USAAVRADCOM-TR-80-D-15

ADA097283

STRUCTURAL INTEGRITY RECORDING SYSTEM (SIRS) FOR U.S. ARMY AH-1G HELICOPTERS

Thomas G. Farrell, Raymond B. Johnson, Michael C. Tyler TECHNOLOGY INCORPORATED Dayton, Ohio 45431

March 1981

Final Report for Period July 1975 - November 1979

Approved for public release; distribution unlimited.

81

DTIC ELECTE APR 3 1981

3

1()1

Prepared for

FILE CUPY

APPLIED TECHNOLOGY LABORATORY U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM) Fort Eustis, Va. 23604

· . .

Best Available Copy

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report was prepared by Technology Incorporated under Contract DAAJ02-75-C-0050. The report documents the design, fabrication, and testing of a Structural Integrity Recording System (SIRS). The SIRS is a total system including a flight recorder, data retrieval unit, and computer software that permits calculation of dynamic component fatigue lives based on the monitored flight condition spectrum of the AH-1G aircraft. Results of this program provide the design data required to develop usage spectrum recording systems for Army helicopters.

Duane M. Saylor of the Structures Technical Area, Aeronautical Technology Division, served as project engineer on this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM **REPORT DOCUMENTATION PAGE** . REPORT NUMBER UD RECIPIENT'S CATALOG NUMBER 2. GOVT ACCESSION NO. 3. USAAVRADCOM/TR-80-D-15 TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED. STRUCTURAL INTEGRITY BECORDING SYSTEM (SIRS) FOR Final kep Jul U.S. ARMY AH-1G HELICOPTERS CO Nov 79 1/1/4 6-PERFORMING ORG. REPORT NUMBER 12.64 8. CONTRACT OR GRANT-NUMBER(.) AUTHOR(.) DAAJ\$2-75-C-\$\$59 Thomas G. Farrell Raymond B. Johnson Michael C. Tyler - PERFORMING ORGANIZATION NAME AND ADDRESS Technology Incorporated 344 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62209A)1F262299AH76) 00 Dayton Ohio 45431 710 089 EK 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Applied Technology Laboratory, U. S. Army Research and Mar 81 Technology Laboratories (AVRADCOM) Fort Eustis, Virginia 23604 217 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS Unclassified 15#, DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary and identify by block number) AH-1G HELICOPTERS FLIGHT CONDITION MONITORING STRUCTURAL INTEGRITY RECORDING SYSTEM RECORDING SYSTEMS FATICUE-CRITICAL COMPONENTS FATIGUE (MECHANICS) FATIGUE DAMAGE MONITORING MECHANICAL COMPONENTS TEST and EVALUATION DATA ACQUISITION 20, ABSTRACT (Continue on reverse side if necessary and identify by block number) A Structural Integrity Recording System (SIRS) was designed and developed to track the fatique damage accumulation on 10 critical helicopter components for the subsequent timely replacement of such components for safer and more economical helicopter operation. SIRS comprises three discrete but interrelated subsystems: an airborne microprocessor-based recorder, a portable flight-line data retrieval unit, and a software system. The validation of SIRS, initially configured for the AH-1G helicopter, consisted of two phases. DD + JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When

r

1 F

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) Item 20. (Continued) Phase I (Development Test and Evaluation - DT&E) covered the design, fabrication, laboratory qualification testing, reliability analysis, and flighttesting of the prototype SIRS recorder. Phase II (Initial Operational Test and Evaluation - IOT&E) covered the evaluation of the entire system operation and the resultant data acquired during a 3-month recording period with five AH-1G's, each equipped with a SIRS recorder. As the documentation of both DT&E and IOT&E, this report describes the characteristics and functions of the entire system and details the successful performance of the SIRS recorder in the laboratory qualification testing and the flight environment. The SIRS recorder performed as designed, operated reliably, and yielded valid data. Unclassified

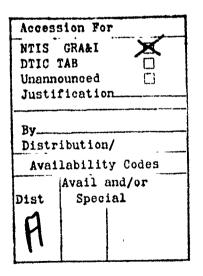
PARA ANA CARTA LUNGA

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

and a state of the part of the state of the

1 B

*


PREFACE

Technology Incorporated, Dayton, Ohio, prepared this report to document the results of validation of the operation of the Structural Integrity Recording System (SIRS). This report covers those activities conducted under Contract DAAJ02-75-C-0050, which was sponsored by the Applied Technology Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia. The Army project monitor was Mr. Duane Saylor.

The principal Technology Incorporated personnel on this program were T. G. Farrell, program manager; R. B. Johnson, systems engineer; M. C. Tyler, principal design engineer; G. E. Brazier, principal software programmer; T. L. Cox, flight test engineer; and C. A. Shope, data analysis manager.

Acknowledgement is given to Captain W. Benjamin and Captain J. Pepper, U. S. Army Aviation Test Board, Fort Rucker, Alabama, who supported the Development Test and Evaluation flight test program and contributed to its timely completion. In addition, appreciation is extended to Mr. M. L. Wilker who served as test coordinator during the Initial Operational Test Evaluation flight test program.

The knowledgeable support of Mr. Duane Saylor in his role as project monitor is recognized. His effective direction was central to all activities culminating in the events documented in this report.

TABLE OF CONTENTS

and a strategy and any she was a strategy and

÷

6.28

2 F

AND AND A

Stephy Million and a the state of the state

Chapter		Page
1.	INTRODUCTION	15
	PURPOSE	15
	SIRS OVERVIEW	22
	АРРКОАСН	22
	PROGRAM EXECUTION	23
2.	SYSTEM DEFINITION	24
	INTRODUCTION	24
	FLIGHT CONDITION MONITORING METHODOLOGY .	24
	ELEMENTS OF AH-1G FATIGUE ANALYSIS PERTINENT TO FCM SYSTEM DEVELOPMENT	25
	TECHNICAL ACCEPTANCE CRITERIA FOR FCM SYSTEMS	35
	Basic Definition of Technical Acceptance Criteria	35
	Component Fatigue Lives	36
	Assessment Model (FATHIP) Derivation of Upper Bounds for	36
	Component Fatigue Lives in Both Mild and Severe Utilization Spectra	37
	DEVELOPMENT OF A CANDIDATE FCM SYSTEM FOR THE AH-1G HELICOPTER	40
	Flight-Condition Ranking	40
	Parameters and Parameter Thresholds. Description of Recommended FCM	42
	System	47
	DETERMINATION OF FCM SYSTEM TECHNICAL ACCEPTABILITY	51
	Fatigue-Damage Coefficients for FCM System	51
	5	
	PRECEDING PAGE BLANK-NOT FILM	

ι, ,

å

TABLE OF CONTENTS - Continued

services after services

2 B

<u>Chapter</u>																				Page
			Prop Tech Deta	ini	cal	LA	.cc	ер	ta	nc	е	Cr	īt	er	ia		•	•	•	51 51
3.	SYSTE	M DES	SCRII	PTI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
		SIRS	RECO	ORD	ER	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
		RETRI	EVAJ	ט ב <u>י</u>	NIJ	ſ	•	•	•	•	•	•	•	•	•	•	•	•	•	62
		SOFTW	IARE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	64
		INSTA	LLAT	101	NH	(IT	I	•	•	•	•	•	•	•	•	•	•	•	•	76
			Pres Acce Flig Misc Powe	ele ght cel	ron Co 1ar	net ont neo	er ro us	s 1 S	Po en	si so	ti rs	on	s	•	•	•	•	•	• • •	77 77 83 83 84
4.	TEST	PROGE	RAM		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85
		DT&E	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85
			Bras Reli Labo Phas	iab ora	ili toi	ity :y	· A Qu	na a1	ly if	si ic	s at	io	n	Те	st	in	g		• • •	85 92 92 96
		107&E	B.,		e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	113
			IOT8 Eva:	lua	tic	on	of	a	. C	OB	RA	/T	OW	F	1e			•	•	113
			Oper Cost		ing •	д Р •	ar	an •	et.	er	t.	ha •			pa •			08 •	s ۰	115
5.	FIND	INGS .	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	118
		DT&E FLIGH										PR					•	•	•	118
			Sof: Haro																	118 118
		IOT&H	E (PI	HAS	E I	ΙI	OP	ER	AT	'I0	NA	L	EV	AL	UA	ΤI	٥N	I)	•	118

10-51-KI

6

.1

TABLE OF CONTENTS - Continued

4.1

Chapter

	-	
		Page
,	IOT&E Flight Test Time Frame Explicit Determination of Gross	120
ı	Weight (GW)	120
	Sensitive Parts	120
	DTU Packaging	121
	DTU Tape Drive	121
	Use of DTU During Battery Charging	
	Operation	121
	Logistics of Data Reduction	
	Statistical Evaluation of Calculated	
	Component Damage	122
		126
	Software	120
CONCLUS10	NS	132
	FLIGHT TEST (PHASE I PROTOTYPE	
FLIG	HT TEST)	132
	Software Modifications	132
	Hardware Modifications	132
IOT&	E (PHASE II OPERATIONAL EVALUATION) .	134
•		
	IOT&E Flight Test Time Frame	134
	Explicit Determination of Gross	
	Weight	134
	Tracking of High-Value, Fatigue-	201
	Sensitive Parts	135
	DTU Packaging	135
	DTU Tape Drive	135
	Use of DTU During Battery Charging	
	Operation	135
	Logistics of Data Reduction	135
	Statistical Evaluation of Calculated	
	Component Damage	135
	Software	
RECOMMEND	ATIONS	137
חשפה	ELICUT TECT (DUACE I DDATATVDE	
	FLIGHT TEST (PHASE I PROTOTYPE	1 7 7
FLIG	HT TEST)	137
		1 17 17
	Software Modifications	
	Hardware Modifications	137

6.

7.

The second second

an arras

7

Ý

à

TABLE OF CONTENTS - Concluded

<u>Chapter</u>

10	ΤĘΕ	(P	HAS	SE	II	0I	PER	RAT	IC	NA	L	EV	'AI	JUA	TI	ON	i)	•	138
		IOT Exp															•	•	138
		Wei Tra	ght	: .	•	•	•	•	•	•	•	•	•	•	•		•	•	138
		Sen																•	138
		DTU	Pa	ick	ag	ing	χ.	•		•	•	•	•		•		•	•	138
		DTU																	139
		Use	of	ĒD	TU	Dı	ıri	ing	E	Bat	te	ry	· C	lha	ırg	in	g		
		Ope																	139
		Log	ist	ic	s (of	Da	ita	Ē	١	uc	ti	or	1					139
		Sta																	
		Com																-	139
		Sof												Ţ			Ţ	•	139
		001	C 11 C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	200
REFEREN	ICES	•	• •	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	140
ABBREVI	ATI	ONS	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	141
APPENDE	XES																		
А	DE	TAI	LEI) F	СМ	S	YSI	ГЕМ	II	DES	CR	IP.	T	[0]	1	•	•	•	143
В	SI	RS	REC	COR	DE	RS	SOF	FTW	AF	RE				•				•	172

8

÷

LIST OF ILLUSTRATIONS

12

Figure		Page
1	AH-1G Helicopter	16
2	Location of Selected Fatigue-Critical Components for the AH-1G SIRS Program	17
3	Main Rotor Hub and Blade Assembly	18
4	Main Rotor Control System	19
5	Hydraulic Boost Cylinders and Supports	20
6	AH-1G Tail Rotor Components	21
7	Depiction of Technical Acceptance Criteria	35
8	Limit Velocity (V _L) Definition	45
9	Structural Integrity Recording System	59
10	SIRS Recorder	60
11	Schematic of Structural Integrity Recorder	60
12	SIRS Retrieval Unit	63
13	Sample of Spectrum Generated by SIRS Software.	65
14	Sample of Component Damage Generated by SIRS Software	70
15	Flow Chart of IPS Processing	72
16	Flow Chart of FDAS Processing	74
17	Report Generation Processing	75
18	Report I, Selected Component Status	77
19	Report II, Selected Component Removal Projections	78
20	Report III, Replacements Due in 0-3 Months, by Component Number	79
21	Update Form for Component Removals	83

à

きた

L'ALLANS

and a start a s

í,

LIST OF ILLUSTRATIONS - Continued

And a set with the set of the set

Figure		Page
22	Rotor RPM Measurement	86
23	OAT Measurement	87
24	<u>+5</u> Volt Buffered Reference Voltages	88
25	Buffered AC-to-DC Circuit for Roll Attitude, Engine Torque and References	89
26	Retrieval Unit Recorder Communications	91
27	Test Setup for SIRS Recorder Qualification	95
28	Installation Schematic	98
29	Flight Test Instrumentation System	98
30	Normal Landing	105
31	Autorotative Landing	107
32	Normal Turn	111
33	FCR Oscillograph Showing the Largest Positive n _z Peak Recorded During the Program	112
34	Main Rotor Blade Damage Spectrums	127
35	Main Rotor Yoke Extension Damage Spectrums	127
36	Main Rotor Grip Damage Spectrums	128
37	Main Rotor Pitch Horn Damage Spectrums	128
38	Retention Strap Fitting/Nut Damage Spectrums .	129
39	Swashplate Drive Link Damage Spectrums	129
40	Swashplate Outer Ring Damage Spectrums	130
41	Swashplate Inner Ring Damage Spectrums	130
42	Hydraulic Boost Cylinder Damage Spectrums	131
43	Tail Rotor Blade Damage Spectrums	131

÷,

å

LIST OF ILLUSTRATIONS - Continued

and a state of the second second second second states and the second second second second second second second

.......

Figure		Page
44	Dive/Dive Pullout	133
A-1	Flight Condition Categories 1, 2, and 3 (In-Flight Time)	147
A-2	Flight Condition Category 4 (Rotor Start/Stop)	148
A- 3	Flight Condition Categories 5, 6, 7 (Quick- Stop Deceleration)	149
A-4	Flight Condition Categories 8, 9, and 10 (Normal Landing)	150
A-5	Flight Condition Categories 11, 12, and 13 (Low-Velocity Flight)	151
A-6	Flight Condition Categories 14, 15, 16, 20, 21, and 22 (High-Velocity Flight)	152
A-7	Flight Condition Categories 17, 18, and 19 (Maximum-Velocity Flight)	153
A-8	Flight Condition Categories 23 through 28 (Normal (High-Speed) Turns)	154
A-9	Flight Condition Categories 24 through 40 (Gunnery Run Dives)	156
A-10	Flight Condition Categories 41 through 52 (Asymmetrical (Gunnery Run) Pullups)	157
A-11	Flight Condition Categories 53 through 61 (Symmetrical (Gunnery Run) Pullups)	159
A-12	Flight Condition Categories 62 through 70 (Gunnery Turns)	161
A-13	Flight Condition Categories 71 through 76 (Gunnery S-Turns)	163
A-14	Flight Condition Categories 77, 78, and 79 (Time in Autorotation)	165
A-15	Flight Condition Categories 80 through 85 (Autorotation-to-Power Transition)	166

in the

CONTRACTOR OF THE

.....

LIST OF ILLUSTRATIONS - Concluded

Figure		Page
A-16	Flight Condition Categories 86 through 91 (High-Speed Autorotation Turns)	167
A-17	Flight Condition Categories 92, 93, and 94 (Autorotation Landing)	168
A-18	Flight Condition Category 95 (Miscellaneous High-G Maneuvers)	169
A-19	Flight Condition Category 96	170
A-20	Flight Condition Category 97 (Maximum Airspeed (V_L))	171

LIST OF TABLES

a da hariera

an syn

. And the state of the state of

の言語などがある

A STATE AND A STAT

Variation Statistic Con

•

5.5 S S K 14

Children and a service of the servic

<u>Table</u>		Page
1	Selected Fatigue-Critical Components for the AH-1G Helicopter/SIRS Program	22
2	Design Utilization Spectrum	26
3	Selected Fatigue-Critical Components for the AH-1G Helicopter	34
4	Comparison of Manufacturer and FATHIP Fatigue Damage and Fatigue Life Computations	36
5	Mild and Severe Spectrum Definitions	38
6	Upper and Lower Bounds for Technical Acceptance Criteria	39
7	Results of Ranking Procedure	41
8	Candidate Monitoring Parameters for FCM Recording System	42
9	Sample Load Level Survey Data	43
10	Gross Weight Ranges	46
11	Selected Monitoring Parameters for FCM Recording System	47
12	FCM System Summary	49
13	Fatigue-Damage Coefficients for Each Component	5.0
	in Each Flight Condition Category	52
14	Technical Acceptability Results	56
15	SIRS Parameters	61
16	Flight Condition Categories	61
17	SIRS Recorder Weight Breakdown	63
18	SIRS Retrieval Unit Operator Inputs	64
19	Retrieval Unit Error Messages	69
20	Reliability Analysis Summary	93

à

LIST OF TABLES - Concluded

<u>Table</u>		Page
21	Summary of Qualification Tests	94
22	Recorded Parameters	97
23	Flight Test Flight Conditions	100
24	Flight Log Summary	100
25	Comparison of Percent V _H and V _L Calculations for Level Flight Conditions (Flight 28) \ldots	102
26	Takeoff Gross Weight Comparison	102
27	Comparison of Flight Length and Rotor Starts .	104
28	Comparison of Landings	104
29	Comparison of Cruise Times for Flight 14	108
30	Comparison of Percent V _H Calculations During Cruise for Flight 14	108
31	Comparison of Various Turns for Flight 14	109
32	Comparison of Maximum n _z Values	110
33	Calculated Component Damage	117
34	Statistical Evaluation of Calculated Component Damage (All Flights)	117
35	Flight Condition Logic Modifications	119
36	Evaluation of $\Delta \overline{x}$ for Calculated Component Damage	125
37	Evaluation of ΔS_x for Calculated Component Damage	125
A-1	FCM System Summary	144
A-2	System Parameters	146

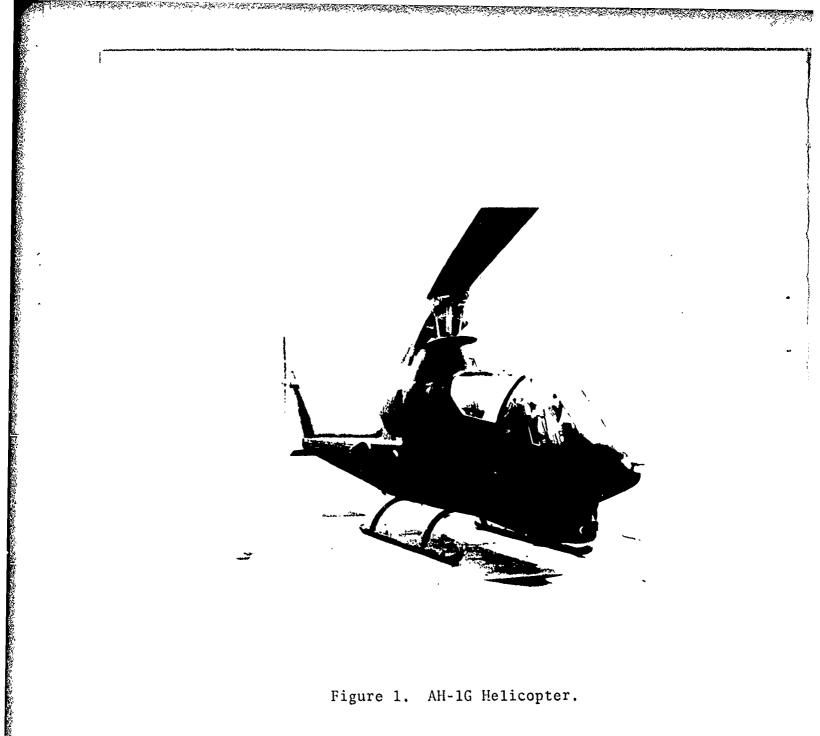
14

à

ないないなどの変化の

CHAPTER 1.

INTRODUCTION


There is an ever-increasing emphasis throughout the Department of Defense (DoD) on reducing the costs and improving the effectiveness of military equipment. Constraints on military budgets, coupled with inflation and mounting operation and support costs, are prompting a search for positive methods of cost reduction in the acquisition and life cycle of all vehicles and equipment. The traditional effort has been a comprehensive reliability-improvement program involving parts screening, predictions, more stringent specifications, and rigorous demonstration and acceptance testing. While some improvements have been made, such programs have produced less than the desired overall result.

The effort reported here represents one element of a new initiative by the U. S. Army Applied Technology Laboratory to reduce Operating and Support (O&S) costs for Army helicopters.

PURPOSE

U. S. Army Contract DAAJ02-75-C-0050 was performed to develop, qualify, flight test, and demonstrate the Structural Integrity Recording System (SIRS). SIRS incorporates advanced technology hardware to provide a cost-effective method of tracking the accumulation of fatigue damage on critical helicopter dynamic components. The system monitors the variations in fleet utilization on a helicopter-by-helicopter basis so that helicopter components may be replaced according to helicopter usage for safer and more economical operation. The high-value, fatigue-sensitive components selected for the SIRS Development Test and Evaluation (DT&E) and Initial Operational Test & Evaluation (IOT&E) are identified in Table 1. These components were carefully selected since they have been found to be O&S cost drivers through years of service experience that includes operations in Southeast Asia. Illustrations of these components may be seen in Figures 1 through 6. They represent three elements of the AH-1G fatigue-sensitive dynamic assemblies, which are:

- Main Rotor Hub and Blade Assembly
- Main Rotor Control System
- Tail Rotor and Control System

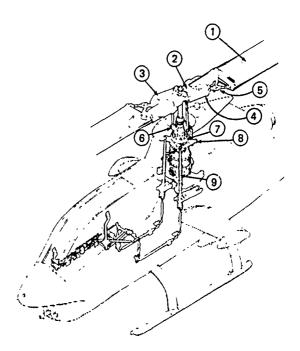
à

Main Rotor Hub and Blade Assy

1. Main Rotor Blade

ないないでいたいない、なんないないない、なーー

こ、 大変なん、 たい


- 2. Main Rotor Yoke Extension
- 3. Main Rotor Grip
- 4. Main Rotor Pitch Horn
- 5. Main Rotor Retention Strap Fitting/Nut

Main Rotor Control System

- Swashplate Drive Link (Scissors Assy)
- 7. Swashplate Outer Ring
- 8. Swashplate Inner Ring
- 9. Hydraulic Boost Cylinder Assy

Tail Rotor and Control System

10. Tail Rotor Blade

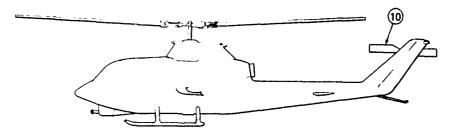
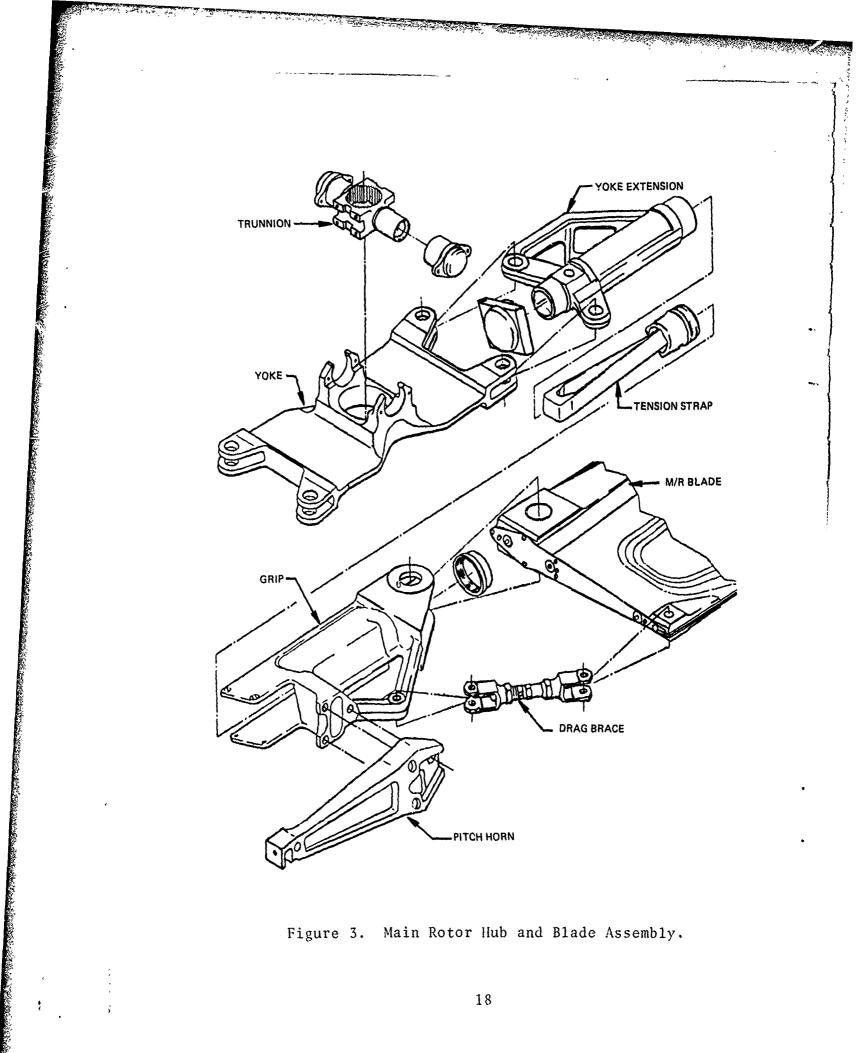
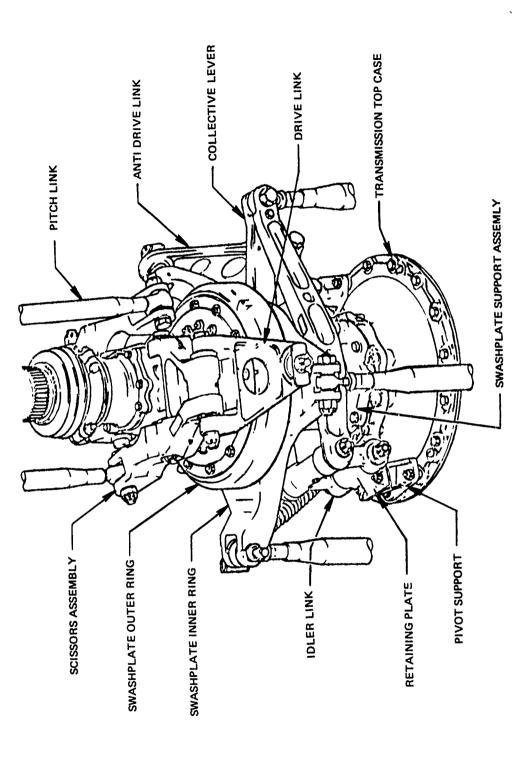
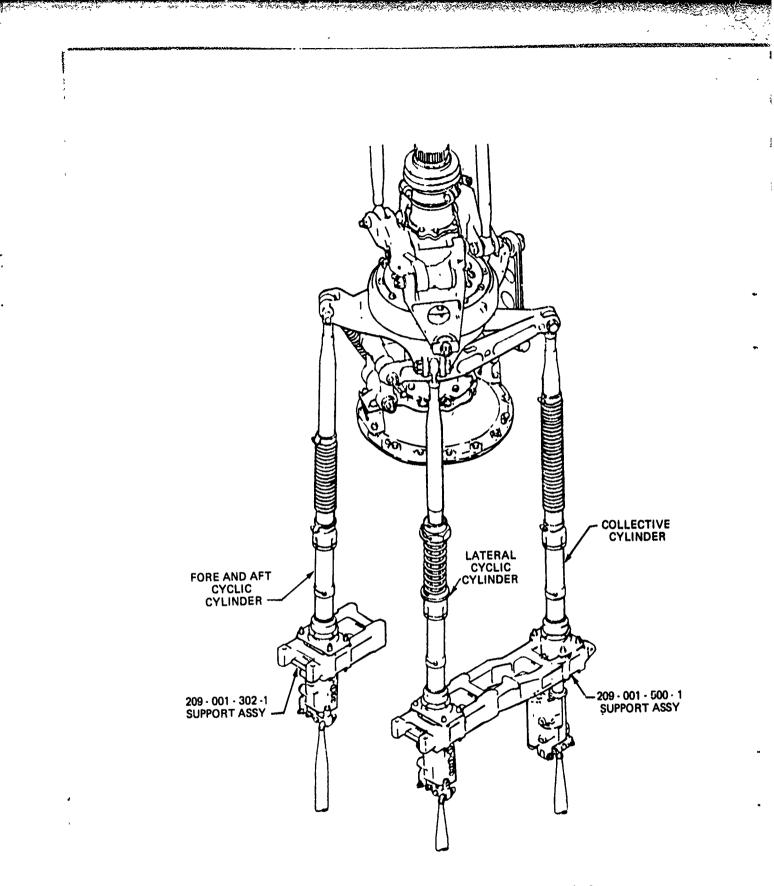



Figure 2. Location of Selected Fatigue-Critical Components for the AH-1G/SIRS Program. (TH-1 helicopter shown)

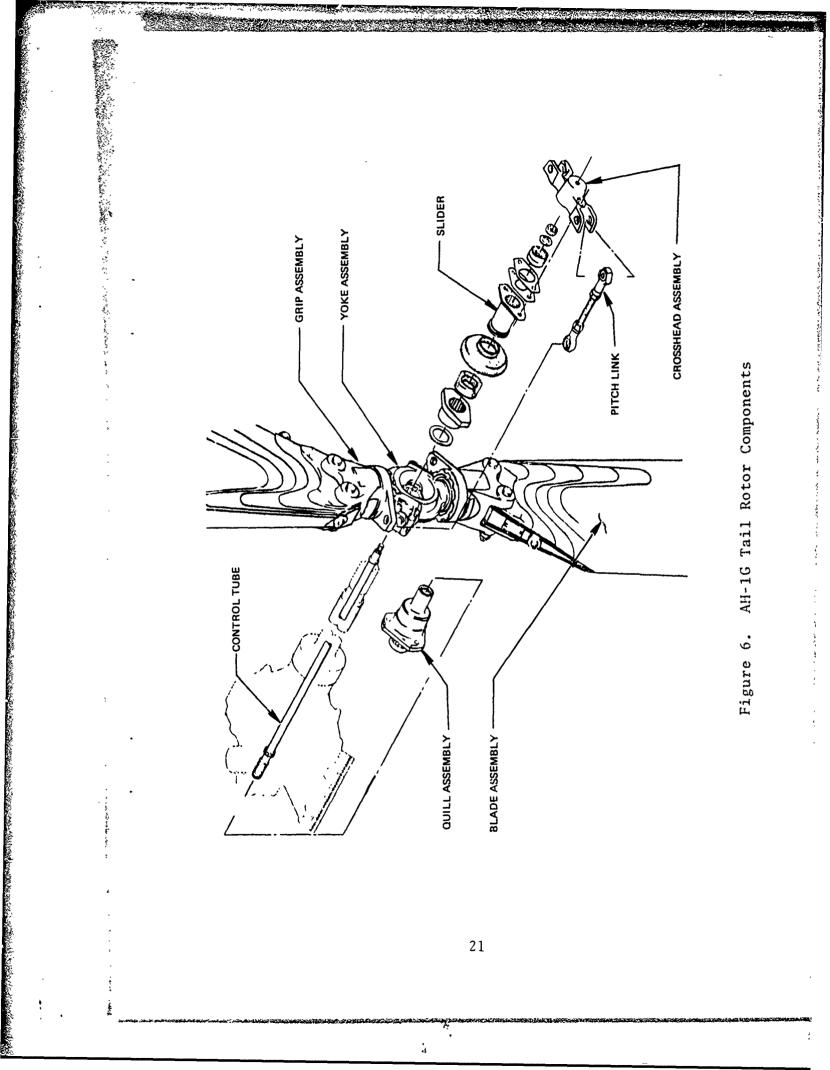

-

ч

the second second second is seen and second s


1990-25 1995

にお見たいには大学に


1

19

* .

TABLE 1. SELECTED FATIGUE-CRITICAL COMPONENTS FOR THE AH-1G HELICOPTER/SIRS PROGRAM

Nomenclature

Part Number

Main Rotor Blade
Main Rotor Yoke Extension
Main Rotor Grip
Main Rotor Pitch Horn
M/R Retention Strap Fitting/Nut
Swashplate Drive Link
Swashplate Outer Ring
Swashplate Inner Ring
Hydraulic Boost Cylinder Assy
Tail Rotor Blade

540-011-250-1 540-011-102-13, -15 540-011-154-5 209-010-109-5 540-011-113-1, -177-1 209-010-408-7 209-010-403-1 209-010-402-1 209-076-021-1, -3, -5 204-011-702-17

SIRS OVERVIEW

SIRS is a total system comprising an airborne microprocessor-based recorder, a portable flight-line retrieval unit, and a data processing package. The recorder monitors various flight parameters and stores preselected types of operational data within the recorder's solid-state memory. Data are retrieved by a portable flight-line retrieval unit that transfers the recorded data onto removable, miniature, computer-compatible tape cassettes. Each cassette can store the average monthly operational data of 50 helicopters. The data are processed and analyzed automatically by a software system that prints out the results in specifically formatted reports.

APPROACH

The contract performance consisted of two phases. Phase I (DT&E) covered these phases of SIRS: design, fabrication, qualification testing, reliability analysis, and flight testing at Fort Rucker, Alabama, on an AH-1G helicopter. The ultimate objective of Phase I was to verify that the SIRS recorder and data retrieval unit functioned as designed, operated reliably, and yielded accurate data.

In order to determine the fatigue life of any structure, three basic factors must be known. These factors are (1) some knowledge of the fatigue characteristics of the structure, (2) a knowledge of the loads or stresses to be expected in flight, and (3) a knowledge of the frequency of occurrence of these loads or stresses.

The information to fulfill the first item is obtained from the fatigue test program and the information to fulfill the second item is available from the flight loads survey. Information to fulfill the third basic requirement is the purpose of SIRS. Thus, Phase II (IOT&E) was intended to evaluate the entire SIRS in a practical application. To this end, the SIRS recorder was installed in each of five AH-1G helicopters at Fort Rucker, Alabama, while these helicopters performed normal operations during a 3-month period. During Phase II, all processes in the SIRS were evaluated: the in-flight recording and data storage, the data retrieval, and the data processing and analyses. Finally, the resultant data in prescribed formats were evaluated to determine (1) their validity in representing incremental damage rates for the respective helicopter components and (2) their usefulness in indicating the times at which the various components should be replaced. and the second of the second states and second states

PROGRAM EXECUTION

Contract DAAJ02-75-C-0050 was issued 26 June 1975 on a cost-plus-fixed-fee basis. The estimated manpower requirement was 31,029 man-hours. The contract was modified eight times during the performance period. These modifications essentially involved detail changes. Residual Government property was transferred to Contract DAAJ02-77-C-0079 upon completion of this effort. Technical objectives were met, and should result in a more cost-effective execution of the Army attack helicopter program through the 1990's time frame. The feasibility of using a flight condition monitoring concept to extend the service life of high-cost parts on the AH-1G fleet was demonstrated. The effort provides a con inuum between phasedown of the AH-1G project and initiation of the AH-1S technical support program.

CHAPTER 2.

SYSTEM DEFINITION

INTRODUCTION

いたないいいのにます

As demonstrated in Reference 1, the flight condition monitoring (FCM) method can be used to assess the fatigue damage accrued in critical helicopter dynamic components. The development of an FCM system requires first defining given flight conditions (which describe the mission profile) in terms of flight parameter ranges and then establishing flight condition categories (representing one or more flight conditions) that account for the entire spectrum of fatigue-damaging flight operations. By monitoring the time spent in each flight condition category, the damage accrued by each component may be assessed on the basis of actual operation.

The following sections describe the FCM methodology as well as the development of an FCM system for the AH-1G helicopter.

FLIGHT CONDITION MONITORING METHODOLOGY

The FCM method of fatigue damage assessment is structured as follows: Defined in terms of specific combinations of flight parameter ranges, each flight condition category (FCC) represents one or more flight conditions. The component damage due to each flight condition may be determined when the loads during the flight condition, the number of flight occurrences, and the component fatigue strength are known. To ensure that the damage rate for each flight condition category is conservative, the maximum flight condition damage rate within the given flight condition category is chosen. Then the component damage accrued during a given recording period may be computed by Equation (1), and the flight condition category incremental damage may be summed to yield the total component damage. The total recorded time is calculated by Equation (2), and the fatigue life is predicted by Equation (3).

^{1.} Johnson, R.B., Martin, G.L., and Moran, M.S., A FEASI-BILITY STUDY FOR MONITORING SYSTEMS OF FATIGUE DAMAGE TO HELICOPTER COMPONENTS, Technology Incorporated; USAAMRDL Technical Report 74-92, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis Virginia, January 1975, AD A006641.

$$D = \sum_{k=1}^{m} D_k = \sum_{k=1}^{m} C_k T_k$$
(1)

$$T_{t} = \sum_{k=1}^{m} T_{k}$$
(2)

$$FL = \frac{T_t}{D}$$
(3)

where D = total damage to a component during the usage spectrum

- D_k = component damage accrued during the kth flight condition category
- Ck = damage rate in kth flight condition category for a
 particular component
- T_k = amount of flight time spent in kth flight condition category
- T_{+} = total flight time

Salar Salar

- FL = component fatigue life
- m = number of flight condition categories

The FCM method of fatigue damage assessment requires analyzing the manufacturer's fatigue analysis to first define a technically feasible FCM system and then to establish damage rates for each component in each flight condition category. After these data have been developed and substantiated, the selected flight parameters may be monitored to assess the accrued fatigue damage of critical helicopter dynamic components.

ELEMENTS OF AH-1G FATIGUE ANALYSIS PERTINENT TO FCM SYSTEM DEVELOPMENT

As discussed in Reference 2 and summarized in Table 2, the AH-1G design utilization spectrum is defined in terms of specific flight conditions and the percentage of flight time spent in these flight conditions.

^{2.} Seibel, J., FATIGUE LIFE SUBSTANTIATION OF DYNAMIC COMPO-NENTS OF THE AH-1G HELICOPTER, Report No. 209-099-064, Bell Helicopter Company, Fort Worth, Texas, June 1968.

					ight Time
Flig	tht	Conditions		Total	Gross Weight Breakdown
		und Conditions			
	Α.	Normal Start		0.5000	
	Β.	Shutdown		0,5000	
11.	IGE	Maneuvers			
	A.	Takeoff			
		1. Normal	L-GW		0.180
			M-GW H-GW		0.450 0.270
				0,9000	
		2. Jump	L-GW M-GW		0.020 0.050
			H-GW	0.1000	0,030
	в.	Hovering			
	D.		1 (1)1		
		1. Steady	L-GW M-GW		0.434 1.085
			H-GW	2.1700	0,651
		2. Right Turn	L-GW		0.020
			M-GW H-GW		11.050 0.030
			11 (11)	0.1000	0.030
		3. Left Turn	L-GW		6.020
			M-GW H-GW		6,050 6,030
				0.1000	
		4. Control Correctio	on -		
		(A) Longitudinal	L-GW M-GW		0.002 v.005
			H-GW	0.0100	0.003
				0.0100	
		(B) Lateral	L-GW M-CW		0.002 0.005
			H-GW	0,0100	0.003
		(C) Rudde,	L-GW		0.002
			M - GW H - GW		0,005
			11 01	0.0100	
	с.	Sideward Flight			
		1. To the Right	L-GW		0.050
			M-GW H-GW		0.125 0.075
				0.2500	
		2. To the Left	L-GW M-GW		0.050 0.125
			H-GW	0.2500	0.075
	D	Donmuosul Eliabe	1.09	0.4900	0.050
	D	. Rearward Flight	L-GW M-GW		0.050 0.125
			H-G₩	0.2500	0.075

TABLE 2. DESIGN UTILIZATION SPECTRUM

26

-1

Continued

anter norde de la Carte de

<u>Bildrifi</u>

1

			<u> </u>	Flight Time
Flight Conditions			<u>Total</u>	Gross Weight Breakdown
E. Acceleration				
Hover to Clin	mb A/S	L-GW		0.100 0.250
		M-G₩ H-G₩		0.150
			0.5000	
F. Deceleration				
1. Normal		L-GW		0.140
		M-GW H-GW		0.350 0.210
			0.7000	
2. Quick St	op	L-GW		0.050 0.150
		M-GW H-GW		0.090
			0.3000	
G. Approach and		- L - GW M - GW		0.200 0.500
Landing		H-GW		0.300
			1,0000	
III. Forward Level F	light			
Airspeed	RPM			
A. 0.50 VH	314	I GW		0.100
		M-GW H-GW		0.250 0.150
			0.5000	
	324	L-GW		0.900 2.250
		M - GW H - GW		1.350
			4.5000	
B. 0.60 VH	314	L-GW M-GW		0.040 0.100
		H-GW		0.060
			0.2000	
	324	L-GW M-GW		0.360 0.900
		H-GW	1,8000	0.540
			1,0000	0.060
C. 0.70 VH	314	L-GW M-GW		0.150
		H - GW	0.3000	0,090
	324	L-GW M-GW		0.540 1.350
		H-GW	2.7000	0.810
		L OW	21,000	A 700
D. 0.80 VH	314	L-GW M-GW		0.300 0.750
		H-GW	1.5000	0.450
	324	L-GW		2,700
	564	M-GW		6.750
		H-GW	13.5000	4.050

4

に同時間の

			t of F	light Time
Flight Conditions			Total	Gross Weight Breakdown
E. 0.90 VH	314	L-GW M-GW H-GW	2.5000	0.500 1.250 0.750
	324	L-GW M-GW H-GW	22.5000	4.500 11.250 6.750
F. VI	314	L-GW M-GW H-GW	1.0000	0.200 0.500 0.300
	324	L-GW M-GW H-GW	9,0000	1.800 4.500 2.700
IV. Non-Firing Mar	euvers			
A. Full Power				
l, Normal		L-GW M-GW H-GW	4.0000	0.800 2.000 1.200
2. High-S	peed	L-GW M-GW H-GW	1.0000	0,200 0,500 0,300
B. Maximum R Climb – C	ate Accel. ruise A/S	L-GW M-GW H-GW	2.8000	0.560 1.400 0.840
C. Normal Tu	rns			
1. To the	Right			
(A) O.	5 VH	L - GW M - GW H - GW	1.0000	0.200 0.500 0.300
(8) 0	.7 VH	L-GW M-GW H-GW	1.0000	0.200 0.500 0.300
(C) 0	.9 VH	L-GW M-GW H-GW	2.0000	0.400 1.000 0.600
2. To th	e Left			
(A) 0	.5 VH	L-GW M-GW H-GW	1.0000	0.200 0.500 0.300

のではたことのなんが

ġ

Ż

1

9.00 X 2.2

ŝ,

et e fait fait é

 1.5

2 1/2

1

1

28

		% of Fli	ght Time
		Total	Gross Weight Breakdown
Flight Conditions		Iotur	مر و المسالة عن ميا الي الي الي الي الي الي الي الي الي ا
(B) 0.7 VH	L-GW		0.200 0.500
	M-GW H-GW		0,300
		1.0000	
(C) 0.9 VH	L-GW M-GW		0.400 1.000
	H-GW	2 0000	0,600
		2.0000	
D. 0.9 VH Control Corr.			
1. Longitudinal	L-GW M-GW		v.010 v.025
	H-GW	0.0500	0.015
		0.0000	0.010
2. Lateral	L-GW M-GW		0.025
	H-GW	0.0500	0.015
	L-GW		0.010
3. Rudder	M-GW		0.025
	H-GW	0.0500	0.015
	L - GW		0,100
L. Sideslip	M-GW H-GW		0.250 0.150
	H+0#	0.5000	
F. Part Power Descent	1 GW		0.510 1.275
(M - GW H - GW		0.765
		2.5500	
V. Gunnery Maneuvers			
A. Firing in a Hover	L-GW		0.015 0.038
	M - GW H - GW		0.023
		0.0750	
B. Strating in Accel.	1 (1)4		0.010
From a Hover	L - GW M - GW		0.025
	H-GW	0.0500	0.015
C. Gunnery Runs			
1. Point Target Ru	ns		
	L-GW		0.056
(A) To 0.6 VL	M-GW		0.140 0.084
	H-G¥	0.2800	
(B) To 0.8 VL	L-GW		0.168
	M-GW H-GW		0.420 0.252
	0.04	0.8400	
(C) To 0.9 VL	L-GW		ა. 280 0. 700
· · ·	M-GW H-GW		0.420
		1.4000	

TABLE 2. Continued

4 8

;

29

χ.

4

か)

Total Gross Weight Breakdown (D) To VL L-CW M-GW H-GW 0.055 0.140 0.2800 2. Spray Fire Dives 0.060 (A) To 0.6 VL L-CW H-GW 0.060 0.2800 (A) To 0.6 VL L-CW H-GW 0.026 0.036 (B) To 0.8 VL L-CW H-GW 0.1200 (B) To 0.8 VL L-CW H-GW 0.1200 (C) To 0.9 VL L-CW H-GW 0.1200 (C) To 0.9 VL L-CW H-GW 0.024 0.0360 (D) To VL L-GW H-GW 0.0220 0.036 (D) To VL L-GW H-GW 0.020 0.036 (D) To VL L-GW H-GW 0.020 0.030 (D) To VL L-GW H-GW 0.1000 (D) To VL L-GW H-GW 0.020 0.030 (D) 0.8 VL L-GW H-GW 0.1000 (D) 0.9 VL L-GW H-GW 0.250 0.5000 (D) VL L-GW H-GW H-GW 0.250 0.5000 (D) VL L-GW H-GW H-GW 0.020 0.030 (D) VL L-GW H-GW H-GW 0.020 0.030 (D) VL L-GW H-GW H-GW 0.020 0.030 (D) VL L-GW H-GW H			% of	Flight Time
11 Kill Construction (B) To VL L-CW 0.2800 0.084 2. Spray Fire Dives 0.2800 0.020 0.060 (A) To 0.6 VL L-CW 0.020 (B) To 0.6 VL L-CW 0.020 (B) To 0.8 VL L-CW 0.020 (B) To 0.8 VL L-CW 0.020 (C) To 0.9 VL L-CW 0.1200 (D) To VL L-CW 0.1200 0.180 (D) To VL L-CW 0.020 0.026 (D) To VL L-CW 0.020 0.020 (D) To VL L-CW 0.020 0.020 (D) To VL L-CW 0.020 0.050 (D) To VL L-CW 0.020 0.050 (A) 0.6	ni the Conditions		Total	
$(b) 10 VL \qquad b 0.2800 \qquad 0.140 \\ 0.2800 \\ c. Spray Fire Dives \\ (A) To 0.6 VL \qquad b C W \\ H-GW $		I CW		0.056
I. GW 0.2800 2. Spray Fire Dives 0.024 (A) To 0.6 VL L-GW 0.020 H-GW 0.1200 0.036 (B) To 0.8 VL L-GW 0.1200 (C) To 0.9 VL L-GW 0.3600 (C) To 0.9 VL L-GW 0.3600 (D) To VL L-GW 0.024 (D) To VL L-GW 0.000 (D) To VL L-GW 0.020 (D) To VL L-GW 0.020 (D) To VL L-GW 0.020 (D) To VL L-GW 0.1000 (D) To VL L-GW 0.1000 (D) To VL L-GW 0.1000 (B) 0.8 VL L-GW 0.1000 (C) 0.9 VL L-GW 0.1000 (C) 0.9 VL L-GW 0.1000 (D) VL L-GW 0.1000	(D) To VL			0.140
2. Spray Fire Dives (A) To 0.6 VL $L - GW \\ M - GW \\ H - GW \\ H - GW \\ H - GW \\ 0.1200 \\ 0.1200 \\ 0.1200 \\ 0.036 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0108 \\ 0.0100 \\ 0.010 $		H-G₩	0.2800	0.084
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.2000	
(A) 16 0.6 VL $H = GW$ 0.1200 0.036 (B) To 0.8 VL L = GW 0.1200 0.108 (C) To 0.9 VL L = GW 0.3600 0.108 (C) To 0.9 VL L = GW 0.3000 0.300 (D) To VL L = GW 0.6000 0.300 (D) To VL L = GW 0.6000 0.036 (D) To VL L = GW 0.020 0.036 (D) To VL L = GW 0.020 0.030 (D) O.6 VL L = GW 0.1000 0.050 (B) 0.8 VL L = GW 0.1000 0.1000 (C) 0.9 VL L = GW 0.1000 0.150 (D) 0.6 VL L = GW	2. Spray Fire Dives			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(A) To 0.6 VL			
(B) To 0.8 VL $1-GW$ 0.3600 0.120 (C) To 0.9 VL $1-GW$ 0.3600 0.120 (C) To 0.9 VL $1-GW$ 0.6000 0.300 (D) To VL $1-GW$ 0.6000 0.024 (D) To VL $1-GW$ 0.6000 0.036 (D) To VL $1-GW$ 0.6000 0.024 (D) To VL $1-GW$ 0.020 0.036 D. Gunnory Run Pullup 0.1200 0.0300 0.0300 (A) 0.6 VL $1-GW$ 0.0000 0.0500 (B) 0.8 VL $1-GW$ 0.1000 0.1000 (C) 0.9 VL $1-GW$ 0.5000 0.150 (D) VL $1-GW$ 0.5000 0.150 (D) VL $1-GW$ 0.5000 0.020 (D) VL $1-GW$ 0.5000 0.020 (D) VL $1-GW$ 0.000 0.020 (D) VL $1-GW$ 0.000 0.020 (D) VL $1-GW$ 0.1000 0.020 (D) VL $1-GW$ 0.1000 0.020				0.036
(B) 10 0.8 VL $H-GW$ 0.3600 0.180 (C) To 0.9 VL L-GW 0.6000 0.300 (D) To VL L-GW 0.6000 0.024 (D) To VL L-GW 0.000 0.036 (D) To VL L-GW 0.000 0.036 (D) To VL L-GW 0.000 0.036 (D) To VL L-GW 0.020 0.036 D. Gunnery Run Pullup 1. To the Right 0.1000 0.030 (H) 0.8 VL L-GW 0.1000 0.050 (H) 0.8 VL L-GW 0.1000 0.150 (C) 0.9 VL L-GW 0.1000 0.150 (D) VL L-GW 0.1000 0.150 (D) VL L-GW 0.1000 0.150 (D) VL L-GW 0.1000 0.020 (D) VL L-GW 0.1000 0.020 (D) VL L-GW 0.1000 0.030 (E) 0.8 VL L-GW 0.1000 0.030 (E) 0.8 VL L-GW 0.1000 0.030			0.1200	
I + GW 0.3600 0.108 I + GW 0.3600 0.120 I + GW 0.6000 0.180 (C) To 0.9 VL L-GW 0.6000 H - GW 0.6000 0.180 (D) To VL L - GW 0.000 H - GW 0.1200 0.020 D. Gunnery Run Pullup 0.1200 0.1200 I. 10 the Right 0.1000 0.030 (A) 0.6 VL L - GW 0.1000 (B) 0.8 VL L - GW 0.1000 (C) 0.9 VL L - GW 0.1000 (D) VL L - GW 0.020 (D) VL L - GW 0.000 (B) 0.6 VL L	(B) To 0.8 VL			
(C) To 0.9 VL $L-GW \\ M-GW \\ H-GW \\ H-GW \\ 0.6000 \\ 0.300 \\ 0.1200 \\ 0.1200 \\ 0.1200 \\ 0.036 \\ 0.036 \\ 0.036 \\ 0.036 \\ 0.036 \\ 0.036 \\ 0.036 \\ 0.036 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.000 \\ $				
$(L) 16 0.9 VL \qquad \begin{array}{c} L - GW \\ H - GW \\ H - GW \\ H - GW \\ 0.6000 \end{array} \qquad \begin{array}{c} 0.300 \\ 0.180 \\ 0.180 \\ 0.000 \\ 0.0$			0.3600	
$(h) To VL \qquad h-GW \qquad 0.6000 \qquad 0.180 \qquad 0.024 \qquad 0.060 \qquad 0.036 \qquad 0.030 \qquad $. (C) To 0.9 VL			
$(b) To VL \qquad \begin{array}{c} L-GW \\ M-GW \\ M-GW \\ M-GW \\ H-GW \\ 0, 1200 \end{array} $ $(b) To VL \qquad \begin{array}{c} L-GW \\ M-GW \\ H-GW \\ 0, 1200 \end{array}$ $(c) 0.036 \qquad \begin{array}{c} 0.024 \\ 0.060 \\ 0.036 \end{array}$ $(c) 0.036 \qquad \begin{array}{c} 0.020 \\ 0.036 \end{array}$ $(c) 0.06 \ VL \\ (c) 0.6 \ VL \\ H-GW \\ H-GW \\ H-GW \\ H-GW \\ 0.3000 \end{array}$ $(c) 0.9 \ VL \\ (c) 0.9 \ VL \\ H-GW \\ H-GW \\ H-GW \\ 0.5000 \end{array}$ $(c) 0.9 \ VL \\ (c) 0.9 \ VL \\ H-GW \\ H-GW \\ H-GW \\ 0.1000 \end{array}$ $(c) 0.020 \\ (c) 0.9 \ VL \\ H-GW \\ H-GW \\ 0.1000 \\ (c) 0.020 \\ (c) 0.5000 \\ (c) 0.020 \\ (c) 0.9 \ VL \\ H-GW \\ H-GW \\ 0.1000 \\ (c) 0.020 \\ (c) 0.02$				
$(h) 10 VL \qquad h GW \\ H - GW \\ H - GW \\ H - GW \\ 0, 1200 \\ 0, 1200 \\ 0, 1200 \\ 0, 036 \\ 0, 036 \\ 0, 036 \\ 0, 036 \\ 0, 030 \\ 0, 050 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 030 \\ 0, 000 \\ (h) 0, 000 \\ (h) 0, 0, 0, 000 \\ (h) 0, 0, 0, 000 \\ (h) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $			0.6000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(D) To VL			
(1.200) D. Gunnery Run Pullup 1. 10 the Right $(A) 0.6 VL \qquad \begin{array}{c} L-GW \\ M-GW \\ M-GW \\ H-GW \\ 0.1000 \end{array} \qquad \begin{array}{c} 0.020 \\ 0.050 \\ 0.030 \\ 0.030 \end{array}$ $(B) 0.8 VL \qquad \begin{array}{c} L-GW \\ M-GW \\ H-GW \\ 0.3000 \end{array} \qquad \begin{array}{c} 0.1000 \\ 0.1000 \\ (C) 0.9 VL \\ H-GW \\ 0.5000 \\ (D) VL \\ 1GW \\ M-GW \\ H-GW \\ H-GW \\ 0.1000 \\ \end{array}$				
1. To the Right (A) 0.6 VL L-GW 0.000 (B) 0.8 VL L-GW 0.1000 (C) 0.9 VL L-GW 0.3000 (C) 0.9 VL L-GW 0.3000 (C) 0.9 VL L-GW 0.5000 (D) VL L-GW 0.5000 (D) VL L-GW 0.5000 (D) VL L-GW 0.5000 (D) VL L-GW 0.1000 (D) VL 1-GW 0.1000 (D) 0.000 (D) VL 1-GW 0.1000 (D) 0.000 (D) 0.00			0.1200	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D. Gunnery Run Pullup			
$(X) 0.6 VL \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1. To the Right			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(A) 0.6 VL			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$(B) 0.8 VL \qquad \begin{array}{c} 1.00 \\ M-GW \\ H-GW \\ 0.3000 \end{array} \qquad 0.150 \\ 0.3000 \end{array}$ $(C) 0.9 VL \qquad \begin{array}{c} 1GW \\ M-GW \\ M-GW \\ H-GW \\ 0.5000 \end{array} \qquad 0.150 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.020 \\ 0.050 \\ 0.050 \\ 0.000 \end{array}$ $(B) 0.8 VL \qquad \begin{array}{c} 1GW \\ M-GW \\ H-GW \\ H-GW \\ 0.1000 \\ 0.1000 \\ 0.$			0.1000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(B) 0.8 VL	L-GW		
$(C) 0.9 VL \qquad \begin{array}{c} 1GW \\ M-GW \\ M-GW \\ M-GW \\ M-GW \\ H-GW \\ 0.5000 \end{array} \qquad \begin{array}{c} 0.100 \\ 0.250 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.020 \\ 0.000 \\ \end{array}$				
$(C) 0.9 VL \qquad 1-GN \qquad 0.250 \\ M-GW \qquad 0.5000 \\ (D) VL \qquad L-GW \qquad 0.5000 \\ (D) VL \qquad L-GW \qquad 0.020 \\ M-GW \qquad C.050 \\ H-GW \qquad 0.1000 \\ (A) 0.6 VL \qquad L-GW \qquad 0.1000 \\ (B) 0.8 VL \qquad L-GN \qquad 0.1000 \\ (B) 0.8 VL \qquad L-GN \qquad 0.1000 \\ (B) 0.8 VL \qquad L-GN \qquad 0.1000 \\ (B) 0.9 VL \qquad 0.1000 \\ (C) 0.000 \\ (C) 0.$		11 04	0.3000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(C) 0.9 VL	L - GW		
$(b) VL \qquad \begin{array}{c} L-GW \\ M-GW \\ H-GW \\ 0.1000 \end{array} \qquad \begin{array}{c} 0.020 \\ C.050 \\ C.050 \\ C.030 \\ 0.1000 \end{array}$				
(b) VL $H-GW$ C. 050 M-GW C. 030 (c) 1000 2. To the Left (A) 0.6 VL L-GW 0.020 M-GW 0.1000 (B) 0.8 VL L-GW 0.1000 (B) 0.8 VL L-GW 0.1000 (C) 0.060 M-GW 0.1000		11.04	0.5000	
$\begin{array}{cccc} M-GW & & & & 0.000 \\ & & H-GW & & & 0.1000 \\ \hline \\ 2. To the Left & & & & 0.020 \\ & & & & & 0.030 \\ & & & & & & 0.030 \\ & & & & & & 0.1000 \\ \hline \\ & & & & & & 0.1000 \\ \hline \\ & & & & & & 0.060 \\ & & & & & 0.060 \\ & & & & & 0.060 \\ \hline \\ & & & & & & 0.060 \\ \hline \\ & & & & & & 0.060 \\ \hline \\ & & & & & & 0.060 \\ \hline \\ & & & & & & 0.060 \\ \hline \end{array}$	(\mathbf{p}) VI.	L-GW		
$(b. 1000)$ 2. To the Left $(A) 0.6 VL \qquad \begin{array}{c} L-GW & 0.020 \\ M-GW & 0.050 \\ 0.030 \\ H-GW \\ (B) 0.8 VL & \begin{array}{c} L-Gi \\ M-GV \\ 0.1000 \end{array}$				
(A) 0.6 VL L-GW 0.020 M-GW 0.030 H-GW 0.1000 (B) 0.8 VL L-GY 0.100 (B) 0.8 VL L-GY 0.000 M-GV 0.1000		11- (10	0.1000	
(A) 0.6 VL L-Gi 0.060 H-GW 0.1000 (B) 0.8 VL L-Gi 0.060 M-GV 0.150	2. To the Left			
M-GW 0.030 H-GW 0.1000 (B) 0.8 VI. L-Gi 0.060 M-GV 0.150	$(\Lambda) = 0.6$ VL	L - GW		
0,1000 (B) 0.8 VL L-Gi 0.060 V-GV 0.150				
(B) 0.8 VL L-00 $n.150$ M-GV $n.090$		H-04	0,1000	
1-6'	(B) 0 8 VI	L-G		
		M-6*		
0, 3000		H-G /	0, 3000	·
(C) 0.9 VL L-GW 0.100 0.250		L-GW		
M-GW 0.250		M-GW		
H-GW 0.5000		11-04	0.5000	

