

Technics1 Note 3-83

"M" RANGE POP-UP target test pacility

Bruce R. Amrein

February 1983
AMCM8 Code 612716.h700011

Destroy this report when no longer needed. Do not return il to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designaied by other authorized documents.

Use of trade names in this report does not consititute an oflicial endorsement or approval of the use of such commercial products.

REPORT DOCUMENTATION:PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Note $3-83$	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtilto) "M" RANGE POP-UP TȦRGET TEST FACILITY	5. TYPE OF REPORT \& PERIOD COVERED Final
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(0) Bruce E. Amrein	8. CONTRACT OR GRANT NUMBER(\%)
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Human Engineering Laboratory Aberdeen Proving Ground, MD 21005	10. PROGRAM ELEMENT, PROJECT, TASK AREA A WORK UNIT NUMBERS AMCMS Code 61271.6.H700011
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE February 1983
	\qquad
14. MONITORING AGENCY NAME \& ADDRESS(If dillormit from Conitrollins Ofilice)	15. SECURITY CLASS. (OI thio roport) UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DIETRIBUTION STATEMENT (O: thio Roport) Approved for public release; distributlon untimited.	
17. DISTRIBUTION STATEMENT (of the abetract ontored in Block 20, If dilferent from Report)	
18. SUPPLEMENTARY HOTES	
19. KEY WORDS (Conthne on reverae alde If neccesemry mid Idontliy by block number) M31A1 Target Holding Mechanism Data Acquisition Shot Detector Hit Detector	
The US Army Human Engineering Laboratory has developed a fully bermed, 35 position small arms pop-up target range which is fully instrumented to provide computer controlled scenario generation and the automatic collection of the following event data: time of shot, time of hit, time target appeared, time target disappeared, etc. This data can be processed by the Hewlett-Packard Model 9830 Calculator that drives the range to provide almost real-time data reduction,	
	FICATIO OF THIS PAGE (Ther Deta En

February 1983

PREFACE

The author would like to acknowledge the technical assistance of the following personnel, without whose support this project would not have been possible:

Mr. John H. Rollins, Jr. constructed all of the circuit cards and cabling used in the automated pop-up target controller.

Mr. Thomas R. Slowik served as project engineer on all outside construction, including construction of the berms and installataon of all electrical power and instrumentation cabling.

The personnel of the Human Engineering Laboratory Test Support Division constructed the berms, firing point, and provided the general support necessary to up-grade the physical appearance of the range.

CONTENTS

PREFACE iii
INTRODUCTION 3
DISCUSSION 3
Target Mechanism 3
Silhouette 6
Outside Construction 8
Overview 8
Berms 8
Under/Above Ground Wiring 8
Power Wiring 11
Signal/Control Wiring 11
Firing Point 12
Inside Instrumentation 12
Hardware 13
Operator's Control Console 13
Main Electronic Cabinet 21
Hewlett-Packard Model 9830 Calculator 24
Hewlett-Packard Interface Cards 25
Softisare 25
SUMMARY 26
APPENDIXES
A. Time Interval Counter Channel Number Assignments 27
B. Code Conversion: Target Controller to HP-9830 Parallel Interface 30
C. Typical BASIC Program Flowchart 41
D. Typical BASIC Program Listing 57
FIGURES

1. Schematic Diagram of " M " Range Instrumentation 4
2. M31Al Target Holding Mechanism 5
3. Electrically Sensitive Silhouette 7
4. " M " Range Pop-Up Target Facility: Firing Ean and Target Locations 9
5. "M" Range: Typical Berm Construction 10
6. Pop-Up Targat Data Acquisition System - Electronics Cabinet (front view) 14
7. Pop-Up Target Data Acquigition System - Junction Box (interior) 15
8. Pop-Up Target Data Acquisition System - Operator's Control Console 16
9. Operator's Control Console - Functional Description 17

INTRODUCTION

The U. S. Army Human Engineering Laboratory (USAHEL) has, for many years, utilized a temporary pop-up target facility located at "M" Range in the Aberdeen Area of Aberdeen Proving Ground. This facility has provided data which has been used to evaluate small arms weapons and the effects of gas masks, clothing, weapons configurations, etc. on the soldier's performance.

Over the past 2 years, extensive improvements to both the physical characteristics and the electronic instrumentation of the range have been made.

A fully bermed, 35 position pop-up target range has been installed with all control, data, and power wiring buried 36 inches underground or located behind protective berms.

Concurrently, a fully automated computer controlled pop-up target data acquisition system has been installed and interfaced to a Hewlett-Packard Model 9830 desk-top computer.

Figure 1 schematically shows both the inside and outside wiring of the range instrumentation and also shows related ancillary equipment which will be discussed in later sections.

DISCUSSION

Target Mechanism
The entire range is designed (both mechanically and electrically) around the standard military Target Holding Mechanism, Trainfire (M31Al). This mechanism is a motor-driven device designed for use in training for automatic or semiautomatic rifle fire and will accomodate target silhouettes up to 48 inches in height.

This mechanism operates from $115 \mathrm{VAC}, 60$ Hertz power. Control lines are provided to permit the mechanism to be commanded UP or DOiN. A switch or relay closure on the appropriate control line causes the bi-directional universal motor to raise or lower the target silhouette. Average time to traverse the 90° angle from horizontal to vertical (or vice versa) is approximately 1 second. This mechanism is ideally suited for this application since the motor is reversible at any point in its travel. Thus, a target may be commanded down without ever
${ }^{1}$ Department of the Army. Operator organizational, direct support and general support maintenance manual including repair parts and special tools list for target holding mechanism, Trainfire: M31A1 (TM9-6920-203-14). Washington, $\overline{\mathrm{DC}}$:Author.

Figure 1. S:hematic diagram of " M " Range instrumentation.

Figure 2. M3lAl target holding mechanism with target holder and silhouette.
reaching the fully up position. This provides instant feed back to the shooter when a hit is scored while the silhouette is still traveling to its fully up position. Most other pop-up target mechanisms use a single direction notor and an eccentric cam which requires a silhouette to come fully up before it can begin its return trip to the horizontal position.

The M31A1 mechanism has been modified slightly to acommodate the metallic/foam silhouette which is used at this facility. The standard silhouette mount assembly, target holder, and target clamp bolt were discarded. In its place is mounted an HEL designed aluminium target holder which uses a standard comrercial toggle clamp (De-Sta-Co Nodel Number 215-USS). Figure 2 shows the M3iAl mechanism with the HEL designed target holder in place; mounted in the holder is the electrical silhouette which will be discussed in the next section.

Also, each mechanism has been equipped with a magnstically octuited hermetically sealed switch which is located in close proximity to the target holding arm. A magnet has been mounted on the movable arm which keeps the normally open switch contacts closed when the arm is in the down position. At approximately 30° from horizontal, the switch changes state whin indicates that the target holding arm is in motion.

