

TECHNIQUES AND PROCEDURES APPLIED TO PHOTOMETRIC METHODS FOR THE ANALYSIS OF HUMAN KINEMATIC RESPONSES TO IMPACT ENVIRONMENTS

P. A. GRAF
H. T. MOHLMA.N
UNIVERSITY OF DAYTON
RESEARCH INSTITUTE
300 COLLEGE PARK
DAYTON. OHIO 45469

OCTOBER 1980

Approved for public release: distribution unlimited.

AIR FORCE AEROSPACE MEDICAL RESEARCH LABORATORY
AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

$$
81 \% \quad 02123
$$

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Air Force Aerospace Medical Research Laboratory. Additional copies may be purchased from:
National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

> AFAMRL-TR-80-61

The experiments reported herein were conducted according to the "Guide for the Care and Use of Laboratory Animals, 'Institute of Laboratory Animal Resources, National Research Council.

The voluntary informed consent of the subjects used in this research was obtained as required by Air Force Regulation 169-3.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

> HENNING E JON GIERKE, Dr. Ing.
> Director
> Biodynamics and Bioengineering Division
> Air Force Aerospace Medical Research Laboratory

20. Abstract (Continued)

$\because:$ surospace Medical Research Laboratory, Wright-Patterson - Base, Ohio, by personnel of that organization.
$\because: \therefore$: $\quad \therefore$ ion of these methods and techniques resulted in time \therefore of coordinate positions, relative to the test seat, of metric points during the impact and response periods;
$\because:$ conrdinate system defined for each of the experimental
t :rosrams is described. Coordinate positions of reference $\therefore \because:=$ and camera locations in the various coordinate systems are Mrented. The techniques used to locate and mark anthropometric nts on the test subjects are described.
Ihe tracks of the marlied anthropometric points were recorded ?.out each test event on 16 mm motion picture cameras overa.t a nominal speed of 500 frames per second. Projected imace .-Ates of the tracked points were digitized semi-automatically \therefore : n of the frames during the event and were electronically : sed to time-seat ccordinate position histories for displacetlucity, and acceleration analysis.

Abstract

 !ructsses weur amphu fo wo bubic types o: motions, flarar धnicic Erom a standina sositich by the morizonta innalse accei- O: the Hydrauiic Decelerator, and from the deper torso wetrivilum Guironment simulated on the Body Positioning ietracian devier. Onplanar motion resulted Erom heat on orash simini \because ons \because. which the subjects were asymmetrically rest aninet, an tor on crash simulations.

Prior to each experimental test proaram tio onotornt data requirements were specified. These specifications deter mined the number of cameras to be used and their locations ana: orientations. The specifications also determinect the numa... moving points to be tracked anc ibmtified them. agern points in the fiedd of riew ot dials anc their cooranates wete : fo an

The recorded test data were thouctoc, iva a viewing screen equipped with horizontal and veet the relative positions of which were diultaliy enco....: fy shaft angle encoders attached to the shafts of $\because \Leftrightarrow \quad \therefore \quad \because \quad$ is knobs. The encoders excited ro-down oountirs vt........ .
 jected image of each ot the wint.j :ant. then computer processen to tire t: $\because: \quad$: t.w sional coordinate positions an: $4 .$. acceleration were derivna.

The techniques and procedures applied to reduce data from each of the major test programs are described in this report.

The coordirate solutions were adequate to use as comparisons with oredicted trajectories of the various points. With the exception of the Injury Protection Comparison study and the elbow trajectory data from the $-G_{x}(6,8$, and $10 G)$ study, errors in solution were less than one-eighth inch. Large errors in x component of displacemert were evident in the data from the whole Body Restraint-Lateral test program. The indications are that the angle between the optical axes of the cameras (11 and 12) was too small.

Derived velocity and acceleration data are not sufficiently accurate to use for predictions. Improved filtering methods and Gこモater accuracy in coordinate solutions would be required to improve the utility value of these data.

The work described herein was accomplished for tite benefit of the Aerospace Medical Research Laboratory, wright-patterson Air Force Base, Ohio under Contract F33615-76-C-0525 during the period l September 1976 through 30 April 1979. This contract was monitored initially by Major John P. Kilian and later by CMSgt. Joseph M. Powers of the Biomechanical Protection Branch, Air Force Aerospace Medical Research Laboratory.

University of Dayton personnel who made major coneributions to the program include William J. Hovey, Project Supervisor, Henry T. Mohlman and Ronald C. Reboulet, Research Mathematicians, and Philip A. Graf, Research Technician.

The authors gratefully acknowledge the cooperation and assistance provided by Mr. Jim Brinkley, Branch Chies. Maj. Jonn Kilian and CMSgt. Joseph Powers, the Contract Monitors, tne Project Engineers and Principal Investigators and all other personnel of the branch. Assistance and cooperation of personnel of the Technical Photographic Division, 4950 th Test Wing, and of the Digital Computer Operations Division, Aeronautical Systems Division, are a. , gratefully acknowledged.
section

\therefore ANALISTS OF RLAMAE MOTA:
2.I THEORY 1:
2.2 HORIZONTAL IMPACT FACILITY EHOTOAETREC : 9
DATA ANALYSIS PROGRAM (HTEPD)
2.2.1 Main Routine
2.2.2 Subroutine CMI ! T, $\because, ~-, ~ I n: ~$
2.2.3 Subroutine
2.2.4 Subroutine DERIV1 $\because, \because, \because, ~ \therefore, ~ X E, ~ I E$
2.2.5 Subroutine QLS
2.2.6 Subroutine ROTATE ($\because, \mathrm{Jl}, \mathrm{IPR}$)
2.2.7 Subroutine MEANL (N, X, Q)
2.2.8 Subroutine MEAN2 (Nl, N2, DI, DC, XD,ZD, SMX, SMN2, SMz, SM2:!
2.2.9 Data Preparatan oor lneat to afP:Q2.2.l0 Description ot pooram HEFPD Int:tData and parimetor () Ses

RIGia CovadRIBO:
2.3.i Recuiremtin:s
2.3.2 Photometric Rarre
2.3.3 Data Acquisitior:
2.3.4 Photogrammetric sal itration
2.3.5 Data Reduction Proonss
2.3.5.1 E? (tur

2.3.:.
2. 6 Results
2.4.1
2.4.2 !notome2.4.4 「uta Ru:
2.4.5 i.ata Recioction Prod
$2.4 .5-1$
2.4 .3 .2
2.4 .5.
2.4 .6 Res:ll:s
2.5 UPPER TOROO RYWOM

2.5.2 Thotame
2.5 .3 ヶhot:

TABLE OF CONTENTS (Continut
2.5.4 Data Reduction Pro..se
2.5.4.1 Editing2.5.4.2 Digitizins2.5.4.3 Electronic Data Procsse:
2.5.5 Results and Accuracy
3 ANALYSIS OF NONPLANAR MOTION
3. 1 DOT 6 YEAR OLD CHILD COMPARTSON
3.1.1 Photometric Data Acụuisitio:
3.1.2 Data Reduction
3.2 WHOLE BODY RESTRAINF-LATESAI.
3.2 .1 Seat coordinate systom
3.2.2 Camera Locations
3.2.3 Data Acquisition
3.2.4 Data Recuction
3.2.4.1 Film Editing
3.2.4.2 Erojectes Imace $0:$
3.2.4.3 Electronic Data :r. \because
4 PICTOGRAPHIC PRESENTATIG:
4.1 PROGRAM RSD INPUT REQ:IREMENT:
4.2 FILM DIGITIZING PROCEDURE
4.3 RESULTS
APPENDIX A: PROGRAM HIFPD
APPENDIX B: PROGRAM WERE.
APPENDIX C: PROGRAM RSD
APPENDIX D: PROGRA! CHIEPD
Figure Page
1 Observed Point and its Film Plane Image Relative 14
to the Optical Axis.
2
Film Plane Image of Scene Coordinate Axes. 15
3
Relationship Existing Among Image Plane, Projected 16Image Plane and Object Plane.
4
Project Images of Observed Points Equidistant from17Optical Axis but Lying in Different Planes Normalto the Optical Axis.5Relationship Between Projected Image Coordinate18System and Scene Coordinate System.678HIFPD Flow Chart.26
CPLT Flow Chart. 28
SM Flow Chart. 32
DERIVI Flow Chart. 34
QLSQ Flow Chart. 37
11 11 ROTATE Flow Chart. 40
12 MEANI Flow chart. 43
13 MEAN2 Flow Chart. 45
14
Typical Deck Setup for HIFPD Computer Run on - 0
Cyber System.
15169TAP Assembly Orientation.58
RSD(N/O/R) Seat Coordinate System and Onboard 60
Camera Locations.
17$-50 G_{x}$ Injury Protection Comparison Photometric83
Range and Seat Coordinate System.
18Average and Modified $-50 G_{x}$ Readings Versus Grid85Displacement.19BPRD Seat Coordinate System and Reference104
Fiducial Locations.
20
Camera Locations in BPRD Seat Coordinate System.107
21 Frequency Response of ll-Point Smoothing as 116Applied in the HIFPD Program.22 DOT Six-Year-old Child Comparison Seat Coordinate121System and Survey Data, Forward Impacts.
23DOT Six-Year-Old Child Comparison Seat Coordinate122System and Survey Date, Lateral Impacts.

LIST OF ILLUSTRATIONS (Continued)

Figure Page
24 Typical Scene Prior to Forward Impact as 123 Observed by Cameras 6 (Upper) and 7.
25 Typical Scene Prior to Lateral Impact as 124 Observed by Camera 7 (Upper) and 8.
26 WBR-L Seat Coordinate System (SCS). 128
27 Schematic of Camera Locations and Orientations, 129WBR-L.
28 WBR-L Reference Fiducials Schematic. 134
29 Projected Film Frames From Cameras 12 (Upper) 138and 11 as Viewed by Operator, WBR-L.
30 Projected Film Frames From Cameras 13 (Left) 140and 14 as Viewed by Operator, WBR-L.
31 Pictograms of Displacements of Body Segments 152and Restraint Harness as a Function of Time.

B	\because	\cdots
	\because	\cdots

 SMCMEP AND SMODTHED DESPTACMMENT

SECTION 1

INTRODUCTION

The high injury and fatality rates associated with vehicular crashes and emergency escape from aircraft dictate the need for determination of impact exposure limits and the evaluation of the effectiveness of various protection system configuratinns irc protection principles and techniques. In response to these neecis, the Biomechanical Protection Branch of the Air Force Nerosrace Nedical Research Laboratory (AMRL/BBP) has rigorously conducted experimenta: test programs, developing in the laboratory simulations of the environments to which crewmen might be exposed. Data collected from these experimental programs provide the bases for verification andior improvement of predictive biodynamic models.

This report describes and documents the photometric analysis procedures and processes developed and applied by the university of Dayton Research Institute (UDRI) during the period 1 September 1976 thru 30 April 1979, in support of $A M R L / B B P$ research and development programs.

The photometric work accomplished is summarized as follows:

- DOT 6 Year Old Child Comparison. The reduction of photometric recordings of points on the heads of dummies and baboons to time histories of three dimensional coordinate positions was completed.
- Restraint System Dynamics. Preparation of test subjects by application and documentation of tracking fiducials was accomplished. Reduction of film data to two dimensional time histories of displacement, velocity, and acceleration of six points on the heads and extremities of nine human subjects and one manikin during ninety-one tests was completed.
- Whole Body Restraint-Lateral. Preparation of subjects by application and documentation of tracking fiducials was accomplished prior to each test. Reduction of film data
to time histories of three dimensional displacements, velocities, and accelerations of nine points on the heads and torsos of ten human subjects and three manikins acquire? during fifty three of the tests was completed.
- Upper Torso Retraction. Preparation of subjects by application of fiducials and measurement of variable breadths was accomplished prior to each test. Film data collected during two tests were reduced to two dimensional time histories of displacements, velocities, ai.l accelerations of nine points on the subject and one point on the retraction piston.
- Impact Protection Comparison, $-50 G_{\mathrm{x}}$ Accelerator. Preparation of subjects by application and jocumentation of fiducials was accomplished prior to each of eignteen tests. Data were digitized from seventeen of the tests and were reduced to time histories of displacements, velocities, and accelerations of six points on each of the subjects.
- Impact Protection Comparison, $-50 G_{x}$ Decelerator. Preparation of subjects by application and documentation of fiducials was accomplished prior to each of twelve tests. Film data from eleven tests were digitized and reduced to time histories of displacements, velocities, and accelerations of six points on each of the subjects.
- F-lll Generic Study, $-G_{x}$. Preparation of subjects by application of fiducials and measurement of their relative locations was accomplished prior to each test. A process was developed to plot pictograms of the head and extremities of the subject and the projection of the harness geometry in the $X-2$ plane. The process was demonstrated with data digitized from film(s) of test(s).

```
The resulte of the ihotomet:
``` repurtod in tabular and aranhiu fome.


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}
a: a'ma:

points on thesu subju゙たs. iv:it.

 were:
- Restraint SYstem D rramies
- Upper Torso Retraction
- Impact Protecticn Compa: s.ars, - 3)

 has since been modified by the aucituor o: throt suburutines, rotate, mean 1 , and mean 2 , which were deveioped to improve areuracy by minimizing the effects of camera vibration aris :ind
 reading accuracy and smoothing eftedts. whe clirrott iuision ot this program is described in the followinc sectione anc instan! : the program source statements is presuntu: in sateria i is.

\subsection*{2.1 THEOR 1}

image of an infinite number of rays ct light emanatilit : on is.

Figure l illustrates this relationship.

Figure 1. Observed Point and its Film Plane Image Relative to the Optical Axis.

Having the focal length of the lens, \(s_{f}\), giver by the manufacturer and the measured distance, \(r_{i}\), the distance, \(r_{0}\), can be calculated by similar triangles to be:
\[
r_{0}=s_{o}\left(\frac{r_{i}}{s_{f}}\right)
\]

This does not, however, permit the determination of the vector direction of \(r_{0}\) from the point at which the optical axis penetrates the object plane.

If one could construct a perpendicular set of axes, \(x\) and \(z\), in the object plane, for instance a horizontal and a vertical line, intersecting at the optical axis, then the vector direction of the line segment, \(r_{0}\), can be determined by measuring the angular displacement of its image, \(r_{i}\), from the image of the \(x\) axis or by measuring the coordinates of the image point, \(p_{i}\), and solving for
the angle:
\[
\theta_{i}=\tan ^{-1} \frac{Y_{i}}{x_{i}}
\]
as in Figure 2. Construction of material axes in the observed scene is usually not practical so an alternate method will be offered later in the discussion.

Figure 2. Film Plane Image of Scene Coordinate Axes.

Since the image recorded on the film is so small, it is impractical, if not impossible, to determine the coordinates of the image point without magnification. The required maynification is usually provided by a projector, althouyh microscopes have also been used. If a projector is used, and its lens introducus no istortion, then the screen, or projected ima; : inse, onlad de
 that existal betwori the focal point of the vamera and the sor. "iewte by the anmera at a distance. \(s_{p}\), from the focal point Eivure 3). Now, again assuming no distortion, we have the reationshif:
\[
\frac{1}{3}=\frac{\vdots}{\square}=\frac{1}{5}
\]

Eivoro 3. Relaionginip Existing Amony iraue plane, Projectei [maqe plane and object plane.
if a senand wint, P, on on a line rarallel to the optirat asi and passiag through the first object point (such that \(r_{02}=r_{\text {, }}\)) is obserea, the distance, r, \(\mathrm{H}^{\prime}\), Erom the optical axis (or center of projouted imare) to the projected image point, \(p_{p 2}\), is relatas so the iistance so2 as the distance roz is related to so2, i. \(\mathrm{s}_{\mathrm{o}}\).
\[
\frac{S_{i}}{S_{i}}-\frac{r_{0}}{S_{0}}
\]
!!! :

 from Optical Avis but lơing in Different Planes Normal to the ogtical Axis.

Now let us return to tho proniom of relating the orientatirr of the film frame imare to the ohscrrod scene. As has been stated, it is usially not practical to draw a set of axes on the observed scene. It is, however, practical to establish a coordinate system in the scone and sumver tho oonsinateg of several fixed points of reference in the astablishou systom. Figure 5 illustrates the rogeriod image of the points ro, the origin of the scene coordinate system (SCS) and \(P_{1}\) and \(P_{2}\) which are survered reference points. For the sake of simplification, the three points are coplanar in a plane, \(y=n\), normal to the optical axis although in practice this is not required. The images of these points are projectoci on a viewing scroen on which a ronrainate system is imposed, which wo shall call the projoctod iraco onorijnate system (PCS). Having the conedinatos in the \(3 C\) of thr two observed points \(P\) ol and Bra, the romected image oan now bi rotatar rolative to the res to atas the relationship:
\[
\because_{y 1}-y_{y 2}=\frac{z_{001}-z_{1,12}}{x_{y, 1}-x_{101}-x_{1,12}}
\]

 にンMer!atically by:
\[
\begin{aligned}
& x^{\prime}=\therefore \cos \because+y^{\prime} \sin \\
& \because^{\prime}=\because \operatorname{cis} \because-x \sin
\end{aligned}
\]

Bestori and Scene Coordinate System.

\section*{2.2 \\ HORIZONTAL IMPACT FACILITY PHOTMMETPIC [ATM ANi: \(\because\) BROGRAM (HIFPD)}

Horizontal Impact Facility Photometric Data ina! ! : s: gram (HIPbj! is a diaital vompatar p! uram

 computers at Wriqht-Patterson Air Force Base. plot package is used to plot data and thas mst o. load and execute the proaram.

This program inputs the code sheet inta ind ionarim .. trol prarameters described in the section entitled "losiri:thot : Program HIFPD Input Data and Parameter Codes" an? 7 maxamas an (MAXN) frames of \(x, z\) position data for the range, slod, hip, b... shoulder, elbow, head point 1 and head point 2 for fryri-a ar range, sled, head point 1 and head point 2 for ITYpR=1. The ia: card format are also described.

The program computes the followind four types of data as requested by the program control parameters:
(a) The input data versus frame number and the frame to frame differencas are printed in counts. The ringe difference is subtracted from the frame to frame differences for each of th: seven parameters. The only value of this difference data wold be to spot errors in the lata. When tha japat iata ire ratatant
 printed versus frame numben istil! is: ann's
(b) Whe displacements
elbow, head point 1 and head point 2 ro: :

 requested on the test setup ara.

radians per seconc using a moviny 11 point :uadratio :iv o the

 are also ploted as repucsea on the test setu! \(\therefore\) a.
(d) The linear velouity and acceloration ata : : \(\because \quad\) ar bination of the cicht variables are computed as remestur the test setup card. For examole, the linear velocity ano: of the head point 1 relatiro to the ranoo, 3 lod moia*is. \(\quad . \quad\).
 Note that range relatave to some other paxameter ammot in :ato: To compute these linear volocity and acceleration lata, tio \(\because\) an a displacements are computcu for the variable of interest rebutu to the reference variable. a mwing oleven wont ar=an aim: in
 histories. A moving eleven point yuarratic !east Eyare est - then applied to these smouthed \(x\) and z-axis displacement duta to obtain the \(x\) and \(z\) components of velocity. Next this same swoching routine is applied to these \(x\) and \(z\)-axis velocity data to rompute the \(x\) and \(z\) components of acceleration. The resultarit dis~ placement, velocity, and acceleration data are then corvited usind these smoothed \(x\) and \(z\) component data. These data are printed and plotted as requested on the test setup card.

The three external files used by this program are tio inut file (unit 5) used to read all code sheet and data cards. The output file (unit 6) used to print all output, and TAPET (uait: used to generate the plottor tape. A magnetic tame most i: U... quested with TAPE7 as the loval file name.

The following sections of this report present a onco a scription of the main prepran and ali subroutines uxce: bil os: Comp plot routines. Fluw cina's ate also incluces ar uat

 output data (includin:

 reunesto:
 romatron \(:\)
 \(\because\) anles are da
 1: int from erro
 is routine.
 yethod
 The Erogra
arabod in the "Des, antion of Ererr

 a...ters. The pla: \(\because\) : : tho

 こ) For eacn

 nore than MAXN frames are read, diagrostios aro frimtos ame: :
 \(\therefore\) beyond MAXN aro omitted from the analyenc. Th: \(\because: \because\)
 i are computed from the frime number as raliows.
 \(T(I)=\operatorname{IFR}(I) / D T\)
 IER(I) is the frame rumber and Wh is ine ambor an and

wamer InDJ is ataator than zero adjustman fation ais
 are adled to a: : amb 2 axis mot.
:um, a summary page is printed listian all t:pms
 anguted, printe? and plotten for this tort
 when program antral fobumton i:
 A上ュs data are :-xintod in counts.

\[
\begin{aligned}
& X D(1)=X(I, I)-X(I-1,1) \\
& X D(J)=X(I, J)-X(I-1, J)-X D(1)
\end{aligned}
\]
\(X D(1)\) is the range difference from the \(i\) th frame and \(X D(J)\) is the variable minus range difference for the \(J{ }^{\text {th }}\) variable and the th frame. The above are also computed and printed for the \(z\) axis data.

When code sheet parameter ICAM is greater than one (camera is on the sled) subroutine ROTATE is called to rotate, translate, and calibrate the x and z axis data. When ICAM is less than one, these \(x\) and \(z\) axis data are adjusted for shifts in the range reference reading and then converted from counts to feet (in the Main routine):
\[
\begin{aligned}
& H 1=X(I, I ;-X(I, I) \\
& H Z=Z(I, I)-Z(I, I) \\
& X(I, J)=(X(I, J)-H 1) * C A L(J) \\
& Z(I, J)=(Z(I, J)-H 2) * C A L(J)
\end{aligned}
\]
where \(\operatorname{CAL}(J)\) is the calibration factor for the \(J\) th variable \(\mathfrak{j}=2\) to 8). Next subroutine MEAN1 is called to compute and print the mean and standard deviation about the mean for the sled reforence data. This provides an estimate of the film reading errors since the adjusted sled reference should be a constant.

When program cortrol parameters IPC < 2 or IPA 2 , \(x\) and \(z\) axis motion relative to the sled are computed for variables 3 to 8 (or 7 and 8 for ITYPE=1):
\[
\begin{aligned}
& X D(I)=X(I, J)-X(I, 2) \\
& Z D(I)=Z(I, J)-Z(I, 2) .
\end{aligned}
\]

Subroutine SM is called to compute a moving eleven point (ivp-il fuadratic least square fit to smooth the \(X\) and \(Z\) axis data. The smocthed data are stored in arrays \(\mathrm{XX}(\mathrm{I}, \mathrm{JJ})\) and \(Z Z(I, J J)\) where \(J J=J-2\). As a result of the eleven point smoothing, five frames are lost at the beginning and end of the test data; this is trac

ale vemi

for all \(\because\) a: ablur

 Farameter Irt . 2. The an:?.
\[
\begin{aligned}
& \vdots_{-}=x \sum_{1},{ }^{2}-\because \because!, \\
& \therefore D(5)=a r \because+a n \text { (i! } \vdots a
\end{aligned}
\]
where index 3 is shoulner iatit ar: : ain: is and \(Z z\) arrays. Anales XD!!!

 IPA=0, subroutine CPLT is called to ionerate onamp:
 angular aata are computed in a similar mannor for bara :arirt mirus head point 2 sata (indices \(\rightarrow\) and 6 in arrous \(\because \because \quad\) in \(\because\) :
 and acceleration data to be confuter for one varible array

 computed for all available ェinmes.

\[
\begin{aligned}
& \because(T, J)=Y(T, J)-\because I, I) \\
& Z(I, J)=Z(I, T)-Z I T, T
\end{aligned}
\]
where all \(\because\) and \(z\) data ham ormumisil
\(\qquad\)


```

Thu Ya.i.atles a:=
troi: :a!.av:s
to be is::...:
Iata ir: rm, Oru\ : :,
\becausea\ues;
Subroutames
the lesum
X array
Scound 1ma! :|\because. : :
tame Sicli:.: :.; :, \because:

```

```

X(1);
(b) tile til:t inc:: :ut:!:

```



```

The anguiar valocity anm ducoic:a, m, m

```

```

the data and sets vailits icuoruilmat';

```


```

the data and print the lefemd ol: the jodphe

```


angess:

NP - number of points used in least square fit
[l - first point used in composite plot

12 - last point used ir. composite plot
\(X X\) - array of \(x\) axis displacement data
\(2 Z\) - array of \(z\) axis displacement data

UAL - Elag array which identifies defined data
\(\operatorname{LCAL}(J)=0-J^{\text {th }}\) yariable undeflau!
 is det1lad

HEADL - array containany yarlable names ised in leuenci

TES'I - test identification used in legend

IRX - flag used to setup composite Plot \(X\) axis scale

DYLP - Y increment ieer inch for linear plots
Subroutine Length:
16128

Laveled Common Length:
\(24_{8}\)
Elank Common Length: \(\quad 70668\)
2.2.3 Subroitine SM(X, \(Y, Y C, N, N P)\)

Subrout ine SM is a smoothing routine which computes d iuadratil ledst square tit of NP dependent variable data points (i) to compute edch smoothed data point (YC). Since NP data points fe ised to compute each smoothed point, M data points are lost at the beginning and end ot array \(\because C\), where
\[
M=(N P-1) / 2
\]

\section*{Method}

The first (MM) and last (NN) array indices for which YC(I) are computed are determined as follows:
\[
\begin{aligned}
& M M=M+1 \\
& N N=N-M
\end{aligned}
\]
where \(M\) is defined above and \(N\) is the number of original displacement points in array \(Y\). Subroutine QLSQ is called to compute the \(C_{1}, C_{2}\), and \(C_{3}\) coefficients for each of the \(I\) smoothed points which are then computed as follows:
\[
Y C(I)=C_{1} * X(I)^{2}+C_{2} * X(I)+C_{3}
\]

A flow chart zor this routine is shown in Figure 8 .
Error Diagnostics: NONE
Subroutines Required: QLSQ
Argument List: \(\quad X=\) array of independent \(\because a r i a b l e\) \(Y=\) array of dependent variable \(Y C=\) array of smoothed depencient variable data \(\mathrm{N}=\) number of oriainal displacement versus time data points \(N P=\) number of points used to compute each smoothed data point

Subroutine Length: \(\quad 758\)
2.2.4 Subroutine DEFIV1 (X, Y, YP, N, NT, ID)

Subroutine DERIVI computes the derivative (Yp) ot the dependent variable \(Y\). A quadratic least square fit of iNp points is used to compute each derivative point; thus K points are lost at the beyinning and end of array UP:

Eigure 8. SM Elow Chart.
\(\therefore\) 風い。
\[
\begin{aligned}
& K=M+M * I D, \\
& M=(N P-1) / 2, \\
& I D=1 \text { for first derivative, and } \\
& I D=2 \text { for second derivative }
\end{aligned}
\]
\(\therefore\) ：Hat \(\therefore\) ior \(i D=1\) ，array \(Y\) contains displacement data which i．ive ilreddy been smoothed using a quadratic least square fit over \(\because\) ：ints；thus，\(M\) points have already been lost from the original ：if licoment jata．For \(I D=2\) ，array \(Y\) contains first derivative \(\because \dot{U}+\mathrm{c}\)（y）data which starts at array location \(\mathrm{Y}(2 \star \mathrm{M}+1)\) ．

Method
The first（MM）and last（NN）array indices for which YP（I） ．iU amiuted are determined as follows：
\[
\begin{aligned}
& \mathrm{MM}=\mathrm{K}+\mathrm{l} \\
& \mathrm{NN}=\mathrm{N}-\mathrm{K}
\end{aligned}
\]
wher \(\ddot{n}\) and \(M\) are defined above and \(N\) is the number of original ：isblacement data points．Subroutine QLSQ is called to compute the \(C_{1}, C_{2}\) ，and \(C_{3}\) coefficients for each of the \(I\) derivative anints．The derivative \(Y P(I)\) is then computed as follows：
\[
Y P(I)=2^{\star} C_{1} \star X(I)+C_{2} .
\]

A Elow chart for this routine is shown in Figure 9.
Error Diagnostics：NONE
Subroutine Required：\(\quad Q L S Q\)
Argument List：\(\quad X=\) array of independent variables \(Y=\) array of dependent variables （displacement or velocity）
\(Y P=\) array of derivative data
\(N=\) number of original displace－ ment versus time data points
：ip－number of yoints used to compute aach serivative point

Figure 9. DERIVl Elow Chart.
```

                                    :n=
                                    O=
                                    #--こ!!!
                                    aC心.1.\becauseY:!
            Subroutwileteng=h: 774
    ```



