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CHAPTER 1.

INTRODUCTION

There is an ever-increasing emphasis throughout the De-
partment of Defense (DoD) on reducing the costs and improving
the effectiveness of military equipment. Constraints on mil-
itary budgets, coupled with inflation and mounting operation
and support costs, are prompting a search for positive methods
of cost reduction in the acquisition and life cycle of all ve-
hicles and equipment. The traditional effort has been a com-
prehensive reliability-improvement program involving parts
screening, predictions, more stringent specifications, and
rigorous demonstration and acceptance testing. While some
improvements have been made, such programs have produced less
than the desired overall result.

The effort reported here represents one element of a new
initiative by the U. S. Army Applied Technology Laboratory to
reduce Operating and Support (0§S) costs for Army helicopters.

PURPOSE

U, S. Army Contract DAAJ02-75-C-0050 was performed to
develop, qualify, flight test, and demonstrate the Structural
Integrity Recording System (SIRS). SIRS incorporates advanced
technology hardware to provide a cost-effective method of
tracking the accumulation of fatigue damage on critical heli-
copter dynamic components. The system monitors the variations
in fleet utilization on a helicopter-by-helicopter basis so
that helicopter components may be replaced according to heli-
copter usage for safer and more economical operation. The
high-value, fatigue-sensitive components selected for the SIRS
Development Test and Evaluation (DT&E) and Initial Operational
Test § Evaluation (IOTGE) are identified in Table 1. These
components were carefully selected since they have been found
to be 0&S cost drivers through years of service experience
that includes operations in Southeast Asia. Illustrations of
these components may be seen in Figures 1 through 6. They
represent three elements of the AH-1G fatigue-sensitive
dynamic assemblies, which are:

° Main Rotor Hub and Blade Assembly
° Main Rotor Control System

) Tail Rotor and Control System

15
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Main Rotor Hub and Blade Assy

1. Main Rotor Blade

2. Main Rotor Yoke Extension

3. Main Rotor Grip

4, Main Rotor Pitch Horn

5. Main Rotor Retention Strap
Fitting/Nut

Main Rotor Control System

6. Swashplate Drive Link
(Scissors Assy)

7. Swashplate Outer Ring

8. Swashplate Inner Ring

9. Hydraulic Boost Cylinder
Assy

Ta1l Rotor and Control System
10. Tail Rotor Blade

Figure 2.

Location of Selected Fatigue-Critical Components
for the AH-1G/SIRS Program.
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TABLE 1. SELECTED FATIGUE-CRITICAL COMPONENTS FOR
THE AH-1G HELICOPTER/SIRS PROGRAM

Nomenclature Part Number

Main Rotor Blade 540-011-250-1

Main Rotor Yoke Extension 540-011-102-13, -15
Main Rotor Grip 540-011-154-5

Main Rotor Pitch Horn 209-010-109-5

M/R Retention Strap Fitting/Nut 540-011-113-1, -177-1
Swashplate Drive Link 209-010-408-7
Swashplate Outer Ring 209-010-403-1
Swashplate Inner Ring 209-010-402-1
Hydraulic DBoost Cylinder Assy 209-076-021-1, -3, -5
Tail Rotor Blade 204-011-702-17

SIRS OVERVIEW

SIRS is a total system comprising an airborne micro-
processor-based recorder, a portable flight-line retrieval
unit, and a data processing package. The recorder monitors
various flighit varameters and stores preselected types of
operational data within the recorder's solid-state memory.
Data are retrieved by a portable flight-line retrieval unit
that transfers the recorded data onto removable, miniature,
computer-compatible tape cassettes. Each cassette can store
the average monthly operational data of 50 helicopters. The
data are processed and analyzed automatically by a software
system that prints out the results in specifically formatted
reports.

APPROACH

The contract performance consisted of two phases. Phase
I (DT&E) covered these phases of SIRS: design, fabrication,
qualification testing, reliability analysis, and flight test-
ing at Fort Rucker, Alabama, on an AH-1G heticopter. The
ultimate objective of Phase I was to verify that the SIRS
recorder and data retrieval unit functioned as designed, oper-
ated reliably, and yielded accurate data.

In order to determine the fatigue life of any structure,
three basic factors must be known. These factors are (1) some
knowledge of the fatigue characteristics of the structure,

(2) a knowledge of the loads or stresses to be expected in
flight, and (3) a knowledge of the frequency of occurrence of
these loads or stresses.

The information to fulfill the first item is obtained
from the fatigue test program and the information to fulfill
the second item is available from the flight loads survey.
Information to fulfill the third basic requirement is the

22




TR

purpose of SIRS. Thus, Phase II (IOT§E) was intended to eval--
uate the entire SIRS in a practical application. To this end,
the SIRS recorder was installed in each of five AH-1G helicop-
ters at Fort Rucker, Alabama, while these helicopters perform-
ed normal operations during a 3-month period. During Phase II,
all processes in the SIRS were evaluated: the in-flight re-
cording and data storage, the data retrieval, and the data pro
cessing and analyses. Finally, the resultant data in pre-
scribed formats were evaluated to determine (1) their validity
in representing incremental damage rates for the respective
helicopter components and (2) their usefulness in indicating
the times at which the various components should be replaced.

PROGRAM REXECUTION

Contract DAAJ02-75-C-0050 was issued 26 June 1975 on a
cost-plus-fixed-fee basis. The estimated manpower requirement
was 31,0629 man-hours. The contract was modified eight times
during the performance period. These modifications essen-
tially involved detail changes. Residual Government property
was transferred to Contract DAAJ02-77-C-0079 upon completion
of this effart. Technical objectives were met, and should
result in a more cost-effective execution of the Army attack
helicopter program through the 1990's time frame. The feasi-
bility of using a flight condition monitoring concept to ex-
tend the service life of high-cost parts on the AH-1G fleet
was demonstrated. The effort provides a con - inuum between
phasedown of the AH-1G project and initiation of the AH-1S

technical support program.
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CHAPTER 2.

SYSTEM DEFINITION

INTRODUCTION

As demonstrated in Reference 1, the flight condition mon-
itoring (FCM) method can be used to assess the fatigue damage
accrued in critical helicopter dynamic components. The devel-
opment of an FCM system requires first defining given flight
conditions (which describe the mission profile) in terms of
flight parameter ranges and then establishing flight condition
categories (representing one or more flight conditions) that
account for the entire spectrum of fatigue-damaging flight
operations. By monitoring the time spent in each flight
condition category, the damage accrued by each component may
be assessed on the basis of actual operation.

The following sections describe the FCM methodology as
well as the development of an FCM system for the AH-1G heli-
copter.

FLIGHT CONDITION MONITORING METHODOLOGY

The FCM method of fatigue damage assessment is structured
as follows: Defined in terms of specific combinations of
flight parameter ranges, each flight condition category (FCC)
represents one or more flight conditions. The component
damage due to each flight condition may be determined when the
loads during the flight condition, the number of flight
occurrences, and the component fatigue strength are known. To
ensure that the damage rate for each flight condition category
is conservative, the maximum flight condition damage rate
within the given flight condition category is chosen. Then
the component damage accrued during a given recording pericd
may be computed by Equation (1), and the flight condition
category incremental damage may be summed to yield the total
component damage. The total recorded time is calculated by
Equation (2), and the fatigue life is predicted by Equation

(3).

1. Johnson, R.B., Martin, G.L., and Moran, M.S., A FEASI-
BILITY STUDY FOR MONITORING SYSTEMS OF FATIGUE DAMAGE TO
HELTICOPTER COMPONENTS, Technology Incorporated; USAAMRDL
Technical Report 74-92, Eustis Directorate, U. S. Army
Air Mobility Research and Development Laboratory, Fort
Eustis Virginia, January 1975, AD A006641.
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where D = total damage to a component during the usage spectrum

Dy = component damage accrued during the kth flight condi-
tion category

Ck = damage rate in kth flight condition category for a
particular component

Tk = amount of flight time spent in kth flight condition
category

T, = total flight time

FL = component fatigue life

m = number of flight condition categories

The FCM method of fatigue damage azsessment requires ana-
lyzing the manufacturer's fatigue analysis to first define a
technically feasible FCM system and then to establish damage
rates for each component in each flight condition category.
After thece data have been developed and substantiated, the
selected flight parameters may be monitored to assess the ac-
crued fatigue damage of critical helicopter dynamic components.

ELEMENTS OF AH-1G FATIGUE ANALYSIS PERTINENT TO FCM SYSTEM
DEVELOPMENT

As discussed in Reference 2 and summarized in Table 2, the
AH-1G design utilization spectrum is defined in terms of speci-
fic flight conditions and the percentage of flight time spent
in these flight conditions.

2. Seibel, J., FATIGUE LIFE SUBSTANTIATION OF DYNAM1C COMPO-
NENTS OF THE AH-1G HELICOPTER, Report No. 209-099-064,
Bell Helicopter Company, Fort Worth, Texas, June 1968.
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) TABLE 2. DESIGN UTILIZATION SPECTRUM
1 % of Flight Time
} . Gross Weight
Flight Conditions Total Breakdown
I. Ground Conditions
A. Normal Start 0.5000
B, Shutdown 0,5000
I1. IGE Maneuvers
‘ A, Takeoff
S 1. Normal L-GW 0,180 N
M-GW 0.450
. H-GW 0.270
1 0.9000
2. Jump L-GW 0,020 -
i M-GW 0,050
A H-GW 0.030
4 0.1000
f B. Hovering
1. Steady L-GW 0.434
M-GW 1.085
7 H-GW 0,651
2.1700
2. Right Turn 1-GW 0.020
L M-GW 1.050
i H-GW 0.030
5 0.1000
< 3. Left Turn L-GW 0,020
3 M-GW 6,050
“ H-GW 0.030
gs 0,.1000
5 4. Control Correction
(A) Longitudinal L-GW 0.002
3 M-GW v, 005
H-GW 0.003
3 0.0100
- (B) Lateral L-GW 0,002
; M-CH 0.005
: H-GW 0,003
1 0.0100
(C) Rudde: L-GW 0,002
M-GW 0,005
1-GW 0,003
0,0100
C. Sideward Flight -
1. To the Right L-GW 1. 050
. M-GW 0.125
H-CW 0.075 .
0,2500
2. To the Left L-GW 0.050
M-GW 0.125
H~GW 0.075
0.2500
D. Rearward Flight L-GW 0.050
M-GW 0.125
H-GW 0.075
1. 2500
26
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TABLE

Flight Conditions

1tr.

E

. Acceleration

Hover to Climb A/S

Deceleration

1. Normal

2. Quick Stop

Approach and

Landing

Fosward Level Fli
Airspeed

A, 0.50 VH

B, 0.60 VH

C. 0.70 vH

D. 0.80 VH

ght
RPM
314

324

314

324

314

324

314

324

2.

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

. L-GW
M-GW
H-GW

L.-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

Continued

$ of Flight Time

Total

0.5000

0.7000

0.3000

1.0000

6.5000

4.5000

0.2000

1.8000

0, 3000

2.7000

1.5000

13.5000

Gross Weight
Breakdown

0.100
0.250
0.150

0.140
0,350
0.210

0.050
0.150
0.090

0.200
0.500
0.300

0.100
0,250
0.150

1.900
2.250
1.350

1. 040
0,100
0,060

0.360
0.900
0.540

0.060
6.150
0.090

0,540
1.350
0.810

0.300
0.750
0.450

2.700
6.750
4,050
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TABLE 2.

Flight Conditions

L. 0.90 VH 314
324
F. VB 314
324

fv. Non-Firing Maneuvers
A.  TFull Power Climb

1, Normal

2, High-Speed

B. Maximum Rate Accel.
Climb - Cruise A/S

C. Normal Turns
1. To the Right
(A) 0.5 VH

{(8) 0.7 VH

(€) 0.9 VH

2. To the Left
(A) 0.5 VH

Continued

L-GW
M-GW
H-GW

L-GW
M-GW
H-G¥

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
ti-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

28

3 of Flight Time
Gross Welght

Breakdown

Total

2.5000

22.5000

1.0000

9,0000

4.0000

1.0000

2.8000

1.0000

1.0000

2,0000

1.0000

0.560
1,250
0,750

4.500
11,250
6.750

0,200
0,500
0,300

1.800
4.500
2.700

0,800
2.000
1.200

0,200
0,500
0.300

0.560
1.400
0.840

c.200
V0,500
0.300

0,200
0,500
0.300

0.400
1,000
0.600

0,200
0.500
0,300

a
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: TABLE 2.
?
3
: Flight Conditions
. (B) 0.7 VH L-GW
M-GY
H-GW
(C) 0.9 Vi L~GW
M-6W
. H-GW
D. 0.9 VH Control Corr.

. 1. Longitudinal L-GW
M-GW
$1-GW

2. lLateral L-GW
M-GW
H-GW
3. Rudder L-GW
M- GW
H-GW
L. Sideslip L-GW
M-GW
H-GW
4
¢ E. Part Power Descent 1.-GW
M-GW
H-6W
V. Guanery Maneuvers
A. Firing 1n a Hover L-GW
M-GW
H- QW
B. Strating 1a Accel.
From a Hover L-GW
M-GW
H-GW
C. Gunnery Runs
1. Point Target Runs
(A) To 0.6 VL L-GW
M-GW
H-GW
(B) To 0.8 VL L-GW
M-GW
H-GW
(C) To 0.9 VL L-CW
M-GW
H-GW
‘ 29
5

Continued

4 of Flight Time

Total

1.0000

2.0000

0.0500

0.0500

0.0500

0.5000

2.5500

0.0750

0.0500

0,2800

0.8400

1.4000

Gross Weight

Breakdown

0.200
0.500
0,300

0.400
1.000
0.600

0.010
0,025
0.015

0.010
0,025
0.015

0.010
0.025
0.015

0,100
0.250
0.150

4.510
1.275
0.765

0.015
0.038
0.023

0.010
0.025
0.015

0.056
0.140
0.084

0.168
0.420
0.252

v.280
1,700
1,420

#)
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TABLE 2. Continued . L
$ of Flight Time
Gross Weight "
Flight Conditions Total Breakdown
(D) To VL L-GW 0.056 )
M-GW 0.140
H-GW 0.084
0.2800 )
2. Spray Fire Dives
(A) To 0.6 VL L-GW 0.024
M-GW 0.060 .
H-GW 0.036 ¢
0.1200 B
(B) To 0.8 VL L-GW 0.072
M-GW 0.180 -
H-GW 0.108
0. 3600
(C) To 0.9 VL L-GW 0.120
M-GW 0,300
H-GW 0.180
0. 6000
() To VL 1-GW 0.024 \
M-GW 0.060
H-GW 0.036
0.1200
{
p. Gunnery Run Pullup
1. 1o the Right
[
(A) 0.6 VL 1.-GW 0,020
M- G 0.050 4
n-GW 0.030 B
0.1000 :
(B) 0.8 VL L-GW 0.060
M-GW 0,150
H-GW 0,090
0. 3000
(€) 6.9 VL L-GW 0.100
M-GW 0.250
H-GW 0.150 >
0. 5000
A (D) VL L-GW 0.020
M-GW C.050 y
2 H-GW €.030
% 0.1000
: 2. To the Left {
: (A) 0.6 VL L-GW 0.020
: M-GW 0,050 )
) H-OW 0.030 ;
‘ 0,1000
4 (8) 0.8 VL L-Gh 1. 060
% -GV 0,150
. H-G! 2.090 i
0.3000
(¢) 0.9 VL L-GW 0.100
% M-GW 0,250
3 H-GW 0.150
0. 5000
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TABLE 2. - Continued

$ of Flight Time
Gross Weight

Flight Conditions Total Breakdown :
(p) VL L-GW 0.020
M-GW 0.050
H-GW 0.030
0.1000

3. Symmetrical

(A) 0.6 VL L-GW 0.63
M-GW 0.005
H-GW 0.003
0.0100
(B) 0.8 VL L-GW 0. 006
M-GW 0.015
H-GW 0.009
0.0300
(C) 0.9 VL L-GW 0.010
M-GW 0.025
H-GW 0.015
0.0500
(h) VL L-GW 0.002
M-GW . 0.005
H-GW 0,003
0.0100

L. Gunnery Turns

1. To the Raght

(A) 0.5 VH L-GW 0.075
M-CW 0,188
H-GW 0.113

0.3750
(B) 0.7 VH L-GW 0.075
M- G 0.188
H- GV 0.113

0.3750
(C) 0.9 VH L-GW 0.150
M-GW 0.375
H-GW 0.225

0.7500

2. To the Left

. (A) 0.5 VH L-GW 0.075
M-GW 0,188
H-GW 0.113

0.3750
. (B) 0.7 VH L-GW 0.075
M-GW 0.188
H-GW 0.113

0.3750
(C) 0.9 VH L-GW 0.150
M-GW 0.375
H-GW 0.225

0.7500
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TABLE 2.

Flight Conditions

F. S-Turns

1. At 0.8 VH

2. At VH

VI. Power Transitions
A. Power to Auto

1. 0.5 VH

2. 0.7 VH

3. 0.9 VH

B. Auto to Power

1. In Ground Lffect

()

0.4 VH

3. 0.6 VH

4. Max Auto A/S

VII. Autorotat:ion
A. Stabilized Flight
1. 0.4 VH

2. 0.6 VH

Continued

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L.-GW
M-GW
H-GW

32

% of Flight Time

Total

0.2000

0.0750

0.0500

0.1250

0.1750

0,1500

0.1000

0.0750

0.0250

0.2000

1.4000

Gross Weight

Breakdown

0.640
0.100
0.060

0.015
0,038
0.922

0.010
0.025
0.015

0.025
0.063
0.038

0.035
0.088
0.053

0.030
0.075
0.045

0.020
0.050
0,030

0.015
0.038
0.023

0.005
0.013
0.008

0.040
0.100
0.060

0,280
0,700
0,420
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TABLE 2.

Flight Conditions

B.

3. Max Auto A/S

Auto Turns
1. To the Right
(A) 0.4 VH

(B) 0.6 VH

(€) Max Auto A/S

To the Left

(A) 0.4 VH

(B) 6.6 VH

(CY Max Auto A/S

Auto Landing

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M- GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

L-GW
M-GW
H-GW

Concluded

$ of Flight Time
Gross Weight
Total _Breakdown

0,060
0.150
0,090

0.0500

0.0500

0.4000

0.0500

4. 2500




The manufacturer assumed that the AH-1G operational time
would be distributed as follows in three gross weight ranges:
(1) 20 percent in a light gross weight (L-GW) range (less than
7750 pounds), (2) 50 percent in a middle gross weight (M-GW)
range (7750 to 8750 pounds), and (3) 30 percent in a high gross
weight (H-GW) range (more than 8750 pounds). This gross weight
distribution was also used in the preliminary development of
the FCM system for the AH-1G.

The fatigue-critical AH-1G components to be used in the
FCM method were selected by determining those major life-
limited components in the main and tail rotor systems that
have a significant effect on the AH-1G life-cycle cost. As a
result, 10 components were selected. For each of these com-
ponents, Table 3 lists the part number along with the manu-
facturer-computed fatigue life and the recommended retirement
life. The component fatigue damage data along with other in-
formation (e.g., component loads data and component S/N data)
needed for performing a fatigue analysis were extracted from
the fatigue substantiation report (Reference 2).

TABLE 3. SELECTED FATIGUE-CRITICAL COMPONENTS
FOR THE AH-1G HELICOPTER

Calculated Recommended
Fatigue Retirement

Nomenclature Part Number Life(hr) Life {(hr)
Main Rotor Blade 540-011-250-~1 2,792 1,100
Main Rotor Yoke Extension 540-011-102-13,15 10,633 3,300
Main Rotor Grip 540-011-154-5 95,057 -
Main Rotor Pitch Horn 209-010-109-5 9,105 6,600
M/P Retention Strap Fitting/Nut 540-011-113-1,-177-1 2,760 2,200
Swashplate Drive Link 209-010-408-7 13,953 11,000
Swashplate Outer Ring 209-010-403-1 9,806 3,300
Swashplate lnner Ring 209-010-402-1 10,453 3,300
Hydraulic Boost Cylinder Assy 209-076-021-1,3,5 3,345 3,300
Tail Rotor Blade 204-011-702-17 3,764 1,100
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TECHNICAL ACCEPTANCE CRITERTA FOR FCM SYSTEMS

Basic Definition of Technical Acceptance Criteria

In the development of the FCM system for the AH-1G, the
technical acceptance criteria developed in Reference 1 were
applied to several candidate systems.

According to these criteria, an FCM system must be capable
of predicting, for each component, fatigue lives that fall be-
tween a conservative lower bound and realistic upper bounds.
One upper bound is defined for mild aircraft usage and another

i upper bound for severe aircraft usage (see Figure 7). The in--
tent in these criteria of the upper bounds for both mild and 3

] severe conditions is to evaluate candidate FCM systems relative

e to the usage variations in the expected fleet operation spectrum.

. The application of the technical acceptance criteria re-

quires the following: (1) the definition of the lower bounds

for the component fatigue lives, (2) the substantiation of a

fatigue damage assessment model (specifically, the computer

program FATHIP) that closely parallels the fatigue analysis

used by the AH-1G manufacturer and which may be validly used

in the applications discussed later in this section, and (3)

the derivation of realistic upper bounds for the component

fatigue lives in both 2 mild and a severe usage spectrum by

applying the substantiated fatigue damage assessment model.
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Figure 7. Depiction of Technical Acceptance Criteria.
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Definition of Lower Bounds for Component Fatigue Lives -

Table 3 includes the manufacturer-computed fatigue lives
and the recommended retirement lives for the 10 selected com-
ponents. The manufacturer's computations were based on the -
design utilization spectrum summarized in Table 2. Since
such a spectrum is conventionally more severe than the actual
usage anticipated during the helicopter life, the computed
fatigue lives are conservative. As is apparent in Table 2,
the recommended retirement lives are generally much shorter
than the fatigue lives.

To conform with the philosophy in previous studies, the
recommended retirement lives were defined as the lower bounds.

Substantiation of Fatigue Damage Assessment Model (FATHIP)

FATHIP, the fatigue damage assessment model used in the
following applications, computes fatigue damage in a manner
similar to the AH-1G manufacturer's process. To substantiate
this model, the same component load, S/N, and frequency of
occurrence data used in the manufacturer's computations were
also used as input in FATHIP. Obviously, if FATHIP could
yield fatigue lives agreeing closely with th se derived by the
manufacturer, the model would be substantiated.

For both the manufacturer and the FATHIP computations,
Table 4 lists the fatigue damage accrued by each of the 10
selected AH-1G components during 100 hours of operation in the
design utilization spectrum. The close correglation of the two
sets of data verifies FATHIP as a valid fatigue damage assess-
ment model for the AH-1G helicopter.

