

MICROCOPY RESOLUTION TEST CHART national bureau of standards-1963-A
U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD/A099 777

SURVEY AND ASSESSMENT OF MODELS OR DECISION RULES DETERMINING SPARE PART LEVELS FOR NAVY ELECTRONICS EQUIPMENTS, APPENDIX A, APPLICABLE LITERATURE SOURCE MATERIAL
R. I. Powell, et al

Automation Industries, Inc. Silver Spring, MD

SEP 79

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
coode 23
CP.
(10) Rivart Irarav Fowell

Technical Report Number TR-03133.100-1

SURVEY AND ASSESSMEIT OF MODEL.S
 or decisioh maes determang spare part levels for havy electrocilics equiplents

Appendix A
Applicable Literature Source Material

7 Ser:miber 1979
Title No.
Literaure souse
AuthorR. Powell andR. Lutz
8
Iritia: Profurnits with spate heterioration;9
101113147 Provisionirg for Liectronizs Equipuents/Sjsinms;Paul J. SchweitzerFMSO Load lisy atsFBM Leat List brectution Pocei (fo: lerder)
RadarTedmique far cewruining the Noter of spaweswith a Piechosm Probublity LevedA Methotury for Esimatrg Exocited usige ofRepair farts : in fepilation to Parts with noHistc:The Allawese peris !.ist,

On uptimel Radiminemes

Spares ard sy=tan majubility
A Monte Curio fipprouch to spere Orcuisioring
An Optanie: hllunaice !.ist Modei
36-37-38POLARIS Logirtics Sountes i, 2,3OPNAV instruction 4441.12A, Supply Support ofthe Openevire Foce:60 An Evainatur a a Tecimauc to Determine itsApplicabili!,

OPTLMUM SPARES PROVISIONING METHOD FOR ELECTRONIC EQUIPMENT/SYSTEMS

THE AUTHORS

Robert Ingram (RIP) Powell, Electronic Engineer, served with the U.S. Naval Intelligence Organization (OP-20) during WWII, and subsequently with the U.S. Army Security Agency (Pacific) during the Korean Police Action. Returning to civilian engineering in 1952. Chief Engineer UHF Systems Engineering, 5th AACS 1\&M Squadron. With the Pacific Ground Electronic Engineering and Installations (GEEIA); Chief Procurement Engineering Division, Chief Air Ground Communications; uith the Naval Ship Engineering Center, Great Lakes, Illinois Division: Head Communications, Head Electronic Countermeasures, Plans and Programs Officer, Acting Technical Director. With the Naval Ship Systems Command in Washingron: Head ILS Test Equipment, Tools and Special Equipment. Presently with the Naval Ship Engineering Center, Prince Georges Plaza, Hyattaville, Md. Head Secondary Suppert.

Mr. Richard A. Lutz has seven years of engineering experience of which the past year has been specifically in Reliability Engineering and Logistic Support Engineering. He was emplnyed by the Collins Radio Company as an Equipment Design Engineer for UHF/VHF communication transmitters and receivers. He was assigned as Project Engineer for the UHF/FM transmitter for the Apollo Spacecraft and for solid state transmitter sections of military commun:ication equipment ir: 1963. In August 196T, he was appointed Branch Head of the 3M, CASREPT, and Reliability Branch at the Naval Ship Enginecring Center, Great Lakes Division. He holds a B.S. degree from the University of Illinois and has atrended graduaic course: at the Sate Univeraity of lowa and the lowa State Univeraity.

Pnovisioning is the process of determining the range and depth (quantity) of items of repair narts, i.e: resistors, transformers. capacitors. moaules. assemblies, etc., required to support and maintain an end item, equipment or material for an initial period of service. The period of service generally described as the mission time during which the equipment must survive with spare parts furnished, without resupply.
To facilitate understanding the immensity and complexity of the World's largest hardware acquisition, consider an Aircraft Carrier of the U.S.S. Enterprise Class with a range of 883 different electronic equipments. Adding redundancy (Backup) in equipments to establish depth, over 17,000 total electronic equipments carried aboard, with equipment repair part range in discrete parts exceeding 17,000 items and a total depth of more than 93,000 repair parts, representing a dollar value for initial support of approximately $\$ 1,134,000$ dollars for one ship. The dollar figure represents the On-Board Repair Parts Support (OBRP) for a ${ }^{*} 90$ day period, and does not consider parts procured for systems stock ashore. Fleet issue ships, Repair Depots, Civilian Contractors and parts replaced every 90 days thereafter. Allowance Parts Lists (APL's) are supply/technical aids which have indicated the range and depth of repair parts (OBRP) to be carried on-board the shis, and additional information concerning the part. Determinate on complexity, equipment may have from 1 to over 150 APL's describing part, allowances for the equipment system configuration. During the provisioning process, equipment, maintenance and provisioning engineers, together with fleet equipment oriented technicians make up to 24 decisions per part, preparatory to processing the APL through the current NAVSUP model that considers the APL's for all equipments on the ship and eventually "Prints out" Consolidated On-Board Ships Allowance List (COSAL).

This paper addresses a scientific method applicable across DOD and Industry for deployed electronic equipments, systems, subsystems and functional elements thereof. specifically for the purpose of this paper for the U.S. NAVY. The methodology maximizes effectiveness for 2 given budget, or establishes the budget for a stated effectiveness, i.e: allows for the 1 st time. defense of the budget to provide a predetermined stated effectiveness and the negative affect on effectiveness caused by arbitrary budget cuts.

The current Navy Provisioning Methodology has the following weaknesses:
(a) It does not definitely evaluate the effectiveness of support provided.
(b) It is not cost effective in comparison with the model presented. and

[^0](c) it does not have optimization capability to provide justification and defense of budget requirements, nor therefore allow a definite evaluation of the impact of arbitrary budget reductions.
Spare Parts Provisioning for the U. S. Navy must proceed from a model capable of satisfying two separate requirements for maintenance parts.
(a) A maintenance part kit satisfactory to provide support at each equipment site for a specified time period (an Allowance Parts List (APL) and or Coordinated Shipboard Allowance List (COSAL) and;
(b) A back-up set of maintenance spare parts satisfactory to provide the requirements of all equipment installations with said parts not stocked in the on-site kit, and to refurbish the on-site kits when parts are used from said kits. The back-up set of maintenance parts must "normally" satisfy the requirements of the system for a much longer time period than the individual on-site kits.
In a dollar oriented world, the ideal system must provide a budget oriented and justifying cost effective system capable of providing a definite confidence that a "stock out" would not occur during a specified mission duration. Such a system would provide:
(a) Optimum system support vs cost.
(b) The best mix of parts i.e: maximum support when funding for optimum support was not available.
(c) Tie of the budget to effectiveness of support, and allow for command "trade offs" in response to budget reductions.
Models in use today allow multiple or single constraint optimization processes. A single constraint process might maximize the probability of system spares adequacy with respect to either a cost, weight or volume constraint. A multiple constraint optimization process considering two or more constraints requires the use of the Nations largest computers with maximum memory, maximum storage capacity and long running time. Multiple constraint capability is valuable in optimizing for small boats. submarines and aircraft-however, for the purpose of projecting the most cost-effective system, for general Navy use, we will confine our presentation to a specific type of single constraint process with cost, as one might expect. as the single constraint. Specifically, for an on-site allowance list, we will show that either some high probability of system spares adequacy may be assured while minimizing the cost of that assurance, or that the probability of system spares adequately may be maximized sub. ject to a fixed system spares cost. Stating our case in either fashion assures the customer's obtaining :naximum protection value received for dollars spent on spare items, which is our goal.

The paper will specifically illustrate, by use of
a modifisd Black and Prochan Method, how an optimum cost on-site allowance list for maintenance parts [1] may be generated for a typical equipment. Allowance lists generated by current methods will be compared with this optimum cost allowance list to determine the effectiveness of each method, through the use of the Navy's Maintenance and Material Management Data System [2] as a common data base. Based on the reported parts usage data for the selected equipment (s) it will also be shown that the modified Black and Prochan Method would have afforded maximum protection for the system at substantial savings in the kit cost.
The use of the model for scientifically forecasting on-board repair parts during the hardware design phase of Integrated Logistics Support (IIS) Life-Cycle Costing will also be discussed.
The results to date, of our continuing look at the state of the art electronics provisioning and computer technology, utilizing the Univac 494's at the Electronic Supply Office, Great Lakes, Illinoishas been so promising, with such apparent reductions in support costs, that we unequivocally recommend the allocation of DOD resources allocations to significantly speed up the evaluation and implementation of this methodology for provisioning of electronic equipments, systems, subsystems and functional parts thereof.

Background

To facilitate development of a scientific approach for the determination of on-board repair parts and in-country support for International Logistics requirements, the Naval Ship Engineering Center, then in Washington, D.C., tasked the Naval Ship Engineering Center, Great Lakes, Illinois Division to recommend and/or develop methodology and specification to satisfy said requirements. An extensive search and evaluation process was conducted over a two year period to determine "what" methodologies were representative of the state of the art, and particularly to evaluate their sensitivity to the Navy Spare Parts Provisioning Process.
Amongst those organizations visited/contacted by the authors were:

- Naval Applied Science Lab, Brooklyn, New York
- Naval Ship Engineering Center, Norfolk Virginia, Washington, Pt. Hueneue
- Naval Supply Systems Command, Washing. ton, D.C.
- U. S. Army, Huntsville. Alabama
- Raytheon Corporation, Waltham, Massachusetts
- Computer Applications, Inc., New York, New York
- Boeing Corporation, Seattle, Washington
- NASA. Huntsville, Alabama
- IEEE. Headquarters, New York, New York
- McMillan and Company, New York, New York
- Goddard Space Flight Center, Maryland
- Rome Air Force Development Center, New York
- Naval Post Graduate School, Monterey, California
- Naval Ship Systems Command, Washington, D.C.
- Naval Material Command, Washington, D.C.
- Defense Documentation Center, Alexandria, Virginia
The Navy 3-M Data Reporting System requires technician annotation of data cards regarding part/ assembly/module/tube failures, and related maintenance information. The equipment oriented data is subsequently sent to the Navy Maintenance Data Collection Center for print-out in customer oriented formats, and are used for problem identification, evaluation, etc. The 3-M Data Base is sufficient to include all major ships of the Navy and its equipments. The failure/replacement of parts as represented by special 3-M reports developed by NAVSEC was used as the base-line for evaluation of the models considered meeting the basic requirements for Navy Provisioning.

Introduction

Integrated Logistics Support (ILS) and LifeCycle Cost Procurement i,e: (cost of ownership methodologies) are becoming a "way of life" for the military as well as commercial contracts. A very substantial, if not most significant portion of any life-cycle cost for a weapons system, or group of weapons systems deployed-is the cost of maintaining Weapons System equipment in working order over a given projected life cycle usage time. Previous and present military and commercial spares provisioning programs have not been optimized in a meaningful manner, and have not/do not consider. the essential ingredients that must be considered to provide optimum support for minimum dollars/ investment i.e: (1) Maintenance work force staffing, (2) Design for Maintenance part of module storage, (3) Cost and quantities of test and material handiing equipments provided, as well as (4) Mission success which depends upon the quantities of maintenance parts being spared, (5) A quantified Military Essentiality Coding (MEC) to provide the hierarchial relationship of ships mission (s) to system, to equipment, to parts, to other resource allocations in support thereof including personnel. This paper is not an attempt to cure all of these problems in one-shot. but for the moment address the provisioning methodologies generally in use: 1 The Percentage Method-Taking a certain arbitrary percentage of total equipment cost or quantities of parts used within the equipment, and sparing according to such cost or part quantity percentage; 2 The Expected Value Method - (sometimes called the TABLE METHOD) or (NON CONVENTIONAL ALLOWANCE TABLE). Utilizes the av-
erage failure frequency of each part to determine quantity of replacements.
3 The Committee Method-Organizing a spares provisioning conference and using method 1 , but spreading out the responsibility and assigning the percentages on an individual part basis; or: 4 The Part Probability Method- (Fleet Logistics Supply Improvement Program-FLSIP) -_ Using tables of the cumulative Poisson and Normalized distributions to determine spares quantities for each part type spared based upon part failure rate data, and the individual probabilities of having adequate spares for each part type.

Although the Part Probability Method (FLSIP) described is far superior to the previous three methods in common usage, it is still insufficient as a technique for sparing in that it is neither responsive to the, roblem of assuring overall high probability of mission success nor is it responsive to the problem of assuring overall minimum cost, in line with life-cycle cost constraints. The four methods described heretofore have the following weaknesses:

1 They do not evaluate the effectiveness of support provided. (i.e: quantify the affect of budget cuts upon effectiveness nor provide the effectiveness in terms of probability of mission success for dollars invested).

2 They are not cost effentive when compared with the Model presented in this paper.

3 They do not provide adequate justification and defense of budget requirements, nor do they allow for a definitive scientific evaluation of the affect of arbitrary budget reductions.

A recent paper [3] on systems effectiveness indicates that up to 80% of the average system downtime for Navy Weapons Systems recently studied is attributable to inadequate or improper spares provisioning. Not having the proper maintenance part needed by the system, of course, also introduces "penalty" costs not normally incurred, to insure the subsequent timely acquisition of such an underspared part.

In broadest terms, all of the possible types of spares provisioning methods may be described in inventory control theory [4,5]. Two types of models are possible: 1. Static (a single spares order for a defined period of time, as on shipboard) and 2. Dynamic (subject to any number of spares recorders). Within the two models types, it is possible to have any one of three conditions: 1. Certainty (knowing precisely when each spare item will be needed), 2 Risk (knowing the probability distribution of demand for spare items), and 3. Uncertainty (not knowing the probability distribution of demand for spare items).

The situation at the equipment site, of course, calls for a static model, under risk, sinct we are interested in sparing, before mission start, for some specific period of time subject to knowledge of
the probability distribution of demand for spare items during the mission.

The approximate demand distribution of a part or module may be determined through part or module replacement data, from which the approximate mean and variance of that distribution may be determined. For purpose of exposition in this paper, and upon observing part or replacement demand distributions in general from the field, it has been assumed that spare item demand time distributions approach exponentiallity (demand for replacement parts occurs at a constant rate, giving rise to the Poisson distribution) . . .

As mentioned briefly in the summary, there are spares provisioning methods which are superior to the four methods just described. These superior methods have not seen common use in spares provisioning practice because in many cases it has become difficult for the non-mathematician to appreciate advantages which could have accrued by their use.
This paper specifically addresses one method, A modified Black and Prochan Optimum Spares Provisioning Methodology; which after exhaustive evaluation of the state of the art, is most capable of providing the support and trade-off orientation required in the dynamic dollar oriented world of provisioning. For selected Naval Shipboard Equipment/Systems, we will "bump" the $3-\mathrm{M}$ reported failure/replacement of parts data base against the "prognostication" capabilities of the following models to determine which would have provided the maximum effectiveness for the dollar investment.

The Black and Proschan Method [6]

This method of determining an optimal spares kit subject to a cost constraint is based upon the fact that for each addition of a part to the spares kit there is a marginal increase in assurance of not exhausting the spares. Correspondingly, for each addition of a part to the spares kit there is a marginal increase in cost of the spares kit.' Black and Proshcan [6] have shown that for the spare kit to be one of the optimal set of spare kits that

$$
r_{1}=r_{2}=r_{3}=r_{m}=\frac{\Delta R_{1}}{C_{2}}=\frac{\Delta R_{2}}{C_{2}}=\frac{\Delta R_{3}}{C_{3}}=\ldots \frac{\Delta R_{m}}{C_{m}}
$$

where:

$$
\begin{equation*}
r=\frac{\log P_{i}\left(n_{1}+1\right)-\log P\left(n_{1}\right)}{c_{i}}=\frac{\Delta R_{i}}{c_{i}} . \tag{1}
\end{equation*}
$$

and;

$$
\log P_{i}\left(n_{i}+1\right)-\log P_{i}\left(n_{i}\right)=\Delta R_{i}\left(n_{i}\right)
$$

is the incremental increase in assurance for adding 1 part of type " i " in addition to " n_{1} " spares, and c_{1} is the cost of one part of type i.

For the constant failure rate case assumed in [6] and in our introduction

$$
\begin{equation*}
F_{1} \equiv \frac{e^{-a} \operatorname{ai}^{\left(n_{1}+1\right)}}{\left(n_{1}+1\right)!c_{i}} \tag{2}
\end{equation*}
$$

were a_{i} is the usage rate of the 1st part. This given a particularly convenient value to compute, since

$$
a_{1}=\sum_{J=1}^{k} \lambda_{j} t_{j}
$$

when a part i may be used as many at k times in a system, as the convolution of a Poisson frequency function is a Poisson frequency function.

One example of determining a particular spares kit meeting a probability

$$
\begin{equation*}
P(A)=\prod_{i=1}^{m} P_{1}\left(S_{1}\right) . \tag{3}
\end{equation*}
$$

where $P(A)=$ the probability or assurance of not incurring system disability due to spares shortage for a given essentiality level.
$P_{i}\left(s_{i}\right)=$ the probability of assurance of not incurring system disability due to a shortage of spare part type i within given essentiality level.
and where:

$$
P_{1}\left(s_{1}\right)=P\left[N_{1}(t)<n_{1}\right]
$$

of not having a spares shortage is shown in Figure 1.
The curve in Figure 1 was arrived at by starting with zero spares of each part type. Then r_{1}, r_{2}, \ldots, r_{m} were calculated for each part type. Then the part type with the largest r_{1} was added to the spares kit and the overall probability of spares adequacy was recalculated. The kit was calculated one step at a time until either of the following inequalities were met:

$$
\begin{equation*}
P_{a} \leq n^{m} P_{1} \tag{4}
\end{equation*}
$$

or

$$
C_{0} \leq \sum_{i=1}^{m} c_{1} n_{1}
$$

The following is quoted from reference (7), Some advantages of the Black and Proschan Model are:

1. Given the basic parameters-the quantity, failure rate, price and number of operating hours required of each part in the system - the relationship between cost and asurance is readily represented by a plotted curve (see Figure 1) from which the point of diminishing returns may be approximated visually.
2. For a given fixed cost, a spares kit which maximizes logistic readiness can be generated.
3. Conversely, for a given fixed assurance of spares adequacy (Logistic Readiness) as a function of time a spares kit which minimizes cost can be generated.
The situation for the back-up spares at a central location calls for a dynamic model subject to any number of spares reorders under risk, since we are interested in sparing for many equipments, before mission time, subject to the knowledge of a probability distribution of demand for this specified

time. This situation is adequately described in the classical literature on inveniory control theory (4), (5) and will not be discussed in further detail in this paper.

Maintenance \& Material Management (3-M) System [2]

Implementation of the Maintenance Data Collec. tion Sub-System (MDCS) of the Navy's Maintenance and Material Management System provides the logistician with a useful tool for measuring the effectiveness of an on-site spares list in an actual operation environment. Over ninety per cent of the active fleet is now reporting maintenance and part usage data in the $3-\mathrm{M}$ system. $3-\mathrm{M}$ parts usage data collected over a period of eighteen months to two years for the systems supported by spares lists described previously in this paper was reviewed to establish the effectiveness of the spares lists. For the equipments hereafter identified as " A " and " B ", $3-M$ data from fifty-two ships was used for " A " and sixty-five for "B". Ship type and numbers of ships reporting are as follows:

EQUIPMENT "A"

AGC-3	CGN-1	DE-5
AOE-1	CLG-4	DEG-1
CA-1	CVA-2	DLG-11
CC-1	DD-8	DLGN-1
CG-4	DDG-8	LPH-1
	EQUIPMENT "B"	
AGC-1	ARC-1	DLG-5
ALA-4	ASR-1.	DE-3
AOG-1	CAG-2	DER-3
APA-5	CA-1	LSD-4
APD-1	DD-16	LST-5
AR-1	DDG-2	MSC-3
	DL-2	MSO-4

 vide increased effectivencss and lowier cost.

TABLE 2 EQUIPMENT "B"		
Type	Cost	3-M Effectiveness
Conventional	4,297	. 577
FLSIP (90) \%	5,926	. 360
B-P (90) \%	1,552	. 606
B-P (95) \%	2,890	. 675
B-P (99) \%	4.739	. 758

Observe that in this case "History", i.e.: 3-M reported failure/ replacement clearlp evidences that FLSIP cost 3.8 times more than the modiled Black \& Prochan Methodology and with little more than halt the effectiveness of the B\&P Methodology.
For these weapon systems the cost optimized method for determinting the spares list would have yielded greater protection for the weapon system at a substantial savings in investment cost.

The reported part usage requirements were matched with the various spares lists to determine the effectiveness of the various lists. The effectiveness of spares were calculated by the following equation:

$$
\text { Effectiveness }=\sum_{i=1}^{\infty} \frac{e^{-N}(M A)^{!}}{(i)!}=e^{-s}
$$

Where $\mathrm{M}=$ Average number of part requirements/ ship/90 day mission
$S=$ Average number of part shortages/ship/ 90 day mission

$$
A=\left(1 \frac{S}{M}\right)
$$

The effectiveness and cost of the various spares lists are measured by the reported usage data are depicted, Tables 1 and 2.

Original Computer Programs were written in Fortran IV to run on the Honeywell 2200 at the Naval Ordnance Station at Forest Park, Illinois, limiting the maximum number of line items under consideration to 900 . The Logic Chart is shown in in Figure 2. The running time to provide a spares list at .99 Effectiveness was 15 minutes. Subsequently, in coordination with the Naval Supply Systems Command, Electronic Supply Office, Great Lakes

Figure 2. Modified Black and Prochan computer logic chart.

Illinois, the model was programmed to run on the UNIVAC U-494 and presently has the capability to handle 7,000 line items, with a running time of 1.5 hours. Note that 85% of our equipments to be provisioned will be covered by this capability, and to accomodate the largest equipments, the Naval Applied Science Laboratories at Brooklyn, New York estimate that it is possible to handle 30,000 line items on the CDC- 6600 with a running time of 3 hours.

We have shown that $3-M$ data establishes the upper limit of effectiveness when comparing various APL generating methodologies to the same data base. We are working toward computerized 3-M analysis to facilitate development of a quick reaction capability to update APL's and quickly identify and initiate action to solve support problems. We have shown how the modified Black and Prochan Model can be used to:

- Evaluate Effectiveness
- Assure Cost Effectiveness
- Justify and Defend Budget Requirements
- This modified Black \& Porchan Math Model/ Methodology is far superior to all previous and presently used/known methodologies.

SYSTEMS PROVISIONED

Previously with Modified Black and Prochan Methodologies

AN/SPG-51
AN/BQQ-9
AN/SQS-35
AF 441-L Radar
Nike "X" Radar

TABLE 3

data required
For Black and Prochan Computer Run Equipment Configuration Maintenance Plan Part Replacement Rates Part Unit Prices

NOTE: The data elements required to run the modified Black \& Prochan Math Model as indicated above, would be required and known during the design phase at which time it would be possibie to consider the ILS life eycle estimated costs of ownership and make trade-offs before entering the budget cycle. Subsequently the updated data elements would provide the base for intermediate sparing and interim APL's during the period between equipment installation and Naval Supply Systems Command support 2 to 3 years later. Additionally with subsequent update based on reported $3-\mathrm{M}$ Additionally, with subsequent update based on reported 3-bl data, NAVSUP in Eonjunction with NAVSEC, Would be able to update the All provide follow-on support to the Fieet.

The methodologies utilized to provision the above equipments differ according to constraints, machine techniques, and other factors, e,g: some provisioning lists were started with one each of each item used in the equipment with the math model used to optimize kits in support thereafter. Such a technique starts with the assumption that dollar resources are available, space for storage is available and that the mission of the equipment requires such protection. In real life provisionings, however, we are generally constrained to generate the optimum mix of parts to achieve the greatest degree of protection for a given "remaining" number of dollars available. What we do gain in using the model is the negative affect on probability of mission success and the dollar amount to get the probability to a level satisfactory to CNO, i.e: defense of the budget and the deleterious affect on combat readiness of the fleet, when budgets are cut.

Conclusion:

During the period 1947 to the present, numerous authors (see references) considered the potential benefits of the Black and Prochan Math Model for optimizing spares kits; unfortunately however, the hardware did not exist in those early days to implement the concept in a meaningful cost effective manner.

This paper illustrates how spares lists calculated by various methods can be compared with one another, and measurements of the overall effectiveness and cost of such lists can be calculated through the use of a reporting system such as the Maintenance and Management Data System of the Navy.

Furthermore, for the equipments/systems reported in this paper, we have illustrated that compiling a spares list via the Modified Black and Pro chan Model, is an accomplished fact on present day hardware. Moreover, that a spares list calcu. lated in this manner, does in fact provide adequate protection for a weapon system at a substantial savings and higher effectiveness when compared with other methods presently in wide use by De partment of Defense.

Additionally; this methodology:

1. Evaluates the effectiveness of support provided,
2. Is cost effective and;
3. Provides adequate justification and defense of budget requirements allowing a definite evaluation of arbitrary budget reductions.

In the World of IIS, with tightening budget constraints, it becomes abundantly clear that we must accelerate the development and implementation of cost effective methodologies which show promise of providing higher effectiveness for fewer dollars, and in this connection the authors recommend that the Navy and other DOD organizations plagued with electronic support problems of the kind addressed in this paper, provide such additional resources as necessary to bring about the progress that can be made possible by the methodology presented.

REFERENCES

[1] D. J. Harrahy. R. I. Powell and R. A. Lutz, "Optimum Cost Shipboard Allowance Lists for Maintenance Repair Parts." Naval Engineers Journal, Volume 80, Number 4, pp 578-582 of August 1968.
[2] Navy Maintenance and Material Management (3-M) Manual, OPNAV 43P2 of March 1965.
[3] CDR. C. D. Potts, "System Effectiveness Analysis of Operational Readiness." Proceedings NMC Third System Performance Effectiveness Conference (SPECON 3) 1967, pp. 29-38.
[4] M. K. Starr and D. W. Niller, "Inventory Control, Theory and Fractice." Prentice-Hall, 1962.
[5] C. W. Churchman, R. L. Ackoff. and E. L. Arnoff, "Introduction to Operations Research." John Wiley \& Sons, Inc., New York, 1957.
[6] G. Black and F. Prochan, "On Optimal Redundancy", Journal of Operations Research, Vol. 7, 1959, pp. 581-588.
[7] R. F. Hynes and L. R. Dovon, "Techniques in Optimizing Spare-Parts Provisioning." Proceedings 1969 Arnual Symposium on Reliability, pp. 511-526.
Operations Research y, v. 15, May 196?
'certainty Equine. mg Oil:" Manas.
batter 25: "En Hos, N. J., 100 mend Sci. 1, 19:-

Dinar Prosious tensions," Rand

Programming," es, IBII, Foch
3. 5: Stochastic m-Testery, New
rained Programj).
ions of Chan ep.
132. Carnesic
'roçramming for : of Technoler:
aragement Sci.
Ls, "Stochasti" ranuning Prob. 10iogy August

1 under Proba!963).
c. Induct. on.

INITIAL PROVISIONING WITH SPARE DETERIORATION

Paul J. Schweitzer
Institute for Defense Analyses, Arlington, Virginia

(Received June 7, 1963)

Abstract

Initial provisioning is analyzed for the case where parts in use and spares have exponential failure distributions with different failure rates. Expressons are given for system reliability and its asymptotic expansions for small time, large time. large numbers of spares, and small spare failure rate. The incremental reliability associated with each additional spare part is analyzed. Graphs are presented that yield, for arbitrary failure rates of spares and parts in use, the minimum number of spare parts needed to achieve system reliabilities of 90,95 , and 99 per cent.

THE stockpiling of spare parts is a widely used method of achieving high system reliability, and the determination of optimal policies for initial provisioning and reordering is of considerable economic importance.

Spare provisioning is usually carried out either under the assumption that spare parts do not fail or the assumption that spare parts have the same failure rates as parts in use. These assumptions are convenient because the resultant expressions for system reliability, cumulative Poisson or cumulative binomial probabilities, respectively, are easy to work with.

Recently Weiss has shown ${ }^{[1]}$ that even a small amount of spare deterioration results in serious degradation of system reliability. On the other hand, the second assumption may lead to an estimate of system reliability that is considerably too low. - hugh

Since the two assumptions may lead, respectively, to gross overestimadion of system reliability or to gross orerprovisioning of spares, their useflues is open to question. It is apparent that the case of arbitrary spare failure rate needs, more detained investigation. Such a program was begun by Weiss and is continued here for exponentially-distributed lifetimes.

Two results of particular interest are a Maclaurin series expansion of system reliability in powers of the spare failure rate and graphs that yield, for arbitrary failure rates of spares and parts in use, the minimum number oi spares necessary for achieving system reliabilities of 90,95 , and 90 per cent. The former lewis to conditions for which reliability calculations under the assumption that spares do not fail are approximately vail. Sensitivity analyse performed via the later can help determine whether obtaining better information about spare failure rates is economically justified.

Paul J. Schweliser

THE MODEL

We consider a system comprosed of N identical parts with an initial supply of m spares. The N^{r} parts in use are assumed to fail independently, each with a constant failure rate λ, while the spare parts are assumed to fail independently, cach with a constant failure rate μ.

Failed parts in use are inmediately replaced by unfailed spares as long as these are available. Spares that fail or that are put into use are not replaced; hence the spares are gradually depleted. When a part in use fails and no unfailed spares are left, the system is said to fail.

System behavior is indicated schematically in Fig. 1. The state k ($k=0,1, \cdots, m$) contains exartly k unfailed spares and is one in which the system is operational. Note that state 0 and the state F of system failure are distinct. The transition rate λ_{k} out of state k is given by $\lambda_{k}=N \lambda+k \mu$.

Fig. 1. Schematic diagram of system behavior.

ANALITIC FORNTLATION AND RESULTS

1. Transition Probabilities

The transition probabilitics are defined by
$P_{m . k}(t)=\operatorname{Pr}($ system is in state k at time t isystem
is in state m at time 0$),$

$$
k=0,1, \cdots, m, \quad m=0,1,2, \cdots
$$

and describe behavior before the system fails. The equations of motiont for this pure death process are

$$
\begin{equation*}
d P_{m, k} / d t=-\lambda_{k} P_{m, k}+\left(1-\delta_{m, k}\right) \lambda_{k+1} P_{m, k+1} \quad(k=0,1, \cdots, m) \tag{1}
\end{equation*}
$$

They may be solved recursively with the initial conditions $P_{m, t}(t=0$). $=\delta_{m, k}$ with the result: ${ }^{[1]}$

$$
\begin{align*}
& P_{m, k}(t)=((N \lambda / \mu)+k+1) \cdots\left[\left(1-e^{-\mu t}\right)^{m-k} /\right. \tag{2}\\
& \quad(m-k)!] c^{-\lambda_{k} t},(l i=0,1, \cdots, m)
\end{align*}
$$

where
\dagger These are a sperialization of the Bateman equations of radioactive decas: Whose general solution was tim: siven in relerence 2 .

$$
\begin{aligned}
(a)_{k}=\Gamma(a+k) / \Gamma(a)=\left\{\begin{array}{l}
1, \\
a(a+1) \cdots(a+k-1) .
\end{array}\right. \\
\quad(k=1,2,3, \cdots)
\end{aligned}
$$

These transition probabilities also play an important role in the analysis by renewal theory of reorder policies since they describe the system evolution between successive deliveries of spare parts.

2. System Reliability

The system reliability $R_{m}(t)$ is defined by

$$
\begin{aligned}
R_{m}(l)= & \operatorname{Pr}(\text { system operational at time } t \mid m \text { unfailed spares at } \\
& \text { time } 0)
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{k=0}^{k=m} P_{m, k} \tag{3a}
\end{equation*}
$$

$$
=\sum_{k=0}^{k=m}((N \lambda / \mu)+m-k+1)_{k}\left[\left(1-e^{-\mu t}\right)^{k} /\right.
$$

$$
\begin{equation*}
k!]\left(e^{-\mu t}\right)^{(N \lambda / \mu 1+m-k} \tag{3b}
\end{equation*}
$$

We note in passing the two special cases
(a) $\mu=0$ (spares do not fail),

$$
\begin{equation*}
r_{m}(t)=R_{m}(t, \mu=0)=\sum_{k=0}^{k=n}\left[(N \lambda t)^{k} / k!\right] e^{-N \lambda t} \tag{4}
\end{equation*}
$$

(b) $N \lambda / \mu$ integral,

$$
\begin{equation*}
R_{m}(l)=\sum_{k=0}^{k=m}\binom{(N \lambda / \mu)+m}{k}(1-p)^{k} p^{N \lambda / \mu+m-k} . \quad\left(p=e^{-\mu l}\right) \tag{5}
\end{equation*}
$$

Case (a) yields cumulative Poisson probabilities for the system reliability while case (b) yields cumulative binomial probabilities. By specialization of case (b) to $\lambda=\mu$, these two cases correspond to the two assumptions discussed in the introduction.

Differentiation of (3a) with respect to t and insertion of (1) leads to the equation of motion

$$
\begin{equation*}
d R_{m}(t) / d t=-N \lambda P_{m, 0}(t)=-\mu(N \lambda / \mu)_{m+1}\left[\left(1-e^{-\mu t}\right) m / m!\right] e^{-N \lambda t} \tag{6}
\end{equation*}
$$

The probability density $f_{m}(t)$ of system failure time t, starting with m spares at time 0 , is given by

$$
\begin{align*}
& f_{m}(t)=-d R_{m}(t) / d t=\mu(N \lambda / \mu)_{m+1}\left[\left(1-e^{-\mu t}\right)^{m} / m!\right] \cdot e^{-N \lambda t} \tag{7}\\
&(t \geqq 0 ; m=0,1,2, \cdots)
\end{align*}
$$

An alternative derivation of (7) proceeds from the relation

$$
\begin{equation*}
\dot{t_{j}}=\sum_{k=0}^{k-m} t_{k} \tag{8}
\end{equation*}
$$

which expresses the time i_{j} for system failure, starting with m spares, as the sum of $m+1$ independent random variables. Here t_{k} is the time for the number of unfailed spares to drop from 7 to $k-1$ and is exponentially distributed with mean $1 / \lambda_{k}$. It follors from (8) that f_{m} is the m-fold convolution of the probability densities of the t_{k}.

The system reliability may alternately be expressed as ${ }^{[1]}$

$$
\begin{align*}
R_{m}(t) & =\int_{t}^{\infty} d y f_{m}(y) \tag{9}\\
& =I_{p}\left(\frac{N \lambda}{\mu}, m+1\right), \quad\left(p=e^{-\mu t}\right) \tag{10}
\end{align*}
$$

where the change of variables $x=e^{-\mu \nu}$ was made and

$$
\begin{equation*}
I_{p}(c, d)=\frac{\Gamma(c+d)}{\Gamma(c) \Gamma(d)} \int_{0}^{p} d y y^{-1}(1-y)^{d-1} \tag{11}
\end{equation*}
$$

$$
(c, d>0)
$$

is the incomplete beta function in Pearson's notation. ${ }^{121}$
The system reliability is strictly monotone decreasing in t, dropping from $R_{m}(0)=1$ to $R_{m}(\infty)=0$. According to (10) and (11), $R_{m}(t)$ is strictly monotone decreasing in the spare failure rate μ for $m \geqq 1$.

3. Time of System Fuilure

If the system is started with m unfailed spares at time 0 , then the time t_{f} of system failure has the probability density $f_{m}\left(t_{f}\right)$ given by (7). The distribution of system failure times is unimodal, the most probable time of system failure being given by

$$
\begin{equation*}
t_{\text {mod }}=(1 / \mu) \ln [1+(m \mu / N \lambda)] . \quad(m=0,1,2, \cdots) \tag{12}
\end{equation*}
$$

The mean and variance of the time of system failure are most readily obtained from (8). They are given by ${ }^{[1]}$
and

$$
\begin{gather*}
E\left(t_{j}\right)=\sum_{k=0}^{k=m} E\left(t_{k}\right)=\sum_{k=0}^{k=m}\left(1 / \lambda_{k}\right), \tag{13}\\
\sigma^{2}\left(t_{f}\right)=\sum_{k=0}^{k=m} \sigma^{2}\left(t_{k}\right)=\sum_{k=0}^{k=m}\left[1 /\left(\lambda_{k}\right)^{2}\right] . \tag{14}
\end{gather*}
$$

We note with Weiss that the mean and mode of the time to failure grow much slower with m, asymptotically to $(\ln m) / \mu$, if spares fail than if spares do not fail. It is also noteworthy that the mean mnd mode do not coincide, even when μ approaches zero. This comes as no surprise since the same property holds for the m th order Erlang density to which f_{m} reduces as μ approaches zero.

According to (13) and (14), the cocfficient of variation $\sigma\left(t_{f}\right) / E\left(t_{t}\right)$ is less than unity for $m \geqq 1$, and appronches zero as m grows very large. This is another property which f_{m} shares with the m th order Erlang density.

f. Marginal Analysis

Marginal analysis inve gained by the addition of with the equation of motic
$d R$.
leads to the conclusion

$$
\begin{array}{r}
R_{m+1}-R_{m}=\left(\lambda \lambda / \lambda_{m+1}\right) P \\
\cdot[(1-e
\end{array}
$$

An alternate derivation of This equation describes : $m+1$ st spare.

The ratio g_{m} of successi

$$
g_{m} \equiv\left(R_{m+2}-R_{m+1}\right) /\left(R_{m}-\right.
$$

The right-side of (17) at mately each spare adds 1 $m_{1}^{* *}$ of m for which $g_{m}=1$

$$
m^{* *}
$$

The marginal analysis integer contained in $\mathrm{m}^{* *}$,
(a) If $\left[m^{* *}\right]<0$, then mental reliability than its
(b) If $\left[n^{* *}\right] \geqq 0$, then adds more incremental re the $\left[n^{* *}\right]+3$ rd on adds le: The ratio of successive i from $g_{2} \geqq 1$ to $1-e^{-m}<1$.

If spares do not fail.
and the last spare that ad sur is the [NM]th. This : iallures in a time interval

The quality R_{m+1} / R_{m} ufficiently large. This ance the inequality

$$
R_{m+1} / R_{m}
$$

ig with m spares, as sre t_{k} is the time for and is exponentially. hat f_{m} is the m-fold
ed as ${ }^{(11)}$

$$
\begin{equation*}
\left(p=e^{-a l}\right) \tag{10}
\end{equation*}
$$

$(c, d>0)$
n. ${ }^{\text {[a] }}$
asing in t, dropping and (11), $\boldsymbol{R}_{m}(t)$ is μ for $m \geqq 1$.
time 0 , then the time given by (7). The nost probable time ui
$=0,1,2, \cdots$)
:ure are most readily:

J.

e time to failure grow i spares fail than : san and mode do $:$; as no surprise sinc: density to which $!-$
:ariation $\sigma\left(t_{f}\right) / E(t$ m grows very lari: order Erlang density

Provisioning with Spare Deterioration

1. Marginal Analysis

Marginal analysis investigates how much incremental reliability is gained by the addition of each successive spare part. Comparison of (6) with the equation of motion

$$
d R_{m} / d t=-\lambda_{m}\left(R_{m}-R_{m-1}\right) \quad(m \geqq 1)
$$

leads to the conclusion

$$
\begin{align*}
& R_{m+1}-R_{m}=\left(N \lambda / \lambda_{m+1}\right) P_{m+1.0}=(N \lambda / \mu)_{m+1} \\
& \left.\quad \cdot \|\left(1-e^{-\mu t}\right)^{m+1} /(m+1)!\right] e^{-N \lambda t} \cdot(m=0,1,2, \cdots) \tag{16}
\end{align*}
$$

An alternate derivation of (16) is based upon integration by parts of (9). This equation describes the increase in reliability upon addition of the $m+1$ st spare.

The ratio g_{m} of successive increments in reliability is given by

$$
\begin{align*}
g_{m}=\left(R_{m+2}-R_{m+1}\right) /\left(R_{m+1}-R_{m}\right)=[(N \lambda / \mu) & +m+1] \\
& \cdot\left(1-e^{-\omega c}\right) /(m+2) \tag{17}
\end{align*}
$$

The right-side of (17) approaches $1-e^{-\mu t}<1$ for large m, so that ultimately each spare adds less reliability than its predecessor. The value $m^{* *}$ of m for which $g_{m}=1$ is given by

$$
m^{* *}=[(N \lambda / \mu)-1]\left(e^{\mu t}-1\right)-2
$$

The marginal analysis can be characterized in terms of [$m^{* *}$], the largest integer contained in $\boldsymbol{m}^{* *}$, as follows:
(a) If $\left[m^{* *}\right]<0$, then each spare from the second on adds less incremental reliability than its predecessor.
(b) If $\left[m^{* *}\right] \geq 0$, then each spare from the second to the $\left[m^{* *}\right]+2$ nd adds more incremental reliability than its predecessor. Each spare from the $\left[\eta^{* *}\right]+3$ rd on adds less incremental reliability than did its predecessor. The ratio of successive increments in reliability decreases monotonically frum $g_{2} \geqq 1$ to $1-e^{-\mu t}<1$.

If spares do not fail, then

$$
m^{* *}=N \lambda-2, \quad(\mu=0)
$$

and the last spare that adds more incremental reliability than its predeces\because is the [$N \lambda 1]$ th. This number is essentially the expected number of part shilures in a time interval t when the supply of spares is infinite.

The quality R_{m+1} / R_{m} is monotonically decreasing in m provided m is -llifiently large. This property holds, in particular, for all $m \geqq m^{* *}$:re the inequality

$$
R_{m+1} / R_{m} \geq\left(R_{m+2}-R_{m+1}\right)^{\prime}\left(R_{m+1}-R_{m}\right) \equiv g_{m}
$$

is then satisfied. It follows that $\ln R_{m+1} / R_{m}$ is monotonically decreasing in the region of decreasing marginal reliability. Since this monotonicity is sufficient (reference 4, p. is7) for the validity of the Black-Proschas algorithm for optimal allocation of funds among various subsystems, the algorithm may be applied when spares deteriorate provided each subsystem has received enough spares to be in the region of decreasing marginal reliability.

5. Alternate Expression: for System Reliability

Two additional relations are presented which express R_{m} as the sum of $m+1$ terms. One is obtained by performing a binomial expansion on (7) and inserting the result into (9):

$$
\begin{align*}
& R_{m}(t)=(N \lambda / \mu)_{m+1}(\mu / m!) \sum^{k=m}\binom{m}{k}(-1)^{2}\left(e^{-\lambda_{1} t} / \lambda_{k}\right) \tag{18}\\
&(m=0,1,2, \cdots)
\end{align*}
$$

The second is obtained by insertion of (16) into

$$
\begin{align*}
& R_{m}(t)=R_{0}(t)+\sum_{k=1}^{k=m}\left[R_{k}(t)-R_{m-1}(t)\right], \\
& \quad(m=1,2, \cdots) \tag{19}
\end{align*}
$$

namely,

$$
\begin{align*}
& \left.R_{m}(t)=\sum_{k=0}^{k=m}(N \lambda / \mu)_{k} \mid\left(1-e^{-\mu 1}\right)^{4} / k!\right) e^{-\mu \lambda t} \tag{20}\\
& (m=0,1,2, \cdots)
\end{align*}
$$

We note that as μ approaches zero, (20) reduces correctly to the cumulative Poisson probability $r_{\text {a }}$ given by (4).

In general, the most convenient analytical expressions for $\boldsymbol{R}_{\mathrm{m}}$ are in terms of the hypergeometric function $F(a, b ; c ; 2)=F(b, a ; c ; z)$ whose properties are well known. ${ }^{\text {(s. a) }}$ This function is related to the incomplete beta function by ${ }^{19}$

$$
\begin{equation*}
I_{p}(a, b)=[\Gamma(a+b) / \Gamma(a+1) \Gamma(b)] p^{4} F(1-b, a ; a+1 ; p) \tag{21}
\end{equation*}
$$

$$
(a, b>0)
$$

The usefulness of (21) for manipulative purposes is shown in Appendix A, while its usefulness for asymptotic expansions is demonstrated in Appendix B.

Appendix C tabulates several methods of calculation of system reliability.

6. Mean Number of Part Failures in ℓ

In order to compute the mean $A_{m}(t)$ and variance $B_{m}(1)$ of the number of part failures in a time interval t, starting with m unfailed spares, we must

Prosiaionins
first describe system behavir tractable assumption is that, part fuilures can occur. The

$$
\begin{aligned}
& A_{m}(t)=\sum_{k=0}^{k=m}(m-k) F \\
& B_{m}(t)=\sum_{k=0}^{k=m}(m-k)^{\cdot} l
\end{aligned}
$$

Evaluation of these sums i

$$
(m-k) P_{m, t}(l)=
$$

We obtain

$$
\begin{aligned}
A_{m}(t)= & {[(N \lambda / \mu)+m]\left(1-e^{-}\right.} \\
B_{m}(l)= & (m+1)^{2}\left[1-R_{m}(t)\right] \\
& \cdot\left\{R_{m-1}(t)+[(N \lambda /\right.
\end{aligned}
$$

using the convention $\boldsymbol{R}_{-1}=\boldsymbol{\hbar}$
The mean number of part $m+1$ for large t. The behav (B.1), with the result

$$
A_{m}(t)^{\prime}=(N
$$

The variance $B_{m}(t)$ of th approaches zero for large t. huvint of $B_{m}(t)$ for small t is

$$
B_{m}(t)=\left(V_{\lambda}\right.
$$

For small t, A_{m} and B_{m} are pincess with rate $. N \lambda+m \mu$.

A srsiem of $N^{\prime}=2$ identical without part replenishineut. are, respectively, $\lambda=10^{-2}$ b. should be initially supplied?

We find from (20) thai Hives are given by (R_{3}. l. (us). Hence + spares are
otonically decreasing ce this monotonicins he Black-Proscinis ious subsystems, the rovided each subsys. decreasing marginal
press R_{m} as the sum inomial expansion on
${ }^{4}\left(e^{-\lambda_{A} t} / \lambda_{t}\right)$.
$=0,1,2, \cdots$)
($t)$,
$m=1,2, \ldots$)
1070
$=0,1,2, \cdots$)
rectly to the cumula.
escions for $R_{\text {n }}$ are in $=F(b, a ; c ; z)$ whos ited to the incompletc

$$
\begin{gather*}
a ; a+1 ; p) . \\
\quad(a, b>0) \tag{21}
\end{gather*}
$$

shown in Appendix A. moustrated in Appen

Ilation of system reli-
e $B_{m}(t)$ of the nunitu: falled spares, we nut:

Procinianing toilh Spara Deferiorntion

first desaribe system behavior after the system has failed. The most ractable assumption is that once system fajlure has occurred, no further part failures can occur. The mean and variance are then given by

$$
\begin{aligned}
& A_{m}(t)=\sum_{m=0}^{k=0}(m-k) P_{m, k}(t)+(m+1)\left[1-R_{m}(t)\right], \\
& B_{m}(t)=\sum_{k=0}^{k=0}(m-k)^{2} P_{m, t}(t)+(m+1)^{2}\left[1-R_{m}(t)\right]-\left[A_{m}(t)\right]^{2} .
\end{aligned}
$$

Evaluatiou of these sums is simplified by use of the relation

$$
\begin{aligned}
& (m-k) P_{m, k}(t)=[(N \lambda ; \mu)+m]\left(1-e^{-\mu t}\right) P_{m-1, k}(t) . \\
& \quad(m-k \geqq 1 ; m=1,2, \cdots)
\end{aligned}
$$

We obtain

$$
\begin{align*}
A_{m}(t)= & \left\{\left(N \lambda^{\prime} \mu\right)+m\right\}\left(1-e^{-\mu t}\right) R_{m-1}(t)+(m+1)\left[1-R_{m}(t)\right], \tag{22}\\
B_{m}(t)= & (n+1)^{2}\left[1-R_{m}(t)\right]-\left[A_{m}(t)\right]^{2}+[(N \lambda / \mu)+m]\left(1-e^{-\mu t}\right) \\
& \cdot\left(R_{m-1}(t)+[(N \lambda / \mu)+m-1]\left(1-e^{-\mu t}\right) R_{m=0}(t)\right] \tag{23}\\
& (m=0,1,2, \cdots)
\end{align*}
$$

using the convention $R_{-1}=R_{-1}=0$.
The mean number of part failures $A_{\mathbf{m}}(t)$ is zero at $t=0$ and approaches $m+1$ for large t. The behsvior of $A_{m}(t)$ for small t is obtained by use of (B.1), with the result

$$
\begin{align*}
& A_{m}(t)=\left(N \lambda+m_{\mu}\right) t\left[1-(\mu / 2)+O\left(t^{2}\right)\right] . \\
& \quad(m=1,2,3, \cdots ; N \lambda t \ll 1 ; \mu t \ll 1) \tag{24}
\end{align*}
$$

The variance $B_{m}(t)$ of the number of part failures is zero at $t=0$ and approaches zero for large t. We conjecture that it is unimodal. The behavior of $B_{m}(t)$ for small t is obtained by use of (B.1) with the result

$$
\begin{align*}
& B_{m}(t)=\left(N^{\prime} \lambda+m_{\mu}\right) t\left(1-(3 \mu t / 2)+O\left(t^{2}\right)\right] . \tag{25}\\
& \quad(m=1,2,3, \cdots ; N \lambda t \ll 1 ; \mu t<1)
\end{align*}
$$

Fur amall $t, A=$ and B_{m} are the mean and variance for a pure Poisson process with rate $. \lambda \lambda+m \mu$.

AN EXAMPLE

A systex of $N=2$ identical parts must operate for a period $t=1000$ hours without part replenishmeat. The failure rates of parts in use and spares are, respectively, $\lambda=10^{-i}$ hour ${ }^{-1}$ and $\mu=0.2 \lambda$. How muny spare parts should be initially suppied?

We find from i20; that the system reliabilities associated with 3-8 spares are given by $\left(R_{3}, \cdots, R_{4}\right)=(0.803,0.907,0.960,0.984,0.994$, 11 r.f45). Henre 4 spares are weeded for 90 per cent reliahility, 5 spares for

Paul J. Schweileser

9.7 per cent, and 7 spares for 99 per cent. Since $m^{* *}=-0.0074<0$, each spare adds less relinbility than its predecessor.

If $m=5$ spares are supplied, then the mode, mean, and standard deviation of the time until system failure are given by $\left\{t_{\text {mode }}, E\left(t_{f}\right), \sigma\left(t_{f}\right)\right]=$ (2027, 240, 1008) hours. The mean and standard deviation of the number of part failures in $t=1000$ hours are given by $\left[A_{s}(1000), \sqrt{B_{s}(1000)}\right]$ $=(2.71,1.46)$. Since $\mu / N \lambda=0.1 \ll 1$, the system reliability may be calculated from (B.3) as a cumulative Poisson probability with corrections. Oné obtains

$$
R_{b}(1000) \simeq 0.983436-0.018045-0.005413+O\left(\mu^{3}\right)=0.959978
$$

in good agreement with the exact value of 0.960079 . We note, in agreement with Weiss, that even this small spare failure rate resulted in noticeable degradation of system reliability and expected system lifetime from their values $\left(r_{b}(1000), E\left(t_{f}\right)\right)=(0.983,3000$ hours) if spares did not fail.

INITIAL PROVISIONING WITH CONFIDENCE

In order to achieve a reliability A of system performance during a time interval t, at least m^{*} spares must be supplied, where m^{*} is the smallest value of m for which

$$
\begin{equation*}
R_{m}(t) \geqq A \tag{26}
\end{equation*}
$$

is satisfied.
Equation (10) shows that R_{m} depends on m and the tro dimensionless parameters μt and $N \lambda / \mu$. Consequently, for fixed A, m^{*} is an integervalued function of the two-dimensionless variables $\mu / N \lambda$ and $N \lambda t$. It is possible to construct; for each fixed A, a graph whose axes measure these last two variables, and upon which regions corresponding todifferent values of m^{*} are marked off.

Such graphs have been constructed for the three cases $A=0.90,0.95$, 0.99 (Figs. 2, 3, and 4). The boundaries between regions of different n^{*} were obtained by digital computer solution of the transcendental equation $R_{m}(t)=A$ for t, using Newton's method as indicated at the end of Appendix C.

Only the range of values $\mu / N_{\lambda} \leqq 2$ has been plotted. This is by far the most important region, since $\mu \leqq \lambda$ usually occurs. The boundary for the region $m^{*}=0$ does not fall within the regions described by Figs. 3 and 4. It is given by $e^{-N \lambda t}=A$, namely by the horizontal line $N \lambda t=0.105,0.051$, 0.010 for the three cases $A=0.90,0.9 j, 0.99$, respectively.

For values of m and A not plotted, m^{*} may be obtained from (20): successive terms are added to (20) until (26) is satisfied. The special case $\lambda^{N}=1, \mu=0$ which corresponds to the left elge of our gr:uphs, has been studicd and plotted by Barnett. ${ }^{[1]}$

1 standard devia, $\left.E\left(t_{f}\right), \sigma\left(t_{f}\right)\right]=$ tion of the num$30), \sqrt{B_{b}(10001]}$ iability may ine with corrections.

$=0.939978$

e note, in agrec. esulted in noticeem lifetime from res did not fail.

iCE

see during a time i^{*} is the smallest

\square

tro dimensionless m^{*} is an integer. $N \lambda$ and $N \lambda t$. It xes measure thee: todifferent values
$\operatorname{ses} A=0.90,0.9$. . ns of different m^{*} endental equation te end of Appendix

This is by far the boundary for the by Figs. 3 and 4. $N \lambda 1=0.105,0.051$. ly.
jeined from (x^{\prime}
fied. The spuc.... or graphs, has ber:.

524

Alternately, the curves $R_{m}(t)=A$ for $m=0(1) 39, N \lambda / \mu=1(1) 40$, and $A=(0.50,0.60,0.70,0.80,0.90,0.95,0.975,0.99,0.99 .5,0.999,0.909 . i$. 0.9999) can be eonstructed irom Harter's tables of percentage points t : the ineomplete beta function. ${ }^{[8]}$ These tables give $X(C, D, A)$ for whirl. $I_{\mathrm{I}}(C, D)=A$ for $C=1(1) 40, D=1(1) 40$ and the above values of A. Entcring the tables with $C=N \lambda / \mu, D=m+1$, and A yiclds $X(C, D, A)=$ $e^{-\mu t}$ from which $N \lambda t=-C \ln X$ may be obtained.

The system considered in the above example is used for illustrative pur. poses. Entering the graphs with $\left(\left(\mu_{/}^{\prime} N \lambda\right), N \lambda i\right)=(0.1,2)$, we see, in agreement with the example, that initial provisioning of 4,5 , and 7 or s spares is necessary for system reliabilities of 90,95 , and 99 per cent, re. spectively.

One defect of the graphs is that they do not yield exact probabilities. In the above example, they show that the reliability with 5 spares is greater than 95 per cent, but do not reveal how much greater. The example showed that $R_{5}=96$ per cent, somerrhat higher than the 95 per cent gral.

On the other hand, the graphs have the merit that the consequence of uncertainty in the values of the failure rates may be easily ascertained. A sensitivity analysis performed via the graphs can be used to help determine where more detailed knowledge is worth the expense necessary to acquire it. For the above example, if nothing were known about μ except that $0 \leqq \mu \leqq \lambda$, then use of Fig. 2 with $N \lambda t=2$ and $\mu^{\prime} \lambda^{\prime} \lambda$ ranging from 0 to $0 . i$ reveals that from 4 to 7 or 8 spares are needed to achieve 90 per cent reliability.

Inspection of the graphs reveals that the growth of m^{*} with μ and t is, extremely rapid, and that higher values of μ lead to faster growth of m^{*} with t :

$$
\partial^{n} m^{*} / \partial(\mu / N \lambda) \partial(N \lambda t)>0
$$

It can be shown that for fixed $A, N \lambda$ and $\mu>0, m^{*}$ grows exponentially with t for large t. Equation (B.9) leads to the asymptotic formula

$$
\begin{equation*}
m^{*} \simeq e^{\mu t} F^{-1}(A ;(N \lambda / \mu)) \tag{27a}
\end{equation*}
$$

if t is taken sufficiently large that

$$
\begin{equation*}
m^{*} \gg 1, \quad N \lambda / \mu ; e^{-\mu 1} F^{-1}(A ;(N \lambda / \mu)) \ll 1 \tag{27~b}
\end{equation*}
$$

are satisfied. Here $F^{-1}(A ; a)$ is the A-quantile of the standardized gamma distribution with parameter a.

When $\mu=0, m^{*}$ grows asymptotically linearly with t. The normal approximation to the Poissin distribution with large mean leads to

$$
A=r_{m}(l) \simeq \Phi([m-N \lambda t] ; \sqrt{N \lambda t})
$$

where $\Phi(\cdot)$ is the cumulative function for the standard normul. Hence ${ }^{(6)}$

Provisioning eci

$$
m^{*} \simeq N \lambda t+
$$

The exponential growth of $m^{*} w$ - eded to compensate for spare f : :rowth when $\mu=0$.

A heuristic check on (27a) is with respect to t (suppressing the

$$
\partial m / \partial t=\left(-\partial R_{m} / \partial t\right) /\left(\partial R_{m} / \partial\right.
$$

Insertion of (15) leads to the diffe

$$
\partial m^{*} / i
$$

whose solution is, asymptotically,

$\mathbf{A P}$

Ststem Reliability Expres: lisertion of (21) into (10) leads to t

$$
R_{m}(t)=\left(e^{-N \lambda!} / m!\right)((N \lambda / \mu)+1
$$

intween s-stem reliability and thehyr $1-I_{1-p}(b, a)$ leads to an alternate es
$1-R_{m}(t)=\left[\left(1-e^{-\mu t) m+1} /(m+1)!\right](N \lambda\right.$

The hypergeometric transformatiou:

$$
\begin{aligned}
& F(a, b ; c ; z)=(1- \\
& F(a, b ; c ; z)=(1-
\end{aligned}
$$

applied to (A.1) and (A.2), respectiv:

$$
\left.R_{m}(l)=e^{-N x} \mid\left(1-e^{-\mu l}\right) m / m!\right]((N \lambda / \mu)-
$$

and
$i-R_{m}(t)=e^{-N \lambda t}\left[\left(1-e^{-\mu l}\right)^{m+1} /(m+1)\right.$
The first transformation formula a)

$$
1-R_{m}(l)=e^{-(N \lambda-\mu)} \|\left(1-e^{-\mu l}\right)^{m+1 /(n}
$$

The uscfulness of these expressions it While their usefulness for asymptoti

The hypergeometric function ${ }^{10}$

$$
F(a, b ; c ; z)=
$$

$$
1
$$

$\lambda / \mu=1(1) 40$, and 95, 0.999, 0.999\%. reentage points f
, D, A) for which ove values of A $\operatorname{lds} X(C, D, A)=$
or iilustrative pur.
1, 2), we see, in f 4,5 , and 7 or $\$$ ± 99 per cent, rc.
vact probabilities. 5 spares is greater 2r. The exampl. 95 per cent goal. le consequence ni y ascertained. . to help determine sessary to acquire $4=$ except that ing from 0 to $0 .:$ Leve 90 per cent
\imath^{*} with μ and l iiter growth of m^{\prime}
xponentially with rmula
adardized gamn::
The normal ap leads to
(NNM1
normal. Henre

Provisioning with Spare Dcterioration

$$
\begin{equation*}
n^{*} \simeq N \lambda t+\sqrt{N \lambda!} \Phi^{-1}(A) . \quad(N \lambda t \gg 1 ; \mu=0) \tag{28}
\end{equation*}
$$

The exponential growth of m^{*} with t for $\mu>0$ (where extra spares are needed to compensate for spare failures) is in sharp contrast to its linear growth when $\mu=0$.

A heuristic check on (27a) is obtained by differentiation of $R_{m}(t)=A$ iwith respect to t (suppressing the asterisk):

$$
\begin{equation*}
\partial m / \partial t=\left(-\partial R_{m} / \partial t\right) /\left(\partial R_{m} / \partial m\left(\simeq\left(-\partial R_{m} / \partial t\right) /\left(R_{m}-R_{m-1}\right)\right.\right. \tag{29}
\end{equation*}
$$

Insertion of (15) leads to the differential equation

$$
\partial m^{*} / \partial t \simeq N \lambda+m^{*} \mu
$$

whose solution is, asymptotically, $m^{*} \simeq B c^{\mu t}$ where B is independent of t.

APPENDLX A

System Reliability Expressed via Hypergeonetric Functions Insertion of (21) into (10) leads to the desired relation

$$
\begin{equation*}
R_{m}(t)=\left(e^{-N \lambda t} / m!\right)((\lambda \lambda / \mu)+1)_{m} F\left(-m,(N \lambda / \mu) ;(N \lambda / \mu)+1 ; e^{-\mu t}\right) \tag{A.1}
\end{equation*}
$$

betreen system reliability and the hypergeometric function. The identity $I_{p}(a, b)=$ $1-I_{1-p}(b, a)$ leads to an alternate expression of R_{m} in terms of F :

$$
1-R_{m}(t)=\left[\left(1-e^{-\mu t}\right) m+1 /(m+1)!(\lambda \lambda / \mu)_{m+1} F\right) 1-(N \lambda / \mu), m+1 ;
$$

$$
\begin{equation*}
\left.m+2 ; 1-e^{-\mu}\right) . \tag{A.2}
\end{equation*}
$$

The hypergeometric transformation formulas ${ }^{[5,6]}$

$$
\begin{aligned}
& F(a, b ; c ; z)=(1-z)-\subset(a, c-b ; c ;(z / z-1)), \\
& F(a, b ; c ; z)=(1-z) \rightarrow-\rightarrow(c-a, c-b ; c ; z),
\end{aligned}
$$

applied to (A.1) and (A.2), respectively, lead to tro more relations,

$$
\begin{equation*}
R_{m}(l)=e^{-N \lambda t}\left[\left(1-e^{-\omega l}\right) m / n!\right]((N \lambda / \mu)+1)_{m} F(-m, 1 ; \tag{A.3}
\end{equation*}
$$

and

$$
\left.(N \lambda / \mu)+1 ;-e^{-\mu t} /\left(1-e^{-\mu t}\right)\right)
$$

$$
1-R_{m}(t)=e^{-N \lambda t}\left[\left(1-e^{-m i}\right)^{m+1} /(m+1)\right]!(N \lambda / \mu)_{m+1} F(m+1+(N \lambda / \mu), 1
$$

$$
\begin{equation*}
\left.m+2 ; 1-e^{-x}\right) \tag{A.4}
\end{equation*}
$$

The first transformation formula applied to (A.4) leads to

$$
\begin{align*}
&\left.1-R_{m}(l)=e^{-(N \lambda-\mu)}!\left(1-e^{-m l}\right)^{m+1} /(m+1)!(N \lambda / \mu)_{m+1} F\right) 1-(N \lambda / \mu), 1 ; \tag{A.5}\\
& m+2 ; 1-e^{\mu(l)} .
\end{align*}
$$

He usefulness of these expressions for manipulative purnoses is demonstrated next, while their uscfulness for asymptotic expansions is shown in Apprendix B. The hypergeometric function possesses the Maclaurin scries expansion

$$
\begin{equation*}
F(a, b ; c ; z)=\sum_{n=0}^{n=0}\left[(a)_{n}(b)_{n} /(c)_{n}\right]\left(2^{n} / n!\right) \tag{A.C}
\end{equation*}
$$

generally convergent for $|z|<1$ but which breaks off if the parameter a is a negativ. integer. Maclaurin series expansions of (A.1) and (A.3) are precisely (18) and (3b). If the identity

$$
\begin{equation*}
F(a, 1 ; c ; z)=1+(a z / c) F(a+1,1 ; c+1 ; z) \tag{A.7}
\end{equation*}
$$

[which follows from (A.6)] is inserted into (A.4), the result is (16). This completes the proof of the equivalence of (3b), (18), (20), and (10). It is noteworthy that (3b), (15), and (20) are three distinct sums, the proof of whose equivalence is otherwise nontrivial. \dagger Finally, the identity ${ }^{[5,6]}$

$$
(a)_{n} 2^{a-1} F(a+n, b ; c ; z)=\left(d^{n} / d z^{n}\right)\left[z^{a+n-1} F(a, b ; c ; z)\right],
$$

when evaluated at $(a, b, c, z, n)=\left(-m,(\lambda \lambda / \mu),(N \lambda / \mu)+1, e^{-\mu t}, 1\right)$ and combined with (A.1), leads to an alternate derivation of (15).

APPENDIX 18

Asimptotic Expansions for System Reliability

Systex reliability for small t may be obtained by Maclaurin series expansion of (A.2) with the result

$$
\begin{aligned}
1-R_{m}(l)= & {\left[(N \lambda / \mu)_{m+1} / m!\right] \sum_{k=0}^{k=}(1-(N \lambda / \mu))_{k}\left(1-e^{-\mu l}\right)^{k+m+1} /\{(m+k+1) k!] } \\
= & {\left.\left.\left[(\mu l)^{m+1} /(m+1)!(N \lambda / \mu)_{m+1} l 1-(m+1)(m+2)^{-1}!\lambda \lambda+(m \mu) / 2\right)\right] t+O\left(l^{2}\right)\right\} } \\
& (l<1 / N \lambda, 1 / \mu ; m=0,1,2, \cdots)(B .1)
\end{aligned}
$$

System reliability for large t may be obtained by Maclaurin series expansion of (A.1), with the result, $\&=\mu>0$,

$$
\begin{equation*}
R_{m}(t)=\left(c^{-N x t / m!)((\lambda \lambda / \mu)+1)_{m}\left\{1-[m N \lambda /(N \lambda+\mu)] c^{-\mu t}+O\left(e^{-2 \mu t}\right)\right] . ~ . ~}\right. \tag{B.2}
\end{equation*}
$$

System reliability for small spare failure rate μ may be expanded in a Maclaurin series in $y=\mu / \Lambda^{\prime} \lambda$. Insertion of

$$
(N \lambda / \mu)_{k}=\langle N \lambda / \mu)^{k}\left|1+[(k-1) k / 2] y+[(3 k-1)(k-2)(k-1) k / 24] y^{2}+O\left(y^{2}\right)\right|
$$

and

$$
\left(1-e^{-\mu t}\right)^{k}=(\mu l)^{k}\left\{1-(k / 2) \mu l+[k(3 k+1) / 24](\mu t)^{2}+\cdots\right]
$$

into (20) leads, after much simplification, to the expansion

$$
\begin{align*}
R_{m}(t)=\gamma_{m}(t)-\left[e^{-N \lambda t}\left(N^{\prime} \lambda t\right)^{m+1}(2(m-1)!)^{-1} \mid y[1+(y / 12)[(m-1)(3 m+2)\right. \\
\quad-(3 m+1) N \lambda t]+O\left(y^{2}\right) \mid \quad(m=1,2,3, \cdots) \tag{B.3}\\
\quad \prime=\mu / N \lambda \ll\left(1 / m^{2}\right) ; \mu t \ll 1 / m,
\end{align*}
$$

where T_{m} is given by (4).
$R_{0}=r_{0}$ while, for $m \geqq 1$, a necessary condition on the magnitude of μ for the approximation $R_{m}(t) \simeq r_{p}(t)$ to be valid is that

$$
\left.\mu / N^{\prime \lambda}<2(m-1)!r_{m}(l) / e^{N \lambda 1}(\lambda \lambda l) m+1=2 r_{m}(t) /|m(m+1)| r_{m+1}(t)-r_{m}(t)\right] \mid \text {. (B.t) }
$$

\dagger A direct proof of the equivalence of (10), (1S), and (20) is given in references. pp. vii-viii.

Provisior

System reliability for larg :otic expansion (reference 5 , e
$F(a, b, c, z)=1+(a b /$
$1:(\mathrm{B} .5)$ is applied to (A.5), thi $1-R_{m}(t)=1 e^{-(N \lambda-\mu) t}\left(1-e^{-\mu t: 2}\right.$

If μ approaches zero in t^{\prime} mentary cumulative Poisson !

$$
1-r_{m}(t)=\left[(N \lambda t)^{m+1}, t\right.
$$

$i f$, on the other hand, $\boldsymbol{\lambda} \boldsymbol{\lambda} / \mu$; ! . nnansion of the complement

If μ is bounded away fror tion leads to

$$
\Gamma((N \lambda / \mu)+i
$$

The expansion in (B.6) becom

$$
1-R_{m}(l)=\left[e^{-N A-A}\right]
$$

When $\lambda \lambda=\mu$, (D. 8) reduces
Sresem reliability for laremis approximation leads t.

$$
R_{\mathbf{m}}(t)=j
$$

The approxination $(1-x)^{m}=$, hange of variables $x=y / m, \mathrm{t}^{\prime}$. $R_{n}(i) \simeq \int_{0}^{m e-\mu 1} d y y^{N x / m-1} c-y / \Gamma($

Whare $F(\cdot ; a)$ denotes the cu -ter a.

Techniques fot
several methods of caler
\cdot - w. Of these, equation $:$
parameter a is a negativ. re precisely (1S) and (3i)
-1; 2)
(A.7)
t is (16). This complets
. It is noteworthy tha:
of rhose equivalence is
$b ; c ; z)\}$,
$\left.-1, e^{-\mu t}, 1\right)$ and combinej

:luabilaty

turin series expansion oi
$-1 /(m+k+1) k:]$
$\left.\forall \lambda+(m \mu) / 2)] t+O\left(t^{-}\right)\right\}$.
$: ; m=0,1,2, \cdots$) (B.1)
aurin series expansion oi
f $\left.\int^{-t} e^{-2 \mu t)}\right)$.
be expanded in a Mac.
-1) $\left.k / 24] y^{2}+O\left(y^{2}\right)\right\}$
$t)^{2}+\cdots 1$

1) $(3 m+2)$
($m=1,2,3, \cdots$)(B.3)
magnitude of μ for the
$\left.\mid r_{m+1}(1)-r_{m}(t)\right] \mid$. (B.t)
) is given in refereaces.

System reliability for large numbers of spares nay be obtained via the asympwic expasion (reference 5 , equation 15.7.1)

$$
\begin{equation*}
F(a, b, c, z)=1+(a b / c) z+\cdots+\left[(a)_{a}(b)_{n} /(c)_{n}\right]\left(z^{n} / n!\right)+O(1 /|c|++1) . \tag{B.5}
\end{equation*}
$$

(fixed $a, b, z ;|c| \rightarrow \infty ; n=1,2,3, \cdots$)
$: A(B .5)$ is applied to (A.5), the result is

$$
\begin{align*}
& 1-R_{m}(l)=\left[e ^ { - (N \lambda - \mu) } \left(1-c^{-\mu t) a+1 /(m+1)!](N \lambda / \mu)_{m+1}}\right.\right. \\
&\left\{\{1+[(\lambda \lambda / \mu)-1] /(m+1)\}\left(e^{\mu t}-1\right)+O\left(1 / m^{2}\right)\right\} . \tag{B.6}
\end{align*}
$$

If μ approuches zero in the above, the asymptotic expansion for the complemontary cunulative Poisson probability is obtained:

$$
\begin{equation*}
1-r_{m}(t)=\left\{(\lambda \lambda l)^{m+1} /(m+1):!e^{-N \lambda}\left\{1+[\lambda \lambda t /(m+2)]+O\left(1 / m^{2}\right)\right\}\right. \tag{B.7}
\end{equation*}
$$

If, on the other hand, $N \lambda / \mu$ is integral, (B.6) reduces correctly to the asymptotic apansion of the complementary cumulative binomial probability.

If μ is bounded away from zero, Stirling's approximation for the gamma function leads to

$$
\Gamma((N \lambda / \mu)+m+1) /(m+1)!=m^{(N \lambda / \mu)-1}[1+O(1 / m)] . \quad(m \geqslant>1, N \lambda / \mu)
$$

The expansion in (B.6) becomes

$$
\begin{equation*}
(m \gg 1, N \lambda / \mu) \tag{B.8}
\end{equation*}
$$

When $\lambda \lambda=\mu$, (F, δ) reduces correctly to $1-R_{m}(t) \simeq\left(1-e^{-\mu t}\right)^{m+1}$.
Sustem reliability for large m and $!$ may be obtained from (10) and (11). Stirzig's approximation leads to

$$
R_{m}(t)=\frac{m^{N \lambda / \mu}}{\Gamma(N \lambda / \mu)} \int_{0}^{\theta^{-\mu t}} d x x^{(N \lambda i \mu)-1(1-x) m .} \quad(m \gg 1, N \lambda / \mu)
$$

The approximation $(1-x)^{m} \simeq e^{-m x}$ is valid for $0 \leqq x<1$ if $m x^{2} \ll 1-x$. With the change of variables $x=y / m$, the above becomes

($m \gg 1, N \lambda / \mu ; m c^{-2 \omega} /<1$)
where $F(\cdot ; a)$ denotes the cumulative standardized gamma function with parameler a.

1. If $\lambda \lambda / \mu$ is an intcercr, $R_{r, .}$ may be obtained via (5), through lookup in a table of cumulation hinomial probabilities.
2. If μ / N_{λ} is small, $R_{\text {n }}$ may be obtained via (B.3), through lookup in a table of cumulative Poisson probabilities, with correction terms if necessary:
3. If m is not too large, R_{m} can be obtained via (10), through lookup in a table ${ }^{12}$ of the incomplete beta function.
4. Weiss gives ${ }^{[1]}$ a normal approximation to the incomplete beta function if m and $N \lambda i \mu$ are both large. (13.9) gives a gamma approximation for large m and t. Additional approximations are given in reference 5.
5. Three closed expressions, (3b), (18), and (20), represent R_{m} as the sum of $m+1$ terms. As Harter ${ }^{[6]}$ points out, (18) is useless for numerical computation if m is large due to mear-cancellation of the oscillating terms. Of the two remaining sums, both of which have positive summands, (20) is much preferred for the following reasons: (a) the summand has a simpler appearance and can be obtained recursively via (17); (b) even more important, the summands are independent of m so that a whole sequence of R_{n} 's can be quickly generated by merely adding more and more summands. This procedure is numerically stable since the summands eventually decrease in magnitude. This feature is extremely useful if one wants the minimum number of spares m for which $R_{m} \geqq A$ is satisfied; (c) if R_{m} is obtained via (20), then the quantities $R_{m}-R_{m-1}$ and, by (15), $d R_{m} / d t$ are available as by-products. The last quantity is needed, for example, if Nerston's method is used to find the value of t, for fixed m and A, for which $R_{m}(t)=A$.

ACKNOWLEDGMENT

This nesemrch was initiated during the author's cmployment at Airborne Instruments Labolatory, Deer l'ark, New lork. The author wishes to thank. Mh. Marvin Goldstein of AIL for encouragement and numerous, discussions.

REFEN: N_{2} NCES

1. George II. Weiss, "Reliability oi a System in which Spare Parts Deteriorate in Storage," J. Research, National Bureau of Standards, Section B, Mathenatics and Mathematical Physics, Vol. 6613 No. 4, pp. 157-160, OctoberDecember 1962.
2. Harry lateman, Proc. Cambridge Phil. Soc. 15, 423-427 (1910).
3. Karl Pearson, Tables of the Incomplete Bela-Function, Cambridge Universit! Press, 1934.
4. G. Black and F. Proschas, "On Optimal Redundancy;" Opns. Res. 7, sst5SS (1959)
5. M. Abramowitz and I. Stegic. (eds.), Handbook of Mathematical Functions, National liurean of standards Applied Mathematics Series 5i, U. S. Gnocrmment Jrinting Office, 1064.
6. Embelit fet al., Higher Transecridental Functions, Vol. 1, MeGraw-Hill, Xen York, 1953.
, through lookup in a table e:
chrough lookup in a table e: me if necessary.

- through lookup in a table:
mplete beta function if m an:; stion for large m and t. Add:

Esent R_{r}, as the sum of $m \div$: rical computation if m is lar:the two remaining sums, bo:!. red for the following reason: be obtained recursively 4 : pendent of n so that a who: adding more and more sunt ine summands eventually d. d if one wants the minimul. R_{m} is obtained via (20), the: alable as by-products. Tir d is used to find the value of
employment at Airbomp The author wishes " iragement and numerou.
:. Howard Barnett, "Initial Provisioning rith Confidence," Opns. Rcs. 9, 127129 (1901).
\because H. Leon Harter, New Tables of the Incomplete Gamma-Function Ratio and of Percentage Points of the Chi-Square and Beta Distributions, Aerospace Rcsearch Laboratories Office of Aerospace Rescarch, U.S.A.F., U.S. Government Printing Office.

LOAD LIST MANUAL

NAVY FLEET MATERIAL SUPPORT OFFICE MECHANICSBURG, PA. 17055

Page
I. INTRODUCTION 1-1
PURPOSE OF THE UICP LOAD LIST OPERATIONS 1-2
THE DATA USED IN THE LOAD LIST COMPUTATIONS 1-3
HISTORICAL DEMAND DATA 1-3
INVENTORY CONTROL POINT FILES 1-4
TECENICAL OVERRIDES 1-5
TYPES OF LOAD LISTS 1-5
FLEET ISSUE REQUIREMENTS LIST 1-6
TENDER AND REPAIR SHIP LOAD LIST 1-7
SUPPLEMENTS TO THE LOAD LISTS 1-11
FILES USED IN PREPARING LOAD LISTS 1-11
MLSF MASTER DEMAND FILE 1-11
NAVY MANAGEMENT DATA FIIE 1-12
NMDF ADDENDUM FILE 1-12
FIRL MASTER FIIE 1-13
LOAD LIST MASTER FILE 1-13
LOAD LIST EFFECTIVENESS 1-13
OUTPUTS OF THE LOAD LIST OPERATIONS 1-15
SUPPLY/MANAGEMENTT AID RECORDS 1-15
LOAD LIST PUBLICATIONS 1-15
ORGANIZATIONAL RESPONSIBILITIES 1-18
FHSO RESPONSIBIIITIES 1-18
SPCC RESPONSIBILITIES 1-20
NAVSUP RESPONSIBILITIES 1-21
OTHER ORGANIZATION RESPONSIBILITIES 1-21
II. MOBILE LOGISTIC SUPPORT FORCE DEMAND COLLECTION 2-1
DEMAND CATEGORIES 2-1
INDUSTRIAL DEMAND 2-1
FLEET ISSUE DEMAND 2-2
TRANSACTION FORMAT 2-2
DEMAND VALIDATION 2-3
CANCEILATION RECORDS 2-6
NIIN UPDATE 2-8
MLSF MASTER DEMAND FILE UPDATE 2-9
DEMAND QUANTITY VALIDATION 2-11
DEMAND EXTRACTION FROM THE MLSF MASTER DEMAND FILE 2-13
III. LOAD LIST OVERRIDES 3-1.
TYPES OF OVERRIDES 3-1
SOURCES OF FIRL/FILL OVERRIDES 3-3
NEW EQUIPMENT OVERRIDES 3-3
FIRL/FILL CRITIGAL EQUIPMENTS OVERRIDES 3-4
TARSLI OVERRIDES 3-6
table of contents cont.
Page
IV. v.ICP EQUIPMENT/CONPONENT POPULATION AND INDEX DATA
WEAPON SYSTEMS FIIE
EXIRACIING LOAD LIST POPULATION DATA FROM TEE WSF
EXIRACTING LOAD LIST DATA FROM OTHER FILES
LOAD LIST INDEX DATA
4-14-14-3
4-4
V. FLEET ISSUE REQUIREMENTS LIST 5-14-6
FIRL/FILL CANDIDATES 5-6
FIRL/FILI DEMAND AVERAGING 5-7
FIRL CANDIDATES WITH FORECASTS TAPE 5-10
FREQUENCY DISTRIBUTIONS 5-10
FIRL/FILL LEVELS 5-12
THE FIRL/FILL RANGE 5-14
THE FIRL/FIIL DEPTH 5-16
EVALUATION OF EFFECTIVENESS CALCULATION 5-31
PRELTMINARY LOAD LIST OUTPUTS 5-31
FINAL LOAD LIST OUTPUTS 5-32
SUPPLY/MANAGEMENT AID RECORDS 5-32
CONSOLIDATED AFLOAT REQUISITIONING GUIDE, OVERSEAS 5-32
CARGO QUARTERLY SUPPLEMENTS 5-33
VI. TENDER AND REPAIR SHIP LOAD IISTS 6-1
TARSLI RANGE AND DEPTH COMPUTATIONS 6-7
DEMAND FORECAST 6-8
THE SIMPLE AVERAGE 6-9
THE SMOOTHED FORECAST 6-9
THE BEST REPLACEMENT FACTOR FORECAST 6-10
STANDARD DEVIATION OF QUARTERLY DEMAND 6-11
TOTAL DEMAND FREQUENCY 6-12
AVERAGE REQUISITION SIZE 6-12
LEVELS COMPUTATION 6-13
RANGE SELECTION FOR CONVENTIONAL TENDERS 6-13
DEPTH CALCULATION FOR CONVENTIONAL TENDERS 6-14
IMPACT OF OVERRIDES ON TARSLL DEPTH 6-18
LOAD LIST STATISTICS FOR CONVENTIONAL TENDERS 6-19
EFFECTIVENESS OF CONVENTIONAL TENDER LOAD LISTS 6-22
DEPTH CALCULATION FOR FBM TENDERS 6-24
LOAD LIST STATISTICS FOR FBM TENDERS 6-26
EFFECTIVENESS OF FBM TENDER LOAD LISTS 6-27
ADJUSTING THE RISK PARAMETER 6-28
REVIEW AND SKIM LISTINGS 6-30
REVIEW LISTINGS 6-32
SKIM LISTINGS 6-39
MASTER CANDIDATE LOAD LIST 6-40
FINAL LOAD LIST OUTPUTS 6-40
THE WEAPON SYSTEM SUPPLEMENT 6-41

TABLE OF CONTENTS CONT.
Page
VII. SUPPLY/MANAGEMENTI AIDS REVISION 7-1
UPDATING TO THE CURRENI NIIN 7-3
UPDATING MANAGEMENT DATA 7-3.
CONSOLIDATION OF SMARS 7-5
REVISED SMARS 7-6
VIII. LOAD LIST EVALUATION 8-1.
THE DEMAND DATA 8-2
THE LOAD LIST AND CANDIDATE DATA 8-3
CLASSIFYING THE DEMAND 8-4
LOAD LIST EFFECTIVENESS 8-5
OPTIONAL REPORTS 8-9
OVERRIDE EFFECTIVENESS 8-9
DEMAND VALIE STRATIFICATION 8-11
LOAD LIST VALUE STRATIFICATION 8-11
PROJECTED FREQUENCY STRATIFICATION 8-11
COG STRATIFICATION 8-16
PROJECT CODE STRATIFICATION 8-16
IX. READY REFERENCE GUIDE 9-1
PREPARATION OF DEMAND INPUT 9-1
APPROVED DEMAND TRANSACTION FORMAT 9-2
ERROR/REVIEW LIST 9-3
CORRECTING DEMAND TRANSACTIONS 9-5
FIRL/FILI LOAD LISTS 9-5
ICP PREPARATION OF TEGENICAL OVERRIDES 9-6
FREQUENCY DISTRIBUTIONS 9-8
FILL STATISTICS SUPPLIED TO NAVSUP 9-9
QUARTERLY FIRL/FILL SUPPLEMENTS 9-11
TENDER AND REPAIR SHIP LOAD LISTS 9-11
OBTAINING THE CANDIDATE LISTING AND 9-15
PREPARING PRE-MODEL OVERRIDES
REVIEW AND SKIM LISTINGS FOR POST-MODEL CHANGES 9-15
EDITED CANDIDATE REVIEW RECORD (E17MAIL) 9-16
PRELIMINARY LOAD LIST (EL7RCIL) 9-18
QUANTITY SKIM 9-20
DEMAND FREQUENCY SKIM 9-22
PRICE SKIM 9-22
NSN SEQUENCE SKIM 9-22
TARSLL STATISTICS SUPPLIED TO NAVSUP 9-26
APPENDIX A. DEPTH COMPUTATIONS USING PROBABILITY A-1DISTRIBUTION
APPENDIX B. COMPUTING UNITS SHORT B-I

TABLE OF CONTENTS CONT.
Page
APPENDIX C. LOAD LIST ACRONYMS C-1
APPENDIX D. GLOSSARY D-1
APPENDIX E. INDEX E-1

INTRODUCTION

Abstract

The Navy has the miseion of atrategic deterrence, sea control, projection of power, and overseas presence. In order to perform this miseion, adequate material support is required. This material support takes place at three levels: the Organic Level of Supply; the First Echelon of Resupply; and the Second Echelon of Resupply.

The Organde Level of Supply is the material carried on board the individual ship. It is defined by the verious allowance lists that designate the items and their quantities that the ship should cary in order to be self-sustaining for a epecified period of time.

The three levels of neterial support

The First Echelon of Resupply is the material on board the ships of the Mobile Logistic Support Force (MLSF) and at selected shore activities (e.g., Submarine Bases Pear Harbor and New London). The shipe of the MLSF conaiet of Combar Store Ships, Destroyer Tenders, Submarine Tendera, and Repair Ships. The MLSF has the responsibility of providing the Operating Forces with resupply and repair mupport at sea. It is chis level of support that is the concern of this manual.

[^1]Parts Control Center, and stored at upply centers, supply depots, alc stations, weapon atations, and ahipyards.

PURPOSE OF THE UICP LOAD LIST OPERATIONS

The UICP Load List operations are designed to determine the variety of items (the range) and the quantity of each item (the depth) that should be included on MuSF loads. In making the necessary computatione, the operations consider the desired degree of aupport, the expected demand for the items, and the apecial circumstances related to ney or critical equipments.

The Load List operations begin with a apeciEication by the Chlef of Naval Operatione (CNO) of the desired degree of support. This apecification is in terms of the percentage of units or requisitions that is to be satisfied by the load and is called the "effectivenese."

The UICP Load Liat operacions then estimate the pattern of demand for each item expected over the period of Incerest. This estimate of demand ie either based on hiscorical demand which may be adjusted for a protected tempo of oparations or related to an item's popularion and expected fallure rate.

Once the patsern of demand is estimated, the load quantity needed to meet that demand with the required degree of effectivencee is computed.

After all itams have been examined and special considerations have been incorporated into the operations, the effectiveness of the load is computed. If the computed effectivenece does not meet the required effectiveness, various parametera are adjusted and the computations are repeated until the requirement is met.

IRE DATA USED IN THE LOAD LIST COMPUTATIONS

The data required to determine the quantity of an item to be incluted on a Load liat can cone from three different sources: historical demand data, population and failure daca from the ICP filen, and technical overrides. The ICP files and the FMSO Kiavy Manageaent Data File (MMD) provide the Load List operationa with the neceseary mangement daca for the 1teas. A chapter of the eanual has been devoted to each of the three sourcee of data so they serely will be introduced in this section.

Historical Demand Daca

The Mobile Logistic Support Force Deand Collection Progrea provides for the monthly collection of fleet demand documente from reporting activitiek and mantains a file of the mat recent 24 sonth' dasad data. These damand data are in terns of peacetise operations and, in the ioad list computations, may have to be increased to expected waritime lovels and adfusted for the desired support period.

Loed List Data

Collecting derand

Abstract

The Shipe Parta Control Center maintains three files that interact with the Load List operations. The Laad List operations use these three files in deriving demand estimates for Tender and Repair Ship Load Lists only. (We will discuss the types of load lists in the next section.)

The first of the files is the Weapon Systems File (WSF). The WSF is conatructed in three levels: A, B, and C. Level A data coacerns end use weapons; auch as ships or aircraft. Level 8 contains data regarding particular syetems contained in these end use weapons. Equipments, components, and specific parts are included in Level C of the WSF. Linkages are mantained between the three levels so that a weapon can be broken down into its syatem, equipments, components, and parts. Through chis breakdown, population data for the individual item can be derived.

The second SPCC file is the Master Data File (MDF). The MDF containe a record for each item managed by SPCC. The 1tem record includee a number of daca elements used in the Load Liet oparations, both as Management daca and as inputs to the computations. Of particular incereat to the range and depth compurations is the Best Replacement Factor, the expected annual replacement rate for an item.

The final SPCC file is the Program Support Interest File (PSI). This file contains those items for which SPCC has program support but not aupply management responsibility. It is similar to the MDF and is, again, a source of Load List data including the Best Replacement Factor.

If the population data from the WSF, MDF, and PSI are factored by the BRF, an eatimate of annual demand can be obtained.

Technical Overrides

The Load List range and depth computations can be impacted by a third source of data, the Technical Override. Overridea can be used to add or exclude items from the range of a Load List and to increase or decrease the computed depth for an itam. The use of overrides is carefully controlled and, in the case of those that establish a mandatory or minimum load quantity, are confined (generally) to new or critical equipments.

TYPES OF LOAD LISTS

There are two distinct Load List operations conducted by FMSO. The first of these is the preparation of a Fleet Issue Requirements List which represents the projected material requirements for the eurface ahip resupply mission of the AFS

Program Support Interest File

Combat Store Ships. The second operation is the building of Tender and Repair Ship Load Lists. These lists represent the projected material requirements for the induetrial (repair) missions of Destroyar Tenders (AD), Repair Ships (AR), and Submarine Tenders (AS) as well as the resupply mission of Submarine Tenders.

Fleet Issue Requirements List (FIRL)

There are two FIRLs, one for the Atlantic Fleet (LANTFIRL) and one for the Pacific Fleet (PACFIRI). Each FIRL is updated annually and represents the computed range and depth of material needed to support the Fleet under a projected wartime enviroment for a designated period of time. The computations are based on 24 months of historical demand auitably factored for wartime tempo and the length of the required support period. The computations can be overridden in certain approved situations and items can be added to or deleted from the range and increases or decreases can be made to an item's depth.

FIIL
That part of the FIRL that is on a particular AFS or at a designated shore bage is called the Fleet Issue Load List (FIII). In a given Fleet, the FILLs for all resupply elements will be the same. The FIIL range and depth are based on the deployed requirements of the fleet while those of the FIRI are based on the expanded requirements. The
expanded requirements include the demands from deployed surface ships plus all stock point fleet issue demands from non-deployed ships.

There are currently four Fills in the Atlantic Fleet:

AFS 2	USS Sylvania
AFS 5	USS Concord
AFS 6	USS San Diego
Ashore	NSC Norfolk

and five in the Pacific

AFS 1	USS Mars
AFS 3	USS Niagara Falls
AFS 4	USS White Plains
AFS 7	USS San Jose
Ashore	NSD Subic Bay

The frequency of demand or expensiveness of an item may make it undesirable to include it on each FILI but yet it is felt essential to the FIRI. These items are classified as FIRI Only and are positioned at NSC Norfolk for the LANTFIRL and NSD Subic Bay for the PACFIRL.

Tender and Repair Ship Load List (TARSLL)

A TARSLL is developed for a tender based on the equipment carried on board the ships for which it is responsible.

Abstract

The range and depth of a TARSIl is computed from experienced demand reported by tenders and repair ships and, In the absence of demand data, the installed papulation, and estimates of failure rates.

> A TARSII may be ship-tailored or ocean-tallored. A ship-tailored (sometimes called hull-tailored) TARSLI is prepared for a specific tender or repair ship and contains the material required for it to support its assigned ships (hulls). Presently, ship-tailored TARSLLs are constructed for those ships/activities supporting submarines.

An ocean-tailored TARSLI is a load placed on all tenders or repair ships of a particular class in a particular fleet to support specific hull types. For example, a Destroyer Tender (AD) TARSII might be prepared for the Atlantic Fleet.

The items carried on a TARSLL for the renders industrial mission consist of equipment-related and non-equipment-re1sted items. Equipment-related items are the repair parts required to repair the equipment carried by the shipe being tended. Non-equipment-related items are that material required by the tender to carry out its maintenance functions.

The current list of afloat MLSF ships that cary FMSO prepared TARSILs are:

Destroyer Tenders (Ocean Tailored, Industrial Mission)

Atlantic Fleet

$A D 17$	Piedmont
$A D 18$	Sierra
$A D 19$	Yosemite
AD 26	Shenandoah
AD 38	Puget Sound

Pacific Fleet

AD 14 Dixie

AD 15 Prairie
AD 36 Bryce Canyon
AD 37 Samuel Gompers

Submarine Tenders (Ship Tailored, Industrial and Resupply Mission)

Atlantic Fleet

AS 11	Fulton
AS 16	Gilmore
AS 18	Orion
AS 31	Hunley (FBM)
AS 32	Holland (FBM)
AS 33	Simon Lake (FBM)
AS 34	Canopus (FBM)
AS 36	L.Y. Spear

Pacific Fleet

AS 12 Sperry
AS 19 Proteus (FBM)
AS 37 Dixon

Repair Ships (Ocean Tailored, Industrial Migeion)

Atlantic Flaet
AR 5 Vulcan
AR 28 Grand Canyon

Pacific Fleet

AR 6 Ajax
AR 7 Hector
AR 8 Jason

The Load List quantities for tenders and repair ships other than FBM tenders are based on anticipated wartime requiraments and are designated part of the Prepositioned War Reserve Stock. (Note: This designation results from authorization from OPNAV and should not be confused with PWRS in the ICP PPR File.) For FBM tenders, the Load List quantities are besed on peacetime demand and are designated Peacerime Operating Stock.

FBM Load Lists will also include items related to Strategic Systems Project Office equipments. In almost every instance, these items will be inciuded as a reault of an override. A special Weapon System Supplement contains SSPO equipment support.

FILES USED IN PREPARING LOAD IISTS

There are a number of files used in preparing Load Lists in addition to the ICP files discussed earlier. In this section, we are going to briefly describe the major files.

Mobile Logistic Support Force (MLSF) Master Demand File

This most important file containg a history of the most recent 24 months of MLSF demands as raported to FMSO as well as surface ship requisitions from selected shore activities and submarine demand from Submariae Baces New London and Pearl Harbor. These demands w111 include:

1. Fleet iseues for first echelon resupply.
2. Demand from tenders and repair shipe for material used in repairing shipe.

Weapon System Supplement

Master Demand File
;

The construction of a FIRI/FILI will use only the surface ship fleet issue demands. The construction of a TARSLI will use the demands generated by tenders and repair shipe in their industrial mission and by submarine tenders in their resupply mission.

The demand is identified by National Item Identification Number (NIIN), Reporter Unit Identification Code (UIC), Reporting Date, Requestor UIC, and Project Code.

Navy Management Data File (NMDF)

This file contain descriptive information regarding each NIIN considered for Load Lists. This information includes the item's price, unit of issue, Cognizance Symbol, special handing instructions, and storage requirements.

MMF Addendum File

This file ensures that the Load List operation will be using the most current NIN at all times. The file cross references superseded NIINs to current NIINs. At the time of Load List construction, the NIINs of the candidates are compared to the superseded NIINs on this file. If a match is made, the candidate's record is updated to the current NIIN.

This file contains a record of the most recently constructed Atlantic or Pacific FIRL/FILL. The record for each item contains not only the Load List quantities and the necessary management data but also the demand and demand frequency data that were used in computing the load quantities.

Load List Master File

There will be a Load List Master File for each TARSLL. It is similar to the FIRL Master File in that it contains management data and the Load List quantities. Each item record may include population data, and demand quantities, frequencies, and forecasts.

LOAD LIST EFFECTIVENESS

The objective of a Load List is to meet the demands of the units of the Fleet it supports in terms of both the range of items requested and the quantity of each item requested. Prior to the construction of a Load List, this objective is specified by CNO and expressed in terms of effectiveness. After the construction of the Load List, a detemination can be made of how well the load satisfies expected demand. This determination is also in terms of effectiveness.

We, thus, have two values of effectiveness: the objective or goal and the result of the Load List computations. The entire purpose of the UICP Load List operations is to construct the load so that the computed effectiveness meets the objective. If the computed effectiveness is too low, the range and depth of the load is deficient in meeting the requirements of the Fleet. If the computed effectiveness is too high, it means that the range is too broad or the depth too deep and more funds are being expended on the load than are required.

Throughout the manual, we will be talking about several different measures of effectiveness. One distinction is between Net and Gross Effectiveness. Net Effectiveness measures how well the load meets the demand for items on the load itself. Gross Effectiveness is how well the load meets the demand for all itams, whether they are included in the range of the load or not.

[^2]The Load List operations produce two basic outputs; the Supply Management Aid Recorde and the publication applicable to a particular Load List, and numerous statistics.

Supply/Management Ald Records

A Supply/Management Ald Record (SMAR) contains management data and the load liat quantities for each item on the load. A SMAR may be produced by either the FIRL/FILL operation or the TARSIL operation. The SMARs for the two operations are very similar, differing in only several data elements.

Supply/Management Aid Recorda are distributed to the MSF shipa or activities associated with a particular load. SMARs may be revised at times other than those of normal load list construction or revieion.

Load List Publications

The FMSO Load List production effort results in two distinct publication types. There is one set for the FIRL/ FILI outputs and another set for the TARSIL outputs.

The loads developed by the FIRI/FILI operation are published as Chapter IV of the Consolidated Afloat Requisitioning Guide, Overseas (CARCO). Chapter IV of the CARGO is the major portion of the publication and the only one produced by FMSO. However, FMSO is responsible for the publication and distribution of the entire CARGO and the other contributors forward their chapters to FMSO in reproducible form.

Two CARGOs will be published, one for the Atlantic Fleet and one for the Pacific Fleet. Each will be published annually, corresponding to the annual construction of the FIRL/FIII. Quarterly supplements of each CARGO will be produced, containing changes to all chapters with FMSO reaponsible for preparing the changes to Chapter IV.

An example page from a CARGO (Chapter IV) ia shown on the next page.

Formsl publications are produced for each of the TARSILs. These may be entitled Destroyer Tender (AD) Load List, Repair Ship (AR) Load Liat (as the result of a recent change, these two publications are being combined), FBM Submarine Tender Load List, or Non-FBM Submarine Tender Load List.

An example page from one of these publications is shown on page 1-19.

1984	588 480	enf ifta mame	U/1	u'0uste	wecuer	7f	cts	00	48
30.1	418180-00-109-130n		6 m	1.08	-09e9				1
jest	40 $3150-00-10101301$	tap゙ymb amo belmo	C*	-*	. 8000				
3403		LAPD: DE AmO 5ilme	64	1.00	-0904				1
	in siseeperiojelina		c	1.ab	. 0 eee				1
3005	In 1530-00-101-801\%		4	13.80	-0eet			\wedge	
3046	- 1730-0n-103-8914	WPDLEPIPC	c	1.00	.0200				1
304	$06350-00=10102940$	cuz8f*	${ }^{4}$	1.10	.08te			\bullet	
2040	-4 seopenetiosesong	clepe is 0034	4	4.al	. 0170	-			
300\%	-4 sece-0e-ioj-sent	Cbe\% ib itset	E	1.01	-8190				
3080	-m seeeserivieseel		C	-0.00	-8890	-			
3081	-6 Sen0-80-173-500?	clection puet	[4	53.10	.0170	-		4	
3082	-4 se60-00-193-9190	CLCTE T0 zesem	4	C.at	.019				
3033		CLCTE P6 \% 25	4	1s.40	-4034				
3050	-m Seco-no-191-3179	chetionm puat	4	3.10	- 0330			*	
3095	-4.4040-00-10303190	ctectagn -uer	1	1.00	-0906			,	
3090	0 5350-80-109*)29*	Laptime ame gime	c.	- 01	- 0 eet				1
3097	-2 3310-00*10909501	casmenothat	W0	. 42	- 208				1
3081	-m 5950-00-103006n	Parmstoncteoport	5	26.P1	- 0970				
3030	$025310000 \cdot 14109000$	masmemoplay	c	- 02	-6100				1
3006	02 8110000-109094)	masmenoflat	1	-11	-4184				1
3081	$425305-00 \cdot 103-9419$	sosermontme	(4)	-18	-0610				
3062	12 5310-00-104-00\%\%	masmitarbat	Ca	. 04	- 010				1
38.3	is stss-80-104-910		4	16.10	-tees				
10.4	94, 5439-0t-100-3041	JACB, if Lf mant	4	1.9\%	-0ete			\wedge	1
1048	-2 5330-00-194-3799	- ACMims.onergomio	1	-11	-0210				,
1206	22 5130-06-104-310n		14	-64	-1030				,
8067	02 \$330000-104-310	- ACntms, ongromero	14	- 07	- 038				8
3803	$225330-80-10403111$	-agntmgencroneco	14	-12	-6at				8
1000	$225130000-100=311 \%$	-ackimbronctommed	1	-16	-6ele				,
3070	$125330 \cdot 00^{* 194 * 3115}$	-acmpmenerponnto	18	-10	.014				1
3071	-2 \$330-90-184037 ${ }^{\text {c }}$	-acrimenatyonmed	4	-97	-0010				
3078	$925130-00-104=3720$	-acrimg, onctomme	14	-11	-0ees				1
3073	12 9330-00-140-3726	-ackimenentromect	1	.17	.0100				t
3874	$228310000 \cdot 180 \cdot 3720$		1	018	-0610				
3078	02 5330-00-190-3734	-acrimepnerameto	1	-98	-0es				
387	$285310-890190 \cdot 3737$		1	-14	-8800				1
3379	$16.250-00-190=4784$	stantenaplugacsct	ta	-1*	-0e10				1
2078	-t c2s0-90-192-479y	stanten, rucheset	4	-6	- 2 ers				1
307	$285000-80 \cdot 19401100$	pembuterctepelea	0	12.18	-018t				\%
806		LAEDilmCof iga	5	- 32	-6190				8
3001	$985979-00-148-8890$	jumetion 002	4	- 16	-1890				1
3082	-69P9-00-1*4-18P1	Jumetion doy	4	-180	-eres				1
3003	06 Seps-00-180-80p	Jumeition mox	4	-18	-0180				1
3095	02 1445-00-190*9040	-malmorimg	1	-12	-2010				1
3085	94 Spes-00-109-2112	Qfsispongranlatle	CA	$2 \cdot 94$.0170				t
3080	- $6100000 \cdot 199 \cdot 8341$	captret.sionace	4	60.04	-0900			\wedge	8
3097	-m 500s-00-109-5980	-LSISPOAPIEEO.EO	14	-11	-9090				8
3880	-m se0s-00-10s*ifat	EESISTOM, FiEEO.60	${ }^{4}$	$1{ }^{1}$	-0090				8
800\%	94 s909-00-109-0820	-fsistonariseouco	1	-10	-0epe				1
3090	¢4 S905-00-109-8490	-csistok, vantame	CA	-0.59	-0810			\cdots	1
9091	\%n 5018000-189-6716	capaeiton, riycost	t	1.04	-1170			\wedge	
3092	94 seperan-toseethe		4	1.90	-9e0e			-	
3093	-5 3020-90-104-0403	CMAIMAMOLEA	P1	i-34	-0970				
3094	4 4 4730-80-184-0410	Suswimenter	1	-43	-9108				
8095	16 4730-00-144-1472	WIPPLEPPDC	[. 83	-6elo				1
1806	95 1730-00-184-1881	WfPPLEPPIPE	[4	-00	-18100				8
100?	of 1730-00-180-1900	WPPLE, PIPE	CA	-46	4180				1
3096	9 1730-00-106-1002	WPPLEPP碞	C4	-18	-9pio				,
3004	90 coeg-00-190-220\%	Paousems,men	-6	9.98	- 0 e90				1
1100	00 0003-60-140-22m1	Pagustes.mem	-	5.98	-6ees				
181	08 5040-00-100-22**	Penmpmateouita of	4	Same	-0ese				
1102	in 5035-00-100-22*2	JACK, Tl	ca	20.90	-802*	-		4	
1103	IN S939-00-104-2209	Puegip	4	20.90	-0006				8
1103	09 1405-00-190-2302	Peaustixs, men	${ }_{0}{ }^{4}$	\$0.80	-0000				
105	\% SP90-00-104-2042	compacpoctecpmica	C*	5001	.1710				
110	9n 5989000-ti4-2801	COMPACT-ELECPMICA	[4	3.11	-0980			4	
167	\% 0 S098000-190-29Ah	COMTACT, ELECPATA	[4	- 41	. 0040				
1108	!2 s330-n0-100-532?	-acrimeontrionuco	ta	-16	0.0020				
1109	12 S130000-10305319	-atkimbenefonmeo	[1	49	-0000				
110	12 5330-00-104-5330	Packpmotpatfonmeo	ca	-18	-0080				1
111									
112	¢2 3130-00-1+0-s33i		Pa	-19	.0080				1
113		- ACKPn*.parronmro	${ }^{4}$.04	.0010				1
110	12 9130-00-100-5301	-ackimboner	FA		.0010				
119	ใ2 5130000-194-53A?		ra	-68	-0010				8
116 11%	\% $3130-n 0=104-5395$	-astimgenatrommed	[4	. 06	. 0010				t
if	-6 5940-00-it9-3j91	Mriffallomimg	C40	2.94	-0000				1
110	-2 5110000-9900100	Wasmenoflap	ci	5.66	-0180				
120		mesteponfiricourg	ca	$\bullet 46$	-6030				1

These are a number of organizations that contribute to the development of a Load List. Their contribution may cake the fort of introducing data, reviewing the output, and developing and implementing the Load Liet operations. A discuscion of the major areas follows.

MMSO Responsibilities

The Fleet Material Support Office has a number of interactions with the Load List process. First, FMSO's Systems Design and Procedures Department is reaponsible for the development of the computer programs used in the Load Liet procesa. These programs are based on mathematical models generated by FMSO's Operations Analysis Department.
The organization with the primary responsibility for the production of Load inats is the Load List Branch of the Comptrolier Department of mso. Here is where the demand data is collected and verified, the Program Management plan is prepared, the ioad ist process is managed, and the outputg are published.

Abstract

The organization within the Ships Parts Control Center that has the greatest impact on the Load List process is the Allowance Division. It is this division that has responsibility for preparing new and critical equipments technical overrides for Fleet Issue Load Lists. It also plays a major role in the Tender and Repair Ship Load List process; producing the candidate list, assigning "pre-model" overrides, analyzing the review and SKIM listing produced by the Load List operation, and making "post-model" changes.

The Allowance Division interacts with the Stock Control Division in the preparation of critical equipments overrides. The override candidates are forwarded to Stock Control for review. However, the Allowance Division must approve all changes made by the Stock Control Division.

The Strategic System Support Division of SPCC prepares the technical overrides for the Weapon System Supplement for FBM tender loads.

The Naval Supply System Comand has responsibilities in both the FIRL/FILL and TARSLI areas. NAVSUP must approve the financial statistics associated with both lists prior to publication and distribution of the final outputs. NAVSUP must also approve any technical overrides prepared for augmented support of new and critical equipments.

Other Organization Responsibilities

Numerous other organizations have inputs to the Load List operation. An example of some of these can be obtained by examining the Program Management Plans presented in Chapters V and VI.

In order to prepare an effective Load List that will accurately reflect the required range and depth, it is deaireable to introduce actual demand experience into the calculations. (Some loads, however, are produced without using demand.) Demand is introduced by accumulating demand transactions reported by Mobile Logistic Support Force (MLSF) resupply ships, repair ships, tenders, and selected shore activities and then extracting those transactions necessary to produce a Tender and Repair Ship Load List (TARSLL) or a Fleet Issue Requirements List (FIRL).

 DEMAND CATEGORIES

 DEMAND CATEGORIES
 Demand transactions are forwarded to the Fleet Material Support Office (FMSO) on a monthly basis. The demand transactions may be classified in one of two categories: Industrial (Category 1) or Fleet Issue (Category 2).

INDUSTRIAL DEMMAND

Industrial demand transactions originate from the industrial shops of tenders, repair ships and support detach-

Types of Demand
ments. To be included in this category the demand must be the result of work performed for supported fleet units (e.g., ships, submarines, etc.). The work can be performed either in the industrial shop or on board the supported fleet unit. This type of demand transaction is Category 1 demand and has the Unit Identification Code (UIC) of the serviced ship on the transaction submitted to FMSO.

FLEET ISSUE DEMAND

Fleet Issue demand transactions are resupply requisitions for material placed by customer ships on the MLSF units. This type of demand transaction is Category 2 demand and has the Unit Identification Code (UIC) of the requesting ship in the transaction submitted to FMSO.

TRANSACTION FORMAT

The standard demand transaction reporting format is given below:

Position	Description
1	Record Type (Always 1)
2	Demand Category Code (1 or 2)
$3-5$	Project Code
$6-7$	Blank
$8-20$	National Stock Number, "I" Cog
	Contring Number or Navy Item

Posicion	Description
21-22	Blank
23-24	Unit of Issue
25-29	Demand Quantity
30-43	Document Number
30-35	Requesting Ship's UIC
36-39	Julian Date
40-43	Serial Number
44-54	B1ank
55-56	Cognizance Symbol
57	Blank
58-62	Demand Reporting Activity UIC
63-65	Blank
66-69	Reporting Date (year and month)
70	Transaction Code (R: issue, G: not in stock, B: not carried)
71-75	Serviced Ship UIC (Required for Category 1 demand) Blank

DEMAND VALIDATION

Abstract

All demand transactions received by FMSO are subjected to validation criteria. The following data elements are the primary data fields validated.

- Activity Account Number
- Record Type
- Cognizance Symbol (Cog)

Project Code Quantity
 National Item Identification Nụber (NIIN)
 Federal Supply Group (FSG)
 Demand Category Code
 Reporting Date
 Serviced Ship UIC

The validation rules for the above data elements are as follows:
Activity Account Number - The reporting activity's
Unit Idencification Code is matched to a table of
valid Activity Account Numbers. The table contains
the account numbers of all approved Mobile Logistic
Support Force demand reporting activities. If a
match is not found, the transaction is rejected and
displayed on a review output.

Record Type - Only Record Type 1 transactions are valid. A number other than 1 in the Record Type field will cause a validation error.

Cog - Cognizance Symbol "1Q" items are not included in the MLSF Demand File.

Project Code - If the Project Code field is blank, a code of YY9 is inserted and processing continues.

If the Project Code is not blank, then it must either be 2×9, or all numerics other than 000 , or the second position must be either E, K, L, M, N, O, P, V or Y. A Project Code other than those mentioned will cause the transaction to be rejected.

Quantity - The demand quantity should be numeric and greater than zero. If it is equal to zero or is nonnumeric, a quantity of 1 is inserted in the quantity field, a review output is generated, and processing of the transaction continues. Any non-numeric character, other than an X overpunch (reversal), will cause the record to be rejected.

```
NIIN - Items with an "LF" in the first two positions of the NIIN are refected from further processing. How ever, these items are retained on a separate file to be forwarded to NPFC Philadelphia on a monthly basis.
FSG - Items with a Federal Supply Group of "11, 87, 88, or \(89^{\prime \prime}\) are rejected.
```

Demand Category Code - Record is by-passed if the demand category is other than " 1 " or " 2 ".

Reporting Date - If a new demand transaction has a reporting date more than 24 months old, it is rejected
and a review output is generated. If a new demand transaction is post-dated, the program enters the current date and provides a review output.

> Serviced Ship ULC - A category "1" demand must reflect the UIC of the serviced ship. If the transaction does not contain a valid UIC, the UIC of the reporter is entered.

Demand transactions that are rejected or require further review are printed on an Error/Review listing for corrective action to be taken, if required. An example of the Error/Review List is shown on the next page.

CANCELLATION RECORDS

Each month new demand transactions are checked to is determined by an "II" overpunch in columa 25 of the quantity field.

When this condition occurs, the file containing the current month's input is searched for a duplicate record (less the " 11 " overpunch). When a match is found, both transactions are deleted. If a match is not found, the cancellation demand transaction is refected.

NIIN UPDATE

Gerting the preferred NIIN

Once demand transactions pass the validation criteris, they must be checked to determine if they contain the most preferred NIIN. In addition to the current month's transactions, the MLSF Master Demand File (containing the past two years' historical demand data) and the History Change File (containing manual changes to historical demand records) are also checked for the preferred NIIN. This check is accomplished by matching the NIINs on the records contained in the files just mentioned to the Preferred NIIN File and the Navy Monagement Data File (NMDF) Addendum File. This latter file cross references old (superceded) NIINs to current NIINs.

Records from the History Change File are matched to the MLSF Master Demand File. If a match is made on NIIN, then either the record on the Master Demand File is deleted or the quantity changed, depending on the type of change. After the update is performed, the NMDF Addendum File is accessed to determine if a NIIN has been changed. If a record from the current month's transaction or a Master Demand File record matches an old NIIN, the NIIN is changed to the new NIIN.

Then, the current month's transactions and the Master Demand File records are matched to the Preferred NIIN File.

If a match is made, the Preferred NIIN is inserted. The Preferred NIIN File also contains a quantity conversion factor if there is a change in the Unit of Issue. ThereEore, when a match is made, and the Preferred NIIN is inserted in the demend transaction, the quantity of the demand transaction is adjusted by the conversion factor if applicable.

MLSF MASTER DEMAND FILE UPDATE

After completion of the Preferred NIIN update of the three input files, the next step is to update the MLSF Master Demand File. A1l input demand transactions (i.e., those contained on the Current Month's Demand File, Change History File, and the MLSF Master Demand File) are matched to the Load List Stock Number File, sometimes referred to as the NMDF Load List File. This file contains all NIINs that have Navy interest registered at the Defense Logistic Support Center (DLSC). For each NIIN in the file, there is also management data necessary for Load List development and demand maintenance.

One such data element is the Unit of Issue. If the demand transaction matches the Load List Stock Number File on NIIN, then the Unit of Issue (U / I) on the Stock Number File is compared to the U/I on the demand transaction. Actually, the Load Iist Stock Number File contains both the new U / I and the old U/I. If the U/I of the demand transaction matches either one, a valid match is made. However, if the match is on the old U / I, the U / I of the transaction is changed to the new U / I and the quantity is adjusted.

If the U/I does not match either Stock Number File U/I, then a U/I conversion is attempted by matching it to a U/I conversion factor in a System Constant Area (SCA) table. If this also fails, the demand transaction is not used to update the MLSF Master Demand File and is, instead, output on a review list for correction.

If a NIIN on a demand transaction is not matched to a NIIN in the Stock Number File, then the transaction is placed in an Umatched Demand History File. Each item in this file is reviewed and any item that has received more than a specified number of demands during a 24 month period is printed for review by FMSO personnel. The number of demands requirad is deterained by FMSO and is input to the program via a parameter card.

In addition, for those items meeting the above criterion, a card is prepared and submitted to DLSC for NIIN interrogations. In this situation, the demand transaction is uniquely identified to prevent subsequent interrogations from being submitred.

Each month, the Unmatched Demand Bistory File transactions are checked against the NIINs in the Stock Number File. If a match is made, the transaction is migrated to the MLSF Master Demand File.

DEMAND QUANTITY VAIIDATION

The demand transactions remaining in the current month's demand file are validated with regard to a potential excessive demand quantity. This is accomplished using the procedures described in this section.

If a reporting activity has two or more deasads in
the MLSF Master Demand File for a apecific NIIN contained
on a new demand transaction, an Average Requisition Quan-
tity (ARQ) is computed. The ARQ is
ARQ $=\frac{\text { Sum of all Demand Quanticies on Demand History }}{\text { Sum of Frequencies (e.g., number of Demands }}$
on Demand History)

If the ARQ is greater than 20, then the ARQ is multiplied by a factor set via a parameter card. The factor can be from 1 to 99. Therefore, the acceptable demand quantity becomes:

Upper Limit = ARQ x Parameter Factor

The new demand quantity is compared to the Upper Ifmit. If the quantity is equal to or less than the Upper Limit, the new demand quantity is unchanged and the MLSF Master Demand File is updated wh the new demand quantity. If the quantity is greater than the upper limit,
the demand quantity is changed to the upper limit and the MLSF Master Demand File is updated with the changed demand quantity.

If there are less than two demands in the MLSF Master Demand File for the particular reporter and NIIN, then the new demand quantity is compared to 500. If it
Further demand checks is greater than 500 and the Item Replacement Price is greater than $\$ 1.00$ and the extended price is greater than $\$ 1000$ (i.e., Quantity x Replacement Price > $\$ 1000$), the new demand transaction is not added to the MLSF Master Demand File. Instead, the transaction is output on a review list for resolution.

If a new demand quantity fails the $\$ 1000$ extended price test but the quantity is greater than 5000 , the demand transaction will not update the MLSF Master Demand File. It will also be output on a review list for reso1ution.

Any demand quantities not meeting the above stated conditions will be updated to the MLSF Master Demand File. In addition, the oldest demand segment (25 th month) is dropped from the file when a new monthly segment is entered.

Abstract

After the MLSF Master Demand File has been updated with the current month's demand transactions, the final step in the operation is to extract the demand from the file for those activities contained on the Load List Extract Requests File. In addition to these two files, the Load List Navy Management Data File is also accessed in order to obtain management data concerning the NIINs extracted. At this time, there is also an override file that is used to include or exclude particular NIINs' demands from the Load List computation. Also, items reflecting specific Cognizance Symbols (up to a maximum of 18) may be exciuded from the demand extraction via a parameter card input.

Demand is extracted from the MLSF Master Demand File for NIINs associated with a particular requestor/reporter contained in the Load List Extract Request File. Demand can be extracted by reporter, requestor, or requestor within reporter. The demand is extracted by quarters and summarized by Load Activity Code. More specifically, the demand is sumarized into eight quarterly increments of demand quantity and frequency. Concurrent with the extraction of demand from the MLS Master Demand File, management data for the particular NIIN is extracted from the Load List NMDF (e.g., Unit Price, Material Control Code, SMIC, Item Name, etc.).

Extracting the demand

The output of this operation is the Load List MLSF Demand Extraction File. This file is used as an input for projecting load list material requirements.

LOAD LIST OVERRIDES

Under some conditions, the range and depth decisions made by the UICP Load List operations based on experienced/ predicted demand can be overridden. Items can be added or deleted from the Load List range and modifications can be made to the depth of particular items. Of special interest are the two conditions requiring Inventory Control Point Technical Override actions. These two conditions are the support of newly deployed equipments and the support of critical equipments.

Overrides may be made to both the FIRL/FILI and the TARSLL.

TYPES OF OVERRIDES

There are four types of Technical Overrides. They are:

> Mandatory Quantity Override Maximum Quantity Override Minimum Quantity Override Exclusion (Deletion) Overide

If an item has been coded with a Mandatory Quantity Override, it must be included in the Load ist range and its depth

Mandatoty quantity overcide will be the override quantity. A Mandatory Quantity Override item may or may not have a history of demand and, in fact, may
have been included on the Load List without the override. However, the use of the override ensures that the item will be on the load and at the desired quantity.

Maximum quantity overifde

Mnimum quantity override

Exclusion override

A Maximum Quantity Override is used to limit the depth of an item. The item must first have a demandbased depth computed by the Load List operation. If the computed depth is less than the override quantity, the computed depth is used as the Load List quantity. If the computed depth is greater than the override quantity, the override quantity is used as the Load List quantity.

An item that has been assigned a Minimum Quantity Override must be included in the Load List range and must have a depth at least as great as the override quantity. If the Load List operation does not include the item in the Load List range or computes a demandbased depth that is less than the override quantity, these computations will be overridden and the item's depth will be the override quantity. If the demandbased depth is greater than the override quantity, the demand-based depth will be the Load List quantity.

An Exclusion Override will prevent an item from being included on the Load List regardless of its demand.

Abstract

FIRI/FILL Technical Overrides may enter UICP processing at several different points in tion operation. The principal source of the overrides will be the ICP although the primary impetus for an override may come from Type Commanders, Hardware System Commands, or the Chief of Naval Operations. Overrides are authorized by CNO.

NEW EQUIPMENTS OVERRIDES

A newly deployed equipment must be provided resupply support even though it has no experienced demand. A Mandatory or Minimum Quantity Override can be used in this case to ensure some degree of support until sufficient demand is experienced to compute a demand-based depth.

For the FIRL, new equipment override nominations are made by a Fleet Commander in Chief. The nominations must be approved by CNO (OP-04) and are then forwarded to the Ships Parts Control Center (SPCC) with guidance regarding the degree of support to be provided.

At SPCC, the new equipment candidates are investigated by the Allowance Division $s 0$ that demand for the item can be estimated. UICP files data may be utilized in this analysis

New equipmencs overrides

Abstract

The Master Data File records for similar items that have a demand history may be examined and used to estimate the candidate's expected demand and override quantity. The candidate item's population and Best Replacement Factor (BRF) may be examined and used to estimate the item's demand and necessary override quantity.

In general, a Minimum Quantity (FIRL quantity) override will be used to place one unit on each FILL of the FIRI being developed. Of course, if there is a Minimum Replacement Unit for the item, the override quantity will be in multiples of the number of FILLs times the Minimum Replacement Unit.

FIRI/FILL CRITICAL EQUIPMENTS OVERRIDES

This category of override is used to provide adequate support for equipments that have been classified critical in terms of operational readiness. Equipments designated critical are to be given special attention. Critical items are not items included on individual COSALs.

A critical equipment override will be a Minimum Quantity Override. In our analysis of the problem, we are concerned with determining the depth necessary to solve the problem. If the experienced demand causes a larger quancity to be computed, this larger value will be the Load List quantity.

FMSO provides the data for the analysis of critical equipments via the CASREPT and fleet usage (3M) reports.

Prior to the preparation of the two editions of the FIRL/ FILL (Pacific and Atlantic), SPCC is given the responsibility of providing FMSO with override inputs related to a list of CNO approved critical equipments. This list of critical equipments is more commonly called the "Top 40" Iist. FMSO selects these critical equipments based on an analysis of CASREPTs and performs a preliminary screening to remove non-Load List type items; such as furaiture.

SPCC's Allowance Division identifies the Allowance Parta Lists associated with these critical equipments. The APL numbers are forwarded to FMSO where they are used to extract those NIINs that have experienced three or more CASREPTs or a usage of three or more (from 3M data base) over the previous year. The extracted NIINs become override candidates subject to review by the Allowance Division.

[^3]The Allowance Division reviews Stock Control's suggested changes to the override candidate list. A Stock Control deletion recomendation may be overruled should a technical investigation show the item to be critical to the operational readiness of a specific equipment.

The Allowance Division supplies FMSO with a listing of the FIRL/FILI critical equipments override items. The data are provided on cards in the format required of the FIRL/FILL operation. The cards are converted to magnetic tape and than merged with the regular override file. The regular override file is a record of overrrides as established by Type Commanders, Hardware System Commands, or the Chief of Naval Operations.

FMSO is also given a breakdown by SPCC as to the override candidates that were selected for FIRL Only and their total dollar value, the candidates that were selected for FIRL/FILL and their total dollar value, and the candidates that were not selected and the reasons for their non-selection.

TARSLI OVERRIDES

There are two stages in the TARSLL process where overrides may be entered. The first stage is at the time of the screening of the initial candidate listing. The overrides resulting from this screening are sometimes called "premodel" overrides. The second stage occurs after the depth
computations have been made and the overrides are based on an examination of the various review and SKIM listings. These overrides are actually quantity adjustments (adds, deletes, changes). The various listings will be discussed in more detail in the chapter on TARSIL preparation.

Once the designated hull mix has been given SPCC's Allowance Division and the Weapon Systems File has been accessed to

Getting the candidates

As will be discussed in detail in a later chapter, FMSO extracts the demand data associated with the candidate items, performs some degree of quality control on the data, and the required data are input to the TARSLL computation procedures.

Once a Load List has been computed that meets the specified goals, a series of listings are prepared. Upon receipt, FMSO forwards these listings to SPCC for review.

These listings are explained in Chapter IV, but we can sumarize them as follows:

Listing Identifier RCLI

MAIL

IDIL

LEIL

LFIL

Purpose
A listing of the Load list if it were to be unchanged.

A listing of all candidates with the new and old quantities, Override Code, override quantity, population data, and a Review Code. The Review Code compares the two Load List quantities, identifies missing data, and flags excessive extended price, quantity, or demand forecast.

Quantity SKIM. Lists item quantities in ascending order

Demand Frequency SKIM. Lists
item demand frequencies in ascending order.

Price SRIM. Lists item extended prices in ascending order.

Iisting Identifier	Purpose
LGIL	National Stock Number List.
	Iisting of items in NSN
	sequence.

These listings are reviewed by Allowance Division personnel. The Price SKIM is examined, beginning with the highest priced items, in order to minimize the cost of the

SRIM
1istings Load List by reducing the quantities of these items if they are not justified by the demand. The Quantity SKIM is compared to the Demand Frequency SRIM to ensure that the quantity is justified by the demand.

The preliminary Load List is also compared against additional override files to determine if further exclusions or additions are required.

FMSO also reviews all of these listings for possible deletions and erroneous or missing data in the same manner as SPCC's Allowance Division. FMSO's review is primarily concerned with the retail Cogs although, should questions arise relative to SPCC Cogs, the responsible Allowance Division technician is contacted for resolution.

The preliminary Load List is updated through a files maintenance procedure which incorporates the "post-model" changes and data corrections.

There are two instances when the ICP files must be accessed to obtain information necessary to the Load List operations. The first, and major, situation is in the development of the candidate list for a tender or repair ship Load List. The second instance occurs when, in the absence of demand data, it is necessary to extract data regarding an item's installed population and its failure rates.

The ICP files that contain the necessary information are the Weapon Systems File (WSF), the Master Data File (MDF), and the Program Support Interest File (PSI).

We will discuss each of these files and describe the data obtained from them.

WEAPON SYSTEMS FILE

The WSF, as its name implies, is a file of information about the weapon systems being managed by a particular ICP. It contains data releated to end use weapons (ships/aircraft), systems, subsystems, equipments, components, sub-components, and parts. Its records also include the interrelationships between these various elements. The interrelations are identified by means of the Repairable Identification Code (RIC) and the Application Code (AC).

The RIC is a unique identifier describing a repairRIC able item that has lower level items related to it.

Application Code

WSF
structure

The Application Code identifies a higher level assembly to which an item is related. It will be the RIC of that higher level assembly. Since an item can be used In a number of higher assemblies, its record may contain more than one $A C$.

The WSF is structured in three levels, designated A, B, and C. The items contained in Level A are specific end user weapons; for example, a ship or an aircraft. Each of these end use weapons has an associated RIC which is the Unit Identification Code of the ship or aircraft and the file can be accessed using it. If only the Ship Type and Hull Number is known, a file interrogation can be made using this information and the UIC can be obtained.

The Level A record for each end use weapon contains the RICs of lower level systems and components, as well as identifiers for Allowance Parts Lists.

Level B of the WSF has the records for systems and equipments and are related to the end use weapon in Level A and other entries in Levels B and C.

Level C records are those of components, equipments, Allowance Parts Lists, and Allowance Equipage Lisis. Each
of these records contains a breakdown of the individual parts that make up the component, equipment, APL, or AEI.

EXTRACTING LOAD LIST POPULATION DATA FROM THE WSF

As we will discuss in a later chapter, one of the first requirements before a tender or repair ship Load List (TARSLL) can be constructed is the specification, by the Type Comander, of the hull mix to be supported by the load. By hull mix, we mean the specific ships, designated by Ship Type and Hull Number and the Unit Identification Code (UIC), that the TARSLI will support.

From the previous discussion of the WSF structure and access keys, we see that, once the hull $m i x$ has been defined, we can enter Level A with each UIC and extract a listing of all the APLs associated with the ships to be supported.

Once the APLs are known, the individual item records can be obtained from Level C. The records extracted will be in NIIN sequence for each APL and contain the following information:
the designator of the agency with technical cognizance for the item.
an average Military Essentiality Classification
for FBM: the total quantity of the item on the APL
for non-FBM: the total quantity designated vital and the total quantity designated non-vital on this APL.

The reason for including the Military Essentiality information is because it may be used in the depth calcultations for the TARSLL.

EXTRACTING LOAD LIST DATA FROM OTHER FILES

Once this basic information has been extracted, the Program Support Interest File and the Master Data File are

Accessing the MDF and PSI
accessed for additional information. The MDF contains a wealth of data about each item managed by SPCC. For a discussion of the contents of this file the reader is referred to the Basic Inventory Manager's Manual. The PSI contains similar information but for items managed by other Inventory Managers.

The information extracted from the MDF or PSI includes:

DEN	Data Element Description
C042	Federal Supply Classification
C004	Item Name
C003	Supply Management Cog
C003A	Material Control Code
C005	Unit of Issue
C003B	Special Material Identification Code
C012	Securce Code
C017	Type of Storage Space Code
C027	Special Material Content Code
D015	Unit Price
B053	Volume of Item (Net Cube)
C024A	Best Replacement Factor
F027	Replacement Maintenance Code
C023A	Net Weight
D013A	Repair Maintenance Code
D013B	R07 Replacement Quantity
E007	Since Equipage List Quantity

After the data is extracted from the MDF and PSI for all NIINs for all APis, the records for the same NIINs are combined and the quantities are accumulated. The accumulated quantities (i.e., the total number of times the NIIN is installed in an application for all applications) give us the required population information.

When Level C of the Weapon Systems File is being accessed, some additional information is extracted for preparing load list indexes. Among the information is:

- the APL nomenclature; a group of words or symbols that describe the API
- for FBM Load Lists: the APL quantity for each hull being supported.

Load List Index

List Index. The index comes in two sections, A and B. Section B will be printed for FBM Load Lists only. An example of Section A is shown on the next page. As can be seen, it is a iisting in APL nomenclature sequence, relating the nomenclature to the APL ID (its RIC).

Section B of the index contains a bit more information as can be seen on page 4-8. Here the listing is in RIC sequence and for each RIC gives its nomenclature, Logistics Support Status Code (showing type, degree, and method of support), and the APL application to each hull.

Abstract

As we discussed in the Introduction, the Fleet Issue Requirements List (FIRL) for a particular fleet is comprised of the Fleet Issue Load Lists (FILLs) associated with that fleet plus any FIRI Only material. In this chapter, we will examine the Load List operations concerned with constructing a FIRL/FILL. A FILL is that material that is placed on board a Combat Store Ship (AFS) or at a designated shore base.

Abstract

The production of a FIII follows a Program Management Plan. This plan outlines the major actions that must take place, their scheduled completion dates, and the agency responsible for each. The scheduled dates are based on the effective date of the FILL which is determined by COMSURFIANT or COMNAVLOGPAC. An illustrative FILI Program Management Plan follows on the next several pages.