```

\therefore \becausen:Orm:
\because= \because, *2}+\mp@subsup{Q}{2}{*

```

```

N1 FO N2. FN must be an oid integer - .
Method
The independent variable xus is ramint... to.
EF, where

$$
\begin{aligned}
& \mathrm{FF}=\mathrm{X}(\mathrm{NN}) \\
& \mathrm{NN}=\frac{\mathrm{N} 1+\mathrm{N}}{\mathrm{~N}}
\end{aligned}
$$

and

$$
X P(I)=X(I)-E P
$$

```
 variable is
\[
\mathrm{Y}_{=} \lambda_{1} * \mathrm{Y}^{2}+\lambda_{2}+K H+\lambda_{3}
\]

The least square residuals are a mimimam whor the tions ares satistied:
\[
\begin{aligned}
& A_{1} * \therefore P^{+}+A 2 * X P^{3}+A_{3} * \because X P^{2}=\therefore E^{2} * \because \\
& A_{1} * \sum^{3}+A_{2} * \mu^{2}+\lambda_{3} * \quad \because!-\quad \because *
\end{aligned}
\]
where summations of \(X P\) and \(Y\) are computed for indus 1 wiul \(\because=\) u N2. Determinants are used to solve the above system L a equatio:as for the coefficients \(A_{1}, A_{2}\), and \(A_{3}\). The \(C_{1}, V_{2}, \ldots \ldots Y_{3} \ldots!\) are computed from \(A_{1}, A_{2}\), and \(A_{3}\) as Eollows:
\[
\begin{aligned}
& C_{1}=A_{1} \\
& C_{2}=A_{2}-2 \star A_{1} * F F \\
& C_{3}=A_{3}+A_{1} * E F^{2}-A_{2} * F F
\end{aligned}
\]

A Elow chart for this routine is shown in figure 10.

\section*{Error Diagnostics: NCNE}

Subroutines Required: NONE
\[
\begin{aligned}
& \text { Argument List: } \quad X=a r r a y \text { of indeperdont } \because, Y^{2} \\
& \text { Y =array of dependent var:ab: e } \\
& N L=i n d e x \text { of Eirst point used } \\
& \text { in fit } \\
& \text { N2 =index of last point used } \\
& \text { infit } \\
& C=a r r a y \text { containing quadratic } \\
& \text { coefficients. }
\end{aligned}
\]

Subroutine Length: \(\quad 1348\)
2.2.6 Subroutine ROTATE(N,Jl,IPR)

Subroutine ROTATE translates, rotates, and calibrater tie
on-board camera data stored in arrays \(x\) and \(z\). All data are ranlated to a coordinate system through the sled range refererco : (first \(x, z\) point for each time). The axis is then rotates si: \(\cdots\) angle between the sled range reference and the sled referenco (second \(x, z\) point for each time) is the same for all time \(\quad \because \because\) i.e., all angles between the sled range reference and sle: : : . ence are the same as the ande at time zero. The iata \(\ldots: \cdot\) translated back to the initial coordinate syster at in. \(\rightarrow\) :

Figure 10. QLSQ Flow Chart.

\section*{Method}

For the first time station, the rance \(:\) and \(z\) data are subtracted from the sled reference \(x\) and \(z\) :
\[
\begin{aligned}
& \mathrm{X} I=\mathrm{X}(1,2)-\mathrm{X}(1,1) \\
& \mathrm{Z} 1=\mathrm{Z}(1,2)-\mathrm{Z}(1,1) .
\end{aligned}
\]

These differences are used to compute the reference angle \({ }_{R}\) :
\[
\theta_{\mathrm{R}}=\arctan (21 / \mathrm{XI})
\]

If \({ }_{\mathrm{R}}\) is less than zero, then
\[
\theta_{R}=\theta_{R}+360 .
\]

This is the reference angle between the range and sled reference points. For all other time stations, the axis through the range reference is rotated to make the angle between the range and the sled reference points the same as \(e_{R}\). Note that for this first time station none of the \(x\) and \(z\) array data are rotated or translated.

For time stations \(I=2\) to \(N\), the following are computed:
(a) All data (\(J=2\) to 8) are translated to a coordinate system through the range reference as follows:
\[
\begin{aligned}
& X(I, J)=X(I, J)-X(I, I) \\
& Z(I, J)=Z(I, J)-Z(I, I)
\end{aligned}
\]
(b) Angle \({ }_{i}\) is computed from the sled reference difference:
\[
\because_{i}=\arctan \{Z(T, 2) / X(I, 2)\}
\]

If \({ }_{i}\) is less than zero, then
\[
\because_{i}=i_{i}+360 .
\]
(c) Angle \(\because\) is the an ile be whin the then then then been rotated with resuect to the initial :
\[
={ }_{1}-R
\]
(d) The inverse rotation (or rotation bu- is \(\cdots\). puted as follows for parameters \(J=-2\) to 3 :
\[
\begin{aligned}
& X(I, J)=X(I, J) \star \cos +Z(I, J) * \sin \\
& Z(I, J)=-X(I, J) * \sin +Z(I, J) \star \cos
\end{aligned}
\]
(e) The data points are then translated back to the initial range coordinate sustem (at time zero:
\[
\begin{aligned}
& X(I, J)=X(I, J)+X(1, I) \\
& Z(I, J)=Z(I, J)+Z(I, I)
\end{aligned}
\]
(f) All \(x\) and \(z\) data for paramoters \(t=?\) to a are converted from counts to feet:
\[
\begin{aligned}
& X(I, J)=X(I, J) * \operatorname{CAL}(J) \\
& Z(I, J)=Z(I, J) * \operatorname{CAI}(J)
\end{aligned}
\]

This subroutine also prints a listing of frame number versus parameter \(x, z\) data in counts when \(I P R\) is less than one. A flow chart for this routine is shown in Firure in.

Error Diagnostics: NONE

\section*{Subroutines Required: \\ NONE}

Argument List:
\(N=\) number or insil
\(J l=\) incex of first inannoty sled referenie. F:

TPR = print cont:ai suramot.
Blank COMMON
Variables (used by this subroutine):


```

CAL = array of calmb.a.... :!
Euet ver w.:
XD = dummy array asco: t- i\because:
data for pranti:.:

```

Subroutine Lenyth: \(\quad 250_{8}\)
R1ank Common Length: 234348
2.2.7 Suivroutine MEANI (N, X, Z)
 Subroutine NEANl computes the mean ant the sta....
deviation about the mean for \(x\) and \(z\) axis siux ruir.......

Method
compute the mean of the \(x\) and \(z\) axis \(\therefore\)
\[
\begin{aligned}
& A V X=\frac{1}{N} \sum_{I=1}^{N} X(I) \\
& A V Z=\frac{1}{N} \sum_{I=1}^{N} Z(I) .
\end{aligned}
\]

Then compute the standard deviation of the anta abu.u a.... \(x\) and \(z\) axis value:
\[
\begin{aligned}
& \sin X= \sqrt{N} \begin{array}{c}
\sum[X(I)-A V X]^{2} \\
I=1 \\
N-1
\end{array} \\
& \sin Z=\sqrt{N} \begin{array}{c}
N(Z(I)-A V Z]^{2} \\
I=1
\end{array}
\end{aligned}
\]

Finally, arint tho mean anci stancatil deaidtinm inta ron the standard output File.

Ereve Diaynostics: \(\because\) ver
Subroutines Reuuneed: NoNE

? - array Gi \(\quad\) axis iata peirts
Subroutine Lenith: \({ }^{168}\)

Subroutine MEAM2 momputes the mean anra stanrard ieviation of unsmoothed minus smoothed \(y\) ande \(z\) axis data.

\section*{Method}

The sums and sumi of squares of the unsmoothed minus smoothed data are computed as follows:
\[
\operatorname{SMX}=\stackrel{N 2}{I=N 1} D I(I)-X D(I)
\]
\(S M X 2=\begin{gathered}\mathrm{N} 2 \\ I=\mathrm{N}] .\end{gathered}[0 I(T)-X D(T)]^{2}\)
\(\left.B M Z=\sum_{I=N 1}^{\mathrm{N} 2} D C(I)-Z D i I\right)\)

Figure 12. MEANJ Flow Chazt.
```

                                    ahovn are defined in the arqument list belovi.
                                    \therefore., SME and SMZ) and standard deviations (SMX2 and SMZ2) arm
                                    wow:ei from these sums and sums of squares:
    ```



```

~a-2-\cdots1-1.
\therefore : iow cha:r Eor this routine is showr in Fin:ur: '.
Fror Diagncstics: NONE
Gubrgatinos Required: NONE
Argument List:
N1 = index of the first jata
point used in the summatione
N2 = index of the iast data moint
used in the summations
DI = array of linsmoothes < \: A:
data points
DC = array of unsmoothere z asi:s
data points
XD = array of smontrea x axis
data points
ZD = arriy of smonthe: a n:% s
data points
SM: = mean }x\mathrm{ axis data

```

```

        data
    smz = moan z ari: \at?

```
\[
2
\]
ciati

\section*{Eunroutinc ixumti: \(\quad 768{ }^{\circ}\)}

 tie averaje imln speei over a span of approxirately 150 Erames \(\therefore\) ○ áser:.

The Eirst Irame in which the stroboscopic flash was obse:ツre was defined as t-ou. The strobe, initiated by a time

 -i)ni and 1 S observed 1 m film frame 0000, it is apparent that it wis andtated between the closing of the shutter on film frame - П001 and the closing of the shutter on film Erame oono. During \(\therefore\) it tusts, the intersit: of the first observed flash would inilidte that it was initiuted between the olosina of the shutter万r irame -0001 and the ofeninu of the shatter on frame 000 . It

 Be : Un An.

That the oftical axis at the primar: camera was \(\therefore\) anai \(t\) the lane of symetry of the subjert.

 readines wf these coordinates wote fhen woune an tae a at a aistance between the averaned coordinates ot uati pair wis adraLated. Dividiny each of these i fital distances bu whe eore-三pordinu measured dimenstor betweer Eiduciais \(\because\) iolded sonversion :onstants, 1 n terms of "counts per fout", i \(\because\) twi : lines morral te

 the focal point of the lens to each ut these findus and the : hanos Ot symmetry could then be calculated. isee fyyure 4

Prior to each test run the brwath if the subiect was aedsured at each tracking fiducial ivedtion wi in ar. anth:n metur. Assumina that each subject was summetrical, the tastanco from the

\(\qquad\)

were auded to the file. This file was then copied on the card punch and printer as a time saving measure in case the disk file should be accidentally purged.

At this point the program HIFPD could have been attached and executed; however, the normal procedure was to ottain the card files and submit them in the batch mode on an overnight schedule. This permitted the connect time to be used for read-in and editing of additional data files.

Descriptions of specific procedures are presented in later sections, and the composition of a deck assembled for a typical computer run is illustrated in Figure 14.

\subsection*{2.2.10 Description of Program HIFPD Input Data and Parameter Codes}
I. Program Setup Cards
A) The first card in the setup deck must contain the date in columns 1 to 10 ; for example, 12 FEB 74 or FEB 11,74 (only one date card per job).
B) The following four or five cards are required for each test in the computer job:

Card Number 1
```

Column Format Data Description
1-80 8Al0 80 columns of alphanumeric information which will
be printed at the top of each page.

```
Card Number 2

1-5 A5
6 I1

7 [1

Test number
IRX--flag controliing polarity of \(x\)-axis data blank or 0---no change l---change sign of \(x\) - \(\begin{aligned} & \text { xis } \\ & \text { data }\end{aligned}\)

IPR--flaq controlling input data and difference printout - blank or 0---print data
l---omit printout
\(: 7-29\)

\[
\therefore:, 24
\]

Card Number 2 (Continued)
\begin{tabular}{|c|c|c|}
\hline Column & Format & Data Description \\
\hline 59-60 & I2 & NP--number of data points used in the quadratic fit. Np must be an odd number - 3; default is \(N P=11\). \\
\hline 61-65 & F5.0 & DYLP--velccity and acceleration linear plot scals increment per inch (see parameter IPL). Default is \(2.5,5,10,20\), or 30 depending on the range of the data. \\
\hline
\end{tabular}

Card Number \(2 A\)-- required only when IADJ \(>0\).

1-10 Fl0.0 Time calibration--number of Erames per secona. May be left blank if film speed is 500 frames fer second.
11-20 F10.0 SLED calibration in counts per foot
21-30 Fl0.0 HIP calibration in counts per foot*
31-40 Fl0.0 KNEE calibration in counts per foot*
41-50 Fl0.0 SHOULDER calibration in counts per foot*
51-60 Fl0.0 ELBOW calibration in counts per foot*
61-70 F10.0 HEAD POINT 1 calibration in counts per foot
71-80 Fl0.0 HEAD POINT 2 calibration in counts per foot

NOTE: The decimal must be punched in the above data fields unless the data are integer and are right justified.

\section*{Card Number 4}

1119 in column 1 to indicate the end of test input

NOTE: Cards 1, 2, and 3 are placed in front of the test deck and card 4 is placed after the last frame in the test.
C) The last card in the input deck (before the end of job card) contains the word "END" in columns 1 to 3.

\footnotetext{
*The calibration field for these variables must be aro in hink for \(\mathrm{ITYPE=1}\).
}
```

\#nofollowise:
4%
Ba:%
ilm:
11:%
race
*%:!
1!
Monk :onet
\#0, :G% ?
ata bescrysion
\therefore- 17
Erame number

* reading in counts for Range data
1:-19 17
z reading in counts for Fanse data
20-26 17
x for Sled
2-3.317
z for Sled
34-40 17
: for Hip
!-4; 17
z for Hip
4--%! 17
\& for Knee
z Eor Knce

```

\section*{Yrsiog 2}
```

1.4
Frame rumber

```


```

$\therefore$ for Elbow
z. for :lbow

```

\section*{Card Number 2 (Continued)}
```

Column Format Data Description
41-47 17 z for Head print l
48-54 17 x for Head yoint 2
55-61 17 z for llead point 2
IV. Card Formats for the Test Input Data Cards for forre:
Card Number i
2- 5 14 Frame number
6-12 17 < reading in counts for Range data
13-19 17 z reading in counts for Range data
20-26 17 \& for sled
27-33 27 z forslei

```

```

41-47 17 : : Heari Point l

```

```

55-61 17 for Heac! point 2

```
 NOTE: FOR ITYPE=1, only 1 data card is read for each frame.
 V. General Comments
 A) if thert are any errors in frame or card identi-
fication numbers, error statements will be printed at the top of
the first outiut prae for the test and all computations after the
listing of the input data will be deleted.
3) A maximum of (3i) frames (MAXN) will be road for each test. If the test input deck contains more than 300 frames, only the first 300 will be processod. This could be chamad bu: changing MAXN and the array dimensions in the frowram.
C) [f the calibration factor for a variano is miss-
ing flag ICAL(J) is set equal to zero and that rariablo will ue deleted from the analysis.

the 豸arable !abatiot
randes : : - 0 - 0 +
; . 1
Ane lun.
ment mactars

onittet • r

irmediato: \(:=+2:\) rava

wher isio:
 G) The tollow: : : tras atso
since December 1973:
 (i)
```

The vel . \! A! !
mont per incti \,%: t.at :."..

```

```

tro•!⿱⿱亠䒑日心㇒⿱幺小心
DY'wil: !:\ell
30 ke:`ncia! N: +i." r
MML: is . C:NO.
<arG =2,<oう. !-!

```


```

    & \therefore & & \thereforeO
    ```



```

*!!?:
\&
ご!

* To deternime tnex lntluwnow 山i
o: restraint harnesses won tir.

```

```

* Tr compare the measlired arer.at! ;..i.
ure:S r!i tiap humar b: !

```

```

* \#l1ted mota] [andy Mode\

```

Each of the volunteer subjects was exposed to eacte impact
 with an operational harness, and once with a nyiun harness. "rtu (uime turt whon were ovaluates consisted of thres exposures * \(-6 \%\) infots and three exposures to - \(10 G_{x}\) impacts. The aumay

Whe impare enviromments wore develuged on tat Jorizontal

 ! ra: • soriou suptember 1976 - Junc 197

 its ancular displacement relative to the first.

In accoraance with Recommenced fatice and Ji 8 , ine
 with tideciale.

Uract (Eoint ?) Tho pracoon.
 (iitarnate) above the trageon.
\(\therefore\) ant Soint 2) Jutside cornor of 9 ?ransiucor Acor!eromete: Pack (amA) \(w m m o n\) to all three legs (Figure 15).
 acromion poressin the soap:da.
Eibow The most lateral promet.o: o: the humeral condyle.

The most prominent formotid. © the stybion.

Figure 16. RSD(: O/R) Soat Coordirate Camera rocations.
：！：：！！！： 11〒．3 3，32．75
で：
\(11101 \div 2 n\) \(n\)
 上S10
of anthronometrin ravas．ire＊

Mtまト́a．
an＂：OWorainc of the trackir
ar＇resuonse evert：
Ar：pmontry af each subject wris measuren aral dora－
shany a duchal application，medsulumert ana arnanent
Bher arior ta each tost lat： r！3 rerror

\(\because 0 口!\quad \vdots: 1:\)
 an ！＋
， ：い！！

TABLE 1
DEFINITIONS OF PRETIST DATA ITEMS
```

Item Definitions
RS Restraint Harness Materiad
GN Nominal Impact Acceleratic!: -G !
RN Test Number
DT Date of Test (rear, Yonth, Du`)
1 weight ( Kg)
2 Height of head band fiducial above sled deck
3 Height of shoulder above sled deck
4 Height of iliac crest above sled deck
5 Trageon to 9TAP origin
6 Trageon to headband fiducial distance
7 Shoulder to elbow distance
8 Elbow to wrist distance
9 Hip to iliac crest distance
10 Hip to knee distance
11 Mid-thigh to knee distance
l2 Knee to ankle distance
13 Breadth at trageons
14 Breadth at shoulders
15 Breadth at elbows
16 Breadth at hips
17 Breadth at knees
18 Breadth at ankles
19 Mid-shoulder height. Distance along seat back plane Erom
line of intercept of seat pan plane and seat back plane
to a line normal to the seat back and tancent to the upper
surface of the shoulder at the centerlire of the loft
shoulder strap.

```
\begin{tabular}{|c|c|}
\hline & \\
\hline \(\underset{\text { TE }}{\text { TE }}\) & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 오을 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{\infty}{\underset{J}{=}}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\underset{\underset{\sim}{c}}{\underset{\sim}{c}} \underset{\sim}{\sim}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{c}{0}_{\circ}^{\infty} \stackrel{\infty}{\Xi}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\cong \underset{\Xi}{\Xi}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\cdot \underset{ヨ}{\cong} \underset{\Xi}{\approx}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \(\because\) 른 & \\
\hline
\end{tabular}
SUMMARY CF PRETEST DATA, SUBJECT A22
\[
\begin{aligned}
& \text { 4 4ateratar }
\end{aligned}
\]
\[
\begin{aligned}
& \stackrel{2}{=}
\end{aligned}
\]

TABBI: 5
SMTMPY OE IRETEST DA

\[
\text { Sifuect \& } 22
\]
\begin{tabular}{|c|c|}
\hline 웇흥 & \\
\hline 胥 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & が \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline －若 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline 으윽 응 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& z \\
& z_{0} \infty \\
& \frac{1}{z} \\
& z \\
& z
\end{aligned}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline -喜尽 & がき \\
\hline ¢5 & \\
\hline
\end{tabular}
○志㣽 를
空要
\[
\begin{aligned}
& \text { 妾 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 吴 } \\
& 8 \text { ЭTgVL }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{SUMMARY OF PRETEST DATA，SUBTPCT C2} \\
\hline \multicolumn{12}{|l|}{} \\
\hline － & \multicolumn{3}{|l|}{NYし0} & \multicolumn{3}{|l|}{OPERATIONAL} & \multicolumn{3}{|l|}{\({ }^{+1} h_{1} \mid 1\)} & & \multirow[t]{4}{*}{STAITARLD Deviation} \\
\hline ， & t． & \(\gamma\) & 10 & ¢ & 8 & 10 & 6 & \(\gamma\) & 111 & & \\
\hline \(\therefore\) & 109. & 11939 & 1011 & 105．6， & 992 & 1023 & 1291 & 1961 & \(1141 \%\) & & \\
\hline & \(\therefore\) all & 76117 & 761019 & 761202 & 76,0928 & 761103 & 71032， & 761015， & 7719115 & MEAN & \\
\hline 1 & U安 & ¢1．18 & 80.39 & 80.50 & 82.99 & 81.18 & 82，69 & 81.07 & 81.63 & 81.2 & ． 93 \\
\hline ． & 1．30 & 103.44 & 198.04 & 109.34 & 106.94 & 110.04 & 111.34 & 105． \(1 / 4\) & 110.24 & 198.98 & 1．61 \\
\hline ： & －1．4 & \(\because 214\) & 81.04 & 82.14 & 81.44 & 81.54 & 80.04 & 80.44 & 81.34 & 81.37 & ．65 \\
\hline ＋ & \(4 \cdot 1.4\) & 44． 34 & 4.4 .14 & 43．94 & 43.64 & 43.94 & 44，6．4 & 43.64 & 44， 8.4 & 44.24 & ． 53 \\
\hline & 1．\({ }^{\text {a }}\) & 13.21 & 14．2： & 14.30 & 14.80 & 13.20 & 13.90 & 14．50 & 13.30 & 14．03 & ． 5.4 \\
\hline ＇ & & 1．\({ }^{2}\) & & 8.57 & 7.94 & 8.26 & 8.89 & （．19 & 7.94 & 1.88 & 1.46 \\
\hline & \(\therefore!\) & 3.15 & 34.29 & 33.18 & 33.02 & 33.012 & 32.70 & 32.39 & 34.29 & 33.29 & ．tt \\
\hline － & \(\therefore\) & ． R \(^{3}\) & 28．2F． & 27.30 & 26.67 & 27.62 & 27．6．2 & 27.94 & 27.319 & 47．6．2 & C10 \\
\hline ． & ．．． S & 15．4； & 13.4. & 13.34 & 13.97 & 13.65 & 13.65 & 12.70 & 14.29 & 15．51 & ． 0 \\
\hline & \(\cdots+\) & －\％ & 47．t． & 46．6． & 46.58 & 47.94 & 46.59 & 45.04 & 45.104 & 47.105 & ，\％ \\
\hline \(\therefore\) & \(\cdots\) & \(\therefore\) \％ & 27.94 & 25．72 & 25.4 .3 & 25.40 & 25.40 & 20．68 & 25.08 & 25．til & ． 910 \\
\hline \(\therefore\) & \(\cdots \cdot\) & ． 2 & 4．8． 9.8 & 47.94 & 47.31 & 47.62 & 47.6 & 48.90 & 47.94 & 47.194 & ：\(\because\) \\
\hline ． & \(\cdots \cdot\) & \(\therefore\) ，\({ }^{\text {a }}\) & 14．911 & 11.20 & 13.80 & 14．fir & 14．：51 & 11．11 & 14.10 & 14.47 & 3） \\
\hline ． & ． & \(\therefore i\) & 44． 10 & 4．10 & 44.60 & 43.90 & 44.20 & 46.17 & 48.211 & 45.43 & 1，3： \\
\hline ． & & ．\({ }^{\prime}\) & & 54.8 .8 & 57.118 & 54.917 & 51．11 & 1．7 017 & ［3．4） & 14．14 & 2.16 \\
\hline ． & －． & \(\therefore \therefore\) & \％\({ }^{2}\) & 36．10 & 38.411 & 34.111 & 39.111 & 37．6i & 39．41 & 36， 54 & \(\ldots\)＇ \\
\hline & & \(\cdots\) & \(\therefore\) ，it & 35.80 & 37.07 & 33.11 & S \(\quad 1\) & S品 & \％，211 & 34， 3 & \(\therefore 10\) \\
\hline & & \(\bullet\) & \(\therefore .4\) & \({ }^{2} .8 .81\) & 37.49 & 35，事 & ： 4 & \(\because 11\) & 35.41 & 3，1＋1 & 1．4 \\
\hline & & －•• & 1．1． & 1．1．31 & t，\({ }^{3}\) & \(\therefore \therefore 14\) & ¢ ．．．＇； & 1－3．11 & 13.18 & 1，＇？ & 1.4 \\
\hline
\end{tabular}
\[
\text { TABLE } 9
\]

\subsection*{2.3.4 Photogrammetric Calibration}

Calibration of conversion constants was based upon the method illustrated in Figure 4 . The fiducials on the lexan pare? \((y=-32.062)\) and the side of the seat pan (\(y=-8.0\)) were diqit: 20 ? and the average conversion factors for those planes were calculated to be 2787.13 counts per foot (cpf) and 1650.74 cpf respectively.

Referring to Figure 4 the following values were assigned:
\[
\begin{aligned}
& r_{0}=r_{02}=1 \text { foot } \\
&=1650.74 \text { counts } \\
& r_{p}=2787.13 \text { counts } \\
& r_{p 2} \\
& s_{0}-s_{02}=24.062 \text { inches. }
\end{aligned}
\]

The distance, \(r\), from the axis at which the ray from \(P_{o}\) to the focal point penetrated the object 2 plane was calculated to be:
\[
\begin{aligned}
& \frac{r}{r_{02}}=\frac{r p}{r_{p 2}} \\
& r=1 \text { foot } \times\left(\frac{1650.74 \text { counts }}{2787.13 \text { counts }}\right) \\
& r=.592 \text { foot }=7.107 \text { inches. }
\end{aligned}
\]

The apparent distance from the focal point to the plane \(y=-8.0\) inches was calculated to be:
\[
\begin{aligned}
& \frac{s_{0}}{s_{0}-s_{02}}=\frac{r_{0}}{r_{02}-r} \\
& s_{0}=\left(s_{0}-s_{02}\right)\left(\frac{r_{0}}{r_{02}-r}\right) \\
& s_{0}=24.062 \text { inches }\left(\frac{12 \text { inches }}{4.893 \text { inches }}\right) \\
& s_{0}=59.01 \text { inches. }
\end{aligned}
\]

Cadmuntion \(\therefore\) a onversion constant, \(f_{n}\), for anখ plane, \(y=n\), was then accomplished usinc:
\(n\) ien \(y=n=0 n e\) balt the measured breatth of the subject between anthropometras points on the ieft and riuht sido.
\(\therefore .5\)
Dati Peluction Process
The iata reduction process consisted of data editing, Gaitizın: anc electronic data processing. Film editing and di.itiain: wre docomplished on the Producers Service Corporation rodol !ve Eilm analyzer (PVR) interfaced with a teletype terminal IMy, wita paper tape punch. Tape to card conversion and electronic processing and plotting were accomplished on the CDC Gyber 74 System at the Aeronautical Systems Division's Digital Computation Facility (ASD/AD) in Building 676, Area B, Wright-patterson Air Force Ease.

\subsection*{2.3.5.1 Editing}

The primary camera film was viewed on a light table and the frames and .01 second timing pulses were counted throughout the event. The frame exposure rate (frames per seconc) was scanned for consistency and the average frame rate was calculated. During each run processed the frame rate a constant, +1 frame per second, durinu the 300 millisec ra - Inwinu initiation. During the brocram film speeds ranced finm 462 to 495 frames second.

The film was mounted on the \(\Gamma\) or and was transported formari in the aine mode until the operator observed that


```

2.3.j.2 Dusitiains

```

Upon conkletion
Ilim was transported reverse to irame which the strobe fiash was observed.
1. Seat torware tiondat
2. Seat dft ticucial
3. Hip fiducial
4. Knee fiducial
5. Shoulder ficucial
6. Elbow fiducial
7. Trageon fiduclai
8. 9 TAp mount fiducial

 four pairs of coordinates.
 were diqitized, the coordinates from each succeodion frame wer diyitized in the same sequence until Erame 150 apronmat.oy 100 msec).
2.3.5.3 Electronic Data Buccessin:

This portion of the rosess resilus tare arocedures, data preparation, computation, ana ale": n:

Data Preparation: Durin: the data repatation procedure, the file recorded on punched paper tipe was omruninatat to the computer at ASD/AD from a TTY via voice dual.ty ines. The file was then edited to correct format and of flamute: or:mo,

 card file.

The identification card contained alphanumeric lntormation in cards columns (cc) 1 thru 80 which was printed on output tables as table identification. The form used was RSD SIUDY, SUBJECT--, RUN----, YYMMDD, material. The next to last atry is the date on which the test was conducted in terms of \(\because\) ear, month, and day of month.

The control card contained the test number and Groyram control switch characters. The format and definition of switching functions is listed in Paragraph 2.2.10.

The conversion constant card contained the film speed (frames per second) and conversion sonstants to be applied ro the second, third, and fourth pairs of coordinates on the first line read from each frame, and the first thru fourth pairs of coerdinates on the second line read from each frame. The format for this card was (8Fl0.0).

Gpon receipt of the card file of PCS coordinate readinys, it was merged with the previously purched \(I D\), control, and constant cards, and the computer control cards for submission to ASD/AD for computation. The composition of a typical computer run deck is illustrated in Figure 14.

Computation: Film frame coordinate positions \(\therefore\) the tracked points were converted to 2 dimensional seat coordirate time histories by program HIFPD.

The PCS coordinate readings of the two reference iliucials from the first film frame were used as the basis for the location of optical axis relative to the reference points and for the angular relationship between the axes of the PCS and the SCS. Reduings of these points from each subsequent film frame translated and rotated the PCS coordinate system to coincide with the orientation of the first frame. This was done to minimize errors ide \(t \cdot 1\) vibration of the camera during the test event.

```

second reference foint was valomiata l {% :a
nates by the con'ersion constant rar:. . .: \& .:
from the optlcal axis ot eaor. ci the :ramat

```


```

Eerence purnt was timen subtracted :rom ta| % :

```



```

of the aft seat reveren
From the [ime :acornios
positions, HIFPD computed tatul \because, \....
histories of each point, fittins a mo\becauseir:
points during each differentiation, aro tha an:. .
acceleration time histories of the gTi\ wow, %
and of the shouider about the hip point: amam
quadratic arc to eleven points duriry uaci il: \&:.
The resultirg time hzstrrie: }<br>mathrm{ 人.
tables and written on magnetic tape for pint:ir
Plotting: Aiter examiratina
results of the computation revealed no amravorn
plot request was submitted to ASD,AD. Tht d.:%
magnetic tape by HIFPD were read and plott.N:
Comp Plotter.
2.3.6 Results and Accuracy
The results of this effort were cieluverta
tories of displacement, velocity and accele:ati*:
graphic forms.
Analysis of the wropamat an wo wry
points resulted in a maximum est.matar arm
points except the ellow.' \Gammaurin: ali twa
strated laterai motima trwarl the : in:". : %aw, :

```


cxtremities extended forward from the seat. These lateray excursions of the elbows caused the breadth across the eldows to arroro... but not become less than, the breau a across the shouliois at maximum extension of the arms. The mean of the maximum laterai exoursion of the elbows was 1.96 inches Erom a mean latera dis: iacurere \(\therefore\) i0. 34 inches from the plane of symmetry to 8.38 inches. whe ustimateu error in solutions to elbow coorcinates at maxirur extension of the arms was 0.23 inches.

From a study conducted by \(H\). T. Mohlman of the LDPZ, tiet cifects of smoothing the raw solutions and the first and seconc Serivatives may be summarized as follows:
(I) Attenuation of peak values of dispiacement, veiocit: and acceleration is a function of Erecuenc:.
(2) The eleven point quadratic fit yields closer correlation than either seven, nine, thirteen, or Eifteen point quadratic fits.
(3) The attenuation of any specific displacement, velocity, or acceleration peak would be reasonably predictabie if the frequency of the peak could be properiy interpreted. A technique used to evaluate the frequenc: response characteristics of the smoothing filter is described in a later section (page 115) and is detailed in the above reference report.
(4) Sscillations in velocity and acceleration curves are predominatly artifacts induced in the smoothing fit.

The : \(n\) ferenced work included investiaation of samrlin theor: ane aplication of the quadratic fits to digitized photonetric data acquired during BPRD tests 172 and 173.

The accuracy of the diditizing was checked usinc the standard deviation about the mean for the solution of the rear seat reference point with respect to the forward reference point. The standard jeviations were:
```

                                    -\therefore%%:
                                    \thereforeiz
    ```



```

    Zhe etiect of smocthimo the aisplacement soiutions of the
    taured :rints are indicated in Table ll, which presents the stan-

```

```

\thereforemp-nents r: the dis:lacements taken fr'm a recresentative sample
U the tests. \#?% resultart standard deriations in the sampje
Eahat Eru: .029 irch (tesr i:A0, hifl to 0.052 inch (test 993,
A:q. 彐onat : : Nere considerably less than the estimated maximum
Evar oz 0.l2 :nch.
2.4 - 50% F SWTHR: TROTECOIO: COMPARISON
Cumaver subject: have been wively used to assess patterns
ani scurity ajury resulting from exposure to impact environ-
mentis. These sessments nave been used as the basis for predict-
in the :rrabilit% Of injury to living beings who might be sub-
Geta\& FG siminat environments. An investiaation of the reliability
O tha: mach to m.fury protection assessments was required to
Amane :ns`its Letwern living subjects and vauavers.