TABLE 4. COMPARISON OF MANUFACTURER AND FATHIP FATIGUE
DAMAGE AND FATIGUE LIFE COMPUTATIONS

Design Spectrum

Manufacturer's FATHTP
* Reference 2 Computations* Results
Fatigue Fatigue Fatigue Fatigue
. Damage Life Damage Life
____Component ~ in 100 hr (hr) in 100 hr (hr)
Main Rotor Blade 0.035810 2,792 0.035806 2,793
Main Rotor Yoke Latension 0.009404 10,633 0.009403 10,635
Main Rotor Grip 0.001:082 95,057 0.001053 95,012
Main Rotor Pitch Horn 0.010983 9,105 0.010982 9,106
M/R Retention Strap litting/Nut  0.036232 2,760 0.036232 2,760
Swashplate Drive tink 0.007167 13,983 0.007164 13,959
Swashplate Quter Ring 0.010197 9,806 0.01019¢6 9,808
Swashplate Inner Ring 0.009566 10,453 0.009562 10,458
Hydraulic Boost Lylinders 0.029890 3,345 0.029895 3,345
lTai1l Rotor Blade 0.026567 3,764 0.026568 3,764
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Derivation of Upper Bounds for Component Fatigue Lives
in Both Mild and Severe Utilization Spectra

Without regard at the outset to which might be the more
severe spectrum, two utilization spectra were derived indepen-
dently from separate sources: (1) the AH-1G operational usage
data collected in Southeast Asia (Reference 3), and (2) the
expected future mission utilization data for attack-type hel-
icopters (also documented in Reference 3). As listed in Table
5, each spectrum was defined in terms of the same flight con-
ditions that were used to define utilization spectrum. In
addition, the gross weight distribution assumed in Reference
2 was used for each spectrum.

To assess the relative severity of the two utilization
spectra from a fatigue damage standpoint, the two spectra were
then processed in FATHIP to predict the fatigue life for each
of the 10 selected components. On the basis of the resulting
fatigue life predictions, the spectrum representing the South-
east Asia data was judged more severe than the spectrum repre-
senting the other data. Consequently, the former was termed
the severe spectrum and the latter the mild spectrum. However,
these spectra are not to be interpreted as worst-case usage,
but rather as the mild and severe usage that would normally
occur with some regularity.

The two sets of fatigue lives derived by FATHIP for each

of the 10 selected components were defined as the upper fatigue
life bounds, one set for the mild and the other set for the
severe utilization spectrum. Table 6 lists these bounds.
Since this table also includes the lower fatigue bounds as
previously listed in Table 3, it summarizes the constraints
for the application of the technical acceptance criteria to
the candidate FCM systems for the AH-1G helicopter.

Therefore, to be considered technically acceptable, a }
candidate FCM system must be capable of predicting, for each
component, a fatigue life within these bounds when the basic
frequency of occurrence data in either the mild or the severe
spectrum is the simulated output of an airborne FCM recorder.

3. Cox, T.L., Johnson, R.B., and Russell, S.W., DYNAMIC
LOADS AND STRUCTURAL CRITERIA, Technology Incorporated;
USAAMRDL Technical Report 75-9, Eustis Directorate, U. S.
Army Air Mobility Research and Development Laboratory,
Fort Eustis, Virginia, April 1975, AD A009759.
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< TABLE 5. MILD AND SEVERE SPECTRUM DEFINITIONS .
\ ’
3
e FLIGHT CONDITION DESIGH  MILD IEVERE
4 1 HOPMAL ITAFT. SHUTDOWN W COLL. o VIGE MANELWER 1,000 L&an JE1E
i & HOFMRAL TRKE-DFF VIGE MANELWERS LAO0 2,558 L7S0
f T JUMF TRKE-OFF VIGE MANEUVER® RTT et 183
14 4 1TERDY HOVEF VIGE MANEUVER) 2. 4T0 11,530 13,958
b S HOVERING FIGHT TURN ' I5E MANEUYER) Jd00 2,387 817
. . & HOVERING LEFT TUPN VIGE MANEUVER) J00 2,8e7 LE17
- T HOYEF ING LONGITUDINAL CONTPOL COFF. +15E MANEUVERS L0100 126 027 »
b & HOVEFING LATERAL CONTROL COFF. VIGE MANELUVERS L0110 R 027
- 4 HDVERING FUDDER CONTROL COFF. VIGE MANELVER) LO1D L1&s 03T
[ 10 SIDEWARD FLIGHT TO THE FIGHT IGE MANELVERS  © L 250 &.110 409
- 11 SIDEWRFD FLIGHT TO THE LEFT (1GE MANEUVER) L3S0 &.110 LA .
L 1& FERFURFD FLIGHT V1GE MANELVERD JESO O 1LEUD &4 |
ﬁ 13 ACCELERMTION HOVER TO CLIME A 3 CIGE MANELVER S0 3 24 e
g 14 NOFMAL DECELEPATION VI5E MANELVER LT00 . &, 519
A 15 OUICk ITOP DECELERATION VIBE MANEUVER) L300 . 2,519
3 16 RFPROACH AND LANDING VIGE MANEUVER 1. 006 . 4,523
b 1T FOPURRD LEVEL FLIGHT 0,50 WH AT 314 RPM LS00 1. 1,260
L 13 FOPWFPD LEYEL FLIGHT .54 YH RT 3&4 FFM 4,500 S0 11,3
o 1% FORWRRD LEVEL FLIBHT w.cit YH AT 314 FFM N 1. 040 1,206
R &0 FORWARD LEVEL FLIGHT 0O.n0 YH AT 339 PRM 1. 80U L1150 10,987
b Z1 FOPWAPD LEVEL FLIGHT 0.70 vH AT 314 FEM L300 . 35U LBST
3 Z: FORWARD LEVEL FLIGHT 0,70 VH AT 234 FEM &, Ton L0405, &858
3 23 FORMAFD LEVEL FLIGHT 0,20 VH AT 214 FFM 1. 500 ATt o4t
g 24 FOPWARD LEVEL FLIGHT 0,50 VH AT 334 FFM 13,500 L0280 &t
o &S FORMARD LEVEL FLIGHT W, 30 Wh RT 314 FFM &S00 D313 L0133
Zn FOFWARD LEVEL FLIGHT 1,90 YH AT 324 FFM 22,500 232 L1157
T FOPWFAPD LEVEL FLIGHT VH AT 314 FPM 1. 000 010 L0132
28 FOPUARD LEVEL FLIGHT WM AT 324 FFM @, 000 T L1651
&3 HORMAL FULL FOMER CLIME 4,000 S, &7 61T
30 HIGH~IFEED FULL POUER CLIME 1000 & 190 E.644
; 31 MP¥. RATE ACCEL. FULL POWER CLIME TO CPUTSE A © .00 Z.E48 2,154
i 3@ NORMAL FIGHT TURN AT 0.5 \H 1.o0n k188 1,116
3 33 HORMAL RIGHT TURPN AT 0.7 VH 1,000 2,188 1,116
i 34 NORMAL FIGHT TURN AT 0.9 VH T L4338 . 248
. 35 HOWMAL LEFT TURN AT 0.5 VH ool S.eT1 1. 116
4 I NORMAL LEFT TURN AT 0.7 WH 1.o0n &, 026 1,116
4 3T HOFMAL LEFT TURN AT 0.9 VH &. 000 406 248
q 3% LONGITUDINAL CONTROL CORR, AT 0.9 VH L 0S0 . 050 . 001
4 ¥3 LATERAL CONTROL CORF, AT 0.9 VH . 050 L 050 . 001
3 40 RUDDEP CONTROL CORR., AT 0.% YH L 050 . 050 . 001
by 41 SIDESLIP LS00 J113 L0113
4] 42 PART POVWER DESCENT 2.550 6.471 7.679
& 43 FIPING IN A HOVER LTS 19,047 L2330
@ 44 ITRAFING IN ACCEL. FROM & HOVER L 050 L67e 270
3
i
4
b
?
| 34
3
38
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TABLE 5. Concluded

PRSORNN

FLIGHT Y GHDTTION ML SEVERE
4% GUNNERY RUN-PT, TARGET DIVE AT 0.6 Vi
GUNNERY RUN-FT. TARGET DIVE AT 0.8 VL
47 GUNNERY FUN-PT, TARGET DIVE AT 0,9 VL
48 GUNNERY FUN-PT, TARGET DRIVE AT VL
4% GUNNERY RUN-SPRAY FIRE DIVE AT 0.6 VL
S0 GUNNERY RUN-SPRRY FIRE DIVE AT 0,8 VL
S1 GUNNERY RUN-SPRAY FIRE DIVE AT 0.9 wL
S GUNMNEPRY PUN=SPRfY FIRE DIVE AT VL
S% GUNNERY RUN-P-Ut TO THE RIGHT RY 0,6 Vi
T4 GUNNERY FUN-P-U YO THE RIGHT ®T 0,8 VL
$% GUNNERY FUN-F-U TQ THE RIGHT BT 0,% vi
So GUNNEFY FUN-P-U T0 THE RIGHT MT VL
T7 GUNNERY FUN-F-4 YO THE LEFT AT 0.6 YL
- 58 GUNNERY RUN=FP-U TO THE LEFT AT 0,& VL
59 GUNNERY FUN-P/U TO THE LEFT AT 0.% VL
oU GUNNERY FUK-P-U TO THE LEFT AT VL
ol GUNNERY PUN-FP/USYMMETRICAL) RY 0,6 VL
o GUNNERY RUN=P/USYMMETRICAL) AT D& v
t3 GUNNERY RUN-F/L«SYMMETRICAL) BT 0,7 VL
64 GUNNERY FUN-F U«SYMMETRICALY WT VI,
N =5 GUNNESY TURM TO THE FIGHT AT i, % VM
o GUNHERY TURN TOD THE FIGHY AT 0.7 VH
o GUNNFRY TURN TO THE FICHT AT 0,9 vH
3 GUNNERY TURM TL THE LEFT AT ¢, % VH
GUNNEFY TURN TO THE LEFT RY ¢, VH
GUNNERY TURN TD THE LEFT RT u,9 VM
GUNNERY T-TURMN AT 0.8 VMW
GUNNERY . <TURN AT vH
FOVER TO AUTD. TERNSTTION AT 0, S YW
FOWEFR TO AUTD. TRANIITION BT 0,0 vH
FOWEF TO AUTO. TRANSITION RY U, % VH
HUTO. TO FOWER TRANSITION 1GE
AUTO, TO FOWER TRANSITION HT 0,9 VH
ALTO, TO FOWEF TRANSITION AT v.e VH
ARTO, TO POMER TRAMSITION RT MA®, wUtTD, A |
STARILIZED AUTO, FLIGHT AT 0.4 vH
CTREILIZED PUTOL FLIGKY HT u,e VH
CYREILIZED AUTO, FLIGKT NT MAX, AUTD, W5
HUTD. TURN TO THE FIGHT AT v, 4 vH
AUTO., TURMN TO THE FIGKT AT u,t YK
HUTD, TURN TO THE RIGHT AT MRS, AUTD. & 3
AUTO, TURN TO THE LEFT AT n. 4 VM
RUTO. TURN TO THE LEFY AT e VH
AUTO. TURN TO THE LEFY RT MAY, AUTD. A §
RUTOFOTATION LANDING

»
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TABLE 6. UPPER AND LOWER BOUNDS FOR
TECHNICAL ACCEPTANCE CRITERIA

Lower Upper
Fatigue Life Fatigue Life
Bounds Bounds
Recommended Mild Severe
Component Lives Spectrum Spectrum
Main Potor Blade 1,100 4,307 3,542
Main Rotor Yoke Extension 2,300 24,917 14,779
Main Rotor Grip Unlimited 150,042 69,686
Main Rotor Pitch Horn 6,600 17,953 10,596
M/R Retention Strap Ftg./Nut 2,200 9,517 4,488
Swashplate Drive Link 11,000 27,353 16,513
Swashplate Outer Ring 3,360 18,707 12,325
Swashplate Inner Ring 3,300 25,128 15,481
Hydraulic Boost Tube 3,300 8,635 5,145
Tail Rotor Btade 1,100 12,106 7.192
39 "
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DEVELOPMENT OF A CANDIDATE FCM SYSTEM FOR THE AH-1G HELICOPTER

The development of a candidate FCM system for the AH-1G
helicopter requires the following procedure: (1) the identifi-
cation of those flight conditions that have the greatest fa-
tigue-damaging effect on the critical AH-1G components, (2) the
ranking of the fatigue-damaging flight conditions according to
both the degree of their damaging effects on the helicopter as
a whole and the relative costs to replace the selected compon-
ents, (3) the selection of the measurable flight parameters
whose collective variations will characterize the flight condi-
tions identified in (1), and (4) the final definition of an
FCM system in terms of specific combinations of flight para-
meters and the threshold levels of these parameters,

The following sections summarize the analytical processes
used in developing an FCM system for the AH-1G.

Flight-Condition Ranking

0f the 89 flight conditions (each with three gross weight
ranges) identified in the AH-1G design fatigue spectrum, some
are damaging to the 10 selected components in varying degrees
while others are not damaging at all. Consequently, the damag-
ing flight conditions had to be first identified and then ranked
according to both the degree of their damaging effects on
the helicopter as a whole and the costs to replace the selected
components.

As was done previously in Reference 1, the fatigue-damag-
ing (sensitivity) rank of each AH-1G flight condition was com-
puted by Equation (4). With relative expense and complexity
of the selected dynamic components being significant factors,
this equation provides the means for representing each flight
condition relative to its rate of producing fatigue damage to
the helicopter as a whole. A normalized rank value was also

computed by Equation (5). The results of the ranking procedure
are shown in Table 7.

R

R = T €. () . 0. D) (4
a11 Ly
components

- R

R=7 (5)
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nd.,

4
§
where R = sensitivity rank value :
3
o % C. = estimated relative cost factor for each component :
7 F (each component was normalized to 1.0 for the main !
4 : rotor blade)
. L
% R _ ratio of recommended life of each component to an
ke, Ly assumed aircraft life of 7200 hours
R 1
E .
L n = number of components per aircraft
‘;\‘i ’
& N
L D = percentage of fatigue damage to each component due to
J a given flight condition
; R = normalized rank value
t = flight condition frequency 1in the design usage spectrum
3
TABLE 7. RESULTS OF RANKING PROCEDURE
SENSTHIVLTY NORMALIZED
PLIGHT CONDITTON RANK VALUE  RANK _VALUL
Gunnery Run P/U (symmetrical) at VI L4289 12,8916
tunnery S-turn at VH 2.4017 32,0233
Gunnerv Run P/U to the Left at VL 2.6629 26.6288
Gunnerv Run B/U to the Right at VL 2.1912 21.9116
sunnery Run P/70 {symmetrical) at 0.9 Vi L7996 15,9910
Gunncery Run #/0 to the Left at 0.9 VL 5.0312 10.0623
Gunpnery Run P/U to the Right at 0.9 VL 3.6792 7.3488
Gunnery Run P/U {symmetrical) at 0.8 VL L1822 5.0733
Normal Start/Shutdown (w/coll,) 3.9272 3,9272
Gunnery S-lurn at 6.8 VH L7270 3.6352
tunnery Run P/U to the Left at 0,8 VL L9580 3.1934
Wtorotation Landing YERES 2,977
Gunnery Run /U to the Right at 0.8 VL ,8523 2.8109
tunnetry Turn to the Right at 0.9 VH 1.9089 2,5482
Gunanery furn to the Left at 0.9 VH 1.5982 2.1309
Gunnery Run-Pt. farget hive at VL L5653 2.0188
Lateral (ontrol Corr, at 0,9 VH L0910 1.8191
sunnery Run-Spray fire hive at VL L2160 1.8001 '
Wto, to Power stansition at Man, Auto, A/S L0286 1.1140
flovering Longitudinal Control Corr. (IGL Mancuver) L0107 1.0732
Rudder Control (orr. at 0.9 Vi L0435 L8692
‘ Gunnery Run P/U {(symmetrical) at 0.6 VL L0082 8179
? Gunnery P/U0 to the Left at 0,6 VL 0794 L7944
fj Gunnetry Run /U to the Right at 0.6 VL .0718 .7184
¥ forward Level Flight VH at 314 RPA 15478 25478
- Normal Left lurn at 0.9 VR L9934 L4967
i Gunnery furn to the Left at 0.5 VH L1675 L4465
\ . Gunnery lurn to the Left at 0.7 VH L1398 . 3728
Gunnerv furn to the Right at 0.7 VH L1361 . 3630
9 Gunpery luin to the Rignt it 0.5 VH L1087 L2898
A Gunnerv Run-Sprav fire bive at 0.9 \L 173 . 2885
"4 Quick Stop Deceleration {161 Maneuver) .0826 L2754
\pproach and Landing {IGL Mancuve,) . 3285 L2285
- tiygh-sp.ed Tull Power Climb L1247 L1247
forwara Tevel flight VH at 3234 RPM 1,0412 L1157
4 \uto. to Power lransttion at 0.6 VH L0077 L1024
N tuto. lTurn to the Right at Max, Auto. A/S L0040 .0809
% Longitudinal Contiol torr. at 0.9 Vil L0037 L0731
Gunnery Run-Pt, larget bive at 0.9 VL L0983 0702
tunnery Run-spray fire Dive at 0.8 VL L0205 0569
Sormal Right Turn at 0.7 Vi L0384 .0384
3 tunnery Run-Pt, farget Dive at 0.8 VL L0271 0322
k- Wwto. lurn to the Lett at Maax, Auto. \/S L0012 L0235
B Normal Right lurn 0,9 \H L0402 .0201
E Hovering lTateral (ontrol (ort, (IGE Maneuver) 0001 L0088
s
k-
2
- . a1
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Selection of Characteristic Parameters and Parameter Thresholds

References 4 and 5 were thoroughly searched for those
flight parameters that have a consistent response to specific
flight conditions. These documents contain pilot stick and
pedal position data, component load data, and helicopter re-
sponse data (such as roll rate, pitch rate, and pitch attitude).
The documented flights, where each flight condition was flown
many times in various gross weight-altitude combinations, were
examined to detect the behavior of each recorded parameter
during the defined flight conditions. (In describing the data
reduction procedure, Reference 4 states that the maximum mean
helicopter attitude and attitude rate values were measured and
processed for each maneuver, but not for the level-flight
flight conditions. The mean and oscillatory center-of-gravity -
vertical acceleration levels were measured and recorded at the
maximum mean level for maneuvers and at the maximum oscillatory
peak for the level-flight flight conditions.) The flight condi-
tions that had ranked highly were examined very closely.

Each of the measurable flight parameters listed in Table
8 was considered individually or in combination with others to
determine their potential in flight condition monitoring.

TABLE 8. CANDIDATE MONITORING PARAMETERS
FOR FCM RECORDING SYSTEM

Vertical Acceleration @ c.g. Pitch Attitude
Indicated Airspeed Roll Attitude
Main Rotor Velocity Pitch Rate
Landing Gear Touchdown Roll Rate
Engine Torque Pressure Yaw Rate

Table 9 shows sample data extracted from References 4 and
S for two flight conditions: the gunnery run pullups to the
right and left at V, (V, indicates limit velocity). These two
flight conditions wére ﬁltimately considered sufficiently

4. Wettengel, W.O., MODEL AH-1G NONFIRING LOAD LEVEL SURVEY,
VOLUMES T THROUGH IX, Report No. 209-099-041, Bell Heli-
copter Company, Fort Worth, Texas, June 1967.

5. Long, D.B., MODEL AH-1G HELICOPTER ARMAMENT QUALIFICATION
TEST AND FIRING LOAD LEVEL SURVEY, Report No. 209-099-
031, Bell Helicopter Company, Fort Worth, Texas, November
1967. t
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similar to be monitored as one flight condition category de-

fined as follows:

Vertical Acceleration at c.g. > 1.5g
Airspeed > 0.95 VI
10° < Roll Attitude < 35°

TABLE 9. SAMPLE LOAD LEVEL SURVEY DATA

Flight Condition: Gunnery Run Pullup to the kight ¢ VL

Origin Vertical Pitch Roll Yaw Pitch Roll
of Acceleration Rate Rate Rate Attitude Attitude
Data* € c.g.{g) (deg/sec) {deg /sec) (deg/sec) (deg) (deg)
Nl 1.94 8 11 S 25 26
N2 1.64 6 12 3 9 22
Nz 2.07 9 11 3 18 25
Ny 1.77 7 13 6 23 30
NS 1.64 7 8 3 8 24
N6 1,75 7 8 3 8 21
N7 1.62 6 -3 4 -7 20
Mg 1.21 2 -2 2 -2 7
l“«l9 1.41 5 10 4 -7 23
Nio 1.63 7 13 3 18 25
Fl 2.01 11 18 5 6 26
Fy 2.16 11 17 5 -5 13
F3 2.09 12 12 6 11 18
Fy 1.94 15 12 7 -5 13
Fg 1.75 11 18 2 1 16
F6 1.82 10 17 0 1 13
) 1.72 8 17 4 -4 33
F8 2.23 17 -2 8 12 34
F9 1.82 7 -1 6 11 28
FIO 1,79 9 8 S 17 24
*  NOTE:

Ni indicates data was taken from nonfiring load level survey

F  indicates data was taken from firing load level survey

i 1ndicates number of times flight condition was performed in load level survey
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TABLE 9. Concluded

P T

Flight Condition: Gunnery Run Pullupto the Left @ \'L

Origin Vertical Pitch Roll Yaw Pitch Roll !
of Acceleration Rate Rate Rate Attitude Attitude :
Data* @ c.g.(g) (deg/sec) (deg/sec) (deg/sec) (deg) _(dep)

Nl 2.03 10 -9 -6 23 -35

N2 1.73 8 -12 -5 9 -31 :
N3 1.97 8 -14 ~4 13 -33 N

b 1.78 8 -12 -4 21 =29

Ng 1.63 6 5 0 16 -21

Ng 1.66 4 11 -5 10 9 )
Ny 1.56 5 -7 -5 -12 -22

N8 J1.17 2 -4 -3 -5 -4

Ng 1.43 6 7 -4 8 -21

NIO 1.59 7 -15 -7 14 -31

Pl 2.19 12 -18 2 6 -24

FZ 2.20 11 -18 4 -6 -11

FS 1.83 7 -5 -4 4 -9

Iy 1.85 9 -11 0 5 -13

[ 1.86 10 -9 0 18 -10 !
N NOTL:

Ny indicates data was taken from nonfirang load level curvey.
F‘ indicates data was tahen from firing load level survey.

1 1ndicates number of times flight condition was performed in load level survey

In Table 2, where all airspeeds are expressed in terms of
Vy (the maximum attainable level flight airspeed) or Vj (the
limit airspeed), the V, of 144 KTAS is defined in Reference 6,
and VL is defined in Reference 7 and shown in Figure 8., In .

6. Finnestead, R.L., Laing, E., Connor, W.J., and Buss,
M.W., ENGINEERING FLIGHT TEST, AH-1G HELICOPTER (HUEY/COBRA),
PHASE D PART 2, PERFORMANCE, USAASTA 66-06, U.S. Army -
Aviation Systems Test Activity, Edwards Air Force Base,
California, April 1970, AD 874210.

7. Technical Manual, TM 55-1520-221-10, OPERATOR'S MANUAL:

ARMY MODEL AH-1G HELICOPTER, Headquarters, Department of
the Army, Washington, D.C., 12 December 1975.
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this figure the airspeed limitation for the M-159 external

stores configuration will be incorporated in the FCM system as
definition. Since both

a reasonable, although conservative, V
and V. are a function of density alkitude, pressure altitude
outskde air temperature were included among the required

\Y
alld
parameters so that they could be monitored in conjunction with
indicated airspeed. Vi and V, can be calculated from the

following equations:

Hy

and VL = 180 knots below Hd = 3000 ft (N
Hy

VL = 180 - 8 [ 1000 3] for Hd above 3000 ft (8)
where VH = maximum level flight airspeed, knots

VL = limit airspeed, knots

Hd = density altitude, feet
the density altitude is calculated from:

Hy = 145,447 [1 - (%) 255 9)
where Pa = static pressure, inches mercury

T = outside air temperature, °C.

