For full connectivity we
find a 43 to 46% reduction in throughput due to
the failure to hear passive acknowledgments.

From our previous work we found that
except for short legs, the fully connected topol-
ogy is better when passive acknowledgments are
not considered. This is because inward trans-
missions from neighbors of the center are not
collided with. With zero connectivily passive
acknowledgments for transmissions from the first
ring to the second are interfered with only by
the center node. With full connectivity all other
first ring nodes add to this interference. Thus
the first ring will have to retransmit more. In
Table 4 we compare the maximum throughputs
from the center node for full and zero connecti-
vity and see that indeed =2ero connectivity is
better.

Table 2: Effects of Passive Acknowledg-
ments on Star Networks. Zero
Connectivity (Number of Legs,
L=35) - Duplicates Detected

Maximum throughput per Leg, sma

Number of X
Hops Perfect Imperfect
per Legq, K Acknowledgments Acknowledgments
1 .058 .058
2 .045 .033
3 .044 .0290
4 .044 .0286
6 .044 .0286
Table 3: Effects of Passive Acknowledg-
ments on Star Networks.
Full Connectivity -
Duplicates Detected
Maximum throughput
per Leg,
max
Number of
Number of Hops Perfect Imperfect
Legs, L per leq, K Acknowledq. Acknowledq.
6 3 .C4 .0233
4 .04 .0230
>5 .04 .0230
9 3 .0286 .0155
4 .0280 .0154
>S .0230 .0154

Table 4: Lffect of Passive Acknowledgments on
Star Networks.
Maximum Throughput trom the Center

Maximum throughput
per Leg, Sm,-

No. of No. of Perfect lmf)'e_ﬂ’f;'. t
l.egs, Hops per Connec- Acknow- Acknow-

_L leg, K tivity ledgments iedgments
5 2 Zero 225 165
>3 .220 145
6 3 Full .240 .140
>4 .240 .138
9 3 Full .257 -140
>4 .252 .139

V. A New Protocol for
Passive Ackrowledgements

In the previous section we discussed the
effect of imperfect acknowledgments on the maxi-
mum obtainable throughput tor various topoioqies.
We saw that the maximum obtainable througnput
was reduced more than 30 percent for a chain,
and more than 44 percent for the star network.
The protocol that we used has the following
disadvantages:

1. Each node has only one chance to hear
acknowledgments from its neighbors.

2. Since the probability of a node hearing
an acknowledgment from its neighbors 1s
significantly less than one, some of the
successful transmissions are duplicate
transmissions.

3. The next node must recognize duplicate
transmissions, otherwise the actual
throughput will go to zero when the
number of hops between source and
destination nodes is large.

4. Since each node must-wait until trans-
mission of the packet by its neighbor 1»
hear acknowledgments for that packet,
the timeout period is large. Thus,
delay will be large too.

We propose the following protocol. A node
in general has many packets to transmit, In
addition to repeating a packet just received
These packets are intended for all its neighbors
The old protocol requires one to wait until that
particular packet is repeated. Here we enlarqge
the header of every packet so that it includes
acknowledgment information for all recently re-
ceived packets. Thus a “passive" acknowledg-
ment can be received on the next packet trans-
mitted. The acknowledgment for a partcular
packet can be included in the next several pack-
ets, so there are several attempts to hear the
acknowledgment. At the expense of increased
header and more logic 1n the nodes, the effect of
passive acknowledgments can be made negligible.

4
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I'he protocol that we have developed 1tu
overcome these problems 18 that a nude recognizes
a passive acknowledgment tor its packet hy the
virtual transmission of tnat packet A packet s
virtually transmitted 1f its wdentifier 15 transmitted
with another packet. tach node when trans-
mitting a packet includes not only the packet's
identifier but also the idenufiers of previously
received packets. A packet's identihier 1s con-
tained in the next m packets. A node would then
have m opportunities to hear if Its transmission
was received (we do nol count the actual trans-
mission). [If a packet's 1dentifier 1s transmitted m
times then the ackncwiedgment for that packet is
almost always heara tor a sutficiently large value
of m. [f a packet's transmission is not received,
then after a timeout period that packet 1s re-
scheduled for transmission.

VI. The Effect of the New Protocol
on_Throughput

We develop and analyze a new acknowledg-
ment protocol which we refer to as the virtual
acknowledgment protocol. In this protocol, if
node j hears a packet transmitted to it by node i,
node j includes the identifier of this packet in the
next m packets it transmits to any node (in
addition, of course, to later transmitting the
packet itself). We refer to this as m virtual
transmissions (and one actual transmission) of the
packet. Node i then has m opportunities, rather
than one, to hear that node j received its packet.
Thus the probability of an acknowledgment being
heard is greatly increased over what it was with
passive acknowledgments. This increases
throughput significantly, roughly 50% for the
topologies we have studied.

In add:ition to this, node i can make the
determination as to whether or not to transmit as
soon as it hears any packet transmitted by node
j- Thus, node i does not have to wait for its
packet to be scheduled for retransmission and
retransmitted by node j. This reduces delay
significantly .

wWe present the analysis of throughput and
overhead due to the increased length of the
header and give a qeneral proecedure for com-
puting these quantities. We also present analyses
of several specific topologies of interest and
compare the performance of this protocol with that

) Al Srt SRah dit Setil Sren 4 T . i)

Insertung n identifters into a4 pac ket wiil
increase a packet length by a facter (see tuy o

h «d
Hﬂf%‘r? (20

The value of n is related to m as will be shown
later. Here n 1s the number of ditferent ident-
fiers added to the packet. VPor the moment  we
will assume that the average vaiue of n eauals

The wvalue of m 1s chosen such that the

probability of hearing an acknowledgment, g,

close to one. Since every node hears acknowl-
edgments from i1ts neighbors with probabiity riose
to one there dtre almost no duplicate transmis-
sions. Thus nodes do not have to recognize
duplicate transmissions for the sake of through-
put.

If each node wvirtually transmits a packet m
times then the probability of successfully hearing
an acknowledgment can be recomputed as follows:

h bits b bits d bits
Header ID Data
1 2 (n+l) .
Header ID ID ... ID Data
h bits (n+l)b bits d bits

Figure 3
Packet Formats for the Old and New Protoculs

Let qii be the probability of hearing an ack-
nowledgment. Then the probability of not hearing
an acknowledgment after m virtual transmissions 1s

X

qj;
x

For large values of m, qij goes to 1. When

=1 - (l‘qii)m (28)

x
qi’. = 1 the throughput (in bits/sec) will increase
to the results for perfect capture.

*
qi,- is substituted for qii in all throughput
equations for chain and star networks which we
presented in the previous sections. The maximum
obtainable throughput for different topologies are

of passive acknowledgments for these topologies. given in Tables S and 6. The probability of
Table 5. Effect of imperfect acknowledgments on the throughput as a function of m
for the chain network (Sij = Sji = 8).
Throughput of a chain

Length o number of virtual transmissions, m Perfect

of Chain Acknowl-
(N) 1 2 3 4 5 6 7 8 edgment

4 106 119 124 127 127 11275 1276 128 .128

5 .083 B .106 .108 .11 .1105 .1108 L1109 BB

6 072 .09 096 ! .10 .102 102 102 102

7 .06b .085 .091 .095 .0u6 .097 097 .097 087

8 .063 081 .088 .091 .093 .094 034 91 094

10 .06 .078 .085 088 .09 .09 .0903 .0905 041

IR9

. . T8 .

@
o ad - A

s
._. Abde

P LAA‘AA!14~

edmimaaade

3
N




-

L Aol M R B R A ol

&
[

Qe = ]
PRSI

DR A A A L A I A R e N S S

Tahle 6. Effect of impertect acknowledgments un

the throughput as a1 junction ot m tor
five legs in a star network with 2ero
connectivity (5” = 5. = 8).

Iy

Throughput of a star
with five legs
number of virtual
transmissions, m

Length Perfect
of Legs Acknow-
(K) 1 2 3 1 5 6 ledgment
1 .058 .058 .058 .058
2 .033 .039 .042 .043 .044 .0445 .045
3 .029 .037 .04 .042 .043 .0433 .044
> 4 .029 .037 .04 .0415 .042 .043 .044

hearing acknowledgments is also given 1n Table 7.

We see from Table 7 that the probability of
hearing acknowledgments approaches 1 when
m =S5 for zero connectivity. The throughput
almost increases to the values of perfect acknowi-
edgment for m = 5.

We compared the two protocols for acknowl-
edgments for chain and star networks. The
throughput of the center node increased by 50%
for a ten node chain, by 48% for zero connec-
tivity, and by more than 50% for full connec-
tivity.

As we mentioned before the length of a
packet is increased by a factor

f=h4>df(mﬂ)-b
h+d+b

because of the virtual transmissions. We inserted
m - b extra bits into a packet. Thus, the
throughput is given by

5= G

*
j o PN ND - ay ° g g5 (meD) - b
(29)
If we choose b = 12, h =84, m =5, and d = 960
bits then

h+d+b
h+d+ (mel) - b

= 946 or foiPe = o087

This means that the throughput decreased 6% due
to increased header when compared with perfect
acknowledgments. But we know that the
throughput increased much more than 6% because
of the new protocol. The results in these tables
were obtained by using

*
" qj (30)

In order to incorporate Eq. (29), the resuits
in Tables 5 and b are divided by Eq. (27).
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Table 7 Probabihity of hearing acknowiedament

(q“) as a function of m tor tive-legs

of length 5 in a star network with
zero connecuvity.

number of virtual transmissions, m

2 3 4 5 6 7 8 10

4 U
Qoy -530 .700 .810 .86 .91 .94 .95 .97 .99
Q2 670 .890 .960 .990 .997 .999 1

Qza -890 .980 .990 .999 1

Qas 910 .990 .994 .999 1

des 1 1 1 1

Qo .910 .990 .999 1

Q2 .930 .990 .999 1

Gaz .940 .990 .999 1

Qes 970 .999 1

qse 1

VII. Optimum m for the New Protocol

In the previous section we have studied the
effect of the new protocol on throughput. We
found that for m > 4 the star network with full
connectivity retains its superiority with respect to
the her connectivities. In this section we will
more closely study the L-leg star network with
full connectivity. .

We know that increasing m will increase qii

and hence throughput. There is, however, a
tradeoff between the throughput and overhead
(due to the increase in the packet's length) due
to virtual transmissions. For several cases we
find the optimum m. First we assume that at all
nodes, if a packet's identifier is transmitted vir-
tually m times, then we also insert m identifiers
of received packets into the header of a packet
which is ready for transmission. The next m
transmissions, after receipt of the packet in
question will include the identifier of that packet.

For this case the throughput is given by

* "h+d+b
" PN N - Q4 pv @ (meD) - B

@31)

S.= Gi

ij j

where j is the one of i's neighbors.

The results using Eq. (31) were computed
for the 9-leg-star network for various values of m
when k = 4. The optimum m is 10 for this case.

In Eq. (27) we assume that the increment in
a packet's length is m - b bits. But we know
that the hotspot (node 0) and nodes at the end of
the legs do not have to send passive acknowledg-
ments because the transmissions into the hotspot
and nodes at the end of the legs will never have
collisions. Thus there is no increment in the
packet's length for these nodes. Equation (31)
can be modified to obtain exact results as follows-

Again we assume th:t node 0 sends $ units
of traffic in each direstion. Then the nodes that
have m - b bits increnient in their packet's length
must send [ < S unmits of traffic to their neigh-
bors where

w
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For left to right transmissions the through-
put equations are:

Sar = S = Ggy - P(Ng, Ny)
Si,i'l =] -8= Gi,i'l - P(Ni' Niol)

q e for i =1,2,..., K-1
For right to left transmissions: (32)

Skok-1 =57 Gy ko1 PN N D

Sis1,i =17 8= Gy, - PN NG

for i =0,1,..., k-2

irl,i
" Qe i

We expect that the results from Eq. (32) are
greater than the results from Eq. (31) because
Eq. (31) is solved assuming that the packet's
length is incremented by m - b bits at ali nodes.
The results for Eq. (32) were computed. We
found that the optimum m is 11 and the total
throughput of the hotspot, Sy, is .2222. When

m > 11 the throughput decreases because of over-
head due to virtual transmissions.

x
We know that q;; = 1 when m =4 for all i
3
and j except q,;. This means that nodes

1,3,4,..., k-1 need transmit a packet's identifier
only four times. Let us assume that node 2
transmits m times and all the other nodes transmit
m times. Then the packet's length is incremented
by

li =m - b bits for 1 =1,3,4,..., k-1
I, =m - b bits (33)
lo =lk=l2k=...=lLK=0

With these assumptions Eqs. (32) become

for left to right transmissions

S = So1 = Goy - P(Ng, Ny)
| Gi,i*l . P(Ni' Ni*l)
P
. ql i*1° i=1,3,4,..., k-1
x
I° - 8 =Gyy *+ P(N;, N3) * qz3

for right to left transmissions we have: (34)

{.-8= Gi*l,i . P(Ni’ Ni’])
L 4

“djyp e 150,1,2,3,.., k-1

*

I+ 8 =Gy - P(N,, N2) - Qz,

§ = Sk k-1 7 Gk k-1 " PN Nyl p)

.

where

M1

= h+d+ (m)b
b= =Fva+p (39)
and
;"= htde(me):b (36)

he+d+D

For h = 84, b = 12, d = 960, and m = 4 the
optimum m° is 19, and the total throughnut
of the hotspet, ST' is .2390. With m = 4 and

. *
m° =19 all qij = 1, therefore, the nodes will not

sgnd any significant number of duplicate trans-
missions to the next hop. Since for node 2,

m’ = 19, the increment in a packet's length there
is 22% (228 bits). For nodes 1 and 3, the incre-
ment in the packet's length is 4.5% (48 bits).
We can further increase the throughput by
reducing overhead as follows:
A node, i, receives sR(i)' units of the

successful transmission (throughput) from its
neighbors where

sR(i) = I . Sii 37

jt:Ni
For each unit of successful transmission node i
sends m, passive acknowledgments so that the
total number of acknowledgments at node i is

m, 'SR(i) per unit of time. But node |
transmits with a rate of Gi . P(Ni) and we know
that G, - P(N;) > sR(i)‘ Therefore each trans-
mission must carry % passive acknowledgments
where

m. - S,,.
= R
7§ pzNi§ (38)

The overhead in a packet's length at node i
is given by

=r -b . for i =0,1,2,..., k.

i

If we assume that the hotspot (node 0) and
nodes at the end of each path (leg) want to send
S packets/unit time then the throughput is given
by

h+d+r, -b *

5§ —w+a+p ~S*=G PN Np - g,
(39)
for i = 0,1,..., k, and where j is a neighbor of

node i.

For instance for the transmissions {rom left
to right we have:

when j = 0

*
S01 = S = Gg; + P(Ng, Ny) * qoy

T DR AP U A R UL DA WP D W 4 Aaaa S sl

A A m mlom a

L‘L“"“A‘L"'




I A AT D

e d So1 * Sz1 b
* + - [ —— -
m (Gl * P(Nl))
S|z = e —
h+d+b
&
+ 5= Gy + P(Ny, N2) - a2
i=2
b d . S12 * Saz b
+ + .
S23 = m G2 . PZI 2))
h+d+b
x
- § = Gaz » P(Nz, N3) - qz3
i = k-1
S + S
k-2,k-1 k, k-1
h+d+m- ( 2 - £ ) - b
s ) Gy.q - PONy o)
k-1,k ~
' h+d+b
. g% Gyp " PNy Ny - @

k-1.k
Fquation (39) was used to compute through-

puts for m = 4, L. = 9 and various m” in a star
network. We found thet the total throughput of

the hotspot, ST' is .2454 and the optimum m~ is

27. Even though node 2 transmits a packet's
1dentifier 27 times the increment in the packet's
length is only 78 bits which is a 7% increment.
This means that at node 2 each transmission
carries 6.5 identifiers (r, = 6.5). We also found

the r; = 3.79 and r; = 3.82 which are 4% incre-

ments. Previously we saw that there was a 46%
reduction in throughput due to imperfect acknow-
ledgments when we used the old protocol (no
virtua! transmissions). Here we see that with the
new protocol there is only a 2.6% reduction in
throughput with respect to the result for perfect
acknowledgments (.252). Up to this point we
assumed that the originai length of a packet is
105¢ bits (header = 96, data = 960).

The eifect of the overhead depends also on
the length of the data portion of a packet. If
the data portion of a packet, d, is small the
overhead will be large and the throughput will be
reduced. We have solved Eq. (39) for different
values of d. The results are given in Table 8.
In Table 8 we also tabulate the reduction from
the result for perfect acknowledgments. We see
from Table 8 that when d increases the through-
put also increases and the overhead gets smaller.
wWhen d = 50 bits the overhead at node two is 36%
but when d = 2000 the overhead is only 4%. The
reduction in throughput from the result of perfect
achnowledgment is 18% when d = 50 but it is only
.9% when d = 2000
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Table 8. Total throughput of the hotspot
in a star network (m = 4, L =9,
K = 4) for different values of d.

d m’ ST % Reduction
from perfect
acknowledgments
S0 16 .2074 18
100 20 .2173 14
200 15 .2243 11
400 19 .2355 7
800 27 .2440 3
1600 35 .2489 1.

VIIlI. Conclusions

wWe have shown that the performance of a
multihop packet radio system is significantly
reduced by the use of passive acknowledgments.
We developed and analyzed a virtual acknowledg-
ment protocol which results in near-perfect ack-
nowledgments with very little overhead. Thus we
are able to overcome most of the difficulty due to
imperfect passive acknowledgments. We believe
that this virtual acknowledgment scheme will also
have a favorable impact on time delay and are
currently in the process of analyzing this prob-
lem.
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ABSTRACT

Multihop packet radio networks operating
under CSMA with perfect capture have been ana-
lyzed with an exact Markov procedure for expo-
nentially distributed packet lengths. In this
paper we generalize this procedure and improve
its computational complexity. We first prove
that the exact expressions of the Markov model
apply for arbitrary packet length distributions
with rational Laplace transforms. The analysis
is shown to depend ou mean values only, and it is
extended to networks where the average packet
lengths depend upon the destination. Finally, it
is demonstrated how certain properties of the
analytic expressions permit the decomposition of
large networks into computationally manageable
segments.

I. INTRODUCTION

Packet radio aetworks comnsist of geographi-
cally dispersed Packet Radio Units (PRU's) broad-
casting data over a limited distance. In case
two units cannot have a direct connectiom, inter-
mediate PRU's will act as relays, thus creating a
multihop communication network. This is repre-
sented by a graph with nodes as sources, desti-
nations, and relays, and arcs coonecting nodes
which are within each other's range. Several
technologies and routing protocols have been
proposed, e.g., {[1]) and [2], in order to estab-
lish reliable end-to-end paths for maximum net-
work throughput. The need to evaluate different
protocols and routing procedures initiated sev-
eral analytic and simulation studies on packet
radio network models. In [3] Kleinrock and
Tobagi analyzed single-hop centralized networks
employing Carrier Sense Multiple Access (CSMA).
In this context they demonstrated the effect of
propagation delay and of hidden terminals (PRU's
transmitting to the central hub but not listening
to each other). Ian [4] Tobagi considered a
simple finite state model for two-hop networks.
In [S] and [6] multihop packet radio networks
using 3 slotted ALOHA protocol were analyzed. In
[7] Boorstyn and Kershenbaum introduced an ana-
lytic procedure under which multihop CSMA net-
works with perfect capture can be analyzed
efficiently in terms of their throughput perfor-
mance. This technique yields exact results if

b
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certain assumptions are made, the most importaant
of which implies a Markov property as the under-
lying process. Namely, scheduled packet trans-
missions are assumed to form independent Poisson
processes at each node and packet lengths are
exponentially distributed. (A discussion of how
these assumptions relate to a more realistic model
is given in [7]. The most critical of these
assumptions is a long rescheduling time.) This
technique was used to evaluate deployments exhib-
iting various degrees of connectivity and was
extended to investigate passive and active ac-
knowledgment protocols [8].

In this paper we prove that the Markov anal-
ysis presented in [4] holds for arbitrary packet
length distribution thus relaxing the exponential
length assumption. Similarly it is demonstrated
that PRU's transmitting (or relaying) differeat
length packets to their neighbors can be easily
handled via the same techn.jue. These results
prove to be insemsitive to the packet leangth
distribution under the perfect capture assumption.
Finally, it is shown how certain properties of the
probabili.y measure on node sets decompose complex
topologies and accelerate the computational
procedure.

II. THE NETWORK MODEL

We assume that a large onumber of PRU's,
dispersed within a geographical area, - traosamit
packets of data addressed to some destination
nodes. Due to the broadcast mode of transmission,
all oneighboring node PRU's within the transmit-
ter's range hear the packet and depending on its
address, either discard it or relay it until it
reaches its eveatual destination. This deployment
is represented by a graph whereby neighboring
PRU's are connected with an arc. All units trans-
mit and receive on the same channel via a Carrier
Sense Multiple Access (CSMA) protocol. Before
initiating a transmission, a source (or relay)
checks whether all its neighbors are idle. A
collision may, however, result due to "hidden”
terminals outside the range of a PRU initiatiog
transmission but interfering with the receiving
node (the receiver is a common neighbor to two
non-neighboring transmitters). Collisions are
detected via a perfect acknowledgment protocol
whereby acknowledgments are assumed to be always
heard and do not consume any network capacity.
Packets encountering busy carrier condition or
suffering collisions, are rescheduled for trans-
missions after a long randomized interval.
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A PRU may not transmit and receive simultane-
ously. It can, however, lock its receiver to the
first packet addressed to it and ignore subse-
quent colliding broadcasts. This is referred to
as ''perfect capture” in packet radio aetworks.

For networks operating as above, our primary
objective is to assess the performance of a
routing protocol, as defined by relaying deci-
sions, under a given source-destination traffic
profile. Formally, given the network topology
(location of nodes and connectivity), the packet
rates and packet length averages per source-
destination requirement (end-to-end traffic) and
the routing scheme, we can easily deduce sij’ the

rate in packets/sec that node i has to deliver
successfully to its neighbor node j. Then, we

want to evaiuate gij’ the rate at which node i

schedules potential packet transmissions to its
neighbor j. The ratio sij/gij denotes the prob-

ability of successful transmission of a scheduled
packet and provides a measure for stability and
delay since successful packets must retry after a
random delay. Extensions to delay analyses and
effects of acknowledgment schemes are not con-
sidered in this paper.

The apalytic technique described below will
yield an exact algorithm for g.. under the fol-
lowing assumptions: H

1) Zero propagation delay between neighbors.
This implies perfect CSMA and does not allow
any collisions other than those due to
hidden terminals. It is a valid approxima~
tion for deployments within reasonable
distances.

2) Packet leagths are distributed according to
any distribution having a rational Laplace
transform. This class includes almost all
distributions wused in practice, either
directly or as limits from within the class.

3) Receivers capture the first transmission
that reaches them (perfect capture).
4) Perfect acknowledgments.

5) The streams of scheduled packets at the
nodes form independent Poisson processes.
This assumption is consisteat with Poisson
offered (exogenous) traffic and long random
rescheduling delays. Simulation studies for
single-hop ALOHA (9] indicate that if re-
scheduling is delayed more than 10 times the
packet length, this critical assumption is a
valid one.

6) Packet lengths are assumed to be independ-
ently reassigned at each gode in a path.
This is consistent with the rescheduling
delay assumptions above.

-2-
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111. ANALYSYS FOR PACKET LENGTH DISTRIBUTIONS
WITH ARBITRARY RATIONAL LAPLACE TRANSFORMS

For a given node, 1, the total scheduling
process out of 1 will be Poisson with rate g,

g. = 2 g. (1)

where Ni is the set of neighbors of i. Node 1,
generates packets with iengths having a distribu-

tion with rational Laplace transform. Let L
be the average packet length from node i. N

Let V denote the set of all nodes. At any
instant in time, the system will be characterized
by the subset of nodes D which are simultaneously
transmitting. Obviously nodes in D may not be
neighbors.

The main theory of this sectioa states that,
under the assumptions above, the steady state
probability of D, Q(D) is given by:

L8
Q(D) = Q(D-i) ;I 2)
or
8
QD) =Q(¢) N ™ (3)
ieDd i
where
Qe) = 1 —
b3 n =
DCV ieD 4
8
Here we define 1 — =11if D = ¢
ieb Yi

These results are identical with those reported in
[7) for exponential packet lengths. Thus, all
results in [7] apply for general packet lengths.
Namely, with Ni denoting the set of neighbors of

node i and P(A) the proba._ility that all the nodes
in a set A are idle, we have

Pr {successful transmission from i to j} =
s, .
21 = p(N_UN) )
8, i
J
Using the notation

sP(B) A I n &

DCB ied (5)
we have from (3) that
P(A) = I QD) = gi(%"—) (6)
DC(V-A)
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Subsets D in (5) and (6) comsist of non=-communi=-
catiag nodes as in (3). Equations (4) and (6)
form the basis of an iterative procedure, which
along with definition (1), determines gij values,

for given s . rates, if they exist, and diverges
otherwise.

We now proceed to the proof of formulas (2)
and (3) for general packet length distributioans,
which are different for each node. We use the
method of stages as developed by Cox, (10], to
decompose arbitrary service distributions to a
combination of exponential services. Cox demoa-
strated that any distribution with rational
Laplace transform, can bte represented by the
general Erlang-branching configuration of Figure
1. As in the figure, a node i which initiates a
packet transmission, activates the first expo-

nential server with rate p;. With a given proba-
bility l-P; the packet terminates transmission at

this stage, otherwise it enters a second expo-
nential server. Since only one packet is trans-
mitted at a time, a busy node will correspond to
one of the n stages being active. The average
packet transmission time l/”i' equals the average

residency within the stage sequence of Figure 1.

i i1 i .1 i
1 1 | 4 P, P P, P -++ P
L U U SRS U S |
1 1 b8 1
Pi ﬂl Uz u3 “n

m

: 24 Re P
O N T _@_;Q
2

\Zq< .
R 3 \-R \<

Fig, 1 Stage Decomoosmnon ‘or Node &

The rational Laplace traasform class includes or
approximates all distributions foumd in practice.
As an example of the flexibility of the method,
note that a single exponential server models
exponential packet lengths and that a series of

servers (Pi=l) approaches the constant packet

length case as the number n increases.

The system with decomposed nodes as above,
is a Markov process with Poisson scheduling and
exponential servers. The state of the system
must contain information on busy (transmitting)
nodes and their respective current stage of
transmaission. Let Dk be the set of busy PRU's at

The network state E is the collection
The set D of busy PRU's regard-

stage 1i.
of subsets Dk'

less of stage is given by

w o wTwwT R B T A ———

= M
D Dl u D2 u. ..U Dn

Let ND denote the set of neighbors of all nodes in
D including D.
notation in order to write
(global balance) equations

We will make use of the following
state transition

{Dl""'Dk-i""'Dn} denotes a state
identical to E, with node i removed
from the set Dk

{Dl,...,Dk*i,...,Dn} similarly denotes

the addition of node i to Dk

The global balance equations will equate flow
into state E to flow out of state E. There are
several possible ways of entering or exiting a
state. For example, a pew arrival to state
(Dl-i, D , Dn} with rate 8; will yield state

g1 e

E. A change of stage k-1 to k 1n {Dl' Dz, ceey
. . . i i

Dk-l"' Dk-x, o Dn} with rate Pk-llpk-l will

result in E. Accounting for all possible tramsi-
tions, and deaoting the stationary probability of
state E by Q(E), we have:

Z g; Q(Dl-i, DZ""'Dn)

1.eD1

1 i i
* E {3 wp P Q... Dy i, Dypmiy.e D)

k=2 ieDk

2 iy i
+ 3z @-PYy utaqm,,....D.+i,...,D ) =

=1 i‘ND k k 1 k n

i 2 i
= { X uy ot z z He * h1 gi} Q(E) (8)
ieDl k=2 ieDk itND

We observe that the global balance equations (8)
can be decomposed info three sets of consistent
local balance equations:

g, QD,-1,D,,...,D ) = “i Q(E) VieDd, (9

i i . . - i
Vg-1 Pk-l Q(Dl,...,Dk_lﬂ,Dk 1,...,Dn) = 0y . Q(E)

vieD,, 2<k<n
(10)
a iy i
kil (1-B) B’ QD,....Dy*i,....0 ) = g Q(E)

VieN,
(11)

Equations (9) and (10) equate the flow into E due
to arrivals at stage k of ncde i to the flow out
of E due to departures from the same stage of the
same node. Equations (11) are obtained by con-

sidering an additional stage, the idle stage

g




el

S s

‘—gwr—r AN P sl MY
5 AP I

whereby node i is ‘-le but permitted to transamit,

1 ¢ ND. Then we equate the flow into E due to

arrivals to the idle stage of node i to the flow
out of E due to departure from this stage of node
i. Equation (11) can be obtained from (9) and
(10) by rearranging (9) and summing (9) and (10)
for all k's. Thus (9) aand (10) constitute an
independent set of local balaance equations, con-
sistent with (11) and summing up to the global
balance equation (8). For similar reasoning on
local balance equations, see (11} and [12]. In
[12] similar processes are characterized within
the context of Markov fields for spatial pro-
cesses.

From the local balance equations, it easily
follows that the stationary state probabilities

Q(E) possess product form solutions, namely
8 g;P]
Q(®,,b,,...,D ) = Q(¢) 10 —=x n = x
1" a ied, wb  ieD, p,t
1 M )
il i i
g. PP g, Py...P _
x n =+ i x..x @ —S—1__al
ieD M ieD pl
3 3 o o (12)

I1f Q(D) denotes the steady-state probability that
the nodes in D are busy regardless of the stage
of transmission, Q(D) will consist of the sum of
all states (DI’DZ""’Dn) which include a node

ieD at some stage k, isDk. Thus
Q(D) = z Q(Dl'nl""'nn)
All partitions such that
D=D UD,U...UD
1 2 a
or
i iji 1,1 i
1 P1 P1P2 PIPI"'Pn-l
Q(D)=Q(0) n si. —l.- + _i+ 'i—+.. .f-——i———
1eD By F2 ¥ Mn

acd from (7)

8.
QD) = Q) T -2 q.e.d.
iedD Mi

Thus the steady state probabilities of the set of
busy nodes has a product form solution, and
depends oan the average packet length (possibly
different for each node) for packet length dis-
tributions with rational Laplace transform.
These distributions aeed aot be the same for each
aode. The aumber of stages n used in the proof
corresponds to the maximum number of stages in
the getwork. For nodes with smaller a, the
branching probability Pk can be set to zero to
truncate stages.

IV. NODES TRANSMITTING DIFFERENT PACKET
LENGTHS TO EACH NEIGHBOR

In the previous section, we assumed that
each node i schedules packet transmissions at an
aggregate rate g, and with average length l/ui.

-l-

A slight modification extends the analysis to
scenarios whereby a node i traosmits packets of
different average length to each of its neighbors
i.

Let gij and I/uij be the scheduling rate and

average packet length for the i to j traasmission.
We keep the same structure as before by breaking
the node i into a set of "micronodes,” one for
each neighbor. Micronodes are connected inm our
topology if they can hear each other. Obviously
micronodes belonging to the same aode i are fully
connected and so are micronodes belongiang to nodes
connected in our initial topology. As an example,
a five node chain will be decomposed as in
Figure 2. Since nodes 2, 3 and &4 are transeitting
to two neighbors they are decomposed into two
micronodes. By applying the results of the
previous section, we have that for a successful
transmission froms 2 to 3,

s
21 ) vy = SB(4,4',5)
321 it P(l;zvz ,3y3 ) SP(V)

where

43 , 845, %54

SP(4,4',5) = 1 +
Haz  Mus sy

Si2 Sa Sa3 G532 Sie S43 2wy Ssa

Fig 2 Micronode Decomposition ot o Five - Node CMm.

8 g g
Now, uefine G“ = X} + 245 and G5 = 54 y
Haz Mg Hsq

in other words let Gi be the average normalized

scheduling cate of node i.

8.
G, =31 —=d (13)
i T
] 1
It follows that for this example results are
ideatical as in the original topology before

decomposition but with gi/ui replaced by (13).

In general consider SP(B*) where B* is the
set of micronodes associated with the set of nodes
B. Let node i £ B and denote its micronodes by 1j
where j are neighbors of i. We use the relation
(51
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8.
SP(B) = SP(B-1) + ;l SP(B-N,) {14)
i

For micronodes,

g. .
SP(B*) = SP(B*-{i,j}) + —d SP(B*-N* )
His 1]
J
note that because of the connectivity of micro-
nodes, ij is the same for all j, namely the set
of micronodes of Ni' Nt. Let i* be the set of

micronodes of i. Then proceeding recursively we
have

g. -
SP(B¥) = SP(B*-i*) + & —l SP(B*-N*)  (15)
i ij

Using (13) and repeating the above process we
find that equation (6) still holds for the origi-
nal nodes, but with 81/“i replaced by Gi given in

(13). In the special case where all packets
transmitted by i have average leagth l/ui, then

G, = g;/H,.

V. COMPUTATION OF SP(A)

As seen from equations (4), (5) and (6)
evaluation of sij/sij requires an efficient way
of computing SP(A) expressions for various sets
of nodes. Recall that SP(A) stands for sums of

products of rates Gi on all possible independent

subsets of A. By an independent set we denote a
set of nodes which do not communicate (i.e. are
not neighbors).

SP(A) = z l G,
DCA igD ‘

A straightforward algorithm to evaluate
SP(A) would require identification of all inde-
peandent subsets of A, a problem dual to identifi-
cation of all cliques in a graph and thus NP-
complete (a clique is a fully connected subset of
a graph). It is however possible to handle con-
siderable size networks by using several proper-
ties of the SP(A) function. We summarize some of
them and demoanstrate via an example how to decom-
pose a network into smaller segments.

If two subsets of nodes A and B are isolated
from each other, then in (7] it is shown that

SP(AUB) = SP(A) SP(B) (1€)

If C is an arbitrary subset of V, it can be
shown that ’

SP(V) = SP(V-C) + % MG, + SP(V-C-Np)
pCc §ien *

* This result is due to Mr. W. Chen, of the Bell
Telephone Laboratories and the Polytechnic
Institute of New Y>rk and can be proven by
considering all terms not including nodes in C
and then all terms involving differeat inde-
pendent subsets of C.

(17)*

As a special case with C containing one
node i

SP(V) = SP(V-i) + Gi SP(V-Ni) (20)

Sets Ni and ND above, denote the sets of

neighbors of i and all nodes in D respectively.
Finally, if C is a cut, i.e. a se. of nodes which
when removed decomposes the network into two
isolated subsets A and B, it follows from (16)
that for all independeat sets DCC

SP(V-C—ND) = SP(A-ND) SP(B-ND; (19)
and

SP(V-C) = SP(A) SP(B)

As an example, consider the 10 node network
illustrated in Figure 3. By choosing C = {5,6},
the network is decomposed into three subsets, A, B
and C with A and B being totally isolated from
each other. Applying (17) and (19) we can reduce

the computations needed to evaluate SP(V) as
follows:

SP(V)=sp(1,2,3,4,5,6,7,8,9,10)=

=sP(1,2,3,4,7,8,9,10) + G5 SP(1,4,9,10)

+

GG SP(1,2,7,10)

+

GSGG SP(1,10)

=§P(1,2,3,4)SP(7,8,9,10) + Gy SP(1,4)-SP(9,10)

+

G6 SP(1,2)-SP(7,10)

* GG SP(1,10)

We can now proceed to direct evaluatiom of sums-
of-products for subsets with & nodes at- the most
instead of 10 initially.

Fig 3 Decomposition £ xomple

VI. CONCLUSIONS

We have shown how our work on an analysis of
multihop packet radio networks, originally done
for exponential packet lengths, can be extended to
packet length distributions with rational Laplace
transforms. Thus the results previously obtained
can be used in this more general case with only

D
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-




e

10.

the average packet length being required. It was
also shown that the packet length distributions
transmitted by a single node to different aeigh-
. bors need not be the same. Finzlly, a method was
. described to simplify the writing of the analytic
. expressions for large networks.
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B. Multiple Access iechiniques with Arbitrary

Packet Length Distributions
8.1 Introduction

In our original multihop packet radio analysis, we assumed expo-
nentiatly distributed packet lengths. We have been able to generalize
the analysis tor packet lengths having densities formed by the positive
sum ot exponential terms (see Appendix C). In our analysis we as-

sumed that propagation delays among neighboring PRU's are negligible.

Thus in a Carrier Serving Multiple Access (CSMA) mode of operation,

collisions may occur due to the "hidden terminal" phenomenon only
(i.e., two non-communicating PRU's schedule packet transmissions to a
common neighbor simultaneously).

CSMA analyses incorporating the effects of propagation delays have
been reported extensively in the literature for single-hop networks
troe., all PRU'S hear each other) and fixed packet sites. As a first
step in dgeneralizing these results, we studied single-hop multiple access
protocols with non-fixed packet lengths. Although our main thrust is
on CSMA packet radio, we also derived formulas for pure ALOHA and
CSMA with collision detection (CSMA/CD).  The former was a necessary
step in order to demonstrate the impact of packet length distribution on
the simplest multiple access method, whereas the latter is a straight-
torward extension of pure CSMA and is especially popular in local

networking environments.  Note that the pure ALOHA case was studied

previously |5, whereas no extension has been reported on CSMA to our

knowledge.  The CSMA Ch oresult is so simple that it may already be

known.
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In what follows, we summarize the variable packet length analyses
in pure ALOHA, CSMA and CSMA/CD. In all cases we assumed infi-
nitely many Poisson sources and Poisson aggregate scheduling pro-
cesses, with rates s and g packets/sec respectively. Packet lengths

are distributed arbitrarily.

B.2 Pure ALOHA

Referring to Figure 9, we consider a transmission of length Y
(shaded). This transmission will be successful if a) no other packet is
transmitted in Y seconds and b) no previously transmitted packet is
still transmitting. We are assuming zero capture. Calling these prob-
abilities Pa and Pb, we obtain s = gPan. But

[+ -]
P,= J e % fY(y) dy = MY(-g)
0

where
©
MY(g) = é e9Y fy(y)dy
is the moment generating function of Y and fY(y) is its density. Pb is

found by considering the T second interval prior to the transmission in

question.  Assume transmissions in that interval occur Ti seconds

::'_' before the start of our test transmission and have length Yi' Then
re P, = lim PGll T, > Y)

'_ T b

But the number of transmissions in T is Poisson and all are identically
E—- distributed and independent. Therefore

3 25

1@

L*I ‘‘‘‘‘‘‘‘‘‘‘‘ . PP R P

N



AR i aend abal RSN ash S il il il Bt Ml S S e ey - —w W e et Shat e IS or S A S S gut Sy A e -y = T TyTw vy

@

k
P@I T, > ¥) = 5 [B(T; > ¥p1¥ (T2 97T

-gT[1-P(T; > Ypl  -gTP(T; < Y))

= e e

Here Ti is uniform in the interval (0,T) and Y, is distributed as Y.

They are independent. Thus

T
fo 1- FY(t)] dt

o Lo

P(T; < Y)) =

and

o0

Tl"("I‘i < Yi) > (f) 1 - FY(t)] dt = E(Y)

Here FY(y) is the distribution function of Y and E(Y) its expectation.

Finally we have
s = gMy(-g) e 9E(Y)

Note that if Y is fixed then s = ge'zgY as it should.

But Y is the length of the transmitted packets. Condition (b)
above does not involve the length of the transmitted packet Y. But
condition (b) does! Longer packets are more likely to suffer a colli-
sion. Let X be the length of the offered (or successful) packets. Y
should in a sense be larger since longer packets are retransmitted more
often. Due to condition (a) alone a packet of length x will be suc-
cessfully transmitted with probability e 9% and requires an average of

e9% transmissions to be successful. Thus

f,(v) = e fx(y)/M (9).

26
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, Also
U BCY) =ty "
- (¥) =—gg— My b
- and P, = 1/M(g) . .7
- Thus . = . -gM,..(9)/M, (g) |
:; Mx%g) ‘
" This also reduces to s = ge-ng when M, (g) = e9%.  This result has .}
K' been already established [5] but is derived here in a different manner. -"{
; ]
91

= B.3 CSMA
Refer to Figure 10 for CSMA. After an idle period a packet 5'4

scheduled with rate g is transmitted. The packet lasts for X seconds. 1

In the propagation time a after transmission any other scheduled packet

can also be transmitted thus causing a collision. We assume X > a.

Again we assume zero capture. If no such packet is transmitted, then

the original transmission is successful, lasts for X seconds, and is

followed by an a second period to clear the channel and the idle state ~9
resumes. Thus the successful rate is |
s = ge"99 P(channel is idle). ";
But P(channel is idle) = 1/g 3
1/g + a + E(Z2)
:‘::‘ where 1/g is the average idle time and Z is the busy period exclusive
re of the last a seconds. -
To evaluate E(Z) we denote the times of the transmissions of
} interfering packets as Ti and their lengths as Xi' The number of such *
f" packets is exponential. Collisions depend only upon the propagation =Y

time a and not on the length of the transmitted packet as in ALOHA.
Thus

:«_4 !
o
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Z = max {X, Ti + Xi}.
® k(ga)¥ -ga
and Fp(2) = Fy(2) I [Fi(2)] SN
k=0
where W = Ti + Xi' Ti is uniform in (0,a) and is independent of Xi,
which is distributed as X. Thus

-ga[l - Fy(2)]
Fz(z) = Fx(z) e

. .1
|

1
.1
!

; 1
.
L)

and E(Z) = ({ 1 - Fz(z)] dz.

The last two equations can be used to find E(Z), although not easily.
Finally

e 92

= g
S ° T+ga+gE@)

B.4 CSMA/CD

Refer to Figure 11 for CSMA/CD (unslotted). Here collisiqns are
detected and transmissions aborted. Again packets are scheduled with
a rate g. After an idle period a packet is transmitted. If no packets
are transmitted in the next a seconds that packet is successful. After
a seconds to clear, the channel returns to idle. A scheduled packet
can be transmitted in the first a seconds and will cause a collision.
But it will be aborted a seconds after the original transmission. The
original transmission will be aborted a seconds after the start of the

colliding packet. Thus, as before,

28
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s = ge"92 P(channel idle).
. _ 1/
P(channel idle) = /g +a + E(Z

and 2= X, with prob. e 92

min{T;} + a, with prob. 1 - e 99,

Here we assume, for convenience, that X > 2a. Solving we get
® k
B@) = B0+ 3 Ry v o) (e
=1 :

= BE(X)e 92 + é [1- (1+ga)e 93] + a(1 - e™9%)

or
ge™®9

1+ gE(X)e 9 + (1+2ga)(1-¢79%)

S =

Note than only E(X) appears in the above equation.

29
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Evaluation of Throughput in Multihop Packet Radio

Networks with Complex Topologies

Aaron Kershenbaum and Robert Boorstyn

Polytechnic Institute of New York

In a previous paper [1] we developed an analytical model of
multihop packet radio networks operating under CSMA (Carrier Sense
Multiple Access), Poisson arrivals, perfect acknowledgements (i.e.
acknowledgements always heard and not taking any channel capacity),
perfect capture, and zero propagation delay. This yields a Markov

model of the system and the relationship

= P(N, U N)) (1)

al.

1]
where sij is the required successful rate (in packets per unit of

transmission time) of transmissions from node i to node j, g.. is the

ij
scheduled rate of traffic from node i to node j, P(A) is the proba-
bility that all nodes in set A are idle (and says nothing about other
nodes), Ni is the neighborhood of node i (i.e., node i together with
all nodes which can hear its transmissions), and Nj is the neighbor-
hood of node j. Some of the above assumptions about the network
model can be relaxed to include a more general class of networks, but
we use the simple model above for the sake of clarity. It is unlikely
that such generalizations would significantly affect the computational
procedure described below.

We are given ri]., the required end-to-end traffic from i to j, for

all nodes i and j. We assume a routing has been done yielding hop-

by-hop requirements Sij' We are also given the connectivity for each

S e o b b e, ik e haan Am A B a -
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node. Equation 1 states that a transmission will be successfully
received once it is scheduled if it is transmitted and if no neighbor of
the receiver is transmitting at the time transmission begins. (Qur
assumption of perfect capture allows us to ignore interference from
any subsequent transmissions.)