```
TABLE 11
STANDARD DEVIATION OF DIFFERENCE BETWEEN UNSMOOTHED AND SMOOTHED DISALACEMY.NT IN FERT
\begin{tabular}{cc}
MEST & 1014 \\
\(x-A x i s\) & \(z-A x i s\) \\
.0019 & .0022 \\
.0022 & .0020 \\
.0041 & .0030 \\
.0030 & .0026 \\
.0057 & .0035 \\
.0060 & .0045
\end{tabular}

\begin{tabular}{ll}
\multicolumn{2}{c}{ TEST } \\
x-Axis & \(z-A \times i s\) \\
\hline .0030 & .0031 \\
.0021 & .0026 \\
.0057 & .0040 \\
.0032 & .0039 \\
.0047 & .0045 \\
.0054 & .0044
\end{tabular}
\begin{tabular}{lcc}
& \multicolumn{2}{c}{ TEST 993} \\
Hip & .0020 & .0026 \\
Knce & .0028 & .0026 \\
Shoulder & .0050 & .0032 \\
Elbow & .0035 & .0021 \\
Head Point l & .0061 & .0047 \\
Head Point 2 & .0065 & .0039
\end{tabular}
 Head Point 2

The Impact Protection Branch of the Aerospace Medical Research Laboratory (AMRL/BBP) conducted a test program to compare the responses of live anesthetized baboons with those of baboon cadavers. The intent was to match live animals with cadavers of similar anthropometry in pairs for comparative analysis. The data presented herein were derived from cinematographic recordings of the body segment responses of the subjects during \(-50 G_{x}\) simulations conducted on the AMRL/BBP Horizontal Impulse Accelerator Facility during December 1977 and the AMRL/BBP Hydraulic Decelerator Facility during May 1978. These facilities are both located at AMRL/BBP, Wright-Patterson Air Force Base, Ohio.

Eighteen tests were conducted on the Horizcntal Impulse Accelerator Facility. Six tests were conducted using a scaled three-point harness, three (1444 thru 1447) involved live anesthetized subjects, and three (1449 thru l45l) involved cadavers. A camera malfunction during test 1446 resulted in loss of photo data from that test.

Six live anesthetized subjects (tests 1453, 1454, 1456, 1457, 1459 and 1460) and six cadavers (tests \(1462,1463,1464\), 1466, 1467, and 1468) were exposed to the impact environment while restrained with a military type harness. Photometric data from these twelve tests was good and was reduced.

During the \(-50 G_{x}\) simulations conducted on the Hydraulic Decelerator Facility in May \(\vdots 979\), six live anesthetized subjects (tests 103, 104, 105, 106, 108, and 109) and six cadavers (tests 110, 111, 113, 114, 115, and 116) were exposed while restrained with a military type harness. Because of a camera malfunction during test 110, photometric descriptions of the responses of only five cadavers were available for comparison.

\subsection*{2.4.1 Requirements}

Primary requirements of the photometric data analysis effort were to derive, from cinematographic recordings, time histories of coordinate positions, velocities, and accelerations


```

        |.!ar
    ```