Since the damage rates for the AH-1G flight conditions
vary significantly with gross weight, that parameter was in-

cluded in the FCM system to further enhance the validity of the

FCM system damage assessment model. The ranges chosen to rep-
resent the low, medium, and high gross weight categories are

listed in Table 10.
TABLE 10. GROSS WEIGHT RANGES

Range
Nomenclature Gross Weight Range (1b)

L-GW less than 7750

M-GW 7750 through 8750

[1-GW greater than 8750
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The following method was chosen as the most practical
means of reasonabl’ estimating the instantaneous gross weight:
(1) measure the takeoff gross weight by a landing skid deflec-
tion technique, and (2) conservatively estimate the instanta-
neous gross weight of the helicopter by only assuming that the
gross weight linearly decreases with fuel burnoff.

Description of Recommended FCM System

The evaluation of all fatigue-damaging flight conditions
relative to the previously described flight parameter behavior
led to the selection of the parameters listed in Table 11 as
the set of coordinated parameters which may best describe the

TABLE 11. SELECTED MONITORING PARAMETERS FOR
FCM RECORDING SYSTEM

Directly Monitored Parameters Symbol
Indicated Airspeed A/S
Pressure Altitude Hp
Outside Air Temperature T
Main Rotor Velocity MRV
Roll Attitude B
Pitch Attitude 0
Vertical Acceleration € c.g. n,
Landing Gear Touchdown ™
Engine Torque Pressure ET
Takeoff Gross Weight TGW

Computed Paramcters Symbol
Rate of Descent RD
Maximum (Level Flight) Airspeed V“
Limit Airspeed VL
Instantancous Gross Weight 9y
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fatigue design spectrum in terms of a unique set of flight con-
dition categories (FCC) (See Table 12). Although FCC 83 through
85, 89 through 91, and 95 through 97 do not specifically rep-
resent any of the flight conditions defined in the fatigue
design spectrum, they enhance understanding of the AH-1G oper-
ational usage spectrum. (For example, FCC 96 was intended to
measure and record the magnitude of the largest vertical ac-
celeration peak during a recording period.) Table 12 summarizes
the resultant FCM system recommended for the AH-1G helicopter.
For simplicity, the breakdown of the 89 flight conditions by
gross weight range was not shown in this table.

Note in Table 12 that it was necessary to formulate six
flight condition categories that are not directly recorded
(FCC 98 through 103). These FCC are reserved for estimations
of time spent in making control corrections during hover and
control corrections at 0.9 VH' This provision was made because
the data in Reference 4 revealed that although these flight
conditions could not be confidently detected, their damage
rates were of sufficient magnitude to warrant due recognition.

Therefore, since the control corrections occur on a sta-
tistical basis, it was decided to account for them by first
defining the FCC in which their time would be included (the
hovering control correction times would appear in FCC 1, 2,
and 3, and the control correction times at 0.9 VH would appear
in FCC 14, 15, and 16). A liberal percentage of time (2 per-
cent was chosen) was deducted from these recorded flight con-
dition categories and assigned to FCC 98 through 103.
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TABLE 12. FCM SYSTEM SUMMARY
Fit. Cond. Cat. No. (3a) Flight Conditions Included
Flaght Condation Type (b)
L-GW M-GW H-GW Category Description Desig. No. Descrsption
1 2 3 Flight Clock Time T 2 Normal Takcoff (IGE)
3 Jump Taheoff (IGF)
4 Steady Hover (IGE)
) Hovering Right Turn (IGE)
6 Hovering Left Turn (IGF)
10 Sideward Flight to the Right (IGE)
11 Sideward Flight to the Left (IGE)
12 Rearward Flight (IGE)
13 Acceleration Hover to Clamb A/S (IGE)
. 14 Normal Dececleration (IGE)
41 Sideslip
43 Firing in a Hover
44 Strafing in Acceleration from a Hover
4 Rotor Start/Stop C 1* Normal Start’/Shutdown (IGE)
- 5 6 7 Quick Stop T 15* Quick=Stop Deceleration (IGE)
8 9 10 Normal Landing C 16* Apvreach aud Landing  (IGE)
11 12 13 Low-Velocity Flaght T 17 Forward Level Flt. & 0.50 V" and 314 RPM
18  Forward Level Fit, @ 0,50 V” and 324 RPM
19 Forward Level Fit. € 0,60 vy and 314 RPM
20 Forward Level Flt. @ 0,60 V" and 324 RPM
20  Normai Full Power Climb
32 Normal Right Turn 8 0.50 V"
35 Normal Left Turn @ 0.50 V"
14 15 1o High-Velocity tlight T 21 torward level Flt. ¢ 0,70 V" and 314 RPM
22 Forward Level Flt, @ 0,70 V" and 324 RPM
23 Forward Level Flt, 3 0,89 V" and 314 RPM
24 torward Level Flt. # 0,80 V“ and 324 RPM
25 torward Level Flt, & 0,90 V" and 314 RPM
26 torward Level fit. & 0,90 Vi and 324 RPM
42 Part Power Descent
17 18 19 Mavmum Velocity Flight T 27" Forward Level Flt. @ V" and 314 RPM
Jt*  Forward Level Fit. @ V“ and 324 RPM
20 2t 22 High-Speed tull Power Climbs T 30% HigheSpeed Full Power Climbs
3t Max. Rate Accel, Full Power Clamb to
Cruise A/S
23 24 25 Normal (High-Speed} Turns 1 3% Normal Right Turn # 0,70 V"
36 Normal Left Turn @ 0.70 V"
26 2" 28 Normal (High-Speed) Turne T 34*  Normal! Right Turn # 0,90 V"
7 Normal Left Turn ¢ 0 90 V"
29 30 31 Lowevelowrty ves T 15 Gunnery Run Pt. Target Dive @ 0.60 Vl
49  Gunnery Run-Spray Fire Dive & 0.60 Vi
32 33 3t Moderate-Velocity Dives T 46*  Gunnery Run-Pt, Target Dive 8 0,80 VL
50* Gunnery Run-Spray Fire Dive @ 0.80 VL
38 36 37 ftighsaVelocity Dives T 47*  Gunnery Run-Pt. Target Dive @ 0,90 VL
S1* Gunnery Run-Spray Fire Dive & 0.90 VL
38 39 10 MaximumeVelocity Dives T 48* Gunnery Run-Pt. Target Dive @ VL
$2* Gunnery Run-Spray Fire Dive @ VL
11 §2 13 Asymmetrical Pullups r $3* Gunncery Run P/U to the Right ¢ 0.60 VL
. $7* Gunnery Run-P/U to the Left @ 0.60 V,
44 EES 45 Asyumetrical Pullups T S4* Gunnery Run-P/U to the Right & 0.80 VL
58* (Gunnery Run-P/U to the Left @ 0.80 VL
37 18 49 Asymmetrical Pullups T 55¢ Gunuery Run-P/U to the Right ¢ 0.90 Vl
59* Gunnery Run-P/U to the Left @ 0.90 VL‘
50 S1 52 Asymmetrical Pullups T 56* Gunnery Run-P/U to the Right @ VL
60* Gunnery Run-P/U to the Left @ VL
1
H
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TABLE 12. Concluded ;
%
&
z%?
Fit. Cond. Cat. No. . Flight Conditions_Included §
Firght Condition Type fres k1
L-GW M-GW H-GW Category Description Desig. No. Description g
I
53 sS4 SS Symmetrical Pullups T 61*% Gunnery Run-P/U (Symmetricai) @ 0.60 VL
} &
56 57 S8 Symmetrical Puliups T 62* Gunnery Run+P/U (Symmctraical) @ 0.80 VL ' g
56 60 61 Symmetrical fFullups T 63* Gunnery Run-P/U (Symmetrical) € 0,90 VL 5
64*  Gunnery Run-P/U (Symmetrical) @ VL - f
62 63 64 Gunnery Turns T 65* Gunnery Turn to the Right @ 0,50 V" ﬁ
68* Gunnery Turn to the Left ¢ 0.50 vy E
65 66 67 Gunnery Turny T 66* Gunnery Turn to the Right ¢ 0,70 V" ’3
69*% Gunnery Turn to the Left @ 0.70 V" . ’%
08 69 70 Gunnery Turns T 67* Gunnery Turn to the Right @ 0.90 V. H
70* Gunnery Turn to the Left @ 0.90 v, B
i
71 72 73 High=Velocity $-Tuin T 71*  Gunnery S-Turn @ 0,80 V" E
b
74 75 76 MaximumsVelocity S-Turn T 72*  Gunnery S-Turn @ V" ﬁ
77 78 19 Autorotation Cloch T'me T 73 Power to Auto, Transition @ 0.50 MY f
74  Power to Auto. Transition @ 0,70 V" H
7S Power to Auto. Transition @ 0.90 Vg 3
76 Auto. to Power Transition (IGL) i
77 Auto. to Power Transition 8 0.40 V" 3
80  Stabilized Auto., Fit, @ 0.40 Yy M
81  Stabilized Auto. Fit. @ 0.60 Vy &
82  Stabilazed Auto, Flt. & Max. Auto. A/S 2
83 Auto. Turn to the Right @ 0.40 V, §
84  Auto. Turn to the Right @ 0.60 Vi §
86  Auto. Turn to the Left @ 0.40 V“ '
87 Auto Turn to the Left @ 0.60 V X
. >
80 81 82 Auto, to Power Transition ¢ 78% Auto. to Power Transition & 0,60 Vi }
79* Auto. to Power Trans, 0 Max. Auto. A/S A
4
8t 84 85 Auto. to Power Transition ¢ D R T R LR TR TR ¢
i
86 87 38 HigheSpeed Auto. Turns T 85* Auto. Turn to the Right @ Max., Auto. A/S §
88* Auto. Turn to the Left @ Max. Auto. A/S .
.
89 90 91 HigheSpeed Auto. Turns T R R AR R R R LR R R R 3
92 93 94 Autoretation Landing « 89 Autorotation Landing ; %
F
98 Misc High-G Maneuvers L R R AL {3
H
96 Maximum n, Lxperienced M R R P S R LERE ’ i
97 Maximum A/S Ixperienced M e AR R R R R R L TR LR 3
i
it 7% Hovering Longitudinal Control Corr. (iGE) i
) .
i

E 98 99 100 Hovering Control Corrections
A 8* Hovering Lateral Control Corr. (iGE
5 9  Hovering Rudder Control Corr. (IGEL)

101 102 103 thigheSpeed Control Corr. N 38% Longitudinal Control Corr., # 0.90 V"
39* Lateral Control Corr. @ 0,90 V

40* Rudder Control Corr. € 0.90 V"

Ea

2NN Y R L i B St B Ry o

NOTI (3) T = category timer
C = category occurrence timer
M = maximum parameter magnitude dattained
N = null recording category (control corrections timgs are conservatively estinated from ’
other category timers)
NOTE (b)  * Indicates Damaging Flight Conditions
'
K
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DETERMINATION QF FCM SYSTEM TECHNICAL ACCEPTABILITY

The assessment of the technical acceptability of a candi-
date FCM system, such as the one described in Table 12, re-
quires analyzing the proposed system with the aid of two
computer programs, FCMMOD and SIMULE, which are documented in
Reference 1.

Program FCMMOD uses the fatigue design spectrum and
associated component damage rates, together with the FCM system
definition, to compute appropriate fatigue-damage coefficients
for each flight condition category. FCMMOD has a degree of
built-in conservativeness since it increases the effect of the
highly fatigue-damaging flight conditions in the derivaticn of
£light condition category damage coefficients by simply assign-
ing the maximum flight condition damage rate within each FCC as
the damage coefficient for that category.

Program SIMULE simulates the operation of an FCM system
by computing component fatigue lives from the FCMMOD-gencrated
fatigue-damage coefficients in a given utilization spectrum,
namely, the previously described mild and severe spectra in
this application.

Fatigue-Damage Coefficients for FCM System

Table 13 presents the fatigue-damage coefficients for the
FCM system described in Table 12. Any damage coefficient with
a zero value indicates that the corresponding flight condition
category is not fatigue-damaging for the particular component.
Accordingly, since flight condition categories 95, 96, and 97
are not specifically representative of fatigue design spectrum
flight conditions, their damage coefficients are zero,.

Proposed FCM System Compliance with Technical Acceptance
Criteria

For both the mild and the severe spectrum, Table 14 lists
the SIMULE-computed fatigue lives for each of the 10 AH-1G com-
ponents and the upper and lower fatigue life bounds for these
components.

Since all fatigue lives fall within the respective bounds,
the proposed FCM system and the associated FCM system damage
model satisfy the technical acceptance criteria and therefore
are valid means for assessing fatigue damage in AH-1G fatigue-
critical components.

Detailed FCM System Description

Although the technically acceptable FCM system described
in Table 12 defines the system parameter combinations and
associated threshold levels, it does not detfine a completely
workable system. For example, consider flight condition

51
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1 TABLE 13. FATIGUE DAMAGE COEFFICIENTS FOR EACH COMPONENT
IN EACH FLIGHT CONDITION CATEGORY
Flight Main Main Rotor Main Main Rotor Retention
Condition Rotor Yoke Rotor Pitch Strap
Category Blade Extension Grip Horn Ftg./Nut
1 0. 0. 0. 0. 0. . ;
2 0, . g, Q. 0. 2
3 0. 0. 0. 0. 0. '
4 0. a. 0. 0. . 3623E-01 ¥
] 0. 0. u. a, o, z
6 LASEVE-03 0. 0. 0. 0. toti
?  17B3E-02 0. 0. 0. a, Y
8 0. ¢, 0. 0, e, :
9 L34 0E-U3 0. 0. 0. 0, ¢
10 SHBOUE-0X 0. 0. 0. 0. -
11 0. 0. 0. 0. 0, i
te 0. 0. 0. q, 0, H
13 0. 0. 0. 0. 0. 3
14 0. 0. 0. 0. 0. i
15 0. 0. 0. 0. 0, b
16 0. 0. 0. v 0. ]
17 . 4245E-02 o. 0. 0. 0, ;
18 . @90UE-0X 0. 0. 0. 0. 1
19  EBEPE-03 0. 0. 0. 0. I
20 0. 0. 0. o, 0. i
21 0. 0. u. u, 0. b
ae  1137E~02 0. a, 0. 0, {
23 . 0. 0. 0. 0. ¢
24 L2100E-03 0. 0. 0. 0. i
2% 0. 0. 0. 0, 0. 1
26 0. 0. 0. 0. 0. :
a7 0. 0. . ¢, 0. i
28 L 1333E-03 G. 0. 0. 0, !
29 0. 0. 0. 0, 0. ;
30 0. 0. 0. 0. 0. §
31 0, 0. 0. 0. 0. }
32 0, 0. 0. 0. 0. H
33 0. 0. 0. 0. 0. ¢
34 .S18%€-03 0. 0. o, 0. ]
3% L2917E-03 a. . 0. 0. K
36 L2700E-03 0. 0. 0. 0. 3
37 . 1094E-~02 0. 0. 0, a, ;
38 < 4482E-02 0. 0, 0. 0, ;
39 . 1429E-03 0. 0. 0. 0. 3
40 .6778E-02 0. 0. 0. 0. g
a1 0. 0. 0. 0. 0. i
42 .B200E-03 0. 0. 0. 0. ?
43 . 3700E-02 0. 0. . 6233E~02 0. 3
44 .2867E-02 0. 0. 1167E-02 0. .5
45 +4193E-08 0. 0. . 1400E=~02 0. {
46 «S567E-02 0. 0. . 9478E~02 0, ;
47 . 1440E-02 .2970E-02 0. «7500E-03 0. i
43 . SP04E-02 . 7080E-02 0. +3156E~02 o. ;
49 < 1717E-01 .5107E-02 0. . 1499E-01 0. M
50 «3900E-01 . 1250E-01 0. . 2400E-02 0. {
51 +1640E-01 . 2366E~01 0. .4840E~02 0, ;
52 . 5860E-01 .2437E-01 o. . 2223E-01 0. i
i
4
i
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Flight Main
Condition Rotor
Category Blade

53 o.

54 +8000E~-03
55 . 3667E~02
56 «6667E-03
57 . S600E-02
58 . 1244E-01
e . 1085E+00
60 . 7730E-01
61  S173E+00
62 0,

63 . 3467E-03
64 .4053E~-02
65 . 5333E-03
66 .6BB0E~03
&7 . 2267E-02
68 . 4080E~02
-] . 7445E~02
70 . 6489E~-02
71 «2900E- 0
72 .S5100E~0e
73 .1123E-01
) . 1773E-01
7% . 9921E-02
rd . 1245E-01
77 0.

e 0.

29 LES11E-02
20 «3000E-03
81 1600E-03
32 .8667E-02
83 +4000E-03
24 » 1600E-03
8% .8B6TE-02
86 0.

8? 0.

a8 0.

89 0.

90 g,

91 0.

92 «1114E-01
93 .5320E-02
94 . 3947€-02
95 Oo

96 00

9? 0.

98 .8000E~-02
99 . 1400E~02
100 .1000E~02
101 .8100E~-02
102 .1140E-01
103 .5867E-02

A S meastind o~ on U R

TABLE 13.

Continued

Main Rotor Main
Yoke Rotor
Extension Grip
0. a.

0. 0.

0' 0.

0. 0,

O. 0.

. 1044E-01 .
. 1400E-01 ¢.
«1140E-01 0.
«1153E-01 g.
0. 0.

0. 0-

S, J.

R 0.

0. 0.

0. 0.

o. 0.

0. Q.

0. 0.

. 9050E~ 02 G.
0. Ue

0. 0.
LE133E-01 a.
. 3609E~02 a.

. 1705E~01 L 4785E-01

O' Oc

0. Uu

0. 0.

0. 0.

0. o,

0. Do

0. UN

0. 00

0. Ov

U. Q.

R 0,

0. 0.

0. 0.

0. 01

0. 0.

0. 00

0‘ 0-

.1 00SE-D) .
0. 0-

0. 0-

0.‘ 0.

0. Do

0. On

0' 0-

0. 0.

0. 0.

0. 0-

a

53

Main Rotor Retention
Pitch Strap
Horn _ Ftg./Nut
a. Q.
0. 0.
JH3I3IE~-02 0.
« 3333E--03 0.
»1120€-01 U.
. 1933E-01 0.
. 1050E-01 0.
.1700E-01 0.
+ 3733€-01 Q.
0. c.
0. .
0. 0.
0. 0.
0. 0.
. 3R44E~03 a.
0. 0.
456 0E-03 Q.
. 1204E~02 Q.
g. a,
0' Ul
0. 0.
0. 0.
l‘.l 0‘
0. Q.
0. t.
0. 0.
0. 0.
0. 0.
0. 0.
0' 0'
0. 0.
Ol 0’
0. a,
0. 0.
0. 0.
Q. 0.
0. o,
0. Ul
0. 0.
0. 0.
0. 0.
0. 0.
Ol 0.
0. 0.
C. 0.
0. V.
U. 0‘
0. 0.
8. 0.
0. 0.
0. 0,
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TABLE 13. Continued
Flight Swashplate Swashplate  Swashplate  Hydraulic Tail
Condition Drive Quter Inner Boost Rotor
Category Link Ring Ring Cylinder Blade
1 0. 0. 0. 0. 0.
e Q. 0. 0. 0. 0.
3 OI 0. 0. 0' 0.
4 0. 0. 0. 0. 0.
] 0. 0. 0. 0. 0.
6 0. 0. 0. 0. 0.
7 0. 0. 0. 0. 0.
8 0' 0. 0. 0. 0.
9 0. 0. 0. 0. 0.
10 Q. 0. 0. Q. a.
11 u. 0. 0. 0. 0,
i 0, o, a. U, u,
13 0. u, 0. 0. o,
14 G. 0, 0. (U 0.
1% U. O, 0. 0. 0.
15 U, o, o, o, 0,
v 0. 0. A4S 0E-03 o, u.
12 0. o, 0, 0, « SRQUE-UT
19 (UR 0. u. 0, TARTE-U S
e o, v, . v, U,
31 U, 0, Le o, 0,
e 0, U, o, 0. U,
o] o, Q. 0, 0. o,
&4 i, (UK u, u, O,
&5 u, a, 0, U, 0.
) 0, Q. 18 u, U,
7 . v U, v, « ES9ZE-0E
25 0. U 0. o, cABOUE-07
a9 u, 0. 0. o, TN
v 0, U, U, a, U,
31 0. 0. 0. 0, 0.
e 0, u, U, U, 0,
33 u, U, o, u, U.
EL) o, u, (U8 0, 0,
2 o, 0, 0, o, 0,
I u, u, 0, U, Sen?E-02
a7 u, 0, . 33SEE-03 a, U,
3% u, u. SOSIIE-O3 G, 0.
R o, U, L 1BSPE-O2 SE214E-03 JATNPE-DE
410 q, LENSHE-0 . TESSE-0E B1ESE-0g JPE7BE-G2
41 i, a, U, u, u.
3 0, 0. 0. G, 0.
33 ASRTE-O2 . 104 3E-01 SHIOUE-O3 ASMOE~-C U.
34 o, lua?PE-UOg 0. LJOULPE-0E « 1U00E-02
4% P ITSTE-DE CAUITE-OE LEHSIE-QO2 PCRUIE-UE OORPE-OR
4e . IEESZE-UE  10S2E-D1 . ATA4E- 02 . 1 3&CE-01 . SEB9E- 02
47 JIRIVE-02 LreQUE-Ge 54 0E-0O2 « 341 VE-UE «3107E-01
48 «ISDOE-D3 +4536E-02 . 37ENE~-O « 1265E~01 o I3I44E-02
43 D42 0E~ 02 459 2E-0¢2 . 33%93E~0¢ «4E99E-UY . 1360E-01
S0 SHYBOE-DZR «1350E-0e 1 300E-02 . 140 0E-01 . 1830E-01
51 . d0eeE~-0 « 3400E-02 . 3220E~-02 . 3312E-0) . 1916E-01
Se . 2E93E-0Y LB267E-(e +B8733E-02 «Pe?7E~(01 « 3IT33IE-0Y
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TABLE 13. Concluded
Flight Swashplate Swashplate  Swashplate  Hydraulic
Condition Drive Quter Inner Boost
Category Link Ring Ring Cylinder
S3 . 0. . 0.
S4 Q. 0. 0. 0.
55 . 1667E-02 0. «66B7E-03 + 1367E-01
56 0. 0. 0. «1667E-02
57 « 3267E-02 +6bE7E-03 .2000E-02 +4367E~02
%8 «6333E-0¢ A4333E-02 +6667E-02 . 1456E~01
59 «3000E-02 «1300E-02 «€000E-02 . 1400E-01
66 . 7800E~-02 . 1400E-02 +&720E-02 .2040E-01
61 . 1400E-01 +9600E-02 «6332E~-Q2 . 3800E-01
62 0. 0. 0. 0.
63 0. 0. 0. 0.
64 0. 0. 0. GE44E-03
65 0. 0. 0. 0.
éé 0. 0. 0, « 1600E-04
Y4 0. 0, 0. .
638 0. . 2880E~02 + 1487E-0¢ 0.
69 . 1453E-02 .2560E-03 0. « J413E-03
70 . 3289E-03 . S040E-02 + SC44E-02 « ISB6E-03
71 0. . 2250E-03 «2175E~02 0.
e 0. '+ 0, 0. .2000E~U4
73 0. < 15B3E-02 « 3917E-02 0.
74 o, 2600E-02 +4133E-02 «4000E-03
Fe-} 0. «A4737E~03 L27B3E-02 . 3421E~-03
76 0, . E273E-02 «105%E-01 0.
7 0, 0, 0. L
8 0. 0. 0. 0.
79 0. . 0. 0.
80 0. u. 0. 0.
81 0, 0. 0. U,
8e 0. «1200E~-02 +B000E-03 0.
83 0, 0. 0. 18
84 0. 0. a. 0.
8% 0. « 1200E-0e C2000E-03 u,
86 0. 0. u, 0.
37 0, 0. 0. 0.
83 0. .8000E-03 0. 0.
39 0. 0. 0. 0.
90 0. 0, 0. 0,
91 0. +B000E-03 U, 0,
9¢e 0. o, 0. 0.
93 0. 0. 0. 0.
34 0, . 0. 0.
9s 0. 6. 0. 0.
96 0. 0. 0. 0.
9?7 0. 0. 0, 0.
98 0, U. 0. . 1000E~02
99 0. 0. 0. . S60UE-02
100 0, 0. ¢. 0.
101 0. «4000E-03 0. 0.
102 o. 0. 0. 0.
103 0. 0. ¢. 0.
55

Tail
Rotor
Blade

0.