[^4]Program Management Plan

```coor n. PAC FIlL (Edition) for U.S. Pacific Fleet```	MAJOR COMPONENT	DATE	coce   1 Relelst oate
	Extract 24 month FILL demand		Lo Logond of Symboln
	Run FILL A/O E15 programs		
	Distribute AFS supply aids		O oni screoune
	Distribute FILL (Chapter IV of CARCO)		
	NOTE: DATES HAVE BEEN OMITTED FROM THIS EXAMPLE		$\square$ pogsicle oflay
	BECAUSE OF CHANGES FROM LOAD TO LOAD.		
Doptimum cosal $\square_{\text {conventional cosal }}$	APPROXIMATE TOTAL TIMES IS 26 WEEKS.		NOT CN SCresule





E	$1 \times$	$\bigcirc$		\％ 0					1		1						
\％	$1 \infty$		$a$		9	－			7		7			过			
	易		易		율				费		易			－			
	$!$					1	$1$		！			$1$					
			解			或发			或		号						

RESPONSIBILITY ACIION MILESIONES
COMPLETION DATES
COMRENTS
 －
Provide preliminary FILL Add deck to SPCC，
DSCs for review and comments．

Provide FILL＂I＂Cog inputs based on
through demand to FMSO（list－
Ings and cards with zeros in cc $42-51$＂ 0 ＂in
price code cc 72 and prices in all cards
including deletes）．
Provide results of review of Milestone 15.
Provide results of review of Milestone 15.

MLSF ships（AFS）
Ashore segments
 compands．

E	1	$!$											1					$!$					0	
	｜n1				1				N	$\stackrel{\sim}{\sim}$	－		；	［9］	N	$\overbrace{\text { N }}^{\sim}$		N｜		N	N			$\sim$
或	｜oi		$1$		｜				迬	－	\％			㐌	年	号				㐌	员			易
旁	101	－1		合					，				合					1				1		
岛					浐				気				$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	岛	埌	硺		过		20	年	1		아눌


ACTION MILESIONES
COMPLETION DATES
Distribute FILL (Chapter IV of CARGO W/CARGO)
Effective date of FILL.

FMSO will also be notified by the Fleet CINC of items that are to be assigned Exclusion or Maximum Quantity overrides because of storage or transfer problems.

CNO must also approve the fleet's recommended numbers and positioning of FILIs and the Fleet Support Factor (the adjustment factor used to convert peacetime demand to expected wartime demand). After approval, FMSO is informed of these data for use in the Load List operations.

## FIRL/FILI CANDIDATES

The first step in the UICP FIRL/FILL operation is to develop a consolidated list of FIRL/FILL candidates, the Master FIRL Candidate Record. This is done by merging the FIRL Demand Extraction File with the FIRL History File.
should have been entered through the MLSF Demand operations so that they could be updated with management data from the MMDF lind merged with the extracted demand.

At the time of the merging of the Demand Extraction File with the History File, the History File is updated by means of the NMDF Addendum File. This ensures that the History File will contain the most current and'preferred stock numbers. Unit of issue changes are made where necessary and the procedure is the same as that discussed in

Chapter II. Any Fill Stock Number changes on the History File are retained so that they may be listed in the CARGO.

Additional overrides or changes may be entered at the time of the building of the Master FIRI Candidate Record.

After the merger process, if duplicate entries for the same item exist, they will be combined and their quantities added.

The file of Master FIRI Candidate Records becomes the input to the FIRL/FILL range and depth computations.

FIRL/FILL DEMAND AVERAGING

The FIRL/FILL demand forecasting procedure works with the FIRL Candidate data and an optional parameter card. This parameter card allows FMSO to select, at each running of the averaging procedure, how many quarters of historical demand data are to be used in the averaging process and the FIRL range cut. The parameter card also reflects a Load Activity Code (IAC) that identifies the specific Load List in process. For example, if the Load List being prepared is the Atlantic FIRI/FILL, the LAC would be FIRIA.

As each item is read from the FIRI Candidate Tape. a check is made of whether the item is an Exclusion Override and a count is kept of the number of such overrides.

The Total FIRL Demand for an item is the sum of the quarterly demands for the most recent $N$ quarters. $N$ is taken from the parameter card or, if no parameter card is used, is set at eight quarters.

The Total FIRL Frequency is found in the same way;

Calculating the demand varfables the frequencies in each of the quarters of interest are added.

The average quarterly demand is just the simple average

Average Quarterly FIRL Demand $=\frac{\text { Total FIRL Demand }}{N}$

The FIRL Standard Deviation of Quarterly Demand, a measure of the variability of demand, is computed using the standard formulation

$$
\sigma_{\text {FIRI }} \equiv \sqrt{\sum_{i=1}^{N}\left[\binom{\text { FIRL Demand }}{\text { In quarter } i}-\binom{\text { Average Quarterly }}{\text { FIRL Demand }}\right]^{2}}
$$

The FIRL Average Requisition Size is found by dividing the Total FIRI Demand by the Total FIRI Frequency.
$A_{\text {FIRI }}=\frac{\text { Total FIRI Demand }}{\text { Total FIRI Frequency }}$

The same values are found for the FILL demand data.

N
Total FILL Demand = $\sum$ FILL Demand in quarter 1 $i=1$

Total FILL Frequency $=\sum_{i=1}$ FILL Frequency in quarter 1

Average Quarterly FILL Demand $=\frac{\text { Total FILL Demand }}{N}$
$\sigma_{\text {FILL }}=\sqrt{\frac{N}{\sum_{i=1}}\left[\binom{\text { FILL Demand }}{\text { in quarter } 1}-\binom{\text { Average Quarterly }}{\text { FILL Demand }}\right]^{2}}$
$A_{\text {FILL }}=\frac{\text { Total FILL Demand }}{\text { Total FILL Frequency }}$

If the Total FIRL or FIIL Demand for an item is zero, the respective quarterly Demand Average, Standard Deviation, and Average Requisition Size are all set to zero.

If the Total FIUL Frequency is greater than the Total FIRL Frequency, the following corrections are made

Total FIRL Demand = Total FILL Demand<br>Total FIRL Frequency = Total FILL Frequency<br>Average Quarterly FIRI Demand = Average Quarterly FILI Demand<br>Standard Deviation of FIRL Demand = Standard Deviatiou of FILL Demand<br>Average FIRL Requisition Size = Average FILL Requisition Size


#### Abstract

When the demand averaging procedure is completed, a tape is prepared for use in computing the ranges and depths of the FIRL and the FILL. This tape file is essentially the Master Candidate Record file updated with the Average Quarterly Demand, both FIRL and FILL; the Standard deviation of demand, both FIRI and FILL; Total Frequency, both FIRL and FILL; and Average Requisition Size, both FIRL and FILL.


## Frequency Distributions

Several frequency distributions are prepared for analysis purposes, primarily as an aid in determining the range cut values.

The first frequency distribution enumerates the aumber of candidate items experiencing a particular FIRL frequency. It also shows the cumulative values for each frequency. For example, the cumulative number of items experiencing a frequency of 3 or more would be the sum of the number of items with a demand frequency of three, four, and so on up to the final value of 32 or greater.

There are four cther distributions, all relating the total FIRI (expanded) frequency to the FILI (deployed) frequency. The distinction between the four is made on the



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDAROS-1963-A

MAPIAUN VAEVE OF
BOTAL FIAL (EXPANI;CO)
BOTAL FIAL (EXPANI
F M_ DUEACY In CELL

basis of whether the item is equipment-related or non-equipment-related and current FIIL and previous FILL. For FIRL/FILL purposes, the distinction between equip-ment-related and non-equipment-related material is based on the store account (discussed below) and the Federal Supply Group (FSG). Each cell in one of these frequency distributions shows the cumalative number of items experiencing at total FIRI frequency of at least a certain value and a FILL frequency of at least another value. This concept is perhaps more easily understood if the sample equipment-related frequency distribution shown on page 5-13 is examined. The circled number indicates that 4899 items had a Total FIRL (expanded) Frequency of 9 or more and a Total FILL (deployed) Frequency of 4 or more.

## FIRI/FILL LEVELS

Once the demand-related information for each candidate has been found, the Load List levels can be computed. A set of UICP decision rules have been developed to determine the range and depth of both the Fleet Issue Requirements List and the Fleet Issue Load List.

# \% 5 


TOTAL
FiGL
IDEPOYES
FRECENYY

The first step in the procedure is to determine the range of items to be included on the list. An item will be selected for a particular list if its demand frequency is greater than a specified level. This specified level is called a "range cut." There is actually a set of three range cuts used. There is a range cut for the FIRI and two range cuts for the FILL. To be included on the FIRL, the item's FIRI (expanded) demand frequency must be equal to or exceed the first range cut. To be included on the FILL, the item's FIRL demand frequency must be equal to or exceed the second range cut and its FILL (deployed) demand frequency must be equal to or exceed the third range cut. If the first range cut is satisfied but either the second or third is not, the item will be coded FIRI Only. The range cut check will be ignored if the item is a Mandatory or Minimum Quantity override.

The FIRL/FILL Levels operation permits the introduction of either a combined set of range cuts or a separate set for APA, NSA-ER, and NSA-NER items. Separate range cuts have been used in the Load List operation over the past several years and this policy is expected to continue.

In those cases where the item's demand frequency is insufficient to be included on the FIRL, the item will be considered to be a non-Load List item and both the FIRL and FIIL quantities will be set to zero.

Should the item be included on the FIRL but not the FILL (in other words, the item is FIRL Only), the FILI quantity will be set to zero.

If either of the situations discussed in the previous two paragraphs occur and the item was included on the previous FILL, the item is considered a FILL delete. The dollar value of each FILI Delete is computed.

Dollar Value - Uait Price x Previous FILI Quantity
and various statistics are accumulated. These include:

Number of APA FILL Deletes
Total Dollar Value of APA FILL Deletes
Number of NSA-ER FIIL Deletes
Total Dollar Value of NSA-ER FILL Deletes
Number of NSA-NER FILL Deletes
Total Dollar Value of NSA-NER FILL Deletes
Overall Number of FILI Deletes
Overall Total Dollar Value of FIIL Deletes

The operation has the option of considering an NSANER FIRL Only item as a non-Load Iist item. If this option has been selected, an NSA-NER that fails the FILI range cuts will not be included in the Load List even though its demand frequency exceeds or equals the FIRI range cut.

The FIRL/FILI Depth

After the decision has been made to include an item in the FIRL/FILL or FIRI Oniy range, the probien becomes one of determining the item's depth. The quantity of the item to be inciuded in the Load list must be found.

The quantity of interest is the quantity required under wartime conditions over a designated period of time. Since the demand forecast and its standard deviation were based on a history of peacetime demands, they cannot be used in the depth calculations. Some adjustment must be made.

The adjustment is made through the introduction of

Fleet Support Factor
a concept known as the Fleet Support Factor (FSF). This factor is a multiplier based on an estimite of how much higher than peacetime demand wartime demand will be. It represents the increased tempo of operations expected
during vartime. This estimate can be input at the time of Load List preparation, If it is not, the operation will automatically use an $\operatorname{FSF}$ of 1.5 , indicating that wartime demand is expected to be 50 percent greater than peacetime deand.

The Support Period (SP) is that period of time that the Load List is required to support the Fleet requiraments. The Support Period is maasured in quarters and can be introduced into the operation prior to Load List preparation. If no Support Period is input, the operation assumes the Support Period to be one quarter.

The adjusted wartime average demand over the Support
Period becomes


$$
W A D_{s i p}=Q A D \times F S F \times S P
$$

The adjusted wertime Support Period demand standard deviation 1s then:
$\binom{$ Standard Deviation of }{ Wartime Support Period Demand }$=\binom{$ Standard Deviation of }{ Peacetime Quarterly Deand } $\mathbf{x}$
$\binom{$ Fleet Support }{ Factor }$\times\binom{$ Support }{ Period }
$\sigma_{W D}=\sigma_{D} \sqrt{(P S F) \times(S P)}$

The depth of an item is made up of two components. First, there is the expected demand over the Support Period, WAD $_{8 p}$. The other component can be considered a safety stock and depends on the item's expected demand, standard deviation of demand, and acceptable risk of using up the Load List quantity during the Support Period.

The acceptable risk can be derived in several ways.

Acceptable Risk

One way is to determine the acceptable risk prior to the Load List computations for each type of item (APA, NSA-ER, and NSA-NER) and input these at the beginning of the operstion. The depth will then be computed using these values.

A second way of determining the acceptable risk is to allow the operation to calculate an acceptable risk for each individual item based on the item type and the characteristics of the item. If this option is selected, there are two risk equations that can be used. One equation considers requisition effectiveness and gives the risk or probsbility of being unable to satisfy one or more requisitions during the Support Period. The other equation considers
unit effectiveness and computes the risk or probability of being one or more units short during the Support Period.

The requisition-related risk equation is

Risk $=\lambda \frac{\mathrm{CxA}}{\mathrm{WAD}_{\mathrm{sp}}}$
$\lambda$ = Risk Factor. A value for this factor must be input to the operations for each type of item. (We wlll talk more about this later.)
$c=$ Unit Price
A - Average Requisition Size. Average number of units requested on a requisition.

WAD ${ }_{s p}$ Wartime Average Demand during the Support Period.

The unit-related risk equation is:

$$
\text { Risk }=\lambda \frac{C}{W A D_{s p}}
$$

Whichever equation is used, the risk is constrained to be between a minimum and a maximum value. The operation has an option whereby minimum and maximum values may be input. If this option is not taken, the risk will be constrained to be no smaller than 0.02275 and no larger than 0.97725.

Now that a value of risk is available to the operation (whether input or computed), the operation is in a position to determine the Load List quantity for the item. In making this

Constraining the risk

Normal probability distribucion
determination, the operation assumes that the Support Period demand for all items is normally distributed. For items with low demand forecasts, this assumption may not be valid but the operation ignores this possibility,

The FIRL depth of an item is

Load List Quantity $=W A D_{s p}+t \sigma_{W D}$
$t=$ Safety Stock Factor. This factor depends on the normal probability distribution and the value of Risk. Appendix A shows how this compucation is made. This appendix also-gives a table relating to the Risk.

The computed Load List Quantity is set to one (1) if the value calculated is less than one and is rounded to the nearest whole number if the value is greater than one.

If you look at the table, you can see that a Risk of .5 gives a $t$ of zero. In this case, the Load List quantity is equal to the Average Wartime Demand during the Support Period. No safety stock will be carried. Since the normal probability curve is symmetrical about its middie, the probability of being below the middle is 50 percent and the probability of being above the middle is 50 percent. This means that half the rime we won't have enough stock to
satisfy the demands during the Support Period and balf the time we will. We are taking a 50-50 chance of being unable to satisfy the Fleet. This is what a Risk of 0.5 means.

As the Risk gets smaller, the $t$ factor increases. In other words, the smaller we want to make the chance of not being unable to meet the Fleets' demands, the more safety stock has to be included in the item's depth. We will have a larger and larger positive safety stock.

On the other hand, if the Risk is greater than 0.5 , the t factor is negative and becomes more negative as Risk increases. In this case, we are willing to take more than a 50-50 chance of depleting our load list and the Load List Quantity is less than the Wartime Average Demand during the Support Period.

Once the Load List Quantity has been calculated, a comparison is made with the previous depth value. If the item is a FIRL Only item, the comparison is made between the new FIRL Depth (the Load List Quantity) and the previous FIRL Depth. If the item is a FILI item, the comparison is made between the new FILL Depth and the previous FILI Depth.

Comparing with previous value

For a FILL item, the new FIIL Depth is:

New FILL Depth $=\frac{\text { Load List Quantity }}{N}$| (Rounded to |
| :--- |
| nearest whole |
| number) |

$\mathrm{N}=$ Number of FILLs. An input value dependent on the Fleet for which the Load List is being prepared.

The comparisons are made as follows:

1. If the old depth value was less than or equal to five units, the old value will be used on the new Load List unless the new value differs from it by more than three units.
2. If the old depth value was more than five units but less than or equal to ten units, the old value will be used on the new Load List unless the new value differs from it by more than four units.
3. If the old depth value was more than ten units but less than or equal to 20 units, the old value will be used on the new Load List unless the new value differs from it by more than five units.
4. If the old Depth value was more than 20 units, the old value will be used on the new Load List unless the new value differs from the old value by more than a certain percentage. This percentage must be input to the operation.

This comparison is the final determination of the Load List quantity unless the item is an override item. An item that is to be considered for the FIRL/FILI and that has a Mandatory Quantity override will be given the following FILI Depth:

New FILL Depth $=\frac{\text { Override Quantity }}{N} \begin{aligned} & \text { (Rounded to } \\ & \text { nearest } \\ & \text { whole number) }\end{aligned}$

An item not coded FIRL Only with a minimum quantity override will also be assigned a FIIL Depth of:

New FILL Depth $=\frac{\text { Override Quantity }}{N} \begin{aligned} & \text { (Rounded to } \\ & \begin{array}{l}\text { nearest } \\ \text { whole number) }\end{array}\end{aligned}$
unless the FIIL Depth computed using the Risk is greater. In this latter case, the Risk-related FILL Depth will be used.

An item with a Maximum Quantity Override quantity will have its depth determined using the override quantity unless the Risk related depth is less than the override depth. In this case, the Risk-related FIII Depth will be used.

Once the new FILI Depth has been found, the new FIRL
Depth is computed
New FIRL Depth $=$ (New FILI Depth ) $\times \mathrm{N}$

FIRI Only items with overrides will have their depths adjusted for the override quantity in a similar fashion. This means that for a Mandatory Quantity Override, the FIRI Only quantity will be the override quantity; for a Maximum Quantity Override, the FIRI Only quantity can be no greater than the override quantity; and, for a Minimum Quantity Override, the FIRI Only quantity must be at least as large as the override quantity.

Collecting statistics

Now that the depth of the item has been found, the operation turns to the accumulation of statistics. Depending on an item's characteristics, it will be added to either the FIRL Only Range or the FIIL Range and then added to the Total FIRL Range.

The item's Wartime Average Support Perioc Demand will be added to that of items of the same type; either APA, NSA-ER, or NSA-NER.

The item's FIRL Frequency will be adjusted for wartime conditions (Fleet Support Pactor, FSF) and for the Support Period (SP).

## Wartime Support Period FIRI Frequency $=$ <br> $\frac{\text { (Total Peacetime FIRI Frequency) } x \text { (FSF) } \times(S P)}{8}$

This adjusted frequency will be accumulated for items of the same type.

The Wartime Average Support Period Demand and Frequency are also computed for non-Load List items and accumulated by type.

The extended dollar value of the FILL quantity of the item is computed if it is to be included on the FILL.
\$ Value of FILI Quantity = (New FILL Depth) x (Unit Price)

The FILL dollar values are accumulated for items of the same type.

If the ftem is a FILI $A D D$ item, its FILI dollar value is added to the accumulated dollar value of FILI ADDs. An item is a FILI ADD item if it is included on the new FILL but was not on the previous FILL.

FIRL Only items also have their extended dollar values computed and accumulated.

The extended dollar value of FIRI Only items will also be accumulated in the Total FIRI Dollar Value. FILL items will have their FILI dollar value multiplied by $N$ and then accumulated in the Total FIRI Dollar Value.

The expected number of units short wust be found before the number of units satisfied or requisitions satisfied can be determined. The computations requires the use of normal probability distribution that we talked about earlier. The
three things we need to know are the new FIRI quantity, the Wartime Average Support Period Denand (Wad ${ }_{s p}$ ), and the standard deviation of Wartime Support Period Demand ( $\sigma_{W D}$ ). The computations are outlined in Appendix B.

If the option to compute effectiveness in terms of units has been chosen, the expected units satisfied must be computed.


The value computed for Expected Units Satisfied cannot be negative. If it is, it is set to zero. The Expected Daits Satisfied are accumulated for items of the same type.

On the other hand, if effectiveness is to be measured in terms of requisitions, the expected number of requisitions short must be found.

Expected Requisitions
Short

The Expected Requisitions Short can be used to find the Expected Requisitions Satisfied by

# Expected Requisitiona Satisfied <br> $$
\begin{gathered} -\binom{\text { Wartime Support Period }}{\text { FIRI Frequency }} \text { - } \\ \binom{\text { Expected Requisitions }}{\text { Short }} \end{gathered}
$$ 

The value for Expected Requisitions Satisfied will be set to zero if the calculation produces a negative value.

There can be up to three differeat risk values used for each type of item in deteraining the Load List quantities and accumulating statistics. Either three different value of $\lambda$ may be input for each type of item (APA, NSA-ER, and NSA-NIER) or three diffarent values of fixed Risk may be input for any or all of the three item types. These values are input prior to processing.

By making the computations with three different values for Riak, the impact of the Rigk constraint can be exmined in terms of cost and effectivences. As the Risk is lowered, the effectiveness should increase but so should the cost. When we attempt to increase the unit or requisition effectiveness by accepting a lower chance of stock-out, it will cost us money since the Load List depths will have to be larger.

After all the candidate items have been examined for all three risk values, some overall statistics are accumuiatui. These include:

1. Total FILL Range = APA FILL Range = NSA-ER FIIL + RSA-AER FILI Range
2. Total FIRL Only Range - APA FIRL Only Range + NSA-ER FIRL OOIF Range + RSA-AER FIRL Ooly Range
3. Total FIRI Range - Total FILI Rage + Total FIRL Ooly Range
4. Tocal FILL ADDE = APA FILL ADDs + NSA-ER FILL ADDE + NSA-NER FILL ADDE

The dollar value of the iteas associated with the above four categories must also be computed. However, the dollar value will depead on the Risk eettings; the dollar value depends on the Depth as well as the Range and the Depth, in turn, depeads on the Risk. So there are four sets of cost-related atatistics. Each set bas three different values reculting from chree different Risk settinge.
5. \$ Value of FILI ADDs = $\$$ Value of APA FILL ADDs + \$ Value of RSA-ER FILL ADDs + \$ Value of MSA-RER FILI ADDE
6. \$ Vaiue of FIIL = \$ Value of APA FILL + \$ Value of NSA-ER FIUL + S Value of NSA-NER FILL
7. \$ Value of FIRI Only = \$ Value of APA FIRI Ooly + \$ Value of NSA-ER FIRI Only + \$ Value of NSA-NER FIRI OAIY
8. $\$$ Value of FIRL - $\$$ value of FIRL Oaly $+N \times$ ( $\$$ Value of FIIL)

The Support Period demand is accumulated for both Load List and non-Load List items. Similarly, the Support Period frequencies for both Load List and non-Load List itens are accumulated. With these values, the effectiveness of the Load List can be meatured.

If Unit Effectiveness is the option selected, the Net Unit Effectiveness will be

Computing effectiveness

Net Uait - Total Units Satisfied
Effectiveness Total Support Period Load List Demand

Total Units Satisfied - APA Expected Units Satisfied +
NSA-ER Expected Uuita Satiafied + NSA-NER Expected Units Satiafied

The Net Dait Effectiveness measures whe fraction of demand over the Support Period for the items included on the FIRI will be sarisfied. The Net Unit Effectiveness will depend on the Riak value selected since ita major component, Total Units Setisfied, depends on Risk.

Also computed is the Gross Unit Effectiveness:

$$
\begin{aligned}
& \text { Gross Unit } \\
& \text { Effectiveness }
\end{aligned}=\frac{\text { Total Units Satisfied }}{\binom{\text { Total Support Period }}{\text { Load List Demand }}+\binom{\text { Total Support Period }}{\text { non-Load List Demand }}}
$$

Here we are measuring the fraction of demand for all candidates, whether they bave been included on the Load List or mot, that will be satisfied by the Depth of the FIRL.

If the effectiveness option selected has been for Requisition Effectiveness, the Net Requisition Effectiveness can be found from
$\begin{aligned} & \text { Net Requisition } \\ & \text { Effectiveness }\end{aligned}=\frac{\text { Total Requisitions Satisfied }}{\text { Total Support Period Load List Freq. }}$

Total Requisitions Satisfied = APA Expected Requisi-
tions Satisfied + NSA-ER
Expected Requisitions
Satisfied + NSA-NER Ex-
pected Requisitions
Satisfied.

This measures the percentage of requisitions for the Load List items that are expected to be satisfied.

The Gross Requisition Effectiveness is:

Gross Requisicion Effectiveness

- $\frac{\text { Total Requisitions Satisfied }}{\binom{\text { Total Support Period }}{\text { Load List Frequency }}+\left(\begin{array}{l}\text { Total Support } \\ \text { Period non- } \\ \text { Load List Freq. }\end{array}\right)}$


#### Abstract

Regardless of the effectiveness mansure being used, once the computations are complete and printed, the calculated effectiveneas is compared to the desired objective. If the calculated effectiveness does not meet the objective (1t is either too low or too high), the risk parameters are adfusted as a result of analysis by FHSO persomel and the calculations are repested. This adjustment and recomputation will continue until the objective is met.


## PRELTMINARY LOAD LIST OUTPUTS

After the range and depth ermputitions are completed, SPCC is provided with information regarding additions to the FILL. SPCC reviews this information and makes changes as necesaery. FMSO also reviaws the preliminary outputs relative to the Cogs for which they are responsible.

If you recall our discussion of demand collection in Chapter II, you will remember that I Cog deand data was forwarded to NPFC. NPFC is responsible for making range and depth calculation regarding this material. Its FILL 1nputs are provided to mso.

The changes resulting from the SPCC and FMSO reviews and the inpute fron NPFC are entered on the Load List files through a files mintenance procedure.

After theae files maintenance changes have been made, the FILI statistics are forwarded to NAVSUP for approval. Once approval is received, production and distribution of the final load list products begins.

FINAL LOAD LIST OUTPUTS

There are two final outputs of the FIRL/FILI process. They are the Supply/Management Aid Records and Chapter IV of the Consolidated Afloat Requisitioning Guide, Oversens.

## Supply/Management Aid Records

SMARs are distributed to the Combat Stores Ships and

SMAR
carco ashore locations associated with the fleet for which the FILL is being prepared. They are also sent to those ships that are equipped with 01500 computers. As their name inm plies, these records are intended to assist the MLSF ships and activities in performing their mission. The records can be distributed in either card or tape form depending on the recipient's data processing capability.

## Consolidated Afloat Requisitioning Guide, Overseas

The UICP FIII process, combined with SPCC review and I Cog inputs from NPFC, provide the necessary information to publish Chapter IV of the CARGO. This guide provides the Fleet with a shopping list of the items available from the MLSF Combat Store Ships. This chapter of the CARGO


#### Abstract

also contains a listing of Stock Number changes, relating the old Stock Number, with which the requisitioner might be familLar, to the new Stock Number.


Chapter IV, of course, is not the only chapter of the CARGO. FMSO is responsible for publishing the entire GARGO. It is not responsible, however, for preparing the other chapters. These chapters are prepared by COMSURFLANT (or COMNAVLOGPAC), NRSO, and NFSSO.

## CARGO Quarterly Supplements

Since the FIRL/FIII operation and the publication of the CARGO are done annually, changes in the patterns of demand for particular item or the emergence of problem equipments may cause the FILL to no longer adequately meet the Fleet's requirements. For this reason, analyses of the demand and CASREPT data are performed, changes to the FILI are made and a quarterly supplement to the CARGO is published.

The quarterly revision of the FILL is predominately a manual, rather than a mechanized, process. It begins with an examination of the demand data for the prior three months as well as CASREPT data. These data are provided by FMSO to SPCC's Allowance Division which performs the necessary analyses and recommends changes to the FILL.

Pinancial statistics

Financial statistics regarding the changes in the FILI are supplied NAVSUP for approval. Once this financial approval is obtained, a listing of the items to be added or deleted are forwarded to the Fleet Comander for his approval. :

When the Fleet Comander's approval is given, the changes are put in the proper format and become Chapter IV of the supplement. This is combined with the contributions from the other sources to make up the entire CARGO supplement. The supplement is published and distributed.

Supply/Management Aid Records related to the Load List changes are also supplied the affected MLSF ships and activities.

Tender and Repair Ship Load Lists (TARSLIs) are produced by FMSO to enable the tenders and repair ships to meet their industrial mission. By industrial mission, we mean the repair of equipments on board the ships for which the tenders are responsible. The resupply mission of a submarine tender is also considered in the development of its TARSIL.

There are two different types of TARSLLs. A hull (or ship)tailored TARSIL is conetructed for a specific tender or repair ship that has been assigned support responsibility for specific ships. At the current time, hull-tailored TARSLLs are constructed only for tenders and activities supporting submarines.

The second type of TARSIL is designated ocean-tailored. This TARSLL is prepared to support a specific set of ship types of either the Atlantic or Pacific Fleet. The load is placed on all the tenders or repair ships that support that set of ship types.

The construction of a TARSLI follows a Program Management Plan (PMP) similar to the one used in developing a FIIL. A generalized TARSLI PMP is shown on the next two pages.

Types of tarsil

Program Managewent Plan

The first requirement is for the Type Comander (TYCOM) to eupply all parties concerned in the development of the Load List with the hull mix to be supported by the load, the supply aid requirements, and the Load Iist distribution list NAVSUP providep the desired range cuts.

ICP File data

The hull mix, after concurrence by NAVSUP, will be used by SPCC to extract the necessary candidate data from the Weapons System File. Level A of the WSF provides the Allowance Parts Lists (APLs) associated with the ships making up the hull mix. Level $C$ of the WSF is then used to obtain the items contained in the APLs. These items make up the candidate list.

Once the indivicalal candidates have been obtained from the Weapon Systems File, the Master Data File or Program Support Interest File is accessed for additional information about each item that will be necessary for the Load List construction.

A candidate record is shown on the next page with the source of each data item noted.

FMSO has the responsibility for extracting the demand history for the candidatas. The MLS Master Demand File is accessed using the UICs of the tenders or repair ships
4.. - FiにU-5010/3
口optimun cosal $\square_{\text {conventional cosal }}$

COMPLETIOM DATES

coments
Will be provided on the
16thof the month at the
carliest.



that will be carrying the load or by the UICs of the hulls to be supported. For a hull-tailored Load List demand is extracted using the UICs of the halls to be supported. If the load being constructed is an ocean-tailored TARSLL, the demand data may come from a number of tenders or repair ships. The necessary UICs are provided FMSO by NAVSUP.

There are three "cuts" involved in determining whether an item should be considered for inclusion in a TARSLL. Data regarding these "cuts" are required before the Load List can be built. FMSO is provided with values for these cuts from NAVSUP.

The first cut is the "component cut." This value designates, the minimum number of ships, of those supported by the TARSLL, that must reflect a specific component applicarion.

[^5]


The "range cut" is the final cur and is some minimum demand or demand frequency level that must be exceeded before an item can be considered for the load.

Before any computations are made, SPCC's Allowance Division and FMSO's Load List Branch review the candidate

Revien of candidete listing listing, comparing the listing with the override files. These override files contain records of items chat are not to be included on particular loads. They represent a compilation of information from NAVSUP and TYCOMs.

The demand extract is also reviewed by FMSO. Here, the purpose is to correct any grose errors in the demand data.

## TARSLI RANGE AND DEPTH COMPUTATIONS

There is a great deal of similarity between the procedures used to compute the TARSLL Range and Depth and those used to compute the FIRI/FILI Range and Depth. Again, the objective is to determine the quantity of stock required by the tender or repair ehip to support the Fleet for some desired period of time at some desired level of effectiveness. However, in this case, the support being provided is repair support (in most instances) rather than $M$ resupply eupport.

There are two distinct sets of TARSLL procedures; one for conventional tenders and repair ships and one for FBM tenders and repair ships. Conventional teader Load Lists are part of the Prepositioned War Reserve Stock (PWRS) while those of FBM tendera are part of the Peacetime Operating Stock (POS). In either procedure, experienced demand can be increased by a factor that represents the tempo of warcine requirements. However, historically, this value has been set to one and, as a consequence, unfactored experienced demand is used.

Whereas, the FIRL/FILL procedures divided items into three types (APA, NSA-Equipment Related, and NSA-Non-Equipment Related), the TARSLI procedures oniy distinguish between Equipment Related (ER) and Non-Equipment Related (NER) items. The APA/NSA distinction can be extracted later for statistical purposes using the Cog Symbol.

As with the FIRL/FILL procedures, Load Lists developed by the TARSLL procedures can be evaluated in terms of unit or requisition effectiveness measured in either the gross or net sense.

DEMAND FORECAST

We are going to discuss, in turn, the three methods for determining the demand forecast and its standard deviation for Load List Candidates.

The simple average method of computing a demand forecast conaists of first adding up the quarterly demands for an ita for the past $M$ quarters. $M$ is an input value that can be as large as 8 , the maximum number of quarters of history on the NMF Demand History File. The simple average is found by taking the total obtained by adding the quarterly demande and difiding it by M. So,

Quarterly Demand Forecast $=\frac{\sum_{i=1}^{M} D_{1}}{M}$
$D_{1}$ - Demand for the item for the ith quarter in the past.

If the simple average is not greater than zero, the Best Replacement Factor forecast will be used.

The Smoothed Forecaet

This method, used only in the conventional tender procedures, requires the use of amoothing weight, $\alpha$. The value of this weight determines how much of an impact the demand for each of the previous quarters will have on the forecast. The value of the smoothing weight is an input value. If $\alpha$ is large, the most recent demand observations will have the greatest impact on the forecast. The opposite is also true. The value of $x$ must be between zero and one.

The smoothed demand forecast is:

Quarterly Demand Forecast $=\sum_{i=1}^{M-1}(1-\alpha)^{1-1} D_{i}+(1-\alpha)^{M-1} D_{M}$

If the smoothed demand forecast is not greater than zero, the Best Replacement Factor forecast will be used.

## The Best Replacement Factor Forecast

This forecasting procedure requires the knowledge of the value of the $B R F$ for the item. It also uses the item's population that is fleet installable (POPs) and its population that is tender installable $\left(P_{t}\right)$. $P O P_{t}$ is that population of the item or supported ships that is used in applications in which the Maintenance Code indicates that the lowest level at which the item can be "removed and replaced" is the intermediate (tender) level. POP $s$ is the same except that the item can be removed and replaced at the organizations (ship) level. We also need to know the fraction ( $K_{2}$ ) of the item's fleet installable population and the fraction $\left(K_{3}\right)$ of the item's tender installable population that are supported by the tender.

In equarion form:

Quarterly Demand Forecast $=\frac{B R F}{4}\left[\left(\right.\right.$ POP $\left._{s}\right) \times K_{2}+\left(\right.$ POP $\left.\left._{t}\right) \times K_{3}\right]$

If the forecset is zero or less, it is set to 0.001 unit/ quarter for conventional tenders and to 0.0 for FBM tenders. Should this occur, the forecast is designated a "forced" forecast.

Standard Deviation of Quarterly Demand

If the aimple or amoothed average has been used to calculate the forecast, the scandard deviarion is computed using the demand observatione. An exception to this would be the case where only one or two observatione were used to compute the average. We will cover this case later.

In the case where there were three or more observations used in computing the demand forecast, the standard deviation 1s:
$\sigma=\sqrt{\sum_{i=1}^{M}\left(D_{1}-\text { Quarter1y Demand Forecast }\right)^{2}}$

If the BRF Forecast procedure was used or if one of the ocher procedures was used with lees than three observations, the standard deviation is directly related to the forecast.

If the forecast is one unit per quarter or more, the standard deviation 1s:
$0-1.6 \times$ (Quarterly Demand Forecast).

If the forecast is less than one unit, the computation of the etandard deviarion will be:
$\sigma=2.1 \times$ (Quarterly Demand Forecast).

If the BRF Forecast was forced to be 0.001 , the standard deviation will be set to 0.0001 .

Total Demand Frequency

The Total Demand Frequency, when a forecasting procedure other than BRF is used, will be the sum of the quarterly frequencies over the $M$ quarters.
$r=\sum_{1=1}^{M} F_{1}$ 1-1
$F_{1}$ - Demand frequency in quarter 1.

If the BRF Forecast is used, the Total Demand Frequency will be set to zero.

Average Requisition Size

The Average Requisition Size is of importance only if we are measuring effectiveness in cerme of requisicions satisfied. If the effectivencse is in terme of units sacisfiad, the procedures use an Average Requisition Size of one. This will al00 be the case if the forecast had been produced by the BRF procese.

The Average Requisition Size in the case of requisition effectiveness is:

Average Requisition Size $=\frac{\text { Total Demand }}{\text { Total Demand Frequency }}$

## LEVELS COMPUTATION

The procedures for computing depth differ between conventional tenders and FBM tenders. Therefore, we will talk about the depch calculations separately.

Range Selection for Conventional Tenders

There are three permissible options for deciding whether an item falls within the Range of the Load List. First, we may

Range cut options

The second option is to include in the preiiminary Range every item whose demand forecaar exceeds a certain input value. Depending on the Deptn calculations, an item may or may not be included in the final Range.

The final option is to make the preitminary Range decision based on the item's Total Frequency. If the :Eew's Tota: Frequency
does not meet a threshold, again an input value, it will not be included in the Range.

Of course, if the item has been entered through, a Mandatory or Minimum Value Override, the item will be included in the range and the depth calculations will be made.

Depth Calculation for Conventional Tenders

The depth on conventional tender Load Lists is deflned as the Prepositioned War Reserve Stock. Since we are incerested in resupply capability under wartime conditions, we mast translate the requirements (the demand) into wartime terms. This translation uses a Tempo Factor and a Support Period similar in concept to but not the same as the Fleet Support Factor and the Support Period used in the FIRI/FIL process. As we stated earlier, the Tempo Factor has historically get to one.

The translation depends on whether the Load List is being prepared for an Attack Submarine Iender or for either a Destroyer Tender or a Repair Ship. For an Attack Subarine Tender, the wartime demand forecast for the Support Period becomes:

and its standard deviation is:


If the Load List is being prepared for a Destroyer Tender or Repair Ship, the translated demand forecast is the same.
$W A D_{S P}=\begin{array}{cc}\text { Quarterly Demand } \\ \text { Forecast }\end{array} \quad x \quad \begin{aligned} & \text { Tempo } \\ & \text { Factor }\end{aligned} \times \begin{aligned} & \text { Support } \\ & \text { Period }\end{aligned}$
but the atandard deviation is silghtly different:

$$
\sigma_{W D}=\sigma \times \begin{aligned}
& \text { Tempo } \\
& \text { Factor }
\end{aligned} \times \sqrt{\begin{array}{l}
\text { Support } \\
\text { Period }
\end{array}}
$$

In both cases, the Total Demand Frequency is adjusted.


As we will see below, a Relative Item Essentiality is required in the computation of the acceptable level of riak. A value of 1.0 is used if the item's demand forecast is based on historical data. If the forecast was computed using the BRF, an attempt will be made to compute a Relative It Ensentiality using a weighted average of the Item Essentiality of the portion of the population that can be installed at the organization level and the Item Essentiality of the portion of the population that can be installed at the tender
level. These two population-related Item Essentialities are functions of the average Military Essentiality Codes for the two populations. The Relative Item Essentiality will be set to one if any of the population or MEC data needed to compute it is missing.

Acceptable risk

The acceptable level of risk if effectiveness is being measured in terms of requisitions satisfied is:
$\rho=\frac{\lambda_{4} C^{A}}{E \times\left(\text { WAD }_{S P}\right)}$
where $\lambda=$ risk parameter which may be different for $E R$ and NER items.

C = unit price (B053)
A - Average Requisition Size ( $=1$ for BRF forecasts)

E - Relative Item Essentiality
$W_{A P}=$ Wartime Demand Forecast (Note: in computing risk, a value of 1.0 is used for $W_{S A}$ in the case of a BRF forecast.)

The acceptable risk, if effectiveness is being measured in terms of units satisfied is:

$$
D=\frac{\lambda x C}{E \times\left(W A D_{S P}\right)}
$$

The calculate risk will be constrained to be between some minimum and maximum values which can be input. If the constraints are not input, the maximum and minimum 1imits will be 0.97725 and 0.02275 .


#### Abstract

A fixad level of risk may be input and the calculation by passed. When the risk is fixed in this manner, it will be the same for all items and will no longer depend on the characteristics of each individual item.


#### Abstract

In the risk calculations, separate values of $\lambda$ can be used for equipment-related and non-equipment-related items. Separate $E R$ and NER fixed levels of risk may be input if that option is selected.


Once the acceptable risk is computed, the depth can be found ueing the normal probability distribution, $W A D_{S P}$ and $\sigma_{W D}$. You can refer again to Appendix A for a description of the mechanics used

Normal probability distribution in computing this quantity. If a fractional value is computed, the depth will be rounded. The rounding procedures is as follows:

1. If a range cut is used, set all values less than one equal to one and round all members greater than one to the nearest whole number.
2. If no range cut is used, round all quantities between zero and one to one; round all quantities greater than one to the nearest whole number, and set all quantities leas than or equal to zero to a value of zero.

Checking overrides

Once the preliminary depth value has been computed, a check of the Override Code is made. If the override is Mandatory, the depth is ser equal to the mandatory quantity.

If the item has been coded with an Exclusion Techapical Override and a depth greater than zero has been computed, the Load List quantity is set to zero.

The computed depth is compared to the depth used on the old Load List. This comparison is the same used for the FIRI/FIII computations. Essentially what is happening is that, in order to keep the changes to a minimum, the old Load List quantity will be used unless the new Load List quantity differs significantly from it.

Once the comparison is completed, a check is made for a Minimum Quantity Override. If this override is present and the computed quantity is less than the override value, the Load List quantity will be set to the override quantity.

The extended dollar value of the Load List quantity must be at least $\$ 1.00$. If it is not, the quantity will be increased until the value is $\$ 1.00$.

The Load List quantity will be rounded to the next highest multiple of the Minimum Replacement Unit Quantity. If a repair or overhaul requires a certain number of units - for example, a tune-up of an engine involves the replacement of twelve sparkplugs, the Load List should reflect this.

After these adjustments, if the item has a Maximum Override Code, the quantity will be adjusted downward should it exceed the maximum value.

There are also special conetraints on the computed quantity that apply only to iteme with no historical demand (Total Demand and/or Total Frequency equal zero) and no override. These constraints limit the computed quantity to 50 units and the extended dollar value to $\$ 100.00$ unless a higher MRU is applicable.

Load List Statistics for Conventional Tenders

Once the Load List quantity has been determined, the expectec number of units short can be found using the mean and standard deviation of the aupport period demand and the Load List quantity. The quantity can not be less than zero. This procedure also uses the normal distribution and an example of the computation ia given in Appendix B.

If the effectiveness is to be measured in terms of units satisfied, the expected number of units satisfied 18:
$\underset{\text { Expected Number }}{\text { Of Units Satisfied }}=W A D_{S P}-\binom{$ Expected Number }{ of Units Short }

The value of the expected number of units satisfied is constrained to be zero or greater. The value found is accumulated separately for equipment-related and non-equipment-related items. The Wartime Demand Forecasts are also accumulated for ER and NER items.

If the effectiveness is to be measured in terms of requisitions satisfied, the expected number of requisitions satisfied must be found. This first requires the calculation of the expected number of requisitions short:

Computing shorts and satisfied
$\begin{aligned} & \text { Expected Number of } \\ & \text { Requisitions Short }\end{aligned}=\frac{\binom{\text { Expected Number }}{\text { of Units Short }}}{\binom{\text { Average Requisition }}{\text { Size }}}$

The expected number of requisitions satisfied is:
$\begin{aligned} & \text { Expected Number of } \\ & \text { Requisitions Satisfied }\end{aligned}=\binom{$ Expected Number of }{ Support Period Req. }$-\binom{$ Expected Number of }{ Requisitions Short }.

# Expected Number of $=\left(\frac{\text { Total Demand Frequency }}{\bar{M}}\right) \times\binom{$ Tempo }{ Factor },$~$ $\mathbf{x}\binom{$ Support }{ Period } 

The expected number of requisitions satisfied is constrained to being equal to or greater than zero.

The expected number of requisitions satisfied is accumulated for equipment-related and non-equipment-related items as is the expected number of Support Period requisitions.

In addition to the above mentioned factors, the following statistics are also accumulated for ER and NER separately:

1. Number of iteme on the Load List.
2. Extended Dollar Value of the Load List.
3. Number of items added to the Load List.
4. Extended Dollar Value of the Load List additions.
5. Number of Load List items that had the maximum Risk constraint applied.
6. Number of Load List that had the minimum Risk constraint applied.
7. Number of Load List items with forced forecasts.
8. Number of Load List items with BRF forecast.
9. Number of Load Ligt items with avearge demand forecasta.
10. Number of Load List items with smoothed demand forecasta.
11. Number of Load List items whose Load List quantities are related to overrides. Accumulated separately for mandatory, maximum, and minimum overrides.
12. Number of non-Load List items.
13. Number of items deleted from the Load List.
14. Extended Dollar Value of deleted items.
15. Number of non-Load List items with BRF forecasts.
16. Number of non-Load List items with average demand forecasts.
17. Number of non-Load List items with smoothed demand forecast.
18. Number of non-Load List items with exclusion override.
19. Wartime Average Demand for non-Load List items.
20. Total Frequency for non-Load List items.
21. Number of non-Load Iist items that had the maximum Risk constraint applied.
22. Number of non-Load List items that had the minimu Risk constraint applied.
Effectiveness of Conventional Tender Load Lists
After all candidate items have been examined and the statistics collected, the Load List effectiveness can be evaluated. Once again, the computations differ for unit and requisition effectiveness. The computations also depead on whether we are looking at all items together or equipment-related and non-equipment-related items separately. Both gross and net effectiveness are compured even though the evaluation may be based on one or the ocher.

The Net Unit Effectiveness is:

$$
\begin{aligned}
& \text { Net Unit } \\
& \text { Effectivenesa }
\end{aligned}=\frac{(\text { A Unite Satisfied })}{\binom{\text { Accumulated A Support }}{\text { Period Load List Demand }}}
$$

whare $A$ will be ER and NER if item types are being considered separately and ER + NER if item types are being considered together.

The Grose Unit Effectiveness is:
$\begin{aligned} & \text { Gross Unit } \\ & \text { Effectiveness }\end{aligned}=\frac{(\text { A Units Satisfied })}{\binom{\text { Accumulated A Support }}{\text { Period Load List Demand }}+\binom{\text { Aeriod Non-Lead List }}{\text { Demand }}}$

For Net and Gross Requisition Effectiveness, requisitions satisfied would be substituted for units satisfied and Support Period demand frequancy would be substituted for Support Period demand.

The total dollar value of the Load List is also computed. It is the accumalated dollar value of the depth of each item. This dollar value is the Load List quantity for each item times lts unit price (B053). A separate value is not computed for equipment-related and non-equipment-related iteme. The value computed is for both classes of items combined.

As we mentioned earlier, the Load List quantities for FBM tenders make up the Peacetime Operating Stock (POS). The Quarterly Demand Forecast for FBM material is based on either the simple average of historical demand data or on the BRF-population information. There is no Range cut used in the preparation of FBM tender Load Lisea.

The initial step in the computation of the depth is to modify the demand forecast and its standard deViation to reflect the tempo and the resupply period. The resupply period demand forecast is:
1.
$\bar{D}_{R P}=\binom{$ Quarterly Demand }{ Forecast }$\times\binom{$ POS Adjustment }{ Factor }$\times\binom{$ Resupply }{ Period }
where the POS Adjustment Factor, used to adjust the tempo of demand, and the Resipply Period are input parameters.

The standard deviation of the resupply period demand 1s:

$$
\sigma_{R P}=0 \times \sqrt{\binom{\text { POS Adjustment }}{\text { Factor }} \times\binom{\text { Resupply }}{\text { Period }}}
$$

where $\sigma=$ standard deviation of quarterly demand computed
earlier.

If the computed Quarterly Demand Forecast is greater than

Acceptable Fisk

$$
\rho=\frac{\lambda C A}{\bar{D}_{R P}}
$$

where $\lambda=$ Rigk parameter
$C=$ Unit price (B053)

$\bar{D}_{R p}=$ Resupply Period Demand Forecast

If the demand forecast is zero, the Risk is set to its maximum permiseible value (an input parameter).

The computed Acceptable Risk is compared to minimum and maximum limits; 0.01 and 0.99 , respectively. If it is outside these limita, it is set to a mindmum or maximum value (input parameters).

The conventional tender depth calculations used only the normal distribution. The FBM tender depth computation use the Poisson distribution if the Reaupply Period Demand Forecast is one or lees and the normal diatribution if it is greater than one. The procedures followed are given in Appendix A.

Since no range cut is used in the FBM tender procedures, the computed depth is rounded to the next highest integer if it is greater than zero and to zero if it is less than zero.

The depth is the aubjected to the same series of checks and modifications described in the section dealing with conventional tender dapth. They are:

1. Mandatory Quantity Override.
2. Exclusion Override.
3. Allowing only significant differences becween the old depth and the new depth.
4. Kinimum QuantiEy Override.
5. Extended Dollar Value must be $\$ 1.00$ or greater.
6. Rounding to next highest multiple of the Minimum Replacement Unit (MRU).
7. Maximum Quantity Override.

In addition, if the item has no demand history and no override, the computed quantity is limited to 50 units (unless the MRU is greater than 50) and the Extended Dollar Value to $\$ 100.00$.

Items whose Extended Dollar Value is greater than $\$ 100,000$ will not be included on the Load List (unless overridden on) but will be output on an error listing for review.

Load List Scatistics for FBM Tenders

After the Load List quantity has been found, the expected number of units short and requisitions short can be found using the mean and scandard deviation of the Resupply Period

Denand, the Average Requisition Size, the Load List quantity, and the Poisen or normal diatribution. The procedures are authorized in Appendix B.

The FBM tender effectiveness in masured only in terms of requisitions sacisfied. This mans that the expected number of requiaitions catiefied maet be found
$\begin{aligned} & \text { Expected Number of } \\ & \text { Requisition Satisfied }\end{aligned}\binom{\bar{D}_{R P}}{A}-\binom{$ Expected Number of }{ Requisitions Short }

The quantity calculated can be no leas than zero.

The expected number of requisition satisfied is accumlated for all Load List itam. The expected number of Rempply Period requisitions are accumblated for both load Liet and nonLoad List items.

## Effectiveness of FBM Tender Load Liste

Computing ahorts and satiaflede

[^6]The Net Requisicion Effecriveness is

Computing effectiveness

Net Requisition
Effectiveness $\quad\binom{$ Total Number of }{ Requistrions Satisfied }
and the Gross Requiaition Effectiveness is


## ADJUSTING THE RISR PARAMETER

Regardleas of whether we are considering Conventional or FBM Teaders, unit or requisition effectiveness or doliar value, must have some means of determiniag when we have met our objective or objectives. We do this by comparing the value or values computed with our goal or goals and, if the computed value differs from the goal by $t 00$ great a margin, we adJust che risk parameter and initiate anocher computation. This process continues until the deviation of the computed value from the goal meets some specified requirement.

```
 If total doliar value or combinec ER and NER ef-
fectiveness (eicher net or grosa: is our measured vaive,
we will have a singie goai in cerns c! either cotal
```

```
dollar value or combined effectiveness. If the effectiveness
of ER and NER items ia being computed separately, we will have
two goals - one for ER effectiveness and the other for NER
effectiveness.
```

If we are considering effectiveness and the computed value is much lower than our goal, this means that we have allowed too high a level of acceptable risk. To increage the effectiveness, we must reduce the acceptable level of risk. We do this by reducing the value of $\lambda$, the riok parameter. If you look back at the equations for acceptable risk, you will see that the larger $\lambda$ is, the larger will be the acceptable risk, and, the smaller $\lambda$ is, the smaller will be the acceptable risk.

The opposite is true. If the effectiveness is too high, we have net the acceptable level of risk too low. You might ask: How can effectiveness be too high? If we surpass our goal, aren't we that much better off? Well, the achievement of that increased effectiveness is at the expence of additional depth in our Load List. This additional depth costs money. So if we surpase our goel, we are expending funds that might be better utilized elsewhere.

[^7]Dollar value objective

A dollar value goal is met in the same way. If the dollar value is too high, we reduce it by decreasing the Load List depth. This is done by increasing the risk parameter which in turn increases the acceptable level of risk.
$\qquad$
Three values of the risk parameter are input to the operation prior to the depth computations. (If ER and NER effectiveness are being considered separately, a total of six values, three for each type of item, will be input.) After the computations, the effectiveness or total dollar value are manually compared to the goal. If the goal has been met (within the specified tolerance band), no further computations are required. If the goal has not been met, three additional risk parameters are selected and the operation is rerun. This process continues until the goal has been achieved.

REVIEW AND SKIM LISTINGS

After the computed Load List is deemed satisfactory in terms of meeting the desired goal or goals, a series of listings are prepared for examination by SPCC and FMS.

## Review Listings

Two of chese liscings are designated review listings and consist of the Edited Candidate Review Record (sometimes referred to as E17MA1L) and the Stock, Number Sequence List (E17RC1L).

An example of the Edited Candidate Review Record is shown on the next page. Along with general item descriptive data, the new and oid load list quantities are printed as are the Override Code and the Override Quantity. The population is divided into ship installable and tender installable. The demand frequency, demand, Best Replacement Factor, and the Nrimum Replacement Uait Quantity are printed next. This is followed by the Review Lode,

The Review Code has five positions. The first position can be blank or any of four alphabetic characters:

Code	Meaning
D	The item has been deleted from the Load List. It did appear on the previous Load List.
A	The Item has been added to the Load Iist. It did not appear on the previous boad List.
I	The new Load list quantiry is greater than the previous Load Ilst quantity.
M	The new Load Ligt quantity is less than the previoug load List quantity.
Blank	The new Load List quancity equals the old Load Lise quaneity.

The second position of the Review Code indicates a data void. If the Item Name (C004), Cog Symbol (COO3), Unit of Issue (COO5), or Unit Price (B053) are zero or blank, a "V" will be entered in the second position. Otherwise, it will be blank.

A "P" in the third position of the Review Code indicates that the extended price of the Load List quantity exceeds a input specified value. The exrended price is the new Load List depth (EOO9) times the Unit Price (BO53).
$A$ " $Q$ " in the fourth position of the Review Code means that the new Load List quantity (E009) exceeds an input specified value.

Finally, the fifth position of the Review Code will contain a "D" if the item's Quarterly Demand Forecast (EO16C) exceeds an input specified value.

The Candidate Review Record also contains the Application Code (D009) that identifies a higher level item to which the subject item is related. Up to four Application Codes may be listed. This data area is labeled RIC since the Appiication Code is related to the Repairable Identification Code (DOOB).
PRELIMINARY LOAD LIST
(E17RC1L)

QUANTITY SKIM
-,
demand frequency skim


The second review listing shows the reviewer what the Load List would lock like if no changes are made. An example from this listing is shown on page 6-34.

SKIM Listings

The SKIM listings essentially present the Load List data in several different formats to enable the analyst to more easily make decisions relative to the further elimination of items from the Load List.

There are four SKIM Lists and the basic format for the four is the same. Examples of the four lists are shown on pages 6-35 through 6-38. The first, the Quantity SKIM, lists the items of the Load List in ascending quantity. The lowest quantity item is listed first and the highest quantity item last.

The second SKIM is a printing of Demand Frequency, again in low to high sequence. The Price SRIM lists the items by extended price from low to high. The fourth SKIM is the NSN Sequence listing the NIINs in quantity sequence, from low to high.

This tape is produced at the same time as the review and SKIM listings and become the Mascer file for the Load List.

After SPCC's Allowance Division and FMSO's Load List Branch have analyzed the review and SKIM listings, FMso incorporates any changes into the Master Candidate Load List File via files maintenance procedures. These changes are referred to as "post model" changes.

Financial statistics concerning the Load List are forwarded to NAVSUP for approval. When approval is received, the final Load List outputs can be prepared.

FINAL LOAD LIST OUTPUTS

As with che FIRL/FILI operation, the TARSII operation produces two distinct final outputs. The first of this, is the file, either on tape or cards, of the Supply/Management Aid Records. As we have mentioned several times, these SiARs are used by the Mobile Logistics Support Force in managing its items. A nomenclature (item name) tape is also prepared.

The second final output is the Load List publication itself. Unlike the single publication (CARGO) reaulting from the FIRL/FIII operation, there will be a number of different published Load Lista produced by the TARSLL operation. There wi: e one for Deatroyer Tenders, Repair Ships, (these firat two have been combined recently), nonFBM Submarine Tenders, and Submarine Tenders.

The contents of these publications result solely from the FMSO Load List operations. There are no chaptera submirted by other agencies.

THE WEAPON SYSTEM SUPPLEMENT

The Strategic Systems Support Division of SPCC has the responsibility for determining the Load Iist quantities for the Weapon Systems Supplemant. This addition to the FBM Tender Load List is prepared to support Strategic Systems Project Office equipments. The UICP mechanized procedures are not followed for these equipments since, for much of the material of interest, the contractor serves as inventory manager. (These are the "p" Cog items.)

The procedures follow the PMP discussed earlier in this chapter. Once the hull mix for the load is designated by the TYCOM, the contractor receive a copy of $1 t$ and prepare range and depth information for the items associated with


#### Abstract

their equipments. For contractor-managed items, the quantities are firm. Contractirs may also recomend quantities for items other than those they manage. These recomended quantities are not firm. The range and depth information is supplied by the contractors on punched cards winich are rransferred to magoeric tape.


The Strategic Systems Support Division uses the hull mix to interrogate their Master Configuation File (equipmencs - APL designators) and Component Data File (parts) to produce the candidate file (C21). The contractor range and depth file is matched to the candidate file. A mismatch listing may be produced in which case a manual review is required.

Contractor-managed ("P" Cog) items are assigned mandatory overrides and items from other cogs are assigned either maximum quantity or minimum quantity overrides (the determination of which to use is determined by the Project office).

These candidates with overrides enter the UICP processing and produce SKIM and Review listings. These listings are examined by SSSD personmel and post-model changes, if necessary, are prefared.

The Supply/Management A1d Records (SMARs) for both FIRL/ FILL and TARSLL Load Iists may be updated at times other than the scheduled revision times. This allows FMSO to meet requests for management and financial information with the most current data.

The SMARs from any number of Load Activity Codes may be revised at one time. However, Load Activity Codes will be grouped in tens and the revision done for each group separately. The SMARs to be revised may be entered into the process either on the magnetic tapes as generated by the FIRL/FILI and/or TARSLL process or on cards.

The SMARs from the various sources are merged and sorted by NIIN and by LAC within each NIIN.

Any SMAR which represents a Range Delete will be ignored and will not be revised. Referring to the example SMAR given on page 7-2, you can see that a range delete is indicated by a " 3 " in Position 3. Any records not identified as Load List, Load List Supplement, or SSPO Weapon System Supplement are dropped from the process.


The first step in the revision process is to ensure that each SMAR contains the most recent National Item Identification Number. This is done by comparing the NIIN on each SMAR to the old NIIN list of the Navy Management Data Addendum File. If a match is found, the current NIIN will replace the NIIN on the SMAR and a "CH" will be placed in Positions 52 and 53 of the SMAR to flag the NIIN change. A NIIN Cross Reference Card will also be generated.

UPDATING MANAGEMENT DATA

Each SMAR is also processed against the Navy Management Data File and various data elements are updated. These are:

DEN
B053
B054

C003
C003A
C003B
$\mathrm{COO5}$
$C 017$

DATA ELEMENTS
Unit Price
Unit Price Code (whether or not Unit Price is standard)

Cognizance Symbol
MaterLal Control Code
Special Material Control Code (SMIC)
Tnit of Issue
Security Classification Code

DEN

D015

DATA ELEMENTS
Net Cube (volume in cubic feet)
Type of Storage Space Code
Shelf Life Code
Shelf Life Action Code
Federal Supply Classification
Special Material Content Code

Converting unit of issue
not agree, the old (SMAR) Unit of Issue and new (NMDF) Unit of Issue are used as entries into the U/I Conversion Table in order to adjust the quantity as well as correct the Unit of Issue. The Load List quantity from the SMAR will be factored by the Conversion Table value. For example, if the SMAR Unit of Issue is $D Z$ (dozen) and the NMDF Unit of Issue is EA (each), the conversion factor would be 12. The SMAR quasity would be multiplied by 12.

The Load list quantity cannot be revised to a value less than one.

If the two Units of Issue cannot be related in the U/I Conversion Table, the SMAR will be printed on an Error/ Review List. SMARs that cannot be matched to the NMDF will also be printed on the Error/Review Inst.

The SMARs that have been rejected on the Error/Review List are reviewed by FMSO, Code 911, where the necessary
corrections are made. The corrections are prepared in the SMAR format and contain one of three possible Action Codes: A - Add a SMAR to a Load List; C - Change a SMAR for a Load List; or D - Delete a SMAR from a Load List.

If the Action Code is "D," any SMAR matching the NIIN and IAC on the correction card will be deleted from the process. If the Action Code is " $C$," one or more data fields on the SMAR wfll be replaced by the corresponding data fields on the correction card. Any data fields that are not to be changed mast be blank on the correction card.

If the Action Code is "A," a new SMAR will be created for the NIIN/LAC if one does not currently exist. The quantity will be the quantity on the correction card. If a SMAR for the NIIN/LAC already exists, the quantity on an "A" correction card will be added to the existing quantity.

## CONSOLIDATION OF SMARS

All SMARs that have the same NIIN/LAC will be consolidated into a single SMAR. The quantity on this single SMAR will be

Combining SMARS the sum of the quantities from the SMARs that have been consolidated. A consolidated SMAR will be coded "CN" in Positions 52 and 53.

More than one SMAR with the same NIIN/LAC will result in those instances where a NIIN has been updated to a current NIIN and a SMAR already exists for the current NIIN.

## REVISED SMARS

A tape of each Load List will be generated after the updating, revision, and correction processes are completed. These revised SMARs will be sequenced by NIIN and a separate tape is prepared for each IAC.

Statistics will be generated for each LAC once the revisions are made. Range and total extended dollar values are printed for each Cog, for all Cogs, for all Retail Cogs, for Navy Stock Account, and for Appropriation Purchase Account.

The same statistics may be produced for Item Managers: FMSO, SPCC, SPO, ASO, or other.

An optional output, which is usually provided, is the NIIN Commonality List. This is a listing by NIIN spread over all loads. This listing shows which loads carry each NIIN.

The UICP Load List procedures include an operation that permits the evaluation of the Load Iists that have been constructed. This evaluation can take place at any time after a Load List has been built and permits an evaluation using demands that have occurred subsequent to the time of construction.

The evaluation is performed in terms of frequency and quantity effectiveness. Frequency effectiveness compares the number of numbers of requisitions satisfied to the total number of requisitions submitted. Quantity effectiveness compares the quantity satisfied to the quantity demanded.

The evaluation procedure uses actual demand over a selected time period. This actual demand is then multipiled by a PWRS Factor that reflects the tempo of operations that are of interest in the evaluation.

Although this operation will be used primarily to evaluate a Fleet Issue Requirements List (FIRL) or a Fleet Issue Loads List (FILL), the capability exists to evaluate any Load List, given its LAC and the Unit Identification Codes (UICs) of the activities associated with the load.

Frequency and quantity effectiveness

The demand data required for the evaluation can be drawn from two sources: the Mobile Logistics Support Force Master Demand File and the Unmatched NIIN Demand File. The use of the second source is optional. The MLSF Master Demand File contains the most recent 24 months of MLSF demand. The Unmatched NIIN Demand File contains the previous 24 months MLSF demand that wes umatched to the Load List Stock Number File.

# Extracting demand data 

The demand data can be extracted from these files in three different ways. First, FIRL/FILL demand can be requested and all demand coded as FIRL/FILL applicable to both Atlantic and Pacific loads will be extracted from the MLSF Master Demand File and, if desired, the Unmatched NIIN Demand File.

The second way of extracting demand data is by Reporter UIC.

The final method of extracting demand data is by Requestor UIC.

The extracted demand data will cover the full 34 months of available history and will not be tied to a


#### Abstract

specific load. Since we are interested only in a specific time frame and a specific Load List, all demand falling outside the desired time period and not coded with the proper Load Activity Code will be eliminated from further consideration.


After the demand has been confined to the time period and LAC of interest, it is factored by the PWRS Factor to reflect the tempo desired in the evaluation period. The PWRS Factor is an input value and need not be the Fleet Support Factor that had been used in computing the load. Only the Demand Quantity is multiplied by the PWRS Factor.

THE LOAD LIST AND CANDIDATE DATA

There are three demand classifications that are of interest to the evaluation process. The first is the demand for items that are on the load List. The second is the demand for ftems that are not on the Load List but were considered candidates at the time the Load List was constructed. Finally, we would like to have some reporting, for manual review, of those items that were not included as candidates at the time the load was built but did experience significant demand during the time period selected for the evaluation.

In order to divide the extracted demand into the three

```
required categories, it is necessary to compare the de-
mand records to the items on the Load List file and to
the items on the candidate file.
```

Before the candidate file can be used in the evaluation, it must be updated as some period of time may have passed since the load was constructed and some of the candidate NIINs may be outdated. This updating is done by comparing the candidate file to the NMDF Addendum File. This latter file is a cross-reference of Old NIIN to Current NIIN. The candidate file will reflect the most current NIIN after the updating and will be compatible to the demand file whose NIINs are updated monthly.

The Load List data will be contained on a file consisting of the updated Supply Management Aid Records (SMARs) for the load being evaluated. If we are evaluating a FIRI, two files will be necessary, one for the FIRI (FIRLA, for example) and one for the associated FILL (FILIA).

## CLASSIFYING THE DEMAND

The dividing of the demand into the three categories now becomes the process of comparing the sets of files.

The demand file is compared to the Load List file and, if a match is found, the item's identification, demand
> quantity, and demand frequency as well as other management data are recorded on the Marched Load List/Demand File.

If the item from the demand file is not on the Load Iist file but is on the candidate file, the item information is saved on the Matched Candidate/Demand File.

The relevant item information will be recorded on the Unmatched Demand File if no match can be found on either the Load List or Candidate files.

At the same time the demand classification process is taking place, an accumiation of the quantities and frequencies for all items, whether matched or unmatched, is being made. These values will be later used in determining Gross Effectiveness.

Special note is also being taken of the Override Codes (particularly Mandatory and Minimum Quantity) associated with the items. One of the optional reports we can obtain from the evaluation operation is the effectiveness of the override actions.

## LOAD IIST EFFECTIVENESS

The computation of the Load List effectiveness uses the demand classifications we have fust discussed, in particular,
the demand for Load List items. We are going to measure effectiveness in both the net (how well we meet the demand for Load List items) and the gross (how well we meet the demand for all items) sense. We are also going to measure frequency (how many requisitions we satisfy) and quantity (how many units we satisfy) effectiveness.

We have already talked several times in this manual about how effectiveness is calculated. Net Effectiveness is very simply

Net Effectiveness $=\frac{\text { Demand Satisfied }}{\text { Demand Received (matched to Load List) }}$

Demand Satisfied will be the number of requisitions filled, 1f we are talking of Frequency Effectiveness, and the number of units lasued if we are talking of Quantity Effectiveness. Demand Received will either be the total number of requisitions for Load List items or the total quantity of Load List material requested.

The effectiveness is measured in terms of the totals for all items. As these values are being accumulated, there may have to be some adjustments to the values computed for individual items. For an item, three possible situations might arise.

In this case, the number of satisfied requisitions must be computed.

Satisfied Requisitions $=\frac{\text { Load List Quantity }}{\text { Demand Quantity }} \times$ Demand Frequency

The other necessary evaluation factors are:

- Unsatisfied (NIS) Requisitions = Demand Frequency Satisfied Requisitions
- 
- Satisfied Quantity = Load List Quantity
- Unsatisfied (NIS) Quantity = Demand Quantity - Load List Quantity
- Excess Quantity = 0
- Excess Value $=0$

DEMAND QUANTITY LESS THAN LOAD LIST QUANTITY

Here the evaluation factors are found as follows:

- Satisfied Requisitions = Demand Frequency

Satisfied Quantity = Demand Quantity

Unsatisfied Quantity = 0

- Excess Quantity = Load List Quantity - Demand Quantity

Excess Value = Excess Quantity x Unit Price

DEMAND QUANTITY EQUALS LOAD LIST QUANTITY

In this final case,

- Satisfied Requisitions $=$ Demand Frequency

Satisfied Quantity = Demand Quantit:

The other effectiveness measure is Gross Effectiveness where: Effectiveness

Gross Effectiveness $=\frac{\text { Demand Satisfied }}{\text { Demand Received (matched and unmatched) }}$

Gross Effectiveness uses the Satisfied Requisitions or Satisfied Quantity computed above in its numerator. In the denominator, all demand received is considered whether matched to the Load List or not.

An example page for a Load List Demand Effectiveness Report is shown on the next page. If a FIRI is being evaluated, there will be two reports, one for FIIL and one for FIRI Only.

As can be seen, the items are ranked in terms of demand frequency. This permits the reviewer to concentrate on those items with high demand frequencies, those items that have the greatest impact on effectiveness.

## OPTIONAL REPORTS

A member of optional reports may be produced in addition to the effectiveness reports we have just discussed. As with the effectiveness reports, if we are evaluating a FIRL, there will be two versions of each optional report; one for FIIL and one for FIRL Only.

## Override Effectiveness

This report is similar in format to the standard effectiveness except now the Override Code is included. The only two Override Codes of interest are the "add" overrides:

Mandatory Quantity and Minimum Quantity, A review of this report permits an evaluation of our override policy regarding specific items.

$$
1 .
$$

## Demand Value Stratification

In this optional report, the demand is categorized by range of unit price. As you can see in the example on page $8-13$, the sequence of the report is by demand frequency. For each demand frequency, the number of items falling in each price category is shown along with the total quantity of these items' demand, and the extended price of the demand. Totals for the load are also shown.

## Load List Value Stratification

This report is concerned with the total number of Load List items that occur in each price category and the total quantity and extended price in each quantity. An example is shown on page 8-14.

## Projected Frequency Stratification

The Projected Frequency stratification report tabulates Load List items, demand items, and demand frequency fc: each projected frequency zange. The demand frequency and frequency effectiveness are also printed on a cumulat.ve basis. See page 8-15 for a sample of this report.



load list value stratification

projected prequency stratification

## Cog Strstification


#### Abstract

In this report, the Load List items, demand itams, total demand frequency, total demand quantity, and total demand value are printed for each Cog. Page 8-17 contains an example.


## Project Code Stratification

This final optimal report lists for each Project Code and for each Cog within the Project Code the mumber of items demanded and the total demand frequency, quantity, and value. Project totals are also produced. An example is given on page 8-18.

COG STRATIPICATION


This Ready Reference Guide consists of an expanded treatment of the Eormats and contents of the commanications between the UICP Load Iist procedures and the user. The guide has been divided into three principal areas: the demand, the FIRL/FILL procedures, and the TARSLI procedures.

## PREPARATION OF DEMAND INPUT

The preparation of both FIRL/FILL and TARSLL Load Lists requires accurate and timely demand data. For this reason, all MLSF demand reporting activities are required to forward to FMSO at the end of each month, demand documents for that month's transactions as well as any documents required to cancel previousiy reported transactions.

Demand documents from mechamized Load List demand reporting activities are to reach FMSO by the 15 th day after the close of the business day for the reporting month. Demand documents from non-mechanized activities are to reach FMSO by the loth day after the close of the business day for the reporting month.

Demand transactions may be submitted on magnetic tape, punched card, or offset type demand documents. Transactions submitced on the first two media require no preliminary action. However, transactions submitted on offset type documents must be key punched into the approved demand transaction format.


#### Abstract

Demand is assigned to two categories: Category 1 demand is made up of industrial demand transacrions-the demand must be the result of work performed for supported flent units. Category 2 demand is Fleet Issue demandthe resupply requisitions for material placed by customer ships on the MLSF units.


Approved Demand Transaction Format

The standard punched card format (magnetic tape format is identical)
is:

Card   Columa	Description
1	Record Type (always 1)
2	Demand Category (1 or 2)
$3-5$	Project Code
$6-7$	Blank
$8-20$	National Stock Number, Navy      $21-22$
Item Control Number, or "I"    $23-24$ Blank   $25-29$ Unit of Issue   $30-43$ Demand Quantity   $30-35$ Document Number   $36-39$ Requesting Ships UIC   $40-43$ Julian Data   $44-54$ Serial Number	


Card Column	Description
55-56	Cognizance Symbol
57	Blank
58-62	Demand Reporting Activity UIC
63-65	Blank
66-69	Reporting Date (year and month)
70	Transaction Code: R - issue
	G - not in stock
	B - not carried
71-75	Serviced Ship UIC (required for category 1 demand)
76-80	Blank

## Error/Review List


#### Abstract

Demand transactions that are rejected during the validation process are printed in NIIN sequence on an Error/Review IIst. The format used on the listing is almost identical to the original transaction format. As example is shown on page 9-4. All items shown have quantity errors. Units of issue preceded by an asterisk are in error.


There are two primary reasons why a demand transaction may appear on an error/review listing. The first results from a demand quantity that is zero, non-numeric, or excessive. The second reason is an improper unit of issue.



Corrections of demand quantity or unit of issue are submitted to the Load List operation on E22AE1C cards.

Selected demand history entries in the MLSF Demand History File may be changed, if necessary, by using an E22FAlC card.

## FIRL/FILL LOAD LISTS

The Fleet Issue Requirements List (FIRL) is as element of the Navy's Prepositioned War Reserve Requirement (PWRR). A FIRL includes most categories of secondary items required to support approved fleet forces. Excluded item categories include ammition, bulk petroleun, subsistence, and ship's store stock.

There are two FIRIs produced each year; one for the Atlantic Fleet (IANTFIRL) and one for the Pacific Fleet (PACFIRI).

The UICP Load List procedures compute the range and depth of material required to provide a specified level of resupply support for a specified period of time.

The Fleet Issue Load Iist (FILL) is that portion of the FIRL that is positioned on a given Combat Store Ship (AFS) or selected ashore activities.

The FIRL/FILI is published by FMSO as Chapter IV of the Consolidated Loat Requisitioning Guide, Overseas (CARGO).

The FIRL/FILI development follows a Program Management Plan (PMP) that prepared and distributed by FMSO's Load List Branch (Code 9111). An ex?le of the milestones that appear on the plan were presented in Chapter $V$.

The major elements of the plan where there is human interaction with the IP procedures are described in the following sections.

## ? Preparation of Technical Overrides

FMSO's Load List Branch has the responsibility of preparing the "Top 40" sting; those systems and equipments that have had three or more CASREPTs er the past year. (An example page from a CASREPT listing is shown on the st page.) This listing is reviewed by the Load List Branch to remove obvious -Load Iist items and is forwarded to SPCC's Allowance Division where the .s related to the Top 40 equipments are identified.

These APL numbers are forwarded to FMSO where they are used to extract se NIINs that experience three or more CASREPTs (from the CASREPT data e) or a usage of three cr more (from the $3-M$ data base) over the year.

Thos: NIINs are then reviewed by SPCC's Allowance Branch and Stock tro1. Stock Control obtains a Consolidated Stock Status Report (CSSR) each NIIN and annotates the CSSR with their recommendation. A recomdation may or may not be accepted by the Allowance Branch depending on cumstances.



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A


Those items that pass a final review by the Allowance Branch will maike up the preliminary FINL and card deck. Quantities, generally one per FILI, will be punched on the cards.

New equipments may also be nominated for inclusion on the FIII. The nomfarions are fatiated by the Fleet CINC and reach SPCC by way of CNO/MAVSOP. The nominations must be matched to the applicable APL using either a hard copy of the APLs or the Weapon System File.

These APLs will be reviewed and all that are repairable at the organizational level will be extracted.

The extracted NIINs will be reviewed by both the Allowance Division and Stock Control in a maner afmilar to that used in the Top 40 review.

The NIINs remaining after the review are combined with those from the Top 40 review and the override candidates are forwarded to FMSO.

## Frequency Distributions

Frequency distributions for both equipment-related and non-equipmentrelated items are prepared as part of the FIRL/FIL process. An example of the ER frequency distribution is shown on the next page. The axes of the frequency distribution are deployed (FIIL) demand frequency and expanded (FIRL) demand frequency. Each cell shows the number of items experiencing at least the demand frequencies shown on the axes. For example, the circied number indicates that 4,899 items had a deployed demand frequency of 4 or more and an expanded demand frequency of 9 or more.

If we know the maximum number of iters that the TYCOM wants to include on the list, we can determine which range cut values will produce a range that is close to the desired number. These range cuts, after approval, can then be introduced into the operation as means of limiting the Load List range. .

FILL Statistics Supplied to NAVSUP

At the conclusion of the FIRI/FILI process, statistics are provided to NAVSUP for approval. These statistics are concerned with the number of items added to the list and their extended value, the number of items whose quantity was increased and their extended value, the number of items whose quantity was decreased and their extended value, and the number of items detected from the Load List and their extended value.

The statistics are broken down by Budget Project which is made up of designated Cogs.

Budget Project	Cogs
14	1A, 1H
15	11
18	9D
19	1N
23	1W
25	1B
28	9A, 9B, 9C, 9E, 9F, 9G, 9H, 9I, 9J, 9L, 9N, 9Q, 9S, 97, $9 \mathrm{~W}, 9 \mathrm{Y}, 9 \mathrm{Z}$
34	1R
35	5R
38	9X



The items and extended values are aiso related to Appropriation Purchases Account and Navy Stock Account. An example of a Naval Message showing these statistics is shown on the next several pages.

Quarterly FIRL/FILL Supplements

Supplements to each of the two FIRLs are prepared quarterly based on CASREPT and 3-M data over the previous three months. The necescary data for the supplement are extracted by FMSO and reviewed by FMSO's Load List Branch and SPCC's Allowance.Division. Stock Control also reviews and makes recomendations which will, in turn, be accepted or rejected by the Allowance Division.

A punched card deck of verified adds with written recommendations will be forwarded to FMSO by SPCC for SPCC Cog items. FMSO's Load List Branch then prepares the supplement.

TEANDER AND REPAIR SHIP LOAD LISTS

TARSLLs are produced by FMSO to enable the tenders and repalr ships to meet their industrial missions-athe repair of equipments on board the ships for which the tenders are responsible. TARSLLs are also designed to enable submarine tenders to meet their resupply mission.

There are two distinct range and depth procedures in the TARSLLone for conventional tenders and the other for FBM tenders.

## mavat-message



FROM: FLEMATSUPPO MECHANICSBURG PA..
TO: COMNAVSUPSYSCOH WASHINGTON DC
INFO: COMNAVSURFLANT NORFOLK VA !
UNCLAS //Nロчч41// . . . . . .
1977 ATLANTIC FILL STATISTICS
A. FHSO LTR 9IIIK 4441 FIRL/FILL SER 383 OF 8 DEC 76

1. THE FOLLOWING STATISTICS ARE PROVIDED. IN ACCORDABCE UITH mILESTONE 23 of REF $A$ :

TOTAL ADDS


BUDGET PROJECT TOTAL VALUE
$19 \cdots-\because 139,164$
$\therefore \div 15 \quad \therefore \quad \therefore \cdot 350$


$\because 34 . \quad$ - $\quad \therefore$ 2309
: 285~625

APA;:
total
NSA .. $\Xi: i 3,336$

$$
\ldots \frac{251}{\cdot 3,587}
$$

$\therefore 504,189$
-7897814
cestage



110533

UNCLASSIFIED


	TOTAL DELETES	. BUDGET PROJECT	total value
	$296 \therefore$	$\therefore 24$	-69,539
	$214 \times$	k $:$ : 15	19,741
-	, b	18	97661
	13608.	-.. 28	84,985
* ${ }^{\text {a }}$	1.	$\because \therefore$ 34,	106
nsa	: 2.190		. 184.032
APA -	111		230,896
total	2,301:	MT-50\%	-414.928

FULL RANGE
NSA 13,473
家 $\therefore$.
$A P A \quad 571$
: - ... 1 . 570.689
$\therefore \therefore \quad . \quad 1,072,825$
TOTAL 14,044
9 VALUE * 2,663,514
z. - REqUEST AUTHORITY TO RELEASE SUPPLY AIDS. .. .:
11.0533

The TARSIT development follows a Program Management Plan (PMP) similar to that used in the FIRL/FILI process. The TARSLL PMP is prepared and distributed by EMSO': Load List Branch. An example of the PMP was given in Chapter VI.

The major elements of the plan where there is human interaction with UICP operation are described in the sections that follow.

## Obtaining the Candidate Listing and Preparing Pre-Yodel Overrides

SPCC's Allowance Division is supplied the required hull mix for the TARSLL by the TYCOM via letter or mesage. SPCC validates the hull mix UICs. (Special procedures are followed if nuclear UICs are to be included.) The required item data is then extracted from the Weapon System File, Master Data File, and the Program Support Interest File.

The preliminary candidate listing reaulting from the extract as well as any error listings produced are reviewed by SPCC.

Overrides to the candidate listing are prepared on punch carde and forwarded to FMSO with the listing and candidate tape. FMSO also reviews the listing and prepares overrides as appropriate.

## Review and SKIM Listings for Post-Model Changes

In this section we shall discuss the formats of the various review and SKTM listings. These post-model outputs are reviewed by SPCC (Allowance Division) and FMSO (Load List Branch).

## Edited Candidate Review Record (E17MAIL)

An example of this review listing is shown on page 9-17. The format is:

## Column

1
2

3

4

5
6
7
8
9

18

## Description

## NIIN or NICN

Special Material Identification Code
Federal Supply Class
Cognizance Symbol
Item Name
Onit Price
Unit of Iasue
New Load Iist Quantity
01d Load List Quantity
Override Code
Overside Quantity
Ship Installable Population
Tender Installable Population
Demand Frequency
Demand Quantity
Best Replacement Factor
Minimu Replacement Unit Quantity
Review Code

Lst pos. $D$ - Item deleted from Load List
A - Item added to Load List
I - Load List quantity has increased
M - Load List quantity has decreased
blank - New and old quantities are the same


PRELIMINARY LOAD LIST

Colum	Description
9	Military Essentiality Code (FBM only)
10	Repairable Identification Code (FBM only)
11	Load List Quantity
12	Management Data

Quantity SKIM

This SKIM output lists the Load List items in order of increasing quantity. An example of this SKIM is shown on page 9-21. The format is:

Column
1
2
3
4
5
6
7
8

9

10
11
12
13
14

Description
NIIN
Special Material Identification Code
Federal Supply Class
Cognizance Symbol
Item Name
Control (Load List Quantity)
Unit Price
Unit of Issue
New Load List Quantity
Old Load Iist Quantity
Override Code
Override Quantity
Ship Installable Population
Tender Installable Population
PAGE 3 S5. pha $\xrightarrow{\text { alc }}$




0nc5710006 0361040006
 000.312091 $\xrightarrow[\text { MOAF }]{\text { Mger }}$
3日ABGn009 nner 69009190 1491-n008 109190002 QUANTITY SKIM

Coiumn
15
16
17

Description
Demand Frequency
Demand Quantity
Repairable Identification Code

## Demand Frequency SKIM

This SXIM output lists the Load List items in order of increasing demand frequency. An example is shown in page 9-23. The format is the same as that used with the quantity SKIM except that Columa 6, Control, now contains the demand frequency.

## Price SKIM

This SKIM output lists the Load List items in order of increasing extended price (unit price times New Load List quantity). An example is shown on page 9-24. The format is the same as that used with the Quantity SKIM except that Colum 6, Control, now contains the extenced price.

## NSN Sequence SKIM

This SRIM output lists the Load List items in NSN sequence. An example is given on page $9-25$. The format is the same as that used with the Quantity SKIM except that Column 6, Control, is now blank.

dgand prequenty skim
risi





 -



 0407t.0001
0 Montraal Onnaboger 01aqur001 blachnu01 -1093n001 019490001 329060002 329n0012n

NSN sequance skim

## TARSLI Statistics Supplied to NAVSUP

In the same fashion as FILI Statistics, TARSLL financial statistics are forwarded to NAVSUP for approval. An example of this is shown on the next several pages.

The format and Budget Projects used in this message are the aame as for the FIRL/FILL statistics.


```
ROUTINE UNCLASSIFIED
```



```
 PT 1233
 179220855
RTTUZYUN RULSSG62361 1792201-UUUU--RUEDNAR.
ZNR UUUUY
R2819102 JUN 77
FR COMNAVSUPSYSCOM MASHINETON DG
TO RUEDNAA/FLEMATSUPPO MECHANICSAURG PA
INFO RHAPSPH/COMSUBPAC TIARL HARBCR HI
8
UNCLAS //NOH&41/%
8377 SUBASE PEARL 的界为OR LOAD LIST
A. FMSO 25252:Z SUN 7T
B. FMSO LTR 311FE/4441 SER G25 DTD JAN 77
2. FINANGIAL STATISTIES FMDED REF A APPROVED.
2. FMSO AUTHORIZED TO RELEASE SUPPLY AIDS IAN M/S 23 OF REF B.
BT
8351
```

NWNA

## HAVAL MEPAGE



FROH: FLEMATSUPPO MECHANICSBURG PA
TO: NAVSUPSYSCOMHQ UASHIAGTON DC
INFO: COMSUSPAC PEARL HAREOR HI
UNCLAS //NO4441//
1972 SUBASE PEARL HARBOR LOAD LIST
A. FMSO LTR 9111C 4441 SER 425 OF 4 JAN 33

1. STATISTICS FOR SUBN LOAD SUBMITTED IAW MILESTONE 11 OF

REF \{A\}.



RAVAL EESSAGE


ferasmor		$\bullet$	V. HICKEY			Phone $\alpha$ T M233?cmcexco or	$\begin{gathered} \hline \hline \text { Page } \\ \vdots \\ \underline{2} \end{gathered}$	piacis 3
Eres		TOn/tod		noutso ar				
15 JUNE 1977			-					
marenema	Data/trme gnour		$\begin{aligned} & \text { PRECE. } \\ & \text { DENCE } \end{aligned}$	FLash	Immediate	manary		
			ACTION					
			INFO					


	total increases $18$	BUDGE	T PROJECT $18$	- total value $1,606$
	3.836		28	204,009
	573		14	b6at34
NSA	4,427		- ..-	- 272.251
APA	2	..	. -	3.069
TOTAL	4,429			- 275,320
	TOTAL decreases	BUDGET	Project	... total value
	37		18	$\therefore$ 12,261
	4,381		28	$\cdots 174 \times 460$
	774		14	139,079
	3.		34	
NSA	5,175			* 3E6,246
APA	8			14,712
total	5,203			- 341.158

[^8]UNCLASSIFIED
OATE TME GAOU
$\lambda$



APPENDIX A

## DEPTH COMPUTATIONS USING PROBABIIITY

DISTRIBUIION

The depth computations for both FIRI/FILI and TARSLL Load Lists use probability distributions in determining the quantities. The need for the use of probability arises from the concept of Risk - the chance of running out of stock during the Support or Rempply Period. Two probability distributions are used - the Poisson and the normal. Since the normal distribution is used in most cases, we will discuss it first.

DEPTH COMPUTATION USING THE NORMAL DISTRIBUIION

Two parameters are necesaary to describe a particular normal distribution. These are the mean, a measure of the average value, and the standard deviation, a measure of the spread of the distribution. An example of a general normal distribution where $\mu$ is equal to the mean and $\sigma$ equal to the standard deviation.

In the normal distribution, 68 percent of all values will lie within one standard deviation of the mean $(\mu \pm \sigma), 95.5$ percent within two standard deviations ( $\mu \pm 2 \sigma$ ), and 99.75 percent within three standard deviations ( $\mu \pm 30$ ). Looking at it another way, 16 percent of the values will be greater than $\mu+\sigma$ and 2.25 percent will be greater than $\mu+2 \sigma$.

Thus, if we wish to keep the risk of stock out to 16 percent, we should make our Load List quantity equal to $\mu+\sigma$. This means that, during the Support or Resupply Period, the probability of running out of stock is 16 percent and the probability of satisfying all the demands is 84 percent. It does not mean that 84 percent of all demand will be met and 16 percent will not.

The mean and standard deviation are $W A D_{S P}$ and $\sigma_{W D}$, respectively, for the FIRL/FIIL and Convential Tender Load Lists and $\bar{D}_{R P}$ and $\sigma_{R P}$ for the FBM Tender Load List.

The accaptable level of risk is another essential input to the depth computations. Knowing the Risk allows us to find the $t$ - value. We could either use an expanded version of the table shown on the next page or, as the UICP Load Liet operation does, use the following computations:
I. Risk less than or equal to 0.5

1. Calculate n

$$
n=\sqrt{-\ln \left(R i s \dot{K}^{2}\right)}
$$

1n represents the natural logarithm. A short cable of these over a few values of risk is shown on the same page as the $t$ - value. (Note: the reader is urged to use more detailed tables if exact calculations are desired.)
2. Calculate t

$$
t=n-\frac{2.515517+0.802853 n+0.010328 n^{2}}{1+1.432788 n+0.189269 n^{2}+0.001308 n^{3}}
$$

II. Riak greater than 0.5

1. Calculate $\Omega$
$n=\sqrt{-\ln \left[(1-R i s k)^{2}\right]}$
2. Calculate t

$$
t=a-\frac{2.515517+0.802853 n+0.010328 n^{2}}{1+1.432788 n+.189269^{2}+0.001308 n^{3}}
$$

Once the $t$ - value has been found, the preliminary Load ist depth can be computed.

$$
\text { Preliminary Depth }=\mu+t \sigma
$$

The normal diatribution is used in all instances for the FIRL/FILL and Conventional Tender Load Liats and for the FBM Tender Load List when $\bar{D}_{R P}$ is greater than one unit.

## t- Vaite table

1

Riak	
0.1	1.28
0.2	0.84
0.3	0.76
0.4	0.25
0.5	0.00
0.6	-0.25
0.7	-0.76
0.8	-0.84
0.9	-1.28

## SHORT TABLE OF NATURAL LOGARITHMS

R1ak	$\underline{\text { ln }(\text { Risk })}$
0.1	-4.605
0.2	-3.219
0.3	-2.408
0.4	-1.833
0.5	-1.386
0.6	-1.022
0.7	-0.713
0.8	-0.446
0.9	-0.211

The Poisson probability is used to compute the depth for FBM tenders when the expected Resupply Period Demand ( $\bar{D}_{R P}$ ) is less than or equal to one.

The depth computation is a trial and error procedure, as follows:

1. Compute the probability that the actual demand during the Reaupply Period will be for zero units

$$
\text { Prob (Dmd }=0)=e^{-\bar{D}_{R P}}
$$

e is a constant and is the base of the natural logarithm. A short table of these is mhown below.

$\bar{D}_{R P}$	$e^{-\bar{D}_{R P}}$
0.0	1.000
0.2	0.819
0.4	0.670
0.6	0.549
0.8	0.449
1.0	0.368

Thus, the probability that the actual demand will be for zero units, if $\bar{D}_{R P}$ is equal to 0.6 , is 0.549 .
2. Compare probability to Risk

If Prob (Dmd - 0 ) is greater than or equal to 1 -Risic, set
Depth to zero.

If Prob (Dma = 0) is less than 1 - Risk, continue to step 3.
3. Compute the probability that the actual demand is one

$$
\text { Prob (Dad = 1) }=\bar{D}_{R P} \times\left[\text { Prob }\left(D_{m d}=0\right)\right]
$$

In our example, the probability would be $0.6 \times 0.549=0.329$.
4. Compare probabilities to Risk

If Prob (Dmd 0 ) + Prob (Dmd = i) is greater than or equal to
1 - Risk, set Depth to one. Otherwise, continue to next step.
5. Compute the probability that the actual demand is two

$$
\text { Prob (Dmd }=2)=\bar{D}_{R P} \times \frac{\text { Prob (Dmd }=1) 1}{2}
$$

In our example, the probability would be

$$
\frac{0.6 \times 3.29}{2}=0.099
$$

## 6. Compare probabilities to Risk

```
If Prob (Dmd = 0) + Prob (Dmd = 1) + Prob (Dmd = 2) is greater
than or equal to l - Risk, set Depth to two. Otherwise, continue
to next step.
```

7. Process continues until Depth is found.

After the Risk-based Depth computed in Appendix A has been subjected to various conatrainta and posaibly an override, the probability distributions are called on once more to compute the expected number of units short. The same probability distribution used to compure the depth is used to compure the units short.

UNITS SHORT USING THE NOPMAL DISTRIBUIION

This procedure requres as input the mean demand ( $u$ ), the standard deviation of demand ( $\sigma$ ), and the Depth which we are going to abbreviate as 2. The procedure 1s:

1. Calculate new $t$ - value
$t=\frac{2-\mu}{\sigma}$
2. Compute intermediate value, $X$

$$
x=\overline{2}\left(1+.196854|t|+.115194 t^{2}+.000344\left|t^{3}\right|+.019527 t^{4}\right)^{4}
$$

3. If $t$ is negative set $X=1-X$
4. Compute intermediate value, $Y$
$Y=0.3989 e^{\frac{-t^{2}}{2}}$
5. Compute intermediate value, $V$
$V=[Y-t x X] \sigma$
6. Compare V to $\mu$

If $V$ is greater than or equal to $\mu$, set Units Short to $\mu$

If $V$ is less than the $\mu$, set Units Short to $V$
7. If computed units short is negative, set equal to zero.

UNITS SHORT USING THE POISSON DISTRIBUIION

Again, this distribution is used only with FBM tenders when the Reaupply Period demand is less than or equal to one.

1. Calculate intermediate value, $S$
$S=$ Depth x[Prob (Dmd - 0) ]
2. Set intermediate value, $X$, to one.
3. Compare depth to X

If Depth leas than or equal to $X$,
Units Short $=\mu-$ Depth $+S$
If Depth greater than $X$, go to Step 4.
4. Compute probability the actual demand equals $X$
5. Calculate intermediate value, $S$
$S=$ old $S+($ Depth -X) Prob (Dad - X)
6. Increase intermediate value, $X$, by one
$X=$ old $x+1$
7. Go to Step 3.

The procedure will continue until a Units Short computation is made.

	APPENDIX C LOAD LIST ACRONYMS
AC	Application Code
AEL	Allowance Equipage Inst
APS	Combat Store Ship
APA	Appropriation Purchases Account
APL	Allowance Parts List
ARQ	Average Requisition Quantity
ASO	Aviation Supply Office
BRF	Beat Replacement Factor
Carco	Consolidated Afloat Requiaitioning Guide, Overseas
CASREPT	Casualty Report
COMVAVLOGPAC	Commander, Naval Logistics, Pacific
COMSURFLANT	Commander, Surface Fleet, Atlantic
CNO	Chief of Naval Operations
DLSC	Defense Logistic Support Center
ER	Equipment Related
FBM	Fleet Ballistic Missile
FILL	Fleet Isaue Load List
FIRL	Fleet Issue Requirements List
FMSO	Fleet Material Support Office
FSC	Federal Supply Classification
FSG	Federal Supply Group
LAC	Load Activity Code
3M	Maintenance and Material Management


MDE	Master Data File
MLSF	Mobile Logistic Support Force
MRU	Minimum Replacement Unit
NAVSUP	Naval Supply Systems Command
NER	Non-equipment Related
NIIN	National Item Identification Number
NMDF	Navy Management Data File
NPFC	Navy Publications and Forms Center
NSA	Navy Stock Account
PMP	Program Management Plan
POS	Peacetime Operating Stock
PWRS	Prepositioned War Reserve Stock
PSI	Program Support Interest File
RIC	Repairable Identification Code
SCA	System Constants Area
SMAR	Supply/Management Aid Record
SPCC	Ships Parts Control Center
SSPO	Strategic Systems Project Office
SSSD	Strategic Systems Support Division
TARSLL	Tender and Repair Ship Load List
TYCOM	Type Commander
U/I	Unit of Issue
UIC	Unit Identification Code
UICP	Uniform Inventory Control Point Program
WSF	Weapon Systems File

This section contains definitions of the most important words and phrases that you will encounter in the manual.

## ACCEPTABLE LEVEL OF RISK

The Risk we are willing to accept of running out of stock during the Support Period. Computed by the Load List operation based on the characteristics of the item or fnput to the operation.

## AVIATION SUPPLY OFFICE (ASO)

One of the Navy's two Inventory Control Points (ICPs). Primarily responsible for the Management of the Navy's inventory of aeronautical items.

## BEST REPLACEMENT FACTOR

A fraction that describes the percent of the population of an item that can be expected to fail within a year.

## CANDIDATE

An item given consideration for inclusion on a Load List. COGNIZANCE SYMBOL (COG)

A two-position code used to identify and designate the ICP, office, or agency that exercises supply management.

## COMBAT STORE SHIP (AFS)

The ship that is responsible for the surface ship resupply mission.

## CONSOLIDATED AFLOAT REQUISTIONING GUIDE, OVERSEAS (CARGO)

The published Load List document for the FIRL/FILL process.

## CSSR PAGE

Computer printed form that provides information reflecting the inventory position of an item.

## DEMAND

The number of units of an item requested by customers in a given time period. In the Load List operation, we are only concerned with the Mobile Logistics Support Force (q.v.) demand.

## GLOSSARY <br> Page 2

## DEMAND AVERAGE

A value of recurring demand that is obtained by averaging past recurring demand observations.

## DEMAND FORECAST

A forecast of the demand that can be expected in some future time period. In the Load List operation, based on either the demand average ( $q . v$. ) or on a function of the Best Replacement Factor (q.v.) and the population (q.v.).

## DEMAND OBSERVATION

The compilation, for a given time period, of the Mobile Logistic Support Force (q.v.) demand for an item from all customers.

## DEPTH

The quantity of an item included on a load.
EAM CARD
The 80 column card used by computers.

## EFFECTIVENESS

A measure of how well the load will satisfy expected demand or how well it satisfied experience demand.

## ESSENTIALITY

A measure of the importance of an item to the Navy's mission.

## FIRI MASTER ATLANTIC (PACIFIC) FILE

The file containing the records of the most recently sonstructed Atlantic (Pacific) FIRL/FILL.

## FLEET ISSUE DEMAND

Demands for material from MLSF units that is placed by customer ships. Resupply demand.

FLEET ISSUE LOAD LIST (FILL)
That part of the FIRL that is deployed on a particular Combat Store Ship (q.v.) or at a designated shore base.

The range (q.v.) and depth (q.v.) of material required to support the Fleet (Atlantic or Pacific) under a projected wartime environment for a designated pe:iod of time.

## FLEET MATERIAL SUPPORT OFFICE (FMSO)

NAVSUP's computer support and systems analysis organization. Responsible for the design and development of the computer programs of the UICP system and managing the Load List operation.

## FLEET SUPPORT FACTOR

Demand multiplier representing the increased tempo of operations expecred during wartime. Used in FIRI/FILI process.

## INDUSTRIAL DEMAND

Demand originating from the industrial shops of tenders, repair ships, and support detachments. Results from work performed for supported fleet units.

## INVENTORY CONTROL POINT (ICP)

An organizational unit or activity that is assigned primary responsibility for the supply management of a group of items.

## LOAD LIST MASTER FILE

A separate file is made for each TARSLL and contains the records of the most recently constructed load.

## MASTER DATA FILE (MDF)

The file that contains information about the characteristicsmanagement data, asset position, requirements, levels, and forecasts-. of those items managed by an ICP.

## MLSF Master Demand File

The file containing the record of MLSF demands for the most recent 24 months.

## MOBILE LOGISTIC SUPPORT FORCE (MLSF)

The ships and selected shore activities that have responsibility for providing the Operating Forces with resupply and repair support. Consists of Combat Store Ships, Destroyer Tenders, Submarine Tenders, Repair Ships, and selected shore activities.

## GLOSSARY

Page 4

NATIONAL ITEM IDENTIFICATION NUMBER (NIIN)
An identifying number for inventory items.
NATIONAL STOCK NUMBER (NSN)
An identifying number for inventory items. Includes the NIIN.
NAVY MANAGEMENT DATA FILE (MMDF)
The file containing management data for items reflecting Navy interest as registered in the Federal Cataloging Program.

## NMDF ADDENDUM FILE

Cross references superceded NIINs to current NIINs.

## PROBABIIITY

The measure of the likelihood that an event will occur.

## PROGRAM SUPPORT INTEREST (PSI) FILE

The file containing information relative to items for which the ICP has Program Support responsibilities but another ICP or DSC has Supply Support responsibilities.

## RANGE

The variety of items on a load.
SHIPS PARTS CONTROL CENTER (SPCC)
One of the Navy's two Inventory Control Points (ICPs). Primarily responsible for the management of the Navy's inventory of nonaeronautical items.

## SRIM LISTING

Preliminary output of TARSLL process. Used for review.

## STANDARD DEVIATION

A measure of the variability of observations. The square root of the variance (q.v.).

## SUPPLY/MANAGEMENT AID RECORD (SMAR)

A record prepared for each item on a load contains management data and quantities.

## SUPPORT PERIOD

Length of time load is expected to support Fleet requirements.

## TECHNICAL OVERRIDES

Manual inputs that can be used to add or exclude items from the range of a Load List and to fncrease or decrease the computed depth for an item.

TEMPO FACTOR
Demand multiplier representing the increased tempo of operations expected during wartime. Used in the TARSIL process.

## TENDER AND REPAIR SHIP LOAD LIST (TARSLL)

The load representing the projected material requirements for the repair missions of Destroyer Tenders and Repair Ships and the repair and resupply missions of Submarine Tenders.

## TOTAL PARTS POPULATION

The total number of a particular item in the system.

## UNIT COST

The cost of one unit of an item.
UNIT IDENTIFICATION CODE (UIC)
A six-position code that identifies a specific ship or shore activity.
It is composed of a five-digit numeric UIC/Accounting Number preceded by an alpha " $R$ " for a ship or an alpha " $N$ " for a shore station, retrofit activity, etc.

## UNIT OF ISSUE (U/I)

The quantity in which an item is distributed: pound, foot piece, barrel, etc.

UNIFORM INVENTORY CONTROL PROGRAM (UICP)
The Navy's automated inventory control system for ICPs.

## GLOSSARY

Page 6

## VARIANCE

A measure of the variability of observations. Calculated by taking the average of the squared deviations of the observations from the expected value.

## WEAPON SYSTEM FILE (WSF)

The file containing information about an end use weapon broken down into systems, subsystems, equipments, components, sub-components, and parts.


```
Component Cut;
 6-5
Component Data File;
 6-40
Consolidated Afloat
Requisitioning Guide, Overseas;
 1-16, 5-12
Consolidated Stock Status
Report (CSSR);
 9-8
Critical Equipments Override;
 3-4
Defense Logistics Support Center;
 2-9
Demand, Fleet Issue;
 2-2
Demand, Industrial;
 2-1
Demand Validation
 2-3
Edited Candidate Review Record
 6-30
Effectiveness, Frequency;
 8-1, 8-6
Effectiveness, Gross;
 1-14, 8-8
Effectiveness, Net;
 1-14, 8-6
Effectiveness, Quantity;
 8-1, 8-6
Effectiveness, Requisition;
 \(1-15,5-18,5-30,6-23,6-27\)
Effectiveness, Unit;
 \(1-15,5-19,5-29,6-22\)
```

$\begin{aligned} & \text { Equipment-related; } \\ & 1-8 \end{aligned}$	FIRL Only; $5-15,5-21,5-24$
$\begin{aligned} & \text { Error/Review List; } \\ & 9-3 \end{aligned}$	First Echelon of Resupply; 1-1
Expected Requisition Satisfied; $5-26,5-27,6-20$	Fleet Issue Load List; 1-6, Chapter 5, 8-1
Expected Requisition Short; $5-26,6-20,6-26$	Fleet Issue Requirements List; 1-5, 1-6, Chaptex 5, 8-1, 9-5
Expected Units Satisfied; $5-26,6-19,6-26$	Frequency distribution; $5-10,5-11,9-9$
Expected Units Short; $5-26,6-19$	History Change File; 2-8
Federal Supply Group; 5-11	$\begin{gathered} \text { Hul1-tailored; } \\ 6-1,6-5 \end{gathered}$
FILL; see Fleet Issue Load List	LAC see Load Activity Code
FILL Average Requisition Size; 5-9	Load Activity Code; $5-7,7-1,8-3$
$\begin{aligned} & \text { FILI Depth; } \\ & 5-23 \end{aligned}$	Load List Branch; 6-7, 9-16
$\begin{aligned} & \text { FILL Statistics } \\ & 9-9 \end{aligned}$	Load List Extract Request File; 2-13
FIRL; see Fleet Issue Requirements List	Load List Index;
FIRI Average Requisition Size; $5-8$	Load List Master File; 1-13
FIRI Demand Extraction File; 5-6	Load List Stock Number File; 8-2
FIRI Depth; $5-20,5-21$	3M Reports; 3-5
FIRI History File; 5-6	Maintenance cut; 6-5
FIRL Master Atlantic (Pacific) File; 1-13	Master Candidate Load List File 6-39


Master Configuration File $6-40$	Override, Minimum Quantity; $\begin{aligned} & 3-2,5-14,5-23,5-24,6-14, \\ & 6-18,6-25 \end{aligned}$
Master Data File	
1-4, 4-1, 4-4, 4-5, 6-2, 9-16	Override Effectiveness;
Master FIRL Candidate Record; $5-6,5-7$	Peacetime Operating Stock; $6-8,6-23$
Matched Candidate/Demand File; $8-5$	POS Adjustment Factor; $6-24$
Minimum Replacement Onit; $6-18,6-26$	Post-Model Changes; $3-9,6-39$
MLSF Demand Collection Program; 1-3, Chapter 2	$\begin{aligned} & \text { Preferred NIIN File; } \\ & 2-8 \end{aligned}$
MLSF Master Demand File; $\begin{aligned} & 1-11,2-8,2-9,2-10,2-11,2-12, \\ & 2-13,6-2,8-2 \end{aligned}$	Pre-model override; 3-6
Navy Management Data File; $1-3,1-12,2-13,5-6$	Prepositioned War Reserve Stock; 6-8, 6-14, 9-5
New Equipments Override; 3-3	Probability distribution, normal; $\begin{aligned} & 5-25,6-17,6-25, A-1, A-2, \\ & A-3, A-4, B-1, B-2 \end{aligned}$
NMDF Addendum File; $1-12,2-8,5-6,7-3,8-4$	Probability distribution, Poibson; $6-25, \mathrm{~A}-5, \mathrm{~A}-6, \mathrm{~A}-7, \mathrm{~B}-2, \mathrm{~B}-3$
$\begin{aligned} & \text { Non-equipment-related; } \\ & \text { 1-18 } \end{aligned}$	Program Management Plan; $5-1,6-1,9-6,9-15$
$\begin{aligned} & \text { Ocean-tailored; } \\ & 1-8,6-1,6-5 \end{aligned}$	Program Support Interest File; $1-5,4-1,4-4,4-5,9-16$
$\begin{gathered} \text { Organic Level of Supply; } \\ \text { 1-1 } \end{gathered}$	PWRS Adjustment Factor; $8-3$
Override, Exclusion; $3-2,6-18,6-25$	Quarterly Demand Forecast; $6-9,6-10$
Override, Mandatory Quantity; $\begin{aligned} & 3-1,5-14,5-23,5-24,6-14, \\ & 6-17,6-25 \end{aligned}$	Range Cut; $5-14,6-7$
Override, Maximum Quantity; $3-2,5-23,5-24,6-19,6-26$	Relative Item Essentiality;

```
Repairable Identification Code
 4-1, 4-2
Resupply Period;
 6-24, 6-26
RIC;
 see Repairable Identification Code
Risk;
 5-19, 5-21, 5-27, 6-27
Safety stock;
 5-21
Second Echelon of Resupply;
 1-1
Ship-tallored;
 1-8, 6-1, 6-5
SKIM, Demand Frequency;
 3-8, 3-9, 6-33
SKIM, Price;
 3-8, 3-9, 6-33
SKIM, Quantity;
 3-8, 3-9, 6-33
SMAR
 see Supply/Management Ald Record
Standard Deviation of
Quarterly FILL Demand;
 5-9
Standard Deviation of
Quarterly FIRL Demand;
 5-8
Stock Control Division;
 3-5, 9-8
Stock Number Sequence List;
 6-30
Strategic Systems Project Office;
 6-40
```

```Total FILL Frequency; 5-9```	Wartime Average Support Period Demand; $5-17,5-24,5-25,5-26$
Total FIRI Demand; 5-8	Weapon Systems File; $\begin{aligned} & 1-4,3-5,4-1,4-2,4-3,4-6, \\ & 6-2,9-8,9-16 \end{aligned}$
```Total FIRL Frequency; 5-8```	Weapon System Supplement; $1-11,6-40$
$\begin{aligned} & \text { Type Commander (TYCOM); } \\ & 6-2 \end{aligned}$	WSF;
Unmatched Demand History File; $2-10,8-2,8-5$	see Weapon Systems File

FBM TLL MODEL ANALYSIS

VITRO (MSE) 10 January 1977

During October, 1976 Vitro personnel in conjunction with SP 206 attended at FASO a presentation on the math model to be developed for FBM ILI production. The data used for determining the math model was AS-31 demands during a period when only two (2) SSBNis were supported and was judged inadequate by SSPO. A more-in depth study was requested by SSPO and FMSO is scheduled to deliver this study in the near future (FMSO TELECO:) for SSPO (SP-206) evaluation.

The following is MSB's comments on the "Nomal-Poisson" math model proposed by FMSO during the October 1976 presentation and Vitro (3SB)'s recomendations for TLL model improvement.

## 1. TLL GOAL

The goal of an effective TLL model is to provide a maximum predicted protection level at a minimum stocking level/cest. The FMSO is currently planning on developing a 25,000 item TLL with a $98 \%$ ( 2 siginificant digit) predicted protection level at a cost of 3 million dollors. Previous studies of the FMSO TLL on-site operational performance indicate the model performs considerably less efficient than predicted. The purpose of this paper is to analyze TLL production procedures and recommend parameters for an improved TLL model.

## 11. DEMAND/FREQUENCY DATA ANALYSIS

VITRO (MSB) under the direction of SP20603 (LCDR. P. Berger) has reviewed site I, II, and IV demand/frequency data (see attachment 1). The study highlights that 1,000 items, of which $95 \%$ are consumables, supported $39 \%$ of the demand frequencies for the combined sites. An additional 1,000 items provided an additional $13 \%$ support. By assuring these items are stocked, a $52 \%$ "baseline" TLL support effectiveness is readily obtained. The need for an additional 23,000 items to obtain a $98 \%$ predieted protection level is questionable.

## III. DEMAND/FREQUENCY DATA DISTRIBUTION PATTERNS

In analyzing site I, II, and IV demand/frequency data, the following pattern is noted. Consumable items, with high frequencies and demand quantities, will compute to a high mean quantity ( $i$ ) and therefore are normally distributed. Equipment related items, in comparison to consumable items, experience low frequencies and demand quantities. The demand pattern for equipment related items tends to shift owoy from the mean (lots of qty<2 in comparison with qty $>2$ ) and the computed $\lambda$ is small.

The probability distribution pattern for equipment related items is not normal, but follows the Poisson pattern (see below). The Poisson distribution pattern approaches the normal pattern where $\lambda=5$. A "quick look" at VITRO (MSB) demand data indicates that $c$ Poisson Distribution with $\lambda=1-2$ most closely simulates $F B M$ equipment related item demands.

POISSON DISTRIBUTIONS




Poisson distribution for sclected values of $\lambda$

## IV. CURRENT FMSO TLL PRODUCTION PROCEDURES

The current TLL production procedures, in general, are as follows (MSB belief):
A. TLL candidates are selected and a predicted demand quantity is computed based upon (BRF $\times$ PCP) data
B. Demand data (most current 2 years) for FBM Tender and assigned SSBN hull mix is matched versus the "selected" TLL candidates

1. Where no match occurs, the item with demand is added to the TLL
2. Where a match occurs the demand quantity replaces the predicted $B R F \times P O P$ demand quantity.

## V. PROBLEM AREAS

## A. Unstable Load Quantities

The action of replacing predicted demand with actual demand based upon a 2 year statistical sample results in an unstable loading factor for individual items as shown below:

TLLDOC ITEM LOAD QTY FLEET DEMAND

1	$A$	5 (BRF $\times$ POP $)$	0 ( 1 st 2 yr somple)
2	$A$	1 (DEMAND DATA)	1 (2nd 2 yr sample)
3	$A$	5 (BRF $\times$ POP)	0 ( 3 rd 2 yr somple)

Item A is continuously onloaded/offloaded. Because of this condition, deployed Tenders are dependent upon the previous on-site Tender's demand dato to adjust their MRF to "true" operational stocking levels.

When applying the demand data to their MRF, many items must also be added due to exclusion from the new TLL. Since oll demanded items are added in the FMSO TLL production procedure, problems exist in the current demand recording/ implementation loop.
i $\mathrm{a}^{2}$.

## B. Demand Recording Interval

Where a statistical somple is used to predict, the predictions will vary because

failure rates, SSBNs supported during the selected interval, etc. If the observance interval were extended from the current 2 year ( 8 quarter) period to the previous Tender's deployment span, o more accurate sample, particularly for equipment related items, would result. SP206/VITRO recorded SSBN SRB and ACCESS data could be made available to the FMSO for this purpose.

## C. BRF Updates

The validity of the predicted demand quantity is dependent upon frequent updating of the BRF values with FBM oriented usage data (last accomplished 2 years ago). Historically, only $15-20 \%$ of a Tender's stocked items experience demands, therefore the mean value ( $\lambda$ ) computation is significantly based upon prediction data ( $B R F \times P O P$ ). Actual fleet demand data plays an almost insignificant role in the FMSO mean value computation. Significant numbers to be obtained from FMSO prior to selecting a TLL production model are:

1. Number of predicted demand quantities replaced by actual demand quantities (greater and less)
2. Number of items, that were not candidates, added due to actual demand

If the percentage of of "demand effected" items in the TLL is significantly small, the value of using fleet demand dato in the model, except for BRF updating, is questionable. The probability distribution curve will be based, $90 \%$ or greater, on prediction data not fleet demand data.

## D. Determination of Probability Distribution Curve

The following are some different methods which maybe used to compute $\lambda$ for probability distribution curve selection.

1. Combine prediction data and fleet demand data for both equipment related and consumable items to compute $\lambda$. Where $\lambda<1$ use Poisson Distribution and where $\lambda>1$ use a Normal Distribution (MSB belief to be current FMSO procedure). This procedure has the following disadvantages.
o. apples (prediction dato) and oranges (statistical sampling of actual FBM demand) are being mixed to determine $\lambda$. This is somewhat acceptable if BRF is frequently updated (not current procedure).
b. consumable items demand result in large $\lambda$
c. large $\dot{\lambda}$ results in Normal Distribution and more equipment reloted items (high cost and limited quantities in FBM Progrom) being stocked than required
2. Extract consumable items and compute $\lambda$ based upon statistical sampling of FBM demand data for equipment related items only. A Poisson distribution will result ( $\lambda$ small). Smaller quantities of equipment related items will be stocked for maximum protection level.
3. Extroct consumable items, and use prediction dato ( $B R F \times P O P$ ) to compute $\lambda$. FBM demands (less than $20 \%$ of range of prediction data) would be used to updote BRF values and prediction quantities where required. This value of $\lambda$ will be dependent upon BRF $\times$ POP prediction quantities. A Nomol to Poisson switchover maybe required due to varying $\lambda$ and stocking quantities will vary.

Other combinations exist, and it is recommended that SSPO (SP206) study the impact of the different procedures prior to selecting parameters for a probobility distribution curve.

## VI. RECOMMENDED PARAMETERS FOR AN IMPROVED TLL MODEL

The following are VITRO (MSB)'s recommendations for on improved TLL model:
A. Extract consumable items from TLL computations and develop c "Consumable Item Section" thot:

1. Makes use of consumable item commonality
2. Will result in a lower mean value $(\lambda)$ computation for equipment relatec items
B. Frequently update BRF with FBM oriented usage data.
C. Expond statistical sample of frequency demand dato period from 2 years to on-site deployment span of relieved Tender.
D. Replace predicted values with FBM demand quantities only whére fleet demand predicted value.
E. Use Poisson Probability Distribution curve for equipment related items; eliminote switchover to Normal Distribution in the TLL model.

Recommendation $E$ is based upon the belief thot $\lambda$ for equipment related items is small (less than 5 where Normal and Poisson distributions equate). To verify or disprove this ossumption it is recommended that VITRO (MSB) plot statistical sample of equipment related item
frequency demand data for varied operational periods of 2, 3, and 4 years for site 1, 11 , and IV Tenders. The data available in the usage segment of the FUDAS record (see attachment 2 for AS-33 data available) would be displayed in attachment 3 format. The graphical displays would provide a firm basis for an SSPO (SP206) decision to use or not use the Poisson Distribution without switchover to a Normal Curve in the TLL model. The Normal Distribution results in stocking greater on board quantities for $\lambda$ than the Poisson Distribution in the TLL Model (see attachment 4) to obtain an equal protection level.
VIII. ADVANTAGES OF RECOMMENDED CHANGES

The proposed revisions to the TLL model should provide the following improvements:
A. A TLL more oriented to actual on-site requirements at reduced stocking levels/cost.

1. Poisson Distribution used for equipment relared items
2. Consumable items will be stocked using "Consumoble Stocking List" that:
a. is based upon "proven periodic neects" versus prediction data and statistical sampling of demand data
b. makes use of commonality of consumable demand for all Tender sites.
B. Frequent $F B M$ oriented update of BRF will result in more accurate prediction data.
C. Expanded period of FBM frequency demand data observance should result in a more accurate picture of equipment related item demands and reduce instability of stocking quantities currently existing.
D. Simplificetion of the TLL model should result in improved production schedules, stock numbers become "OLD" during current production interval.

$$
\dot{\vdots} \dot{\vdots}
$$

## BRENDON: OF AS-33 KILL MIX

SSE:	HULL COUNT	
640	25,289	7,413
641	25,587	7,020
642	23,421	6,409
643	25,486	7,023
644	25,060	7,447
645	24,917	5,775
654	25,050	5,922
655	22,364	5,756
656	25,223	6,531
657	24,634	4,480

* Vitro maintains a unique ADP record for each SSE:i/Stock number/iPL number demand reported via the ACCESS data.

$$
\dot{i}
$$

DETERMINATIOA OF DISTRIRITINN CURYE

A. ent 4

9L6I $(S=V$ ) uofznqfałsfa uosefod pue feuldon
( 10
$7=84 \%$ PROT. (POISSON)

# DEPARTMENT OF THE NAVY NAVY FLEET MATERIAL SUPPORT OFFICE MECHANICSBURG. PA. 17055 

EA CODE 717 2e8.es31 ext, aUTOVON 277 ext. 3641

From: Commanding officer, Navy Fleet Material Support office To: Director, Strategic Systems Project office

Subj: FBM Tender Load List Quantities
Kef:
(a) SSPO 1tr $205 / \mathrm{REC} / 953$ of 21 Jul 1975
(b) FUSS lir $971237 / \mathrm{in} / 185250$ of 3 Feb 1977


Encl: (1) ALRASD'Working Memorandum 304 - FBM Load List Prediction Model

1. Reference (a) requested development of a method for accurately estimating FE: (Fleet Ballistic Missile) load list quantities at time of provisioning. A study description of a proposed method was forwarded by reference (b). The study has been completed and results are forwarded as enclosure (1).
2. Tables have been developed for guidance of the technician during
 items. The tables are based on policies currently incorporated in the approved fencer load list model. It is expected that provisioning decisions should closely approximate later load list determinations.

Copy to:
OPNAV (412)
NAVSUP (034/04A)
SPCC (500/880/870)

R. M. ST. HARTITM

By direction
-


ALRAND Working Memorandum 304
Subj: FBM Load List Prediction Model
Ref: (a) Operations Analysis Study Peport 127 - FBM Load List Study of 31 Dec 1976
(b) ALRAMD Working Memorandum 195 - Load List Standard Deviation Approximation of 3 Mar 1970

1. Purpose. Develop a formula for use during the provisioning of SSBN hull, mechanical, electrical, electronic, - or ordnance equipments to provide tender load list quantities.
2. Background. Technicians determine the range and depth of new investment and repairable items to be added to the tender load lists supporting hulls/equipments being provisioned. Guidance on these determinations has not been coordinated with poliries employed in tLL (tender load list) computation models. As a result, subsequent execution of the model compuces quantities which vary with original provisioning quantities and excosses/shortages are made manifest. provisioning technicians need an equation or tables to determinc range and depth of items that will be in agreement with later load list determinations.
3. Approach. Reference (a) describes the model incorporating approved policy for determination of load list quantities for $F B M$. Salient features of the model are summarized as follows:
a. Demand Distribution. Item demand is described by cither the Poisson or Normal distribution. The poisson distribution is assumed to be descriptive where the forecasted $Q A D$ (Quarterly Average Demand) is one or less. The Normal distribution is assumed where the QAD is greater than one.
b. Demand History. For items with demand history, the $\& A D$ is basec on the latest two years of recorded demand. Where no damand history exists for the item, the QAD is the product of the BRE (Best Replacement factor) and the population to be supported divided by four.



971237 /WhK 20 May 1977

Subj: FBM Load List Prediction Model -
c. Model Charactefistics. The optimization model minimizes demand-weighted requisitions short. It is a variable protection model considering unit price, the average requisition size and $Q R$ for the item. The protection level by item is constrairred to betaminimum of in and -a maximum oflege, Further constraints are applicd to items with nö demang history. The maximum allowed depth is 50 units or $\$ 100$ पunless excecded by the minimum replacement unit. Model 'goals are a minimum of 95 fet effectiveness and an 85\% gross effectiveness is desired.
d. Model Application. The production load for the AS33 and test loads for the AS3l were developed with the approved model. TABLE I shows item distribution based on unit price and QAD for the AS3l. The same data is presented in TABLE II for the AS 33 . By observation, approximately $90 \%$ of the load items have unit prices below $\$ 100$, also approximately $85 \%$ of the items have a 2 AD of 1.00 or less. TABLES III and IV show distribution of number of items by price categories, and TABLES $V$ and VI show distribution of items by QAD.
4.. Results. Using the techniques and principles inherent to the approved model, tables were developed for use in the provisioning process. The risk control paraneter for loads developed to date has been set equal to 0.00035 and was used to develop these tables. Where historical data was lacking, the average requisition size was assumed equal to one.

TABLE VII shows predicted tender load list quantities without constraints. If the depth constraint of 50 units and/or $\$ 100$ is applied, then the predicted quantitics are shown in TABLE VIII. The line acrosi ThBIE VIII indicates the threshold where the constraints become active. TABLES VII and VIII are identical for entrics above the linc. It Is estimated that approximately $90 \%$ rf the items provisioned will have unit prices and QADs that $\boldsymbol{c}$ re found above the line in TABLE VIII.

To use the table, the provisioner would need to know the unit price of the item and the forecasted \&AD. The

Subj: FBM Load List Prediction Model
predicted tender load $2 i s t$ quantity would be selected from the appropriate table. Examples: (1) Given: Item unit price $=\$ 40$ and forecasted $Q A D=1.25$ (based on historical demand). Solution: Go to TABLEVII, at intersection of $\$ 40$ column and $Q \cap D$ row of 1.25 , read predicted load quantity =6 units; (2) Given: Item unit price = $\$ 40$ and forecastcd - QAD $=1.25$ (bascd on BRF and installed population). Solution: Go to TABLE VIII, at intersection of $\$ 40$ column and 1. 25 QAD row, read predicted load quantity $=2$ units.
5. Discussion. TABLES VII and VIII will give accurate results in predicting load quantities so long as the model policies remain constant and the candidate file remains representative. This assumes proper application of the tables (TABLE VII for items with a demand history and TABLE VIII for other items) and accurate data is used for selecting load quantity. Should the provisioner select the wrong tahle, the result will still be accurate in 928 of the cases. If the unit price of the item was cstimated at time of provisioning and later changed, then the predicted quantity will be in error. The same applies to the value of QAD. A significant change in the characteristics of the candidate file would require a new risk control parameter to attain the desired goals.

To illustrate the later point, assume conditions require the risk control parameter to be reduced to 0.00001 . TABLE IX shows the unconstrained predicted values for the load and rABLE $X$ shows the predicted quantities where the constraints apply. Using the same entry parameters as in our previous examples, now the predicted quantity for a demandbased item is still six units, and the constraincd quantity is still two units. The numbers in parenthesis indicate the impact of the change aue to the risk control parametcr and werc obtained by comparing quantitics to tneles VII and VIII. The impact of raising the risk control perameter from 0.00035 to 0.005 is shown in TRBLES XI and XII for the unconstrained and constrained situations, respectively. Again, the numbers in parenthesis show changes from the predicted load quantities basnd on the current risk centrol parameter.

Subj: FBM Load List Prediction Model
6. Conclusions and Recommendations. It is expected that predicted load list quantities calculated at time of provisioning will closely approximate quantitics later computed by the model. Changes of unit prices and of
QADs from time of provisioning to actual load computation,
will produce variances in load quantitics. Changes in
Tcharacteristics of the candidatc file, if radical, will necessitate a new risk control parameter and recomputation of the tables for use in provisioning prediction.

To simplify the predicting process, TABLES XIII and XIV have been prepared. The lower range of $Q A D$ has been expanded and unit price ranges have been introduced to reduce the columns of the table.

It is recommended that TABLES XIII and XIV be used for load list quantity prediction at time of provisioning.

Subj: FBM Load List Prediction Model
TABLE I
AS31 CANDIDATE FIIE ITEM DISTRIBUTIO:S (BY PERCEHTAGE OF TOYAL CAMDIDATES)

QUARTERLY	UNTMPRICE					
DELAND	$0-1$.	$1-5$	$5-25$	$25-100$	$100-1000$	SUB-TOTALS
$0-.05$	18.95	13.94	11.88	4.64	3.64	53.05
$-05-.10$	2.89	2.79	2.16	1.31	1.25	10.40
$.10-.50$	5.49	4.95	4.27	2.85	2.65	20.21
$.50-1.00$	1.82	1.30	1.05	0.63	0.54	5.34
$1.00-5.00$	2.79	1.58	1.12	0.64	0.44	6.57
$5.00-100$	1.54	0.49	0.27	0.08	0.05	2.43
$100-1000$	0.11	0.03	0.00	0.00	0.00	0.14
SUB-TOTALS	33.59	25.08	20.75	10.15	8.57	98.14

TABLE II
AS33 CANDIDATE FILE ITEN DISTRIBUTIO:SS (BY PERCE:ATAGE OF TOTAL CANDIDATES)

QUARTERLY	UNIT PRICE						
DEMAND	$0-1$	$1-5$	$5-25$	$25-100$	$100-1000$	SUB-TOTALS	
$0-.05$	15.29	13.91	11.78	4.65	4.01	49.64	
$.05-.1 C$	2.53	2.82	2.56	$\therefore .39$	1.40	10.70	
$.10-.50$	4.92	5.34	4.57	3.14	3.01	20.98	
$.50-1.00$	1.69	1.49	1.24	0.73	0.67	5.82	
$1.00-5.00$	2.58	1.82	1.34	0.84	0.57	7.15	
$5.00-100$	1.66	0.67	0.38	0.17	0.07	2.95	
$100-1000$	0.15	0.04	0.02	0.00	0.00	0.21	
SUB-TOTALS	28.82	26.09	21.89	10.92	9.73	$97.45^{2}$	

${ }^{1}$ Does not include 954 items that had either a predicted QAD $>1000$ or unit price> 1000
${ }^{2}$ Does not include 1439 items that hac either a predicted QAD> 2000 or unit price $>1000$

Subj: FBM Load List Prediction Model
TABLE III
AS 31: NUMBER OF ITEAS BY CATEGORY OF UNIT PRICE

UNIT PRICE CATEGORY	NR.	* OF	CUMUI,ATIVE	
	OF ITEMS	TOTAL	NR. OF ITEMS	
0.00- 1.00	17,323	. 33.59	17,323	33.59
$1.00-5.00$	12,926	25.08	30,249	58.67
5.00- 25.00	10,696	20.75	40,945	79.42
25.00-100.00	5,233	10.15	46,178	89.57
100.00-1000.00	4,420	8.57	50,598	98.14
SUB-TOTAL	50,598			
$\begin{gathered} \text { Items w/demand } \\ >1000 \end{gathered}$	3			
Items w/unit price > 1000	951		51,552	100.00
TOTAL	51,552			

TABLE IV
AS 33: NUMBER OF ITEMS BY CATEGORY OF UNIT PRICE

UNIT PRICE	NR.	\& OF	CUMULATIVE	
CATEGORY	OF ITENS	TOTAL	NR. OF ITESS	CU: 8
$0.00-1.00$	16,295	28.82	16,295	28.82
$1.00-5.00$	14,743	26.09	31,038	54.91
5.00- 25.00	22,371	21.89	43.409	76.80
25.00-100.00	6,171	10.92	49.850	87.72
100.00-1000.00	5,498	9.73	55,078	97.45
SUB-TOTAL	55,078			
$\left.\begin{array}{cl} \text { Items } & \text { w/demand } \\ >1000 \end{array}\right\}$	1.439		56,517	100.00
$\left.\begin{array}{l}\text { Itcms w/unit } \\ \text { price }>1000\end{array}\right\}$	1,439		56,517	100.00
TOTAL	56,517			

971237 /VNK 20 May 1977

Subj: FBM Load List Prediction Model
TABLE V
AS 31: NU:BER OF ITEYS BY CATEGORY OF PREDICTED OUARTERIY NVG DE:GRI:D

AVERAGE DE:AAND CATEGORy	NR.	\% OF	CURULATIVE	
	OF ITEAS	TOTAL	WR. OF TEC:S	CUN \$
$0.00-0.05$	27.345	53.05	27.345	53.05
0.05- 0.10	5,358	10.40	32.703	63.45
$0.10-0.50$	10,420	20.21	4こ.123	83.66
0.50- 2.00	2,751	5.34	45,874	89.00
$1.00-5.00$	3,388	6.57	49,262	95.57
5.00-100.00	2,261	2.43	50.523	98.00
100.00-1000.00	75	0.14	50.598	98.14
SUB-TOTAL	50,598			
```Items w/demand > 1000```	3		50,601	
$\begin{aligned} & \text { Itens w/unit } \\ & \text { price }>1000 \end{aligned}$	951		51.552	100.00
TOTAL	51,552			

TABLE VI

品

unit price in dollars

15.00^{-}	20.00	25.00	30.00
0	0	0	σ
$0(+1)$	a＋1）	$0(+1)$	） 0
$0(+1)$	（ +1 ）	$0(+1)$	）$\alpha+1$
1（＋1）	a +2 ）	0（ +2 ）	
1（1＋1）	4 $1+1$ ）	1（＋1）	$\alpha+2{ }^{\text {a }}$
1（＋2）	（4＋2）	1（＋1）	1（＋1）
1（＋2）	4＋2）	1（＋2）	1（＋2）
$2(+1)$	x＋1）	1（＋2）	（＋2）
$2(+1)$	x＋1）	$2(+1)$	$2(+1)$
2（＋2）	2＋2）	2（＋2）	2（＋2）
3（＋1）	x＋2）	$2(+2)$	2（＋2）
$5(+1)$	（4＋1）	$4(+2)$	4i＋2）
$6(+2)$	（\＄＋2）	$5(+3)$	5（＋3）
7（＋2）	$7(+2)$	6（＋3）	$6(+3)$
8（＋2）	$\alpha+2)$	$7(+3)$	$7(+3)$
13（ +2$)$	1x＋3）	12（＋3）	$11(+4)$
18（＋1）	1x＋2）	$16(+3)$	$1(4+3)$
$23(+2)$	$2 x+2)$	$22(+3)$	$21(+3)$
43	48	$46(+2)$	$45(+3)$
95	95	95	95
142	242	142	142
189	289	189	189
237	237	237	237
473	473	473	473
4723	4723	4723	4723

8
잉

Line acrope table indicates point at which constrainta bezome active

0
0
0
0
0
0
0

00
0
(1)
40.00 \qquad

000000000000020000000000 N
$\begin{array}{r}\$ 2500- \\ \$ 5000 \\ \hline\end{array}$
0000000000000000000000 HRN

\bullet
TABLE XIII
PREDICTED TENDER T.OAD LIST QUANTITX
UNIT IRICE
$\begin{array}{r}8500- \\ \$ 1000 \\ \hline\end{array}$

0000000000円HFraNNmmmoneonn
$\begin{array}{r}\$ 25- \\ 550 \\ \hline\end{array}$

$0000000 \mathrm{HHHHNNmmmm*}$

茲菭
－nの

 7

1	1
	0
0	0
\sim	0
\sim	n
0	n

$\$ 250$ -

 níaioioióoio

TECHNICAL REPORT NUMBER 01862.01-1
STOCK LIST PROVISIONING PROCEDURE
WITH
DETAILED AN/SPS -40 RADAR APPLICATION
FINAL REPORT

Prepared For ELECTRONICS MAINTENANCE ENGINEERING CENTER NORFOLK, VIRGINIA

A. E. Rupp
Contracts N189(181)58090A and N189(62678)60125A

Approved:

W. L. Freienmuth, Manager Research and Development Branch

SEPTEMBER 1966

VITRO LABORATORIES SILVER SPRING, MARYLAND 20910

CONTENTS

Page
Abstract ix
Fcreword xiii
PHRSE I
Section
=. Introduction 1
II. Sumary of Work. 3
Equipment Stock Lists. 3
Suppctt Ship Stock List 9
Depot Stock List 10
III. Input Dãa 11
Data Sources 11
IV. Computer Program 23
Inout Cards 24
Output 28
Variable Parameters 30
Block Diagram 32
Mathematical Model. 34
Modification Methods. 39
Population Cnange 39
Provisioning ievel Change. 42
Equipments per Support Ship Change 42
Stock Period Change 43
Normal Usage Period Change (Dedot). 43
V. Resuits 45
Ectuipment Stock List (Oritical/Noncritical Parts) 46
Equidment Stock Period Variation. 49
Equipment Stock Constraints. 53
Criticai Part Stock List 56
Critical Part (Minimum Depth) Stock List 58
Eçipment Stock List (Earts and Assemblies) 59
ENEC Acjusted List 64
Support Snip Stock List 64

Contents (Continued)

Page
Support Ship Stock Period Variation 69
Support Ship Stock Constraints 69
Depot Stock List 69
Depot Stock Constraints 77
APL Calculations 84
VI. Discussion of Phase I Results. 87
VII. Phase I Conclusions and Recommendations 103
PHASE II
Section
VIII. Introduction 109
IX. Sumnary of work 111
Data Input Format 111
Parts List 113
Essentiality Codes 116
Maintenance Policy 129
Rates 135
Computer Program Changes 137
X. Results 141
Generated Stock Lists (Facility Repair) 141
E:IEC and ESO APL Stock Lists 153
Comparison of Results 159
Cost 170
XI. Conclusions and Recommerdations 173
Number Page

1. Equipment fiesults Summary - Phase I 6
c. AN/SPS-40 Stock-Out Parts (10550/4855 Replacement Rates) 20
2. AN/SPS-4O Stock-Out Parts (ARINC Replacement Rates) 21
L. Equipmert Stook Period Variations - Critical/Noncritical Parts 51
3. Equipment Stock Constraints - Critical/Noncritical Parts 54
4. Equipment Stock Period Variations - Parts and Assemblies 62
5. Equipment Stock Constraints - Parts and Assemblies 65
E. Support Ship Stock Period Variation - Parts Only 70
6. Support Ship Stock Constraints - Parts Only 72
7. Support Ship Stock Constraints - Parts and Assemblies 75
8. Depot Stock Constraints - Parts Only 7ε
9. Depot Stock Constraints - Parts and Assemilies 81
10. Vitro Stock List and APL Comparisons 88
11. Parts Provisioned by Vitro Stock List - Not in APL (1964) 90
12. Parts Provisioned by APL (1964) - Not in Vitro Stock iist 93
13. Parts Prorisioned by APL (196L) - Deleted from Vitro Stock List) 93
14. Figh Rate Parts 99
15. Spares Cost Analysis 104
16. Items Deleted from Stock Consideration 119
17. Code 7 Items 130

TABLES

NumberPage
21. Sumnary of Item Essentiality Code, Stock Jocation and Rates. 234
22. Equipment Stock Period Variations - Faciiity Repair 147
23. Ecuipment Stock Constraints - Facility Repair 2.
24. Support Ship Stock Constraints - Faciiity Repair 150
25. Depot Stock Constraints - Facility Repair. 155
26. Ecuipment Stock Comparison - Phase I anc II 160
27. Parts Provisioned by Vitro and Not APL (1965) 161
28. Parts Provisioned by Vitro and Not EnEC 164
29. Darts Provisioned by APL (1965) and Not Vitro 167
30. Parts Provisioned by 玉aEC and Not Vitro 169
31. Spares Cost Analysis 172

IUUUETRATIONS

Figure Page
1．Program Sumary－Phase I． 4
2．Input Dete Fiow Diagram． 13
j．Compute：Program Eloci Diagram 35
4．Eyuipmemt Stock Perioi Variation Giepir－Critice：／Noncriticei Pa－ts 52
 Paどた $5 \because$
6．Equipmert J̌ock Parioi Varievion Grapi－Parte anc Asieminice． E
 ϵ^{-}
6．Suppori Saip Stoc：Period Vaッiatior Grapi－Parts omy 7
 74
 TG
ミ．Depot ミちock Cons＝raintミ Grapa－Parte Oniy 30
こ．Depou suoci：Constrainti Grapt－Partu anci hsseminios Ξ
こう．Viさro Evoci List－APL Comparison Grapa． 9
－i．Pipeiine Corfiguration i33
－5．Equ゙pmeri Siock Period Vaniation Grape－Faciisti Repeir 14
 145
17．Support Enip Stock Coratraiate Grapia－Feciziこy Repain 146
 154
 Grap． 272
Eu．Exampie Sčeáine 276

$\angle B S$ RACI

Abstract

During the performance of equipment evaluation by the Electronics Maintenance Engineering Center, it was found that a major source of difficulties resulted from inadequate logistic support. Tnis logistic problem was found to be acute on the AN/SPS-40 Radar System. Because of this situation Vitro undertook a logistics study for the Navy under the direction of the Electronics Maintenance Engineering Center.

Tnis report presents the results of the logistics study to determine the procedures requized to estadish a spare parts provisioning list and to develop a computer program for performing the necessary associatec aaic'lations. The methods applied are probabilistic in nature involving the deteminasion of the support necessary to meet a provisioning level. The provisioning level is defined as the likelinood that an equipment o: system will be able to operate for a given period of time without experiencing a stock out or shortage of spare parts. The criterion followed in detemining the sequence in which parts are considered for sparing is to progressively select the part which indicates the highest likelihood of requiring replacement. When sufficient parts have been added to accumulate the desired level, the calculation is complete.

This procedure has been developed for a three echeion supply system composed of equipment site, intermediate stocking point, and major supply depot. In oraer $=0$ properly generate a stock list foz each of the above three locetions the following five items of infomation are used:

1. Complete equipment composition - identiEication of every part in the system by part type.
2. Maintenance policy - lowest location at which replacement or repair can be effected.
3. Item consumption rate - the rate applied is dependent upon the maintenance policy stipulated and therefore may be a rate, failure rate, or mortality rate.
4. Usage factor - measure of expected usage of the equipment or system during tile stock period.
5. Stock policy - additional constraints applied which may require special consideration, e.g., critical part applications. à code format was developed whereby the computer considers the above infomation during compilation of the stock list.

In order to test the ability of the generated procedures, stock lists were produced for the AN/SPS-40 Radar which is composed of 11,729 part applicatiuns. The provisioning parameters used were:

Equipment	-90% provisioning level for a 3 month stock period.
Support Ship -	95% provisioning level for a 6 month stock period
	and 6 equipments per suppore ship.
Depot $\quad-99 \%$ provisioning level Eor a 6 month stock period	
	and 42 equipments per depot.

The above provisioning parameters were used to generate three sets of stock Lists $=0$ responding o three maintenance policies wich were: (1) all maintenance parifomed by the technician aboard ship except for the antenna assemoly; (2) 34 assemolies maintained by the contractor, 3 units maintuined $\because \because$ =he Za a, and the remainder of the equipment maintained b \because the technician
ajoard ship; and (3) 107 units and assemblies maintained by a Navy module Repair Facility and the remaining 62 units and assemblies maintained by the technician aboard ship. A sumary of the results of the stock lists produced for each of the three maintenance policies is shown below.

| | Prov.
 Level | Range | Depth | Cost |
| :--- | :---: | :--- | :--- | :--- | :---: |
| Technician Repair | 90.0% | 1,809 | 2,103 | $\$ 78,000.00$ |
| Partial Contractor Repair | 94.1% | 1,442 | 1,698 | $\$ 131,000.00$ |
| Partial Eacility Repair | 94.9% | 1,480 | 2,095 | $\$ 90,000.00$ |

The provisioning level in two cases above was greater than 90_{i}° because at least one of every critical shipboerd installable item was added to the stock list. For comparison purposes the June 1965 Allowance Parts Lists and an Electronic Meintenance Engineering Center stock list produced the following results:

	Prov. Level	Range	Depth	Cost
June 1965 APL	1.0%	1,224	2,032	$\$ 70,000.00$
EMEC Stock List	8.4%	987	1,548	$\$ 67,000.00$

The results also indicated that if $\$ 67,000.00$, the cost of the EMEC stock list, wert used as a constraint, the maximum provisioning level obtainable for that cost by the computerized program for the Partial Facility Repair case would be 38%.

Cost analysis of the three maintenance policies are compared below.

Stock Cost Per Equipment

	Technician Repair *	Partial Contractor Repair	$\begin{gathered} \text { Partial } \\ \text { Eacility Repair } \end{gathered}$
Ship	\$78,000.00	\$131,000.00	\$ 90,000.00
Support Ship	12,000.00	20,000.00	20,000.00
Depot	8,000.00	14,000.00	12,000.00
Total	\$99,000.00	\$165,000.00	\$122,000.00

The obvious conclusion is that logistics costs are held to a minimum when the technician aboard ship performs all the repairs. This is not to say that technician repair is the most economical for the Navy, since training, test equipmer: and facility costs have not been considered.

The above cost results illustrate the ef fect of maintenance policy on the stock lists produced and the sensitivity of the procedure to maintenance policy. The procedure has also been found to be sensitive to the control factors of part consumption rates and part population. There is flexibility of handling comoinations of parts, assemblies, and units as well as incorporating special stocking policies such as limiting equipment site or ship inventory by assigning low usage-high cost items to the support ship.
while this procedure has application to generating stock lists which will account for the meintenance capability of each ship, the type of duty being performed, or based on budget constraints; the recommended application is in the area of initial provisioning where stock lists would be produced prior to the provisioning conference. Appraisal of the generated stock list כ\because the contractor, supply personnel, and project manager would establish the Jasis Eor the provisioning conference decisions.

* Reanded off vilues

This report contains a description of the work accomplished under two separate contracts for logistics analysis of the AN／SPS－40 Radar for the Eiectronics Maintenance Engineering Center．The effort on the first contract is referred to as Phase．I and specifically covers Contract N189 （181）58090A for the period beginning 15 May 1964 and ending 29 March 1965. The effort on the second contract is referred to as Phase II and specif－ ically covers Contract N189（62678）60125A for the period beginning 29 December 1965 and ending 30 April 1966．The efforts performed on Phase I and Phase II vary in detail but are closely related in approach and procedure．

Phase I concentrates on the development of the provisioning proce－ dures．Hiso included in Phase I is the application of the provisioning Frocecure based on four different maintenance policies which produced stock quantities for the equipment，support ship，and depot．The four types of stock lists were produced to evaluate the ability，utility，and sensitivity of the provisioning procedure．Phase II presents the effort involved in generating parts lists and stock lists for a specific and detailed maintenance policy which was formulated by the Electronics Maintenance Engineering Center after a thorough investigation of the AN／SPS－40 Radar＇s configuration and requirements．

Section I INTRODUCIION

This is the final report of work on Contract $N 189(181) 58090 \mathrm{~A}$ covering The period jeginning 15 Nay 1964 and ending 29 March 1965, and Contraci $1139(62673) 60125 A$ covering the period jeginning 29 Decemijer 1965 anc encing 30 April 290́6. Under these contracts Vitro Lajoretories has performea a logisiic anaiysis of the AK/GPS-40 Rader System incotporating ell fieie cianges up to anc incluaing Fiela Change No. 12, aetemined the proceaures required to establish zie spare perts provisionins iisi, developed a computer pognam for performing the necessary calculations, and prociuced spare parprovisioning lists for ship (one AJJ/SPS-40), support sitip, and depot. In aciation, the provisioning izsts for shipooarà devezoped in this program were comparea witi iists developed oy the lavy during 196j, 1964 and 1965 For proteciion levei es weli as cost, weignt and volume.

The methods applied are probabilistic in navure involving the aevermination of the support necessary to meet a provisioning levei. The provisionine level is deffined as the projacility that an ecuipment or system will not resuire more tnan a steveć numier oí spare parts duxing a specifieć periou of time. Minis definition mey oe restated as the likelinood that an eguipment or sysiem wili oe aile to operate for a given perioć of time witiout experiencing a sioek out or shertage of spare pazis. In order to

parts which are contalned within tie system and tise 3ssociated repiacemert rate for eaci part. Using the Poisson probability distritution funcion For replacement times and the desired provisioning ievel, tine number of spares is computed using the part type populations and replacement rates. The eriterion followed in detemining the sequence in winci parts are considered for sparing is to progressively select the part whici indicates tine ingnest likelinood of reçuring replacement. When suisicient parts have been added to accumulate the desired provisionins level, the cslculation is complete.

A standby concept is innerent in the procedures applied in tifis study. Matrematically the stamdoy concept means that a spare part is considered $=0$ ie tie same as a redundant noncperating part ia the equipmert wici is always ready to be instantly "switched" into serrice upon mequirement. A somputer \mathfrak{y} :ogram nas been developed to perform the necessanf calcuiations wrici ior this prog:9m is estimated to se in the neignooriood op $20,000,000$ mathemaitcal operations requiring approximateiy one hour run time on the -090 scmputer.

Sections II tarougn VII discuss the effort pe:Formed under ?hase I, Contract $W 13 g(131) 50090 A$. Sections VIII tirouzin XI present tice work 3ccompitsied under Pinase II, Contract N159(62678)60i25i.

The program outputs developed during Phase I are shown diagramaticaily \therefore Eigure i，witici aiso rougily shows the methoc for produeine the outpurs． The references to other figure numbers are a handy cross reference to ávailec results．

EUIPNENT STOCK IISTS
Fesuits inciude tie generation of four separate ecuipment stock lisse Ace the Alv／SPS－40 recar which include only sipipoora insteileisle items．The four sjoci lisis are based on（1）ariticai anc noncritical parts，（2） criتical parts oniy，（3）provisioning ali critical parus in unity depte on greater，anc（4）criticai／noncritical parus anci assemolies．A criさicel i＝em is deffined as one wiich is essentiel to tide operation of the unit in wrici iこ is iocateci．Conversely，noncritical items are tinose which are nou sssential to the operation of the radar．The two stock itsts based or （i）criticai anci noncriticai parts，ana（2）critical anà noncritical par゙ラ and assemilies are accompaniec by a description of the infiuence of the sこock perioc verietiors anci associated consiraines oí weigity，cost，and cuioc． In most cases，for ships and siore stations，a ciosen fixed quantity c^{\prime} ： spares located in a stoci：room must provide for all replacements hiticr．an eüipment during normai operating periocs．At certain intervals ine spare part cuantities depietec from the stock foom are replenishec througi tne

Pigure 1. Piowtatandury - Phater [

Maivi jogistics system．The caienaur こime invervai jetween repienismment $0:$ こie equipmen stock root is known as tie stock perioc．During the stoc： period tile eouipment mey craw replacements from its stoci：room jui not frou 2ri゙ ouvside source．The provisioning resuits ojueined for ine four ecuip－ ment ミこoc：insis described ajove are compered wizt the provisioning recomendations in two generations of the Navy＇s Allowance Pe＝ts Lisis for Tine Ai：／SPS－40 Rajar anc an BMEC adjustment of the parts and essemibies

The spare par゙i provisioning list for criticel ene noncritical per＝

 Ai／SPS－40 Racar．Tif compieve provisionins List is set fori：in teule A－i （ $E=$＂A＂tajles are in separaje appenaix）hiticis convains a range of i，50s var＝ごpes and a depth of E，IOミ parts．This list essumes tiat aij repaire

 Zine

 period，but also includes sufficient back－up spares to insure tiaz oniy one चime out of ter on t．e：average will the systea experience a stoc：out ciurint
 こ．iF＇ E Sorce．

soretines zez̉erred to as demand based items．Ail spare parus sचocked in z：icess of rormal usaze oy the equipment during the stated time perica are ．nown as back－up spares or insurance items．

The provisioning list discussed above was determined for tiee got ieve： ǐs zne equipment wilich included joth tive critical and noncrizicel parus． The provisioning list of tajle A－2 considers only the critical pa：ts waic．． dave veen provisioned to tie 90% level．This list contains a range oz 1， 502 part types and a depth of $1,7+1$ parts．

The provisioning list oi taile A－3 contains at least one spare part ジor every axitical shipocard installable part ̇jpe．This list was deveivesむ initialiy jy computins a gof provisioning level for all sinipooari insvailable ણa־゙a，critical and noncritical．Then，all critical part jopes wric：dic not have a spare provided $\vdots j$ tion ajove calculation were aroitrarijy essignec one spare par．This means tiat ali critical scipocard installable íems are stocked in the provisioning list of table A－3 in unity depth or greater． AR provisionins level for this spare complement，wincin as a range $2 \hat{L}$ 2，34j diffeient part jupes and a depti o： 2,337 parts，was calculated and

Tasle A－it sets Åcrit those critical parts aroitrarily assisned one Epare in tiee development of tie provisionins list of taile A－j．

The provisioning list of table A－j was determined Eor a maintenance policy stipulating that liarf technicians would not mace all oí tiae monars
 manifacturer for repair and inree units would be repaired ioy tiee sifpyari． Fie manifacturer reqairaole assemoly list was Eurnisied Eor tins program

 Were stocirec in unity deptis or greater. The provisioning levei for tizs
 Fius assemicly ijpes) and a totai depth of 1,693 items was caicuiateci anc̀ foun ito $0 \leqslant 94.1 \%$.
 ineir experience on tic AF/SPS-40 Radar. The resultant stock list hai a range ofl,458iむem zipes, a depth of l,706items, ani e computed provisioning ievei of 92.9%. Tris list is not provided witit the repor.

Provisionins levels were aetemminea for the AN/SPS-40 Keciar filowance Parts Iist cated Feomuery 2965 and the AF/SPS-40 Raciar Allowance Parus inet devec INovemior 296. Repiecement rates were assignea to the part cuanzizies shown in tiae stocir numer secuence list, Section C, of the APL's and the provisioninz leveis were caiculated to be 0.5% for the APL datec Februem. -9ćj ane 2.0\% for the API azted November 1964. Tine oider APL inciudes Fiela Charges I timougic 9 anc the later API includes Fiela Canges $=$ iaroug: 2. The APL's provide spares for boti. c=iticel enc noncritical items.

A comparison of tize provisioning lists compiiec during Pinase I of tre program and tie stoci lists as presented in the two APL's is shown in zacle 2.

Tincuphoui ine Pinese I effort, the GIV/SPS-40 parts aist wes reviewed
 compiement. Ir. tris process cianges were made to the APi invoiving avouit
TAMLE 1. EQUIPMENI RESULTG SUMMARY-PHABEE I

Stuck Iisil Identirlcation	Calculated Provisioning Level (Percent)	Range - No. of Dirlerent Part Types	Depth - Total No. of Parts	$\begin{gathered} \text { Cost } \\ (\text { Dollars }) \end{gathered}$	Weigint (Pounds)	$\begin{aligned} & \text { Cube } \\ & \text { (Cu. Ft. }) \end{aligned}$
Critical/Noncritical Parts	90.0	1,809	2,103	'78,058	1,4\%2	1/4
Critical Parts Only	90.0	1,502	1,741	75,087	1,400	112
Critical Purts (Min. Dipth)	93.9	2,043	2,337	19,190	1,494	190
Critical/funcritical Parl: \& A.jublies	94.1	1,142	1,693	131,326	1,331	155
EHEC Adjusted Part:; \& A:sictmblies	92.9	3. 4,48	1,706	100,212	711	121
Old APL (bated feb. '03)	0.5	1,161	2,132	93,367	928	119
ih.W APL (Katual Nuv. 'Ul)	1.0	1,297	2,455	93,620	1,006	36

 waic：were founi not to be in tine equipment．The remaining cianges con－
 Stock．Numbers．The net resuit jeins tinat over $=, 600$ cherges were made to I！E API．

SUPPORT SEIP STOCK IIST
The second group of resuits is concerned hitr suppore ship provision－
 cescziption of the infiuence of suoci perioc variazions，and consiraints こき Wreioniz，こos̃，anc clue．

 تime．For tie procecure usec in tixs anaiysis，the suppert stit is not
 ミこemミ ご シncure that if the six ecuipments witi tneir respec＝ive provision－ ine Zisi of चaile A－i ere in こie company of a suppori sip wize a provisior－

 e：i戸こoari inevailevie part．Since tre support stip is carryine oasi－up

The provisicring List of vaine h－T assumes that an repairs hiz2 us

and 3 units were not repairable by the safp's foree. Taile A-o sinows that the support sinip is required to stock a range of 381 diżerent jope ijems and a total depti of go2 items. With tice erception of the distrizution jetween parts anci assemblies all otber conditions were the same ion generatins cacles A-7 and A-8.

DEPOT STOCK LIST
The thire set of results is the wo depot stock lists Eor tie AH/SPS-40 Radar and tine associated constraints of weigat, cost, and cuice.

Table A-9 shows the recomended stock to ce sarried iy a depot which supplies 42 equipments with parts when all repairs are made by Navy tecinicians. Taole A-10 shows depot stock quantizies Eor sumport or th ecuipments when tie BMEC specified assemilies are manuiacturer repaized and three units are shipyard repaired. The expected or norma usase jesed or three montins has been indianted whici are the izems expested to jara a Gisi veloci-y or ropid movement, The back-up items recuined to reac= ine gow provisionirg level are based on a six-month period. The depot cermies not only the saip installable items, but also the jeri instaliable isems.

In Jection V the Zigures 4 and 6 zor equipment and Eigure j Zor tive suppor ship show the ramation in provisicning lerei gs a fincoion oz the ztoci period. Using these graphs it is possible to deve:mine iae prouaciaioug of havins sufficient quantity of spare parss for any antiaipatei stack geriod. If weigit, sost, or cuice cecome constraining iacこors, jiee jugpis
 ietermine tie provisioning level distated jy suck sonstrainis.

The accuisition of suritabie input data for the AN/SPS-40 logistic program invoived collecting, validating, and assembling into a concise usajle format, information from a veriety of sources and in many different formats. Figure 2 depicts the patt of eacin different item of information, through verious check and conversion procedures, to the final format selected for use as program input.

The remaining paragraphs of tisis section provide a description of each data source and of the various steps empioyed in transforming tine data Erom its originel state to the final program input format.
data sources
The verious data sources employed to derive the input information for the program are listec below, together with a orief description of the type and quality of the information obtainea frum each source.

1. ESO DATA. The ESO Section B, COSAI (Coordinated Ships Aliowance iist) file was used as the primary data source for detemining the parts complement of the AN/SPS-40 and the weight, cuibe, and cost of these pa-ts. THis data file was on hand at vitro in the form of magnetic tape as a result of logistic studies done for the Bureau of Supplies and Accounts. Tais file did not reflect the changes to the parts complement brought about of Fiela Changes 10,11 , and 12 and it failed to provide Federal Stock

Numbers for appzoximately ten percent of the total part types. The Allowance Parts Ifst of February 1963 and November 1964 were also used for determiniag the parts complement. The COSAL tape and the APL's together identified 9,787 circuit symbols.
2. The equipment tecinical manual, NAVSHIPS 93821(A), together with changes 1,2 and 3 identified the contiguration of the AN/SPS 40 with ail Fleld Changes through 12 completed, and was therelore assumed to be the most accurate source of part information available. The parts list section of $93821(A)$ was used to update and correct the parts complement de:ived from the ESO DATA (Item 1). The schematics, pictorial part locstion diagrams, repair instructions, and general description section of 93821 (A) provided jine becirground required for assigning an essentlality code (IC) to each part. NAVSKIPS $93821(A)$ was not very useざul as a source oz FSN identification, most parts being identified by Locineed Drewing Numicer or otier manufacturer's designation.

The manual was used as the source for identifying 339 manufacriver's ammers. An additional 364 elreuit symbols were found to be contained - Htinin the equpments that were not listed in tise ZSO data. There were 128 circuit symbols specified by the ESO data which according to the manuals are not in the equipment. The manual contriouted a total of 908 changes to tise ESO data ille. The manuals are considered to be tine most reliaiole source of part data and problem areas were resolved so that the stock list part complement agreed with the manuals.
3. Vatro Technical Note $1744.00-2$ - This :epory vas used as the primary source of replacement rate information. This report contains;

Figure 2. Input Data Fiow Diaciam

\because м"s".
1 1.

13

1
L

$$
1
$$

$:$
(a) meplacement races for electron tuides sy incivicusl tuide tjpe, (b) repiacemen rates for electronic parts by generic part type, and (c) ratio of replecements to primery seilures for electronic parts oy generic part type. Tine replacement raves found in tinis report were iosec upon replacements reported by the DD737 Electronic Failure Report collected over a sixiteen month period frow April 1959 througin July 2960. There were 3i, 619 ecuipments representins 112 different equipment types witk a tocel cf 275,275 replacements during a totel combined operatins time of $179,773,900$ nours that were anelyzed to determine tine repiacement rates.
4. NAVSEIPS 93820 (Vitro TR-233) Handbook for the Prediction of Snipooeri eni Snore Electronic Eeuipment Reliability. Tnis report wes usea as tize primary source of part failure rates for electronic parts. Rates ere given for generic part type and bir various sub-classifications witinin $^{\prime}$ many. of the part types. The rates puolisned in NAVSKIPS 93820 were oased 0. =epcrting from 47,812 ecuipments representing 183 equipment types witis an eccimulation of $320,421, \xi 23$ hours of operating time. INAVSEIPS 93820 was originally puilisined in April 190 and has been revised twice, November 1902 anc April 2964.
5. FARADA. The Failure Rate Data Collection Frogram (FARADA)
sponsored by the Bureau of Naval Weapons ias collected and puolished a book Of part failure rates dezived from a multitude of sources anci covering many classes of paris. Tinis failure rate book was used as a secondary source of eleatronic part failure rates and as the primary source of Eailure rates for ail non-electronic items. FARADA is consiaered to se a less desirable source of failure rates tian NAVSEIPS 93320 since most of tine rates puolisined in FARADA are based upon fewer failures anc operaing hours than
tiose of NAVSHIPS 93820. Aċditionaliy, the FARADA retes are based upon a wide range of applications with only a few items coming from the liaval sipfo نos:d enviromment.
6. Minneapolis-Zioneywell Aero Florida Failure Rate Handoook. Tris document is a compilation of parts failure rates from 44 industry and Government sources. The cuaility or applicability of tizese rates cannot be determined since no background infomation is presented. Thats source of rates was usec only for those items winch were not found in any of the previousiy listed sources.
7. Iist of Critical Parts and Assemblies. Tris list, supplied by जHC, provides an indication of those parts waicin sleet experience has incicateci es trouble spots, anà wes used to iōerify parts reauiring special consiaeration during replecement rate assignments.'
0. BUSEIPS 10550-1 and FAVSHIPS 4855. Tinese forms are, respectively, records of parts replacements and equipment operating times. Teiouraion of Dinese reports covering the AJV/SPS-40 were ootained anc the data used to compuive some replacement rates. Only a limitei number of reports were evailajie on tise AN/SPS-40 radar nowever, resulting in a low confidence in ti.e computed rates.
9. ARINC Report No. 301-01-1-48, Reliajility Improvement Program for the AN/SPS-40 Radar Set. Tris report contains a record of part replacemente and equipment operating rimes determined durine a study of tue Ai/SPS-40. These data werc used in the calculation of part repiacement raves.

As witin source (8), only a low degree of confidence can oe placed in the rates derived from tie ARINC data oecause replacements and operating times were derived from the $10550 / 4855$ forms which :ave indicated a poor completeness of reporting, and the majority of parts considered have only one or zero reported replacements which cannot yield a significant estimaze or replacement rate at the parts level.
10. ESO Demand Data Cards. These cards list botit the recurrent and non-recurrent demands Ior items peculiar to tie AN/SPS-40 during tiae current guarter and tine preceding six quarters. Tine recurrent demand Eigures were used in the calculation of demand rates for comparison witio tine replacement rates previously derived from otiner sources. Out of 767 parts peculiar, ESO was unaile to provide reporing on ló items, 10 of tinese were not ESO cog items and the remaining six were not founc in ESO ziles. It was noted Erom these demand data, tiat encire assemolies are being ordered in cuantities as recurrent demands where the assemilies are themselves repairaole items. The use of demand data for detemining a quantitative part consumption rate jas the disadvantage of not indicating tne end use of the items, tiae item population, or the item operatirg time. Tisis means that except in special cases where the additional pertinent infomaticn is availaiole tine demand data can be used oniv as qualizative estimates oi consumption.

PROCESSING PROCEDURES
The following paragraphs descrioe in detail the sequence of coperations periormed to convert the data ootained srom the ten sources ilsted asove i:to tine desired input to the AN/SPS-40 logistic program.

1．Program Input Devermination．The initial step consistec of Iisこing ain of the input information required for the operetion of the compuze program anc arranging these ivems into an acceprable forma＝．The items to be includec for each part bype were determined to de：FSN or orner iaientification code（FSN preferred），noun name，cupe，weignt，cost， population（i．e．：total numier of a particular part type in an AN／SPS－40）， replacement rėe，essentiality code，anc current SNSL ailowed quantity．

2．Part Complement Verification．The steps tairen to establish an eccuraje pat compiement list for the AN／SPS－40 were（a）convert ESO／COSAL こape to puncined cards，（o）sori cards into circuit symocl order，（c）compare COSAI cards to the parts list in NAVSSIPS $93321(A)$ on cireuit symool pasis usins $93 \dot{Z} Z^{-}(A)$ as the master list，and（i）prepare new caris to proride tile ccrrections ani adeitions nececsery．The corrections and adeitions made comprise approximateiy 20% of the sisnal paris complement inst．A total oi こ0，ウラ1 circuit symbols were reccraiea for use in tins aralysis．

3．EC Assigment．As essentiality coae（EC）wes assigned to eaci pari on a circuit symbol uasis．The coding used was as follows：
a．Critical and installaile by sinips force．
i．Criticel end not installeiole oy snips force．
c．Jioncriticai andi instailaile by ships force．
3．Noncritical anci not installaole oy ships force．
The procecure for EC assignment consisted of determining tise functiona and physical 2ocation 0 ：eacr．part using the sciemetic，part Iocaたion ̇iagrams，repair instruetions，etc．，of NAVSMIPS oje2el（A）anc assigring tine EC consistent with the àeverninec locations．

4．Determination of Part Type Popuiation．In this step tiae correcteci COSAi carci deci was rescriec into FSN（or cther identity number）oraer and
a count made for eaci FSN. A total oi $2,17^{3}$ disierent types or parts was processed on the AN/SPS-40.
5. Replacement Rate Aisigrment. A replacement rate was assigned to eaci part type (FSN) Irom one of the sources previously listed. A priority list for rate sources was establisined and the rate for each FSM was taken from the highest ranking source in which an appropriate rate was available. Priority assignents for rate sources were based upon quantity, quality, and appropriateness of material used to prepare tie rates. Mazerial quantity involves the collection and use of suificient replacements and operating hours to insure confidence in tine resultant rates. Material quality involves tine completeness and accuracy oi reporting of tie data that were used in rate calculation. Appropriateness involves the environmert from which the replacement and operating times were collected; i.e.,rates based upon data collected irom naval sipvoard equipment are more appropriate for use in tbe program tian rates casec upon data collected from airborme equipment. The replacement rate source priority list emplojed is as follows:
a. Vitro Tecmical Note 1744.00-2 speciこic paこt tjpe repiacement rates.
j. Failure rate modified jy appropriave Iacior irom

Teciricei Note 1744.00-2.
c. Vitro Tecinical Note 1744.00-2 generia part tjoe
repiacement raze.
d. Fallure rate modified by engineering judanenv.