```

A,i nted, flate subject would require restraine from Latera:

```



```

fie lataral position ve the subgect. This method ot restraimimu

```


```

2.4.2 phntometras id:-:e
The ihotometrie ran:e, as ibjugtugtus i: Eiviaro ia, wos

```


Primary Camera
Focal Foint

Figure \(\mathrm{l}^{7}\) - 50 G Injury Protection Comarisori Mh :owst. Rangexand Seat Coordinate System.
positive to the right of the seat along the horizontal line, and the z-axis was positive upward along the zenith line.

The Photosonics model lB cameras, with 8 mm lenses, were mounted onboard the sled. The primary data camera was mounted with its focal point at coordinates (11.84, 53.12, 3.88) inches. Its optical axis was normal to the plane of symmetry of the seat. The front view camera was mounted with its focal point at coordinates (\(63.65,0.75,4.0\)) inches. Its optical axis was parallel to the x axis.

Seat reference fiducials were applied to the RH side of the seat frame structure at coordinates (2.28, 5.88, -3.7) inches and (10.70, 5.88, -4.29) inches.

\subsection*{2.4.3 Photogrammetric Calibration}

Review of films of the first tests demonstrated severe "barrel" distortion of the image (magnification decreased as distance from the optical axis increased). A grid board, made of flat black plywood with a l-inch by l-inch grid of white threads, was held with its face in the plane \(y=0\) and was photographed on the primary data camera. The grid board was then held with its face in the plane \(x=.5\) inch and was photographed on the front view camera.

The film image recorded on the primary data camera (side view) was mounted on the Producers Service Corporation model PVR film analyzer. The grid system was rotated until the horizontal grid line closest to the \(x\)-axis and the vertical grid line closest to the \(y\)-axis were parallel to the respective axis.

The intersections of the vertical grid line images and the \(x\)-axis were digitized from the line which coincided with the \(y\)-axis to the grid line 32 inches forward from it. This was replicated twice and the three sets of readings were averaged. The average readings were p'otted versus grid board displacement (Figure 18). Since program HIFPD was used to process the data,

Figure 18. Average and Modified \(-50 G_{x}\) Readings Versus Grid Displacement.
 relationship between observed point distance fron the ytion io. and corrected image dis ance from the optical axis.

As is the case with most fine wide angle lenses, the linear displacement of an image point from the optical axis apyraximated a direct relationship to angular displacement from the cptical axis to the line from the focal point to the obser:ed point.

From readings of grid lines in the relatively undistorted central portion of the image frame (cos: . . 99) and the foudo:ati on the seat frame structure, the apparent listance from the focal point to the grid was calculated to be 60.63 inches by the methna illustrated in Figure 4. Using an arc of radius 60.63 inches each reading was modified by dividing by the cosine of the angle between the optical axis and the ray from the observed point. A conversion factor was calculated in terms of counts read per inct: grid displacement for each point. The best straight line fit to the resulting conversion factors was calculated to be 136.1 counts per inch (1633.2 counts per foot). The coefficient of determination \(\left(r^{2}\right)\) and correlation coefficient (\(r\)) each exceeded .9999. Application of this conversion constant to the mocified readinas resulted in solutions within \(\pm .10\) inch. These results are tabulated in Table 12 and plotted in Figure 10 . The mean of the errara was .0296 inch and the standard deviation was .0345 inch.

\subsection*{2.4.4 Data Acquisition}

Prior to the start of the test proaram range survey iata, presented in the Photometric Range section, were measured and recorded.

Durirg preparation for each lata rin, :inacion mer

 3in jocts

\footnotetext{

}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
ir： 1 \\
2harlacement （inches）
\end{tabular} & iverage ：mage insplacemen． counts & \begin{tabular}{l}
ingular \\
asphacemer．\(=\) \\
 \\
小又土 \\
degrees．
\end{tabular} & \[
\begin{aligned}
& \text { Pedt: } \\
& \text { os: }
\end{aligned}
\] & yun－2ncr： & \\
\hline 1 & 134.3 & ． 3449 & ：34．3 & 234.3 & ＋2 \\
\hline 2 & 272．？ & 1.88 & 272.8 & ：26．i & －．． \\
\hline 3 & ＋07．5 & 2.333 & ios．： & 136.0 & \(3 . \therefore\) \\
\hline 4 & 5.41 .5 & 3.725 & ¢42．8 & ： 3 ¢ & \(\therefore .4\) \\
\hline \(\therefore\) & ny． & 4.74 & ¢ぐっ & \(\therefore 36.0\) & \\
\hline \(\therefore\) & 3：3．\(=\) & & 915．5 & \(\therefore \mathrm{P}\) ． 2 & －．． \\
\hline \(\checkmark\) & 4475 & 5.385 & 103．\({ }^{3}\) & 2 & \\
\hline \(\because\) & ： 236.8 & ヤ．ミミ： & & ：26： & －． 5 \\
\hline ＋ & －215． & E．443 & \(\therefore 2.3 .2\) & －3n．\(=\) & \(\therefore 2\) \\
\hline \(\therefore 2\) & －349． & 3.366 & 2 \(\because \cdot \square\) & ：\(\%\) \％ & \(\therefore\) ¢ \\
\hline \(\therefore 2\) & 2473.7 & 1． 283 & i：\(=\) & － & \(\therefore .4\) \\
\hline ： 2 & 261，3．2 & －1．1．5 & 20：4； & ㄷ．． & ：．． \\
\hline \(\therefore 3\) & 1．37． & 12．30： & \(\cdots\)－ & \(\cdots \mathrm{ra}\) ． & \(\therefore 3\) \\
\hline 14 & 1357．0 & 23.102 & 19．15． & ： 5.6 & 14 ： \\
\hline 15 & 1096.7 & 13．305 & & ： \(5 .:\) & \(:=.4\) \\
\hline ： 6 & 2113． 3 & 14．73 & \(\therefore 35.3\) & in．： & 2b． \\
\hline \(:-\) & 2233.3 & LE．¢¢ 3 & 2717．1 & 2.25 .4 & \(\because \cdots\) \\
\hline 18 & 2360.0 & 26.535 & 246．1．3 & 186 & E．， \\
\hline \(\therefore 3\) & 2472.2 & 17.400 & 2590.3 & 130.7 & \(\because\) ； \\
\hline \(=0\) & 2538． 3 & 18256 & 2－25．2 & ： 36. & \\
\hline 21 & 2709.0 & 13.104 & 2956． & 235 ； & ：\(\ldots\) ．\({ }^{\text {－}}\) \\
\hline 2： & 212．3 & \(\therefore 244\) & 29，－ & 20.3 & \(\therefore \therefore\) \\
\hline \(\therefore 3\) & 225. & \(\therefore 0.74\) & 12：9．2 & ： 54 & \(\because 2.4\) \\
\hline \(\therefore 2\) & 3040.2 & \(\therefore\) 二ater & ：2a．\(=\) & \(\therefore\) A． 2 & 24．．． \\
\hline 25 & \(\because 649.3\) & 22.408 & 2406.3 & ：in． & \(\because\) ¢． \\
\hline 20 & ：256．\({ }^{\text {d }}\) & 23.212 & 1542．j & & ． \(8 .:\) \\
\hline 27 & 3253.2 & 24． \(\mathrm{S}^{5}\) & 16．4．＂ & \(\therefore \mathrm{n} . \mathrm{i}\) & \(\therefore \cdots\) \\
\hline 28 & 3463．＊ & 24.785 & 2015．2 & ： 36.3 & 28．\({ }^{\text {c }}\) \\
\hline \(\because\) & 3562.5 & \(\therefore 5.502\) & 2947．： & ： 5 ． & \(\therefore\) ： \\
\hline 3 & \(3668 . \dot{ }\) & 26.3 .6 & ＋193． & ： 3. & ；． \\
\hline \(\because\) & 2：5．3．3 & \(\therefore\)－ 81 & \(\pm: 22\). & \(\therefore\)－ & \(\therefore \therefore\) \\
\hline 32 & 3940 ， & 27.325 & ： 14. & －＂． & \(\because \mathrm{i}\). \\
\hline
\end{tabular}

The anthropometric sitting height of the subject was measured while the subject was lying on its side. The measurement was taken from the lower base of the tail to the level of the brow ridge.

After the subject was positioned and the harness pretensioned, the lengths of the body segments and breadths at the shoulder, elbow, and knee fiducials were measured and reccrded. The sitting height was again measured from the seat par to the brow ridge along a line parallel to the seat back. These data along with subject and run signature data were recorded on a pretest measurements form. The data are defined in Table 13 and are presented in Tables 14 thru 16.

Cinematographic recordings of the subject were made on the cameras described in the Photometric Range section. The data cameras were operated at a nominal speed of five hundred (500) frames per second from time \(t=-2.0\) to \(t=+2.0\) seconds. Timing on the films was accomplished by a pulsed light emitting diode (LED) driven at 100 pulses per second. Synchronization was accomplished by a strobe flash triggered by a \(t=0\) pulse simultaneously recorded on the electronic data acquisition system.

\subsection*{2.4.5 Data Reduction Process}

The data reduction process consisted of data eciiting, digitizing, and electronic data processing. Film editing and digitizing were accomplished on the Producers Service Corporation model PVR film analyzer (PVR) interfaced with a teletype terminal (TTY) with paper tape punch. Tape-to-card conversion and electronic processing and plotting were accomplished on the CDC Cyber 74 system at the Aeronautical Systems Division's Digital Computation Facility (ASD/AD) ir. Building 676, Area B, Wrioht-Patterson A: Force Pase, Ohio.

TABLE i3
PRETEST MEASURENENTS
Data Item Definition
1 Test Run Number.
2
Date of Test Run.3
Subject Identification.
Weight of Subject (lbs)Sitting Height (cm) measured from seat pan surfaceto brow ridge, parallel with seat back plane.
Distance (cm) in \(x-z\) plane between tip of snout ard center of head accelerometer pack mounting screw.
Distance (cm) in \(x-z\) plane between center of head accelerometer pack mounting screw and jaw hinge point.
Distance (cm) in \(x-z\) plane between jaw hinge point and shoulder point.
Distance (cm) between the shoulder point and the hip point.
Distance (cm) between the shoulder point and elbow point.
Distance (cm) between hip point and knee point.

12, 13

14
15
16
Anthropometric sitting height (12 cm; 13 in). Measured from lower base of tail to brow ridge while subject lying on side.
Breadth (cm) across shoulder points.
Breadth (cm) across elbow points.
Breadth (cm) across knees.
\begin{tabular}{|c|c|c|c|}
\hline \(\therefore\) & \(\therefore \therefore 4\) & \(\therefore \mathrm{Bi}\) & ． 4.7 \\
\hline － & －．．．． & －．．． & －－－－ \\
\hline ． & \(\because-:-\) & \(\therefore-\) & －－： \\
\hline \(\div\) & & こう & 4－ \\
\hline \(\therefore\) & －3．4 & －5． & \(\therefore\) \％i \\
\hline \(\therefore\) & 4． & ．． & ． \\
\hline － & － 3 & ． 3 & ． \\
\hline & & \(\cdots\) & \(\therefore\) ； \\
\hline i & － & \(\therefore:\) & \(\therefore \therefore\) \\
\hline ： & \(\therefore\)－ & －． & \(\because\). \\
\hline \(\therefore 1\) & \(\therefore 2\) & \(\therefore=\) & \(\therefore \therefore\) \\
\hline \(\therefore\). & & \(\therefore: 3\) & \(\cdots \mathrm{F}\) \\
\hline \(\therefore \therefore\) & & \(\therefore\) ． & \(\because \cdot\) \\
\hline \(\therefore 4\) & \(\therefore .5\) & \(\therefore \ddot{\square}\) & \(\therefore\) ． \\
\hline \(\because\) & \(\therefore\). & \(\therefore\)－ & ．\(\cdot\) ． \\
\hline 10 & 25.2 & \(\therefore\) ，． & \(\therefore 2\). \\
\hline
\end{tabular}
－2．bit in

－atizem
\begin{tabular}{|c|c|c|c|}
\hline \(\therefore\) & \(\therefore 44\) & －450 & \(45:\) \\
\hline 2 & \(-7: 98\) & \(\cdots 3\) & \(\therefore\) ， \\
\hline 2 & E－iv & F－0 & ：－9： \\
\hline 1 & た。 & 48.8 & E：． \\
\hline 5 & 54.3 & ＋3．7 & S． \\
\hline ＂ & ？．3 & 4.5 & －•－ \\
\hline － & 1．- & 1 & \％．＂ \\
\hline ； & ．6．e & －．\({ }^{\text {a }}\) & ？ \\
\hline ， & 引ヶ．\({ }^{\text {a }}\) & － 3 & \(\therefore\) ： \\
\hline － & \(\cdots\) & \(\cdots \cdot\) & \(\therefore\) ？ \\
\hline \(\cdots\) & \(\therefore .3\) & ＋．－ & － \\
\hline － & \(\cdots\) & \(\therefore ?\) & a＊． \\
\hline
\end{tabular}

TABLE ： 6
IPE ZRETES\％MEASURENENTS LIVE SUBJECTS MIL HARMESS，IECELERAGOR

2aセa＝＝em
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(:\) & 103 & 204 & ：05 & 106 & 108 & ： 09 \\
\hline 2 & 730503 & －80503 & 730503 & 730503 & 730504 & 730504 \\
\hline 3 & －¢ 3 & F＊3 & F76 & F86 & －66 & F64 \\
\hline 4 & 50.0 & 51.0 & 51.5 & 47． 25 & ミ． 5 & 50.5 \\
\hline \(j\) & 86.4 & 70.5 & 58.7 & 66.5 & 69.9 & 55.6 \\
\hline 6 & 3.9 & 7. & 7.8 & 7．\({ }^{\text {a }}\) & 7.7 & 10.2 \\
\hline － & 9.7 & ：\(:\) ： & 10.3 & 3.3 & 20.7 & 9.7 \\
\hline 3 & \(\pm 6.5\) & 14．： & －4．8 & i． 2 & 18.4 & ：5．2 \\
\hline 9 & 39.1 & 40.3 & 40.0 & 37.9 & 39．4 & 29.0 \\
\hline ： 0 & 22.4 & 23.2 & 24.1 & 23.2 & 20.6 & 23.0 \\
\hline 12 & 27.9 & 26．3 & 26.3 & 22.0 & 21.5 & 25.5 \\
\hline 12 & 71.1 & 67.9 & 68.6 & 54.3 & 67.3 & －0．5 \\
\hline 23 & 28.0 & 26.75 & 27.0 & 25.5 & 26.5 & 27． 5 \\
\hline 24 & 22.4 & 20.2 & 21.2 & 19.2 & 21.4 & 22.1 \\
\hline 13 & 22.9 & 23.2 & 28.0 & 26.1 & 27.2 & 29.0 \\
\hline 16 & 20.5 & 3.0 & 21.3 & 25.7 & 26.1 & 15.1 \\
\hline
\end{tabular}

TABLE 16B
：PC PRETEST MEASUREMENTS CADAIER SUBJECTS MII HARNESS，DECEEERATOR
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ： & 120 & 1：1 & 113 & 114 & \(2: 5\) & 126 \\
\hline 2 & 780504 & 790504 & 780505 & 980505 & 780505 & －30505 \\
\hline 3 & F82 & F84 & F80 & E72 & \(\mathrm{F}-\mathrm{C}\) & \(\mathrm{F}^{-4}\) \\
\hline 4 & 45.75 & 53.5 & 5：．25 & 48.0 & 45.0 & 56.3 \\
\hline \(\xi\) & 64.0 & －3． 0 & 67.0 & 71.3 & 5.4 & －7． \\
\hline 5 & 9.0 & 3.3 & 3. & 5.5 & 3.3 & 3.9 \\
\hline ？ & 3.7 & ：0．： & 3.3 & ？． 3 & \％． & 9.4 \\
\hline 8 & 23.5 & ：4． & \(\therefore\). & ：E． 0 & 27.3 & －i．\({ }^{\text {a }}\) \\
\hline 9 & 39.9 & 4：； & －\({ }^{\text {a }}\) & 43.0 & 29.5 & 42．： \\
\hline \(\therefore 3\) & 21.6 & \(\therefore\) こ． & \(\therefore\)－ & 23.0 & 23.3 & 23.0 \\
\hline 12 & 24.0 & 26.5 & 20.5 & 23.2 & 26.0 & 21.3 \\
\hline 12 & 64.8 & \(5 \% .3\) & 53.5 & 70.5 & 59.8 & 59.2 \\
\hline 13 & 25.5 & 26.5 & 25.0 & 27.75 & 27.5 & \(:-.5\) \\
\hline ：4 & 21.0 & 19．5 & 20.6 & －1．3 & 22．\({ }^{\text {² }}\) & 21.8 \\
\hline 25 & 24.6 & 30.3 & 32.7 & 24.2 & －5． & こ5． \\
\hline ： 8 & ：3． & 23．） & 14．0 & 19．3 & ：－ & \(\because\)－， \\
\hline
\end{tabular}

\subsection*{2.4.5.1 Editing}

The seat side view camera film was viewed on a light table and the frames and 0.01 second timing pulses were counted throughout the event. The frame exposure rate (frames per second) was scanned for consistency and the average frame rate was calculated. During the test program the film speed ranged between 485 and 515 frames per second. During each test run the film speed was constant \(\pm 1\) frame per second, during the 200 milliseconds following initiation.
2.4.5.2 Digitizing

The film was mounted on the \(P V R\) and was transported forward in the cine mode to frame zero, the first frame in which the strobe flash was observed. The scales on the PVR were translated and rotated until the coordinates of the seat forward and aft fiducials were read to be within \(\pm 20\) counts of \((-150\), -1370) and (-1310, -1300) respectively. The projected image coordinates were then digitized in the following sequence.
1. Seat forward fiducial
2. Seat aft fiducial
3. Hip fiducial
4. Knee fiducial
5. Shoulder fiducial
6. Elbow fiducial
7. Head accelerometer pack
8. Tip of snout

The digital values of these coordinates, preceeded by the frame number, were punched into paper tape in the format (I5, 8F7.0/I5, 8F7.0). Each of the 8F7.0 fields contained four pairs of coordinates.

After the coordinates projected from frame zero were digitized, the coordinates from each succeeding frame were digitized in the same sequence until the frame in which either of the head point images was obscured by the arm image.

Electronic Data Processing
This portion of the process required three provedures, data preparation, computation, and plotting.

Data preparation: During the data preparation procedure, the ilie recurded on punched paper tape was communicated to the computer at ASD/AD from a TTY via voice quaiity lines. The file was then edited to correct format and/cr character ecrors. lroytam CHIFPD was then attached to modify the readings to compensate for distortion. CHIFPD (Aprendix D) calculated the resuitant iistance from the origin of each pair of PCS conidinates read in by
\[
r=r x^{2}+y^{2}
\]

The angle (\(\gamma\)) between the ray from the point and the optical axis was then calculated by
\[
y=\frac{r}{K}
\]
where \(K\) was input as 138.7 courts/degree.
The modified abscissa (\(\mathrm{x}_{\mathrm{c}}\)) was determined by \(x_{c}=\frac{x}{\cos y}\),
and the modified ordinate (\(y_{c}\)) was calculated by
\[
Y_{c}=\frac{y}{\cos \gamma}
\]

The output was batched to a printer and a card punch for creation of the permanent file. Concurrertly, the ıdentification, control, and conversion constant cards required by program \(\operatorname{HIFPD}\) were punched for merger with the card file.

The identification card contained \(\because\) lphanumeric information in card columns (\(£ c\)) 1 through 80 which was printed on output tables as table identificatior. The form used was IPC TEST ---, IMPULSE ACCELERATOR (DECELERATOR).

The control card contained the test number and program control switch characters. The format and definition of switching functions is listed under "Description of program HIFPD Input Data and Parameter Codes."

The conversion constant card contained the film speed (frames per second) and conversion constants to be applied to the second, third and fourth pairs of coordinates on the first line read from each frame, and the first through fourth pairs of coordinates on the second line read from each frame. The format for this card was (8Fl0.0).

Upon receipt of the card file of modified PCS coordinate readings, it was merged with the previously punched ID, control and constant cards, and the computer control cards for submission, to \(A S D / A D\) for computation. The composition of a typical computer runs deck is illustrated in Figure 14.

Computation: Film frame coordinate positions of the tracked points were converted to two-dimensional seat coordinate time histories by program HIFPD.

The PCS coordinate readings of the two reference fiducials from the first film frame are used as the basis for the location of optical axis relative to the reference points and for the angular relationship between the axes of the PSC and the SCS. Readings of these points from each subsequent film frame translated and rotated the PCS coordinate system to coincide with the orientation of the first frame. This was done to minimize errors due to vibration of the camera during the test event and to compensate for frame to frame varidtions caused by the rotating prism.

The displacement from the optical axis of the second reference point was calculated by dividing the PCS coordinates by the conversion constant contained in columns 11 through 20 in the conversion constant card. In turn the displacement from the optical axis of each of the tracked points was calculated by dividing its PCS coordinates by its conversion constant. The values of \(x\) and \(z\) displacements from the optical axis of each point were then subtracted from the \(x\) and \(z\) coordinates of the reference point yielding \(x\) and \(z\) coordinates of each point relative to the reference point. Thus the origin of the calculated coordinate system had been translated to the location of the aft seat reference fiducial.

From the time histories of seat coordinate positions, HIFPD computed total velocity and acceleration time histories of each point, fitting a moving quadratic arc to eleven points during each differentiation, and the angular velocity and acceleration time histories of the head accelerometer about the snout, and of the shoulder about the hip point, again fitting a moving quadratic arc to eleven points during each differentiation.

The resulting time histories were printed in tables and written on magnetic tape for plotting.

Plotting: After examination of the tabulated results of the computation revealed no apparent gross errors, a plot request was submitted to \(A S D / A D\). The data written on the magnetic tape by HIFPD were read and plotted offline on the CALCOMP Plotter.

\subsection*{2.4.6 Results and Accuracy}

The results of this effort were presented in tabular and graphic forms.

In the data report deficiencies in the derivations of velocity and acceleration time histories were cited. These deficiencies and a brief description of the analyses upon which they were based were presented in Paragraph 2.3.6.

The accuracy of the digitizing was indicated by the standard deviation about the mean for the solution of the rear seat reference point with respect to the forward reference point. The standard deviations were:
\begin{tabular}{lll}
Run & \begin{tabular}{l}
X-Axis \\
\((\) feet \()\)
\end{tabular} & \begin{tabular}{l}
z-Axis \\
(feet)
\end{tabular} \\
1444 & .0035 & .0002 \\
1447 & .0035 & .0002 \\
1450 & .0017 & .0001 \\
1451 & .0108 & .0005 \\
1453 & .0021 & .0001 \\
1456 & .0036 & .0002 \\
1462 & .0027 & .0001 \\
1466 & .0019 & .0001 \\
105 & .0036 & .0002 \\
109 & .0053 & .0002 \\
111 & .0046 & .0002 \\
115 & .0030 & .0001
\end{tabular}

The effect of smoothing the displacement solutions of the tracked points are indicated in Table l7, which presents the standard deviations of the difference between unsmoothed and smoothed components of the displacements taken from a representative sample of the tests.

\subsection*{2.5 UPPER TORSO RETRACTION}

The survivability of emergency escape from aircraft has historically been a primary concern of the United States Air Force. Over the years, as aircraft performance has been improved, the risk of injury, either fatal or disabling, has tended to increase. Research efforts leading to the development of devices and systems to provide improved injury protection and reduction of risk, and evaluation of the products of these efforts, have continuously been conducted and/or sponsored by the Air Force.

TABLE 17A
GPANDARD DEGIAT: ON OF DTFFERENCE BETWEEN JNSMOOTHED AND SMOOTHED DISPLACEMENT DATA IN FFET THREE POINT RESTRAINT, LIVE SURJECTS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{TEST 1444} & \multicolumn{2}{|c|}{TEST 1447} \\
\hline & \(x\)-axis & z-axis & \(\underline{x-a x i s}\) & z-axis \\
\hline \(\mathrm{H}_{2} \mathrm{P}\) & . 0032 & . 0017 & . 0063 & . 0049 \\
\hline Knee & . 0025 & . 0032 & . 0085 & . 0061 \\
\hline Shoulder & .0037 & . 0031 & . 0137 & . 0129 \\
\hline Elbow & . 0031 & . 0099 & . 0072 & . 0112 \\
\hline Head Foint 1 & . 0135 & . 0086 & . 0110 & . 0075 \\
\hline Head Point 2 & . 0081 & . 0064 & . 0132 & . 0166 \\
\hline
\end{tabular}

TABLE 17B

S'TANDARI ZEVIATION OF DIFFERENCE BETWEEN UNSMOOTHED AND SMOOTHED DISPLACEMENT data in feet three point restraint, cadaver subjects
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{TEST 1450} & \multicolumn{2}{|c|}{TEST 1451} \\
\hline & \(\underline{x-a x i s}\) & \(\underline{z-a x i s}\) & \(\underline{x-a x i s}\) & z-axis \\
\hline Hip & . 0018 & . 0017 & . 0105 & . 0041 \\
\hline Knee & . 0033 & . 0028 & . 0104 & . 0069 \\
\hline Shoulder & . 0095 & . 0096 & . 0169 & . 0103 \\
\hline Elbow & . 0083 & . 0042 & . 0147 & . 0112 \\
\hline Head Point 1 & . 0092 & . 0101 & . 0223 & . 0109 \\
\hline Head Point 2 & . 0163 & . 0107 & . 0252 & . 0137 \\
\hline
\end{tabular}

TABLE 17C
STANDARD DEVIATION OF DIFFERENCE BETWEEN UNSMOOTHED AND SMOOTHED DISPLACEMENT dATA IN FEET MILITARY RESTRAINT, LIVE SUBJECTS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{TEST 1453} & \multicolumn{2}{|r|}{TEST 1456} \\
\hline & \(\underline{\mathrm{x} \text {-axis }}\) & z-axis & \(\underline{x-a x i s}\) & \(\underline{z-a x i s}\) \\
\hline Hip & . 0023 & . 0024 & . 0031 & . 0034 \\
\hline Knee & . 0056 & . 0050 & . 0038 & . 0039 \\
\hline Shoulder & . 0140 & . 0049 & . 0104 & . 0052 \\
\hline Elbow & . 0100 & . 0052 & . 0034 & . 0033 \\
\hline Head Point 1 & . 0083 & . 0062 & . 0101 & . 0089 \\
\hline Head Point 2 & . 0139 & . 0081 & . 0153 & . 0195 \\
\hline
\end{tabular}

TABLE 17D
STANDARD DEVIATION OF DIFFERENCE BETWEEN UNSMOOTHED AND SMOOTHED DISPLACEMENT IN FEET MILITARY RESTRAINT, CADAVER SUBJECTS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{TEST 1462} & \multicolumn{2}{|r|}{TEST 1466} \\
\hline & \(\underline{x}\)-axis & z-axis & \(\underline{x-a x i s}\) & z-axis \\
\hline Hip & . 0027 & . 0021 & . 0029 & . 0028 \\
\hline Knee & . 0034 & . 0022 & . 0032 & . 0040 \\
\hline Shoulder & . 0063 & . 0026 & . 0153 & . 0084 \\
\hline Elbow & . 0039 & . 0033 & . 0067 & . 0069 \\
\hline Head Point 1 & . 0081 & . 0032 & . 0099 & . 0066 \\
\hline Head Point 2 & . 0078 & . 0024 & . 0093 & . 0048 \\
\hline
\end{tabular}
STANDARD DEVIATION OF DIFFERENCE BETWEEN UNSMOOTHED AND SMOOTHED DISPLACEMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{STANDARD DEVIATION OF D
\[
\text { TEST } 105
\]} & \multicolumn{2}{|l|}{TEST 109} & \multicolumn{2}{|l|}{TEST 111} & \multicolumn{2}{|l|}{TEST 115} \\
\hline & \(x\)-axis & z-axis & x-axis & z-axis & x-axis & z-axis & x-axis & z-axis \\
\hline Hip & . 0036 & . 0038 & .0035 & . 0032 & . 0036 & . 0036 & . 0040 & . 0024 \\
\hline Knee & . 0074 & . 0055 & . 0040 & . 0044 & . 0034 & . 0036 & . 0042 & . 0033 \\
\hline Shoulder & . 0077 & . 0055 & . 0081 & . 0031 & . 0154 & . 0057 & . 0069 & . 0030 \\
\hline Elbow & . 0133 & . 0083 & . 0049 & . 0038 & . 0050 & . 0033 & . 0051 & . 0033 \\
\hline Head Point 1 & . 0104 & . 0074 & . 0196 & . 0120 & . 0138 & . 0073 & . 0093 & . 0109 \\
\hline Head Point 2 & . 0102 & . 0082 & . 0124 & . 0120 & . 0113 & . 0087 & . 0142 & . 0069 \\
\hline
\end{tabular}

In an ejection environment, emphasis must be placed on the method of positioning and restraining the torso, head, and extremities of the crewman in his seat. Ideally the crewman would be restrained in such a manner that during an ejection event, he would demonstrate no motion relative to the seat. A crewman, however, also requires freedom of movement to perform his tasks. The obvious solution was the development of a restraint system which would provide the required freedom of movement but which in an emergency situation would rapidly retract the crewman into position and restrain him with force sufficient to protect him from responding adversely to the acceleration of the seat and the force of windblast.

The work described herein was accomplished to demonstrate a photo analysis method proposed for use to describe the response motion of body segments of human subjects exposed to the upper torso retraction environment. Laboratory simulations wero conducted by the Biomechanical Protection Branch of the AF Aerospace Medical Research Laboratory (AMRL/BBP) during the perjod January - May 1978. The tests were conducted on the Body Positioning Restraint Device (BPRD) located in Building 824, WrightPatterson Air Force Base, Ohio.

\subsection*{2.5.1 Reguirements}

Primary objectives of the photometric effort we:e:
(1) To describe position-time histories of anthropometric points defining the body segments relative to the test device seat, and to derive velocity and acceleration time histories of these points.
(2) To derive time histories of angular velority and angular acceleration of the head about its \(y\) axis.
(3) To derive time histories of angular velocity and angular acceleration of the helmet about its \(Y\) axis.
 To describe the position-time history of the retrac- tion piston and to derive time histories of its velocity and acceleration.

Secondary objectives of this effort were:
(1) To record motion of the shoulde: harness relative to the subject's sternum for the purpose of assessing slippage of the harness relative to the chest and shoulders.
(2) To record the test event from a number of viewpoints sufficient to demonstrate restraint system and subject performance.

The body segment motions specified for description were the upper arm, the upper leg, the torso and the head. The points selected to define these segments were:
upper arm: The lateral-most projection of the acromion process of the scapula and the lateral most point on the lateral humeral condyle.
upper leg: The lateral-most point on the greater femoral trochanter and the lateral most point on the lateral femoral condyle.
torso : The lateral-most point on the greater femoral trochanter and the spinous process of the seventh cervical vertebra (\(C-7\)), which overlies the first thoracic vertebra (T-1) when the head is erect.
head : The point located on the sagittal plane of the nose at the level of the pupils (which is the rhinion).

It was the concensus that in addition to the above, the lower leg and lower arm should also be defined although definition of these segments was not a current requirement. The former was defined by the lateral projection of the lateral malleolus of the

Eibula, and the later was defines by the lateral-most point on the lateral humeral condyle and the stylion.

Selection of all the doove points was influenced b \(\because\) two pri: : ry concerns:
(1) The requirement that the points could repeateily be located.
(2) The requirement that the points, or fixtures identifying the points, be observable throuchout tine test event.

All of the points described above are widely acceptec as recommended points for defining body seqments with the exception of the points on the heac. The points. \(n\) the head were selected because the helmet, together with the cupped chin strap, left only the forward facial area exposed. The :oints or the rose were considered to be the only practical points on the head which would satisfy the above requiremerts.
2.5.2 Photometric Range

The photometric range as illustrated in Figure 19 , was a three dimensional, perpencicular coordinate system, the origin of which was at the intercept of the seat.back plane, the seatpan plane, and the plane of symmetry of the seat. The \(z\) axis was positive upward along the centerline of the seatback, the \(x\) axis was positive forward along the line normal to the se tback plane, and \(y\) was positive to the right of the seat.

Reference siducials were affixed to the sert structure, ten on the \(R H\) side panel and nine on forward facing surfaces. Three additional fiducia's \(120,21,22\)) were applied to the outboard surface of the RH side of the test facility irame structure forward of the seat. The points are identified in Fiqure la and their courdinate positions are presented in Table is.

Fíure l. BPRD Seat Coordinate Srstem and Reference riducial Locations.

TABLE 18
BPRD REFERENCE FIDUCIAL COORDINATES
\begin{tabular}{|c|c|c|c|}
\hline Point & \(\underline{x(i n c h e s)}\) & \(y\) (inches) & \(\underline{z}\) (inches) \\
\hline 1 & -2.05 & 10.5 & 34.57 \\
\hline 2 & -2.05 & 10.5 & 28.5 \\
\hline 3 & -2.05 & 10.5 & 10.55 \\
\hline 4 & -2.05 & 10.5 & 4.57 \\
\hline 5 & 4.88 & 10.5 & 1.1 \\
\hline 6 & 10.75 & 10.5 & . 43 \\
\hline 7 & 15.87 & 10.5 & - .25 \\
\hline 8 & 4.41 & 10.5 & - . 83 \\
\hline 9 & 10.35 & 10.5 & - 1.26 \\
\hline 10 & 15.55 & 10.5 & - 1.69 \\
\hline 11 & 0.0 & 7.68 & 40.28 \\
\hline 12 & 0.0 & 0.0 & 40.30 \\
\hline 13 & 0.0 & \(-7.83\) & 40.31 \\
\hline 14 & 0.0 & 9.83 & 22.64 \\
\hline 15 & 0.0 & 9.83 & 22.64 \\
\hline 16 & 0.0 & - 9.83 & 12.6 \\
\hline 17 & 0.0 & - 9.83 & 12.6 \\
\hline 18 & 22.89 & 9.83 & - 3.16 \\
\hline 19 & 22.88 & - 9.83 & - 3.24 \\
\hline 20 & 32.45 & -18.25 & 5.83 \\
\hline 21 & 38.68 & -18.25 & 2.08 \\
\hline 22 & 31.24 & -18.25 & -12.27 \\
\hline
\end{tabular}

Three Milliken 16 mm motion picture cameras were mounted, two to the RH side of the test facility frame and the third forward of the frame. The locations of these cameras are illustrated in Figure 20 and the coordinates of their focal points and camera body orientations are listed in Table 19.

\subsection*{2.5.3 Photogrammetric Calibration}

In the discussion of the approach to the photometric system two assumptions were made: that the focal lengths of the recording and projection lenses introduced no distortion, and that the focal lengths were precisely stated. The validity of these assumptions must be questioned.

A flat-black board, 24 inches x 48 inches, containing a 1 inch \(x\) l inch grid pattern of white thread was photographed by each camera as follows:
Camera View Board Location and Orientation

A 1 Surface in plane, \(y=0\), longer edge on \(z\) axis, shorter edge on \(x\) axis.
A 2 Surface in plane, \(y=-6.97\) inches, longer edge against plane \(x=0\), shorter edge in plane \(z=0\).
\(B \quad 1 \quad\) Surface in plane \(y=0\), lower edge parallel with deck, \(3 / 8\) inch above deck. Longer edge against forward edge of seat pan.
C 1 Surface perpendicular to deck \(1 / 2\) inch forward of forward most points on armrests. Lower edge on deck.

These views of gridboard are on the film reel immediately after the views of test run 271.

Erom these films a slight "barrel distortion" was observed on all views. No corrections were made since the distortion was considered to be inconsequential in the area of the frame being evaluated.

\section*{TABLE 19}

BPRD COORDINATES OF CAMERA FOCAL POINTS AND CAMERA BODY ORIENTATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Camera Station} & \multicolumn{3}{|l|}{FOCAL DOINT COORDINATES} & \multirow[t]{2}{*}{\[
\frac{\text { AZIMUTH }}{(\text { radians })}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { ELEVATION }}{\text { (radians) }}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { ROLL }}{(\text { radians) }}
\]} \\
\hline & \(\underline{x}\) (inches) & \(\underline{y}\) (inches) & z(inches) & & & \\
\hline A & 0.0 & 66.61 & 19.21 & 4.712 & . 006 & . 002 \\
\hline B & 28.0 & 37.49 & -6.72 & 4.712 & -. 002 & . 236 \\
\hline こ & 68.98 & 0.84 & 8.36 & 3.142 & . 299 & . 001 \\
\hline
\end{tabular}

From the jridboard views recorded on the camera at Station A, readings were taken from the PCS \(z\) axis intercepts of five pairs of horizontal gridlines, the lines of each pair being twelve inches apart. This same procedure was applied to the PCS \(x\) axis intercepts of five pairs of vertical gridlines. An average of the displacements of the PCS readings was taken for each of the gridboard locations. The resulting conversion factors were 1377.75 counts per foot at SCS \(y=0\) and 1548 counts per foot at SCS \(y=-6.969\) inches.

Referring to Figure 4 the folloving values were assigned:
\[
\begin{aligned}
& r_{o}=r_{o 2}=12 \text { inches } \\
& r_{p}=1377.75 \text { counts } \\
& r_{p 2}=1548 \text { counts } \\
& s_{o}-s_{o 2}=6.97 \text { inches. }
\end{aligned}
\]

The distance from the axis at which the ray from \(p_{0}\) to the focal point penetrated the object 2 Plane was calculated to be:
\[
\begin{aligned}
& \frac{r}{r_{o 2}}=\frac{r}{r_{p 2}} \\
& r=r_{o 2} \frac{r_{p}}{r_{p 2}} \\
& r=12 \text { inches }\left(\frac{1377.75 \text { counts }}{1548 \text { counts }}\right) \\
& r=10.68 \text { inches. }
\end{aligned}
\]

The apparent distance from the focal point to the plane \(y=0\) was calculated to be:
\[
\begin{aligned}
& \frac{s_{0}}{s_{0}-s_{02}}=\frac{r_{0}}{r_{02}-r} \\
& s_{0}=\left(s_{0}-s_{02}\right) \frac{r_{0}}{r_{02}-r}
\end{aligned}
\]
\[
\begin{aligned}
& s_{0}=6.97 \text { inches }\left(\frac{12 \text { inches }}{1.32 \text { inches }}\right) \\
& s_{0}=63.36 \text { inches } .
\end{aligned}
\]

Calculation of a ronversion constant, \(f\), for any plane, \(y=n\), was then accomplished using:
\[
f_{n}=\frac{s_{O}}{s_{O}-Y} \times 1377.75 \text { counts per foot }
\]
where \(y\) was either one half the measured breadth of the subject between anthropometric points on the right and left side or the measured \(y\) displacement of fiducials on the test facility.

\subsection*{2.5.4 Data Reduction Process}

The data reduction process consisted of data editing, digitizing, and electronic data processing. Film editing and digitizing were accomplished on the Producers Service Corporation model PVR film analyzer (\(P V R\)) interfaced with a teletype terminal (TTY) with paper tape punch. Tape to card conversion and electronic processing and plotting were accomplished on the CDC Cyber 74 System at the Aeronautical Systems Division's ligital Computation Facility (ASD/AD) in Building 67E, Area B, Wright-Patterson Air Force Base.
2.5.4.1 Editing

The seat side view camera film was viewed on a light table and the frames and .01 second timing pulses were counted throughout the event. The frame exposure rate (frames per second) was scanned for consistency and the average frame rate was calculated. During the runs processed the frame rate was \(500 \pm 1\) Erames per second during the 300 milliseconds followina initiation.

The film was mounted on the PVR and was transported forward in the cine mode until the operator observed that the subject motion had apparently terminated. The number of the frame was noted as termination time.

\subsection*{2.5.4.2 Digitizing}

Upon completion of the editing procedure, the film was transported reverse to frame zero, the first frame in which the strobe flash was observed. The scales on the PVR were translated and rotated until the coordinates of fiducials 10 and 8 were read to be within \(\pm 20\) counts of \((2145,-2860)\) and \((640\), -2765) respectively. The projected image coordinates were then digitized in the following sequence.
1. Arm rest forward fiducial (10)
2. Arm rest aft fiducial (8)
3. Mid thigh fiducial
4. Knee fiducial
5. Shoulder fiducial
6. Elbow fiducial
7. Upper nose fiducial
8. Lower nose fiducial
9. Retraction piston fiducial
10. T-l vertebra fiducial
11. Upper helmet fiducial
12. Lower helmet fiducial

The digital values of these coordinates, preceeded by the frame number, were punched into paper tape in the format (I5, 8F7.0/15, 8F7.0/15, 8F7.0). Each of the 8F7.0 fields contained four pairs of coordinates.

After the coordinates projected from frame zero were dicitized, the coordinates from each succeeding frame were digitized in the same sequence until the fifteenth frame following the frame noted as termination time. The last fifteen frames were digitized to prevent timewise truncation of velocity
and acceleration curves due to smoothing of the data during electronic data processing.

\subsection*{2.5.4.3 Electronic Data Processing}

This portion of the process required three procedures, data preparation, computation, and plotting.

Data Preparation: During the data preparation procedure, the file recorded on punched paper tape was communicated to the computer at ASD/AD from a TTY 35 via voice quality lines. The file was then edited to correct format and/or character errors, and was batched to a card punch for creation of the permanent file. Concurrently, the identification, control, and conversion constant cards required by program HIFPD were punched for merger with the card file.

The identification card contained alphanumeric information in card columns (cc) l thru 80 which was printed on output tables as table identification. The form used was RAPID RESTRAINT TEST _ _ _, SUBJECT __, YYMMDD. The last entry is the date on which the test was conducted in terms of year, month, and day of month.

The control card contained the test number and program control switch characters. The format and definition of switching functions is listed under "Description of Program HIFPD Input Data and Parameter Codes."

The conversion constant card contained the film speed (frames per second) and conversion constants to be applied to the second, third, and fourth pairs of coordinates on the first line read from each frame, and the first thru fourth pairs of coordinates on the second line read from each frame. The format for this card was (8F10.0).

Upon receipt of the card file of PCS coordinate readings, it was merged with the previously punched ID, control, and constant cards, and the computer control cards for submission to ASD/AD for computation. The composition of a typical computer run deck is illustrated in Figure 14.

Computation: Film frame coordinate positions of the tracked points were converted to two-dimensional seat coordinate time histories by program HIFPD, which is described fully in Section 2.2. Two versions of the program were filed. The first read the digitized values from the first and second lines from each frame and wrote the appropriate heading and labels on tables and plots. The second version read the digitized values in the first and third lines from each frame and wrote the appropriate headings and labels on tables and plots. This variation required two passes through the computer.

Although program HIFPD is documented herein a brief discussion of the application is warranted.

The PCS coordinate readings of the two reference fiducials from the first film frame are used as the basis for the location of optical axis relative to the reference points and for the angular relationship between the axes of the PCS and the SCS. Readings of these points from each subsequent film frame translated and rotated the PCS, coordinate system to coincide with the orientation of the first frame. This was done to minimize errors due to vibration of the camera during the test event.

The displacement from the optical axis of the second reference point was calculated by dividing the PCS coordinates by the conversion constant contained in columns 11 thru 20 in the conversion constant card. In turn the displacement from the optical axis of each of the tracked points was calculated by dividing its PCS coordinates by its conversion constant. The
values of \(x\) and \(z\) displacements from the optical axis of each point were then subtracted from the \(x\) and \(z\) displacements of the reference point yielding \(x\) and \(z\) coordinates of each point relative to the reference point. Thus the origin of the calculated coordinate system had been translated to the location of reference fiducial 8.

From the time histories of seat coordinate positions, HIFPD computed total velcoity and acceleration time histories of each point, fitting a moving quadratic arc to eleven points during each differentiation, and the angular velocity and acceleration time histories of the upper nose point about the lower, and of the shoulder about the mid thigh point; again fitting a moving quadratic arc to eleven points during each differentiation.

The resulting time histories were printed in tables and written on magnetic tape for plotting.

Plotting: After examination of the tabular results of the computation revealed no apparent gross errors, a plot request was submitted to \(A S D / A D\). The data written on the magnetic tape by HIFPD were read and plotted offline on the CALComp Plotter.

\subsection*{2.5.5 Results and Accuracy}

The results of this effort were presented in tabular and graphic forms. The accuracy with which these results represent the actual motions of the observed points is the subject of debate. The following deficiencies may be inferred from a study conducted by \(H\). T. Mohlman of the UDRI. \({ }^{1}\)
(1) Attenuation of peak values of displacement, velocity and acceleration is a function of frequency.
(2) The eleven point quadratic fit yields closer correlation than either seven, nine, thirteen, or fifteen point quadratic fits.
lGraf, P.A. and il. T. Mohlman, Accuracy of Diaitized Photometric Data, AMRL-TR-79-75, April, 1980, Aerospace Medical Pesearch Laborator: Wri:ht-Patterson Air Force Base, Ohio.
(3) The attenuation of any specific displacement, velocity, or acceleration peak is reasonably predictable if the apparent frequency of the pean: is properly interpreted.

Oscillations in velocity and acceleration curves are predominantly artifacts induced by reading errors. The frequency is a function of the sampling rate and the number of points included in the smoothing int.

The referenced work included investigation of samplinu theory and application of the quadratic fits to digitized photometric data acquired during \(B P R D\) tests 172 and 173.

Frequency response curves presented in Figure 21 were derived from fitting eleven points of sinusoidal motion at frequencies from 2 Hz to 35 Hz at a sampling rate of 500 samples/ second. The data from which these curves were constructed are presented in Table 20 and are described in detail in the referenced report.

The accuracy of the digitizing was indicated by the standard deviation about the mean for the solution of the forward seat reference point with respect to the rear reference point. The standard deviations were:
\begin{tabular}{lll}
Run & \begin{tabular}{l}
x-Axis \\
(feet)
\end{tabular} & \begin{tabular}{l}
\(z\)-Axis \\
(feet)
\end{tabular} \\
172 & \(\underline{y y y y}\) & .0073
\end{tabular}

The effect of smoothing the displacement solutions of the tracked points are indicated in Table 21 , which presents the standard deviations of difference between unsmoothed anci smothou components of the displacements.

TABLE 20

\section*{DISTORTION FACTOR (FK) COMPUTED FROM MUITIPLE FREQUENCY SINE FUNCTIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
E_{0}(\mathrm{~Hz}) *
\]} & \multicolumn{2}{|l|}{} & \multicolumn{3}{|c|}{Distorticn Factor (FK)} \\
\hline & S & \(\underline{F}\) & DISPL & VEL & ACCEL \\
\hline 2 & . 04 & . 9974 & 1.0000 & . 9981 & . 9963 \\
\hline i & . 08 & . 9895 & 1.0000 & . 9925 & . 9851 \\
\hline 6 & . 12 & . 9765 & . 9999 & . 9831 & . 9667 \\
\hline 8 & . 16 & . 9584 & . 9997 & . 9700 & . 9413 \\
\hline 10 & . 20 & . 9355 & . 9993 & . 9532 & . 9093 \\
\hline 12 & . 24 & . 9079 & . 9985 & . 9327 & . 8713 \\
\hline 14 & . 28 & . 8759 & . 9972 & . 9086 & . 8278 \\
\hline 16 & . 32 & . 8399 & . 9953 & . 8809 & . 7796 \\
\hline 18 & . 36 & . 8000 & . 9926 & . 8498 & . 7275 \\
\hline 20 & . 40 & . 7568 & . 9888 & . 8154 & . 6724 \\
\hline 22 & . 44 & . 7106 & . 9838 & . 7779 & . 6151 \\
\hline 24 & . 48 & . 6618 & . 9975 & . 7376 & . 5567 \\
\hline 26 & . 52 & . 6109 & . 9695 & . 6949 & . 4981 \\
\hline 28 & . 56 & . 5583 & . 9597 & . 6500 & . 4403 \\
\hline 30 & . 60 & . 5046 & . 9479 & . 6034 & . 3841 \\
\hline 32 & . 64 & . 4500 & . 9340 & . 5556 & . 3305 \\
\hline 34 & . 68 & . 3952 & . 9177 & . 5070 & . 2801 \\
\hline 35 & . 70 & . 3679 & . 9086 & . 4826 & . 2563 \\
\hline
\end{tabular}

\footnotetext{
*fo applies only to an ll-point fit of data sampled at 500 samples per second; use \(r\) to determine \(F K\) for other fits and/or sample rates.
}

TABLE 21
STANDARD DEVIATION OF DIFFERENCE BETWEEN UNSMOOTHED AND SMOOTHED DISPLACEMENT DATA IN FEET
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{TEST 172} & \multicolumn{2}{|r|}{TEST 173} \\
\hline & \(x-a x i s\) & z-axis & x-axis & z-axis \\
\hline Hip & . 0028 & . 0028 & . 0027 & . 0030 \\
\hline Knee & . 0028 & . 0039 & . 0034 & . 0041 \\
\hline Shoulder & . 0077 & . 0041 & . 0080 & . 0046 \\
\hline Elbow & . 0039 & . 0091 & . 0048 & . 0039 \\
\hline Head Point 1 & . 0085 & . 0058 & . 0090 & . 0060 \\
\hline Head Point 2 & . 0121 & . 0083 & . 0128 & . 0085 \\
\hline Piston & . 0046 & . 0077 & . 0062 & . 0072 \\
\hline T1 & . 0089 & . 0045 & . 0093 & . 0038 \\
\hline Helmet 1 & . 0090 & . 0037 & . 0099 & . 0038 \\
\hline Helmet 2 & . 0082 & . 0035 & . 0086 & . 0038 \\
\hline
\end{tabular}

\section*{SECTION 3 \\ ANALYSIS OF NONPLANAR MOTIO::}

Exposure to impact environments having sianificant lateral components of acceleration usually result in three dimensional responses.

A method was developed by the UDRI to solve for the irstantaneous coordinates of points relative to a seat coordinate system (SCS). The method, documented in AMRL-TR-78-94, employs program POOCH to calculate the apparent coordinates of the focal point of each camera and the orientation of its optical axis and the film frame axes in the SCS. The results output by POOCH are input to program SLED to calibrate the digitized readings of observed points. SLED solves for the most likely point of intercept of the rays from each observed point to each focal point and calculates the distance between the rays at each solution point.

This method was applied to photodata collected during the DOT 6 Year Old Child comparison and the Whole Body RestraintLateral study. The latter also required the derivation of velocity and acceleration time histories from the displacement-time data. Program WBRL was developed to smooth the component dis-placement-time histories and to derive smoothed component and resultant velocity and acceleration time histories. program WBR-L, with explanatory comments, is listed in Appendix \(B\).

\subsection*{3.1 DOT 6 YEAR OLD CHILD COMPARISON}

The Department of Transportation, under an interagency agreement, reqiested a comparative analysis of the effectiveness of three types of automotive child restraint systems, and a comparison of the inertial and kinematic responses of three types of surrogate six-year-olds while restrained with each of the three systems. The surrocates were two manikins of different manufacture and nine live unesthetized baboons whose generui anthropometry approximated that of a six year old child.

The impact environments were developed with the AMRL/BBP Horizontal Impulse Accelerator Facility at WPAFB. The impact environments simulated were twenty and thirty miles per hour head on and fifteen and twenty miles per hour left lateral. Seventyfive test runs, including system performance tests, were conducted from 22 October 1975 thru 19 December 1975.

\subsection*{3.1.1 Photometric Data Acguisition}

The primary objectives of the photometric data system were to:
- Develop a method for calculating three dimensional displacement of anthropometric points.
- Collect data on two high speed motion picture cameras mounted onboard the test vehicle.
- Apply the developed method to reduce the photodata to time histories of three-dimensional coordinate positions in the SCS of two points on the head of each subject.

The method developed to solve the time-SCS position data resulted in the programs \(P O O C H\) and SLED. These programs required application of fixed reference fiducials and a survey of their coordinates in the SCS. The camera and range survey data from forward impact configurations and left lateral impact configurations are presented in Figures 22 and 23 respectively.

Photo recordings were recorded on two Milliken DBM-4B cameras fitted with 10 mm lenses. The cameras were operated at a nominal rate of 500 frames per second. Timing of the film was provided by exposure of the film edges to light emitting diodes excited simultaneously by a central pulse generator at 100 pulses per second.

Figures 24 and 25 illustrate typical scenes as observed by these cameras prior to forward and lateral impacts respectively.

SMERA SURVEY DATA

Bivge sifity jata
Rererence Point Foordinates (\(x, \gamma, z:\) inches
\begin{tabular}{|c|c|c|c|c|}
\hline Ec: & Suns oov - 572 & Runs 673-685 & Puns 685-096 & Puns 697-700 \\
\hline : & & :45.47. -17.91. 45.221 & (45.34, -19.39, 45.25) & -45.59, -17.38, 45.25; \\
\hline - & & 145.62, - 3.91. 45.16) & (45.31, - 4.34, 45.25) & \\
\hline : & & i45.?2. 10.29, 45.29: & & \\
\hline i & & & 145.09, :4.23, 45.471 & 445.84, :4.62. 45.25j \\
\hline 三 & 10.00, -: 3.22 .3 .84 & & & \\
\hline 5 & & & & \\
\hline & . \(5.30 .502, ~ .581\) & - Sonstant throughout & t period. & \\
\hline 3 & (2.09, 12.75, 0.09) & & & \\
\hline - & , 0.91, \(0^{\text {a }}\), 3.22) & & & \\
\hline 12 & 12.33, \(-2.3 .5, ~]\) & & & \\
\hline
\end{tabular}

Figure 22. DOT Six-Year-Old Child Comparison Seat Coordinate System and Survey Data, Forward Impacts.

 Furvoy Data, Lateril imbact:

\footnotetext{
Fivar"
}

Reduction of the recorded data to displacement-time histories required digitization, in the projected imace coordinate system (PCS) of the coordinates of fixed reference fiducials anc fiducials on the heads of the subjects, and electronic data processing of the digitized data by POOCH and SLED.

Digitizing was accomplished on a Producers Service Corpora~ tion model PVR film analyzer (PVR) which was interfaced to a teletype terminal equipped with a paper tape punch station (TTY).

The film was mounted on the PVR and was transported until the first time pulse \((t=0)\) was observed. The film was transported in reverse until the twelfth frame before the \(t_{o}\) pulst to compensate for the film path displacement of the LED from the exposure frame in the gate. The frame counter was reset to 0000.

The origin of the projected image coordinate system was located by numerically bisecting the major and minor dimensions of the projected frame and resetting the counters to zero at that point. The PCS coordinates of all observed reference fiducials were then digitized by locating the cursors over the center of each and depressing the record switch. The operator noted the code number of eacn observed fiducial as it was digitized. These values were later processed by POOCH to locate and orient the camera for the data from this test.

The operator then digitized the PCS coordinates of four reference fiducials, previously selected as being observable throughout the event, and the four points on the heads of the subjects. The resulting table of data was in the form of the following format throughout the program. During lateral impacts only one subject was exposed. When films from these tests were digitized the reading of the chin fiducial was repeated two additional times to fill the file.
\begin{tabular}{|c|c|c|}
\hline Columns & Field & Data \\
\hline 1-5 & I 5 & Frame number. \\
\hline 6-12 & F7.C & PCS abscissa of reference point \(A\). \\
\hline 13-19 & F7.0 & PCS ordinate of reference point \(A\). \\
\hline 20-26 & F7.0 & PCS abscissa of reference point \(B\). \\
\hline 27-33 & F7.0 & PCS ordinate of reference point \(B\). \\
\hline 34-40 & F7.0 & PCS abscissa of reference point \(C\). \\
\hline 41-47 & F7.0 & PCS ordinate of reference point \(C\). \\
\hline 48-54 & F7.0 & PCS abscissa of reference point \(D\). \\
\hline 55-61 & F7.0 & PCS ordinate of reference point \(D\). \\
\hline
\end{tabular}

LINE 2:
1- 5
6-12 F7.0
13-19 F7.0
20-26 F7.0
27-33 F7.0
34-40 F7.0
41-47 F7.0
48-54 F7.0
55-61 F7.0
Frame number.
PCS abscissa of puint on forehead, passenger seat.
PCS ordinate of point on forehead, passenger seat.
PCS abscissa of point on chin, passenger seat.
PCS ordinate of point on chin, passenger seat.
PCS abscissa of point on forehead, driver seat.
PCS ordinate of point on forehead, driver seat.
PCS abscissa of point on chin, driver seat.
PCS ordinate of point on chin, driver seat.

NOTE: Points tracked on baboons were the head accelerometer and the tip of the snout.

After the data were digitized from frame zero the film was advanced to frame 001 and the points were again digitized in the same sequence. This procedure was repeated for each frame until one of the fiducials on the head of one of the subjects became unreadable.

The digital files recorded on paper tapes were communicated to the CDC conputer system at Aeronautical Systems Division's Digital Computation Facility (ASD/AD) from a TTY via data modem and voice quality lines. The files were edited to correct format and/or character errors and were copied to disk storage and card punch. The card files were maintained as backup in case the disk files had been inadvertantly purged.

The files were amended by insertion of camera location and orientation data output by \(P O O C H\), and the addition of the fixed reference fiducial SCS coordinates, the film frame-time equivalence table, and the interpolation interval and test run number as required by SLED.

The binary file of SLED was attached and executed. The output was copied, in batch mode, to a printer and card punch.

The results were visually checked for obvious errors. If the solutions evidenced no apparent discontinuities and the missdistances at the solution points were less than 0.25 inch, the card deck containing the SCS solutions was prepared to generate plots. The plots generated presented \(y\) and \(z\) displacements versus x displacement.

\subsection*{3.2 WHOLE BODY RESTRAINT-LATERAL}

Description of relative motion of anthropometric points of the torso, head, and extremities during laboratory simulations of impact environments are essential to the development and verification of predictive models. One method of describing the motion of these points \(1 s\) to track each point as a function of time with two or more motion picture cameras, quantify or evaluate the coordinates of their images as projected, and from these proiectod image coordinates calculate the loci of the points in the seat coordinate system. This method was applied duriny the wholn budy Restraint-Lateral (WBRL) Impact Study conducted by the Biomechanira: Protection Branch of the AF Aerospace Medical Research labrratory (AMRL/BBP). The experimental tests were condurtert an the

Horizontal Impulse Accelerator facility in Building 824 at WrightPatterson Air Force Base, Ohio between March and July 1977.

\subsection*{3.2.1 Seat Coordinate System}

The seat coordinate system (SCS) was a left handed threedimensional, mutually perpendicular system having its origin at the intercept of the seat centerline and the line of intersection of the seat pan upper surface and the seat back forward surface. The positive senses of the axes were to the rear (x axis), to the left (\(y\) axis), and upward (\(z\) axis) as illustrated in figure 26.

Figure 26. WBR-L Seat Coordinate System (SCS).

Photographic records of the responses of the test subjects were acquired by four Milliken 16 mm cameras operating at nominal exposure rates of 500 frames per second. All four cameras were mounted onboard and were lccated and oriented such that each of the fiducials located on the nine anthropometric points to be tracked were observable by two of the cameras throughout the impact and response periods. The location and orientation scheme of the cameras is illustrated in Figure 27, and the coordinates of the focal points and orientations of optical axes are presented in Table 22.

Figure 27. Schematic of Camera Locations and Orientations, WBF-L.
\[
\begin{gathered}
\text { Station } 14 \\
\text { DRM-44 } \\
44697-1 \\
10 \mathrm{~mm} \\
.030 \\
-1.165 \\
2.575 \\
7.69 \mathrm{~mm} \\
0.065 \\
-1.161 \\
2.570 \\
-95.082 \\
-167.493
\end{gathered}
\]

\subsection*{3.2.3 Data Acquisition}

The data acquisition mission consisted of three distinct tasks:
1. Documentation of anthropometric measurements of each subject.
2. Tracking fiducial application, measurement, and documentation.
3. Cine recording of the tracking fiducials during the impact and response events.

Anthropometry of each test subject was measured and documented by AMRI/HED.

Tracking fiducial application, measurement and documentation were accomplished prior to each test run by the UDRI representative. Tracking fiducials were located as follows.

The suprasternal notch was located by palpation and marked with a nylon tip pen.

The lower end of the sternum was located by palpation and marked.

Two arcs of 10 cm radius were struck from the mark on the suprasternal notch to the right and left clavicles and were marked.

One-inch-diameter fiducials, printed in alternating black and yellow quadrants and having a one-sixteenth inch hole at the center, were placed over these four marks.

With the subject's head erect, a fiducial approximately three-eighths inch high and one-inch wide was centered on the sagittal plane of the nose at the level of the pupils. A fiducial of similar size was located at the level of the pupils at each lateral orbital rim.

Two additional tracking fiducials were previously mounted to a leather appliance which was strappod to the subiect's pel"is. Initially these fiducials were placed on the subject over the anterior superior iliac spines. This proved to be unsatisfactor:
because the fiducials on several subjects were obscured by abcomitad skin folds when the subject was seated.

The last fiducial was intended to track the motion of the first thoracic vertebra (T-l). With the subject's head bowed forward the spinous process of the seventh cervical vertebra (\(C-7\)) was located by palpation and was followed as the subject erected his head. The fiducial was then placed over this point which, with the head erect, overlayed \(T-1\).

With the subject seated in a mockup of the test seat relative dimensions weie read with an anthropometer and recorded. Dimensions taken were:
```