In our previous work [1] we have shown that the probability of
a set of nodes, A, being idle is given by

P(A) = ZC 14 Gi / z n Gi (2)
ICA™ el IC V iel

where A€ is the complement of A, (i.e. all nodes not in A), I is an
independent set (i.e. nodes which all cannot hear each other), and Gi
is the total scheduled rate from node i (i.e. Gi is the sum on j of
gij)' We refer to the quantities in Equation 2 as sums of products on
a set A and denote it by SP(A). We can thus rewrite (1) as

SP(V-(N;U N)))

Q|
H
I
3
]

1)
where G = (G, Gp,...Gy) and G; = fgi].. Then we can write,

s,,
g = Flili—(g) @)

We then can iteratively compute new estimates of the gi]. given
current estimates of these quantities and hence the G].. Our previous
experience, reported in [1] showed that if the network can support
the given Si]’ then the iteration will converge if we start with gi}.=si..

J
Note that g.. > s...
ij ~ 7ij
Conceptually, then, the problem is solved. One need only set

up the expressions for the Fij(é) and iterate (4) ior each i and |

until successive estimates for the gij converge to within some given
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tolerance. This was done for small networks and for larger networks
with symmetric traffic and cor aectivity; results using this procedure
are reported in [1]-[4].

For larger networks without symmetry, however, several signifi-
cant problems are encountered. Foremost among these is that, in
general, the number of terms in SP(V) grows exponentially with the
number of nodes in V. Specifically, the number of terms in SP(V)
equals the number of independent sets in V. In the worst case,
when all nodes are independent of one another, SP(V) includes a term

corresponding to each of the 2N

subsets of V. While such a case
corresponds to an unrealistic situation where no nodes can communicate
with one another, many real networks are loosely connected and thus
contain a very large number of indepent sets. Indeed, this number
will grow exponentially with N if connectivity (average nodal degree)
does not increase with N. This can be seen by examining any regular
topology; e.g., a grid.

Even if the number of terms in SP(V) can be controlled, say to
grow quadratically with N, there are still several problems. First,
SP(A) must be generated not only for A=V, but for many other sets
as well. In particular, each Fij will have a different SP(A) in the
numerator. Also, Fij must be evaluated not once but many times
before the iteration converges. Finally, the process of generating
the Fij must be automated in order to avoid tediously having to man-
ually input the individual expressions.

We now describe a procedure whch overcomes all these problems.
We first observe that in the pathological case of all nodes independent,

SP(V) can be written as

Ao

. ‘ i
F AP S S B4

L.

s !
e, ..

Y )

K

PRYEY WY W

© e
. 9

P

Adat




N
SP(V) = n (1+Gi) ()

i=1
If this expression were expanded directly into a sum of products form
it would indeed contain 2N terms as was remarked above. As it is
written, however, only N additions and N-1 multiplications are re-
quired for its evaluation. While, again, the situation where all nodes
are independent of one another is unrealistic, the observation is
nevertheless important. [t is possible to make the evaluaton of SP(A)
tractable by grouping together common subexpressions and using the
distribution of multiplication over addition to reduce the number of
arithmetic operations. This is the basis for the procedure described
below.

Every independent set either contains a given node, i, or it
does not. If the set contains node i then it does not contain any
neighbors of i. We can thus evaluate SP(A) by

SP(A) = SP(A-i) + Gi-SP(A-Ni) (6)

SP(¢)

]

1
where i is any member of A.

This recursive expansion of SP(A) can generate up to 2|AI
terms, where |A| is the cardinality of A, but fewer terms will be
generated in general since A-Ni will eventually become ¢ and terminate
the recursion. A more dramatic reduction in the number of generated
terms will occur if we recognize sets, A, which have already appeared
and, hence, for which SP(A) is already known. In this case, the
known value of SP(A) is used directly and no further recursive

expansion is required. This corresponds exactly to factoring out a

common subexpression.
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As an example of how this procedure works, consider the net-

K
A
I

!
-

work shown in Figure 1. We begin by computing SP(V). The recur-
sive expansion of SP(V) is shown in Figure 2. Each node in Figure 2
corresponds to an expansion using (6). Thus, for example, the root
of the tree corresponds to
SP({12345}) = SP({12345}-{1}) + Gi-SP({12345}—N1) )

where N,={123}. The Gi represent the same term appearing in (6).
In each case we expanded SP(A) about the lowest numbered node in
set A. This was done for simplicity. In fact, the selection of which

node to expand about is significant and will be discussed later.

Nodes followed by an asterisk in Figure 2 correspond to terms which
have already been generated and therefore need not be expanded.
As can be seen, there are 6 distinct nodes in Figure 2.

The first six rows of Table 1 correspond to the six distinct

nodes in Figure 2. The seventh row of Table 1 and the column
labeled NEXT will be explained below, as will be the procedure for p
generating Table 1. The first five columns of the first six rows in 'id
Table 1 represent the recursive expansion of SP(V) as shown in .
Figure 2. For example, Row 1 in Table 1 corresponds to Equation
(7) above where Terms 1 and 2 are the appropriate SP(A) _.4
and GMULT=Gi.
If the column labeled VALUE is used to hold numerical values of
‘. SP for the sets given in the column labeled SET, and GVAL (i) 3
contains the current numerical value of G;, the current estimate of
the scheduled rate from node i, then Table 1 can be used to obtain ‘
” the numerical value of one set given values of others. Specifically, . .;
: VALUE(5) corresponds to SP(¢) and is equal to 1 by definition. This .
value can then be used to obtain VALUE(4): ' j
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Figure 1 - A muitihop network

Figure 2 - Recursive expansion of SP(V)
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Row Set erm 1 Term 2 GMULT  NEXT VALUE

{12345}
{2345}
{45}

{5}

o - -
{345}
{1} 5 5

(ST~ © DRI NV

3
4
5
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Table 1 - Code Table for all SP(A)
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VALUE(4) = VALUE (TERM1(4)) + GVAL (GMULT(4))

- VALUE (TERM2(4))

VALUE(5) + GVAL(5) * VALUE(S)

1+ Gg
which is, of course, SP({5}).

It is necessary that the rows of Table 1 be evaluated in the
correct order so that the appropriate VALUE's are available when
they appear as terms in larger expressions. While this ordering is
not unique, there is a precedence of rows imposed by Table 1. This
precedence is shown in Figure 3. An arc leads from node i to node j
in Figure 3 if row i must be evaluated before row j. This graph is
obtainable directly from Table 1 using the columns labeled ROW,
TERM1, and TERM2. Physically, we represent Figure 3 by the out-
ward adjacency of each node (i.e. a list of the endpoints of arcs
leading out of it) and the inward degree of each node (the number of
arcs leading into it). With this information one can do a topological
sort of the nodes (c.f. Knuth[5]), i.e., we sort the nodes by current
inward degree, continually reducing the inward degree by eliminating
nodes already sorted. Topologic;il sorting is a simple procedure
whose running time is proportional to the number of arcs in the
precedence graph and which produces a list of nodes in precedence
order. In this case, the resulting list would be 5,7,4,3,6,2,1. Note
that each row in Table 1 can be dependent upon at most two others
and so the number of arcs in the precedence graph, the size of the
adjacency list, and the run time of the topological sort are all linear

in the number of rows in Table 1.

‘.]

- PO S WEPY - - WY WS NPT CD Y P/ W W S S LR L

3

e U




----------

WoOoOFTTETRTNOETTR W TET TR A TemATe AT TR e R TET AT T E T e T e T TR RS, F
. PR R U - -t T PR B

The column labeled NEXT gives the next row to evaluate as
given by the topological sort. Row 5, corresponding to ¢ is of course
first; this fact is recorded in a variable called FIRST. Thus, Table
1 allows us to evaluate SP(V) simply by making a single pass through
Table 1 and doing one addition and one multiplication per row.

We have thus solved the problems of how to automatically generate
a functional expression for SP(V), how to avoid having to reevaluate
common subexpressions, and how to simplify the iterative calculation
of the Gi' With respect to the last point, note that Table 1 is set up
only once. The evaluation of the SP(A) is then straightforward,
requiring only K additions and K multiplications, where K is the
number of rows in Table 1. Indeed, one generation of Table 1 suffices
for the evaluation of the Gi for many values of Sij' which would be
useful in analyzing variations in routing and offered traffic.

We require not only SP(V) but also SP(V-(Ni v Nj)) for all i and
j which are neighbors and have sij > 0. We represent all these other
SP(A) in Table 1 in exactly the same way as we do SP(V) and we
take full advantage of common subexpressions among all SP(A) and
SP(V). Thus, for example,

SP(V-(N, U N3)) = SP({5})
which is already in Table 1, so we do not add a row for it. Indeed,
as it turns out in this case, the only addition to Table 1 is necessi-
tated by SP(V-(N4,U Ng)) = SP({1}). This expands directly in terms
of SP(¢) and hence necessitates the addition of only one row, Row 7,
to Table 1. Note that the topological sort and evaluation of VALUE is
done for the entire table. Thus, for each iteration on the Gi' only

one pass through Table 1 need be made to obtain all necessary SP(A).
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The evaluation of Fij in Equation (3) amounts simply to dividing the
VALUE in the row corresponding to SP(V-(Ni U Nj)) by the VALUE in
the row corresponding to SP(V). The appropriate row numbers are,
of course, recorded in a table once during the procedure which
generates Table 1.

The actual procedure for generating Table 1 is now outlined. A
stack of sets, A, for which SP(A) is to be recursively expanded is
maintained. Initially, the stack contains V, the complete node set.
It is convenient to maintain such sets and the neighborhood sets Ni
as bit vectors. At each stage, the set, A, at the top of the stack is
popped and the sets A-i* and A-Ni,,= are formed, where i* is the most
desirable node in A to expand upon. A single ordering of nodes in V
is produced according to criteria defined below and is used to deter-
mine i* for all A. Assume therefore that the nodes ir the network
have been numbered according to their desiiability; i* then corre-
sponds to the leftmost 1 in the bit vector representing A. This value
should be recorded along with the set A so that it can be used as the
starting point for the search for the best node in the sets A-i* and
A—Ni*. This value in fact already appears in the GMULT entry in
each row.

Initially, Table 1 contains only one row, corresponding to V.
The SET entry in row 1 contains a vector of N 1's. As a set, A, is
popped from the top of the stack, its TERM1 and TERMZ2 entries are
set. These should correspond to the rows in Table 1 whose SET
entries contain A-i* and A-N,x. A search of the SET entries cur-
rently in Table 1 is made to determine if these sets are already

present. If so, the row containing each set is recorded in the TERM1
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and TERM2 entries of the current row. If not, a row is added to
;. Table 1 for each new set, the SET and GMULT entries are filled in, ®
: and the new sets are added to the stack of sets to be evaluated. In
practice, the row number in Table 1 rather than the set itself is
® placed in the stack in order to avoid having to search for it. Also a :Q,
binary search tree or AVL tree [6] structure on the SET wvalues
should be kept to facilitate the search for existing sets. An alter-

v @ native to this is to hash these entries as described in [6].

A JL‘.LAJ‘.L TEE)

To generate entries corresponding to SP(V-(Ni UNJ.)), these
sets are treated exactly like those arising above; i.e. a search is

'... made for them and if necessary they are added to Table 1 and to the

stack. The search for i¥ in such sets starts at node 1.
We thus see that both the code generation procedure and evalua-
\. tion procedures are proportional to the number of rows in Table 1. 101
There are other factors such as the search time for existing sets, the

search for i*¥ in each row, and the generation of sets V—{Ni UNJ.}. '-;’_-;

® These latter factors are minor, at worst polynomial in the number of
) nodes. Our primary concern is then with the number of rows in

Table 1, which can theoretically grow exponentially with N, the

> number of nodes.
The number of rows in Table 1 will be kept down if sets arise
repeatedly in the expansion process. This is more likely to happen if

@ a consistent oraering of the nodes is used in expanding all sets.

PPy

This is in fact done, as was mentioned above. If network connec- -

e

tivity is related to distance, a node ordering based on location will

P

-« result in similar subsets being generated during the expansion process.

-

More generally, any ordering based on connectivity is likely to help.
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Alternatively, an ordering based upon nodal degree may be
advantageous. FExpanding on nodes with large degree will cause
A-Ni* to shrink rapidly to ¢ and thereby reduce the number of gen-
erated terms. Conversely if node i has no neighbors in A, then A-i
= A-Ni and only one subexpression instead of two is created.

Another possibility for controlling the size of Table 1 is to
decompose a large network by numbering all the nodes in a cut (sep-
arating set) first, then numbering all the nodes on one side of the
cut, and finally numbering all the nodes on the other side, as in
shown in Figure 4. This guarantees that once expansion of the nodes
in the cut (nodes 1 through K) is done, the remaining sum of products
will factor since

SP(AU B) = SP(A)-SP(B) (N
if A and B are completely disconnected from one another. In par-
ticular, it can be shown that

SP(V) = 2 [( r Gi) SP(V-NI)] (8)
ICC iel

where C is any subset of V, 1 is any independent subset of C, and

NI is the union of the neighborhoods of nodes in I.

A B

(M+1,N)

Fig. 4 - Decomposition of a network using a cut
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If C is a cut, dividing V into disjoint sets A and B with no links

between them, as in Figure 4, then Equation (8) becomes

SP(V) = 2 [( n Gi) SP(’\-NI) SP(B-NI)] 9)
1CC iel
Thus, the sum of products "factors". The numbering scheme will

ensure that the nodes in B-NI are left for last and hence become a

common subexpression for all subsets of SP(A-NI). Thus, the factors

in (9) will be evaluated separately and multiplied together at the end.

This technique can be applied recursively to decompose very large

networks. It appears to have the property that Table 1 will grow at
worst exponentially in the size of the cuts.

We have coded a preliminary version of this procedure in order

to perform experiments to determine the growth rate of Table 1 as a

function of N using various types of connectivity and node orderings.

Thus far, the following conclusions and observations have been made:

1. Random X and Y coordinates were generated for N nodes in

a unit square. Euclidean distances were computed. A

threshold, T, was varied from O to 2. Nodes at distance T

or less were said to be connected. Experiments for N=15

and N=30 were run. Nodes were ordered based on the sum

of their X and Y coordinates. For N=15, Table 1 typically

had about 50 rows, for SP(V) only. For N=30, Table 1

typically had about 120 rows. The conclusion we draw on

the basis of this limited data is that Table 1 does not

appear to be growing exponentially. Indeed, it seems to be

growing only slightly faster than linearly.

13
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2. For random connectivity and node ordering based on nodal
degree (largest first) roughly 80 terms were generated for
N=15 and roughly 600 terms for N=30. These results,
based on few runs, are inconclusive.

3. Grid networks (nodes evenly spaced over a unit square) of
25 nodes and varying connectivity were examined using
distance based connectivity as in 1 above. Table size
varied with connectivity, with the worst case being 130
terms at a nodal degree around 6. Again, ithe conclusion is
that table size does not seem to be growing very rapidly.

We are currently implementing a more complete version of the

procedure in order to do more extensive testing.

(1]

(2]

(31

(4]

(5]
(6]
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1. INTRODUCTION

Packet radio has recently emerged as a viable technology for both fixed and mobile
- computer communications. It utilizes packet-switched communications, which became
highly important in computer communication networks, over broadcast radio channels.

The original packet switching concept was based on point-to~point data circuits )
interconnecting network packet switches. With technology advances in satellite and ground
radio broadcasting, packet radio networks have become an area of major interest (6].
During the early 1970's, the ALOHA project at the University of Hawaii demonstrated the
feasibility of using packet broadcasting for bursty computer traffic (1] .

In a broadcast radio network, channels are shared by a set of nodes and cannot be
dedicated to specific pairs. Numerous studies ({1}, (6], (7], [5], and (9] ) have shown
that “fixed capacity assignments" nre wasteful for many applications compared to "random
access schemes” which result in a dynamic sharing of channel capacity without centralized g
control. These studies focused on a single~hop network, whereby Packet Radio Units (PRU's) k.
attempt to transmit data to a single central station. In conjunction with the fact that there
is no control over access to the channel, destructive errors result when several packets are
received simultaneously or "collide." These collisions reduce the channel throughput under
random access. \ EX |

The analysis of multihop packet radio networks involving packet routing via relays, is '
extremely difficult. So one must use simulation 3], [10] or study simple models to
measure network performance, mainly the network capacity or network throughput (8], :
(14], and (15]. The throughput of multihop slotted ALOHA network was studied recently, -
- {12], and it was found that one of the most important factors aifecting it, is the
transmission radius (or transmission power) used by the nodes. To increase the throughput,

& one may even want to reduce the transmission power to a level lower than the maximum

J
o

alalaca

possible.
Techniques which are used to increase the network throughput include Carrier Sensing
Multiple Access (CSMA) [13], and resolution of collisions via packet capture mechanisms.

. The effect of capture in increasing the network throughput was studied in (2] and [11] for ;
Al single-hop networks. In (4] the effect of capture on the throughput was investigated ror Q.
; multiple transmitters and receivers in a slotted ALOHA environment. 11

The problem of obtaining exact expressions for throughput and dlocking probabilities in p
. multihop packet radio networks using CSMA access method was considered in {3]. Exact ]
-' results were obtained assuming exponential packet lengths for general topologies. This ‘:é

analysis has been extended to constant packet length for selected simple topologies.

-
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In this work, we consider multihop packet radio networks using slotted end unslotted
ALOHA access methods with and without capture. We consider a set of identical PRU's
randomly (uniformly) distributed in the plane. We find, via analytic techniques and
computer experimentation, that the optimal density of radio units which maximizes the
throughput of the network is the same for all access methods considered and corresponds to
the previous found value for the slotted ALOHA case without capture [12].

1.2




2. SLOTTED CASE VMODEL

The nodes of the network are assumed to be uniformly distributed with density A.
Two access methods are considered:

- No capture (slotted ALOHA).
- Capture (closest neighbor).

We consider a multihop packet radio network, with transceivers uniformly distributed in a
large geographical area. Packet Radio Units (PRU's) have equal transmission range. Any
node within the circle of radius r around a transmitting node will hear the transmission and
can respond to it. Each node always has a message to send and will do so whenever
permitted. (see Figure 1),

Let:

A Range of reception for terminal i.
Ni - Number of terminals in the area A;

G - Probability of a packet transmission during a slot by a terminal.

q - Probability of successful reception of A packet from a transmitting
terminal of the area A

q = Pr { a neighbor transmits successfully to i/Ai} 2Py« Py Py
where P1 - probability that i does not transmit,
Pl =1-G

!»‘2 - Probability that a neighbor from area A; transmits to i and i can receive
the packet.

nac._
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FIGURE 1: PRU i RECEIVES FROM j PRU'S WITHIN ITS REGION
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N. Ni-l
= G(1-G) - no capture {(one transmission)

N.
i
Pp=1- (1-G) - capture (one or more attempts made)

3
options to address.

Therefore,

a. No capture (slotted ALOHA):
i
= G(1-G)

b. Capture:
N,

g = 1—;—‘-’ [1-a-a l]
1

density A, we have that S (the throughput to a node) is given by:

- (XA)i A
Sz L
i=1 it

AA=N - Average degree.
rq Therefore,

a. No capture:

4 2.3

hendicsateget .A‘JL‘ v . - - . e o A A LAL‘AJ.AA_ L‘~ "‘A'-_ b3 b ¥

P, - Probability that captured packet is destined to i, while source hes N,

Assuming that the number of terminals in an area A is a Poisson random variable with
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$2Ge VO - GeN
o
b. Capture:
[}
-N Ni -
° S=(1-G)e r i [1-(1-6)‘]
i=1 it
The maximum throughput, will be achieved with G = G opt’ by setting:
ds
o d% =20
The total network throughput S net’ will be:
A Spet =N S
Where n is the total number of nodes. The average number of hops in an end-to-end path h
is given in [12] :
®
o 128 (L)i 1
457 N =
N b -X [cos'l(z) -tV 1-3]
l+e -~ f e dt
* -1
Therefore, the end-to~end throughput Y is:
s .
net
Y = —
L 5
Tofind G opt’
® &.  No capture: itis givenin [12].
b. Capture:
-
° -~ 3 N i
s=a-@eM 1 — [1-a-af] ;
i=1 iti
® 2.4

N I

®
=
o4
q
=
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[1-(1-0)‘] v 1-0eN g —ig-o =0
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: 3. UNSLOTTED CASE MODEL -
{ * o
: For the unsiotted case, the following schemes are considered: :
i ;'i
i. - Pure ALOHA (All PRU's transmit at random. Collided receptions result into loss ]
, of all colliding packets). o,

- Perfect Capture (In case of collision, the receiver keeps tracking the packet it
received first. This is possible under a broad range of spread spectrum
E * technologies).

i
)
.
_1

g - Half-Amplitude Capture (In case of collision, the receiver will listen to the
closest transmitter).

As in the unslotted case, we assume that PRU's are randomly located in the network area.
The rate of new packets and total rate of packets (including retransmissions) between PRU's

separated by a distance d, are given by S, and G respectively. ]
The following areas are defined (see Figure 2): ’i
A1 - Inside the contour D-E-F-C-H-D.
A, -  Inside the contour D-K-C-F-G-E-D. _ q

A - Inside the contour D~-J-F-G-E.

&
Py

A 4 " Inside the contour E-G~F-A-E. o
( J

Ag -  Inside the contour D-E-A-F-C-H-D. ]
R
These areas can be expressed as functions of communication radius (r) and variable angle o % :
~ ﬂ
A1 = 1ll'2 .
2 x'2

A s mw’ -=—(20,-sin20,) 2 .

2 2 1 1
[ ]
3.1 ‘i
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FIGURE 2:

REGIONS DEFINED WITH RESPECT TO PRU1 - PRU2 TRANSMISSIONS
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0,itd<r/20r0, zcos"1 i

ii
[.’
k ® A =
ﬁ 3 - 42 . rz ‘.
: 2~ (204 -sin 2 8y) --z—(zez-smzez)= -
[ :
b .
'. = l'z {2 60!261 [4 cos.1 -—1- ] - sin [4 cos'1 1 ] - .
; 4 coso, 4 cos 6, ®
E
: - -
; -cos’l 1 +%sin [Zcosl( 1 )]}.
;.‘
t ' :
E Since, 2
L’ r
b . '
I ® d = 2r cos 61, 3
i 0, = cos! L ; ando, = 20, :
; 2 2d ’ 3 2 .
: 3
C
Y
; ndz =z 4 nrz cosz 9 ,it’e1 gcos'1 % -
A =
4 A
| nd A3 = wr [4 cos 61 — rz ] ; b
o X
ne? |1-~4cos?o, |;ife, seost 1 .’
; 2 1 1= 4 .
' As = nr -A4 = . . . A3 ::
! nr l1~4co8”Q, ¢ = ~— | ; - 3
l ® 1 n l.2 |
. -01
' Therefore, the joined probability of the number of nodes in the areas above is:
’ n n
" aapl aap? }
, P(nl, "2) = — e-X(A1 + Az) o)
1"72 ]
o9
{
n F
° ml)n‘ (ap 1
P(n,,n,) = -AMA, +A,) @
1’3 't e 1 3 i
n,!n,!
1'73 o
A
] 3.3 |
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P(n,, n,, ne)
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P(n4, ng) =

Where ng = population of ith area,
Using the average degree definition:

N = an rz
we obtain:
n
Ny *+ 0y 20, sin 2.0, 2
P("I' “2) 1- - + )
[} 1
nl. nz. n

291 sin2@I
¢ exp N -2 + - )};
n L

n
nI! n3! L 3 ¢
n
P( N2 TR L (% i [4 cos? g
n = —— — -
xy n41 ns) n3' Y T rz 1

B et . B
BBl Sl o 4 m B A &~

4 5
(1) (x4AL)
4 5 e-X(AJ*A4*A5)

[ =
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(n, +n.)
N‘ S n n

4 5 e
(4coszox) -(1-4coszel) -e‘\';

In order to compute the throughput (successful transmission rate Sd) between PRU 1 to
PRU 2 separated by a distance d, the following observation is made: For PRU 2 to receive
correctly a packet (of duration normalized to 1), the packet should be transmitted from:

P(n4. ng) =

n4! ns!

- Area (Al UAz) during {t -1, t+ 1} for pure ALOHA, (t is the time of packet
transmission).

- Area (A1 UAZ) during {t -1, t} for perfect capture.
- Area (A3 UA4 UAS) during {t -1,t+ 1} for half amplitude capture.
The probability of successful transmission S /G ;, will be given as follows:

Pure ALOHA:

S
d -2G (n, +n,)
Gy ny 22 1

ny 20

Perfect Capture:

o

d -G(n, +n,)
—_ X 31. e 1 "2 p(ny,n,)
Gy n,22 1

n, 20

Half Amplitude Caoture:

S
d -2G (n, +n,)
— 1 4 3
G = 2 . e P(na, Ny ns);
d ng22 MM
ns >0
ng > 0

3.5
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if A3 exists,

S
LD 1
Gy ng22 ng *ng
nszﬂ
if Aq = 0.

-2G Ry

e P(Il‘, ns)ﬁ

Using the expression for probabilities, transformation d—0, (see below), and
unconditioning with respect to ot

Pure Aloha:

(n1+n2)

f 261 sin 2 N
e 2 sing 1 - +
“1’"2’“1 "3 1 . .

-2G(n,+n,) N
Ge 12

261

n/2

o (2

Perfect Capture:

.'.inze1
) o
n

-G(nl*nz) N 20, sin2g
S = G n.tn.in f 2sin@, (I'T +

n 22 1721 n/3 w
n,>0

2@1 six'12(31
-expgN(-z* - >§ do

n "

3.6
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Half-Amolitude Capture:
¢ .
(n,*n,*+n,) -
~2G(n,*n ) N 3 45 . L
s= X Ge () -
n,»2 n.'n,!'n.!(n, +n Ll
o n‘ ’-‘-‘ >0 37475 4 S )
3"'S = .
o cos™! i =1.32 0
n3 AL\ R
: 1 A3 scoslg. - L -3 2. ,1 4
.. 3 =1.043
Ay \
1 3
e exp {-N{1l+ = —o— E do, *+
® g ( T2 ) 1
(n.+n.) 1/2=1.571 a
+ 2 Ge 2 sin (31 4 cos” 0 1 . 1
Ry 22 nyt gt (ng*0g)  casl L=z
ng 20 s
_J
e n N
2 0 N E
e (1-4cos’g,) e d0o.4; X
1 1 : 4.1
¥ . .
To find Gopt' we set: : .‘
1
as _ .. ]
d—G - 0’ o
’ o




AR A et A Seen e a0 )

This equation is solved numericaily using Newton's method:

)

(1) _ ()
G = W . .
r (¢l

for given error value allowed,
Using h, [12], we obtain the throughput:

Yy = ; wheresnet=nos

Tranformation d ———91

Since d is uniformly distributed (see Figure 3) its distribution will be:

=1,
fd(d"F ’

{d(d) fd (2r cos g 1)
fo (8y) = — = =
1 ! \ 1
loy'| -
yA dE
2rvVl1 - —>
41,2
/v .
= = 25'"91'
1
4r2cosze1
2rvi- 3
4r
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4. NUMERICAL RESULTS

The analyses described above were implemented in computer programs in order to

T,
o0

compute the maximum throughput for various average degree values. These programs for
the unslotted cases involve considerable computational complexities and excessive run
times. We have been, however, able to obtain the basic results which are portrayed in d )
Figure 4.

In Figure 4 we show the normalized throughput\/—y_- as function of the average degree
n
N. For slotted capture ease, the value of N, which maximizes the throughput, is 9 or 10, at

which point the optimal network throughput is 0.19 v/n . The maximizing value of N for the
four other cases is approximately 6, which is the same result as in [12].

-
~p;

Note that the significance of the optimal degree can be interpreted as what should be
the density of PRU's, in a deployment scenario in order to achieve maximum throughput.
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S. FURTHER RESEARCH

The approximate nature of the models studied was justified from the need to obtain a l!
tractable solution to the optimal density of radio units in a deployment scenario. The

following extensions can be performed using similar assumptions on the random topology and

r--

disregarding boundary effects: ]
' nd |
- Model Carrier Sensing Multiple Access (CSMA) with and without capture. No
exact models for CSMA have been so far obtained, due to the non-Marcovian
nature of the resulting packet transmission process (see ([3]). Approximate ;
2,

methods can be devised or additional assumptions on exponential packet lengths
can force a Markovian birth-death approach as in (3].

- Model flood routing, whereby every PRU relays all received packets, regardless
of their ultimate destination.

Further research should address the impact of specific topology and routing instead of
the random dispersed PRU's over an infinite area. More specifically, in (3], Boorstyn and
Kershenbaum proposed a methodology for modeling CSMA packet radio networks with or
without capture, under the assumption of exponential packet length. The generalization of
the method to fixed or general packet length distribution is still an open issue.

Other areas of interest are:

1. Flow control techniques to achieve maximum throughput.

2. Feasibility of using packet radio networks for packetized voice.

q

] )
[ | wq
q 5.1 J';
e e 1




NaC _

o References 0
. L4 i
X 1. Abramson, N., "The ALOHA System - Another ' Alternative for Computer :
3 Communications,” AFIPS Conference Proceedings, Vol. 37, Fall Joint Computer
|‘ Conference, Las Vegas, November 1970, pp. 281-285. .1
E :
1 2. Abramson, N., "The Throughput of Packet Broadcast Channels," IEEE Transactions on :

Communications, Vol. COM-25, January 1977, pp. 117-128.

Chal 1 geaie

3.  Boorstyn, R.R. and A. Kershenbaum, "Throughput Analysis of Multihop Packet Radio."
' 4. Fratta, L. and D. Sant, "Some Models of Packet Radio Networks with Capture,"
i ® Proceedings of ICCC-80, Atlanta, Geogria, October 1980, pp. 155-161.
[
Y S. Gitman, L, R. Van Siyke, and H, Frank, "Routing in Packet-Switching Broadcast Radio
i Networks," IEEE Transactions on Communications, Vol. COM-24, August 1973, pp.
® 926-930.
g 8. Kahn, R.E,, "The Organization of Computer Resources into a Packet Radio Network,"
y IEEE Transactions on Communications, Vol. COM-2S, January 1977, pp. 169-178.
®
s 1. Kleinrock, L. and F. Tobagi, "Packet Switching in Radio Channels," Parts [ and I, [EEE
t Transactions on Communications, Vol. COM-23, December 1975, pp. 1400~1433.
L. 8. Kleinrock, L., "On Giant Stepping in Packet Radio Networks," UCLA Packet Radio
! Temporary Note #5, PRT 136, March 1975.
!
‘
'; 9. Network Analysis Corporation, "Sixth Semi-Annual Technical Report: Local, Regional,
and Large Scale Integrated Networks: Vol. 2 - Recent Advances in Ground Packet
.=

Radio Systems," February 1976 (NTIS Order #AD/A035950).

10. Network Analysis Corporation, "Packet Radio Deployment Study," performed for the o]
USA CORADCOM, Final Report, April 1980. L

v T w paww
)

b

}

]

b

.

y
"W

P R - = P . - Co 5
PV WPNE NNy AP P S TN e T




F'. P O o A6 Sl S At Ao Gt e A i o o dre e m e A

o

[:\.._.

8 )

NaC _

11.  Roberts, L.G., "ALOHA Packet Systems With and Without Slots and Capture,”

Computer Communication Review, Vol. 5, No. 2, April 1975, pp. 28-42. '1
|
12.  Silvester, J., "On the Spatial Capacity of Packet Radio tetworks," Ph.D Dissertation,
Computer Science Department, UCLA, May 1980. |
®
13. Tobagi, F. and L. Kleinrock, "Packet Switching in Radio Channels: Part O - The
Hidden Terminal Problem in CSMA and the Busy Tone Solution," IEEE Trans. on
Communications, Vol. COM-23, December 1975, pp. 1417-1433.
_ P
14.  Tobagi, F., "On the Performance Analysis of Multihop Packet Radio Systems: Parts | -
IV," Packet Radio Temporary Note #246-249, Computer Science Department, UCLA,
1978.
<
15. Yemini, Y. and L. Kleinrock, "On a General Rule for Access Control, or Silence is
Golden," Flow Control in Computer Networks, Proceedings of the International
Symposium on Flow Control in Computer Networks, Versailles, February 1979 (North
Holland, Amsterdam, 1979), pp. 335-347. ®
L
- $
re .
o
R "
8 »




g J_JA.. Ao s

S a1,
K Y

B. Adaptive Routing

i
..‘




P

PN Sy DR

oy

. ..
Sl o8 e




A S T —— L e T oY e Eani st A Sk A AT AL S B T RC A A A O

o

9
Py O SR IS

¥t
<
Ak

S
Ahasan matana

1

]
5y
.

B.1 A Technique for Adaptive Routing in Networks

AL LAAS Al

IEEE Transactions on Communications, April 1981

Boorstyn and Livne

@l
- -

. g

“L....A..‘A!AL"

A)‘.

[

o




o 2:Badiiin- An Joun e Soun Jien it S s 20U A S ACedt Adutii et et i St S e e SRR A A v R

474 Lt TKANSACTIONS ON COMMUNICATIONS, VOL. COM 29, NO 4, APRIL 198

A Technique for Adaptive Routing in Networks

ROBERT R BOORSTYN. vk, htt, vwn ADAM LIVNE. MiARER, 1EEE
{Invited Paper)

Abstract—A two-level adaptive routing scheme for packet-switched
computer communication networks is proposed and investigated. The
first level is quasi-static and based on the global netwark status. The
second level is dvnamic with decisions being made at each node in an
attempt to obtyin the savings in average dcelay predicted by a
multiserver moadel of the node. Simulations confirm the predicted
improvement.

1. INTRODUCTION

OST adaptive routing schemes perform about as well as

nonadaptive schemes when evaluated in a fixed enviton-
ment [1]. However, they do adapt to changes in network
topology and input statistics. The reason they do not show a
significant improvement is that they are actually quasi-static
in that they sense and respond to the above changes slowly.
Their goal is to select good paths (2] .

We focus our attention on the node, which may be viewed
as a multiple server queueing system. Most adaptive routing
schemes operate the node as a collection of single server
queues. If the node is operated as a multiple server queue, an
advantage at the node of a factor approximately equal to the
number of servers (outgoing branches) can be obtained. How-
ever, the control over good paths may be lost. We show that
we can simultaneously obtain both good paths and improved
node performance. These improvements in time delay exist
for the network as well. Consequently. network bandwic.h
can be significantly reduced. Furthermore, the approach lends
itself to analysis. We also discuss limits and extensions.

Many computer communication networks (ARPANET.
TELENET. TYMNET. etc.) use dynamic routing schemes to
compensaie for input traffic variations, to respond to changes
in topology, and to take advantage of temporary changes in
loading in different paths. During the design of a network.
they are replaced by analyticallv tractaole nondynamic (static)
schemres. We present here a routing scheme for which we have
been able to denve approxtmate analytical models. Further-
more. we can establish the efficiency of this scheme, especially
in heavily loaded situations.

A typical static routing stheme would operate as follows.
Corsider as separate commaodities the message originatingat a
particular node and destiiied for s second node in the network
The static routing scheme would specify the optimum propor-

Manuscrirt recesved June 18, 1980, revised October 20, 1980. This
work was suppocted 1 part b U'S Army CORADCOM under Tusk
B-9-2513 ot the Post Doctoral Program, RADC. This paper was pre-
<cnted at the Nauonad Telc.owvnunications Conference, Dallas, TX.
Decemter 1976.

R K. Boorstvn is with tac Depurtiment of Electrical Engincering,
Polvicchnie institute of New York, Brooklyn, NY 11201,

A Linne as with the Scicninic Departinent, Mimistiy of Defence,
Tel-Aviv, lstoel.

tion of traffic to be routed over each path. Efficient algonithms
exist for design of this type of routing [3].

We can identity one particular problem with this approach.
Although good paths are indeed found, any node essentially
operates as a collection of single server queues—one queue for
each outgoing branch. Considering the node as a queue with
several potential servers. this is not an efficient manner of op-
eration. Indeed. if a node had k outgoing branches and were
operated as a queue with k servers, then the time delay would
be reduced by a factor of approximately k. Conversely, ihe
throughput can be increased.

If the node were operated as suggested above. messages
would wander aimlessly through the network and the tota!
performance wouid be abysmal. Qur approach is 10 retain the
good paths for commodities and yet still get the benefit of the
faster performance at the node.

Briefly our scheme is as follows [4]. Consider 2 node as a
single queue with several servers (output channels). For a
particular commodity, i.e., a message with a certain destina-
tion, the use of some of these servers would cause the mes-
sages 1o be sent along *‘bad™ paths—either too long or too
congested. Thus. for each commodity and at each node we
specify a subset of the output channels as allowable and
permit the message to use any allowable charnel according to
some discipline. Fach commodity appearing at the node has
its own allowable set of channels. These restrictions force
messages to use “‘good” paths. It has already been noted [5)
that an advantage can be obtained if a selection between
relatively good paths is not forced. and the adaptive routing
scheme continues to allow each of these to be used.

The assignment of aliowzble branches at each node for each
commodity is one level of our adaptive routing scheme. These
assignments are based on essentially global information of
topology . flows, and long term averapes, and may be adaptive
in a quasi-static way. The second. and truly dynamic, level of
our routing strategy is local and involves the queue discipline
at each node. As an examplc. consider a iode with two ont-
going channels (servers). All message commoditics fall into
three classes. Two of these must use only one of the servers
and have no choice. Messages join the approyiriate queue and
are served in turn. The third class of messages may use either
of the two servers and join a third queue.

Another strategv at a node is to gve pniority to the res.
sages that have noe choice. 1e., are dediczted 1o one of the
servers. Yet another strategy is 1o allow messages in the thiy!
category (nondedicated) to join the shotter of tive 1wo dedi-
cated queurs We have cvaluated the porformance of both
stratevies. and other sidar strategies. tor s simple two

server model, tor more complex nooe niodels, and for simple
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networks. The measure of performance was the average time
delay for all messages traversing the node.

{I. NETWORK MODIL

We consider a network, actually the backbone of a distrib-
uted (store-and-forward) packetswitched data communica-
tions network, as a collection of nodes connected by full
duplex links—comprising the topology. The input traffic is
described by a matrix of rates (packets/second) of traffic
originating at one node and destined for another. Index the
nodes by 1, -, NV and denote the links between nodes i and j
by (i, /). Altemately, index the links by 1, -, L. (We assume
N nodes and L links.) Denote the input traffic (from source i
to destination j) by 7v;; (packets/second). Assume (for simplic-
ity) that the average length of all packets is 1/u bits. Assume
further that all input streams, for each of the (¥ — 1) node
pairs, are independent and Poisson. Let the link capacities be
given by C,.

A nonadaptive routing is given by a set of paths for each
commodity (node-pair traffic) and the proportion of input
traffic using each path. From this, the flow in each link in
each direction, A(; ;) = A\; (packets/second), can be found.
Note that vy = Z; pv;, is the network throughput, or total
offered load, and A = I, jA(; sy is the total intemal traffic.
Furthermore, note that [ = \/y 3 | is the average path length
in the network.

We assume exponential packet lengths. We further make
the “independence™ assumption [6] that at each node in a
path, a new random assignment of the packet length, with the
same distribution, is made. This idealization leads to the prop-
erty that each node can be modeled independently as simple
M/M/[1 ot M/{M/k queues. It has been shown that this approxi-
mation yields valid results for many network situations (6] .
Some care must be taken in situations, such as adaptive
routing, where dependence between nodes is a key factor. We
will ignore this warning until the end, when we comment upon
its implications, and assume the above type of independence at
each node.

Many streams ol traffic converge at a node—from incoming
network links and from outside the network. Some of this
traffic is destined for this node, leaves the network, and will
not concern us at this node. The remaining traffic must be
routed to an appropriate outgoing link. A nonadaptive strategy
decides what proportion of such traffic uses each link on a
commodity-by-commodity basis. Thus, each link can be
modeled as an M/M/1 queue and has link average time delay
Ty = 1 uC; — \;). The average time delay in the network is
T= (E,A,T,)/y. If we define Tjinx = (ElA[TI)/A as the time
delay of a typical link, then T = ITj;, .

I1I. NODE MODEL

A node in a network has several outgoing links, say k; it
is said to be of degree k. In nonadaptive routing, the node
operates as a collection of single server queues which we
can model as M/M/1 queues. Thus, the time delay for link
lis T; = 1/(uC; — N\,)). The time delay for node n is T,y =
Zn,iT(n,0)/N\n) where Ay = I\, is the rate of traffic
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that node n sends onto tie network. The network time delay
8 T =X, An)T(nyY whicli gives tie same result as above. but
expressed in termis of nodal delay.

Ignoring routing for a mor.ent, the node can be viewed as a
multiple server queuc (with k servers). It we assume all C, = C
at this node, and if ail packets join one large queue and are
served by any avadable server, ther we have an M/M/k queue
with average waiting time at node 1 given by

1 PB 1
Wy = — —2 ——- I
(n) uC k 1—p (1)

where p = A(»)/ukC and Pg is the probability that all servers
are busy. Although Py can be enumerated given p and k, the
only property we need here is that Py = 1 as p —+ 1.

Contrast the above result to that for a simple server queue
where, with p = A/uC, the waiting time at link / is

Wy=— — ()

We see that the multiple server operation has a waiting time
advantage of at least k. The time delay is the waiting time plus
the service time (1/uC). As p = 1, the waiting time dominates,
Pg — 1, and the multiple server operation has an advantage in
time delay of a factor of k. Although we concentrate in this
paper on packet time delay as a performance measure, many
other network situations focus on waiting time. In that case.
greater reductions in delay may be achieved since Pg is of the
order of p¥.

In making the above comparison, we assume that the ‘ink
and node utilizations are not increased when adaptive routiy
is used to obtain multiple server performance at the ncer. As-
sume first that only minimum hop paths are used for the non-
adaptive routing, resulting in single server queues at the links.
Allow the adaptive routing to choose between all minimum
hop paths for each commodity. This will produce the same
utilization in both cases. If other paths are used in the non-
adaptive routing, similar, but less precise, arguments can be
made. It will be seen in the next sections that the adaptive
routing performs better when more of the traffic has choice.
Since there is a significant improvement in time delay, when
the utilization is moderate it is possible to trade off a higher
utilization by using longer paths with the resulting greater
choice. In the examples discussed below, we have not found
this to be necessary. {n some cases where minimum hop paths
are not used in the optimum nonadaptive routing, the adaptive
routing could still provide a choice of similar length paths.
Then the utilization will not be increased.

These observations are summarized in Figs. 1 and 2. In Fig.
1 we compare waiting times for queucs with two servers and a
singie stream of input traffic. Multiple server operation is best.
In the other three cases, a queue is provided for each server
and the input stream is divided inty 'wo in different ways. In
order of decreasing performance. an arnval jowmns the shorter
queue, arrivals alternate between the two queues, and arnvals
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Fig. 2. Waiting time la s multiplo-ssrver node.

randomly select a queus. The latter is equivalent to two single
server queues, In Fig. 2 we contrast multiple server and single
server performance in & node. .

Our adaptive routing procedure will attempt to obtain these
performance advantages.

IV. ADAPTIVE ROUTING PROCEDURE

First consider routing all packets at a node by allowing
them 10 use any outgoing link. The aode can now be modeled
as a multiple server queue and achieves the already described
performance advantage over single server operation. Path
lengths, however, would become extremely long because of
this random routing, the total traffic in the network would in-
crease catastrophically, and total network performance would
be destroyed. We will show how to achieve the time delay
advantage without this deterioration in total network perform-
ance.

We propose a two-level adaptive routing procedure. The
first level is global, and while still adaptive, is expected to be
slowly varying, responding to average statistics of congestion
and traffic and alarms due to link failure, onset of congestion,
new traffic, eic. We assume that some mechanism exists for
making adjustments, and that these will be made relatively
infrequently compared to the rate of second level adaptivity.
We will assume in this paper that the first level of adaptation
does not change over the period of interest.