A second prioriまy list for failure reこe sources was aiso estaclisned 2ミ：
a．INAVSEIPS 95020
\therefore FARADA
c．Minneapoこis－ت̈oneywelı Hancobook
Following ine initial essignment of replacement rates，e second rate dezermination was made for ail of the items in tine EMEC stock－our parts List；tinis second rate was calculeted fram the 10550－1／4855 report data． The caiculated rates were ther compared to tine previousiy assigned rates ani tie iarger of ine two rates was selected for use in tine program．No ceicuiazion was made for items naving less tinan inree replacements reportei． Tas i̇si of items considered is given in teicle 2 witi the rates from ootin sources．Items for winia：no calculetion was made are snowt with zerc rete in tie 10550 column．

A replacement rate was aisio caicuiatea from the data in the AFINC reporv for $\mathrm{ani}_{\mathrm{I}}$ items iiscei therein as having more than tinnee replecements． Mís rete was also compared to the iritialiy assignec rate with the －igner rate being selecteç for final use．The resuits of tinese comperisons are given in tacie \vdots ．

Finaily，a demanc rate was caieulateci for the parts peouiiar usine the jemand dete supplied by ESO．The resiluing demanè rates were comparec̀ to ta estajiisned replacement rates and the following action taken：
a．K̄epiacement rate cnanged to equal 75% of seiculated demanci
 O：megnitude，andi if tile original source of tie replacement rate was neivine $=$ Technical Note 2744．00－2 nor NAVSHIPS 930320．

TABIE 2．AN／SPS－40 STOCX－OUT PARTS（10550／40シラ REPLiCEMENT RATES）

＊Incicaves rate used as program input．

TABIE 3. ANM/SPS-40 STOCK-OUT PARTS (ARINC REPLACENENT RATES)

*Inäcajes reve used as prosram input.
**Indieaues rate from table 2.
o. Item iisted as suspected misapplication if caiculated demand exceeced replacement rate oy one order of magnivucis and original rave source was either Technical Note 1744.00-2 or NAVSHITS 33820.
c. No action taicen if demand rate did not excesd replacement by one order of magnitude. There were no demsnd rates whici exceeded the replacement rates by one order of magnitude. The demand data was, therefore, reduced to the role of supporting the decision made to select the repiacement raتes detemined from the $10550 / 4055$ data snown in tabie 2 . There were no demand rates used in tinis analysis directly.
6. The innal step in the development of the program input consiszed 0: ine preparation of punci cards containing all of the items established in tie preceding steps. The cards were tabulated and a Einai check made ここ ail entries to insure tiat accurate input data were available for tie esmpliter operation.

A total of 2,178 data cards were made for the compurer run. tris =ctaj was jroken down oy essentiality coce as zoliows:

Code 1-1,772 cards
Code 2 - 24 cards
Code 3-301 cards
Cocie i \quad. 21 cards
ill of the 2,178 cards representing the 10,151 circuit symiols in تine AN/SPS-40 Radar are identified oy ϵ itier a Federal Stock Number of which there were 1,839 or a manufacturer's numicer of wicici there were 339. Only 91 of the $i, 339$ Federal Stock Numbers iaci a veigit, sosi, or suje, waile 333 of 339 manufacturer's numbers lack a weigit, cost, or cuce. A cards cave jart name, popuation, repiacement rate and sode.

Section IV
COMPUTER PROGRAM
The underlying mathemarical approach utilizes the Poisson projability function which is

$$
P(x)=\frac{(N \lambda t)^{x} e^{-N \lambda t}}{x!}
$$

where: $P(2)$ - Provisioning proozoility
I. - Part type population
$\lambda=$ Replacement rate per 10^{6} operating hours per part type
$\pm \quad=$ Average operating hours per calendar stock period
$x \quad=$ Stock quantity
In order to illustrate the steps necessary to determine the stock cuantities, assume a simple equipment consisting of three part types callec A, E, anc C. In diagram form this example wouid be represented as shown jelow.

Using tine Poisson probaixlity function, the proonbility for each part Eype surviviag time t without replacement, or in other woras for $X=0$, is calciiatec. If this operavion jieided, for example:
$A=.904$
$5=.818$
$c=.906$
then, according to the modei, the equipments' projaility of surviving witn no spares would be $A \times B \times C=.9042: .318 \times .906=.670$.

The . 670 is called the provisiooing level of the equipment. The procedure تien calis for selectiag the part with tice lowest ciance of surviriag witiout back up winch in the example above is $3=.818$. One part of type 3 is stocked and the prooabilities of the part tipe recomputed whish now produces

$$
A \cdot .904
$$

$$
\mathrm{B}=.982
$$

$$
c=.906
$$

The model would be as follows:

The probability of the equipment surviving witi one spare for 3 would ce $A \times B \times C=.904 \times .982 \times .906=.804$. If the provisioning goal Eicr tine equipment were 80% the problem would be solved with one bacis up item for part tffe 3. In the case of the AN/SPS-40 there were 2,178 part fipes being considered during generation of the flrst stock list and each of the part bype procaoilities were calculated to elght places. Due to the magaitude of tiee matinematical operations the process was computerized.

The computer progran developed during Phase I of this study requires approximately one hour run time to perform the needed $20,000,000$ mathematical operations. The program bas been written in Fortran II for an IBM 7090 computer.

IIIPUT CARDS
In order to run the computer program three types of input cards are necessary; data cards, control card (lead card), and normailzed time cards.

Tue procecures for ootaining the required input daza were aiscussec ir Section ITT. Daza oorained were listed on puncied data cards in the foliowing focma:

Location on Card

1-12
23-33
Cuse (auove feet) 34 - 41
Weigh: (pounds)
Price
$42-51$
$52-57$
FSIV or Pact Type
Part Name

Decimal Point Loce:ion

Pas
 (рори렫ios)

Replasement Eate pe:
-,,000,000 bours
Essentiaitty Cocie (EC)
Assem:̇y Pa=t Count
Slisi diowec Par: Coun
$77-50$

```
Niにze toat ail fiejis on all the caris are rigit justisiec.
Tre comerol sari lists tine foinowng type of iric:mazion acaorcing to
ت玉e =oxpuzer pros=am symoois:
```

Symiool	Location on Card	Decimal Point Location	Type of Information
K	1-3	-	Number of normalized time values.
x	4-10	4	Assigned provisioning probaiollity goal for an equipment.
RRR	11-16	11	Inftial (or Interim) provisioning level (equapment, support silp, or depot) tie print out of weict is used as peripteral information.
23	17-22	17	Incremental increase in provisionang level of RRR.
RS	23-28	23	Assigned provisioning probability goal for a support skif.
R6	29-34	29	Assigned provisioning level for depot.
IXX (i)	35-43	36	Equipment stock period divided by 1,000,000 where the equipment stock perlod corresponds to the operating time per salendar time interval (in hours) for which the equipment is teins provisioned.
TXI (2)	44-52	47	Support ship stock period divided by the equipment stock period where tiee suppo:t ship stock period corresponds to the calendar time intervel (in hours) for which the support ship is ceing provisioned.

Decimal Point Location

Type of Information

Number of normalized time values.

Assigned provisioning probaidlity goal for an equipment.

Inftial (or Interim) provisioning level (equipment, support salp, or depot) the print out of wtick is used as peripkeral information.

Incremental increase in provisioning

Assigned provisioning probabillty goal

Assigred provisioning level for depot.

Equipment stock period durvided by $1,000,000$ where the equipment stock period correing tive per calendar time interval (in hours) for which the equipment is seins prowsioned.

Support ship stock perioc divided by equament stoc. support ship stock period corresponds to the calendar time nervel (in hours) ship is celag provisioned.

For the computer run the above cards are placed in the following order: the control card first, the normalized time cards second, and tice data cards last.

OUIPTS
Computer fun outputs are of three types as follows:

1. Output result of one equipment.
2. Output results of support ship.
3. Output results for the depot.

In detail, the output for the equipment, suppr, τ sirip, and depot can be classilied by sections.

Section 1. Equipment Part Type and I'mutilication Provisioning Probailities.

Thls output contains (1) the provisioning prooability for equipment, (2) the part or part type (FJN) provisicning proioioili=y, (3) the spare requirements associated with the part or part tjpe and, (4) the total number of spares.

Section 2. Provisional Prooability Function (Provisioning Probsbility rs Stock Periods).

The output for this section is a point cumulative provisional prodaioility function versus stock perlods. The output of this section supplies a sufficient number of points to draw a provisioniag probability curve with tise stock period as a variable.

Section 3. FSN Identilication, FSN, EC, Cube, Neight, Cost and Spares per FSN.

The ourput of tats section is as follows:

1. Part type (FSN) 1denti:ication number. These values ranze
sequentiaily from $1,2,3 \ldots$, （the muider of aifferent pari uypes）． The puppose of this output is to associate the provisional prodaicilivy Of Section 1 adove witi tine associatea FSN numbers of Section 3.

2．Part type（FSN）．
3．Essentiality Code number（EC）assignec eaci FSN．These rating codes are classified as follows：

Code \＃l－Critical and shipooard instellajle spare part type．

Code \＃2－Criticel ana not shipooarī instellacie spare part type．

Code 产3－Noncritical and skipioara installable spare part type．

Code 并－Noncriticel and not shipooara inszaliajle spare pert type．

4．Nomenciature of FSN．
5．Total cuibe per FSN for tine specified spares for equipment， support ship，or depot．

6．Total weigit per FSN for the specified speres for equipment， support sinip，or depot．

7．Total price per FSN for the specified spares for equipment， support sifip，or depot．

3．Replacement rate per part type for equipment，supporr sif， and depot．The replacement rate for the support sifip is basec upon the number of equipments sezvicea anc the replacement rave for the depot is dependent upon tine total number of equipments serviced．

9．Patt iype applicaiions（population）per single equipment．
10．Spare requirements（per equipment，support skip，or depot）．
21．Repienisment spares per part type（FSN）．This value is
ootained oy multiplylag item (8) by item (9) and dividing by quantity 2. If the result is greater than 0.5 the integer portion of replenishment spare requirements is raised by one, otherwise it is truncated. This type of spare requirement is printed as an output for the depot only.
12. Sum of standby spares [item (10) above] and replenishment spares [item (11) ajove] per FSN. Whis is printed out zor the depot only. Section 4. Provisioning Probabilities versus Cube, Weight, and Cost.

The output for this section is an approximate 0.01 cumulative proiaiolity increment versus cumulative price, cube, and weigint. The output of this section supples sureicient points to draw provisioniag curves for price, cuke, and weight up to the probability goals set for the equipment, support ship, and depot. These provisioning prooajility goals are dependent upon their respective provisioning ealendar times. VARIABIE PARAMETERS

Changes in the variable parameters are made by adjustment of a control card.

The computer program for generating spare part requirements for equipments, support ship, and depots is based upon Poisson functions. Efforts have been made to make the computer program general in nature. This has been accomplished by allowing the parameters oi stocix period (し) and provisioning probabilities to vary. A general desciption of how these parameters are allowed to vary is as follows:

1. An overall protection goal (provisioning prooacility) may be assigned to equipments, support ship, and depots by properiy punching the control card.
2. Anotier variable introduced into tie computer prograr ailows for tine prinu out of spare pans requirements for equipments, support ship, anā iepot at a prescrioded provisioning probacility level. In adicition, print outs of spare pazts for equipment, support stip, anci depot can be printec out at prescrided cumiative increments (0.01, 0.05, 0.20, ezc.). For example, Gize overell provisioning goai for an equipment may be 0.90. However, it may je desired to print out tine spare requirements et e provisioning levei of 0.65 witi inerements of 0.10. By puncing tie input carc properiy for a computer run, a print out may be ootained wicici lists part types and ineir

3. The stock peziod has been allowed to je a variaile in tie compure: prosram. hs a resuit, points for a provisioning prosability function (for equipments ana support sixips versus normalizea jime) can oe generatec̄. For example, inving set the provisioning probability goel for an equipment (i.e., 0.90) for a specifiec stock perioc (i.e., 2190 jours), a range of proVisioning projaisiities can be caiculated oy varying imme The provisicring proveailizy function for a period of 2190 bours may prine out as foijows: Provisioning Provavility IVOrmeiizec Time .9998210
.99965 . 20
. 99757
.40
.99532 .60
.99320 . 30
.990011 .03
.960021 .20
.332171 .40
$.80000 \quad 1.60$
.69321 1.80
.53214 2.00
$.31191 \quad 2.50$
$.13210 \quad 3.50$
.015074 .00
.000924 .50

The calculation for tie print out is truncated wicen a provisioring probaility falls below 0.01. Note that in the example above jice provisioring time of the equipment was set at 2190 bours (3 montis). The print out was nomalized such that $1 \cdot 2190$ hours, $0.5 \cdot 1095$ hours, and $2-4380$ hours.
4. Another dimension of the time ($(\mathrm{J}$) variable is concerned with tie replenisoment of parts. The replenishment of parts as such is considered to be a function associated witi the depot. Dependent upon the calendar hours considered, the repleniskment of spare parts per part tjpe (FSit) are calculated and listed.

Repleniscment rates are based upon the assumption of a constant failure zate per part type. It is stipuiated that tine depot replenisies spare parts Eor all equipments and, as a result, the spares for replenishment are calcuiated for tiat location only.

3LOCK DIAGRAM

The information represented on tine lead sard and the data cards are processed by tise computer. The block diagram of ingure 3 represents sunctional operations by which the output descrioed is derived.

Sjnicols not defined that are included in tie block diagram are:
λ - replacement rate per part ojpe
t - stock period (hours)
N - number of applications or population of pars type in an equipment
X - number of spares per part type
RR - an interim provisioning procaoilivy used to reack assigned prooaioilitjg goals such as XX

MATHEMATICAI MODEL

The mathematical methodology for determining spare parts requirements delineates the computational processes involved. Associated with each part type is a procability Por a specified time (t) that not more than K spares will ce required. This probaioilfty is calculated according to the function:

$$
\begin{equation*}
P(X)=\sum_{X=0}^{K} \frac{(N \lambda t)^{X} e^{-N \lambda t}}{X!} \tag{1}
\end{equation*}
$$

Wiere:

```
P(X) = provisioning provaoility per part tjpe
    \lambda = replacement rate per l,000,000 hours per part type
    t = calendar time (in iours)
    N = number oi applications or population per part tjpe per equipmen=
    X = numicer of spares (incex or` summation)
    e = natural logaritiom base
    x = total number of spares per part type representing items
        installable at the equipment site
```

There are as many $P(X)$ calculations as there are difierent part tjpes.
For analytical purposes part types in an equipment are considered to iee in series. As a result the following equation appiies:

$$
\begin{equation*}
P\left(X_{s}\right)=\left(P\left(X_{2}\right) \cdot P\left(X_{2}\right) \cdot P\left(X_{3}\right) \ldots P\left(X_{2}\right)\right) \tag{2}
\end{equation*}
$$

or
or

$$
\begin{equation*}
P\left(x_{3}\right)=\prod_{i=1}^{r} P\left(x_{i}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
P\left(x_{g}\right)=\frac{r}{\sum_{i=1}} \sum_{x_{1}=0}^{x_{1}} \frac{(N \lambda)_{i} t_{i}^{x_{i}} e^{-(N)_{i}=}}{x_{1}!} \tag{4}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \text { r - number of itiferent pert types } \\
& i=1,2,3, \ldots .=\text { (part types) } \\
& P\left(X_{s}\right)=\text { provisioning prooecilizy for an equipment or system } \\
& \text { In order to meet a provisioning goed for an ecuipment the followins }
\end{aligned}
$$ procecure winci incorporates tie standoy concept for spare part provisioninf was followed.

Tne prosaitiizy $P\left(X_{i}\right)$ associatec witi eaci pa=- type witi ce spares was caiculazei anci storea in tine computer. Tine provisioring level for Eie ecuipmen= was Enen calculateà :oilowing tne criverion:

$$
P\left(X_{G}\right) \leq P\left(X_{S}\right)
$$

winere: $P\left(\ddot{\mu}_{\mathrm{g}}\right)=$ tie provisioning goai for an equipment.

 -jpe; that is, X_{i} (spares) is increased ov one (i). Sucsequently $P\left(X_{s}\right)$ is recijauiavei. If $P\left(X_{G}\right) \geq P\left(X_{3}\right)$, tie part tipe probaivilities are again

 $P\left(X_{i}\right)$ are revained in storage in the computcr to de printec out at a jazer

 perioc (t).
I. orier to calcuiate the spare recuiremeati for tae suppori nipz تue foliowing matinematicaj moael was consiaerea:

$$
P\left(x_{T}\right)=\sum_{i=1}^{-1}\left[\sum_{x_{i}=0}^{=^{\prime}}\left[\begin{array}{l}
x_{i}^{\prime \prime} \tag{6}
\end{array}\right]\right.
$$

Where:

$$
\begin{aligned}
N^{\prime}= & \text { number of equipment per support ship } \\
r^{\prime}= & \text { total number or part ijpes (items that are sippocari } \\
& \text { installable) } \\
x_{i}^{\prime \prime}= & \text { number oi spares of a part tope }
\end{aligned}
$$

The above model can se grouped in tine following manner

$$
\begin{align*}
& P\left(X_{T}\right)=\prod_{i=1}^{r^{\prime}}\left\{\sum_{X_{i}=0}^{x_{i}^{\prime}} \frac{\left[\left(N^{\prime} N \lambda\right)_{i} t_{i}\right]^{X_{i}} e^{-\left(x^{\prime} N \lambda\right)_{i} \tau_{j}}}{x_{i}!}\right. \\
& \left.+\sum_{X_{i}=k_{i}^{\prime}+i}^{x_{i}^{\prime \prime}} \frac{\left[\left(N^{\prime} N \lambda\right)_{i} j_{j}^{X_{1}} e^{-\left(N^{\prime} N \lambda\right)_{i} t_{i}}\right.}{\hat{X}_{i}!}\right\} \tag{7}
\end{align*}
$$

where $\mathrm{x}_{\mathrm{i}}^{\prime} \leq \mathrm{x}_{1}^{\prime \prime}$
$t_{j}=\begin{gathered}\text { calendar time at provision location (equipment, support ship, } \\ \text { depot) }\end{gathered}$
1 今~~
The provisioning probability level: for a part type in an equipment
can se represented by

$$
\begin{equation*}
P(X)=\sum_{X=0}^{\dot{x}} \frac{(N \lambda t)^{X} e^{-N \lambda t}}{X!} \tag{3}
\end{equation*}
$$

Tine provicioning level for the same part ippe in a numor of ecuipmerts (:epresentec oy a support suip) i:

$$
\begin{equation*}
P\left(X^{\prime}\right)=\sum_{X=0}^{\dot{k}^{\prime}} \frac{\left(\mathrm{N}^{\prime} \mathrm{N}, \boldsymbol{i}\right)^{X^{\prime}} e^{-N^{\prime} N \lambda \tau}}{X!} \tag{9}
\end{equation*}
$$

In t.ec above equation for a part type, index X suck that tine total
 $\approx \approx$ こic suppori sric with 0 spares). Since tie Poisson distribution iz aiscrete, the cumiative proceivility $P\left(X^{\prime}\right)$ is incremented to k^{\prime} until it is equa to or just jeiow tio projeioility $P(X)^{N^{\prime}}$.

The provisioning provicility afforiec to tine support ship by baving zuares at tize eoutpment site can ie represented uy

Tie prececing term is the same as the first vezm oi tae expression

 roumica avoarc tic suppo:- uitip wouio os

$$
\sum_{i=1}^{\prime \prime}\left(i_{i}^{\prime \prime} i-x_{i}^{\prime}\right)
$$

$$
P\left(\gamma_{r_{G}}\right) \geq P\left(X_{G}^{\prime}\right)
$$

Where:

$$
\begin{aligned}
P\left(X_{G}^{\prime}\right)= & \text { the provisionirg goal of tiee support ship or the protection } \\
& \text { goal of ail of the equipments serviced by the support sinip. }
\end{aligned}
$$

The procedure for adding support sinip spares was the same as that described for the equipment. Arter a spare was added a test was made oased upon equation (11) until enough spares were added such that the provisioning goal $P\left(X_{G}^{\prime}\right)$ for the support ship was met.

The procedures described for the support sitip were applied to the depot as fiollows:

$$
\begin{align*}
P\left(x_{D}\right)= & \sum_{i=1}^{m}\left\{\sum_{x_{1}=0}^{s_{ \pm}^{\prime}} \frac{\left[\left(N^{\prime \prime} N \lambda\right)_{i} t_{i}^{\prime}\right]^{x_{1}} e^{-\left(N^{\prime \prime} N \lambda\right)_{i} t_{j}}}{x_{i}!}+\right. \\
& \left.\sum_{x_{i}=s_{1}^{\prime}+1}^{s_{1}^{\prime \prime}} \frac{\left[\left(N^{\prime \prime} N \lambda\right)_{1} t_{j}\right]^{X_{L}} e^{-\left(N^{\prime \prime} N \lambda\right)_{i} t_{j}}}{x_{i}!}\right\} \tag{12}
\end{align*}
$$

Wiaere:

$$
\begin{aligned}
P\left(X_{D}\right)= & \text { provisioning probaioility level for ail equipments supplied } \\
& \text { oy the depot } \\
N^{\prime \prime}= & \text { number of equipments supplied b/ the depot } \\
m= & \text { total number of part types (includes items that are saip- } \\
& \text { board installaile and items cot instaliaicle by ship force) } \\
S_{f}^{\prime \prime}= & \text { number of speres per part type at the depot }
\end{aligned}
$$

for provisioning goai

$$
\begin{equation*}
P\left(X_{D}\right) \geq P\left(X_{G}^{\prime \prime}\right) \tag{13}
\end{equation*}
$$

wnere
$P\left(X_{G}^{\prime \prime}\right)=$ provisioning projacijity goal for the depot. The number of spares at tine depot is represented oy $\sum_{i=1}^{m}\left(S S_{i}^{\prime \prime}-s_{i}^{\prime}\right)$.

Spares were adaed and effects compured oy fommula (12) unill $P\left(X_{J}\right)$ exceeaed $P\left(X_{G}^{\prime \prime}\right)$ at winich time the results were printed out by ine compute:-

It should be noted that the numider of part types (II) for the depot is ecuai to or greater than the number of part types for the suppory srip or equipment. Tris is aue to the fact tinat speres at the depot incluaie not oriy stipicoara instailajie spares but also spares for items wiach are not stippooara instailable.

MODIFICAIION METHODS
The computer progrem was weitien to develop spare reouirements ior equipments, suppori ships, and depor so that the overail provisioning úuppert recuirements are estailished் simultaneousiy. Provisions for deveioping eguipment recuirements oniy, support ship requirements only, or aepot requirements only, heve not ieen incorporaied in the computer progrem. However, minor modifications can be readily made to the program to acconmociaje any such cjanges in outputs desired. Otner modifications mey x necessary when changes occur in tie equipment configuretion, tie recuired provisioning level, or the suppori philosophy. Specific steps to of foliowed in suci instances are citect in the following paragraphs. POPULATION CHANGE. If a population cnange (numiver of part applicaتions) occurs due to field changes for tine AN/SPS-40 Radar the following procecure should oe followed for an equipment.

In the computer program output locate the part type population that is to be changed. In the same area locate the replacement rate (NRR - tine normalized replacement rate).

Locate the probability $P(X)$ assigned to tine part type in question where

$$
P(X)(\text { for tige part type })=\sum_{X=0}^{i} \frac{(N \lambda t)^{X} e^{-N \lambda t}}{X!}
$$

or $P(X)=e^{-N \lambda t}+N \lambda t e^{-N \lambda t}+\frac{(N \lambda t)^{2} e^{-N \lambda t}}{2!}+\ldots+\frac{(N \lambda t)^{k} e^{-N \lambda t}}{K!}$
Where:

$$
\begin{aligned}
& N=\text { population or numior or applications of a part type } \\
& \lambda=\text { replacement rate } \\
& i=\text { number oí spares required }
\end{aligned}
$$

Use the siove equation, substituting N^{\prime}, the revised population, for N, the replaced populations, and solve for several values of k^{\prime} (tie revised number of spares tiat may be different from k) such that $P(X)$'s span $P(X)$.

$$
\begin{aligned}
P\left(X^{\prime}\right)= & e^{-N^{\prime} \lambda t}+N^{\prime} \lambda t e^{-N^{\prime} \lambda t}+\frac{\left(N^{\prime} \lambda t\right)^{2} e^{-N^{\prime} \lambda^{\prime} t}}{2!}+\ldots . \cdot \\
& +\frac{\left(N^{\prime} \lambda t\right)^{k^{\prime}} e^{-N^{\prime} \lambda t}}{k^{\prime}} \equiv P(X)
\end{aligned}
$$

Where:

$$
\begin{aligned}
& P\left(X^{\prime}\right)=\text { revised prooability based on } N^{\prime} \text { for the part tjpe in cuesion } \\
& N^{\prime}=\text { the new population or total number of applications } \\
& x^{\prime}=\text { the sougit for spare recuirements for a part tjpe } \\
& \text { The following example is based won tice ourput oi the computer }
\end{aligned}
$$ run for the SPS-40.

Consiaer part type (FSI) numider 54 in tine print out for an eouipment
wnere
$.0011501 .001150 \quad \frac{\mathrm{k}=1}{.99999934}$

Consider that tibe population nas cinanged to 2 (tinen $N^{\prime}=2$)
N.R.R. (λ) POD. (N^{\prime}) SpBres (k^{\prime}) $\quad U^{\prime}=\lambda . N$

.001150
2
Unknown
.002300

$$
\frac{k^{\prime}=1}{.99999736}
$$

$\frac{x=2}{.09999999}$
Since . 99999999 is closer to .99999934 (actual prist out value for FSir \#54) tinan . $99999736, k^{\prime}=2$ for the new numoer of spares to replace $k=1$ (tine oid number of spares) and $N=2$ for tie new popuiation to replace $N=1$ (the old population).

The procedures applicaiole to population cinenges can aiso oe applied to replacement rate (λ) cnanges. Tie calculations to aetemine the requirec spare parts are similar to the example aiove.

Adjustments required by a field change will usually consist of adcing new part types and their associated replacement rates or cianging the part population. Determinstion of the required spares can de made by applying procedures similar to those described in the example above.

PROVISIONING IEVEL CHANGE

In order to vary the provistoning prooability level Ior spare requirements for (1) equipwent, (2) support sinip and, (3) depot, it is necessary to rerun the computer program witn tie proper cnanges in ive iead card. Fcr exanmple, suppose the prowisioning provaoility goai Io: equipment, support skip, and depot aad seen $0.90,0.95$, and 0.99 respectively and it was desired to cbange the provisioniag procabiliay goals to $0.95,0.90$, and 0.799 respectively. The only :equirement rouid ce to punch the lead card properly as follows:

Location on Card	Decimai Point Locsこion	Puncted Mumiers
$4-10$	4	.95 (in colums + - ć)
$23-28$	23	.90 (in coiours 23 - E5)
29-34	29	. 999 (in colimns 29-32)

E'MUIPMENTS PER SUPPORT SHTP CEATCE

In order to vary tie numicer of equipments per support sinip and tine numioer of equipments per depot, the computer program wouid aave to be serm. For example, consider a case where four (4) silps on the average are to be serriced oy a support sifp acd ticere are a total of iifty-six (56́) ships. Then, it would de necessary to punch the iead card properiy. The Eolic ng fields would cave to be repuncined on tive lead card:

Symiool of Field	Location on Card	Decimal Point Location	Recưred Change
AS (equipments per support stip)	62-65	65	+. (i2 coiumes $54-\mathrm{C} 5$)
RTT (totai equipments equfpments per support sinip)	$74-77$	77	9. (in coikinn $7 \times-\cdots)$

STOCK PERIOD CAANE

In order to vary the stock period for equipment，support sipip，and cepた＝चine computer program woulc have to be rerun．For examile，consiaer the cese where tie stock periods for the equipment are 2，000 nours，for the support ship 4，000 jours，enc for the aepo＝3，000 sours．On the leac caré of tie computer program the fojlowing fielos would have to be cianged：

Iocsiion Decimal Point

Symion of Ftele
$202(2)$
201（2）
2゙シ（ 으 Cerí Locauion Recuired Cinenge

36
47
56
$\begin{array}{ll}.002 & (\text { locetions } 36-55) \\ 2.0 \quad \text {（10cations } 46-45) \\ 1.5 \quad(10 c a t i o n s ~ & 55-5 i)\end{array}$

NOENL USAGE FERIOD CHATGE（DEPON）
Theoreticainy，tine puranase of parts for nomal usage is consiaereえ zo je done ony ai one source，nameiy，ine aepct．＇Varying the average usage o：parts woink recuire punciing tae leac card properly，since ine usage time for parts at ine ciepor is iepenient upor ivem TyI（3）（こne aepここ 5zoci：periô dividé oy toe equipment stock perioci）．Tae assumpion has oeer．made that eacn par：type has a constant failure rate anc as a resiii parse are assumed to de recrdered or tnet dasis．Iだ，for example，parss
 Of ine lead card in the followins maner：

S：mec： $0^{\text {f }}$ Flede	Locaごon on Cerci	Decima Point Locaこior	Recuired Cuange
RT	$66-.3$	72	F（iocaこions

The results ootaired during this program have oeen generated tirough the use of the mathematics presented in this section. The actual calculations were periormed on a 7090 computer. The computer program has jeer developed with the realization that eaci new evaluation rill likely bare a inique set of conditions and parameters. The computer program thereiore nas been made versatile in order to properiy inande iuture requirements.

Secrion V
PHASE I RESULTS
Results of the Phase I effort estaiolish provisioning criteria for a：equipment，a support ship，and a depot．For each of these provisioning iocarions inere are four results whici are（1）calcuiavions，（2）spare perts stock list，（3）provisioning level versus stock period，anci（4） weigit，cost，and cuoe constraints．

The calculazions witin accompanying print outs rave zot been inciudea in tris repori due to the volume of the material enc tine fact tinat it is usefir primariiy as e reference．Tre ecuipment，caicuiation section siow－ iz二 ine provisioning ievels of $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 30 \%, 85 \%$, anc 90% for ine equipment has been forwerdec alons with the caiculations for the support ship enc depot under separete sover．the resilits of tie remairing sections ere presentec below．Because of tibe size of some

The fojiowing こaEjec ere inciuded in Appencir：A：

> H-2 Ecuipment Cricical/IVoneri=ical Parts Stock Iist
> A-2 Eyupment Crivical Parts Orly Stock List

> A-L List of Critical Part Types Aseignec (to A-j) One Pant
> 4- Equipment Criticei/IVoncrivian Parts ana Assemizies Stock linst

A-3 Support Ship Stock List - Parts and Assemiclies
A-9 Depot Stock List - Parss Oniy
A-10 Depot Stock List - Parts and Assemblies
EGUIPMENT STOCK LIST (CRITICAL/NONCRITICAL PARTS)
The stock number sequence list derived in this program is for the AN/SPS-40 Radar oniy and, thereiore, cormesponds approximately to the stocic number sequence list as presentec in the AN/SPS-40 Allowance Parts List. The criterion followed in detemining the sequence in waich parts are considered for sparing is to select the part which indicates the highest inselinood of requiving replacement. The cri-ical/noncrivical parts stock list yields a provisioning level of gof for the equipment's code 1 and 3 parts for a 90 -day stock period.

While tine gof protection level zeans ticat oniy ore time out or ten will the equipment experterce a stock-out during a 90 -dey period witiout replenishment, it must be recognized that the 90% protection level is For oniy teose parts considered, namely, sode 1 and 3 parts which are critical and noncritical parts that are installaole oy a sinip's Eores. The equipment aiso contains code 2 and 4 parts winch ame critical and noncrizical parrs teat are not instailable by a sidp's Forse anc, finerezore, not stocked at the equipment site.

It was necessary to omiz code 2 and 4 pares from ine iniviai prooacility calculazions for zero spares because it has been devermined चbai abour eigit times out of a mundred an AN/SPS-40 will require a sode 2 or 4 pars during a go-day pericd. This means that $1 i^{\text {ail }}$ sodes were sonsidered in tine anaiysis of the equipment, it would initiaisy iave a 92% provisioning Level ceilling due to tiee code 2 and 4 parss for which no amount 0 e
zooking of coje i and j pants could ciange. Tinen, if tine ecuipment is to je protecteć to a 90% level, the coãe i anc 3 parus mus be stocike
 experience a stock ouv of code 2 or 3 parts. Under suair concitions the code i and j parts must be jeavily stocked because of the penalty involvea in naving 2 and 4 parts in the equipment iritial provisioning caiculation. Waile tinis type of stocking cen be performed by the pronram _Z desired, it is considerea to be unreaistic ane requires far to Great a sJockins of code 2 ana 3 paris vitn negigibie advantage. The program, therefore, stocirs to a 90% level for the equipment under tae ariterion تiaz tine parts must be coce i or 3 to je consijerec̀. İ 211 parts wition tine equipment are consiciered, nemeiy codes i, 2 ,
 Wวui̇ experience an unfillec spare part resuirement ajout seventeen times ouv of every 100 inree-montr stocl: periods where ajout sever of these woinc be due to the code 1 anc j parts.

Whe criticai/noncriticel parts provisionins iist is shown ir. むE:? $\mathrm{A}-1$. THis list was generavec under the eriterion that ail code I anc \bar{z} repairs would je perfonmec by lievy tecmiciens. fll part types considered in the aneiysis are iisted in the print out wheiner spare parts are recommended or nov. Tine format is as follows:

Coiun fl - The coce numers siown are aroi=rarily assignea to ailow tracing the part type in the calculation tabulations. Colum the - The pant identisication numer is siown in coiumr. 2. In most cases tins numioer is tile Federai Stoc: Iumoer. Those without FJI' $=$ are iisted sy menufacture='s numper. Mine listing is in numerical
order in this colunn witi F'SN's first, Sollowed iv manuracturer's zumiers. Column \#3 - This colum siows tiee essentiality code numicer oi the parts where
$1=$ Installaule iy ship's force and critical,
$2=$ not installable by ship's force anc criticai,
$3=$ installajle by ship's force and noncrifical, and,
$4=$ not instaliaile by sipip's force and noncritical.
Colum 3 contains only code 1 and 3 perts since this iistirg is for provisioning the equipment and, therefore, contains oniy tiose parts installable oy the sintp's sorce. The critical and noncritical parcs inve both been shown in the listing with the critical parts first iollowed by the noncritical parus. If it is desired to provision only the ariticai garta then code 3 spares should be deleted Erom the list.

Colum n column.

Colum arive For the numicer of spares shown in Column 10. For example, it a resistor with an FSif 5905-000-1111 sad a pacisage cuce of 0.00025 cuici= feet eaci and iz sour speres were recomenced in column 10 for stociang asoard sinip, ieen column 5 would skow $4 \times 0.00025=0.001$ cubic seet since this is ine volume $:=$ all the spares or the listed ojpe. Coivimn 5 is totaled on the sfnal line of the listing to snow the comoined total suive of all the spares recommended by the stocking procedure.

Colum tie number of spares shown in colum 10 for the pary jupe. The weigi:s are also totaied to represent the gross weigit of tie recommenced spares.

Colume $\frac{H T}{\pi T}$－Tine comininea price of the number of spares siown in column 20 is printec in column 7．The prices are also totajed to give ine price of the recomended total spares．

Caミunn ment rate＂witic：．iz the part type replacement rate per 90 deys where the 90 days corresponds to the ztock period seleczed for this provisioning iizt．

Coium fit－Colum 9 shows the number of applicarion of tine pari こొセ per equipment within the code ciass of colum j．There may be a tovai equipment popuiation of the part type greater thar shown in coivm 9 ミ』 tue pait type nae more than one code class assigned to iた．In onder to devemine tocal eguipment popuiation of a part type it iz necessary to gum 2il the epplications of the patt iype for the four code ciatse；．Coue 2 anci 4 parte winc oe founc only in the depot listing．

Coimen $\frac{1}{\pi}-0$－The quancity of recomended spares per part tjpe iz Eiown in coium 10．The pa：゙ー recomandec for provisioning at the 90% level For the AN／SPS－40 Racia fo：a 90－6ay stock perioi．The critical／noncriticei parts iist recomenaed a range of i，j09 pant tipes and a total deptil of $2,10 j$ parts winch have a

E．UIPMETE STOCK PERIOD VARIATION

Tro criticai／noncritical parts provinioninu－i̇ここ presented auove wa：
 Sヒ：a 90－day ここoci perioc．Eince ani provisionint perioci may not coniomm to 90 uaju duration，tie cueviion arisez as to wian iz tue jevel if vae

Taide 4 Eunnisies ine inºmation Ficuirec to detemine ine provisionins
 ing ievei. Tie second column preseats tie stock petica wince cas jeez

 (0.2) is equivaiens to approximatelv 9 days. Tinese two colums of data
 grapi wouid je ise situation yicere ine 90 provisioning level ias seen
 to an emorgencif, it is Eound tieat tiee cruise time win se exvezded $=0$ ijo days. Tia grapic stows ize provisioning level uncer suci a crise condivion woula se 20% insteac of 90%.

Provisioning Level	$\begin{aligned} & \text { Normalized Time } \\ & (90 \text { deys }=1.00) \end{aligned}$
0.99481	0.08
0.99415	0.09
0.99344	0.10
0.98624	0.20
0.97839	0.30
0.96982	0.40
0.90052	0.50
0.95042	0.60
0.93944	0.70
0.92749	0.80
0.91445	0.90
0.90006	1.00
0.39704	1.02
0.89394	2.04
0.39077	1.06
0.88754	1.08
0.88424	1.10
0.88037	1.12
0.37743	1.14
0.87391	1.16
0.87031	1.18
0.86664	1.20
0.85707	1.25
0.34694	1.30
0.83620	1.35
0.82480	1.40
0.81270	1.45
0.79984	1.50
0.77167	1.60
0.70453	1.80
0.62229	2.00
0.42354	2.40
0.22694	2.80
0.09085	3.20
0.02632	3.60
0.00544	4.00

EquIPIENT STOCK CONSTRAINTS

The range anc quantity of spare parts oniy was dezezmined previousiy For tine 90% provisioning level since this value was iecided upon as tiae desired goal for the equipment. Once heving determined the stock list bowever, it may be found to be impossible or impractical to use jecause tije recomnended spares are too heavy, too expensive, or require too muci storage space. The foinowing taole presents tine next best solution to tize problem if one of tine siove constraints makes the provisioning iists نnfeasiole. Ratier than use a cut and try procedure with the calculations in order to find an acceptaile stock load, the governing constraint is jocavé in tacle 5 and the associated provisioning level is read directly in coilun i. It is then necessary to recompute the stock list to find tine exact range and depth of spare parts associated with the provisioning Ievel ontaiped from the taile. Colum 1 is tine provisioning level. Colum 2 is tiae price of the load, and coiluns 3 and 4 are tine cuise (in cusic feet) and weight (in pounds) of the load respectively. An exponent formet nas been used in columns 2, 3, and 4 since it is anizcipated that large numbers may de presented in this type of table. The exponent format is a siortinand method of cianging the magnitude of the values, for example:

$$
0.400000 \mathrm{E}+02 \text { is the same as } 0.400000 \times 10^{2} \text { or } 40.0000
$$

By simple mile of thumi the decimal point is moved as many places to the Figit as shown oy the number following tive " E ". If the " E " is inollowed cy e minus sign, then the decimal point is moved as many places to the lefi as tie number siown following the " E ". The constraints are also snown grapincelly in figure 5.

TABLE 5. EqUIEMENT STCCK CONSTRAINTS - CRITICAL/NONCRITICAL PARTS

Provisioning Level	Price	Cube	Weight
0.010071	0.412905 E 05	$0.697545 E 02$	$0.5746 L 9 E 03$
0.020085	$0.465425 E 05$	0.757770 E 02	0.693869503
0.030174	$0.470470 E 05$	$0.76179 L E 02$	0.710609503
0.040391	0.486092805	$0.110429 E 03$	$0.750925 E 03$
0.050430	$0.494900 E 05$	0.110952503	0.765695 E 03
0.060436	0.504146 E 05	0.111707503	0.782604 E 03
0.070799	$0.509401 E 05$	0.1120060^{03}	0.795794503
0.080828	0.510684 E 05	$0.112471 E 03$	$0.804 L 64 E 03$
0.090842	0.510927 E 05	0.112505 E 03	$0.80674 L E T 3$
0.101047	0.511210 E 05	0.112540 E 03	0.808004 E 03
0.111342	0.513013805	0.113198803	0.820854 E 03
0.121687	0.587824805	0.116410803	$0.82534 L E 03$
0.131836	0.591764 E 05	0.116813 E 03	$0.83792 L E 03$
0.142164	0.591906 E 05	0.116827503	0.840754 E 03
0.152246	0.596365805	$0.117 C L 8 E 03$	0.85061 LE 03
0.162769	0.595681805	0.117221 ± 03	0.858994503
0.172942	0.599972505	0.117323503	0.861664 E 03
0.183130	0.600255 E 05	$0.117419 E 03$	0.864194503
0.193265	0.609368 E 05	0.117877 E 03	0.86615 LE 03
0.203811	0.610258 E 05	0.117911503	0.867354 E 03
0.213853	$0.61628 L \pm 05$	0.118151 E 03	0.872794 E 03
0.224 .83	0.617309 E 05	0.118238 E 03	0.881283 E 03
0.235091	0.666414 E 05	0.118347503	0.887183 E 03
0.245253	0.56644 .5 E 05	0.118350503	$0.889013 \mathrm{O}^{03}$
0.255622	0.667780805	0.118391 ± 03	0.890993E 03
0.266124	0.6és ${ }^{\text {coie }} 05$	0.118490 E 03	0.899763 E 03
0.276810	0.670557805	0.118572503	0.903123 E 03
0.286915	0.673447205	0.153780803	0.905223503
0.297452	0.673842505	0.153884 E 03	0.910503 E 03
0.30784	$0.674129 E 05$	0.153902503	$0.911233 E 03$
0.318001	$0.674233 E 05$	0.153921203	$0.912073 ミ 03$
0.328493	$0.674 L 68 \mathrm{E} 05$	0.153939503	$0.912913 E 03$
0.338546	0.574848 E 05	0.153988 E 03	0.914133 E 03
0.348860	0.675546 E 05	0.154039203	0.915413 E 03
0.359139	0.676634 E 05	$0.154098 \mathrm{C}^{03}$	0.91 L493E 03
0.369709	0.676954 E 05	0.154143203	$0.920123 E 03$
0.380407	0.677156 E 05	0.154254 E 03	$0.923439 E 03$
0.390525	0.67914 LE 05	$0.154325 E 03$	0.927229803
0.400913	0.679141805	0.154325 E 03	0.927229803
0.411509	0.684463505	0.154341203	0.927579203
0.421531	0.688979505	C.1549L9E 03	$0.932739 E 03$
0.131619	0.591903E 05	$0.154970 E 03$	$0.934069 E 03$
-.L41666	0.692051205	0.15j0ule 03	0.935479203
0.451753	0.692061505	0.155009803	0.936919203
0.462069	0.692103 E 05	c. 255013 O	0.938259503
0.472521	0.692112505	-.255015E 03	0.939769503
$0.4 \hat{3} 3158$	0.727197E 05	0.163605 E 03	$0.124056 E 04$

TKEミニ 5．ERUIPMENT STOCK CONSTRAINES－GAITICAL／NONCFITIEAL PARTS （Continued）

Provisioning Level	Price	Cube	weight
0．493447	$0.727 L 78 E 05$	0.163656503	0．12LI67E OL
0.504070	0.729054 E 05	$0.163737 E 03$	0．12L50LE OL
0.514096	0.729863 E 05	0.163835 E 03	0.125396 E OL
0.524137	0.730536 E 05	0.164504 E 03	0.125978 E O4
0.534631	0.73123 LE 05	0.164550203	0.126158 E OL
0.544625	0.731803505	$0.16 L 586 E 03$	$0.126496 E$ OL
0.555502	$0.733657 E 05$	$0.164783 E 03$	0.127023 EL
0.565531	0.733939 E 05	0.164828 E 03	0.127128 E OL
0.575757	0.734513 E 05	0.164889 E 03	0.127385 EL
0.585810	0.735287505	0.164900 E 03	$0.12745 L E$ OL
0.595856	0.733 LLIE 05	C．16500LE 03	0.127877504
0.605983	$0.736984 E 05$	0.166255 E 03	0.231854 LECL
0.615050	0.737286505	0.166313 E 03	0.132282 EL
0.625675	$0.737926 E 05$	$0.166579 E 03$	0.132794 EL
0.637305	0.738785 E 5	0.166659203	0.133019 EL
0．64．7323	$0.739235 E 05$	0.166978 E 03	0.133117 E OL
c． 657539	0.739330505	0.166950 E 03	0．233195E OL
0.667582	$0.741217 E 05$	$0.167140 E 03$	－．233607E OL
0.677916	$0.7419 L 2 E 05$	0．157210E 03	0.233825504
0.688396	0．7Lji20E 05	0.157535 E 03	0．13L641E OL
0.6988 .2	0.723132 E 05	0.167542 E 03	0.134833 EL
0．709 0.75	0.743154 E 05	$0: 167545 E 03$	0.135012 E 04
0.719532	$0.74327 L E 05$	0.167563 E 03	－ 135200 E OL
0.729765	$0.7435 L L E 05$	$0.167571=03$	$0.135335 E 01$
0.740141	0.743555 E 05	0.16757 LE 03	$0.135509 E 04$
0.750295	0.744050505	0.167593 E 03	$0.235637 E$ OL
0.760805	$0.74 山 702 E 05$	0.167743 E 03	0.137022804
0.771099	0.745264 E 05	0.168810 E 03	0.137278 ELL
0.781501	$0.745543 E 05$	0.168838 E 03	0.137397 E OL
0.791602	0.7156719 E 05	0.158894 E 03	0．137630E OL
0.802022	0.752792 E 05	0.170693 E 03	0.138759 OL
0.812150	0.753303 E 05	0.170817 E 03	0．1354IOE OL
0.822528	0.754507 E 05	$0.171034 E 03$	$0.139939 E$ OL
0.832605	0.75 S162E 05	$0.171118 \mathrm{E}^{0} 0$	0．240122E OL
0.84294	0.767012 E 05	0.172212 E 03	$0.1126 L 0 E$ OL
0.853373	0.757588 E 05	0.172272 E 03	0．142021E OL
0.563657	0.771173 E 05	0.172608 E 03	$0.123239 E 04$
0.873880	0.776228 E 05	$0.173693 E 03$	0.145953 EL
0.383896	0.777778 E 05	0.173823 E 03	C．146507E 0
0.893908	c． 778339 E 05	$0.173876 \mathrm{E}^{03}$	－ 2146766 E 04

The curves for weigint, cost, and cuide, ifgure 5, show a step type function where the constraint raises to consecutive plateau levels. This plateau effect is due in part to the grouped values associated with the spares and in part to the iact that for some of the items there were no cost, weights, or cuices available. The value of this ifgure, besides presenting a great many data points in a concise format, is its assistance in selecting the optimum choices for a given constraint. For example, if it were desired to get the best protection possiole for the least cost, the graph shows ticat the 50% level which cost $\$ 73,000.00$ is not the logical position to select. One would get more for bis money oy choosing the 80% level which costs a little over $\$ 75,00.00$. By choosing the latter point over the Pormer, the user has ootalned an additional 30% protection at an additional cost of only $\$ 2,000.00$. CRITICAL PART STOCK IIST

Table A-2 shows the provisioniag list determined for critical and ship installable parts, code 1 items, only. This list is in the same Format as tie equipment stocis list previously presented as well as the criterion of selecting the parts for sparigg on the basis of bighest likelihood of requiring replacement. The list represents a provisionian Level of go\% for the equipment's code 1 parts for a go-iay stock period. This ilst represents a range of 1,502 part types and a deptic of 1,741 parts which have a total volume of 172 cuilc feet, a total weight of 1,400 lics., and a total cost of $\$ 75,087.00$.

The provisioning level vas inftially derined as tiee prooability tiat an equipment or system will not require more than the stated andicer of spare parts during a specified stock perdod. This generel definition may

10

 Fiose izems essen=ial to tine opezation oi zae uniz in inacu tiey are

 are indirectif melated so keeping vise ecuipment in opezezon decguse ine:

GRITCAI PART (MINAUM MEPT: SNOCK IISN


```
        \Xiミ.E vojive in cu=̇c Seez
```

```
        \Xiミ.E vojive in cu=̇c Seez
```



```
E. ミこ-- %*,
```

```
E. ミこ-- %*,
```

2 A 2	5AS	5A36	Unit 11
3 A 2	5 A10	5 537	22A2
3 A 3	SAll	5438	22 A 3
3AL:	5 A12	5A39	22AL
3 A5	5 A13	5ALO	22A5
386	SA1L	5 AL 2	22.46
3 A 7	5 A15	5 AL 3	22A7
3 A9	5 A24	5AL5	22A8
323	5A25	5AL'o	22A9
LA2	5A26	5AL 8	23A2
LA3	5 A27	5AL9	23 A3
$4{ }_{4}$	5A28	5 A50	23AL
$4 T 2$	5 A29	5 255	23A6
5 A3	5 A30	5A56	$23 A^{7}$
$5 \mathrm{Al}_{4}$	5 A31	5A57	2 LAL
5 A5	5 A32	5 558	212
5 A6	5 A33	643×11	2143
5 A 7	5 A34	6A3XV2	2404
5 AB	5 A35	6AL	24.5

Aiso included in the EMEC data were three units (units 10,12 , and 18) which were to be repaired by the shipyard and three additional assemblies ($12 \mathrm{~A} 3 \mathrm{~A} 3,12 \mathrm{~A} 3 \mathrm{~A} 331)^{Y}$, and 12 A 3 AL) which ZMEC did not consider to be repairable by the technician.

In order to consider these conditions properly the input data caris were revised such that the parts within the yard repairacle units were coced 2 and L, the parts in the manufacturer's repairable assemblies were deleted except u ubes, and data cards for each of ine assemblies were acied. A total parts count cannot be obtained by suming the ivems siown in colunn 9 of table A-5 because the deleted assembly parts are no longer in ihe stock systen but are to be provided by the contractor's repair :aciinty.

There were 84 assemblies listed as being non-repairable by Navy technicians. These assemblies would be returned to ine mamufacturer Sor repair with the exception that the Navy technician would be allowed to repair or replace malfunctioned plug-in parts in the assemblies. The great majority of the plug-in jupe garts are comprised of electron tubes.

Tinis tecinnician repair allowance was maje because it was considerea to be stanaarc operating procedure as well as a reaiistic approect to the prociem．Since the plug－in parrs are to be replacec，these are the only paッts mitinin the non－repairable assemioies whici were not deletec from The data carò deck．It was necessary to delete the non－replaceable parts， otierwise，tie computer wouid spare parts which are not required．

The procedure used in determining the parts and essemblies stock Iist was to caiculate tine spares required to reach the 90% provisioning
 noncriticai items，where items refers to both parus ana assembies．To चizis suoci iist was adcea one spare for each criticel item tinat inad not دee：proviiaea a spare．The $22 j$ criこical items wijcin were adaed to the 30\％proinsioning iist are srown in tabie A－6．The provisioning level was recaicuiaveía aná founa to de 94.1% ．The Daris ana assemoiies stock list，
 as speres of whice 1,557 are peris ane 242 are essemolies．Tine stock has E cost of $\$ 231,326.00$ ，a voiume of 155 cuivic feet，anc weighs 1,331 pounds．

The stoci：list siown in table $A-5$ is recomenaed for use for ANi／SPS－4O Radar since present logistic philosopiy anò pertinent fiele concitions heve jeen taren into consiajzation．In those cases wiere eii repairs will de performea by the luavy techrician，one of ine three previous procedu：es wowl oe sisgestec．

三outpment stosk perioi veriations for the parts anc assembiles szoci： iisu inve been tavuiated in taile 6．Figure 6 presents inese data in Erap：ical fom．

TABLE 6. EGUIPMENT STOCX PERIOD VARIATIONS - PARTS AND ASSEMBLIES

Provisioning Level	Normalized Tim $(90 \text { days }=1.00)$
0.99799	0.08
0.99772	0.09
0.9974	0.10
0.99435	0.20
0.99068	0.30
0.98637	0.40
0.98133	0.50
0.97549	0.60
0.96872	0.70
0.96085	0.80
0.95168	0.90
0.94089	1.00
0.93851	1.02
0.93605	1.04
0.93350	1.06
0.93086	1.08
0.92812	1.10
0.92529	1.12
0.92235	1.14
0.91931	1.16
0.91615	1.18
0.91288	1.20
0.90417	1.25
0.89463.	1.30
0.88478	1.35
0.87275	1.10
0.86027	1.15
0,84,666	1.50
0.81583	1.60
0.73861	1.80
0.64095	2.00
0.40871	2.40
0.19780	2.80
0.06957	3,20
0.01739	3.60
0.00307	4.00

This information is used to determine provisioning levels associated with a range oi stock periods. The constralnts of cost, cuice, and weigit are shown in iable 7 and figure 7 for the parts and assemblies stock list.

It scould be noted at this point that the AN/SPS-40 ans, according To the stock list for parts and assemblies, lost its repair capability for ine 34 modules since no spare parts would be availabie. When considering a ship as a whole, however, it is still likely that some repairs could ie made due to the large range of parts allowed by a COSAL.

EMEC ADJUSTED LIST

The above stock list for parts and assemblies shown on taole A-5 was adjusted oy EMEC in accordance with their experience on the AN/SPS-40 Radar. In some cases is was determined that the items were being replaced at a iower rate than originaliy assigned to tine itam. In these sases the suoc: quaritities were reduced. It was also EMBC's desire to reduce tice \$131,326.00 cost of table A-5 stock list. Certain parts were selectec zor soociing rather than expensive assemolies. The resultant EMEC ad.justed stocis quantities were calculated to have a 92.9% provisioning level, a range of $1,4 \xi 8$ part tijes, a depti of 1,706 parts, a cost of $\$ 100,212.00$, a rolume of 121 cuitic feet, and a weigit of 711 pounds. SUPPORT SEIP STOCK LIST

The load list for tine support ship for tie Ail/SPS-40 for parvs onij is sinown in taole 7. The support skip's list is calcuiated at the 95% prorisioning level for a six-month stock period for six ecuipments per support ship. Is the support siap stocks the recomended load, then $a:-$ equipments when in tice company of the suppory ship wil ive protected wi=: an overall 95\% provisioning level. This means tiat tie support sinip aervies encu乃i aciditional parts over tiant carried for the equipment to raise the

TABIE 7. EQUTPMENT STOCK CONSTRATNIS - PARTS AND ASSEMBIIES

TABLE 7. EQUIPMENT STOCK CONSTRAITTS - PARTS AND AJSEMBLIES (Continued)

$\begin{aligned} & \text { Provisioning } \\ & \text { Level } \end{aligned}$	Price	Cube	Neight
0.469771	0.108710 E 06	0.120787503	$0.324104 E 03$
0.480428	0.108828 E 06	0.120869503	0.82662 LE 03
0.491268	0.108857506	0.120918 E 03	$0.82967 L E 03$
0.502134	0.108865 E 06	$0.120972 E^{03}$	0.832790803
0.513239	$0.10904 L E 6$	0.121009 E 03	$0.836020 E 03$
0.523444	$0.10904 L E 06$	0.121009 E 03	0.836020803
0.533852	$0.109045 E 06$	0.121013 E 03	0.336140803
0.544686	$0.110685 E 06$	0.121699 E 03	0.337320803
0.555443	0.110969806	0.121729503	0.838505 O 03
0.565993	0.110970806	0.121732 E 03	0.83970 Ue 03
0.576744	0.110971506	$0.121736 E 03$	0.340900 E 03
0.587699	0.110972 E 06	0.1217 L 2 E 03	$0.841770 E 03$
0.597711	0.114 T 72E 06	0.130314 E 03	0.114279804
0.60828 L	0.115286 E 06	0.130858 E 03	$0.114371 E 04$
0.618858	0.115316 E 06	0.130874 E 03	0.1141150_{4}
0.629647	0.115476 E 06	0.131212203	$0.114861{ }^{\text {O }}$ OL
0.639730	0.115860 E 06	0.131604203	$0.114945 E \mathrm{CL}$
0.649785	0.116401 ± 06	0.131858 E 03	0.115096 E 0 L
0.660683	0.116570806	$0.132056{ }^{\text {e }} 03$	0.115588 E OL
0.671167	0.116759 EC	0.132145 E 03	0.116082504
0.681444	0.117271206	0.132555 E 03	0.116229 CL
0.692237	0.117299806	0.132713 E 03	0.117099 EL
0.702279	0.117442 O 06	0.133899 E 03	0.120739 CL
0.712861	$0.117467 E 06$	0.134098 E 03	C.121310E OL
0.723384	0.117567 E 06	$0.134236 E 03$	0.121656 CL
0.733883	0.117647 E 06	$0.134576 E 03$	0.121327 E O4
0.714711	0.117780 EC	0.134705 ± 03	0.122150 EL
0.75481	0.117888 E C6	0.140428 E 03	0.122351 CL
0.765005	0.117964206	0.140927203	0.12311680 L
0.775152	0.117966 E 06	0.140935803	0.123284 ECL
0.795434	0.117967 E 06	0.110938 E 03	0.123458 E 04
0.795853	0.117992 E C6	0.140956803	$0.123542 E 04$
0.806410	$0.117993 E 06$	$0.140959 E 03$	0.123710 ELL
0.816903	0.113407 E 06	0.141119803	0.123850 EL OL
0.827352	0.120387806	0.143630803	0.125231804
0.837767	$0.120426 E 06$	$0.14376 L E 03$	0.125469 EL
0.848006	$0.120542 E 06$	0.143764 E 03	0.125688 E OL
0.858067	0.121121206	0.145559803	0.126805 ± 04
0.368372	0.121480 E 06	$0.145973 E 03$	- .127375E OL
0.379764	0.122859806	0.147291303	0.127911 CL
0.388986	0.124063 E 06	0.148423803	0.1293635 OL
0.399091	0.130545206	0.153911203	0.131050 E OL

provisioning level to a somined level of 95% The indivicual sinip ievel would sicere:ore be muci higiner than 95%. It is imeortant to note that this modeling procedure uses the support sinp :or emergency back-up sinv, and is not, icerefore, expected to furnish normal usage to tie equipment. If suppiy of nornal usage were expected of tue suppore sinp, its load would iave to ce increased ajove that stated in table A-7. The equipments are to draw ticeir nomal usage Irom the depot.

Column 1 through 7 of zable A-? carmy the same description as previously given :on the equipment's stock list. Coiumn 3 siows the normalized repiacement raje which is the part tjpe repiacement rate per 1 0 days times six, wicere six represents the numicer o equipments per support saip. Column 9 contains the number of applications of ibe pars. jope per equipment witinin tine code class of solum 3 tieerejy giving the same vajues as presented for the equipment's provisioning inst. Colim in ذisis the numicer of eaci part type to je carried acoard tive support sip. The sumation of colum 20 is the total number of items carried by tie support ship so support the Al/SPS-40 under tize acove described condivices.

The support ship stecir lis= ior parts recommends a range of 2,133 diziseren part jjces and a depth of $2,2 \ddot{4}$ parts ricici have a total price $01 \$ 72,729.00, a$ total roilume of 173 cuicic feet, and a total weigit or :,241 pounds.

Teiole A-ठे sciows the recomended support sip stock inst icr parts anc assemolies which bas a range of 581 different ojpe inems, a total aepti oi SC2 items, a total price of $\$ 120,760.00$, a sotai volume oi 124 cuicic seet, and a total weight of 917 pounds. The somat of taine A-3 is the same as tiat described above for taole A-7.

SUPPORT SEIP STOCK FERIOD VARIATION

Support saip stock period variarion for provisioning perts ony is siown in taile 0. The two colums siown ir table 8 wioich are the provisioning levei anc ije normalized time are ine same iype of infomation as presentec in i ie equipment stoci period variation section except that the time has been normelizeci on the basis 0 : six months. The 0.1 increment of time therefore incicazes a period of approximately ld days in tie cese of tie support siip lis=ing. The resilts of these data are siown grapbicaiiy in Eigure $\overline{\text { E. }}$

SUPPORT SEIP STOCK CONSNREINTS

Tine support sinip constraints for parts only, tajle 9 , is in ine same Eomat es sitp constraints where tine necessizy of ajjustment of the support sip lome may de detemined or the oasis of price, kuje, or weight. Figure 9 snows the constraint of price, cuide, and weight plottec as a function of provisionigg ievel. Tajie 10 anc figure 10 show tie constraints Of price, cuise, enc weiget as tney apply to a support sifp waict is stocking a comoination of perts anc assemblies. DEPOT STOOK LIETS

Tine two depot stock iists have jeen computed at tine 99% level for a six-montir period for $42 \mathrm{Ali} / \mathrm{SPS}-40$ Radars. The first aepot stock 11 st for patus orly is snown in taible $h-9$ and tne second depot stock inst for parts ena assemíiles is snown in teiole A-10 wiere again colums 1 througi 7 anc colum \mathcal{C} are tine same as in prevously aescribed stoci lists. Tre normalizeci replacement rate, colum. 3 , is tie part type repiacement rate per 100 jajs times 42 where 42 represents the numer of equipments per depot. Colum 12 lists the spares recommended for the depot. Tins to iai is represented ry

TAMLE j. SUPPORT SEIP STOCK FERICD VARIATICI; - PARMS ONLY

Provisionins Level	$\begin{gathered} \text { Mormalizec Time } \\ (180 \text { davs }=: .00) \end{gathered}$
0.99997	0.00
0.79996	0.09
0.99994	0.20
0.99900	0.20
0.99091	0.30
0.99745	0.40
0.99501	0.50
0.99125	0.0
0.98577	0.70
0.97800	0.30
0.96691	0.90
0.95017	2.00
0.94569	i. 02
0.94067	1.04
0.93497	-.Jó
0.92847	2.00
0.52090	2.10
0.92231	-. 12
0.90223	-. 14
0.39045	1.:6
0.37000	1.23
0.3606	2.20
0.30013	1.25
0.734 coz	-. 30
0.53075	-. 35
0.32354	2.40
0.39320	2.45
3.27724	2. 50
0.09753	i. ${ }^{1}$
0.00247	-. 30

table g．support siis stock consmpaints－parts only

Provisioning Level	Price	Cube	Neight
0.010102	0.460978 E 05	0.110971503	0.967768 E 03
0.020351	0.46 2034E 05	0.111654503	0.976036 E 03
0.030380	0．L0LE 05	0.111862503	0.983075 E 03
0.040767	0.465436505	0.111874 E 03	0.986328 E 03
0.051104	$0.465542 E 05$	0.111893 E 03	0.988648 E 03
0.061232	0.465840 E 5	0.111901203	0.990148 E 03
0.071728	0.465850 E 05	0.111904 E 03	0.991828 E 03
0.082004	0.466088 E 05	$0.111918 \mathrm{E}^{03}$	0.992968 E 03
0.092056	0.466712 E 5	0.112040 E 03	$0.100611 \mathrm{O}^{0}$
0.102550	$0.46684 山$ E 05	$0.112076 \mathrm{E}^{03}$	0.100720 EL
0.112566	$0.467113 E 05$	0.112093203	0.100772 CL
0.122861	$0.467230 E 05$	0.112101203	0.100826 E OL
0.13304	0.468677805	0.112150803	0.101008 EL
0.143958	0.468717 E 05	0.112185 ± 03	0.101084 ECL
0.154519	$0.468779 E 05$	$0.112191{ }^{\text {a }} 03$	0.101248 EL
0.165472	$0.469135 E 05$	0.112293203	0.1016172 OL
0.175505	0.469202505	0.112309503	0.101738 EL
0.186147	0.469207805	0.112311203	0.1017505 CL
0.157226	0.470282 E 05	0.112502503	$0.102220 E \mathrm{CL}$
0.207270	0.470463 E 05	$0.112540 E 03$	0.102321 ELL
0.217447	0.470521805	0.112553 E 03	0.102351504
C． 228796	0.470761505	0.112562 O	$0.102421 E 04$
0.238860	0.470859805	$0.112576 E 03$	0.1025225 CL
0.2159367	$0.4709625 C 5$	0.112582503	0.102564 ELL
0.260336	0.471094 CF	0.112594203	$0.102647 E C L$
0.271787	0.471301505	0.112618 E 03	0．202822E CL
0.282002	$0.471479 E 05$	0.112638 E 03	0.1029215 CL
0.292601	0.471658 E 05	0.112658 E 03	0.103023 E OL
0.303336	$0.471966 E 05$	0.112709 E 03	0.103219 ECL
－．3147CL	0.472638 E 05	0.112748 E 03	0.103315 E OL
3.324787	0.472832 E 05	0.112782503	0.1033905 EL
0.335193	0.4728760^{05}	0.112791203	0.103412 ECL
0.345932	$0.474017 \mathrm{EC5}$	0.112952503	$0.104097 E C 4$
0.356715	$0.475479 E 05$	0.113432503	O．10540LE CL
0.366984	0.475662805	0.1134 ¢́TE 03	$0.105475 \pm 0 \mathrm{~L}$
0.377549	0.475692505	$0.113473 E 03$	$0.105499 E$ OL
0.388296	0.475808 E 05	0.113500803	$0.105564 \pm 0 \mathrm{~L}$
J． 398887	0.475861205	0.123504203	0.105585 CL
0.409670	0.475925 ± 05	0.113511203	
0.420468	0.475925205	0.113511203	2．105ÓL9E CL
0.430695	0.475969 E 05	0.113590503	0.12588250
0.440990	0.476187805	0.113634 E 03	3．10605－2 OL
0.451523	0.476362805	0.113653203	0.1061535 CL
0.461945	0.476392505	0.113656 ± 03	0.10617 sed d
0.472237	$0.476 \div 02505$	0.128667503	
こ． 282758	0.477612005	0．128710E 33	2．isétéle OL
0.493514	2.477512 E 5	0.128710233	こ．10606LE OL
3．504509	0.477614255	0.128710503	－．106Cóla d

jeve：	Peet	Cube	vie．zh：
こ．ミミミアレ9	C．CプEこここコミ	こ．ここここここここう	こ．こ0こ0 0 こう
こ．ラ2゙こう		こ．229ここご訶	こここのシミアミ $\underbrace{\text { U }}$
こ．$=35350$	こ．－ 5 こごミミ 0	こ．こここここ7E こう	こ．ここのワシャミ0．
－． 350994	こ．．785LLE 0	－．12ヶ2うごころ	こ．2こア772E 4
－．562205	こ． 1785 LiE 05	こ．22920こE C	－．ここフ772E OL
－． 27306	こ．ル79374E 0	こ．1292．7E こ3	－．1073855 OL
こ．58：	こ．ルフコ90゙E 5	C．22922？ご	こ．ここ「こうご OL
－．5ミ29こ2	こ．ムE1805E 05	こ．こ292j2E 3	こ．こうこ022E Ju
0.502476	－．452695E 05	こ．2292こミ玉 こう	－．208092E 34
－． 525758	－．LE292LE OF	こ．こ29ここのE 03	こ．こうEこJ9E 2 L
こ． 222857	こ．．E309JE 55	こ．22926EE 03	－13ごミ2E O
－． 53.802	－．463455 05	こ．こ253192 23	
$0.54 \sim 875$	こ．L83L55 05	こ．1293105 こう	C． 230531504
C． 055965	C．L83700E 05	C．1293EこE 03	
0.006381	C．L3L273E 05	C．129365E 03	こ．i0s 20E 0
0.675558		C．2293E3E	こ．1うこ？${ }^{\text {cose }}$
0.587752	C．L3LELSE OF	0．229383E 0	C．302700E
0.695627	O．LSLGL3E 35	C．129L23E 03	
0.70933 L	こ．L85082E 05	こ．I29\％06E Oj	－．10887JE U
0.719460	－．106115E 05	C．2295ミ3E 03	－．1055u5E JL_{4}
0.725730	C．LS6339E 05		O．1090こ2E UL
0.740115	C．L． 56379 O	C．229595E 03	C．199053E OL
0.75071 ？	0.48500 ± 505	C．12952SE 03	0.209098 E OL
0．7E229	C． 465767 E 05	C．1295LIE O3	O．209756E OL
0.772342	0．L86875E 05	O．229572E 03	C．10S2S5E OL
0.783062	0.486968 E 05	$0.129585 E 05$	0.105311504
0.793930	0.486975 ± 05	0.129704 ± 05	O．109330E OL
0．30L948	0.487338 E 05	0.129807503	こ．1095L2E OL
0.216120	$0 . L 87893 E 05$	0.129876 ± 03	$0.109885 E 0 L$
$0.8274 \dot{4}$	0．487803E 05	0．229476E 03	$0.109885 E 04$
0.837534	0.550585 O 5	0.232988 E O3	C．1099：5E OL
0．848335	0.550678 E	0.233033503	C．110073E 04
0.859130	0．55120LE OS	0．133057E 03	$\because .110208 \mathrm{E}$ OL
0.569803	0.553258 E 05	$0.233052 E 03$	0.110316 E OL
0.879896	$0.568646 E 05$	O．1333045 03	$0.1103 L 2 E O L$
－． 593358	$0.5686 L 6 E 05$	0.133304503	－．21こjL2E OL
0.901845	$0.558546 E 05$	－13310LE 03	0.110312 EL
0.911659	C．5586L6E 05	$0.133104 E 03$	U．1223．2E OL
0.921920	－．690L2LE O5	C．13E302E 03	O．110520E OL
0.932161	0．6925L2E 05	0．136117E 03	C． 111805 EOL
0.942377	－．713376E 05	こ．こ71668E 03	O．ここ2257E OL

(\%) 73ヘヨา ONINOISI^OYd

Provisioning Leve：	Price	Cupe	Weight
0．49：605	0.494000501	C．179000ミ－01	0.420000 － 00
0.502328	0．4940605＿03	0．367790ミ－00	0.366000501
C．513914	0.633630503	0．492390E－00	0.390000501
C．525922	$0.655740=03$	$0.4997105 \sim 00$	0.445000501
0.530894	$0.199864 E 04$	C． 954930 O	0.499000501
0． 548284	$0.200544 E 04$	0.974160 F 00	C．575000E 01
0.558470	0.233829 E 04	0.137782501	0.662000501
0.559565	$0.236429 E 04$	$0.140976 E \mathrm{Cl}$	0.837000501
0.580880	$0.237179 \% 04$	$0.141552 \overline{E 1}$	0.862000 E 01
0.591548	0.995580604	0.451133501	$0.996000 E 01$
0.602511	0.100349505	0.496411 E	0.202500502
0.613576	$0.100461 E 05$	$0.499240 E 01$	0.204900 E 02
0.625049	0.100461505	0.499240 ECL	0.204900502
0.635637	0.100905505	$0.501004 E 01$	0.214700502
0.546593	0.109061505	0.537158 ECO	0.21500050
0.657717	$0.114553 E 05$	0.566568501	0.233400502
0.668850	0.123049505	0.590808 ECl	$0.500200 \leq 02$
0.679092	$0.149074 E 05$	$0.698605 \mathrm{E} \mathrm{O1}$	$0.508700 \equiv 02$
0.690530	0.15248650	0.716964 ECl	0.530400502
0.701495	$0.159007 E 05$	$0.775249 \mathrm{E} \mathrm{O1}$.	$0.795100=02$
0.711039	$0.160155 E^{-05}$	0．810729E O1	$0.8120005-02$
0.722938	$0.166742 \equiv 05$	$0.821393 E 01$	0.852500502
0.732972	$0.166742 \bar{E}^{-1} 5$	0.221393 O1	$0.852500 E 02$
0.743956	$0.186075 E 05$	0.117478502	$0.946600 \equiv 02$
0.754506	0.270035 F 05	$0.101397 E 02$	0.998200502
0.764718	$0.234058 E 05$	$0.1670315 C 2$	$0.110910 E 03$
0.775010	0.287409 O	0.193178502	$0.126160 E 03$
0.785315	$0.316970=05$	$0.209793 E C 2$	0.137290503
0.795462	0.374556505	$0.219272 \mathrm{E}^{02}$	0.1665900^{-1}
0.805833	$0.434714=05$	$0.265664 E 02$	$0.176020 E 03$
0.815947	C．450479E 05	$0.276116 E 02$	0.194520503
0.226123	$0.463310 E 05$	0.284075 E 02	$0.213130 E 03$
0.835424	0.48139505	0.298969 E	$0.222430 E 03$
0.846625	0.493468505	$0.305927 E 02$	$0.226450 E 03$
0.857034	O． 555234 E OS	$0.313656 \bar{E} 02$	0.252600 E 03
0.867061	0.666656505	0.357510502	$0.261120 E 03$
0.877097	$0.722977 E 05$	0.455250102	0.587719 E 03
0.887100	$0.815603 E 05$	0.527813502	0.614669 E 03
U゙も97236	C．850733E 05	0.583854 E 02	0.681909503
0.307276	$0.877951 E 05$	$0.618097 E 02$	$0.738259 E 03$
0.917485	0.917609505	0.649510 E 02	0.757369 E3
0.927656	$0.970415 E 05$	$0.102173 E 03$	0.801835503
0.737748	0.107181506	0.116860 E 03	$0.867075 E 03$
0.947786	$0.119030 E O E$	$0.123297 E 03$	$0.914184 E 03$

士wo sưototals siom ir coiumns 10 anc li．The number siown in columin il represents ine expectei on nomal use：－for a tiree－montin period．These nozmel usage items are expectec to be issued jy tie depot eaci tinree－montir period．Tne quantities listec in coiumn 10 are back－up items required to raise tie provisioning level of aif equpments to 99% or oniy one time out of a iundred will tine depot be unable to supply the requested part for all equ゙pments．The àepot stock list for parts only recomencis a range of
 677 cuicie feet，a total weigit of 4,304 pouncis，and a total cost of $\$ 250,093.00$ ．The depor stock lists for parts and assemblies recommends e range of 2，305 むiffierent type items and a vovai deptr of 4，551 items whick have a totai volume of 642 cuibic feet，a total weight of 4,451 pouncis，and a jotai cost 0：\＄569，024．00．As stated in Secticr III，the program has the aごユiさy to consider iead time for depot stock quantity，but since tinese ciata were nou avaiaijie for the program，all lead．times have been set at zerc．Tine equipment and support shif were provisioned only with code i and j Eype parus since tinese were the only perts installable by the sinip＇s force． The jepot，however，stocks code $1,2,3$ ，enc 4 items since it must supply ail the neeas of tine equipments．

DEPOT SMOCK CONSTRAINTS

Teioles 11 anci 12，Stock Constraints，are in the same format as presentec previously for equipment and support ship constraints where colum 1 is the provisioning level，colum 2 is tine price，column 3 is the cuive，and column 4 is the weight．Table 11 shows the depot constraints for provisioning pares only，and table 12 shows tine depot constraints for provisioming parts and assemolies．Figure il shows paice，cuive，ance weight

TABLE 11. DEPCT STOCK CONSTPAINTS - ZAPTS ONLY

Provisioning
Level

- Level
0.010182
0.020330
0.031073
C.011540
0.052010
0.063062
0.074397
C.0846́21
0.096250
0.107482
0.119363
C. 129664
0.140855
0.153011
0.163486
0.174679
C. 186511
0.198845
0.211548
0.223845
0.236545
0.219966
0.260529
0.271539
C.283014
C. 294973
C. 307438
0.320430
0.333971
0.348084
C. 362793
0.372943
C. 383305
0.395760
0.409536
0.423791
0.438219
0.452973
C. 1463083
0.477091
0.490440
0.501161
0.517816
0.5285 és
0.540441
0.552504
0.504236
0.57744

Price
0.606911 E
$0.607435 E$
$0.509205 E$
0.611934 E
0.612107 E
0.613710 E
0.613782505
0.613862 E 05
$0.613965 E$
0.615089 E
$0.615123 E \mathrm{C}$
0.615332505
0.6153732
0.6153875
$0.615503 E$
$0.615626 E$
0.6157615
0.6157615
$0.615822 E$
$0.615986 E$
0.6160125
$0.6106012 E \quad 05$
$0 . c 16012505$
0.616
0.616402 F
$0.616537 E$
$0.616937 E$
0.6169372
$\begin{array}{ll}0.616937 E & 05 \\ 0.616937 E & 05\end{array}$
$0.0 ́ 169 L 6 E \quad 05$
0.541053505
$0.6 ́ L 114 \varepsilon E$
0.6411775
$0.6412 \varepsilon C E \quad 05$
$0.641443 E \quad 05$
$0.641443 E \quad 05$
$\begin{array}{ll}0.641499 E & 05 \\ 0.641749 E & 05\end{array}$
$0.64318 L E \quad 05$
C.6439CLE
0.6LuLLILE
0.645938 E
$\begin{array}{ll}0.645952 E & 05 \\ 0.645952 E & C 5\end{array}$
0.645952505

Cabe

$0.16003 L E$	03
$0.160 L 7 L E$	03
$0.160520 E$	03
$0.160550 E$	03
$0.160598 E$	03
$0.160627 E$	03
$0.160686 E$	03
$0.160695 E$	03
$0.160706 E$	03
$0.160710 E$	03
$0.160833 E$	03
$0.160863 E$	03
$0.160893 E$	03
$0.160918 E$	03
$0.160923 E$	03
$0.160931 E$	03
$0.160955 E$	03
$0.160962 E$	03
$0.160962 E$	03
$0.160982 E$	03
$0.161 C 08 E$	03
$0.161009 E$	03
$0.161009 E$	03
$0.1610 C 9 E$	03
$0.161036 E$	03
$0.161091 E$	03
$0.161129 E$	03
$0.161148 E$	03
$0.161197 E$	03
$0.161213 E$	03
$0.167220 E$	03
$0.167250 E$	03
$0.167266 E$	03
$0.167299 E$	03
$0.167303 E$	03
$0.167303 E$	03
$0.1673 C 6 E$	03
$0.167316 E$	03
$0.167338 E$	03
$0.167353 E$	03
$0.167662 E$	03
$0.1675 C L E$	03
$0.1675 C 8 E$	03
$0.167508 E$	03
$0.167508 E$	03

weight

0.1104225	
0.111703 E	
C.112399E	
0.112 L 99 E	
0.112756 E	
0.1128065	
$0.113071 E$	
0.1131015	
$0.113129 E$	
0.113203 E	
$0.113313 E$	
0.1133525	
0.113L28E	
$0.1134 E 25$	
0.1134965	
$0.113526 E$	
$0.113561 E$	
0.113585 E	
0.113585 E	
0.113641 E	
0.113734E	
$0.1137146 E$	
$0.113746 E$	
0.1137462	
0.1138152	
$0.113915 E$	
0.1139774	
0.11402 CE	
0.11432 CE	
0.114320 F	
0.11432 CE	
$0.114320 E$	CL
0.114339 E	
0.1114162	
0.2144535	OL
0.1145212	
$0.114579 E$	CL
0.114593E	OL
0.1115593 E	04
0.1116172	OL
O.11L6́će	OL
O.11L7CGE	OL
$0.215049 E$	CL
0.1153275	4
0.1155385	CL
$0.11557 C E$	OL
$0.11557 C E$	CL
0.11557CE	CL

TFBIE 11. DEPCT STOCK CONSTRATNTS - PARTS ONLY (Continued)

Provisioning \qquad	Price		Cube		Weight	
0.590333	0.6459525	05	0.167508 E	Uj	0.1155705	O_{4}
0.603509	0.645952 E	05	0.167508 E	0.3	0.175570 E	04
0.613584	0.645952 E	05	0.167508 E	03	0.115570 E	04
0.623828	0.645952 E	05	0.167508 E	03	0.115570E	04
0.634242	0.645952 E	05	0.167508 E	03	O.115570E	O4
0.644830	0.645952 E	05	0.167508 E	03	0.115570 E	04
0.655595	0.6459525	05	0.167508 E	03	$0.115570 \pm$	OL
0.666539	0.645952 E	05	0.167508 E	03	0.115570 E	OL
0.677667	0.64595 飞	05	0.167508 E	03	$0.175570 E$	04
0.688980	0.645952 E	05	0.167508 E	03	0.115570 E	04
0.700482	0.645952 E	05	0.167508 E	03	0.1155705	α_{1}
0.712175	0.645052 E	05	0.167508 E	03	0.115570 E	OL
0.724065	0.645952 E	05	0.167506 E	03	0.115570 E	04
0.736152	0.645952 E	05	0.167508 E	03	0.215570 E	OL:
0.748442	0.645952 E	05	0.167508 E	03	0.115570 E	04
0.760936	0.645952 E	05	0.167508 E	03	$0.115570{ }^{\text {c }}$	O4
0.763331	0.645998 E	05	0.167512 E	03	0.115588 EE	O4
0.786107	0.6460875	05	$0.167526 E$	03	0.115615 E	OL
0.796214	$0.67 C 1 L 0 E ~$	05	0.173533 E	03	0.115729 E	OL
0.806533	C.6701L2E	05	0.173537 E	03	0.115755 E	04
0.816502	0.676064 E	05	$0.173994 E$	03	$0.116924 E$	OL
0.826763	$0.679627 E$	05	$0.174242 E$	03	$0.118267 E$	OL
0.836886	0.6888975	05	0.174375 E	03	0.118677 E	OL
0.846920	$0.693640 E$	05	0.1748775	03	0.119155 E	OL
0.857135	0.7997875	05	0.184328 E	03	0.120718 E	OL
0.867416	0.808355 E	05	$0.184595 E$	03	0.124329 E	OL
0.877623	0.830540 E	05	$0.189464 E$	03	0.130750 E	O4
0.887779	0.841622 E	05	0.190263 E	03	$0.134776 E$	OL
0.898005	0.847022 E	05	0.191012 E	03	$0.135117 E$	O
0.908148	$0.965356 E$	05	0.204252E	03	0.166757 E	04
0.918253	0.969613 E	05	0.204833E	03	0.168918 E	04
0.928277	0.990407 E	05	0.2401572	03	$0.172274 E$	O4
0.938177	0.112568 E	06	0.280308 E	03	0.175850 E	OL
0.948483	0.120050 E	06	0.288372 E	03	0.182857	O4
0.958531	$0.129246 E$	06	0.304654E	03	$0.218273 E$	OL
0.968559	$0.140616 E$	06	0.311794 E	03	0.227103 E	OL
0.978570	$0.158393 E$	06	0.358859 E	03	$0.241081 E$	OL
0.988571	0.176898 E	06	0.377945 E	03	0.284285 E	04

(\%) 7ヨヘ3า 9NINOISI^Oצd

TABIE 12. DEPOT STOOK CONSTRAINTS - PARTS AND ASSEME:IES

Erovisioning Level	Price		Cube		Weight	
0.01 .0848	0.150349 E	05	0.392251 E	02	0.1014908	03
0.020895	0.1556605	05	$0.412822 E$	02	$0.105709 E$	03
0.031672	0.161663 E	05	0.452842 E	02	0.130850 E	03
0.043282	0.163348 E	05	0.452983 E	02	$0.134640 E$	03
0.055402	$0.167365 E$	05	$0.456729 E$	02	$0.141770 E$	03
0.066727	$0.168973 E$	05	0.457135 E	02	$0.143440 E$	03
0.077579	$0.168999 E$	05	$0.457597 E$	02	0.1440105	03
0.088324	$0.170709 E$	05	0.458061 E	02	0.146490%	03
C. 098606	0.175919 E	05	0.465351 E	02	0.149810 E	03
C. 108684	0.200919 E	05	0.527166 E	02	0.155760 E	03
0.121127	$0.202719 E$	05	$0.532276 E$	02	0.171920 E	03
0.132902	$0.202637 E$	05	0.532825 E	02	0.1734 LOE	03
0.145463	0.2033775	05	0.5347575	02	$0.177360 E$	03
0.158588	$0.203496 E$	05	0.535158 E	02	$0.1784 L^{\text {OE }}$	03
0.170339	$0.20375 L E$	05	0.535312 E	02	0.1786305	03
0.181327	0.214754 E	05	0.595312 E	02	C.204830E	03
0.195701	0.215250 E	05	0.5954172	02	0.205200 E	03
0.205911	0.2152508	05	0.5954175	02	0.205200 E	03
0.216654	0.215259 E	05	0.595571 E	02	0.205390 E	03
0.227957	$0.215276 E$	05	0.595879 E	02	$0.205770 E$	03
0.239850	0.215293 E	05	$0.596187 E$	02	0.206150 E	03
0.252364	0.215351 E	05	0.5963675	02	$0.209740 E$	03
0.265530	0.215601 E	05	$0.599476 E$	02	0.218060 E	03
0.279133	0.215601 E	05	$0.599476 E$	02	0.218060E	03
0.293169	$0.217616 E$	05	0.599531 E	02	$0.218460 \pm$	03
0.306856	0.217703 E	05	0.599591 E	02	0.2192005	03
0.319764	0.218053 E	05	0.59965 LE	02	0.219750 E	03
0.330481	0.218053 E	05	$0.599654 E$	02	O. 219750 E	03
0.343186	0.218098 E	05	0.600002 E	02	O.220550E	03
0.353728	ग. 218348 E	05	0.600007E	02	0.220580E	03
0.366199	- 212362 E	05	0.600052 E	02	$0.220720 E$	03
0.378425	C. $218 \mathrm{LL25E}$	05	$0.600206 E$	02	$0.221280 E$	03
0.390388	0.2188905	05	0.600357 E	02	0.221650 E	. 03
0.402569	0.219640 E	05	0.600362 E	02	0.221680 E	03
0.414158	0.219669 E	05	0.60054 TE	02	0.222050 E	03
0.426080	0.219687 E	05	$0.60071 L E$	02	$0.222300 E$	03
0.438346	$0.219867 E$	05	$0.600746 E$	02	$0.222480 E$	03
0 O.450965	0.219867 E	05	0.6007 L 6 E	02	$0.222480 E$	03
0.462927	0.219942 E	05	0.600753 E	02	$0.222590 E$	03
0.475789	0.219950 E	05	0.6009075	02	0.222780 E	03
0.487480	0.221200 E	05	0.6010905	02	$0.223780 E$	03
0.500128	$0.216560 E$	05	0.661199 E	02	$0.224710 E$	03
0.512712	0.251835 E	05	$0.668835 E$	02	0.232700 E	03
0.525685	0.251985 E	05	0.668972 E	02	0.2339305	03
0.538986	0.252101 E	05	$0.669126 E$	02	0.2350505	03
0.552623	0.253721 E	05	$0.671876 E$	02	C.243450E	03

TABLE 12. DEPOT STCCK CONSTRALNTS - PARTS AND ASSEMBLIES (Continued)

Provisioning Level	Price	Cube	Neight
0.563754	$0.253729 E 05$	0.672030502	$0.2536 L O E 03$
0.577042	$0.254503 E 05$	$0.673302 E 02$	0.248460 E 03
0.587109	0.256012 E 05	0.673794 E 02	0.250400 E 03
0.598938	0.261050 E 05	0.694101802	0.252160 E 03
0.611681	0.267050E 05	$0.734101 E 02$	0.277160 E 03
0.624024	0.269150 E 05	0.734612 E 02	0.280060 E C3
0.635678	$0.269453 E 05$	0.734638 E 02	0.280240 E 03
0.645820	$0.294873 E 05$	0.7954 LTE 02	0.283970 E 03
0.656157	$0.30052 L E 05$	0.804336 E 02	0.293470 E 03
0.606740	0.304031 E 05	0.808511202	0.301220803
0.576910	0.318292505	0.87010 LE 02	0.331690 E 03
0.687002	0.369266 E 05	0.960930 E 02	$0.647010 E 03$
0.697133	0.390680 E 05	0.101363 E 03	0.708130 E 03
0.707203	0.415988 E 05	0.103589803	0.755529 E 03
0.717216	0.431014 E 05	$0.104806 E 03$	0.778579 E 03
0.727288	0.499276 E 05	0.112838 E 03	0.795629 E 03
0.737573	0.559574 E 05	$0.118096 \mathrm{E}^{03}$	0.307589 E 03
0.747734	0.578809 E 05	0.118738 E 03	$0.832419 E 03$
0.757898	0.591820 E 05	0.152265803	0.854625 E 03
0.767959	0.630952 E 05	0.161336 E 03	0.897345 E 03
0.778258	0.549266 E 05	0.162577503	0.925045 E 03
0.788330	0.666258 E 05	0.168263 E 03	$0.993925 E 03$
0.798486	0.726408 CL	0.169672503	0.102013 E OL
0.808643	0.759098 E 05	0.171834 E 03	0.105320 E OL
0.818665	0.777114 E 05	0.173305 E 03	0.107723 EL
0.328780	0.791720 E 05	$0.173999 E 03$	0.109920 EL
0.838843	0.805065805	0.175399 E 03	0.112023 E OL
0.848971	$0.957093 E 05$	0.190561803	$0.14 L 52 L E O L$
0.858983	0.100501506	$0.195 L L 9 E 03$	$0.147494 E 04$
0.869043	0.10464686	0.230215 E 03	0.152085 EL
0.879162	0.110057806	0.235255203	$0.15 L 992 E 8$
0.889261	$0.1128 L C E 66$	$0.23775 L E 03$	$0.158 L I O E C L$
0.899379	0.114322506	0.238738 E 03	0.155597 E OL
0.909451	0.116508 E 06	$0.240045 E 03$	0.160605 ECL
0.919515	0.137500 E 06	0.255146 LC 03	$0.16474 \partial E \mathrm{CL}$
0.929591	0.143827806	0.260845 E 03	0.171933 EOL
0.939631	0.162668 E 06	0.284993 E 03	$0.179976 \mathrm{ECL}_{4}$
0.9496L8	0.182272506	0.302122503	0.214607 EL
0.959654	0.192066 E 06	0.307320 E 03	0.222155 EL
0.9596 a6	0.209912 E 06	0.326532503	0.242598 EL
0.979705	$0.225436 E 66$	C.3LULLOLE 03	0.25007 LE OL
0.989713	0.262917506	0.422313803	$0.301394 E C L$

(\%) 73^37 9NINOISINOYd
plotted as a function of provisioning level for parts provisioninz．Figure 12 illustrates the same information for a depot provisioning coth parts and assemblies．

APL GALCULATIONS

Two Allowance Parts Ilsts for the AN／SPS－40 Radar were analyzed during tils program．These were tie Allowance Parts Ifsts dated Feoruary 1963 and Novemicer 1964．The latter APL did not contain a complete Section B，but oniy a partial listing of the eirewit symbols．This procedure，while indicating tiae equipment populstion of tive part tjpe，precludes the possi－ bility of identiņagg the circuit locations of the part type．The exact circuit locations are aecessary when considering revisions to the maintenance poilcy or suocking policy．

The procedures used in amalyzing the two sioove API＇s were tice same． The initiai step was to assign replacemeat rates to the part quantities siown in tiee stocik numer sequence list，Section C of tine APL．The part ijpes oi FSN，allowed quantities，and repiacement rates were transierared to puncined cards．The puncied caris were inserted，in FSN order，into a deck Of carais contaiping tiee＝emarning part types，replacement rates，and popu－ laتion witaia tie equipment．It is necessary to asve all parts represented winetcer tice parts are to be spared or not．The carc ciecir containing only sinfpoord instaiiable parts was used in conjunction with tice computer program to dete：mice the associated provisioning level．The older APL
 て，ذ⿰氵 par＊s listed in its stocis numicer sequence list was detemined to inve a provisionthg level of $i / 2 \%$ ．The aever Navg APL dated yovemice：i964， wific cad a range of $1,297 \mathrm{part}$ gpes and a depti $0: 2,455$ zarts $1 \leq s t e d$ in
 Of i．O\％

It was found inat tine cuan＝ities in Seczion C of tif ipi incluãè repairaile assembies as weil as spare paris．There are severa meznods O＊janding the modeling，nowever，tne metrod crosen was tie one wicic would credit the APL witt tre greetest possible protection ievel．The
 assemily after whicin the spare perts ere used and fineily tie maifunctioned assemily may je completeiy cennioclizec．

Tne APL（Feiruary IGぶ）convains 2,132 spares iisteć in section C as aliowec quanこiこies，nowever， 48 of these spares ere for assemilies contain－ ing replaceasle parts．There are 47 different asseminies anc one 0 tio assemclies is ellowed iwo spares．Tie 40 assemilies contein 3,809 patts

 yieidé i $/ 2 \phi_{0}$ frotection for a vinree－month perioa．

The spare pařs were salculazed to cost $\$ 42,275.00$ and the cost of the parts witizit ore $4 \hat{2}$ spare assemivies cos＝\＄10，515．00．During previous
 tineir paz＝s cosi wrich indicaies that the assemijies have an estimated value of $\$$ ジー，590．0う．The spare perts and ine spare assemilies comoined $_{\text {a }}$ are تinen valued at $\$ 93,367.00$ which represeñi the cost of the aliowed ouantities specifiec er the API．Since there are some parts witn uninown cost，tne spare paris cost woulc te Encreased when the cost of these per゙も is ortainec．

Section VI
DISCUSSION OF PHASE I RESUTIS

A result of mejor interest generated during Pnase I of this program is the comparison of recomended spares of the Vitro stock list and the APL. Table 13 contains comparisons of the three stock lists generated for the equipment by Vitro and Nevy AFL's wicich are dated Feibraury 1963 end November 1964. Since the APL proviaes for both eriticel and noncritical parts, the AFL siould most properly be compared with the Vitro criticsl/noncritical stock iists. Two of Vitro stock lists are for provisioning parts only, the other is for both parts and assemblies.

The Vitro critical/noncritical stock list for parts only was determined to provide 90% provisioning level for a three-montin period and was found to cost $\$ 78,058.00$. Tine AFL arted Februery 1963 was found to provide 0.5% provisioning level for a three-month period and cost $\$ 93,867.00$. Boti costs are actually grearer tinan the stated amounts since the cost of approximately 300 - 400 parts are uniknown. The APL dated February 1963 did not consider Field Chenges 10,11 , and 12 which hes the effect of degrading the provisioning level.

The Vitro stock list for parts only in general has greater range and less depth than does the AfL except for the items in stock class 5960 where the depth in many cases is greater than the 1963 AFL. Of the 1,809 items considered by the Vitro stock list, 324 were not given any spares, 1,310 were given one spare each, and 275 items had a depth greater than one. About 50% of those items with a depth greater than one are found in stock class
TARIE 13. VITRO STOCK LIST AND APL COMPARISONS

Stock List Identification	Provisioning level (x)	Overall Depth (Number of Spares)	Overall Range (Nunter of Part Types Spared)	Number of Part Types Same a: APL		Number of Part Types Not in APL.	Number of Part Types in APL Only
				With Same D:pth	With Changed Depth		
Navy APL (Dated Fici. 1Yós)	0.5	2,132	1,161	NA	NA	NA	MA
Vitro Critical/ Noncrilical Parts	90.0	2,103	-1,809	1,112	991	$6^{*} 3$	29
vitro Critical Part: Only	90.0	1,741	1,502	865	649	343	33
Vitro Critical Parts (Minimum Depth)	93.9	2,331	2,043	925	1,203	911	9
Navy APL (bated Nuv. 19 4)	1.0	2,455	1,29\%	NA	NA	NA	NA
vitrocilical/ Noncritical Part:	20.0	2,103	1,809	1,176	936	507	34
vitio Critical Part: Only	*) 0	1,142	1,502	1,052	712	369	36
Vitro Critical Parts (M1ntmun Deplh)	93.4	2,331	2,043	1,009	1,105	771	7
Vilios Critical/ Noncritical Yart: and A ascmatille;	94.1	1,098	1,442	225	790	518	418

5960 winich consists primerily of tubes and diodes. There were 1,112 pert types witin the same depth in the two stock lists. The two stock lists had 60 to 80 percent agreement in the categories of resistors and capacitors found in stock classes 5905 end 5910, respectively. Of the 991 part types winch had a chenged depth in the Vitro stock list, it was found that 268 part types had lesser depth than the AFL and 738 had an inereased depth over the APL. Nuch of the increased depti is due to mechenical items in stocir classes 3010 tirough 3110 and Lockheed part numbers which were not provisioned by the ADL. Tnere were 29 part types which were given spares by the AFL but were not given spares in the Vitro stock list. There were 297 pert types which were not given speres by either tine AFL or the Vitro stock list.

A comparison was also made between the four Vitro stock lists and the newer APL of Novemiber 1964 which has been up-dated to include Field Changes 1 through 22. This APL haì a provisioning level of 1% and a range of 1,297 and a depth of 2,455 items. The most useful comparison is between the AFL and the Vitro critical/noncritical stock list for parts and assemblies. Tris Vitro stock list contained 518 items not in the AFL and conversely the AJL contained 418 items not spared in the Vitro stock list. Four hundred and four of the 418 items were not spared by the Vitro stock list because they are assembly parts. The Vitro stock list had 825 items which had tine same allowed quantity as the AFL and 790 items with a cinanged depth.

Table 14 shows the 518 items which were provisioned in the Vitro stock list for parts and assemblies which were not allowed spares by the November 2964 AFL. Table 15 shows the 14 ĩems which were provisioned in tine Novemider 1954 AFL but were not ellowed spares by the Vitro stock list for

TABLE 24．PARTS PROVISIONED BY VITRO STOCK LIET－NOT IN APT（1964）

3010－725－8019 3010－733－5276 3010－983－6007 3020－060－7926 3020－060－7927 3020－060－7923 3020－580－2204 3020－520－7195 3020－731－4 17 3020－731－4418 3020－731－4 3020－731－420 3020－731－4425 3020－731－4 426 3020－731－4427 3020－731－4428 3020－731－4429 3020－731－4431 3020－732－4902 3020－732－4903 3020－732－1．906 3020－732－8530 3020－769－1087 3020－791－5484 3020－301－4229 3020－801－4230 3020－301－1231 3020－301－4232 3020－820－9262 3020－320－7263 3020－339－3972 3020－839－8973 3020－339－3974 3020－339－8975 3020－339－3976 3020－841－7098 3020－879－4036 3020－985－0201 3040－444－9779 3040－580－9749 30L0－769－1079 3CLC－759－1080 3040－759－1082 3110－440－3885 3：10－702－1599 3120－713－4651 3120－715－9542

4210－837－9899 4140－893－011．5 4310－073－3573 4320－620－7199 4720－373－2683 4720－373－2684 4720－873－2638 4720－873－2589 4730－684－3579 4730－720－0461 4730－815－6975 4730－872－9213 4820－444－9775 4820－314－8448 4820－360－4282 4920－792－9219 5305－543－2777 5305－543－2789 5310－582－6300 5310－613－1287 5310－655－7511 5310－680－9492 5310－687－2626 5315－298－0950 5315－687～5126 5315－731－9233 5315－812－3035 5315－840－9853 5330－171－9361 5330－290－9481 5330－530－1991 5330－530－2008 5330－585－3217 5330－713－5370 5330－801－0775 5330－879－6842 5330－950－1162 5340－073－2232 5340－073－2233 5340－073－2234 5340－286－9459 5310－513－2252 5340－585－1660 5340－585－9835 5340－598－1228 5340－630－6486 5340－631－6033

5340－677－0402 5340－685－7023 5340－725－0959 5340－754－1899 5340－81́～－OL74 5340－820－674 5340－825－8229 5355－049－3572 5355－556－0115 5680－020－2790 5840－020－2772 5840－020－2785 5840－023－1955 5840－055－1731 5840－056－7033 5840－064－8303 5340－065－9715 5840－073－2235 5840－073－2235 58LLC－073－2237 5BLO－073－2238 5840－439－6340 50LLO－723－5382 5240－732－8505 5840－758－0898 5840－759－1078 5340－797－2755 5840－787－2756 5240－787－3709 5240－787－3723 5840－789－5240 5240－798－4961 5340－338－3395 5840－338－3386 5340－360－0842 5240－860－0855 5840－372－9209 5340－872－9214 58L0－966－7707 5840－966－7708 5340－975－3258 5840－776－4399 5340－991－1496 5840－991－3379 5340－715－9422 5905－170－2004 5905－195－6800

5905－256－3351 5905－549－5602 5905－552－21山2 5905－731－8358 5905－731－8361 5905－301－5533 5905－301－5642 5905－901－5852 5905－801－6212 5905－312－3170 5905－828－4098 5905－337－7776 5905－839－4637 5910－087－0922 5910－101－4053 5910－101－4679 5910－125－9170 5910－644－6224 5910－666－5585 5910－6066－611？ 5910－725－2646 5910－899－1398 5915－075－0129 5915－076－2115 5915－715－2350 5915－798－4963 5915－313－3391 5915－818－3392 5915－813－3590 5915－850－0825 5920－281－0210 5920－281－0224 5920－296－5359 5920－799－7079 5920－799－35？ 5920－799－8579 5930－019－3272 5930－019－8173 5930－019－8175 5930－615－7532 5．930－635－1522 5930－65ラン－2522 5930－713－5292 5930－713－532？ 5930－713－5323 5930－337－8058 5930－860－0846

TABIE 24．PARTS FROVISIOIED BY VITRO STOOK IIST－NOT IN API（1964）（Continuea）

－270
ご35－222－64
935－237－
2
35－25
25
35－1．39－68
935－i．91－652
935－539－265
5935－583－8689
5935－550́－7217
5933゙－615－1106
5935－617－2219
935－636－5905
5935－665－7227
5935－677－8054
5935－713－4200
5935－725－1345
593う－726－4150
5935－729－8036
5935－731－1876
935－731－1885
5935－752－2630
5935－755－5535
5955－560－0824
5935－560－0825
5935－879－5113
5935－379－5216
こ935－985－2005
5935－991－3377
5940－250－2931
5940－355－4692
5940－500－5373
5940－500－5378
5940－500－5381
5940－500－5383
59－40－502－4．522
5940－502－8459
5940－518－9611
5940－542－8546
5940－542－8547
5940－5？7－7452
5940－513－2627
50．0．．723－3501
9．0－787－3726

5:30-973-2590

シシミラ-020-5792
ごラ5-222-6457
=935-237-5445
5935-258-601.5
2935-259-0337
5935-259-0357
5935-439-5892
5935-i92-5525
5935-539-2651
5:35-583-8689
5935-550-7217
5937-515-1108
5935-536-5905
5935-665-7227
5935-677-8054
5935-713-4200
5935-725-1345
593ラ゙-726-4250
593ラ-729-8036
5935-732-1876
593ラー731-1885
5935-752-2636
シ935-755-5635
5¢5ラ-560-0824
5-500-0825
5935-879-5216
5935-985-2005
5935-991-3377
5940-256-1931
5940-355-4692
5940-500-5373
5940-500-5378
5940-500-5381
5940-500-5383
59:10-502-4.522
5940-502-8459
5940-518-9611
5940-542-8546
594へ-542-8547
5940-5?7-7452
59.0-513-2627
59.0-787-3726

2329F00ㄴㄷ－4 232970045－5
232950045－6 2329F0045－7
2329F0045－8
2329F00L5－9
2329F0045－10
2329F0045－11
2329F0045－12
232950094
233300012
233300031
$234 山 30066$
234430067
234400042
234400166
2344C0166－2
23L4CO18L
23414014
234140179
234400183
$234 \mathrm{~L} F 0090$
2344 FOl 63
23 LuFOL 64
234 LFO 65 263030349 273030354 253030360 263081669 2530D0007 263000092 263000142 263000169 263010433 2630：0005 29004 3239F0094 39905 41388 L400B0152 440030198 440030262 440030314 440030340 440030436 $4400 B 0493$ 440080549

L40030543
4
440030715
440080716
440080717
$4400 B 0722$
40030744
440030745
440081354
440031367
440031369
440081370
440031371
L400B1372
$4400 B 1373$
440031374
440031375
$4400 B 244$
440053445
$44 O O B 1463$
440081463－2
410032477
4LOOBL 479
440031509
440031703
440051705
LL00B1709
$4400 B 2125$
4 40032129
440000017
234400159
234iCO159－2
440020434
Lu 0000605
440000541
440000546
4400c0s 4
440000650
440050712
4 HOOCl 265
440001255－2
40001266
40001267
山 $400 \mathrm{C1267-2}$
L400c1268
440001279
4

TABIE 24．PARTS PROVISIONED BY VITRO STOCK LIST－XOT IV APL（1964）（concinued）

14001384 400CC1384－2 $4400 C 1384-3$ $4400 C 1334-4$ $4400 C 1645$ ： 4 COC186L －100C180́4－2 $440001364-3$ L4OOC136L－4 $440 \mathrm{CC1866}$ 4 4 COC1866－2 4 $0001866-3$ 4 $400 \mathrm{CO} 1860-4$ 4LCOC1866－5 44CCC1866－6 $4100 C 2017$ 440000904－4 440000904－5 440001001 440001214 440001553 4 4400 FO 24 $440 \mathrm{CFO5} 25$ 440050526 440050916 $440 C F 1213$ LLOCFI289 ．．．COF1291 4LOOF1293 44 COFI295 4400 F 1299 4 HOOFI 300 40130460 44OJ3Clól ＋ $40130 \mathrm{Ló} 2$ 440130463 440150645 AMSSITCO7
A： $3436=-3$
2iv3 36－5－5
NVO2L－D
A：1924－i山
CiLT－3
C3L7－4
0こム7－6
CCOSALTEIC5K CQ22CISSIO $3 K$

CTO2045－1 MH33573 jTLOA2H6AI K45738－8－2 MS21922－LR ：2521923－8C ：S21923－12C ：S91528－1 uS91528－11－2 MS3102E2459
RB16CER3400
RCOBGFIO1K
RC20GF121K
RC20GF151K
RC20GF223K RC2CGF331K RCLIGFIO2K 2：N336620
SSG350－126
T：1－433
0000－000－0000 8－8FTX
10－183
12－8FTX
204－szzc
$602 \mathrm{D}_{4}$
2045－1
39904－4
39904－5
39916
5133－25w
5330－531－5375
534－798－4968
5355－881－4240
5840－715－9531
58L0－891－8028
5845－787－2757
5905－190－8874
5905－279－2530
5910－807－2585
5910－823－1204
5910－825－1637
5910－826－5460
5930－715－9426 5930－715－9580
5935－552－7513
5960－273－2415

5999－022－9963
5999－713－4349
5999－837－5825
5999－837－9L96
5999－950－2885
6210－502－1617
6210－553－1721
6210－553－8219
6210－836－25ć4
5625－089－5411
6ó25－649－3274
6625－725－9431
6625－733－2745
6625－733－2746
6ó25－733－2743
6625－820－2458
6625－820－8460
5ó25－820－8̂ム61
6625－838－0147
6025－838－0118
6625－872－9212
6625－873－2580
5645－840－5693
194050304
253030378
263030412
26381587
440080106
44 COESL83
440080969
39913
3991.

39915
39916
39917
39919
41888
41389
41890
C19394－1
STL2C
20－489
2111
4592
19399－6
2111－111－1131
2222－222－2222

TSELE $-\equiv . \quad$ PARTE PROIIEIOIED ZY AFL（－90́4）－NOT IN VITRO STOCK ITET
5330－255－984． 5：10－518－1535 5310－E33－9280 5935－240－8166 5935－552－5842 5935－552－7720 5935－813－4722 5935－991－3375 5950－860－0818 5950－860－0819 5950－860－0820 5960－549－7670 5999－731－1881 6210－254－7010

TAEIE Ló．PARTE PRCVIETONED EY APL（2964）－DEITIED FROM VITRO STOCK LIST

3030－j50－0529 3110－097－9511 3110－198－2930 3210－805－4940 5330－054－5904 5330－171－9916 5330－265－1095 5330－2 $25-9835$ 5340－294－3033
 5905－000－7570 5905－102－2740 5305－171－2001 570ラ－190－38ミ7 ジ0ラ－192－0450 5－955－192－0649 5905－195－5524 5905－195－5545 5905－195－5453 5905－195－6791 5905－249－3542

5905－254－7100 5905－257－0925 5905－264－8753 590ラ－279－171 5905－279－1751 5905－279－1753 5905－279－1754 5905－279－1877 5905－279－1881 5905－279－1883 5905－279－1897 5905－279－2019 5905－279－2518 5905－279－2626 5905－279－2650 5905－279－2651 5905－279－2673 5905－279－3494 5905－279－3502 5905－279－3511 5905－279－3514

5905－279－3519． 5905－279－3521 ＝905－279－3837 5905－279－5476 5905－283－7402 5905－299－1971 5905－299－2000 5905－299－2011 5905－299－2030 5905－518－9223 5905－542－7804 5905－552－6018 5905－5ラ3－2202 5905－556－1．086 5905－556－4101 5905－556－5231 5905－556－6420 5905－556－7015 5905－577－0437 5905－577－0448 5905－577－1615

5905－577－175： 5905－577－5i42 5905－577－71．27 5905－581－7873 5905－551－6817 5905－581－5818 5905－581－9969 5905－683－2197 5905－583－2206 5905－583－6792 5905－686－3129 5905－686－3379 5905－686－0994 5905－726－4413 5905－752－3377 5905－732－4594 5905－732－4895 5905－732－8522 5905－752－3567 5905－752－3597 5905－752－3973

TABIE 16．PARTS PROVISIONED $3 Y$ APL（1964）－DEIETISD FROM VITRO STOCK IIST （Continued）

5905－752－6575
5905－752－6583
5905－800－3469
5905－800－3470
5905－800－3472
5905－301－5687
 05－805－0998
－105－307－6297
5905－808－9774 5905－810－9349 5905－811－9878
5905－812－2734 3905－821－2737
5905－812－2742
5905－812－2743
5905－312－2741
う905－312－3171
；07－312－317？
3 $305-512-3178$
5905－812－3179
5905－813－1990
5705－823－3379
5905－833－5818
5905－837－7951
3：05－537－7952
5：55－837－7954
こ） 5 5－337－7955
2 105－シ37－9899
；305－337－5900
う705－337－：301
5705－837－502
2705－738－12．52
5905－338－1253
5ク55－238－：930
－ $05-340-07 \mathrm{Li}$
$.05-340-0742$
；05－341－0282
3305－341－3114
5905－841－3122

5905－346－9675
5905－879－6899
5905－879－7127
5905－893－5198 5910－051－3825 5910－051－8104 5910－081－6985 5910－088－3113
5910－161－4 140
5910－174－5105
5910－280－7406
5910－284－1050
5910－519－6698
5910－542－7489
5910－542－7491 5910－553－711？ 5910－583－0735 5910－583－0878 5910－583－1776 5910－615－9812 5910－636－3824 5910－636－4271 5910－642－6787 5910－643－8713 5910－0́46－4973 5910－648－8030 5910－648－9534 5910－648－9537 5910－648－9539 5910－649－2946 5910－649－3154 5910－649－5175 5910－655－0137 5910－668－0729 5910－668－3129 5910－668－4582 5910－668－8167 5910－668－8158 5910－676－8292 5910－681－7124

5910－581－7347 5910－686－6005 5910－686－7100 5910－688－3007 5910－702－9928 5910－713－524 3 5910－725－5423
5910－726－8695
5910－752－4499
5910－806－2715
5910－806－4328
5910－807－1543
5910－807－9409
5910－812－2747
5910－812－2748 5910－812－3918 5910－812－3919 5910－814－3850 5910－815－4118 5910－818－9758 5910－820－6115 5910－821－4479 5910－823－1512 5910－823－1538 5910－823－1657 5910－825－7342 5910－829－3305 5910－833－9542 5910－834－5003 5910－835－3912 5910－335－66L5 5910－838－2394 5910－839－5734 5910－340－0148 5910－842－2302 5910－848－9092 5910－849－5264 5910－849－6155 5910－860－0828 5910－860－0831

5910－883－5715
5910－892－7700
5910－898－9019
5910－399－1597
5910－899－6553
5910－965－5L86
5910－990－0́8́55
5915－950－1249
5930－635－1522
5930－787－3711
5930－845－5840
5935－020－3：31
5935－064－8528
5935－149－3483
5935－201－7043
5935－201－7922
5935－259－0389
5935－552－4594
5935－721－2575
5935－785－1217
5935－787－1．332
5935－804－7447
5935－812－6 342
5935－812－631
5935－341－8092
5945－080－3432
5945－615－8413
5945－820－5650
5950－415－6504
5950－473－564． 5950－542－9797 5950－617－14：50 5950－645－1250 5950－713－1293 5950－713－4296 5950－713－4297 5950－732－8507 5905－732－8508 2950－783－1118 5950－798－4955

RABIE ZE．PARTS PROVISIONED BY APL（1964）－DEIETED FROM VITRO STOCK IIST （Continued）

$$
\begin{aligned}
& \text { 5950-798-5656 } \\
& \text { 5950-798-5657 } \\
& \text { 5950-790-5658 } \\
& \text { 5950-798-5659 } \\
& \text { 5950-798-5653 } \\
& \text { 5950-798-555 } \\
& \text { 5950-798-5565 } \\
& \text { 7050-790-5657 } \\
& \text { 5050-798-5669 } \\
& \text { 50,50-798-5670 } \\
& \text { 5950-798-5671 } \\
& \text { 5950-798-5673 } \\
& \text { 5950-798-5574 } \\
& \text { 5950-798-5675 } \\
& \text { 5050-798-5676 } \\
& \text { 5950-793-5677 } \\
& \text { 5050-798-5578 } \\
& \text { 5050-95-5-79 } \\
& \text { 5050-95-5: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5:5u-799-05: } \\
& \text { 3050-709-5:5 } \\
& \text { 5050-799-534 } \\
& \text { 5050-301-1524 } \\
& \text { 5050-501-2525 } \\
& \text { こ550-301-7672 } \\
& \text { ここ50-302-1305 } \\
& \text { こと50-302-4211 } \\
& \text { 5950-304-9363 } \\
& \text { 5050-905-5185 } \\
& \text { 5950-810-1611 } \\
& \text { 5950-312-2759 } \\
& \text { 5950-612-2760 } \\
& \text { 5950-815-0537 } \\
& \text { 5950-818-0200 } \\
& \text { 5950-818-0210 } \\
& \text { 5950-818-0211 } \\
& \text { 5950-818-0213 } \\
& \text { 5950-818-0214 } \\
& \text { 5950-818-0216 }
\end{aligned}
$$

5950－818－0217 5950－818－0218 5950－818－0219 5950－818－0221 5950－818－0222
5950－818－0225
5950－818－3680 5950－818－3681 5950－818－3652 5950－818－3683 5950－815－3684 5950－818－3685 5950－818－3686 5950－818－3687 5950－818－3688 5950－818－3689 5050－818－3690 5950－818－3692 5950－818－3095 5950－818－3997 5950－818－3998 5950－818－4000 5950－818－4001 5950－818－4002 5950－818－4003 5950－518－4004 5950－819－3924 5950－819－6850 5950－838－0142 5950－838－1914 5950－838－1915 5950－838－1916 5950－338－1917 5950－838－1918 5950－838－1927 5950－838－1925 5950－838－1937 5950－838－1948 5050－860－0807 5950－860－080

5950－860－0810
5950－860－0811 5950－860－0821 5950－860－344．5 5950－872－9217 5950－873－2691 5955－796－2757 5955－7．97－7627 5955－799－1162 5955－811－7886 5955－811－7887 5955－812－0970 5955－812－0971 5955－812－0972 5955－812－0973
5955－812－0974
5955－812－0975
5955－818－3695
5960－474－6710
5950－542－7308
5960－549－0994． 5960－552－9852 5960－556－9314 5960－661－0062 5960－582－9250 5960－685－8455 5950－712－3939 5950－712－3952 5950－712－7696
5960－727－5622
5960－729－1712
5950－729－8150
5960－751－7246
5960－752－0182 5960－752－0401 5950－752－0432 5960－773－7925 5960－783－7427 5960－788－9644 5960－791－0159

5960－804－6777 5960－806－1094 5960－809－9318 5960－810－2763 5950－811－3372 5960－812－0095 5960－814－7566 5960－824－9052 5960－837－7262 5960－838－2033 5960－838－5015 5960－840－3561 5960－850－3L50 5960－878－4284 5950－878－6590 5960－878－6591 5960－378－5592 5960－983－5990 5960－983－7158 5960－090－458？ 5985－649－8582 5999－752－3269 5905－192－0619 5905－528－7505 5905－556－3735 5905－556－3738 5905－683－3876 5910－080－2939 5910－556－9440 5910－581－8114 5910－583－1587 5910－822－563 5910－827－0175 5910－833－779？ 5910－865－4510 5935－020－2750 5945－733－5275 5950－860－3382 5950－850－3446 5950－860－3448
parts and assemblies. Table 16 shows the 404 items wich were provisiored in the November 1,64 AFL but were deleted from the Vitro list lecause they were contained within the 84 sacifised monfacturer repairasie assemilies.

The $A D T$ and the Yitro stock list (critical/noncritical parts) provisioning leveis versus time are shown graphically in sigure 13. The grapi: illustrates the rapid decline in provisioning level with time for the fit There is so liztle difference between the February 1903 AFL shown in figure 13 end the Feoruary low AFI that the graphic scale prevents them from jeing distir-guisned.

The provisioning level determined for the AFI is extremely low waica appears to contradict actual conditions since there would never be sufficiens ssares available to keep the AN/SPS-40 in operation. It is believed that there are two forces at work which lessen the effect or the celculated APL provisioning level on the equipment's ability to obtain the required replacement parts. These forces are that ships are usually at sea for \mathfrak{Z} Ewo to three week yeriod rather than' for three months and that the ship is provisioned oy means of a COSAL rather than an APL. The graph shows that 43% to $\approx 2 \%$ provisioning level is applicable for the two to three week pericd. Since the ship is stocked by the COSAL, many parts are specified in order to supply ail the equipment on coard. It is possicle that the AN/GFS-4C is consumins garts which were placed on board for equiprents other tian the AiJ/GFs-H. The APT was compared with the 30 June 1964 COSAL For the USS Furse ($D \mathrm{D} 8 \mathrm{E} \mathrm{E}$) and it was found that the COSAL increased depth or sippiiel parts not provisioned Gy the API for approximately 20% of the items in the AN/SFS.iC. These stock rocm spares would have the effect of decreasing stock-outs on the AN/ $3=5=+0$.

The above two conditions tend to lessen tie effect cil insufficient spares for the All/SPS-4C excepr that the COSAL quantities would not help

Fíruir lj. Vitro ©iLock Iis;t - N'I, Compari:ion Graph
in cases where a part type is unique to the AN/SPS-40. In the case or unique parts, stock-outs would occur more irequently, which appears to be verified by field reports.

The question arises as to why tine APL has a provisioning level of less than 1% when it has greater range and depth than the 90% Vitro provisioning level stock list. While both lists have taken the population of a part type into consideration, the Vitro stock list also considers the replacement rate to which, in many cases, the AFL appears to be insensitive. Table 17 illustrates a dozen part types winch have not been provided with any spares by the APL. These items have a large enougn replacement rate to limit the maximum provisioning level to 33% even if all otiner parts were protected to loo\%. The table shows how a few parts can have an astonishingly large effect on the provisioning level calculation.

The importance of a complete equipment part inventory is shown by this exanple as well as justifying effort expended on the equipment manual which produced 492 circuit symbol charges to the ESO data file. Three of the items, the pump sub-assembly, the power supply, and the 5970 stock class capacitor, have appeared on the demand data cards since these ivems are unique to tine AN/SFS-40. The fact that these items were demanded tends to justify tie rates used in tide Vitro calculation and that these parts should be provided spares by the AFL.

As has been snown by table 17, the AFL does not supply a surficient number of certain parts if the equipment is to be completely repaired by the technician. On the other hand, is the EMEC specified assemblies and units are not repaired by the technician, then the APL does not provide enougi spare assemblies. The AFL has a total of 53 spare assembiles while

TABLE 17. HIGE RATE PARTS

FSN	Name	Repl. Rate Per $10^{6} \mathrm{hrs}$. For Population	Frotection For Zero (0) Spares	Cumulative Protection
N 3030-850-0829	Belt	50	. 8963	. 895
N 3030-860-0830	Belt, Drive	50	. 8963	. 803
3110-702-1599	Bearing	26	. 9273	. 744
N 4320-620-7199	Pump	15	. 9678	. 720
Ni 4320-733-5279	Pump SubAssembly	26	. 9432	. 680
R 4730-720-0461	Sleeve	18	. 9613	. 653
4820-814-8448	Valve	25	. 9678	. 632
5840-732-8505	Power Supply	28	.9394	. 594
5910-829-3305	Capacitor	24	. 9480	. 563
N 5930-873-2690	Switch Assembly	34	. 9287	. 523
N 5935-731-1876	Socket Assembly	131	. 7497	. 392
N 5970-846-8455	Capacitor	75	. 8483	. 332

the Vitro stock list recommends 141 spare assemblies in order to obtain a 90% provisioning level for a three-month stock period.

After a detailed analysis by BMEC Radar Section of the Vitro stock results for the $A N / S P S-40$, two changes in the maintenance policy were suggested for the Critical/Honcritical parts and assemblies stock list. The first change suggested was that a pulse transformer with circuit symbol 4 T 2 , Federal Stock Number $5950-732-8525$, be allowed only one spare instead of three. The second change was that certain specified parts be stocked instead of the following assemblies:

Circuit Symbo1	FSN	Name
4 A2	$5840-023-1955$	Grid Cavity
4 A3	$5840-065-9716$	Plate Cavity
11	$5840-056-7033$	Duplexer

In couplying with the recommended changes the above assemblies would not be stocked but instead the following twenty parts would be added to the critical/noncritical parts and assemblies stock list:

FSN
30308600829
$3030860 \quad 0830$
47208729215
53157206460
53300546904
53301719916
53302651095
53302859836
58407335283

Momenclature
Belt
Belt
Tube Assembly
Roll Rip
Packing
"O" Ring
"O" Ring
Gasket
Load Assembly

Spares

2

2
1
1

1

1
1
1
1

FSN
58407335291
58409871496
58409918691
59055776442
59108600828
59408930951
59999847047
LEC 4400 B 2086
IEC 4401 B 0432

Nomenclature
Socket
Tee Section
Tee Section
Resistor
Capacito:
Contact
Gasket
Gasket
Gasket

Spares

2
1
1
1 1

1
1
1
1
The resulting stock list would have a protection level of 93%, cost $\$ 100,200.00$, weight 711 pounds, and have a volume of 121 cubic feet. The changes to the Critical/Noncritical perts and assemblies stock list reduced the provisioning level by 1%, the cost by $\$ 31,100.00$, the weight by 620 pounds, and the volume by 34 cubic feet. This stock list represents the results of the most detailed analysis of the meintenence capability of the sinp.

Section VII
PHASE I CONGLUSIONS AND RECOMMENDATIONS

The procedures discussed for determining the stock list for critical/ noncritical parts and assemblies sparing are recommended for use by the Navy for producing tive aliowence quentities specified on APL's. Tnis procedure is recomended since it considers the technician skill level, the evailacility of on-site tesi equipment, and cirrent Navy meintenance philosopny. The EMEC ajjusted parts end assemblies stock list represents tine most accuraie information available on tie AN/SPS-40 Radar eit this time. The parts and assemblies stock list is however, more expensive. As shown in teble 18 there is ebout e 00% increase in cost when the specified essembiies and units are stocked rather than performing tie repaizs aboard sitip. The cost of iraining and maintenance man-hours required have not been determined so it is not known which is the more economical procedure from the overall vienpoint of Navy. The only conclusion is that the benefits derived from replacing instead of reparing assemblies aboard ship is paid for by the logistics system. Even this cost is not the whole story since an additional number of spare assemblies would have to be bougit to provide for those involved in the repair fecility's turn-around pipeline. The cost values shown in table l 6 which were generated curing this study represent approximate velues due to the fact that there were items provisioned for winich no cost figures were availeiole. It is estimated that inis may increase the tatle values if 10 to 20 percent.
Values nay be $10-20 \%$ higher than shown due to fact that no cost rigures were available for
jone provisioned 1 tems.

Incation	All Repalrs Aboard Ship		Selected Repairs Aboard Ship	
	Total Cost.	Cost per Equipment	Total Cost	Cost per Equipment
Ships ($81{ }_{4}$)	\$6,556,8/2.00	\$18,058.00	\$11,031,300.00	\$131,325.00
Support Ship (14)	1,018.206.00	12,122.00	1,690,752.00	20,128.00
Deputs (2)	700,196.00	8,336.00	1,138,048.00	13,548.00
Potals	\$8,275,274.00	\$98,516.00	\$13,860,10u.00	\$165,001.00

The procedures used require replacement rates．Replecement retes tos oonsiderec to de the most appropriate type of information for the ミu゙ñse of celcuatins spare requirements．It is felt tinat demand azte s－－Vie be usea oniv when there ere two years of date aveilacle，part cperaijis iimes can be determined，and the pent being consiciered is a pent pecuizien，i．e．，the equipment in which it wes usea can be identified． ree：raies are not considered to be e major draw back，since the Navy is in ã：exceilen position through its verious aate anelysis systems to proviae Er onn urmating on revlacement rates．
－t nes become evident during this prografu tinat 1 u order to produce a …i．istic stock $\dot{\sin }$ the Navy＇s maintenance policy unst be settled before －he Arii car $\mathrm{t} \in \mathrm{properly}$ generatea．Of utmost importance are those decisions rinich specify madules or assemilies which are to je thrown away and those wist are to be repaired．Next，the locetion or echelon of repairs must Le deciaec since the location of repiacement spere piece parts is aependent apon ことis aecision．

There has veen much ciscussion recentiy in the area of logistias cancerang tat stocking of erivical items．One recommendevion resultine anci these cischssions has been that crivicel and noncritical items be provisionea at different levels．Tine proclem area is generated nere by the たลこさ inet a given Federe Stock Fumber will have both criticel and nori－ arivical applicetions．The stock rooms aboard ships do not reserve pants Eこ critacei effiiceiion only，but issue parts on e first requirement－finst－ serve basis．In crier ic make critical item stocking practicai，a method cf reserving items by the stock roow must be initietec tiroughout the fieet． TuAnine fror the resiulzs obteinec on the Ali／SPS－40 anc the minor sevings

MICROCOPY RESOLUTION TEST CHART NATIONAL Bureau of standards-1963-A
which would se involved, such a procedure does not appear to be justified.
Another procedure that has been suggested is the stocking of at least one spare for every critical part type application. It appears that some modification to such a procedure would be practical in order to avoid stocking expensive items for which there is only a slight requirement. For example, circuit symbol 4 A 6 which is a drive assembly in the AN/SPS-40 costs $\$ 1,400.00$. The drive assembly is expected to bave only 0.7 replacements per year of radar service. The ships (NOT including support ship and depot allowance) would have to stock $\$ 117,600.00$ worth of drive assemblies if one were allowed aboard each ship. At the end of 10 years of service life there would remain $\$ 107,800.00$ worth of drive assemblies unused. It would take 120 years for the radars to consume the stock quantities of one per ship. To avoid such problem areas it is suggested that the eriterion be to stock at least one spare for each ariticai item unless the item cost was greater than $\$ 50.00$. In this case the item would not be stocked on board unless at least one or more were expected to be replaced during the service life of the equipment. For all those items which were excluded under tine above conditions, it would be mandatory to stock those critical items acoard support ships and at depots.

One of the criteria to be applied in judging the feasibility and utility of the provisioning procedure is that it responds to the control factors of stock and maintenance policy, part rates, and part population. The results presented in tables 1 and 13 demonstrate that the provisioning procedure is sensitive in range, depth, cost, weight, acd cube in the ifive types of stock and maintenance policies investigated during Phase I. The comparison between the Vitro stock lists and the AFL's illustrate the
program's sensitivity to the rates in establishing the provisioning level. Investigation of the stock lists (tables $A-1, A-2, A-3$, and $A-5$) shows thai the stock quantities are realistically influenced by the part popilations. The above discussion is not presented with the intention of proving the generated stock lists to be accurate, but it does show that the provisioning procedure is adequately responsive to desired control factors. To settle the question of accuracy would require a detailed analysis of equipment stock requirements over an extended period of time.

Section VIII
 PBASE II
 IKIRIODUCIION

The preceding seven sections have discussed in detail the work accomplished under Contract $\operatorname{II} 89$ (181)58090A, Fhase I. The effort described in those sections was directed primarily toward generating the provisioning procedures, developing a computer program to perform the necessary mathematical operations, and comparing the results of verious stocking policies.

During the performance of the above effort, over 1,600 changes were made to the provisioning parts list by Vitro which were determined by means of comparison with the AN/SPS -40 manual parts list. It was recognized that further work in this area was needed but was prevented by contract limitations. EMEC and ESO undertook the effort to develop a complete and accurate parts list for the AN/SPS-40 Radar during the period of April to June 1965 utilizing the Vitro inputs and Lockheed inputs.

At the beginning of Phase I the February 1963 AFD identified 9,787 circuit symbols. Over 1600 changes were made by Vitro to this listing, bowever, only 364 new circuit symbols were added bringing the total for the Phase I effort to 10,151 . aso and Lockheed added 1,033 new circuit symbols after the enc of Phase I making a total of 11,184 circuit symbols which were used to produce the June 1965 AFL. Forty of the 11,184 were found to have been deleted by Field Change No. 12 wilich then produced a perts list of 11,144 part applications within the AN/SPS-40. ENEC made a final adjustment of 585 new circuit symbols which produced a total of 11,729 .

Both listings of 11,184 and 11,729 were applied to the Phase II effort. The following sections of this report present a discussion of the Phase II logistic effort performed on the AN/SPS-40 Radar under Contract NL89(62678)60125A using the new provisioning parts list. EMEC directed that the combined effort under Contract 1189 (181) 58090A and Contract N189(62678)60125A be incorporated into one report so that a continuous and complete disclosure of all work on the provisioning of the AN/SPS-40 Radar be contained under one cover.

Section IX
SUMMARY OF WORK
The effort under Phase II involved three generel areas which were (1) to determine the provisioning level of the 4 June 1965 AFL, (2) to determine the provisioning level of the EMEC AFL, and (3) using the ENEC approved parts list to determine stock lists for the equipment, support ship, and depot. The latter effort was to be accompanied by parts lists in circuit symiool order and Federal Stock Number order.

Since tinis additional work closely parelleled tine initial effort, the procedures described in Section III, Input Data, and Section IV, Computer Program, also apply to the work performed under Paase II. Any and ell exceptions taken to these two sections on procedures are discussed in detail in the remainder of this portion of tine report as well as the results generated.
DATA INPUT FORMAT
A deck of IBN cerds in circuit symbol order containing 11,184 cards was furnished by EMEC. These cards represented the basic parts list to be used during this phase of the work. The cards were in the following format:

\quad Dats	Colum
Circuit Symbol	$10-37$
Federal Stock Number (incluading alpha cog)	$38-49$
Part Name	$55-62$
Federal Stock Number Population	$63-66$

Data
Numeric cog, Federal Stock Number 67

Source Code 71-72

It was necessary to transfer the above data to another card format called a data card since more information was required for provisioning calculations. The data card format used was as follows:

Data Column
Code Nimber
Federal Stock Number
5-17
Circuit Symbol 18-30
Name $\quad 31$ - 38
Source Code $39-40$
Federal Stock Number Population

Essentiality Code
Blank
Cube
iNeight

Price

Replacement Rate

AFL Stock Quantity
$41-43$
4
$45-47$
48-55
(decimal located in column 50)

56-64
(decimal assumed to be between 60-69t $57-60$)
65-70
(decimal assumed to be between 68-69)
$71-77$
(decimal located in colimn 74)
$78-80$

The above date card format is different from that presented in Section IV due to the fact that the circuit symbol was required in order to generate the specified perts list print outs. The circuit symbol was compacted from the 28 colums used on the EMEC cards to the 13 colums as presented above and decimels were assumed in the weigint and price fields so that ail information could be placed on one data card, thereby simplifing the bandiing procedures.

The information contained on the mMBC cerd deck was transferred to the above deta card format which completed the first 43 colums of the data cerd. The code number (colums 1-4) was assigned by Vitro and represents the circuit symbol sequence. The code number consists of an alpha symbol fcllowed by tbree numerics. The code number was established to aid in so:ting more efficiently the data cards in circuit symbol order. The code numbers 1 from A001 through $工 198$, however, the code numbers A252, FI58, F159, 1760 , and J910 were not used.

PARIS IIST
Draring the processing of the data cards sowe special cases were found to exist. There were four manufacturer's number on the ENEC cards which exceeded the $49 t h$ colum and had the last character presented in colum 50. These anmbers were transposed to the data cards so that their last character was located in colum 27. There was one each of the following manufacturer's numbers in this category:

CE05A3NC205K
CQ05A1 VE105K
CO22C155103K
RBI6CEOR400F

Diere were lj difierent manuracturer's numiers whicin exceeded colum 0.: z::e EMEC cards and which, ween transposed, one or Jwo dashes were deizted irom tine number. This procedure was used to ensure that all ine numuers could ve recorded in tise 13 columns set aside ror tion purpose. The list velow snows tine numjer as it appeared on tie EMEC cards and numier 3 puncied in the data cards. Also sinown under population is tive totai :imiver of circuit sjmools specifled by the given numicer.
Population

EMEC Cards Vitro Data Cards Population

$$
\begin{aligned}
& 10-4095 / \delta D I A \\
& 2329 F 0045-10 \\
& 2329 F 0045-11 \\
& 2329 F 0045-12 \\
& 404-115-0210 \\
& 79-014-0620312 \\
& C 180-010-0500 \\
& C 240-022-0690 \\
& M S 91528-10134 \\
& M S 91520-102 B 2 \\
& \text { MS91528-1D4B5 } \\
& \text { US91528-3K2B } \\
& \text { NW6-0520-10B }
\end{aligned}
$$

$$
\begin{array}{r}
7 \\
\vdots \\
\vdots \\
\vdots \\
7 \\
2 \\
12 \\
16 \\
1 \\
1 \\
\vdots \\
9 \\
2 \\
\hline 61
\end{array}
$$

Tae ajove 13 manuracturer's numieers wiot appear cil tines in the
 manuiacturé's numbers are exact duplicates in tie two sarci cecsu.

The dasces were also elimanated from the circut sjmjol 1dentiEicavizn. For example, ti.e EMEC card decis has circuit symooi 2A2AiC-2ii waisa viansJここec to ts.e data carts became 2A2AlC211. Colums 2j, 29, and 30 were

 .aci jeen transposed to tree data cards joat in 22 sases jimeation of tae

EMEC Cero	Vitro Data
12A3A2TB-1203	12A3A2TB203
16A1TB-1601	IGAITB601
16A1TB-1602	IGAIIB602
18TD-1801	1817B801
22TB-2201	221B201
22TB-2202	22IB202
22Tb-2203	22mb203
22IB-2204	22IB204
22TB-2205	22TB205
22TB-2206	221B206
22IB-2207	221B207
22mb-2208	2213208
22TB-2209	22ITB209
231B-2301	231B301
23TB-2302	2313302
23TB-2303	23TB305
23mb-2304	E3TB304
23TB-2305	23T3305
24TB-2401	$24 \mathrm{TB401}$
24TB-2402	2418402
24TB-2403	2478403
24TB-2404	$24 \mathrm{TB4O} 4$

An investigation of tiae circuit symiois witinin the AN/SPS-40 showed inat no duplicates were generated due to tine above trmation. Since tinese memiers were unique witinin the azta cards and ocly 22 cases existed, no change was made to tije card format but tinese circuit symiols were carried in the truncered form. A special condition was founc to exist for two बircuit symiois, $5 A \delta T-3$ and $5 A 8 T-6$, which each bad four part numbers per circuit symbol. In order to process tine data properly by the computer eacia of the circuit symools were given terminal letters of A, B, C or D wici producec tine foilowing data on tie cards:

Circuit Sjmioi	Manufacturer's Part Numiver	Circuit	Symool

It may be of interest to note that there are four circuit symbols which legitimately terminate with a letter. These are 8A1A8MP3A, 8A1A8MP3B, 8A1A8MPSA, and 8A1A8MP5B.

Two complete parts lists are shown in Tables A-11 and A-12. Table A-11 is in Federal Stock Number order with the stock number repeated as many timas as it is applied in the AN/SPS-40. The circuit symbol is shown for reference purposes. Along with the part name, Vitro assigned essentiality code, the EMEC assigned maintenance code, and the ESO assigned source code. Table A-12 shows the same information described above, but the table is in circuit symbol order which for this Phase II study represents the Section B of an allowance parts list. The tables identify 11,729 part applications within the AN/SPS-40 Radar. Of these part applications, 11, 184 were identified by the deck of IBM cards received from ESO. These parts vere used to determine the provisioning level of the 4 June 1965 Allowance Parts List. To the above parts EMEC made 545 changes which resulted in an adjusted parts list containing 11,729 part applications. The ENRC adjustments are identified in the parts lists of Table A-11 and Table A-12 by an asterisk in the first colum. While the provisioning level calculation of the 4 June 1965 Allowance Parts List mentioned above was determined by deletiag the entries with the asterisks, the calculation for determining the provisioning level of the 4 June 1965 Allowance Parts Lists as adjusted by maC and the stocks lists for the ship, supporting ship, and depot required using all the parts in the parts list; those with asterisks and those without.

Essentiality Codes

The essentiality code preserted earlier is repeated below:

Code 非 Critical and installable by ship's force
Coc'e \#2 Critical and not installable by ship's force
Code \#3 Noncritical and installable by ship's force
Code 非 Noncritical and not installable by ship's force
Even though codes $\# 2$ and \mathbb{K}_{4} indicate that the item is not installable by the ship's force, tt is considered installable at some point within the Navy organization. Items coded \#2 and \$4 will, therefore, be stocked by the depot but not by the ship or support ship. This approach was applied to the second phase of the contract as well as the first. Since this provisioning study started in May of 1964 , the conditions specified for generating the stock lists have made the above four codes inadequate to fully describe the problem situation.

During this phase of the program two more sets of codes were generated so that the stock list development could properly consider the restraints placed upon it. The first set of codes, codes $\# 5$ and 46 , are defined as follows:

Code \#5 Critical but not to be considered for stocking
Code \#6 Noncritical but not to be considered for stocking Codes $\# 5$ and $\# 6$ would be assigned to items for the following reasons:

1. Item is to be fabricated auch as produced from bar stock, gasket material, etc.
2. Item is to be replaced or repaired by using general stores such as hoses and cable harnesses.
3. Units which are to be repaired or replaced at lower levels such as antenna unit.
4. Items which are to be repaired or replaced outside of the Navy organization such as the parts within manufacturer repairable
assemblies.
5. Items which are replaced at a higher level such as a printed circuit board.

It was decided by EMEC that all items would be repaired within the Navy organization. Items which during Phase I had been considered as manufacturer repairable would in the future be repaired by a Navy module repair facility, therefore, category (4) above did not have application in the Phase II effort.

Table 19 lists the items assigned Codes $; 5$ and $;{ }^{j} 6$ during this analysis. Table 19 is in Federal Stock Number manufacturer's number order. The last column shows one of the above five numbers under the 'Reason for Code Assignment" as explanation for the action taken. Some of the lines begin with an asterisk which indicates those parts which were added because of the EMEC's adjustment of the APL.

The final set of codes, codes $\$ 7$ and $\# 8$, were added co allow for stocking aboard the support'ship and carries the following definitions:

Code ${ }^{\prime \prime} 7$ Critical and stocked at support ship and depot but not ship,
Code $\ddagger \neq 8$ Non critical and stocked at support ship and depot but not ship.

Codes \#7 and $\# 8$ were generated to consider shipboard installable items With low rates such that the item is being stocked primarily for protection or insurance, and at the same time has a high cost which would result in greatly increasing the stock inventory cost for items with little expectation of being required. The procedure has been to investigate every icem
 be assigned.