R.H. eye fiducial - L.H. eye fiducial
R.H. eye fiducial - Nose fiducial
Z.H. eye fiducial - Nose fiducial
Suprasternal notch fiducial - Lower sternum fiducial
Suprasternal notch fiducial - R.H. clavicle fiducial
Suprasternal notch fiducial - L.H. clavicle fiducial
Suprasternal notch fiducial - R.H. pelvic fiducial
Suprasternal notch fiducial - L.H. pelvic fiducial
Lower sternum fiducial - R.H. clavicle fiducial
Lower sternum fiducial - L.H. clavicle fiducial
R.H. pelvic fiducial - L.H. pelvic fiducial
R.H. clavicle fiducial - L.H. clavicle fiducial

```

After the subject was instrumented and seated in position, coordinates (in the seat coordinate system) of the suprasternal notch fiducial, the R.H. trageon, and the lower, forward, inboard corner of the Nine Transducer Accelerometer Pack (9TAD) were read and recorded. The 9 TAP was mounted on the \(R . H\). side of a weldina mask headband which was secured by straps under the chin and the base of the occiput. It contained three linear accelerometers at the origin and two at the end of each arm aligned with each of the three axes of the head and was designed to yield time histories ot linear acceleration in three axes and anqular accelerations about those axes.

Prior to the first test, fixed reference fiducials were mounted on the test fixture. These fiducials are identified in Figure 28, and their coordinates are listed in Table 23.

Cine recording of the responses of the subjects were recorded from \(t=-2\) seconds to \(t=2\) seconds. The four Milliken cameras were remotely operated by circuits in the photo instrumentation control console which was programmed into the countdowr sequence. Timing was provided by a pulse generator which simultaneously excited an LED in each of the cameras at the rate of one hundred pulses per second.

Synchronization of time among the films was accomplished by a strobe flash, observable by all cameras, initiated at \(t=0\).

\subsection*{3.2.4 Data Reduction}

The desired results of the data reduction effort were time iistories of coordinate positions of the tracked points ard the velocities and accelerations derived t.ereform. The system used was a modified photo theodolite space position solution system. The phototheodolite system assumes synchronized exposure of films from two or more cameras. Since the cameras used were not symchronized, the system was modified to synchronize projected film frame images by linear interpolation of projected film frame roordinates between frames at fixed time intervals.

The overall data reduction task required three subtask areas, film editing, projected image digitizing, and electronic data processing.

\subsection*{3.2.4.1 Film Editing}

Critical to the processing of the photo data were timing, legibility of reference and tracking fiducials, and documentation of any anomalies that might occur.

Each film was viewed on a light table to assure that there was no erratic behavior of film transport during recording. This was accomplished by sampling the film intervals between . Ol second LED images on the film. If no significant deviations were

Figure 28. WBR-L Reference Fiducials Schematic.

TABLE 23
WBRL REFERENCE FIDUCIAL COORDINATES (CM)
\begin{tabular}{rrrr}
Ref. No. & \multicolumn{1}{l}{} \\
& \(\underline{y}\) & \(\underline{y}\) & \(\underline{z}\) \\
2 & -45.0 & 0.0 & -2.5 \\
3 & 0.0 & 0.0 & 0.0 \\
4 & 0.0 & 0.0 & 45.2 \\
5 & 0.0 & 0.0 & 70.0 \\
6 & 0.0 & 0.0 & 91.2 \\
7 & 0.0 & -10.2 & 91.2 \\
8 & 0.0 & 10.2 & 91.2 \\
9 & -43.7 & 45.0 & 39.5 \\
10 & 5.6 & -16.3 & 79.1 \\
11 & 5.6 & -16.3 & 63.8 \\
12 & 5.2 & -22.4 & 74.1 \\
13 & 1.0 & 17.1 & 73.2 \\
14 & 1.0 & 17.2 & 54.2 \\
15 & 8.7 & -0.4 & 72.3 \\
16 & 9.7 & 0.5 & 67.4 \\
17 & 11.1 & 1.0 & 60.6 \\
18 & 27.9 & 16.4 & 50.9
\end{tabular}
noted, the average frame rate was calculated. Since the cameras employed were pin registered, and a lonp of 11 to 12 frames was required between the pulsed IED and the shutter, absolute timing was not possible.

Time zero was, by definition, the first frame in which the strobe flash was observable. Given a nominal frame rate of 500 frames per second (500 fps) the maximum synchronizing error was 2 milliseconds for each camera. However, given the shutter openings of \(140^{\circ}\) the maximum error jetween two aiven cameras becomes 1.22 milliseconds;
\[
\left(\frac{360^{\circ}-140^{\circ}}{360} \times .002 \mathrm{sec}\right)
\]
3.2.t.2 projected Image Digitizing

Films from cameras mounted onboard at stations 11, 12, i 3 , and 14 were digitized. The origin of the film frame coordinate system was determined by bisecting the horizontal and vertial centerlines of the projected film frame images from ten test runs. The readings of reference fiducials were tabulated and the average reading of each fiducial was calculated. These were defined as the table of standard readings used to set the scales for digitizing.

The film was mounted on the Producers Service Corporation (PSC) model PVR film analyzer and the scaling system was rotated until the cursors were in alignment with the projected film frame image at the frame defined as \(t=0\). The cursors were set over the image of a reference fiducial and the scales were set to zero. The cursors were then translated until the negative values of the standard reading for that fiducial were counted and were ayan reset to zero. The readings of all reference fiducials were taken to assure that they were all within \(\pm 20\) counts (. 02 inches) of the values in the table of standard readings.

From Cameras 11 and 12 the data points were digitized to punched paper tape in the format (I5, 8F7.0/5X, 8F7.0/5X, 8F7.0). The "I5" was the frame number. Each of the "8F7.0" formats was composed of four pairs of "-x, \(y\) " values in the projected film frame coordinate system. This was chosen to simplify the readiry since the cameras at stations 11 and 12 were rotated onto their left sides to improve the fieid of view.

The PSC model PVR is constrained to read \(+x\) to the ri \(h\) + of the operator and \(+y\) upward. Since the cameras at stations 11 and 12 were rotated to their left sides, the operator's view ot the film frame was as illustrated in Figure 29. Thus with the PVR programmed to digitize Frame :amber and four fairs w \(\because\), \(x\) values, the net result was the format presented above.

The first line of readinas (I5, 8F7.0) containe: the frame number and four "-x, \(y^{\prime \prime}\) film frame coordinates of Ei ed reference points. The first format " \(5 \mathrm{X}, 8 \mathrm{~F} 7.0, "\) contaired the repeated frame number (5 X) and four pairs of film frame coordirates \((-x, y)\) of the suprasternal notch, lower sternum, R.H. Elav1.le and L.H. clavicle fiducials. The second format "5X, 8F?.7" contained the repeated frame number and four pairs of film frame coordinates \((-x, y)\) of the R.H. pelvis, L.H. pelvis, R.H. eye, and nose fiducials.

For camera stations 13 and 14 the data points were dicitized to punched paper tape in the format (I5, 8F7.0/5X, 8F7.0). For these views the PSC PVR was programmed to punch the coordinate pairs in " \(x, y\) " format since camera 13 was mounted upright and camera 14 was inverted.

The first line of readings (I5, 8F7.0) again contained the film frame number and pairs of \(x, y\) readings of four fixed reference points. The second line (\(5 \mathrm{X}, 8 \mathrm{~F} 7.0\)) contained the repeated frame number and the reading of the coordinates of the Tl fiducial read four times. This was done to satisfy the requirements of the preprogramming of the PVR and input format to Program SLED.

Fifure 29. Frojected Film Frames From Comeras l? (Hfur) athillas Vacerd by Opetator, WBR-I.

The operator's view of the projected images of films from cameras 13 and 14 is illustrated in Figure 30.

\subsection*{3.2.4.3 Electronic Data Processing}

Electronic data processing required a sequence of related operations which could be broadly broken down into the areas of data preparation, computation and plotting, and review of results.

Three computer programs were required to achieve the results. Program POOCH was used to determine the apparent location and orientation of each of the four cameras. Program SLED was employed to solve for the most likely point of the intercept in the three-dimensional SCS of rays from each pair of cameras to each tracked point. Program WBRL was employed to calculate time histories of smoothed coordinate positions of each of the tracked points, smoothed component and resultant accelerations of each of the tracked points, and orthogonal projections of the relative positions of the right lateral orbital rim fiducial and the nose fiducial.

The results of these calculations were printed on hard copy and written on magnetic tape for offline plotting.

Programs POOCH and SLED are described in detail in AMRL-TR-78-94 "Photometric Methods for the Analysis of Human Kinematic Responses to Impact Environments."

Data Preparation: Preparation of data for input to program POOCH required digitization of projected image coordinates of each of the fixed reference points and transcribing these values together with the measured coordinates in the SCS of the points into tabulating cards. The approximate measured coordinates in the SCS of the focal point of the camera and the nominal focal length of the lens were also transcribed to accounting cards. These cards were then merged with system control cards and the binary program cards and transmitted to ASD/AD, Bldg. 676, WPAFB for processing.

Processing of projected ima.je coordinates to trate-
dimensional positions in the SCS required, in addition to the i. :
tized readings, location and orientation data for edch ot tie cameras, reference fiducial table as seen by vach camera, and a film frame-time equivalence table. Cards contaming these data were punched and merged with the required system control caris and were submitted to ASD/AD for processing with progran: SLFD.

The tables and plots output by program SLED were reviewe: for apparent gross errors. When none were observea, the card :1l: punched by program SLED were merged with system control caris and submitted to \(A S D / A D\) for processing to smoothed time-SCS coordinitu. velocities and accelerations by program WBRL which is presented in Appendix A. Tables and plots generated by program WBRL are presented in Appendices \(B\) through \(N\).

Computation and Plotting: These functions were accorplished on the \(C D C\) systems at \(A S D / A D\). The programs used have bee: previously referenced, however it is well to note that the froura: WBRL calls subroutines from the system library to prepare and wr: . the tapes used for offline plotting.

Review of Results: The coordinate solutions calcilatec by program SLED from the projected images of films from ameras 11 and 12 resulted in smooth time-displacement curves for the \(y\) and \(z\) components but were very erratic for the \(x\) compnnent. Dus to the shallow angle between the optical axes of these carieras (approximately 19.8 degrees) even slight readinu error resulteu in large fore and aft errors (\(x\) coordinates). These errors becine even more magnified in the differentiation to \(x\) components \(i f\) velocity and acceleration.

A statistical analysis of the miss distances between the rays constructed from both cameras at the solution points was accomplished by program SLED. The values of mean error and standard deviation from the mean calculated for each of the tracked points for each test is tabulated at the start of cach of the data results appendices. The mean error and standari joradtion
from the mean for the tracked points for all tests considered are presented in Tables 24 and 25.

The above data indicated that the SCS solutions for the T-1 fiducial were relatively poor. The hiọh standard deviations for this point may be due to:
1. Refraction of rays passing through the seat back window.
2. Glare from both window and fiducial as the seat traveled past individual lamps.
3. Angle between the surface of the fiducial and the ray to camera 14 was very small.

In general the fiducial surfaces were very reflective and difficulty was experienced with recognizing the centers of all at various times throughout the tests.

Calculated values of velocity and acceleration were probably degraded as a function of frequency. A study by Mr. Mohlman of error induced by smoothing displacement, velocity, and acceleration data with a moving quadratic arc fit to eleven points will soon be published. \({ }^{2}\) The study was based in part on the analysis of sinusoidal displacement data sampled at 2 millisecond intervals. The sinusoidal frequencies analyzed were varied from 2 Hz to 35 Hz . The results of this portion of Mr. Mohlman's study were presented in Figure \(I I\) and Table \(=0\).

\begin{tabular}{|c|c|c|c|}
\hline Suirasternal sutw & 37.0 & . 00 & \(6 \%\) \\
\hline Lower Eternum & 3728 & . 37 & . 146 \\
\hline H.t. Alavacie & \%20 & . 17 & .14: \\
\hline E.ti Clavicie & 3788 & . 12 B & 20, \\
\hline z.t. Felvis & 3720 & . & \(2 \%\) \\
\hline i.h. Felvio & 3727 & . 28 & \(\because\) \\
\hline R.\#. E\% & \(37: 7\) & .1.4 & 4. \\
\hline Sose & 3727 & . \(\quad . j\) & . 7 \\
\hline T-1 & 3702 & . 1.4 & . 24 \\
\hline motale & 33522 & .14 & . 140 \\
\hline
\end{tabular}

TAFLE \(=5\)
AiAMYSIS OF MISS distance between fays at solutiot fints, MANIKIN StBJECTS
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Number of } \\
& \text { Fonits }
\end{aligned}
\] & \begin{tabular}{l}
Mean Miss \\
istance \\
(inches)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Suprasternal Notch & 3353 \\
\hline Lower sternum & 3363 \\
\hline R.H. Clavicle & 336 ? \\
\hline L.H. Savicle & 3363 \\
\hline F.t. \% & :36.4 \\
\hline E.at : \(:\) iva & :30.4 \\
\hline \(\div \ldots\) & ? 3 , 4 \\
\hline \(\cdots\) & \(3 \times 4\) \\
\hline T-: & 3311 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline . 060 & .1:57 \\
\hline .055 & .4 \\
\hline . 197 & \(\ldots \mathrm{i}\) \\
\hline . 080 & \(\therefore \therefore\) \\
\hline .nt & . \\
\hline . - 3 & . \({ }^{\text {a }}\) \\
\hline . \(\quad 3\) & - \\
\hline . \(1 \times\) & * \\
\hline .4.4. & \[
\therefore
\] \\
\hline . 11 : & \(\therefore\). \\
\hline
\end{tabular}

\section*{SECTION 4}

PICTOGRAPHIC PRESENTAT:ON

A need was seen to exist for a metnod of presenting, in a compremonsive manner, the sequential relative displacements of bod: s.semt as the: respord to impact hapat. program RSD was devedsed to rocess data, digitized from selected frames of motion pict.... recor ings of laboratory simuirt.ons of \(-G x\) impacts, to a
 and restraf: narness stray dispiacements relative to the seat.
ri.s process was developed f.r the Biomechanical Protection Brawi of the AF Aerospace Modice: Research Laboratory (AMRL/PBP) located at Wright-Patterson Air Force Base (WPAFB), Ohio.

It was developed to minimize the manual effort required to convert digitized data to plotted pictograms. The processing program is written in FORTRAN langu:us and utilizes library routines ay.iable on the CDC computer systems at Aeronautical Systems Divisin's Ligital Computation Facility (ASD/AD) at WPAFB.

\subsection*{4.1 PROGRAM RSD INPUT REQUIREMENTS}

This section describes the content and format of the data required to execute the program RSD. This program draws six graphs on the CALCOMP plotter which show the position of the head, shoulder, elbow, wrist, hip, knee and ankle at six time points during the test. The six graphs are plotted on a report size page (6-1/2 by 9 inches.

Execution of the program RSD requires the CCAU and CCPLOT1036 CALCOMP plot libraries. The CALCOMP plot output file is written on file TAPE7.

The first eight cards described below define the test parameters and the remaining six sets of six carcs each define the input data at the six time points. The variable names used in the program are included with the data description. All references to the \(y\) axis in this text and in the program source listing (Appendix \(C\)) should be interpreted as the chair \(z\) axis.

Card Number 1 -- Title Card
Columns Format Variable Name Description
\begin{tabular}{ll}
\(1-60\) TITLE & Title or caption printed below the \\
set of six graphs. This title \\
should be centered in the 60 column \\
& field.
\end{tabular}

Card Number 2 -- MISC. data in inches
\begin{tabular}{|c|c|c|c|}
\hline 1-5 & & & Card ID, - not read by the program \\
\hline 6-12 & F7.0 & DPS & Distance between Lexan panel and seat side planes \\
\hline 13-19 & F7.0 & DSC & Distance from seat side fiducial plare to seat center line \\
\hline 20-26 & F7.0 & DPF & Distance betweer fiducials on Lexan panel \\
\hline 27-33 & F7.0 & DSF & Distance 'etween seat side fiducials \\
\hline 34-40 & F7.0 & XSB & \[
\left.\begin{array}{l}
x \text { shoulder belt } \\
\text { attachment point }
\end{array}\right]
\] \\
\hline 41-47 & F7. 0 & YSB & Y shoulder belt attachment point \\
\hline 48-54 & F7.0 & XLB & \begin{tabular}{l|l}
\(x\) lap belt attach- & \begin{tabular}{l}
relative to \\
ment point
\end{tabular}
\end{tabular} \\
\hline 55--61 & F7. 0 & YLB & Y lap belt attachment point \\
\hline 62-68 & F7.0 & XASSF & \(x\) aft seat side fiducial \\
\hline 69-75 & F7.0 & YASSF & y aft seat side fiducial \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Columns & Format & Variable Name & Description \\
\hline 1-5 & & & Card 10 \\
\hline 0-12 & F7.0 & BAF (1) & Hip \\
\hline 13-19 & F7.0 & \(\operatorname{BAF}\) (2) & Knee \\
\hline 20-26 & F7.0 & BAF (3) & Ankle \\
\hline 27-33 & F7.0 & \(\operatorname{BAF}(4)\) & Shoulder \\
\hline \(24-40\) & FT. 0 & BAF (5) & Elbow \\
\hline \(4:-.47\) & F. 0 & \(\operatorname{BAF}(6)\) & Wrist \\
\hline \(48-54\) & FT.0 & \(\operatorname{BAF}(7)\) & Trageor. \\
\hline 5j-61 & F7.0 & BAF (8) & Nose \\
\hline 52-68 & ET.0 & \(\operatorname{BAF}\) (9) & Harness lap blickle \\
\hline 69-75 & E7.0 & \(\operatorname{BAF}\) (10) & Shoulder harness \\
\hline \multicolumn{4}{|l|}{Card Number 4 -- Panel and seat fiducial data ir counts.} \\
\hline 1-5 & & & Card ID \\
\hline - -12 & E7.0 & XPE & \(x\) - Lexan Pancl End : anciad \\
\hline 13-19 & F7.0 & \(Y P \mathrm{~F}\) & \(y\) ~ Lexan panel EwD Eiduciai \\
\hline 20-26 & F7.0 & XPA & \(x\) ~ Lexan panel AFT siducial \\
\hline 27-33 & F7.0 & YPA & \(y\) - Lexan panel AFT fiducial \\
\hline 34-40 & F7.0 & XSE & \(x\) - Seat side FWD fiduciai \\
\hline 41-47 & F7.0 & YSF & \(y\). Seat Side FWD fidlcial \\
\hline 48-54 & F7.0 & XSA & \(x\) ~ Seat Side AFT fiducial \\
\hline 55-61 & F7.0 & YSA & \(Y\) ~ Seat Side AFT fiducial \\
\hline
\end{tabular}
```

    A: Sumbers 5 to 7 - x, y coordinates used to comuute radij o:
                        body elements (in counts).
    \therefore:% Bumber 5
Oimms Format Variable Name Description
1-5
6-12 F7.0
13-19 F7.0
20-26 F7.0 <2(2)
27-33 F7.0 Y2(2)
34-40 F7.0 Xl(3)
41-47 F7.0 Y1(3)
48-54 F7.C X2(3)
5:-51 F7.0 Y:2(3)
Card ID
Xl(2)
Y1(2)
x ~ First knee point
y ~ First knee point

```
```

Film Data - the following six cards are required for
each of the six plots.

```

Card Number 1 -- Time in milliseconds for this set of film data. Columns Format Variable Name Description
\begin{tabular}{lll}
l- 5 & & ID or frame number (e.g. TIME =) \\
\(6-8\) & A3 & TTM
\end{tabular}

Card Number 2
\begin{tabular}{rlll}
l- 5 & I5 & & Frame number \\
\(6-12\) & F7.0 & XSFF & X \(\sim\) Seat forward fiducial \\
\(13-19\) & F7.0 & YSFF & \(Y \sim\) Seat forward fiducial \\
\(21 .-26\) & F7.0 & XAFF & X \(\sim\) Seat aft fiducial \\
\(2.7-33\) & F7.0 & YAFF & \(Y \sim\) Seat aft fiducial \\
\(34-40\) & F7.0 & X(1) & X \(\sim\) Hip center point \\
\(41-47\) & F7.0 & \(Y(1)\) & \(Y \sim\) Hip center point \\
\(48-54\) & F7.0 & \(X(2)\) & \(X \sim\) Knee center point \\
\(55-61\) & F7.0 & \(Y(2)\) & \(Y \sim\) Knee center point
\end{tabular}

Cards 3 through 6 have the same formit, as Card Number 2 above; they contain the \(x\) and \(y\) coordinates of the center point for each variable. The number in parenthesis is the index of the \(x\) and \(y\) arrays.

Card Number 3: Ankle(3), Shoulder(4), Elbow(5), and Wrist(6).
Card Number 4: Trageon(7), Nose (8), Lap Buckle(9), First Shoulder Harness(10).

Card Number 5: Next four Shoulder Harness points (ll to 14).
Card Number 6: Last two Shoulder Harness points (15 and 16).
(Note that the seven shoulder harness points are assumed to be listed in sequence from the buckle to the top shoulder point; that is, with increasing \(y\) values.)
```

4.2
FILM DLGIT:'TNG PROMEDURE
The title to be printod below the pictograrme vird l: was
manually entored via the {.!: anma.

```

```

tere: \because1u t.! ru%bo

```

```

manuall% antered via the keyboaru. BAF's l thru 8 were obtalned
Evom .. : pretest measurements 5om. BAF's 9 and In w.m Gasidered
to be constant, the shoulder stra% zentor-center aintancoveing

```


```

meas red prior to surara! f.osts { \therefore '\& anstant witu

```

```

sidered to be parallel an% ant ait

```



```

to zero. whe til: was transportec fornard in the sirolom are
mode, the operator noting the Erame numbers at wrish - :m,th,
eighth, twelfth, sixteerth, me wen:ieth n.fi seco.f : . Nu :ulses

```

```

from frame zero was subtravai a..anchor tim: aumbers
to determine the :ra`.ッs: f....
The film was transpor't: pacxward whide: , :..:?.or ap-

```

```

Of the frame in which the head afpearec: to bo ertat iss mox
Identification of this frame is strictly subjectivf, l.rwowor:, the

```

```

the processing of data from each test.

```

After the film had been returned to frame zero the projected image coordinates of the reference fiducials on the lexan panel and the side of the seat pan were digitized in the order specified in the format for Card Number 4.

Two points were read at each of the joints on the subject's left arm and leg in the order specified in the formats for Cards 5, 6, and 7. These points were digitized to define the diameter of the circles representing the joints on the pictograms. The ankle of the subject was not in the field of view at frame zero, so the film was transported to a frame in which it was visible. The readings of the ankle points were read and a tracing was made in black ink on clear acrylic sheet of the fiducials on the ankle, knee, and intermediate point on the lower leg. The tracing also included the outline of the shin. This overlay was later used to locate the ankle fiducial when it was outside the field of view.

The film was transported to the frame noted as tl one in which the head was erect and the coordinates of the fiut ials at the trageon and nose were digitized as specified in the format for Card Number 8.

The film was returned to frame zero. At this wint it is well to note the possibility that on some films tre synchronizing flash can be bright enough to wash out the images of some of the fiducials. Had this occurred, time zero data would have been digiti \(\sim\) from frame -1 (99999 on counter).

Time after initiation (msec) was entered manually via the keyboard as specified in the format for Film Data Card Number 1. The coordinates of the projected images were digitized in the order specified in the formats for Film Data Card Numbers 2 thru 6. All points on the seat and the subjects were defined by the fiduAals with the exception of the shoulder, the elbow, and the wrist. is thr arm elevated, the arm segments demonstrated rotary motion Hidia: tratiducials on the elbow and wrist to rotate forward \(\because \cdot 1+1 \because: O\) the imace of the arm. (Dummzes with pinned joints do \(\because\) (emonityatr this rotation). At the shoulder, elbow and wrist
the points digitized were the estimated geometrig centers of the images of the joints.

The first point diaitized on the harness was the renter of the buckle. The second, third, and fourth points were digize: upward along the left shoulder strap betwwen the buckle and th. clavicle. The fifth, sixth, and seventh points were diaitized upward (rearward) along the left shoulder strap between tho gla: icle and seatback.

\subsection*{4.3 RESULTS}

The pictograms generated by the test case are illustrated in Figure 31. The format and the presentation of the body segment positions appear to accurately reflect the projected images in the film frames from which the data were extracted. The projection of the shoulder strap, as plotted, does not accirately reproduce the observed path of the strap. A need to review the technimue used to digitize the strap data, and to improve the method of fitting a curve to the data is indicated.

APPENDIX A
PROGRAM HIFPD


```

C
002260
READ(5,1030) TITLE(2),IRX,IPR,ITYPE,IPL,ICAM,IPA,IADJ,IPC,JO,JR,M,O02280
I (IO(I),IR(I),I=1,12),NP,DYLP 002300
IF (NP.LT\& 3) NP=11 002320
IF (IADJ.GT. O) READ(5,1020) XADJ,ZAOJ 082340
REAO(5,1020) DT,(CAL(J),J=2,8) 002360
IF (JO.LLT. 1) JO=1 NO,J=2,0
IF (JR \&LT. i) JR=999
WRITE(6,250C) TITLE,NP
IF (IADJ) 440,440,450
40 IADJ=0
GOTO455
450 IADJ=1
455 IF (ICAM) 460,460,465
460 ICAM=0
GO TO 470
45 ICAM=1
470 IF (IRX) 480,480,490
480 IRX=0
GO ro 495
40 IRX=1
495 IF (IPR) 500,500,505
530 IPR=C
60TO 510
535 IPR=1
510 IF (IPL-1) 515,525,520
515 IPL=0
GO TO 525
520 IPL=2
525 IF (IPA-1) 530,540,535
5 3 0 ~ 1 P A = 0
GOTO 540
535 TPA=2
54% IF (IPC-1) 545,560,550
5 4 5 ~ I P C = 0
60TO 560
556 IPC=2
560 I=1
IFLAG=0
NC1=1
NC 2=999
IFRD=100
IF(DT) 565,565,570
565 OT *50U.4
570 IF (ITYPE) 575,575,58C
575 ITYPE=0
J1 < 3
GOTO 16
530 ITYPE=1
J1:7

```

```

    1) 003230
    00 590 J=3,6 0J3300
    x(I,J)=t.0 203320
    590Z(I,J)=0.0 0-03340

```
```