The first level consists of assigning a set of *‘good"’ paths (o
cach commodity or node pair that wish to communicaie. In-
stead of finding the “‘best™ path, we look for as large a sct as
possible of paths that are good in some scnse--a small number

L W W Y T PN L

P S

of hops, small congestion, etc. (A similar approach was pre-
sented in [S].) We do not force ourselves at this level to
choose among alternative paths that are of the same or similar
quality. That is done in the second level. The second level per-
forms better if there are more alternative paths. There is an
inherent tradeoff here, since choosing longer paths places
more traffic on the network. We assume that s selection of
paths is possible and, although we do not investigate it here,
that it can be made slowly adaptive.

As a result of the first level procedure, there will be nodes
where the paths for a particular commodity intersect, including
the originating node. Packets at such s node have a choice of
which outgoing link they can use (two or more links will be
in the various allowable paths). There are certain links which
may not be used by a particular commodity—they lead to bad
paths. We do not force the choice on the packet upon arrival
at the node, but operate the node as a (constrained) multiple
server facility. If all packets could choose any of the links,
then it would indeed be a multiserver facility and we would
get the k-fold improvement in delay. We will show that most
of this improvement is still obtained, even when some servers
cannot service some commodities.

This two-evel adaptive procedure will then give us the de-
sired improvement in time delay while maintaining good paths.

V. ADAPTIVE NODE MODEL

First, as shown in Fig. 3, consider a node with two outgoing
links (a and b). Some commodities have assigned paths that
only use one.of these links. They have no choice and will be
routed directly to a dedicated queue which can only be served
by one of the servers. Denote the total rate of traffic joining
each of the queues as A, and A,. Other commodities (of total
rate A.) have paths which use either link & or b. We assign
them to a third queue (). Server a, for example, may choose
to serve a packet from a or ¢, but not b. We will discuss dif-
ferent strategies for the server, .

The only way this constrained multiple server queueing
system differs from M/M/2 behavior is when queues a and ¢
are empty, for example, while queue b is not. One of the
servers (a) is idle while the node still has some work. To reduce
the possibility of this happening, we could keep queue ¢ as
large as possible. Thus, an excellent strategy, which appears to
be optimum, is to give priority to the dedicated queues, serving
queue ¢ only when one of the dedicated queues is empty.
Another strategy is to allow packets from the stream A\, to
join the shorter of the two queues (thus eliminating the need
for the third queue). We have (4] evaluated these and other
strategies for this node model and more complex node models,
and have found the performance of the node as measured by
average time delay to be fairly insensitive to the strategy
adopted by the servers. Although different classes of traffic
may suffer radically different time delays, the sverage delay of
all traffic in 2 node remains roughly the same for many good
stirategies. We will consider below only two strategies—the one
which gives priority to the dedicated queues and the one in
which arrivals join the shortest queue.

In Fig. 4 we present the average queue lengthi E(NV) versus
utilization o for a iwo-seérver node under various traffic pat-

i e e i i |
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Fig. 4. Estimated average number of packets in a node with two links.
Simulation results.

terns. We assume that the two link capacities are equal to C,
Ae = Ap, Pq = AJUC, po = N fuC, p = 2p4 + p.. The lower
bound is for an M/M/2 queue or all nondedicated traffic (A, =
0). The upper bound is for all dedicated traffic (A, = 0) and
represents two M/M/1 queues. In general, all of our results lie
between those two bounds of performance. The circled points
are simulation results for different traffic mixes and the strategy
that gives priority to dedicated queues. From this figure and
from similar results for three-server nodes and different traf-
fic patterns (as discussed below and in Fig. §), the following
rule of thumb has emerged. As long as 15-20 percent of the
traffic is not dedicated and the choice of traffic is not appor-
tioned to disjoint sets of servers, then the node behavior will
achieve more than half of the improvement of an AM/M/k
queue. It has been shown [7]. [8] that in the limit of heavy

 traffic (high utilization) a **join the shortest queue’ policy tends

towards the performance of an M/M/k queue. This is true even
if some of the arrivals cannot join some of the queues, but
there must be come linkage between all the queues. This is just
our node model. Since we believe that our priority strategy is
better than a join the shortest queue policy, we have that in
the iimit of heavy traffic, M/M/k behavior is achieved.

The above remarks hold for nodes with any number of
links. Assume that a node has k links. Then there are 2% - |
classes of input traffic--k classes of dedicated traffic, one to
each server; k(k — 1)/2 classes of traffic assigned to specific
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Fig. 5. Performance of a node with three links. Simulation results.

pairs of servers; ~-; and finally one class of traffic that can use
all servers (links). Many of these classes may be empty. But
if they span all servers, and if the total traffic that is not
dedicated is roughly 15-20 percent of the total traffic, then
nodal delay is reduced by a factor of order k over a single
queue model. If the traffic having choice is too light or if
the servers are in isolated groups, then this advantage is re-
duced.

In Fig. 5 the normalized time delay (in units of service time
or message length) is given as a function of the amount of traf-
fic having choice at a three-server node and for various utiliza-
tions. These results were obtained by nodal simulations. The
left limit of the graph represents M/M[1 or nonadaptive be-
havior. The right limit represents M/M/3 or the limiting adapt-
ive behavior. There are two types of traffic that have choice
at a three-server node. One type may be served by any of the
three servers. The other type may be served by only two
servers—there are three different members of this type. A va-
riety of different combinations were simulated. The resulting
time delay showed only slight variations for different traffic
patterns and depended only upon the total traffic having choice.
It is seen from Fig. S that if 15-20 percent of the traffic has
choice, then the hehavior-is significantly closer to M/M/3 than
to M/M/1L.

For high utilizations, the time delay is dominated by the
wailing time and the maxirum improvement expected is by &
factor equal to the degree of the node. For moderate utiliza:
tions, M/M/k operation would result in even greater relative
savings.

We have been able to develop upper bounds on node per-
formance that exhibit some ot the abovz behavior. For a more
accurate understanding, we have resorted o the simulation re-
sults already described.

Consider the two-server node of Fig. 3 and assume that the
dedicated queues have priority. Furthermore, let the capacities
C = 1 for convenierce. Then we can derive the following ex
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pressions: is a third of that obtained with M/M/1 queues, whereas an
M/M/[3 queue would have an even smaller waiting tune.
HE(W,) = py + NE(W,) 3) i .
VI. NETWORK PERFORMANCE 4
HE(Wp) =p2 + MeE(W)) 4 In general, we can say that if we adopt this adaptive routing o/
hE(W,) < % Pg + % NEW,) + min (N[EW,)+EMW,)) ). procedgre. and if at each node there 1s a sutficient amount of f{
i=a,b nondedicated traffic, then at high utilization the time delay at P
(5) each node is reduced by almost the degree of that node from ) 4
the time delay using nonadaptive routing. The effect on the y
In these equations W, is the waiting time of queue i, E(W;) is network will be to reduce the time delay by a factor on the - 4
its expectation, p; = (A, + aA;)/u, p3 =[Ag + (1 —a)A.}/u. order of the average degree of the n« Jes. For moderate utiliza- bt
and a is the proportion of A, traffic served by server 1. Pgis tions, a large part of that advantage will still be achieved. As- 3
again the probability that the system is busy. Equation (3) is  sume, for simplicity, that using nonadaptive routing, all links
derived as follows. An arrival to queue 2 must wait for server I  have the same average time delay 7y. Then T = iTl. If our C
to finish service, if it is occupied, and then wait for all mes-  adaptive strategy is used, then T(,) = 1/k(,yT; where k(n) is :
sages that it found in queue a to be served. Recall that queuea  the degree of node n. For this adaptive routing, the network "‘J
has priority. The probability of server 1 being busy is py, there  delay becomes at best T= Ty * Z,(A(a)/k(m))/A. If all k(ny = bt

are A,E(W,) messages already on queue 2 on the average, and
each message has an average service time of 1/u.

Equation (5) is more difficult to derive. An arrival to queue
¢ waits for the next completion of service if the system is
busy. The probability of this is Pg and the average time to the
next completion is 1/2u. It must also wait for all the messages
that it found on queue c when it arrived. Again, the average
number of these is A\ E(W,) and each goes into service, when
allowed, with a rate 2u. But queue ¢ does not have priority.
Thus, it must also wait for the first queue to put into service
all messages found in that queue upon arrival, A E(W;) on the
average, and for all other messages that arrived to that queue
while the message on queue ¢ was waiting —\£(W,), on the
average. The last term in (5) should be the expectation of the
minimum of two random variables—the total number of mes-
sages in queues a or b while our message waits in queue c. We
upper bound this with the minimum of the two expectations.

If we let A, = Ap, then a = 1/2. Furthermore, we upper
bound Pg by p; = p,. Equations (3)-(5) can now bhe solved to
obtain for the average waiting time for all messages:

us(u')<f;(1—;m o ®)

where B = A./(A, + Ay + A.), the fraction of traffic having
choice. Note that for M/M/1 behavior, uE(W) = p/(1 - p),
and for M/M/2 behavior, uE(W) = (p/(1 -- p)Xp/(1 + p)). As B~
0, our upper bound converges to M/M/1 behavior. As § = 1,
our upper bound vields a reduction of 1/2, where M/M/2 be-
havior has a better improvement of p/(1 + p). Our upper bound
on Pg is causing the discrepancy here. In any event, we note
the linear behavior with 8 in (6).

A similar expression, with similar results, can be derived for
a three-server node. Let the arrival rate to the dedicated
queues be equal, and assume only onc other class of traffic
which can choose between all three servers. Then we obtain

P -
W)= —— (1 — (
uE(W) I—p( $8 7)

where § has the same meaning as above. Yere, as 3 — |, u/ (W)

k, then the reduction is of the order of k.

The accuracy of the approximate performance at a node
improves as more of the traffic has choice and as the utiliza.
tion increases. These results serve as a quick estimate of the
benefits obtainable from adaptive routing and are useful as a
design tool.

VIII. EXAMPLES

We have evaluated many examples of networks [4]. Most
of these had some symmetry and 2 modest number of nodes
(at most 20). Our evaluatior procedure was as follows. We first
obtained the optimum nonadaptive routing and evaluated its
performance. In most of the examples, this resulted in using
shortest paths. We then allowed the adaptive routing to use
all shortest paths for each commodity. We then found the
amount of traffic that had choice at each node. For a wide
variety of situations, there was sufficient nondedicated traf-
fic at each of the nodes to justify our approximation.

There are two steps in a careful evaluation—the computa-
tion of the amount of traffic of each class (with respect to the
nature of choice) in each node and the evaluation of node per-
formance. We have already discussed good estimates for the
latter. The former step can be quite complex, since it depends
upon how traffic is split at each node at which it has choice.
We have developed several approximate techniques to perform
this step [4]. For example, consider Fig. 3 again. Let a be the
fraction of A, traffic that is served by a. The total utilization
of server a is (A, + ar.)/u = p,. Similarly, define py = (A, +
(1 — a)X\.]/u. Queue a, including the server, is empty with
probability 1 — p,. A message on queue ¢ will be served
by a only if the entire queue is empty. Thus, approximate a by
a = (1 - p,)/(2 - p; — p3). This can be solved for a to obtain
a=(1—p)(2—p,—pn)where p, = Ng/u, pp = Ap/u. This
approximation has been verified by simulation [4].

We summarize one example of a six-node network shown in
Fig. 6. Each of the nodes has degree 3. We allow only shortest
pathe (level one of our adapuve procedure). Thus, all traffic

from | to 2 ord o bisteuted drusctly, but traffic from 1 to 3
or 5 has a chowe of thiee two-hop nuths, We assume that all
links have the sumic capaciry, uC ~ §0, and all Y, =r Itis
farrly easy tosec that y = &/ - 75 and A = 42r. A non
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Fig. 6. A six-node network,

adaptive optimum routing can be found 30 that the flows in
each link are identical, A\, = 7/3r. Thus, for nonadaptive
routing, T = 1.4/(10 — 7/3r). Asr -+ 30/7 = 4.29, the adaptive
routing will give an advantage of a factor of 3.

We now compare the optimum nonadaptive routing with
our adaptive routing. For nonadaptive routing, we used the
above resuits for single server queues. For the adaptive routing,
we used the results of nodal simulations for three-server nodes
and T = [T, as discussed in Section VI. For7 = 184, p =
0.43, the nonadaptive routing had a time delay of 0.245,
while the adaptive routing had a time delay of 0.197. Forr =
3.06, p = (.71, the results were 0.490 for nonadaptive routing
and 0.295 for adaptive routing. Thus, we have reduced the
time delay by a factor of 1.66 in the latter case. In this ex-
ample, the amount of traffic having choice at each node was
2/7 of the total or 29 percent. If full multiple server perform-
ance was attainable, the time delay would have been 0.217.
Thus, 70 percent of this improvement was attained. The
improvement increases if more traffic has choice. As the utili-
zation increases, the full benefit of multiple server perform-
ance is achieved. The comparison can also be made with respect
to waiting times since the service times are constant and can-
not be reduced. Here the service time for the network is 0.14.
Thus, for 43 percent utilization, the waiting time has been
reduced from 0.105 to 0.057 by use of adaptive routing—s
factor of 1.84. At 71 percent utilization, the reduction is from
0.350 to 0.155—a factor of 2.26.

A number of other examples with as many as 20 nodes have
been investigated [4]). Most had some amount of symmetry,
but not nearly as much as the example cited here. One 12-
node example was generated arbitrarily. In all cases, the above
procedure was followed. The optimum nonadaptive routing
was found. In almost all of the examples, shortest paths were
used. The adaptive routing was created by giving a choice
among all shortest paths for each commodity. There was suf-
ficient choice at most nodes.

The effects of asymmetry—of the topology, the traffic
matrix, and link capacities—have not yet been adequately
studied. For very small networks or pathological cases, longer
paths may have to be used by the adaptive strategy to achieve
sufficient choice at some nodes. This will increase the utiliza-
tion and reduce, and perhaps eliminate, the performance
sdvantage. However, the performance advantage seems signifi-
cant enough to leave some margin for this tradeoff.

Asymmetries in link capacities and traffic patterns create
another problem. The second level of adaptive routing is based
on local information only. This may lead to saturation at other
nodes. The first level of the adaptive routing, as described
above, may not have enough flexibility to circumvent this. We
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have begun to study a variation that si.ows some promise. Con-
sider traffic between a pair of nudes that has two or more
good paths. Previously we assumzd 1101 all that traftic was to
be given choice. lere we dedicate sume of that traffic to speci-
fic paths in order to balance the load. For example, we may
wish to produce a flow distribution similar to that used in the
nonadaptive routing scheme. The remainder of the traffic is
allowed to have choice as before. Since the amount of traffic
having choice at 2 node is not critical, it is expected that it will
still be possible to achieve a performance advantage. Several
simple examples that have been tried have been encouraging.

A brief report on wwo further examples illustrates these
ideas. Details can be found in (4] . Fig. 7 shows an asymme tsi-
cal eight-node network. We assume equal channel capacities
and equal requirements between pairs of nodes. Four of the
nodes have two servers: the other four have three servers.
Hence, we expect the maximum improvement to be by a factor
between 2 and 3. The optimum nonadaptive routing uses
shortest paths. The adaptive routirg allows choice among these
shortest paths, thus retaining the same utilization. The most
utilized links were the two connecting clusters of four nodes.
When these were 80 percent utilized, the adaptive routing
scheme outperformed the optimum nonadaptive scheme by a
factor of 1.6 for time delay and 2.6 for waiting time. When the
utilization was 90 percent, these factors were 2.2 and almost
3, respectively.

Consider another asymmetrical eight-node network, shown
in Fig. 8. Here we assumed an asymmetrical traffic matrix. If
only shortest paths were allowed, litde traffic has choice, a
nonadaptive and our adaptive scheme are almost identical,and
the time delay is 6.24 for both. The optimum nonadaptive

suting had a time delay of 4.80. An adaptive routing can be
found using the same length paths for each node-pair traffic.
This resulted in a time delay of 4.08—a 15 percent improve-
ment. There was not enough choice to get more improved
performance in the nodes. When more choice was allowed,
increasing the utilization, the time delay increased to 4.62.
The service time here was equal to 2. Hence, the waiting time
for shortest paths was 4 24, the optimum nonadaptive routing
had a waiting time of 2.80, and the adaptive routing with
equal length paths had a waiting time of 2.08-a 25 percent
improvement.

More study is needed to fully understand the influence of
these asymmetries on this type of adaptive routing.

VIII. CONCLUSIONS AND FURTHER WORK

We have presented a two-level adaptive routing procedure
that exhibits marked impravement in performance over non-
adaptive routing. Moreover, we have presented some analytic
approximations to estimate this improvement. In heavy
traffic, we have shown the improvement to be by a factor
equal to the nodal degree (or average nodal degree). In general,
for moderate utilization, a large part of this improvement is
still achieved.

A more elaborate simulation of a network is underway. In
that work, the independence assumption is not made. Al
though it confirms our model, it has shed some light on the
“independence’” assumiption. We found that at high utiliza-
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L. 7. An eight-node asymmetrical network.

. )

Fig. 8. An cight-node asymmetrical network used with an asymmetrical
traffic matrix.

tion we were getting most, but not all, of the expected im-
provement. Many different nodal strategies had only a modest
effect on resolving this gap. We found that it was easy to
generate strategies that produced multiple server behavior. But
some of them had a profound effect on the output process
from the server, and thus affected the Poisson assumption for
inputs to the next node. The priority scheme was notorious in
this repard. Usually any traffic one hop away from its destina-
tion will be placed in a dedicated queue. Thus, only continuing
traffic will be found in nondedicated queues. These have
lower priority and will be transmitted only when the dedicated
queue is empty. But then a burst of several packets is likely to
be sent. A bursty arrival process results in poorer queue per-
formance than a Poisson process. This contributed signifi-
cantly to the delay performance gap. The design of a nodal
strategy must consider not only multiserver performance
achievement at a node, but the resultant output process as
well. This is the direction of our current research.

The usual way such a burst could occur is when the packets
are short. But these should have made the next node's job
easier. Unfortunately, the second aspect of the independence
assumption now comes into play—packet lengths are reassigned
at each node. This accentuates the effect of burstiness. When
the simnulation was altered to take into account dependence
hetween nodes, hence dispensing with the independence as-
sumplion, the difficulty disappeared.
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A SIMULATION STUDY OF A DYNAMIC ROUTING SCHEME

P. H. N. Chu,"*
Bell Telephone Laboratories
Holmdel, New Jersey 07733

ABSTRACT

A dynamic routing scheme 1s studied.
Instead of assigning fixed paths or
randomly selecting paths, permissible
paths (e.g., minimum hop paths) are
pre-assigned to each node pair. A
packet arriving at a node, and destined
for another node, is assigned to one

of two types of queues - a dedicated
one or a shared one. The objective of
the routing scheme 1s to reduce both
nodal as well as network average packet
delay. We have conducted a series of
simulation studies to evaluate the
nodal as well as the network delay
under the proposed dynamic routing
scheme,. Several important and encouraging
results are obtained and are presented
in this paper.

1. INTRODUCTION

A dynamic routing scheme has been
reviously proposed (References [1], (2],
EB]..and [(4]). 1Instead of assigning
fixed paths or randomly selecting paths,
permissible paths (e.g., minimum hop
paths) are pre-assigned to each node pair.
A packet arriving at a node, and destined
for another node, 1s assigned to one of
two types of queues. A dedicated queue

is a queue whose packets are served by

—
This research has been partially sup-
ported by Bell Laboratories through the
TRP program while the author is
pursuing the Ph.D. degree at PINY.

This research has been partially sup-
ported by US. ARMY, CORADCOM, under
contract DAAK 80-80-K-0579.

R. R. Boorstyn,
Polytechnic Institute of New York

t A. Kershenbaumf

Brookliyn, New York 11201

one and only one dedicated server. A
shared queue 1s a queue whose packets may
be served by two or more specified
servers. A server is equivalent to an
output link. The purpose of pre-
selecting paths is to avoid long paths
and resultant increased network traffic
that would occur in a random routing
scheme. The purpose of the shared queue
is to let a portion of the nodal traffic
experience the delay of a multiple
server queue and therefore reduce the
average packet delay at a node. The
objective of the model i1s therefore to
reduce both nodal as well as network
average packet delay.

We have conducted a series of simulation
studies to evaluate the nodal as well as
the network delay under the proposed
dynamic routing schenie. A more detalled
report can be found in Reference [5].
Section 2 describes the nodal and net-
work models as well as the different
service disciplines used. Section 3
gives the results of nodal and network
delay performance. A summary 1is glven
in Section 4.

2. THE MODEL
2.1 The Model Model

The traffic from each pair 1is preassigned
to one or more pre-selected paths (and
therefore server(s) at a node). Two
types of queue can be contructed at a
node. A dedicated queue can only be
served by one dedicated server. There
are at most n such queues at a node with
n links. A shared queue can be served
by any of several preassigned servers.
There could be as many as 22 - n - 1
shared queues at a node. A two server,
three queue nodal model 1s shown in
Figure 1.

A3.4.1
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FIGURE 1 A NODAL QUEUEING MODEL WITH TwoO
SERVERS

In Figure 1, traffic arrives at the
different queues with arrival rates
Ay (1 = 1,2,3) packets/sec. Queue 1 and

queue 3 are competing with server 1 for
service while queue 2 and queue 3 are
competing for service by server 2. The
service rate is u packets/sec. If one
of the competing queues (e.g., queue 1
or queue 3) is empty (e.g., queue 1)},
and the server for these queues 1s idle,
a packet in the non-empty queue 1is
served. If both queues are not empty
when the server has just completed
service, a pre-defined service
discipline will determine which queue

to serve next. When both competing
queues are empty (e.g., queue 1 and
queue 3) and the server for these queues
is idle, the server will stay idle until
there is a new arrival to one or both of
these queues. The idle server will not
serve the queue which is not pre-
assigned to it for service. This is the
major difference between our nodal mcdel
and a multiple server queueing system.
The operation of a node with more commu-
cations links 1s basically the same as
that of a two link node. Shared queues
will be served by a subset of the
servers.

2.2 Service Disciplines

The nodal model described in the previous
section allows different types of queues
to compete for service. A service
discipline must therefore be specified.
We will descride four different service
disciplines for the nodal model of

Figure 1.

1. Priority Service Discipline (PSD)
A server always searches the

dedicated queue for service prior
to its service of the shared queue.

A3.4.2
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For example, server 1 in Fijpure 1,
after conmpleting a service, willl ai-
ways lock to queue 1 for more
service. FPa'kets In queue 3 will be
served by serve 1 only 1f queue 1 Is
empty when server 1 has Just
completed a service. Therefore,
server 1 is busy as long as there
are packets to be served in gqueue

1 or queue 3. (Conversely, server

1 1s idle and stays 1dle when both
queue 1 and queue 3 are empty. The
instantaneous gqueue length of queue
2 does not effect any of the
decision rules at server 1
described above. A packet entering
the shared queue when both servers
are idle 1s served randomly by
either server 1 or server 2.

2. Alternate Service Discipline (ASD)

A server at the node in Figure 1,
whenever possible, alternatively
serves n packets from the dedicated
queue and m consecutive ones from
the shared queue. The server 1is
forced to serve more than n (or m)
packets from the dedicated (or the
shared) queue if the other queue
happens to be empty. Under this
situation, alternation of service
will begin whenever there is a new
arrival to the empty queue. The
process 1s started over again at
this point.

3. Serve The Longer Queue Discipline
(SLQD)

The queue with the longer queue
among the two competing queues

(the shared and the dedicated gueues
gets service first. A server,

upon & service completion compares
the queue lengths of the two
competing queues, and serves a
packet from the longer queue. The
SLQD tries to egualize all the
queue lengths at a node.

4, Random Service Discipline (RSD)

A server (e.g., serverl), upon
completing a service, serves
packets from one of two competing
queues according to the following
algorithm: It serves queue 1 1f
queue 3 is empty and vise versa;
it randomly selects a queue If
both queue 1 and queue 3 are non-
empty. This 1s a totally
"uncontrolled" service discipline.

2.3 The Network Model
In order to describe the dynamics of a

packet swiltching employlng the
proposed dynamic routing scheme, one
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must (1) construct nodal queueing
models similar to the one in Figure 1
for every node in the network, (2) pre-
seiect a set of "permissible" paths

for each source-destination node pair,
and (3) assign the®data flow according
to the preselected paths between
adjacent nodes. In order to simplify
description of the network model, we
have chosen a four network to illustrate
the dynamics of our network model.

A four node network 1s shown in Figure

2. Every node is connected to two links,
1.e., 1s of degree two. Therefore, the
nodal qQueueling model at each node is
exactly the same as that of the two
server three queue model described
previously. The permissible paths
between sources and destinations are
selected based on a shortest path
(minimum hop) algorithm. Adjacent nodes
will only use the one hop path between
them. Non-adjacent nodes will use either
one of the two-hop paths. Therefore,
traffic between adjacent nodes is pre-
assigned to the dedicated queues.

Traffic between non-adjacent nodes, on the
other hand, 1s pre-assigned to the shared
queue at the source node and the
appropriate dedicated queue at the
intermediate node.

FIGURE 2 A FOUR NODE NETWORK

Each server at the node serves the two
competing queues (the dedicated queue

and the shared queue) according to a
pre-specified discipline. We have
simulated the network for the four service
disciplines discussed previously. A
service discipline where the condition of
the next node 1is "known" to all servers
at the current node and used to

determine routing 1s also studied.

3. RESULTS

Simulation programs in PL/1 have been
written to evaluate the delay of the
nodal model of Figure 1 and the network
model of Flgure 2 operating under the

———T

different service disciplines. All simu-
lation results are based on statistics
¢ollected over a sufficlent time interval
50 as to represent the steady sta'e.

The statistics collected for the PSD
scheme are based on at least one million
(sometimes four million) simulation
events - including both arrivals and
departures. In order to conserve
computing time, the statistics collected
for other service disciplines are based
on at least two hundred thousand
simulation events. In our simulation
program, all arrival processes to

source nodes are assumed to be Polsson
and all service distributions are
assumed to be exponential and Independ-
ent of each other. No assumption is
made about arrivals processes to inter-
mediate nodes in the network model.

3.1 Model Delay Performance

The percentage of the trafflc that is
cshared at a node is an important
parameter affecting the nodal delay.

We have studied nodal delay based on
three sets of nodal traffic mixes.

They are low (approximately 10 percent

to 15 percent), moderate (25 percent),
and high (50 percent) percentages for

the shared traffic at a node respectively.
Fairly extensive simulation runs were
conducted throughout the whole range

of nodal utilization (0 to 1) for the

PSD and a moderate percentage of

shared traffic. We assumed that the Iinput
processes to the node were Poisson.

3.1.1 Simulation Results Of The
riority Service scipline

The effects of the percentage of the
traffic that is shared on nodal aelay
are tabulated in Table 1. Notlce that
the higher the percentage, the closer
the nodal delay 1is to that of an
M/M/2 queueing system.

Figure 3 plots the delay-throughput
relationship of the PSD for different
percentages of shared traffic. The
delay for the M/M/2 and the M/M/1
queueing systems are also plotted for
reference.

In Figure 4, a measure of the "close-
ness" of the PSD to M/M/2 queueing system

Tu/m/1"Tpsp

performance, ,
Tum/1Tms2

against the percentage of shared traffic
for a node operated under the PSD
scheme. The utilizations are studied.
The ordinate is the percentage of
multiple server performance that 1s
obtained by the PSD. At high traffic
utilitization (p=0.875), only 25 percent

is plotted
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TABLE 1 Nodal Delay Of The PSL Wlth Low, Moderate, And High 4
Percentage Of Truftic Belinee Shared .
\14x2+x3
. (p= ——> , u = I packets/scc) ‘,:
Shared Arrival Rate to Queue Utilizatlion Nodal Delay (seconds) ]
(packets/sec) ]
/
Traffic ll Xz X3 [ PSD M/M/2 M/M/1 :
2.8 2.8 1 0.825 1.01 0.78 1.43 -
Low 3.0 3.0 1 0.825 1.33 1.07 2.00 ad )
3.9 3. 1 9.305 L0 1.73 1.33
2.075 | 2. 8751 1.5 DIHL 0.1 " n.78 | 1.47 ] 1
Moderate 2.625 1 2.62511.75 0.875 1.13 1.18 | 2,00
2. 715 2.7(511.85 0.4925 1.87 1.87 3.33
.65 1.65 .3 0.325 3.80 0.78 1,03
High L.75 1.75 3.5 0.375 1.09 1.07 | <.00 ]
1.85 1.85 3.7 0.925 1.78 1.73 3.33 )
UTILIZATION
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ar 0075
22 F 100 re
e
20 'Y, 1] g 20
-
- PERCENTAGE OF ] Py
TRAFFIC SMARED w
v
16 12.0% s § 70
‘g 1.4 0% § : .
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3'1 i & § E 30
w € 2| 5
© 40 ';‘ - -
- gt |1 a0
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Saef “ ; 2
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(] r g 2l
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o U & PERCENTAGE OF SHARED TRAFFIC
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UTILIZATION . {
FIGURE 4 COMPARISON OF PSD AND MULTIPLE SERVER _.q
QUEVES )
FIGURE 3  DELAY-THROUGHPUT RELATIONSHIP OF In Figure 5, we have redrawn the plct of P
NODAL MODEL Figure 3 for the average nodal delay in the -~

range from 0 to 0.5 seconds for tne cacse
of 25 percent shared traffic. For a
fixed delay of 0.5 =secnnd, the utilizaticn

Pl

of the nodal traffic need be shared to
achieve 90 percent. At higher nodal

. IS SD s-~neme + 6 sroe ol

| utilization, the same effect is reached ogo;::rnga:—?ggi é? 22:“;/;fﬁp;§5;?t(a ),
-~ with less shared traffic. At moderate gre 1 "d ¢ DO ‘d . :
b, nodal traffic utilization (p=0.5), the commonly use ixed routing ncaal modai. .
- PSD achieves 65 percent of multipie Thus for th2 same throughput a signifilcant )
b P - decrease in required channel capacity s .
T server performance with only 2% percent of obtained .
- the traffic being shared. : )
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3.1.2 Results For Other Service
Disclplines

In this section, we discuss the nodal
delay for other service disciplines. For
these disciplines, we only studied the
nodal performance for p = 0,875 and 50
percent of the traffic being shared.

Table 2 tabulated the nodal delay from our
nodal simulation for the ASD, the SLQD, and
the ESD. We can make the following
observations from Table 2:

1. A general characteristic of the
results in Table 2 {s that; at
high utilizations (p=0.875 in this
case) with a high percentage of
the traffic shared (50 percent),
the nodal delay is closer to that
of the M/M/2 than the M/M/1
queueing system regardless of the
service disciplines.

2. The PSD has the best nodal delay
among all service disciplines.

3. The nodal delay of the 3LQD, with
the modification ¢ not serving
{whenever possible) two packets in
a4 row from the shared queus, 1s the
closest to that of the PSD.

k. The ASD with parameter x=1 and the
threshold at the shared queue set
to zero, has almost the worst nodal
delay performance.

5. The RSD, being that 1t is an
"uncontrolled" service discipline,
does perform the worst among all
service disciplines. However, the
PRSD performs better than the
M/M/1 queueing system by almost
k0 percent.

Table 2 Modal Simulation Results
(11- 2"1.75 packets/sec,

X3‘3-5 packets/sec, u=li packets/sec.

o=0,875)
Service Discipline l?dnl Delay

PsSD 1.03

SLQD
rve the Longer Yy=1 1.0k
but not y Y =2 $.09
consecutive "shared Yy =3 1.08
ueue” packets Yy == 1.13
X = ] 1.11
ASD TH =0 x=2 1.12
[Alternate Service: x = 3 1. 05
jone from shared x =]l 1.09
iqueue and x T™ = 1| x = 2 1.C5
from dedicated x = 3 1.07
ueue but do not x = 1 1.06
serve shared TH =2 x=2 1.05
queue vhen its x =3 1.04
ueue length < TH x=1 1.06
TH = 3| x =2 1.07
x = 3 1.05
SD Random 1.13
1.01
M/M/1 2.00

3.2 Network Delay Performance

3.2.1 Analysis

In this section, we study the average
network delay performance. In our
routing strategy, instead of treating
each communications line separately, we
focus our interest on the whole node,
including all its communications links.
As a result, our focus is on nodal delay
as opposed to link delay which s
usually studied.

Let us assume that we have an .:pression
for nodal delay at node j, which s
denoted by Zi. The average number of
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packets N,, at nodalJ can theretare be
written as N, = A-T,, Where A- 1s the

total traffic (frgm both external and
internal trafflic sources) at node J. The
average number of packets in the network
(N) is therefore the sum of the average
number of packets at each node. That is,
N= I N . . The average network
4= NopES ~ 1
delay (N) 1s therefore

[

Tl ¢ a7
= Y =nNoDES ¢ (1)

<

where vy = [ Y K i1s the total external
Lk ik

network traffic demand and 115 is the

offered rate of traffic between node pair
{(J,k). Equation (1) 1s therefore a
general expression for the average network
delay.

To analyze the network delay we make the
following assumptions. We assume the node
models used previously. The traffic is
found by aprlying the routing implied by
the preassigned paths. We can then
calculate the rate in packets per second
of arrivals to the shared and dedicated
queues. In our network analysis we
assume these arrivals to be a Polsson
process and compute the nodal delay for
each node using the techniques described
adbove, Equation (1) gives us the network
delay. Below we compare this technique
with the results of two simulations. The
first dispenses with the Poisson assump-
tion and accurately models arrivals to
intermediate nodes in paths. To make

the simulation simpler, packet lengtns
are independently reassigned at each node
in a path. The second simulation
dispenses with this approximation and
retains the initial packet length for a
throughput 1its path.

3.2.2 Simulation

In this section, we will focus our discus-
sion on two PL/1 simulations which were
written to evaluate the network delay
performance. The interarrival time of
arrivals to network ndoes 1s assumed to
be exponentially distributed. The
packet length is assumed tc be
exponentially distriouted. All servers
are assumed to have the same service
capacity (for convenience as unity).
Therefore, the average service rate of
each server 1s the same. In most of our
simulation studies, we have used

p=0.875, 50 percent shared traffic at

the ndoes, and a symmetrical network.
Other traffic utilizatlons, nodal trat'flc
mnixes, and asymmetric network traffic

TR L e TR W N e LT e T e T e e T e

demands are also studled but not a3
extensively as the ubove.

The first simulation allows the piacike:*
lengths to be reassigned at the next
node. It deces not make any assumpt'ons
abcut the output process from a server.
A server serves its competlng queues
according to a pre-specified service
discipline. After the server finishes
service of a packet, the packet either
exits from the network or joins the next
queue for more service. Once it arrives
at the next queue (in the rext node), 1
new packet length from the same exro-
nential distribution 1s assigned to !t.
It then is put on the appropriate jueue
and walts for service. We compare the
results of our network simulation with
our analysis based upon nodal simulation
results, In the latter, we assume aill
inputs to the node tc be Poisson.

The second simulator simulates the true
service situation in an operating
packet network. That 1is,a particular
packet when served by the next server
will require the same amount of service
time. When the results obtained frcm
the second simulation are compared wit!h

our analysis by using our nodal simulatic:

results, we can evaluate the effect cf
both the Polsson output stream and the
packet length reassignment assumptions.

3.2.2.3 The First Network Simulation

3.2.2.1.1 Local Service Disciplines

All four service disciplines are studied.

The simulation results in Tabie 3 and in
previous work (Reference [5]) reveals
the following:

1. The average networx delay from the

network simulation 1s significantiliy

closer to that of the M/M/2 ncdal
than to the M/M/1 nodal model.

2. The difference between the analyt-
1cal results using the nodal model

and those obtained from the network

simulation, for the PSD, increases

as the percentage of shared trafflic

increases at a node.

3. With the same traffic mix at a ncde

the difference between the networ«
delay found analytically and those

obtained from the network simulatinm
for the PSD increases as the traflfllc

load increases.

4, The network delay obtained from the
network simulation for the Alternate

Service Discipline (ASD) and the
Serve the Longer Queue Dluclipline
(SLQD) are lower than that of the

A3.4.6

R I T S

A it e amaa

1
X
a4

. I
-
A
VH
1




sl AR

TRV T Y

PSD scheme. The difference in these
delay are at most 1l percent. The
network delay of the Random Service
Discipline (RSD) scheme 1s
approximately the same as that of
the PSD scheme.

5. The difference between the results
obtained analytically and from
our network simulation for other
service disciplines is sub-
stantially large (12 to 26 per-
cent difference).

6. The parameter n (the number of
packets to be served from the
dedicated queue before the server
alternate 1its service) in the ASD
has an effect on network delay.

7. 1In the ASD, the threshold para-
meter set at the shared queue to
avoid the shared queue becoming
empty before the dedicated queues,
also has an effect on network
delay.

8. The network delay of the RSD - an
"uncontrolled™ and "unpredictable"
service discipline - is about the
same as that of the PSD and the
"worst cases" of the ASD and the
S1QD.

Although we are operating at high utili-
zation, we are getting most, but not all,
of the expected improvement. Many
different nodal strategiles have only a
modest effect on resolving this gap.

We find that is was easy to generate
strategles that produced multiple

server behavior. But some of them have
a profound effect on the output process
from the server, and thus affect the
Poisson assumption for inputs to the
next node. The PSD is notorious in this
regard. Usually any traffic one hop
away from its destination will be placed
in a dedicated queue. Thus, only
continuing traffic will be found in
nondedicated queues. These have lower
priority and will be transmitted only
when the dedicated queue is empty. But
then a burst of several packets 1s likely
to be sent. A bursty arrival process
results in much poorer queue performance
than a Poisson process. This contributes
significantly to the gap in delay. The
design of a nodal strategy must consider
not only multiserver performance at a
node, but the resultant output process
as well. The usual way such a burst
could occur 1is when the packets are
short. But these should have made the
next node's Job easier. Unfortunately,
the second aspect of the independence
assumption now comes into play - packet
lengths are reassigned at each node.

This accentuates the effect of burstiness.
When the simulaticn 1s altered to take
into account derendence hetween nodes,
hence dispensing with the 1ndependence
assumption (as described in the next
section), the difficulty disappeared.

3.2.2.1.2 A Look Ahead Service Scheme

A common situation of all the "local"
service disciplines (The PSD, the ASD,
the SLQD, and the RSD) 1s that a packet
may be waiting to be served in the shared
queue at one node while there is an idle
server at the next node. Conversely, a
packet may walt in the dedicated queue
for service when there 1s no need to
serve a shared queue packet because the
next server has plenty of packets to serve
at the next node. Both phenomena cause
degradation in network performance. Both
are due to the fact that each server, upon
completing a service, does not know what
the next server wants. Consequently, the
server may serve a "wrong" packet from
time to time. Therefore, 1t is not the
selection of a queue but the timing of
this selection process which influences
the service decision. 1In all of the
"local" service disciplines which we have
discussed so far, the timing factor was
not considered. We have designed a look
ahead service discipline and have
examined its performance. The basic
algorithm is shown in Figure 6.

24

ey 44 23
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(a) A PART OF THE FOUR NODE NETWORK

SERVER $,, COMPLETES SERVICE

XgSTH

~,

SERVE Q. SERVE Qg

Xg * Qzq OR Qp¢% 172 Qpy

(b) THE LOOX AMEAD ALGORITHM

FIGURE 6 A LOOK AHEAD SERVICE SCHEME
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Network Simulation
(xll le-O packet/sec, x13=3.5

Table 3

Results

packets/sec,

u11=u12-u.0 packe's/sec, £=0.8715)

s Network Delay (seconds)
ervice Discipline Nodal Model | SimulatTon £ Difference®
PSD 2.06 2.7S 33%
ASD n = 1 2.22 2.65 20%
Alternate Service: TH = 0{pn = 2 2.24 2.51 12%
one from chared n = 3 2.10 2.58 232
queue and n n =1 2.18 2.50 52
from dedicated TH = 1|pn = 2 2.10 2,50 L9 %
queue but do n_= 3 2,11 2.53 LBY
not serve n =1 2.16 2.5 20%
shared queue TH = 2 = 2 2.10 2.92 - 20
when 1ts queue n =3 2.08 2.60 26
length < TH n_= 1 2.12 2,51
TH = 3| p = ¢ 2,14 2,49 12
n = 3 2,10 2,55 1%
SLQD
Serve the Longer y =1 2,08 2,45 182
queue but not y y =2 2,18 2,5 9%
consecutive y =3 2.16 2.6 2ug
shared queue y=eo 2.2b 2.6 192
packets
RSD 2.26 2.71 20%
M/M/2 2,02 - -
M/M/l unoo - -
T

NETWORK {Simulation) - TNETHORK (Nodal Model)

[ ]
% Difference =

NETWORK (Nodal Model)

Table 4§ show our results. We make the
following observations:

1. The netwerk delay of the best
look ahead scheme has an improve-
ment of about 11 percent over that
of the best local scheme.

2. The look ahead service scheme per-
forms consistently better than the
local service disciplines.

3. When both servers are empty, it 1is
better to serve an arrival to the
shared queue on the basis of
downstream information, than to do
it randomly.

3.2.2.2 The Second Network Simulation -
No Packet Length Reassignment

The analytically obtained netwcrk delay
and our first simulaticn differ not

only in the PSD but also in the ASD and
the SLQD where the output stream should
be somewhat smoother. Furthermore, as
was demonstrated by Kleinrock (Reference
(5)), the packet length reassignment
assumption does not work well in a small
network like our four node network with
very few traffic streams (lowlng at each

A3.4.8

node. This motivated us to build the
second network simulator whereby the
packet length reassignment assumption
is not made.

3.2.2.2.1 Dynamic Routing Scheme With
E%ca! Node Service Disciplines

We have used our second simulation to
evaluate the network delay performance
under the various service disciplines
(PSD, ASD, SLQD, and RSD) discussed
previously. Each node, operates
independently, serves its queues accord-
ing to the pre-specified service
discipline. Traffic information at each
node 1s not exchanged between adjacent
nodes. Therefore, only "local" node
service disciplines are discussed in this
section. We have also examined the aver-
age network delay under two fixed routing
strategies (Reference [S]).
Table 5 tabulates our results. We make
the following observatlions:

1. Removing the packet length assump-
tion greatly improves the accuracy
of our analytic nodal method.




e
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Table 4 Network Stmulation *rults OF A Look Ahead Routing Strategy

(A11=A17= 0 packes/ceo, A

=3.5 packels/sec, u13=u12=u packets/sec, p=0.97¢4)

i3
Threshold Network Delay (seconds)
= ® = T = 1
X3 = Q" | %2 7 Q) X; = Qp + 3 Q3%

0 (PSD) 2.75 2.75 -=
1 2.33 2.6 2.07
2 2,35 2.29 2.19
3 2.357 2.32 2.26
4 2.3% R 2.32

- 2.35
9 - 2.41

®* When both S11 and 312 are not busy and there 1s an arrival to Ql3’ this

packet will be served by either S11 or 512.

#% Under the same situation as above, X5 will be compared with Xy (the same

parameter at node 4).

The packet 1in Ql3 will be served by S

Xy € Xy (or X5 >xu)

2. The packet length reassignment
assumption has more effect on the
network delay performance for the
PSD than any other service
disciplines.

3. The PSD 1s the best "local" service
disciplines among all other local
service disciplines.

4, The network deslay of our dynamic
routing scheme under any one of
the service disciplines 1is
significantly better than either
of the benchmark fixed routing
strategles.