Sishouette
The Pop-Up Target Test Facility utilizes a unique silhouette/hit detecting system. This system consists of an electrically sensitive silhouette which contains front and rear aluminium sheets separated by . 375 inches of foam. These sheets or plates are insulated from ground and from each other. Figure 3 shows the details (f the construction of a typical silhouette. This facility uses silhouettes of three different heights: 24,36 , and 48 inches. Speciality Die and Container Corporation has supplied these silhouettes as iectromScore Model. SDC- 3^{2}.

The silhouettes, which are connected via twisted-pair wires to the target controller (which will be discussed later), cause an electrical impulse of approximately 20 microseconds duration to be generated when a metallic projectile passes through the silhouette, compressing the foam material as the proiectile bursts the front aluminium plate. As the projectile exits the silhouetie the momentary short-circuit is broken. Up to 300 rounds (up to .45 caliber) have scored hits on a single silhouette without a sustained short-circuit within the silhouette (a metallic bridge from the front to rear plates) and without failing to detect a single hit, Silhouettes must be replaced when a high concentration of hits in a small physical area increases the likelihood of a projectile passing through an existing hole in the silhouette.
${ }^{2}$ Speciality Die \& Container Corporation, 3725 East Baltimore Street, Baltimore, Maryland 21213.

Obviousiy, this hit detection device is limited to the use of metallic projectiles. Plastic projectiles, unless coated with a conductive film, would Eaii to score hits. This technique is vastiy more reliable than the impact switch detector which is standard on the M31A1 mechanism. With the impact switch his detector, it is possible to shoot "into-the-dirt" in front of the silhouette, causing stones and gravel to impact on the silhouette and a iit to be scored. Non-metallic stones and gravel have absolutely no effect on the electrically sensitive hit detector in use at " M " Range.

Outside Construccion

Outside construction at the " M " Range Pop-Up Target Test Facility has included the construction of earthen berms, underground and above ground wiring (signal and power), construction of the firing point, and installation of remote camera controls. These areas will be discussed later in this section.

Overview

The "M" Range Pop-Up Target Test Facility is located in the Michaelsville Test Ares of Aberdeen Proving Ground. The center iine of the range is located at 300° from $0^{\circ} S$ with a permissible fan of fire of 30° to either side of the center of the range.

Pop-up targets are located at the $10-, 20-, 30-, 50-, 75-, 100$ - and 150 -meter ranges. There are 5 targets located at each range for a total of 35 fixed location targeis. The range is symmetrical about the center line. Figure 4 shows the location of each of the targets on the range and the limits of the firing fan,

Berms

Timber and earthen berms have been constructed the full length of each of the seven firing fans. Each berm is constructed of creosoted timbers ($3^{\prime \prime}$ thick $\times 12^{\prime \prime}$ wide $\times 10^{\prime}$ long) stacked two levels high (overall height is $24^{\prime \prime}$) and supported every 10 feet by $4^{\prime \prime}$ thick $\times 10^{\prime \prime}$ wide $\times 5$ feet long creosoted timbers, which have been set 3 feet into the ground. The entire structure was assembled using 60 penny, hot-dipped, galvanized common nails. After construction of the timber retaining wall, earthen back-fill was placed against the front surface of the wall, sloping outward to a point approximately 3 feet in front of trie timbers. This bulwark was seeded after tamping and leveling operations were completed. An area approximately 6 -feet wide adjacent to the rear of the berm was filled with crusher run stone to provide a stable surface upon which to place the target mechanisms. Figure 5 shows a cross-section of the typical berm construction technique used on the range.

Under/Above Ground Wiring
All electrical wiring, both power and control and signal, is located in protected areas where the potential for damage by a projectile has been minimized.

Figure 5. "M" Range: typical berm construction.

Undergrcund ducts are used from the primary junction boxes, which are located adjacent to the instrumentation trailer, to the secondary juriction boxes which are located at each of the seven berms. Waterproof PVC conduit has been used for all underground duct runs and are buried 36 inches deep near the left limit of permissible fire. Each underground duct terminates behind the berm with a PVC junction box which is fastened to the timber bewm in a protected area. Two junction boxes are provided at each berm. A 12 -inch square waterproof jünction box provides terminial space for the control and signal lines that are required for the five targets located at a eiven berm. An 8 -inch square waterproof junction box provides terminals for the $115 / 230 \mathrm{~V}$ AC power distribution systëm.

All power and signal and control lines are run exposed behind the timber berms in electrical metallic tubing (EMT). At each target mechanism location, there are two waterproof electrical boxes. Each box terminates with a waterproof connector that interfaces to the cables which are attached to the target mechanisms. One 3-pin connector provides the 115V AC power which is necessary toraise and lower the M31Al Target-Holding Mechanism, while a 10 -pin waterproof connector provides all control and sigral lines to the target position. The function of these wires will be discusseid in a later section.

Power Wiring

Each individual berm is provided with a 20 ampere, 115 volt AC, 60 Hertz circuit which provides power to the five M31A1 Target-Holding Mechanisms at a particular range. Each circuit is protected by a circuit breaker located in a wall mounted panel adjacent to the control point in the instrumentation trailer.

All power wiring to the target-holding mechanisms is completely waterproof and permit reliable operation under all weather conditions. The primary power distribution panel is protected by surge protectors and a driven ground-rod. Additionally, each secondary distribution box (at each of the seven berms) is protected by a driven ground-rod and surge protectors (NSN 5920-00-786-8448).

Signal/Control Wiring

Signal and control wires are provided to each of the 35 target mechanisms through a network of conduits from the primary junction box located adjacent to the instrumentation trailer. Each target mechanism is served by four twisted pairs of \#22 AWG wire. The wires run underground from the primary junction box to the secondary junction boxes located at each berm. At each berm 20 wire pairs (plus spares) a:e routed to the 5 targets located at that berm (4 pairs/target).

The four pairs of wire are connected to the target mechanism through a 10-pin waterproof circular connector and cable and perf-rm the following functions:

Pair 1

Connects electricaliy actuated silhouette to ta $\log ^{-0+}$ controller.

Pair 2. Connects magnetic switch (which indicates target motion) to target controller.

Pair 3 \& 4 Provide up/down control for M31Al Target Holding Mechanism.

The functions of these pairs of wires will be discussed in more detail in the section which describes the target controller.

Firing Point
The firing point is a raised, covered earthen platform located at the apex of the firing fan. This platform is elevated approximately 24 inches above ground so as to give the firing subject an unobstructed view of the range in any position (prone, sitting, or standing).

The firing point is wired to accommodate the shot detector (which will be discussed later) that senses the muzzle blast of the weapon as the projectile exits the muzzle.

An intercommunications system has been installed to permit hands-off communications to the range controller from the firing point.

Additionally, the firing point has been wired to permit either local or remote control of a Milliken camera that is used to record the motions of the subject under study.

