

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AUTOMATIC THRESHOLD DESIGN FOR A
 BOUND DOCUMENT SCANNER

by
BILL JAMES STANTON, JR
Captain, United States Air Force
Submitted to the Department of Electrical Engineering and Computer Science August 1982 in partial
fulfillment of the requirements for the
Degree of Master of Science in
Electrical Engineering

ABSTRACT
Research was carried out on an electro-optical bound document scanner using a charge-coupled device (CCD) as a sensing element. The goal was to develop a means whereby the voltage threshold level of the video analog-to-digital converter could be set automatically to provide optimum hard-copy output over a range of lighting conditions and document background colors and qualities. To determine an acceptable component of the analog video signal as a thresholding reference, an extensive stud; of the signal behavior was conducted over a variety of conditions.

An Automatic Threshold Control (ATC) was designed that exploited the modulation transfer function of the CCD's analog signal. A CALIBRATION PATTERN is superimposed at the left-hand margin of the page being scanned. This pattern contains various discrete spatial frequencies. The threshold voltage is varied automatically until the number of black/white (zero/one) transitions is maximized for the CALIBRATION PATTERN. The threshold voltage producing this maximum number of transitions is equivalent to the threshold required to produce optimum resolution in the scanner hard-copy output. This threshold value is then locked in for the duration of the page being scanned.

System performance using this ATC scheme is excellent. The scanner selects a threshold voltage on a per-page basis that yields acceptable copies. The ATC is able to automatically compensate for various types of paper and changes in lighting conditions due to fluorescent tube deterioration. Slightly less than optimum thresholding may occur about 10 to 15 percent of the time, but this is due to data uncertainty and other shortcomings in the scanner rather than in the ATC scheme. (Page count: 224)

Thesis Supervisor:
Dr. J. F. Reintjes
Title: Professor Emeritus, Electrical Engineering

Page 3

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value and/or contribution of research accomplished by students or faculty of the Air Force Institute of Technology (ATC). It would be greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433
RESEARCH TITLE: Automatic Threshold Design for a Bound Document Scannér
AUTHOR: Bill James Stanton, Jr.
RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?
() a. YES
() b. NO
2. Do you believe this research topic is significant enough that it would have been researched (or contracted) by your organization or another agency if AFIT had not?
()
a. YES
() b. NO
3. The benefits of AFIT research can often be expressed by the equivalent value that your agency achieved/received by virtue of AFIT performing the research. Can you estimate what this research would have cost if it had been accomplished under contract or if it had been done in-house in terms of manpower and/or dollars?
() a. MAN-YEARS \qquad () b. \$ \qquad
4. Often it is not possible to attach equivalent dollar values to research, although the results of the research may, in fact, be important. Whether or not you were able to establish an equivalent value for this research (3. above), what is your estimate of its significance?
() a. HIGHLY
SIGNIFICANT
() b. SIGNIFICANT
() c. SLIGHTLY SIGNIFICANT
5. AFIT welcomes any further comments you may have on the above questions, or any additional details concerning the current application, future potential, or other value of this research. Please use the bottom part of this questionnaire for your statement(s).

NATE
GRADE
POSITION
ORGANIZATION

AUTOMATIC THRESHOLD DESIGN FOR A BOUND DOCUMENT SCANNER

by
BILL JAMES STANTON, Jr
Captain, United States Air Force
S. B.. United States Air Force Academy Electrical Engineering (1973)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment for the Degree of

MASTER OF SCIENCE IN
ELECTRICAL ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
December 1982
(C) BILL JAMES STANTON, Jr 1982

The author hereby grants to M.I.T. permission to reproduce and distribute copies of this thesis document in whole or in part.

Signature of Author $\xrightarrow[\text { Dept of EEC S August } 1982]{\text { Bier }}$ certified by S 7 Reporter Reintyes, Thesis Supervisor

Accepted

Chairman, Departmental Graduate Committee

To Donna, Spencer, and Stuart

AUTOMATIC THRESHOLD DESIGN FOR A

BOUND DOCUMENT SCANNER
by
BILL JAMES STANTON, JR
Captain, United States Air Force
Submitted to the Department of Electrical Engineering and Computer Science August 1982 in partial
fulfillment of the requirements for the
Degree of Master of Science in
Electrical Engineering

Abstract

Research was carried out on an electro-optical bound document scanner using a charge-coupled device (CCD) as a sensing element. The goal was to develop a means whereby the voltage threshold level of the video analog-to-digital converter could be set automatically to provide optimum hard-copy output over a range of lighting conditions and document background colors and qualities. To determine an acceptable component of the analog video signal as a thresholding reference, an extensive study of the signal behavior was conducted over a variety of conditions.

An Automatic Threshold Control (ATC) was designed that exploited the modulation transfer function of the CCD's analog signal. A CALIBRATION PATTERN is superimposed at the left-hand margin of the page being scanned. This pattern contains various discrete spatial frequencies. The threshold voltage is varied automatically until the number of black/white (zero/one) transitions is maximized for the CALIBRATION PATTERN. The threshold voltage producing this maximum number of transitions is equivalent to the threshold required to produce optimum resolution in the scanner hard-copy output. This threshold value is then locked in for the duration of the page being scanned.

System performance using this ATC scheme is excellent. The scanner selects a threshold voltage on a per-page basis that yields acceptable copies. The ATC is able to automatically compensate for various types of paper and changes in lighting conditions due to fluorescent tube deterioration. Slightly less than optimum thresholding may occur about 10 to 15 percent of the time, but this is due to data uncertainty and other shortcomings in the scanner rather than in the ATC scheme. (Page count: 224)

Thesis Supervisor: Dr. J. F. Reintjes
Title: Professor Emeritus, Electrical Engineering

TABLE OF CONTENTS

Page
ABSTRACT 3
ACKNOWLEDGEMENTS 6
BIOGRAPHICAL NOTE 7
LIST OF FIGURES 8
SYMBOLS AND ABBREVIATIONS 11

1. INTRODUCTION 13
A. PROBLEM STATEMENT 13
B. PROJECT BACKGROUND 13
C. RESEARCH PLAN 16
D. SUMMARY OF RESULTS 17
E. PREVIEW OF DISCUSSION 18
2. ANALOG VIDEO SIGNAL ANALYSIS 19
A. OBJECTIVE 19
B. FINDINGS 19
C. CHOICE OF PARAMETER FOR THRESHOLD CONTROL 28
D. PARAMETERS REJECTED FOR THRESHOLD CONTROL 29
3. CALIBRATION PATTERN EVALUATION 31
A. PERFORMANCE REQUIREMENTS 32
B. PATTERN COMPOSITION 32
C. EVALUATION RESULTS 37
4. AUTOMATIC THRESHOLD CONTROL (ATC) DESIGN 63
A. ATC BLOCK DESCRIPTION 63
B. CHOICES FOR IMPLEMENTATION 63
C. CIRCUIT MODIFICATIONS 65
5. DIGITAL THRESHOLD LEVEL GENERATOR (TLG) 65
6. VIDEO A-TO-D DESIGN 70
7. DIGITAL VIDEO COUNTER STAGES 70
8. F8 HARDWARE INTERFACE REQUIREMENTS 71
9. COMBINED THEORY OF OPERATION 71
10. SCANNER CIRCUIT BOARD RELOCATIONS 72

Table of Contents
5. SAMPLING ALGORITHMS 73
A. SUCCESSIVE APPROXIMATION 74
B. SAMPLING CONSIDERATIONS 82
C. INCORPORATION WITH SCANNER PRINT SEQUENCE 85
6. CONCLUSIONS AND RECOMMENDATIONS 89
A. GENERAL RESULTS 89
B. CONCLUSIONS 106
C. AREAS FOR FURTHER RESEARCH 108

1. PHYSICAL POSITIONING ACCURACY 108
2. CALIBRATION PATTERN 108
3. ADJUSTABLE DARKNESS CONTROL 110
4. INK COLOR 111
5. SCANNER ILLUMINATION DESIGN 111
6. SCANNER START BUTTON 113
7. BIBLIOGRAPHY 114
APPENDIX A -- MANUFACTURER'S TECHNICAL DATA 115
APPENDIX B -- F8 MICROPROCESSOR SOFTWARE 132
APPENDIX C -- COMPUTER SIMULATIONS 152
APPENDIX D -- DATA SET TRANSFER AND PLOTTING 201
APPENDIX E -- MODIFIED SCANNER CIRCUITS 218

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Professor J. F. Reinties for his steadfast assistance throughout the course of this research. He promoted an atmosphere of complete academic freedom which was a pleasure to experience. I would also like to mention my deep gratitude to my wife for her unfailing support and patience in the preparation of the manuscript. The task of completing this thesis would have been much more difficult without her contributions.

BIOGRAPHICAL NOTE

B. J. Stanton, a Captain in the U. S. Air Force, is a distinguished graduate of the U. S. Air Force Academy, Class of 1973. As an undergraduate, his work included research in the security of defense communications systems. He completed Undergraduate Pilot Training with top honors in 1974 and Advanced Fighter Training in 1975. He served as an F4D Aircraft Commander and Wing Weapons and Tactics Officer at Royal Air Force Base Woodbridge, England from 1975 to 1978. During that time he participated in joint NATO Force exercises and taught laser weapon tactics. From 1978 to 1981 he served as an AT-38B fighter instructor pilot and academic instructor. His duties included aerial instruction in basic and advanced fighter maneuvers, surface attack tactics, low-level ingress techniques, and various tactical formations. Additionally, he was responsible for significant phases of the surface attack academic curriculum. He is an experienced fighter pilot with 1125 hours of flying time.
1.1 Simplified Block Diagram of the Bound Document Scanner 15
2.1(A) Two Periods of the CCD Analog Video Signal 20
2.1(B) Expanded Scale of AC Component 20
2.2 Pel Swing Versus Light Intensity as Controlled by the Focusing Lens F-Stop 23
2.3 Pel Swing Versus Paper Color 23
2.4(A) Series of Lines and Spaces Representing Increasing Spatial Frequency 25
2.4(B) Analog Video Signal Resulting from Scannirg the Lines in 2.4(A) 25
2.5 Pel Swing Versus Spatial Frequency 27
2.6 Black and White Analog Video Levels Versus Spatial Frequency 27
3.1 Relation Among Calibration Pattern, Analog Video Signal, and VTC-Versus-N Curve 33
3.2 Calibration Pattern Placement Effects on the Analog Video Signal 35
3.3 Experimental Calibration Patterns (ECPs) Obtained from IEEE Facsimile Test Chart 39
3.4 VTC Curve Plotted Over the Full Range of N 40
3.5 IEEE Test Pattern 12 Scanned with Increasing Values of N Which Corresponds to Decreasing Values of Threshold Voltage 43
3.6(A) VTC-Versus-N Curve for ECP A 46
3.6(B) Scanner Output with the Threshold Set According to the Peak of ECP A 47
3.7 VTC-Versus-N Curve for ECP B 48
3.8 VTC-Versus-N Curve for ECP C 49
3.9 VTC-Versus-N Curve for ECP D 50
3.10 Comparison of Constant-Frequency ECP Plots 51
3.11 VTC-Versus-N Curve for ECP E 53
3.12 VTC-Versus-N Curve for ECP F 54
3.13 Comparison of ECPs A Through F 55
3.14 Effect of One Fluorescent Lamp Versus Two on ECP A 56
3.15 Effect of Different Paper Colors on ECP A 58
3.16 Effect of Fluorescent Lamps of Different Spectral Content on ECP A 59
3.17 Effect of Old Versus New Fluorescent Lamps on ECP A 61
3.18 VTC for ECP A Plotted Five Times Under Identical Conditions 62
4.1 Automatic Threshold Control Block Diagram 64
4.2 Original Video A-to-D Converter and Threshold Level Generator 64
4.3 Video Detection and Thresholding Circuit 66
4.4 Graph for Calculating R3 of the Threshold Level Generator 68
4.5 Graph for Calculating Vref of the Threshold Level Generator 69
5.1 First Pass of ATC Sampling Algorithm QSET1 75
5.2 Second Pass of ATC Sampling Algorithm QSET1 77
5.3 Third Pass of ATC Sampling Algorithm QSET1 78
5.4 Fourth Pass of ATC Sampling Algorithm QSET1 79
5.5 Flowchart of QSETI Algorithm 81
5.6 VTC Curve Produced from Scanning ECP A on a Red Background 83

List of Figures

5.7 Simplified Flowchart of Existing F8 Software (EOPS) for the Scanner 86
6.1 Scanner Output Under Normal Conditions (Warm White Fluorescents, IEEE Test Chart) 90
6.2 Scanner Output Under Normal Conditions (Warm White Fluorescents, IEEE Test Chart) 91
6.3 Scanner Output Under Normal Conditions (Warm White Fluorescents, IEEE Test Chart) 92
6.4 Scanner Output Under Normal Conditions (Warm White Fluorescents, IEEE Test Chart) 93
6.5 Scanner Output Under Normal Conditions (Cool White Fluorescents, IEEE Test Chart) 94
6.6 Scanner Output with Only One Cool White Fluorescent Light Providing Illumination 95
6.7 Scanner Output with Only One Cool White Fluorescent Light Providing Illumination 96
6.8 Scanner Output with Only One Warm White Fluorescent Light Providing Illumination 97
6.9 Scanner Output Using Red Paper as Background (Cool White Fluorescents, IEEE Test Chart) 98
6.10 Scanner Output Under Normal Conditions (Cool White Fluorescents, Normal Elite Type) -- 100
6.11 Scanner Output Under Normal Conditions(Cool White Fluorescents, Very Small Print) --- 101
6.12 Scanner Output Under Normal Conditions (Cool White Fluorescents, Very Small Print) --- 102
6.13 Scanner Output Under Normal Conditions(Cool White Fluorescents, White Print on DarkBackground)103
6.14 Magnified View of Electrostatic Printer's Reproduction of the Nyquist Frequency 104
6.15 Scanner Mechanical Movement Sequence 109

SYMBOLS AND ABBREVIATIONS

AC	Alternating Current
ATC	Automatic Threshold Control
CALIBRATION PATTTERN	Series of black and white line-pairs of varying thicknesses used to generate a specific analog video waveform for threshold-setting purposes
CCD	Charge Coupled Device
DC	Direct Current
ECP	Experimental Calibration Pattern
EOPS	Electro-Optical Page Scanner; also the mnemonic used to describe the complete F8 software package for the scanner
F8	Designation of the microprocessor used with the scanner for various control functions; complete nomenclature is: Fairchild f8 Formulator
ISE	Image Sensing Element
MTC	Maximum value of VTC obtained from scanning a particular Calibration Pattern
N	Decimal equivalent of the value supplied by the F8 to the Threshold Level Generator to produce a specific threshold voltage
Np	Value of N generating the maximum value of VTC in a given series of samples
Pass	The act of taking seven samples of VTC at N-values that are separated by a fixed step size
Pel Swing	Positive difference between the black and white voltage levels in the analog video signal

QSET	Mnemonic used for the algorithm that picks the optimum threshold value by taking four sets of seven samples per set with each set using a progressively smaller sampling increment of N
R	Reduced range of N-values that have been defined from the results of the previous pass of the algorithm QSET; the reduced range R is that range sampled on the next pass of QSET
RV	Span of values of N producing significant VTC values (where significant is defined as VTC > 1)
S1	Step size used to increment the value of N while taking VTC samples in the first pass of the algorithm QSET; subsequent passes use step sizes labeled in sequence: S2, S3, S4
TLG	Threshold Level Generator
Vref	Output of op amp U3 of the Threshold Level Generator; used as the reference voltage for the 10 -bit D-to-A converter
v2	Output of op amp U2 of the Threshold Level Generator; represents the inverted fraction of $V 2$ as determined by the quotient ($\mathrm{N} / 1024$)
vo	Voltage output of the Threshold Level Generator
VTC	Video Transition Count: the sum of digitized video black/white transitions encountered in one scan line for a given threshold value

CHAPTER 1
INTRODUCTION

A. PROBLEM STATEMENT

The goal of this research was to refine an existing electro-optical bound document scanner under development in the Laboratory for Information and Decision Systems by reducing the need for manual adjustments. Specifically this involved designing and incorporating a means of automatically setting the voltage threshold level of the video one-bit analog-to-digital converter at a value that would provide optimum quality in the reproduced copy. The subsystem accomplishing this task will be referred to as an Automatic Threshold Control, or ATC in this report. A further objective of the ATC was to provide the scanner with the capacity for automatically compensating for paper color and/or quality and for variations in illumination. B. PROJECT BACKGROUND

The immediate thrust behind the development of a bound document scanner at the Laboratory for Information and Decision Systems is to improve the interlibrary resource sharing process which now works on a "lending-borrowing" principle. The requirement to physically move either originals or copies from one geographic location to another can take up to two to four weeks from the initial request. On the other hand, the ability to electronically move hard copy material economically would essentially reduce turn-around time to only that required to process the request, locate the document, and transmit the

Ch 1

specified pages. Conceivably, turn-around time could be reduced to less than a day, and in many cases less than one hour. In addition, the follow-on applications of such a system in commercial, industrial, and military areas could result in significant increases in efficiency of information management.

The principle of the bound document scanner to which the ATC will be applied is to convert the information content of an 8.5 x 11 inch printed page into 3.6 megabits of digital information through line-by-line scanning. The digital signal can then be compressed for transmission on a 56 kilobit/second data line, such a line representing a tradeoff between transmission cost and per-page transmission time. Copy is produced at the destination by an electrostatic printer.

In the laboratory, scanning is accomplished by a system that uses a Fairchild Charge Coupled Device (CCD) to convert light to analog electrical signals. The CCD consists of a linear array of 2048 image sensing elements (ISEs). The output of each element is proportional to the intensity of light and integration time allowed. One "line" of information is obtained in parallel form and then shifted out of the CCD serially for subsequent processing. The $C C D$, light source, and focusing lens are mounted on a common structure and physically moved in the second dimension by a phase-locked loop DC motor to provide a raster scan of the entire page.

Several theses have been written concerning the bound document scanner either directly or indirectly. They are listed

SIMF'LIFIED BLOCK DIAGRAM OF THE EOUND DOCUMENT SCANNER

FIGURE 1.1
in Chapter 7, but they also deserve mentioning now for those interested in more extensive background review. Aghamohammadi conducted the original design and fabrication of the bound document scanner. If a working knowledge of the scanner is required, his thesis should be read and thoroughly understood before proceeding. Keverian, while primarily concerned with a parallel project on microfiche scanning, developed hardware interfaces with the $F 8$ microprocessor available in the laboratory. These interfaces are used in the bound document scanner system. Agudelo worked on a document cradle, light non-uniformity, and other problems associated with the existing scanner. Medley accomplished extensive software and hardware modifications to the 58 microprocessor independent of any other projects supported by the $F 8$. His thesis should be reviewed when information concerning current operation of the $F 8$ is required. Vinciguerra studied the feasibility of various data compression schemes for application to document transmission, and Dishop followed this work with further evaluation and design.

C. RESEARCH PLAN

The first phase of this research consisted of analyzing the analog video signal behavior with respect to various light conditions, paper reflectivities, and spatial frequency excitation. The objective was to pinpoint critical variables that would be suitable for obtaining a proper threshold relation. In the second phase, a subsystem was designed and built that vould sense the video signal variable and control the voltage
threshold level according to the performance of this variable. Finally, the system was evaluated with different lighting conditions, paper colors, and spatial frequency patterns to determine its feasibility.
D. SUMMARY OF RESULTS

An ATC was designed that exploited the modulation transfer function of the CCD as a means for selecting an optimum voltage threshold level. A CALIBRATION PATTERN consisting of several sets of parallel lines is superimposed at the left-hand margin of the page being scanned. This pattern contains various discrete spatial frequencies. The threshold voltage is varied automatically until the number of black/white transitions is maximized for the CALIBRATION PATTERN. The threshold voltage producing this maximum number of transitions is then locked in for the duration of the page being scanned.

System performance using this ATC scheme has been excellent. The scanner now selects a threshold voltage on a per-page basis that yields acceptable copies. The ATC is able to automatically compensate for various types of paper and changes in lighting conditions due to fluorescent tube deterioration. Thresholding errors occur about 10 to 15 percent of the time, but they are due to other shortcomings in the scanner rather than in the ATC scheme. When threshold errors do not occur, the threshold chosen is the best that can be obtained.

Ch 1

E. PREVIEW OF DISCUSSION

Chapter 2 presents an analysis of the analog video waveforms that are derived from the CCD under operational conditions. The results of this analysis are used to develop a conceptual approach to automatic threshold control. Chapter 3 discusses the evaluation of various experimental CALIBRATION PATTERNS to determine the characteristics necessary to produce the desired analog video waveform for thresholding purposes. A practical implementation of tne ATC is developed in Chapter 4, together with considerations that led to the implementation. Chapter 5 contains the development of sampling algorithms that allow the thresholding process to be accomplished in minimum time along with the incorporation of these algorithms into the existing scanner software. Finally the results, conclusions, and recommendations for further research are detailed in Chapter 6.

ANALOG VIDEO SIGNAL ANALYSIS

A. OBJECTIVE

A thorough analysis of the analog video signal rerived from the $C C D$ during the line-scanning process was conducted to classify its components and learn its behavior under different conditions. The purpose was to develop a sound basis for selecting a parameter of this signal for use in controlling the voltage threshold level of the $A-t o-D$ converter. Ultimately, the analog video signal is dependent on the amount of light reaching the individual image sensing elements (ISEs) of the CCD. Many factors affect the amount of light that the CCD sees, but the relevant factors are those that normally occur in a user environment", rather than abnormal conditions that could be induced in a "laboratory environment". The factors researched were:

1. Intensity of the light source
2. Color content of the document
3. Spatial-frequency content of the document
B. FINDINGS

The general configuration of the analog video signal will first be described with reference to Figure 2.1 and the CCD142 data in Appendix A. One period of the signal is equivalent to
(1) Note that the distance between the document and the CCD also affects the amount of light reaching the ISEs. This fact, due to the optics and the geometry of the scanner, gives rise to a light non-uniformity issue which was addressed by Agudelo. Additional information on this subject is included in Chapter 6.
v (val.ts)

(ヨ) EXF'ANDED SCALE DF AC COMFONENT

FIGURE 2.1
one line of video information. In turn, the period is controlled by the signal, EXTERNAL EXPOSURE (1) which initiates the dump of data from the CCD. The CCD analog data stream for one line is in the following order: black reference level, valid video, black reference level, and white reference level. Once the CCD data dump is complete, there are almost 900 microseconds of idle time to allow for microprocessor command functions. In terms of magnitude, the video information is contained in an AC component obtained by subtracting the instantaneous total analog voltage from a fixed DC component of 5.6 volts. The maximum voltage of 5.6 volts represents absolute black, and negative departures from this maximum result from various light levels absorbed by the CCD ISEs. The CCD typically saturates at 1400 millivolts below absolute black, and the fluorescent lights used as the illumination source provide ample output to drive the CCD to saturation. But in the current design, the focusing lens f-stop is set at 5.6 for depth-of-field considerations. This resulted in the largest white levels observed being 200 to 300 millivolts below black, depending on the condition of the lights. In other words, the existing combination of illumination source and f-stop setting drives the $C C D$ at 14 to 21 percent of its capacity. Valid video information therefore was found in the extreme to reside in the range 5.3 to 5.6 volts and more commonly in the range 5.4 to 5.6 volts. The major issue of setting the proper

[^0]threshold level is finding the value of voltage that is LESS THAN all black voltage values and GREATER THAN all white voltage values. For this purpose, it is important to understand how the black and white video levels react to the factors listed above. First, however, it will be convenient to introduce the term "pel swing," defined as the magnitude of the DIFFERENCE between black and white voltage levels in the video signal. Pel swing is normally measured in millivolts and provides a convenient quantity for expressing the analog signal behavior.

That light intensity has a predictable effect on pel swing was easily demonstrated by varying the f-stop of the focusing lens. A blank piece of white paper was scanned with soft white fluorescent lights providing illumination. Pel swing was measured from absolute black (5.6 volts) to the maximum deviation from absolute black. The results are illustrated in Figure 2.2. Note that f-stops of 2.8 and below saturate the CCD. The background color of the document being scanned is also an important parameter because in a user environment the scanner will certainly encounter different qualities and textures of white paper and, less commonly, a variety of paper colors. CCD response to paper color and texture at a fixed f-stop of 5.6 was measured experimentally by scanning a blank piece of construction paper of a uniform color and recording the pel swing from absolute black to the maximum deviation. Again, soft white fluorescents were used. These results are shown in Figure 2.3. In a predictable fashion, white and black paper yield the two

FIGUFE 2.2
PEL SuIng
(IIILIVGLTS)

FEL SWING VERSUS LIGHT
INTENSITY AS CONTROLLED EY THE FOCUSING LENS F-STOF'

(f-stop $=5.6$)

pafer color
extremes in the range of pel swings. But from a more critical standpoint, one would expect the resulting analog signal from scanning black paper to be very close to absolute black, that is, to yield a very small pel swing. However, this exferiment revealed considerable pel swing with black paper. The cause was traced to stray light "leaking" to the CCD ISEs due to a design deficies. $\begin{aligned} & \text { y } \\ & \text { in } \\ & \text { the sanner's optical path. This problem is }\end{aligned}$ covered in Chapter 6.