å

2000

4 B

いたがないというないないないでしたが、たちでないない

and a substant and and an a substant of the substant

ŧ

A. CALL

1

1 24

and the second second

Ŷ,

		<u> </u>	light Time
Flight Conditions		Total	Gross Weight Breakdown
(D) VL	L-GW M-GW H-GW	0.1000	0.020 0.050 0.030
3. Symmetrical			
(A) 0.6 VL	L-GW M-GW H-GW	0.0100	0.902 0.005 0.003
(B) 0.8 VL	L-GW M-GW H-GW	0.0300	0.006 0.015 0.009
(C) 0.9 VL	L-GW M-GW H-GW	0.0500	0.010 0.025 0.015
(D) VL	L-GW M-GW H-GW	0.0100	0.002 0.005 0.003
E. Gunnery Turns			
1. To the Right			
(A) 0.5 VH	L-GW M-GW H-GW	0.3750	0.075 0.188 0.113
(B) 0.7 VH	L - GW M - GW H - GW	0.3750	0.075 0.188 0.113
(C) 0.9 VH	L-GW M-GW H-GW	0.7500	0.150 0.375 0.225
2. To the Left			
(A) 0.5 VH	L-GW M-GW H-GW	0.3750	0.075 0.188 0.113
(B) 0.7 VH	L-GW M-GW H-GW	0. 3750	0.075 0.188 0.113

7500

0.150 0.375 0.225

31

(C) 0.9 VH

å

		<u>% of</u>	Flight Time
Flight Conditions		Total	Gross Weight Breakdown
F. S-Turns			
1. At 0.8 VH	L-GW M-GW H-GW	0.2000	0.640 0.100 0.060
2. At VH	L-GW M-GW H-GW	0.0750	0.015 0.038 0.922
VI. Power Transitions			
A. Power to Auto			
1. 0.5 VH	L-GW M-GW H-GW	0.0500	0.010 0.025 0.015
2. 0.7 VH	L-GW M-GW H-GW	0.1250	0.025 0.063 0.038
3. 0.9 VH	L - GW M - GW H - GW	0.1750	0.035 0.088 0.053
B. Auto to Power			
1. In Ground Lffect	L - GW M - GW H - GW	0,1500	0.030 0.075 0.045
2. 0.4 VH	L - GW M - GW H - GW	0.1000	0.020 0.050 0.030
3. 0.6 VH	L-GW M-GW H-GW	0.0750	0.015 0.038 0.023
4. Max Auto A/S	L - GW M - GW H - GW	0.0250	0.005 0.013 0.008
VII. Autorotation			
A. Stabilized Flight			
1. 0.4 VH	L-GW M-GW H-GW	U.2000	$\begin{array}{c} 0.040 \\ 0.100 \\ 0.060 \end{array}$
2. 0.6 VH	L - GW M - GW H - GW	0.2000	0,280 0,700 0,420
		1.4000	

TABLE 2. Continued

age and

where a straight

43.95 4

32

à

TABLE 2. Concluded	ded	Concl	2.	TABLE
--------------------	-----	-------	----	-------

1907 1973

i te contrata

ale But i date

. .

SR SA

Q.

3

20.47

÷.

and a strange of the strange of the

ţ

S, ..., e

		\$ of F	light Time
Flight Conditions		Total	Gross Weight Breakdown
3. Max Auto Λ/S	L-GW M-GW H-GW	n.3000	0.060 0.150 0.090
B. Auto Turns			
1. To the Right			
(A) 0.4 VH	L-GW M-GW H-GW	0.0500	0.010 0.025 0.015
(B) 0.6 VH	L-GW M-GW H-GW	0.4000	0.080 0.200 0.120
(C) Max Auto A/S	L - GW M - GW H - GW	0.0500	0.010 0.025 0.015
2. To the Left			
(A) 0.4 VH	L - GW M - GW H - GW	n .05 00	0.010 0.025 0.015
(B) 0.6 VH	L - GW M - GW H - GW	0.4000	().080 ().200 ().120
(C) Max Auto A/S	L-GW M-GW H-GW	0.0500	0.010 0.025 0.015
C. Auto Landing	L - GW M - GW H - GW	0.2500	0.050 0.125 0.075

33

4

...

The manufacturer assumed that the AH-1G operational time would be distributed as follows in three gross weight ranges: (1) 20 percent in a light gross weight (L-GW) range (less than 7750 pounds), (2) 50 percent in a middle gross weight (M-GW) range (7750 to 8750 pounds), and (3) 30 percent in a high gross weight (H-GW) range (more than 8750 pounds). This gross weight distribution was also used in the preliminary development of the FCM system for the AH-1G.

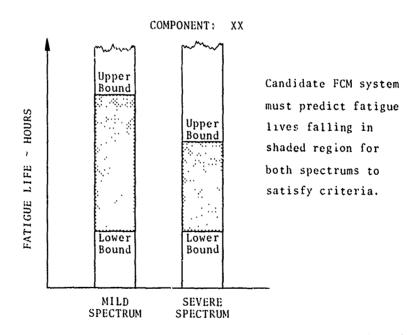
The fatigue-critical AH-1G components to be used in the FCM method were selected by determining those major lifelimited components in the main and tail rotor systems that have a significant effect on the AH-1G life-cycle cost. As a result, 10 components were selected. For each of these components, Table 3 lists the part number along with the manufacturer-computed fatigue life and the recommended retirement life. The component fatigue damage data along with other information (e.g., component loads data and component S/N data) needed for performing a fatigue analysis were extracted from the fatigue substantiation report (Reference 2).

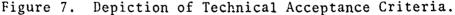
TABLE 3.SELECTED FATIGUE-CRITICAL COMPONENTS
FOR THE AH-1G HELICOPTER

Nomenclature	Part Number	Calculated Fatigue Life(hr)	Recommended Retirement Life (hr)
Main Rotor Blade	\$40-011-250-1	2,792	1,100
Main Rotor Yoke Extension	540-011-102-13,15	10,633	3,300
Main Rotor Grip	540-011-154-5	95,057	
Main Rotor Pitch Horn	209-010-109-5	9,105	6,600
M/R Retention Strap Fitting/Nut	540-011-113-1,-177-1	2,760	2,200
Swashplate Drive Link	209-010-408-7	13,953	11,000
Swashplate Outer Ring	209-010-403-1	9,806	3,300
Swashplate Inner Ring	209-010-402-1	10,453	3,300
Hydraulıc Boost Cylınder Assy	209-076-021-1,3,5	3,345	3,300
Tail Rotor Blade	204-011-702-17	3,764	1,100

TECHNICAL ACCEPTANCE CRITERIA FOR FCM SYSTEMS

であるというないないないないないないないない シー・アイレーション


へわた


Basic Definition of Technical Acceptance Criteria

In the development of the FCM system for the AH-1G, the technical acceptance criteria developed in Reference 1 were applied to several candidate systems.

According to these criteria, an FCM system must be capable of predicting, for each component, fatigue lives that fall between a conservative lower bound and realistic upper bounds. One upper bound is defined for mild aircraft usage and another upper bound for severe aircraft usage (see Figure 7). The intent in these criteria of the upper bounds for both mild and severe conditions is to evaluate candidate FCM systems relative to the usage variations in the expected fleet operation spectrum.

The application of the technical acceptance criteria requires the following: (1) the definition of the lower bounds for the component fatigue lives, (2) the substantiation of a fatigue damage assessment model (specifically, the computer program FATHIP) that closely parallels the fatigue analysis used by the AH-1G manufacturer and which may be validly used in the applications discussed later in this section, and (3) the derivation of realistic upper bounds for the component fatigue lives in both a mild and a severe usage spectrum by applying the substantiated fatigue damage assessment model.

Definition of Lower Bounds for Component Fatigue Lives

Table 3 includes the manufacturer-computed fatigue lives and the recommended retirement lives for the 10 selected components. The manufacturer's computations were based on the design utilization spectrum summarized in Table 2. Since such a spectrum is conventionally more severe than the actual usage anticipated during the helicopter life, the computed fatigue lives are conservative. As is apparent in Table 2, the recommended retirement lives are generally much shorter than the fatigue lives.

To conform with the philosophy in previous studies, the recommended retirement lives were defined as the lower bounds.

Substantiation of Fatigue Damage Assessment Model (FATHIP)

FATHIP, the fatigue damage assessment model used in the following applications, computes fatigue damage in a manner similar to the AH-1G manufacturer's process. To substantiate this model, the same component load, S/N, and frequency of occurrence data used in the manufacturer's computations were also used as input in FATHIP. Obviously, if FATHIP could yield fatigue lives agreeing closely with these derived by the manufacturer, the model would be substantiated.

For both the manufacturer and the FATHIP computations, Table 4 lists the fatigue damage accrued by each of the 10 selected AH-1G components during 100 hours of operation in the design utilization spectrum. The close correlation of the two sets of data verifies FATHIP as a valid fatigue damage assessment model for the AH-1G helicopter.

TABLE 4. COMPARISON OF MANUFACTURER AND FATHIP FATIGUE DAMAGE AND FATIGUE LIFE COMPUTATIONS

	Design Spectrum						
* Reference 2	Manufacti Computati			FATHIP Results			
	Fatigue Damage	Fatigue Life	l'atigue Damage	Fatigue Life			
Component	<u>in 100 hr</u>	<u>(hr)</u>	<u>1n 100 hr</u>	<u>(hr)</u>			
Main Rotor Blade	0.035810	2,792	0.035806	2,793			
Main Rotor Yoke Extension	0.009404	10,633	0.009403	10,635			
Main Rotor Grip	0.001052	95,057	0.001053	95,012			
Main Rotor Pitch Horn	0.010983	9,105	0.010982	9,106			
M/R Retention Strap Litting/Nut	0.036232	2,760	0.036232	2,760			
Swashplate Drive Link	0.007167	13,953	0.007164	13,959			
Swashplate Outer Ring	0.010197	9,806	0.010196	9,808			
Swashplate Inner Ring	0.009566	10,453	0.009562	10,458			
Hydraulic Boost Cylinders	0.029890	3,345	0.029895	3,345			
lail Rotor Blade	0.026567	3,764	0.026568	3,764			

CARLEY SOLLAND STREET STREET STREET

Derivation of Upper Bounds for Component Fatigue Lives in Both Mild and Severe Utilization Spectra

Without regard at the outset to which might be the more severe spectrum, two utilization spectra were derived independently from separate sources: (1) the AH-1G operational usage data collected in Southeast Asia (Reference 3), and (2) the expected future mission utilization data for attack-type helicopters (also documented in Reference 3). As listed in Table 5, each spectrum was defined in terms of the same flight conditions that were used to define utilization spectrum. In addition, the gross weight distribution assumed in Reference 2 was used for each spectrum.

To assess the relative severity of the two utilization spectra from a fatigue damage standpoint, the two spectra were then processed in FATHIP to predict the fatigue life for each of the 10 selected components. On the basis of the resulting fatigue life predictions, the spectrum representing the Southeast Asia data was judged more severe than the spectrum representing the other data. Consequently, the former was termed the severe spectrum and the latter the mild spectrum. However, these spectra are not to be interpreted as worst-case usage, but rather as the mild and severe usage that would normally occur with some regularity.

The two sets of fatigue lives derived by FATHIP for each of the 10 selected components were defined as the upper fatigue life bounds, one set for the mild and the other set for the severe utilization spectrum. Table 6 lists these bounds. Since this table also includes the lower fatigue bounds as previously listed in Table 3, it summarizes the constraints for the application of the technical acceptance criteria to the candidate FCM systems for the AH-1G helicopter.

Therefore, to be considered technically acceptable, a candidate FCM system must be capable of predicting, for each component, a fatigue life within these bounds when the basic frequency of occurrence data in either the mild or the severe spectrum is the simulated output of an airborne FCM recorder.

3. Cox, T.L., Johnson, R.B., and Russell, S.W., DYNAMIC LOADS AND STRUCTURAL CRITERIA, Technology Incorporated; USAAMRDL Technical Report 75-9, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, April 1975, AD A009759.

TABLE 5. MILD AND SEVERE SPECTRUM DEFINITIONS

	FLIGHT CONDITIONNOPMAL STAPT.SHUTDOWN (W/COLL.)/IGE MANEUVEP)NOFMAL TAKE-OFF/IGE MANEUVEP)JUMP TAKE-OFF/IGE MANEUVEP)STEADY HOVEP/IGE MANEUVEP)HOVEPING RIGHT TUPN/IGE MANEUVEP)HOVEPING RIGHT TUPN/IGE MANEUVEP)HOVEPING LONGITUDINAL CONTPOL COPF./IGE MANEUVEP)HOVEPING LONGITUDINAL CONTPOL COPF./IGE MANEUVEP)HOVEPING PUDDEP CONTROL COPF./IGE MANEUVEP)PEAPMARD FLIGHT TO THE LEFT/IGE MANEUVEP)PEAPMARD FLIGHT TO THE LEFT/IGE MANEUVEP)POPMAL DECELEPATION/IGE MANEUVEP)NOPMAL DECELEPATION/IGE MANEUVEP)OUICK STOP DECELERATION/IGE MANEUVEP)FOPWARD LEVEL FLIGHT 0.50 VH AT 314 RPMFOPWARD LEVEL FLIGHT 0.50 VH AT 314 RPMFOPWARD LEVEL FLIGHT 0.60 VH AT 314 RPMFORWARD LEVEL FLIGHT 0.70 VH AT 324 PPMFORWARD LEVEL FLIGHT 0.80 VH AT 324 PPMFORWARD LEVEL FLIGHT 0.80 VH AT 324 PPMFORWARD LEVEL FLIGHT 0.80 VH AT 324 PPMFORWARD LEVEL FLIGHT VH AT 314 RPMFORWARD LEVEL FLIGHT VH AT 324 PPMFORWARD LEVEL FLIGHT VH AT 324 PPMFORWARD LEVEL FLIGHT VH AT 324 PPM <th>DETIGN</th> <th>MILD</th> <th>SEVERE</th>	DETIGN	MILD	SEVERE
1	NORMAL START SHUTDOWN (W/COLL) (IGE MANEUVER)	1.000	.290	.616
3	NORMAL TAKE-OFF (IGE MANEUVER)	.900	2.558	.750
3	JUMP TAKE-OFF (IGE MANEUVER)	.100	.656	.188
4	STEADY HOVER (IGE MANEUVER)	2.170	11.530	12.958
- 5	HOVEPING RIGHT TUPH (IGE MANEUVEP)	.100	2.387	.817
6	HOVERING LEFT TUPH (IGE MANEUVEP)	.100	2.887	.817
7	HOVEFING LONGITUDINAL CONTPOL COPP. (IGE MANEUVEP)	.010	.126	.027
8	HOVEPING LATERAL CONTROL COPF. IGE MANEUVER/	.010	.126	.027
à	HOVEPING PUDDEP CONTROL COPP. (IGE MANEUVER)	.010	.126	.027
10	SIDEWARD FLIGHT TO THE PIGHT (IGE MANEUVER)	.250	2.110	.409
11	SIDEWAPD FLIGHT TO THE LEFT (IGE MANEUVER)	.250	2.110	.409
12	PEARMARD FLIGHT (IGE MANEUVER)	.250	1.600	.241
13	ACCELERATION HOVER TO CLIMB A 5 (IGE MANEUVER)	.500	3.248	.456
14	NOPMAL DECELEPATION (IGE MANEUVER)	.700	.823	2.519
15	OUICK STOP DECELERATION (IGE MANEUVER)	.300	.823	2.519
16	APPROACH AND LANDING IGE MANEUVER	1.000	.385	4.529
17	FOPWARD LEVEL FLIGHT 0.50 VH AT 314 RPM	.500	1.550	1.260
13	FOPWAPD LEVEL FLIGHT 0.50 VH AT 324 PPM	4.500	.180	11.296
19	FORWARD LEVEL FLIGHT 0.60 VH AT 314 PPM	.200	1.040	1.205
20	FORWARD LEVEL FLIGHT 0.60 VH AT 324 PPM	1.800	.115	10.867
21	FORWARD LEVEL FLIGHT 0.70 VH AT 314 RPM	.300	.350	.657
22	FORWARD LEVEL FLIGHT 0.70 VH AT 324 PPM	2.700	.040	5.856
83	FORWARD LEVEL FLIGHT 0.80 VH AT 314 PPM	1.500	.171	.241
Ξ4	FORWARD LEVEL FLIGHT 0.80 VH AT 324 PPM	13.500	.020	2.171
25	FORWARD LEVEL FLIGHT 0.90 VH AT 314 PPM	2.500	.313	.013
26	FORMARD LEVEL FLIGHT 0.90 VH AT 324 PPM	22,500	.232	.157
27	FORWARD LEVEL FLIGHT VH AT 314 PPM	1.000	.010	.013
28	FORWARD LEVEL FLIGHT VH AT 324 PPM	9.000	.001	.161
23	HORMAL FULL POWER CLIMB	4.000	5.375	6.172
30	HIGH-SPEED FULL POWER CLIMB	1.000	2.190	2.644
31	HIGH-SPEED FULL POWER CLIMB MAX. RATE ACCEL. FULL POWER CLIMB TO CRUISE A S NORMAL RIGHT TURN AT 0.5 VH NORMAL RIGHT TURN AT 0.7 VH	2.800	2.848	8.154
38	NORMAL PIGHT TUPN AT 0.5 VH	1.000	6.122	1.116
33	NORMAL RIGHT TUPN AT 0.7 VH	1.000	2.188	1.116
34	NORMAL RIGHT TURN AT 0.9 VH	2.000	.438	.248
35	NORMAL LEFT TURN AT 0.5 VH	1.000	5.671	1.116
36	NORMAL LEFT TURN AT 0.7 VH	1.000	2.026	1.116
31	NUPMAL LEFT TURN AT 0.9 VH	2.000	.406	.248
38	LONGITUDINAL CONTROL CORR. AT 0.9 VH	.050	.050	.001
37	CHIERAL CUNTRUL CURP. HT 0.9 VH	.050	.050	.001
40	RODDER CONTROL CORR. HT 0.9 VH	.050	.050	.001
41	SIDESLIM DODI DDUCK RECENT	.500	.113	.013
46	NDRMAL PIGHT TUPN AT 0.5 VH NDRMAL RIGHT TUPN AT 0.7 VH NDRMAL RIGHT TURN AT 0.7 VH NDRMAL LEFT TURN AT 0.9 VH NDRMAL LEFT TURN AT 0.9 VH LONGITUDINAL CONTPOL COPR. AT 0.9 VH LONGITUDINAL CONTPOL CORP. AT 0.9 VH RUDDEP CONTROL CORP. AT 0.9 VH SIDESLIP PART POWER DESCENT FIPING IN A HOVER STPAFING IN ACCEL. FROM A HOVER	2.550	6.471	7.679
43	FIFING IN MENER STROFTING IN ACCEDING TORM A DEVER	.075	19.047	.230
44	SIMMEING IN HULEL. FRUM H HUVER	.050	.672	.270

38

FLIGHI + OHDITION Schnery Pun-PT. TARGET DIVE AT 0.6 VL GUNNERY PUN-PT. TARGET DIVE AT 0.8 VL GUNNERY PUN-PSPAY FIRE DIVE AT 0.8 VL GUNNERY PUN-PVU TO THE PIGHT AT 0.6 VL GUNNERY PUN-PVU TO THE RIGHT AT 0.8 VL GUNNERY PUN-PVU TO THE RIGHT AT 0.4 VL GUNNERY PUN-PVU TO THE RIGHT AT 0.4 VL GUNNERY PUN-PVU TO THE RIGHT AT 0.4 VL GUNNERY PUN-PVU TO THE LEFT AT 0.8 VL GUNNERY PUN-PVU TO THE LEFT AT 0.4 VL GUNNERY PUN-PVU TO THE LEFT AT 0.5 VL GUNNERY PUN-PVU TO THE LEFT AT 0.5 VL GUNNERY PUN-PVU SYMMETPICAL) AT 0.7 VL GUNNERY PUN-PVUSYMMETPICAL) AT 0.7 VL GUNNERY TURN TO THE PIGHT AT 0.5 VH GUNNERY TURN TO THE LEFT AT 0.4 VH GUNNERY TURN TO THE FIGHT AT 0.4 VH GUNNERY TURN TO THE FIGHT AT 0.4 VH GUNNERY TURN TO THE FIGHT AT 0.4 VH GUNNERY	DE 1160	MILD	:EVEFE
45 GUNNERY PUN-PT. TARGET THE AT 0 4 U	200	684	
46 GUNNERY PUN-PT, TARGET DIVE AT 0 8 VI	.200	.030	
47 GUNNERY PUN-PT, TARGET DIVE AT 0 9 VI		. 232	. (34
49 GUNNERY DUN-PT. TAPACT BIVE AT U	1.400	.051	.201
AG GUNNERV DUN-SPEAV ETDE TIVE AT A . UN	.280	.051	.201
TO CONNERT FOR SPRAT FIRE DIVE AT 0.5 VL	.120	.626	1.136
SU COMMERT FOR STRAT FIRE DIVE AT 0.8 VL	.360	. 202	1.136
SI COMMENT FOR STREETINE DIVE AT UN	.600	. 051	.300
SC CONNERT FOR CREAT FIRE DIVE HI VL	.120	. 051	.300
23 CUMPERT FOR-FYC ID THE FIGHT HT 0.6 VL	.100	. 249	.440
THE CUMPERT FURTHER TO THE RIGHT AT A A W	.300	.249	.450
SO COMPERT FOR FYCH IG THE FIGHT HT U. 4 VL	.500	. 062	.150
SE COMPERT FOR PYO TO THE FIGHT HI VC	.100	.062	.110
ST CONNERT FORTETO TO THE LEFT HT O.A VL	.100	.249	,440
SS GUMMENT NUM-PZU TU THE LEFT HT 0.8 VL	.300	.249	,450
54 CONNERT FURTHER OF THE LEFT HI U.S VL	.500	. 062	.120
SU GUNNERT RUN-PAU TO THE LEFT MT VL	.100	. 062	.110
61 GUNNERY PUN-PZU(SYMMETPICAL) RT 0.6 VL	.010	.055	.100
62 GUNNERY PUN-P/U/SYMMETRICAL) AT 0.8 VL	.030	. 055	.100
E3 GUNNERY PUN-FAUSSYMMETRICALS AT 0.3 VL	.050	. 014	.025
64 GUNNERY PUN-P U(SYMMETRICAL) AT VL	.010	.014	.025
65 GUNNERY TURN TO THE RIGHT AT 0.5 VH	.375	1.375	.248
66 GUNNERY TURN TO THE FIGHT AT 0.7 VH	. 375	1.375	.198
67 GUNNERY TURN TO THE PICKT AT 11,4 VH	.750	.306	.100
ts GUNNERY TURN TO THE LEFT AT 0.5 VH	. 375	1.375	.248
59 GUNNERY TURN TO THE LEFT AT 0.7 VH	. 375	1.375	,198
70 GUNNERY TURN TO THE LEFT AT 0.9 VH	.750	. 300	.100
TI GUNNERY S-TURM AT 0.8 VH	.200	.330	.150
72 GUNNERY TURN AT VH	. 075	.037	.099
73 FOWER TO AUTO, TRANSITION AT 0.5 VH	.050	.007	
74 FOWER TO AUTO, TRANSITION AT 0.7 VH	.125	.013	. 01.
75 POWER TO AUTO, TRANSITION AT 0.9 VH	-175	.013	.013
76 AUTO, TO FOWER TRANSITION IGE	.150	.007	.007
77 AUTO, TO FOWER TRANSITION AT 0.4 VH	.100	. 010	.010
78 AUTO, TO POWER TRANSITION AT 0.6 VH	.075	.007	. 007
79 AUTO, TO POWER TRANSITION AT MAY, HUTO, A :	. 025	.00?	. 003
SU STABILIZED AUTO. FLIGHT AT 0.4 VH	,200	.004	. 004
31 .TABILIZED AUTO. FLIGHT HT U.E VH	1.400	.012	. 012
SE TABILIZED AVID, FLIGHT AT MAX, AUID, A/S	. 300	.004	.084
S3 HUTD. TURN TO THE RIGHT AT 0.4 VH	. 050	. 001	. 001
54 AUTO, TUAN TO THE ALGHT AT U.C VH	.400	500.	. 002
85 AUTO, TUPN TO THE PIGHT AT MAY, AUTO, A 1	.050	. 001	.001
SO AUTO, TUEN TO THE LEFT AT 0.4 VH	.050	. 001	, 001
57 AUTO, TUPN TO THE LEFT AT U.E VH	.400	. 002	. 002
SS AUTO, TUPN TO THE LEFT AT MAY, AUTO, A S	.050	. 001	. 001
59 AUTOFOTATION LANDING	.250	.007	.007
	100.000	100.000	100.000

TABLE 6.UPPER AND LOWER BOUNDS FOR
TECHNICAL ACCEPTANCE CRITERIA

and interest and the second second second second second second

	Lower Fatigue Life Bounds	Upp Fatig Bou	ue Life
Component	Recommended Lives	Mild Spectrum	Severe Spectrum
Main Potor Blade	1,100	4,307	3,542
Main Rotor Yoke Extension	3,300	24,917	14,779
Main Rotor Grip	Unlimited	190,042	69,686
Main Rotor Pitch Horn	6,600	17,953	10,596
M/R Retention Strap Ftg./Nut	2,200	9,517	4,488
Swashplate Drive Link	11,000	27,353	16,513
Swashplate Outer Ring	3,300	18,707	12,325
Swashplate Inner Ring	3,300	25,128	15,481
Hydraulic Boost Tube	3,300	8,635	5,145
Tail Rotor Blade	1,100	12,106	7,192

39

~ 1

-

.

DEVELOPMENT OF A CANDIDATE FCM SYSTEM FOR THE AH-1G HELICOPTER

The development of a candidate FCM system for the AH-1G helicopter requires the following procedure: (1) the identification of those flight conditions that have the greatest fatigue-damaging effect on the critical AH-1G components, (2) the ranking of the fatigue-damaging flight conditions according to both the degree of their damaging effects on the helicopter as a whole and the relative costs to replace the selected components, (3) the selection of the measurable flight parameters whose collective variations will characterize the flight conditions identified in (1), and (4) the final definition of an FCM system in terms of specific combinations of flight parameters and the threshold levels of these parameters.

The following sections summarize the analytical processes used in developing an FCM system for the AH-1G.

Flight-Condition Ranking

R

CONSTRAINTS OF

Of the 89 flight conditions (each with three gross weight ranges) identified in the AH-1G design fatigue spectrum, some are damaging to the 10 selected components in varying degrees while others are not damaging at all. Consequently, the damaging flight conditions had to be first identified and then ranked according to both the degree of their damaging effects on the helicopter as a whole and the costs to replace the selected components.

As was done previously in Reference 1, the fatigue-damaging (sensitivity) rank of each AH-1G flight condition was computed by Equation (4). With relative expense and complexity of the selected dynamic components being significant factors, this equation provides the means for representing each flight condition relative to its rate of producing fatigue damage to the helicopter as a whole. A normalized rank value was also computed by Equation (5). The results of the ranking procedure are shown in Table 7.

$$R = \sum_{\substack{al1\\components}} (C_F \cdot (\frac{L_R}{L_A}) \cdot n \cdot D)$$
(4)

$$=\frac{R}{t}$$

(5)

where R = sensitivity rank value

Martin College

C_F = estimated relative cost factor for each component (each component was normalized to 1.0 for the main rotor blade) AN TONEN

1212 Later 420 Parts 1. 12

- $\frac{L_R}{L_A}$ = ratio of recommended life of each component to an assumed aircraft life of 7200 hours
- n = number of components per aircraft
- D = percentage of fatigue damage to each component due to a given flight condition
- R = normalized rank value
- t = flight condition frequency in the design usage spectrum

<u>FLIGHT CONDITION</u> Gunnery Run P/U (symmetrical) at VI Gunnery S-turn at VH Gunnery Run P/U to the Left at VL Gunnery Run P/U to the Right at VL Gunnery Run P/U (symmetrical) at 0.9 VL Gunnery Run P/U to the Left at 0.9 VL Gunnery Run P/U to the Right at 0.9 VL Gunnery Run P/U to the Right at 0.9 VL Gunnery Run P/U to the Right at 0.8 VL Normal Start/Shutdown (w/coll.) Gunnery S-Lurn at 0.8 VH	SENSITIVITY RANK VALUE	NORMALIZED RANK VALUE
(unners Bun P/II (symmetricit) at VI	4289	12,8916
Connerv Schurn of MB	2 4017	32.0233
Connery Stark at Yu	2.6629	26.6288
Connerv Run P/U to the Right it Vi	2 1912	21.9116
(Junnery Run P/II (symmetrical) at 0.9 VI.	7996	15,9910
Gunnery Run P/II to the Left at 0.9 VL	5.0312	10,0623
(μ p μ) Rup P/II to the Right at 0.9 VI.	3.6742	7.3485
Gunnery Run P/U (symmetrical) at 0.8 VL	.1522	5,0733
Normal Start/Shutdown (w/coll.)	3,9272	3,9272
Gunnery S-lurn at 0.8 VH	,7270	3.6352
Gunnery Run P/U to the Loft at 0.8 VL		3,1934
Autorotation Landing	.7414	2.9777
Gunnery Run P/U to the Right at 0.8 VL Gunnery Run to the Right at 0.9 VH	.8523	
Gunnery furn to the Right at 0.9 VH	1.9089	2.8109
Gunnerv lurn to the Left at 0.9 VH	1.5982	***203
Gunneiv Run-Pt, larget Dive at VL	. 5653	2.0188
lateral (ontio) Corr. at 0.9 VH	.0910	1.8191
Gunnery Run-Spray Fire Dive at VL	. 2160	1.8001
Auto, to Power mansition at Max. Auto, A/S	.0286	1.1440
Hovering Longitudinal (ontrol Corr. (IGL Maneuver)	.0107	1.0732
Ruddel Control Corr. at 0.9 Vit	.0435	.8692
Gunnery Run P/U (symmetrical) at 0.6 VL	.0082	.8179
Gunnery P/U to the Left at 0.6 VL	.0794	. 7944
Gunnery P/U to the Left at 0.6 VL Gunnery Run P/U to the Right at 0.6 VL forward Level Flight VH at 314 RPM Normal Left lurn at 0.9 VH	.0718	.7184
forward Level Flight VII at 314 RPM	.5478	.5478
Normal Left lurn at 0.9 VH	.9934 .1675 1398	. 4967
Gunnery lurn to the Left at 0.5 VII	.1675	.4465
Gunnery lurn to the Left at 0.7 VH		.3728 .3630
Gunnery lurn to the Right at 0.7 VH	.1361	. 3030
Gunnery luin to the Right at 0.5 VH	.1087	.2898
Gunnerv Run-Sprav Fire Dive at 0.9 VL Quick Stop Deceleration (IGL Maneuver) Approach and Landing (IGL Maneuver)	.1731	
Quick Stop Deceleration (IGL Maneuver)	.0826 .2285	. 2754 . 2285
Approach and Landing (IGL Maneuver) High-Sp. ed full Power Climb	.1247	.1247
forward level llight VH at 324 RPM	1.0412	.1157
Auto, to Power Fransition at 9.6 Vii	.0077	, 1024
Auto, luin to the Right at Max, Auto, A/S	.0040	.0809
Longitudinal Contiol Cori. at 0.9 VH	.0037	.0731
Gunnelv Run-Pt. larget Dive at 0.9 VL	.0983	.0702
Gunnerv Run-Spray Lire Dive at 0.8 VL	.0205	.0569
Normal Right Tuin at 0.7 VII	.0384	
	.0271	.0384
Sunnery Run-Pt. Target Dive at 0.8 VL Auto. Turn to the Left at Max. Auto. A/S	.0012	.0235
Normal Right luin 0.9 VH	.0402	.0201
Hovering Lateral (ontrol (orr. (161 Maneuver)		.0088

TABLE 7. RESULTS OF RANKING PROCEDURE

12 9-14 12, M. 18, MA ... " MA

41

. -

Selection of Characteristic Parameters and Parameter Thresholds

References 4 and 5 were thoroughly searched for those flight parameters that have a consistent response to specific flight conditions. These documents contain pilot stick and pedal position data, component load data, and helicopter response data (such as roll rate, pitch rate, and pitch attitude). The documented flights, where each flight condition was flown many times in various gross weight-altitude combinations, were examined to detect the behavior of each recorded parameter during the defined flight conditions. (In describing the data reduction procedure, Reference 4 states that the maximum mean helicopter attitude and attitude rate values were measured and processed for each maneuver, but not for the level-flight flight conditions. The mean and oscillatory center-of-gravity vertical acceleration levels were measured and recorded at the maximum mean level for maneuvers and at the maximum oscillatory peak for the level-flight flight conditions.) The flight condi-

tions that had ranked highly were examined very closely. Each of the measurable flight parameters listed in Table 8 was considered individually or in combination with others to determine their potential in flight condition monitoring.

TABLE	8.	CAND	IDAT	`E	MON	IJ	ORI	NG	PARAMETERS
		FOR	FCM	RI	ECOR	D	ING	SYS	STEM

Pitch Attitude
Roll Attitude
Pitch Rate
Roll Rate
Yaw Rate

Table 9 shows sample data extracted from References 4 and 5 for two flight conditions: the gunnery run pullups to the right and left at $V_{\rm L}$ ($V_{\rm L}$ indicates limit velocity). These two flight conditions were ultimately considered sufficiently

- 4. Wettengel, W.O., MODEL AH-1G NONFIRING LOAD LEVEL SURVEY, VOLUMES I THROUGH IX, Report No. 209-099-041, Bell Helicopter Company, Fort Worth, Texas, June 1967.
- Long, D.B., MODEL AH-1G HELICOPTER ARMAMENT QUALIFICATION TEST AND FIRING LOAD LEVEL SURVEY, Report No. 209-099-031, Bell Helicopter Company, Fort Worth, Texas, November 1967.

42

à

similar to be monitored as one flight condition category defined as follows:

```
Vertical Acceleration at c.g. \geq 1.5g
Airspeed > 0.95 V<sub>J</sub>
10° < Roll Attitude < 35°
```

TABLE 9. SAMPLE LOAD LEVEL SURVEY DATA

Flight Condition: Gunnery Run Pullup to the Right @ V_{L}

					14	
Origin of _Data*	Vertical Acceleration @ c.g.(g)	Pitch Rate (deg/sec)	Roll Rate (deg/sec)	Yaw Rate (deg/sec)	Pitch Attitude _(deg)	Roll Attitude _(deg)_
N ₁	1.94	8	11	5	25	26
N ₂	1.64	6	12	3	9	22
N ₃	2.07	9	11	3	18	25
N ₄	1.77	7	13	6	23	30
N ₅	1.64	7	8	3	8	24
N ₆	1.75	7	8	3	8	21
N ₇	1.62	6	- 3	4	- 7	20
N ₈	1.21	2	- 2	2	- 2	7
N ₉	1.41	5	10	4	- 7	23
^N 10	1.63	7	13	3	15	25
F ₁	2.01	11	18	5	δ	26
F ₂	2.16	11	17	5	- 5	13
F ₃	2.09	12	12	6	11	18
F ₄	1.94	15	12	7	- 5	13
F ₅	1.75	11	18	2	1	16
F ₆	1.82	10	17	0	1	13
F ₇	1.72	8	17	4	- 4	33
F ₈	2.23	17	- 2	8	12	34
F ₉	1,82	7	-1	6	11	28
F ₁₀	1,79	9	8	5	17	24

* NOTE:

 \mathbf{N}_{i} indicates data was taken from nonfiring load level survey

 F_1 indicates data was taken from firing load level survey

i indicates number of times flight condition was performed in load level survey

43

ŗ,

à

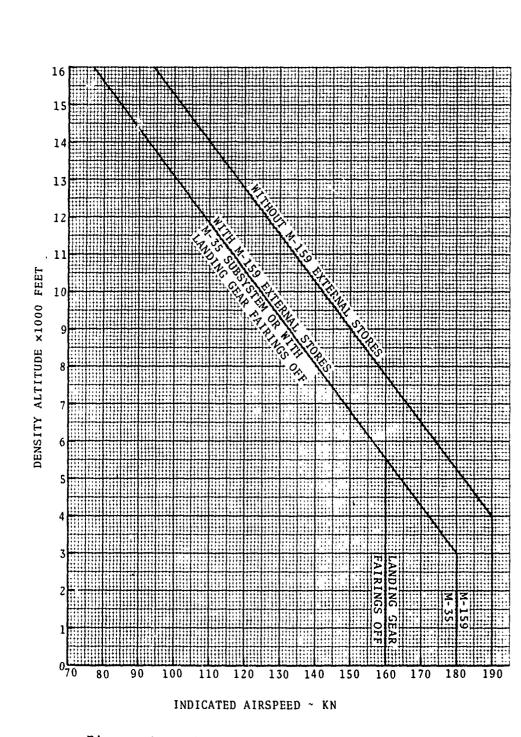
TABLE	9.	Concluded
-------	----	-----------

Origin of Data*	Vertical Acceleration <u>@ c.g.(g)</u>	Pitch Rate (deg/sec)	Roll Rate (deg/sec)	Yaw Rate (deg/sec)	Pitch Attitude <u>(deg)</u>	Roll Attitude _(deg)
N ₁	2,03	10	- 9	- 6	23	- 35
N ₂	1.73	8	- 1 2	- 5	9	- 31
N ₃	1.97	8	- 14	- 4	13	- 33
N ₄	1.78	8	-12	- 4	21	- 29
N ₅	1.63	6	5	0	16	- 21
N ₆	1.66	4	11	- 5	10	9
N ₇	1.56	5	- 7	- 5	-12	- 2 2
N ₈	1.17	2	- 4	- 3	- 5	- 4
N ₉	1.43	6	7	- 4	8	- 21
N10	1.59	7	-15	- 7	14	- 31
F1	2.19	12	- 18	2	6	- 24
F ₂	2.20	11	- 18	4	- 6	-11
F ₃	1.83	7	- 5	- 4	4	- 9
F ₄	1.85	9	- 11	0	5	-13
r _s	1.86	10	- 9	0	18	-10

Flight Condition: Gunnery Run Pullup to the Left @ V

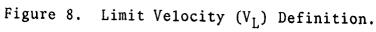
* NOTE:

 $N_{\rm j}$ indicates data was taken from nonfiring load level survey.


F, indicates data was taken from firing load level survey.

1 indicates number of times flight condition was performed in load level survey

In Table 2, where all airspeeds are expressed in terms of $V_{\rm H}$ (the maximum attainable level flight airspeed) or $V_{\rm L}$ (the limit airspeed), the $V_{\rm H}$ of 144 KTAS is defined in Reference 6, and $V_{\rm L}$ is defined in Reference 7 and shown in Figure 8. In


7. Technical Manual, TM 55-1520-221-10, OPERATOR'S MANUAL: ARMY MODEL AH-1G HELICOPTER, Headquarters, Department of the Army, Washington, D.C., 12 December 1975.

Finnestead, R.L., Laing, E., Connor, W.J., and Buss,
 M.W., ENGINEERING FLIGHT TEST, AH-1G HELICOPTER (HUEY/COBRA),
 PHASE D PART 2, PERFORMANCE, USAASTA 66-06, U.S. Army
 Aviation Systems Test Activity, Edwards Air Force Base,
 California, April 1970, AD 874210.

Sale and

5

45

- 21 - 41 - 41 - 4

n delen an singe

this figure the airspeed limitation for the M-159 external stores configuration will be incorporated in the FCM system as a reasonable, although conservative, $V_{\rm I}$ definition. Since both $V_{\rm H}$ and $V_{\rm L}$ are a function of density altitude, pressure altitude and outside air temperature were included among the required parameters so that they could be monitored in conjunction with indicated airspeed. $V_{\rm H}$ and $V_{\rm L}$ can be calculated from the following equations:

$$V_{\rm H} = 144 - \frac{r_{\rm d}}{500} \tag{6}$$

and V_L

= 180 knots below
$$H_d$$
 = 3000 ft (7)

and the statistic holders at the second

)

$$V_{\rm L} = 180 - 8 \left[\frac{{}^{11}{d}}{1000} - 3 \right] \text{ for } H_{\rm d} \text{ above 3000 ft}$$
 (8)

where V_{H} = maximum level flight airspeed, knots

 $V_1 = 1$ imit airspeed, knots

 H_A = density altitude, feet

the density altitude is calculated from:

$$H_d = 145,447 \left[1 - \left(\frac{9.6307 P_a}{T + 273.18}\right) \cdot 235\right]$$
 (9)

where P_{a} = static pressure, inches mercury

T = outside air temperature, °C.

Since the damage rates for the AH-1G flight conditions vary significantly with gross weight, that parameter was included in the FCM system to further enhance the validity of the FCM system damage assessment model. The ranges chosen to represent the low, medium, and high gross weight categories are listed in Table 10.

TABLE 10. GROSS WEIGHT RANGES

Range <u>Nomenclature</u>	Gross Weight Range (1b)
L - GW	less than 7750
M- GW	7750 through 8750
II - GW	greater than 8750

The following method was chosen as the most practical means of reasonably estimating the instantaneous gross weight: (1) measure the takeoff gross weight by a landing skid deflection technique, and (2) conservatively estimate the instantaneous gross weight of the helicopter by only assuming that the gross weight linearly decreases with fuel burnoff.

Description of Recommended FCM System

The evaluation of all fatigue-damaging flight conditions relative to the previously described flight parameter behavior led to the selection of the parameters listed in Table 11 as the set of coordinated parameters which may best describe the

TABLE 11. SELECTED MONITORING PARAMETERS FOR FCM RECORDING SYSTEM

Directly Monitored Parameters	Symbol
Indicated Airspeed	A/S
Pressure Altitude	Н _р
Outside Air Temperature	Т
Main Rotor Velocity	MRV
Roll Attitude	β
Pitch Attitude	θ
Vertical Acceleration @ c.g.	n _z
Landing Gear Touchdown	TD
Engine Torque Pressure	ET
Takeoff Gross Weight	TGW

Computed Parameters	<u>Symbol</u>
Rate of Descent	RD
Maximum (Level Flight) Airspeed	v _H
Limit Airspeed	V _L
Instantaneous Gross Weight	GW

fatigue design spectrum in terms of a unique set of flight condition categories (FCC) (See Table 12). Although FCC 83 through 85, 89 through 91, and 95 through 97 do not specifically represent any of the flight conditions defined in the fatigue design spectrum, they enhance understanding of the AH-1G operational usage spectrum. (For example, FCC 96 was intended to measure and record the magnitude of the largest vertical acceleration peak during a recording period.) Table 12 summarizes the resultant FCM system recommended for the AH-1G helicopter. For simplicity, the breakdown of the 89 flight conditions by gross weight range was not shown in this table.

Note in Table 12 that it was necessary to formulate six flight condition categories that are not directly recorded (FCC 98 through 103). These FCC are reserved for estimations of time spent in making control corrections during hover and control corrections at 0.9 $V_{\rm H}$. This provision was made because the data in Reference 4 revealed that although these flight conditions could not be confidently detected, their damage rates were of sufficient magnitude to warrant due recognition.

Therefore, since the control corrections occur on a statistical basis, it was decided to account for them by first defining the FCC in which their time would be included (the hovering control correction times would appear in FCC 1, 2, and 3, and the control correction times at 0.9 V_H would appear in FCC 14, 15, and 16). A liberal percentage of time (2 percent was chosen) was deducted from these recorded flight condition categories and assigned to FCC 98 through 103.

ب

TABLE 12. FCM SYSTEM SUMMARY

I MARTINE CARACTER AND

		Cat. No. H-GW	Flight Condition Category Description	(a') Type Desig.	No(b)	Flight Conditions Included Description
1	2	3	Flight Clock Time	T	2 3 4 5 6 10 11 12 13 14 41 43 44	Normal Takeoff (IGE) Jump Takeoff (IGF) Steady Hover (IGF) Hovering Right Turn (IGE) Hovering Left Turn (IGF) Sideward Flight to the Left (IGE) Sideward Flight to the Left (IGE) Acceleration Hover to Climb A/S (IGE) Normal Deceleration (IGE) Sideslip Firing in a Hover Strafing in Acceleration from a Hover
	4		Rotor Start/Stop	С	1*	Normal Start'Shutdown (IGE)
5	6	7	Quick Stop	Ť	15*	Quick-Stop Deceleration (IGE)
8	9	10	Normal Landing	C	16*	Appreach and Landing (IGE)
11	12	13	Low-Velocity Flight	T	17 18 19 20 29 32 35	Forward Level Fit. θ 0.50 V _H and 314 RPM Forward Level Fit. θ 0.50 V _H and 324 RPM Forward Level Fit. θ 0.60 V _H and 314 RPM Forward Level Fit. θ 0.60 V _H and 324 RPM Normai Full Power Climb Normai Right Turn θ 0.50 V _H Normal Left Turn θ 0.50 V _H
14	15	10	High-Velocity Hight	т	21 22 23 24 25 26 42	Forward level Fit. © 0.70 V _H and 314 RPM Forward Level Fit. © 0.70 V _H and 324 RPM Forward Level Fit. $= 0.80$ V _H and 314 RPM Forward Level Fit. $= 0.80$ V _H and 324 RPM Forward Level Fit. $= 0.90$ V _H and 314 RPM Forward Level Fit. $= 0.90$ V _H and 314 RPM Forward Level Fit. $= 0.90$ V _H and 324 RPM Forward Level Fit. $= 0.90$ V _H and 324 RPM Forward Level Fit. $= 0.90$ V _H and 324 RPM
17	18	19	Maximum Velocity Flight	т	27* 28*	Forward Level Fit. 0 V _H and 314 RPM Forward Level IIt. 0 V _H and 324 RPM
20	21	22	High-Speed Full Power Climbs	Г	30* 31	High-Speed Full Power Climbs Max. Rate Accel. Full Power Climb to Cruise A/S
23	24	25	Normal (High-Speed) lurns	1	* 3* 36	Noimal Right Furn @ 0.70 V _H Normal Left Turn @ 0.70 V _H
26	27	28	Normal (High-Speed) Turn-	r	34* 37	Noimal Right Turn # 0.90 V _H Normal Left Turn # 0 90 V _H
29	30	31	Low-velocity Dives	r	15 49	Gunnery Run Pt. Target Dive @ 0.60 VL Gunnery Run-Spray Fire Dive # 0.60 VL
32	33	3:	Moderate-Velocity Dives	r	46* 50*	Gunnery Run-Pt. Target Dive # 0.80 VL Gunnery Run-Spray Fire Dive @ 0.80 VL
35	36	37	High-Velocity Dives	Т	47* 51*	Gunnery Run-Pt. Target Dive & 0.90 V Gunnery Run-Spray Fire Dive & 0.90 V
38	39	40	Maximum-Velocity Dives	T	48* 52*	Gunnery Run-Pt. Target Dive @ VL Gunnery Run-Spray Fire Dive @ VL
41	42	45	Asymmetrical Pullups	r	53* 57*	Gunnery Run P/U to the Right 0 0.60 V _L Gunnery Run-P/U to the Left 0 0.60 V _L
44	45	45	Asymmetrical Pullups	τ	54* 58*	Gunnery Run-P/U to the Right @ 0.80 V _L Gunnery Run-P/U to the Left @ 0.80 V _L
47	48	49	Asymmetrical Pullups	Т	55 * 59*	Gunnery Run-P/U to the Right @ 0.90 V _L Gunnery Run-P/U to the Left @ 0.90 V _L
50	\$1	52	Asymmetrical Pullups	Т	56* 60*	Gunnery Run-P/U to the Right [@] V Gunnery Run-P/U to the Left [@] V _L

49

26,917.2 . 1

TABLE 12. Concluded

and the second state of the second state and the second state of the second state of the second state of the s

Flt. C	ond.	Cat. No.				Flight Conditions Included
<u>L - G</u> W	M - GW	H-GW	Flight Condition Category Description	Type ^(a) Desig.	No (b)	Description
53	54	55	Symmetrical Pullups	T	61*	Gunnery Run–P/U (Symmetrical) 0 0.60 V _L
\$6	57	58	Symmetrical Puliups	т	62*	Gunnery Run P/U (Symmetrical) 0 0.80 V
\$9	60	61	Symmetrical Fullups	т	63* 64*	Gunnery Run-P/U (Symmetrical) @ 0.90 V Gunnery Run-P/U (Symmetrical) @ VL
62	63	64	Gunnery Turns	т	65* 68*	Gunnery Turn to the Right 0 0.50 V _H Gunnery Turn to the Left 0 0.50 V _H
65	66	67	Gunnery Turns	T	66* 69*	Gunnery Turn to the Right $0.70 V_H$ Gunnery Turn to the Left $0.70 V_H$
68	69	70	Gunnery Turns	т	67* 70*	Gunnery Turn to the Right 0 0.90 $V_{\rm H}$ Gunnery Turn to the Left 0 0.90 $V_{\rm H}$
71	72	73	High-Velocity S-Tuin	т	71*	Gunnery S-Turn @ 0.80 V _H
74	75	76	Maximum.Velocity S-Turn	т	72*	Gunnery S-Turn @ V _H
77	78	79	Autorotation Clock Time	Τ	73 74 75 76 77 80 81 82 83 84 83 84 86 87	Power to Auto. Transition # 0.50 V _H Power to Auto. Transition # 0.70 V _H Power to Auto. Transition (0.70 V _H Auto. to Power Transition (1GL) Auto. to Power Transition ψ 0.40 V _H Stabilized Auto. Fit. # 0.40 V _H Stabilized Auto. Fit. # 0.60 V _H Stabilized Auto. Fit. # 0.60 V _H Auto. Turn to the Right # 0.40 V _H Auto. Turn to the Right # 0.40 V _H Auto. Turn to the Left # 0.40 V _H Auto Turn to the Left # 0.40 V _H
80	81	82	Auto, to Power Transition	C	78* 79*	Auto. to Power Transition @ 0.60 V _H Auto. to Power Trans. © Max. Auto. A/S
81	84	85	Auto, to Power Transition	C	• •	••••••
86	87	88	High-Speed Auto. Turns	т	85* 88*	Auto. Turn to the Right ∉ Max. Auto. A/S Auto. Turn to the Left ∉ Max. Auto. A/S
89	90	91	High+Speed Auto. Turns	г	• -	
92	93	94	Autorotation Landing	ί	894	Autorotation Landing
	95		Misc High-G Maneuvers	м	•••	
	96		Maximum n _z Experienced	м	• -	
	97		Maximum A/S Experienced	н	• •	
98	99	100	Hovering Control Corrections	н	7* 8* 9	Hovering Longitudinal Control Corr. (16E) Hovering Lateral Control Corr. (16E) Hovering Rudder Control Corr. (16E)
101	102	103	High+Speed Control Corr.	N	38* 39* 40*	Longitudinal Control Corr. 0 0.90 V _H Lateral Control Corr. 0 0.90 V _H Rudder Control Corr. 0 0.90 V _H

NOTI (#) T - category timer
 C - category occurrence timer
 M - maximum parameter magnitude attained
 N - null recording category (control corrections times are conservatively estimated from other category timers)

NOTE (b) * Indicates Damaging Flight Conditions

à

DETERMINATION OF FCM SYSTEM TECHNICAL ACCEPTABILITY

The assessment of the technical acceptability of a candidate FCM system, such as the one described in Table 12, requires analyzing the proposed system with the aid of two computer programs, FCMMOD and SIMULE, which are documented in Reference 1.