The Milliken cameras (Models DBM-4 and DBM-5) are high speed 16 mm precision motion picture cameras designed to provide motion pictures of exceptional clarity and detail st frame rates as high as 500 frames per second under severe environmental conditions ${ }^{3}$.

Inside Instrumentation

The control point for the "M" Range Pop-Up Target Test Facility is located in an elevated mobile home which has been modified to permit an unobstructed view of the firing point and the entire down-range target array.

The next several sections describe the automated, computer controlled Pop-Up Target Data Acquisition System which drives the entire range.

[^0]
Hardware

The Pop-Up Target Data Acquisition System physically consists of four major components which are interconnected with various cables and connectors and collects timing data on the following evonts: shots, hits; target silhouette appearance, and target silhouette disappearance. This data is transferred to the Hewlett-Packard Model 9830 Calculator for processing. Additionally, the operator's control console controls and monitcrs selection of targets to be presented, presentation times, delay times, target cart motion, open and short circuits, hits, shots, and also subject identification. Additionally, all of the above mentioned items can be selected and controlled by the Hewlett-Packard Calculator. The heart of the system i.s a $19^{\prime \prime}$ wide electronic cabinet which contains DC power supplies necessary to supply power to the system, the card cage which houses the wire-wrapped circuit cards which control the system 4 and the time interval counter subsystem (manufactured by Quad Systems, Inc). ${ }^{4}$ Figure 6 shows a front view of this cabinet. The cabinet is interconnected to the remaining three major components which comprise the system.

All data and control lines are routed to the main electronic cabinet via a water-tight junction box which is located outside, adjacent to the control point. This junction box provides the interface between the target controller and the signal and control wires which were described earlier. Figure 7 shows: the interior of the junction box as it appeared prior to connecting the down-range wiring.

Operator's Control Console

The operator's control console, shown in Figure 8, houses all controls, displays, and indicators necessary to operate the range. This console is connected to the main electronic cabinet via two cables which provide DC power and the 150 control lines necessary to operate the system. Figure 9 details the front panel of the operator's control console. The following functional descriptions are keyed to the indicators, displays, and controls referenced in Figure 9:

1 Silhouette Open Circuit Indicator

Provides a reference 1 Hertz flashing lamp which enables the operator to differentiate between open/short signals generated by Item 17.

2 Silhouette Short Circuit Indicator
Provides a reference 5 Hertz flashing lamp which enables the operator to differentiate between open/short signals generated by Item 17 .
${ }^{4}$ Quad Systems, Inc., 11900 Parklawn Drive, Rockville, Maryland 20852.

3 Cycle Status Indicators

Enable the operator to quickly determine the status of the controller. The status indicators illuminate sequentially from left to right when the start button is depressed.

REST - Target controller is between steps; the start button is not illuminated.

PRESTART - Indicates that the start button has been depressed but the delay time (up to 9.9 seconds) selected by Item 8 has not expired.

TGT UP - Indicates that any targets selected by Item 17 have been presented and will remain up (unless hit in KILL-YES mode) until the target presentation time selected by Item 7 has expired.

STOP DELAY - Indicates that all targets are down, but a delay equal to that selected by Item 8 has been generated. After this delay the controller returns to the rest status.

4 Time Remaining Display
Displays the time (in seconds) remaining in a given cycle of a step. Displays 0.0 when in the rest position.

5 Hit Indicator
Illuminates for approximately 100 milliseconds when a hit is detected on any target silhouette.

6 Shot Indicator
IIluminates for approximately 100 milliseconds when a shot is detected by the shot detector located at the firing point.

7 Target Presentation Time

Permits the selection (by hand of computer geiterated) of one of four target presentation times (T-1 through T-4) which have been entered into the appropriate thumbwheel switches. The push button switch illuminates when depressed and remains illuminated until a different switch is depressed. The target presentation time pushbuttons are only enabled when the mode selector (Item 15) is in the automatic mode.

8 Stop Delay Time
Permits the selection of a stop delay time (by hand or computer generated) which has been entered into the thumbwheel switches. The stop delay time indicator illuminates only during the stop delay cycle of a step.

9 Prestart Time

Permits the selection of a prestart time (by hand or computer generated) which has feen entered into the thumbwheel switches. The prestart time indicator illuminates only during the prestart time cycle of a step.

10 Time Interval Counter
Provides remote control for the Quad Systems, Inc. Time Interval Counter located in the main electronic cabinet. The six character header thumbwheel permits the Experiment I.D. to be transmitted to the Hewlett-Packard Model 9830 Calculator when the run button is depressed. The header consists of one alpha character (A through J) followed by five numeric characters (0 through 9).

Run Pushbutton
Causes the time interval counter to reset its internal clock to zero; start the clock, accept the header information, and begin collecting event data. The run pushbutton remains illuminated until the standby pushbutton is depressed.

Standby Pushbutton
Causes the time interval counter to cease collecting event data; any data previously collected but not transmitted is lost when the standby pushbutton is depressed. The standby pushbutton remains illuminated until the run pushbutton is depressed.

11 Start Pushbutton
Causes a step to be initiated. The cycle status indicators leave the rest cycle when the start pushbutton is depressed. The pushbutton remains illuminated until the controlier returns to the rest cycle.
12. Kill Yes/Kill No

Depressing the kill/yes pushbutton causes it to illuminate and causes all targets to go dow when a hit is scored; depressing the kill/no pushbution causes it to 11 luminate and causes all targets to remain up for the entire target up acie even when a hit is scored.

13 Lamp Test Pushbutton
Causes all indicator lamps on the operator's control console to be illuminated.

Computer Generated Times

Indicator is illuminated when the Hewlett-Packard Model 9830 Calculator cransmits a binary 223. This code causes the controller to accept cycle timing data from the calculator rather than from the Operator's Control Console. Depressing the start pushbutton (Item 11) causes the indicator to be extinguished and permits normal timing data to be entered from the console.

14 Erase Pushbutton
Causes all selected pop-up target indicators (Item i7) and moving target cart indicators (Item 16) to be extinguished. Depressing the erase pushbutton causes it to illuminate for approximately 100 milliseconds and interrupts an in-progress step.

15 Mode Select
Depressing the auto pushbutton causes it to illuminate and permits the selection of a target presentation time (Item 7); depressing the manual pushbutton causes selected targets to remain up until hit and causes the time remaining display to continually count down from 9.9 seconds. Targets which have been hit pop up every 9.9 seconds until the erase pushbutton is depressed interrupting the cycle.

16 Cart (M1 through M6)
These pushbuttons cause the selected moving target cart (future) to begin moving across the range when the controller enters the prestart cycle. The pushbutton illuminates when it is depressed and remains illuminated until extinguished by the erase pushbutton or until other targets/carts are selected for a subsequent step.