    IF (ICO-1) 595,595,100
    535 IF (IFR(I)-IFRO) 600,600,610
    6J0 WRITE(6,2410) IFR(I)
        IFLAG=1
    610 IFRO=IFR(I)
        GO TO 4C
    FROM HERE TO LABEL 115: READ A MAXIMUM OF AMAXN' FRAMES OF I,W:.' ILTAOCJ.
    10 READ(5,10G0) ICD,IFR(I), (X(I,J),Z(I,J),J=1,4)
    FOLLOHING CARD CHANGED TO INPUT PAPER TAPE DATA:
        IF (ICD-1) 15,15,100
        IF (ICD-1) 100,15,100
    15 IF (IFR(I)-IFRD) 20,20,25
    20 WRITE(6,2410) IFR(I)
        IFLAG=1
    25 READ(5,1000) ICD,IFRD,(X(I,J),Z II,J),J=5,8)
    C FOLLOWING CARD CHANGED TO INPUT PAPER TAPE OATA:
IF (ICD-2) 30,30,70
IF (ICD-2) 70,30,70
3C IF (IFR(I)-IFRO) 35,40,35
35 WRITE(6,2400) IFR(I),IFRO
IFLAG=1
40 T(I) =FLOAT(IFR(I))/DT
IF (IFR(I) .EQ. JD) NC1=I
IF (IFR(I) EQQ. JR) NC2=I
C AOD 'XADJ AMO 'ZAOJ'TO I-TH DATA POINT:
IF (IADJ) 55,55,42
4200 45 J=1,2
X(I,J)=x(I,J)+XADJ
45 Z(I,J)=Z(I,J)+ZADJ
00 50 JxJ1,8
X(I,J)=x(I,J)+XAOJ
50 Z:I,J)=2(I,J)+ZADJ
55 IF (I-MAXN) 6i, 60,65
60 I=I+1
IF (ITYPE) 10,10,585
65 WRITE(6,2840) MAXN,IFR(I)
IF (ITYPE) 10,10,585
70 WRITE(6,2000) ICO,IFRD
IFLAG=1
60 10 10
1)] IF (ICO-9) 110,115,110
110 MRITE(6,2000) ICD,IFR(I)
IFLAG=1
IF (ITYPE) 1U,10,585
115 M=I=1
OTT=(T(N)-T(1))/FLOAT(N-1)
IF (IRX) 118,118,116
116 00 117 I=1,N
00 117 J=1,e
117 X(I,J)=-X(I,J)
c
C PRINT TEST PARAMETER SUMMARY PAGE.

```

 WFIIE10,-DLC, I:T:=(?),N,JT,IKA,ITYOE,ICAM,IAOJ,IPR,IP:,IPA,IPC,M,OO4480
 1 (:0(:),:0{!),I=1,M)

```

        * 1偪, ji 0)
        W&TE{O,2140) วTT 004580
        WR:TE1E,2150, N OOM6OC
    ```

```

        K:IE(E,:160) YNPQ(IPR+1)
        WRITE1E,219OI YNOR(IPL+1:,YNPL(IPL+1) 004660
    ```

```

        WRITE(G,2170) YNPR(IPC+1),YNDLIIPC+1) O0470C
        00 13U Jこ2,R 004720
        IF (AES(CAL(J))) 125,125,120 004740
        120CAL(J)=1.0/CAl(J)
        ICAL (j)=1
        O0 %O 230
    125 ICAL (J)=0
    WRITE (6,2820) HEAOL(J
        HRITE(6,2570)
        1F (M) 137,137,132
    132 U0 135 K=1,M
        J0=IDiK;
        JR=IR(K)
        IF (ICAI.JO) LT. & OR. ICAL\JR) .LT. 2) GOTO 135
        WRITE(6,2210) K,HEADL(JD),HEADL(JR)
        004560
        004720
        *)
        HRITET6,257C) 004880
        #, 137,137,132 004900
        *
        004960
    137 IF (IPR) 140,140,105 01504J
    005060
C DRINT RAN INPUT OATA IN COUNTS. OO50SO
140 WRITE(6,2500) TITLE,NP 005120
WRITE(6,2550) 005140
WRITE(6,2560) HEAOC 005260
0O 145 I=1,N 005180
145 WRITE(6,2580) IFR(I),(X(I,J),Z(I,N1,J=1,8)}0052U
NRITE(6,2500) TITLE,NO 0.J5220
WRITE(G,2552)
WRITE(6,2560) HEATC N"45260
: GOMPUTE ANT, PRIVI FRGIF TO FRAME LIFFERENGES IN COUNTS 005280
F(ITYFE) 1*8,148,146
146 CO 1., J J=3,6
x(1)=C.0
147\timesD(J)=C.0
1*3 DO 101 I*2,N
XD(1)=x(I,1)-x(I-1,1)
ZD(1)=2(I,1)=2(I-1,1)
xO(2)=x(1,2)-x(I-1,2)-xU(4)
ZO(2)=2(1,2)-2(1-1,2)=20(1)
00 153 J=J1,0 005520
XO(J)=x(I,J)-x(I-1,J)=X0(1)

```
```

    150 20(J)=2(I,J)-2(I-1,J)-20(1)
        WRITE(6,2580) IFR(I),(XD(J),ZD(J),J=1,8)
    160 CONTINUE
    \approx こONVERT OATA FROM COUNTS TC FEET.
165 IF (IFLAG) 170,170,167
167 WRITE(6,2500) TITLE,NP
WRITE(6,2830)
GOTO 5
170 IF (ICAM) 175,175,650
175 DC 185 I=1,N
C
H1 ANO HZ AOJUST DATA FOR SHIFT IN RANGE REFERENGE READING.
HI=X(I, 1) - X(1,1)
H2=2(I,1)-2(1,1)
x(I, 2)=(x(I,2)-H1)*CAL (2)
Z(I,2)=(Z(I,2)-H2)*CAL(2)
OO 12% J=J1,8
X(I,J)=(X(I,J)-H1)*CAL (J)
190 2(I,J)=(2(I,J)-H2)*CAL(J)
185 CONTINUE
C DO SGO NP=NP1,NP2,2
GO TO 695
050 IF (IPR) 655,655,660
655 WRITE(6,2500) TITLE,NF
WRITE(6,2540)
HRITE(6,2560) HEADC
` GALL SUBROUTINE 'ROTATE, TO ROTATE, TRANSLATE, ANC CALSBRATE TME
C ON-BOARD CAMERA DATA (ICAM>O).
660 CALL ROTATE(N,J1,IPR)
C COMDUTE the mean ano standard deviation about the mean for sleo

- REFERENCE DATA:
695 CALL MEAN1 (N,x(1,2),Z(1,2))
N1=(NP-1)/2+1
N2=N-N1+1
N3=3*N1-2
N4=N-N3+1
NN=N2-N1:1
IF (IPC+IPA-4) T00,806,800
C
*********** COMPUTE DARAMETER VERSUS SLED OISPLACEMENTS.
700 00 T25 J=3,8
JJ=J-2
IF (ISAL(J)) 715,715,705
745 DO T1C I=1,N
XD(I) =X(I,N)-X(I,2)
710 20(I)=Z(I,J)-Z(I,2)
I=1
CALL SM(T,XD,XX(I,JJ),N,NP)
CALL SM(T,ZC,ZZ(I,JJ),N,NP)
GO T0 725
T1500 T20 i=N1,N2
x(I,JJ)=0.0
120 22(I,JJ)=0.「

```

Cu5562
0559.0

005600
305622
205640
005650
005 E90
03570 ：
03572 C
n 05740
005762
305780
005800
005820
055840
\(005660^{\circ}\)
OU5．8C
005908
005920
0059．5
025950
0 05096
000030
0．60ここ
－CBC：
\(0060=6\)
vibta．
\(036: 00\)
0：8：こと
\(006: 40\)
036150
006151
0 O615c
036180
0262U5
006：？？
036：～
50620 C
306292
40530 C
3063＝5
于4 6340
006360
4063 BC
006400
9564．：
\(00644 i\)
006450
？ 3649 a
006520
य 70 S． 2 C
\(0 ? 850:\)
006550
\(03658=\)
\(200 h C t\)
```

    :25 CONTIHLE CJ062i
        IF (1PC-1) T2B,728,743
    728 LINE=6C
        CO 74: I=N1,N2
        IF (LINE-50) 735,730,730
    730 WRITE (6,2500) TITLE,NP
WRITE(6,2555)
WRITE(6,2565) (HEAOC(J),上 = 8,8)
LINE=0
` PRINT PARAMETER vERSUS SLED DATA.
755 स२ITE(6,2585) IFR(I),T(I),(XX(I,JJ),Z2(I,JJ),JJ=1,も:
LINE =LINE+1
740 CONTINUE
IF (IPC) 742,742,743
742 IF (NC1 -LT. N1) NC1=N1
IF (NC2.GT.N2) NCZ=N2 006920
NN=NC2-NC1+1
IP=1

* PLOT PARAMETER VERSUS SLED DATA. 006980
CALL CPLT(T,OI,DC,IP)
HRITE(G,2595) IER(NC1),IFR(NCZ)
743 If (IPA-2) 745,800,800
**************************
COMNJTE ANGULAR VELOCITY ANO ACCELERATION; HERE TO LAGEX 775.
C***************+********* 007100
745\timesO(N1-1)=PI
ZO:N1-1)=PI
IF (ICAL(3)+ICAL (5)-2) 756,750,750
75000755I=N1,N2
HI=ZZ(I,3)=ZZ(I,士)
H2=XX(I,3)-XX(I,1)
C SHOULDER = HIP ANGLE
* SHOU(I)=ATANZ(HI,H2)
IF (XD(I) .LT. O.O) XD(I) = XD(I) +PI2
IF (AOS(XO(I)-XO(I-I)).GT. PI34) XO(I) =XO(I)+PI2
755 CONTINUE
CALL DERIVI(T,XD,WS,N,NP,1)
GALL DERIVI(T,HS,HSZ,N,NP,Z)
GOTOT5S
756 DO 757 I=N1,N2
XD(I)=0.0
WS(I)=0.0
757 WS2(I)=C.0
758 IF (ICAL(7)+ICAL(8)-2) 762,759,759
759 50 760 I=N1,N2
M1=2Z(I,5)-2Z(I,G)
H2=xx(I,5)-XX(I,6)
= HEAD PT: - HEAD PT 2 ANGLEI
2D(I)=ATAN2(HI,H2)
IF(20(I).LT. 0.0) ZO(I)=20(I)+PI2
TGO CONTINUE
SALL DEPIVI(T,ID,WH,N,NP,1)
CALL DEF:V:1,NM,WHZ,N,ND,21
GO TCTES%
006640
00.566
006630
006730
QuETZ2
005740
005760
006760
006:00
006840
006825
006860
-     - 006880
005880
0069n0
006920
056962
006960
006980
007500
*) U57040
007080
007120
* 0007140
007160
(1,1)
007190
)007200
007220
007280
007300
0073?0
007320
007340
00734%
007360
-007380
N1,N2 027400
027400
007420
007440
007460
*)
759 30 760 I=N1,N2 (8)-2) 762,759,759
007482
007500
007540
007560
IF (ABS(701T)-2O(I-1)1)-T PI34) 2D(T)=20(I)+PTR
007622
007640
007660
007660
CO.)}009770

```
```

    76200 764 1=N1,N2
    07720
ZD(I)=0.0
WH(I)}=0.
764 WH2(I) =0.0
768 LINE=60
DO }775\textrm{IINSO,N4
IF (LINE-50) >72,770,770
7T0 WRITE(6,2500) TITLE,NP
WRITE(6,2551)
WRITE(6,2520)
LINE= J
C DRINT ANGULAR VELOCITY AND ACCELERATION.
772 WRITE(6,2590) IFR(I),T(I),XO(I),WSII),NSZ(I),ZD(I),WH(I),WH2(I)
LINE=LINE+1
775 CONTINUE
IF (IPA) 780,780,800
790 IP=2
NN=N4-N3+1
JD=5
JR=3
IF (ICAL(3)+ICAL(5)-2) 790,785,785
= DLOT ANGULAR VELOCITY AND ACCELERATION DATA.
7H5 CALL CPLT(T(N3),WS(N3),NS2(N3),IP)
790 J0=7
JR=8
IF (ICAL(7)+ICAL(8)-2) 800,795,795
795 CALL CPLT(T(N3),HH(N3),NH2(N3),IP)
8JO CONTINUE
IF (M.LT. 1 .OR.IPL EQ. 2) GO TO 5 OOB28G
OO 2!E J=2,8
DO 2CE J=2,8
190 DO 195 I=2,N
190 DO 195 I=2,N

```

```

    x(1,J)=0.0
    z(1,J)=0.0
    200 CONTINUE
    IP=3
    C 202 DO 410 NP=NP1,NP2,2
C 202 DO 410 NP=NP1,NP2,2
N2=N-N1+1
N3=3*N1-2
Nm=N-N3+1
NN=N4-N3+1
C
COMPUTE LINEAR VELOCITY AND ACCEL OATA FOR PARAMETER ID(K) WITH
C RESPECT TO IR(K): HERE TO LABEL WOO.

```

```

C+
nO 4ut K=1,N
JO=IO(K)
IF (JD.LE. 1) GO TO }39
JR=IP(K)
IF (JR .LT. 1) GO TO 395
007740
00.7EO
OCT78U
007800
007e20
007e20
0C784C
J07860
0.7860
0.17887
80%g??
30792?
001940
007950
007350
0.7980
708こうこ
008020
008:40
008060
OO5580
008050
0:813,
208120
008147
00816?
005200
008220
008<40
00825%
008320
008320
008340
008340
X(1,J)= 0,0
J)=2(I,J)-Z(1,J)
008401

- J84こ0
O08442
0.846C
C 202 DO 410 NP=NP1,NP2,2
C N1=(NR-1)/2+1
0C85:
008525
0}8554
O-8540
008560
008580
0.3500
0086^0
058640
00866%
0086BC
008700
0087=0
0J8740
008762
008780
008803

```


```

```
 XMP=C1
```

```
 XMP=C1
 ZMO=C1
 ZMO=C1
 RM=C1
 RM=C1
 XMN=-C1
 XMN=-C1
 IMN=-E1
 IMN=-E1
 00212:=1,N
 00212:=1,N
 If (JR-1) 205,205,210
 If (JR-1) 205,205,210
 205 OI(I)=x(I,JC)
 205 OI(I)=x(I,JC)
 つこ(I)=2(I,JD)
 つこ(I)=2(I,JD)
 GO T0 212
 GO T0 212
 210 CI(I)=x(I,JD)-x(I,JR)
 210 CI(I)=x(I,JD)-x(I,JR)
 DC(I)=Z(I,JD)-Z(I,JR)
 DC(I)=Z(I,JD)-Z(I,JR)
 212 EONTINUE
 212 EONTINUE
 CALL SM(T,OI, XD,N,NP)
 CALL SM(T,OI, XD,N,NP)
 CALL SM(T,DC,ZD,N,ND)
 CALL SM(T,DC,ZD,N,ND)
C SOMPUTE MEAN ANO STANOARD DEVIATION OF DIFFERENCE BETMEEN SMODTME:, OJ91ZO
C SOMPUTE MEAN ANO STANOARD DEVIATION OF DIFFERENCE BETMEEN SMODTME:, OJ91ZO
Z ANO UNSMOOTHED OISPLAGEMENT DATA:
Z ANO UNSMOOTHED OISPLAGEMENT DATA:
 CALL MEAN2(N1,N2,OI,OC, XD, ZD,SMX,SHX2,SMZ,SMZ2)
 CALL MEAN2(N1,N2,OI,OC, XD, ZD,SMX,SHX2,SMZ,SMZ2)
C LOMPUTE MAXIMUM }X,Z\mathrm{ ANO RESULTANT OISPLACEMENT.
C LOMPUTE MAXIMUM }X,Z\mathrm{ ANO RESULTANT OISPLACEMENT.
 DO 26r I=N1,N2
 DO 26r I=N1,N2
 RES(I)=SQRT(XD(I)= 人O(I) + ZD(I)*ZD(I))
 RES(I)=SQRT(XD(I)= 人O(I) + ZD(I)*ZD(I))
 IF (XO(I)-XMP) 220,220,215
 IF (XO(I)-XMP) 220,220,215
215 XMP=XD(I)
215 XMP=XD(I)
 TXMP=T(I)
 TXMP=T(I)
 GO TO 230
 GO TO 230
 220 IF (XD(I)-XMN) 225,230,230
 220 IF (XD(I)-XMN) 225,230,230
 225 XMN=XO(I)
 225 XMN=XO(I)
 TXMN=T(I)
 TXMN=T(I)
 230 IF :2O(I)-2MP) 240,240,235
 230 IF :2O(I)-2MP) 240,240,235
 235 ZMP=ZD(I)
 235 ZMP=ZD(I)
 TZMP=T(I)
 TZMP=T(I)
 12MP=1(I)
 12MP=1(I)
 240 IF (20(I)-2MN) 245,245,250
 240 IF (20(I)-2MN) 245,245,250
 245 2MN=2O(I)
 245 2MN=2O(I)
 TZMN=T(I)
 TZMN=T(I)
250IF (RES(I)-RM) 260,260,255
250IF (RES(I)-RM) 260,260,255
 255 RM=RES(I)
 255 RM=RES(I)
 TRM= T(I)
 TRM= T(I)
 260 CONTINUE
 260 CONTINUE
C GOMPUTE LINEAR VELOCITY.
C GOMPUTE LINEAR VELOCITY.
 CALL DERIVI(T,XO,VX,N,NP,1) 00964C
 CALL DERIVI(T,XO,VX,N,NP,1) 00964C
 CALL OERIVI(T, 2D,VZ,N,NP,1:
 CALL OERIVI(T, 2D,VZ,N,NP,1:
C COMPUTE LINEAR ACCELERATEON DATA. OO9660
C COMPUTE LINEAR ACCELERATEON DATA. OO9660
 CALL UERIVI(T,VX,AX,N,NP,2)
 CALL UERIVI(T,VX,AX,N,NP,2)
 CALL DERIVITT,VZ,AZ,N,NP,2)
 CALL DERIVITT,VZ,AZ,N,NP,2)
 LINE % 60
 LINE % 60
 OO 28, I=N3,N4
 OO 28, I=N3,N4
 VEL(I)=SQRT(VXII)*VX(I)+VZ(I)*VZII))
 VEL(I)=SQRT(VXII)*VX(I)+VZ(I)*VZII))
 ACC(I)=SORT(AX(I)*AXII)+AZ(I)*AZ(I))
 ACC(I)=SORT(AX(I)*AXII)+AZ(I)*AZ(I))
 IF (LINE-50) 275,270,270
 IF (LINE-50) 275,270,270
2TO WRITE(6,2500) TITLE,NP
2TO WRITE(6,2500) TITLE,NP
2T0 WRITE(6,2500) TITLE,NP
2T0 WRITE(6,2500) TITLE,NP
005640
005640
COSE4O
COSE4O
OC8RGC
OC8RGC
008ES0
008ES0
008990
008990
008930
008930
068520
068520
0)8y40
0)8y40
<j896?
<j896?
uj896:
uj896:
ucegar
ucegar
G:OC0C
G:OC0C
0c9t20
0c9t20
029043
029043
009043
009043
009085
009085
0ra:20
0ra:20
 CALL SM(T,DC,2D,N,ND) 0.9120
 CALL SM(T,DC,2D,N,ND) 0.9120
C sompute mean and standard deviation of difference betmeEn smoothe:, oJaizo
C sompute mean and standard deviation of difference betmeEn smoothe:, oJaizo
609122
609122
009145
009145
0.9160
0.9160
09180
09180
009200
009200
009220
009220
0
0
009240
009240
009260
009260
009280
009280
009300
009300
009320
009320
009340
009340
009360
009360
009380
009380
009400
009400
009420
009420
009440
009440
009460
009460
0C9480
0C9480
009500
009500
029520
029520
0:0540
0:0540
009560
009560
009560
009560
009580
009580
049600
```

049600

```
```

049620

```
049620
00964%
00964%
n09650
n09650
309680
309680
009690
009690
309730
309730
009720
009720
0 [9730
0 [9730
0C9735
0C9735
 0009765
 0009765
0<9740
0<9740
3:9780
```

3:9780

```
```

        WRITE(6,2510)
        INE=0
    O OPINT LINEAR DISPL, VE: AND ACCEL DATA.
275 ACCG(I)=ACC(I)/32.2

```

```

        (I),VEL(I),&CC(I),Aこここ(I)0C9eg!
        290 CONTINUE
        IF (LINE-40) 330,336,320
        320 WRITE(6,2500) TITLE,NP
        WRITE(6,220C) HEAOR(JO),HEADL(JR) UNOCRO
        330 WRITE(6,2700) XMP,TXMP O1UGU0
        WRITE(6,2710) XHN,TXMN D 10020
        WRITE(6,2720)2MP,T2MP
        HRITE(6,2730) ZMN,TZMN
        WRITE(6,2740) RM,TRM
        WRITE(6,2920) SMX,SMXZ,SMZ,SMZZ
    C
OLOT LINEAR VELOCITY ANO ACCELERATIGN DATA.
35u IF (IDL) 360,360,400
360 CALL CPLT(TIN3), VEL(N3), ACCG(N3),IP)
GO TO 400
390 WRITE (6,2500) TITLE,NP
WRITE(6,2800) K
GOTO 4.0
395 WPITE(6,2500) TITLE,NF
WRITE(6,2810) K
400 CONTINUE
C 410 CONTINUE
GO TO 5
999 WRITE(6,2900)
CALL PLOTE
STOP
C FOLLOHING CARD CHANGED TO INPUT PAPER TAPE DATA\&
1000 FORMAT (I1,I4,8F7.0)
C1000 FORMAT (II,I5,OFG.0)
1C10 FORMAT(8A10)
1020 FORMAT(8F10.0)
030 OMMAT(8F10.0) 010540
103C FORMAT(A5,8I1, 2I3,I2,12{I2,I1),I3,F5.0) 01056L
20J0 FORMAT(/ 4X, FEQROR IN CARD IDENTIFICATION NUMBER: CARD ID=*,I2, OIOSBC
IRX 010600
21JC FORNAT(/I 4X,FTEST NOT IRX ITYPE ISAM IACJ IDFE OIOGIO
IIP( IPA IPC M SETS:*,12I4)
2110 FORMAT ( 3X,A5,I6,F14.3,I4,7I6,I5,7X,12(I3,I1))
2120 FORMAT(// 36x,7(A10,2X))
2130 FORMAT( 4X,*CALIB DATA IN SOUNTS DER FOOT:*,FQ.3,GF12.3), O1OTSC
2135 FORMAT(/ 4X, AOJUSTMENT FACTORE AOOEC TO ALL X ANO L INPUT DATA: XOIUTZO

```

```

21*O FORMAT(/ 4X, GAVERAGE TIME INCREMENT BETMEEN POINTSJ*,F:G.5), DIOTSO

```

```

2155 FORMAT(/4X, *REVERSE POLARITY OF X-AXIS OATA (MULT. EY-1.0), *,AJ)0IO8ON
2150 FORMAT (/4X, FPRINT LISTING OF INPUT DATA IN COUNTS: *,A?), OID:2N
21TO FORMATI/4X,FPARAMETERS QELATIVE TO SLES OISPLACEMENTSI PRINT? *,OIORYD
1A3,4X,*DLOT? *,A3)
215O FORMATY/GX, *ANGULAR VELOCITV ANO ACCELEPATION DATAJ PRIN*? F,NIDEOC

```
```

    1A3.4X, PLOT? *,AJ) O109CC
    2170 FORMATI/LX,GINEAR VELOEZTY ANO ACCELEKATIONEATAI DRINT?E,OIDGZO
1A3,4X,PPLOT? *,A3) J10940
22J0 FORMATG,/ 3IX,AG,* MOTION RELATIVE TOTME *,AG
2210 FORMAT(/10X,I2,*)*,AG,* MOTION RELATIVE TOTHE*,A9) O10Y8C
2430 FORMAT(/ 4X, ERROR IN FRAME NUMEERS; FRAME NUMGEE ON SARE 2 =*,14,DIIOOL
1 - FRAME NUMEER ON GARE 2=*,I4) O11R20
241G FORMATI/ 4X, FRAME NUMBEF IS NOT INCREASING: SHESR FRAME COUNT EORUIIOLC
1 CARC 1, FRAME= ,I5)

```

```

    I/4X,8A10,5X,I2,* POINT LUADRATICFITE, 0111OO
    2510 FORMAT!/ 32X, FOISPLACEMENT*,25X,*VELOCITY *,?(5X,*ACEEEERATION*)/01112S
A 4X,*FRAME*, 011140
1 * X,*TIME*,8x,* Y*, 10X,*Z *, 2(5X,*RESULT\&NT*,,2(8X,*RESULTANT*)/OLIIGO
B 4x,* NO. *, 01:180
2 4x,*(SEC)*,2(5x,*(FEET)*),6x,*(FEET)*,7, *(FT/SEC)*,7x,*(FT/SEC 01:2J0
ISQI*,10X,*(G)*) OII22C
2520 FORMAT(/1 29X,*SHOULDER - MIP*,21X,*MEAOF: 1 - MEAS PT 2*/, 0:124?

```

```

    2 * NO. (SEC)*, 2(4X,*(K,UIANS) (RAO/SEC) (RAD/SES SO)*): 012IOC
    2540 FORMAT(//4X, TME FOLLOMING IS A LISTING OF THE INPUT JATAGN EOUNTAIISCN
IS AFTER TRANSLATION ANO ROTATION OF ON-BOARD CAMERA JATLIE) O11320
2550 FORMAT(//4X,* HE FOLLONING IS A LISTING OF THE INPUT DATE IN EOUNTUII3LC
1S:*)
2551 FORMATI//HX, THE FOLOWINGIS A LISTING OF TM ANGULAE *TION JF TSI13MO
1HE HEAD ANO SHOULOER:*) O1:400
2552 FORMAT(//4X, THE FOLLOWING IS A LISTING OF O(I)-DF(I)-J:\-2)*ORI:-JII4?C
11) IN COUNTS:*)
C11440
2555 FORHATI//4X, *THE FOLLOWING IS A -JSTING OF PARAHETER SLES E. PLAOIIGGO
ICEMENT IN FEET:*)}01168
2560 FORHAT(/f * FRAHE *, %(6x,A10)/, 2x,*NO.*, B(8x,*x*,*:**), 01250
2565 FORMAT(/f FRAME TIME *,6( 7x,A10)/ 011520
1 NO. (SEC)*,6(7x,*x*,6X,*2 *)) < (1:542
2570 FORMAT (///4X, HLINEAR OISPLACEMENT, VELOCITY ANO ACCELERA*, JN DATA WOLI5GO
1ILL BE COMPUTED FOR THE FOLLOHING\&*) O1158C
2530 FORMAT(IX,I4,2X,B(F9.0,F7.0)) 0126S0
2585 FORMAT(1X,I4,F11.5,6(F10.3,F7.3)) 011620
2590 FORMAT(1X,I4,F11.5,2(F10.3,F11,3,F13.3,6X)) N11640
2595 FORMAT(//\&X; THE ABOVE OATA NAS PLOTTED (X VERSUS Z) FOR FRAME NUMDIIGGD
1BER*,I4,* TO FRAME NUMBER*,I4) 0126OC
2630 FORMAT(4X,J4,F11,5,F10.3,F11,3,F12,3,F15,3,F16.3,F17.3) 011700
2700 FORMAT (f 4X,*MAXIMUM POSITIVE X DISPLACEMENT=*,FB.3, * AT TIME *OIITED
:F8.5) 011,4C
2710 FORMAT(/ 4X,FMAXIMUM NEGATIVE X OISPLACEHENTE*,F8:3, * AT TIME OIITSO
X 011980
2720 FORMATI/ 4X,*MAXIMUM POSITIVE 2 DISPLACENENT=*,F8.3, * AT TIME *NIISOC
1.F8.5) 011820
2730 FORNATI/ 4X, \#HAXIMUM NEGATIVE Z OXSPLACEMENTI*,F8.3, * AT TIME *OL28LO
1.F8.5) n11860
2740 FORHAT(/ 4X, \#MAXINUN RESULTANT DISPLACEMENT=*,F8.3, - AT TIME OTIIBOL
1.F8.5) C1:200
2BJO FORMATI///4X, *OMIT COMPUTATIONS FOR SET*,I3/ 4X,*THE PROGRAM ISJIIQ?E
1 NOT DESIGNED TO COMPUTE RANGE OISPLACEMENT, VELOCITY AND ACCE:ERAOIICLIN
ZTION.*/ 4X, FOATA PARAMETER COOE IS LESS THAN OR EQUAL TC 1*, OLIOGO
2B1O FURMATI///4*X, *OMIT COMPUTATIONS FOR SET**I3/ 01190G

```
1 4X, *REFERENCE PARAMETER CODE IS LESS THAN 1*) \(0120 C 3\) 2820 FORMAT (/ \(4 X\), CCALIBRATION FACTOR IS O. 0 THUS COMPUTATIONS WILL \(8 E\) OOI20 20 1MITTED FOR THE FOLLOWING PARAMETER: *,A10) 0120.1 2830 FORMAT (//1X,134(1H*)//4X, OMIT THE REHAINDER OF THE COMPUTATIONSOIZOSO 1 FOR THIS TEST BECAUSE OF INPUT CARD PROZLEMS. */ O \(/\) OLSU 2 4X, \(\operatorname{FSEE}\) ERROR STATEHENTS AT THE BEGINNING OF THE OUTPUT FOR THIS OI2100
 JTEST*// \(\left.1 X, 134\left(1 H^{*}\right)\right) \quad 012120\)

 IER:*,I4)

2900 FORMAT(*1 END OF JOB*) 0121:0
2920 FURMAY (SLX, 4 MEAN AND STANDARD NEVIATION OF UNSMONTHED-SMOOTHEO DISO 12200
 1PLACEMENT DATA:*/4X, FMEAN AND S.D. OF \(X={ }^{*}\) :1P2E15.5/4X,*MEAN AND S.012: 30
 20. OF \(2=\) 2 2 , 25.5) 02224 C
 \(\begin{array}{ll}\text { END } & 012260\end{array}\)
SUBROUTINE CPLT(T,Y,Z,IP) 012289
DIMENSION X(3U2),T(1),Y(1), Z(1) 012300
COMMON JU,JR, N,NP,I1,I2,XX(302,6),2Z(302,6),ICAL(B) 012320
COMMON /CPLTC/ HEADL(B), DATE, TEST,TITLE(8), IRX, DYLP 012340
- IP=1 --- COMPOSITE PLOT OF PARAMETER VERSUS SLED DATA 012360
IP=2 --* PLOT OF ANGULAR VEL AND ACCE:
012380
IP=3-E PLOT OF VEL AND ACCEL
sxmax is the maximum length of the time scale in inches.
C \(\quad 5 X M A X=17.0\)
 SXMAX=32.0
012400
 SXMAX=32.0 012460
 \(5 \mathrm{~F}=10.0\)
 \(0 x=0.02\)
 \(\mathrm{N} 1=\mathrm{N}+1\)
 \(N 2=N+2\)
 IF (IP-2) 300,5,5 012560
 5 DO \(10 J=1, N \quad 012580\)
\(10 \times(J)=T(J)\)
 \(x(N 1)=F\) LOAT (IFIX(X12)*10C.01) *0.01 012620
 \(x(N 2)=D X\)
 \(S X=F L J A T(I F I X(X(N)-X(N 1) / / C X)+1)\)
 If (SX.ST. SXMAX) SX= SXMAX
 CALL axIS(0.0,.j.0,12HITAE IN SEG.,-12,SX,0.0, X(N1),DX)
 IF (IP.EQ. 2) , O PC 400
 \(A M X=-1\). CE10
 \(A M M=1.2 E 10\)
 DO \(15 \mathrm{~J}=1, \mathrm{~N}\)
 AMX=AMAXIIAMX,Y(J)) 012800
 AMX=AMAXI(AMX,Z(J))
 AMN=AMIN1(AMN,Y(J)) 012840
 AMN:AMINI(AMN,:(J) 012E60
5 CONT INUE
 (\(\frac{1}{2}\)
 20 AMN: O. O
 GO TO 40
 30 AMNFFLOAT(IFIX(AMN/2.5)-1):2.5

 IF (DYLP) \(43,43,42 \quad 013000\)
42 OY=OYLP
 GO TC 9C
- 3 OYY=(AMX-AMN)/SY
 IF (DYY-2.5) 44,44,45
44 OY \(=2.5\)
 YMINEAMN
 GOTC 160
 5 IF (CYY-5.0) 46,46.48
\(-6 \quad 2 Y=5.0\)
 GO TO 90
फ8 IF (DYY-20.0) 50,50.60
 5s \(5 \mathrm{~F}=10.0\)
 50 T0 90
 60 IF (OYY-20.0) 10.70.80
70 OY=26.0
 \(0 Y=26.0\)
601090
 C \(9 Y=30.0\)
 \(30 \mathrm{YMIN}=F \mathrm{LOAT}(I F I X(A M N / J Y), \operatorname{Or}\)
012440
 \(N=N+1\)
 -12400
 (
012660
012620
 012840
012660
012680
1270
012720
012740
012760
12780
 IF (AMM) \(30.20,20\)
012900
012920
012940
012980
013000
013240
013240
013060
C 43080
013100
013120
413140
413140
013160
01319 C
 013200
013220
013240
013260
013230
C13340
013368
IF（YMIN ，GT．AMN）YMIN＝YM（N－DY 13323IF（YMIN．GT，IMN）YMIN＝YMIN＝：
\(130 \quad r m a x=5 r=5 r+r 4 I N\)
 IF (\(\triangle M X\). LE. YMAX) 50 To 102
 YMIN=PMIN+OY
 YMAX \(=Y M A X+O Y\)
 \(1 J 2 Y(N 1)=Y\) HIN
 \(Z(N 1)=Y M I N\)
 Y(N2) \(=0 \mathrm{Y}\)
 \(z(N 2)=0 r\)

 \(135 \mathrm{ra}=46 \mathrm{~S}(\mathrm{YMIN} \mathrm{N} \boldsymbol{O})\)
 CALL PLOT(O.3,YO,3)
 CALL OLOT(SX, YO,2)
 \(11000120 \mathrm{I}=1, \mathrm{~N}\)
 IF \((Y(I): G T\), YMAXI \(Y(I)=Y 4 \Delta X\)
 IF (Z(I) .GT. YMax) Z(I) =yyax
 If (Y(I) •LT. YMIN) Y(I) \(=Y 4 I N\)
 IF (ごI) LL? YMIN) \(Z(I)=Y M I N\)
 120 CONTiNuE
 130 CALL LINE (X,y,N,1,10,1)
 CALL LINE \(X, 2, N, 1,10,3)\)
 HI工HEJOL (JD)
 CALL SYMGOL (0.25,9.5,0.105,H1, (0.0,7)
 GALL SYMBOL (0.25,9.3,0.105,6MREL TJ.J.J.0)
 H1 = HEADL (JR)
 CAL SYMBOL (0.25,9.1,0.105,H1, [.0,7)
 \(j=1\)
 CILL SYMBOL (0.5, 8.8,0,105, J, 0.0, -1)
 1290
 CALL SYMBOL (0.65,8.75,0.105,3HVEL,0.0,3) J13923
 \(J=3\),
 CALL SYMgOL (0.5, 8.55,0.105,J,0.0,-1)
 CALL SYMBOL (0.05,8.5J,3.105,3HaCE,0.0,3) 31 IQAO
 140 CALL SYMBOL (\(0.25,3.8,0.105,4 \mathrm{HTEST}, 0.0,4\))
 CALL SYM3OLIN.75, \(7.8,0.105\), TEST, 0.0, 5)
 CALL NUMBER(1.75,9.8,0.1G5,FLJAT(NDI,J.I.,-1)
 CALL SYMgOL \(12.05,9.8,0.105,9 H P O I N T\) FIT, J. O.O.
 GO TO 999
\(C\)
\(C\)
\(C\)
 - LOT THE こOMPOSITE RLJT OF paraneters veqsus slej.
 NOTE: QROINATE ANO ABSCISSA SCALING:S FIXED.
\(3 \perp C\) IMIN \(=0 . C\)
 XMIN \(=-1.4-2.2^{*}\) FLOAT (IRX)
 \(X M I N=-1.0\)
 \(02=0.4\)
 \(0 x=0.4\)
 \(5 x=10.0\)

 \(x\left(N_{1}\right)=X M I N\)
 \(r(N 2)=C x\)
 Z(N1):ZMIN
\(3:+?\)
```