MSE．No．／ESN	Circuit	Symbol	Name	E．C．	Reeson for E．C． Code Assignment
こうくフ＋2	ごご	MP 12	CLAMD	$=$	2
こ147－3	5534	MF 12	CLAMP	三	2
C147－4	5A34	M13	CLAMP	5	2
NS17！4	43	MP 16	ROLL PIN	5	1
$\because 5 こ ワ 1455$	443	MD 17	ROLL FIN	5	1
ソミご1405	4－ 3	ND ？ 8	ROLL DiN	E	1
ソSワートに＝	$4 \pm=$	MD ？ 0	2nl！E！	E	1
	－ 5	$\because D>0$	POLL DIN	E	1
いS：プーニミ	L1 3	$\because \mathrm{O} 2$ ？	ROLL DI＇	E	1
マニこワも	：${ }^{\text {P }}$	ME E	GASK＝T	＝	1
ご，ミワ		W ：	CLELE 2	＝	2
ここここー－		－ 12	CAELE	5	2
こちこ5フ年		－12	CLELE R	$=$	2
1－TEく	123	$\mathrm{N}=14$	VELTMERS	$三$	1
！こんEヒミノEこさム	三	MD ？ 4	WELTHERS	5	1
	$\because 2$ ：	MP 3	WELTHEPS	E	1
て3このここここ	24i ？	Lİ	INDUCTJR	＝	1
ここ20ッここ：	26：？	L：5		＝	1
こックロニこ？ 0	24－	L－	1Nこひくーこの	E	1
こここのッご！	ごら	L 22	1NOUCOC	－	1
こここのミここ：＝－2	2くL：	－	1Nこひく－ご	5	1
2シここミここ」にース	こん	－11	1NOUCTO＝	F	1
ミミここミここ：-2	こん	－ 27	INDUCTOE	5	1
23このミこここと－2	こん：？	$\underline{10}$	！Nご心何こR	E	1
こここのミここ？	24－2	－－	！NこごくTこR	E	1
2220にここ： 0	ごく	－ε	INDUETOF	E	1
こここのミこ・・くーミ	こちら	－： 2		5	1
	242	L 23	1NこごくTご	E	2
こここのミこ！－－－	でら こ	－ 5	1NDUCTこ＝	E	1
ッロンのニッ・・ーム	いよ	－c		$=$	1
2＊ここのこ「：ニーム	CLL？		INOUCTOR	＝	1
2：20ミこ「： $0+4$	？ 40 ？	L 14	INDUCTAE	＝	1
22200…	？ $4 \triangle$ ？	ve 6	SLR	E	1
？2 203ここち	240 ？	VD ミつ	CUE	\bigcirc	1
こここここここー	26：	vp 35	Cup	5	1
こうごこここんヨ	2uti	MD 3 ？	Cup	E	1
ここ2ここここしを	244 ：	ND 4 こ	くご	＝	1
2ล2ヒこここん	こ422	ND37	Cu：	$=$	1
ッ2ニッ「した	二小，	MD $2 f$	Cus	E	1
2320こここん	24t	MO 2 C	こuF	\ddagger	1
こここくこここんを	24：	$\because 2$ に	こう」	5	1
ご2ごごミこ	26：	$1 \leq$	ごこ，こ？	＝	1
フコフミニー・－	36 －	－－三		$=$	1

TABLE 19．ITEMS DET EILED FROM STOCK CONSIDERATION（Continued）

Mfg．No．／FSN	Circuit	Symiol			Name	E．C．	Reason for E．C． Code Assignment
232980099	24 A 2			15	INOUCTOR	三	1
232 จこの82	5		N	1	CAコLE ${ }^{\text {CN }}$	$=$	2
2220F0005	24				$A M P L=\square$ ？	－	3
232050904	5		W	2	WIRIVG	5	2
233300012	742	2	Mo	1	GASKET	5	1
2344 C0042	5		W	5	CAELE AS	－	2
2344Cこ．66	4		W	3	CAELE AS	5	2
2344ここ！56－2	4		W	4	CAELE AS	5	2
23440933C	22A 9		E	1	PRINTED	\ldots	5
3344．9．144	$4 A 8$		$=$	：	PNT CKT	＝	5
734400144	6 ± 5		E	1	PNTCK？	＝	5
7244F？， 6	4		ω	$!$	CARL＝$=\triangle$	－	2
41820	221	1	4 MP	17	HANDL F	4	2
41920	224	1	up	18	HANDLE	a	2
41900	1 A	1	MP	4	HANDLE	5	2
41890	2 A	！	MP	13	HANDLE	5	2
41900	3 A	1	np	2	HANDLE	6	2
41990	3 A	1	MP	3	handle	6	2
41800	34	1	no	4	HANCLE	5	2
4.890	4		MP	17	HANCLE	5	2
41800	6		no	18	HANDLE	5	2
41900	6		MO	10	HLNDLE	－	2
$4!90 \mathrm{C}$	27		MP	15	HANOLE	5	2
49900	$2 ?$		MD	16	HANDIE	\leqslant	2
440000125	14A	1	MD	2	CASKET	a	1
440 －60：76	－SA	1	MP	3	GASKET	6	1
440050：こ6	：54	1	MP	4	GASKET	6	1
$440 こ$ ここ：06	164	1	MP	7	OASK＝T	5	1
$44008 \mathrm{C4} 36$	2 A	1	MP	7	GASKET	5	1
44：050436	24	1	MP	8	GASKET	5	1
440090436	$4 \pm$	1	40	7	GASKET	＊	1
440030436	4 A	1	up	8	GASKET	6	1
440090436	4.	1	MP	9	GASKET	5	1
$44008 C 436$		1	MP	10	GASKET	5	1
440080436	23 A		MP	2	GASKET	5	1
440030483	1		MP	7	STRAD	6	1
440030483	3		MP	7	STRAP	5	1
440 CBC483	4		MP	45	STRAD	5	1
$44008 \mathrm{C483}$	22		MP	5	STRAP	－ 5	1
440031477	4		$4 P$	46	GASKET	5	1
4ムこ1くこころó	124	341	$M P$	2	GASKET	5	1
$4401 こ こ こ 5 う$	$1 ? 4$	3 32	MD	4	GASKET	5	1
4569			MP	22	EL！	5	1
4560	8A		MD	23	EL！	5	2
4560			UD	24	C－：	5	1
4560		1	no	25	CL： 0	6	2
－2533220064：4	$1 \pm$	1	no	2	CASk＝	6	1

TABTE 19．ITEMS DETESTED FROM STOCK CONSIDERATION（Continued）

MES．No．／ESN	Circuit Symbol				Name E．C．		Reason for E．C． Code Assignment
10N5¢2こ8344705	BA	1	MP	16	CLID	6	1
CN502083447CE	8 A	1	MP	17	CLIP	t	1
ON5 5208344705	84	1	MP	18	CLID	6	1
ON59208344705	84	1	MP	19	CLID	6	1
10N592つを3447こ5	BA	？	MP	20	CLIP	6	1
ON5 2208344705	8A	1	MP	21	CLIP	6	1
9N59977552916	4		MP	21	WEATHERS	6	1
2344 FJ16E	4		W	2	CAELEAS	5	2
2630ミころ5047	EA	：AE		35	GEAR EEV	5	1
263 －5035こ－を	84	IAE	MD	34	GEAR EEV	＝	1
26こ0こ035：－6	EA	I $\triangle E$	MP	$5 E$	GEAR EEV	5	1
こ63ここころ5：＋7	54	1－A8	MP	54	GEAR EEV	5	1
2もミこつここ10	84	$1 A^{\prime}$	E	1	BD PRINT	5	5
263こつこ：02	et	l 46	E	？	ED PRINT	$=$	5
2630つこ！42	64	$2 A 5$	E	1	BD PFINT	5	5
2s？こnc：＋c	84	：$\triangle 4$	E	1	ED DPINT	$=$	5
？くるのこへごこ	8Δ	？ 11	E	2	ED DPINT	$=$	5
300：5	7 A	1	MP	5	PIN	5	1
20096	$=$		MD	1	TASKET	E	1
20014	\％		NO	$?$	GASKET0	E	1
200．K	＝		ND	3	GASKET	5	
20096	5		MP	4	GASKET	5	1
20015	7 A	1	NiP	6	GASKET	5	1
30027	5		MP	5	GASKET	5	1
30017	5		MP	6	GASKET	5	1
30017	5		MPD	7	GASKET	5	1
20017	5		MD	8	GASKET	5	1
200：9	\rightarrow A	1	MD	7	GASKET	5	1
$4!44!+2$	6		NP	1	GASKET	5	1
L192a	－		$\cdots \mathrm{M}$	10	CATCu	E	2
4 19日a	＝		MD	20	CATCH	E	2
4 ？RPR	E		MD	21	CATCW	5	2
4185 ？	5		4 D	22	CATEH	5	2
41282	6		MP	2	CATCH	5	2
41888	6		MD	3	CATCH	5	2
$418 R 8$	6		MP	4	CATCH	5	2
41888	23		MP	14	CATCH	5	2
41888	23		MP	15	CATCH	5	2
41888	23		MP	15	CATCH	5	2
41800	5		MD	0	HANDLE	5	2
41800	5		MP	10	HANDLE	5	2
4900	E		MD	$!1$	HANDLE	E	2
4900 ？	F		VP	12	HANOLE	E	2
49800	7Δ	1	MP	4	HANCLE	5	2
$44002 C 106$		2	MD	1	GASKET	＝	1
ムムへの日こ：こ6	04	2	MD	2	GASKET	5	1

ZAETE 19．ITGMS DETEMED FROM STOCK CONSIDERAMION（Continued）

YE\％．No．／ESN	Circuit	Syubol		Name	E．C．	Reason for E．C． Code Assignment
ーーンこここ：	5－2	$\therefore 0$	三	うからくミワ	\vdots	1
－ー：－ご：	3：	$\because 0$	－	こここくミ	ミ	1
$\rightarrow 4^{-}=?-5$	94	$\because 0$	三	こここくご	$=$	1
くいの－－	2－ 2	\cdots	\leqslant	－：¢＝－	$=$	！
	$=2=$	\cdots	$=$	～の：＝	$=$	1
いの－＝－＝－	$=2<$	\cdots	4	－ヘッニン	$=$	1
ーイヘのローロー	＝：	$\because 0$	2	－ancot	－－	2
らヶーッツーに	Cis	$\because 5$	$!$ ！	rancrer	\cdots	2
せのこのこ＝	$=3<$	$\because 0$	\because	のヘッツ！	－＝	2
	$= \pm$－	\cdots	： 2	－ロ－	－	2
	$=14$	$\cdots 0$	13	Canio	\cdots	2
	$=2 \leqslant$	\cdots	$\vdots 4$	かツこと	－	2
いいこここム！		$\because 2$	\because	－ツ－－	\cdots－	2
－＋こここごこ		$\because=$	： 5	くッツいこ	，	2
$\rightarrow \therefore \because こ=こ ー シ$	\because－•	$\because 5$	？	－ッソミ	$=$	1
ーーこここのーシ	2－5：	$\because 0$	\square	ここッこつ	三	1
200： 5	74 ！	\cdots	17	く：ミくこ	\checkmark	1
ミここ：う	34：	$\because D$	$1:$	Gこミくミご	\div	1
2この $=$	$23:$	$\because=$	12	Gこミくミー	\checkmark	1
27－！¢	：\％－	\cdots	1：	－ここくミ「	\div	1
29こ14	4	\cdots	$=$	－こちくこ	$=$	1
$\rightarrow 30 \cdot \leq$	\cdots	$\because 0$	\cdots		－	1
－－－	\therefore	$\cdots 0$	－，	－ニ く く	6	1
	\therefore	\cdots	－•	$\because .1$ く ${ }^{\circ}$	6	1
	$=$	\cdots	$=$	ごミくこー	＝	1
$\because \because \because$	$=$	\cdots	\because	－Δ ミく	－	i
ミ9：	$=$	$\because=$	$\therefore:$	ごこくミ「	5	\geq
	， 7	\cdots	\cdots	$\because こ こ く$－	$=$	－
こ＝－：	22	$\because=$	$: ?$	ごこご	\leq	－
シニこご	ご」：	$\because=$	\％	これミくご	$=$	$?$
ミここ：	こ？：	$\because=$	6		5	2
	$\because:$	$\because=$	三	ミロミノ＝－	6	－
ア9ッ6	$\rightarrow 7$	$\because=$	4	\rightarrow－：＝－	$-$	1
3ニこ・－	－	$\cdots=$	\rightarrow	こここくご	\leq	\geq
っこ．．	\bigcirc	\cdots	，	－：ィンー	$=$	2
このこ．	74	$\because=$	，	－くことご	－	1
	11	$\because 0$	9	－А ¢ く	\sim	1
7ッこ：	21	$\because 2$	0	－」くこー	$=$	1
こつッ＂	：$=$ ：	$\cdots=$	！	ごミくこ	\sim	1
こここ：？	$-$	$\cdots=$	： 3	にコミくご	\div	1
	－	$\cdots=$	\therefore	ごこくこ	\div	1
$2=9$－	－	$\cdots=$	：	ー：	$=$	－
マニごい	\div	$\cdots=$	$!\leq$	？ミ：＝－	$=$	1
29：${ }^{\text {¢ }}$	\div	$\because 2$	\cdots	ここミくミー	$=$	1
	$=$	\cdots	？	－－ミヒニー	$=$	1
$\because \because$.	$=$	$\cdots=$	$: 2$	－ここくこー	－	1
？？®•－	\cdots	\cdots	－ 2		$=$	：

TAFIE 19．ITENS DENEIED FRON：STOCK CONSIDERATION（COntinued）

Nfé．No．／FSN	Circuit	Symiool	Name E．C．		Reason for E．C． Code Assignmert
＝20．＂	27	no ！ 4	TLSKET	4	1
2eこ？	？2：！	$v=$	C．A．SKET	6	1
200：－	220 ！	MD E	CLSK＝	6	1
200： 7	22：	Me C	GASKET	6	1
$30=: 9$	こ2A ！	NP 10	GASKET	ϵ	1
$4144 ?+2$	2？	vD 1	GASKET	6	1
＊ 4 ESE	1A j	MD 12	CATCH	6	2
$4!==8$	2	M＝16	CATCH	4	2
4：R2＝	2	MD 17	C\＆「に	6	2
L？¢＝a	2	MP 18	く\＆゙くい	6	2
L＇9a0	4	$\cdots 04$ ？	C\＆゙くあ	4	2
ム，Qe＝	4	uo 4 ？	Cく「C－	4	2
4929	4	YO 4 ？	く\＆TCの	4	2
4！9a＝	4	$\cdots=44$	「А「ぐ	2	2
	7	$\cdots \mathrm{O} 2$	CATCH	ϵ	2
－193E	22	MD 3	CATC－	5	2
41888	＜2	$\because D$ 4	CA，C－	ϵ	2
4！89	24 ：	ND i 2	HANDLE	\leqslant	2
4188	4	MP 17	HANDLE	5	2
4 LEP	4	MD 1 Ê	HANOLE．	4	2
	4	vo ： 0	HANO	6	2
41986	4	MP 2こ	HANDEE	\leq	2
$4!90$	224 ？	MD ！ 5	HLNC：	4	2
4 ¢ PDC	22：？	MD ？	HLN $N_{L}=$	4	2
2＇レニグーニにこご！	：${ }^{\text {c }}$		ロッNEパー	＝	3
	！		WE：	E	3
	：0		T\＆NK Li	E	3
	： 7		くN－ CL －	E	3
	$=4 \leqslant$	－	ごこの－	E	5
	4	No＜c	以ELTんEこら	E	2
	\llcorner	ND \rightarrow ：		E	1
こハち！ムミことことフミミ		$\cdots \bigcirc$	CLEこE＝	5	2
	$\because:$	$n, 2$	こAELE	E	2
	！1	n ： 3	くんジミ	E	2
？16：4516：こち5	\therefore ：	w 14	くロミ」	5	2
？V6145：6：こ00c	！？	n 15	CASLE	E	2
ここも：4ミ55＝272	；$\triangle 8$	$\cdots 7$	Cロミ，	E	2
		\cdots－ 8	くメE」E	E	2
くこんこんちく5にこつこを	$=20$	w c	ras：$=$	E	2
		v ？－	CLfL	E	2
	＝ 12	い ？？	CAO！E	E	2
ここも145655こ？2？	$5 \triangle 5$	ง． 12	くムき」E	5	2
このE：くヶフ5224：	2	$n \rightarrow$	C4ELE	E	2
	2	$\cdots 8$	CL5LE	三	2
	3	$\cdots \mathrm{C}$	CABLE	5	2
	3	$\cdots 16$	CAELE	5	2
		v ． 7	CAE： 2	E	2

TABLE 19．ITIEM DETMEIED FROM STOCK CONSIDERATION（Continued）

MES．NO．／ESN	C1rcuit	Symbol	Name	E．C．	Reason ：or E．C． Ccde Assigament
		2	－＝＝＝	$=$	2
－－－＝？	2：：	$\because 2:$	－ミー・ーミこ	$-$	1
	\leqslant	vo ここ	＊上ごーミこミ	$-$	1
	－${ }^{\text {－}}$	－ 3		6	1
－¢－＝＝－－	\because	$\because 0 \quad=$	のミーツーセこミ	－	1
：¢＝＝ィ ミこ：	＝－	$12 ? 5$		＝	1
	こ？	$\times 1{ }^{\circ}$	のモごーシこミ	4	1
	－24：	$\because 2: 9$	NE入゙ーミご	2	
－？ミこここ：	≤ 2 ；	$\cdots 0$ ：	こさミくミ	\checkmark	1
－：？ここ．	4：	42 ：	こ」こくご	$=$	1
－つここ，ご	こ－：	いこ ミ	こさミくご	－	1
こ：：：：：－	－：	$\because 2=$	こここくミ・	－	1
：－－：	$\because:$	$\because 0$ 三	2 \because	$=$	2
$\cdots \cdot$	\cdots	$\because 5 \quad \therefore$	2 ${ }^{\prime}$	－	－
：－＝	\checkmark	＊0，${ }^{\text {a }}$	$2!$	\div	1
$\cdots=$	71 •	$\cdots 0=$	こ＂	\leq	$:$
？－：	2.	$\because 2=$	$=\cdots$	$=$	1
$\cdots \cdot$	$2:$	$\cdots=$	$2 \cdots$	\sim	：
$\cdots \cdots=$	－	$\because \leq$	2：	－	：
：：＝：	\checkmark	$\cdots 0-$	$0: \%$	－	i
－：こ：	4	$\because 39$	$=: ~ \%$	$-$	i
：：：：	－	$\because 2$ ！ 4	こ：	－	\therefore
$\cdots:=$	4	$\cdots 0$ ：$=$	ご碞	－	i
$\cdots: ~=~=~$	5	$\therefore 2: 5$	$=\because$.	－	1
$\because: \square=$	\cdots	$\cdots 2=$	$=\cdots$	$=$	1
？- ：	\bigcirc	$\because 2$	こ＂＇	$=$	1
：－－	－ 2 －	$\cdots 0 \cdot$	2：${ }^{\text {a }}$	$=$	1
：－$=$	\％3：	$\cdots 2: 2$	$=\cdots$	－	1
$\cdots \cdot$	$\rightarrow ワ ⿱ ㇒ ⿺ 丄 丅 冖$	$\cdots 019$	$=\cdots$	－	2
？．．．$=$	， 9 －	－ 4	＝${ }^{\text {c }}$	$=$	1
：－－	－	$\cdots \mathrm{Co}$		\checkmark	i
－：$=:$	$2 \pm$	$\cdots 2: \leq$	らご吅	－	1
－－：＝－＝	\therefore－？	$\cdots 3$	$\because .=$	：	2
$\rightarrow{ }^{+\cdots}$－${ }^{\text {a }}$	－－${ }^{\text {－}}$	$\cdots 3$	－9．$=$	－	1
－－ツン：－	$\because:$	$\because=4$	$\cdots,=$	＝	1
がこごが，	－4	\cdots	$\cdots \because=$	＝	1
ャー・ここート	$\because 1=$	$\because 0: 2$	$\because \because$－	$=$	1
－：：＝－－	－$-\dot{ }$	$\cdots 2$ ？		$=$	1
－－ミ̇－	：	$\because=~-~$	ミ－＝＝	$=$	：
	$=$	$\because \mathrm{C}=0$	ミ－ミ：	$=$	1
－－	－	$\cdots \mathrm{C}$－	ミ－：	$=$	2
$\rightarrow \cdots=-{ }^{-}$	：－	$\cdots 2$	ミ－ッこ	＝	：
	$:=$	$\cdots 3$	ごごく－	：	1
	＝：：	$\cdots こ$ •	二：	$=$	$\stackrel{1}{2}$
＝－ 4	＝：${ }^{\text {a }}$	$\because=$－	2． 2	－	－
－－＊${ }^{-}{ }^{\text {－}}$	＝：：	－2	ミ：	$=$	：
	：－－	$\because 0$ ：	こ：	：	－

TABEE 19．ITEMS DEWENED FROM STOCK COISIDERATION（Continued）

MSg．No．／FSN	Circuit S	Symbol		Name	E．C．	Feeson for E．C． Code Assignment
4じ？ロ゙が，	2 49	$\cdots=$	25	EAD	E	1
ムく？ここご動	＝ 412	－M	4	－Ov＝2	＝	1
4ムここここちこう	5212	$2 M=$	9	COVER	5	1
ムムここここもこち	54：2	ND	13	CCVER	E	1
いいここここちこち	E－12	NS	± 7	COVER	5	1
4んここここもこ6	5412	2 MD	20	COVER	5	1
$44 こ こ こ こ 5!2$	5412	2 MD	1	COVER	5	1
ムんここここ6！3	5412	2 MF	2	INDUCTOR	E	1
くんこのこご？ 4	as 2	2	：2	STAAP	E	1
くんのごの？	GA；	－2	$=$	STRAD	E	1
44のことこの：	大12	2 2	\leqslant	STRAD	E	1
4ムへのごプ？	at？	2	C	STRA	E	1
4 く！このこのこ？	at？	2	15	STRAD	E	1
ムんここの：ここの	CL 2	$\because=$	，	CASKFT	5	1
くんこここ：ここ	$=\mathrm{i}^{2}$	2 n	8	G\＆SKET	E	1
ーんここミここをも	442	－M	17	GASKET	5	1
ーいここここことき	564	－E	7	BOA 20	$三$	5
ームここここここと	244：	4 L	10	SPACEF	5	2
ームここくご电	244：	$\mathrm{M}=$	20	SPACER	5	2
4んここくごの	246 ：	－MD	？ 2	SDLEFF	5	2
$44 こ こ こ こ:=0$	こと号？	－ND	72	SDLCÉa	，	2
	こんん	ve	22	SDLEEF	5	2
4ののにのこに	744 ？	？vo	74	SEACED	E	2
46：？${ }_{\text {¢ }}$	？ 44 ：	MD	ム三	SOACE＝	E	2
	こく1 ？	－$v=$	LE	Sこんくご	＝	2
んんこここ：＝	こくし？	v＝	$厶^{\circ}$	Sこんくこマ	E．	2
4ムべッこの	ご心	$N=$	40	Sこム「EA	6	2
いムこここに，c	くらも	$1 M D$	45	SOLCER	5	2
いいここここ，く	2641	$1 \quad \because D$	5 こ	SDLCEF	5	2
レーこに：200	こんく？	200	$:=$	SD：こここ	E	2
4いここここ：＝	こん	$\because \quad \because=$	ここ	SDAここの	5	2
いんこここここと	こんで	2 M0	2：	SDにここ二	5	2
いくここの，o＝	24： 2	2 vo	22	SDLE＝D	＝	2
－4ッご，100		－ V	73	SOACER	c	2
いんここここ！ 0 く	ごち 2	$2 M D$	24	SDACEF	E	
	？4 \％？	？vo	45	CDACED	c	2
	く46 2	2 vo	46	SこAここR	E	2
ムくここここここも	24i	2 NE	$4{ }^{\circ}$	SOASER	＝	2
ームここここ：	24t 2	2 V	4 E	SDACE＝	，	2
$44^{\text {¢－}}$－	264？	$\because D$	40	SDLこ＝	＝	2

TABLE 19．ITEMS DETLNTED FROM STOCX CONSIDERAIION（Continued）

Mfg ．NO．／FSN	Circuit	Symbol	Name	E．C．	Reason for E．C． Code Assignment
445300062	二 413	E 1	30 PNT	ξ	5
$445-n c 0 s 0$	C 410	$\bigcirc 1$	2n DNT－	C	5
440000060	5A20	E 1	30 PNT	5	5
44930095	5421	E． 1	RD ONT C	＝	5
440000060	－ 422	E 1	PD ONT -	5	5
$44022006 こ$	5423	E ：	$3 D$ ONT	5	5
440300060	5424	E 1	30 PNT C	5	5
440500007	224 2.	E 1	QD PRINT	5	5
44020103 C	2243	E 1	SO DPINT	5	5
$44502124 ?$	2） 4	E	30001 NT	－	5
$440 \cap \cap ? 69$	－ 490	E ！	Q）Ont－	＝	5
440901070	9430	E ：	BO PNT	＝	5
44こここ！？？4	2346	E 5	gD OQINT	$=$	5
4らの？！！5！	5448	± 1	90 Pnt	＝	5
44こここ：247	6A 4	N 1	CABLE	5	2
440001257	9		DEHYCRAT	5	3
4こここ0：715	5434 ？	$\cdots 1$	CAELE	$=$	2
44 こここ！ 0 ¢	54う	E 1	SD PNTC	ξ	5
$44 こ ゙ こ こ こ こ ゙$	$\stackrel{\square}{3}$		RANGE ：V	5	3
$440 こ=26 ? 2$	9	± 1	CHASS！	－	1
44.5 この？こう	$-$		RADAR SE	＝	3
	1		PW\％COV＇	$=$	3
	，		MOO OnD	＝	3
440050524	？	N 1	CAコLE	$=$	2
440\％＝05？	2	$\cdots 2$	Cロ日LE	＝	2
449の505？	，	W 3	CABL $=$	＝	2
$4402=00: 1$	3		RADAP YO	5	3
	5		RECE：VE？	三	3
4ムくごこの：	Si 2	$\cdots 1$	こ入きここ	E	2
」んここF：ご，	22		LV OWR S	三	3
44ここF：2ac	2	$\cdots:$	ごきしこ	$=$	2
$44:$＝：20？	3	$N 2$	こ」ヨレミ	＝	2
4ムロッこ？？¢？	2	$\cdots 3$	こッコし	＝	2
44－ッ，－0＝	2	$\cdots 4$	¢ロコ：$=$	＝	2
4ヶ～nE？？©	2	： 6	Ca＝L	$=$	2
440＾5！？47	15		l vo urn	5	3
44のn51244	？？		DUOPE！	$=$	3
ムムここ下：ムご	43	$\cdots 1$	！ソVF？ここ	$=$	－
↔ムこご：${ }^{\text {¢ }}$	\checkmark		$\triangle M O 1:=$	$=$	3
ムんこここ：こちこ	22		MC0 こaこ入	－	3
ムムここここア？	$4{ }^{4} 2$	$N 2$	Cしこき ここ	三	1
	413	$\cdots 2$	ごミ゚	－	1
ムムのご： 0 ここ	5		AMO：＝：	5	3
＊4ムこここ： 200	4	$\cdots 5$	く42LE	$=$	2
＊4ヶ？＝100：	4	$\cdots 3$	「ヘロ！	5	2
$44^{\circ} \mathrm{T}=$－ 22	$: 9$	12	づここざざ，	$=$	3
4226：	＝	us ？	－゙り：	＝	2

TABIE 29．ITIEMS DELETED FRON STOCK CONSIDERATION（Continued）

MEE．NO．／FSN	Cirsuit	Symiol	Name	E．C．	Reason for E．C． Code Assignmeñ
ェッグムーい	2－ 29	$\because 2$ ？	2n \triangle D	\hbar	5
	P 2 －	$\because=$	－ 010 O	$=$	5
Eこここん＋！	2A 241	vo 3	3OARO	5	5
Eこここん－14	$2 \Delta 2 \Delta 1$	MD 4	EOADD	E	5
عこ：こん－！	24 201	MP 5	EOARD	5	5
5こ！こん－：	2A 2 \square_{1}	MD E	BOARA	5	5
Eここごくごこ	2－2A2	$\because 2$	COARJ	5	5
2Vぐ！ここのミミミワ	ここ		COMPRESS	5	3
ーんここここ： $0=$	こん－？	M $=$	SDACER	5	2
ムくここに：こ ごっこ	こんt？	$\because: 3$	SニACED	5	2
ムんここここ：こごこ	こんL？	$\because 0: 6$	Sこム「ER	5	2
ムムごここ：く6＊	26：？	\cdots	SDACEF	5	2
－んっこここ？$=$＋	フLL？	\because ？	SDAF＝\％	＝	2
ムいここここ：と－を	くんへ：	NS 1－	SDLCER	5	2
ムーこのペーズ	こんこ，	$\because \% ?$	SDACER	E	2
ムヶのこの：こ0」き	26：	$\cdots \mathrm{m}$ ？	SDACFA	E	2
ムくここここ，ここのご	26：	$1: 2: 4$	SDACER	5	2
$44 こ$ こここ：0e＋z	ご心	$\because D: 5$	SDAに＝	－	2
4いここここ： 6 ¢	くぐ2	ne ？ 6	Sことここ？	5	
ムぃここくこ：＝¢－	ごよ 2	： OF ： 7	SDLCER	5	2
んんここここ：CC－2	こ－ 2	$\because 2: E$	ミこムくこマ	三	
んに：こここ：	E 46	$\because=$ ：	ごつこと	＝	1
ームここここここ：	¢ ：	$v=2$	Eしこと	＝	1
ームこここしい	ごくを	$\cdots 2$	ここムこ以ご	5	1
いいごくご	E：？	vo 5	！Nついくtre	E	1
ーム：こここぢこ	＝： 2	$v=$ ： 5	！ごいこTご	5	1
いにここここご	$=2: 5$	No：	！へこ．くTのR	E	1
4ら－以号：	＝－－	$\because=$ ？		$=$	1
んちここここちこー	E： 2	$\cdots 2: 2$		¢	1
ムムここここもご	5－	$\therefore 16$	リへこしごへき	c	$\frac{1}{1}$
いいこここ：	Ct 2	$\because 20$	ちムSKET	＝	1
	\bigcirc	$\wedge 1$	Cく3L5	$=$	2
ムいこここここさ 5 ＋ 2	7	＊ 2	こロELF	c	2
いいこここ：こも	2	$\cdots 3$	CAELE	E	2
4ムこにこここくい	\bigcirc	\cdots	CAE，	E	2
ムんこここ：－＊－こ	－	\because－	くんきLE	$=$	2
－く…くも	$=$	W） 5	－t＝	＝	2
	$=$	\cdots－	こムミーシ	＝	2
いい…… $=$	56	$\cdots=2$	E！Mry	5	2
以い……	FL ${ }^{\text {c }}$	$\cdots=6$	$=\cdots$	＝	1
いいここご：	$=4$－	$v=-$	¢\％$=$	$=$	1
－ッここご，	－2	ve	－こ＝	$=$	$\frac{1}{2}$
いい：．．．．		\cdots	く」ご5	$=$	
ームここここ：：		\cdots－	くで，	5	2
		： 3	「ご，－¢	E	

TABLE 19．ITEMS DEIETED FROM STOCK CONSIDERATION（Continued）

Mfg．No．／FSN	Circuit	Symbol		Name	E．C．	Reason for E．C． Code Assignment
44000212 C		W	4	CAELE \triangle S	5	
440062120		i	5	CABLEAS	9	2
440062120		i	6	CARLE 15	＝	2
440300192	0	1	2	JUNCTIMA	a	1
440000155	3 A 4	E	1	an doint	j	5
440 ¢0 165	245	$\underline{\square}$	1	90 ORINT	a	5
44＾n⿻O人a	224 ？	E	1	B2 DOTNT	$=$	5
440000155	2343	E	1	30 PQTNT	5	5
440000173	342	E	！	20IVTCk	，	5
442000195	5413	$=$	3	AN DNT？	＝	5
440000197	5413	E	4	50 PNT	三	5
440500213	$3 \wedge 7$	三	1	PNT CKT	5	5
440000284	5439	E	3	30 PNT C	5	5
$440000904+4$	5	＇${ }^{\prime}$	3	CABLEAS	5	2
$440000004+5$	5	N	4	CAELEAS	5	2
440200050	EA ： 5	E	：	$30^{\text {P PNT }}$	$=$	5
440 こDOO60	＝ 416	F	：	PD PNT	a	5
440000060	$=117$	$\underline{5}$	1	AD PNT－	＝	$\frac{5}{5}$

Table 20 lists the 43 parts which were assigned code 7. In this particular analysis there were no parts assigned code 8. Table 20 in Federal Stock Number-manufacturer's aumber order with each entry accompanied by circuit symbol, name, item cost, and the mean time between usage in years. In orher words, for the first entry, IN3040-444-9778 it is anticipated that there will be one of this type of part required per equipment every 844 years. For this low expected usage it does not appear to be practical to stock this $\$ 175.00$ item aboard each ship.

Maintenance Policy

The maintenance policy stipulated by EMEC for the AN/SPS -40 Radar is as follows:

1. These assemblies are not supplied as complete assemblies aboard ship as spares. Certain bits and pieces have been furnished that ships force can repair. Assemblies may be turned in for repair if parts are not supplied.

In general, these assemblies will be repalred by shore repair.

Unit 21	Unit 2
Unit 11	Unit 4A2
Unit 12	Unit 4A3
Unit 9	Unit 8
Unit 16	Unit 14
Unit 6A2	Unit 17
Unit 6A3	Unit 7
Unit 18	Unit 14
Unit 1	

2. These modules and assemblies are not supplied complete as assemblies or modules. No bits and pieces have been supplied. They mast be turned in for repair.

Unit 2A2 Dait 20
Unit 10 Unit 5A.37
Unit 19 Unit 5A47 Unit 15

\qquad

Cost 8
0
N
B
$00^{\circ} 06 T^{\prime \prime}$
$\begin{array}{ll}8 & 8 \\ 0 & 4 \\ 0 & 4 \\ 0 & n\end{array}$
19.00
47.50

8
0
\sim
103.00

8
0
0
ㅇ
ㅇ
N
N

8
0
0
0

8
0.
of
$\begin{array}{ll}8 & 8 \\ 0 & 0 \\ \text { N } \\ \text { N }\end{array}$

8

8

YOLOGNNOD RELAY

पโTWHOISNVAL
TRANSFORMER
HETNHOASNVYI.
dSWHOASNVYIL

\qquad

Circuit Symbol

Table 20. Code 7 Items Continued -1N5915-713-5365

2N5915-713-5366 1N5915-812-0126

2N5915-838-1891
1N5915-360-0861
9N5930-779-2484
1N5935-020-5791
9N5935-733-5274
1N5935-956-3036 ESEZ-SIL-Sサ6SN6 9NS 950-020-2782 9N5950-620-7212 9N5950-731-4422 9N5950-732-8524 9N5950-838-1908 9N5950-838-1909

9N5950-838-1911

3. These modules supplied as complete units. No bits and pieces, except tubes, have been supplied for these modules. Modules will be turned in for repair.

3 A 2	$5 \mathrm{AlH}_{4}$	5 ¢39	22A2
3 A 3	5 Al5	5 ALO	22A3
3 AL	5 A 24	5 AL 2	22A4
3A5	5A25	5 ALH	22.5
3A7	5 A26	5AL5	22A6
3 A9	5 A. 27	5AL6	22A7
543	5428	5 AL 8	22A8
5 AL	5A20	5AL9	23 A 2
5 A5	5 530	5A50	23 A3
546	5 A32	5 A52	23A6
5 A7	5 A32	5 A53	$23 A 7$
5 A9	5 A33	5A54	24A1
5 AlO	5 A 34	5 A55	24 A 2
5 HIL	5 A35	5 A56	2LA3
5 H 2	5A36	5A57	$2 L \sim A L$
5 A3	5A38	5A58	24.5

4. These modules are not supplied as complete units. Certain bits and pieces are furnished. These modules will be repaired aboard ship; however, they may be turned in for Shore Repair.

$5 A 8$	LA8	$22 A 9$
$5 A W h$	$6 A 5$	$23 A 5$

5. These two assemblies supplied as complete assemblies. Not bits and pieces supplied.

6AL
6A3A1
Table 21 presents a summary of the various item categories generated through the maintenarce policy stipulated by EMEC for the AN/SPS-LO Radar, the associated essentiality codes assigned, and the corresponding locations which would be a candidate for stocking items within the category. Two numbers are shown in the essentiality ∞ de. The first is used if the item
TABLE 21 SUMMARY OF ITEM E'SSEIFPIALITYY CODE, STOCK LOCAICIONS AND RATES

$\begin{aligned} & \text { ITBM } \\ & \text { NO. } \end{aligned}$	ITEM DESCRIPTION	Assigned Esjentiality Code	Stock Locations				Type Or Rate
			$\begin{aligned} & \text { Ship/ } \\ & \text { Equip. } \\ & \text { Site } \end{aligned}$	$\begin{aligned} & \text { Support } \\ & \text { Supply } \\ & \text { Ship } \end{aligned}$	Dejpot	Not In System	
1.	Units to ce repalizd/replaced at lower ireakduwn level.	5/6				X	-
2.	Assemblies NOT to ve repaired in any mancer ay .hip unt are shiphoard installaule.	1/3	X	\mathbf{X}	X		λP
3.	A.semulle, NOP to be repaired by ihip except for plugIn and/or ielected partis wut are shipboard instailaole.	1/3	X	\mathbf{x}	X		$\boldsymbol{\lambda} \mathbf{F}$
4.	Asiemblle. NOT to we replaced or Installed wy ship but repaliable at anoticir location.	$2 / 4$			X		λM
5.	Ansemulle, MOF to be replaced or injtalled oy ship and NOT repairaule.	2/4			\mathbf{X}		λF
6.	A. emulites repal raile uy ship.	2/4			\mathbf{x}		$\boldsymbol{\lambda} \mathbf{M}$
$\%$	Repale partis installable uy dip in 1 and 0 avove.	1/3	X	X	X		$\lambda \boldsymbol{R}$
d.	Plug-in and selected parts Inctallable oy ifis. in , aluove.	1/3	x	X	X		$\boldsymbol{\lambda} \mathbf{R}$
9.	Part. within assemblit., to te replaced uy Mavy Module Repair Facilluy Only.	$2 / 4$			\mathbf{X}		$\lambda \mathbf{R}$
10.	Parts within asbemulle: to te replaced uy Manufacturer or organization NOT vithin the Navy.	5/6				X	-
11.	Iteas to wi inistalled ay inlpyard/support inip only.	$2 / 4$			X		$\lambda \mathrm{B}$
12.	Items to we fabricated.	5/6				X	-
13.	Itens to ke replaced trom general stores.	5/6				X	-
14.	Parts with low expected usage, high cost, and 1nitallaule uy ship.	7/8		X	X		$\lambda \mathbf{R}$
15.	Au-cmulles witil low expected unage, high cost, and in:iallaule uy :hip.	1/3		X	X		λF

is critical the second is used if the item is noncritical. The number of the item to be stocked is determined by the computer using the cumulative Poisson probability function. The purpose of the essentiality codes is to properly direct the computer concerning the appropriate stock locations of the items within the radar.

Inherent in Table 21 is the equipment top down break down of units, assemblies, and parts. The term "item" is meant to include any of the three breakdowns of units, assemblies, or parts as applicable.

Rates

The procedure derived during this study requires as one of the inputs the rate at which the item will be used. The manner in which the item is to be maintained influences the choice of rate. There are three kinds of rates being used for this provisioning procedure for che AN/SPS-40 Radar. These are failure rate, replacement rate, and mortality rate.

The definitions of these terms as applied to this study are as follows:

1. Replacement rate, λ_{R}, is the rate at which items are consumed by an equipment. Mathematically the replacement rate is determined as

$$
\lambda_{\mathrm{R}}=\frac{\text { No. of Item Replacements }}{\text { Item Population } x \text { Operating Time }}
$$

which produces an item replacement rate on the basis of item operating time. Replacement rates have been determined by Vitro from Navy experience for most of the items in the AN/SPS-40 Radar.
2. Failure rate, $\boldsymbol{\lambda}_{F}$, is the rate at which items cause an equipment to malfunction. Mathematically the failure rate is determined as
$\lambda_{F}=\frac{\text { No. of Items Causing Equipment Malfunction }}{\text { Item Population } \times \text { Operating Time }}$ which produces an item failure rate on the basis of item operating time. For example, during a given period of equipment operation there may be 10 equipment malfunctions which require 30 parts to be replaced in order to keep the equipment in operation. This
example indicates that 10 component failures, otherwise known as primary failures, directly caused equipment malfunctions. The items which were responsible for producing the malfunction condition are charged with primary failures and from these primary failures the failure rate is calculated. The remaining 20 parts, secondary failures, which were required are failed parts but are in a failed condition due to the primary failure. In other words, if the primary failure had not occurred there would have been no need for replacing the remaining 20 parts. Through analysis of Navy equipment malfunctions, Vitro has produced failure rates for most of the items in the AN/SPS-40 gadar.
3. Mortality rate, λ_{M}, is the rate at which repairable assemblies are retired from service. The assemblies are considered as retirable when it is no longer feasible to make repairs but to replace it with a new assembly. The decision to replace with a new assembly rather than repair would probably be based on economic considerations. Such a situation occurs when it is cheaper to replace than to repair. No collection of mortality rates exist, therefore the mortality rates used were determiaed through engineering judgement and a knowledge of the item's replacement rate and failure rate. The relationship of the three rates discussed above is as follows: $\lambda_{M} \subset \lambda_{F} \subset \lambda_{R}$
where
$\lambda_{M}=$ mortality rate
$\lambda_{F}=$ fallure rate
$\lambda_{R}=$ replacement
$\subset=$ subset of

Table 21 shows the application of three types of rates for the various categories of parts established for this program. As illustrated by the table the selection of failure rate was made for asemblies which were not to be repaired by the ship. While it is true that the malfunctioning assembly is likely to have several failed parts within it, it is not likely that primary and secondary failures will occur between assemblies. Therefore, assembly usage is described by primary failures which is accounted for by applying the failure rate.

For those assemblies which would be repaired, the assembly would be required from stock only when it was no longer feasible to make repairs. For these repairable assemblies the mortality rate was used to calculate stock quantities.

The repair parts, regardless of who is to accomplish the repair action, are subject to the primary and secondary failure phenomenon and, therefore must be calculated on the basis of replacement rates.

The assignment of rates as well as the essentiality codes has involved an underlying assumption concerning the pipeline configuration. Figure 14 presents the pipeline configuration used in this analysis. A point of major importance concerning the diagram is that the ship does not deal directly with the Navy Module Maintenance Fiacility, but all such actions are processed through the depot. Deviations from this procedure would necessitate changes in the assembly stociking procedure for those assemblies being repaired by the facility.

Computer Program Changes

Because more detailed and refined output is required for the Phase II effort, it was necessary to adjust the support ship stocking procedure such

Figure 14. Pipeline Configuration
that it would accept items for stocking wich were not considered for ship stocking．The items which fall into this category have been assigned essentiality codes $\$ 7$ and $\$ 8$ which is the means by which the computer recognizes this situation．Details of essentiality codes $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 𠃌 八$ and $\# 8$ and the specific items which have been assigned these codes have been dis－ cussed previously under the subheading of Essentiality Codes．The remining alterations made to the computer progran all concern the out－ put format．These alterations are as follows：

1．The stock lists for ship，support ship，and depot are in stock number order．The Phase I stock lists were in primary order by essentiality and secondery order by Federal Stock Number． The Phase II print outs are in primary order by Federal Stock Number and secondary order by essentiality code．

2．The Phase II stock lists have the Federal Stock Numbers separated by two dashes which occur between the 6 th and 7 th digits and the 9th and 10th digits；e．g．，9N5960－476－3934．This procedure not only complies with convention but makes the federal stock numbers much easier to read than running all the digits together．

3．The order of the data colums and their titles have been changed to produce a more usable and easier to understand stock list． These changes are presented later in this report as each stock 11st is discussed in detail．

Section X

Results

GENERATED STOCK LISTS (Facility Repair)
The Electronics Maintenance Engineering Center's parts list for the AN/SPS-40 Radar was used to produce the three stock lists for the ship, support ship, and depot. The adjusted parts list contain a total 11,729 parts whici is the number of circuit symbols within the rader. Table A-ll presented earlier gives a complete listing of the items considered. Table A-13 represents the equipment stock list for a ship for the AN/SPS-40 Radar. Table A-13 corresponds to a Section C of an Allowance Parts List. The equipment stock list was determined at the 90% provisioning level for a 90-day stock period and then one spare was assigned to each initial item which had not been allowed a spare.

The format of Table A-13 has been altered from those stock lists generated during Pinase 1 . The order and titles used in Table h-13 are as follows:
Ticles
FSN/MANUFACTURER's
NUMBER

ITEM NAME

ALLOWED QUANTITY

Remarks

The first entry presents the Federal Stock Number. If no Federal Stock Number was assigned, the manufacturer's number was used.

An abbreviated name for the entry is used where only eight spaces are available.

The number of items wich are to be allowed as on-board stock.

Ticles

EC
POPULATION/EQUIPMENT

PRICE/QUANTITY
weIGhtiquantity

CLBE/QUANTITI

RATE

NLMBER

Remaris

Essentiality Code assigned.
The number of times the part eype 13 contained within the radar inder the assigned essentiality code.

The cost of the number of en-board stock
icems; e.g. if chere are 3 items of a
particular Ëpe aliowed as on-bcarc
scock (encry fis) and Ehese items cos:
\$. 10 each, then the P=ice/Quantisy entr:
would show $\$.30$ as she semoined price 3 :
the 3 i Eems.
The combined weigit 3 E the number 0 E
items 3: iowed on-ooa:= $1:$ pouncs.
The comoined volume of tie number of
items allowed $=n$-ocers in cuoic zeet.
The rate shown is the rate assigned per
one item Eor a po-day period.
This entry con=ains the code number
assigned to the entry so 5 : \quad : may be
Eraced through the calcuiati at vari.
ous provisioning levels if hand ad;ustment
of the stock is jeemec necessar: Fie
calculations are presented :n Tazle a-:-.

Table A-13 is presented in Federal Stock Number and manufacturer's number order. When a part number has been assigned more than one code number chere are multiple entries in the table. Table A- 13 recommends for 9.. 9\% provisioning level that a total of 2,095 items (depth)be allowed as on-boare stock which represents a range of 1480 part types. The equipment stock list has a sotal cost of $\$ 89,957.27$, a weight of 527 pounds, and a volume of 35.5 cubic feet. Of the 2,005 items stocked 263 were critical Etems assigned one spare. The 90% provisioning level, therefore, had a depth of 1832 with a value of $\$ 89,413.98$.

Table 22 shows the provisioning level versus stock period. Figure 15 : s a graphice: representation of Table 22. Table 23 is the equipment constrairits of cost, weight, and cube versus provisioning level which is shown :n graphica: form in figure 16 . The intent and application of the above cazies anc figures are the same as discussed in Phase I.

The seconc stock list generated under Phase II is for the support ship and is presented in Iable A-14. The support ship stock list was deEeminea Ect a support sinip which supplies six equipments or ships at a 95% provisioning ievei fore six monch stock period. Table $A-14$ is in the same Ectmat as Zajie h-13 with the one exception that the rete shown in erity 25 che rate fo: six items for a six month stock period. Table A-14 recommencs ithe a coia: of 75:i=ems (depth) de allowed as on-boarc stock whicr. represents a range of 522 part eypes. The support shap stock list has a
 cuzic fee:. Tavie 24 presents ine support shmp consirainis ce cosi. we:gti. anc cude whact are presencec graphiceily :r engure :-

TABIE 22. EQUIPMEIT STOCK PERIOD VARTAMION - FACIITIY REPAIR

Nomelized Time
 Provisioning Ieve2 $\quad(90$ Days $=1.00)$

0.99810	0.08000
0.99785	0.09000
0.89759	0.10000
0.99481	0.20000
0.99162	0.30000
0.98798	0.40000
0.98384	0.50000
0.97912	0.60000
0.97371	0.70000
0.96735	0.80000
0.95953	0.90000
0.94909	1.00000
0.94652	1.22000
0.94373	1.04000
0.94069	1.06000
0.93739	1.08000
0.93377	1.10000
0.92980	1. 12000
0.92545	1.14000
0.92065	1.16000
0.91537	1.18000
0.90956	1.20000
0.89234	1.25000
0.87054	1.30000
0.84325	1.35000
0.80964	1.40000
0.76906	1.45000
0.72118	1.50000
0.60472	1.60000
0.32900	1.80000
0.11263	2.00000
0.00210	2.40000

TABLE 23. EGUTPMENT STCCK CONSTRADTS - FACIITTY REPATR

Provisioning Level	Prace	Cube	Neight
0.	0.6000005-01	0.70000cE-04	0.900000E-01
0.030038	C. 385602505	0.108956 F 02	$0.742600 \mathrm{E} \quad 02$
0.020242	C.412887E 05	0.134239 E 02	C.110.770E 03
0.0302510	0.4554928 .05	O.157303E 02	-. 137430503
0.040677	0.476761605	0.158575 E 02	$0.148500 E 03$
0.050985	0.438980505	$0.161474 E 02$	C. 161890 E 03
0.061061	C.506061E 05	0.175560 E 02	0.232990 O3
0.071558	C.509278E 25	0.178238F 02	C. 244410 E 03
0.081941	0.513963 E 05	0.185254 E 02	$0.251260 E 03$
0.092377	$0.520336=05$	0.192912 E 02	$0.266170 E 03$
0.102854	0.536975 E 05	$0.201105 E 02$	C.287.190E 03
0.113250	0.548508 F 05	0.202509F 02	$0.295370 E 03$
0.123485	0.549306505	$0.203761 E 02$	0.2980100^{03}
0.133796	0.555772 F 05	Q. 204624 F 02	0.302210 E 13
0.143961	0.556119 E 05	0.204915 E 02	0.304 C50E 03
0.154360	O.556373F 05	-205184F 02	C. 305380 E 03
0.164702	$0.556508 E 05$	$0.205348 \mathrm{E} \mathrm{O2}$	C. 305940 O 03
0.175078	0.557811805	0.210557 F 02	0.310600503
0.185314	0.558170805	0.211019 E 02	C.311170E 03
0.195901	$0.627761 F 05$	$0.242190 F 02$	C. 314680803
0.206315	0.643504 E 05	$0.246067 E 02$	0.326350803
0.216339	$0.643775 \% 05$	Q.2467a2F 02	0.329780803
0.226652	0.646310505	$0.249032 \mathrm{E} \mathrm{O2}$	0.339110803
0.237243	0.6485388	Q. 250138 E 22	C. 344970503
0.247858	$0.648685 E 05$	0.250789 E 02	$0.346570 E^{03}$
0.258077	C.648834F 05	Q.251243F 02	0.348000803
0.268700	C.648942E 05	$0.251636 E 02$	0.349040803
0.278862	C.649552F 05	- 252130 F 02	0.352210803
0.288979	$0.654058: 05$	$0.252905 E 02$	$0.359780 \mathrm{E}^{03}$
0.299512	0.654439 F	Q.252953F 02	0.361050503
0.309825	0.654454 F 05	0.252986 E 02	$0.362190 E 03$
0.320197	$0.661325=05$	Q.253271F 02	C.363130E 23
0.330264	0.666879 F 05	0.253495 E 02	$0.363970 E^{03}$
0.340802	0.668744505	0.254976502	0.3739208103
0.350840	$0.669653 E 05$	0.255963 E 02	C.378300E 03
0.361592	0.669944505	2.256087F 02	0.378840803
0.371794	$0.669971 E 05$	0.256190 E 02	$0.379300 E 03$
0.382284	0.670046505	0.256334 E O2	0.379870803
0.393071	0.670192 E C	0.256479 E 02	C.380560E 03
0.403225	0.670414505	0.256969 E 02	C. 381670503
0.413533	0.671548 E 25	$0.257336 E 02$	0.3833100^{03}
0.423845	0.673995505	-. 258058 BF	C. $386620 \mathrm{E}-3$
0.434220	c.677230E 05	0.258190 E 02	$0.386930 E 03$
0.444796	2.677475505	-258258F 02	0.387240503
0.455629	$0.677780 E 05$	0.258290 E 02	0.387450 E 03
0.465706	0.677798805	-258290F 02	0.387450 E 03
0.476006	$0.677897 E 05$	0.258290 O2	0.387450 E 03
0.486534	0.671980505	0.258290502	C.33745CE 03

Provisioning Levei	Price	Cube	Weigir
0.497295	C．674015F 05	0.258328 E 02	0．387570E 03
0.507631	0．6040395 0.05	0.258339 F 02	C． 38760 CE 03
0.517817	0.694340 E 05	$0.258481 E 02$	0.388460 E 3
0.527981	0.694372505	0．258475E 02	C． $389390=03$
0.538010	0.694382 O 05	0.258518 F 02	$0.390470 \mathrm{E}^{03}$
0.548229	C．644391F 05	－0．258566F 02	0.391670503
0.558592	0.677803 F 05	$0.258586 \mathrm{E} ~ 02$	$0.392630 E 03$
0.569304	0.70033205	0.258977 E 22	0.395920503
0.579751	$0.701759 \% 05$	0.259099 F 02	$0.395290 E 0.3$
0.590312	$0.702300=05$	$0.259360 \mathrm{FC2}$	0.39882050 .3
0.600870	0.702450505	0.259753 E 0	C． 399520 F 03
0.611049	C．706417E 05	C．260125F 02	C．402580503
0.621155	c．707150 05	0.260404 F 02	0.403790 － 33
0.631259		0.262394515	C．40ヶフRCO 23
0.642048	T．710？ 0 OE 0\％	0．262874F 02	0.411050003
0.652686	0.7134×238	0.263599527	2 C 414430 E ［33
0.662980	$0.713817 \% 05$	0.2053865 .02	0.424780 E 03
0.673057	0.722268505	0.265677507	2．435590 21
0.683069	0.173507505	$0.268287 E 02$	C．430530E 03
0.693157	6.724473525	C．269688E 02	0.433890 E 03
0.703307	$0.7255 \% 6=05$	C．272979E 02	0.435319 U3
0.713538	0.720117505	C．273108F 07	1．4350795 03
0.723754	C．72tilbe 25	$0.273104 E 02$	0.435979 F 03
0.733958	0.72772350	$0.273164 \mathrm{~F}^{0} \mathrm{O2}$	0.436289503
0.744455	0.736752505	0.276124 E 02	C． 443599503
0.75504 C	C．235766 0 0t，	0.276159507	C．445370\％ 03
0.765055	6． 136773 F O5	0.276174 E 02	0.147059503
0.775204	$0.7367541-05$	9．276375E 22	C．4．484995 03
0.785413	0.74812 .76	0.276491 E 02	0.450199503
0.795456	6．74657）－25	C． 287904502	C．4671395 03
0.805740	0．74H1＋64E 35	2．288470E 02	0.463567 E 3
0.816504	$11.781250=05$	n． 366339 E 03	1.457564503
0.826998	0．741＋45＝ 05	0.307648 E 02	0.480489 F 03
0.837391	0.762297505	C． 309402502	2.484709503
0.847657	6．1711？7F 95	0.310479 E 02	9.486819803
0.857723	［．79150\％ 0 O	C．313324F 02	0.497669203
0.868020	0．dislf3：0j	C．314875F 02	0.507527 U
0． 878056	Ceblicher 25	0.315920502	0.510269503
0.889190	6．92171．7t 25	0.316618 E 22	0.515489703
0．898224	2．4491315 25	2．3493655 22	0.520659503
0.949092	C．dyts72t 心́	0.355478 E 02	C．）27139t C3

TABLE 24. SUPPORT SRIP STOCK CONSTRAINTS - FACIIITY REPAIR

Provisioning \qquad	Price		Cube		Weight	
0.013599	0.6290.00E		0.1 .07870 E		0.13 .7500 E	
0.026430	-129650F	05	O. 123940 E	01	C. 215000 E	22
0.040424	0.155750 E	05	0.623940 E		C.472000E	
0.05041073	-168100F	OS	0.638940 E	01	C.506000E	02
0.061194	0.170960 E	05	0.647270 E		0.546000 E	
0.073162	1748905	05	O.653470E	01	0.5919008	
0.087324	0.188330 E	05	0.954980 E		0.611900 F	
-0.103877	191380F	05	0.100908F	02	-6.679900E	22
0.123567	0.196960 F	05	0.103623 E		$0.713500 E$	
0.134770	0.139020F	05	0.105123E	02	0.7154008	
0.146989	0.202110 E		0.106103 E		0.805400 E	
0.158578	0.203730E	05	0. 106745 E	02	0.806700F	
0.179626	0.249780 E	05	$0.108020 E$		0.851400 E	
0.191900	-0.251330F	05	0. 109320 E	02	0.8714005	
0.205012	0.252880 E	05	0.110130 E		0.872400 E	
0.219020	0.254430E	05	0.110433 E		0.9074008	
0.232252	$0.261430 E$		0.110433 E		0.907400 E	
0.247205	0.263930 E	-5	0.113433 F		0.949000 e	
0.263122	0.266430 E		0.116433 E		0.990600 E	02
0.279856	0.267540 F	125	0.1165435		O. 093700 E	
0.295452	$0.278940 E$		0.126542 E		$0.109370 E$	03
0.309603	0.285940 F	05	0.126542 F	02	0.1093708	
0.322947	0.288440 E	05	0.126990 E		$0.111870{ }^{\text {c }}$	03
0.336865	0.289880 F	05	0.1269905		0.1118708	
0.347754	0.291070 E		0.126990 E		0.111870 E	03
0.358721	0.292878F	05	0.126990 E		0.111370E	
0.369619	0.301878 E	05	0.126990 E		0.111970 E	03
0.380498	0.306578 F	05	0.127109 F		0.112100 F	
0.400760	0.334578 E	05	0.127109 E		0.112100 E	03
0.411297	0.3485788	05	0.127109F	02	0.112100 F	
0.421776	0.353178 E	05	0.127228 E		0.112330 E	03
0.436602	0.355243E	05	0.127347E	02	0.112640 E	
0.448928	0.400873 E	05	0.138798 E		0.146390 E	03
0.459890	0.416598 E	05	0.140057 F		0.1516405	
0.473923	0.442698 E	05	0.190057 E		0.177340 E	03
0.484488	0.470948 E	05	0.200057 F	02	0.187340 F	
0.496256	0.484548 E	05	0.202620 E	02	0.195830 E	03
0.507830	O.506813F	05	0.238766 F	02	0.211130 F	3
0.519282	0.515161 E	05	0.2467785	02	$0.227540 E$	03
0.530851	0.515257 F	05	0.246778F	2	0.2275408	
0.542678	0.5152695	05	0.246778 E	02	0.227540 E	03
0.552734	0.5152798	05	0.246843 F	02	0.2276605	03
0.563085	0.530054 E	05	0.246880 E	02	0.227850 E	03
0.574462	0.532518 E	25	0.252167 F		0.2284608	03
0.585417	$0.532570 E$	05	0.252167 E		0.228460 E	03
0.596582	0.532615 E	05	0.252167 F	02	0.228460 CE	03

TABIE 24．SUPPORT SEID STOCK CONSTRAINTS－FACILTIY REDhTK（COntinueci）

Provisioning Level	Price		Cuive		Weighe	
0.607959	0.932015 F	05	0．2521675		U． 229463 E	03
0.619212	1，6， 026028	25	0．253675F	02	C． 2326405	C3
0.629817	C．5けl 20 Et		0.255006 F	02	0.234870 F	03
0.640234	ก． 614.2576	n5	0． 255758 F	02	0．235620＝	C3
0.651107	7． 21.5312 R	05	0． 256687 E		0.2365405	03
0.667297		05	ก．2567015	02	2．2372705	03
0.673340	c． 610476%	0 ）	0.257172 E	02	U． 238270 E	03
0.684567	O－blour	0	$0.257237=$	12	0.3384105	02
0.695094	U． 515.3165	05	0.2598365	02	0.241415 E	
0.705415	－n27660－	05	0.2663015	02	0.2535105	13
0.717123	ก． 52830 co		？．267538E		0.25685717	
0.728508	（0．62）$\times 130$	05	2． 2681165	02	0．2580こ0	03
0.738619	S． 6 iteram：	05	C． 268015 E		0．2613205	
0.749345	2．63r．476	2i	$0.207135=$	（）2	C．262720F	23
0.760240	n．03579：9	25	0.269577 F	02	－． 264570 E	53
0.771011	－ovel？	0	0． $2695+7$＝		1． 36424 ir	
0.781759	－いut315＝	25	$0.27744 \cap \mathrm{E}$		U． 270 G6＇ie	U3
0.792135	C．674．7？$=$	9r	0.251324 F		1.284720 cr	03
0.802574	C－6755？nE	05	0.2815265		$0.287540 E$	
0.812794	2.6776725°	05	$0.241940=$	02	－2867205	us
0.822969	r．6．d2411：		0.253949 E		U． 29354.15	
0.833723	A． $1+33235$	2） 5	0.207009 F	02	0.307770 F	03
0.843954	C． 712416°		0.2704215		0． 3201805	
0.853879	$0.735351=$	05	2.3002025	22	0.3329301	
0.864075	$6.749231{ }^{\circ}$		0． 30.6444 E		0.3345505	03
C． 874334	C． $414002=$	C5	0．3581125	02	0.3674305	03
0.884668	0.047360%	$0{ }^{\circ}$	O．3584105		0.367020^{5}	03
0.894776	¢，226～71＝	05	0.362395 F	02	0.3923605	03
0.9050 .34	C． $25+7 \times 5{ }^{\circ}$	95	ก． 373449 F	02	C． 398550 F	
0.915291	6．1×256：$=$	$0: 2$	0．357］ 20 E	42	0.471000 E	03．
0.9254 CG	r．1054rsf	0%	0.409594 .5	C2	0.4966105	03
0.935480	Calir346t	06	0.420163 E	02	C．517540i	03
0.945650	－．119224F	3n	C．462707F	02	0.5537605	03

The recommended depot stock list is shown in Table A-15. The depot stock list was detemined for a depot supplying 42 equipments at the 99% provisioning level for a six month stock period. Table A-15 has the same fomat as described previously for Table A-13 with three exceptions. Two of the exceptions involve the additional fourth and fifth entries as follows:

Entry

Usage/ 3 Months

Spares

Remarks

This entry shows the number of the part type expected (on the average) to be issued every three months from the depot for the 42 equipments.

This entry shows the number of the part type over and above the usage per 3 months which was required in order to seach the 99\% provisioning level specified for the depot.

The cotal of usage per 3 months and spares is the number of the part type allowed as stock by the depot. This total is shown in entry F_{3} under allowed quantity. The third exception is the rate entry which for the depot is the rate for 42 items for a six month stock period.

The depot stock list recommends stocking a total of 14,563 items (depth) which represents a range of 2,070 part types. The total cost of this stocking including 3 month usage plus insurance back up is computed to be $\$ 491,260.84$ which has a weight of 2,995 pounds and a volume of 225 cubic feet.

Table 25 shows the constraints of cost, weight, and cube versus provisioning level. Table 25 is based on the insurance back up items onıy. Figure 18 presents the constraints in graphical format.

EMEC AND ESO APL STOCK ITEMS
Calculations were performed using the computer program to determine the provisioning level of the 4 June 1965 Allowance Parts List compiled by the Electronics Supply Office. The allowed quantities were taken from the Allowance Parts List. The AN/SPS-40 equipment parts list was received from the Electronics Supply Office in the form of a deck of IBM cards.

The Allowance Parts List's allowed quantities contained 1,224 different parts types (range) and a total of 2,032 parts being allowed (depth). Of the 1,224 different parts types, 1,013 were represented by Federal Stock Numbers and 211 were represented by manufacturer's numbers.

Calculations were also performed using the computer program to ctermine the provisioning level of the Electronics Maintenance Engineering Center Allowance Parts List. The EMEC Allowance Parts List contained 987 different part types (range) and a total 1,548 parts being allowed (depth). Of the 987 different part types, 951 were represented by Federal Stock Numbers and 36 were represented by manufacturer's numbers.
lnvestigations of the provisioning levels calculated for the EMEC and ESO APL's were conducted. It was determined that Vitro and EMEC had established different lists of parts which were to be considered for stocking aboard ship. An example of the type of problem which occurred can be illustrajed by three items shown below:
(

TAEIE 25．DEPOT STOCK COMSTRADNTS－FACIIINY REPAIR

Provisioning jevel	Price	Cuive	Weigat
0.010078	0.259715 E 05	0.256909502	0.321730503
0.020231	$9563761=05$	$\cdots 2578785$	0，32811－5 03
0.030461	C．26musif 05	0.259092 E 02	C．3377402 03
0.040569	C． $3: 17293=1$	$0.3473235-02$	0.044413503
0.050806	O．3091656 05	0.350567502	0.657497803
0.060985	2．3ncaniti	（1．3508Y2E 02	2.0597095
0.071141	$0.3111 \times 1 F 07$	$0.352022 F 02$	0.663269503
0．081590	0.314634505	$0.352401 E 02$	C．666619F 03
0.091832	0.318003505	O．354013E 02	0.671129503
0.101943	$0.369532=05$	0.428363 F 02	0.675210502
0.112448	0.371575 F 05	$0.428401 E 02$	$0.675479 \mathrm{~F} \quad 03$
0.172558	C． 213604808	0.428881502	0.677484803
0.132935	C．37b246： 05	$0.429763 \mathrm{U}^{0}$	0．681797E 03
0.143156	37604－05	C．429874E 02	$2.6823778 \mathrm{E}^{21}$
0.153621	O．316366E 05	$0.429912 E^{02}$	0．6823C9E 03
0.163846	0.376561 .05	$\bigcirc .430025 E 02$	0.6882898
0.174430	0．376625： 25	0.430048 E O2	0.686529513
0.184967	Q－372524 0 U5	2.4302898	－0．687779
0.195300	0.37091%－5	C．430396E 02	C．686719E C3
0.205809	2.379575%	1.430736507	C．6800008 03
0.216051	－．380060F 05	$0.4310615^{\circ} \mathrm{C} 2$	ن．692709E 03
0.225531	$0.360671=05$	0.431258 E 02	0.692818503
0.236782		$0.431634 \mathrm{~F} \mathrm{D2}$	C．694509E 03
0.246836	－101615 0.5	0.431804502	0.6957295
0.257024	－．301634 $=05$	C．431845E 02	C． 496818 F 133
0.267655	O．3elcfe＝$=5$	0.431836502	C．6．98258F－03
0.277921	0．301280－05	$0.431907 E 02$	0.6993385 F 03
0.288548	$0.302100=05$	C．432014E 02	C．70054日E 03
0.298928	6.383274505	0.582125 E 0 ？	0.70430 8E 03
0.309213	$0.383556=35$	0.582353 E 02	0.705778 EUS
0.319241	0.304657205	$0.582417 E 02$	－． 706758 F 03
2． 329469	C． $364745^{\circ} \mathrm{C} 5$	0．582583＝ 02	$0.707548 \mathrm{E}=3$
0.339639	C．355473F 05	0．583versf 02	0.7037 ¢0゙ 03
2．349724	C．3074： 20	C． 563545 F 02	$0.7113345 \quad 3$
0.360363	c．jnwrope 0n	0．5036515 02	0.71212 EE － 3
0． 370046	0.3905738 ch	0.584143 E － 2	0.714208503
0.331054	2．391242E 5	$0.584170 E$ O2	0.715798503
0.391187	$0.271542=0$.	C．584380F 02	0.717573503
0.401838	1．472451： 05	0.534755 E 02	0.71751680 .3
0.412122	a．313235 20	C． 584953502	－ 721278503
0.422311	3.395154 ¢ $\because 5$	0.585537 F 02	－ .726748503
0.432668	C．31520 0 ¢ 0	0． 5.38664 E 02	C． 733585 SE 03
0.442731	－．34462，${ }^{\text {O }}$	0.588954502	0.734548 E 03
0.453613	Ce3194315 25	0．589224＝ 02	$\bigcirc .736314503$
0.463144	「．4：こち13： 35	0.589546702	C．73859RE J3
0.413575	$0.461740=05$	0.590512 E 02	0.7423050 .53
0.483738	0．41？1？5t 05	0.502055 E 02	0.75210×504
0.494119	C．4 425885	0． 532425 E 02	． 0.754628803
0． 504160	0．4176n 20.3	$0.542668: 02$	0.7557 OEF 03
0.514216	$9.430731=0$	C．	C．764206F 01

TABLE 25. DEPOT STOCK CONSTRAINTS - FACIIITY REPALR (Cor:inuei)

Provisionizg \qquad	Prace		Cuice		Weight	
52	432707E	05	$0.605006 F$		765773E	
0.534578	0.4364515	05	0.600050 E		2.771479E	
0.544662	$0.450895 E$	05	0.606634 E	02	0.773028 E	
0.554818	0.4510998	05	0.606887E	02	0.774188 E	
0.565260	0.451460 E	05	0.607237 E		0.776678 E	
0.575387	0.452054 F	05	0.607983 E		0.780738 F	
0.585571	0.492645 F	05	0.644263 E		0.788978 F	
0.595748	0.50448 hE	05	0.659323 F		0.804358 E	
0.605864	0.508118 E	05	0.660900 E		0.814438 E	
0.615960	0.5276505	25	$0.661245 E$		0.815798 E	
0.626051	0.5310946	05	0.672790 E		0.850728 E	
0.636295	0.537314E	75	O.673492E		0.853778 E	
0.646459	0.5479425		0.682964 F .		C.882798E	
0.656743	0.5610105	05	0.694079 F		0.8873685	
0.666852	$0.569924 E$		0.095296 E		0.894578 E	
0.677012	C.540363E	05	0.6960025		0.8980785	
0.687 .094	0.589850 E	05	0.700301 E		0.714858 E	
0.697347	0.515456E	05	0.708173 E	02	0.920258 E	
0.707499	0.624472 E	05	0.709659 E		0.924358 E	
0.717593	Q. 526003 F	05	Q. 210772 E		0.9277085	
0.727877	0.7576715	05	0.764509 E		0.960308 E	
0.738012	0.778020 E	05	0.765274 E		0.965728 F	
0.748089	0.803852 E		0.783613 E		0.100208 E	
0.758131	0.8579765	05	0.793750 E		0.102402 E	
0.768265). C 59833 E	05	0.794576 E		0.103102 E	
0.778424	0.961390E	25	0.795623 E		0.1033045	
0.788601	0.861514 E		0.796239 E		0.103462 E	
0.798731	C. 877943 E	05	0.800111 E	02	0.105164 E	04
0.808893	0.399063 E		0.818894 E		0.106985 E	
0.818966	0.725146 F	05	O.821137E	02	0.108205 E	
0.829127	0.102498 E		0.857004 E		0.110178 E	
0.839301	0.1040938	06	0.857596 E		0.1120419 F	
0.849432	$0.105094 E$		$0.359236 E$		0.111064 E	
0.859556	0.108559 F	05	0.877845 F		0.1125478	
0.869714	0.108637 E	06	0.878032 E		0.112624 E	
0.879816	$0.114697 E$	06	0.878784 E		0.1130995	
0.889821	0.126010 E	06	0.948457 E		0.117691 E	
0.899883	C. 133674 E	26	0.9909791	02	0.1191908	
0.909971	0.137319 E	06	0.992741 E		0.119980 E	
0.920006	0.141253 E	06	0.999203 E	02	C. 123454 E	
0.930020	0.155682 E	06	0.107801 E		0.131730 E	
0.940063	$0.162671 E$	06	Q. 109078 E	03	O-134856F	
0.950109	0.173917 1		0.130562 E		0.145916 E	
0.960117	0.1831208	06	0.1334932 E	03	0.1521711	
0.970128	$0.205641 E$		0.149877 E		0.191367 E	
REPLENISHMENT TOTAL FOR		06	0.1534925	03	0.2009395	04
		$\begin{aligned} & \text { OR } \\ & 26,10 \end{aligned}$	$\begin{aligned} & \text { RICE--WE } \\ & 19 \end{aligned}$	$\begin{aligned} & \text { IGHT } \\ & 209 \end{aligned}$	$\begin{aligned} & \text { - CUBE } \\ & 7.048 \end{aligned}$	


```
        M.Eznこeriance coce is -2.
```



```
        Ei, mairitenence coue is 4Z4.
```



```
        maintenance code is L2.
    VEro consjdered that items l and 3 shoula de considered fer stoching
ajoarc ship but EnEC considerec that orily item l shouid je considered for
stoching ajoerc ship. Analysis of the Vitro and EMEC stock lises producec
epprorimately 200 to 300 pert types which lizre hac consiaerec es stockabie
aboarc ship anc EMEC haj considerec as NOT s=ockable adoerc sinip. It wes
found that the basis for EMEC's difference of opinion was thet the ship
coule Eacricate the 200 to 300 part Eypes in quesition and therefore shoulc
not car=y Ehese i cems per se.
The ajove discrepancy was not discovered until iete ir. the program. after the stoci: lists had been computec. The ESO AP: had e provisioning level of \(1 \%\) and the EMEC APL had a provisioning level of \(8 \%\), but the above ciscussion shows that the proper base had not been used in the evaluation. This problem occurred because it is not possitle te oetermine from the maintenance codes those items which are shipboard installable and are also to be fabricazed by the sinip.
A. study was made to determine the best way to adjust the EMEC APL provisioning level to reflect its true value. The method chosen was to find those items which would have the greatest effect in degreding the provisioning level rather than adjust for the 200 to 300 items with the improper coding.
```

p：00a0：$: 7 \%=3$		2RCBri3： $2: \%$ ：	こMLTM：
	VAME	3MEC STSCK－EME	202こここ：
5900－563．－590	2952	． 450	－ジ
5900－170－75－3	28P：	780：	\square
5960－392．09－5	GV5A－： 0	コ89－	－ 50
5960－：88－08こ0	2053	$\cdots{ }^{+\cdots}$	¿
5360－290－0517．	SADP：	－ $20:$	$\because \because$
5900－2：2－9190	0K62：3	30^{-}	． 80
5840－769－1：03	EAUL：JETECTION $\because \mathrm{Si}$	，－	10－：
5840－439－6340	EİTER MODCLNTOR	－	33e：
5840－798－5600	EIIIER ULTP！T S＊ITCK	$\cdots{ }^{-5}$	E－
5840－798－4950	RECEIVER GATEVG \＆ TRIGGER DISTRI3：ここON	，3－：	シャッ
5840－764－5294	IIDEO GATI：MG ； DIS：RIBLTION GENERATCR	e－	$35-2$
5840－798－4952	： $5 M C-24 M C$ CONVERTER	984i	30－
5915－715－2350	REEECIION EILIER	シ32－	2： 2
5960－067－9364	$E 38$	－\％	
2950－819－22：5	7531	ƠO	－1）：

These 15 items show chat the EMEC stock inst zarno：exceez a $=$ ：ov．


```
Ete: \becauset:.E.EZ
```


TABLE 26. EQUIPMENT STOCK LIST COMPARISON - Phase 1 and 11

TABLE 27．PAFAS EROVISIONED BY VIERO HEL INT ESC

2N30107134603 1N30200202775 2N3020580C127 2N30208375811 2N3C2089951O3 1N30405809749 9231100338453 9231100338454 1931101556190 1931101568039 1931101588247 0231101982030 0231107319145 9231107319146 9231107319147 $1 N 41308378196$ 9641408930145 $1 N 43207335279$ $1 N 44407134444$ 9645400202788 9647302747500 9C47302782589 － 647302892697 $9 C 47305558203$ 9747306400830 $9 C 47306405113$ 9647306405119 2R47306407201 2R47307200461 $9 C 48100202784$ 1N51200186021 1N53150589733 9253157256310 0253300202791 1953300546894 1953301542456 1953301719916 1953301986195 9253302518839 1953302651095 1953302859836 K253302920580 $K 253305796859$ K253305840263 1953305840266 K253306181602 C25330873268？ 92533007632？ 1N53400202774巳253402056552

9253407984968 2N5355801424C 2N58400142607 2N58400202785 1N58407152351 2N58407159451 2N58407159531 2N58407321925 2N58407693593 2N58407984945 2N58407984961 IN58408478005 1N58409188370 IN58409238307 1N58409564946 1N58409763269 2N58409764889 1N58409764801 1N58409873453 1N58457150422 9N59051124355 ON59051858490 9N59051858510 ON59051858516 ON59051908874 9N59051908883 9N59051908885 1N59051914936 9N59051920619 ON59051920626 9N59051923973 9N5905192398！ 9N59051924504 9N59051955571 9N59051956754 9N59051956761 9N59052215848 9N59052524018 9N59052547096 9N59052586918 ON50052679524 9N59052791692 9N50052791718 On ？ 052791721 ON5 9052791752 ON59052791890 9N59052791921 9N59052791930 9N59052792515 9N59052792527

9N59052792528 9N59052792530 9N59052793497 9N59052793500 9N59052793503 9N59052992010 9N59052992013 9N59052992040 9N59052992059 9N59055185593 9N59C55189362 9N59055392032 9N59055394565 9N59055427648 9N59055428053 ON59055429799 9N59055429981 9N59055563041 9N59055566420 9N59055811714 9N59056655468 9N59056884124 9N59057523420 9N59057523970 9N59057523974 9N59058233482 9N59058233567 9N59058263805 1N59058394061 9N59058394064 9N59058417461 1N59058926951 9N59100880385 9N591012616：9 9N59101269170 9N59102709001 1N591047410～？ 9N59105569440 9N59105773183 9N59105830735 9N59106817046 1N59107324900 9N59108123918 9N59108181635 9N59108180758 9N59108231068 2N59108231960 ON59108265466 ON59108330280 9N501083546も2

9N59108395734 9N59108501502 ON59109892210 1N50157152350 1N59157984963 9N59300229964 9N59302302561 ON59306832814 9N59307159426 ON59307159580 QN59307873711 QN59307873712 9N59307873T13 9N59308013773 9N59352017043 9N59352049802 9N59355527613 9N59355527720 9N59355772338 9N59355813958 9N59356153914 9N5935615783？ 9N59356172840 TX59356177551 TX59357166947 9N59357212675 1N59357649338 TX59357906962 TX59357906964 9N59358032313 9N59358126344 ON59358230487 9N59358418コ92 TX5935846798C 7×59358552586 IN59358705116 1N59359913379 9659402582462 9659405005373 9659405028469 965940577 Cl 23 9659406298127 1N50408732692 Q650408937485 1N5945080343？ ON5O457C2488： ：N5045724474？ ON50457373105 1N504578080C5 ON5045812790．

TABLE 27. PARTS PROVISIONED EY VITRO AND NOT ESO (Continued)

9N59459729089 1N59500202770 9N59507087067 9N59508993420 9N59508993421 1N59509763273 9N59600824139 9N59602732415 9N59605196954 9N59605562621 9N59605815603 9N59605834071 9N59606655192 9N59607250527 9N59607295499 1N59607955570 9N59608120480 9N59608336041 9N59609683858 1N59609835990 1N59609841175 9N59709193044 9N59858795601 IN59959198519 9N59990229963 9N59997134349 9N59997134459 9N59997314416 9N59998375825 9N59998375826 9N59998375827 9N59998375828 9N59998379496 1N59998600832 1N59999502885 9G62102647010 1N62105041617 9G62202840289 9662401557857 9662401558707 9G62402239100 1N66250885411 1 N66254449773 1N66254449774 2N66256493274 1N66257159431 1N66257332745 2N66257332746 1N66257332748 1N662579478:2

2N66258208458 1N66258208459 1N66258208460 2N66258208461 2N66258380147 1N66258380148 2N66258729212 2N66258732680 1N66458405693 1N66858729216

AN23858

AN6290+10
AN6290+12
AN6290+4
AN6290+5
AN6290+6
AN6290+8
AN837+8C
AN924+12C
AN924+3C
AN924+8C
AN924+8D
$A V H C+12 M S 50$
AVHC $+2+\mathrm{M}$
$A V H C+4+M S I 4$
$A V H C+8+6 F$
$A V H N+12 M S 14$
$A V H N+4+M S 14$
AVHN+4MS15
$A V H N+8+M S 14$
B!JURA +2835
BI JURB + 106 I
BIJURB+1371
BIJURE+360!
$88+8$
$C+2478$
CHOSA3NC2O5K C $3+3$
$04+125$
ER81600808
ER81604+4
ER82200808
ER 82204
ER82204+4
G17+70
$J V+1$
$J V+20$
$\mathrm{K} 82+0006$
LH628R2
$L!+6$

METAL1/4+18	$11+140$
MIL $L+N+994$	$11+146$
MS $21900+12 \mathrm{C}$	$11+260$
MS $21902+04$	$11+261$
MS 21902+08	$11+277$
MS 2190804	$1298+3 / 8 N P T$
MS 2190904	$1652+8$
MS $21911+8 \mathrm{C}$	1724 C
MS $21913+010$	194080364
MS $21921+04$	194081350
MS $21921+08$	194081351
MS $21921+12 \mathrm{C}$	19776+1
MS $21921+8 \mathrm{C}$	$1988 \mathrm{HMS1728}$
MS $21922+28$	2+113
MS 28775+017	2+259
MS $28775+212$	2+261
MS $3106 \mathrm{E} 12 \mathrm{S3P}$	2P50N+5S
MS $3106 E 1452 P$	2141
MS 35671+33	$2329 F 0045+2$
MS9021+008	2329F0045-3
MS915283K28	$232950045+4$
$N A+1947$	2329F0045+5
NEO1+3/410	$232950045+6$
NEO13/1610	$2329 F 0045+7$
NS4AWO208	2329F0045+8
PD 3127	2329F0045+9
PD347001308	233380005
REO25N380085	233380006
RFL172	233300004
RFLI73	233860114
RFL174	233800146
RFL175	263080291
SSRS77R8	253080378+5
ST SR+434	263080412
ST SR+500L	263081687
TEF3/40IA	263000007
TYPE 304	263000433
$\times 1980+X A$	2763 HMS 26
$\times 2045 \times 3$	29904
YOE130	$3+4 Y$
. 3125 DIA	$3 / 4 \mathrm{IPS}$
908108608 W	$3 / 4 \times 1 / 2 F G S S$
1525	30 K
1 1PS 150Ls	$30: 0+8$
$1 / 200+55$	314086263
$1 / 8 \mathrm{lN}$	$39902+4$
101807	39905+3
106064+337	39913
109074+337	39914
$11+137$	39919

4 EEI3RASS
4FEIBRASS
$421+117+1$ ？
$404115+02: 0$
440080392
440080484
440080487
440010488
440080537
440080548 440050548－2
440050835 440050969 440011355 440011350 440081360 44005137 C 4400 E1371 440081372 440081373 440081374 440081375 440011382 440012394 440081395 440081410 440011413 440011420 440011421 440081422 440011423 $4400 B 1426$ 440031444 440081445 $4400 B 1465$ 440081609 440081611 4400161619 440081648 440081656 440081675 440081676 440081677 440011724 440051732 440011733 440031735 440091774 440081777 440081778 $44008: 782$

440081784 $4400 E 1785$ 440081786 4400 E1787 440031789 440081750 440031701 440081793 $4400 \mathrm{E1795}$ 440081802 440081803 $\angle 40011804$ 440081806 440081807 440081808 440011812 440081825 440051938 440031946 440081947 440031979 440082000 440082031 440082051 4400 B 2053 440082085 440082088 $4400<031 \mathrm{C}$ $4400<0310+2$ $4400<0490$ $4400=1320$ $4400 C 1329+2$ 4400 C 1340 440001350 $4400<1351$ 440001352 440001368 440061408 440001424 440001429 440001430 $440001430+2$ 440001481 440001403 440001500 440001501 440001502 440001503 440001506 $4400 C 1589$ 440001606

440001601	440180.79
440001613	440150217
$4400016: 5$	440180240
440001616	44 C1EC244
440001658	$440 こ 5 こ 246$
440001671	44ごEこ252
440001672	440150270
440001710	440180271
440001734	440180274
440001736	440180351
440001772	440180415
$4400<1779$	$440130425+2$
440061780	440160009
440051782	440160010
4400017889	$44 こ 1$ C0013
44000178811	440150017
440001796	$44 こ 100035$
440001797	440150042
440061805	440160044
440001809	440150046
440001810	$440100047+2$
440001817	$440100047+3$
440001829－2	4 01 COこち2
4400C1820－3	440160053
440051832	440160050
440002027	4401 C0245
440002054	$44 C 1 C O 251$
440000448	44010002？
440001248	440100050
440001407	$4401 F 0005$
440001409	4401 FOO26
440001415	4401 FC2C？
440001416	$4 T S D 15 T O N 2$
440001490	$48 \times 48(8 \times 8)$
440001409	480045！1
440001757	48981／221／4
440001757－2	$497+40+1$
440001781	5／16×1 3／4
$4400 F 1406$	$500+9+5$
$4400 F 1419100$	$5000+81 \mathrm{~W}$
$4400 F 1713$	$5133+16$
4400 Fl 768129	$5595+1245 R 0$
4400 Fl 1822	$6+32 \times 2.375$
4400 F1823	$6-32 \times 3.75$
$4400 F 189720$	700220340500
44007189721	$8+8 \mathrm{FTX}$
440180018	820－3
440180010	$8438181+1$
440150033	850
440180041	$0022+010$ $000+A+2768$
440180049	$90.9+A+2768$

TABIE 28. PARTS PROVISIONED BY VITRO AND NOT EMEC

2N30107258019 1N30109836007 1N30200202775 2N30205800107 2N30208226295 2N30208995193 1N30405809749 1N31100196387 9231100338454 1931101568039 1931101588247 9231101982930 9231105734244 9231107311718 9231107319148 1N31207159542 1N41300551145 $1 N 41405902317$ $1 N 44407134444$ 9645400202788 $9 C 47208729215$ $1 N 47209508830$

47302747500
47302782589
47302892697
47305558203
47306400830 9647306405113 9647306405119 47306407201 9647306843579 47307200461 $9 C 47308156976$ $9 C 48208148448$ $1 N 49208742512$ 1N53150589733 9253152819481 1N53152864888 9253157206460 9253157256310 9253157319230 9253300202791 1953300546894 1N53300583952 9253302518839 1953302859839 53302920580 1N53303509013 53305796859 1N53305802278

9N59352017043 9N59352049802 9N59352590337 9N59352592748 INS9352899748 9N59354396492 9N59355188836 9N59355392650 9N59355392651 9N59355523036 9N59355527613 9N59355527720 9N59355551888 9N59355772336 9N59355772338 9N59355813958 9N59355836325 9N59356151108 9N59356153914 59356177551 9N59356365983 9N59356439608 9N59356815681 9N59356820501 9N59357020127 9N59357021207 9N59357134200 IN59357264150 9N59357298036 INS9357649338 9N59357715937 9N59357759058 9N59358032312 9N59358032313 9N59358032315 59358054948 9N59358103767 9N59358126344 9N59358126345 9N59358144127 9N59358381905 9N59358418092 59358467980 9N59358472600 59358552586 9N59358567980 59358795116 9N59358928804 9N59359764890 9G59402581931

53305840263 9253305853217

53306181603 9253307135370 9253402056552 9253402869469 9253405981138 2N53406857023 9253407250969 9253407984968 2N53408206748 9253555560145 IN53556169604 9253555560145 2N53558014240

58400142607 1N58400198171 IN58400202777 2N58400202785 IN58400732235 1N58400732236 1N58400732237 1N58400732238 2N58407134051 2N58407159451 2N58407321925 2N58407580898 2N58407593593 2N58407984964 2N58408383385 2N58408383386

58409238307 1N58409763269 IN58409764891 1N58409918691 IN58457159422 9N59050613868 9N59051908889 IN59051914936 9N59052547110 9N59052791718 9N59052791890 9N59058284101 9N59101269170 9N59105830735 9N59107524678 9N59108395734 IN59300198175 9N59307873713 9N5935201272:

9659402582462 9659405005373 9659405005378 9659405028469 9659405428546 9659405429333 9659405770123 9659406132627 9659406298127 9659407554199 9659408121668 1N59408732692 INS9408930951 9659408937485 1N59409501175 1N59457244743 9N59457373195 9N59505771224 1N59507895238 9N59602732415 9N59605196954 9N59605562621 9N59605815603 9N59606655192 9N59606820885 9N596068868085 9N59606868087 9N59607250527 IN5960795557C 9N596C8104928

59709193044 1N59758991995 1N59759667706 2N59857616693 1N59858933208 9N59990608643 9N59990868567 9N59997134349 9N59997134459 9N59997314416 2N59997892197 9N59998375825 SN59998375826 9N59998375827 9N59998375828 9N59998379495 9N59998379495 IN59998600832 1N59999502885 iN61207897977

1N66250885411
:N66254449773 2N65254449774 2N66256403274 ?N56257:50431 2N66257286020 2N66257286030 1N56257332748 1 N66257047812 IN66258208460 2N56258208461 2N56258729212 1N56458405693 1N56850202743 1N66857354689 :N56858720216 AN 23858 4N6290+10 - NS290+4 ANE290+5 AN5290+8 ANB37+8C $4 N O 24+12 C$ $A N 924+3 C$ $A N 924+4 D$ AN924+8C ANS24+8D $\angle V H C+12 M S 50$ $A V H C+2+M$ $\triangle V H C+4+M S 14$ $\triangle V H C+8+6=$ $\triangle V H N+12 M S 14$ AVHN+4+MS:4 $A V H N+4 N S 15$ $A V H N+8+M S 14$ E1JURA +2835 31JURB+1061 E 1 JURB +1371
E1 JURB + 3601
E:0415+1
B8+8
$C+2478$
C $147+6$
C $3+3$
D4-125
ER81600808 EPR1604+4 ER82200808 ER82204 ER82204+4

G17+70
$J V+1$
$J V+20$
K $82+0006$
$L 1+6$
METALI/4+18
MIL+N+994
MS $21900+12 C$
MS21902+D4
MS $21902+$ D8
MS 2190804
MS 2190904
$M 521911+8 C$
MS21913+D10
MS $21913+06$
MS21921+D4
MS21921+D8
MS21921+12C
MS21921+8C
MS21922+R8
MS21922+4R
MS21923+12C
MS21923+8C
MS28775+017
MS 28775+212
MS $310651253 P$
MS3106E14520
MS35671+32
M59021-008
MS 915283 K 2 B
NA+1947
NEO1 $+3 / 4+1 \mathrm{D}$
NEO1 +3/16+10
NS4AWO208
NW66520 105
PD 3127
PD 347001308
REO25N380085
RFL172
RFLI73
RFL174
RFL175
SSRS77RB
$S T+S R+434$
$5 T+5 R+500 L$
TEF3/4D1A
TYPE304
$\times 1581$
$x 1942+x$
$\times 1942 \times 3$

$x 1980+x 4$	263080291
$\times 2045 \times 3$	263080378+5
YOE130	263080412
. 3125D1A	263081669
908108608W	263081687
1525	263000007
$1+1$ PS150LB	263000433
$1 / 2 D D+55$	2763 HMS26
1/8+1N	29904
$106064+337$	$3+4 \mathrm{Y}$
$109074+337$	3/4+1PS
11+137	3/4XI/2FGSS
$11+140$	30 K
$11+146$	$3010+8$
$11+260$	314086263
$11+261$	$39902+4$
$11+277$	$39004+4$
$12+8 F T X$	$39904+5$
$1298+3 / 8 N D T$	20905+2
$1652+$ B	39905-3
1724 C	30913
104080364	30914
1040 El 1350	30919
104081351	$4 C B 1 B R A S S$
194081500	4FBIBRASS
19776+1	$401+117+10$
1988 HNS 1728	$404115+0210$
2P50N+SS	440080314
2329 F0024	440080392
$2329 F 0045+2$	440030484
$2329 F 0045+3$	440030487
2329F0045+4	440080488
2320F0045+5	440080537
$2329 F 0045+6$	440080548
$2329 F 0045+7$	$440080548+2$
2329F0045+8	440080835
$2329 F 0045+9$	440080969
2329F004510	440051355
23295004511	440081350
23295004512	440081369
233380005	440081370
233380006	440081271
233360004	44008137 ?
233800146	440 CB1373
234480067	440081374
2344 B0067	440081375
234400150	440051382
$234450159+2$	440081394
2344 F0090	440081395
2344 FC163	440081410

TABLE 28. PARTS PROVISIONED BY VITRO AND NOT IMEC (Continued)

440081413 440081420 440081421 440081422 440081423 440081426 440081444 440081445 440081465 440081609 440081611 440081619 44001648 440081656 440081675 440081676 440081677 440081709 440081724 440081732 440081733 440081735 440081774 440081777 440081778 440081783 440081784 440011786 440081787 440081789 440081790 440081791 440081793 440081795 440081802 440081803 440081804 440081806 .440081807 440081808 440081812 440081825 440081938 440081946 440081947 440081979 440082000 440082031 440082051 440082085

440082088 $4400<0310$ $4400 \mathrm{CO} 310+2$ $4400 C 0434$ $4400<0490$ $4400 C 0646$ 440000647 $4400<0650$ $4400 C 0712$ $4400 C 1329$ $4400 C 1329+2$ $4400 \subset 1349$ $4400<1350$ $4400 \subset 1351$ 4400 C1352 $4400<1367$ 4400 C 1368 $4400<1384$ $4400<1384+2$ $4400 C 1384+3$ $4400 C 1384+4$ $4400 C 1408$ $4400 C 1429$ $4400 C 1430$ $4400<1430+2$ 440011481 440011493 4400 C 1500 $4400 \subset 1501$ 4400C1502 $4400<1503$ $4400 C 1506$ $4400<1600$ $4400 C 1601$ 4400 4 4613 $4400 C 1615$ $4400 C 1516$ $4400<1645$ $4400=1658$ 4400 C1671 4400 C1672 $4400 C 1710$ 44001734 $4400 C 1736$ 4400 C 1772 440011779 4400 C 780 44001782 44001178810 $4400 C 178811$

4400 Cl 796 $4400<1797$ $4400 C 1805$ 44001809 $4400 C 1810$ 4400 C 1811 $4400 C 1829+2$ $4400 C 1829+3$ $4400 C 1832$ 4400 C2017 $4400<2027$ $4400 \subset 2054$ $4400 C 0448$ 440001214 440001407 440001409 440001415 440001416 440001490 440001499 $440001757+2$ 440001781 4400F1213 440180246 4400F1406 4400F1419100
4400 F1768129
4400F1822
4400F1823 4400F189720 4400F189721 440180018 440180019 440180033
440180041 440180049 440180179 440180217 440180240 440180244 440180252 440180270 440180271 440180274 440130351 440180415 $440180425+2$ 440100009 $4401 C 0010$ $4401 C 0013$

440160017 $4401 C 0035$
$4401 C 0042$ $4401 \subset 0044$ 4401 C0046 $4401 \subset 0047+2$ $4401 \subset 0047+3$ $4401 C 0052$ $4401 C 0053$ $4401 C 0059$ $4401 C 0245$ 440160251 440100021 440100050 $4401 F 0005$ 4401F0026 4401F0207 47 SPISTON2 $48 \times 48(8 \times 8)$ 48004511 $48981 / 221 / 4$ $497+40+1$ $5 / 16 \times 13 / 4$ $500+9+5$ $5000+81 w$ $5133+18$ $5595+124520$ $6+32 \times 2.375$ $6+32 \times 3.75$ 790220340500 8 TBFTX $820+3$ $8438181+1$ 850 9021T0:0 $909+A+2768$

TABLE 29. PARTS FROVISIONED BY ESO AIL NOT VITRO

2N30:00202766 2N3:200607926 2N30200607927 2N30200607928 2N30205802204 2N30205207:05 2N30207314417 2N30207314418 2N302C7314419 2N3O2C7314420 2N30207314425 2N30207314+26 2N30207314427 2N30207314428 2N30207314420 2N30207314431 2N30207324902 2N30207324903 2N30207324906 2N3O2C7328530 2N30207691087 2N30208014229 2N30208014230 2N30208014231 2N3O208014232 2N3C208209262 2N30208209263 2N30208226295 2N30208398972 2N30208398973 2N30208398974 2N3C2O8398975 2N30208398976 2N30208794036 2 N 30209850201 2N30407601079 2N30407691080 2N30407691082 0231104403885 9231105405199 1N31109782858 2N44408378047 9C47308729213 1N48204449775 $1 N 48204449776$ 2N53106134287 9253106557511 9253152980950 1953155987284 9253156875126

9253158123035 9253158409853 2953302859839 9253405851660 9253405859835 9253405981228 0253406770402 1N5 3407541890 1953408120474 9253550498572 1953558132078 $1 N 58400202760$ 2N58400732231 2N58407135382 1N58407695425 1N58407701914 1N584077C1915 1N58407726642 ! N5 8407726643 1N58407726644 1N5840772790\% 2N58407873709 1N58407873725 2N58407984948 2N58408119893 2N58408600855 1N58408943033 9N59051711998 9N59052792616 9N59052793506 9N59052793837 9N59052992020 9N50052992046 59055495348 9N59055770435 9N59055771827 59055777411 $9 N 59055814990$ 59058034582 9N59058123178 9N59058422968 9N5905898930 9N59100160591 9N59107895241 9N59108130906 9N50108169909 9N50108225683 9N59108908933 9N59108927654 1N50:57135365

2N59157135366 1N59158120゙126 2N59158381891 1N59158600861 ON59208344705 1N50308732690 9N59308783159 1N59350205701 9N59352323758 9N5935581640C 9N59356859396 2N59357311876 2N59357311885 9N59357335274 9N59358705113 9N59358839302 IN59359563036 1N59359013374 9659405005378 9659405005381 0650405005388 9654405428547 $2 N 59407873726$ $9 N 59457152353$ 9N59458600805 SiN59500202782 1N59500581130 9N59505428549 9N59506207212 ON59507314422 9N50507328524 ON59507985668 9N5950818C207 9N59508180209 9N59508183909 9N59508381908 9N50508381909 9N59508381911 9N59508381912 9N50508381913 ON59508381930 ON50508381938 9N59508381940 9N59508384369 $1 N 50508600808$ ON50508729218 $9 N 59509647450$ 9N59606178864 9N59606868388 1N596C7243466
$1 N 50607783817$ 9N50608240948 59608920706 $9 N 50608920804$ 1N59858600841 9N59997135384 9N59997311878 9N59998379494 2N6 1058993424 1N61450808733 1N61457522415 IN61457548150 2N66257984960 2N66258600862 1 N66450202787 AN $3436+5+3$ AN $3436+5+5$ SR9CXG7V3V5
E19460+1
$019391+1$
EXCELONTX6
FX5E1C3
MS171495
1525
$10+052$
$10+182$
104895/801A
16784
$232980019+2$
232900083
2320 F0004
233300012
2333COO:3
$2338=0220$
234490066 $2344 C 0042$ 2344 CC 166 2344 CO $166+2$ 234400144 2344 FO124 2344 FO164 2344 FO165 2630 BO 349 2630BC354 $36675+14$ 30016
440030152
44 OOBC 198
440050340
440030436

$0<473$ こ5552500 ¢253301943713 1053301079601 ：053301986176 ！053302351475 ：953302917340 ！ 953306418241 9253308564004 ¢こ53309763267 58400202760 $2 N 58407159529$ 2N58407159541 2N58407325283 58407873709 58407984948 2N584096677C7 1N58409667708 9N59051022740 9N59051920660 9N59052494225 PN59052793505 ONEOこ52793514 0N59052793519 ON50052901971 59052992020 59052092044 ONEOO52902044 ON59055525400 ？N59057135296 GNE9258C34582 ミ9058989305 9N59100612957 9N5910に883113 0N50：05818114 9N59106688168 9N59106693137 59107805241 50108169909 59108181635
9N59109389421 9N50108400148 9N59128496155 ON591U8654510 59108908933 591501760129
2N59150762145 59157135365 50157135366 50158120126 ON50158183301

59158381891
50158600861
1N591595C1149 9N59350202758 59350205791
9N50352229913 9N59352408166 9N59355390436 ON59355680849 59357311876 50357311885 59357335274 9N50358600322 59359913374 9659409836099 59457152353 9N59457335275 59458600805 59500202782 59505428549 59506207212 59507314422 59507328524 59508381908 59508381909
59506381911
59508381930
59508384360 9N59500785860 9N59508600818 9N59508600819 ON59508600820 9N59508603382 ONSO508603446 ON50508603447 ON5O5C86C3448 59509647450 ：N59758794030 1N59850202759 1N59850202768 E9997135384 OGE21C2268748 9652108180232 9652205001448 66258600862
$0: 9301+1$
10TB18M
2114
34004071
$36675-14$

440082086
$4400<1178$
$4400 \mathrm{C1240}$
440051883
$4400 F 1884$
$4400 F 1884+2$
440160036

Figure 49 , provisioning level versus stock period, shows the comparison 0 E

 made to accounc for chose 200 to 300 items which EMEC considered to be EabEicared instead or sinp stock candidares.

COST
Tacie 25 prorides for comparison of tha coszs oE sha vanious stoc'
lists invesciga=ed a:d generated during this program, both in Phase I and Phase II. As shown - the cost of the ESO generated APL was $\$ 69,704.00$, with all parts being costed. The EMEC stock list was \$ó;,370.00, with 95 parts lacking cost description. The Vitro stock list cost $\$ 89,957.00$, with 82 Federal Stock Number designated pares and 343 manufacturer's number designated parts lacking cost description. Taole 31 snows the cost analysis for the Vitro generated stock list. The Eirst column indicates the stocking location. The second column indicates the cost per equipment of the stock avoard ship and s1pport ship and at the depot. The last column indicates the total cost of stocking the system assuming that there are 84 ships carrying the AN/SPS-40 with 14 support ships with provisions as recommended by the generated stock lists. These costs do not consider any sharing of common parts in the system but rather that the aN/SPS-40 is the only piece of equipment in the Navy.

TABLE 31

SPARES COST ANALYSIS

LOCATION	COST PER EQUIRMENT	TOTAL COST
Ships (84)	$\$ 89,957.00$	$\$ 7,556,388.00$
Support Ship (14)	$19,949.00$	$1,675,716.00$
Depots (2)	$11,697.00$	$982,522.00$
Totals	$\$ 121,603.00$	$\$ 10,214,626.00$

Section． 12
OONごここIOH ALE RECOMMENDATIONE

Beceuse the provisioring lists developec is．tizis prograll are basec or sound metnematica procedures，anc because tine rates usec in tilis progran are cerefiniy calculeted fror equipment repair aistories，it is fext inat ine
 šraied thai the proceaure was properly sensitive to the contrai factors of part rates，part popilations，siock pciicy and mainzenence policy．

The provisioning procedure wnich nendies e three echeios stocring proi－ ler nas beer shown througr the verious stock．lists presented in this repart to de cepaite of generating resints．A mejor aivartage of this procecure wric：．is essential to Zogistics aneiysis is the prograr＇s fiexirility．Elexi－ そ̇ity has $\dot{\text { been }}$ illusurated E_{j} generating stock lisis waere ell repairs were performed \because the srip＇s electronic zecmician，where seiected repairs were performed oy the menufacturer，and where selectec repairs were performed oy 2 Navy maintenance repair facility．Eacr of these situations proanced different stock lists．The program also bas the flexikility of hanciling parts or assemilies as well as cominations of parts anc assemblies．The prograr is capaice of manciling speciai cases suci．as mainteinina minimur． depth for ail critical or essential items anc limiting snit inventory costs by assigning low usage－rigi cost iters to the support sinip rather thar． stooking ther aboard the ship．A further capability is adoed by the cal－ culation print outs whict furnisin a means of maring changes by hand to the

```
stock list without the requirement of a rerna on the computer.
    Proclems were encountered with the EMEC AFI calculations ising the
three digit maintenarce code as follows:
    Installatior echelon,
        4 - Sor shipooard installation
        D - for shore based repair facility
    Maintenance echelon,
        4 - Sor shipiooard installation
        D - for shore based repair facility
        2 - for not repairable
    Module
        1 - Electronic Assemoly - shipboard repa1r
        2 - Electronic Assembly - repairable at shore cased facility
        3 - Electronia Assembly - non-repairable (threwaway)
        4 - Part of Assembly - replaceable
        5 - Part of Assembly - non-replaceable
        6 - Part of Assembly - plug-in
```

The proclem indicates that the above code does not describe the situaJion where items are installable by the sinip, but are not to ce considered cecause the items are to be iabricated on board. In order to efficiently use the maintenance code in conjunction with the provisioning program descriced by tinis stidy, the maintenance code should be expanded to describe this situation.

Although it was not demonstrated during this study, the procedure aas the ability to generate stocix lists tailored to a specific sinp. For exam ple an alrcraft carrier with assembly meintenance capaijisty would cave a
stock list aifferent fror a destrover hithout essemily mainuenance capaitili\because. Appropriate stock lists per hull coulc likewise de generatec depenaine or. the type of assigned duty. For example, a snip in the Severth Fleez could de given a higher provisioning level than a ship assigned picket duty $0 f$ tie continental United States with the capability of increasing allowed cuentities if reassignment occurs. There is elso the eibility to stock the ships of the Seventin Fleet on the basis of a kigher iudget allowance than the pisket ships. The provisioning procedure described in tinis reporit will hancle the above constraints.

Juring this suaxy the provisioning procedure has deen applied to generating an $4 F i$ tipe stock Iist. Tris procedure may be expanded $i=$ cover caiculatior of Coordinated Shippoard Allowance Lists (COSAi) whien would expioiz the aivantages achieved in the AN/SPS-40 Padar proeram.
fr immediate oractical recomended application of the procecures gerereved during tris study would ve iritial provisionine for new equipment. To illustrate sucr. ar. application, assume that a new type of equipmert consisting of 10,000 pars is being procured for the fleet. Figure 20 presents tne major pertinent points in the program scneduie. Item 1 indicaies that tinis prograr nas required il months of design and deveiopment. At the enc of this period, preproduction testing and evaluation occurs as indicated iy ミこer. \mathcal{E}. Fiae corvractor then begins the prounction rur with the finst equipment saneduled for delivery ir. 8 montins or at the end of the alst montic as incicated by the schedule. The requirement for the parts list would be piaced or the contractor to oe availacie at the enc of the gin moni.. The parts list woula consist of EAN cards where the entries woula corresponi $=0$ the parts 2 ist manuel entries required es part of the documentation on the
123456789101112131415161718192021222324

Pigure 20．Example ：ichedule 1．DESIGN\＆DEVELOPMENT
2．PREPRODUCTION TESTING

> NOIITMOOAD ©
> AVJAIIJOINBWDINOJISI:
PREP
gloviluar sozyo isil lyyds
6．E\＆M CODES，RATE，\＆COST ADDED
S3IV甘 ON甘 S300J W8］ 10 IVAO甘ddV AA甘N L

[^9]equipment. The cards would contsin, in a prescribed formet the following irformation:

1. Feaeral Stock Numider or manufacturer's number
2. short name or title
3. pert reference designator or circidit symbcl
4. e code to indicate if part is essential or non-essential to equipment operation which is tine same as the essentielity codes presented earlier in this report
5. failure rate of part (will be availaide if reliability program was required)
6. maintenance code - e three digit INavy code
7. consumption rate to be used for aetermining stock quentities
8. weight (in pounds)
9. cube (in cubic feet)
10. cost

The adove information requires 75 spaces on an EAM cara which has a total of 80 spaces availeble. Nilitary Specification Electrome Fepair Ferts Fequirement, Procetures for Provisioning Documentation and Stock Numbering, NIL-E-173G20 (SFIPS), now requires that the part nurnes, cost, and essentiality of the parts be specified.

A major revision of NIL-E- 173620 is recompended to require the contractor to incluade the remaining items listed above; to provide giaiance for the contractor to develcp the essentiality codes, maintenance codes and consumption rate (the remarine items are reacily availaible to the confractor); to set forth the procedure for the assignment of the ebove codes; require the contractor to provide a complete list of parts with the ebove informa. tion on 80 column EAM Cerds and submit a recommended stock list (range; ena the totel number of spare perts (depth) necessary to support the equipmezt
a: a gCi provisioning level for a ninety-day period. Fhis stock ins siould te determined in accordance with the Specisication recomended in the following varazraph. and shonld inclide the total cost, weignt and cuice of the spare parts recommended for support.

A new specification should be developed detaiiing the procedures and methods to be used for determining an equipment Range and Depti Stock List Enat will supply the desired degree of confidence for a stated period of =ime. This specizication should be developed in accoraance with the statisİal procedures used in this report and should be placed on the contractor as a mandatory requirement for 211 new equipment procurements. Erint outs resulina from the use of this specification should include two carts lists, - sne in FSiv/manufacturer's number order anc another in circuit sjuicol order; Parge and Deptin stocis list for an equipment; a stock list for a suppcru ship; ق stock list for a depot; and a listins by part type showing the zotai number of items required of the Navy to provision according to the quartities speciEied by tise tiree stock lists. The contractor would retain a coyy of the generated results and distribute copies to the Comander, Naval Shin Sjstems Cormand and the $\because \because$. S. Kavy Electronics Supoly Oifice to ise during the Earts E=orisionins Ccnference.

Gre mont: or some pre-determined period oE =ine would be aliowec for each of tie reaipients to review and appraise the stock pant cuts. Comments and changes would be noted on the print outs. Since preproduction $\begin{gathered}\text { bests }\end{gathered}$ Fave ceer jerت゙ormed during the pericd of stock list development, tiee results =A tinis testing would also be considered.
it the end of the review and appraisal period, a provisioning acrãererce rould ve teld where the coments and cianses would be considered and
decisions made concernine necessary adjustments. It is believed that the above procedure which furnishes a prelimi sry stock list and information on all the parts will stimalate commancations since areas where improvements are needed shouid be easier to determine when the entire picture is available for study. Further, in those areas where detailed investigations are required, the effort has been reduced to a problem of prectical magnitude.

All of the provisioning information is now given to the Inventory Control Foint. The Inventory Control point from this point on has the resporsicility of producing the equipment APL, the sip COSAL, end buy quentities to support the new equipment in the system. The performance of these duties should be easier and clearer with the detailed information available after the provisioning conference. Accoraing to the schedule of figure 20 there remains eight montins before the Eirst eouipment will be delivered for fleet use. More importent, the decisions on procurement of spare parts car be made in time to be incorporated into the production contrect.

Eaving used a procedure where ail inputs and quantities used to derive the initial provisioning stock lists as specified, an analysis of the resuits over perhaps the first year of fieet use would provide a means for adjusting the equiproent stock quantities as well as provide better data for the next future generation of equipments to be considered.

The above discussion is a suggested approach to the initia provisioning proclem which fits into the present procedures and practices. The tools required are the provisioning procedure presented in this report anc NIL-E1736́2D (Snips) winch wovid require revision to serve agequetely. The advantage of this suggested approach to initial provisioning is the generatior. Of e timely stock list vased on sound mathematical principles and completely documental procedures including two government approval monitoring points.

TECHNIQUE FOR DETERMINING THE NUMBER OF SPARES
 WITH A PRECHOSEN PROBABILITY LEVEL

herchel e. lynch and ronald s. morris USALMC INTERN TRAINING CENTER

DR. ROGER J. MCNICHOLS AND DK. DARRELL R. SHREVE
TEXAS A\&M UNIVERSITY

The prediction of the number of spares or spare parts for a product or system is a problem, the importance of which has been recognized in almost every publication on Integrated Logistics Support planning and Systems Effectiveness both by the Department of Defense and by Industry. Many approaches to this problem have been presented and these are generally divided into two categories: first, those which contain some very confining and, perhaps, unrealistic assumptions such as sparing for the expected number of failures, assuming a constant failure rate and poisson process or sparing a system based on only the total operating time, and second, those approaches which require a computer simulation. The simulations range from the simple to the very complex and sophisticated models. However, both the simple and the complex require a computer program, a computer, and time on the computer, along with available personnel.

Some people realize the importance of selecting the proper sparing level and comprehend the multifaceted problem which such a selection involves. Many others, however, do not realize the long lasting and wide ranging ramifications of a sparing policy and its resultant effects on the key system parameters. The number of spares and the location of these spares for the system affects system availability, maintainabilty, and reliability provided replacement is permitted during the mission, as well as repair facility utilezation and total system cost. When one recognizes all the implications of a particular sparing policy with regard to system parameters, he can easily see that consideration of the sparing policy is vital in the conceptual and trade-off analysis stage in the symteam's life cycle. In addition, it is difficult to understand how the many trade-off analysis which are necessary in the conceptual and design stages can be validly developed without consideration of the sparing policy. Thus, the selection of a sparing policy is not a problem which can be postponed until the system is produced and ready for use. This problem must be considered in the early stages of the system's life cycle with the other major system parameters. The primary reason why this has not been common practice to date is that a technique did not exist which could be utilized during the early stages of the life cycle and which did not require great amounts of time and money, and, perhaps, computer simulations.

This paper provides a simplified technique for determining the number of spares necessary for a symten or groups of systems utilizing a prechosen probebitty level that sufficient spares will be available. This technique removes many of the restrictive, and, metimes, unrealistic assumptions involved in previonus methods. The basis for this technique is the fact that the density function of a sum of independent random variables approaches the normal density function,
regardless of the type of density function each of the variables have. Using this fact, an asymptotic approximation proposed by Cox (3) and Barlow (2) and extensions by the authors, a technique is shown which will provide an estimate of the number of spares needed for the prechosen probability level; for any type of basic process density function, for any of the process sequences shown, and for single and multiple sparing policies. This is possible through utilization of the simplified tables, graph, and the step-by-step technique shown in this paper, along with calculations which are not complicated nor difficult and which do not require any knowledge of probability or statistical theory.

THE TECHNIQUE

This technique was derived using results obtained by Cox (3), and Barlow (2), which show that the time to the $n^{\text {th }}$ event and the number of events which occur in a time interval, t, are both asymptotically normally distributed as n and t become infinite. These results were based on the central limit theorem and some previnonus results obtained by Feller (5).

In this paper the results obtained by Cox and Barlow have been applied to a sparing problem. (Figure i system class A and B1) and extensions have been made to provide models for many other types of system classes and sparing configurations. To apply this technique, the following restrictions are necessary:

1. The system must follow one of the process sequences and one of the sparing configurations shown, without deviation. (See Figures 1 and 2)
2. Only spare set can be required in any process cycle, where a process cycle is defined as the repeating sequence in a system, and must be required at the point in time shown in the process sequence.
3. All processes are independent.
4. The mean and variance of the density function of each process must remain constant over time.

The accuracy of the approximations shown in this paper depend upon the ratio of the sparing cycle time to the mean of the process cycle time and the shape of the basic process density function. It has been found that if this ratio is greater than 3 to 5 and if the basic process density functions are not badly skewed, the accuracy of the approximation is sufficient and, in most cases, better than the present methods.

Also, limits are shown for this approximation which provide an indication of the accuracy of the results.
STEPS TO APPLY TECHNIQUE

STEPS

EXAMPLE

FROM FEASIBILITY AND TRADE-DFF STUDIES.

1. FROM INDIVIDUAL SYSTEM STUDIES:
A. Determine what processes the system undergoes during it's life cycle.
B. Draw system process sequence in terms of the actual operations performed on each system.
2. FROM SYSTEM SUPPORTM STUDIES:
A. Determine number of systems, S, to be supported by the spare pool.
B. Determine the time interval, T_{R}, that system R will be in the sparing cycle.
C. Determine the desired probability, P_{1-q}, that the s systems will have enough spares for each system to undergo the process sequence shown for the time, T_{R}, during the sparing cycle.

FROM THIS TECHNIQUE

3. EROM FIGURE 1, 2, OR 3, DETERMINE THE FOLLOWING: A. Using in relate the actual system process to sequence shown in Figure 1 and determine the system class.
B. With the system class from 3A, relate actual operations performed on the system to the process numbers shourg on Figure 1 and determine, μ_{i}, the mean and, $\sigma_{i}{ }^{2}$, the variance of process 1.
C. Using S from $2 A$ and T from $2 B$, determine the sparing configuration type from Figure 2.
D. Using $P_{1-\alpha}$ from $2 C$, determine Z_{α} from Figure 3.
4. WITH FIGURE 4 OR 5, DETERMINE THE FOLLOWING:
A. Using system class from 3 A and sparing configuration from $3 C$, find the equation for T using column 1 and either colum 2, 3, or 4 in Figure 5.
B. With this equation and the process parameters from 3B, solve for T.
C. Using system clis. from $3 A$, find equations for μ_{C} and σ_{C}^{2} in column 5 and 6 in Figure 5 . With the process parameters from $3 B$, solve for ${ }^{\mu}{ }_{C}$. and σ^{2}.
D. From Figure 4, find values for K_{1} and K_{2}.
E. Using the values calculated in $4 B, C, D^{2}$ and Z_{α} from 3D, solve for an approximate value for $N(T)$ where

$$
N(T)=\frac{T}{{ }^{H_{C}}}-S K_{1}+z_{\alpha} \sqrt{\frac{\mathrm{To}_{C}^{2}}{{ }^{3}}+S K_{2}}
$$

Round $N(T)$ upward to integer value, N^{\prime},
5. FIND REVISED P_{1-Q}^{\prime} AS FOLLOWS:
A. Using the system class from $3 A$, the process parameters from $3 B, N^{\prime}$ from $4 E$, and equations in Figure 5, column 7 and 8, solve for μ_{P} and σ_{p}^{2}. Solve for μ_{p} ' as follows:

$$
\mu_{P}^{\prime}=\mu_{p}+(S-1)\left(\mu_{C}\right)\left(K_{1}\right)
$$

Operation, Replacement, Test
Spare Required

Operation	Replacement	Test	Operation

$S=6$
$T_{R}=T_{1}=T_{2}=T_{3}=T_{4}=T_{5}=T_{6}=600 \mathrm{hrs}$.
$P_{1-\alpha} \geq .92$

From Figure 1, System Class $=C .3$

Operation	Replacement	Test
process 1	process 2	process 3
$\mathrm{H}_{1}=40$	$\mathrm{H}_{2}=10$	$\mathrm{H}_{3}=12$
$\sigma_{1}^{2}=225$	$\mathrm{O}_{2}{ }^{2}=25$	${ }_{3}^{2}=16$

From Figure 2, System Configuration = Type II
From Figure 3 with $P_{1-\alpha}=.92, \quad z_{\alpha}=1.40$

From column 3, Figure 5, for system class C. 3 $T-S\left(T_{1}+\mu_{2}+\mu_{3}\right)$
$T=600 \quad \mu_{3}=12 \quad S=6$
$T=6(600+10+12)=3732$
From column 5, Figure 5, for system class C. 3
$\mu_{C}=\mu_{1}+\mu_{2}+\mu_{3}=40+10+12=62$
$\sigma_{C}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}=225+25+16=266$
$K_{1}=\frac{\mu_{c}^{2}-\sigma_{c}^{2}}{2 \mu_{C}^{2}}=\frac{62^{2}-266}{(2)(62)^{2}}=.465$
$K_{2}=\frac{1}{12}+\frac{50_{c}^{4}}{4 \mu_{c}^{4}}-\frac{2 M_{c 3}}{3 \mu_{c}^{3}}=\frac{1}{12}+\frac{5(266)^{2}}{4(62)^{4}}-0^{\star}=.0892$
*Assume process densities are symetrical, $\mathrm{M}_{\mathrm{C} 3}=0$
$N(T)=\frac{3732}{62}-6(.465)+1.40 \sqrt{\frac{3732(266)}{(62)^{3}}+6(.0892)}$

$$
=60.439 \rightarrow 61=N^{\prime}
$$

$\mu_{\mathrm{P}}=\left(\mathrm{N}^{\prime}+1\right) \mu_{\mathrm{C}}-\mathrm{S}_{2}-\mathrm{S} \mu_{3}=62(62)-6(10)-6(12)=3712$
$\sigma_{\mathrm{p}}{ }^{2}=\left(\mathrm{N}^{\prime}+1\right) \sigma_{C}{ }^{2}-\mathrm{So}_{2}{ }^{2}-\mathrm{So}_{3}{ }^{2}-62(266)-6(25)-6(16)=16,246$
$\mu_{\mathrm{P}}^{\prime}=3712+(6-1)(62)(.465)=3856$
L. Using μ_{p}^{\prime} and σ_{p}^{2} from $5 A$ and T^{\prime} as shown below, solve for the revised 2_{a}^{\prime}

$$
2_{\alpha}^{\prime}=\frac{u_{P}^{\prime}-T^{\prime}}{\sqrt{o_{P}^{2}}} \quad T^{\prime}=\sum_{R=1}^{S} T_{R}
$$

C. Using Z^{\prime} from $5 B$ and Figure 3, find revised $P_{1, \pi}^{\prime}$ which is the revised probability that enough spares will be available if N^{\prime} spares are stocked.
D. If P^{\prime} is not the desired value, modify N^{\prime} and repedterteps $5 B$ and C.
$I^{\prime}=(6)(600)=3600$
$z_{\alpha}^{\prime}=(3856-3600)+\sqrt{16,246}=2.008$
$P_{1-\alpha}^{\prime=.978-T 00 ~ H i g h ~}$

| Fov N^{\prime} | $=60$ | $Z_{\alpha}^{\prime}=1.535$ |
| :--- | :--- | :--- |$\quad P_{1-\alpha}^{\prime}=.94$

For $N^{\prime}=59 \quad Z^{\prime}=1.053 \quad P^{\prime}=1-\alpha=.86$
6. FURTHER REVISIONS - RESULTS SHOULD BE CONSIDERED WITH LIMITS SHOWN BELOW FOR FURTHER REVISIONS IN P' AND N'.
A. If the process density functions have a coefficient of variation, $\frac{Q}{}$, greater than 1 and are skewed left, the results shown in this paper are optimistic, i.e., the actual probability, F^{\prime} of having enough spares is less than obrained by this method.
B. If $\frac{0^{-}}{=1}$, the density function is exponential and the actual probability of having enough spares, $P_{1-\alpha}^{\prime}$,is less than obtained but the poisson $c^{-\alpha}{ }^{-\alpha}$ be used to refine the estimate.
C. If $\frac{0}{\mu}<1$ and the densities are skewed right, the actual probability of having enough spares is greater than obtained by this method.
D. If the process density functions are normally distributed, the results are fairly accurate.
E. If some of the process densities are skewed left and some are skewed right, the results obtained by this method will closely approximate the actual situation.
7. FINAL RESULTS - $N^{\prime}=$ NUMBER OF SPARES NECESSARY TO PROVIDE A PROBABILITY OF P THAT ENOUCH SPARES WILL BE AVAILABLE TO 'AST FOK A TIME PERIOD, $T=$ SUM OF T_{R}, IF S SYSTLMS ARE OPERATING AT $T=0$.
$N^{\prime}=60$ spares

PARALLEL ELEMENT EXAMPLE

It should be noted that the technique can be applied to many types of redundant elements systems by properly defining the processes. Ar example of this may be the following type of system:

Assumptions:

1. Element $A^{\prime} s$ are in active parallel redundancy.
2. Element A^{\prime} s are independent.
3. System is not repaired until both elements failed.
4. Both elements are replaced before system returns to operation.

Process 1-time to first failure
Process 2-time from first to second element failure Process 3 - time to replace both elements

PREVIOUS ASSUMPTIONS AND METHODS

The previous methods for determining the number of spares required have some confining and perhaps, unrealistic, assumptions inherent in the methods. Some of these assumptions are as follows:

1. Sparing policy based on the average number of failures. If a system is spared for the average number of fallures expected to occur, then roughly 50% of the time a spare is needed, a spare will not be available for the system.
2. Sparing policy based on operating time only (4) (6). The total operating time which occurs during a calendar time, if a system is undergoing fallure and repair processes, is a stochastic variable following some statistical distribution. Some of the methods in the past have estimated the mean operating time which
is expected to occur during a calendar time and used this value to determine the number of spares necessary. This assumption would give the same result as assumption number 1. It should be pointed out, however, that some systems actually operate and are spared correctly based only on operating time.
3. Sparing poilcy based on a constant failure rate (4) (6). The assumption on a constant failure rate for the failure process implies that the times to failure follow the negative exponential density function. If the times to failure follow the negative exponential density function, the mean of the density function must be equal to the standard deviation of the density function, which is not normally the result obtained in a testing program. A part
that is subject to wearout fallure cannot have a constant fallure rate. It should, also, be noted that if the times to failure do not follow the exponential d sity function, the fallure rate is not the reciprocal of the mean of the density function.
4. Sparing policy based on the poisson process (4). The assumption that the number of fallures which occur during a time period follows the poisson process implies that the times to failure follow the exponential density function. Thus, inherent in this utilization of the poisson process is, the assumption of a constant failure rate as discussed above.
5. Sparing policy based upon the results of a computer simulation (7). The use of a Monte Carlo simulation on a computer may be costly both in time and money. This coupled with the difficulty in verifying the accuracy of the simulation makes this approach undesirable, except in more complicated situations. Most of the simpler computer simulations will give no greater accuracy than the technique shown in this paper for the types of systems shown.
that, using this technique and Step 6 B , a constant rate for the process cycle can be assumed and the results will be identical to prior techntques using a constant rate, one process and the poisson distribution for the number of fallures.

There are many other possible usae for this technique, such as:

1. Given a certain number of spares, the probability of having enough spares can be fuund.
2. It can be used to verify the accuracy of the early predictions if the sparing conitguration has been operating for a period of time and some results of the actual usage of spares are avallable.
3. It can be used to determine the effect of the sparing pollcy upon the system avallability.
4. Given confidence intervals based on resting for the mean and variance of each process, pessimistic, expected and optimistic prediction of the number of spares needed can be accomplished.

CONCLUSIONS

It is felt chat a person who has been struggling with the problems associated with choosing a sparing policy for a group of systems, either in the early or middle stages of the system's life cycle, can easily grasp the benefits from a simplified technique such as this one. The versatility of this technique has been adequately demonstrated.

The approximations involved in this procedure, 1.e., the normal density function, will probably be less in error than the assumption of a constant rate. However, even with the assumption of the constant rate, except for two of the ten cases considered, the cases are difflcult to solve. It should be noted

REFERENCES

1. Apte, S. S., Predicting Spare Parts : :eeds, Plant Engineering, November 13, 1969.
2. Barlow, R. E., and Proschan, F., with contribution by Hunter, L. C., Mathematical Theory of Reliability, John Wiley 6 Sons, Inc., 1965.
3. Cox, D. R., Renewal Theory, John Wiley \& Sons, New York, 1963.
4. Ebel, G. H. and Lang, A. J., Reliability Approach to the Spare Parts Problem.
5. Feller, William, An Introduction to Probability Theory and Its Applications, Vol. I, John willey \& Sons, Inc., New York, 1957.
6. Holmes, A. E. and McQuay, W. S., An Approach to Spares Quantity Determination, Logistics Spectrum, Vol. 3, No. 2, Summer 1969.

The above technique is the result of studies and research by the authors. The views expressed are those of the authors and do not necessarlly reflect approval or endorsement by the Department of Defense or Texas A\&M University.

APPENDIX

FIGURE 1 - SYSTEM CLASS

A. ONE PROCESS

B. TWO PROCESSES
B. 1

B. 2

C. THREE PROCESSES
C. 1

C. 2
C. 3

D. J PROCESSES
0.1
0.2
0.3

j processes in sequence - spare required at end uf $G^{\text {th }}$ cycle in sequence

LEGEND FOR FIGURE 1

THE SYSTEM PROCESS SEQUENCE AND WHERE THE SPARE SET IS REQUIRED DETERMINES THE SYSTEM CLASS

FIGURE 2 - SPARING CONFIGURATION TYPE*

I \quad Single System $S=1$
11 Multiple systems - each sequence is identical
Number of Systems $=S$
Sparing cycle of all systems are equal to T_{1}

III Multiple systems - each system sequence is identical
Number of Systems $=S$
Sparinq cycle of each system $=T_{R}$
and may be different

* The system configuration identifies
how many systems, 5 , will receive spares from the spare pool and the length of time, T_{R}, each system will be in the process sequence during the sparing cycle.

FIGURE 3 - VALUES OF Z_{α} AND P_{1-u}

FIGURE 4 - K_{1} AND K_{2} FACTORS
K_{1} FACTOR
Using ${ }^{\prime}{ }_{c}$ and $\sigma_{C}{ }^{2}$ from column 5 and 6, Figure 5, solve
for:

$$
k_{1}=\frac{\mu_{c}^{2}-\sigma_{c}^{2}}{2 \mu_{c}^{2}}
$$

NOTE:

$$
\text { A. if } \sigma_{c}<\mu_{c} \quad \max \text { value of } \mathrm{K}_{1}=+\frac{1}{2}
$$

min value of $K_{7}=0$
B. if $\sigma_{c}={ }_{\psi_{c}} \quad K_{1}=0$
K_{2} FACTOR
$k_{2}=\frac{1}{12}+\frac{5 c_{c}{ }^{4}}{4 \mu_{c}{ }^{4}}-\frac{2 M_{c 3}}{3 \mu_{c}{ }^{3}}$
where $M_{c 3}=$ third moment of the process cycle time density ${ }^{\text {c3 }}$ function about its mean $=$ sum of third mements of the process time density functions about their mean.
C. If the process times are distributed according to the gamma ($a>1$), normal, Weibull ($e>1$) or is at least two processes, each following the exponential, then A above is true, i.e., the convolution for the process cycle time has an increasing rate and $\sigma_{c}{ }^{<} u_{c}$.
D. If there is only one process and the times are distributed according to the exponential, then B above is true, i.e., the exponential density has a constant rate
E. If there are two or more processes in the cycle and each has certain forms of the Gamma or weibull, then B may be true, i.e., the convolution for the process cycle time may have a constant rate, however, A, B, or C may be the case.

If the density function is symetrical, then $M_{c 3}=0$ otherwise
$M_{c 3}=E\left(t_{i}-\mu_{j}\right)^{3}$ where $t_{i}=$ variable

$$
\psi_{i}=\text { mean }
$$

FIGURE 5 - VALUES OF $T,{ }_{c}, o_{c}{ }^{2}, r_{p}$, and $\sigma_{p}{ }^{2}$

SYSTEM CLASS See Step 3A (1)	T - See Step 4A SPARING CONfIGURATION TYPE			USE FOR STEP 4C ${ }^{\mu} \mathrm{C}$ (5) ${ }^{\circ}{ }^{\circ}{ }^{2}$ (6)	USE FOR STEP 5A	
	(2)	$\begin{gathered} 11 \\ (3) \end{gathered}$	$\begin{aligned} & \text { III } \\ & (4) \end{aligned}$		$\begin{aligned} & i p \\ & (7) \\ & \hline \end{aligned}$	$\begin{gathered} \sigma_{p}{ }^{2} \\ (\varepsilon) \end{gathered}$
A	T_{1}	ST_{1}	$\sum_{R=1}^{S} T_{R}$	$\begin{aligned} & \mu_{1} \\ & \sigma_{1}^{2} \end{aligned}$	$\left(N^{+}+1\right) H_{C}$	$\left(N^{\prime}+1\right) \sigma_{c}{ }^{2}$
B. 1	T_{1}	$S T_{1}$	$\sum_{R=1}^{S} T_{R}$	$\begin{gathered} u_{1}+u_{2} \\ \sigma_{1}^{2}+\sigma_{2}^{2} \end{gathered}$	$\left(N^{\prime}+1\right) \mu_{C}$	$\left(N^{\prime}+1\right)_{0}{ }^{2}$
B. 2	$r_{1}+\mu_{2}$	$S\left(T_{1}+\mu_{2}\right)$	$\sum_{R=1}^{S} T_{R}+S \mu_{2}$	$\begin{gathered} \mu_{1}+\mu_{2} \\ \sigma_{1}^{2}+\sigma_{2}^{2} \end{gathered}$	$\left(N^{\prime}+1\right)_{\mu_{c}}-S_{\mu_{2}}$	$\left(N^{1}+1\right)_{J_{c}}{ }^{2}-S_{c}{ }^{2}$
C. 1	T_{1}	$S T_{1}$	$\sum_{R=1}^{S} T_{R}$	$\left\{\begin{array}{l} u_{1}+u_{2}+u_{3} \\ \sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}+\sigma_{3}^{2} \end{array}\right.$	$\left(N^{\prime}+1\right) \mu_{c}$	$\left(N^{\prime}+1\right)_{c_{c}}{ }^{2}$
C. 2	$T_{1}+\mu_{3}$	$S\left(T_{1}+\mu_{3}\right)$	$\sum_{R=1}^{S} T_{R}+S u_{3}$	$\begin{aligned} & \mu_{1}+\mu_{2}+\mu_{3} \\ & \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2} \end{aligned}$	$\left(N^{\prime}+1\right) u_{c}-S_{\mu_{3}}$	$\left(N^{\prime}+1\right)_{c}{ }^{2}-S^{3}{ }^{2}$
C. 3	$T_{1}+\mu_{2}+\mu_{3}$	$S\left(T_{1}+\mu_{2}+\mu_{3}\right)$	$\sum_{R=1}^{S} T_{R}+S\left(\mu_{1}+\mu_{2}\right)$	$\begin{aligned} & \mu_{1}+\mu_{2}+\mu_{3} \\ & \sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}+\sigma_{3}{ }^{2} \end{aligned}$	$\left(N^{\prime}+1\right) \mu_{c}-5 \mu_{2}-5 \mu_{3}$	$\left(N^{\prime}+1\right) \sigma_{c}{ }^{2}-S_{2}{ }^{2}-S_{3}{ }^{2}$
0.1	T_{1}	ST,	$\sum_{R=1}^{S} T_{R}$	$\begin{aligned} & \sum_{i=1}^{J} u_{i} \\ & \sum_{i=1}^{J} \sigma_{i}{ }^{2} \end{aligned}$	$\left(N^{\prime}+1\right)^{\prime}{ }_{c}$	$\left(N^{\prime}+i\right){ }_{c}{ }^{2}$
0.2	$T_{1}+\sum_{i=2}^{J} H_{i}$	$S\left(T_{1}+\sum_{i=2}^{J} u_{i}\right)$	$\sum_{R=1}^{S} T_{R}+S \sum_{i=2}^{J} u_{i}$	$\begin{aligned} & \sum_{i=1}^{J} \mu_{i} \\ & \sum_{i=1}^{J} \sigma_{i}^{2} \end{aligned}$	$\left(N^{\prime}+1\right)_{\mu} e^{-S \sum_{i=2}^{J} \mu_{i}}$	$\left(N^{\prime}+1\right) v_{c}^{2}-5 \sum_{i=2}^{J} v_{i}{ }^{2}$
0.3	$\mathrm{T}_{1}+\sum_{i=9+1}^{3} \mu_{i}$	$S\left(T_{1}+\sum_{i=g+1}^{J} \mu_{i}\right)$	$\sum_{R=1}^{S} T_{R}+\sum_{i=g+1} \sum_{i}{ }^{\prime}$	$\begin{aligned} & \sum_{i=1}^{j=} u_{i} \\ & \sum_{i=1}^{j} \sigma_{i}{ }^{2} \\ & \hline \end{aligned}$	$\left(N^{\prime}+1\right)_{u_{c}}-\sum_{i=g+1}^{J}{ }^{u_{i}}$	$\left(N^{\prime}+1\right)=c^{2}-\sum_{i=g+1}^{i} i^{2}$

LEGEND S = NUMBER OF SYSTEMS
$r_{R}=$ SPARING CYCLE TIME INTERVAL

Naval Rescureh hajoticos huatorty an ty Ion 19

Sheldon f. Haber sid hosedith Silarrates*
The George Wianimetun Indersid

Institute for Vhangrninat vicierice and Engineering

Abstract

0. NTmomemon

 submarine fatal are shown in Table l. As may be seen from the first entry in the table an usage

Table 1. Distribution of 25,138 Different Repair Parts by the Number of Patrols in Which They Were Demanded

-Colum !id l:t.

 zero unit－ased．

 parts refers to the number of diferent itens to be stocked．The dephetes wo the number of unte stocked of an item．

Given that repuir part asace is smadic，several demand prediction straterios are avalable．The

 until positive usate is experienced．The difficalty whth this latter apmonet in that many rerair parts are only one time movers．Faine to have an adequate quataty of stors aboari hip we in the－upply system prins the first demend can thas lead to a luger rate of shortages and an uns di－factury leve of readiness．

 into the insentory－

 nonencluture cis．．

[^10]$1 \because \because 1$. am！co！：

1．I11：
We item \therefore ， demata： molel ： disiriha：
（1）
where 0
in a lin：
mant！！
of tima．
O．1：
caser．1－
i．e．，${ }^{\prime}$
the n！
the ：e
it： ava，... ．

Lu！
ot the ： forma
iam－
！inne！
ir：：
distri！：

12）
where
din：：
ご安安：

Tru：

1. THE PROBABALM MODEL.

We consider a class C of iteme deflie di. for examphe in terms of nomenclature. Let part $/$ be any

 distribution wiea by
(1)

$$
p(y \mid \theta)=\frac{e^{-T \theta}(T \theta) y}{y!}
$$

where 0 (awan more precisely. θ_{i}) is the !arameier of the Poineca distributhon of denand- fir item I
 manded for part i in a patrol. It is assumed farther that deman's for part I in non-overiaping periods of time are indenendernly ditributed.

Our problem is to estimate in finy item i cia- ified as bemane to ches C. Wr, distingish two
 i.e., y values are a walahle. th intacated ealies, the probtem here is complicated hy the fatt that ior

 ing to class C. but being installe? for the first time. In this wee, no y values zero or ofternise, ate avaitable.

 tioned atore.

In general. if $n(\theta)$ denates the probability distribution of θ in the claw C, and $p(y, \theta$ the joint distribution of y and θ. then
(2)

$$
\begin{aligned}
p(y, \theta) & =p\left(y^{\prime} \theta\right) \cdot p(\theta) \\
& \left.=p(\theta \mid y) \cdot p^{\prime} y\right)
\end{aligned}
$$

 estimate 0 by

$$
\bar{\theta}=E(0, y)
$$

[^11]by the value $t(\theta)$. the ancon litinal aperted batae of θ. In this lather rare the estimate of 0 is the
 or its y vaitie.

 ance of y values of zero in most ciarser led us to consider densitice whore maximum value vecurs ior $\theta=0$. We examined first the expmential density
$$
p(\theta)==\frac{1}{\beta} e^{-\frac{\theta}{3}} \text { for } 0<\theta<\alpha,
$$
but resultiat- calcolations did not wive evidence of a ead fit A natural extemsion, which becduse uf
 eter, is a two-parameter gamma di-tribution. Aceordhigly, we assumed that
(3)
$$
p(\theta \mid \alpha, \beta)=\left(\frac{\alpha}{\beta}\right)^{\alpha} \frac{\theta^{\prime \prime-1} e^{-\frac{\alpha}{3} \theta}}{\Gamma(\alpha)} \quad \text { for } 0<\theta<x
$$
wihh $\alpha, \beta>0$. For any value of $\alpha<1$, this funcion is infaite ai $\theta=0$, and is nonotonically decreasin! as θ increaze $\operatorname{irom} 0$ to 5 .

From (1) and (3), Eq. (2) can be written siecifically as

$$
\begin{aligned}
& p(y, \theta \mid \alpha, \beta)=p(y \mid \theta) \cdot p\left(\theta_{i}^{\prime} \alpha, \beta\right)=\frac{\alpha^{\alpha} \theta^{n+y-2} e^{-\frac{i \alpha+T^{\prime \prime} g}{t} \gamma y}}{\beta^{\prime}!(\alpha) y!}
\end{aligned}
$$

$$
\begin{aligned}
& =p\left(\theta_{i}^{\prime} ;, \alpha, \beta\right) \cdot p(\gamma ; \alpha, \beta) .
\end{aligned}
$$

 unconditinal di-prbution if y fin the class C is a nerative bimomial.

From (4) and 13). wa find
(5)

$$
E(\theta \mid y)=\frac{T \beta}{\alpha+\frac{T}{\beta}} \cdot \frac{\alpha+\vartheta}{T}
$$

for the first cate where y valum arf dualmhte white

$$
E(\theta)=\beta
$$

 binumial distribution with neran valte $T \beta$ and with variance $T \beta\left(1-\frac{T \beta}{\alpha}\right)$.

Let $y_{1}, y_{2} . . . y_{n}$ be the whersed y values for the n items $l=1,2, \ldots, n$ in class C. From the data we estimate the mean and warance by

$$
\begin{aligned}
& \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \text { and } \\
& V^{\prime}=\frac{1}{n_{i}-1} \sum_{i=1}^{n}\left(y_{i}-y^{\prime},\right. \text { respectivet. }
\end{aligned}
$$

We estimate $T \beta$ by \bar{y} Eo that

$$
\hat{\beta}=\frac{\bar{y}}{\bar{T}}
$$

In estimatin: α. we use the method of moments since this is relatively sinple and straightorward. Since the variance of y is $T \beta\left(1+\frac{T \beta}{\alpha}\right)$. we estimuted the variance as

$$
T \hat{\beta}\left(1+\frac{T \hat{\beta}}{\dot{\alpha}}\right) \text { and with } \hat{\beta}=\frac{\bar{\varphi}}{T}, \text { hom above, }
$$

obtain

$$
\dot{\alpha}=\frac{\bar{y}^{2}}{V-\stackrel{y}{\gamma}}
$$

Hence, in the case where an ohserved y value is a ailahle for a given item, the desired estimate of θ for the $\mathrm{it} \ell \cdot \mathrm{m}$ is

$$
\tilde{\theta}=\frac{T \dot{\beta}}{\hat{\alpha}+T \dot{\beta}} \cdot \frac{\dot{\alpha}+\underline{v}}{T} .
$$

and in particular when $y=0$, we have

$$
\bar{\theta}=\frac{\hat{\alpha} \bar{\beta}}{\hat{\alpha}+7 \dot{\beta}}>0 .
$$

 part rlan deathing the arw itren.

2. ENALCATION OF GOODNESBOH-FIT

 described. It will be recall.d that a simbar assesment of the earlier exgmenenal moded led on is
 reasondleness of the model smaty adopied. An additional test of the model in mimentory context is provided in the next sertion.

 each chass were calcutated and compared with the detual distributions of y watue. The comparisun of the actual and theretical frepterecies bor enth chas was mate by computine the value of chi-vpare as
 test of the corresponding anil hypothesis. The intent was whilize the chi-squars and the associated significance probabitites as the basis for asersine the appopriateness of the mode!.

In evaluating the results, the following printe shond be kept in mind. First becaure of the vagares of reporting. no model may provide a satisfactory for the data. Fur example extmony large y values
 repair parts are often for even numbered quanities. The presalence of demands for even quantices may be seen from the distribution of values for 61 patrols shown in Table 2 .

Pable 2. Distribution of 25,138 Different Pepair Parts By the Total Quanty of Laits Demanded Durinic fl Patrats

3	249	14	26
4	2.9	15	28
5	121	16	27
6	124	17	9
7	86	18	20
8	97	19	14
9	58	20	38
10	61	21	17
11	36	22	13
12	37	23	10
13	29	24	18

 impertant wis.

 all cases the outiets hed a wery low anit price, or a hish total installed furplation, or lage imblishad demand gumbites. or a combination of these characteristice. For enample. in the tepair part cime
 of the item beine demanded in a single transaction. Of the 18,8 ti parts in the sample, this item and 37 other repar parts were eliminated as mulien.-

The results of the exdenessoffit computations, after elimination of the 38 items considered to be cutiers, are shown in Table 3.

Table 3. Summary of Chi Syuare Computations

Different repair parts in cluss	Numbers of repar bant claze's	Number of claras with poor bit at	
		0.05 level	0.01 ! ..
100 or Less	10	1	1
101 to 45	30	7	0
500 and Over	14	6	3
Toial	54	14	4

Over all classes, pore fits were ohtained fur but 4 and 14 withe 54 repar part chase at thi 0.01 and 0.05 tevels, respecimaly. As may be seen from Table 3 . the incidence of pour the increased as the number of repair yarls in a class increased. In interpeting the result of Tabie 3 . the earier wherva tion that where the number of items in a class is large, discrepancies betwern oberved and experted relative fromuencies may still be small, should be recalled. fndeed, this was the case for alnost ail of the repair part clases where the chi-square was larger than expected on the basis of chance alune.

3. FLRTHER MSESSNETT OF THE MODEL

In addition to examining the gronduessoffit of the model, shipbard alluwance lists were computed usin: as iaput the demand prediction model previnusty described. These liot, were then compared with an allowance list utilizing techaicians* usave eetimates. beth in terms of dollar investhent in stock and shortage connts. The purpene of this, craluation was (l) to simulate the performance of the model in the envirument for which it was desiunen), and (2) to detwrmine whether differentiate:
 all items inte, a sinde van.

[^12]data for the 61 patrols and the denand pedietion momed, usage rates were computed for each repuin

 clature chas- Model il bi.* Allowance tint quantities were then computed for these precederes and the
 all cases the inventory model was used with the same parameters. Thus. the only difference in the cumputation of the allowance lists was the tecturgue used for derininy wage ectimates. The allowance list quantites were nest compared dsainst usuge data during a subsequent 21 patrol- The data for these patrols were mit used in the initial calculation of usage rates. After cach new patrol the model allow. ance list quantities were updated. Nio updatine boredure was available for the quantices computed using the techancims" estimatres.

Summary data describinf the allowance list computed for tems with previous usaye history are shown in Table 4. As may be seen. Modell was about thee times as expensive as the other wo models. In terms of depth or number of units storked. Mondel I stoched dimest fre times as many units ds the other models. In terms of range or number wi differemt items stocked. beth Whatels I and il A stocked more items than Model 1 B B. Thus, one effect of distinguishins among repair part clases on the basis of nomenclature was to increase the range of repair parts stocked by the model.

Table 4. Range. Depith. and Dellar Vales of Investment: Items With l'revious Lode histury ${ }^{\text {a }}$

Model	Kange of items stocled "	Depth it units stark.al	D.illar value
1	18.6	112.3	2.703 .1
11.	18.9	25.4	960.4
II B	16.0	22.5	854.7

* Averages for 31 patrols. All fizure in !housands.
- Nuniber of ditteren: repair fart stocied.
- Number of untes strened.

The average range or number of different it-me with a shortawe and the average depth or number of units short per parrol are shown in the first and sec, nd colum, respectively. of Table 5 . It should be remarked that the latter measure is not withut difficulty of interpetation due w the problem of mix of different units of measure among items. e.g., some items are measured in feet while oflors are in units of "each." For the sake of completeness. however. this measure is included ds an alternative measure of performance.

In Table \bar{E}, shathee count ara provided etparately for items not stocked and for items stocked.

 $(225.0 \div 23.1)$ f.r $14 . .1 \cdot 111.1$.

[^13]

If.tus		
	Ranser	Diphe
Not stuchert: Model 1 Merdel II 1 Modellis:	$\begin{array}{ll} 2.5 & (2.2) \\ 3.0 & (2.81 \\ 6.7 & (1.0) \end{array}$	$\begin{array}{rr} 6.8 & (13.31 \\ 4.8 & 15.11 \\ 12.1 & 18.81 \end{array}$
Stuched: Model 1 Madel II 1 Mudel II B	$\begin{array}{ll} 19.5 & (12.81 \\ 23.1 & 114.31 \\ 21.2 & 113.81 \end{array}$	$\begin{array}{ll} 172.3 & 13329 \\ 225.0 & 1191.31 \\ 219.6 & 195.01 \end{array}$

- Averages fur 21 patrul. Etamiad deastion in parentheses.

e Number of units shast iner sil repisir purte.
A second test similar to the one described abme was performed fir 4.09 items which were treated as new items beine introduced inte the system. It should be noted that none of these items were included in the previous lest. Following the model, in developing usaye rates for this test. unty the prameter β was used. For Model II A. β varied from clas to class: fir Mindet II B, β was invariant for all items. In eacli case. the β value used was the same β value emplosed in the first test. Thus this second test was a mure strineent one in that mot only were invemtory quantities mathed agains unknown future usay (fire 35 petrols), but in extmuny item demand distributions the iaput data were fruma completely diferent se of repair parts.

Summary fieures describing the allowance lists and shortage count fur items which wete treated as new items bing introduced into the stetem are shown in Tables 6 and 7 . resiectively. The format of these tables is the same as for Tabies 4 and 5 .

Table 6. Range, Depth, and Dollar Value of Invertment:
Items With Koy Previous Csage Hitury ${ }^{3}$

Model	$\begin{gathered} \text { Runer on } \\ \text { items she hed? } \end{gathered}$	$\begin{gathered} \text { Drepth ot } \\ \text { unt-st, ned } \end{gathered}$	$\begin{aligned} & \text { D.itar } \\ & \text { value } \end{aligned}$
I	3.9	18.9	4.0 .2
11.	3.7	4.4	231.8
II B	3.2	3.8	143.2

- Nunder af ditafer:t rebider parts - totiard.
- Number .f u:ne-l.an.d.
 most expensise , ,ne The addithal haliar value if :

Table 7. Hems Wilh NoPrevious Lsafe Miotorya

Items	Stortajes: til thern	
	Ranẹe ${ }^{\text {e }}$	Depthe
Not Stwhed:		
Model!	1.0 (1.2)	1.7 (2.1)
Moudel11 1	0.9 (1.4)	1.5 (2.0)
Model II B	0.0 (0.4)	10.1 (10.0)
Stoched:		
Modell	3.6 (3.5)	33.8 (53.6)
Model 11.1	6.1 (4.3)	+8.4 (8.8.8)
Model II B	5.3 (4.0)	4.6 (53.\%)

- Averages for 3.5 parrols. Standard deviation in perpmberes.

cNumber of units short oree dill repair parts.
One should note that the diference in perimmance between Models I and II I was small. Model I had 3 to 4 fewer items with a shortape per ;atroi: given a shortase, the number of uate short per item short was at most one les for Mondell. On the other hand, the difference in investment cust be tween the two models was substantial. Modell was approximately 2 to 3 times as expensive as Model II A. The diflerence i: perfontance between Models II A and II B. was abuat the same as that between Models 1 and $I 1$ A. In terms of investment cost, however. Mudei in B was somewhat less expensive than Modelil i.

The finding of smail differences in performance between mondels is reinfored by an examiation of shortage counts for thoe repair parts which were highty esemial.* Sheriate count tor the char of items are found in Table 8. As may be seen. for these item- with the exception of the deph shortage measure for sucked items with no previous usaee history, all mubls performed ainut the same.

Table 8. Shortages for Hiphly Esential Items

[^14]

 to Model il B where all items were lumped into a single chess.

4. SLMMARI

In this paper a model is presented which foetese directly on the dancult problem of predicting demands for items with extremeiy low unate rates, which form the ! uh of repair ports in mitary systems. In the mudet, repair patt demands are assumed to be Prionn betributed while the means
 for items that have thown shme monement for the purpose of estmatine beape rates for these items which have shown no monement.

At the outeet. repair parts were partitioned intu different clases. An asersmemt of oodnes-offit
 demands was inteed nepatise ininmal diotributed as pertulated by the mond. Giren the vaparies of the data. e.g., disproportionately large numbers of even demand and larye withere dae probably to mi-punched duta and twekpuine of materiak, her mond fit the duta yuite wefi. Athenth the parti-

 inventory conteat suyest that this ind ed was the case.

 well under both contexts. when compared with the current perce fure bin extimatine uase rate. Mean shortage counts for the model were slichily hidher over all iteins and about equai for hishto eseemal items as ment thertase count for the current procedure. On the oher hand difierences in con were marked with the current procedure costing two to three times as much as the aropord model. As indicated by this study, the notion of pooting uaze data. and from such data carapmiatiny usay rates for instailed items with zero usage of for tems being newiy introduced into a system, is a useful une.

ACK YOWIEDGMETT

The authors wish to thank Witliam Hise and Talbot Wall. Jr., for their promamming asintance.

REFEMETCE:

 tary Inventory Systems." Nav. Res. L.oé. Quart. 16, 30:-308 (1969).

1. NF^{-}
!
an:
ince....
anc :... .
any !
We :
2. \because
S_{1}
no:-:
uj.

Lij.
${ }^{i j}$.
т.

$$
C_{;}^{\prime}
$$

SUPPLY SUPPORT - PART 1

The Allowance Parts List

By Mr. R. G. Hakemian

Neval Sca Systoms Commarie

(Editor's Note: The fo: owing 4 aricles on Supoly Support crisine!ly appeared in the "OivSHiPs TECH. NICAL ivais" and are reprinta with the kine permission of the Editor.)

In the midét: of a Fiest operation, a simpboard maintenance technician has quisily and accurately diagnosed a problem. He knows positiveiy which part of on inopera:ive piece ci eguipmo at is causing the probuem. He nas every :eavon to teel satisticd. "Rifht?" E:m
 recessarit,'" Oi ${ }^{\prime \prime}$ the irustrations he can encounte: on the jo'. Frciatly no one situation is as eemoraliz. ing as knowing which rar: to :eplace but not being aje

There ate z::\% numizer of vidi seasans for such an unharey ending. Gniortunateiy. inere are aiso a gea: puthber \because anient acasons the: mish: nave caused it. We feel it is :-reortant that Flect iectracians caderstard how suppiy suppor: for their equinment is de. veloped, wha: ieche:ical aspects are coridered and What financiai and perso:nei zons:raints are imposed on the process. . iost inportantiy, eve want the tech. nician to krow how he, as an indivicial. can help close the insitabit locpiotes. We a'sc :rant inm to know that some thires are be:ond its. or in some cases the diave's abilitu to crritroi. li you feel the same naty, read on. Even if you don't. we'd iike you th.)

