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Objectives

This project proposes to investigate the effectiveness of prototype and

generalized geometric programing (GP) developments in the routine solution of

Inequality constrained algebraic programs. The research seeks to elucidate

under what conditions which of the equivalent prototype GP problem forms: primal,

convexifled primal, transformed primal, and, or transformed dual, as well as

their generalized GP analogous are best solved and under what conditions. More-

over, direct and sequential strategies will be examined to identify the most

efficient strategies for the solution of GGP's. The computational tests in the

study will be performed using the leading specialized GP and GGP codes as well

as a selection of general nonlinear programing codes. Statistical tests will

be employed to deduce suitable measures of prototype and generalized GP problem

IPI,difficulty. .-----

Executive Summary

The research performed under this project is divided into two parts. Part I

involved the study of prototype GP problems. Part II concerned the study of

generalized GP problems.

In Part I fourteen test series involving ten codes or code variants were

carried out to solve the five equivalent posynomial GP problem formulations.

Four of the codes used were general NLP codes; six were specialized GP codes.

Codes were selected on the basis of previous comparative studies as well as

preliminary studies carried out as part of this project. A total of fourty-

two test problems representing both engineering applications and artificially

constructed problems were assembled. Each test series involved solution of each

test problem from up to twenty randomly generated starting points. Starting

point replication was shown to be essential to producing statistically



Justifiable rankings. On the basis of statistical tests,.the convex primal

formulation was shown to be intrinsically easiest to solve for general problems.

The difference between the primal and convex primal formulations were found to

lie mainly in scaling and function evaluation time. Yet these differences

typically led to differences in solution times by factors of two to ten or more.

In problems with special combinations of characteristics (low degree of diffi-

culty) and mostly tight constraints, dual approaches can be competitive. A

general purpose GRG code applied to the convex primal was shown to be highly

competitive with the reputedly best specialized GP codes currently available.

The effectiveness of the highly regarded specialized codes GGP and GPKTC appear

largely to be due to the fact that these codes solve the convex primal formula-

tion. These results therefore do cast considerable doubts on the computational

significance of many years of research into prototype GP solution algorithms.

Finally, a correlation analysis was carried out to show that posynomlal GP

problem difficulty as measured in solution time is best correlated to an expo-

nential of the number of variables in the formulation being solved and is pro-

portional to the total number of multi-term primal constraints.

In Part II of this study, ten test series involving five codes were carried

out to solve four generalized GP problem formulations. Four of the codes used

were specialized GP codes, one code was a general NLP program. The latter was

the code proven most effective in Part I of this project. A total of twenty-

five test problems, again representing both engineering applications and artifi-

cially constructed problems, was selected and both signomlal and reversed

posynomial.formulations developed. Each test series involved solution of each

test problem from up to twenty randomly generated starting points as in Part I.

On the basis of statistical tests the preferred solution approach was shown to

involve: use of the quotient form of the signomial functions; condensation
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a- of the denominators of the quotients using Duffin's geometric mean construction;

and solution of the condensed subproblems in their convexified subproblem form.

The code GGP which employed this strategy was shown to be most effective.

Direct GRG solution of the exponential form of the primal was shown to be next

best. On the basis of the Part I results, it is certain that use of the GRG

code with the above three part strategy will be competitive with GGP. A var-

iation of this strategy in which the condensed subproblems are solved in their

transformed dual form was shown to be effective for problems in which the degree

of freedom is much smaller than the number of primal variables. The use of

condensation and the quotient representation of signomial functions thus appears

to be the most computationally significant development arising from generalized

GP research. As in Part I a correlation analysis was performed to deduce a

measure of generalized GP problem difficulty. The number primal variables and

multi-term constraints were shown to be strongly exponentially correlated.1
Depending upon the priliaT form used, the solution time is strongly correlated

to the number of negative terms or the number of reversed constraints. It appears

that the number of multi-term constraints is more significant than the division

between posynomial and signomial constraints.

In addition to these GP oriented results, this project has developed sig-

nificant methodological advances in the field of numerical evaluation of NLP

software. Progress in the work of this project was reported at several symposia

Including the COAL Sessions held at the Montreal Mathematical Programming Sym-

posium. One paper has been published, one will appear in a special Mathematical

Programming Study, and a, third, is under review.



Part 1. Posynomial Study

1. Introduction

Geometric Programming (GP) is a body of theoretical and algorithmic

results concerned with constrained optimization problems involving a class

of nonlinear algebraic functions [1]. Since the initial work of Zener some

16 years ago, GP has undergone considerable theoretical development, has

experienced a proliferation of proposals for numerical solution algorithms,

and has enjoyed considerable practical application. At the present time

the field is undergoing a period of consolidation and thus a reappraisal

of the practical and computational significance of the developed theory

appears to be appropriate.

This paper is the second of a series of studies on the computation-

al utility of GP formulations and developments. The overall goals of this

research are to determine:

i) whether the constructionsresulting from GP theory offers any

computational advantages over conventional NLP methodology

ii) which of the various equivalent GP problem formulations

are preferable and under what conditions

ii) which GP algorithm/formulation combination is most likely

to be successful for a given problem

iv) whether a criteria can be defined by means of which GP

problem difficulty can be gauged.

While the overall scope of our research encompasses both prototype

and generalized GP, the present paper is confined to the prototype problem.

By way of review for the novice in GP, in the next section we summarize

the five equivalent prototype GP problems formulations.

L
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2. Equivalent GP problem structures

4.' 2.1 The Primal Problem

The prototype geometric programming problem (P) is

Minimize: go(x)

Subject to: gk(x) < 1 k -1p .... K

xOxEN=x > 0 xcE

where the posynomial functions gk(x) are defined as

T k N a nt

gk n. " 1
t*S k ct n-1 x

with specified positive coefficients ct and specified real exponents

ant. The term indices t are defined consecutively as

S a 1
0

Sk+l = Tk+l

TK = T

The above problem is in general a non-convex programming problem which

because of the nonlinearities of the constraints can be expected to sev-

erely tax conventional nonlinear programing codes. However, despite the

apparent difficulty of the primal problem, there are structural features

of the generalized posynomial functions which can be exploited to facilitate

direct primal solutions.

2.2 The Convexified Primal Problem

An interesting property of the primal functions is that with the

change of variable,

xn uexp (2), n a 1,., N

they are transformed to convex functions. This underlying convexity of

I .|_ _ _ _ _

__ _ _ _ _ _ _ _ _ _
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the posynomial functions iKp ies that the primal problem is basically a

convex programming problem in the convex functions,

gk()=z ct exp (E a )gk(Z t n nn

This feature can be used to great advantage in computation since

it permits application of any of a number of convex programming algorithms.

Note that the variables in the convex form of the primal are unrestricted

in sign whereas the original primal variables must be positive.

2.3 The Transformed Primal Problem

The convexified primal can with a further change of variable,

w = AT + In

be converted to a transformed primal auxiliary problem which has the

following revealing structure:

T w
Minimize: go() = o e t

t=l

Tk wt < l k=l ...,K

Subject to: g = Z e
t=Sk

L( - Ink) = 0

where the rows of the matrix L are any set of linearly independent vectors

spanning the null space of the exponent matrix A and where Ink = (IncI,

Inc2, ....,Inct). It is readily shown that this transformed primal is in

general a reduced equivalent and, if A has full rank, is exactly equivalent

to the primal problem [2,3]. Given a solution, w*, of TP a primal solution can

be recovered by solving the linear system,

* T
= + lnk

for the transformed primal variables and simply exponentiating the result.
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2.4 The Dual Problem

As shown by Duffin, et. al., [1], the primal GP problem has associated

with it a dual problem (D),

T 6t K X
Maximize: v() = H (ct/6t) t Xk

t=l k~
k=l .,

Subject to: To
E 6 =1

t=l

A6 = 0
6>0

whereT
wk = k 6 t k=l .... ,K

t=Sk

and where by definition

lim (ctXk/6t) 6t = 0
6t O

It is well known that at their respective optima, V" and C.

W = go

and that the primal and dual solutions are related by the following log-

linear equations which are defined for those t with 6* > 0,

N
l ant lnx* = In (6*v(6*)/ct) l<t<T o

n!i n

In (6*t/C * Sm t TMIn ~ ( Ctk) m-l, .... ,M

It is further known that the logarithm of v(6) is a concave function

which is continuously differentiable over the positive orthant. Hence, the

4 dual problem with logarithmic objective function is a linearly constrained



concave program.

There are, however, three major complications associated with the

direct maximization of the dual:

1) The gradient of ln(v(S)) is not defined when any dual variable

6 t=o.

2) If 6* = 0 for some t, Sk t < Tk, and k, <k < K, then all

dual variables 6*, associated with constraint k must equal zero.

3) It is possible that the system of log linear equations which

must be solved to determine the optimal primal variables may

lead to inaccurate solutions or that its rank may be less than N.

The second of these difficulties can be mitigated if the definitions

of the variables Xk are explicitly incorporated as constraints into the

problem formulation and the Xk are explicitly treated as independent

variables. The first part of the third complication can be avoided, as

pointed out by Dembo [5) , if the primal variables are recovered as Kuhn-

Tucker multipliers of the dual constraints. If the rank is less than N,

a subsidiary maximation of the dual problem must be undertaken prior to the

recovery of the primal solutions [4) . The problem of non-differentiability

when t = 0 has to date been treated by either setting arbitrarily small

lower bounds 6t I c or by introducing penalized slack variables [6]

2.5 The Transformed Dual Problem

An alternate way of formulating the dual program is to eliminate

the linear equality constraints by solving them for the dual variables

in parametric form. Using this device the dual variable 6t can be

expressed as the sum of a particular solution and a linear combination

of T-N-l homogeneous solutions of the N+l dual constraints. Thus, all

feasible values of the dual variables will be given by the parametric

I
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equations. T-N-1

= bO + yj
j=l

where k is any particular dual feasible solution and the are any

basis of the solution space of the homogeneous form of the dual constraints.

In this manner, the following Transformed Dual Program can be constructed.

T ( ct ) 6t(y) K Xk
Maximize: v(y) = n (f- X

t=l -Y k=l

Subject to: D 
6(y) = bo+ E y > 0

j=l

where Th

Xk = E 6t (Y)
t=Sk

and where the yj, j=l,.., D (=T-N-l) are unrestricted in sign.

The above is a maximization problem in D unrestricted variables

subject to T linear inequality constraints. The following properties of

this problem are well known:

i) The logarithm of v(y) is a continuously differentiable concave

function within the positive orthant.

ii) if all primal constraints are active at the optimum, then at

the corresponding dual optimum all T transformed dual inequality

constraints will be inactive. Hence, the transformed dual will

take on an unconstrained maximum.

Iii) if primal constraint k is inactive at the optimum, then 6t(Y)=O,

t=Sk,..,Tk , and the corresponding transformed dual constraints

must be satisfied simultaneously as equalities.

While, from a computational point of view, the second is a very
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desirable property, the third very definitely is not since it requires

implementation of forcing strategies to ensure that blocks of TD constraints

become tight simultaneously.

3. Scope of the Present Study

From the preceding review and from the summary given in Table 1,

it is evident that the various GP problem formulations differ in variable

dimensionality; in number, type, and functional form of their constraints, as

well as in the particular regularity conditions which must be satisfied.

Numerous algorithms have been reported in the GP literature for these

various fn'mulations exploiting their peculiarities. In the present work

we gathered experimental data on the performance of ten codes or code

variants in solving a battery of 42 test problems each solved from up

to 20 different starting points. Four previous comparative studies of

prototype GP solution approaches have been reported in the literature. Two

of these, Rijckaert and Martens [7] and Dembo [5] primarily focused on

generalized GP's but did include prototype problems in their test slate.

The study by Dinkel, et. al. [8] was restricted to the examination of

alternative cutting plane methods used for the solution of the convex primal.

Sarma, et. al. [9], in what may be viewed as a pilot to the present work,

considered primal, dual, and transformed primal solution approaches and

attempted to draw conclusions about the preferred approach.

Rijckaert and Martens tests were restricted to eight prototype

problems, used single starting points, and generally employed penalized

slack variables to avoid difficulties with loose constraints. The algorithms

tested included

i) dual and transformed dual maximization approaches: convex simplex

method, successive LP solution, separable programming, gradient
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projection, modified Newton solution of the transformed dual.

ii) various strategies for solving the Kuhn-Tucker optimality conditions

(in either primal or dual form) using Newton-Raphson methods

iii) two convex primal solution algorithms, GPKTC and GGP

Although the test results were quite limited, the convex simplex

method adaptation due to Beck and Ecker [10] appeared to be the most

reliable, if not always the fastest, dual maximization approach; the convex

primal approach GPKTC appeared to be tie best overall with GGP second.

Dembo [5] included six prototype problems in his testing but these six

were parameter variants of only three original problems. The codes tested

consisted of several good general NLP codes applied directly to the primal

as well as several specialized GP codes, including GGP and GPKTC but not

the Beck and Ecker program. The test problems were run by the code authors

on their own machines; using a single set of starting points; allowing

tuning of programs by the authors; but requiring the solutions to meet fixed

tolerances. Solution times were compared using Colville standard times. For

the prototype problems, GGP and GPKTC gave the fastest times, often by

nearly a factor of two better than the best of the NLP times. However, the

validity of using Colville standardized times has since been seriously

questioned by Eason [11] who showed that standardized times for a given

program on different machines can differ by an order of magnitude.

Sarma, et. al. (9), solved 21 prototype problems using two variants of

the Beck and Ecker code, a penalty method specialized to the GP primal, a

code which solves the GP transformed primal (DAP), and GGP. One to three

starting points were used and solutions were timed to achieve a specified

constraint tolerance (.001) as well as a specified objective function

" .. .. .. I I
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tolerance (within 1/4% of optimum value). The last three codes used

starting points generated by DAP but suitably transformed; while the

Beck and Ecker code was allowed to generate its own starting points.

The study indicated that the penalized slack variable device was generally

less effective than the block strategy used in the unmodified Beck and

Ecker code (MCS). The GGP code was often faster than DAP and significantly

faster than the direct primal approach. In retrospect

the experimental procedure in this study was lacking in three respects.

Code timing included starting point generation in the case of MCS and DAP

but not with the others; the constraint tolerance was the primary tolernace

parameter in two of the codes, hence, the objective function tolerance

could not be precisely controlled; and, run replication was too small.

In the present work we will attempt to rectify some of the experimeatal

inadequacies of the previous studies: a large number of problems will be

used; up to 20 replications using different starting points will be run;

appropriate statistical tests will be used for comparisons; results will

be obtained at several precise error levels; and code timing will be

controlled to exclude starting point generation and extraneous I/O. In

addition, the experiments will be designed such that, at least for the various

primal formulations, formulation effects can be separated from algorithm

effects.

4. Experimental Procedure

4.1 Test Codes

Ten codes or code variants form the basis of this study. The

first four are general purpose NLP codes which were selected on the

basis of an extensive evaluation of NLP codes carried out under another

project [12].
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I) OPT is a generalized reduced gradient code which employs the

Fletcher-Reeves direction updating formula. (13] It has proven to

be comparable to the code developed by Abadie and more robust

than the code developed by Lasdon.

11) MAYNE is a conventional interior penalty function method which

employs the DFP updating formula for the unconstrained search

phase. (14]

il) RALP is a linearization based algorithm which uses successive

linear programming subproblems supplemented with Newton type

iterations to maintain constraint feasibility. 15)

iv) BIAS is an implementation of a variant of Hestenes' Method of

Multipliers developed by Schuldt [16, 17] to accomodate nonlinear

inequality constraints. Unconstrained optimization is carried

out by means of the DFP algorithm.

On the basis of the studies reviewed in the previous section, the

specialized GP codes selected for use in the present work were: GGP,

GPKTC, DAP and MCS. In addition, a promtsing transformed dual code not

appearing in these studies was also chosen In order to be able to generate

comparative data with that GP problem formulation [?0], Finally, one general

purpose NLP code modified to accept the special features of the convex

primal form was also included. Details of these codes follow:

I) BIAS-SV is a variant of the Method of Multipliers specialized

for the convexified GP primal. It employs a modified Newton

method for the unconstrained optimization phase since for the

convexified primal functions analytic second derivations are

readily calculatable. BIAS SV further exploits this property

by using a second derivative basedline search [17]
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ii) GPKTC, a code developed by Martens and Rijckaert (18], solves

the convexified primal by iterative solution of the Kuhn-Tucker opti-

mality conditions for that problem. The iterations follow

essentially the Newton-Raphson algorithm.

iii) GGP is a code developed by Dembo [19] which also solves the

convexified primal although the version used in this study does

not fully exploit the problem structure. The code is an implementation

of Kelley's cutting place method, a venerable and well known convex

programming algorithm. linear subproblems which arise in this

method are solved using the dual simplex method with provisions

for upper bounded variables.

iv) MCS is a GP specialization of the convex Simplex Method proposed by

Zangwill. Beck and Ecker revised the conventional direction

generation machinery to insure that all dual variables associated

with a given constraint reach zero simultaneously. The code also

includes provisions for solving subsidiary maxmimization problems if

difficulties in recovering primal solutions are encountered. 10]

v) QUADGP is a specialized GP code developed by Bradley [20] which solves

the transformed dual as a series of quadratic programs. Dynamically

adjusted lower bounds in the dual variables are used to accomodate

the nondifferentiability of the objective function.

vi) DAP: The DAP code in an adaptation of the Differential Algorithm of

Beightler and Wilde. [2] This in turn, may be viewed as a generalized

reduced gradient technique which varies one variable at a time

and uses an active constraint strategy to accomodate inequality

constraints.

4.2 Test Problems

Of the large number of application problems available in the literature,
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some 42 prototype GP problem, have been selected for use in this study.

About half of these problems arise from engineering applications, the

remainder are literature test problems. Problem references are given in

Appendix B.

The problems and their characteristic dimensions are summarized in

Table 2. From this table it is apparent that the test problems cover the

following wide range of problem dimensions:

2 < P-"mal Variables < 30

8 < Primal Terms < 197

1 < Number of Constraints < 73

3.3% < Exponent matrix density < 83%

The lower limit on density is not as low as might be desirable.

However, it should be noted that the lower limit of problem density is

limited by the number of primal variables. This comes about because the

sparsest possible problem involving N variables and Ttermswill be the one

in which each term contains only a single variable (as, for example, in a

linear programing problem). Thus the lower limit to the density of the

exponent matrix will be,

T 1NXT- W

It would be desirable to include large and sparse GP problems in this

study. However, there are only one or two posynomial problems with more

than thirty variables which have, to our knowledge, appeared in the literature.

Hence we have restricted our range of investigation to problems with N < 30

and % Density > 3.3%.

4.3 Starting Point Generation

One of the key elements in comparative numerical studies is the

selection of starting points for each problem. In this study primal and
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dual starting points for each . )blem were generated randomly by sampling from

the surface of an N-dimensional sphere whose center is the actual optimal

solution to the problem. The choice of radius is arbitrary; In general, a

reasonably large value was selected so that generation of points close to the

optimum was avoided. The points generated were tested for feasibility and only

feasible points retained. Typ'cally, two different radii were used and some

10 points retained for each radius and for each problem. In some cases the

feasible region was so tightly constrained that it was not possible to generate

multiple and sufficiently distinct starting points, even after thousands of

trials. The same primal points suitably transformed were used in the convex

primal and transformed primal computations. A similar starting point proce-

dure generation was employed for dual and transformed dual starting points.

In this case, the sign unrestricted transformed dual variables were randomly

sampled and the transformed dual constraints were checked for feasibility.

The need for multiple starting points cannot be overstated. As can

be seen from Table 3, the variation in solution times, obtained for problem

13 using OPT started from 10 different points, can be considerable. For

instance for primal solution the range of times is from 1.776 secs to 5.72

secs with a mean of 3.65 and standard deviation of 1.42. Similarly, for

convex primal solution the range is from 0.83 to 1.1 secs with mean of 0.878

and standard deviation of 0.165.

Note that for a given starting point the ratio of primal to convex

primal solution times changes substantially. For instance, it is 1.8 for

starting point 5 and 8.3 for stirting point 8. Yet these computation times

are obtained using the same code with identical termination parameters.

A similar although less pronounced variation can be noted when the OPT

convexified primal solution times are compared to those obtained with the

GGP program. The solution time ratio ranges from 0.53 for problem 8 to

1.0 for problem 10.
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These results indicate that code ranking based on performance with

a single starting point, as is commonly done in the literature, is a very

questionable procedure. If at all possible, a sufficiently large number of

points must be used so that reliable means and standard deviations can be

computed. Comparisons must then be made via statistical tests such as

those of Student.

The obvious difficulty with multiple starting points is the tremendous

increase in computational effort. The testing carried out in the present

report required some 10,000 separate test runs of which some 6,000 resulted

in useful data.

4.4 Test Procedure

To carry out code tests on this scale it is imperative that the assembly,

execution, and analysis of runs be automated as much as possible. In the present

study we found it convenient to prepare computer files of test problem

subroutines and test problem starting points for each of the five GP problem

formulations. These files are accessed through an executive program which

calls the desired routines, retrieves the required starting point data, executes

the test run, and saves the intermediate and final results of each run in

appropriate result files. The result files are separately analyzed by a data

post-processing program which calculates the desired error functions, performs

error function interpolations, computes means and standard deviations for

each code-formulation-test problem combination at several error levels.

The primary error function used in this study is the pseudo-Lagrangian

function,
n * t~b (g.g

ABS [(g-g) + k A S  gk
*k

go go

The starred quantities in this expression are the known optimal values of

the problem functions and Lagrange Multipliers. The multipliers were obtained
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by a direct solution of the opti. lity conditions at x using a

linear equation solver. The sum in the above expression is only

over those constraints which are active at the optimum

solution. Either because imposed constraint tolerances effectively allowed

slight constraint relaxations or because the algorithms themselves generated

primal exterior points, all of the codes tested except MAYNE would produce

solutions with slight infeasibilities. The relative error function defined

above allowed a correction to be applied to the objective function errors

when slightly infeasible points are generated. Values of this error function

were computed for the intermediate iteration points recorded during each run.

The intermediate solution t'mfi (which excluded all I/O time required for

recording test data) and error function values were fitted to polynomials

and these used as interpolating functions to determine solution times at

specified error furrtioi %yiels. Mean solution times and standard deviations

were tabulated for each problem/code or formulation combination at relative

error levels of I'2, 10- , 10- , for all successful runs and at termination

for all runs.

Each code was run with a single fixed set of program parameters, the

values of which are given in Appendix A. These parameters were s2lected in

advance by experimentation so that a relative error of at least 10- could

be attained on trial runs with a few moderately sized problems. In many cases

the program parameters correspond to values recommended by the program author.

No readjustment of program parameters were undertaken during the main test runs.

As aresult, some runs did not achieve error levels of 10"4 . Similarly, only a

minimum of program parameter retuning was undertaken if the run failed to make

any progress. The decision to avoid extensive parameter retuning resulted in gaps

in the solution time data. However, because of the large number of test

problems used, we believe these gaps do not seriously affect the conclusions of

the study.



16

5. Results

An overall summary of the number of problems and number of runs attempted

with each code-formulation pair is given in Table 4. As shown all problems

were not run with each code. For some of the larger problems some of the

codes required in excess of 150K to load and hence could not be run under the

normal priority system used with the jC6500 at Purdue University. Problem

42 had to be excluded from the study primarily for that reason. In other

cases, particularly the direct primal runs, the trend was sufficiently obvious

that runs with larger problems or with the complete set of starting points

was not deemed necessary. This was particularly the case with the direct

primal runs, the OPT transformed primal runs, and the BIAS-SV runs. Finally,

in some cases, particularly the QUADGP run, the differences in the solution

times between the starting points for a given problem were sufficiently small,

that the number of points used per problem could be substantially reduced.

Even with these economies, the number of runs which were ultimately counted

in the study were nearly 6,000.

As can be seen from the last column of Table 4, the percentage of

unsuccessful runs, defined as the number of attempted runs that failed

to achieve any significant progress away from the starting point, varied

quite substantially. The conventional NLP codes RALP and MAYNE seemed

to be particularly prone to failure. The solution of the transformed primal

using OPT was also unreliable, presumeably because of difficulties caused by

the large number of constraints which are required by the transformed primal

formulations. Most surprising was the erratic performance of GPKTC which, at

times produced extremely fast solutions but in other cases failed

completely. Since GPKTC basically uses the Newton

Aso .. .. . . . - MA
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Raphsn equation solving algorithm, this erratic performance may well simply

N reflect the often reported sensitivity of this algorithm to initial

estimates. Similarly surprising is the high number of failures of the special

version of BIAS, especially in view of the high reliability of the regular

version of BIAS. Both solved the convexified form of the primal: the former

used a modified Newton algorithm with analytic derivatives; the latter a DFP

algorithm with numerical derivatives. The most reliable performance seems to

have been achieved by the general uL! codes OPT and BIAS when applied to

the convexified primal formulation. The next best performance was attained

by the specialized codes GGP and DAP.

In order to facilitate the presentation of the more detailed test data

we will aggregate these results into several series:

i) Comparison of solution times of various algorithms for a given GP

problem formulation.

2) Cross-comparison of solution times for the various formulations all

solved using the same algorithm.

3) Cross-comparisons of the most successful algorithms found for each

GP formulation type.

4) Examination of how solution time varies with problem characteristic

dimensions for each of the various formulations.

The data reported in Tables 5 through 12 is all based only on the

successful runs. Moreover, the solution time for all runs of problems 15 had to

be excluded because of errors introduced during post processing of the results.

5.1 Intra-formulation Comparisons

This series of runs consists of primal, convex primal, transformed primal

and dual comparisons. Tables 5A, B, and C give mean solution times at

relative error levels of 10"2, 10-3 , and 10-4 , respectively, obtained using
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the codes OPT, BIAS, MAYNE and RALP to solve the primal directly. Each

column of results also indicates the number of successful runs upon which

themean is based. From Tables 5A, B, and C it is clear, even without statistical

testing, that OPT is generally faster than the other codesyielding solution

times less than 1/2 of the next best competitor's in the majority of cases:

20 of 35 at the 10-2 level, 17 of 29 at the 10- 3 , and 13 of 21 at the 10 - .

Note that quite a high proportion of the direct primal attempts failed to

advance the starting points to even -, 10 -2 relative error level.

The general results are quite in agreement with the conclusions of the

general NLP code comparison recently completed by Sandgren [ 1], in which

the GRG based codes outperformed all other algorithms, including MAYNE,

RALP, and BIAS.

The corresponding comparisons involving solution of the convex primal

are shown in Tables 6A, B, and C. The codes involved in this comparison

are: the general NLP codes OPT, BIAS, and RALP; the version of BIAS

specialized for GP's, and the specialized GP programs GGP and GPKTC.

Again the general purpose GRG code dominates the others in mean solution

times at all three error levels. Based on mean times GGP is second and

GPKTC third. However, in this series of runs there is less difference

between the means and, hence, statistical testing is necessary to provide

a more definitive ranking. It is clear, however, that overall OPT is at

least as effective as the specialized programs GGP and GPKTC. This in

itself is quite surprising in view of the fact that the latter two codes

are specially designed for polynomial problems and use analytic derivatives

rather than difference approximations as does OPT. It should be noted that
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the version of GGP used in these tests performs some unnecessary computations

whose exclusion would have somewhat reduced the GGP solution times. In

setting up each new linear subproblem a conversion from the z to the x space

is made, the original constraints are evaluated in the x space, the cut is

generated, and the subproblem is reconverted to the z space for solution.

Timing estimates have shown that depending upon the problem characteristics

6 to 16% savings in CPU time could have been attained if all calculations

had been performed in only the z space. Such mean CUP time reductions would

not, however, substantively affect the observed comparisons.

The transformed primal results summarized in Table 7 indicate quite

clearly that the specialized algorithm DAP is faster: of eighteen problems

for which solution times are available for both, DAP has solution times 1/2 or

less those of OPT in 11 cases. OPT predominated in only 4 cases by

the same margin. In the remaining three cases the mean times were too close

to differentiate without statistical tests. This performance is as might be

anticipated, since in the OPT version used, the T-N tranformed primal linear

equality constraints are not accorded special handling. Moreover, the

transformed single term constraints

gk(w) = exp(wt) < 1

are not simplified to the form, Wt < 0, which would allow implicit rather

than explicit handling of such constraints. Both of these structural

features are exploited in DAP. However, it is interesting to note that the

differences in the solution times decrease (e.g. problem 1, 2, 11, 12, 13,

20, 25) or occassionally are reversed at the higher accuracy level (e.g.

problem 16). This indicatesthat the GRG constraint adjustment strategy

employing Newton's method is more efficient than the line search based
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methods used in DAP. Since !:'th algorithms essentially employ a similar

direction generation method (the reduced gradient), it is thus likely that

a specialized OPT transformed primal version will obtain a superior performance

to that obtained by DAP.