The behavior of the video signal with respect to spatialfrequency content of the information contained on a page is a more complicated issue. As stated above, pel swing has been measured between absolute black and the maximum white level generated by the $C C D$ under blank, monochromatic paper conditions (zero spatial frequency). But with increases in spatial frequency information on the page resulting from alternating black and white lines, signals corresponding to the black level migrate downward away from absolute black, while signals corresponding to the white level migrate upward although not at the same rate. Figure 2.4 illustrates this behavior by showing the CCD response to a series of black lines and white spaces that represent increasing spatial frequency. This phenomenon is due to "crosstalk" between ISEs in the form of hole-electron spillovers. In other words, when one ISE is excited while an adjacent ISE is not excited, there tends to be a certain amount of charge transfer between the two ISEs. The result is less signal output from the principal ISE and a small signal output from adjacent

(A) SERIES DF LINES AND SFACES REPFESENTING INCREASING SF'ATIAL FREQUENCY

ISEs, and this is exhibited in the modulation transfer function discussed in Appendix A. For the CCD142 in this particular application, a spatial frequency of 100 , equivalent to a resolution of 200 lines on the scanned document, will produce the Nyquist rate at the face of the CCD. The Nyquist rate is defined as the spatial frequency that will excite every other ISE in the CCD's linear array. Hence, it is the maximum spatial frequency the $C C D$ is physically capable of resolving. Experimental measurements of pel swing versus spatial frequency are displayed in Figure 2.5. The measurements of black and white level migrations as a function of spatial frequency are presented in Figure 2.6. It is important to understand the relationship among Figures 2.4 to 2.6. First observe the fact that the curves in Figure 2.6 exactly form the envelope of the waveform of Figure 2.4. (1) Also note in Figure 2.6 that the vertical distance between the two curves at a particular spatial frequency is precisely the pel swing generated by that spatial frequency as pictured in Figure 2.5.

The results presented thus far are correct in showing the general trend of analog signal behavior, but the data have limited accuracy for a number of reasons. One reason already cited is the stray light leakage which has the effect of inducing unwanted bias signals. Another reason is the fact that the analog signal contains 30 to 50 millivolts of clocking noise

FIGURE 2.S FEL SWING VERSUS SFATIAL FREQUENCY

FIGURE 2.6 ELACK AND WHITE ANALOG UIDED LEVELS VERSUS SF'ATIAL. FREQUENCY
which makes precise measurements extremely difficult to obtain. A third reason stems from the deterioration of fluorescent lights with time, causing slightly different light levels from day to day. Despite these uncertainties, however, adequate information had been obtained at this point to proceed with the ATC design.
C. CHOICE OF PARAMETER FOR THRESHOLD CONTROL

Recall from Chapter 1 that the threshold value being sought is that which will enable the scanner to give the highest quality output possible. Output quality can be measured by "resolution" or the ability to resolve a set of alternating black and white lines of equal width. The more lines/unit length of the ensemble the scanner can resolve, the better will be the quality of the output. Resolution, in turn, is directly related to spatial frequency. Therefore, it can be said that the desired threshold level is one that will digitize all spatial frequencies represented in the analog video signal thereby producing the highest resolution in the output. With the goal now defined as preserving all spatial frequencies as the video signal is digitized, it is logical to exploit the analog video-signal behavior with respect to spatial frequency as the parameter for controlling the threshold. The concept is more easily understood by the following example.

Referring back to Figure 2.4, if one were required to select a threshold voltage that would permit proper digitization of all alternations between black and white, one should choose voltage-level Q as the correct value. Other threshold levels
such as P or R would cause loss of the higher spatial-frequency information in the $A-t o-D$ conversion process. This leads to a simple algorithm for selecting the optimum threshold, using the particular analog signal of Figure 2.4:

1. Vary the $A-t o-D$ threshold voltage through an appropriate range of discrete values.
2. Count the number of zero/one (black/white) transitions at each discrete threshold. value.
3. Select the threshold value that resulted in the maximum number of black/white transitions.

It is important to highlight the fact that, for threshold-setting purposes, use of an analog video signal containing linearly increasing spatial frequencies is fundamental to the success of the algorithm. A signal such as this must be obtained by scanning a CALIBRATION PATTERN such as that shown in Figure 2.4(A). Issues concerning choice of a CALIBRATION PATTERN will be discussed in Chapter 3.
D. PARAMETERS REJECTED FOR THRESHOLD CONTROL

Other options that were considered but not chosen for threshold control include:

1. Video white and black levels
2. CCD reference white and black levels
3. Combinations of the above

Use of one of the above parameters would have been in the context of a real-time threshold control scheme; that is, one that would have continuously modified the threshold level based on incoming video information. In general, controlling the threshold level by direct reference to a particular voltage value of the time-varying video signal was explored but rejected due to the
complexity involved in extracting the required information from the video signal. The clocking noise in the video signal, relatively long durations of white signal, and the migration of the white and black signal levels toward each other as the spatial frequency of the textual patterns increases, all complicate the task of pinpointing a particular level of video signal. Further complexities arise in selecting a video level or combination of video levels that would provide a stable reference for selecting an optimum threshold value. A relatively simple method of detecting both peak white and black levels of the time-varying video signals and then averaging the two for a correct threshold level was also deemed unfeasible due to the different migration rates (1) of the black and white levels, and due to the video signal normally containing substantially more white information than black information. Finally, using the CCD reference white and black levels was eliminated from consideration because these levels contained no information about light intensity, paper reflectivity, or spatial frequency content of the document.

[^1]
CHAPTER 3

CALIBRATION PATTERN EVALUATION

As implied in Chapter 2, the term CALIBRATION PATTERN will be used in this thesis to denote a series of parallel black and white lines for forcing the CCD to produce a specific analog video signal for threshold-setting purposes. The design of the ATC calls for the CALIBRATION PATTERN to be located in the left-hand margin of the document being scanned. During a normal scanning sequence, the first lines that the scanner sees would be those of the CALIBRATION PATTERN. Transmission of video information to the printer would be inhibited until the threshold-setting sequence is complete.

Optimally, the CALIBRATION PATTERN should consist of black lines on a transparent surface, thereby allowing the margin of the document being scanned to provide the background. This would permit the analog video signal to be indicative of the characteristics of the paper being scanned, and in this way the threshold setting could be based on the reflectivity and/or color of the paper. On the other hand, using the left margin of the document as the background for the CALIBRATION PATTERN implies that a certain portion of the margin will be unavailable for information content. This was not considered to be a problem since it is highly unlikely there will be a need to transmit a document having no margins. A more critical question, however, is just how much of the margin will be required to support the CALIBRATION PATTERN, or equivalently, how many lines will the ATC
require to properly select an optimum threshold level. This issue is addressed Chapter 5.
A. PERFORMANCE REQUI REMENTS

In the selection of a CALIBRATION PATTERN, certain criteria should be followed. First and foremost, the pattern should allow the ATC to select the optimum threshold level, that is, the level that produces the highest resolution in the output. Secondly, the pattern should allow the ATC to produce consistent results; that is, with all inputs constant, the ATC should generate the same threshold level again and again. Thirdly, the pattern characteristics should be invariant to light and/or paper characteristics. And finally, the pattern should be of the proper dimensions in order to fit in the margin of the document.
B. PATTERN COMPOSITION

The discussion thus far has been directed toward the fact that the CALIBRATION PATTERN would consist of a series of parallel lines, and it is easy to see why this would be a logical choice. At the very low spatial frequencies, a series of black lines separated by white spaces of equal width (called line-pairs) produces a square wave in the analog video signal. As the line-pairs become thinner, thus causing the spatial frequency to increase, the black and white analog levels migrate together, and the resulting analog video signal becomes very nearly sinusoidal and extremely predictable. The relationship, illustrated before in Figure 2.4, is re-oriented in Figure $3.1(A)$

and (B). (1) So given that the CALIBRATION PATTERN will consist of line-pairs, the real question therefore is what spatial frequency or frequencies will be represented by the line-pairs. As mentioned in Chapter 2, the theoretical best choice would be a pattern that equally represented all spatial frequencies up to the CCD Nyquist rate of 100 line-pairs/inch. However it might also be possible that a pattern containing only the Nyquist frequency would be the best choice. It turns out that the very small pel swing generated by the Nyquist rate would be a significant disadvantage to the development of an efficient sampling algorithm. This point is covered in Chapter 5. The object of this phase of research was to ascertain the proper CALIBRATION PATTERN composition by direct evaliation of various candidate patterns. Unfortunately, within the scope of the project, there were relatively few sample patterns available for evaluation. Still much insight was gained with the patterns at hand, and a workable facsimile for a CALIBRATION PATTERN was obtained.

Another important question in CALIBRATION PATTERN composition is, in physical terms: How far along the left margin should the pattern extend? Or in other words, how much of one line of analog video does it take to successfully select the optimum threshold level? The answer, while not simple, can be illustrated fairly easily. Figure $3.2(A)$ shows the analog video
(1) Disregard Figure 3.1(C) for the present time.

Ch 3

FIGURE 3.2 CALIERATION FATTERN FLACEMENT EFFECTS ON THE ANALOG UIDEO SIGNAL

Page 35

Ch 3

FIGURE 3.2 (CONT.)
Page 36
signal resulting from scanning a blank white page with perfectly compensated illumination. Under these conditions, the CALIBRATION PATTERN that is superimposed on the white page would only need to be long enough to contain the necessary spatial frequencies, and could be located anywhere along the length of the margin. Figures $3.2(B)$, (C), and (D) show the analog signal that would result for pattern length of about an inch and placement in the bottom, middle, and top of the margin respectively. Now, for some reason, let us assume the illumination is not uniform over the length of the page, as illustrated in 3.2(E). The threshold level is now sensitive to pattern placement along the length of the margin as shown in 3.2(F) and (G). However, two patterns placed as in 3.2(H) would result in a threshold being chosen somewhere between the levels of $3.2(F)$ and (G). Realizing that this is indeed a compromise necessitated by less than optimum illumination, it is still a better choice than either extreme. Extrapolating to the limit, it would be necessary to use an entire line of video to get the best average over a line for non-uniform lighting conditions. This line corresponds to the entire left margin and should be filled with repeated CALIBRATION PATTERNs as in $3.2(I)$.

C. EVALUATION RESULTS

CALIBRATION PATTERN evaluation consisted of two stages: plotting the digital video transition count (VTC) versus threshold level value (N) for all possible threshold values; and running actual copies with the threshold value that yielded the
maximum video transition count (MTC). The experimental CALIBRATION PATTERNS (ECPS) evaluated were obtained from the IEEE Std 167A-1975 Facsimile Test Chart whose data are contained in Appendix A. To simplify documentation, the ECPs that were examined are labeled A through F in Figure 3.3. Referring to this figure, ECP A (IEEE Facsimile Test Pattern 9) consists of repetitions of 12 discrete spatial frequencies ranging from 30.5 to 203 line-pairs/inch. ECPs B, C, and D (IEEE Facsimile Test Patterns 5, 4, and 3) are single-frequency patterns containing 48, 25, and 5 line-pairs/inch respectively. ECP E (IEEE Facsimile Test Pattern 19) contains 0.01-inch lines spaced 0.10 inch apart. ECP F is a vertical strip of pseudo-random text taken from the IEEE Facsimile Test Chart and chosen so as to fall in the 50-to-100 line-pairs/inch region of Test Pattern 12. While none of the ECPs precisely satisfy the theoretical criterion of containing all spatial frequencies up to the Nyquist value, it can be predicted that ECP A will exhibit the best performance due to its controlled distribution of discrete spatial Erequencies. ECP F was included in the zesting to get an idea of the behavior of the VTC curve when scanning a relatively uncontrolled variety of spatial frequencies.

A general plot of a VTC-versus-N curve is illustrated in Figure 3.4. To fully appreciate the information presented on this and similar plots to follow, a few details deserve highlighting. Recall first that the x and y scales represent integers; each unit increase in N corresponds to a decrease of

dectim enuivalent of tie OIGTIAL THEESHOD WALIE

FIGURE 3.4 UTC CURUE FLOTTED OVER THE FULL RANGE OF N
one millivolt in the threshold level, and the dependent variable, VTC, is an accumulation of black/white transitions along one line of video for a given value of N. Although the full range of N is depicted, only a relatively small span contains pertinent information. Therefore, subsequent plots will constrain the N-axis to the span of significant VTC information. It should also become apparent that the span of N containing significant VTC information (subsequently called RV) is directly correlated to pel swing; larger pel swings will result in larger spans of RV, as illustrated by the relationship between parts (B) and (C) of Figure 3.1. This feature will be especially useful when comparing various plots. As for the vertical axis, VTC, it is emphasized that the absolute value, while interesting, is not nearly so significant as where along the horizontal axis the PEAK of VTC occurs. As an example, it is easy to see that ECP B in Figure 3.3 will have a much larger overall VTC than ECP D simply because it provides more black/white transitions per video line. This however does not mean that the peak of ECP B will be easier to detect. Since the idea is to work with digital information, the ATC will be equally capable of detecting a peak with a value of 800 or a peak with a value of 200. The absolute value of the peak is arbitrary. The important information is the value of N that causes the peak, because it is that value of N that the ATC should choose for its optimum threshold. One final property of these plots can best be described by referring to Figure 3.1. When N equals zero, the threshold level is at 6.16
volts, or well above the video signal. As N increases, the voltage threshold level decreases, eventually passing through the span of the analog video signal. On the basis that any portion of the analog video signal below the threshold level is decoded as white, and any portion of the analog signal above the threshold level is decoded as black, it can be seen that, when the threshold voltage lies between 6.16 volts and point Q, a portion of the video transitions to black are being lost. In other words, the digitized video signal contains less black information than it should. Conversely, when the threshold voltage is between point Q and 5.14 volts, the digitized video signal contains less white information than it should. So, when this information is applied to the VTC-versus-N plot in Figure 3.4, the values of N to the left of the VTC peak equate to thresholds that give lighter-than-optimum copy, and values of N to the right of the VTC peak equate to thresholds giving darker-than-optimum copy. This, of course, assumes that the VTC peak is indeed AT the optimum threshold N value. Figure 3.5 illustrates this point by showing scanner reproductions of IEEE Facsimile Test Pattern 12 for incremental increases of N. Note the lack of black information with the smaller values of N followed by lack of white information as N increases beyond optimum.

We are now in a position to intelligently analyze the VTC-versus-N plots for the various ECPs to see if an optimum threshold value is indeed pinpointed by the peak of the VTC

Ch 3

$\mathrm{N}=300$

330

360

390

310

340

370

400
IEEE TEST FATTEFN 12 SCANNED WITH INCREASING VALUES OF N WHICH CORRESFONDS TO DEEREASING VALUES OF THRESHOLD VOLTAGE

320

350

380

410

Page 43

Ch 3

$\mathrm{N}=420$

450

430

460

510

FIGURE 3.S (CONT.)

Page 44
curve. Figures 3.6 to 3.12 contain individual plots of the various ECPs. In Figure $3.6(A)$ ECP A was found to exhibit the desired characteristics required for the ATC. The peak of VTC was well defined and indeed occurred at a value of N that produced optimum hard copy as in Figure 3.6(B). Note that even in the copy in this report, (1) the capital letters in the 4-point type are legible.

When scanning a single discrete spatial frequency, the analog signal will be very nearly sinusoidal with constant amplitude. For this reason the number of black/white transitions will be constant in the span of significant video information. Accordingly, constant-frequency ECPs B, C, and D in Figure 3.3 produced predictable plateau-type curves. These curves are shown in Figures 3.7 to 3.9. The peaks for some undetermined reason occurred at either end of the plateau region, but intuitively it can be concluded that these peaks were not precipitated by valid video transitions. When hard copy was produced by thresholds based on these peaks, the results were as anticipated: either too light in the cases of ECPs B and C, or too dark in the case of ECP D. A comparison of the VTC plots of these three ECPs in Figure 3.10 provides an interesting manifestation of the

[^2]$$
\text { Ch } 3
$$

FIGURE 3.B(A) UTC-VEFSUS-N CURUE FOR ECF A

Ch 3

FIGURE 3.7 UTC-UEFSUS-N CURVE FOR ECF E:

$$
\text { Ch } 3
$$

reduction in $R V$ spans with increasing spatial frequency due to smaller pel swings. And with increases in spatial frequency, the VTC curves naturally are higher due to more black/white transitions. The trend exhibited by these curves provides the probable conclusion that if an ECP were available containing the Nyquist frequency of 100 line-pairs/inch, it would most likely produce an impulse-like VTC curve centered around the value of N providing the optimum threshold level.

ECP E in Figure 3.3, due to its constant frequency nature, also yielded a plateau-shaped curve. See Figure 3.11. Its utility was no better than the other discrete-frequency ECPs. On the other hand, ECP F had a definable peak because of the variety of spatial frequencies present (Figure 3.12), but its usefulness was marginal since the actual peak information was occluded by the uncertainty in the data. Therefore, ECP A is obviously the best choice as a CALIBRATION PATTERN for the ATC. Figure 3.13 presents a comparison of all ECP plots as a convenience to the reader.

When the behavior of ECP A plots is analyzed with respect to other variables, further insight is gained to the robustness of its ability to select the optimum threshold value based on the VTC peak. For example, Figure 3.14 shows the behavior of the VTC curve with the loss of one fluorescent light. As expected, less light causes a smaller pel swing which is evidenced by comparing the spans of N in the two curves. Looking more closely, one can see that while the curves begin to rise at almost the same value

FIGURE 3.11 UTC-VERSUS-N CURUE FOR ECF E

FIGURE 3.12 UTC-VEFSUS-N CUFVE FOF ECF F

of N on the left, they return to zero at much different N-values on the right. The interpretation is thus: In the analog video signal, different amounts of light cause small shifts in the black signal level but large shifts in the white signal level. It can also be seen that of the two curves, the curve resulting from one lamp has the steeper slopes on both sides. This means that an increase in light causes a more dramatic increase in pel swing at the lower spatial frequencies versus the higher spatial frequencies. But by far the most important result is that both curves display an obvious peak; one that will! 2 chosen by the ATC algorithm. The threshold level defined by the two peaks were clearly optimum for the available light, as judged by the quality of hard copy output. (1)

Figure 3.15 illustrates similar effects with different colors of paper. Here the diminishing pel swing and increasing slopes are even more dramatic with the darker colors. As in Figure 3.14, there is a definite shift of the optimum threshold value, but the ATC design will inherently compensate for these shifts and continue to select the threshold providing the best resolution. (2) Figure 3.16 consists of plots using fluorescent lights with various spectral contents. The conclusion is that among the colors examined -- green, cool white, and warm white -there was not a significant difference in performance, although
(1) Hard-copy samples resulting from single-lamp illumination are contained in Chapter 6.
(2) Scanner output of the IEEE Test Chart on red background is contained in Chapter 6 .

the warm white bulbs did appear to generate a slightly larger pel swing. On the other hand, Figure 3.17 demonstrates that fluorescent lights experience a certain amount of degradation over their lifetime. Once again the ATC will compensate for this effect. It should be noted that fluorescent lights deteriorate in a non-uniform manner over the length of the tube. Deposits on the inner walls near the filaments at either end cause excessive degradations in light emission at the ends, resulting in precisely the analog waveform illustrated in Figure 3.2(E).

As one final point, note that the curves contain a small degree of uncertainty rather than being smooth. It is hypothesized that the jitter is caused at least in part by the clocking noise in the scanner circuitry. Another cause could be power supply fluctuations producing minor deviations in the output of the circuitry generating the threshold voltage. The important conclusion is that while the general shape of the VTC curve is stable, individual plots will differ by some small amount as illustrated in Figure 3.18, which shows several runs taken under identical conditions. In this instance, extreme care was taken to insure all inputs remained constant, and yet there was still a small degree of inconsistency in the plots taken. The uncertainty that is present is by no means a barrier to the proper operation of the $A T C$, but the reader must be aware that the DEGREE of uncertainty in the VTC curve will have an effect on ATC performance especially with respect to the VTC sampling activities detailed in Chapter 5.

CHAPTER 4

AUTOMATIC THRESHOLD CONTROL (ATC) DESIGN

A. ATC BLOCK DESCRIPTION

In terms of Chapter 3 , the goal is now to design the necessary hardware to expeditiously pinpoint the threshold value, N, that generates the maximum number of black/white transitions. With the CALIBRATION PATTERN producing the desired analog signal, the THRESHOLD CONTROL UNIT (Figure 4.1) commands the THRESHOLD LEVEL GENERATOR to set a series of tentative threshold values for the A-to-D CONVERTER. The number of black/white transitions produced by each threshold value is summed by the VIDEO COUNTERS, and the sum, VTC, is correlated by the THRESHOLD CONTROL UNIT. Once all threshold values in the series have been tested, the THRESHOLD CONTROL UNIT locks in the threshold value that produced the maximum number of black/white transitions. B. CHOICES FOR IMPLEMENTATION

Because of its availability and inclusion in the existing scanner, it was a logical decision to use the $F 8$ microprocessor as the THRESHOLD CONTROL UNIT and to design a digital-to-analog circuit as the THRESHOLD LEVEL GENERATOR. The VIDEO COUNTERS provided a natural interface to the $F 8$, but modifications in the video $A-t o-D$ section were required to upgrade the digital video signal to the quality required for accurate counting. The actual design details are covered in the next section.

Ch 4

FIGURE 4.1 AUTOMATIC THRESHOLD CONTROL ELOCK DIAGRAM

[^3]
C. CIRCUIT MODIFICATIONS

1. DIGITAL THRESHOLD LEVEL GENERATOR (TLG)

The existing scanner used a potentiometer buffered by a unity-gain 741 operational amplifier for manually setting the threshold level. See Figure 4.2. This circuit, which included an LM311 comparator as the $A-t o-D$ converter, was located on the TIMING \& PROCESSING circuit board. It was removed entirely and is documented in Appendix E. A primary theme in the design of the new TLG was flexibility. That is, the circuit was constructed in such a way to allow for future alterations in voltage ranges and sensitivity for experimental purposes. The first consideration was the voltage range of the threshold level. In Chapter 2 , it was found that the video information was within a span of 5.3 to 5.6 volts. Changes in the video signal were of the order of 10 to 300 millivolts. Therefore, the TLG had to be able to resolve millivolts in the 5.3 to 5.6 -volt range. A 10 -bit (1024-step) D-to-A converter was selected which would give a sensitivity of less than a millivolt/digital step over a range of one volt. Additional circuitry had to be added to the $D-t o-A$ converter to provide the necessary DC offset. Refer to Figure 4.3. The TLG consists of $U 1$ through $U 6$ with $U 4$ providing the threshold output voltage, VO. $U 1$ is an AD7533 D-to-A converter using an $R-2 R$ ladder network described in Appendix A, and U2 is a 741 operational amplifier used as a unity-gain buffer. The output of U2 is given as:

$$
\begin{equation*}
V 2=-\operatorname{Vref}(N / 1024) \tag{1}
\end{equation*}
$$

Ch 4

Page 66
where N is the decimal equivalent of the 10 -bit binary input from the F8 to U1 through pins 4 through 13, and Vref is controlled by R10 and buffered with unity-gain op amp U3. Since op amp U4 is also a unity-gain buffer, vo can be expressed as a function of the voltage division between Vref and V2:

$$
\begin{equation*}
v 0=\frac{(R 3 \times v 2)+(R 2 \times \text { Vref })}{(R 2+R 3)} \tag{2}
\end{equation*}
$$

Eliminating V2, we have:

$$
\begin{equation*}
\operatorname{Vo}=\operatorname{Vref}\left[\left(\frac{R 2}{R 2+R 3}\right)-\left(\frac{R 3}{R 2+R 3}\right)\left(\frac{D}{1024}\right)\right] \tag{3}
\end{equation*}
$$

Therefore, resistors R2, R3, and R10 control the width and placement of the range of the TLG. From Equation (3), a particular range (VOmin to vomax) for the TLG can be established with the following procedure:

1. Determine values of Vomin and Vomax.
2. Arbitrarily select a nominal value for $R 2$ in the range $1 K$ to 10K ohms.
3. Calculate R 3 for the R2-R3 voltage divider by: R3 $=$ R2(1 - (VOmin/VOmax) $)$
4. Calculate Vref by: Vref $=(2 \mathrm{x}$ vomax) - Vomin
5. Set Vref by adjusting R10.