3.2.2.2.2 Dynamic Routing With Look
Ahead Service Scheme

The "clock driven" network simulation
keeps track of how much tZime a packet
requires from a server. This enables

a server to know how much work (in terms
of service time) the next server has at
any given instant of time. A server can
make an accurate declision to keep the
network from losing 1its service capacity.
A server, upon completing a service,
compares the total amcunt of work at the
next server (the remaining service time
for the packet still in service at the
next server, the total service time in
the dedicated queue at the next node,
the total service time in the shared
queue at the next node, and a threshold
parameter which incorporates the ract

11

(of 812) ir

that the shared queue packets are served
by both servers at the next node and there
are new arrivals to the next node during

the service time) to the sum of the zervic:

times of the first packet in eaczh
competing (shared and dedicated) aueues.
The server serves the shared queue packet
if the total amount of work at the next
server 1s less than the sum of the service
times of the first packet ir each of its
competing queue. Should the server not
serve the shared queue pacxet immediately,
the next server could be i{dle for a perlod
of time equal to the difference between
these two quantities. The server would
otherwise serve the dedica%ted queue
packet. This look ahead service scheme
would be ideal in our dynamic routing 1f
the threshold parameter cculd be
correctly set. The netuork delay with
both exponentially distrituted anda
constant packet lengtns are evaiuated.
The followlng observations can te made
(see Table 6):

1. The PSD is equivalent to setting

the threshold value to negative
Infinity.

~oae
20 LtE

2. The network delay is irnsencitive
to the threshold values near its
"optimal" setting.

3. The difference between the network
delay of the "test" local service
discipline (the PID) ind the lnox

"y .

ahead service scheme watrn the "bLoot
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cholice of the threshold value !s
about 10 percent.
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Table 5 Network Simulation Results For Different Service Disciplines -

Local Decision

(A11= 12=Opacket/second, A13=3.5 packets/second, u11=u12=u packets/secona
p=0.875)
Network Delay (seconds
Service rlrst Second
Discinline Simulation Simulation Analvtlic
PSD 2.75 2.1b 2.06
ASD 2,64 2.38 2.22
SLQD 2.145 2.32 2.08
RSD 2.73 2.56 2,26
Fixed Routing - 3.84 -
¥l
Fixed Rcuting - 3.26 -
#2

Table 6 Network Simulation Results For A Look Ahead Routing Strategy

(A11=A12=0 packet/second, xi3=3.5 packets/second,

second, p=0.875

u11=u12=u packets/

Network Delay (seconds)
Routing Strategy | Exponential Packet Constant Packet
555 Leggtgs Lengths
2.1 1.23
Local —F3p 2.56 1.31
-0.25 1.96 1.17
0.00 1.94 1.14
0.05 1.96 ——
Look TH 0.10 1.G4 .
Ahead 0.15 1.95 -
0.25 1.96 1.20
0.50 2.01 1.27
0.75 2.07 1.33
1.00 2.13 1.38

3.2.2.2.3 Asymmetric Traffic Demands And

Service Rates

We have illustrated significant improve-
ments in network delay using our adartive
techniques for the four node network.
However, only symmetric traffic loads
have been studied so far. In order to
demonstrate the robustness of our
routing strategy, a certain degree of
asymmetry was
We have evaluated tne network delay of
the four node symmetrlc network with
asymmetric trafric and with different
link capacitles.

We make the following observations from
the results of Tables 7 and 8

The RSD performs the worst among ail
service disciplines; the P30 performs
the best among all routing strategles

intrcduced into the network.

based on local traffic information; the
"best" look ahead scheme performs
better than the P3SD in terms of aver-
age network delay; and the threshold
value set in the look ahead scheme is
insensitive to the network delay
performance over a wide range.

4. CONCLUSION

We have studled a dynamic routing scheme
for packet switchins networks., IS net-
work delay performance o sureri.r t

that of fixed rcuting. We have alsoe
developed and evaluated an analytlc
technique for evaluatiny adaptive routlng
performance. Extenslve simulations con-
firm these results. A lecally adarptive
scheme performs almost a3 well as one
that has more information.
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(1]

[2]

(3]

(4]

(5]

Table 7 Network Delay With Asymmetric Traffic Demands
(x12-2 packets/sec, A12-l packet/sec, A13-? pack.ls/sec,

uiJ-“ packets/sec, p=03.875)
Routing Strategy lietwerk Delay (seconds)

PSD 1.91
Local SLCD 1,90
R3SD 2.67
=0.25 1,31
-0.125 1.81
Look 0.05 1.82
TH 0.10 1.81
Ahead 0.15 1.33
0.25 1.84
0.50 1.87
0.75 1.91
1.00 1.95

Table 8 Network Delay With Asymmetric Service Rates
(xil-xiz-o packets/sec, 113-3.5 packets/sec, MUy "U5 =W g3 ™hy ous 5

packets/sec, “12'"21'"32'”h1'3 packets/sec, p=0.875

Routing Strategy Network Delay (seconds)
cal PSD 2.23
-0.25 2.07
'Look 0 2.03
TH 0.2% 2.04
Ahead 0.75 2.15
1.00 2.22

REFERENCES
Livne, A., "Dynamic Routing in {6] Kleinrock, L., "Communicatlon Nets -

Computer Communication Networks," Stochastic Message Flow and Delay,"”
Ph.D. Dissertation, Polytechnic McGraw-Hil1l, New York, 19¢4, and
Institute of New York, June, 1977. Dover, New York 1972.

Livne, A. and R. R. Boorstyn, "On a
Technique for Dynamic Routing,"™ Proc.
National Telecommunications Conf.,
Dallas, Nov. 1976, p. 42.2-1

Livne, A. and R. R. Boorstyn, "A
Model for Efficient Routing in S/F
Computer Communications Networks,"
EURO IFIP 79, P. A. Samet, ed.,
North-Holland Putlishing Company,
1979, pp. 343-350.

Boorstyn, R. R. and A. Livne, "A

Technique for Adaptive Routing 1in
Networks," IEEE Trans. on Commu-

nications, Vol. COM-29, Number &4,
April, 1981,

Chu, P, H. N., "A Dynamic Routing

Scheme in Packet Switching Networks,"
Ph.D. Dissertation, June, 1981.

A3.4.11




B.3 Stable Routing Patterns

Third Semiannual Technical Report, March 1982

LN s - i _adin SRR St J

[l MR R JaRat a3

e,

). JOS.




o

to

LI PR

......

RESEARCH SUMMARIES

A. Studies in Adaptive Routing

A.1. Stable Routing Patterns

As part of a general investigation in the area of dynamic routing
in computer communication networks we consider the problem of finding
stable global routing patterns. Specifically, we have proposed [1] a
two-level routing procedure where the lower (local) level adapts dy-
namically to instantaneous variations in the congestion of the network in
the immediate vicinity of each node and the higher (global) level en-
sures stability by keeping the average load across the entire network in
some sense globally balanced. We now consider this latter problem.

We consider as a measure of global balance the utilization of the
most heavily utilized network element (node or link) and seek to mini-
mize this quantity. For simplicity, we will speak only of link utiliza-
tions. (Node utilizations can be included in a straightforward manner.)
Thus, we are given a network containing N nodes and L (directed)
links. Each link, 1, has a capacity C]. There are (directed) require-
ments ri]. between nodes i and j. Eacb T is satisfied by routing it on
one or more paths P(Ki)]. from i to j. (In the two level adaptive routing

scheme, these paths (or links within them) will be the alternatives open
K)
ij
The utilization of each

to each requirement.) A roiting pattern is defined by the paths P(

(K) ; (K>
f i of rij using each P ij-

link is equal to the total flow (sum of fractions of requirements) on the

and the fraction,

link divided by its capacity.

The maximally utilized link is in a sense the most vulnerable part
of the network and the most likely cause for the dynamic routing mech-
anism to break down (e.g. loop) due to congestion. By minimizing the

2
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utilization of the maximally utilized link we seek to minimize the chance
of congestion leading to such failure. It should be noted ihat we are
dealing with the global level of the routing procedure here and as such
consider only long term average utilizations, not instantaneous meas-
ures. The local level of the routing procedure concerns itself with
making decisions instantaneously on the basis of the local state of the

network in the vicinity of a node. Even within the constraints of a
K)
ij
considerable flexibility in choosing when to use each route and as such

given P( and f(lfj), defined by the global strategy, the local level has
can obtain substantial reductions in delay when compared with static
routing policies.

We now turn to the problem of actually finding the optimal global
routing pattern as defined above. The technique resembles the Flow
Deviation Method of Cantor and Gerla [2] and will be described in
similar terms. Cantor and Gerla sought to minimize the average delay
whereas we seek to minimize the maximum utilization of a link. Both
functions are convex functions over a convex region and as such, the
same type of procedure can be proven to vyield an optimal routing
pattern. The proof is given in [2].

Our function is only piecewise differentiable and as such, the
gradient search used in (2] is not appropriate. In fact, the alternative
described here takes the special nature of the objective function, a
minimum of linear functions, into account and not only overcomes its
non-differentiability but also is considerably more efficient and easier
to implement than a gradient search.

We now give an outline of the optimization procedure. A high

level flowchart of this procedure is given in Figure 1. As mentioned
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above, at this level the procedure is almost identical to the Flow De-
viation Algorithm. The key difference, which is only evident in a more
detailed description, is how the optimal superposition of flows is found.

We define the length of a link to be its utilization. Initially, we
set all link lengths to 0. We define the length of a path to be the
length of the longest link in the path plus a small constant times the
number of links in the path. This latter term is added to break ties
among paths with equally utilized links in favor of a path with the
smallest number of links. Note that this definition of path length is
different from the conventional one but it serves our purpose. Short-
est paths using this metric are computable using conventional shortest
path algorithms.

The routing pattern found at each stage in the optimization proce-
dure is a single shortest path for each requirement rij' (In general,
this path is not unique, but this poses no problem.) A flow pattern is
defined as the total flow in each link and is found by loading the
requirements onto the links specified in the current flow patterns.

An optimal superposition of the current flow pattern with all pre-
vious flow patterns is then found. This is the key step in the proce-
dure and is done by finding the value of A between 0 and 1 which
minimizes V, the maximum link utilization, where A represents the frac-
tion of all previous flow patterns used. The new optimal superposition
of flows is then A times the previous superposition plus (1-A) times the
current flow pattern. A new superposition, and hence link utilizations,
is then obtained. This in turn yields a new value for V(K) and the
link lengths. We can now start another iteration. If, however, no

improvement in V(K) has been observed, the iteration has converged
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and we terminate the procedure with an optimal flow pattern. By ]

E] saving the routing patterns and A(K), the values of A for each K, the - .]
» optimal routing pattern can be obtained. In particular, if P(li(j)is the a
3 1
*-’.; (i,)) path first used in the routing pattern in iteration K then the ]
i fraction of commodity (i,j) using P(}fj)is -.."
M :

j=K+1

Patrel sl AR 08 A 80 a-
A
-

where M is the number of iterations and the product is defined equal to
{:' 1 for K = M.

1
i
We now turn to the problem of how to find the optimal super- 7,.;

position of flows. Consider two flow patterns, F(l) and F(z). Each

flow pattern assigns a flow to each link. Thus f(ilj) and f(izj)are the

flows assigned to link (i,j) in F(l) and F(Z), respectively. For any A

RO PO

$

1
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between 0 and 1, the flow assigned to link (i,j) by superposing AF“)
and (1-A)F?) s then

(1) a(2)
Af ij + (1-0)f ij
- which equals

: (2) (1)_ ((2)
L fij+)\(fij fi].)

L]

which is a linear function of A. Dividing by Cl' to obtain utilizations,

there will be, in general, a different function, a + b])\ for each link 1.

A )

tam L LN
o ama 4 4 4 _a Aa’a

\ (We will for simplicity refer to links by a single index, |, rather than 4 J
A endpoints (i,j).)
We seek the wvalue of A which minimizes the maximum of these 4

functions over all 1. Several simple observations allow us to find this ~:!‘:

s

value of A in an efficient and straightforward manner. First, if for two
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links, 1 and m, a; > a and b > b then link | is said to dominate link
m and link m can be ignored as it clearly does not participate in the
maximum since ay + bl)\ > a, + bmA for all values of A. Indeed, if a +
bl)\ >ag * bm)\ for all A between 0 and 1 then link m may be ignored.
Note that this latter condition is not equivalent to the former, for
example if q = 10, bl = Q, a, = 2, and bm = 3.

We can then arrange the links | in descending order of a and
examine the bl’ Any link m for which bm does not exceed bl’ where 1|
is the predecessor of m in the order, can be eliminated. We now have
an ordering of links which is descending in a and ascending in bl‘ We
then compute, for each adjacent pair of links | and m, the value N for
which a + bl)\l =a, * bm)\l. The A should form an ascending se-
quence. A value of A which is less than the value of its predecessor
in the sequence corresponds to a link | which can be eliminated from
further consideration. In this case, link 1 is eliminated and m has a
new predecessor. The Ap is then recomputed for link p the new pre-
decessor of m and this process is repeated. For link n, the last link
in the sequence, )‘n = 1.

We now compute for each remaining link 1 v =t bl)\l and select
the minimum of these values. The resulting N and v, are the desired
values yielding the optimal superposition.

This entire process is illustrated in Figure 2. The links have
been sorted so that the a) are descending. Links with nonascending bl
have already been eliminated. Thus the bl form an ascending sequence.
This is evident in Figure 2 by the fact that the lines form a sequence

increasing in slope. The intersection of lines 1 and 2 (i.e. the lines

starting at a and a2) defines )\1. Similarly, the intersection of lines

ot
I P



2 and 3 defines )‘2 and )\2 > }‘1' So thus far no line is dominated. The

intersection of lines 3 and 4 takes place between A = 1 so line 4 is

S AR R
‘n [ B
-
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dominated by line 3 and line 4 is thus eliminated from further consider-
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ation. The intersection of lines 3 and 5 defines a value of A3 (dotted

d

line), but when )\5 is computed we find it to be less than }\3. So, line

5 is dominated by line 6 and removed from further consideration. Ay is

I )

then recomputed from the intersection of lines 3 and 6. Ag is computed

4
LA Y S

from the intersection of lines 6 and 7. Finally A7 = 1. This leaves us
with A )\2, )\3, )\6, and )\7 (also )\O = 0). We search among the cor- 1

responding vi and find V3 is minimum. It and Ay define the desired

*xr’, LS A s o ,w—;'v—vv' A A

superposition. w0y

The entire optimization process is illustrated in Figures 3, 4, and
5. The network consisting of 3 nodes, 6 links and 6 requirements is
shown in Figure 3. For simplicity, we assume symmetric requirements vli
and link capacities. We can thus assume a symmetric solution, i.e., 7
routes for ri]. the reverse of routes for r‘ji and equal utilization of each
link in both directions. This allows us to only consider 3 links and 3 -

requirements in the example. This is done to simplify the example.

LR LA S e s T
PR R T e .
M . . o . . . . . . . . . .

The actual procedure works with directed links and requirements. It )

can also be used with undirected links and requirements but such a

2

situation is rarely physically meaningful.

Initially, all requirements are routed directly since the initial

shortest paths by our definition would be the paths with the minimum »J{
number of links. This is illustrated in Figure 4a. The link lengths

are then recomputed -- link 1 has a utilization of .3 and hence a length

[
of .3, etc. The shortest paths are then recomputed and are shown in -
Figure 4b. Note that the shortest path from B to C is now B-A-C. ]
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The requirements are loaded onto these paths. The flow pattern is
shown in Figure 4c.

Now a superposition of the flow patterns in Figures 4a and 4c is
done. Figure 5 illustrates the dynamics of this. Note that CaC domi-
nates r,p and that the optimal A is .9 and v = 4.5. Figure 4d shows
the resultant routing pattern formed by using the first routes for 90%
of the traffic and the second routes for the remaining 10%. Figure 4e
shows the flow pattern resulting from the superposition. Note that the
maximum utilization is- .45 (in links (A,C) and (B,C)) which is less
than the maximum in either of the patterns in Figures 4a and A4c.

We now recompute the link lengths and the shortest paths. The
resultant routes are the same as in Figure 4a. An optimal superposition
between this flow pattern and the one in Figure 4e is then done. The
optimal value of A is 1, no improvement in v is found and we conclude
that the routing and flow pattern in Figures 4d and 4e are optimal.
Note that the links (A,C) and (B,C) are both maximally utilized. They
form a cut which is analogous to the saturated cut in Gerla's Cut Satu-
ration Method. (The existence of such a cut is a necessary condition
for the optimality of a flow pattern.)

We thus have developed a simple and efficient algorithm for obtain-
ing stable flow patterns for use globally as the higher level in our 2
level adaptive routing procedure. In the coming months we hope to
implement this procedure and experiment with it.

In an allied study we investigated a pattern for placing virtual
calls on a network. A simulation program was written to directly ob-
serve the dynamic performance of an algorithm which loads calls on

alternate routes according to the following algorithm:
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taking the 1-hop route when there was a tie between the 2 routes (a

Load each incoming call onto the route currently carrying the
smallest number of calls. (The number of calls carried by a
route is defined for the purposes of this algorithm to be the
number of calls on the first link in the route.)

If there is a tie among several routes in a set, S, select
route i with probability Pi(S).

The simulation was written to provide us with a first glimpse of
the dynamic performance of such a procedure as a guide for further
research in this area.. We thus wanted to keep it as simple as possible
and considered a 3 node 6 link network as shown in Figure 5a with
symmetric requirements. The program can easily be expanded to con-
sider more general cases but we chose this simple one initially in order
not to obscure the basic results.

Calls arrive at each node at a rate A (Poisson) and are served at
rate p (exponential) by the links, i.e., have exponential duration with
average length 1/p. Each call has a choice of a 1 hop path or a 2 hop
path. A call arriving at a node is equally likely to be destined for
either other node. Thus, there is total symmetry in the system. It
should be noted that a call taking a 2 hop path occupies 2 links but
remains in the system for time 1/p on average (not 2/u).

The simulation is straightforward. Call arrivals are generated
randomly and arriving calls are routed according to the algorithm given
above. The number of calls taking the 1-hop and 2-hop routes were

recorded for each run. A parameter, o, determined the probability of

Prob {using the 1-hop routs in case of a tie}).
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For w = .5 the fraction of calls taking the 1-hop route was, not
surprisingly, very close to %. For o = 0, however, the fraction varied.
tor A/u = 1, 80% of the calls took the 2-hop path. For A/p = 10, 66% of
the calls took the 2-hop path. For A/p = 50, 65% of the calls took the
2-hop path. For a = 1, the results (fraction on 1-hop versus fraction
on 2-hop paths) reversed relative to the results for v = 0.

We thus conclude that we have some control but not total control
over the routing via a which only opera‘tes during a tie. The control
gets greater for systems with a smaller number of calls in progress, as
evidenced by the results for smaller values of A/p (which is directly
related to the number of calls in the system). Observations of the
number of calls in the system at various points in a simulation run led
to the conclusion that the system is stable, i.e., that the link loads
reach a stable level and remain close to that point and close to one

another.
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DECENTRALIZED DYNAMIC CLEARING OF CONGESTCD MULTI-DESTINATION
NETWORKS*

P. E. SARACHIK

Department of Electrical Engineering

Polytechnic [nstitute of New York
Brooklyn, N.Y. 11201

ABSTRACT

This paper considers the problem of routing traffic with many desti-
nations through a congested network. The problem is formulated as a
very general dynamic multicommodity flow problem. The optimal control
problem which resuits is a very difficult one to solve analytically (even for
open loop solutions) because of the presence of both state variable con-
straints and delays in the system dynamics.

The difficulties inherent in the centralized problem can be avoided by
using a decentralized approach to obtain dynamic routing strategies. Some
of the results obtained using this approach are presented.

INTRODUCTION

Consider a network made up of N nodes connected by L directed links
along which the rate of traffic flow can be controlled. M of the nodes are
destination nodes toward which varying amounts of traffic must be routed
in accordance to the traffic demand.

When the traffic demand exceeds the capacity of the network to meet
this demand for service, congestion builds in the network. In the mcdel
used here (first suggested by Gazisll]) the congested network is viewed
as a store and forward network in which all delays due to congestion are
treated by assuming that queues can build inside the network at the
network nodes. Traffic is assumed to move between nodes at a constant
velocity (this corresponds a fixed travel time between nodes) and is stored
at the nodes in queues until it can proceed onward toward its destination.

The degree of congestion is measured by the aggregate of all queues
in the network. The problem considered here is that which occurs after a
"rush hour" or period of heavy demand when the demand has fallen below
the capacity but congestion is still present.

Using the store and forward model the queue dynamics can be expressed

*The research was supported by the National Science Founcation under
grant ENG-77-14898, and partially by NATO grant #1425.
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where qnm denotes a continuous state variable which approximates the
length of the traffic queue at node n having node m as its destination;
“nkm denotes the rate of traffic flow to destination m on link (nk); rnm
is the traffic demand entering at n with destination m and smm is the
delay on link (j,n) encountered by traffic to m. For deterministic input
demand, the objective is to clear the congestion (so that qnm(T)=O for all
n and m) at a specified time T which is large enough to achieve this

objective while minimizing the aggregate cost of congestion

{}IT : N[ M : Mu  M(t)ld (2)
J{u}= z Z [q t)+ 2 s u t)]dt
~ tp m@l n=1 O k=1 Nk 0k

In this integral the qnm terms give the aggregate delay due directly
to the congestion while the flow terms produce a cost or aggfegate delay
associated with the link flows. The constraints to be met

q,™(t) > 0; u , ™(t) > 0 and m‘zfl u (D <C (3)
for allm, n, kand t
impose the requirements that queue lengths and flows must be non-negative
and that each link has a finite capacity an.

D'Ans and Gazlslz] have shown, that an optimal open loop control for
this centralized control problem can be computed by discretizing the time
appropriately. When this is done, the problem can be expressed as a
linear programming problem and an optimal open loop solution can be
computed for any initial conditions.

This problem with all snkm equal to zero was considered by Moss and
Segall[3]. They present a set of necessary conditions via the maximum
principle but they offer a general procedure for finding the flows in
feedback form, only for single destination networks with zero input demand.

In seeking a closed loop solution to this centralized optimal control

problem, one runs into considerable difficulty because even necessary

conditions are not available for problems having both state variable con-
stants and time-delay systems.
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[y A DECENTRALIZED APPROACH ®

Most of the difficuties inherent in the centralized formulation can be
avoided by adopting a decentralized approach to this problem. In general
the decentralized approach to controlling large scale systems is to use a
number of low level controllers operating on local information to control
portions of a large system. This local information is supplemented by some
interchange of information between local controllers or between local .
controllers and a supervisory controller. How well the overall system .‘
operates, depends on what information is exchanged. The local controllers :
are designed to perform their limited tasks optimally. For the dynamic 3
routing problem considered here, the local controllers are node level
controllers which must assign traffic flow on the links leaving the node o
based on the information available locally. .

e

The Local Optimization Problem

The optimization problem faced at a typical node is based on the
o queue dynamics _ :
L -
q™(t) = R™(1) - u, (1) (4) e
where R™ is the total rate of traffic arrivals (from both upstream nodes .*
o and from outside the network) which have the destination m and there are )
L links which exit from the node. We wish to find the link flows uzm(t)
as a function of the local state vector q(t), to minimize
T M L
» Tal=/4 I (@0 + I 5™, ™0)]dt (5)
to m=] 2=1

where Szm denotes the cost or delay per unit of flow on link 2 to reach
destination m. The constraints are as in (3) and q (T) = 0. It is ap-
ky parent that since all incoming demand has been consolidated into one term,
the local controller is not attempting to control a time-delay system. A
feedback solution can be thus be sought using Hamilton-Jacobi theory.
The minimum cost due to congestion can be expressed as

) . T M m L m. m mt XJ
F V(q(t0)) = min {J{u}-J*} =min [ I [q (t) + Z 52 (“2 (t)-uJz (t))dt
u u ty m=1 2=1 .
(6)
- where uzm* are the optimal non-congested flows (i.e. the flows which .J
= minimize J in (5) when q (t;) = 9) and J* is the corresponding minimum ol
X
non-congested cost on [t,, T]. Note that Rm(t) = 1 uﬂm (t). When the
2=1
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R™ are constants, then the minimum cost function V( g) satisfies the

; Hamilton-Jacobi equation :
- min 2 (@MW z (5," - T ™t - u, ")) =0 (7) g
;‘ u m=1 2=1 aq )

where V(0) = 0 and the minimization is subject to constraints as in (3). If
the V(q) which satisfies (7) and boundary conditions imposed by state
; constraints can be found then this would produce necessary and sufficient X
F conditions for the optimal flows. =0
A complete solution to the local optimum control problem is not yet
available. A method for obtaining an approximate solution was presented !
by Ozgtner and Sarachik[4]. However the exact solution is known only j
P for two special cases. "9

& Two_Special Cases

The Single Destination Case (M=1). chul®! first solved this local

T‘ dynamic routing problem using a geometric approach. Later Sarachik and
- Ozgt‘inerls] obtained the same solution using the approach above. Since
X (7) must be minimized at each time instant, this is equivalent to choosing
Pi; the uz(t) to minimize
' L
. av
subject to the constraint 0 < u,(t) < C,. This says that we should choose
av
! Cz for S, < 3q
3 u,(t) = (9)
o 0 for S, > A4
E Thus if the links are numbered according to the ordering S; £8,¢
< SL and if K is the largest index £ satisfying S‘ < (3V/dq) we see
'j; that on links 2=1,2,..., K the full capacity should be used to carry traffic
& flow whereas on links 2=K+l1,..., L no traffic should flow. Substituting
F this result in (8) gives
L C for q(t) > Y
!
L (D, = : ¢ (10)
. P 0 forq(t) <Y,
3
f. ‘'where the thresholds Y, are given by
! . ]
Y, = i§1 (C;=u,)(S,-S;) (11)
for 2=1,...L.
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Multi-destination with L=2. Sarachik”l obtained a solution tc (7)

with arbitrary M, for a node with only two exit links. The method of
solution involved finding the solutions along the state space axes (these
are one dimensional problems) and using the results as boundary conditions
for the admissible state space q > 0. The derivation can be found in [7].
The results show that the admissible state space is divided into non-
intersecting regions by planes. In each region the optimal flows must
satisfy a necessary and sufficient condition. The regions can be
found by simple threshold tests on aggregate queue lengths. Specificallv
with Bm e szm-sl"‘ (the additional cost of using link 2) the destinations
are ordered according to By2By2- 2B 2028, ,2... > By (note that
traffic to destinations 1 and K prefer to use link 1). Thresholds are
calculated using

X (k) = X (k#1) + y (k) (B, By, ] for k = K,..., 1 (12)
with X, (K+1) . v,(K) and
Xy(k) = Xp(k-1) + y,(k-1) [B_;-B, ] for k = K+1,..., M (13)

with XZ(K) ) -BKYZ(K). The yi(k) denotes the capacity available on link i
for emptying queues when the demand R™ for destinations m=1 to k is
routed on link 1 and the rest on link 2 (note that for k # K this means
some traffic will by diverted away from its preferred link). The composite
queue lengths are next defined as

k M
QU ® z ™ Qi z " (14)
m=1 m=k+1

and the test variable Tl(k) = (yz(k)Ql(k)-yl(k)QZ(k))/yz(k) is found for all
those k < Kwhich also make yz(k)>0). Fork <Kif xl(k+1) < Tl(k) 5X1(k) and
Ql(k), Qz(k) > 0 the optimum flows satisfy

a) U(k)=C;um=0form>k
b) Uy(k) = Cyi Uy =0form <k
where the composite flows are defined as
k M
) m i) m
U,(k) = 2 u : U,(k) = 2 u (16)
1 m=1 1 2 mekel 2

whereas if Tl(k-l) < Xl(k) < Tl(k) the optimum flows must satisfy (15a)
and

k

Uy(k)tu,™ = C, . u2m =0 for m < k-1. (17)

5.
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The only difference between (15b) and (17) is that (17) permits a non-zero
u.,k. For a state on the boundary of the admissible region (i.e. whean
Q;(k)=0 for some k or i) the conditions (15) and (17) must be modified
slightly. In this case the Ui(k) must equal the corresponding aggregate
demand.

If the above tests fail then for k > K the test variable Tyk) =
(yl(k) Qz(k) - yz(k)Ql(k))/yl(k) is formed for all those k for which yl(k) > 0.
For Q,(k), Q,(k) >0 if X5(k) < Ty(k) < X,(k+1) the optimum flows must
satisfy (15) whereas if Tz(k) < xz(k) < Tz(k-l) the optimum flows satisfy
(15a) and (17). It should be noted that (15) or (17) do not specify the
flows uniquely so many optimal implementations are possible.

Coordination of Local Control

In order for the node level controllers to implement the local control
strategies, information must be supplied to it about the parameters S,™.

h

This can be done for each link exiting the node by forming S‘Qm =5, ¢
ojm where sﬂm is the delay (or cost) of traversing link £ to the first
downstream node j and .jm denotes an estimate of the delay (or cost) of
reaching destination m from node j. These ’jm cost-to-go terms must be
computed at each node and transmitted to the upstream nearest neighbor.
The way these terms are calculated greatly affects the performance of the
overall network. Chuls] using a capacity weighted average for a single

destination network (M=1) defined

L
q.™@) + = sl"‘c2
m ] 2=1
Oj (t) = [ (18)
I C
=] ¢

and had to restrict the application to non;cyclic networks. Whereas if Cz
is replaced by the excess capacity Yy g Cl-ul the strategy can be extended to
networks containing cyclic paths since it can be proven that no cyclic
flows will occur[sl. Sarachikla] using flow weighted averages (i.e.
replace Cz in (18) by ulm) for the multi-destination case required the
non-cyclic restriction. This restriction was removed in [4] by using a
certain kind of excess capacity average. The question of what is the best

coordination scheme is still open.
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CONCLUSION

This paper has described the general problem of using dynamic routing
to clear congestion from a congested network. A decentralized strategy
was described which utilizes local node level controllers. The optimal local
strategies were presented for 2 special cases when traffic demand is con-
stant. Research is being done to extend the local results for traffic
demand modeled by a Poisson arrival process and to obtain the exact
optimum routing for M destinations with L exit links. More research is
also needed to determine whether an optimal coordination strategy can be
found.
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‘An Effective Local Dynamic Strategry to Clear
Congested Multidestination Networks

PHILIP E SARACHIK

A bstract —The solution of a local routing problem for s congested node
with two slternative paths to M devinations of a traffic network is
presenied. The solution shows that the admissible state space is divided
into a [inite number of regions within which a different set of optimal flow
conditions must be satisfied. A specilic realization of these optimal condi-
tions is presented which can be wtilized by local node controllers in
decentralized control strategies for larger networks.

L InTRODUCTION

The problem of routing traffic through nctworks from nodes of ongin
10 destination nodes is an important probiem common 1o the field of
traffic control and data-communication nctworks. Much of the carly work
dealing with the traffic assignment problem in both ficlds was restricted
to finding an optimum sieady-state rouling (static strategics) uader non-
congested conditions. In 1974 Gazis (1] proposed that a store-and-(orward
setwork could be used 10 model congested transportation systems. In this
model the delay due to congestion is associated with the waiting time on
queues. F«ann;kduuumaodewmngnnwndehym the
network as the performance criterion. D'Ans and Gazis (2) obtain an
open-loop solution by discretizing in time and Chu and Gazis (3] obtain a
dynamic feedback solution (or a simple network with two aliernate routes.
At sbout the same time, Segall and Moss [4)-{6] used a similar model 10
study the dynamic routing problem in congesied multidestination data-
communication networks. They assumed that the delays encountered in
transiting octwork links are zero, 30 the resulting queue dyasmics are
governed by ordinary diffcrential equations. Using the maximum princi-
ple, they obtain a set of necessary conditions for the optimal solution and
propose a consiructive algorithm for finding the optimal centralized
coatrol. .

When transit delays are present, the queue dynamics are governed by
differential difference equations and the gencral centralized optimal dy-
samic routing problem becomes formidable. since state varisbic con-
straints arc also preseat. Most of the difficultics inherent in the central-
ized problem can be avoided by seeking 8 decentralized control solution.

The decentralized approsch to clearing congestion from traffic net-
works has been discussed in three recent papers (7)-{9). In these papers
the problem of finding real-time dynamic feedback routing for traffic is
formulated as an optimal control problem and a decentralized structure
for the solution is utilized. Chu [7) considered a single destination acyclic
network and presented a solution based on the interconnection of local
controllers which implement route selections at each node by choosing
among K alternate routes 1o the single destination. Sarachik and Ozgtner
(9] considered single destination cyclic networks. They show that the
optimal local routing algorithm, when used in their decentralized strategy.
leads to loop-free flows in the network even though cyclic paths are
present. Sarachik [8) considered multidestination acyclic nctworks and
presented 8 decentralized strategy for that case. Local routing siratcgies
for two specific simple subnetworks were ulilized in the decentralized
strategy to illustrate the control of a larger network.

In order to make the decentralized routing strategy of [8) for multi-
destination networks more generally uselul, this correspondence considers
the problem of designing a local feedback controller for a typical node of
a multidestination network when the node has two exit links (sce Fig. 1).
An optimization problem is formulated and solved for this local problem
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Fig. 1. A oypical asde with tvo exkt linha

when the demand for service is constant. It is shown that the state space is
divided into regions separated by linear manifolds. The closed form
conditions for the optimal control are given for each region. These
conditions do not specily a unique optimal control 30 a specific optimal
realization is presented. This realization is in the form of a {eedback
control which can be easily implemented in real time.

In using sny decentralized control strategy 10 route traffic through a
complex network, decisions must be made locally st each node on how 10
best allocate traffic 10 branches leaving the mode. These decisions will
affect the traffic levels at downstiream nodes and thus must be based on
information, provided (o the local mode controllers, about conditions at
other nodes of the network. Questions concerning how the communica-
tion between nodes affects the overall behavior of farge networks which
use decentralized routing are extremely important but are beyond the
scope of this paper. References (7)-{9] address some of these questions
and indicate how local node controllers can be utilized in a decentralized
dynamic routing strategy.

I1. Twva LocaL Routing Prosuan

The demand lor service is the net traffic flow arriving at a typical node
along inbound links and from outside the network. This demand is met by
routing the incoming traffic 10 the exit links. When (raffic demand
exceeds the capacity of the exil links, queues build in (ront of the node.
When the capacity exceeds the demand. the queue lengths will be de-
creased. In this paper atiention is restricted 10 the situation which exists
toward the end of * rush hours.” That is, congestion exists in the form of
long queues but the demand is less than the capacity of the exit links 30
the queuss can be emptied and the congestion cleared out.

At a congested node containing queues of tralfic for M destinations and
having enly two exit links, the queue dynamics can be represented by [1)
4]
form=12.--.M U)

47 =" - w(1) - u7(1)

or in vector form
Y =r—m()—ui(0)

where g™ denotcs a continuous state vanable which approximates the
length of the traffic queue (mecasured in vehicles. bits. messages. etc.)
having node m as its destination: u,” is the flow rate on link / destined for
m and r™ is a constant flow of tralfic entering the node destined for m (r
is the demand vector).

The problem faced by the node controller is 1o choose the control
vectons w, and u; at each time instant in order to empty the queves while
optimizing some performance measure. A useful measure of this perfor-
mance {7]-{10] is the aggregate cost (or delay) given by

o
Mo =[! 3 [emestrossta@le @
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where $™ denotes the cont tor delav) por unit of flow on link ¢ k0 reach
destination me. The time T is ans time greater than the time 1° requined (o
empty all queues at the aode with minimal coat. Nowe that the contnbu-
tion 0 J duc w0 the ¢™ tevon is the aggregate delay asswrated with
clearing the quewns (1] [S). while the ther terms reprosent the aggregan
cost {or delay) assaviard with reaching the dostinations from the enrance
of the exit links (10}

11 should be aoted that when the lacal contraller is used in a devemtral-
zed setling. the cout parameiers S,° will be compoed of 1wo poniens
S =4+ 9] where 1" is the cost (or delay) of iraversing link / 0 the
first downsiream node j and ¢)° is & cost (er delsy) ssancisied with
reaching destination m from nude j. The node conteoller will reveive the
information ¢;° from jis downsiream neighbers and update the values 5.
In operation the node controllcr must be able 10 adapt o these wpdaies.
Thus. & real-time feedback solution of the lncal oplimization probicm is
essential.

Ia Mpﬂhhmm&“mnmmm
case for which she total traflic demand R = L¥_ /= entering the node is
less than the combined capacity of the two exit kinks (C, + C;). The
opiimal noncengesied cest J° can be defined 2s the minimum of (2) when
the initial stase g(4) is seve. Thua, for the same T a8 in (2)

r-j 2 Ch

T esrey) ®

whese v are the optimal nonsongssted flows sad g + g3 =7. The
minimum cost due to the congestion at the node is ebtained by subtract-
il‘l‘lmlkn'-'-.nd(nm.im

V(g(1s)) = min [y} - ']
w n]-..z..[""’*"' ()= )+ $7(uf ()= u7")] 4
Q)
where the minimization is carried out subject 16 the )
M
(>0 g (1)>0: T wP(1)€C, lori=12: 1y €1<T
me}
' )
and
g(T)=0

These constraints impose the requirements that queue iengths aad flows
must be nonnegative, that cach link has 2 finite capacity. and that the
queues must be empiy ai the terminal time. Note that for a given ¢t1,)
and any T > 1* (T could be i) the same minimum cost I is obtained. 50
V docs not Scpend on the lime-10-g0 (T — ¢). Also. sysiem (1) is lime
invariant and the coefficients in (2) arc constant. Therefore. ¥ is indepen-
dent of the starting time 1,. Applving Hamilion-Jacobi theory, we know
that the minimum cost ¥(¢) (or sysiem (1) satislies the partial differeniial
equation

...;,.[ f [e=()+ sP(uir(r) - ) + SP( () - w7)]

o0 {mat

+1’%‘{1(z-y.m-~.-,ml}=o ®)

where the minimization is subject to constraints ($). Using 7 = ¥ + v}
this equation can be rewniten as

LT TR TR T e T LT YT

PR S, - e . W - . e -- o o

(the dependence of ¢™ and «.” on ¢ is not indicated explicitly). Note that
since () 18 lincar in the y 's. the minimum lies on the constraint
bnundaries. and since twe of these boundaries involve sums. an optimal
salution need net he unique.

By finding the V(q) which satisfies (T) and the boundary conditions
imprugd by the siaie constraints, we can obtain exphicit mecessary and
sufficient conditions for the eptimal flows.

1. Ormial Fuw Conprmons

Inhmhmﬁml«wuﬂﬂummﬂ.AM
mdmu“mm*nﬁnymuuu To
the prasonistion. the destinations are sumbered so that for

b B =S¢
[T T4 SR "Ed 2J PIRE Y FIRTIRY Wit J VR

With this sumbering, tralfic 10 destinations | through X prefers link |
while lak 2 is preferved by wralfic 10 destinations X + 1 through M. Also,
il it becomes necessary o divert waffic frem link | 10 link 2, tralfic 10 &
should net be diverted umiil oll walfic 0 m > & has been diveried.
Conversely, when tralfic must be diverted from link 2 0 link 1. traffic w0
k should act be diversed uwntil all wraffic 10 m < k has boen diverted.
It is convenient lo define the encess capasities &
o
WK)AC- T o m(K)AC,-
e

M
2‘-r' ®
and
&

n(t)dmujo.n(X)- I '?"l: n(k)=y-rn(k)

mejel

foc k=0, - . K~1 (9)

s
w(*)""ll["m(ﬂ’ 2 l‘a"]i (k) =y -wn(k)

mukel

foxkmK+1.--- .M (10)

where y 8¢, K) 4 y(K). Note that (8) defines the capacity available on
each Knk for clearing queues afier the sieady-siate demand is accommod-
sted, when a0 seady-staie flow is diversed. When (', and C; are cach

MbWummMMnr'zr'.
¥ m0form<Kandu =0, uT =r™ for m> K, and both y,( K') and
MK )m;mmthum"mem link has insufficient capaxity C, to
scvommedate its preforred traflic. them as much preferred trallic as
pousible is routed en this link (with priorities governed by the £,,) giving
v,(K )= 0 and the rext is diversed 10 the other link. 11 is thus quite simple
w derermine the values ™' for all m and ¢ for this problem and 10 (onm
the sets y, = {9,000 .y (M) for i =12 using (8). (9). and (10). The
v k) and vy k) values from (9 arc the excess capacitics available for
emptying queues when demand (or destinations (4 + 1) to A is diverted
from link | 10 2 whereas the values from (10) are the excess capacities
when the demand lor destinations K + | 10 & is diverted from unk 2 tn |
Diversion ol iraffic from one link 10 another can eventually use up the
capacity of the link receiving the divened tralfic. To keep track of this, we
define

& % che smatients value of & such that vy(&) >0
£ & (e largest value of & sech that v, (&) =0

Kimin|K.L): KEma[K 4] an
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A set of threshold constants can now be defined recuravely by
X(k)=X\(k+1)+y (k)B, ~Bi.\] fvk =K1 (12)

with X,(K + 1) 28,. .7 K ) (s0 X,(h) > 0 is nondecreasing as k decreases

from K 10 1) and
() =Xk =)+ y(k=1)[B_,-B,] lock=K+1 .M
1)

with X3( K} & — B, y,(K) (30 Xj(k)> O is nondecreasing as k increases
from K +1 to M). Composite queues are defined as

i M
e T ¢~ k)2 3 lq-=o-o.(k) (14)
-s=| LEYRY

where Q is the sum of all queue lengths. The composite flows on each link
are

A M
u(k) 2 2|~.': Uy(k) & 2“-:. (s)

Note that k=0 means Q(0)=0 and N(0)=0 while k = M means
Qi(M)=0 and Uy M)=0. for notstional convemicnce the explicit
dependence of these quantities on ¢ has been omitied. The upper flow
bounds are

[ o
C k)t min|c,. I r']: E,(A)&m[c,. 3 . e
-y b

The solution of the Hamilion—Jacobi equation (7) shows (1 1] that the
admissible state space ¢ > 0 is divided into disjoint regions which fill the
space. In each region V(q) is given by a dilferent quadratic function. but
it is continuous across the region boundaries. These regions can be
expressed conveniently in terms of varisbles

1) 80u) - 200 0,(4)  detined for s < &
nlk)
T:(*)‘Oa(t)—%o.(k) definedfork<k.  (17)
]
The regions are
RH
X(k+1)<T(k)SX(k) fork<k<min[K—1.k]
=449
Xy (k) <Ty(k) € Xy(h+1) formax[K+1. k)<k<k
(18)
. Q(K) _ Qy(KX)
Rn'{c-h.ﬁ_,"(x) n(A’)““}' (19)

In (19) (recall that K is the aumber of destinations which prefer link 1), if
K = 0 the upper bound is zero but if X = M the lower bound is zcro.

T(k)> X,(k) lork=k <K
T(k—-1)€X,(k)<T,(k) fork<t <k
T(k-1)<0 lork=k+1<K
Rl.l—lzﬁ': 1
. Ti(k)<0 fork=k>K+1
Ti(k) < X, (k) <Ty(h -1) forK<k<§k
| Ta(k = 1) > Xy(k) fork=0+1>K+1]

(20)

The region in which g(¢) lies and the index value & is obtained by
determining which of the inequalities (18). (19). (20) the state vector q
satisficy.
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When the state vector q lies in a region R, optimal flows must sausfy
the condition °

U.(M):U.(k):(g:“) :‘&r:ro} (21a)

and
U.(O)-u,(k)={§:"" “,""‘.’”} (210)
WmruP€r™  wheng™=0. (2t¢)

means u3 =0 forme< k.
11 the state vector ¢ lies in a region R, , _ . then oplimal flows must
satisly (21a) and

; Cy(k-1) i(Qyk-1)=0
= - =

U(0) = Ly(k - 1) [q e } (214)
a8 well as restriction (21c). Note that actually the only dilference between
these conditions is that (21d) ellews v} 10 be monzero (this is required only
when Qy)(k — 1) = 0) s0 traflic w0 destination & could be routed via both
links | and 1. Since these conditions do not specify the optimal flows
uniquely any implementation which is convenient will be optimal. These
condilions are necessary and sufficient for optimality because they were
obtained from ¥(q) which satisfies the Hamilton-Jacobi equation (7) and
boundary conditions imposed by the siate constraint ¢ > 0. (Reference
{11] gives expressions for the minimum cost V(q) in cach region and a
proof that these regions fill the admissible state space ¢ > 0))

The region in which ¢ lies could be determined by using a mucro-
precessor or a special chip which implements the conditions (18)-(20) in
paraliel by comparing the vector of test variables against the vector of
theeshold values.