        Z(N2)=02 314420
        KMAX=5x*3x+XMIN
        74Ax=5Y+3Z+Z4IN
        VO10.0
        0n 310 J=1,6
        \101,6
        If (ICAL(J+2)) 310,310,305
    3)5 H2 =HEAOL(J+Z)
        ra=ra-0.25
        CALL SYMGOL(-1.75,Y0+0.05,0,105,N,0,0,-1)
        cAlL SY
    10 continus
        DO 325 J=1,6
        IF (ICA&(J+2)) 325,325,315
    315 11=9
    LO 320 I= I1,I2
    II=TI+1
    x(II)=x:(T,J)
        I(III=L:IT,J)
        if (x(II) .GI. XMAX) x(II)=XMAX
        if (Y:II).LT, xMIN) x(II) =xMIN
        if (I(II) .GT. ZMAX) Z(II) =ZMAX
        IF:Z(II),LI. ZHIN) Z(II)=ZMIN
    3>0 CONTINUS
    014880
    325 CONTIVUE
        GO TO 140
    c
setup amD plot angular vel ano accel.
ujo call scale(y,SY,N,1)
CALL SCALE(Z,SY,N,N)
MMIN=Y(N1)
2MIN=2(N1)
EY= Y(N2)
\#Y= Y(N2)
WRITE(G,2000I YMIN,OY,ZMIN,OZ OL5120
CALL AXIS(O.O,O.O,22HANGULAR VEL -- RAO/SEC, 22,SY,GR.,YMIN,DY)9151240
CALL AXIS(SX,0.0,26HANGULAR ACC -- RAO/SEC/SEC,-26,SY,97.,2MIN,O2)315263
OدG CALL OLGT(SX+3.J,0.0,03) 01520a

```

```

    IF1H.2,* JY=*,FB.2,5X,* ZMIN=*,F10.2,* DZ**F8.2) 015260
    END 015293
    ```
SUBROUTINE SM(X,Y,YC,N,NP)015330
C NP MUST BE AN 000 INTEGER.GE. 3. 015320
GOMPUTE THE COEFFICIENTS FOR A QUADRATIC LEAST SQUARES FIT OF -NP. 015340
POINTS ANO COMPUTE THE FIT OF THE DATA (NO DERIVATIVES) •YC(I)•. J15360
OIMENSION C(I),X(1),Y(1),YC(1)\(M=(N P-1) / 2\)
 \(N N=N-M\)
 015420
 \(N 1=N N+1\)
 DO \(10 \quad I=1, M\)
 \(10 \mathrm{PC}(I)=0.0\)
 0154
0154.0
015450
 \(0020 I=N 1, N\)
 \(20 \mathrm{YC}(I)=0.0\)
 \(M M=M+1\)
 \(I=M M, N N\)
 \(00100 \quad I=4 M, N N\)
 \(\mathrm{N} 1=\mathrm{I}-\mathrm{M}\)
 \(N 1=I-M\)
 \(N 2=I+M\)
 CALL ALSO(X, P,N1,N2,C)
 \(Y C(I)=C(1) * x(こ) * X(I)+C(2) * x(I)+C(3)\)
 915480
 015400
 015500
315520
015540
015540
015550
015500
 \(Y P(I)=2.0^{*} C\) C11* \(Y(I)+C(2) \quad 01556 \mathrm{C}\)
 \(Y P P(I)=2,0^{=7}\) (1) 015680
110 CONTINUE
015700
 RETURN 015720
 END 315740
\(C \quad N P\) MUST \(3 E\) IN COO INTET,EP .HE. 3. 015790
: O= FOF FIRST JERIVATIVE. 3:520
LC=2 FJR SECOND OEO:VATIVE. J15025
SOMPUTE THE COEFEICIENTS FOR A JUAGRATIE LEAST SOUAFES FIT UE *N. J25 \(5^{\circ} \mathrm{C}\)
دOINTS AND CDMPUTE TME EYRST JERIVATIVF •YD(:). J:586J
(MSI) (3), X(1), Y(1),YO(1)
\[
=(N F-1), ?
\]
\[
\begin{aligned}
& 315820 \\
& 015=00
\end{aligned}
\]
\[
\begin{array}{ll}
\Psi=H+M+I & \\
& 15923
\end{array}
\]
\[
\forall N=N-\alpha
\]
\[
015940
\]
\[
N 1=N N+I
\]
\[
2010 I=1, k
\]
\[
015950
\]
\[
10 Y P(I)=0.0
\]
\[
015900
\]
\[
010000
\]
\[
202 \vdots \text { I =N1,N }
\]
\[
20 \quad Y P(I)=0.0
\]
\[
016020
\]
\[
M M=x+1
\]
\[
016040
\]
\[
O O I G G I=M M, N N
\]
326050
016080
\[
N_{1}=[-M
\]
\[
v_{2}=I+m
\]
CALL OLSO (x,Y,N1,N2,C)
\[
Y P(I)=2 \cdot J^{*} C(1) * x(I)+C(2)
\]
\[
=\quad Y C(I)=C(1)+(I) \times(I)+C(2) \times(I)+C(3)
\]
\[
\begin{aligned}
& Y C(I)=C(1) \cdot x(I) \\
& Y D O(I)=2 \cdot 0 \cdot C(i)
\end{aligned}
\]
130 CONT:NIJE
016030
016120
016123
19014"
\(J 16160\)
\(1 J 0\)-JNT:NIJE J16ここ0
RETURN 016240
ENO
016250

－JERCITINE ROTATE（N，JI，IDR） 1：7160
（CMMUN JU，JR，NN，NP，NC1，NC2，x×（302，G）， \(22(3 U 2,6), I C A L(O)\) ， \(0: 7190\)
，10（12），＋R（12），acc（3cz） 017200
2ヶCN二（3C2），CAL（8），XO（302），20（302） J17220
HIS SJEROUTIINE tRANSLATES，ROTATES，ANO CALIJRATES TME UN．GOARJ 017240
camera cata storej in ime＂，and＇z＂arrays．all oata are 017200TRANSLATEO TO A COCROINATE SYSTEM THROUGM THE SLEO RaNGE REFERENCE 0：？ZgOPOIN（FIRST \(x, 2\) PAIK FOR EACH TIME）．\(0173+0\)
IXIS IS THEN zOTATEJ SO THE ANGLE BETHEEN THE SLED RANGE AEFERENEE －17？ 10INC THE SLED PEFERENCE ISECONO X，Z PAIR FOR EACH TIMES IS THE SAYE O1734O
FOK ill time stattons（SAME AS AT IIME ú．． 017360
fifyt paint is range reference on IME SLED． 017380
jelond puint is the sled reference point． 017400
○I2ニら． 283185308 017420
\(I=1\) 217440
\(x R=x(I, 1)\) 31740 J
\(Z R=Z(I, 1)\) 017480
2F（IPR）10，10，1j 017509
1u tRITE（6，（580）IF₹（I），（X（I，J），2（I，J），J＝1，8） 01752 J

REFERENCE ANGLE.

 017560
15 11=x(L, 2) - XR \(\quad\) J 27590
 \(Z 1=2(i, 2)-2 R\)
 \(01 / 600\)
 \(x(1,2)=x(I, 2) \cdot(12(2) \quad 01762 \mathrm{u}\)
 \(\because: 21-2(I, 2) * \because(2) \quad 017640\)
 \(0020 J=\mu 1,8\)
 X(I, J) \(=x(I, J) \cdot C \&((J)\)
\(20:(I, J)=Z(I, J\) CのL(J) 0177コロ

SLEO - DF THE FIRST TIME STATION IPANGE ANO SLED FEFERENLE POINTSI: 0177 \(\rightarrow 0\)
hll data for i=? to n are rotateo to make the angle getneen the two oiftso
गOINTS THE SAME.
35 TMR=ATAN2(\(21, \times 1)\)
 017750
 IF (THR •LT. O.O) H (HR=THR+DI2 017820
 \(0050 I=2, N \quad 017840\)
 \(\mathrm{HI}_{\mathrm{H}}=\mathrm{X}(1,1) \quad 017860\)
 H2 2 (I, 1) 01788
TRANSLATE SLEO REFERENCE OATA TO COORDINATE SYSTEM THROUGM SLEO ZANLEZOLT900
रEFEREN:E ANO DETERMI!iE THE ANGLE GETHEEN SLED PANGE REFERENCE aNJ Ji>GZO
THE SLEO REFERENCS POINTS (FOR I-TH IIHE STATION). 017940
 \(x_{1}=x(I, z)-H 1\)
 \(21=2(I, 2)-H 2\)
 TMI=ATANZ (Z1, ×1)
 017960
 IF iTHI -H.T. J.J: TMI-JHIFPIZ 018020
ALL JATA ARE ROTATEJ GY ANGLE THATHI-THR. O1.9040
 THETHI-THR
313060
 CS xCOSTHI O19C90
 SN=SINTTHI J1910C

 \(13(2)=x 1+C S+21+C N+x P \quad 018: 40\)
 \(20(2)=-\times 1 \oplus 5 N+71 * C S+2 \quad 019100\)
 \(x(I, 2)=x 0(2,-5,2(2) \quad 013130\)
 \(\because 1 \mathrm{I}\), こ) \(=2\) (2) © C (2) 018230
 CO \(4 \mathrm{CO} \mu=1,8\) 019220


```

```
E rO INITIAL GOURDINATE SYSTEM.
```

```
E rO INITIAL GOURDINATE SYSTEM.
 AI=X,I: N)=H1
 AI=X,I: N)=H1
 Z1=(II,J)-H2
 Z1=(II,J)-H2
 XC(J)=\mp@subsup{x}{1}{}*CS+LI*SN* KR
 XC(J)=\mp@subsup{x}{1}{}*CS+LI*SN* KR
 XC(J)=xi*CS+LI*SN+XR
 *!:,J)=x0(.j)*こ&L(J)
```

        *!:,J)=x0(.j)*こ&L(J)
    ```
```

        X,I,1)=XR
    ```
 X,I,1)=XR
 \,I,1)={R
 \,I,1)={R
 if (IPQ) 45,+5,50
```

```
 if (IPQ) 45,+5,50
```

```


```

```
 ju contrinue
```

```
 ju contrinue
2&T0 FORAAP(1x,I4,2x,3!Fg,U,Fl, (,)
2&T0 FORAAP(1x,I4,2x,3!Fg,U,Fl, (,)
 RETURN
 RETURN
 ENO
```

```
 ENO
```

```

 3:13
0: 3 ?
51:?
0: ※.
 1.531

 3: \(\cos ^{2}\)
 2:00.4.
 j224.
32420
2204
2204
9. 85)
- ac

-1 1 5- 7

SUBROUTINE MEANZ (N1,N2,DI, OC, XL, \(20, S M X, S M \times 2, S M Z, S M Z 2)\)

318960OIMENSION OI(1), OC(1), XD(1), ZO(1)
C SOMPUTE AVERAGE ANO S.O. OF UNSMOOTHED MINUS SMOOTHEJ JATA:
 FNN=FLOAT (N2-N1+1)
 \(S M X=S M \times 2=S M Z=S 4 Z 2=0.0\)
 DO \(100 \mathrm{I}=\mathrm{N} 1, \mathrm{~N} 2\)
 OIFX=OI(I)-XO(I)
 \(D I F Z=O C(I)-Z D(I)\)
 \(\operatorname{SM} X=\operatorname{SMX} X+\) IF \(X\)
 \(S M Z=S H Z+\) OIF \(Z\)
 \(\operatorname{SM} \times 2=\operatorname{SM} \times 2+\) OIF \(X *=2\)
120 SM22=SMZ2+OIF2**2
SMX \(=\) SMX \(/ F N N\)
\(S H Z=S M Z / F N N\)
\(S M \times 2=S G R T((S M \times 2-S M X * S M \times * F N) /(F N N-1.0))\)
SMZZ=SQRT((SMZ2-SMZ*SMZ*FNN)/(FNN-1.0))
RETURN
END

013980 019000 317020 317020
319040 319040 013060 019080
019080
319130
019120
019120
019140
029160
01919 c
019290
019220
019225
019240
319260
919290
319305

APPENDIX B
PEOGRAM WBRL


```

    1,TITLE(3),T(150), JRES(150),ARES(150), XA(150),YA(150),
    2 2A(150),FMN(12),FMX(12)
    DIMENSICN OATA(1024),FHNC(3,2),FHXC(3,2),IS(9),IE(9)
    24=4 ENC/5H99997/,NP/11/,CON/1.OE10/,FCT/O.T/,FCTC/C.85/,INC/4/
    1, TCON/1.QE-05/,NMAX/150/
    CALL PLGTS(OATA,1024,7)
    CaLL PLOT(0.0,-0.5,-3)
    CA.L PLOT(0.0,0.7,-3)
    SALL FACTOR(FCT)
    CALL OATE(TODAY)
    CALL TIME(CLOCK)
    NS = (NP-1):2
    10 REAO(5,100U) TEST,TCOMP,OT
IF (EOF(5)) 999,2J
OO REAO(5,:100) TITLE
IF (DT.LT. TCON) OT=0.002
NST=0
TC 25 I=1,NMAX
T(I)=FLCAT(I-1)*OT
IF (ABS(TCCMP=T(I)) \&LT. TCON) NST=I
25 ZONTINUE
IF (NST.LT. 1) HRITE(6,3300)
IERR=0
OO go k=1,5
J2=2*k
J1= J2-1
IF (K.,E\lambda. 5) J2=J1
I=1
REAO(5,1200) TOM,(X(I,J),Y(I,J),Z(I,J),J=J1,J2)
CO 30I=1,NMAX
IF (ABS(T(I)-TJM) .LT. ICON) GC rO 35
3a CONTINUE
IOK=(JI+1)/2
IF (IEQR .EQ. n) HRITE (6,3050)
WRITE(6,3010) TEST,IOK,TOM
IERR=1
60 1060
35 IJ(J1)=1
IS (12)=I
IF (I.EE. i) GO TO 50
DO 40 J=J1.j2
x(I,J)=x(1,J)
Y(I,J)=Y(1,J)
40 Z(I,J)=Z(1,J)
50 I=I+1
IF (I .GT. NMAX) GO TO 55
REAO(5,1200) TOM,(X(I,J),Y(I,J),Z(I,J),J=J1,J2)
:F (TOM .GT. 9.30.0) T0 TO 70
IF (ABS(TDH-T(I)).LT. TCON) GO TO 50
IF (IERR.EQ. 3) WRITE(6,3050)
IERR=IERR*1
IDK=(J1+1)/2
WOITE(G,3000) IEST,IJK,T(I),TOM
00310 03012 000：－？ 000：50 000133 0 COZ 00 $0092=0$ 000 ？40 300250 00 CZ 30 000300 $000 \leq 20$ 00034 ？ 000360 $030.5 \times 0$ 304400 J00473 30040 030400 $0204 \%$ 000500 20052？ 0005. 000560 $0005+3$
3クJEOO
000t： 0
おうjヶus
060650
3000e9
000720
Qu0720
300740
$0007 \%$
3007，
Juの日
CGOAZ
0008 ．
$0.00+56$
020世47
0604Ja
0.0920
000940
000450
$0009 \times 0$
001010
001090
$0010=3$
J0106C
JC：C： 3
3こ1：j0
j01：？ 0
$0011+0$
301：＝
WOITE（G，3000）IEST，IJK，T（I），TクM On1：－U

```
TO TO 60 031200IF IERR © EQ
IOK \(=(J 1+1) / 2\)WRITE (6,3060) NMAX,IJK001223001240
0 REAO (5,1300) CK001260
IF (CK.EQ. ENO) GO TO 70 001310
GO TO 60 061320
0 IE(j1) \(=I-1\) 021340
IE (J2) \(=I-1\) 001350
CONTINUE 021330
IF (IERR) 150,100,10 001430
130 MAXT=MAXO(IE(1),IE(3),IE(5),IE(7),IE(9))-NS 001420
\(00200 \mathrm{~J}=1,9\)301440
\(N=I E(J)-I S(J)+1\) 101460
\(N 1=I S(j)+N S\) 201480
\(N 2=I E(J)-N S\) 001530
\(N 3=N 1+N E\) 001520
\(N_{4}=N_{2}-N S\) 001540
N5 \(=\) N \(3+N S\) 001550
N6=N4-NS \(0015 \% 0\)
\(00160 \quad \mathrm{I}=1,12\) 002630
\(\operatorname{FAN}(I)=C O N\) 001620
160 001640
\(I=I S(J)\)001660
CALL SH!T,X(I,J),XX(I,J),N,NP) 031680
CALL SM(T,Y(I,J),YY(I,J),N,NP) 001730
CALL SM(T,Z(I,J),ZZ(I,J),N,NP) 001720C COMPUTE VELOCITY COMPONENTS:001740
CALL OERIVI(T,XX(I,J), X(I, J),N,NP,I) CALL ERINIは, XXIE, J, XII, J,NはND, 001760
CALL DERIVI(T,YY(I,J),Y(I,J),N,NP,1) 001790
CALL JERIVI(T,ZZ(I,N1,Z(I, J),N,NP,1) 001800
DO 170 II=N3,N4 001820
\(x(I I, J)=x(I I, J) / 12.0\) 001840
\(Y(I I, J)=Y(I I, J) / 12.0\) 001860
170 Z(II,J) \(=\) Z(II,J)/12.0 001880
- GOMPUTE ACCELERATION COMPONENTS: 101000
CALL DERIVI(T,X(I, J),XA(I),N,NP,2) 001920CALL oERIVI(T,Y(I,J),YA(I),N.NP,2)
CALL JERIVI(T,Z(I,J),ZA(I),N,NP,2)LINE =50001940001950
CO \(19 \mathrm{JI} I=\mathrm{N}_{1}, \mathrm{~N} 2\)001780if002000
(1) INE-50) 175,172,172002020
1 P2 WRITE(6,2500) TODAY,CLOCK,TEST,TITLE,NP 002040
WRITE(6,2505) J 002060
WRITE (6, 2510) 002080
LINE=0 002100
1/5 FMH(1):AMIN1(FMM(1), XX(I, J)) 002120
FMN(2) \(=\) AMIN1(FMN(2), YY(I,J)) 002140
FMN(3) \(=\operatorname{AMIN1}(F 4 N(3), Z Z(I, J))\) 002160
\(F M X(1)=A M A X 1(F M X(1), X X(I, j))\) 002190
FMX(2) \(=A A_{A X I}(F M X(Z), Y Y(I, j))\) 002200
FMX(3) \(=\) Amaxi (F4X(3), ZZ(I, J)) 002220
IF (I .LT. N3 .OR. I GT. N4) GJ TO 178 002240
\(\therefore\) : OMDUTE RESULTANI LINEAR VEL.OCITY: 002250
VRESII) \(=\) SQRT \((X(I, J) * 2+Y(I, J) * 2+7(I, J) * 2)\) 002230
FMN（5）＝AMIN1（FMN（5），X（I，J）） 932300
FMN（6）\(=A M\) IN1（FMN（6），\(Y(I, J))\) 302320
FMN（7）＝AMIN1（FMN（7），Z（I，J）） 302340
FMN（8）＝AMIN1（FMN（8），VRES（I）） 032360
\(F M X(5)=A M A X 1(F M X(5), X(I, J))\) ： 023 \％
\(F_{M X(6)}=A_{\text {MAXI }}(F M X(6), Y(I, J))\) 002400
FMX（7）\(=\) AMAX1（F4X（7），Z（I，J） 002420
EMX（3）＝AMAXI（FMX（8），VRES（I）） 032440
IF（I ．LT．NS ．OR．I ．GT．NG）GO TO 180 012460
GOMPUTE RESULTANT LINEAR ACCELERATION:
002430
 \(A R E S(I)=S Q R T(X A(I) * * 2+Y A(I) * * 2+Z A(I) * * 2) \quad 002500\)
 FMN(9) =AMINI(FMN(9), XA(I))
 FMN(10) \(=A M I N I(F M N(10), Y A(I)) \quad 002540\)
 FMN(11) =AMIN1 (FMN(11), ZA(I))
 02550
 -
 FMN(12) \(=A M I N 1(F M N(12), \operatorname{ARES}(I))\)
 FMX(9) = AMAXI(FMX(9), XA(I))
 002590

102600
 FMX(11) \(=A M_{A X I}(F M X(11), Z A(I 1)\)
 002620
 002640
 FMX(12) \(=\operatorname{AMAXI}(F \operatorname{MX}(12)\), \(\operatorname{ARES}(I))\)
 GO 10185
002660
1:3 WRITE(6,2600) I,T(I),XX(I,J),YY(I,J),ZZ(I,J)
 GOTO 187
180 WRITE(G,2600) I,T(I),XX(I,J),YY(I,J),ZZ(I,J),X(I,J),Y(I,J)
302730
 1,Z(I,J), VRES(I)
02740
 GO TO 187
 002753
 HRITE(G,2600) I,T(I),XX(I,J),YY(I,J),2Z(I,J),X(I,J), 0028j]
 2 Y(I,J),Z(I,J),VRES(I),XA(I),YA(I),ZA(I),ARES(I) 0U282'
157 LINE=LINE+1
190 CONTINUE
002844
 02880
 URITE(6,2750) (FMX(I),I=1,3), (FMX(I), I=5,12) 062900
 CALL PLT(J,N1,N2,N3,N4,N5,N6,MAXT,TEST) 002920
 IF (J. UT. Y OR. J GT. 8) GO TO 200 O 002940
 リF • • • OR. J •GT• B) GO TO 200
 -
 \(J J=J-6\)
 FMNG \((1, J J)=\) FMN (1)
 FMXC \((1, J J)=F M \times(1)\)
 202960
 FMNC (2,JJ)=FMN(2) 303020
 FMXC (2,JJ) \(=F 4 \times(2) \quad 003040\)
 FMNC (3, JJ) \(=\) FMN(3) 003060
 FMXC (3,JJ) \(=F\) MX(3) 003080
230 CONTINUE
 N2 = MINO (IE (7), IE (8))-NS On3120
 N2 MINO(IERTIE (BJJONS
 NI = MAXO (IS(7), IS (8)) +NS
 003130
 (003140
 \(N I=M A X O(I S(7), I S(8))+N S \quad 003180\)
 IF (NI.GT. NST) NST=NI 003130
 CALL PC (FMNC,FMXC,NST,N2,INC,TEST) 003209
 CALL FACTOR (FCT) 003220
 CALL FACTOR (FCT)
GO TO 10
 CALL PLOTE(NA)
 WRITE(6,5200) NA 003290
 STOP -ENO OF JC8- 0033 JO
1010 FORMAT(A10,2F:10.0) 303320
10 FOQMAT BA10
1230 FORMAT(F5.0,6FG.3) 0.33250
1310 GORMAT(AS) OOJこのO
 303430
\(1 \Delta 10 / 12 X, 8 A 10,5 X, I 2, *\) POINT QUAORATICFFT*) J0342?
2535 FORYAT (/* OATA FOR VARIABLE COCE NUMEER *, I2) 003442
2519 FORMAT(/* FRAME TIME*, 5X,*OISPLACEMENT (INCHES)*,14X, *VELOCITY(JUTぃF
1FEET/SEC)*, \(16 x\), *ACCELERATION (FEET/SEC SQ)*/ 0.J34: C2* NO. (SEC) \(\quad x^{*}, 8 x, * y^{*}, 8 x,+Z^{*}, 4 x, 2\left(5 x, * x^{*}, 9 x, * x^{*}, \quad 3035 \cap 0\right.\)\(39 x, Z^{*}, 5 x\), RESULTANT*)30352?
2630 FORMAT \((1 x, I 4, F 7,3,3 F 9,3,8 F 10,3)\) 0035400252
2710 FORMAT (* MINIMUM *, 3X,3F9.3.8F10.3)
2750 FORMAT (* MAXIMUM*,3X,3F9.3,8F19.3) 0~3590

 1 F7. 3, ANO INCORRECT IIME = F,F7. \(3 / 7\) F READ THROUGH REMAINING JECXJUJG2J\(2 S\) IN THIS TEST AND PROCEED TO THE NEXT TEST.*JJ03640
1*,F7. 3/* FIRST TIME OOESN*T MATCH TIME JATA COMPUTEU FROM JIVEN DTOO 36302. 1 SKIP THIS TEST.*) 003730
3050 FORMAT(1H1) \(303: 20\)
3050 FORMATY/1* INDEX OF INPUT DATA POINTS IS GREATER THAN OR EQUAL IO JU37L2* INDEX OF THE FIRST OATA POINT = I T T/OT, HHERE T IS THE TIME JF TOOI7QOZHE FIRST OATA POINT.*)
3250 FORMAT 1 *1 ENO OF JO8: NUMBER OF BLOCK AOORESSES = *, I3) 303820
3300 FOR4AT(*ITIFE OF FIRST POINT IM COMPOSITE PLOT (TCOMP) JOEJN•T \(4 A T U J こ S 4 O ~\)
ICH ANY STANOARD TIME COMPUTED FROM THE GIVEN OT. *// 303860
2 - COMPOSITE PLOT HILL CONTAIN ALL AVAILABLE POINTS. FI 003860 END
SUBROUTINE SM (X,Y,YC,N,NP) 003020
6 VP MUST SE AN ODD INTEGER.TIF. S. 003940
C GOMPUTE THE COEFFICIENTS FOR A QUAORATIC LEAST SQUARES FIT CF MNP 003960
POINTS ANO COMPUTE THE FIT OF THE JATA (NO OERIVATIVES) PYC(I).. J 3990
DIMENSION C(3), X(1),Y(1),YC(1) 104070
\(M=(N F=1) / 2\) 004020
\(N N=N-M\)\(\begin{array}{ll}N 1=N N+1 \\ 00 & 1\end{array}\)034040\(0010 \quad I=1, M\)004050\(10 \mathrm{YC}(I)=5.0\)004080
004130
\(2020 \quad I=N 1, N\) 004120
\(20 Y C(I)=0.0\) 004140
\(H=M+1\) 004160
\(001001=\mathrm{MH}, \mathrm{NN}\) 004180
\(N 1=I-H\) 004200
\(N 2=I+M\) 004220
CALL QLSU(X,T,N1,N2,C) 004240
\(Y C(I)=C(1) * X(I) * X(I)+C(2) * X(I)+C(3)\) 004250
YP(I) \(=2.0^{*} C(1) * \times(I)+C(2)\) 004290YPP(I) \(=2.0 * C(1)\)004300
130 CONTINUE 204320
RETURN 004340
ENO 004360
SUBROUTINE DERIVI(X,Y,YP,N,NP,ID) 004330
C NP MUST \(3 E\) AN ODO INTEGER.GE. 3 304430
C ID=1 FOR FIRST JERIVATIVE. 064420
ID=2 FOR SECONO DERIVATIVE. 0044.0
COMPUTE THE COEFFICIENTS FOR A QUADRATIC LEAST SQUARES FIT OF \({ }^{\text {GNP. }}\) \(064 \rightarrow 50\)
points ano compute the first oerivative eypil).. 004430OIMENSION C(3), X(1),Y(1),YP(1)
034500
\(M=(N P-1) / 2\) 304520
004540
\(\mathrm{N} N=\mathrm{N}-\mathrm{K}\)N \(1=\) NN304560\(N 1=N N^{+1}\)
\(D O 10 I=1, K\)
004580
\(10 \mathrm{YP}(1)=0.0\)\(0020 \mathrm{I}=\mathrm{N} 1, \mathrm{~N}\)
004620\(20 Y P(I)=0.3\)004640
\(M M=K+1\)
004660
DO \(100 \mathrm{I}=\mathrm{MM}, \mathrm{NN}\)
004680
004680
004700
\(N_{1}=I-H\) \(N_{1}=I-H\) 034720
004740
CAL1
CAL1
Call QLSO(X,Y,Ni,N2,C) 004750\(Y P(I)=2.0 * C(1) * X(Y)+C(2\)\(\begin{array}{ll}Y P(I)=2 . I * C(1) * X(Y)+C(2) & 004790 \\ C & Y C(I)=C(1) * X(I) * X(I)+C(2) * X(I)+C(3)\end{array}\)
C \(\quad \operatorname{YPD}(I)=2.0^{\circ} \mathrm{C}(1)\) 004820
1JO CONTINUE 034840
RETURN
ENO
004860
004830


```

3057+2

```

```

305031

```

```

305020
Z1(L50),MN(:Ľ),r-4x(t2)
\NEME:iN Y:(L50)

```


```

    */300.1 
    ```


```

    1:-%-N1!
    |\mp@code{O.! !}
\becauseN:O \therefore=1,NF
i={:)-I(I+NF!
:(45+1):0.0
.\&4F.こ)-'7!
rNu%GHN(!)

```



```

        :".A-:My(:)
    ```



```

CALILAXIS(-1,5,0.,.11HZ OISP (IN),11,5Y,90.N.FMN(3),OY)
SALL SYMBOL(-1.5.6.0.0.14,GHTEST1 ,90.0,6)
ALL SYMGOL(-1.5,6.84,0.14,YEST,9\#.0,10)
ALL SYMGOL(-1.5,6.84,0.14,YEST,9\#.0,1O)
MLL SYMBOL(-1.5,6.84,0.14,TESI,9\#.0,10)
rom=
M: N|MHER(-i.0,8.1,0.14,fPN,00.0,-1)
CALI C(TT,XX(N1,J),NF,4,FNN(:N),DY, SY)

```

```

AL, M.C,IZ(NL,N,N\&,B,FMN(3),DY,SY)
CACt 2LO*(0.0,5.2,-3)

```

```

OM-AMINI(FM\&(5),FMN(GI,FMNI (), FMN(Q))
JHO-F(INT(IFIX(F'NO))
:OEN.(T. O.G) INN= 1MN-l.J

```

```

Narlow--v?*
15 v5-1
\because" \& 0:-1,NP
a* PP{[}=!(i+MF}
IT(NP+1)=0.0
045420
005704
0,53:2
266000
036020
~460:0
OC6O5O
OC6O5O
005080
205030
4361?0
3.6140
J)5900
J05100
206:30
006200
0652:0
*0ち240
000203

```

```

006320
O
395360
005430
\$05405
Jw64<20
305440
OJ6GF?
{ M, (0,0,5,j,-3) 2064+0

```

```

005e%0
205ce0
935%40
Fnu.anN!