As an alternative, the graphs implementing Equation (3) in Figures 4.4 and 4.5 can be used as an aid to the calculations. The voltage range of the TLG used for this report was 5.14 to 6.16 volts giving a sensitivity of 1 millivolt/digital step. This choice is realistic and makes the results of the other

1. ENTER MITH vatege ratio vomin
2. TRAVEL VERTICALLY TO DESIRED R2
3. TRAVEI LEFT TO READ VALLE OF R3

FIGUFE 4.4 GFAFH FOF CALCULATING R3 OF TL.G

1. ENTER WITH LPPER LIIIT OF VOLTAEE RANEE. 0 max
2. TRANE VERTICALY TO LONER LIIIT OF VNLTAGE RANEE. 10 min
3. TRANEI LEFT TO READ VALLE OF Vre?
chapters particularly simple to interpret.
4. VIDEO A-TO-D DESIGN

Referring again to the scanner's original video $A-t o-D$ circuit in figure 4.2, the response of this circuit to the highest spatial frequencies was found to be rather slow (3.03 microseconds) due to the size of the pull-up resistor, Rp. While this was adequate for the existing design and in fact helped prevent clock noise feed-through, it was found that the performance was inadequate as a clocking input to the VIDEO COUNTERS. Therefore in the re-design of the video $A-t 0-D$ circuit, Rp was changed to 560 Ohms giving a rise time of 332 nanoseconds. This allowed the circuit to more faithfully digitize the spatial frequencies up to the Nyquist rate. This feature was essential so the VIDEO COUNTERS could record the black/white transitions of all the spatial frequencies. Unfortunately with the smaller Rp, unwanted clock noise was now passing through the one-stage comparator circuit, which would have been disastrous for the VIDEO COUNTERS. Therefore a second LM311 with a constant threshold of 2.5 volts was cascaded with the first LM311 to effectively bar the clock noise from triggering spurious counts in the VIDEO COUNTERS. The revised video A-to-D circuit consists of comparators $U 7$ and U11 in Figure 4.3.

3. DIGITAL VIDEO COUNTER STAGES

The VIDEO COUNTERS, consisting of U8 and U9 in Figure 4.3, were rather simple to implement once the digital video signal had
been upgraded. Dual, 4-bit, binary, asynchronous counters served the purpose adequately, making 16 bits available with minimal hardware. As a precaution, the digital video is gated to the counters by the signal PRINTLINE to insure only valid video transitions are recorded.
4. F8 HARDWARE INTERFACE REQUIREMENTS

To use the $F 8$ as the THRESHOLD CONTROL UNIT, I/O ports had to be made available for data transfer. The existing ports (4, 5, 8, and 9) were already being used for scanner coordination with the hard and soft copy printing devices. (1) The threshold control requirements could have been implemented through these ports, but it would have taken considerable multiplexing and hardware design. Fortunately the research completed by Medley (2) included the addition of four new $1 / 0$ ports $(10,11,12$, and 13) to the F8 system. So the only requirement to make these $1 / 0$ ports available for use was to complete the wiring to a compatible connector. Details are contained in Appendix E.

5. COMBINED THEORY OF OPERATION

During the period that the optimum threshold is being sought, the circuitry of Figure 4.3 operates in the following manner. A value of N generated by the THRESHOLD CONTROL UNIT (F8) is applied to pins 4 through 13 of U1. The voltage threshold value $V O$ is obtained from the division between Vref and V2 by resistors $R 2$ and $R 3$. The voltage threshold level, with the
(1) See Aghamohammadi, Chapter 7.
(2) Reference Chapter 7.
degree of hysteresis controlled by R11, is applied to the non-inverting input of $U 7$ while the analog video signal from the CCD is applied to the inverting input. The digitized video is then fed through a non-inverting comparator stage provided by Ull with threshold fixed at 2.5 volts to help remove digitized clock noise. The clean digital video is then gated by PRINTLINE through U10 into cascaded counters U9 and U8. For a given line of video, the number of black/white transitions in the digital video signal can be read from the counters to ports 10 and 11 of the F8. Once the optimum threshold has been found, the value is loaded to ports 12 and 13 and valid digitized video passes off the board via pin C for synchronization and hard-copy printing. The outputs of $U 8$ and $U 9$ are now ignored.
6. SCANNER CIRCUIT BOARD RELOCATIONS

During the course of this project, inter-circuit interference due to clocking noise and physical separation of several critical circuit boards degraded system performance to the extent that several circuit boards had to be moved in order to shorten the connections containing critical signals. These relocations are documented in Appendix E.

Ch 5

CHAPTER 5

SAMPLING ALGORITHMS

In this chapter, the procedures for finding the VTC peak are discussed in detail. The purpose of this phase of research was to design a method whereby the THRESHOLD CONTROL UNIT could, in the most efficient manner possible, search the entire range of possible threshold values, $[N=0$ to $N=1024]$, and find that value of N corresponding to the peak of the video transition count, VTC. The major constraint on this design was to keep the algoritnm simple enough to be easily implemented on the Fo microprocessor. At one extreme, the algorithm could entail stepping through every value of N and doing a simple comparison of the present value of VTC and the maximum preceding value of VTC (called MTC) to find the VTC peak. In fact this method was used in gathering the data for Chapter 3. The obvious drawback, however, in implementing this procedure in an operational scanner system is the fact that, since each sample requires one scan line of video, a total of 1024 video lines would have to be dedicated to thresholding. With the scanner on the move, that means the CALIBRATION PATTERN would need to be over five inches wide! One can immediately see a way to decrease the number of video lines by recognizing that only a certain span of N (labeled $R V$ in Chapter 3) contains significant VTC information worth sampling.

[^4](1) Since the analog video information generally covers a span of 200 to 300 millivolts, and each incremental change in N equates to a onemillivolt shift in the threshold level, the total number of video lines required could be reduced to around 200 to 300. The width of the CALIBRATION PATTERN now must be 1 to 1.5 inches which is still unacceptably large. At the same time the range of N sampled is dangerously small, which would limit the ATC's ability to adapt to drastic changes. So the research centered on finding a feasible algorithm that could cover the largest range of N in the least number of samples. The algorithm explored for implementation with the ATC is detailed below.

A. SUCCESSIVE APPROXIMATION

Under the assumption that the VTC-versus-N curve to be sampled is relatively smooth and has the general shape of figure 3.1(C), a fairly straightforward approach can be used to pinpoint the VTC peak. When the automatic thresholding sequence is initiated, the idea is to start with a large step size (increments) for N and take a small number of VTC samples over the entire range of N, [0 to 1024]. This will be called the first pass. Since keeping the step size a binary multiple greatly simplifies programming, the initial step size, $S 1$, was chosen as 128. Referring to Figure 5.1, we see that this divides the range [0 to 1024] into eight segments. For reasons that will soon
signal. VTC will again be zero once the threshold level is less than the smallest value of the analog signal.

become apparent, the end points, $N=0$ and $N=1024$, are ignored, and seven samples of VTC are taken beginning at $N=128$. For those samples, the value of N giving the maximum VTC, called Np, becomes the middle of a new range, R, to be sampled with the end points defined as (Np-S1) and (Np+S1), as shown in Figure 5.2. Note that $R=2 \times S 1$. The new range R is now divided into eight segments by using a new step size, 52 , which turns out to be equal to $S 1 / 4$. Again end points are ignored and seven samples are taken at the points shown in Figure 5.2. (1) Repeating the procedure to the limit, it can be seen from Figures 5.3 and 5.4 that a total of four passes or 28 video lines are required to pinpoint the VTC peak within one millivolt. With each video line being 0.05 inch wide, the procedure requires 0.14 inch of CALIBRATION PATTERN to find the optimum threshold value. This width is considered to be acceptable in the context of the amount of margin of the original document required for threshold-setting purposes.

The complete algorithm summarizing the above procedure is flowcharted in Figure 5.5. Block 1 initializes the necessary registers for the overall algorithm, and Block 2 initializes the video line counter for each new pass of 7 video lines. Blocks 3

[^5]

FASS 3
N UTC

FIGURE 5.4 FOUFTH FASS OF ATC SAMFLING ALGORITHM QSETI

Ch 5

through 7 are executed for every line of video. In Block 3 the VIDEO COUNTERS of Figure 4.1 are set to zero, and in Block 4, N is incremented by the existing step size. When PRINTLINE goes active signifying valid video is being transmitted, the digital black/white transitions are counted in Block 5. (1) At the end of the video line, the number of black/white transitions obtained is subtracted from the previous maximum number of transitions. If the result is negative, this means that the VTC just obtained is greater than any VTC previously obtained. Therefore this value of VTC is retained in MTC as the new maximum transition count encountered thus far, and the value of N producing this maximum VTC is also saved. Block 7 counts the number of video lines taken in a particular pass, and the flow is transferred back to Block 3 until the 7 lines of one pass have been completed. For each new pass, Block 8 adjusts the starting value of N for the new range to be sampled, alters the step size, and keeps track of the number of passes executed. At the end of the fourth pass, Block 9 loads the N value that produced the overall maximum VTC into the Threshold Level Generator. This threshold value is used for the entirety of the page being scanned. The algorithm as presented is called QSET1, and computer simulations of QSET1 on actual VTC curves are detailed in Appendix C.

[^6]

FIGURE S.S FLOWCHAFT OF QSETI ALGOFITHM

B. SAMPLING CONSIDERATIONS

Of prime importance in utilizing a sampling technique such as QSET1 is proper consideration of the initial step size, S1. Specifically, if the range of valid VTC information, RV, is less than $S 1$, then it is possible for all valid VTC information to reside between samples of the first pass as in Figure 5.6. The only instances where the range RV was found to be less than 128 using ECP A were with one-lamp illumination and with the darker paper colors: orange, red, green, brown, and blue. (Remember that f-stop $=5.6$ was used throughout the research.) Still, in these cases, the algorithm has the potential of breaking down in its search for the VTC maximum. (1)

The three alternatives to solving the problem of dealing with a small span of VTC information are to either change the voltage range of the TLG, implement a different sampling algorithm, or modify the parameters of the QSET1 algorithm. To maintain a basis for reference throughout this research, the TLG voltage range was not altered although in practice this might be the most reasonable solution. Different sampling algorithms were also considered but rejected due to the additional programming complexity involved. Therefore due to the simplicity of implementation with a microprocessor, the latter alternative was
(1) It should now be clear why a single-freguency CALIBRATION PATTERN at the Nyquist rate is not a good choice as implied in Chapter 3. The resultant impulse-like VTC curve having a very small $R V$ would require a prohibitively small initial step size, S1, to detect.

preferred for rectifying the problem. Working within the framework of QSET1, the challenge becomes one of decreasing the initial step size, $S 1$, with minimal penalties. Of all experimental observations using ECP A, the smallest span of N over which all VTC values were generated was $R V=67$, resulting from navy blue paper. So one possibility is to choose $\mathrm{Si}^{1}=64$, dividing the range [0 to 1024] into 16 segments, and collecting 15 samples on the first pass. Maintaining 15 samples on subsequent passes results in three passes required in all, or 45 lines of video to set the optimum threshold. Subsequent step sizes would be obtained by dividing by 8:

$$
\begin{aligned}
& S 2=S 1 / 8=8 \\
& S 3=S 2 / 8=1
\end{aligned}
$$

Another possibility is to choose $S 1=64$ but only collect 7 samples per pass as QSETI prescribes. This requires the initial sampling range to be cut from 1024 to 512 samples. Maintaining 7 samples per pass results in four passes, or a total of 28 video lines required. Subsequent step sizes are obtained as in QSETI:

$$
\begin{aligned}
& S 2=S 1 / 4=16 \\
& S 3=S 2 / 4=4 \\
& S 4=S 3 / 4=1
\end{aligned}
$$

In an effort to preserve the small number of video lines used by QSET1, the latter option was chosen. The major compromise was the halving of the overall range of N to be sampled. The impact of this compromise was minimized by using the knowledge of the behavior of the analog video signal to select the starting and ending values of the sampling range as $N=128$ and $N=640$.

Ch 5

Implemented in the algorithm, QSET2, these choices produced robust performance throughout the range of abnormal paper colors and lighting conditions. The flowchart for QSET2 is identical to that of QSET1 in Figure 5.5 except for Block 1 which becomes:

```
MTC }\leftarrow
N}\leftarrow<12
STEP \leftarrow64
MAINCOUNT }\leftarrow
```

Another sampling consideration deals with the performance of the QSET algorithm with VTC curves having peaks that are less well-defined. The primary factor that can cause an obscuration of the actual VTC peak is the uncertainty discussed in Chapter 3 and depicted in figure 3.18. As long as the degree of uncertainty is relatively small, as is the case with ECP A in Figure $3.6(A)$, the algorithm is quite successful in locating the peak. But if the uncertainty is a significant component of the VTC curve as in Figure 3.12, the results of the algorithm search are not as consistent; the final N value produced by the algorithm becomes more a function of how the samples fall along the VTC curve. These effects are covered more extensively in Appendix C.
C. INCORPORATION WITH SCANNER PRINT SEQUENCE

Once the QSET algorithm was perfected, the next step consisted of adding the necessary software to the $F 8$ program, EOPS (electro-optical page scanner). Since all pertinent $F 8$ source codes are contained in Appendix B, the discussion here will be restricted to the block level. Figure 5.7 is a

FIGURE S. 7 SIMFLIFIED FLOWCHART OF EXISTING F8 SOFTWAFE (EOFS) FOF THE SCANNER

Ch 5

simplified flowchart of the existing scanner algorithm. As stated in Chapter 3, placement of the CALIBRATION PATTERN in the left-most margin allows the first lines of video to provide the necessary information for threshold-setting purposes. Therefore it was necessary for the ATC sequence to be located between Blocks 4 and 5 of Figure 5.7 in order to catch the first lines of valid video. This configuration also turned out to be the most advantageous in terms of software modifications required. With Block 4a included in the flow, the sequence of scanning a document now becomes:

1. After positioning the document, the operator pushes the scanner start button.
2. A start-up delay of just over 1.5 seconds is initiated which allows the fluorescent lights to preheat and the phase-locked loop motor control to stabilize. This delay is accomplished by counting a preset number of pulses generated by the phase-locked loop rate-feedback wheel. Video information is ignored during this time because of the status of the signal PRINTLINE.
3. At the termination of the start-up delay, PRINTLINE goes active, signalling that valid video is now available.
4. The automatic threshold-setting sequence begins and uses 28 video lines to establish the optimum threshold level.
5. Once the optimum threshold is locked in, the VIDEO LINE COUNTERS are set to 1700 , giving a page width of 8.5 inches (200 lines/inch).
6. As the video lines are shot, they are printed in real time With the $F 8$ providing the necessary pacing for the printer.
7. When 1700 lines have been read, the printer is shut down automatically, and the F 8 software resets. The scanner mechanical assembly is retracted to its starting point upon activation of a limit switch beyond the right-most margin.

For future research purposes, two new versions of EOPS were produced. EOPS1, containing QSET1, provides ATC that samples the entire range of N, 0 to 1024]. EOPS2, containing QSET2, provides ATC that samples the range of N, $[128$ to 640].

$$
\text { Ch } 5
$$

Additional user-oriented features added to EOPSI and EOPS2 are detailed in Appendix B.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL RESULTS

The performance of the scanner with automatic threshold control was considered to be excellent, especially in the context of proving the validity of the ATC concept that was developed. Xerox copies of scanner printouts are contained in this chapter, and if degradation due to xeroxing is ignored, the results are very good. Figures 6.1 to 6.5 represent consecutive scanner outputs of the same image with the automatically-chosen threshold value noted. Due to the uncertainty discussed in Chapter 3, each threshold value is somewhat different. Still, it can be seen that every copy possesses a high degree of quality, thereby demonstrating the consistency of the ATC. Observe, for example, the legibility of the 6-point type at the lower left of each reproduction of the IEEE Test Chart. Microscopic inspection of these scanner outputs revealed resolutions very close to 200 lines/inch.

Figures 6.6 to 6.8 were produced with EOPS2 and only one fluorescent light providing illumination. Even under the degraded lignting conditions, the ATC was able to select the optimum threshold and produce a very acceptable output. Again note the 6-point type in Figure 6.7 is quite readable.

Figure 6.9 is the result of scanning a transparency of the IEEE Facsimile Test Chart with red paper as a background. Again the threshold level chosen was considered the best possible under

NMA MICROFONT QJKLPYZ 6BSI2GH5D4X7U3W8V9E FGF + 5DE TUVE: UFG8STH:.,NOW'A日VL 3KLMIZ.

ABCDEFGHIJKLMNOPQRS TUVUXYZ QL23456789 - - \{ \}\%? ? 4 A ASA OCR-A ABCDEFGHIJKLMNOPQRSTUV WXYZabcdefghijklmnopqr stuvwxyz1234567890PICA ABCDEFGHIJKLMNOPQRSTUVNXY7. abcdefghijklmnopqrstuvwxyz so IIIIIIIIIII 1234567890

Elite

65

abedafghijhtmnopqusturwayz

ABCDEFGHIJKLMNOPGRSILVWXYZ
1234567890 Sparton Medium int
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijk/mnopqr stuvwxyz
1234567890 Spartan Medium 10 pl
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopqrsfurwxyz
1234567890 Spurten Medium $12 p 1$

IEEE Std 167A-1975
FACSIMILE TEST CHART FIGURE G.1

SCANNER OUTFUT UNDER NOFMAL CONDITIONS (HARM WHITE FLUORESCENTS)
THRESHOLD AUTOMATICALLY SET AT $N=384$

120

NMA MICROFONT QJKLPYZ 6BSI2GH5D4X7U3W8V9E
 3кしल12:

ABCDEFGHIJKLMNOPQRS TUVUXYZ DL23456789 - - \{\}\%? ? 4 H ASA OCR-A ABCDEFGHIJKLMNOPQRSTUV WXYZabcdefghijklmnopqr stuvwxyz 1234567890 PICA ABCDFFGHIJKLLMNOPQRSTUVWXY7. abcdefghifk1mnopqrstuvwxyz 1234567890 Elite

ABCDEFGHUKLMNOPORSTUVWXYZ
abcdelghipalmnopqistuvweyt
1234567090 Sporion Medium 8 pl

ABCDEFGHUKLMNOPQRSTUVWXYZ
abcdeighijk/mnopar sluvwxyz
1234567890 Spartan Medium 10 pt
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrsturwxyz 1234567890 Sperstan Mediunt 12 pt

IEEE Std 167A-1975
FACSIMILE TEST CHART FJGUFREG.4
SCANMER OUTFUT UNDEF NORMAL CONDITIONS (WARM WHITE FLUORESCENTS) THRESHOLD AUTOMATICALLY SET AT $N:$: 360

\prod_{0}
6

primi w.h - Mall

Fa:

Ch 6

ПIIIIIIIIJ

Ch 6

NMA MICROFONT QJKLPYZ 6BSI2GH5D4X7U3W8V9E PORYSDEGUVGTOFGESTHIJNOWXABYZ 3KLMI2C

ABCDEFGHIJKLMNOPQRS TUVUXYZ OLZ3456789 --\{\}\%?SY4 ASA OCR-A

ABCDEFGHIJKLMNOPQRSTUV WXYZabcdefghijklmnopqr stuvwxyz1234567890PICA ABCDEFGHIJKLMNOPQRSTUVWXY7. abcdefghijklmnopqrstuvwxyz 1234567890

Elite
Ancoeromumimationas itwourt

AICDEFGHIKIMANOPORSTUVWXYZ obedetghifilmmepqurstuvwiye 123aserteo Sportan Modivm 8 pl

ABCDEFGHIJKLMNOPQRSTUVWXYZ abedefghijklmnoparstuvwxyz
1234567890 Sportan Medium 10 pl

ت:

IEEE Std 167A-1975
FACSIMILE TEST CHART

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abedofghilkimnopgrsturwxyz
1234567890 Spartan Medium 12 pl

FIGOURE G.B
SCAMMER OUTPUT WITH ONLY ONE WMRH HWTTE FLUORESCENT LIGHT PRONTDING ILLURTDATION THRESHOLD AUTOKATICALLY SET AT $N=320$

these conditions. This was by far the most demanding test of the ATC because total pel swing of the analog signal was less than 80 millivolts and the threshold level obtained still produced legible copy.

Figures 6.10 to 6.13 represent other document selections for evaluating the Automatic Threshold Control from a subjective standpoint. Figure 6.10 needs no comment, but Figures 6.11 and 6.12 represent fairly difficult text for scanner reproduction. Notice the excellent scanner performance with these documents. The original used to produce Figure 6.13 was a magazine advertisement with a very dark brown background and white print. Although the graphics cannot be interpreted, a majority of the print is legible.

A few points should be discussed concerning the actual limitations of the scanner/printer combination when evaluating the scanner's output. The first point concerns the observed resolution capability of the system. Although the scanner can detect resolutions up to 200 lines/inch, (1) the electrostatic printer used to produce hard copy will not faithfully reproduce this resolution due to the overlapping stylii. As illustrated in Figure 6.14, a resolution of 200 lines/inch will actually have more black than white resulting in a small amount of degradation in the output. Patterns approaching 200 lines/inch will appear

[^7]The Foderal mecerve soard could, if it choee, commhat case the pais of more business failures by $8100 d i n g$ the tinancial gystem with moncy. we do not beliove that they will choose this course. The nation has come long way in winding down inflationary expectation and the red is unilkely to give up the fight now. We believe they underatand that aritical moapon in the bettie against inflation is the reintroduction of "risk" lato the ceononic :aydten. Ewoessive monetary growth and acaurad corporate bail-outs do not ancoirage prudent busineas planning. Rather, it forters the fmmoderate use of bormomel funda and the belief that, in the long run, the ability to ralee prices mill subsequently yustify buying extra inventory or paying accessive mage camads. If the Fed sticks to its guns, busineas will have to learn bow to operate mith - totally different philosophy. For rome the laseon will be learnod too late.
what else can we look for? Certainly, capital. apending plans will continue to be pared back. The lateat mocraw-ilill survey of capital pperiaing plans for 1982 pointed to a 3.98 dollar increace, representing a 4 m/2s declime in actual physical outlays. Six months ago, apending plans called for a 1982 advance of 9.6\%. Commerce Department surveys have also suggestpa scaling beck of capital epending intentions. We think the process still hat further to go. We expect capital epending to be the meakest sector of the economy vatil well into 1983 and perhaps for even longer if the lecanmp: "triple dips" in carly 1983 as we think possible.
operating expenses also get cut back when profitn are under precmure. The unemployment rate may not have topped out yet although we suapect it doesa't have too mich further to go. Mage "givebecks" have charattedfizel labor nogotiations in the doproseed cyclical induatries. over the nurt fom months we expect the business india to be sife with stories about white callaz layoffs and executive salary cuts. Goodrich, for example, zecently annoumeet that its top management would take a 15% ealary cut while other executives ane salaried efployees making more than $\$ 20,000$ a year would take reductions rangiag ercm 58 to 108.

We aleo look for a continuation in the aurge of dividend cuts as corporations sarambe to retain cach. According to standard foor's, through the first 4 montha of 1982, 150 companies decreased or omitted their divillene payments, more than twice the number of companies who took ainilar action thate year. In recent sonths, dividend casualties included such companies ate Inland and sopublic steel, Reyrolds Metals, sun slectiric, chadion International, barnischfoger and mavilile. Another source of corporate eank is the eale of ascets. Dome potroleun and Inco, among othars, bave recentiy announced such plans. Chrysler and International marventer, of coursm, have cold off large apd profitable divisions. Hore auch moves will follow.

We have painted a sather grim picture of the financial strains on the cocucmp. The reliquelication procesi is far from complate, a factor vilicir vill sasve to slow the recovery procese. Thus, for this and other seampas. ous imertmat ponture with seqard to cquitios has beon solective anf opporteniatic within a geserally cautious tramework. Companios with dauni
 wall in a reperictive coonomic coviromont. Moreover, daring uncertain tima,. gem stocks got down to extreordinarily attractive pricen in terme ct their

FIGURE 6.10
scminer alput lnodr marmal canotidus (coo mite fuccescants)
TMESWDD MTOMATLCALY SET AT $M=392$

Reader Service

 name and addrese. Then circie the appropriete numbers for the adoentisens you seloct from the the. Alita
 encouraged to uce the marketplace providod by BYTE. This holys us bring you a biaper BYTE. "Carrespend dincerty with company.