17 Pop-Up Target Select
This bank of 36 pushbuttons controls all down-range pop-up targets. Depressing one or more pushbuttons causes the appropriate indicator to illuminate cortinuously. The selected targets are activated when the start pushbutton is depressed. The selection of the first target in a step causes all previously activated targets to be cancelled, thereby extinguishing the appropriate indicator. Additionally, these 36 pushbuttons serve as indicators displaying the current status of the electronic silhouettes mounted on the M31A1 target mechanisms. An indicator flashing at the 1 Hertz rate signifies that an open circuit exists on the designated target silhouette (See Item 1), while an indicator flashing at a 5 Hertz rate signifies that a short circuit exists on the designated target: silhouette (See Item 2).

Main Electronic Cabinet

The main electronic cersinet houses three regulated direct currênt (DC) power supplies which supply the following voitages necessary to operate the system:

```
+24 volts DC @ 5.0 amperes
+5 volts DC @ 12.0 amperes
- 5 volts DC @ 0.5 amperes
```

All ?ower supplies operate from 105 to 125 volts AC, $50-400$ Hertz. The +5 volt and +24 volt supplies are both equipped with internal preset overvoltage protectors.

The outputs of all three supplies are monitored by green indicator lamps on the front panel of the main electronic cabinet. These indicators should be illuminated whenever the power-on switch is in the on position.

The +24 volt supply provides power for the 65 indicator lamps located on the operator's control console. The +5 volt supply provides power to all TTL logic located in the main electronic cabinet, the digital display, and the electrically actuated silhouettes. The -5 volt supply provides the negative voltage required to power the operational amplifiers which form the input filter network on the target condition and shot detector cards. AC power for the system is filtered by a RFI filter as it enters the cabinet. The entire AC power distribution system is protected with a 5 ampere circuit breaker which is integrated into the power-on switch.

The card cage in the main electronics cabinet contains the wire-wrapped circuit cards which form the heart of the system. The cards are distributed as follows:

Slot Number
1
2
3
4
5
6
7
8
9
10
11
12
13

Card Type
Timing Select \& Lamp Driver Card Interface and Control Card Target Condition Card (Tgts 1-4)
Target Condition Card (Tgts 5-8)
Target Condition Card (Tgts 9-12)
Target Condition Card ('rgts 13-16)
Target Condition Card (Tgts 17-20)
Target Condition Card (Tgts 21-24)
Target Condition Card (Tgts 25-28)
Target Condition Card (Tgts 29-32)
Target Condition Card (Tgts 33-36)
Shot Detectori/Moving Target Card Card Extender

The following paragraphs briefiy describe the functional purpọse of each card.

Timing Select and Lamp Driver Card

The Timing Select and Lamp Driver Card provides the logic necessary for multiplexing the six two-digit thumbwheel switches located on the operator's control consols. This multiplexed drica is fed to the Interface and Control Card for additional handing. Additiomally, this card provides the logic and lamp drivers necessary to onerate the indicators (except for Target Select and Moving Target Cart) located on the operator's control console.

Interface and Control Card

The Interface and Control Card provides the :ogic necessary to drive the entire controller and to intersoe with the Hewset Packara Mcdel 9830 Calculato:". It contains the crystal controlled oscillator and civider circuits necessary to generate the timing pulses remixed to control: the fuactions of the controller, logic necessary to cause the concrolyer to sequence through a step (as directed by the times selected by the thumbweel switches) reising and lowering targets, and displaying time remaining ins a cycle of a step. It also contains the decoding circuitry which translates the digital codes provided by the paralled TTL Interface of the Hewlett-Packard Model 9830 cuacuator into discrete commands which can duplicate any control function available ir the front panel of the operator's control console. It also contains the rogic which permits computer generated times to be accepted by the system in lieu of the times selected by the thumbwheel switches located on the operator's control console.

Target Condition Card

Each target condition card (there are nine identical cards) provides the input circuitry, filtering, and power necessary to operate four electrically operated hit detecting silhouettes located dom-range.

Each card also handles the selection of targets to be used in a given step either manually from the operator's control console, or through digital data transmitted from the Hewlett-Packord Model 9830 Calculator.

The input circuitry and voltage comparators monitor the status of each target silhouette, instantly alerting the operator to any open or short circuits which may appear on a target silhouette line. Each input circuit also detects hits and transmits hit data to the time interval counter where it is assigned a eime and temporaxily stored. Each target condition card channel also contains the relays necessary to generate target up/target down signals for the M31A1 Target ionlding Mechanisms.

Each card contains the logic required to selectively lower targets before the target uy time has expired in a step and also the logic necessary to scan the target status (open ur short) under computer control. These features have not been fully implemented in software at this time.

The nine target condition cards are fully interchangeable so as to minimize troubleshooting time.

Shot Detector/Moving Target Card

The shot detector/moving target card provides the logic necessary to detect shots fired and also necessiary to cause the moving target carts (future) to begin moving across the rarige.

The muzzle blast of ${ }_{5}$ a projectile leaving the barrel of a weapon is detected by a pressure transducer ${ }^{5}$ mounted near the muzzle of the weapon. The pulse is pre-amplified by a $1, T$ amplifier in the detector case. This ampifier is powered by and its signal is transmitted to the card by a single RG-58/U coaxial cable. On the card, up to six pressure transducer signals are combined, amplified, and compared to predetermined threshold points. A voltage level greater than the setpoint is considered to be a valid shot. All valid shots are combined and generate a composite output pulse (approximately 18 milliseconds long) which is transmitted to the time interval counter for temporary sturage. The maximum rate of fire is approximately 3000 shots per minute for short periods of time (limited by the storage capacity of the time interval counter).

This card also contains the logic necessary to cause up to six moving target carts to begin moving across the range when the controller enters the prestart portion of a step. The on-card logic generates a relay closure for the selected moving target carts. This closure interfaces with the on-cart logic to permit the cart to begin its motion.

Cart motion is independent of target silhouette activity. Therefore, in order to have a functional moving target a standard M31A1 Target Holding Mechanism is mounted upon the moving target cart.

Digital Interface

The logic contained in the card cage, on the various cards which were previously described, can all be controlled via the digital interface to the Hewlett-Packard Model 9830 Calculator. This interface permits data to be provided to the controller and also monitors the status of the current state of the controller. The hardware associated with this interface will be discussed in a later section.
${ }^{5}$ Susquehanna Instruments Mode1 ST-2, Susquehanna Instruments, Route 2, Box 228,
Havre de frace, Maryland 21078 .

The following pieces of commercial hardware form the remainder of the Pop-Up Target Data Acquisition System:

Time Interval Counter

The Quad Systems, Inc., Time Interval Counter Model RC-100B is a self-contained instrument capable of operating with up to 80 independent digital inputs. The unit monitors the digital input lines, noting and recording the time of status changes.

All input channels are TTL compatible with two load units. The first 40 channels respond to plus (+) or minus (-) going level changes, whille channels 41 through 80 respond only to plus (+) going level changes. 'The selected polarity transition is stored in an 80 -bit event storage register. In this application, the entire event storage register is scanned every 10 milliseconds to detect input activity. When an event is detected on an input line, the time of occurrence, channel number, and polarity are transferred in parallel to the output data buffer. Time of occurrence is a four digit time with 10 millisecond resolution and a time base stability of $\pm 0.01 \%$. The time of occurrence recycles every 100 seconds. Channel number 00 indicates clock recycle.