Separate dual and transformed dual intra-formulation comparisons were

not carried out as part of this study. Earlier work, cited in Section 3,

indicated that the dual based MCS algorithm was preferrable to a variety of other

dual and transformed dual approaches. A comparison of M4CS solution times

with those obtained using QUADGP, which solves the transformed dual, is

shown in Table 8. Using a 2 to 1 time ratio as being significantly different,

QUADGP is clearly superior, at the 10-2 error level, in 23 of 32 cases

with MCS being superior in only 5 cases. However, at the 10 3 level this

slips to 15 vs 10 and at the 10 4 level to 11 vs 14. mnis swing is largely

due to the fact that QUADGP failed to solve problems to the lower error tolerances.

Thus Table 8 tends to confirm the conclusions obtained in earlier studies

about the general robustness of MCS.

The intra-formulation comparisons thus indicate that OPT is the most

effective for both primal and convex primal solution with GGP a convex

primal second. The specialized code DAP is better than OPT for the transformed

primal formulation. Intra-formulation comparisons are not given for the

dual and transformed dual.

5.2 Intra-formulation Comparison Using the Same Code

In order to elucidate which primal form is most efficiently solved,

we present a comparison of solution times for the primal formulations when

the same code is used for each formulation. Relative times are given for

OPT in Table 9 and for BIAS in Table 10.
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From the OPT and BIAS prir'.,.i to convex primal ratios, it is obvious

that the primal times are aliost a lways larger by at least a factor of two.

This indicates quite clearly that all of the differences reported by Dembo

(4] between the best NLP solution times and the best specialized GP solution

times is due to the fact that the NLP codes (several of which were GRG

codes, as is OPT) solved the primal and the best specialized codes (GGP and

GPKTC) solved the convex primal. A significant portion of the difference

in solution times appears to be due to differences in function evaluation

times. Evaluation of the term nx is carried out on the machine usingn

logarithms, summing the results, and taking anti-logarithms. The term

exp(Eant zn), on the other hand, can be carried out via a simple sum and a
k n

single exponentiation. The former is much more time consuming. We have

observed numerous BIAS runs in which objective and constraint function values

at the successive unconstrained optimization stages as well as the actual

number of functional evaluations taken were nearly identical for both the

primal and the convex primal iterations of a given problem: yet, the solution

times were very much different.

A second commonly cited difficulty with GP primals is scaling, that is,

both the sensitivities of the various problem functions with -,r-evct to

variable changes are substantially different as well as the sensitivities of

any given function with respect to different variables varies substantially.

Undoubtedly, the favorable scaling introduced by the transformation z =ln(x n)n n
is reflected in the primal to convex primal solution ratios. However,

in our experience GRG codes are less sensitive to scaling than other NLP

algorithms; while the version of BIAS employed in our tests incorporate

automatic scaling of both constraints and variables based on the composite

Jacobian. Thus, we can not on the basis of our results conclude to what

extent scaling is a factor.
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In comparing the convex and transformed primal results, the main difference

in solution times can be explained in terms of a trade-off between number of

variables and constraints and the reduction of variable interactions in the

non-linear functions. Since for any problem T>N, the transformed primal

always has higher dimensionality than the convex primal. Moreover, while both

formulations always have the same number of non-linear constraints, the trans-

formed primal will in addition have T-N linear equality constraints. When

T-N is small, as in problem 8, then solution times are close. However, when

T-N is large as in problem 12, then the solution times are substantially

different. Because problem dimensionality will be shown to be the predominant

variable in determining problem solution time, it seems unlikely that solution

via transformed primal can be made significantly more efficient than convex

primal solution, even if special provisions are made for the T-N linear

equality constraints.

Finally, it is of interest to note from Table 10, that the special GP

version of BIAS which uses analytic second derivations for unconstrained

optimization and line searching is considerably slower than the normal

BIAS code When both solve the convex primal form. This is particularly

noticeable as problem size increases. There is to be sure some reduction in

the time ratio in going from the 102 to the 10 3 error level, reflecting

the expected faster convergence rate of the modified Newton algorithm.

However, the comput&tional time required to evaluate the second derivatives

apparently is not balanced by increased efficiency in the search. This

finding is consistent with the results reported by Sarma, et. al. [9) in

which a primal approach using analytical second derivatives was found

to be quite inefficient.
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Finally, we compare the solution times for the various formulations

when each is solved using the code shown to be the most effective for that

formulation. Tables 11A, B, and C summarize the mean times for the best

primal (OPT), convex primal (OPT), transformed primal (DAP), dual (MCS),

and transformed dual (QUADGP) co,4es. The mean times for GGP are also included

because they were sufficiently close to those of OPT. As can be seen from

these tables for any given problem the mean solution times of the two fastest

codes often differ by less than a factor of two. Moreover, as can be seen

from Table 12, the standard deviations of the means frequently are quite

substantial. Thus comparisons of the mean solution times necessitate the

application of statistical tests.

Assuming that the solution times x and y of two codes for any given

problem are normally distributed variables each with their own

variances and a , then code solution time comparison

is equivalent to the problem of testing whether the true mean solution

times, Nx and My, of the two codes for the given problem are equal. This

is the Behrens-Fisher problem of statistics [21]. It can be shown that

if sX 2 and sy2 are the unbiased sample estimates of the variances, then

the variable

t = Y"(Mx-M)

2 s2
x/nx + Y/ny

will possess an approximate student t distribution with degree of freedom

_ _ _ Xn -2

nxl n~

n+1 I ny +1
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In these expressions, x ari, y, are the sample means and n~ and n are

X y
the sizes of the two samples. T1,ese formulas were applied to test the

difference in the means of t!e solution times given in Tables IA, B, and

C. Sample results for the 10- 2error level are given in Table 13. The

Student t value was calculated using the means given in Table 11A and

standard deviations given in Table 12. The significance level of the

differences in the means can be determined using standard tables of the

Student t distribution [21, Appendix 2]. These significance levels are

given in the last column of Table 13 for those means which were based

on at least three runs. As can be seen from the Table, for several problems,

e.g. problem 2, the means were not significantly different. In the case

of problem 2, it was necessary to proceed to the fourth best mean time

before a significant statistical difference from the best mean time could

be established.

These calculations were repeated at the 10-3 and 10
- relative error

levels. The results were used to determine the number of problems for

which each code achieved the best or second best solution times. An 90%

significance level was required before means were considered to be different.

In the case of differences below that significance level, both codes were

ranked equally. The results of this ranking are shown in Table 14. It

is quite clear that OPT applied to the convex primal is the best GP solution

approach overall. At the highest error level of 10-2, DAP and QUADGP are competitive

However, at lower error levels these two codes fade out to be decisively

overtaken by MCS at the 10" level. The better ranking of MCS at the 10

error level, however, is largely a result of its robustness rather than its

speed. In 9 out of 13 cases in which it is first, it is the only code

to solve the problem to that accuracy level and in several of those

instances the solution times exceed 50 sec., a very large time within the

framework of this study.
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convex primal solution metud hen T-N is small and when the multi-term

constraints are active at te opzimum (eg. problems 2, 8, 13, 16, 32, and

34). The specialized codes, GGP, DAP, as well as GPKTC,-overall do not

appear competitive with OPT. Quite clearly the successes of GGP and GPKTC

against other GP solution approaches, as reported in several recent

comparative studies [5, 7, and 9] are largely due to the fact that these

codes are based on the convex primal formulation rather any insights

offered by GP theory. Thus these results do cast doubts on the computational

significance of many years of research into non-zero degree of difficulty,

prototype GP solution algorithms.

It should be noted that significant improvements in the performance

of OPT would in all likelihood be achieved if some structural features

of the convex primal are exploited. For instance, single term constraints

need not be treated as normal constraints but can be converted to linear

inequality constraints. Also, computation of derivatives could be made

much more efficient by saving the term values for each posynomial during

function evaluation and then calculating the partial derivatives analytically

as a simple weighted sum of these term values, i.e.,

_gk * £ ant rct exp (E antEn)]
31 t n

where the quantities in brackets are the already calculated term values.

In OPT derivatives are calculated numerically by differences and single

term constraints are treated as explicit nonlinear inequality constraints.

5.4 Effect of Problem Dimensions on Solution Time

The remaining objective of this study was to attempt to deduce which

characteristic dimensions of a prototype GP problem could best be used as a

measure of solution difficulty. To that end pairwise correlation coefficients
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were computed between solution fficulty as measured by mean solution time

and seven different, but not necc-sarily independent, problem characteristic

dimensions. For purposes of these computations the total solution time

to termination of a run was used rather than the solution time to a specified

relative error tolerance. This is appropriate because the runs used to

calculated a given correlation coefficient all involve the same code run

with the same set of program parameters.

The results for two types of assumed relationships are given in

Tables 15A and 15B. Table ISA contains the correlation coefficients

obtained by assuming that solution time is proportional to an exponential

function of the particular problems characteristic, that is,

time a by

where y is the problem characteristic such as number of variables, number

of constraints, etc. Table 15B gives the correlation coefficients when a

linear relationship is assumed. For comparative purposes, the last column

of the tables lists the critical value of the correlation coefficient for

a 0.05 significance level ([21], p. 167).

For the primal solution approach (OPT-P) the solution time correlates

most strongly to the exponential of the number of the number of primal

variables. However, significant linear correlation also exists with the

number of constraints and the degree of difficulty. Note that the degree

of difficulty correlates better than either the number of terms or the number

of primal variables separately. Also the number of constraints correlates

M more strongly than either the number of multi-term constraints or the number of

tight constraints. The dependence on the exponential of the number of variables

and the less than exponential dependence on the total number of constraints

is as might be expected for a GRG code. The correlation to degree of

difficulty, on the other hand, is a GP problem characteristic which probably

reflects the time required to evaluate the problem functions.
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For the convex primal solution approaches (OPT-CP, GGP, and GPKTC) the

situation is less coherent. The strongest exponentially correlated variable

seems to be the number of primal terms both for GPKTC and for OPT. For both

the correlation coefficient is higher for primal terms than for either primal

variables or degree of difficulty. In the case of GGP, however, the number

of primal variables shows a higher correlation. The strongest linear

correlation appears to involve the degree of difficulty for GGP and GPKTC

but the number of constraints for OPT. Apparently the differences in the

operations of the algorithms used to olve the convex primal serve to

obscure the trends. Nonetheless, it is clear that the number of primal

variables becomes less significant and the number of primal terms as well

as the density more important in going from the primal to the convex primal.

In the transformed primal case, the exponential dependence on the number

of primal terms becomes even more pronounced. This is to be expected since

for the transformed primal the latter becomes equal to the number of problem

variables. The linear dependence on the number of multi-term constraints

becomes more pronounced because the effect of the single term constraints

Is minimized since they are uncoupled as a result of the problem transformation.

In the case of the dual approaches, the most significant correlation

is found to the exponential of the degree of difficulty for the transformed

dual (QUADGP) and to the exponential of the number of primal terms for

the dual (MCS). This is consistent since these quantities correspond to

the number of variables in these formulations. Strong linear correlation

is shown to the number of primal multi-term constraints - significantly

stronger than to either the total number of constraints or to the number

of tight constraints. Apparently, this reflects the overhead of having

to deal with the Ak variables in the problem formulations, regardless of

whether or not these vanish. Curiously the density of the exponent matrix

k L
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shows no significant correlati. for either the dual approaches or the

transformed primal approacht 3 , bt does show a reverse correlation in the

primal and convex primal cases. The density correlation in the primal

case is probably spurious since it is unlikely that primal computation

time will decrease with increased density for problems of the same

dimensionality. After all, in the primal case, density reflects the

degree of coupling of the program variables. Most likely the reverse

correlation is induced because of the basically inverse relationship

between density and number of primal variables noted in Section 4.2. We

are thus led to conclude that density does not appear to be a reliable

primary indication of problem difficulty.

In summary, in all cases the key exponentially correlated problem

characteristic appears to be the number of variables in the problem

formulation. In going from primal to convex primal to transformed primal

to dual, the key linearly correlated problem characteristic shifts from

number of constraints to number of multi-term constraints. Number of

tight primal constraints is in all cases only a secondary factor. Density

of the exponent matrix does not appear to be a reliable primary indicator

of problem difficulty as measured in solution time.

6. Conclusions

Within the limits of the experimental design of this study, a key

feature of which is the use of fixed code parameters, the following

overall conclusions may be drawn:

i) the convex primal is inherently the most advantageous

formulation for solution.

ii) a general purpose GRG code applied to the convex primal is

competitive with the reputedly best specialized GP codes

currently available.

......... i. . . ,
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iii) the differences between the primal and convex primal formulations

lie mainly in scaling and function evaluation time.

iv) transformed primal solution approaches are not likely to lead

to more efficient GP solution than the convex primal

v) the dual approaches are only likely to be competitive for small

degree of difficulty, tightly constrained problems.

vi) posynomial GP problem dikiculty as measured in solution time

is best correlated to an exponential of the number of variables

in the formulation being solved and is proportional to the

total number of multi-term primal constraints.
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TABLE 1: i, LEM CHARACTERISTICS

CONVEX TRANSFORMED TRANSFORMEPRIML PRIMAL T(+ Kll T-Pi -UA
No. OF VARIABLES N N PIjMAL

r*. OF CONSmANTS

LINEAR EQUALITY - - T-N N+1(+K)

LINEAR INEQUALITY T

NON-LINEAR INEQUALITY K K K

SIGN RESTRICTION ON YES No No YES No
VARIABLES

PROBLE VE) NO YES YES YES YES

PROBLEM SEPARABLE No No YES No(YEs) No
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Table 3. The Effect of Starting Points on Solution Times

OPT
Starting OPT Convexified
Point Primal Primal GGPOPT P. OPT C.P.

(R = .5) (sec) (sec) (sec)OPT C. P. sc)GGP

1 2.991 2.7 1.094 .87 1.253

2 4.224 6.2 .684 .58 1.174

3 2.161 2.8 .770 .58 1.335

4 3.323 4.4 .748 .58 1.296

5 1.776 1.8 .995 .87 1.141

6 2.115 2.6 .824 .63 1.305

7 4.309 4.1 1.045 .68 1.535

8 5.673 8.3 .683 .53 1.298

9 5.722 6.8 .837 .65 1.320

10 4.214 3.8 1.100 1.00 1.104



Table 4. Number of Soir.ions Attempted and Solved

Code Problems Runs i Runs % Unsuccessful
Attempted Attempted Failed Attempts

OPT-P 40 399 27 6.77

OPT-CP 41 616 1 0.16

OPT-TP 25 452 124 27.43

GGP 41 598 24 4.01

GPKTC 39 589 240 40.75

MAYNE 31 379 61 16.09

RALP-P 34 446 146 32.74

RALP-CP 37 552 115 20.83

BIAS-P 39 260 1 0.38

BIAS-CP 40 457 0 0.0

BIAS-SV 29 166 21 12.65

MCS 26 412 60 14.56

DAP 40 406 14 3.45

QUAD-GP 34 149 13 8.72



Table 5A PirecL Primal Results

10"2 Relative Error

AVG. CPU Time (Secs)

Problem OPT BIAS MAYNE RALP
Number # TIME" # TIME # TIME # TIME

1 20 0.6319 20 1.0935 20 3.095 10 0.1270
2 20 0.3434 20 1.1410 20 1.8085
3 14 0.2402 20 0.1898 18 1.3724 18 0.6950
4 19 1.2517 2 33.35 20 0.8865
5 20 0.2363 20 3.458 20 0.3370
6 1 13.886
7 19 0.6629 2 31.29 2 3.651 1 0.7210
8 20 0.7549 2 3.882 20 6.369
9 20 0.5805 20 3.571 2 4.425 20 1.328

10 20 0.5316 2 12.251 2 3.062 20 3.991
11 20 0.4586 20 2.455 20 4.389 20 1.9260
12 20 0.7237 10 5.090 17 6.609 20 2.640
13 20 0.3718 20 2.236 20 4.281 20 2.759
14 2 0.4648 14 0.5830 14 2.864 14 2.041
16 20 0.4371 18 4.266 18 5.5353 10 8.538
17 20 2.978 2 8.161 19 18.927
18 19 1.8140
19 2 21.22 2 14.434
20 2 0.7904 2 7.286 20 9.449 20 9.631
21 2 29.76 2 21.31
22 2 20.98 2 24.64 2 26.70
23 2 17.692
24 3 18.171 14 21.80 7 35.77
25 2 10.773 13 16.591 7 17.661
26 2 27.313 11 19.848
27 1 4.248 1 49.15 1 1.6140
28 2 8.622 2 54.41 17 51.18 1
29 2 6.965 2 21.64
30 1 5.308
31 2 4.359 20 42.03
32 2 15.454
34 2 5.730 2 28.07
35 2 1.4072 33.70
39 1 22.12
40 1 46.03



Table 5B Direct Primal Results

10"3 Relative Error

AVG. CPU TIME (Secs)

Problem OPT BIAS 1 MAYNE RALP

Number # TIME # TIME I # TIME # TIME

1 20 0.6475 20 l.! 20 3.461 10 0.130
2 20 0.4953 20 . 20 2. 509---

3 14 0.2956 20 0.209 20 1.5565 20 0.768
4 19 1.3514 1 33.74 20 1.191

5 20 0.3895 20 4.093 20 0.6185
9 20 0.6671 20 3.978 2 5.161 1 1.496

10 19 1.1177 2 13.51 2 4.576 20 7.08
11 20 0.6414 20 2.7 20 5.717 20 2.289
12 20 1.0209 10 5.501 17 8.647 20 3.22
13 20 0.9925 20 3.717 20 5.769 17 3.986
14 3 0.5036 19 0.7427 19 3.836 19 2.569
16 20 0.9849 20 5.937 20 9.293 10 10.036
17 20 3.4559 2 24.515 19 21.35

18 2 3.4367
20 2 1.9572 2 9.416 20 11.38 13 11.66
22 2 37.715 2 *27.88

23
24 2 27.452 14 27.35
25 2 14.147 13 19.726 4 21.20
26 2 29.80 11 23.79

27 1 5.1514 1 4.325
28 17 63.98

29 2 13.316 2 35.65

30 1 5.576
31 2 5.2618 20 56.54 -----

32 2 19.625 .....

34 1 6.3759 2 36.14
35 2 41.63

39 1 26.1704

40 1 54.8196



Table 5C Direct Primal Results

10- Relative Error

AVG. CPU Time (Secs)

Problem OPT I BIAS i MAYNE RALP
Number # TIME # TIME # TIME # TIME

1 1 I
I -- - - - - - 3 0.129

2 20 0.6147 i 1.747 20 2.762
3 14 0.3323 20 0.213 20 1.591 10 0.8352
4 11 1.3717 20 1.3685
9 4 0.6862 20 4.510 2 6.084

10 18 1.5322 2 14.229 2 4.986 20 8.035
11 16 0.7926 20 3.298 20 6.651 18 2.516
12 20 1.5076 10 6.579 17 10.085 19 3.499
13 18 1.5786 20 4.793 20 7.890
14 11 3.021
16 20 1.8454 20 7.202 20 10.751 3 11.183
17 1 4.109
20 2 3.273 2 9.9185 20 16.707
25 2 14.6965 13 27.06
27 1 5.242 1 6.654
28 1 6.654
29 2 17.767 2 48.134
30 1 5.959
31 20 64.01
32 2 22.10
35 2 52.49
39 1 26.58
40 1 55.74

IL



Table 6A; Convw-J: I Primal Results

10.2 Relative Error

AVG CPU TIME (secs)
Prob. OPT BIAS BIAS-SV GGP GPKTC RALP
No. # TIME # TIME # TIME # TIM1E # TIME # TIME

1 20 0.4842 20 0.6925 4 0.6545 20 0.2998 20 0.1075
2 20 0.1753 20 0.5005 1 0.3350 20 0.2714 20 0.3320
3 18 0.0873 18 0.0818 18 0.0708 18 0.2243 18 0.2510 18 0.3650
4 20 0.2656 2 20.686 4 11.779 20 0.2828 20 0.4940 20 0.8775
5 20 0.0972 20 1.0305 20 1.5750 20 0.3747 20 0.2845 20 0.3220
6 20 0.2963 20 0.4283 20 4.999
7 20 0.2081 2 5.973 20 0.3126 19 0.6582
8 20 0.2005 20 0.7731 20 0.3160
9 20 0.2774 20 1.253 10 2.653 7 0.3166 20 0.4900 20 0.9635
10 20 0.1292 20 2.853 2 9.511 20 0.7512 20 0.3935 20 1.244
11 20 0.2643 20 1.634 10 3.512 20 0.5520 I 18 0.6185 20 0.9100
12 20 0.4001 20 2.284 10 5.881 20 0.6240 16 1.0940 20 1.402
13 20 0.1820 20 0.6625 20 0.6530 20 0.4590 20 1.187
14 14 0.0963 14 0.1637 14 0.5308 18 0.6005 9 0.8852 8 0.9828
16 18 0.1944 18 1.127 2 9.639 18 0.8927 18 0.7353 18 5.588
17 .20 0.8506 20 2.099 1 31.32 20 0.7925 20 1.077 20 2.750
18 20 0.4696 1 ----- - 5.259
19 20 0.5193 20 5.605 2 63.39 20 1.651 15 9.463
20 20 0.3175 20 2.160 2 19.324 19 2.932 20 5.620
21 10 7.506 2 110.66 20 2.293 9 3.983 13 8.643
22 20 1.3209 10 6.635 20 __20 2.206 l 9 8.216
23 20 1.5894 .....
24 10 7.750 2 40.38 20 1.1495 10 6.707
25 20 3.602 2 45.87 20 3.450 1 3.075 20 8.213
26 10 11.334 20 1.837 7 7.165
27 1 1.0102 1 0.456 1 2.210 1 6.302
28 20 2.516 2 24.04 20 1.979 ----- 11 12.14
29 20 1.4573 8 4.571 2 91.65 20 3.245 8 35.28 10 15.74
30 1 2.6070 1 - 0.440 -
31 2 1.6350
32 ----- 15 3.337 2 R3.59 15 1.6345 15 1.1870 15
3 3 - .....
34 2 0.8279 2 6.290 2 2.177 1 3.476
35 20 0.7272 2 5.022 2 7.570 19 2.229 6
36 2 0.7605 2 4.225 - 1 82.43
37 1 1.543 - -----
3 ---- - 1 13.559 1 31.45
1 1 33.05 1 .751.....

1 4.944-- --- --- --- -- - -
1 12.800 .....



Table 6B: Convexified Primal Results

10-3 Relative Error

AVG CPU TIME (secs)

Prob OPT BIAS BIAS-SV GGP GPKTC RALP
No. # TIME # TIME # TIME # TIME TIME # TIME

1 20 0.4948 20 0.959 4 0.9717 20 0.2878 20 0.112
2 20 0.2296 20 0.6145 1 1.451 20 0.3293 20 0.332
3 18 0.1491 20 0.0925 20 0.0815 20 0.2707 20 0.2565 15 0.3965
4 20 0.2993 20 21.52 3 12.625 20 0.3246 20 0.9115
5 20 0.1809 20 1.2365 20 2.248 20 0.4702 20 0.3015 20 0.490
6 19 0.3503 20 0.4659 17 5.109
7
8

9 20 0.3174 20 1.4025 7 3.592 7 0.4119 20 10.343
10 20 0.1872 20 3.291 2 12.047 20 0.9647 20 0.4385 20 1.471
11 20 0.3244 20 1.8085 3 3.920 20 0.647 18 0.6265 19 1.051
12 20 0.5014 20 2.474 10 6.582 20 0.752 18 1.11 15 1.615
13 20 0.3613 20 1.0985 20 0.8475 20 0. 20 1.649
14 20 0.1446 19 0.2166 19 0.6365 19 0.8097 14 0.8 , 10 1.328
16 20 0.4082 20 1.5855 2 10.463 20 1.3205 20 0.856 20 7.790
17 20 0.9798 20 2.914 20 0.995 20 3.092
18 4 0.7012
19• 12 0.8774 2 64.15
20 20 0.5275 20 2.917 2 20.36 19 3.782 18 5.757
21 .....

22 20 1.6684 8 7.633 20 2.681 1 8.157
2 3 2 0 1 .9 6 8 2 . . . . .
24 10 8.755 1 44.14 20 1.4345 10 6.766

25 20 4.359 2 51.24 20 4.435 1 3.097 20 8.597
26 10 12.102 20 2.408 ----- 3 8.311
27 1 1.3333 1 0.577 1 0.4882 1 6.305
28 2 25.475- 20 2.774 10 13.052
29 20 2.233 8 8.171 20 4.614 8 37.03 7 16.190
30 1 2.843
31 2 1.5293
32 20 4.367 2 89.77 20 2.234 20 1.4365 20 13.598
33 - ---------- --- ---

34 1 0.8861 2 7.382 2 2.905
35 18 1.1286 2 8.095 ----- 2 10.050 6 11.371

36 2 1.0415 2 7.276 1---- 1 83.12
37 .....

38 ---- - -.- 559 1 196.3E6
39 1 40.46 ----- 8.751 1 79.72
40 1 6.037 - - - - - - -

41 1 16.006 .....



Table 6C: Convexified Primal Results

10 Relative Error

AVG CPU TIME (secs)

Prob. OPT BIAS BIAS-SV GGP GPKTC RALP
No. TIME # TIME # TIiE # TIME # TIME # TIME

2 20 0.3058 20 0.762 1 1.572 20 0.3763
3 18 0.1617 20 0.095 20 0.083 20 0.3115 20 0.2575 2 0.390
4 12 0.3875 1 12.316 20 0.4179 17 1.067

6 8 0.3509 ----- 20 0.5841
9 7 0.3544 20 1.544 --- 7 0.433 15 10.910

10 16 0.2643 20 3.34 2 12.520 20 1.148 20 0.451 20 1.574
11 9 0.3726 20 2.001 ----- 20 0.7905 1 0.641 2 1.192
12 7 0.5498 20 2.876 1 4.966 20 0.897 1 1.151
13 .19 0.4472 20 1.3795 --- 20 0.994 19 0.9346 16 1.9319
14 9 0.1968 ----- 14 1.1887 9 1.1792 3 1.128
16 20 0.6257 20 1.8845 2 10.629 20 1.68 20 1.0045 10 7.401
17 17 1.229 20 3.919 --- 20 1.178 12 3.23C
20 5 0.7546 20 3.054 ----- 3 5.604
25 20 4.486 2 51.46 6 6.027 1 3.169
27 1 1.7049 ..... 1 0.705 1 6.305
28 ----- 8 3.026 1 15.439
29 19 2.978 2 15.047 --- 20 7.031 1 15.183 1 18.364

1 1 3.102
j2 20 5.465 2 90.93 20 3.516 20 1.7865
35 1 1.2891 1 9.198 2 13.205 6 11.393
36 1 1.2695 2 11.785 1 83.19
38 - ----- -------------------- 1 212.9
39 1 45.4 .... 1 20.99 1 85.75
4 0 1 6 .1 5 3 . . . . .. . . . .. . . . .
41 1 16.346 .....



Table 8 Dual Results

CPU Time (Seconds)

Relative Error 10-2  Relative Error l0-3  Relative Error 10

Prob. MCS - QUADGP MCS UADGP MCS QUADGP
N_ #_ I TIME # TIME # TI-ME # TIME # TIME # TIME

1 20 0.4950 1 0.8530 20 0.542 20 0.546
2 6 0.1430I 4 0.1533 18 0.2081 4 0.17883 20 0.2275 4 0.1896

20 0.6140 5 0.1979 20 0.768 5 0.2689 20 0.873 5 0.2904
5 15 0.8070 5 0.1923 20 1.995 5 0.3070 20 4.07
6 5 0.8166 ----- 5 0.9524 5 1.0253
7 5 0.4284 - ----- 5 1.0253
8 20 0.1666 5 0.08015 20 0.1724 - 20 0.1731
9 20 0.5370 5 0.1647 20 0.7755 5 0.2377 20 1.1980 5 0.2463

10 20 0.7160 5 0.5392 20 1.7185 5 0.5823 20 2.40 5 0.6012
11 4 1.4333 4 1.6942 4 1.8505
12 10 10.485 4 15.43 10 15.931 3 16.387 10 16.471 2 15.275
13 15 0.2263 5 0.1444 19 i 0.3658 3 0.3026 20 0.3915 3 0.3292
16 9 0.3100 2 0.5986 19 0.3755 2 0.6175 20 0.4605 2 0.9315
17 20 2.554 5 1.3402 20 5.0 5 1.9298 20 5.331 5 2.086
18 5 4.694 .....
19 20 1.2655 4 0.3454 20 1.4365 20 1.8135

20 5.420 4 0.8676 20 7.476 5 1.2255 20 8.856 5 1.6259
---- 5 1.2101 .....