Encremer

chan Mre

Computer 9

 ancoprome

 ct

 undern

 ．
yopermar zomerreatrons
Treter of ery

 An - Ant

 C Yopial F

而

MLITOLL FIEX CO－243－742

 maxime

वIy N M M
 ancman．

015 is 4

$+$

 Prent

人 Nomortitisy

 x mant man $\rightarrow \ln$ dention
Formgtorsthecore

 Dreis erver for mina

 condernain

 arn men．

 matof

$\cdots 20 \rightarrow 1+\infty$

 Hin ber chinc ypind dind
 1

Lnal cr enecimanione

 acmine

Lend ap enomenctar

Len 4 －

Pan

 ar

 MTUT1

Crupe

 Exambay

品
 Thaxtmen
OLumbin cavo man Prime

andictic Io

Premernimit Gis firs as

 1.

 Cum T

 Q camernanderativin． a max

 Cxtmorn 0ryay

mannod unt exin \cdots 洨的
 On等
Q B Co form for －
 0 （1）

 geviont
 griver frowern （tant
Ana．
Conem

Pn
Anhore
Cu

my itmonamime

－m M
mermacim
\％ry
FU1F2 6.12
SCANMER OUTPUT UDERR MDNHAL CONDITIONS （COOL WHITE FUURESCESTS） THEESHDD AUTOHATICALLY SET AT $N=409$

Ch 6

FIGURE 6. 14 MAGNIFIED UIEW OF ELECTROSTATIC FRINTER'S REFRODUCTIDN OF THE NYQUIST FRERUENCY

to have less white content than they should. This characteristic should be kept in mind when evaluating the resolution of the scanner output with the IEEE Facsimile Test Chart.

The next point deals with the hysteresis included in the video A-to-D converter as an additional measure to prevent clock noise feed-through. The hysteresis was experimentally set at a level that allows all spatial frequencies to be digitized under normal lighting conditions and pastel paper colors. However when abnormal conditions reduce the magnitude of the analog video signal, the pel swing from the highest spatial frequencies are too small to overcome the hysteresis barrier. This effect can be most easily seen with IEEE Test Pattern 12 in Figures 6.6 to 6.9. Distortion due to hysteresis is characterized by a "streaked" or "filled-in" appearance at the affected spatial frequencies.

The last point pertains to the effect of non-uniform illumination. As established in Chapter 3, the ATC will average any light irregularities and select the threshold level giving the highest resolution over the largest portion of the page. This feature of the ATC can be viewed in Figures 6.11 and 6.12. These two copies were produced with fluorescent tubes that had become blackened on the ends due to wear and tear. The ATC still reproduces a majority of the page faithfully with only the bottom of Figure 6.11 and top of Figure 6.12 being degraded because of insufficient light.

Ch 6

B. CONCLUSIONS

In summary, the method produced from this research for automatically selecting the voltage threshold level proved to be successful. The advantages of the ATC are many. First, substantial savings in time, energy, and resources are realized over manual threshold control. Second, the threshold level produced by the ATC is more accurate than one selected by subjective evaluation. Third, the scanner with ATC requires less skills of the user. Fourth, the scanner can automatically respond to a large variety of paper reflectivities and colors. Fifth, light non-uniformities due to deterioration of the fluorescent lamps are automatically compensated. And last, the scanner is able to continue operating automatically with the failure of one fluorescent lamp. On the other hand, a minor disadvantage observed was that the operator must take greater care in placing a document into scanning position to insure the left margin provides background for the CALIBRATION PATTERN.

There are a few critical issues to the proper operation of the ATC that merit discussion. First, it is crucial that the scanner is able to start transmitting video at the same precise physical point for every page. Before ATC incorporation, minor deviations in start position would have hardly been noticeable. But with the need to "see" a narrow CALIBRATION PATTERN in the first few lines, it is now mandatory that the scanner starts reading lines in exactly the same place every time. Inconsistency in the starting position can be offset to a certain
extent by widening the CALIBRATION PATTERN, and this measure was taken by using ECP A which is 0.219 inch wide whereas only 0.140 inch is actually needed. Still a small measure of inaccuracy was observed during research that sporadically caused the CALIBRATION PATTERN to be missed either partially or completely. This resulted in either thresholding errors or a portion of the CALIBRATION PATTERN being printed in the output (called pattern feed-through). This issue will be covered in more detail in the next section.

While established in Chapter 3, another critical issue that deserves repeating is the importance of the design of the CALIBRATION PATTERN itself. The pattern must produce a VTC curve spanning a reasonable amount of N values and producing a clearly definable peak that occurs at the value of N resulting in detection of the highest spatial frequencies, Additionally the CALIBRATION PATTERN should cover the length of the page and have each spatial frequency evenly distributed along its length so that light non-uniformity effects can be minimized.

The other issue that needs review is that of the sampling algorithm design. Not only is it important to maintain a simple scheme due to limitations of the F8 microprocessor, but it is also fundamental to remember that there are less than 900 microseconds available for threshold data processing between video lines. (1) In other words, any algorithm chosen must be able to execute on the $F 8$ in less than 900 microseconds per video (1) See Figure 2.1.
line. The other point is that as long as the threshold sequence is executed with the scanner in motion, the number of video lines used must be kept to a minimum to preclude the CALIBRATION PATTERN from taking excessive margin space.
C. AREAS FOR FURTHER RESEARCH

1. PHYSICAL POSITIONING ACCURACY

As mentioned earlier, the first line of video in a scan sequence is not necessarily taken from the same physical point each time. It is believed that this was a major cause of thresholding errors encountered during evaluation. To understand the problem, the mechanical sequence must first be studied in Figure 6.15. Once the start button is pushed, the first line of valid video will be transmitted after a preset number of pulses from the phase-locked loop rate-feedback wheel have been counted. Theoretically this should define a very precise distance since the wheel is physically mounted on the lead screw and generates 100 pulses per revolution. It is suspected that errors are being introduced by one or both of the following: either the counters in Block 7, Figure 6.15 are being misloaded by spurious noise, or the mechanical assembly is not coming to rest in exactly the same place each time in Block 8 due to tolerance of the left-most limit switch. This issue should be explored with the purpose of eliminating thresholding errors.

2. CALIBRATION PATTERN

Since this research was conducted with a limited number of available ECPs, a specially designed CALIBRATION PATTERN should

Ch 6

1
SCANMER START BOTTON FUSHED

2
FRESET NUMBER OF FOLSES FROM FHASELOCKED LOOP RATEFEEDBACK WHEEL cousted

PRINTLINE ACTIVATES SIGNIFYING THE ANALOG VIDEO SIGMAL CONTANS valid data

4
29 VIDEO LINES USED FOR AUTOMATIC THRESHOLD

5
1700 VIDED LINES PRINTED
6. $\begin{aligned} & \text { MOVING ASSEMBLY CONTINUES } \\ & \text { TO RIGHT-MOST LIMIT SWITCH }\end{aligned}$

MOVING ASSEMBLY STOPS 8 WHEN LEFT-MOST LIMIT SWITCH IS ACTIVATED
now be fabricated for use with an operational scanner. Although ECP A works, each frequency burst has only seven discrete spatial frequencies that the $C C D$ can detect; the other five spatial frequencies are above the Nyquist rate and therefore contribute nothing. Additionally, 50\% of ECP A has no spatial frequency content whatsoever. In view of this, I suggest designing a CALIBRATION PATTERN specially tailored to the needs of the ATC. Two possible frequency-burst designs are: one with more discrete frequencies, and one containing a linearly increasing set of spatial frequencies. Each burst should be about one inch long and repeated along the length of the page. This effort will not improve the ATC's choice of threshold level since the optimum has already been achieved, but on the other hand, it could further enhance the ATC's robustness under abnormal conditions. Once the operational CALIBRATION PATTERN design has been completed, the pattern itself should be permanently etched into the glass face of the scanner. For expediency in this research, a transparency of ECP A was taped into position to serve the purpose of a CALIBRATION PATTERN.

3. ADJUSTABLE DARKNESS CONTROL

The ATC is designed to select the threshold that will give the most black/white transitions which in turn produces an output that gives equal priority to black and white information. During evaluation however, it was found that, from a subjective standpoint, copies were sometimes more pleasing if the threshold was shifted to slightly blacker than optimum. In this way,
portions of fine print (smaller than 6 point) having spatial frequencies above Nyquist tended to be more readable. The compromise involved the loss of some white information in the form of black fill-in, but this was not a major detraction. Therefore I suggest adding a control whereby the user could bias the threshold to lighter or darker than optimum, depending on the specific need. This could most easily be accomplished by using a multi-position multi-wafer switch configured to feed various 8-bit binary numbers to an $581 / 0$ part. At the end of the threshold-setting sequence, the $F 8$ would alter the optimum threshold level by the value selected by the user.
4. INK COLOR

Due to time constraints, this research focused only on documents having black print. It is predictable that on a white background, colors of ink other than black will produce a smaller pel swing, but it is unclear what colors of print will not be detected with the threshold level set by the ATC. Future experimentation in this area will better define the capabilities and limitations of the scanner system.

5. SCANNER ILLUMINATION DESIGN

A number of issues concerning the scanner's light source were encountered during the course of this research. (1) First of all, a problem was noted with the light start-up at the beginning of the page-scanning sequence. Either one or both

[^8]lights failed to illuminate approximately 30 to 40 percent of the time. Start-up failures were more prevalent with:
a. new tubes
b. very old tubes
c. green tubes in general

Secondly, a fairly rapid deterioration at the end of the tubes (1) caused significant non-uniform illumination to occur over the lifetime of the tube. The results of this were seen in Figures 6.11 and 6.12. Thirdly, a significant amount of light leakage (2) into the CCD shifted the analog black level away from absolute black and thereby reduced the effective contrast of the document being scanned.

In view of these difficulties, I suggest that a thorough re-evaluation of the existing illumination design be conducted. This is not necessarily a suggestion to abandon fluorescent tubes for some other type of lamp. On the contrary, there are many advantages of fluorescent lighting to warrant further investigation on obtaining the desired performance with them. One possible source of aggravation for the fluorescent tubes could be the DC drive currently used. While the original idea was to avoid "flicker" problems, it may be a reason for the rapid deterioration and inconsistent start-ups. One alternative is to evaluate the feasibility of using a high-frequency $A C$ drive and incorporating a quarter-wave phase shift between the two tubes.
(1) As discussed in Chapter 3.
(2) As discussed in Chapter 1.

Ch 6

The problem concerning the light leakage can be eliminated by adding a light-proof shroud between the face of the CCD and the focusing lens.

6. SCANNER START BUTTON

Throughout this project, it was noted that the scanner start button was not adequately resistant to various forms of interference. This problem was commonly manifested by the scanner going through one or more uncommanded page-scanning cycles immediately upon completion of a user-initiated page-scanning cycle. Additionally, the scanner would cycle through at least one page-scanning sequence when power was first applied to the system. Although this is not a disabling problem, it is a nuisance that should be corrected before the scanner is placed in a user environment for operational evaluation.

Ch 7

CHAPTER 7

BIBLIOGRAPHY

1. Aghamohammadi, A. "A Design for a Solid State, Opaque-Page Document Scanner", S. M. Thesis, M. I. T., June 1981.
2. Agudelo, G. W., "Development of a Solid-State Bound-Document Scanner", S. M. Thesis, M. I. T., September 1981.
3. Dishop, P. M., "Design of a Data Compression Scheme for a Document Transmission System", S. M. Thesis, M. I. T., September 1982.
4. Keverian, K. M., "An Investigation of Solid State Scanners", S. M. Thesis, M. I. T., September 1980.
5. Medley, R. A., "The Design of a Versatile Microprocessor Software Development Station", S. M. Thesis, M. I. T., August 1981.
6. Reintjes, J. F., and Knudson, D. R., "Investigations of Electronic Interlibrary Resource-Sharing Networks", Project Status Report, December 1979.
7. Reintjes, J. F., "Investigations of Interlibrary Resource-Sharing Networks", Project Status Report, March 1982.
8. Vinciguerra, R. L., "The Analysis and Design of a Data Compressor for a Document Transmission System", S. M. Thesis, M. I. T., November 1981.

APPENDIE A
 MANUFACTURER'S TECHNICAL DATA

This appendix contains technical data extracts of pertinent items and components used during the course of this research. This material is included for convenience as reference to support the discussion in the body of this report, and is not meant in any way to serve as a complete set of deta. Readers desiring more information should refer to the manufacturers' publications.
 ve monolthic 1723 and zout-vernent line image sensorsh raspectively. The deviceat are detigned for page scanning applications inctuding lacsimite, optical eneracter recugnition and other imaging appilcations which reavive high resolution and righ senditivity.
The I72: sensing evemmis of the CCDI22 provide a 200 line see inch resclution acrees an elve inch pege sdopted as an international fecsimile standard. The 2046 senaing otements of the CCD142 provide an thine per milhmeter repolution acroas a 256 millimeter pege acopted as the Japanese facsimite standerd.
The CCD122 and the CCD142 have overall improved perfermance compared with the CCD121N including higher somoltivity, an enhanced blue reaponse and a tower derk elignal. The devices aleo incorporate onemip elock driver elreutiry.
The photoekenent size is 13 m p 0.51 mild by 13 a 0.51 milst on 13 , la.s1 milat centers. The devices are manufacturbat using Fairchind advanced charge-coupled tevice nehannel isoptanas turied-chanmel technology.
 m THE CLuE Meacm

- Low manx spmal.
- mon mesponarvity
- on-crive clock amriana
- owname qance tracal zeose
- Ovilin tv max-ropak OUTPUT
- cank ano whrt meptallmets contamico in a sampleamontio OUTMT
- encele noweh sumpr

PN NAMES	
Vms	Photogate
$0 \times$	Translor Clock
or	Transport Clock
VIDEOout	Output Amplitier Source
Voo	Output Amplitior Orain
on	Reset Clock
Ves	Clock Oriver Drain
Vei	Electrical Input Bias
Vr	Analog Transport Snift Regiater DC Electrode
EOSowr	End-or-Scan Output
0	Samplo-end-Hold Clock
Vse	Substrate (GND)
NC	No Connection (bo not Ground)

CCD122942 vS CCDI2SH COMPARISON

Parameten	CCD122/442	CCDI21M
$\begin{aligned} & \text { Soectral Feaponse - Blue } \\ & \text { Overall } \end{aligned}$	4:1 Improvernent 2:1 Improvement	-
Oerk signal	$2: 1$ improvament	-
Ansponsivity	$2: 1$ improvement	No
On-Chip Clock Drivers	Yes	No
Dank and White Aeferences	Yes	No
Stange Power Supply	Yea	No

CCD1221142

cherge-peckets to entablish the original serial sequence of the line of video in the output circult. The outer two registers sarve to deliver the end-of.scan wavelorm and reduce peripheral electron noles in the inner shift registers.

Gated Charge-Detector/Ampliter - Chargo-packets are transported to a precharged diode whose potential changes linearly in response to the quantity of the signal chacge delivered. This potential is applied to the gate of an n-channel MOS transistor producing a signal which pasces through the sample-and-hoid gate to the output at VIDEOout. The sampie-anc-hold gate is a switching mOS trensistor in the output amplifier that allows the outpul to be delivered as a sampled-and-hold wavelorm. A reset transistor is driven by the Reset Clock (on) and recharget the charge-detector diode capacitance before the arrival of each now signal charge-packet from the Itansport registers.
Cloek Diver Chreuitry - Allows the CCD1221142 to be operated using only three external clocks, (1) a Reset Clock signal which controls the integrated output signat amplifier, (2) a square wave Transport Clock which operates al half the reset clock frequency and controls the readout rate of video data from the sensor, and (3) a Transfer Clock puise which controls expoaure time of the sensor. The external clocks should be abte to supply TTL level power.

Dart and White Roference Clreuitry - Four additional sensing elements at both snds of the 172 ar2048 array are covered by opaque metatization. They provide a dark (no illumination) signal reference which is detivered at both ends of the line of video ouptut representing the illuminated 17282048 sensor evements (labelited "D" in the block diagram). Also included at one end of the 17282048 sense element array is a white signal reference tevel generator which fikewise provides a reference in the output signat (labelled "W" in the block diagram). Thase reference lovels are useful as inputs to external OC restoration and/or automatic gain control circultry.

DEFINTION OF TERMS:

Cherge-Coupled Device - A charge-coupled device is a semiconductor device in which finite isoleted chargo-packets are transported from one position in ithe semiconductor to an adjacent eoselition by sequential clocking of an array of gates. The charge-packets are minority carriers with respect to the semiconductor substrate.

Tranater Cloet ox - The voltage waveform applied to the transter gate to move the accumulated charge from the image sensor etements to the CCD transport shift registers.

Tramepert Cleck or - The clock applied to the gates of the CCD transport shift registers to move the chargepackets received from the image eensor elements to the gated chargedetectortamplifier.
Gated ChargobetectordAmpulifier - The output circuit of the CCO122/142 which receiven the charge-packets from the CCD transport shift registers and provides a signal vottage proportional to the alze of each charge-packet recelved. Before each new charge-packet is sensed, a reset clock returns the charge-detector voltage to a fixed base lewe.
Heset Clock the - The voltage wavetorm required to reset the voliage on the charge-detector.
Sempleand-Hold Clock osh - An internally supplied voltage waveform applied to the sampio-and-hold gate in the amptifier to create a continuous sampled video signal at the output. The sample-and-hold feature can be deloated by connecting tin to Voi.

Dant Relerance - Video output tovel generated from sensing elemente covered with opequa mefalization prowiding a reference voltage equivalent to device operation in the dark. Permita use of extornal dc restoration clrcuitry.
White Releremee - Video output level generated by onchip circuitry providing a reference voltage permitting external eutornatic gain centrol circultry to be usod. The reference voltage is produced by charge-injection under the control of the electrical input blas voltage (Vei). The amplitude of the reference is typically $\mathbf{7 0 \%}$, of the saturation output voltage.
teciatuen Cell - A site on-chip producing an element in the video output that sarves as a buffer between vald video data and dark and white reference signals. The output from an isolation cell contems no valid video information and should be ignored.

Dymamis Range - The saturation exposure divided by the peak-to-peak noise equivalent expoeure. (Thls does not take into account any dark signal components.) Dynamic range is
sometimes delined in terms of rins noise. To compare the two definitions a lactor of four to six is generally appropriate in inat peak-to-peak noise is approximately equal to fouf to six times rms noise.
Peak-fo-Pcak Notee Equivalent Exposure - The exposure level which gives an output signal oqual to the peak-to-peak noise level at the output in the dark.

Saturation Exposure - The minimum exposure level that will produce a saturated output signal. Exposure is equal to the light intensity times the photosite integration time.

Charge Tranefer Efficiency - Parcentage of valid charge information that is transferred between each successive stage of the transport registers.

Spectrad Responee Range - The spectral band in which the response per unit of radiant power is more than 10% of the peak response.

Respenstrity - The output signal woltage per unit exposure for a specified spectral lype of radiation. Responsivily equals outpul voltage divided by exposure level.

Dark Signal - The output signal in the dark ceused by thermally generated electrons which is a linear function of integration time and highly sensitive to temperature. (See accompanying photos for details of defintion.)
Total Phetorespante Nen-Unifernity - The differance of the response levals between the most and least sensitive elements under uniform illumination. (See accompanying photos for detalls of definition.)
Saturation Output Voltage - The maximum usable signal output voltage, measured from the zero reference level. (See timing diagram.) Any photoelement whose video output < saturation output voltage has an in-spec charge transfer efficiency (CTE). CTE will be below the specification if the video output \geq saturation output voltage.

Integratton Tine - The time Interval between the falling edges of any iwo successive iransfer pulses dx as shown in the timing diagram. The integration time is the time allowed for the photosites to collect charge.
Pixel - Picture element (photosite).

CCD122/142

ABSOLUTE MAXPMUM RATINES (Above which useful life may be impaired)

Storage Temperature

$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature (See curves)
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
CCO 122: Pins $1,4,9,10,11,13,14,16,22,23$
Pins 5, 12, 17, 24
Pins 2, 3, 6, 7. 8, 15, 18, 19, 20, 21
CCD 142: Pins 2, 5, 10, 11, 12, 16, 17, 19, 25, 26
$-0.3 \mathrm{~V} 1015 \mathrm{~V}$
-0.3 V to 15 V
Pins $1,3,4,7,8,9,18,21,22,23,24$
NC
CAUTION NOTE: Theoe deviceo han frited builtin gate protection. it is mecommended that static duacharge be controlled and minumized. Cave must be tabe , to word shorting pins VIDEOOUT and EOSOUK to VSE or VDD during coeration of the doviema. Shorting these pins temporari' to vis en Voo may destroy the output amplitions.

DC CHARACTEATSTICS: $\mathrm{Tr}=25^{\circ} \mathrm{C}$ (No:e 1)

SYMBOL	CHARACTERISTIC	range			UNITS	CONOITIONS
		Min	TYP	max		
v co	Clock Driver Orain Supply Yottepe	12.0	13.0	14.0	V	
ICD	Clock Driver Drain Supply Current		6.9	12.5	mA	
VDo	Output Amplifler Drain Supply Voltage	12.0	13.0	14.0	V	
100	Output Amplifier Drain Supply Current		6.9	12.5	mA	
Vma	Photogate Blas Voltege	6.5	7.0	7.5	V	
V_{r}	DC Electrocs Bias Boitage	4.5	5.0	5.5	V	Note 2
Vel	Electrical Input Bias Voltage		11.4		V	Note 3
Vsis	Substrate (Ground)		0.0		V	

ac CMARACTERISTICS: (Note I)
 voltages nominal specilied values.

SYMEOL	Charagteristic	Range			UNITS	CONOITIONS
		MIN	TYP	Max		
OR	Dynamic Aange (relative to peak-to-peak noiec) (rulative to rme nolse)	$\begin{array}{r} 250: 1 \\ 1250: 1 \\ \hline \end{array}$	$\begin{array}{r} 500: 1 \\ 2500: 1 \\ \hline \end{array}$			Note 9
NEE	RMS Noise Equivalent Exposure		0.0002		Hi/cm ${ }^{2}$	Note 10
SE	Safuration Expoture		0.4		$\mathrm{p} / \mathrm{cm}^{2}$	Note 11
CTE	Charge Transler Eltictency		0.990993			Note 12
Vo	Output DC Lewa	3.0	8.5	10.0	V	
2	Outpul Impedance		1.4	3.0	$k n$	
P	On-Cnip Power Dissipation Clock Orivers Amplitiers		$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & m w \\ & m w \end{aligned}$	
N	Peak-to-Peak Noiso		2.0		mV	

FAIRCHILD

A Sctiumberger Company

CCD122/142						
CLOCK CHANACTERISTICS: To $=25^{\circ} \mathrm{C}$ (Note y						
SYMBOL	Chapacteristic	pange			UNHTS	CONDITIONS
		MIN	TYP	max		
Vor	Transport Clock LOW	0.0	0.3	0.5	v	Notes 4, 5
Voin	Transpori Clock HIGM	9.75	10.0	10.5	V	Nole 5
Yaut	Transfar Clock LOW	0.0	0.3	0.5	V	Notes 4, 6
Yoxh	Transtor Cloch MIGH	0.75	10.0	10.5	V	Note 6
Yome	Reset Clock LOW	0.0	0.3	0.5	V	Note 7
Voin	Resel Clock HIGH	9.75	10.0	20.5	V	Note 7
in	Maximum Reser Clock Frequency (Output Data Rate)	1.0	2.0		MHz	Nate 8

PERFORMANCE CHARACTEAISTICS: (Note 1)
 voltages nominal specitied values.

SYMBOL	CHARACTERISTIC	RANEE			UNITS	CONOITIONS
		MIN	TYP	Max		
PRNU*	Photoresponse Non-uniformity Peak-fo-Penk Peak-to-Peak without Single-Pret Positive and Negative Pulset Single-pixat Positive Pulses Singlo-pized Negative Pulses Anojister Imbalance ("Odd"r"Even")		$\begin{array}{r} 160 \\ 100 \\ 05 \\ 130 \\ 20 \\ \hline \end{array}$	210	mV mv $m V$ mV mV	
03	Dark Signal OC Component Low Frequency Component		5 5	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & m V \\ & m v \end{aligned}$	$\begin{aligned} & \text { Notes 13, } 14 \\ & \text { Notes } 13,14 \end{aligned}$
SPOSNU	Single-plxet DS Non-uniformity		20	40	mV	Notes 13, 15
R	Responsivity	2.0	3.5	5.0	Volts per nitem ${ }^{2}$	Note 17
Vsat	Saturation Output Voltage	800	1400	1600	mV	Note 18

-All PRNU Measurements taken at a 700 mV output leved using an $\mathbf{t} 2 \mathrm{~s}$ tens and exeluded the outputa from the first and tad elements of the array. The If" number is detined as the distance from the lons to the erray diviced by the diameter of the terns apprture. As the i mumber incrases, the ratultice move highly celumarted lyent causes the aectage window aborpations to dominate and increase PANU. A lower i mumber reaults un leas columated Moth eapaing devkee photobite bromishes to dominate the PRNU

motes:

Tr is detinet as the peckage temperature.
VP should be equel to (1/2) VoTh.
Ven is used to generate the end-f-scan output and the wh:te raference ourpul. These twe slonals can be dimenated by comecting vel to a votioge lowit oqued to $V_{401}+5 \mathrm{~V}$.
Mogative trambente on any clock pin going below 0.0 V may cause chargeinjection which resuite in an merease of apperemt os.
CAI $=700$ of
Cen = 300 of
Con - 50 of
Minimum ciock lroquancy is umited by inerasse in cart s.grai

 cresey in Tp.
Sop pheteqramia for manu definitions.
 sco toat lond conligurations.