The output data buffer is a first-in, tirst-out data silo followed by an ASCII formatter. The silo capacity is 128 words (or events) ${ }^{\circ}$.

A standard RS-232C compatible ASCII output is provided (with standard switch selectable baud rates from 110 through 9600).

Appendix A lists the channel number assignments for the 80 available channels on the time interval counter.

Abort Pushbutton

An abort pushbutton has been installed on the controller to interrupt data collection if necessary. This pendant pushbutton generates a channel number 79 on the time interval counter.

Hewlett-Packard Model 9830 Calculator

The Hewlett-Packard Model 9830 Programmable Calculator is a general purpose data processing system programmed in BASIC. It has 15,808 eight-bit bytes of memory and several read-only-memory (ROM) plug-in blocks which permit expanded input/output features, matrix operations, etc. The basic calculator includes a 32 character LED alphar,umeric display and a built-in tape cassette which can Model RC-100B. Paragraph 1.1.
store up to 32,000 words of program or data. The Model 9866A Printer is mounted on top of the basic calculator. This printer provides a print speed of 240 lines per minute with 80 characters per line .

Hewlett-Packard Interface Cards

Communications and control is being accomplished through two interfaces to the Model 9830 Calculator.

The Time Interval Counter RS-232C output is connected to the Hewlett-Packard Model 11205A Serial Interface. This interface permits the transfer of serial ASCII coded data from a device that conforms to EIA (Electronic Industries Association) Specification RS-232C. The maximum baud rate of this interface is 1200. A clear-to-send (CTS) signal has been included in this interface so as to sause the time interval counter t, transmit data only when the calculator is prepared to accept it.

The Pop-Up Target Data Acquisition System receives computer generated commands and time codes from the Hewlett-Packard Model 11202A I/O Interface. Also, the Model 11202A Interface is used to determine when the cycle status changes in a step of a scenario. This interface has an 8-bit parallel (TTL level) data structure which can either input or output data, but not both at the same time; i.e., the data transfer is half-duplex. This device provides stowage for both input and output data and also has an I/O control line and ready flag line. Although the calculator handles only ASCII-coded data, the interface can transfer data in any 8 -bit binary code. This interface is unusual in that it uses a "negative-true logic," i.e., less than 0.7 volts indicates 'low' or logic '1' or 'true', and greater than 2.4 volts indicates 'high' or logic ' 0 ' or 'false'.

Appendix B shows the code conversion which was necessary to utilize the negative-true logic of the Hewlett-Packard Model 11202A I/O Interface.

Software
Software for the Pop-Target Data Acquisition System consists of BASIC language programs written for the Hewlett-Packard Model 9830 Desktop Calculator. Various fiograms have been written including those that only collect and reduce data and also those that fully operate the range (raising and lowering targets).
${ }^{7}$ Hewlett-Packard Co, Inc. 1975 Electronic Instruments and Systems Catalog. Palo Alto, CA, 1974, p. 535.
${ }^{8}$ Hew1ett-Packard CO, Inc. 11202A I/O Interface Installation and Service Manual. Loveland, Colorado, 1974, p. 1-2.

Appendix C shows the flowchart for a typical BASIC program which was written to enable the Pop-Up Target Data Acquisition System to present a 20 -śtep scenr.rio which repeats a four-step sequence five times: targets 17,18 and 19 are presented sequentially followed by all three targets presented simultaneously. Intertarget times are controlled by the operator's control console thumbwheel switches, but target presentation times (T-1 or T-2) are software controlled.

Target and control selection uses data which were obtained from the code conversions shown in Appendix B.

This program provides a step by step output showing the step number, time the step started (in seconds, referenced to an arbitrary starting time), number of shots fired and time of each shot, number of hits, and time of each hit (if any). Each shot or hit time is referenced to the arbitrary starting time. Additionally, a tabular output is provided for each step. This output provides data in six columns: Target Number, Target Up Time, Target Exposure Time, First Hit Time, Number of Hits, and Acquisition Time. One line of data is generated for each active target in a step. At the end of the 20 -step scenario, a recapitulation is provided which indicates subject identification, total number of shots fired, total number of hits scored, and percentage of shots that scored hits.

This typical software can be modified to provide whatever level of control or flexibility is desired to just collect data or to fully operate the range. Once the raw data has been obtained, it can easily be manipulated to provide whatever data the test director desires.

Future improvements to the software capabilities of the data acquisition system call for the instailation of an editor which will permit someone with minimal programming experience to generats the data necessary to fully operate the range under computer control. Future software will also permit the detection of defective target silhouetzes (open and short circuits) utilizing the existing hardware.

SUMMARY
The "M" Range Pop-Up Target Test Facility provides the US Army Human Engineering Labcratory with a flexible data collection facility which has been extensively used to evaluate soldier's performance in all areas of small arms weapons. This facility is continually being improved and updated to increase ics reliability and flexibility.
appendix A TIME INTERVAL COUNTER CHANNEL NUMBER ASSIGNMENTS

APPENDIX A

TIME INTERVAL COUNTER CHANNEL NUMBER ASSIGNMENTS

CHAN. \#
1
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
$\left.\frac{1}{+} \right\rvert\,+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$

FUNCTION
Target \#1 - UP
Target \#1 - DOWN
Target \#2 - UP
Target \#2 - DOWN
Target \#3 - UP
Target \#3 - DOWN
Target \#4 - UP
Target \#4 - DOWN
Target \#5 - UP
Target \#5 - DOWh
Target \#6 - UP
Target \#6 - DOWN
Target \#7 - UP
Target \#7 - DOWN
Target \#8 - UP
Target $\# 8$ - DOWN
Target \#9 - UP
Target \#9 - DOWN
Target \#10 - UP
Target $\# 10$ - DOWN
Target \#11 - UP
Target \#11 - DOWN
Target \#12 - UP
Target \#12 - DOWN
Target \#13 - UP
Target \#13 - DOWN
Target \#14 - UP
Target \#14 - DOWN
Target \#15 - UP
Target $\# 15$ - DOWN
Target \#16 - UP
Target \#16 - DOWN
Target \#17 - UP
Target \#17 - DOWN
Target \#18 - UP
Target. \#18 - DOWN