V. A Seaciric OrTiMaL ROUTING

In the preceding section the general requirements (21) permit many
optimal routing strategies. In this section a specific optimal routing is
presented which satisfies these general requirements.

For s1ates lying in the regions &, consider the (lows

2) ~r=~r‘+ur'+v.(k)5§:—); =0 forl<mek

B) Wm0 WM im0l forkri<meM

Qa(k)
(22)
where for Q,(k) =0 or Q;(k) =0 the indeterminate term 0/0 is defined
10 be zero (thus (21¢) is satislied when ¢ = 0). We now verify that (22)

satisfies the requirements (21a)-(21b). For Q,(k)>0 and Q,(k)>0,
summing (22) gives

& &
3) Uk)= 3T ™+ T uf +y(k)

me| LEX]
M o
b) Uk)= T W+ T wi+yy(k) (29)

PY YK LY RN
Now y,(k) >0 and yy(k) >0 (this is necessary {or R,, to exist) so for

k< KwehaveuT =Oform<kand u =0 forma K +1 Thus,

o X
) U= T en(i) =K+ T u=C
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f 4 M
b) Uk)= T w™+ T wf +mk)=v(K)
LEXRZ] muge)

M
+ 3 =G (20

For k > K this is demonsirated in a similar manner. When Q,(k) =0
the y,( k) term does not appear 50 (23a) gives

Uk)= I (v +uy)= éﬂ"’fn(l)

m=|
since v,(k) > 0. Similarly whea Qx(k) =0 the y,{ &) does not appear in
(23b)
o

hk)= T rm=Gk).

makel

For states lying in the regions R, ,_, the situation is complicated by
degeneracies which can occur.
Acawunpmh-vlidquﬁ-dnouhr!i. Ry iy is

B e TGS W0 et emek

b) uf=ul +T.(k)0(‘) +4(k)

c) ui=u)" +Ty(k) -&(k)

N

Q:(k-1)
d) «=0; -;'*-."+-?'+Tz(*)5;_(%l)

lork+1€Eme M (25)

where the indeterminate term 0/0 is defined to be zaro when sither (k)

or Qs k — 1) is 3e10 30 again (21c) is satislied when ¢ = 0. The symbois
used in (29) are defined 2

Ti(k) dy(k=1): Ty(k) By(k-1) or k < K

8(k) 8 - yy(k): A(k)E -l forkwy

}....>x.

Ti(k) Ry (k) Ty(k)Ryy(k)
a(k+1) by (k) A() S

We now verily that (25) gives Uy(k)=C, and Upk - 1)=C, which
satisfies the conditions (21a). (214) lor an optimum. When &k =k > K or
k= k+l<Ko¢Auunh¢mmu<ls<k+l the T,( k) are positive so0
the result can be shown exactly as before. When k — ¢ € Kand Qy(k)>0
we find by summing (25) that

g=1
3) U(k) = i W'+ 2 “I (k- 1)- (k)

m= mwm)
o M
b) Uk-D= T ¥+ T W +u(k-D+n(k). (26)

megel mmg

lockwk+1

Since y,(A)> O we have ui™ =0 for k > K + 1 and since y;(k — 1) = 0 we
have y,(k~1)=y>0 and v =0 for m< k = . Thus using (8) and (9)

&
U(k)= 3 v +y-p(k)=C,

-m=)
X M

Utk=1)= T w+ T w4 p(b)=G Q"
mujel mef

This result cun be obtained in & similar manner for k =k + 1> K
To show that (25) is optimum when Q,(k = 1) = 0 we will show that
when this happens the state g can only be in R, , ., with & & K. and we

S13

have just demonstrated that 1n this case the componite flowms (26) are
optimum By delimtion (14) (or the companite stales note that if
Qb -1)=0.thenQumi=0Vand QUm)=Qub - Oforall m> 4 - |
For L > A. (20) requires that yyk —NQ(4 - < — y(h - X&)
which 1s clearly impoasible since (A = 1), y(4 =~ 1). and N4} cannot
be negative. For & <& < K. (20) requires the impossible condition Q (4
=S X{h)<Quh - 1. We conclude therelore that a state ¢ with
Ok —1)=0 can sausfy the conditions (20} for R, ,_, onlv’ when
k=4 < K. A similar argument shows that when Q(£) = 0 the state can
bcu\k‘. onlywhenk =k +1>K.

V. ConcLusions

The problem of finding an optimal routing strategy for local node
controlicrs in a8 multidestination network has been solved for the case of
nodes with two exit links and constant demand. 1t has been shown that
the admissible state space is divided into control regions scparated by
lincar manifolds and explicit expressions for the boundarics of these
regions arc presented. To cach region there cxists a set of controls which
are optimal {or the states of that region. A specific feedback realization of
the optimal control has also been prescnted. The implementations (22)
and (23) for the optimal flows are not the only ones possible. They are.
however. convewient for tralfic comtrol purposes because they provide
some exit capacity to traffic for cach of the destinations and the longer
the queue. the larger will be its share of the capacity. They can als~ be
readily implemenied using 8 microprocessor since they consist merely of
the sum of steady-siate terms and a linear feedback on the ratio of a state
varisble ¢ 10 the composite state Q, of which ¢ is a part. The
stcady-state values must be available at the local controlier cither by local
computation or they must be supplied by a central supervisory controller.
Note also that if either the demand or the exit capacity changes to new
constant values then the y, vectors change. so that the boundaries of the
control regions and the feedback gains change. This merely requires a
redetermination of the region in which ¢ lies. The feedback routing given
is therefore adaplive 1o changes not only in demand. but in capacity as
well.

It should be noted that the solution for r constant may not oe as
restrictive as it appears. For example r could represent the average
demand over some interval 30 it would be consiant on that interval.
Furthermore. the routing (22) gives constant flows u™() as long as the
state remains in one region. The routing (25) gives almost constant flows
in one region. Thus even in decentralized operation. when all nodes use
this local strategy the incoming demand can be considered as piecewise
consiant over intervals. The feedback routing could track the changes by
updating the y, vectors

For data communication networks, the problem sclved here could be
applicable when there are delays or costs associated with sending mes-
sages 10 the destinatioms. Of course. it is usually not desirable to mix the
messages for the various destinations on a single Jink. so a differsnt
specific implementation would be preferable in such networks.
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A DYNAMIC ALTERNATE ROUTE STRATEGY FOR TRASTFIC
‘ NETWORKS

Philip E. Saecachik

Pelytechnic lastitute of Mew York
3)) Jav Stceet
Brooklyn, Sew fork 11210

Abstract

A dynamic alternate route strategy is developed
for a typical node of a traffic retwork. [he strate-
gy compares the queue length at the aode against an
optimai threshold vilue. “hen the unresheold s
exceeded, some of rhe traffic is diverted aleng an
alternate more costiy coute to its destioation.

The local node level strategy is easily ie-
plemented in real time and is also adaptive to
chaages in route capscitiszs, input rates or the rel-

. ative delays aloug the alternate route. It is also

suitable for use ia a decentralized couting strategy
for large networks.

Introduction

The store and forwvard aetwork wmodel has been
fourd to be very useful for problems conierned witn
moving traffic through coagested netwvorks from origia
to destination nodes. With this model, whenever the
fastantaneous traftfic demand exceeds the capacity of
the cetvork to use the demand for service, cougestion
builds ia the aetwerk in the form of queues which are
stored at the necwork nodes. For a fixed network
astructure, the problem faced at each node is how to
chnose the croutes aloag waich te sead traffic om
tovard its destination while minimiziag some measure
of cost or delay and satisfyiag the capacity con-
straints of the netwerk linka. For stochastic traf-
fic demand most of the receat work has ewmphasized
dynamic or adaptive routing schemes {l-o] which use
information abvout the actual state of the node or
_netvock to determine the best routing. In almost all
this work a node with L routes to the destination is
modelled as L parallei M/%/1 queues. The routing
decision is made at the time a customer arrives by
placiag nis in one of the L queues. Foschiani and
s.x;(zf show that for high traffic demand a join-
the-shortest-queue rule gives average queueiag delays
spproaching that of che M/M/L queue (i.e. average
delay is ceduced by a factor of L compared to equsl
splitting). For two alternate routes, Boorstyn and
Livae (6] also get performance approaching the M/M/2
case by addiag a third queue vhich can use either of
the two servers whea the dedicaced queues become
enpLy.

It would seem that a more direct appcoach to
actieving such reduced queueing delays at the a node
is to operate the node using a single queue with L
possidle servers. The roucing decision caa then be
put off until the momeat a customer gets to the nead
of the queue and must be put ints service. In Fig. t
the box D denotes a decisica rule which allocates
traffic to the route servers. The decision can then
be sade ou the basis of the latest state wnformation
214 alsn on the delays to be eancountered along the
diffcreat coutes {1].

This problem has Yeen solved for the case of
deterministic input demaad (7,8], where it was
found that che optimal rouring strategy 1s a thres-

This work was suppocted tn part Ly a grant trom GIE
kesearch Laboratocies.

hold strategy. The purvoss ot this paper is to
iavestigate the threshold st:ategy for a discrete
queue dynamic eodel with candom Poirsson arcrivals.

Fig.! A single queue aiternate route model.

A Threshold Strategy for Local Alternate Routing

Consider any source node sad a single desti-
aation aode with L routes betueen thes iadexed by 1
=1, ..., L. Tte problem is to assign :caffic to
these routes in ocder to sinimize the average delay
ia reachiag the destiaatioa.

We assume that traffic arvives at an average
rate A with Paissca interarrival times and that the
lrogth of each unit of t.affic is expooentially
distributed with meaa 1/u. (For messages the units
are ia bdits acd for venicles the inits are in
feet). All ccaffic arziving at the node is as-
signed to 2 single queue and the decisicn oa which
route to use is made only when it reaches the froat
of the queue. Ve have thean the situacion of a
siagle queue with many poteatial servers as showve
ian Fig. 1. Lettiag Q denote the total number of
customers (messages or vehicles) waitieg 12 the
queue and in service, Little's formula TQ = E{}/\
gives cthe average time speat oa the yueue and ia
service. Furthermore all treffic usiag the . th
route vill eacounter an additional average delay o¢
S. %efore ceaching the destination. This a4di-
tioasl d=lay iacludes both transit dJdelays 1f aay
aad queuirg aand service delays at nodes alca; the
coute to the destinatica. The average to:al delay
to ceach the destinstion is thus givea by

re Lo v Lo
. Q) . b Ai 5, m
ix]

where A. is the avevage rate ar which traffic s
seat along route i. For « determinist.: version of
this probiem with cnastant acrival cate, *Le opta-
mal routing strategy wag ftouas to be a thresaold
sccategv. (7] That is to say whea the routes are
aumbered ;o that

S, 88 ¢ ... ¢ 8 (2)
then the oprimwal scrategy i1t to use isute 1 at fuil
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ceapacicy if und only x( Q ncuds a threshold K.
(where 0 = l This means cnat fo
LY Ki*l ouli thc tiru * routes should be used.

l‘or very small Q oaoly route ! (the one with szallest
delay is used and as Q increases the next best alter-
pate routes are added. ‘Wwork is presently being
carried out to prove the optimality of this type of
strategy for the stochastic problem considered here.
On a beuristic basis ocae would expect a threshold
strategy to be optimal since the first terw of (1) is
small when all routes are used and the second terw is
sinimized when only route 1 is used. For very small
values of Q it should be best to use only route 1 but
vhen Q reaches a level at which the increased cost of
using the next best route 2 is offset by the amount
that Q can be reduced, then route 2 should also be
used. The same rationale for larger values of Q
leads to the threshold strategy outlined sbove. This
is the type of routing policy vhich is considered in
the following discussion.
Substitute A, = “i P. into (1) wvhere y. = the
service rate for ‘wt.
capacity of the first unk 32 reute' 1) and P: is the
probability that route i is used. Ve seek to aini-
mize the cost

. L

L
J-AT-![QIOIS‘%P
: S L}
by ehoolhg the threshold levels l1 < K <... ¢ K¥
Nete thet K, = 0 because whenever Q > 0°some servife
sust be pr&v“cd so reute 1 (defined as the route
wvith the smallest delsy) should be used. The rela-
tioa between the cost and threshold levels is coe-
plicated 1ia the general case of L alternate routes so
we will proceed with the case of L = 2 to demonstrate
the approach.

Two Alternate Routes

We first will cessider a simplified situation
- (admittedly unrealistic) vhere swapping(S) is alloved
between the two servers. That is, if server 2 is
busy vbea server 1 completes a service which results
ia Q < K then the customer being served by server 2
has the service completed by server 1. This results
ia the ese dimensienal state transition diagrams shown
ia Fig. 2. Vhen swappiag is not permitted (NS) then
any service begua by a server msust be completed by
the same server. The threshold strategy leads then
to the state transities diagram of Fig. 3 where the
states labled (ka) denote that k customers are in the
systes but only server 1 is being used to provided
service.

Mo

Fig.2 State transition diogrom for S model
using threshold K.

For Fig. 2 ve find that the § model is charac-
terized by

AP(k-l) = uy P(k) for 1 ¢ k €K

%)
AP(k-1) = (u *u,) P(Kk) for K+1 < &

AT Ct where (:i is the®

wvhere ?(k) 3 Prodb{Q = k}. Nete that oaly route 1|
(secver 1} 1r used for ) < @ < K wheress both routes
(servers | and 2) are used for G > K¢1. The set of
equations (&) are easily solved to gave

Y, B(O) for ¢ ¢ k<K

-k (s)

P(k) = X
Y, Y, P(0) for Ke1 < k

where Y, ¢ A/ul and Y, ¢ )./(ul . uz). Susming (S)

over all k and equating to 1 gives for v $1

1 (1-71)
P(0) = — * ¥ )
l-yll A l-a Y,
b m—
l~yl l-yz

vhere o § (yl'yz)l(l-yz).
Since route 1 (s used vhenever Q > 0

17,
X

Pye1-2(0) =
1-ay,

for y, #1 m

Equations (6) and (7) and those to follow are
valid fer Y, > 1 as well as Y, < 1 provided Yy <1.

Analogous equstions for y, = 1 can be easily ob-
tained for the eatire development presented here.
Route 2 is used only for Q > K, so for Y, 1

(v~
K

K
5 1<«3IPk)=
=0 l-cyl

] s

[ ]
. Using E{Q) = I kP(k) with (S) and (6) gives for
k=0

et

Y, [v,0-v) ¥
YT P - Akl LR, A | T
1y, \ G-y ey 1-ay,

9

Let R denote the routing cost associated with
(3). Then (7) and (8) give for 71?1

,ultyl-ﬂlbszuz(yl tx)vl

&
RES u PeSy Py =
(10)

We observe that as K - &, E{Q} in (9) 1n-
creases monotonically and R in (10) decreases
monotonically so there is some value K* for which J
= E{Q) ¢+ R has a minimun. This value could be
found by a direct search or its approximate value
can be determined by finding expressions for the
changes AE{Q}] and AR as functioas of K. The
optisum value K* will be an iateger aear the value
K at wvhich AE ¢+ A R = 0.

v 2 A B tH,
Ko 5. )7 = (58 -N) ¢ xR
_ 1 1 1725 an

When < 1 then neglecting the second term on
the left ot] (11; gives a starting point for a one

Ia this case we fiad. .

-9
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dimensional search for K. When > 1 siance the k

; terms oa the right are all ngat&e ve find that 'Iﬂ Y 'k . Yy b 1 'b’ for 1 <k <K (17)
X =1

- A My tH, A-u‘ a

. (S -8 )(A-u ) ¢ —— vhere = 1 snd Yy o "2’“1 Or for easier cal-
r @ A-u‘ u‘wzok Ao culnuoc} defiue

. g> 12)

L ' . 1la 'l ' k

\ 8 | .j and {terate

»}. so the right side of (12) can be used to stert » =

3 one dimensionsl search for K¥. ‘. - ‘h-l . ', as)

il

.

Fig. 3 Stote tronsition diagrom for NS

mode! with threshold K.

For the NS model where swapping is mot allowed
ve find frem Fig. 3 that

(a) APO) = ¥ P, (1) » ¥y p(1)

») lb(k-l)ﬂ (x=1)] = p [p(k)*p, (K)] * Hy p(K)
for 2<k <K
13)

k
(e) Ap(k) » "z p(j) ol Y p(kel) for 1 <k <K
=1

(@) A p(k) = (p,*u,) p(k+1) for K+l < k

(@) A [p(K) + p (K)] = (by%p,) p(Ke1)

- whare

p(k) = Prob {Q = k snd server 2 is busy)
?,(k) = Prod {Q * k and server 2 is not bdusy}

Iq. (134) can be selved te give

(xK-1) o (xe1) for k > k) (14)

p(k) = ‘z
vhere p(K+1) is obdtained from (13e) once p(K) and
P.(K) are known. Equations (13a-c) give 2X equations

r the remaining (2K+1) unknowa P(0), p(1),
p(K), p, (1), ... p (K).

The additional condition needed to solve is as
usual

[ J
IPMh) = (13)
k=0 .

An asnalytical solution of these equations leads to
complicated expressions. Hovever a computational
solution is easily obtained, since (13c) can be
solved iteratively to give p(2) ... p(K*l) in terms
of p(1). That is if we define the coefficients bk by

P(K) § b p(1) for 1 <k <Kel (16)
then using this is (13c) gives

a1 Y B Yy 4, ferd k<K
startiag vith d_ = 0, b, = 1. Also since P(k) = p(k)

. p (k) (Note P(l) s p(k) for &k > K¢1) eq. (13b)
(16) gives

B() =y P(k-1) - vy b p(2) for 2 Sk <K (19)
vhere from (13a)
K1) = ¥, KO) + (l'v:,) p(1) _ (20)

The solution of (19) caa be writtea as

(k) = ’1“ D) - Yy [’il,l(k 1-3) bl PV

fer ks 2, ..., K. (21)
se by defining
(k-1-3)
8 QJi‘y 5“ for 1 <k <K
“(22)
we cas iterate
B "V s th, forl k<Kl (23)

startiag with »
(21) becoae

p(6) = v,* 200) ¢ v, D (-yy) p(1)-vgs, p(D)
for 1 < k<K

1 " 0. Thus we see that (20) »nd

(2¢)

Thus all the P(k) cac be expressed in terms of
p(1) snd P(0). But p(l) itself can be expressed in
terms of P(0) because (13e) and (16) gives

Yy P(KX) = p(K+1) = L% p(1) (25)
so usiag P(K) from (24) in (25) gives
Y K
p(1) = 1 (o) £ pr(0)

K-1
(5‘,l/12) . ’3 .‘ ‘Yl (81 ‘3) (26)
Thus all the P(k) are expressible in terms of P(0).
When these are ianserted into (15) we find that for

Y, 1
1 ' 1

P(o) = l.,lK 1_‘§K'15 K-1 bK’l
. (1-¥4)-vy & 3, '——]
l-yl l-yl k=1 yz(l-yz)

(27)
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s 1,
8,8 2 vas asnalyzed. ‘lln results are showa ia l‘l;. b
f8c both the S and NS medels. Ia this example E(Q)
iscreases monotonically with threshold K for both
models. For most values of K the NS wmodel gives
slightly lower values because the second server
sperates more of the time than for the S wodel. The
sppareat inconsisteacy for K=1 is resdily explained
by the fact that ia the NS medel it is possible for
the faster server (im this case server 1) te be idle
vhile the slower server is busy. Fer low values of
threshold this bappens more oftes with the result
that E{Q} is rsised. Example 2 will present a more
striking illustratien of this effect ia which E{Q}
will sot be monetonic but will actually display a
ainimua. As K <+ ® both models approach the MH/M/1
case since the second server is mot used, so lim E{Q}
s A/(y,~A) = S. The routing costs R decrease monoto-
nically wvith threshold K as the more costly route 2
is used less frequently. As expected NS has larger
values for R than S does decause NS csnnot switch »
customer being served by server 2 to server ! Whes Q
falls belov tha threshold value. As tﬂ,?l -1, Pz -
0 so R » 25 for both models. The total cost J'is
shown ic Fig. &b. NS gives Jmis = 29.197 ot K* = 9
and S gives Jain = 29.144 at K* = 7 but the aiaima
sre fairly broad. In this exssple usicng the simpler
S model to find the minimum would give performance
imperceptably different than usiag the more realistic
NS model.

Aa examwple vith p = 30, “f. 10, A= 25 and §

] s © ] x
Fig 40 Queuing end Reuting Costs for Erampie!

K* decreases. Ia fact for ¥ LA« bt M, server 2

must be used some of the time to keep E{Q) finite.

Fig. 5 shows the total delay T = J/A for the NS
server of Example 1 with A = 15, 25 and 35. For A =
15, T decreases monotonically with K giviag K¥ =z @«
snd T mia = 16/15 = 1.067. For A = 35 ve see that
T+m a3 K+» gince A > My A sinisus occurs at K = 4
giving T min & $0.2/35"= 1.434. The A = 25 curve is
the NS curve of Fig. &b divided by 2S.

Z 194

]
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144 3
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ee—
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Ay. 3  Tetel Deley of Laampie | for @fterent A

Ian Example 1, the route vith smaller routing
delay 8. alse had the faster server (ul > “2) 86 the
delay t\ service usiag server 1 and the ‘delay to
reach the destimation beth faver remte 1. It is
evideat that situstions cap arise vhere these tvo
effects epppose each other se thst if “l/“ is large
enough them eves if S, ¢ S, route 1 con uiu be the
preferred route mi. de large delay ia using
server 2 outweighs the sherte: delay ia reaching the
destinstioa aleag reute 2.

Lxseple 2
Rere e s, uzts. S‘-I.l.szllndk:
20. Fig. Gs shews E|Q) and R fer the NS and §

Y

i
.J
!
|

Al M - e e L BRI S A M A A i Bl N P A S S —— = —e—
b;! 4
2N vhere B is deficed by (26)., so all other prodabili- :
o ties are determined. Here e ‘
L .
1 =1~ P(0) - p(1) = 1 - (1+f) P(0) i
. (28) Y
- X X X f
P,=1- P(0) - & p (k) =1 - 2 P(k) +Ip(k) :
1 k=0 k=1 J :
:;:' asd as before
'S ;
_ E(Q) = I & P(k) (29) Z - -,
{ =0 ' s 0 s «
X Pig 40 Tetel Cost tor Exampie |. .
3 ReS,mPh+Smhy .
b - can thes be caleulated As A decresses ve expect that K* will increase -
) since server 1 can more essily serve the demand by .
itself and at some poiat K* will be iafinite (i.e. )
Lzasple 1 it is best to use only route 1). As A increases a0
server 1 requires more help in helding E{Q] dewn s0 u
N

s
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models. [t can be seea that for the NS model EIC} S. values Thus €ou exswnle if r .3 the propags-

has 3 minimum as explained above. This nccurs at K = tion Jelay f{com 4 nods alcag cout. t to nerghboring
4 and gives min E{Q} = 1.243. The couting costs R node j} thea 3. =t ¢ T will bz used i1a the iocal
incresse mouotuaicsiiy with & here because Sl > 52. routeing stralegy. Witk each upddste 3 uode would

recalculate the thresnold values on which its resl
time routing decisioa 13 based using the latest
value of S, p. and A. These informac.da updates
wvould be midde it a rate auch slower thaa required
for the local routing decisions.

Fig. 6b shows that the NS model bas a minimua at K* =
2 of J oin = 2).114 wvaile the S model has a miaimua
of J mia = 22.93) at Kk* = |.

(%]

Coaclusion

This paper suggests an alternate route strategy
vhich simply compares the number of customers Q ac a
sode against an optimal cthceshcld value K*. when
the threshold is exceeded tben come tratfic is
diverted aloag an alternate route. The real ctime
strategy is dynasic because it adapts 1ts routiaog to
the size of Q. It is also edaptive ia the sense
that K* caa be recomputed readily whea operating
pacameters such as ji., A or 8  change. Thus it
seens ideally suited® for use in a decentralized
routing procedure for large aetworks where a low
rate exchange of information betweean aeighhoriag
nodes can be used to update the operating thres-
holds.

ROUTING COST
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gives each node the informatioa needed to update 1ts
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OPTIMAL CONTROL OF M/M/2 QUEUES

Basil S. Maglaris
Polytechnic Institute of New York
December, 1982

Abstract

The optimization of two-server Markovian queues with unequal
rates of service is analyzed via the theory of Markov decision pro-
cesses using an average expected cost criterion. It is shown that the
optimal policy, that minimizes the steady-state average time delay
experienced by customers in the system, is a deterministic threshold.

Under this policy, the slower server is used whenever ihe number of

waiting customers exceeds the threshold value.
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1. INTRODUCTION

Stochastic optimization of queueing systems has been extensively
studied due to its direct applicability in diverse engineering and
economic disciplines. Early works on single server systems dealt with
optimal control of the service rate in Markovian queues as in
[CRABILL - 72}, [2ACKS - 70] and [BLACKBURN - 72]. Optimality
criteria involved service costs/rewards, service rate switching penal-
ties, customer delays and start-up/shut-down costs. In [NAOR - 69]
the queue size was controlled by imposing tolls to arriving customers
and in [KNUDSEN - 72], this was generalized to multiple server
systems. In several queueing control problems the optimal strategies
depend on threshoilds on the queue size. For excellent reviews on
the methodology involved, see [PRABHU - 73] and [STIDHAM - 82],
where specific hints are presented on how to apply the yeneral semi-
Markov decision theory, [HOWARD - 71], [ROSS - 69] to queueing
processes.

A wealth of applications requiring optimal control of queues
emerged within the context of store-and-forward data communication
networks. Switching nodes in the network can be modeled as queueing
systems with various streams of incoming data and several output
options. It was found that adaptive routing at the node level signifi-
cantly improves the delay performance of data messages as reported
in [BOORSTYN - 81], [YUM - 81]. In [FOSCHINI - 78] a diffusion
approximation was used to analyze node models where newly arriving
messages had the option to join queues dedicated to alternate routes.
In [EPHREMEDES - 80], techniques from the optimal control of queues
were employed to derive optimal strategies for the above node model.

In [SARACHIK - 82], the adaptive routing problem was formulated as

O - o
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an M/M/2 queue with different service rates, and based on previous
results, [SARACHIK - 81] pertaining to deterministic input models, a
threshold policy was anticipated to minimize delay. Note that an
M/M/2 queue exhibits lower delay than two dedicated queues since
arriving messages in the latter case decide on a route by estimating a
priori which server will become available first. In figure 1 we illus-
trate an M/M/2 queue with two unequal service rates, Hy > Hp- If
the two rates are not substantially asymetric, immediate use of any
available server on a FCFS basis appears to be an efficient way to
empty the system. At the other extreme, however, with server a
many times faster than b, it is reasonable to defer use of b unless
the number of messages in queue is large enough to feed the fast
server for the duration of service in b. Obviouély, the "customer"
in b receives unfair service but the average system pe-~formance im-
proves. This is an illustration of the discrepancy between "indivi-
dual" and "social" optimization as reported in [KNUDSEN - 72]. In
what follows, we formulate the M/M/2 optimization as a Markov decision
process and prove that the optimal policy under certain conditions is

of the threshold type.

2. MARKOV DECISION PROCESS FORMULATION

The optimization problem involves the minimization of the average
number of customers (messages) in the system, including those in
service. This is, by Little's formula, equivalent to minimizing the
average message delay.

The state must indicate the number of customers in the system
and denote whether each of the servers a and b is busy servicing a

customer. Let the state be
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0 : Empty system

ja, i>1 : i customers in the system and only server a busy
ib, i>1 : i customers in the sytem and only server b busy
i, i>2 i customers in the system and both a and b busy.

Actions may be taken whenever an arrival finds one or both
servers empty and a choice must be fnade whether or not to serve or
which server to use, and whenever a departure creates the opportu-
nity for a waiting customer to proceed to a server. In order to "dis-
cretize" the continuous time process defined on the state space above,
we uniformize with respect to R, the maximum total rate out of all
states. Obviously R = A + Hy * by corresponding to a state i, with
both servers busy. For states ia, ib and 0 we now consider transi-
tions at rate R some of which represent arrivals or departures and
others represent "self loops" or transitions not triggered by external
events. As an example, from state ia, i > 2, we may have the follow-

ing transitions:

Upon an arrival, with rate A ja»> (@{+ 1a OR
ja» {+1)

Upon a departure, with rate Hy ia+ (-1a OR
ia~+ (-1) OR
ia» {-1Db

Remaining transitions with rate Hy ia » ia OR
ia+i

This uniformization technique if suggested in [STIDHAM, 82] as a

means to simplify the algebra involved with the optimaity equations

without changing the steady state statistics of the process.
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The possible transitions out of a state depend on the actions
taken at transition points, whenever there is a choice. The action
space is finite; either serve the customer at the head of the queue
with a specific available server or n t. No swapping is allowed i.e. a
message already in server a may not be switched to server
b. Furthermore, we assume that if there are customers in the system,
at least one server must be active. This assumption may be proved
but we omit the formalism to provide a clear picture of the state
transitions. In Figure 2 we depict the state diagram with all candidate
transitions. Solid lines and circles identify a set of actions leading to
a threshold policy at i = 3. Under that policy all dotted states are

transient and do not influence the steady state averages. Rates such

as '-ﬁ' p; denote transitions opposing to the threshold policy but valid

candidates for an optimal policy.
The optimal policy n, would minimize the average expected cost g

uefined as the average number of customers j under n:
g = min {E ()}
n

If C(Xn) denotes the cost of state Xn at the nth

nth and the (n + 1)st transition (with average dwell time 1/R), then

period between the

N
E,() = lim Bl 3 C(X1/%]

The one period cost C(X ) is exactly the number in system at Xn
C(i) = C(ia) = C(ib) =
In order to use the results of the Markov Decision theory direct-

ly, we first limit the queue capacity (maximum number of customers)
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to a large but finite number M. Arrivals into a full system are
blocked and cleared. The minimization criterion involves customers
already in the system and ignores the effect of blocking. This trun-
cation is a standard technique, [PRABHU - 73] to alleviate problems
induced by unbounded one period costs and to handle ergodicity
requirements for average expected cost minimization. Certainly if M
is large enough and the process stable, truncation is a good approx-
imation. Furthermore, it will be shown that the form of the optimal
policy does not depend on M and thus we may postulate that if a
stable optimal policy exists it is of the same form as in the truncated
problem.

Under the modeling assumptions stated above, all conditions for
the existence of a deterministic stationary optimal policy are satisfied,
[ROSS - 69, p. 149] and thus the policy n minimizing the average
number of customers in the system is a deterministic assignment of

actions to states.

3. FORM OF THE OPTIMAL POLICY

In order to determine the form of the optimal policy, we examine
the equivalent discounted cost problem with a discount factor o < 1.
As shown in [ROSS - 69] this problem can be transformed into an
average expected cost minimization by letting a » 1.

Let V(i) V(ia), V(ib) denote the a-optimal costs starting from

states i, ia, and ib respectively. With X, representing the state

during the nr‘h period. We have
S n
VX)) =min E_{[ 2 o CX.)I/XA)
0 x D n=0 n 0

X9 Xp e{i,ia,ib}, C(i) = C(ia) = C(ib) =i
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; The recursive optimality equations for the V's are given below: +

: ]

. ® o

; (M+pgtiy,) V(0)=a [A-min{V(la), V(1b)} + (uy*my,)V(0)] W g

: (Mp *up) V(1a)=1+a[A-min{V(22),V(D)} + b, VO VAD] () -

‘!. (A+p#p )V (Ib)=1+a[A-min{V(2b),V(2)} + mp V(0)+,V(1b)] @) o

} (A+p_+uy )V (22)=2+a[A-min{V(3a),V(3)}+ p min{V(la),V(1b)} + E

-‘ ppmin{V(2a),V(2)}] () B

° (Mu *y)V(2b)=2+a[A-min{V(3b), V(3) }+upmin{V(la) ,V(1b)} + !

u,min{V(2b),V(2)}] (5) ;

(M #1p IV (2)=2+a[A-V(3)*p, V(Ib)+uy V(1a)] (6) ]

. o

(A+p +up IV (i, @)=i+a[A-min{V(i+1,a), V(i+1) }+u min{V(i-1,a),V(i-1,b),V(i-1)} E

| +upmin{V(i,a), v}, 2 (D) B

® (A+p_+y JV(i, b)=i*a[A-min{V(i+1,b),V(i+1)}+py min{V(i-1,b), V(i-1,a),V(i-1)} .J

+umin{V(1,b),V()}], D2 (8)

(M IV (D=iva [A-V(i+1)ymin{ V(i-1), V(i-1,2)} ]

' 1

° +u min{V(i-1),V(i-1,b)}], >2 (9) “

If M is the maximum (blocking) state ]

° (A+p+y IV (M, a)=Mea[A-V(M,a)+u min{V(M-1,a),V(M-1,b),V(M-1)} _.‘

t +uypymin{V(M,a),V(M)}] (10) 3
(Atp_+up )V (M, b)=M+a[A-V(M,b)+p min {V(M-1,b),V(M-1,a),V(M-1)}

° +p min{V(M,b),V(M)}] (1) o)

(Atp_+u SV (M)=M#a [A-V(M)+uymin {V(M-1),V(M-1,a) }+ '

+u min {V(M-1),V(M-1,b)} (12) |

® Let R denote the unformization rate: .

R = Ay tup 7:

® .
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LEMMA 1

The functions V(i), V(ia), V(ib) are increasing in i and
V(la)> V(0), V(1b)>V(0), V(2)>V(1la), V(2)>V(1b)
Proof

We will use induction on the recursive equations (1)-(9). First
assume that we start with a set of V's satisfying the Lemma. A
logical choice is to set the cost at step O equal to the one period
costs:

V(1) =V (ia) = V,(ib) =i
Suppose now that the lemma holds after n subsequent applications of
the recursive equations to VO:
Vn(i), Vn(ia), Vn(ib) are increasing on i
To complete the proof we must show that the lemmaiwill hold at the
(n+l)st step. We will demonstrate this step for Vm_l(i), i>2. From
(9) we have:
RV, (i+1)=it1+a [AV, (i#+2)+uymin {Vn(i) Via)ls
+u min{V, (1),V, (i,b)}]
Rvml(i):im[Avn(i+1)+pbmin{vn(i-1),Vn(i-l,a)+
+pamin{Vn(i-1),Vn(i-1,b)}]

Now, i+1>i, Vn(i+2)>Vn(i+1) (by assumption), min {Vn(i),Vn(i,a)} >
min{V_(i-1),V (i-1,a)} and min{Vn(i),Vn(i,b)}>min{vn(i-1),Vn(i-l,b)}
since the minimum of two increasing functions is increasing. Thus
RVn+1(i+1) > Rvn+1(i)' Using the same reasoning it can be easily

seen that all costs le(i), le(ia), Vn+1(ib) are increasing on i up

to its maximum M and that V_,,(2) > V__,(1a) > V ,(0),V ,,(2) >
Ve (D) > V1 (0).
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LEMMA 2
If u>uy, V(1a)<V(1b), and V(i)<v(ib), 2
Proof
We use the same inductive argument as in the proof of Lemma 1.

Assuming that the inequalities hold at step 0 and step n, we have at
the (n+l)st step
RVm_l(la) =1+ a[A-min{Vn(Za),Vn(Z)] + paVn(O) + uan(la)}
RV, ,1(1b) = 1 + a[AV, (2) + ubvn(O) + UV (1b)}
In order to show that V ,,(1a)<V ,,(1b), since V (2) > min {V (2a),
Vn(Z)}, it suffices to show that
HaVa(0) + ppyVi(1a) < Vi (0) + p V) (1b) or
MV (AD) = pp Vi (1a) > (uy = pp IV, (0)

" Since v, (1b) > V_(1a) '(by' inductive assumption), “a>“b‘ and
Vn(la)>Vn(O) (Lemma 1), it follows that
HaVn(1D) = HpVy (1a)>(y = Wy IV, (12)>(y = 1OV, (0)
This proves the first argument, V(1a)<V(1lb), assuming Vn +1(i) <
Vn+1(ib)' From (5) and (6), applying the inequalities at step n, we
have
RV, +1(2) = 2 + a[AV, (3) + p,V (1) + pV (1a)]
RV ,1(2b) = 2 + a{AV_(3) + MV (13) + p Vo (2)]
From Lemma 1, we have Vn(Z) > Vn(lb), thus Vn+1(2) < Vn+1(2b)
From (8) and (9), we have that for i>2
RVn+1(i)=i+a[AVn(i+1)+ubmin{Vn(i-1),Vn(i-l,a)}+pavn(i-1)]
Rle(ib)=i+a[)\Vn(i+1)+pbmin{vn(i-l,a),Vn(i-l)]wavn(i)]
and since Vn(i)>Vn(i-1) it follows that Vn+1(i)<vn+1(ib).

- . - . - g o u
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Note that we make use of arguments from Lemma 1 in the induc-
tive proof. This is valid since the two Lemmas are consistent and “
may start from the same initial set of V's. Alternatively, one can
combine the two Lemmas into a single inductive proof. 1
a|
COROLLARY 1 |
States ib, i>1 are transient under the optimal policy. ;
Proof 2|
Observing the optimality equations, we notice that under Lemma
2, there is no path from states (i) and (ia) into any state (ib), i>1.
Ej State (1b) may be reached upon departure from 2. This statement <@
. conforms with the intuitive argument that there is no reason to use
the slow server when the fast server is idle. |
)
LEMMA 3
If v(i-1,a)>V(i-1), i-1>1, then V(j,a)>V(j) for all j > i
Proof -
Assume that in the optimal policy, there exists a state i-1, such
as V(i-1,a) > V(i-1). In this case, we will use the inductive procedure
again but now keeping thé costs of states (i-1,a) and (i-1) fixed to °
their optimal values. The iterative application of the optimality equa-
tions to the remaining costs, will converge by contraction to their
optimal values. The a-priori knowledge of V(i-1,~ and V(i-1) will o
reduce the number of unknowns, and if our guess is correct, it
just creates two redundant consistent equations.
At step 0 we set Vo(i-l,a)=V(i-l,a) and Vo(i-1)=V(i-1). The o
remaining Vo's are set to arbitrary initial values satisfying the Lemma
0
L o 1




hea o g

P

and the monotonicity property of Lemma 1, in reference to V(i-1,a)
» and V(i-1). It can be easily seen that the monotonicity property will ®
hold throughout the subsequent operations, by translating the proof ‘
of Lemma 1, to incorporate the fixed values V(i-1,a) and V(i-1).
® Assume that at step n the Lemma holds. Remember that no f-‘.
change is allowed for the cost of states (i-2,a) and (i-1). From (7) | %
and (9), we have
® RV, (i,)=i*a[AV, (#1)+,V, (-1 V, (D], V, (-1)=V(i-1) "o
RV (D=tra AV, (+1)+u Vo (1-1)+p V (1-1)]

and since Vn(i)>Vn(i-1), it follows that Vn+1(i,a)>vn+1(i). The same : '»j

@ equations apply for all j > i. At j=M, Vn(j+1) is replaced by Vn(M)

and similar inequalities hold. This completes ‘the proof of the Lemma.

® THEOREM 1la

The a-optimal policy for the finite M/M/2 queue, defers service

from the slow server until the number of waiting customers exceeds a

o threshold value.
Proof

From Lemma 3, it follows that for the least K > 1 for which

!,@.;.“.’.‘..‘.;L.‘.‘_L! et 4 aaaan

o V(K+1,a)>V(K+1), all states (ia), i>K, will exhibit greater costs V(ia)
than V(i). Thus new arrivals and departures will favor states (ia),

for i <K and states (i)} for i>K. This threshold K will render all

Lo states (ia), i>K, transient along with states (ib), i>1 (Corollary 1).
The threshold value, depends on the parameters A Mg Hy [t may be

that for Hy>>Hyy the threshold K approaches the limit of the queue

3

size in which case, we never use the slow server b. Equivalently if

S I

N :
5
L_._-A-__ag.__._._A__.;.'u

“a/“b is close to unity, the threshold moves to 1 which is exactly an

M/M/2 queue with arrivals on empty state routed to server a.

]
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THEOREM 1b ]
The optimal average expected cost policy for the finite M/M/2 . .1
queue is a deterministic threshold as in Theorem la. 5
Proof
For the finite state problem, state (0) is recurrent for all deter- = lJ
ministic policies considered in the a-optimal recursive equations (1)- 1

(12). Furthermore the one period cost i is bounded by its maximum
M and hence all conditions for the existence of optimal average expected .
cost policies are satisfied as in [ROSS - 70], Corollary 6.20. The
structure of the optimal policy n will be the same as in the discounted

case and the optimal average expected cost, g=E n(i) is given by

g = lim (l-a)Va(O)
a1l
The truncation of the state space was introduced to guarantee
that the one period costs are bounded, and that state 0 is recurrent

under all policies. However, since the threshold structure does not

;:' depend on the maximum queue size M, it can be concluded that if a

Y stable optimal policy exists to the infinite state problem, it is of the
o threshold type. Y
4. DISCUSSION AND NUMERICAL EXAMPLES
In the previous section we proved that the optimal policy mini- . 1

mizing the average queue length (or average delay) is of the thresh- -
old type. Obviously the criterion involves "social optimality" from the

system point of view. Individual customers (messages) would never

¢
.

'! iy
——t heidhnd

chose the slow server regardless of the state of the system unless <

their service time on the slow server is less than the sum of their

Sttt
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service time in the fast server and the waiting time before being

served by the fast server. The optimum threshold value depends on
the parameters of the system, namely the ratio of the service rates

and the total system utilization. In order to illustrate this dependence

T o

A

we solved the equilibrium equations in an infinite size system for
various thresholds, service rate ratios and traffic intensities. In

Figure 3, we depict the average queue length at traffic intensity

|

M(ug*up)=0.5. As expected if server a is much faster than b (39 to

1), the optimal threshold becomes very large, eventually leading to a
single server queue with the slow server never used. Conversely for
relatively balanced rates (2 to 1 or equal), both servers are always
used as in an uncontrolled M/M/2 system (preference is given to a if

both a and b are idle). 4-For rate ratios 3 to liand 7 to 1 there

exists clearly an optimal threshold at 2 and 4 respectively. A con-
sequence of using thresholds is that we obtain "nbalanced traffic
volumes routed via a and b. In Figure 4, we illustrate the percentage
of the traffic routed via a, 100 x Aa/k. Notice, that even with bal- .
anced rates 1 to 1 and K=1 (pure M/M/2 system), more traffic is

routed to a than b, due to decisions taken upon arrivals to an empty

E
g

31
';.':3
;
.1‘
E
E
"
1
]
:Q

system. As the threshold increases, certainly the Aa/)\ ratio‘ ap-
proaches 100%. This observation led to the suggestion of threshold
policies in adaptive routing schemes, where the traffic served via
each outgoing link (server) is constrained to a value determined by
some global criterion. In [MAGLARIS - 83], we formulated this
problem and proved that threshold policies minimize average queueing

delays with constrained output flows.
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Finally, in Figure 5, we demonstrate the effect of the traffic

intensity on the optimum threshold value. As intuitively expected,

. queues close to saturation do not have the luxury of threshold poli-

cies and must operate both servers at full capacity. Lightly utilized
queues do, however, exhibit improved performance under threshold
values which increase as the utilization drops. Depending on the
Hy Hp ratio, a system utilized at low levels would involve thresholds
approaching a positive integer close to “a/”b - 1. As an example,
for Hyiky = 7, and very low traffic intensity, the optimal policy uses
the slow server only if 7 messages have been accumulated, i.e. the

threshold value is 6.
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A SHORTEST PATH ALGORITHM FOR THE SOLUTION
) OF THE SIMPLE KNAPSACK PROBLEM AND EXTENSIONS °
Aaron Kershenbaum#* -
o =
Department of Electrical Engineering and Computer Science ) 1
Polytechnic Institute of New York -
® ' Brooklyn, NY 11201
ABSTRACT
L We consider several versions of the Knapsack Problem and show
that they can be solved using a shortest path algorithm requiring both
storage and running time which are polynomial functions only of the
o number of types of object and the size (weight) of a single object.
This is a significant improvement over previous algorithms for the
solution of the Knapsack Problem using shortest paths, which typically
® require storage and runtime which are functions of the total knapsack
size.
@ I. INTRODUCTION
The Knapsack Problem, which is interesting in its own right, has
also received much attention recently[3] as a means of solving integer
e programming problems via a relaxation technique using group theory.
: Formally, the Knapsack Problem can be stated as:
M
Maximize z = 2 PX;
® i=1
*This work was partially supported by NSF under Grant ENG 7908120
o and by U.S. Army CECOM under Contract DAAK-80-80-K-0579.
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subject to = il;:l wiX; = w ®
X, >0fori=1,.2...M
X; integer
5 ]
Thus, we are given M types of object with weight Wi and profitability
P; per object of type i We are required to maximize the total profit
subject to a constraint that the sum of the weights of the objects -
selected equals W. In the simple (unbounded) version of the problem
there is no restriction on the number of objects of each type which

may be included in the solution.