Program FCMMOD uses the fatigue design spectrum and associated component damage rates, together with the FCM system definition, to compute appropriate fatigue-damage coefficients for each flight condition category. FCMMOD has a degree of built-in conservativeness since it increases the effect of the highly fatigue-damaging flight conditions in the derivation of flight condition category damage coefficients by simply assigning the maximum flight condition damage rate within each FCC as the damage coefficient for that category.

Program SIMULE simulates the operation of an FCM system by computing component fatigue lives from the FCMMOD-generated fatigue-damage coefficients in a given utilization spectrum, namely, the previously described mild and severe spectra in this application.

Fatigue-Damage Coefficients for FCM System

Table 13 presents the fatigue-damage coefficients for the FCM system described in Table 12. Any damage coefficient with a zero value indicates that the corresponding flight condition category is not fatigue-damaging for the particular component. Accordingly, since flight condition categories 95, 96, and 97 are not specifically representative of fatigue design spectrum flight conditions, their damage coefficients are zero.

Proposed FCM System Compliance with Technical Acceptance Criteria

For both the mild and the severe spectrum, Table 14 lists the SIMULE-computed fatigue lives for each of the 10 AH-1G components and the upper and lower fatigue life bounds for these components.

Since all fatigue lives fall within the respective bounds, the proposed FCM system and the associated FCM system damage model satisfy the technical acceptance criteria and therefore are valid means for assessing fatigue damage in AH-1G fatiguecritical components.

Detailed FCM System Description

Although the technically acceptable FCM system described in Table 12 defines the system parameter combinations and associated threshold levels, it does not define a completely workable system. For example, consider flight condition

	IN EACH	FLIGHT CO	NDITION	CATEGORY	
Flight Condition	Main Rotor Blada	Main Rotor Yoke	Main Rotor	Main Rotor Pitch	Retention Strap
Category	Blade	Extension	<u>Grip</u>	Horn	Ftg./Nut
1	0.	0.	0.	Û.	υ.
ż	0,	0.	0.	0.	0.
3	0.	0.	0.	0.	0.
4	0.	0.	0.	0.	.3623E-01
5	0.	0.	Û.	0.	0.
6	.4267E-03	Û.	0.	0.	Û.
7	.1789E-02	0.	0.	0.	0,
8	0.	0.	0.	0.	0.
9	.8420E-03	0.	0.	0.	0.
10	.6800E-03	0.	0.	Ű.	0.
11	0.	Ú.	0.	0. 9.	0. 0.
12	0.	0. 0.	0. 0.	0. 0.	0.
13	0. 0.	0.	0.	0.	0.
14 15	0.	0.	0. 0.	Ű.	0.
16	0.	0.	ŏ.	Ű.	ŏ.
17	.4245E-02	0.	ů.	ů .	Ŏ.
18	.2900E-03	0.	ŏ.	Û,	ó.
19	.2867E-03	0.	Q.	0.	0.
20	0.	0.	0.	Û.	0.
21	0.	0.	υ.	V.	0.
22	.1137E-02	0.	0.	0.	0,
23	0.	0.	Û.	0.	0.
24	.2100E-03	0.	0.	0.	0.
25	0.	0.	0.	0.	0.
26	0.	0.	0.	0.	0.
27	0.	0.	0.	U.	0.
28	.1833E-03	0.	0.	0.	0.
29	0.	0.	0.	0.	0.
30	0.	0.	0.	0.	0.
31	0. 0.	0. Ú.	0. 0.	0. 0.	0. 0.
32 33	0.	0.	0.	0.	ů.
34	.5185E-03	Ŭ.	ů.	Ű.	0.
35	.2917E-03	ů.	Ŭ.	Ő.	0 .
36	.2700E-03	0.	0.	0.	0.
37	.1094E-02	0.	0.	Ų.	υ.
38	4482E-02	0.	0.	0.	0.
39	.1429E-03	0.	0.	0.	0.
40	.6778E-02	0.	0.	Ø.	0.
41	0.	0.	0.	0.	0.
42	.8200E-03	0.	ΰ.	Ú.	0.
43	.3700E-02	0.	0.	.6233E-02	0.
44	.2867E-02	0.	0.	.1167E-02	0.
45	.4193E-02	0.	0.	.1400E-02	0.
46	.5567E-02	0.	0.	.9478E-02 .7500E-03	0. 0.
47 48	.1440E-02	.2970E-02 .7080E-02	0. 0.	.3156E-02	0.
49	.5904E-02 .1717E-01	.5107E-02	0.	.1499E-01	0.
50	.3900E-01	.1250E-01	0.	.2400E-02	Ő.
50	1640E-01	.23665-01	0.	.4840E-02	Û.

.1250E-01 .2366E-01 .2437E-01

.3900E-01 .1640E-01 .5860E-01

51 52

....

FATIGUE DAMAGE COEFFICIENTS FOR EACH COMPONENT TABLE 13.

10 A

and a construction of the second states and the second states and the second states and the second second second

à

ť

and a start of the sector of the

1

4

Wat Construction of Street, and Street, an

NET CONTRACTOR & CONTRACTOR STATES

52

0.

0.

.2400E-02 .4840E-02 .2223E-01

0.

å

ころうないなんやくちょうないないないない ちょうしょうちょう ちょうろうう

31 J -

State of the second

....

•---

Flight Condition	Main Rotor	Main Rotor Yoke	Main Rotor	Main Rotor Pitch	Retention Strap
Category	Blade	Extension	Grip	<u> Horn</u>	Ftg./Nut
53	0.	0.	0.	0.	0.
54	.8000E-03	Ů.	0.	0.	0.
55	.3667E-02	0.	0.	.6333E-02	0.
56	.6667E-03	0.	0.	.3333E-03	0.
57	.5600E-02	Ū.	0.	.1120E-01	Û.
58	.1244E-01	.1044E-01	0.	.1933E-01	0.
50	.1085E+00	,1400E-01	0.	.1050E-01	Û.
60	.7780E-01	.1140E-01	0.	.1700E-01	0.
61	.173E+00	.1153E-01	0.	.3733E-01	0.
62	0.	0.	Û.	0.	0.
63	.3467E-03	0.	0.	0.	Û.
64	.4053E-02	ù.	0.	0.	Û.
65	.5333E-03	0.	0.	0.	0.
66	.6880E-03	0.	Õ.	0.	0.
67	.2267E-02	0.	0.	.3644E-03	0.
68	.4080E-02	0.	0.	Q.	Û.
69	.7445E-02	0.	0.	.4560E-03	е.
70	.6489E-02	0.	0.	.1204E-02	0.
71	.2900E-02	.9050E-02	0.	Ú.	0.
72	.5100E-02	θ.	U.	0.	0.
73	.1123E-01	0.	0.	0.	0.
74	.1773E-01	.2133E-01	0.	0.	0.
75	.9921E-02	.3605E-02	0.	e.	0.
76	.1245E-01	.1705E-01	.4786E-01	0.	0.
77	0.	Û.	0.	0.	0.
78	0.	0.	Ú.	0.	0.
79	.2511E-02	0.	0.	0.	0.
80	.4000E-03	0.	0.	0.	0.
81	.1600E-03	0.	0.	ç.	0.
82	.8667E-02	0.	0.	0.	0. 0.
83	.4000E-03	0.	0.	μ.	0.
84	.1600E-03	0.	0.	0.	0.
85	.8667E-02	0.	0.	0.	0.
86	0.	0.	0.	0. 0.	ů.
87	Ú.	Ů .	0.	0.	0.
88	0.	0.	0.	0.	ů.
89	0.	0.	0. 0.	0.	ů.
90	0.	0.	0.	0.	Ŏ.
91	0.	0.	0.	0.	Ŭ.
92	.1114E-01	0. 0.	Ű.	ů.	0.
93	.5320E-02	.1005E-01	0.	ů.	0.
94	.3947E-02	.1005E-01 0.	ŏ.	ŏ.	0.
95 97	0. 0.	0.	ů.	Ö.	0.
96		0.	ŏ.	ċ.	0.
97	0.	0.	0.	0.	0.
98	.8000E-02	0.	Ŭ.	ů.	0.
99	.1400E-02	0.	0.	0.	0.
100	.1000E-02	0.	ů.	0.	0.
101	.8100E-02 .1140E-01	0.	Ŭ.	0.	0.
102	.5867E-02	0.	õ.	0.	0.
103	. JOOLE-0E	v.	••		

à

Flight	Swashplate	Swashplate	Swashplate	Hydraulic	Tail
Condition	Drive	Outer	Inner	Boost	Rotor
Category	Link	Ring	Ring	Cylinder	Blade
1	0.	0.	0.	0.	0.
2	0.	0.	0.	0.	0.
3	0.	0.	0.	0.	0.
4	0.	0.	0.	0.	0.
5	0.	0.	0.	0.	0.
6 7	0.	0.	0.	0. 0.	0.
8	0. 0.	0. 0.	0. 0.	0.	0. 0.
9	0.	0.	0.	0.	0.
		0.		0.	
10	0. 0.	0.	0. 0.	0.	0.
11 12	U. Û.	0.	U. U.	0. 0.	0. 0
13	0.	U.	0.	0. 0.	0. 0.
14	0.	0.	0.	U.	0.
15	Ů.	ů.	ů.	0.	ů.
16	U.	ů.	ů.	ů.	0.
17	ů.	ů.	.4450E-03	Ŭ,	ů.
18	ŏ.	Ŭ.	0.	Ú.	.5340E-03
19	Û.	0.	0.	Ú.	.7467E-03
20	0.	V.	•	U.	V.
21	υ.	0.	L .	Ú.	0.
22	0.	υ.	0.	0.	0.
23	0.	0.	0.	0.	0.
24	θ.	0.	υ.	0.	0.
25	Ú.	0.	ΰ.	υ.	0.
26	0.	0.	0.	υ.	0.
27	0.	υ.	ų.	V.	.2592E-02
28	0.	0.	0.	Û.	.4800E-03
29	V.	0.	0.	0.	0.
30	0.	U.	U.	0.	0.
31	0.	0.	0.	0. 0.	0.
32 33	0. V.	U. U.	0. 0.	U.	Ú. Ú.
34	0.	U.	U.	0.	0.
35	Ű.	0.	ů.	0.	<i>0</i> .
36	υ.	Ŭ.	ů.	Ű.	.5667E-03
37	Û.	Ů.	.3952E-03	0.	U.
38	υ.	υ.	.5893E-03	Û.	0.
39	0.	0.	.1657E-02	.2214E-03	.1707E-02
40	Ú.	.2024E-02	.7655E-02	.1195E-02	.7278E-02
41	Û.	Ú.	0.	υ.	Ο.
42	Ú.	θ.	0.	Ú.	0.
43	.1567E-02	.1043E-01	.4000E-03	.1500E-02	Û.
44	0.	.1067E-02	0.	.1017E-02	.1000E-02
45	.3727E-02	.4037E-02	.2953E-02	.2893E-U2	.5067E-03
46	.3222E-02	.1052E-01	.8744E-02	.1322E-01	.5889E-02
47	.1830E-02	.7600E-02	.5640E-02	.3410E-02	.3107E-01
48	.9200E-03	.4536E-02	.3784E-02	.1265E-01	.9344E-02
49	.5420E-02	.4553E-02 .1350E-02	.5353E-02 .1300E-02	.4299E-01 .1460E-01	.1360E-01 .1830E-01
50 51	.4000E-03 .1022E-01	.3400E-02	.32206-02	.3312E-01	.1916E-01
52	.2693E-01	.6267E-02	.8733E-02	.7277E-01	. 3733E-01
JE		. 0E01E-VE	LOLDOF AC		

•

TABLE 13. Continued

54

3

•....»...

1.19 Jack 1997

. -

Flight	Swashplate	Swashplate	Swashplate	Hydraulic	Tai1
Condition	Drive	Outer	Inner	Boost	Rotor
Category	Link	Ring	Ring	Cylinder	Blade
				······································	
53	0.	0.	Ú.	0.	0.
54	0.	0.	0.	0.	0.
55	.1667E-02	0.	.6667E-03	.1367E-01	0.
56	0.	0.	0.	.1667E-02	.1167E-02
57	.3267E-02	.6667E-03 .4333E-02	.2000E-02 .6667E-02	.4867E-02 .1456E-01	.1333E-02 .3556E-02
58 59	.6333E-02 .3000E-02	.1300E-02	.2000E-02	.1400E-01	.1000E-01
60	.7800E-02	.1400E-02	.2720E-02	.2040E-01	.7000E-02
61	.1400E-01	.9600E-02	.6333E-02	.3800E-01	.1680E-01
62	0.	0,	0.	0.	0.
63	0.	0.	ů.	Ú.	Û.
64	0.	0.	0.	.6844E-03	0.
65	0.	0.	0.	0.	0.
66	0.	0.	0.	.1600E-04	0.
67	0.	0.	0.	0.	0.
68	0.	.2880E-02	.1487E-02	0.	.3327E-02
69	.1453E-02	.2560E-03	0.	.2413E-03	.3840E-03
70	.3289E-03	.5040E-02	.5244E-02	.9556E-03	.6324E-02
71	0.	.2250E-03	.2175E-02	0.	.5750E+03
72	0.	• 0.	0.	.2000E-04	.2740E-02
73	ò.	.1583E-02	.3917E-02	0.	.8333E~03
74	Û.	.2600E-02	.4133E-02	.4000E-03	.1667E-01
75	0.	.4737E-03	.2763E-02	.3421E-03	.1866E-01
76	0.	.2273E-02	.1055E-01	0.	.6377E-01
77	0.	0.	0.	0. 0.	U. Û.
78 79	0. 0.	0. C.	Ο. ΰ.	0.	0.
80	0.	U.	0.	0.	0.
81	0.	0.	ů.	ů.	Ő.
82	0.	.1200E-02	.8000E-03	0.	.6667E-03
83	0.	0.	0.	0.	0.
84	0.	0.	0.	0.	Ű.
85	ΰ.	.1200E-02	.8000E-03	υ.	.6667E-03
86	Û.	Ú.	υ.	0.	0.
87	0.	0.	0.	0.	0.
88	0.	.8000E-03	0.	0.	.5333E-03
89	0.	0.	0.	0.	0.
90	0.	0.	0.	0,	0.
91	0.	.8000E-03	0.	Û.	.5333E-03
92	0.	0.	0. 0.	0. 0.	0.
93 34	0. 0.	0. 0.	0.	0.	0. .5733E-03
95	0.	0.	0.	Ű.	0.
96	0.	0.	0.	0.	0.
97	0.	ò.	0.	Ő.	0.
98	0.	Ŭ.	Û.	.1000E-02	0.
99	0.	0.	0.	.560UE-02	0.
100	0.	0.	0.	0.	0.
101	0.	.4000E-03	0.	0.	.1260E-01
102	0.	0.	0.	0.	0.
103	0.	0.	Û.	0.	.4667E-03

TABLE 13.

Concluded

55

The stars

TUN SALAN

TABLE 14. TECHNICAL ACCEPTABILITY RESULTS

Upper		Draigetod		
Upper		Projected	Assessed	
	Lower	<u>Life</u>	Damage	Component Identification
		ctrum	Jtilization Spe	Mild U
4,307	1,100	3.081	.324574E-01	Main Rotor Blade
	3,300			
	Unlimited			
17,953	6,600		.681070E-02	Main Rotor Pitch Horn
9,517	2,200		.105077E-01	M/R Retention Strap Ftg./Nut
27,353	11,000	21,812	.458481E-02	Swashplate Drive Link
18,707	3,300	13,823	.723471E-02	
25,128	3,300	17,430	.573742E-02	Swashplate Inner Ring
	3,300	6,134	.161467E-01	
12,106	1,100	8,472	.118041E-01	Tail Rotor Blade
		ectrum	Utilization Sp	Severe
3 542	1 100		-	
				Main Rotor Blade
				Swashplate Outer Ring
	3,300			Hydraulic Boost Cylinder
7,192	1,100	5,255	.190302E-01	Tail Rotor Blade
24,91 d 190,04 17,95 9,51 27,55 18,70 25,12 8,63 12,10 3,54 14,77 d 69,68 10,55 4,48 16,51 12,32 5,14	Unlimited 6,600 2,200 11,000 3,300 3,300 1,100 1,100 3,300 Unlimited 6,600 2,200 11,000 3,300 3,300 3,300 3,300 3,300	3,081 20,271 189,934 14,683 9,517 21,812 13,823 17,430 6,134 8,472 ectrum 2,498 11,851 69,643 8,888 4,481 13,373 9,033 10,811 4,274	. 324574E-01 .493331E-02 .526500E-03 .681070E-02 .105077E-01 .458481E-02 .723471E-02 .573742E-02 .161467E-01 .118041E-01 Utilization Sp .400355E-01 .843841E-02 .143591E-02 .112521E-01 .223197E-01 .747809E-02 .110711E-01 .925062E-02 .233981E-01	Main Rotor Blade Main Rotor Yoke Extension Main Rotor Grip Main Rotor Pitch Horn M/R Retention Strap Ftg./Nut Swashplate Drive Link Swashplate Outer Ring Swashplate Inner Ring Hydraulic Boost Cylinder Tail Rotor Blade Main Rotor Blade Main Rotor Yoke Extension Main Rotor Grip Main Rotor Pitch Horn M/R Retention Strap Ftg./Nut Swashplate Drive Link Swashplate Outer Ring Swashplate Inner Ring Hydraulic Boost Cylinder

categories 50, 51, and 52, which represent high-speed asymmetrical gunnery run pullups. Although these maneuvers are identified by the combination of a vertical acceleration above 1.5g, a roll attitude between 10° and 35°, and an airspeed greater than 0.95 V_1 , they are not adequately represented by simply measuring the time within which the parameters are attaining the foregoing values simultaneously. Rather, these maneuvers would likely be better represented by the time duration of the roll attitude while it exceeded and returned to 10° but did not reach 35°, provided that the airspeed is above 0.95 V_1 at the initial 10° crossing and that the vertical acceleration exceeds 1.5g within a prescribed time after the initial 10° crossing.

Various considerations, such as the reasoning in the foregoing example, led to the definition of a much more detailed FCM system. Because of the lengthy description needed to define each flight condition category in the resultant FCM system, these flight condition categories are depicted and defined in Appendix A.

Because of the complexity of many of the flight condition categories and the parameter monitoring requirements, the FCM

ř.

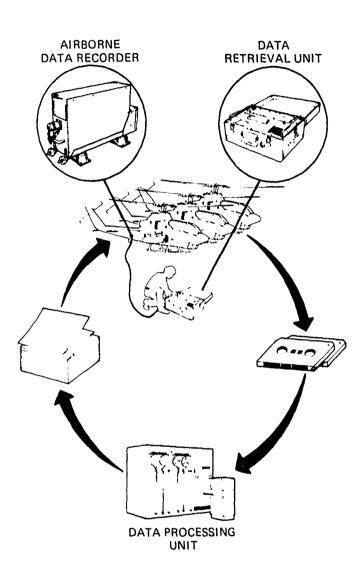
÷

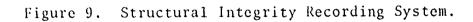
Martin Contraction

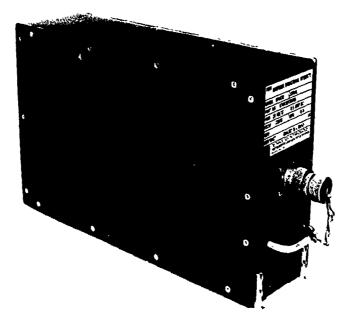
recorder incorporates a microprocessor. During the development of the FCM system, the airborne recorder was flight-tested with an oscillograph recorder capable of monitoring those parameters listed in Table 8. Then the two sets of data were compared to evaluate the functioning of the FCM recorder and to adjust the parameter threshold levels in the FCM system so that the established flight conditions could be better defined.

CHAPTER 3.

SYSTEM DESCRIPTION

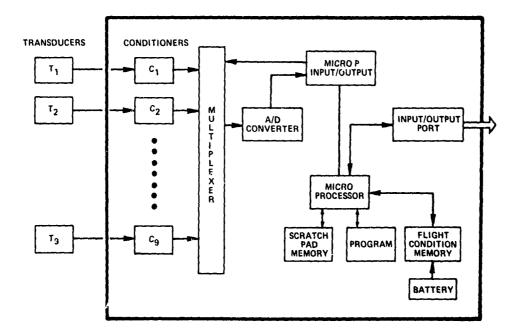

The SIRS system consists of three discrete but interrelated subsystems. The airborne SIRS recorder monitors helicopter usage by identifying and storing the occurrences of various flight conditions. The ground-based, portable data retrieval unit transfers the recorder-stored data onto a miniature data tape cassette on a monthly basis. At a central data processing site, the software system automatically processes and analyzes the data, and then generates tailored reports that present the usage and corresponding incremental fatigue damage to each component for each monitored helicopter. The complete system is pictured in Figure 9.

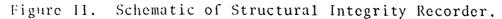

SIRS RECORDER


The SIRS recorder, viewed in Figure 10, incorporates a Motorola Model 6800 microprocessor. This microprocessor monitors the nine flight parameters listed in Table 15 and from them calculates the density altitude and adjusted airspeed limits.

When these flight parameters fall in preset ranges or form certain flight conditions, the microprocessor accumulates their occurrences or the amount of time associated with them in the recorder's data-storage memory. The flight conditions are defined generally as various combinations of flight parameters, each in a preset range. Examples of flight conditions are flight time, rotor starts, and maximum vertical acceleration. Table 16 lists the 22 flight condition categories established for the AH-1G.

As shown in Figure 11, the SIRS recorder processes the inputs from the transducers for the nine monitored parameters. Each of the inputs is conditioned to a desired full-scale signal level, multiplexed, and converted from an analog to a digital signal to be processed by the microprocessor. The recorder software logic identifies the flight conditions by associating the variation and corresponding time of each input parameter with those of the other input parameters. While these conditions are being identified, the microprocessor calculates the density altitude and limit velocities and temporarily stores the calculations in the recorder's scratch pad memory. The programs for these calculations and the flight condition software logic are contained in EPROM (erasable programmable read-only memory) integrated circuits. The time spent in or the number of occurrences of the various flight conditions is stored in the recorder's data-storage memory, which consists of RAM (random access memory) integrated circuits. Since these circuits are volatile, the recorder




1

おうちんちょうちょう ちょうちょうちょうちょう しょうちょう ちょう ちょう

water state of which

Figure 10. SIRS Recorder.

TABLE 15. SIRS PARAMETERS

Measured

これでいたがあいため、

AND THE REAL PARTY OF

5. S. C.

Computed

Airspeed Pressure Altitude Outside Air Temperature Gross Weight Pitch Attitude Roll Attitude Engine Torque Main Rotor Speed Vertical Acceleration Touchdown

Percent	VL	Airspeed
Percent	VH	Airspeed
Density	Alt	tude

A CALL AND A

1

TABLE 16. FLIGHT CONDITION CATEGORIES

Measured Quantity Title Measured Occurrences Time Value Flight Time * Rotor Start/Stop Full Power Climb Low-Speed Flight High-Speed Flight Maximum-Speed Flight Normal High-Speed Turns Gunnery Turns Gunnery S-Turns Gunnery Run Dives-Symmetrical -Asymmetrical Symmetrical Pullouts Asymmetrical Pullouts High n_z Maneuvers Normal Landings Autorotation Time Autorotation Turns Autorotation to Power Transition Autorotation Landings Quick-Stop Deceleration Maximum % VL Maximum n_z

The recorder installation, including recorder, shock mount, transducers, and harnesses, weighs 20.3 pounds; a detailed breakdown of the installation's weight is presented in Table 17. The recorder, including mounting rack and electromagnetic-interference-shielded connector, is 17.50 inches long, 6.50 inches wide, and 10.15 inches high; these dimensions include the necessary space for recorder/shock mount sway. The recorder operates on 28 Vdc supplied by the aircraft and consumes approximately 7 watts.

RETRIEVAL UNIT

SIRS is designed so that data need be retrieved only once a month by the portable, flight-line data retrieval unit pictured in Figure 12. During the transcription of the recorder data onto the miniature magnetic tape cassette, the operator interacts with the unit. While the unit displays messages, the operator communicates with the unit through a keyboard. Because of the on-board processing of the flight data, the data recorded during the normal monthly operation of more than 50 helicopters can be stored on a single data cassette. The program used to permit retrieval unit and recorder interactions is called the Initial Processing System (IPS). The data retrieval, including setup, takes less than 5 minutes and can be performed on a flexible schedule. In addition to data retrieval, the data retrieval unit performs diagnostic checks of the recorder, on-board recorder battery, and transducers. It can also be used as a readout device during the transducer calibrations.

During the retrieval process, limited operator inputs listed in Table 18 are requested to supplement data contained within the recorder. The aircraft serial number is entered in the format of fiscal year and aircraft number, xx-xxxxx, and supplements the recorder serial number, which is permanently stored electronically within the recorder. Since retrievals are not performed on a fixed schedule, the retrieval data, in the format of day, month, and year, is another entry; this information is used to indicate trends in the retrieval data. The chronology of the data is identified by a numbering device built into the recorder that increments each time a retrieval is made. Logbook flight hours are entered to track the variation between the actual flight and ground-operating time and the logged time. The operating base is entered to permit analyzing the fleet-wide variation in helicopter usage. Finally, as requested by the display, the operator enters the reason for the data retrieval. There are three acceptable reasons: monthly retrieval, component replacement, and re-

TABLE 17. SIRS RECORDER WEIGHT BREAKDOWN

Component	Weight (1b)
Recorder/Rack Airspeed/Altitude	9.25
Transducer and Brackets OAT	1.6 0.07
Vertical Acceleration Transducer and Bracket	1.2
Gross Weight Transducer and Bracket Harnesses and misc. hardware	$\begin{array}{c} 0.14 \\ \underline{8.0} \end{array}$
Total	20.26

The Market Market and

「ないない なってないとうちゃく」

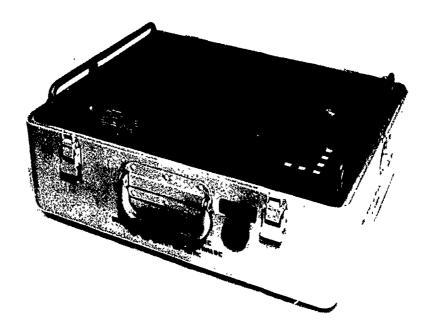


Figure 12. SIRS Retrieval Unit.

.,

corder maintenance. After the operator enters the supplemental data, the data retrieval unit performs a diagnostic check of the recorder including its memory, makes a copy of the recorder data residing in memory, and records the current static values of each of the transducers. These data, together with the supplemental data previously entered by the operator, are recorded on the miniature magnetic tape cassettes. Each time the data is transferred, that is, from the memory in the recorder to that in the data retrieval unit and from the latter to the cassette, it is checked to verify the validity of the transfer.

TABLE 18. SIRS RETRIEVAL UNIT OPERATOR INPUTS

Aircraft Serial Number	Base of Operation
Date of Retrieval	Reason for Retrieval
Log Book Flight Hours	

The various error messages listed in Table 19 are displayed when the diagnostic check detects recorder deficiencies, when data cannot be retrieved or written on the tape cassette, or when the tape cassette is not installed or is full. Each coded error message (instructions for each are mounted inside the cover of the data retrieval unit) leads the operator to the necessary corrective action.

The data retrieval unit is 19.1 inches long, 15.6 inches wide, and 9.8 inches high and weighs 45.4 pounds. The retrieval unit has a rechargeable power system and is housed in a flight-line styled container. The recharging power required is 110 to 120 Vac, 60 Hz.

SOFTWARE

Upon receiving the data from the miniature cassettes, the software system first performs an initial data processing to (1) verify the recorder operation and transducer functioning and (2) to review the long-term trend of the transducer static readings, and then analyzes the data. The analysis includes the data segregation by specific flight condition categories, the data conversion to a 100-flight-hour basis, and the data presentation in terms of a usage spectrum. An example of this data presentation is shown in Figure 13. Next the software system governs three techniques to further analyze the data by calculating the incremental fatigue damage for each critical tracked component. The first technique is based on the relationship of the recorder data with the SIRS fatigue model developed for the AH-1G helicopter. In the second technique the calculations are based on the rates established by current Army-approved component replacement times and the logbook flight hours. The third technique is the same as the second

響きが

i

ちょうけいけ さ

	LOG TIME: 1 BASE: 1 1.0 HOURS	985.6 RETRI	EVAL DATE: 50477	REASON: SC	HEDUL ED
VALUES PER 100 HOUR		ED USING THE	RETRIEVAL TIME.		
FLIGHT CONDITION	GROSS Weight (LB)	RETRIEVAL	(HOURS) PER 100 HOURS	RETRIEVAL	RRENCE PER 100 HOURS
FLIGHT TIME	TOTAL	0.9	100.0	********	**********
1	<7750	0.9	56.9		
ź	7750-4750	0.4	43.1		
3	>8750	0.0	0.0		
ROTOR CYCLES	TOTAL			,	113.6
4				1	113.8
QUICK STOPS	TOTAL	0.0	0.0		
5	<7750	0.0	0.0		
6	7750+8750	0.0	0.0		
7	>8750	0.0	0.0		
NORMAL LOGS	TOTAL			1	113.4
8	<7750			1	113.4
9	7750+A750			Ō	0.0
10	>8750			0	0.0
LOW SPEED FLT	TOTAL	0.0	4.3		
11	<7750	0.0	0.4		
12	7750-8750	0.0	3.9		
13	>8750	0.0	0.0		
HIGH SPEED FLT	TOTAL	0.5	52.6		
14	∢7750	0.3	29.5		
15	7750-8750	0.2	23.1		
16	>8750	0.0	0.0		
MAX SPEED FLT	TOTAL	0.0	3.7		
17	<7750	0.0	1.7		
18	7750-8750	0.0	5.0		
19	>A750	0.0	0.0		
HIGH TORQUE FLT	TOTAL	0.0	0.0		
20	<7750	0.0	0.0		
21	7750-8750	0.0	0.0		
55	>8750	0,0	0.0		
LOW SPEED TURNS	TOTAL	0.0	0,0		
23	<7750	0.0	0.0		
24	7750+4750	0.0	0.0		
25	>8750	0.0	0.0		

Figure 13. Sample of Spectrum Generated by SIRS Software.

Statute of a service states and

AIRCRAFT: 66-15254 LOG TIME: 1985.6 RETRIEVAL DATE: 50477 REASON: SCHEDULED RECORDER: 1030 BASE: 1 DELTA LOG TIME: 1.0 HOURS VALUES PER 100 HOURS WERE COMPUTED USING THE RETRIEVAL TIME.

FLIGHT CONDITION	GROSS Weight (LB)	TIME RETRIEVAL	(HOURS) Per 100 Hours	OCCU Retrieval	RRENCE PER 100 HOURS
	NCIONI (CD)	********		********	**************************************
HIGH SPEED TURNS	TOTAL	0.1	8.3		
26	<7750	0.1	7.0		
27	7750+8750	0.0	1.2		
28	>8750	0.0	0.0		
20	10/20	0.0	0.0		
LOW SPEED DIVES	TOTAL	0.0	0.0		
29	<7750	0.0	0.0		
30	7750+8750	0.0	0.0		
31	>8750	0.0	0.0		
3.	-0130		0.0		
MED SPEED DIVES	TOTAL	0.0	0.3		
32	<7750	0.0	0.2		
33	7750-8750	0.0	0.2		
34	>8750	0.0	0.0		
HIGH SPEED DIVES	TOTAL	0.0	0.1		
35	<7750	0.0	0.0		
36	7750+8750	0.0	0.1		
37	>8750	0.0	0.0		
	1014				
MAX SPEED DIVES	TOTAL	0.0	0.0		
38	<7750	0.0	0.0		
39	7750-8750	0.0	0.0		
40	>8750	0.0	0.0		
LOW SPD ASYM P/U	TOTAL	0.0	0.0		
41	<7750	0.0	0.0		
42	7750-8750	0.0	0.0		
43	>8750	0.0	0.0		
-		-			
MED SPD ABYM P/U	TOTAL	0.0	0.0		
44	<7750	0.0	0.0		
45	7750-8750	0.0	0.0		
46	>8750	0.0	0.0		
HI SPD ASYM P/U	TOTAL	0.0	0.0		
47	<7750	0.0	0.0		
48	7750-8750	0.0	0.0		
49	>8750	0.0	0.0		
47	-1130	0.0	V.V		
MAX SPD ASYM P/U	TOTAL	0.0	0.0		
50	<7750	0.0	0.0		
51	7750-8750	0.0	0.0		
52	>8750	0.0	0.0		
		•••			

Figure 13. Continued

66

AIRCRAFT: 66-15254 LOG TIME: 1985.6 RETRIEVAL DATF: 50477 REASON: SCHEDULED RECORDER: 1030 RASE: 1 DELTA LOG TIME: 1.0 HOURS VALUES PER 100 HOURS WERE COMPUTED USING THE RETRIEVAL TIME.

FLIGHT CONDITION	GRNSS WEIGHT (LB)		(HOURS) PER 100 HOURS		IRRENCE PER 100 HOURS
		********	***********	********	*********
LOW SPD SYM P/U	TOTAL	0.0	0.0		
53	<7750	0.0	0.0		
54	7750-8750	0.0	0.0		
55	>8750	0.0	0.0		
MED SPD SYM P/U	TOTAL	0.0	0.0		
56	<7750	0,0	0.0		
57	7750-8750	0.0	0_0		
58	>8750	0.0	0.0		
HIGH SPD SYM P/U	TOTAL	0.0	0.0		
59	<7750	0.0	0.0		
60	7750-8750	0.0	0.0		
61	>8750	0.0	0.0		
LOW SPD GUN TURN	TOTAL	0.0	0.0		
62	<7750	0.0	0.0		
63	7750-8750	0 .0	0.0		
64	>8750	0.0	0.0		
MED SPD GUN TURN	TOTAL	0.0	0.0		
65	<7750	0.0	0.0		
	7750 +8750	•	0.0		
66 67	>8750	0.0	0.0		
		-	-		
HI SPD GUN TURN	TOTAL	0.1	5,9		
68	<7750	0.0	0.8		
69	7750-8750	0.0	5.1		
70	>8750	0.0	0.0		
GUN 3+TURN	TOTAL	0.0	4.4		
71	<7750	0.0	4.4		
72	7750-4750	0.0	0.0		
73	>8750	0.0	0.0		
MAX SPD S-TURN	TOTAL	0.0	0.0		
74	<7750	0.0	0,0		
75	7750-8750	0.0	0.0		
76	>8750	0.0	0.0		
AUTO TIME	TOTAL	0.0	2.1		
77	<7750	0.0	2.1		
76	7750-8750	0.0	0.0		
79	>8750	0.0			
14	20100	VeV	0.0		

Figure 13. Continued

nig when a start

67

2

å

ないというないである

and the second

.

FLIGHT	FLIGHT GROSS TIME (HOURS)		(HOURS)	OCCURRENCE	
CONDITION	WEIGHT (LB)	RETRIEVAL	PER 100 HOURS	RETRIEVAL	
	********		*********	********	
OW NZ AUTO/PWR Bû	101AL <7750			0	0.0
81	7750-8750			0	0.0
62	>8750			ŏ	0.0
IGH NZ AUTO/PWR	TOTAL			0	0.0
83	<7750			Ő	0.0
84	7750-8750			0	0.0
85	>8750			0	0.0
OW NZ AUTO TURN	TOTAL	0.0	0.0		
86	<7750	0.0	0.0		
67	7750-8750	0.0	0.0		
	>8750	0.0	0.0		
I NZ AUTO TURN	TOTAL	0.0	0.0		
84	<7750	0.0	0.0		
•0	7750-8750	0.0	0.0		
•1	>8750	0.0	0.0		
UTO LOGS	TOTAL			0	0.0
92	<7750			0	0.0
93	7750-8750			0	0.0
94	>8750			0	0.0

Figure 13. Concluded

68

.,

. .

except that the recorder flight time is used instead of the logbook flight time. Figure 14 is a sample of the format used in presenting the data calculated by each technique. The software package permitting these calculations is called the Fatigue Damage Assessment System (FDAS).

TABLE 19. RETRIEVAL UNIT ERROR MESSAGES

- LINE ABORT? Denotes that the retrieval unit-torecorder communications were not properly established or were interrupted.
- DATA ABORT? Denotes that there was an error condition during the transmission of the recorder data onto the retrieval unit's temporary data-storage memory.
- WRITE ABORT? Denotes that there was an error condition during the data writing on the magnetic tape.
- FULL ABORT? Denotes that sufficient space could not be found on the magnetic tape for the data writing.
- TAPE ABORT? Denotes that the tape cassette is not capable of reading or writing because of its malfunctioning or improper positioning.
- COUNTER Denotes that a bad memory location was detected during the diagnostic check of the recorder's data storage memory.
- BATTERY Denotes that the recorder's battery power supply is marginal.

Software Concept

深たないないでいい

The data processing and management system is composed of three parts: the Initial Processing System (IPS), the Fatigue Damage Assessment System (FDAS), and the Component Tracking Management System (CTMS). Each of the three modules of the system was treated and designed as a separate entity. This allows for ease of maintenance of the system and flexibility in the operation of the system.

. . /

COMPONENT DAMAGE

AIRCRAFT: 66-15254 LOG TIME: 1985.6 RETRIEVAL DATE: 50477 REASON: SCHEDULED RECORDER: 1030 BASE: 1 DELTA LOG TIME: 1.0 HOURS DELTA RECORDER TIME: 0.9 HOURS

COMPONENT	SIRS DAMAGE	FLIGHT HOU RECORDER	R DAMAGE LDG
MAIN ROTOR BLADE	0.00072	0.00080	0.00091
MAIN ROTOR YOKE EXTENSION	0.00035	0.00027	0,00030
MAIN ROTOR GRIP	0.0	0.0009	0.00010
MAIN ROTOR PITCH HORN	50000	0.00013	0.00015
RETENTION STRAP FIG/NUT	0,00009	0.00040	0.00045
SWASHPLATE DRIVE LINK	0.00007	0.0008	0,00009
SWASHPLATE OUTER RING	0.00004	0.00027	0.00030
SWASHPLATE INNER RING	0.00010	0.00027	0.00030
HYDRAULIC BODST CYLINDER	0.00010	0.00027	0.00030
TAIL ROTOR BLADE	0.00017	0.00080	0.00091

Figure 14. Sample of Component Damage Generated by SIRS Software.

70

х

į.

The first two modules, IPS and FDAS, were written in FORTRAN in accordance with contract requirements, but the CTMS was written in COBOL. This was done to maintain a uniformity with the data management techniques being employed by the AVRADCOM computer center. This was in the best interest of the Government, since AVRADCOM is postulated as the eventual user of the system and the development was to be performed on AVRADCOM equipment.

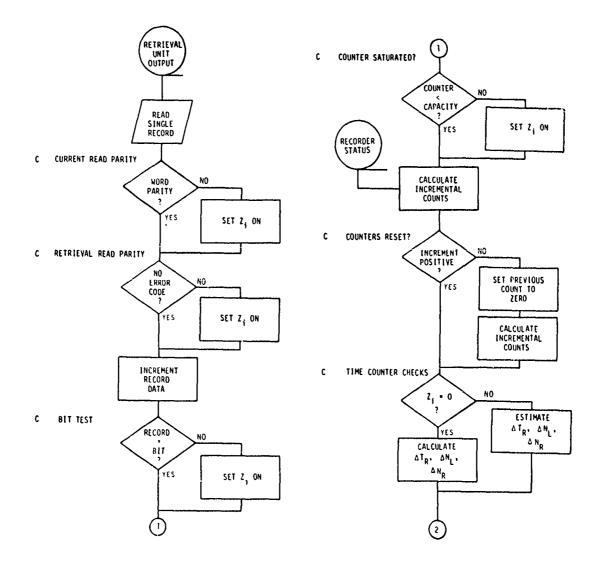
The development was to take place by utilizing a Remote Job Entry terminal located at Technology Incorporated and connected to the AVRADCOM computer via a dial-up communication link.

The following paragraphs briefly describe the main functions of the three modules, and Figures 15, 16, and 17 present system flow.

<u>IPS</u>. The Initial Processing System checks for proper operation of the recorder, the recording medium, and the retrieval unit. This is performed in a number of ways; initially, the IPS checks the parity of the data and the results of the built-in test. The data from the individual counters are then tested for validity to assure that they are within reasonable tolerances.

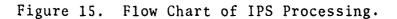
If the data or any part thereof are determined to be invalid, conservative estimates based on past usage and engineering judgment are made for the erroneous data.

The valid data and/or the estimated data from the various counters are then written on an output tape and identified as actual or estimated for further processing. A printout identifying any equipment problems is also prepared for submittal to the appropriate activity.


FDAS. The Fatigue Damage Assessment System takes each of the forwarded counter values and assigns a damage value to each component according to the model established for the monitored aircraft type. The actual and estimated incremental damages are kept separate for each component.

A data tape is then written and forwarded for further processing. This tape contains the actual or estimated incremental damage for each component type, identified by aircraft serial number. The date of the data is also forwarded.

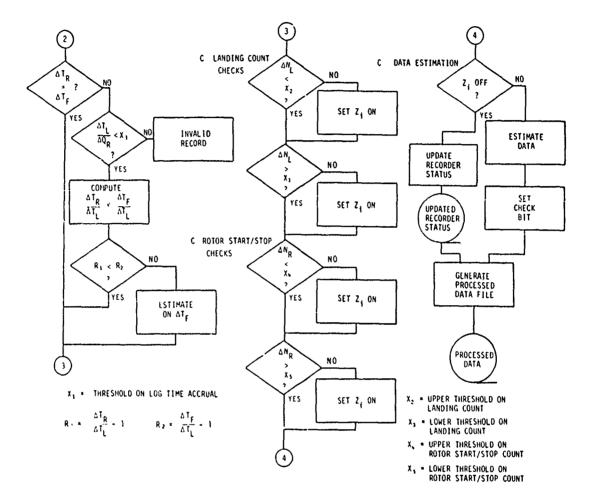
<u>CTMS</u>. The Component Tracking Management System is the main $\frac{1}{44}$ management module of the overall system. Its primary function is to update and maintain two tracking files and to generate data reports for field and management usage.


The programs take the data passed on from the FDAS and check the date, in case of removal, to determine with which components the data is associated. The appropriate component's damage fraction is then updated, still retaining the identity of the actual and estimated parts.

71

10 S

•



72

...

Y.

41.00

ないとうとう

•

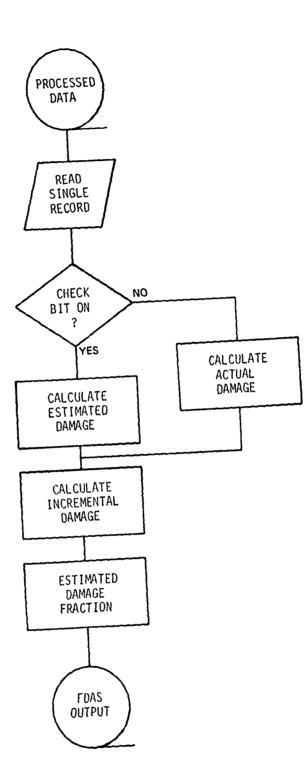
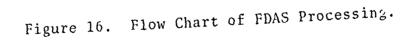

.

Figure 15. Concluded


*** **.

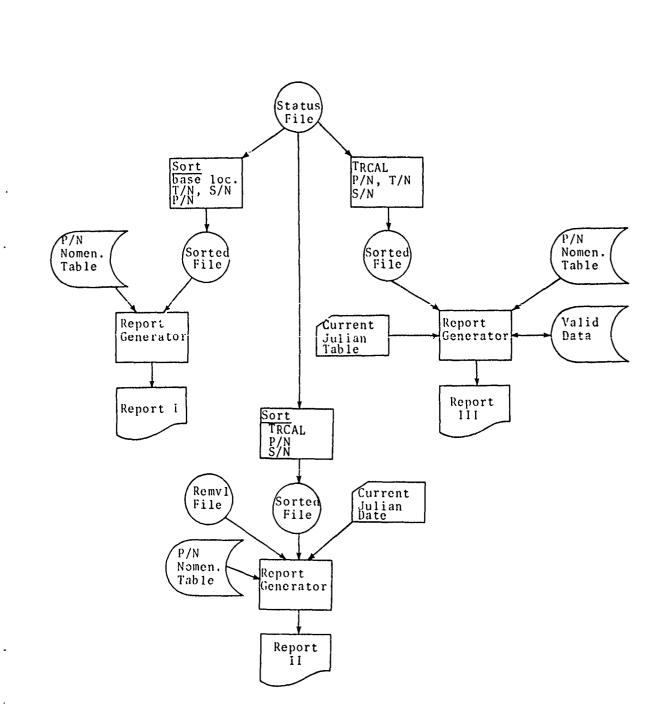
in a charge of the second

*** }

.

74

·}-___


-

à

.

ţ

-

Property and the state of the second

a provide a characteria

i.

- - - - A MAR PARK MALL THE AND AND

Figure 17. Report Generation Processing.

ţ

1

75

**

·...

. .1 The status file is then updated with the new damage fractions. The status file contains the historical information concerning each aircraft. This includes the configuration of each aircraft and the time and damage fraction associated with each fatigue-critical component. It is from this file that the majority of the data reports are generated.

A secondary file, the removal file, is maintained for all removed components. This file is used to provide statistical information on removals and to track components removed for overhaul or for other reasons.

It is from these files that the various data reports are generated. Figures 18, 19, and 20 give samples of the reports that will be presented. The reports deal with status of the various components once a certain damage fraction is attained, life projections over selected periods of time, and component replacements due or overdue. The reports will be used for maintenance, management, and planning.

<u>Supplemental Data</u>. In the event of component removals, a supplemental update form (Figure 21) will be completed. This data will be entered into the FDAS to ensure the proper accountability and tracking of the various components.

INSTALLATION KIT

Constant and the second s

The SIRS recording system was married to the AH-1G airframe via an installation kit consisting of miscellaneous structural hardware, cabling, and specialized instruments. All of the mounting systems were designed to withstand crash loads. This discussion focuses on the sensor suite providing the inputs to the recorder.

The remote sensors required to obtain the data are grouped into the following four categories:

- Pressure transducers
- Accelerometers
- Position potentiometers
- Miscellaneous sensors

Pressure Transducers

The pressure transducers are capacitive type, providing a 0-5 Vdc output signal. For airspeed, a differential pressure transducer that senses the difference between the pitot and static pressures is used. For altitude, an absolute pressure transducer senses the aircraft static pressure.

Accelerometers

The transducer used to sense the normal (vertical) acceleration is a servo force balance type providing a 0-5 Vdc output signal. and the little little

.

7 7

SELECTED COMPONENT STATUS
 DAMAGE FRACTION GREATER THAN 0.7

A/C TYPE/MODEL: CH-47C AIRCRAFT NO: 64-13145 BASE: FT RUCKER DATA THRU: 09/01/74 REPORT DATE: 05/15/74

White a state with the state of the state of

-00034 P 0.971 3.2 -00063 P 0.891 4.1 -00056 S 0.733 0.9 -00074 T 0.784 2.7 -00042 P 0.711 1.5	COMPONENT PART NUMBFR	COMPONENT NOMENCLATURE	COMPONENT SERIAL NUMBER	DAMAGE ACCRUAL RATE	DAMAGE FRACTION	PERCENTAGE OF DAMAGE FRACTION ESTIMATED	REMAINING LIFE (HRS)	REPLACEMENT Date Julian Date	5 F.
-4 BLADE SOCKET ROTOR HUB 7-5669-1 .00063 P 0.691 4.1 TIE BAR AFT ROTOR HUB W-411-0 .00056 5 0.733 0.9 -33 ROTOR BLADE, AFT 5988413 .00074 T 0.784 2.7 2 -3 BLADE SOCKET, FWD HUB 67-33921 .00042 P 0.716 1.4 5 AFT ROTOR SHAFT SL-4119N .00055 T 0.711 2.2	11482196-2	PIN HORIZONTAL HINGE	PL593	• 00034 P	119.0	3+2	o	74130	
TIE BAR AFT ROTOR HUB W-411-0 .00056 5 0.733 0.9 -33 RDTOR BLADE, AFT 5986413 .00074 T 0.784 2.7 -3 BLADE SOCKET, FWD HUB 67-33923 .00042 P 0.716 1.4 -3 BLADE SOCKET, FWD HUB 67-33923 .00042 P 0.711 3.2	114R1543-4	BLADE SOCKET ROTOR HUB	7-5669-1	• 00063 P	0.691		46	74176	٠
-33 ROTOR BLADE, AFT 5988413 .00074 T 0.784 2.7 -3 BLADE SOCKET, FWD HUB &7-33921 .00042 P 0.716 1.4 AFT ROTOR SHAFT 5L-4119N .00055 T 0.711 3.2	J14R2155	TIE BAR AFT ROTOR HUB	0-115-M	• 00056 5	0.733	6*0	388	74330	1
-3 BLADE SOCKET+ FWD HUB 67-33921 400042 P 0.716 1+4 Aft Rotor Shaft 51-4119N 40055 T 0.711 3-2	114R1502-33	ROTOR BLADE. AFT	5986413	•00074 T	0.784	2.7	224	74217	•
AFT ROTOR SHAFT SL-4119N .00055 T 0.771 3.2	114R1543-3	BLADE SOCKET. FWD HUB	67-33921	• 00042 P	0.716	1.4	557	75053	
	11403250	AFT ROTOR SHAFT	N6114-75	.00055 T	0.711	3•2	435	1~348	

BBB THIS MAJOR COMPONENT HAS REACHED OR EXCEEDED 0.95 DAMAGE AND REPLACEMENT IS OVERDUE

THIS MAJOR COMPONENT IS DUE FOR REPLACEMENT IN 0-3 MONTHS

P - DAMAGE ACCRUAL RATE BASED ON DATA FROM THE PREVIOUS MONTH

S - DAMAGE ACCRUAL RATE BASED ON DATA FROM THE PREVTDUS & MONTHS

T - DAMAGE ACCRUAL RATE BASED ON TOTAL PREVIOUS DATA

Report I, Selected Component Status. Figure 18.

mitror this they no

そうないちょういうちょうちょうちょう ていていてい ちちょう ひろう しろうち ちょう しんしょうしょう ちょう

77

à

ţ

٠

SELECTED COMPONENT
 USEFUL LIFE PROJECTIONS

A/C TYPE: CH-47C Base: FT Ruckfr Data Period: Jan-Mar 1974 Report Date: 05/15/74

COMPONENT PART NUMBER	COMPONENT NOMENCLATURE	REMOVALS LAST QUARTER	PROJECTED REMOVALS FOR 0-3 MONTHS	PROJECTED REMOVALS PROJECTED REMOVALS PROJECTED REMJVALS FOR 0-3 MONTHS FOR 0-12 MONTHS FOR 12-15 MONTHS	PROJECTED REMOVALS FOR 12-15 MOMTHS	PROJECTED REMOVALS FGK 12-24 MONTHS
114R2050	HEAD ASSY (HUB) .ROTARY	13	20	87	30	166
114R2196-2	PIN HORIZONTAL HINGE	54	63	274	110	572
114R2088	PITCH SHAFT AFT ROTOR	67	58	289	161	593
114R1543-4	BLADE SOCKET AFT ROTOR	79	50	265	66	603
114R2155	TIE BAR AFT ROTOR HUB	58	56	256	147	308
114R1502-33	AFT ROTOR BLADE	53	61	269	125	587
11403250	AFT ROTOR SHAFT	16	22	06	41	202
114R2197	PITCH SHAFT FWD HUB	56	62	257	115	568
11482155	TIE BAR FWD ROTOR HUB	56	53	263	122	611
11481543-3	BLADE SOCKET FWD HUB	59	60	272	143	556

Report II, Selected Component Removal Projections. Figure 19.