0.

0.
+1167E~02
« §333E-0¢2
. 3556E-02
.1000E~01
«7000E~02
«1680E~01

0'

.

0.

0.

0-

0.

» 3327E~02
+ 3840E~03
«6324E~02
«S730E~03
«&740E~0e
«8333E~03
. 1667E~01
«1866E~01
«&3I?7E-01

UI

0‘

0'

0'

a,
+6667E-03

0‘

U.
+6667E-03
0

0.
+S333E-03

o.

0.
«S333E-03

0.

0.
«S733E-03

0.

0.

0.

0.

0.

0.
«1260€E-01

0.
+4667E-03
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TABLE 14. TECHNICAL ACCEPTABILITY RESULTS \

FCM System Performance Fatigue Life Bounds
Assessed Projected
Component Identification Damage Life Lower Upper

Mild Utilization Spectrum

Main Rotor Blade .324574E-01 3,081 1,100 4,307
Main Rotor Yoke Extension .493331E-02 20,271 3,300 24,917
Main Rotor Grip .526500E-03 189,934 Unlimited 190,042
Main Rotor Pitch Horn .681070E~02 14,683 6,600 17,953
M/R Retention Strap Ftg./Nut .105077E-01 9,517 2,200 9,517 -
Swashplate Drive Link .458481E-02 21,812 11,000 27,353
Swashplate Outer Ring .723471E-02 13,823 3,300 18,707
Swashplate Inner Ring .573742E-02 17,430 3,300 25,128
Hydraulic Boost Cylinder .161467E-01 6,134 3,300 8,635 .
Tail Rotor Blade .118041E-01 8,472 1,100 12,106

Severe Utilization Spectrum

Main Rotor Blade .400355E-01 2,498 1,100 3,542
Main Rotor Yoke Lxtension .843841E-02 11,851 §,§00 14,779
Main Rotor Grip .143591E-02 69,643 Unlimited 69,686
Main Rotor Pitch Horn .112521E-01 8,888 6,600 10,596
M/R Retention Strap Ftg./Nut L223197E-01 4,481 2,200 4,488
Swashplate Drive Link .747809E-02 13,373 11,000 16,513
Swashplate Outer Ring .110711E-01 9,033 3,300 12,325
Swashplate Inner Ring .925062E-02 10,811 3,300 15,481
Hydraulic Boost Cylinder .233981L-01 4,274 3,300 5,145
Tail Rotor Blade .190302E-01 5,255 1,100 7,192

categories 50, 51, and 52, which represent high-speed asymmet-
rical gunnery run pullups. Although these maneuvers are iden-
tified by the combination of a vertical acceleration above
1.5g, a roll attitude between 10° and 35°, and an airspeed
greater than 0.95 V,, they are not adequately represented by
simply measuring th% time within which the parameters are
attaining the foregoing values simultaneously. Rather, these
maneuvers would likely be better represented by the time dura- &
tion of the roll attitude while it exceeded and returned to
10° but did not reach 35°, provided that the airspeed is above
0.95 V. at the initial 10° crossing and that the vertical
accelefation exceeds 1.5g within a prescribed time after the -
initial 10° crossing.

Various considerations, such as the reasoning in the fore-
going example, led to the definition of a much more detailed
FCM system. Because of the lengthy description needed to de-
fine each flight condition category in the resultant FCM systen,
these flight condition categories are depicted and defined in
Appendix A.

Because of the complexity of many of the flight condition
categories and the parameter monitoring requirements, the FCM
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recorder incorporates a microprocessor. During the develop-
ment of the FCM system, the airborne recorder was flight-tested
with an oscillograph recorder capable of monitoring those
parameters listed in Table 8. Then the two sets of data were
compared to evaluate the functioning of the FCM recorder and

to adjust the parameter threshold levels in the FCM system so
that the established flight conditions could be better defined.
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CHAPTER 3.
SYSTEM DESCRIPTION

The SIRS system consists of three discrete but inter-
related subsystems. The airborne SIRS recorder monitors
helicopter usage by identifying and storing the occurrences
of various flight conditions. The ground-based, portable data
retrieval unit transfers the recorder-stored data onto a mini-
ature data tape cassette on a monthly basis. At a central N
data processing site, the software system automatically pro-
cesses and analyzes the data, and then generates tailored
reports that present the usage and corresponding incremental
fatigue damage to each component for each monitored helicopter.

The complete system is pictured in Figure 9.

SIRS RECORDER

The SIRS recorder, viewed in Figure 10, incorporates a
Motorola Model 6800 microprocessor. This microprocessor
monitors the nine flight parameters listed in Table 15 and
from them calculates the density altitude and adjusted airspeed
limits.,

When these flight parameters fall in preset ranges or

form certain flight conditions, the microprocessor accumulates
their occurrences or the amount of time associated with them

in the recorder's data-storage memory. The flight conditions
are defined generally as various combinations of flight para-
meters, each in a preset range. Examples ot flight conditions
are flight time, rotor starts, and maximum vertical accelera-
tion. Table 16 lists the 22 flight condition categories estab-
lished for the AH-1G.

As shown in Figure 11, the SIRS recorder processes the

inputs from the transducers for the nine monitored parameters.
Each of the inputs is conditioned to a desired full-scale
signal level, multiplexed, and converted from an analog to a
digital signal to be processed by the microprocessor. The
recorder software logic identifies the flight conditions by
associating the variation and corresponding time of each input
parameter with those of the other input parameters. While
these conditions are being identified, the microprocessor
calculates the density altitude and limit velocities and tem-
porarily stores the calculations in the recorder's scratch
pad memory. The programs for these calculations and the flight
condition software logic are contained in EPROM (erasable
programmable read-only memory) integrated circuits. The time
spent in or the number of occurrences of the various flight
conditions is stored in the recorder's data-storage memory,
which consists of RAM (random access memory) integrated cir-
cuits. Since these circuits are volatile, the recorder
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Figure 10. SIRS Recorder.
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TRANSDUCERS CONDITIONERS
- MICRO P
" P & - INPUT/QUTPUT
) AID INPUT/QUTPUT N :
L [ CONVERTER PORT V
. N
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® L ’
° £
. X MICRO |
. H PROCESSOR [
[ ]
P j '
T c SCRATCH FLIGHT
3 = G - PAD PROGRAM| | CONDITION
MEMORY MEMORY
BATTERY

Figure 11. Schematic of Structural Integrity Recorder.
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TABLE 15. SIRS PARAMETERS

PP N S

&

3
Measured Computed

: Airspeed Percent V[ Airspeed
Pressure Altitude Percent Vy Airspeed
Outside Air Temperature Density Altitude

Gross Weight

Pitch Attitude

Roll Attitude

Engine Torque

Main Rotor Speed

Vertical Acceleration
g Touchdown

TABLE 16. FLIGHT CONDITION CATEGORIES

Title Measured Quantity
Measured
Occurrences Time Value

Flight Time *
Rotor Start/Stop *
Full Power Climb
Low-Speed Flight
High-Speed Flight
Maximum-Speed Flight
Normal High-~Speed Turns
Gunnery Turns
Gunnery S-Turns
Gunnery Run Dives-Symmetrical
-Asymmetrical

Symmetrical Pullouts
Asymmetrical Pullouts
High n, Maneuvers *
Normal Landings *
Autorotation Time
Autorotation Turns *
Autorotation to Power

Transition *
Autorotation Landings *
Quick~Stop Deceleration *
Maximum % Vi, *
Maximum nyz *

¥ ¥ * N ¥ ¥ H N X ¥ *

*
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incorporates dual batteries with a one-year operational ca-
pacity to retain the stored data when aircraft power is turned
off. The recorder software package is listed in Appendix B.
The recorder installation, including recorder, shock
mount, transducers, and harnesses, weighs 20.3 pounds; a de-
tailed breakdown of the installation's weight is presented
in Table 17. The recorder, including mounting rack and
electromagnetic-interference-shielded connector, is 17.50
inches long, 6.50 inches wide, and 10.15 inches high; these
dimensions include the necessary space for recorder/shock
mount sway. The recorder operates on 28 Vdc supplied by the

aircraft and consumes approximately 7 watts,

RETRIEVAL UNIT

SIRS is designed so that data need be retrieved only
once a month by the portable, flight-line data retrieval
unit pictured in Figure 12. During the transcription of the
recorder data onto the miniature magnetic tape cassette, the
operator interacts with the unit. While the unit displays
messages, the operator communicates with the unit through a
keyboard. Because of the on-board processing of the flight
data, the data recorded during the normal monthly operation
of more than 50 helicopters can be stored on a single data
cassette. T[he program used to permit retrieval uait and
recorder interactions is called the Initial Processing System
(IPS). The data retrieval, including setup, takes less than 5
minutes and can be performed on a flexible schedule. In
addition to data retrieval, the data retrieval unit performs
diagnostic checks of the recorder, on-board recorder battery,
and transducers. It can also be used as a readout device
during the transducer calibrations.

During the retrieval process, limited operator inputs
listed in Table 18 are requested to supplement data contained
within the recorder. The aircraft serial number is entered
in the format of fiscal year and aircraft number, xX-XxXxxX,
and supplements the recorder serial number, which is perma-
nently stored 2lectronically within the recorder. Since re-
trievals are not performed on a fixed schedule, the retrieval
data, in the format of day, month, and year, is another entry;
this information is used to indicate trends in the retrieval
data. The chronology of the data is identified by a numbering
device built into the recorder that increments each time a
retrieval is made. Logbook flight hours are entered to track
the variation between the actual flight and ground-operating
time and the logged time. The operating base is entered to
permit analyzing the fleet-wide variation in helicopter usage.
Finally, as requested by the display, the operator enters the
reason for the data retrieval. There are three acceptable
reasons: monthly retrieval, component replacement, and re-
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: TABLE 17. SIRS RECORDER WEIGHT BREAKDOWN :

Component Weight (1b) )
Recorder/Rack 9.25
Airspeed/Altitude

Transducer and Brackets 1.6
OAT 0.07
Vertical Acceleration

Transducer and Bracket 1.2

" Gross Weight Transducer

and Bracket 0.14
Harnesses and misc. hardware 8.0
Total 20,26

Figure 12. SIRS Retrieval Unit.
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corder maintenance. After the operator enters the supple-
mental data, the data retrieval unit performs a diagnostic
check of the recorder including its memory, makes a copy of
the recorder data residing in memory, and records the current
static values of each of the transducers. These data, to-
gether with the supplemental data previously entered by the

operator, are recorded on the miniature magnetic tape cassettes.

Each time the data is transferred, that is, from the memory

in the recorder to that in the data retrieval unit and from
the latter to the cassette, it is checked to verify the valid-
ity of the transfer.

TABLE 18. SIRS RETRIEVAL UNIT OPERATOR INPUTS

Aircraft Serial Number Base of Operation
Date of Retrieval Reason for Retrieval
Log Book Flight Hours

The various error messages listed in Table 19 are dis-
played when the diagnostic check detects recorder deficiencies,
when data cannot be retrieved or written on the tape cassette,
or when the tape cassette is not installed or is full. Each
coded error message (instructions for each are mounted inside
the cover of the data retrieval unit) leads the operator to
the necessary corrective action.

The data retrieval unit is 19.1 inches long, 15.6 inches
wide, and 9.8 inches high and weighs 45.4 pounds. The re-
tricval unit has a rechargeable power system and is housed in
a flight-line styled container. The recharging power required
is 110 to 120 Vac, 60 Hz.

SOFTWARE

Upon receiving the data from the miniature cassettes, the
software system first performs an initial data processing to
(1) verify the recorder operation and transducer functioning
and (2) to review the long-term trend of the transducer static
readings, and then analyzes the data. The analysis includes
the data segregation by specific flight condition categories,
the data conversion to a 100-flight-hour basis, and the data
presentation in terms of a usage spectrum. An example of this
data presentation is shown in Figure 13. Next the software
system governs three techniques to further analyze the data by
calculating the incremental fatigue damage for each critical
tracked component. The first technique is based on the rela-
tionship of the recorder data with the SIRS fatigue model
developed for the AH-1G helicopter. In the second technique
the calculations are based on the rates established by current
Army-approved component replacement times and the logbook
flight hours. The third technique is the same as the second
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SIRS SPECTRUM USAGE
AJRCRAFT3 c6-15254 LOG TIME: 19R8S.6 RETRIEVAL NDATF: S0477 REASON: SCHEDULED
RECORDER: 1030 BASE:s 1
DELTA LOG TIME: 1,0 NOURS
VALUES PER 100 HOURS WERE COMPUTED USING THF RETRIEVAL TIMg,
FLIGHY GRNSS TIMF (HOURS) OCCURRENCE
CONDITION WEIGHT (L8) RETRIEVAL PER 100 HOURS RETRIFVAL PER 100 HOURS

PPNV OBITOINPES PPN OSePew PPN YN LA L2 2 2 Y12 Yy CPPVERNTS PP EOTUeDeY
FLIGHT TIME ToTAL 0.9 100.0

1 <7750 n.s 56.9

2 77508750 0.4 43,

3 8750 0,0 0.0
ROTOR CYCLES ToTAL 1 13,8

4 1 13,8
OUICK STOPS T07AL 0.0 0.0

5 <7750 0,0 0.0

[ 77508750 0.0 0,0

? »8750 0,0 0.0
NORMAL LOGS TOTAL 1 113,8

8 <1750 1 13,4

9 7750=R750 0 0,0

10 »8750 0 0,0
LOW SPEED FLT T07AL 0.0 4,3

11 €77%0 0.0 0.4

12 7750=A750 0.0 3.9

13 »8750 0,0 0.0
HIGH SPEED FLT ToTAL 0.5 52.6

14 <1750 0.3 29,5

15 175048750 0,2 23.1

16 »8750 0,0 N.0
MAX SPEED FLT ToTaL 0,0 3,7

11 <1750 0,0 1.7

18 775044750 0.0 2.0

19 »ATS50 0,0 0,0
AIGH TORQUE FLT oty 0,0 0,0

20 <7750 0,0 0,0

21 7150=A750 0,0 0.0

22 »A750 0,0 0.0
LOW SPEED TURNS TOvaL 0,0 0,0

23 <1750 0.0 0,0

24 T1S0«ATSO 0,0 0,0

25 >8750 0.0 0,0

Figure 13, Sample of Spectrum Generated by
SIRS Software,
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AIRCRAFY: 66 - 16254

LOG TIMES

SIRS SPECTRUM USAGE

RECORDERS 1030 BASEs

DELTA LOG TIMES

1,0 HOURS

1985.,6 RETRIEVAL DATE: S0477

VALUES PER 100 HOURS WERE COMPUTED USING THE RETRIEVAL TIME,

GROSS TIME (HOURS)
WEIGHT (LR) RETRIEVAL PER 100 HOURS

FLIGHY
CONDITION

SOVOTOPORNOPONREY

HIGH SPEED TURNS
26

27
28

LOW SPEED DIVES
29

30
3

MED SPEED DIVES
b1

) )
34

HWIGH SPEED DIVEY
38

36
37

MAX SPEED DIVES
38

19
40

LOW 3PD ASYM P/y
L]
a2
()

MED SPD ABYM P/U
A
as
48

HI SPD ASYM P/U
47
(1]
(1)

MAX SPD ASYM P/U
0

51
52

OOV ePPoRew *OOOOROew
T0TAL 0,1
<717%0 0,1
77508750 0.0
8750

0
TOTAL 0,0
<1750 0,0
77508750 0,0
»8750 0,0

TOTAL
<7750
77508750
»87%0

TOTAL
<7780
77508750
»87%0

(- N N-X-] OO
* ® o o
(- - N-3 Qoo

TOTAL 0
<7750 0
17808750 0
»8750 0

TOTAL 0,0
<7750 0,0
17508750 0,0
»8750 0.0

TOTAL 0,0
<7780 0,0
77508750 0,0
»87%0 0,0
TOTAL 0,0
<1750 0,0
775028750 0,0
>87%50 0,0

TOTAL 0,
<1750 0,
771508750 0,
>87%0 0,

Figure 13,
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SIRS SPECTRUM USAGE &

AIRCRAFTY 66-15254 LOG TIME: 1985.6 RETRIEVAL DATF: 50477 REASONg SCHEDULED k-

RECORDER: 1030 AASE: 1 .

DELTA LOG TIME: 1,0 HOURS 53

VALUES PER 100 HNURS WERE COMPUTED USING THE RETRTEVAL TIME, k-

A

FLIGHT GRNSS TIME (HOURS) OCCURRENCE #

CONDITION WEIGHT (LB)  RETRIEVAL PER 100 HOURS RETRIEVAL PER 100 WOURS %

- . LI XTI L XYL 2 LY ) OO POPOVNES boveodedwe LI XA I IY Y Y Y Xy LIl 2l LT X X3 TP RNORSTeIR® @

LOW SPD SYM P/U TnTAL 0,0 0.0 3

53 <1750 0,0 0.0 3

sy 7750eR750 0,0 0.0 .

55 >AT50 0,0 0.0 g

- MED SPD SYM P/U TOTAL 0.0 0.0 '%

Sé <1750 0,0 0.0 @

57 77508750 0.0 n.0 2

S8 >8750 0,0 0.0 i

HIGH SPD SYM P/U  TOTAL 0.0 0.0 §

59 <77%0 0,0 0.0 g

60 77508750 0.0 0.0 H

61 >8750 0.0 0.0 :

LOW $PD GUN TURN TOTAL 0,0 0.0 i

: 62 <1759 0,0 0.0 §

J 63 77508750 0.0 0.0 3

: 64 »8750 0.0 0.9 3

3 4

% MED SPD GUN TURN TOTAL 0,0 0.0 4

3 5 <1750 0,0 0.0 %
o 66 7754 .AY50 0.0 0.0
5 o7 >A750 0,0 0.0

%

H1 SPD GUN TURN T0TAL 0.1 5,9 P

68 <7756 0,0 0.8 3

69 77504750 0.0 S.t ;
70 >A750 0.0 0.0

GUN 3eTURN T0TAL 0.0 4.4 |

" <7750 0,0 4,4 g

72 7750eA750 0.0 0,0 b

73 »8750 0,0 0.0 g

Z

MAX SPD SeTURN TOTAL 0.0 0,0 o

74 <1750 0,0 0.0 i

1% 1750=A750 0.0 0.0 3

76 >A750 0.0 0.0 1

]

AUTD TIME TOTAL 0.0 2.1 CE

: " <7750 0.0 2.1 5

s . 7% 77508750 0.0 0,0 %

3 19 >8750 0.0 0.0 g

3

5 jAS

'3

z Figure 13. Continued 3
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SIRS SPECTRUM USAGE

AIRCRAFTS 6616254 LOG TIMET 1985,6 RETRIEVAL DATE: S0477 REASONs SCHEOULED
RECORDERS 1030 BASE:

DELTA LOG TIME:Y 1.0 HOURS

VALUES PER 100 NOURS WERE COMPUTED USING YHE RETRIEVAL TIME,

PLIGHT GROSS TIME (HOURS) OCCURRENCE
CONDITION WEIGHT ((B) RETRIEVAL PER 100 HOURS RETRIEVAL PER 100 HOURS
POPOONIPSOSPPEIPe LA L L L4 2 1 1) SOV oeORNS POOPPONOPOOOS (2121 T2 1) PeSOPRSOYasee
LOW NI AUTO/PHWR TOTAL 0 0,0
a0 <7780 0 0,0
[ 3] 77508750 0 0,0
82 »87%0 0 0,0
HIGH NI AUTO/PWR TOTAL 0 0.0
83 <7780 0 0,0
(1] 7750=A750 0 0,0
1] »8750 0 0,0
LOW NI AUTO TURN TOTAL 0,0 0,0
86 €775¢ 0.0 0,0
ay 7750=8750 0,0 0,0
[ 1] »8750 0,0 0.0
HI NZ AUTO TURN TOTAL 0,0 0,0
8 <1780 0,0 0.0
L[] 77804750 0,0 0,0
L} »>8750 0,0 0.0
AUTO LOGS T0TAL 0 0,0
. <1750 0 040
9 771808750 0 0,0
" »8780 0 0,0

9%  MIGH N2 COUNTER 12
96 MAX NZ VALUE 2.4
QT MAX A/S VALUE 1,0

Figure 13, Concluded
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except that the recorder flight time is used instead of the
logbook flight time. Figure 14 is a sample of the format used
in presenting the data calculated by each technique. The
software package permitting these calculations is called the
Fatigue Damage Assessment System (FDAS).

TABLE 19. RETRIEVAL UNIT ERROR MESSAGES

LINE ABORT? - Denotes that the retrieval unit-to-
recorder communications were not
properly established or were
interrupted.

DATA ABORT? - Denotes that there was an error
condition during the transmission of
the recorder data onto the retricval
unit's temporary data-storage memory.

WRITE ABORT? - Denotes that there was an error
condition during the data writing on
the magnetic tape.

FULL ABORT? - Denotes that sufficient space could
nct be found on the magnetic tape for
the data writing.

TAPE ABORT? - Denotes that the tape cassette is not
capable of reading or writing because
of its malfunctioning or improper
positioning.

COUNTER - Denotes that a bad memory location
was detected during the diagnostic
check of the recorder's data storage
memory.

BATTERY - Denotes that the recorder's battery
power supply is marginal.

Software Concept

é
i3
¢
&
g
%’
&
£

The data processing and management system is composed
of three parts: the Initial Processing System (IPS), the
Fatigue Damage Assessment System (FDAS), and the Component
Tracking Management System (CTMS). Each of the three modules
of the system was treated and designed as a separate entity.
This allows for case of maintenance of the system and flexi-
bility in the operation of the system.
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COMPONENT DAMAGE

AIRCRAFYT: 66-.15254 LOG TIME: 1985,6 RETRIEVAL DATET S0477 REASON: SCHEDULED
RECORDERS 1030 BASE: ¢

DELTA LOG TIMES 1,0 HOURS

DELTA RECORDER TIMES 0,9 HOURS

FLIGHT HOUR DAMAGE

COMPONENT SIRS DAMAGE RECORDER LOG
TP T T T P PR TP P cesannmceny encossssses sonsemovsce
MAIN ROTOR RLADE 0,00072 0,000R0 0,00091
MAIN RNTOR YOKE EXTENSION 0,00035 0.00027 0,00030
MAIN ROTOR GRIP 0,0 0,00009 0,00010
MAIN ROTOR PITCH HORN 0,00002 0,00013 0,00015S
RETENTION STRAP FTG/NUT 0,00009 0,00040 0,000u%
SWASHPLATE DRIVE LINK 0,00007 0,00004 0,00009
SWASHPLATE OUTER RING 0,00004 0,00027 06,00030
SWASHPLATE INNER RING 0,00010 0,00027 0,00030
HYDRAULIC AONST CYLINDER 0,00010 0,00027 0,00030
TAIL ROTOR BLADE 0,00017 0,00080 0,0009%

Figure 14. Sample of Component Damage Generated by
SIRS Software.
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The first two modules, IPS and FDAS, were written in
FORTRAN in accordance with contract requirements, but the CTMS
was written in COBOL. This was done to maintain a uniformity
with the data management techniques being employed by the
AVRADCOM computer center. This was in the best interest of
the Government, since AVRADCOM is postulated as the eventual
user of the system and the development was to be performed on
AVRADCOM equipment.