CHAN. \#
19
19
20
20
21
21
22
22
23
23
24
24
25
25

26

26
27
27
28
28
29
29
30
30
31
31
32
32
33
33
34
34
35
35
36
36

FUNCTION
Target \#19 - UP
Target \#19 - DOWN
Target $\# 20$ - UP
Target \#20 - DOWN
Target \#21 - UP
Target \#21 - DOWN
Target \#22 - UP
Target \#22 - DOWN
Target \#23 - UP
Target \#23 - DOWN
Target \#24 - UP
Target \#24 - DOWN
Target \$25 - UP
Target $\# 25$ - DOWN
Target \#26 - UP
Target \#26 - DOWN
Target \#27 - UP
Target \#27 - DOWN
Target \#28 - UP
Target \#28 - DOWN
Target \#29 - UP
Target \#29 - DOWN
Target $\# 30$ - UP
Target $\# 30$ - DOWN
Target \#31 - UP
Target \#31 - DOWN
Target \#32 - UP
Target \#32 - DOWN
Target \#33 .- UP
Target \#33 - DOWN
Target \#34 - UP
Target \#34 - DOWN
Target \#35 - UP
Target \#35 - DOWN
Target \#36-UP
Target \#36 - DOWN

CHAN. \#1	+/-	FUNCTION	CHAN. 非	+/-	FUNCTION
39	+	Enter Tgt Up Mode	58	+	
39	-	Leave Tgt Up Mode	59	$+$	Target \#19-HIT
40	+	Enter Rest Mode	60	+	Target \#20 - HIT
40	-	Leave Rest Mode	61	+	Target \#21 - HIT
41	+	Target \#1 - HIT	62	+	Target \#22-HIT
42	+	Target \#2-HIT	63	+	Target \#23-HIT
43	+	Target \#3 - HIT	64	+	Target \#24-HIT
44	+	Target $\#^{\text {a }}$ - HIT	65	+	Target \#25-HIT
45	+	Target, \#5-HIT	66	+	Target \#26-HIT
46	+	Target $\# 6$ - HIT	67	+	Target \#27-HIT
47	+	Target \#7-HIT	68	$+$	Target \#28-HIT
48	+	Target \#8-HIT	69	+	Target \#29-HIT
49	+	Target \#9-HIT	70	+	Target $\# 30-\mathrm{HIT}$
50	+	Target \#10-HIT	71	$+$	Target ${ }^{\text {d }}$ - $31-\mathrm{HIT}$
51	+	Target \#11-HIT	72	+	Target \#32-HIT
52	+	Target \#12-HIT	73	+	Taこget \#33-HIT
53	+	Target \#13-HIT	74	+	Target \#34-HIT
54	+	Torget \#14-HIT	75	+	Target \#35 - HIT
55	+	Target \#15-HIT	76	$+$	Target \#36-HIT
56	+	Target \#16-HIT	79	+	Abort
57	+	Target \#17-HIT	80	+	Shot Detected

STANDARD OUTPUT FORMAT: HEADER - LXXXXX CR LF
$\mathrm{L}=\mathrm{LETTER}$ (A THRU J)
$\mathrm{X}=\mathrm{I} . \mathrm{D}$. DIGIT (0 THRU 9)
CR = CARRIAGE RETURN
LF = LINE FEED
S $=$ SIGN (+ OR -)
$\mathrm{C}=\mathrm{CHANNEL}$ NOMBER DIGIT (00 THRU 80)
$T=$ TIME DIGIT (0 THRU 9)
TIME +00.00 SECS THRU 99.99 SECS WITH REPEAT $00,+0000=$ TIME REPEAT

APPENDIX B
CODE CONVERSION: TARGET CONTROLLER TO HP-9830 PARALLEL INTERFACE

APPENDIX B

CODE CONVERSION: TARGET CONTROLLER TO HP-9830 PARALLELE INTERFACE

POSITIVE TRUE LOGIC

DECIMAL	BINARY	BINARY	DECIMAL
0	00000000	11111111	255
1	00000001	11111110	254
2	00000010	1 I 1111101	253
3	00000011	11111100	252
4	00000100	11111011	251
5	00000101	11111010	250
6	00000110	11111001	249
7	00000111	11111000	248
8	00001000	11110111	247
9	00001001	11110110	246
10	00001010	11110101	245
11	00001011	11110100	244
12	00001100	11110011	243
13	00001101	11110010	242
14	00001110	11110001	241
15	00001111	11110000	240
16	00010000	11101111	239
17	00010001	11101110	2,38
18	00010010	11101101	237
19	00010011	11101100	236
20	00010100	11101011	235
21	00010101	11101010	234
22	00010110	11101001	233
23	00010111	11101000	232
24	00011000	11100111	231
25	00011001	11100110	230
26	00011010	11100101	229
27	00011011	11100100	228
28	00011100	11100011	227
29	00011101	11100010	226
30	00011110	11100001	225
31	00011111	11100000	224
32	00100000	11011111	223
33	00100001	11011110	222
34	00100010	11011101	221
35	00100011	11011100	220
36	00100100	$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	219
37	00100101	11011010	218
38	00100110	11011001	217
39	00100111	11011000	216
40	00101000	11010111	215
41	00101001	11010110	214
42	00101010	11010101	213
43	00101011	11010100	212
44	00101100	1101001	211

POSITIVE TRUE LOGIC
DECIMAL

45	00101101
46	00101110
47	00101111
48	00110000
49	00110001
50	00110010
51	00110011
52	00110100
53	00110101
54	00110110
55	00110111
56	00111000
57	00111001
58	00111010
59	00111011
60	00111100
61	00111101
62	00111110
63	00111111
64	01000000
65	01000001
66	01000010
67	01000011
68	01000100
69	01000101
70	01000110
71	01000111
72	01001000
73	01001001
74	01001010
75	01001011
76	01001100
77	01001101
78	01001110
79	01001111
80	01010000
81	01010001
82	01010010
83	01010011
84	01010100
85	01010101

H-P NEGATIVE TRUE LOGIC

BINARY

$11010010 \quad 210$
11010001
209
1101000000208
$11001111 \quad 207$
11001110206
110011011205
$11001100 \quad 204$
110001100111203
110010100202
11001001201
$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 200 \\ 1\end{array}$
$\begin{array}{llllllllll}1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 199 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 198\end{array}$
$11000110 \quad 198$
11000101197
1100011000196
11000011195
$11000010 \quad 194$
110000011
$11000000 \quad 192$
101111111191
$10111110 \quad 190$
101111018
$10111100 \quad 188$
10111011187
$\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 0 & 186\end{array}$
10111001185
$10111000 \quad 184$
10110111183
$10110110 \quad 202$
10110101181

1. 011101000180
$10110011 \quad 179$
$10110010 \quad 178$
10110001177
$10110000 \quad 176$
$10101111 \quad 175$
$10101110 \quad 174$
10101101173
$10101100 \quad 172$
10101011171
10101010170