おおおおおおおおおおおおおお おおお おおおおお ひょうちょう ひょうちょう ひょうしょう シント・シント イント・マート・シー・シント・シー・シー・シー・チー・チー・チー・シー・シー・シー

•

7 B

-1.22 and more the second as the second and

4

78

ہ.

Figure 20. Report III, Replacements Due in 0-3 Months, by Component Number.

いがいち いちょう しんちょう

** * * * * *

	***	***************************************			
A/C TYPF/WONEL: CH-47C nata period: May-July 1974 Redrt Date: 95/15/74		* * REPLACEMENTS DUE 0-3 MONTHS * *	\$ • • • •		
COMPONENT PART NUMBER	COMPONENT NOMERCLATURE	COMPONENT SERIAL NIJMBER	*/C NO*	BASE	REMOVAL DATE
11482088	PITCH SHAFT AFT 2310R	H5421	68-43110	FT RUC	05/30/74
11442088	PITCH SHAFT AFT 2310R	C4701	67-55462	FT RUC	06/15/74
11481543-4	BLADE SOCKET AFT 20TOR	VY 1022	61-22629	FT RUC	47/06/20
11482196-2	PIN HORIZONTAL HINGE	4510	68-43110	FT RUC	06/03/74
11482196-2	PIN HORIZONIAL HINGE	744149	67-55462	FT RUC	07/28/74
114R2155	TIF BAR AFT ROTOR HUB	PL248-14	68-43110	FT RUC	06/17/74
11487155	TIF BAR AFT ROTOR HUB	A1244	67-22629	FT RUC	07/09/74
114R2155	TIF BAR FWD ROTOR HUB	VF0110	67-55462	FT RUC	07/13/74
11481502-33	AFT ROTOR BLADF	£19A	67-55462	FT RUC	06/23/74
1.4R1502-33	AFT ROTOR BLADF	A84277	68-43110	FT RUC	07/14/74
114 2197	PITCH SHAFT FWD HJB	052 I I N	61-22629	FT RUC	07/05/74
1 4 4 5 4 3 - 3	BLADE SOCKET FWD HUB	VE20112	67-55462	FT RUC	07/15/74

an an ann an thair ann an Anna an Anna an Anna an Anna A

!

79

<u>ہ</u>

.

Figure 20. Continued

and a second second

and the second se

A/C NUMBER	BASF	COMPONENT PART NUMRER	COMPONENT NUMENCLATURE	COMPONENT SERIAL NUMBER	REMOVAL DATE

67-22629	FT RUC	114R1543-4	BLADE SOCKET AFT ROTOR	VY1022	05/30/74
67-22629	FT PUC	11487197	PITCH SHAFT FWD HUB	NL 11740	07/05/74
67-22629	FT RUC	114R2155	TIE BAR AFT ROTOR HUB	A1244	41/00/10
67-55462	FT RUC	11482088	PITCH SHAFT AFT ROTOR	C4701	06/15/74
67-55462	FT RUC	11481502-33	AFT ROTOR BLADE	A913	06/23/74
67-55462	FT RUC	11482196-2	PIN HORIZONTAL HINGE	74149	07/28/74
67-55462	FT RUC	11482155	TIE BAR FWD ROTOR HUB	VE0110	07/13/74
67-55462	FT RUC	114R1543-3	BLADE SOCKET FWD HUB	VE20112	07/15/74
68-43110	FT RUC	11487088	PITCH SHAFT AFT ROTOR	M5421	05/30/74
68-43110	FT RUC	114R2196-2	PIN HORIZONTAL HINGE	A510	06/03/74
68-43110	FT RUC	114R2155	TIE BAR AFT ROTOR HUB	PL248-14	06/17/74
01127-07					

4

やいたというないないであるとの見ていた。

ţ

80

à

「ないいないない ちょうちょう

and the second se

ţ

÷

	****	************			
A/C TYPE/407EL: CH-47C REPORT NATE: 75/15/74	**************************************	* • OVERDUF REPLACEMENTS • •			
COMPONENT PAPT NUMALS	COMPONENT NOMENCLATURE	COMPONENT SFRIAL NUMBER	A/C N0.	BASE	REMOVAL DATE
11403250	AFT RUTOR SHAFT	55-3104	67-22629	FT RUC	01/03/74
11403250	AFT ROTOR SHAFT	16249	68-43110	FT RUC	04/23/74
11403250	AFT ROTOR SHAFT	RZ327	67-55462	FT RUC	05/01/74
11482088	PITCH SHAFT AFT 2JTDR	VZ10043	65-10143	FT RUC	03/03/74
11482989	PITCH SHAFT AFT ROTOR	L439218	67-22629	FT RUC	03/28/74
114 /2050	HEAD ASSY (HUB). RJTARY	EX124	66-05372	FT RUC	03/18/74
11401502-33	AFT ROTOR BLADE	4-316-9	66-05372	FT RUC	04/10/74
11481502-33	AFT ROTOR BLADE	4438	67-22629	FT RUC	05/01/74
11482155	TIF BAR FWD ROTOR HUB	L8431	65-10143	FT RUC	04/11/34
11482155	TIE BAR FWD RDTOR HUB	A6464	66-05372	FT RUC	04/30/74
11482196-2	PIN HJRIZONTAL HINGE	V44335	65-10143	FT RUC	04/23/74
11482107	PIN HORIZONTAL HINGE	JU52038	66-05372	FT RUC	05/02/74

「あるかないできるというないないないないない」

374 %

Constant des Constant Part

Continued

Figure 20.

81

Concluded Figure 20.

477 -----

.

•

.

A/C NIMAFR	BASE.	COMPONENT PART NUMAEP	COMPONENT NOMENCLATURE	COMPONENT SERIAL NUMEES	REMOVAL DATE
65-10143	μο Ti	11462088	PITCH SHAFT AFT ROTOR	VZ16043	03/03/74
65-10143	JI'a 13	11487155	TIE BAR FWD ROTOR HUB	L6431	04/11/74
65-10143	FI PUC	11482196-2	PIN HORIZONTAL HINGE	VA4335	04/23/74
	11 11	11482050	HEAD ASSY (HUB) •ROTARY	EX124	03/18/74
60-000 C		11441,05-33	AFT ROTOR RLADE	4-316-9	04/10/14
66-05372		11482155	TIE BAP FWD POTOP HUB	A6464	04/30/74
o6-05372	FT RUC	11403250	AFT ROTOP SHAFT	R2327	05/01/74
66-05372	FT PUC	11482197	PIN HORIZONTAL HINGE	JU52038	05/02/74
67-23629	JUS 14	11403250	AFT ROTOR SHAFT	\$5-3104	41/60/10
67-22629	FT PUC	11482088	PITCH SHAFT AFT ROTOR	L439218	03/28/74
67-27629)ſ₁a lj	11481502-33	AFT ROTOR BLADE	4338	02/01/14
68-43110	FT RUC	11403250	AFT ROTOR SHAFT	16299	04/23/74

cutonut replacements *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

*

ALTER AND ALLER AND ALTER ADDRESS

ţ

82

REPLACEMENTS ACCOMPLISHED REASON REMOVED (X) A/C HOURS MO/DAY/YEAR MECHANIC TIME EXPIRED PAILED PRE- CAUTION MOD SERVIC C R R R S/N S/	BASE	:: >		A/C TAI	L NO.>		A/C TYPE/N		
A/C HOURS MO/DAT/TEAH MECHANIC Expired PAILED CAUTION MOD SERVIC C R I 2 3 4 5 5 C R REMOVED PART P/N		REPLACEM	ENTS ACCOMPLISHED			REA	SON REMOVE	D (X)	
C R O R P M INSTALLED PART P/N S/N V S/N INSTALLED PART P/N S/N	A	C HOURS	MO/DAY/YEAR	MECHANIC		FAILED		MOD	SERVICE
P M O INSTALLED PART P/N S/N S/NS/N S/N					1	2	3	4	5
			PART P/N			s/n			

U.S. ARMY CRITICAL PARTS MANAGEMENT PROGRAM FATIGUE-CRITICAL COMPONENT REPLACEMENT FORM

Figure 21. Update Form for Component Removals.

Flight Control Positions

To sense rudder pedal position, an infinite resolution potentiometer is used. This unit is wired such that the potentiometer acts as two arms of a Wheatstone bridge circuit. Connected by special actuators to the control linkage, this potentiometer senses the movement of the respective control system. The mechanical attachments between the potentiometer and the control linkages are designed so that binding of the mechanisms will cause them to fail; hence, control of the helicopter cannot b inhibited by the instrumentation system.

Miscellaneous Sensors

A CONTRACTOR OF A CONTRACT OF

Several parameters either require sensing the aircraft's flight instruments or cannot be placed in one of the above categories. The following paragraphs discuss these sensors.

Outside Air Temperature. The outside air temperature is monitored with a thermal ribbon. The ribbon is attached to, but insulated from, the outer skin of the aircraft. The ribbon is a resistor whose resistance varies with the temperature and is used as the active arm of a Wheatstone bridge circuit.

Rotor Speed. To monitor the main rotor rpm, a special circuit was designed and fabricated. The circuit is composed of all solid-state materials and is mounted on a printed circuit board within the signal conditioning section of the recorder. The output of the counter controls a gate which varies a +5 Vdc circuit between +5 Vdc and ground. The resultant voltage is filtered and reduced to a pure dc signal acceptable to the recorder.

Engine Torque. Engine torque data is acquired from the aircraft's torque transmitter by utilizing a differential amplifier input circuit for isolation and a converter to condition the torque signal. The initial signal is a fixed-frequency, varying amplitude, engine torque signal that is converted to an appropriate dc signal. Variations in this signal due to changes in the torque reference are nullified by monitoring the reference and having the recorder perform a division.

<u>Roll and Pitch Attitudes</u>. Attitude data is obtained from the roll and pitch outputs of the aircraft's attitude gyro. This interface uses solid-state, modular, synchro-to-dc converters with the reference and synchro inputs fully isolated to prevent any degradation of the aircraft's attitude indicator system.

<u>Gross Weight (GW) Indicator</u>. The parameters to compute the gross weight of the helicopter were originally measured prior to each takeoff by two Kistler Morse Model DMC-3-FF-4-1-03 piezoelectric beam sensors attached to the midpoint of the fore-and-aft crosstube members of the skid landing gear. While the helicopter was on the ground the rotor speed was less than 250 rpm, the SIRS recorder processed the sensor outputs to yield the gross weight. An algorithm incorporated in the recorder decreased the gross weight value as fuel was burned. No adjustment was made for the decrease in gross weight due to stores or ammunition dispensing. When this procedure was found inadequate, another approach was used.

The second GW sensor system involved bonding strain gauges to the lift links' transmission mounting members. This was intended to give positive, real-time GW data.

Power and Signal Interconnections

A system wiring harness includes all wiring between the recorder, remote sensors, and aircraft power. The 28 Vdc is acquired by installing circuit breakers in the pilot's righthand breaker panel and connecting to the nonessential dc bus.

CHAPTER 4.

TEST PROGRAM

A test program was conducted to evaluate the concept of flight condition recording as a means of collecting usage spectrum data. The test program consisted of five elements.

- Brassboard Evaluation
- Laboratory Qualification Testing
- Reliability Analysis
- Prototype Flight Test
- Usage Spectrum Data Collection

Brassboard Evaluation

The CONSERCTOR

From the outset, critical elements of SIRS were identified for early testing. The final product was quite close to the original conception.

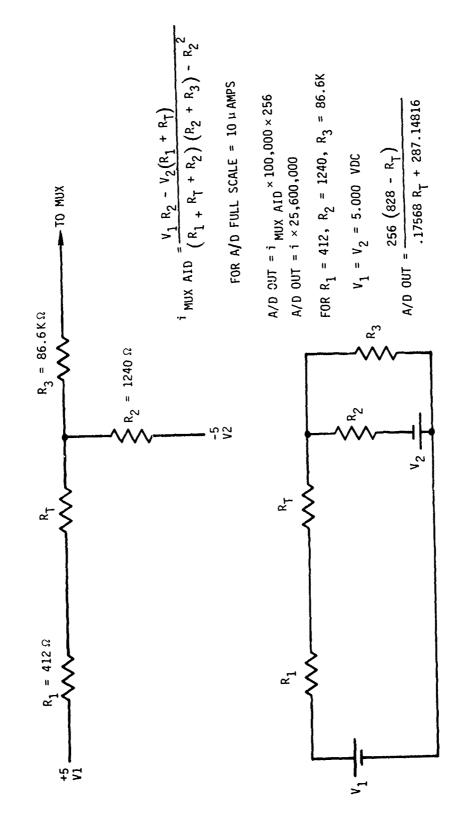
<u>On-Board Recorder</u>. The recorder circuit can be functionally divided into two primary sections, analog and digital. The analog section consisted of a reference voltage source, individual circuits for each input parameter, and the A/D multiplexer. The digital section consisted of the processor system (CPU, memory, serial and parallel I/O ports), a timing circuit, address decoding, power fail-restart, and an aircraft power-tobattery switchover circuit.

Analog circuits for engine torque, temperature, roll attitude, the reference voltage, and A/D multiplexer circuits were provided. The circuit for the main rotor rpm is presented in Figure 22. The circuit for the outside air temperature measurement is presented in Figure 23. Figures 24 and 25 depict circuits used for various buffered circuits.

Preliminary tests of the digital section of the recorder provided FCC counter data to be stored in one MC5-101L-4 CMOS memory chip. Although satisfactory for the 36 flight condition categories presently defined, the possibility that gross weight considerations could double this number led to the suggestion that the digital printed circuit board layout should allow for the addition of a second memory chip. The brassboard configuration was modified to include the additional memory. Laboratory tests confirmed this to be satisfactory.

The flight recorder case size was to conform to Drive 404, 3/8 airborne transmitter rack. The case was constructed of 19-gauge (0.042") 0.1018 cold-drawn stee1.

The finish applied to all steel parts was according to QQ-P-416 Type 2, Class 2 (chromium and chromate plating). All parts internal to the flight recorder with the exception of the power filter were mounted on the PC boards. The power


Figure 22. Rotor RPM Measurement.

•

.

ţ

ないないないの

1

۱

ļ

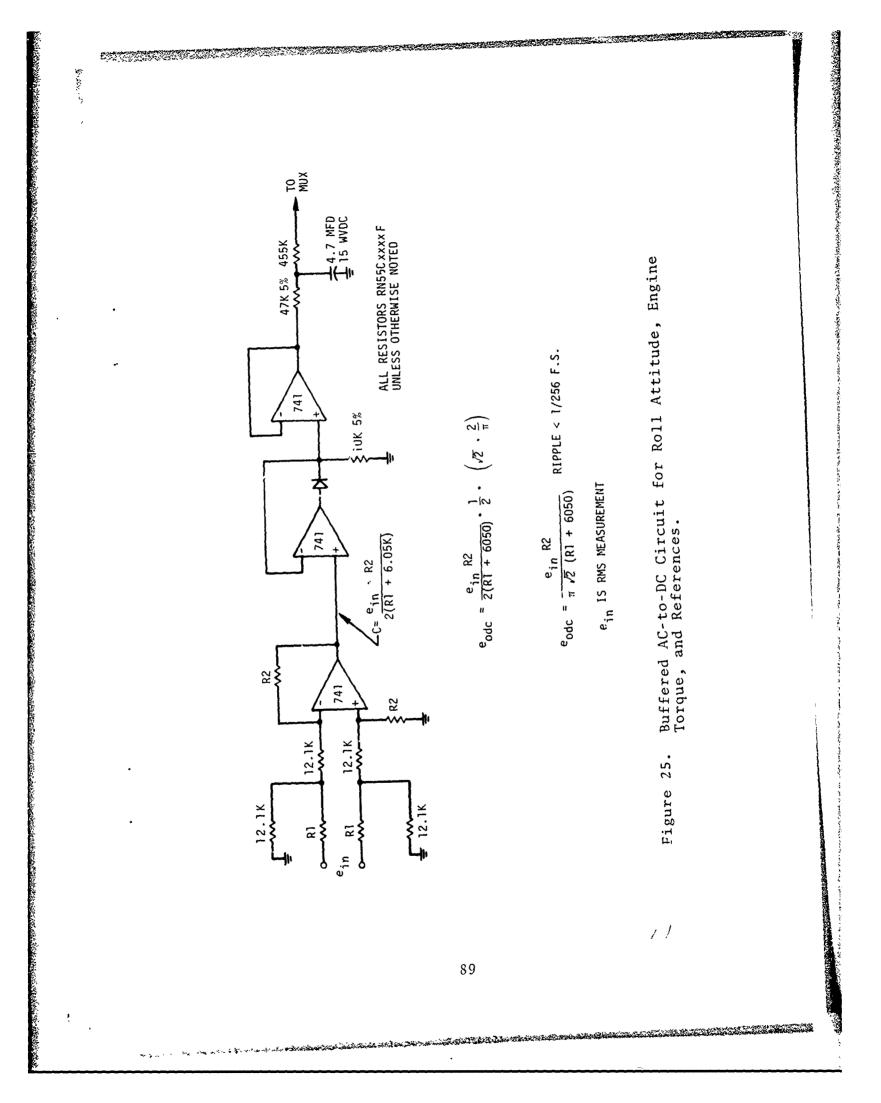

-5 VOLT BUFFERED VDCB 2N2219A +5 VOLT BUFFERED +5VDCB **o** 112 55 \$ 25 26 26 26 .1% .1% Ş -15 • +12 0 +12 -<u>1</u>2 741 741 4990 1% łiı .1% 10K +5 REF **→**100pf R3 R1, R2 HAND SELECTED FOR 5.00 VOLT OUTPUT R1, R2, R3 = RN55C xxxxF 3 COMP VOUT INV 723 • +12 $R3 \stackrel{\sim}{=} \frac{R1}{R1} \cdot \frac{R2}{R2}$ V_{REF} +۲ Ψ R2 < E L

Figure 24. ±5 Volt Buffered Reference Voltages.

1

88

ţ

filter was mounted to a bracket on the bottom of the case.

Two PC boards were used, one for the analog section and one for the digital section of the recorder. The PC boards were mounted to the side cover plates with standoffs positioned to minimize vibrations. A 3M connector system was used on the PC boards to enhance maintainability. A retention clip was used to lock the plug to the receptacle. A Cannon-type PSE connector on the front panel provided access for the retrieval unit. This connector was normally capped. A Cannon PDP connector mounted on the rear panel of the case provided connection to both the transducers and the input power.

Gaskets on the side covers were a combination of woven Monel for electromagnetic interference (EMI) protection and sponge silicone to provide a moisture/dust seal. The connector gaskets were Monel-impregnated silicone. Metal slugs were provided as part of the cover gaskets to preclude the possibility of overcompensation of the gaskets. All fasteners were specified to MIL-N-25029.

The flight recorder was mounted in a Barry Controls 3/8 ATR tray with helicopter shock mounts.

Data Transfer Unit (DTU). The original design concept required the DTU to serve a dual role - as a retrieval unit in extracting data from the recorder and storing it on cassette tape, and as a test unit to enable an operator to view the extracted data.

As a brassboard retrieval unit, operator inputs would be requested via a six-character alphanumeric display. The operator inputs would be entered through a numeric keyboard. After these operator inputs were accepted, the recorder, on request of the retrieval unit, would send the counter data, all digitized analog channels, and a repeat of the counter data following a test routine. The retrieval unit stored all information and at retrieval conclusion stored it on cassette tape. The alphanumeric display was used to notify the operator of any failures or incorrect inputs. The software flowchart of the communication between recorder and retrieval unit describes the data extraction procedure and is presented jn Figure 26.

Following data retrieval, any of the information resident in the retrieval unit was viewed by entering an address via the keyboard.

Data Processing Software. As stated, the data processing software system was to consist of three major elements: the Initial Processing System, the Fatigue Damage Assessment System, and the Component Tracking Management System. Detailed information concerning each of these systems and their operation had been previously planned (Reference 1, p. 76).

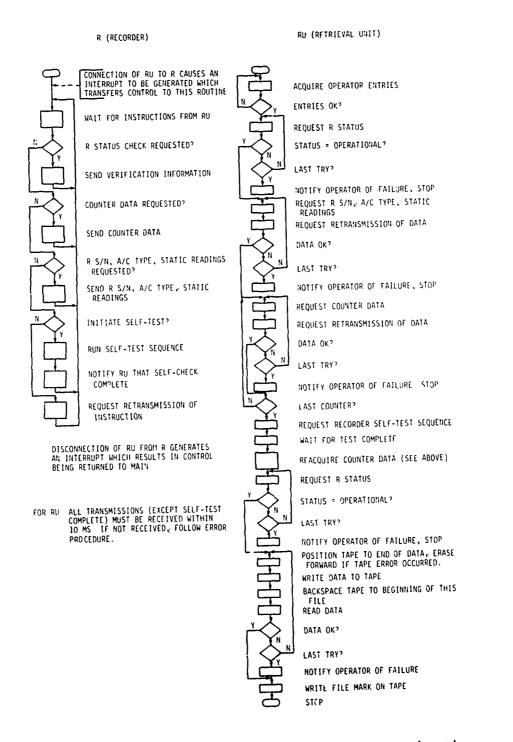


Figure 26. Retrieval Unit Recorder Communications.

The brassboard and supporting software evaluations were essentially complete by the time Critical Design Review was completed. The conceptual approach was found satisfactory and preparation of test articles was begun. It was recognized that reliability was of primary importance to the SIRS equipment. Thus a reliability assessment was provided.

Reliability Analysis

A reliability analysis was performed using MIL-HDBK-217B and the component manufacturers' data to predict the mean-timebetween-failure (MTBF) for the SIRS recorder. The results of the analysis are summarized in Table 20. The calculated MTBF of about 7300 hours for the SIRS recorder includes consideration of a helicopter operational environment in a worldwide scenario. As such, the 7300 hours MTBF is considered realistic. The analysis did not include the processor board batteries. which in this application were expected to have a lifetime well in excess of 6 months. Furthermore, although only one such battery is required, a second battery is included in the design as a redundant feature to enhance the operational reliability. The MTBF of the transducers and installation kit is about 1400 hours, resulting in an overall system MTBF of about 1200 hours. However, loss of a transducer input does not result in invalid recorded data. The missing input can be synthesized during data processing. In addition, periodic calibrations and other maintenance actions should identify potential transducer failures before they occur. Operation of four recorders during software development, burn-in prior to qualification test, and qualification and flight tests resulted in an accumulated operating time in excess of 500 hours. Only one failure was recorded. This occurred during the environmental portion of the qualification tests. Upon conclusion of the temperaturehumidity-altitude test, the recorder did not operate. cause was identified as leaking batteries and the resulting contact corrosion.

Laboratory Qualification Testing

The qualification testing was designed to assess the performance of the SIRS recorder in simulated EMI/electromagnetic compatibility and normal airborne environments conforming to MIL-STD-461/462 and MIL-STD-810, respectively. Table 21 summarizes the test conditions for each environment. Figure 27 shows a typical test setup.

Two recorders were subjected to the testing: S/N 005, which was packaged in a steel box, and S/N 1007, which was contained in an aluminum box for potential weight savings if the aluminum base proved adequate during the testing. S/N 005 was used in the normal airborne environment test while S/N 1007 was

TABLE 20. RELIABILITY ANALYSIS SUMMARY

• -

Component	Part No.	Failure Rate(a)	MTBF(hr)
Processor Board Signal Condition-	074032D30014	55.9854	17,862
ing Board Power Supply Filter	074032D30019 C5/T15/165/x RF6125	50.6592 16.6667 0.0560	19,740 60,000 17,857,143
Termination Assembly Internal Cables/	074032C30011	0,5820	1,718,213
Connections Connector	- KP5E02A12-10S	11.7040 1.8630	85,441 536,769
SIRS Total		137.5163	7,272
Circuit Breaker Gross Weight	MS22073-3/4	1.9650	508,906
Sensor OAT Sensor Altitude Sensor Airspeed Sensor Accelerometer Miscellaneous	DCMC3FF41 S6B 1332A3 1332D1 SA109-B-1/+3SL	254.2370 97.1930 94.5200 94.5200 174.1940	3,934 10,289 10,580 10,580 5,741
Connections	-	0.7300	1,369,863
Transducers and Installation			
Kit Total		717.3590	1,394
System Total (b)		854.8753	1,170

Notes:

8 F

this day to be a balance to the

(a) Estimated number of failures per million hours.(b) Excludes aircraft inputs.

- Sender State Berlinders of State states and the states of the states o

TABLE 21. SUMMARY OF QUALIFICATION TESTS

8 B

「ちょうちいいなないとな

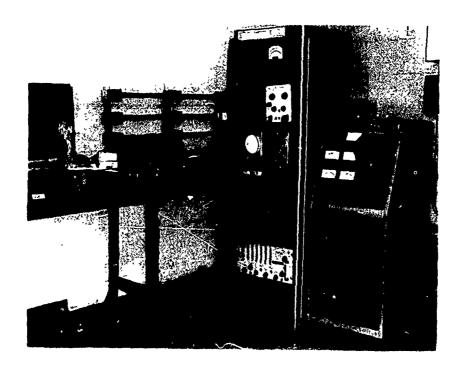
さいてき やくうため たんたいでんたんかん シーシール ないかん とうたいたい ひゃうどうかった かくうた せいろう しんかん いかく たい くれた あまりた しゅうたい

,

a. MIL-STD-461/462 Tests

Test <u>Method</u>	Description	Remarks
CE01	Conducted Emission, 30 Hz to 20 kHz, Power Leads	Info. Only
CE02	Conducted Emission, 30 Hz to 20 kHz, Control and Signal Leads	Info. Only
CE03	Conducted Emission, 20 kHz to 50 mHz, Power Leads	
CE04	Conducted Emission, 20 kHz to 50 mHz, Control and Signal Leads	Info. Only
CS01	Conducted Susceptibility, 30 Hz to 50 kHz, Power Leads	
CS02	Conducted Susceptibility, 50 kHz to 400 mHz, Power Leads	
CS06	Conducted Susceptibility, Spike, Power Leads	
RE02	Radiated Emission, 0.014 to 10 gHz, Electric Field	
RS02	Radiated Susceptibility, Magnetic Induction Fields	
RS03	Radiated Susceptibility, 14 kHz to 10 gHz, Electric Field	

b. MIL-STD-810 Tests


a bath the discovery of the start when the start starter the starter of the starter of the starter of the start

5

Test <u>Method</u>	Procedure	Description
504	I	Temperature Altitude: -25°C to 50°C, 0-20,000 ft.
518	I	Temperature, Humidity, Altitude: -40°C to 50°C, 0-95% RH, 0-20,000 ft.
507	I	Humidity: 0-95% RH
513.1	11	Acceleration
511	I	Explosive Atmosphere
510	Ι	Dust
514.1	I	Vibration (Category C Equipment)

94

ኦ

ないでないで、「ないなん」

AL ARKING BY CANED THE ALL STATES AND AND A

Figure 27. Test Setup for SIRS Recorder Qualification.

95

altheory of the second second second

used in the EMI/EMC environment test; its test results could be applied to S/N 005 whereas the converse would not be possible.

The tests were successful in that the few operational discrepancies that occurred during the tests could be eliminated by simple corrective actions. The correction actions were such that the high level of confidence in their effectiveness precluded the requirement for retests. Of the five discrepancies observed, four occurred during the EMI tests and three of the four were correctible by proper termination of shields in the signal cable, shorter wire lengths, and improved wire routing. The fourth discrepancy was due to the SIRS recorder logic test program and could not be attributed to the EMI environment. The fifth discrepancy was a leaking battery condition that developed during temperature-humidity-altitude testing. A suitable battery replacement eliminated the problem.

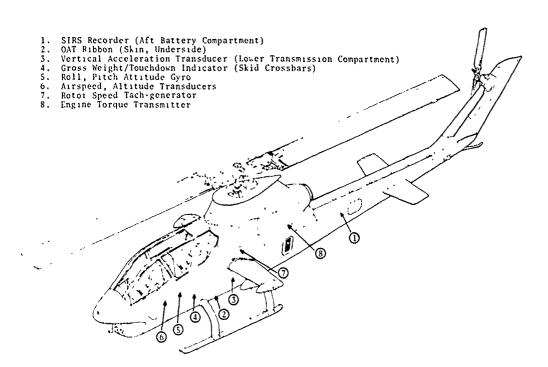
Phase I Prototype Flight Test

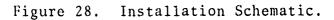
No and the state of the state

The prototype flight test was held and the program was formally introduced to Fort Rucker personnel on 5 November 1976.

Instrumentation System. To obtain the data for the validation of the SIRS recorder, two Century Model 409B oscillograph recorders, each with 14 data channels and capable of recording numerous dynamic parameters on 3-5/8-inch-wide photosensitive paper, were used in this program. One oscillograph was to record FCR (Flight Condition Recognition) data and the other to record SIRS flag data. The FCR oscillograph recorded the dynamic parameters that would permit identifying the various flight conditions encountered during the flight test program. The SIRS flag oscillograph recorded the various SIRS parameter levels that would trigger the logic routine operations and consequently provided the data to verify the functioning of the logic routines.

In general, each oscillograph had 12 channels available for recording the in-flight parameters. Of the remaining two channels, one was used to delineate a time pattern reflecting a 1-minute cycling, and the other was used to trace a static line for measurement reference. Table 22 presents the parameters recorded on each oscillograph. As apparent in this table, several parameters were recorded by both oscillographs so that the two oscillographs could be readily correlated. The FCR oscillograph parameters were recorded as analog values while the flag oscillograph parameters were presented either as analog values for the parameters in common with both oscillographs or as ranged data for the output of the SIRS recorder.


The signal conditioning units used to regulate the voltage signals from the various transducers were the Technology Incorporated Models 074037D30007-1 and -2 for the flag and the FCR oscillographs, respectively.


TABLE 22. RECORDED PARAMETERS

Parameter	FRC Oscillograph	Flag Oscillograph
Airspeed	Analog	Range
Pressure Altitude	Analog	-
Outside Air Temperature	Analog	-
Density		D
Altitude Main Rotor	-	Range
Speed Vertical	Analog	Range
Acceleration	Analog	Analog and Range
Engine Torque Roll Attitude	Analog Analog	Analog and Range Range
Pitch Attitude Gross Weight	Analog	Range Range
Touchdown	-	Range
Time Reference	Analog Analog	Analog Analog

For a description of the recording system, refer to Chapter 3.

Installation of Recording System. The SIRS recorder was installed in the helicopter's battery compartment on a shelf accessible from the right-hand side of the helicopter. The airspeed and altitude transducers were mounted on the lefthand side of the aircraft in the area adjacent to the pilot's compartment where the aircraft's pitot and static system was The vertical accelerometer was mounted on a accessible. bracket attached to the bulkhead beneath the transmission. The outside air temperature transducer was mounted on the skin of the helicopter on the underside at Station 220. Rotor speed was taken from the helicopter's rotory tach generator. Engine torque was taken from the engine torque transmitter. A circuit breaker was installed in the pilot's right-hand aft circuit breaker panel and was connected to the dc bus to provide 28 Vdc power. Provisions were made to take the roll and pitch attitude signals from the aircraft's roll and pitch gyro located in the same area as the airspeed and altitude transducers. The gross weight sensors were installed at the midpoint of the fore-and-aft skid crosstubes. Cabling between the SIRS recorder and transducers was routed through the compartments along the underside of the helicopter. Figure 28 is an outline drawing of the AH-1G helicopter showing the recorder system component locations.

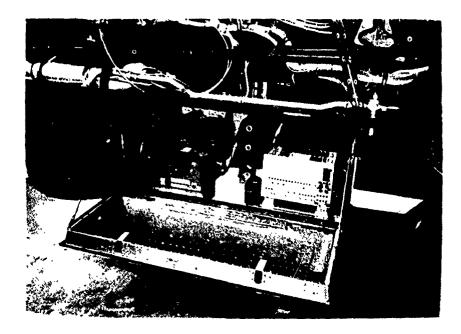


Figure 29. Flight Test Instrumentation System.

The instrumentation system used to evaluate the performance of the SIRS recorder, including the FCR oscillograph, flag oscillograph, signal conditioning system, and digital-to-analog converter, was mounted in the ammunition bay under the pilot and gunner's compartment. In addition, a junction box was installed in the battery compartment to tap into the SIRS recorder's analog and digital flag signals. Figure 29 is a photograph of the flight test instrumentation system.

The SIRS and flight test recording systems were installed and checked between 23 Februar and 15 March 1977.

<u>Recorder Flight Testing</u>. The flight performance of the SIRS recorder was evaluated by flying various flight conditions and by analyzing the degree to which the SIRS recorder could identify and correctly time the flight conditions. Examples of the flight conditions flown are listed in Table 23. In addition, several nap-of-the-earth flights, both simulated and actual, were performed.

Seven useful data flights, which yielded 7.5 hours of inflight data, were made during the 4 weeks of the flight test program. An additional 22 flights, yielding 19.9 hours of inflight data, were made; these flights included instrumentation check flights, nap-of-the-earth training flights flown in conjunction with the test program, and landing check flights. Although limited data from these flights were processed to verify the operation of the SIRS recorder, they were not specifically used to validate the recorder performance. Table 24 summarizes the 29 flights.

During the early portions of the flight test program, each flight generally lasted an hour and most of the flight conditions listed in Table 23 were flown. Beginning on flight 21, the digital-to-analog converter used to establish the signal levels for the flag oscillograph malfunctioned occasionally. The malfunction was a random disruption of all the traces on the flag oscillograph. Consequently, the later flights in the program were generally shorter and designed to investigate fewer flight conditions with only the FCR oscillograph.

<u>Recorder Performance</u>. The following summary of the SIRS recorder performance consists of detailed discussions of how the recorder identified and recorded occurrences of flight conditions, time within certain prescribed flight conditions, and maximum parameter occurrences. Not all of the 22 flight condition categories will be discussed in detail. Rather, examples of each of the three types of data recording techniques, that is, occurrences, times, and maximums, will be presented. In addition, during the test program several of the encountered flight conditions required logic modifications or improvements before they could be identified. These modifications are discussed in general, but an example of a required logic change is illustrated.

TABLE 23. FLIGHT TEST FLIGHT CONDITIONS

服用的

5 . See - S

Rotor Start/Stop Level Flight	Dive: Symmetric
Hover:	To Left
IGE	To Right
OGE	Pullout:
Quick Stop:	Symmetric
IGE	To Left
OGE	To Right
Full Power Climb	Pullup (Cyclic Climb):
Maximum Performance Takeoff	Symmetric
Maximum Rate Acceleration	To Left
Autorotation:	To Right
Power to Autorotation	Turns:
Steady	Norma1
Turns	Gunnery
Landings	S-Type
Approach and Landing	

TABLE 24. FLIGHT LOG SUMMARY

Flt. <u>No.</u>	Predominant Maneuvers	Val SIRS	id Dat FCR	ta Flag	Flight Duration(hr)
1	Ground Rur		*		
1 2 3 4 5 6 7	Functional Check		*		0.4
3	Junctional Check		*		0.3
4	Pilot Currency		*		1.0
Ş	Entire Profile	*	*		1.5
0	Level Flight, Turns	*	*		0.5
8	Level Flight, Turns	*	*		0.7
	Level Flight, Turns	*	*		0.7
9	Functional Check	*	*	*	0.3
10 11	Level Flight, Turns Entire Profile	-	*	*	0.8
12	Entire Profile	*	*	*	1.4
13	IP Check, Auto				1.0
15	Landings		*	*	1.8
14	Dives, Turns	*	*	*	1.0
15	Nap-of-Earth		*		1.5
16	Nap-of-Earth		*		1.5
17	Nap-of-Earth	*	*	*	1.6
18	Nap-of-Earth	*	*		1.7
19	Nap-of-Earth		*		1.8
20	Functional Check	*	*		0.8
21	Entire Profile	*	*		1.5
22	Level Flight,				
	Takeoffs		*		0.6
23	Check Flight	*	*		0.8
24	Level Flight,				••••
- ·	Quick Stops	*	*		0.5
25	Larding Check	*	*	*	0.3
26	High Gross Weight/				
	Landing Check	*	*	*	0.3
27	Low Gross Weight/				
	Linding Check	*	*	*	0.4
28	Lev l Flight/				
	Airspeed Check	*	*	*	1.5
29	Lc / Gross Weight/				
	Landing Checks,				
	Quick Stops	*	*	*	1.2

à

Of the flight conditions that are recorded as occurrences, rotor start/stop and takeoff/landing cycles are the principal ones discussed in this section. The timed flight conditions to be discussed include total flight time, cruise, and various types of turns. Finally, this section discusses the measurement of peak vertical accelerations.

نہ ک

Contraction of the second s

<u>Computed Parameters</u>. The SIRS recorder monitors airspeed, pressure altitude, and outside air temperature. From these parameters, the SIRS recorder computes the density altitude, the maximum level-flight velocity, and the limit velocity for the helicopter. In addition, the SIRS recorder monitors inputs from the gross weight sensors and computes gross weight ranges during a flight.

Maximum airspeed limit V_H , which represents the maximum level flight limit for the aircraft and the limit velocity V_I , which is the maximum airspeed permitted for the AH-1G helicopter are calculated from Equations 6.7, and 8. The density altitude is computed in Equation 9.

Each of these calculations is continuously performed within the SIRS recorder, and the various identified flight conditions are categorized by the appropriate percentage of either of these limits.

Table 25 summarizes the airspeed limits, V_H and V_L , calculated by the SIRS recorder as represented on the flag oscillogram and those calculated manually from the FCR oscillogram for Flight 28. This flight was flown at two density altitudes and was typical of the calculating performance of the SIRS recorder.

The SIRS recorder monitors the input from the two piezoelectric beam sensors and computes a takeoff gross weight. During each flight, this gross weight is reduced at a fixed rate to account for fuel consumption. Throughout the flight, the various flight conditions are each categorized as being in one of three gross weight ranges: below 7750 pounds, 7750 to 8750 pounds, and above 8750 pounds.

As shown in Table 26, the system did not reliably compute the takeoff gross weight, since it yielded correct values for only five of the twelve flights. However, it generally computed the correct gross weight for the first flight of the day as evidenced in the data for Flights 11, 21, and 23. These correct values were due to the ability of the skid landing gear to assume its natural position when the helicopter was positioned on the flight line each morning. The flight test log does not indicate whether the helicopter was refueled before or after it was moved for Flights 31 and 26. The system did operate correctly after the wing stores were removed prior to Flight 27. Except for Flight 14, the system did not correctly compute the takeoff gross weight when the mission was the second or third flight of the day. When the helicopter was refueled

TABLE 25.	COMPARISON	OF PERCENT V _H AN	D V _L CALCULATIONS
	FOR LEVEL	FLIGHT CONDITIONS	(FLIGHT 28)
Indicated	Density	%V _H	۶V _I

and the state of the

210253

terior and an

Share to back the

1

indicated	Density		U H		avL
Airspeed	Altitude	FCR	Flag	FCR	Flag
118	2155	0.84	0.8-0.9	0.66	≤0.7
109	2155	0.78	0.65-0.8	0.60	≤0.7
134	2271	0.96	0.9-0.95	0.74	0.7-0.85
127	2327	0.91	0.8-0.9	0.70	0.7
148	2155	1.06	>0.95	0.82	0.7-0.85
134	2348	0.96	0.9-0.95	0.75	0.7-0.85
140	2325	1.01	>0.95	0.78	0.7-0.85
156	2350	1.12	>0.95	0.86	0.7-0.85
166	2300	1.19	>0.95	0.92	0.85-0.95
153	2275	1.10	>0.95	0.85	0.7-0.85
109	6675	0.84	0.8-0.9	0.73	0.7-0.85
103	6648	0.79	0.65-0.8	0.68	<0.7
120	6600	0.92	0.9-0.95	0.79	0.7-0.85
114	6664	0.87	0.8-0.9	0.76	0.7-0.85
128	6719	0.98	>0.95	0.85	0.85-0.95
124	6694	0.95	0.9-0.95	0.82	0.7-0.85

TABLE 26. TAKEOFF GROSS WEIGHT COMPARISON

<u>Flight No</u> .	Date	Log	Flag	SIPS
11 12	31 Mar 77	8317 8317	7750-8750 <7750	<7750
13 14	5 Apr 77	8317 8317	≥8750 7750-8750	- 7750-8750
21 22	12 Apr 77	9500 9500	<u>></u> 8730 <7750	≥8750 -
23 24	13 Apr 77	9500 9500	-	≥8750 7750-8750
26 27 28 29	14 Apr 77	9500 8317 8317 8317	- - - - 7750 <7750	7750-8750 7750-8750 <7750 <7750 <7750

between flights, the static friction between the skid landing gear and ground prevented the skid gear from readjusting for the increased weight of the fuel.

The algorithm used to decrease gross weight due to fuel consumption worked correctly. In addition, during one flight after a landing, the rotor speed decreased below 250 rpm, and the gross weight system updated itself correctly.

Occurrences. The SIRS recorder is designed to monitor the various input parameters and, through the microprocessor logic, to identify occurrences of flight conditions. Such typical flight conditions include rotor start/stop cycles, power-on landings, autorotative landings, high n maneuvers, and autorotation-to-power transitions. In this section, the first three occurrences will be discussed.

The SIRS recorder identified the eight rotor starts that occurred during the seven data flights shown in Table 27 and one extra cycle on Flight 12. The extra start was counted because of an accidental pulling of the circuit breaker of the instrumentation system, which caused the signal to behave as though a shutdown was occurring.

In general, the SIRS recorder correctly identified the normal landings performed during the flight test program. Table 28 summarizes the normal and autorotative landings detected by the SIRS recorder and identified on the FCR oscillogram. An example of a typical landing is shown in Figure 30, which includes the FCR and flag oscillograms. Table 28 shows differences between the FCR and SIRS data due to two types of problems, one in Flights 12, 28, and 29, and the second in Flights 23, 24, 28, and 29.

The normal landings of Flights 12, 28, and 29 not recorded by the SIRS recorder were missed because the recorder's logic requires 10 seconds of flight before subsequent landing can be considered valid, and 5 seconds on the ground before the landing is considered valid. During Flights 12, 28, and 29, multiple landings were made as part of the investigation of the performance of the gross weight sensing system; not all of these takeoffs and landings satisfied the logic of the recorder. No changes to the recorder logic are planned since this problem is not considered one that will exist in the operational environment.

For the identified autorotative landings of Flights 23, 24, 28, and 29, the logic had to be modified because the SIRS recorder was identifying normal power-on landings performed at high gross weights as autorotative landings. This occurred because the engine torque dropped below 5 psi sometime during the 10 seconds prior to touchdown. The subsequent logic changes will preclude the misidentification of normal landings.

Only three full autorotative landings were performed during the flight test program because of pilot restrictions and availability. All of these landings occurred during

á

<u>Flt.No</u> .	Flt. Tim FCR	e (min) SIRS	Rotor FCR	<u>Starts</u> <u>SIRS</u>
12	55.60	56.32	1	2 (a)
14	52.57	52.72	1	1
21	73.86	74.69	1	1
23	37.77	38.03	1	1
24	25.29	25.39	1	1
28	85,81	85.69	1	1
29	60.97	61.89	2	2.

TABLE 27. COMPARISON OF FLIGHT LENGTH AND

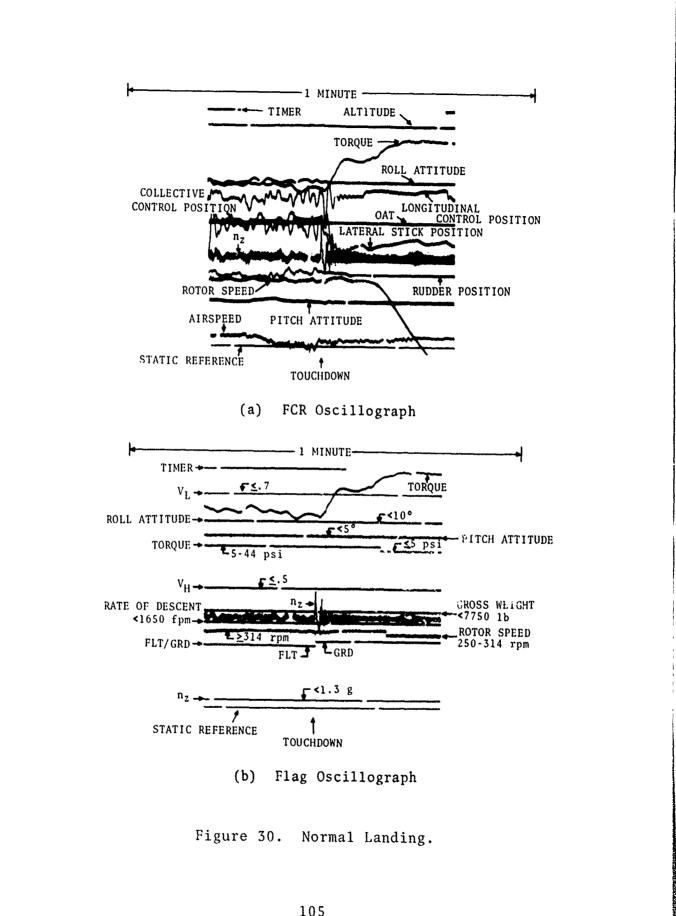
ROTOR STARTS

Note:

CINESS/NEW CONTRACTOR

South and the second second

(a) Caused by accidently pulling circuit breaker for the instrumentation's electrical system.


TABLE 28. COMPARISON OF LANDINGS

<u>Flt.No</u> .	<u>Normal</u> FCR	Landing SIRS(a)	<u>Autorota</u> <u>FCR</u>	tive Landing SIRS(a)
12	4	2	0	0
14	1	1	0	0
21	9	9	0	0
23	5	4	0	1
24	4	3	0	1
28	3	1	0	1
29	13	7	0	2

Note:

(a) Discrepancies in the data are discussed in the text.

1

erar G

and the state of the

CARLES AN ALL AND A REAL AND A

105

4

S CARACTERINA CONTRACTOR STATE

Flight 13. Unfortunately, the temporary mercury batteries, installed after the failure of the lithium batteries in the qualification testing, lost contact in flight and the recorder memory was lost; these slightly undersized batteries were subsequently soldered in place. However, the FCR and flag oscillograms in Figure 31 show that the SIRS recorder would have identified the landing as an autorotative landing since the engine torque was below 5 psi for the entire 10 seconds prior to the landing as required by the SIRS recorder logic.

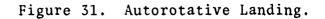
Timed Flight Conditions. The SIRS recorder can record the duration of flight conditions in a manner similar to the recognition of occurrences procedure. The microprocessor logic identifies the flight conditions according to the individual or collective flight parameter changes, each within a preset range. For example, the duration of flight time is determined by the length of time that the touchdown indicator indicates an airborne condition. Likewise, a turn is identified as the duration of time that roll attitude is beyond the threshold if a vertical acceleration peak in excess of 1.3g occurs some-() time during the period; the turn is then characterized by the airspeed and gross weight at which it was performed.

The durations of the seven data flights as measured by the FCR oscillograph and the SIRS recorder are listed in Table 27. The maximum variation in the two measurements is 1.5 percent; it should be noted that the potential for error in measurement is greater with the oscillograph than with the SIRS recorder because of the mechanical aspects of the oscillograph.

In addition to the total flight time, the SIRS recorder also measured the time spent in cruise at various airspeed levels. Low-speed flight is defined by speeds of 50 to 65 percent V_H ; high-speed flight is defined by speeds of 65 to 95 percent V_H ; and maximum-speed flight is defined by speeds in excess of 95 percent V_H . For all level flight conditions, the airspeed is converted to the equivalent percent V_H for that gross weight and density altitude condition. As presented in Table 29, the SIRS recorder accurately measured the time in various cruise conditions. For the same flight, a comparison of measured and recorded values for V_H throughout the cruise conditions are presented in Table 30.

As discussed earlier, the SIRS recorder includes logic to identify various types of turns, including normal, gunnery, and gunnery S-turns. The turns are categorized by airspeed and vertical acceleration for a given gross weight condition. For Flight 14, normal, gunnery, and S-turns were analyzed by processing data from the FCR and flag oscillographs and comparing these data with the output of the SIRS recorder. As shown in Table 31, the agreement is very good between the flag and SIRS data.

and a subscription of the state of the second state of the second state of the second state of the second state



N. S. Strategica

**** ひょうる

1

(b) Flag Oscillograph

107

à

TABLE 29. COMPARISON OF CRUISE TIMES FOR FLIGHT 14

gra ang Su data

日本はいたたちにないたいたいではないという

	Flag Osc:	SIRS		
Low-Speed Flight High-Speed Flight		sec sec		sec sec
Max. Speed Flight	53	sec	54	sec

TABLE 30. COMPARISON OF PERCENT ${\rm V}_{\rm H}$ CALCULATIONS DURING CRUISE FOR FLIGHT 14

Flight	Indicated	Density	8	V _H
Condition	Airspeed	Altitude	FCR	Flag
Low-Speed			0 6 5	
Flight	91	2410	0.65	0.5-0.65
11	84	1048	0.59	0.5-0.65
High-Speed			0 7 2	0 65 0 0
Flight	100	2492	0.72	0.65-0.8
11	133	2724	0.96	0.9-0.95
88	125	2807	0.91	0.8-0.9
11	100	2409	0.72	0.65-0.8
11	124	2291	0.89	0.8-0.9
11	131	2256	0.94	0.9-0.95
11	110	2208	0.79	0.65-0.8
11	124	2291	0.89	0.8-0.9
, 11	127	2005	0.91	0.8-0.9
11	113	2009	0.81	0.65-0.8
**	132	1969	0.94	0.9-0,95
11	115	2005	0.82	0.65-0.8
ti	120	2005	0.86	0.8-0.9
11	131	1995	0.94	0.9-0.95
**	126	1969	0,90	0.8-0.9
11	124	1900	0.89	0.8-0.9
11	134	1827	0,96	0.9-0.95
11	135	1298	0.95	0.9-0.95
11	124	1252	0.88	0.8-0.9
ŧt	106	1174	0.75	0.65-0.8
Max. Speed				
Flight	140	2800	1.01	>0.95
11	140	2020	' 1.00	>0.95
tt	142	2030	1.01	>0, [,] 95
tt	143	1703	1.02	>0,95

108

à

TABLE 31. COMPARISON OF VARIOUS TURNS FOR FLIGHT 14

変ななとないでない。

F

		Dur	ation (s	sec)
Type	Gross Weight	FCR	Flag	SIRS
Normal Turn " Gunnery Turn " Gunnery S-Turn	<7750 7750-8750 <7750 7750-8750 7750-8750	234 40 28 167 140	222 39 27 158 139	222 39 27 161 138

The measurement accuracy of the FCR and flag oscillographs is less than that of the SIRS recorder because the crystal clock in the recorder functions more precisely than the mechanical drives in the oscillographs. Minor variations in the drive speed of the oscillographs cause corresponding variations in the timed events. For illustrative purposes, Figure 32 presents the FCR and flag oscillograms for a typical turn. This turn, as recorded by the SIRS recorder lasted 39.2 seconds. In comparison, by analyzing when the roll flag changed from within threshold to outside threshold and then back again, the turn duration would be 39 seconds. Note that near the end of the turn, the n_flag changed from threshold to the range of 1.3 to 1.5g. If the FCR chart, the turn duration is slightly longer, 40 seconds, since the turn was identified at the instant of roll attitude change rather than when it passes through 10°.

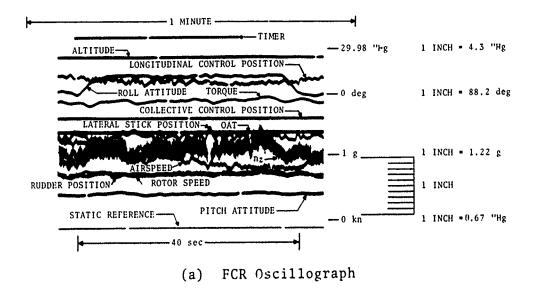
Maximum Parameter Value. The SIRS recorder can identify the maximum value of a parameter during the interval between data retrievals. During the flight test program, the maximum values of vertical acceleration and V, (limit velocity) were recorded.

of vertical acceleration and V_I (limit velocity) were recorded. Table 32 compares the maxImum n peaks identified by the SIRS recorder during each flight with the corresponding values read from the FCR oscillograph. The largest positive peak recorded during the program was 2.73g, which occurred during a turn at an airspeed of 97 percent V_H and with a roll angle greater than 50°, as shown in Figure 33. The lowest positive peak recorded during the program was 1.08g, which occurred in a hover during Flight 25.