22 4 2.615 ----- 4 10.049
23 1 167.53 4 6.707 1 177.43 1 178.43
24 20 10.394 5 2.707 20 15.421 5 3.287 20 16.622
25 20 11.621 3 5.062 20 12.784 2 4.486 20 12.901 1 5.541
6 3 13.106 5 3.000 3 78.99 5 3.79 3 117.99

27 10 1.2995 3 5.230 10 3.913 10 7.786
28 10 1.349 ' - 10 7.638 10 10.359 -----
30 5 0.6464
31 10 0.9825 5 0.7738 10 1.3435 - 10 1.767
32 5 0.4750 2 1.9732 10 0.607 2 2.135 10 0.673 2 2.452
33 8 28.89 4 3.035 8 40.63 8 51.81
34 9 0.3250 5 0.1225 10 0.4805 5 0.1314 10 0.543
38 3 26.597 ----- 3 31.977 3 35.06
40 4 19.067 ----- 4 31.18 4 35.15

bi



Table 9: OPT Primal Form Comparisons

(CPU Times Divided by Convex Prinal Times)

Problem Error I0-2 Error 10-

No. P/CP TP/CP P/CP TP/CP

1 1.31 8.26 1.31 8.36
2 1.96 2.95 2.16 3.06
3 2.75 --- 1.98 ---
4 4.71 2.90 4.52 2.79
5 2.43 --- 2.15 ---
7 3.19 4.00 ......
8 3.77 1.33 ......
9 2.09 3.13 2.10 3.09
10 4.10 --- 5.97 ---
11 1.74 7.69 1.98 8.18
12 1.81 19.64 2.04 20.47
13 2.04 3.38 2.75 3.00 I
14 4.83 --- 3.48 ---
16 2.25 4.59 2.41 6.26
17 3.50 9.15 3.53 8.75
18 3.86 --- 4.90 ---
19 --- 7.89 ..
20 2.49 19.82 3.71 21.74
22 15.88 10.81 --- 10.67
23 11.13 .........
27 4.21 3.86 ---
28 3.43 ---
29 4.78 5.96 ---
30 2.04 1 .96 ---
31 2.67 3.44
34 6.49 7.20
35 1.94 ......
39 0.670 0.647 ---
40 9.31 9.08 ---



Table 10: BIAS Primal Form Comparisons

(CPU Times Divided by Convex Primal CPU Times)

Problem Error = 10-  Error = 10-3

No. P/CP CP-SV/CP P/CP CP-SV/CP

1 1.58 0.945 1 .68 1.02
2 2.28 1.77 2.21 2.36
3 2.32 0.866 2.26 0.881
4 1.60 0.564 1.57 0.586
5 3.36 1.53 3.31 1.82
7 5 .2 4 .... ... ..
8 5 .0 2 .... ... ..
9 2.85 2.12 2.84 2.56

10 4.29 3.33 4.10 3.66
11 1.50 2.15 1.49 2.17
12 2.23 2.57 2.22 2.66
13 3.38 --- 3.38 ---
14 3.56 3.24 3.43 2.94
16 3.79 8.55 3.74 6.60
17 3.89 14.92 8.41 ---
19 3.79 11.31 .. .
20 3.09 7.76 3.23 6.98
21 3.97 14.74
22 3.71 --- 4.94 ---
24 2.34 5.21 3.14 5.04
25 2.99 12.73 3.25 11.75
26 2.41 --- 2.46 ---
28 2.26 ---...

29 4.74 20.05 4.36 ---
32 4.63 25.05 4.49 20.56
34 4.46 --- 4.90 ---
35 6.71 --- 5.14 ---



Table 11A: Summary Cross Comparison: Relative Error 10
- 2

CPU Times in Seconds

PRIM1AL C-PRIAL C-PRIMAL T-PRIMAL DUAL T-DUAL
OPT. (OPT) (GGP) (DAP) (MCS) (QUAD GP)

1 0.6319 0.4842 0.299 0.2471 0.4950 0.8530
2 0.3434 0.1753 0.2714 0.1440 0.1430 0.1533
3 0.2402 0.0873 0.2243 0.0595
4 1.2517 0.2656 0.2823 0.4625 0.6140 0.1979
5 0.2363 0.0972 0.3747 0.2306 0.8070 0.1923
6 0.2963 0.4283 0.2190 0.8166
7 0.6629 0.2081 0.3126 0.3538 0.4284
8 0.7544 0.2005 0.3160 0.4006 0.1666 0.08015
9 0.5805 0.2774 0.3166 1.332 0.5370 C.1647

10 0.5316 0.1292 0.7512 0.1747 0.7160 0.5392
11 0.4586 0.2643 0.5520 0.5076 1.4333
12 0.7237 0.4001 0.6240 1.1840 10.485 15.43
13 0.3718 0.1820 0.653 0.3081 0.2263 0.1444
14 0.4648 0.0963 0.6005 1.0804
16 0.4371 0.1944 0.8927 0.1699 0.3100 0.5986
17 2.978 0.8506 0.7925 11.027 2.554 1.3402
18 1.8140 0.4692 0.3685 4.694
19 0.5193 1.651 7.590 1.2655 0.3454
20 0.7904 0.3175 2.932 2.287 5.420 0.8676
21 ----- ----- 2.293 3.220 ----- 12.101
22 20.98 1.3209 2.206 15.083 2.615
23 17.692 1.5894 167.54 6.707
24 1.1495 9.548 10.394 2.7078
25 3.450 1.6304 11.621 5.062
26 - -.. 1.837 29.96 13.106 3.000
27 4.248 1.0102 0.456 1.3162 1.2995 5.230
28 8.622 2.516 1.979 8.533 1.349

29 6.965 1.4573 3.245
30 5.308 2.607 0.440 0.4090 0.6464
31 4.359 1.6350 0.9825 0.7738
32 1.6345 0.2249 0.4750 1.9732
33 ----- 28.89 3.035
34 5.370 0.8279 2.127 3.805 0.32b0 0.1225
35 1.4072 0.7272 7.570 0.2962

36 0.7605 4.225 0.4649

37 ----- 1.543 -------- - -

38 2.475 26.58
3 9 2 2 .1 3 3 3 .0 5 8 .7 5 1 5 .0 1 6 .....

40 46.03 4.944 1.731 19.067
41 12.-00



Table IIB: Summary Ct --Comparison (Relative Error 10
- )

CPU Time in Seconds

PRIMAL C-PRIMAL C-PRIMAL T-PRIMAL DUAL T-DUAL
(OPT) (OPT) (GGP) (DAP) (MCS) (QUADGP)

1 0.6475 0.4948 0.2878 0.3590 0.542 -----

2 0.4953 0.2296 0.3293 0.2167 0.2081 1.7883
3 0.2956 0.1491 u.2707 0.0690
4 1.3514 0.2993 0.3246 0.4925 0.7680 0.2689
5 0.3895 0.1809 0.4702 0.6149 1.995 0.3070
6 ----- 0.3503 0.4659 0.4038 0.9524

8 ----- 0.1724
9 0.6671 0.3174 0.4119 2.021 0.7755 0.2377
10 1.1177 0.1872 0.9647 0.2903 1.7185 0.5823
11 0.6414 0.3244 0.647 1.3407 1 .6942
12 1.0209 0.5014 0.752 2.393 15.93 16.387
13 0.9925 0.3613 0.8425 0.7693 0.3658 0.3026
14 0.5036 0.1446 0.8097 1.4042
16 0.9848 0.4082 1.3205 1.0381 0.3755 0.6175
17 3.455 0.9793 0.995 12.992 5.00 1.9298
18 3.436 0.7012 0.3399
19 0.8774 1---- 1.4365 -- -
20 1.9572 0.5275 3.782 10.22 7.476 1.2255
21 ----- --
22 1 .6684 2.681 10.05
23 1.9682 177.4
24 1 .4345 17.44 15.42 3.288
25 4.435 9.638 12.78 4.486
26 2.408 30.75 78.99 3.790
27 5.151 1.333 0.577 10.158 3.914
28 ----- 2.775 13.403 7.638
29 13.316 2.234 4.614 .....
30 5.576 2.843
31 5.262 1.5293 1.3435
32 2.235 1.242 0.607 2.135
33 ----- 40.63 -----
34 6.379 0.8861 2.905 27.P8 0.4805 0.1314
35 1.1286 10.051 3.672
36 ----- 1.0415 7.276 0.G723
37 .....
38 ..........- 2.777 31.97
39 26.17 40.47 9.751 5.016 .....
40 54.82 6.038 1 .731 31.18
41 ----- 16.01 l ...



Table 11C: Summary Crc. -Comparison: (Relative Error 10
-4)

CPU Time in Seconds

PRIMAL C-PRIMAL -PPIAL T-PRIMAL DUAL T-DUAL
(OPT) (OPT) (GGP) (DAP) (MCS) (QUADGP)

1 0.4729 0.5460 -----

2 0.6147 0.3058 0.3763 0.3073 0.2275 0.1896
3 0.3323 0.1617 0.3115 0.0706

4 1.3717 0.3875 0.4179 0.5065 0.0730 0.2904
5 4.070

6 0.3509 0.5841 0.73,6 1 .0253
7

8 0.1731

9 0.6862 0.3544 0.4330 0.9290 1.198 0.2463
10 1.5322 0.2643 1.1480 0.6237 2-400 0.6012
11 0.7926 0.3726 0.7905 1.7970 1 .8505
12 1.5076 0.5498 0.8970 3.2332 16.47 15.28
13 1.5786 0.4472 0.9940 1.1689 0.3915 0.3292
14 0.1968 1.189 -

16 1.8454 0.6257 1.600 2.7303 0.4605 0.9315
17 4.110 1.227 1.178 16.78 5.331 2.086
18
19 1 .814
20 3.273 0.7546 5.604 20.28 8.857 1.626
21
22
23 178.4

24 16.62

25 6.028 30.81 12.90 5.541
26 118.00

27 5.242 1.7049 0.705 10.24 7.786
28 3.026 10.36
29 17.77 2.978 7.032
30 5.959 3.102
31 1.767
32 3.516 3.200 0.6730 2.453
33 ----- 51.81
34 0.5430 -----
35 1.2891 13.21 12.70
36 1 .2695 11.79 12.90
37
38 7.659 35.06
39 26.59 45.4 21.00
40 55.74 6.153 35.15
41 16.346
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Table 13. Sample Student Test Results
(Relative Error 10-2)

Problem Code with Next Best Student's Degree of Significance
Number Best Avg. Code t Value Freedom Level of

Time Difference()

1 DAP GGP 7.203 21.45 99+

2 MCS DAP 0.053 38.01 10-

QUADGP 0.172 3.65 15-

OPT-CP 1.811 35.44 90+

3 DAP OPT-CP 3.208 19.54 99+

4 QIJADGP OPT-CP 21.23 24.68 99+

5 OPT-CP QUADGP 6.26 11.23 99+

6 DAP OPT-CP 4.70 39.70 99+

7 OPT-CP GGP 12.31 29.82 99+

8 QUADGP MCS 34.6 22.90 99+

9 QUADGP OPT-CP 28.02 19.86 99+

10 OPT-CP DAP 4.795 25.78 99+

11 OPT-CP OPT-P 12.02 24.65 99+

12 OPT-CP GGP 11.28 29.96 99+

13 QUADGP OPT-CP 5.08 19.54 99+

14 OPT-CP OPT-P 6.18 21.11 99+

16 DAP QPT-CP 1.205 28.84 75+

MCS 4.525 36.35 99+

17 GGP OPT-CP 2.730 35.92 99+

18 DAP OPT-CP 0.903 5.77 60-

OPT-P 11.62 9.50 99+

19 QUADGP OPT-CP 2.34 8.49 95+

20 OPT-CP OPT-P N.A. N.A.

21 GGP DAP 1.662 7.380 85-

QUADGP 5.144 4.021 99+



Table 13. (continued)

Problem Code with Next Best Student's Degree of Significance
Number Best Avg. Code t Value Freedom Level of

Time Difference (%)

22 OPT-CP GGP 11.06 38.56 99+

23 OPT-CP QUADGP N.A. N.A.

24 GGP QUADGP 3.518 6.093 98+

25 DAP GGP 2.854 10.33 98+

26 GGP QUADGP 2.083 4.069 90-

MCS 30.14 6.208 99+

27 GGP OPT-CP N.A. N.A.

28 MCS GGP 5.725 25.52 99+

29 OPT-CP GGP 13.62 21.23 99+

30 DAP GGP N.A. N.A.

31 QUADGP MCS 1.214 11.49 80-

OPT-CP N.A. N.A.

32 DAP MCS 3.288 15.21 99+

33 QUADGP MCS 18.50 8.78 99+

34 QUADGP MCS 3.170 9.004 98+

35 DAP OPT-CP 5.344 10.55 99+



Table 14. CODE Ranking

Relative 10-2 03104
Error

Ranking 1st 2nd 1st 12nd 1st 2nd

OPT-CP 13 14 18 8 14 7

DAP 16 1 8 15 4 2

GGP 6 9 7 7 3 8

QUADGP 10 5 5 7 5 6

MUS 3 6 7 4 13 1

OPT-P 0 4 0 4 0 3
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Arinendix

OPT EPSIS 1-

EPSBD 1-

EPS 1-

CRIT 1-

BIAS EPSLS 10O4

Epsi 1-

MAYNE TT 10-1

ALL 1-

FF 1-

FC 10-1

RALP QC(1) 1000

QC(2) 10-2

QC(3) 10-5

QC(4) 1-

QC(5) .8

GGP EPSCON 1-

EPSCGP 1-

EPSLP 10-11

EPSPN 10-11

MCS TTOL 10-5

YTOL o7

DLJTOL 10-6

OFTOL 5 x 10-3

CTOL 10-5



(Appendix A continued)

TAI . 5 x 10 - 3

OPTOL 10 - 5

GPKTC EPSCON 10- 5

EPSDO 10 - 5

BETA 10 - 2

BS 1

IREF 1

No other options

QUADGP EPSCOV 10- 6

EPSTOL lO-3

VELTOL 2 x IO-6

EPS 10

TOLCON 10-4

EPSEQ 10-7

EPSVAR 10-
SI

DAP EPS 10-7

EPSI IO-6

EPS2 10-4

-5
EPS3 10

EPS4 10-4

R10
4



Appendix B

Problem Number Reference

I L.J. Mancini and R.L. Pizialli, "Optimal Design of
Helical Springs by GP," Engr. Opt., 2, 73(1976).

2 P.A. Beck and J.G. Ecker, "Some Computational Experience
with a Modified Convex Simplex Algorithm for GP," USAF,
Armanent Development and Test Center, Report ADTC-72-20,
Elgin AFB, Florida, April, 1972., Problem 1.

3 Beck and Ecker, Problem 2.

4 F. Neghabat and R.M. Stark, "A Cofferdam Design
Optimization," Math. Progr. 3, 263 (1972).

5 Problem 2 of Ref. [6].0

6 Beck and Ecker, Problem 3.

7 C.S. Beighther and D.T. Phillips, "Applied Geometric
Programming," Wiley, New Yor, 1976, p. 84.

8 Problem 1 of Ref [6].

9 W. Gochet and V. Smeers, "On the Use of Linear Programs
to Solve Prototype GP's," CORE Discussion Paper No.
7229, November, 1972.

10 V.P. Loonkar and S.D. Robinson, "Minimization of Capital
Investment for Batch Probesses," I&EC Proc. Des. Dev. 9,
625 (1970).

11 Beck and Ecker, Problem 4A.

12 Beck and Ecker, Problem 4.

13 Beck and Ecker, Problem 5.

14 Beck and Ecker, Problem 6.

15 Beck and Ecker, Problem 7.

16 Beck and Ecker, Problem 9.

17 Beck and Ecker, Problem 8.

18 Problem 2 of Ref. [19].

19 Beck and Ecker, Problem lOA



(Appendix B, continued)

Problem Number Referenc-

20 Beck and Ecker, Problem 12A.

21 R.S. Dembo, "A Set of GP Test Problems and Their Solution,"
Math. Progr., 10, 192 (1976).

22 ibid, Probtem 80.

23 ibid, Problem 8C.

24 Beck and Ecker, Problem 11.

25 Beck and Ecker, Problem 12.

26 Beck and Ecker, Problem 14A.

27 U. Passy, "Modular Design: An Application of Structural
GP," Opns. Res., 18, 441 (1970).

28 Beck and Eckar, Problem 14.

29 Beck and Ecker, Problem 13.

30 H. Mine and K. Ohno, "Decomposition of Mathematical
Programs and its Application to Block Diagonal GP,"
J. Math. And. Appl., 32, 370 (1970) (Problem 6 of Ref. [6]).

31 Problem 7 of Ref. [6].

32 Beck and Ecker, Problem 15.

33 J.S. Folkers, "Ship Operation and Design," in Optimization
and Design, Avriel, Rijckaert, and Wilde (eds), Prentice-
Hall, 1973.

34 M. Heyman and M. Avriel, "On the Decomposition for a

Special Class of GP Problems," J.O.T.A., 3, 392 (1969).

35 Dembo, Problem IB.

36 Dembo, Problem IA.

37 J.G. Ecker and R.D. Weibling, "Optimal Design of a Dry
Type Natural Draft Cooling Tower by GP," CORE Discussion
Paper No.T610, 5-76.

38 J.G. Ecker, "A GP Model fo- Optimal Allocation of
Stream Dissolved Oxygen," Manag. Science, 21, 658(1975),
loose constraints deleted.



(Appendix B, continued)

Problem Number Reference

39 ibid, loose constraints retained.

40 Beck and Ecker, Problem 16C.

41 Beck and Ecker, Problem 16.

42 W.B. Cheng and R.S.H. Mah, "Optimal Design of Pressure
Relieving Piping Networks by Discrete Merging," AIChE. J.,
22, 471 (1976).
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Part II. Generalized GP Study

1. Introduction

Geometric Programming (GP) is a body of theoretical and

algorithmic results concerned with constrained optimization

problems involving a class of nonlinear algebraic functions.

The pioneering work in this field was performed by Duffin,

Peterson, and Zener [1] who developed a duality theory for

nonlinear programs, now called prototype GP's, that consist

of an objective function and upper bounded inequality constraints

involving posynomial functions, that is, functions of the form,

Tk N

a xntgk(x) I t t xn
t=Sk

where all C > 0 and the ant are arbitrary real numbers. Soont n

after this development, extensions of the methodology were

reported by Passy and Wilde [2) which allowed the sign restrictions

on the coefficients Ct to be dropped and could accommodate both

upper and lower bounded inequality constraints- Since this extension

was reported, a considerable number of applications involving

such generalized geometric programs (GGP) have been published

(see the bibliography reported by Rijckaert [31) and numerous

algorithms for solving both GP's and GGP's have been proposed

in the literature (see [4] and [5] for reviews). However,

relatively little attention has been given to an appraisal of

the computational significance of the various theoretical and

algorithmic GGP developments. This paper is the third in a

series of studies on the computational utility of GP formulations
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and developments. The overall goals of this research has

been to determine:

i) whether the constructions resulting from GP developments

offer any computational advantages over conventional NLP

methodology

ii) which of the various equivalent GP problem formulations

are preferrable and under what conditions

iii) which GP algorithm/formulation combination is most

likely to be successful for a given problem

iv) whether a criteria can be defined by means of which GP

problem difficulty can be gauged.

While in previous two papers (6,7], these questions were

addressed in the context of prototype GP problems, the present

work will specifically be addressed to generalized GP problems.

By way of review, we briefly summarize the alternate GGP formulations

and key computationally significant features in the next section.

2. Equivalent GGP Problem Structures

2.1 The Primal Problem

The generalized GP primal problem (P) in the form initially

presented by Passy and Wilde [21 is,

Minimize: g0 (x)

Subject to: a (g(x))m <I m = 1 M

x >0

where the signomial functions gm(x) are defined as
T

m N ant
gm( x )  at C t t  1 xn

tS no
m
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with specified positive coefficients C and arbitrary exponents

t
a nt. The coefficients ot and am take on the specified values + I

and are known as signum functions. The term indices t are defined

consecutively as,

S =1
0

Sm+l T + I

TM -T

As in the posynomial case, the difference T-N-I is referred to as the degree

of freedom of the problem.

The above problem is in general a non-convex nonlinear program

which may possess multiple local minima. A structurally more revealing

but not necessarily computationally more advantageous form of the

primal can be obtained by rewriting each signomial function as the

difference of two posynoiials, i.e.

gin(x) = PM(x) - Qm(x)

where, P (x) =t! N
Pm Ct x a ntt n

N
Qm(x) = C x ant

tENm n=l n

and Pm is the subset of term indices of signomial m whose

signum functions are positive, and UJm is the subset of

term indices of signomial m whose signum functions are

negative.

As shown by Avriel and Williams [9], the generalized GP primal

can then be written in the complementary or quotient form, (QP)

Minimize: x0
Subject to: f M(x) < m - l,.., M+l

Xo,> 0
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where each function fm(x) is a quotient of posynomials,
m(

fm(X) = m ,
QM(x) + l

and fM+l(x) is given by

f+(x) =M~l xo + Q oWX

Note that the variable x° is simply a device used to transform

the signomial objective function to a constraint. Furthermore, the

positivity of x° is guaranteed by if necessary, including a positive

constant of suitable magnitude as one of the terms of P (x).

Alternatively, Duffin and Peterson [9] have shown that since each

signomial can be written as the difference of two posynomial functions,

each signomial constraint can be replaced by two posynomial constraints

one of which is a lower bounded constraint. Specifically, by introducing

an artificial variable ym' each constraint

Pm(x) - Q (x)<I

can be replaced L,.,

Pm(x)< Ym < 1 + Qm(x)

or, -l1-
Ym Pm(x) < I and (0 + Q%(x))Ym ) > I

Therefore, at the expense of increasing the number of variables

and constraints, the signomial program can be converted to a reversed

GP, a problem in which all functions are posynomials but some are

involved in upper bounded or normal constraints while others are involved

in lower bounded or reversed constraints.

.....M O - - .. . I I-IIIr l l... .-. . " * . . . I
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Thus, the reversed primal GP (RP) is defined as follows,

Minimize: h (X)

Subject to: hk(x) <I k=l,..,K

hk(x) > 1 k=K+l,..,L

x<O

where all hk(x), k=O,l,..,L, are posynomials.

Finally, Duffin and Peterson [9] have suggested continued application

of a similar construction to reduce all multi-term constraints to

two term constraints, alluding to possible computational advantages.

Thus, if ut denotes a posynomial term, then

uI + u2 + u3 <_

Could be replaced by,

I + u2) 1l<land Yl + u3 <1

Moreover, the reversed constraint,

u1 + U2 + u3 >

could be replaced by,

(u I + u2 )Y1 > 1 and yl u3 >

Presumably each of the four primal formulations could be solved

directly by the application of suitably specialized NLP techniques

and, presumably, one ought to be preferred over the others.

2.2 The Exponential Primal Problem

As in the prototype case, each signomial function can be recast

to a sum of exponentials via the transformation xn = exp(zn).

Thus, the signomial,
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Tm N agm(x ) = Y a t Ct 1x nnt

t=s n=

can be replaced by, m

gm(z) = I atC t exp (Zant zn)

t n

Whereas the original variables xn are constrained to be positive,

the zn are unrestricted in sign. In the posynomial case, these

exponential functions are convex functions and use of this form of

the primal in computation proved to be much preferrable to direct

primal solution (7]. In the signomial case, the transformed functions

are in general nonconvex, hence, some of the computational advantages

may well be diminished. However, application of this transformation

to the reversed primal, results in a problem in which all functions,

hk(z) = jCt exp (ja ntzn)
t n

are convex but the feasible region is the intersection of a convex

set, generated by the inequalities

hk(z)< 1 k=l,..,K

and a reverse convex set, generated by the inequalities

hk(z) > 1 k=K+l,..,L

A reverse convex set is simply the complement of a convex set.

The exponential form of the reverse primal thus clearly reveals the

underlying structure of GGP problems and clarifies the reason for

the possible occurrence of multiple local minima.

2.3 The Transformed Primal Problem

The exponential form of the reversed primal, can with the further

change of variable,

w= AT z + lnc
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where A is the matrix of primal variable exponents and lnc the

vector of logs of the term coefficientsbe rewritten to the transformed

primal form,

Minimize: h o(W)

Subject to: hk(w) <1 k=l,..,K

hk(w) > 1 k=K+l,..,L

L(w-lnc) = 0

where, Tk

hk(w) = k e Wt
t=Sk

and, as in the prototype case, the rows of the matrix L are any set

of linearly independent vectors spanning the null space of A [101.

This form of the primal offers very attractive structural features

for computation, but it is not clear whether the considerable increases

in variable and constraint dimensionality which these transformations

impose are adequately compensated by increased computational efficiency.

2.4 The Dual Problem

As shown in [3], the GGP problem has associated with it a dual

problem, (D)
T Ct 1t~ 1

Extremize: v(6) OT TI X a1t0 m
t=l t m=l

Subject to: T0

0 (t6t = G

t=1

T
a t ant6t = 0 n=l,.,N

6>0

x >0
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where, 1 Tm
Xm = 'm I tt

t=S
m

min go(x)
and, o =lmin go(X)I

Although relationships between primal and dual variables at

corresponding stationary points can again be given, as in the prototype

case, the bounding relationship between the primal and objective functions

no longer holds. Hence, maximization of the dual must be replaced

by a search for dual stationary points [3]. These properties of the

dual are made quite apparent if the primal is formulated in the reversed

GP form. In that form, it becomes clear that In v(6) is concave with

respect to the dual variables associated with upper bounded constraints

and convex in the dual variables associated with lower bounded constraints

(9]. Solution of the dual thus amounts to locating equilibrium or

saddle points. This feature disallows direct maximization and thus GGP

dual solution requires numerical solution of the Lagrangian conditions

applied to the dual. As in the prototype case, however, this approach

must be used with great care because of difficulties presented by vanishing

dual variables [5].

2.5 The Transformed Dual Problem

A reduction of the generalized dual to a transformed dual similar

to that developed for prototype GP's [11, can also be carried out and

is reported in [9]. This transformation does not, however, ameliorate

the difficulties posed by the search for saddle or equilibrium points.

Numerical solution of the Lagrangian condition appears to be the only

route for solving GGP's via the transformed dual.
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3. Solution Approaches

The solution methods proposed for generalized GP's have generally

been of two types: sequential methods employing a series of approximating

problems and direct approaches to one of the equilvalent GGP forms.

Available fragmentary evidence indicates that the sequential methods

are superior to direct approaches.

3.1 Sequential Minimization

The QP and RP forms of the primal suggest that if the denominators

and reversed constraints, respectively, could be replaced by approximating

single term posynomials, then the resulting approximating problems

would reduce to prototype GP's. Such approximations can readily be

obtained via the condensation device proposed by Avriel and Williams

[8] and Duffin Ill].
T

Given a posynomial, P(x) = lut(x), and a set of non-negative,

t= I
normalized parameters at . t=l,..,T, then from the inequality between

the arithmetic and geometric means, it follows that

P(x) = ut(x) > ut t P(x0 (l)
t -t Ot

Thus, a multi-term posynomial P(x) is approximated by a single term

posynomial P(x,x). Using this construction, Avriel and Williams F8J have

proposed replacing the constraints of a QP,

Pm(X)
fm(X) = .QmiX)+l : I

with the approximation,

fm(x) = Pm(x) (Q(x (I))- < I
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Similarly, Duffin proposed replacing the reversed constraint

hk(x) > 1

with the posynomial approximation,
-1

(hk(xla)) - < 1

Note that since inequality (1) is an equality if and only if,

at = ut/lut, the parameters at of the approximating functions are

in both the QP and RP cases updated by setting,
k-i

k ut(x
k I

t P(xk-l)

where xk -l is the solution of the k-I st approximating problem. Thus

a series of approximating problems is generated and solved until, the

difference
(a k k-l
at -a

becomes sufficiently small for all t. It can be shown [81 that,

(i) any feasible point of an approximating problem will

also be a feasible point of the GGP

(ii) the sequence of approximating problem solutions will

converge to a local minimum of the GGP under mild assumptions

It can further be shown [12] that condensation of P(x) is equivalent to

a Taylor series linearization of InP(x) with respect to the variables

Inxn ' Thus condensation may be viewed as a special type of partial

linearization. The advantage of condensation as opposed to direct

Taylor series linearization is that it leads to a closer approximation

of the original posynomial [12].

Note that since,

li(ut)at HI ctllnt t IT tc at ix antat
t' a t(n n ) t n t

tat a t
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the condensation calculation will result in changes in the exponent

matrix of the variables. To avoid recomputation of the exponent

matrix, Duffin and Peterson [131 have proposed an alternate condensation

construction which employs the harmonic mean. Using this construction

the reversed inequality,

ut

is replaced by the approximation,

a 2(ut) - I 1

where the t 's are updated as before. It can be shown [13] that the

harmonic mean condensation of a reversed constraint can always be

bounded by the geometric mean condensation,

jut >L (ut)t L1(Ut)l]> 1

Thus, the savinqs in exponent matrix recomputations are obtained

at the price of poorer approximating functions.