Sometimes an inequality constraint is used in place of the equal-
ity constraint, i.e., one seeks objects whose aggregate weight does
not exceed W. Such a problem can be transformed into a probl.em

with an inequality constraint by including an additional object with

unit weight and zero profitability. Here we will concentrate primarily
on problems with equality constraints.

P We assume that W and the w; are non-negative integers (or,
more denerally, that they are commensurate) and that the p; are

non-negative.

Previous approaches to the solutioh of this problem include those
reported by Horowitz and Sahnin] using dynamic programming and
implicit enumeration. These approaches have been found to be effec-
tive for a wide range of problems but have exhibited excessive run-

times for problems with a large number of nearly equally valuable (in

terms of cost per unit weight) objects. Also, their worst case run- =y
!f, ning times are exponential in the number of object types. Denardo %
»'_‘ 1
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e -4g- |

g

N e e e e 2 ak - PPN PP R U . 1)



T T " —————— =
............

T — v . T e e——

and Foxlz] have developed an approach which overcomes these ob-
jections by solving the problem as a shortest path problem in a net-
work with W nodes and W x M arcs. Thus, their approach requires
storage proportional to W and runtime proportional to W x M. If W
and M are sufficiently small, their approach is extremely attractive.
If W is large, however, the storage, and to a lesser extent the run-
time, become prohibitive.

Denardo and Fox present their algorithm in the context of using
a Knapsack Problem as an integer programming relaxation. In such
cases, W is generally of the same order as the w;. We extend their
approach to the case where W is.very large but the individual w, are
not, and exploit the underlying cyclic group structure of the problem
to develop an algorithm with both runtime and storage requirements a
function - only of the weight of a single object and the number of

4] point out the relationship

object types. Garfinkle and Nemhauser[
to the group structure but do not discuss application of the structure

to develop an algorithm as efficient as the one presented here.

II. BASIC PROCEDURE

For the sake of clarity, we begin by describing the basic proce-
dure and justifying it. In later sections, extensions and refinements
of this procedure are considered.

We begin by defin."g a network K = (N,A,L) corresponding to
the Knapsack Problem (KP). The node set, N, contains W + 1 nodes
numbered O through W corresponding to the aggregate weight of the

objects selected thus far. At each node, i, there are outgoing arcs




corresponding to feasible objects which may be selected to augment a

partial solution with weight i. Thus, at node i there will be arcs

(, i+ wK) for all K such that i + wy < W. The length of an arc

corresponding to an object of type K is Py- We thus have: S
N = {0,1,... W} e
A= {{d, i+ wk)! i=290,1,...W, for all k such that i + wy < W}
L + {lij ! (i,j)eA, where lij = Py for arcs corresponding to type

k objects}

"The network thus contains approximately MW arcs. We will assume
that wk1¢ wkz for k; # k, as if two types of objects have the same
weight the one with the smaller profit can be ignored. We also assume
Wy > 0 and Py 2 0 for all k. We will refer to arcs corresponding to
a type k object simply as type k arcs. Figure 1 illustrates part of a
network corresponding to a KP with 4 types of object, described in
the table accompanying Figure 1. For the sake of clarity, only nodes
0 through 7 and arcs from nodes 0 and 1 are shown in Figure 1.
Paths from node O to node W in such networks correspond to
solutions of the associated KP. The length of a path, defined as the
sum of the lengths of the arcs in the path, is the total profit of the
solution. Thus, the longest path corresponds to the optimal solu-
tions. Note that, by the assumption that Wy > 0 for all k, the net-
work is acyclic and so the problem of finding the longest path from 0
to W is solvable using Bellman's shortest path algorithm suitably modi-
fied to find longest paths. Defining d; to be the length of the cur-
rent estimate of the longest ... fr¢ node 0 to node i, this amounts
simply to:
that wkl# wkz for K, # K5 as
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Figure 1- Standard Network Representatioi. Knapsack Problem
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Algorithm 1
Step 0: dg « 0
di «o [ =1,.... W,
Stepl: Fori=1toW
For all j such that (i,jjeA
{cij = max (dj'di + lij)
One can also keep track of the solution itself by setting a, « i when-

]
ever the wvalue of d. is updated. At the end of the algorithm one can

trace the path back] from node W to node 0 using the aj. We refer to
dj as the label on node j and to aj as the predecessor of node j.
Step 1 is known as a scan of each node, i.

Algorithm 1 is the simplest possible shortest path algorithm.
The nodes are scanned in numerical order and each node is scanned
only once. The algorithm has a running time on the order of MW
operations and a storage requirement on the order of W. If W is
very large, the approach becomes unattractive. The approach des-
cribed below avoids this problem by solving the problem using a

network which is, in general, much smaller. The key to reducing the

size of the network is embodied in the following lemmas. Define

p
W = max (wk) and w¥ = wj such that %;, = max k. Thus W is the
k k w
k

weight of the "heaviest" type of object and w* is the weight of the
"best" type of object.

The proofs of some of the lemmas rely upon elementary proper-
ties of cyclic groups. The interested reader is referred to (6] for

more details.
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o
Lemma 1: An optimal KP solution exists containing no set of )
objects whose aggregate weight is a multiple of w¥*. .;
Proof: Given an optimal KP solution containing a set of objects
of aggregate weight nw*, we can replace these objects by n "best" 4
objects without altering the total weight. The net change is profit, o,
]
Ap is defined by: .
4p = np* - Z p; ]
] '4
w. R
f- (.VJV‘ p* - p])

By the definition of p*, each term of the sum is non-negative

and hence ap > 0. We can thus replace the set without destroying
optimality and the lemma is proven.

The terms in the above sum can be interpreted as the amount of
profit "wasted" by using a type j object instead of a best object. We
can in fact redefine the arc lengths in the network corresponding to
a given KP to be precisely these quantities. The optimal KP solution
then corresponds to the shortest path from 0 to W. This can be seen
to be true by observing that the above transformation of the arc

lengths affects the lengths of all paths from 0 to W in precisely the

same way. If the length of a 0 to W path in the original network was
p the length of the same path in the new network is p* %* -p

Thus the relative length of all 0 to W paths are reversed. Alterna-

L e e

tively, one can observe that the optimal path is the one which wastes ,91
the least profit. In the sequel, we use this form of the length func- 1‘
tion as it will allow us to improve the efficiency of the algorithm. We 1
refer to the network using this length function as K;. 9:

S
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In Figure 1, the new lengths of arcs of types 1 through 4 are

1,2,0, and 2, respectively. Note that type 3 arcs are best and that P
best arcs have 0 length. All arcs have non-negative length. If the

best type of arc is not unique (e.g. if w, = 9 in the above example),

it is possible for the length of more than one type of arc to be O.
To avoid confusion, we assume that the best type of object is unique.
The extension of the algorithms to this case is straight forward.

Lemma 2: An optimal solution exists containing no more than
w* - 1 non-best objects.

Proof: Any set of w* or more objects must contain a subset of
weight nw* for some n > 0. To see this, consider a set of w* ob-

jects, i;,iz,...1 From the sums

S.= (2 Wi ) modulo W*

J o k=1 Mk
i
If S. =0 then 2 wi = nw*,
) k=1 'k
2
IfS.=Szfor2>jthen b3 Wi = nw¥,
) K=j k

But there are w¥ Sj's and only w¥ - 1 nonzero values of modulo

w¥. Hence, either S]. = 0 or Sj = S,z for some 2 and the set contains

a subset of weight nw*. From the proof of Lemma 1 we see that we

can replace any such subset by n best elements without decreasing
?! the profit. Thus, we need only consider sets containing w* - 1 or
fewer non-best elements together with zero or more best elements.
An optimal solution can always be obtained in this way.

But since all elements have weight no greater than w, the ag-

gregate weight of the non-best elements in any such optimal solution

o

. .E’c Dl
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will not exceed W*(w* - 1). If W > Www¥, we need not consider W
explicitly as a constraint. We need simply apply the above algorithm
to get d). for j < Www*, and then complete the solution by adding the
appropriate number of best objects.

Indeed, we are only interested in the weight modulo w* of a
partial solution since any two solutions whose weights differ by a
multiple of w* differ only by one or more best objects. We thus
have:

Lemma 3: If W > Www*, the optimal KP solution can be found by
adding zero or more best objects to the set of objects defining the
shortest path in the network formed by merging all nodes with the
same weight modulo w* as described above.

Proof: Consider the original network before the nodes were
merged. Consider the 0 to W path corresponding to ain optimal solu-
tion. By Lemma 1, we may assume this path contains no set of arcs
(correspond to objects) of weight nw* except for best arcs. Since
the network contains paths corresponding to picking these objects in
all possible orders, we may assume that the path under consideration
has ap the best arcs at the end. Consider only the initial subpath
corregponding to the non-best arcs.

Now, consider what the transformation does to this initial sub-
path. All the nodes in this path have different weights modulo w¥.
Thus the transformation changes this optimal 0 to W path in K; to a 0
to W° path in the network with merged nodes, where W° = W modulo
w*. Note that other paths, including some optimal ones, become
complex paths containing cycles because they contain subsets whose

aggregate weights are a multiple of w*. The path we are focusing on

i or
baialai.
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however remains a simple path and can thus be found using an ordi-

| e

nary shortest path algorithm.

-
——

No new paths are created by the transformation. Thus, an

FOSRPr

optimal KP solution can be obtained by appending 0 or more best arcs
to the shortest 0 to W° path in the new network, and the lemma is o~
proven.

It is thus possible to define a new network

K, = (N,A,L):
= {0,1,...w¥-1}
= {(i,j) | j = (i + wy) modulo w* for some K}
. Wk
L= {Zij 1(i,j)e A, gij = v; p* - Pk for

k defining (i,j)}

This network has only w* nodes instead of W. Furﬁiermore, we
note that if (Wk1= wkz) modulo w¥*, then type k;, and type k, arcs
are parallel and the arc corresponding to the object with the smaller
zij can be ignored. Thus, there is at most 1 outgoing arc from each
node to each other. The total number of arcs is thus at most

w*(w* - 1). We have thus removed dependency on both M and W and

have a procedure whose running time and storage are a polynomials

only in w¥*.
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ALGORITHM DESCRIPTION
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We now describe the actual procedure in more detail and analyze

its storage and runtime.
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The following is the essence of the procedure:

Step Q: (Initialization)

where dj is the current estimate of the length of the shortest path
from O to j.
Step 1: Find i, the best node to scan next. This is discussed in
detail below.
Step 2: (Scan node i)

Fdr k=2, ... M

Let j= (i + wk) modulo w*

If dj >d; + zi]. then dj = di ST and PR, = k

) )

where zi]. is the length of an arc corresponding to a type k object

(RU. = wk(p*/w* - pk) as defined above) and PR}. records the type of
the arc used to label node j and hence keep track of the optimal
solution.

Step 3: Return to Step 1 if any nodes remain to be scanned; other-
wise stop.

It is clear that the storage required for this procedure is linear
in w¥ + M. If Step 1 is sufficiently simple and each node is only
scanned once, the procedure's runtime will be dominated by Step 2
and will be proportional to Mw*. This is in fact the case, as we will
see.

A node, j, must be scanned if its label, dj' is improved (re-

duced) as it may then improve the labels of other nodes. If we are

to ensure that each node is scanned at most once, we must defer




b
g
b
b
r . %
"
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scanning it until its iabel cannot be improved. When all arc lengths
are positive, as they are here, this objective is achieved by scanning
the nodes in ascending order of d).. This is Dijkstra's well known
shortest path algorithm.

In the general case, Dijkstra's algorithm requires that in Step 1
we find the as yet unscanned node with the smallest label. If this
were done naively, it would require an examination of w* labels and
the overall procedure would require (w*)2 + Mw¥* cperations. In this
case, however, we can implement Step 1 carefully and do much bet-
ter.

We form "buckets" of nodes to be scanned and place nodes to be
scanned together in the same bucket if they have similar labels. If
the width of the buckets is q, then we place a node with label d,

where (k-1) < d < kg in the kth

bucket. We then simply work our
way through the buckets in ascending order of bucket number scan-
ning the nodes in each bucket in arbitrary order. Thus, there is no
explicit search in Step 1. If the width of the bucket is no greater
than the length of the shortest arc in the graph, then any node
labeled by the node currently being scanned will reside in a higher
numbered bucket and hence, each node will be scanned at most once.

The only problem with this procedure, which is well known, is
that the number of bl'.lckets itself may become very large, in particu-
lar much larger than the number of nodes, if the longest arc is many
times greater than the shortest. In this case, a great deal of storage
and running time may be wasted in dealing with empty buckets. We
now show that in this case fewer than w* buckets are required in all

cases.

-59-
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! e
3 ;
- We begin by reindexing the arcs out of each node corresponding

j tp the M - 1 remaining types of object in increasing order of length. o
g (Recall that the arc corresponding to the best type of object was re- -
; moved from explicit consideration.) Thus, L;, is the length of the
i arc which corresponds to the second best type of object, etc. The m‘.*‘:
w; and p; are reindexed correspondingly. We will refer to arcs of {
E{. length Li' weight w., and profit P; after this reindexing as arcs of ]
i‘ type i (or as arcs corresponding to objects of type i). For sim-

plicity, we will assume Li # Lj for i # j although the procedure does

not require this.

Consider the case where w* is relatively prime to w;. By the
definition above, arcs of length L; are the shortest arcs in the
graph. Since w; and w* are relatively prime, a path containing at
most w¥ - 1 arcs comprised entirely of arcs of type 1 exists from 0 to
each other node. Thus, we know that no node need have a label
greater than L,(w* - 1). So, w*¥ - 1 buckets of width L; suffice

since the shortest path will be no longer than the aforementioned one.

In the case where w* and w,; are not relatively prime, the above
path will loop back to node O before reaching many of the other
nodes. In this case, the following preliminary computation' is carried
out before setting up the buckets:

r = w¥

For j =1, M-1
gj = r/GCD(r,wj)

where GCD(i,j) is the greatest common divisor of the integers i and j ‘,."
and can be found using Euclid's Algorithm, whose running time is %H
\
bounded by the following Lemma: \
\

-60- -

f r= GCD(r,wj)

|
|
E
E

L_A"“A"“J.A LRI P ﬂ."..

- VO W T O W WA W W TR TR W DR GLIP A LN S LI R N WP




Lemma 4: Euclid's Algorithm has a worst case running time ot
order log N when applied to find the GCD of N and M, for N > M.
Proof: For N > M, Euclid's Algorithm replaces a problem on N
and M by one one M and N - qM. The worst case for this, i.e., the
one which converges most slowly, is when q = 1 at all stages. This
th

results in a Fibonacci sequence. It is well known (1] that the K

Fibonacci number, F is given by:
1+ J5'
e |
1 o/1
'—Z—

Thus, the runtime of the algorithm is of order K for N of order

F,.,, i.e., K is of order log N.

K’
We observe that, corresponding to the paths comprised entirely
of type 1 arcs above, there is now a tree rooted at O, spanning all
the nodes, and containing paths with at most gj - 1 arcs of length
Lj' An illustration of such a tree is given in Figure 4. In this case
only nodes 0i8, and 4 can be reached using only arcs of type 1
before the path cycles back to node 0. The number of nodes so
reachable is g; (three in this case). The original set of w* nodes is
partitioned into g, parts which are then each partitioned into g,
smaller parts corresponding to the nodes which are now reachable via
arcs of type 2. The partitioning continues until all nodes are
reached. The above can be proven rigorously in the general case
using the properties of cyclic groups.
We now define buckets of variable width corresponding to the

longest path in the tree defined above. Thus, there are g; - 1

-61-
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buckets of width i, fouliowed by g, - 1 buckets of width l,, etc. A
total of B = F(gi - 1) buckets is required. Since the product of the
gi’s is w¥, B < w*,

We have shown that less than w* buckets are required. We now
show that no node is scanned more than once. To do so, we show
that the width of each bucket is no greater than the length of the

shortest arc still permitted in a path.

Figure 4: A spanning tree bounding the lengths of shortest paths

Note that the paths from 0 to j correspond to ordered selections
of objects of aggregate weight j; i.e., there are distinct paths cor-
responding to the selection of the same objects in different orders.
We can, and should, consider only one path corresponding to each
distinct collection of objects. This is easily done by keeping track of

the last type of arc in the path (which we are doing with the variable

{




PRj) and only considering arcs with the same or higher index (object <
type). Thus, we will find solutions corresponding to a selection of
objects in non-decreasing order of type.

Now, consider a node in bucket i of width W This node was

either reached via a path in the tree considered above or via an arc

whose length is greater than that of any in that tree. In latter case,
the length of the smallest arc under consideration exceeds the width
of any bucket. In the former case, since we are considering arcs in
increasing order of length, again a node can only enter a bucket via

an arc at least as long as the width of the bucket.

Extensions

If W < w*w then it is possible for w; to be equal to wj and for
objects i and j not to dominate one another. In particular, if w; > wj
and 2 < 2]. neither i nor j may dominate. This is because the con-
straint on W may prohibit the use of a sufficient number of objects
with the smaller length. As an example of this, consider a problem
with W = 24 and (wi'Pi) of (5,50), (6,58), (11,109), (1,0). Here,
the 2, are 0,2,1, and 10, and w, = w,; modulo 5. Neither object 2
nor object 3 dominates the other, however. In fact, the optimal
solution is 4 type-2 objects in this case. For W = 21 or W = 22,
however, type-3 objects would be used in the optimal solution.
For W = 23, both type-2 and type-3 objects would be used. Lemma
3 can thus not be extended directly to the case whose W < w*w.

Thus, it is not possible to make the final reduction to a network
with w* nodes in this case. However, when the individual w; are
small, which is tne principal case of interest here, w*w will be small

as well. The above algorithm can then still be applied effectively to

-63=-
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the network with W nodes. Alternatively, one can view the following
procedure as working on the reduced graph with w* nodes but allow- JA
ing multiple labels on each node. We adopt this latter point of view
in describing the modified procedure below. 1

A label on a node, i, is now a couple (di' Ci) where cii is the 1%
amount of wasted profit to get to node i, i = 1,2,... w*-1, and ¢ is

the cycle number of this label. The c; are defined by the relation

i=j - w*ci
where j is the node in the network K; (with W nodes) which would
have received the same label. A node i in K, can thus have several
labels corresponding to different. c;. but for any two labels (di'ci)
and (di',ci‘) on the same node i,

di > dj > ¢ < g
since as ‘we noted above the only reason for considering a larger di
would be to obtain a smaller c;- Similarly, ior any pair of objects
with weights having the same residue modulo w* the object with the
larger weight must have the smaller length.

There are several limitations on the maximum number of objects

of any given type. In particular, m,, the maximum number objects of

type i, is bounded by
. w w¥*
m; < min [w—l] * GED(WH,T)

where r; is the residue of w; modulo W*, The first term on the right

hand side follows from the fact that any larger number of type i
objects have weight greater than W. The second term follows by the

some reasoning is Lemma 2.
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Proceeding along the lines similar to those in [3] we create

b

) (log. Mi) + 1 objects corresponding to 1,2,4,8,... and 2~ objects of

type i, where b is largest power of 2 that is less than M;. We thus
now have defined a new problem with at most M log, W objects. At
':. most one object of each type is permitted in the solution.
Proceeding along lines similar to those in [3], we can create
(log2 Mi) + 1 objects corresponding to 1,2,4,8...2b objects of type
-. i, where b is the largest power of 2 that is less than Mi' We then
have a problem with at most M! = Mlog,(w*) objects where at most
one object of each type need be considered. Thus, we could create M!
@ buckets and proceed with the algorithm as above.
One can refine this procedure by eliminating dominated objects
from consideration. In particular, if two objects i and j, have the
.. same residue modulo w¥*, and w; > w]. and 2 < z]. then object j may be
eliminated from further consideration. One must be careful, however,
not to allow one copy of an object to eliminate another copy of the
;. same object.
For example suppose there were initially 4 types of object with

(wi,Pi) equal to (10,20), (3,5), (7,4) and (1,0) W = 10 and W < ww¥,

respectively. If W = 37 we must consider the modified procedure.

We thus create objects with (wi'Pi) equal to (6,10), (12,20), and

(6,10) corresponding to 2,4, and 2 objects of type 2. These three
.' new objects together with the original object of type 2 can be used to

select anywhere from O to 9 copies of the type 2 object. The first
. new object is identical to the third and would dominate it unless we
®

specifically prohibited this.
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If the Wi and Pi are drawn independently from uniform distribu-
tions, this latter refinement will reduce the average number of objects
to no more than w*¢n(M) objects and buckets as we see from Lemma
5.

Lemma 5: There will be on the average on the order of no more than:

[M logz(w*z]
W* gn w

objects léft undominated after dominated objects are removed in the
above procedure.

Proof: As observed above, there are approximately Mlog,(W*) or
fewer objects before dominance is checked. Suppose these objects
divide evenly into residue classes. There would then be Mlog,(w*)/w*
objects in each residue class.

An object can be dominated by any other object in the same
class. 1f the objects are ordered in increasing order of 2, an object
will be dominated unless its Wi is less than the W, of all objects pre-
ceding it on the list since the weights are uniformly distributed, the
Kth item in the list will be undominated with probability lK Thus,
given a list of length L the expected number of undominated elements
remaining on the list is

L

j=1l] 2an(L)

The result follows directly by substituting for L. If the residue
classes do not all contain the same number of elements, the result is
still true since we observe that the quantity

2n(Ly) + 2n(Lp) for Ly + L, = 2L

-66-
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is maximized for L, = L, = L, that is, equal sized residue classes "

'. yield the maximum number of objects. .41

Thus, even for W < w*¥w, we have a number of buckets polynomial
in w*, not W. The running time is thus at worst of orderWw* < (w¥)2w.

P It is possible to extend the procedure still further to take into ;.*‘
account restrictions on the number of permissible objects of each ;
type, for some or all of the objects. First, if one is given an a ‘

T. priori restriction, Ui' on the number of objects of type i, one need '.J
only set 1

Mi = Min (Mi'Ui)

' where Mi is the maximum number of objects of type is permitted and

. the Mi on the right hand side is computed as above. If the a priori

: maximum permissible number of best objects is less than W/w* than a

e . fictitious best object with w*¥ = W + 1 must be added to the problem.

: This maintains the validity of the procedure but may reduce its

- efficiency considerably if the original w* was much smaller than W.

| &

: CONCLUSIONS

We have presented an algorithm for the solution of the simple

e (unbounded) Knapsack Problem whose running time and storage are

. functions only of the size of the "best" object weight, W* in the case
where the overall weight constraint is sufficiently large. In the cases

¢ where the overall weight constraint is smaller or where restrictions
exist on the number of objects of a given type, we present an exten-

; sion of this procedure which in practice is often very efficient and

- €.

whose worst case running time is no greater than (w*)2w where W is

the weightiest objéct.
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A NETWORK SHORTEST PATH APPROACH TO THE KNAPSACK PROBLEM

Aaron Kershenbaum®*

Department of Electrical Engineering and Computer Science
Polytechnic Institute of New York
Brooklyn, NY 11201

ABSTRACT

We consider the simple (unbounded) Knap-
sack Problem and show that it can be solved
using a shortest path algorithm requiring both
storage and running time which are polynomial
functions only of the number of types of object
and the size (weight) of the single largest
object. This is a significant improvement over
previous algorithms for the solution of the
Knapsack Problem using shortest paths, which
typically require storage and runtime which are
functions of the total knapsack size.

INTRODUCTION

The Knapsack Problem, which is interest-
ing in its own right, has also received much
attention recently as a means of solving integer
programming problems via a relaxation technique
using group theory. Formally, the Knapsack
Problem can be stated as:

M
Maximize 2= I p
g Y

M
subject t0 I wx, = W
o1 Y

X2 0 for i=1,2,...M
X integer

Thus, we are given M types of object with
weight w and profitability P; per object of type

i. We are required to maximize the total profit
subject to an constraint that the sum of the
weights of the objects selected equals W. In
the simple (unbounded) version of the problem
which we consider here, there is no restriction
on the number of objects of each type which
may be included in the solution.

Sometimes an inequality constraint is used
in place of the equality constraint considered
here; i.e., one seeks objects whose aggregate
weight does not exceed ¥W. Such a problem can
be transformed into a8 problem with an inequal-
ity constraint by including an additional object
with unit weight and zero profitability. Here
we will concentrate primarily on problems with
equality constraints.

We assume that W and the w, are non-
negative integers (or, more qenerally‘, that they

¥ This work was supported by NSF Grant
ENG7908120.

CH1511-5/80/0000- 0838 $00.75() 1980 IEEE

are commensurate) and that the p; are non-
negative.

Previous approaches to the solution of this
problem include those reported by Horowitz and
Sahni {1] using dynamic programming and impli-
cit enumeration. These approaches have been
found to be effective for a wide range of prob-
lems but have exhibited excessive runtimes for
problems with a large number of nearly equally
valuable (in terms of cost per unit weight)
objects. Also, their worst case running times
are exponential in the number of object types.
Denardo and Fox (2] have developed an ap-
proach which overcomes these objections by
solving the problem as a shortest path problem
in a network with W nodes and WxM arcs.
Thus, their approach requires storage propor-
tional to W and runtime proportional to WxM. If
W and M are sufficiently small, their approach is
extremely attractive. If W is large, however,
the storage, and to a lesser extent the runtime,
become prohibitive.

Denardo and Fox present their algorithm in
the context of using a Knapsack Problem as ‘an
integer programming relaxation. In such cases,
W is generally of the same order as the w;. We

extend their approach to the case where W is
very large but the individual w; are not, and

exploit the underlying cyclic group structure of
the problem to develop an algorithm with both
runtime and storage requirements a function only
of the weight of the largest single object and the
number of object types.

BASIC PROCEDURE

For the sake of clarity, we begin by des-
cribing the basic procedure informally. Exten-
sions, refinements and a more formal description
are given in later sections.

Given a particular Knapsack Problem (i.e.,
given values for W, M and the pairs (pi,w‘),

i=1,...M) we can construct a graph, G, with
nodes j=0,1,...W and directed arcs e=(i,m)
where m=i*wk for some k. There is an arc in G

corresponding to each i<W and each k<M pro-
vided m<w. Figure 1 shows such a graph for
M=3, W=7, and the (. W) = 3.2), (5.3),

(10.,5). The length of each arc (shown next to
the arc) is the profit obtained by selecting the
type of object correspcnding to the arc. Node
numbers correspond 1o weight used up by the
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objects already selected. a path from node 0 to
nude | corresponds to a sclection of objects with
aggregate weight ) and the length of the path
(the sum of the lengths of the arcs in the path)
corresponds to the profit obtained. There
exists a path corresponding to any feasible
selection of objects and hence, the longest path
from 0 to W in G corresponds to the optimal
solution to the Knapsack Problem. This is the
essence of the shortest path technique de-
scribed by Denardo and Fox among others.

It is possible to accomplish the same opti-
mization, however, using a graph containing a
much smaller number of nodes. Johnson [3]
observed that it is not in general necessary to
label all nodes in order to obtain the optimim
solution, but rather, that one may stop when
node j=w*w has been reached, where w= max

(wj) and p*/w*= max (pj/wj) ; i.e., W is tﬂe

weight of the "heaviest" object and w* is the
weight of the "best" object. We will explore
this observation and exploit it in developing a
new, more efficient algorithm.

The key to proving the validity of the
above observation is that if an arbitrary solu-
tion contains one or more objects whose aggre-
gate weight is a multiple, say q, of w*, then a
new solution no worse than the first can be
obtained by replacing these objects by q best
objects. Such a replacement leaves the total
weight unaltered and cannot decrease the total
profit. Thus, we need only consider partial
solutions which do not contain any objects
whose aggregate weight is a multiple of w*.
The appropriate number of best objects can be
added to complete any such solution at the end
of the procedure.

There can be at most w*-1 objects in any
such partial solution. 10 see this, consider a
partial solution containing b objects with weights

w(1), w(2), ... w(b). Form the sums sj=(_2'viv(i))
i=

modulo w*. The s, must all be different and

must all be integers in the range 1 to w*-l.
Otherwise, the b objects contain a subset of
aggregate weight qw* since :

0 l‘w(i) = qw*
i=1

and

k
s sk*lw(i)=qw‘forj<k

) i=jel

Note that ft is in fact possible for such a
parual solution to contain w®-) objects, for

mnstance w*-1 objects with vceight v when w,

and w* are relatively prime (i.e., contain no
common factors greater than 1), so this bound

on the maximum number of objects is tight at
least 1n some cases.

Since w is the weight of the largest ob-
ject, Johnson's observation is proven. Thus,
onc¢ could replace G by another graph with a
similar structure but with only w(w*-1)+1 nodes
and thus improve both the memory and runtime
performance of the procedure if the new number
of nodes is less than W.

Using similar reasoning, we go substantially
further. First, we redefine the lengths of the
arcs in G above to represent the amount of
wasted profit relative to a (not necessarily
realizable) path comprised entirely of best arcs.
Note that this redefinition of arc lengths re-
verses the previous ordering of the lengths of
different paths between nodes 0 and any other j.
The optimal solution is thus now the shortest
path from 0 to W in the new G, with arc lengths
given by Wy (p¥/w* - pk) for arcs which cor-

respond to type k objects. Note that all arcs
have non-negative length and best arcs are the
only ones that have zero length. For simplicity,
we will assume that the best arc type is unique;
the case of multiple best arc types is in fact
easy to handle in the procedure.

We now note that every pair of nodes j and
j*w* in G are connected by a zero length arc
and hence that if a path of length L from 0 to j
exists then a path of length L from 0 to jew®
exists too. For W sufficiently large, in parti-
cular, for w>w*w, it is sufficient to consider a
new graph, H, with only w* nodes corresponding
to the original node numbers modulo w*. This
gives rise to a graph of the type shown in
Figure 2 for the same example given in Figure 1
except that W is now assumed to be much larger.
(This graph is in fact a Cayley color graph ior
the cyclic group of order w*.)

Al remaming eres
of longth y

Figure 1. A graph for Figure 2. Cyclic graph
sclving the for Knapsack
Knapsack Problem
Problem




Note that this graph contains arcs both
from higher numbered nodes to lower numbered
nodes and vice versa, unlike G which contained
only arcs from lower numbered nodes to higher
numbered nodes. Also, note that arcs appear as
zero length self loops and can thus be ignored.
Since all remaining arcs are of positive length,
all cycles are of positive length and the shortest
path problem is well defined. Thus, we have
almost reduced the problem to one of finding a
shortest path in a graph with w* nodes instead
of W nodes, the resultant path augmented by the
appropriate number of best arcs to form the
optimal solution.

The only loose end to tie up is what to do
in the case where W < w*?. In this case, it is
possible that the shortest path found in H above
may correspond to a path to a node greater than
W; i.e., the "appropriate” number of best arcs
is negative. Put another way, the reduction
from G to H was based on the assumption that
node } is dominated by node j+w* in G since the
lower numbered node could always extend its
paths through the higher numbered node via a
zero length arc. This is not true, however, if
f+w* > W-W since a path to W may exist from the
lower numbered node but not from the higher
numbered node.

We can handle this problem by adding an
additional ¥ nodes to H, corresponding to the
nodes W-w+1, ... W in G and adding arcs from
appropriate nodes 0, ... w¥-1 to these new
nodes corresponding to each type of object.
Finally, we add arcs between lower numbered
nodes and higher numbered nodes correspond-
ing to each type of object, exactly as in G.
This entire transformation, which at first ap-
pear complex, amounts simply to collapsing G
by removing the nodes in the range w* through
W-® since the removed nodes are not essential
to finding the optimal sclution.

Figure 3 shows part of such a graph in a
case where w®=5, W=6, and W=22. Shown are
only the arcs corresponding to an object with
weight 2. Thus, even with this complication,
both the runtime and storage have been re-
duced to a polynomial in M, w*, and W; {.e.,
there is no functional dependence on W. Note
that if W < w*W then we simply solve the
problem using G; no reduction is necessary.

In the sequel, we will limit the discussion
to the case where W > w*W. The case where W
< w*w follows by the above transformation,
adding storage and runtime proportional to W.
The final phase of the procedure in this case is

an ordi shortest path algorithm where
nodes w* ugh w*+w are each scanned se-
quentially.

ALGORITHM DESCRIPTION

We now describe the actual procedure in
more detall and analyze its storage and runtime.
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Figure 3. A graph for solving the Knapsack
Problem when W < w* w

The following is the essence of the procedure:
Step 0: (Initalization)

=0
4= ... whl

where dj is the current estimate of the
}enqth of the shortest path from 0-to

Find i, the best node to scan next.
This is discussed in detail below.

(Scan node 1)
For k=2, ... M
Let F(lmk) modulo w®

If dl’dl + l.k then clj=d1 + I‘k and
Pstk

where Ly is the length of an arch

corresponding to a type k object
(Ly=w) (p*/w* - p,) as defined above)

and PR, records the type of the arc

used to label node j and hence keep
track of the optimal solution.

Return to step 1 if any nodes remain
to be scanned; otherwise stop.

It is clear that the storage required for
this procedure is linear in wM. If Step 1 is
sufficiently simple and each node is only scanned
once, the procedure's runtime will be dominated
by Step 2 and will be proportional to Mw®. This
is in fact the case, as we will see.

Step 3:




A node, j, must be scanned if its label,
d., 1s improved (reduced) as it may then im-

prove the labels of other nodes. If we are to
ensure that esch node is scanned at most once,
we must defer scanning it until its label cannot
be improved. When all arc lengths are posi-
live, as they are here, this objective is achiev-
ed by scanning the nodes in ascending order of
dj' This 1s Dijkstra's well known shortest path

algorithm.

In the general case, Dijkstra's algorithm
requires that in Step 1 we find the as yet un-
scanned node with the smallest label. If this
were done naively, it would require an examina-
tion of w* labels and the overall procedure
would require (w*)2 + Mw* operations. In this
case, however, we can implement Step 1 care-
fully and do much beiter.

We form "buckets" of nodes to be scanned
and place nodes to be scanned together in the
same bucket if they have similar labels. If the
width of the buckets is q, then we place a node

with label d, where (k-1) < d < kq in the k!
bucket. We then simply work our way through
the buckets in ascending order of bucket num-
ber scanning the nodes in each bucket in
arbitrary order. Thus, there is no explicit
search 1n Step 1. If the width of the bucket is
no greater than the length of the shortest arc
in the graph, then any node labeled by the
node curiently being scanned will reside in a
higher numbered bucket and hence, each node
wiil be scanned at most once.

The only problem with this procedure,
which is well known, is that the number of
buckets itself may become very large, in par-
ticular much larger than the number of nodes,
il the longest arc i1s many times greater than
the shortest. In this case, a great deal of
storage end running time may be wasted in
dealing with empty buckets. We now show that
in this case fewer than w* buckets are required
in all cases.

We begin by reindexing the arcs out of
each node corresponding to the M-1 remaining
types of object in increasing order of length.
(kecall that the arc corresponding to the best
tvpe of arc was removed from explicit consid-
eration.) Thus, Ll' is the lenth of the arc

which corresponds to the second best type of
object, etc. The %, and p, are reindexed

correspondingly.  We will refer to arcs of
lengih L. weight wi and profit P after this

reindexing as arcs of type i (or as arcs cor-
responding to objects of type i). For sim-
plicity, we wili assume L 7 L' for i#j although

the procedure does not require this.

Consider the case where w* is relatively
prime to W) By the definition above, arcs of

length [., are the shortest arcs in the graph.

s b -
Since wl and w* are relatively prime, a path

containing at most w*-1 arcs comprised entirely
of arcs of type 1 exists from O to each other
node. Thus, we know that no node need have a
label greater than Ll(w‘-l). So, w*-1 buckets

of width L] suffice since the shortest path will
be no longer than the aforementioned one.

In the case where w* and w, are not rela-
tively prime, the above path wil} loop back to
node O before resching many of the other nodes.
In this case, the following preliminary computa-
tion is carried out before setting up the buck-
ets:

r=w*
For j=1, M-1

gj= r/GCD(r,wl.)
r=GCD(r,wi)

where GCD(i,j) is the greatest common divisor of
the integers i and j and can be found using
Euclid's Algorithm.

We observe that, corresponding to the
paths comprised entirely of type 1 arcs above,
there is now a tree rooted at 0, spanning all the
nodes, and containing paths with at most gj-l

arcs of length Lj' An illustration of such a tree

is given in Figure 4. In this case only nodes
0.8, and 4 can be reached using only arcs of
type 1 before the path cycles back to node 0.
The number of nodes so reachable is 9 (three

in this case). The original set of w* .nodes is
partitioned into g, parts which are then each

partitioned into g, smaller parts corresponding

to the nodes which are now reachable via arcs of
type 2. The partitioning continues until all nodes
are reached. The above can be proven rigor-
ously in the general case using the properties of
cyclic groups.

We now define bhuckets of wvariable width
corresponding to the longest path in the tree
defined above. Thus, there are gl-l buckets of

width L1 followed by gz-l buckets of width LZ'
etc. A total of B= i (g..’l) buckets 1s required.
i

Since the product of the g's is w*, B < w*.

We have shown that less than w* buckets
are required. We now show that no node is
scanned more than once. To do so, we show
that the width of each bucket is no greater
than the lenygth of the shortest arc stll permit-
ted in a path.
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Figure 4: A spanning tree bounding the
lengths of shortest paths

Note that the paths from 0 to j correspond
to ordered selections of objects of aggregate
weight ); i.e., there are distinct paths cor-
responding to the selection of the same objects
in a different order. We can, and should, con-
sider only one path corresponding to each dis-
tinct collection of objects. This is easily done
by keeping track of the last type of arc x in
the path (which we are doing with the variable
PR.) and only considering arcs with the same or
higher index (object type). Thus, we will find
solutions corresponding to a selection of objects
in non-decreasing order of type.

Now, consider a node in bucket i of width

w.. This node was either reached via a path in
e tree considered above or via an arc whose
length is greater than that of any in that tree.
In latter case, the length of the smallest arc
under consideration exceeds the width of any
bucket. in the former case, since we are con-
sidering arcs in increasing order of length,
again a node can only enter a bucket via an arc
at least as long as the width of the bucket.

CONCLUSIONS AND REFINEMENTS

The basic procedure as stated is seen to
have a storage requirement proportional to
wi+w+M in the worst case and runtime propor-
tional to (w*+w)M in the worst case. This is a
significant improvement over procedures of this
type currently in use. Several refinements can
be made to the basic procedure, however, to
improve its performance still further in specific
cases.

if ww, and pi<p,, object | can be eliminat-

ed from consideration. In fact, if wi and Wy are
congruent to each other modulo w* and PPy

object | can be eliminated from consideration in
paths between nodes i and j in the range 0 to
w?*-1 (but not other nodes in the case W<w*W.)

842

Note that at most w®*-1 types of arcs can thus
remain between the nodes 0 and w*-1 and both
the storage and running time become functions
only of w*, not w or M. (In the case of in-
eguahty constraints, this dominance can be
pushed still farther and object i can be eliminat-
ed if w, * w; and p,; < pj.)

Since the shortest path to any node is
bounded by v= (gj-l)Li, when scanning a node

with label b, arcs of length greater than v-b
can be eliminated from consideration. Since arcs
are scanned in ascending order of length, this is
easily implemented by terminating the scan when
the first such arc is encountered.

We are currently carrying out computational
experiments to compare the efficiency of this
procedure with others currently in use.

[1} Horowitz, E. and S. Sahni Fundamentals
of Computer Algorithms, Computer Science
Press, )1575.

[2) Denardo, E. and B.L. Fox, "Shortest Route
Methods: 2 Group Knapsacks, Expanded
Networks, and Branch-and-Bound" Opera-
tions Research vol. 27, no. 3 May-June
1979.

[3} Johnson, E.L. "Integer Programming:
Facets, Subadditivity, and Duality for
Group and Semi-group Problems" IBM Re-
search Report RC 7450, 12/78.
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Generalized Augmenting Paths for the Solution of Combinatorial
Opumization Problems

Aaron Kershenbaum
Polytechnic Institute of New York

Abstract

Alternating chain procedures can be thought of as generalizations of the greedy
algorithm in that instead of accepting the best remaining element, they seek to
obtain a better augmentation by examining a wider range of alternatives. It is
possible to generalize the notion of an augmenting sequence to include augmentations
which are in effect trees as opposed to simply paths such that these augmentations
are sufficient to guarantee optimality. Unfortunately, in the worst case, these
trees are of exponential size. We examine the application of such generalized
augmenting sequences to the solution of NP-complete problems and examine their
effectiveness and efficiency.

Introduction

The theory of NP-completeness, which was first expounded by Cook [1), has led
to a search for a unified treatment of combinatorial optimization probiems. Cook
was able to characterize a very large class of interesting and important problems
as being equivalent in the sense that an efficient algorithm capable of finding an
optimal solution to any one of these problems can be used to obtain optimal solu-
tions to all of the others. Many papers by many authors and an excellent com-
pendium [2] of problems in this class (as well as techniques for proving that a
problem is in this class) have been published since Cook's seminal paper. Prob-
lems in this class are called NP-complete problems (or, more properly, NP-hard when
they are optimization problems as opposed to decision problems).

Cook's results can be interpreted in several ways. One of these is to say that
many clever people have spent many years trying and failing to find efficient
algorithms for individual problems in this class. Surely one of them would have
succeeded if, in fact, such algorithms existed. Hence, it is unlikely that such an
algorithm will be found and it is tempting to stop looking for one. This leads to
the development of heuristics for the solution of such problems {3] and to proba-
bilistic methods [4].

An alternate interpretaticn is that this pessimistic view is justified only with re-
spect to algorithms which guarantee optimal solutions and reasonable runtimes for
all instances (input data sets) of a problem. In this paper we speak of an algo-
rithm's runtime being reasonable if it grows polynomially rather than exponentially
with the size of the problem. This does not preclude the existence of algorithms
with guaranteed reasonable runtimes and which yield optimal (or near-optimal)
solutions with high probability. Nor does it preclude the existence of algorithms
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which guarantee optimal solutions and which have reasonable runtimes with high 'j
probability. There are many examples of both types of algorithms which are used »
in practice to solve specific NP-complete problems. Most important, the theory of K
NP-completeness does not preclude or even lessen the likelihood of the existence of - ;
algorithms which solve specific (nontrivial) instances of a problem and guarantee
both an optimal solution and reasonable runtime.
In this paper, we explore this second, more optimistic, point of view and present ']
a family of algorithms for the solution of an NP-complete problem. Some algorithms

in this family have guaranteed reasonable runtimes. Others guarantee optimal
solutions. While the algorithms are presented for the solution of a specific prob-
lem, the technique can be extended to the solution of other problems as well.

Matroid Theor

A specific way of approaching the solution of many combinatorial optimization
problems is via matroid theory. The excellent book by Lawler [5] gives a complete
treatment of this. Here we outline the fundamentals of this theory which are
necessary for the presentation which follows.

A matroid is a couple (E,F) where E is a finite set of m elements:
E=f{e |j=1,2, ... M}
and F is a family of independent subsets of E. The notion of independence is

quite general. We require, however, that it satisfy two properties:

P1: Every subset of an independent set is independent, i.e., if
TeFandJ C ITthenJeF

P2: If IP and IP*I are independent subsets of E containing P and P + 1
elements, respectively, then there exists an element, e ¢ IP*I (e £ IP)
such that IP w{e} is an independent set containing P + 1 elements.