CONTRACTOR CONTRACTOR

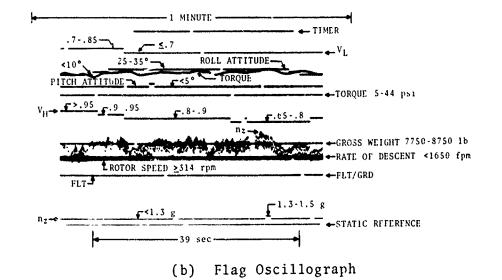
TABLE 32. 0	COMPARISON	OF	MAXIMUM	nz	VALUES	
-------------	------------	----	---------	----	--------	--

	Elight	Maximum	n _z (g)
Flight No.	Flight Condition	FCR	SIRS
10	Turn	1.4	1.4
12	Dive	2.2	2.3
14	**	2.3	2.3
21	Turn	2.7	2.7
23	Dive	2.5	2.5
24	Quick Stop	1.6	1.6
25	Hover	1,1	1.1
26	11	1.1	1.1
27	Turn	1.7	1.7
28	Cyclic Pullup	1.6	1.6
29	Autorotation to Power	1.5	1.4


Although the SIRS recorder was programmed to also identify the maximum V_L condition, the lack of a time delay in the recorder caused false V_L values as the recorder and transducers were powered up. Since the altitude transducer has an equivalent altitude of 21,200 feet at zero volts, during the power-up cycle the recorder incorrectly calculated the V_L value. The software logic has since been changed to include a time delay that will prevent erroneous calculations. The recorder capability of measuring maximum V_L peaks has since been demonstrated in the laboratory. In addition, follow-on IOT&E flight tests with the All-1S have confirmed the laboratory findings.

R

Summary and Conclusions. The purpose of the Phase I testing was to verify that the SIRS recorder would operate reliably in an operational helicopter environment and yield flight data. The SIRS recorder successfully demonstrated that it can perform its intended function.


Minor improvements recommended for the SIRS recorder hardware and software were incorporated in the SIRS recorders assigned to the Phase II Operational Evaluation. No major changes in the recorder design were required.

-

and the second second

with the tot water, had a good

١	Normal					
		SIE	RS	-	39	sec
Flag	Osci11	lograp	bh	-	39	sec
FCŘ	Oscil]	logra	bh	-	40	sec

Figure 32. Normal Turn.

111

à

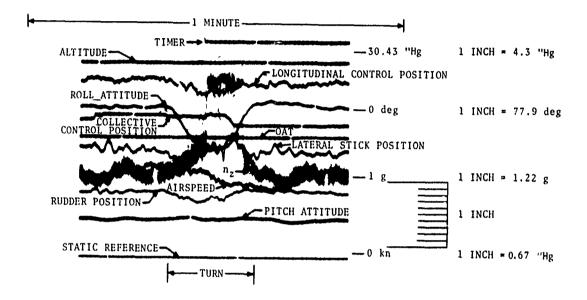


Figure 33. FCR Oscillograph Showing the Largest Positive n_z Peak Recorded During the Program.

à

The application of the lift link system to the AH-1G was to be researched further; if acceptable results were obtained, it would be incorporated into the SIRS recorder system. In addition, the measurement of pitch in conjunction with the lift link should be considered as a method for decreasing the sensitivity of the lift link system to center-of-gravity changes.

With the incorporation of the recommended hardware and software improvements, the SIRS recorder was declared acceptable for the Phase II Operational Evaluation.

ΙΟΤξΕ

The second second second second

¥.

and the second

The IOT&E was entitled "Phase II Operational Flight Test for the SIRS AH-1G Program." It was concerned with determining if there were any deficiencies that would inhibit or limit the operational employment of the system. In addition, this was the opportunity to show the user the design that his original concepts produced, what he could expect to accomplish with the system, and, more importantly, what it would cost the user in terms of resources and manpower to accomplish his operational task.

The major objectives of the IOT&E were to:

- Estimate the operational effectiveness and suitability of the system as well as other operational aspects of its military utility.
- Identify any operational deficiencies.
- Recommend and evaluate desirable changes and trade-offs in production configuration.
- Obtain operational information for:
 - Refinement of official program operating and support cost estimates.
 - Identify system characteristics or deficiencies that significantly impact O&S costs.

IOT&E Test Support

During October 1977 the test article installation was essentially completed. At the time of departure of the installation team from Fort Rucker, four of five SIRS recorders were installed and operational. The fifth recorder was not installed because of a malfunctioned vertical accelerometer that was being repaired. The helicopters in which the recorders were installed are listed below:

<u>Aircraft</u>	Recorder Serial Number
66-15254	1008
66-15252	1009
66-15286	1010
66-15473	1011
66-15356	Installation of 1012
	completed December 1977

A data collection trip was made on 15-17 November 1977 to Fort Rucker to retrieve data from the four SIRS recorders and to perform any required maintenance. The status of each recorder was summarized by aircraft tail number. The report at that time was as follows:

"66-15254 - System Functioning properly."

"66-15252 - Aircraft is in maintenance hangar for replacement of rotor mast. System was inoperative due to large unbalance in the strain gauge bridge. We were unable to compensate for the unbalance and traced the problem to a faulty strain gauge. It will require the installation of a new instrumented lift link."

"66-15286 - Attempted to retrieve data prior to the morning mission and found the system inoperative. Investigation showed that the strain gauge bridge had been destroyed during aircraft maintenance. The strain gauge bridge appeared to have been hit with a wrench. It will require the installation of a new instrumented lift link."

"66-15473 - System functioning properly."

"66-15356 - System inoperative due to faulty n_{τ} transducer. (Sent to factory for repair.)"

A data collection trip was made on 27-29 December 1977 to Fort Rucker to retrieve data and to perform any required maintenance. The status of each recorder was summarized by aircraft tail number. The report of findings at that time was as follows:

4

"66-15254 - Retrieved data on 28 December 1977. Upon checking the static gross weight parameter, a zero condition was found. Further investigation found a negative 0.3-volt signal from the gross weight in-line amplifier. Rebalancing of the strain gauge bridge produced a 70-count static indication on the Retrieval Unit. While closing up the aircraft, the Retrieval Unit was left on (approximately 3 minutes) and the 70-count reading drifted down to 46 counts. The 46-count reading did not drift over the next 1-minute interval. The Retrieval Unit was turned off for approximately 2 minutes and back on to monitor gross weight. A 54-count reading was observed this second time and a slow drift downward to 50 counts took an estimated 52 seconds. It appears that the strain gauge bridge is drifting."

"66-15252 - Aircraft is still in maintenance hangar awaiting rotor mast change. The strain gauge bridge is still unbalanced due to a faulty bridge. The system is still inoperative and will need a new instrumented lift link."

"66-15286 - System inoperative due to a completely destroyed strain gauge on the lift link. This system will need a new instrumented lift link."

"66-15273 - Data retrieved and static condition checkout show this system functioning properly."

The IOT&E flight test continued into the February 1978 time frame. By that time the AH-1G program had been phased down and replaced by the follow-on IOT&E with the AH-1S used as the test vehicle.

Evaluation of an AH-1G Fleet Operating Parameter That Impacts O&S Costs

It was noted that conventional calculated component damage was arrived at by using official logbook hours reported on each airframe. Further, it was observed that calculated SIRS spectrum damage and component damage arrived at by using recorder clock time would both lead to extended service lives of the 10 high-value, fatigue-sensitive components under study in this program. This is attributed to the fact that the recorder electronics is made to function only at the onset of events leading to component damage. This typically begins at rotor start. Component damage is not accumulated during engine runup although the aircrew would be expected to include all operating times in logbook hours independent of whether they contribute to component damage. An example of the results for aircraft 66-15473 is reproduced in Table 33. A statistical treatment of the calculated component damage throughout this limited flight test program may be seen in Table 34.

The planned DT&E and IOT&E programs for the SIRS concept were completed in December 1977. The follow-on IOT&E was phased in at that time with the AH-1S as the test vehicle. While the AH-1G DT&E and IOT&E programs were quite compressed, a number of significant findings were derived from the effort.

Ā

		Predicted Spectrum			
Component	SIRS Spectrum	Recorder Hours	Lobbook Hours		
Main Rotor Blade	0.00706	0.05477	0.08227		
Main Rotor Yoke Extension	0.0	0.01826	0.02742		
Main Rotor Grip	0.0	0.00602	0.00905		
Main Rotor Pitch Horn	0.00002	0.00913	0.01371		
Retention Strap Fig/Nut	0.02563	0.02738	0.04114		
Swashplate Drive Link	0.00001	0,00548	0.00823		
Swashplate Outer Ring	0.00025	0.01826	0.02742		
Swashplate Inner Ring	0.00007	0.01826	0.02742		
Hydraulic Boost Cylinder	0.00080	0.01826	0.02742		
Tail Rotor Blade	0.00130	0.05477	0.08227		

TABLE 33. CALCULATED COMPONENT DAMAGE

The second watches which the second

train and a second

ج

LANDANSA BE MARTI

ţ

いいたいいき

TABLE 34. STATISTICAL EVALUATION OF CALCULATED COMPONENT DAMAGE (ALL FLIGHTS)

SIDS		Flight Hour Damage				
Damage Spectrum	s _x	Recorder Spectrum	s _x	Logbook Spectrum	\$ _x	
0.01041	0.01139	0.04386	0.02679	0.08491	0.01206	
0.000594	0.01314	0.01462	0.00893	0.02833	0.00400	
0.01106	0.02957	0.00514	0.00317	0.00910	0.00177	
0.00023	9.00091	0.00779	0.00480	0.01379	0.00269	
0.03272	0.01732	0.02338	0.01439	0.64137	0.00807	
0.00020	0.00081	0.00468	0.00288	0.00828	0.00161	
0.01870	0.06998	0.01559	0.00960	0.02758	0.00538	
0.00320	0.00709	0.01694	0.00992	0.02923	0.00432	
0.00037	0.90035	0.01462	0.00893	0.02830	0.00402	
0.02723	0.04352	0.05080	0.02976	0.08771	0.01296	
	Spectrum 0.01041 0.000594 0.01106 0.00023 0.03272 0.00020 0.01870 0.00320 0.00037	Damage Spectrum Sx 0.01041 0.01139 0.000594 0.01314 0.0106 0.02957 0.00023 0.00091 0.03272 0.01732 0.00020 0.00081 0.01870 0.06998 0.00320 0.00709 0.00037 0.90035	Damage Spectrum Sx Recorder Spectrum 0.01041 0.01139 0.04386 0.000594 0.01314 0.01462 0.01106 0.02957 0.00514 0.00023 0.00091 0.00779 0.03272 0.01732 0.02338 0.00020 0.00081 0.00468 0.01870 0.06998 0.01559 0.00320 0.00709 0.01694 0.006037 0.90035 0.01462	SIRS Damage Spectrum Sx Recorder Spectrum Sx 0.01041 0.01139 0.04386 0.02679 0.000594 0.01314 0.01462 0.00893 0.01106 0.02957 0.00514 0.00317 0.00023 9.00091 0.00779 0.00480 0.03272 0.01732 0.02338 0.01439 0.00020 0.00081 0.00468 0.00288 0.01870 0.06998 0.01559 0.00960 0.00320 0.00709 0.01694 0.00992 0.006037 0.90035 0.01462 0.00893	SIRS Damage SpectrumS xRecorder SpectrumS xLogbook Spectrum0.010410.011390.043860.026790.084910.0005940.013140.014620.00893 0.02833 0.011060.029570.00514 0.00317 0.00910 0.000239.00091 0.00779 0.00480 0.01379 0.03272 0.01732 0.02338 0.01439 0.64137 0.00020 0.0081 0.00468 0.00288 0.00828 0.01870 0.06998 0.01559 0.00960 0.02758 0.00320 0.00709 0.01694 0.00992 0.02830 0.006037 0.90035 0.01462 0.00893 0.02830	

inication maintabilities film

CHAPTER 5.

FINDINGS

DT&E FLIGHT TEST (PHASE I PROTOTYPE FLIGHT TEST)

Software Modifications

During the flight test program, several flight conditions were identified that required computer logic modification to properly identify or time them. These flight conditions are identified in Table 35.

Hardware Modifications

Several findings resulted from the qualification program. Assorted internal wire routing and terminations were shown to need improvement. The lithium battery failed during the temperature-altitude-humidity test. The gross weight system operated correctly during the flight test program in all modes except one. When the helicopter landed at a low gross weight and then refueled, an error was introduced because the skid landing gear could not assume a new position due to the static friction between the skid gear and the ground. This problem could be solved by requiring a brief lift-off and touchdown before flight takeoff so that the skid gear could assume its normal positon for the existing gross weight. This solution, however, is not considered practical in the operational environment.

IOTGE (PHASE II OPERATIONAL EVALUATION)

Following satisfactory completion of the prot type flight testing, it was determined that the follow-on operational test program would be pursued. Five AH-1G aircraft were selected to participate in this program. The aircraft identified for participation in the program were: 66.15254, 66-15252, 66-15286, 66-15473, and 66-15356.

Before the flight test was initiated, a number of modifications to the SIRS equipment were implemented to improve its performance. After transmission lift links were strain gauged and calibrated, and software modifications were made to the EPROM resident software, the mission equipment was installed on the five test aircraft. On aircraft 66-15356, the n transducer was inoperative for the first three months of operation. This negated effective data gathering on this airframe for the entire operational test program. During the data retrieval of 15-17 November, the strain gauge deficiencies were noted on the lift links of two aircraft. Aircraft 66-15286 had a defective strain gauge that appeared to have been damaged during a routine

TABLE 35. FLIGHT CONDITION LOGIC MODIFICATIONS

Flight Condition

Normal/Autorotation Landing

Gunnery Run Dive

1 To the

and the second of the second second

:

ŧ

-

Pullup - Symmetrical and Asymmetrical

Autorotation Time

Full Power Climb

Maximum V_L

Quick Stops

Modification

Minor changes to lengthen period required for low torque and average torque values

Major logic change (see Chapter 4)

Major logic change to be compatible with Dive Logic (see Chapter 4)

Minor change to correct software coding error

Minor change to provide category for low-speed, highpower climb

Minor change to require time delay prior to start of recorder operation

Minor change to require decrease in airspeed during maneuver

.41

119

4

いたいであるという

maintenance operation. Aircraft 66-15252 was found to have a defective strain gauge bridge. Thus, three aircraft were essentially unable to provide useful data during the operation test program.

Aircraft 66-15473, and 66-15254 systems were operational for the entire test period from 1 October to 28 December 1977. During that 90-day period, 132.3 hours of data were captured on aircraft 66-15254. A total of 128.7 hours were retrieved from aircraft 66-15473.

Explicit Determination of Gross Weight (GW)

As noted previously, the attempt to determine AH-1G gross weight by strain gauging the landing gear was unsuccessful. During the IOT&E flight test program (Phase II Operational Flight Test), an alternate approach was to strain gauge the lift links to explicitly measure gross weight. The gross weight parameter is important to calculation of fatigue lives of the 10 parts under consideration.

From the R&D standpoint, it was found to be possible to determine GW by instrumenting the lift links. However, the concept produced consistently erratic data, required close technical attention, and was failure prone. The concept involved bonding strain gauges to the lift link. This was generally found unsatisfactory due to lack of good mechanical bond to the shot-peened surfaces. When operative, this was found to be marginally unsatisfactory due to the high vibration environment. Thus from an R&D standpoint, the lift link concept of instrumentation appeared feasible but from an operational viewpoint (IOT&E) the scheme was judged a failure. This short IOT&E suggests that the technique is too exotic for successful fleet-wide, operational deployment.

Tracking of High-Value, Fatigue Sensitive Parts

During the IOT&E flight test program the practical matter of keeping track of the 10 selected parts became difficult. Nevertheless, as parts are installed or removed for whatever reason, SIRS logistical integrity requires close attention to service lives of all parts on all aircraft that are involved. This IOT&E flight test program, while short, was adequate to sharply focus on the need for a simple, effective parts tracking procedure.

DTU Packaging

DTU operators were required to travel from contractor facilities to the responsible test organization at Fort Rucker throughout this limited IOT&E program. The mode of transportation selected, normally commercial air, resulted in considerable experience with operator transportation of the DTU. Early in the program, operator observations began to accumulate as to the unwieldy nature of the packaging concept selected for this ground support equipment. Flight test time was inadequate for thorough evaluation of this equipment. Thus it was not determined whether an alternative packaging concept would be a nice-to-have operational attribute or a mission-essential factor. and a set a better in the start of the sheets of the

DTU Tape Drive

During the course of this limited IOT&E program, the use of a one-way controller on the DTU tape drive was found to be a defective design concept. During DTU operations requiring tape search, the design concept that uses rewind times to find a specific record consistently resulted in selection of the incorrect record. This was due to system hysteresis from wear and varying ambient temperature, which caused inconsistent operation of the mechanical elements of the winding and rewinding mechanisms.

Use of DTU During Battery Charging Operation

The design concept was found to preclude DTU operations for other tasks during battery recharging operations. This was of no particular import in the R&D environment during DT&L. However, the operational import became clear during the IOT&E phase of this testing. Corrective action is indicated as this attribute of the design reduces maintenance productivity.

Logistics of Data Reduction

1.1

The IOTGE portion of the AH-1G flight test program was an opportunity to proof-test the original data reduction concept. In that capacity the contractor emulated the postulated Data Processing Center. The concept is summarized as follows:

At the Data Processing Center, the recorded data would be converted into assessment of fatigue damage. The effort would be divided into three tasks: initial processing (IPS), fatigue damage assessment (FDAS), and component tracking management (CTMS). Each task, as described in Chapter 3, was developed as a separate system, with appropriate interfaces, to form the data processing system.

During this IOT&E both the IPS and FDAS were satisfactorily demonstrated. No attempt was made to test or evaluate the CTMS.

Statistical Evaluation of Calculated Component Damage

and the second second

a property of the second states of the second state

From the test data reported in Chapter 4, it seems apparent that the damage values for the 10 components under consideration differ according to the technique used to calculate the cumulative damage. Here we will statistically test that observation. Three null hypotheses will be tested:

- H₀(1): Component damage = Component damage recorder-derived logbook-derived
- H₀(2): Component damage = Component damage SIRS-derived logbook-derived
- H₀(3): Component damage = Component damage recorder-derived SIRS-derived

The approach used is to take the smallest difference between the respective values for the test of these hypotheses. From Table 34 the smallest delta was found. Table 36 summarizes the deltas and associated calculations. $H_0(1)$ is tested via Main Rotor Grip data. $H_0(2)$ will be tested with Swashplate Drive Link data, and $H_0(3)$ will be tested with Swashplate Outer Ring data. All null hypotheses were rejected at the 5percent significance level. Sample Calculation 1 using small sampling theory is shown.

Sample Calculation 1

Test Null Hypothesis $H_0(1)$: 0.00514 = 0.00910 (from Reference 8, p. 261) to a 5-percent level of significance:

N_1	=	16	N_2	Ħ	16
$\overline{\mathbf{x}}1$	=	0.00514	$\overline{\mathbf{x}}$ 2	=	0.00910
$s_{\overline{x}_1}$	=	0.00317 (Std. Error)	$s_{\overline{x}_2}$	2	0.001777 (Std. Error)
v ₁	8	0.0000100489	v ₂	=	0.000031577

8. Tintner, G., MATHEMATICS AND STATISTICS FOR ECONOMISTS, New York: Holt, Rinehart, and Winston, 1965.

122

¥

a,

$$S^{2}_{\overline{x}_{1}-\overline{x}_{2}} = \frac{[N_{1}^{-1})V_{1} + (N_{2}^{-1})V_{2}](N_{1}^{+}N_{2})}{N_{1} N_{2}(N_{1}^{+}N_{2}^{-2})}$$

$$= \frac{[(16-1)0.0000100489 + (16-1)(0.0000031577)](16+16)}{16(16)(16+16-2)}$$

$$= \frac{[15(0.0000100489) + 15(0.0000031577)](32)}{16(16)(30)}$$

$$= \frac{(0.0001507335 + 0.0000473655)(32)}{7680}$$

$$= \frac{(0.000198099)32}{7680} = \frac{0.000008254}{7680}$$

$$t(empirical) = \frac{(0.00514 - 0.00910)}{8.254 \times 10^{-7}} = 4797.60$$

" said and the second the second

n (degree of freedom) = $N_1 + N_2 - 2 = 16 + 16 - 2 = 30$

t (at 5-percent significance) = 2.042

is normal particular in the particular from the second standard and the second s

Since t(empirical) >> t(required at 5-percent significance), null hypothesis is rejected.

Of final concern is whether the standard deviations observed during the IOT&E flight test are statistically substantiative. Therefore three additional hypotheses will be tested:

H ₀ (4):	σ	(Component damage) (recorder-derived)	= 0	(Component damage) logbook-derived)
H ₀ (5):	σ	(Component damage) SIRS-derived	= J	(Component damage) logbook-derived)
H ₀ (6):	σ	(Component damage) recorder-derived	≈ σ	(Component damage) SIRS-derived

The same methodology previously used is repeated here. $H_0(4)$ will be tested via swashplate drive link data. $H_0(5)$ will be tested with main rotor blade data, and $H_0(6)$ will be tested with swashplate drive link data. Table 37 shows the smallest ΔS_s selected. Sample Calculation 2 is similar to that previously shown (Reference 8).

à

	(1) SIRS Spectrum	2 Recorder Spectrum	3 Logbook Spectrum	2-3 Absolute Value	(1)-(3) Absolute Value	1-2 Absolute Value
Main Rotor Blade	0.01041	0.04386	0.08491	0.04105	0.0745	0.03345
Main Rotor Yoke Extension	0.000594	0.01462	0.02833	0.01371	0.027736	0.014026
Main Rotor Grip	0.01106	0.00514	0.00910	0.00396	0.00196	0.00592
Main Rotor Pitch Horn	0.00023	0.00779	0.01379	0.006	0.10356	0.00327
Retention Strap Ftg/Nut	0.03272	0.02338	0.04137	0.01799	0.00865	0.00934
Swashplate Drive Link	0.00020	0.00468	0.00828	0.0036	0.00808	0.00448
Swashplate Outer Ring	0.01870	0.01559	0.02758	0.01199	0.00888	0.00311
Swashplate Inner Ring	0,00320	0.01694	0.02923	0.01229	0.02603	0.01374
Hydraulic Boost Cylinder	0.00037	0.01462	0.02830	0.01368	0.02793	0.01425
Tail Rotor Blade	0.02723	0 .05080	0.08771	0.03691	0.06048	0.02357
				1	ļ	

TABLE 36. EVALUATION OF $\Delta \overline{x}$ FOR CALCULATED COMPONENT DAMAGE

TABLE 37. EVALUATION OF ΔS_x FOR CALCULATED COMPONENT DAMAGE

	(1) SIRS Spectrum	2 Recorder Spectrum	3 Logbook Spectrum	2-3 Absolute Value	1-3 Absolute Value	1-2 Absolute Value
Main Rotor Blade	0.01139	0.02679	0.01206	0.01473	0.00067	0.0154
Main Rotor Yoke Extension	0.01314	0.00893	0.00400	0.00493	0.00914	0.00421
Main Rotor Grip	0.02957	0.00317	0.00177	0.0014	0.0278	0.0264
Main Rotor Pitch Horn	0.00091	0.00480	0.00269	0.00211	0.00178	0.00389
Retention Strap Ftg/Nut	0.1732	0.01439	0.0080-	0.00632	0.00925	0.00293
Swashplate Drive Link	0.00081	0.00288	0.00161	0.00127	0.0008	0.00207
Swashplate Outer Ring	0.06998	0.00960	0.00538	0.00422	0.0646	0.06038
Swashplate Inner Ring	0.00709	0.00992	0.00432	0.0056	0.00277	0.00283
Hydraulic Boost Cylinder	0.00035	0.00893	0.00402	0.00491	0.00367	0.00858
Tail Rotor Blade	0.04352	0.02976	0.01296	0.0168	0.03056	0.01376
	1	1	1	l	1	

• •

à

Sample Calculation 2

$$N_{1} = 11 \qquad N_{2} = 11$$

$$\overline{x}_{1} = 0.01139 \qquad \overline{x}_{2} = 0.01206$$

$$S_{\overline{x}_{1}} = 0.00343 \text{ (Std. Error)} \qquad S_{\overline{x}_{2}} = 0.00364 \text{ (Std. Error)}$$

$$V_{1} = 0.00001176 \qquad V_{2} = 0.0000132496$$

$$S^{2}_{\overline{x}_{1}} - \overline{x}_{2} = \frac{\left[(N_{1} - 1)V_{1} + (N_{2} - 1)V_{2}\right](N_{1} + N_{2})}{N_{1} N_{2}(N_{1} + N_{2} - 2)}$$

$$= \frac{\left[10(0.0001176) + 10(0.0000132496)\right](22)}{121(20)}$$

$$= \frac{(0.0001176 + 0.000132496)22}{2420}$$

$$= \frac{(0.000250096)22}{2420}$$

$$= 0.000022736$$

$$t(empirical) = \frac{(0.01139 - 0.01206)}{2.2736 \times 10^{-6}}$$

$$= \frac{-294.68}{2}$$

$$n (degrees of freedom) = N_{2} + N_{2} - 2 = 11 + 11 - 2 = 20$$

t (at 5-percent significance) = 2.086

ないたのないで

Since t(empirical) >> t(required at 5-percent significance), null hypothesis is rejected.

In summary, $H_0(1)$, $H_0(2)$, $H_0(3)$, $H_0(4)$, $H_0(5)$, and $H_0(6)$ are rejected at the 5-percent level of Significance. This means that the deltas are due to a systematic assignable difference and cannot be attributed to a random phenomenon. The relationships of each technique to the implied service lives of these high-value, fatigue-sensitive assemblies may be observed in Figures 34 through 43.

125

Â

It will be noted that the "greater than" ogives used in the figures imply a normal distribution. In an attempt to determine whether a normal distribution represented a good fit for a given data, normal curve graph paper was used to check closeness of fit on four randomly selected samples of the SIRS data. The plotted points fell reasonably close to a straight line. Hence the data was treated as normally distributed for purposes of the preliminary evaluation.

The means for each type of failure calculation are significantly different. The standard deviations for each type of failure calculation aré significantly different. The standard deviations found for the SIRS throughout this test series must be considered marginally satisfactory.

Software

Construction of the second

Three software concepts were open for evaluation during the IOT&E. The IPS, FDAS, and CMTS require close examination prior to a SIRS deployment decision. The IPS and FDAS were both exercised with satisfactory results. The CMTS remains untested in the IOT&E environment.

> 10 B

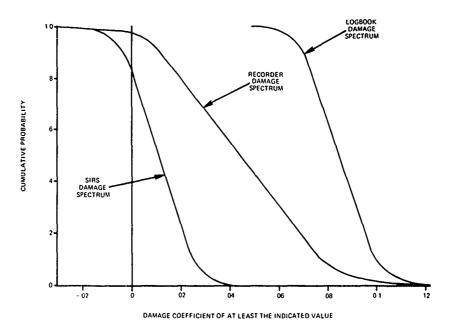


Figure 34. Main Rotor Blade Damage Spectrums.

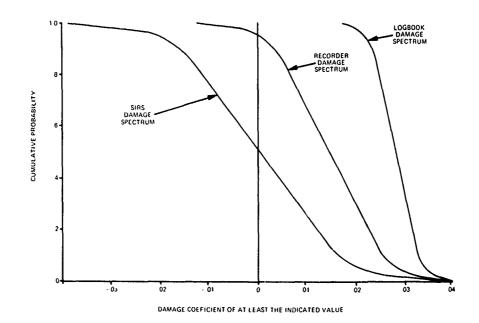
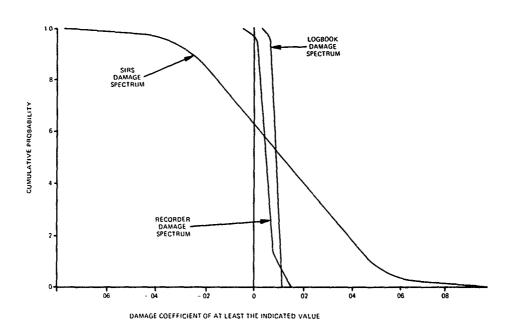
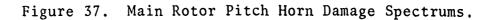



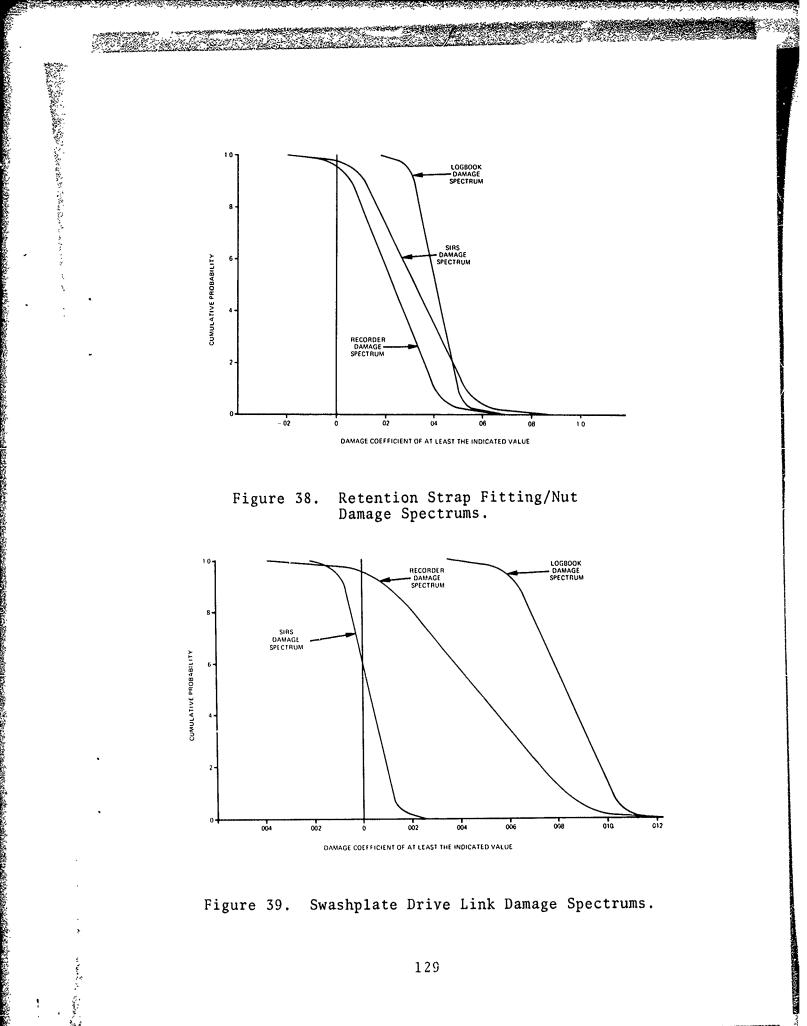
Figure 35. Main Rotor Yoke Extension Damage Spectrums.

127


ł

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

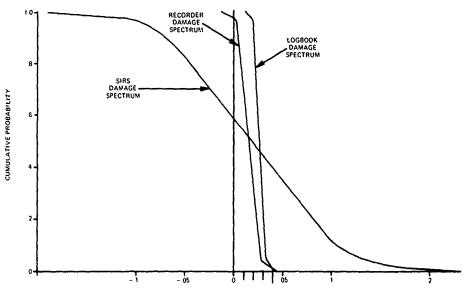
Figure 36. Main Rotor Grip Damage Spectrums.



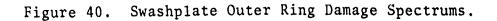
128

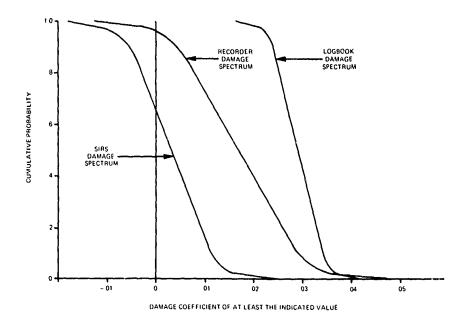
Ъ.

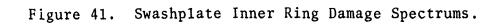
4


129

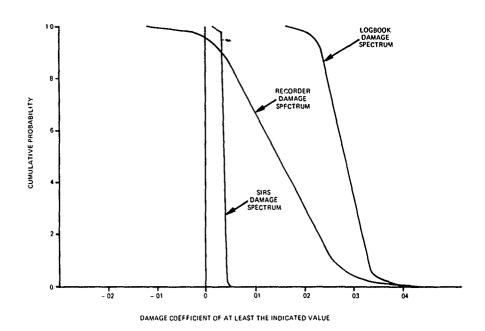
CONTRACTOR OF STATES


WELLEY


man and a standard


A 2

DAMAGE COEFFICIENT OF AT LEAST THE INDICATED VALUE



;

130

Ċ,

i,

and - thinks about a feature of an instance the said

Figure 42. Hydraulic Boost Cylinder Damage Spectrums.

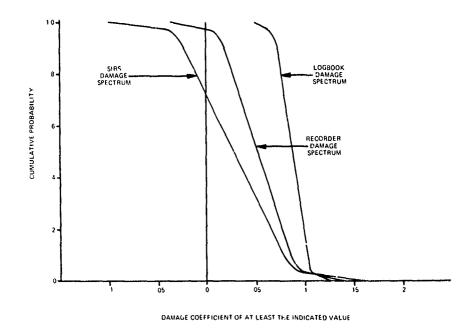


Figure 43. Tail Rotor Blade Damage Spectrums.

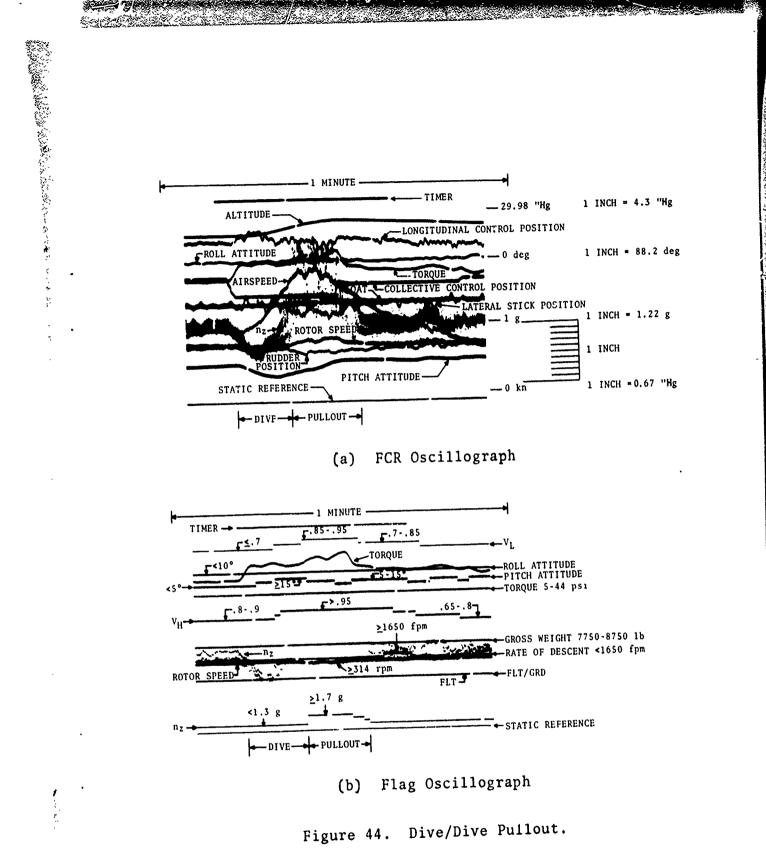
131

à

CHAPTER 6.

CONCLUSIONS

DT&E FLIGHT TEST (PHASE I PROTOTYPE FLIGHT TEST)


Software Modifications

Of the seven modifications identified, two have already been discussed, i.e., normal versus autorotational landing and maximum V_L detection. The logic change for measuring autorotative time was required because the software had a design error. That is, the logic included a timer designed to filter transients from the torque transducer output, but the logic did not properly clear this timer, thereby causing random amounts of time to be put into this flight condition category whenever a transient occurred. For the full-power climb condition, additional memory was allocated to permit recording both low-speed and high-speed climbs at high power settings. A minor change was made to the software, defining a Quick Stop so that the airspeed would have to decrease during the maneuver before it could be recorded.

During the flight test program, numerous dives and corresponding pullouts were performed, but very little time was recorded by the SIRS recorder in either type of flight condition. In most instances, the logic relationships between rate of descent, airspeed, and vertical acceleration did not correlate with the actual relationships. A review of the data collected during the various symmetrical and asymmetrical dives and the resulting pullouts, such as the example shown in Figure 44, led to a simple method for identifying the dives. The SIRS recorder logic now "looks for" a negative vertical acceleration greater than 0.8g followed by a positive vertical acceleration of 1.3g or greater; during this interval, the airspeed must increase and the altitude must decrease by certain prescribed amounts. The dive is then categorized by the gross weight, airspeed, and vertical acceleration levels once it has been determined to be a symmetrical cr asymmetrical (roll attitude outside of threshold) The resulting pullout from a dive is defined as the duradive. tion that the vertical acceleration is between 1.3g and 1.1g; it is categorized by airspeed, gross weight, and its symmetrical or asymmetrical configuration.

Hardware Modifications

An alternate gross weight monitoring approach that measures gross weight in flight was identified during a joint in-house investigation conducted by Bell Helicopter Textron and Technology Incorporated. This system would measure the axial load within the lift link, a transmission mounting member. Such a system

133

And the second second second

i.

would update the aircraft gross weight of the helicopter whenever the helicopter is in level, unaccelerated flight. Consequently, this system would measure the gross weight more accurately than the skid landing gear technique because it could detect gross weight changes due to weapons firing.

IOT&E (PHASE II OPERATIONAL EVALUATION)

Explicit Determination of Gross Weight

During the DT&E and IOT&E program two procedures were evaluated to explicitly measure the GW parameter during flight operations of the AH-1G. One was found to be marginally satisfactory from a technical standpoint (DT&E). Both were unsatisfactory from an operational standpoint (IOT&E).

It must be recognized that the GW parameter is important in calculating fatigue lives of the 10 selected parts. However, it is additionally recognized that explicit measurement of this parameter comprises a state-of-the-art challenge. In addition, explicit measurement will be expensive. A fresh look at the problem is in order.

A cursory examination of the fatigue life calculations and the recommended service lives of the 10 selected parts implies a large error budget. This is not surprising due to the empirical nature of the phenomena. It is suggested that within the existing error budget, the GW parameter could be imputed with a <u>priori</u> knowledge of the part usage. Finally, all possible instrumentation options should be considered if explicit GW measurement is essential.

Tracking of High-Value, Fatigue-Sensitive Parts

The need for a simple, effective parts tracking procedure for the many high-value, fatigue-sensitive parts under surveillance by the SIRS concept became apparent during this short IOT&E flight test program. In addition, the process must minimally impact the logistics support of the U.S. Army aviation program.

DTU Packaging

The reported unwieldy nature of the DTU package was noted during this brief IOT&E flight test program. This package requires more in-depth evaluation. A number of alternate DTU packaging concepts could be postulated; for example, a twopackage concept with rugged elements in one box and the more sensitive elements in another.

DTU Tape Drive

The selected design concept using a single capstan controller was found to be operationally inadequate and demanded corrective action. The tape drive vendor was contacted on this matter. It was determined that an applicable cure would be to adjust the design, providing for dual-direction capstan controllers and thus ensuring positive authority over the operation of the tape location at all times. This would enable effective data manipulation and reference in a time-efficient manner.

Use of DTU During Battery Charging Operation

The inoperability of the DTU during battery charging operations was noted. The adverse impact on productivity was deemed unnecessary since a relatively minor design adjustment would readily render the DTU available for other tasks during DTU battery charging operations.

Logistics of Data Reduction

the state of the second s

The time invested in this short IOT&E was inadequate to completely or accurately assess the logistics of the original SIRS data reduction concept.

Statistical Evaluation of Calculated Component Damage

The test results of Chapter 4 and findings reported in Chapter 5 demonstrate that the method selected to calculate service lives of the 10 selected assemblies significantly influences the economics of AH-1G life-cycle cost for those parts.

Use of logbook data to calculate component fatigue damage produces an extravagant replenishment spares requirement.

Use of recorder data to calculate component fatigue damage will yield a significantly more economical approach to logistical support of the 10 parts under consideration. This is attributed to the fact that the recorder electronics only count fatigue-damaging phenomena beginning after rotor start. Engine run time and mission planning times, for example, are not included in calculations. Thus it may be concluded that the Army might consider a counting device (recorder values) rather than operational logbook times to arrive at component retirement lives.

The optimum service life for the 10 high-value, fatiguesensitive parts was yielded by SIRS spectrum monitoring.

Finally, it must be concluded that the scatter of SIRS component damage data during this brief IOT&E is systematic. Examination revealed a single-point failure mechanism within the recorder; i.e., the GW sensor channel was multiplexed such that it affected all other channels. Further, the GW sensor was quite troublesome throughout the IOT&E as reported in Chapter 4. Thus SIRS performance will be significantly enhanced by implementing corrective action on the GW sensing channel and the recorder multiplexing scheme.

Software

Ĩ.

and a star star and a star star star star

1

Since the IPS and FDAS have been demonstrated and found to be satisfactory, they are considered ready for OT&E testing. It is noted that the CMTS package remains untested in the DT&E and IOT&E mode.

CHAPTER 7.

RECOMMENDATIONS

As a result of the DT&E and IOT&E flight testing, several modifications of the SIRS concept are recommended. These recommendations include software logic changes to better identify certain flight conditions and hardware modifications to better survive the operational environment. In addition, operational considerations are recommended.

DTGE FLIGHT TEST (PHASE I PROTOTYPE FLIGHT TEST)

Software Modifications

Spranghatta San a

A total of seven needed software changes that were recommended were made to the SIRS recorder logic and tested in the laboratory on a SIRS recorder simulator. No further action is required on this recommendation.

Hardware Modifications

As a result of the qualification program, several hardware modifications were recommended for incorporation into the recorders to be used during the Phase II Operational Evaluation. These modifications include the improvement of some of the internal wire routing and terminations. In addition, the lithium battery that failed during the temperature-altitude-humidity test was replaced by an improved, qualified lithium battery. No retesting was contemplated since this battery has been successfully tested under similar environmental conditions.

Flight testing on a Bell Model 212 helicopter equipped with both a SIRS recorder and a magnetic tape instrumentation system indicated that the in-flight gross weight measuring system would yield valid data if the center-of-gravity excursions were not large. Because the c.g. excursion on operational AH-1G helicopters is about 5 inches for gross weights ranging between 7000 and 9500 pounds, it was felt that the lift link measurement system could be adjusted for these excursions. Moreover, this system would yield data more accurately than the skid landing gear system since the latter has the limitation of an assumed fuel burn-off rate and a fixed weight for all weapons configurations.

All of these recommended alterations were executed and were successful except for the GW sensing scheme. Details of those results are cited under the IOT&E flight test program findings (Chapter 5).

IOTGE (PHASE II OPERATIONAL EVALUATION)

Explicit Determination of Gross Weight

Since the two sensor techniques selected to explicitly measure GW were unsatisfactory, a new approach is recommended for determining this important parameter. The scheme should conform to the error budget existing within the theoretical calculated fatigue life and recommended service lives of the 10 parts under evaluation in the SIRS program. In addition, a clamped-on, piezoelectric strain gage approach should be used for instrumenting the AH-1S lift link. This will eliminate the need to mechanically bond the sensor to the shot-peened lift link surface. Thorough concept testing by follow-on IOT&E with confirmed, satisfactory results prior to implementation/deployment is recommended.

Tracking of High-Value, Fatigue-Sensitive Parts

As the DT&E program merged into the IOT&E program the importance of tracking the high-value, fatigue-sensitive parts under SIRS surveillance became unmistakable. It is recommended that the SIRS DTU be modified to provide for operator inputs when a part is changed. This will minimize the need for additional paperwork at the organizational level while capturing this vital data essential to operational utility of SIRS. This concept should be tested and evaluated via a follow-on IOT&E, with using command and logistical command inputs to the evaluations.

DTU Packaging

The reported unwieldy nature of the DTU packaging should be investigated within the operational environment. The selected design is inconvenient to the operator from the standpoint of transportation. Nevertheless, execution of alternative packaging concepts entails life-cycle-cost implications. Further IOT&E of the DTU packaging should be accompanied by a costbenefit evaluation of postulated alternatives.

DTU Tape Drive

The single DTU tape drive capstan control concept required rectification. The appropriate corrective action was to provide for dual wind/rewind capstan controllers. This recommendation was implemented and was subsequently found to be satisfactory. The DTU employed in the follow-on IOT&E flight test program of AH-1S employs this design concept. No further action is required.

Use of DTU During Battery Charging Operation

It is recommended that the DTU circuitry be redesigned to provide for operability during the battery recharging operation and that the redesign be evaluated during follow-on IOT&E.

Logistics of Data Peduction

The postulated data processing system in support of the SIRS concept was inadequately tested or evaluated due to the compressed time schedule. Complete and thorough testing and evaluation of the system via an appropriate extension of the IOT&E period is recommended. The IPS, FDAS, and CTMS should be closely examined as an integral part of the AVSCOM RAMMIT system.

Statistical Evaluation of Calculated Component Damage

The use of operational logbook hours to calculate component fatigue damage for high-value, fatigue-sensitive assemblies yields extravagant results. It is recommended that SIRS be used to compute service lives of these parts.

Since the standard deviations of SIRS results can be reduced by altering the GW sensor methodology and recorder multiplexing scheme, these changes should be implemented.

The alterations should be carefully and adequately tested via a follow-on IOT&E. Assessments by using command and logistical command should be provided prior to a deployment decision.

Software

The IPS and FDAS packages are operational. The CMTS concept should be reviewed to ensure its capability with U.S. Army aviation program needs.

¥

4

REFERENCES

MARCH ALL THE REAL FRANCE

ないたんないろいというとうという

1.	Johnson, R.B., Martin, G.L., and Moran, M.S., A FEASI- BILITY STUDY FOR MONITORING SYSTEMS OF FATIGUE DAMAGE TO HELICOPTER COMPONENTS, Technology Incorporated, USAAMRDL Technical Report 74-92, Eustis Directorate; U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, January 1975, AD A006641.
2.	Seibel, J., FATIGUE LIFE SUBSTANTIATION OF DYNAMIC COMPO- NENTS OF THE AH-1G HELICOPTER, Report No. 209-099-064, Bell Helicopter Company, Fort Worth, Texas, June 1968.
3.	Cox, T. L., Johnson, R.B., and Russell, S.W., DYNAMIC LOADS AND STRUCTURAL CRITERIA, Technology Incorporated; USAAMRDL Technical Report 75-9, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, April 1975, AD A009759.
4.	Wettengel, W.O., MODEL AH-1G NONFIRING LOAD LEVEL SURVEY, VOLUMES I THROUGH IX, Report No. 209-099-041, Bell Heli- copter Company, Fort Worth, Texas, June 1967.
5.	Long, D.B., MODEL AH-1G HELICOPTER ARMAMENT QUALIFICATION TEST AND FIRING LOAD LEVEL SURVEY, Report No. 209-099- 031, Bell Helicopter Company, Fort Worth, Texas, November 1967.
6.	Finnestcad, R.L., Laing, E., Connor, W.J., and Buss, M.W., ENGINEERING FLIGHT TEST, AH-1G HELICOPTER (HUEYCOBRA), PHASE D, PART 2, PERFORMANCE, USAASTA 66-05, U. S. Army Aviation Systems Test Activity. Edwards Air Force Base, California, April 1970, AD 874210.

- 7. Technical Manual, TM 55-1520-221-10, OPERATOR'S MANUAL: ARMY MODEL AH-1G HELICOPTER, Headquarters, Department of the Army, Washington, D.C., 12 December 1975.
- 8. Tintner, G., MATHEMATICS AND STATISTICS FOR ECONOMISTS, New York: Holt, Rinehart, and Winston, 1965.

140

÷

ABBREVIATIONS

. مېره د

٠.

ATR	Airborne Transmitter Rack
BIT	Built-In Test
CTMS	Component Tracking Management System
υοD	Department of Defense
DTĘE	Development Test and Evaluation
DTU	Data Transfer Unit
EMI	Electromagnetic Interference
EMC	Electromagnetic Compatability
EPROM	Erasable Programmable Read-Only Memory
FCC	Flight Condition Category
FCM	Flight Condition Monitoring
FCR	Flight Condition Recognition
FDAS	Fatigue Damage Assessment System
GW	Gross Weight
H-GW	High Gross Weight
IOT&E	Initial Operational Test and Evaluation
IPS	Initial Processing System
L-GW	Light Gross Weight
M-GW	Medium Gross Weight
MTBF	Mean-Time-Between-Failures
O&S	Operating and Support
PC	Printed Circuit
R&D	Research and Development
RAM	Random Access Memory
RAMMIT	Reliability and Maintainability Management Improve- ment Techniques

11 2

ないできょうかんや

t

í, k

141

•

Constraint Constraints State

ABBREVIATIONS - Concluded

RJE	Remote Job Entry
SIRS	Structural Integrity Recording System
v _H	Maximum Attainable (Level Flight) Velocity
V _L	Limit Velocity

STATISTICS STATES

R.

...

) E

APPENDIX A

DETAILED FCM SYSTEM DESCRIPTION

This appendix describes the flight condition categories in terms of the pertinent flight parameters by indicating the criteria that govern (1) the definition and identification of each flight condition category, and (2) the requirements for monitoring the flight condition categories. These criteria are defined by sample (theoretical) time-history traces and written descriptions.

The 103 flight condition categories are summarized in Table A-1. The letters in the column entitled "Type" are defined as follows:

- T = accumulated time spent in the flight condition category during a specified recording period
- C = accumulated occurrences of the flight condition category during a specified recording period
- M = maximum parameter magnitude during a specified recording period
- N = null recording category

ないないでいたがないとうとうというとう

arta a water i water

The system parameters, both those directly recorded and those computed, are summarized in Table A-2.

TABLE A-1. FCM SYSTEM SUMMARY

Provident and the

\$

1

13

Fit. Cond. Cat. No. Gross Weight (1b)				_	
<7750	7750-8750	>8750	Parameters	Type	Thresholds
1	2	۲	Clock Time	т	• • • • • • • • • • • • • • • • • • • •
	4		Rotor Speed Above or Below Threshold	С	100 RPM
S	6	7	Vertical Accel. Relow Threshold A/S Relow Threshold Roll Attitude Below Threshold Pitch Attitude Above Threshold Engine Torque Press. Above Threshold	т	n ₂ < 1.3g A/S < 0.50 V _H B < 10 ⁴ $\theta \ge 15^{4}$ ET $\ge 5 p < i$
8	ŋ	10	Fngine Torque Press. Above Threshold Touchdown Occur≤	С	ET > 5 ps1
11	12	13	Vertical Accel. Below Threshold A/S Between Threshold Roll Attitude Below Threshold Rate of Descent Below Threshold	î	$\begin{array}{c c} n_{Z} < 1.3g \\ 0.50 \ V_{H} \leq A/S < 0 \ 65 \ V_{H} \\ \beta \leq 10^{\circ} \\ RD < 1650 \ fpm \end{array}$
14	15	16	Vertical Accel. Below Threshold A/S Between Threshold Roll Attitude Below Threshold Rate of Descent Below Threshold Engine Torque Press. Between Thresholds	τ	$\begin{array}{l} n_z < 1.3 g \\ 0.65 VH \leq \lambda/5 < 0.95 V_H \\ R \leq 10^{\circ} \\ Rb < 1650 fpm \\ 5 psj < ET \leq 44 psj \end{array}$
17	18	10	Vertical Accel, Relow Threshold A/S Above Ibreshold Roll Attitude Below Threshold Rate of Descent Below Threshold	T	n. < 1.3g A/Š ≥ 0.95 VH B < 10° RD < 1650 (pm
20	21	22	Vertical Accel. Below Threshold A/S Between Thresholds Roll Attitude Below Threshold Rate of Descent Below Ihreshold Engine lorque Press, Above Inteshold	т	n ₂ < 1.3g 0.50 VH < A/S < 0.65 VH P ≷ 10 ⁵ RD < 10 ⁵ 0 (pm ET > 44 ps)
23	24	25	Vertical Accel. Rotween Threshold A/S Retween Thresholds Roll Attitude Above Threshold	т	$\begin{array}{c} 1.3 \leq n_{2} \leq 1.5 \\ 0.65 \text{ V}_{\text{H}} \leq A/S \leq 0.80 \text{ V}_{\text{H}} \\ 8 \geq 10^{\circ} \end{array}$
26	27	28	Vertical Accel. Between Threshold A/S Above Threshold Roll Attitude Above Threshold	т	$\begin{array}{c} 1 & 3 \leq n_7 \leq 1.5 \\ A/S > 0.80 & V_H \\ B \ge 10^{\circ} \end{array}$
29	30	31	Vertical Accel, Below Hireshold A/S Below Threshold Roll Attitude Below Threshold Rate of Descent Above Threshold	т	nz ≤ 1 3g A/S ≤ 0.70 Vi, R ≤ 10° RD ≥ 1650 fpm
32	33	31	Vertical Accel, Below Threshold A/S Between Thresholds Roll Attitude Below ihreshold Rate of Descent Above Threshold	т	$\begin{array}{cccc} n_{2} < 1.3 \mu \\ 0.70 & v_{L} < A/S \leq 0.85 & V_{L} \\ \beta < 10^{\circ} \\ RD \ge 1650 & (\mu m \end{array}$
35	36	37	Vertical Accel, Below Threshold A/S Between Thresholds Roll Attitude Below Threshold Rate of Descent Above Threshold	Ţ	$\begin{array}{rrr} n_z < 1.3c \\ 0.85 V_{\rm L} < A/S \leq 0.95 V_{\rm L} \\ & B < 10^{\circ} \\ & {\rm RD} \geq 1650 ~{\rm fpm} \end{array}$
38	39	40	Vertical Accel. Below Threshold A/S Above Threshold Roll Attitude Below Threshold Rate of Descent Above Threshold	т	$n_{\chi} < 1.3g$ A/S > 0.95 V _L A < 10° RD \geq 1650 fpm
4 1	42	43	Vertical Accel. Above Threshold A/S Below Threshold Roll Attitude Between Threshold	т	$\begin{array}{c} n_{Z} \geq 1.5g \\ A/S \leq 0.70 \ V_{L} \\ 10^{\circ} \leq g \leq 35^{\circ} \end{array}$
44	45	46	Vertical Accel. Above Threshold A/S Bétween Thresholds Roll Attitude Retween Threshold	1	$\begin{array}{c} n_2 \ge 1.5g \\ 0.70 \ V_L < A/S < 0.85 \ V_L \\ 10^6 < \beta < 35^6 \end{array}$
47	48	49	Verti:al Accel. Above Threshold A/S Between Threshold≤ Roll Attitude Between Thresholds	т	n ₂ ≥ 1.5g 0.85 VL < A/S < 0.95 VL 10 ⁴ < g < 35°
50	51	52	Vertical Accel. Above Threshold A/S Above Threshold Roll Attitude Botween Thresholds	т	$n_2 > 1.5g$ A/S > 0.95 V $10^{\circ} < \beta < 35$

....