```

> AMN二FLOAT(IFIX(FDN/100.0))*1J0.J
> IF (FPN LLT O.O) \(A M N=A M N=17 T . C\)
\(N P=N 6-N G+1\)
\(N F=N 5-1\)
\(001001=1\), NF
110 TT(I) = T (I + NF)
\[
\begin{aligned}
& \text { rT(NF+2) = II }
\end{aligned}
\]

> (CALL PL(TT,YA(N5),NP, G, AMN, UA,ST)
> CALL FLIT, ZA(NS),NP, S, AMN,DA,SY)
> CALL DLI:, MPES(MS),NF, 2, AM, UN, SM

> RET!O:J
> SMI)
？150－3
SUAROUTIVE PL (T,Y,NP,NSYM, YMN,CY,SY) 3 37230
CIMENSION T(1),Y(1) 0 C 7220
CATA 5N1/20」 007240
\(N_{1}=N P+1\) 097250
\(N 2=N P+2\) 007290
\(Y\left(N_{1}\right)=Y 4 N\) 007300
\(Y(N Z)=D Y\) 007329\(S S=S Y\)347340
IF (OY-100.) \(13,20,20\) 007360
10 SS \(=S S+1\). \(337 \geq 80\)
j0 10 36 007400
\(20 \quad S S=5 S+0.5\) 307420
30 YHX \(=Y\) MN +SS*OY 3074-0
\(3050 \mathrm{I}=1\), NP 007460
IF (Y(I) .ST. YMXI Y(I) =YMX 007430
so continue 007500
CALL LINE(T, Y,NP,I,INT,NSTM) 007520
WRITE(\(\delta, 2000) T(1), Y(1), T(N P), Y(N P), T(N 1), T(N 2), Y M N, J Y, S Y, Y M X\), 03754n
Z 1 SS,NP,NSYM
2010 FORMAT(1X,11F9.3,55,13) 097530
fun 047600
ENO 007520
```

    SUBROUTINE PC GFMNC,FHXC,NST,NZ,INC,TEST, / OTE->2
    COMMON X(150,9),Y{150,9),Z(150,7),XX(150,9),YY(:50,9),22(25C,\exists) 2J760J
    OIMENSION FMNC(3,2),FMXC(3,2) 2076*9
    ```

```

    1/
    FQEL =1.0/DEL
    YMX= AMAXI(FMXC(2,1),FMXC(2,2))
    YMX=F,OAT(IFIX(YMX);
    IF (YMX .GE. O.J) YMX=YMX+1.J
    YMN= AMIN1(FHNC(2,1),FMNC(2,2))
    SY=(YMX-YMN) = RJEL
    :=IFIX(Sr)
    IF (SY .ST. FLOAT(I)) ST=FLOAT(I)+1.J
    IF (Sr.jT. 12.0) 50 ro 25
    ;0 T2 }9
    :5
Sr=12.0
YMX=Y4N+5Y-OEL
IF (FMXC(2,1).LE. FMX) GO TO 50
00 40 I=NST,N2,INC
IF (YY(I,J1) GT, YMX) YY(I,J!)=YMX 0080こ0
+0 cintinue
50 IF (FMXC(2,2) .LE. YMX) GO TO 70
0O 50 I=NST,N2,INC

```

```

70 XMN=AMIN1(FMNC(1,1),FMNC(1,2))
IMN=AMIN1(FMNC(1,1),FMNC(1,2))
XMX=XMN+DEL*(SX+0.5)
ZMX=2MN+OEL*(SZ+0.5)
IF (FMXC(1,1) LE. XMX) GOTO 90
0O 80 I=NST,N2,INC
IF (XX(I,J1) .GT, XMX) XX(I,J1)=XMX
10 CONTINUE
Э0 IF (FMXC(1,2) .LE. XMX) GO TO 110
0O 100 I=NST,N2,INC
IF (XX(I,J2),UT. XHX) XX(I,J2)=XMX 0003-0
130 CONTINUE
110 IF (FmxC(3,1) L(E. ZNX) GO TO 130
00 120 I=NST,NZ,INC
IF (ZZ(I,J1) UT. ZMX) ZZ(I,JI)=ZMX
120 continue
130 IF (FMXC(3,2) .LE. 24X) 60 10 150
JO 140 I=NST,N2,INC
IF (ZZ(I,JZ),GT. IMX) ZZ(I,JZ)=2MX
140 CONTINISE
150 CALL AXIS(0.0,0.0,11HY JISD (IN),-11,5Y,0.0,YMN,こEE)
CALL AXIS(0.0,0.0,11HZ JI': (IN),11,SZ,90.0,ZMN,OEL)
00 170 I=NST,N2,INC
Y = (YY(I,J1)-YYN)=RCEL
21=(22(I,N1)-2UN)*QOEL
CALL SYMGOL(YI,Z:,HT,ISYT,J.0,-1)
Y1=(YY(I,JZ)-Y4N):QDEL
ZI=(ZZ(I,NZ)-Z4N)*ROEL
170 CALL SYMBOL(Y1,Z1,HT,ISYB,O.0,-2)
CALL FLOT(0.0,5.0,-3)
- vj9700
CALL FLJT(0,0,n.0,-3)

```


\title{
AD-A100 916 DAYTON UNIV OH RESEARCH INST
}

TECHNIQUES AND PROCEDURES APPLIED TO PHOTOMETRIC METHODS FOR THEEETCIU) OCT 80 P A GRAF. H T MOHLMAN F33615-76-C-0525 UNCLASSIFIED UOR-TR-79-115 AFAMRL-TR-80-61

NL

\section*{APPENDIX C}

PROGRAM RSD

000100

\(I I=16\) 001200
C CONUERT ALL \(X\) ANI Z-AXIS DATA TO PLOT SCALE INCHES ANI ADIJUST TO 001220
C LOWER LEFT PLOT ORIGIN (X AND \(Z\) ARE PRESENTLY REFERENCEI TO THE 001240
C INTERSECTION OF THE SEAT BACK AND SEAT PANI: 001260
\(551060 \mathrm{I}=1\), II 001280
\(x(I)=x(I) / 24.0+2.0\) 001300
\(60 Y(I)=Y(I) / 24.0+0.5\) 001320
- PRINT \(X\) AND Y UATA IN PLOT SCALE INCHES: 001340
WRITE(6,2100) (X(I),Y(I),I=1,II) 001360001380
CALL PLOT (FX(IF), PY(IF),-3)
C ID AND IA CONTROL ORIINATE AND ABSCISSA ANNOTATION (O-- ANNOTATION 001420001380
C IS OMITTED; 1-- ANNOTATION IS DRAWN): 001440
ID=0 001400
IF (IP .EQ. 1 .OR. IP .EQ. 4) \(10=1\) 001480
IA=0 001500
IF (IP .GE. 4) IA=1 001520
C DRAW PLOT AND CHAIR OUTLINE: 001540
CALL FRAME (IO,IA)
C DRAW FIGURE IN THE CHAIR: 001580001560
CALL BODY
IF (IP .LT. 6) GO TO 50 001670
C PRINT PLOT TITLE BELOW THE SET OF SIX FLOTS: 001000
CALL SYMBOL (-5.95,-1,0,0.14,TITLE,0.0.60) 001060
CALL PLOT(5.0.0.0.-3) 001680
GO TO 10 001700
999 CALL PLOTE 001720
STOP 'END OF JOB' 001740
1200 FORMAT (GA10) 001760
2000 FORMATY* RADII IN PLOT SCALE INCHES PLUS THE NOSE-TRAGEON ANGLE 1001780
N RADIANS ARE:*/(11x,8F10.3)) 001800
2100 FORMAT(* CALIERATEI DATA POINTS IN PLOT SCALE INCHES ARE:\#/ \(0018=0\)1 (11x,8F10.3))00184 ?
2200 FGRMAT(*1 TEST TITLE: *,6A10) 001950
2300 FORMAT(//* CALIERATION IIATA, RALII, ANII CALIRRATED DATA ARE FRINTEDOIB8O)ID IN THE FOLLOWING SEQUENCE FOR INDEX I=1 TO 16:*/, ON1OOO\(25 X\), *HIF, KNEE, ANKLE, SHOUL[IER, *SX.*ELBOW, WRIST. TRAGEON. NOSEOO19203;*/5X,审LAP HAFNESS BUCKLE, AND 7 SHOULIER HAFNESS FOINTS.*// 0019404* CHECK WRITE-UP OF INPUT CARII FORMATS FGR UARIABLE [IEFINITIONS.* \(1001 Q\) AIENII.901090

THIS SUBROUTINE DRAWS THE PLOT FRAME PLUS THE CHAIR WITHIN THE FRAME 002020
\(C\) THE FLOT SCALE IS \(1 / 2\) INCH \(=1\) FOOT
.002040
C
COMMON \(\mathrm{X}(18), Y(18), R(7), A N G, S X 2, S Y 2,1 T M\)
002060
0002080
DIMENSION IABSC(7),IORD(5) 002100
DATA IAESC/2H-4,2H-3,2H-2,2H-1,2H 0,2H 1,2H 2/,IORD/1HO,1H1,1H2, 002140
\(11 \mathrm{H}, 1 \mathrm{H} 4 /\), HGHT/0.07/,SX/3.0/.5Y/2.5/, 002160
C DEFINE IMAGE FRAME:
002180
CALL PLOT \((0.0,0.0,3) \quad 002200\)
CALL PLOT(SX,0.0.2) 002220
\(\begin{array}{ll}\text { CALL PLOT }(S X, S Y, 2) & 002240 \\ \text { CALL PLOT } 0,5 Y, 2) & 002260\end{array}\)
CALL PLOT (0.,5Y,2)
CALL PLOT (0.,0.,2)
C DRAW DASHED LINE AT UECK HEIGHT--2.94* ABOVE ABSCISSA:
002280
\(Y_{1}=2.94 / 24\).
002300
\(X D=0.096774\)
002320
\(x_{1}=-x_{D}\)
002340
\(X 1=-X D\)
\(D O \quad=0 \quad 1=1,16\)
002360
\(x_{1}=x_{1}+x_{1}\)
CALL PLOT \(\left(X_{1}, Y_{1}, 3\right)\)
\(X_{1}=X_{1}+X_{0}\)
20 CALL PLOT (X1,Y1,2)
C DRAW X-AXIS TIC MARKS:
\(x_{1}=0\).
\(Y_{1}=0.07\)
DO A A \(1=1,5\)
\(x_{1}=x_{1}+0.5\)
CALL PLOT (\(\times 1,0.0,3\))
40 CALL PLOT (X1,Y1,2)
C URAW Y-AXIS IIC MARKS:
\(x_{1}=0.07\)
\(\mathrm{r} 1=0\).
\(10060 \quad 1=1.4\)
\(Y 1=Y 1+0.5\)
CALL PLOT (\(0,0, Y 1,3\))
C FOR IA O, DRAW ABSCISSA ANNOTATION:
IF (IA) 85,85,70
\(70 \times 1=-\). 5 *HGHT
\(Y_{1}=-.12\)
002380
002400
002420
002420
002440
002460
002480
002580
002500
002500
002540
002540
002560
002560
002580
002600
002620
002620
002640
002640
002680
002700
002700
002720
ALL PLOT (X1,Y1,2) 002740
- 002780

D0 \(80 \quad \mathrm{I}=1.7\)
CALL SYMBOL (X1,Y1,HGHT,IABSC(1),0.0,2)
\(\times 1=\times 1+0.5\)
C FOR IO: O, DRAW ORDINATE ANNOTATION:
85 IF (10) 120,120,90
\(90 \times 1=-1\). 5 *HGHT
\(Y_{1}=-0.5\) нын T
DO \(100 \quad 1=1,5\)
\(Y_{1}=Y_{1}+0.5\)
002760

100 CAL SYMROL (X1,Y1-MGHT, IORD(1):0,0,1)
\(C\) FRINT ELAFGEII TIME IN UPPER LEFT CORNEF: 003020
120 CALL SYMBOL \((0,2,2,25, H G H T, I T M, 0,0,3) \quad 003060\)
CALL SYMEOL (\(0.4 \mathrm{~B}, 2.25, H G H T, 4 \mathrm{HASEC}, 0.0 .4\)) OO30日O
C JRAW SEAT CONFIGURATION:C SX2,SYZ ARE THE COOROINATES OF THE UPPER LEFT CORNER OF THE CHAIRC SEAT PAN; THE SLOPE OF THE SEAT PAN IS 7.25 DEGREES ANO THE SLOPEOF THE SEAT BACK IS 12. 67 DEGREES.
 \(5 \times 2=1.261\)
 \(5 \mathrm{Y} 2=\mathrm{C} .594\)
 CALL PLOT(1.261,0.5,3)
 CALL PLOT (SX2,5Yz,2)
 CALL PLOT \((2.0,0.5,2)\)
 CALL PLOT (2.38,2.19,2)
\(C\) JRAN SEAT BACK HEAD REST:
 CALL PL OT \((2.262,1,637\),3)
 CALL PLOT(2.223,1.646,2)
 CALL PLOT \((2.314,2.052,2)\)
 CALL PLOT(2.356,2.043,2)
 RETURN
 ENO
```SUBRCUTINE BJOY
003440
THIS SUEROUTINE ORAWS THE GOOY ELEMENTS PLUS THE SHOULJER HARNESS ANOGG360 ( LAP BELT POINTS IN EACH FRAME. gn35J3
פIMENSICY U(9),V(9) G0352n?
003540
Y,Y \(\rightarrow, Y 5, Y 5, Y 7, D 103550\)
IY , AY(5),YSZ,YL3,R1,R2,R3,R4,R5,RÉ,RT,ANG,SX2,SY2,ITM Uu 3530
DATA A1/J.J/,A2/36C.O/,HGHT/E.LT/, IBCJ/4/ 3U36JJ
C JRAW HIP ANO KHEE CIRCLES:
CALL CIRCL \(\equiv\left(X_{1}+21, Y 1, A 1, \Delta 2, R 1, R 1, A 1\right.\);
003620
043640
PPL>1 FOF ALL OT TE
FOR SIPFOANE TANGENT LINES ANO IPLT>I FOK ALL OTHE?
:ALLS TO SUBROUTINE TANG•: 0G3733
IPLT=:
C COMPUTE HIP TO\&RNEE TANGENT LINES: 003720
- 033740
75 IPLT=2
C DRAW ANKLE CIRCLE\&
- - 203030
\(C A L L\) CIRCLE (X3+R3,Y3,A1,A2,R3,R3,A1) CO3820
JRAH ANKLE-TO-KNEE TANGENT LINES:
CALL TANG ( \(\times 2, Y 2, \times 3, Y 3, R 2, R 3, I P L T, S \times 2, S Y 2)\)
JRAW SHOULDER, ELBOW AND WRIST GIRCLES ANO TANGENTS: 003880
CALL CIRCLE (X4+R4, Y4,A1,A2,R4,R4,A1)
023910
CALL CIRCLE (X5+R5,Y5,A1,A2,R5,R5,A1) 003920
CAI,L CIRCLE(X6+RG,Y6,A1,AZ,R6,R6,A1) 003940
\(I P L T=3 \quad 1\)
CALL TANG(X4, Y4, XS, Y5, R4, R5,IPLT,SX2,SY2)
IPLT \(=4\)
CALL TANG \((X 5, Y 5, X 6, Y 6, R 5, R 6\), IPLT, SX2,SY2)
C ERAH HEAD CIRCLE:
CALL CIRCLE \((X 7+R 7, Y 7, A 1, A 2, R 7, R 7, A 1) \quad 044060\)
- DLOT EYE POINT:
CALL SYMBOL \((\times 8, Y 8, H G H T / 2,0,3,0,0,-1)\)
```



``` -OINT.
004160
TMETA=ATAN2(Y8-Y7,X8-X7)
IF (THETA .LT. 0.0) THETA=THETA+6.2831853
004190
ANG -- ANGLE BETHEEN TRAGEON-NOSE LINE ANO HEAO Z-AXIS。 0 O42 30 ANG IS COMPUTEO IN RAOIANO IN SLCBROUTINE INPT:
THETATHETA-ANG 00426́0
004240
XP=R7*COS(THETA) J04230
\(Y P=R 7 * S I N(T H E T A) \quad\) OU43 \(\quad\) OO
\(X L 1=X 7+X P\)
004320
\(X L 2=X 7-X P \quad J 64340\)
\(Y L:=Y T+Y P\) OR 04360
YL2=Y7-YP 004340
C PLOT Z-AXIS LINE TETERMINED BY POINTS XLI,YLI ANO XLZ,YLZ: OU44JO
CALL PLOT (XL1, YL1,3)
034420
CALL PLOT (XL2, YL2,2)
054440
WRITE(6,2100) XL1,YL1,XL2,YL2 GU4660
```



``` POINT ( \(8 \times(1)\), BY(1)):
CALL SYMGOL (XLB,YLB,HGHT,IBCD,C.O,-1) 004520
```

```
    CALL PLOT(3X(1),BY(1),2)
C INTERPOLATE g DOINTS GETWEEN I-ST AND 5-TH BELT POINTS; INTERPOLATE OJ4560
C X OATA FOR A GIVEN Y:
44580
    #
    00 10! I=1,9 0-904620
    1J0U(I)=8Y(1)+OY*FLOAT(I)
    I{=6
    12=9
    CALL INTRPL(I1,BY(1),BX(1),I2,U,V)
    WRITE(6,2090) BX(1),BY(1),(V(I),U(I),I=1,9),(8X(I),aY(I),I=5,a) 304720
C PLOT THE G INTERPOLATEO POINTS: 004740
        00 120I=1,9 - j0475J
    12@ CALL PLOT(VII),U(I),2)}00478
C PLOT THE LAST 4 SHOULDER HAFNESS FOINTS: 034800
            00 13C I=5,8
0C4820
```



```
C PLOT THE SHOULDER HARNESS SEAT ATTACH POINT: OC4860
            CALL SYHBOL (XSS,YSB,HGHT,ISCO,O.0,-2) 
            RETURN
120 CO 120 I=1,G PLOT(V(I),U(I),2)
034840
            FORMAT(* LAP GELT ANO SHOULOER HARNESS X,Y POINTS ARE \BUCKLE POINSU49Z3
            1T, 9 INTERPOLATED POINTS, PLUS THE LAST 4 SHOULDER HARNESS POINTSIOJ4940
            2:=)(11X,8F10.31) 004960
21JJ FORMAT(* X,Y POINTS AT BOTH ENOS OF THE HEAO Z-AXIS LINE ARE:*/ 004930
    1 11X,4F10.3) 0050J0
    ENO (%20.3) 005020
```


6 SEAT pan to the knee gircle. 006120
006140
130 SLOPE=(YLI-YL2)/(XL1-XL2) 306160
C COMPUTE Y (YC) COOROINATE FOR SEAT PAN SX2 POINT: IF YC P SYZ, THEN 96230C THE SEAT PAN DOESN•T INTERFERE HITH THE HIP-TO-KNEE TANGENT LINE:
$Y C=S L O P E *(S \times 2-X L 2)+Y L 2$
206200 IF (YC.GE. SYZ) GO TO 60
006220
06240
C COMPUTE TANGENT FROM SXZ,SY2 -O? KNEE CIRCLE (R2):
C KNEE CIRCLE CENTER HUST BE TO THE LEFT OF SX2,SY2: 006260
IF (X2 •GE. SX2) GO TO 150 096280
006310
C JIST - OISTANCE FROM CORNER OF THE SEAT PAN TO THE CENTER OF THE 006320
C KNEE CIRCLE:
OIST=SORT $((S \times 2-\times 2) * * 2+(S Y 2-Y 2) * 2)$
006340
306360
IF (OIST ©GT. R2) GO TO 120
0638
C OMIT TANGENT LINE FOR JIST < R2-ー--SEAT PAN POINT IS WITHIN THE 006401
C RAOIUS OF THE KNEE CIRCLE: 046427
WRITE $(6,2300)$ DIST,R2
036440
GOTO 15 J
C ALP IS THE SLOPE OF THE LINE FROM THE CENTER OF THE KNEE CIRClE TO
CHE SEAT PAN POINT:
120 ALP=ATAN $(S Y 2-Y 2) /(\$ \times 2-\times 2))$
C THE SEAT PAN POINT:
120 ALP=ATAN((SY2-Y2) ($5 \times 2-\times 2$))
306400
006500
C COMPUTE GAMMA USING TME THO KMOHM STOES OF THE TRIANGLE:
GAMIACOS(R2/DIST) 006560
C GOMPUTE PPHI* -- ANGLE IN NEH TRIANGLE REQUIRED TO COMPUTE TANGENT 096580
C POINT XLZ,YLZ BELUW: 006600
PHIEGAM-ALP 006620
C SOMPUTE X AND Y COOROINATES OF TANGENT POINT ON THE KNEE CIRCLE: 006640
$\mathrm{XL} 2=\times 2+R 2^{*} \operatorname{COS}(P H I)$
006660
YL2=Y2-R2*SIN(PHI)
0n6650
C JRAW THE TANGENT LINES FROM THE MIP CIRCLE TO THE CORNER OF THE SEAT 3067 IO
C PAN TO THE KNEE CIRCLE: 006720
CALL PLOT $5 \times 2, S Y 2,2$ S $\quad 006740$
WRITES6,24U0) SLOPE,YC,SY2,OIST,ALP,GAM,XL2,YL2 206760
GOTOGO 400790
150 CALL PLOT (SXZ, SYZ,Z) 00680 J
2100 FOPMATS* UPPER ANO LOWER TANGENT POINTS FOR THE *, A10,AB, C CIRCLE NO68 20
1ARE1*/(11X,8F10.3)) O96840
2330 FORMAT (F THE OISTANCE FROM THE CORNER OF THE SEAT PAN TO THE こENTEJOG860
1R OF THE KNEE CIRCLE E*,F8.3,* THE KNEE RAOIUS =*,F8.3) 3006890
24.JC FORMAT(* SLOPE, YC, SY2, OIST, ALP, GAM, XL2, YL2 FROM THE CORNER OO69J0
1 OF THE SEAT PAN TO KNEE CIRCLE TANGENT POINT COMPUTATIONS:\%/ 006920
$21: X, 8 F 10.3$) 006940
RETURN OC6960
ENO 006980

WRITE(6,2100) ITM 008190
REAO(5,1100) XSFF,YSFF,XSAF,YSAF,(XII),Y(I),I=1,16) 308120
WRITE $(6,3100) \times S F F, Y S F F, X S A F, Y S A F,(X(I), Y(I), I=1,16)$ 928240
c OMPUTE CALIB FACTORS FOR 3 SHCULDER STRAP POINTS WITHOUT FIOUCIALS: 008160
YRU天Y(9)008130
YFCT =OCAL/(Y(13) -YSU) 008210
$C A L(10)=C A L(9)+Y F C T *(Y(10)-Y B U)$ 008220
CAL $(11)=C A L(\exists)+Y F C Y^{+}(Y(11)-Y B U)$ 003260
$C A L(12)=C A L(9)+Y F C T^{*}(Y(12)-Y B U)$ 008260
WRITE(6,220C) CAL 008230

- Galigrate all data for i-th framet 008300
XSAF =XSAF/SCAL 008320
YSAF =YSAF/SCAL 0.88340
$X F=X A S S F-X S A F$ 008360
$Y F=Y A S S F-Y S A F$ 008390
YO 200 I $=1,16$ 008430
$X(I)=X(I) / C A L(I) * X F$ 008420
$230 Y(I)=Y(I) / C A L(I)+Y F$068440
[F (IP .GT. O) RETURN 008460
C COMPUTE RAEII OF HIP ANO HEAD (FOR (FRAME ONLY): 008480
$X H R=0.23076923 * Y(7)=1.3190769$ 008500
$R(7)=(X H R-X(7)) * C O S(12.6667 / R A D)$ 008520
$P S P=-0.12634 * X(1)$ 008540
$R(1)=(Y(1)-Y S P)+\operatorname{COS}(7.25 / R A O)$ 008560
RETURN 008530
1030 FORMAT(5X,10F7.8) 008630
12 IO FORMAT $(5 x, 857.0)$ 008620
2JJO FORMAT (5X,A3) $0 \$ 8640$
 008660
220 FORMATI* CALIGRATION OATA FOR THIS TIME FRAME ARE:*/ 3086801 (11X,8F10.J))
003700
3010 FORMATIFODS ETC. $=*, 10$ F10.3) 008720
3020 FORMATI* BAF ETC. $=$, 1 OF10.3) 008740
3030 FORMAT(4 XPF ETC. $=4,1$ OFiO.3) 008760
3040 FORMAT(*X1 ETC. $x *, 8 F 10.3 /(11 X, 8 F 10.3))$ 008730
3050 FORMAT (* TX ETC. $2 *, 4 F 10$.3) 008800
3060 FORMAT(* DCAL ETC. 3 *,3F10.3) 008820
$31 J 0$ FENO


```
    4 M2 =43
                                    021080
        M4=M3 1311110
    45 IF (J.LE. 3) GOTO 46 011120
        A1=X2~X(J-3) 01:1140
        M1=(YZ-Y(J-3))/A1 011160
        60 TO47 011180
    46M=M2+M2-M3 011210
    47F (J.GE.LH$) GO TO 4B 011220
        A5=x(J+21-X5
        #5=(Y(J+2)-Y5)/A5
        GO TO 56
    -8 MS=M4+M4-M3
C
C NUMERIGAL OIFFERENTIATION
    50 IF (1.EQ. LP2) G0 T0 52
    W2=ABS(M4-M3)
        W3=A QS (M2-M1)
        SW=W2+H3
        IF (SH.NE. 0.\vec{*) GO TO 5i}
        W2=0.5 0. 011460
        H3*0.5
        SW2%&.0
    52 T3=(W2*M2+W3*m3)/SW
        IF (I.EQ. 1) GOTO 54
    52W3=&BS(MS-M4)
        Wh=ABS(M3-M2)
        SW*W3+Wh
        IF \SW.NE. 0.0) GOTO 53
        43=0.5
        Wh*0.5
        SH=1.0
    33T4=(N3*N3*N4*H4)/5W
        IF {I NE. LPI) GO TO GO
        T3=T4
        SA =A 2+A3
        SA=A2+A3 
        x3=x4
        Y3=\4
        \lambda3=42
        M3:M4
        GO TO 6L
    54 T4.0T3
    SA=AS+AL
    P3=0.5*(M2+M2-A4*(A3-A4)*(M3-MA)/(SA*SA))
    xS=x3-44
    Y =Y3-A2*A4
    A3=44
    A3=44
C DETERHINQTION OF THE COEFFICIENTS
    60 02=(2.04(N3-T3)+M3-T4)/A3
    33=(-43-N4+73+T4)/(A3-A3)
C
```


APPENDIX D
PROGRAM CHIFPD