Given two matroids, (E,F;) and (E,F,;), defined on the same set of elements, but
using two different notions of independence, we define an intersection of them to
be any subset, I(C E, such that I ¢ F;, and I ¢ F,. This definition can be ex-
tended to cover three or more matroids as well.

Many combinatorial optimization problems can be thought of as finding the best
independent set in a matroid or the best intersection of two or more matroids. If
weights, w., are associated with the elements, e., in E, then one can speak of the
best set as being the one with largest total weight. The maximal (or minimal)
spanning tree problem can be thought of as finding the maximum (or minimum)
weight independent set in a matroid (F,F) where E is the set of edges in the
graph and F is the family of forests. A forest is defined to be a set ot 0 or more
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edges which do not contain a circuit. As another example, lLawler [5, p. 304}
shows that the Traveling Salesman Problem can be thought of as finding the best
intersection of three matroids. The problem of finding the maximum weight inter-
section of three matroids has been shown to be NP-complete [2]. Lawler shows (S,
p. 364) that the problem of finding intersections of four or more matroids can be
reduced to that of finding intersections of three. There are many other combina-
torial optimization problems which can be naturally thought of as matroid intersec-
tion problems. The theory of NP-completeness assures us that all problems can be
thought if in this way.

we will consider one of the simplest possible 3-Matroid Intersection Problems in the
sequel for the sake of clarity. The problem considered is the Three Dimensional
Assignment Problem (TDAP). In this problem, we are given N people, N jobs,
and N days. There is a cost, cijk of having person i doing job j on day k. Each
person is to do only one job, each job is to be done only once, and only one job
is to be done on a day. Formally the problem is:

Minimize 2Z = i,zj,kc“k xijk

such that

izj xijk =izkxi’.k = xijk =1forijk=1,2, ...N xijk e {0,1}

b3
j.k
Thus, setting xijk to 1 corresponds to having person i do job j on day k. This
problem can be viewed as an intersection of three partition matroids. Given a set
of elements, E (in this case, the xijk)' a partition matroid can be defined by a
partition of E and a vector, A, constraining the number of elements of E which
may be selected from any part of the partition. Formally, we have the partition of
E into subsets El., j=1, ... k, where

U£j=£ and Ei r\Ej=0fori#j
i

and an integer vector A = {ajl j=1, ... k}

A matroid (E,F) is then defined where F consists of all subsets, 1, of E formed by

selecting no more than aj elements of Ej'

In the case of the TDAP, the first partition of the xijk is by person, i.e.,

Ei = lxijklizl' s N,' k = 1, oo N)

and a = 1 for all i. The independent sets in this first matroid correspond to
assigning each person at most one job. Similarly, two more matroids can be de-
fined to constrain jobs and days. Intersections of these three matroids correspond
to feasible partial assignments and intersections of maximum cardinality correspond
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to feasible complete assignments. If we define weights wijk associated with the
X”k:
Wik = © - Cix

where C is larger than any Cijk' then the maximum weight intersection corre-
sponds to the optimal solution to the TDAP.

Augmenting Paths

We now define a family of algorithms for the solution of matroid intersection prob-
lems. These are generalizations of the basic procedure given in [6].

Given a matroid (E,F) (and hence a notion of independence) and a (not necessarily
independent) subset S, of E, we define the span of S, denoted sp(S), as S to-
gether with all elements of E not independent of the elements in S, that is

sp(S) = { e | I w{e} £ F where | is any independert subset of S}

If S is an independent set and e ¢ sp(S) then e forms a unique cycle, which we
denote by C(e), with S. A cycle is a dependent set which becomes independent if
any element is removed from it.

If the matroid intersection problem only involves two matroids, we can obtain

a maximum weight intersection by producing a sequence cf intersections, I(K),
containing K elements, for K = 1,2, ... m. Each I(K) is the maximum weight
intersection containing K elements. The algorithm which produces the I(K) is
cailed an augmenting path procedure because it augments I(K) to produce X(K +D
by finding the longest path in the graph G(K) defined below.

We define G(K) to be a bipartite graph with nodes corresponding to the elements,
e, of E plus distinguished start and finish nodes, a and z. Directed arcs are
defined as follows:

@1  iekE-sp,a¥) a.in ickE - 1K) e @

.2  ieE-sp, 1K) G tek- 10 e cWa
Paths from a to z correspond to augmentations of I(K), that is, to sets of elements
to be added or deleted from I(K) to produce an intersection with K + 1 elements.
Notice that all a2 to z paths go alternately through nodes not contained in I(K)
(which are to be added to I(K)) and nodes in I(K) (which are to be deleted).
Note also that there is one more node of the former type than there is of the

latter and hence an augmentation results. If we associate lengths with the arcs
equal to the weights of the elements which the nodes correspond to (positive for
elements to be added and negative for elements to be deleted), then the length of
a8 path corresponds to the incremental weight of the augmentation. The longest
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path results in an optimal augmentation. Such a path can be found using a short-
est path algorithm suitably modified to find longest paths. G(K) contains no
positive cycles and so the algorithm converges.

These augmentations do, indeed, result in intersections. As one passes through
nodes from a to z we see that an element is added preserving independence in the
first matroid but not the second. An element is then deleted restoring indepen-
dence in the second matroid and hence the intersection. A node is then added
which, because of the deleted node, maintains independence in the first matroid.
This process continues until the added element maintains independence in the
second matroid as well as the first, thus completing the augmentation.

As an example, consider a two dimensional assignment problem (involving, say,
only people and jobs.) The wij's for this problem are given in Figure 1. 1(2 is
clearly 11,22, f.e., person 1 assigned to job 1, and person 2 assigned to job 2

G(z) is shown in Figure 2. The arc lengths are shown as are the lengths of the
longest paths to each node from node a. The longest a to z path is 2,11,12,22,23,2
which corresponds to deleting 11 and 22 from the intersection and adding 31,12,
and 23. The length of this path, 7, is the difference between the weight of 1(3)
and !(2). A complete deécription of this process and a proof of i;s validity is
given in [5).

Generalized Augumenting Paths

In the graph shown in Figure 2, one can obtain an optimal augmentation (i.e., one
which takes us from an optimal assignment of K elements to an optimal assignment
of K + 1) because:

1. If the current intersection is not maximal then an augmenting path exists.

2. The labels given to the nodes during the longest path algorithm completely
summarize the augmenting paths.

We now wish to generalize the notion of an augmenting path, and hence the entire
procedure, to the problem of the intersection of three matroids. One way of doing
this is to "freeze" one of the matroids and only consider alternating sequences
within the other two. In this case the first node, s; in an augmenting path would
be independent of I(K) in two of the three matroids (or in all three, in which case
it is the only node in the augmenting path). Say s, is independent of I(K) in the
first and third matroids. We could then freeze the third matroid and maintain the
same span within the third matroid thrcughout the augmenting path. Thus, the
deletion of s for i even reduces this span and the addition of 5 for i odd restores
it. We thus reduce the search space to two matroids and the same polyncmial
bounded procedure will work. Note that, alternatively, we could have considered
the first matroid frozen. Indeed, it is so frozen ir the two matroid intersection
algorithm. Thus, there are three types of augmenting paths, one for each matroid
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within which s, is dependent. Unfortunately, while this procedure is polynomial
bounded, it does not guarantee optimal solutions as there are augmentations which
have no such corresponding argumenting path.

In order to guarantee that all augmentations are explored, we must relax the
definition of an augmenting path still further to include cases where independence
is not necessarily restored by the deletion of 5; for i even. Thus, an augmenting
path may start with any element, s,, which is independent of l(K) in at least one
of the matroids. Unlike the procedure given for two matroids, one may begin with
independence in any matroid. Consider the graph shown in Figure 3 corresponding
to two augmenting paths, Path 1 and Path 2, for the partial assignment 111,222,333
(i.e., person 1 to job 1 on day 1, etc.) in a TDAP. These paths are not strictly
comparable in that they exclude different elements along the way. Thus in Figure
2, when node 22 is labeled using the path a, 32,22 it is equivalent (in terms of how
the path can continue, not necessarily in terms of the numerical value of the label)
to being labeled using the path 3,31,11,12,22. In Figure 3, however, when node
111 is labeled using the path a, 411,111 it is different from labeling 111 using the
path a, 154,111 because different continuations of these paths are possible. Thus
starting with a, 411,111 we can continue to 152 but not 215 and, conversely, start-
ing with a,154,111 we can continue with 215 but not 152. Thus, Path 1 and Path
2 are not comparable in terms of their lengths only.

Such paths must also be compared in terms of their spans. We note that if two
paths from a to some node i result in sets having identical spans then the same
continuations of both paths are possible. {ihis was the case for intersections of
two matroids.) Indeed, it i{s possible for paths to have slightly different spans
and still have the same set of possible continuations. In particular, if the only
difference in the intersections of the spans of two paths are nodes outside the
intersection of the spans of I(K). then the paths are comparable. We can thus
generalize the augmenting path procedure to consider all undominated a to 2 paths
where one path dominates another only if it has the same continuations and a
larger length.

The notion of a path itself, however, must be generalized as well. In the case of
3 matroids, not all augmentations correspond to paths. We see an example of this
for a TDAP. The augmentation [412,234,341,123] - [111,222,333]) does not cor-
respond to any path in the conventicnal sense. It is possible however, to extend
the augmenting path procedure to include such augmentations by extending the
notion of a path.

We define a generalized augmenting path with respect to an intersection !(K) to be
a sequence of nodes S = (s;,s;, ... sm) where 5; € E - I(K) for odd i and s, €
I(K) for even i. As before, 1K) Sy - Sz + 83 - ... * s isan intersection. Also,
the even s; are deleted in order to remove dependencies created by the inclusion
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of the odd s;- Now, however, the subsequences 1K)y Sy - Sp ¢+ ""Sj for even j )
need not correspond to intersections. o~ .‘

One can thus guarantee an optimal intersection as in the case of two matroids. The

number of generalized augmenting paths one may need to consider, however, may

grow expbnentially with K. In practice, however, the number of such paths can 4
be controlled at the expense of optimality. First, the length of any path, (s,, s, _]
e s,), can be reduced by a penalty to account for the nodes which still must be h .1
deleted to restore the intersection. In the case of arbitrary matroids, this may be
complex to compute. In the case of the TDAP, however, where 3 partition 1
matroids are involved, and all cycles contain 2 elements, it is easily computed.

In some cases the above may keep the computations reasorable. In others, it may
be necessary to reduce the number of paths considered by relaxing the definition
of dominance. This will also result in a heuristic rather than an optimal solution.
In the case of the TDAP, one such relaxation is to ignore differences in the spans
outside the intersection of the span of I(K). This is motivated by the fact that
we consider deleting eclements in X(K) in order to include elements blocked by
them.

We can thus consider a hierarchy of generalized augmenting path procedures with
increasingly stringent dominance criteria and increasing runtime. A tradeoff
between optimality and runtime is then available. We are currently investigating
this tradeoff using the TDAP as an example.
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A Note on Finding Shortest Path Trees

Aaron Kershenbaum
Department of Electrical Engineering, Polytechnic Institute of New York,
333 Jay Street, Brooklyn, NY 11201

Two shortest path algorithms are compared and it is shown that, while one outper-
forms the other in practice, the former's running time is exponential in the worst case
while the latter’s is polynomial. A procedure which constructs such worst case ex-
amples is given,

In the excellent paper “A Computational Analysis of Alternate Algorithms and
Labeling Techniques for Finding Shortest Path Trees” by Dial, Glover, Karney, and
Klingman [1] the statement is made “that the label-setting algorithm has a worst case
bound, that is an order of magnitude better than the label-correcting algorithm.” It is,
in fact, easily shown that this statement is true for the performance of Algorithm C!
relative to the performance of a label setting method. In Algorithm C1, since the
sequence list is managed in a FIFO fashion, paths are generated in order of the number
of arcs in them. Each node can thus be scanned at most NV times (creating paths with
K arcs, K=1,...,N), where N is the number of nodes. Since nodes are scanned only
once in label setting algorithms, the result follows.

The situation is surprisingly different with respect to Algorithm C2. I have used this
algorithm to find routes in very large, very sparse real networks (thousands of nodes
and average nodal degree between 2 and 3) with a variety of length functions (gen-
erally distance-related) and have found it to outperform all others. This is exactly
as the authors indicated. The worst case behavior of this algorithm, however, is
exponential!

Consider, for example, the network in Figure 1. Suppose that the list of nodes adja-
cent to node 1 (the root) is in ascending order of node number and that the list of
nodes adjacent to all other nodes is in descending order. We find that every time a
node is scanned, node 2 is relabeled and scanned. In fact, node 2 takes all labels be-
tween 20 and 5 and is scanned every time it is relabeled. Here N =6 and node 2 is
scanned 2V°? times. Networks with this characteristic and of arbitrary size can be
formed as foliows.

Step 1: Start with a network with two nodes, | and 2, and two arcs (I, 2) and
(2, D with (1, 2)=1 and L(2, 1) = 1, where L(/, j) is the length of the
arc fromi oy,
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Step 2: For K =3 to N alter the network as tollows:
(a) Add node K.
(b) Add arcs (K, i)fori=2,.... K- 1 with L(K.i)=L(l.i).
(c) SetL(1,i)=L(1,i)+2V3 +1.
(d) Add anarc (1, K) withL(1.K)=1.

During the execution of algorithm C2, the node 2 takes all labels from N- 1 to
2M¥=3 4 N- 2 and is scanned 2V times.

It should be noted that this pathological situation is a product not only of the un-
usual arc lengths but also of the ordering of the adjacency lists, in particular that lists
of adjacent nodes are ordered with the nearest node first for all nodes except the root.
If the adjacency lists were ordered oppositely, each node would be scanned only once.
Thus, we see a strong dependence of the performance of Algorithm C2 on a preorder-
ing of the links. The general idea would be to order links in such a way that they
would be likely to be scanned in ascending order of their labels. Alternatively, adja-
cency lists could be ordered nearest node first and the sequence list management could
be altered only slightly to add the entire list of relabeled nodes to tep of the sequence
list in forward order (rather than the revecse order implied in Algorithm C2) of the
adjacency list of the node being scanned.

In summary, we note that Algorithm C2 has excellent behavior in practice and pre-
processing is probably warranted only if multiple applications of the algorithm are
being done (e.g.. from multiple sources).
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1ID. Probabalistic. Analysis of Algorithm Performance .<
The problem of finding an optimal set of repeater locdtions 1
covering a given set of terminal sites, or set of potential repeater :
locations and a covering matrix specifying which terminal sites can be .j
covered by each repeater location, is an important problem in the o
design of multihop packet radio networks. The problem in an instance
of the classic set covering problem which has many other applications —;}J
as well. The set covering problem is known to be NP-complete and |
as such it is unlikely that an algorithm will be found which can
guarantee an optimal solution and also guarantee a reasonable running

time, that is a runtime which grows polynomially in the number of
terminals and repeaters.

The theory of nondeterministic polynomial completeness (NP-
completeness) basically states that there is a large class of problems,
which includes almost all optimization problems of interest in the area

of network design, which have the property that a solution to one

could be used to obtain a solution to all the others in a reasonable ‘

amount of time. It has been shown that one problem, the Satisfiability .-":.'
Problem, has the property that all problems in this class can bc R
transformed into an instance of it. Thus, an algorithm which could
obtain an optimal solution to the Satisfiability Problem, could be used
to solve all the others. Techniques have been developed for proving -
e that many other problems are NP-complete. Proofs have been given '
for the NP-completeness of over 200 other well-known problems.

In our previous work we reported on results obtained using a
Y

new set covering algorithm. The algorithm obtained optimal solutions

for moderate sized problems with up to 300 node networks and cover-
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age related to distance. That is, if the average matrix reflected the ]
fact that a repeater was far more likely to cover a nearby terminal

- than one farther away, then the algorithm worked very well, con-

verging to an optimal solution very quickly.
If on the other hand, the coverage matrix was random, the

algorithm ran much more slowly and only problems with up to 50

terminals could be treated efficiently. In examining why the
algorithm had difficulty treating problems with random data, we
observed that the difficulty stemmed from the large number of optimal
and near optimal solutions available. The algorithm had no difficulty
finding an optimal solution but, rather, had difficulty in verifying the
solution was optimal in a reasonable amount of time due to the presence
of a large number of alternate solutions of comparable quality. This
led us to conjecture that it might be possible to develop algorithms
which had a reasonable running time and which could find optimal
time or near-optimal solutions with high probability. It is known that
asymptotically, as the size of the problem becomes infinite, there
exists algorithms which give optimal results almost always. These
results are an outgrowth of the same symmetry which makes it difficult

to verify the optimality of the solutions produced by our set covering

algorithm.
t These results are encouraging but of no direct use in solving
o o .
Ff‘ network design problems since real problems are of finite size and

nothing was said about how fast the algorithms converge probablis-
tically to an optimum; i.e., what the probability is of their finding
the optimum, or a solution within some bound of the optimum. We

thus sought to investigate what could be said about the probabalistic
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performance of known heuristics for problems of moderate size. Wwe
: . . L
chose the set covering problem mentioned above as the first problem i

to investigate. The probabalistic model of this problem follows.

We are given a set T={t;, t,, ... tN§ of N terminals, a set )
R={r,, ryo, ... rM} of M potential repeater sites, and an N x M .i
covering matrix, C, where Cij is 1 if ti can be covered by rj. We .
seek a subset of R containing as few repeaters as possible and cover- jJ
ing all terminals. The elements of C are chosen randomly and inde- .>

pendently. Specifically, we assume Pr{ci];l}:p and Pr{(‘,ifo}:l—p:q.

We define Rj' the set of terminals covered by rj, by:

R, = {tjlc;; = 1}

Similarly, we define Ti' the set of repeaters covering ti, by:

'I‘i = {r‘jlcij = 1}
A cover of the terminals is then defined as a subset SCR satisfying:
UR. =T
rJ.sS )

A minimum cover, S¥*, is then a cover containing as few elements as
possible, i.e.:

U R. =T
rJ.sS* )

and |S*| < |S] for all S such that U R, = T.

r.eS )
]

Note that the minimal cover is not in general unique. Indeed

] our approach rests on the existence of a large number of minimal and °
@ T
? near minimal covers.

———

In order to analyze the probabalistic behavior of a heuristic we

. must do two things. First, for a given set of values of N, M, and ’j
0. 1
'F p, we must find the probability that |S¥| = K, that is, the probability
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that there exists a minimal covering containing exactly K repeaters.
a *
B Let

' P(N,M,K) = Pr{|S*| = K} for given N,M, and p.

Next we must find PALG(N,M,K), defined as the probability that the ‘H

algorithm will find a solution with exactly K repeaters. A figure of

merit for evaluating the probabalistic behavior of the algorithm is

then
M M
3 KPp G(NMK) - 2 KP(N,M,K)
FALG * K=0 K=0 (11D.1)
: M
5 KP(N,M,K)
K=0

This is simply the relative error made by the algorithm, i.e

tr

the difference between the avarage number of repeaters in a covering
found by the algorithm and the minimum number required, normalized

by the minimum number required. We believe that INx_r)nm 3 + 0 for

ALG
any M, and p, and any reasonable algorithm where a reasonable

algorithm is defined as one which stops when it has a cover. In -]
particular, we believe FALG")O for an algorithm which picks repeaters
;'_'.: randomly until a covering is obtained. 94
P’ We begin by evaluating Q(N,M,K), the probability that a ran- '4
: domly chosen set of K repeaters covers all N terminals. Notice that ;
this is not the same as the probability that an algorithm picking o
repeaters at random will stop after K repeaters since in some cases T
fewer than K will also suffice and the algorithm will find them. Also,
Q(N,M,K) is a cumulative distribution, that is it relates to the proba- -“;;:
- bility that K or fewer repeaters are required for a covering rather o
than exactly K. We do have, however, that
o .
t ;sﬁ
s
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Q(N,M,K) < ZK P(N,M,K) (1D.2)
L=0
that is, the probability of a randomly chosen set of K repeaters
covering all N terminals is less than or equal to the probability of the
existence of a covering containing K or fewer terminals. Thus we
have,

P(N,M,K) > Q(N,M,K) - Q(N,M,K-1), K>1,
that is, the difference between two successive Q's is a lower bound
on the corresponding P.

Q(N,M,K) is easy to evaluate because repeaters picked randomly
are picked independently of one another and our random model
assumed their original characteristics are independent. The
probability of a single terminal not being covered by a single repeater
is q(=1-p). The probability of a single terminal not being covered by
any of the K repeaters is qK. The probability of at least one repeater
of K covering a given terminal is then l-qK. Finally, the probability
that all N terminals are covered by the K repeaters is (1—qK)N. We
thus have that

QN.M,K) = (1 - g)N (11D.3)

Note that this is not a function of M except in the trivial sense
that M must be no smaller than K. Figure 1ID.1 shows values of
Q(N,M,K) for p=.5. Figure 1IID.2 shows values of Q(N,M,K) -
Q(N,M,K-1) for the same examples. Both show a tendency for solu-
tions to cluster about a narrow range of K. This is encouraging in

that it implies that probabalistically, simple algorithms should do well.

@
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As vyet, we do not have an exact analytic expression for R
P(N,M,K). We can get a tighter lower bound on it by evaluating the
distribution of solutions from increasingly sophisticated algorithms. A
simple minded algorithm would be to pick repeaters randomly until one 4
obtained a covering. The probability of obtaining a solution with K

or fewer repeaters using this algorithm is P,(N,M,K) given by:

N

N o
PyNMK) = = N plgNTpi(N-i, M-1,K-1) (1iD.4)
=0

i
since the K'tﬁ repeater will cover i terminals with probability (If)pin-i
and the remaining K-1 of M-1 repeater must cover the remaining N-i
terminals. Note that this is, again, not a function of M except that
M must be no smaller than K. The probability of obtaining a covering
with exactly K repeaters is given by P,;(N,M,K)-P;(N,M,K-1).

A somewhat more sophisticated algorithm is to consider repeaters
in a random order and to select a repeater only if it improves the

chances of obtaining a covering more by picking it than by not

picking it. Letting P,(N,M,K) be the probability of obtaining a

covering containing K or fewer repeaters using this algorithm, we

have
NN i N-i . - ,
P,(N,M,K) =i;$_0 { Pa fmax (Pz(N-i, M-1,K-1), Pp(N,M-1,K))} j
(11D.5) 1
P,(N,M,K) is plotted for N=5 and .:10 in Figure IID.3. Along with ;-Di

it, the probability of obtaining a covering using K randomly chosen
repeaters is plotted. Notice that this algorithm's performance is a
substantial improvement over randomly picking repeaters. Notice :.1*%

also, that P,(N,M,K) is a function of M. This algorithm is very
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simple and has a reasonable running time even for very large N and
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M. Our next objective is to compare it with an upper bound on

PCN,M,K) to see if it already has converged to ncar  optimal

pertormance probabalistically.
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FIGURE 11D.3 CUMULATIVE PROBABILITY OF A COVERING FOR
MORE SOPHISTICATED ALGORITHM (p=0.5,M=10).
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- C. PROBABILISTIC ANALYSIS OF ALGORITHMS

We have obtained results in this area indicating that even rela-

tively simple algorithms will, with high probability, obtain near optimal

o solutions to certain difficult optimization problems. This is encouraging
in that it implies that problems, previously considered intractable, may
in fact be solvable, at least with high expectation of success. The

w» results are also useful in guiding heuristics towards potentially fruitful
areas within the solution space and in avoiding unnecessary effort in
areas where little further progress can be expected.

LU
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Specifically, we have analyzed the intrinsic probabilistic behavior
of the 3-Satisfiability Problem and found that, independent of the size
of the problem, there is only a limited region of uncertainty, i.e., only
a finite set of values where even the simplest sensible algorithm can
make an error. This problem, which is described in detail below, is
representative of a very large class of difficult combinatorial problems
and can, in fact, be used as a vehicle for solving many other problems.
Thus, we believe these results can be extended to other problems as
well, most notably, to problems in network design such as facility
location and link topology optimization. We are currently in the process
of investigating such extensions and of examining the probabilistic

performance of several specific heuristic algorithms.

C.1. Probabilistic Behavior of the 3-Satisfiability Problem

The 3-Satisfiability Problem has a simple and homogeneous struc-
ture which makes it easy to develop and study a probabilistic model. It
also does not involve any numerical data which would otherwise obscure
the nature and generality of the results which we obtain. These re-
sults can, however, be directly extended to optimization problems which
do involve numerical data, as we will see in the following discussion.

In the ordinary satisfiability problem, we are given a Boolean
expression, E, over m Boolean variables ViV, YV and we ask if
there exists a set of truth values for the variables which will result in
E taking the value True. Thus, each of the v; can take either the
value True or False (alternatively denoted by 1 or 0) and E will then
take either the value True or False based on the values of the v.. E is

i
usually given in disjunctive normal form, i.e., as & set of clauses all of

-30-
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which must be True in order for E to be true. Each clause contains
one or more variables and is said to be true if at least one of the
variables in the clause is assigned the value it takes in the clause.
Thus for example, E = (v, + v3)(v; + v3) has 2 clauses. The first,
(vqy + vp) is true if either v,; is True or v, is True. The second is
True if either v, is False or vi is True. Thus E is satisfiable as the
values v; = True, v, = True, and vz = True satisfy both clauses and
hence E. There are several other assignments of truth values v,, v,,
and v which will satisfy this E. The expression (v{)(V; + V,)(vs) on
the other hand is not satisfiable.

The 3-Satisfiability Problem is a version of the ordinary Satisfia-
bility Problem where all clauses contain exactly 3 variables. Garey and

Johnson, in their book Computers and Intractability, show this problem

is NP-complete by showing that any ordinary Satisfiability Problem can
be transformed into a corresponding 3-Satisfiability Problem of roughly
the same size. Thus the two problems are equivalent.

Many other problems can also be transformed into corresponding
3-Satisfiability Problems. In particular, combinatorial optimization
problems such as the Traveling Salesman Problem or the problem of
locating earth stations in a satellite network can be so transformed.
Thus, we can produce a Boolean expression which corresponds to a
particular optimization problem in the sense that if the expression is
satisfiable then the optimization problem has a solution with a value less
than or equal to a given constant (for minimization problems) or greater
than or equal to a given value (for maximization problems). Further-
more, the satisfying truth assignment can be used to obtain the solution

to the corresponding optimization problem directly. By altering the

|
0, ;
Ak o el
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value of the constant in the above transformation the optimal solution to
the corresponding optimization problem can be found via binary search;
i.e., if we know the optimum lies between values c; and c,, we try the -]

value c; + c3/2. This technique is known as thresholding.

One can determine if an expression is satisfiable by assigning all

oM possible truth values to its variables. This approach is, of course,

not practical for large values of m. There are many sophisticated tech-
niques for answering the question whether or not a given expression is
satisfiable, but all have running times which ultimately grow exponen-
tially with the number of variables and thus are limited to problems of
modest size.

We obtain here a technique which yields the a priori probability of
an expression with a given structure being satisfiable given a probabil-
istic model! of the space from which the problem is drawn. For prob-
lems where this probability, PS, is very close to 1 or very close to
zero, we need seek no further. Only for problems where PS is signifi-
cantly different from 0 or 1 need the question be investigated any
further. In some cases, the PS itself is all that we need. For exam-
ple, if we have found, using a heuristic algorithm, a solution of value
Cc, to a given maximization problem, and have determined that PS is less
than .01 for an expression corresponding to the existence of a solution

of value greater than or equal to c; + a (for a much smaller than c,),

then we are reasonably certain that there is not much to be gained from
an attempt at further optimization. This is very important because it

has often turned out that it is much harder to verify the optimality (or

3

:..l near-optimality) of a solution than to find an optimal solution especially
[

o when the solution space is rich and there exist many alternate near-
. optimal solutions.

.
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' We consider a uniform probabilistic model for the 3-Satisfiability }
Problem where all clauses are equally likely. Thus a problem is totally .‘
characterized by v and b, the number of variables and clauses, respec- i‘;‘
tively. We will consider two models which are nearly equivalent. In j
one case, clauses are picked without replacement, i.e., a given clause ‘1
can appear at most once in an expression. In the other case, clauses
are picked with replacement. .
Duplicate clauses do not affect the satisfiability of an expression. .f
We can thus relate problems where the clauses are chosen with replace- ]
ment to problems where the clauses are chosen without replacement by B
saying that a problem with v variables and b clauses chosen with re- “‘
placement is the same as a problem with v variables and b~ clauses
chosen without replacement if the number of distinct clauses in the first

problem equals b°. The relationship between the r.umber of clauses
chosen with replacement, b, and the average number of distinct clauses

is given by the following argument.

Let Xb be the number of distinct clauses when b clauses are
selected with replacement. Then Xy, ¢<b and X, =X ., +a, where

3 a = 1 with probability P and a = 0 with probability 1 - Pnew’ P

2 new new
F. is the probability that the bth clause is different from all the first
b - 1. Pnew is simply the ratio of the number of unchosen clauses to

the total number of possible clauses. The number of possible clauses is

® L)

F B =8}

since each clause contains 3 variables each of which can take either of

3 two values. Thus Prew is given by:

1. ® @

: B - X w
_ b-1 - -

Pnew = —5 - (C-1)




Let f(b) be the average number of distinct clauses. Then

E(Xb|xb-1) = Xpp t Pnew (C-2)
and

f(b) = E(X,) = f(b - 1) + B2 1(b1) ‘c-3)
Thus

£(b) = f(b-1) x 2141 | (C-4)

B

As an example, if v = 10, then B = 960 and f(50) = 48.7. As we will
see, we are most interested in values of b near 5v. For v = 20 and
b =100, f =99.5. As v increases, f/b approaches 1 very quickly.
Thus, there is little difference between choosing clauses with or without

replacement.

C.2. Analytical Method 1

We now turn to the problem of estimating Ps(v, b), the probability
of expression E, with v variables and b clauses, being satisfiable.
Given a problem with v variables and b clauses, we define the truth
assignment graph, G, associated with that problem to be a graph with

2V

+ 1 nodes. Nodes 1 through 2V correspond to the possible truth
values for the v variables and node 0 is a distinguished pseudonode.
Each clause in E is inconsistent with one eighth of the truth assign-
ments, specifically those in which all three variables in the clause have
values opposite to their values in the clause. G contains an arc be-
tween node 0 and any node corresponding to a truth assignment which
does not satisfy E. We thus proceed through E clause by clause and
add arcs between node 0 and nodes which do not satisfy the clause.

3

v- .
There are 2 arcs corresponding to each clause. In general, arcs

-34-
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"belonging" to different clauses overlap, i.e., there will be truth
values inconsistent with more than one clause. We do not show the
multiplicity of these arcs. Thus, G will in general contain fewer than
b x ZV'3 arcs. We are interested in G because PS, the probability E is
satisfiable, is precisely equal to the probability that G is not con-
nected. Figure C.1 shows a truth assignment graph.

The problem of whether a random graph is connected or not has

been studied extensively by Erdos and Renii. We will proceed along

similar lines.

E=(vy+ vy +Vy) (Vi +Vy+vy) (Vo # Vgt Vy)

FIGURE C.1. A TRUTH ASSIGNMENT GRAPH

We define A(v, k, b) to be the number of Boolean expressions
whose corresponding truth assignment graphs contain k or more isolated

nodes (i.e., nodes with no incident links). Ps(v, b) is then given by

<

2
P(v,b)=1- 3 (-nHk ’i(—"-'TS"—'-Q (C-5)
k=0 Cp)
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This relation follows from the fact that if an expression is satis-

where B = 8(

fiable then its corresponding truth assignment graph must contain at
least one isolated node. Note that the alternating sum is required in
order to account for the situations where graphs with more than k
isolated points are included in terms with k or more isolated points. We
seek the number of expressions with graphs with one or more isolated
points. The alternating sum gives us the number with exactly =zero
isolated points.

We can write A(v, k, b) as

v .
A(v, k, b) = I () 2! NM(v, i, k) B(v, i, k, b) (C-6)
i=0
where NM(v, i, k) is the number of ways of selecting k clauses which
match in i specific variables (i.e., k clauses in which i specific vari-
ables take the same truth wvalue in all k clauses) and B(v, i, k, b) is
the number of Boolean expressions whose corresponding truth assign-
ment graphs have k or more isolated points and the isolated points
match in i variables.
v-i v-i-m

NM(v, i, k)= 2 (DPE ) YhHMe
m=0 k m

k

2K - 2)v-i

=

(C-7)

where the approximation is made by replacing
2v-i-m v-i-m)k
g )by T

Now, B(v, i, k, b) = (C(V'li)'k)) where c(v, i, k) is the total

number of clauses which are permissible in the sense that they give

-36-
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rise to graphs that have the requisite number of isolated points and
matched variables. c(v, i, k) can be estimated by

2K k(v-i) |

c(v, i, k) = 8(Y) expl-
3 2X-2)8v

(C-8)
The details of this approximation, which are somewhat lengthy, are

given in W. Chuang's thesis.

Using the above approximations and Sterling's approximation

n! = J2n NNt N
we find by algebraic manipulation that

Ps(v, b) 21 - exp[-exp (-c)] (C-9)
where b = 8(2n 2¥ + c)

and c is a constant.

Thus, only for b £ 5.5 v does Ps(v, b) take values significantly
different from O or 1 since for any value of c less than -2, PS is nearly
1 and for any value of ¢ greater than +4, PS is nearly 0. Figure C.2
summarizes the relationship between PS and c. Note that this is not a
function of v or b directly. The approximations used in obtaining this
analytic form are, however, functions of v as we will see. The approx-
imation turns out to be reasonable for modest values of v (e.g., Vv in
the range 10 to 30) which we are interested in. Note especially the

sharp drop from 1 to O over the interval ¢ = -2 to ¢ = +4.

C.3. Analytic Method 2

Because of the approximations made in the previous analysis, we

sought a second method to independently verify the approach. We

-
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consider the case now where clauses are selected with replacement. We
note that all clauses are equally likely and that a given clause elimi-
nates 1/8 of the possible truth assignments. Indeed, because of this

symmetry, on the average the bth

clause in an expression eliminates 1/8
of the remaining truth assignments which satisfy the first b-1 clauses.
We say a truth assignment is eliminated if it does not satisfy an expres-
sion. Thus, if we define Ns(v, b) as the number of truth assignments

satisfying an expression with v variables and b clauses, we have the

recurrence relation

= _ = v-3 v-3
Ns(v, b) = Ns(v, b-1) - 2 + .~
_ 1z _,71.bz
=g Ng(v, b - 1) = (g)" Ny(v, 0 (C-10)

where NS is the expected value of N_.

Since Ns(v, 0) = 2V, i.e., all truth assignments satisfy an expres-

sion with no clauses, we have
N (v, by = (HP 2" (C-11)

P S(v, b) is by definition the probability that Ns(v, b) is greater
than zero. Unfortunately, we only have an expression for N oy the
average value of Ng and not for the wvalue of Ng itself.
If Ns(v, b) >> 1, then we would expect P,(v, b) = 1. 1If I'\Js(v, b) <1,
then we may assume that Ns(v, b) is either 0 or 1. Then
P,(v, b) = P(N,(v, b) = 1) = 'Ns(v, b). Thus we use the approximation

1, N(v,b)>1
P(v, b) = (C-12)

N (v, b), Ny(v, b) < 1.
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This approximation is reasonably good. We first find b such that

Ns(v, b) = 1:
GP2¥ =1
b = v ~52v (C-13)
log,8 - log,7 =~

We then have

1 b < 5.2v

b-5.2v (C-14)

PS(V, b) =
b >5.2v

g’

This function is very similar to the one obtained by the first
analytic method and again the region over which Ps(v, b) drops effec-
tively from 1 to 0 is limited again to a small range and is independent

of v and b. Figure C.3 illustrates the relationship between Pg and c¢
b - 5.2V )
—g )

The dotted line of Fig. C.3 shows PS as found by Method 1 for

(where ¢ =

the same values of c. As can be seen, for c > 1 the curves are vir-
tually identical. There is, however, a 5% difference between the con-
stants relating v and b in the two approximations. Nevertheless, the
two analyses corroborate eath other and give rise to the same analytical
behavior of PS; i.e., v and b are linearly related at the point where PS

drops and PS decays exponentially.

C.4. Simulation

Finally, in order to compare the accuracy of the two analytic
methods, we performed a simulation to measure Ps(v, b) directly. In
the simulation, clauses were generated at random with replacement, all
clauses being equally likely. Each time a clause was generated, the

truth values it eliminated were eliminated. This procedure was con-
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tinued until no truth values remained. For each value of v, the value
of b at which the last remaining truth value was eliminated was re-

corded and became a sample, bi‘ An estimate of Ps(v, b) is then

formed by

(# of b, > b)
Ps(v, b) = oAl ¥ of B) (C-15)

Figure C.4 gives the results of this simulation for v = 10, 20 and 30.
As can be seen, the true value of Ps(v, b) lies between the N values
predicted by the two analytic methods and is somewhat closer to that

predicted by the second method. The important property of rapid

decay from 1 to 0 is borne out.
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Second-Order Geeedy Algorithms for Centralized
Teleprocessing Network Design

A. KERSHENBAUM, MIMBER, 1ELE, I BOORSTY N,
MEMBER, IFEL, AND K. OPPE NI IM

Abstraci—We consider the problem of designing a centralized
telecommunication network comprised of multipoint lines given @ set
of terminal locations, traffic requirements, and a common central
site. The optimal solution to this problem is a capacitated minima)
spanning tree. We develop a class of heuristic algorithms for the
solution of this problem by imbedding existing heuristics, referred to
as first-order greedy algorithms. inside u {vop where small, carefully
chosen sets of arcs are alternately forced in and out of the solution.
The resultant procedure is shown to he superior to evisting tech-
piques, producing solutions typically 2 percent better, while requiring
oanly s modest amount of additional computer time.

INTRODUCTION

The problem considered is that of finding an optimal
(minimum cost) design for a centralized telecommunication
network given a set of terminal locations, traffic magnitudes
between these locations, and single common source or destina-
tion (central site). In order to retain simplicity and low cost in
the terminal hardware, such networks are configured as trees
comprised of communication facilities of a single capacity.
Thus, the optimal solution to this problem is a capacitated
minimal spanning tree (CMST), i.c., a tree of minimum total
length satisfying a constraint or set of constraints that limit
the total traffic and/or nummber of nodes in any subtree rooted
at the central site. In centralized networks, such subtrees are
called multipoint lines.

More formally, we are given a set of N locations (nodes), in
addition to the central site; a symmetric distance measure D =
{dyli,j = 0, 1, -, N}, giving the cost between any pair of
locations; and a constraint M on the total number of nodes or
traffic in a multipoint line. We seek a spanning tree T rooted at
the center, satisfying the constraint, and of minimum total
length.

This formulation is quite general. All we require of the cost
function is that the cost of a link d;; not depend upon what
other links arc present in the solution. The constraint is, like-
wise, quite general. One can, in fact, have more than one con-
straint, and the constraints may be on total traffic, number of
nodes, nodal degree, number of links in cascade, or any other
quantity associated with the design, We require only that if
some subtree S does not satisfy the constraints, then no other
subtree S, containing S, satisfies the constraints. We also as-
sume that a star solution, i.e., all nodes connected directly to
the center, is feasible. This can always be satistied by split-
ting a location into two or more nodes.

Several heuristics and optimal techniques have been devel-

Paper aporoved by the Editor for Computer Communication of the
IEEE Communications Scciety for publication after presentation at the
Ist International Symiposium on Policy Analysis & [nformation Sys-
tems, Durham, NC, June 1979 Manuscript received Mav 10. i978; re-
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oped for the solution of this problem. The optunal technuiucs
[11-13}1 are branch and bound procedures which n gencral
hlave runnug tuues winch are exponertual in the nummber o
nodes. While thiey are. thus, not pracucal as design procedures,
results obtained using them (tn particular, a recently develape
procedure (7]) have led to some 1nsight into the retinement ot
heunstic procedures. The procedure descnbed below s 4n cut-
growth of this work.

Currently, the most widely uscd procedures for the solution
of the CMST problem are heuristics (3], {4], [8], [19] which
produce solutions within 50 percent of the optimusm (in vases
where the optimum is known) and which have running tuncs
which are a low-order polynomial, generally between quadrauce
and cubic, in the number of nodes. Karnaugh {6} has developet
a family of second-order greedy algorithms (SOGA's) whuch
iterate the above heurnstics (which he refers to as F (first)
OGA’s), and have longer running times, but produce :ciults
generally 2-3 percent better than the above heuristics. The
procedures described below are vanants of the general SOGA
procedures described by Karnaugh, produce results of com-
parable quality, and are considerably fuaster than his, indecd.
in many cases their runming times are compeutive with the
simpler procedures (FOGA's) previously used.

PROCEDURAL DESCRIPTION

The most often used heuristic solutions to the CMST prob-
lem share the following properties: 1) tlieir running time is a
polynomial in the number of nodes; 2) in the absence of con-
straints, they will yield a minimum spanning tree (MST),; and
3) the quality of the solution (i.e., the amount by whici: it dif-
fers from the optimum) is not controllable and, excep! very
loosely, is not known.

The basic heuristics used to solve CMST problems can ce
divided into two categories—primal procedures which seck te
improve a ieasiblc starting solution or partial solution, ana
dual procedurss which seek to make a low cost (infeasible)
starting solution feasible. We concentrate on primal proce-
dures, having found them to be generally more flexible. It
has been shown (8] that most such procedures fall within the
framework of the following scheme.

1) Start with each node on a separate multipoint line
directly connected to the center. Associate a weight w, with cach
node / by applying a given rule (w-rule). For each potential
Lnk ., interconnecting a pair of nodes i and j, define a trade-
otf function r,, as dy, ~ w,.

2) Consider the (not previously considered) L, for which
{y is minimum. If nod:s ¢ and  are in separate multipoint lines
and the subtree formed by merging these lines does not violate
any constraint, then add L;; to the network, replacing L, or
Ljo» whichever is more costly. If not, reject .

3) Update the w, and ¢, and retum to Step 2) until no
further gain can be obtained. Usually, w, = w, for nodes
i and 7 in the same multipoint line.

The implementation of such a procedure has been considered
in detail {9]. A careful implementation is shown to be of
order \? log; A where ,V is the number of locations and if one
wishes to consider all branches. It is of order \ A log; A 1f one
only ¢xamines the A nearest neighbors of each node and if the
w-rule itself is not too computationally complex. In practce,
the most widely used w-rule is to set the weight of each node
in a subtree to be the mintmum distance between any node 1n
the subtree and the center. This is known as the Esau~-Williams
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algorithm. Karnaugh {S] described an altermate implementa-
tion of the Esau-Williams procedure which has a different
computational complexity, generally between quadratic and
cubic, but which produces identicai results. While the
SOGA's described below can work with any imbedded FOGA,
for the sake of comparison with previous work, we performe
experiments with an imbedded Esau-Williams algorithm.

In order to implement 2 SOGA, one must decide which ar .-
one will attempt to force in or out of the solution. Kamaugh

‘suggested two possibilities which are briefly described below.

The reader is referred to [ 6] for s complete description.

1) Inhibit— At each stage in its execution, the FOGA brings
in one arc connecting two previously unconnected sets of
nodes. The Inhibit loop successively prevents each of thr
mergers which took place in the previous iteration from taking
place. Thus, one iteration of the Inhibit loop involves up to N
(where N is the number of terminals) iterations of the FOGA,
each of which prevents a single pair of node clusters from
merging. At the end of each iteration of the Inhibit loop, the
best of the generated solutions (and its associated cluster
inhibitions) is kept and used in place of the original (unhibited)
FOGA solution, and the Inhibit loop is repeated until no
further progress is made.

2) Join—For each node g;, find its nearest neighbor b, and
nearest neighbor among those nodes which are closer to the
center than g, ¢;. Successively, one urc at a time, force arcs (a;,
b;) and (ag;, ¢;) into the solution if they are not already present.
One Join loop consists of a sequence of executions of the
FOGA, each with a single forced arc. The Join loop is iterated,
starting from the best solution obtained during the previous
loop, until no further progress is made. The number of FOGA
jterations in a Join loop is bounded from above by 2N — |
but is, on the average, somewhat less than ¥, the exact number
being a function of the particular problem.