The development was to take place by utilizing a Remote
Job Entry terminal located at Technology Incorporated and
connected to the AVRADCOM computer via a dial-up communication
link.

The following paragraphs briefly describe the main func-
tions of the three modules, and Figures 15, 16, and 17 present
system flow.

IPS. The Initial Processing System checks for proper operation
of the recorder, the recording medium, and the retrieval unit.
This is performed in a number of ways; .nitially, the IPS
checks the parity of the data and the results of the built-in
test. The data from the individual counters are then tested
for validity to assure that they are within reasonable
tolerances.

If the data or any part thereof are determined to be
invalid, conservative estimates based on past usage and engi-
neering judgment are made for the erroneous data.

The valid data and/or the estimated data from the var-
ious counters are then written on an output tape and identified
as actual or estimated for further processing. A printout
identifying any equipment problems is also prepared for sub-
mittal to thc appropriate activity.

FDAS. The Fatigue Damage Assessment System takes each of the
forwarded counter values and assigns a damage value to each
component according to the model established for the monitored
aircraft type. The actual and estimated incremental damages
are kept separate for each component.

A data tape is then written and forwarded for further
processing. This tape contains the actual or estimated incre-
mental damage for cach component type, identified by aircraft
serial number. The date of the data is also forwarded.

CTMS. The Component Tracking Management System is the main
data management module of the overall system. Its primary
fun:tion is to update and maintain two tracking files and to
generate data reports for field and management usage,

The programs take the data passed on from the FDAS and
check the date, in case of removal, to determine with which
componcnts the data is associated. The appropriate component's
damage fraction is then updated, still retaining the identity
of the actual and estimated parts.
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¢ COUNTER SATURATEO?

SINGLE
RECORD YES SEY Z' ON
RECORDER
STATUS
C  CURRENT READ PARITY p——ed i
CALCULATE
INCREMENTAL
COUNTS

SEY 1, ON

¢ COUNTERS RESET?

€ RETRIEVAL READ PARITY INCREMENT
POSITIVE
?
SET PREVIOUS
Yes COUNT T0
26R0
SET 2, ON 1
CALCULATE
INCREMENTAL

I | COUNTS
TNCREMENT € TIME COUNTER CHECKS
RECORD

DATA
¢ BIT TEST ESTIMATE

RECORD 8Tpr 8N,

) CALCULATE ¥

BIT
» ATR. ANL-
[
SET 2, ON Nr
<§:>
Figure 15. Flow Chart of IPS Processing.
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C  DATA ESTIMATION
CHECKS
SET 2, ON
. INVALTO ESTIMATE
RECORD DATA

UPDATE

RECORDER

STATUS ]

COMPUTE -
at AT S
AT@ B ﬂf_ SET 7, ON UPDATED CHECK
‘ L RECORDER BIT
STATUS
C ROTOR START/STOP
NO CHECKS |
GUNERATE
PROCESSED
Tes SET 2. o OATA FILE
R LSTIMATE 1 ’
ON aT,
]

X, = THRESHOLO ON LOG TIME ACCRUAL SET 2. ON X, = UPPER THRESHOLD ON
{ " LANDING COUNT
Al a1
4Tq f X, = LOWER THRESHOLD ON
Ror o ! Rex oo — ' LANDING COuNT
X, * UPPER THRESHOLD ON
ROTOR START/STOP COUNT
X, = LOWER THRESHOLO ON
ROTOR START/STOP COUNT
Figure 15. Concluded
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Figure 16.

Flow Chart of FDAS Pr
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The status file is then updated with the new damage frac-
tions. The status file contains the historical informatien
concerning each aircraft. This includes the configuration of
each aircraft and the time and damage fraction associated with
each fatigue-critical component. It is from this file that the
majority of the daia reports are generated.

A secondary file, the removal file, is maintained for
all removed components. This file is used to provide statis-
tical information on removals and to track components removed
for overhaul or for other reasons.

It is from these files that the various data reports are
generated. Figures 18, 19, and 20 give samples of the reports
that will be presented. The reports deal with status of the
various components once a certain damage fraction is attained,
life projections over selected periods of time, and component .
replacements due or overdue. The reports will be used for
maintenance, management, and planning.

Supplemental Data. In the event of component removals, a
supplemental update form (Figure 21) will be completed. This
data will be entered into the FDAS to ensure the proper
accountability and tracking of the various components.

INSTALLATION KIT

The SIRS recording system was married to the AH-1G air-
frame via an installation kit consisting of miscellaneous
structural hardware, cabling, and specialized instruments., All F
of the mounting systems were designed to withstand crash loads.
This discussion focuses on the sensor suite providing the in-
puts to the recorder.

The remote sensors required to obtain the data are grouped
into the following four categories:

[va)

Pressure transducers
Accelerometers

Position potentiometers
Miscellaneous sensors

Pressure Transducers

The pressure transducers are capacitive type, providing a
0-5 Vdc output signal. For airspeed, a differential pressure
transducer that senses the difference between the pitot and .
static pressures is used. For altitude, an absolute pressure
transducer senses the aircraft static pressure.

Accelerometers

The transducer used to sense the normal (vertical) acceler-
ation is a servo force balance type providing a 0-5 Vdc output
signal.
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U.S. ARMY CRITICAL PARTS MANAGEMENT PROGRAM
FATIGUE-CRITICAL COMPONENT REPLACEMENT FORM

BASE: ) [ac TaiL o) [arc TYPEMODEL ) 4
REPLACEMENTS ACCOMPLISHED A 4 REASON REMOVED (X) i
A/C HOURS MO/DAY/YEAR MECHANIC o eaneo | ot moD seavice - o
' 2| 3] 4] 5 | |
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ohR
m E| REMOVED PARY P/N SIN
]
[ ]
0 3 INSTALLED PART P/N SIN
N
: : TSN: 1s0:
Y s
REMARKS:

Figure 21. Update Form for Component Removals.

Flight Control Positions

To sense rudder pedal position, an infinite resolution
potentiometer is used. This unit is wired such that the poten-
tiometer acts as two arms of a Wheatstone bridge circuit. Con-
nected by special actuators to the control linkage, tl.is poten-
tiometer senses the movement of the respective contro. system.
The mechanical attachments between the potentiometer and the
control linkages are designed so that binding of the mechanisms
will cause them to fail; hence, control of the helicopter can-
not b inhibited by the instrumentation system.

Miscellaneous Sensors

Several parameters either require sensing the aircraft's
flight instruments or cannot be placed in one of the above
categories. The following paragraphs discuss these sensors.

OQutside Air Temperature. The outside air temperature is moni-
tored with a thermal ribbon. The ribbon is attached to, but
insulated from, the outer skin of the aircraft. The ribbon is
a resistor whcse resistance varies with the temperature and is
used as the active arm of a Wheatstone bridge circuit.
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1 Rotor Speed. To monitor the main rotor rpm, a special circuit
4 was designed and fabricated. The circuit is composed of all

E solid-state materials and is mounted on a printed circuit board
3 within the signal conditioning section of the recorder. The

e

output of the counter controls a gate which varies a +5 Vdc
circuit between +5 Vdc and ground. The resultant voltage is
filtered and reduced to a pure dc signal acceptable to the

recorder.

e A s
= "

Engine Torque. Engine torque data is acquired from the air-
craft’s torque transmitter by utilizing a differential amplifier
input circuit for isolation and a converter to condition the
torque signal. The initial signal is a fixed-frequency, varying
; amplitude, engine torque signal that is converted to an appro-

2 priate dc signal. Variations in this signal due to changes in
the torque reference are nullified by monitoring the reference
and having the recorder perform a division.

% acr s

St

.
1% D Ay

Roll and Pitch Attitudes. Attitude data is obtained from the

: roll and pitch outputs of the aircraft's attitude gyro. This

i interface uses solid-state, modular, synchro-to-dc converters

- with the reference and synchro inputs fully isolated to prevent
any degradation of the aircraft's attitude indicator system.

3 Gross Weight (GW) Indicator. The parameters to compute the

2 gross welght of the helicopter were originally measured prior

to each takeoff by two Kistler Morse Model DMC-3-FF-4-1-03

E: piezoelectric beam sensors attached to the midpoint of the

3 fore-and-aft crosstube members of the skid landing gear. While

4 the helicopter was on the ground the rotor speed was less than
250 rpm, the SIRS recorder processed the sensor outputs to

yield the gross weight. An algorithm incorporated in the re-

corder decreased the gross weight value as fuel was burned.

No adjustment was made for the decrease in gross weight due to

E stores or ammunition dispensing. When this procedure was found

3 inadequate, another approach was used.

3 The second GW sensor system involved bonding strain gauges

3 to the lift links' transmission mounting members. This was

3 intended to give positive, real-cime GW data.

4 Power and Signal Interconnections

A A system wiring harness includes all wiring between the
b recorder, remote sensors, and aircraft power. The 28 Vdc is

% acquired by installing circuit breakers in the pilot's right-
: hand breaker panel and connecting to the nonessential dc bus.
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" CHAPTER 4. §
i ) TEST PROGRAM k

A test program was conducted to evaluate the concept of
] flight condition recording as a means of collecting usage
: spectrum data. The test program consisted of five elements.

Brassboard Evaluation

°
3 . Laboratory Qualification Testing
E . Reliability Analysis
3 ° Prototype Flight Test
3 ) Usage Spectrum Data Collection
E Brassboard Evaluation
]
@ From the outset, critical elements of SIRS were identified

for early testing. The final product was quite close to the
original conception.

PECasit

On-Board Recorder. The recorder circuit can be functionally
divided into two primary sections, analog and digital. ihe
analog section consisted of a reference voltage source, indivi-
dual circuits for each input parameter, and the A/D multiplexer.
The digital section consisted of the processor system (CPU,
memory, serial and parallel I/0 ports), a timing circuit,
address decoding, power fail-restart, and an aircraft power-to-

battery switchover circuit,
Analog circuits for engine torque, temperature, roli

5 B tuerta b

v

SR s

g attitude, the reference voltage, and A/D multiplexer circuits
4 were provided. The circuit for the main rotor rpm is presented
3 in Figure 22, The circuit for the outside air temperature

measurement is presented in Figure 23. Figures 24 and 25
depict circuits used for various buffered circuits.
Preliminary tests of the digital section of the recorder
provided FCC counter data to be stored in one MC5-101L-4 CMOS
memory chip. Although satisfactory for the 36 flight condi-
tion categories presently defined, the possibility that gross
weight considerations could double this number led to the sug-
gestion that the digital printed circuit board layout should
allow for the addition of a second memory chip. The brass-
board configuration was modified to include the additional
memory. Laboratory tests confirmed this to be satisfactory. ;
£ The flight recorder case size was to conform to Drive
4 404, 3/8 airborne transmitter rack. The case was constructed of
3 19-gauge (0.042") 0.1018 cold-drawn steel.
1 The finish applied to all steel parts was according to
‘ QQ-P-416 Type 2, Class 2 (chvomium and chromate plating). All
parts internal to the flight recorder with the exception of
the power filter were mounted on the PC boards. The power
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filter was mounted to a bracket on the bottom of the case.

Two PC boards were used, one for the analog section and
one for the digital section of the recorder. The PC boards
were mounted to the side cover plates with standoffs positioned
to minimize vibrations.

A 3M connector system was used on the PC boards to enhance
maintainability. A retention clip was used to lock the plug to
the receptacle. A Cannon-type PSE connector on the front panel
provided access for the retrieval unit. This connector was
normally capped. A Cannon PDP connector mounted on the rear
panel of the case provided connection to both the transducers
and the input power.

Gaskets on the side covers were a combination of woven -
Monel for electromagnetic interference (EMI) protection and
sponge silicone to provide a moisture/dust seal. The connector
gaskets were Monel-impregnated silicone. Metal slugs were pro-
vided as part of the cover gaskets to preclude the possibility
of overcompensation of the gaskets. All fastensrs were speci-
fied to MIL-N-25029.

The flight recorder was mounted in a Barry Controls 3/8
ATR tray with helicopter shock mounts.
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Data Transfer Unit (DTU). The original design concept required
the DTU to serve a dual role - as a retrieval unit in extract-

ing data from the recorder and storing it on cassette tape,

and as a test unit to enable an operator to view the extracted

data.

As a brassboard retrieval unit, operator inputs would be
requested via a six-character alphanumeric display. The ]
operator inputs would be entered through a numeric keyboard.

After these operator inputs were accepted, the recorder, on
request of the retrieval unit, would send the counter data, all
digitized analog channels, and a repeat of the counter data
following a test routine. The retrieval unit stored all infor-
mation and at retrieval conclurion stored it on cassette tape.
The alphanumeric display was used to notify the operator of

any failures or incorrect inputs. The software flowchart of
the communication between recorder and retrieval unit describes
the data extraction procedure and is presented ju Figure 26.

Following data retrieval, any of the information resi-
dent in the retrieval unit was viewed by entering an address
via the keyboard. .

z,

o

e R SR S NS e T b

Data Processing Software. As stated, the data proczssing soft-
ware system was to consist of three major elements: the

Initial Processing System, the Fatigue Damage Assessment System,
and the Component Tracking Management System. Detailed infor-
mation concerning each of these systems and their operation

had been previously planned (Reference 1, p. 76).
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R (RECORDER)

CONNECTION OF RU TO R CAUSES AN
-~ o INTERRUPT TO BE GENERATED WHICH
TRANSFERS CONTROL TO THIS ROUTIRE

WALT FOR INSTRUCTIONS FROM RU

R STATUS CHECK REQUESTED?

SEND VERIFICATION INFORMATION
COUNTER DATA REQUESTED?

SEND COUNTER DATA

R S/N, A/C TYPE, STATIC READINGS

REQUESTED?
SEND R S/N, A/C TYPE, STATIC

READINGS
INITIATE SELF-TEST?

RUN SELF-TEST SEQUENCE

NOTIFY RU THAT SELF-CHECK
COMLETE

REQUEST RETRANSMISSION OF
IHSTRUCTION

E
%
2

DISCONNECTION OF RU FRONM R GENERATES
A% THTERRUPT WHICH RESULTS IN CONTROL
BEING RETURNED TO MATN

FOR RU  ALL TRANSMISSIONS (EXCEPT SELT-TEST
COMPLETE) MuST BE RECEIVED WITHIN
10 MS [F NOT RECEIVED, FOLLOW ERROR
PROCEDURE .

RU (RFTRIEVAL UNIT)

ACQUIRE OPERATOR ENTRIES
ENTRIES OK?

REQUEST R STATUS
STATUS = OPERATIONAL?

LAST TRY?

NOTIFY OPERATOR OF FAILURE, STOP

REQUEST R S/N, A/C TYPE, STATIC
READINGS

REQUEST RETRANSMISSION OF DATA

DATA 0K?

LAST TRY?

NOTIFY OPERATOR OF FAILURE, STOP
REQUEST COUNTER DATA

REQUEST RETRANSMISSION OF DATA
DATA OK?

LAST TRY?

NOTIFY OPERATOR OF FAILURE STOP
LAST COUNTER?

REQUEST RECORDER SELF-TEST SEQUENCE
WAIT FOR TEST COMPLETF

REACQUIRE COUNTER DATA (SEE ABOVE)
REQUEST R STATUS

STATUS = OPERATIONAL?

LAST TRY?

NOTIFY OPERATOR OF FAILURE, STOP

POSITION TAPE TO END OF DATA, ERASE
FORWARD IF TAPE ERROR OCCURRED.

WRITE DATA 10 TAPE

BACKSPACE TAPE TO BEGINHING OF THIS
FILE
READ DATA

DATA 0K?

LAST TRY?

NOTIFY OPERATOR OF FAILURE
WRITL FILE MARK ON TAPE
ST(P

Figure 26. Retrieval Unit Recorder Communications.
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The brassboard and supporting software evaluations were
essentially complete by the time Critical Design Review was
completed. The conceptual approach was found satisfactory and
preparation of test articles was begun. It was recognized
that reliability was of primary importance to the SIRS equip-
ment. Thus a reliability assessment was provided.

Reliability Analysis

A reliability analysis was performed using MIL-HDBK-217B
and the component manufacturers' data to predict the wmean-time-
between-failure (MTBF) for the SIRS recorder. The results of
the analysis are summarized in Table 20. The calculated MTBF
of about 7300 hours for the SIRS recorder includes consider-
ation of a helicopter operational environment in a worldwide
scenario. As such, the 7300 hours MTBF is considered realistic.
The analysis did not include the processor board batteries,
which in this application were expected to have a lifetime well
in excess of 6 months. Furthermore, although only one such
battery is required, a second battery is included in the design
as a redundant feature to enhance the operational reliability.
The MTBF of the transducers w«ud installation kit is about 1400
hours, resulting in an overal.: system MTBF of about 1200 hours.
However, loss of a transducer input does not result in invalid
recorded data. The missing Iuput can be synthesized during
data processing. In addition, periodic calibrations and other
maintenance actions should identify potential transducer fail-
ures before they occur. Operation of four recorders during
software development, burn-in prior to qualification test, and
qualification and flight tests resulted in an accumulated
operating timc in excess of 500 hours. Only one failure was
recorded. This occurred during the environmental portion of
the qualification tests. Upon conclusion of the temperature-
humidity-altitude test, the recorder did not operate. The
cause was identified as leaking batteries and the resulting
contact corrosion.

Laboratory Qualification Testing

The qualification testing was designed to assess the per-
formance of the SIRS recorder in simulated EMI/electromagnetic
compatibility and normal airborne environments conforming to
MIL-STD-461/462 and MIL-STD-810, respectively. Table 21 sunm-
marizes the test conditions for each environment. Figure 27
shows a typical test sectup.

Two recorders were subjected to the testing: S/N 005,
which was packaged in a steel box, and S/N 1007, which was con-
tained in an aluminum box for potential weight savings if the
aluminum base proved adequate during the testing. S/N 005 was
used in the normal airborne environment test while S/N 1007 was
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TABLE 20. RELIABILITY ANALYSIS SUMMARY
Failure
Component Part No. Rate(a) MTBF (hr)
Processor Board 074032D30014 55.9854 17,862
Signal Condition-

ing Board 074032D30019 50.6592 19,740
Power Supply C5/T15/165/x 16.6667 60,000
Filter RF6125 0.0560 17,857,143
Termination

Assembly 074032C30011 0.5820 1,718,213
Internal Cables/

Connections - 11.7040 85,441
Connector KPSE02A12-10S 1.8630 536,769
SIRS Total 137.5163 7,272
Circuit Breaker MS22073-3/4 1.9650 508,906
Gross Weight

Sensor DCMC3FF41 254,2370 3,934
OAT Sensor S6B 97.1930 10,289

8 Altitude Sensor 1332A3 94,5200 10,580

F Airspeed Sensor 133201 94,5200 10,580
Accelerometer SA109-B-1/+3SL  174.1940 5,741
Miscellaneous

Connections - 0.7300 1,369,863
Transducers and

Installation

Kit Total 717.3590 1,394
System Total (b) 854.8753 1,170
Notes:

(a) Estimated number of failures per million hours,
(b) Excludes aircraft inputs.
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s TABLE 21. SUMMARY OF QUALIFICATION TESTS k¢
9 ke
! a. MIL-STD-461/462 Tests 3
% Test §
3 Method Description Remarks %
i . =
F CEO1 Conducted Emission, 30 Hz to 20 kHz, Info. Only 3
A Power Leads %
g CE02 Conducted Emission, 30 Hz to 20 kHz, Info. Only :
3 Control and Signal Leads . ﬁ 3
g CE03 Conducted Emission, 20 kHz to 50 mHz, g
g Power Leads | §
g CE04 Conducted Emission, 20 kHz to 50 mHz, Info. Only i i
4 Control and Signal Leads ¥
i CS01 Conducted Susceptibility, 30 Hz to 8
: 50 kHz, Power Leads 8
: Cso2 Conducted Susceptibility, 50 kHz to b
E 400 mHz, Power Leads 4
E CS06 Conducted Susceptibility, Spike, &
' Power Leads
¢ RE02 Radiated Emission, 0.014 to 10 gHz,
a Electric Field %
& RS02 Radiated Susceptibility, Magnetic 8
3 Induction Fields B3
4 RS03 Radiated Susceptibility, 14 kHz to ¥
3 10 gHz, Electric Field 3
|
j b. MIL-STD-810 Tests .
% Test | |
3 Method Procedure Description B
i E— e — ¢
; 504 1 Temperature Altitude: %
b -25°C to 50°C, 0-20,000 ft. P
3 518 I Temperature, Humidity, Altitude: S
g -40°C to 50°C, 0-95% RH, -
3 0-20,000 ft. [
33 507 1 Humidity: 6-95% RH :
¢ 513.1 11 Acceleration i
. 511 I Explosive Atmosphere %
i 510 I Dust {
I 514.1 1 Vibration (Category C Equipment) ;
k- %
:gf
| i
A ' b
b i
E > 5

%
e
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used in the EMI/EMC environment test; its test results could be
applied to S/N 005 whereas the converse would not be possible.

The tests were successful in that the few operational dis-
crepancies that occurred during the tests could be eliminated
by simple corrective actions. The correction actions were such
that the high level of confidence in their effectiveness pre-
cluded the requirement for retests. Of the five discrepancies
observed, four occurred during the EMI tests and three of the
four were correctible by proper termination of shields in the
signal cable, shorter wire lengths, and improved wire routing.
The fourth discrepancy was due to the SIRS recorder logic test )
program and could not be attributed to the EMI environment.
The fifth discrepancy was a leaking battery condition that
developed during temperature-humidity-altitude testing. A .
suitable battery replacement eliminated the problem.

Phase I Prototype Flight Test

The prototype flight test was held and the program was
formally introduced to Fort Rucker personnel on 5 November
1976.

Instrumentation System. To obtain the data for the validation
of the SIRS recorder, two Century Model 409B oscillograph re-
corders, each with 14 data channels and capable of recording
numerous dynamic parameters on 3-5/8-inch-wide photosensitive
paper, were used in this program. One oscillograph was to
record FCR (Flight Condition Recognition) data and the other
to record SIRS flag data. The FCR oscillograph recorded the
dynamic parameters that would permit identifying the various
flight conditions encountered during the flight test program.
The SIRS flag oscillograph recorded the various SIRS parameter
levels that would trigger the logic routine operations and
consequently provided the data to verify the functioning of the
logic routines.

In general, each oscillograph had 12 channels available
for recording the in-flight parameters. Of the remaining two
channels, one was used to delineate a time pattern reflecting
a 1l-minute cycling, and the other was used to trace a static
line for measurement reference. Table 22 presents the para-
meters recorded on each oscillograph. As apparent in this
table, several parameters were recorded by both oscillographs
so that the two oscillographes -.ould be readily correlated. -
The FCR oscillograph parameters were recorded as analog values
while the flag oscillograph pavameters were presented either
as analog values for the parameters in common with both oscillo-
graphs or as ranged data for the output of the SIRS recorder.