Patters Doscripiteme

The pottern number divea is the following description may be idemetifich frea Figure 1. Thio chart is deaimed fer scemaing in cither direction，horimontelly ecreas the pege．
IDers Sul 107－18ct，Tut Procolure fer Feo－ cimile was beod an proviene ingunt of the IDTHS Tant Chert．

Patmars 1 and 2． 83 lines ger finch（ 8.78 Him per millimetar）cominting of 48 dark and 40 licht lines，oubotantially aucel in width．In pattorn 1，ihe black corrmepends appreximato－ Iy to atep 2 and fray to atep 7 of petters 8 ．In pattern 2，white repecoment paper white and eray to approximatcly step 11．Theen patterna are intended for sumerating low－modulation high－frequency sicnale at both ande of the density mealo－ureful for terting modulation characteriaties at edene of bead in a frequency shift syetem．

Patione 3，4，and 6．Vertical ber pattome at 10．60，and 96 lines per inch（ $0.294,1.27$ ，and 3．78 lince per millimeter）of enbetantiony equal width－uneful for equare－wave tecting at ewvoral heying fropuencin．
Pattern 6．A continuoes denaity wodos do sipmed so that of equal intervale of distence aeroes the page，the variation in rallectase will be roughly equally pereaptible to the eye． Reading let－to－right acrees the page，the relo－ tive reflection dosaity valum at the hoavy dote are approximatoly as chown in Table 1．Pet－ tern 6 is mopful tot capes where intermediato rellection demeition are moeled bretween the stepe in Patterne 7 and 8.

Table 1

$\begin{array}{llllll} & 2 & 2 & 4 & 5 & 7\end{array}$
$\begin{array}{llllllll}\text { Domina } & 1.25 & 1.75 & 1.25 & 0.78 & 0.28 & 0.14 & 0.08\end{array}$
Pattoree 7 and 8．Roversal terp tablets of 15 etape with reflaction demalion eecromponding the appreadmately equal pereoptibility modi－ fied to provide amaller low deanity is－ cremente．Consiment with comvantival pres－ tice，paper white in underteed to be equal to 0.00 in density（epperparimetely 0.07 ea as ab－ colute cealo）．Por patterna 7 asd 8 the relative rellection depoitios are shown is Tables 2 and 3 reppectively．

Thece patterne will acoint in appraing pradient and aboolute scab．Ther are uacful for checkins half－tone charsctaristice．Rowat－ sed sequancen are ued cinee the dynamic hall－ tone charectesindies may dilfer for a riving denaity or a falline demaity cealo．
Pattern 8．National Burceu of Standarda （NBS）type repeating tri－her resolution tent pattern．Twalve cemplate ants of throc－line patterne are reppated weren the choet．Altiep－ nete croupe art of diflorant line epacing．Dop－ sity veluen are ohown in Toble 4 ．This patters in unful for checkiag definition．
Patter 10．Rectangle whit 45° diagonal marky at cech oornet－unful for chociding in－ des of cooperation，show，and papep－fond ar－ res．
Pabornd 11 and 17．White medge on bleck beckround and bleck wedee on white beck－ cround， $0.07 \mathrm{in}(1.78 \mathrm{~mm})$ to ame－methl for checking cindo－line dofintilea．
Patare 12．W．and I．E．Gurloy type Peater－ cov Star pettern．Outer circio 60，aceond circle 100．and thisd circle 200 liem por inch（1．97． 3．94，and 7.87 linem per millimoter）．

Patmin 18．Trunceted fan－type multiplo－ling teet pattern．Calibratod in liper per inch－u00－ ful for checking multiplo－line definition aloas seanaing line，apvelope delay distortion，and riacing．
Patters 14A and 14B．NBS type Mierecopy Recolution teet pattern．Numeralh indiegte the number of cyelas（cone black plus one white line）per millimeter（that in，line pairs）－ugoful is ehackias high defiaition ayntame．
Patani 18．Photopraph with detail in high－ fitht and shadow．The limiting densitios of the photorraph approximate thoee of tent pat－ tarm 7 and 8

Panter 16．Vertieal sray stape with relative refoction demoditie of appromimately 0.98 and 0.27 －woful in conting riniag and falling tran． cient characterintice and lovel variationa．
Pakarn 18．Forimontal＂Yo＂pattern with 0.18 in（ 8.3 mm ）operinge．Number of scanning line cosomine of both lines，multiplised by 7.7 will equal mumber of lines per inch（multiply by 0.3 for number of linet per millimeter）．

Pattar 10．＂Fance＂pattarn with 0.01 in $(0.254 \mathrm{~mm})$ limee 0.10 in（ 2.54 mm ） apart－umpul for chockine jitter and moosur－ ince avaliablo time lougth．

Pabteras 80 and 81．Haltone dot cereems．Ro－ poduced in appeoximately 10， 60 and 90 per－ cuat bleck，laft to richt and at 66 dete por inch （ 2.66 dete per millinopter）at a 45° ande for patiern 20，and 120 dote per inch（ 4.72 dote per millimeter）for pattorn 21.

Patter 22．Title and erodit bor．Throe sive of Times Roman trye font．

Paturn 23 and 24．Pidueial dete formine a 8. 4． 5 right triando－wooful for indienting the prosence of skow by comparine the hypote－ nuee of the two patterne．

Patters 23．Type faces an indicated－uoeful for checking readability．
Pattern 29．Extemsion lines to parmit meen－ curement of available line and veeful length of copy．

Table 2
Pattern 7 Dequity Toet

	1	2	3	4	8	－	7	－	9	10	11	12	18	14	8
Deanty	0.01	0.08	0.18	0.25	0.41	0.88	0.70	0.84	0.94	1.05	1.17	1.32	1.49	1.86	1.80

Table 3
Pattern 8 Dengity Vaiues

800	1	2	8	4	5	6	7	8	9	10	11	12	18	14	15
D	1.70	1.55	1.39	1.25	1.26	1.06	0.84	0.84	0.70	0.56	0.43	0.27	0.15	0.05	0.01

Table 4
Patere 8 Draity Valueo

	1	2		1	5	＊	1	2	Grom	4	8	6
Limensur loch	81.0	88.4	122	178	244	346	404	204	203	142	102	71.1
Llam per Mill	2.40	8.40	4.80	6.81	9.60	18.6	16.0	11.8	7.98	3.58	4.08	2.80

NOTES:

Commercial Cerumic (AD, DD, CD verioos)t $-25^{\circ} \mathrm{C}$ to $085^{\circ} \mathrm{C}$
Military Cermic (SD, TD, UD vervions): $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-"FSR" in Full Scal Recere.

$+29^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ (AD, BD, CD wensiona).
${ }^{4}$ Pall sacke (FS) $=-\left(V_{\text {ReI }}\right)\left(\frac{1021}{1024}\right)$

-Gumamered, not texed.
"AC peranster, smple cemed to easare apecification complianee.

- Aboolure tempantire coefficient is approximucely -300ppai/ C .
spocificections subfect to cherape withowe notice.

CIRCUIT DESCRIPTION

GENTRAL CIRCUIT INPORMATION

The AD7533, a 10-bit mulciplying D/A converter, consists of a highly stable thin film R-2R ladder and ten CMOS current switches on a monolishic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference.
The simplified D/A circuit is shown in Figure 1. An inverted R-2R ladder structure is used - that is, the binarily weighted currents are switehed between the buti and butz bus lines, thus maintaining a constant current in each ladder leg independent of the switch stace.

Figure 1. AD7533 Functional Dhgram
One of the CMOS current switches is shown in Figure 2. The geometries of devises 1,2 and 3 are optimized to anake the digital control inputs DTLITTLCMOS compatible over the full military temperature range. The inpur stage drives two inverters (devices 4, 5, 6 and 7) which in turn drive the two output N-channels. The "ON" resistances of the switches are binarily sealed so the voltage drop across each switch is the same. For example, switch 1 of Figure 2 was designed for an "ON" resistance of $\mathbf{2 0}$ ohms, switch 2 for 40 ohms and so on. For a 10 V reference input, the current through switch 1 is 0.5 mA , the current through switch 2 is 0.25 mA , and so on, thus maintaining a constant 10 mV drop across each switch. It is essential that each switch voltage drop be equal if the binarily weighted current division property of the ladder is to be maintained.

Figure 2. CMOS Swinch

Figure 3. AD7533 Equivalont Circuit - All Digital Inputs LoA

EQUIVALENT CRRCUIT ANALYSIS

The equivalent circuits for all digital inpurs high and all digu: inputs low are shown in Figures 3 and 4. In Figure 3 with all digital inputs low, the reference current is switched to lourz. The current source lleakage is composed of surface and junction leakages to the substrate while the $\frac{1}{1024}$ curre::
source represents a constant 1 -bit current drain through the termination resistor on the R-2R ladder. The "ON" capacitas: of the outpent N channel switch is 100 PF , as shown on the ${ }^{1}$ OUT2 terminal. The "OFF" switch capacitance is 35 pF . as shown on the burit terminal. Analysis of the circuit for all digital inputs high, as shown in Figure 4, is similar to Figure 3. however, the "ON" switches are now on terminal louts. hence the 100 pF at that terminal.

Figurs 4. AO7533 Equivalent Circuit - All Digital Inputs High

- Dual Versions of the Popular '90A, 'LSSO and '93A, 'LS93
- 390, 25390 . . Individual Clocks for A and B Flip-Flops Provide Dual $\div 2$ and $\div 5$ Counters
- '393, 'LS393. . .Dual 4-Bir Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Peckepe Count by 50\%
- Typical Maximum Count Frequency . . . 35 MHz
- Buffered Outputs Reduce Possibility of Collector Commutation

description

Each of these monolithic circuits contrins eight master-stove tifp-flops and additional gating to implement two individual four-bit counters in a single packape. The '390 and 'LS390 incorporate dual divide-by-two and divide by.five counters, which can be used to implement cycie lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the seperate divide ty-two circuit can be used to provide symmetry (a square wave) at the final output stage. The '393 and 'LS393 ench comprise two independent four-bit binary counters each having a clear and a clock input. N-bit binery counters can be implemanted with esch peckage prowiding the capability of divide-by-256. The '390, 'LS390, '393, and "LS393 have paraliel outputs from each counter stage so that any submultiple of the input count frequmey is availabla for system-timing signals.
Series 54 and Series 54LS circuits are characterized for operation ower the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series 74 and Series 74LS circuits ane characterized for operation from $0^{\circ} \mathrm{C}$ so $70^{\circ} \mathrm{C}$.

7488

TYPES SN54390, SN54LS390, SN54393, SN54LS393.
SM74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AHD BIHARY COUNTERS

FUMCTION TABLES '300, 'L5390 ELOUNAATY (S-2) (EACH COUNTER) See Now 81				
count	OUTPUT			
		$\mathrm{a}_{4} \mathrm{O}_{0}$	$0_{0} \mathrm{Q}_{5}$	${ }_{C} a_{t}$
0	6	$\checkmark 6$	6	\square
1		$\llcorner 6$	- 6	
2		\llcorner L	- H	+
3		L L	L	1 H
4		b H	12	6
5		H L	4	L
6		4 L	16	- H
7		4 L	L H	H L
8		H 1	4	1 H
0				

MOTES: A. Output G_{A} is comnection to input Btor ecD count
-. Output O_{0} is connected en inpurt A for bl-auinary
ceunt.
c. Homin level, Lelow lovel.

functional block diagrams

APPENDIX B

F8 MICROPROCESSOR SOFTWARE

This appendix contains the source codes for the $F 8$ developed in conjunction with the design of the Automatic Threshold Control for the scanner. Assembly listings and linking information for each software module are included. The floppy disc HELP file describing the software package is also included to serve as an overview.

Page 133


```
    THE :IESSAGE Tכ THE SCREEN MILL NOT REFEEこT T:E MLEE?HTICN.
```

ミミNコミ 7 SELE EイPLA:jATCミY.
-
 そOELLES ARE こESC？ISE＝3ELJ＂：

 CJNTPOLLING SMNPL：NG SMNGE ANE IT：TIAL STEP SIこE（J1）．

THIS SUBROUTIJE JOLLS TAE SIGNAL GALEED PRIUTLIME＇

 Jテ̈ a bI：NE JF YIここO I：NFGEMAT：ON．


```
M!ITS ---*- TFIN:S:A:T CO:MNHNJ
TH\5 iS T:iE 5I:HP:EST OF ALL THE SUEROUT::EES. IT IS TriE j%E
```



```
TO JE STORES l:I REGISTER O.
OSET ----- SJ:CK THRESHOLD SAKPLING ALGOE:TH:A
```



```
EMタMOPLES
```



```
ミミミ!゙ち%:
```



```
    Lま:NK 1 EETL:O,IC:I
    Lよサ:% I Ev=L:O,IC:1
    -::%:6 1 rMaTS,10:1
    L!H& 1 FSET,10:1
```



```
FO0:1 THE FRONT SANEL JR 3Y USING THE FE こEBLG SJFT%AFE.
```



```
Gald ヨE !SEE:
    mSS =O NEIS% FILENGHE,10:1
    LL:OF OCCC-C2S5
```



```
    DAL E:LENGi:E,1C:1
```



```
TANEL:
```

 :ヵ」-
    ```
CLEA? こ!SFLAY
LC ALこ!ESS
?ci*
```

IF T:


```
CC! FILENA.4E,3C:! CCOO-S255
CuFY F:LE FILE:&ME,3C:1
```


 JISK :SUALLV ? ESIEES.
it MUST 3E NOTEE THAT THESE GOMMANLS TO GREATE :ZE: COPIES JF G:
 LiNKING JPEPATICN 5!:iEE SO:AE JF THE OTAER FLOS P?OGEA:4S (L:: THE ASSEMSLE? GNL THE EEITOR) OSSCURE THE LJ'iEn AEERESSES UF

 EJE ! :MMEDITE JSE.

Page 138
：ABN
IRRS
CALLING PRGGRAM－：JE？SN LJC OSvEET AEこR ㄹ．：！

| 0040 | 99 | | 0123 |
| :---: | :---: | :---: | :---: |
| 0041 | 2003 | | 0124 |
| 0043 | 59 | | 0125 |
| 0044 | 290000 | 0000 | 0125 |
| C047 | 3 Cls | 005 | 0127 |
| | | | 0123 |
| 0049 | 2005 | | 0129 |
| 0045 | 38 | | 0130 |
| 004 C | 2008 | | 0131 |
| 0045 | 39 | | 0132 |
| 004F | 70 | | 0133 |
| 0050 | 39 | | 0134 |
| 0051 | 2002 | | 0135 |
| 0053 | 59 | | 0135 |
| 0054 | 280000 | 0000 | 0137 |
| 005 7 | 2CO： | | 0133 |
| cosa | 59 | | －139 |

OESA 2RCCOO COOO 0140
0141
0142

| $0052205 A$ | 0143 |
| :--- | :--- |
| $205 F$ | 52 |
| 00502003 | 0145 |
| 005 | 0140 |

| 2050 | $2 e c 3$ |
| :--- | :--- |
| 0062 | 53 |
| 0053 | 0140 |

00633300148
$0064945 \mathrm{E} \quad 00630149$
006632
0067 94F？ 0060
0151
0152
0153
0154
$006923 \operatorname{cocc} 0000$
0156
0157
OC5C 70
OCSD 30
OC6E AO
006F 2140
00719455

$00 C 7$

*

3

```
SOFT
```

SOCRCE STATEMENT

3
LJOFO
LOOPI
$: P 1$

| 11 | ご250＂ |
| :---: | :---: |
| L． | 2．is |
| i： | ごECO＂ |
| i3 | 3．が |
| US | 3 |
| SNZ | L0091 |
| 55 | 2 |
| ⓃZ | 100 P |

$-$

$+$

ELS
OUTS 0
$\begin{array}{ll}\text { INS } & \text { n } \\ \text { NI } & \text { A. } 40^{\circ} \\ \text { SNZ } & \text { FP? }\end{array}$
-

- BEGIN MUTOMATIC THFESHOLE SETTING SECUENCE

| CLP | | ：！AX EIGITAL $\because I J E O$ |
| :--- | :--- | :--- |
| $L R$ | S．A | （：ITC）I：OIT：ALIVE |
| LR | T．A | TOESO |


```
-
```



```
* SAMPLE TIE RANGE 12旦 %2 540%:7% AN
* IAITIML STEP SIEE JF E4 AS こJG:NENTEE FOP
- THE SOFT:AFE Pac:ImGE. 'EJ=s3'.
-TJ SANPLE THE ENTIT:E DM\SE UT N (C :O lCE&)
```



```
    OOCS دCNG nrcF n245
    OOCS 2CNT OREF 0245 
    0247 ==-w**
```



```
    0€49 m=\pi==
    C250 =
0907 2A0181 0131 0251
OOCA 71
00C3 50
    OOC3 50 % % % % 0253
    NOCC 253653 3653 0254
    j0CF 2005 
    0002 20A4 0233
00C4 51 0259
0055 2000 0251
0007 35 0262
0263
0059 2500 0254
OOEE 342E CICA S266
DOCD 2003 0263
COCF 59 C259
DOEO 22C000 2000 0270
0271
    0272
00E3 20FE 0273
OOEE IF NE OOES
    0275
OOE6 G4FE OOES 0276
    90こコ 2020 0270
OOEA 35 0251
00E3 290000 0000 02S3
0255
005035 0287
00F0 35 0298
0CF1 2000 0290
00F3 39 0291
0054 290000 0000 0292
    0293
    0293
    0294
S0F7 20FO 0296
=
OOF7 1F % 0297
OOFA T4FE COF9
    0299
    0300
    0301
OOFC 2003 0302
205E 59 0303
COFF 230000 0000 G304
```



```
                            0E49 
```



```
    -C252
```



```
    IC: :as
LiS
GvA LI LINEL INITIALIEELLNE CTR
*
            LR O,N SC ISHISA 3YTE
LR l,A SI:S LOY SYTE
HENLN LG:S 5
NENLN ER A.8
* 32 3is05T
    0263 NLHARD LI HASELNJ ECNE BMU
=##*-CELAY*F#####
*
* L5 254 \becauseMi: 18 :5
O
OL1 I:NC 
#
\0E? 2c20 02R?
***EN& うE!A!****
*
```


Page 142

```
    llr
    llr
    llr
    llr
    llr
    llr
    llr
    llr
    0151 2500
    lll
015759
    0384
    0385
0153250000 0000 0385,
                                    0387
    0155 2056 0398
2153 2056 % 1F% 0389
    0!E5 74FE O150 0391
                        0392 *
    M 0393
    0:60 2037 0395
C15259 0396
2163 290000 0000
    0397
    0399
    0399
0166 290005 0005 0401 
    0166 29000S 000S }040
0159 0016 
0163 544852 0405
0178 544F20 0406
0181 0017 0407
0181 0017 
C174415420 0407
    0407
    0411 
    0412
    0381
```

NOEMCiHT L?

```
NOEMCiHT L?
HOEMC:IT
HOEMC:IT
50COCE STATごSEN:
50COCE STATごSEN:
\ AL O
\ AL O
    G,1 EHEGR 52, LAST LINE
    G,1 EHEGR 52, LAST LINE
JK
JK
JK FS OS 0
JK FS OS 0
2ONE
2ONE
CI A'00'
CI A'00'
#PRI&TER FINAL SECTION-0-0-0-0-0-0-0.0-0.0-0-0
#PRI&TER FINAL SECTION-0-0-0-0-0-0-0.0-0.0-0-0
*
*
```

4
INY OK
INY OK
INT
INT
A.O
A.O
2ONE
2ONE
0
0
JONE NMP NETLN
JONE NMP NETLN
A.g
A.g
LI HARECUT SENL ELT G:ID
LI HARECUT SENL ELT G:ID
LI HARECUT SENE EUT C:ID
LI HARECUT SENE EUT C:ID
3! MMITS
3! MMITS
=
=
******a**CEL{Y
******a**CEL{Y
-
-
0 *)
0 *)
C0l IL 246

```
C0l IL 246
```



```
*
```

*
- -
- -

CSL

```
CSL
```



```
*
```

*

L?
L?
8
8
*
*
*
*
0157 59
0379
0153 9412 0166 0379
0379
0380
0392
3N2 C2

```
3N2 C2
```



```
    0396
0166 290005 0005 04001
5
5
MSGI EC HiL2.0015'
MSGI EC HiL2.0015'
MSGI EC NiL2.0015'
MSGI EC NiL2.0015'
:% MA?:OFF SENJE PSSNTER JFF C:RL
:% MA?:OFF SENJE PSSNTER JFF C:RL
+
+
SK:PSOF JMP OUEP SUN PPOGRAM AGALN
SK:PSOF JMP OUEP SUN PPOGRAM AGALN
*
*
LT? 9.m
LT? 9.m
                                    C'THRESHOLD RESET .
                                    C'THRESHOLD RESET .
                                    G'TO ***'
                                    G'TO ***'
MSGZ CC HL2'CCI7.
```

MSGZ CC HL2'CCI7.

```


00 EpRS



Page 145

CC Eans


cOCO OCO：
0 CO 0003 0004 0005 0006 ccot co0s 0009 0010 0011 0012 0013 0014 0015 0017 0018 0019 CC2C 0021 00308022 20020023 30030024 00040025 coos 0025 00060027 00070023 000A 0C29 00CE 0n30 \(0 C 40\)

CC3 0033 0034 0035 0035 C037 0033 0039 0040
000077 000152

00022090
00042713
20C6 76 acol 2712
arct 45
Crnm cs
R．003 55
noce 2712
anrs 44
ars 17
001： 2713

CCIJ Er．4
く○1ミ ミミ
                                    50.3. 0

- tils ds pie next jeneraticn os oset

- datendee to 3e linkee oifa tie mai:
- Galling prograil je tia jlétioo-jpaical
- paúe schinive.
- initializing is accomplishee :N tia
- :gal: Calling poogram. stiating valle
- of : ANE STEP 5İE (5i) are Jetermine=
- at that TI:1E.

- cenugger fro: sseta, 21 uvi 32


－－1S ？IWITIALI？
*

            Jut \#ロ品

-
\begin{tabular}{|c|c|c|}
\hline \(\therefore\) & \(\therefore\) AnL & ミ：いフこ：ここ： \\
\hline － & STEF & －：ロミ530Li \({ }^{\text {a }}\) \\
\hline is & ： 3 －in & －nL \\
\hline 2：T & 31E． & \\
\hline L & m \(\because:\) & ミマミ \\
\hline
\end{tabular}


Page 148


Page 149

```

EPaS LJC gajEct n=en Live

| 0073 | 43 | 0134 |
| :--- | :--- | :--- |
| 0074 | 12 | 0185 |
| 6075 | 12 | 0186 |
| 0675 | 53 | 0137 |
| 0077 | 16 | 0188 |
| | | 0199 |
| | 0190 | |
| | 0191 | |
| | | 0192 |

60 Eap.3

```

THE INEIVIDLAL SOFTMANE : YOLLLES THAT FOPM •EOPS.-.
```

LI:NK I CLEAR ORG C NAIN4.10:1
LINK I FSTLN.10:1
LINK 1 ENDLF,IO:1
LINK 1 XMIES.10:1
LINK I OSET .10:I
ASS E: ET:

```
LINKIIN INFOPMATION FOR •EUPSー＇
戸こアンはLLAT ご LOADER
SYMBOL AELR
\(\therefore\) OIN4 OOCO
：IEXT ALDR：O19A OCCC
CNEEF SYM：
ENDLN FSTLN X：AITS QSET

\section*{FOPMULATOP LOADER}
S：MBOL ADDR
FSTLN O19A
NEXT ADER：OIAC 0000
：OLEF SYM：
ENELN XMITS QSET
FOEALLATOR LOADEF
SY：MBOL ADDR
ENDLN OIAC
UE：＜T ALDR：O1DO 0000
UNDEF SYM：
YIITS DSET
FORMULATOS LJADER
SYMBOL ADCR
XMITS OILO
NEXT ADDR：01ED 0000
UNEEF SYM：
OSET
FORMULATOR LOADER
SY：ABOL ADC？
C．ラET OICD
NEXT ADDE：C255 CCOO
DNEET GYM：

\section*{APPENDIX C}

\section*{COMPUTER SIMULATIONS}

These simulations use the APL programs QSET1 and QSET2 on the following page to emulate the flowchart of Figure 5.5. The VTC data used in the simulations were taken with the scanner and F8 under operational conditions as noted in Table C.1. Therefore the simulated performance accurately represents the actual behavior of QSET when implemented with the FB and incorporated with the normal page-scanning sequence.