Thus, both the Inhibit and Join procedures have running
times of order CN times the running time of the embedded
FOGA, the Join procedure being somewhat faster. The factor
C is the number of iterations required for convergence, i.c.,
to reach the point of no further progress. It would be possible
to greatly improve the running time of the SOGA if one could
restrict one's attention to a small (i.e., € N) subset of forced
inclusions or exclusions. Aiso, Karnaugh mentioned that the
Join procedure, while somewhat faster than Inhibit, is weaker
because it restricts itself to local transformations involving
nearest neighbors.

The procedure descnbed in [7] is a branch-and-bound
algorithm for obtaining optimal solutions to CMST problems.
While it does not converge to an optimal solution quickly
enough to be useful as a design procedure, it was sufficiently
effective to be useful in obtaining optimal solutions to a num-
ber of problems of sufficicnt size and constraint tightness to
be able to make observations about characteristics of optimal
solutions. This led to the characterization of arc subsets which
are small and at the same time reasonably effective for use as
candidates in a SOGA. In particular, it was found that arcs
present in optimal solutions but not present in heuristically
generated solutions were almost wways MST arcs. While it is
not necessarily so that all arcs present in the optimal solution
and not in the Esau-Wil.ms solution are MST arcs, in all tne
experiments run and checrzed to this end, invanabiy at least
one arc in the optimumnm, but not in the Esau-Williamns solution,
was an MST arc.

This is not to say that it is conjectured that one must al-
ways be able to find an optimum solution which contains an
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for later iterations was roughly a fuctor of §/2 for ¥ = 120.
Since most of the execution time of the overall procedure is in
iteration of the FOGA, we conclude that this coincides with
the differences in nunning times between the two versions of
Inhibit in Fig. 2.

Next, by running a sequence of 120 problems for N be-
tween 10 and 100, we examined the size of the subsets S gen-
erated, i.e., the average number of MST links not present in
the FOGA solution. Most primal heuristics generate subtrees
which are MST's on the set of nodes they contain along with
the center. Most of the arcs in these subtrees (with the excep-
tion of the arc directly connected to the center) will be MST
arcs. Thus, one might expect that the cardinality of S, |S| =
N/m, and a vast improvement can be made over a blind branch
exchange or SOGA procedure. In practice, we found that | S|
ranged between N/m and N log N/m.

There are, in fact, 2'5' subsets of S. Thus, for moderately
large tightly constrained problems, S could grow large enough
to make evaluating all subsets impractical. Furthermore, it is
reasonable to assume that not all arcs in S interact with one
another i.e., improvements in separate parts of the network
can be found and justified independently of one another.
Thus, the heuristic was modified to only consider subsets
Sy C S such that | S| | € K for some given K. The best subset
S, ¢ is found and permanently forced into the solution. We
then set S =S — S, * and repeat the procedure until no further
improvement can be made. In practice, K = 2 worked well.
Experiments were run with larger values of X; only in
isolated cases was any improvement over K = 2 obtained.
(Even K = | worked well in many cases.) Thus, it was decided
in all the remaining experiments to use the extended proce-
dure and restrict the examination to subsets of cardinality less
than or equal to two.

Using this modification of the new heuristic, it was observed
that forcing arcs between nodes which are close to the center
seemed to have the greatest effect on the value of the solu-
tion. This was probably a consequence of the fact that the
Esau-Williams algorithm starts with nodes from the center,
and hence, dealing with nodes near the center first radically
changes the solution value.

In particular, it was found that for small networks (N < 20),
there was little difference (usually < ] percent) in perform-
ance between the new heuristic and the Esau-Williams solu-
tion. This is almost certainly because both procedures were
generating near-optimal solutions. However, for larger net-
works, particularly for tightly constrained problems, the new
heuristic performed roticeably better with improvements aver-
aging about 1.5 percent. Fig. 1 shows the improvement relative
to the Esau-Williams algorithm. As can be seen, the improve-
ment increases with the problem size. Results were even more
encouraging for large networks with the central site in the
comer. Such networks may be viewed as one-fourth of a net-
work of 4V nodes with the central site in the center. For such
problems, improvements averaging 4 percent and as high as
8 percent were observed. Thus, the procedu:e appears tc be of
value for many realistically sized problems with tight con-
straints.

A straightforward implementation of the Esau-Williams
procedure has a computational complexity of order N logy V.
A more careful implementation {9] can reduce the complexity
to order N log; V. As discussed previously, | S| was found to
range between N/m and N log N/m. Since we examine subsets
of cardinality at most 2, /S subsets are examined on each
iteration. At worst, | S|/2 successive subsets of cardinality 2
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Fig. 1. Improvements obtained with new heuristic.
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Fig. 2. Comparison of run times.
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could be introduced, and thus, the procedure could iterate at
most | S |/2 times. In practice, the number of iterations grows
more slowly than |S|.

Thus, a careful implementation of the procedure has a
complexity of | S I>N log V.

Finally, a version of the Inhibit and Join procedures (as
described in (6], but using the Unified Algorithm in place of
the alternate implementation of Esau-Williamis) was coded and
run on another set of problems, and the heuristic described in
this paper was then run on the same set of problems. Thus, we
werc able to directly compare the quality of the obtained solu-
tions, as well as the running times of the new heuristic wilh
Inhibit and Join. The running times are summarized in Fig. 2
and Tables I and 1I. As can be seen the new heuristic is much
faster than Inhibit and faster than Join. Indeed, it is only two-~
three times slower than the Unified Algorithm,

The quality of the solutions obtained varied. Overall, the
results were consistent with the expcriment described above,
although a drop in effectiveness is noted for the 120-node
problems. We do not consider this latter phenomenon signifi-
cant since there was a large variation in individual runs, and
the first experiment, which was bascd on a much larger num-

.y, 1
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A COMPARISON GF RUN TIME (IN SECONDS) 43.87 7 '
pp 43-57. 1971 K
7 16] M Kanguph. A new cliss ol sipanthns tor multipoint nevw ork
Nurnber of Modes opiimizatien. TEEE Truans Comman vl COM 24, pp SOU-
S05. May 1976
{74 A Ker-henbhguin and R bowrstvn, Centralized teieprovessing
Algorithm, 40 60 20 120 network deswen. an Proc (ERE Telecommun Conf | Dec 1915,
pp 27 11-27 14
tnmibit (Karnaugh's I8] A Kershenbuum and W Chau. A unthied alporithm for designing
Implemertation) 9.0 26.7 118 240 muludrop teleprocessing networks,” 1EEE Trans. Commun . vl
COM-22. pp 1762-1772. Nov 1974
ibit .8 9.5 46 1 LT
Inhibi 2 3 191 A. Kershenbaum, ""Comiputing capacitated minimal spanning lices
Join 1. 4 4.3 12 24 efficicnly.”” Neiworks vol 4. no 4. 1974,
. [10] NV Renteld and W R Vogel. Mathematical Programm.ng
New Heuristic 1.2 3.6 8 13 Englewood Cliffs. NJ. Prenuce Hall, 1958
Esau-Williams (unified) 0,5 [ 2.6 4.7
TABLE Il
PERCENT IMPROVEMENTS IN PERFORMANCE OVER
ESAU-WILLIAMS
Number of Nodes
Algorithm 40 60 90 120 Average
o
bt 2.2 2.0 3.6 2.6 2.0 ﬁ.‘
New Heuristic 2.4 1.§ 2.6 c.8 1.4
Joun 2.4 1S 2.0 | 0.9 l.e .
y 3
ber ot problems, exhibited no similar behavior. In some cases, >

the new heuristic outperformed Inhibit; in others, Inhibit
performed %«‘ter. On the whole, the quality of the solutions
obtained wi: Inhibit was 2.6 percent better than those ob-
taineu using ~he Fsau-Williams procedure, while those obtained
using the new heuristic were 1.9 percent better than Esau-
Wiiliams. Both Inhibit and the new heuristic outperformed
Join fairly consistently; Join averaged a 1.6 percent improve-
rient over Esau~-Williams,

CONCLUSION

We found the new heuristic to be of definite value as it
sotained solutions roughly 2 percent better than the Esau-
VWilliams procedure without greatly increasing the running
ume. In companson with Kamough's SOGA's. the new heuris-
tic 15 much faster and obtains solutions somewhat better than
Join and somewhat worse than Inhibit. We conclude that the
new heuristic is useful as a practical design procedure, even
when imbedded in a larger procedure which solves mote
global problems. .
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Centralized Teleprocessing Network Design
By
Aaron Kershenbaum
and
Robert R. Boorstyn
Polytechnic Institute of New York
Abstract
The problem considered is that of finding an optimal (minimum
cost) design for a centralized processing network given a set of
locations, traffic magnitudes between these locations, and a single
common source or destination. Several heuristics, which are efficient
(in terms of their execution time and memory requirements on a
digital computer) and which produce seemingly good results, have
already been developed and are currently accepted techniques. Some
work has also been done on finding optimal solutions to this problem
both as a design tool and as a means of verifying the effectiveness of
proposed heuristics. We focus in this latter area. Currently known
techniques for the optimal solution of this problem via integer pro-
gramming have fallen short of the desired objectives as they require
too much memory and running time to be able to treat problems of
realistic size and complexity. We develop an improved technique

which is capable of handing more realistic problems.

This work was supported in part by the U.S. Army CORADCOM,
Contract No. DAAK 80-80-K-0579 , and by the National Science Foun-
dation, Grant No. ENG-7908120
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1. INTRODUCTION AND PROBLEM STATEMENT

The problem considered is that of finding an optimal (minimum
cost) design for a centralized telecommunication network given a set
of locations, traffic magnitudes between these locations, and a single
common source or destination. The vast majority of telecommunication
networks currently in existence are of this type. Thus, this problem
has been much studied (2,3,4,5,8,9,12,16,24,28,31,32).

Several heuristics, which are efficient (in terms of their execu-
tion time and memory requirements on a digital computer) and which
produce seemingly good results, have already been developed and are
currently accepted techniques. Some work has also been done on
finding optimal solutions ‘to this problem as a means of verifying the
effectiveness of proposed heuristics. Currently know techniques for
the optimal solution to this problem via integer programming have
fallen short of the desired objective as they require too much memory
and running time to be able to treat problems of realistic size and
complexity. We develop an improved technique which is capable of
handling problems of realistic size.

More formally, the problem considered here is that of finding a
minimum spanning tree subject to one or more constraints which in
general are equivalent to demanding that the sum of the traffic asso-
ciated with the nodes in any subtree must not exceed some predeter-
mined maximum.

A minimum spanning tree is a loop-free collection of arcs joining
a set of nodes such that the sum of the lengths of the arcs is mini-
mal. In the case of a communication network, these collections of

arcs are called multidrop lines.
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[t should be hoted that this constraint form is quite general and
encompasses many real-world constraints which arise in the design ot
centralized telecommunications networks. Thus, for example, in
addition to treating the obvious constraint imposed by line capacity,
it is possible to treat a restriction on the number of terminals on a
multidrop line by associating a unitorm tratfic with each terminal.
Also, the length (cost) functions which can be treated are quite
general. Any function which is not a function of the tree chosen is
permissable.

Formally, we seek to solve the following problem:

Given

1. A vertex (node) set V = {vi|i=0,l,...,n} representing the

terminal locations in the network. Node Vo is a distin-
guished node which we will reter to as the center.

2. A symmetric function giving the length (cost) dij of an arc

between any pair of locations.

3. A constraint, m, on the number of nodes which may share a

multidrop line. This constraint can be generalized to allow
a weight or traffic, Ci to be associated with each node and
to require that the sum of the weights associated with the
nodes on any multidrop line not exceed m.

We define the set of nodes in the jth multidrop line to be V}. and
}.

Thus, the constraint can be stated in terms of the cardinality of Vj

the multidrop line itself to be a minimal spanning tree 'I‘v onh V. U{vo

as |Vj| <m Vj‘ In the more general form, the constraint would be
i X
I ¢ <mV¥. We wish to find a tree, Ty, of minimum total
v, £ Vj J

length satisfying the constraint in 3 above. That is, we wish to
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ip subject to 3, where Voo the immediate predecessar
i !

of Vi i.e., the node closest to v; on th+ path between v, and Vi in
T, and T is any spanning tree. We consier exa 't (optimal) solutions
to this problem. The primary motivation tor the work is to develop
an exact algorithm capable ol permitting study ot the pertormance
heuristics on a broader class ot problems than was previously studied,

to gain insight into the performance of both exact and heuristic

procedures and, in particular, to pinpoint where and why they tail
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II. OUTLINE OF A NEW OPTIMAL SOLUTION TECHNIQUE

There currenty exist several techniques which will yield optimal
solutions to the CMST problem. These techniques can be divided into
two classes - branch exchange methods (as proposed by Lin (22) and
Frank (9)) and branch and bound methods (10,22). We concentrate
on the latter class of techniques.

The specific application of branch and bound techniques to the
solution of the CMST problem was proposed by Chandy and Russell
(3) and was subsequently refined (2) so that it could treat somewhat
more meaningful problems. Subsequently, Elias and Ferguson (4)
proposed further refinements and thereby expanded the range of
applicability of the technique. Gavish (34) recently developed a
bound using Lagrangean relaxation.

The basic technique is, as has already been mentioned, a branch
and bound algorithm. The original problem considered has all branches
in the category "permissible," i.e., any branch may or may not be
part of the final solution. Subproblems are generated by selecting a
permissible branch and making it "prohibited" in one subproblem or
"required" in another.

The relaxation used is simply to generate a modified MST by
including all "required" branches, excluding all "prohibited" branches,
and forming the tree of minimum total length by connecting (as yet
unconnected) nodes using remaining ("permissible") branches.

Clearly, a solution obtained in this manner is a lower bound on
the value of a feasible solution to the subproblem as it is the tree of

minimum length. Note also that in the case where all arcs are speci-

fied (prohibited or required), the lower bound and solution are
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identical and the subproblem fathoms. In general, the subproblem

fathoms when "!1
1. No feasible solution exists to the subproblem. This occurs, j
when the required branches form a loop, when the required j
branches create a subtree violating the constraints, or ~)
when the prohibited branches disconnect the network.
Other criteria exist but are difficult to test for.
2. The lower bound equals or exceeds the value of the best )

solution found thus far.

3. The lower bound solution is feasible.

When all subproblems have fathomed, the current best solution is
the global optimum.

A number of observations have been made, which can be used to
accelerate a basic branch and bound technigue. One of these, which ?’_
is used in the sequel, is given in Theorem 1 below:

Theorem 1: (3)

If branches (VO'vjl)’ (vO,vjz),..., (VO,V].K), are part of "
some MST, T, on V then there exists a CMST including :

these edges.

modified MST produced in any subproblem, then (if any

Corollary: S |

: If arcs (VO'Vj ), (VO'Vj ) (VO'VJ ) are present in the 3
1 2 K i
.

F! CMST's exist in the subproblem) there exists a CMST on ~ Y
the subproblem containing these arcs.

The preceding theorem and corollary allow one to avoid consider-

4
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;J ing subproblems with such arcs prohibited. The techniques devel-
oped in the sequel make explicit use of both observations as well as

others made in the references cited.
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The inherent problem with the existing procedures lies in the
relaxation method used. At each step, the problem is relaxed to a
modified MST. Unfortunately, this bound is often too loose to elimi-
nate a sufficiently large percentage of the subproblems to make the
procedure practical. This is particularly evident when the constraints
are tight; it is for such problems that the relaxation is loosest.
Unfortunately, it is also for that class of subproblems that the known
heuristics display the widest wvariation in the quality of solutions.

Note that any optimal solution to the CMST problem has the
property that all subtrees are MST's on the set of nodes contained in
the subtree and the center. Thus, it suffices to find the optimal
partition of the nodes into subtrees. The technique which is devel-
oped in the following sections will thus generate partitions of the
nodes.

The technique works within the framework of branch and bound
algorithms, as did the techniques referred to above. We develop two
algorithms, one based on generating subproblems by restricting
nodes, and the other based on generating subproblems by restricting
arcs. These techniques differ from previous ones in that the relaxa-
tion used here is tighter and thus, a smaller number of subproblems
need be examined.

We begin by restricting the problem slightly. We seek a CMST
subject to the constraint that the number of nodes (rather than the
sum of the weights of the nodes) in any subtree not exceed a pre-
specified maximum. Since our primary intent here is to study the
performance of CMST algorithms, this modification would not, in

general, have a significant effect. Indeed, if one preferred, a node
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[ of weight K could be replaced by K nodes of weight 1, providing one

;ﬂ is willing to allow the original node of weight K to be split among '".
r‘ more than one subtree.
’,:_f:, Tuv tind a partition of the nodes V = {vil i =1,2,...n} into }
_ subtrees, we begin by making n copies of each node corresponding to B |

the possibilities of the node being in any of n possible subtrees.

Thus, vij corresponds to node vy being in subtree j.

The problem of obtaining an optimal partition of nodes into
subtrees can be thought of as one of selecting an optimal subset from
the set E = {vijl i=1,2,...n; j=1,2,...n}. Feasible subsets of E,
i.e., those corresponding to partitions satisfying the capacity con-
straint, will contain 1 Vij for each i and at most m vij's for each j.
If we associate a weight, Wij' with each Vij' the optiimal subset of E
(hence the optimal partition of V) is defined as the feasible subset of
minimum total weight.

An efficient algorithm (see 14, 21, 35) exists for the solution of

the problem of finding the optimal subset of E given the values of

wij' The algorithm, which can be thought of as a matroid interesec-
tion [1,17,19,20,29] algorithm or alternatively as a series of shortest
#ﬂ path problems in appropriately defined graphs, has a worst case

running time of order n3 and in practice has a running time cioser to

order n? (see 35). Unfortunately, the set of weights, wi]., which

1
correspond directly to the "cost" (contribution to the overall length '*'%
]
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of the CMST) of v in subtree j can be specified only when the pro-
blem solution is already known. We can, however, define a set of
weights, wij' which have the property that the optimal partition found =Y
. using these weights will have a value (sum of weights) which is a
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| lower bound on the length of the optimal CMST. Thus, we can relax ' ;
{ ] the CMST problem to the problem of finding an optimal partition. .!

This, together with generating subproblems by successively restrict-

ing either nodes or arcs, gives rise to an optimum CMST algorithm
o within the branch and bound context.

An appropriate set of weights, Wij' can be defined as follows.

Suppose we are given, for each subtree j, the set V. of nodes per-

® mitted in the subtree; a procedure for obtaining the Vj will be given
below. One can then find Tj' the minimum spanning tree on the

nodes in V]. v {vo}. Let dij be the length of the arc connecting v

» to its predecessor in TJ. (i.e., dij is the length of the last arc in the
path from Yo to v in Tj)‘ The following theorem, which is proven in

{35), allows us to obtain appropriate wi].:
® Theorem 2: The weight of the optimal partition using wij = dij is a
lower bound on the length of the CMST for the same V and M.

Furthermore, it is proven in (35) that other similarly defined

o wil.’s also preserve this lower bound. In particular, suppose T].

contains a path (vo,...vp, vq,...vx,...vy,...) as shown in Figure
1. Let S be the set of nodes {vq,...vk,...vs} and let Wy be the

<9 largest weight of any node in S. Suppose wpi > wkj' Define A = |
Whi T Wij- Then the following theorem holds: : ‘
Theorem 3: If a set of weights wij = dij is modified by transferring

) weight A from ij to wsj where A, vp and vy are defined as above,

the weight of the optimal partition is still a lower bound on *the length
of the CMST for the same V and m.

W0 Theorem 3 allows us to transfer weight from a node to its suc- ==

c;;!“_-J'JJ"J 'A' :

cessors in Tj in order to guarantee that the lower bound obtained
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from the partitioning problem is at least as tight as the bound ob-
tained using an MST, as is done in (2), (3), and (4). A proof that
this can always be done is given in (35). As an example of how this
works, consider the network shown in Figure 2a. The MST for this
network and the node weights corresponding to it are shown in Figure
2b. These weights correspond to the bound obtained using.an MST.
Suppose, however, that we restrict vz from being part of a given
subtree j. The weights shown in Figure 2c would then be obtained if
we simply set Wj; = dij' Note in particular that w2]' has been reduced
from 5 to 1. This reduction in Wi could result in a loosening of the

lower bound. Theorem 3 allows us to transfer up to A = wlj - W2j'
i.e., 7 units of weight, from wlj to w2j and obtain the weights shown
in Figure 2d. Note that the wij in Figure 2d are at least as great as

the wij in Figure 2b. Thus, the lower bound obtained using the wij
in Figure 2d will be at least at tight as that obtained using an MST.
In fact, the bound so obtained is significantly tighter, as is shown
by the computational experience given in Section V.

We now turn to the question of the branching rule within the
branch and bound procedure. Littie was said by Chandy and Russell,
Chandy and Lo, and Elias and Ferguson on the order in which sub-
problems are considered in the branch and bound procedure. Classi-
cially, two approaches are available. The first is to always consider
the subproblem with the least lower bound. Alternatively, one can
use depth first search, where one always solves most recently gener-

ated subproblems before returning to older subproblems. There are

advantages and disadvantages to both approaches.
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The first approach allows one to proceed without any good

y - P

feasible solutions to gquide the process. The assumption is that LJ
subproblems with the lowest lower bounds will give rise to the best 4
feasible solutions. Hence, one prefers to explore these subproblems .
first in the hope that they will give rise to low cost feasible solutions :.:

which will eliminate other subproblems (with higher lower bounds)
from consideration. Also, by examining subproblems in this order,
one is continually narrowing the range between the upper and lower

bounds, and hence, has the option of terminating the algorithm when

the interval shrinks to some prespecified width.

There are, however, two major drawbacks to this approach.
First, one must keep (a potentially large number of) subproblems
around in order to select the next one. Thus, the storage required
for the procedure is potentially exponential. In practice, it was
storage, not running time, which was the active constraint on problem
size in previously developed techniques. One could temporarily store
subproblems in secondary storage, but this would complicate and slow
down the procedure.

Second, by considering problems in ascending order of lower
bound, one will, in general, be sequentially considering dissimilar
subproblems. Thus, one cannot easily take advantage of information

obtained in the solution of one problem for the solution of another.

For example, in the Elias and Ferguson technique, the similarity

between modified MST's for related subproblems cannot be easily

TP

exploited if this first procedural outline is adopted.
® Using depth first search overcomes both of these objections.

Indeed, a great deal of simplification is obtainable both in the genera-
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tion of subproblems and in obtaining solutions owing to the similarity
of successively considered subproblems.

The maximum number of subproblems which need be kept around
at any time is bounded by the number of nested specifications it is
possible to make. Thus, if one is restricting nodes, the bound is n;
if one is including or excluding arcs, the bound is (rzl). This essen-
tially eliminates storage as an active constraint on the size of the
problem which can be considered.

A further reason for using depth first search is that the major
reasons one would ordinarily choose the first procedure are not
present here. Any of the existing heuristics can be used to quickly
generate a good upper bound. Furthermore, the procedures devel-
oped in the sequel lend themselves to generating feasible solutions for
all subproblems. Thus, a good upper bound is always available.

Hence, depth first search is used in developing the techniques
in the sequel. It should be further noted that the philosophy used
in developing these techniques was to create the simplest, most flex-
ible framework within which to work so that a variety of acceleration
techniques could be developed and tested. The concentration is on
restricting the number of subproblems examined (which is exponential
in n) rather than the amount of work spent on each subproblem

(which is a low order polynomial in n).
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IIT. NODE PARTITIONING

The first exact technique built around the above relaxation is

one which generates subproblems by restricting the subtrees a node

is allowed into. The procedure is described below. We begin by

describing the initialization procedure.

Step O:

0.1)

0.2)

0.3)

0.4)

0.5)

0.6)

0.7)

0.8)

(Initialize)

L 3
Find an upper bound, z , using a heuristic to generate
a good, feasible solution.

Find an MST, T, and identify arcs (v WYy ), (VO'Vi ),
1 2

eV, Vi )
0 I
Reorder the nodes so that Vi +Vj s...V; are now Vi
1 12 Tk
Voreee Vo
TRUE i # j
For 1 < n, set Ri' =
) FALSE i = j

[Rij is a logical variable which is set to TRUE if Vij has
been removed from consideration in this subproblem.

Observations made above allow us to remove some vij

immendiately].

TRUE {1 > j
For k <i<n, set R; =
J FALSE i < j

For { < j < n, find an MST, Tj' on Vj Uvo, where

Vj = {vilRi]. = FALSE} i.e., Vj is the set of nodes

permitted in subtree j.

Set wi]. = d“., where dij is the distance from v, to its

predecessor in Tj .

For j = 1,2,..., k, exchange weight between wij for

s W = Y G Y W U b W WA A PP R SR S AP TP UL WP W SN WY . S W Y
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different values of i so that the resulting modified

weights, wi'j , satisfy:

1
e 2 .
w” 2 ¥%io

where Wi = di in the unconstrained MST, T, gener-

Pj
ated in Step 0.2 above.
0.9) For j = k+1,..., n, exchange weight between wij SO

that the resulting wi'j satisfy

wi'j > wi']. -1

The justification for all of these steps was given in Section 2.
Steps 0.8 and 0.9 guarantee that the individual wi'j will all be at
least as great as the weights assigned using unconstrained MST.
Hence, this is a realization of the statement that the lower bound
obtained using this procedure must be at least as great as the lower
bound obtained using an MST. This also holds true for subproblems.
Thus, we have initialized a subproblem with nodes 1,2,..., k forced
into subtrees 1,2,..., k, respectively, since, for i < k, Rij = TRUE
for i # j. In the course of the depth first search, we keep track of
the following variables:
d = The depth of the search, i.e., the number of nodes
which have been forced. d is initialized to k.
dMIN =  The minimum allowable depth. dMIN is initialized to k
since at least k nodes should will be forced.

th

w =  The subtree which the d~ node is forced into.

d
The depth first search proceeds by forcing node k+l into sub-
tree 1; i.e., d is set to k+1 and IWH1 is set to 1. It continues

either by increasing d (to force another node) changing de (bto force
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a node into a different subtree) or decreasing d (to release a node

after forcing it successively through all subtrees). The depth first

search procedure follows.

Depth First Search Procedure

Step O:

Step 1:

Step 2:

F

te

:

Step 4:

Step 5:

Initialize problem (Steps 0.1 through 0.9 above).

Set d = k+l

Set dMIN = kt1 Set W, =1

Solve the currently defined subproblem; i.e., find a
lower bound 2; . and a feasible solution 2p.

1f the current subproblem fathoms; i.e., 2y > 2zp, go
to Step 3; otherwise go to Step 5.

Set IW, = IWy + 1

If IWd > NMAXd go to Step 4; otherwise set up a new
subproblem and go to Step 1. NMAXd is the highest
indexed subtree which the node at depth d may be
forced into. In section 3 we observed that one should
not skip over subtrees. Thus:

NMAXd = max (K, max [Iwi]) K<icd

Set d = d+1

If d < dMIN stop; otherwise set up a new subZcoblem
and go to Step 1.

Set d = d+1

Set W, =1

Set up new subproblem and go to Step 1.

To set up a new subproblem, one need only modify the values of

a few R” to impose (or remove) the restriction implied by the alter-

nation of d and de. Thus, after d is set to d+1 and de is set to 1:

PR P P P PO A
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{FALSE j=1
R,. =
dj TRUE j > 1

After de is set to de +1:

= FALSE

R
d,IWd

Rd’de -1 = TRUE

After d is set to d - 1:

FALSE j < NMAX4
Ryv1,j =
2 TRUE j > NMAX,

The search space can be further pared using the corollary to
Theorem 1. If, in any subproblem, one finds that two nodes, vy and
Vj' both forced into the same subtree appear in separate subtrees in
the MST formed: on the set of permissable nodes in that subtree, then
the subproblem may be discarded.

As was mentioned, this optimal technique based on generating a
partition lends itself simply to obtaining a feasible solution to each
subproblem. The partition generated at each step is feasible. One
need only generate MST's on each group of nodes to obtain a feasible
solution. A simple acceleration technique, which proved to be quite
E! effective in practice, was to reorder the nodes V1o V by

n
distance from Vo nearest first. This tended to increase the lower

[ bound most rapidly. Such nodes, when restricted to a single sub-
tree, were absent from all others, and the "deprived" subtrees were
often forced to connect to Vo over longer arcs.

The Rij are used in the optimal partitioning procedure in a
straight forward fashion; any element v.., with its corresponding Ri'

ij )
= TRUE, is considered to be removed from the problem.
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The weight exchange procedure described as part of the initiali-
2ation, which guarantees that the weight on each node will be at least
as great as its contribution to the length of an MST, is used here as
well. At each level, K, in the decision tree, we save the values of
the wi'j in a variable referred to as wll(]
K
ij -
justification for doing so is identical to that used in the initialization

We then demand that wi'j =

w

procedure. Note that this exchange guarantees not only that the
lower bound will remain tighter than an MST, but also that the lower
bound will be monotone with the depth in the decision tree. Neither

of these things is true without the exchange.

> &i'.l i.e., we exchange weights to enforce the restriction. The'
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N IV. ARC RESTRICTIONS

Another method of applying this relaxation technique to the
» solution to the CMST problem is to restrict arcs; i.e., to force arcs
to be either "prohibited" or "required" as was done by Chandy and

‘ Russell and Elias Ferguson. Thus, the initialization and subproblem

solution are essentially the same as they were in the technique des-
cribed in the previous chapter, but the method of generating subpro-

blems is different. The solution order is still a depth first search.

Some differences exist in the initialization procedure. Instead of
forcing a node into a subtree, we simply "require" the arcs (il,O),
(iK,O) which are part of the unconstrained MST. This is, of

course, equivalent to what was done in the previous case. It is

implemented in a slightly different way, however.
The entire procedure, both during initialization and during ‘:n

subsequent subproblem generation, restricts itself to dealing with

established arcs, i.e., arcs which connect a node directly to vy or to 3
other nodes connected to Vo by established arcs. Thus, each
"required" arc forces a node into a given subtree and each

"prohibited" arc forces a node out of a given subtree. As a new

subtree is encountered (i.e...., when an arc of the form (vo, vi) is
made "required"), we simply assign the next available subtree number

3 to the subtree.

i g

Subproblems are generated by successively restricting (requiring

'

Coe .
Ao g on L d

or prohibiting) established arcs. We again use d to represent the
depth of the search. Here, however, d refers to the number of

forced arcs rather than the number of forced nodes. Note that while

@ -




-18-

the number of required arcs is limited to n, the number of prohibited
arcs is not. We thus have a different type of decision tree than we
did in the previous section.

When forcing nodes into subtrees, we dealt with a tree of depth
n but with nodes of degree sometimes as great as n. Here, we deal
with a binary tree of depth as great as (;). It is not clear, how-
ever, especially with the paring techniques being used, which deci-
sion tree is actually larger.

The arc chosen for inclusion is,in each case the next arc to be
brought in by Prim's MST Algorithm (25); i.e., the shortest arc
connecting a node to some node connected to Vo by required arcs.
This has several advantages:

i. The arc chosen, if excluded, will tend to raise the lower
bound. This is important as it helps control the size of the
decision tree. Since a potentially large number of succes-
sive arc exclusions is possible, it is important that an arc
exclusion result in an increase of the lower bound as often
as possible so that the fathoming process will limit the
depth of the search.

2. If the arc is of the form (vo, vi), it need only be consid-
ered as '"required" and not "prohibited." This is a direct
consequence of Theorem 1.

3. If the arc (vi, v].) is prohibited, and hence, v; is excluded

from the subtree containing v., then so are all arcs of the

]"
form (vi, VK)' where Vk is forced into the same subtree as

v].. This is a direct consequence of an Elias and Ferguson

result.
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We omit the details of the remainder of the implementation of the
arc restricting procedure as they are similar to the node restricting _
procedure described above. i
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V. COMPUTATIONAL EXPERIENCE

® The procedures described in the previous two sections were °
coded in FORTRAN and run a PDP-10. In this secton, we discuss
the results of experiments run to test the behavior of their run time

l. and effectiveness as a function of problem size and constraint tight- N
ness.

Problems were generated by reading in n and m and generating

random X and Y coordinates for the nodes within a unit square. The .
location of the center was, in various problems, either random, 1
centered, or in the corner. Euclidean distances were used. Most ‘:
experiments were run with the center at the geographic center of the a.’
unit square; in this way, larger problems could be examined.

Several series of problems were run with identical values of n

and m (and, of course, different randomly generated pcints) to see
how stable the running time is from one problem to another. The
standard deviation was found to be close to the mean for the problems
run. This essentially says that we should not pay close attention to
exact run times or the exact number of subproblems examined.

Series of problems were run varying n and m and using both the
node restricting and arc restricting procedures. Both procedures
were run with the identical problems and, furthermore, the same set
of nodes was used (with new nodes added as the problem size grew)
for all problems in this series. This results of this experiment are
shown in Table 1. As can be seen, the running times for both
procedures were comparable and run time grows exponentially with
problem size. (It was gratifying to find that the optimal solution

values found by both procedures always matched!)
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It has already been mentioned that these procedures yield lower
bounds which are at least as great as those obtainable using uncon-
strained MST's. This was verified empirically by actually generating
lower bounds with MST's as the algorithm proceeded. The program
was to print any exceptions, i.e., any times where the MST gener-
ated a higher lower bound; none occurred. Figure 3 shows some
typical lower bound values obtained using partitioning and MST's. As
can be seen, not only are the partitioning lower bounds greater, but
they grow more quickly with depth. This is significant, as a linear
increase in lower bound value will reduce the run time exponentially.

To measure the impact of the difference in lower bounds between
the MST and partitioning methods, several problems were run first
with the partitioning method and then with the MST method of lower
bounding. The results of this experiment are shown in Table 2. As
can be seen, the partitioning algorithm examines a much smaller
number of subproblems, and apparently, its effectiveness increases as
the ';'Jroblems grow larger. Thus, although it is somewhat more diffi-
cult to evaluate the lower bound using the partitioning algorithm than
it is using an MST, it is less than n times as hard to do so. The
reduction in the number of subproblems which must be examined
appears to be sufficiently great to warrant the use of the partitioning
technique. Indeed, as the problem size grows, its attractiveness

seems to increase.

------
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VI. SUMMARY AND CONCLUSIONS |

The purpose of this study was to develop improved exact tech- '.
niques for the solution of the CMST problem (a model of the multidrop |
line problem) so that known heuristics for the solution to that prob-
lem could be examined on a broader class of problems and so that new .j
heuristics could be developed on the basis of what was learned.
Much of this happened. An improved exact technique, based upon
generating lower bounds using partitioning instead of MST's, was
developed and computational experiments were run using it. The
bounds yielded by these techniques were tighter than those yields by
the MST based techniques, and hence, the number of subproblems

which had to be examined in order to obtain a solution was smaller.

Indeed, the decrease in the number of subproblems examined more
than compensated for the increased effort required for the examina-
tion of each subproblem. Thus, the new techniques served their

purpose in that they permitted the examination of problems not care-

fully examined before. In particular, it was possible to examine
problems with very tight constraints, although it was not possible to

examine problems of substantially greater size than had been pre-

viously examined.
Even with the improved technique, the growth of run time with

respect to problem size was found to be exponential, albeit of a lower

order than previously know exact techniques and of a much lower @
order than the solution space. Thus, one cannot use the technique Z’
for large problems. A number of acceleration techniques were devel- .‘-jj
oped and incorporated into the procedure. _Q"‘

.9 .
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Thus, it was possible to examine sufficiently interesting problems
using the exact technique to make several insights into the problem.
The first is that the performance of the known heuristic degrades as
the constraint tightness increases and improves as the problem size
increases. An imporved heuristic [33] was also developed on the

basis of this study.
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Table 1: Number of Subproblems Examined

|

n m  Node Restricting Arc Restricting

8 2 16 34
8 3 13 24
10 2 120 199
10 3 57 68
10 4 67 73
12 2 298 696
12 3 375 362
12 4 171 138
14 2 766 723
14 4 526 379
16 3 not run 1085
16 4 818 737
18 3 not run 6832
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TABLE 2: COMPARISON OF NUMBER OF SUBPROBLEMS LXAMINED
USING MST AND PARTITIONING AS LOWER BOUNDS _
o
NUMBER OF NUMBER OF
SUBPROBLEMS SUBPROBLFMS :
n m (MST) (PARTITIONING) N
....41
8 3 87 24 !
12 3 2,767 362 i
i
20 7 4,205 146 ]
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NETWORK DESIGN WITH AN OBJECTIVE FUNCTION INCLUGING A FLXED -HARG: (Revised)

A. Kersheabaua*
Polytechnic Iascitute of New York

I. Introduction

There are many network design prodbiess which
would be easily solvable except for the presence
of a fixed charge in the cost of each facility.
The presence of the fixed charge hYowever, vhich
cannot be ignored without destroying tha vaiidity
of the model, wsakes chese prodiems such more
difficule to solve. e bdegin by oreseatiag
several such problems iad a geaeral techaique
vhich may be of use ia obcaiaing solut:oas %o all
of them. e then focus oa one such prodies aad
actually apply tae technique to its saniutios.

II. Problem Statements

‘The most basic probles, aad the one which we
will ultimately focus oa, is that of locaciag
earth stations ia a satellite aetwork. e are
given a fixed sez of ¥ terminal locations and 2
set of M potentisl eartd station locatioa sites.
Termanals communicate with ome anotber via the
satellite and they reach tie satellite via direct
tercestial comnection o aa earth station (see
Figure 1). The czost of coanectiag tetminai i to

escth stacion ; is given by TR The cost of aa
eartlk station at the j“ potential iite is de-
aoted by dj. The cost of a satellire iiak (er of

the satellite itself) is is assumed to de dis-
tasce izdependsat and linearly related to ils
capacity. Thus, the cost of the satellite links
is oot affected by :he seleczioo of eacth sta-
tions aud c=1 taeretoTs 7o CjAOTEL. we 1ssuUme
initiaily taat taere are 20 Capacity constriiats
cn the eazth stations.

The prodiem described above 1is a1 well-
kcowns uncapacitated facility locatica problea
(UFLP):

N 4
Minimize 2= I I C . X  + 8d4Y
jmp gm M4

* This work wvas suoported in part by the US Army
Coradcoa uader Grant DAAK-8C-80-X-0579 ani oy
che National Science Fouadacioa uader Graat
ENG-7908120
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L
Figure 1. NETWORK MOOEL 1
A
subject to: 1
SX,, 31 foralli 3
i H 1
X, £V, for all & and ; L

!u, !j e{0, ] for all t and j

where xij cocrespouds to the fractiom of
terwinel 1 asszigned o faciiity i aev v 18 R
L 1f facility j is included in the solution. .
@
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This problem has been much studied [1-10]. The
book by Haadler aad Mirchandani {3] 1s a compen-
dium of related problems and solutions. The
procedure of Zrlenkotter (3] nas beea shown to be
successful in obtaining optimal solutioans to many
significaat uncapacitated facility locacios
problemas. The procedure we will describe 1n the
following sectiocn is equivalent to Zrlenkotter's
procedure in the case of the uacapacitated facil-
ity location prodlem but differs from his iao that
it is based directly in combinatorics (ratber
than in a linear programming dual) and is direc-
tly extensible to maay other proolems described
belovw, amcag them the capacitaced facility loca-
tion problea.

We note that the UFLP reduces to a trivial
problem vhere each termwinal is coanected to its
gearest (least-cost conmection) earth statioca if
ve ignore the fixed cost of the earth statioas.
This is the property which unifies all the prob-
less ve vill exaaine.

There are many exteasioas to the UFLP which
are also part of this class of prodblems. If a
capacity coastraint is imposed oa tha earth
stations, the probleam reduces to aa assigoment
problem if the cost of the earth stations is
ignored and ve assume either that the capacity
constraiat is oa the number of terminals or ve
allow a termical to bde associated with sore thaa
one esrth station and the cost of coanection is
linear with traffic.

Another problem is that of designing a
agetwork as above where not all terminals need be
included. In this version of the problem, there
is a value, Vi. associated with iacluding termi-

sal i ia the aetwork and ve seek to maximize the
profit, P, where P is givea by

N N H
R T A j=1 “u My fodj Y
subject to
|
jilx” =W, forall i
XU < Yi for all i and j
U' Y €f0, 1} for all i aad j

A capacitated version of this problem exists
by adding the coastraiats

fxu L < S'i for all j

where :i is the ctraffic associated wvith
terminal i aad Sj is the capacity of earth sca-~
tion j.

This problem can be reduced to the preceding
one, with fixed terminal locatiocns, by the fol-

O

lowing transformation. A bogus potential earth
station locatioan, Cpel’ 13 iatroduced with dml=°
and Cx arl V. for i=l,...N. The corresponding
capacitated or uncapacitated probles is then
solved to find the optimal solutioa i1acludiag all
terminals. The bogus earth statioa and all
terminals associated with it are thea removed
from the optimsl solutioa to yield an optimal
soluction to the problem with a choice of which
terminals to iaclude [4]. Thus, we will liait
consideratioas to the fixed terminal problems in
the sequel.

Another, closely related, probles is that of
locating cepeaters in a radio based aetwork.
Here ve assume we are given a set of N terminoal
locacions asad M potential repeater locations.
Terminals cossunicate via radio links to the
repeatecrs. The repeaters comsunicate directly
vith oune another, again via riadio links, relayiag
sessages between terminals. A terminal caa or
cannot commuaicate with a repeater dependiag on
the distacce betveen them and the asture of the
interveniaog terrsis. Thus, we have a UFLP wich
all cuc{o, =}. As we will see, the nature of

the cost matrix sakes this problem differeat from
the previously stated UFLP's ian several importaat
ways which will alter the effectiveness of the
proposed solutioa techniques.

I1. Basic Procedure

We nov preseat a general procedure for the
solution of all of the above problems. For the
sake of clarity, ve describe application of the
procedure to the solution of the UFL?. Similar
procedures have been proposed by Held & Karp [b],
and Camerini (1] for the solution of a broad
class of problems. Those procedures have been
shown to be effective in some cases and iazeffec-
tive in others. One of our objectives is to shed
light oa inherent differences among problems
vhich differentiate them in terms of the effec-
tiveness of these procedures aad others like
them.

Let Cuacl P, i vhere Pij is a penalty added

to the cost, Cij' of ccanaectiag terminal i to

eacth station j. If Pij 20 for all i and j and
P d
PP T

then the solution to the UFLP usiag C 4§ ia place

of C“. and djso is a relaxation of the oviginal
UFLP for cay Pij satisfying the above coao-
straiats. Here the facility costs are distrib-
uted over the terminals. The solution to the
problem wvith d.=0 is trivially obtained bdy se-
lecting the miltiaum ia each row. We gote

that the solution value thus obtaiced 13 iadeed a
lower bouad to a fessible solution since
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vhere lj is the set of terminals associsted with

earth station j in the solutioa to the relaxed
problem.

Ideally, ve would choose the Pi. to maximize

3
the value of the relaxed optimum and thus provide
as tight a bound as possible, i.e., solve:

Maximize over P. .
1]

i ., v P,
(z= f .x; (cx.i Li)]
This problem has bdeen successfully approached
usiag subgradieat optimization techniques {6,10].
For the moment, however, we defer further discus-
sion of how best to set the Pij and oote that

relatively simple heuristics often suffice in
many cases while in other cases even the optimsl
Pij (i.e. those maximizing the lower bound) leave

a lower bound significantly lower than the opti-
mal solutioa to the unrelaxed problem.

For the specific case of the UFLP, a linear
programmiag problem can be solved to find the
optimal Pi

j:
Maximize Z = X V
i
3
ci.j + Pij 2V, for all { aad j
f?u ’dj for all j ‘
PU >0

This is the basis for Erlenkotter's procedure
but, again, he points out that often a simple
heuristic suffices to set the Pi.j'

The solution to the relaxed problem and the
values of (slack) variables

. o, Vv, -¢C,.
stfmx( ! cu)

can be used as the basis for a braach and bdbound
procedure to find the optimum UFLP solutioa.
Specifically, we begia by setting the Pij and

solving the relaxed prob