The signal conditioning units used to regulate the voltage
signals from the various transducers were the Technology Incor-
porated Models 074037D30007-1 and -2 for the flag and the FCR
oscillographs, respectively.
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TABLE 22. RECORDED PARAMETERS

Parameter FRC Oscillograph Flag Oscillograph
Airspeed Analog Range
Pressure

Altitude Analog -
Outside Air

Temperature Analog -
Density

Altitude - Range
Main Rotor

Speed Analog Range
Vertical

Acceleration Analog Analog and Range
Engine Torque Analog Analog and Range
Roll Attitude Analog Range
Pitch Attitude Analog Range
Gross Weight - Range
Touchdown - Range
Time Analog Analog
Reference Analog Analog

For a description of the recording system, refer to
Chapter 3.

Installation of Recording System. The SIRS recorder was in-
stalled in the helicopter's battery compartment on a shelf
accessible from the right-hand side of the helicopter. The
airspeed and altitude transducers were mounted on the left-
hand side of the aircraft in the area adjacent to the pilot's
compartment where the aircraft's pitot and static system was
accessible, The vertical accelerometer was mounted on a
bracket attached to the bulkhead beneath the transmission. The
outside air temperature transducer was mounted on the skin of
the helicopter on the underside at Station 220. Rotor speed
was taken from the helicopter's rotory tach generator. Engine
torque was taken from the engine torque transmitter. A cir-
cuit breaker was installed in the pilot's right-hand aft cir-
cuit breaker panel and was connected to the dc bus to provide
28 Vdc power. Provisions were made to take the roll and pitch
attitude signals from the aircraft's roll and pitch gyro lo-
cated in the same area as the airspeed and altitude transducers.
The gross weight sensors were installed at the midpoint of the
fore-and-aft skid crosstubes. Cabling between the SIRS recorder
and transducers was routed through the compartments along the
underside of the helicopter. Figure 28 is an outline drawing
of the AH-1G helicopter showing the recorder system component
locations.
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SIRS Recorder (Aft Battery Compartment)

OAT Ribbon (Shin, Underside)

Vertical Acccleration Transducer (Lower Transmission Compartment)
Gross Weight/Touchdown Indicator (Skid Crossbars)
Roll, Patch Attaitude Gyro
Mrspeed, Altitude Transducers
Rotot Speed Tach-generator
Engine Torque Transmitter

00 ~3 O LN L L B b=

Figure 28, Installation Schematic,

Figure 29. Flight Test Instrumentation System.
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The instrumentation system used to evaluate the perform-
ance of the SIRS recorder, including the FCR oscillograph, flag
oscillograph, signal conditioning system, and digital-to-analog
converter, was mounted in the ammunition bay under the pilot
and gunner's compartment. In addition, a junction box was in-
stalled in the battery compartment to tap into the STRS record-
er's analog and digital flag signals. Figure 29 is a photo-
graph of the flight test instrumentation system.

The SIRS and flight test pecording systems were installed
and checked between 23 FebruaﬁgQand 15 March 1977.

Recorder Flight Testing. The flight performance of the SIRS
recorder was evaluated by flying various flight conditions and
by analyzing the degree to which the SIRS recorder could iden-
tify and correctly time the flight conditions. Examples of
the flight conditions flown are listed in Table 23. In addi-
tion, several nap-of-the-earth flights, both simulated and
actual, were performed.

Seven useful data flights, which yielded 7.5 hours of in-
flight data, were made during the 4 weeks of the flight test
program. An additional 22 flights, yielding 19.9 hours of in-
flight data, were made; these flights included instruvmentation
check flights, nap-of-the-earth training flights flown in con-
junction with the test program, and landing check flights,
Although limited data from these flights were processed to
verify the operation of the SIRS recorder, they were not speci-
fically used to validate the recorder performance. Table 24
summarizes the 29 flights.

During the early portions of the flight test program, each
flight generally lasted an hour and most of the flight condi-
tions listed in Table 23 were flown. Beginning on flight 21,
the digital-to-analog converter used to establish the signal
levels for the flag oscillograph malfunctioned occasionally.
The malfunction was a random disruption of all the traces on
the flag oscillograph. Consequently, the later flights in the
program were generally shorter and designed to investigate
fewer flight conditions with only the FCR oscillograph.

Recorder Performance. The following summary of the SIRS re-
corder performance consists of detailed discussions of how the
recorder identified and recerded occurrences of flight condi-
tions, time within certain prescribed flight conditions, and
maximum parameter occurrences. Not all of the 22 flight con-
dition categories will be discussed in detail. Rather, ex-
amples of each of the three types of data recording techniques,
that is, occurrences, times, and maximums, will be presented.
In addition, during the test program several of the encountered
flight conditions required logic modifications or improvements
before they could be identified. These modifications are dis-
cussed in general, but an example of a required logic change

is illustrated.
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TABLE 23. FLIGHT TEST FLIGHT CONDITIONS

Rotor Start/Stop Dive:
Level Flight Symmetric
Hover: To Left
IGE To Right
OGE Pullout:
Quick Stop: Symmetric
IGE To Left
OGE To Right
Full Power Climb Pullup (Cyclic Climb):
Maximum Performance Takeoff Symmetric -
Maximum Rate Acceleration To Left
Autorotation: To Right
Power to Autorotation Turns:
Steady Normal v
Turns Gunnery
Landings S-Type

Approach and Landing

TABLE 24, FLIGHT LOG SUMMARY

Flt. Predominant Valid Data Flight
No. Maneuvers SIRS "FCR Flag Duration(hr)
1 Ground Rur * -
2 Functional Check * 0.4
3 “anctional Check * 0.3
4 Pilot Currency * 1,0
5 Entire Profile b * 1.5
6 Level Flight, Turns ® * 0.5
7 Level Flight, Turns * * 0,7
8 Level Flight, Turns * 0.7
9 Functional Check * * 0.3
10 Level Flight, Turns * * * 0,8
11 Entire Profile * * 1.4
12 Entire Profile * * * 1.0
13 1P Check, Auto

Landings * * 1.8
14 Dives, Turns * * * 1,0
15 Nap-of -Earth * 1.5
16 Nap-of-Earth * 1.5
17 Nap-of-Earth * * * 1.6
18 Nap-of-Earth * * 1.7
19 Nap-of-Earth * 1.8
20 Functional Check * * 0.8
21 Entire Profile * * 1.5
22 Level Flight,

Takeoffs * 0.6
23 Check Flight * * 0.8 .
24 Level Flight,

Quick Stops * * 0.5
25 Larding Check * * * 0.3
26 High Gross Weight/

Landing Check * * * 0.3 .
27 Low Gross Weight/

L snding Check * * * 0.4
28 Lev 1 Flight/

Airspeed Check * * * 1.5
29 Le v Gross Weight/

Landing Checks,

Quick Stops * * * 1.2
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0f the flight conditions that are recorded as occurrences,.
rotor start/stop and takeoff/landing cycles are the principal
ones discussed in this section. The timed flight conditions
to be discussed include total flight time, cruise, and various
types of turns. Finally, this section discusses the measure-
ment of peak vertical accelerations.

Computed Parameters. The SIRS recorder monitors airspeed,
pressure altitude, and outside air temperature. From these
parameters, the SIRS recorder computes the density altitude,
the maximum level-flight velocity, and the limit velocity for
the helicopter. In addition, the SIRS rccorder monitors
inputs from the gross weight sensors and computes gross weight
ranges during a flight.

Maximum airspeed limit V,, which represents the maximum
level flight 1imit for the aigcraft and the limit velocity V,,
which is the maximum airspeed permitted for the AH-1G helicobter
are calculated from Equations 6. 7, and 8, The density alti-
tude is computed in Equation 9,

Bach of these calculations is continuously performed with-
in the SIRS recorder, and the various identified flight condi-
tions are categorized by the appropriate percentage of either
of these limits,

Table 25 summarizes the airspeed limits, V,, and V., calcu-
lated by the SIRS recorder as represented on thg flag Bscillo-
gram and those calculated manually from the FCR oscillogram
for Flight 28. This flight was flown at two density altitudes
and was typical of the calculating performance of the SIRS re-
corder,

The SIRS recorder monitors the input from the two piezo-
electric beam sensors and computes a takeoff gross weight.
During each flight, this gross weight is reduced at a fixed rate
to account for fuel consumption. Throughout the flight, the
various flight conditions are each categorized as being in one
of three gross weight ranges: below 7750 pounds, 7750 to 8750
pounds, and above 8750 pounds.

As shown in Table 26, the system did not reliably compute
the takeoff gross weight, since it yielded correct values for
only five of the twelve flights. However, it generally com-
puted the correct gross weight for the first flight of the day
as evidenced in the data for Flights 11, 21, and 23. These
correct values were due to the ability of the skid landing gear
to assume its natural position when the helicopter was posi-
tioned on the flight line each morning. The flight test log
does not indicate whether the helicopter was refueled before or
after it was moved for Flights 31 and 26. The system did oper-
ate correctly after the wing stores were removed prior to Flight
27. Except for Flight 14, the system did not correctly compute
the takeoff gross weight when the mission was the second or
third flight of the day. When the helicopter was refueled
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TABLE 25. COMPARISON OF PERCENT V
FOR LEVEL FLIGHT CONDITYONS (FLIGHT 28)
Indicated Density $Vy §Vy,
Airspeed Altitude FCR Flag FCR Flag
118 2155 0.84 0.8-0.9  0.66  <0.7 )
109 2155 0.78 0.65-0.8 0.60  <0.7
134 2271 0.96 0.9-0.95 0.74 0.7-0.85 -
127 2327 0.91 0.8-0.9 0.70 0.7
148 2155 1.06 >0.95 0.82 0.7-0.85
134 2348 0.96 0.9-0.95 0.75 0.7-0.85 !
140 2325 1.01 >0.95 0.78 0.7-0.85 -
156 2350 1.12 >0.95 0.86 0.7-0.85
166 2300 1.19 >0.95  0.92 0.85-0.95 |
153 2275 1.10 >0.95 0.85 0.7-0.85
109 6675 0.84 0.8-0.9 0.73 0.7-0.85 ,
103 6648 0.79 0.65-0.8 0.68  <0.7
120 6600 0.92 0.9-0.95 0.79 0.7-0.85
114 6664 0.87 0.8-0.9 0.76 0.7-0.85 }
128 6719 0.98 >0.95 0,85 0.85-0,95
124 6694 0.95 0.9-0.95 0,82 0.7-0.85
TABLE 26. TAKEOFF GROSS WEIGHT COMP/RISON x
Flight No. Date Log Flag SIPS !
11 31 Mar 77 8317 7750-8750 -
12 " 8317 <7750 <7750
13 5 Apr 77 8317 28750 -
14 " 8317 7750-8750  7750-8750 !
21 12 Apr 77 9500 >87350 28750
22 " 9500 <7750 - |
23 13 Apr 77 9500 - >8750
24 " 9500 - 7750-8750 |
26 14 Apr 77 9500 - 7750-875 )
27 " 8317 - 7750-8750
28 " 8317 <7750 <7750
29 " 8317 <7750 <7750 |
102
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between flights, the static friction between the skid landing
gear and ground prevented the skid gear from readjusting for the
increased weight of the fuel.

The algorithm used to decrease gross weight due to fuel
consumption. worked correctly. In addition, during one flight
after a landing, the rotor speed decreased below 250 rpm, and
the gross weight system updated itself correctly.

Occurrences. The SIRS recorder is designed to monitor the
various input parameters and, through the microprocessor logic,
to identify occurrences of flight conditions. Such typical
flight conditions include rotor start/stop cycles, power-on
landings, autorotative landings, high n_ maneuvers, and auto-
rotation-to-power transitions. In this®section, the first
three occurrences will be discussed.

The SIRS recorder identified the eight rotor starts that
occurred during the seven data flights shown in Table 27 and
one extra cycle on Flight 12. The extra start was counted
because of an accidental pulling of the circuit breaker of the
instrumentation system, which caused the signal to behave as
though a shutdown was occurring.

In general, the SIRS recorder correctly identified the
normal landings performed during the flight test program.

Table 28 summarizes the normal and autorotative landings
detected by the SIRS recorder and identified on the FCR oscillo-
gram. An example of a typical landing is shown in Figure 30,
which includes the FCR and flag oscillograms. Table 28 shows
differences between the FCR and SIRS data due to two types of
problems, one in Flights 12, 28, and 29, and the second in
Flights 23, 24, 28, and 29.

The normal landings of Flights 12, 28, and 29 not recorded
by the SIRS recorder were missed because the recorder's logic
requires 10 seconds of flight before subsequent landing can be
considered valid, and 5 seconds on the ground before the landing
ic considered valid, During Flights 12, 28, and 29, multiple
landings were made as part of the investigation of the per-
formance of the gross weight sensing system; not all of these
takeoffs and landings satisfied the logic of the recorder. No
changes to the recorder logic are planned since this problem
is not considered one that will exist in the operational
envircnment.

For the identified autorotative landings of Flights 23,
24, 28, and 29, the logic had to be modified because the SIRS
recorder was identifying normal power-on landings performed
at high gross weights as autorotative landings. This occurred
becausc the engine torque dropped below 5 psi sometime during
the 10 seconds prior to touchdown. The subsequent logic
changes will preclude the misidentification of normal landings.

Only three full autorotative landings were performed
during the flight test program because of pilot restrictions
and availability. All of these landings occurred during
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TABLE 27. COMPARISON OF FLIGHT LENGTH AND
ROTOR STARTS

Fl1t. Time (min)

Caused by accidently pulling circuit breaker

Rotor Starts

S L ‘

for the instrumentation's electrical system.

F1t.No FCR SIRS
12 55.60 56.32
14 52.57 52.72
21 73.86 74.69
23 37.77 38.03
24 25.29 25.39
28 85.81 85.69
29 60.97 61.89
Note:
(a)
TABLE 28.
Normal Landin
F1t.No FCR sl R‘STa'%
12 4 2
14 1 1
21 9 9
23 5 4
24 4 3
28 3 1
29 13 7
Note:
(a) Discrepancies in the data are discussed

in the text.

COMPARISON OF LANDINGS
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Flight 13. Unfortunately, the temporary mercury batteries,

i installed after the failure of the lithium batteries in the

: qualification testing, lost contact in flight and the recorder

’ memory was lost; these slightly undersized batteries were
subsequently soldered in place. FEowever, the FCR and flag
oscillograms in Figure 31 show that the SIRS recorder would
have identified the landing as an autorotative landing since !
the engine torque was below 5 psi for the entire 10 seconds |
prior to the landing as required by the SIRS recorder logic.

et Nar ¥

Timed Flight Conditions. The SIRS recorder can record the
duration oi flight conditions in a manner similar to the recog-
nition of occurrences procedure. The microprocessor logic -
identifies the flight conditions according to the individual
or collective flight parameter changes, each within a preset
range. For example, the duration of flight time is determined
by the length of time that the touchdown indicator indicates
an airborne condition. Likewise, a turn is identified as the
duration of time that roll attitude is beyond the threshold
if a vertical acceleration peak in excess of 1.3g occurs some-(;
time during the period; the turn is then characterized by the
airspeed and gross weight at which it was performed.

The durations of the seven data flights as measured by
the FCR oscillograph and the SIRS recorder are listed in Table
27. The maximum variation in the two measurements is 1.5
percent; it should be noted that the potential for error in
measurement is greater with the oscillograph than with the
SIRS recorder because of the mechanical aspects of the oscillo-
graph.
In addition to the total flight time, the SIRS recorder
also measured the time spent in cruise at various airspeed
levels., Low-speed flight is defined by speeds of 50 to 65
percent VH; high-speed flight is deflined by speeds of 65 to 95
percent VH; and maximum-speed flight is defined by speeds in
excess of 95 percent V. For all level flight conditions, the \
airspeed is converted to the equivalent percent V, for that
gross weight and density altitude condition. As presented in

Table 29, the SIRS recorder accurately measured the time in s

various cruise conditions. VYor the same flight, a comparison -

of measured and recorded values for VH throughout the cruise

conditions are presented in Table 30. f
As discussed earlier, the SIRS recorder includes logic .

to identify various types of turns, including normal, gunnery, f

and gunnery S-turns. The turns are categorized by airspeed
and vertical acceleration for a given gross weight condition.
For Flight 14, normal, gunnery, and S-turns were analyzed by
processing data from the FCR and flag oscillographs and com-
paring these data with the output of the SIRS recorder. As
shown in Table 31, the agreement is very good between the flag

and SIRS data.
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Figure 31. Autorotative Landing.
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TABLE 29. COMPARISON OF CRUISE TIMES
FOR FLIGHT 14

Low-Speed Flight
High-Speed Flight
Max. Speed Flight

TABLE 30.

Flight
Condition

Low-Speed
Flight
1"

High-Speed

Flight
"

Flag Oscillograph SIRS
11 sec 12 sec
934 sec 934 sec
53 sec 54 sec

COMPARISON OF PERCENT VH CALCULATIONS
DURING CRUISE FOR FLIGHT 14

Indicated Density 5VH
Airspeed Altitude FCR Flag
91 2410 0.65 0.5-0.65
84 1048 0.59 0.5-0.65
100 2492 0.72 0.65-0.8
133 2724 0.96 0.9-0.95
125 2807 0.91 0.8-0.9
100 2409 0.72 0.65-0.8
124 2291 0.89 0.8-0.9
131 2256 0.94 0,9-0,95
110 2208 0.79 0.65-0.8
124 2.91 0.89 0.8-0.9
127 2005 5.91 0.8-0.9
113 2009 0.81 0.65-0.8
132 1969 0.94 0.9-0,95
115 2005 0.82 0.65-0.8
120 2005 0.86 0.8-0.,9
131 1995 0.94 0.9-0.95
126 1969 0.90 0.8-0.9
124 1900 0.89 0.8-0.9
134 1827 0.96 0.9-0,95
135 1298 0.95 0.9-0,95
124 1252 0.88 0.8-0.9
106 1174 0.75 0.65-0.8
140 2800 1,01 >0.95
140 2020 1.00 >0.95
142 2030 1.01 >0.35
143 1703 1.02 >0,95
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TABLE 31. COMPARISON OF VARIOUS TURNS FOR
FLIGHT 14

Duration (sec

Type Gross Weight ECR ag
<7750 234 222 222

7750-8750 40 39 39
<7750 28 27 27

Gunnery Turn
"y 7750-8750 167 158 161
140 139 138

Normal Turn
"
- Gunnery S-Turn 7750-8750

The measurement 2ccuracy of the FCR and flag oscillographs
is less than that of the SIRS recorder because the crystal
clock in the recorder functions more precisely than the mechan-
ical drives in the oscillographs. Minor variations in the
drive speed of the oscillographs cause corresponding varia-
tions in the timed events. For illustrative purposes, Figure
32 presents the FCR and flag oscillograms for a typical turn.
This turn, as recorded by the SIRS recorder lasted 39.2 seconds.

9 In comparison, by analyzing when the roll flag changed from

F within threshold to outside threshold and then back again, the
turn duration would be 39 seconds. Note that near the end of
the turn, the n_ flag changed from threshold to the range of
1.3 to 1.5g. If the FCR chart, the turn duration is slightly
longer, 40 seconds, since the turn was identified at the in-
stant of roll attitude change rather than when it passes

through 10°,

Maximum Parameter Value. The SIRS recorder can identify the

maximum value of a parameter during the interval between data

retrievals., During the flight test program, the maximum values

of vertical acceleration and V, (limit velocity) were recorded. ;
Table 32 compares the max&mum n_ peaks identified by the |

SIRS recorder during each flight witf the corresponding values !

read from the FCR oscillograph. The largest positive peak re- “

corded during the program was 2.73g, which occurred during a

turn at an airspeed of 97 percent V, and with a roll angle

greater than 50°, as shown in Figurg 33. The lowest positive

peak recorded during the program was 1.08¢, which occurred in

a hover during Flight 25.
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TABLE 32. COMPARISON OF MAXIMUM n, VALUES

Maximum n, (g)

Flight
Flight No. Condition FCR SIRS
10 Turn 1.4 1.4
12 Dive 2.2 2.3
14 " 2.3 2.3
21 Turn 2.7 2.7
23 Dive 2.5 2.5
24 Quick Stop 1.6 1.6
25 Hover 1,1 1.1
26 " 1.1 1.1
27 Turn 1.7 1.7
28 Cyclic Pullup 1.6 1.6
29 Autorotation to Power 1.5 1.4

Although the SIRS recorder was programmed to also identify
the maximum V, condition, the lack of a time delay in the re-
corder caused false V, values as the recorder and transducers
were powered up. Sin&e the altitude transducer has an equiva-
lent altitude of 21,200 feet at zero volts, during the power-up
cycle the recorder incorrectly calculated the V. value. The
software logic has since been changed to includ% a time delay
that will prevent erroncous calculations. The recorder cap-
ability of measuring maximum VL peaks has since been demon-
strated in the laboratory. In“addition, follow-on IOTEE flight
tests with the All-1S have confirmed the laboratory findings.

Summary and Conclusions. The purpose of the Phase I testing
was to verify that the SIRS recorder would operate reliably in
an operational helicopter environment and yield flight data.
The SIRS recorder successfully demonstrated that it can per-
form its intended function.

Minor improvements recommended for the SIRS recorder hard-
ware and software were incorporated in the SIRS recorders as-
signed to the Phase II Operational Evaluation. No major changes

in the recorder design were required,
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The application of the 1ift 1ink system to the AH-1G was
to be researched further; if acceptable results were obtained,
it would be incorporated into the SIRS recorder system. In
addition, the measurement of pitch in conjunction with the
1ift link should be considered as a method for decreasing the
sensitivity of the 1ift link system to center-of-gravity
changes.

With the incorporation of the recommended hardware and
: software improvements, the SIRS recorder was declared accept-
able for the Phase II Operational Evaluation.

I0TGE

The IOTGE was entitled "Phase II Operational Flight Test
for the SIRS AH-1G Program." It was concerned with determin-
ing if there were any deficiencies that would inhibit or
limit the operational employment of the system. In addition,
this was the opportunity to show the user the design that
his original concepts produced, what he could expect to
accomplish with the system, and, more importantly, what it
would cost the user in terms of resources and manpower to

accomplish his operational task.
The major objectives of the IOTEE were to:

e Estimate the operational effectiveness and
suitability of the system as well as other
operational aspects of its military utility.

e Identify any operational deficiencies.

¢ Recommend and evaluate desirable changes and
trade-offs in production configuration.

¢ Obtain operational information for:

- Refinement of official program operat-
ing and support cost estimates.

- Identify system characteristics or de-
iciencies that significantly impact
0&S costs.

I0TGE Test Support

During October 1977 the test article installation was
essentially completed. At the time of departure of the in-
stallation team from Fort Rucker, four of five SIRS recorders
were installed and operational. The fifth recorder was not
installed because of a malfunctioned vertical accelerometer
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that was being repaired. The helicopters in which the record-
ers were installed are listed below:

Aircraft Recorder Serial Number

66-15254 1008

66-15252 1009

66-15286 1010

66-15473 1011

66-15356 Installation of 1012 .

completed December 1977

A data collection trip was made on 15-17 November 1977 to
Fort Rucker to retrieve data from the four SIRS recorders and
to perform any required maintenance. The status of each re-
corder was summarized by aircraft tail number. The report at
that time was as follows:

"66-15254 - System Functioning properly."