CODE CONVERSION: TARGET CONTROLLER TO HP -9830 PARALLEL INTERFACE,

POSITIVE TRUE LOGIC

DECIMAL
86

h-P NEGATIVE TRUE LOGIC

BINARY

10101001	169
10101000	168
10100111	167
10100110	166
10100101	165
0100100	164
10100011	153
10100010	162
10100001	161
10100000	160
10011111	159
10011110	158
10011101	157
10011100	156
10011011	155
10011010	154
10011001	153
10011000	152
10010111	151
10010110	150
10010101	149
10010100	148
10010011	147
10010010	146
10010001	145
10010000	144
10001111	143
10001110	142
10001101	141
10001100	140
10001011	139
10001010	138
10001001	137
10001000	136
10000111	135
10000110	134
10000101	133
10000100	132
10000011	131
0000010	130
0000001	129
10000000	128
0111111111	127
01111110	126

CODE CONVERSION: TARGET CONTROLLER TO HP -9830 PARALLEL INTERFACE

POSITIVE TRUE LOGIC

DECIMAL	BINARY	BINARY	DECIMAL
130	10000010	011111101	125
131	10000011	01111100	124
132	10000100	01111011	123
133	10000101	01111010	122
134	10000110	01111001	121
135	10000111	01111000	120
136	10001000	01110111	119
137	10001001	01110110	118
138	10001010	01110101	117
139	10001011	01110100	116
140	10001100	01110011	115
141	10001101	01110010	114
142	10001110	01110001	113
143	10001111	01110000	112
144	10010000	01101111	111
145	10010001	01101110	110
146	10010010	01101101	109
147	10010011	01101100	108
148	10010100	01101011	107
149	10010101	01101010	106
150	10010110	01101001	105
151	10010111	01101000	104
152	10011000	01100111	103
153	10011001	01100110	102
154	10011010	01100101	101
155	10011011	01100100	100
156	10011100	01100011	99
157	10011101	01100010	98
158	10011110	01100001	97
159	10011111	01100000	96
160	1010000	01011111	95
161	10100001	01011110	94
162	10100010	01011101	93
163	10100011	010 L 1100	92
164	10100100	01011011	91
165	10100101	01011010	90
166	10100110	01011001	89
167	10100111	01011000	88
168	10101000	01010111	87
169	10101001	01010110	86
170	10101010	01010101	85
171	10101011	01010100	84
172	10101100	01010011	83
173	10101101	01010010	82
174	10101110	01010001	81

POSITIVE TRUE LOGIC.
DECIMAL
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218 219

BINARY
$\begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & & & & & & & 1\end{array}$

H-P NEGATIVE TRUE :LOGIC
BINARY

01010000	80
01001111	. 79
01001110	78
01001101	77
01001100	76
011001011	75
0 ± 001010	74
01001001	73
01001000	72
01000111	71
01000110	70
01000101	69
01000100	68
01000011	67
01000010	66
01000001	65
01000000	64
00111111	63
00111110	62
00111101	61
00111100	60
00111011	59
00111010	58
00111001	57
00111000	56
00110111	55
00110110	54
00110101	53
00110100	52
00110011	51
00110010	50
00110001	49
00110000	48
00101111	47
00101110	46
00101101	45
00101100	44
00101011	43
00101010	42
00101001	41
00101000	40
00100111	39
00100110	38
00100101	37
00100100	36

POSITIVE TRUE LOGIC

DECIMAL

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

BINARY
11011100
1101 i 101 11011110 11011111 11100000 11100001 11100010 $\begin{array}{llllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
111100100
$\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 0 & 1\end{array}$
11100110 11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110 $\begin{array}{llllllll}1 & 1 & 1 & 0 & 1 & 1\end{array}$ 11110000 11110001 11110010 11110011
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$ 11110101 $111101: 0$ 11110111 11111000 11111001 11111010
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 0 & 1\end{array}$
111111100 $\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 0 & 1\end{array}$ 11111110
11111111

H-P NEGATIVE TRUE LOGIC
BINARY

00100011	35
00100010	34
00100001	33
00100000	32
00011111	31
00011910	30
00011101	29
00011100	28
00011011	27
00011010	26
00011001	25
00011000	24
00010111	23
00010110	22
00010101	21
00010100	20
00010011	19
00010010	18
00010001	17
00010000	16
00001111	15
00001110	14
00001101	13
00001100	12
00001011	11
00001010	10
00001001	9
00001000	8
00000111	7
00000110	6
00000101	5
00000010	4
00000011	3
00000010	2
00000001	1
00000000	0

TARGET	TARGET	TARGET	TARGET
NUMBER	SELECT	DOWN	STATUS
1	195	67	131
2	194	66	130
3	193	65	129
4	192	64	128
5	199	71	135
6	198	70	134
7	197	69	133
8	196	68	132
9	203	75	139
10	202	74	138
11	201	73	137
12	200	72	136
13	207	79	143
14	206	78	142
15	205	77	141
16	204	76	140
17	211	83	147
18	210	82	146
19	209	81	145
20	208	80	144
21	215	87	151
22	214	86	150
23	213	85	149
24	212	84	148
25	231	103	167
26	230	102	166
27	229	101	165
28	228	100	164
29	235	107	171
30	234	106	170
31	233	105	169
32	232	104	168
33	239	111	175
34	238	110	174
35	237	109	173
36	236	108	172

TIME CODE CONVERSIONS TO HP-9830 DECIMAL CODES

$\begin{aligned} & \text { TIME } \\ & (\text { SECS }) \end{aligned}$	$\begin{aligned} & \text { H-P CODE } \\ & \text { (DECIMAL) } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (SECS) } \end{aligned}$	H-P CODE (DECIMAL)
0,0	255	3.0	207
0.1	254	3.1	206
0.2	253	3.2	205
0.3	252	3.3	204
0.4	251	3.4	203
0.5	250	3.5	202
0.6	249	3.6	201
0.7	248	3.7	200
0.8	247	3.8	199
0.9	246	3.9	198
1.0	239	4.0	191
1.1	238	4.1	190
1.2	237	4.2	189
1.3	236	4.3	188
1.4	235	4.4	187
1.5	234	4.5	186
1.6	233	4.6	185
1.7	232	4.7	184
1.8	231	4.8	183
1.9	230	4.9	182
2.0	223	5.0	175
2.1	222	5.1	174
2.2	221	5.2	173
2.3	220	5.3	172
2.4	219	5.4	171
2.5	218	5.5	170
2.6	217	5.6	169
2.7	216.	5.7	168
2.8	215	5.8	167
2.9	214	5.9	166

TIME CODE CONVERSIONS TO HP-9830 DECIMAL CODES

$\begin{aligned} & \text { TIME } \\ & (\mathrm{SECS}) \end{aligned}$	H-P CODE (DECIMAL)	TIME (SECS).	H-P CODE (DECIMAL)
6.0	159	8.0	127
6.1	158	8.1	126
6.2	157	8.2	125
6.3	156	8.3	124
6.4	155	8.4	123
6.5	154	8.5	122
6.6	153	8.6	121
6.7	152	8.7	120
6.8	151	8.8	i19
6.9	150	8.9	118
7.0	143	9.0	111
7.1	142	9.1	110
7.2	141	9.2	109
7.3	140	9.3	108
7.4	139	9.4	107
7.5	138	9.5	106
7.6	137	9.6	105
7.7	136	9.7	104
7.8	135	9.8	103
7.9	134	9.9	102