A few details deserve special attention as one examines these simulations. First, the smallest step size of QSET1 is S4 \(=2\) whereas the smallest step size of QSET2 is S4 = 1. In other words, QSET1 is fundamentally limited to only being able to pinpoint \(N p\) (the value of \(N\) producing the peak of the VTC curve, MTC) within an error of one millivolt. For this reason, errors of one millivolt with QSETI are ignored when comparing QSET1 to QSET2 in Table C.3. Next, errors in the value of \(N\) are signed. If QSET produced an \(N\)-value less than the actual value of \(N p\), then the error is negative (^), and if the QSET result is greater than the actual value of Np, then the error is positive. However, it is more significant to ignore the sign and evaluate the MAGNITUDE of the QSET error since this will reveal information on how far QSET "misses" the actual VTC peak, or equivalently, how far from optimum the threshold will be set due to sampling error. Finally it is important to understand that the QSET algorithm was designed to find the peak of a relatively
smooth discrete curve with only one obvious maximum. But some of the data sets used in the simulations have much different characteristics, and it is instructive to note the behavior of the QSET algorithm in these situations.

The VTC data sets can be grouped into three general categories: (I) data sets using ECP A under normal conditions; (II) data sets using ECP A under abnormal conditions; and (III) data sets using other ECPs under normal conditions. Table C. 2 lists the data sets belonging to each group, and Table c. 3 summarizes the results of the simulation data. Although the data base is relatively small due to time constraints in this research, a few significant trends can still be identified. Notice first that the performance of both QSET1 and QSET2 are identical for Category I data sets. Looking at the individual simulations reveals that the same errors occurred mainly due to similar multiples in the samples taken. Also, the largest error occurred with data set \(A 6232\) which had an abnormal shape. And in general, it is important to realize that sampling errors are a product of the uncertainty in the VTC curve itself.

The performance with Category II data is a perfect example of the problem discussed in Chapter 5 concerning the occasion when the range of significant VTC information (RV) is smaller than the initial step size (S1). By examining the QSET1 simulations with data sets A606A and A606D, it can be seen that the algorithm will "freeze" on the initial sample because no significant VTC data is ever encountered. Recall however that

QSET2 was designed to overcome this specific problem, and as noted in the simulation results, its performance is excellent. QSET evaluations with Category III data sets are more for example of the dependence of the algorithm on a properly shaped VTC curve. As discussed in Chapter 3, the CALIBRATION PATTERN must produce a VTC curve whose peak is at the value of N giving the optimum resolution in the scanner's output. While both algorithms faithfully locate the peaks in data sets B6062, C6062, and D6062, remember that these data sets are generated from constant-frequency ECPs that give erroneous VTC maximums. The large sampling errors occurring with data sets E6062 and F6062 are due to the significant ambiguities present in these VTC curves. Therefore it can be seen that ATC performance in general will be extremely unpredictable when scanning anything other than the proper CALIBRATION PATTERN.

TABLE C. 1
VIDEO TRANSITION COUNT
DATA SETS

DATA CODE KEY:
First character:
Second character:
Third and fourth character: Fifth character:
Indicates ECP used
Indicates month data taken
Indicates day data taken
Indicates run on given day

DATA CODE
REMARKS

A5261
A6061
A6062
B6062
C6062
D6062
E6062
F6062
A6063
A6064
A6066
A606A
A606D
A 6071
A6072
A6073
A6074
A6075
A6231
A6232
A6233

Old green fluorescents used
Old soft white fluorescents used Old cool white fluorescents used Old warm white fluorescents used Only one warm white fluorescent used Old cool white fluorescents used; Yellow paper used as background Old cool white fluorescents used; Red paper used as background Old cool white fluorescents used; Navy blue paper used as background Old cool white fluorescents used Same conditions as A6071; 5 minutes later Same conditions as A6072; 5 minutes later Same conditions as A6073; 5 minutes later Same conditions as A6074; 5 minutes later New green fluorescents used New cool white fluorescents used New warm white fluorescents used

TABLE C. 2
DATA SET GROUPINGS
Category I
Category II
Category III
\begin{tabular}{lll} 
A5261 & A6064 & B6062 \\
A6061 & A6066 & C6062 \\
A6062 & A606A & D6062 \\
A6063 & A606D & E6062 \\
A6071 & & F6062 \\
A6072 & &
\end{tabular}

TABLE C. 3
STATISTICAL SUMMARY OF QSET PERFORMANCE
\begin{tabular}{|c|c|c|c|}
\hline & CAT I & CAT II & CAT III \\
\hline Occurrences of Errors with QSETI (> 1 millivolt) & 25\% & 50\% & 40\% \\
\hline Occurrences of Errors with QSET2 (> 0 millivolt) & 25\% & \(0 \%\) & 40\% \\
\hline Expected Value of Error with QSET1 (mV) & 3.25 & 92.0 & 24.4 \\
\hline Standard Deviation of Error with QSETI (mV) & 7.62 & 106.3 & 35.3 \\
\hline Expected Value of Error with QSET2 (mV) & 3.25 & 0.0 & 22.2 \\
\hline Standard Deviation of Error with QSET2 (mV) & 7.62 & 0.0 & 35.7 \\
\hline
\end{tabular}
```

\#\&ET!ED\%

```
\[
\vartheta
\]
A马．

E：：\(\quad(1024-A(F \% 17+1)\)


\[
\because \quad \therefore \quad(1, y) p E 1
\]\(\because\)
\[
\because \because \quad(-1, y) \rho 0
\]
\[
\because \because 1, E 2
\]
\[
\therefore \leqslant \text { a } \mathbb{E} 1] E
\]
ค2．！ 0
\(\cdots \cdot{ }^{-1}\)  ..... 0
STシF \＆ 120

－e：
"99.
!30.
!




「こぁ
\(\because \square\) \& !


А.


ㅍ..
:1. 3


\(\therefore\) ○
…
…
\&. . ] ، - !
…: :
! O . \(\because\) … \(\quad\) ! !
\(\because . \quad \because \quad .1, \cdot!\)
\(\therefore \therefore . . .\).
... :.. : ?
i.



QSET2 A5261

ACCORDING TO GSET?. THE THRESHOLD UALUF FRODUCINT. THE FEAK OF THE UTC: CURUE IS \(\mathrm{N}=354\)

ACTUAL UTC FEAK OCRUFRED AT \(N=354\) ERFOR FFOM CORFECT \(N\) IS: 0


Page 160
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{GSET1 A6061} & \multicolumn{2}{|l|}{QSET2 A6061} \\
\hline & ---PASS 1 & & --F'ASS \\
\hline \(N\) & UTC & N & UTE \\
\hline 128 & 1 & 192 & 1 \\
\hline 256 & 1 & 256 & 1 \\
\hline 384 & 113 & 320 & 6 \\
\hline 512 & 121 & 384 & 113 \\
\hline 640 & 0 & 443 & 176 \\
\hline 788 & 0 & 512 & 121 \\
\hline 896 & 0 & 576 & 39 \\
\hline --- & ---FASS 2 & ---- & --FASS 2 \\
\hline \(N\) & UTC & \(N\) & UTE: \\
\hline 416 & 157 & 400 & 140 \\
\hline 448 & 176 & 416 & 157 \\
\hline 480 & 149 & 432 & 187 \\
\hline 512 & 121 & 449 & 17\%, \\
\hline 544 & 67 & \(46^{\circ}\) & 16. \\
\hline 50.3 & 39 & 48 c & \(14 \%\) \\
\hline \(\sin\) & 0 & 496 & 144 \\
\hline -- & ---FASS 3 & ---- & ---AS: \% \\
\hline N & UTC & \(N\) & UTE \\
\hline 424 & 180 & 420 & 168 \\
\hline 432 & : 37 & 424 & 180 \\
\hline 440 & 183 & 428 & 179 \\
\hline 448 & 176 & 432 & 187 \\
\hline 456 & 172 & 436 & 177 \\
\hline 484 & 161 & 440 & 183 \\
\hline \(0 \rightarrow 2\) & 154 & 444 & 185 \\
\hline - & ---FASS 4 & ---- & ---FASS 4 \\
\hline \(N\) & UTC. & N & VTC. \\
\hline 423 & 178 & 429 & 184 \\
\hline 428 & 179 & 430 & 200 \\
\hline 430 & 200 & 431 & 185 \\
\hline 432 & 187 & 432 & 187 \\
\hline 434 & 180 & 433 & 185 \\
\hline 436 & 177 & 434 & 180 \\
\hline 438 & 181 & 435 & 181 \\
\hline
\end{tabular}

ACCORDTNG to asety, the
THRESHOLD VALUE PRODUCING THE PEAK OF THE UTC CUR'JE IS \(N=430\)

ACTUAL UTC FEAK OCCURRED AT \(N=430\) ERROR FROM CORRECT N IS: O

QSET2 A6061

N UTE
n UTI
\(400 \quad 140\)
\(416 \quad 157\)
187
449 17!
161
49 \& 144

N UTO
420168
\(424 \quad 180\)
\(428 \quad 179\)
432187
177
444165

N UTC:
429184
20
185
\(433 \quad 185\)
435181
accofoing to dset: the THRESHOLD VALUE FFDCUCING the feak of the utr curve is \(N=430\)

ACTUAL UTC PEGK OCCURRED AT \(N=430\)
error from corfect n is: o


Page 162

RSET1 A6062
\begin{tabular}{|c|c|}
\hline N & UTC \\
\hline 128 & 1 \\
\hline 256. & 1 \\
\hline 384 & 130 \\
\hline 512 & 117 \\
\hline 640 & 0 \\
\hline 7.58 & 0 \\
\hline 896 & 0 \\
\hline
\end{tabular}

N UTC
\begin{tabular}{rr}
238 & 1 \\
320 & 24 \\
352 & 82 \\
394 & 170 \\
416 & 197 \\
448 & 192 \\
480 & 150
\end{tabular}

3
\begin{tabular}{cc}
13 & UTC \\
372 & 139 \\
4110 & 152 \\
409 & 194 \\
416 & 197 \\
424 & 197 \\
432 & 185 \\
440 & 182
\end{tabular}

N UTC
\(410 \quad 197\)
41： 198
41.4194

416197
413206
4202.07

422204
```

QSET2 A60S2

```
--ーーーー-ー--FFISS 1

N VTE
\begin{tabular}{rr}
192 & 1 \\
256 & 1 \\
320 & 24 \\
384 & 130 \\
448 & 182 \\
512 & 117 \\
576 & 2
\end{tabular} F．ASS～．

N UTC
\(400 \quad 152\)
416197
432185
448182
464 16？
\(480 \quad 150\)
996 13 F
－－－－－－－－－－－FifS z
N UTC
404 162
408184
412198
416197
\(420 \quad 207\)
424197
\(42 \mathrm{E} \quad 192\)

N UTC
417197
418206
419208
\(420 \quad 207\)
\(421 \quad 205\)
422204
423197
according to gseta．the THRESHOLD VALUE FFODUCING
THE FEAK DF THE UTC CURVE IS \(N=41{ }^{\circ}\)
ACTUAL UTC FEAK OCCURFED AT \(N=919\)
ERROR FROM CORFECT \(N\) IS： 0


Page 164

QSET1 A6063
\begin{tabular}{|c|c|}
\hline \(N\) & UTC \\
\hline 128 & 1 \\
\hline 256 & 1 \\
\hline 384 & 168 \\
\hline 512 & 53 \\
\hline 640 & 0 \\
\hline 768 & 0 \\
\hline 896 & 0 \\
\hline
\end{tabular}

N UTE
\begin{tabular}{lr}
288 & 1 \\
320 & 45 \\
352 & 109 \\
384 & 168 \\
416 & 184 \\
448 & 153 \\
420 & 117
\end{tabular}
-----------FPASS
N UTC
392193
\(400 \quad 192\)
408205
\(416 \quad 184\)
424168
432166
440161

N UTC
\begin{tabular}{ll}
402 & 204 \\
404 & 202 \\
406 & 197 \\
408 & 205 \\
410 & 200 \\
412 & 207 \\
414 & 188
\end{tabular}
accardting to aseti, the
THRESHOLD VALUE PRODUCING THE PEAK OF THE UTC CURUE IS \(N=412\)

ACTUAL UTC FEAK OCCURRED AT \(N=407\)
ERROR FROM CORRECT N IS: 5

\section*{QSET2 A6063}
\begin{tabular}{cr} 
N & UTC \\
192 & 1 \\
256 & 1 \\
320 & 45 \\
384 & 168 \\
448 & 153 \\
512 & 53 \\
576 & 0
\end{tabular}

N UTC
\(336 \quad 85\)
352109
369131
384 158
\(400 \quad 192\)
41504
432 1,s6
Fass
N ute
383178
\(392 \quad 103\)
35.5202

400192
404202
408205
\(412 \quad 207\)

N UTC.
409198
410200
411189
412207
413189
414188
415183

ACCORDING TO QSET?, THE
THRESHOL.D VALUE FFRODUCING
THE FEAK OF THE UTC CUFUE IS \(N=41 \%\)
ACTUAL UTC PEAK OCCURFED AT \(N=407\)
ERROR FROM CORFECT N TS: s


Page 156

        PASS 1

GSET2 A6064
－－－－－－－－－－PASS 1
N UTC
\begin{tabular}{rr}
192 & 1 \\
256 & 1 \\
320 & 157 \\
384 & 35 \\
448 & 0 \\
512 & 0 \\
576 & 0
\end{tabular}
－－ー－ー－ー－－－\({ }^{\prime} A S \subseteq 2\)
N UTC．
2721
\(\begin{array}{lr}288 & 1 \\ 304 & 74\end{array}\)
\(320 \quad 157\)
336 2п5
352164
368110

N UTC
324149
328174
332179
336206
\(340 \quad 202\)
\(344 \quad 187\)
348175
ASS 4
N UTC．
333192
334198
335192
336206
337198
338211
339203

ACCOROING TO QSETZ，THE
THRESHOLD UALUE FRODUCING THE PEAK OF THE UTC CURVE IS \(N=330\)

ACTUAL UTC FEAK OCCURRED AT \(N=338\)
ERROR FROM CORFECT N IS：O

```

 QSET1 A606O
 ----------FASS 1
N UTC

| 129 | 1 |
| :--- | ---: |
| 256 | 1 |
| 384 | 154 |
| 512 | 1 |
| 640 | 0 |
| 748 | 0 |
| 896 | 0 |

 pASS 2
 N UTC
 | 288 | 1 |
| ---: | ---: |
| 320 | 63 |
| 352 | 179 |
| 384 | 154 |
| 416 | 119 |
| 448 | 87 |
| 480 | 16 |3

H UTC

| 328 | 103 |
| :--- | :--- |
| 326 | 135 |
| 344 | 175 |
| 352 | 179 |
| 360 | 177 |
| 368 | 164 |
| 376 | 162 |

4
N UTC
$346 \quad 167$
$348 \quad 174$
350177
352179
354180
356173
358172
ACCORDING TO QSET1，THE THRESHOLD VALUE PRODUCING THE PEAK．DF THE VTC CURVE IS $N=354$
ACTUAL UTC FEAK OCCURRED AT $N=353$
ERROR FFROM CORRECT N IS： 1

```

QSET2 A6066
－－－－－－－－－－－F＇ASS 1
N UTC
\begin{tabular}{rr}
192 & 1 \\
256 & 1 \\
320 & 63 \\
384 & 154 \\
448 & 87 \\
512 & 1 \\
576 & 0
\end{tabular}

N UTC
\(336 \quad 135\)
352179
368164
\(394 \quad 1.54\)
400147
410117
422105
－－－ー－ー－ー－FiASS－

N UTI：
341159
344 175
\(349 \quad 179\)
352179
356173
360177
364169
F．ASS i
N UTC
\(349 \quad 171\)
350177
351166
352 179
\(353 \quad 185\)
354180
355 179

ACCORDING TO GSETZ，THE
THRESHOLD YALUE FRODUCING
THE FEAK OF THE UTC CURUE IS \(N=353\)
ACTUAL UTC PEAK OCCUFFIID AT \(N=35.3\)
ERROR FROM CORFECT N IS： 0


QSET1 AGOBA

\[
\begin{array}{rr}
\text { N } & \text { UTC } \\
32 & 1 \\
64 & 1 \\
96 & 1 \\
128 & 1 \\
160 & 1 \\
192 & 1 \\
224 & 1
\end{array}
\]

N UTC.
\begin{tabular}{ll}
104 & 1 \\
112 & 1 \\
\(12 n\) & 1 \\
128 & 1 \\
136 & 1 \\
144 & 1 \\
152 & 1 \\
- & \\
- &
\end{tabular}

N UTC.
\begin{tabular}{ll}
122 & 1 \\
124 & 1 \\
126 & 1 \\
128 & 1 \\
130 & 1 \\
132 & 1 \\
134 & 1
\end{tabular}

ACCORDING TO RSETI, THE
THRESHOLD VALUE PRODUCING THE FEAK OF THE UTC CURVE IS \(N=128\)
ACTUAL UTC PEAK OCCURRED AT \(N=318\)
ERROR FROM CORRECT N IS: ^190
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{QSET2 AGDGA} \\
\hline \(N\) & UTC & \\
\hline 192 & 1 & \\
\hline 256 & 1 & \\
\hline 320 & 188 & \\
\hline 384 & 0 & \\
\hline 448 & 0 & \\
\hline 512 & 0 & \\
\hline 576 & 0 & \\
\hline \(N\) & UTC & \\
\hline 272 & 1 & \\
\hline 288 & 1 & \\
\hline 304 & 54 & \\
\hline 320 & 188 & \\
\hline 336 & 131 & \\
\hline 352 & 58 & \\
\hline 368 & 1. & \\
\hline \(N\) & UTC. & \\
\hline 308 & 109 & \\
\hline 312 & 171 & \\
\hline 316 & 194 & \\
\hline 320 & 188 & \\
\hline 324 & 183 & \\
\hline 328 & 147 & \\
\hline 332 & 152 & \\
\hline \(N\) & UTC & \\
\hline 313 & 192 & \\
\hline 314 & 198 & \\
\hline 315 & 173 & \\
\hline 316 & 194 & \\
\hline 317 & 194 & \\
\hline 318 & 199 & \\
\hline 319 & 192 & \\
\hline
\end{tabular}
according to asetz, the
THFESHOLD UALUE FROCUCINC
THE FEAK OF THE UTC CURVE IS \(\mathrm{N}=31 \mathrm{~g}\)
ACTUAL UTC FEAK OCCURRED AT \(N=310 ;\)
ERROR FROM CORFECT N IS: O

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{USETI A606D} & \multicolumn{2}{|r|}{QSET2 AGOOD} \\
\hline - & ---PASS 1 & - & --FASS 1 \\
\hline \(N\) & UTC & \(N\) & UTC \\
\hline 129 & 1 & 192 & 1 \\
\hline 256 & 1 & 256 & 1 \\
\hline 384 & 0 & 320 & 145 \\
\hline 512 & 0 & 384 & 0 \\
\hline 640 & 0 & 448 & 0 \\
\hline 738 & 0 & 512 & 0 \\
\hline 890 & 0 & 576 & 0 \\
\hline -- & ---PASS 2 & -- & --FASS \\
\hline H & UTS. & \(N\) & UTE \\
\hline 32 & 1 & 272 & 1 \\
\hline 64 & 1 & 288 & 1 \\
\hline 93 & 1 & 304 & 2.8 \\
\hline 128 & 1 & 320 & 145 \\
\hline 1.50 & 1 & 336 & 25 \\
\hline 192 & & 352 & 1 \\
\hline 224 & 1 & 368 & 0 \\
\hline - & --fass 3 & & ---FAES \\
\hline \(N\) & urc. & \(N\) & UTC \\
\hline 104 & 1 & 292 & 3 \\
\hline 112 & 1 & 296 & 22 \\
\hline 120 & 1 & 300 & 97 \\
\hline 128 & 1 & 304 & 218 \\
\hline 136 & 1 & 308 & 200 \\
\hline 144 & 1 & 312 & 155 \\
\hline 152 & 1 & 316 & 182 \\
\hline - & --FASS 4 & & ---fass 4 \\
\hline \(N\) & VTC & N & UTC \\
\hline 122 & 1 & 301 & 146 \\
\hline 124 & 1 & 302 & 190 \\
\hline 126 & 1 & 303 & 185 \\
\hline 123 & 1 & 304 & 218 \\
\hline 130 & 1 & 305 & 198 \\
\hline 132 & 1 & 306 & 231 \\
\hline 134 & 1 & 307 & 217 \\
\hline
\end{tabular}

ACCOFDING TO OSET1, THE THRESHOLD VALUE PRODUCING THE FEAK OF THE UTC CURUE IS \(N=128\) ACTUAL UTC. FEAK OCCURRED AT \(N=306\) ERROR FROM CORRECT \(N\) IS: ^178

QSET2 A60:D

N UTC

N UTC

N UTC
\(\begin{array}{rr}292 & 3 \\ 296 & 25 \\ 300 & 97 \\ 304 & 218 \\ 308 & 200 \\ 312 & 155 \\ 316 & 182\end{array}\)

N UTC
301146
302190
303185
\(\begin{array}{ll}304 & 218 \\ 305 & 198\end{array}\)
306231
307217

ACCORDING TO OSET:2, THE
THRESHOLO VALUE FRODUCING
the feak of the utc cifive is \(N=306\)
ACTUAL UTC FEEAK OCCURFED AT \(N=306\)
ERROR FFOM CORFECT \(N\) IS: 0


QSET1 A6071
-PASS 1
\[
\begin{array}{cr}
N & U T C \\
128 & 1 \\
256 & 1 \\
384 & 120 \\
512 & 41 \\
640 & 0 \\
768 & 0 \\
896 & 0
\end{array}
\]
----------FASS 2
N UTC
\begin{tabular}{rr}
288 & 1 \\
320 & 4 \\
352 & 67 \\
384 & 120 \\
416 & 199 \\
448 & 157 \\
480 & 101
\end{tabular}
\begin{tabular}{cc}
\(N\) & \(U T C\) \\
392 & 144 \\
400 & 179 \\
408 & 193 \\
416 & 199 \\
424 & 190 \\
432 & 176 \\
440 & 163
\end{tabular}

FASS 4
N UTC
\(410 \quad 204\)
412204
414208
416199
\(418 \quad 204\)
420200
422187

ACCORDIMG TO QSET1, THE
threshold value producing THE FEAKK OF THE UTC CURVE IS \(N=414\) ACTUAL UTC FEAK IICCURRED AT \(N=414\) ERROR FROM CORRECT N IS: O

QSETE A6071
----------FFASS 1
N UTC
\begin{tabular}{rr}
192 & 1 \\
256 & 1 \\
320 & 4 \\
384 & 120 \\
448 & 157 \\
512 & 41 \\
576 & 0
\end{tabular}

ASS 2
N UTC.
\(400 \quad 179\)
416199
432176
\(448 \quad 157\)
464132
480101
\(496 \quad 75\)
---------- F•ASS

N UTC.
404190
408193
\(412 \quad 204\)
416199
420200
424190
428182

N UTC
404202
410204
411206
412204
413203
414208
415198

ACCORDING TO ISET2, THE
THRESHOLD UALUE FFRODUCING
THE F'EAK OF THE UTC CURVE IS \(N=: 14\)
ACTUAL UTC FEAK DCCUFFED AT \(N=2: 4\)
ERROR FROM CORFECT N IS: 0


Page 176


QSET QSET2 Ao072

N UTC.