These alternative primal approximation schemes reduce the solution

of GGP's to the solution of a series of prototype GP's but leave open

the choices of which prototype formulation to solve and what solution

algorithm to use. Proposals which have been made include:

i) solution of the exponential form of the primal using

Kelley's cutting plane method [14].

ii) solution of the transformed using successive quadratic

programming construction [12].

iii) solution of the transformed primal using a form of reduced

gradient method which employs an active constraint strategy

to accommodate nonlinear inequalities [10]

Iv) solution of the dual in which the linear dual constraints

are used to explicitly eliminate variables. Templeman, et.al.
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(15] used condensation of the QP form and a modified conjugate

gradient method. Jefferson [16] chose the harmonic mean

approximation of the RP and a modified Newton method.

In principle, any approach suitable for prototype GPms can be

employed in conjunction with condensation constructions including

direct minimization of the primal approximating problem.

3.2 Direct GGP Solution

Direct approaches to the solution of GGP's can be of two types:

direct minimization of one of the primal forms (P, QP, RP, exponential,

ortransformed) or solution of the Kuhn-Tucker conditions corresponding

to one of the GGP formulations. For instance, Lasdon, et.al. [17]

reported on the use of GRG for direct primal minimization with some

success. Rijckaert and Martens (18] developed a specialized Newton-

Raphson adaptation to solve the Kuhn-Tucker conditions of the primal

in exponential form. The linearized equations employed in the N-R

iterations were generated using the condensation construction. Blau

and Wilde [19] solved the Kuhn-Tucker conditions of the dual using a

specialized N-R method which exploited the structure of the linear/

log-linear equation set to reduce the set of iteration variables.

In all of these approaches to the solution of GGP's no attempt

was made to locate global minima. Attempts along these lines were

reported by Passy [20], Falk [211, and others using branch and bound

procedures. However, no generally available software seems to have

been produced as yet.



44

4. Scope of This Study

Three previous comparative studies of generalized GP solution approaches

have been reported in the literature. The study by Rijckart and Martens [22]

is the most comprehensive of the three. It involved 16 generalized GP test

problems, used up to five starting points for each test problem, and investi-

gated both direct and sequential approaches. The direct approaches involved

various Newton-Raphson strategies applied to solving either the exponential

primal, the dual, or the transformed dual Lagrangian (Kuhn-Tucker) conditions.

The sequential algorithms considered included SIGNOPT [15], GPROG [16] and

GGP [24]. The reported results indicated that the direct Kuhn-Tucker condition

solver GPKTC [25] and the sequented minimizer GGP were fastest and most robust.

While it is an important contribution, the study was flawed in that different

starting point generation procedures were employed for different codes and in

that the time to achieve a specified relative error between successive iterates

rather than the deviation from the known solution was used as ranking criterion.

Furthermore no attempt was made to extract information about the relative com-

putational advantages of the alternative GGP formulations.

The study reported by Dembo [5] involved six generalized GP problems solved

using a single starting point. The codes employed were GGP, GPKTC, GPROG, sev-

eral additional specialized codes representing alternate implementations of the

same sequential strategies, as well as five general NLP codes applied directly

to the generalized GP primal. Again GGP and GPKTC emerged as fastest and most

robust. The test problems were run by the code authors on their own machines;

allowing tuning of programs by the authors; but requiring that the solutions

meet fixed tolerances. Solution times were reported using Colville Standard

times. The use of Colville standardized times is known to lead to considerable

error [26] as is the use of single starting points [7]. Hence, the results of

this study must be accepted with considerable reservation.
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The study by Dinkel, et al. [23] investigated the relative advantages of the

use of geometric mean condensation with the QP and RP forms and harmonic mean

condensation with the RP form. The posynomial subproblems were solved using

a Newton-Raphson method applied to the transformed dual. Twelve problems were

employed and each was run with a single starting point. The conclusion was

drawn that the difference between geometric mean condensation applied to the

QP form and the RP form was insignificant. The harmonic mean approximation

was found to be inferior. This performance was attributed to the increased

dimensionality of the subproblem obtained using the harmonic mean and the poorer

approximation to the reversed constraints which that approximation yields. A

similar conclusion was reported by Bradley [12] on the basis of limited testing

using this transformed dual based code.

In this study we will seek to rectify some of the experimental inadequacies

of the previous studies. Twenty five generalized GP problems will be solved in

both their signomial and their RP forms; using up to 20 different starting point

replications; code timing will be obtained at several precise error levels ex-

cluding phase I procedure overheads. A series of experiments will be included

which will allow investigation of primal formulation effects and of the relative

merits of direct primal minimization versus sequential minimization.

Appropriate statistical tests will be used in the performance comparisons and

the correlation between solution time and various problem characteristic dimen-

sions will be tested.

5. Experimental Procedure

5.1 Test Codes

Five test codes are employed in this study. The four specialized

codes GGP [24], GPKTC [25], QUAPGP [12], and DAP [10] as well as the general

.... .. .. ... .... ...m ... .. mJ..I
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NLP Code OPT [27]. The first two codes were selected because of their superior

performance, relative to other specialized GP programs employing the direct or

sequential strategies, in previous studies [5,22]. The second two codes were

selected because of their successes with posynomial problems in reference [7].

These four codes basically span the range of solution approaches:

i) sequential solution using convexified (exponential) primal subprob-

lems (GGP)

ii) sequential solution - using transformed dual subproblems (QUADGP)

iii) sequential solution using transformed primal subproblems (DAP)

iv) direct solution of the Kuhn-Tucker conditions of the exponential

primal (GPKTC)

Moreover, the sequential codes employ between them all three condensation

formulations:

i) GGP employs the QP form and geometric mean condensation

ii) QUADGP has the option of either employing the QP form and geometric

mean condensation on the RP form and harmonic mean condensation

iii) DAP employs the RP form and geometric mean condensation.

The general purpose GRG based NLP Code OPT was selected because its super-

ior performance in a general NLP comparative study [28] as well as its outstanding

performance in solving posynomial problems in our earlier study [7]. A round

of tests were carried out using the successive LP code RALP and Method of Mul-

tipliers Code BIAS used in the posynomial study [7]. However, as in that study,

these codes proved to be significantly less effective than OPT and, hence, no

results with these codes will be reported.

5.2 Test Problems

For purposes of this study, a set of 25 generalized GP test problems was

selected from among those reported in the previous comparative studies [5,22,23],
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various engineering applications discussed in [9] or referenced in [3], and

unpublished problems available to the authors. The characteristic dimensions

of these problems are summarized in Table l .and the problem formulations are

given in Appendix A. As evident from the Table the problems range from 4 to

16 primal variables, 1 to 12 multi-term constraints, and 6 to 69 primal terms.

Problems with less than 4 variables were excluded because in the posynomial

study such problems often did not yield meaningful comparative data. With short

run times, program overheads dominate the rankings. The upper end of the test

problem size range was limited by the size of the RP form which could be accom-

modated by some of the codes. In transforming a signomial problem to RP form,

two variables, two constraints, and two terms are added to eliminate a signomial

objective function and one variable, one constraint, and one term are added in

converting each signomial constraint. Consequently, as shown in Table 2, trans-

formation will frequently more than double the exponent matrix size (e.g. see

problems 3,8,14,19,24-26). All of the codes used in this study are written for

dense matrices and do not employ stnrage saving (sparse matrix) methodE. Thus,

in the posynomial study [7], problems with exponent matrices exceeding 2000

elements typically could not be run within the 150 K octal word memory limit

set on the Purdue system. As it is, several of the 25 problems could not be

run in RP form.

5.3 Testing Conditions

The basic testing procedure followed that employed in the companion study

[7]; hence, it will be reiterated here only in outline. The key elements of

the experimental design are the use of:

i) Fixed code parameters.

After selective tests to study the effects of code parameters, a

fixed set of parameters was chosen for use in all subsequent testing.
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The code parameters are given in Appendix C.

ii) Feasible starting points.

I
In order to separate algorithm performance from the effectiveness

of various phase I procedures, only feasible points were used.

Admittedly, in practice the costs of generating starting points can

be significant; however, a thorough investigation of this question

is a major study in itself.

iii) Multiple, randomized starting points.

As in [7], up to 20 starting points were generated for each test

problem both in the signomial and the RP form. The points were gen-

erated by random sampling from the surface of an N-dimensional sphere

whose center is the actual problem optimal solution. Normally, two

different radii were used and only the feasible points retained.

In some cases, because the feasible region was very tightly constrained,

it was not possible to generate a full compliment of sufficiently

distinct feasible points even after 1000 sec Cpu time (CDC 6500).

In such cases a third, shorter radius was used. The number of start-

ing points used for each problem in its signomial form are summarized

in Table 3A; the number used for the RP form in Table 3B.

iv) Pseudo-Lagrangian error function to measure solution accuracy.

The function used is,

~n
S" m "

ABS g + Z Xm ABS( *

90 m 90

where go, g, A* are the values of the objective function, constraints,

and multipliers at the optimum.

The sum over m only includes the constraints active at the optimum

solution.
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v) Performance data accumulation at specified error levels.

Intermediate solution times were obtained at error function values

-2 -3 -4 -5
of 10- , 10" , 10- , and 10 . Means and standard deviations were

computed for the runs with each code-problem combination.

As described in [7], the testing, data accumulation, and statistical analy-

sis of the resulting performance data were automated to a large degree using

appropriate pre- and post-processing programs, as well as an efficient system

of problem, starting point, intermediate result, and reduced data files. A

typical intermediate data summary for a test problem run is shown in Fig. 1.

Note that mean times and standard deviations are calculated only for successful

runs. All runs were carried out on the Purdue University dual CDC 6500 System

with its MACE operating system using the MNF (Version 5.3) compiler.

5.4 Test Runs

The runs were grouped into two main test series; alternate minimization

strategies employing OPT and solution using the specialized GP codes. The OPT

runs were grouped into two sub-series, identified as follows:

A) Direct Minimization

1. Signomial form of the primal (OPTPD)

2. Signomial form of the exponential primal (OPTCPD)

3. Signomial form of the transformed primal (OPTTPD)

4. Reversed form of the exponential primal (OPTCPR)

B) Sequential Minimization

Sequential Solution of the RP using convex (exponential) primal sub-

problems (OPTCPS)

The specialized generalized GP runs consisted of the following:
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1. Direct solution of the exponential primal KT conditions (GPKTC)

2. Sequential solution of the QP using convex primal subproblems (GGP)

3. Sequential solutions of the transformed primal (DAP)

4. Sequential solution using transformed dual subproblems in two series:

QP form and geometric mean condensation (designated BRADAW) and RP

form using the harmonic mean condensation (designated BRADHA).

A total of ten test series will thus be reported.

6. Results

6.1 Primary Data

The primary data for the ten test series can be condensed to four tables.

Table 4 indicates the number of runs attempted and successfully solved for each

-2
series. A run was deemed successful if it reached the 10 error level. A run

was !?belled unsuccessful if either it did not reach the 10-2 error level or

the problem could not be run because the memory requirements exceeded the 150K

octal maximum allowed on the Purdue University system. As evident from the Table

there were 338 possible runs per series if the code used the signomial form input

files and 274 possible runs per series if the code used the RP data files. The

smaller number in the RP case arises because the increased size of the PR form

problems prohibited solution of some of these problems (8,24,26) or forced a

reduction in the number of sufficiently different starting points which could be

generated.

The most startling result evident from the table is the generally higher

level of unsuccessful runs, especially by the specialized codes, when compared

to the % unsuccessful attempts obtained in the posynomial study [7]. For in-

stance, GGP 8.0% versus 4%; GPKTC 51% vs. 41%; DAP 90.5% vs. 3.5%; and, QUADGP

60% vs. 9%. The OPT runs also exhibit this trend: primal solution 27.8 vs.

6.8%; convex (exponential) primal 3.3% vs. 0.16%; and transformed primal 38.8%
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vs. 27.4%. These results seem to indicate that the non-convexity of the sig-

nomial problems does in fact make them more difficult to solve. This conclu-

sion is a tenuous one, however, because the signomial problems used in this

study may simply constitute a subset of more difficult problems and thus may

not be representative of the class as a whole.

The mean times in CP seconds and number of successful runs upon which these

means are based for the ten series are given in Tables 5A, 5B, and 5C. Results

are separately tabulated for the 102, 10- , and lO error leads. Results are

not shown for the lO error level because with the code parameter values selec-

ted in this study most runs terminated at error levels between l0 and l0.

As can be seen from Tables 5A through 5C, two problems (24 and 28) could

not be solved by any code from any starting point. Moreover, several problems,

noteably, 8,14, and 18, were only solved in a few of the series. A cursory

study of the mean times indicates that GGP generally performed best, followed

by OPTCPD, with occassionally very good times by the QUADGP series, BRADAW and

BRADHA. Standard deviation values corresponding to the reported mean times are

not listed separately. However, they are used in the Student's t tests, the

results of which will be detailed later. Since standard deviation values ty-

pically ranged from 50% to 10% of the magnitude of the mean, a rigorous comparison of

mean solution times must take the standard deviations into account.

6.2 Analysis of Primary Data

In order to compare the mean times of alternate run series, a modified

Student t test was employed as described in [7]. This test assumes that the

solution times for two series for any given problem are normally distributed

each with its own variance. Code time comparison is then equivalent to testing

whether the true mean times are equal. A 90% significance level will be required

before means will be considered to be different. These comparisons will be
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presented in six groupings:

1. OPT Direct Primal Form Minimization

2. OPT Strategies involving the Exponential (Convexified) Primal

3. Convexified (Exponential) Primal Strategies

4. Harmonic vs. Geometric Means

5. Transformed Primal Strategies

6. Overall Comparison

For the first set of comparison, the three series in which OPT is used

to directly minimize the signomial problem in its primal, exponential primal,

and transformed primal form will be considered. As shown in Tables 6A, 6B,

6C at the 10-2, lO- , as well as the 10 error levels, the exponential primal

approach is faster at virtually 100% significance level in 23 out of 23 cases,

20 out of 22 cases, and 15 out of 18 cases respectively. This dominance is

quite substantial: from Table 5A, for instance, the ratio of mean times of

OPTPD/OPTCPD is always at least 2, often 5 or more, and sometimes 10 or more.

These results are similar to those observed in the posynomial case.

In the next set of comparisons, the three OPT series involving the use

of the exponential primal form in direct signomial solution (OPTCPD), direct

reversed posynomial solution (OPTCPR) and sequential reversed posynomial solu-

tion (OPTCPS) will be tested. From Tables 7A, B, and C it is evident that at

all three error levels direct signomial solution dominates: in 23 of 23 cases

at l0 2 , in 20 of 21 cases at 10- , and in 15 of 18 cases at 10 . This also

is not surprising in view of the larger dimensionality of the reversed form

relative to the signomial form. For problems with larger dimensionality differ-

ences (3,5,10,14,18,19,20,21,25) the mean time ratios often exceed four. It

is, however, interesting to note from Tables 5A, B, and C that the sequential

and reversed times are generally fairly close to each other. Since, the OPT

sequential implementation does not take advantage of the single term constraints
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generated by condensation, this indicates that sequential solution can readily

be made more efficient than direct solution.

A cross comparison of three series which use the exponential (convexified)

primal: the OPT Sequential series which uses the RP form, GGP which uses the

QP form for sequential solution, and GPKTC which solves the Kuhn-Tucker condi-

tions is given in Tables 8A,B,C. GGP dominates overwhelmingly with OPTCPS gen-

erally second. GPKTC does not appear to be competitive, primarily because of

frequent failure to converge. When it does converge, it apparently has no diffi-

culty achieving high accuracy solutions. Note that the principal difference

between GGP and OPTCPS lies in the dimensionality of the convex primal subproblem

which is solved and in the treatment of single term constraints. Because GGP

uses the QP form while OPTCPS uses the RP form, the GGP condensed subproblem

will always be smaller in both variables and number of constraints. Moreover,

in GGP single term constraints are converted and treated directly as linear

constraints while in OPTCPS this was not done. This comparison thus clearly

indicates that condensation of the QP form is to be preferred.

Next we compare the difference between condensation using the geometric

mean and condensation using the harmonic mean. In series BRADAW and BRADHA,

the solution of the posynomial subproblems is carried out in the transformed

dual using QUADGP. As evident from Tables 9A, B, and C, the performance of the

two strategies is generally similar despite the differencer in the dimension-

ality of the associated subproblems. The geometric mean series dominates in

10 of 17 cases at the 102, level, 9 of 14 cases at the lO level, and 8 of 13

cases at the lO level. The!e results seem to anomalous in view of the substan-

tial dominance of the geometric mean approach reported in [23] and [12].

Next, the two transformed primal series are compared. DAP uses the trans-

formed primal and condenses the reversed constraints. In the OPTTPD series the
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transformed primal is minimized directly. Tables IOA, B, and C indicate that

OPT is faster in 12 of 21 cases at the 10-2 level, 12 of 19 cases at the l0 3

level, and 10 of 14 cases at the 10-4 level. This despite the fact that DAP

exploits single term constraints. In general DAP proved unreliable in solving

signomial problems, in startling contrast to its performance in the posynomial

study.

Finally, we will use the Student t test to perform an overall comparison

of all ten series. As shown in Tables 11 A, B, and C, the GGP, OPTCPD and the

QUADGP series dominate the rankings. GGP is first in 13 of 23 cases at the

10-2 level, 12 of 23 cases at lO-3, and 10 of 21 cases at l0- . The performance

of the two QUADGP series (BRADAW and kPRADHA) it quite close: when one is first, the

other invariably is a close second. It is important to note, however, that the

problems in which the QUADGP times rank first are precisely those in which the

degree of freedom of the condensed problem is much less than the number of primal

variables. Specifically, for problem 1, the condensed degree of freedom is 1;

for problem 15, it is 1; for problem 16, 3; for problem 17, 4; for problem 20,

2; and for problem 21, it is 4. For the other problems the degree of freedom is

much larger than the number of primal variables and for none of these is QUADGP

competitive with GGP or OPTCPD. In view of this factor and from the summary

given in Table 12, it appears that OPTCPD can be ranked second on the basis of

its numerous second best times, while QUADGP is third only in the basis of the

above six problems.

6.3 Effect of Problem Dimension on Solution Time

To help clarify which generalized GP problem characteristic could best be

used as measure of solution difficulty, correlation coefficients were computed

between the problem solution time and each of eight problem characteristics.
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Since each such correlation coefficient only involves data from the same code

run with the same set of program parameters, the mean termination time of a run

was used as the characteristic problem solution time. The resulting correla-

tion coefficients are summarized in Tables 13 and 14. In the former it is

assumed that time is to the exponential of the particular problem character-

istic; in the latter, a direct linear relation is assumed. The last column of

both Tables lists the critical correlation coefficient value for a 0.05 signi-

ficance level.

From the tables it is evident thatfor direct primal solution (OPTPD), there

is a stronger correlation of time to the exponential of the number of primal

variables and number of multi-term constraints than to the corresponding linear

relationships. Moreover, the correlation is considerably higher to the number

of multi-term constraints than to either the total number or number of tight

constraints. On the other hand, the linear correlation to the number of primal

terms and negative terms is stronger than the exponential. The correlation

to the number of terms apparently reflects the effort involved in function eval-

uations, while that to the negative terms could well reflect some measure

of the difficulty introduced by these non-convex elements.

For direct exponential primal solution (OPTCPD), the exponential form

correlation coefficients for the number of variables, number of multi-term con-

straints, and number of tight constraints are highest and very nearly equal.

The linear coefficient is higher than the corresponding exponential only for

the number of negative terms. The correlation to the number of terms weakens,

possibly because in the exponential primal term evaluations are less time con-

suming.

The reversed exponential primal (OPTCPR) correlation coefficients are highest

for the exponential of the number of variables, number of multi-term constraints,
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and number of primal terms. The first two correspond to the results obtained

for the primal and exponential primal. The reason for the emergence of the

latter is not obvious. Also, anomalous is the negative correlation coefficient

for the number of tight constraints. The strong linear correlation to the

number of reversed constraints apparently indicates that this measure of non-

convexity is a significant measure of problem difficulty, since its value is

much larger than the linear coefficient for both total number of constraints

and number of multi-term constraints.

The transformed primal results indicate very strong correlation to the

number of terms and degree of difficulty. Since the latter is related to the former,

the number of terms is clearly the significant parameter. The total number of

constraints also ,oas a stronger exponential correlation, while the number of

reversed constraints has a stronger linear correlation. These results are reas-

onable because, in the transformed case, the number of actual problem variables

is equal to the number of terms. In this case, the number of reversed constraints

also apparently acts as measure of problem difficulty arising from nonconvexities.

Thus, the results for the transformed and reversed primal complement each other

in this regard.

For sequential transformed dual solution (BRADAW) the key exponentially

related properties are the degree of difficulty and the number of primal terms.

The latter is equal to the number of transformed dual constraints wh, ? the

former is a measure of the number of transformed dual variables. The strongest

linear correlation is to the number of primal constraints. This is not unreas-

onable.since the number of primal constraints does not directly influence the

dimensionality of the transformed dual - it only adds to the complexity of the

objective function. Anomalously, although the problem negative terms impose

the need for sequential soluti6n, the correlation with respect to that para-

meter is not significant.
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For direct solution of the exponential primal Kuhn-Tucker conditions

(GPKTC), the correlation is strongest to the exponential of the number of primal

variables, constraints, and multi-term constraints. Since the primal variables

and linearization weights for the multi-term functions are the primary iteration

variables in the Newton-Raphson algorithm, the observed strong correlation can

be rationalized. The stronger linear correlation to the number of primal con-

straints may reflect the fact that the constraint multipliers are less signifi-

cant variables in the iterations since they enter linearly.

Finally, consider the sequential approaches using convex primal subproblems.

The sequential QP series (GGP) indicates a strong exponential correlation to

only the primal variables. Curiously there is no significant correlation to

either the number of negative terms or the number of tight constraints. In the

sequential RP series, the correlations to the number of primal variables and

multi-term constraints are strongest for the exponential relation, while those

for the number of constraints, number of primal terms, and number of reversed

constraints is strongest for the linear relation. These results are consistent

with those obtained for direct signomial exponential primal and reversed expo-

nential primal solution. The stronger linear correlations to the number of

reversed constraints again suggests that this parameter may be a valid measure

of generalized GP problem difficulty.

7. Conclusions

On the basis of the results of this comparative study, it can be concluded

that, given the computational state of the art represented by the test codes

employed in this study, the preferred solution approach for (eneralized GP's

involves the following elements:
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i) use of tne quotient form of the signomial functions

ii) condensation of the denominators of the quotients using the geometric

mean construction

iii) solution of the condensed subproblems in their convexified primal form.

The best method which should be employed for the subproblems minimizations

is not obvious from the results of this study. The Kelley's Cutting Plane method

employed by the best code in this study (GGP), obviously performs superlatively.

However, in the posynomial study [7], the general purpose GRG Code OPT proved

at least as effective as GGP in solving prototype GP problems even without incor-

porating devices appropriate for GP's which would enhance its effectiveness.

A separate test series in which OPT was used within a strategy employing the

above three elements was not executed in this study because, on the basis of the

evidence accumulated, the results were clearly predictable. Hence, the cost of

developing additional problem formulation files and conducting another full

test series was not justifiable. Since direct OPT minimization of the exponen-

tial primal was second only to GGP in effectiveness and since sequential OPT

minimization of reversed exponential primals was at least as effective as direct

minimization of reversed exponential primal, it follows that sequential QP mini-

mization using OPT will be competitive with GGP.

It is furthermore clear that a variation of the above strategy which com-

bines quotient form condensation with transformed dual subproblem solution will

be effective for problems in which the deqree of freedom is much smaller than

the number of primal variables. Since in practice it is normal to impose upper

and lower variable bounds and multiple constraints when formulating models, the

practical significance of the above subclass of generalized GP problems appears

to be small.

The correlation coefficient analysis performed in this study indicates that

the primary exponentially correlated problem characteristic is the number of



59

variables in the problem formulation being solved. For primal approaches the

number of multi-term constraints also is strongly exponentially correlated. For

signomial form problems solved in the various primal formulations, the solution

time is strongly correlated to the number of negative terms. For reversed

posynomial problems solved in the various primal formulations, the solution time

is generally strongly correlated to the number of reversed constraints. It

thus appears that in judging the difficulty of a generalized GP the number of

variables and multi-term constraints is more significant than the number of

negative terms or reversed constraints.
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PROM"E 14-1

CR7 TIME A. ERV
3e10858262E-06 1. 18560000E+01 6.33958008E-06

-4o35963677E-05 1.*04100000OE+01 1. 02675373E-04
-4oS5658333E-06 1.31630000E+01 3.8676174SE-05
U.81929268E-05 1.21470000E+01 1 .8456486SE-04
4.09208848E-06 1.20060000E+01 2.56980454E-05
S62 M3 564E-06 1. 12550000E+01 1 .52060806E-05
8.00077784E-06 1. 17990000E+01 1 .62907410E-05
3.98691867E-05 9.36600000E+00 7.93403142E-05
3.09013056E-05 1.1 9790000E+01 6. 18276597E-05
2.25150681E-05 1 .41390000E+01 4.50254447E-05

FINAL LIALUESv. AUE.ERROR = 1.54750555E-05 STANl. DELI. 3.41469SE-05
FINAL VALUESP A.AIJE.ERROR = 5.75644693E-05 STAN. DELI. 5.40654154E-05
FINAL VALUES. ALIE.TrME = 1.18120000E+01 STAN. DEVI. 1.31988021E+00
.01000 N0. PTS.= 10 MEAN TIME= 5.41581661E+00 STANIDARD DELI.0 B.64575519E-01
.00100 NO. PTS.= 10 MEAN TIME= 7.22900845E+00 STANDARD DEU.u S.59717259E-01
.00010 NO. PTS.= 9 MEAN TIME= 8.20045084E+00 STANDARD DELI.- 1.I85908E*0O
.00001 10. PTS.w I MEAN TIME= 8.61237092E+00 STANDARD DEU.- 0

Fig. 1. Typical Intermediate Result Summiary for a test Problem run.
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TABLE 3A. STARTING POINT REPLICATION SUMMARY
Signomial Form

Problem Number 2f Starting Points
Number Set 1 Set 2 Set 3

1 10 10
2 10 10
3 10 10

5 10 10

6 10 10
7 10 9
8 0 2
9 10 10

10 10 3

11 10 10
12 1 10
13 10 10
14 10 4
15 10 10

16 10 5
17 10 10
18 0 0 2
19 1 5
20 1 1

21 1 1
22 10 9
23 10 10
24 0 0 2
25 10 0

26 2 2
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TABLE 3B. STRIGPITREPLICATION SM4R

Problem Number of Starting Points
Number 1; p p 2

1 8 10
2 10 2
3 10 10
5 10 10
6 1 1
7 10 9
8*--
9 10 4

10 1 3
11 10 10
12 1 10
13 1 4
14 10 4
15 10 10
16 10 5
17 10 10
18 2 0
14 1 5
20 1 1
21 1 1
22 10 8
23 10 10
24*
25 10 0
26* - -

Problem too large
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Table 4: Number of Solutions Attempted and Solved

Test Series Runs Runs % Unsuccessful

Attempted Successful Attempts

GGP 338 311 8.0

GPKTC 274 134 51.1

DAP 274 26 90.5

BRADAW 338 136 59.8

BRADHA 338 135 60.1

OPTCPS 274 174 36.5

OPTCPD 338 327 3.3

OPTCPR 274 201 26.6

OPTPD 338 244 27.8

OPTTPD 338 207 38.8
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A A MPF'74 1Z7ULTS

P 0 0 8L EM C('07- 4TH N --- XT s-''ST SrUL)ENTS OER7;z OF SIGN1FICAICS
-7 R 8--ST A~Id. C2 T W A L U FRE.501 .- LUL. OF .. FI)

TIME -

I.OPTCPD COP T PD 47,816 25.335 1000000
2 ORPT CP0 Pij 33,972 24& 741- toag
3 OPTCPO OPTPO 25.036 8.329 10:0.00
5 OPrCPO QPTc-J 7C,335 210619 100.000
6 OPTCPO ^PTPD 4.62.422 25.817 1000000
-7 OPTCP~J o- T.f '7,33.5 Z*Q1 0040
8 OPTCPO OPTPO 590174 190,00 98e;924
8 o~RTCP0 0 Q'PJ 0 0 1000000
9 IPTCPD OG'TPiJ 52.451 1.0 0.0

10 JPTCPO CPTPL) 32a920 10 *430. 10 00 00.
it OPTCPO (JTPO 989128 21.*1-10 100.10
12 - OPTCP: OP7PD 28o432 11*733 1000000
13 OPTCPD CP'TPO l11395 23*841 100.000.

4 JPTCPD 4PP 15.172 5.0 Q41;.~.J.O0.-
tIs GPTCPO OPTTPO 131,801 20.5 fie0Otffas
16 OPJROT7F'.) 11.4d.959 210560 1000
17 ORTCPD OPTPL) 27 8*A71 20.174 1000000

OPTCPQ OPTTPO 50.427 2 0-15

20 0PTCP0 8PTTPD 0 0 to
21 Y'TCP!J .PTTPO 0 0 088 8
22 .P.p 'PT-Pj 60,332 Soi 1 10040A . -
23 OP T C-P D PTTPO 910419 70011 100efo00
25 OP%'PJ C6R'FL 52*122 2906 909

a SAMPLE 'CZUO:I EST rUT
i R LA T: z. Ix . z - T3

PRO8L;'M CODE wITH 14-XT ':ST STUDENTS DEGRE:* OF SZGNIFICAICE
U.A -: ST AV8* C CL T V-L U-: FRDZ55 LEVL-Of*. JX.F(-..