In June 1972. the Nursitips Tecinital Neru's fow the Ni:Seu iu:rraij con:ained a ieatire articiz devoted to the Coo: Zinated Shethood Aiowaree L.t COSAL and its dix: Eforce, the Fice: Legisti Suport Improvemert i:0.am .FESIP, That intiormative articie approptintei: -cos:eved ihe COSAl prozess irom a Supriy Deaz:iner: po:n: o: vew. The artel: cone:n-
 (Man:

 As= ev:

doctrine and business decis: n ns, combined in the cor: putation process everiu, t!: Extermine : : : mix of :epair parts allowed onbcarc ship.

Beginning with this artizit. we will tot to furthe: your understandine of the :echrical sece ci ailowan: and suppiy suptort. We wil corcentrat: en the in:portance of the tezinical a.ed natirterance deasic:that laredy drie the oubsi-d syepiy :uepor: proce: Subsequent artisles will aċess configutation, the CCSAL itseli, and allowan:e change re:gests. A!though many of the me:- is are empeived Navuise the articie wil! specifica:!: 三daress sures:t methce; and procedures for ivAVSEA equipme:: and core:nents exclusive of nuclea: z :opuision a . d FEM ma:e rial.

The Allo:vance $F=:$ ts List (AP:! .. Your Mzin:

 lished: howerer. on! these APLs ior Ezumment $6:-$ tained in a particular shas's contzaratian :ecore w.... be included in that ship's COSAL. Ti: mperta: : of an accurate contigurati:a ille cosernes sezara: attention and will te discozsed :- anctier montia.

The APL is of partivin interest : : : : :echation.
 numbers; is is us:..!ly the saly document caizoard $:-:=$
 office havine :echnical ec -izane of tine eculome-: or component. That po: $=\mathrm{y}$ is implemented shous-
 a component plan is disfiged in the corn : $:$:es. -

Fqure 1

The Technical Decis:on Process

Let's look for a moment at who makes the technical decisions and how they become eccimeal coces. Later on, we ll discuss the codes indivijuaty.

The Chief of Naval Materiai resuies iardware susrems commands 'for example. NAVSEA ior most sinipboard components; to ensure that tecrinical and maintenance decisions, necessary for the developmer: of supply support, are made. He expects the APL to accurately reflec: the mainterance policy for the syseems command or cffice having recinical responsiditity for 2 component. He therefore holds tine systems commands responsible for the rechnical inientity of allowance lists. Examples of the technical decisions recuuired for a component and each maintenance significan: par: are:

- Should the entire component be supported by the Nary Suffly System?
- Should an item be stocked by the Navy Supply System?
- Should repair te limited to replacement of the whole component or replacement of deiective items within the component or should it be repaired at a!l?
- What type ships will be authorized to remove and replare an item? Repair an item? Dispose of it?
- Will repair be accomplisned by a tender or depot or, perhaps, a contractor?
- What is the minimum replacement unit (i.e., if one fails how many should be repiaced)?
- What is the essentiality of an item to the function of the component?

O Is there an overriding mission. safety or planned maintenance requirement to carry a spare part onboard?

- If it is a new item and 3-M usage data is not avaiiable for simiar items operating uncer similar circumstanes, what is the expected tailare rate?

Decisions are made and tesinaicai codes are assigned, for the most part, in one of thiee ways:

- As a result of a formal inainterance Engineering Analysis (MEA; which is no:mativ periormed by the equipment manuiaciurer and aforoved by the Novy. It is appropriate to mention :ha: a newer tesinnique. entitled the Losistic Suppor: Anaivsis LSA; serves the same end and will eventially become the dominant engineering-analysis tool used by the Navy to develop logistic support.

An AEA is expensive and therefore generally restricted to complex shiptoard sustem acquititions isuch as, sonar systems. large propuizion units, etc.,.

- During a provisioning techrizai cocumentation revew conference. by Nary mainicnance encincers. Ensineering responsibility for NAVSEA equipment is assiened
 SEC). This iunction is usuatio feriormed oy tite Nab.

SEC Mechamissuas Division. This meshod is ustat! employed for eicc::oni= equipment and complex Hull. Mechanical and Electrical HME: ectipment.

- By the Lead AL' (LAPL) me:!od. Lade: this method, a NAVSECN:CCHDIV engineer makes the te nical and mair eenance decisions for a catezory ot con. ponents ie.g. pumps. vaives. drintiat ícuntains. on a one-time basis. He tinen documents the eechnizal cos:on the LAPL. Fo: example. all beatines in a compenent, let's say a moior, would be assigned one set of codes, all brushe; another ser. and the armature yet another set. The LAPL then becomes a biueprint fo: preparing an actual ALL for a speciinc make and mos: motor. The LAPL method is employed for mos: HM\&E equipment. The LAPL is also used as a guid: for shipbuilders to prepare provisioning tecinnicai doc:mentation and determine repair par: procurement requirements.

The most effective technical-decision method is the MEA. As noted, it is also the must expensive. The next most effective way, and somewhat less expensive. is the provisioning conierence me:hod. but when one considers that there are compiex shipooard equenmer: items that contain over 70.000 mai::enance symificar:: parts, it becomes ancarent that a poirs of diminishins returns is reached if the complete decision frocess is applied to every resistor, filter, gasket. ese. As a resi.: preliminary technicai decisions are generated mechanizand stand unless specilianilly changed by the enginee:

THE SOURCE CODE

Figure 2

The most efficient mathod in terms of decisious :- . dered per engineecing manhour is the "APL metion The princinal dis, wantase is the iaci of at: atomat:-revicu- during specitic echnical cobins assamanents a... the possibility thas a "state of the ati" aivone w...

Considered collectively, tiese technical cudes now reflect the Navy's maintenance plan for the equipment or component supporsed by the \dot{A} ? L. When the ischnical code assignments are enmplete, and other data elements reflectins characteristics and supply decisions have been entered in the Ships Parts Control Center (SPCC computer records; an APL can be produced.

APL Display

Assuming your interest hasn't been completeiv dampened by the Headquarters-based "technical decision process" discussion. well move on to the portion that directly impacts the Fleet. the rechnical codes.

The source code might reflect tinc decision :o stock an item in the Supply System. It might also indicate another means of acquiring the item. Quise simply, if the first position of the 2 position codes besins with a "P," it will be stocked for Navy support and will be identified with a National Stock Number (NSN). If any other code is assizned to the first position. the item will not be stoiked. initially at least. \because : . . .er decision may be made for various reasons; i.e., the item is not expected to fail or it is more economisal to manufacture in the shipioard machine shof.

The second posi:ion is not of prime concern aboard ship. It primarily guides inventory manazement decisions. If, for exampie. during the echnicai review of $2 n$ item it is determined that listle demand is expected because oniy a catastrophic failure of an item would require its seplacement. a decision may be reached to procure and maintain one in the supply system due to the high criticslity of the item.

Examples of common source codes are:
PA - ltem procured and stocked for anticipated or known usage.
PB - Item procured and stocked for insurance purposes, because essentiality diciates that 2 minimum quantity be avaiiable in the supply system.
XA - Item is not procured or crocked because requirements for the item will require the replacement of the next higher assemblv.
MO - Item to be manufactured or fabricated 2t the organizational level
The Maintenance codes reflect decisions such as what rype ships are authorized to remove or replace a component or part and who it anvone is authorized to repair it. Specifically, the tirst position identifies the lowest mainternance level authorized to :emove and replace the item. If orzanizational, i.e.. shipboard erpisesment is indicated. the ters ecsition further indicates tis !owesi shoúurd mantenance

 the maintenance codes
 Figure 3

capability level by ship type categories. Fizure 4 contains brealdown of the common maintenance capability level coding.

The second position of the maintenance code answers the question "who is authorized to repair an item." It identifies "who" by cisplaying the code oi the lowest maintenance capability level authorizec to do complete repair of the item regardiess of what may go wrong with it.

Let's look at an example. An ET, EM. FT. ctc.. maintains equipment containing printed circuit boáds. Looking at the APL, we will find information reiative to the circuit board and parts mounted on that boarj. As an example, Figure 5 portrays how the circu: board itself and 4 parts mounted on the board wowid be displayed. It is important to emphasize that the example could be a motor and include ine armatiore, brushes, bearing, erc., used in the motor.

maintenance capability level codes

- organizailonal

```
2. MINESVIEEPER YARD CRAFT. PAIROL GUNBOAT
3. SUBMARITJE
4. AUXILIARY. ANAPHIBIOUS SHIPS IAPA AKA AO EVC
5. MINOR COMgATATANT :EESTROYER FRIGAIE ESCOFT
6. MAJOR COMBATANT 'CRU:SER CARRIER)
```

- intermediate

```
F. TENDER REPAIR SHIP PTC.
M. SHOREBASED IRTERMEDIATE
```

- OEPOR
O. SHIPYARO

- other

2. not repiaceabie at any tevel firist post on:
or not refalpacle at any level isfeono posimon,
Figure 4

14 NEUSLETTER

the maintenance code

Figura 5

Looking at the 2 position maintenance code and referring back to Figure 4 ，we find under the first position that maintenance personnel on a minesweepe： are authorized to remove and replace the circuit board． Being a＂livel 2＂ship，its ET can remove and replace －the transistor and the bracket，but not the capacitor and the connector．The same technician assigned to an auxiliary ship，＂ievel 4．＂is aiso authorized to re－ move and replace the connector．He stid is not authori－ zed to replace the capacitor，as the＂ F ＂code indicates that only a＂tender level＂ship can repiace it．

Under the second position we find that．with the exception of the circuit board iiself．all of the items are coded＂not repairabie．＂i．e．．when the transistor fails，seplace it and throw the bad on：away．How－ ever，the ciscuit board carries an＂F．＂This means that only a Tender or higher（i．e．．a depot）mainte－ nance level is aushorized to periorm complete repais． This is consistent with the first fosition coding in that only the ender or higher couid replace the capacitor，but various ship rypes could efíect some repair．

For drill，apply a listle technica！losic ：o the exam－ ple and sce for yourself how the techritai coding tracked the decisions of the mointenance engineer． The conclusions he reached in making his desicions were：
－The circuit card is simple to remove and replace．
－Troubieshootins by use ci ci：cuis card inter－ change is tatyst at the approp：tatc＂systems sciooci．＂
 integral part of the $t=a: \dot{\text { ．}}$ ．
－The connestor ris：$\vdots=:=$ placed $\alpha \cdots \vdots 2$＝i－xatt

 is mounted with com－ran $=$ a－iware．
 ＂school＂for the mai－：eratite ：ating．
 a hard coating．Replaremer：would resu＝
 nizational－level ：echnicians．
－Level of Repair aratr：indica：es ：ニミair ：

 bracket．
 tenance capatility levei autistized to $c==\dot{=} \mathrm{e}=\mathrm{a}$ irem． The level，found in ti：siry positior $=\therefore=-\bar{\sim}$ usuaily
 which would indicate \therefore ar a $=2 n-r e p a i=a=-$ ： can remove and insta．it，$!:=$ can dis $:=5=0: \vdots$

Therefore，don＇t ass：me $: z u$ can trar＝a rasizic item away just because you are authori－aj ：＝ミeriorm some repair on an asse－abl：．

THE RECOVERiMSILITY CこDE

Figure 5

 Always remember tha：：ne

 codes indicate the leve aurasaed to aze： 0 －$=$ zom－ plete repair or condern－：ar．：：tan．

 specific hell d：sana：：－

Codes listed under the eaptions "YOTES" and "PART MEC" also convey information to the technician. NOTES, or inore correctiy, the allowance note code identifies special suppiy sueport consideration; for example. NOTE CODE "1" :ndicates in Fisure 5 that an item is desimated as an OSI lop:rating space item:). It should be carried in the same :elative location as the component instead of in the storeroom. A compiere breaidown of allowance note codes is contained in the COSAL introduction.
"PART MEC," short for "military essentiality code, part to component." indicates, as the name would imply, the importance of an item to the component. On an APL, it specificali: identifies whether a specific item is critical to the operation of the equipment or component supported by the APL. While seeminaly insignificant, the code controls entry to the C- . L insurance item computation. If an item is coded " 3 " (i.e., non-essential; it will not be authorized as an onboard spare unless prior usage indicates that the ship will require at least one each quarier. The importance of MEC will be covered fully in a later article.

Three other technical codes that are not displaycd on an APL play important roics in computing oncoard aliowances. That roie will be discussed in detaid during the chird aricie of this series. Erietly, they are:

- AOR (ainowance override requirement;. This code answers the question. "Is there an overriding reason to carry this item onboard?" The most common reason is that the part is a direci determinant of a primary mission of the ship.
- MRU (minimum :eplacement uni). This code indicates the minimum quantity normaliy replaced during a maintenarce action.
- TRF itechnica! replazement factor). This code is assigned for new items wher. 3 M usage data is not available for similar items operating uncier similar conditions.

Electronics APLs

The Navy Ships Parts Control Center !SPCC! predates APLs with an additional rechnical ieature. Sec. tion B of the APLs is structured in circuit symbel number sequence. The rationaie behird this approach is that elect:cnic techncians are most iamilar with circuit symbol orientution. Most technical trainits, and mose technica! manuals utilize the same oricnation. If a technician knows that "CR 7 " : B bad. his AD will
 conductor. This ieature adib:custy prowest spectar SM\&R coding for each apribation of an tieni. I: abo lis:s all applextions of ramenance smmicant iems. whether or not they are supported in the supply system

HM\&E APis

HM\&E APLs have not ignored the technician eitiee. In the first portion of each APL. SPCC has documente: certain charactetistics data. The data is intenced to provide the sinpboard technicians with pertinent technical information. It is also intended to assist persorinel in positive identification of support requirements for a particular component.

What's on the Drawing Board?

As stated earlier. CHNAVMAT ho!ds NAVSEA responsible for the technical integrity of allowance ins: for our e. ipmeri. It is our objective that those $a \cdots \omega$. ance lists be improved. As a minimum we feel that allowance lists for ail complex equipment should be oriented to the training methods and technical mar:uais or drawings availabic to the technician: for examp:e. if a technician responsible for maintaining baunar: equipnent is taught to diagnose using disassembl: : x ploded views, then his allowance list should be statetured accordingly. Similarly. if an internal sommerications technician must periorm corrective maintenat: using ship's elect-ica! circuit drawings, then his A": should be oriented to the pian. sineet, and itern $i=$ piece number.

Another prinary obiective to improve the techn:a integrity of our APLs is to devcion the capabili: : $:=$ all APLs to itentify maintenance siznificant items. Whether or not the trem is available from the sureit system.

How Can the Fleet Help?

Much earlier we deseribed "the echinical decision: process" used to deveiop Apls. You know that m . of the technical codes are assizned by machin: o: the basis of one-bine decisions. These coues shou. S^{2} be correct in mos: situations. In some howser. may not be correct. In other cases, the otizeral :a $:$ nical decision that drives the techatial cod: wat........ might be wrons we're human too". The sions \therefore ant is, that the Nary cant atiord an encineere: ato...s. of every part in every arrication on evert sian. \because attempt to emphasize the aecas where we curic: : : biggest return.

Therefore, if yo: betiove the rechatal cos: i : a individual tem, of the oreral! mantenance ans: retheced b: ai of the cotes or an An an ar.
 get around it.

 fationale to:

OFFICER IN CHARGE
Naval Ship Engineering Center
Mechanicsburg Division
Mechanicsburg, PA 17055

Trll the NAVSECMELHDIV engineer that you really can replace that bearing and do it rourinely on other components. Tell him that the O-rings in the pump you're supposed to rebuild are not even listed on the APL. Tell him that the power supply assembly inside your switchboard isn't on the APL. but the ringer arsembly is and so is the relay assembly. Tell him that the 500 light buibs inside the indicator lamps on your propulsion control system panel can be replaced individually, bus the APL says to seplace the
 sure to give him a point of reference; either the APL, if addressing the technical codes, or the technical manual if parts do not appear on the APL.

Remember, you will do litsle to help yourself by making a general statement that supply support for the AN/UYA-17 is bad. If the problem is a poor APL, then we can best solve the problem by having the technical side of the Fleet communicate directly with the technical side of suppiy support.

The moral of this story is: We look at you (the shipboard technician) as a member of the technical supply support team.."the vital feedback link."

In the next atticle we'll look at configuration, the baseline for supply support. One of the objectives of that article will be to let you know why in some instances an APL does not exist and may never exist.

SUPPLY SUPPORT - PART 2

The Configuration Baseline

By Mr. R. G. Hakemian Material Management Ditision Naval Sea Systems Command

Part 1 of this series of 4 articles pointed out the importance of the Allowance Parts List (APL) to the shipboard technician. It stiessed the point that the APL is not just a supply document. but is actually an anboard mairienance plan. It described tine technical decision process used in developing APLs as well as the specific coding techniques used to display those decisions on an APL. It also pointed out some of the fallacies inherent in the process. Finally, it told you, the shipboard rechnician. how you can help yourself and your sister ships obtain proper supply support if you spot a proolem with an APL.

Something must happen before the APL for your equipment becomes part of your sinip's Coordinated Shipboard Allowance List :COSAL:. If the best maineenance engineer in the world makes:he APL Technical decisions for an equipment item. it is not going to resuls in yous hating any of the repair parts you need unless that specific APL is in your COSAL. A well documented contiguration dasciine is the bridge from a quality APL to qiaiilty supply surport in your COSAL.

The Configuration File

The key to the COSAL door is the mechanized configuration file at the Ships Parts Control Center (SPCC) in Mechanicsburg. Each ship has its individual record in that file. Now a computet, especially one located in the middle of Pennsylvania. isn't going to know what equipment is instalied onboard a ship uniess someone - On the waterfront tells it. Reduced to its simplest elements, a configutation baseline answers the questions:

- What is aboard?
- How many of each are there?
- What is the field change status of each?

The configuration must be established and reported well before a ship receives its first COSAL during new conseruction and thar baseline must be maintained as changes occur during overhauls and shipyard availabilities. Ler's examine the methods used for NAVSEA less nuclear propulsionj equipment.

New Construction

While the ship is being desizned. cechnical docu. mentation flows from the shipbuilder to the Naval

Supervisor of the shipbuilding effort．The configura－ tion is established from that documentation in the Collowing manner：

W＇ithin the allowance division of the Supervisor＇s office，a technical speci．alise reviews the documentation and identifies specific componencs and equipmenc．He then prepares a mechanised transmittal that contains the data elements necessary to load the configuration file．The transmitesl tiorins are then sent to SPCC and the file is loaded．

Once the file is loaded，a COSAL may be prepared． The exact contiguration that the COSAL is based upon is reflected in its index．The COSAL index is printed in two sequences：Section A lists all components in the configuration file in＂nomenclature＂sequence while Section B lists the same components in＂service application＂sequence．Except as noted later in this article，if it isn＇t listed in the index，then you will not find repair parts for it onboard．

The Allowance Support Codes

The COSAL index will tell you whether an APL exists for a componenc．and in some cases whether one will ever exist．The key to the latter bit of infor－ mation is the last 2 positions of the＂Aliowance Sup－ port Codes．＂The must common codes，found in the Sast 2 positions．are＂AA．＂Simply stated．the codes respectively mean：
$A=$ Full onboard support is to be provided．
A $=$ An APL is included in Part 11 and support is included in the SNSL（Stock Number Sequence List），Part 11 of the COSAL．
While the＂A．t＂combination is the most common of those appearing in the last 2 positions．it is impor－ tant always to check thuse codes when using the COSAL．Almost any combiation．other then＂AA＂ carries a special messasie to the technician and store－ keeper．A complete breakdown of the codes is con－ tained in the HMaE（Hull．Mechanical and Electrical） COSAL Introduction and in ESO INST ti41．17E．an Allowance Program Guide provided with each COSAL． To illustrate，consider the following exampies that might appear in the COSAL index：

Nomenclarure

CCVJ－MK7 radar set CGG－123－FEN． 1100 N.
handie talkie transocives
LS－474／U，loudupesher

Allowance Supt Code

JEP AU
EEP FD
JEP EE

In the first example，the message contained in codes
＂AU＂is that the MK－7 rajur set is fully s－apte：ė in the COSAL but，due to \vdots ：vatisble coni available，an APL is not z：ovided for the ance：： However，an APL is provisisd for each ce－．．ec：es：oi the radar set．If you are ：rying to identiza＝－mit． ting tube，the transmitter $\because:=\mathrm{it}$ lis：ing in ： $\mathrm{i}=\mathrm{i}=\dot{\mathrm{E}} \mathrm{z}$ zill identify the APL for that init．

The message relative to ：he＂walkie taï：e＂：＂－ite
 mand has determined tha：onboaed suppeT－w－＝＝： be provided，an APL does not exist，and $\dot{\exists}$ e：e ita no plans to make one．If it．：unit iails，pars ma：Se ordered from the supply sistem by man：ajias：－بs； reference number or the：may be procure $=$ ： 0 en－：

There can be many reaions for＂FD＂rizece Ee：er－ minations．The most common is that it is io：：：enamic－ ally feasible to provide fi：\because Navy Supply $\varsigma_{i s: e}$ ：
 Fleet，or availabiiity of fazs on the commercia narket．

In the last example．＂EE＂te＂！s you tha：the ז̇oie unit is viewed as expenciȧie．You will $r:=: \mathrm{f}:=20$ APL and onboard sepport is not provides．

Allowance Appendix Pages

That 2 ship＇s COSAL is never comple：e is 2 ins of life．Last minute chançes du：ire new cc－is placed components durine repair and ove：aul araizibitics． and just plain old errors an consibute to $\dot{\mathrm{E}} \mathrm{a}$ ：$\dot{\mathrm{E}} \mathrm{a}=$ ．To maintain support between COSALS，the $\ddot{\square}$ ow－تニ of the Naval Shipyard c：Naval Superviss：＇s $0 \approx=$ gre－ pares allowance appendix үages ior comeczee：ذianged during availabilities．These pages augme：．：：ie こここAL． Either the pages are comizined inro a pacisaze $\dot{\vdots}$ ： judes a COSAL－type incisx or tie Ship＇s COEㄷ：index itself is annotated to retis er the added $c==\mathrm{pc}=\mathrm{s}$ ：es．Con－ currently，SPCC updates iss contizuration $\ddot{\ddot{\circ}} \mathrm{e}=$ ie ready for the next COSAL．

Ship＇s Responsibility

The ship is ．esponsible for reforting $a=\%$ dicreancies found in the COSiL incex．Wisether the Eiscre：a：cy is caused by an existing eroor or because $=:$ a

 HM\＆E（hull，mecinanica＇and e＇e：zical）esc： changes and correcrions are repsered to s：ce．Es． tailed instructions are cor：ained in the CESAL $==0$

 the Type Commander．i－s：－ac：isns are $E:=:=0$

 sem）Progtam Manual，Vis． 4.

Validation

The quality-assurance aspeet of the configuration b.aseline sys:em is validation. Validation is the process of saking a physical inventory of equipment onboard oud verifying that the coniguration record represents all accurate baseline of the equipment.
lhuring new construction. the Naval Supervisor of shipbuildir.g is responsibie for validating all oranance and electronic equipment, as well as all major machine. ry components.

After new construction, a ship normally receives a new COSAL incident to an overhatl. Prior to that wethaul, SECAS sends trained specialists onboard to validate the shipboard baseiine. Initially, SECAS valida:ed only the electronic equipment onboard. Currently, however, the SECAS validation is being expanded to include Hime:.
in the meantime, the validation of HMAE reers the ship. Under present procedures. SPCC will provide Hilde validation aids to the siip about 10 months prior to the overhaul. The validation aids are based upon the base:ine information in the SPCC coníguracion file. The quality of the new COSAL will be directly froportional to the quality of the validation effort and the accuracy of the updated information fed back on the validation aids.

During Overhaul

During an overhaul, a rechnician may find himself assigned to the Supply Operations Assistance Program "T Division." On the surface you may feel that there are more important things to be done than looking at parts and sheffing EAM cards. However, tine supply suppors of your ship can be enhanced considerably by your performance. Your rechrical expertise is needed.

The conitauration reflected by your new COSAL will be aite:ed whenever a component is replaced with a different component resulting from overiaul open-and-inspeet refair work. When the T. Division receives an ailowance appendix package covering these changes. you should examine closely those documeried in your area of shipboard responsibility. If you suspect any errors or voids in the contigura. tion changes. you ean help yourself by getting onboard and vaidating the component in question. If an error exises, call it to the attention of the allowance preparation activity. You uiil not only receive cerrect s:ffort fer fost overinul deployments, jut will ensure that the next COSAL retleces the correct components.

What's On The Drawing Board?

As mentioned above, pre-overhaul validations have already been taken over by trained SECAS electronic equipment specialists. Soon, already busy crews will be relieved of much of this burdensome chore as SECAS expands into the machinery spaces.

On the new construction front, the FOMIS (Fitting Out Managemen: Information S;stem) will provide the ship's crew with a wealth of information about their new ship. Now in its pilot application, FOMIS is a NAVSEA system for monitoring and displaying the logistic support progress and status of all shipboard equipment at the component level.

The FOMIS concept is based on establishing an original mechanized record for each component which will ultimately constitute the ship's configuration. The record is initiated from design, material requirement. and purchase documents. It is updated with more specific information as it becomes available during the construction process.

Specifically, FOMIS is designed to improve the accuracy of the ship COSAL by providing early and accurate configuration definition, improcing allowance support available a: the enc' of consiruetion. providing a centralized bank of data for reporting status iniorma. tion to activities respensible for managirg and supporting the construction and fitting-out effort, and providing an accurate and compiete equipment configuration baseline for each ship as deivered. The contigusation data is used to load the Weapon System Fiie at SPCC which, in turn, controls the configuration input to the COSAL process. FOMIS output products oi interest to shiptoard personnel include:

- Technical manual listings in equipment nomenclature and publication number sequences.
- APL to EIC (Equipment Identification Code) relationships.
- Summary listing of Allowance Appendix Pages crossed fo APL numbers.
- Listing of noa-APL worthy items, to supplement the COSAL Index.
- Listings of Technical Mantal shortages in two sequences.

So far we've discussed the inpurs in our shipboard supply support story. Hopeciuliy. you've been able to understand the role of the rechnical command and the shipboard technician in the process. In Part IIt, we'll look at the COSAL computation itself and try to help you understand why that bearing you need so desperately today wasn't allowed in your storeroom when your allo:rance was estabiished. We:ll aiso teil you what you can do about it if it was computed on "bum dopc."

SUPPLY SUPPORT - PART 3

The Coordinated Shipboard Allowance List Computation

By Mr. R. G. Hakemian Matcrial l!muing and Programming Division Nintal Sea Systems Command

Pa:t I of chis series of 4 articles described a parts ovais: wity st:uation faced all too frequently by ship. bosed rasintenance technicians. In that situation, a preit!eal had been quickly and accurately diagnosed. kut :he iaited pate was not available from the Supply $1 x_{i} a:$ ment. Chances are, it was not even allowed as an n-board repair part by the ship's COSAL.

7he artict: explained that there could be a number of \quad ai: 3 reasons why the part was not allowed and mencisecs that there were also quire a few not-so-valid ersa;na that could have been responsible. In describing Le secis-isal decision process, used in the development of en Aill :Aliowance Parts Listi, Part 1 also pointed ou: son:e of the fallacics in the process. how they might Lave caused the "not allowed" situation, and what the thithaed sechnician could do if he suspected that an trioteret treinnical decision was at fault.

Fis: It s::essed the importance of a well documented
 -..e cisal.
A. -is:ra:ed in Figure 7, both Part 1 and Part II A!:otheti-pats to the allowance determination process. Is:..t, of.e. we'll look a: the COSAL computation wn. :i.:. alss, look at some of the basic constraints its: s:t: : ste cumputation so that you can understand - .. at :t: valid reasons why that part you need so A. Mo: arir may not have been included in your repair ;... 6 ance.
is ras eppoly Officer was allowed a erystal ball. 1.. ...:. . . . he would look ahead and make sure shat 6. $\because \dot{2}$ in invide every part that was going to be *o: ! : $\cdot:$ your next deployment. We would be \cdots....... provide each one. and wed proizaily ef. .i.e the cro wowid like to jure us enouzh -. !nde every part that you might need . $\quad, ., \cdot, \cdot$, nquipment. The two probicms with

doesn't have a crystal ball. Second. analysis of 3 m data shows that the demand for repair parts aboard ships is highly random and, therefore. the Navy uü never have enough r.oney to provide all ot sie parts that are destined to iail someday. In face. :ie Niary has been criticized ior spending too much =oney in this atea.

Figure 7

To make the shipboard aliowance money go around or, more properly staited. to best use the resources available to the Navy for this purpose. CNO has specified specific logistic supedrt doctrines governing onboard repair parts. Althousi we might view this doctrinc as a constraint, the ruies a:e actually a third input to the COSAL process. In fact, they establish the criteria that governs the make-up of the Ships Parts Control Cente: COSAL math model.

An overriding rule is that the ship must have the capability to install a par: before it can be considered as a candidate for iss a:lowance. As you might remember from Part I. in cetermining this capzbility, the availability of trained personnel. tools, and mainsenance data onboard the ship was a prime consideration. In addition, the capability to install a particular part may have been denied a ship because analysis had shown that it was miore economical to replace the whole component when failure occurred.

Before we pursue the more specific rules, let's examine the objectives behind them. While the basic CNO objective may be to make the repair part dollars sitritch as far as possibile, the stated objectives are chose appearing in Figure 8.

Gross Effectiveness .. 65\%

The message here is that the technical decision process, constrained by rules we ll look at in a minute. will result in a COSAL allowance that will meet at least 65\% of all repair part demands placed upon the Supply Department

COSAL Effectiveness .. 85\%

By the objective. the depth (i.e.. quantity of each item) allowed by the COSAL will result in issues by the Supply Department 85\%., of the time that those items are demanded. Obviousiy. the response of the Supply System, when you requisition replacements for expended a:lowance items, plays a big role in whether you can meet either of these otjectives during a deployment.

Special Rules

The objectives clearly establish that the CNO recog. nizes that he cannot provice every item that might is:l. While leaving the technical decision process up to :he Material Hardware Commands ie.g.. NAVSEA:, specitis rules are stated for various eategories of items.

Demand-Based Items

We noted euflier that dermand for repair parts is :ne: ity randinll. Thercfore, o: the thousands oi repair

OB.JECTIJES CNO RULES FDR SHIPBOARD ALLC:'JAi!CES

```
- OBJECTIVES
    GROSS EFFECTIVENESS - 65%
        COSAL EFFECTIVENESS.85,
        DEMAND BASED ITEM PROTECTION - 90 E.
- repair part categcries
        DEMIAND EASED . ; IN 9O DAYS
        INSURANCE - I IN SYRS
        allowance overrices - minimal
        SIM HEAVY DEMIAND EXPERIENCE
- must be within ShipS maintenance capabllity
```


Figure 8

parts which a given ship has the capability to install. only a limited number will be fairly regulanly used. CNO has caregorized those parts as "demand based" items if they are used aboard ship at least once during a 90-day period.

The rule for such items states that ailowance lists must provide a $90^{\circ}, \mathrm{p}$ probability of filling the toral demands for these items over an entire operating period or. conversely, that there should be on!y a 10% risk of the item being out of stock. CNO aiso requires that these cumputations be based on combat consump. tion rates, wherever such rates ean be ascertained.

Insurance Items

All installable repair parts which are predicted to be used in maintenance less often than once in 90 days are categorized as insurance items. The rules state that only those insurance items with a 25 or greater expectation of usage aboard a ship in a one-year period will be stocked. To state this another way, only those insurance items which have an expected usaze of at least one in 4 yeazs will be stocked. Until about a year ago, this criteria was .15 per annum or one in $6-2 / 3$ years. As the Navy was allowed tewer repair parts duars, the insurance criteria was tightened.

As a further restriction, these insurance items may be considered only as ailowance candidates if they are essential to the support of equipment that is considerec vital to the operation and mission of the ship.

Allowance Overrides

The rules also allow a few items not falling in the above categorics to be forced onboard by aiiowance ovérrides when seceiai cirsemstances exist. Tinese are restricted to items:
..." il the primary mis-
.ntrolled by the Chief -. thiesholds have been ...i.u.nate share of re.ued in support of a - isw highly critical 1.a werride method.

- Vipryyment)

. . .NO to carry items in . . :hase items a:e experi. resram. known as the :cn: (SIM) program, has .. :i ycars. In effect the - dijusment of COSALs .-- Tits. This usage is consvels when subsequent
. zat the CivO objectives, - 2 attained in most in.
$\because=$ siown that it would be

- \quad - sesives within reasonable
..:nerized exceptions to the
-igit for onboard support
-.- Sis total FBNi submasine
\cdots. $=$ he FBM onboard support
\cdots. \quad - the investment under
- iave just discussed, but
\cdots : soove 90% has been
". - 9rines.
\cdots "..e" 4ix." or the
". ? \%,0,000.00) Question
- $:$ payoff, the most "bang
.. way you may want to
- best mix of pares possi-
\because :. It is in this fertile area -"ovement lies. The area -. continues into the tech'rit I and the contigura:ion - Vart Il. and culminates -r.lf. To appreciate the - look at how the Navai thes the technical decisions. - 'll siderations, and within ..sthematical lozic and -rmine finai onooasá ir in your COSAL. $\cdot \cdots$, the SPCC component

COSAL CO:PPUTATICN LOG:ニ

Figure 9
record for the ship is ex:racted. In $\mathrm{P}_{2}=\mathrm{Il}$ we $\dot{\text { E }}$ cussed the importance $\mathrm{c}:$ this record, $\mathrm{n}:=\mathrm{E}=\mathrm{g}$: if your equipment has no: been recordec $=$ tie $=$:ninguration file, then you werit firsi suppc: : ic: :: i= your
 each component is also extrazied.

Next, the compone:::-to-par: secord is en:ere: and all parts recorded as b:i-g par of eace: $=\Omega=: \because=\leq=\mathrm{r}$ in
 data and technical and ...ain:e:ance ceeies $i=:=:=: 2$ are
 technical decision process tha: groduce s sasi : Tie.
 Reference to she fisu:es in ciat article $z \dddot{=} \dot{=}-$ you

 candidates is selected. Only ̇ose ite=s a: $=:=\mathrm{Fed}$ to be replaced oriboard $3:=$ sclered as car: \ddagger Ei:en.
 qualifier piogram. Tasine ti: total

INSURANCE ITEM LOGIC

Figure 10
nent popclation per hull times the part population per component; and multiplying this quantity by the best replaceme:t factor (BRF), it is determined whether the gesultans ọantity is equal to, less than, or greater than one in 90 days.

If equal to or greater than one in 90 days, the item is classitied as a demand-based item. An allowed quancity is computed for each demand-based item which provides a 50.5 protection level for a 90 -day period as required by CNO. If the computed quantity is less than either the minimum replacement unit (MRU) or technical override :equisement (TOR), should these be applicabie, the higi:est quantity among these elements is selected as the authc:ized allowance.

If less :han one in 90 days, the candidate is passed to the i:sirance item program.

Figter 10 depiets the logic utilized for insurance items. Firse the :.iditary essentiality of the components to which the item appiies is screened to determine if any oi the comporsen's are vital to the mission oi the ship. This code ma: be found in your COSAL index. If the components $\mathrm{a}:=$ coded non-vital. the items are rejected unless an allowar:ce overtide has been assigned. Rememieer the strict rit's governing assignment of these overrides.

If this test is passed, a second screening is performed to deteraine whether the part itself is vital or non-rital to che :omponent. Non-vital items are again rejacted unless a:- oversuse exists.

The fral, and mos: citical. screening is periormed on

of usage onbeard meets or excceds the CNO criteria for insurance items. A part qualifies if its expected usage. lased on the BRF recorded against the FS.N (Federal Stock Number) in SPCC's fiies, exceeds 25 per anriom. If it does not meet chis criteria it is rejected unless the override exists.

BRF (Best Replacement Factor)

As you can readily see, usage rates play a citical role in determining the repair part allowance for your ship. What few sechnicians realize is that for all practical purposes they determine the replacement factor for mos: items. To understand this, let's look closer at the BRF.

The BRF is a usage tate which represents the best estimate of expected anrual usage of an item for each installation of that item. When an item first enters the supply system, it is assigned a rate based on an engineering estimate of usage. This rate becomes the BRF until the item has been in the system long enough to establish a demana pattern. The demand development period for this purpose is considered to be one year. Once the item has become established, live demand data are used in conjunction with :he rechnical estimate to compute the ERF. The BRF is then computed as a weighted average which takes into consideration recent demana data, clder demand data. and the initial technical astimate of item usaze. Recent demand data ate used to make the rate responsive to changes in the demand pattern of the iten,

The use of older demand data and the initial sechnical estimate stabilizes the rase and makes it less sensitive to short term variations in demand. Because they are used to compute COSAL fand load list quantities! it is important that the demand data used in the computation of BRFs retlect, as closeiy as possible, actual - ship usage. Several demand data coilection systems are utilized. Although the data which is finally selected for use may not be precise, it is considered to be the best available; hence the name best :eplacement iactor.

Three data sources are presently considered as a basis for computing EREs: 3.1 (Navy Maintenance and Material Management; usase data; SOAP (Supply Operations Assistance Prcgam) usaze data; and ICP Transaction Item Reporting System demand data. The 3M usage data is preferred and is used unicss the data base for an item is inswf: cient.

The BRFs of all shipboard installed repair parts are usually reviewed annuaily. An item's current ERE will not be updated if the item has been in the suppiy s\%stem less than one year, or the item has less than 5 units installed in the active Fleet, or the item is ord. nance protected and the proposte ERF is lower than the existing BKFF, or the item's BRF has experienced a large rolative incerase and a reviowing technician
....... 0 to accept or change it or there is insuffi.. 1 .. perform BRF computations.
\because. il watem can ottain accurate data only throughnitted from the ships themselves sia theunanders. Part usage is recorded as a resultl-uluands on the supply eepartment and . \because " "waye only" reporting of maintenance reia. whtained by the rechnicians from other-than--.nuices.
4. Viw that all rechnicians somehow acquire their .- \because.oate stock." For example. few ET shops ared complete without a selection of common ... : . : : :ubes, semi-conductors, connectors. cte.. ir a 2... . .sinet. W'e also know that it is nor reasonable 心: you to live with a due-in documert for a w... .ve. when the local Norfolk hardware stores ses arivuate replacements.
: S: chis is the "zeal world" is a fact of life. It is .. a : $: 1$ fact unless vou use the parts and don't - *: :2em. Every time this occurs, the BRFs for six .rais are diluted. Unfortunately, these are items i. As soviously in demand. There are many areas \because : \because : Spl -support process that are prone to error. $\because-\infty=$. this is one place that you can help. By . .- $=$ =ing and following the relatively simple pro$\therefore 3$ =i OPNAVINST 4790.4, regarding the "Prep-c.-: = ii Internal Supal! Documents." you'll have -iciaction of knowing thas you'se improving the C.a:- si your next COSAL and, for that matter, $\therefore=$ ESAL of your sister ships.

Supply Support Improvements Thiough Re-Provisioning

Fexeionally, COSAL and Supply System support - , -::tem is so poor that the Flec: cannot wait

- $:=:$-adates, selected item management. and sys-
-" :-and analysis to gradually improve support.
\because, \quad stayed with me the last 2 issues. and if
\because. ieliever in "xiurphy's Law" (i.e., if some-
- $\overbrace{\text { an }}$ possibly go wrong. it will!). then you can
-. "-.: pick as to what event misht have caused
.- :-. usply support problem. Maybe the wrong
- siri, was used, or maybe the computer set all
- $2 . i_{i}$ to zero for a few seconds. Regardiless of
- you have a friend that jumps in when a
-.. .f such magnitude is identified: that activity
- -oral Ship Engineering Center, Mechanicsburg \therefore
-י.bove supply support to the Flect, NAVSEC. dy has undertaken efforts to improve allow.: identiâcation. minimize COSAL siottajes :... downtime awaiting parts. The venicle - improvements has been a scries of ze-provi--...nferences. These conferences, sponsored by

NAVSEA and hosted by NAVSECMECHDIV. began with a review of support for ACC. FW'C (automatic combusion control-fcedwater control) systems. Next on the list were improvements for the 1200 psi boilers. forced draft blowers-main feed pump. Efforts are now underway to improve shipboard air compressor support.

Under NAVSECMECHDIV's technieal guidance and the dedicated efforts of participants from SPCC, shipyards, NAVSEC and Ficet commands. identification of parts and equipment has been made more simple and direct. This was accomplished by climinating past oversights and diserepancies in APL part identification numbers and by assuring that all parts lisied on a particular APL are referenced to a drawing and piece number which is listed in the appropriate technical manual now held by that ship. Simuitaneousiy, the range of APL insurance items is being expanded. Concurrently, nonmetallic items, such as replacement " O " rings, are being increased to enhance system accounting and availability.

NAVSECMECHDIV has aiso been very active in the various DART Improvement Programs. Inciuded is the 400 Hz generator program and the 1200 psi boiler improvement program. Concerning the latter program, it should be mentioned that NAVSECMECHDIV has conducted highly successful efforts in putting the ACC. FWC and boiler sprayer plates of the Flect boiier APLs in better array than they have been in some time. APL update studies and improvements on T-MKG torpedo countermeasures, ALCO 251 engine supporr, in stabilizers and PG 89/92 have been conducted. Manuals covering temperature measuring thermometers and devices and valve cross-substitutiens have been prepared and provided to the Fleet.

Under the scope and tasking of NAVSEA, these efforts are continuing to the extery that existing manpower permits, while present direct funded Fleet services are maintained.

Having recently combined talents with the former NAVSECGLAKES organization. MECHDIV responsibility is no longer limited to the provisioning engineering aspects of machinery and electrical equipment.

The message is simple and direct. If you have a supply support problem. caused by technical inadequacies in your allowance lists for NAVSEA equipment, tell your story to:

OFFICER IN CHARGE
 Naval Ship Enginecring Center
 Mechanicsburg Dixision Mechanicsburg, PA 17055

The next article will close out this series. It will deal with ti: stbiect of Alowance shange sequests. The scope of that article will be expanced to encompass the wo:ld of equipace and its Apl. counterpart, the AEL (Allowance Equipağe List).

SUPPLY SUPPORT

- PART 4

The Allowance Change Request

By Mr. D. R. Straub
Naval Ship Fi::zinecring Center
Mechan:icsburg Disision

The first article in this series on supply support discussed the Allowance Parts List (APL) and showed how it is pripared and what it says to the shipboard technician. Other articles explained the importance of establishing and maintaining an accurate configuration record of the equipment onboard a ship, and how the actual COSAL repair pate allowances are computed. In this tinal article of the series we will look at the remaining part of the COSAL, the allowance equipase list (AEL), and in addition, see how the shipboard technician can beçin the process of changing the allowance for his sinip or geting that rach-nceded tool or repair part added to the COSAL.

Alowance Equipage Lists

The APL and the COSAL computation described in an earlier article result in onboard aliowances being established for the most-oiten-needed parts to repair equipment installed in the ship's systems. But how do such othe: i:ems as lifesaving and damage-control gear, office and housekecping eguipment. special and general purpose tools and the many other items. not part of instaied systems but stiil needed for daily operation. find their way into the ailowance list and aboard ship? This is the job of the AEL.

An AEL is an ailowance list for one item or one family of items needed to perferm a specific function. For example, an AEL may list ail the oifice equipment allowed for a ship, may show just one item such as a portable submersibic purrip and its accessonies. or may show a ģ:oup of related iterns such as a damage. control leckes outtit. The ma:erial on AELs is com. monly referred to as equipage.

An AEL has 8 columns tor ailowances of individ. ual items. Dife:ent columns of one AEL may apely to many ship types, or quantities for an individual tem m.ay vary to provide dificent allowances in response to some other condition, as we will see late.

It is important to remember several things about the kinds of items shown on AELs. Let's list them and then look closer at each one. AEL material is:

- Usually portable.
- Not part of a ship's installed system.
- Related to a function or purpose.
- Usually not consumable.
- Very often not-stocked material (i.e., not readijy available from the Supply Sjstem!.
Most of the material listed on AELs is portable, although exeeptions can be found, and is usually kepe in an operating space beyond the control of the supply department. For this season, department heads usually take custody of the material and the AEL is a record of the material for which the department head is responsible.

Again, exceptions can be found, but most material listed on AELs is not part of a ship's installed system. although many AEL items are closeiy related to one of the sysiems, such as fircfighting equipment. These items are listed on AELs instead of system APLs be. eause they are ordered separately from the installed equipment, loajed at a different time, and need to be accounted for closely because they can be misplaced or disappcar.

Most AEL material is placed aboard ship because some special f urpose requires it. Certainly all ships have some firefighting or liesaving AEL material. but only those ships with steam propulsion would require a beiler-tube cleaning outfit. We see then that fearures of the ship usually derermine the AEL material to be part of the sinip's allowance.

A large percentage of AEL material is not of a consumable nature and. therefore, is not frequenti! replaced nor are spates usuaily carried. Much of this material is also not cartied in the supply system. For these reasons, the AEL con:ains inturmation cescritin: the non-stocked equifage. The information ususily identifies one or more commercial selirces. or shuws
ohe physical and operating characteristics. needed.
Nuw that we have seen what an AEL looks like and Ancw generally what sort of material is listed on $2 n$ All., the next question seems to be "So how does an All. get into my COSAL?" We saw in Parts I and II that APLs get into the COSAL by provisioning, and by the Supervisor of Shipbuiiding preparing a mechanized in silsmittal to be sent to a computer at SPCC. This is dome for the equipment shown on the snip's plans and drawings. For equipage, the Supervisor has an even more important part in determining what material should be allowed.

Soon after the siart of construction for a new ship. the allowance division of the Superisor Offise begins the process of deciding what equipage will be required. Certain kinds of equipage will almost automatically be needed, such as lifesaving gear. To determine other requirements, the Supervisor needs to know just what the ship will look like when it is completed. He needs to know what sort of shops will be instailed. how many personnel there will be in ship's company, and many other characteristics. These the Supervisor determines from the ship detail specification, manning documents. plans and drawings, and lists of equipment to be installed.

Fsom this information, the Supervisor determines the sorts of equipage and the general types of AELs that fill be required. For example, if the seccification indicates an internal combustion engine shop is to be insealled, the Supervisor knows an AEL containing an outfit of sools for such a shop must be part of the ship's COSAL. As a final check, the COSAL for a sinip similar to the one under construction is used as a guide to make sure no type of equipage is overiooked.

After the Supervisor has identified zenerally the types of equipaze required. a decision is made for each item to determine the quantity to be allowed. For this, the Supervisor must determine the method by which individual item requiremenss are computed. Often individual AELs contain information concerning the computation of allowances.

Let's follow the devclopment of the allowance for an item of equipage to better understand the method used.

Inflatable life preservers are sequired equipage items aboard nearly every ship rype. The AELs for this equipage would, therefore be part of the standard allowance the Supervisor would consider for each ship constructed. The Supervisor would know that AELs in the series numbered 2.33001 would be needed 25 part of a COSAL being prepared for a ship of the DE-1078 class for example.

To determine ti:e e:art number of inllatabis life preerveis sequited. tise iniorniation on a repeal AEL. such as 2.330014004 il!nerated in Figure 11, worij be wed. Examiantion of Fionure 11 reveais that intarable tife
preservers are to be provided in a quantity equal so 105% of the ship's complement. Knowing the numiser in the ship's force, the Supervisor couid compute the final required quantisy. In our example, assume the ship's complement to be 245 . The quantity of inQatable life preservers required would then be 245 Y $1.05=257$.

Having determined that 257 inflatable life preservers are required, the Supervisor would then seiect one or more AELS which, using orre column irom each AEI, would show a quancity of 257 . For the example AELs 2-330014001 column 5, 2-330014002 column 4, and 2-330014004 column 2 would be used to show quantities of 5,42 , and 210 for a rotal of 257. This combination of AELs would then be included in the ship's COSAL, and material from the appropriate coiumn of the AELs ordered for later loacing aboard ship.

Requirements for other ships would be computed similarily, although it may be necessary to allow extra life preservers for embarked forces or other personsei likely to be aboard ship. Similarily, requirements ior many other equipaze items are compured through otiker perhaps more complicated means, but usually the ailowances for equipage are fixed by some characteristic of the ship.

The ACR

Now that we have seen the basic process that first establishes a ship's allowance. let's look at how a ship's force can change its allowance.

We saw in Part lif that the shipboard technician. by reporting to the 3 M system every time 2 repair patt is used, plays the largest part in determining repair farts' BRFs (best replacement faetors). The BRF then is used to compute allowances for repair parts in later ships' COSAL's, increasing them if the BRF indicates greater allowances are needed.

A different procedure is used to correct or upizate the ship's configuration record, to request the adzi:ion or removal of an equipment item. or to reguest a change in equipage allowances. This procedure is the use of an ACR (allowance change request) as shown in Figure 12.

The ACR (NAVSLP Form 1220 available under Cog I stock number 0108-503-9200) is a 2-purpose form. The rop half of the form, blocks 1 and 2 . is used to request the replacement of an equipment t:em or to report the addition or removal of an equipment item if the COSAL is found to be in error.

The lower half of the form. block 3, is used :o request the increase o: jecrease in ailowance of an item of equipage and ian also be used to repues: :he addition of a repar part that the ship's force be...tves should be included in the ailowance.

rves momencmutr en	Tr\|	

Figure 11

Let's first look at use of the form to request addition of an equipment item or :o report an equipmen: item actually onboard and not inciuded in the COSAL. In either case, information abour the equipment is seeded. If the equipment is actually instailed. copy the nameplate data into the blocks on the form, and check the block that says "New C/C." The important thing is to provide as much information about the equipment as possible so it can be identified to an APL, and include the location and system application. Mail the form to

Commanding Officer
Ships Parts Control Center Mechanicsburg, PA 17055
so your COSAL can be updated. The same procedure should be followid usine block 2 to report equipment that has been re:noved or to correct tine COSAL if is shows equipmert that is not actually instailed.

The most common use of the $A C R$ is to request some change in allowance for one or more items of enuipage. For this purpose block 3 would be used. The information required by block 3 is pretty simpie. but the most imporiant part is the justification. Aiter your ACR is compiceed. forward it through command channels to the oftice that has to finally review the request and approve or disapprove it. Generally, that office is the

> Naval Ship Engineering Center
> Mechanicsburg Division
> Mechanicsburg, PA 17055

Other offices may be involved for ciectronic test and measuring gear, o:dnance and nuclear propuision equipage, and other special categories of equipment. If you f:epare an ACR and are uncertain :o what cffice it should be sent, addecss it to NisVSEC.!eCH and it will be fonwarded to the approfeiate command.

Now let's see what happens when an $A C R$ is received at NAVSECMECH. Assuming the ACR is complete, has been properiy endorsed by the Type Commander, and contains enough information to be processed. the ship's present ailowance for the item is determined. Many times it is found that an allow. ance has already been changed without the ship being notified and tine ship is notitied accordingly. If it is found that the ship is not presently allowed the item or it is not ailowed in the quantity requested, the NAVSECNIECH technician determines whether the ship should be allowed to carry the item and if so what the proper allowance should be.

It is here that the justification provided by the ship making the request is so important. If the iten is one like the life presencers used in the earlice exariple, and the piesent allowanee is considered proper according to the rules for computing the number requited, the :?ques: witi lecty io donprovad unics the jutitation provides a cood zeason for auchorizing an increase. In this case, the allowance incecase woad probabiy be
made for every ship in a class, possibly a ship rype, or if the basic method of computing the requirement is changed, perhaps every ship carrying the item will be granied an increase.

Certainly not every item a ship carrics is allowed as a result of a computation such as was illustrated. it is recognized many items of equipage are desired because of a particular operational or maintenance technique used by the ship's force, or because it represents a convenience or saves :ime. If an increase in allowance is desired for this reason, the justification shouid indicate just that.

One final word about why an ACR miçh be disapproved. Remember that much oi a ship's equipage is used by ship's force for routine day-to-day operation. As a result shipboard personnel are exposed to a certain hazard if the requested item is not electrically safe, mechanically able to stand the strain of shipboard use, or is juçed unsuitable ior its intended use. If at all possib:- in the event a request for a paticular item is disapproved. a saitabic, saic substitute wiil be identificd and i:s use suggested.

23 NEHSLETTEK

RELIABILITY APPROACH TO THE SPARE PARTS PROBLEM

George H. Ebel and Andrew J. Lang
Fairchild Camera and Instrument Corporation
Defense Products Division
Clifton, New Jcrsey

Summary

A system has been developed whereby unskilled personnel, using simple charts and tables, can select the number of spare parts required to support a given program.

The detailed method of pric amming a digital compuler to generate the charts and tables is presented. Information is generated for various confidence limits, operating times and failure rates. Typical cases are presented for the use of these charts and tables. These include:

1. Sefection of minimum spares requirements for a given program.
2. Determination of critical spares ler program has been running for some time Basically this operation is a check on original failure rate assumptions in time to take corrective action before a system is out of service due to the lack of a spare part.
3. Action to be taken if a spare part is determined to be critical.

Planned future efforts in the reliability approach to the maintenance problem are discussed. These efforts include more parameters than have been considered in this paper. The goal of the next phase of the program is to be able to fecd parts lists. operating times, use conditions, etc. into the computer and have the computer print the most economical solution to the spare parts problem. This solution would include such things as the original order for spare parts, the intervals at which various spares should be checked, and the proper action to be taken for the number of spares in stock at the time of the inventory.

In the last eight years the method of predicting reliability using failure rates of individual piece parts has grown from an experimental toy to a standard tool in systems design and development. Since one step in the prediction of reliability results in establishing the expected failures for a system in a given time period, it would seem logical to tie the spare parts requirements to the same basic method. Therefore, a program was originated which would make use of component failure-rate data to calculate both the equipment reliability and spare parts list for any given project. The goal of the program is to feed information such as the parts list for the equipment. envirunmental conditions, number of equipments. the duration of the program, etc. into a digital computer and have the computer print out the expected inean time between failures for the equipinent, the ten components contributing must to the failure rate, and a reconmended spares list tu support the project. Such a program would allow rapid comparison of various appruaches to the solution of the problem at hand.

In the process of developing the subroutines necessary for the overall program, a series of charts were produced which appeared to be useful tools in the solution of certain spare parts problems. These charts are useful, not because of any basically new material, but as a result of the form in which the material is presented. They allow unskilled personnel to prepare a spare parts list, and, after the program has been runming for a period of tine, to determine which spares are critical.

Gencration of the Charts

The charts were developed while generating a subroutine to find the minimum number of spares required to meet some pre-determined confidence level, given the operating time and failure rate of the item in question. The failure times for component parts of relatively complex systems are generally found to be exponentially distributed and, therefore, the Puissun Furmula would apply.

$$
P_{n}=\frac{\left(\frac{t}{\bar{T}}\right)^{n}}{n!} e^{-\left(\frac{t}{\bar{T}}\right)}
$$

Where $P_{n}=$ prubability of having n failures in time t

$$
\begin{aligned}
& \bar{I}=\text { mean-time-between-failures } \\
& t=\text { operating time }
\end{aligned}
$$

Since falure rate, as opposed to mean-time-between-failures, is generally encountered, we can, by using the equation

$$
\text { Failure rate }=\lambda=\frac{1}{T}
$$

redefine the expression fur P_{n} as follows:

$$
\left.P_{n}=\frac{(\lambda \times t}{n!}\right)^{n} c^{-}(\lambda \times t)
$$

where as before
$P_{n}=$ probability of having n failures in time 1

$$
\mathrm{t}=\text { operating time }
$$

and
$\lambda=$ failure rate
Now define the cumulative probability $P_{C}(r)$ as the probability of having r or less failure in time t.

$$
P_{c}(r)=\sum_{n=0}^{r} \quad P_{n}
$$

Since $P_{c}(r)$ is the probability of having the number r or less failures of a particular item with a given failure rate during the time interval t, this also becontes the probability of hoving idequate replacement pitris avilable if at the beganning of the period there were replacement parts for this particular item in stock. In other words, if a desired cumulative probability is given for a particular iten:, the number of pieces needed for spares can be deterinined by summing the values of the individual probabilitics of failures until this sum is equal to or greater than the desired
cumulative probability. The current working value of n will then be the number of items which must appear as spares at the beginning of some time interval to ensure the desired part availability. The flow chart shown in Figure 1 and described below was used to generate the data for the charts.

Description of the Flow Chart
Box 1: Input data to program is entered. λ is the failure rate per million hours t is the operating time in months P_{1} is the desired probability or confidence level for the chart being generated.
Bux 2: The ratio $\frac{t}{\bar{T}}=\lambda$ is calculated. The constant 730 . $\times 10^{-6}$ converts time in months to time in hours and adjusts failure rate per million hours to fallure rate per hour.

Note: The number of hours per month is taken as 730 .

Box 3: The exponential $e^{-(\lambda t)}$ is calculated.
Box 4: N, the number of spares required, is initialized to zero.

Bux 5: P_{2}, the probability of having N failures. and P_{3}. the probability of having N or less failures, are initi:-lized to the value of the exponential.

Box 6: If the cumulative probability P_{3} is greater than or equal to the desired probability, the results are printed. If not, the next iteration is executed.

Box 7: Increment N by one

Box 8: Compute a new value for P_{2}. the probability of having N failures.

Box 9: Compute a new value for P_{3}. the probability of having N or less failures.

Box 10: The probbbility of having N or less fallures, P_{3} and N are printed.

The only subroutinc needed to execute the program is an exponential routine. Since the value of the exponential may fall into a large ranfe, a subroutine, which will maintain sulficient accuracy throughout this range, is required. A suggestion for computing the anti-logarithm is to use a Hastings

Approximation ${ }^{1}$ for 10^{x}. The argument is initially multiplied by $\log e$ and then divided into an integral and a fractional part. The integral part becomes the characteristic of the result: the fractional portion is evaluated in the polynomial to produce the mantissa. When the argument of the function is positive, the error in the result for an eight digit mantissa does not exceed one in the last digit of the mantissa. When the argument is negative, e^{x} is evaluated as \qquad
the limit of error is one in the next to last digit of the mantissa because of the additional truncation that may occur when taking the reciprocal.

The fullowing example shows how one point for the 12 month curve of the 99% confidence level was obtained.

Sample Problem

Box 1	$\begin{aligned} & =30 . \text { Failures/million hours } \\ \mathbf{t} & =12 \text { months } \\ P_{1} & =.99 \text { confidence level } \end{aligned}$
Box 2	$\mathrm{R}=.262800$
Box 3	$E=.768896$
Box 4	$\mathrm{N}=0$
Box 5	$\mathbf{P}_{\mathbf{2}}=.768896$
	$P_{3}(0)=.768896$
Box 6	$\mathrm{P}_{3}(0)$ is not greater than P_{1}
Bux 7	NE1
Box 8	. 202066
Box 9	$.970962$
Bux 6	$\mathrm{P}_{3}(1)$ is not greater than P_{1}
Box 7	$N=2$
Box 8	. 026551
Box 9	.997513

Box 6

$$
P_{3}(2) \text { is greater than } P_{1}
$$

Box $10 \quad P_{3}(2)=.997513$

$$
N=2
$$

The charts for $50,75,90,95$ and 99% confidence levels were plotted and appear in Figures 2 through 6.

Use of the Charts

The charts presented in the preceding section were developed to allow unskilled personnel to perform two basic operations associated with spare parts control. The first operation is used to determine the number of spare parts required to support a program for a specified period of time at a specified level of confidence. The confidence level is the probability that there will be adequate spares for the specified period of time. The second operation is used to determine the critical spares after the program has been running for some time. Both of these operations make use of the failure rates of the parts matsin~ up the system.

Table I presents a set of failure rates that has given satisfactory results. However, any set of failure rates (based on constant failure rate assumption) that has proven satisfactory for predicting reliability could be used in conjunction with the spare parts charts.

As noted at the bottom of Table I, certain items have predictable wearout life which may be shorter than the expected operating time of the equipment under consideration. The replacement parts required due to normal wear out should be added to the spares complement determined by using the spare parts charts.

Requirements determined by these charts need not be confined to piece parts. Spares for any item (from piece part to complete system) which has a random failure pattern can be determined using the charts.

The bisic procedure for determing the sparcs required is as follows:

Step I Determine the applicable failure rate for the part, component, assembly, etc., under consideration (See Table 1)

Step II Determine the number of times the part (component, assembly, etc.) is used in
equipment to be serviced by the supply point. i. e., the number of times the item is used in a system times the number of systems serviced by the supply point.

Step III Enter the left-hand side of the chart at the value determined in Step 1 .

Step IV Move up the sloped line until it i.. srects the vertical line determined in Step 1I. This determines the total failure rate for the items for a particular supply point.

Step V Move horizontally to the curve of operating time for the item. Operating time is determined by multiplying the length of the program (calendar time) by the fraction of the time the equipment is turned on.

Step VI Move down to the abscissa to determine the number of spares required.

The basic procedure for determing the critical spares after the program has been running for some time is as follows:

Step I Locate the point on the chart at which the original spare quota was determined i.e. , the intersection of the operating time curve and the spare parts initially required.

Step Il Move horizontally to the left until the curve of expected operating time remaining in the program is reached.

Step IIl Move down to the abscissa to determine the minimum spares which should still be in stock for the applicable confidence level.

Step IV Compare the number in stock with that determined in Step III. If the number in stock is less than that determined in Step III, then the item is in a critical condition.

After a spare has been established as critical, the problem arises as to what action should be taken. For a spare to be in a critical condition either the original estimate of failure rate was too low or the parts are being used up faster than expected due to statistical variations assocjated with the random fallure process. The oricinal failure rate assigned to the part is usually based on a considerable amount of past history and therefore the hypothesis that the original failure rate is correct should not be rejected unless there is substantial evidence to reject
the hypothesis.
If the number of failures occuring in the time interval in question is such that there is less than a 10% chance that the true failure rate could be as low as estimated, then it would seem reasonable to recalculate a new failure rate for that part and increase the spares accordingly. This me ans that one time out of every ten we would be ordering more parts than necessary to support the program at the original confidence level. Based on the foregoing discussion the following procedure can be established for action to be taken if a spare is determined to be in a critical state:

1. Enter the 90% confidence level

 chart at the original failure rate and move up the sloped line to the intersection of the vertical line representing the number of times the item is used in equipment serviced by the supply point. Move horizontally to the operating curve determined by the operating time of the equipment from the beginning of the program to the time of the stock check.2. Move down to the abscissa to determine maximum number of spares that could be uscd in the time interval before the failure rate for that part should be recalculated.
3. If the number actually used is less than the number determined in Step 2 , then go back to Step IIl of "the basic procedure for determining the critical spares after the program has been running for some time" to determine the number of spares required to support the program at the proper confidence level.

4. Order the difference between the

 number actually left in stock and the number determined in Step 3.5.

If the number actually used is more than the number determined in Step 2 then a new failure rate should be calculated using the following formula:

$$
\begin{aligned}
& \lambda_{n}=\frac{N \times 10^{6}}{n_{0}} \\
& \text { Where } \quad \lambda_{n}=\text { new failure rate }
\end{aligned}
$$

$N=$ number of spares used in the
time interval from beginning of
program to time stock is checked
$n=$ number of times the part is used in equipnent serviced by the supply point
$t_{0}=$ time interval in hours (assume $\mathbf{7 3 0}$ hours in a month)
6. Using the new failure rate and the operating time left in the program, deterimine the nurnizer of spares required to support the program at the proper confidence level. (Use 'the basic procedure for determining the spares required')

7.
 Order the difference between

 the number actually left in stock and the number determined in Step 6.
Examples

The following three examples are presented to show several typical cases for the use of the spare parts charts.

1. Selection of minimum requirements for a given program in which all spares are ordered at the start of the program.
2.

Determination of critical spares after the program has been running for some time.
3.

Action to be taken in the case
of critical spares.

Example I

Assume an Aircraft Carrier Supply Officer wanted to have enough spares on board to service 20 airborne oscilloscopes for a three year period. The requirement wasestablished that there be a 95% assurance that at least one spare of each part would be available, at the end of the three year period. The operational duty cycle for the oscilloscopes was set at an average of sixteen hours a day (or twenty-iour months out of thirtysix) for each scope.

For this example the problem is to determine the number of spare cathode ray tubes required to satisfy the requirements stated above.

The first step is to locate the proper failure rate for cathode ray tubes used in a manned aircraft envir,nment. Table lists this as sixty. Next select the chart for 95%
confidence level and enter the chart on the left hand side at a failure rate of sixiy.
Move up the slanted line until it intersects the vertical line marked 20 (the number of scopes to be serviced at the repair point). This will determine the total fallure rate for the twenty cathode ray tubes. Now move horizontally to the right until the operation time curve for twenty-four months is reached and then down to the abscissa to determine the number of spares required. In this case the absicca is intersected between twenty-seven and twenty-eight so twenty-eight tubes are required.

Example II
The officer in charge of supplies in the first example must know if any spare parts are in a critical aituation in time to procure new spares before the supply is exhausted. In other words he should have a method for reviewing his stock at any point in the program and quickly selecting those items which are in a critical state. For this example let us assume that the program in Example I has been running for eighteen months and has eighteen months left to run. This would mean that there is an average of twelve months of operation time left for each oscilloscope. The problemis to determine if enough cathode ray tubes are in stock to safely complete the program without re-ordering. In this case we enter the chart at the intersection of the initial operating time curve (twenty-four months) and the spares in stock at the beginning of the program (twenty-eight). Now move horizontally to the left until the twelve month operation time cure is intersected. Then move down to the abscissa to determine the minimum number of spares which should be in stock for a given confidence level to complete the program without re-order. In this case, there should be at least sixteen tubes in stock. If there are more than sixteen tubes in stock, then the spares situation is not critical. If there are lese than sixteen tubes in stock, the action to be taken would hinge on the number of spares used in the first 12 monthe of operation.

Example III

Assume that 16 cathode ray tubes had been used in the first half of the program described in examples 1 and II. This means that oniy $l i$ remained in stock, and the spares are in a critical condition.

To determine if the failure rate of 60 for the cathode ray tube should re recalculated. the 90% runfidence chart is entered at 60 . Move up the sloped line until the vertical line for 20 units is intersected. Next move horizontally to the operating time curve for 12 months, and then down to the abscissa to determine the number which would not be exceeded more than 10% of the time if 60 were the true failure rate. In this case, the number is fifteen. Since 16 tubes were used, the failure rate should be recalculated as follows:

$$
\lambda_{n}=\frac{N \times 10^{6}}{n t_{0}}=\frac{16 \times 10^{6}}{20 \times 12 \times 730}=91
$$

With a new failur, ete of 91 for 12 months operating time left in the program the sparcs required for a 95% confidence level is 22 (determined following basic procedure for determining the epares required as in example 1). Since there are still 12 tubes in stock, 10 tubes will have to be ordered.

Future Program

The next step in the program is to prepare a set of IBM cards containing basic information on the component parts used in fabricating electronic equipment. This would include the failure rates for various combinations of environments which the part may encounter. The normal lead time expected for ordering, the cost (including quantity discounts) and a list of qualified suppliers.

The program is being developed to handle such input parameters as:

1. Environmental conditions the equipment will encounter.
2. Duration of program.
3. Various conisdence levels
4. Number of equipments (both total and per supply point).
5. Various reordering periods.
6. Minimum acceptable probability of i. ¥ring a part in stock when required.
7. Effects of not having a spare when needed.
8. Parts list for the equipment.

The output of the computer will include:

1. Expected failure rate of the equipment.
2. The components with the highest failure rates.
3. Spare parts list to support the program.
4. Cost of aspects of a specific set of conditions.

One of the major uses for the program outlined above will be to determine the effect of various approaches to a problem on the overall system adequacy. This can be accomplished rapidly and early enough in the equipment development cycle to allow basic design decisions to reflect both reliability and maintenance considerations.

References

1. Hastings, Jr., C.
"Approximations for Digital Computers" Princeton, New Jersey; Princeton University Press, 1955, Page 144

IAI)LE 1

FAILURE RATES PER MILLION HOURS

[^15]

r that, for the solution of eessary on the production

Hence, the solution prou. costs of production may restriction imposed on the pruduction should ie conranges of application. It tion it is not vecessary for ang. ments of a redi:ced matrix, to another, it may be conLons when one is not close marries have large pusitive ing a large number of varior appears to be ieasible.
pramming." Management Sci.
luct fimm Several Sources to 0, 224-250 (19i1).
raspportation Systen," InierC. Vol. 5 (1947).
:of Linaar Programming to a -Internxional Cons. on ausportation Prublem," Opns.

ON OPTIMAL REDUNDANCY \dagger

Guy Black and Frank Proschan
Electronic Defense Laboratory, Syltania Electric Products, Ine., Mounkin Viese, Califurnia
(Received March 2, 1959)

Abstract

A complex system is to be placed in the field for a fixes period. During the period only the spares initially provided may tie used to replace coinpouents that have iailed. Iedependifnce of failires is assumed tmoug the essential components considered. Givell the cusi of componeate, the number of like cumporinents of each type sinultaneousy cperating, the length of operation seheduled ior each componeti, the failiure distribuaious of cumponents, a general matherasa ical solution io olta:ined ior the cumpr,sition of the spare parts kit which maximizes asuuranec of enttinuted pperation during the period, sulbject in a fixed thudget for spares. Fxplicit formulas are ohtained in the case of exponential failure distributiots, constructive procedures in the case of mon,tone likellihood ratio densities. Fortunately, the identical mathematicai model is appliczibe in ueternining the optimal allocation of redundaney in designing system reliability under a weight or cost restraint.

CONSIDER these two seemingly different proilems, one arising in inventory control, the other in reliability design:

1. A complex system is to be piaced in the feld ior a period of experimentation. How many spares for each of the casential components should accompany the system? Maximum assurance of continued operation oi the system is diesired for a fixed expenditure for spares. Component fallure distributions are known.
2. A complex system ia missif. say) is to perform a mission. How should redundancy be desigued into the system to give maximum reliahility within thr weight limitation? Component failure distributions are known.
Actually, both problems have the same marhematical structure under certain assumptions. In this p.aper, we show how we may solve these problems.

Related models in the spare parts probiem have been treated by fersura and Kakr ${ }^{[4]}$ and Gouraky. ${ }^{4}$ el In these models, the experted intin of weighted shortages is minimized subject to a lincar weight or cost rewtraint, with the demand probability density for spares assumed a priori. In sur first (second) model, we maximize assurance of continued system nperation (reliability) by optimal allocation oi spares (redurdant units) likerise subject to a linear restraint, but with the demand ior spares (redundant units),
\dagger Presented at the Fifteenth Nationsl Meeting of the Oremations Resparth Society of Amertca, Washington, D. C., May 14, 1959.
instead of being assumed a priori, gencrated by failure of opcrating units following known probability distributions. Thus, to obtain the composition of the optimal spare parts kit in the first model we use information about component failure rates rather than information about component demand distributions. In the typicar sruation under consideration-a new system under experimentation for a single period in the field-we are thus given the opportunity to use information we may have, component failure rates, rather than be called upon to provide information we may not have, component demand distributions.

Our choice of assurance of continued system operation as the figure of merit to be maximized is especially relevant in military applications, where a penalty cost is often difficult to determine. In the system reliability

Next d $P_{i}\left(n_{i}\right)=1^{n}$
$n=$ ($:$
$P(n)=1:$
$i=$
By adequ:ıs needed will of underlai

Because of model (Model 2 above) especially, probability of successful system operation is a completely natural choice for the figure of merit.

mathematical model-Exponentlal life distiribution

A system is to be placed in the field for a fixed period t_{0} of experimentation. During the period only the spares initially provided may be used to replace components that have failed. Independence of failures is assumed among the components considered. Only essential components are considered. The system consists of $d_{i j}$ components of type i, scheduled for t_{j} hours of use, $j=1,2, \cdots, m$. A single unit of type i costing c_{i}, has an exponential life density $\mu_{i} \exp \left(-\mu_{i} t\right.$), with failure rate per hour of $\mu_{i}, i=1,2, \cdots, k$.

What choice of n_{i}, the number of spares provided of the i th type, $i=1, \cdots, k$, will yield maximum assurance of adequacy of spares for each of various values of the cost $c=\sum_{i=1}^{i=k} n_{i} c_{i}$?

Note that an analogous statement describes the reliability design problem: Substitute 'redundant standiby units' for 'spares,' and in cases where weight is the key consideration, rather than cost (e.g., missile design), substitute 'weighing' for 'costing' and 'weight' for 'cost,' and finally, 'reliability' for 'assurance of adequacy of spares.' Assume that any standby units present are not actually in use, and therefore have no probability of failure during standby; and that switching in of a redundant unit occurs with perfect reliability and unimpaired performance. The problem is then the same. For simplicity of presentation, we will discuss the problem in terms of the spare parts model.

To solve the problem, we first define
$\boldsymbol{N}_{i j}=$ number of failures during the \boldsymbol{t}_{j} hours of operation.

$$
N_{i}=\text { total number of failures of type } i \text { during the } t_{0} \text { hours. }
$$

Then $N_{i j}$ is a Poisson random variable with parameter $\mu_{i} d_{i}, t_{j} .{ }^{[1]}$ Since $N_{i}=\sum_{j=1}^{j m} N_{i j}$, then N_{i} is a Poisson random variate with parameter $\lambda_{i}=\mu_{i} \sum_{j=1}^{\prime-m} d_{i j} t_{j} .{ }^{(3)}$

We wish

Define $R_{1}{ }^{\prime}$, maximize ls: Maximiz: is a special Tucker. ${ }^{\text {(19] }}$ tinuous vait: n_{1}, \cdots, n_{4}. nately deris:

First we:
Lemma 1 : $i=1, \cdots, k$.

Proof.

$\Delta R_{i}(m)=1$
It will ixesu a decreasinus the samu sis simplification
with $f(1, \lambda,=$ $m_{0}-1$. Tln: <0 and d! $f(m, \lambda)<0 \mid 0,1$ of m for $\lambda>\cdot 1$
uf upcrating units tain the composi-- use information alsout component consideration-a the field-we are have, component rmation we may
a as the figure of aplications, where Stem reliability fill system operat.

thisibltion

experimentation. - e used to replace \therefore assumed among - are considered. ed for t; hours of is an exponential $i=1,2, \cdots, k$.
of le i th type, i C.fes for each
reliatbility design es,' and in cases ., missile design), - and finally, 're:hat any standby r no probability udant unit occurs problem is then sthe problem in
, $i_{1}, t_{1}{ }^{\text {[1] }}$ Since with parameter

Next define:
$P_{i}\left(n_{i}\right)=$ probability that n_{i} spares of type i wili be adequate,

$$
n=\left(n_{1}, \cdots, n_{k}\right)
$$

$P(n)=$ probability that a spare parts kit consisting of n_{i} spares of type i,

$$
i=1, \cdots, k \text {, will be adequate. }
$$

By adecuacy we mean, of course, that during time t_{0}, the number of spares needed will be at most the number provided. Thus, in the present case of underlying exponential life distributions,

$$
\begin{equation*}
P_{i}\left(n_{i}\right)=\operatorname{Pr}\left[\Lambda_{i} \leqq n_{i}\right]=\sum_{x=0}^{x=n_{i}} \exp \left(-\lambda_{i}\right) /\left(\lambda_{i}^{x} / x!\right) \tag{1}
\end{equation*}
$$

Because of assumed independence of operating components,

$$
\begin{equation*}
P(n)=\prod_{i=1}^{i=k} P_{i}\left(n_{i}\right) . \tag{2}
\end{equation*}
$$

We wish to maximize $P(n)$ subject to

$$
\begin{equation*}
c(n)=\sum_{i=1}^{i=k} n_{i} c_{i} \leqq c_{0} \quad \text { and } \quad n_{i} \geqq 0 . \quad(i=1, \cdots, k) \tag{3}
\end{equation*}
$$

Define $R_{i}\left(n_{i}\right)=\ln P_{i}\left(n_{i}\right)$ and $R(n)=\ln P^{\prime}(n)$. Then, it is equivalent to maximize $R(n)$ subject to (3).

Maximizing a nonlinear function $R(n)$ subject to linear restraints (3) is a special case of nonlinear programming, treated by Kubn and Tucker. ${ }^{[11]}$ In their article, the theorems are developed in detail for continuous variables. In our problem, we are dealing with discrete variables, n_{1}, \cdots, n_{k}. Thus we shall independently derive theorems which are alternately derivable by the methods of Kuhn and Tucker.

First we need:
Lemma 1: $\Delta R_{i}(m)=R_{i}\left(m_{i}+1\right)-R_{i}(m)$ is a decreasing function of m for $i=1, \cdots, k$.

Proof.

$$
\Delta R_{i}(m)=\ln \left\{P_{i}(m+1) / P_{i}(m)\right\}=\ln \left\{1+\left[\lambda_{i}^{m+1} /(m+1)!\right] / \sum_{j=0}^{j-m}\left[\lambda^{j} / j!\right]\right\}
$$

It will be sufficient to show that $g(m, \lambda)=\left[\lambda^{m+1} /(m+1)!\right] / \sum_{j=0}^{j-m}\left[\lambda^{j} / j!\right]$ is a decreasing function of m for all $\lambda>0$. Now $g(m, \lambda)-g(m-1, \lambda)$ has the same sign as $f(m, \lambda)=\lambda \sum_{j=0}^{m-1} \lambda^{\prime} / j!-(m+1) \sum_{j=0}^{j-m} \lambda^{j} / j!$. But, after simplification,

$$
\begin{equation*}
d f(m, \lambda) / d \lambda=f(m-1, \lambda) \tag{4}
\end{equation*}
$$

with $f(1, \lambda)=-2-\lambda<0$ for $\lambda>0$. Suppose $f(m, \lambda)<0$ for $m=1,2, \cdots$, $m_{0}-1$. Then $d f\left(m_{\mathrm{c}}, \lambda\right) / d \lambda<0$ for $\lambda>0$ by (4). Since $f\left(m_{0}, 0\right)=-\left(m_{0}+1\right)$ <0 and $d f\left(m_{0}, \lambda\right)$ ' $d \lambda<0$, then $f\left(m_{0}, \lambda\right)<0$ for all $\lambda>0$. By induction, $f(m, \lambda)<0$ for $m=1,2, \cdots ; \lambda>0$. Thus $g(m, \lambda)$ is a decreasing function of m for $\lambda>0$.

Corollary: $R(n)$ is a concauc function of n.
Proof. $R_{i}\left(n_{i}\right)$ is a concave function of n_{i} by Lemma 1. Hence $R(n)=\sum_{i=1}^{i=k} R_{i}\left(n_{i}\right)$ is concave.

Procedure for Obtaining the Optimal n.

For arbitrary $r>0$, for those i such that $\Delta R_{i}(0)<r c_{i}$, define $n_{i}^{*}=0$; for the remaining i. define n_{i}^{*} as $1+$ [largest m such that $\Delta R_{i}(m) \geqq r c_{i}$]. Compute $c\left(n^{*}\right)=\sum_{i=1}^{i=k} c_{i} n_{1}^{*}$. The following theorem shows n^{*} is optimal:
Theorem 1: n^{*} marimizes $R(n)$ among all n such that $c(n) \leqq c\left(n^{*}\right)$ for $n \geqq 0$.

Proof. We will show ior any $0 \leqq n$ 丰 n^{*} for which $c(n) \leqq c\left(n^{*}\right)$ that $R(n) \leqq R\left(n^{*}\right)$. Suppose $n_{i}>n_{i}^{*}$ for i in $I_{1}, n_{i}<n_{i}^{*}$ for i in I_{2}, where I_{1}, I_{2} are subsets of $\{1,2, \cdots, k\}$. For i in $I_{1}, \Delta R_{i}\left(n_{i}^{*}+j\right)<r c_{i}$ for $j=1,2, \cdots$, $n_{i}-n_{i}^{*}$ since $\Delta R_{i}\left(n_{i}\right)$ is a decreasing function of n_{i} by Lemma 1. Thus

$$
\begin{equation*}
\Delta R_{i}\left(n_{i}^{*}+j\right)<r c_{i} . \quad\left(i \text { in } I_{1} ; j=1,2, \cdots, n_{i}-n_{i}^{*}\right) \tag{5}
\end{equation*}
$$

Similarly, for i in I_{2},

$$
\begin{equation*}
\Delta R_{i}\left(n_{i}^{*}-j\right) \geqq r c_{i} . \quad\left(i \text { in } I_{2} ; j=1,2, \cdots, n_{i}^{*}-n_{i}\right) \tag{6}
\end{equation*}
$$

Hience

$$
\begin{aligned}
& R(n)-K\left(n^{*}\right)=\sum_{i \text { in } i_{1}} \sum_{j=1}^{n_{i-1} n_{i}^{*}} \Delta R_{i}\left(n_{i}^{*}+j\right) \\
& -\sum_{i \text { in } r_{2}} \sum_{j-1}^{n_{i} 0^{-n}} \cdot \lambda R_{i}\left(n_{i}^{*}-j\right) \leqq r \sum_{i \text { in } r_{1}}\left(n_{i}-n_{i}^{*}\right) c_{i} \\
& -r \sum_{i \text { in } i_{2}}\left(n_{i}^{*}-n_{i}\left(c_{i}=r \sum_{i=1}^{i=k}\left(n_{i}-n_{i}^{*}\right) c_{i}=r\left\{c(n)-c\left(n^{*}\right)\right\}\right. \text {. }\right.
\end{aligned}
$$

But $r>0$ and $c(n)-c\left(n^{*}\right) \leqq 0$. Hence $R(n) \leqq R\left(n^{*}\right)$.
To obtain a curve showing maximum assurance $P\left(n^{*}\right)$ vs. $c\left(n^{*}\right)$, simply follow the procedure above for an appropriate range of values of $r>0$, computing $P\left(n^{*}\right)$ as well as $c\left(n^{*}\right)$, and plotting the results. See Fig. 1 for an example of such an optimal curve.

The actual computation is rapid in the present case of an underlying exponential life distribution. We note that

$$
\begin{align*}
\Delta R_{i}\left(n_{i}\right) & =\ln \left\{1+\frac{\lambda_{i}^{n_{i}+1} \exp \left(-\lambda_{i}\right)}{\left(n_{i}+1\right)!} / \sum_{i=0}^{n_{i}} \frac{\lambda_{i}^{j} \exp \left(-\lambda_{i}\right)}{j}\right\} \\
& \approx \frac{\lambda_{i}^{n_{i}+1} \exp \left(-\lambda_{i}\right)}{\left(n_{i}+1\right)!} \tag{7}
\end{align*}
$$

Since the latter expression is tabulated, ${ }^{[12]}$ the computation is simple even with only a desk calculator.

An alternate equivalent method of computing the points on the optimal curve is available; it is more convenient for machine computation. Start-
ing with anty point to the. point. Thet. is the larges: $n_{a-1}^{*}, n_{a}^{*}+1 . \prime$ point. Thus points as we!

One final obtained by, more provid. be other puin if a particula: is specified, $1!$ satisfies the c. than that pru. cost constrain n^{*} on the opti:1 by n^{*} and the. the ontimal a having many c

A sustem chleis system is to 11. . The expensive:

Durine the: for 332 hours a! Assuming : H (M : rate as shown: an optimal :ailu: which maximize: the field.

ima 1. Hence
, define $n_{i}{ }^{*}=0$; . $\left.\Delta R_{1}(m) \geqq r c_{1}\right)$. $n \leq n^{*}$ is optimal:

$$
c(n) \leqq c\left(n^{*}\right) \text { for }
$$

($n) \leqq c\left(n^{*}\right)$ that in I_{2}, where $I_{1} \cdot I_{2}$ for $j=1,2, \cdots$, nma 1. Thus
, $\left.n_{i}-n_{i}^{*}\right)$
, $\left.n_{i}^{*}-n_{i}\right)$
(6)
$\left.i_{i}^{*}\right) c_{i}$
$(n)-c\left(n^{*}\right)!$.
).
v. $c\left(n^{*}\right)$, simply f values of $r>0$, iults. See Fig. 1
an underlying ex-
$\left.\left.\stackrel{-}{-}-\lambda_{i}\right)\right\}$
ion is simpie even nts on the optimal nputation. Start-

Optimal Redundaney

ing with any point on the optimal curve we may obtain each successive point to the right as follows. Let ($n_{1}{ }^{*}, n_{3}^{*}, \cdots, n_{k}^{*}$) be the initial optimal point. Then compute $\Delta R_{1}\left(n_{1}{ }^{*}\right) / c_{1}, \cdots, \Delta R_{k}\left(n_{k}{ }^{*}\right) / c_{k}$. If the α th ratio is the largest, the next optimal point to the right of ($n_{1}{ }^{*}, \cdots, n_{1}{ }^{*}$) is ($n_{1}{ }^{*}, \cdots$, $\left.n_{a-1}^{*}, n_{a}^{*}+1, n_{a+1}, \cdots, n_{k}^{*}\right)$. Repeat this procedure on the new optimal point. Thus, we may successively obtain as many additional optimal points as we please.

One final point should be noted. Each point n^{*} on the optimal curve obtained by our procedure has the property that any other kit costing no more provides no greater assurance against shortage. However, there may be other points not on the curve having this property. This implies that if a particular cost c_{0}, not corresponding to any point on the optimal curve, is specified, then it may be possible to obtain a kit composition, n, which satisfies the cost constraint and provides protection against shortage greater than that provided by anv point on the optimal curve also satisiying the cost constraint. The loss in protection from using the appropriate point n^{*} on the optimal curve will be at most the difference in protection provided by n^{*} and the protection provided by the next point to the right of n^{*} on the optimal curve. This loss will generally be small, especially for kits having many component types.

ILLUSTRATION

A system consisting of a CHF receiving subsystem and a VHF receiving subsystem is to be placed in the field for a three-month period of experimentation. The expensive essential tubes in the two systems are described in Table 1 .

During the period of operation in the field, the UHF tubes are each scheduled for 332 hours of use and the VHF tubes are each seheduled for 2160 hours of use. Assuming an exponential life distribution for each of the tube types with failo. k . rate as shown above, and assuming independence of operation of the tuber, $\mathrm{n}_{\boldsymbol{z}} \mathrm{i}$ i an optimal allocation of spare parts for various spares budgets, i.e., an allocazion which maximizes assurance of continued system operation during the period in the ficld.

TABLE I

i	Tube type	Failure rate/hour, μ_{i}	Cost per tuhe, c_{i}	Number in UHF, scheduled for 332 hours of use each, $d_{i 1}$	Number in VHF, scheduled for 2160 hours of use each, $d_{i z}$	Expected number of failures, λ_{i}
1	Radechon	1/2500	\$240	4	4	4.0
2	Memotron	1/4000	1025	2	5	2.9
3	Carcinotron	1/800	1158	4	0	1.7
4	TWT	1/6000	750	2	\bigcirc	0.11

First, we compute the expected number of spares of each type used during the period:

$$
\begin{array}{ll}
\lambda_{1}=1 / 2500\{4 \cdot 332+4 \cdot 2160\}=4.0, & \lambda_{3}=1 / 800 \quad\{4 \cdot 332\}=1 \cdot 7 \\
\lambda_{2}=1 / 4000\{2 \cdot 332+5 \cdot 2160\}=2.9, & \lambda_{1}=1 / 6000\{2 \cdot 332\}=0.11
\end{array}
$$

Next, to determine the first valuc of r to use, compute $\lambda_{1}+3 \sqrt{\lambda_{1}}$ and round to the nearest integer, obtaining 10 . Let $n_{1}{ }^{*}=10$. Thus $n_{1}{ }^{*}$ corresponds to a value three standard deviations above the mean, since in a Poisson distribution,

Fig. 1. Optimal spares kits for various budgets.
the standard deviation equals the square root of the mean. Lising the approximation (7), we let r be determined from $r=\left(1 / c_{1}\right) \exp \left(-\lambda_{1}\right)\left(\lambda_{1}^{10} / 10\right.$!) $=0.000022$ (Molina's Table I ${ }^{[12]}$). This initial selection of r thus provides high protection against shortage of component type 1; be the nature of the computation somewhat comparable protection will be provided against shortage of each of the other component types.

We then find $n_{2}{ }^{*}$ as the largest value of m such that

$$
\begin{equation*}
\left(1 / c_{2}\right) \exp \left(-\lambda_{2}\right)\left(\lambda_{2}^{m} / m!\right) \geqq 0.000022 . \tag{8}
\end{equation*}
$$

Csing Molina's Table $I_{1}{ }^{[12]}$ we find $n_{2}{ }^{*}=0$.
Replacing the subscript 2 in (8) by 3 and 4 respectively and proceeding similarly, we find $n_{3}^{*}=4$ and $n_{4}^{*}=1$.

From $n^{*}=10.4$
!

$$
c_{!}^{\prime}
$$

Thus to oit:ai:, budget of $\$ 13,9.32$:6 memotrons, f c:a 0.935.

By taking $m_{1}{ }^{*}=$ fashion, we woul. is shown for simi: \cdots. a step function i: a of continurd sy:s :". tion, the comproit: is shown next to c.,., on the optimal rur:

I

The resclets wh: nent failures follo. in the case of nomr

The ansirer is we used the fant 1$\}$ that this fact ime, tion needed t" p ". ing just before 'Th. exponential hefe 1 i as $\ln \mid \Gamma_{i} n_{i}+1 ; 1$, spares of the cth :

It turns out th. lying densities i ! $i=1,2, \cdots, \therefore$, $:$ differences):
whenever $l_{1}<l_{0}$: $:$ $f_{i}\left(t_{2}-\omega_{1}\right) \geqq f_{1} t_{i}-$, ponential di-mina: tribution, and l:i Schoesibtia. ${ }^{14}$... applications ill - 1 .

Thus, if c:uh: of (9), the "llma:
h type used during
$.332\}=1.7$
$.3321=0.11$
$+3 \sqrt{\lambda_{1}}$ and round : corresponds to a 'oisson distribution,

ets.
Uising the approxi$\left(\lambda_{1}^{10} / 10!\right)=0.000022$ des high protection aputation somewhat each of the other
ad proceeding simi-

From $n^{*}=10,6,4,1$, we compute

$$
\begin{aligned}
& P\left(n^{*}\right)=\prod_{i=1}^{i=1} \sum_{i=0}^{x=n_{i}{ }^{*}} \exp \left(-\lambda_{i}\right)\left(\lambda_{i} s / x!\right)=0.935, \\
& c\left(n^{*}\right)=\sum_{i=1}^{i=1} c_{i} n_{i}^{*}=\$ 13,932 .
\end{aligned}
$$

Thus to obtain maximum assurance of continued system operation under a budget of $\$ 13,932$ for spares of the four tube types, we would stock 10 radechons, 6 memotrons, 4 carcinotrons, and 1 TWT. The assurance obtained would be 0.935.

By taking $n_{4}^{*}=8,9,11,12$, and 13 respectively; and procceding in a similar fashion, we would obtain the other five points ploted in Fig. 1. A smooth curve is shown for simplicity, although, because of the discrete nature of the variables, a step function is actually correct.) Thus Fig. 1 shows the maximum assurance of continued system operation obtainable for a given budget for spares. In addition, the composition of the spares kit yielding the plotted maximum assurance is shown next to each point. Note that additional points lying between those shown on the optimal curve of Fig. 1 may be computed if desired.

MORE GENERAL LIFE DISTRIBUTIONS

The resulus obtained thus far are based on the assumption that component failures follow exponential distributions. Can we obtain a solution in the case of nonexponential life distributions?

The answer is yes. If we examine Theorem 1 carefully to see wherein we used the fact that our underlying life distribution is exponential, we see that this fact implies that $\Delta R_{i}\left(n_{i}\right)$ is a decreasing function of n_{i}, a condition needed to prove the theorem. Thus to apply our procedure (appearing just before Theorem 1) for obtaining the optimal n in the case of nonexponential life distributions we need only ensure that $\Delta R_{i}\left(n_{i}\right)$ (defined as $\ln \left[P_{i}\left(n_{i}+1\right) / P_{i}\left(n_{i}\right)\right]$, where $P_{i}\left(n_{i}\right)$ is the probability that at most n_{i} spares of the i th type are used) be a decreasing function of n_{i}.

It turns out that $\Delta R_{i}\left(n_{i}\right)$ is a decreasing function of n_{i} when the underlying densities $f_{i}(t)$ for the time of failure of components of the i th type, $i=1,2, \cdots, k$, have the property (monotone likelihood ratio property in differences):

$$
\begin{equation*}
f_{i}\left(t_{1}-\omega_{1}\right) / f_{i}\left(t_{1}-\omega_{2}\right) \geqq f_{i}\left(t_{2}-\omega_{1}\right) / f_{i}\left(t_{2}-\omega_{2}\right) \tag{9}
\end{equation*}
$$

whenever $t_{1}<t_{2}$ and $\omega_{1}<\omega_{2}$. (If either denominator is 0 , use $f_{i}\left(t_{1}-\omega_{1}\right)$ $f_{i}\left(l_{2}-\omega_{2}\right) \geqq f_{i}\left(l_{1}-\omega_{2}\right) f_{1}\left(l_{2}-\omega_{1}\right)$. This property characterizes (a) the exponential distribution, (b) the Gamma distribution, (c) the normal distribution, and many other distributions. (See Karlin, ${ }^{[7.8 .9 .101}$ and Schofnberg ${ }^{14]}$ for a full discussion of this class of distributions and their applications in statistical decision theory.)

Thus, if each failure density $f_{i}(t)$ has the monotone likelihord property of (9), the optimal spares kit may be obtained using the procedure de-
scribed just before Theorem 1. In addition, the optimality results of Theoremi 1 hold. The proot is not given in this paper, but is contained in Proschan: ${ }^{112}$ and will appear in the near future in one of the statistical journals.

The computation involved is considerably more tedious since, in general, the distribution for the number of failures experienced (Poisson in the case of the exponential life distribution) for any component type is no longer ohtainable in closed form, but only by detailed computation.

heferences

1. Arrow, Kinneth J., Sameel. Karlin, and Herbert Scarf, Studies in the Mathematical Theory of Inrentory and Production, p. 272, Stanford University Press, Stanford, Calif., 1958.
2. Black, Guy axd Frank Proschan, "Spare Part Kits At Minimum Cost," Proceedings, Fifth National Symposium on Reliability and Quality Control in Electronics, 281-290, January 12-14, 1959.
3. Cramer, Harold, Mathematical Methods of Statistics, p. 205, Princeton University Press, Princeton, N. J., 1946.
4. Geisler, M. A. and H. W. Karr, "The Design of Military Supply Tables for Spare Parts," Opns. Res. 4, 431-442 (1956).
5. Gourary, M. H., "A Simple Rule for the Consolidation of Allowance Lists," Naval Res. Log. Quart. 5, 1-15 (1958).
6. -IT, "An Optimum Allowance List Model," Naval Res. Log. Quart. 3, 177-191 (1956).
7. Karlin, Sayuel, "Polya Type Distributions, IV: Some Principles of Selecting a Single Procedure from a Complete Class," Annals of Mathematical Statistics 29, 1-21 (1958).
8. -T," "Polya Type Distributions, III: Admissibility of Multiaction Problems," Annals of Matiematical Statistics 28, 839-860 (1957).
9. -2, "Polya Type Distributions, II," Annals of Mathematical Statistics 28, 281-308 (1957).
10. - "Decision Theory for Polya Type Distributions. Case of Two Actions, 1," Proceedings of the Third Berkeley Symposium on Math. Slatistics and Probalnitity, December 1954, and June and July 1955, 115-128.
11. Kuina, H. W. asd A. W. Tucker, "Nonlinear Programming," Proceedings of the Second Berkeley Symposium on Math. Statistics and Probnbility, 481-492, U. Calif. Press, Berkeley, 1951.
12. Molins, E. C., Poisson's Exponential Binomial Limit, Van Nostrand, New York, 1942.
13. Proschan, Frank, "Polya Type Distributions in Renewal Theory, with an Application to an Inventory Problem," Thesis, Stanford University Statistics Dept., May, 1959.
14. Schoramerg, I. J., "On Polya Frequency Functions, I. The Totally Positive Functions and Their Laplace Transforms," J. D'Analyse Math. 1, 331-374 (1951).

A THEORI

Brove

A crude mathematir:
in tunnels or other:-
The main ingre: ine:.:
which is conside:"..:
car is the smaller of
ahead of it, (3) it: $!$...
some faxed spaci:!
model are: (1) the r:b
of its length, (2) tir.
distance from the e::!
speed and those of :i
between ears is equa: :
Δ, it is usually mucl,
trance.

TTHERE ARE mans possible over fairl! true for any two-lane r both lanes ox for a di: repaving, temporariị 1 of traffic. In the $1:!a$ as is also the cuse on :" etc., where passing is:

One of the unforti: fact that queues dewi front of them. We at: particularly as apulie.:

Some investigatiot:been made by Oliouti the theoretical puin: us use the theorice of 1 ; Richarise ${ }^{[6]}$ to deme:in the basis of thie, i I $1 . . \mathrm{M}$ base of the dowier:a

- Alfred P. Slual I'...

Guy Rlack: and Frasi Proschan
Sylva:ita Fisert:onic Deicnic Labuatory Mountair Vieu, Califoraia

I. GENER: : STATEMENT

1. The Froblen

In the misitary establishment it is not always practicis: to rely on tise exisiting system of suppiy ciepats ior the spure namis nezeed to maintain eles:ronic equipmcat. Fu: examote. military agoacies are con:intally tosting new equipmert, oi winci: on! onc or a iew are unill. The compunents esecimay not aivays exis: in suluply chizuntis, uhich in any zase azc ao: getared te meet :iev zequitencats oi suen cẹ: For these reabcons the supioter of the exterinuerial ce:timen: mav be asted to urovicie spare paris in zufiacient ruaniaty o carsy ine cunipment throtest tiec evaination prograim.

The run:ractor who receives suct a request has difficu:i \because ir ciciding how many soritos as weit as jui=i vin:ch ones to sueply, and finv to buregel for spates. He can ricly on a leve :ules of thurnt, that i:cue yrown ug in sיiphy agercies.
 Furtint, in: et ore in siancuics by wfici: per-
 rou: oí the pobbier. is that sfite paris consctiapt10: :s a raticcon process. Eialtiticad zecords on ciectronic conapontrt inijuse incicase that oitcn the rate of inslu:e is çuatc corstan: curing a . large part $\begin{aligned} & \text { E ç̣upment lit:, macaing that ar. }\end{aligned}$ expenentia!!y oceinang probibuid:y density fanetion must be vecu to ceserabe the prownotity that a comfonan: wisl survive a given iarabez oi hours.

The froblems encourte:ced with ronigil and

 would be reive ic assume the: tuc Vós 5 tubes

 been maje. it, on the vitu: mam, the disiributon werc itioc :wue stown in Figite ?, the
 zotg! ajz: :usity, ion.

[^16]

Figure 1
Distrioution of Fail:ire $\overline{\text { Precenney }}$ witn Oper=土ian Tinet --

Figure 2

Hyfothctical Diztrioutic:.

 nostr ai with extrenu: viriance, rianes : \rightarrow. \cdots

 seached. S:ic: pists :
 © ©

certainty that spares providnd will be adectate; what mus: be cione is to specify the orcicr of prubability of acicquacy that is requirec. The probability may be as closc to unity as desired, but high probdiaiity can be obiained only a: consicierab!e cust.

The object of this papcr is to indicate an approach to spare paris pulicy and the means of implementing ti. To accommodate botla the general and tie mithematical reader, the yaper is divided into thrce parts. Part ! covers the subject in a gencrai way, with minimam mathematics. It nay be read separately, and is an introduction to Part ll. Par't ll derives a mathematical siatement oi spare parts etopiremen: where falure rates are exponcintiat, erres the mathematicai problem of opimizaticn, and gives a concrete example. Part ill is a non-mathematica: evaltation of the approach outiined, inclucing incicat:ons of how it :aight be exiended. and the golicy mplications for milutary spare parts procurciment. This part is of gencral. interest.

2. Probabilistic Internettation of Spare Requiremenis

2. 1 Gencral.

To deterinite the numiocr of spares required sos any assurance oi adcquacy what is . necded is a disiribution that desceibes probabila iiy of tailure of a component, the innc period for which spares are to be provicied, and the aceeptable probibility o: adeçuacy. As shown in Part Il the provability oi adecincyuasimaction oinumber of siares is a Poisson distribution, when the ixilueceishributionis exponcrital. The wide use of the cxiponenial failure distitituion in the retatrity riveratet gives wis 50 Finularest sveria. in.potince, and itis patifulariy casy to werk with. Fiven wh:re ite cist:ibution is not cxporerati probabilit: oi adequaty can be deterri:rca, as is illusiratud below.

2. 2 Exampic.

Assume the following:
(a) There is an or:ginal part and one spare to be wese scquentiaily.
(b) Thee sime reoiabitaty dist:ibution aprites io the ceteital and the spare. The protab:diy of iadure oi the part is O. J a: hour C. C. 3 at a : L. C.i
 si:zel!cit;, fotilute ist vther times 15 assurit d not ic eceis.
(c) The spare is adequate if tine sum of lifetimes aetuiliy experienced b: the original anci the spiare excereds the requirtci time of operation.

Assume one spircis on tand. Tice problem is to find the probabiliiy distritus:on that either the original or the spare will be opc:ab:c at $0,1,2$, elc. hours.

Table I gives all possible outcomes. For examplc. there is a 0.2 probibility that the original will last exactly infec hours, ard a 0.3 probability that the spare will last one howr. Thus. there is a 0.00 probibility attacied to the three-one entry in the table. All other box entries can be calculated in the same way.

Table 1
Probability of Component and Spare Failing at Ccrtain Tirizes

Hour of Failure of Spure	Hour of Failure of Original			
0	0	1	2	3
0	0.01	0.03	0.04	0.02
1	0.03	0.09	0.12	0.66.
2	0.04	0.12	0.16	0.09
3	0.02	0.00	0.08	0.04

Next, consider the ways in which failure at a certain exact number of hours can uccur. i: four hours is taken as an example, lirece hours for the origina! plus one nour fo: the spare wi: $:$: satisfy the requircment, as cocs the l-o:iginal 3-sparc case and the 2-oricinai 2-sparecasc. The probabidity of iailing at exuctly iour iours is $0.06 \div 0.06 \div 0.16=0.23$

Similarly. the probability of operatirs a: least four hours can bu caiculized. In Table It. the results fos all possiblc tirnes are prisented. The result is a probijiilty distribution winict. relates time to assurance of adeciacey.

The last column of Table ll giocs the probability of not zunning out whe ee there aze no spares. The difference between the lest iwu columins gives the increment of assuancerore

 regarciless of the mu:nber oi hours oi couration. This cumpazison cuuic be exte:ided to: two c :

Table II

Probability of Adequacy for a Kit Composed of a Single Spare for Specified Periods of Time

Hrs. (H)	Possible wiys of achieving adequacy	Pr. of running out of spares at exactly H	Pr. of running out not later than H	Pr. of not running out by H	Pr. of not cunning out by H if no spare is provided
0	0, 0	0.01	0.01	0.99	0.9
1	1, 0; 0, 1	0.06	0.07	0.93	0.6
2	2, 0; 0, 2; 1, 1	0.17	0.24	0.76	0.2
3	$\begin{array}{llll} 3, & 0 ; & 0, & 3 \\ 2, & 1 ; & 1, & 2 \end{array}$	0.28	0.52	0.48	0.0
4	3, 1; 1, 3, 2, 2	0.28	0.80	0.20	0.0
5	3, 2; 2, 3	0.16	0.96	0.04	0.0
6	3. 3	0.04	1.00	0.00	0.0

more spares, but the mathematies would be tedious without an electronic computer. With the exporiential failure disiribution, the resuit can be obtained direc:ly from the namber of spares. using tables oi the poisison dis:ribution.

3. Optimiza:ion of Desien of a Spare Parts Fit

The probability of adecquacy of stares can be increased, with unity the unattainable limit, by increasing the number of spares. However, high orders of assurànce are expensive, because with almost any component failure distribution or equiprient design, tise increased adeciaacy achievable with ar additional spare becomes very small as the number of spares becomes large. Determining the number of spares for a single component, given the fatiure rate, is merely a matter of specifying an acceptabic probability of acicquacy on the basis of operational considerations and cost.

Where a spare parts kit provides for many differert components, faiiurc of any one of which rende:s an ectipment inoperative, ine problem is moze comitex. The obiective of selecting spares is a certain assurance tiat the equipmen: will nc: become inoperative due to shortate of sparcs. In a simple scries system this equipment assurance is the product of the assurances ior cacia part. The essential citece-
 are many posstive combinations ot spazes that will mect any: efrcined assutance of adequacy.

An example may be in order: If, for a system composed of two "black boxes", an assurance of 0.5 is desirect for a ki: of spazes. any combination of assurances fc: inciviciuai black boxes, the product of which exceecis 0.5 . will meet the requ:irement. One spare ior A may mean an assu:ance of 0.7 that the:e will Ee an operating "A" unit availabic. Oae spare ! n : B may mean 0.6, two spares 0.3, thaet spates 0.9 , four spares 0.95 , ctc. To meet the 0.5 criteria, at least two sparcs for B appca: :o be needca. Note, howeyer, that conceivably the spare A could be droppod, and the criterior still met by increasing the nunbers of spare $\mathrm{B}^{\prime} \mathrm{s}$.

Because of these relationships, some additional cri:erion must be used io choose among pessible kits. Minimization oi mitial purchase cost is gene:ally quite imporiant, and will be used as the acditional crite-ion io: t:lustration. Cosi is easity de:ermince trom the quantities and unit p:ices oispazes, ane witin this inio:mation the cos: oi a kit ca: be ucte=mined. Many othe: c:iteria are posstbie. fo: example: least weight $0=$ volume; m:nim: $: n$ dela : in availability; likelihooc oideter:0 ation in storage; to:al cos:, inciucing acal:s:i:0r.,
 ing a combination of desirable quaitites.

4. Theorctical Rasis for Sclect:on

Fortunately, it is not necessafy to priee cut every possible kit of spares to determ:ac
‥ll have lpast cost for any assurance aty. A simple rile is available :o -uba, derived from the mare:nel maliar in econornics. ${ }^{2}$ This rule has . .be of pointing a way to' 2 simple comp-- piroach so tha: determination of the -t of spares requizes no more than a -.uter.
.....inerital in this rule is the idea that . .11: spares, it is possible to buy assur wilability. The assiarance ior an \therefore spares both sor n spare units of A, - \because irre units is calculated. A zatio of the . 1 d of assurance $\left(P(n+1)-P_{n}\right)$ over the \therefore Aspare A maj be called the "marginal_ . .ir" due to the $n+1 s t$ spare of λ. Under
, sidsunable assumptions, marginal assu:....A tisclinirg function of the numbe of . : i's as shovin in Figure 3, approaching tile .. . sy:nptotically.

Figure 3
Marginal Assurance as a
Function of iimmber of Spares

[^17]spares arc provided at all. Similar perpositions have been used ir ecoromies: the thecry of production contaits irtiresting paralicls.'

An irtuitive proof may be sta:ed briefy as follows: Suppose we omit a spare of toic A, reducing assurance of the eritioc sit by \searrow : ${ }_{3}$. and reducing expenditure by ΔC_{a}, urice C_{a} :s the cost of a spare of type A. (The value of Pa depends or numbers of spare B's, C's, etc.l If it were possitie to buy spares of B, C. eic.. with the suma of money, ΔC_{a} in such claritit: ti:at the assurance was increased by more tiar. ΔH_{2}. the kit (betore the change) uas not optimum.
This is so because a better cae could be foand tor the same moncy. Lf no improvemert werc possible, the kit was optimum. Thus a coricition of optimality is that for all parts for which ary spares are provided at all.

$$
r=\frac{\Delta P_{a}}{\Delta C_{a}}=\frac{\Delta P_{b}}{\Delta C_{b}}=\frac{\Delta P_{c}}{\Delta C_{c}}=\ldots
$$

For any value of r there is a corresponding assurance for the entire kit; the level of assurance and rare function:ally related. As wili be shown in Part ll. by working with logazitins of probabilities the optimum can be founa quite easily.

The computational method is bascd on a comparison of marginal assuances fo: suazes. In gencral, to select a value of kit protabila! \because, and derive from it the corresyc:cing value of r requires excessive corrputation since paratereters associated with every type oi spare enter into :ae relationship. it is more practicable to sedect a value of r arbitrarily and work out an opt:mum kit for some assurance not krown in advance. Given the basic parameters -- failure ristes, numbers of components, thei: prices anc number of operating hours required - coneputation is very simple with availabic tabulations oit tie Paisson distribution, li a certa:n kit assurarce is desired, the proper value oi rian be deter. mined by a numbe: of suceessive calculations.

II. MatMEsatICAL STATEMENT

5. Hacherentira! Solution of Pro!! 1em

S. 1 Hethematical Statement of frolilem.

The problem is to determine the number of apare parts of each type required to pive any apecified essuratice of continued operation of a complex ayatem during a given period, at minibun cogt tor operes.

Specifically, the equipment is to function t. hours. During tha: period each of $C_{i,}$ essential components of eype t will receive t_{j} hours of use. $J=1,2, \cdots, a_{i}, 1=1,2, \cdots, k$. A aingle unit of type i costing c_{i} dollers has an exponential life distribution with failure rate per hour of $\mu_{i}, i=1.2, \cdots$, . Independence of componeat Iailures is assumed. If n_{i} spares are initially provided for ifpe 1 , the cotal cost of apares is

$$
c=\sum_{i=1}^{k} c_{i} n_{i}
$$

Ko replenisl:-ent of the spere parta suiriy is possibic after the plecenent of the equivment in the field. Hhat choice of $(n)=\left(n_{i}, n_{i}, \cdots, n_{k}\right)$ -ill jield assurance \geq a of sysem surviral at minimum cost C?

5.2 Derivation.

First ve show that the number of apares of component type i consumed during the t_{0} hours is Poisson random variable vith paraceter

$$
\lambda_{i}=\mu_{i} \sum_{j=1}^{n} d_{i j}{ }_{j}
$$

Several lemas ere needed:

Lempr A.

If components having the common life density men $^{-\boldsymbol{H}^{x}}$ are operacing simultaneously, then y, the time of zlie first faijure hes a density of $d_{j} C^{-d_{i}}$

Proof

$$
P[Y \geq t]=\left\{\int_{t}^{\infty} \mu e^{-\mu z} d x\right\}^{t}=e^{-d \mu t}
$$

Hence che dewaity of Y is $d \mu e^{-d \mu s}$.

Leman B.

If $X_{i}, i=1, \cdots, n$, are independent random veriables vith density
$f_{x}(x)=\mu e^{-\mu^{x}}, x \geq 0$ then $s=\sum_{i=1}^{n} x_{i}$ has deasity

$$
\begin{equation*}
f_{s}(s)=\frac{\mu^{n} s^{n-1}}{(n-1)!} e^{-\mu} \cdot \geq 0 \tag{1}
\end{equation*}
$$

Proof
Let $\mathrm{C}_{\mathrm{i}}(t)$ be the characterissic function of X_{1}.
Then

$$
\phi_{i}(t)=\int_{0}^{\infty} e^{i \equiv t} \mu^{-\mu^{2}} d x=\frac{\mu}{\mu-i t}
$$

Kence $\nabla_{f}\{t)=\frac{\mu^{n}}{\left(\mu-\{i)^{n}\right.}$ the characteristic function of (1). O.E.D.

Designate those units of type t required to aurvive $t_{i j}$ hours as being of subtrpe $1, j$. The prolabilicy that the number $f_{i j}$ of subtype i, J consumed durine the t, hours of use $\leq n_{i j}$ is. b Leman A and Letema B:

$$
\begin{align*}
& \int_{i j}^{\infty} \frac{\left(d_{i j} \mu_{i}\right)^{n_{i j}}}{n_{i j}} e^{-d_{i j} \mu_{i} s d s} \\
& \left.=\sum_{i=0}^{n_{i j}} n_{i} y^{\prime}\right) H_{i j} \mu_{i} l_{j} j^{m-d_{i j} \mu_{i} s}
\end{align*}
$$

(See Nood ${ }^{4}$. for the justification of the lase equarion.) Thus we have

Leirn. C.

$\boldsymbol{M}_{i j}$ is a Poisson variate vith parameter
${ }_{i j} \mu_{i}{ }_{j}$.
Next mote that

$$
\begin{equation*}
y_{i}=\sum_{i=1}^{a_{i j}} \mu_{i j} \tag{3}
\end{equation*}
$$

where n_{i} is the sumber of spares needed for cype l. Then it follows char:

Theoren A

$$
\begin{aligned}
& f_{i} \text { is Poisson variate vith parameter } \\
& \lambda_{i}=\mu_{i} \sum_{j=1}^{m_{i}} d_{i j} t_{j} \text {. }
\end{aligned}
$$

The probability $P(n)$ of aystem survival is

$$
P(n)=f\left[P_{i}\left(n_{i}\right)\right]
$$

The nacure of the fuaction f is dictated by the aaner in wich equiprent operacion is affected by failuie of any of the parts. If all parts must eperate for the equipment to operate, and all parts are independent.

$$
\begin{equation*}
P(n)=\prod_{i=i}^{k} P_{i}\left(n_{i}\right) \tag{4}
\end{equation*}
$$

shere

$$
\begin{equation*}
\left.P_{i}(n)=\sum_{i=0}^{n}\left(\lambda_{i} \prime_{z}\right)\right) e^{-\lambda_{i}} \tag{5}
\end{equation*}
$$

le will need

Lemm D.

$$
f(n, \lambda)=\lambda^{n+1} /(n+1) \prime / \sum_{j=0}^{n} \lambda^{\prime} i j!
$$

is etrictly decreasif: function of n for all ג. >0.

Prool. Consider $f(n, \lambda)-f(n-1, \lambda)=$

$$
\left\{\left[\lambda^{n+1} /(n+1)!\right] \sum_{j=0}^{n-1}\left(\lambda^{j} / j!\right)\right.
$$

$$
\left.\left.-\left(\lambda^{n} / n!\right) \sum_{j=1}^{n} i \lambda^{j} / j!\right)\right\} / \sum_{j=0}^{n}\left(\lambda^{j}, j!\right) \sum_{j=0}^{n-1} \quad \therefore \therefore^{\prime} \cdot
$$

Thus $(n, \lambda)-\boldsymbol{f}(n-1, \lambda)$ has the same sign as

$$
f(n, \lambda)=\lambda \sum_{j=0}^{n-1}\left(\lambda^{j} / j\right)!-(n+1) \sum_{j=0}^{n}\left(n^{j} j j!\right)
$$

Next note that

$$
\begin{aligned}
\frac{d f(n, \lambda)}{d \lambda} & =\sum_{j=0}^{n-1}\left(\lambda^{j} / f!\right)+\lambda \sum_{j=0}^{n-2}\left(\lambda^{j} j j!\right) \\
& -(n+j) \sum_{j=0}^{n-1}\left(\lambda^{j} / j!\right)=\lambda \sum_{j=0}^{n-2}\left(i^{\prime} i^{\prime} j^{\prime}:\right. \\
& -n \sum_{j=0}^{n-1}\left(\lambda^{j} / j!\right)=f(n-1, \lambda) .
\end{aligned}
$$

Now $f(1, \lambda)=\lambda-2\{1+\lambda\}=-2-\lambda<0$ for $\lambda\rangle$ (.
Also if we essume

$$
f(n, \lambda)<0 \text { for } n=1,2, \cdots, n_{0}-1 .
$$

then

$$
\frac{d f\left(n_{0}, \lambda\right)}{d \lambda}<0
$$

for $\lambda>0$.
$f\left(n_{0}, 0\right)=-\left(n_{\theta}+1\right)<0$.
Thus
$f\left(n_{0}, \lambda\right)<0$ for all $\lambda=0$.
Thus, by induction.
$P(n, \lambda)<0$ for $n=1,2, \cdots ; \lambda>0$.
H8:- \cdot
$\theta(n, \lambda)-6(n-1, \lambda)<0$ so that (n, λ)
is etrictly decresinf function of \cap for
$n \geq 1, \lambda>0$.
Q.E.i:

Next ve oltain the optirat set i.:.....
Be rish to mitimite C for $n \geq 0$.
$1=1.2, \cdots$, and $P(n) \geq a$.

Eguivalently, ve ant to minimize c for $n_{z} \geq 0$.
 (since losf is monutonic function of f^{\prime}). Define $R_{1}=\log F_{1}$. Then

$$
R=\sum_{i=1}^{k} R_{i}
$$

Also define

$$
\begin{equation*}
\Delta n_{i}\left(n_{i}\right)=R_{i}\left(n_{i}+1\right)-R_{i}(n) \tag{6}
\end{equation*}
$$

Lerma 1.

$\frac{\Delta R_{i}}{c_{i}}$ is estrictly decrcesing function of n_{i}.

This follows immediately from lemme Dince losij $4 \boldsymbol{u}$ is atrictly increasing function of u.

Procesure !c: Ni:sainin: (Motiria! (n).

To obeain the marimum cost function of
facily of system redialilities elong with the
correspoidisg optimal (n), we proceed as follows:
te pick value $r>0$. For those t auch that

$$
\frac{\Delta R_{1}(0)}{r_{1}}<r
$$

ve set $n_{:}^{\prime}=0$; for the rentining 1 , we set $n_{:}^{*}=1 a r g e s t n_{t}$ such that

$$
\begin{equation*}
\frac{\Delta F_{i}\left(n_{i}\right)}{C_{1}} \geq r \tag{7}
\end{equation*}
$$

Sist corpise $P(r$ * $)=$ air). say. The following theorea s!ows (r^{*}) is optimsl.

13enre-f:
-
$\left(n^{*}\right)$ Pinsubses $r(-)$ asiong set. (n) for wich ilri $\geq 2\{r \mid$.

Bu,

Suppose $n_{i}>n_{i}^{*}$ for t in $l_{1}, n_{i}<n_{i}$ for t in I_{2}; where J_{1}, I_{2} are sulisets of \{1,2, $\left.\cdots, k\right\}$. Far l in I_{1}.

$$
\frac{\left.\Delta R_{i} n_{i}^{0}+j\right\}}{c_{i}}<r \operatorname{lor} j=1,2, \cdots, n_{i}-n_{i}^{*}
$$

since

$$
\frac{\Delta A_{i}\left(n_{i}\right)}{c_{i}}
$$

is decreasing function of (n_{i}). Thus

$$
\begin{align*}
& \Delta R_{i}\left(n_{i}^{*}+f\right)<r c_{i}: \\
& \operatorname{for} \operatorname{tin} I_{1}, J=1,2, \cdots, n_{i}-n_{i} \tag{8}
\end{align*}
$$

Similarly, for \boldsymbol{f} in I_{z}.

$$
\Delta R_{i}\left(n_{i}^{*}-j\right)>r_{i}
$$

$$
\begin{equation*}
\text { for } t \text { in } J_{i}, J=2,2, \cdots, n_{i}^{\bullet}-n_{i} \tag{9}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \sum_{i i n I_{1}} \sum_{j=1}^{n_{i} n^{n} i} \Delta f_{i}\left(n_{i}^{*}+j\right) \\
& \left.-\sum_{i \operatorname{in} I_{i}}^{n_{i=1}^{i-n_{i}}} \sum_{i P_{i}\left(r_{i}\right.}^{i}-j\right)<r \sum_{i \operatorname{mi} I_{i}}\left(n_{i}-n_{i}: r_{i}\right.
\end{aligned}
$$

$$
-r \sum_{i t 1 J_{2}}\left(n_{i}^{0}-n_{i}\right)_{i}=r \sum_{i+1 J_{1}, l_{2}}-n_{i}
$$

Thes

$$
\begin{aligned}
& =r\left\{\sum_{1=1}^{t} \ldots-\sum_{1=1}^{1} \ldots\right\}=-\{+\cdots, 1-\cdots+\}
\end{aligned}
$$

Since

$r>0, c(n)>c\left(n^{*}\right)$.
C.E.D.

Now repeat the athove procenture for range of values of r. In each case, compuce $c\left(n^{*}\right)$ and plot it as a function of a!r). The resulting curr repreacnts minimum spore parts cost as a funcion of essurance of adcquocy of the spare part kit.

5.3 Conputation.

The computation is rapid since the required Poisson prolalilitics are tabulated. An appioximation which may be used to speed the calculation is

$$
\begin{align*}
\Delta R_{i}(n) & \sim\left[\lambda_{i}^{n+1} /(n+1)!\right] e^{-\lambda_{i} / P_{i}(n)} \\
& \sim\left[\lambda_{i}^{n+1} /(n+1)!\right] e^{-\lambda_{i}} \tag{10}
\end{align*}
$$

The laticr expression is tabulated by !lolina ${ }^{5}$.

As k increases, the amunt of computation increasea in atrictly lituer fashion. Thus for any actual sustem involving hundreds of essential compotienta, desk calculating machine compuration is feasille co gencrate $\boldsymbol{\eta}^{*}|a|$. and
c(n⿻) for a range of acs.
3.4 Fxample.

Consider the followirg problem by way of illustration. A Liff receiring aystem and alff receiving system are to le placed in che lield. The expensive essen:ial cules in the two systens are deseribed in Talle III.

Curing the period of opretion in the lin: C . the tlif tubes are scheduled for $t,=2000$ hours of use and the Viff tubes are seliciduled fur $t_{2}=13000$ hours. issuming on exprot acial life distribution for cech of the tube types with failure rate as shown aliove, and assuminm indi. pendence of operation of the tuites, find an optimum allocation of spare parts ior various levels of assurance that the systen will not rim ${ }^{-}$ out of apare parts of the four tube typcs.

First computc the experted numler of spares of each eype used during the period

$$
\begin{aligned}
& \lambda_{1}=1 / 2500(4 \cdot 2000+4 \cdot 13000)=24 \\
& \lambda_{2}=1 / 4000(2 \cdot 2000+5 \cdot 13000)=17.25 \\
& \lambda_{2}=(1 / 800) 4 \cdot 2000=10 \\
& \lambda_{4}=(1 / 6000) 2 \cdot 5000=0.67
\end{aligned}
$$

Next sonexitat arbitrerily select $n:=34$. Let

$$
\beta_{1}(x)=e^{-\lambda_{1}} \lambda_{1}^{x} / x!
$$

This determines value for

$$
r=\frac{1}{c_{1}} \log \frac{\sum_{x=0}^{n+i s} \beta_{1}(x)}{\sum_{i=0}^{n} A_{1}(x)}=1.3 i \times 10^{-5}
$$

With

$$
\beta_{1}(x)=e^{-\lambda_{1}} \lambda_{1}^{n} / x!
$$

TABLE III

1	Tul.e iype	μ_{1}. Failure Rase Per Hour	Ci. Cost Per Tube (()	$A_{1,}$ Number In I? 1 F	
1	Radechon	1/2500	240	4	4
2	liemotron	$1 / 4000$	1025	2	5
3	Carcinatror	$1 / 800$	1158	4	0
4	THT	1/6000	750	?	0

$\because \quad \because \quad \therefore$ c fielit riife ith indean ious not 5 ul.
 - spires F 25

25
: In
we then find n_{z}^{*}, the largest value of n_{2} auch that

$$
\begin{gathered}
\frac{1}{c_{2}} \log \frac{\sum_{x=0}^{n_{2}^{*}+1} A_{2}|x\rangle}{\sum_{2=0}^{n_{2}} A_{2}(x)} \geq 1.37 \times 10^{-3} . \\
n_{2}^{*}=22 . \text { Similarly } n_{3}^{*}=14 \text { and } n_{4}^{*}=2 . \\
\text { from } n_{1}^{*}, n_{2}^{*}, n_{3}^{*}, r_{4}^{*}, \text { we compute }
\end{gathered}
$$

$$
P\left(n^{*}\right)=\prod_{i=1}^{4} \sum_{i=0}^{n} e^{-\lambda_{i}} \lambda_{i}^{*} / x!=0.78
$$

$P\left(n^{0}\right)=\prod_{i=1}^{4} \sum_{i=0}^{n+} e^{-\lambda_{i}} \lambda_{i}^{0} / x!=0.78$
and

$$
c\left(n^{0}\right)=\sum_{i=1}^{4} c_{2}^{n}=\$ 01.450
$$

Assurance versus Minimum Cost

Thus to atain 0.78 assurance at minimum cost of having sufficient spares we should stoci 34 radechons, 22 memotrons. 14 Carcinotrons, and two THT's. The cost of spares is $\$ 51,450$.

By laking $n^{*}=32,36,38,40,44$ and proceeding in a similar fashion, the other points plotced in Figure 4 car be obtained.

This curve shows the relacionship betceen assurance of adequacy of sparcs and cost of an optimum kit. Once a few points have been calculated, it is possible to interpolate, and cstimate the value of r corresponding to specified ievel of assurarice. Thus, byone additional calculation, the optimum lit for any specitied level of assurance can be determined.

iII. APPLICATION OF ANALYTICAL RESULTS

6. Application

A straightforward approach is available, by means of vihich an optimum spare parts kit can be selectec, given basic datia and a sufiicient statement of the problicm. The approach, which is related to the marginal analysis familiar in economics, is mathematically valis, can be handled comp:ationally by desk calculators and available tables of poisson cistribution, and yjelds resuits of practical consequence.

It will not escape attention of those familiar with operations rescarch literature that the spare parts froblem is an inventory probiem. ${ }^{6}$ This raises the question of how this model fits into the gencral framework of inventory theory.

In answering the question, it is well to recognize two distinct parts oi the model. The first part ceals with the mectianism by which demand for spares is created. Because failure rates for electronic prarts are predictabic, ntans do exist for a priori prediction of cemaridi most inventory models take comand functions as given.

Given a demand function based on a probabilistic statement of spares rcquirements, the remainde: of the model is simple, involving a single supply period. No a:teation has been paid to storage cost or reorier cost, and instead of a penilty function for shortafe, a permissible probability of shortage has been stated.

The demard function can be changed without changiag the metiod of optimization. For example, an exponential failure cistribution need not be uscd, although, as most available failure cata a:c bascd on it, usually it will be a reasonable assunspiton. Also, exponential failure distribu:ions permit use of the very convenient foisson distribuiton. Lf computers are available, use of a more complex iailure curve, perhaps reflecting a high failure rate for the break-in period, a iong geviod of constinntiailure, and a "no:mal" portion ceriered aroura the wearout period, would be practisal. While such appoaches =epresent meamretil refincment, the scieritioc valtaity of the exponeritial dis?ributio: should not be overlooked.:

The second part of the model relates to the objective sunctic: opt:mized. In tise present moriel, assesancc ot acrebiney of the litt t.as been maximized. In other weterments, datierunt objcctive iunctions buve bewn ontarated. For example, du: and C-sicta, thane Govery:i, a opimize (:nmmize) expected "weighted shortage".

An appealing feature of the model and method of optimization is that it is usable wathes: any particular training, with widely availubic tools. Therc are no insurmountabic ciffickilies in extencing the method to iarger sys:ems n:ooting hundreds of types of parts. The amount of calculation is not as formidable as appeas. The same basic calculations can be used ove: and over again, in the same system and it cififerent systems, if a marginal appzoach is used. This point may be further explained: while there are many incividual parts in elecironic systems, they fall into a much smaller number of ciasses. Often all paris of one class (deposited cartion essistors, for example) will have the same faiure rate, the same unit paice and the inc:ementat values of log assurance diviced by un patee wil: be the same. Thus, one set of caic:-ations w.: do for the entirc class. For systems ismeng:o approximately 200 classes of parts. Xolina's table is satisiactory.

Crucial in application of the methoc: described is the avalajbinty of adequat data a component failure rates. $R \mathrm{CA}^{33}$ and Vitan^{14} cata can be used. Fortunately, because compoacnt failure ciata are needicd in estimates of sysiera rcliability, a great deal oi effort is gotrg rato their collection. The quantity and cuality ate steadily improving. Their use in es:imatina spare parts requirements represents a turtec use, and an add:tional justification io: ins:itu:- ? a well-conceived field reliability $p=0$ gam of collecting failure rate data.

7. Implications for Spare Par:s Poitc:

Recommencations fu: procuremer: frile for spare parts for experimental ceupment aze su, sted by the analysis in this paper. The
 be recognized in specifications and some prei..bility .- less than unity -- shocid be exp:ic:: : stated as the objective for selection of serev. The buyet ot spazes should spectiy grounc :-i:? such as period of opisation, anc some agro..: : $\because:$ must be made, basced on mannc: ci operis:ct. :the component failure rates to use.

A change in the manner of procustres s: ats
 tractor can determine :he :o:ai bact. \because : © : : $=$ until gronard rates are estabismed, o: : : : : : :
 mated. \#ith deveiojmentia ©4t.gnteri, :!:
information is no: momaily available until the program is well indicr way. A contractor who guesses at spares requarements without thorough preliminary onalysis, is extending himself considerably. H. can either budget a ceriain sum for spares -- - rhaps using the faminar rule of 10 per cen: of tie cost o: material -- or if it is possible to posinone detcem:nation of the cost of the kit, he cin agree to sufpiy an op:imam kit for a specificd level o! adçuacy. De:elopment contracts recuirang spares might maicate one of these alternarives.

A better approach would be to reciuire the contractor to calculate the =elationsh:p between cost of op:imum spere pu:ts kits and proucbility of adequacy. These calculations would follow the proceduze outlined in thes paper, and the resulis would be a cost-assurance curve. From the results, decision as to that point on the curve representing the best baiance between cost and adequacy could be made, and a contract fo: spares negotiated.

Although not fully discussedin the body of the paper it appears irom inventory theory that the restriction of syare paris suppiy :o one stocking feriod $\because . .2$ siaitiomes je iatesior to a multiple stocking program. If spares ase initially supplied for a po:tio: ot tire period of operation, and an inventc:y of rematnisg spares is taken toward the end oi the portion oi the peziod -- this being the bas:s for recroestag for the next period -- lewer speres mist be bought to muintain continucusly a given probability of aderquacy throughout the life of the egripment. Uncer a multipie fian, a coniracter would supp!y spares for a limited parioc, recorcs would be kept of use of spares, wrich weuld be replenished at egular intervals. An analytical determination of an optimum plan probably would be the contractor's respons:bitity, anc he would be expected to determine the op:tinin reorde: perind, make corfec::0ns in failure rates based on field experience.

In summary, the whole matte: of spare parts policy is wo:th an analytical tecatment, and analysis can result in stenticant improvement. Frocu:e:nent co::tacts ic: spares should bebascé on Euch an analyeis. As part of a deveiopment cilc:t. cur:-aciors shoulc be requestci to subiri: spare paris pians iot several aiternative ieveis oi assurance of acectacy. Since the aratysis is not possible until the torm

 spazes upon conciusion o the eveveloment citiort. The wese of :he fenerai ajproase to spare parts probicms. wsing component inilure rates, parts
population of a system, and a epecifice probabiaty of acicquacy as one criterion, the other being minimized cos: of some other cuality hias mush to recommend it.

The merit of a cosi-assurance curve as a guide for policy should not be ove=looi.ed. A zational ciecision as to the devei of assurance desited in a kit cannot be made without some reference to cost, and for a furchase of spares to pick artitrarily some suck fisciec as 0.95 is to shoot in the darik usenecessarily. It is feasible to make cost and assurance estimates for a number of values ot assurance, and to determine graphice ally a function relating assurance and cost as was done in Figure i. Since the iactors infiuencirg selection of a given assurance involve many factors not readily amenable to analysis, there is much to recommend postponing selecticn oi the value of assurance until stith a curve can be constructed.

8. Appendix -- Calculation of a Sjare Prirts Kit

This appendix gives de:sils of a step-bystep precedure for calcuiction of an essential epare paris kit. Tis proceciure can be tollowec by a statistical clerk u.tiont reficrence to the body of the repurt. A cesk calculator and a copy of Molina's "Poissons Exponentia! Bionmial Limit" are the on? ${ }^{\prime}$ necessary touls.

As a practical matter certain parts may be omitted from optimization because o limitaticas imposed by Moitra's table, or available ciata, because an exponential fallure rate canmot be assumed, or because, in enfincer:ng jucgment, these parts are not vital for rehabie operation.

Computation P:ocedure.

Establist Pecuirements. With user of spares agrec on:
(a) Period of time for whicis lie desires to be supplied with spares, and hours of operation intended tor each piece of equipment.
(b) Whether he requires: Maximum assurance (P_{s}) for a stated cost; Specificd assurance at a minimum cost;
A cost-assurance curve.
Estabis: Pur: Fon:arano Froparca

 wath a gitc: e: coup oi spates, List all
purts，but circle in red parts that accord－ inc：to cunincerine jucgment are not crscufidl for eelicbili：y ard onnit them from all calculation．（They natiy be sup－ plied on some ciher basis．）Determine prices of each lype of spare．

Fistallish Eainure Rates．Determine mei a tame br：wec！trainees i：onn agreed on sources．Bast on intensity of application where jertincrit．

Fecerd linforina：ion．Enter information From the first infee steps in columas 1 to 11 of a compatation sinect similat to Figure 5 ，following the instyistions below：

Column（l）Sequential numbering of the items．

（2）
and
（3）Short description，as necessary to identify．
Cridumn（4）If MTEF of parts depends on intens－ ity of use，zecord symbol identiiying intensity in（4）．Eor a piven corn－ ponent make seporate entrics fot each differine MTEF。
（5） $1 \div$ MTBE in hours，wh：ch is the failure ratc aptropriatc for inter：5：ty of application noted in（4）．
（6）Houzs cf anticipated use．
（7）Quantity in usc in all eq̣uipment， grouped accoiding to entries in （5）and（6）．
（8）For ail a component with the same MTBF multiply 5 by 6 and the result by 7 ．
（9）All α the entries in（3）for a particula：component should be added and entered in（9）．The result is the expected nuanjer of failures．
（10）Leare blard（temporarily）．
（11）Cost per unit，in collars．
Prelim：\quad ary Eci：ing．At this time determine wiat section of the essential fpites i：it is to of op！i：u：zed．AVailtole P lites wil：limit：compuiaiten i＝seveza Huscred itros．s，so th．at io：very lazec Y：t it is rir：iassible ：c ：ncl：ice all items． Hsing tive value of expected aurnizer of
failures in（9）multiplied by wnil cort（11） as an incieation o！im：portance，miそt a selection emittins components ior wiai－h the proiuct 25 below some value．ircicate items omitted by cireling in red pencil the entry in（9）．Enter in（10）the vilue a？？日a＝－ ing in available tables oi tic Poisso：a which is closest to the non－circied ertrics in（？）．

Calculation of a Trial vialue of r．Court k，the number oi pari ：\because pes jor witich spares are to be optimiexd，which siould equal the numbe：o！ertries in（10）．The manne：of determining a tria！r is as follows：Select a spaze o：impo－tinec Ee： which the experted numbt：r of fallures t：nes cost falls sore where in the micicle $=$ ange 5 ： such products．Calculate the kth root of the assurance（ P_{s} ）desiredior the rit，as establisheci in the first step．Nest，dete＝－ mine the number oi spares，n，necessary for an assurance for the seiected past sciaj： to P_{s} / k ．Use a table of legarithms．Uisat？ Molina，Table II，determine for his value ． of n

$$
p_{5}=1-\sum_{x=n+1}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x}
$$

（Note：In liclina - is iscedirstcad o？：， and a instead of λ ．）Ther．determine titu corresponding value of a ，which may be closely approxi：nated by：

$$
x=\frac{e^{-\lambda} \lambda^{n+1}}{(n+1)} \cdot \frac{1}{C}
$$

using Molina，Table I，for the Poisson term．（For values of P_{s} near uraty，thas is an approximation to loge accitionel assurante from then nth sparc．）Record： at the top oi（12）ard cisiculate C for cac： type by multiply：ne（il）by r for every far： class to be optimized．

Determine Numbezs of Siazesfo：Io：aiz．

 value of λ（called a in Miclinálinat acias a tabula ：ćntry i：st excesding the value e！ C_{r} in Coit：mn（12），Enter tins nunibu：is colurran（ 13 ）．

 of λ sire tean ：o：

$$
\sum_{x=n+1}^{x} \frac{c^{-\lambda} \lambda^{x}}{x}
$$

in colurnn (14).
Calculate Assurance of kit. Determine the probibility oi aciequacy uía kit compos of the number of spares noted for eacin item in column (13) as the antilog to base e of minus the sum of (14).

Calculate Cost of Kit. In column (15), enter tise product of price (11) times the quantity of spares in column (13). The sum of column (15) is the cost of the spares kit. Computation of one point on the cost-assurance curve is complete.

Compute Other Points on the Cost-discuannce Curve. If necessazy, hok anothe: vaile of Fand repeat the steps from Determining the Number of Spares for Trial I through the Calculation of Kit Costs, using a supplementary worksheet. Where a rarge of assurance is wanted, time spent looking up values in Molina's tables can be reduced by repeating steps for several values of y simultancously. After two or more points on a cost-assurance curve have been caleuleied, values of r for any particula assurance or cost can be interpolated by graphic examination of the cirve. In selecting a value of r, no:e that assurance and cost vary inverscly with x.

Account for Non-optimized Essertial Parts. Spare parts not metucied in the op:imization must also be supplicd. Ali such parts should be included so that the adequacy of cach type is at least 0.9999 , (qua:tity selected using Molina, Table Ii). Using the value of expected failures appearing in column (9), recori numbers oi spares required in (16). Calculate the cost of nonoptimized essential spates, using the surn of columr.s (17). ided this to cost of op:iraized spares to detemine cost of tota: kit oi essential ε pares. Calculate the projability of adequacy of non-optimuzed essential spares as agroup, which:s appreminatciy 1- (number of types supplied at the 0.0990 level times 10^{-4}). The prodiact of the probability times the probatility of adequary of the cpitmized epares is :otal essential kit probability.

9. References

1. D. J. Däis, "An Analy:is ot Some Failure Date:", du:: of imereicar. Siat. Assn., PP 113-50; june 1952.
2. F. Machlup; "On the Micaning of the :-lazgana! Product", in "Readings in the Theory oi Income Distribution', by Richard D. Irw:7. Anerican Economic Association, Evarston, Ilinois; 1948.
3. Sune Carlson, "A Study of the Pure Theor"; of Production", University oi Cricago Press. Chicago, Illinois; 1938.
4. A. M. Mood, "Introduction to the Theory of Statistics', MeGraw-Hill Book Company, New York, N. Y., 1950; p 11 f .
5. E. C. Molina, "Poisson's Exponential Binomial Limit", D. Van Nostrand Company, New York, N. Y.: 1942.
6. K. J. Arrow, S. Karlin, and H. Scarf. "Studies in the Matiomatical Theory of Inventory and Procuction", Staniord Urive:sity Press, Staniord, California; 2958.
7. Benjamin Epstein, "The Exporential Distribution and its Role in Lift Testing", Department of Mathematics, Wayne Siate University, Detroit, Michigan; May 1, 19 ± 8.
M. A. Gcisler and H. W. Karr, "The Design of Military Supply Tables", Oparations Research, v 4, no. 4; August 19 E6.
8. H. W. Kary and M. A. Geisler, "A freitiai Application of Static Alazginal Aralysis". Management Science, v 2, no. i: July 1956.
H. W. Kars, "A Me'hod of Estimating Spare Part Essentiality": Naval Eesearch Logislics Quarterly, 5 , no. 1, Marei 1950. p 29 (RAND paper F1064).
(11.) 3.1. H. Gourary, "An Optimum Allowence List Model", Niava! Research Logastics Quarterly, v 3, p 177: 195t.

M. H. Goura:y, "A Simple Rule for the Consolidation of ilicwance Lis:s", Sava! Research Losistics Quarteriy, V 5. no. i, pl. March liss.
9. "Reliability Siress Analysis for Electrone Equipment", RCA, TR-110C; November $2 \therefore$, 1950; Navships 900-123.
10. "Technioues for Reliabili:y Monsurcment and Preciction Based on \bar{F} :c: $\overline{\mathrm{F}} \mathrm{a}: \mathrm{L}=\mathrm{e}$ Data", Summazy Refozt, i:: $=0$ Laurejtories, Technical Repur: : : 0.

SPARES AND SYSTEMS AVAILABILITY

William J. Vanfien Bosch
Ronald D. Oglesby

ASQC Descriptors: $880,613,632,821,863$
Key Words: Availability, Analyses, Logistics, Maintainability, Predictions, Trade-Off Analyses

Abstract

An approach is developed to analyze the effects of different sparing levels on system availability. Important sparing parameters derived are: the probability density function of the system's availability; the time between restocking the spare supply; number of spares for a probability level that a spare will be availabie; the expected system down time due to lack of a spare; the number of spares for the lowest cost; and the average and minimum system availability. An example of the analysis of a system is shown to illus-t-ate the method. The approach presented in based on approximations using the Central Limit Theorem and its asymptotic properties. The authors feel that these approximations are accurate enough when one considers that this method will be utilized in the early phases of the system's life and that only limited, data will be available.

Introduction

At present, no simple methodology exists for the early prediction of system operating characteristics which is accurate enough for major parameter tradeOffs, can be applied without knowiedge of the detailed system parameters and is flexible enough to be applied to many different types of systems. During the early stages of the systen.'s life cycle there is a great need for a methodology to predict the following characteristics:

1. The probability a system is operating, either in the transient or steady state.
2. The probability distribution of the total operating timeduring a calendar time interval.
3. The probabilitydistribution for the number of failures and repairs which occur during the time interval.
4. The number of spares necessary to achieve an effectiveness goal.
5. The expected time the system is down due to no spares being stocked.
6. The effect of a sparing policy on the system's availability.

This information is required to perform the tradeoffs necessary for a system and cost effectiveness study. An approach to solving these problems is fresented in this oaper through the utilization of renewal process theory and its asvmptotic behavioral proferties. If the designer has this methodoiogy availatle to predict the life characteristics of the system, he on then estimate the following operating characterisdics of the system toevaliate conideting desigris: availability, mission reliability, operational readiness,
preventive maintenance and sparing policy, and total system life cycle costs.

This paper keys on two of these important system figures of merit, the availability and the sparing policy. It should be noted that characteristics $\|$ and $\$ 2$ pertain to the prediction of the availability of a system and characteristics $\$ 3,4$ and 5 pertain to the sparing policy.

Each of the above operational characteristics have been investigated individually in recent articles, and a few publications have combined them. Each of the operational characteristics can be difficult to predict. but when several are combined, the solutions have been obtained mostly by large scale costly computer simulat ions. The primary purpose of this article is to proyide a simplified approagh for determining the effects of sparing policy upon the sustem avaitabtity (charecteristic $\$ 6$ above). The approach presented does not require conpticateo calculations nor a knowledge of probability and statistics.

Availability and Sparing Predictions

Many authors (Refs. 1, 10-11, 13, 15) have provided techniques and solutions for the problem of predicting the availability of a system or groups of systems which undergo alternate operation and repair cycles. The operating and repair cyeles in these references are identical to system operating with an infinite number of replacements, where the repair time shown is actually a replacement time. The reader is referred to reference 10 which is a review of a number of methods used to calculate the system availability.

One of the major tasks in developing a support concept is the determination of the number of spares that an equipment will require. The importance of an adequate number of spares has long been recognized by both the Department of Defense and by private industry as a critical factor in determining whether or not operational requirements are met. Inadequate determination of spare parts can result in higher system and storage costs if too many parts are stocked, or in excessive down-time if too few parts are on hand. The questions that need to be answered are:

1. How many spares will have to be stocked In order to meet a desired probability level that enough spares are available;
2. How many spares need to be stocked to assure that an economic minimum of system down-time will occur?

Many approaches (Refs. 2, 4-9) to this problem have been presented and these are generall, ivided into two categories:

1. Those which make assumptions which limit the range and applicability of the technique such as sparing for the expected
number of failures, assuming a constant failure rate/poisson process or sparing a system based on only the total operating time.
2. Those approaches that require a computer simulation, which range from the simple to the very complex and sophisticated models, but require a computer program, a computer, computer time and available personnel.

Until 1971, there was not a convenient model for predicting adequate numbers of system spares which could be applied to a wide range of systems and could be used by the designer or others who do not normally have a statistical background. However, at the Reliability and Maintainability Symposium in 1971. MCNichols (Ref. 9) presented a paper which provided a simplified technique for determining the number of spares necessary for a system or groups of systems utilizing a prechosen probability level that sufficient spares would be available. The basis for this technique was the fact that the density function of a sum of independent randoin vbrtabtes oppreachec-the-nermal densticy puction, regardess of the type of denstty function each of the variables had. Using this fact, an asymptotic approximation proposed by Cox (Ref. 3) and Barlow (Ref. 1) and extensions by McNichols, a technique was shown which would provide an estimate of the number of spares needed for the prechosen probability level; for any type of basic process probability density function, for any of the process sequences shown, and for single and multiple sparing policies. This was possibie through utilization of the simplified tables, graph, and the step-by-step technique shown in this paper, along with calculations which are not complicated nor difficult and which do not require any knowledge of probability or statistical theory.

Oglesby (Ref. 12) utilized a computer simulation to verify the above procedure for certain sparing configurations. His investigation covered three systems with different probability density functions of times to failure. Vanden Bosch (Ref. 18) tested the technique both analytically and by simulation. Both found that the simplified technique provided accurate predictions for a number of differing probability distributions and sparing configurations.

The Approach

The approach presented in this article can best be illustrated by the development of an example system analysis using a combination of the techniques and results previousiy discussed. The example system has the following characteristics:

1. It undergoes an alternating failure and repair process following the assumptions from McNichols (Ref. 9) with mean time to failure of $1 / \lambda(\lambda=.1)$ and mean time to install spare of $1 / \mu(\mu=.5)$.
2. The spares are drawn as needed from a stock which is replenished every T hours.
3. The cost of a spare is $\$ 510$ each, the system down-time costs are $\$ 100$ per hour, the order cost is $\$ 25$ per order and the carrying costs are $\$ 1.157$ per spare per day.
4. The probability density functions are assumed to be exponential.

In the system analysis we desire to predict the following:

1. The expected system availability and the probability density function of the system availability.
2. The number of hours between restocking the spare supply, T.
3. The number of spares necessary for the system to last T hours with probability of $P_{1-\alpha}$.
4. The expected time that the system will be down due to lack of spares.
5. The number of spares which provide the lowest costs.
6. The average expected availability and the expected availability and the minimum expected availability.