TABLE A-1. Concluded

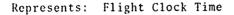
ないないというであって

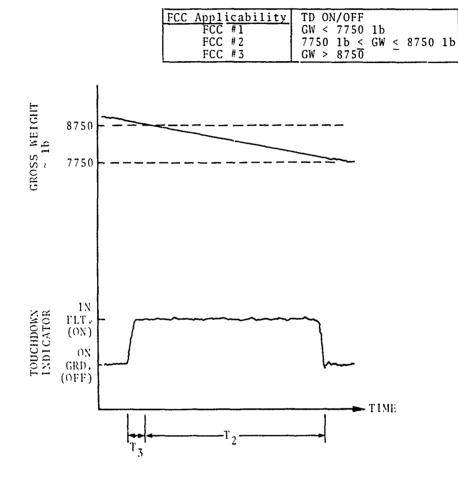
and a start of the second started start

BRAND AN

Flt.	Cond. Cat	. No.			
Gross	Weight (<u>1b)</u>			,
<7750	7750-8750	>8750	Parameters	Type (*	Thresholds
53	54	55	Vertical Accel. Above Threshold A/S Below Threshold Roll Attitude Below Threshold Pitch Attitude Above Threshold	T	$\begin{array}{c} n_{z} \geq 1.3g\\ A/S \leq 0.70 V_{L}\\ B \leq 10^{\circ}\\ \theta > 5^{\circ} \end{array}$
56	57	58	Vertical Accel. Above Threshold A/S Between Thresholds Roll Attitude Below Threshold Pitch Attitude Above Threshold	T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
59	60	61	Vertical Accel. Above Threshold A/S Above Threshold Roll Attitude Below Threshold Pitch Attitude Above Threshold	т	n, ≥ 1.3g A/S ≥ 0.85 VL B ≤ 10° 0 > 5°
62	63	64	Vertical Accel. Above Threshold A/S Below Threshold Initial Roll Attitude Above Threshold Subsequent Roll Attitudes Below Threshold	т	n, > 1.5g A/5 < 0.65 VH B > 35* R < 25*
65	66	67	Vertical Accel. Above Threshold A/S Between Thresholds Initial Roll Attitude Above Threshold Subsequent Roll Attitudes Below Thresnold	Ť	$\begin{array}{cccc} n_{\chi} \geq 1.5 g \\ 0.65 V_{H} \leq A/S \leq 0.80 V_{H} \\ & B \geq 35^{\circ} \\ g \geq 25^{\circ} \end{array}$
68	69	70	Vertical Accel. Above Threshold A/S Above Threshold Initial Roll Attitude Above Threshold Subsequent Roll Attitudes Below Threshold	т	nz ≥ 1.5g A/S ≥ 0.80 VH G ≥ 35* g ₹ 25*
71	72	73	Vertical Accel. Above Threshold A/S Relow Threshold Initial Roll Attitude Above Threshold Subsequent Roll Attitude Above Threshold	т	n, ≥ 1.5g A/5 ₹ 0.90 VH β ≥ 35* β ≥ 25*
74	75	76	Vertical Accel. Above Threshold A/S Above Threshold Initial Roll Attitude Above Threshold Subsequent Roll Attitudes Above Threshold	I	nz ≥ 1.5g A/S ≥ 0.90 VH B ≥ 75° B ≥ 25°
17	78	79	Flight Clock Time Ingine Torque Press. Below Threshold	T	ЕТ <u><</u> 5 р<1
80	81	82	Vertical Accel. Between Thresholds A/S Above Threshold Ingine Torque Press. Crosses Threshold (4+6 psi)	С	$\begin{array}{c} 1.3 \le n_2 \le 1.5 \\ A/S \ge 0.65 \ V_{\rm H} \\ S \ P^{S_1} \end{array}$
83	84	85	Vertical Accel. Above Threshold A/S Above Threshold Engine Torque Press. Crosses Threshold (4+6 ps1)	С	nz > 1.5 A/S > 0.65 VH 5 ps1
86	87	88	Vertical Accel. Retween Thresholds A/S Above Threshold Engine Torque Press, Below Threshold Roll Attitude Above Threshold	T	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
89	90	91	Vertical Accel. Above Threshold A/S Above Threshold Engine Torque Press. Below Threshold Roll Attitude Above Threshold	1	nz > 1.5g A/S > 0.65 VH S psi R ≥ 10°
92	93	94	Engine Torque Press. Below Threshold Touchdown Occurs	c	\$ p\$1
	95		Vertical Accel. Above Threshold A/S Above Threshold	с	nz > 1.7g A/S > 0.50 VH
	96		Maximum n _z Magnitude Attained	м	••••••••
	97		Maximum A/S Magnitude Attained	M	$A/S = f(V_L)$
98	99	100	Not Recorded Directly	N	Not Applicable
101	102	103	Not Recorded Directly	N	Not Applicable

TABLE A-2. SYSTEM PARAMETERS


System Parameters		Directly Recorded	Computed	Sign Convention for Positive Number
Indicated Airspeed	(λ/S)	X		••••••
Max. Level Flight	(V ₁₁)		$V_{H} = f(T, H_{p})$	
Limit Velocity	(V _L)		$V_{L} = f(t, H_{p})$	•••••
Pressure Altitude	(H _p)	х		•••••
Outside Air Temperature	, (T)	х		
Rate of Descent	(RD)		$RD = f(H_p, Time)$	Decreasing Altitude
Main Rotor Velocity	(MRV)	Х		
Roll Attitude	(ß)	х		•••••
Pitch Attitude	(")	Х		• • • • • • • • • • • • • • • • • • • •
Vertical Acceleration	(n_)	х		Ship Accelerates Up
Landing Gear Touchdown	(TD)	х		
Ingine lorque Pressure	(ET)	x		Increasing Torque
Takeoff Gross Weight	(TGW)	x		•••••
In-Flight Gross Weight	(GW)		GW = f(TGW,Time)	


Each type of flight condition category is depicted in Figures A-1 through A-20. In examining these figures, the following statements are applicable to all flight condition categories:

- 1. Unless otherwise indicated, the engine torque pressure in each flight condition category must be greater than 5 psi.
- 2. Whenever a roll or a pitch attitude threshold is defined (e.g., $\beta > 10^{\circ}$), it represents the ab^o olute value of roll or pitch attitude (i.e., $|\beta| \ge 10^{\circ}$).

146

à

 $\begin{array}{rcl} T_1 &=& FCC & \#1 & Timer \\ T_1 &=& FCC & \#2 & Timer \\ T_3^2 &=& FCC & \#3 & Timer \end{array}$

Description

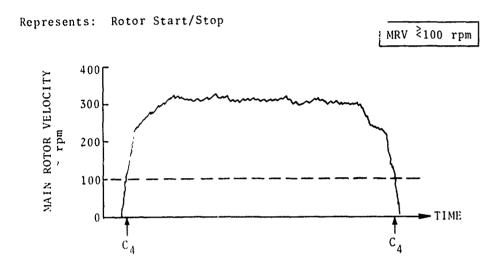

Monitor the clock time accrued by the helicopter while airborne.

Figure A-1. Flight Condition Categories 1, 2, and 3 (In-Flight Time).

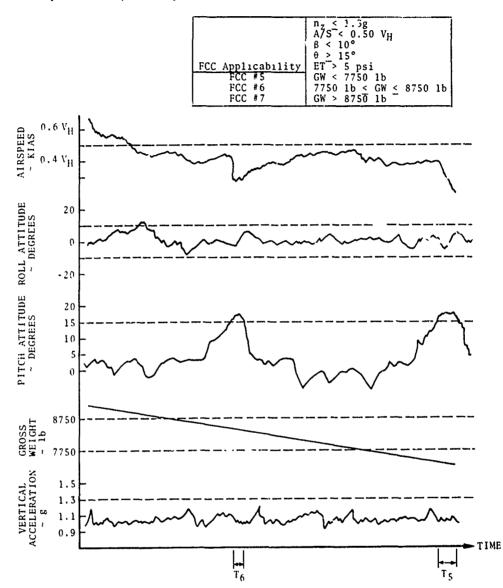
147

å

ų,

s with a static part of the static part of the

 $C_4 = FCC #4 \text{ counter}$


Description

100000

がないないとうという

Monitor the number of times the main rotor velocity passes through the 100 rpm regime. To ensure against extra C_A counts due to small perturbations of the main rotor velocity, require that all C_A events must occur at least 10 seconds apart.

Figure A-2. Flight Condition Category 4 (Rotor Start/Stop).

ないいいい いいかいちん かいうないかい

ł

Represents: Quick-Stop Deceleration

E THERE WE ANT A

Alexandres as the state

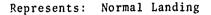
and the second second

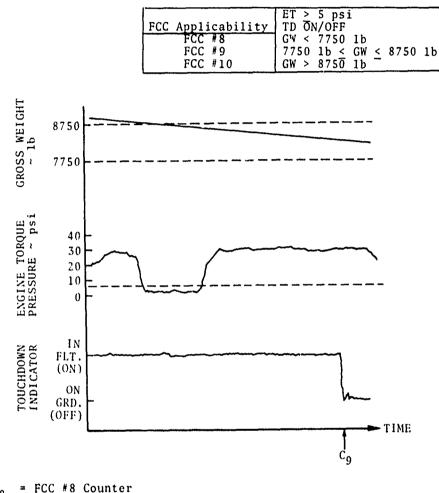
ŝ

$\begin{array}{rcl} T_{5} &=& FCC & \#5 & Timer \\ T_{6}^{5} &=& FCC & \#6 & Timer \\ T_{7}^{6} &=& FCC & \#7 & Timer \end{array}$

Description

and the second of the second second


Monitor the clock time accrued by the helicopter during which all six parameter threshold definitions are being satisfied simultaneously. The airspeed requirement is based on maximum attainable velocity at constant altitude ($V_{\rm H}$), which is a function of density altitude.

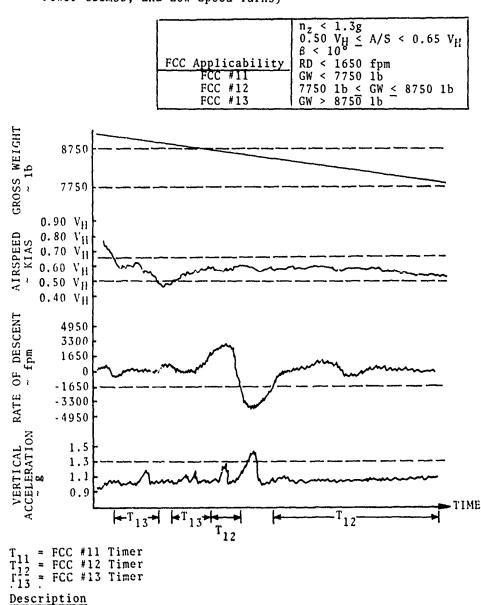

Figure A-3. Flight Condition Categories 5, 6, and 7 (Quick-Stop Deceleration).

149

alay in a constant and a constant of the const

11

 $\begin{array}{rcl} C_8 &= FCC \ \#8 \ Counter \\ C_9 &= FCC \ \#9 \ Counter \\ C_{10} &= FCC \ \#10 \ Counter \end{array}$


Description

The engine torque pressure must be above threshold immediately prior to (at least 10 seconds), and at the time of, touchdown. Once a touchdown has been recorded, a rebounding helicopter should not register additional counts.

Figure A-4. Flight Condition Categories 8,9, and 10 (Normal Landing).

150

. . . Balling the States

Represents: Low-Velocity Flight Conditions (e.g., Forward Level Flight, Normal Full Power Climbs, and Low-Speed Turns)

なびみやい

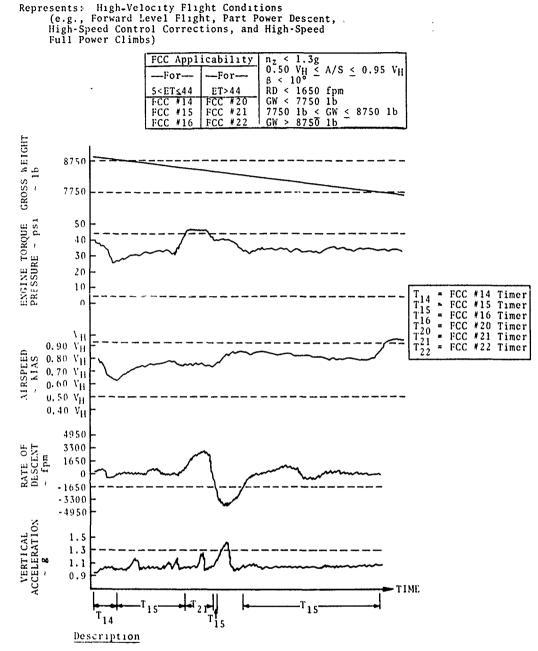
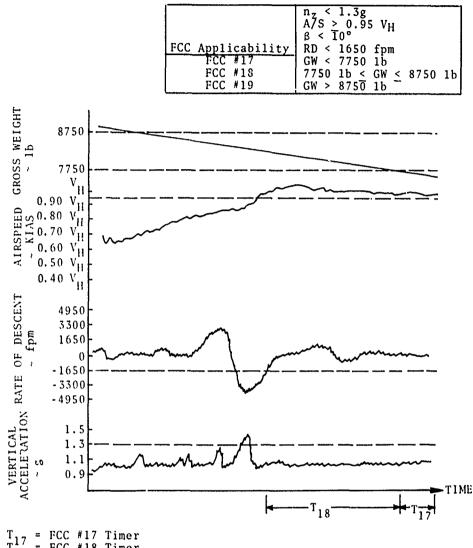

Monitor the clock time accrued by the helicopter during which all five parameter threshold definitions are being satisfied simultaneously. The airspeed classification is based on maximum attainable velocity at constant altitude (V_H), which is a function of density altitude.

Figure A-5. Flight Condition Categories 11, 12, and 13 (Low-Velocity Flight).

151

•\$

the second s


ţ

Monitor the clock time accrued by the helicopter during which all six parameter threshold definitions are being satisfied simultaneously. The airspeed classification is based on maximum attainable velocity at constant altitude ($V_{\rm H}$), which is a function of density altitude.

Figure A-6. Flight Condition Categories 14, 15, 16, 20, 21, and 22 (High-Velocity Flight).

152

.

Represents: Maximum-Velocity Flight Conditions (e.g., Forward Level Flight)

 $\begin{array}{rcl} T_{17} &= \mbox{ FCC } \#17 & \mbox{ Timer} \\ T_{18} &= \mbox{ FCC } \#18 & \mbox{ Timer} \\ T_{19} &= \mbox{ FCC } \#19 & \mbox{ Timer} \end{array}$

Description

Statistics and a

t

Monitor the clock time accrued by the helicopter during which all five parameter threshold definitions are being satisfied simultaneously. The airspeed classification is based on maximum attainable velocity at constant altitude ($V_{\rm H}$), which is a function of density altitude.

Figure A-7. Flight Condition Categories 17, 18, and 19 (Maximum-Velocity Flight).

153

Represents: Normal (High-Speed) Turns

FCC Applicab		
For	For	$1.3g < n_2 < 1.5g$
0.65V _H <a s<0.8v<sub="">H FCC #23		$\beta > 1\overline{0}^{\circ}$ GW < 7750 1b
FCC #24		7750 lb < GW < 8750 lb
FCC #25	FCC #28	GW > 8750 1b

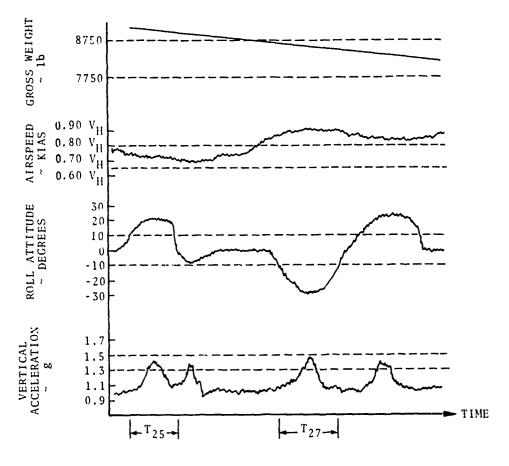
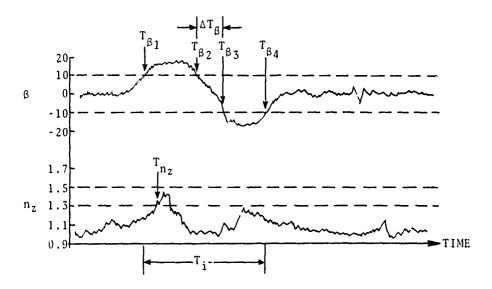



Figure A-8. Flight Condition Categories 23 through 28 (Normal (High-Speed) Turns).

Description

L

The following graphical characterization demonstrates how the time spent in normal turns should be defined.

 $T_{\beta 1}$ = time at which roll attitude first exceeds 10° threshold $T_{\beta 2,3,4}^{\beta 1}$ = respective times at which roll attitude crosses 10° threshold

 T_{n_z} = time at which vertical acceleration exceeds threshold ΔT_{β} = time between roll attitude threshold exceeds threshold (see figure)

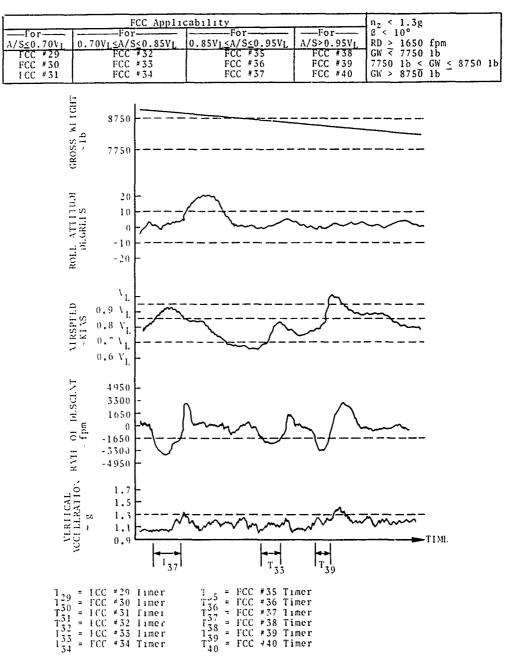
 T_i = normal turn occurrence timer for FCC #i, i = 23,28

The time between $T_{\beta 1}$ and $T_{n_{\mathcal{I}}}$ is defined at less than 10 seconds. Upon confirmation that the roll attitude peaks at a magnitude greater than 10° and the vertical acceleration also peaks between 1.3 and 1.5 g within the prescribed time, the timer (T_i) should be initiated at T_{β1}. If ΔT_β is subsequently less than 10 seconds, T_i should be allowed to continue timing until than to seconds, τ_1 should be allowed to continue timing until the roll attitude again returns below threshold (at Tg4); other-wise, terminate T₁ and Tg2. The airspeed classification is based on maximum attainable velocity at constant altitude (V_H) which is a function of density altitude. The airspeed cate-gorization, for a given turn, is defined at Tg1. If the gross weight classification should change during the turn, the entire T₁ should be entered in the category corresponding to the Ti should be entered in the category corresponding to the greater gross weight.

> Figure A-8. Concluded

> > 155

÷


å

Represents, Gunnery Run Dives

PALLANCE DATA ALCOLOGICAL STRATE

こうちょう ちょうちょう ちょうちょう ちょうちょうちょうちょうちょう

.

and the second second second

18-15

Description

Monitor the clock time accrued by the helicopter during which all parameter threshold definitions are being satisfied simultaneously. The arispeed classification is based on percentage of limit velocity (V_L) , which is a function of density altitude. Airspeed is categorized near the end of the dive.

Figure A-9. Flight Condition Categories 24 through 40 (Gunnery Run Dives).

Represents: Asymmetrical Pullups

Martin Verneral Ser M

2

ACCESSION DURING THE

t

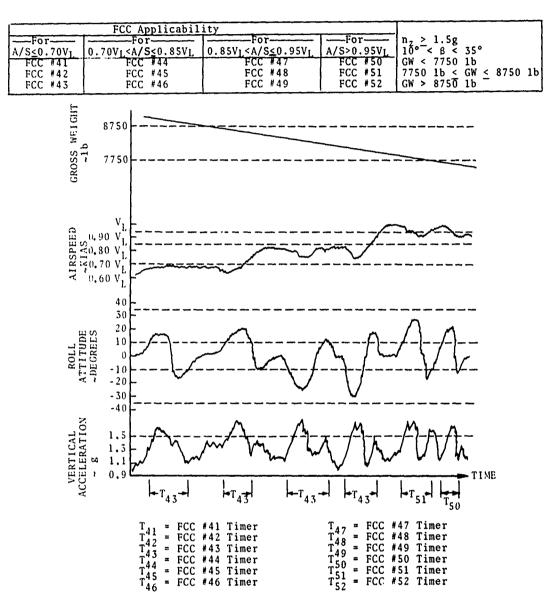


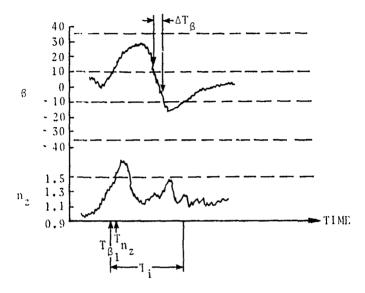
Figure A-10.

.

Flight Condition Categories 41 through 52 (Asymmetrical (Gunnery Run) Pullups).

157

Description


The following graphical characterization demonstrates how the time spent in asymmetrical pullups should be defined:

فيماداده بالإستناط الالاسر الالا

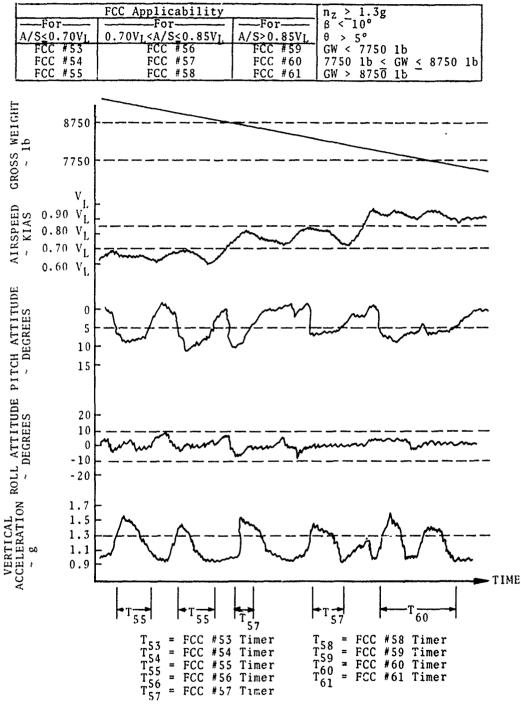
12 B

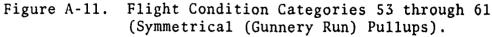
white a com

4.8+

 T_i = asymmetrical pullup occurrence timer for FCC #i, i = 41,52 $T_{\beta i}$ = time at which roll attitude first exceeds 10° threshold T_{n_z} = time at which n_z exceeds 1.5 g threshold ΔT_{β} = time between roll attitude threshold exceedances

The time between $T_{\beta 1}$ and T_{n_2} should be defined at less than 10 seconds. The timer (T_i) initiates at $T_{\beta 1}$. If ΔT_{β} is less than 10 seconds, T_1 should be allowed to continue timing until the roll attitude once again drops below threshold; otherwise, terminate T_i at the time the roll attitude first drops back across the 10° threshold. Recall that the roll attitude peak must fall between 10° and 35°; if it peaks above 35° it will be categorized as a different flight condition. The airspeed classification is based on percentage of limit velocity (V_L), which is a function of density altitude. The airspeed categorization, for a given pullup, is defined at $T_{\beta 1}$.

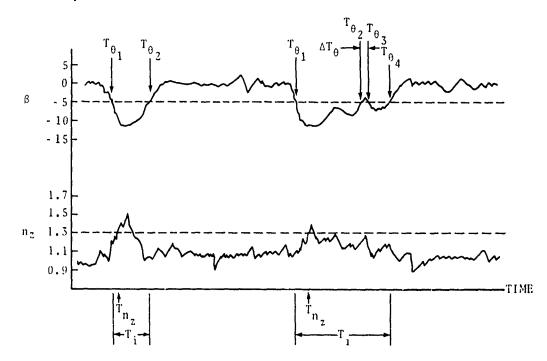

Figure A-10. Concluded


Represents: Symmetrical (Gunnery Run) Pullups

11

ź

* 1138 Sart & Fel VA



159

Description

the state of the second se

ten en ander som staten in the second state and

The following graphical characterization demonstrates how the time spent in symmetrical pullups should be defined.

 T_{θ_1} = time at which pitch attitude first exceeds -5° 3.4 = second, third, and fourth times the pitch attitude ^Tθ2,3,4 exceeds the -5° threshold T_{n_z} = time at which n_z exceeds 1.3g threshold ΔT_{θ} = time between pitch attitude -5° threshold exceedances

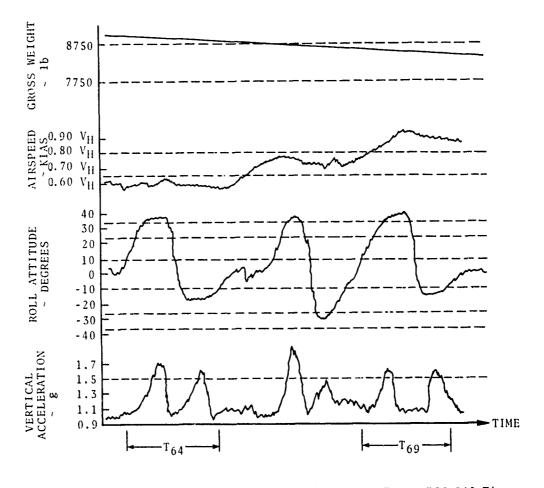
A gunnery run symmetrical pullup is confirmed when, and only when, T_{n_2} is sensed within 10 seconds after T_{θ_1} is sensed. The timer T_i initiates at T_{θ_1} and terminates at T_{θ_2} . The exception is when the pitch attitude briefly crosses inside the -5° threshold and then immediately returns outside threshold ($\Delta T_{\theta} < 5$ seconds). In this case the threshold crossing defined by ΔT_{θ} is ignored and T_i continues to time the maneuver until a normal termination is T_i continues to time the maneuver until a normal termination is sensed. The airspeed classification is based on percentage of limit velocity (VL), which is a function of density altitude. Airspeed is categorized at the time the vertical acceleration exceeds 1.3g.

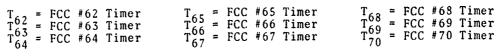
> Figure A-11. Concluded

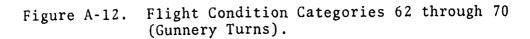
> > 160

A CONTRACTOR STATES

and the second second


and the second second


- Berne services to a present service and the services


	FCC Applicability		$n_{z} > 1.5g$
For* /S<0.65Vu	For 0.65V _H <a s≤0.80v<sub="">H	For A/S>0.80Vu	βinitial ≥ 35° βsubsequent < 25
FCC #62	FCC #65 FCC #66	FCC #68	GW < 7750 1b
FCC #63 FCC #64	FCC #67	FCC #69 FCC #70	7750 1b < GW < 8750 1b GW > 8750 1b

Section of the section of the

~



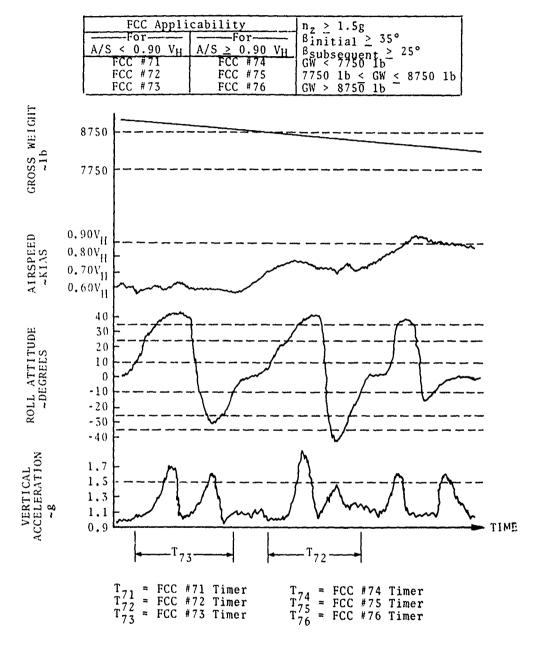
UNDER STATISTICS

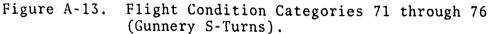
Description

The following graphical characterization demonstrates how the time spent in gunnery turns should be defined: ないないではないないというというないであるとうない

 $T_{\beta3,4}$ = second and third times the roll attitude crosses the 10° threshold level

 T_i = gunnery turn occurrence timer for FCC #i, i = 22,24 $T_{\beta 1}$ = time at which roll attitude first exceeds 10° threshold $T_{\beta 2}$ = time at which roll attitude first exceeds 35° threshold T_{nz} = time at which n_2 exceeds 1.5g threshold ΔT_{β} = time between roll attitude 10° threshold exceedances


The time between T_{β_2} and T_{n_z} should be defined at less than 10 seconds. Upon confirmation that the roll attitude crosses the 35° threshold (the time between T_{β_1} and T_{β_2} should also be less than 10 seconds), the timer (T_1) initiates at T_{β_1} . If ΔT_{β} is less than 10 seconds, T_1 should be allowed to continue timing until the roll attitude, once again, drops below the 10° threshold (at T_{β_4}), if and only if, the second roll attitude peak does not exceed 25°. Otherwise, terminate T_1 at T_{β_3} . (The "subsequent peak" requirement is designed to differentiate gunnery turns from gunnery S-turns.) The airspeed classification is based on maximum attainable velocity at constant attitude (V_H), which is a function of density attitude. The airspeed categorization, for a given turn, is defined at T_{β_1} .

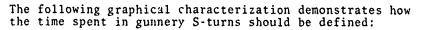

Figure A-12. Concluded

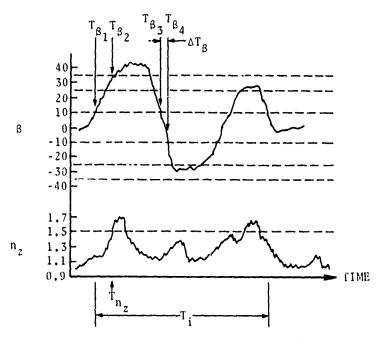
Represents: Gunnery S-Turn

South States of the second second

art satural single supervision and the

163

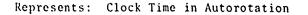

X

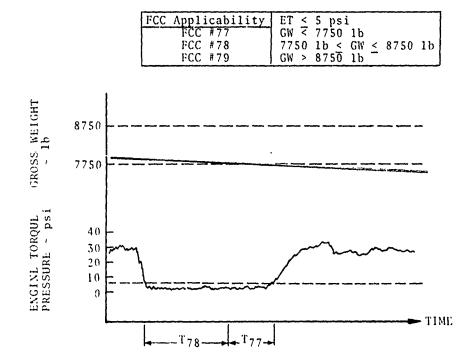

State State State State State

.

Description

estats in the service and




 $T_{63,4}$ = second and third times the roll attitude crosses the 10° threshold level

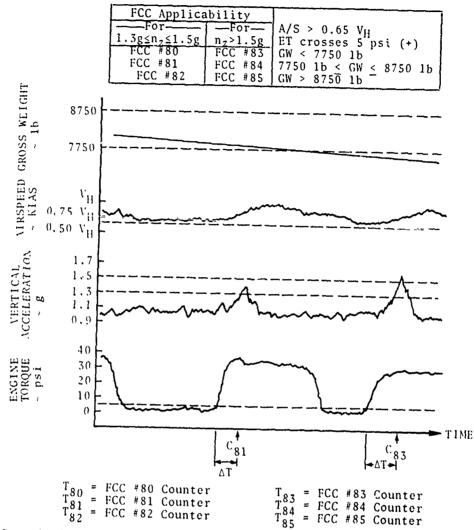
 T_i = gunnery turn occurrence timer for FCC #i, i = 22,24 $T_{\beta 1}$ = time at which roll attitude first exceeds 10° threshold $T_{\beta 2}$ = time at which roll attitude first exceeds 35° threshold $T_{n_z}^{D_z}$ = time at which n_z exceeds 1.5g threshold ΔT_{β} = time between roll attitude 10° threshold exceedances

The time between $T_{\rm B2}$ and $T_{\rm Nz}$ should be defined at less than 10 seconds. Upon confirmation that the roll attitude crosses the 35° threshold (the time between $T_{\beta 1}$ and $T_{\beta 2}$ should also be less than 10 seconds), the timer (T_1) initiates at $T_{\beta 1}$. If ΔT_{β} is less than 10 seconds, T_1 should be allowed to continue timing until the roll attitude, once again, drops below the 10° threshold (at $T_{\beta 4}$), if and only if, the second (and any subsequent) roll attitude peaks exceed 25°. By definition, the gunnery S-turn is characterized by at least two excessive roll attitude peaks occurring in rapid succession. There-fore, the foregoing criterii concerning "subsequent peaks" was designed to differentiate the gunnery S-turn from normal gunnery turns. The airspeed classification is based on maximum attainable velocity at constant attitude (V_H), which is a function of density attitude. The airspeed categorization, for a given turn, is defined at T₈₁.

 $T_{77} = FCC #77 Timer$ $T_{78}^{78} = FCC #78 Timer$ $T_{79}^{79} = FCC #79 Timer$

Description

W. B. Start Start


ž,

Monitor the total flight spent in the autorotation mode of operation. Small perturbations in engine torque pressure (such as the torque pressure jumping above the 5 psi threshold for very short periods of time) of less than 2-second duration are ignored.

Figure A-14. Flight Condition Categories 77, 78, and 79 (Time in Autorotation).

, ,

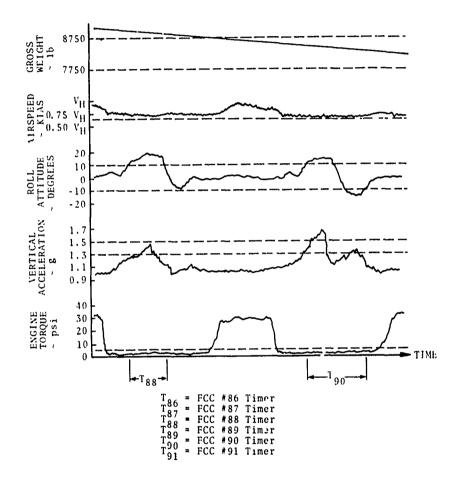
Represents: Autorotation to Power Transition

Description

bline did jatut and and

Whenever the engine torque pressure crosses the 5 psi threshold in a positive direction and is followed (ΔT less than 5 seconds) by a vertical acceleration satisfying the threshold definition, the event should be recorded. The airspeed classification is based on a maximum attainable velocity at constant altitude (V_H), which is a function of density altitude. The airspeed categorizathreshold.

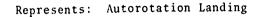
Figure A-15. Flight Condition Categories 80 through 85 (Autorotation-to-Power Transition).


166

.

ないないないないです。

FCC Applica	bility	$A/S > 0.65 V_{\rm H}$
For 1.3g≤n₂≤1.5g	-	
FCC #86	FCC #89	GW < 7750 1b
FCC #87 FCC #88	FCC #90 FCC #91	7750 1b < GW < 8750 1b GW > 8750 1b


Description

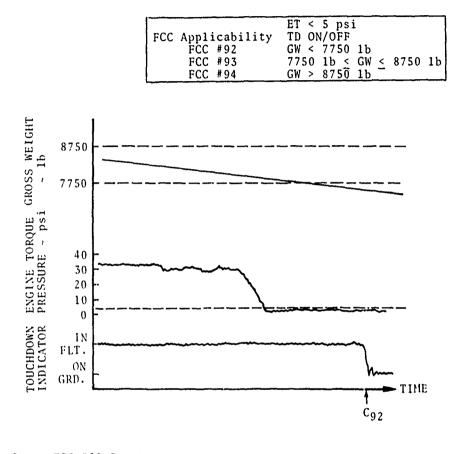

Monitor the clock time accrued by the helicopter in autorotation while its roll attitude is greater than 10° only if it is accompanied by a vertical acceleration peak (within 5 seconds) in the prescribed threshold levels. The duration of the maneuver is defined the same as the Normal High-Speed Turn (FCC #23 through 28). The airspeed classification is based on maximum attainable velocity (V_H), which is a function of density altitude. The airspeed categorization for a given turn is defined at the time the roll attitude exceeds 10°.

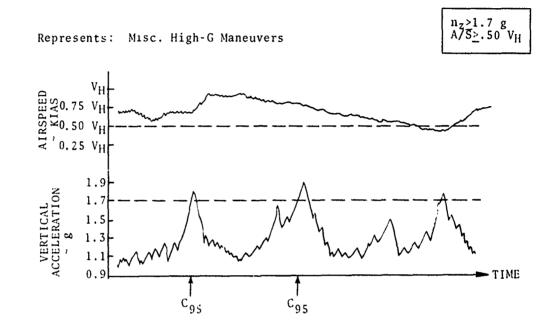
Figure A-16. Flight Condition Categories 86 through 91 (High-Speed Autorotation Turns).

167

à

C₉₂ = FCC #92 Counter C₉₃ = FCC #93 Counter C₉₄ = FCC #94 Counter

Description


ŧ

The engine torque pressure must be below threshold immediately prior to (at least 10 seconds), and at the time of, touchdown. Once a touchdown has been recorded a rebounding helicopter should not register additional counts.

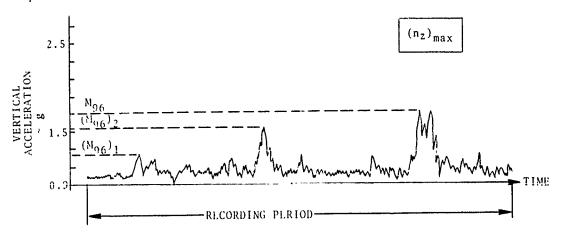
Figure A-17. Flight Condition Categories 92, 93, and 94 (Autorotation Landing).

168

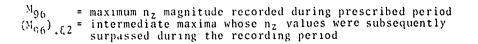
d

 $C_{95} = FCC # 95$ counter

Description


Contraction of the second of t

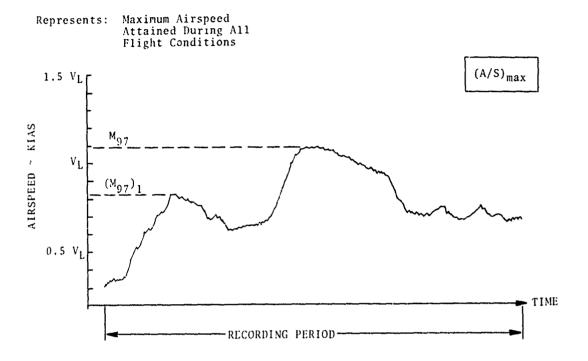
It is simply intended to count the number of times the helicopter experiences vertical accelerations in excess of 1.7 g while flying at significant airspeeds. This implies that the touchdown indicator must be registering in-flight operation.


Figure A-18. Flight Condition Category 95 (Miscellaneous High-G Maneuvers).

à

NER EZ MET LE PROVINCE H

Represents: Maximum Vertical Acceleration



Description

and the state of the second state of the secon

Record the magnitude of the largest vertical acceleration experienced during the recording period. The $(n_z)_{max}$ may occur in any flight condition category (which implies that the in-flight indicator must be registering in-flight operation).

> Figure A-19. Flight Condition Category 96 (Maximum Vertical Acceleration).

M₉₇ = maximum airspeed magnitude recorded during prescribed period (M₉₇)₁ = intermediate maxima whose airspeed values were subsequently surpassed during the recording period

Description

Record the magnitude of the highest airspeed experienced during the recording period expressed in terms of percent of V_L . The $(A/S)_{max}$ may occur in any flight condition category. (Recall that the value of V_L is a function of density altitude.)

Figure A-20. Flight Condition Category 97 (Maximum/Airspeed (V_L)).

171

APPENDIX B

SIRS RECORDER SOFTWARE

PAGE 001 SIRSP

State State State

1

4

00001		NAM OPT	SIPSR NDG	
50000				******
00003 00004				GRITY RECORDING SYSTEM ++++
00004				DER PROGRAM
00007				
Quinne.		••••	••••	
60008	2000	AD 600	\$2000	AND INPUT REGISTER
ពិព័ត៌អូមិ	5001	ADCR EQU	\$2001	A/D CONTROL PEGISTEP
00010	2002	MUN EQU	\$5005¥	MUN DUTPUT REGISTER
0.9011	2003	MUXER EQU	\$5003	MUK CONTPOL REGISTER
60012	1000	ACTACS EOU	\$1000	ACIA CONTROL/STATUS PEGISTER
0.0013	1001	ACTAXE EOU	\$1001	ACIA TRANSMIT/PECEIVE REGISTE
00014	000F	MUCIO ECU	150F	PB3 - PB0 ARE DUTPUTS
00015	0.034	ADCM EOU	2001101	
00016	003C	ADITAL EOU	5.001111	
លុប្ផុំដ្រា	0004	MUNCH EQU	N000001	
00019	0.035	ACIACW EOU	.1 00010	
តាលំដូម	0310	GUTIME EOU	\$0310	TIME TO DECREASE GROSS WT
05000	ά θ θ Ε	GW7750 EQU	175	7750 LB THPESHOLD
00021	0.0E1	GW8750 EQU	225	8750 LB THRESHOLD
00022	0000	PT05 E0U	13	13/256 = 0.05
00023	0018	PT10 E00	26	$(6^{256} = 0.10)$
00024	0026	PT15 E00	38	$38 \cdot 256 = 0.15$
00025	00F3	PT95 E0U	243	2437256 = 0.95
00026	0016	DEG5 EAU	55	PITCH = 5 DEG THRESHOLD
10027	0020	DEG10 E00	44	POLL = 10 DEG THPESHOLD
00028	0040	DEG15 EQU	54	PITCH = 15 DEG THPESHOLD
00029	0.06E	DEG25 EQU	110	POLL = 25 DEG THPESHOLD
60030	0093	DE635 EOU	147	POLL = 35 DEG THRESHOLD
60831	000 0	PSI5 EQU	1.0	LOW TURQUE THRESHOLD
00032	OODC	PSI44 EQU	220	HIGH TOPOUE THRESHOLD
00033	0.014	GMGND EQU	50	GROUND THRESHOLD
00034	0008	RPM200 EQU	200	RPM = 200 THRESHOLD
00035	0064	RPM100 EQU	100	PPM = 100 THPE3HOLD
00036	01F7	GPNSWT EQU	\$01F7	GPOIS WEIGHT LOCATION
00037	01F8	NZPK EQU	\$01F8	NZ PEAK LOCATION
110038	01E9	VLPK EQU	\$01F9	VL PEAK LOCATION
00039	0158	NZINT EOU	\$01FA	HZ COPRECTION INTERCEPT
00040	01FB	NZSLP EQU	\$01FB	H2 CORRECTION SLOPE
00041	01FC	ALTINT EOU	\$01FC	ALTITUDE COPRECTICN INTERCEPT
00042	01FD	ALTELP EQU	\$01FD	ALTITUDE COPRECTION SLOPE
00043	01FE	ASINT EQU	\$01FE	AIRSPEED CORRECTION INTERCEPT
00044	01FF	ADILP EOU	\$01FF	AIRSPEED CORRECTIO GLOPE
0/045	00FF	STACK EQU	\$00FF	STAPT STACK HEPE

172

à

PAGE 002 SIPSR

00047	*******	******	•				
00049	◆◆ PARAMETER CODES ◆◆						
00049	····						
00050	+ THE FOLLOWING CODES ARE SETUP BY THE DATA						
00051			OF THE SIRSP PROGRAM. THEY				
00052			NT RECOGNITION POUTINES				
00053			F SIGNIFICANT FLIGHT				
00054	 CONDITIONS. 						
00055	 PAPAMETER 		INTERPRETATION				
00056	 € CVL 	-1	A/S<=.7VL				
00057	 ● 	ō	.7VL <a s<=".85VL</td">				
00058	* *	ĩ	.85VL <a s<=".95VL</td">				
	•	ż	.95VL <a 8<="" td="">				
00059	•	<u> </u>	• 204C (H/ 3				
00060	• CVH	-2	A/S<.5VH				
00061		-2	.5VH<=0/\$<.65VH				
00062	•	-1					
00063	•	-	.65VH<=AZS<.8VH				
00064	•	1	.8VH<≂AZS<.9VH				
00065	•	5	.9VH<≠A/S<.95VH				
00066	•	3	.95VH (=A/2				
00067	•		5011 // S 555				
00068	 CROL 	-1	ROLL<10 DEG				
00069	♦	0	10<=ROLL<25 DEG				
00070	•	1	25/=ROLL<35 DEG				
00071	•	5 2	35×=ROLL				
00072	♦						
90073	♦ CQ	0 2	TORQUE<=5 PSI				
00074	•	1	5 <topque<=44 psi<="" td=""></topque<=44>				
00075	•	5	44 < TOROUE				
69076	+						
00077	♦ CRD	-1 S	NOT VALID				
00079	* *	0	PD<1650 FPM				
00079		1	RD>=1650 FPM				
00030	•						
00031	 CPPM 	-1	RPM<100				
00082	•	0	100<= PPM<=20 0				
00083	•	1 S	RPM>200				
00084	•						
0+085	• CT	0 5	FLIGHT				
00096	•	1	GROUND				
90087	•						
00058	 CN2 	-1	NZ<=1.3 G				
00089	•	0	1.3 <nz<=1.5 g<="" td=""></nz<=1.5>				
00090	•	1	1.5 <nz<=1.7 g<="" td=""></nz<=1.7>				
00091	•	5 2	NZ>1.7 G				
00092	•						
00093	♦ 26₩	0 2	60K7750 LB				
00094	•	1	7750<=GW-=8750 LB				
00095	•	2	GW>8750 LB				
00096	•	-	-				
00097	• CPIT	-1	0 <pitch<=5 deg<="" td=""></pitch<=5>				
00099	•	ō	5.PITCH<=15 DEG				
00099	•	1 2	PITCH>15 DEG				
0							

あいまたんちまちちちちまた ちょうち ちょうち ちょうちょう ちょう

173

-AMEDANSRS3

...

13 F

ないできったいというです。

and have been some

in the second

1

. . .

00101 0000		ORG	\$ 0	
00102	•			
00103	PAR	AMETER	VALUE COI	FS
	001 CVL	PMB	1	0
		RMB	1	
				1
	001 CROL	RMB	1	2
	001 CQ	RMB	1	3
00109 0004 0	001 CRD	PMB	t	4
00109 0005 0	001 CRPM	PMB	1	5
00110 0005 0	001 CT	PMB	1	÷
00111 0007 0	001 CNZ	PMB	1	7
	001 CGW	RMB	1	3
	001 CPIT	RMB	1	9
00114		C FLAGS		
		RMB		
	001 IFLAG		1	10
00116 000B 0		rmb	1	11
	001 OTIM	PMB	1	12
	001 AIR	RMB	1	13
00119 000E 0	001 T77	PMB	1	14
09120 000F 0	AEST 500	PMB	2	15
00121 0011 0	001 MODE	rmb	1	17
0 5100 55100	001 TOHI	RMB	1	18
	001 TOLD	PMB	1	19
	001 M	PMB	1	20
	001 NZE	PMB	1	21
	001 NCHI	RMB	1	22
	001 NZLD	RMB	1	23
		PMB		
			1	24
	001 EVH	PMB	1	25
	001 3VL	RMB	1	26
	001 266	RMB	1	27
	002 T86	PMB	3	28
	001 0 MOD	PMB	1	30
	001 ASF	RMB	1	31
00135 0020 0	001 PUFLAG	RMB	1	32
00136 0021 0	001 T80	PMB	1	33
00137 0022 00	001 NZF	PMB	1	34
00138 0023 0	001 APM31	RMB	1	35
	001 LOAS	PMB	1	36
	V2A 500	PMB	2	37
	002 NDX	RMB	2	39
	NDX SUN	RMB	2	41
	001 GTS	RMB	1	43
	003 BAA	PMB	3	
				44
00145 002F 00			1	47
00146 0030 00			1	48
	001 PU10	RMB	1	49
00148 0032 00		PMB	1	50
00149 0033 00		PMB	1	51
00150 0034 0		PMB	5	52
00151 0036 00		PMB	1	54
00152 0037 00		PMB	4	·55-58-SPARE)
00153 003B 00	001 AIPTIM	RMB	1	59
00154 0030 00	003 CONE	PMB	3	60

174

4

13 B

PAGE 004 SIRSR

Ĭ

al buckets brockets by a second second

A CONTRACTOR OF A CONTRACT OF

.

4

00155 00156 00157 00158 00160 00161 00162 00163 00164 00165 00166 00166 00168 00168	003F 0040 0041 0042 0043 0044 0045 0047 0049 0049 0058 0058 0055 0055	0001 0001 0001 0001 0001 0002 0002 0001 0001 0001 0001 0001 0001	ONEYH DENOM ZERD1 ANS NUM SHFTCT SAVADR SAVONY RTUFLG CNYTAB KNOTS ALTFT GWTH GWTL GWCNT	RMB RMB RMB RMB RMB RMB RMB RMB RMB RMB	1 1 1 1 1 2 2 1 16 1 1 1 1	63 64 65 66 67 68 67 73 74 99 99 99 99 99 99
00163 00164 00165 00166 00166 00167 00168	0049 004A 005A 005B 005C 005D	0001 0010 0001 0001 0001 0001	RTUFLG CNVTAB KNOTS ALTFT GWTH GWTL	RMB RMB RMB RMB RMB RMB	1 16 1 1 1 1	73 74 90 91 92 93
00175 00175 00177 00178	0088	0001 003F 0045	AVGDVC ONEVL SAVSTK	RMB EQU EQU	1 DNEVH SAVADR	168

0.0

• •

00181	0100	0100	CNTPS	PMB	256
00182	0200	0100	ACNTR	RMB	256

5 23

. .

å

00186 00187 00189 00190 00191 00192 00193 00194 00195 00196 00197 00198 00199 00200 00201	3001 3002 3003 3004 3005 3006 3005 3008 3009 3008 3008 3008 3008 3008 3008	01 02 09 08 03 04 07 00 05 00 05 00 05		ADPTAR	FCB FCB FCB FCB FCB FCB FCB FCB FCB FCB	15 1 2 8 9 11 3 4 7 10 0 5 14 12 6 13	<pre>(0) RPM (1) POLL ATTITUDE (2) POLL REFERENCE (3) PITCH (4) TORQUE (5) TORQUE REFERENCE (6) VERTICAL ACCEL. (NZ) (7) ALTITUDE (8) AIPSPEED (9) OUTSIDE AIR TEMP. (OA (10) GROSS MEIGHT (11) BATTERY VOLTAGE (12) RECOPDER S/N LO (13) PECORDER S/N HIGH (14) SPARE 1 (15) SPARE 2</pre>
00203 00204 00205 00205 00205 00207 00203 00203 00203 00210 00211 00212	3013 3015 3018 3018 3018 3018 3018 3028 3024	94 87 887 87 87 87 87 87 87	0F 2002 34 2001 04 2003 89 1000	PESTAR	LB3 LDA A STA A LDA A STA A LDA A STA A LDA A LDX	©STACK ©MUXID MUX ©ADCW ADCP ©MUXCW MUXCR ©ACIACW ACIACS ©\$02FF	SET UP STACK PBO - PB3 OUTPUTS FOR MUX ADDRESS CA2 IS OUTPUT
00214 00215 00216 00217	302 B 302D 302E	A7 09 26		CLRMOR	DEX BHE	0•X CLRMOR	CLEAR CLEAR SCRATCHPAD MEMOPY
00219		-			CLI		ENABLE INTERRUPT
00222 00223 00224 00225	3034 3036 3039 3038	DF CE DF CE	00 0200 02 02 0001	CLRFLG	STX LDX STX LDX	#\$0203 CVL #\$0200 CRDL #\$0001	CVL+1 = CVH CROL+1 = CQ
00226 00227 00228	30411 3043	7A DF	04 0004 08		STX Dec Stx	CRD CRD CGM	CRD+1 = CPPM CGW+1 = CPIT
00229 00230			06		INX STX	ст	CT+1 = CNZ
00232 00 233					BSR BRA	ADCNYT CORNZ	

ORG

\$3000

(DAT)

- 101. -

PAGE 005 SIRSR

00184 3000

1

176

.