-TIME

1 OPTCPO GPTTPO 50*324 24&389 1000000
2 .; ~T CPi 0 gPTTPJ 42:J20 22.191 110 0 0.OD...-

3OPTCPO OPTPn 16.851 2 t3 9909t.
5 OPTCPo OPTFD SO-14 20&059 1000000
6 OPTCPD GPTPD j02*351 25o830 100.000
I QjT ;PD CTJ42.577. 50015-.O.DL~,...
8 OPTPO OPTOD 0 4.000 0-
8 OPTP) PT r Z 0 4. 000 a
9 OPTCPD "PrPO 54999 17.269 100.000

4 PTCP0 : 32.617 10.182 30.0
I OPTCPO pp 033e 27 22.405 :4t0fO *8

12 OPTCPI) OPTP '90369 10.43
1.3 0PTCPD CPTPO 1'.0.*13 24.631 MAS:8S

16 OPTCPQ OPT TPJ 1196654 14o237 100.0000
17 OPTCPD OPT4t) 128e520 12e549 100.0000
19 QpTCpa CPTTPO 56.592 .2.0

21 0?1'CPj) OPTTPD a 0 100.0000
22 OPTCPO OPTTFO 4?e235 2o103 99e99.9
23 C.PTCPO CPTTP 1284488 . : 341 1006400 .

2)5 OPTCPO OPTPO 19.942 . 2001 990989*-

idble 6. Student t Comparisons: OPT Primal Approaches

-da



C S.M0L 5 TUD? WTTESTFESULTS

rt 0 O8L EM CODE WITH N--XT tiEST STUD-rNTS QESREE OF SIG IFICAtC

1OPTCPO OPTTPO 22o622 119224 160a.008
P PT CP~ QUPT TP0 2004 08 1

OCP0 OPTPOi 3M2 T0? a
5OPTCPQ QPTP0 56.731 16*222

6 OPTCP0 OPT6PO 365.448 190059 AS8P T CR8u 4PP f -5

PT pPTPO 4
10 OPTPOJ OPTPD 0 IdecouO0
10 ORTPQ OP~TPD 0 18.000 0
1I .. PTCPB %CPTPO 219:216,040
12 -OPTCPU COPTTP0 112.578 4i310
13 0PTCP0 OPTPD 6b*162 180739 100.000
14 OPTCPO 0?TPD 9.459 3.005 100.000,49OPTCPO CPTTPO 560 5&4. a*3

OPTTPO OPTTPO0 --

19 OpTCPa CPTTPD 0 ISOADD
20 OPTP,0 OPTPD 0 0 -t00:000

2 PTCPQ OP I TFO T71fi 1 10 fi
24OPTCPO OP PO @59 3.-41

",f

Table 6. Student t Comparisons: OPT Primal Approaches



A SAMP Lr JTqIJ:JNT T!STFrSULTS(R7LIT 1V. :ZRR1: J

_7 8L4 COD;' WITH 14WX iEST STUOARTS OEG~rr OF SIGNdIFIfCA'SCE
tM is; Awd. z-.C: r VALUE F REE 6 Utf-OH t

1 OPTCPD GPTCPS 39.906 25.150 100.610
2 OPTCPO OPTCP- Q~...
3 OP1CPO OPTCPPR 04 isu..w
5 JPrCPD CPT--PS 89*021 21e921 100.300
6 3PTCPD "PTCPS 367.699 19.000 100.00
7 OPTCPD OPTiPS 1 "Z 12r-6 OPTCDO *,PTCPfl 0
9 OPTCF0 CPTCPR 31.622 14.776 1000000

10 OPTCPD CPTCPS 67.02? 2.0945 99.999
11 OPTCP.0 PTCPR 70U *01 1
12 OPTCPO OPTCPS 1: 67  2 *92 9294
12 OPT'P0 OPTZPR 9o243 21.817 1000000
13 OPTCPD OPTCPS 32e697 6.001 100.000
14 4PTCP 8 PT CP S 580.218 15.a"fl

15OPT~CP OT 137 2r4 23*25P ..
16 O1'TCP0 OPTCFS 429744 28.6.37 .100.000
1? OPTCPO GOTCPS 860500 20.730 1000000
is QPTCPD CPTCPR 22.631- . 7 ,
19 OPTCPO OPTCPS 200. 096 0
20 OPTCPD 0pCP 0 1000000
21 OPTCPO 0OPTCPS 0 0 1000000
22 OPTrpo CPTCPD

'--23 OPTCPO OPTCPP 8607,77 21, 641 ~~.~
25 OPTCPO Oc)%P. 5629654 9.00 030

4 A"q TYO:ID 4ETF-SULTS

PROBLEM CO3E WITH N'EXT irS'r STUOSNTS OEGREE OF sirN!FICAVdCE
NUMBER 6 '.T ^Vd C C .1 F T VALUE FR O.4 &V 1(.)

TI ME

1OPTCP3 GPTCPS 48.144 22,062 100.000
QPTCPD CP T,.P( .35.113 .92j__~ZjI-OPTCPD OPTCPS 269"2 -19.15 --

5 OPTCPD OPTCPR 437.256 .359695 1000000
6 OPTCPO QPTCPS 551.989 190000 100.0000
I .PTP Oi'rCPR bs3j1si 514,2.5i . -.4 -A
9 O.TCP0 'OPTCPP 95. 246-- 19: f?P- ~0.*~N
10 OPTCP0 CPTCPR 78.958 3.625 Iaco00a
it IOPTCPD OPTCPS 303.266 160000 100.000

14 -OPTCP CPTCPR 07 10-0
12CP TCPS 119130 114 i~l 191el

13 OPTCPO OPTCPS 32296 ~~4*586 00*0
17 OPTCPO CPTCPS 0.0 0~52 10 0000

19 P.CPD OPTCPS 440.908 -0001000

22OPTCP0 OPTCPS 0522 1 0*91u !

23 OPTCPO CPTCPR 680721 28.907 t8g*0SS
.2 PICPD :.PTCPR 1a 61. 446 9.0000 .7&.4.00

,ible 7. Student t Comparisons: OPT Convex Primal Approaches



t~~~~- A V-27-;

PR 0 Lc.'4 C IY wIZT JA T rlT S T u o)VS OziGR-- OF S~f6N1F1jA~4V
NU~tt 14 dEV Ud g. C r AL U- F a~I JV43D F1

OarcPo CkTCPJ 0 0 100.009

5 QfrzeAc dT-P 32JOL5? 20o 967 4 0& OPVCPO OPTCP) a0 too 0S
OPYCPO rPyCP)

18 3PTC iC : 88:8001
12GPTEP P TC F- 0MIk U 990M

3 OT TFK.ps 40 0000
15 '3 CP k O ~T C P 0 0 1000000
16 OFC e l 61*21a 6 6 21 1040000
I7 Iopicps C PT C'.Pr 0 *.@of
II CP TLP R PP 0 4 0
19 OPTCPD OP TC P 2.70 1000

CPPO (PT CPR 25*? :Ol t4 1a

Table 7. Student t Comparisons: OPT Convex Primal Approaches



A 3 AA4 s rTug-~ '4T r T PSUL T

OR OBLE'4 WTITHi 'XT iTUD-T4T DEGREE OF SJGfuIFpICE

09)TCP S 415.Y20 
10050

Grp OPTCPS 47042f .
.4,@.4647 foa5G .P TP : 13! 3ti 1,045 100:0006 GGP i~iJTCPS 27 15. 364 19.000 100.000co PZTS 4 * 3 18 49 *1~ j9G- Dr-'P 4 3 0 Lao 1.23 100.Goo10 OG- 0TC"S q)5 ~ 266 100 06011 

2P*303 .60
2166 OPTCPS 2SV5091

14G;)P TC PS, 1 44, 2A8 13.000 1000000C' TCPS 17.8 6400.909
i7 PTCPS 44 352-, M00o1

G4 JR 74 7 ~ 35 33 8 0 0 0'A ; a 0 100.0009GqP GPI(TC 128 8II0 0 1000
ur'C22:118 11-7 100*40025 4PiKTC 7i*T L 0 1000000

PROBL-71 C007: WITH NCr -XT #ES T STuOTNTS DO:GPEE OF S161F AVYMu1 -ST 4voo T kf-% - 4 LW& OFD Ft D
1OPTCPS joP1R?.721 34o11 00OoG4P Gpy, ~. P c 

tIJ ~ 2 . 3009000
5 ~GGQ OCS 6O2z0~CPpS 54.6 19*112 100.0000
9GG'O OPTCPS 100a .03U.Gq 4E16 100000

57634? 16.06 'V3 3 PP 31,943 10.5
41;P opfcps *.98 4:21 t814~ ~ 446.~l 0.

'Is &PrCPS 25 6.p f2888
UP 1000000
OPTCP0 0 1000

18.Student t Comparisons: Convexified Primal Strategies



C SAMPLr- STU:):

PROOLTA4 CCO:E WITH NEXT 4ST STUOF14TS DEGREE OF SIGNIFICANiCE
9MN8.7 J§.T AV893 ~CC 7 VALUE FRE.ED,;M- LEE OLF 3FC

I GGP CGJKTC 43.261 36.864 100900
.2 GiPa(Tc k 15.536 18444 X 044

3 GGPI GPK(TC 66.7F94 319154 .100.000
5 a)OPTZPS 68.911 50040686GCP (3GP 0 00oo

I ~i OJPTCPS 1.364,09 -*4 -0OM-----.
9 Gap GPXTC' 4*4 6 .1 Y904"

10 GGP 0 0a00a
11 GGP GP0 0 0 80

2GGP QPTCP.- 54.245 70.Q9 100.0H0' GGP CPTCPS 3113.649 19000 1.I00 o
14 4GPBcp 0 0 1000000
15 GGP GP,(TC 14.135 59272 *1000000

166U 4)PT-PS 3.357 2#387 97.155.
16GGP GPKTC 249242 26.126 100*000 '

;. S P GPKTC 10439 1. 001 91.158
17 GGP GPKTC 1.439 is.001 91.158

.1*G .~ r 0 Iei v:
20 GGP G

21C 2.26 6G ..P -

23 GPGPTC ,*6125.019 9 a,732.
23 GGP 0 40.00 0

.~.

Table 8. Student t Comparisons: Convexified Primal Strategies



A SAMDL STVOD'NY ET _T..rU
I M T,~ V.RR~ 1 2) -*

PROE' CODE WdITH IJEXT t4ESr STUO*NIS RE OF SINF
NME STAVde CC0- T VAL Ur. -fol

I RRADAW SRAD*4A f-22 1 37.686 77.06
2 14.0. 41S. 7RA43 flR4aftIiB

3 MAGUW 604OHA 144.916 *0il 8
7 RADNA 8RADAW 11.9s0 34.972 100.000

10 BRADAW BRADHA 0 0 106.000

15 BRACHA URAJAW 10.947 14.9527
16 8RAOAW ERADNA 15o287 25.370 1008:888

.161 ,,.UAJAW ~8R ADHA8*021&7
21 BRAGt4A BRAJ)AW 0 0 100.000
22 BRACIIA ORADAW 2e020 7.748 92.0?8

FI ii DA QORADA 9 2.636-__

PROBLEMI CODE WITH NEXT R4EST STUDEN4TS O(GRrE OF SIGNIF1CAlCr
I'Sk~ AVt4* .C C CF VAL UL. .F.E0 ,..

1 'RADAW ORAOHA .142 34; 747 1 .246
2~ RAA FP i~h;A 10.30 7. -. 090 -. .

BQAOGA BRADAW 17 462- 3 *6 ******* IAA
10 BRADAW epAHA 0 0 100.000

11 RAOAW ORADHA 211.413 3.659 1000000

80 ADA W 14.*2UT 11 4tc
16 8 R A0,AW a8RAJHA 14.331 24.618s 1000000
17 MRADAM BRAO2KA Fe125 17.944 100*000
20 SRADAW, dRAJHA 0. . U 40A0-7-.. I
210 ORAO"A BRADAW 0 0 8 0.00
23 BRAOAW 6RA0HA 0 0 1000000
25 BRAOAW eQADHA 5*972 4.85? 990829

- ,

C SA?4P~jj22& r!.rU
4 4RE v ~ UT .:.-

PROBLE04 CODE WITH NEXT HiEST STUDEN'TS OGfREECOF SIGNI I
AV a* C.M AL UL. f o

S RAO94A 8QA)AW 1.212 36.990 76i4
RAJ 8AiA 8AW ~ .d ~--;~

10 QRA0AW !R AWI UN0
it BRADAW tjRAt)HA 208e235 *6

4RRAOAW SROA40711 -,*M0k.1;

16 BRA3Aid UR AL)HA 170141 25.777 100.80
17BRADAW BIRADMA 11.960 15.074 100.000II ~&Ad d.RAUAW a A.A ,~,

84 A 00 A 8RADAW 0 6 ~ ~ e

~be9. Student t Comparison: Harmonic vs Geometric Mean



A s&4pL 3 I~t~ ULTS

PROOIN ~T % TrU~r4TS 0P 6REr OF SIGNIFICA4 ~E

u .- tU qa!Es Ave. AC~ ~ dL& U4 RZE LA OfE 0F(-.)

I OPTTPO OAP 119e212 190000 1000000
2 o?TTPO 0?7,TP: . -

3OaP GPTTPD 26.559 9mSS 04 .--
5 OAP CPTTP-) 87.619 5.0 1000000
6 OAP 04TTPO 950609 19:01UU 100.0000
I 0 4c' 2PTTP.. 4*3

9 .OuVYO OPTTPO 0 "a-i:;~L
3PTPC OA 142as8:000 100.098

t2 DA 3 PTTPD 5689 9.000 100.0s

13DAP JrP) 2066.121 Ia0,0400~
is 4 OfTTPO 106.620 19.0 ~ 0.0'
16 OPTTPO CPTTPD 0 28*000 0

11 OPTTPO DAP 0997 2.OD1 57*252
19 tOGTTPi A? P 0 10lfl

20 OPTrPO OPTiPO 0 - 0 100.000
21 OPTTPO CAP a 0 100400,0
22 'rPo Tprrp 0 oTP 0 100.000

23 AP PTTPJ 6179 3*02z 1- ~2.'s
25 OPTTPO A)PTTPD o .0

B SAMPL- 5TUOI'T T-'T FVUT
CRLLZ R 4OR f.Z-3)..

OBL!AI COO-- WITH NrXT BFST STUDcENTS DEGREE OF' SIGN! FICAtECE
I4UNfA Avas c~cci T VALUE -FR 3 01 - LZVEL QV.DWC,.j

-1OP'rTPO 014P 1143. 59 19.000 100*0000
*QPiTPJ OP T 7P) 0 .

OP-P 0PrP 10 0--

5 DAP CPTTPJ 30.3*5.000 100.000
6 DAP 0PTTP0 229.008 1iecoo 1000000
7* J7 OPTTPj 1.MJ12~ O.O .

9 OPTOD OPTTPD 10i 3410 *go

11 QPTTP0 CPTTPO 0 1.O

12 DAP CPTTPD a .0 .0 0.0

OP T. OTPU 2 .3U 45.9 14:00 R ti
03PITPD DAP 53. 71 13.00 Is381w

i PTTPS CPTTPj 0 10. 0
OPTTP8  DA~P .880 19000 480110
OPT IP0 GPT0 a.~. U 488:too-4

22 0 009
22 PTTPO CJPTT&,) 0 0 100.400

23 OAP OPTTPD 24.750 19000 100.0000
% -~ . I)PTTPQ ;P T T PJ .0 - ~ .'

Table 10. Student t Comparison: Transformed Primal Strategies



C SA'Lr cTG-.N T TT FFSJLTS

PRO13L-- CO,) wITH NTEXT -j7-ST -3TJLWLNIS OEGRE-- OF SIGNIFICAICE
Mj4Jtdc.i S AWId CM. T UALUZ FRDO L p.fl_)

I (PTTPO CAP 152' 5.361 82.939
QPTTPD 0 - - -Q

OPTTPO OPTTPO D. *oI~.
5DAP 0 PT r.P) 3359393 2.008 99o999

6 OPTTPO CPTTP) 0 16.00 0
-1DAP CPTTPLJ 90838 i 1

12 DJAP 0TPJ 126.665 7.000 1000000
13 PQLTP 0 16*ZD

.16 iPTWO - ...O
11 'OPTTPO 0PTTPi) 0 0 -.
19 QPTTPU O O&TT PD 0 0 1000000
23 OPTTPO CPTTPD 0 a 100.000.

Table 10. Student t Comparison: Transformed Primal Strategies



A SAM4L I.fIUT

PROBLEM4 CODE WITH N7XT tffST STUDENTS 0E-GQr; OF SlwNIFICA'dCE'
A48Wkw. - VALUE F-KR-EO~ 6 - L:- VL OF JIP1_1

H 3AAA B3RAOJHA 19221 37*808 77.026
IR I lA ~ O PT P.Pa 6*2.33 19.261 100.000

M7 4-i 4009P O'PTTP 33.972 24.6747 1004000
3 4)P1CP0 GGJP 1.015C 27.263 1C 0.300

5GGP OPTCPD 147.347 25*751 100.000
*o 4j . tTp 411. 01 22ea91 100.0000

G6P OPTCPV 1016181. 570819 100.000
4G CPTCPO 192.121 le.JOG 99.669

9 GpCP1'CPD 22.153 10e210 1000000
4 .ap Or')TCPO 31 1 2'i.0.3 100000

1140OPTCP0 13.683 18.913 100.000
12 1. AFl294 10.000 77o524
12 GGP CPTCPO 18.443 10.640 1000000

5B R A JyA 8RI.DAW 1C*,47 14*921 100.0000
BRADAW e3PADHA 15.287 25.370 1000000

BR # RAi0N 8.029 ia*7s5 100.000g
OPCD12.9;25 2. 355 9909110-

19 GGP' OFTOPO 16.039 5e112 100.00
20 BRADt4A BRADAW 0 a 100.0000

BR40- ~ ANA r3RA3Aw a 3 1400.00
-7 690 OPTCPa 170418 35' 642 100000

3 PTCP0 .tp32odi1 23:0116 100.0000
SOPTCPO E P A -)AW 5 9 0 2 1 99359 1000000

B SAM4PLE jTL1D-*&jc'j!-!7SLTS

PROeLF'4 COU!: WITHi NEXT HEST STUD:'NTS 0-7GR:*C OF SI6NIFICANCE
-*.14BE8R - .Zr A VB.. C 1..: T V A CU- FP::VAcM O F EIFC)j

1BRADAW BRADNA 0142 310747 .11*246
BRADAii cprcPo 744b748 11*59b 100.000

*2OPTCPO OPTTPD 42.020 22.141 1000000
3 OPTCPD GGP 28*520 2o,702  100.0000
5 GGP OPTCPD 272.556 2J*683 1004000

a GJFP iPTPD 34.121 10013 10.00.uoO
9GGO OPTCPO I1.221 10.098 1000000

66Pc~fPQ5.40 24.61 10266p GP 4 tICPO 5.900 102 100.coo
2GGP DAP 3030691 139000 1000000iG 3PCO901 104 000

Sip OPT ICPO 6.10 11 n 100*000
-B RADAW 7.593 14.2 1000000

BRA.)AW BRADNA 14.331 249 tIB 1000000
17 8AOAd BRAD)HA 80125 170-344 100.000

G a~ a. a 100 :080
OPcO31.599 40807 100.0 0

20 BRAOAW BRADHA 0 0 100.000
BRAOHA BRADAW 0 0 1000000

8PZD Gap - 2e127 2O.13 95e417A . r fcoo OPTTPO 41i235 2.103 990999
23 OPTcoCP01PT C PR 68.121 200,4,7 100.000
25 8PrCP0 BRADAW 2 47.9 04 12e699 '1000000

Table 11. Student t Comparisons: Overall



CSAMPL-- YTJ9:", T.TEIT FESULTS
(RELAT.VL- HR 1'Z4

PROBLEM4 CIO iITH N7X ~T STUO:'NTS OEGRr-r OF S16NIFICA'dCr
xUdz -7T AV 8. * T V AiL U FREvEL. -Of DIF4,)

BIH R'AW1.212 36*990 7.6
PT0 PTD20.012 25:842 08~f

3 0,01T P 0;; 38.635 31o394. 100.0000
5 GGP CPTCP0 1e.539 99969 100.0000

6 G PTCPJ, 372.576 4: 429 6 - I 16340 *p-*
7 GGP OPTCPD 126.19l IT 957 lc 1091,17.
9 OPT,-Po 6.ii 692 90761 490i16i
9 OPTCPO 63PKTC 4.554 2e002 99.148

10 fiG PTLPP 24COW 4 . .Q~ D000 -
it GP JPTCP0 4.3 6 6 991 log.9
13 DJ.P G~iP 12754 100 0*0
14 CPTCPJ .14 16* 71.
15 8RAOAW BRAOHA 4.1 19.636 .
16 j - 118141 .25.717 100.00817 BRAAW a r L)H A 11*960 15.074 100.00
1a815 GGJP 0 0 100000 0
19. GGP OPTCPO 1T7*.%4 5.000 .100006 0
20 BRH 3R A A~ a 0 100,O00
21 BRA04A Br;AW 0 0 1000000
2.3 QPTCPD OPTCPR 2*75S ~ L028 9 90928&,.- ;

25OPTCPO OPTCPR 259.9T2 30 00 io.o

Table 11. Student t Comparisons: Overall
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Frequency

Error Level 10-2 1-31-

Ranking 1st 2nd 1st 2nd Ist 2nd

Series

GGP 13 2 12 2 10 2
GPKTC 0 0 0 0 0 1
DAP 1 0 0 1 1 0
BRADAW 3 5 4 3 4 2

BRADHA 4 2 3 3 3 3
OPTCPS 0 0 0 0 0 0

OPTCPD 4 13 5 12 5 8
OPTCPR 0 0 0 1 0 3

OPTPD 0 0 0 0 0 0
OPTTPo 0 1 0 1 0 1

Table 12: Test Series Ranking Summary
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Test Problem File: Signomial Form

PROBLEJ ID 1 221, No.I I

IIIZE

CCX)W (XI) + O.400000(Xi*. 0.67)(X3'-0.97)

SUBJECTED TO:

G1(X) - O.0SM52(X3)(X4) + O.100000(XI) <- 1

G2(X) u 4.OOOO(X)(X4.-1.OO) + 2.OOOO(X2-O.71)(X4M-I.00)

+ 0.O58820(X2**-1.3O)(X3) <- 1
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MG Lp~~o [4], Section 11.2

MIMIIZrnc

GOCX a 861000.CXlI. 0.50)(X2)CX3.o-O.67)(X4..-O.50)

*39900.(X0) + ?.?E*008(X*-1.O0)(X2** 0.22)

- .7E+0OSCXlu.-I.OO)

slULJCE TO:

GICX * M.-2.O0)(W4 + (X2.4-2.OO) <I
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PROBLEMIIO3 private files

nInIMIZE I

GO(X) - (XI** 2.00) + (X2- 2.00) + 2.000(3 2.00) (X4*0 2.00) - 5.0000(X1)

- 5.0000(X2) - 21.0000(X3) - 7.0000(X4)

SUBJECTED TOS

GICX) a 0.125000(XI* 2.00) + O.125000(X2** 2.00)

+ 0.125000(X3-o 2.00) + 0.125000(X4** 2.00)

" 0.125000(X1) - 0.125000(X2) + 0.125000(X3) + 0.125000(X4) <- I

G2(X) 0 0.100000(XlI. 2.00) + 0.200000(X2ee 2.00)

+ 0.100000(X3 2.00) + 0.200000(X4*e 2.00)

- 0.100000(XI) + 0.100000(X4) <- I

G3(X) - 0.400000(Xl*' 2.00) + 0.200000(X2*o 2.00)

+ 0.200000(X3e* 2.00) + 0.400000(XI) - 0.200000(X2)

+ 0.200000(X4) < 1

G4(X) * 0.000100(Xl.*-I.00) <= I

. . . .. . .I
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POLINOS [5], No.2

MIMIMIZE

00(X - 5.3578(X3-. 2.00) + 0.835700(XI)(XS) + 37.B39(X1)

SUBJECTED TO:

C1(X) a 2.6E-005(X3)(X5) - 6.7E-005(X2)(X5) - ?.3E-005(XI)(X4) <- I

02(X) = 0.000853(X2)(X5) + 9.4E-005(Xi)(X4) - 0.000331(X3)(X5) <= I

03(X) = 1330.33(X2**-1.00)(X5*'-1.O0) - 0.420000(Xl)(X5**-1.00)

-0.305860(X2-l.0O)(X3** 2.00)(X5.-1.00) <= I

04(X) a 227.13(X3*'-1.O0)(X5**-1.OO) - O.2GS8OO(Xl)(X5**-1.OO)

- 0.405840(X4)(X5**-1.O0) <= I

05(X) n 0.000242(X2)(X5) + 0.000102(Xl)(X2) + 7.4E-005(X3** 2.00) <= I

05(X) a 0.000300(X3)(X5) + S.OE-005(XI)(X3) + O.000122(X3)(X4) <-

07() - 78.0000(X1*I-1.00) <m I

08(X - 0.005804(XI) <- 1

08(X) w 33.00OO(X2*-1.0O) <- I

010(X - 0.022222(X2) <= I

011(X) - 27.0000(X3**-1.00) <= I

012(X) a 0.022222(X3) <- I

013(X) - 27.00O0(X4**-1.0O) <= 1

GA4MX w 0.022222(X4) <- 1

015(X a 27.0000(X5**-1.00) <= I

G16(X) a 0.022222(X5) <a I



pr~ggM M private file~s

CO(X m O.003486(Xl)(X34'-1.OO)CX4) + 0.OO19S6(X1)(X3**-1.OO)

- 0.OO1473C(X)(X3-1.OO) + 2345.OD(X3*-1.0)(Woo-1.OO)

MIJJECTED TO:

G1(X a O.OO?353Xl)(X4) + O.004?S0O2) + 0.021500(91) (a I

G2X a .LO85OO(XI.-1.O)(X2)(X4-1.OO)

* .400000(X4*1.OO) <= 1

03(X) * O.619G0O(XIO'-I.OO)(X2) + 0.748000(X4) <a I

G4(X) w (XS)(XS*.1.00) + 1.3330(XS'*-1.00) <= I

G5(X) - L42.86(XI** O.53)(X3*'-.34)(X4-0.51)(X?**-1.?0) <= I

08(X a 0.002480(X1'* O.BO)(X3** 1.4O)(X4-1.lO)(X5-1.OO)(M? (a 1

G7(X) a 40.0000(X7*-1.00) <w I

08(X) - O.125000CXS) <= 1

03(X - 3.OOOO(X3*0-I.OO) <= I

G10(Xa (XI*-1.OO)(X3)(X4*o 3.00)0(X) <- I
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p~ou.~~no4], Section 11.3

M1141MIZE I

GOCX m 1.1O47CXI- 2.OO)(XL2) + 0.673500(X3)(X4) +O.048110(X2)(X3)(X4)

SUBJECTED TO:

G1Cx) n 12.0000CX2.-2.00)(XS) - 3.O000(X2.-2.00)(X3*u 2.00)

- .0O0OCXI)(X24-2.00)(X3) - 3.OOOO(Xl* 2.00)(X2-2.00) <= I

G2CX) - 0.0S42S0(X3'*-1.00)(X4**-3.OO) + 0.027760(X3) <- I

G3CX) - 1.SE+007(Xl..-2.0O)(X2**-2.O0)(X5..-1.OO)

" 2.5E+008(X1**-2.OO)(X2**-1.OO)(XS**-1.0O)(XS**-I.0O)

" S.0E+00S(X1'-2.00)(X5"*-1.0O)(X6'--.00)

" 3.SE.05(Xl*"-2.OO)(X2*-2.0)(X5*-.0)(X*-2.O0)X7)

" 2.5E.DO8(X1..-2.OO)(X2*.-1.OO)(X5--1.OO)(XS*.-2.0O)(X7)

* 4.5E4006(l"-2.00)(X5"-1.00)(X'.-2.0O)(X?) <= 1

G4CX) - 0.250O0(X2*o 2.OO)(X7*u-1.O0) + O.250000(X3** 2.00)(X7-1.00)

+ 0.500O00(Xl)(X3)(X7**-I.0O) + O.25OO0O(Xl** 2.00)(W7*-1.00) <a 1

65(X) - 16.8000(XW-2.0O)(XMo-1.OO) <= I

G6(X) - (XL)(X4*0-1.00) <= I

67(X) a 0.125000(Xlwe-1.O0) <= I

08(X - S.0800(X3**-3.OO)(X4) <= I

GSM) 7.4E-005(X'.' 0.50) <- 1



91

PROBLEM~O no8 51 , No .3

MThMtIIZE I

00(X m 1.7150(XI) + 0.035000(Xl)(XS) + 4.0565(X3) + 10.0000(X2)