N ure.
404196
403199
412186
416191
\(420 \quad 179\)
424180 176

N VTC
405198
406201
407198
408199
410192
411191

ACCORDING TO QSETZ, THE
THRESHOLD UALUE FRODUCING,
THE FEAK OF THE UTE CURVE IS \(N=406\)

ERROR FROM COFFECT N IS: Q


QSET1 A6073
\begin{tabular}{cr} 
& \\
\(N\) & UTC \\
128 & 1 \\
256 & 1 \\
384 & 169 \\
512 & 7 \\
640 & 0 \\
768 & 0 \\
396 & 0
\end{tabular}
----------FASS 2
\begin{tabular}{cr} 
N & UTC \\
& \\
288 & 2 \\
320 & 6 \\
352 & 87 \\
384 & 169 \\
416 & 185 \\
448 & 140 \\
486 & 75 \\
-2
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(N\) & UTC \\
\hline 392 & 196 \\
\hline 400 & 197 \\
\hline 408 & 197 \\
\hline 416 & 185 \\
\hline 424 & 170 \\
\hline 432 & 154 \\
\hline 440 & 149 \\
\hline
\end{tabular}

N UTC
\(394 \quad 192\)
\(396 \quad 195\)
398189
400197
402196
404194
406192

QSET2 A6073
PASS :
N UTC
\begin{tabular}{rr}
192 & 1 \\
256 & 1 \\
320 & 6 \\
384 & 169 \\
448 & 140 \\
512 & 7 \\
576 & 0
\end{tabular}

FASS \(=\)
N UTE.
\(336 \quad 68\)
\(352 \quad 87\)
368123
384149
400197
416185

FASS 3

N UTC
383193
39 2 106
\(396 \quad 195\)
400197
404194
408197
412184
FASS
N vic.
397
398189
399192
400197
401199
402196
403196

ACCORDING TO QSET1. THE THRESHDLD UALUE PRODUCING THE FEAK OF THE UTC CURVE IS \(N=400\)

ACTUAL UTC FEAK OCCURRED AT \(N=401\)
ERROK FROM.CORRECT N IS: ^1

ACCORDING TO RSET?, THE THRESHOLD UALUE FFODUCING
THE FEAK OF THE UTC CURUE IS \(\mathrm{N}=401\)
ACTUAL UTC FEAK: OCCURRED AT \(N=401\)
ERROR FROM CORRECT \(N\) IS: 0


\section*{QSET1 A6074}

\section*{PASS 1}



\section*{QSETI A607S}

PASS 1
\begin{tabular}{|c|c|}
\hline \(N\) & UTC \\
\hline 128 & 1 \\
\hline 256 & 1 \\
\hline 384 & 147 \\
\hline 512 & 41 \\
\hline 640 & 0 \\
\hline 768 & 0 \\
\hline 896 & 0 \\
\hline
\end{tabular}
\begin{tabular}{rr}
\(N\) & UTC \\
283 & 3 \\
320 & 7 \\
352 & 81 \\
384 & 147 \\
416 & 190 \\
448 & 146 \\
480 & 101
\end{tabular}

3
N UTC
392192
400190
403191
\(416 \quad 190\)
\(424 \quad 177\)
432173
440153
----------PASS 4
N UTC
402202
404204
406197
408191
410203
412202
414196
according to aseti, the THRESHOLD UALUE PRODUEING THE FEAK OF THE UTC CURUE IS \(N=404\) ACTUAL UTC PEAK OCCLRRED AT \(N=403\) ERROR FROM CORRECT N IS: 1

QSET2 A6075
FASS 1
N UTC
\begin{tabular}{rr}
192 & 1 \\
256 & 1 \\
320 & 7 \\
384 & 147 \\
448 & 146 \\
512 & 41 \\
576 & 0
\end{tabular}
----------FFiSS Z
N UTC
33663
35281
\(368 \quad 115\)
384147
\(400 \quad 190\)
\(416 \quad 190\)
\(432 \quad 173\)
---------FPASS 3
N UTC
388 1.61
\(392 \quad 1.82\)
396190
400190
404204
408191
412202

N UTC
401197
402202
403208
404204
405194
406197
407195

ACCORDING TO GSET2. THE THRESHOLD UAL.UE FFRODUCING THE FEAK OF THE UTC CURVE IS \(N=403\)

ACTUAL UTC FEAK OCCIJRRED AT \(N=403\)
ERROR FFOM C:ORRECT N IS: 0



OSET1 86062

UTC

UTC

1 C6062N UTC
\(\begin{array}{rr}128 & 1 \\ 256 & 1 \\ 384 & 210 \\ 512 & 58 \\ 640 & 0 \\ 768 & 0 \\ 896 & 0\end{array}\)
2
---------- FASS .22721
2881
1
97304
320
320336220352 212\(368 \quad 213\)3
N UTC.
\begin{tabular}{ll}
308 & 194 \\
312 & 219 \\
316 & 261 \\
320 & 255 \\
324 & 243 \\
328 & 242 \\
332 & 234
\end{tabular}
-----ー-----FASS 4
N UTE
313226
\(314 \quad 231\)
315240
316261
317255
318259
319245

ACCORDING TO RSET2, THE
THRESHOLD VALUE FRODUCING THE FEAK OF THE UTC CURVE IS \(N=31 \circ\) ACTUAL UTC FEAK OCCUFRED AT \(N=316\) ERROR FFOM CORFECT N IS: 0


Page 188
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{QSET1 06062} & \multicolumn{2}{|l|}{QSET2 06062} \\
\hline -- & ---PASS 1 & ---- & ---FASS 1 \\
\hline \(N\) & UTC & \(N\) & UTC \\
\hline 128 & 1 & 192 & 1 \\
\hline 256 & 1 & 256 & 1 \\
\hline 384 & 43 & 320 & 53 \\
\hline 512 & 58 & 384 & 43 \\
\hline 640 & 0 & 449 & 46 \\
\hline 768 & 0 & 512 & 58 \\
\hline 896 & 0 & 576 & 0 \\
\hline \multicolumn{4}{|l|}{---ー-----FASS 2 - --------MFASS} \\
\hline \(N\) & VTC & \(N\) & UTC \\
\hline 416 & 46 & 464 & 58 \\
\hline 448 & 46 & 480 & 49 \\
\hline 480 & 49 & 496 & 50 \\
\hline 512 & 58 & 512 & 58 \\
\hline 544 & 0 & 528 & 46 \\
\hline 576 & 0 & 544 & 0 \\
\hline 608 & 0 & 560 & 0 \\
\hline \multicolumn{4}{|l|}{-------F'ASS 3 ----------FASS 3} \\
\hline \(N\) & UTC & \(N\) & UTS: \\
\hline 482 & 51 & 500 & 46 \\
\hline 496 & 50 & 504 & 53 \\
\hline 504 & 53 & 508 & 51 \\
\hline 512 & 58 & 512 & 58 \\
\hline 520 & 60 & 516 & 57 \\
\hline 528 & 46 & 520 & 60 \\
\hline 536 & 31 & 524 & 80 \\
\hline \multicolumn{4}{|l|}{----------FASS 4 - -----------ASS 4} \\
\hline \(N\) & UTC & \(N\) & UTC \\
\hline 514 & 45 & 521 & 65 \\
\hline 516 & 57 & 522 & 72 \\
\hline 518 & 71 & 523 & 75 \\
\hline 520 & 60 & 524 & 80 \\
\hline 522 & 72 & 525 & 55 \\
\hline 524 & 80 & 526 & 53 \\
\hline 526 & 53 & 527 & 49 \\
\hline
\end{tabular}

ACCORDING TO QSETI. THE
THRESHOLD UALUE PRODUCING THE FEAK OF THE UTC CURVE IS \(N=524\)

ACTUAL UTC FEAK OCCURRED AT \(N=524\)
EFFOR FROM CORFECT N IS: 0

QSET2 06062

N UTC

N UTC

46458
48049
49650
512.58

544 0
\(560 \quad 0\)

N UT:

50046

08
\(512 \quad 58\)
516 57
\(\begin{array}{ll}520 & 60 \\ 524 & 80\end{array}\)
ASS 4

21
523
52480
\(525 \quad 55\)
52749

ACCORDING TO QSET?, THE THFEESHOLD UALUE FFF:CDUCING THE FEAK: OF THE UTC CUFVE IS \(N=524\)

ACTUAL UTC FEAK OCCURFED AT \(N=524\)
ERROR FFOM COFFECT N IS: 0



```

OSET1 E6062
----------PA88 1
N UTC
128
---------PAS8 2

| N | UTC |
| :---: | :---: |
| 416 | 86 |
| 448 | 90 |
| 480 | 86 |
| 512 | 94 |
| 544 | 79 |
| 576 | 28 |
| 608 | 0 |

PASS 3

| N | UTC |
| :---: | :---: |
| 488 | 91 |
| 496 | 86 |
| 504 | 83 |
| 512 | 94 |
| 520 | 82 |
| 528 | 84 |
| 536 | 90 |
| | --PASS |
| N | UTC |
| 506 | 95 |
| 508 | 87 |
| 510 | 86 |
| 512 | 94 |
| 514 | 85 |
| 516 | 84 |
| 518 | 83 |

```

ACCORDING TO ASETI, THE
THRESHOLD UALUE PRODUEING THE PEAK OF THE UTC CURUE IS \(N=506\)

ACTUAL UTC PEAK OCCURRED AT \(N=429\)
ERROR FROM CORRECT N IS: 77

QSET2 E6062
-PASS 1
N UTC
1921
256 1
\(320 \quad 17\)
38483
\(448 \quad 90\)
51294
57628

M UTC
\begin{tabular}{ll}
464 & 86 \\
480 & 86 \\
496 & 86 \\
512 & 94 \\
528 & 84 \\
544 & 79 \\
560 & 83
\end{tabular}
----n------FASS 3
\begin{tabular}{cc}
\(N\) & UTC \\
500 & 90 \\
504 & 83 \\
508 & 87 \\
512 & 94 \\
516 & 84 \\
320 & 82 \\
524 & 79 \\
& \\
\hline- - & \\
\hline
\end{tabular}

N UTC
\begin{tabular}{ll}
509 & 88 \\
510 & 86 \\
511 & 97 \\
512 & 94 \\
513 & 88 \\
514 & 85 \\
515 & 87
\end{tabular}

ACCORDING TO GSETZ, THE THRESHOLD VALUE FRODUCING THE PEAK OF THE UTC CURVE IS \(N=511\)

ACTUAL UTC FEAK OCCURRED AT \(N=429\)
ERROR FROM CORRECT N IS: 82




Page 194


QSET1 A6231 --PASS 1

1
1
155
129
0
0
0
PASS 2
UTC
\(\begin{array}{rr}288 & 1 \\ 320 & 52 \\ 352 & 102 \\ 384 & 155 \\ 416 & 195 \\ 448 & 170 \\ 480 & 146\end{array}\)
-PASS 3
N UTC
392169
401186
416195
424195
432186

Pass 4
N UTC

ACCORDING TO QSET1, THE THRESHOLD UALUE PRODUCING THE PEAK OF THE UTC CURVE IS \(N=920\) ACTUAL UTC PEAK OCCURRED AT \(N=420\)

ERROR FROM CORRECT N IS: 0

OSET2 A6231

N UTC
1921
\(\begin{array}{lr}256 & 1 \\ 320 & 52\end{array}\)
384155
\(\begin{array}{ll}448 & 170 \\ 512 & 129\end{array}\)
4

N UTC
400186
416195
432186
464163
480146
496151

N UTE
404192
408193
412189
420198
424195
----------PASS 4
N UTC
417192
118197
420198
421195
422194

ACCORDING TO QSET2, THE THRESHOLD VALUE PRODUCING THE PEAK OF THE UTC CURVE IS \(N=420\)

ACTUAL UTC PEAK OCCURRED AT \(N=420\)
ERROR FROM CORRECT \(N\) IS: 0


GEET1 A6232


N UTE
\begin{tabular}{rr}
127 & 1 \\
236 & 1 \\
324 & 153 \\
312 & 181 \\
640 & 0 \\
760 & 0 \\
88 & 0
\end{tabular}


N VTC
\begin{tabular}{rr}
288 & 1 \\
320 & 46 \\
352 & 91 \\
384 & 153 \\
416 & 178 \\
448 & 169 \\
480 & 153
\end{tabular}

PAS8 3
\begin{tabular}{cc}
\(N\) & UTC \\
392 & 157 \\
400 & 166 \\
408 & 177 \\
416 & 178 \\
424 & 181 \\
432 & 175 \\
440 & 167
\end{tabular}

N UTC
\begin{tabular}{ll}
418 & 174 \\
420 & 173 \\
422 & 178 \\
424 & 181 \\
426 & 182 \\
428 & 177 \\
430 & 174
\end{tabular}

ACCORDING TO QSET1, THE
THRESHOLD VALUE PRODUCING THE PEAK DF THE UTC CURUE IS \(N=426\)

ACTUAL UTC PEAK OCCURRED AT \(N=452\)
ERROR FROM CORRECT N IS: ^26

OBET2 A6232
PASS 1
\begin{tabular}{cr} 
N & UTC \\
192 & 1 \\
256 & 1 \\
320 & 46 \\
384 & 153 \\
448 & 169 \\
512 & 101 \\
576 & 9
\end{tabular}

PASS 2.
N. VTC

400166
\(416 \quad 178\)
432175
448169
464173
480153
496123
----------PASS 3
N UTC
\begin{tabular}{ll}
404 & 169 \\
408 & 177 \\
412 & 179 \\
416 & 178 \\
420 & 173 \\
424 & 181 \\
428 & 177
\end{tabular}

PASS
N UTC
421180
422178
423179
424181
425179
426182
427180

ACCORDING TO OSETZ. THE THRESHOLD VALLE PRODUCING THE PEAK OF THE UTC CURUE IS \(N=426\)

ACTUAL UTC PEAK OCCURRED AT \(N=452\)
ERROR FROM CORRECT N IS: A26


Pace 108
\begin{tabular}{|c|c|c|c|}
\hline & GSET1 A6233 & & OSET2 A623 \\
\hline --->- & ---PASS 1 & ----- & -\%ASS 1 \\
\hline \(N\) & VTE & \(N\) & ETC \\
\hline 128 & 1 & 192 & 1 \\
\hline 256 & 1 & 256 & 1 \\
\hline 384 & 119 & 320 & 19 \\
\hline 512 & 136 & 384 & 114 \\
\hline 640 & 0 & 448 & 178 \\
\hline 768 & , & 512 & 136 \\
\hline 896 & 0 & 576 & 49 \\
\hline - & ---PASS 2 & ---- & ---PASS 2 \\
\hline \(N\) & UTC & \(N\) & UTC \\
\hline 416 & 182 & 400 & 149 \\
\hline 448 & 178 & 416 & 182 \\
\hline 480 & 156 & 432 & 190 \\
\hline 512 & 136 & 448 & 178 \\
\hline 544 & 105 & 464 & 172 \\
\hline 576 & 49 & 480 & 156 \\
\hline 608 & 2 & 496 & 149 \\
\hline ------ & --PASS 3 & ------- & ---PASS 3 \\
\hline \(N\) & UTC & \(N\) & UTC \\
\hline 392 & 139 & 420 & 186 \\
\hline 400 & 149 & 424 & 200 \\
\hline 408 & 156 & 428 & 191 \\
\hline 416 & 182 & 432 & 190 \\
\hline 424 & 200 & 436 & 193 \\
\hline 432 & 190 & 440 & 188 \\
\hline 440 & 188 & 444 & 184 \\
\hline -- & --PASS 4 & ------- & ---PASS 4 \\
\hline \(N\) & VTC & \(N\) & UTE. \\
\hline 418 & 184 & 421 & 189 \\
\hline 420 & 186 & 422 & 183 \\
\hline 422 & 183 & 423 & 202 \\
\hline 424 & 200 & 424 & 200 \\
\hline 426 & 192 & 425 & 194 \\
\hline 428 & 191 & 426 & 192 \\
\hline 430 & 196 & 427 & 192 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{ACCORDING TO OSET1, THE THRESHOLD VALUE PRODUCING the peak of the vic curve}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{ACCORDING TO OSETZ, THE THRESHOLD VALUE PRODUCING the peak of the vic curve}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{ACTUAL UTC PEAK OCCURRED AT \(N=423\)} & \multicolumn{2}{|l|}{ACTUAL UTC PEAK OCCURRED AT \(N=423\)} \\
\hline ERROR & FROM CORREC & \multicolumn{2}{|l|}{ERROR FROM CORRECT N IS: 0} \\
\hline
\end{tabular}


Page 200

\section*{APPENDIX D}

\section*{DATA SET TRANSFER AND PLOTTING}

The purpose of this appendix is to document the procedure for gathering VTC-versus-N data and transferring it to the Multics Computing System for analysis. Included are the source codes and explanations for the software used with the F8 microprocessor and with the Multics Graphics System.

To analyze the VTC curve for a particular set of conditions, the first step is to prepare the scanner for gathering a data set by loading and running the software package PLOT4 with Sense Switches 4, 5, and 6 in the DOWN position. (The Sense Switches are located on the front panel of the F8). With the Experimental Calibration Pattern (ECP) ready, the scanner start button should be pressed to initiate the page-scanning sequence. Once the moving assembly is approximately mid-page, the scanner should be frozen in position with the Crossfeed-Motor Pause Switch. Now, by referencing the shape of the analog video signal with an oscilloscope, the ECP to be scanned can be placed into position. VTC data are taken and stored in the F8 RAM memory when Sense 5 is placed to the UP position. Since PLOT4 gathers VTC data for every value of \(N\) from \(N=0\) to \(N=768\), it will take about three seconds from the time Sense 5 is activated until all data have been stored. The status of the lights on the front panel of the F8 will indicate when data transfer is complete. (Note that it is a simple software modification to alter the sampling range of

N if necessary.) At this point, if one is satisfied with the conditions under which the data was taken, Sense 4 can be placed UP which will terminate the PLOT4 routine. Otherwise PLOT4 can be recycled by first placing Sense 5 DOWN and then momentarily placing Sense 6 UP and then DOWN.

By resetting PLOT4, this enables the user to overwrite the original set of data with new data.

The next step is to enter the \(F 8\) DEBUG program to gain access to the data set that is now stored in RAM. The data buffer begins at memory location \(0100(\mathrm{HEX})\), but significant data normally starts between 0500 (HEX) and 0600 (HEX). The data can be examined in BYTE form by using the DIM (display memory) command described in the F8 manuals. Values of \(N\) and VTC each require two bytes, and \(N\)-VTC data pairs are stored consecutively. As an example, data displayed by the command, DIM 0910-0A7F are shown in Figure D.1. To minimize the amount of storage and Multics computer time required, the bounds of significant VTC data should be ascertained before transferring any information out of RAM.

With the bounds of the data determined, the next step is to write the data into an \(F 8\) disk file for permanent storage and ease of manipulation. While still in the DEBUG program, the following sequence of commands will accomplish this:

MON
ASS CR WDISK <filename>,00:1 DEBUG
DIM <starting RAM address>-<ending RAM address> MON ASS CR ZTO

The data set is now in the form of an ASCII file on disk. To transfer the data to the Multics System, the following commands must be added to the file by the XEDIT editor. Before the data, include these lines:
```

\&version 2
\&trace off
\&attach
apl -ttp ASCII
input2

```

After the data, include these lines:
stop
\&detach
\&quit

The disk file should now appear like the example in Figure D.2. The \(F 8\) program, MULTX, is used to transfer the disk file to a Multics storage segment via dial-up link. Since the data set is now set up as an exec file, the Multics segment name must have the .ec suffix, e.g. filename.ec. With the data in a segment, any of \(a\) number of options can be employed to convert the data from its ASCII format to a usable decimal equivalent. However, this author used APL language for data manipulations. The procedure therefore continues as such: An APL workspace named CONTINUE must be already established and contain as a minimum the functions INPUT2 and CONVERT whose listings and explanations are included in this appendix. With these prerequisites met, execute the data set segment with the Multics command,
ec filename
A terminal prompt message will indicate when data transfer is complete. Multics is now in the APL ASCII mode and the proper
conventions must be followed. To complete the data conversion, select an appropriate variable name for the data set and invoke the function, CONVERT:

VARIABLENAME <- CONVERT
VARIABLENAME becomes a two-dimensional array with each row representing an \(X-Y\) (or \(N-V T C\) ) data pair. The various APL functions described in the remainder of this appendix can now be used to operate on the data as necessary. One note of caution concerning the plotting functions should be observed. alwars link and unlink the Multics Graphics \(I / O\) at the Multics Command level, NEVER while within the APL mode. The commands to do this are,

> setup_graphics remove_graphics

The syntax associated with these comands should be reviewed in the Multics Users Manuals as necessary.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 02 & 05 & 01 & & 02 & & & \\
\hline M0918 & 02 & 07 & 01 & 2 C & 02 & 08 & 01 & 2 D \\
\hline M0920 & 02 & 09 & 01 & 25 & 02 & OA & 01 & 4 \\
\hline 0928 & 02 & OB & 01 & 24 & 02 & OC & 01 & 5 \\
\hline M09 30 & 02 & OD & 01 & 19 & 02 & OE & 0 & 9 \\
\hline M0938 & 02 & OF & 01 & 1 D & 02 & 10 & 01 & 9 \\
\hline M09 40 & 02 & 11 & 01 & 1 C & 02 & 12 & 01 & C \\
\hline 948 & 02 & 13 & 01 & 19 & 02 & 14 & 01 & 5 \\
\hline 0950 & 02 & 15 & 01 & 14 & 02 & 16 & 01 & 4 \\
\hline 0958 & 02 & 17 & 01 & 11 & 02 & 18 & 01 & OD \\
\hline 0960 & 02 & 19 & 01 & OD & 02 & 1 A & 0 & D \\
\hline M0968 & 02 & 18 & 01 & OC & 02 & 1 C & 0 & 0 \\
\hline M09 70 & 02 & 1 D & 01 & 05 & 02 & \(1 E\) & 01 & 08 \\
\hline M09 78 & 02 & 15 & 01 & 08 & 02 & 20 & 00 & D \\
\hline M0980 & 02 & 21 & 00 & FD & 02 & 22 & 00 & D \\
\hline M0988 & 02 & 23 & 00 & FD & 02 & 24 & 00 & F9 \\
\hline M0990 & 02 & 25 & 00 & \(F 9\) & 02 & 26 & 00 & F 8 \\
\hline 0998 & 02 & 27 & 00 & \(F 4\) & 02 & 28 & 00 & C \\
\hline 10 & 02 & 29 & 00 & FO & 02 & 2 & 00 & EC \\
\hline 99A8 & 02 & 28 & 00 & ED & 02 & 2 C & 00 & D \\
\hline M0980 & 02 & 2D & 00 & EC & 02 & \(2 E\) & 00 & E1 \\
\hline M0988 & 02 & \(2 F\) & 00 & EO & 02 & 30 & 00 & E4 \\
\hline 09C0 & 02 & 31 & 00 & E8 & 02 & 32 & 00 & DD \\
\hline B & 02 & 33 & 00 & DD & 02 & 34 & 00 & C \\
\hline M09D0 & 02 & 35 & 00 & E4 & 02 & 36 & 00 & D9 \\
\hline M09 D8 & 02 & 37 & 00 & D8 & 02 & 38 & 00 & D1 \\
\hline M09E0 & 02 & 39 & 00 & DI & 02 & 3A & 00 & DO \\
\hline M09E8 & 02 & 3B & 00 & CC & 0 & 3 C & 00 & CD \\
\hline M09F0 & 02 & 3D & 00 & C9 & 02 & 3 E & 00 & C \\
\hline M09F8 & 02 & \(3 F\) & 00 & C5 & 02 & 40 & 00 & \\
\hline MOAOO & 02 & 41 & 00 & CO & 02 & 42 & 00 & CO \\
\hline MOA08 & 02 & 43 & 00 & BC & 02 & 44 & 00 & BC \\
\hline MOAIO & 02 & 45 & 00 & BC & 02 & 46 & 00 & \\
\hline MOA18 & 02 & 47 & 00 & BC & 02 & 48 & 00 & \\
\hline MOAZO & - 02 & 49 & 00 & AC & 02 & 4A & 00 & AD \\
\hline MOA28 & 02 & 4B & 00 & A & & 4 C & 00 & \\
\hline MOA3O & 02 & 4D & 00 & A4 & 02 & 4 E & 0 & 8 \\
\hline M0A38 & 02 & 45 & 00 & 98 & 02 & 50 & 00 & \\
\hline MOA40 & 02 & 51 & 00 & 8D & 02 & 52 & 00 & 8 C \\
\hline MOA48 & 02 & 53 & 00 & 8D & 02 & 54 & 00 & 83 \\
\hline MOA50 & 02 & 55 & 00 & 8D & 02 & 56 & 00 & 85 \\
\hline MOA58 & - 02 & 57 & 00 & 80 & 02 & 58 & 00 & 89 \\
\hline MOA60 & 02 & 59 & 00 & 84 & 02 & 5A & 00 & 84 \\
\hline MOA68 & 02 & 5B & 00 & 70 & 02 & 5C & 00 & \\
\hline & = 02 & 5D & 00 & 79 & 02 & 5 E & 00 & 78 \\
\hline M0A78 & = 02 & \(5 F\) & 00 & 74 & 02 & 60 & 0 & \\
\hline
\end{tabular}