Prediction of System Availability (Transient, Steady State, Interval

Sandler (Ref. 15) provides the solution for asstem with characteristics 1 and 4. This solution could also be used to describe a system with an infinite number of spares ($n=\infty$) where $1 / \mu$ is the mean time to install a spare in lieu of being repaired as in Sandler's solution. The probability that the system is operating at t, which is equal to the time dependent transient system availability, $A(t, n=\infty)$.

$$
\begin{align*}
& A(t, n=\infty) \\
& =\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu)} \quad \text { for } t \geq 0 \tag{1}
\end{align*}
$$

assuming that the system is operating at $t=0$. Eq. J provided the prediction of the expected system availability.

The probability density function of the system availability can be predicted using a result obtained by Takacs (Ref. 17). He proved that the total operating time, t_{0}, occurring in a system such as this during a total time period, t, was asymptotically normal with

$$
\begin{equation*}
\text { Mean of } t_{0}=\frac{\frac{1}{\lambda}}{\frac{1}{\lambda}+\frac{1}{\mu}} t=\mu_{t 0} \tag{2}
\end{equation*}
$$

and
Variance of $t_{0}=\frac{\frac{2}{\lambda^{2} \mu^{2}}}{\left[\frac{1}{\lambda}+\frac{1}{\mu}\right]^{3}} t=\sigma_{0}^{2}$
provided the variances of the probability density functions were not zero. We should realize that this is an approximation. However, considering the time frame during which these predictions are being made. it is felt that this approximation will be as accurate as the input data concerning the system parameters. from this result and the fact that an estimate of the system availability is

$$
\begin{equation*}
A(t)=\frac{\text { total operating time }}{\text { total time }}=\frac{t_{0}}{t} . \tag{4}
\end{equation*}
$$

Then at any point t, after several cycles have elapsed, the probability density function of $A(t)$ can be estimated by the normal probability density function with

$$
\begin{equation*}
\text { Mean of } A(t)=\mu_{A}=\frac{\frac{1}{\lambda}}{\frac{1}{\lambda}+\frac{1}{\mu}} \tag{5}
\end{equation*}
$$

and
Variance of $A(t)=\sigma_{A}^{2}=\frac{2}{\left[\mu^{2} \lambda^{2}\right]\left[\frac{1}{\lambda}+\frac{1}{\mu}\right]^{3} t}$
The time dependent expression for $A(t)$ (Eq. I) from Sandler can also be used with the variance of A(t) (Eq. 6) from Takacs in some cases to provide a better prediction. Calculation of the quantities discussed thus far provides

$$
\begin{align*}
& A(t, n=\infty)=\frac{.5}{.1+.5}+\frac{.1}{.1+.5} e^{-(.1+.5) t} \\
& =\frac{5}{6}+\frac{1}{6} e^{-.6 t} \tag{7}\\
& \mu_{A}=\frac{.5}{.1+.5}=\frac{5}{6} \text { hrs. } \tag{8}\\
& \sigma_{A}^{2}=\frac{2}{\left[\frac{(.1)^{2}(.5)^{2}}{\left[\frac{1}{.1}+\frac{1}{.5}\right]^{3}}=\frac{.4629}{t}\right.} \tag{9}
\end{align*}
$$

For example, at $t=56 \mathrm{hrs}$. , these would provide

$$
\begin{align*}
& A(t, n=\Phi)=\frac{5}{6}+\frac{1}{6} e^{-(.6)(56)}=.833 \tag{10}\\
& \mu_{t_{0}}=\left[\frac{5}{6}\right](56)=46.67 \mathrm{hrs} . \tag{11}\\
& \sigma_{t_{0}}^{2}=(.4629)(56)=25.92 \mathrm{hrs}^{2} \tag{12}\\
& \operatorname{Pr}\left[\mu_{t_{0}}-1.650_{t_{0}} \leq t_{0} \leq \mu_{t_{0}}+1.650_{t_{0}}\right] \\
& =\operatorname{Pr}\left[38.3 \mathrm{hrs} . \leq t_{0} \leq 55.07 \mathrm{hrs} .\right]=.90 \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{Pr}\left[\mu_{t_{0}}-1.28 \sigma_{t_{0}} \leq t_{0}\right] \\
& =\operatorname{Pr}\left[40.15 \text { hrs } \leq t_{0}\right]=.90 \tag{14}
\end{align*}
$$

Also,

$$
\begin{equation*}
\mu_{A}=\frac{5}{6}=.833 \quad \sigma_{A}^{2}=.00827 \tag{15-16}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{Pr}\left[\mu_{A}-1.650_{A} \leq A(t) \leq \mu_{A}+1.650_{A}\right] \\
& =\operatorname{Pr}[.683 \leq A(t) \leq .983]=.90 . \tag{17}
\end{align*}
$$

$$
\operatorname{Pr}\left[\mu_{A}-1.28 \sigma_{A} \leq A(t)\right]
$$

$$
\begin{equation*}
=\operatorname{Pr}[.717 \leq A(t)]=.90 \tag{18}
\end{equation*}
$$

These calculations provide several probability bounds for the total operating time (t_{0}) in 56 hours and for the system availability $|A(t, n=\infty)|$.

The average system availability (interval availablity) over the time interval, O to t, can be found using

$$
\begin{align*}
A_{1}(T) & =\frac{1}{T} \int_{0}^{T}(t, n=\infty) d t=A_{\text {ave }} \\
& =\frac{5}{6}+\frac{1}{3.6 T}-\frac{1}{3.6 T} e^{-.6 T}=.833 \tag{19}
\end{align*}
$$

In latter calculations, $A(t, n=n)$ will also be used in Eq. 19.

Restocking Interval

McMichols (Ref. 9) provides a method of finding the number of spares necessary to operate a work time of T hours with the probability of $P_{1-\alpha}(n)$ that enough spares will be in stock. The first quantity that must be determined is the restocking time period T. With a few simplifying assumptions, the economic order quantity could be obtained for our example as follows:

- 7.2 days $=72$ hours.
T - Reorder time in workdays
$C_{3}=$ Order Costs $=\$ 25.00$
$C_{1}=$ Costs to carry one spare for one day $=\$ 1.157$
$R=$ Rate of usage in days
$=\frac{\text { number of work hour/day }}{\text { Average cycle time }}=\frac{10}{12}=.833$
Where average eycle time $=\frac{1}{\lambda}+\frac{1}{\mu}=\frac{1}{.1}+\frac{1}{.5}$
$=10+2=12$
This would indicate that the spare stock should be replenished every 72 hours with constant demand with no lead time. Other inventory models based on a closer estimate of the actual situation could also be used.

Prediction of Number of Spares

Using MeNichols method (Ref. 9) to calculate the number of spares necessary for atal time of 72 hours with a probability level of $P,(n)=.75$, we find that the example system is identified as Class B. 2 and system configuration Type 1. His equations provide
$u_{p}^{\prime}=(n+1)\left[\frac{1}{\lambda}+\frac{1}{u}\right]-\left[\frac{1}{\mu}\right]=(n+1)(12)-$
$\sigma_{p}^{2}=(n+1)\left[\frac{1}{\lambda^{2}}+\frac{1}{\mu^{2}}\right]-\left[\frac{1}{\mu^{2}}\right]$

$$
\begin{equation*}
=(n+1)(104)-(4) \tag{22}
\end{equation*}
$$

$z_{1-\alpha}(n)=\frac{\mu_{p}^{1}-T}{\sqrt{\sigma_{p}^{2}}}=\frac{\mu_{p}^{1}-72}{\sqrt{\sigma_{p}^{2}}}$
Evaluating these equations, we find

$$
\begin{array}{lll}
\text { for } n=6 & z_{1-\alpha}(6)=.372 & p_{1-\alpha}(6)=.64 \\
\text { for } n=7 & z_{1-\alpha}(7)=.765 & p_{1-\alpha}(7)=.78
\end{array}
$$

Thus, 7 spares per 72 hours sparing eycle would be required to provide a probability level of .78 .

Expected Stock-Out Time

Another quantity important in the system analysis is the expected time that the system will be down due to no spares being in stock. McNichols (Ref. 9) states that the density function of the time of fallure of the last spare could be approximated by a normal density function with a mean of μ_{p}^{\prime} and a variance of σ_{p}^{2} shown above. This provides the following figure:

Figure 1 - Normal Density Function
From this, the expected stock-out time given a stockour occurs can be found to be:

$$
\begin{align*}
t_{s 0} & =T-\bar{t}=T-\frac{1}{P_{a}} \int_{-}^{T} t f(t) d t \\
& =T-\mu_{p}^{\prime}+\frac{\sigma_{p}^{2} f(T)}{P_{a}} \tag{25}
\end{align*}
$$

The expected stock-out time for the system with n spares in stock is given by

$$
\begin{align*}
& {\overline{r_{s 0}}}(n)=\left[t_{s 0}(n)\right]\left[p_{Q}(n)\right]+[0]\left[p_{i-\alpha}(n)\right] \\
& =\left[p_{Q}(n)\right]\left[T-\mu_{p}^{\prime}+\frac{\sigma_{p}^{2} f(T)}{P_{Q}}\right] \\
& =\left[p_{Q}(n)\right]\left[T-\mu_{p}^{\prime}\right]+\sigma_{p} f(z) \tag{26}
\end{align*}
$$

Where $z=\frac{T-\mu_{p}^{\prime}}{\sigma_{p}}$

Eq. 26 can be evaluated by using the tabies for the standard normal probability density giving the following results:

$$
\begin{aligned}
& \text { for } n=6, \bar{t}_{50}(6)=6.45 \text { hours, and } \\
& \text { for } n=7, \bar{t}_{50}(7)=3.67 \text { hours. }
\end{aligned}
$$

The quantities are the expected stock-out times for the system given a certain number of spares are stocked.

Combining System Avallabillty and Sparing Predictions

It should be noted that if a system does not experience a stock-out during this time period, 0 to t, the probability that the system is available is as shown for the case of infinite spares. However, if a stock-out does oceur, then at that point the system availability goes to zero and is no longer available during the period from which a stock-aut occurs to the time point T. If the system is spared with n spa... then the probability that the system will not be c due to lack of spares during this time period T $\left.{ }^{p}\right]_{-a}(n)$ which is the probability that stock-out does not occur.

First, let us confine our discussion to those systems which do not experience stock-out prior to T. The time dependent availability of these particular systems is the probability that the system is operating at t. This probability is actually a conditional probability, i.e., the probability that the system is operating given that the time of the $n+1$ system fallure, t ', is greater than T. Thus,
$A(t, n=\infty)=$ Probability that the system is operating given the number of spares $=$ -
(27)
and
$P_{1-\alpha}(n)=$ Probability that $t^{\prime}>T$ given n spares
Therefore

$$
A(t, n=n)=[A(t)]\left[P_{1-\alpha}(n)\right]
$$

= Probability that system is operating and t ' is greater than T with n spares.

For the example system:

Figure 2 - Values for Example System

Economic Analysis

The following type of information can now be calculated for our example system. The costs of the spares was $C_{s}=\$ 510.00$, and the equipment down-time due to lack of spares was $C_{D}=\$ 100.00$ per hour.

$$
\begin{equation*}
\text { Total Costs }=(n)\left(c_{s}\right)+\left(\bar{t}_{s 0}\right)\left(c_{D}\right) \tag{30}
\end{equation*}
$$

1. Probabllity that spare is in stock $=P_{1-\alpha} \geq .75 \quad n=7$
2. Minimum system availability $=A_{\text {min }}(t, n=n) \geq .70 \quad n=8$
3. Average system availability
$=A_{\text {ave }}(t, n=n) \geq .75 \quad n=6$
4. Haximum expected stock-out time

- $\bar{t}_{50} \leq 4.0 \quad n=7$

5. Minimum cost
$n=5$
A demonstration plan can be devised based on the availability density function.

Summary

It is felt that a person who has been struggling with the problems associated with sparing policy and with predicting the availability of a system, either in the early or middle stages of its life cycle, can easily grasp the benefits from a simplified technique such as this one. The approach is versatile and relatively uncomplicated.

References

1. Barlow, R. E. and Proschan, F., with contributions by Hunter, L. C., Mathematical Theory of Reliability, New York: John Wiley and Sons, Inc., 1967.
2. Campbell, H. S., Procurement and Management of Spares, Report No. AD 636 955, Rand Corporation, Santa Monica, California, 1966.
3. Cox, D. R., Renewal Theory, Longon: Butler and Tanner, Ltd., 1967.
4. Demmy, W. Steven, Allocation of Spares and Repair Resources to a Multicomponent System, Report No. AD 717710 , Air Force Logistics Command, Wright Patterson Air Force Base, Dayton, Ohio, 1970.
5. Doyan, Leonard E. and Hynes, Robert F., Techniques in Optimizing Spare Parts Provisioning, Report No. AD 886 269L. Raytheon Company, Sudbury, Massachusetts, 1967.
6. Ebel, G. and Lang, A., "Reliability Appraoch to the Spare Parts Problem," Proceedings: Ninth National Symposium on Reliability and Quality Control, San Francisco, California, 1963.
7. Holmes, A. E. and McQuay, W. S., "An Approach to Spares Quantity Determination." Logistics Spectrum, Vol. 3, No. 2, Summer, 1969.
8. Lientz, Bennet P., Stochastic Allocation of Spare Components, AFOSR-TR-72-0415, AD 737 450, University of Southern California, Los Angeles, Califorais._4972.
9. McNichols, R.J., Lynch, Herchel E., Morris, R. S., and Shreve, D. R., "A Technique for Determining the Number of Spares with a Prechosen Probability Level." Tenth Annual Reliability and Maintainability Conference, Annals of the Assurance Sciences, Anaheim, California, 1971.
10. Lyñh, Herchet forsystem Availability Predictions," Proceeding 1974 Annual Reliability and Maintainability Symposium, Annals of the Assurance Sciences, Los Angeles, California, January 1974.

- 11. Lynch, Herchel E., "A Standard Procedure for the Prediction of System Availability as Utilized in System Effectiveness Evaluations," Ph. D. Dissertation, Texas A\&M University, College Station, Texas, May 1972.

12. Oglesby, Ronald Dean, An Evaluation of a Sparing Technique to Determine its Applicability for General Use, Texas AEM University, 1972.

- 13. Rau, John G., Optimization and Probability in Sys= tems Engineering, New York, Van Nostrand Reinhold Co., 1970.

14. Roberts, Norman H., Maihematical Methods in Reliability Engineering, New Yorh:Mçraw-Hill, Inc., 1964.
15. Sandler, Gerald H, System Reliability Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1903.
16. Smith, Philip T., "An Approximation Procedure for the Calculation of Transient State Availability," Thesis, Texas AcM University, College Station, Texas, May 1970.
17. Takacs, L., "On a Sojourn Time Problem in the Theory of Stochastic Processes," Transactions of American Mathematical Society, Vol. 93, (1959), 531-540.
18. Vanden Bosch, William J. "Analytical Evaluation of a Sparing Technique Applicable During Early Configuration Development," Thesis, Texas AEM University, College Station, Texas, May 1974.

Biographies

Mailing address: Dr. Herchel E. Lynch USAMC Intern Training Center Red River Army Depot Texarkana, TX 75501

Dr. Herchel E. Lynch was one of the developers of the US Army Materiel Command Graduate Engineering Programs at the USAMC Intern Training Center, Red River Army Depot, Texarkana, Texas. Initiated in 1965 and 1969, these programs are in the fields of System Safety, Maintainability, Maintenance and Production Design. His Ph. D. and Master's were attained in Industrial Engineering (System Engineering and Analysis) and his B.S. Degree was in Civil Engineering (Structural Design), all from Texas AEM University. Since 1965, he has served in various teaching, research and management positions at the Center and presently is serving as Research Coordinator for the Center. In addition to his activities there, he has served on several Department of the Army AD-HOC Committees in the system analysis and modeling areas. He has authored and presented numerous articles in the RAM and Systems Engineering areas. Presently, he is a Senior Member in the AlIE, serving on the Editorial Board of the AllE Transactions, an Executive Board member of the ArkLaTex Chapter of the Association of the US Army, performs private consulting engineering and teaches Business Administration courses for East Texas State University at Texarkana.

Prior to coming to the Center, he had taught at Texas AEM University and had eight years of varied engineering consulting and management experience in Texas. He is a member of three engineering honor societies, several professional organizations and is a Consulting Engineer registered in the State of Texas.

Mailing address: Mr. Ronald D. Oglesby US Army Materiel Command ATTN: AMCMA
5001 Eisenhower Avenue Alexandria, VA 22333

Mr. Ronald D. Oglesby is a Mechanical Engineer with the Directorate of Maintenance at Headquarters, US Army Materiel Command, and is responsible for providing engineering analysis, planning, policy, program system development, field siaff supervision and RAM expertise on combat vehicles, marine, rail, construction and general equipment. Mr. Oglesby received his B.S. in Aerospace Engineering from Mississippi State University in 1970 and his M. E. Degree in Industrial Engineering (Maintainability Option) from Texas AGM University in 1972.

Mailing address: Mr. William J. Vanden Bosch
US Army Materiel Command
ATTN: AMCMA
5001 Eisenhower Avenue
Alexandria, VA 22333
Mr. William J. Vanden Bosch is currently assigned to Headquarters, US Army Materiel Command, as a General Engineer in the Directorate for Maintenance and is responsible for providing engineering analysis, monitoring system development, developing plans, policy and RAM expertise on Army Aircraft Systems. He received a B. S. in Aerospace Engineering from the University of Texas in 1967 and worked for General Dynamics, Ft. Worth, Texas, for five years in performance analysis, and predesign development of aircraft systems. He received his M.E. Degree in Industrial Engineering (Maintainability Option) in 1972 from Texas A\&M University.

Ms. Sandra L. McLaughiin is ataff member at the USAMC Intern Training Center. As a part of her position, she participates in the editing and preparation of many research paper with the members of the faculty at the Center. The authors want to axpress theit apprectation for her effores on this research project.

The above techniques are the result of studies and research by the authors. The views expressed are those of the authors and do not necessarily reflect approval or endorsement by the Department of Defense or Texas AcM University.

APPMOACH TO SIMARIS IROVISIONING

R. L. Solseny

Collins Jarlio Company
Cedar Rapids, lowa

Summary

Computer programs employing a Annte Carlo approach to simulate system opicration provide a versa tile means of solving a varicty of reliability and maintainability problems. Presented in this paper are deseriptions of major prorram functions together with a discussion of an application of this techuique to a spares provisioning problem.

Introiluction

In the design of a sustem and its support facilities, the ahility to conduct quantitative trade off analyses is essential. This task becomes difficult when the para meter to be optimized is system availability and the systom exhibits the following features.

1. The system configuration contains redundancy such as parallel units or parallel sibsystems consisting of a number of units.
2. The system contains similar unit types that may be, under certain conditions, interchanged or cannibalized. The similar unit types may also be supported from a coinmon source of spares. Both of these features make the subsystems, containing the similar units, dependent.
3. Failed assemblies are either repaired at the system location or replaced from an off-site depot. Thus, the system and its complement of spares is continually renewed.

An approach to the task of selecting spares for a system with the above features is described together with a description of the major elements of the approach and a description of a typical application.

Approach

With the use of a computer, actual system operation can be rapidly and accurately simulated. Various parameters, such as those required to make systems reliability and availability prelictions can then be generated and "sed in the same manner as actual in-service observations. For example. system availability is calculated hy dividing the operative or "up"' line olitained through simulation hy the total simulated time or the sum of 'up' and 'down' time, expressed as

$$
\begin{equation*}
\text { Availability }=\frac{\text { Up Time }}{\text { Up Time } \cdot \text { Down Tinic }} \tag{1}
\end{equation*}
$$

The major functions required to simulate system operation include a fallure genemtor, a check routine to measure the derree of arreoment between the failures simulated and expected, and at test routine to determine if a particular combination of unit failures results in a system failure.

Failure Generator

It is required that this function genernte failures within a system in the same manner anticipated for the system under actual operating conditions. Where individual unit failures are expected to follow an exponential probability distribution function, the gencrator must produce failures randomly and at a rate approximately equal to the constant failure rate of each unit.

Failure generation can be performed by comparing a raniom number, R, taken from a uniform dist ribution bounded by 0 and 1.0, to the probability, $P(O)$, of having no unit fallures during an inctement of time, ΔT, expressed as

$$
\begin{equation*}
P(0)=e^{-\lambda_{t} \Delta T} \tag{2}
\end{equation*}
$$

where λ_{1} is the sum of the individual operating units in the system.

If one or more failures did occur during the time increment, then $R>P(O)$. The same random number is then used to dintermine how many failures, r, occurred during ΔT by satisfying the following inequality containing lerms of the Poisson distribution.

$$
\sum_{x=1}^{r-1} \frac{(\lambda \Delta T)^{x_{e}-\lambda \Delta T}}{x!}<R<\sum_{x=1}^{r} \frac{(\lambda \Delta T)^{x_{e}-\lambda \Delta T}}{x!}
$$

To determine which unlts of the system failed during ΔT a random numher, R. for each of the $?$ failures, is used in the solution for I in the following inequality.

$$
\begin{equation*}
\frac{1}{\lambda_{r}}=\sum_{i=1}^{1} \lambda_{1}>R \tag{4}
\end{equation*}
$$

where λ_{p} is the sum of the falure rates of thess operatine units stil! remarome in the susten ane: λ_{1} is the dalure rate ot the d $^{\text {th }}$ operatin: unt: This wrocess
 having the atea λ_{p} ind datided ablo subareas wituch are proportional in stze to the brabsual wht lathre rates. For muluple lallures. the subareas are reapportioned wath each selection.

Check Routine

In order to ensure that the various units of a system have been failure-sampled an acceptable numiter of times during simulation. a chi-square goodness -oifit test can be employed. expressed as.

$$
x^{2}=\sum_{i=1}^{K} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}
$$

where K is the number of operational units in the system, O_{i} is the number of failures accumulated for the i th unit, and e_{i} is the number expected during the period simulated. The calculated chi-square talue. x^{2}. is compared to the chi-square distribution having $k-1$ degrecs of freedom to determine the prohabilit: of obtaining the calculated X^{2} value by chance

Test Routine

The method used to determine the effect of unit failures on a system involves comparing the current unit states (up or down) to a system "success" table The table is constructed to contain all possible combinations of unit states that will result in system success. The configuration of Figure 1 would have the

Figure 1. Example Configuration
"success" table, shown in Table 1. wherein the letter U indicates that a unit must le "up" for a particular combination of units. Blands indicate that the particular unit may esther be "up" or "down."

Table 1. Example succes: Table

$\begin{gathered} \text { Success } \\ \text { comblNatu } \\ \text { NGMBry } \end{gathered}$	1:31				
	1	-	\because	4	i
1	l	C			
2	l		1	1	
3	U'		1		1

If a particular combination of unt up states fails to match at least one tahle row then the test would result in a system faslure

The creation of a sustem success tatile can be computerized therelore requiring onll the unit interconnections as input foil a given sisien. Kequired is a computer program capatle of estahlisting all possiole paths through the system network

Problem Application

The flow diagram of Figure $=$ summarizes the program logic involved in using simulation to solve a spares provisioning protslem. Thesteps are as follows.

Step 1 System operation is simulated bv usine 3 failure generator to determine if there were one or more unit failures in the system durinc an increment of time. ΔT. The system, for this step is considered complete in that ail normally operating units are subject to failure

If a failure occurred the flow would the to step 2 if not. ΔT would be adrled to an "up" time counter and step 1 would be repeated

Step 2. With the occurrence of one or more unnt failures, the test rnutine of sten 2 is used to determine whether or not the unt fanluress, resultec in a system. fallure. If system failure did occur the flow would the to step 3: if not. ΔT would be added to the "uri lime counter and the now would be tu step 4

Step 3. This step simulates those maintenance actions that would be expected to take nlace in actual system operation Involved may he a cheri, to see i! spares are available or other similar units within the sustem can be cannibalized io replace tailed unt:s Also, on-site repair action mav the initiated or the unit may be replaced or repaired at an off-sule dem: requiring an extended waitin; periot In anserent those repair actions that can he inflemented within :he. ΔT time increment are effected be changing the unn states from "down" to "up."

The test routine of ster, 2 is again used to determine If the system failure has bieon corrected if it has nut then ΔT is adtied to a "down time counter and the resnonsihte unitis) noted with the tlow then veroeding to step 4 . If the svatem has heen returned in satisfactory operation, the reptir time is addedi the "down" time counter and the remainder ot the ΔT in-
 rrice.tislustep
 \therefore : \therefore -

 is :o stepl it now then io step $亏$

Stel \quad Thas ster involves the same brogram logic $a=$ alti every ll: ant thase units in an up state are

-tet. ti the comnletion of : fallure-repair cucle
 wit wiaton saisstacturil iarere witn the resulis evereted A.". A: : is mant a ies: mill he incornorited to ot-
 thines This mat the accomiflishec tis testing the dif:erene terineen the curren: avialatilit value and the
 s. , inim mores duequate the flow is h stefir. If not. is. icrirt = bach to step 1.

Stef - The accumulated svistem "up" time and monin itme is ubed to calcsiate sistem arailability with : ne evaression fiven in equationill spares provisioninje is accomplisned with step is

Ste: The accumulated simulation data including : ex © intat sistem domn inme due to eacn uni: type is ust : bl Etnerate 3 lis: of grsten avalablitw values as a fun.":rr. oi sparing idrmus unll troes. adjed in a one-a!-atime rianner together wit the accumulated spares Ees: The nrute of the list, shasti or descending values
 ic: tur unit trae i.a? level ot sveien: avalatility is ctleablet in suritracing the town tomethat would tee
 loridi susten. douri" time value

Pamule Problem

a counnuser nrozram. Written in fortran Γ and c.erefielv teing rur or a cox strir consputer, was wee: :- mon:as: a siares mrovisioning analvsis or the

 wination of their contents follow

「aured This lis:inct name contains ine indicated

The minimiun and nasimum number of trials stimen in tizury, ate usplecontrol : ice number of t.abiti-r:atr \because cin. sumalater in the scilution The Himionur. natl lit r frevint- a premature halt of the
 ant, an a'ata'ilut value of I "woults appear to be a שuce stcam-siate solution. I he navimurr is provided te noli a solution inat mav not normally terminate due (i) c:'rer unrealistic problem constants orerrors in the input data

The therement neriod ΔT. is smcified in the
 a tuleu unit fron: ar ofi-site depo: is six increments or 2 i hours

A number. wiuch will be the starting number for the sequence of quarate: random numhers used in the soititon is inoutte so ina: a particular solution can be exactly duplicateri if so desired.

Figure 5 Inpu: data pertaining to the various unit the continned ir the example sister is shown in this figure Shown are the fallure rates relalive spares cos: and replacentent :Trie of eacn unt twpe Included alsc is the number of spares ta: are initially provided for each. unit tume unct in the example problem are zere for each type. The columr headed Status allous the program user to pronibs: a particular unit type from 'eink consideres! fur sparing in the example problem all uni: twes are assirned a zero status thus making each a candicuate for sparing

An added feature of the computer program is prolisions for preventaticemantenance of certain unit twpes The nrogran: will neriodically place units of a certair. : ope in a down state for a prescriced duration in orcer that cychic preventative matatenance actions may he siniulated The column heaved INCS TO PM indicates the frequenct of the misinienance action which for unit twe numter ; is if tour-hour increments or every dif" hours. The inme requared to carry out the maintenance action is contained in the column headed PM INCS.

Figury 6. This page of listing show's the interconne.ton configuration and unt tite complement of the firs: svstem section. The unit intercomention is reierencea to sustem: noues sioun as midd dots in Figure 3 For example sector ! vescobev in Figure Glists the wnt node consecto: sequen:alf whoch indicates a
 tw the susten. nowie a: wher a section starts whereas the las: section node corresman's to the sistem node where the section entis Thus for section 1 node 4 corresponces to susten nowic - as shomitim ligure 3.

There are sumalar outpod listongs for the other systen sectuons

```
    Figure- Thus las:an maze surmarites the data
```



```
&r r:at le: veat
```

Fixa: the spiare the spate
l.1sied are nacter vast prosicters

The
A-2 tree: renures:(1) da:a this aront careptum figure 5.

trials

$m^{\text {min }}$ of
0 The ot the occurred - to be a s jrovided linate due rors in
d in the
o replace remicnts or
iber for the
in the ion can
-ious unit n in this spares Included provided mare alunit type mple us thus
is prounit
in $\operatorname{lin}_{\text {in }}$ ons may
'n which
-ntsor out the saded
er-
1t of the
s re-
Figure
lists lies a esponds tias the uhere e.s-

$$
r \mathrm{sys}=
$$

la:a
ulation
-it
vtion.
crige
\because ctem

Figure s. This listing page contains the results of the spares trade-off analysis. Each line of output show's the spare unit type selected in order of preference. Listed are the unit type name and various syistem parameter values that would result if the spare unit type was provided

The same problem was again run but with a spare A-2 type unit. The resulting solution is shown in Figures 9 and 10 . The output listing containing the input data and section descriptions would be the same for this problem as those of Figures $\&$ through G with the exception of one spare being shown for unit type $A-2$ in Figure 5.

Conclusion

The program theserihed in the paper illustrates a method of provisionint: suates for a comples system on the basis of their impact on svstem availability and cost. Through the use of a ilome Carlo technique, a wide variety of sysicm configurations and maintenance practices can be simulated and :malyod. Also, by employing a computer senerated table describing system success as a function of assembly states the input data required to use the prowram is areatle simplified. Input ditit is "user" ormented requiring only knowledge of system operation and maintenance practices thus permitting use of the progrant by personnel of varied disciplines.

Figure 2. Spares Provisioning Program, Flow Diagram

Figure 3. Example Problem System, Block Diagram

Figure 4. Example Problem Output Listing - Problem/System Constants

93.	URIT laput bata					
	Frof	IR $\times 10-5$	ccst	at tivflarsi nc. Spares	status incs in prin	PM TNCS
1	A-1	$75 . \operatorname{coccso}$	20	0.100 万	0 O 0	0
7	4-?	110.000000	25	0.100	$0 \quad 0$	\bigcirc
3	4-3	47.000000	10	$0.100-0$	0	0
4	-6	$316.300^{\text {a }}$ -	75	0.100	0 360	2
5	A-5	75.cocren	27	$0.167-0$	$0-0$	\bigcirc
6	- - $^{\text {a }}$	77a.echan	67	7.100 0	0 T80	1

Figure 5. Example Problem Output Listing - Unit Input Data

Figure 6. Example Problem Output Listing - Section 1 Input Data

Figure 7. Example Problem Output Listing - Baseline System Perform and Data (Initial Run)

Figure 8. Example Problem Output Listing - Spares List (Initial Run)

$\pi \quad 1$

(GASEAIME SYSTEM PERFORMANEE DAIA moon and Vehicle is it provide: Apollo S : Launch Vis ment for ure. In t 1 componer cess pre4 .9993 ler nents al: checkoul function occur tr avallabl Missio: ability
availat
ability
provid
Syster
sto:l.
nance Suace gram: dcs: for r equi"

Figure 9. Example Problem Output Listing - Baseline System Performance Data (Second Run)

Figure 10. Example Problem Output Listing - Spares List (Second Run)

We must now define an objective which we shall attempt to achieve by ous construction of the allowance list. If we knew exactly what the demand for each commodity would be, we would have no problem. We would simply stock the required amounts aboard ship, if space permitted, or partially aboard ship and partially aboard supply ships or shore facilities and deliver to the ship as its supplies diminished.

The fact of the matter is that we cannot predict the demand with certainty. We can,
however, estimate the probability distribution of the demand for each commodity for a given type of ship, under certain known operating conditions, from a statistical analysis of usage data.
(i.e., tl maxim
which. of com genera import $w\left(y_{1}\right)$
and mi

We sh the " c
indivis each
demar we sh. is a fu the m. Sectio
3. RF
for th
ity β. Thus, the average amount supplied of commodity α is dependent oniy on y_{a}, not on anything pertaining to commodity β. In practice, this assumption may not always be correct, but it will greatly simplify our analysis.

- construction
u. e, we
ρ, if space
cillties and

We can, for 2 given s of usage data
inimize the nable criterion iterion to t to construct nds fultilled. ose items ship at ire-
amount stocked mount x_{α} will we shall conoperties ien the average
x exceeds the is then left
for commodα, not on be correct,

Our problem now is to choose the set $y_{1}, y_{2}, \ldots y_{n}$ so as to satisfy the condition

$$
\sum_{\alpha=1}^{n} c_{\alpha} y_{\alpha}=c
$$

(i.e., the total cube of items stocked must equal the available space), and simultaneously to maximize

$$
v\left(y_{1}, \ldots, y_{n}\right)=\sum_{\alpha=1}^{n} u_{\alpha}\left(y_{\alpha}\right),
$$

which is the total quantity supplied on the average. Here, c_{α} is the cube occupied by one unit of commodity α; and C is the total cube available for the storage of all the n commodities. In general, we may wish to attach a different weight, w_{α}, to each commodity, depending on its importance (i.e., "military worth," etc.) and its unit of issue. We do this by defining $w\left(y_{1}, \ldots, y_{n}\right)$ as follows:

$$
w\left(y_{1}, \ldots, y_{n}\right)=\sum_{\alpha=1}^{n} w_{\alpha} u_{\alpha}\left(y_{\alpha}\right)
$$

and maximizing w, subject to the condition

$$
\sum_{\alpha=1}^{n} c_{\alpha} y_{\alpha}=c
$$

We shall refer to $w\left(y_{1}, \ldots, y_{n}\right)$ as the "total utility function;" and we shall call $w_{\alpha} u_{\alpha}\left(y_{\alpha}\right)$ the " α - th utillty function."

Once we have maximized $W\left(y_{3}, \ldots, y_{n}\right)$ subject to the space constraint, we know the individual y_{α} 's. Given these y_{α} 's, we can compute the average number of the demands for each α that we can fulfill, namely $u_{\alpha}\left(y_{\alpha}\right)^{\prime s}$, as well as the average number of the unfulfilled demands, the $v_{\alpha}\left(y_{\alpha}\right)$. From the $u_{\alpha}\left(y_{\alpha}\right)$ we obtain the optimum value of $w\left(y_{1}, \ldots, y_{n}\right)$, which we shall denote by W_{0}, and call it the "maximum utillty function." It should be clear that W_{0} is a function of C only, since for a given C the $y_{\alpha}{ }^{\prime} s$, and therefore the $u_{\alpha}\left(y_{\alpha}\right)$'s, are fixed by the maximization procedure. The significance of W_{0} will be elucidated in the discussion (see Section 5).

3. RESULTING FORMULAE

The detalls of the calculation will be relegated to Appendix I. The resulting formulae for the y_{α} 's are:

$$
\begin{align*}
& \int_{0}^{y_{\alpha}} \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha}=1-\lambda \frac{c_{\alpha}}{w_{\alpha}} ; \alpha=1,2, \ldots, n \\
& \sum_{\alpha} c_{\alpha} y_{\alpha}=c, \text { where } \min \left(\frac{w_{\alpha}}{c_{\alpha}}\right) \geq \lambda \geq 0 . \tag{3.1}
\end{align*}
$$

These are $(n+1)$ equations in the $(n+1)$ variables $y_{1}, y_{2}, \ldots, y_{n}$ and λ (where λ is a Lagrange multiplier). They determine the amounts, y_{α} 's, which are to be stocked. Using these values of y_{α} 's, we can compute $u_{\alpha}\left(y_{\alpha}\right)$ and $v_{\alpha}\left(y_{\alpha}\right)$, for each α, from equations (2.1) and (2.2).

For some simple distributions, like the exponential, these equations can be solved explicitly for the y_{a} 's and λ. For the more interesting distributions, however, the explicit solution of the equations is not feasible, and an iterative procedure is indicated. We shall illustrate the meaning of these equations and the method of their solution by working out several examples.

In the first example we shall assume all the $\phi_{\alpha}\left(x_{\alpha}\right)$'s to be normal. This is a fairly important case, since the normal distribution is the limiting continuous form of a wide class of distributions which occur in practice (e.g., the Poisson distribution).

The second example will illustrate the properties of this model when all the $\phi_{\alpha}\left(x_{\alpha}\right)^{\prime} s$ are logarithmic normal distributions. The reason for this choice is that most of the tests of modern statistics are based on the assumption that some function $g(x)$ of the variable x is normally distributed. In this case we take $g(x)=\ln x$. This distribution is easy to handle analytically, and the numerical results provide an enlightening illustration of the principles involved.

Finally, we shall consider a case where some of the $\phi_{\alpha}\left(x_{\alpha}\right)^{\prime} s$ are normal while others are logarithmic normal. This will show how the allowance list is to be constructed when commodities are distributed according to several different distributions.

4. NUMERICAL EXAMPLES

Example 1 - The Normal Distribution

Let $\phi_{\alpha}\left(x_{\alpha}\right)$, for reasons siatec above, be the normal probabilty density functions. Then equations (3.1) become:
(4.1)

$$
1-\lambda \frac{c_{\alpha}}{w_{\alpha}}=\frac{1}{\sqrt{2 \pi}} \int_{-\sigma}^{\left(v_{\alpha}-m_{\alpha}\right) / \sigma_{\alpha}} e^{-t^{2} / 2} d t
$$

$$
\sum_{\alpha=1}^{n} c_{\alpha}^{y_{\alpha}}=C
$$

where m_{α} and π_{α}^{2} are the mean and the variance, respectively.
In order to solve equations (4.1), we choose a value of λ in the permissible range, compute the y_{α} 's, and from thetr values determine the corresponding C. In practice, however, we are given C, not λ. We therefore repeat this calculation for several values of λ until we find a λ which corresponds to the given C. We are then ready to determine $u_{\alpha}\left(y_{\alpha}\right)^{\prime} s$, namely the average amounts supplied. These can be written as:
(4.2)

$$
u_{\alpha}\left(y_{\alpha}\right)=m_{\alpha}\left(1-\lambda \frac{c_{\alpha}}{w_{\alpha}}\right)+y_{\alpha}\left[1-\left(1-\lambda \frac{c_{\alpha}}{w_{\alpha}}\right)\right]-\frac{\sigma_{\alpha}}{\sqrt{2 \pi}} e^{-\left(y_{\alpha}-m_{\alpha}\right)^{2} / 2 \sigma_{\alpha}^{2}}
$$

$$
a=1, \ldots, n
$$

in is 2
ed. Using
uations (2.1)
be solved the explicit We shall
king out sev-
is is a fairly
a wide class
the $\phi_{a}\left(x_{\alpha}\right)^{\prime} s$
1 I the tests of
riable x is
to handle principles
al while others
ted when com-
: functions.
ile range,
ctice, how-

- lues of λ until
$u_{a}\left(y_{\alpha}\right)$ ' δ,

We shall be able to gain further insight into the meaning of these equations for y α and $u_{\alpha}\left(y_{\alpha}\right)$ for the normal case if we assign definite numerical values to the parameters of these distributions and compute the resulting y_{α} and $u_{\alpha}\left(y_{\alpha}\right)$. Such a numerical model is presented in Table 1.1. It should be noted that the mean is taken to be rather large, since we are considering the normal distribution as the asymptotic form of some other distribution. It is only in this case (1.e., when $m_{\alpha} / \sigma_{\alpha}>4$) that equations (4.1) and (4.2) are sufficiently accurate for our purposes.

TABLE 1.1

$$
\sum_{\alpha} E\left(x_{\alpha}\right) c_{\alpha}=2400
$$

α	w_{α}	c_{α}	$E\left(x_{\alpha}\right)=m_{\alpha}$	$\sqrt{V a r}\left(x_{\alpha}\right)=\sigma_{\alpha}$
1	1	1	100	3
2	1	1	100	10
3	1	5	100	3
4	1	5	100	10
5	2	1	100	3
6	2	1	100	10
7	2	5	100	3
8	2	5	100	10

These numbers were picked so as to represent quantities with a wide range of combinations of cube, "weight," and variance. In order to acquire a feeling for the order of magnitude of a given C, one should compare it with $\sum_{\alpha} E\left(x_{\alpha}\right) c_{\alpha}$. This sum would be the C if one were to take Y_{a} equal to the mean usage of commodity α, for all α. In Table 1.2 we list the results.

TABLE 1.2

a	$\begin{aligned} \lambda & =0.01 \\ C & =2698.3 \end{aligned}$		$\begin{aligned} \lambda & =0.02 \\ C & =2647.5 \end{aligned}$		$\begin{aligned} \lambda & =0.05 \\ C & =2565.4 \end{aligned}$		$\begin{aligned} \lambda & =0.10 \\ C & =2481.5 \end{aligned}$		$\begin{aligned} \lambda & =0.15 ; \\ C & =2409.7 \end{aligned}$	
	y_{a}	$u_{\alpha}\left(y_{\alpha}\right)$	${ }^{\mathbf{Y}}$	$u_{a}\left(y_{\alpha}\right)$	y_{0}	$\mathbf{u}_{\alpha}\left(y_{\alpha}\right)$	y_{0}	$\mathbf{u}_{\alpha}\left(y_{\alpha}\right)$	$\mathrm{y}_{\mathbf{a}}$	$u_{\alpha}\left(y_{\alpha}\right)$
1	107.0	99.98	106.2	99.98	104.8	09.84	103.8	09.86	103.1	99.77
2	123.3	99.97	120.5	99.93	116.5	99.79	112.8	99.53	110.4	99.22
3	104.9	99.94	103.9	99.86	102.0	99.55	100.0	98.80	98.0	97.53
4	116.5	99.79	112.8	99.53	106.7	98.51	100.0	96.01	93.3	91.76
5	107.7	99.98	107.0	99.98	105.8	99.97	104.9	99.94	104.3	99.90
6	125.8	99.98	123.3	99.87	119.6	99.91	116.5	99.79	114.4	99.67
7	105.9	99.97	104.9	99.94	103.5	99.81	102.0	99.55	101.0	99.22
8	119.6	99.91	116.5	99.79	111.5	98.38	106.7	98.51	103.2	97.40

Because the $E\left(x_{\alpha}\right)=100$ for all α in this example, $u_{\alpha}\left(y_{\alpha}\right)$ also is numerically equal to the percentage of demands met. This also holds for examples 2 and 3 , with the exception of the first six cases of example 2. In that case, $E\left(x_{\alpha}\right)=10$, and therelore $10 u_{\alpha}\left(y_{\alpha}\right)$ is numerically equal to the percentage of demands met. We shall postpone the detailed interpretation of these numerical results to Section 5.

TABLE 1.3

C	W_{0}	$\frac{\Delta W_{0}}{\Delta C}$
2409.7	1180.7	
2481.5	1189.8	0.127
2565.4	1195.9	0.0727
2647.5	1198.7	0.0341
2698.3	1199.4	

Example 2 - The Logarithmic Normal Distribution
Let us consider the case where $\ln x_{\alpha}$ is normally distributed. ${ }^{3}$ Then
$\Phi_{\alpha}\left(x_{\alpha}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{\alpha} x_{\alpha}} e^{-\left(\ln x_{\alpha}-m_{\alpha}\right)^{2} / 2 \sigma_{\alpha}^{2}}$, where m_{α} and σ_{α}^{2} are $E\left(\ln x_{\alpha}\right)$ and
$\operatorname{Var}\left(\ln x_{\alpha}\right)$, respectively; and equations (3.1) become:

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\left(\ln y_{\alpha}-m_{\alpha}\right)^{\prime o} \alpha_{\alpha} e^{-\tau^{2} / 2} d \tau=1-\lambda \frac{c_{\alpha}}{w_{\alpha}}} \\
& \sum_{\alpha} c_{\alpha} y_{\alpha}=C .
\end{aligned}
$$

Also, $u_{\alpha}\left(y_{\alpha}\right)$, the total quantity of commodity α supplied on the average, is given by:

$$
u_{\alpha}\left(y_{\alpha}\right)=E\left(x_{\alpha}\right) \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\left(\ln y_{\alpha}-m_{\alpha}-o_{\alpha}^{2}\right) / \sigma_{\alpha}} e^{-t^{2 / 2} d t+y_{\alpha} \frac{1}{\sqrt{2 \pi}} \int_{\frac{\ln y_{\alpha}-m_{\alpha}}{o_{\alpha}}} e^{-t^{2 / 2}} d t, .}
$$

where

$$
E\left(x_{\alpha}\right)=e^{m_{\alpha}+o_{\alpha}^{2} / 2}
$$

${ }^{3}$ See, for example, A. Hald: Statigtical Theory with Engineering Application, p. 160.
lly equal :eption of s numerretation

In Table 2.1 we shall illustrate this model by means of a numerical example. It should be noted that this numerical model differs from the one given in Table 1.1 in including cases with a much smaller mean. The results appear in Tables 2.2 and 2.3.

TABLE 2.1

$$
\sum_{\alpha}^{E} E\left(x_{\alpha}\right) c_{\alpha}=1980
$$

α	w_{α}	c_{α}	$E\left(x_{\alpha}\right)$	$\sqrt{\operatorname{Var}\left(x_{\alpha}\right)}$	m_{α}	${ }^{\sigma_{\alpha}}$
1	1	1	10	3	2.25949	.29359
2	1	1	10	10	1.95600	.83256
3	1	1	10	30	1.15129	1.51742
4	1	5	10	3	2.25949	.29359
5	1	5	10	10	1.95600	.83256
6	1	5	10	30	1.15129	1.51742
7	1	1	100	30	4.56208	.29359
8	1	1	100	100	4.25860	.83256
9	1	1	100	300	3.45388	1.51742
10	1	5	100	30	4.56208	.29359
11	1	5	100	100	4.25860	.83256
12	1	5	100	300	3.45388	1.51742

TABLE 2.2

α	$\begin{gathered} \lambda=0.01 ; \\ C=6261.18 \end{gathered}$		$\begin{gathered} \lambda=0.02 ; \\ c=4522.98 \end{gathered}$		$\begin{gathered} \lambda=0.05 ; \\ C=2706.96 \end{gathered}$		$\begin{gathered} \lambda=0.10 ; \\ C=1712.63 \end{gathered}$		$\begin{gathered} \lambda=0.15 ; \\ C=1318.47 \end{gathered}$	
	y_{α}	$u_{\alpha}\left(y_{\alpha}\right)$	$\mathbf{Y}_{\boldsymbol{\alpha}}$	$u_{\alpha}\left(y_{\alpha}\right)$	${ }^{\mathbf{\alpha}}$	$u_{\alpha}\left(y_{\alpha}\right)$	y_{α}	$u_{\alpha}\left(y_{\alpha}\right)$	y_{α}	$u_{\alpha}\left(y_{\alpha}\right)$
1	18.97	9.98	17.51	9.91	15.53	9.89	13.96	9.78	12.98	9.66
2	49.08	8.81	39.10	9.67	27.82	9.31	20.56	8.79	16.75	8.32
3	92.57	8.84	71.38	8.47	38.38	7.43	22.12	6.28	15.23	5.43
4	15.53	9.89	13.96	9.78	11.68	9.40	9.58	8.63	7.86	7.52
5	27.82	9.31	20.56	8.79	12.40	7.47	7.07	5.56	4.03	3.68
6	38.38	7.43	22.12	6.28	8.80	4.20	3.16	2.23	1.14	0.99
7	189.67	99.79	175.06	99.10	155.25	98.93	139.56	97.80	129.83	96.60
8	490.76	88.14	390.99	96.71	278.15	93.08	205.60	87.89	167.52	83.20
0	925.70	88.44	713.80	84.69	383.77	74.26	221.23	62.80	152.31	54.37
10	155.25	98.83	139.56	97.80	116.76	94.03	95.78	86.34	78.57	75.25
11	278.15	93.08	205.60	87.89	123.88	74.71	70.71	55.61	40.33	36.84
12	383.77	74.26	221.23	62.80	88.00	41.96	31.62	22.27	11.36	9.93

table 2.3

C	W_{0}	$\frac{\Delta W_{O}}{\Delta C}$
1318.5	391.79	
1712.6	453.98	0.19
2707.0	524.67	0.071
4523.0	581.89	0.032
6261.2	607.90	0.015

Example 3 - The Case of Several Distributions
In this model some of the $\phi_{\alpha}\left(x_{\alpha}\right)$ are normally distributed, while others have the logarithmic normal distribution. In Table 3.1, the first 6 cases have the logarithmic normal distribution and the last 4 the normal. y_{α}, and $u_{\alpha}\left(y_{\alpha}\right)$ are computed as in Example 1 for $\alpha=1, \ldots, 6$ and 25 in Example 2 for $\alpha=7, \ldots, 10$. The results are tabulated in Tables 3.2 and 3.3.
tABLE 3.1

$\sum_{\alpha} E\left(x_{\alpha}\right) c_{\alpha}=3000$						
-	w_{α}	${ }^{\boldsymbol{a}}$	$E\left(x_{a}\right)$	$\sqrt{\operatorname{Var}\left(x_{0}\right)}$	m_{α}	${ }^{\circ}{ }_{\alpha}$
1	1	1	100	3	4.60472	0.03000
2	1	1	100	10	4.60020	0.09994
3	1	1	100	30	4.56208	0.29359
4	1	5	100	3	4.60472	0.03000
5	1	5	100	10	4.60020	0.09994
6	1	5	100	30	4.56208	0.29359
7	1	1	100	3	100	3
8	1	1	100	10	100	10
9	1	5	100	3	100	3
10	1	5	100	10	100	10

5. DIS
clear ! degree In fact. equal: Appenc We she k^{2}, the model
sparin; spe:ifi par.ict

TABLE 3.2

α	$\begin{gathered} \lambda=0.01 ; \\ C=3647.30 \end{gathered}$		$\begin{gathered} \lambda=0.02 ; \\ C=3496.25 \end{gathered}$		$\begin{gathered} \lambda=0.05 ; \\ c=3268.53 \end{gathered}$		$\begin{gathered} \lambda=0.10 ; \\ C=3049.40 \end{gathered}$		$\begin{gathered} \lambda=0.15 \\ c=2860.67 \end{gathered}$	
	$\mathbf{y}_{\boldsymbol{\alpha}}$	$u_{\alpha}\left(y_{\alpha}\right)$	y_{a}	$u_{\alpha}\left(y_{a}\right)$	y_{α}	$\mathrm{u}_{\alpha}\left(\mathrm{y}_{\alpha}\right)$	${ }^{1}$	$u_{\alpha}\left(y_{\alpha}\right)$	y_{α}	$u_{\alpha}\left(y_{\alpha}\right)$
1	107.1.	${ }^{19.99}$	106.31	99.98	105.01	99.93	103.87	99.85	103.11	99.76
2	125.56	99.96	122.18	99.91	117.28	99.75	113.11	99.44	110.36	99.13
3	189.66	98.79	175.06	98.58	155.25	98.93	139.55	98.04	129.83	96.59
4	105.01	99.93	103.87	99.85	102.00	99.54	99.96	98.78	97.95	99.41
5	117.28	99.75	113.11	99.44	106.39	98.32	99.50	95.82	93.02	91.70
6	155.25	98.93	139.55	98.04	116.76	94.02	95.78	86.34	78.57	75.58
7	106.98	99.99	106.16	99.98	104.94	99.94	103.85	99.86	103.11	99.77
8	123.27	89.97	120.54	99.83	116.45	99.78	112.82	99.53	110.36	99.22
9	104.94	99.94	103.85	99.86	102.02	99.55	100.00	98.80	97.98	97.53
10	116.45	99.79	112.82	99.53	106.75	98.51	100.00	96.01	93.26	91.76

TABLE 3.3

C	W_{0}	$\frac{\Delta W_{0}}{\Delta C}$
2860.67	950.5	
3049.40	972.5	.117
3268.53	988.3	.0721
3496.25	996.1	.0343
3647.30	999.0	.0192

5. DISCUSSION

Some fairly general rules can be gleaned from a scrutiny of these tables. It becomes clear for the normal case that commodities with a large variance are stocked to a considerable degree in a large vessel, but only very sparingly when the avallable space is rather limited. In fact, when the space becomes very hard to get, one stocks considerably less than the amount equal to the mean usage for those commodities which have wide fluctuations of demand. In Appendix I we show that a modified version of this rule has a rather wide range of applicability. We show also that for many distributions, when the mean is multiplied by k and the variance by k^{2}, then y_{α} and $u_{\alpha}\left(y_{\alpha}\right)$ also are multiplied by k. This also is noticeable in the numerical model (see Table 2.2). It also can be seen that commodities with large cube must be stocked sparingly in a small vessel. These results are true for 2 wide class of distributions. The specific numerical values of the y_{α} 's and the $u_{\alpha}\left(y_{\alpha}\right)$'s are, of course, more sensitive to the particular distribution and may have to be computed for each individual case.

The very fact that the general rules which come out of our model are eminently plau-
sible serves as an a posteriori justification of the basic assumptions we have made in the Introduction.

We come now to the discussion of the behavior of the maximum utility function, W_{0} We note that as C (total availabie cube) is increased, W_{0} at first rises sharply, but inen is rate of increase diminishes. This becomes especially clear when one examines the benavior of the ratio $\Delta W_{0} \Delta C$. The behavior of W_{0} can be used as a guide in deciding on the amount of space C to be set aside on a given ship for storage of commodities.

From the above discussion it appears that the present model leads to reasonable results for commodities of a noncritical nature. It might, therefore, be used as a basis for some preliminary allowance list computations.

It is clear, of course, that our criterion of maximizing the average number of fulfilled demands may not be the only useful criterion. For example, one might use the criterion that the sum of the mean square deviations of the demands from the amounts stocked shall be a minimum, subject to the space constraint. In other words, we could minimise

$$
\begin{aligned}
E\left[\sum_{\alpha}\left(x_{\alpha}-y_{\alpha}\right)^{2}\right] & =\sum_{\alpha} \int_{0}^{\infty}\left(x_{\alpha}-y_{\alpha}\right)^{2} \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha} \\
& =\sum_{\alpha}\left\{\operatorname{Var}\left(x_{\alpha}\right)+\left[E\left(x_{\alpha}\right)-y_{\alpha}\right\}^{2}\right\}
\end{aligned}
$$

subject to

$$
\sum_{\alpha} c_{\alpha} y_{\alpha}=C
$$

This would yield the relations

$$
y_{\alpha}=E\left(x_{\alpha}\right)+c_{\alpha}\left[\frac{c-\sum_{\beta=1}^{n} c_{\beta} E\left(x_{\beta}\right)}{\sum_{\beta=1}^{n} c_{\beta}^{2}}\right] \text { for } a=1, \ldots, n .
$$

n. plauin the
ion, W_{0} It then its behavior e amount of nable results

- some pre.
of fulifiled
erion that all be a
mount mmodities sonably ition, but erage. to desirable

1e. We have lity distrisis of the larameters one must use ibly
reformulate the problem so as to take more direct advantage of the available information, possibly bypassing some of the intermediate steps inherent in the present formulation.

APPENDDXI

The General Theory

Let us define the following set of functions

$$
f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\left\{\begin{array}{l}
w_{\alpha} x_{\alpha} \text { when } x_{\alpha} \leq y_{\alpha} \\
w_{\alpha} y_{\alpha} \text { when } x_{\alpha} \geq y_{\alpha}
\end{array}, \alpha=1, \ldots, n,\right.
$$

where x_{α} is the amount of commodity α demanded, and y_{α} is the amount of commodity α stocked, and where w_{α} are the relative weights assigned the commodities according to their importance. This function, $f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)$, represents the "gain" that we achieve if we meet a demand x_{α} when we stock an amount y_{α}. Of course, when x_{α} is larger than y_{α}, we meet the demand as best we can, namely, by supplying what we have in stock y_{α}.

Our objective is to maximize our total gain. We approach this by maximizing the total utility function, W (defined as the expected value of the total gain), subject to the space constraint. In other words, we maximize

$$
W\left(y_{1}, \ldots, y_{n}\right)=E\left[\sum_{\alpha=1}^{n} f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)\right] \text { subject to } \sum_{\alpha} c_{\alpha} y_{\alpha}=C .
$$

It should be noted that we have assumed the gain to be additive. Now,

$$
E\left[\Sigma_{\alpha} f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)\right]=\int \cdots \int \sum_{\alpha} f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) \Phi\left(x_{1}, \ldots, x_{n}\right) d x_{1}, \ldots d x_{n}
$$

where $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is the joint probability density function of x_{1}, \ldots, x_{n}.
We have made the assumption that the demand for commodity α is independent of commodity β, so that their joint probability density function can be written as:

$$
\Phi\left(x_{1}, \ldots, x_{n}\right)=\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \ldots \phi_{n}\left(x_{n}\right)
$$

where $\phi_{\alpha}\left(x_{\alpha}\right)$ is the probability density function of x_{α}. The range of each x_{α} clearly is from 0 to x. Whenever no limits of integration are indicated, they are to be taken as from 0 to α.

Since

$$
\int \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha}=1
$$

we get:

$$
E\left[\sum_{\alpha} f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)\right]=\int f_{1}\left(x_{1}, y_{1}\right) \phi_{1}\left(x_{1}\right) d x_{1}+\ldots+\int f_{n}\left(x_{n}, y_{n}\right) \phi_{n}\left(x_{n}\right) d x_{n} .
$$

Now let us define

$$
w_{\alpha} u_{\alpha}\left(y_{\alpha}\right)=E f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\int f_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha}
$$

Using the method of Lagrange multipliers, we form the function

$$
\mathrm{D}=\sum_{\alpha} w_{\alpha} u_{\alpha}\left(y_{\alpha}\right)-\lambda\left[\sum_{\alpha} c_{\alpha} y_{\alpha}-c\right] .
$$

We get n equations of the form:

$$
\begin{equation*}
0=\frac{\partial D}{\partial y_{\alpha}}=\frac{d}{d y_{\alpha}}\left[w_{\alpha} u_{\alpha}\left(y_{\alpha}\right)\right]-\lambda c_{\alpha} . \tag{I.1}
\end{equation*}
$$

$$
\begin{align*}
& \int_{0}^{y_{\alpha}} \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha}=1-\lambda \frac{c_{\alpha}}{w_{\alpha}} \tag{1.2}\\
& \sum_{\alpha}^{c_{\alpha}} y_{\alpha}=c
\end{align*}
$$

These equations determine a unique set of y_{α} 's, provided that, for all $\alpha, \phi_{\alpha}\left(x_{\alpha}\right)>0$ for all values of x_{α} (except possibly on a set of measure zero).

That this stationary point is really a maximum of $w\left(y_{1}, \ldots, y_{n}\right)$ can be easily shown by the methods outlined in Courant-Hilbert, "Methoden der Mathematischen Physik," 1931 edition, p. 200.

We are now ready to compute the mean quantity of commodity a supplied when an amount y_{α} is stocked. This is obtained as follows: U an amount of x_{α} is demanded which is less than y_{α}, then that amount is supplied. $I f$, on the other hand, the amount demanded, x_{α}, is larger than the amount stocked, only an amount y_{α} can be supplied. Thus the average amount supplied is:

$$
u_{\alpha}\left(y_{\alpha}\right)=\int_{0}^{y_{\alpha}} x_{\alpha} \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha}+\int_{y_{\alpha}}^{\infty} y_{\alpha} \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha} .
$$

The mean quantity of commodity a not supplied when an amount y_{α} is stocked is:

$$
v_{\alpha}\left(y_{\alpha}\right)=\int_{y_{\alpha}}^{\infty}\left(x_{\alpha}-y_{\alpha}\right) \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha}
$$

Clearly,

$$
\begin{aligned}
& u_{\alpha}\left(y_{\alpha}\right)+v_{\alpha}\left(y_{\alpha}\right)=E\left(x_{\alpha}\right) \\
& E\left(x_{\alpha}\right)=\int x_{\alpha}{ }_{\alpha}\left(x_{\alpha}\right) d x_{\alpha} .
\end{aligned}
$$

In order to solve equations (1.2), we shall assume a value of λ; compute y_{α} by using a table of the appropriate cumulative distribution function; and then determine the corresponding C from the subsidiary condition. Since,

$$
0 \leq \int_{0}^{y_{\alpha}} \phi_{\alpha}\left(x_{\alpha}\right) d x_{\alpha} \leq 1
$$

it follows that $\frac{w_{\alpha}}{c_{\alpha}} \geq \lambda \geq 0$ for all α, and therefore $\min \left(\frac{w_{\alpha}}{c_{\alpha}}\right) \geq \lambda \geq 0$. This defines the range of permissible values of λ.

We shall now turn to the discussion of several useful properties of our model. We shall show that u the mean is multiplied by k and the variance by k^{2}, then y_{α} and $u_{\alpha}\left(y_{\alpha}\right)$ also are multiplied by k. This is usually true for distributions which have more than one parameter. For example, it holds for the normal and the logarithmic normal but does not hold for the Poisson. The proof proceeds as follows (for simplicity we delete the subscript α):

Given a distribution function $\phi(\mathbf{x})$, such that
(2) $E(x)=\int x \phi(x) d x=M$
(3) $\operatorname{Var}(x)=\int x^{2} \phi(x) d x-[E(x)]^{2}=\Sigma^{2}$,
the. the distribution function

$$
\psi(x)=\frac{1}{k} \phi\binom{x}{k}, \quad k>0
$$

has the properties:
(1) $\int \psi(x) d x=\int \frac{1}{k} \phi\left(\frac{x}{k}\right) d x=\int \phi(z) d z=1$
(2) $E(x)=\int x \psi(x) d x=\int x \frac{1}{k} \phi\left(\frac{x}{k}\right) d x$

$$
=k \int 2 \phi(2) d z=k M
$$

and
(3) $\operatorname{Var}(x)=\int x^{2} \psi(x) d x-[E(x)]^{2}=\int x^{2} \frac{1}{k} \phi\left(\frac{x}{k}\right) d x-[E(x)]^{2}$

$$
=k^{2} \int z^{2} \phi(z) d z-[k M]^{2}=k^{2} \Sigma^{2}
$$

If the distribution function $\psi(x)$ has the same analytical form as $\phi(x)$, differing from it only in the values of its parameters, then we can use it to find the scaling laws for y and $u(y)$. Thus, if y is defined by the equation

$$
\int_{0}^{y} \phi(x) d x=1-\lambda \frac{c}{w},
$$

then

$$
1-\lambda \frac{c}{w}=\int_{0}^{y^{\prime}} \psi(x) d x=\int_{0}^{y^{\prime}} \frac{1}{k} \phi\left(\frac{x}{k}\right) d x=\int_{0}^{y^{\prime} / k} \phi(z) d z,
$$

and therefore

$$
y^{\prime}=k y
$$

This defines the new amounts to be stocked. Also, if originally

$$
u(y)=\int_{0}^{y} x \phi(x) d x+y \int_{y}^{\infty} \phi(x) d x .
$$

Now,

$$
\begin{aligned}
u^{\prime}\left(y^{\prime}\right) & =\int_{0}^{y^{\prime}} x \psi(x) d x+y^{\prime} \int_{y^{\prime}}^{\infty} \psi(x) d x, \\
& =\int_{0}^{y^{\prime}} x \frac{1}{k} \phi\left(\frac{\pi}{k}\right) d x+y^{\prime} \int_{y^{\prime}}^{\infty} \frac{1}{k} \phi\left(\frac{\pi}{k}\right) d x, \\
u^{\prime} y^{\prime} & =k \int_{0}^{y^{\prime} / k} z \phi(z) d z+y^{\prime} \int_{y^{\prime} / k}^{\infty} \phi(z) d z=k u(y) .
\end{aligned}
$$

It also is easy to show another fairly general property of the model. If a function $\mathbf{g}(\mathbf{x})$ of the variable x is normally distributed, with mean m and variance $o{ }^{2}$, then

$$
\xi=\frac{g(x)-m}{\sigma}
$$

is $\mathrm{N}(0,1)$. Then,

$$
\phi(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(g(x)-m)^{2} / 2 \sigma^{2}} \frac{d g(x)}{d x} .
$$

We shall consider the case where $g(x)$ is a monotonically increasing function of x such that $-\infty<g(x)<\infty$, while $0 \leq x<\infty$. Then

$$
\int_{0}^{y} \phi(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{(g(y)-m) / \sigma} e^{-\xi^{2} / 2} d \xi=1-\lambda \frac{c}{w} .
$$

Clearly, whenever $1-\lambda \frac{c}{w}=\frac{1}{2}$ we have $g(y)=m$, which can be solved for y. u $1-\lambda \frac{c}{w}>\frac{1}{2}$, then $\frac{g(y-m)}{\sigma}=\tau>0$, and therefore $g(y)=m+\tau \sigma$. Clearly τ is the same for two commodities having equal $\frac{c}{w}$, even though their means and variances may differ. But if $\tau_{1}=\tau_{2}, m_{1}=m_{2}$, and $\sigma_{1}>\sigma_{2}$, then clearly $g_{1}\left(y_{1}\right)>g_{2}\left(y_{2}\right)$, and therefore also $y_{1}>y_{2}$. Similariy, if $1-\lambda \frac{c}{w}<\frac{1}{2}, \frac{g(y)-m}{\sigma}=-\tau<0$; and if $\tau_{1}=\tau_{2}, m_{1}=m_{2}$, and $\sigma_{1}>\sigma_{2}$, then $g_{1}\left(y_{1}\right)<g_{2}\left(y_{2}\right)$ and $y_{1}<y_{2}$. This shows that for small C (large positive λ) one stocks less of the commodities with large 0 . On the other hand, when C is large, one stocks more of the commodities with large σ than of those with small σ.

[^18]$$
\pi-63-4-6
$$
\[

$$
\begin{gathered}
6 \prime \\
\text { CATALOGED BY DDC } \\
\text { AS AD No. } \mathbf{4 1 6 3 9 1}
\end{gathered}
$$
\]

this report has been delimsted

 and cleared for public release under dod directive 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON its USE AND DISCLOSURE, DISTRIBUTION STATEMENT AAPPROVED FOR PUBLIC RELEASEJ distribution unlimited,

HOICE: When goverminent or other drailings, specifisarions or otber data are used for zfy purpose ctter than in connection witu a detiniffely related errerment procurement operation, the \forall, 8 . Corenment thereby incurs no responsibility, nor any Cinigation whatscever; and the fact thist the Goverament may have formilated, fraished, of in any vay criplied the aald drawings, speciflcations, or other cata is not to be regaried by implication or otherwise as in any manner licensing the boider or any ofker perbon or corporation, or convejtang any righte os permidsion to manufacture, use or beil any friented invention that may in any way be related thereto.

1
Is ur: ジ :.ว. 1

POLARIS LOGISTICS STUDIES
 Number 3

A POLARIS LOGISTICS MODEL

> MARVIN DENICOFF
> JOSEPH FERRELL SHELDON E. HABER
> W. H. HARLOW HENRY SOLOMON

Serial T-162
26 August 1963

THE GEORGE WASHINGTON UNIVERSITY LOGISTICS RESEARCH PROJECT

Contract Xor 761
Task 03, Project NR 345107
Task 05. Project SR 047001
Task 06, Project SR 347008
Office of Naval Research
Fenciection in whole or it part is permitted Ib=

THE GEORGE WASHINGTON UNIVERSITY

Logistics Research Project
Abstract
of
Serial $T-162$

A POLARIS LOGISTICS MODEL

MARVIN DENICOFF
JOSEPH FENNELL
SHELDON E. HABER W. H. MARLOW

HENRY SOLOMON

This paper presents a basic loss minimization model which has been applied in varying contexts for Polaris logistics problems. Definitive results are obtained in a general framework which extends the classic newsboy problem in two principal directions. First, probability distributions for demand are unrestricted. Second, a general framework for "penalties" or "premiums" is introduced to permit formulation of possibly non-convex loss functions. The main result is a constructive einistence theorem for minimum values of these general expected loss functions.

The present study is the in arex papers to be issued by this Project as Polaris Logistics Surive: Solusequent papers will consider

 finally the general problem of pexrifu Dogistice information and control systems to permit overall sationtrutingistics.

It will become appareft inn what diverse range of interestex 표
 which deserves special commorn Tis =riers to the fact that careful attention is given to the underixing minn then the methodology is to apply. It turns out that thrian innexces tive need for considerable precision of terminology in engitecnan anding jogics areas which unfortunately include areas notorious for ther definition of a "component" x armpeseat mon "equipnent". Nevertheless, a substantial part of the contrinurion arine present series is judged to consist of its relevance for practin preanecros has required that unswerving attention be paid to = exizemies cif the background situations and their definitions.

It is a pleasure to acknown-nye tre mupant of the Logistics and Mathematical Statistics Bramei $=$ C Cite of Fiaval Research under
 appreciation is due the Techmican jiector. Special Projects Office, and his Assistant for Material Sumprew in ze co-xponsors of this research by means of transfer of necesserne to tife of Naval Research. Mention should also be made σ 伍 Accounts and its field activities $=0$ rollasorators in the present studies. Finally, it is most and support provided by the Lasim Bemercie Project administrative and clerical staff and by the men Project Computation Laboratory who were essentin
W. H. Marlow

$$
T-162
$$

TABLE OF CONTENTS

Page Number
Abstract i
Preface ii
Section O. Introduction 1

1. Basic expectations 2
2. Loss functions 10
3. Minimizing expected losses 13
4. Inventory models 24
References. 27

LIST OF FIGURES

1. Graphs of $a(s)$ and $b(s)$ 9
2. Two examples of minima for $L(s, \infty)$ 15
3. A numerical example: $A=10, B=50$ 21
4. A sketch of two loss functions 22
5. An example with $A=B=1$ 23

THE GEORGE WASHINGTON UNIVERSITY
 Logistics Research Project

A POLARIS LOGISTICS MODEL ${ }^{1 /}$

Marvin Denicoff ${ }^{2 /}$ Joseph Fennell
Sheldon E. Haber
W. H. Marlow

Henry Solomon
0. Introduction.

The aim of this paper is to present the foundation for a family of logistics models which can be used to formulate and solve a variety of problems. Each member of the family results as a special case of a single basic loss minimization model. It is to this basic underlying model that the present paper mainly applies. Subsequer: papers in the Polaris Logistics Studies scries will discuss applications in detail. particularly in the areas of allowance lists and load lists. Terminology and notation are consistent with earlier studies in the present series [1, 2] wherein will be found considerable

1 The preparation of this paper was sponsored by the Office of Naval Research and the Special Projects Office. Reproduction in whole or in part is permitted for any purpose of the United States Government.
$2 /$ Navy Bureau of Supplies and Accounts
additional background material affecting applications.

1. Basic expectations.

Our loss minimization model is a generalization of the formulation for the classic "newsboy problem" which dates back at least to World War II [3, pages 31-32]. This is the problem of the boy who is required to buy his papers at 2 cents and sell them at 3 cents, and is not allowed to return his unsold papers. Under conditions permitting the assumption that his customers appear according to a Poisson distribution with known mean, say 10 , it turns out that expected profit will be maximum (i.e., loss will be minimum) if he buys 9 papers rather than the obvious quantity 10 . So far as we kncw, earliest publication of a generalized version of such a model was [4]: Whitin and Youngs also seem to have been the first to state that the assumption of Poisson distribution of demand is inessential. Our present deve:epment is distinguished principally by two features.
a. A generalized loss function is employed which includes the formulation of [4] as a nontrivial special case.
b. No special conditions are imposed on the distribution of demand which may be any probability distribution with a finite mean.

It will be convenient to phrase our exposition in terms of a submarine allowance list problem. Afterwards, we will consider wider application for our results but for now we limit our attention for illustration. We consider a specific allowance list candidate which is a particular repair part competitor for placement on-board for use by ships force in direct support of installed components. (See [2, page 30].) It is correct to regard such a part as one which may possibly be required
for use during patrol. i.e., at a time when the vessel will be operating in isolation with no possibility whatsoever of obtaining repair parts from sources other than its own allowance list stocks. For the specific item we are considering we require that two real numbers be specified relative to a single patrol period.

$$
\begin{align*}
A= & \text { penalty per unit stacked in excess of number } \\
& \text { demanded during the entire patral. } \tag{1.1}
\end{align*}
$$

$B=$ penalty per unit demanded in excess of number stocked for the entire patrol.

Different repair parts candidates may have different (A. B) pairs assigned subject to the following requirements of which the first serves only to eliminate complete triviality.

Not both of A and B are sero.

Both A and B are expressed as values on a common numerical scale which is furthermore cornmon to all allowance list candidates.

The common numerical scale in (1.3) is the measuring scale for utility which will underlie our work. Our objective will be to minimize total expected penalties associated with values accrued on this scale. We may as well imagine that the scale in (1.3) is as large as the entire real number system: positive numbers represent penalties while negative numbers denote premiums. As noted above, we aim to minimize loss or, what is the very same thing. to maximize gain.

It is clear that the most advantageous allowance quantity. n, would equal exactly d. the quantity to be demanded for use during
patrol. If such were possible, i.e., if $n=d$, a minimum loss of zero would accrue. If $n>d$ a loss would be incurred due to there being a surplus; specifically, we would lose $(\mathrm{n}-\mathrm{d}) \mathrm{A}$. On the other hand, with $. n<d$ there would be a shortage of ($d-n$) units with associated penalty $(d-n) B$. In the absence of advance knowledge as to the value to be assumed by d we turn to a probability distribution to be able to t teat future uncertain demands. That is, for the specific candidate we are considering, there must be defined
$P_{i}=$ Probability of exactly i units being demanded for use during patrol:

$$
\begin{equation*}
i=0,1,2, \ldots . \tag{1.4}
\end{equation*}
$$

This requires

$$
\begin{equation*}
P_{i} \geqq 0 \text { for each } i \text { and } \sum_{i=0}^{\infty} P_{i}=1 \text {. } \tag{1.5}
\end{equation*}
$$

It will be a notational convenience to write

$$
(1.6) \quad C_{s}=\sum_{i=0}^{s} P_{i}
$$

to denote a cumulative probability. In the present context C_{s} represents the probability that demand during a patrol will not exceed s units of the iiem we are considering as an allowance list candidate. We will write m to denote the mean ${ }^{1 /}$ of the distribution (1.4), i.e., the expected number of units demanded,

$$
\begin{equation*}
m=\sum_{i=0}^{\infty} i P_{i} . \tag{1.7}
\end{equation*}
$$

$$
1 \text { In the following we suppose that the mean } m \text { exists as a }
$$

finite quantity in order to avoid unrewarding complications.

Given the distribution (1.4) we define the surplus function, a, whose value $a(s), s=0,1,2, \ldots$ equals the expected number of units overstocked during a patrol in case the allowance quantity equals s. We readily compute
(1.8)

$$
a(s)=\sum_{i=0}^{s}(s-i) P_{i}
$$

We proceed in analogous fashion to define a shortage function, b. whose value $b(s), s=0,1,2, \ldots$ equals the expected number of units understocked during a patrol in case the allowance quantity equals s. Wefind

$$
\begin{equation*}
b(s)=\sum_{i=8+1}^{\infty}(i-s) P_{i} \tag{1.9}
\end{equation*}
$$

This completes the set of functions we need in order to formulate loss functions for minimization.

It will be convenient to have available some standard mathematical terminology applicable to a function a defined on integers.

DEFINITION. A function a defined on $s=0,1,2, \ldots$ is said to be nondecreasing if $s_{1}<s_{2}$ implies $a\left(s_{1}\right) \leqq a\left(s_{2}\right)$. In case the strict inequality always holds then a is an increasing function. The terms nonincreasing and decreasing have corresponding definitions.

Functions falling into one of the above categories are termed monotonic functions. Next, we require the definition of a convex function. For the case of a curve a. convexity means that if a chord is drawn between two points on the curve then no point on the chord can lie below the curve.

DEFINITION: A function a defined on
 $s=0,1,2, \ldots$ is said to be conviex in sii

$$
\begin{equation*}
2 a(s) \leqq a(s-1)+a(s+1) \tag{1.10}
\end{equation*}
$$

holds for $s=1,2, \ldots$. In case the strict inequality always holds then a is strictiy convex. The function a is called concave in case -a is convex: there is the corresponding definition for strictly concave.

Condition (1.10) simply requires that the second differences be sonnegative. A convenient equivalent rearrangement of (1.10) requires that the first differences be nondecreasing:

$$
\begin{equation*}
a(s)-a(s-1\rangle \leqq a(s+1\rangle-a(s) \tag{1.11}
\end{equation*}
$$

This exhibits convexity as a property of diminishing returns. Indeed. if

$$
\Delta a(s)=a(s+1)-a(s)
$$

represents the difference in return going from "state" sto $\mathbf{s}+1$. then if a is convex.

$$
\Delta a(s-1) \leqq \Delta a(s) \leqq \Delta a(s+1) \leqq \ldots \text { etc. }
$$

One of the most important properties of a convex function is that it possesses at most one local minimum. i.e., any minima are "global". Specifically. if

$$
a\left(s^{\prime}-1\right) \leqq a\left(s^{\prime}\right) \leqq a\left(s^{\prime}+1\right)
$$

then there can be no integer s for which $a(s)<a\left(s^{\prime}\right)$. This conclusion is a consequence of the fact that (1.11) in this case
causes $a(s) \geqq a\left(s^{\prime}\right)$ for $s<s^{\prime}$ and also for $s>s^{\prime}$. Of course a convex function need not have any minimum at all, e.g., $a(s)=-s$ for $s=0,1,2 . .$. , or more generally. in case Δa is negative for all s. However, if $\Delta a\left(s^{*}\right) \geqslant 0$ for at least one s^{*}, then there is a unique smallest s. $0 \leqq s<s^{*}$, at which $\Delta a(s) \geqq 0$. For this first (perhaps the only) s. $\Delta a(s)$ changes sign assuring that $a(s)$ is a global minimum. In what follows we shall make considerable use of this last mentioned property Specifically, we shall find the smallest integer s by successively testing the sign of $\Delta a(s)$ in the order $s=0.1 .2, \ldots$ to find the first s for which $\Delta a(s) \geq 0$.

We now return to consideration of the particular functions a and b. the surplus function (1.8) and the shortage function (1.9). respectively.

$$
\begin{aligned}
& \text { LEMMA 1. The functions } a \text { and } b \text { are } \\
& \text { non-negative and convex in } s \text {. Further- } \\
& \text { more, } a \text { is nondecreasing while } b \text { is } \\
& \text { nonincreasing. }
\end{aligned}
$$

PROOF. Non-negativity is an immediate consequence of the fact that $a(s)$ and $b(s)$ are both sums of non-negative numbers. Actually. the entire lemma follows readily with the aid of easily established expressions.

$$
\begin{gather*}
a(0)=0 \\
a(s+1)=a(s)+C_{s} \tag{1.12}
\end{gather*}
$$

$$
\begin{equation*}
b(0)=m \tag{1.13}
\end{equation*}
$$

$$
b(s+1)=b(s)-\left(1-C_{s}\right)
$$

For example, convexity of $a(s)$ is established by two applications of (1.12) whereby (1.10) is verified with

$$
\dot{Z}_{a}(s)=a(s-1)+a(s+1)-P_{s}
$$

Proof that a(s) is nondecreasing is direct with (1.12). Corresponding applications of (1.13) for $b(s)$ complete the proof. Notice that we cannot establish strict propertics for all s (positivity. convexity or, e.g., that $a(s)$ be increasing) on account of possibly vanishing terms P_{i}. As an additioral remark in passing we note that the following useful alternative expressions may readily be derived for the functions a and b.

$$
\begin{equation*}
a(s)-b(s)=-m \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
a(s)=\sum_{j=0}^{-1} \sum_{i=0}^{j} P_{i}=\sum_{j=0}^{s-1} C_{j} \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
b(s)=m-\sum_{j=0}^{s-1} \sum_{i=j+1}^{\infty} P_{i}=m-\sum_{j=0}^{-1}\left(1-C_{j}\right) \tag{1.16}
\end{equation*}
$$

A graphical illustration of the lemma is contained in Figure 1. Observe that $b(s)$ tends to zero as consistent with the expectation that average numbers of units "short" will diminish toward zero as s grows larger. On the other hand, $a(s)$ eventually climbs at an angle of 45° reflecting the expectation that from some point onward each additional unit stocked is likely to be a surplus item. It is important to notice that these expectations are in direct ccnflict: with loss expressed purely in terms of expected numbers of inventory units, moving so as to decrease loss $a(s)$ tends to increase loss b(s). and conversely.

Expected
Number
of Units

Figure 1. Graphs of $a(s)$ and bis).

2. Loss functions.

In the present paper we devote attention to a single general loss function. However, on account of the generality we are able to specialize in several interesting directions which explains our use of the plural form in the present section title. Let us consider a single allowance list candidate for which the demand distribution (1.4) and the penalties A and B of (1.1! are fixed. Then one possibility is to follow the lead of the classic newsboy and, as was done in [4], specify that the expected loss in case the allowance quantity is s will equal

$$
\begin{equation*}
a(s) A+b(s) B \tag{2.1}
\end{equation*}
$$

Such a procedure is entirely consistent with strict interpretation of (1.1) in which each and every surplus unit leads to a penalty of A and each and every unit short leads to a penalty of B . We could generalize this approach many ways: A and B could themselves be functions of s to reflect. say economic, considerations; we could employ quadratic functions of $a(s)$ and $b(s)$ rather than the linear (2.1); etc. Rather than pursuing such possibilities in the abstract, our present attention will be given to modifying (2.1) so as to reflect certain differences between the newsboy problem and others, notably submarine allowance list problems.

At the focal point of our concern is the number B in (1.1). In particular, we wish to be able to limit the number of times we could incur a unit penalty B. This is different than for the case of the newsboy for whom B equals one cent so that each and every unfilled demand gives rise to a penny loss. For the submarine, B by definition represents the penalty associated with each unit short of the repair part. Each such shortage will be considered to have a definite effect on its parent "component" . Thus, for the submarine allowance list problem we let B measure the effect on the parent component
due to the shortage of a single repair part unit. This effect may be total loss of the function provided by the component or it could simply be "mild degradation". Whatever the effect on the component, B must represent it through providing a unit penalty measure. It is worth noting again at this point that B may vary in value from one repair part to another. In addition, we will now allow for variation of a different sort from candidate to candidate.

> DEFINITION. Associated with each candidate for stocking is a quantity σ called its span which is either a positive integer or else $\sigma=\infty$.

In case σ is finite then the largest possible penalty due to parts shortages will equal σB. We will associate the probability $\sum_{i=5+\sigma}^{\infty} P_{i}$ with accruing the maximum penalty σB when s units are stocked. This then means that we have an identical penalty σB associated with shortages equal to any one of $\sigma, \sigma+1, \sigma+2, \ldots$. In the contrary case, $\sigma=\infty$ causes iB to be associated with i units short no matter how large i may be. This latter procedure seems not unreasonable for the newsboy who sees, as we noted above. a penny loss for each and every unfilled demand. On the other hand. consider say Sonar Alfa which is installed in total number σ on board a submarine. If the submariner uses B for unit loss of one of these sonars then he could reason that σB is his maximum loss. Somewhat differently., Transistor Bravo might be installed σ times within the sonar while B represents a unit shortage of one transistor for this one sonar: again there is a rationale for span σ. Possibilities such as the above for the newsboy, for the submariner, and for others, are covered in the following loss function.

DEFINITION. The expected loss corresponding

to stocking a quantity s for a candidate with span σ is as follows for $s=0,1,2, \ldots$.
(2.2) $L(s, \sigma)=\sum_{i=0}^{s}\{(s-i) A\} P_{i}+\sum_{i=s+1}^{s+\sigma}\{(i-s) B\} P_{i}+\sum_{i=s+\sigma+1}^{\infty}\{\sigma B\} P_{i}$

We observe first that $L(s, \infty)$ is the limiting case of (2.2) with value as shown in (2.1). More sunerally, (2.2) may be replaced by

$$
\begin{equation*}
L(s, \sigma)=a(s) A+\{b(s)-b(s+\sigma)\} B \tag{2.3}
\end{equation*}
$$

as may readily be verified with (1.9).
LEMMA 2. Let $A \geqq 0$ and $B \geqq 0$ for
definiteness. Then L is non-negative and,
for any σ, is convex in s if and only if for all s

$$
\begin{equation*}
(A+B) P_{s}-B P_{s+\sigma} \geq 0 \tag{2.4}
\end{equation*}
$$

For any s, L is concave and non-
decreasing in σ.

PROOF. The present lemma can be established along direct lines from Lemma 1. First, we may employ (1.12) and (1.13) together with (2.3) to write down several relations.

$$
\begin{equation*}
L(0, \sigma)=\{m-b(\sigma!\} B \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
L(s+1, \sigma): L(s, \sigma)+(A+B) C_{s}-B C_{s+\sigma} \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
L(s, \sigma+1)=L(s, \sigma)+B\left(1-C_{s+\sigma}\right) \tag{2.7}
\end{equation*}
$$

Abstract

Two applications of (2.6) directed toward (1.10) yield condition i(2.4) while the final sentence in Lemma 2 of course results from (2.7).

COROLLARY. Let $A \geqslant 0$ and $B \geqslant 0$ for definiteness. Then if $\sigma=\infty, L$ is convex in s.

PROOF. Condition (2.4) in this case is always satisfied in the form $(A+B) P_{s} \geq 0$ which obtains since $P_{s+\sigma}=0$ in the limit.

As we indicated in the paragraph following (1.10). convex functions are noteworthy for the relative ease by which their minima may be found. In particular. if L is not convex we must proceed with care to avoid mistaking a local minimum for a desired minimum for all s. Since we are permitting the probability distribution $\left\{P_{i}\right\}$ to be completely arbitrary. (2.4) may easily fail for finite σ : e.g.. $P_{s}=0$ and $P_{s+\sigma}>0$ is clearly sufficient and there is nothing to prevent this occurring for an infinite number of integers s. However. it will turn out that despite possible non-convexity of L we will be able to minimize $L(s, \sigma)$ as a function of s without restrictive assumptions on $\left\{P_{\mathbf{i}}\right\}$. A. B. or σ. All of this will come about through exploitation of Lemma 2 and its corollary.
3. Minimizing expected losses.

In this section we solve the problem of determining the most advantageous allowance quantity for our submarine allowance list example. In fact, we establish quite a bit more than this due to the generality of our formulation. The general problem to be solved consists of minimizing $L(s, \sigma)$ from (2.2) as a function of s for arbitrary $\left\{P_{i}\right\}, A ; B$ and σ. It will be convenient to start with $\sigma=\infty$ which, as we have noted. corresponds to the classic newsboy problem.

LEMMA 3. (Whitin and Youngs) Let $A>0$ and $B>0$. Then for the case of infinite span, $\quad \sigma=\infty$, L has a global minimum which first ${ }^{1 /}$ occurs at

$$
\begin{equation*}
n=\min _{s}\left\{C_{s} \geq B /(A+B)\right\} \tag{3.1}
\end{equation*}
$$

PROOF. The loss function L is in this case convex in s according to the Corollary to Lemma 2. This means that we may search for its minimum by the procedure discussed in the paragraph below (1.11). In detail, we first show that $\Delta L(s, \infty) \geqq 0$ for at least one s. This is immediate from (2.6) whereby, since $C_{s+\sigma}=1$ in the limit for $\sigma=\infty$.

$$
\Delta L(s, \infty)=(A+B) C_{s}-B
$$

and we see that $\Delta L(s, \infty)$ has the same algebraic sign as does

$$
\begin{equation*}
C_{B}-B /(A+B) \tag{3.2}
\end{equation*}
$$

Then $\Delta L(s, \infty) \geqq 0$ for at least one s since otherwise from (3.2) we would contradict either $C_{\infty}=1$ or $B /(A+B)<1$. Proof is thus complete and we denote the smallest such s by n as shown in (3.1).

In the context of our allowance list example there are two cases to be distinguished in practice as illustrated in Figure 2. On the left, the minimum occurs at $n=0$ which would mean that the repair part
$1 /$ Since we permit arbitrary probability distributions $\left\{P_{i}\right\}$ it may happen that the minimum may occur for several successive values of s rather than for at most two as in [4] where one of the restrictions was $P_{i}>0$ for all i.

Figure 2. Two examples of minima for $L(s, \infty)$.
-15-
should not be carried on board the submarine. In case $n>0$ as on the right, the item should be carried on board and in quantity n units.

The following corollary is of considerable importance in practice since it exhibits the ratio B / A as the critical determinart independent otherwise of scaling for the penalties A and B as defined in (1.1).

COROLLARY 1. (Whitin and Youngs) If $A>0$.
$B>0$ and $\sigma=\infty$, the minimum of $L(s, \infty)$ is determined by the value of the ratio B / A.

PROOF. If $B / A=a$ then the quantity of $B /(A+B)$ in
(3.1) equals $a /(1+a)$. It is similarly convenient to note that if $B /(A+B)=\beta$ then $B / A=\beta /(1-\beta)$.

Careful examination of the proof ior Lemma 3 taken together with our earlier lemmas reveals that A and B may represent "penalties" of any kind whatsoever, even negative penalties which we equate to "premiums". The problem of minimizing expected total loss, i.e., $L(s, \infty)$. is then in certain cases trivial. However, as we show belos following (3.3), we cannot apply (3.1) in all cases for A and B .

COROLLARY 2. If A and B in (1.1) are
arbitrary real numbers there is at most one
optimum value n for which $L(s, \infty)$ is minimum as shown in the following table.

PROOF. We use "optimum" to denote the smallest integer at which a giobal minimum is assumed. Consider $A<0$. Then if $B<0$ we have a concave loss function which is the negative of L in Lemma 3. There could be a lical minimum at $n=0$ in a case corresponding to reflection of the right-hand sketch in Figure 2, but there can be no global minimum except $n=\infty$. If $B=0, \quad L(s, \infty)=a(s) A$ is in this case by Lemma 1 decreasing for s sufficiently large and the same holds true if $B>0$. Thus, in each case for the first row of the table, $n=\infty$ consistent with the condition of premiums for sur plus. In the second row, $L(s, \infty)=b(s) B$ and with Lemma 1 we see that L is nondecreasing, zero, or nonincreasing when $B<0$. $B=0$, or $B>0$ so that $n=0,0$, or ∞, respectively. Next. $n=0$ in case $A>0$ and $B=0$ wherein $L(s, \infty)=a(s) A$ is nondecreasing. The only remaining case in the table is $A>0, B<0$. But always when $\sigma=\infty$.
$\Delta L(s, \infty)=A C_{s}-B\left(1-C_{s}\right)$
by virtue of (2.6) so that $\Delta \geq 0$ for all s when $A>0$ and $B<0$, whereupon $n=0$. This completes the proof.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

It is worthy of note that (3.1) cannot be applied in all cases to produce results agreeing with the table. For example, if $B=0$ and $A<0$ then in (3.1) we would seek $\min _{5}\left\{C_{s} \geq 0\right\}$ and would find $\mathrm{n}=0$ in disagreement with $\mathrm{n}=\infty$ in the table. Rather than characterizing the exact applicability of (3.1) for general A and B it seems prefcrable to suppose that the table given above will be consvited and (3.1) is to be applied only for the case $A>0, B>0$.

The fundamental result toward which we have been working will now be stated and proved as a constructive procedure for determining the existence and location of integers n for which $L(s, \sigma)$ is minimum.

THEOREM. Let $A>0$ and $B>0$. Then $L(s, \sigma)$ has a global minimurn which first occurs at say $=n$. A necessary condition on n is

$$
\begin{equation*}
C_{n} \geqq\{B /(A+B)\} C_{n+\infty} \tag{3.4}
\end{equation*}
$$

 sufficient condition is that the present n minimizes $L(s, \sigma)$ over $s=0,1, \ldots, x^{\prime}$.

PROOF. In order that n minimize $L(s, \sigma)$ we must of course have $L(n, \sigma) \leqq L(n+1, \sigma)$. With the aid of (2.6) , this last inequality establishes condition (3.4). By Lemma 2: for any s. . L(s, σ) is non-negative, concave and nondecreasing in σ. We need more than this to establish the final sentence in the theorem. In fact. writing Δ, to denote differencing on s, we need to show that although it need not be convex in $\sigma . \Delta_{s} L(s, \sigma)$ is itself nonincreasing in σ. This results from (2.6) whereby

$$
\begin{equation*}
\Delta_{s} L(s, \sigma+1)-\Delta_{s} L(s, \sigma)=-B P_{s+\sigma+1} \tag{3.5}
\end{equation*}
$$

a non-positive quantity. so that for each .

$$
\begin{equation*}
\Delta_{s} L(s, \infty) \varliminf_{x} \cdots \sum_{s} L(s, \sigma+1) \sum_{x} \Delta_{s} L(s, \sigma) \lll \cdots \tag{3.6}
\end{equation*}
$$

Let us consider n^{i} satisfying (3.1) which means that for $\sigma=\infty$ the minimum of $L(s, \infty)$ first occurs for $s=n^{\prime}: \quad n^{\prime}$ is the initial value of s for which $0 \leqq \Delta L(s, \infty)$. But then by virtue of (3.6), $0 \leqq \Delta_{s} L\left(n^{\prime}, \sigma\right)$ for every σ. Since $L(s, \infty)$ is convex. $\Delta_{s} L(s, \infty)$ is nondecreasing in so that $\Delta_{s} L(s, \infty)>0$ for $s \geq n^{\prime}$. Hence, we also have $\Delta_{s} L(s, \sigma) \geqq 0$ for $s \geqq n '$ for any finite σ. We conclude tiat $L(s, \sigma)$ is nondecreasing for $s \geq_{Z} n^{\prime}$ and n^{\prime} must be the largest value of s at which a minimum of $L(s, \sigma)$ can occur for any σ. This completes the proof. Notice that we have reduced the problem of minimizing $L(s, \sigma)$ over all the integers $s=0,1,2, \ldots$ to the trivial problem of minimization over a finite set $s=0,1,2, \ldots, n^{\prime}$.

Several observations are in order at this point. First, is clearly the limiting case of (3.4) since in the latter $C_{n+\sigma}$ tends to unity as σ becomes infinite. Second, (3.4) is not a sufficient condition unless $L(s, \sigma)$ is convex in s: from Lemma 2 we see that for general $\left\{P_{i}\right\} \quad w$: cannot guarantee convexity in s Perhaps the simplest example of possible difficulty from non-convexity would be $\Delta_{s} L(s, \sigma)=0$ yet $L(s+1, \sigma)>L(s+2, \sigma)$ so that $L(s, \sigma)=L(s+1, \sigma)$ is not a minimum. We overcome such difficulties, and others, by exhaustive search over the finite range $0,1, \ldots, n^{\prime}$. We will now show that exhaustive search over the finite set for cannot be avoided in the general case for finite span. In order to demonstrate this we first exhibit a case where min $L(s, \sigma)$ occurs neither at the first nor at the last sfor which

$$
\begin{aligned}
& \Delta_{s} L(s, \sigma) \geqslant 0 \text {. Such a case is given in Figure } 3 \text { where } L(s, \text { i) } \\
& \text { possesses both local minima and local maxima. Notice that } \\
& \text { min } L(s, 1) \text { occurs at } s=4 \text { while min } L(s, \infty) \text { is achieved } \\
& \text { for } s=16 \text {. } A \text { sketch for } L(s, 1) \text { and } L(s, \infty) \text { is contained }
\end{aligned}
$$

in Figure 4. We complete the demonstration that our theorem cannot be improved unless restrictions are placed on $A, B,\left\{P_{i}\right\}$, by exhibiting an example in Figure 5 where local minima of $L(s, 1)$ are locally concave. Here, $L(s, \infty)$ is minimum for $s=5$ while $L(s, 1)$ is minimum at $s=4$. Local minima at $s=0,2$ and 4 form a concave set in Figure 5 whereas local minima in Figure 4 form a convex set. The conclusion is that for practical purposes our theorem and its exhaustive search cannot be improved. Finally, it may be instructive to note that (3.4) is equivalent to

$$
\begin{equation*}
C_{n} \geq\{B / A\}\left\{P_{n+1}+P_{n+2}+\ldots+P_{n+\sigma}\right\} \tag{3.7}
\end{equation*}
$$

whose right-hand member again fixes attention on the critical ratio (B / A) , this time taken together with probability of demand over the range $n+1, n+2, \ldots, n+\sigma$.

It is clear that we may state an exact anaiogue to Corollary 1 ,
Lemma 3.

COROLLARY 1. If $A>0$ and $B>0$, the minimum of $L(s, \sigma)$ is determined by the value of the ratio B / A.

PROOF. The proof for Corollary 1 to Lemma 3
applies.

s	P_{s}	$a(s)$	$b(s)$	$L(s, 1)$	$L(s, \infty)$
0	0.1	0	9.0	45	450
1	0	0.1	8.1	46	406
2	0.1	0.2	7.2	42	362
3	0	0.4	6.4	44	324
4	0.1	0.6	5.6	41	286
5	0	0.9	4.9	44	254
6	0.1	1.2	4.2	42	222
7	0	1.6	3.6	46	196
8	0.1	2.0	3.0	45	170
9	0	2.5	2.5	50	150
10	0.1	3.0	2.0	50	130
11	0	3.6	1.6	56	116
12	0.1	4.2	1.2	57	102
13	0	4.9	0.9	64	94
14	0.1	5.6	0.6	66	86
15	0	6.4	0.4	74	84
16	0.1	7.2	0.2	77	82
17	0	8.1	0.1	86	86
18	0.1	9.0	0	90	90
19	0	10.0	0	100	100
20	0	11.0	0	110	110

Figure 3. A numerical example: $A=10, B=50$.
-21-

Figure 4. A sketch of two loss functions:

COROLIARY 2. If A and B in (1.1)
are arbitrary real numbers there is at most one optimum value i for which $L(s, \sigma)$ is minimum. The table in Corollary 2 of Lemma 3 applies to the present case for a.

PROOF. If $A<0$ then for sufficiently large.
$\Delta_{s} L(s, \sigma)<0$ and $n=\infty$. If $A=0, L(s, \sigma)=\{b(s)-b(s+\sigma)\} B$ where the quantity within \{\} is nonincreaving in as may be verified with (1.13). This means that just as in the earlier Corollary 2 for $=\infty$, the present L is nondecreasing, zero, or nonincreasing according as $B<0, B=0$, or $B>0$, respectively. Continuing to row 3, if $B=0$ then L is independent of σ and $\mathrm{n}=0$. Finally, as was done above, if $\mathrm{A}>0$ and $\mathrm{B}<0$ we verify $n=0$ with (2.5) by proving $\Delta L(\mathrm{~s}, \sigma) \leqq 0$ for all . This completes the proof.
4. Inventory models.

The theorem of the preceding section and its corollaries may
be used to handle a variety of situations represented by the process of minimizing $\mathbf{M}(s, \sigma)$ as a function of s for given $\left\{P_{i}\right\} \quad A, B$ and . With Corollary 2 we can immediately determine whether or not a uaique finite minimum is achieved. Either $n=\infty$ or else there is an integer at which $L(s, \sigma)$ first achieves its minimum. Then either $m=0$ from the table or else n is determined by the finite process of the theorem.

In the present paper we limit ourselves to a simple illustration for application to inventory models. We return to our example of a submarine anowance list problem and we suppose that $\left\{P_{i}\right\}, A$, B and σ have been specified for each allowance list candidate. Of these four we will consider that $\left\{P_{i}\right\}$ and σ are fixed for each candidate: $\left\{P_{\mathbf{i}}\right\}$ will have to be accepted as given and σ similarly is a general constraint which we will not be able to change. We require next that a "mait cube" which is a unit stowage volume in cubic feet, c. . be specified for each candidate. Then our problem will be to determine an allowance list which utilizes a total volume of C cubic feet. Our procedure could be the following.
a. We arrange the allowance list candidatesin a "priority" sequence of nonincreasingessentiality, e.g., by techniques in [1].
b. Using a given set of A^{\prime} 's and B^{\prime} 's (orequivalently the ratios B/A / we proceedin "priority" order to minimize expectedloss $L(s, \sigma)$ for each individual allowance
list candidate.
C. An entire allowance list is determined
through specification of exact proceduresfor starting, continuing and finally ter-minating the steps b.

While we wish to avoid detailed consideration of possibilities for step c. the following remarks should serve to illustrate general techniques. First, we could proceed through the entire list of candidates and then compare C^{\prime} our total accumulated stowage space requirement upon completion with our limit C. We would then ordinarily compute measures of expected performance (e.g., the per cent of candidates for which $n=0$: and take these together with C^{\prime} vs C in order systematically to revise individual A 's and B 's preliminary to another pass. Of course any pass could be terminated at a point in the priority list prior to the actual end point. In such manner our entire allowance list would be determined by an iterative process approximating a total stowage space requirement for C cubic feet through individual minimizations of loss functions for individual repair part candidates. We have had experience with such processes and we plan to present them in subsequent papers of the present series.

References

[1] Marvin Denicoff. Joseph Fennell, Sheldon E. Haber. W H Marlow. Frank W. Segel and Henry Solomon. "The Polaris Military Essentiality System". Polaris Logistics Studies. No. 1. Logistics Research Project Serial T-148 (Revised) dated 10 January 1963.
[2] Marvin Denicoff, Joseph Fennell, W H Marlow and Henry Solomon, "Polaris Allowance List Input Data". Polaris Logistic: Studies, No. 2. Logistics Research Project Serial T-154 dated 18 January 1963.
[3] Philip M. Morse and George E. Kimball. Methods of Operations Research. New York. 1951.
[4] T. M. Whitin and J. W. T Youngs. "A method for calculating optimal inventory levels and delivery time". Naval Research Logistics Quarterly, vol. 2 (1955), pages 157-173.

Mstribetier Lett for Testaien Pupers

Coples

1 Cowlen Comanission for Eamarch Attic: Eherery
1 Federal Artation Anobey. Atlartic Cisy. n. J. Alta: Stimot Jertman

3 British Joint Serviees Miselon. (Nary Sterf), Wasingitor D.C After Tect Lubrarian
1 Coavair, Panome, CuHe
1 Devid Tayior Mod Bas, Applice vent Lab, wachingion D. C.

1 tnstitute of Defense Acalysta Prisceton, New Jersey
1 IBM, Betbesde, Md. Arn: K w . Webs, sua
Dir, Netional Scitence Foundatiee Whethiggtoa, D. C.

1 Dir, Nanticanal Securthy Ageacy Fi. Geo. G. Meade, Med. Atte: C3/TDL
1 Numerical Analgals Res, DCLA Atta: Lilorarten.

1 Plamaing Research Corp. Los Adgeles, Caly.
2 Research Analys is Corp. Bethesda, Marjland
1 Dr. Rugt Cole

2 Rand Corp, Samt Monite, Calt. 1 Dr, Murray Gelisier 1 Librery
WSEC. Waskingtes, D. C.
1 Prof. Russell Ackorf. Operatiors Research Group, Cise lnst of Teet Research Group

1 Prot Kempeth J. Arrow
Dept of Ecceq Stanford Univ
1 Prof. C. L. Bacth Plaraing and Comirol of Industrial Operation Carpegie lingt of Tect

1 Prof B. E. Biesinger, Dept of Math Lebaneon Valley Coliege Anaville, Pa
1 Deas L. M. K. Boeker, Dept of Engr vCLA
1 Indust Coll Armed Forces. Weshington, D. C.

1 Army War Coll, Carlisle Earracks, PA
Altn: Library C-41t

1 HQ. US Army Transportation Material Comernand SA. Louls, Missourt AIt A : TCMAC-ASDT

1 Signal Carps Log Eval Grp,
2 Marwell AFB, Alahems 1 Dir, Air Univ Library, AIIL-8639
Dir. Air Univ Library.
CR- 8279
10 CDR, Armed Serviest Techaleal Information Agency. Arlington, Va, Atta: TIPDR
1 CETR, Inc., Arliogton. Va Atto: Dr. Ject Mostine

Dr. Nathan Brodsky, Offlee, Asst SecDef, Washington, D. C.

1 Dr. E. W. Cannon, Appl Math Dir Natl BuStand, Whathingroa, D. C.
Ur. A. Charres. Teet leat Norihwestero Univ, Evanston, III.

1 Prof. L W. Cohen, Iept of Matt
1 Prof. R. W. Cormay, Dept of Indust and Engr Admin, Cornell Univ

1 Dr. Ceorge B. Dantzig, Inst of Engr Res, Univ of Colu. Berkeles. Califorain
1 Prof, Burton V. Dean, vept of Engr Adming Case inst of Teet

8 RADM Henry E. Eceles, USN (Net.) 101 Washingtoo St. Nevpart, R. L

1 Prof. Divid Gale, Dept of Math

Ceples
1 Mrs. Min Th Courary West Mertiont Cent
1 Dr. J. F. Banman, Dept of Stes Mich sicue Dart. East Lansion. Mictrigen

1 Prof. Werree IL Itrach NeE Yert Uate

1 Dr. Aima S. Eofram IBM Rescercit Com Y.

1 Dr. J. M. Jeckeoz, Vam: Seiemer Rea reLa

1 Prof. Saumel Xorlin, Dept of Melt Stanford Ulimp
1 Dr. C. E. Lemake, Dept of Math Rensseliser Palytech inst Troy, Xiet Yort

Dr. Harlan D. Matis,
1 Prof. Oskar Morgunstera. Econometrte Research Program, Princeten Iniv

3 Prol. Bermari Corn Queps Collep

1 Prot. R. ORMeth, Degt of Entr.
1 Dt. R. Remoer. Dept of Ecom Untr of Calif, Rerkeley, Calt

1 Prof. Stanley Retwer. Cambridee. Englam
1 Mr. pavit hoachbleter 4220 Colamine Pi Arlingtom, Ve.

1 Dr. Murray Nowerblatt, Ayplied Math Div, Brown Datr.

- Prof. Andret Schelte, Jr. Dept of Intuat and Engr Admis. Cormell Untr

Prof. Rosetith Stigreaves Columbia tioneratigy
1 Prof. Hertert Sollemen, Slanfore Divy

- Prof. R. M. Terall, Lept of Math Univ of Miechigan, Ans Arbor, Mitieh.

3 Dr. C. B. Touplass Inst for Wefeme Amalysict Princeton, Nev Jersey
1 Prol. A. W. Tweter, Five thath Box 708. Prtweete Oint

EF. T. M. Whitin, Scl of Bus Admatm Univ of Calif, Berkeley, Calts.

- Prof. Secob workonils, Dept of Math Corpell Unts

1 CLR M. A. Lubley, Uss; (Ret.) Lockheed Electrontes Ca

The Geerge Mastangtan University
LOGISTICS RESEARCH PROJECT
Ceouract Nieari61
Tast 03. Project NR 345107
Txik 03. Proiest IR MiA 001
Task of Frejert IR 3Hi 003
OFFICE OF SAYAL RESEARCH

$\therefore 21934$

POLARIS ALLOWANCE I,IST INPUT DATA

> MARVIN DENICOFF LOSEPI FENNELL W. H. MARLOW HENRY SOL.OMON

Serial T-154
18 January 1963

THE GEORCE WASHING'JON UNIVERSITY
LOGISTISS RESEAIICH YROJECT
Contract Nonr961
Tank 03, Project NR 345107
Tank n5, Projeres NK 047001
Tromk 0h, Projeal NR 347008
Office of Naval Research

Reproditition lin whole or lil part is permitted for any purpunc of the Uniten Stites Covernment

THE GEORGE WASHINGTON UNIVERSITY Logistics Research Project

Abstract

of
Serial T-154

POLARIS ALLOWANCE LIST INPUT DATA

> MARVIN DENICOFF JOSEPH FENNELL W. H. MARLOW
> HENRY SULOMON

The object of this paper is to provide a careful description of data which are presently available for Fleet Ballistic Missile submarine allow ance list determinations. Such a description has turned out to be necessary for several reasons. First, it is required in order to achieve sufficient precision to permit adequate problem formulation. Second, the needs for data processing have been substantial: one has to be able to write instructions which will lead to submittal of correct data, one has to be able to communicate with computers, etc. Finally, the presient paper has been written for use in evaluating various proposed allowance list methodologies where one has to be able to specify precisely the range for the measurements comprising the evaluation. Precise definitions of data entries aze given and layouts are prescribed for automati: data processing records so that it is possible to define an allowance list candidate. This is a part application which leads to acceptable arithimetical input for an allowance
-i -
list optimization model. Various properties are developed for allowance list candidates and standard terminology is adopted accompanied by appropriate notation. There is also included a precise description of the format for a published "Optimum COSAL" allowance list. The paper concludes with summaries of certain data for the case of USS GEORGE WASHINGTON (SSB(N) 598). The preernt paper is judged to be of significance for Navy line-item inventory problems generally rather than for Polaris alone since the basic input data for military inventory problems are much the same abywity. Onc distinguishing feature of the subject data is that they are now in successful operational use.

PREFACE

The present study is the second of several papers to be issued by this Project as Polaris Logistics Studies. Subsequent papers will consider allowance list determinations, FBM load lists for deployed tenders, ashore supply point problems, provisioning and procurement policies, and finally the general problem of providing logistics information and control systems to permit overall satisfactory logistics.

It will become apparent that the present series will represent a somewhat diverse range of interests. In addition to the fac' that a somewhat heterogenous set of rescarch techniques will appear there is one feature which deserves special comment. This refers to the fact that careful attention is given to the unde-lying situations to which the methodology is to apply. It turns out that this introduces the need for considerable precision of terminology in engineering and logistics areas which unfortunately include areas notorious for their lack of standards, e.g., the problem of definition of a "component" as opposed to an "equipment". Nevertheless, a substantial part of the contributiut of the present series is judged to consist of its relevance for practical problems; this has required that unswerving attention be paid to the exigencies of the background situations and their definitions.

It is a pleasure to acknowledge the support of the Logistics and Mathematical Statistics Branch of the Office of Naval Research under whose contracts this work has been performed. in just the same way, appreciation is duc the Technical Directur, Special Projects Office, and his Assistant for Material Support who are co-sponsors of this research
by means of transfer of necessary funds to the Office of Naval Research. Mention should also be made of the fact that the Bureau of Supplies and Accounts and its field activities have been collaborators in the present studies. Finally, it is most appropriate to cite the essential assistance and support provided by the Logistics Research Project administrative and clerical staff and by the members of the Project Computation Laboratory who were essential ior this work.

W. H. Marlow

-iv.

TABLE OF CONTENTS

Abstract i
Preface iii
Section 0. Introduction and summary 1

1. Component-equipment data 6
2. Paris data 13
3. Allowance list format 38
4. Allowance list candidates 48
a. Definition of an allowance list candidate 48
b. General numerical data 51
r. Special Optimum COSAL numerical data 56
d. Computational entries 61
5. Distributions for allowance list candadates 67
a. Admiss:ble parerit SA's 68
b. Adinissibie parent CID's 69
c. Allowance list candidates 71
d. Admissibl. Itcin Numbers 74
References 83

LIST OF FIGURES

Page
Number

1. Component Data Master Record Layout 7
2. Repair Part Data Master Record Layout (2pp.) 15 and 16
3. Deterministic Realizations of UE-S 20
4. Probabilistic Realizations of UE-S 22
5. Unit of Allowance coding 26
6. Optimum COSAL Format 39
7. Optimum COSAL Format .- Part I-Index 42
8. Optimum COSAL Format -- Part II-APL's 44
9. Optimum COSAL Format -. Part III-SNSL's 45
10. Oplimum COSAL Format -- MEC-SNSL's 47
1). Genera! Terminology and Fixed Notation 52
11. Special Cases-Cptimum COSAL Program 57
12. 20 Position Floating Point Word 62
13. Optimum COSAL Repair Part Data Master Record .. Allowance List Candidates -- Computational Fields Layout 64
14. Distribution of Number of CID's per SA 69
15. Distribution of Number of SA's per CID 70
16. Distribution of © - . Admissible Parent CID's 71
17. Distribution of MEC .- Adnissible Parent CID's 72
18. Distribution of SN's per CID .- Admissible Parent CID's 73
19. Distribution of MEC .. Allowance List Candidates 74
20. Distribution of UE-S - Allowance List Candidates 75
21. Distribution of MEAN-02 .- Allowance List Candidates 76
22. Distribution of CUBE-RU -. Allowance List Candidates 77
23. Distribution of PRICE-RU -. Allowance List Candidates 78
24. Major Federal Supply Gruups .- Alluwance List Candidates 79
25. Major Federal Supply Classes - Allowance List Candidates 80
26. Distribution of Number of Applications -- Admissible ltem Numbers 81
27. Distribution of MAX MEC .. Admissible ltem Numbers 82

THE GEORGE WASHINGTON UNIVERSITY Logistics Research Project

POLARIS ALLOWANCE LIST INPUT DATA ${ }^{1 /}$

Marvin Dericoif ${ }^{2 /}$
Joseph Fennell
W. H. Marlow
Henry Solomon

0. Introduction and summary.

The object of this paper is to provide a careful description of data which are presently available for Fleet Ballistic Missile (FBM) submarine allowance list determinations. As it is herein defined, the allowance list for a vessel is the specification of the range and depth for wearableinstalled parts to be carried on board the ship for use by the ships force in direct support of installed components. A considerable poztion of the present paper actually consists of definitions which are required in order to be able to express exactly what we mean by the technical terminology employed in the preceding sentence: range, jepth, wearable installed parts, use by ships force, direct support, and installed components. Certainly the general

1/The preparatisn of this paper was sponsored by the Office of Naval Research and the Special Projects Office. Reproduction in whole or in part is permitted tor any purpose of the United States Government.

[^19]meaning of each of these is clear, at least in broad terms, to anyone who has had any contact with shipboard inventory problems. Nevertheless, the provision of suitable definitions turns out to be an onerous and nontrivial task.

There is considerable difficulty of communication on account of conflicting terminology in various quarters: e.g., the problems of distinguishing between "parts", "components", "equipments", "assemblies". "modules". etc.. etc. are well known for their difficulty. These difficulties naturally increase when these terms must themselves be modified as in the above. case of "installed part". Our intent in the nresent paper will be to formulate definitions which are adequate 2 convenient for allowance list purposes without any attempt at providing a : niversally acceptable language for engineering documentation. A secons print o: difficulty in providing suitable definitions is that many of the con.. sivare somewhat elusive to the puint of causing adequately precise deicriptions to be rather cumbersome of expression. A simple and perhaps not c:erly elusive example of this would be the distinction between a "part" and a "part application". The former refers to a specific engineering entity such as a $1 / 2$ watt carbon 220 ohm 10% resistor. On the other hand, a "part application" denotes an ordered pair, i.e.. a part tied to a specific nexi higher parent assembly. For example, a given resistor may appear in several different parent assemblies. There are approximately 31,000 parts and 56,000 part applications making up the set of allowance list "candicates" for an FBM submarine, so that in any discussion of "range" we must be careful to specify exactly which group we mean. There is a more fundamental difficulty in this particular example: this concerns the manner in which the admissible "candidates" are defined. For example, shouldonly parts which are stocked in the supply system be admitted or should the maximal range be permitted to include any part from the bill of materials? In the Optimum COSAL Program our goal has been the latter approach. While there
are difficulties associated with oblaining the requisite data, these do not turn out to be insurmountable. Certain of the difficulties are associated with what may be noted as a third general type of problem connected with the provision of adequate definitions: the existence of discrepancies between various procedures of different organizations. Just as in the case of our first general topic above concerning differing terminologies, procedural differences often are completely valid consequences of different organizational missions, responsibilities, or in brief, the nature of the problems being attacked. In the present report, we intend to place major stress on the conceptual development. In cases where there exist important procedural differences between organizations, we shall set as our first goal an adequate problem formulation and we will then relate the different existing procedures to the basic problem. Principal examples here include the different "component" population structures utilized by the Special Projects Office and the various Bureaus and also the different techniques (Allowance Parts Lists) employed by different Inventory Control Points for the representation of "parts" populations. In summary, we shall endeavor to hold a middle ground between completely idealistic definitions on the one hand and exhaustive journalistic representations of Navy terminology and usage on the other.

Sections 1 and 2 contain mainly definitions of terms accompanied by a thread of commentary having to do with general significance, a few clementary relationships and certain features which are important for automatic data processing. With these definitions in hand, it is easy to describe the format of a published allowance list. This is done in Sectio. 3 for the case of the Optimum Coordinated Shipboard Allowance Lists or "Optimum COSAL's" which are the allowance lists of concern for the present scries of papers.

Section 4 is devoted to a definition of an allowance list candidate: a part application which leads to admissible input for an allowance list
optimization model. In order that a part be a candidate for an FBM submarine allowance list, it is necessary that it satisfy quite a few conditions: e.g., candidates must be parts which the ships force is capable of installing while on patrol and hence, for example, they may not include parts which are only accessible during dry-docking. Similarly, they do not include parts for which maintenance policy forbids replacement by ships force. As another example of a necessary criterion for an allowance list candidate as we define one, we require that the part have a quantitative popuiation: if the "number installed" for the part is really not a number but instead is designated as "AR" for "as required" we conclude that it should not be considered to be installed at all and we eliminate it. In this way it will be removed from the parts for which in-line calculation will subsequently be made. After accomplishing the definition of allowance list candidates in Section 4, the remainder of the section is devoted to further development of their properties. Additional data are derived for use as input for subsequent allowance list determinations: some of these data are simply numerical such as "population", sorreare statistical in nature relating to probabilitics of future demands for the parts, and others amount to scaling of data for use as numerical input to later calculations.

Section 5 is devoted to summaries of distributions of various input data for the USS GEORGE WASHINGTON (SSB(N) 598) allowance iist candidates. These serve to sharpen appreciation for the nature of the allowance list problem. Indeed, Section 5 amounts to a summary numerical description of the vessel for allowance list purposes.

Despite the fact that the present paper is limited to Polaris allowance lists, the reader may be assured that more widespread application is perfectly possible. In fact, a great many of the data arc available for other vessels. It has turned out that FBM submarines have been used as the occasion to introduce more advanced inventory control systems than heretofore have ever been employed on a large scale by the Navy. Tinis inas resulted in the first place
from the availability of new types of data such as military essentiality data [3] which were developed initially for conventional submarines [2] and then were refined to apply specifically to the Polaris weapons system. In the second place, the more advanced techniques. were made possible by the existence of data which, while not new in nature, were nevertheless not previously generally available for us:. Examples here would be "populartion" data, packaged stowage space required, ie., "unit cube", usage estimates, and others. Finally, the Polaris weapons system led directly to the development (and implementation) of new allowance list methodology for determining actual lists under the 'Optimum COSAL Program'. This came about as a result of the decision to carry out the research using actual data and to perfect the techniques meanwhile producing the best practicable allowance lists. The resulting theoretical models will be described in subsequent papers in the present series at which time it will become apparent as to the nature of their relevance for logistics problems in addition to the original Polaris problems. In much the same way the contribution of the present paper is judged to be wider than to Polaris allowance lists alone: for one thing, it will be seen to assist problem formulations at higher echelons than the submarine itself such as that of the deployed FBM submarine tenders. In addition, the present paper is believed to be of significane for Navy line-item inventory problems generally .- the basic input data for military inventory problems are much the same anyway. One distinguishing feature of the subject data is that they are now in successfu: operational use.

In conclusion, the present paper has turned out to be necessary for several reasons. First, it is required in order to achieve sufficient prescision to permit adequate problem formulation. Second, the needs for data processing have been substantial: one has te be able to write instructions which will lead to submittal of correct data, one has to be able to communecate with computers, cite. Finally, the present paper has been written for
use in evaluating various proposed allowance list methodologies where one has to be able to specify precisely the range for the measurements comprising the evaluation.

1. Component-equipment data.

This section defines what are often termed Index Data by virtue of the fact that they are the data used to generate the Index of a vessels allowance list. The Index is made up of listings designating the component-equipment configurations installed on the subject vessel. Use of the hyphenated expres sion "component-equipment" in the preceding sentence and in the heading of the present section corresponds to the fact that we have to deal with entities which typically are designated by either or both of these appellations. That is, while they may even be given different labels, we recognize three principal cases: component-equipment pairs, components, and equipments. Whatever they may be called, the idea is that they constitute "parent next-higher assemblies" for installed parts. (One approach to what they may as well be called is defined below in 12) Component-Equipment MEC code.)

The designation actually used by the Navy for the records under discussion is Component Data Master Records. The exact layout of the subject data record is displayed in Figure 1. Taken together with the definitions and explanations included below for the individual record fields. Figure 1 specifies the complete range of daid required at the component-equipment level in the Optimum COSAL Program. This will become clear as the individual record fields are discussed below in order.

1) Hull type is the alphabetic hull designation which is "SSBN" for FBM submarines.
2) Hull number inakes up a numeric field containing the actual hull or bow number to which the record applies. The union of Fields 1 and 2 is denoted by VESSEL NUMBER.

COMPONENT DATA MASTER RECORD LAYOUT				
Fi.ld No.	Notation for Fiels	Contents	Length of Field	Record Positions
1.		Hull type	5	i. 5
2.		Hull number	4	6.9
3.	CID	Application rode	11	10-20
4.		Program Support code	2	2i-22
5.	SA	Service Application code	6	23-28
6.		Equipment and/or Component nomenclature	48	29-76
7.		Service Application nomenclature	55	77-13:
8.	MEC	MEC class code ${ }^{1 /}$	4	132-135
9.	QC	Quant. y of Component installed	4	136-1 39
10.		ECN-APL column number	1	i 40
11.		Notes	2	14i-i42
12.	MEC-CE	Component-Equipment MEC inde	6	143-148
13.		Sub-system code	2	i49-i50
14.		Blank	3	251-i53
15.		Sccurity classification	1	i 54
16.		End of record	1	155

Figure 1
${ }^{1 /}$ Sce the text for a discussion of this field. Eventually, this field will contain the ordinal locator for the CID based on $p=1: 0116,0115, \ldots, 0083$ where " 116 " denotes highest worth. At presrit this field contains 0001, 0002, ..., 0029 where "l" denotes highest worth.
3) Application code, CID, is contained in an alpha-numeric field. left justified with blanks following. The notation for the field is "CID" but, as will now be explained, this is a field with somewhat varying content sometimes containing codes which, strictly speaking, are not what the Navy terms Cumponent Identification codes. The purpose of thiz field for the casc of allowance lists is to identify the engineering entity which is a possible "parent next higher assembly" for installed parts. (That is, there may or may not actually be parts installed since it is possible to have "No repair parts applicable".) The actual content of this field is the Allowance Parts List or APL code which identifies the technical docu:nent providing detailed information on this particular entity. (See Figure 8 below.)

DEFINITION An admissible CID is a component-equipment to which there is assigued a CID code which satisfies exactly one of the following conditions.
a) Position 11 in the Component Data Master Record does not contain " +".
b) Positions 10,11 contain " P", "+", respectively.

Category b) defines "preliminary CID's" which for our present purposes need not be distinguished from those satisfying a). The CID's which ar: excluded by the above, i.e.. those with inadmissible CID codes, turn out to correspond generally to lists of items of equipage, or certain material requirements ior particular systems. These lists, called Equipage Category Number-APL's, ECN-APL's, may consist oi "repair parts" such as for peri..copes wherein a single list may appiy to :several ships by means of its having several different colunnar entries. On the other hand, the ECN-APL's may consist of lists of tools, instruments, messing equipment. or may even be prepared solely for information purposes to supply reference material required to be able to manufacture cortain gear. On the basis of the facts, it is proper to state the following.

DEFINITION. An entity is defined to be an admissible parent CID if and only if it is an admissible CID to which there corresponds at least one part which is an allowance list candidate as defined below in Section 4.

For purposes of allowance list determinations as understood in the present paper, there are no problems associated with the inadmissible CID's. This is a result of the fact that the associated allowance list quantities, if any, are established by decree. In other words, the range of inputs to a mathematical allowance list model may be restricted to data arising from admissible parent CID's only. It would be expected, and it is indeed accomplished, that "all" CID's are covered in an allowance list determination. But our interest in the present paper will be directed mainly toward those items for which there exist problems of how to determine the allowance list quantities for wearable installed parts, namely the admissitie parent CID's.
4) Program Support code is contained in an alpha-numeric field, left justified, identifying the Inventory Control Point which has program support, i.e., weapons management, responsibility for the given CID. For example, "H", " 2 ", "N" denote SPCC, OSO, ESO, respectively.
5) Service Application code, SA, is an alpha-numeric code denoting the service or end use of the equipment. There exist two varietics at presert.
a) Service Application code ('SA): a five position alpha-numeric code in Positions 23-27 with an asterisk (*) in Position 28.
b) Component Usage Designator (CUD): a six position alphanumeric code.

The CUD's werc assigned at one time by the Special Projects Office in order to identify each of their components and equipments with its actual location or "address": CUD's are no longer being assigned so that eventually this field will be limited to codes a). As indicated in Figure 1, we will use 'SA' to
denote the contents of this feld whether they be CUD's or "irue" SA's.
DEFINITION. An admissible parent SA is defined to be an
SA to which there is assigned at least one admissible parent CID.

In general, several CID's may be assigned the same SA code which indicates that together they accomplish the specified service or end use denoted by the SA code. On the other hand, a given CID may of course be assigned to different SA's. There is a separate Component Data Master Record prepared for each distinct CID, SA pair.

For example, CID 882100002 identifies a particular valve. This one valve has two services. A total quantity of eight of this valve is installed: one is assigned to SA code OACMF\#, "Air conditioning-piping", and seven appear with OAHMB* which denotes "Refrigeration-piping".
6) Equipment and/or component nomenclature is normally the Federal name of the item, possibly followed by modifiers. The noun name is usually not abbreviated, a " + " generally separates the noun name from its modifiers, but the actual contents of the field may be expected to vary in practice.
7) Service Application nomenclature is a trief description of the service or end-use of the component such as "oxygen system-piping", or '"periscope-star tracker".
8) MEC class code, MEC, corresponds to the ordinal locator or MEC code [3] for the component-equipment. Originally, this field was numeric containing one of 0001, 0002,..., 0029 where " 1 " denoted the highest military essentiality and " 29 " the lowest. Eventually, it is hoped that this field will contain numbers $0116,0115, \ldots, 0088$ consistent with [3] where " 116 " denotes highest worth. See the related material contained in ricld No. 12 described below in 12).
9) Quantity of Cumponent installed, QC, is a numeric field representing the actual number instalied on-board for this particular CID for the given SA. For the case of ECN-APL's, the present field is blank. (See Field 10) below.)
10) ECN-APL column number denotes the applicable column number $1,2, \ldots, 8$ for the given vessel. Nute that this does not apply to admissible CID's but only to those inadmissible (to the model), for which allowance quantities are found by table look-up in which case this field specifies the appropriate column.
11) Notes consists of an apha-numeric field containing special indicatore assigned by Inventory Control Points and defined in the Table of Notes in the Appendix to the allowance list. For the purposes of the present paper, these . notes havenosignificance: the currently applicable notes apply mainly to inadmissible CID's with the exception that there is a symbol " $\%$ " used in order to call attention to certain choices which are possjble between interchangeable items, usua ly consequent to some design change.
12) Component-Equipment MEC-code, MEC.CE, represents the raw MEC sextuplet code of [3]. On the basis of this field. it is conveniently possible to classify the "nature" of the CID as follows.
a) In case there are no blanks: the CID represents a Special Projects component-equipment pair with MEC-CE code uvw xyz where each of $u, v, w, x y, z$ is one of 0,1 or 2 .
b) In case Positions 146-148 contain blanks while 143-145 do not, then the CID represents simply a component which is not assigned to a parent equipment. Here the MEC-CE code is $u v w$ bl bl bl. (This is the normal case for Bureau of Ships material comprising the ship sub-system.) Again, each of u, v and w is one of 0,1 or 2 .
c) In case Positions 143-145 contain blanks while 146-148 do not, then the CID represents simply an equipment to which no components are assigned. Here the MEC-CE code is bl bl bl $x y$ z. (This is a relatively rare case found for certain Special Projects equipments.) Here x, y, z assume values 0.1 or 2 .
d) In case the entire field, 143-148, contains blanks there is the discrepancy of missing data.
13) Sub-system cocie is contained in an alpha-numeric field, left justified, identifying the parent sub-system for the given CID-SA pair as follows.

Sub-system	Code
Launcher	L
Fire Control	F and $\mathrm{FX}^{1 /}$
Navigation	N
Missile	M
Missile Test and Readiness	R and $\mathrm{D}^{2 /}$
Ship	SS

14) Blank is an unassigned field.
15) Security classification field is used for the subject purpose utilizing "C" for Confidential and blank otherwise.
16) End of record is contained in Position 155.
"The code "FX" actually denotes training devices associated with the Fire control sub-system.
${ }^{2 /}$ The code " D " will eventually disappear since it denotes certain equipment which has been superseded.

In conclusion, the present section has described the Component Data Master Recores which exist in a separate file for ach FBM submarine bow number,ne record per distinct CID, SA pair.

2. Parts data.

This section defines what are sumetimes termed Optimum COSAL SNSL, or "Stock Number Sequence List", data by virtue of the fact that they are the data used to generate the SASL of a vessels Optimum COSAL. The SNSL consisis of a listing wherein there is ore entry per part to print the stock number, nomenclature and certain other data including a list of all Application codes cr CID's in which the part appears. Il will be seen that the data described below anclude many data fields not printed in the SNSL: in fact there are certain data entries defined which are not even required for allowance list determinations. What this means is that the "parts data" of the present sectivin actually form a complete set of basic parts input data sufficient for general logistics calculations rather than those sufficient for allowance lists alone. Consistent with these considerations is the file designation actually used by the Navy for these records, namely the Optimum COSAL Repair Part Data Master Records. ${ }^{1 /}$ (This too

1/These records are to be distinguished from the Regular COSAL Repair Part Data Master Records which are 175-position records which do not vary by Vessel Number. These latter records do not contain "Hull type" and "Hull number" as shown in Figure 2 below: instead, there is one record per Component. Stock Number combination. Positions l-162 of the Regular COSAL record are identical with Positions 11-172, respectively, of the Optimum COSAL record as shown below in Figure 2. Positions 163-17i. i72, 173, 174 contain respectively "blanks". "Number of Requests". 'Internal Rejection Indicator", and "Internal Action Indicator". Position i 75 contains "End of Record". No further reference will be made in the present paper to these records so that "parts data" or "parts record" will hercafter be under stoud to refer to the Optimum COSAL record of Figure 2.
is somewhat misleading since these records include parts which are not "repair parts" at the shipboard level [see Item Code, Field 15, below] but this should cause no difficulty.)

The exact layout of the parts records is displayed in Figure 2. Taken together with the definitions and explanations included below for the individual record fields, Figure 2 specifies the complete range of parts input data. In the Optimum COSAL Program there is one distinct "parts record" per distinct part application per vessel.

1) Hull type is the same as in Component Data Field 1.
2) Hull number is the same as in Component Data Field 2. Again, the union of Fields 1 and 2 is denoted by VESSEL NUMBER.
3) Blank is self-explanatory.
4) Application code, CID, is the same as in Component Data Field 3, i.e., this field identifies the parent CID for the part to which the record applies.
5) Program Support code is the same as in Component Data Field 4.
6) Supply Support code is contained in an alpha-numeric field, left justified, identifying the cugnizance symbol associated with the Supply Support ICP, e.g., H for SPCC, N for ESO, etc. This code identifies the inventory control responsibility for specific commodities of material and so is associated with the part, i.e., the SN. On the other hand, Program Support, Field 5), is related to weapons system management and therefore relates to the CID.
7) Stock Number, $S N$, is contained in an alpha-numeric field, left justified, to identify the part. This may be the Federal Stock Number (FSN), Manufacturers Drawing/Plan and Piece Number, Manufacturers Fart Number or a Refererse Symbo! Number. The most common entry is the FSN which is entered in 13 positions as follows.

MASTER RECORD \qquad LAYOUT				
Field No.	Notation for Field	Contents	Length of Field	Record Positions
1.		Hul' type	5	1.5
2.		Hull number	4	6.9
3.		Blank	1	10
4.	CID	Application code	11	11-21
5.		Program Support code	2	22-23
6.		Suppiy Suppori code	2	24-25
7.	SN	Stock Number	20	26. 45
8.	CUBE-UA	Cube per UA	6	46. 51
9.	WT-UA	Weight per UA	6	52. 57
10.	PRICE-UA	Price per UA	8	58-65
11.		Price code	1	66
12.		Shelf Life	2	67-68
13.		Lead Time	2	69-70
14.	UE-S	Usage Estimate-Ship, in RU	7	71. 77
15.		Item code	1	78
16.	UA	Unit of Allowance	2	79-80
17.		Environmental code	1	81
18.		Notes	2	82-83
19.	U1	Unit of Issue	2	84-85
20.		Pari nomenclature	25	86-110
21.	MMEC-P	Part MEC code	1	$11 i$
22.		Source code	2	112-113
23.		Maintenance code	2	114-115
24.		Recoverability code	1	116

Figure 2

		OPTIMUM COSAL REPAIR PART MASTER RECCRD LAYOUT	JATA	$\text { e } 2 \text { of } 2$
Field No.	Notation. for Field	Conteris	Lengin of Fieid	Record Posilions
25.	QPC	Quantiy -nslailed per componer.	4	117.120
26.	RU	Rep!areme' 1 uriol	4	121-124
27.		Mianufarturers rode	5	125-129
28.		Reparable Reiurn Rate	3	$130-132$
29.		Wearoul Ra'e	3	133-135
30.		Tupe of Repai: Ar:- 11	1	136
31.		Servie Life	4	-37.140
32.	UE - T	Usope Esimate Teider in RU	7	141-147
33.		ECNTable Co ents - Colunar.	3	148-150
34.		- Columr 2	3	151-153
35.		- Coiumr 3	3	154-156
36.		- Collmin 4	3	157-159
37.		- Column 5	3	160-162
38.		Column 6	3	163.165
39.		Ccumn 7	3	166.168
40.		Coiumi 8	4	169-172
41.	QC	Qua' -1. ul Compone.-ismalied	4	173-176
42.		MEC Data	4	177-180
43.	AQ.RU	Allouanre Qua lity ir R U .	4	181-184
44.	MiEC.CE	Comporeri Equ.pment MEC code	6	185-190
45.	MEC P	Pari MEC rode	1	191
46	MEC	Ord-ral Loralur MECrode	4	192-195
47.	MEC : NV	inverse MEC code 0000 M!EC.	5	196.200
48 ff		Cumpulit did Feeds	. 84	201.384
		E.d Of Rercid	.	385

F.gure 2 (Contd.)
${ }^{1 \prime}$ Posit.ons 325.328 comla O AQ LA the Allowarice Quantity in Units of Allowarce Th.s : s the qua, ity, p.pies aclually pri:ted at the allow ancelist Basic calcuat-w, for uthriss he C Dsare made nt terms of 'sets' for AQ.RU' A part .s a' a!luad.c list cand dale I and only if followirg an Optimum COSAL ralcuiation Feid 4s -5 git blank. Sce the text for equivalent defor..tors ard expla:at:on.l

$$
{ }^{2 \prime} \text { Cumpulatiorial F:elds a :e d.splayed below in F.gure } 14 .
$$

Position:		Contents
26-27	FSG:	Federal Supply Group code
26-29	FSC:	Federal Supply Ciass code
30	" + "	character
31-38	FIIN:	Federal Item Identification written with a $"+"$ in Posit

(In case Field 7 contains an FSN the Item Number, IN, is defined to be the FIIN, otherwise the IN is the contents of the entire field. See Section 4 below.)
8) Cube per UA, CUBE-UA, is measured in cubic feet to 4 D , i.e., as xx.xxxx but the decimal point is not written in the record. This quantity is the volume or cube of the packaged item for one unit of allowance as stowed on-board the vessel. Instructions call for the volume to be computed to 5D with round-off to 4 D .
9) Weight per UA, WT-UA, is measured in pounds to 2 D , i.e., as xxxx.xx but the decimal point is not written in the record. Tris weight represents the packaged item for one unit of allowance as stowed on-board the vessel.
10) Price per UA, PRICE-UA, is measured in dollars to $2 \mathrm{D}, 1 . \mathrm{e}$. as xxxxxx.xx but the decimal point is not written in the record. This price is the actual or best estimated price for one unit of allowance. Estimated pr:ces are designatcd by an asterisk (*) in Field 11) Price code.
11) Price code contains an asterisk ($*$) in case unit price is an estimated price and is blank otherwise.
12) Shelf life is recorded in months to indicate that the item has certain physical and material characteristics which limit its storage or shelflife. This guantity represents minimum shelf life in months anc items having a shelf lafe rating of more than 3 yiars are supposed to have this field blank
13) Leajlime represents average procurement lead time, as defined in [7], expressed in months. In rasc lead tine is less than 3 moriths this field is supposed to be blank.
14) Usage Estimate.Ship, UE-S, consists of one of wo possible types of entry defined as foliows.
a) A ron-zero est:mate to 4 D i.e., $x x x . x x x x$ but the decimal point is not witten in the record. This quartity is an estimate of the average number of replacement units of the part which will be requ.red by sh.ps force annually per parlapplication or, arcount of one unit of the given component.
b) A two rharacter eritry 'NU'. left. Justified. With blanks following for "No Usage' which serves to remove the part from consideratior fos storkirg at the sh-p level on acrount of the given comporient.

As is indicated an the above deicript.oms. this ficeld relites the part identified by the $S N$ in Feeld 7 to the sper.fic component deritifed by the CiD in Field 4. This means that for afier SN the sonteris of the present field may vary over differert $C D$'s in vew o! the fundame:tal :mporiance of the UE-S fieid a dilancd tratmert will be ariuded here to indacate the manrer in wherh these data are geverated."

Tie UE.S 2 s based on the avigage :umber af utits of the part which will be required tor seplacemert per year. This replacement refers solely to work expected or tanely to be done by ships force on acrount of one unit of the gaven compotimi orly. Uscof the modifiers expected or iikely to be dune" in the preceding serti.. ce cor ersyonds tu the aterpietation required so that an 'average' it a probahily sense may resuil. However notice that UE.S
${ }^{1 \prime}$ The reader u ith exper.er.ie an protaitiaty atd shiphoard logistics may find the defaitions impleit in a, ard be to suff:cert Honever it has Leen tound that the UE S data ate eeneraty masulderstoud so that the rather lerigthy exposation meluded .mmedately below may assist even the experienced reader who docs not wish to at:alye the statements a. did bl with the care genera!l; required to absort, a areful mathematad 'detantion.
may be greater than unity so that it is itself not a probability. The actuai meaning in numerical terms may be illustrated as follows. Assuming there were 10,000 units of this part installed in the given component, if it were then the case that on the average one of these units would be replaced per year, then the appropriate UE-S would be 0.0001 . In order to obtain this estimate it is of course not required that there actually be 10,000 units installed. In fact, there may be only one unil installed of the part, i.e., $Q P C=1$ and nevertheless $U E-S=0.0001$. This can be illustrated by any one of the first three examples in Figure 3 where $Q P C=1$. Continuing to cases where $Q P C>1$, the common feature of all the examples in Figure 3 is that a determin:stic assumption is made, namely
(QPC) $\times(Q C$) λ (Time) $\times(U E-S)=$ Units Required so that the present approach raay itself be labeled deterinanistic. It will be noticed that the product of the fjrst threeterms, QPC x QC x Time, equals 10,000 (part application-years) for each of Examples i-5 while it Changes to 50, 000 for Examples 6 and 7 since in these last two the requ_rements increase five-fold. The point to be made is that the techniciar. who supplied the UE-S $=0.0001$ could have thought in terms of any one of the first seven situations depicted in Figure 3 in order to decide
"] out of 10,000 opportunities"
as his cstimate of the "average" number to be used.
Examples 8 and 9 in Figure 3 illustrate UE-S $=0.0500$ or 5 out of 100 possibulitics': These estimates could of course represent precision io $4 \mathrm{D}, \mathrm{i} .6 .$, to the nearest ten-thousandth; however, they might instead represent entanates to the nearest 0.01. The fact is that UE.S is recorded wath seven positions $x \times x . x \times x x$ in urder to cover all conceivable ases: this does not require that precision extend in every case to f D. If the technician could only estimate to tenths then the three low order positions would be rion. significant and UE-S inight be regardrd as say 2.0 . This would be one itierpretation of Example 10 in Figure 3.

DETERMINISTIC REALIZATIONS OF UE -S					
Example	QPC	QC	Time in Years	Units Required for Replacement	UE-S
1.	1	10,000	1	1	0.0001
2.	1	5,000	2	1	0.0001
3.	1	2,000	5	1	0.0001
4.	2,000	5	1	1	0.0001
5.	200	10	5	1	0.0001
6.	1,000	10	5	5	0.0001
7.	125	100	4	5	0.0001
8.	1	100	1	5	0.0500
9.	2	100	$1 / 2$	5	0.0500
10.	1	50	1	100	2.0000

Figure 3

Example 10 also serves to illustrate the fact that UE-S is not a probability, i.e., UE-S may be greater than 1.0. In fact, it may be as large as 999.9999 according to the format of the field.

Thereis a more general path that the technician might have followed in order to estimate UE-S, namely, a probabilistic approach. If this were the case, he would have had to recognize a range of different possibilities and then assign probabilities of occurrence to each. After having done such, he would find UE-S by a calculation for which the first step consists of adding up the weighted expressions producing the average as a calculated 'expectation' i.e., by taking the total sum over all possibilities of the individual terms
(Probability of Requirement) \times (Required Number).
The second and final step consists of computing UE-S by dividing the above average by the base quantity of "part application. years". This procedure qualifies as "more general" than the detcrministic approach of the preceding paragraph for the reason that the former approach recognized but one possi bility to which was assigned probability 1.0 so that all other posssbilities we:e ruled out with assignment of zero probability. Eyamples a and bir. Figure 4 depict two possible ways in which UE-S $=0.0001$ might arise under a probabilistic approach where for simplicity the QPC, QC and Time parameters are fixed. Each of Examples a and b has the feature that the "average" number required per year is $1 / 2$ and hence (UE.S $)=(\mathrm{i} / 2) \div i 5: 00 \%$ 0.0001 . In either example the $1 / 2$ could be interpreted as 'one every other year" but, in the case of Example b, $1 / 2$ purports to represent the average expected from requirements of less than A per year, in any year, wherein the probabilitics for distinct requirements of $3,2,1$, 0 are $1 / 20.2120 \quad 3 / 20$. 14/20 respectively, producing an average

$$
1 / 2=(3)(1 / 20)+(2)(2 / 20)+(1)(3 / 20)+i 0)(1+120)=10 / 20
$$

Example : illustrates a different phenomenon which probably is rare so far as actual practice in cstimating UE-S is concerned. Nevertheless, it would be a passibility that the technician could see 75 units as his "average" number

PROBABILISTIC REALIZATIONS OF UE-S		
$\begin{aligned} Q P C & =10 \\ Q C & =500 \\ \text { Time } & =1 \text { yea } \end{aligned}$		
Example	Number of Units Required for Replacement	
$U E-S=0.0001$	1 unit with probability	$1 / 2$
	0 unit with probability	1/2
b.$U E-S=0.0001$	3 units with probability	1/20
	2 units with probability	2/20
	1 unit with probability	3/20
	0 units with probability	14/20
c.$U E-S=0.0138$	00 units with probability	1/4
	75 units with probability	1/2
	25 units with probability	1/4

Figure 4
of replacements bit that he would also admit possibilities for 100 and say 25 (rather than the more symmetric 50) as is the case in Example c. If he were to adopt this approach then his calculated average would be

$$
68.75=(100)(1 / 4)+(75)(1 / 2)+(25)(1 / 4)
$$

to produce UE-S as

$$
(68.75) \div(50,000)=0.01375
$$

which could then be recorded as 0.01 , as 0.014 , or as 0.0138 is showr. in Figure 4. Indeed, 0.02 would be a possibility since it might be judged appropriate to round "up" to the next highest hundredth.

In the above examples whenever QPC is greater than 1 , e.g., in Figure 4 where the part is installed ten times in the component, UE-S has in the discussion up to this point represented the average number of units which would be used to replace one of the ten units, i.e., one of the ten applications. Special care should be taken to note that this amounts to a tacit assumption that each of the ten units would be independently replaced. If, however, the part is of such a nature that if one of its applications in the component is replaced, some additional number of its applications (in this example up to nine) would also be replaced at the same time, then a different interpretation of UE-S is required. This refers to part applications for which the replacement unit is greater than unity, in which case UE-S denotes the average number of times the replacement unit or "set" is replaced. If, for example, the replacement unit equalled five in Figure 4 then each of the lines in Examples a and b should have tine word "unit" replaced by "set of 5 units".

Tf the reader re-examines a) above, he will see that the actual definition of a numerical UE-S there contained does cover all of the cases which have been introduced into the discussion up to thispoint The discussion of a) may therefore be terminated with the following two remarks. First, if UE-S is to be an average it must be no smaller than 0.0001 since it is
required to be non-zero. Otherwise, b) prevails and the part is removed from consideration for shipboard stocking on account of the given component. Sccond, a more compact discussion of UE-S wiil be found below in Section 4 in company with precise definitions of "population" and "mean expected usage".

The entry "No Usage" for UE-S corresponds to one of the following conditions.
i) The part cannot be removed or replaced by ships force.
ii) There is an official written maintenance policy stating that the kind of maintenance necessary to remove or replace the item should not be performed by ships force.
iii) The item has for some other reason been excluded from consideration for shipboard stocking. For example, the item may itself be an "assembly" which is not to be stocked by the ship: the ship would be able to stuck certain of its parts but not the "assembly" itself.
As is explained below under 32) there is an analugous ficld for the tender or repair ship level, namely UE-T which is designed to apply only to the cases where UE-S contains "NU".
15) Item code is $=$ rumeric code utilized to describe the general degree of on-board responsibility or control to be exercised over a given part. There are three basic codes: $1,2,3$ which furthermore specify the Sections: A, B, C respectively, for the SNSL of the allowance list in which the part may be found. The three categories are defined by the Navy [6, p.1-3] as follows.
a) Repair Part (Code 11. A repair partis an integral, manu-
factured and replaceable part (or assembly) of a piece of equipment or a component.
b) Operating Space Item (Code 2). An operating space item is a repair part, consumable item, or other item of supply, either a standard or a non-standard stock item, which is intended for immediate and direct end-use issue to an operating department of the ship for retention and use rather than an item intended for storage and inventory control by the Supply Officer.
c) Consumable Supplies (Code 3). Consumable supplies are those items which are consumed in use such as provisions (dry, chilled and fruzen), ships store stock, clothing and small stores, mecical and dental supplies, housekeeping supplies, ammunition (other than missiles and torpedoes), and repair materials such as gasket material, sheet metal, lumber or other bulk material from which items arc fabricated.

In case a part satisfies more than one of the above definitions then there are separate records for the same part, one per Item code, each with an appropriate quantity (QPC) and CID included.
16) Unit of Allowance, UA, is contained in an alpha-numeric field designating the unit pack normally carried on board the vessel. The UA may not be the same as the Unit of Issue (UI) Field 19 as, for example, in cases of widely applicable manufactured or prefabricated items: the UA for nuts, bolts and screws is generally EA Sor "each" while the UI is commonly BX for "box". For items fabricated from bulk material such as gaskets or packing the UA is similarly often a "sinaller" unit than the UI. The actual coding is given in Figure 5 which has been taken from [6, Appendix].