+ 3000.00 - O.063000(X3)(X5)

SLUJECTED tO

G1(X) = 0.005555(Xg.. 2.00) + 0.883328(Xl*.-1.0O)(X3)

-0.1175G3(XS) (a 1

02(X) - 1.1088(Xi)(X3*e-1.00) + 0.130353(Xl)(X3.*-1.00)(XS)

-0.006603(Xl)(X3- 1.00)(XS*. 2.00) <= I

03(X) a 0.000662(XS.. 2.00) + 0.017240(X5) - 0.005660(X4)

- O.019121(X6) <= I

G4(X) a 56.8507(X5"--1.00) + 1.0870(X5*a-I.O0)(XS)

+ 0.321750(X4)(X5e.-1.00) - 0.037S20(X5.a-1.00)(XG** 2.00) (m 1

0;5(X) - 0.006198(X7) + 2462.31(X2)(X3*-It.00)CX4..-l.O)

- 25.1256(X2)V(3**-1.00) <= 1

C9(X) - 16l.19(X7*--1.00i + 5000.00(X2)(X3*.-1.0O)(X7*.-1.00)

- 488550. (X2)(X3--.00)(X4**-1.00)(X7..-1.00) <- I

07(X) - 44.3333(X5**-1.00i + 0.330000(X5**-1.00)(X7) <- 1

COWX = 0.022556(X5) - 0.007595(X7) <= I

09(X) - 0.000610(X3) - 0.000500(XI) <- I

010(X a 0.818672(Xl)(X3**-1.00) + 0.815672WX.-1.00) <- I

G11(X) - 24500.(X2)(X3*0-1.00)O(4*.-I.00)

- 255.0O(X2)(X3**-1.00) <- I

G12(X) - 0.010204(X4) + 1.2E-005(X2*.-1.00)(X3)(X4) <a 1

013(X) a S.2E-005(X1)(X6) + S.2E-005(Xi) - 7.GE-005CX3) <- I

014(X) u 1.2200(XIlo-1.00)(X3) + CXI'.-I.00) - (XS) <= 1



GIS(X a 0.0005000(1 <= I

GISMX a (XI1.00) <- I *
G17'(X a 0.008333(X2) <a I

GLOWX 0 MX2-1.00) (a I

GISMX m 0.000200(X3) <a I

GBO C X3**-1.0O) ( ;

G21CX) a 0.010753(X4) <- I

G22(X) - 85.O000(X4*w-1.00) 1-

023(X) - 0.010526(s) <u I

024(X) = 90.0000(XSe0-I.0O) <- I

025(X) a 0.0533330(S) <= I

029(X) m 3.0000(XS'-1.O0) (s I

027(X) a 0.008173(X7) <= I

029(X) a 145.0O(X7*.-I.0O) <- I



93

PRaLmi mDS NoV t4

MINIMfIZE

GOCX a O.400000(Xlo* 0.67)(x7-0.67) +. 0.400000(X2". O.97)CX*-O.67)

+ 10.0000 - (XD) - (xe)

9L3JECTED Ms:

GZ(X 0 0.058800(xs)(X7) + 0.1000000(m) <0 1

G2(X) w G.058800(XG(Xe) + 0.100000(X1) + 0.1000O0(x2) <= I

G3CX) - 4.0000CX3)(X5e-1.00) + 2.QO00(X3*-0.71)(X5*.s-1.00)

+ 0.0s800(X3o-1.30)(x7) <- I

C4(X) w 4.O0O(X4)CXS.-1.0O) + 2.0000(X4*e-0.71)(XG**--I.00)

+ 0*058800(X4*.-1.30)(XB) <= I

GSCX) 0 O.100000(XI) <- 1

GGCX) - .0.IOO000(XI."-I.OO) <- 1

G?(X) - 0.100000(X) <- 1

COMX - 0.100000MX.-1.00) (u I

GS(X - 0.100000(X3) <a 1

G10(X) s 0.100000xOW-1.00) <= 1i

GI1(X a 0.100000(X4) (a I

C12(X) a 0.100000(X4.-1.00) <- I

G13(X) a 0.LOO000(XS5 <a I

G14(X) a O.WOOOO(XS.-1.00) <- 1

COW(X a 0.100000(X6) <0 I

016(X) a 0.100000(X600-1.00) <a I

G17(X) a 0.100000(X7') (w I



GIUCX a 0.100000CXu.-1.00) (a I

GIS(X) a 0.100000(9) (w I

NOW0C a 0.100000(X8*-1.00) (w I
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PROBLEM NIO 10 C(51, No.-5

flIhIhIZE :

00(X) - (XI) + CX2) +4 (X3)

SUBJECTED TO:

G1(X) m 833.33(Xl**-1.00)cX4)(XG**-j.00)

+100.0000(X6"*-1.oO) - 83333.(XI**-I.OO)(X....1.00) <= I

G2(X) a 1250.OO(X2**-1.00)(X5)(X7**-1.0O,

+(X4)(X7..-l.0O) - 12SO.0O(X2*-1.0j)(X4)(X7-.-l.00) <- I

G3(X) a 1.2E'00G(X3.-1.Oo)(X8.*-1.00o, (XS)(X8*.-1.OO) -2500.OO(X3..-1.00)(X5)oc8.-1.00) 01(

G4(X) w 0.002500(X4) + 0.0025000<6) <= 1

05(X) a O.002500(X5) + 0.002500(X7) - 0.002500X4) <(

CCCX) = 0.010000(X8) - 0.010000(X5) <= 1

G7(X) w 0.000100(XI) <- I

08(X) - 100.0000(Xl*.-1.oo) <= I

GS(X -O.000I00(Xa) <= I

G10(X 1000.00(X2**-j.oo) <= 1

G11(X) *0.00Q000(X3) <= I

G12(X) -1000.00(X3.-1.00) <= 1

013(X) = 0.001000X4) <= 1

014(X a 10.00000<4**-1.00, <= 1

G15(X a 0.001000(XS) (= 1

G16(X) a 10.0000(X5'..-1.00, <= 1

017(X) a 0.001000(XG) (- I

G18(X) a 10.O000(X6..-1.O0) <= 1



019(X - 0.001000W) <= 1 
9

020(X) n 10.0000(X7u--1.00) <= 1

021(X) a 0.001000(XB) <- 1

G22(X) - 1O.OOOOX-1.O0) <- I
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PROBLEM NO 11 private files.

MIrtIiiIZE 2

00X)M (X3)(XS) - (X4)(XG) + (XS) + (XG)

SUBPJECTED TO:

01(X) a 50.OUOO(XloI*-.OO) - (XI..-1.0c)(X2) <- 1

G2(X) - 1.4609(X5*4-1.0O) + O.151860(X1)(X5S'-1.0O)

+ 0.001450(X* 2-00)(X5-1.00) <= I

G3(X) - 0.8008013(S'-1,00) + rl.2310(X2)(XG**-1.OO)

+O.000316(xa** 2.OO)(Xs**-1.OO) <= I

04(X) -O.IOOOOO(X3)(X7) + 0.IOOOOO(X4)(XB) <- 1

GS(M m 1.5742(X7**-1.OO) + O.16310O(X1)(7W-1.OO)

+ O.001358(XI** 2.OO)(x7**-I.OO) <= I

06(X =O.726600(X8*.-1.0O) + O.225600MX)(X**-I.0O)

+ O.000778(Xe** 2.0O)(X8*-I.00) <= 1

GM() =18.OOOO(XI**-I.OO) <= I

08(X) - 0.033333(XI) <= I

GS(X = 14.0OO(X2**-1.OO) <= 1

010(X a 0.040000(X2) <= I

011(X - (X3) <= 1

012(X) w (W4 <= I
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MRNEIro IL2 private files

fIMhIMIZE

GO(X) = O.OOSOMX)(4M-1.OO) + O.OO21B9O(2** 2.00)(M4-1.00)

+ 0.032840003)(M4-1.00) + 2345.0O(X4**-1.OO)(X5*-l.OO)

SUBJECTED TO:

G1(X) = .747940(XI**-1.OO)(X6)(X7) - .380400(X1*.-l.OO)(X2)

- O.299180(XI*-1.0O)(X3) <= 1

G2(X) m O.031330(Xl) + 0.030000(X2) + 0.024400(X3) <= 1

GM() - (X8)(XS'.-1.OO) + 1.3330(XS*.-l.OO) <= I

G4(X) x (XI)(X7--1.OO) + (X2)(X7**-1.OO) +(X3)(X7*-1.0O) <= 1

US(X - 0.007000(X4-. .34)(X5** 1.70)(XG** O.51)(X7*-O.53) <(

GG(X) = 0.002480(X4-~ 1.40)(X5)(X6**-1.1O)(X7** O.8O)(XS**-1.OO) <=

GM() - 40.OOOO(X5*.-1.0O) <= I

GU(X = 0.125000(X9) <= 1

GS(X) - 3.OOOO(X4*.-1.OO) <= 1

GIOMX - (X4)(XS'* 3.OO)(X7**-1.OO)(X9) <= I

GII(X) - O.050000(X3E.-1.0O)(X7) <= I
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PROBLEMI MO 13 1] Sect ion .10. 1

rIlMIllIZE

GO(X) = 5.8850(Xl)(X4)(X5*-1.00) + 5.8850(X3)(X4)(XS*--.00)

SUBJECTED TO:

G1(X) - (X3**-2.00)(X6*e 2.00) + (X2'. 2.0O)(X3-2.00) <= 1

G2(X) = 8.9400(XI)(X2.--1.00)(X4..-1.0)(X7**-1.O0)

+ S.9400(X2**-1.00)(X4**-1.00)(X7**-1.00)(X8) <= I

C;3(X) m 8.9400(X1)(XS**-2.O0) + 8.9400(XS)(Xg**-2.00) <= 1

G4(X) - 0.015900(XI)(X4*--1.0O) + O.1S0000(X4**-1.00) <= I

G5(X) - 0.015600(X3)(04*-1.00) + 0.150000(X4**-1.0O) <- 1

GS(X) = (X1-1i.O0)(X5) - (XI*-1i.0O)(X6) <= I

G7CX) - 2.5000(XI'w-1.0O)(X7) - 0.41GGG7(Xl**-1.00)(X3) <= 1

G8(X) - (X2**-2.O0)(X3** 2.00) - (X2**-2.00)(XB** 2.00) <= 1

CS(X) - 4.4000(X2.*-2.0O)(X4*-1.0O)(X7**-1.00)(Xg** 2.67) <= I

GIO(X) =1.0500(X4*i.-1.00) <= 1

GlI(X) =(X2)(X3*'-I.00) <= 1



1 00

PROUIM NlO 14 [ 221, No. 12

IIMIZE

CCCX - 2.8485(Xl) - 22.4990(Xl)(X2) + 2.8952(XI)(X3)

+ 0.305700(Xi)(X4) - 4.4318(XI)(X) +0.140000(XI)(X5*0 2.00)

+ 3.5574(Xi)(X6) + 0.050000(XI)(X7)

SUBJECTED TO:

CI() 100.0000(X3)(XS**-1.00) - 100.0000(X3)(X80* 0.01)(XS--.01)

+ (X8)(X9-I.00) <= 1

G2(X) 0.4?4400(Xl)(X4**-1.oa)(x**-i.oo)

+ 0.875640(Xl*.-1.0O)(X4)(X6)(X8..-1.00)

+ 0.012152(X1)MX~-1.00) + 0.139100(XI)CXG)(X8.N-1.00)

+ 0.3S7500(X1)(X6** 2.00)(X8".-I.00)4

- 5.7222(XS) <= I

G3(X) -10.4351(Xl'*-1.00)(X4)(X5*-1.00)(XS**-I.00)

- 72.5476(X5**-1.00) + 5.6303MX)(XM-1.00)

" 0.127900(X4MC5-1.00) - 1.8459(X6) - 133.91(XS**-1.00)(XG)

" 1O.3S3O(X3)(XS**-I.00)(X6) + 0.23G200(X4)(X54'*-1.00)(XG)

" 19.2611(XI*#-1.00)CX4)(X5.*-1.00)(XS)(XS**-I.00) <= 1

G4(X) = 0.003309(XI) - 0.00S10(X1)(X3) - 0.000486(Xl)(X4)

+ 0.010090(XI)(X) -- 1.3E-006CX1.# 3.00) - 1.SE-OOS(X1*. 3.00)(XS)

- 4.2E-005(Xl** 3.00)(XS** 2.00)(XB#*-1.00)

- O.000253(Xl)(X5** 2.00) <= 1

GS(X) a 21.3351(UM-1.00) - 1.8458(X6) <= I

GSWX a 0.002017(X1) +0.004878(Xl)(X2) + 0.005735(Xl)(X5)

- 0.000744(Xi)(X3) - 6.3E-005(Xl)(X4) - 1.SE-00S(XI)O(7) <= I

GMC) a 0.001817(X1) + 0.011287(X1)(X2) +0.0107SS(Xl)(XS)

+ 1.3E-005(Xl)(X7) - 0.003304(Xl)(X3) - 0.000471(Xl)(X4)

- 0.000363(X1)(XS** 2.00) <= 1

GSMX - 0.025616(X*~ 2.00)(X7*'-1.00) + 0.293lG4(XI"* 2.00)(XG)(X7**-1.0O)



1 01

*O.9387?O(x1 2.OO)(XS*e 2.003(X7ee-1.OO) <- I

CX) *-4.4400(X5..-1.OO) t 41.0400(X2)(XS**-1.OO)

+ 5.6300(X3)(X5--I.00) + O.122800(X4)(X5*-1.OO) <= I.

GIO(X 0 .400000(XS..-1.OO) <= 1



1 02

PROBILErMa 15 (22], No. 15

MIMIMIZE

GO(X a 0.0500000(1) + 0.0500000X2) + 0.050000(X3) + (XS)

SUBJECTED TO:

GICX a (X7**-1.00)(XIO) - 0.500000(Xl)(X4)(X7'*-1.0O) <= I

02(X) - (XT)CXa**-1.00) - 0.500000(X2)(Xs)(X8*-1.O0) (= I

G3(X) a (XS)(X9*-1.OO) - O.500000(X3)(XS)(XS.*-1.0O) (n I

G4(X) - .500000(X)(10-1.0O) + .250000(XO0-1.OO) (a I

GSMX a 0.796810(X4)CX-1.OO) 1=

09(X) a 0.796S10(XSX*-1.0O) I=

07M) a O.79810(XS)CXS*-I.OO) <=I
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PO1 Mi IS 122], No. 14

COOC) w (8) + 0.40000O(X4*o 0.67) + 0.400000(XS*. 0.67)

UJECTED TO:

GIMX- 10.0000(X3a-1.00) - (X1)(X3..-1.00) <= 1

G2(X) u (XI)CX8..-I.00) - (X6)(XS**-1.00) <= I

G3() a (XI.4-.00)(X2..-1.50)(X3)(X4.-1.00)cK5..-L.00)

+ 5.O000(XI*.-1.00)(X2--I.00)(X3)(X5wo 1.20) <- I

G4CX) w 0.050000(X3) + 0.050000(X2) <- I

G5(X) a (XG*e-1.00)(X?.-1.50)X(XS..-.)(XlO..-l.0o)

+ 5.0000(XS.*-1.00)(X7..-1.00(X8)(Xl0.. 1.20) <= 1

GSCX) - (X2*-1.00)(X?) + (X2*'-1.00)(X5) <0 I

G7CX) - I0.00OOCXIO) <= 1
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pROBLE1 ra17 122], No. 16

MIMIflIZE I

c0(X a O.050000(X1) + O.050000MX) + 0.050000W() + ()(9)

SUBJECTED TOS

01(X) - .500000(X)(Xo0*-1.00) + 0.250000(X10O*-1.00) <- I

02(X) -(X7*-1.00)(X1O) - .500000(X)(X4)(X7*.1.0O) <= 1

G3(X)- (M CS-100) O.500000(X2)(XS)(X8*i-.0O) <= I

04(X) n (X8)(X9U*-l.O0)- 0.500000(X3)(X)(XS*1.00) <= I

05(X) a 0.700329(X4)XT*1.0O) + 0.307795(X7) <= I

02(X) m 0.700329(XS8-1.00) + 0.307795(XB) <= 1

GM() = 0.700329(XS 1*.00) +O0.307795(Xg) <= I
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PROBLEM NO Is (22J, NO. 21

MNIM'IZE 2

COWX 0 .063000CX4)(X7) +5.0400(XI) +0.0350000X2) +10.0000(X3)

*3.3500(X5)

SUBJECTED TO:

C1(X) - 0.892860(XI.*-I.O0)(X4) - 0.117560(XB) + 0.005855(XS8" 2.00) <- I

G2(X) w 0.017410(X7) - 0.0151300(8) + 0.0006S2(XS*. 2.00)

-0.005SS0(Xg) <- 1

G3(X) m 35.82O0(XS.0-1.0O) - 0.2221O0(X3.--i.O0)(XI0) <* I

04(X) - 1.2200CX4)(X5-1.00) - (XI)(XSO*-1.0O) <a 1

05(X) n (Xl)(X2.*-1.00)(X8) - 1.2300(X2.-I.00)(X4

+ cxI)(X2*0-1.00) <u I

06(X) a 0.330000(7.-1.00)(X10) + 44.3330W(7-1.00) <= t

G7(X) a 1.OE-05(X3**-I.0O)(X4)(XG'(X9' + 0.0102020(6) <= I

08(X) a 0.000500(XI) (a I

05(X a 5.2E-005(X2) <w I

G10(X - 0.008333(3) <= 1

G11(X) a 0.000200(X4) <= 1

012(X) a 0.000500(x5) <- I

013(X) a 0.0107530(X) <- I

014(X) a 85.0000(XS..-I.00) <= 1

015(X = 0.010526(X7) <= I

016(X) a 90.0000(X7-1.00) <a I

017(X) a 0.0833330(8) <w 1



1 06

G1S(X a 3.0000CX9'-1.OO) <a I

G19(X a 0.250000(X9) <= I

020(X m 1.2000(XS*-1.OO) <* 1

021(X) = 0.006173(XIO) <= I

022(X) m 145.OO(X1O*-1.OO) <- I
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POBLEM MO 19 122], No. 24.

MflIMIZE I

GO(X n 1.2626CXB) + 1.2626(X9) + 1.2626(XIO) - .2311(Xl)(XB)

-1.2311(X2)(X9) - 1.2311(X3)(XIO)

SUBJECTED TO:

G1(X) aO.O34745(X1)(X4**-1.0O) + O.975000(XI) - 0.009800(Xi"* 2.00)(X4.-1.00) <-

02(X) a 0.034745(X2)(X5.*-1.OO) + 0.975000(X(2) - O.0O9BOO(X2** 2.OO)(X5**-1.OO) (=

03(X) = O.034745(X3)(X6**-1.OO) + 0.975000(X3) - o.00980a(X3** 2.OO)(X6.-1.OO) <=

04(X) = (XI)(X500-1.OO)(X7**-1.OO)(X8) + (X4)(X5**-1.OO) -1.1OOO(X4)(X5*u-1.O0)(X7'*-1.0O)(X8) <= I

G5(X) a 0.002000(X2)(Xg) + O.002000(X5)(X8) +. (X5) + (XG) - .002000(Xl)(XB)

- 0.002100(X6)(X9) <A 1

06(X) a (X200-1.O0)(X3)(X9**-1.OO)(XlO) + (X2*0-1,OO)(XS) + 500.000X3.-1.00)

- 1.1000(X9**-1.OO)(XIO) - 510.OO(X2*.-l.OO)(X6)(XS**-1.OO) <- I

G7(X) a 0.900000(X2*e-1.00) + 0.002000(X1O' - .002100(Xa.*-1.0O)(X3)(XIO) <= I

06(X) a 0.002000(X7) - O.002100(XS) <= 1

G9(X - (X2)(X3**-1.OO) <= I

010(X - (X1)(X2*.-1.OO) <= 1

011(X) a (XI) <- I

012(X) a O.100000(Xlo*-1.OO) <"- I

013(X) a (X2) <= I

014(X a 0.100000(X2.*-1.OO) <= 1

015(X) a WX) (a 1

016(X) a O.900000(X300-1.OO) <= 1

G17(X) = 10.0000(X4) <a I



1 08

G18(X a 0.100000(X5.-1.00) <*I

G20(X) a O.100000(XS.-1.OO) <- 1

G21(X) a 500.(X**-I.OO) (- I

G22(X) - O.002000(XIO) (= I

023(X) a O.100000(XIO*4-1.OO) <UI
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PROBLEM MiO 20 [221, No. 17

MINIMIZE

COW) (X3.-1.00)

SUBJECTED Ta:

01(X) a 0.999000X4*-1.0O) - 100.10C7)(XlO) (a 1

02(X) - (Xl0)(X11'*-1.00) - 10.02fl0(X8) <= 1

G3(X) = (X5.'-1.0O) -10.2000(XI*-1.OO)(XS)(Xll) <=

04(X) = I0.0000(X1I) -10.0200(Xg) <= I

05(X - (XG.-1.00) -1.2000(X2e.-1.00)(XS) <= I

06(X) = 0.098000(X10) + 0.980000(X7)(XIO) (= 1

G7(X) a 9.8000(Xl)(X4) + 9.9000(Xl)(X4)(X7- 2.00) <(

08(X) - 0.9B0000(X1**-1.00)(X2)(X5) + 0.S90000(Xl**-1.00)(X2)(X5)(XB** 2.00) <= I

09(X) - 0.S70000(X2**-I.00)(X3)(X6) + 0.980000(X2**-l.00)(X3)(X6)(X9** 2.00) <-
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PRMBEM MO 21 [22], No. 18

MIMIMIZE

GCX) - (XS.4-1.00)

SUBJECTEII TO:

GI(X = - (X2)(X4'o-1.OO)(Xi1) +(X4*-1.0O)(X5 + O.OiOOOOCX4~-1.00)(X5)CXll)(XI3*-1.OO)

+ 0.010000(X4 -I1.OO)(XS)(Xl1) <= 1

G2(X) - - O.O1OOOO(X5)(X7--1.OO)(Xl1) +X7*-1.OO)(X8 <= 1

GM() a - 2100.OO(X3)(XS--l.OO) + 26.2000(XS**-1.OO)(XS) <= I

G4(X) - - 21.1300(X)(8.-1.O.) + (X8*-1.OO)(Xg) <= I

GSMX = (XI) + (X1)(XIO) + (Xl)(X1O)(Xl2) <= 1

GS(X) - X~.O (Xlw 10 )(XIOu-1.OO) + O.OO9000(XI**-1.OO)(X4)(X12**-1.OO)

+ O.OOSOOO(Xl.-1.0O)(X4) <= 1

GM7() m O.SSOOOO(Xl**-1.OO)(X2) + (XI**-1.OO)(X2)(Xll) +(Xl**-1.OO)(X2)(XiI)(Xl3) <= 1

GB(M = 94.OOOO(X4**-I.OO)(X7)(XIO**-1.OO) <= I

GSCX) - 93O1.OO(X2**-I.OO)(X3) <= I



PROBLEM ME) 22 122), No. 20.

120(X 0 .280000CX1)(X6..-1.00) + O.G732OO(x2)(XG*-1l.OO)

" 1.1200(X3)(XS..-1.OO) - 31.047.(XG**-I.Oo)

" OOO0?40O(X<5)X6.m-1,00)

SUBJECTED TO!

GI(X) - O.S3SS2S(X4t*-3.2S)tX8) (XIO.-1.D0)

- O.156564(X4*0 O.42)(X9'.'-1.OO)(XX1)

- O.1OOOOO(X1O)XI13*-1.00) <= I

122(X) a (X)X*-.0(7*100(S*10)X*-.0

- 0.312540(X4** O.251(XIO)CXI3.4-iG0) <= I

123(X) a(Xll**-1.0D)(X13) + 1.2501(X4** 1.2S)(X7)(X9)(XIO)(Xll**-1.Oo)

- 0.244660(X4** I.S7)(X7)(XIO) <= I

124(X) -(X5--l.0O)(X12) + 0.733980(X4*.1?(5*10O(?(1)x1

125<) 3808.87(X4**-1.25)(X?..-1.00)(XS**-1.00)(XIO*.-1.00)

+ 0.185706(X4** 0.42)(X9S*-1.00)(XII) <a I

126X) +XO(1'.- 0 O.2446c0<X4* O.67)(X9**-1.O0)(XlO)cX)c(Xl..-1.00)

" O.156270(X4** 0.25)(XIO. .0(12*:0,xx.-*o

" (XS)(X12**-1.00, + 11.OOOQ(XI2**-I.00)o<I3) + 1.5628rX4** O,PS)(X1()(X12**-1.00) (a .1

127(X) a 0,7339S0CX3*-.0o(X4** 0.67)(X7)(XlO)(XII) <= I

GB(X - G.312540(X2**-I.00)(X4.. 1.25)(X7)CX9)CXIO)(X12)tX13..-1.oO, <= I

123(X) a 0.020000(XS.* 2.a0)O<G**-l.00)cx7) <= I

1210(X - 0.007720(X4) <= 1

1211(X) * 6.180O(X4**-1.00) (- 1
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PROULENO023 [221, No. 19

INIIMIZE

GO(XW a 2.0425(XI'. 0.78) + 52.2500(X2) + 192.85(X2** 0.90)

+ 5.2500(X2** 3.00) + 61.4650(XSoe 0.47)

+ 0.017480(X3-. 1.33)(M4~-0.80) + 100.?0(X4** 0.55)

+ 3.7E-01O(X3*w 2.85)(M4*-1.70) + 0.009450(X5) + 1.IE-O1OCX4**-1.80)(x5u. 2.80)

+ 116.O0(XG) - 205.00(XG)(X7) - 278.00(X2** 3.00)(X7)

SUBJECTED) TO:

Gl(g) - 12S.40(X2**-3.00) + 105.00'XG'-1.O00 <= I

G2(X) - l03000.(X2** 3.00)(X3**-1.00)(X7)(X8**-I.00)

+ l.2E+00G(X3*-1.00)(X8**-I.00) <= 1

G3(X) = 4.6800(XI**-l.00)(X2** 3.00) + 6I.3000(Xl**-I.00)(X2** 2.00)

+ 160.50(XI**-1.00)(X2) <= I

G4(X) = 1.7900(X7) + 3.0200(X2*e 3.00)(XG-1.0O)iXM

+ 35.7000(XG**-I.00) <= 1

G5(X) = 0.001220(X3)(X4**-0.20)(X5**-0.80)(XB)

" 0.001670(X3** 0.40)(X4M-0.43)(X8)

" 3.6E-005(X3)(X4**-1.00)(X8) + 0.002000(X3)(X5-I.00)(X8)

" 0.004000(X8) <= I



- - --- ~ -113 -

PROBLEM NO 4 [ 51, No.