\footnotetext{
FIGURE D. 1 SAMFLE LISTING OF THE FB DEEUG FROGFAM USING "DISFLLAY MEMORY"
}


FIGURED. 2

M0790 = 01 A5 00 3c 01 2600 B8 m0798 = 01127008801 as 008 BE M07AO = 01 ag 00 C1 01 aA 00 BA mo7as = 01 ab 00 be ol ac 00 b6 M0780 = O1 AD 00 B2 O1 AE 0081 m0788 = 01 af 00 B4 01 BO 00 bo MO7CO \(=0181008301820081\) MO7C8 = 01 B3 0081018400 AE M0700 = 01 B5 00 AD 018600 AC M0708 = 01 870015018800 A3 MO7EO \(=01\) B9 00 AO O1 BA 0090 MOTE8 = 01 BE 00 A5 O1 BC 00 gF MO7FO = 01 BD 00 A2 O1 be 00 gF mo7f8 = 01 bF 00 ge ol CO 0090 M0800 - O1 C1 00 ge O1 C2 0098 mo808 = 01 C3 00 90 01 C4 0095 M0810 = 01 C5 009301 C6 0092 M0818 = 01 C7 009501 c8 0098 M0820-01 C9 00 91 O1 CA 0094 m0828-01 CB 0092 O1 CC 008 8a MO830 = O1 CD 008501 CE 0085 MO838 = 01 CF 008201000084 M0840 = 0101008501020085 M0848 = 01 D3 008001040083 H0850 = 0105008301060070 M0858-01 \(0700830108007 c\) M0860-01 D9 007301 DA 0078 MO868 - O1 OS \(007 E\) O1 OC 0075 MO870 = 01 DO 0073 O1 DE \(006 E\) MO878 - O1 OF 0068 OI EO 0065 MO880-01 E1 00 74 O1 E2 0060 MO888-01 E3 006901 EL 0069 M0890 = 01 E5 006101 E6 0058 mo898 = 01 E7 00 5A 01 E8 00 5C MO8AO - 01 Eg 0057 O1 EA 0056 MOBAB - 01 EE 00 54 O1 EC 0056 MO8EO - 01 ED 005501 EE 0050 MO8B8-01 EF 00 4A O1 FO 0048 Mosco - 01 F1 0047 01 F2 0045 MO8C8 = 01 F 3004801 F4 00 3E H0800 = 01 FS 00 t0 O1 FS 00 3F M0808-01 F7 00 3401 F8 0042 MOgEO - 01 F9 0031 O1 FA 0038 MOSE8 - 01 FE 0037 O1 FC 0038 MOSFO = 01 FD 003001 FE 002 F mogfe - O1 ff 003202000029 H0900 - 02010022020200 1f mosos - 020300 ic 02 O4 0020 M0910 = 020500 1C 02060013 M0918 = 0207001302080012 H0920 - 020900 Ot 02 OA 0000 m0928 - 02 OL 00 OA 02 OC 0009 MO930 = 02 OD 00 O7 O2 OE OO O6 mo938-02 of 000502100003 M0940-02 11000102120000 H0948 = 0213000002140000 stop
scotach
squit

DATA FILE AS IT SHOILD AFFEAV. EEFORE TFANSFERFING TO MIY T TM:
```

EATA PLOT EATA SENETMTOJ.:%4
I\#PS LJC GBNEGT MDE? i:NE

```


Page 207
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 3．95 & LJC & 勺EJEC： & AED？ & L1．iE & & 3． & こ 5－¢¢E： & \\
\hline & 6015 & 70 & & er． 52 & & \(\because\) & & \\
\hline & 0015 & 2713 & & \[
\begin{aligned}
& \text { ec63 } \\
& \text { cc64 }
\end{aligned}
\] & \(\cdots\) & －！：T & \(\because 3^{\prime}\) & \\
\hline & 0021 & 40 & & CCSS & IJCTHR & \(\pm 7\) & A． 0 & INCREXENT LOMER \\
\hline & CC22 & 15 & & 0066 & & INC & & THRESHOLD SYTE \\
\hline & 0023 & 50 & & C057 & & L．？ & O．A & \\
\hline & 0024 & 9200 & 0031 & 0068 & & 3NC & OUTE\％ & \\
\hline & 0023 & 41 & & 0059 & & L？ & A， 1 & Ischeident \％FPER \\
\hline & 0027 & \(1 F\) & & cc70 & & INC & & TMEESKiOLE 3بTう \\
\hline & 0028 & 51 & & 0071 & & 12 & 1，A & ＇il Pr CARPY \\
\hline & 0029 & 2503 & & 0072 & & 61 & T：iamax & TEST FOR ：1̇X \\
\hline & 0023 & 9405 & 0031 & 0073 & & 3N7 & JUTT： & THEESHOLE JALUE \\
\hline & C025 & 70 & & 0074 & & Cins & & CGIVES MIN THRES－ \\
\hline & C02E & \[
51
\] & & cc7s & & 4 L & 1．A & ＊OLD JOL（Aũ） \\
\hline & 0025 & 905E & 009E & \[
\begin{aligned}
& 0076 \\
& 0077
\end{aligned}
\] & \(\dagger\) & 3 F ． & PESET & \\
\hline & 0031 & 40 & & 0078 & JUTTHR & LP． & A． 0 & UFCATE THRESİOL2 \\
\hline & 0032 & 2712 & & \(0 \subset 79\) & & JUT & 「＇12＇ & VALEE TARUEGK \\
\hline & 0034 & 41 & & 0080 & & 4 & A． 1 & FORTS 12 ANE 13 \\
\hline & 0035 & 2713 & & 0081 & & JUT & त＇13＇ & \\
\hline & 0037 & 290032 & 0052 & \[
0082
\] & & P1 & ESTLis & TEST FJR EiNL JF คตบンT IVE \\
\hline & 003A & 41 & & 0034 & & 13 & A， 1 & 5 PJRE TiRESHOL \\
\hline & 0032 & 17 & & 0085 & & ST & & TPPER 3YTE \\
\hline & c03C & 40 & & CC36 & & L？ & A． 0 & STJRE TiRミ5：0LJ \\
\hline & 0035 & 17 & & C087 & & ST & & LOME？ヨYTE \\
\hline & C03E & 70 & & 0088 & & 6Lス & & \\
\hline & 003F & 2711 & & 0089 & & JUT & －11＇ & STJRE EIGITAL JIEEO \\
\hline & 0041 & 2611 & & 0090 & & is & ：＇11＇ & YFPER EYTE \\
\hline & 0043 & 13 & & 0091 & & CSM & & \\
\hline & C044 & 17 & & \(0 ¢ 92\) & & 3？ & & \\
\hline & 9045 & 70 & & 0073 & & Cin & & \\
\hline & 0046 & 2710 & & 0094 & & 3tT & \(H^{\prime} 10^{\circ}\) & STOEE EIGITAL JIDEU \\
\hline & 0048 & 2610 & & 0095 & & 12 & \(H^{\prime} 10^{\circ}\) & LOMES EYTE \\
\hline & COAA & 19 & & 6096 & & co： 9 & & \\
\hline & 0049 & 17 & & 0097 & & \(3 T\) & & \\
\hline & 0046 & 55 & & 0093 & & 48 & －！3． & ALSU STOFE ！ 35 \\
\hline & CO4E & 44 & & 0079 & & L？ & A，Fl & \\
\hline & 904E & 2400 & & 0100 & & AI & 0 & TEST FLAd \\
\hline & 0050 & 741 E & O06F & 0101 & & EAT & \(=1\) & \\
\hline & cos2 & 45 & & C102 & & －3． & A，ITS & \\
\hline & 0053 & 2102 & & C103 & & \(\because 1\) & －i＇02＊ &  \\
\hline & ccs 5 & 3404 & 001A & 5104 & & 引2 & siv6 & \(\because\) OESC COUNT \\
\hline & 0057 & 71 & & Ctc5 & & Lis & 1 & \\
\hline & cose & 54 & & Clss & & \(\pm\) Pr & F1．m & Cinaijge fitac 1 TJ 1 \\
\hline & 0059 & 2C & & 0107 & & － 50 & & \\
\hline & COSA & 2AC100 & C10C & cics & & ごし & \(\because 1+21\) & \\
\hline & 005 & 3900C4 & BCC4 & 0187 & & \(3!\) & Sinc： & \\
\hline & COSO & 2－800E3 & TCE3 & 0110 & & ここ： & ＇！！ & \\
\hline & 0¢3 3 & 40 & & C111 & & \(\cdots\) & A， \(\mathrm{S}^{\text {a }}\) & \\
\hline & 0054 & 57 & & C112 & & 43 & 7．2 & \\
\hline & cos 3 & 71 & & 0113 & & L13 & 1 & \\
\hline & cc66 & 50 & & 0114 & & Le & C．A & \\
\hline & 0067 & 293653 & 3653 & 0115 & & 5 & ： ＇34E3＇\(^{\prime}\) & Cisplev OCI：：\％ \\
\hline & CCsA & 2 C & & C116 & & －¢ & & \\
\hline & OCA3 & 47 & & 0119 & & \(4 ?\) & m． 9 &  \\
\hline & 0062 & 56 & & \(211 ?\) & & \(4 ?\) & O．A & \\
\hline & 0065 & －CAC & ncim & C119 & & \(3 \%\) & 3！ & \\
\hline & & & & －120 & － & & & \\
\hline & \[
\begin{aligned}
& 0065 \\
& 0070
\end{aligned}
\] & 4200 & & 0121
2122 & － & is & \[
\begin{aligned}
& A, F 2 \\
& 0
\end{aligned}
\] & TEST ELAE ？ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline E3PS & LJC & OBvect & AEE？ & 15：1E & & s3tec & 5 STATEIE & \\
\hline & 0072 & 3423 & 0096 & C123 & & 32 & 32 & \\
\hline & 0074 & 43 & & C124 & & － & A，F3 & TES：FLiG 3 \\
\hline & 3C75 & 2400 & & 0125 & & A1 & 0 & \\
\hline & 0077 & 74.2 & OCIA & 0125 & & \(3 N 2\) & RVC & \\
\hline & 6079 & 45 & & 0127 & & LP & A．＇\％L3 & \\
\hline & 0¢7A & 2400 & & 0128 & & A1 & C & CHEご \(\because 15 \mathrm{CO}\) COLNT \\
\hline & cctc & 9490 & OO1A & 0129 & & 3N2 & avc & ESLAL PS EE？0 \\
\hline & 067E & 71 & & 0130 & & L15 & 1 & \\
\hline & 0075 & 53 & & 0131 & & LR & F3．A & SET FLNG 3 TJ \\
\hline & 0090 & 2 C & & 0132 & & x＝C & & \\
\hline & 0081 & 2AC113 & C113 & 0133 & & ECI & 42－16 & \\
\hline & 0084 & 250064 & 00c4 & 0134 & & －t & Sito & \\
\hline & 0087 & 2AC103 & 0103 & 0135 & & DC： & ：12 & \\
\hline & 008A & 40 & & 0136 & & LT & A． 0 & \\
\hline & 0 Cg & 57 & & 0137 & & LA & 7．A & Save tarsskole cotnt \\
\hline & 008 C & 71 & & 0138 & & LIS & ， & \\
\hline & 008＝ & 50 & & 0139 & & L？ & 0.4 & \\
\hline & 0085 & 283653 & 3653 & 0140 & & PI & i＇3653＊ & \\
\hline & 0091 & 2C & & 0141 & & x－c & & \\
\hline & 0092 & 47 & & 0142 & & \(\pm 3\) & M， 7 & \\
\hline & 0093 & 50 & & 0143 & & LR & 0．6 & \\
\hline & 0094 & 9085 & 001 A & C144 & & 38. & RUC & \\
\hline & & & & 0145 & － & & & \\
\hline & 0095 & 36 & & 0146 & 52 & 55 & SLY & \\
\hline & 0097 & 7482 & 001 A & 0147 & & 3NL & ミvし & \\
\hline & 0079 & 71 & & 0148 & & ils & 1 & \\
\hline & C09A & 52 & & C149 & & \[
23
\] & F2．A & 5ET ELAG 2 ：0 1 \\
\hline & 0098 & 29001A & 001／ & 0150 & & NMP & Ruc & \\
\hline & & & & 0151 & \(\ldots\) & & & \\
\hline & & & & 0152 & ． & & & \\
\hline & & & & 0153 & ＊ & & & \\
\hline & \[
009 \mathrm{E}
\] & 70 & & 0154 & RESET & & & \\
\hline & \[
009 F
\] & 30 & & 0155 & & juts & 0 & SENSE 5 is TLACEE ？ \\
\hline & COAO & AO & & 0156 & & INS & & \\
\hline & 0041 & \[
2140
\] & & 0157 & & N! & \[
\mathrm{H}^{\circ} 40^{\circ}
\] & \\
\hline & 0043 & 3404 & 0049 & 0153 & & 32 & \$52 & \\
\hline & 0045 & 290000 & 0000 & 0159 & & コロ & INIT & \\
\hline & 00A8 & 70 & & 0160 & 352 & cis & & \\
\hline & 00A9 & 90 & & 0161 & & JETS & \[
0
\] & CRECK FCR SENSE 4 \\
\hline & OOAA & A0 & & 0162 & & 8iss & \[
0
\] & UP TO ？ \\
\hline & 00AB & 2110 & & 0163 & & XI & 4＇10＊ & 5054 \\
\hline & COAD & 8450 & 009E & 0164 & & ミ2 & RESET & \\
\hline & OOAF & 292330 & 2330 & \[
\begin{aligned}
& 0155 \\
& 0166
\end{aligned}
\] & & JVP & H＇2330＇ & ． \\
\hline & & & & \[
\begin{aligned}
& 0167 \\
& C 168
\end{aligned}
\] & \multicolumn{3}{|l|}{stgroutine fstln} & \\
\hline & & & & \[
\begin{aligned}
& 0169 \\
& 0170
\end{aligned}
\] & \multicolumn{4}{|l|}{－URITPEN 3Y R．L．TINCIGUEPRA，12／90．} \\
\hline & & & & \[
\begin{aligned}
& 0171 \\
& 0172
\end{aligned}
\] & \multicolumn{4}{|l|}{\multirow[t]{9}{*}{\begin{tabular}{l}
－this stapolt：ine oalts fop the jigual porine－ \\
 \\
 \\
－Jte to an taversion in tite fe ilo zozts． \\
 \\
－transition． \\
－ \\
－ \\
Eviens Ent risc \\
－
\end{tabular}}} \\
\hline & & & & 0173 & & & & \\
\hline & & & & 0174 & & & & \\
\hline & & & & 0175 & & & & \\
\hline & & & & 0176 & & & & \\
\hline & & & & 0177 & & & & \\
\hline & & & & 0178 & & & & \\
\hline & & & \multirow[t]{2}{*}{CO4O} & 0177 & & & & \\
\hline & & & & O1\％ 0 & & & & \\
\hline & 00.32 & 20.40 & & C131 & \multirow[t]{2}{*}{Esit：} & －i & \multirow[t]{3}{*}{} &  \\
\hline & \(0 \times 34\) & 35 & & 0193 & & コロ゙3 & & \\
\hline & 0085 & 70 & & 0183 & LP1 & ご心． & & LJJP MAT：L FALSE \\
\hline
\end{tabular}

Page 209



```

-.!

```









```

OO\# \&H}\div

```


```

\#\#品 F

```




```

7

```


```

< % %

```

```

O...

\because"
*.%..
i.%.!

O
\#\#\#\#H

```







```

.. . % t. r < i..r + !


```

```

9
4
Q

```









```

$\because \because 4$

```


```

$\cdots \cdots$
$\therefore 1 \cdots$

```









```

$\therefore \cdots \quad \because \quad 4 \quad 9-100$

```

```

〇.

```



```

!

```








```

$\therefore \therefore \cdots \quad \cdots \cdots+i$

```



```

…
п.

```

```

$\therefore \therefore \because \quad 17 \quad \div$

```





！





－

＂1．
＂
\(\because\)
vedmuertcolo





：\％п


［8］CW4（（coumta4），4）em
［9］CUT＊＇01234567894ECEEE
E10］日TO4O
［11］TxCOTicm
［12］日rowi
「18．\(A+1\)
［iA］aerthstrat］
T1E］4F1：\(A+A+1\)



［17］CHAF -0
\(\stackrel{\nabla}{\circ}\)





```

[4] %

```



```

 7
 ッFO:#MALE[G]|
 * #OTMA&&EA
    ```



```

4.] ค

```


```

[.%] बпप%tor! A
%
.%FFEm[口\J%

```



```


* (W) 1E4)/81

[4] }\because(F)100)/5

< (\# : 5)/53

```

```

[7] % : ! 4--2
\&.] % %

```

```

[10] }->

```

```

\#2\# +0
i, %% 3%: 4 4 2

```


\section*{}

```

$\because .$.
\because
\cdots

```



```

$\because \because \quad \because \quad \because \quad 1$

```




```

…

```


```

… .1. ". .".

```






```

i...........

```

```

$\because \because 4 \therefore \quad 3 \quad 6979 \quad 3$
\%日品

```


\(\because \quad \because \quad\) -
\(\because\)




. \(x\)



\(\square\) !
ए-


но


\% , a


ㄴ,












ㅍ․ . -

\%a\%

\section*{APPENDIX E}

\section*{MODIFIED SCANNER CIRCUITS}

This Appendix contains the documentation for all changes made to the scanner circuitry along with the pin connections for the new \(F 8\) I/O ports 10 through 13 (hex). The THRESHOLD LEVEL GENERATOR (TLG), Video A-to-D Converter, and VIDEO COUNTERS are located on the VIDEO DETECTION AND THRESHOLDING board. The old Video A-to-D Converter and manual threshold circuit were removed from the TIMING AND PROCESSING board.

Although no additional circuits were changed, it is also noted here that during the course of this project, severe clocking interference necessitated the relocation of several circuit boards that use the high-frequency clock signal generated on the CCD board. Specifically, the following boards were mounted on the top of the mechanical moving assembly of the scanner to minimize the lengths of the leads carrying clocking signals:
1. SYNCHRONI ZED LINE-FREQUENCY GENERATOR
2. F8 INTERFACE BOARD NUMBER 4
3. TIMING AND PROCESSING
4. VIDEO DETECTION AND THRESHOLDING



FIGURE E. 2 TITHG AND PROCESSING CIRCUIT BOARD LAYOUT
Revision 2, dne 1982 (us and U9 Renoved)

\(\mathrm{Cl}=0.01\) Hicrofarads
\(C 2=0.01\) Hicrofarads
C3 \(=47\) Hicrofarads
C4 \(=7.01\) Hicrofarads
\(\mathrm{OL}=13\)-101t Zener
D2 \(=1\) HF1882-2811
\(\mathrm{RL}=5 \mathrm{~K}\) Oms
\(R_{2}=6 K 0 \mathrm{Mms}\)
\(R 3=2 K\) Onms
\(\mathrm{R}^{4}=561 \mathrm{Ohms}\)
RS \(=270\) Onws
\(R 6=750 \quad 0 \mathrm{~ms}\)
\(R 7=3.6 \mathrm{~K}\) Ones
\(R 8=3.6 \mathrm{~K}\) Chws
\(\mathrm{RP}_{9}=565 \mathrm{O}_{\mathrm{mws}}\)
\(\mathrm{R1O}=5 \mathrm{~K}\) OMs
R1I \(=500 \mathrm{~K}\) Ohes
U1 \(=\) AD7533
L2 \(=741\)
\(18=741\)
\(\mathrm{U}=741\)
\(U_{5}=74\) SSA
\(\mathrm{UK}_{6}=74254\)
W = Lisit
\(48=74.5933\)
U9 = 74.5393
\(410=74.560\)
U11 \(=\) LIN11

FIGURE E.S VIDEO DETECTION AN TRESHODNG CERCJIT BOARO LAYOUT

VIDEO DETECTION AND THRESHOLDING BOARD
PIN CONNECTIONS
\begin{tabular}{|c|c|c|c|}
\hline A & +15 Volts & 1 & N Value Bit 1 \\
\hline B & PRINTLINE In & 2 & N value bit 2 \\
\hline c & Digital Video Out & 3 & N value bit 3 \\
\hline D & & 4 & N Value bit 4 \\
\hline E & & 5 & N Value bit 5 \\
\hline F & & 6 & N Value bit 6 \\
\hline H & & 7 & N Value bit 7 \\
\hline J & & 8 & N Value bit 8 \\
\hline K & & 9 & N Value bit 9 \\
\hline L & +5 Volts & 10 & N Value bit 10 \\
\hline M & MTC Clear & 11 & VTC Bit 1 \\
\hline \(N\) & VTC Bit 16 & 12 & VTC Bit 2 \\
\hline P & VTC Bit 15 & 13 & vTC Bit 3 \\
\hline R & VTC Bit 14 & 14 & VTC Bit 4 \\
\hline S & VTC Bit 13 & 15 & VTC Bit 5 \\
\hline T & Analog Video In & 16 & VTC Bit 6 \\
\hline V & & 17 & VTC Bit 7 \\
\hline & -15 Volts & 18 & VTC Bit 8 \\
\hline W & & 19 & VTC Bit 9 \\
\hline x & & 20 & VTC Bit 10 \\
\hline \(\underline{8}\) & & 21 & VTC Bit 11 \\
\hline 2 & Master Ground & 22 & VTC Bit 12 \\
\hline
\end{tabular}

TIMING AND PROCESSING BOARD
PIN CONNECTIONS
\begin{tabular}{|l|l|l|l|}
\hline A & +5 Volts & 1 & +5 Volts \\
B & Ground & 2 & Ground \\
C & & 3 & \\
D & & 4 & \\
E & & 5 & Digital Video In \\
F & & 6 & CP \\
H & & 7 & \\
\(J\) & & 8 & EXPOSURE OUT \\
K & & 9 & \\
L & & 10 & \\
M & DATA RATE CLOCK & 11 & DIGITAL DATA \\
N & DIGITAL DATA & 12 & \\
P & & 13 & FPLL \\
R & & 14 & \\
S & & 15 & \\
T & & 17 & \\
U & & 18 & \\
V & & 19 & \\
W & & 20 & Test POint \\
\(\mathbf{Y}\) & & 21 & EXTERNAL EXPOSURE \\
Z & & 22 & ERNA \\
\hline
\end{tabular}

\title{
NEW F8 I/O PORT PIN ASSIGNMENTS
}
\begin{tabular}{lllllllll}
10 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(B\) \\
11 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
12 & \(Z\) & I & X & W & V & U & T & S \\
13 & P & N & M & L & K & J & \(H\) & F
\end{tabular}
```


[^0]: (1) Reference Āghamohammadi, Chapter 6 and TIMING AND PROCESSING circuit, Appendix E.

[^1]: (1) Note the absolute values of the slopes of the two curves in Figure 2.6 are different.

[^2]: (1) Subsequent scanner outputs in this thesis will be xerox reproductions which fail to do complete justice to the actual scanner hard-copy output. Therefore in some cases, scanner output will only be described rather than included for viewing. Also the reader should be aware that the scanner system digitizes to only one binary level. Hence, gray tones in the IEEE Test Chart are not reproduced as such. The photograph, for example, (IEEE Test Pattern 15) is substantially degraded from the original.

[^3]: FIGURE 4.2 OKIGINAL UIDEO A-TOMD CONVERTER AND THFESHOLD level generator

[^4]: (1) Recall from Figure 3.1 that when $N=0$, the voltage threshold level is greater than the analog video signal which prevents any digital encoding of the video information. VTC therefore is zero until the threshold encounters the span of significant analog

[^5]: (1) Notice that in this case, the end points were sampled in the first pass and therefore do not need to be re-sampled in the second pass. Although the discarded endpoints of the second pass ($N=256$ and $N=512$) do not provide an exact analogy to the discarded endpoints of the first pass ($N=0$ and $N=1024$), it is still easy to see that excluding $N=0$ and $N=1024$ does not preclude the segments [0 to 128] or [896 to 1024] from being sampled in a subsequent pass if necessary. In this manner, each pass consists of identical procedures.

[^6]: (1) It is important in understanding the sequencing and timing of :he algorithm that Block 5 is the only block that is executed during the transmission of valid video information as depicted in Fipure 2.1(B). All remaining blocks are executed in the - :atively short time gap between successive video lines.

[^7]: (1) Recall that resolution is measured in lines/inch while spatial frequency is measured in line-pairs/inch. This means there is a 2-to-1 correlation between resolution and spatial frequency. Therefore the CCD Nyquist rate theoretically can produce a resolution of 200 lines/inch.

[^8]: (1) The reader should refer to Aghamohammadi and Agudelo as necessary for background concerning the existing design.