17) Environmental code field contains " E " to indicate special storage requirements. Examples of items coded "E" include parts requiring carefully controlled atmospheric environments or special protection from shock.
18) Notes is an alpha-numeric field similar to Field 11 of the Component Data Master Record with the only difference being that the present field per tains to parts. The special designators are defined in the Table of Notes in the Appendix to the allowance list. In addition to their use for citing design changes, this field is employed to indicate certain operating space items (Cf. Field 15 Code 2) of different types including high cost items related to components having dual installations. For medical items the notes are used to represent certain precautions which are required as, for example, in storage or issue.
19) Unit of Issue, (UI), is employed for items having a UI different from UA: if the UI field is blank then UI = UA. [See Ficld 16] Figure 5 also serves to display the applicable codes for $U I$ since these are the same as those employed for UA.
20) Part nomenclature is normally the Federal name of the item. possibly followed by modifiers. The noun name is usually not abbreviated, a " + " generally separates the noun name from its modifiers, but the actual contents of the field may be expected to vary in practice.
21) Part MEC code, MEC-P. is the part worth digit " p " of [3].

INSTALLABI,E?	CRITICAL?	MEC-P
YES	YES	1
YES	NO	3
NO	YES	2
NO	NO	4

This field duplicates Field 45 of the present record.
22) Source code is contained in an alphanumeric field, left justified with blanks following. It is used to indicate consumer source information, i.e., the manner of supply. Actual codes are assigned in accordance with [8]. Brief descriptions of the different series are as follows.

P Series: parts which are procured and are available in the supply system.

Code P: parts which are procured in view of relatively high usage and which are relatively simple to manufacture within the Naval establishment.

Code Pl: parts which are procured in view of =elatively high usage but which are very difficult, impractical or uneconomical to manufacture.
Code P2: parts for which little usage is anticipate but which are procured in limited quantity for insurance purposes. Such parts are difficult to manufacture, require special tooling not normally available within the Naval establishment, or require long production lead times.
Code P3: parts which are procured in accordance with the life expectancy of the part. Such parts are deteriorative in nature and may require special storage conditions.
M Series Code M: parts capable of being manufactured within the Naval establishment and which are not procured. Such parts have no anticipated usage or relatively low usage. or possess restrictive installation or storage factors. Code " M " should not be applied to any item coded " P " for any of its applications nor to any items appearing in any Navy stock list. An item would be coded " M " only by the inventory manager having supply support for the item.

A Series - Code A: assemblies which are not procured but which are to be assembled within the Naval establishment prior to installation. At least one part within the assembly must be a stock numbered part coded "P".
N Series - Code N: parts which do not meet established criteria for stocking and which are normally readily available from commercial sources. Such parts are procured on demand in accordance with applicable procedures.

X Series: parts which are not procured on account of being normally impracticable for stocking, maintenance, or manufacture.

Code X: main structural members or similar parts which, if required, would suggest extensive repair. The need for a part, or parts, coded "X" normally results in a recommendation for complete overhaul or retirement of the component from service.

Code Xl: parts for which procurement of the next larger assembly coded " P " is justified, e.g., an internal detail part, such as a welded segment inseparable from its assembly, a part which must be machined and installed with other parts in a matched set, or a part of an assembly which, if required, would suggest extensive reconditioning of the assembly. Code X2: parts which are not procured for stock but which may be acquired for use through salvage. Activities requiring surh parts are to attempt to obtain them from salvage. If they are not obtainable from salvage, then such parts are to be requisitioned through normal supply channcls with supporting justification. Repeated requests may justify changing the source code to a " P " series code.

U Series - Code U: parts which are not of supply or maintenance significance sach as installation drawings, diagrams, instruction sheets, field service drawing numbers, and parts which should not or cannot be procured or manufactured. This is an optional code.
23) Maintenance code is a two-part code used to designate appropriate maintenance echelons.
a) Position 114: the lowest maintenance echelon capable of instaliing the part in the component where the lowest of all is the vessel itself.
b) Yosition 115: the lowest maintenance echelon capable of manufacturing, assembling or testing the part prior to installation.

Maintenance codes are assigned in accordance with [8] as follows.

CODE	MAINTENANCE ECHELON for NAVY MATERLAL
F	Activity to which equipment is assigned, e.g., the vessel.
T	Tender or repair ship.
\bigcirc	Overhaul activity.
E	Specialized repair facility.
B	Specific maintenance requirements not applicable (Optional).

The significance of "optional" above related to Code "B"is that a blank may be found in place of "B" to indicate that no one of "F", "T", "O", or "E" applies.
24) Recoverability code is used to designate supply system recoverability. Specifically, this code reflects the recoverability characteristics of iterns removed from components al the time of maintenance, repair or over haul. Actual codes are assigned in accordance with [8] as follows.

Cade R: parts which are economical and practical to repair. Replacements are oblaired from the supply system or on an exchange basis, if and wher. practicable i.e., a part may be lost or damaged beyond recogrit:on, or the inventory manager may not require surh exchange.
Code S: parts whichare economical and practical to salvage and which may be placed in "ready for issue" condition by cleaning, replating, adjusting, replacement of bearing or bushing, etc. Parts coded "S" may contain parts or materials which are usable, valuable, or critical, and which may be placed in the supply system for issue.

Code C: parts which are consumable (expendable), i.e., parts which are neither reparable nor salvageable. This is an optional code so that a blank may appear instead of "C" to indicate that neither of "R" or "S"applies.
25) Quantity installed per Component, QPC, is a field which overall may be quite variable with the following range of possibilities for representing the quantity or amount installed in one component.
a) An integer quantity of units of allowarice in whichcase the field is numeric.
b) A decimal quantity of units of allowance in which case Position 119 contains a decimal point (.) so that QPC is given to lDas $\mathbf{x x} \times \mathrm{x}$.
c) The code "AR" right justified with two initial blanks to designate "as required". (In this case Field 43.

AQ-RU. will be blank following an Optimum COSAL calculation and Field 55, AQ-UA, will have "AR" as does the present Field 25.)
26) Replacement Unit, $R U$, is defincd $i=$ an integer multiple of the UA which is required as a minimum replacement to repair, maintain or overhaul the component. As suct., it is a function of both the SN and the CID: in other words, the RU for a specific $S N$ may vary over different CID's. If $R U=4$ for a part having UA equal to "Each", then a "set" of four would be required as the smallest quantity of the $S N$ sufficient for use on account of the CID. In such a case a single UA of the part would not be replaced independently, instead there would always be concurrent installa tion of four.

There are threc possibilities for the RUfield.
a) The field represents an integer quantity greater than unity. This is the case where there is a non-trivial RU>1.
b) Position 121 does not contain X and the field does not represent an integer quantity greatcr than unity. For this case it wili be convenient to define $R U=1$. This means that in case the field contains zeros, blanks, or whatever providing only that 189 does not contain X, then $R U=1$.
c) Position 121 contains ' X " in which case $R U$ is not applicable and the field is being employed to record a numeric X-factor in Positions 122-124. Here. AQ-RU is blank and AQ-UA is the numeric portion of the present field which equals the mandatory value.

On account of the convention expressed in b) it will be convenient to employ $R U$ with the understanding that $R U \geqq 1$.
27) Manufacturese code is the Federal numerical manufacturers 5 digit code.
28) Reparable Return Rate is a quantity expressed to 2 D , i.e., as $x . x x$ but the decimal point is not written into the record. This rate is defined as the fraction of the total failures of an item which require that the item be returned to a higher maintenance echelon in lieu of repair at point of failure. These estimates are made only for the shipboard level. A reparable return rate is normally assigned only if the Recoverability Code, Field '4, equals "R". Furthermore. it is usually true that the UE-S field has to be different from "NU" an order that there be a reparable retirr. rate assigned. The fullowing examples will illustrate the meaning of this datum.
a) Items which have a Recoverabality Code of "C" and have ro reparable rfturn rate have this field blank.
b) If for three out of every five failures of the item it is returned to the tender or to a hagher echelon for repair, then the reparable return rate equals 0.60 .
c) When the vessel cannot repait the part on boardand must senw all such failed unats to the tender, the reparable return rate is 1.00 indicating 100 percent must be returned.
d) When the part can invariably be reparaced at the ship level, the reparable return rate entry is 0 . Cu andicating that mu unds are returned to the tender.
c) A sealed corpment whith is onily to be repared by the cuntractur has a reparable return rate of l. 00 again adic ring total reture with fatiec wats from the 'feretional a birleri iothe tender.
29) Wearout Rate is a quantity expressed to 2D, i.e., as x. $x x$ but the decimal point is not written into the record. This rate is defined as the fraction of times the part cannot be economically repaired. It is thus equivalent to the "condemnation rate" or "strike rate". Wearout Rates are normally given only for itome with Recoverability Code, Field 24, equal to "R". Furthermore. it is usually true that UE-S, Field 14 , is different from "NU" in order that a Wearout Eate be assigned. The following examples will illustricie the meaning of this datum.
a) Items which have a Recoverability Code of "C" and whose wearout is 100% ordinarily have Wearout Rate blank. However, as an optional feature the rate may in thís case be expressed as 1.00 .
b) When there are 3 wearouts per 4 failures of the item the wearout rate equals 0.75 .
c) When invariably the part can economically be repaired, then the wearout rate is 0.00 . In the contrary case, a rate of 1.00 means that the part cannot economically be repaired.
30) Type of Repair Activity is uscd to reflect the maintenance policy for each reparable item. Ihe actual code indicates the first echelon at which it is possible to accomplish the actual repair of the item. Specific codes are as follows.

CODE	FIRST REPAIR ECHELON
F	Activity to which equipment is assigned, e.g., the vessel.
T	Tender or repair ship.
0	Overhaul activity.
E	Specialized repair facility.
C	Contractorand certaindesignated Navy facilities.

Note that except for "C", this field duplicates the first entry in the maintenance code, Position 114 of Field 23. The present code is normally assigned to each part having a Recoverability Code "R". Furthermore, such an item would usually nave one of UE-S or UE-T different from "NU".
31) Service Life, if applicable, is used to express the recommendation as to when the item should undergo repair, recalibration, overhaul, or other scheduled preventive maintenance requiring removal and replacement of the installed par:. Service life is expressed in terms of operational hours.
32) Usage Estimate-Tender, UE-T. derotes a field completely analogous to Field 14) wherein one moves from the former cases of "shipboard level" and "ships force" to "tender or repair ship level" and "tender or repair ship force", respectively.

The original instructions called for this field to be significant only for thosc parts for which Field 14) contained 'NU'; i.e., UE-T's should be supplied only for those parts for which UE-S $=$ NU. Therefore, there would be only $t w$ possibilities for the UE-T field.
a) Anca-zcro estimate of average usage at the tender or repair ship level.
৬) An entry "NU" to denote "No Usage".
33) ECN Table Contents - Column l is used to record entries in Equipage Category Number - Allowance Parts Lists: ECN-APL's. ihis means that this field is of relatively limited interest for the present paper .it is blank for admissible CID's. In effect, the use of this field is limited to items for which the allowance quantity is cstablished by decree. In case the present field is applicable, it contains the entry to be found in the first column of the row for the SN in the ECN-APL table designated by the CID.

There are three possibilities.
a) An integer quantity of units of allowance in which case the field is numeric.
b) A decimal quantity of units of allowance in which case the central position contains a decimal point so that the quantity is given to 1 D as x.x.
c) The code "AR" right justified with one initial blank to designate "requisition As Required".

In case Column 1 is indeed the applicable column for this vessel-CID combination, this will be designated by " 1 " in Position 176, the QC field. See 411 below.

	ECN Table Contents - Column 27	These fields are
35)	- Column 3	entirely analogous
36)	- Column 4	to Field 33.
37)	- Column 5	However, note that
38)	- Column 6	Field 40 Lelow
39)	- Column 7	has four positions.
40)	ECN Table Contents - Column 8 is	ar to each of Fields

a) An integer quantity of UA.
b) A decimal quantity of UA $x x . x$ with the decimal point (.) written in Position 171.
c) The code "AR" right justified with two initial blanks to designate "requisition As Required".
41) Quantity of Component installed, $Q C$, is the same as in Component Data Field 9 except for the case of ECN-APL's. For this latter case, Position 176 contains the ECN-APL Column number from Component Data Field 10.
42) MEC Data is a field which has been made available for use in printing MEC information. At present this field is not being utilized for this purpose. Prior to an Optimum COSAL calculation the field contains the MEC class code for the CID taken from Component Datz Field 8.
43) Allowance Quantity in Replacement Units, $A Q-R U$, is the quantity determined and written during the Optimum COSAL calculation. As is mentioned in Footnote 1 for Figure 2, the present $A Q-R U$ is to be carefully distinguished from AQ-UA, the "piece" quantity actually printed in the allowance list. The present field, $A Q-R U$, is the more basic for our purposes. Allowance list calculations by the Optimum COSAL model are per formed only for admissible CID's and then in terms of $A Q-R U$. As is explained below, a part is an allowance list candidate if and only if following an Optimum COSAL calculation, $A Q-R U$ is not blank. That is, if $A Q-R U=0$ then the field contains 0000 . If $A Q-R U$ is blank as distinct from 0000 then the part was never considered competitively for stocking by the procedures of the Optimum COSAL model. If in this latter case $A Q-U A$ is non-zero, then this quantity was determined by decree (table lookup) and not by the optimization model.

For the case of parts with Ficld 15, Item code, containing " 1 " the aggregate AQ-UA (which is printed in Section A, Part III, SNSL) represents [6, p. 4-2]
"the recommended high limit (. . . the mandatory quantity...the total of on hand and on order quantities...) for that particular item, unless unanticipated usage or other factors necessitate the ship exceeding that quantity."

For the case of parts listedinSection B and C. Part III, SNSL IItem codesof" 2" and " 3 "respectively) the AQ-UA is "not a mandatory maximum on-board cuantity" [6, p.4-2].
44) Component-Equipment MEC code, MEC-CE, is the same as in Component Data Field 12.
45) Part MEC code, MEC-P, duplicates Field 21 of the present record described above.
46) Ordinal Locator = MEC code, MEC, is the code associated with the PCE-septuplet defined in [3]. (Cf. also Component Data Field8.) The actual contents of the field are numeric: one of 0116, 0115, .., 0088 if $p=1$; one of 0087, 0036, .., 0059 if $p=3$; one o $0058,0057, \ldots, 0030$ if $p=2$; and one of $0029,0028, \ldots, 0001$ if $p=4$.
47) Inverse MEC code $=10,000-$ MEC, MEC-INV, is an arithmetic inverting of MEC for use in sorting operations where it is convenient (internal to the computer) to have the higher military worth represented by the lower arithmetic quantities.

48 ff Computational Fields are displayed below in Figure 13.
3. Allowance list format.

The present section describes the format of a published "Optimum COSAL", i.e., an Optimum Cuordinated Shipboard Allowance List. These are the allowance lists of concern for the present series of papers. It will be found that by utilizing definitions contained in the preceding sections plus those given below it win be easy to define exactly what makes up an allowance list. The discussion will proceed in terms of the USS GEORGE WASHINGTON (SSB(N) 598) Optimum COSAL [6] for which the general format is depicted in Figure 6. The entire allowance list for this single vessel is contained in 21 rather large birders (111/2" $\times 12^{\prime \prime} \times 21 / 2^{\prime \prime}$, up to 800 pages, and up to 9 pounds each), each binder containing one volume. Another way of expressing the magnitude of the data represented by Figure 6 for a single ship is to state that it fills about 17, 000 pages. Similarly, it may be noted that one Optimum COSAL will itself completely fill a five-foot shelf, which shelf should be a sturdy one since it would be loaded with 21 books, each a foot high, with total weight just under 200 pounds.

OPTIMUM COSAL FORMAT USS GEORGE WASHINGTON (SSB(N) 598)
1 Volume Introduction Appendix Summary of Effective APL's Part I: Index Section A Index Serijun B
12 Volumes Part II: Allowance Parts Lists - APL's
4 Volumes Part III: Stock Number Sequence Lists - SNSL's Section A: Repair Parts Section B: Operating Space ltems Section C: Consumable Supplies
4 Volumes MEC SNSL's

Figure 6

The first volume contains general as well as specific explanatory and reference material. The Introduction consists of four chapters.

Chapter 1. Organization and Functions

2. Explanation of Index
3. (Explanation of APL's
4. (Explanation of SNSL's

The Appendix consists of four parts.

1. Gencral Index of Material on ECN-APL's is a table designed to permit one to determine the general series of ECN-APL's containing an individual equipage item. The table is sorted on part nomenclature: for each part nomenclature there is recorded a sufficient number of significant positions (seven: 10-16 of Figure 1) of the applicable CID's. For example, entering with "soldering iron-electric" yields 2-67003 and 2-92001. Corresponding to the first of these is one applicable ECN-APL, 2-670034001 representing "Tools-hand electronic repair". On the other hand, to the second, namely 2-92001 there turn out to correspond 36 applicable ECN-APL's since this is the series listing tools stowed in the tool rciom. Since the material on any ECN-APL is listed alphabetically, it is easy to scan one ECN-APL or even ancintire scries in order to determine the quantity authorized for a given vessel.
2. List of Abbreviations contains two parts.

Part. I. Abbreviation io word(s)/phrases
Part II. Word to abbreviation
3. Table of Notes defines the symbols employed in Component Data Field 11 and Part Data Field 18. Figures 1 and 2, respectively, of the present paper.
4. Table of Military Essentiality Codes consists of a brief description of the Polaris MEC system of [3].

The Summary of Effective APL's, SOEAPL, is a listing of all applicable CID's for the vessel. There are three entries per CID.
a) CID "number", i.e., Comporent Field 3.
b) Date of publication.
c) Number of pages in the printed APL.

The sequence of entries in the SOEAPL is as follows.

1. Admissible CID's
a. Preliminary CID's wherein the initial two positions of the code contained " $P+$ ".
b. Numeric CID's.
2. Inadmissible CID's: ECN-APL's in normal collating sequence.

Notice that the above is different from normal collating sequence on CID which would inter-mix 2 within 1 ; e.g.. the ECN-APL's $1+\ldots$ in 2 would precede CID's $10 \ldots$ in 1.

Part I of the allowance list, the Index consists of two listings for the same data sorted into two difierent sequences. The data contained in the printed Part I consists of certain fields from the Component Data Master Records (Figure 1) as shown in Figure 7. As is also shown in Figure 7, the two sequences are formed by interchanging reajor/minor sorting fields and then printing the same data.
a) Index Section A: Primary sort on CID nomenclature.

Seconcary sort on SA nomenclature.
b) Index Section B: Primary sort on SA nomenclature. Secondary sort on CID nomenclature.

	AL FORMAT INDEX
PRINTED ENTRIES	
Component Data Master Record Field Number	Contents
1	Hull type
2	Hull number
3	ClD
4	Program Support code
5	SAl/
6	CID nomenclature
7	SA nomenclature
8	MEC
9	QC
10	ECN-APL column number
11	Notes
15	Security Classification
SEQUENCE FOR PRINTING	
IT:DEX SECTION A: Primary sort on Field 6 Secondary sort on Field 7 INDEX SECTION B: Primary sort on Field 7 Secondary sort on Field 6	

1/True SA codes are not printed. In case Field 5 contains a CUD then this cude is printed immediately below the CID code.

Figure 7

The only remaining observation to be made is that the printed index always shows a date of generation as consistent with the fact that the basic records change with time.

The 12 volumes which make up Part II of the allowance list consist of Allowance Parts Lists, APL's, bound together into binders. The sequence in which the APL's appear in Part Il is the same as for the SOEAPL. Figore 8 summarizes the data contained in Part Il and also the sequence for binding. It is to be noted that there is one APL per CID code so that they do not vary with SA. Furthermore, the APL lists the installed parts by stock number and part nomenclature and lists considerable additional technical information as well. The actual APL's making up Part Il are the same individual documents used to make up Part Il of a réğilar COSAL.

The 4 volumes which make up Part III of the allowance list consist of Stock Number Sequence Lists, SNSL's, in three parts according to Repair Part Master Record (Figure 2) Field 15: Item Code.

Section A: Repair Parts Itern Code 1
Section B: Operating Spare items Item Code 2
Section C: Consumable Supplies Item Code 3
The exact contents are displayed in Figure 9. Section A is contained in three volumes while Sections B and C together make up a relatively thin fourth volume. Entries for SN's are printed in each section in sequence by $S N$ and lines within $S N$ in order by CID. It is particularly worthy of note that the zero AQ-UA'S are printed in the SNSL. That is, the SNSL displays the full range of possible demand rather than simply the range of items stocked with non-zero AQ-UA. On the very last page for Section A, there are printed the following grand totals.

OPTIMMUM COSAL FORMAT

PARTL - APL'E

CONTENTS

1. Part II is a collection of APL's.
2. Each APL is a technical document falling into one of two classes.
a) It contairs detailed information on a particular component or equipment in which case it is identified by an admissible CID code.
b) It consists of a list of items of equipage (e.g., binoculars, tools, etc.), or certain material requirements for particular systems (e.g., steering and diving systeris), or general requirements (e.g., hose and hose fittings), or other technical information (e.g., reference material). In all such cases the APL is identified by an inadmissible CID code.

SEQUENCE OF APL's

The sequence in Part II is according to CID code in agreement with the order within the "Summary of Effective APL's".

1. Admissible CID's in normal collating sequence.
a. Preliminary CID's: $\mathbf{P}+\ldots$
b. Numeric CID's
2. Inadmissible CID's in normal collating sequence.

Figure 8
-44-

	OPTIMUM COSAL FORMAT PART III - SNSL's
PRINTED ENTRIES	
SNSL Entry	Contents (Repair Part Master Record Field)
I. Hull Tyue	Field i: Hull type
2 Hull Number	Field 2: Hull number
3. Stock Number	Field 6: Supply Support ende
	Field 7: SN
4. Nomenciature	Field 20: Part nomenclature
3. Application Code if	Field 4: CID
6. Unit of Aliowance	Field 16: UA
7. Allowance ¢̇antity	Section A: Sum of AQ-UA over all CID's. A single er.iry
	Scction B: Multiple entries, one line per CID.
	Section C: A single entry per vessel.
8. Notes	Field 18: Notes
9. Code S !	Field 22: Source code
-0. Code M I	Field 23: Maintenance code
ii. Code R 1/	Fielc 24: Recoverability code
i2. MEC Code I/	Section A: Field 46: MEC
	Section B: $\|$Ficld 42: MEC Data (class code)
$\begin{aligned} \text { i } 3 . & \text { Remarks } \\ & \text { (Section A only) } \end{aligned}$	Protection Level: most significant five digits of arhieved protection level.
	Override: an asterisk (*) to indicate $A Q-R U=1$ on account of MEC greater than 100 .
SECTIONS	
Sertion A: Item Code, Part Data Field 15: Code 1 Section B: Code 2 Section C: Code 3	
SEQUENCE WITHIN SECTIONS	
Primary Sort: SN (not including Supply Support code.) Secondary Sort: CID	

${ }^{1 /}$ Not applicable to Section C. Multiple entries are printed, one line per CID
Figure 9
a) Price: total exterded price in dollars over all AQ-UA in Section A.
b) Range: at present this is generated from the grand total for range through MEC 59 as shown below in Figure lC his means that the count actually tallies the distinct MEC, SN pairs for which there is at least one CID with non-zero AQ-UA. (Cf. Figure 10 below.)
c) Cube: total extendcd cubc in cubic fect over all AQ-UA in Section A.
d) Price Override is the total extended price in dollars over all AQ-RU in MEC 115-101 inclusive which were stocked in quantity of one RU per CID on account of the MEC override. (These are the items which otherwise would not have been stocked on the allowance list due to low expected usage, large cube, or high price, etc.)
e) Range Override is actually a sub-total within b) above to count the number of times the override was invoked.
f) Cube Oierride is the total extended cube which resulted on account of the MEC override.

The last 4 volumes are unique to the Optimum COSAL; these are the Military Essentiality Class or MEC SNSL's summarized in Figure 10. Three sub-totals and three corresponcing cumulative (over MEC) totals are printed at the end of each MEC group. As implied by their name, these volumes represent SNSL's compiled for each MEC. The major innovation is that these volumes display the individual ailocations of AQ-UA by CID: in Part III,Section A there is only a single AQ-UA per SN representing the total for all CID's.

$$
1
$$

OPTIMUM COSAL FORMAT

MEC - SNSL's

PRINTED ENTRIES

1. Same data as contaned in Section A. of SNSL except that each AQ-UA is printed separately as computed, one lime per CID.
2. At end of each MIEC group there are sub-tutals and cumulative totals as follows.

SUB TOTAL PRICE = Total of extended price in dollars over allowance quantities for the MEC code.
SUB TOTAL RANGE = Number of distinct SN's ${ }^{\text {l/ }}$ stocked with non-zero AQ-UA for the MEC code.

SUB TOTAL CUBE = Total extended cube in cubic feet over allowance quantities for the MEC code.

SEQUENCE

Primary sort is on MEC in inverse order: 116,115,...,59.

SEQUENCE WITHIN MEC

Primary sort on SN
Secondary sort on CID

1/ Jn casc an SN appears with non-zero $A Q$-UA on more than one CID for a giver MEC, it is counted only once in this range count. In case an $S N$ appears with non-zero $A Q-U A$ on more than one CID for differeit MEC, it is counted more than once in the cumulative range: this latter is range accumulated orer MEC.

Figure 10

4. Allowarice list candidates.

An allowance list candidate is a part which leads to admissible arithmetical input to an allowance list model. Such a part actually becomes a candidate or competitor for the stowage space and budget available for allowance list items. A part listed on an ECN-APL is not a candidate in this sense; its allowance quantity, $A Q$, has been determined in advance and can be found by table lcok-up. Thus, instead of being a competitor, an ECN-APL part has the role of a pre-emptor which reduces the total amount of stowage space available for the allowance list candidates. The remaining requirements are perhaps more obvious. It is required that an allowance list candidate be wearable, that it be possible for the ships force to replace it, and that it actually be an installed part. Straightforward as all this may seem, the actual definition given below may appear complex at first meeting but this is mainly on account of vagaries of parts data. One additional equivalent definition is given and then the remaining portion of this section is devoted in development of various properties of allowance list candidates.
a. Definition of an allowance list randidate.

DEFINITION. An allowance list candidate for a particular vessel is a part for which there exists an admissiole (SN, CID) record. Ey definition this means that in the Repair Part Data Master Record File (Figure 2) for this vessel there exists a record corresponding to this (SN, CID) pair satisfying the following conditions.
a) Ficld 4 of the Part Record, CID, represents an admissible CID, i.e., by definition it satisfies exactly one of the following conditions:
i) Position 12 does not contain " + ",
ii) Positions 11, 12 contain " P", " + ", respectively.
b) Field 15, Item code, contains "1".
c) Field 46, MEC, contains one of "0116", "0115"..... "0059".
d) Field 21, MEC-P, or the equivalent Field 45 contains "1" or " 3 ".
e) At least one of the following conditions is satisfied:
i) Field 30, Type of Repair Activity, contains "F".
ii) Field 23, Maintenance code, contains " F " in Position 114.
f) Field 25, QPC, does not contain "A", "R" in Positions 119 , 120 , respertively.
g) Field 26, RU, does not contain " X " in Position 121.
h) Field 14, UE-S, does not contain "N", "U" in Positions 71,72 , respectively.

Condition a) has the effect of requiring that the part be a 'technical part" installed in an admissible parent component-equipment. Condition b) requiresthat the part be designated a "repair part". Conditions c), d) and e) are purposefully redundant: the ided here is not only to check that the part be installable by ships force but to verify that the MEC codes are consistent. Condition \cap eliminates parts with non-numeric populations: if their QPC is "as required", we view them as actually not being installed and so omit them from subsequent arithmetical processing. Condition g) eliminates parts whose $A Q$'s are determinec by "X-factors". The final condition h) is imposed in order to restrict attention to wearable parts, i.e., those which have some positive probability of being used by ships force, i.e., it eliminates parts having "no usige".

There is a convenient way to determine "after the fact" whether or not a part is an allowance list candidate. This is based on the following result whose "proof" follows from the nature of the Cptimum COSAL computer program [5].

THEOREM. A part application is an allowance list candidate if and only if Field 43, AQ-KU, is not blank after completion of the Optimum COSAL calculation for the Repair Part Data Master Record File.

This result is of particular significance for "post-audit" calculations where various analyses are to be performed in order to evaluate a particular allowance list model. In such a case it would of course make little sense to consider all records; instead, we would ordinarily restrict our attention to the admissible (SN, CID) pairs which are the only records to which the optimization model was actually applied.

Looking ahead to post-audit analyses for allowance list calculations and indeed, even considering prior analysis of input data, it is convenient to have the following conventions.

TERMINOLOGY. To each admissibie (SN, CID) record there corresponds an admissible SN, namely, the contents of Fiels 7. Conversely, to a given admissible SN there may correspond several admissible (SN, CID) records.

To each admissibie $S N$ there corresponds an admissible Item Number, aumissible $I N$, defined as follows.
a) If Field 7 contains an FSN, then the corresponding IN is the FIIN, i.e., the contents of Positions 31-38.
b) Otherwise, if Field 7 does not contain an FSN, the corresponding IN is the $S N$, i.e., the entire contents of Field 7.

Conversely, in case a) : 0 any one admissible IN there may correspond several admissible SN's. (This requires that one FIIN be associated with different FSC's.)

The above terminology re-states the association of "admissible (SN, CID)" with "admissible part application" inherent in the definition of an allowance list candidate. One zdditional step is taken, namely, to associate "admissible part" with "admissible IN". While "part application" links the part to a specific parent component, the "IN" is independent of any particular CID and therefore relates to a distinct physical entity.

b. General numerical cata.

It will be convenient at this point to introduce terminology and fix notation for additional data which are developed for allowance list candidates. These are data required as input for numerical calculations within the general framework of the Optimum COSAL models and hence they are not generated for part applications other than allowance list candidates.

Figure 11 displays terminology and notation for the range of general data wherein the order of arrangement is alphabetical on data processing notation within each of $I, I_{\text {a }}$ a d III. These data are "general" in the sense that certain of them (e.g., Nos. 7 and 9) are specialized for particular cases as will be described in the following Sub-sectionc. The general data will now be discussed in a logical order of develofment slightly out of sequence with the manner in which they are arranged in Figure 11 for ready reference.

1) Population dita, POP-RU or N. represents the frequency of installation of the part-application for the vessel in units of the RU. It is to be recalied that $R U$ is taken to be unity for an allowance list candidate unless it is specifically written as greater than unity, i.e., even though

GENERAL TER MINOLOGY AND FIXED NOTATION ALLOWANCE LIST CANDIDATES			
	DATA PROCESSING NOTATION FOR LISTINGS	ALGEBRAIC NOTATION	-TERMINOLOGY -DEFINITION
	1. AQ - RU	n	Allowance quantity in replacement units (RU).
	2. CUBE-RU	c	Cube in cubic feet per RU.
	3. MEAN - 02	m	Mean usage for ship: RU per 02 months.
	4. MEC	w	MEC code: "w" for "worth".
	5. POP - RU	N	Popuiation in RU: number of opportunities for usage.
	6. PRICE - RU	p	Price in dollars per RU.
	7. COST - HOLDING	A	Holding Cost: penalty per RU stocked in excess of number demanded.
	8. COST - SHORTAGE	B	Shortage Cost: penalty per RUdemanded in excess of number stocked.
	9. FN-CUBE	$g(c)$	Scaled CUBE - RU value.
	10.FN-HOLDING	a(s)	Expected number RU overstocked $a(s)=\sum_{i=0}^{s}(s-i) P_{i} \text { if } s=A Q-R U .$
	11. FN - LOSS	L(s)	$L(s)=A \cdot a(s)+B \cdot b(s)$ if $s=A Q-R U$.
	12. FN-MEC	(${ }^{\text {w }}$	Scaled MEC value.
	13. FN-PRICE	$\mathrm{h}(\mathrm{p})$	Scaled PRICE - RU value.
	14. FN - PROB	P_{i}	$\begin{gathered} P_{i}=\text { Prob. usage } i \text { RU where } \\ i=0,1,2, \ldots, \ldots, \ldots . \end{gathered}$
	15. FN-SHORTAGE	$\mathrm{b}(\mathrm{s})$	Expected number RU understocked $b(s)=\sum_{i=s+1}^{\infty}(i-s) P_{i}$ if $s=A Q-R U$.
	16. PROT - ACH	C_{n}	Achieved Protection Level $C_{n}=\sum_{i=0}^{n} P_{i}$ where $n=A Q-R U$.
	17. PROT - DEV	t	$\begin{aligned} & \text { Developed Protection Level(threshold) } \\ & t=A \operatorname{lax}(0, B /(A+B)] \end{aligned}$

Figure 11
-52.

Field 26 may contain 0000, blanks, etc. Then we may write

$$
N=P O P-R U=\{(Q P C) \cdot(Q C)\} /(R U)
$$

By its definition, N should be an inte;er. In casc it were to turn out otherwise, we would conclude that there were errors in input and as an expedient we would use the next highest integer as N . In other words, if $[(Q P C)(Q C) j /(R U)$ is not an integer there is an error in one or more of QPC, QC, RU but we "round up" to force the computed value of N to be a positive integer.
2) Mean expected usage, MEAN-02 or m, represents a population weighted average usage by the vessel during 02 months in units of the partapplication RU. In terms of the data processing notation the time period is specified in months. Whenever " m " is used, it is used alone with the understanding that the time period is as has been specified in context. For example

$$
\begin{aligned}
& \text { MEAN-02 }=(\text { POP-RU }) \cdot(U E-S) \cdot(2 / 12), \\
& \text { MEAN-03 }=(P O P-R U) \cdot(U E-S) \cdot(3 / 12), \\
& \text { MEAN-12 }=(\text { POP-RU }) \cdot(U E \cdot S) \cdot(12 / 12) .
\end{aligned}
$$

3) MEC, Cube and Price data are handled both in their raw or "actual value" forms and in their corresponding "scaled" forms as desired for calculation. Actual procedure consists simply of employing the usual notion of a mathematical function as should be evident from the follewing layout.

Table	Argument	Table Entry
MEC	w	$f(w)$
CUBE-RU	c	$g(c)$
FRICE-RU	p	$h(p)$

Another way of expressing the above for the case of cube data is to say that $g(c)$ is the value of the scaling function for cube per replacement unit at the place c.
4) Cost data are required in order to be able to formulate a "loss function" for which a minimum is sought in an allowance list model. As indicated in Figure 11 two numbers are used: A and B. These may be considered to be determined for each allowance list candidate: there may be common values for all candidates or one could determine the pair A, B differently for different candidates.
a) Unit Holding Cost $A=$ penalty per $R U$ stocked in excess of number demanded.
b) Unit Shortage Cost
B_{3} = penalty per RU demanded in excess of number stocked.
We require that not both A and B are zero. It is of course required that both of A and B are measured in the same units.
5) Demand prediction data are based on a probability distribution $\left\{P_{i}\right\}, i=0,1,2, \ldots$ with mean equal to m. As explained just above in 2), there is a specific time period understood, e.g., two months in which case m represents MEAN-02. The definition of the term P_{i} is as follows.
$P_{i}=$ Probability of exactly i replacement units (RU) being demanded for ships force use during 02 months.

We must have $P_{i} \geq 0$ for each i and furthermore $\sum_{i=0}^{\infty} P_{i}=1$. By definition, m is the mean of the distribution $\left\{P_{i}\right\}$, i.e.,

$$
m=\sum_{i=0}^{\infty} i \cdot P_{i} .
$$

Given $\left\{P_{i}\right\}$ it is a simple matter to compute a holding function whose value $a(s)$ equals the expected number of $R U$ overstocked in casc the allowance
quantity, AQ-RU, equals s. In this way, there is defined a function on $s=0,1,2, \ldots$ having values

$$
a(s)=\sum_{i=0}^{s}(s-i) \cdot P_{i}
$$

Proceeding in the same fashion, it is easy to write down the expected nombur of RU understocked in case $A Q-R U$ equals s. This is the shortage function b defined for $s=0,1,2, \ldots$ having values
$b(s)=\sum_{i=s+1}^{\infty}(i-s) P_{i}$.
6) A loss function, $L(s)$, is defined in terms of the data just above in 4) and 5). It is more accurate to describe L as an expected loss function since its values equal mathematical expectations, ie..

$$
\begin{aligned}
L(s) & =A \cdot a(s)+B \cdot b(s) \\
& =A \cdot \sum_{i=0}^{s}(s-i) \cdot P_{i}+B \sum_{i=s+l}^{\infty}(i-s) P_{i} \cdot
\end{aligned}
$$

7) Protection levels are defined relative to a specific allowance quantit $A Q-R U=n$. The first of these is called the achieved protection level, PROT-ACH,

$$
C_{n}=\sum_{i=0}^{n} P_{i}
$$

This is simply the cumulative probability through n for $\left\{P_{i}\right\}$ and in context it represents the probability that demand will not exceed supply. Specifically, if $A Q-R U=n$ then C_{n} represents the probability that the number of $R U$ demanded for ships force use during the specified time period (egg., two months) will not exceed n.

A second protection quantity, the developed protection level will be defined here for convenience of reference. Its interpretation and use along with justification for its nomenclature will be given elsewhere. It can be established as a theorem that an "optimum" $A Q-U A=n$ results from the calculation

$$
n=\min _{s}\left\{C_{s} \geq B /(A+B)\right\}
$$

(This result will be discussed in a subsequent paper of the present series.) The above result establishes $B /(A+B)$ as a threshold to be surmounted by the cumulative probability C_{s}. Since this latter is non-negative, an equivalent threshold results from replacing any negative $B /(A+B\rangle$ by zero. In this way we define

$$
t=\operatorname{Max} \mid 0, B /(A+\Gamma)]
$$

so that $0 \leqq t \leqq 1$ on account $o f A+B>0$. We label t as a developed pro. lection level since by association it may itself be regarded as a cumulative probability.
c. Special Optimum COSAL numerical data.

The implementation to date by the Navy in the Optimum COSAL Programhas been based on certain special cases for some of the data displayed above in Figure 11. Actual cases are summarized below in Figure 12.

1) Negative binomial probability distributions have beer selected as the $\left\{P_{i}\right\}$ for use ir calculations. This choice was made on the basis of Project studies to be reported elsewhere. General properties for this family of distributions ar -given in Feller [i] and, for example, in the review article by Bartko [1]. In our notation, $\left\{P_{i}\right\}$ can be generated formally via

$$
\{q-(q-1)\}^{-k}
$$

where $k>0$ and $q>1$ in which case P_{i} is the coefficient of the ($i+1$)-st term. The mean is

$$
m=k(q-1)
$$

and the variance is $q \cdot m$. The pair, m and $g m$, suffice to provide a complate description of the distribution. There exist various ways of computing the terms P_{i}. Starting with (k, q) one has

SPECIAL CASES - OPTIMUM COSAL PROGRAM TERMINOLOGY AND NOTATION allowance list candidates			
	DATA PROCESSING NOTATION FOR LISTINGS	AIGEBRAIC NOTATION	TERMINOLOGY-DEFINITION
	1. FN-QUE	$q=q(m)$	$q=$ variance-to-mean ratio, $q>1$.
	2. FN-KAY	k	$k=m /(q-1)$.
	3. FN-PROB ${ }^{1 /}$	$P_{i}=P_{i}(m, q)$	$P_{i}=i-t h t e r m$ of neg. bin. prob. dist. with mean m and variance $q^{\cdot} m$
	4. PROT - $\mathrm{ACH}^{1 /}$	C_{n}	Achieved Protection Level $C_{n}=\sum_{i=0}^{n} P_{i}$ where $n=A Q-R U$.
	3. ALPHA - MEC	a	MEC multiplier, a > 0 .
	6. LAMBDA - CUBE	λ_{c}	CUBE-RU multiplier, $\lambda_{c} \geqslant 0$.
	7. LAMPDA - PRICE	${ }^{1} \mathrm{p}$	
	8. FN-MEC ${ }^{1 /}$	f(w)	$f(w)=\exp \{-a(116-w)\},{ }^{2 /} \quad a>0$.
	9. FN-CUBE ${ }^{1 /}$	g(c)	$g(c)=\lambda_{c}{ }_{c}, \lambda_{c} \geq 0$.
	10. FN - PRICE ${ }^{1 /}$	h(p)	$h(p)=\lambda_{p} p, \lambda_{p} \geqq 0 .$
	11. COST - HOLDING ${ }^{1 /}$	A	$\begin{aligned} & \text { Holding Cost } \\ & A=\lambda_{c} c+\lambda_{p} \\ & p \end{aligned}$
	12. COST-SHORTAGE ${ }^{1 /}$	B	$\text { Shortage Cost } \overline{B=\exp \{a(w-116)\}-\lambda_{c} c-\lambda_{p} p .}$
	13. PROT-DEV ${ }^{1 /}$:	$\begin{aligned} & \text { Dreveloped Protertion Level }(t h r e s h o l d) \\ & t=\text { Max }\left\{0,1-\left(\lambda_{c} c+\lambda_{p}\right) \cdot \exp \{a(116-w)\}\right] . \end{aligned}$
	14. PROT - FIXED	a(w)	Fixed Protection Level (See text) May replace PROT - DEV.
	15. PROT - MIN	$v(w)$	Min Protection Level (Seetext) A lover bound for PROT - DEV.

Figure 12
1/A special case of a quantity defined more generally. Cf. Figure 11.
${ }^{2 /}$ Writing $f(w)$ as shown simplv provides $0,1,2, \ldots$ as the range for (116-w) while $w=116,119,113, \ldots$. It would of course be equally correct to write if $(\mathrm{f}=\exp \{a(w-116)\}$. Cf., however, the expression for "t" in 13 .

$$
-57 \text { - }
$$

$$
\begin{aligned}
& P_{0}=q^{-k} \\
& P_{i+1}=\{(k+i)(q-1) /(i+1)(q)\} P_{i} ; i=0,1,2, \ldots .
\end{aligned}
$$

The following is an equivalent form utilizing (m, q) wherein P_{o} is also displayed in form for actual computation.

$$
\begin{aligned}
& P_{0}=\exp \{m(-\log q) /(q-1)\} . \\
& P_{i+1}=\{\{m+i(q-1)\} /\{\{i+1) q\}] \cdot P_{i} ; i=0,1,2, \ldots .
\end{aligned}
$$

Current practice in the Optimum COSAL Program calis for q to be a function of m by taicie look-up. While actual values can be changed as parameters for calculation, the current table is as follows.

Mean m	Variance-to-mean ratio_
$0<m \leqq 0.75$	1.01
$0.75<m \leqq 1.20$	2.0
$1.20<m \leqq 2.00$	3.0
$2.00<m \leqq 3.00$	4.0
$3.00<m \leqq 5.00$	5.0
$5.00<m \leqq 7.00$	6.0
$7.00<\mathrm{m} \leqq 8.00$	7.0
$8.00<\mathrm{m}$	8.0

It can be shown that the above approximates the Poisson probability distribution for $m \leqq 0.75$ since this latter is a limiting case of the negative binomial for q approaching unity in the limit.
2) Scaling parameters have been used as follows in order to obtain artual scaling functions for use in Optimum COSAL calculations.

	Scaling Parameter	Scaling Function Value
MEC	$a \geqslant 0$	$\{(w)=\exp \{\cdot a(116-w)\}$
CUBE-RU	$\lambda_{c}=0$	$g(c)=\lambda_{c} \cdot c$
PRICE•RU	$\lambda_{p} \geqslant 0$	$h(p)=\lambda_{p} \cdot p$

Recent calculations have been based on the folloning numerical values:

$$
\begin{aligned}
& a=0.15, \\
& \lambda_{c}=3.163 \times 10^{-2}, \\
& \lambda_{p}=1.9 \times 10^{-5} .
\end{aligned}
$$

Various matters concerning problems of scaling wall be discussed elsewhere. However, the actual values listed above may be described as a set resulting from sxperimentation wheresa the criterien employed for selection was that of producing certain desirabie properties for the resulting allowance lists.
3) Cost data are computed as shown in Figure 12. These result from the choices fur f, g and h listed just above plus

$$
\begin{aligned}
& A=g(c)+h(p), \\
& B=i(w)-A .
\end{aligned}
$$

In words, the unit Holding Cost. A, is taken to be the sum of "scaied stowage space" and "scalled dollar valuer". Then the unit Shortage Cosi, B equals "scaled MEC" diminished by A . This latter may be expresised atiornetely by stating that the will stock at peratity 13 rquals (tw) except that eredit is takenfor $\mathrm{g}(\mathrm{c}) \cdot \mathrm{h}(\mathrm{p})$: this latter sum is of course associated with stowage space and budget value mot utilized un accomet of the item.

1) Protection luvels , foweral kinds are utiliact in current calcula tions. We agitin use t and C_{n} tw denote respectively PROT.DEV and

PROT-ACH in the special cases for $\left\{P_{i}\right\}$, A and B as shown in Figure 12.

As presently used the Fixed Protection, PROT-FIXED denoted by $u(w)$, is employed solely for MEC 116 in which case it replaces PROT-DEV:

$$
u(w) \text { replaces } t \text { for } w=116 \text {. }
$$

This means that the actual threshold t which is set for the cumulative probabilities G_{s} for the highest MEC class does not vary with price or cube.

A Minimum Protection, PROT -MIN dencted by $v(w)$ is eurrently used for $w=115,114, \ldots, 101$. In fact, whenever the PROT-FIXED is specified for a given MEC w then it is required that $v(w)=0$, i.e., a PROT-MIN is not assigned. Current practice is as follows:
$\operatorname{Max}\{t, v(w)\}$ replaces t for $w=115,114, \ldots, 101$.
This use of $v(w)$ amounts to an "override" since it forces a lower bound for use as the threshold t against which the cumulative probabilities C_{s} are tested.

Exact conditions under which PROT-FIXED and PROT-MIN are appiled are more in the province of [5] than of the present paper. For this reason, our present attention will be restricted to defining the range of possibilities for output data from Optimum COSAL calculations. This is done helow for the "OVERRIDE" character written as a computational entry as shown in Figure 14. As will be seen beiow, one complicating factor in the "override" area is that for MEC 115, 114.....101 current practice calls for an "MEC OVERRIDE" as follows:
$A Q-R U=\operatorname{Max}[1, n]$ for $\operatorname{MEC} 115,114, \ldots .101$.
There is some additional terminology. By the Group Protection for a particular ME value w, we mean the product of the C_{n} for all allowance
list candidates having this particular MEC value. This means that the Group Protection is associated with a joint probability, i.e.. the probability that demand will not exceed supply for any allowance list candidate in the given MEC class. The File Protection for MEC w represents the pioduct of the Group Protections for MEC classes $116,115 \ldots \ldots+1$. w. As such, it represents a joint prohability for MEC class w and all higher classes. Finally, there is the concept of a Requized Protection which is associated with the MEC override and which is defined below in connertion with Field 53.
d) Computational entries.

Arithmetical operations are mainly performed on 20 pesition floating point words arranged according to the layout of Figure 13. Such a word is a 20 character alpha-numeric word composed of a 3 digit signeo exponent jurtaposed to the left of a 17 digit signed mantissa. The exponent represents a power of 10 ranging from -999 to +999 . A decimal point is understood to lie between digits 3 and 4 , i.e., immediately to the left of the high order position of the mantissa so that the mantissa lies between -1 and +1 . Each of the two positions of the word, the exponent and the mantissa is signed by its lowest order digit, Positions 3 and 20, respectively. Tius,

$$
\begin{aligned}
& \text { 00A } 33 \ldots 3 C \text { represents }(10)^{!}(+1 / 3)=+10 / 3 . \\
& \text { 00A } 33 \ldots 3 L \text { represents }(10)^{!}(-1 / 3)=-10 / 3 . \\
& 00 J 33 \ldots 3 L \text { represents }(10)^{-1}(-1 / 3)=-1130 \text {. } \\
& 00 \mathrm{~J} 33 \ldots 3 C \text { represents }(10)^{+1}(+1 / 3)=+1 / 30 .
\end{aligned}
$$

20 POSITION FLOATING POINT WORD

Contents	Exponent			17 Digit Mantissa							
Position	1	2	3	4	5	6	7	-••	i 8	19	20
Signed Signe											

Exponent: Power of 10 .
Signed by Digit 3.
Mantissa: Decimal Point understood to be immediately to left of Digit 4 . Signed by Digit 20.

Positive				
Signed Digit	Printed Character			
+0	0			
$+1 /$	A			
+2	B			
+3	C			
+4	D			
+5	E			
+6	F			
+7	G			
+8	H			
+9	I			
		\quad	Negative	
:---:	:---:			
Signed Digit	Printed Character			
-0	$0^{2 /}$			
-2	J			
-3	K			
-4	M			
-5	N			
-6	O			
-7	P			
-8	Q			
-9	R			

Figure 13
1/The character ${ }_{0}^{+}$may appear in print as a plus sign (+), ampersand (δ). or heavy bar \Leftrightarrow).
${ }^{2 /}$ The character 0^{0} appears in print as light bar or minus sign $\{\rightarrow$.

The largest number which may be represented is $(10)^{999} \times(+0.99 \ldots 9)$ and the smallest (in an order sense) is (10) ${ }^{999}(-0.99 \ldots 9)$. These two num bers possess the representations

$$
99 \text { I } 90 . . .91 .
$$

$$
90 \text { I } 99 \text {. . 9R . }
$$

respectively.

The smallest positive number whirh may be represented in this system is $(10)^{-999} \times(+0.00 \ldots 01)$ while the largest negative number which may be so represented is $(10)^{-999}(-0.00 \ldots 01)$. These numbers possess the representations

$$
99 \text { R } 00 \ldots 0 \mathrm{~A} .
$$

$$
99 \text { : } 00 \ldots \text { OJ. }
$$

respectively.
Zero is represented by any one of the words

$$
x y z 00 \ldots 0 w
$$

where x and y are each one of the characters $0,1,2,3,4,5,6,7,8,9$, where z is a signed digit, and where w is one rethe characters ${ }_{0}$ or $\overline{0}$.

Computational fields within the part records occupy Positions 200-385

OPTIMUM COSAL REPAIR PART DATA MASTER RECORD ALLOW ANCE LIST CANDIDATES COMPUTATIONAL FIELDS LAYOUT				
$\begin{gathered} \text { Field } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Notation } \\ \text { for } \\ \text { Field } \\ \hline \end{gathered}$	Contents	$\left\lvert\, \begin{gathered} \text { Length } \\ \text { of } \\ \text { Field } \end{gathered}\right.$	Record Fositions
43.		$\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{0}$	20	200-220
49.	FN-KAY	k	20	221-240
50.		(q-1)/q	20	241-260
51.		$i=0$	20	261-280
52.		$\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{0}$	20	281-300
53.	PROT-REQ	"Requircd Protection". See text.	20	301-320
54.		Unassigned	4	321-324
55.	AQ-UA	Allowance Quantity in Units of Allowance	4	325-328
56.	AQ-RU	Allowance Quantity in Replacement Units	4	329-332
57.	POP-RU	Population in Replacement Units	6	333-338
58.		Unassigned	2	339-340
39.	PROT-ACH	Achicved Protection Level	20	341-360
60.	MEAN-02	Mean in RU per 02 months	10	361-370
61.		Unassigned	10	371-380
62.	OVERRIDE	Seetext.	1	381
63.	TR1P	"l"if record updated. Sce text.	1	382
64.		Unassigned	2	383-384
65.		End of record	1	385

Notes 1. Contents shown as of completion of Optimum COSAL calculation.
2. For part applications which are not allowance list candidates, the only computational field employed is Field 55 which may be filled by table look-up.

Figure 14

OVERRIDE CODE	REQUIRED PROTECTION
B, F, K or O	PROT-FIXED
A, E, J or N	PROT MIN
C, G, L or P	$B /(\Lambda+B)$

Notice that if $B /(A+B)<0$ then PROT-DEV is zero but Field 53 contains the negative quantity $B /(A+B)$.

Field 54 is unassigned.
Field 55 contains $A Q-U A$, the allowance quantity in units of allowance. For allowance list candidates, AQ-UA is the product of $A Q-R U$ times $R U$ and Field 56 is not blank. If it is non-zero it contains an integer quantity. In case the part is not an allowance list candidate, Field 56 is blank and Field 55 contains the result in 0.1 UA of the appropriate table lonk-un (e.g.. ECN APL) specified for the allowance list calculation, however, the decimal point is not written in Field 55. In all cases, the "allowance quantity" printed in the allowance list is the quantity expressed in whole units of UA.

Field 56, AQ-RU, duplicates Field 43.
Field 57, POP-RU, contains the installed population in units of the RU. It is to be noted that this is a six digit positive integer.

Field 58 is unassigned.
Field 59 contains PROT-ACH.
Field 60 contains m, e.g., MEAN-02, expressed to $4 D$ but the decimal point is not written in the record. The time period represented, e.g., 02 morths, equals whatever time pericd had been specified for the Optimum COSAL calculation. In the absence of explicit documentation elscwhere, one could of course recover the time period in months from the record as $(12 \mathrm{~m}) /(P O P-R U)(U E-S)$.

Field 61 is unassigned.
Field 62, OVERRIDE, contains a one digit alpha-numeric code which indicates various facts concerning the processing of the allowance list candidate.

First, it indicates an input control code ($F, W, M, 4$, Blank, or t) which had been specified to define override rules for the item. Second, the OVERRIDE code indicates whether or not the PROT-ACH probability thres hold was sufficient to produce a non-zero AQ-RU. For example, as shown below. Code K indicates a positive $A Q-R U$ while the companion O indicates that one would have $A Q-R U=0 \mathrm{~cm}$ the basis of the PROT-ACH calculation alone, i.e., without an MEC Override to set $A Q-R U=\operatorname{Max}[1, n]$.

Current practice calls for specifying an input code of F for MEC 116 and an M for every candidate in $115,114, \ldots, 101$. The use of the M can provide the effect of guarantccing not only a minimum PROT -ACH but also on the basis of MEC OVERRIDE it can provide for at least one RU being stocked for each allowance list candidiate. This second feature can be adopted for such 'high MEC' candidates for which

$$
P_{0} \geq \operatorname{Max}[P R O T \cdot M I N, \text { PROT-DEV }]
$$

since for these the $A Q-R U: 0$ as explained above under b.7) in connection with the definition of PROT-DEV.

The actual table of codes is as follows.

INPUT CONTROL				OVERRIDE CODE Field 62	
DOES	$\begin{gathered} \text { DOES } \\ \text { PROT -MIN } \\ \text { APPLY? } \end{gathered}$	DOES MEC OVERRIDE APPIY?	inPUT CODE		
PROT-FIXED				was	0?
APPLY?				YES	NO
YES	NO	YES	F	K	0
YES	NO	NO	W	B	F
NO	YES	YES	M	J	N
NO	YES	NO	4	A	E
NO	NO	YES	Blank	L	P
No	NO	N0	+	C	G

Field 63. TRIP. contains " 1 " in case the initial term for the negative binomial, P_{0}, has been computed and recorded in Fields 48 and 52. In case there is a " 1 " it means that the record has undergone an Optimum COSAL computation and the terminology "updated" is then used to describe the status of the record. Cf. [5].

Field 64 is unassigned.
Field 65 designates "End of Record".

5. Distributions for allowance list candidates.

The set of allowance list candidates for a vessel forms the dimain for calculation of an allowance list model. This is true for the reason that these are the part applications for which it makes sense to try to optimize the onboard stocking quantity. In the first place, these parts constitute reasonable individual subjects because of their nature as members of a very large set of technical repair parts with uncertainly known future usages. For the FBM weapons system including not only the nuclear submarine but the missile system as well, there are more than 55, 000 part applications: both the avail able stowage space and the budget make it impossible to stock "one or more of each" ${ }^{1 /}$ so that selection is required. The second fundamental attribute of

[^20]an allowance list candidate is that adequate data exist so that an optimization model may be applied. Proceeding on to consider particular properties of the allowance list candidates, we find that we have to give attertion to various combinations of elements oi data as well as to the individual items of data defined above. Exactiy this sort of scrutiny will be carried out in the present section wherein various tabular data will be displayed for the case of USS GEORGE WASHINGTON (SSB(N) 598). As another way of describing this section, it would be correct to state that it amounts to a summary numerical description of the USS GEORGE WASHINGTON from the point of view of the allowance list input data represented by [6]. ${ }^{1 /}$

a. Aumissible parent SA's.

The highest ievel that we will examine is that of the Service Applications or SA's which consist of collections of CID's. For the input data represented by [6] there are 2187 distinct SA's. Of these, a total of 30 have no adnissible CID's assigned, i.e., the only associated CID's are ECN-APL's. An additional 119 SA's are made up of admissible CID's which however have no installed allowance list candidates. There remain $2,038 \mathrm{SA}$'s which are admissible parent SA's in that they involve allowance list candidates, i.e., each of these SA's has assigned to it at least one admissible parent CID. The make-up of these 2:038 SA's is given in Figure 15 which shows that roughly 75% have assigned to them only a single admissible parent CID.

1/The tabuiar data dispidyed beluw represent a small portion of that made avalable through several general tabulation programs prepared by Mcssrs. Edward Boback and Irwin L. Kwater of the Project. It is furthermore appropriate to acknowledge the extensive use of these programs for checking various pruperties cited dbove for the files upon which the present pape: is based.

DISTRIBUTION OF NUMBER OF CID's PER SA ADMISSIBLE PARENT SA's USS GEORGE WASMINGTON (SSB(N) 598)			
CID per SA	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { SA's } \end{gathered}$	$\begin{gathered} \text { Frequency } \\ \text { of } \\ \text { Occurrence } \end{gathered}$	Cumulative Frequency
1	1,537	0.754	0.754
2	144	. 071	. 825
3	103	. 051	. 876
4	72	035	. 911
5	42	. 021	. 932
6	36	. 018	. 950
7-8	34	. 017	. 967
9-10	18	. 009	. 976
11-14	20	.010	. 986
15-19	17	. 008	. 994
20-30	7	. 003	. 997
31-40	6	003	1.000
41-237	2	.001	1.001
	2,038	1.001	

Figure 15
b. Admissible parent CID's.

Ailowance List ['́] was prepared from parts data corresponding to 3,541 different APL's. Of these 3,541 CID's, a total of 188 were ECN-APL's while júb had no designated , Hlowance list candidates. There remain 2,987 admissible parent CID's which were distributed over the 2,038 SA's of Figure 15 in the manner shown in Figure 16. According to Figure 16, 3t. 3% of these CID's were assigned to a single SA, 221 were assigned to two different SA's, etc.

The quantity 2,987 represents the range of the admissible parent CID's in that there are this many distinct entities. Their total depth is 17,808 (Cf. [3, Figure 29]) which is the tutal piere count in QC for the CID's. Figure 17 displays the distribution of QC for these CID's. While the number 17.808

DISTRIRUTION OF NUMBER OF SA's PER CID ADMISSIBLE PARENT CID's USS GEORGE WASHINGTON (SSB(N) 598)

SA per CID	Number of CiD's	Frequency of Jccurrence	Cumulative Frequency
1	2,579	0.803	0.863
2	221	.074	.937
3	49	.016	.953
4	25	.008	.961
5	14	.005	.966
6	18	.006	.972
7	6	.002	.974
8	32	.011	.985
$9-16$	24	.008	.993
$17-42$	19	.006	.999
	2,987	0.999	

Figure 16
cannot be generated from Figure 17 due to the aggregation therein, it can be seen that the CID's with $Q C=1,2,3$, or 4 account for only (1)(1,571) + $(2)(599)+(3)(141)+(4)(141)=3,756$ or roughly 21% of the total 17,808 .

Figure 18 summarizes the distribution of MEC codes for the 2,987 CID's. (This particular table summarizes data presented earlier in [3, Figure 29]). A total of 5.9% are shown to have the highest rani:, namely 116 which corresponds to a running mate [3] of 222222.

As must be clear by this puint, an actual alluwance list determination is primarily based on calculations at the part level, i.e., for allowance list candidates. It is thereinre approprinte to inquire into the make-up of the CID's under discussion in terms of numburs of installed wearable parts. This is done in Figure 19 which is the final summary for the CID's. The first column "SN per CID" actually denotes "the number of allowance list candidates

DISTRIBUTION OF QC ADMISSIBLE PARE:T CID's USS GEORGE NASHINGTON (SSB(N) 598)			
QC	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { CID's } \end{aligned}$	Frequency of Occurrence	Cumulative Frequency
1	1.571	0.526	0.526
2	599	200	. 726
3	i4i	\#4?	. 773
4	141	047	. 820
5-6	112	$0 \div 8$	858
7.8	96	032	. 890
9-12	82	. 028	. 918
$13-16$	70	025	. 943
17-30	73	. 024	. 967
31-50	41	014	. 981
51-100	30	0:0	991
101-200	17	005	997
201-1,134	8	.003	1.000
	2.587	1.000	

Figure 17
corresponding to specific admissible CiD
e.g., for 6 denote a total of 163 CID's with n installed wearable pasts in 5.5% of the tital 2,987 .
c. Allowance list candidates.

The 2,987 admissible parent CID's hederate a totai of 5 ? ? is partapplications which are alluwate list . .thdicines. Ticise lalter are distributed

DISTRIBUTION OF MEC ADMISSIBLE PARENT CID's			
USS GEORGE WASHINGTON (SSB(N) 598)			

Figure 18
over CID's according to the tabulation of "SN per CID" shown above in Figure 19. They are distributed over MiEC as shown in Figure 20. (These data and companion data showing "depth" as well, i.e., summations of POP-RU, were displayed in more detail carlicr in [3, Figure 30].

A summary of the associated Usage Estimates-Ship or UE-S's is contained in Figure 21 while Figure 22 presents MEAV-02's which are the population weighted average hsages for 02 months. Cube and price data are given in Figures 23 and 24 , respectively.

Figures 25 and 26 describe the 57,918 atlowance 1 ist candidates from the information cuntained in their individual stock numbers. It should be pointed out that the detailed data of Figure 26, the breakdown into Federal Supply Classes have to be itterpreted within the context of this particular cataloging system. While this latter system will not be described here, it

```DISTRIESUTION OF SN's PER CID ADMISSIRIE PARENT CID's USS GEORGE VFSUMNCTON (SSB(N) 398)```			
SN par CID	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { CID's } \\ \hline \end{gathered}$	$\begin{gathered} \text { Frequency } \\ \text { oi } \\ \text { Occurence } \end{gathered}$	Cumalative Frequency
1	530	0.184	0.184
2	325	. 109	293
3	234	. 078	371
4	213	. 071	442
5	13	. 071	513
0	163	.055	. 568
7	111	. 037	. 605
3	100	033	638
9	7	023	661
10.11	153	.051	.712
12-13	119	. 33	750
14-15	Qu	. 0.27	777
15-17	56	$0!9$	. 796
18.19	55	$3!8$	. 314
20.3	107	0315	350
20	201	.067	. 317
31-119	130	04	. 961
101.200	82	65	.098
$201-300$	15	. 005	. 373
$301-1.8$	15	105	. 998
	2.947	0.993	

Figure 19
. 73.

DISTRIBUTION OF MEC   ALLOWANCE LIST CANDIDATES			
USS GEORGE WASHINGTON iSSBIN) 598)			

Figure 20
may be of help to observe that arcordang the 'Federal Cataloging Handbook H 2-1", the FSC's are designed'iorovera relatively licinugeneous area of commodities, in respect to their physital or performance characteristics, or in the respect that the items incladed therein are sheh as are usually requisitioned os issued together. or constatute a related grouping for supply management purposes'.
d. Admissible Item Nimbers.

The 55,918 allowane list caldidates are made up of 31 . 200 distinct emities, bee. admasible Item Numbers. (If these. us shome in Figure 27. roughty 7 sim luave liat a siagle apolicatem. These ac: ount for 23,407 allow -


DISTRIBUTION OF UE - S   ALLOWANCE LIST CANDIDATES   USS GEORGE WASHINGTON (SSB(N) (9, $)$				
$\begin{aligned} & \text { Greater } \\ & \text { than } \end{aligned}$	Less than or Equal to	$\begin{gathered} \text { Number } \\ 0: \\ \text { Par: Appl. } \end{gathered}$	$\begin{gathered} \text { Frequercy } \\ \text { of } \\ \text { Occurrence } \end{gathered}$	Cumulative Frequency
0.0000	. 6001	3, 236	0.0579	0.0579
. 0001	. 100	¢ 164	$1!132$	16 क1
.0100	. 0200	4.570	0817	2498
. 0200	. 0300	6, 3,3	1133	3631
. 0300	050011	10.857	1942	5573
. 0500	10001	10.000	1804	757
.1000	2000	3.657	. 06.54	8031
2000	3000	3.315	0593	8.24
3000	5000	5.440	. 0973	. 9597
5000	1.0000	1.687	. 0302	9899
: onno	160.0000	567	.0:01	1.0000
	,	$5=.018$	1.0000	

Figure 21
 These 7.793 K's are distributed over from 2 to 138 difterent CID's in the mantaer displayed in Figure 27.

A thal st:mmary is ircluch .es Eatare 28 morder to show the distribution of MAS MEG: which is simply the maximam MEC for an IN over all

 giren in the present prerer.

DISTRIBUTION OF MEAN - 02   ALLOWANCE LIST CANDIDATES   USS GEORGE WASHINGTON(SSB(N) 598)				
Greater than	Less than $0:$ Equal to		$\begin{gathered} \text { Frequency } \\ \text { of } \\ \text { Occurrence } \end{gathered}$	Cumulative Frequency
0.0000	0.0001	2,923	0.0523	0.0523
. 0001	. 0002	439	. 0078	. 0601
. 00002	. 0003	75	. 0013	. 0614
. 0003	. 0005	403	. 0072	60686
. 0005	. 0010	926	. 0166	. 0852
. 0010	. 0020	i, 704	. 0305	. 1157
. 0020	. 0030	257	. 0046	. 1203
. 0030	. 0050	5,002	. 0895	. 2098
. 0050	. 0100	9, 044	. 1617	.3715
.0100	. 0200	8,365	. 1496	. 5211
. 0200	. 0300	2.134	. 0382	. 5593
. 0300	. 0500	6, 264	. 1120	. 6713
. 0500	. 1000	6, 379	. 1141	. 7854
. 1000	. 2000	4.661	. 0834	. 8688
. 2000	. 3000	1,591	. 0285	. 8973
. 3000	. 5000	2,302	. 0412	. 9385
. 5000	1.0000	1.642	. 0294	. 9679
1.0000	2.0000	947	. 0169	. 9848
2.0000	3.0000	279	. 0050	9898
3.0000	5.0000	232	. 0041	. 9939
5.0000	10.0000	184	. 0033	. 9972
10.0000	20.0000	88	. C 016	. 9988
20.0000	30.0000	26	. 0005	. 9993
30.0000	50.0000	23	. 0004	. 9997
50.0000		28	. 0005	1.0002
		55.918	1.0002	

Figure 22
-76-

$\begin{array}{c}\text { DISTRIBUTION OF CUBE - RU }\end{array}$				
ALIOWANCE LIST CANDIDATES				
USS GEORGE WASHINGTON (SSB(N) 598)				

Figure 23

Note. The units of measurement are cubic feet.



DISTRIBUTION OF PRICE - RU   ALLOWANCE LIST CANDIDATES   USS GEORGE WASHINGTON (SSB(N) 598)				
Greater thar.	Less than or Equal to	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Part Appl. } \end{gathered}$	$\begin{gathered} \text { Frequency } \\ \text { of } \\ \text { Occurrence } \end{gathered}$	Cumulative $F=$ equency
0.00	0.01	561	0.0100	0.0100
. 01	. 02	285	. 0051	. 0151
. 02	. 03	1,673	. 0299	. 0450
. 03	.05	1,665	. 0298	. 0748
. 05	. 10	5,793	. 1036	.1784
. 10	. 20	3,260	. 0583	. 2367
. 20	. 30	2,442	. 0437	. 2804
. 30	. 50	4,263	. 0762	. 3566
. 50	1.00	6,656	. 1190	. 4756
1.00	2.00	6,176	. 1104	. 5860
2.00	3.00	3,215	. 0575	. 6435
3.00	5.00	3,681	. 0658	. 7093
5.00	10.00	4,300	. 0769	. 7862
10.00	20.00	3,451	. 0617	. 8479
20.00	30.00	1,601	. 0286	. 8765
30.00	50.00	1.811	. 0324	. 9089
50.00	100.00	1,613	. 0288	. 9377
100.00	200.00	1,157	. 0207	. 9584
200.00	300.00	612	. 0109	. 9693
300.00	500.00	684	. 0122	. 9815
500.00	1,000.00	533	. 0095	.9910
1,000.00	2,000.00	200	. 0036	. 9946
2,000.00	3,000.00	96	. 0017	. 9903
3,000.00	5,000.00	82	. 0015	. 9978
5,000.00	10,000.00	68	. 0012	. 9990
10,000.00		40	. 0007	. 9997
		55,918	. 9997	



Figure 24

| MAJCR FFDERAL SUPPLY GROUPS |
| :---: | :---: | :---: | :---: |
| ALLOWANCE LIST CANDIDATES |
| USS GEORGE WASHMGTON (SSB(N) 598) |


ALAJOR FEDERAL SUPPLY CLASSES Allow ance list Candimates USS GEORGE WASHINGTON (SSB(iN) 598)		
Federa: Suppply Clase	Number of Fart Applications	
No Federal Stock Numiver	1,308	
1220 F.C. Compting Sights and Devices	566	1.0\%
1440 Launchers, G:Ecec Missiles	314	0.6
3110 Bearings, Ariairicion, Unmounted	619	1.1
4320 Power and ylaric Pimps	309	0.6
4730 Fitings and Specinities: Jiose, Pipe and Tube	361	0.6
4820 Valves, norpowered	1,402	2.5
4935 Guidei Missile... Equipment	823	1.5
5305 Screws	672	1.2
5310 Nists and Washers	896	1.6
5330 Packing and Gasiet Materials	3,802	6.8
5340 Miacrilaneols fiasdware	1,338	2.4
5815 Teletype ard Farsimile Equipment	2,991	5.3
5905 Resistors	11.481	20.5
5910 Capacitors	5,130	9.2
5920. Fuses and Lisimrirg Arresters	982	1.8
5925 Circuit Breakezs	448	0.8
5930 Swit=hes	2,047	3.7
5935 Connectors, Elecreical	2,960	5.3
5940 Lugs, Termi.als, and Terminal Strips	704	1.3
5945 Relays, Comamiors, and Solenoids	1,190	2.1
5950 Coils and Transisamers	2,419	4.3
9960 Electron Tubes, Teinsistors, Rectifyiteg Ceystals	2,687	4.8
6110 Electrical Comiro! Eguipment	364	0.7
6210 Indour and Oniciour Einctric Lighting Fixtises	563	1.0
6240 Electric Lionps	455	0.8
6605 Navigational imsiruments	670	1.2
6625 Electrical ... Sitctepnic... Instruments	431	0.8
6E85 Prossirf. Te:aperaiure. . . . Instruments	344	0.6
Miscellantolis*	7.642	
T.)e=1: $100 \%=55.919$		84.1\%
A total of 166 addjtioral classes appear, each with not more than 300 part applicitionr.		

Figire 26

DISTRIBUTION OF NUMBER OF APPLICATIONS   ADMISSIBLE ITEM NUMBERS   USS GEORGE WASHINGTON (SSB(IN) 598)			
Number of Applications		Frequency of Occurrence	Cumulative Frequency
1	23,407	0.7502	0.7502
2	4,769	. 1529	. 9031
3	1.107	. 0355	. 9386
4	533	0171	. 9557
5-6	513	. 0164	. 9721
7-8	252	. 0081	. 9802
- 0.10	156	. 0050	. 9852
1!-12	92	. 0029	. 9881
13-14	65	. 0021	. 9902
15-16	48	. 0015	. 9917
17-18	43	. 0014	. 9931
19-20	25	. 0008	. 9939
21-30	93	. 0030	. 9969
31-50	54	. 0017	. 9986
51-100	36	. 0012	. 94998
101-138	7	. 0002	1.0000
	31,200	1.0000	

Figure 27

$\begin{array}{c}\text { DISTRIBUTION OF MAX MEC } \\ \text { ADMISSIBLE ITEM NUMBERS }\end{array}$			
USS GEORGE WASHINGTON (SSB(N) 598)			

Figure 28

## References

[1] John J. Bartko, "The negative binomial distribution: a review of properties and applications", Virginia Journal of Science, vol. 12 (1961), pages 18-37.
[2] Marvin Denicoff, Joseph P. Fennell and Henry Sol pinon, "Summary of a method for determining the military worth of spiare parts". Naval Research Logistics Quarterly, vol. 7(1960), Bages 221-234.
[3] Marvin Denicoff, Joseph Fennell, Sheldon E. Habef, W. H. Marlow, Frank W. Segel and Henry Solomon, "The Polaris Ailitary Essentiality System', Polaris Logistics Studies. No. 1, Logistifs Research Project Serial T-148 (Revised) dated 10 January 1963.
[4] William Feller, An Introduction to Probatility Theofy and Its Applica tions, 2nd ed., New York, 1957.
[5] Joseph P. Fennell, "Optimum COSAL computation", Łogistics Research Project Serial T-146 dated 19 September 1962.
[6] U. S. Navy Fleet Material Support Office, Optimum Eoordinated Shipboard Allowance List for USS GEORGE WASHINGTCA $\operatorname{SSB}(\mathrm{N}) 598$, dated July 1962.
[7] U. S. Navy Office of Naval Material. NAVEXOS P-IEio Revised February 1960, "Navy Policy and Standards for Inrentory Mandigement".
[8] U. S. Navy Office of the Secretary, SECNAV INSTRIICTION 4423.3 dated 5 March 1957, "Policies for the assignment and ise of suarce, maintenance and recoverability codes".

##  Logistics Resuatren Project

Distrimatle Liet for Techaical Paport

Ceples

- The Gesege Wushlarten Unty Washinutina, D. C.
1 Dene for Sponsoret Meseareh 1 Dr.F. M. Weide. Dept of Stave 1 Lupt of Geography Library
1 Dir. Manegened Res Grp
3 ONR, Attm: Hend Logisice ant Main Stei Braget

1 Cont rect Adminigtrator, Southeatern Area, ONR.

1 OPNAV code 313-C Atta: Naral Cominena Syateme Eiv

BUWEPS, Library
gulocrs, Teeh Library
EUMEL, Library
Bupers. Tech Library
2 BUSANDA 1 Library

Dusines
1 Tech Labrary
i Mr. A. E. Stith. Cove 132

- DIN, NavResLab, Weshingom, D. C. Asin: Tech tafe Onfleer
2 CO, Naval Research Branch Orfice Novy No. 100, New York, N. Y.

1 DiR, Naval Resemreh Branch Orfice Now York. R. Y.

1 DIR, Naval Resparch Branch Office Pasnotena, Catif.
1 USK Postgred Selm, Monteray, Callf. Lhbrary
2 Saval War Coll, Lbrary Newport, R. I.

1 ONM, Code M73
1 Deputy C3, Researeh and Exp Headquarter: US Meriae Corpt Washingtion, D.C.
1 Marime Corpe Sch, Guaptleo, Ve. Lir. Marine Corps Landing Foree Dev Cea

1 Induse Coll Armad Forces. Weshington, D. C.

1 Army War Coll, Carlisie Barracka. Pa. Altm: Library C.sil

1 HEQ, US Army Transportation Mister ra! Command Sa. Wouls Miseourt Aten: TCMAC-ANOT

1 Stimal Corps Log Eval Grp.
3 Marwelt AFB. Algbome
Maswall AFB, Algbama
1 Dir. Air Univ Library.
Dir. Alr Chiv Livary

- Gir, Alr Univ Librarg. CR-127

10 CDP, Ampad Sprvices Terhoical Information Acency, Artingtion. Ve.. Atts: TIPDN
1 Cethe ine Artinction Va. Attif: We. iect Moshmee


2 of 3


Is Copay 1

## AD 603. 385

## POLARIS LOGISTICS STUDIES <br> Number 1

THE POLARIS MILITARY ESSENTIAMTY SYSTEM
by
MARVIN DENICOFF
JOSEPH FENNELLL
SHELDON E. HABER
W. H. MARLON
FRANK WA SEGEL
HENRY SOLOMON

Serial T-171
24 July 1964
SUPERSEDES Serial T-148 (Revised)

THE GEORGE WASHINGTON UNIVERSITY LOGISTICS RESEARCH PROJECT

Contract Noar761
Task 03. Project NR 347107
Task 05, Project NR 047001
Task 06. Project NR 347008
Office of Naval Research

Reproduction in whole or in part is permitted for any purpose of the United States Government

## TFE GEORGE DASHINGTON USTYERSITY Logistice Research Project

Abrtract<br>o!<br>Serial T-171<br>SUPERSEDES Serial T-148 (Revised)

## THE POLARIS MILITARY ESSENTIALITY SYSTEM

MARVIN DENICOFF JOSEPH FENNELL SHELDON E. HABER<br>W. H. MARLCW<br>FRANK W. SEGEL HENRY SOLOMON

One of the major requirements for military syatems has been the need for a measure of the relative importance of stocking one item rather than another. The present. study develops one such system which has been implemented for the Polaris weapons system. Considerable emphasis is placed on systematic development of underlying principles. It is concluded that the present approach could readily be adapted to other weapons aystems.

## PREFACE

The present study is the firet of several papers to be issued by thid Project as Polaris Logistics Stujies. Subsequent papers will consider allowance list determinations. FBM load lists for deployed teaders. ashore supply point problems, provisioning and profurement policies, and finally the general problem of providing logistics information and control syatems to permit overall satisfactory logistics.

It will become apparent that the present series will represent a somewhat diverse range of interests. In addition to the fact that a somewhat heterogeneous set of research techniques will appear there is one feature whach deserves special comment. This refers to the fact that careful attention is given to the underlying situatiors to which the methodology is to apply. It turns out that this introduces the need for considerable precision of terminology in engineering and logistics areas which unfortunately inclide areas notorious for their lack of stardards. e.g., the problem of definition of a "component" as opposed to an "equipment". Neverthsless, a substantial part of the contribution of the present series is judged to consist of its relevance for practical problems: this has required that unswerving attection be paid to the exigencies of the background situationz and their definitions.

It is a pleasure to acknowledge the support cf the Logistics and Mathematical Statistics Branch of che Office of Naval Research under whose contracts this work has been performed. In just the same way, appreciation in due the Technical Director, Special Projects Office, and his Assistant for Material Support who are co-sponsors of this research by means of transfer of necessary funds to the Office of Naval Research. Mention should also be made of the fact that the Bureau of Supplies and Accounts and its field activities have been collaborators in the present studies. Finally, it is most appropriate to cite the essential assistance and support provided by the Logistics Research Project administrative and clerical staff and by the raembers of the Project Computation Laboratory who were essential for this work.

TABLE OF CONTENTS
Page
Number
ABSTRACT ..... i
PREFACE ..... ii
INTRODUCTION ..... 1
OUESTIONNAIRE APPROACH ..... 3
Basic Assumptions ..... 3
Equipment Questionnaire ..... 4
Component Queationnaire ..... 7
Parts Questionnaire ..... 9
Questionnaire Data Coding ..... 11
DERIVATION OF MILITARY ESSENTIALITY CLASSES ..... 12
Ranking Redundancy-Alternative Doublets ..... 14
Ranking Equipment or Component Triplets ..... 17
Ranking Component-Equipment Sextuplets ..... 20
Ranking Part Application Septuplets ..... 32
PRACTICAL APPLICATION ..... 33
Exceptional Cases for Questionnaire Data ..... 35
Different Answers from Different Respondents ..... 37
Different Answers for Different Applications ..... 39
Resulte for Actual Data ..... 40

## LIST CF FIGURES

Page
Figure
Numiber
1-Equipment questionaire ..... 5
2 - Component questionnaire ..... 8
3 - Parts questionnaire ..... 10
3 - Numerical representationtiof redundancy-alternative doublets 为 ..... 17
5 - Numerical representations of equipment or component triplets ..... :8
6 - Thי: component-equipment plane ..... 25
7 - Possibilities for relative essentiality along the lines $C^{2}$ : $+\mathrm{E}^{*}=$ constant ..... 27
8 - Partition of C* E* - plane into ux-blocks ..... 30
9 - Definitions of MEC codes ..... 34
10 - Septuplet running mate assignments ..... 36
11-Assignment of MEC codes for $p=1$ ..... 38
12-MEC code distribution for USS GEORGE WASHINGTON ..... 41

# THIE GEORGE WASHINGTON UNIVERSITY Logistics Research Froject 

THE POLADIS MLITARY ESSENTLALITY SYSTEM //

## INTRODUCTION

The Polsris military essentiality system measures various effects of failures on the weapons syatem. Three different levels are considered: equipment, component and wearable installed part. A faifure at oce level is studied for its cffect at bigher levels; ultimately, the failed item is related to the Polaris mission. For example, the most important type of failure is one whose occurrence would force the submarine to terminate patrol and return to its base.

1/The preparation of this paper was sponsored by the Office of Naval Research and the Special Projects Office. Reproduction in whole or in part is permitted for any purpose of the United States Government.

> 2/Office of Naval Research

The above indicates our approach. We obtain relative measures of importance for all the items which go together to make up the Polaris weapons system. It turns out that if two items belong to the same military essentiality class (MEC), then by definition they are equally important. Otherwise, one of the items is more essential than the other for the weapons system capability. We develop 29 MEC's for componert-equipment pairs; a repair part is classified as being one of 4 types so that parts fall into $(4)(29)=116$ MEC's depending upon the MEC of their parent comporent-equipment.

In the present paper we are mainly concerned with shipboard repair parts inventory problems: Our actual vehicle for exposition is the allowance list problem which we will now define. An allowance list specifies the repair parts which must be carried on board ship. It is precise: all of the repair parts are identified and a quantity to be stocked is given for each part. Furthermore, only those parts are listed which are necessary for use by the ship's force for replacement in direct support of installed components. Without becoming overly technical, we may say that "direct support" means carrying out the ship's maintenance and repair policies so as to secure required military readiness.

We first describe the questionnaire approach which is basic to our work. This approach will be found to be similar to aspects of earlien studies by some of us on conventional submarines [1]. (See [2] and [3] for additional background.) Oar major present contribution is judged to be the methodology leading to the final ranking system. Successively more extensive ranking schemes are developed until we reach the lowest level, that of repair parts. Throughout the development we aim at systematic procedures based on relatively few principles. At the end, we discuss practical applications.

Three sets of questionnaires are used to determine effects of failures on the capability of the Polaris weapons system. There is a different questionnaire for use at each of the three levels: equipment. component and part.

How does one determine whether an item is an equipment, a component or a part? The answer is that it is a matter of definition by responsible technical authority. However, an equipment is generally directly related to some basic function in the weapons system. Very commonly there are components installed within an equipment ard parts are installed in components. It can furthermore happen that a part is reparable. An example of an equipment is a "nissile motion unit" in a fire control computer. Examples of components are: "alarm display panel". "ship velocity servo", and "power supply". Exampier of paris are: "wire-wourd 150 ohm resistor", "alarm awitch pla:e : " 6 volt indicator light", and "servo motor".

## Basic Assumprions

We assume initially that the entize weapons system is composed of sub-aystems which in turn are composed of equipments, componerito and paris as described above. Subsequently we will show how to treat exceptions auch as an equipment with no component installed, a component without parent equipment, etc.

It will be convenient to employ the term application to derote a special type of functional assignment. By equipment application we mean a pair: a design entity called an equipment and a function performed. We require that each installed unit of an equipment be assigned to one and only one equipment application. in other words, more than one application for a given equipment means that several
units must be installed; if there are several units installed, there may or may not be more than one application. On the other hand, more than ore equipment iype may be assigned to a giver. application.. Similar usage applies tc the terms component application and part applicaticri.

Participating persontel were guided by the follow:igg assumptions in completing the malitary essentiality questiori..a.res.

1. The submarire is on a normal patrol cycle.
2. During the patrol cycle no supply or mainterarice support is available from any external source.
3. A giver, failure could occur on the first day of patrol ard the subaiarinie would have to suffer the loss of the performed fur.ctio:. for the ertire patral period.
4. The Polaris weapons system is composed of s:x irdeperder. sub-systems of equal military essentiality: launiher, fire cer.irol ravagat:on, missie, missile test and readiness: ard ship.

The last sub-system, ship, consists of the nuclear submarite itself.

## Equipmerit Quest:Oriraire

The questionaliare shown in Figure 1 is to be completed for each equipment application.
in: Sectioi. 1, Mission Effect, the participant coris:ders the loss of the equipmert application. He assumes simultarieous compiete failure of all installed units of the given equipment assigned to this equipment applicat:or. There is rio question of repair; :r.stead he simply considers total loss. Perhaps there are additisral equipments of different design assigr.ed to this applicatior. so that loss of the g.ver. equipmert may or may rot lead to loss of the eraire applicaticr. it.

POLARIS MILITARY ESSENTLALITY SYSTEM DOUIPMENT QUESTIONNAIRE		
Equipment Identifieation Number $\qquad$   Application Identification Number $\qquad$   Number Installed $\qquad$		
Section   1	$\frac{\text { MISSION }}{\text { EFFECT }}$	Total Degradation . . . . $x=2$ $\square$   Partial Degradation . . . $x=1$ $\square$   Minimal Degradation . . . $x=0$ $\square$
Section   2	$\begin{aligned} & \text { REDUNDANCY } \\ & \text { (IF ONE FAILS) } \end{aligned}$	No Redundancy . . . . . $\boldsymbol{y}=2$ $\square$   Reduced Effectivenes: . . $\mathbf{y}=$ : $\square$   Equivelent Effectivenes: $\quad y=0$ $\square$
Section 3	$\begin{aligned} & \text { ALTERNATIVES } \\ & \text { (IF ONE FAILL) } \end{aligned}$	No Alternatives . . . . $2=2$ $\square$   Reduced Efiestivenes: . . $z=1$ $\square$   Equivalent Effectivenes: $\quad$ z $=0$ $\square$

Figure 1-Equipineat queationnaire
any event, the participant must select the appropriate box in Section 1. Choosing $x=2$ for total degr:adation meane that there would be complete lose of the sub-eyatem so as to require termination of patrcl: the thip would return to its base for repaira. Choosing $x=1$ for partial degradation meana reduced effectiveness of some aignificauce bet no termination of patrol. For example, depending on the type of failure there might be problems in selection of targess, speed of firin.g. defence capability, etc. The ship, however, would remair on patrol. Choosing $x=0$ for minimal degradation means that there would be no effect on the mission capability for the length of the patrol.

In Section 2. Redundancy, the participant considers the lnss of a single unit of the equipment. The response $y=2$. "no redur.daricy', is correct for two situations. First, there may be only one unit installed in the given equipment application. Second, loss of a single unit may be the same as if all units had Giled simulaneously. If neither of these two situations prevail, then the equipment application is not completely lost and one asks: what is the contribution of the surviving urits? The choice $y=1$ corresponds to multiple installations of ideritical equspments where the surviving units operate at some reduction ir, overall effectiveness. The choice $y=0$ coiresponds to no loss in, overall :ffectiveness. It is to be stressed that Section 2 deals solely with :ffects of single equipment failures on immediate operation durarg a iatrol: long range effects are to be disregarded. Firally, for use ar, that follows, we note that we are uaing the following definitior, of redur.lancy. Two or more equipments are redundant in case two conditiot.s re satisfied. First, they are identical equipm mits assigried to a ommon aub-system equipment application. Second, loss of a sit.gle nit does not result in loss of the entire application.

In Section 3. Alternatives, the participant again conaiders the loss of a single unit of the equipment. But now he looks for substitute equipenate which no longer muat be identical but which must be aesigned to different applications in the given sub-aysterr. In particular, bis first question concerne existence of an admissiblealternative equipmers. By definition, this is an equipment satisfying three conditions. First, it belongs to the same sub-sysiem but it is assigreed to a different application. Second. it could be substituted to permit continuous operation of the given equipment application in the evert of failure of a eingle unit of the given equiprneat. Third, ite primary application has $x=0$. The responce $z=2$ is correct if there is no admissible alternative. Choosing $z=1$ means that use of the mont favorable existing admissible alternative would lead to reduced effectiveness in performance of the equipment application being rated. The choice $z=0$ means that equivalent effertiveress would be possible.

## Component Questionnaire

The questionnaire shown in Figure 2 is to be completed for each component application. By this we mean that one questionaire is to be completed for each combination of component and parent eq.aipment. There are three sections, each similar to the correspording sectior, in Figure 1. The major difference is that the questions here relate to effecte or the parent equipment rather than or the mission of the weapons system.

In Section 1. Equipment Effect, the participart conoiders the lose of the component application. He assumes aimultaneous complete fallure of all installed urits of the given component assigned to the giver. equipment. Choosing u = 2 means that there would be total

POLARIS MILITARY ESSENTLALITY SYSTEM COMPONENT QUESTIONNAIRE		
Component Identification Number   Application Identification Number		
Section   1	$\begin{aligned} & \text { DOUIPMENT } \\ & \text { EFFECT } \\ & \text { (IFALL FAIL) } \end{aligned}$	Total Degradation . . . . $u=2$ $\square$   Partial Degradation . . . $u=1$ $\square$   Minimal Degradation . . $u=0$ $\square$
Section   2	$\begin{gathered} \text { REDUNDANCY } \\ \text { (IF ONE FAILS) } \end{gathered}$	No Reduedancy . . . . . $v=2$ $\square$   Reduced Effectiveness . . $v=1$ $\square$   Equivalent Effectiveness . $v=0$ $\square$
Section   3	ALTERNATIVES   (IF ONE FAILS)	No Alternatives . . . . w = 2 $\square$   Reduced Effectiveness . . w = 1 $\square$   Equivalent Eifectiveness . w = 0 $\square$

Figure 2-Component questionnaire
degradaction of the given pareat squipment. This would sigaify that the function of the given equipment would be completely lost to the subaystem. Choices $u=1$ and $u=0$ are counterparta to the earlier $x=1$ and $x=0$, respectively.

Section 2, Redundancy, where one of $v=2$, 1 or 0 is to be chosen, is entirely analogous to the earlier case for y. Section 3, Alternatives, is alighrly different in that an admissible alternative component is one whose primary application bas either $u=0$ or $x=0$. For example, if there is no andnissible alternative, then $w=2$ is the correct response.

## RertaOuestionnaire

The questicnnaire shown in Figure 3 is to be completed for each part application. That is, one queationnaire is to be completed for each combination of part and parent componert. There are ordy two questions.

Firat, the reapondent determines component deperider.ce: can the pareat component operate aatisfactorily for the entire patrol period lacking one unit of the part? If the answer is "no", then the deper.dence is "major". On the other hand, the answer "yes" means "minor" component dependence on the part. Examples of this latter type of part are certain knobs, covers, washers, packing. etc.

The second question concerns instollability: cara the ship's force install the part during patrol? A "yes" answer mearis that replacement ia permitted by established maintenance policy and it furthermore can be accomplisbed on patrol under no: ral operatirg conditions. A "no" anewer could result from lack of required tools, inaccesaibility, maintenance policy limitations, etc.

POLARIS MILITARY ESSENTIALITY SYSTEM QUESTIONNAIRE WEARABLE INSTALLED PARTS


Figure 3 - Parts questiornaire

Based on the anawers to the two questiona, a value $p=1$ 2. 2. 3 or 4 results as shown in Figure 3. Our main attention will be directed at $p=1$ and $p=3$ which represect iastallable candidates for placement on the allowance list.

Que dionnaire Data Coding
Filling out the MEC questioncaires produces sets of values for the variables shown in Figures 1, 2 and 3. The individual values will be called MEC digits: $x_{1} y, z$ and $u, v, w$ range over 0,1 and 2 while $P=1,2,30 r_{i} 4$. Suppose now that a complete set of questionnaires bas been filled out. To each equipment applica tion there will correspond an equipment triplet $E=x y z$ which we write as a threc digit number: e.g., $E=222$, $E=121$, etc. Similariy, to each component application there corresponds a comporer.t triplet $C=u v w$. It will also be convenieat for us to denote the doublets $y z$ and $v w$ as redundancy-alternative doublets.

To each component application there correspords a parert: equiprnent applicaticn. Therefore, to each questionnaire producing a triplet $C$ there is an associated equipment questionnaire assigritig a triplet E. It will be convenient to consider the juxtaposition: to each component application there corresponds a CE-sextuplet uvw xyz. For reasons to be explaised, we will alwhys write the digits in this order (and not as $x y r$. $u v w$ ) so we drop the prefix CE - and simply write sextupiet.

To each part application there corresporde a parent comporentequipment with an associated sextuplet. This means that a total of seven digite are assigned to each part application, e.g., a PCE-septaplet. For brevity, septuplet will always be maderstood to mean this particular ordered arrangement: $p$ uvw xyz.

## DERIVATION OF MILITARY ESSENTIALITY CLASSES

We turn now to the problem of ranking the questionnaire data according to relative degrees of militury worth. The niont direct approach starts as follows. Among all equipments. $\mathbf{E}=222$ denoten the highest worth. This is true since the failure of such an equipment would totally degrade the mission capability of the weapons system and there is no redundant or alternative equipment available. On the other hand, $E=000$ represents the least essential equipment: failure has a negligible effect, and furthermore, redundant and alternative equipments exist with comparable capability to the equipment itself. Similar analysis for component applicaticns reveals the extreme cases $C=222$ and. $C=000$. By pairing the highest worth component with the highest worth equipment we see that 222222 is the highest possible ranking sextupiet. In other words, the component applications which are most essential for the mission are those which are most essential for the most essential equipments. In entirely analogous fashion, 000000 is seen to be the lowest ranking sextuplet.

Among all part applications, those with $P=1$ are clearly of highest essentiality. Those with $p=3$ rank second for allowance list purposes. Non-installable parts with $p=2$ or 4 are excluded from consideration. It is thus easy to find the two extreme cases for septruplets. The most essential pai:t applications are those with $p=1$ installed within component applications classified 222222 . In our standard notation, the septuplet 1222222 ranks highest. We similarly find that the combination of lowest part worth and lowest sextuplet forms the lowest worth septuplet. For allowance list :andidates, this is 3000000 .

As we have just shown, it is easy to find the extreme points for military issentiality. It is more difficult to rank intermediate degrees. There are 27 different E's, (27)(27) $=729$ different sextuplets and $4(729)=2.916$ different septuplets. We will find that the 729 cases for component-equipment combinations are the hariest to handle. However, isese 729 will be subdivided into 29 different classes through dis zmatic argument based on relatively few principles. Once we have diaposed of sextuplets, the probiem of ranking septuplets yields immediately.

We will employ the familiar symbols for numerical inequalities: ">", "<", " $\boldsymbol{\prime}$ " " etc. It will also be conveniert to interfret these symbole as comparisons of military essentiality for coded questionnaire data. For example, the symbol " $\geqq$ " will denote "greater or equal military essentiality" - Just as we have been doing in our verbal text, we will employ the terminclogy "higher rank" to mean "greater essentiality" . Similarly, "more worth" . "more essentiality" and "more important" mean the same. We offer a final caution in connection with the reversal of order between "higheressentiality" and "more satisfactory". The iess satisfactory the situation in terms, for example, of mission effect or redundancy, then the higher the worth. Turaing it around, the higher military essentialities correspond to the higher degrees of unsatisfactoriness with respect to the effects of failures on the entire weapons system.

The above notation and associated terminology are most natural. Not caly is $0<1<2$ true for integers but it now becomes true in a military essentiality context as well: $0<1<2$ applies within each questionnaire section shown in Figures 1 and 2.

A most funciamental requirement which concerns consistency of ordering is transitivity. By definition this mear:a that if $a>b$ ard $b>c$, then $a>c$. Of course this holds for numbers; we require that it also be true for military essentiality. We will find this to be r.on-trivial in that certain rarking scheme must be rejected or accourt of their containing examples of intransitivity.

A second general requirement for an admissible military esser tiality system deals with completeness. We will require that there be no unsesolved orderings. Given two comparable elements, for example two triplets $E_{1}$ and $E_{2}$, we require the following: $E_{1}$ arid $E_{2}$ represent equal essentiality or else one of them represents greater essertiality.

A third fundamental principle we apply concerns requirements ior consistency in other things being equal situations. In gereral, suppose that two sets of questionnaire data ag. ee in certain digit positiors. Then an "other things being equal" requirement forces these daia to be raxked according to their unequal digit positions. We will gain the effeci of a two-digit requirement for equipment triplets. Then. for example, $211<221$ on the basis of the $y$ 's alone, but 212 and 221 cannot be related by this rule since they fail to agree in two positions. This last example has further interest. We will impose an $x$-digit other things being equal" requirement so that 212 vs. 221 will be resolved in the same manner as the redundancy-alternative doublet situation 12 vs. 21 .

Ranking Redundancy-Aiternative Doublets
In order to rank the 27 different equipment triplets we first have to rank the 9 cases for redundancy-altertative doublets. We
choose equipment triplets $E=x y z$ for exposition but component triplets $C$ would do as well. Furthermore, our arguments apply equally to doublets $y z$ in tripiets $2 y z, 1 y z$ or $0 y z$.

Let us first impose a one-digit "other things being equal" requirement: $y 0<y 1<y 2$ and $0 z<1 z<2 z$. Actually we have no choice since otherwise the ordering $0<1<2$ would not be preserved within $z$ or within $y$. If we take this requirement together with transitivity we obtain some minimal conditions. These are shown by the following diagram.


Here, one doublet represeats higher worth than a second if it is possible to move from the first to the second via directed segments. Notice that this ordering is not comp!ete since. for example, 12 vs. 21 is unresolved. Howevcr, whatever we do from this point onward in argument toward a complete ordering, we cannot violate any of the relations shown in the diagram. For instance, we must always have $21>10$.

Our second assumption is that "other things being equal', redundancy is preferable to alternatives in order to compensate for failures. Although there may be situations where this would be inappropriate, we take it as axiomatic that redundancy provides the better protection. Applying this principle we obtain the following relations: $02<20,01<10$ and $12<21$. This last case is
expressible in words as follows: redundancy slone with reduced effec tiveness is more satisfactory than having only an alternative with reduced effectiveness.

As the third step we further strengthen our preference for redundancy over alternatives. We decide that having $y=0$ is preferable to $y=1$ or 2 whatever may be the value of 2 . An equivalent choice is to specify $" 02<10 "$. Thus we determine at this stage three new onderings: $02<10,02<11$ and $02<2$.

The unresolved cases concern 11, 12 and 20. Of course $11<12$ so if there are no equalities, then there are three pogsitiities: $11<12<20,11<20<12$ or $20<11<12$. Our lecision is to employ the first ordering; historically, this decision was :ndorsed by the USN Special Projects Office. In words, some redundancy vith reduced effectiveness and no alternatives is preferable to having roc edundancy but equivalent effectiveness via alternative; $12<20$. lur final result is the following ordering for redundancy-alternative oublets: $22>21>20>12>11>10>02>01>00$.

In summary, our development has established an ordering for oublets $y z$ which agrees with their natural order as ternary or ase-three numbers. This is displayed in Figure 4. Our conclusion is rat one doublet has higher worth than a second if and only if its value $s$ a ternary number is greater. Of course we are not saying that 20 I six times more important than $0 i$. We assertonly $20>0$ : ince $6>1$.

Ternary	Decimai
22	8
21	7
20	6
12	5
11	4
10	3
02	2
01	1
00	0

Figure 4-Numerical representations of redundancya: :ernatice doublets

## Ranking Equipment or Component Triplets

The cent-al problem in the present section deals with 200 Vn. 122: does the "lowest" $2 x y$ precede the "highest" lxy ? If the answer is "yes', then reasonably $100>022$ as well and all triplets are ordered, actually by ternary order. This inideed furns out to be the ordering chosen for triplets. Our development is phrased in terms oi equipment triplets $E=x y z$ but the argumente apply equally to component triplets $C=u v w$.

We observe that $x$ is more significant for military essentiality than is either $y$ or $z$ : After all, $x$ is derived from the assumption that "all units fail" and itz exact effect on the mission capability. We decide that $x$ hat compictely overriding importance: in particular, $200>122$ and $100>022$. As a matter of
orical interest, the Special Projects Office endorsed this decision: isaicn effect $x=2$, even when it can be completely compenid for b'y redundancy and when at the same time equivalently effective rnatives exist (200) is more unsatisfactory than a misaion effect - modified by no redundancy and no alternatives (122). As mened in the preceding paragraph, this is the first path to ternary order thown in Figure 5.

srnary	Decimal	Ternary	Decimal	Ternary	Decimal
222	26	122	17	022	8
221	25	121	16	021	7
270	24	120	15	020	6
212	23	112	14	012	5
211	22	$11!$	13	011	4
210	21	110	12	010	3
202	20	102	11	002	2
201	19	101	.0	001	1
200	18	100	9	000	0

Figure 5 - Numerical representations of equipment or component triplets

There is a second rationale whereby one can derive ranking :mes for triplets, namely the dominant selation approach. The idea , derive triplet order from doublet order. Given two triplets, we Itruct doubleta and then make pairwise comparisons by the ranking
system for coublets. The ordering for the two triplets then equals the domimant, e.g., most prevalent, doublet relation: >, <or = Very often the dominant relation is simply determined by majority rule. however, there may have to be 'tie breaker': rules to haidlecertain otherwise unresolved cases.

In the present context a reasonable dominant relation scheme is the following. Given $x_{1} y_{1} z_{1}$ vs. $x_{2} y_{2} z_{2}$ we consider three doublet comparisons: $x_{1} y_{1}$ vie $x_{2} y_{2}, x_{1} z_{1}$ vs. $x_{2} z_{2}$, and $y_{1} \mathbf{z}_{1}$ vs. $y_{2} \mathbf{z}_{2}$. If each doublet comparison is made according to eernary order then we are recognizing decreasing significance from $x$ to $y$ to 2 . This is true since $x$ appeara as the more sigrificant digit twice, $y$ appears once and $z$ not at all. We notefurther that these joint corsiderations seem naturally inspired: $x y$ and $x z$ combine results of failures with possible compensations while yz deals solely with mears for compensation. It turns out that always one of " $>$ " or " $<$ " dominates, i.e., there are no ties, and ternary order for triplets again results, this time from using a dominanf relation approack.

It would be possible to use any acceptable ordering for doublets with the scheme of the preceding paragraph. There might bave to be additional rules in order to obtain a complete ordering for triplets: obtaining $>,=,\langle$ in some order or one of $>,=,=$ or <, $=$, = could be considered to be a "tie". Recall that there were two unexplored possibilities for doublet ordering: $12>20>11$ and $12>11>20$. If we use the first and complete the ordering for doublets we obtain $22>21>12>20>11>10>02>01>00$. But this doublet ordering yields an intransitive triplet ordering: $202>112>220$ from which $202>220$ by transitivity yet direct
calculation also produces $220>202$. On the other hand, $12>11>20$ produces the following perfectly well behaved triplet ordering.

$$
\begin{aligned}
& 222>221>212>211>122>121>112>111>220> \\
& 210>120>110>202>201>102>101>200>100> \\
& 022>021>012>011>020>010>002>001>000
\end{aligned}
$$

The triplets in the first line with $x=1$ are increased in worth over that in the ternary system of Figure 5 while those in the second line with $x=2$ have of course been downgraded. Other changes may be noted as weil.

We conclude our treatment for triplets by agreeing upon ternary order. This means that we accept the relative order $0,1,2$, ..., 26 as shown in Figure 5. Once again we stress that $110>002$ since $12>2$ but 110 does not necessarily represent six times more essentiality than 002 .

Rar.king Component-Equiprnent S: xtuplets
Two components installed in the same equpment can be ranked by the triplet ordering system of the preceding section. This is a matter of "other things being equal". However, two different component application 3 will in general have different equipment triplets. Fo: this reasor, we need an ordering system for sextuplets to rank all component applications. Looking ahead, the higher rarked componer.t application will be the one which will be given more repair parts support.

We attach more significance to $C$ than to $E$; this is rellected in our writing the component digits to the left: uvw xyz.

The basic reason is that we would rather stock repair parts for an absolutely critical component in a eerc-worth equipment than ficr a 000 componeat in a 222 equipment: in symbols. $222000>000222$. Repair parte are installed in components so that for allowance list purposes components are somewhat more basic than equipments. A second reason for attaching more significance to $C$ than to $E$ is that ofter an equipment has less tangible meaning than does a component. At times, for example, an equipment is merely a cabinet in which components are installed.

A simple example will show wh; we reject ternary order for sextuplets: 221222 vs .22 L 000 . The respective decimal equivalenis are 701 and 702 yet we believe that $221222>222000$. Our reasons are straightforward. The first sextuplet, 221222 represents a highly unsatisfactory situation: the component is the second most critical type and it is installed in the most critical type equipment. On the other hand, 222000 represents a critical component ingsalled in the very lowest worth equipment. Loss of the function of this equipment would cause minimal degradation of the mission; moreover, the equipment can be compensated for either by redundancy or by alternatives with either providing equivalent effectiveness. In conclusion, we note that rejection of ternary order is not a consequence of our writing CE rather than EC. This fact cari be seen by verifying that if we interchange and write EC, then the situations are different but again $221222>222000$.

There is a straightforward method for ranking the 729 sextuplets which avoids the pitfalls of intransitivity and incompleteness of order. The method consists of making up a precedence list which directly assigns the sextuplets into rank 1, 2, ... . 729. No formal "syotem" is required. But this approach suffers from the fact
that 729 sextuplets are too many for convenieni manual juggling. This inconvenience is particularly significant if one insists, as we do, that the ordering satisfy minimal "other things being equal" properties: for example. $C_{1} E_{1}>C_{1} E_{2}$ if and only if $E_{1}>E_{2}$ and $C_{1} E_{1}>C_{2} E_{1}$ if and only if $C_{1}>C_{2}$.

The alternative to initial ordering by means of a sextuplet precedence list is use of a tirary rule which applies to pairs of sextuplets. Such a rule establishes a procedure for determining which of two sextuplets has the higher worth. Given such a rule, we can use the followirg procedure to try to develop a precedence list for verifying transitivity and completeness of order. We first compare each pair of sextuplets. Then. for each sextuplet $s$. we count the number of sextuplets which do not have worth higher than $s$ and call this rumber the tally $t(s)$. Suppose next that the values of $t i s)$ are tabulated for all s. The first case to be distinguished is Case 1: there are no duplirete values of $t(s)$. Viere there are no difficulties ard the sextuplets are consistently ordered by their tallies: $s>s^{\prime}$ if and only if $t(s)>t\left(s^{i}\right)$. We also note that in Case 1 no two sextuplets are assigned equal worth. Case 2 occurs when there are duplicate values of $t(s)$. Then certain sextuplets are assigned equal worth aidd
 occurs if and only if $t(s)>t\left(s^{i}\right)$. This means the sextuplet order ing based on the binary rule agrees with the precedence list based or. tallies. This common ordering is furthermore transitive and of ccurse there are no uriresolved orderings. Case 2 b occurs when there exists 2 pair of sextuplets $s$ and $s^{\prime}$ such that $s>s^{\prime}$ by the binary rule but $t(s)<t\left(s^{\prime}\right)$. In this case we reject the original binary rule as unsatisfactory since, as we will now show, Case $2 b$ has the batal defect of intransitivity. Since $s>s^{\prime}$. all sextuplets f . aking
below s' would also rank below by tranaitivity. But this cortradicts $t(s)<t(s)$ which states that there are more sextuplets which do not rank higher than g' than those for s. In summary, given a binary rule for ranking sertuplets, we would test it as follows. First, it muat lead to Case 1 or Case 2 a. Second, it must satisfy tine 'other things being equal" properties listed at the end of the preceding paragraph. Third, it must rank "correctly" those cases which cars be resolved by other methods, e.g., $221222>222000$ as we decided in rejecting ternary order. The rule would also have to attach more aigaificance to $C$ than to $E$ and this in turn would lead to other "test cases: ${ }^{\prime}$.

Our attempts at binary rules for sextuplets based on the domir.ar.r relation apprach were gezerally unsuccessful. These rules would commonly fail one or more of the tests mentioned just above. Never theless, it seems worthwhile to give one example to illustrate the approach. We could use digits, doublets, or triplets alone or in rombination since we have ranking systems for each. However, for a typical illustration we simply extend jointly to $C$ and $E$ the method of comparing three sets of doublets per triplet: uv, uw, vw; $x y, x z$ and $y z$. Then the dominating relation in tite sense of majority rule over the six doublet comparisons will be designated as the relation holding between the sextuplets. In case of no majority ther. the sextuplet with the higher ranking $C$ will be the higher rarked. For example, in this way. $200000>000020$. This same pair also illustrates failure of transitivity: . $000020>000011>$ 200000 by two comparisons. But this implies co0 $020>200000$. a contradiction. We therefore reject this particular example of a binary rule for ordering sextuplete.

Our chosen approach uses numerical valued furictions defired or the sextuplets. Two sextuplets are then related in the same order as their respective functional values. Instead of considering furctions of six variables, $u$, $v, w, x, y$ and $z$, it will be sufficier.t for our purposes to consider the two varables $C$ atd E. Actually, it will be more convenient to use their decimal represeritatives which will be denoted by ( $=$ ).

$$
\begin{aligned}
& C *=9 u+3 v+w \\
& E *=9 x+3 y+z
\end{aligned}
$$

Ther if $Z$ is a numerical function or the C*E= - plane.

$$
C_{1} E_{1} \leqq C_{2} E_{2} \text { if ard orily if } z i C_{1}^{*} \cdot E_{1}^{* 1} \leqq z i C_{2}^{*} E_{2}^{*}
$$

Attent:cr. will now be tratasferred to possibilities for $Z$ which will yield acceptable orderings.

Our "other things beirg equai" requirencerts trarslate as fciows:

$$
\begin{aligned}
& \text { If } \left.C_{1}^{*} \leqq C^{*} \text {, then } Z\left(C_{1}^{*}, E^{*}\right) \leqq Z i C^{*}, E^{*}\right) \\
& \text { If } \left.E_{1}^{*} \leqq E^{*} \text {, then } Z i C^{*}, E_{1}^{*} \leqq Z i C^{*}, E^{*}\right)
\end{aligned}
$$

These two properties plus transitivity divide the C=E- plarie atio tour rec'ar.gles as showr. 2r. Figure 6. All poirits withar, the two shaded portions can be ranked is shown re!ative to $i C_{1} *, E_{!}{ }^{*}$. We have Jrawn a litie

$$
\mathbf{C}=+E^{*}=\text { corstant }
$$

which could coricesvably represerit a symmetric separat:or. of the piar.e: tal points to the right of this linc could be rarked higher thar $C_{1}{ }^{*}, E_{1}{ }^{*}$, while points to the left would represert lower military


Figure 6 - The component-equipment plane
seentiality. It will turn out that we will use this type of separatior for ur final sextuplet ranking system. In general, we wish to separate the lane by means of a line $a C_{1}{ }^{*}+b E_{1}{ }^{*}=$ constant. The slope of Lis line must be -1 or less in order that not less sigrificarce be trached to $C$ than to $E$. For this last equation then, $a \geqq b>0$ o that it, terms of the slope, $-(a / b) \leqq-1$.

Granting that the C* E* - plare should be separated by a line s discussed above, what should be done un the line itself and how hould different lines compare? It turns out that there are only three cceptable possibilities as exemplified by Figure 7 where, for simlicity, we consider a slope of -1 .

Option I corresponds to attaching cverwhelming sigrificar.ce to rather than to $E$. On a given line the points are rarked so that ley strictly decrease with decreasing C* . With regard to two dif:rent lines, 'other things being equal' imposes obvious restrictions is relative order for points with commor coordinates. There are. owever, two different possibilities under Option I. First, the lit.es Lay be strictly ranked by $C *$ so that the minimum rank poirt or ore ne exceeds the maximum on the next "lower" line. Second, the bove order may not hold in that some points on a "higher' line may orrespord to "lower" functional values.

Option II is clearly represented in Figure i. As is there shown, very point or one line car rank higher than every point or, the immeiately following line. There is a second possibility under Optior. I:: Il elements on two adjacent lines could represent ider.tical worth.

Option III rariks in:ermediate points highest as would be corsistnt with the following point of view. Having both C* ar.d E* omewhat low but neither extremely low nor extremely high represeris


Figure 7 - Posaibilities for relative essentiality along the lines C* + E* = constant
a worse situation than a higher $C *$ coupled with a lower $E *$. Firaliy, this latter combination might be judged to be not better thar a low C* coupled with a high E* . These are in fact our reasons for permitting Option III.

Options I. II and III represent all acceptable possibilities. Our requirement for attaching more signiticance to $C$ than to $E$ would rula out increasing worth for decreasing $C *$. It would also rule out reversal of relative order for end points in Option III. Firally, a true minimum will not be allowed at an intermediate point for the very reas-ans which led us to permit Option III. Any true minima must be assumed at a set of points which may irclude only one end point in winch case it is the left (Options I or III) or else this set insludes both ex.d points (Option III) . Any true maxima must occur on a set including at most one end point in which case it is the right (Option l) or else it occurs only at interior points (Option III) . We will find it appropriate to invoke each of Options I, II and III at some stage of our suicsequent derivation of a final rankirg system for sextuplets.

Before completing our chosen system for ordering sextuplets let us exhibit a few examples. Acceptable numerical functiors ar. $\mathfrak{z}$ uite easy to find since we are limiting our attention to ordinal propertics. That is, our ultimate objective is a precedence list icr sextuplets, we are not attempting to assign absolute numerical rneasures of military zssentiality. It turns out that linear functions are often sufficient. int he present Polaris context we are led to

$$
Z(C *, E \approx)=a C^{*}+b E=
$$

where $a \geqq b>0$ by virtuc of the argument given above in coririecion with Figure 6. Actual values for $a$ and $b$ aredetermined by
fixing the relative magnitudes of $Z(26,0)=26 a$ and $z(0,26)=26 \mathrm{~b}$. Fiof examyiz, $Z=C *+E *$ ranks sextuplets according to Option II. Option I is illustrated by $2=2 C^{*}+E^{*}$ and $Z=27 C^{*}+26 E^{*}$. This latter exampie bas the feature that no two sexfuplets are given squal rank; furthermore, lines $C^{*}+E^{*}=$ constant are atrictly ranked. Option III is illustrated by the non-linear $Z=C * E *+C *$. whose values tend to peak at intermediate points (C*, E*) on any line C**E* = conetant. The interested reader may readily verify that the examples of the present paragraph lesd to interesting sextuplet precedence lists.

It will now be easy to explain the sextuplet ranking acheme ctosen for the Polaris malitary essentiality sys:=m. We recall that the "equipmens effect" digit $u$ and the "mission effect" digit $x$ were juiged to be the most significant digits in the iriplets $C$ and $E$, respectively. This decision was mace on the basis of their defiring properties: for each of $u$ ar.d $x$ we had assumed that 'all urits failed!: and then we determined the exact consequences. In order to rank sextuplets we now arart with joint consideration of $u$ arid $x$ as shown in Figure 8. By virtue of their meaning as questionnaire responses, we define a sextuplet to be "high worth" in case it falls into one of Blocke 22, 21 or 12 at shown in Figure 8. This of course means that in such a sextuplet at least one of $u$ and $x$ is " 2 " and neither equals "0". Turning around this same argument, Blocks 00 . 10 and 01 represent 'How worth" since hereat least one of $u$ and $x$ is " 0 " and neither equals " 2 ". There remain Blocks 11, 20 and 02 which represent "intermediate worth". We shall consider the major subdivisions separately, etarting with the "high worth" category.

The six highest of the "high worth" sextuplets will be ranked by Option 1. Certainly 222222 ranks bighest while 222221 ard


Figure 8 - Partition of C*E* - plare into ux - blocks

221222 contend for second and third raak. According to Option I, which we recall is based mainly on attaching more igrificarce to $C$ then to $D$. we rank the first six sextuplets as follows.

1st:	222	222
2nd:	222	221
3rd:	221	222
4th:	222	220
5th:	221	221
6th:	220	222

Notice that 4eh, 5th and 6th rauks are assigned exactly as shown for Option I in the uppermost parsel of Figure 7. Notice also that these three aextuplets lie on the line $C *+E *=k$ for $k=50$. We continue with Option I line by line for $k=49,48, \ldots, 35$ so that each point on $2 n y$ given one of these lines follows all pounts on lires with higher $k^{\prime}$ 't and pricedes all pointa on lines with lower $\mathrm{k}^{\mathbf{\prime}} \mathbf{s}$. Fonwever, we apply Option II within eack line so that two points iying on tre same line are given equal rank. Combining all points on a single li::e into a single MEC is consistent first of all with the less and less sharp distinctions between different points on a single line as $k$ decreases. Secondiy, such lumping together reduces the number of MEC's and 90 affords simplicity. We stop at $k=35$ to avoid ruming into Block 11. All points on $C *+E^{*}=35$ from 222100 to 100222 are ranked 21 st. With this assignment, ranking is complete for the entire Blosk 22 and for one-half of each of Blocks 21 ard 12. To finish ranking ail high worth sextuplets we asigign rark 22rid ts the lower triangular half of Block 21 and 23rd rank to each peirt or the lower triangular balf of Block 12. This choice is another instance of Option 1. A pictorial representation of the final ordering is given in Figure 11 below. where, for reasons to appear, the quantity " 117 -rark'
is entered as a code: lst rank becomes code 116, 2lst becomes 96, 23rd becomes 94; etc.

The "intermediate worth" Blocks 11, 20 and 02 will be rai.ked by Optior. III applied to entire blocks. Our reasons coincide with thase advanced above in our hypothetical discussion of Option II. All sextu. plets in Block 11 are assigned 24th rank, Block 20 becomes 25th raik ard Block 02 becomes 26 th rank. We consistentiy rank Block 20 tigher than 02 but, by Option IN. we give Block 11 irst rark. in Figure 11 below, the present blocks are coded 93, 92 and 91.

Among the "low'worth" blocks, Block 00 rar.ka lowest, Block 01 ranks second lowest and Block 10 ranks highest. This is Option i. In Figure 11 below, Blocks 10, 01 and 00 are coded 90. 89 and 88, respectively.

In conclusion, the 729 sextuplets corresponding to quest:or.raire responses for component-equipment pairs have been subdivided irto 29 classes as MEC's of relative worth. Two sextuplets belonging to the same MEC are regarded as represeriing equal military essentiality. In case we wished to rank the elemerits of or.e MEC we would apply the strict Option I within each MEC. In this way we could obtain up to 729 categories of sextuplet worth which would be consistent with our present ordering into 29 classes.

## Rarking Part Application Septuplets

Two principles have been particularly fundamertal for our development thus far. First, we agreed that redundancy is preferable to alternatives in order to compensate for failures. This led to ewr ordering system for triplets. Second, we attached more sigrifica:ice to $C$ than to $E$ and in this way arrived at our sextuplet rarkir-g
syatern. We will now add a third principle: for allowance list purposes we attach more significance to the part worth digit $p$ than to the sextuplet $\mathbf{C E}$. In fact, the nature of the part application .- inatallable or not and critical or not - will be giren overriding significance.

We recall from Figure 3 that if $p=2$ or 4 the part carnot be installed by ship's force. Such a part is excluded from shipboard stocling. Thus, other things being equal, part worth digits are rarked for allowance lists in order $1>3>2>4$. As we have rored, a part application with $p=1$ will be ranked higher thar any oticer with $P=3$ whatever may be the nature of the parent comporient-equipmer.ts. We would rather stock a critical ( $p=1$ ) part for a low worth parert $(000000)$ than a nou-critical ( $p=3$ ) part for a high worth (222 222) parerit. In symbols for septuplets,

$$
1 C E>3 C E>2 C E>4 C E
$$

so that in all there are (4)(29) $=116$ MEC's for wearable iristalled purts. The top 29 classes. MEC cudes $116,115, \ldots, 88$ for $p=1$ are shown below in Figure 11. We display the full set of 116 codes in Figure 9. These codes serve as "Ordinal locators" in the sense that one part application represents higher worth than another ir. case it has the higher MEC code.

## PRACTICAL APPLICATION

At this point we bave completed the development of an ideal Polaris MEC system. Our chief idealization has concerned formation. of sextuplet data. In practice there exist exceptions to our rule that the entire weapons aystem consists of equipments constructed from components. We also anticipate that different persons may give different answers to the same questionnaire and that their responses must

SEXTUPLET CE		PART WORTH D:GIT			
C* + E=	Additional Requirements	$\mathrm{P}=1$	$\mathrm{p}=3$	$\mathrm{P}=2$	$p=4$
52	222222 only	116	87	58	29
51	222221 only	115	86	57	28
51	221222 only	114	85	56	27
50	222220 only	113	84	55	26
50	221221 only	112	83	54	25
50	220222 only	111	82	$\underline{6}$	24
49	None: 4 cases	110	81	52	23
48	None: 5 cases	109	80	5 i	22
47	None: 6 cases	108	79	50	21
46	None: 7 cases	107	78	49	20
45	None: 8 cases	106	77	48	19
44	None: 9 cases	105	76	47	18
43	None: 10 cases	104	75	46	17
42	None: 11 cases	103	74	45	16
41	None: 12 cases	102	73	44	15
40	None: 13 cases	101	72	43	14
39	None: 14 cases	100	71	42	13
38	None: 15 cases	99	70	41	12
37	Nore: 16 cases	98	69	40	11
36	None: 17 cases	97	68	39	10
35	None: 18 cases	96	67	38	9
$<35$	$\mathrm{u}=2$ and $\mathrm{x}=1,36$ cases	95	66	37	8
$<35$	$u=1$ and $x=2,36$ cases	94	65	36	7
$<35$	$u=1$ and $x=1,81$ cases	93	64	35	6
$<35$	$u=2$ and $x=0,81$ cases	92	63	34	5
$<35$	$u=0$ and $x=2,81$ cases	91	62	33	4
$\div 35$	$u=1$ and $x=0,81$ cases	90	61	32	3
$<35$	$u=0$ and $x=1,81$ cases	89	60	31	6
$<35$	$u=0$ and $x=0,81$ cases	88	59	30	1

Figure 9 - Definitions of MEC codes
be reconciled or consolidated. In the present section we consider these problems and others which may arise in practical application of our syatem.

## Exceptional Cases for Questionnaire Data

The chief exceptions to our ideal hierarchy are componer.ts lacking parent equipments and equipments with no installed compor.ents. We solve these problems by assigning to each possibility a stardard type septuplet called a rumning mate. That is, to each possible combination of questionnaire data describing a part application we assign a septuplet rumning mate. Our MEC codes 116, 115, ..., 1 apply to the running mate and then by association they apply to the origizal data.

Our system for assigning running mates is given in Figure 10 where " $b$ " denotes no entry and " - " denotes any entry. The first entry, Special Projects, represents the standard data we have assumed to be available up to this time. This is the only case where the questionnaire data form their own running mate.

The second entry in Figure 10, Bureau of Ships, represerts componente lacking parent equipments, Historically, this has beer. the case for the components which make up the ship sub-system. The running mate is formed by copying the triplei $C$ for use agair aa $E$. In the first place, this procedure corresponds to the fact that in the original data, " $u$ " was actually determined as " $x$ ": the first digit represerted "mission effect" and not "equipment effect': . No other procedure would make sense for this type of componer.t questionnaire. Secondly, forming $P C C$ means that a form of averaging is being used since the generated " $E$ " stands betweer extremes 000 and 222 exactly as does the actual $C$.

QUESTIONNAIRE   DATA	RUNNING MATE
Special Projects	
p uvw xyz	p uvw xyz
Bureau of Ships	
p uvw bbb	p uvw uvw
Excepticnal Types	
1. p bbb xyz	p x22 xyz
2. p bbb bbb	p 222222
3. b	4000000

Figure 10 - Septuplet runring mate assignmer.ts

Rumairg mates for Exceptioral Type 1 questionadire data are assigned from a more conservative point of view. That is, they are rarked somewhat higher thar the corresponding "components orily' cases descrived in the preceding paragraph. These latter data were formed by rating exgineering entities which are well defired as possible consumers of repair parts. Type 1 data on the other hand are wot so well defined: we therefore conservatively treat the equipment as a maximally critical comporent with $x$ as giveri. We copy $x$ for $u$ ard write 22 for $v w$. The reasci we do rot write $u=2$ is that unless. $x=2$ there í !u ev dence to support the belief that loss of the furction provided by the equipment would require terminatir.g patrol.

Exceptional Types 2 and $\underline{3}$ are included in Figure 10 for completeress. In reality, they would mainly occur as errors in data.

Type 2 is a "non-installed" part to be treated as though it were of maximal importance. Type 3 goes to the lowest rank.

For $p=1$ the procedures for assigning ruming mates produce assignmente as shown in Figure 11. The initial entries "bank" are of course worthy of apecial notice: the first $\mathbf{E}$ row at the bottom of the figure displays the codes for "Bureau of Ships" data as defined by Figure 10; the first Column at the left represents "Exceptional Type 1" data.

## Different Angwera from Different Respondents

It is conceivable that different persons might make differen: Component or Equipment Questionnaire responses. In our exprerierce such differences have been minimal over sets of similarly highiy qualified people. Our original work was based on three sets of completed questionnaires, one each from manufacturer, Navy technical bureau and fleet. The answers were so consistent that we concluded that it would be advisable in the future to obtain single sets of answers. Nevertheless, different judgments will occur and it is important to be able to reconcile them.

The process of reconciling differeat answers is a problem that properly belongs to the responsibla part of the organization which will us: the MEC fyxtem. Our own approach which was accepted for the Polaris system was as follows. We proceeded digit by digit within Component and Equipment Questionnaires. If three answers were obtained and there was a majority, we adopted the common value, otherwise, we selected the average value " 1 ". When only two answers were available, the lerger digit was used for "u" or "x"; the amaller digit was used wherever there were two different answers for "redundancy" or "alternatives".

## BLANK PAGE






des for $p=1$
1く1-1

Following any consolidation of multiple sets of questioniaire reaponses into a aingle set it is clearly advisable to have a review by competeat authority. Such reviews have been moot helpful in our experience both for direct product evaluation and for testing the rwles for consolidation.

## Different Answers for Different Applications

There will be a single triplet produced for each application of ara equipment or component For each component in which a given part is installed there is required a separate part questionnaire. For some purposes there should be oniy a aingle triplet or a single septuplet asociated with a sirgle engineering entity. In nther cases, multiple acsociations are suitable, Let us consider some possibilities for consolidation.

In the Navy the supply enginecring documentation for a cemponerit or equipmert does not vary by application. A eingle documer.t is prepared to list the wearable installed parts and to furnioh associated technical information. Thus, to compute an allowance list there may as well be a single determination covering all applicatior.s of a given component or equipment. This requires that we select a single MEC code. Our procedure is as follows. We obtain a sir.gle triplet by mear.s of arichmetic averaging with normal rounding, digit by dagit, for each of "effect", "redundancy" and "alternatives". The effect of normal round-off rather than "rcunding up" is to avoid beirg overly conservative in borderline cases: for example, rourding up would cause each of the following to be judged as a "2": 2. 1, 1, 1 or 2 with ariy number of 1 's but no 0 's. An additional reason for avoiding conservatism here so that the digit " $p$ " is the dominant factor ior
allowance list purposes anyway so that use of averages seems generally reasonable for component and equipment triplets.

If a repair part ia installed in different parent components we generally retain separately its different MEC codes. Whenever it becomes advisable to consolidate, we recommend selecting the highest MFC code which ever appears for the given part. For example, our experience has shown that this procedure is preferable to using arithmetically weighted average MEC's based on frequencies of occurrence. The reason is simple. On board ship the repair parts are commonly kept in single bins and issued whinever needed. Thus, parts stocked for high worth applications can conceivably be consumed for low worth applications. We therefore recommend selecting the highest MEC code for a part whenever only a single code can be retained; in our experience this procedure does not lead to unwarranted over-stocking.

## Results for Actual Data

The Polaris MEC system was developed in the manner described above in advance of any extensive application to nonhypothetical data. Subsequent experience with actual data has rein. forced our convictions that the system is reasonable. For example, as shown for USS GEORGE WASHINGTON (SSB(N)598) in Figure 12, a good "spread" is obtained over the allowance list range. Similar distributions have been obtained for the other Polaris submarines; it is also interesting to compare [1] where only $15 \%$ of components and $28 \%$ of parts were "high worth". It has furthermore been true that MEC data have bcen easily obtained. Competent personnel at the manufacturing plants, at Navy technical bureaus or in the feets can quickly and consistently fill out equipment and componen: questionnaires.

RELATIVE ESSENTIALITY	$\begin{gathered} \text { MEC } \\ \text { CODES } \end{gathered}$	CCMPONENT. DOUIPMENTS	$\begin{gathered} \text { PART } \\ \text { APPLICATIONS } \end{gathered}$
Highest	116	6\%	4\%
High	$\begin{aligned} & 115 \\ & \vdots \\ & 94 \end{aligned}$	- $14 \%$	15\%
Intermediate	$\begin{aligned} & 93 \\ & 92 \\ & 91 \end{aligned}$	26\%	25\%
Low	$\begin{aligned} & 90 \\ & 89 \\ & 88 \end{aligned}$	54\%	$4 \%$
Lowest $(p=3)$	87 $\vdots$ 59	Does Not Apply	12\%
	Total Range	$2.987$   component equipments	$\begin{gathered} 55.918 \\ \text { par. } \\ \text { applications } \end{gathered}$

Figure 12 - MEC code distribution for USS GEORGE WASHINGTON

Technicians at the Navy Inventory Control Points can routinely provide part-worth digits $P$. In fact, our system is now in use by the Navy [4]. There is every reason to believe that the general approach and methodology of present Polaris MEC system could readily be aclapted to other weapons systems.

## References

[1] Marvin Denicoff, Joseph P. Fennella and Henry Solomon, "Summary of a method for determining the military worth of spare parts". Naval Researsh Iogistics Quarterly, vol. 7 (1960), pages 221-234.
[2] W. H. Marlow, "Some accomplishments of logistics reseazch", Naval Research Logistics Quarterly, vol. 7 (1960), pages 299.314.
[3] Henry Solomon, "The determinasion and use of military-worth measuremments for inventory systems", Naval Research Logistics Quarterly, vol. 7 (1960), pages 529-532.
$[4]$ U. S. Navy Specizi Projects Office Instruction P4423. 27 dated 27 August 1963, "Repair Parts Support Requirements for Special Projerts Office Fleet Ballistic Missile Subsystem Equipment".

DEPARTMENT OF THE NAVY OFFICE OF THE CHIEF OF NAVAL OPERATIONS WASHINGTON, OC. 20350

ORNAVINST 4441.12A CST OP-412C

- i maris.

OPNAV INSTRUCTION $4441.12 A$ CHARGE TRANSMITTAL 2
Subj: Supply Support of the Operating forces
Encl: (1) Revised page 5 and reprinted page 6 to enclosure (3)

1. Action. Addressees are requested to make the enclosed change.

Distribution:
SNDL AAA (Chief of Naval Material)
A5 . (Bureaus)
A6 (Headquarters, larine Corps)
21A (Fleet Commanders in Chief)
22 (Fleet Commanders)
23A (Navel Force Commanders)
24 (Type Commanders)
$42 R R 1$ (Commander, laval Air Reserve Force)
46A (Fleet larine Force Commands)
46B (larine aircraft wings)
FKAl (Systems Commands)
Fri (Chief of laval Education and Training)
fri (Chief of Naval Air training)
Copy to:
SNDL $n l$ (Immediate Office of the Secretary)

Stocked:
CO, NAVM!eronmcen
5801 Tull: hue.
Phil., tl. 19120

E. A. GR!:STE:.) 1 . By direction

AV (Independent Offices) (OPA and iAVCOMPT, only)
27 C (Sea Frontier Commanders)
28 J (SERVRONS, only)
FF l (Naval District Commandants)
Fli:il3 (Ships Parts Control Center)
FRHIS (Aviation Suody Office)
Fill (Fleet :material Support Office)
Op's 02, 03, 04, 05, 92, and 97

DEPARTMENT OF THE NAVY OFPICE OF THE CHIEF OF NAVAL CPERATIONE

Subj: Supply support of the Operating Forces
Encl: (1) Revised enclosure (3) to basic instruction

1. Purpose. To promulgate change 1 to the basic instruction.
2. Action. Addressees are requested to make the enclosed change.

Distributiion:


SNDL A4A (Chief of Naval Material) A6 (Headquarters, Marine Corps). $\because \therefore$ : ivoval Dperatlons
$21 A$ (Fleet Commanders in Chief)
$23 A$ (Naval Force Commanders)
24 (Type Commanders)
42RR1 (Commander, Naval Air Reserve Porce)
46A (Fleet Marine Force Commands)
46B (Marine Aircraft Wings)
FKAl (Systems Commands)
FTl (Chief of Naval Education and Training)
FT2 (Chief of Naval Air Training)
Copy to:
SNDI Al (Immediate Office of the Secretary)
A2A (Independent Offices) (OPA and NAVCOMPT, only)
27C (Sea Frontier Commanders)
28 J (SERVRONS, only)
FF1 (Naval District Commandants)
FKM13 (Ships Parts Control Center)
FKM15 (Aviation Supply Office)
FLMI. (Fleet Material Support Office)
Op's 02, 03, 04, 05, 92, and 97
Stocked:
CO, NAVPUBFORMCEN
5801 Tabor Ave.
Phila., PA 19120

## DEPARTMENT OF THE NAVY

OFFICE OF THE CHIEF OF NAVAL OPERATIONS
WASHINGTON. OC. 20330

monem r ncren to	
OPNAVINST	$4441.12 A$
Op-412C	
3 R.LS ${ }^{\text {a }}$ (3	

OPNAV INSTRUCTION $1441: 12 \mathrm{~A}$
3 R.L'S :a7j

From: Chief of Naval Operations
Subj: Supply support of the Operating Forces

(b) OPNAVINST C4080.11A ot 4 bct 1971
(c) BUMEDINST 6700.13D of 9 Feb 1968

Lincl: (1) Shipboard Stock Levels
(2) Criteria for Shipboard Allowances
(3) Criteria for Mobile Logistic Support Force (MLSF) Loads
(4) Criteria for Overseas Base Stocks
(5) Aeronautical Supply Support
(6) Identification of Acronyms

1. Purpose. To state basic Navy policy governing the determination of fleet materiel requirements in support of installed equipments and systems, and the distribution of fleet materiel assets, and to prescribe the shipboard stock levels necessary to achieve the required standards of logistics readiness of the Operating Forces.
2. Cancellation. OPNAVINST 4440.21 of 17 Nov 1908 and OPNAVINST 4441.12 of 27 Aug 1964 are hereby canceled.
3. Scope. This instruction applies to all materiel other than ammunition and bulk petroleum carried in, or specifically positioned for, the use of the Operating Forces, except fleet Ballistic Missile (FBM) submarines and tenders which are governed by reference (a). It encompasses materiel carried by forces afloat, including Marine Aircraft Groups (MAGs), and ashore (CONUS and overseas). The guidance contained in this instruction applies as well to those commands and activities participating in, or responsible for, the development and maintenance of allowance lists and load lists and specifying stock levels.
4. Objective. To provide a level of supply aboard ships, in the Fleet Marine Forces (FMFs), and at sites supporting

UPNAVINS: 44a1.12A

$$
\therefore: 4973
$$

operating forces which is compatible with approved maintenance concepts, projected replenjshment capahilities, readiness objectives, and availablc funding for naval operations in support of national policy, for the period specificd by the Navy Support anc Mubilization Plan (NSMP). Maintenance of a balanced, ready force, capable of jerforming the Navy's mission of strategic deterrence, sea control, projection of power, and overseas presence in the facc of steadily increasing costs of sophisticated veapons systems continues to make it imperative that effective management techniques be employcd governing the utilization of materiel assets. The concept for attaining these support objectives is as follows:
3. Organic Level of Supply. This includes allowances or levels of materiel authorized for stoch to sustain cpera:inns under specified maintenance concepts for a stated period. Such materiel, when not in excess of authorizcd levels, is normally not subject to redistribution by a central inventoiy manager, except in emergencies and subject to approvej of the applicable Fleet Commanders in Chief (CiNCs).
t. First t:chelon of Resuncly. This includes the materiel positioncd in shi-s of the MLSF. ALSF load lists include the materiel requirenents and support the readiness objectiver of the Fleet Support Element of CNO Special Froject ifURRIC: $\because=/$ TYPlDON, prescribed by reference (b). There is no first ectıelos: cf resupply for aviation poculiar materiel.
c. Second firhelon of Resupply. The seconc echelon of resupply, or tic wholesale system: is that nateriel held at supply ce:aters, supply depots, air stations, weapon stitions, and shipvards for resupplying the Operating forces. It iaclujes materiel located at, but excess to, that authorized for tic organjc level and first echelon of resupply when such materiel is financiaily reportable in two digit sture: accounts and/or considered in the budget submission of central invertury managers.
5. i.il: $\quad$ fic following basic policies apply to the Jeverimitea of iuthurized allowances, load ists, stock i=vels, dirs ine mand,jement of jnventories positioned in suppert of al: Operiting forces.
… filuity rulialce fir supply support uf sclf-deployabio :-val afists hilj he p!aced on in口 organic level of supply, assed $\quad$ pon th: $r$ riteria jpecjfied in the attachod enclosures.

## OPNAIINST 4.441.12.A <br> - aug igts

h. First echelon resupply stocks afloat will consist of repetitivaly demanjed (demand based) itcms whicl: are required to supprai installed cquip:nents and systems and embarked personnel. Low-demisid items may alse he included to reduce reaction time for equipments experiencing unusual readiness problems. Cã (Op-nt) will revien dad approve those equipments nominated for augnented suppurt. [iepluyd units will utilize the afloat support capability of MLSF units to the fullest cxtent practicable.
c. Individual itens of a low-demand nature as defined in enclosure (2), paragraph $4 h$, may be stocked in either the organic or first echelon but, insofar as practical, not at hoth.
d. Stockage objectives will be applied to demand hased items and will be specified in days of supply for safety and operating levels. The average endurance level is normally considered to be the safety level plus half the operating level. In assessing the readiness of individual ships for a particular operation, a ship's average endurance level and its past and future resupply opportunities should be among the areas critically reviewed.
c. Nanagement of repairahle items will he given special emphasis in accordance with the policy guidance contained in scparate directives.
f. Low demand itcms will be included in authorized allowances at the organic level, hased upon effcetiveness objectives and criteria specified in the attached enclosures.
g. Stocks which are financially repurtahle in two digit stures accounts and/ur considered in the budget submissions of central inventory managers are subject to shipment directives of the Inventory Nanager (INI) when excess to authorized levels and necessary to fill firm requirements, hut not availahle clscuhere ir the wholesale system.
h. New or unstable cquipments will be supported in accordance with noralal stocking criteria and resupply techniques, except where the need for special support procedures are indicated and agreed ta by applicable fleet CINCs.
i. Nolisatior or the shif or atiritr vi rariahle safc:

considerations and risk of stoclouts ar: reutired nl:crfinancial support and manaferient systems nermi :lpicmentation.
j. The depth of allowance and retail stoch levels foi new items identified through the provisioning process will be constrained by the guidance contained herein. It is recognized that temporary degradation of support may. result pending development of local demand patterns.
k. Establishment of new first or sccond echelon resupply capability at overseas activities will be reviewed and approved by CNC (Op-04) in advance of the estatilishment of such capability. Fleet ClNCs will provide justifiration for such proposed actions,based upon economic cons jations and/or readiness objectives. When approved, the resupply responsibilities will be prescribed in the approved missions of the applicable overscas activities and units.

1. Responsible commands will obtain (No (Op-04) approval for deviations from policics and guidance cuntained in this instruction.
m. CNO will approve Pre-positioned Har Reserve Requirements (PWRR). Flect lssue Load list (FIl.L) materiel identified as Pre-positioned har keserve Stock (PKRS) and positioned by the Flect CINCs may be issued to meet peacetime requirements, but should be replaced at the earlicst practical date after issue.

## 6. Action

a. The Chief of Naval Material will:
(1) Coordinatc and administer the development, maintenance and revision of shipboard, aviation and MAC allwancir lists and load lists to include the
(a) cstablishment of procedures for collection of fleet demand data;
(b) establishment of procedures for recommending changes in shipboard, aviation and MAG allowances;
(c) establishment of procedures for control and justification of the addizion and deletion of items of a technical override (TUR) nature to authorized allowance and load lists within the framewori of guidunce contained in this instruction;

> | OPNAVINST 4441.12 A |
| :---: |
| $9 \mathrm{~A}: \cdot$ |
| $!3$ |

(d) determination of the degrec to which MLSF loads will be augmented to provide ecuipment support, based upon requircments of the Ficet CINCs and in accordance with the criteria proscribed in enclosure (3);
(e) assignment of military essentiality codes based upon guidance provided by CNO:
(f) coding of allowance lists to identify items as equipage, repair parts or consumables and to reflect milizary essentiality wherever practicable.
(2) Provide program management and support of the Supply Operations Assistance Program (SOAP), both ship and aviation.
(3) Establish and promuigate criteria for the identification of high unit veiue, high unit cubc or items in critical supply position which require modificd or restricted asset distribution for resupply suppert of the Operating Forces, including the identification and designation of air-worthy items based upor economic analysis.
(4) Moniter misp and advance hase inventories through the media of inancial, intentory and effectiveness reports submiticd by the fleets and recommend needed artion to CNO and appropriato fleet Cllics.
(5) Establish procedures for mainiaining visibiil: of stocks afloaz and ashore, and moniooring and uillization u! excesscs as directed by CNO. In this regard, it is intended that the separate identity of operating forces requirements (allowances) and assets (materiei on handion order), and those of the wholesaie system be maintained, and that procedures applicable to afloat assets be coordinated with Fleet CINCs.
(6) Establish. in coordination with the Fleet CINCs, stocking criteria for demanc based items in base operating stocks positioned overseas to ensure compatibility with funding constraives.
(7) Develci proccdures to utilize overseas stocks to fill urgent requirements, and moniter periodic purges of Appropriation Purchascr Necount (APA) and Navy Stock Account (NSA) excesscs a:lci: and ashore.