MINIMIZE

GOWX a (XlID + (X12) + (X13)

SUBJECTED TM:

G1(X) s 1.2626(XB)(XIl.-1.OO) - 1.2311(Xl)(X8)(Xl--1.OO) <I

G2(X) w 1.2G2G(X9)(XI2**-1.00) - I.23l1(X2)CXg)(Xl2**-1.OO) <= I

G3(X) a 1.262S(X1O)(X13'-I.0O) - 1.2311(X3)(XlO)(Xl3*-I.OO) <= I

G4(X) - O.034750(X2)(X5**-1.OO) + 0.975000(X2) - 0.OO8OO(X2.* 2.OO)(X5**-1.OO) (n 1

G5(X) = O.034750(X3)(XS**-I.OO) + 0.975000(X3) - Q.009750(X3** 2.OO)(Xs**-1.OO) <- 1

GG(X) w (Xl)(X5*-1.OO)(X7u--l.OO)(XB) + (X4)(XS**-1.OO) - l.1000(X4)(X5*.-I.OO)(X7*--1.OO)(X8) <=

G7(X) - O.002000(X2)(Xg) + O.0O2000CX5)(XS) + XG) + (X5) - 0.OaeI10odl)tXS)

- .002000(X6)(Xg) <= 1

G8(X) - (X2**-1.0O)(X3)(X9**-1.0O)(XIO) + (Xg**-I.OO)(XG) + 500.OO(Xg**-I.OO)

-(X9**-1.OO)(XIO) - 5O1.OO(X2*.-l.OO)(XG)(XSe*-1.OO) <= 1

GS(X = .900000(X2*w-I.OO) + O.002000(XlO) - O.0022004X2**-I.OO)(X3)(XlO) <=

ClO(X) 0.002000(X7) - O.002100(XB) <= 1

G1l(X) 0 .O3475O(Xl)(X4**-1.0O) + O.975000(Xl) - o..oogaoocXi** 2.00ogX4*a-1.OO) <- 1

G12(X) 0 .980000(X2)(X3*.-1.OO) <= 1

C13(X) (Xi)(X2**-1.OO) <= I

G14CX) - .100000(Xl*.-1.OO) <~= 1

Gl5(X) -(XI) <= 1

G16(X) O.IOOOOO(X2*0-1.OO) <- I

Gl7(X) w(X2) <= I

G18(X) = O.900000(X3**-1.OO) <= I
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G1SCX) w MX) <= I

GBOWX a 0.000100(X4.-1.00) .<- 1

G21(X) - iO.OOOO(X4) <= I

G22(X) a O.100000(XS*4-1.OO) <- 1

G23(X) a 1.I1I1(XS) <= I

C24(X) a O.100000(X6..-1.OO) <- I

G25(X) = 1.1I11(XS) <= I

G26(X) - 0.I0OOOOW.-I.OO) <a 1

G27(X) a 0.001000(X7) <= 1

G2B(X) = O.100000(X8.-1.00) <= 1

G29(X - O.0OIOOO(X8) <= I

G30(X) a 500.OO(XS**-1.OO) <- 1

G31(X) - O.OO1000(XS) <- I

G32(X) -O.100000CX10.-1.00) <= 1,

G33(X) a 0.002000(XI0) <= 1

G34(X) a (XII.-1.OO) <= 1

G35(X) a O.006667(X11) <= I

G36CX) =O.OOO100(XI2*.-1.OO) <=

MM7() a O.006667(X12) <= I

C38(X) a O.OOO100(X13.*-1.OO) <= 1

G39(X) - O.006667(X13) <= I
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PRwouIctnoiaeS (231, No. I1I

III ZE

GOMX - (X14) + (X13) + (X12) + (Xll) + (XI0)

SUBJECTED TM:

GI(X) - 0.002000(X9) + 0.002000(XS) <= 1

G2(X) = 0.01000(X7) + 0.O01000(X6) - 0.O01000(XS) <= 1

GM() - 0.002000(X5) +. 0.002000(X4) - 0.002000(X7) <= I

04(X) - 0.001400(X3) + 0.001400(X2) - 0.001400(XS) <= I

GSMX = O.003000(XI) - 0.003000(X3) <= 1

09(X - 0.010000(X9) + 0.001750(X14) - I.2E-005(XS)(Xl4) <= I

GM() - (X7)(X9*-1.OO) + O.001150(X13) - 0.000800(XG)(X9**-1.00)(X13) <=

08(X) - (X5)(X7**-I.0O) + 0.000364(XIP) - 0.00040OO(4(X*-1.OO)(XIe) <=

GSMX - (X3)(XS**-1.0O) + 0.000332(Xll) - 0.000200(2)(X5**-1.OO)(XI1) <= I

G10X) 700.00(X3**-1.0O) + O.000103(XlO) - O.OOO100(X1)(3E-1.00)(XIO) <=



116

PRCULEMNo 26 [151 No. 7

MINIMIZEI

GO(X) - 1.2M25012) + 1.2626(X13) + 1.25260(14) + 1.2626(X15)

+ 1.2626(XI6) - 1.2311CXi)(X12) - 1.2311(X2)(X13)

-1*2311(X3)(Xl4) - 1.2311(X4)(Xl5) - 1.2311(XS)(XIS)

SUBJECTED TO:

Gl(X) - O.034750(Xl)(X6'*-1.00) +0.8750000(X) - 0.009800(XI** 2.O0)(XS--.0O) I-

G2(X) a O.034750(X2)(7.-1.OO) + 0.975000(X2) - 0.009800(X2** 2.00)(X7*--1.0O) (w 1

CG3(X) a0.0347S0(X3)(XS**-1.0O) + 0.975000(X3) - 0.009800(X3-* 2.00)CXs*-1.00) (- 1

G4(X) aO.034750(X4)(XS'--1.00) +0.975000(X4) - 0.009800(X4*o 2.00)(XS*--1.00) <= I

G5(X) - 0.034750(N5)(XI0O-1.0O) + 0.975000(XS) - 0.0098000(5** 2.00)(XIO*.-1.00) <= 1

G() a (XG)(X7**-1.00) + (X1)(X7**-i.0)(X11.*-1.00)(Xl2) - (XG)(X7**-1.00)(Xll**-1.00)(X12) <a 1

G7(X) w (X7)(X80-1.00) + 0.002000(X7)(X8**-1.00)(X12)

+ 0.O02000(X2)(X8**-1.00)(X13) - 0.002000(X13) - 0.00200O(X1)(X8**-1.00)(X12) <= I

c8cX) - (X8) + 0.002000oXe(Xl3) +0.002000(X3)(Xl4) + (X9) - 0.002100(X2)(Xl3)

- O.002100(XS)(X14) <= 1

GS(X) - (X3.'-1.OO)(X9) +(X3'.-1.00)(X4)(X14**-1.00)(XIS) + 500.00(X3*.-1.00)(XIO)(X140-I.0O)

- 501.O0(X3'o-1.00)(XS)(X14*'-1.00)

- (X3**-i.00)(XS)(X14**-1.O00(XIS) <= I

GlO(X) a 0.990000(X4*#-1.00)(XS)(X15..-1.00)(XIG)

+ O.9S0000(X4*-1.00)(XIO) + 499.0O(X15**-1.00)

-1.1000(X15"-1.00)(XIS) - 501.00(X4.*-1.00)(XIO)(X15'*-1.OO) (< I

G1I(X) *0.8g0000(X4**-1.00) + 0.002000(XlG) - 0.002200(X4**-1.i0O)(<5'(Xtg) <= I

G12(X) 0 .002000(XII) - 0.002000(X12) <- I

G13(X) u(Xl1l*-1.00)(X12) (m I

G14(X) -(X4)(X5--i.00) <= I



CAM(X a (X3)(X4*-1.) (w 1 

1

G16(X * C2)(X3-1.0O) (a I*

017(X - (X1)(X2-1.00) 1a

G18(X = (XB)(XIO~i-1.00) (-I

G19(X) - (Xg)(XS*i-1.00) <- I

020(X) w 1.1111(X3) = 1

021(X) a 1.1111(W4 <a 1

G22(X = 0.900000(XS*-1.O0) <- I

02(X M 10.0000(X6) <- I

024(X) = 0.100000(X7.-1.00) <- 1

025(X) - 500.0O(X14..-1.OO) <= 1

026(X) - 500.00(X15.-1.00) <= 1

G27(X) - 1.OE-O06(X16*.-1.OO) <- I
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PROLEM 1-1

SOLUTION:

C 8.1301v 0.6153689 0.564042, 5.63G2)

STARTING POINTS

NO I = ( 8.1057. 0.628351. 0.3643819 5.6574)

NO 2 - ( 6.2548, 0.7196599 0.427716o 5.6274)

NO 3 = ( 6.2207, 0.649534, 0.415851, 5.6541)

NO 4 = ( 6.5015, 0.573547o 0.400944p 5.6468)

NO 5 - ( 5.6104, 0.550418p 0.476718t 5.6167)

NO 6 = ( 8.1632, 0.6631069 0.366412, 5.6526)

NO 7 a ( 5.4532. 0.659151, 0.494682, 5.6462)

NO 8 - ( 5.7133, 0.645669, 0.457506p 5.6611)

NO 9 = ( 6.6075. 0.531670t 0.402689 5.6361)

NO 10 - ( 6.5931p 0.734362, 0.413470v 5.6514)



119

PROBLE Io 1-2

SOLUTIOK t

( 8.1301, 0.9153S8, 0.5S4042, 5.6362)

STARTING POINTS :

NO I - ( 7.7815, 0.634553, 0.522380, 6.6402)

NO 2 a ( 7.7292, 0.5S0S41, 0.477555, 6.2649)

rO 3 - ( 7.3389, 0.640407t 0.640926, 6.2081)

NO 4 - ( 7.2063, 0.668051. 0.616745, 6.2281)

MO 5 - ( 7.7566, 0.560861, 0.4662799 5.6270)

NO 6 - C 7.4947. 0.6960349 0.524641, 6.2492)

NO 7 - ( 7.7469. 0.670657c 0.497031*.6.3400) . . ..

NO 8 = ( 7.0609. 0.526088, 0.559544v 5.8610)

NO 9 = ( 7.1573, 0.560656, 0.522456, 6.2624)

NO 10 = ( 7.7294, 0.685576, 0.540562, 6.4877)
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PROBLEM MO 2-1

SOLUTIOM 1

( 52.6009t 1.1869, 24.7980, 0.408687)

STARTIMI POINTS

M1 1 = ( 68.2065, 1.6134# 29.0510. 0.384794)

N1O 2 - ( 41.6520, 1.5211, 18.7360, 0.30241?)

M1O 3 a ( 39.9813, 1.4775, 29.3653, 0.280381)

7O 4 = ( 38.4519, 1.5797v 25.2471. 0.302295)

HO 5 a ( 42.3744, 1.5675, 32.9390P 0.392482)

MG0 6 a ( 46.9631, 1.2794v 20.2188. 0.590697)

NO 7 = ( 62.9266, 1.5409P 22.0829. 0.544536)

iO 8 = ( 76.806G. 1.22919 28.2350, 0.463155)

MO 9 - ( 39.8044, 1.3076, 33.2485. 0.512354)

7O 10 = ( 37.6591, 1.44099 30.59079 0.515989)

oI
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PROBLEM NO 2-2

SOLUTION:

C 52.6009, 1.1869, 24.7980. 0.408S87)

STARTIIG POINTS :

NO I = ( 58.8431. 1.3575, 2S.4992. 0.399130)

NO 2 = ( 48.2213. 1.3206, 22.3732, 0.366179)

NO 3 = ( 47.5531# 1.3031, 26.6251# 0.357365)

NO 4 = ( 46.9413, 1.3440t 24.9776, 0.366130)

NO 5 = ( 48.5103, 1.3391v 28.0544, 0.402205)

NO 6 - ( 50.3458, 1.2239, 22.9663, 0.481491)

NO 7 = ( 56.7312, 1.32859 23.7119, 0.463027)

11O 8 - ( 62.2832, 1.2038p 26.1728, 0.430474)

MO 9 = ( 47.4823, 1.2352, 28.1782, 0.450154)

NO 10 = ( 46.6242, 1.2885, 27.1150, 0.451609)
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PROILEM NO 3-1

-SOLUTION I

C 0.000100o 0.9999739 1.9999. 1.0001)

STARTING POINTS

NO I a ( 0.000125t 0.926877, 1.2426# 1.1960)

N1O 2 - ( 0.000111. 1.0976, 1.0764, 0.877413)

NO 3 = ( 0.000113, 0.973347, 1.6504. 0.550537)

NtO 4 a ( 0.000122. 0.724077, 1.5599, 0.722890)

110 5 a C 0.000124, 0.948827, 1.4740, 0.656020)

NO s a ( 0.000137. 1.1670, 1.4386. 0.904726)

NO 7 a ( 0.000125. 1.3477, 1.6913, 3.794910)

NO 8 = ( 0.000119. 1.2882p 1.2834, 0.968813)

NO 9 - ( 0.000127, 1.3852t 1.6942, 1.0519)

110 10 w ( 0.000127# 1.3504, 1.9215, 0.773125)
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PROULEM1 NO 3-2

SOLUTION :

( 0.000100. 0.993973, 1.9398, 1.0001)

STARTING POINTS :

NO I - ( 0.000110, 0.970735p 1.6970 1.0785)

NO 2 a ( 0.000104, 1.0390, 1.6305, 0.951014)

NO 3 = ( 0.000105, 0.989323 1.8601, 0.820264)

NO 4 a ( 0.000109, 0.889615# 1.8239, 0.883205)

NO 5 - ( 0.000110, 0.379515, 1.7896, 0.862457)

NO G = ( 0.000115. 1.OGGS, 1.7754v 0.961940)

NO 7 a ( 0.000110, 1.1391, 1.8765, 0.918013)

NO 8 a ( 0.00010P, 1.1153, 1.7133v 0.987574)

NO 9 a ( 0.000111, 1.1540, 1.8776F 1.0208)

NO 10 - ( 0.000111, 1.1401, 1.9686, 0.909301)
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PROBLEM MO 5-I

SOLUTION z

( 78.0000. 33.0000, 29.9957, 45.0000t 36.7753)

STARTING POINTS

NO I - ( 100.50, 35.4915, 38.8361v 37.8710, 28.6243)

NO 2 - ( 82.0295, 33.3329# 37.8173, 28.0470# 29.6721)

NO 3 - ( 86.8346, 37.0309 41.5272t 32.95361 38.7201)

NO 4 = ( 90.9677, 40.5841, 40.0037, 35.6493t 32.2644)

NO 5 = ( 89.7803, 40.49199 40.44579 38.4262, 30.1009)

NO G = ( 99.5187. 33.3920, 37.94939 31.6024, 41. '494)

rO 7 = ( 78.0605. 33.3289, 39.6590. 29.1210, 31.3703)

MO 8 = ( 98.0024, 35.54759 39.5616. 32.8626, 34.4998)

MO 9 = ( 78.4972, 35.3481p 43.26239 36.4196, 3P.5942)

IO 10 = ( 86.1427, 38.1545o 39.1833v 31.9787, 29.68G5)
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PROBLEM MO 5-2

SOLUTION

( 78.0000, 33.0000, 29.9957, 45.0000, 36.7753)

STARTING POINTS

MO I = ( 87.0003, 33.99S6, 33.5319, 42.1484, 33.5149)

NO 2 = ( 79.6118, 33.1332, 33.1244, 38.2188, 33.9340)

NO 3 = ( 81.5339, 34.6123, 34.6083, 40.1814, 37.5532)

1O 4 = ( 82.7121, 35.9968, 34.17579 42.3705, 34.1055)

NO 5 = ( 86.6075, 33.1568, 33.1772, 39.G410, 38.5649)

NO 6 - ( 78.0242, 33.1316, 33.8610, 38.6484, 34.6133)

MO 7 = ( 86.0010, 34.0190, 33.8221, 40.1451, 35.8651)

MO 8 - ( 79.7949, 35.8989, 34.0212, 42.9372, 32.8043)

NO 9 = ( 78.1989, 33.9393, 35.3024, 41.5678, 35.1029)

NO 10 = ( 88.5190. 34.9989. 31.4040, 40.5922, 33.8459)
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PROBLEM NO 6-1

SOLUTION

( 1.5360, 1.OE-008, 3.0000, 0.400000. 6.6670o 8.0000, 149.51)

STARTING POINTS

MO 1 = ( 1.5882, 8.9E-009, 3.0337, 0.401476t 6.5773, 7.9827t 108.29)

NO 2 = ( 1.5719, 7.8E-009, 3.0176, 0.403252, 6.4190, 7.8101, 103.08)

NO 3 = ( 1.5856, 1.OE-008, 3.0276, 0.402255s ;.3897, 7.7998, 98.1192)

NO 4 - ( 1.5758, 7.2E-009, 3.0178, 0.403329, 6.5429, 7.8943, 105.18)

NO 5 = ( 1.5731, 7.CE-009, 3.0286, 0.402185o G.4691, 7.8173, 103.60)

NO 6 = ( I.6752, 7.9E-009, 3.0617# 0.404248p 6.36009 7.8975, 115.14)

NO 7 = ( 1.6192, 8.8E-009, 3.1592, 0.401502, 6.5086, 7.8824, 103.69)

NO 8 = ( 1.6623, 7.4E-009, 3.0355, 0.4023029 6.2152, 7.7183, 123.27)

NO 9 = ( 1.6117, G.9E-009. 3.0452, 0.405690, 6.3023, 7.9221, 115.60)

NO 10 = ( 1.5835, 7.7E-009, 3.0882, 0.401267, G.5345, 7,8943, 103.14)

Ii
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PROBLEM rO 6-2

SOLUTION:

( 1.5360, 1.0E-008, 3.0000s 0.400000, 6.6670, 8.0000v 149.51)

STARTING POINTS

NO I a ( 1.5569, 8.8E-009, 3.0135, 0.400590t 6.6311# 7.9931o 133.02)

NO 2 = ( 1.5504p 9.IE-009, 3.0071. 0.401301, G.5678, 7.9240, 130.94)

NO 3 = ( 1.5558, 1.OE-008, 3.0110, 0.400902, 6.5561, 7.9199, 128.95)

NO 4 = ( 1.5519, 8.SE-009, 3.0071, 0.401332, 6.6173, 7.9577, 131.78)

NO 5 = ( 1.5508, 9.OE-009, 3.0114t 0.400874, 6.5878, 7.9269, 131.14)

O 6 ( 1.5917, 9.2E-009, 3.0247o 0.401699. 6.5442, 7.9590, 135.76)

NO 7 = ( 1.5693, 9.5E-009, 3.0637, 0.400601, 6.60379 7.9530p 131.18)

NO 8 = ( 1.5865, 9.OE-009, 3.0142, 0.400921, 6.4863, 7.8873. 139.01)

NO 9 = ( 1.5663, 8.8E-009, 3.0181, 0.402276# 6.5211, 7.9688, 135.94)

MO 10 = ( 1.5550, 9.IE-009, 3.0353, 0.400507, 6.6140, 7.9577, 130.96)
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PROBLEM NO 7-1

SOLUTION I

C 0.245485, 6.1970, 8.2726, 0.245488, 1.8E+008. 21.3393o 27.7408)

STARTING POINTS :

NO I = C 0.283507p S.8854, 9.2618p 0.287684, 1.4E+008, 23.95259 34.8307)

NO 2 - ( 0.282461, 5.93459 9.0908, 0.320009v 1.8E+008, 21.7391, 33.1972)

NO 3 a ( 0.275239, 7.4562. 9.08139 0.278507v 1.4E+008, 21.4388t 35.9301)

NO 4 = ( 0.286742, 6.2486, 9.2512p 0.301732v 1.5E+008° 23.2965, 34.4532)

NO 5 = ( 0.301457t 7.0203, 8.0919, 0.304828, 1.6E+008, 18.2918, 32.9435)

NO 6 - ( 0.299984, 7.1783o 8.1551, 0.301242, 1.5E+008, 22.0897. 33.0936)

NO 7 - ( 0.294854. 6.4566, 9.5608, 0.299750p 1.8E+008# 22.7052, 35.0714)

NO 8 - ( 0.290556, 5.6665, 9.24539 0.300622, 1.5E+008, 24.4893p 32.5990)

NO 9 - ( 0.312850v 5.9828, 8.2076o 0.316598v 1.7E+008# 19.1277, 28.1352)

NO 10 a ( 0.275709, 7.6027, 8.0918, 0.311877t 1.7E+008# 18.5721, 32.4813)

I
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PROLEII NO 7-2

SOLUTION

( 0.245485s 6.1970, 8.2726, 0.245488, 1.8E+008, 21.3393, 27.7408)

STARTING POINTS :

NO I = ( 0.261432, 6.0822, 8.9636, 0.265791, 1.7E+008, 22.2948, 30.6096)

NO 2 = ( 0.261337, 6.8330, 8.2467, 0.262402t 1.7E+008, 20.9365, 30.3124)

NO 3 a ( 0.254943, 6.5314, 8.6373, 0.270589, 1.8E+008, 21.7892, 30.7604)

HO 4 = ( 0.263330, 6.1633, 8.3471, 0.274898, 1.8E+008, 21.4009, 30.2702)

NO 5 = ( 0.267137, 6.3108, 8.4364, 0.269286, 1.8E+008, 21.9383, 30.9559)

NO S - ( 0.240239, 6.3362, 8.7328, 0.271734, 1.8E+008, 22.7511, 30.5737)

NO 7 = ( 0.261711, 6.3810, 8.5919, 0.2G6452, 1.7E+008, 22.9564, 30.0083)

MC 8 = ( 0.264054, 5.9783, 8.7974# 0.268570# 1.8E+008, 22.2546, 30.6400)

NO 9 = ( 0.257028, 6.0372, 8.6365, 0.273977, 1.8E+008, 22.2574, 30.2022)
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PROILEI NO 8-2

SOLUTION

( 1699.01. 53.3589, 3031.94p 90.0714, 95.0000v 10.5458, 153.53)

STARTING POINTS

NO 1 a ( 1530.54. 52.6886, 2708.00, 90.1608t 95.0000o 11.5003, 153.42)

NO 2 - ( 1538.12v 55.7571, 2702.05. 90.1291. 95.0000p 11.4783, 153.38)
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PROBLEM NO 9-1

SOLUTION

6 6.4810, 2.2175, 0.666969, 0.595832, 5.9300, 5.5271, 1.0092t 0.400467)

STARTING POINTS

NO I a ( 5.0175t 2.1079, 0.799084, 0.5022019 6.0159, 6.6925, 0.947077, 0.388499)

NO 2 = ( 5.1677, 2.0075, 0.679073, 0.5152449 6.0351, 6.7144, 0.988460, 0.302427)

NO 3 = ( 5.0117. 1.7069v 0.658526, 0.633554, 5.9508, 6.2398, 0.814804, 0.384846)

NO 4 = ( 4.3080, 1.97209 0.598054p 0.546640, 6.0914, 5.8912, 1.0248, 0.405226)

NO 5 = ( 5.4415, 2.0320p 0.796953. 0.623089p 6.0175, 6.1605. 0.788410, 0.317377)

NO 6 = ( 5.5488, 2.5601v 0.629372, 0.7177219 5.8717, 6.5761, 0.856932, 0.476052)

NO 7 = ( 4.8749, 2.1847, 0.814495, 0.516258, 6.0583, 6.4503. 0.924717, 0.377815,

NO 8 a ( 5.5205, 1.8535, 0.533308p 0.577560, 6.0660, 6.4712, 0.797346, 0.376559)

NO 9 = ( 6.2818. 2.2707, 0.734797t 0.531583, 6.0387, 7.0190, 0.814931, 0.340567)

NO 10 = ( 4.8394, 1.89529 0.608771o 0.4490909 6.0878, 5.9106, 0.976795, 0.465350)
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PROILE NE t 9-2

SOLUTION :

( 6.4810, 2.2175, 0.G6969 0.595632, 5.9300. 5.5271, 1.0092, 0.400467)

STARTING POINTS

NO I = ( 5.9530, 2.1752, 0.717996, 0.559669, 6.3725o 5.9772, 1.0434, 0.395845)

NO 2 = ( 5.9900, 2.3890. 0.7057G39 0.53G767, 6.0274Y S.9755, 1.0128, 0.380027)

NO 3 = ( 6.3227, 2.11319 0.605508t 0.59531G, 6.0218, 6.0899, 0.956342, 0.433144)

NO 4 = ( 5.8526, 1.9803, 0.663048P 0.613354v G.2914, 5.8582, 0.940396t 0.393211)

NO 5 = ( 5.9683, 2.1781, 0.616980, 0.546914, G.3S18, 5.5302, 0.946361, 0.369038)

NO 6 = ( 6.3375. 2.1392, 0.721875, 0.6073469 6.46289 5.7947p 0.941621, 0.365370)

NO 7 = ( 5.8909s 2.2C32, 0.722532, 0.565862t 6.4523v 5.8748# 1.0307# 0.391936)

NO 8 = ( 6.3208, 2.0758v 0.614925, 0.588718v 6.4829. 5.8947v 0.940173, 0.391158)

NO 9 = ( 5.9226, 2.1770v 0.705116, 0.560157, 6.0754, 6.0701t 1.02369 0.432864)

NO 10 - ( 5.9127, 2.1614p 0.659961, 0.520887# 6.1542t 5.9899, 1.0288, 0.398622)
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PROiLEI No 10-I

SOLUTION

C 574.80. 1364.79. 5109.67, 181.64, 295.61. 218.36, 2G.03, 355.61)

STARTING POINTS

'Ot 1 m ( 752.99, 1505.55, 6004.25# 176.15, 293.34, 213.30, 280.07. 386.04)

NO 2 - ( ?22.53, 1608.63, 6404.44, 177.75, 294.16t 215.74, 283.48, 392.55)

riO 3 = ( 653.54, 1642.10, G933.35. 177.08, 289.47p 218.23, 287.37, 389.26)

1O 4 - ( 762.12. 1477.24, 5676.54, 178.51. 286.90v 212.83o 287.83, 380.93)

riO 5 w ( 718.71, 1682.31. 5665.419 183.33. 287.65, 215.74. 277.43 384.99)

M10 6 = ( 607.48, 1771.52, 6480.63, 180.75v 296.77, 213.89s 279.23o 393.08)

110 7 = C 721.04, 1665.43, 5920.24, 184.57, 289.94. 211.37 285.03, 389.68)

NO 8 = ( 574.56, 1488.15. 7223.82, 174.92, 285.22. 219.26, 281.65. 372.07)

NO 9 = ( 713.87. 1604.23, 6529.52, 181.80. 293.31, 215.04, 280.98, 387.37)

NO 10 = ( 626.34. 1832.32. 5447.06, 176.70, 297.20t 218.86. 277.06. 396.77)
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PROILEIM NO 10-2

SOLUTION

C 574.80. 1384.79, 5109.67, 181.64, 295.61, 218.36 288.03 395.61)

STARTING POINTS

NO I = ( 639.47, 1493.87. 5419.32 172.71. 291.18. 227.289 281.249 389.69)

NO 2 - ( 576.88, 1520.40. 5880.299 179.19, 295.23, 218.76, 280.89, 392.41)

NO 3 - ( 670.75, 1351.61. 5478.78, 177.61, 291.76 217.86, 285.41, 387.53)
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PROBILEII NO 11-1

SOLUTION s

( 30.0000, 20.0000v 1.000000. 0.416339. 8.04359 5.22929 7.6894# 5.5498)

STARTING POINTS

NO I u ( 29.9046, 20.4201v 0.813318, 0.376984. 7.5564, 6.51769 7.8453, 6.5153)

NO 2 m ( 29.9889, 20.1459v 0.706576P 0.356304# 7.4495, 6.0150o 7.9648t 6.0155)

rio 3 a ( 29.8050, 20.66389 0.780375o 0.336272, 7.8523v 6.1912t 7.9352 6.3889)

NO 4 a ( 29.7289. 20.6271, 0.831167, 0.362491, 8.73559 6.6466t 7.9139, 6.1502)

NO 5 a C 29.9196, 20.0826. 0.747964. 0.325960, 7.5908, 5.7924, 7.9065. 6.5143)

NO 6 m C 29.9138, 20.3698. 0.784867, 0.281819v 8.9610, 5.8803 7.7622, 6.0680)

NO 7 - ( 29.5380, 20.5802p 0.755409o 0.5177509 7.3934, 6.0694. 7.7616. 6.0825)

NO 8 n ( 29.7658. 20.4716, 0.843403, 0.358561# 7.7600, 6.4206, 7.9081v 6.6864)

NO 9 a ( 29.7998. 20.3500, 0.855039, 0.327134, 9.84119 5.6459, 7.8052, 6.8423)

NO 10 a ( 29.8622, 20.5159, 0.977180s 0.332574s 9.4592, 6.1633, 7.8601, G.9010)



1 36

PROBLEMl NO 11-2

SOLUTION :

C 30.00009 20.00009 1.000000. 0.416338, 8.0435, 5.2292p 7.6894, 5.5498)

STARTIMC POINTS

110 1 = ( 28.9203, 20.1512, 0.910265, 0.383625, 7.9654, 5.6222, 7.7898, 5.8926)

NO 2 = ( 29.9094, 20.1417t 0.945025, 0.410216, 7.6388, 5.6910, 7.6786, 6.0923)

NO 3 a ( 29.8662, 20.2234, 0.917054t 0.416298, 7.5987, 5.3888, 7.6858 6.1646)

NO 4 = ( 29.9041, 20.2446, 0.931523p 0.424867, 8.0743t 5.8155# 7.7883, 5.8727)

NO 5 = ( 29.9396, 20.1162, 0.891552, 0.394S34, 7.9113, 5.2899o 7.7587, 6.0457)

NO 6 a ( 29.9135t 20.0894. 0.902909p 0.362024, 3.37459 5.4479, 7.69469 5.6693)

NO 7 a ( 29.8816, 20.1310v 0.946223, 0.376730p 8.2800, 5.7197t 7.7494, 5.9177)

NO 8 - ( 29.8885p 20.1157v 0.886221, 0.417565, 8.3800, 5.4367, 7.7190, 5.9910)

NO 9 = ( 29.9241, 20.0952v 0.925786, 0.442552, 7.6010. 5.6279# 7.7067, 6.0058)

NO 10 = ( 29.8997, 20.1858, 0.935117v 0.434939, 8.8731, 5.4002, 7.6871, 6.0942)
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PROBLEM HO 12-1

SOLUTION S

( 17.8264, 1.0E-008, 1.2323, 3.2032v 40.00009 0.987081, 24.6453p 6.6670P 8.0000)

STARTING POINTS

MO I = 17.7765, 8.8E-009, 1.6432o 3.0061o 40.0157, 0.960220, 24.3516, 6.4257, 7.8299)
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PROBLEM NO 12-2

SOLUTION :

C 17.8264, 1.OE-008, 1.2323, 3.2032, 40.0000, 0.987081, 24.6453, 6.G670, 8.0000)