"66-15252 - Aircraft is in maintenance hangar
for replacement of rotor mast. System was
inoperative due to large unbalance in the
strain gauge bridge. We were unable to com-
pensate for the unbalance and traced the prob-
lem to a faulty strain gauge. It will re-
quire the iastallation of a new instrumented
1lift link."

"66-15286 - Attempted to retrieve data prior
to the morning mission and found the system
inoperative. Investigation showed that the
strain gauge bridge had been destroyed dur-
ing aircraft maintenance. The strain gauge
bridge appeared to have been hit with a
wrench., It will require the installation

of a new instrumented 1ift link."

"66-15473 - System functioning properly."

"66~15356 - System inoperative due to faulty
n, transducer. (Sent to factory for repair.)"

A data collection trip was made on 27-29 December 1977 to
Fort Rucker to retrieve data and to perform any required main-
tenance. The status of each recorder was summarized by air-
craft tail number. The report of findings at that time was as
follows:
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"66-15254 - Retrieved data on 28 December
1977. TUpon checking the static gross weight
parameter, a zero condition was found. Fur-
ther investigation found a negative 0.3-volt
signal from the gross weight in-line ampli-
fier. Rebalancing of the strain gauge bridge
produced a 70-count static indication on

the Retrieval Unit. While closing up the
aircraft, the Retrieval Unit was left on
(approximately 3 minutes) and the 70-count
reading drifted down to 46 counts. The
46-count reading did not drift over the

next l-minute interval, The Retrieval

Unit was turned off for approximately

2 minutes and back on to monitor gross
weight. A 54-count reading was observed
this second time and a slow drift down-

ward to 50 counts took an estimated 52
seconds. It appears that the strain

gauge bridge is drifting."

"66-15252 - Aircraft is still in maintenance
hangar awaiting rotor mast change. The strain
gauge bridge is still unbalanced due to a
faulty bridge. The system is still inop-
erative aad will need a new instrumented

1ift link."

"66-15286 - System inoperative due to a
completely destroyed strain gauge on the
1ift 1link. This system will need a new
instrumented 1ift link."

"66-15273 - Data retrieved and static con-
dition checkout show this system func-
tioning properly.”

The IOT&E flight test continued into the Februvary 1978
time frame. By that time the AH-1G program had been phased
down and replaced by the follow-on IOT&E with the AH-1S used
as the test vehicle.

Evaluation of an AH-1G Fleet Operating
Parameter That Impacts 0§S Costs

It was noted that conventional calculated component damage
was arrived at by using official logbook hours reported on each
airframe. Further, it was observed that calculated SIRS spec-
trum damage and component damage arrived at by using recorder
clock time would both lead to extended service lives of the
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10 high-value, fatigue-sensitive components under study in

this program. This is attributed to the fact that the recorder
electronics is made to function only at the onset of events
leading to component damage. This typically begins at rotor
start. Component damage is not accumulated during engine run-
up although the aircrew would be expected to include all opera-
ting times in logbook hours independent of whether they con-
tribute to component damage. An example of the results for
aircraft 66-15473 is reproduced in Table 33. A statistical
treatment of the calculated component damage throughout this
limited flight test program may be sesn in Table 34.

The planned DTGE and IOT&E programs for the SIRS concept
were completed in December 1977. The follow-on IOTGE was
phased in at that time with the AH-1S as the test vehicle.
While the AH-1G DT&E and IOTSE programs were quite compressed,
a number of significant findings were derived from the effort,
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4 2 TABLE 33. CALCULATED COMPONENT DAMAGE
.% N
: ’ Predicted Spectrum
& Component SIRS Spectrum Recorder Hours Loghuok Hours
‘ Main Rotor Blade 0.00706 0.05477 G.08227
; Main Rotor Yoke Extension 0.0 0.01826 0,02742
. Main Rotor Grip 0.0 0.00602 0.00905
: - Main Rotor Pitch Horn 0,00002 0.00913 0,01371
Retention Strap Fig/Nut 0.02563 0.02738 0.04114
Swashplate Drive Link 0.00001 0,00548 0.00823
Swashplate Outer Ring 0.00025 0.01826 0.02742
. Swashplate Inner Ring 0.00007 0.01826 0.02742
- Hydraulic Boost Cylinder 0.00080 0.01826 0.02742
Tail Rotor Blade 0.00130 0.05477 0.08227
2
.
e
; TABLE 34, STATISTICAL EVALUATION OF CALCULATED COMPONENT
DAMAGE (ALL FLIGHTS)
-~
SIRS Flight Hour Damage
Damage $ Revorder Sx Logbook Sx
Spectrum X Spectrum Spectrum
) Main Rotor Blade 0.01041 0,01139 | 0.04386 0.02679 0.08491 0.01206
5 Main Rotor Yoke latension 0.000594 0.01314 0.01462 0.00893 V.02833 0.00400
Main Rotor Grip 0.01106 0.02957 0.00514 0.00317 0.00910 0.00177
Main Kotor Pitch Horn 0.00023 9.00091 0.00779 0.00480 0,01379 0.00269
A Retention Strap Ftg/Nut 0.03272 0.01732 0.02338 0.0£439 0.04137 0.00807
; Swaskplate Drive Link 0.00020 0,00081 0.00468 0.00288 0.00828 0.00161
f. Swashplate Outer Ring 0.01870 $.06998 | 0.01559 0.00960 0.062758 0.00538
Swashplate Inner Ring 0.00320 0,00709 0.01694 0.00992 0.02923 0.00432
Hydraulic Boost Cylinder 0.0e037 0.00035 0.01462 0.00893 0.02830 0.00402
la1l Rotor Blade 0.02723 0.04352 0.05080 0,02976 0.08771} 0.01296
3 117
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CHAPTER §5.

FINDINGS
DTEE FLIGHT TEST (PHASE I PROTOTYPE FLIGHT TEST)

Software Modifications

During the flight test program, several flight conditions
were identified that required computer logic modification to
properly identify or time them. These flight conditions are .
identified in Table 35,

Hardware Modifications

Several findings resulted from the qualification program.
Assorted internal wire routing and terminations were shown to
need improvement. The lithium battery failed during the tem-
perature-altitude-humidity test. The gross weight system
operated correctly during the flight test program in all modes
except one. When the helicopter landed at a low gross weight
and then .~fueled, an error was introduced because the skid
landing gear could not assume a new vosition due to the static
friction between the skid gear and the ground. This problem
could be solved by requiring a brief l1ift-off aind touchdown
before flight takeoff so that the skid gear could assume its
normal positon for the existing gross weight. This solution,
however, is not considered practical in the operational envi-
ronment.

IOTGE (PHASE II OPERATIONAL EVALUATION)

Following satisfactory completion of the prot.type flight
testing, it was determined that the follow-on operational test
program would be pursued. Five AH-1G aircraft were selected to
participate in this program. The aivcraft identified for par-
ticipation in the program were: A6-15254, 66-15252, 66-15286,
66-15473, and 66-15356.

Before the flight test was initiated, a number of modifi-
cations to the SIRS equipment were implemented to improve its
performance. After transmission 1ift links were strain gauged
and calibrated, and software modifications were made to the
EPROM resident software, the mission equipment was installed
on the five test aircraft. On aircraft 66-15356, the n_ trans-
ducer was inoperative for the first three months of ope%ation.
This negated effective data gathering on this airframe for the
entire operational test program. During the data retrieval of
15-17 November, the strain gauge deficiencies were noted on the
1ift links of two aircraft. Aircraft 66-15286 had a defective
strain gauge that appeared to have been damaged during a routine
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TABLE 35. FLIGHT CONDITION LOGIC MODIFICATIONS

Flight Condition Modification
Normal/Autorotation Minor changes to lengthen
Landing period required for low torque
and average torque values
Gunnery Run Dive Major logic change (see Chapter 4)
Pullup - Symmetrical Major logic change to be
and Asymmetrical compatible with Dive Logic

(see Chapter 4)

Autorotation Time Minor change to correct soft-
ware coding error

Full Power Climb Minor change to provide
category for low-speed, high-
power climb

Maximum Vi, Minor change to require time
delay prior to start of
recorder operation

Quick Stops Minor change to require
decrease in airspeed during
maneuver
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maintenance operation. Aircraft 66-15252 was found to have a
defective strain gauge bridge. Thus, three aircraft were
% essentially unable to provide useful data during the operation
o test program.
A ‘ Aircraft 66-15473, and 66-15254 systems were operational
4 : for the entire test period from 1 October to 28 December 1977.
5 « During that 90-day period, 132.3 hours of data were captured
E ¢ on aircraft 66-15254. A total of 128.7 hours were retrieved

' from aircraft 66-15473.

Explicit Determination of Gross Weight (GW)

i As noted previously, the attempt to determine AH-1G
i gross weight by strain gauging the landing gear was unsuccess-
ful. During the IOTEE flight test program (Phase II Operation-
al Flight Test), an alternate approach was to strain gauge

the 1ift links to explicitly measure gross weight. The gross
weight parameter is important to calculation of fatigue lives

S

S g ¥

i of the 10 parts under consideration.
k- From the R§D standpoint, it was found to be possible to
4 determine GW by instrumenting the 1lift links, Hcwever, the

4 concept produced consistently erratic data, required close
3 technical attention, and was failure prone. The concept
§ involved bonding strain gauges to the 1lift link. This was
3 generally found unsatisfactory due to lack of good mechanical
bond to the shot-peened surfaces. When operative, this was
found to be marginally unsatisfactory due to the high vibration
] environment. Thus from an R§D standpoint, the 1lift link
3 concept of instrumentation appeared feasible but from an oper-
4 ational viewpoint (IOT&E) the scheme was judged a failure.

This short IOT&E suggests that the technique is too exotic for

% successful fleet-wide, operational deployment.
} Tracking of High-Value, Fatigue Sensitive Parts
% During the IOTGE flight test program the practical matter

of keeping track of the 10 selected parts became difficult,
Neveriheless, as parts are installed or removed for whatever
reason, SIRS logistical integrity requires close attention to
service lives of all parts on all aircraft that are involved,
This IOTEE flight test program, while short, was adequate to
sharply focus on the need for a simple, effective parts track-
ing procedure.

DTU Packaging

DTU operators were required to travel from contractor
facilities to the responsible test organization at Fort Rucker
throughout this limited IOT&E program. The mode of transporta-
tion selected, normally commercial air, resulted in considerable
experience with operator transportation of the DTU. Early in
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] the program, operator observations began to accumulate as to

the unwieldy nature of the packaging concept selected for this
Flight test time was inadequate for
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4 ground support equipment.
3 thorough evaluation of this equipment. Thus it was not deter-
é mined whether an alternative packaging concept would be a
nice-to-have operational attribute or a mission-essential factor. |
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DTU Tape Drive

During the course of this limited IOT&E program, the use

o of a one-way controller on the DTU tape drive was found to be
a defective design concept. During DTU operations requiring

tape search, the design concept that usec rewind times to find
a specific record consistently resulted in selection of the .
incorrect record. This was due to system hysteresis from wear ;
and varying ambient temperature, which caused inconsistent ’
operation of the mechanical elements of the winding and re- ‘

b
winding mechanisms.

ke

ke
A Use of DTU During Battery Charging Operation

R
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e

e e

The design concept was found to preclude DTU operations
for other tasks during battery recharging operations. This was
of no particular import in the R§D environment during DT§L.
However, the operational import became clear during the IOT§E
phase of this testing. Corrective action is indicated as this
attribute of the design reduces maintenance productivity.
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Logistics of Data Reduction

i The IOTGE portion of the AH-1G flight test program was an
5 opportunity to proof-test the original data reduction concept.
In that capacity the contractor emulated the postulated Data
The concept is summarized as follows:

A

Processing Center.

At the Data Processing Center, the recorded data
would be converted into assessment of fatigue
damage. The effort would be divided into three
tasks: initial processing (IPS), fatigue damage
assessment (FDAS), and component tracking manage-
ment (CTMS). Each task, as described in Chapter 3,
separate system, with appro-

was developed as a
priate interfaces, to form the data processing

RESRHEERF A ey =

a3 Ry

system,

During this IOTGE both the IPS and FDAS were satisfactorily
: demonstrated. No attempt was made to test or evaluate the

CTMS.
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Statistical Evaluation of Calculated Component Damage

From the test data reported in Chapter 4, it seems appar-
ent that the damage values for the 10 components under consi-
deration differ according to the technique used to calculate
the cumulative damage. Here we will statistically test that
observation. Three null hypotheses will be tested:

Ho(l): Component damage = Component damage
recorder-derived logbook-derived

1

HO(Z): Component damage = Component damage
SIRS-derived logbook-derived

HO(S): Component damage = Component damage
recorder-derived SIRS-derived

The approach used is to take the smallest difference between
the respective values for the test of these hypotheses. From
Table 34 the smallest delta was found. Table 36 summarizes
the deltas and associated calculations. H,.(1l) is tested via
Main Rotor Grip data. H,(2) will be teste8 with Swashplate
Drive Link data, and H (9) will be tested with Swashplate
Outer Ring data. All gull hypotheses were rejected at the 5-
percent significance level., Sample Calculation 1 using small
sampling theory is shown.

Sample Calculation 1

Test Null Hypothesis Ho(l): 0.00514 = 0.00910 (from
Reference 8, p. 261) to a S-percent level of significance:

N1 = 16 Nz = 16

x1 = 0,00514 x2 = 0.00910

S = 0.00317 (Std. Error) SE = 0,001777 (Std. Error)
1 2

V1 = 0.0000100489 V2 = 0.0000031577

8. Tintuer, G.,, MATHEMATICS AND STATISTICS FOR ECONOMISTS,
New York: Holt, Rinehart, and Winston, 1965,
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= [(16-1)0.0000100489 + (16-1)(0.0000031577)](16+16)
16(16) (16+16-2)

= [15(0.0000100489) + 15(0,0000031577)](32)
16(16) (30)

= (0.0001507335 + 0,0000473655)(32)

7680
= (0.000198099)32 = 0,0000008254
7680
t(empiricai) = (0,00514-0.00910) = 4797.60
8.254 x 107/
n (degree of freedom) = N1 + N2 -2=16 + 16 - 2 = 30

t (at S-percent significance) = 2,042

Since t(empirical) >> t(required at 5-percent significance),
null hvpothesis is rejected.

0f final concern is whether the standard deviations
observed during the IOTE flight test are statistically sub-
stantiative., Therefore three additional hypotheses will be
tested:

H

HO(A): o (Component damage)

o {Component damage)
recorder~derived

logbook-derived

Hy(8): o (Component damage)

o (Component damage)
SIRS-derived

logbook-derived

HO(6): g (Component damage) =0 (Component damage)
recorder-derived SIRS-derived

The same methodology previously used is repeated here. H,(4)
will be tested via swashplate drive link data. H,(5) wi?l be
tested with main rotor blade data, and H,(6) will be tested
with swashplate drive link data. Table 97 shows the smallest
AS_, selected. Sample Calculation 2 is similar to that pre-
viBusly shown (Reference 8).
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' TABLE 36. EVALUATION OF AX FOR CALCULATED COMPONENT DAMAGE
?f SIRS Recorder | Logbook | Absolute | Absolute jAbsolute
. Spectrum | Spectrum | Spectrum §j Value Value Value
Ii Main Rotor Blade 0.01041 [ 0.04386 | 0.08491 | 0.04105 |0.0745 0.03345
ke Main Rotor Yoke Extension 0.000594 ) 0.01462 | 0.02833 |} 0.01371 }0.027736 §0.014026
i, Main Rotor Crip 0.01106 | 0.00514 | 0.00910 | 0.00396 ]0.00196 }0.00592 .
; Main Rotor Pitch Horn 0.00023  0.00779 | 0.01379 | 0.006 0.10356 |0,00327
;f Retention Strap Fta/Nut 0.03272 |} 0.02338 }0.04137 | 0.01799 ]0.00865 }0.00934
% Swashplate vrive Link 0.00020 | 0.00468 | 0.00828 §0.0036 0.00808 |0.00448 i
%i Swashplate Outer Ring 0.01870 { 0.01559 } 0,02758 ] 0.01199 |} 0.00888 ]0,00311
% Swashplate Inner Ring 0,00320 | 0.01694 }0.02923 }0.01229 |0.02603 |0.01374
43
3 Hydraulic Boost Cylinder 0.00037 | 0.01462 | 0.02830 }0.01368 |0.02793 ]0.01425
g
s Tai1l Rotor Blade 0.02723 1 0.05080 | 0.08771 | 0,03691 0.06048 10.02357
4
E”
g £
ég
i
i
TABLE 37. EVALUATION OF ASX FOR CALCULATED COMPONENT DAMAGE
¢ .
§ @ @ | 0 006 006 |00
% SIRS Recorder | Logbook |Absovlute |Absolute | Absolute
% Spectrum | Spectrum j Spectrum | Value Value Value
n\
% Main Rotor Blade 0.01139 | 0.02679 | 0.01206 |0.01473 |0.00067 | 0.0154
% Main Rotor Yoke Lxtension 0.01314 0.00893 | 0.00400 0.00493 |0,00914 0.00421
§ Main Rotor Grip 0.02957 0.00317 0.00177 0.0014 0.0278 0.0264
4 Main Rotor Pitch Horn 0.00091 | 0.00480 | 0.060269 |0.00211 }0.00178 | 0.00389 :
% Retention Strap Ftg/Nut 0.1732 0.01439 70.0080" 0.00632 [0.00925 } 0.00293
A Swashplate Drive Link 0.00081 0.00288 0.00161 0.00127 0.0008 0.00207 .
‘51.;
g Swashplate Outer Ring 0.06998 | 0.00960 ]0.00538 }0.00422 0.00646 0.06038
% Swashplate Inner Ring 0.00709 | 0.00992 ]0.00432 ]0.0056 0.00277 | 0.00283
B Hydraulic Boost Cylinder 0.00035 |0.00893 [0.00402 }0.00491 ]0.00367 | 0.00858 4
Ta1l Rotor Blade 0.04352 0.02976 0.01296 0.0168 0.03056 0.01376
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Sample Calculation 2

N1 =11 N2 =11
X; = 0.01139 X, = 0.01206
SE = 0.00343 (Std. Error) S; = 0.00364 (Std. Error)
1 2
V1 = 0.00001176 V2 = 0.0000132496
Szi o = [(N1 - 1)V1 + (N2 - 1)V2](Nl + Nz)
1 72 Nl NZ(N1 + N2 - 2)

[10(0.00001176) + 10(0.0000132496)](22)
121(20)

= (0.0001176 + 0.000132496)22
2420

= (0.000250096)22
2420

= 0.000022736

t(empirical) (0.01139 - 0,01206)

2.2736 x 10°°

= ‘2940__6_§_

1 + N2 - 2=11+11 - 2 = 20

t (at S-percent significance) = 2.086

n (degrees of freedom) = N

Since t(empirical) >> t(required at S5-percent significance),
null hypothesis is rejected.

In summary, H (1), H.(2), H,(3), H,(4), H,(5), and H,(6)
are rejected at th8 S5-percent 1efel of gignifi ance. ThiS means
that the deltas are due to a systematic assignable difference
and cannot be attributed to a random phenomenon. The relation-
ships of each technique to the implied service lives of these
high-value, fatigue-sensitive assemblies may be observed in
Figures 34 through 43,
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It will be noted that the ''greater than'" ogives used in
the figures imply a normal distribution. In an attempt to
determine whether a normal distribution represented a good fit /
for a given data, normal curve graph paper was used to check
closeness of fit on four randomly selected samples of the SIRS
data. The plotted points fell reasonably close to a straight
line. Hence the data was treated as normally distributed for
purposes of the preliminary evaluation.

The means for each type of failure calculation are sig- -
nificantly different. The standard deviations for each type of
failure calculation aré significantly different. The standard 4
deviations found for the SIRS throughout this test series must
be considered marginally satisfactory.

Software

Three software concepts were open for evaluation during
the IOT&E. The IPS, FDAS, and CMTS require close examination
prior to a SIRS deployment decision. The IPS and FDAS were both
exercised with satisfactory results. The CMTS remains untested
in the IOT&E environment.
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CHAPTER 6.

CONCLUSIONS

DTGE FLIGHT TEST (PHASE I PROTOTYPE FLIGHT TEST)

Software Modifications

Of the seven modifications identified, two have already
been discussed, i.e., normal versus autorotational landing
and maximum V, detection. The logic change for measuring auto-
rotative time was required because the software had a design
error, That is, the logic included a timer designed to filter
transients from the torque transducer output, but the logic did
not properly clear this timer, thereby causing random amounts
of time to be put into this flight condition category whenever
a transient occurred. For the full-power climb condition, addi-
tional memory was allocated to permit recording both low-speed
and high-speed climbs at high power settings. A minor change
was made to the software, defining a Quick Stop so that the
airspeed would have to decrease during the maneuver before it
could be recorded.

During the flight test program, numerous dives and corres-
ponding pullouts were performed, but very little time was re-
corded by the SIRS recorder in either type of flight condition.,
In most instances, the logic relationships between rate of de-
scent, airspeed, and vertical acceleration did not correlate
with the actual relationships. A review of the data collected
during the various symmetrical and asymmetrical dives and the
resulting pullouts, such as the example shown in Figure 44, led
to a simple method for identifying the dives. The SIRS recorder
logic now "looks for" a negative vertical acceleration greater
than 0.8g followed by a positive vertical acceleration of 1.3g
or greater; during this interval, the airspeed must increase
and the altitude must decrease by certain prescribed amounts.
The dive is then categorized by the gross weight, airspeed, and
vertical acceleration levels once it has been determined to be

a symmetrical or asymmetrical (roll attitude outside of threshold)

dive. The resulting pullout from a dive is defined as the dura-
tion that the vertical acceleration is between 1.3g and 1.1g;

it is categorized by airspeed, gross weight, and its symmetrical
or asymmetrical configuration.

Hardware Modifications

An alternate gross weight monitoring approach that measures
gross weight in flight was identified during a joint in-house
investigation conducted by Bell Helicopter Textron and Technology
Incorporated. This system would measure the axial load within
the 1ift link, a transmission mounting member. Such a system
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would update the aircraft gross weight of the helicopter when-
ever the helicopter is in level, unaccelerated flight. Conse-
quently, this system would measure the gross weight more accu-
rately than the skid landing gear technique because it could
detect gross weight changes due to weapons firing.

IOTGE (PHASE II OPERATIONAL EVALUATION)

Explicit Determination of Gross Weight

During the DTGE and IOT&E program two procedures were
evaluated to explicitly measure the GW parameter during flight
operations of the AH-1G, One was found to be marginally satis-
factory from a technical standpoint (DT§E). Both were unsatis-
factory from an operational standpoint (IOT&E).

It must be recognized that the GW parameter is important
in calculating fatigue lives of the 10 selected parts. However,
it is additionally recognized that explicit measurement of this
parameter comprises a state-of-the-art challenge. In addition,
explicit measurement will be expensive., A fresh look at the
problem is in order.

A cursory examination of the fatigue life calculations and
the recommended service lives of the 10 selected parts implies
a large error budget. This is not surprising due to the empir-
ical nature of the phenomena. It is suggested that within the
existing error budget, the GW parameter could be imputed with
a priori knowledge of the part usage. Finally, all possible
Instrumentation options should be considered if explicit GW
measurement is essential.

Tracking of High-Value, Fatigue-Sensitive Parts

The need for a simple, effective parts tracking procedure
for the many high-value, fatigue-sensitive parts under surveil-
lance by the SIRS concept became apparent during this short IOT&E
flight test program. In addition, the process must minimally
impact the logistics support of the U.S. Army aviation program.