00239				+CONVER				
00239								
00240					IBPOL		• =	
00241				*****	****		********	•
00243	3040	4F		ADCNVT	CLR	A		*****
00244	304D	86	08		LDA	Ĥ.	#11 -	♦GET # OF CONVERSIONS●
00245	304F	D6	49		LDA	B	RTUFLG	+11 DURING RECORDING +
00246	3051	26	02		BNE		SKP1	♦16 DURING RETRIEVAL ♦
00247	3053	96	10		LDA	Ĥ	#16	***************
00249	3055	CE	3000	SKP1	LDK		#ADRTAB	MUX ADDRESS TABLE
00250	3059	DF	45		STR		SAVADR	
00251	305A	СE	0049		LDX		#CNVTAB	TABLE FOR RESULTS
00252	305D	UF	4?		STX.		JAVONV	
00253	305F	DE	45	PEPEAT	LDX		SAVADR	GET MUX ADDRESS
00254			-		LDA		0•×	
00255	3063	F7	5005		TH		MUX	JEND MUX ADDRESS
00256					CLR	В		
00257				DELAY	DEK			*****
00258					INN			◆DELAY FOP MUX◆
00253		-			DEC	B		◆TD 3ETTLE ◆
00590					BHE	-	DELAY	******
00261		-			LDA	-	AD	CLEAR AVD DONE
00595					LDA		CADSTRT	
00263					STR		ADCR	START CONVERSION
00264					LDA		ondch Theory	+READY FOR NEXT TIME+
00265					TH	В	ADCP	******
00266					INC		SAVADR	PPEPARE FOR NEXT ADDRESS
00267				CHROUT	LDX		SAVCHY	
				ENDCYT		ø	ADCP	NOT COD END OF ODMUCOCION
00269					BPL		ENDCVT	WAIT FOR END OF CONVERSION
00270		-			LDA		AD 0•X	SET CONVERSION
17500 17500					INC	Ð	JAYENV	STOPE IN CONVERSION TABLE PREPARE FOR NEXT CONVERSION
00273		-	0047		DEC	2	24146114	CHECK FOR LAST CONVERSION
00273			Ti 4		BNE	n	REPEAT	OUEON FUR LUST EDUARASION
00275		-	DI		RTS		rereni	
ovar p	3008	2.2			412			

and the second second states of the states o

PAGE 006 SIRSR

00235

00236

00237

Ser Contractor

N M M

ľ,

Carl Start Strange

+STORE RESULTS IN

•MAKE A/D CONVERSIONS +

PAGE 007 SIRSR

ţ

00277					*******						
	00279				• 1	CORRECT	NZ +	•			
	00279				*****	******	******	•			
	00281	THE	R6	0168	CORNZ		NZINT	INTERCEPT COPRECTION			
	00287				Contraction of the	LDA B	CNVTAB+6				
	00283					STA A	NUM	STORE INTERCEPT FOR KCER			
	00234					LDA A	NZSLP	SLOPE CORRECTION			
	00285		-			BSR	XCER	PUTS CORRECTED NZ IN ACC A			
	00286					STA A		RETURN CORRECTED NZ			
	00583						*******	◆ ◆			
	00585					DET CN2		 ♦ 			
	00290				*****	******	*******	**			
	60293	2090	C F	3066		LDX	#NZTABL				
	00294			00	LOOP	CMP A	0•X	(NZ 1.7. 1.5, 1.3. OR 0)			
	00295			0Ĥ		BCC	NZPERK	BR IF NZ > TABLE VALUE			
	00296			0007		DEC	CNZ	DE TE TE TELL TELL			
	00297			* * * *		INX					
	00298			F6		BRA	LOOP				
	00300	3088	58		NZTABL	FCB	90+64+38	0 1.7.1.5.1.3 G THRESHOLDS			
	00302						*****				
	00302						Z PENK FO				
	00304						12 FERR FU 1 000000000 000000000000000000000000000	-			
	00304				•••••		~~~~~				
	00306	30 8E	F6	01F8	NZPERK	LDA B	HZPK	GET PEAK NZ VALUE LDX ONZPH			
	00307					CBA		(PRESENT NZ - FCC PERK)			
	00308	3085	25	03		BCS	ASCOR	BR IF PEAK > PRESENT VALUE			
	00309	3084	B7	01F8		STA A	NZPK	STORE IF LARGER			

1

:

•

ک

PAGE 008 SIRSR

00311

+CORRECT DIFFERENTIAL PRESSURE+ 00312 ****************************** 00313 INTERCEPT CORRECTION 00315 3087 86 01FE ASCOR LDA A ASINT 00316 30BA D6 52 LDA B CNVTAB+8 DIFFERENTIAL PRESSURE 00317 30BC 97 43 NUM STORE INTERCEPT FOR XCEP STA A SLOPE CORRECTION 00319 30BE B6 01FF LDA A ASSLP 00319 3001 8D 20 BSR. XCER PUTS CORRECTED PDIFF IN ACC A 00320 3003 97 52 ITA A CHVTAB+8 RETURN CORRECTED PDIFF SSE00 ***************** CONVERT TO KNOTS 00323 ٠ +STOPE RESULTS AT "KNOTS"+ 00324 *********************** 00325 00327 3005 CE 3383 LDX PASTABL H0329 3008 8D 2F BSR. LINEAR 00330 30CA D7 5A STA B KNDTS 00332 ********************* 00333 CORRECT ABSOLUTE PRESSURE* 00334 ****** 00336 30CC 86 01FC LDA A ALTINT INTERCEPT CORRECTION 00337 30CF D6 51 LDA B CNVTAB+7 ABSOLUTE PPESSURE 00338 30D1 97 43 CTA A NUM STOPE INTERCEPT FOR XCER 00339 30D3 86 01FD LDA A ALTSLP SLOPE COPRECTION PUTS COPPECTED PARS IN ACL A KCER 00340 30D6 8D 0B B3P STA A CHYTAB+7 RETURN CORRECTED PABS 00341 3008 97 51 ***** 00343 .CONVERT TO FEET 00344 ♦12 COUNTS = 1000 FT● 00345 **************** 00346 PALTABL LDN 00348 30DA CE 3398 BOP LINEAR 00350 30DD 3D 1A ALTET 00351 30DF D7 5B STA B 00352 30E1 20 28 BPA DALT1

179

00355							SUBROUTINE	♦
00356						ERCEPT APE		•
00357						S AT "NUM"		•
00358						RNED IN AC		•
00359				*****	*****	******	**********	•
						_		
00361			59	KCER	BSR	MPY7		
00365					TST A		TEST FOR OV	
00363	3066	56	0E		BNE	ALLONE	BR IF OVERF	LOW
00364	30E8	96	43		LDA A	NUM	GET INTERCE	PT
00365	30EA	4 <u>I</u> I			TST A		+ OR - INTE	RCEPT?
00366	20EB	2A	06		BPL	PLUSA	BR IF INTER	CEPT POSITIVE
00367	30ED	1 B			ABA		-INTERCEPT	
00368	30EE	25	08		BCS	END	BR IF RESUL	T 13 NOT < 0
00369				ZEPD	CLR A		RESULT < ZE	
00370			05		BRA	END		
00371			**	PLUIA	ABA	2.1.2	+ INTERCEPT	
00372			ú2	1 64 6 6 7	BCC	END	BP IF PESUL	
00373				ALLONE		-	PESULT > 25	
00374			rr	END	RTS	** 8-1	MESOLI / ES	
00214	2050	27		Ent	R 1 2			
00377						********		
00378						UBROUTINE	•	
00379					• •	AT TABLE	•	
00330				+INPUT				
					-	L A PNED IN AC		
00391								
00385				******	*****	********	****	
06334	2050	a 1		LINEAR	CMD 0	0• X		
		-	-	CTUCH#	-	DELTA		
00385			00		BCC	UELIM		
00386					INX			
00337		08			INX			
00388					INX			
00339					BRA	LINEAP		
00390			00	DELTA	SUB A			
00391			50		LDA B		SLOPE	
56600	3106	8D	3D		BSR	MPY5		
00393	3108	EB	01		ADD B	1•X		
00394	310A	39			RTS			

+TRANSDUCER CORPECTION SUBROUTINE +

PAGE 009 SIRSP

00354

00355

the loss of the second s

1

180

2

્રસ્કે સેસ્ટ્ર

and a construction of the lite

ž

1

\$

PAGE 010 SIRSP

Standing Contraction of the

١

San Andrea Angel Parkana

ţ

man the second and a second section of the

00396 00397 00398 00399 00399 00400				+ALTET +RESULT	IS I I Ste	IN F IREI	TUDE RTN ACC B D DN STACK	•				
00402	310B	86	54	DALTI	LDA	A	\$84					
0.0403	310D	8D	58		BSR.		MPYS					
00404	310F	86	6E	NST1	LDA	8	#110					
00405	3111	1 B			ABA							
0.0406	3112	De	53		LDA	В	CNVTR3+9	GET	TE	MPER	TU	PE
0.0407	3114	10			3BA							
0.0408	3115	24	0D		BCC		PLSCOR					
00409	2117	40			NEG	Ĥ.						
0.041.0	3118	06	BF		LDA	B	0191					
00411	311A	8D	1 B		BSP.		MPY8					
00412	3110	96	58	HXT2	LDA	Ĥ	ALTET					
00413	311E	11			CBA							
00414	311F	25	θE		BC S		NEGALT					
00415	3121	10			1 BA							
00416	3122	50	10		BRA		60					
00417	3124	C6	HE	PLSCOR		B	0174					
0.0418	3126	80	ńΕ		BSP		MPY8					
00419	3158	96	5B	NXT3	LDA	Ĥ	ALTET					
00420	3120	1 B			ABA							
00421	312B	55	05		BCS		HIALT	Bb	IF	DALT	\rightarrow i	255
00422	312D	50	05		BPA		60					
00423	312F	4F		NEGALT		Ĥ						
00424	3130	50	50		BRA	_	60					
00425	3132	86	FF	HIALT	LDA	Ĥ.	#\$FF					
0.0456	3134	36		60	PSH	Ħ.						
00427	3135	50	41		BRA		ν <u>L</u>					

181

••• • •

PAGE 011 SIRSR

ġ

3424

00400			
00429			
00430			INE ACC A X ACC B •
00431			SULT RETURNED IN ACC A+
00432			RNED IN ACC B +
00433	*********	*******	****************
00435 3137 36	MPY8 PSH A		•
00436 3138 86 08	LDA A		◆ ZERD1 NDT 0 ◆
00437 3138 97 41	STA A		◆ROUNDOFF PESULT◆
00438 3130 20 0D	BPA	MPY	 • •
00439 313E 36	MPY7 PSH A		+STORE NUMBER OF+
00440 313F 86 07	LDA A		♦ FINAL THIFTS ●
00441 3141 97 41	STA A		 ◆
00442 3143 20 06	BPA	MPY	 ♦
00443 3145 36	MPY5 PSH A		♦ ZERQ1 = 0 ♦
00444 3146 86 05	LDA A	*5	◆DO NOT ROUNDOFF◆
00445 3148 7F 0041	CLR	ZER01	★ ◆
00446 3148 97 44	MPY STA A	SHETCT	
00447 3140 86 08	LDA A	\$8	
00448 314F 36	PSH A		
00449 3150 DF 29	STX	SMDX	
00450 5152 30	TEX		
00451 3153 4F	LLP H		
00452 3154 56	POR B		
	M3 BCC	M4	
	ADD A		
00454 3157 AB 01			
HI455 3159 46	M4 POR Ĥ		
00456 3158 56	ROR B		
00457 315B 6A 00	DEC	0•8	
06458 315D 26 F6	BNE	MB	
00459 315F 31	INS		
00460 3160 31	THE		
00461 3161 7D 0044	-	CHETCT	ANY FINAL SHIFTS
00462 316 4 27 0F	BEO	PTN	
00463 3166 44	SHIFT LSR A		
00464 3167 56	POR B		
00465 3168 78 0044	DEC	SHETCT	
00466 316B 26 F9	BNE	SHIFT	BRANCH FOR ANOTHER SHIFT
00467 316D 24 06	BCC	PTN	BR IF FRACTIONAL PAPT OF
00468	•		MULTIPLICATION < 0.5
00469 316F 7D 0041	TST	ZERD1	
00470 3172 27 01	BEO	PTN	BR IF NO ROUNDOFF
00471 3174 50	INC B	• ·	and an interaction of the second second
00411 2114 20	1114 1		
00473 3175 DE 29	RTN LDX	SNDX	
00475 5175 DE 25	RTS	211210	
009469 5166 52	F11		

132

ź.

PAGE 012 SIRSP

00476 00477 00478 00479				+ CAL +DALT S	CULATE	IN ACC A			
00481	3178	80	24	VL.	SUB A	#36			
00482	3178	25	09		BCS	LOW	BR IF	DALT < 36 (3000	FT)
00483					LDA B	#171			
00434					BSB	MPY8			
0.485			B4		LDA A	#180			
0.0486					3BA				
00487					BRA	ENDVL			
00488				LOW	LDA A	#180			
00489	3187	97	36	ENDVL	STA A	DNEVL			
00490				******					
00491				+SET C\					
00492	2100	64	53		LDA B	* *PT95			
	318B				BSR	MPY8	951/	RETIN IN ACC B	
00495					CMP B	KNOTS		- KNDTS	
00496					BCS	VLPEAK		KNOTS > .95VL	
00497					LDA B	#PT15			
00498					LDA A	DNEVL			
00499	3195	SD	80		BSR	MPY8	.15VL	RETIN IN ACC B	
00500	3197	96	ЗF		LDA A	ONEVL			
00501	3199	TR	0000	AGAIN1	DEC	CVL			
u0502	31 🐨	ЗB	07		BMI	VLPEAK	BP IF	CVL = -1 <<.7VL	I .
00503		10			SBA				
00504					CMP A	KNOTS			
00505					BC S	VLPEAK	BR IF	XVE < KNOTS	
00506	3183	50	F4		BPA	AGAINI			
00508						******* # FCC*			
00509						₩ ₽ <u><u></u><u></u></u>			
00010									
00512	3165	96	58	VLPEAK	LDA A	KNOTS			
00513					LDA B	DNEVL			
00514					BSR	DIVIDE	XVL II	N ACC A	
00515					LDA B	VLPK			
00516		11			CBA		PRESER	T VL - PEAK VL	
00517			03		BCS	VH	BR IF	PEAK > PRESENT	
00518	31 B 1	B 7	01F9		STA A	VLPK			

and the second of the second second

00520 00521 00522	+CALCULATE DNEVH+	
00524 3184 32 00525 3185 C6 28 00526 3187 80 3137 00527 1188 86 90 00528 318C 10 00529 31.0 97 3F	VH PUL A LDA B #43 JSR MPY8 LDA A #144 SBA STA A ONEVH	GET DENSITY ALTITUDE
00530 00531 00532	++++++++++++++++++++++++++++++++++++++	
00534 31BF 9F 45 00535 31C1 86 26 00536 31C3 D6 3F 00537 31C5 BD 3137 00538 31C8 37 00539 31C9 86 1A 00540 31CB D6 3F 00541 31CD BD 3137 00542 31D0 37 00543 31D1 86 0D 00544 31D3 D6 3F 00545 31D5 BD 3137	STS SAVSTK LDA A #PT15 LDA B ONEVH JSR MPY8 PSH B LDA A #PT10 LDA B ONEVH JSR MPY8 PSH B LDA A #PT05 LDA B ONEVH JSR MPY8	.15 VH ON STACK .10 VH ON STACK .05 VH IN ACC B
00547 31D8 96 3F 00548 31DA 8D 0E 00549 31DC 8D 0C 00550 31DE 33 00551 31DF 8D 09 00552 31E1 33 00553 31E2 8D 06 00554 31E4 8D 04	LDA A DNEVH BSR CMPKN PUL B BSR CMPKN PUL B BSR CMPKN BSR CMPKN	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
00556 31E6 9E 45 00557 31E8 20 2B 00559 31EA 10	PLENTR LDS SAVSTK BRA ROLL	
00560 31EB 91 5A 00561 31ED 25 F7 00562 31EF 7A 0001 00563 31F2 39	CMP A KNOTS BCS RLENTR DEC CVH RTS	BR IF KNOTS > %¥H

おちちちちちんとうちちちのことでのたちで

and all a showing

HARANGE AND AND

+

184

i

PAGE 014 DIRSR

and the second second

ð

!

00555	*****************
00566	 DIVIDE SUBROUTINE +
00557	***************
00568	HUMERATOP IN ACC A +
00569	◆ DENOMINATOR IN ACC B ◆
00570	♦(HUM X 128)/DEN = ANS ●
00571	**************

00573	3163	$\mathbf{D7}$	4.0	DIVIDE	2TH	в	DENDM	
00574	3165	5,5			CLR	B		
0.575	31F6	D7	41		STR	B	CERO1	
00576	31F6	P 7	42		TTA.	B	ANS	CLEAP CEPO × HAT
00577	31FA	97	43		STR	A.	NUM	
00573	ELEC	44			LIP	A		
00579	31FD	58			909	B		
00530	21FE	41			TT	Ä		
00701	185	ē÷.	04		BHE		JUPT	BP IF NUM WAT I
대비카운동	: E 0 1	Ū1	40		CMP	R	DENDM	•••••••••••
00583	13412	25	()E		80.1		THALL	BR IF DEMON > (MON > 188
00.534	1205	$\mathbf{P}0$	40	TURT	TUB	B	DEHOM	
00535	30.17	70	0042		INC	-	4145	
00536	220A	92	41		1BC	я.	CEPD1	SUBTRACT POSSIBLE BORRIM
00587	1 E 0C	25	FT		BNF		TUBT	BP IF NOT CEPO
00532	330E	Ē1	40		CMP	B	DENDM	2° 1° 0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°
00533					BCC	~	SUBT	BR LE HEC & DENDM
00590			-		LDA	Ĥ	AN3	
00591				IMALL	PTT			

and a some the state of the second state to second state to second state of the second state of the second state

185

à

00593 00594 00595	<pre>************************************</pre>
00597 3215 D6 40 00598 3217 96 4B 00599 3219 01 91 00400 321B 24 31 00601 321D 01 6F 00602 321F 25 2D 00603 3221 8D D0 00604	POLL LDA B CNVTAB+2 SYNCHRO PEFERENCE LDA A CNVTAB+1 ROLL CMP B #145 BCC OUT1 BP IF REF > 145 CMP B #111 BCS OUT1 BP IF REF < 111 BSR DIVIDE CORPECT ROLL RETN IN ACC A
00504 00505	SET ORDL FLAG
00606 00607 3223 81 93 00607 3225 24 11 00609 3227 7A 0002 00410 322A 81 6E 00611 322C 84 0A 00612 322E 7A 0002 00613 3231 81 80 00614 3233 24 03 00615 3235 7A 0002	CMP A #DEG25 BCC PITCH BP IF ROLL > 25 DEC CPOL CMP A #DEG10 BCC PITCH BR IF ROLL > 10
100617	
00618	COPPECT PITCH
00619	
00621 3238 D6 40 00622 3238 96 40 00622 3236 8D 85	PITCH LDA B CNVTAB+2 SYNCHRD REFERENCE LDA A CNVTAB+3 PITCH BSP DIVIDE CORRECT PITCH PETN IN ACC
00625	*****
69696	JET CPIT FLAG
75600	*****
00629 323E 81 40 00630 3240 24 12 00631 3242 7A 0009 00632 3245 81 16 00633 3247 24 08 00634 3249 7A 0009 00635 3246 20 06	CMP A #DEG5 BCC CORRIQ BP IF PITCH > 5
00637 3 24E 86 FF 00-38 3250 97 09 00639 3252 97 02	OUT1 LDA A #\$FF ITA A OPIT ITA A CROL

τŋ.

Ĥ

PAGE 015 SJPSP

4

STATE AND A STATE OF A

186

**

PAGE	016	16 SIRSR						
00641				*****	******	******	***	
00642					COPRECT		٠	
00643				*****	******	*******	***	
00645	3254	D6 4	F	CORRTQ	LDA B	CNYTAB+5	TORQUE	REFERENCE
00646					LDA A	CNVTAB+4	TORQUE	
00647					CMP B	#145		
00649					BCC CMP B	0UT2 #111	BP IF	REF > 145
00649					BCS		BR IF	PEF < 111
00651					BSR	DIVIDE		
			-					
0.0157						******		
00653				•		0 FLAG	•	
00655				*****		******	*****	
00657					CMP A			+
00658					BCS	SEICI C0	BK IF	TO - 5 PSI
09659 09660					INC CMP A			
00661					BCS		BP IF	TQ - 44 PSI
56600					INC	60		
00663	3270	20 (13		BRA	SETCT		
4066 4				BUT2	CLRA			
00665	3873	97 (13		STA A	-C0 ▶◆◆◆◆◆◆◆◆◆		
00665 00667					SET CT P		•	
00663						*******	+++	
0.0620				JETCT				S WEIGHT TRANSDUCER
0.0671					CMP H BCS	#GIJGND PPM		NEIGHT - GND THPESHOLD GW < GND THPESHOLD
00672					INC	CT	De le	
00675				******		••••••••••	•••	
00676					BET CPPI	1 rLN0 00000000000000000000000000000000000	•	
0.0517				*****	******			
00679	327E	96 4	1A	PPM	LDA A	CNVTAB	RPM	
0.0680			8		CMP A	#RPM200	RPM -	
00691)A		BCC	AVGGN	BR IF	RPM > 200
86600 56600)005 :4		DEC CMP A	CRPM #RPM100	FPM -	100
00683 00684			5 4 13		BCC	AVGGW		PPM > 100
00685					DEC	CRPM		• • •

.

• . ÷

*** *2 3

a state a state a set of a state of

;

ş

1

187

à

¢. _

PHOR 017 CIPSP

00687 AVERAGE GROSS WEIGHT 00689 0(489 00691 328E 5F AVGGW CLR B 00692 328F 96 05 LDA A CPPM 65 45 1655 56H10 BMI SKPELR BR IF RPM - 100 00695 3293 CE 005E #GMCNT LDX ********* CURGH (0696 3296 E7 00) STA B CLEAR 0•X 80 8855 76600 INX ·GMENT· GMIST· GMA· GML· 5400 35 6655 86400 CPX #GHL+1 ٠ IF RPM > 100 BNE 00699 3290 26 F8 CLRGM ********************** GWTL 00701 329E 7C 005D INC ************************ ◆INCREMENT FUEL BURN TIMEF◆ 00702 3201 26 03 BNE SK2 GHTH 04703 32AR 70 0050 INC (GMTH % GMTL) 00704 38A6 DE 50 2KS LDX GHTH 19705 3388 80 0310 CPX CONTINE IF EQUAL TO (GUTIME ٠ 00706 3288 26 47 00707 3290 78 0187 BNE TETCOM ٠ DECREMENT GROSS MEIGH. DEC GPOSWT (GROSHIT) & CLEAP TIMES ٠ 00708 28B0 D7 50 STA B GUTH STA B 00703 3282 D7 5D GMTL **IETCGN** 00710 3284 20 3E BRA SKPOLR STA B GIJTH CLEAR 00712 32B6 D7 50 ٠ 00713 3388 07 5D STA B GUTL +FUEL BURN TIMER 10714 38BA 96 54 LDA A (NVTAB+10 GROSS WEIGHT 00715 2280 98 61 ADD A GHL ******* 00716 REPE 97 61 ETA A GINL +ADD FOR+ 99717 3800 54 03 BCC NST4 +HYERAGE+ 00718 3202 70 0060 INC GINH ******** GWCNT #INPUTS FOR AVEPAGE 09719 3205 70 005E NXT4 INC LDA A 00720 3208 36 07 87 00721 320A 95 5E BIT A GHCNT 00155 3500 56 56 BNE SETCOM BR IF NOT & INPUTS 06724 *********** DIVIDE SUM OF 00725 8 INPUTS BY 8 16726 10727 00729 32CE 66 03 LDA A #3 SHETCT STA A 00730 3200 97 44 LDA A 00721 3202 96 60 GMH LDA B 00732 32D4 D6 61 GIUL 00723 32D6 BD 3166 JER **JHIFT**

188

 $\mathbf{\dot{\lambda}}$

PAGE 018 SIRSP

Silan akas

••

14 F

ショット のかい

alesia:

00735			****
00736		PREVIOUS GRO	
00737	 UPDATE 	IF DIFFEREN	CE < 4 +
00738	*******	*********	****
00739 3209 17	TBA	P	UT AVG GROSS WEIGHT IN ACC A
00740 32DA 97 61	STA A	GHL	
00741 32DC D6 5F	LDA B	GWIST 6	ET PREVIDUS AVERAGE
00742 32DE 27 0B	BEQ	TOIST B	R IF NO PREVIOUS AVERAGE
00743 32E0 10	SBA	6	ET DIFFERENCE OF AVEPAGES
00744 32E1 2A 01	BPL	TST1 B	R IF PLUS
00745 3263 43	COM A		AKE IT PLUS
00746 3264 80 04	TSTI SUB A		
00747 3266 24 03	BCC		R IF DIFFERENCE > 3
00748 32E8 F7 01F7	DTA B		PDATE GROSS WEIGHT
09749 32EB 96 61	TOIST LDA A		BUMP PRESENT GM
00750 32ED 97 5F	STA A		TO "PREVIOUS" LOCATION
00751 32EF 4F	CLR A		
00752 32F0 97 61	STA A		
00753 32F2 97 60	STA A		
00755		*********	
00756		H FLAG +	
00757		****	
501.01	••••••••		
00759 32F4 B6 01F7	SETCOM LDO O	GROINT	
00760 32F7 81 AF	CMP A		
00761 3279 25 08	BCS		R IF GW < 7750
00762 32FB 7C 0008		CGW	
00763 32FE 81 E1	CMP A		
00764 3300 25 03	BCS		R IF GW < 8750
00765 3302 70 0008		CGW	
AA140 2205 IC 0000	1 I T-		

4

Š.

تدفر والمتعادين والمتعاصي

189

٠.

PHGE 019 EIRSR

ţ

00767 00768 GET 1 LECOND ALTITUDE AVERAGE 00759 LOAD DIVE TABLE FOR TIME 0 00770******************************** 00772 3305 96 02 DECENT LDA A CROL 00277 3307 2B 03 BMI BR IF ROLL : 10 315 60774 2309 70 0066 DVTABL+4 INC 00775 3300 96 03 00776 330E 26 03 3K'5 LDA A 00 BR IF TOROUE BNE 34.6 5 0.777 3310 70 0065 DVTABL+3 INC 66778 2313 96 07 346 LDA A THE 00779 3315 2B 03 BMI 117 BR IF N2 - 1.3 00780 3317 70 0067 INC DVTBRL+5 0088 587 00781 2318 70 THE AVGDVC INC AVEPAGE COUNTER 00782 2310 96 48 LDA A AVGDVC ::9 00723 331F 81 09 CMP B 00784 8381 84 11 BCC CHK10 BR IF 9 OP 10 AVEPAGE INFOTS 10735 2323 TF 0088 CLP AVGDVC 00726 1326 D6 58 00737 3328 D8 A7 LDA B **HLTFT** *********** AUD B AVGDVL 40725 REEA D7 A7 AVGDVL AND FOR AVERAGE ITH B ٠ 16729 3320 24 03 TFP4 BCC AVGDVH 907200 272E 70 00AA THC 00791 3331 7E 366F SNP4 .IMP F1 00793 3334 81 08 CMP A CHM10 ÷10 BC I BPHF1 BR IF AVGDVC = 9 00794 2236 25 5E 00795 :338 86 03 •3 LDA A 00746 3338 47 44 TA A CHETCT 30347 3330 96 AH LDA A AVGDVH AVGDVL 00798 833E D6 A7 LDA B JIP HIFT AV6 RETAN IN ACC 6 00799 3340 PD 3166 TH B DVTABL+6 1 SEC ALTET AVERAGE 00800 3343 D7 68 CLP B 66801 3345 5F 00802 3346 07 87 LTH B AVGDVL 00803 3348 D7 A6 ITH B AVGIVH 00804 3348 D6 01 LDA B CVH. DVTABL+1 00805 3340 07 63 TAB 00306 334E De 00 LDA B CYU ITH B 00307 3350 07 64 DVTABL+2 00808 2352 96 58 LUA A KNDTS 00809 3354 07 69 TH B JVTABL+7

14 B

ALT(-6) - ALT(0) > 106813 ************************ 00814 LDM **#DVTABL** 00816 3356 CE 0062 CLP 0•X 00817 3359 6F 00 LDA B ALT(0) 00818 3358 E6 06 6, X 00819 335D CB 02 ADD B :2 LDA A 54•X ALT(-6) 00820 335F A6 36 00321 3361 10 ALT(-6) - ALT(0) - 2 SBA BR IF ALT DID NOT DECREASE BCS CHK9 00822 3362 25 02 BY 2 CHTS IN LAST 6 SEC 00823 INC 0.8 00424 3364 60 00 00826 -----SET CRD FLAG 00927 00828 **************** INC B ALT(0) + 300829 3366 50 CHNS 00830 3367 A6 30 ALT -91 LUA A 60•X 00831 2368 10 3BA **SKP3** BR IF ALT DID NOT DECREASE 00832 3368 25 27 BCE 00833 BY 3 CNTS IN LAST 9 SEC 20335 3360 E6 43 LDA B 67,X H-3(-12) #35 ADD B 00836 236E CB 23 00837 3370 46 27 LDA A 55, X H-31-61 A-3(-6) - A-1(-12) - 35 KNDTS 3**8**8 00338 3372 10 CYP3 BR IF AVE DID NOT INCREASE BY 00824 2373 25 1E BCIS 35 KNOTO FROM (-12) TO (-5) 00840 00842 3375 SE CLR B 00843 3376 86 F9 LP5 LDA A #\$F8 1-91 00344 3378 EB 00 ADD B 0.5ZLPS INX 00945 2378 09 . INC X BY 8 00846 327B 40 INC A 00847 3370 36 FC LP6 BNE 00849 337E 90 009A CPX OVTABL+56 BR IF THEPE MORE DELTHS 00949 (381 26 F3 BNE LP5 00850 3393 01 05 CMP B #5 SKP3 BR IF SUM OF DELTAS < 5 BCS 00351 3385 25 00 ALTITUDE IN FEET 00853 3337 96 58 LDA A ALTET 10.000 FEET 00354 3399 81 78 CMP A \$120 00855 1398 24 06 BR IF ALTITUDE > 10.000 FT IKP3 BCC CPD 00856 2220 70 0004 INC 00357 3340 BD 3600 JOR \$3600 BUMP 00353 3393 7C 0004 5kP3 INC I'RD DLOOF 9 00359 3396 20 39 BRAF1 BRH U.

***************************** SET DELTA FLAG IF

1. 14 M. S. S.

PHGE 020

00811

00812

and has been the product of the second

BIRSR

PAGE 021 SIRSP

and the state of the

00861	3398	FC	ALTABL	FCB	252,255.	0
00862	339B	65		FCB	229+	225+ 44
00863	339E	67		FCB	199.	187, 40
00864	3381	90		FCB	156+	138• 36
06365	33A4	70		FCB	124+	105• 34
00966	3387	58		FCB	90.	74• 30
00867	33AA	40		FCB	64.	51• 29
00368	ззөр	25		FCB	37•	39• 36
00369	33B0	00		FCB	Ú•	0• 25
(0.087.0)	33B3	FA	ASTABL	FCB	50.	505• 0
0.0371	3386	B 0		FCB	176+	171+ 14
00872	3389	70		FCB	112.	137• 17
09873	3 RBC	50		FCB	80.	116• 21
0.0874	PBBF	35		FCB	50.	92 . 26
00375	3303	1E		FCB	30,	71+ 32
00976	3305	15		FCB	21,	59• 47
00377	3308	90		FCB	12.	45+ 54
0.0878	230 B	05		FCB	5.	29. 77
a9879	3 30 E	00		FCB	0.0.196	

PAGE 022 SIRSP

States ---

silver

:

		~=					#MES2	
00881	3301	CE		DLOOPB				
00885	3304	BD	3554		J3R		PRT	
00382	3307	BD	3501		JSR.			
00884	33DA	CE.	2869		LDX		#MES7 PRTR	
00985	33DD	BD	3559		USR.		SEUFFR	
00836	33E0	CE O	286E		L DX L DA	a	0•X	
00287	33E3	Ab ot	00 4E		CMP	19 19	0\$4E	NT
00388	33E5 33E7	81	12		BEQ	Π	JF4X	11.
	33E9	27	40		CMP	Ĥ	0\$40	L?
00390	33EB	27	11		BEQ	Π	JLO	L . '
00891 00892	33ED	er 84	4F		AND	Ĥ	0\$4F	
	33EF	81	09		CMP	R .	*\$09	
	33F1	2F	05 0E		BLE		DLOOPJ	
00395	33F3	CE.	2810		LDX		#MES3	
00896	33F6	BD	3559		JOR.		PRTR	
00897	3366	50	D6		BRA		DLOOPD	
003399	33FB	7E	3499	JF4X	JMP		JF4	
00344	33FE	TE	345H	JLO	JMP		DLOOPS	
00900	34.01	B7	340D	DLOOP J	STR	Ĥ	DLOOPK+1	
00901	3404	87	3456	1.000	ETA	Ĥ.	DLODPQ+1	
00902	3407	CE.	0000		LDX	••	#CVL	
00903	3408	C.A.	30		LDA	B	#\$ 30	
90904	3400	H6	00	DLOOPK	LDA	Ā	0, X	
00905	340E	28	04		BPL	••	DLOOPM	
00906	3410	43	04		COM	A		
00907	3411	40			INC	Ĥ		
00909	3412	66	ЗD		LDA	B	#\$2D	
00909	3414	84	30	DLOOPH	ORA	Ĥ	#\$30	
00910	3416	ĒĒ	286E		LDX		BUFFR	
00911	3419		02		TR	F	5•X	
00912	3418	87	03		CTR	Ĥ	3.8	
00913	341D	5F			CLR	B		
00914	341E	E7	04		ETH.	B	4.8	
00915	3420	Č6	2A		LDA	B	#52A	
00916	3422	€7	00		STR	Б	0•X	
00917	3424	66	20		LDA	B	\$20	
00918	3426	E7	01		STA	В	1+X	
00919	3428	BD	3554		JER		PRT	
00920	342B	CE	282F		LDX		#MES4	
00921	342E	BD	3554		J SR		PRT	
25600	3431	BD	3501		JSP		INP	
00923	3434	CE	2869		LDX		#MES7	
00924	3437	BD	3559		JS₽		PRTR	
00925	343A	6 E	2 86 E		LDX		*BUFFP	
00926	-343Ð	86	00		LDA	Ĥ	0•X	
00927			0D		CMP	Ĥ	#\$0D	
00928		27			BEO	-	DLOOPR	
00958			5D		CMP	Ĥ	#\$2D	
00930			01		BNE		DLOOPN	
00931					INX	-	a	
00935	-			DLOOPN			0•X	
00933	-				AND	B	#\$0F	
00934	3440	81	5D		CMP	H	#\$20	

-35

1.1

1. A.

PAGE 023 SIRSR

ţ

					2		N. 8860
00935	344E		50		BNE	-	DLOOPP
00906	3450	53			COM	B	
una37	3451	50			INC	F	
0.0933	3452	ΩE	0000	DLOOPP			#CVL
00939	3455	E7	00	DLOOPO	STA	B	0•X
00940	3457	ΓE.	33D1	UL DOPP	JMP		DLOOPB
60941	345A	7F	2855	DLOOPS	CLR		COUNT
00942	345D	78	2855		DEC		COUNT
00943	3460	CE.	0000	DLOOPT	LDX		#CVL
00944	3463	70	2855		INC		COUNT
00945	3466	86	2855		LDA	A .	COUNT
00946	3469	81	09		CMP	Fr	09
00947	346B	ЗE	EA		BGT		DLOOPP
00948	346D	B7	3476		ITA.	9	DL00PU+1
00949	3470	SA.	30		OPA	Ĥ.	#\$3 0
00950	3472	B7	398S		STA	A	BUFFP
00251	2475	AA.	00	DLOOPU	LDA	A	0.X
00952	2477	CE.	2865		LDX		OBUFFR
00953	347A	Čě.	20		LDA	B	#\$20
00954	3470	E7	01		STA	B	1.8
00455	347E	E7	50		STA	P	2•X
0.0456			30		LDA	B	0\$30
00457	3492	E7	03		ETH.	B	3• X
00358	-	40	0.5		TIT	Ā	
00208		28	06		BPL		DLOOPY
00960	3497	66	20		LDH	B	#\$2D
00961	3439	E7	03		STA	8	3. 4
10361	348B	43	03		COM	Å	•••
90963	2480	40			INC	A	
00964	3490	9A	30	DLOOPV	OPA	Ĥ.	#\$30
0.0945	348F	A7	04		STR	A	4•3
00366	2491	55			CLP	B	
00967	3492	E7	05		ITA	B	5•X
00968	3494	BD	3559		15 P	•.	PRTR
0.096.9		20	67		BRA		DLOOPT
00970		έe	2835	JE4	LDK		OMES5
00971	1490	BD	3554	-10- -	JSR		PRT
00972	349F	BD	2501		JIP		INP
00973	3492	ίE	2869		LDX		WEI7
00974		BD	3559		JSP		PRTR
00975		5F	222-		CLR	B	
00976	3489	F7	3409		ITA	F	JF4D+1
00977		CE.	286E		LDX	₽	BUFFR
00979		86	01	JE4B	LDA	Ĥ	1+X
00979					CMP		#\$0D
						п	JF4C
00980					BED INC		JF40+1
90981 76932			346.5		INK		06. 4% .41
009933			E.A				JF48
00493				JF 4C	BRA LDX		OF48 OBUFFR
				JF4C1	LDA	ů.	ONN S
10985				Du AC T	AND		*\$0F
00986			-			H	
60987					TT'		JAVEX
00488	340.0	U.E.	28 4 F		LDX		⇔ ⊭ 1

194

·; -

			~~	IT AT	ADD B	0•X
00333	3408		00	JF4D	ADD B DEC A	010
00990	34CA 34CB	48 26	FB .		BNE	JF4D
00991	340D		5409 -		LDA A	JF4D+1
00992	3400	27	08		BEQ	JF4F
00243	34D2	49	011		DEC A	•
00924	3403	B7	3409		STA A	JF4D+1
00996	3406	FE	2882		LDX	SAVEX
00997	3419	08			INX	
00998	34DA	20	ES		BRA	JF4C1
00999	34DC	F7	2854	JF4F	STA B	LOOPCT
01000	340F	7E	36 0A		JMP	F4
01001				•		
S0010				♦ ĤT I	END OF	PASS
01003				٠		
01004	34E2	78	2854	FLOOPA	DEC	
01005	3465	27	03		BEQ	FLOOP1
01006	34E7	7E	360A		JMP	F4
01007	34EA	CE.	0100	FLOOPI	LDX CLP B	#\$100
01008		5F			CLP B CLP	TAVEX
01009		7F	2882			0.8
01010	34F1	Ĥ6	00	FLOOPB	INX	0•0
01011	34F3	08	0200		CPX	*\$200
01012	34F4	90 27	02.00 07		BEO	FLOOPS
01013	- 34F7 - 34F9		FF		CMP A	255+X
01014			13		BNE	FLOOPD
01015	34FD			FLOOP4		
01010	34FE		F1		BRA	FLOOPB
01018			0100	FLOOPS	LDX	\$\$1 00
01019			FF		LDA A	u255
01020			0.0	FLOOPC	LDA B	0•X
01021	3507	- 08			INX	
01022	- 3508	E7	FF		ITA B	255•X
01023	3508	4Ĥ			DEC A	
<1024			F8		BNE	FLOOPC
-41.025			33D1		JMP	DLOOPB
01026			_	FLOOPI		IAVEX FLOOPE
01027			-		BNE	TRVEX
01028					CTX UDV	SMES6
01029					LIDX Jor	PRTR
01030					BRA	FLOOPF
01031 01032				FLOOPE	-	TAVEX
01032				FLOOP		
01033					LDA B	0520
01035				i	JIP	PUTC
01036					PUL B	
01037					PSH B	
01038					P3H A	
01039			•		TBA	
01044	1 3521	D BI			UER	PRTDEC
01041					LDX	OMES7
01048	2 3530	3 BT	3554		J3 R	PPT

-

and the second of the second s

PAGE 024 SIRSR

•

195

×

PAGE 025 SIPSR

1

11.2

ţ

01043	3536	FE	5885	LDX		SAVEX
01044	3534	ĤЬ	FF	LDA	A	255•X
	353B	BD	3506	JSP		PRTDEC
01046	353E	¢Ε	5363	LDX		#MES7
01047	3541	BD	3554	JSP		PRT
a1049				PUL	A .	
01049	-545	BD	3506	93 9		PRTDEC
	3548	£Ε	5364	LDX		#MES7
01051	354B	BD	3559	JCP.		PPTR
01052	354E	ЕË	5885	LDX		JAVEX
41053		33		PUL	B	
011154	3552	50	99	BPA		FLOOP4

196

. ... PAGE 086 SIRSR

Sec. All

Martin and an

in the definition of the structures for the or the bottom of the first of the second structure of the structure of the second structure of the

and the second second

٩

÷.

and the second second

01056				*****	******	*****
01057				*****	******	***********************************
01053				• THE	FOLLOW	ING ROUTINES HAVE BEEN INSERTED
01059						GING PURPOSES ONLY AND WILL NOT
01060				 AP 	PEAR IN	THE FINAL VERSION OF THE SOFTWARE.
01061						*********
01062				PPI	NT GUBR	DUTINE
01063				•		
31064	3554			PRT	PSH A	
1065	3555				PSH B	
01066	3556				CLR A	PPT3
- 01067 - 01067	3557		04	PRTR	BRA PSH A	PP13
0106P 0106P	3559	- 36 - 37		PEIE	PSH B	
1070	355F	-	AA		LDA A	#\$FIA
01071	3550		09	PPT3	LDA B	#\$09
01072			1000		STA B	ACIACS
01073			00	PRT4	LDA B	0•X
01074					BEO	POTEX
01075		• •	•		JOR .	PUTC
01076	3569				INX	
01077	356A	гñ	F6		BRA	FRT4
-01078	3560	4D		PRTEX	TST A	
01079	3560	27	03		BEQ	PRTX
-41030	256F	<u>6</u> 0	3575		JER	PUTC
01081	3572	33		PRTX	PUL B	
01092	3213	2			PUL A	
01022	2574	39			RTS	
01034	257 4	39		•••••	******	*****
01034	2524	39			-	
01034 01085 01086				٠	C BUBRO	
01034 01085 01086 01087	25.5 2	36	1000	• PUTC	C SUBRO	UTINE
01034 01085 01086 01087 01087	3575 3576	36 86	1000	٠	C SUBRO PSH A LDA A	
01034 01085 01086 01082 01082 01089	3575 3576 3579	36 86 47	1000	• PUTC	C SUBRO PSH A LDA A AIR A	UTINE
01034 01085 01086 01087 01087 01089 01089	3575 3576 3579 2579	36 86 47 47		• PUTC	C BUBRO PSH A LDA A ABR A ABR A	ACIACI
01034 01085 01086 01087 01087 01089 01090 01090	3575 3576 3579 3579 3578	36 86 47 24	F9	• PUTC	C SUBRO PSH A LDA A ASR A BCC	UTINE ACIACI PUTCI
01034 01085 01086 01087 01087 01089 01089	3575 3576 3579 3578 3578 3578	36 86 47 97	F9 1001	• PUTC	C BUBRO PSH A LDA A ABR A ABR A	ACIACI
01034 01085 01086 01087 01087 01088 01088 01089 01090 01091 01091	3575 3576 3579 3578 3578 3570 3580	36 867 474 87 01	F9	• PUTC	C SUBRO PSH A LDA A AIR A ASR A BCC ITA B	UTINE ACIACI PUTCI ACIAXR
01034 01085 01086 01087 01087 01088 01088 01088 01089 01090 01091 01092 01092	3575 3576 3579 3578 3578 3578 3578 3580 3580	366774717 27	F9 1001 7F	• PUTC	C SUBRO PSH A LDA A ASP A BCC TA B CMP B	UTINE ACIACI PUTCI ACIAXR #\$7F
01034 01085 01086 01087 01087 01088 01088 01088 01089 01090 01091 01093 01093	3575 3576 3579 3578 3578 3578 3578 3580 3582	3667 474 571 80 80	F9 1001 7F 11	• PUTC	C BUBRD PSH A LDA A AIR A ASR A BCC ITA B CMP B BEO	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF
01034 01085 01085 01087 01087 01088 01088 01088 01088 01088 01088 01088 01088 01088 01085	3575 3576 3579 3578 3578 3578 3582 3582 3584	366774717DD 50050	F9 1001 7F 11	• PUTC	C SUBRO PSH A LDA A AIR A ASR A BCC ITA B CMP B BEO LIR	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF
01034 01085 01086 01087 01087 01089 01090 01091 01091 01092 01093 01094 01095 01095	3575 3576 3579 3578 3578 3578 3582 3582 3584 3587	364774717DD6	F9 1001 7F 11 35AE 0B	• PUTC	C SUBRO PSH A LDA A AIR A ASR A BCC ITA B CMP B BEO JIR TIT B	UTINE ACIACI ACIAXR O\$7F PUTF DLAY
01034 01085 01085 01087 01087 01089 01090 01091 01092 01095 01095 01099 01099	3575 3576 3579 3578 3578 3578 3582 3584 3584 3584 3588 3588 3588 3588	366774 96774 971 900 900 900 900 900 900 900 900 900 90	F9 1001 7F 11 35AE 0B 0D 3575	• PUTC	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO UIR TIT B BNE LDA B UIR	UTINE ACIACI PUTCI ACIAXR S\$7F PUTF DLAY PUTF S\$0D PUTC
01034 01085 01085 01082 01082 01082 01090 01091 01092 01093 01095 01095 01099 01099 01099	3575 3576 3579 3578 3578 3578 3582 3584 3584 3588 3588 3588 3588 3588 3588	366774747128DD666DC8C6	F9 1001 7F 11 35AE 0B 0D 3575 0A	• PUTC	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR TIT B BNE LDA B JIR LDA B	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A
01034 01085 01085 01082 01082 01082 01090 01091 01092 01095 01095 01099 01099 01099 01099	3575 3576 3579 3578 3578 3578 3582 3584 3584 3584 3584 3587 3588 3587 3587 3587	36677497128DD 8677497128DD 860000000000000000000000000000000000	F9 1001 7F 11 35AE 0B 0D 3575 0A	• PUTC	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR TIT B BNE LDA B JIR LDA B JIR LDA B JIR	UTINE ACIACI PUTCI ACIAXR S\$7F PUTF DLAY PUTF S\$0D PUTC
01034 01085 01085 01082 01082 01082 01082 01090 01091 01092 01095 01095 01095 01099 01099 01099 01099 01099 01099	3575 3576 3578 3578 3578 3578 3582 3584 3584 3584 3584 3584 3584 3584 3584	384774717DD566DD6D 8520808055	F9 1001 7F 11 35AE 0B 0D 3575 0A	PUTC PUTC1	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR TIT B BNE LDA B JIR LDA B JIR LDA B JIR LDA B JIR LDA B	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A
01034 01085 01085 01087 01087 01087 01087 01090 01091 01095 01095 01095 01099 01099 01099 01099 01099 01099 01099 01099	3575 3576 3578 3578 3578 3578 3582 3584 3584 3584 3588 3588 3588 3588 3588	384774717DD566DD6D532	F9 1001 7F 11 35AE 0B 0D 3575 0A	• PUTC	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR TIT B BNE LDA B JIR LDA B JIR LDA B JIR LDA B JIR LDA B JIR LDA B	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A
01034 01085 01085 01087 01087 01087 01087 01090 01091 01093 01095 01095 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099	3575 3576 3578 3578 3578 3578 3582 3584 3584 3584 3588 3588 3588 3588 3588	384774717DD566DD6D532	F9 1001 7F 11 35AE 0B 0D 3575 0A	PUTC PUTC1 PUTF	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR TIT B BNE LDA B JIR LDA B JIR LDA B JIR CLR B PUL A RTS	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A PUTC
01034 01085 01085 01087 01087 01087 01087 01090 01091 01092 01095 01095 01095 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099	3575 3576 3578 3578 3578 3578 3582 3584 3584 3584 3588 3588 3588 3588 3588	384774717DD566DD6D532	F9 1001 7F 11 35AE 0B 0D 3575 0A	PUTC PUTC1 PUTF	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR B BNE EDA B JIR LDA B JIR CLR B PUL A RTS	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A PUTC
01034 01085 01085 01087 01087 01087 01087 01090 01091 01092 01095 01095 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099 01099	3575 3576 3578 3578 3578 3578 3582 3584 3584 3584 3588 3588 3588 3588 3588	384774717DD566DD6D532	F9 1001 7F 11 35AE 0B 0D 3575 0A	 PUTC PUTC1 PUTF •••••• • GET 	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR TIT B BNE LDA B JIR LDA B JIR LDA B JIR CLR B PUL A RTS	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A PUTC
01034 01085 01086 01087 01087 01087 01087 01087 01090 01097 01095 01099 01099 01099 01099 01099 01099 01099 01097 01108 01108 01108 01108	5756 5777 5777 5777 5777 5777 5777 5777	36677474717000806005339	F9 1001 7F 11 35AE 0B 0D 3575 0A	PUTC PUTC1 PUTF •••••• • GET	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR BNE BNE LDA B JIR LDA B JIR CLR B PUL A RTS	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A PUTC
01034 01085 01086 01087 01087 01089 01090 01090 01092 01095 01095 01099 01099 01099 01099 01099 01099 01099 01099 01108 01108 01108 01108 01108 01108	3575 35779 35779 35779 35779 35779 35779 35884 35884 35884 35884 35884 35884 35884 35884 35884 35884 3584 35	366774747128DD666D6B5239 36	F9 1001 7F 11 25AE 0B 0D 3575 0A 3575	 PUTC PUTC1 PUTF GETC 	C SUBRO PSH A LDA A AIR A AIR A BCC ITA B CMP B BEO JIR B BNE BNE EDA B JIR LDA B JIR CLR B PUL A RTS C SUBR PSH A	UTINE ACIACI PUTCI ACIAXR #\$7F PUTF DLAY PUTF #\$0D PUTC #\$0A PUTC

and the second second

Ŵ

300

197

in the second second

alenanten. voor 19 instanten ander and and and and

ASR A 01110 3598 47 01111 3590 24 FA GETC1 BCC 01112 359E 48 ASL A 01113 2595 36 PSH A *\$70 01114 3580 35 70 BIT A 91115 35A2 27 92 GETEX BEQ 01116 3584 32 PUL A 01117 35A5 3F THE 01118 3586 32 GETEN PUL A 01119 3587 66 1001 LDA B ACTAXE AND B 01120 35AA C4 TF 0\$7F 01121 35AC 32 91122 35AD 39 PUL A PTT ******************************** 61125 DLAY SUBPOUTINE 01124 01125 01126 35AF 37 PEH B DLAY 01127 RRAF R6 03 LDA A #3 01128 3591 01 00 CMP B *\$0D BHE. 01129 3583 26 02 DLAY1 LDA A 01130 2585 86 13 019 01131 3587 DE TE 0LAY1 LDA B #\$7F 01122 3589 BD 3575 JIR PUTC DEC A 01:93 35BL 4A 01134 258D 26 FR BHE DUAY1 01135 35BF 33 PUL B 01136 3500 39 PTI 01137 01136 3501 KE 286E INP LD^{++} OBUFFP 01:19 2504 80 3547 INF1 JEP GETC 01140 3507 AD 3575 JCP PUTC 01143 3504 F1 0A CMP E 4\$0A LFT 01148 3500 87 F3 BEG INF 01143 35CE E7 00 ITH B 0.5 01144 3500 08 INS 01145 3501 01 00 CMP B 0\$0D 01144 35D3 26 EF BNE INP1 01147 3505 39 PTI ********* 01148 ****************** PRTDEC 01149 01150 3506 36 PRTDEC PSH A 01151 0507 37 01152 9509 FF 2884 PSH B TTM. THME AD 01153 25DB (E 2952 01154 35DE 5F LDX #k 1 0 CMHTD1 CLP B 01155 35DF 40 00 0, XEVHTD2 SUB A 01156 3581 25 03 01157 2583 50 BC E CVHTD4 INC B 01158 35E4 20 F9 BPA CVHTD2 01159 35E6 AB 00 CVHTD4 ADD A 0.8 01160 35E8 CA 30 ORA B *\$30 01161 KSEA 90 2953 CPX. **10+1 01162 35ED 27 06 BEQ CVHTDS 01167 35EF C1 20 CMP B 0\$30

PAGE 027 CIRGR

198

PAGE 850 SIRSR

01164	35F1	26	95		BNE		CVHTDS
01165	35F 3	66	20		LDA	B	#\$ 20
01155	25F5	BD	3575	CYHTD5	JSR		PUTC
01167	35F9	08			INX		
01163	35F9	80	2854		CPX		#K10+2
01169	35FC	26	EO		BNE		CVHTD1
01170	35FE	16			TAB		
011.1	35FF		30		ORA	B	#\$30
01172	36.01		3575		JSR		PUTC
01173	3604		2884		LDX		SAVEXS
01174	36.07	33			PUL	B	
01175	36.08				PUL	A	
01176					PTS		