STARTING POINTS :

iO I = ( 19.2499, 1.IE-008, 1.34G7, 3.0886, 40.0116, 0.995226, 24.8031v G.6263, 7.9637)

NO 2 = ( 19.4109, 9.1E-009, 1.3051, 3.0154, 40.1442, 0.979916, 24.8986. 6.5824, 7.9309)

NO 3 = ( 19.5246, 1.OE-008, 1.3417v 3.0069p 40.2178, 0.987671, 24.6850, 6.G064, 7.9412)

NO 4 = ( 19.6469, 9.9E-009, 1.3314, 3.0161p 40.0262# 0°996480, 24.6479# 6.57159 7.9927)

NO 5 = ( 19.6378, 9.5E-009, 1.3041, 3.00499 40.6374, 0.985578 25.0366, 6.6337, 7.9990)

NO 6 = ( 19.9444, 9.GE-009, 1.2255, 3.01159 40.3502t 0.982768, 24.3216, 6.5634, 7.9169)

NO 7 = ( 19.8493, 9.7E-009, 1.3270. 3.0711t 40.1777, 0.984030, 24.4706, 6.6130, 7.9694)

NO 8 w ( 19.4276, I.OE-008, 1.3514, 3.0249, 40.1484, 0.990211, 24.6132, 6.6059, 7.9859)

NO 9 = ( 18.5611. 1.1E-OOa, 1.34009 3.0880, 40.3801. 0.977291, 24.7013, 6.5662, 7.9886)

NIO 10 = ( 19.7258, 9.0E-009, 1.2382, 3.0209, 40.1159, 0.980227, 24.3241, 6.6254, 7.9711)
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PROBLEM NO 13-1

SOLUTION t

57.6923, 34.1476# 57.6923# 1.0500, 104.19 46.5010. 32.69239 46.5010, 30.5203)

STARTING POINTS

NO 1 = ( 58.9067, 32.9226, 56.5912 1.3583, 87.7983, 45.6421, 32.0687# 47.9642, 31.5034)

NO 2 = ( 58.5523. 34.4512p 57.1795p 1.1811, 70.3982, 45.01639 32.5326s 48.2006 31.0288)

NO 3 = ( 59.8054, 36.08389 57.68029 1.3405, 94.0966p 43.6916, 32.4197 47.1088# 31.4522)

NO 4 = ( 59.8708, 33.1053. 56.4510. 1.3407, 84.0568. 45.3695, 33.3511o 46.7462t 31.1486)

NO 5 = ( 58.9144, 33.5194, 57.3664, 1.3662, 84.3079, 45.7239, 32.6248 46.6473# 31.3681)

NO 6 = ( 57.2811. 33.8340, 56.60Z79 1.3570, 84.8876, 44.7901t 31.7143, 45.5124, 30.3585)

NO 7 = ( 59.832, 33.8312, 56.9527 1.3877v 93.8653, 45.1650. 31.3129, 46.4069 30.9239)

NO 8 = ( 59.3187. 35.2483 59.5257, 1.2109, 74.1607, 47.8050, 31.8593, 48.0410, 31.002S)

NO 9 = ( 55.7180, 33.9708, 57.7023, 1.4078, 99.7801, 46.0123, 31.7312 47.9576, 31.1371)

NO 10 = ( 58.1089, 33.1897s 55.9499, 1.3361. 83.0471, 44.8339, 31.9253o 45.6980, 30.8671)
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PROBLEM NO 13-2

SOLUTION

( 57.6923, 34.1476, 57.6923, 1.0500, 104.199 46.5010, 32.6923, 46.5010# 30.5203)

STARTING POINTS

NO 1 = ( 56.6722, 35.7528, 58.4369, 1.1143, 94.1526, 46.0833, 32.0307, 48.0737, 30.7377)

NO 2 = ( 57.8992, 35.6660, 58.1578, 1.1807# 103.21. 45.7836o 32,5498t 48.5147, 30.8722)

NO 3 = ( 56.2808. 36.050G, 58.4706, 1.1032, 94.9450, 46.0082, 32.0995, 48.3862 30.6385)

NO 4 = ( 57.2510, 35.4277, 58.3429, 1.1429, 100.82t 45.7911, 31.7561# 47.66689 31.3719)

NO 5 = ( 57.5982, 33.8818, 58.7557, 1.1403, 95.7G59, 47.2409, 32.1105, 48.6787, 30.8854)

NO 6 = ( 57.3298, 34.14929 57.El11, 1.1715, 96.0602, 4G.3063, 32.4609, 48.2191t 30.7998)

NO 7 = ( 58.8491, 35.2363, 58.9637, 1.1575, 99.0499, 45.7137, 32.8700, 47.3196, 30.9586)

NO 8 = ( 57.7223, 34.4269, 57.8394, 1.2015, 102.84, 46.2782, 32.7084, 47.2173, 30.8242)

NO 9 = ( 57.9579, 33.9261, 57.7951, 1.1566, 93.5229, 46.1033, 32.7807, 46.8569, 30.8175)

NO 10 = ( 57.3232, 34.2993, 58.4439, 1.1511, 94.5383, 47.0958o 32.4643, 48.2202, 30.7881)
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PROILEI NO 14-1

SOLUTION

C11.7660. 0.371346. 0.3423129 12.27349 14.23449 0.4000009 38.3594t 0.719656. 0.130695)

STARTING POINTS

NO 1 a ( 11.60319 0.2729739 0.4007669 12.5513v 14.3238o 0.41813S@ 41.53099 0.732878# 0.137098)

NO 2 a ( 11.5949. 0.303689# 0.377265. 11.9999, 13.7886. 0.425037, 45.6996. 0.757215t 0.136657)

NO 3 a ( 11.5315o 0.2932689 0.407190. 12.4605. 13.8009t 0.405423t 41.2724t 0.766394, 0.138342)

NO 4 = ( 11.8989, 0.273110o 0.3G2774, 12.3646, 13.7709. 0.403851, 46.4365, 0.744475. 0.134899)

NO 5 = ( 11.8169. 0.346776. 0.4183039 12.14949 13.79729 0.416651. 47.8849v 0.738932t 0.133668)

NO 6 a ( 11.6754o 0.256354# 0.3534879 12.1755p 14.0045v 0.4118e0. 44.8922t 0.731053. 0.133370)

NO 7 a ( 11.6030, 0.317193. 0.4062459 12.2783, 14.5157. 0.40038S, 48.9057p 0.728756v 0.132975)

NO 8 -C 11.8438. 0.301142p 0.373331. 12.24119 14.0348p 0.406035, 49.7014. 0.736292. 0.132025)

NO 9 a ( 11.80919 0.308244v 0.4212269 12.5948t 14.26129 0.4000019 46.5934t 0.721742p 0.134824)

NO 10 = ( 11.8944. 0.274492, 0.407973t 12.36169 13.9607p 0.407146o 43.94029 0.737737. 0.133902)
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PRO LEM NO 14-2

SOLUTION

C 11.7660, 0.371346, 0.342312t 12.27349 14.2344, 0.400000s 38.3594v 0.719656, 0.130695)

STARTING POINTS

NO I = ( 11.8202, 0.331271, 0.3506599 12.3106# 14.10109 0.401612 41.6544, 0.729780, 0.132410)

NO 2 = ( 11.6267, 0.3644699 0.385829, 12.23GG, 14.3226. 0.404812, 40.27299 0.725684, 0.132428)

NO 3 = ( 11.6222. 0.349662, 0.350410, 12.2958, 14.3G149 0.402G129 43.1436t 0.722G229 0.132648)

NO 4 = ( 11.6630t 0.346663, 0.361218, 12.3157, 14.3286# 0.400536, 42.0408o 0.7337169 0.133581)

VI



143 
7

PROBLEM NO 15-1

SOLUTION

C 0.724310, 0.723675, 0.724185, 0.2575779 0.177137, 0.121792t 0.205240, 0.141145, 0.097045,

0 .298522)

STARTING POINTS

NO 1 a ( 0.885143, 0.898727, 0.701887, 0.251369o 0173597, 0.125460, 0.2033519 0.144152v 0.107233,

0.306945)

NO 2 - ( 0.847967, 0.925640, 0.825330, 0.253377p 0.171897, 0.121671, 0.202682, 0.141248, 0.102269,

0.302391)

NO 3 - ( 0.811277. 0.868714, 0.868784, 0.252688# 0.173085v 0.120379, 0.210527o 0.140165, 0.113611,

0.306958)

MO 4 a ( 0.782414, 0.866258, 0.$26057, 0.254303, 0.180736, 0.118876, 0.211617, 0.1443619 0.096973,

0.299525)

NO 5 = C 0.856169, 0.876012, 0.880297, 0.253798, 0.180010, 0.123228# 0.204776, 0.1446329 0.103387,

0. 304918)

O6 = 0.826233, 0.828637, 0.935552, 0.249805, 0.174911, 0.121709, 0.210384, 0.140593, 0.097922,

0.302780)

NO 7 = C 0.939807, 0.824469, 0.813875, 0.253083, 0.176404, 0.123863, 0.204196, 0.145098t 0.102201v

0.306165)

MO 8 = C 0.925514, 0.736728, 0.885658, 0.251061, 0.174433, 0.124138v 0.201883, 0.142942, 0.099368,

0.301411)

NO 9 ( ( 0.867507, 0.896304, 0.852750, 0.258599, 0.177316t 0.122037, 0.210377, 0.143764o 0.102638,

0.302967)

NO 10 - ( 0.847150, 0.879610, 0.878932, 0.253062, 0.174458, 0.119477, 0.209721. 0.139915p 0.098055,

0.310303)

• .. . ' " - - . . . . .. .. . .. ll I " - " Iai l inml I II . .. m " '
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PRO LEM NO 15-2

SOLUTION

C 0.724310t 0.723675, 0.724185. 0.257577, 0.177137v 0.121792, 0.205240t 0.141145, 0.097045,

0.298522)

STARTING POINTS

NO I = ( 0.800602, 0.795195, 0.746508. 0.249655t 0.173970v 0.112559, 0.204009v 0.140455, 0.101273v

0.302040)

f 0 2 - ( 0.79816. 0.798868, 0.747273p 0.241045s 0.166837, 0.120657, 0.20634, 0.141999t 0.100567v

0.301148)

iO 3 = ( 0.810508, 0.775783, 0.777489, 0.250296, 0.165424# 0.116225. 0.204962, 0.142273v 0.098811o

0.301150)

NO 4 = ( 0.794393, 0.810902o 0.652504, 0.258428, 0.174113, 0.123130, 0.206741@ 0.140477# 0.101210v

0.302097)

NO 5 = ( 0.821059, 0.789757t 0.766432, 0.253334v 0.172824v 0.114974, 0.207392, 0.142241f 0.098591,

0.301217)

NO 6 = ( 0.808189, 0.775342, 0.746325t 0.238810o 0.170457, 0.114329, 0.206155, 0.141290. 0.099063,

0.300627)

NO 7 m ( 0.804499v 0.757050, 0.790558, 0.257872, 0.173470, 0.111330, 0.205957, 0.142077f 0.099405v

0.30203G)

NO 8 a ( 0.806478, 0.806894, 0.743752, 0.239014, 0.173142, 0.117592# 0.204745, 0.140699, 0.097075v

0.300608)

NO 9 = ( 0.801489, 0.810308, 0.6755G3, 0.2550S7. 0.169238, 0.118907, 0.204216, 0.141145. 0.101231o

0.302012)

NO 10 C 0.807950o 0.739402, 0.812145, 0.250976, 0.175483s 0.120921, 0.204556. 0.140637. 0.1032EG.

0.302986)

11
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PROBLEI NO 16-1

S1LUTIOiN s

C2.09529 12.09529 7.9048, 0.459381, 0.357935, 0.4547479 10.4547t 1.6405, 1.1975,

0.100000)

STARTING POINTS

IO I = ( 2.1540. 11.8235, 8.0440, 0.540846, 0.339613, 0.516851, 10.1317p 1.6711p 1.5143,

0.099980)

10 2 u ( 2.1645, 11.9773s ?.8513, 0.583513, 0.358778v 0.532515, 10.1133v 1.652G, 1.3498

0.096613)

NO 3 = C 2.1436. 12.06999 7.9221, 0.509337, 0.321325, 0.605544, 10.19279 1.6796, 1.2208.

0.099819)

10 4 = C 2.0679, 11.9307, 7.9958, 0.591329 0.388459, 0.519907, 10.1137p 1.6302, 1.3527,

0.097010)

NO 5 - ( 2.0824t 12.0195, 7.9573, 0.566162, 0.4108269 0.514167, 10.2230, 1.6522, 1.4G71,

0.099657)

fa 6 a C 2.0794, 11.9641, 8.0008, 0.5779079 0.395934, 0.4449509 10.14109 1.6544, 1.4G76,

0.096622)

ME) 7 a ( 2.0765, 11.9925, 7.9853, 0.591599, 0.403974, 0.534048# 10.1633 1.6614, 1.2l11.

0.096762)

NO 8 a C 2.0733, 11.8203p 8.1261, 0.584185, 0.440265 0.517903, 10.141G, 1.6605, 1.2429#

0.099188)

N 9 a ( 2.0987. 11.9102o 7.9132, 0.584064t 0.433543, 0.493334, 10.2393, 1.6170, 1.3919t

0.098671)

NO 10 a ( 2.1205, 11.8943o 7.9855# 0.541232t 0.3089.9, 0.536208o 10.1381, 1.5982, 1.4648,

0.098102)
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PROMLEI 11 16-2

SOLUTIOCI

C2.0952t 12.0952. 7.9048, 0.455381, 0.3579359 0.454747v 10.4547v 1.6405, 1.1975.

0.100000)

STARTING POINTS

NO0 I a ( 2.0830. 12.0193v 7.9331m 0.488574. 0.392031p 0.475835p 10.3626o 1.9272v 1.3236.

0.097835)

NO0 2 - 2.1251t 11.9678# 7.9687p 0.5124529 0.342468, 0.4989699 10.32449 1.6421. L.23760

0.097539)

NO0 3 = ( 2.1117p 12.0705p 7.50099 0.4927369 0.335943p 0.502195, 10.3660. 1.6579. 1.2464.

0. 034423)

110 4 *C2.1017. 12.0165v 7.95159 0.515554o 0.395673, 0.474221v 10.30999 1.64229 1.2777.

0. 099861)

11O 5 =C2.1068. 12.0463# 7.9424. 0.489870p 0.367188, 0.490971. 10.3794. 1.6272. 1.2956.

0. 092790)
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PROBLEMI NO 17-1

SOLUTION

C0.731055. 0.712511. 0.7027079 0.265162# 0.182000. 0.124031v 0.197735p 0.1328S9 0.089318,

0.294658)

STARTING POINTS

110 1 = ( 0.893386p 0.8848629 0.681166. 0.258771, 0.178363t 0.127766t 0.195915, 0.135728v 0.098694.

0.302972)

N10 2 = ( 0.8558649 0.911360p 0.8008529 0.260838, 0.176626# 0.123908t 0.195271o 0.132994v 0.0941269

0.298477)

Na 3 = ( 0.818833. 0.855313, 0.8430179 0.260129t 0.177837v 0.122592v 0.202829t 0.131974. 0.104564,

0.302985)

NaG 4 uC0.789701p 0.852895p 0.898591# 0.2617929 0.185698, 0.121061, 0.203879p 0.1359249 0.089251,

0.295648)

110 5 - ( 0.8641439 0.8G2497, 0.854188, 0.2G1271# 0.184952t 0.125493, 0.197288. 0.136180. 0.095155.

0.300971)

NO 6 = C 0.833928. 0.815854v 0.907804v 0.2571619 0.179713, 0.123946, 0.203269, 0.132367# 0.090125,

0.298861)

110 7 = ( 0.948560t 0.811750, 0.789736, 0.26053G# 0.181246, 0.12G140t 0.19G730, 0.136618# 0.094064,

0. 302202)

NO 8 = ( 0.934134p 0.725362. 0.859390p 0.258454r 0.179222, 0.126420, 0.1945019 0.1345899 0.091456#

0.297510)

Na 9 = ( 0.875586# 0.8824779 0.827458o 0.2G6214, 0.182184t 0.124280, 0.202G84. 0.1353G2. 0.094465,

0.299046)

NO 10 - ( 0.855040. 0.869040. 0.852864. 0.260514, 0.179248. 0.121974, (j.?02093, 0.131739, 0.090247,

0.*306287)
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PROBLEM NO 17-2

SOLUTION :

( 0.731055, 0.712511* 0.702707, 0.2G5162, 0.182000, 0.1240319 0.19773'.. 0.132896. 0.089318

0.294659)

STARTINC POINTS

1O I a ( 0.808058, 0.782928, 0.724368, 0.257006v 0.178746, 0.114628, 0.196549, 0.132246, 0.093209-

0.298131)

NO 2 = ( 0.805599, 0.786544v 0.725109o 0.248143, 0.171418, 0.122875p 0.199078, 0.133700, 0.09259.

0.297250)

MO 3 = ' 0.818056, 0.763815, 0.754429, 0.257667# 0.1996G. 0.118361, 0.197467p 0.133958, 0.090943,

0.297252)

110 4 u C 0.78672, 0.791415. 0.781939, 0.254536, 0.1755259 0.123532, 0.196299 0.134643, 0.091809,

0.296316)

NO 5 = ( 0.801792, 0.7983S2, 0.633151. 0.266038t 0.178893, 0.1253939 0.199181, 0.132268 0.093152.

0.298187)

NO 6 = ( 0.828705, 0.777574, 0.743701. 0.260794, 0.177569P 0.116986, 0.199809, 0.133928, 0.090741.

0.297319)

NO 7 = ( 0.815716, 0.763381, 0.724190, 0.245842, 0.175136# 0.1164319 0.198616, 0.133033, 0.09117G,

0.296736)

Ma 8 - 0.E46754, 0.736165o 0.70148, 0.249112, 0.179053o 0.119138. 0.196054, 0.131068 0.091556,

0.295850)

1O 9 = C 0.811991. 0.745371, 0.7671119 0.E.:5466, 0.179232, 0.113377, 0.198426, 0.1337749 0.091490,

0.298127)

NO 10 = ( 0.813989 0.794446p 0.721694# 0.246052, 0.177895, 0 119753. 0.197258. 0.132476, 0.089345,

0.296717)
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PROBLEMI NO 18-3

SLUTIN t

(176.29# 18676.., 98.9866o 3085.58. 1999.42. 92.0220p 95.0000p 11.7051p 2.0422o-

152.15)

STARTING POINTS

NiO I a ( 1783.14. 19031.. 98.05499 2931.33, 1909.749 92.00629 94.90489 11.66949 2.0801.

152.9)

NO1 2 a ( 1781.02. 18653.. 100.87. 2937.52s 1952.36, 92.0205, 94.8560s 11.1183v 2.03040

152.93)
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PROBLEM rO 19-1

SOLUTION I

( 0.804085, 0.899972, 0.891282, 0.100000. 0.190423, 0.900000, 538.84 3G.98S6, 500.00,

0.100000)

STARTING POINTS S

MO 1 = ( 0.797310. 0.900011, 0.920699, 0.098460, 0.193580. 0.8824039 440.219 44.6834t 599.85t

0 .111278)
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PROBLEM NO 19-2

SOLUTION :

( 0.804085# 0.899972, 0.991282, 0.100000, 0.190423, 0.900000, 538.84, 36.9866, 500.00,

0.100000)

STARTING POINTS :

NO I a ( 0.801375, 0.839987, 0.963049, 0.099a84, 0.19!G8G, 0.8929S1, 499.39, 40.0653, 539.94,

0.104511)

NO 2 = ( 0.796980, 0.900433, 0.995813, 0.099710, 0.192626, 0.895091, 508.11, 40.8663, 526.53,

0.105950)

NO 3 = ( 0.801537, 0.900152, 0.914192, 0.099522, 0.190839, 0.895719v 489.77, 37.9526. 521.81,

0.108639)

NO 4 = ( 0.796544, 0.900126, 0.929714, 0.099005, 0.190821, 0.8913039 484.00, 38.2368, 535.02,

0.104370)

HD 5 = ( 0.799779, 0.900187, 0.907476, 0.0992559 0.191440, 0.898918, 494.82, 38.4526, 537.72,

0.105919)
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PROBLEM9 19 20-3

*SOLUTION

(7.00379 7.6458, 7.3183v 0.012445, 0.811659# 0.9555869 0.381392, 0.3S8090, 0.3S2934,

2.0764p 0.452995)

STARTING POINTS

NO 1 6.9661, 7.6257t 7.0708p 0.012733v 0.807539, 0.954640, 0.379406, 0.379690, 0.354385,

2.0791, 0.452616)
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PROBLEM NO 21-3

SOLUTION :

C 0.392000, 0.094000, 1.OE-005# 0.481000, 0.643000, 0.025132, 0.007000, 0.022006, 0.553037,

1.3800, 2.3800v 0.123000v 0.335000)

STARTING POINTS :

lOI a ( 0.392174, 0.094083, 9.9E-006, 0.483292, 0.638449, 0.025015, 0.00G901, 0.021984, 0.529723,

1.3784v 2.3779, 0.118818, 0.317082)
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NOUET 1 22-2

SOLUTION

(13115.t 36471.. 3212.00v 112.19p 37069.p 31.50USD 1.1E-00l, 47395.. 146999.,

7794.88. 1932.., 36264.. 14563.)

STARTING POINTS2

NO I m C 11899., 40037.. 2919.34p 113.33. 374387.p 33.0766. 1.IE-O00S. 46201.. 147286..

7770.63, 1982.# 392820.. 14539.)

NO2 a C 12774.. 40095.9 3368.11. 113.19p 37852.. 34.71069 1.IE-001S. 44339.. 147742..

7807.66. 19729.. 366445.. 14446.)
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PROEM1 NO023-1

SOLUTION

( 5154.08. 0.6200, 169495.p 743.80. 87999. 1839.54. 0.125831s. 29.2653)

STARTING POINTS

NO0 I a ( 6403.17. 6.6254. 168985.. 887.56. 79862., 223.87. 0.104181v 28.9273)

NO0 2 = ( 5906.06# 6.7472t 168289.. 921.16. 81850., 206.44. 0.095633, 29.7279)

HO0 3 a ( 6811.50. G.63649 171127.. 890.93p 78086., 222.21. 0.1183239 29.6090)

NO0 4 - C 5015.059 6.5385# 169885.. 856.75p 108247.o 242.42o 0.122467, 29.3349)

NO0 5 a C 5943.29. 6.59049 165565.t 885.96. 103255., 236.82# 0.117769# 29.8528)

NO0 6 a ( 5531.11p G.70319 172647.p 865.99 73258.. 236.82s 0.105344, 28.941G)

NO0 7 0 ( 6040.07o, 6.6350. 171116.. 734.10v 103261.. 237.8. 0.102906. 28.8511)

H10 8 a ( 6123.78, 6.5865p 172906.o 814.59. 98530., 229.34# 0.096418# 29.2088)

NO0 9 = C 6110.92. 6.79229 167735.p 868.29, 98339., 233.359 0.106042, 28.9788)

NO0 10 - ( 6364.69. 6.5230p 166074., 784.07, 108436.p 227.84, 0.103923t 29.2060)
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FROLi" NO 22-

O1.JrTIOH 

C 5154.08. 6.6200, 169485.. 743.899 87999.. 189.54. 0.125831, 29.2653)

STARTING POINTS :

NO I = ( 5590.889 6.6036t 16929.. 793.159 96443.t 213.25. 0.121369. 29.5905)

NO 2 a ( 5690.28. 6.57709 169765.. 707.70. 97051., 202.929 0.1161289 29.2390)

HO 3 a ( 5703.29. 6.5897o 172564., 804.27. 95168.. 211.25. 0.1229599 29.486)

NO 4 a C 5213.21s 6.6090. 171391.. 823.529 86300.o 201.12o 0.1117349 29.5902)

HO 5 a ( 5492.609 6.5876 180109.p 842.34. 8141.. 200.749 0.125415v 28.8854)

NO 6 a ( 5661.00o 6.7165s 168486., 800.56. 8382.# 187.91. 0.113152, 28.8940)

NO 7 - C 5768.59. 6.6125, 169203.. 818.79. 95808.. 201.67, 0.120203, 29.2225)

NO 8 a ( 5618.18p 6.6137, 1747., 929.11. 91094.. 197.42. 0.116461. 29.4211)

NO 9 a ( 5602.61o 6.7064o 181492.. 795.94p 94296.. 198.74. 0.117106v 29.0616)

NO 10 0 ( 568.48 6.5511. 168006., 780.379 87094., 208.71. 0.1138989 29.4058)
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Mu~n r2 4-3

C0.80409 0.901362 0.997200s 0.100000. 0.193 M3 .93992t 9530. 73.333 500.00.

0.100001v 19.3943 76.1710. 0.003497)

3TMRTIM PoINTS I

M1 1 a ( 0.80029P. 0.900012P 0.933849. 0.099329. 0.193036. 0.3396 992.30. 72.1273 901.65.

0.100132. 20.6263 30.9022P 0.015613)

.. 0 I a ( 0.303022. 0.900636. 0.929304. 0.099953. 0.193080. 0.879237 562.399 72.622. 901.36.

0.100089. 21.0665P 78.2407. 0.016072)
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P OlL.EM Nio 25-1

g0LUTIOM

C 69.40, 532.669 346.07., 435.55 164.45, 1000.00. 100.00, 1.OE005, 100.0000p

10959.p 3502.599 467.639 1.OE-005, 1.OE-005)

STARTING POINTS 2

NO I = ( 666.44, 516.65. 346.74 444.37, 151.64, 906.60. 98.4436, 8.5E-0069 99.3388,

13721.. 3705.64, 512.85, 8.E-00, 1.1E-005)

-1N0 2 - ( 670.55, 524.52, 349.69t 423.67, 164.32, 973.69, 96.8481, 7.5E-00S, 99.7027p

12051.. 4085.23. 567.92. 9.1E-006, 1.OE-005)

NO 3 a ( 667.97p 524.11. 349.70, 437.67, 160.96. 794.11o 99.0721t 1.RE-005, 99.8687,

12198., 4012.98t 480.44, 1.2E-005, 8.4E-006)

NO 4 a ( 666.17t 534.26. 336.41, 428.09, 168.70, 976.11. 98.69539 9.5E-006, 98.7308,

12342.. 3751.45, 574.99. 1.2E-005, 7.8E-006)

HO 5 a ( 668.07, 531.21. 339.139 428.60, 164.1. 868.02, 98.0965, 1.2E-005& 98.6388,

12497.. 4304.11p 504.70. 8.GE-006, 1.IE-005)

NO 6 a ( 666.14. 518.90. 336.79, 432.99, 142.93 962.08, 97.4475, 1.1E-005, 98.6568p

12799.. 3519.78, 526.08, 1.3E-005# 1.2E-005)

NO 7 = ( 666.15, 520.44, 346.33, 424.97. 157.70, 870.94v 97.4398, 9.SE-006, 99.8639,

13445., 3957.99t 496.69t 7.SE-00G, 1.IE-005)
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Irv-E? FROM 25-U

SOLUTIO I

C 178.40. 532.669 346.07, 435.55v 164.45. 1000.00. 100.00. I.OE-005i. 100.0000.

10959. 3502.59., 467.63. 1.OE-005o 1.OE-005)

grARTING POINTS I

MO 1 = ( 676.31. 527.55t 343.05. 426.779 162.95. 890.24. 99.3425, 9.4E-006t 99.8500.

11300.. 3590.86. 509.72P 1.OE-O059 9.86-006)

M11 2. -C 674.38., 530.26. 344.929 411.45. 161.69. 990.23. 98.1455. 1.IE-0O59 99.5782.

11871.. 3692.86. 499.60. 9.86-006. IE-005)
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EL9M 21-3

(0.803772. 0.317513. 0.900000s 0.900000. 0.900000v 0.100000t 0.107884 0.190837. 0.190837.

0.190637. 505.66. 5.6651P 72.47Wo 500.00. 500.00v 1.0E-006)

5TMRTZIC POINTS

MD 1 -C0.?747019, 0.802429, 0.888. 0.899360 0.901714. 0.099219. 0.107M88 0.190048o 0.1901729

0.194380. 501.10. 5.5035. 70.91039 515.84. 500.66P 1.OE-006)
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APPRNDIX C: Code Parameters

OPT: EPSIS 10-

EPSBD 10-

EPS 10o6

CRIT 10-

GGP: EPSCON 10-8

EPSCGP 10-6

EPSLP 10 10

EPSPN 10-11

GPKTC: EPSCON 10-

EPSDO 10-

BETA 10-2

BS 1.0

QUADGP: EPSCOV 10-

EPSTOL 10-

VELTOL 10-

EPS 10-

TOLCON 10-

EPSEQ 10-

EPSEQ 10-6

EPSYAR 10-

GENTOL 10-8

RLOWR 10-

RUPPER 10 +1

DAN: EPS 10-6

EPSI 10-

EPS2 10-

EPS3 10-6

EPS4 10-

RRR 10