```
OPNAVINST 4441.12A
8 \&UG 1373
```

(8) Evaluate the offestiveness of jucia; supply support to the Operating eorres, inclujing an aniolysis cf
 Consolidated Allowance Lis: AVCALj perfo-mance, iased on the actual experitnce of destgneted ships and Mhés, and recomnend or initiate action is corvect deíiziances and implement improvements, as apprepriate.
b. The Chief of Nava, Training and the Chicf, Bureau of Medicine and Surgery wil:
(1) Develop and revicw allowance and load lists for materiel under their lechnical and management control in accordance with procedures established by the chief of Naval Material. Since the authorized medical and dental allowance list is based on conibat support requirements rather than generated demand, refercnce ( $(\mathrm{C})$ vill control these listings.

## c. The Fleet Comanders in Chief will:

(1) Provide for the coilection and repo-ting of flect demand duta to be used in the develomnent and revision of shiphoard, aviation and MiG allowance iists and lead lists, in acco-dance with procedures estabisshcd ty the Chief of Naval Material.
(2) Utilize allowance lists as the basic stocking authority at the shipboard anc lis level.
(3) Enforce allowance list and load list discipline to ensure that stocks are maintained at prescribed levels.
(4) Provide for the submission of logistic intelligence and support requirements to the Chief of Naval Material, SYSCOMiQ and IMs, as appropriate, for use in the development, maintenance and revision of allowance lists and load lists, including:
(a) requirements for the elistribution of high unit value, high unit cube and items determined to be in a critical supply position required for support of the fleet;
(b) the planned distribution $0 f$ the fills;
(c) requirements for support augmentation to
the FILL;

```
OPGAVINST AA41．12A
9 ばよ 12ア
```

（d）＝çuizemerts Eor quar：ti：：acdenda to the f！LL；
（c）the specīic hulis uristor zyes of shies to be．suppor：cd hy speciflc ：ende：ait reratr shape；
（f）Inad list zequitemenir necessi：aied by special situaidons or missiors；anc
（g）the 5 year aircraf：dep．oymen：schedule updated semi－anauall：$\because$ a as major changes occirr．
（5）Conduct the Supply Operaitcrs Assistance Prog－am （SOAP）．
（6）Provide for the submission of irarsaction， financial，inventorv and cfectiveness reports on designated ships anc cverseas bese invertorics to Ele Chice of iaral Materiai．
（7）Establich the levels of base operaiing stocks required at ovneseas bases to support approved missicns in accordance rith Chief of Navai haierial crize：ia．
（3）Recnmmend PWRR io CNO（Op－94），in aecordance with refcrence（b）．
（9）Istahish anci approve rleet Proerar Suppor： Materiel（Fasmi recuiremerts in accordance with the criteria prescribed in caciosurc（4）．Froposcd Fisil reciarements not meeting specified criteria，but which are fully supported by the Fleet CINC，shali be fcrwarded to CNO（Cp－0i）for approval．
（10）Submit recommended chanses to policies and guidance contained hercin to CNO（Op－04）．

7．Implementation．Two copies of aii instructions and notices impiementing this insiruction will be provided to CNO（Op－04）．

DISTRIBUTION：


```
OPNANINCT AA41.12A
 g&しょうご3
DISTRIBUTION: (Continued)
 A6 (Heacouarters, Marine Corpy)
 21A (Flect Commanders in Chiery)
 22 (Fieet Commanders)
 23A (Naval 5orce Commanders)
 24 (Type Commanders)
 42RR1 (Commander, Naval Ajr Reserve Öorce)
 46A (Fleet Marine Forcc Commanders)
 46B (Marine Aircraft Wings)
 FKAl (Systems Commands)
 FT1 (Chief of Naval Training)
 ET2 (Chief of Naval Air Training)
Copy to
SKDL Al (Immediate Office of the Secretary)
 A2A (Independent O£fices) (OPA and COMPT only)
 27C (Sea Frontier Commanders)
 28J (SERVRONS) (only)
 FFl (Naval District Commandants)
 FKM2 (Electronics Supply Office)
 FKM13 (Snips Paris Control Cenier)
 FKM15 (Aviation Supply Office)
 FNM17 (Fleet Material Support Office)
Op's 02, 03, 04, 05, 92 and 97
```

Stocked at:
Nava! Publications and Forms Center
580: Tabor Ave.
Philadelphia, Pa. 19120

## SIIIPBOARD STOCK LEVELS

1. purpose. This enclosure prescribes gencra! policy for the Fange and depth of materiel to be carried by individual ships to insure compaiibility with readjness objeciives, resufyly concepts, and a safety factor for independent operations in an environment of isolation anci immited resupply capability.
2. Scope. This enclosure applies to the following categories of materiel: spares, repair parts, consumables, frovisions and ship's store stock related to installed cquipment and embarked personnel for forces afloat.

## 3. Policy

a. For the allowed range of materiel (sec enclosure (2)), the depth of designated categories of materiel will be computed to achieve the stock levels shown belori. nevelopment of stock levels of materiel for new classes of ships shail be coordinated with CNO ( $\mathrm{CP}-41$ ).

## INVENTCRY OBJECTIVES

Spares, Repair Parts and Equipment Related Consumables

					ROS/		
$\begin{aligned} & \text { SIII } \\ & \text { TYPE: } \end{aligned}$	SLI/	OL? ${ }^{\text {² }}$	SuI/	MEL ${ }^{\text {/ }}$	FILI. ITERS $6 /$	NCN-   F1LL?   ITEMS	A1KS WURTII: ITEMS
ALL, EXCEFT NONSELF SUSTAINiNG9/	60	30	90	75	120	180	120
NON-SELF   SUSTAININGO/	AS	Q 1111.	TO	COMPL	SI ASS	UNEI M	SSlu:

Non-Equipment Related Consumables, St : ips Store Stock, Clothing \& Small Stores and Provisions

CARRIERS	45	30	75	60	105	105	105
CRUISER/DLGN/DLG	30	30	60	45	90	150	90
DIC/H:G/DD/DE:	$\underline{10 /}$	$\underline{10!}$	45	$10 /$	75	135	75
AD/AR/AS	60	30	90	75	120	180	120
SUBMARINES	60	30	90	75	120	150	120

Enclosure (1)

OPNAVINST 4441.12A

$\begin{aligned} & \text { SHIP } \\ & \text { TYPE } \end{aligned}$	SLI/	OL $2 /$	SO ${ }^{3 /}$	AEL ${ }^{4 /}$	FILL ITEMS 61	ROS/   NON-   F1LL?/   ITEMS	AIR ${ }^{8} /$ WORTIT 1TEMS
AMPHIDIOUS							
Ship Complement	45	30	75	60	105	165	105
Embarked Troops	30	30	60	45	90	150	90
SERVICE FORCE	45	30	75	60	105	165	105
NON-SELF   SUSTAINING9/	AS REQUIRED to ACCOMPLISH ASSTGNED MISSIUN						

$1 /$ SAFETY LEVEL (SL). This is the quartity of materiel in addition to the operating level, required to be on hand to permit continuous operations in the event os interruption of normal replenishment, or unpredictahle fluctuations, in issue demand.

2/ OPERATING LEVEL (OL). This is the quantity of materiel (exclusive of SL) required to sustain operations during the interval beiween successive requisitions.

3/ STOCKAGE OBJECTIVE (SO). This $\overline{\text { is }}$ the maximum quantity of materiel to be maintained on hand to sustain current operations; it includes the sum of stocks represented by the SL and the OL. It equates to the days' endurance for a given ship type.

4/ AVERAGE ENDURANCE LEVEL (AEL). This is the average quantity of materiel normally required to be on hand to sustain operations for a stated period without augmentation; it includes the sum of stocks represented by the SL and one-half the OL. AEL in terms of days of supply is used for the purpose of operational planning.

5/ REQUISITIONING OBJECTIVE (RO). This is the maximum quantity of materiel to he maintained on hand and on order to sustain -urrent operations; it includes the sum of stocks represented by SL, OL and order and shipping time (OST).

6/ Includes resupply items from AS load.
?/ The OST for non-FII.l items will be set at 90 days or actual experience, whichever is less.

反/ Air worthy items are those items designated for cutbound mrement by air, based on economic considerations. (While individuai coding of airworthy items has not been implementcd as of the plibilcation date of this instruction, future directives will provide guidance and require such an identification in appropriate publicaticns, catalogs, files, etc.).

9/ Landing craft, patrol gunboats, atc., of less than 1,000 tons displacement.

10/ As may be designated by Fleet CINCs.
b. The inventory objectives outlined above are designed to provide necessary endurance capability for ships and units operating in an environment of litale or no replenishment opportunity, for which the fleet must de prepared. Replenishment/recrdering actions must be initiated on at leasta biweekly basis to maintain an acceptable reaciness level for those items not routinely scheduled for an underway replenishment. Recognition must be given to the fact that more than 40 ? of repair parts requirements are not available at the organic level and must be provided by frequent and expedited methods.
c. The requisisioning objecives desctibed above will appiy to deployable forces, unless a lesser OST is authorized by Fleet CINCs when operating from CONUS ports or adjacent to overseas depots. Fleet Cilics have authority to modify the above objectives to correlate with operating environment and storage space.
d. The stockage objectives described above are applicable, in a practical sense, only to demand hased items and endurance projections must be judged accordingly.
e. The stockage objectives described for provisions represent a composite objective for individual categories, i.e., freeze, chill and dry. Space permitting, stockage levels for dry provisions may be increased to equal, but not exceed, those specified for repair parts.
f. It is desirabie for ships to deploy fully topped-off to meet the stockage objectives prescribed in paragraph 3a of this enclosure, even though iopping-off is neither normal procedure, i.e., replenishment should be generated only when triggered by reaching the item reorder point, nor is it provided for in funding and staffing considerations. llowever, the necessity for avoiding depietion of MLSE and advance hase stocks hy newly arriring ships makes topping-off desirable to the degrec that zesources will aliow.

## CRITERIA FOR SHIPBOARD ALLOHANCLS

1. Purpose. This enclosure prescribes policy for the development and maintenance of shipboard alloniances of materiel (less FBM submarines and tenders) necessary to achieve the required standards of logistic readiness and endurance of the Operating Forces.
2. Scope. This enclosure applies to all items listed in the COSAL for individual ships.

## 3. Policy

a. The COSAL is an authorizative document which lists the equipments, components, repair parts, consumables, and operating space items required for an individual ship to perform its operational mission. The COSAL indicates the items (and quantity of each item) which an individuai ship should have onboard to achieve a self-supporting capability for an extended period of time. the materici allowances prescribed in the COSAL constitute the organic level or suppiy.
b. In normal circumstances, shipboard alloances are mandatory as to range and depth of matericl carried. llowever. the following general exceptions to this policy are authorized:
(1) Fieet CixCs may authorize, for an interim period, shiphoare loading of materiel in excess of allowance to meet unusual situations, such as:
(a) Extended ship deployments of a non-routine nature to areas where support from the MLSF or other replenishment sources is impracticabic;
(b) Non-rontiac ship operations employing weapons systems fur which support from the MLSF or other replenishment scurcis is not planned; and
(c) Other ixtraordinary circumstances.
(2) The range and drpth of alluwance materie! may be changed at the shipboard level in accordance with stockage criteria prescribed by approved shipboard procedures and as authorized by Fleet CINCs for utilization of variable
operating and safety levels and for intensive inventory management of special items (e.g., Selected Item Yanagement (SIM) and non-SIM procedures, etc.).
(3) Replacement of repair parts for ships officially designated for inactivation or to be stricken from the Naval Register should be reduced or terminated in consonance with the period of remaining employment anticipated. Nodified materiel support will be accomplished lo adjustments to shipboard stockage objectives and/or mass requisition cancellations.
(4) Nandatory range and depth may be reduced as netessitated by funding constraints.
c. Propesed changes in allowance will be submitted by the originating ship in accordance with procedures estahlislice! by the Chief of Naval Material.
d. COSALs and actual stock levels will be responsive to changes in demand, as reflected in approved programs for collection of data. As a minimum, CosAls will be revieved and revised incident to the ship's regular maintenance overhaul. The Eupply Operations Assistance Program (SOAP) normally will be conducted concurrent with the regular maintenance overhaul, during which time the best demand history available wili be used to refine inventories. update inventory records, and identify and process materiel deficiencics and excesses. Between SGAPs, an ailowance document, such as an Allowancc Parts List (APL) should be provided to support newly installed equipments.
e. When an item is not included in the allowance because of high unit cost, total cost, weight, size, or other considerations, the allowance list preparation activity shall initiate action to position asscts with the MLSF or at selected ashore locations in order to provide rapi. response to expected fleet demands.
4. 'Critcria. The following criteria will be used in the develophent of a shiphoard allowancc list for those items within the installation capability of the organic unit.
a. icc. items having an historical or predicted demand or for all shipboard equipment applications):
(1) The range of demand based items will consist of all:urs mecting this qualifluation criteria.
inclosure !2;

$$
2
$$


 be sufficient to satisfy= by the ship in a 90 day period. (The 90: availabiliay criterion established for demand based items is higher than the overall 85: availatility goal cited in paragrapir c, bclow, in recognition of the shortfall between the theoretical effectiveness which the COSAL computation model provides using system-wide demand factors, and the actual demand expericnce which the ship will encounter.) Depth computaions will be predicated on combat consumption ratcs wherever such rates can be accurately ascoriaired.
b. (i.e., items having an histcrical or predicted for all shipboard equipment applications):
(1) The range of low-demand items will consist $n f$ those which qualify under the following restricions:
为
(b) fonrifd
 + hun $\rightarrow$,


 selection criteria prescribed abcve will be added to shipboard allowance 1 ists onl $\because$ in exceptional circumstances, to insure safety and preservation of life of personnel, or where lack of the item will cause total degradation of a capability essential to a primary mission of the ship. These exceptions will be documented and supnorted in accordance with procedures established by the Chicf of Naval Material.
 popastifur (2)
c. The obicctive for overall Cosil performance is to fill from onboard stocks 65\% (gross effectiveness) of all
demands and to provide an overall availability for items allowed of 85\% (net effectiveness).
d. Shipboard allowance lists will reflect the militasy essentiality of each item, wherever practicable.
c. Shipboard allowance lists will be coded to identify items as equipage, repair parts, or consurables, and also to indicate, where applicable, the degree of management control required aboard ship (e.g., custody signature required).
f. Repair parts included in shipboard allowarce lists will be assigned allowance derivation codes to identify the basis for shipboard stockage (e.g., demand based, technical override, planned maintenance requirement, etc.).

1. Purpose. This enclosure prescribes policy for the development and maintenance of inventory levels for the MLSF.
2. Scope. This enclosure applies to the positioning, maintenance and management of materiel (except ammunition and bulk petroleum) carried in MLSF ships (less FBM tenders) for the support of other Fleet units.

## 3. Policy.

a. Materiel requirements for resupply support of deployed forces and augmented forces to be deployed will be determined through the development of Fleet Issue Requirements Lists (FIRLs), as described in reference (b), Tender and Repair Ship Load Lists (TARSLLs), AO deck loads, subsistence load lists, tailored loads (HULL), ships store load lists and authorized afloat and ashore supplements as described in reference (b). TARSLLs, materiel positioned afloat as AD/AR/AS load lists, are designated as PWRS in accordance with reference (b).
b. Fleet Issue Load Lists (FILLs) will be developed to reflect that portion of the total FIRL that is to be positioned afloat as PWRS, as prescribed in reference (b). AO deck load PWRS is stocked ashore at strategic locations, as determined and designated by the Fleet CINCs, in accordance with reference (b). AO deck loads afloat are peacetime operating stock (POS).
c. In addition to the PWRS FILI and TARSLI quantities, a POS level will be established for peacetime support to provide a reasonable assurance that pWRS materiei will be available to meet contingency requirements. pOS levels will be computed by the load carrying ship and reviewed as directed by the Fleet CINCs, but no less frequently than once per quarter.
d. T's inventory level of stores account material, specified in FILLs and TARSLLs positioned in load carrying ships, will be closely monitored by Fleet CINCs in order to achieve and maintzin a high state of logistic readines.

```
OPNAVINST 4441.12A. CH-1
```


## HAR : 1975

of the fleet within the framework of the guidance in this instruction. To this end, a management information system capable of providing accurate, current and comparable inventory and financial data will be developed and maintained. The Stores Account Material lanagement fifloat/Ships Authorize Level (SiMMA/SAL) concepts and procedures provide the visibilit: to monitor the inventory and financial management of mifr ships. Semiannually, by 15 January and 30 June, Fleet CINCs will subait SFMMA/SAL reports to CNO (OP-04), with Copies to COM:ZAVSUPSYSCOM, EMSO and SPCC. The SAMMA/SAi report will stratify the authorized investment levels for both on hand and on order categories, current on hand and on order assets, and authorized and unauthorized long supply in both on hand and on order status. The afloat inventories will be stratified separately by category of investment, i.e., FILi/PWRS, COSAL, and POS. Further, the report will reflect the above stratifications by budget project for NSF materiel and by cognizance symbol for APA materiel. The format of the semiannual report will be as follows: (1) A total Fleet summary report; (2) an individual report for each load carrying ship; and (3) appropriate explanations for the causes of unauthorized long supply or on order for any inSE budget project or APA cognizance symbol materiel so effected. The explanation will also include the ships responsible for tie unauthorized assets and corrective actions planned or taken. COMrSVSUPSYSCON will subsequently provide an analysis of the SAMMs/S.A and Financial Inventory Reports (EIT.) to こ:NO (OP-O4) relating the impact of any excess investmerts on stock sund or APA budgets.
e. Poutine resupply of ships of the MLSF from shore activities will be provided only by activities rendering transaction item reports to i:avy Inventory Managers.
f. Where high unit cost, hich unit cube, or a critical supply situation prevent materiel distribution to applicable MLSF ships, the stocking cf such items may be limited to a designated ship or overseas activity at the discretion of the appropriate Eleet CINC, and in coordination with the Inventory Manager.
G. Fleet CINCs, in conjunction with the Chief of Naval Material, are authorized to position other stores account materiel in ships of the $\operatorname{MLSE}$. Designation of RO deck loads, subsistence load lists, tailored loads and ships store stock load lists are contained within the scope of this authority. Such materiel wili de considered peacetime stocks.
h. In conjunction with the industrial overhaul of load carrying ships, the load list inventory will be refined, the inventory records up-dated, and materiel deficiencies and excesses identified and processed.

## 4. Criteria for MLSF Load Lists.

a. Combat Stores Ship (AFS). An AFS load will be constructed to provide resupply support for items in demand by the Fleet, less items peculiar to submarines and Navy managed aviation cognizance materiel, and will consist of a FILL and POS level. The FILL range and depth are the minimum levels to be stocked and are mandatory.
(1) Afloat FILIs will be developed to reflect that portion of the EIPI that is to be positioned in a combat stores ship (AFS), as prescribed in reference (b).
(2) A POS level consisting of a combined 60 day Cperating and Safety Level for demand based items and actual Order and Shipping Time is authorized. Increases in these levels will be approved by CNO (OP-04), based upon Fleet recommendations. Item selection criteria and variable level techniques may be applied to peacetime levels to constrain workload and to increase total load effectiveness at Fleet Commander discretion. A maximum retention level of six months is authorized for items where changing demand patterns generate long supply.
(3) Actual O\&ST will include (1) requisition transmission time, (2) requisition processing time, and (3) shipping time. It will exciude (1) other than usual requisition priorities, (2) otner tian usual Eransportation modes, and (3) a stockout at supply sources. It is recommended that Fleet こINCs review and control the O\&ST values applied.
b. TARSLL. PARSLLs will be constructed to support the industrial mission (anc, $\therefore$ the case of non-FBM submarine tenders (iS), the zesurol $\because \because$ mission) of each tender or repair ship. Based upon the rave of maintenance support to be provided by eact: tender or repair ship, as reflected in support reguirener.ts provided to the Chief of Naval naterial by the Eleet CINCs, TARSLLs will de classified as either "hull tailored" or "ocean tailored". Hull tailored TARSLLs will be constructed to support specific hulls assigned for support to a specific tender or repair ship (e.g., is 16 TARSLE for support 0 : assigned submarines). Ocean tailored TARSLis will be constructed to support specific hull types and positioned in aid horines or repair ships of one of the

OPNAYINST 4441.12A CH-1
MAR J 1075
Flects (e.g., AD TARSLL for the Pacific Fleet for support of designated ship types). The range and depth of taRSLLs are mandatory except for local, demand based range additions, and permissive stocking of industrial related items as covered in paragraph $4 b\left(3^{\prime}\right.$, below. Detailed criteria for TARSLL development are as follows:
(1) TARSLLs will be developed on the basis of shipboard equipment configuration of the ships being tended, technical failure rates and peacetime demand of the active fleet tenders and repair ships, using demand data collection procedures established by the Chief of Naval Material. peacetime demand will be adjusted to reflect combat consumption rates for appropriate items, wherever such rates can be accurately ascertained.
(2) TARSLLs will be composed of the following general categories of items:
(a) Equipment related items - Items required by the tender or repair ship to perform the maintenance support function for equipments/components installed in the ships being tended;
(b) Industrial related items - General use items required to support the maintenance shops in a tender or repair ship; and
(c) Resupply materiel - In the case of submarine tenders (AS), materiel required to support the resupply of assigned submarines.
(3) CNO (OP-O4), in cooraination with the Fleet CINCs, will prescribe specific parameters for simulating alternate TARSILs based on the variable factors of component cutoff (see (a) below) and quarterly average demand (see (b) below) for review by the cognizant Type Commanders. Final determination of TARSLI range rests with CNO (OP-04).
(a) Component Cutoff - In analyzing equipment related items as candidates for inclusion in the range of materiel in ocean tailored TARSLLs, consideration will be given to the degree of commonality of equipment configuration in the mix of ships to be tended. In order to be included in the authorized range of materiel, range candidates of equipment related items will have equipment application in a minimum number of tender ships, as well as prescribed by CNO in coordination with the Fleet CINCs.
(b) Quarterly Average Lenand (QisD) - In order to be included in the authorized range of materiel, range candidates of equip tent related items will meet specific demand frequency in time criteria aeterminea by civo (OP-04).
(c) Equipment related items which cannot be installed by tender or repair ship maintenance personnel will be excluaed from the TAKSLL.
(d) Range candidates of industrial related items in a generic class of materiel le.g.. lumber, bar stock, etc. $)$ may be tailored, by means of discretionary stockage, to reflect the maintenance philcsophy and shop practices of specific tenders or repair ships.
(e) Recuirements for support of special missions or situations will de submitted to the Chief of Naval Naterial by the fleet CINCs.
(4) The depth of materiel in each TARSLL will be sufficient to satisfy, for those items incluced in the TARSLL range, $\delta 5 z$ of the reguisitions reflected in the demand/data base for a 90 day period. The depth of equipment related items will not be less than the minimum replacenent unit.
(5) Peacetime Operating Stock levels for demand
based items, consisting of a combined 60-acy Cperating and safety Level for TAFSLL Loaci List items and a combined 90-day Operating and Safety Level for locally determined range adaitions, are authorized. Incrcases in these levels will be apprové by CNC (Op-04), based upon flect recommenaations. Item selection criteria nd variable level techniques may be applied to seacetime levels to constrain workload ana to increase total load effectiveness at fleet commander discretion. A maximum retention level of six months is authorized for items where changing ciemand patterns generate long supply.
(6) Actual urder and Shipping time will be utilized in establisning recuisitioning objectives. kequisition transrission, processing, and snipping time will de included. The comeilation of actusl OSST factors will excluie data involving other than usual reguisition priorities and transportation mocies ano the extenced leadtime involved where the supply source is out of stock. It is recommenced that flett CINCs review and control the O\&ST values applica.

OY:AVINST 4441.12A
9 August 1973
(7) TARSLLs will normally be updated on a 3 year cycle uniess otherwise recuested by fleet CINCs on the basis of significant change ir hull mix or equipment configuration. At the time of updating, the best demand history available will be used to refine the load list inventory, upciate inventory records, and inentify adaitions and deletions to the range and depth of the load.
(8) Items new to the system and consiofred as caudidates for interim changes to existing tafslls for ads and ARs must be those items coded for intermeciate level maintenance. To qualify, the item must meet the current component cut criteria. Items that aualify wil: be stocked in the deployed tender and repair ships, only.
c. Other Loat Lists. Inclucied in this category are AO deck loads, provision load lists, tailored loads and ships store stock load lists. Range and depth will be a Fleet CINC cietermination made in coordination with the Chief of ivaval Material and will be consioered mandatory.

```
OPNAVINST 44A1.i:A
 8んりごぶな
```


## CKITERIA FOR OVERSEAS BASE STOCKS

1．Purpose．This enclosure prescribes policy for the stockage，management and control of supply inventories positioned at overseas bases．

2．Scope．This enclosure applies to overseas base stocks． Specifically excluded are stocks procured by the Navy Industrial Fund．

## 3．Policy

a．Overseas base stocks will consist of the materiel required to support the approved mission（s）of an individual base under the concept and constraints outlined．This includes Base Operating Stock，PwRS and insm．
b．Overseas base stocks（all categories）will be reported in normal financial accounting and hudget submissions． Asset visibility and control will be as prescrined by the Chief of Naval Material，in coordination with the fleet CINCs，based upon CNO guidance．
c．The Chief of Naval Material will prescribe techniques and methodology for displaying requirements and assets to separately identify the various categories of materiel described herein for budget and analysis purposes．
d．Budget submissions will include known future lay ins of initial stocks to support mission essential equipments to be installed at overseas bases．
e．Overseas base stocks are subject to Transaction Itom Reporting（TIR）to Navy IMs when prescribed by Chief of Naval Material in coordination with the Fleet CINCs． Such stocks will be considered to be a part of IM＇s authorized levels．
f．Items carried in base operating stocks will not be duplicated with $\operatorname{FPS}$ and additional depth will not be provided for the items．

4．Criteria．The following criteria will be used in the identification and designation of overseas base stocks．

3．Base Operatins Stocks will consist of the materiel required to support sinipboard，acronautical and shore based
equipment aid systems, rolling stocks, industri:ll misi:inn ano assigned personncl. Base operating stocks are authorized as follows:
(1) Demand based items with a frequency of demand criteria as specified by Chief of Naval Material.
(2) Stock levels for demand based items will be constrained to not more than an average inventory level (SL plus one-half of the OL) of 90 days and a maximum of 90 days or actual OST, whichever is less. When supporting rationale is documented and authorized by applicable Fleet CINCs, higher levels may be maintained. A copy of authorized exceptions will be provided to CNO, CHNAVMAT and applicable IMs.
(3) Low-demand items are not authorized for base operating stocks. If low demand items are required for mission essentiai equipments and systems, they will be dosignater FPSM.
b. PWRS, as recommended by the Fleet CINCs and approved by CNO,is authorized in accordance with reference (b).
c. EPSM is authorized as follows:
(1) Materiel required to support the installation and operation of a new mission essential equipment or system in advance of actual installation and operation.
(2) Materiel required to support a resupply mission for newly installed shipboard and aviation equipment or systems in advance of anticipated demand. This will not duplicate FILL materiel positioned in ships of the MLSF or ashore.
(3) Materiel designation and categorization will be confined to new items not presently carried in base operating stocks. Initial positioning action will be based upon quantity recommendation of the allowance preparing activity with the approval of the Fleet CINC, based upon criteria contained herein. The range and depth of FPSM items will normally be determined from an allowance list.
(4) Identification and approval of mission essential equipment support qualifying for FPSM and advanced positioning of materiel must be approved by the applicable Fleet CINC.
(5) The demand development period authorizcd for FPSM will be one year from installation or operational date, but may be extended in writing by the Fleet CINC to two years if the operating environment or essentiality so dictates. The FPSM designation will be discon=inued for those items which have become demand based during the one-year demand development period, regardless of the new demand based quantity.
(6) FPSM requirements will be limited to standard stock materiel, i.e.. the item must have an assigned Federal Stock Number or Activity Control jumber.
d. Excess/Long Supply. Those stocks which are excess to prescribed base operating stock levels and initial FPSM stocks which no longer qualify as required by fleet CiNCs for support of mission essential equipment kill become excess/long supply stocks, excluding economical retention levels authorized by Fleet CiNCs.

## AERONAUTICAL SUPPLY SUPPORT

1. Purpose. This enclosure prescribes policy for the development and maintenance of allowances of aeronautical materiel necessary to achieve the required standards of logistic readiness of the operating forces predicted on the maintenance plan and repair capability for the site under consideration.
2. Scope. This enclosure applies to all items listed in the AVCAL and other related allowances for individual ships, Marine Aircraft Groups (NAGs) and shore activities (CONUS and overseas) supporting aircraft.

## 3. Policy

a. The basic concept for identification and categorization of stocks required to support fleet aircraft is as follows:
(1) Requirements and/or materiel procured and/or positioned in accordance with the guidance contained herein will be separately identified by JM in budget and stratification submissions.
(2) Assets in excess of the quantities prescribed herein will be consiciered as wholesale stocks, unless the materiel is positioned afloat.
(3) Materiel procured in accordance with reference (b) will be designated as PWRS.
b. The AVCAL is an authoritative document which lists the components, repair parts and consumable items required for a ship, MAG or shore activity to perform its operational mission in support of assigned aircraft, with consideration for available organic repair capability. The AVCAL includes the items (and quantity of each item) which should be on board to achieve a self-supporting capability for a prescribed period of time. The materiel allowances prescribed in the AVCAL and other related allowance documents constitute the organic levels of supply applicable to aeronautical materiel for support of aircraft afloat and ashore.
c. AVCALs will be constructed from Initial Outfitting Lists (IOLs) and inputs of API. or Allowance Equipage List (AFL) items from MMs that ipply to the aircraft and equipments to be supported. Items aflicable to the Maintenance Support

Package (MSP) concept will be included in the official AVCAL. Unique AVCALs may be designed to support special programs on non-aviation ships, such as the Light Nirborne Multi-Purpose System (LAMPS) or airborne mine countermeasures detachments.
d. In normal circumstances, the AVCAL is mandatory as to range and depth of materiel carried, except as may be adjusted upward for consummables based on local demand rates. However, the range and depth of allowance materiel may be modified by Fleet CINCs in order to meet unusual situations and to compensate for local maintenance conditions or application of variable operating and safet) level concept. The decision to modify range and depth levels must be coordinated with the IM to assure that Weapons System Planning Data (WS?D) revisions are sequenced with budgeting adjustments to assure adequate follow-on support.
e. Basic factors upon which allowance lists a.e developed will be responsive to changes in maintenance capability and usage resulting from approved data collection programs. The inclusion of an item in an allowance list will be based on rates representing planned maintenance action,i.e.,intermediate or organizational ievel repair. Factors assigned to newly introduced items will be based on average failure rates for items in analogous nomenclature, group and class categories; those for established items will be based on historic usage. Items not qualifying for inclusion on the basis of rates cited above will be excluded from allowance lists, except in instances where documented and approved in accordance with procedures established by the Chief of Naval Material. Basic data collection systems will include an historical demand file for carrier and MAG deployments to facilitate purging of candidate files for non-moving items. As a minimum, AVCAls will be reviewed and revised incident to Regular Oveanaul/ Restricted Availability ( $\mathrm{ROH} / \mathrm{RAV}$ ) schedules or prior to each carrier deployment. MAG AVCALs will be reviewed and revised periodically as determined by the air type or FMF commander, but not less often than every 18 months or prior to deployment. The Supply Operations Assistance Program - Aviation (SOAP-A) normally will be conducted concurrent with the ROH schedule for carriers. Air type commanders, in conjunction with FMF commanders, will develop procedures for conducting SOAP-A for MAGs concurrent with the periodic AVCAL review. Revised AVCALs wili be provided to shore activities supporting aircraft at least every two

$$
\underset{\substack{\text { OPNAVINST } \\ 9 \text { AUG } \\ \text { OT3 }}}{ } 4441.12 \mathrm{~A}
$$

years, or more frequently if required by changes in supported aircraft, installed equipment, or ground support equipment. Excesses will be determined based upon prescribed allowances and retention levels. Materie? so identified will be returned to the supply system at every available opportunity in accordance with existing instructions.
f. AVCAL scheduling for afloat units including MAGs, about to deploy must be planned to allow for constructing the AVCAL and for the IM to introduce requisitions into the supply system in time to have materiel in place 30 days ahead of date aircraft are due to operate from the assigned ship or new site. The objective is to allow 90 days for shipping, receiving, staging, storage and recording materiel receipts.
g. The capability to provide effective and responsive resupply is essential to aircraft readiness. Carrier Onboard Delivery (COD) support will be utilized to the fullest extent practicable. The use of the MLSF to position technical aviation stocks is not normally considered to be an economical. effective or efficient use of assets.
h. Issues from rotatable poois will be included in financial inventory reports to provide budget support for the pool investment.
i. The Chief of Naval Material will prescribe techniques and methodology for displaying requirements and assets to separately identify the various categories of materiel described herein for budget stratification and analysis purposes.
4. Criteria. The following criteria will be used in the development of range and depth of individual allowance lists for ships, MAGs and other activities supporting aircraft. The range and depth of stock will be ascertained by reference to applicable IOLs/APLs/AELs for the purpose of establishing the quantities to be carried.
a. Demand based items. (i.e., items having an historical or predicted demand of one or more units in 90 days for aircraft and equipments supported):
(1) The range of demand based items will consist of all items meeting this qualification critcria.
(2) The depth of qualifying demand hased items will be sufficient to satisfy $85 \%$ of the units requested in a 90 day period (filling of demands from onooard/on hand stocks).
(3) Allowance lists quantities will be predicted on combat flying hour utilization, rounds fired or other type rates as promulgated by CNO.
(4) Rotatable pool items are those repairable items required to be availabje for immediate installation in an aircraft or its associated equipment while the failed units are being repaired locally by the AIMD (Aircraft Intermediate Maintenance Department) or IMA (Intermediate Maintenance Activity) based upon individual site capability. Items will qualify as rotatabie pool items when there is a predicted demand of one or more in 30 days. Rotatable pool quantities, as well as appropriate attrition stocks,will be inciuded in the AVCAL.
b. Low-demand items. Items having an historical or predicted demand or less than one unit in 90 days for aircraft and equipments supported.
(1) The range of low-demand items will consist of those which qualify unde: the following restrictions:
(a) Items with a unit cost of $\$ 5,000$ or more will be stocked if the predicted demand is equal to, or greater than,one in a six-month period.
(b) Items with a unit cost of less than $\$ 5,000$ will be stocked if the predicted demand is equal to, or greater than, one in a nine-month period.
(2) Low-demand items qualifying for stockage under paragraph $4 \mathrm{~b}(1)$ above will be included in the AVCAL $i_{i}$ minimum depth (i.e., quantities of one or minimum replacement unit).

## c. Ground Support Equipment (GSE)

(1) Repair part support of GSI: does not necessarily relate directly to flying hours of aircraft support with GSt usually installed singly or in low populations. With the advent of more compiex and versatilc avionics and electronic GSE, these equipments will sevice multiple weapons systems and arc essetitial in maintaining the readiness
of assigned aircraft. Therefore, it is necessary to prescribe a support poiicy which varies to some degree from that prescribed for airborne equipment. At the same time, the support of these equipments is incorporated into an integrated allowance document which can be logically developed and understocd by fleet units and MAGs receiving the allowance lists. To meet these objectives, the following guidance for the determination of initial requirements is furnished:
(a) Because of the low population (equipment operating months), many times only one equipment per site, the allowance support policy for GSE will sustain a maintenance plan developed by NAVAIR or program managers which emphasizes minimum downtime. This normally will mean immediate removal and replacement of major repairable components (equivalent to airborne Weapon Repiaceable Assembiies (WRAs)), and then repair of tints through the use of Shop Replaceable Assemblies (SRAs; anc consumables at depot or intermediate level as capabilities are certified.
(b) WRAs, SRAs, and consumables wili be assigned Source, Maintenance and Recoverability (SMGR) codes and Military Essentiality Codes (MECs) by NAVAIR or Program Managers, at the time of provisioning, consistent with the maintenance capabilities of IMAs and depots. IOLs are developed to provide repair part support for an initial 90 day period. In selecting the range of candidates from assigned maintenance codes applicable at the organizazion and IMA level, the IOL will include items $\because i$ if. have a rorecast usage of one or more in 90 days. This usage will be determined utilizing population of item and maintenance replacement factor. Replacement factors will utilize 3M data if available.
(c) There will be a number of items which do not qualify for inclusion in lols ander the criteria in the above paragraph. NAVAIR or Program MEnagers will assign MEC: to items selected for maintenance support, along with SMif codes. All items not qualifying for support under paragraph 5: (2), above, but which ars coder as essem:tial and hal proper maintenance codes, will be candidates for allowance lists. These low denard items will he included in the JOLs in minimum quantities if , ue, wass the following inclusjoa criteria: Population tumes maintenarce replacement factor (utilizing 3 M data as available! eruais an annuai forecasted usage of .25 or greater (predicted $r$ reported usage n! one in 1 years).
(d) Any items, other than those qualifying under paragraphs $4 c(1)(b)$ and $4 c(1)(c)$, to be included in the allowance lists must satisfy the criteria and rules of TORs as set forth by Chief of Naval Material.
(e) Items considered essential to the operation of the equipment which are excluded from IOLs by the criteria above may be supported as supply system insurance items in a minimum quantity to satisfy emergency requirements.

## d. Materiel Availability (effectiveness) goals:

(1) For aviation ships and MAGs, the objective for overall AVCAL performance is to fill $75 \%$ of all demands and to provide overall availability of 85: for items stocked. Issues from rotatable pools will be included in effectiveness computations. For non-aviation ships without intermediate maintenance capability, the objective is to fill $65 \%$ of all demands and to provide overall availability of $85 \%$ for items stocked.
(2) For shore activities supporting aircraft the objective for overall AVCAL performance is to fill $65 \%$ of all demands and to provide overall availability of 853 for items stocked. Issues from rotatabie pcols wili be included in effectiveness computations.
e. Identification of overrides. Items which are included in allowance lists wnich qualified on other than rules cited above wili be coded and identified in IM files for periodic review of original decision.

## f. Depth of Stocks

(1) Rotatable pool stock levels will be based upon frequency of repair and actual turn around time, whirh in the majority of cases should not exceed 3 days. In any event individual item levels will be constrained to a quantity representing a maximum of 20 days turn around time.
(2) Authorized stock levels for repairable items at operating sites will be 90 days for afloat units. and MAGs, 30 days for CONIS activities and 60 days for overseas activities. Afloat and overseas computations will be based on combat rlying hours. Replenishment will be on a one for one basis with no additional depth authorized for order and ship time. CiNAVMAT will publish procedures for changing allowances. When promulgated, allowances will be
regarded as maximum levels to be maintained. No retention levels will be permitted above authorized levels. Changes to authorized stock levels will be subject to inventory manager approval except where modified by stisequently approved intensive inventory management programs.
(3) Stockage objectives for expense/consumable type items will not exceed 90 days for afloat units and MAGs (based on combat rates), or ashore (based on peacetime rates), unless the Fleet CINC authorizes endurance loading for a specified ship deployment. OST will be restricted to actual or UMMIPS timeframes, whichever is lower.
(4) When interim changes are made to site loads, additional stocking will be restricted to those items not previcusly carried that provide increased range. Depth of currently carried items will not be increased automatically, but should be increased only when actual demand experience justifies an increase.

## LDENTIFICATION OF ACRONYMS

1. Acronyms that appear throughout the basic instruction and enclosures are identified as follows:

AEL - Allowance Equipage List or Average Endurance Level
AIMD - Aircraft Intermediate Maintenance Department
APA - Appropriation Purchases Account
APL - Allowance Parts List
AVCAL - Aviation Consolidated Allowance List
CINC - Commander In Chief
COD - Carrier Onboard Delivery
COSAL - Coordinated Shipboard Allowance List
FBM - Fleet Ballistic Missile
Fill - Fleet Issue Load List
FMF - Fleet Marine For:e
FPSM - Fleet Program Support Materiel
GSE . - Ground Support Equipment
IM - Inventory Manager
IMA - Intermediate Maintenance Activity
IOL - Initial Outfitting list
LAMPS - Light Airborne Multi-purpose System
LANTFILL - Atlantic Fleet Issuc Load List
MAC - Marine Aircraft Group
MEC - Militay Essentiality Code
MLSF - Mobile logistic support Force
MSP - Maintenance Support Package
NSA - Navy Stork Account
NSMP - Navy Suppor: Mobilizaiton Plan
OL . - Operating Levei
OST - Order and Shipping Time
PACFII.1. - acific Fiset Issue lad List
POS - Praretime Operating Stock
PWRS - Pre-positioned War Reserve Stock
PWRK Pre-positioned War Rescrve Requirement
QAD : Juarterly Average lemand
RAV - iicstricted Availahility
RO - Requisitioning Mioctive
Roll - liegular overhaul

SAMMA/SAL - Stores Account Materiel Management Afloat/Ship SIM Authorized Levels
SL
SMER
SO
Selected tem Management

- Source, Maintenance and Recoverability

SOAP
SOAP-A

- Stockage Objective

Supply Operations Assistance Program
SRA

- Supply Operations Assistance Program - Aviation
- Shop Replaceable Assembly

TARSLL - Tender and Repair Ship Load List
TIR
TOR

- Transaction Item Reporting

UMMIPS - Uniform Materiel Movement and Issue Priority System

WRA - Weapon Replaceable Assembly
HSPD - Weapons System Planning Data


RESEARCH REPOKT
$!$ 25 0
$\infty$
$\infty$
$\infty$
0
0
$e$
$e$

AN EVALUATION OR A SPARING TECHNIQUE TO DETERMINE ITS APPLICABILITY FOR GENERAL USE


Accomplished as Part of the AMC Maintainability Engineering Graduate Program USAMC Intern Training Center
and
Presented in Partial rulfillment of the Requirements of the Degree of Master of Engineering Texas A\&M University March, 1972

. $\operatorname{strACT}$

# Research Ferformed by Ronald D. Oglesby Inder the Supervision of Dr. R.J. McNichols 

H.E. Lyrch, R.S Morris, Dr. R.J. McNichols, and Dr. D. R. Shreve have leveloped a prediction technique for the number of spares for a system, utilizing a prechosen probability level that sufficient spares would te available. The purpose of this paper is to test their technique.

The testing of the prediction technique was done by using computer simulations. Basic systems were used with different probability density furctions of time to failure used for the distribution of the processes in the systems. The same basic systems were used with the prediction technique to give results that could te compared.

The results of this work showed that the prediction technique could be used in several cases to give estimates of the number of spares. In other cases the paper shows the rariation between the prediction tecinique and the simulation. The use of the prediction technique depends upon the system and the probability density functions of time to failure.

## ACKNOWLEDGMENTS

Gratitude is extended to Mr. H.E. Lynch whr aided in the preparation of areas of study that were developed in this paper.

The author wishes to extend his appreciation to his compittee chairman, Dr. R.J. McNichols, for his guidance and invaluable advice throughout this research project. Ke also wishes to thank Dr. D.R. Shreve and $\mathrm{Hr}_{\mathrm{M}}$. R.L. Street for their assistance and for consenting to be committee members.

The author also wishes to extend his sincerest appreciation to his wife, Iinda, for her typing and outatanding good nature througiout his intern craining program.

Luring the course of this work, the author was employed by the U.S. Army as a career intern in the AMS Maintainabllity Engineering Graduate Program. He is graieful to the U.S. Army for the opportunity to participate in this program.

The ideas. concepts, and results herein presented are those of the author(s) and do not necessarily reflect approval or acceptarce by the Department of the Army.

## CONTENTS

Chapter Page
I INTRODUCTION ..... 1
Importance of Spares ..... 1
Present Methods of Predicting Spares ..... 2
New Method of Predicting Spares ..... 5
II SPARING TECANIQUE ..... 7
Procedure For Using the Techrique ..... 7
Example ..... 11
III TEST PROCEDURE ..... 15
IV
CCMPUTER PROGRAN ..... 21
Computer Simulation of Sparing Problem ..... 24
y RESULTS ..... 30
Coefficient of Variation Greater Than One ..... 32
Coefficient of Variation Equal One ..... 42
Coefficient of Variation Less Than One ..... 50
Plocess Skewed Left and Skewed Right ..... 58
Frocess Density Normal ..... 62
Unequal Time Periods ..... 78
VI CONCLUSIONS ..... 83
Summary ..... 91
APPENDIXES ..... 94
APPFINIX I ..... 95



MICROCOPY RESOLUTION TEST CHART National bureau of standards-1963-A
Chapter Page
APPENDIX II ..... 104
LIST OF REFERENCES ..... 121

## FIGURES

Pigure Page
2.1 PROCESS SEQUENCE ..... 7
2.2 EXAMPLE PROCESS SEQUENCE ..... 12
I. 1 FLOW CHART PREDICTION TECHNIQUE ..... 98
il. 1 flow chart simuiation ..... 109
it. 2 Input data simulation ..... 111.
Table Page
2.1 SPARING CONFIGURATION TYPE ..... 8
5.1 COEPFICIENT OF VARIATION GREATER THAN ONE, CASE A ..... 36
5.2 COEFFICIENT OF VARIATION GREATER THAN ONE, CASE A ..... 37
5.3 COEPFICIENT OF VARIATION GREATER THAN ONE, CASE B ..... 39
5.4 COEPFICIENT OF VARIATION GREATER THAN ONE. CASE B ..... 40
5.5 COEFPICIENT OF JARIATION EQUAL ONE, CASE C ..... 44
5.6 COEPFICIENT OF VARIATION EQUAL ONE, CASE C ..... 45
5.7 COEFficient of variation equal one, case d ..... 47
5.8 COEFPICIENT UF VARIATION EQUAL ONE, CASE D ..... 48
5.9 COEFFICIENT OF VARIATION LESS THIN ONE. CASE E ..... 52
5.10 CGEFPICIENT OF VARIATION LESS THAN ONE, CASE E ..... 53
5.11 COEFFICIENT OF VARIATJON LESS THAN ONE CASE F ..... 55
5.12 COEFFICIENT OF VARIATION LESS THAN ONE, CASE F ..... 56
5.13 PROCESS SKEWED LEFT AND SKEWED RIGHT, CASE G ..... 59
5.14
process skewed left and skewrd right, case g ..... 60
5.15 PROCESS DENSITY FUNCTION NORMAL, CASE $H$ ..... 66
S. 16 PROCESS DENSITY FUNCTION NORMAL, CASE H ..... 67
5.:7 NORMAL PROCESSES, CASE I ..... 69

Table Page
5.18 NORMAL PROCESSES, CASE I .......................... 70
5.19 NORMAL PROCESSES, SASE J ............................... 72
5.20 NORMAL PROCESSES, CASE J ................................. 73
5.21 NORMAL PROCESSES, CASE K .................................... 75
5.22 NORMAL PROCESSES, CASE K .................................. 76
5.23 SYSTEM TIMES VARIED, CASE L ............................ 80
5.24 SYSTEM TIMES VARIED, CASE L ................................ 81

## CHAPTER I

## INTRODUCTION

In a system's lifetime the support elements perform a vital function toward the effectiveness of the system. The support elements affect the developmental time, operational readiness, and user's cost. These support elements must be taken into account at the very leginning of the system's lifetime, during the conceptual stage of the project (10)*. If they are not and the support elements are designed after the system has bcen developed, then this could alter all of the system parameters such as reliability, maintainability. and availability.

Importance of Spares
One of the major elements of the support concept is that of spares. The questions that need to be answered are how many spares wi.ll have to be stocked in order to meet a desired probability level that enough spares are available. and how many spares need to be stocked to assure that a minimum of system downtime will occur?

[^21]The importance of the correct number of spares cannot be overestimated. The number of spares on hand is critical in determining whether system specifications are met. In the conceptual, definition, and developmental stages of a prow duct's lifetime, tradeoffs are performed among the various parameters, and the number of spares affects these tradeoffs and is affected by them.

An effective and economical logistic system cannot be prepared without a good prediction of the number of spares. The logistician is working under a hardship in the teginuing -because no forecast can be perfect, but the degree to which predictions can be made to approximate the real situation determines how close he can come to making his pert of the system function better. If too many spares are produced and they are never used then system cost rises. If, on the other hand, not enough spares are produced, then excessive downtime could cost more than the savings on the spares and, in some cases, the cost could be in the form of human lives.

## Present Methods Of Predicting Spares

The prediction of the number of spares to meet a desired availability level has been developed in a variety of methods, but these methods can be broken down into two categories:

1) Methods which make assumptions which limit the range and applicability of the technique.
2) Somputer simulations, which can be simpie or complex depending on the model.

In the first category many intricate methods have been developed to predict the number of spares. These involve using everything related to a system from the cost of spares to the number of systems used. This category can bast be thought of in a simple manner. If a system is assumed to fail and is immediately repaired, then the number of spares needed would be equal to the number of failures. Thus if a certain number of parts, $M$, in a system were under consideration and each part could or could not have been required to operate the entire length of tive that the systen was under consideration, then the $i^{\text {th }}$ part could fail $N_{i}\left(t_{i}\right)$ times during time $t_{i}$. Then the minimum ramber of spares. $S P$, $o$ parts that would be required to operate the system at a certain probability level, $P(S P)$, would be:

$$
P\left(N_{i}\left(t_{i}\right)+\ldots+N_{M}\left(t_{M}\right) \leq S P\right)=P(S P) . \quad 1.1
$$

G.H. Ebel and A.J. Lang developed a technique using this expression but they assumed:

1) a constant failure rate for their system,
2) all the parts in operaticn ran for the same length of time, and
3) those parts used were stochastically independent (4).

Thus their model requires that the failure rate is that of an exponential distribution. The standard deviation of the
process is then jue: the mean. This limits the type of system for which the model can predict the number of spares.
A.E. Holmes and W.S. HeQuay have worked out a prediction technique for small rumbers of parts to be spared (6). They have used the binomial distribution, but this still requires a constant failure rate for the system to be predic. ted. This technique also requires that all of the parts for which spares are provided must operate for the same length of time.

These two prediction techriques have been used and the results for systems that satisfy the assumptions have shown very good results.

Another procedure is tc spare for the average number of failures expected to occur. This can be done by taking the mean life of the part and dividing it into the time that is desired fer the part to operate. This number could then be rounded down to the nearest integer value. The value would then be the number of spares needed. This n:ethod will then stand an approximate fifty per cent chance of having the correct number of spares (8).

The second caterory is that of computer simulations. The computer simulation is just what it seems - 2 simulation using input variables, a compuier program, and results from these inputs. Thus the computer must be programmed for the simulation. If the designer is not a programmer, he must convey to the programmer his ideas of how the system will work and try to get a simulation. With the complexity
of variables tist go into a program this can easily be seen not to be a simple approach to the problew. The basic need for this approach is computer time. Computer time costs money which can be a wajor drawback if a simulation is required each time the system is changed.

Thus there has never been a simple, convenient model that covered a wide range of systems for the designer and others to work with in the prediction of the nuwber of spares required for the system.

New Method of Predicting Spares
H.E. Lynch, R.S. Morris, Dr. R.J. MeNichols, and Dr. D. R. Shreve have developed a simple and straightforward prediction technique(9). The technique has been written in a step by step pattern so that a person without any statistical background could use it by simply following the procedure.

The technique was derived using as its basis the central limit thenrem. This was done by assuming that the density function of a sum of independent random variables vould approximate the normal density function as the number of random variables and time increases. This approximation should hold regardless of the type of probability density function of time to failure from which the randem variables came.

During the preliminary work in the development of the
technique, comparisons were made with predicted values of opares and with computer simulations using the normal distribution ot time to failure. These resulte were found to agree. The technique ras not been tested against other probability density functions of time to failure to see if the technique will give desirable results. If the technique can be proven valid for different probability density funco tions of time to failure, then the designer will have a powerful tool to work with due to the simplicity of the technique and the wide range of systems it will cover. The sparing technique under study is developed in Chapter II. The assumptions that are required for the sparing technique and the step by step procedure associated with it are stated, and an example of the calculations is also given. The test procedure and the diffarent types of systems that were tested are stated in Chapter III. Chapter IV describes the computer programs used in the theoretical calculation and the simulations. The simulation and sparing technique results are compared in Chapter $V$. Conclusions are drawn in Chapter VI.

## CHAPTER II

## SPARING TECHNIQUE

Procedure For Using the Technique
The sparing technique must not be taken for a universal solution to all sparing problems. In order to use the technique the following conditions must be met(8):

1) The system must follow the process sequence in Pigure 2.1 and one of the sparing conflgurations of table 2.1.


FIGURE 2.1 PROCESS SEQUENCE
2) Only one spare set can be required in any process cycle, where a process cycle is defined as the repeatiag sequence in a system, and it must be required at the point in time shom in the process sequence.
?) All processes are independent.
4) The mean and variance of the density function of each process must remain constant over time.

To use the technique certain variables must be known.
The number of systems, $S$, and the time, $T_{i}$, that each of
I. SINGLE SYSTEM ..... $S=1$
SPARING CYCLE

            \(=11\)
    II. MULTIPLE S:STEMS - EACK SEQUENCE IS IDENTICAL.
    NUMBER OP SYSTEMS \(=S\)
    SPARING CYCLES OF ALL SYSTENS ARE EQUAL TO \(T_{1}\) c
    III. MULTIPLE SYSTEMS - EACH SYSTEM SEQUENCE IE IDENTICAL.
NUMBER OF SISTEMS $=S$
SPARING CYCLE OF EACH SYSTF: $=T_{R}$ AND MAY BE DIFPERENT.
NOTE: THE SYSTEM CONFIGURATION IDENTIFIES HOW MANY SYSTEIS, S, WILL RECEIVE SPARES FROM THE SPARE PCOL AND TME LENGTH OF TIME, TR, EACH SYSTEM WILL BE IN THE PROCESS SEQUENCE DURING THE SFARING CYCIE.
systems is to be required to operate mist be known. The sequence of processes that a system undergoes must be determined. The number, $I$, of these processes can be related to Pigure 2.1 to correctly identify the proper sequence of events. Th position or process, J, where the spare will be reouired in the process cycle must be correctly identified. The different process veans, $u_{i}$, variances, $\sigma_{i}^{2}$, and the third moment, $\mathrm{MC}_{i}$, of the precess cycle time density function about its mean must be known. The desired probability level, P. that sufficient spares will be available should be determined.

The technique then follows a set of steps to calculate the desired number of spares. Sevezal basic functions must first be calculated:

$$
\begin{array}{ll}
T=\sum_{i=1}^{S} T_{i}+S \sum_{i=J+1}^{I} u_{i} & =.1 \\
u_{c}=\sum_{i=1}^{I} u_{i}
\end{array}
$$

$$
\sigma c^{2}=\sum_{i=1}^{I} \sigma_{i}^{2}
$$

$$
K 1=\left(u_{c}^{2}-\sigma_{c}^{2}\right) /\left(2 u_{c}^{2}\right)
$$

and

$$
K 2=1 / 12+5 \sigma_{c}^{4} /\left(4 u_{c}^{4}\right)-2 \sum_{i=1}^{T} M C 3 /\left(3 u_{c}^{3}\right) . \quad 2.5
$$

The predictod mean and variz:sァ of the sparing configuration can now be determined. The mean value can be calculated by

$$
u_{s}=T / u_{c}-S K 1
$$

and the variance by:

$$
v_{s}=T_{\sigma_{c}}^{2} / u_{c}^{3}+S K 2
$$

Now the probability level that was given is used ro cetermine a value, $Z$, from standardized normal tables. The value is used with the values $u_{s}$ and $v_{s}$ to give the first estimate of the number of spares.

$$
N=u_{5}+2 \sqrt{v_{s}}
$$

$$
2.8
$$

This gives a starting point in the iteration to find the predicted number of spares. This value is r sunded upward to the nearest integer value, $N$ '. This value is then used to calculate:

$$
\begin{align*}
& u_{p}=\left(N^{\prime}+1\right) u_{c}-s \sum_{i=J+1}^{I} u_{i} \\
& \sigma_{p}^{2}=\left(N^{\prime}+i\right) \sigma_{c}^{2}-s \sum_{i=J+1}^{I} \sigma_{i}^{2}
\end{align*}
$$

and

$$
u_{p}^{\prime}=u_{p}+(S-1) \cdot!_{c}^{K I}
$$

$$
2.11
$$

A normalized value, 2 ', can then be found as

$$
Z^{\prime}=\left(u_{p}-\sum_{i=1}^{S} T_{i}\right) / \sigma_{p}
$$

This value can then be looked up in the standardized normal tables and a probability level that sufficient spares will be available can be found. This value can then be compared against the desired probability level. If the value is too high then a new value can be found by decreasing the number of spares, $N^{\prime}$, by one and repeating the process starting with Equation 2.9. This can be repeated until the least number of spares that will give either the desired probability or one slightly higher than the desired probability can be found. If, on the other hand, a probability is found less than the desired probability. add one to the number, $N^{\prime}$, and repeat the sequence starting with Equation 2.9.

## Example

Ar example of the technique wili now be presented to illustrate the calculations. The number of systems used will be chree processes ser system. Since all of the systems are identical only one of the syatems is illustrated in Figure 2.2. From this it is seen that the spare is required at the end of the first process. Each of the three systems will be required to be in use 310 time units. The desired probability level that sufficient spares will be available is .92.

The thre processes will be taken as exponentials with $u_{1}=$ $40, \sigma_{1}^{2}=1600, u_{2}=10, \sigma_{2}^{2}=100, u_{3}=12$, and $\sigma_{3}^{2}=144$. The third moment of the exponential about the mean is defined as tro times the cubed value nf the mern.


P: iữe 2.2 EXAMPLE PROCESS SEQUENCE

With this it is now a simple task to start with Equation 2.1 and calculate the desired values. The basic parameters are $\mathrm{T}=996, \mathrm{u}_{\mathrm{c}}=62, \sigma_{c}^{2}=1844, K 1=.26014$, and $K 2=.00232$.

The desired probability level is . 92 and this value can be found in a standardized normal table to give $2=1.41$. Now by using Equation 2.8 the first estimate of the number of spares can be calculated as $\mathrm{N}=19.19$. The first estimate of the number of spares would be $N^{\prime}=20$.

The basic parameters have now been calculated. The probability that sufficient spares will be xyailable can now be calculated by using an estimate of 20 spares. Starting with Equation 2.9 the parameters are $u_{p}=123 . S_{, ~} \sigma_{p}^{2}=37992.0$, c.nd $u_{p}=\{268.26$. Equation 2.12 gives a 2 , value of 1.453 . This value can be found in a standardized normal table to give a probability level of .958 for 20 spares.

The desired level was .92; thus 20 spares could be too
many. The naxt step would be to decrease the spares to 19 and so back to Equation 2.9. This gives new values of $u_{\cdot p}=1174.0, \sigma_{i}^{2}=36148.0, u_{p}^{\prime}=1206.25$, and $Z=1.453$. This value then gives a desired probability level of .926 for 19 spares.

The desired level is still.92. As can be seen there could still be toc many spares to give the desired results. The next step would be to reduce the number of spares to 18 and start with Equation 2.9 again. A probability level of .876 would be found. This is less than the desired level of .92. Thus the correct solution would be to use 19 apares and have a probability level of .926 that enough spares would be availahle.

The technique has been derived and the approximations used have theoretical background as to their validity. computer simulations have been run using the normal density function of time to failure in an attempt to justify the method. These simulations were not run for a large number of casss; thus there was not adequate information to support the theory. The technique has not been tested using various other probability density functions of time to failure and the range of the variation of the process parameters has not been 8 tudied.

Thus it is the purpose of this paper to find the region of feasibility for the prediction technique by using different probability density functions of time to fallure through computer simulations and theoretical comparisons.

Chapter III will describe the areas that are to be studied. The method of examining thes separate areas will also be presented.

## CHAPNER III

TEST PROCEDURE
It was decided to use as general a configuration as possible during the initial developaent of the test procedure. This configuration would be three systems, with each systen being composed of three frocesses. These processes of operation, repair, and test were described in the previous example. This configurat!on would be used. in the computer simulation to give a simulated number of spares and the corresponding proportion of the total number of spares. A corresponding time would be associated with the simulation. The prediction technique would also be used with this configuration to give sparing levels and corresponding probability levels for the same operating time. The processes in the aimulation and the prediction technique will have the Bame rean values and variances.

The testing will consist of running a simulation for one pointi in time or a desired tine period for the systems to operate. The means of the nu-vesses are required knowledge. Therefore the time increments that will be run will be multiples of the mears of one sparing cycle. These tests will be run from one and up to at least eight multiples of the sparing cycle mean. This should cover a wide range of situations.

Several areas of further research of the prediction technique were presented in the paper prepared by H.E. Lynch, R.S. Morris, Dr. R.J. McNichols, and Dre D.R. Shreve(8). One of these areas was to study different coefficients of variation (standard deviation/mean) of the process density function.

There are three areas that should be considered in order to study the coefficient of variation. The first area is when the coefficient is greater than one and the process density function of time to fail..re is skewed left. This can be accomplished by using the Weibull density iunction for the probability density function of time to failure. The skewness can be caused by having a decreasing failure rate. Since the Weibull distribution is defined by three parameters, the mean value, standard deviation, and the location parameter can be set, and thus define the system.

The coefficient of variation can be set equal to ons. This would mean that the mean value and standard deviation of each process would be the same value. Therefore the process density function would be that of the exponential distribution. This system will be created in two different methods. One method will be to eet the first process density function equal to the exponential. The mean will be equal to the sum of the mears uset in the process making up the system in the sparing te: inique. The remaining processes in the simulation will have zero means and varjances.

In other words, the system will be composed of one process with the exponential distribution of time to failure. The second method will be to use exponentials for earh of the separate processes in the simulation and use the corresponding values in the sparing technique.

The third method will be to have the corfficient of variation less than one, aid the process density function skewed right. This methos will also utilize the Weibull density function of time to failure. This can be done by making the process dansity runction have an increasing failure rate.

These simuiations will be run for a point in time to get the number of spares until a point is reached where a running mean of the number of spares will be found rot to change significantly. In order to achieve a random simulation a minimum number of simulations will have to be in so that enough variations will be entered into the calculations. A maximum number of simulations must be found in case the process mean and variance do not reach a constant value. Tinis must be done so that the computer will not continue to rur. and possibly go into an endless loop.

The mean and variance of the number of spares for the prediction technique and simulation process will be found for each point in time. Before they can be compared, the distribution of the spares for the simulation will be checked to see if it approximates a noramal distribution by a test
such : : $:$ the Chi-Squared test for goodness of ift. If the hypothesis tinat the distribution of spares is normal is accepted at a certain significant level, the means and variances can be compared at that point in time. The number of sparcs can also be compared for a certain confidence level and the confidence cevels for a certain number of spares can also be compared. If the hypothesis is rejected, then the sparing level can be found from the total number of spares by using the confidence level for the predietion technique and these levels can be compared to the predicted number of spares. The predicted number of spares can also be taken and the corresponding confidence levei for that number of spares could be found from the sparing density function.

The sparing technique is based upon the normal digtribita tion. To test the sparing technique, simulations will be run using the normal density function of time to failure for each process density functiona This testing would be done by using two separate methods. The values of the process means and variances for the case where the coefficient of variation was greater than one would give a comparison cf the simulated value and the theoretical value. These values could then be compared against those that were used with the Weibull density function. The same results can then be found using the case where the coefficient of variation is less than one.

Another area of interest is where the process densities are skewed left and right. This can be accomplished by making the first process density function a Weibull with a decreasing failure rate, the middle process density function is normal, and the last prosess density function a Weibull with an increasing failure rate. This configuration would be run at different points in time checking the number of spares at each point in time to see if the sparing function is app=oximating a normal distribution. The number of spares for the desired confidence level will be compared with the predicted number of spares for the same confidence level. Conclusions should be dram from the number of spares and those simulated for a confidence level and the variation of confidence levels for a specific number of spares.

The sparine technique has a special feature that will be tested. Table 2.1 shows a third case which is unique. This case shows that for multiple systems the desired time of operation does not have to be equal. In Chapter I the technique by A.E. Holmes and N.S. McQuay (6) and the technique by G.K. Ebel and A.J. Lang (4) were both based upon the principle that the desired time of operation of the cystems were all the same. Thus the sparing technique has a useful application that must be tested. This will be accomplished by having one of the three basic systems run for a longer time increment than the other systems.

The following chapter will describe the development of the computer program for the simulation and the computer program of the sparing technique.

## CHAPTER IV

## COMPUTER PROGRA:AS

## Computer Program Development of Sparing Technique

A computer program was developed utilizing the theoretical calculations in Chapter II. This program was written to be as general as possible. It was developed in this manner so that different process density functions of time to failure could just be inserted ir. the program at the proper points. The body of the program is shown in Appendix I.

The initial conditions or variables must first be chosen. These include the number of systems, number of processes, process where the spare is required; the time each system is required to operate, and the desired probability that sufficient spares will be available. The different process means and varianees must be known. The density functions of the processes must be selected so that calculations of the third momert about the mean of each process can be found. These moments are then summed to give the third moment about the mean for the process cycle. These initial conditions make no restrictions as lonf; as they meet those imposed in the conditions in Chapter II. In other words, as long as the conditions are met, the thecreticil calculations are the same.

The program was develondd is, that it could be compared
against the results of a computer simulation. Equations 2.1 through 2.7 show that during the initial calculations the desired probability level of sufficient spares is not required. This is unique in the sense that for a desired time period the theoretical mean and variance of the sparing distribution are easily obtrirable without using the probability level.

The first estimate of the number of spares fur a desired availability level is now ready. It was desired not to have just one estimate of the number of spares for a desired availability level but to have the desired availability level run from 50 pe." cent probability of sufficient spares to approximately 100 per cent. This was desired so that the results could be compared with those of the corsesponding simulation. Therefore for the first estimate of spares a desired probability level of 99.99 per cent was chosen. Figure I. 1 shows the routine of using Equations 2.9 through 2.12. This would proceed to give a predicted number of spares ard the corresponding predicted probability level. After lis :ins done the nuri:er of spares would be decreased by one and the process wouls be repeated.

This procedure wolild continue until the value $Z^{\prime \prime}$ in Equation 2.12 reaches a negative value. This was done for two reasons. The first reason is 2' decreases to zero and the corresponding probability level associated with the value of zero is 50 per cent. There are very few systems
that will be desired with a probability of less than this amount. Also, if a level less than this amount is desired. then it would be just, as easy to spare for the mean life. The second reason is that the calculations were stopped at this point due to the theoretical equations themselves. Equation 2.9 calculzte:s a value $u_{p}$ which is made up of two parts:

1) $(N++1) u_{c}$
2) $S \sum_{i=j+1}^{I} u_{i}$

These two parts are capable of becoming negative value when part 2 is subtracted from part 1, if the value $N^{\prime}$ is small. This value affects Equation 2.11 when this negative value is larger than (S-1) $u_{c} K 1$. Equat-on 2.10 is aiso capable of becoming a negative value. This term is defined as a squared term. If it proceeds to a negative value then the square root of the term would be an imaginary term.
$\because$ M.-s this program is capable of performing the theoreticai caic:uiztions and yiving results for a sparing level and the comresponding probability level. This probability level is in the range from 50 per cent to 100 per cent and these results can be =ompared against the computer simulation.


#### Abstract

Computer Simulation of Sparing Problem The computer program for the simulation routine was also written co be as general as possible. This was done so that to change the prorzbility density functions of the  variabler:. The computer pregram is shown in Appendix II.

In the simulation the first item performed was that an array of integer values was read into the program. The reason for ris was cue to an IRM system supplied routine to give a uniform randon variable which was used in the program. Its use will be explained further in this section. The type of system that was designed to be simulated would have to be selected. This livolves putting in the number of systems, the number of processes. the process in which a spare would be required, and the means and variances of each process. The process density function of time to failure $\cdots$..sid have to be selected. The equations for each process $\therefore$ insity function would be rearranged so that when a prokijulity of failure is given the corresponding time to  that each of the systems vas required to operate is set. This is done so that after the simulation is run for that period, the time could be incremented and the simulation could then be run for a new time period.

The computer system that the simulation was to utilize


was an IBM 1130. This computer was very adequate for the simulation except that it was slow and had a limited core size. Due to this limited core size it was decided that the program would run for a maximum of six hundred simulations for one time period.

A scientific sutroutine supplied by IBM was used in the system to give a uniform distributed random veriable. This random variable is supplied as a percentage point between zero and one. In order to use this subroutine an integer seed value has to be suprlied. This seed value gives better results as if it is a prime value. It was desired to keep the simulation as random as possible. These seed values were found to repeat themscjves after the subroutine was repeatedly called several times. .

It was then possible tlat a simulation cculd be run with an initial seed ralue and then this value could come up again. This did nst affect the results unless this seed value turned up again at the beginning of a new iteration. Thus the values that would follow would just be repeated values. Therefore the simulation would not be random. $A$ method was devised to get around this. All of the initial seed values were put in an array. Then when a new iteration was started the new seed value was compared against all of the previous seed values that were used to start simulations for tiat time period. If tnis vialue was different from all
of the others a new iteration was started. If the value had been used previously then one of the values that hai been read in was used and then it was checked to see if it had been used. This continued so that all of the iterations within a simulation would be different.

The initial seed values that were read into the compute= program were found by the author. These values were. found by using a computer program to find all of the prime numbers from 13597 to 32749. These prime numbers were set up in an array of six pages, six columns, and six rows of ten numbers. In order to get a rardom array of 50 values: out of these numbers the zutror $\because i j a d$ three dice to determine the page, the coirmn, and the row. mhen a random number table was used tc oin:ix mil:ps from zero to nine. This method was employed until the fifi:' values had been determined.

Each of the systems defined in the input variables were Eimulated independently. The program does this by simulating spares for one system at a time. At this point the program used the random number generating subroutine. Then, depending upor the initial system configuration as to whether the different processes were normel, Weibull, or exponential, the random probability was :us: • calculate a corresponding time increment for that process. This time increment was added to the time that the syst.in had already accumulated. The total time would then to chucker against the desired time period of operation for that system.

If this time was less than the desired time of use then the process was checked. If the process was where a spare was required, then a spare was added to the total number of epares for that simulation. The program would then simulate a time for the next process. If the process did not require a spare, then the prosran rould $f 0$ on and simulate a time for the next process.

This process was continued until the simulation time of the system was larger than the desired time of system use. The program was then repeated for the next system until all of the systems had been accounted for. One simulation had been done after enough spares were found to keep all of the systems in operation for their desired time periods.

As had been previously stated the program was supposed to run for six hundred simulations to get a representative simulation. As the simulations were performed a running mean and standard deviation of th spares was calculated. As the number of simulations increased the variation of the sample mean value became less and less. This trend was expected, so after 100 simulaticns, the program began to check the r: : יnge in the mean val $\because \because \because \because$ one simulation to the next. If the variation in the mear. was less than .0005 for ten simulations then the procedure stopped simulating new values. The value . 0005 was chosen tecause it represented a small ciange in tha mean ralues. The rex.scn that the change wust
hold for ten occurences was to eliminate the possibility that the change was not due to chance occurences．

After the program had been run and the difference in means was within the limits the required number of times，it left the simplation loon．The numbers of spares in the array were the results of a raniom simulation but they were all whole numbers since a fraction of a spare was not practical． These spares were divided up into a frequency array so that the number of times each spare was used could be tabulated． This array was printed in a histogram to give a pictorial represencation of the spares distribution．

Once the frequency distribution had been set up，a Chi－ Squared goodness of fit test was run on the spare set．This test was run to compare the frequency distribution of the spare set with a theoretical normal distribution having the same tatal rumber of simulations，the same mean，and the same stariaici Eごミョtion．Fie y－ocedure used in this test was taken from Guality Contro？and Industrial Statistics（3）．

The degrees of frecdicm for the test corresponded to the number of cells that were used in the calculations．This value had to be altered．This was due to the fact that three degrees of freedom were lost due to the fitting process． These three degrees of freedom corresponded to the fact that the total number of simulacions，the mean，and standard deviation of the sparc set were used．Thus the actual degrees of freedom for the Chi－Squared value were the number of cells minus three 63.

This simulation program was used for the different types of systems configurations that were described in Chapter III. The theoretical program was used with the same configuration. The results of these are presented in Chapter V.

## CHAPTER V

## RESULTS

This chapter deals with the iesults obtained from the computer simulations and the sparing technique. Chapter III described the different types of systems that were tested. The results of the test sequence will. te given in this chapter.

With the exception of one test, all of the teat systems were composed of three processes each. The mean value of the processes, $u$, was set at initial values and remained the same for the different types of probability density functions that were used. The variance, $\sigma^{2}$, of each process was changed to meet the requirements that were imposed by the test.

There will be two tables of results included in this chapter for each case. The first table will give the process parameters used in the test. These will be the mean, variance, and coefficient of variation. If other paraneters such as those that pere used in the process utilizing the Weibull density function were required, then they are given. This table will have the desired time of operation and the corresponding values of the mean and standard deviation from the simulation and prediction technique.

The number of iterations of the simulation for the corresponding time period is given. The degrees of freedom
that were found from the Chi-Squared goodness of fit test are given. The Chi-Squared value from each simulation is also gifen. The degrees of freedom and the Chi-Squared values found in the test were used in conjunction with a Chi-Squared table to obtain the $a$ level(3).

This table also shows the relationship of the predicted mean value, $u_{p}$, with the simulated mean value, $u_{s}$. Tinis was done by dividing the predicted mean value by the simulated mean valus. This same procedure was also used for the standand deviations of the sparing technique, $\sigma_{p}$, and the simulation, $\sigma_{s}$.

The second table occupies more than one page. This is due to the large number of values that were tabulated. The actual results of the simulation and the prediction iechnique are presented in this table for each time period. The time periods listed in this table are set up in multiples w the sparing cycle mean life. Since the mean life is 50. the time periods are 50,100 , and so forth. These time periods consist of all the time from zero to the vad listed. For one time period a spare level is showr and the co usperding probability level that sufficient spares are c vailable from both the prediction tecnnique and the simulation.

In the simulation previously mentioned a Chi-Squared goodness of fit test was used. In order to perform this test the upper and lower cells of the spare array had to be added. The spare level is marked for each time period at
the point where the remainder of the spare levels had to be added.

## Coefficient of Variation Greater Than One:

The first area of interest was concerned with the coeffis cient of variation of the process being greater than one and the process density function skewed left. The probability density function of time to failure was the Neibull.

$$
f(t, A, B, G)=(B / A)(t-G)^{B-1} e^{-(t-G)^{B / A} .}
$$

The Weibull is defined by three parameters. The location parameter, $G$, for this system was set equal to zero. The value of time, $t$, could then be varied from zero. The value could be varied to any value desired. The values of the shape parameters, $B$, and the scale parameters, $A$, were then left. These two parameters could then be made dependent upon the mean and variance.

The mean values of each process were chosen. The conditions that were defined for this test limited the range of the shape parameter. In order for the process density functions to be skewed left the shape parameter must be less than cre. The shape parameter was then used with the mean value to give the scale parameter (7). The variance of each process was then a function of that process shape and scale parameter.

Two distinct cases were considered for this test. Case
$A$ and Case $B$ were set up to have identical parameters in the second and third processes. These parameters are presented in Tables 5.1 and 5.3. The first process had the same mean value but the shape parameter was changed 80 that Case A had a variance of 6124.99 and Case $B$ had a variance of 2242.02. This ireated two systems where the coefficient of variation for each process was greater than one while for Case $B$ the coefficient of variation of the sparing cycle was less than one. This can easily be seen. Case $A$ ir Table 5.1 has a eparing cycle mean of 50 and a sparing cyele variance of 6331.81. This gives a coefficient of variation of 1.59 for the sparing cycle. Case $B$ in Table 5.3 has a sparing cycle mean of 50 and a sparing cycle variance of 2448.83. This gives Case B coefficient of variation of - 99 for its sparing cycle.

The results from Case $A$ are presented in Tables 5.1 and 5.2. The results of the Chi-Squared goodness of fit test are shown in Table 5.1. The level varies from a value of .95 to .005 . Only two time pericis show levels less than .05.

Table 5.2 shows the probability levels for Case $A$. These results show that as the tine periods became larger, the values of the sparing technique ketween 50 per cent and approximately 75 per cent had a marked improvewent in their correlation. That is, at the time period of 50 for a 74 per cent probability of sufficient spares, the prediction
technique would require eight spares while the simulation would require only six spares. At the time period of 250 the simulation would require 21 spares while the prediction technique would require 22 spares. At 400 both the simulation and prediction techniques would require 32 spares.

For the probability levels between 75 fer cent and 100 per ceist a trend started to develop. The greater the probability desired the greater discrepancy between the predicted and simalation values. This can be seen by assuming a probability level of 80 per cent, at the time period 50 , the simulation would require six spares while the prediction technique would require nine spares, or a difference of three spares. At the time period of 400 the simulation would recujre one less spare than ths prejiction technique. If 90 per cent were used at a time of 50, a difference of five spares would be found while at time 400 a difference of three spares would be found.

The results of Case B are presented in Table 5.3. The coefficient of variation of each process should be noted. The coefficients for the three processes are identical.

The $a$ levels are all Ereater than the .05 level except. for the initial time perioi of 50. Comparison of the ratio of the means and ratio of the standard deviation can be seen. For each time period the ratios of the means for Case $B$ were less than the correspondinr. vides for Case $A$. The same
situation held for the ratios of the standard deviations.
The probability levels and corresponding sparing levels are in Table 5.4. These results shox a larger degree of correlation than do those of case A. For probability levels from 50 per cent to 90 per cent the simulated and predicted values correspond for all of the time periods. Using a probability level of 90 per cent there was a trend difference of spares between the prediction technique and the simulation. The prediction technique was constantly giving probability levels below those of the simulation for corresponding sparing levels.
TA SLE 5.1 COEFPICIENT OF VARIATION GREATER THAN ONE, CASE A

SPARIIG CYCIE:										
$\begin{aligned} & u(1)=35.00 \\ & u(2)=7.0 \\ & u(3)=3.0 \end{aligned}$		$\begin{aligned} & \sigma(1)^{2}=6124.99 \\ & \sigma(2)^{2}=89.68 \\ & \sigma(3)^{2}=117.14 \end{aligned}$			$\begin{aligned} & B(1)=.5 \\ & B(2)=.75 \\ & B(3)=.75 \end{aligned}$		$\begin{aligned} & A(1)=4.18 \\ & A(2)=3.78 \\ & A(3)=4.17 \end{aligned}$		$\begin{aligned} & \sigma / u=2.24 \\ & \sigma / u=1.35 \\ & \sigma / u=1.35 \end{aligned}$	
$\begin{aligned} & \text { TIME } \\ & \text { ERIODS } \end{aligned}$	PREDICTION TECHNIQUE				SIMULATION				COMPARIS ON	
	$\mathbf{u}_{\mathbf{p}}$	$\sigma_{p}$	$u_{s}$	$\sigma_{s}$	N.S.	D.F.	$x^{2}$   valiue	$\underset{\text { QEVEL }}{Q}$	$u_{p / u_{s}}$	$\sigma_{p / s}$
50	6.20	4.09	4.69	2.10	- 165	6	4.10	. 5	1.32	1.94
100	9.19	3.02	8.37	2.96	157	9	3.06	.95	1.10	1.02
150	12.20	1.22	11.44	3.86	196	13	25.27	.025	1.07	0.32
200	15.20	2.47	14.34	4.36	140	15	8.79 17.90	. 8	1.06	0.57 0.79
250	18.20	3.70	17.61	4.69	163	17	17.90	- 3	1.09	0.79 0.80
300	21.20	4.61	21.08	5.81	138	20	27.26	. 1	1.01	0.80
350	24.20	5.38	23.12	6.78	156	24	17.66	. 8	1.05	0.80
400	27.20	6.04	26.81	7.05	148	25	45.22	. 005	1.01	$0.80^{\circ}$

$\begin{array}{ll}\text { N.S. } & \text { NUMBER OF SIMULATIONS } \\ \text { D.F. } & \text { DEGREES OF FREEDOM. } \\ \text { () PROCESS }\end{array}$
TABLE 5.2 COEFFICIENT OP VARIATION GREATER THAN ONE, CASE A

SPA.E	tine periods							
	50		100		150		200	
	X	Y	X	Y	X	Y	X	Y
5	65.5	55.8						
5	81.2	64.6						
7	92.?	71.6						
8	96.4	77.3	54.8	54.7				
$\bigcirc$	97.6	81.9	64.3	62.2				
$: 3$	93.8	95.5	77:1	68.7				
i:	99.4	88.4	85.4	74.2				
:	9.9	90.7	31.7	78.7	58.7	60.8		
$1 ?$			95.5	82.5	66.3	66.7		
15			97.5 98.1	85.7 88.3	77.0 85.2	71.9 76.4	31.4 63.6	53.6 59.7
16			99.9	90.4	91.3	80.2	71.4	65.2
17					94.9	83.4	77.9	70.1
18					95.4	86.4	83.6	74.5
19					98.0	88.5	90.7	73.3
20							92.1	81.6
21							93.6	84.5
22							95.7	86.9
23							97.1	89.1
24							97.9	$9 \mathrm{J.7}$
25							99.3	92.2
26							99.9	
$\mathrm{X}=$ SIMULATION PROBABILITY LEVEL					Y PrREdICTED PROBABILITY LEVEL			


TABLE 5.3 COEPFICIENT OF VARIATION GREATER THAN ONE, CASE B

table 5.4 coefficient of variation greater than one, case b

$\begin{aligned} & \text { SPARE } \\ & \text { LEVEL } \end{aligned}$	50		TIME PERIODS									
			100		150		200		250		300	
	X	$Y$	X	$Y$	x	Y	X	Y	X	Y	x	Y
3	51.0 72.2	52.5 69.8										
5	87.4	81.4										
6	90.9	88.7	40.1	51.8								
?	96.5	93.2	59.2	65.7								
8	99.5	95.9	74.1	76.5								
9	100.5	97.6	87.7	84.3	46.5	51.5						
10			95.2	89.7	60.0	63.5						
11			97.3	93.4	71.2	73.4						
12			97.9	95.8	85.3	81.1	45.8	51.3				
13			97.9		96.6	86.9	56.8	61.9				
14			100.0		93.5	91.1	65.8	71.1				
15					97.1	94.0	78.1	78.6 84.5				
16					98.8 100.0	96.0 97.4	87.1 92.9	84.5 89.0	59.3 68.8	69.8		
18			.			98.3	96.1	92.9	79.3	76.6		
19							26.8	94.7	86.7	82.5	59.7	60.0
20							98.1	96.4	89.6	87.1	66.2	68.0
21							99.4	97.5	96.1	90.1	77.7	75.0
22							99.4	98.3	94.8		77.9	80.8
23 24							100.0		97.8	95.3	84.4	85.5
24									99.3	96.8	90.9	89.3
25									99.3 100.0	97.8	94.8	92.1
27											99.4	95.9
28											100.0	97.1
29												98.0

TABLE 5.4 (continued) COEFFICIENT OF VARLATION GREATER THAN ONE, CASE B


## Coefficient of Variation Equal One

The first part of this test was designated Case C. This part used a single process for each of the three systems. The process used the exponential probability density function of time to failure. Since the otier tests were using a sparing cycle mean life of 50 time units, the mean life of this process was also set at 50.

These results are given in Table 5.5. The $Q$ level for this test varied but the least it became was .05. This occured at the time period of 50 which was equal to one mean 1ife.

The probability levels and sparing levels are given in Table 5.6. This table shows that for time periods of 50 upward to 400 that for probability levels below 80 per cent the prediction technique probability was larger than the corresponding simulated probability for a spare level. Probability levels larger than 80 per cent tended to have a smaller predicted probability than the corresponding simu1ation.

The second part of the test was Case D. This part used three procrsses for each of the three systems. Each of the process density functions of time to failure was exponential. These results are given in Table 5.7.

In this test, the $\alpha$ level reached its lowest value at the time period 150. This value was .025 while for other time
periods the lowest $a$ level was. 1 .
Table 5.8 gives the probability levels for this test. These results show that for lower probability levels the prediction probability level was larger than the simulation for the range from 50 per cent to 80 per cent. In the 80 per cent to 90 per cent range this trend reversed and the predicted values became smaller than the corresponding simulation values.
table 5.5 COEFFICIENT OP VARIATION EQUAL ONE, CASE $C$

$\begin{gathered} \text { TIME } \\ \text { PERIOD } \end{gathered}$	PREDICTION TECHNIQUE		$u_{s}$	Simulation					COMPARIS ON	
	$u_{p}$	$\sigma_{p}$		$\sigma_{s}$	N.S.	D.F.	$\begin{gathered} x^{2} \\ \text { VALUE } \end{gathered}$	$\underset{\text { LEVEL }}{a}$	$u_{p / u_{s}}$	$\sigma_{\mathrm{p}} / \sigma_{\mathrm{B}}$
50	3.0	1.73	3.09	1.87	184	6	12.83	. 05	0.97	0.93
100	6.0	2.45	6.07	2.63	168	8	9.27	.3	0.99	0.93
150	9.0	3.00	9.36	2.88	169	9	11.37	. 2	0.96	1.04
200	12.0	3.46	11.78	3.07	145	10	7.38	. 5	1.02	1.13
250	15.0	3.87	15.14	4.06	153	14	10.66	$\cdot 7$	0.99	0.95
300	18.0	4.24	18.05	4.35	133	14	14.77	- 3	0.99	0.98
350	21.0	4.58	20.72	4.16	149	14	17.09	. 2	1.01	1.10
$4 \mathrm{4co}$	24.0	4.90 5.20	24.69	4.73 5.13	134	16	14.00	. 5	0.97	1.04
450 500	27.0 30.0	5.20 5.48	27.27 29.84	5.13 5.46	173 135	18 18	17.31 18.47	.5	0.99 1.01	1.01 1.00
550	33.0	5.74	32.50	5.08	130	17	21.43	.2	1.02	1.13
600	36.0	6.00	35.71	6.24	143	22	18.81	. 5	1.01	0.96

[^22]

TABLE 5.7
SPARING CYCLE: PROCESS 2(EXPONENTIAL), PROCESS 3(EXPONENTIAL), PROCESS 1 (E(PONENTLAL)
$\sigma(1)^{2}=1225.0$
$\sigma(2)^{2}=49.0$
$\sigma(3)^{2}=64.0$

TIME PERIOD	PREDICTION technique			Simulation					COMPARLSON	
	$u_{p}$	$v_{s}$	$u_{s}$	$\sigma_{3}$	N.S.	D.P.	$\begin{gathered} x^{2} \\ \operatorname{VALUE} \end{gathered}$	$\underset{\text { LEVEL }}{a}$	$u_{p / u}{ }_{\text {a }}$	$\sigma_{p / \sigma_{s}}$
50	3.20	1.42	3.10	1.39	224	5	3.15			
100	6.20	1.90	6.16	1.91	228	6	7.15	$\cdot{ }^{-} 3$	1.03 1.01	1.02 0.99
150	9.20	2.29	9.31	2.29	212	?	14.33	.025	1.00	1.00
200	12.20	2.61	12.20	2.63	208	9	6.95	.5	1.00	0.99
250	15.20	2.90	15.35	2.87	217	10	11.50	. 3	0.99	1.01
300	18.20 21.20	$3.1{ }^{\prime \prime}$	18.24	3.28	208	12	14.04	. 2	1.00	1.00
400	24.20	3.41	21.09 24.27	3.79 3.57	215	14	8.55	-8	1.01	0.90
450	27.20	3.85	26.86	3.92	207	14	15.07 8.77	$\cdot 3$	1.00	1.02
500	30.20	4.06	29.94	3.80	206	14	20.78	. 1	1.01	0.98 1.07
N.S. D. P. ()	NUMBER PROCE	$\begin{aligned} & { }^{\circ} \text { SIM } \\ & \text { OF } \end{aligned}$	ITIONS EDOM							

TABLE 5.8 COEFFICIENT OF VARIATION EQUAL ONE, CASE d

SPARE LEVEL	50		100		150		200		250		300	
	X	Y	X	$Y$	X	$Y$	X	$Y$	X	Y	X	Y
3	62.5 82.6	$\begin{aligned} & 65.5 \\ & 83.6 \end{aligned}$										
	95.5	$92.8$										
6	100.0	$96.9$	60.5	61.6								
$?$			78.1	77.8								
8			83.6	88.2								
9			95.6	94.6	57.6	?c.?						
10			. 97.4	97.1	70.3 83.0	74.2 84.6						
11			99.1	98.6	83.0 02.9	84.6 91.3	53.4	58.5				
12					02.9 96.2	91.3 95.3	69.2	71.7				
13					96.2	95.3 97.6	69.2 79.3	71.7 81.9				
14							88.0	89.0	51.6	57.7		
15 16							95.7	93.6	68.2	69.6		
17							98.6	96.4 98.0	77.0 86.2	79.7 86.9	58.2	57.0
18							99.5	98.0	82.6 92.6	91.9	69.7	68.4
19									95.9	95.2	76.4	77.9
20									98.6	97.2	82.2	85.1
21									?9.5	98.4	88.0	90.4
22									.9.5		95.2	94.0
23											96.2	96.4
24											98.1	97.9
25					-							
							Y $=$ PREDICTED PROBABILITY LEVEL					

naonnomot
ทinincioision


## Coefficient of Variation Less Than One

The third area of interest was concerned with the coef. ficient of variation of the process being less than one and the process iensity functions shewed right. The Waibull probability density function of time to failure was used for each of the three processes.

The mean values of each process were the same as they had been in all of the previous cases. The Weibull probability density function has been defined in Equation 5.1. For the process probability density function to be skewed right the shape parameter, $B$, was made greater than one. Then by using the mean value for a process and picking a shape parameter value the scale parameter was found. Then the variance was determined.

This area of interest was also studied in two separaite cases. The two cases had the same parameters for tive second and third processes. The difference in the two was that the first process, Case E, had a variance of 426.64 while Case $F$ had a variance of 96.4 . The two cases had the same mean for the first process.

Case $E$ is presented in Table j.9. These results show the lowest $a$ level was .05. The probability levels and the corresponding spare levels of Case E are in Table 5.10. These results show varying patterns. The probability levcls do not show a direct correspondence between the prediction
technique a.id the simulation for a sparing level. The results in Table 5.10 do show a slight trend. From 50 per cent to approximately 93 per cent if a prodability level is picked then the discrepancy between the sparing levels will not be more tran one spare.

Case $F$ decreased the variance of the first process and these results are in Table 5.11. The degrees of freedom should be noted in this case. At the time period of 50 the simulation gave no degrees of freedom so the Chi-Squared test could not be performed. As the time increment increased, the degrees of freedom did not become increasingly larger for the time periods prosented. The range of the cl level was between .025 and .3 .

The probability levels and corresponding spare levels of this case are presented in Table 5.12. These probability levels show a marked pattern. Irregardless of the time period, the predicted probability for a spare level is equal to or larger than the corresponding simulation probability. The exception to this fact occurs in the lower probability levels for the time periods of 500 and 550. Throughout this table there is never a difference of more than one spare for a desired probability level between the simulation and predicted results.
table 5.9 cobppicient op variation less than one, case e


$\begin{aligned} & \text { SPARE } \\ & \text { LEVEI } \end{aligned}$	50		100		150		200		250		300	
	X	Y	X	Y	X	$Y$	x	Y	x	Y	x	Y
3	79.4											
	96.9	97.9										
6			76.8	79.4								
?			95.2	94.5								
8			99.4	98.9								
9			100.0	99.8	78.8	75.3						
10					92.4	91.3						
11					99.2	97.6						
12					100.0	99.4	68.4	72.5				
13							87.2	88.6				
14							94.7	96.1				
15							97.7	98,9	64.6	70.5		
16									78.7	86.3		
17									90.6	94.7	53.9	48.1
18									$\frac{98.1}{59.2}$	98.2	71.1	68.9
19									59.2	99.5	83.6	84.3
20											92.2	93.2
22											98.4 100.0	97.5

TABLE 5.10 (continued) COEPFICIENT OF VARLATION LESS THAN ONE, CASE E

TABLE 5.11 COEPFICIENT OF VARIATION IESS THAN ONE, CASE P

$\begin{gathered} \text { TIME } \\ \text { PERIOD } \end{gathered}$	PREDICTION TECHNIQUE			SIMULATION					COMPARISON	
		$\sigma_{\mathrm{F}}$	$u_{s}$	$\sigma_{s}$	N.S.	D.F.	$\begin{gathered} x^{2} \\ \text { VALUE } \end{gathered}$	$\frac{a}{\text { LEVEL }}$	$u_{p / u_{s}}$	$\sigma_{\mathrm{p}} / \sigma_{\mathrm{B}}$
50	2.48	0.68	2.81	0.50	138	0			0.88	1.34
100	5.48	0.78	5.60	0.76	157	1	16.31		0.98	1.02
150	8.48	0.87	8.42	0.94	125	1	4. 55	. 025	1.01	0.93
200	11.48	0.96	11.59	0.94	113	1	1.13	. 2	0.99	1.02
250	14.48	1.03	14.56	1.14	117	3	5.76	. 1	0.99	0.90
300	17.48	1.11	17.49	1.24	114	3	3.55	. 3	1.00	0.89
350	20.48	1.17	20.57	1.32	119	3	2.67	. 3	1.00	0.89
400	23.48	1.24	23.43	1. 51	115	3	12.80	. 005	1.00	0.82
450	26.48	1.30	26.45	1.48	116	3	7.77	. 05	1.00	0.86
500	29.48	1.35	29.41	1.50	115	3	3.96	.2	1.00	0.90
550	32.48	1. 111	32.39	1.41	111	3	5.99	. 1	1.00	1.00
N.S.	NUMBER DEGREES PROCEXS	$\begin{aligned} & O F S I N \\ & O F S F \\ & \hline \end{aligned}$	TIONS							

table 5.12 COEfficient op variation less than one, case f

Y=PREDICTED PROBABILITY LEVEL





## Process Skewed Left and Skewed Right

The next case concerns the initial process being skewed left, the second process with no skewness, and the third process skewed right. Tuis was accomilished by making the first process parameter those that were used in Case B for the first process. Thus this process had a Weibull probability density function. The second process was set up as a normal density function with the mean that had been previously used for that process. The variance for the second process was chosen so the coefficient of variation would be less than one. The third process was set up with the parameters of the third process of Case E.

These threc processes make up one system. There were three systems used to create Case $G$ and the results are in Tables 5.13 and 5.14. In Table 5.13 the $a$ level can be seen to never vary below.1. Each time period has at least five degrees of freedom for these $a$ level tabulations.

Table 5.14 presents the probability levels and sparing levels. These results show a trend that as the time periods increase the difference in sparps between the prediction technique and the simulation decreases. That is, for a desired probability level as the time periods increase the spare level associated with the prediction will become closer to that of the simulation.
TABLE 5.13 PROCESS SKEWED LEFT AND SKEWED RIGHT, CASE G

$\begin{gathered} \text { TIME } \\ \text { PERIOD } \end{gathered}$	PREDICTION TECHNIQUE		$u_{3}$	SIMULATION					COMPARISON	
	${ }^{4}$	$\sigma_{p}$		$\sigma_{s}$	N.S.	D.F.	$\begin{gathered} x^{2} \\ \text { Valje } \end{gathered}$	$\frac{\square}{\text { LEVEL }}$	$u_{p / u s}$	$\sigma_{\mathrm{p}} / \sigma_{\mathrm{s}}$
50	3.77	1.28	3.62	1.51	270	5	7.80	-1	1.04	0.85
100	6.77	2.09	6.53	2.25	185	7	6.53	$\cdot 3$	1.04	0.93
150	9.77	2.67	8.82	2. 56	179	$?$	4.03	-?	1.11	1.18
200 250	12.77	3.14	12.42	3.14 3.60	146 139	10	16.47	. 1	1.03	1.00
300	18.77	3.92	19.37 19.32	3.98	139	13	9.61 6.12	. 9	1.03	0.99 0.98
350	21.77	4.25	21.27	4.07	142	13	11.54	.5	1.02	1.04
400	24.77	4.56	24.00	4.79	150	16	10.52	:8	1.03	0.95
N.S.	NUMBER OF SIMULATIONS DEGREES OF FREEDOM PROCESS									

tabie 5.14 processes skewed left and skewed rigitt, case g

TABLE 5.14 (continued) processes skened left and skewed right, case g


## Process Density Function Normal

The next area of interest was to set up the processes of the system with normal probability density functions. This was also accomplished in two cases. Case $H$ was to use the mean values and variances of the processes in Case $B$. The results are presented in Table 5.15.

The $a$ levels show a wide contrast. The first three time periods have low $a$ levels. For the fourth time period the a level could not be obtained. The time periods 300, 550, and 600 also showed low $a$ levels.

The correspondinf probability levels and spare levels are presented in Table 5.16. These values show a small trend. From 50 per cent to approximately 90 per cent the difference in spares for a desired probablility was one. This trend held for all of the time periods. Por a probability level above 90 per cent the difference in spares. started to increase. That is, for a predicted sparing probabilit; for a certain sparing level, the simulated value would be lareer.

This can be illustrated by observing the time period of 250. For the first part if a probability of 85 per cent of sufficient spares was desired, the prediction technique would require 20 spares. The simulation would require 19 spares. If a probability of 95 per cent of sufficient spares was required the prediction technique would require 23 spares while the simulation would require only 20 spares.

The simulation for Case $H$ was run under the assumption that negative time values would be allowed to occur. This lleans tha+ if a low enough probability was obtained from the random number cenerator then a negative time could be associated with it.

In order to explain 'his consider that the time to failure for the first process occured in zero time. This would give a normalized 2 value of -.74. Using normalized sables, 22.96 per cent of the tims a 2 value of less than this could occur. The 2 values for the second and third processes are both -. 74 .

Thus it would be quite probable that a negative time could be found for any of the processes. This would mean that the spare could have failed before it was put into the system. Instead of being added to the total time the system was being used, this time would $b$ ? taken away.

Case I was set. up using the $\leq 1: 0 \in$ parameters as Case $H$. lhis case woild allow any process to have the negative time Increment but these values would be set to zero. Thus all of the times to failure would be zero or poritive. This case would have the same prediction values as the unbounded normals.

Case I in in Tables 5.27 and 5.18. The $Q$ level for this case is. 1 at its lowest value. The predicted values of the mean and standard deviation present a trend when compared to the simulated values. The simulated values are consistently
less than the predicted values.
The corresponding probability levels are presented in Table 5.18. The results of this table show that the predicted probability level is always less than the simulated probanility. The results show a marked contrast to those of Case $H$. That is, the differer.ce between the predicted spare level and the simulated spare level becomes more than one or two spares.

The second part of the test used the means and variances of the processes from Case E. These values were used with normal probability density functions. These results are presented in Tables 5.19 and 5.20.

Table 5.19 shows the first set of results. The $a$ level has a wide range; the $C$ level exceeds the .05 level ondy in three cases. These are the time periods of 50,350 , and 450.

The corresponding probability levels and sparing levels are in Table 5.20. The $Q$ levels in these results did not show promising results. But the probability levels showed a very gocd correspondence. At the lower time periods from 50 to 250 the predicted probability level for a spare was generally larger than the simulation. This is shown by the fact that the prediction probability is closer in value to the corresponding probability level than it is to the next simulation probability level.

The coefficientz $C$ f variation inr the simulations were less than one. If a norma:ized 2 value was found at time
zero for the first process it would be -1.7. This would give a probability of 4.46 per cent of obtaining a negative time.

Case $K$ was set up using the values of Case J. The only difference in the two tests was that negative times were not allowed to he tabula=nd. Innee raiues were set to zero. All of the times for the processes were either zero or positive.

Table 5.21 shows ihe resulti of the Chi-Squared goodness of fit test. The lowest $a$ level in this test was .025 at the time period 600. Comparing the simulated values with those of Case $J$ in Table 5.19, the mean values of Case $K$ have a tendency to be less than those of Case J. The standard deviations are variable, without a pattern developing.

The probability levels for Case $K$ are presented in Table 5.22. These values show that for the first two time periods the prediction probability for a spare level is higher than the simulated value. As the time periods increased, the predicted probability levels fell below the simulated values.
TABLE 5.15 PROCESS DENSITY PUNCTION NORMAL, CASE H


$\begin{gathered} \text { TIME } \\ \text { PERIOD } \end{gathered}$	PREDIC:ION TECHNIQUE			SIMULATION					COMPARISON	
	$u_{p}$	$\sigma_{p}$	$u_{s}$	$\sigma_{\mathrm{s}}$	N.S.	D.F.	$\underset{\text { VALUE }}{x^{2}}$	$a$ LEVEL	$u_{p / u s}$	$\sigma_{\mathrm{p}} / \sigma_{\mathrm{s}}$
50	3.87	2.77	$2.9 ?$	1.91	142	6	22.66	. 001	1.30	1.45
100	6.87	3.26	6.36	2.44	189	8	17.78	. 02	1.08	1.33
150	12.87	3.68 4.06	9.53 11.99	2.89 3.62	168 180	19	25.06 40.41	. 001	1.04	1.27
250	15.87	4.41	14.92	3.72	157	12 12	40.41 12.47		1.07	1.12
300	18.87	4.73	18.03	4.43	158	15	32.16	.005	1.05	1.17
350	21.87	5.03	20.16	4.13	138	14	15.12	. 3	1.08	1.22
400	24.87	5.31	24.52	5.35	143	19	19.03	. 3	1.01	0.99
450	27.87	5.58	27.04	5.02	137.	17	14.45	.5	1.03	1.11
500	30.87	5.84	30.18	5.33	137	18	15.57	.5	1.02	1.10
550 600	33.87 36.87	6.09 6.32	33.50 35.86	6.31 6.07	132 139	21 21	34.08 35.28	. .025	1.01 1.03	1.11 0.96 1.04

[^23]TABLE 5.16 PROCESS DENSITY FUNCTION NORMAL, CASE H

TABLE 5.16 （continued）PROCESS DENSITY FUNCTION NORMAL，CASE $H$
SPARE
LEVEL




avNHOGOサN～mpNabm




が




$\square$



TIME PERIODS
450
－
TABLE 5.17 NORMAL PROCESSES CASE I

## 

TIME	PREDICTION TECHNIQUE			SIMULATION					COMPARISON	
	${ }^{4} \mathrm{p}$	$\sigma_{p}$	$u_{s}$	$\sigma_{s}$	N.S.	D.F.	$\begin{gathered} x^{2} \\ \text { VALUE } \end{gathered}$	$\stackrel{a}{\text { LEVEL }}$	$u_{p / u_{s}}$	$\sigma_{\mathrm{p}} / \sigma_{\mathrm{s}}$
50	3.87	2.77	2.67	1.49	278	5	7.58	. 1	1.45	1.86
100	6.87	3.26	5.11		139	5	8.48	.1	1.35	1.75
150 200	9.87 12	3.68	7.47	2.27	156	?	11.52	. 1	1.32	1.62
200 250	12.87 15.87	4.06 4.41	9.85	2.49	153	8	2.61	.95	1.31	1.63
300	18.87	4.73	15.41	2.62	146	8	13.38	. 5	1.22 1.25	1.74 1.80
350	21. 37	5.03	17.74	2.56	126	$?$	8.26	.3	1.23	1.96
400	24.87	5.31	20.07	3.16	124	10	12.82	. 2	1.24	1.68
450	27.87	5.59	23.04	3.39	134	10	11.28	$\cdot 3$	1.21	1.65
500	30.87	5.84	25.19	3.44	121	11	14.73	. 1	1.23	1.70
550	33.87	6.09	27.82	3.43	139	11	16.28	. 1	1.22	1.78
600	36.87	6.32	29.84	3.90	141	13	15.94	. 2	1.24	1.62
N.S.	NUMBER OF SIMULATIONS DEGREES OF FRFEDOM PROCESS									
D.F.										
( )										

table 5.18 normal processes, case I

TABLE 5.18 (centinued) NORMAL PROCESSES, CASE I

$f$ SSVO 'SHSSCDO甘d IYKYON 6TS STRV

$\begin{gathered} \text { TIME } \\ \text { PERIOD } \end{gathered}$	PREDICTION TECHNIQUE			SIMULATION					COMPARIS ON	
	$u_{p}$	$\sigma_{p}$	$\mathbf{u}_{s}$	$\sigma_{s}$	N.S.	D.F.	$x^{2}$   VALUE	Cl IEVEL	$u_{p} / u_{s}$	$\sigma_{p} / \sigma_{8}$
50	2.67	1.04	2.63	1.00	299	3	10.25	. 01	1.02	1.04
100	5.67	1.28	5.68	1.89	136	3	5.30	.1	1.00	1.08
150	8.67	1.48	8.73	1.38	134	3	3.78	. 2	0.99	1.07
200	11.67	1.65	11.53	1.44	125	3	1.72	. 5	1.01	1.15
250	14.67	1.81	14.77	1.70	123	4	3.84	- 3	0.99	1.07
300	17.67	1.96	17.70	1.74	115	4	9.19	. 05	1.00	1.12
350	20.67	2.09	20.48	1.90	120	5	16.36	.005	1.01	1.10
400	23.67	2.22	23.65	2.08	123	5	7.02	.2	1.00	1.07
450	26.67	2.34	26.44	2.16	118	6	13.46	.025	1.01	1.08
500	29.67	4.15	29.66	2.05	115	5	8.03	.1	1.00	1.20
N.S.	NUMBER OF SIMUIATIONS									
D.F.	DEGREES	OF FR	DOM							
()	PROCESS									

Y=PREDICTED PROBABILITY LEVEL


table 5.20(continued) normal processes, case j

SPARELEVEL	time periods									
	- 350		400							
			450	500						
	X	$Y$			X	$Y$	$\bar{X}$	Y	X	
20	55.7	48.3								
21	75.8	67.7								
22	86.7	82.6								
23	90.8	91.9								
24	90.7	96.7	69.1	66.6						
25	199.2	98.8	81.3	81.1						
26	100.0		91.9	90.6	56.8	48.5				
27			96.7 99.2	95.8	76.3	65.7				
29		.	99.2 100.0	98.3 99.4	80.5	79.8   89   8				
30					$\frac{88.9}{96.6}$	89.4 95.0	53.9 72.2	48.5 65.0		
31				.	98.3	97.9	82.6	78.6		
32					79.2	99.2	91.3	88.3		
$\begin{array}{r}33 \\ 34 \\ \hline\end{array}$					100.0		94.8	94.2		
35							98.3 98.3	97.4 98.9		
36							99.1			
37							100.0			

## mormal procesises, case k

PROCESS 2(NORMAL), PROCES

table 5. 22 normal processes, case K


Unequal Time Periods

This test was performed by using the three basic systems composed of three processes each. The three processes were set up with the exponential probability density function of time to failure. These exponentials were set up with the same parameters as were in Case D, Table 5.?.

The difference between this test and the test in Case $D$ was that for Case $L$ the third system was required to operate for a larfer time period. This was accomplished by requiring the third system to operate for 100 more time units than the first two systems were to operate. The results are shown in Table 5.23 and Table 5.24.

The $Q$ levcl in Table 5.23 shows that the lowest $Q$ level reached is .05. This was found at thi time period oi ios or two multiples of the systems' mean life. It should be noted that this time period was listed as 100 , but only two of the systems were required to operate for this length of time. The third system was required to last for 200 time units.

The probability levels and corresponding spare levels are given in Table 5.24. This table shows a varying pattern for time periods between 50 and 350. This pattern takes the form that for probability levels in the 80 per cent ranco for the same spare level the predicted value will be larger than the simulated value. From the rest of the 80 per cent ranee the predicted valuc will be less than the simulated value.
table s.22(continued) normal processes, case k

Y=PREDICTED PROBABILITY LEVEL

Starting at time period 400 and above another pattern emerges. In this pattern all of the predicted values of probabilities are less than the corresponding simulated values for a spare level.

The conclusions that were drawn from these -esults are presented in Chapter VI. A summary of the results and further areas of interest arp ilso given.
TABLE 5.23 SYSTEM TIMES VARIED, CASE L
SPARING CYCLE: PROCESS 2(EXPONENTIAL), PYSTETS
SPARING CYCLE: PROCESS 2(EXPONENTIAL), PROCESS 3(EXPONENTIAL), PROCESS 1 (EXPONENTIAL)

TIME PERIOD	PREDICTION TECHNIQUE				SIMULATION				COliPA RIS ON	
	$u_{p}$	$\sigma_{p}$	$u_{s}$	$\sigma_{s}$	N.S.	D.F.	$\check{i}^{2}$	a IEVEL	$u_{p / u_{s}}$	$\sigma_{\mathrm{p}} / \sigma_{\mathrm{s}}$
50	5.20	1.76	5.10	1.65	148	4	2.54	. 5	1.02	1.07
100	8.20	2.17	8.17	2.29	161	7	13.74	.05	1.00	0.95
150	11.20	2.51	11.41	2.60	138	9	3.59	.9	0.98	0.93
200 250	14.20 17.20	2.81 3.08 3.33	14.54 17.44	2.69 2.86	147 146	9	10.48 7.39	-3	0.98	1.05
300	20.20	3.33	20.03	3.27	146 124	10	7.39 3.09	. 5	0.99	1.08
350	23.20	3.57	23.54	3.54	130	11	6.49	. .87	1.01 0.99	1.02 1.01
400	26.20	3.78	26.09	3.54	120	11	5.03	.9	1.00	1.01
450	29.20	3.99	28.84	3.91	134	13	10.57	.5	1.01	1.01 1.02
500	32. 20	4.19	32.46	4.21	119	13	7.04	- 9	0.99	0.99
550 600	35.20	4.3 ?	34.63	4. 58	142	15	13.78	.5	1,02	0.96
600	38,20	4.55	37.80	4.48	122	14	13.02	.995	1.01	1.02
$\begin{array}{ll}\text { N.S. } & \text { NUMBER OF S IMULATIONS } \\ \text { D.F. } & \text { DFGREES OF FREEDOM } \\ \text { ( ) } & \text { PROCESS }\end{array}$	NUMBER OF SIMULATIONS									
	DFGREES OF FREEDOM									

TABLE 5. 24 SYSTEM TIMES VARIED, CASE L

Y=PREDICTED PROBABILITY LEVEL
TABLE 5. 24 (continued) SYSTEM TIMES VARIED, CASE L







CHAPTER VI

## CONCLUS IONS

The purpose of this chapter will be to draw conclusions from the results. These conclusions will be presented in the same order as the results were presented.

The first area studied was the case where the coefficient of variation of the process was greater than one and the process density functions were skewed left. These two results were presented in Case $A$ and Case $B$ in Tables 5.1 through 5.4. The coefficient of variation was larger for Case A than for Case B.

The Chi-Squared goodness of fit test is a test of rejection. This means that if a $\alpha$ level is chosen and a test is run where the $a$ level is less than that desired then there is enough information available to reject the hypothesis that the density function under test is normal at that levei.

If a $\alpha$ level of .05 is assumed for Case $A$ in Table 5.1 then there would be two time periods where there would be enough information to reject the hypothesis that the spares" configuration was normally distributed. These two time periods where the hypothesis was rejected are at multiples of three and eight times the mean process cycle length. Case $B$ in Table 5.3 shows one time period where the hypothesis of normality was rejected. This was at one multiple of the
process cycle length.
Thus for Case $A$ only two out of eight time periods show enough information to reject the hypothesis that the simulated spares configuration was not normal. Case $B$ has only one nut of eleven time pericds where there would be enough information to reject the hypothesis of normality. It would then be feasible that the spares configuration obtained using the Weibull probability density function would be normally distrijuted.

Case $A$ and Case $B$ can be compared by the ratio of their predicted mean values to the simulated mean value for a time period. These results are found in Tables 5.1 and 5.3. These results shrw ihe for corrisponding time periods the ratios of mean for isse $B$ sre clo er to a value of unity. The same resilt: hoid :or the colpanisons of the standard deviations. at Ehoul.3. $\cdot$ neted thet th: retios of both the means ard $\therefore$ tandani $\because$ Y.sicns verr both teping toward a value of unity for Case $A$ :uni Case $E$. Thus the prediction technique obtains better results as tine time pericds become larger multiples of the sparing cycle mean life.

For the general case of the coefficient of variation for each prozess being greater than one, and the process skewed left, the results from the prediction technique for a sparing level will be less than the actual or simulated probability. Depending upon the probability level of sufficient spares desired, the prediction technique will require at least enough
spares and usually more spare; than are necessaiy. The more multiples of the mean life of the sparing cycle involved in a system the better the results will be.

The prediction technique tends to give better results if the coefficient of variation of each process is close to unity, and if the coefficient of variation of the sparing cycle is less than one. That is, the difference between the number of spares required by the prediction technique and the simulation will be smaller. By doing this, the prediction technique would have a smaller overshoot of the true spare level. This was shown as a direct result of the comparison of Case $A$ and Case $B$.

The second area oi interest was where the coefficient of variation was equal to one. This was accomplished in Case $C$ and Case $D$ in Tables 5.5 through 5.8. Assuming a $a$ level of rejestion of .05 then rone or the tested time increments :or Ch:is $C$ in Table 5,5 shirw enough Enformation to reject The hyp:thesis of nomality, Using a $\alpha$ level of .05, Case $\mathcal{D}$ in Tar:ie 5.7 shows that only at one time increment would there be enoush information to reject the hypothesis of normality. The time period where there was enough information in Table 5.7 occurred at the time period 150 . The time periods on either side of this period were well within the . 05 Clevel. Thus it would be safe to assume that the spares configuration obtained using the exponential probabi? ity density function of time to failure would be normally distributed.

Case D does show a more definite pattern than does Case C. Comparing the ratios of means in Case $D$ to those in Case C. Case D appears to be more stable and it approaches a value of unity at a faster rate as the time period increases. The same comparisons can be made of the two separate ratios of standard deviations.

Therefore when the coefficient of variation for the processes of a system is one, the prediction technique gives better results as the number of processes per system is increased. The prediction technique shows closer values to the simulation as the number of time increments are increased.

When a probability level of sufficient spares is desired less than iv per cent, the prediction technique shows a low estimate of the number of spares. This occurs when the desired time of use is less than eight multiples of the sparing cycle mean life. To correct this it would be possible to add an extra spare. This would cause a situation where the actu:il. probability level was met or at the most exceeded by one simare.

Uin $n$ a probability level ahore tie 80 per cent level is desicer the prediction technique will always give safe resiults. That is, fer a sparing level, the $s$ mulated probability will be greater than the predicted probailiity.

The third area of interost was where the coefficient of rariation for each process was less than one and the process was skewed right. These results were those in Case $E$ and

Case $P$ in Tables 5.9 through 5.12. Using the $Q$ level of . 05 there were no timu periods where the sparing configuration could be $1 e j e c t e d$ as not being normal for case $E$ in Table 5.9. With this the ratio of the mean values showed a tendency to go to unity as the time periods increased. The ratio of standard deviations shnwed no such tenoency though. This ratio varied but the amount of variation was small: from .8832 to 1.0812.

Case $F$ in Table 5.11 showed three time periods where there was enough information to reject the hypothesis of normality for the sparing configuration. Two of these occurred at low time increments where the degrees of freedom were zero and one respectively. Since the coefficient of variation is less than one at the low multiples of the mean sparing cycle there was not enough information to run the test. Assume ing that normality is not rejected at time period 150 ard larger then the ratio of means starts to approach unity, The variation in the ratio of standard deviations is consistantly less than unity but as the time increments increase they approach unity.

When the coefficient of variation is less than one, the range of spare levels is not large for the probability levels from 50 per cent and upward. This range does increase as the time periods increase. For low multiples of the sparing cycle mean the prediction technique will give larger probability levels than the simulated level. Since the difference
in protability is small compared to the difference of the next probability level, the prediction technique would give compatible results.

The fou:th area of interest was where the process density functions were skewed left and right. These results were those of Case $\mathbb{C}$ in Tables 5.13 and 5.14. Using the . 05 a level none of the sparing configurations for the different time periods can be rejected as not being normal. The ratio of means and standard deviations show a tendency toward unity.

The prediction technique as presented would always give safe results for this type of configuration. This means that for a sparing level the predicted probability level would always be less than the simulated. As the time periods increased the predicted va?ues will correspond more closely to the simulated values. This can be seen from Table 5.14.

The fifth area of interest was where all of the process density functions were normal. Case $H$ in Table 5.15 shows the normals when the coefficient of variation is greater than one. Assuming a $a$ level of .05 this case has seven time periods where there is enough information to reject the hypothesis that the sparing configiration is normal.

It is known that there was a possibility of obtaining a negative value of time in this case. It was possible that this type of situation could cause more spares to be used than were necessary, his was proven by case I in Tables 5.17 and 5.18 which showed that for a! 1 time periods
that the simulation sparing levels were reduced. This reductio: d did not bring the simulation and prediction technique into closer agreement; in fact, it did exactly the opposite. The reasoning behind this is quite obvious. If a procesc was allowed to have a negacive ${ }^{\text {a }}$ a period then that system would require more spares than if the time period was made zero. By being a negative time period it would take away from the total tine the system had been in operation.

The $Q$ levels for Case $I$ in Table 5.17 show that none of the time periods would provide sufficient information to reject the hypothesis if a $a$ level of .05 was used. From this it would be possible to conclude that aven thcugh the process density function truncated normal the sparing configuration could not be rejected as not being a normai iensity function.

This case was based upon the coefficient of variation being greater than one for each prccess. Thus it can be seen that the prediciion technique will give safe values of sparing levels. This safe level will end up provising more spares than are necessary for a sparing level.

The other case was where normal prucesses were used but the coefficient of variation was less thin one. These results were Case $J$ and Case K. Case $J$ in Table 5.19 had thiree time periods where there was enough information to reject the hypothesis of normal sparing configuration. This
rejection of normality can be traced to the fact that the time periods were allowed to go negative.

Considering the fact that some of the spariing configurations were not normal, the individual time periods show very good correlation between the simulated and predicted probability levels. There was a better correlation than in Case $H$ because there were less negative time periods entered into the simulacion.

Case $K$ in Table 5.21 was run so that no negative time periods could enter into the simulation. By comparing the means for the corresponding time period, it is found that those for Case $K$ tend to be smaller than those for Case $\mathrm{I}_{\mathrm{C}}$. This difference is not as significant as that involved in Case $H$ and Case $I$. There was no corresponding pattern developing between the standard deviations. The probability levels do not correspond as well as in Case $K$ as in Case $J$.

The prediction technique can give excellent results for processes that have a normal probability density function. These results are improved by making the coefficifnt of variation less than one for each process. This would mace the probability of obtaining negative time periods smaller and thus give better resulis.

The sixth area of interest was concerned with the case where the time periods were required to operate at different lengths. These results were in Case $L$, Table 5.23. Assuming a $a$ level oi . 05 there would not be enough information to
reject the hypothesis of normality for any of the sparing configuratior.

The ratios of the mean and standard deviation show a small amount of variation. The ratios tend toward a value of unity.

From the cesults it can be concluded that for probability levels less than 80 per cent the predicted value will be larger than the simulated value. For a probability leve.. the predicted spare level will be correct or at most it will be short one spare to give the actual probability level. This tendency holds for low multiples of the mean of the sparing cycle. The predicted value will consistently give safe results akove eight multiples of the mean of the sparing cycle. In other words, using the prediction technique guayantees that there will be enough spares and the actual probability will be higher than the desirid.

The results for this case were drawn from systems conposed of the sare process parameters as Case D. The same general tendency was seen to deveiop in both cases. Using this as a basis it would be plausible to expect the other cases to develop in the same manner if unequal time periods were used.

Summary
The prediction technique that was used throughout tnis study showed promising results. In all of the cases above approximately 80 per cent, the prediction technique was
pessimistic. In a sense, the prediction technique would require enough spares and generally more than would be desired.

The prediction technique gives better results as the number of processes per system is increased. If the time that the system is desired to te used is increased, the results are improved. The coefficient of variation and the skewness of the process density functions affect the results. If the coefficient of variation is one or less the results of the prediction technique will correspond with better accuracy.

For the time that would be put into early predictions of spares this technique would be excellent. It is snort, and the computations are easy to perform. The most difficult part of uging the prediction tecinnique would be the calculations of the third moment about the mean.

The value of the predistion technique depends upon the factors that are being used. As has been stated previously better results are obtained with different combirations of processer and with certain prohability density functions. All of these factors must be taken into account when the prediction technique is used.

Through the author's experiences encountered in the development of this paper, the prediction technique would be better for preliminary work than would simulations. This experience is based upon time and cost. Time and cost are
directly related and they increase rapidly with the complexity of the simulation. In the early work on a project the simulat.. on cost would we entirely prohibitive if the system parameter was changed quite often. The prediction . schnique gives results that show good comparison with the simulation so it should be the first choice of the designer if he is working under a tight budget,

Major areas were developed in this paper and the relationship between the sparing technique and the simulations have been observed. Further areas of study should be nerformed upon the sparing technique. The areas of interest that were presented should be studied in greater depth.

The coefficient of variation should be set at many different values and the effect upon the sparing level could be observed. The process probability density function of time to failure could then be changed to probability denEity functions other than those that were used in thia presentation. This procedure would provide further conclusions than those that were presented in this paper.



[^24]
## APPENDIXES

## APPENDIX I <br> PREDICTION TECHNIQUE COMPUTER PROGRAM

The prediction technique computer program was written utilizing the equations of Chapter II and the logic of Chapter IV. The program was set up to handle any combination of systems and the corresponding processes. This is iliumstratec in Figure I. 1 and the sample program.

The probability density function of time to failure for each process would have to be decided. This affects the type of parameters that have to be initialized. The initial values of NOSYS, JPROC, IPROC, MEAN (I), VAR (I), PKNOW, T(I), and $B(I)$, if required, would have to be decided. The values used were those found in the odd numbered tables in Chapter V. Thus these values would orly have to be keypunched and placed in the program deck in the manner as that of the sample -program.

The other major factor for the calculation is that of the third moment about the mean. This value is totally dependent upon the probability density function for each of the processes. The normal probability density function has a MC3 value of zero. The exponential has a MC3 value that can be calculated by:

$$
\begin{aligned}
& \text { MC }=0.0 \\
& \text { DO } 777 \quad I=1 . \quad \text { JPROC }
\end{aligned}
$$

$$
777 \text { MC 3 }=\mathrm{MC} 3+2 * \text { MEAN }(I) * 3 .
$$

The Weibull probability density function has a MC3 value calculated by the following techniques

MC3 $=0.0$
DO 777 I=1,JPROC
$X X=1.0+1.0 / B(I)$
CALL GARMA (XX, GX, IE)
$A(I)=(\operatorname{MEAN}(I) / G X) * B(I)$
$X Y=1.0+2.0 / B(I)$
CALL GAMMA (XY, GX, IE)
$\operatorname{VAR}(I)=(G Y-G X * 2) \quad A(I) * *(2.0 / B(I))$
$X 2=1.0+3.0 / B(I)$
CAIL GAMMA (XZ, GZ, IE)
$M C 3=M C 3+(G 2-3 * G Y * G X+2 * G X * * 3) * A(I) * *(3 / B(I)$
777 CONTINUE
These techniques can then be inserted into the progran deck with the initial values to calculate the MC3 values. The remaining part of the program deck requires no modification.

The significant variables for the program are listed below.

## VARIABIES


 system

IPROC process before spare re quired



PIGURE I. 1 FLOW CHART PREDICTION TECHEIRUS


```
IV G trvel }2
*:9"
F.19F=72C71
9 9
14/C5/13
C
```


v．？s．5
（ilil i＝1．NOSYS
$0 \ll 10$＊
Jis．for
$10+15$
－＝atil Izi．jan．r．
vevill leigjofrc
TSYs
$=$ vjical fist ciff G．p． 1

102：！r＝9
10：710＝1




V：Q（ग）＝هし．anl？
VaP！？！＝117．1？67


（11）＝．＂
ifli＝－
－131玉＂。＂
$r$
$r$ w＂？lispu：N－：
$C$




 or a．．h i＝i，jer．rir


 wol！t ierr．

（ll｜＝－110：。

－1？1天：17）4：．


FLevet. >: aftet
1:ATF = 72C.71
1::1 a.N : atonesve

```

```

    \(C\)
    $r$
$r$
f.

```

```

    f. \(\quad 1\)
    terys..。r
    ```


```

    1. Cortilit
            3 ar a a!
            - y
    ```

```

    1•:.
    II 1 -
    ```

```

    \(C\)
    $r$
$r$

```


```

    - Vfise-リa**VAD (1)
    1': 11 i: ! 1 jr
    111 r-.if:ine
    ```


```

        \(\because \cos\)
        \(1 \because 1.1=1, j 0 . \cdots\)
        F= ic. © Mil
    ```


```

    \(r\)
    ```



```

    \(1:\)
    ```


 e

 \(r\)
\(r\)
\(r\)
\(r\)
\(r\)

 19 finti.or

 w-ise.tanifiry.

 \(\because 1\) P ! 1
 1.06.9:10 0/6

 * Pi?。
 R•T

APPENDIX II

\section*{Simulation Computer Program}

The simulation computer program was written utilizing the logic of Chapter IV. The program was written so that the parameters for the systems under consideration would only have to be placed at the beginning of the program in order to change the simulation.

The flow chart of the sample program is presented in Figure II.1. This flow chart shows the first step is the reading of the random array IX. These values are formated and read into the program as in Figure II.2. As in the computer program for the prediction technique the initial systems and processes must first be decided. The probability density function for each process must also be defined.

The ini*"- parameters are those that were presented in Chapter \(V\). These parameters are \(N S, J P, I P, M(I), V(I)\), and \(T(I)\). These values can be keypunched and put in the program deck as is illustrated in the sample program given in this apper.aix.

The probability density function of the processes must now be accounted for. If the processes are normal or exponential then enough parameters have been specified. If the processes are Weibuil then other values must be established. As an example of this consider the case of three Weibulls where the coefficient of variation is greater than one.
\[
\begin{aligned}
& \mathrm{NS}=3 \\
& \mathrm{~J} P=3 \\
& I P=1 \\
& M(1)=35.0 \\
& M(2)=7.0 \\
& M(3)=8.0 \\
& B(1)=.5 \\
& B(2)=.75 \\
& B(3)=.75 \\
& D O \quad 777 I=1.3 \\
& X X=1.0+1.0 / B(I) \\
& C A L 工 G A M M A(X X, G X, I E) \\
& A(I)=(M(I) / G X) * * B(I) \\
& X Y=1.0+2.0 / B(I) \\
& C A L L, G A M M A(X Y, G Y, I E) \\
& 777 \\
& V(I)=(G Y-G X * 2) * A(I) * *(2.0 / B(I))
\end{aligned}
\]

This will give the desired initial values of \(A(I)\) and \(Y(I)\) for the simulation. To simulate for the values given in this paper, it would only be necessary to keypunch the values presented in the tables in Chapter \(V\) using the correct variable name. These values would be NS, JP, IP, M(I), V(I), \(T(I), B(I)\), and \(A(I)\). This would be done even if the process had different probability density functions. It would only be necessary to pit the correct parameters in the program deck.

The second change in the program is also dependent upon the process probability density functions. This change is made in the program deck following the 105 CONTINUE" state-, ment. This can be seen in the sample program. The sample
program illustrates the card deck if all of tre processes are normal. Also, this program does not al.ow negative time which is shown by the statement following CALL GAUSS. To correct this program in order to handle three normal processes without truncation it would only be necessary to remove the "IF" statement and statements 3000 and 3001.

The exponential case is created by removing the CALL GAUSS statement and the "IF", if it is present. The exponential uses the sequence:

DO \(100 \mathrm{I}=1\),Jp
CALL RANDU (IX,IY,FG)
IX=IY
\(T I=-M(I) * A I O G(1.0-F G)\)
\(K T=K T+1\)
Those cards used with the exponential parameters placed in the beginning of the deck will give the desired simulation.

To run a simulation using mixed process probability density functions another technique was used. The case where the three processes were in the order Weibull, normal, and Weibull will now be presented.

DO \(100 \quad I=1, J P\)
CALL RANDU(IX,TV,FG).
IX=IY
GO TO \((10,20,30), I\)
\(10 \mathrm{TI}=(-A(I) * A \operatorname{LOG}(1.0-F G)) * *(1.0 / B(I)\)
GO TO 101
20 CALL GAUSS (IX,VV(I),M(I),TI)
GO 10 101
\[
\begin{aligned}
& 30 \mathrm{TI}=(-\mathrm{A}(\mathrm{I}) * \lambda \operatorname{LOG}(1.0 \cdots \mathrm{C}): *(1.0 / \mathrm{B}(\mathrm{I})) \\
& 101 \text { CONRINUE }
\end{aligned}
\]

As can be seen from the ation example once the process probarility density function i- knem the equation of the probability density function of time to failure can be rearranged so that given a probability of failure the corresponding time to failure can be found.

The significant varjables for the program are listed below:

\section*{VARIABLES}
\begin{tabular}{|c|c|c|}
\hline IX & & initial seed values for seientific subroutines. \\
\hline IT(I) & & array of random IX values \\
\hline NS & ------------------------ & number of systems \\
\hline JP & & number of processes per sparing cycle \\
\hline IP & & ocess before a spare is \\
\hline
\end{tabular} added to system
M(I) I=1,JP ------------------ mean array for processes
 cssses
 systems

TC -------------------------- time check which is being incremented by time of each process TI
\begin{tabular}{|c|c|}
\hline TI & time increment of each process \\
\hline FREQ & frequency array of apares showing how many lines a spare level was used \\
\hline U & running mean of number of spares array \\
\hline SD & \begin{tabular}{l}
running standard devia- \\
tion of spares ary..y
\end{tabular} \\
\hline NT & total number of simulations run \\
\hline CHECK & varistion oetween two conser'itive means of spares array \\
\hline CRUD6 & subroutine to take spares array and create frequency array \\
\hline IA & number of frequency intervals plus two \\
\hline PC & percentage value for each frequency interval \\
\hline RI & lower sparing level cut off point \\
\hline \(\mathbf{R}\) & theoretical frequency \\
\hline PT & per cent total \\
\hline \(\mathbf{F}\) & sample frequency \\
\hline TS & \(x^{2}\) test value \\
\hline ID & degrees of freedom \(x^{2}\) test value \\
\hline
\end{tabular}

FIGURE II. 1 PLOW CHART SIMUEATION

FIGURE II. 1 (continued) FLOW CHART SIMULATION

FIGURE II. 2 INPUT DATA SIMLATION
```

        812
    14/29/04
BEAL A(\),V(3),T\ 2!,Vप{2!
DATE = 12965
Beprodvend love
DIMENSINY IJIBCNI召ISNI
C.nmmoy ISPGC(:I,ERFOLSC)

```

```

        *MMAEO NF TIGES SIMLKATFN SPARES.
    KT NUMAFY NE ITERATITNS NIJRINF & SIMILATIMN.
    GT TOTAL mImaEq IF EAVNOM VAPIARLES CALLEN.
    NS NUMAFP OE SYSTEMS.
    IS SPSRES AROAV ERMM SIMULATION.
    * MEAN ARRAY.
    V VANIANFIF AORUV.
    T TIME Ageav.
    JN PM&NAEQ RE PRORESSES DFD SPARING R.YCL.E.
    IO LAET DDINESS RFERLE A SPARE IS ANOFD TY TME SYSTEM.
    If. cmerk mi is vallre.
    TC TiNe r,werx.
    ```

```

    pE necvirils SIM|IATICY mfan.
    ```


```

    U MFAC: CIE SPARES.
    ```

```

    ns uyalasen esilmate .lf Sn.
    REAO IV INICIBL SFFO VALIJR.
    n7 3 1=1.5.
    ```

```

    |?| En"#ctism
        * enojpivije
        |x=iT|I|
        d.J=1
    ```

```

    "C:%
    J?=?
    l0=1
    *ill=24.0
    *(T)=7.*
    v(21=4.
    v(1|:9:4).0,7)
    V(T)=4:.0:",
    vi\{117.1747
    VV(Il=V|lisn.f
    VVITI=VI?IE*.a
    VV(9)=VI?10***
    T|l|=^"
    ```
```113
VFLEVEL 20 HAlN DATF = 2%65 14/2A/04
    T\?%=n。年
    r
    C WRITF INPUT DATA.
    r
        W*TTFIG.55n! :IS.JD.10
```



```
            n! 11 1mF.JD
```



```
            11 CRN-Ia!if
    C
    C. PVEGFENT TIMFS FOQ SVSTEOS.
        nntr!1 \JM=1.14
        T!!i=T!ll*&N."
        T(?)=T\?1*5%.
        T{2i=T(zi&&の..
        0T=^^^
        TC=n.r.
        D0=n.5
```



```
        Cl(3)=r.r
        Se.ja=:^n
        MC 5at J=1.a.r.
        |SJ|=`
        5ム1 PJPJ=「
```



```
        ON 1L2 NT=1.f.%:
```



```
        |J|vi=|x
        IC=:0T- 1
        |F|`T-1| a.g.,
    2 On { lel.lr.
        |F||J||-|J|NO| R.&.A.
        4 (?vTijufe.
        jJ=.jJ+1
        |.j(9%)=1ए(Jj)
        |x=||:%!
        :m 0n >
    a ravelaijf
        is(r:Ti=?
        K=?
```

```
V r. LFVFL 2C
MAIN
#ATE = 720K5
    C rmERR FARM SvCTE: TC SEE mRY MANY SPARES IT NEEDS.
    r
        00 103 J=1.NS
        Pr=n.n
        1P5 r.jyrinur
    C
    gIR NNE SVETE'G FIAM A RAMING TIMF FTR FACH OQOCFSS.
    Oc 1mn I=I,ju
```



```
        IE (TII 2nac,ifri,3mal
    3m.; tler.n
    KTEKT+1
    a.anI CONTIGNIF
        Tr=TC*TI
```



```
    10s (.TMTIAMIF
        |f|f-10| 1:9.108.4.0.0
    104& C Matientm
```



```
    jsu rnytidujf
    gr in lag
    1ry r.my:ponje
```



```
    f calrinlatr ajunga
        #T=0ア+区"
```



```
        CHETK=\リM/*!*
        U=CHFT.K
        nT=S1M4
```



```
    C MEAR: IS NEVIATIAI, AND IE UHT STON SIMUUIATIN: TIMES.
* ifin%-1fr
    CMFPK=1.f-r:AECK=(NT-1)/00
    -a =SUM
```



```
    115 meypivis
```



```
    117 r.ดyाIviJF
```

4．1＂
nate－73：65
14／29／04

```
            m^ in:in
    1この Cフ*Tリ:!ル
    P
```



```
            on art lu|.av
            no 5r l J=|.\T
```



```
    an? CDMTISHE
            |ME|S||
            fSfil=1<&\
            15151=14
    g`) CTVTINHE
    r
    f}\mathrm{ rivn eoos asye,c.
```



```
            1AETf0.j%?
        r
    r neveinor firioiroiry engav.
    r
        (all racmaife.0.jes
```



```
    r
        wnj-cia,feri
```



```
        mの 554 1=1.vs
```



```
        ~P|
```



```
        2 1
```



```
            10:15|1|=9
        r
```



```
    r
        20-n.a
        ru jla i=1.la
        nr.aracnilitpr.optivifPit
```

1r.Lev=1 32
-A1)
natfe 12nge
116
14178104
one opapp.
10-1001

10:15111

r

welvfie:77:?
(1) EnDMatilil

10:の C5:T19115
1011 CRYpiote

F・ノ

* r. EvFl 8.0
segmo
MATE - 77065


```
r
n.0 65 t=1.0*y
    aregrgili=%."
rreraccinga-r is aytl sire.
```



```
    nevflumerge nomerrere.
    nm 75 jEO."M
```



```
    |%##|r**||
```



```
    TEMO=fcucorth*
    f111818-TEN210.2.0.*
```



```
        f"9 >0 7*
        7%
        5n+7!||=f:sN!!|***
```



```
    0+Tige*
        **
```


pIMENSIns vicai
Cnuegin flis．etettaly


```
    fis lioos =ie wifary nrifort finn tn.
```



```
    7 arpuAL veigr
    E1 rojtt 1:cc 31 in\%.
```



```
    QIEr: v+ifil-1.e
```



```
    -5シ?
```



```
    のの5の1E1.1月 -
```



```
    46 C~VIVor
    valrer
    ra -
```



```
    7-191-11/cr
    frit Te.?1.71
    ya Cnar ivaif
    7=-7
    rele ounnifiv.
    7e- 7
```



```
    r.n \(7=1\)
        71 Cr.v-19pit
        fall pirgify.vi
```



```
        22 rnvelolir
        Yev-er
```



```
        のT日ッ? ○
```



```
    f. rourateg Twi: rajJ:
    i-1
```



```
    fri711-417*.9..7.
    24 ENyTIMes
```

```
                                    119
```



```
    -11*11-N11*110=111
        F||||=||||**(|
        1-1+1
        mo 10 >7
        ?4 एつ「!!!に
        ll=1
        1=10
- v2 Pan+jvige
        |F\P(1/-4) 11.2?.4"
```



```
        Ef-1|=0!|-1)0:!!!
```



```
        I=1-1
        ro: In 32
        1) romerivile
        li||
```



```
        <0.0.
        TC=i.n
        an or i-ll.01.
```



```
        prierces
        6% P\mp@code{NTMA!}
        |n=|!-11-?
```



```
        J=1
        nn 1:1I.iU
        C!j)=r(1)
        j=j*1
        a rinfirior
        |a|{1-1] + |
        os r:je.0
        eun
```

Ur．isurt＞
＊．－！
nat：＝77．as

11 イS？＝x：c2

ril in le．er

13 xScaxie：

－Tr．enzion
－Artan $10 .:$
lope edued lrom

ponnsenulagt tean

ar Factizear－ralor

が 10 の7！

．il： 17 10rn

1．gan ortifiad
$1: 9$

LIST OF REFERENCES

1. Bariow, R. E. and Broschan, F., with contributions by Hunter, L. C., Mathematical Theory of Reliability, New York: John Wiley \& Sons, Inc., 1965.
2. Cox, D. R. . Renawal Theory, Londons Butler \& Tanner, Itd.. 194..
3. Duncan, Acheson Jo. PhD. Quality Control and Industrial Statistics. Chicagot Richard D. Inwin, Inc., 1952.
4. Ebel. G. and Lang, A.. Reliability Approach to the Spare Parts Problem, Proceedings: Ninth National Symposium on Reliability and Quality Control. San Francisco, January, 1963.
5. Saber, Sheison E. and Rosedith Sitgreavea; A Methodology Por Estimating Expected Usage of Repair Parts With Application To Parts With No Usare History, T-233. (Revise: , George Washington University and office of Navai Research. 28 April 1970.
6. Holmes, A. E. and McQuay, W. S.: Mn Approach to Spares Quantity Determination." Logistics Spectrum. Vol. 3. No. 2. Summer, 1969.
7. Ireson, W. Grant, Reliability Handbook. New York: Mc-Graw-Hill Book Company, 1966.
8. Lynch, Herchel E., Morris, R. S., McNichols, R. J., and D. R. Shreve, "A Technique for Determining the Number of Spares With a Prechosen Probability Level," Tenth Annual Reliability and Maintainability Conferance, Anaheim, California, June, 1971.
9. Markland, Robert E.. "A Comparative Study of Demand Forecasting Techniques For Military Helicopter Spare Parts," Naval Research Logistics, Quarterix. Vol. 17. No. 1. March. 1970.
10. Pamphlet 705-1, Maintainability Engineering. Washingtons Department of the Army, June, 1966.

11. Roberts, Norman K. . Mathematical Methods in Reiiability Engineering: New Yorks McGraw-HIIl. Book Company. 1964.

12. Von Alven, Willian H. e editor, Reliability Engineering, $^{2}$ LRINC Research Corporation, Englewood Cliffs: Pren-tice-Hall. Ince. 1965.

Is part vital or nonReject item unless PMR vital to component or TOR designated DEEP INSURANCE CRITERIA
$\begin{array}{ll}\text { Total Part } \\ \text { POP/HULL } x \text { BRF (Annual) } \geqslant & \text { Reject item unless PMR }\end{array}$
or TOR designated

Is component vital or ron-vital

COMPUTATION OF FLSIP COSAL

This logic chart illustrates how the various inputs being collected incident to the FLSIP tie together and are used to compute the final allowance quantity.

We first enter our ICP automated component configuration record with the hull number for which we want to compute our requirement. We abstract from this configuration record a list of all components installed, their on-board installed population, their srvice application and the military essentiality of each component to the ship's mission.

Next, we enter our ICP automated component to part record with our list of components, and extract the list of individual parts together with the various technical and maintenance decisions which relate to them.

Using the maintenance code, we select the potential list of on-board candidates. Only those items authorized to be replaced on-board ship are selected as potential candidates.

These candidates then go through the demand qualifier program. Taking the total installed part population on that hull (obtained by multiplying the component population per hull times the part population per component), multiplying this quantity by the Best Replacement Factor (BRF) divided by 4 (to obtain a 90 day replacement rate), we determine whether the resultant quantity is equal to, less than or greater than 1.

If equal to or greater than 1, our item is classified as a demand based item in accordance with the definitions prescribed by OFNAVINST 4441.12A. An allowed quantity (depth) is computed for each demand based item which provides a 90% protection level for a 90 day period as required by CNO. This quantity is computed using the Poisson Distribution Formula. If the computed quantity is less than either the minimum replacement unit (MRU), planned maintenance requirement (PMR) or other technical override requirement (TOR), should these be applicable, the highest quantity among these three elements is selected as the authorized allowance.

If less than 1, the item is designated as an insurance item. The military essentiality of the component to which the item applies is screened to determine if the component is vital or non-vital to the mission of the ship. If the component is non-vital, the insurance items are rejected unless there is a designated PFiR or TOR. If affirmative, the higher of these two elements is selected as the authorized alowance. If an item has multiple component applications both vital and non-vital, its military essentiality is always considered to be vital.

After screening for military essentiality at the component to mission level, a second screening is performed to determine whether the item itself, is vital or non-vital to the component. Non-vital items for vital components are also rejected unless there is a designated PMR or TOR. If affirmative, the higher of these two elements is selected as the authorized allowance.

A third and final screening is performed on each vital/vital item to determine if its probability of usage aboard ship is so low that it, also, should be rejected from allowance lists. A deep insurance criteria has been established which defines a deep insurance item as one with an expected usage aboard ship of less than .25 per annum based on its shipboard population and BRF. Based on this criteria, deep insurance items are rejected unless there is a designated FMR or TOR. If affirmative, the higher of these two elements is selected as the authorized allowance If the forecast ship usage is equal or greater than . 25 , the highest of the MRU, PMR, or TOR is selected as the authorized allowance. The summation of the demand based and insurance items remaining after the above screenings become the authorized on-board allowance of repair parts for a particular hull.

FLSIP ALLO:AMCE QUAMTITY TABLE

 (BASED OI 90 DAY SUPPORT)| BRF X POP | ALlow | BRF X POP | ALLOW |
| :---: | :---: | :---: | :---: |
| 4 | QTY | 4 | QTY |
| <. 0625 | 0 | 24.7-25.5 | 32 |
| . $0625-.999$ | * | 25.6-26.4 | 33 |
| 1.0-1.1 | 2 | 26.5-27.3 | 34 |
| 1.2-1.7 | 3 | $27.4=28.1$ | 35 |
| 1.8-2.4 | 4 | 28.2-29.0 | 36 |
| 2.5-3.1 | 5 | 29.1-29.9 | 37 |
| $3.2-3.8$ | 6 | $30.0-30.8$ | 38 |
| 3.9-4.6 | 7 | 30.9-31.7 | 39 |
| 4.7-5.4 | 8 | 31.8-32.6 | 40 |
| 5.5-6.2 | 9 | 32.7-33.5 | 41 |
| 6.3-7.0 | 10 | 33.6-34.4 | 42 |
| 7.1-7.8 | 11 | $34.5-35.3$ | 43 |
| 7.9-8.6 | 12 | 35.4-36.2 | 44 |
| $8.7-9.4$ | 13 | 36.3-37.1 | 45 |
| 9.5-9.9 | 14 | $37.2-38.0$ | 46 |
| 10.0-10.7 | 15 | 38.1-39.0 | 47 |
| 10.3-11.6 | 16 | $39.1-39.9$ | 48 |
| 11.7-12.4 | 17 | $40.0-40.3$ | 49 |
| 12.5-13.3 | 13 | $40.5-41.7$ | 50 |
| 13.4-14.? | 19 | 45.0 | 54 |
| 14.2-15.n | 30 | 50.0 | 60 |
| 15.1-15.8 | 21 | 55.0 | 65 |
| 15.9-16.7 | 22 | 60.0 | 70 |
| 16.8-17.6 | 23 | 65.0 | 76 |
| 17.7-18.4 | 24 | 70.0 | 81 |
| 18.5-19.3 | 25 | 75.0 | 87 |
| 19.4-20.2 | 26 | 80.0 | 92 |
| 20.3-21.1 | 27 | 85.0 | 97 |
| 21.2-21.9 | 28 | 90.0 | 103 |
| 22.0-22.8 | 29 | 95.0 | 108 |
| 22.9-23.7 | 30 | 100.0 | 113 |
| 23.8-24.6 | 31 | >100.0 | ** |

*These items are insurance itens and are allowed only if the part to component liS and component to Ship ABCs are both vital. If the IECs are vital, the item is allowed in a quantity of one minimurn replacement unit.
** If the nean ($\frac{\text { BRF X IOD }}{4}$) is greater than 100.0 , the allowance quantity can be conputed as

$$
\text { Allowance }=\text { Mean }+1.25 \sqrt{\text { Mean }}
$$

Prepared by: Navy Fleet Naterial Support Office (Code 97) jincinnicsiurí, ín. iutovan 277-30ifi/2509
Authority: NSSC ltr SUP $04312 / 159$ of 25 July 73 to FMSO copy to SPCC, ESO. Nnviup
(d) Any items, other than those qualifying under paragraphs $4 c$ (1)(b) and $4 c(1)(c)$, to be included in the allowance lists must satisfy the criteria and rules of TORs as set forth by Chief of Naval Matcrial.
(e) Items considered essential to the operation of the equipment which are excluded from Iols by the criteria above may be supported as supply system insurance items in a minimum quantity to satisfy emergency requirements.
d. Materiel Availability (effectiveness) goals:
(1) For aviation ships and MAGs, the objective for overall AVCAL performance is to fill 75% of all demands and to provide overall availability of 85% for items stocked. Issues from rotatable pools will be included in effectiveness computations. For non-aviation ships without intermediate maintenance capability, the objective is to fill 65\% of all demands and to provide overall availability of 85\% for items stocked.
(2) For shore activities supporting aircraft the objective for overall AVCAL performance is to fill 65% of $a 11$ demands and to provide overall availability of 85 for items stocked. Issues from rotatabie pools will be included in effectiveness computations.
e. Identification of overrides. Items which are included in allowance lists which qualified on other than rules cited above wili be coded and identified in IM files for periodic review of original decision.

f. Depth of Stocks

(1) Rotatable pool stock levels will be based upon frequency of repair and actual turn around time, whirh in the majority of cases should not exceed 3 days. In any event individual item levels will be constrained to a quantity representing a maximum of 20 days turn around time.
(2) Authorized stock levels for repairable items at operating sites will be 90 days for afloat units. and MAGs, 30 days for CONUS activities and 60 days for overseas activities. Afloat and overseas computations will be based on combat slying hours. Replenishment will be on a one for one basis with no additional depth authorized for order and ship time. CiJNAVMAT will publish procedures for changing allowances. When promulgated, allowances will be

[^0]: PParts are carried in such derith to provide replacements for parts empeeted to lell once, or mofe than onee in $\mathbf{9 0}$ day period.

[^1]: The Second Echelon of Reaupply is the Navy's wholesale system. It is that material managed by the two Inventory Control Points, the Aviation Supply Ofiice and the Shipa

[^2]: Effectiveness can also be measured in terms of units satisfied or requisitions satisfied. When we talk of Unit Effectiveness, we are talking of the fraction of the total quantity of units demanded that were satisfied. With Requisition Effectiveness, we mean the fraction of the total number of requisitions submitted that were satisfied.

[^3]: The override candidates are forwarded to the Stock Control Division where they are reviewed and the decision is made regarding further pruning of the candidate list. Any deletion or replacement recomendations made by Stock Control must be annotated with an explanation for the decision. Stock Control may also assign some items the desigmation FIRL Only which serves to reduce the total quantity required.

[^4]: The Fleet CINC is responsible for nominating new and critical equipments to CNO for augmented supported. The critical equipments nominations are the result of CASREPT data supplied by FMSO. These nominations must be approved by CNO and are then passed to SPCC, via NAVSUP, for preparation of the override inputs. We detailed this process in Chapter III.

[^5]: The second cut is the "maintenance cut." An equipmentrelated item must be installable by the load activity personnel before it can be inciuded on a TARSLL. This maintenance cut decision is based on DEN DO13A (Use Maintenance Code) found in the MDF and PSI. This code indicates lowest maintenance level authorized to remove and replace an item. If an item cannot be installed by the load activity personnel, it is dropped from Load Iist consideration. In addition, the maintenance cut determines if the item must be installed at the load activity level or if it can be installed by the supported ship level.

[^6]: Just two effectiveness calculations are made for FBM tender Load Lists: Net Requisicion Effectiveness and Grose Requisition Effectiveness. Unit effectiveness is not considered and no distinction is made between effectiveness for equipment-related and non-equipment-related items.

[^7]: So if effectiveness is too h 1 gh , we can reduce it by increasing our acceptable level of riak. This is done by increasiog the riak parameter.

[^8]: - ?

[^9]: 8．Stock list generation
 9．STOCK LISI APPRAISAL
 10．PROVISIONING CONFERENCE
 II．ICP ADIUSIMENT
 12．BUY DECISION

[^10]:
 in［3］．

[^11]:

[^12]:

[^13]:

[^14]:

[^15]: The ee lieme have prediciable wearout life which may be ohorter than the expected operating time of the equipment under coneideration. The replacement parte due to narmal werout ohould be added the aparee complement determined by uelng a random failure aesumption.

[^16]: - Prefarer , - ing E-gas: Crygi Cuntag:

[^17]: A: an optimum, these marginal assur-- -as: be equal for all parts ior which any - a ef provided at ail (within limits imposed \therefore : that individual siares are not divisi-
 \cdots - ecmponerts ior whicir it is impossible - .f: :i,is value of marginal assurance, no

[^18]: 13 Vo. 3

[^19]: 2/Navy Bureall of Supplies and Accounts

[^20]: 1/The following facts may be of interest. If one were to attempt to load "one each", i.e., a single RU for each allowance list candidate, the available stowage space of 2,500 cubic feet would be exceeded by more than 50%. In fact, the sum of CUBE-RU over all 55,918 allowance list candidates exceeds 3,800 cubic feet. The corresponding total for PRICE-RU is $\$ 3,500,000.00$. Of further significance is the fact that the sum of CUBE-RU and PRICE-RU over the 31,200 distinct admissible Item Numbers equal nearly 3,300 cubic feet and $\$ 2,750,000.00$, respectively. In other words, the entire range will not fit aboard the vessel and if one tried to load progressively starting with the highest MEC, the threshold of 2,500 cubic feet would be reached at the beginning of MEC 88 .

[^21]: *Numbers in parentheses refer to numbered references in the List of References.

[^22]: N.S. NUMBER OF SIMUJATIONS
 D. F . DEGREES OF FREEDOM

[^23]: N.S. NUMEER OF SIMUIATIOIS
 D.F. DEGREES OF FREEDOM

[^24]: MICROCOPY RESOLUTION TEST CHART national bureau of standards-1963-a