199

01110					••••	•••••		
01179								
01180				****				
01131							ITION ROUTINES +++	
01182					********	••••	************	
01193				•			•	
01184				****			*****	
01185				***			HART/STOP +++	
01186				****	*******	*******	******	
01187				•				
01199				F4	LDX	#CYL	SETUP INDEX	
01189					OLR	61•X	SET CONE=1	
01190	350F	6F	3E		CLR	62,X		
91191	3611	86	01		LDA A	a1		
01192					STA A	60•X		
01193	3615	6D	0B		TST	11+X	ARM?	
01194	3617	27	11		BEO	F4A	NO,BR	
01195	3619	6D	05		TST	S-X	RPM<100?	
01196			13		BGE	F8	NO, BR	
01197			•••		CLR B			
01198			00F9		LDX	9249	ROTOR CYCLES	
01199					LDA A	960	CONSTANT "1"	
01200					J3R	BUMPN	COUNT CYCLE	
01201					CLR	11+X	PEARM	
01202					BRA	F8		
01203				F4A	TIT	5.X	PPM>2007	
01204	-			, 40	PLE	F8	ND+CONTINUE	
01205					COM	11.8	ARM	
	2000	60	9 0	•	CUN	4 4 7 13		
01206	2 Y IL C	60	9. D	•				
01206		63	V.P		*******	•••••	*****	
01206 01207 01208	270 E E	60	V.P	***	FCC 9-1	•••••••• 0 - NORM	IAL LANDINGS +++	•
01206 01207 01208 01209			U.P.	***	FCC 9-1 FCC 92-9	0 - NORM 4 - AUTO	IAL LANDINGS +++	•
01206 01207 01208 01209 01210		• >	0.P	*** *** ****	FCC 9-1 FCC 92-9	0 - NORM 4 - AUTO	IAL LANDINGS +++	•
01206 01207 01208 01209 01210 01211				*** *** *	FCC 9-1 FCC 92-9	0 - NORM 4 - Auto ••••••	IAL LANDINGS +++	•
01206 01207 01208 01209 01210 01211 01211	3630	60	06	*** *** ****	FCC 9-1 FCC 92-9 FCC 92-9	0 - NORM 4 - AUTO	IAL LANDINGS +++ IAL LANDINGS +++ IPDTATIVE LANDINGS +++ GROUND7	•
01206 01207 01208 01209 01210 01211 01212 01213	3630 3632	6D 27	06 1F	*** *** *	FCC 9-1 FCC 92-9 TST BE0	0 - NORM 4 - AUTO 6.X F86	IAL LANDINGS IPOTATIVE LANDINGS IGROUND? NO:BP	•
01206 01207 01208 01209 01210 01211 01212 01213 01214	3630 3632 3634	6D 27 6F	06 1F 3B	*** *** *	FCC 9-1 FCC 92-9 TST BED CLR	6 - NORM 4 - AUTO 6 - X F86 59,X	GROUND? ND+BR CLR AIRTIME	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215	3630 3632 3634 3636	6D7 6F	06 1F 3B 0D	*** *** *	FCC 9-1 FCC 92-9 TST BED CLR TST	0 - NORM 4 - AUTO 6.X F86 59,X 13,X	GROUND? ND+BP CLR AIRTIME AIR SET?	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216	3630 3632 3634 3636 3638	6D76 67 607	06 1F 3B 0D 35	*** *** *	FCC 9-1 FCC 92-9 TST BEO CLR TST BEO	0 - NORM 4 - AUTO 59,X 13,X F1	GROUND? ND+BR CLR AIRTIME	•
01206 +1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217	3630 3632 3634 3636 3638 3638	6D76 6D76 8076 8076	06 1F 3B 0D 35 00	*** *** *	FCC 9-1 FCC 92-9 TST BEO CLR TST BEO LDA A	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X	GROUND? NO+BR CLR AIRTIME AIR SET? NO+BR	•
01206 +1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218	3630 3632 3634 3636 3638 3638 3638	6D76 627 607 81	06 1F 3B 0D 35 00 64	*** *** *	FCC 8-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A	0 - NORM 4 - AUTO 59,X 13,X F1 12,X #100	GROUND? NO+BR CLR AIRTIME AIR SET? NO+BR TQ TIMER>=10 SEC?	•
01206 +1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219	3630 3632 3634 3636 3638 3638 3638 3638 3638	627FD76120	06 1F 3B 00 35 00 64 05	*** *** *	FCC 8-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A BLT	0 - NORM 4 - AUTO 59,X 13,X F1 12,X #100 F8D	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRD BR CLR AIRTIME AIR SET? NO, BR TQ TIMER>=10 SEC? NO, BR	•
01206 +1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01220	3630 3632 3634 3636 3638 3638 3638 3638 3638 3638	6D76D76026020000000000000000000000000000	06 1F 3B 00 35 00 64 05 0000	*** *** *	FCC 9-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A BLT LDX	0 - NORM 4 - AUTO 59,X 13,X F1 12,X *100 F8D *0	GROUND? NO+BR CLR AIRTIME AIR SET? NO+BR TQ TIMER>=10 SEC?	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01220 01221	3630 3632 3634 3638 3638 3638 3638 3638 3638 3640 3643	627F026622612020	06 1F 3B 00 35 00 64 05 0000 03	••• ••• • F8	FCC 8-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A BLT LDX BRA	0 - NORM 4 - AUTO 59,X 13,X F1 12,X *100 F8D *0 F8E	GROUND? IPDTATIVE LANDINGS IPDTATIVE LANDINGS IPDTATIVE LANDINGS IPDTATIVE LANDINGS IPDTATIVE LANDINGS IPDTATIVE LANDINGS	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01221 01222	3630 3632 3634 3638 3638 3638 3638 3638 3640 3643 3643 3645	627F07612020 2002 2002	06 1F 3B 00 35 00 64 05 0000 03 0006	+++ +++ F8 F8D	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX	0 - NORM 4 - AUTO 5.X F86 59.X 13.X F1 12.X *100 F8D *0 F8E *6	GROUND? ND.BP CLR AIRTIME AIR SET? ND.BR TQ TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTOROTATIVE LNDGS	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01221 01223	3630 3632 3634 3638 3638 3638 3638 3640 3643 3643 3645 3645	627607610200 807607610 8000000	06 1F 3B 00 35 00 64 05 0000 03 0006 30	••• ••• • F8	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS CLR AIRTIME AIR SET? ND.BR TQ TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTORDITATIVE LNDGS CONSTANT "1"	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01221 01223 01223 01224	3630 3632 3634 3638 3638 3638 3638 3643 3643 3643	6260761200080 80760761200080 80	06 1F 3B 00 35 00 64 05 00 00 03 00 06 30 3964	+++ +++ F8 F8D	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A J3R	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS GROUND? ND.BR TQ TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01221 01223 01223 01224 01225	3630 3632 3634 3638 3638 3638 3643 3643 3643 3643	626627612000886 807FD7612000886 805F	06 1F 3B 00 35 00 64 05 0000 03 0006 30 3984 00	+++ +++ F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A J3R CLR	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP 13,X	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS CLR AIRTIME AIR SET? ND.BR TQ TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTORDITATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND	•
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01219 01221 01223 01223 01225 01226	3630 3632 3634 3638 3638 3638 3643 3643 3643 3643	6266076100008066 8076076100008066 80666	06 1F 3B 00 35 00 64 05 00 00 03 00 06 30 39 64 00 00 00 00	+++ +++ F8 F8D	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX BRA LDX LDA A J3R CLR CLR	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP 13,X 12,X =12,X	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS GROUND? ND.BR TQ TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING	•
01206 1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01216 01217 01218 01219 01221 01228 01228 01225 01227	3630 3632 36336 36336 36638 36638 3664 3664 3664	626627610E0E60FF0	06 1F 3B 00 35 004 05 0000 030 0006 30 39 64 00 00 10	+++ +++ F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A J3R CLR CLR BRA	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP 13,X 12,X F1	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS CLR AIRTIME AIR SET? ND.BR TQ TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTORDITATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND	•
01206 1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01216 01217 01218 01219 01228 01228 01228 01228	3630 36336 36336 36638 36638 36638 3664 3664	62662A82C2C88662A	06 1F 3B 00 35 00 05 00 00 00 00 00 00 30 39 64 00 00 10 38	+++ +++ F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A J3R CLR CLR BRA LDA A	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP 13,X 12,X F1	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS CLR AIRTIME AIR SET? ND.BR TO TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND CLR TQ TIMER	
01206 1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01216 01217 01218 01219 01221 01228 01228 01225 01227	3630 36336 36336 36638 36638 36638 3664 3664	62662A82C2C88662A	06 1F 3B 00 35 00 05 00 00 00 00 00 00 30 39 64 00 00 10 38	+++ +++ F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A J3R CLR CLR BRA	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP 13,X 12,X F1	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS CLR AIRTIME AIR SET? ND.BR TO TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND CLR TQ TIMER AIRBORNE FOR >10 SEC	
01206 1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01216 01217 01218 01219 01228 01228 01228 01228	3632 36336 36638 36638 36638 3664 3664 3664	626627610E0E60FF061	06 1F 3B 00 35 004 05 0000 030 0006 30 39 63 10 38 63	+++ +++ F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A CLR CLR BRA LDA A CMP A BGT	6 - NORM 4 - AUTO 5 - X F86 59,X 13,X F1 12,X =100 F8D =0 F8E =6 =60 BUMP 13,X 12,X F1 59,X	GROUND? ND-BP CLR AIRTIME AIR SET? ND-BR TQ TIMER>=10 SEC? ND-BR TQ TIMER>=10 SEC? ND-BR NORMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND CLR TQ TIMER AIRBORNE FOR >10 SEC YES+BR	
01206 1207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01216 01217 01218 01219 01228 01228 01228 01228 01228 01228 01229	3632 36336 36336 36638 36638 36644 36644 36644 53664 53664 53664 5577	626627610E0E60FF061E	06 1F 3B 00 35 004 05 0000 030 0006 30 39 63 10 38 63	+++ +++ F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A JSR CLR BRA LDA A CMP A	0 - NORM 4 - AUTO 6.X F86 59.X 13.X F1 12.X *100 F8D *06 F8D *06 BUMP 13.X 12.X F1 59.X *99	GROUND? IRDTATIVE LANDINGS IRDTATIVE LANDINGS IRDTATIVE LANDINGS CLR AIRTIME AIR SET? ND.BR TO TIMER>=10 SEC? ND.BR NDRMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND CLR TQ TIMER AIRBORNE FOR >10 SEC	
01206 01207 01208 01209 01210 01211 01212 01213 01214 01215 01216 01217 01218 01216 01217 01218 01219 01223 01228 01228 01229	3632 36336 36336 36638 36638 36644 36644 36644 53664 53664 53664 5577	626627610E0E60FF061E	06 1F 3B 00 35 004 05 0000 030 0006 30 39 63 10 38 63	+++ +++ F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8 F8	FCC 9-1 FCC 92-9 TST BEO CLR TST BEO LDA A CMP A BLT LDX BRA LDX LDA A CLR CLR BRA LDA A CMP A BGT	0 - NORM 4 - AUTO 6.X F86 59.X 13.X F1 12.X *100 F8D *06 F8D *06 BUMP 13.X 12.X F1 59.X *99	GROUND? ND-BP CLR AIRTIME AIR SET? ND-BR TQ TIMER>=10 SEC? ND-BR TQ TIMER>=10 SEC? ND-BR NORMAL LNDGS AUTOROTATIVE LNDGS CONSTANT "1" COUNT LANDING SET GND CLR TQ TIMER AIRBORNE FOR >10 SEC YES+BR	

PAGE 089 SIRSR

01178

PAGE 030	2	I	R	SF	2
----------	---	---	---	----	---

A STATE OF A

ţ

ţ

01232 36	58 87	3 B		STA A	59+X	
01233 36				BRA	F1	
01274 36			F8H	LDA A	81	
01235 26				STA A	13+X	SET AIR
01236 36				TST	3.X	TQ>5?
01237 36				BEO	F8F	NO, DR
01238 36					12.8	INC TO TIMER
01239 36				CMP A	#100	
01237 38				BEO	F1	
01240 Se				INC A		
01242 36		00		A AT2	12,8	
- NIGAG SG		v.				

201

PAGE 031 SIRSP

han dig the company man proven derived and the provident

01244	٠			
01245	******	******	*******	*****
01246	+++ FC	C 1-3	9 - FLIGHT	F CLOCK TIME +++
91247	+++ FC	C 77-79	- CLOCK	TIME IN AUTOPOTATION +++
01243	******	******	********	*********************
01249	٠			
01250 366F 63 9D	Fi	TST	13•X	ALR CONDS?
01251 3671 27 37		BEQ	F1N	NO.BP
01252 3673 CE 0096		LDX	#150	FLIGHT TIME
01253 3676 86 30		LDA A	\$6 0	CONSTANT "1"
01254 3678 BD 3984		JSR	BUMP	COUNT FLIGHT TIME
01255 367 B 6D 03		TST	3•X	TQ>5?
01256 3670 27 00		BEO	F1C	NO, BP
01257 367F 6C 0E		INC	14•×	INC T77 ONTR
01258 3691 6D 02		TST	5•X	ROLL < 10?
01259 3683 20 22		BGE	F1G	ND . BP
01260 368 5 6D 07		TST	7•X	NZ<1.3?
01261 3687 2B 2F		BMI	F29	YES,BR
01262 3689 20 68		BRA	F53XX	
01263 368 8 A6 0E	F1C	LDA A	14+8	
01264 368D 81 14		CMP A	05 0	T77>2 SECST
01265 368F 2F 02		BLE	F1F	NO . BR
01266 3691 6F OE		CLR	14+8	CLR 177
01267 3693 6C OE	F1F	INC	14•×	INC T77
01263 3695 A6 OE		LDA A	14•8	AUTOROTATIVE CLOCK TIME
01369 3697 A7 2C		ETA A	44,2	
01870 3699 6 F 2D		CLR	45•X	
01271 369 0 6F 2E		CLR	46 x	
01272 369 0 86 20		LDA A	#44	
01273 369F CE 00CC		L DZ	#204	
01874 3682 BD 3984		JIP	BUMP	
01275 3685 6F 0E		CLR	14,8	CLP 177
01276 36A7 7E 37D4	F16	JMP	F53Y	
01277 36AA 86 2D	F1H	LDA A	945	CLR MIDC FLAGS+CNTRS
01279 36AC CE 000E		LDX	#T77	ITART AT T77
01279 3 6AF 6F 00	CLPF	CLR	0•X	
01280 3 681 08		INX		
01281 36 82 4 A		DEC A		
01282 36 83 26 FA		BNE	CLRF	
01283 36 85 7E 3987		JMP	F95J	

202

•

PAGE 038 SIRSP

Statute Vantalian

01285				•				
01236								****
01287				-				Y RUN DIVES .
01288								
01289				•				
01290	2250	2.71	04	F29	TST		4.X	OR USITRS
	366A			F L 7	BMI			RD VALID? ND+DR
56210			-		TST			
							DVTABL+52	
01293		-			BNE		F29X	ND, BR
01294					TST		DVTABL+53	
01295					BNE		F29X	NOTBR
01296					TST		DVTABL+51	
01297					BEO		F29X	NO BP
01298					TST		4•X	RD-1650 FPM?
01299					REQ	_	F29H	NO, BP
01300					LIA		DVTABL+50	
	36D1		02		CMP	A	45	A/\$>.95VL?
01302					BNE		F29D	NO+BP
01303					LDX		# 30	
01304			12		BRA		F296	
01305	36DA	4D		F29B	TST	A		
01306	36DB	5D	0C		BLT		F29D	Arska.7VL
01307	36DD	27	05		BEQ		F29C	.7VL <a s<=".85VL</td">
01308	36DF	CE	0018		LDX		024	.85VL < A/S < =.95VL
01009	36E2	90	08		BRA		F296	
01310	36E4	CE.	5100	F290	LDX		#18	
01311	36E7	20	03		BRA		F296	
01312	3689	CE.	000C	0654	LDX		#12	
01313	36EC	86	30	F296	LDA	A	\$60	CONSTANT "1"
01314					JER		BUMP	INC FCC
01315					BPA		F29X	
01316				٠				
01317	PRER	20	รก	F53XX	BRA		F53	
01318				F5XX	BPA		F5	
01319			**	•				
01320				•				
01321								************************
01322								LOCITY FLIGHT CONDITIONS
01323								
01324				•				
01325	2457	<u>ac</u>	92	F29H	LDA	۵	BYTABL+49	A CET UN
	+			F C 20				A/3>.95747
01326					CMP	Π	#3	
01327 01328					BNE		F29K	
					LDX		#186	A/3>=,95VH
01329					BRA		F296	
01330				F29¥	CMP	н		A/S. 5VH
01331			1H		BEO	_	F29X	YES, BR
01332					TST	A		A/S .65VH?
01333					BGE		F29M	YES, BP
01334					LDX		#168	.5VH<=A/S<.65VH
01335					BRA		F296	
01336				F29M	LDA		DVTABL+51	GET Q
91337					CMP		#1	
01338	3712	2D	0C		BLT		F29X	TQ<=5?

2

PAGE 033 SIRSP

White the state of the state of

ž

ţ

01339	3714	27	05		BEQ	F29P	5 <torque<=44?< th=""></torque<=44?<>
01340	3716	CE	0003		LDX	#195	TORQUE>44
01241	3719	20	D1		BRA	F296	
01342	371B	CE	0 0 81	F29P	LDX	#177	
01343	371E	50	CC		BRA	F296	
01344	3720	CE	0083	F29X	LDX	"DVTABL+	65
01345	3723	96	00	LOOP1	LDA A	0,X	
01346	3725	87	62		STA A	2.X	
01347	3727	09			DEX		
01348	3728	80	0097		CPX	ODVTRBL+5	53
01349	372B	26	F6		BNE	LOOP1	
81350	372D	¢Ε	0092		LDX	DVTABL+	8
01351	3730	09		LOOP2	DEX		
#1352	3731	86	00		LD9 A	0•×	
01353	3733	87	08		STA A	3•X	
01354	3735	90	60062		CPX	UDVTADL	
01355	3738	56	F6		BNE	1.00P2	
91356	273 0	CΕ	2000		LDX	OUVTABL	
01357			03		CLR	3+X	
01359		-	04		CLP	4+X	
01359					CLP	5•X	
01360	3743	CE.	0000		LDX	#CVL	

-1

PAGE 034 SIRSR

こういい おうちょうちょうちょう ちんしょうちょう ちょうかい ちょうしょう

5

in en strongen indele en ende eine ende in en strongen at die strongen in einer die gegenen en endelte en indelt Alien ein

:

- unique

01368				٠			
01363				****	********	******	******************
01364				•••	FCC 5-7	- QUICK	STOP DECELEPATIONS +++
01365				****	********	******	*****************
01366				٠			
01367	3746	6D	09	F5	TST	9•X	PITCH>157
01368	3748	3F	08		BLE	F53	NO • BR
01364	374A	CE	0(19F		LDX	#159	OUICK STOPS
01370	3740	86	30		LDA A	#60	CONSTANT "1"
01571	374F	BD	3984		12 8	BUMP	

205

•

206

þ

01373. 01374.				****		********		*******		*******
01375				***	FCC 53-6	1 - JYMME	TRICAL	GUNNERY	RUND	PUILLOPS
01276				++++	*******	*****	******	*******	****	******
01377				•						
01373	3752	6D	04	F53	TIT	4•×	CRD VA	LID7		
01379					BMI	F535	NO•BR			
01380					TST	32,X	PUFLAG			
	3758				BNE	F53N	YESABP			
01392					TST	9•X	PITCH	5.5		
01383					BGE	F53S	ND BP			
01384					LDA B	#1	SET PU	FLHG		
01385					ITA B	32•X	00×428	0.7		
01386		-			TST	4•X	- PD>165	-		
01337. 01338.					BNE Ita B	F53C 48+X	VES+BR Det NO			
u1389.		-		F530		8•X	SAVE G			
n1390.				F J 30	STA A	50.4	SUAC 0			
01331						0•X	SAVE V	1		
01392					TA A	51+3		-		
01393					LDA B	116	CTAPT	LODP		
01394					LDA A	#5 3				
01395					STA A	F53E+1				
01396					L Dit	OVTABL				
01297	3778	86	00	F53E	LDA A	0• X	HZ+-X)	>1.37		
01398			0D		BGE	F53H	YES+BP			
01300	377E	59			DEC B					
01400					BEN	F53H				
01401					LDA A	F53E+1	CET UP	NEXT +	ς i	
01402					JUB A	08				
01402					2 TA A	F53E+1				
01404					BRA	F53E				
01405				F 2 3H	LDX TTO D	#CVL				
01406 01407					ITA B Lda B	47•X #1	SAVE P	OFCIM		
01403				F53N	TST	2,X	POLL 1	0.2		
61469.					BGE	F53P	EI BR			
01410					TST	3•X	TOPOUE			
01411					BNE	F530	NO BR			
01412				F53P	TH B	48•X	LET NO	PUEG		
01413			31	F530	INC	49•X	INC PU			
01414					LDA A	49•X		• -		
01415	3780	81	64		CMP A	#100	PU10=1	0 JECS7		
01416	3782	27	30		BEO	F53Y	YES, BR			
01417	3784	€Ð	09		TST	Э•К	PITCH	57		
01413	3786	20	09		BGE	F53T	NO•BR			
01419					INC	47•×	INC PU	FCTM		
61420					TST	7+8	NZ 1.3	÷		
01421					BMI	F535				
01422					ITA B	54+X	SET YS	PUFG		
01423	-			F533		F13				
01424 01425				F53T		54•X	Y3PUF6	SET?		
01425					BEO	F53Y	NO BR			
01426	37 BO	ΦÐ	30		T <u>1</u> T	48•X	NOPUFG	1614		

and the passion

.

.....

40

PAGE 035 IIRSR

Sector Sector Sector Sector Sector Sector Sector

ţ

15 B

FAGE 036 SIRSR

Contractory of the second

01427	3788	26	18		BNE	F53Y	YES, BR
01428	378A	6D	33		TST	51,×	CLASSIFY BY VL
01429	37BC	2B	07		BMI	F53TE	
01430	37 BE	27	08		BEQ	FSBTF	
61431	3700	CE	0030		LDX	:48	A/S>.85VL
01438	3703	20	08		BRA	F53TG	
61433	3705	CE	4500	F53TE	LDX	036	8/SK.74L
01434	3708	20	03		BRA	F5316	
01435	37CA	CE	A 500	F53TF	LDX	#42	.7VL <a s<=".85VL</td">
01436	37CD	D6	35	F53TG	LDA 1	B GSV53	GET GW
01437	37CF	86	2F		LDA P	9 847	
01438	37D1	BD	3989		JSR	BUMPN	
01439	3704	6F	2F	F53Y	CLR	47•X	CLR PUFCTM
01440	3706	6F	30		CLR	48+X	NOPUFG
61441	3708	БF	31		CLR	49•X	PU10
01442	3708	6F	20		CLR	32•X	PUFLAG
01443	3700	6F	36		CLR	54+X	YSPUFG

ኦ

01445	•			
01446	*		******	
01447			L (HIGH SPEED) TURNS	
01448			ETRICAL PULLUPS	***
01449		70 - GUNNE		***
01450			RY S-TURNS	***
01451			SPEED AUTOROTATION TURNS	***
01452			**************************************	
01454	•			••••
01455 37DE C6 01	F13 LDA B	#1		
01456 37E0 6D 02	TST	2•X	ROLL>=107	
01457 37E2 28 74	BMI	F13N	ND•BR	
01459 3764 86 34	LDA A	#52		
01459 37E6 BD 398E		BUMPT		
01460 37E9 6D 11	TST	17+X	MODE=X7 (0)	
01461 37EB 26 14	BNE	F13D	ND, BR	
01462 37ED 6D 07	TST	7.8	NZ>=1.3?	
01463 37EF 20 0E	BGE	F13C	YES+BP	
01464 37F1 A6 00	LDA A	0, X	SAVE CVH+CVL+CGM	
01465 37F3 A7 1A	STA A	26+X		
01466 37F5 A6 01	LDA A	1+X		
01467 37F7 A7 19	STA A	25+X		
01469 37 F9 A6 09	LDA A	8,X		
01469 37FB A7 1B	STA A	27+X		
01470 37FD 20 02	BRA	F13D		
01471 37FF E7 15	F13C STA B	21+X	SET NZE FL a g	
01472 3801 6F 11	F13D CLR	17+X	SET MODE=Y (-1)	
01473 3803 6 8 11	DEC	17•X		
01474 3805 6D 03	FI3E TST	3•X	TOKSY	
01475 3807 27 OF	BEO	F13F	YES+BR	
01476 3809 86 10	LDA A	028	INC 186	
01477 3808 PD 398E		BUMPT		
01478 380E A6 1C	LDA A	28•X	-3 25083	
01479 3810 81 14	CMP A		=2 SECS7	
01480 3812 26 0A	BNE	F136	NO BR	
01481 3814 E7 12 01482 3916 20 06	STA B Bra	18,X F136	SET HITQ FLAG	
01483 3818 E7 13	F13F STA B	19•X	SET LOTO FLAG	
01484 381A 6F 1C	CLR	28, X	CLEAR TO6	
01485 381C 6F 1D	CLR	29,8	a sa sa Firmana a Caran	
01486 381E 6D 14	F136 TST	20,8	M SET?	
01487 3820 26 14	BNE	F13J	YES+BR	
01488 3822 A6 02	LDA A		ROLL>=35?	
01489 3824 81 02	CMP A	#2		
01490 3826 26 02		FIGH	NO, BR	
01491 3828 E7 18	STA B		SET HI ROLL FLAG	
01492 382A 6D 07	F13H TST	7•X		
01493 3820 27 04	BEQ	F1312	1.3<=NZ<1.5	
01494 382E 2D 0C	BMI	F13J1	NZ <1.3. BR	
01495 3830 E7 16	F13I STA B		SET HI NZ FLAG	
01496 3832 E7 17	F1312 STA D	53°X	SET LO NZ FLAG	
01497 3834 20 06	BRA	F13J1		
U1498 3836 6D 02	F13J TST	2•X	POLL>25?	
01499 3838 2F 02	BLE	F13J1	ND, BR	

an luna

ł,

.

PAGE 037 SIRSR

ţ

91500	383A	E7	2 B		STA	B	43•X	SET GTS
01501	3830	6D -	06	F13J1	TST		6•X	GND COND?
.1502	3835	26	04		BNE		F13K	YES, BR
01503			05		TST		5,X	RPM<1007
01504			11		BGE		F13L	NDIEXIT
01505			0F	F13K	LDA	A	#15	CLR FLAGS
01505			0F	F13k1	CLR	••	15, X	AND SET MODE=X
01505			QP-	FIGNI	INX		1070	HID SET HODE A
						a		
01508					DEC	Π	F 1 0// 1	
01509					BNE		F13K1	
01510					LDX		#CVL	
01511	38 4F				CLP		43•X	
01512					CLR		52•X	
01513					CLR		53,X	
01514	3855	7E	390D	F13L	JMP		F80	
01515				F13N	TST		17•X	MODE=X?
01516				-	BEQ		F13L	YESPEXIT
01517					BMI		F13R	MODE=Y? YES+BR
01518					LDA	A	52+X	
01519					CMP		#100	10 SECS UP?
					BEQ		F13RZ	YES, BR
01520				C+ 30		•	#52	
01521				F13P	LDA	Π		1NC T23
01522					JSR	_	BUMPT	
01523					STA	Ħ	17•X	GET MODE=Z (1)
01524			98		BRA		F13E	
01525	386D	6D	17	F13R	TST		23•X	NZLO SET?
01526	396F	27	D3		BEO		F13K	NO+BR
01527	3871	E 7	14		STR	B	20•X	SET M
01527			-			B	20•X 21•X	SET M NZE SET?
01529	3873	6D	15		TST	B		
01529 01529	3873 3875	6D 26	15 15		TST BNE	B	21+X F13RC	NZE SET? YES, BR
01529 01529 01530	3873 3875 3877	6D 26 6D	15 15 13		TST BNE TST	B	21+X F13RC 19+X	NZE SET? YES,BR TOLD SET?
01529 01529 01530 01531	3873 3875 3877 3879	6D 26 6D 27	15 15 13 04		TST BNE TST BEQ	B	21+X F13RC 19+X F13RA	NZE SET? YES,BR TQLO SET? NO,BR
01529 01529 01530 01531 01532	3873 3875 3877 3879 387 9	6D 26 6D 27 6D	15 15 13 04 12		TST BNE TST BEQ TST	B	21,X F13RC 19,X F13RA 18,X	NZE SET? Yes,BR TQLO SET? NO,BR TOHI SET?
01529 01529 01530 01531 01532 01533	3873 3875 3877 3879 3879 3878 3878	6D 26 6D 27 6D 26	15 15 13 04 12 0D	51.200	TST BNE TST BEO TST BNE		21.X F13RC 19.X F13RA 18.X F13RC	NZE SET? YES,BR TQLO SET? NO,BR
01529 01529 01530 01531 01532 01533 01534	3873 3875 3875 3879 3879 3878 3878 3878 3875	6D 26D 27D 26D 266 266	15 15 13 04 12 0D 34	F1 38A	TST BNE TST BEO TST BNE LDA	A	21,X F13RC 19,X F13RA 18,X F13RC 52,X	NZE SET? Yes,BR TQLO SET? NO,BR TOHI SET?
01529 01529 01530 01531 01532 01533 01534 01535	3873 3875 3875 3879 3879 3878 3878 3875 3875	6D 26 6D 27 6D 26 86 86 87	15 15 13 04 12 0D 34 20	F1 3RA	TST BNE TST BEQ TST BNE LDA STA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	21+X F13RC 19+X F13RA 18+X F13RC 52+X 44+X	NZE SET? Yes,BR TQLO SET? NO,BR TOHI SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536	3873 3875 3877 3879 3879 3879 3879 3875 3881 3883	6D 26 27 26 27 26 26 26 26 87 86	15 15 13 04 12 0D 34 20 35	F13RA	TST BNE TST BEQ TST BNE LDA STA LDA	R R R	21+X F13RC 19+X F13RA 18+X F13RC 52+X 44+X 53+X	NZE SET? Yes,BR TQLO SET? NO,BR TOHI SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537	3873 3875 3875 3879 3879 3879 3879 3879 3875 3881 3883 3885	6D 6D 7 0 2 6D 7 0 6 6 7 6 7 6 7 6 7 6 7 6 7	15 15 13 04 12 0D 34 20 35 2D	F13RA	TST BNE TST BEQ TST BNE LDA STA LDA STA	R R R R	21+X F13RC 19+X F13RA 18+X F13RC 52+X 44+X 53+X 45+X	NZE SET? Yes,BR TQLO SET? NO,BR TOHI SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536	3873 3875 3875 3879 3879 3879 3879 3879 3875 3881 3883 3885	6D 6D 7 0 2 6D 7 0 6 6 7 6 7 6 7 6 7 6 7 6 7	15 15 13 04 12 0D 34 20 35 2D	F13RA	TST BNE TST BEQ TST BNE LDA STA LDA	R R R R	21+X F13RC 19+X F13RA 18+X F13RC 52+X 44+X 53+X	NZE SET? YES,BR TQLO SET? NO,BR Tomi Set? YES,BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01533	3873 3875 3877 3879 3878 3878 3881 3883 3885 3885 3887	6D 26D 26D 26D 2667 867 86 867 86	15 15 13 04 12 00 34 20 35 20 0F	F13RA	TST BNE TST BEQ TST BNE LDA STA LDA STA	8 8 8 9 7	21+X F13RC 19+X F13RA 18+X F13RC 52+X 44+X 53+X 45+X	NZE SET? Yes,BR TQLO SET? NO,BR TOHI SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536 01538 01538 01538	3873 3875 3877 3879 3878 3870 3877 3871 3881 3883 3885 3885 3887	6260706266767860 800	15 15 13 04 12 00 34 20 35 20 0F 3998	F13RA F13RC	TST BNE TST BEQ TST BNE LDA STA LDA LDA JSR	8 8 8 9 7	21+X F13RC 19+X F13RA 18+X F13RC 52+X 44+X 53+X 45+X #15	NZE SET? YES,BR TQLO SET? NO,BR Tomi Set? YES,BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01533 01533 01533 01539 01540	3873 3875 3877 3879 3878 3877 3877 3877 3881 3883 3885 3885 3885 3889 3880	62627066767600F	15 15 13 04 12 0D 34 20 35 2D 0F 3998 34		TST BNE TST BEQ TST BNE LDA STA LDA JSR CLR	8 8 8 9 1	21,X F13RC 19,X F13RA 18,X F13RC 52,X 44,X 53,X 45,X #15 BUMPT2 52,X	NZE SET? YES,BR TQLO SET? NO,BR Tomi Set? YES,BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01533 01539 01540 01541	3873 3875 3877 3879 3879 3879 3877 3877 3887 3883 3885 3885 3885 3885	62627066767600FF	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35		TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA LDA CLP CLP	8 8 8 9 T	21,X F13RC 19,X F13RA 18,X F13RC 52,X 44,X 53,X 45,X #15 BUMPT2 52,X 53,X	NZE SET? YES,BR TQLO SET? NO,BR Tomi Set? YES,BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01538 01538 01540 01541 01542	3873 3875 3877 3879 3878 3878 3877 3877 3887 3883 3885 3885	62627066767600FF	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35		TST BNE TST BEQ TST BNE LDA STA LDA JSR CLR	8 8 8 9 T	21,X F13RC 19,X F13RA 18,X F13RC 52,X 44,X 53,X 45,X #15 BUMPT2 52,X	NZE SET? YES,BR TQLO SET? NO,BR Tomi Set? YES,BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01539 01540 01541 01542 01543	3873 3875 3877 3879 3878 3878 3877 3877 3887 3883 3885 3885	62627066767600FF	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35	F13RC	TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA LDA STA LDA STA BRA	8 8 8 8 7	21,X F13RC 19,X F13RA 18,X F13RC 52,X 44,X 53,X 45,X #15 BUMPT2 52,X 53,X F13P	NZE SET? YES,BR TQLO SET? NO,BR TOMI SET? YES,BR
01529 01529 01530 01532 01533 01534 01535 01536 01537 01538 01538 01538 01540 01541 01542 01543	3873 3875 3877 3879 3878 3877 3877 3877 3887 3883 3885 3885	62627066767600FF	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35	F13RC	TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA LDA STA LDA STA BRA	8 8 8 8 7	21,X F13RC 19,X F13RA 18,X F13RC 52,X 44,X 53,X 45,X #15 BUMPT2 52,X 53,X	NZE SET? YES,BR TQLO SET? NO,BR TOHI SET? YES,BR
01529 01529 01530 01532 01532 01533 01534 01535 01536 01537 01538 01539 01540 01541 01542 01544 01544	3873 3875 3877 3879 3878 3877 3877 3877 3887 3887	6262 6267 6767 60 FF0	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35 D2	F13RC MIS	TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA LDA STA CLP BRA		21,X F13RC 19,X F13RA 18,X F13RC 52,X 44,X 53,X 45,X #15 BUMPT2 52,X 53,X F13P VERS GRD	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01538 01538 01540 01541 01542 01544 01545 01546	3873 3875 3875 3879 3878 3877 3877 3877 3887 3885 3885 3885	6262706767600FF0 F	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35 D2	F13RC	TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA LDA STA CLR BRA CLR		21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01538 01538 01540 01541 01542 01544 01545 01546 01546	3873 3875 3875 3879 3879 3878 3877 3887 3887 3885 3885 3885 3885	6262706767600FF0 FD	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35 D2 11 13	F13RC • MIS	TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA CLR BRA CLR TST	R R R R R R R NEU	21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TQ LO SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01538 01538 01538 01540 01542 01544 01545 01546 01546 01548	3873 3875 3875 3879 3878 3877 3877 3877 3887 3887 3885 3885	62607066766766766766076607	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35 D2 11 13 0E	F13RC • MIS	TST BNE TST BEQ TST BNE LDA STA LDA STA LDA STA LDA STA CLR BRA CLR TST BEQ		21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x F13T	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TQ LO SET? NO, BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01536 01537 01538 01538 01538 01549 01543 01544 01545 01546 01548 01548 01548	3873 3875 3877 3879 3878 3878 3887 3887 3887 3885 3885 3885	6262706767600FF0 F070 6262626767600FF0 F070	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35 D2 11 13 0E 16	F13RC • MIS	TST BNE TST BEQ TST BRE LDA STA LDA STA LDA STA CLR BRA CLR TSEQ TST		21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x F13T 22, x	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TO LO SET? NO, BR NZHI SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01538 01538 01538 01538 01549 01543 01545 01546 01548 01548 01548 01548 01548	3873 3875 3875 3879 3878 3878 3887 3887 3887 3885 3885 3885	6262706676760FF0 F0707	15 15 13 04 12 0D 34 20 35 20 0F 3998 34 35 D2 11 13 0E 16 05	F13RC + MIS F13RZ	TST BNE TST BEQ TST BEQ TST BEQ STA STA STA STA STA STA STA STA STA STA		21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x F13T 22, x F13S	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TQ LO SET? NO, BR
01529 01529 01530 01531 01532 01533 01534 01535 01536 01536 01537 01538 01538 01538 01538 01538 01549 01543 01544 01545 01546 01547 01548 01549 01551	3873 3875 3875 3877 3879 3877 3877 3877 3887 3887 3887	6262706676760FF0 F07070	15 15 13 04 12 00 34 20 35 20 0F 3998 34 35 D2 11 13 0E 16 05 0072	F13RC + MIS F13RZ	TST BNE TST BEQ TST BRE LDA STA LDA STA LDA STA CLR BRA CLR TSEQ TST		21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x F13T 22, x	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TO LO SET? NO, BR NZHI SET?
01529 01529 01530 01531 01532 01533 01534 01535 01536 01537 01538 01538 01538 01538 01538 01549 01543 01545 01546 01548 01548 01548 01548 01548	3873 3875 3875 3877 3879 3877 3877 3877 3887 3887 3887	6262706676760FF0 F07070	15 15 13 04 12 00 34 20 35 20 0F 3998 34 35 D2 11 13 0E 16 05 0072	F13RC + MIS F13RZ	TST BNE TST BEQ TST BEQ TST BEQ STA STA STA STA STA STA STA STA STA STA	R R R R R R NEU	21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x F13T 22, x F13S	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TO LO SET? NO, BR NZHI SET?
$\begin{array}{c} 01529\\ 01529\\ 01530\\ 01531\\ 01532\\ 01533\\ 01533\\ 01535\\ 01536\\ 01536\\ 01536\\ 01536\\ 01536\\ 01536\\ 01536\\ 01540\\ 01543\\ 01546\\ 01546\\ 01546\\ 01546\\ 01546\\ 01546\\ 01546\\ 01546\\ 01546\\ 01546\\ 01550\\ 01551\\ 01552\end{array}$	3873 3875 3875 3877 3879 3877 3877 3877 3887 3887 3887	62627066767600FF0 F070700200	15 15 13 04 12 0D 34 2C 35 2D 0F 3998 34 35 D2 11 13 0E 16 05 0072 62	F13RC + MIS F13RZ	TST BNET BEOT BEOT BEOT BEOT BEOT BEOT BEST BEST BEST BEST BEST BEST BEST		21, x F13RC 19, x F13RA 18, x F13RC 52, x 44, x 53, x 45, x #15 BUMPT2 52, x 53, x F13P VERS GRD 17, x 19, x F13T 22, x F13S #114	NZE SET? YES, BR TQLO SET? NO, BR TOHI SET? YES, BR ADD T23 TO T23A UP 5 (FCC 86-91) CLR MODE BYTE TO LO SET? NO, BR NZHI SET?

PAGE 038 SIRSR

and O. J.

and the second second with the second

ţ

ţ

209

. .

こうない ちょうしょう しょう しんしょう しんしょう しょうしょう しょうしょう

**

PAGE 039 SIRSP

(Aba) "Visitation on a statistic international of a trapping strategy of the state of the state

an and the second of the second the second of the second o

01554 3884 20 5D BRA	F13ZR
01555	NEUVERS GROUP 1 (FCC 23-28)
01556 •• MISC MA	NEUAEB2 PHILID I (ACC 52-59)
01557	22.X NZHI SET?
01558 3886 6D 16 F13T TST	
01559 3888 26 0E BNE	
01560 39AA 6D 19 TST	
01561 39AC 2F 05 BLE	
01562 38AE CE 00DE LDX	
01564 3983 CE NOD5 F13U LDX	
01340 2080 64 45	
01566 01547 ↔ MISC MF	NEUVERS GROUP 2 (FCC 41-52)
01567 •• MISU MP 01568 •	
01569 3888 6D 18 F13V TS1	
01570 388A 26 20 BNE	F13Y YES+BR
01571 38BC A6 1A LDF	A 26+X
	DIA 01 CHK AKSEVL
01573 3900 2E 15 BG	F13W2 BR IF A/S>.95VL
01574 39C2 27 0E BE	
01574 3804 6D 1A TS	
01576 3906 27 05 BE	Q F13W0
01576 3508 CE 0036 LD	
01578 38CB 20 36 BR	A F13ZA
01579 38CD CE 003C F12W0 LD	
a1580 3800 20 31 BR	
01581 38D2 CE 0042 F13W1 LD	
01582 3805 20 2C BR	
01582 3807 CE 0048 F13W2 LD	
n1584 380A 20 27 BR	
A1606 🌢	
01586 •• MISC M	ANEUVERS GROUP 3 (FCC 62-70)
01587	
01538 38DC 6D 2B F13Y TI	T 43+X GUN S-TURN?
01589 38DE 26 15 BN	
01540 38E0 6D 19	T 25•X
01541 38E2 2E 0C BG	T F13Y2 BR IF AXS>=.8VH
01592 39E4 27 05 bE	Q F13Y1 BR IF .65VH<=A-S<.8VH
01593 33E6 CE 004E LI	
01593 3828 C2 0042 BF	
01545 39EB CE 0054 F13Y1 LI	
01546 38EE 20 13 BF	
01597 38F0 CE 0058 F13Y2 LI	
01598 39F3 20 0E BF	A F13ZA
01599 •	
01577 01500 ◆◆ MISC M	IANEUVERS GROUP 4 (FCC 71-76)
01601	
01602 38F5 A6 19 F13YA LI	0A A 25+X
	4P A #2
	T F13YB BR IF AVSK. 3VH
11004 John Car An	0X #102 ₽/3>=.9VH
NIGNI JOUR CE VINA	A F13ZA
11000 DOLE EX VV	DX #96

an and a second second second

210

à

PAGE 040 SIRSP

ę

.....

1

01608 01609 01610	3905 3907	D6 BD	1 B 3989	LDA A LDA B JSR JMP	#15 36W BUMPN F13K	GET	6 RO 35	ыT
01611	390A	7E	3644	JMP	F13K			

an in a state of the state of the

8. șe

÷

. .

01613		
01614 +++		ROTATION TO POWER TRANSITION .
01615	FCC 80-85 - MUID	************************
01515	*****	
01617		
01618 390D C6 01 F81		TQ <57
01619 390F 6D 03	TST 3•X	YES*BP
01620 3911 27 18	BEQ FOOH	LOTO MODE?
01621 3913 6D 1E	X•06 T2T	NO BP
01622 3915 26 08	BNE FROG	SET HITR
01023 3917 E7 1E	STA B BOXX	A/3>.65VH
01e24 3919 6D 01	T3T 1+X	
01625 3918 28 02	BMI F80G	ND+BP Set A/S FLAG
01626 391D E7 1F	STA B 31+X	BUMP TOO CNTR
01627 391F 6C 21 F8		BOWE 190 CITE
01628 3921 6D 07	TST 7+X	BP IF NZ<1.3
11629 3923 2B 10	BMI FBOK	BP IF NZ<1.5
01630 3925 27 08	BED F80J	BM 17 112 11-2
01631 3927 E7 22	3TA B 34+X	JET NZ FLAG
A0 05 9595 3929 20 0A	BRA FOOK	CLP LO TO MODE
01633 3928 6F 1E FE	OH CLR 30.X	
11674 3920 20 22	BPA FBOR	
	BOJ TST 34.X	NZ>1.5 FOUND?
	BGT FROK	YES, BR
	CLR 34+X	NGICLA NZ FLAG
01637 3933 6F 22 01638 3935 86 21 F	BOK LDA A 33.X	
01639 3937 91 32	CMP A #50	5 SECS ELAPSED?
01640 3939 26 1E	BHE F95	NO, BR
(1644 393B 6D 1F	TST 31+X	REQ'D AVS DK?
	BEQ F80P	NO, BP
01642 3930 27 12 01643 3936 60 22	TST 34•×	BR IF NO NZ FOUND
01644 3941 25 0E	BMI FSOR	BR IF HU HE FUOND
01645 3943 27 05	BEO FOOL	
01645 3945 CE 007E	LDX #126	
01647 3948 20 03	BRA FBOM	
01648 3946 CE 0078 F	80L LDX #120	
	BOM LDA A #60	AND ONTO
01649 3940 80 50 01650 394F 8D 53	BER BUMP	INC CNTR
01651 3951 6F 1F F	BOR CLR 31.X	CLR FLAGS
01652 3953 6F 21	CLR 33+X	
01653 3955 6F 22	CLR 34+X	SET NZF TO -1
01653 3955 6P 22 01654 3957 6P 22	DEC 34+X	
(1024 3221 ou ce		

Re Alas

.

١

د.». افرار، ۵ موسود زور روسور معروت مرور در .

PAGE 041 SIRSR

•

いたれている うちっとう

!

.

e name

٠

212

r

à

PAGE 042 SIRSP

1.5

State of the

ŝ.

01656			•				
01657			*****	*****	++	*******	*****
01658			+++ F	CC 95	- 1	MISC. H	IGH-G MANEUVERS +++
01659			*****	*****	-	*******	*****
01660			•				
01661 39	59 06	01	F95	LDA	B	#1	
01662 39	58 6D	23		TST		35,X	ARM?
	50 27			BEQ		F95F	ND • BR
01664 39	5F 6D	07		TST		7•X	NZ<1.3?
01665 39	61 20	18		BGE		F956	NOFBR
01666 39	63 6D	24		TST		36+X	LD AYS SET?
01667 39	65 26	0A		BNE		F950	YES, BP
01668 39	67 86	30		LDA		#6 0	
01669 39	69 5F			CLP	Ð		
01670 39	6A CE	00FB		LDX		#251	
01671 39	6D 8D	38		BSR		BUMPN	INCR FCC
01672-39	6F 20	50		BRA		F95E	
01673 39	71 6F	24	F950	CLR		36+X	CLR LD A/S FLAG
01674 39	73 6F	53	F95E	CLR		35+X	REARM
01675 39	75 20	10		BRA		F95J	
01676 39	77 A6	07	F95F	LDA	Ĥ.	7•X	
01677 39	79 81	02		CMP	θ.	#2	NZ>1.7?
01678 39	7B 26	0 A		BNE		F95J	ND • BP
01679 39	7D A6	01	F956	LDA	R	1+X	
01680-39	7F 91	FE		CMP	A .	#SFE	A/S<.5VH
01681 39	81 26	20		BNE		F95H	NO+BR
01682 39	93 E7	24		STA	B	36+X	SET LO AKS FLAG
01683 33	85 E7	23	F95H	STR	B	35•X	ARM
01684			**				
01685			*				
01686 39	87 73	000A	F95J	COM		IFLAG	SET DONE
01687 39	9A 01		MAIT	NOP			HAIT FOR NEXT TIME INTRUP
01688 39	8B 7E	34ES		JMP		FLOOPA	(WAI+JMP F4)

T

e o proposi

de la se

01690	•			
01691	********		*******	******
01692			CTED TIME	
01693	•	****		
01694				
01695 398E 36	BUMPT PSH		AR ()	
01696 299F 6F 2D	CLR		45•X	SET BAA = 1
01697 3991 6F 2E	CLP		46•X	
01698 3993 86 01	LDA		#1	
01698 3995 A7 20	STA		44+X	
01700 3997 32	PUL			
01701 3998 A7 28	BUMPT2 STA		40•X	
01702 399A 6F 27	CLP		39•X	
01708 3996 DE 27	LDX		NDX	GET ADDR OF TIMER
01/04 3995 80 48	BSR		MPBA2	BUMP TIMER
01705 39A0 CE 0000	LDX		#CYL	
01705 3983 39	RTS			EXIT
01707	•			
01708	*********	***	*******	****
01709	See FCC T			
01710	*** ******			
01711	•			
01212 3984 37	BUMP PSH	5		
	120 L20		CGN	GET GPDSS WEIGHT
01719 3985 06 08	BPA	-	BUMP3	
01714 3997 20 01	-		BUNE 3	
01715 3989 37	BUMPH PSH			
01716 3398 DF 27	BUMP3 STX		NDX	SAVE ADDEND ADDR
01717 3990 7F 0025	CLP		ASV	
017 1 8 39 9F 97 26	STA		ASV+1	
01719 39 81 DE 25	LDX		ASV	
01720 39 83 86 00	L.DA	A	0•×	MOVE 2ND ADDEND TO BAA
01721 3985 97 20	STA	8	raa	
01728 3987 A6 01	LDA	A	1•X	
01723 2989 97 2D	STA	8	BAA+1	
01724 3988 86 02	LDA	Ĥ.	2•X	
35 76 DEC 25710	318		3+AAE	
01726 39BF 17	TBH			
01727 3900 97 29	219		SNDX	SAVE GH
01728 3902 48	ASL			CVT TO NDX
01729 39C3 D6 28	LDA		NDX+1	
01724 5905 D6 28 01730 3905 C1 96	CMP		#150	WHICH PPEC?
	BCS		BUMP4	BR IF 2
01731 3907 25 02				MUST BE 3
01732 3909 9 B 29	ADD		SNDX	
01733 39CB 9B 28	BUMP4 ADD		NDX+1	
01734 39CD 97 28		8		
01735 390F C6 01	LDA		#1	
01736 79D1 D7 27	STA		NDX	
01737 39D3 DE 27	LDX		NDX	
01738 39 D5 OF	SEI			DISABLE INTERPUPTS TEMPOPAPIL
01739 3906 96 28	LDA	A	NDX+1	WHICH PRECISION?
01740 39D8 81 96	CMP	A	#150	
01741 390A 24 04	BCC		BUNP5	IF TRIPLE+DR
01742 39DC 8D 0A	BSR		MPBA2	DOUBLE
01743 39DE 20 02	BRA		BUNPX	

ξŗ.

PAGE 043 SIRSP

214

à

PAGE 044 SIRSR

01744	3962	0E	•	BUMP5 BUMPX			MPBA3	REENABLE	INTERPUPTS
01746	39E3	-33			LDX	Ð	#CVL		
01747	29E4	CE	0000		RTS			EXIT	
01749	39E7	39			614				

<u>ي</u>

ŶÊ,

:

PAGE 045 GIRSR

ţ

01750			•							
01751			*****	++++	•++	*******	******		*******	****
01752			+++ M	ULTI	PLE	PRECISION	BINARY	ADDITION	ROUTINE	+++
01753			*****	++++	***	*********	******	********	******	****
01754			•							
01755 3968	37		MP BA2	PSH	B		DOUBLE	PRECISION		
11756 39E9	5F			CLP	B					
01757 39EA	20	03		BRA		MPBAA				
01758 39EC	- 37		MPBA3	PSH	Ð		TRIPLE	PRECISION		
01759 39ED	- 66	01		LDA	B	91				
01760 39EF	- 36		mpbaa	PSH	A					
01761 39F0	96	38		LDA	8	BAA	BYTE 1			
01762 39F2	AB	00		add	A	0,X				
01763 39F4	87	00		STA	Ĥ	0+X				
01764 39F6	- 96	SD		LDA	A	BAA+1	S BIYE			
01765 39F8	89	01		ADC	A	1+X				
01766 39FA	87	01		STA	8	1+X				
01767 39FC	-5D			TST	B		TRIPLE	PRECISION	•	
01768 29FD	-27	06		BED		MPBAX	NO, BR			
01769 39FF	-96	SE		LDA	A	BAA+2	BYTE 3			
01770 3001	- 89	65		ADC	A	2+X				
01771 3803	87	65		STA	A .	5•X				
01772 3005	35		MPBAX	PUL	Ĥ.					
01773 3806	- 33			PUL	B					
01774 3007	39			RTS		ł	EXIT			
01775			*****	++++(***	********	*****	*****	*******	••
01776			*****	++++(********	******	********	*******	••
31778			*****	****1		********	*****	*********	*******	••

>

PAGE 046 SIRSR

٤

8

4.24

91780 2800		OPG	\$2800
01781 2800	41 MES2	FCC	ALTER PARAMETER? (0-9,N.L)
01782 281P	00	FCB	0
01793 2910	49 ME33	FCC	/ILLEGAL PARAMETER!/
01784 282E	00	FCB	0
01785 292F	20 MES4	FCC	/ 41/
01786 2834	00	FCB	n
01787 2825	45 MES5	FCC	VENTER PASS COUNT (1-255) /
01788 28 4 E	00	FCB	0
01789 284F	01 K1	FCB	1,10,100
(*790-2852	54 ¥10	FCB	100+10
01791 2854	0001 LOOP(CT RMB	1
01792 2855	0001 COUNT	T RMB	1
01793 2856	42 ME16	FCC	VBYTE WAS ISK
01794 2868	00	FCB	0
01795 2869	20 MES7	FCC	
01796 236D	00	FCB	0
61797 286E	0014 BUFFI	r rmb	20
91795 2882	34AC 5000	K RMB	5
01799 2984	(3VAL 5000	X2 PMB	2

END

01501

TOTAL EPPOPS 00000

217

1239-81

*.*_