APPENDIX C
TYPICAL BASIC PROGRAM FLOWCHART


```
1950 C=VFL(A$[1:2])
1960 IF F$[4:4]="-" THEN 1990
1970 H=2
1980 GOTO 2010
1990 H=1
2OGD REM COMPENSATE FOR 100 SECOHD REPERT IHTERVAL OH T.I.E.
2010 IF C#0 THEN 2030
2020 N=N+1
2030 T =100*N+VFL(A+[5,8])/100
2040 RETURN
```



```
2060 REM
2070 REM
```



```
209G REM SUBFRGGRAM
```



```
2110 IF CP0 THEN 2130
2120 GOT0 2140
2130 IF C<37 THEN 2150
2140 GOT0 2160
2150 D[C,H]=T
2160 IF C>40 THEN 2160
2170 FITO 2190
2180 IF C<77 THEN 2200
2190 GOTO 2500
2200 C1=15-40
2210 H9=H9+1
2220 D[01:4]=I[CO1,4]+1
2230 IF ICC1,3]#0 THEN 2090
2240 D[01,3]=T
2250 REM Y(S)= TIME OF EHDH HIT IH STEP; G(S)=TARGET # HIT
2260 IF SHG THEN 2280
2270 S=1
2280 Y[E]=T
2299 G[S]=[1
2300 RETURH
```



```
2320 REM
2330 REM
```



```
2350 REM SUEFRGGRAM
2369 REM DATH O UTFF|T M O IIULE
2370 REM PRIHTS IRTA UUT TO FRINTER HFTER EVEF'G STEF
2380 V[M]=T1
2390 IF M#1 THEH 2420
240% M1=1
2410 G0T0 2430
2420 M1=|-1
2430 T9=V[M]-V[M1]
2440 REM EALCULATE TO (FIRST TARGET-IJP TIME IN A STEF)
2450 T0=9999
2460 FOR I=1 T0 36
2470 IF D[I;&]=0 THEN 2500
2480 IF D[1,2]>TG THEN 2500
2490 T0=D[I,2]
2560 HEXT I
E516 IF S#5 THEN 2540
EESG PRINT "STEF # "M"HT "TI"SEC *** H O S H OT S F I R E II ***"
2560 GOT0 2690
254G FRIMT "STEF # "M"RT "TL"SEC TOTRL SHOTS FIREI= "G
2550 PRINT
2SEG FORHAT EX;"EHOT # ";FS.0." HT ",F5.z," SEC",4%
```



```
250日 FORNAT "各**HO HIT DETECTED***"
2590 FOE I=1 T0 S
2600 REM REFEREHCE ERCH SHOT & HIT TIME TO TO
2E10 R=M[I] ]-T0
```

```
2E20 0=Y[I] ]-T0
2ESU HRITE (15,2500)I,F:;
2640 IF G[I]=6 THEN 26T0
2656 HFITE (15,2570)Q:G[I]
2060 G0T0 2680
2670 NRITE (15,2580)
2680 NEKT I
2690 PRINT
27日G PRIHT TABIG"TARGET"TABEG"TGT UF"TABSG"TGT ERF"TAB4G"1ST HIT";
2710 FRIHT TAESG"NUMBER"TAB6日"AOSUISITIOH"
2720 PRINT TAB1G"HUMBER"TAB21"TIME"TAB31"TIME"TRE41"TIME"TABS日"OF HITS";
2730 FRIHT TABGS"TINE"
2740 FORMAT 11X,FS.0,5%,FG.2,4X,FG.2,4X,FG.2,4X,FG.0.6X,FG.2
2750 F=6
2760 FOR I=1 T0 36
277G REM INTERRUPT IATA OUTPUT TO LORII NEXT STEP OF SGEHARIO
2780 IF N9 >= 8 THEN 2E20
2790 U=REYTE2
2S00 IF U#S THEH 2820
2810 GOSUE 30日
2320 11=0
28S0 Z=I[I,1]+D[I,2]+D[I,3]+I[I,4]
2S40 IF Z=0 THEN 3120
2850 F=F+1
2860 21=21+2
2870 REM REFERENCE ALL UF/DOHN/HIT TIMES TO TG
2880 E1=D[I:1]-T0
2890 E2=D[I,2]-TG
2900 E3=D[I,3]-TG
2910 IF E3>0 THEN 2930
2920 EG=0
2990 REM CALCULATE TARGET EXPOSURE TIME
2940 F=E1-E2
2950 REM CFLCULFTE THRGET HCDUISITIOH TIME
2960 REM AS S U M P T I O H: EUEJECTS FRE INSTRUCTED TO RCQUIRE TARGETS
2970 REM IH HSCENDING NUMEERIDAL ORDER
2980 IF P>1 THEN 3030
2990 A=S1-T0
3000 IF A>0 THEN 3020
3016 F=0
306 GuTO 310G
3030 FOR J=1 TO S
3046 IF H[J]<<D[I1,1]+0.075) THEN 3070
3050 R=W[.]]-I[[I1,1]
3060 G0T0 3100
3070 IF F>0 THEH 3090
3080 A=0
3090 HEXT J
3100 HRITE (15,2740)I,E2,F,E3,II[I,4],A
3110 I1=I
3120 NEXT I
3130 IF 21#0 THEH S150
```



```
3150 PRIHT
3160 PRIHT
3170 FRIHT
3100 RETURH
```



```
3200 REM
3210 REM
S2E0 FEM
3230 PEM
```



```
ZEO REM S = HUMEER OF SHOTS FIREI IH F STEP OF SCEHHRIO
z2TG REM S1= TIME UF FIRST SHOT IH STEP
```



```
3930 PRINT" REDAP OF SEENARIG"
3940 FRIHT
3950 PRIHT "SUE JEET I DEHTIFFICGT IGH= "B$
3960 FRINT
39%号 PRINT "T OT A L # SH0 T S FIRED = " 99
3980 PRINT
3990 FRIHT "T OTAL # OF HITS S COEEII= "HG
4 0 0 0 ~ P R I N T ~
4010 IF S9=0 THEN 4030
4020 FRINT "PER EENT SHOTS HHIEH HIT = "(H9x1000/S9
4038 PRINT
```



```
4050 FOR I=1 T0 20
4060 PRINT
4070 NEXT I
40S0 FRIHT "EHD DF SCEHARIO"
4 0 9 0 ~ P R I N T ~
```



```
4110 PRINT
4120 REM ERASE RLL INSTRUCTIONS TO CONTROLLER & STOF T.I.C.
4130 URITE (2,30日)112;
4140 WRITE (2,300)216;
4150 DISP "ENDOFOEENARIO"
4160 EHD
```


[^0]: ${ }^{3}$ D. B. Milliken Company, 131 Norch Fifth Avenue, Arcadia, Califormia.