DTU Packaging

The reported unwieldy nature of the DTU package was noted
during this brief IOT&E flight test program. This package re-
quires more in-depth evaluation. A number of alternate DTU
packaging concepts could be postulated; for example, a two-
package concept with rugged elements in one box and the more
sensitive elements in another.

DTU Tape Drive

The selected design concept using a single capstan con-
troller was found to be operationally inadequate and demanded
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corrective action. The tape drive vendor was contacted on this
matter, It was determined that an applicable cure would be to
adjust the design, providing for dual-direction capstan control-
lers and thus ensuring positive authority over the operation of
the tape location at all times. This would enable effective
data manipulation and reference in a time-efficient manner.

Use of DTU During Battery Charging Operation

The inoperability of the DTU during battery charging opera-
tions was noted. The adverse impact on productivity was deemed
unnecessary since a relatively minor design adjustment would
readily render the DTU available for other tasks during DTU
battery charging operations.

Logistics of Data Reduction

The time invested in this short IOT§E was inadequate to
completely or accurately assess the logistics of the original
SIRS data reduction concept.

Statistical Evaluation of Calculated Component Damage

The test results of Chapter 4 and findings reported in
Chapter 5 demonstrate that the method selected to calculate
service lives of the 10 selected assemblies significantly in-
fluences the economics of AH-1G life-cycle cost for those parts.

Use of logbook data to calculate component fatigue damage
produces an extravagant replenishment spares requirement,

Use of recorder data to calculate component fatigue damage
will yield a significantly more economical approach to logisti-
cal support of the 10 parts under consideration. This is attri-
buted to the fact that the recorder electronics only count
fatigue-damaging phenomena beginning after rotor start. Engine
run time and mission planning times, for example, are not in-
cluded in calculations. Thus it may be concluded that the Army
might consider a counting device (recorder values) rather than
operational logbook times to arrive at component retirement
lives.

The optimum service life for the 10 high-value, fatigue-
sensitive parts was yielded by SIRS spectrum monitoring.

Finally, it must be concluded that the scatter of SIRS
component damage data during this brief IOTGE is systematic.
Examination revealed a single-point failure mechanism within
the recorder; i.e., the GW sensor channel was multiplexed such
that it affected all other channels. Further, the GW sensor
was quite troublesome throughout the IOTGE as reported in Chap-
ter 4. Thus SIRS performance will be significantly enhanced
by implementing corrective action on the GW sensing channel
and the recorder multiplexing scheme.
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Software f

Since the IPS and FDAS have been demonstrated and found to
be satisractory, they are considered ready for OTGE testing. ‘
It is noted that the CMTS package remains untested in the DT§E §
and IOTGE mode. ‘
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CHAPTER 7.
RECOMMENDATIONS

As a result of the DT&E and IOTGE flight testing, several
modifications of the SIRS concept are recommended. These recom-
mendations include software logic changes to better ideutify
certain flight conditions and hardware modifications to better
survive the operational environment. In addition, operational
considerations are recommended.

DTGE FLIGHT TEST (PHASE I PROTOTYPE FLIGHT TEST)

Software Modifications

A total of seven needed software changes that were recom-
mended were made to the SIRS recorder logic and tested in the
laboratory on a SIRS recorder simulator. No further action is
required on this recommendation.

Hardware Modifications

As a result of the qualification program, several hardware
modifications were recommended for incorporation into the re-
corders to be used during the Phase II Operational Evaluation.
These modifications include the improvement of some of the in-
ternal wire routing and terminations. In addition, the lithium
battery that failed during the temperature-altitude-humidity
test was replaced by an improved, qualified lithium battery. No
retesting was contemplated since this battery has been success-
fully tested under similar environmental conditions,

Flight testing on a Bell Model 212 helicopter equipped with
both a SIRS recorder and a magnetic tape instrumentation system
indicated that the in-flight gross weight measuring system would
yield valid data if the center-of-gravity excursions were not
large. Because the c.g. excursion on operational AH-1G heli-
copters is about 5 inches for gross weights ranging between 7000
and 9500 pounds, it was felt that the 1ift link measurement
system could be adjusted for these excursions. Moreover, this
system would yield data more accurately than the skid landing
gear system since the latter has the limitation of an assumed
fuel burn-off rate and a fixed weight for all weapons configu-
rations.

All of these recommended alterations were executed and were
successful except for the GW sensing scheme. Details of those
results are cited under the IOTE flight test program findings
(Chapter 5).
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IOTEE (PHASE I1 OPERATIONAL EVALUATION)

Explicit Determination of Gross Weight

Since the two sensor techniques selected to explicitly
measure GW were unsatisfactory, a new approach is recommended for
determining this important parameter. The scheme should conform
to the error budget existing within the theoretical calculated
fatigue life and recommended service lives of the 10 parts under
evaluation in the SIRS program. In addition, a clamped-on,
piezoelectric strain gage approach should be used for instru-
menting the AH-1S 1ift link. This will eliminate the need to
mechanically bond the sensor to the shot-peened 1ift link
surface. Thorough concept testing by follow-on IOTEE with con-
firmed, satisfactory results prior to implementation/deployment
is recommended.

Tracking of High-Value, Fatigue-Sensitive Parts

As the DTGE program merged into the IOTEE program the
importance of tracking the high-value, fatigue-sensitive parts
under SIRS surveillance became unmistakable, It is recommended
that the SIRS DTU be modified to provide for operator inputs
when a part is changed. This will minimize the need for
additional paperwork at the organizational level while captur-
ing this vital data essential to operational utility of SIRS.
This concept should be tested and evaluated via a follow-on
IOTGE, with using cormand and logistical command inputs to the
evaluations.

DTU Packaging

The reported unwieldy nature of the DTU packaging should
be investigated within the operational environment. The selected
design is inconvenient to the operator from the standpoint of
transportation. Nevertheless, execution of alternative pack-
aging concepts entails life-cycle-cost implications. Further
IOTGE of the DTU packaging should be accompanied by a cost-
benefit evaluation of postulated alternatives.

DTU Tape Drive

The single DTU tape drive capstan control concept required
rectification. The appropriate corrective action was to pro-
vide for dual wind/rewind capstan controllers. This recom-
mendation was implemented and was subsequently found to be
satisfactory. The DTU employed in the follow-on IOT&E flight
test program of AH-1S employs this design concept. No further
action is required.
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Use of DTU During Battery Charging Operation

It is recommended that the DTU circuitry be redesigned to
provide for operability during the battery recharging operation
and that the redesign be evaluated during follow-on IOTGE.

Logistics of Data Reduction

The postulated data processing system in support of the
SIRS concept was inadequately tested or evaluated due to the
compressed time schedule. Complete and thorough testing and
evaluation of the system via an appropriate extension of the
IOTGE period is recommended. The IPS, FDAS, and CTMS should
be closely examined as an integral part of the AVSCOM RAMMIT
system,

Statistical Evaluation of Calculated Component Damage

The use of operational logbook hours to calculate component
fatigue damage for high-value, fatigue-sensitive assemblies
yields extravagant results. It is recommended that SIRS be used
to compute service lives of these parts.

Since the standard deviations of SIRS results can be re-
duced by altering the GW sensor methodology and recorder multi-
plexing scheme, these changes should be implemented.

The alterations should be carefully and adequately tested
via a follow-on IOTGE. Assessments by using command and
logistical command should be provided prior to a deployment
decision.

Software
The IPS and FDAS packages are operational. The CMTS con-

cept should be reviewed to ensure its capability with U.S. Army
aviation program needs.
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% ABBREVIATIONS
% ATR Airbtorne Transmitter Rack
i BIT Built-In Test
CTMS Component Tracking Management System
VoD Department of Defense
DT&E Development Test and Evaluation
DTU Data Transfer Unit
EMI Electromagnetic Interference
EMC Electromagnetic Compatability
EPROM Erasable Programmable Read-Only Memory
FCC Flight Condition Category
FCM Flight Condition Monitoring
FCR Flight Condition Recognition
1 FDAS Fatigue Damage Assessment System
: GW Gross Weight
H-GW High Gross Weight
IOTGE Initial Operational Test and Evaluation
IPS Initial Processing System
L-GW Light Gross Weight
M-GW Medium Gross Weight
MTBF Mean-Time-Between-Failures
0§S Operating and Support
PC Printed Circuit
RED Research and Development
RAM Random Access Memory

RAMMIT Reliability and Maintainability Management Improve-
ment Techniques
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ABBREVIATIONS - Concluded
Remote Job Entry
Structural Integrity Recording System
Maximum Attainabie (Level Flight) Velocity

Limit Velocity
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APPENDIX A

DETAILED FCM SYSTEM DESCRIPTION

This appendix describes the flight condition categories in
terms of the pertinent flight parameters by indicating the cri-
teria that govern (1) the definition and identification of cach
flight condition category, and (2) the requirements for monitor-
ing the flight condition categories. These criteria are defined
by sample (theoretical) time-history traces and written descrip-

tions.

The 103 flight condition categories are summarized in Table
A-1. The letters in the column entitled "Type" are defined as

follows:

T =

N:
The

accumulated time spent in the flight condition category
during a specified recording period

accumulated occurrences of the flight condition cate-
gory during a specified recording period

maximum parameter magnitude during a specified record-
ing period

null recording category

system parameters, both those directly recorded and

those computed, are summarized in Table A-2.
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i TABLE A-1. FCM SYSTEM SUMMARY
: {
, Fit, Cond. Cat. No. 4
g Gross Weight (1b
<7750 7750-8750 >8750 Parameters Type Thresholds
1 2 3 Clock Time T B R R T -
4 Rotor Specd Above or Relow Threshold 100 RPM
5 6 7 Vertical Accel. Relow Threshold T n, < 1.3g
A/S Relow Threshold a8 <0050 vy <
Roll Attitude Below Threshold g8 < i0°
Pitch Attitude Above Threshold 8> 15 -
Engine Torque Press, Above Threshold ET > 5 psy
8 b 10 kngine Torque Press. Above Threshold C ET > 5 psa 1
Touchdown Occurs B AR EEE TR R TR .
11 12 1Y Vertov.al Accel. Below Threshold [ ny <1.3g “
A/S BRetween Threshold 0.50 vy S A/S <D 65 Vy {
Roll Attitude BRelow Threshold g <10°
Rate of Descent Below Threshold RD < 1650 fpm
14 15 16 Vestical Accel. Below Threshold T ng <}
A/S Between Threshold 0.05 Vy £ A/S < 0.95 vy
Roll Attitude Relow Threshold g < 10
Rate of Descent Below Threshold RO < 1650 fpm
Enginc Torque Pre<s, Between Threc<holds S ps) < ET < 44 p3y
17 18 19 Verti1cal Accel, Below Thieshold T n. < 1.3g
A/S Above 'hreshold A/8 > 0.95 vy
Roll Attitude Relow Threshold R X0°
Rate of Descent Below Threshold RD € 1650 fpm
20 21 22 Vertical Accel. Below Threshold T ny < 1.%
A/S Between Threcholds 0.50 vy € A/S <0 05 Yy !
Rotl Attitude Below Threchold g <107
Rate of Descent Below Thresholl RIY € 1650 (pm
tngine lorque Press, Ahove lhreshold > 44 psa
2% 24 2% Vertical Accel. Retween Threshold T 1.3 ¢n, <15
A/S Between Thre<holds 0.65 vip < A}S < 0,80 vy
Roll Attitude Abhove Threshold 3100
26 27 28  Vertical Accel., Between Threshold T 13<n, <1.5
A/S Above Threshold A/S 3 0.80 Vy ]
Roll Attitude Above Threshold a3 10°
29 30 11 ‘ertical Accel. Below lhreshold T ny; <1 3g
4/8 Below Threshold A/S € 0.70 V;,
Roll Attitude Below Threshold f <10
Rate of Nescent Above Threshold RD 2> 1653 fpm
32 33 31 Vertical Accel. Below Threshold T n, <1.
A/S Retween Thresholds 0.70 vy, < A/§ < 0.85 vy,
Roil Attitude Below threshold B <10
Rate of Descent Above Threshold RD > 1650 (pm
35 36 37 Vertical Aczel. Below Threshold T ng <1.
A/S Between Thresholds 0.85 vy, < A/S £0.95 Vv,
Roll Attitude Below Threshold g8 <10
Rate of Descent Above Threshold RD > 1650 fpm
38 39 40 Vertical Accel. Below Threshold T n, <1.3g
A/S Above Threshold a8 s 0les v
Roll Attitude Below Threchold & < 10°
Rate of Pescent Ahove Threshold RB > 1650 fpm
41 42 A3 Vertical Accel. Above Threchold T ny 2 t.5e
A/S Below Threshold A/3 T 0.70 VL
, Rol} Attatude Between Threshold 10* < 8 < 3¢
44 45 46 Vertical Accel. Above Threshold 1 22 1.5
A/S Bétween Thresholds 0.70 V& T A/S < 0.85 V),
Roll Attitude Retween Threshnld <g <3
¥
'Y 1] 49 Vertji:al Accel. Above Threshold T ng > 1.5¢
A/S Between Thresholds 0.85 vy < A/S < 0.95 VY
Roll Attitude Betwcen Thresholds 10% < 8 < 35°
5¢ st $2  Vertical Accel. Above Threshold T n, > 1.5g
A/S Above Threshold ard 5 098 v
Roll Attitude Botween Thresholds 10* < B < 3%
g
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TABLE A-1.

Parameters

Vertical Accei. Above Threshold
A/S Below Threshold

Roll Attitudc Below Threshold
Pitch Attitude Above Threshold

Vertical Accel. Above Threshold
A/S Between Thresholds

Rotl Attitude Below Threshold
Pitch Attitude Above Threshold

Vertical Accel. Above Threshold
A/S Abore Threshold

Roll Attitude Rclow Threshold
Pitch Attitude Above Threchold

Vertical Accel, Above Threshold

A/S Below Threshold

Initial Roll Attitude Above Threshold
Subsoquent Roll Attitudes Below Threshold

Verrical Accel. Above Threshold

A/S Retween Thresholds

Initial Roll Attitude Abcve Threshold
Subsequent Roll Attitudes Below Thresnold

Vertical Accel. Above Threshold

A/S Above Threshold

Initial Roll Attitude Above [hreshold
Subscquent Roll Attatudes Below Threshold

Vertical Accel. Above Threshold

A/S Below lhreshold

In1tial Roll Attitude Above Threshold
Subsequent Roll Attitude Ahove Threshold

Vertical Accel. Above Threshold

A/S Above Threshold

Inttial Roll Attitude Above threshoald
Subsequent Roll Attitudes Abhove Threshold

Flight Clock Time
tngine Torque Press. Below Threshold

Vertical Accel. Betwecn Thresholds

A/S Above Threshold

tngine Torque Press. Crosses Threshold
(446 ps1)

Vertical Accel. Above Threshold

A/S Above Threshold

Engine Torque Press. Crosses Threshold
(4°6 psi)

Vertical Accel. Retween Thresholds

A/S Above Threshold

Engine Torque Press. Below Threshold

Roll Attitude Above Threshold

Vertical Accel. Above Threshold

A/S Above Threshold

Engine Torque Press. Below Threshold

Roll Attitude Above Threshoid

Lngine Torque Press. Below Threshold
Touchdown Occurs

Vertical Accel. Above Threshold
A/S Ahove Threshold

Maximum n, Magnitude Attained
Maximum A/S Mdagnitude Attained
Not Recorded Directly
Not Recorded Directly

Concluded

Type
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TABLE A-2. SYSTEM PARAMETERS

Directly Si1gn Conventaon for

System Parameters Recorded Computed Positive Number
Indicated Arrspeed (A/S) N T T R R L b ki
Max. Level Flight (V”) vy = f(T,Hp) ...................
Limt Velocity (VL) vy = f(t’HB) ...................
Pressure Altitude (Hp) X emesecemmmmececescos
Outside Air Temperature (T) X eeeeemeeessemeseme
Rate of Descent (RD) RD = f(Hp,Time) Decreasiyng Altitude
Main Rotor Veloctity (MRV) X mmeseeeesememecenes
Roll Attitude () X memmemmeemesececses
Prtch Attitude (1) X mmssememmssmmeeseee
Vertical Acceleration (n:) X Ship Accelerates Up
Landing Gear Touchdown (Th) O R R R i

Ingine Torque Pressure (rm X Increasing Torque
Takeof f CGross heipht (TGW) N R EE L L LRl
In-Flight Gross Weight (GW) GW = f(TOW,Time)  ----=------sm=-m=="

Each type of flight condition category is depicted in Fig-
ures A-1 through A-20. In examining these figures, the follow-
ing statements are applicable to all flight condition categories:

1. Unless otherwise indicated, the engine torque pressure
in each flight condition category must be greater than
5 psi.

2. Whenever a roll or a pitch attitude threshold is de-
fined (e.g., B > 10°), it represents the ab‘ olute value
of roll or pitch attitude (i.e., 8] > 10°).
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i Represents: Flight Clock Time
ﬁ FCC Applicability| TD ON/OFF
e FCC #1 GW < 7750 1b
E FCC #2 7750 1b < GW < 8750 1b
4 : FCC #3 GW > 8750
:'; - =
A = 8750::}‘*‘"—\—— _________
o= —
ki 7S & 1Y) SR IUERY S
3 4
5 =
4 ©
L. N
ZZ rur.
3 g5 (oV)
SR
Sz o
8;’. GRD. |
T (OFF)
l ‘ — T IME
i.l.'l T, i
3
‘ !
4 T1 = FCC #1 Timer
4 T2 = FCC #2 Timer
B T3 = FCC #3 Timer
E ) Description a
Monitor the clock time accrued by the helicopter while airborne. .
i
Figure A-1. Flight Condition Categories 1, 2, and 3 :
(In-Flight Time).
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Represents: Rotor Start/Stop

¢ MRV 2100 rpm

‘
L S

o 400 3
o - 1
[ S]
S 300
[$4}
-
« &
€8 200
=
Q0
o
~ 100 - \
=
-
0

»= TIME

C4 = FCC #4 counter

Description

Monitor ithe number of times the main rotor velocity passes
through the 100 rpm regime. To ensure against extra Cy
counts due to small perturbations of the main rotor velocity,

require that all C, events must occur at least 10 seconds
apart,

Figure A-2. Flight Condition Category 4 (Rotor Start/Stop).
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Represents: Quick-Stop Deccleration

n, <1,5g

A7ST< 0.50 vy
g < 10° ;
6 > 15° ;
FCC Applicability| ET > 5 psi A
¥CC 75 GW < 7750 1b k
FCC #6 7750 1b < GW < 8750 1b ;
FCC #7 GW > 8750 1b ~ i
; a 0.6V, !
ae e e —_ :
5= . i
2% 0.avy L ""““\\,,f”‘lﬂ/",,..,f’~’“'—"-\\v-\,\,~,v-a\\ j
= 2

~ DEGRLES

PITCH ATTITUDE ROLL ATTITUDE
~ DEGREES

™
wnx
no
[ol™
&w
Sx
z
O 0]
- -
L g
=g
= 1
o
w
>0
Q
>3
T5 = FCC #5 Timer
T6 = FCC #6 Timer
T7 = FCC #7 Timer

Description

Monitor *he clock time accrued by the helicopter during which all

six parameter threshold definitions are being satisfied simultaneously.
The airspeed requirement 15 based on maximum attainable velocity at
constant altitude (Vy), which 1s a function of density altitude.

Figure A-3. Flight Coadition Categories 5, 6, and 7
(Quick~Stop Deceleration).
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Represents: Normal Landing

ET > 5 psi
FCC Applicability | TD ON/OFF
FCC #8 GW < 7750 1b
FCC #9 7750 1b < GW < 8750 1b
FCC #10 GW > 8750 1b ~
L
S
@
=0
-
v
wm
S
o
&)
d
[SS T ]
==
&
&
o
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o
[SSan]
)
vt U7
O W
o
[SS NV
£E 1”#
H e o s ———
2% (oW
TJ
825 ON
©Z GRD. [
= (0FF)
1 = TIME
Cy
C8 = FCC #8 Counter
C9 = FCC #9 Counter
C10 = FCC #10 Counter

Description
The engine torque pressure must be above threshold immediately
prior to (at least 10 seconds), and at the time of, touchdown.

Once a touchdown has been recorded, a rebounding helicopter
should not register additional counts,

Figure A-4. Flight Condition Categories 8,9, and 10
(Normal Landing).
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Represents: Low-Velocity Flight Conditions
(e.g., Forward Level Flight, Normal Full
Power Climbs, and Low-Speed Turns)
n, < 1.3g
0.50 Vy < A/8 < 0,65 Vy
g8 < 10°
FCC Applicability | RD < 1650 fpm
FCC 711 GW < 7750 1b
FCC #12 7750 1b < GW < 8750 1b
FCC #13 GW > 8750 1b
am
= 8750
- w
« =0
pu—
@ 2 7750
S
&
(&)
0.90 V!H‘
2 . 0.80 Vit
EiOJOWwi¥_~"__UW__“Q__“__"_,"__“___
& 0.60 Vyr MRS
2 0.50 Vyp——— —————————— ———— — =
0.40 vyt
=
& 4950
3 3300
HE 1650
he 0
33
Ot L1650
E -3300
o -4950
Pt
;:2 1.5
55 1.3
ng 1.1
&uaz 0.9
- .
S —a TIME
- e Ut i smna B o Ty2 >
T
12
T11 = FCC #11 Timer
’ Ty, = FCC #12 Timer
N3 = FCC #13 Timer

Description

Monitor the clock time accrued by the helicopter during which all
five parameter threshold definitions are being satisfied simultane-
ously. The airspeed classification is based on maximum attainable

velocity at constant altitude (Vy), which is a function of density
altitude.

Figure A-5. Flight Condition Categories 11, 12, and 13
(Low-Velocity Flight).
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Represents:

LS A e SNt S

High-Velocity Flight Conditions
(e.g., Forward lLevel Flight, Part Power Descent,

High-Speed Control Corrections, and High-Speed
Full Power Climbs)

FCC Applicability | ng < 1.3g .
ror— | —For— g.folgg < A/S < 0.95 vy
S5<ETg44 ET>44 RD < 1650 fpm
FCC #14 | FCC #20 GW < 7750 1b
FCC #15 [ FCC #21 7750 1b < GW < 8750 1b
FCC #16 | FCC #22 GW > 8750 1b
e .
=
it} 8750
2%
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-
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S e
5%
X
)
R
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23 e}
Pl
:-:V)
oo FCC #14 Timer
TR FCC #15 Timer
FCC #16 Timer
FCC 420 Timer
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a 0.90 Vy FCC #22 Timer
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o
G (0,70 \'“
U <
o , 0. 60 Vy
< 0150 \'Il
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4050 |
é E . 3300
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-4950
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e
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Description

Monitor the clock time accrued by the helicopter during which all
six parameter threshold definitions arc being satisfied simul-
tancously. The airspeed classification 1s based on maximum at-
tainable velocity at constant altitude (Vi) which is a function of
densaty altitude.

Flight Condition Categories 14, 15, 16, 20, 21,

Figure A-6. : _
and 22 (High-Velocity Flight).
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. , Represents: Maximum-Velocity Flight Conditions
E H (e.g., Forward Level Flight)
A < 1.3g
7 A7S > 0.85 vy
4 g < T0°
f FCC Applicability | RD < 1650 fpm
K FCC #17 GW < 7750 1b
3 FCC #18 7750 1b < GW < 8750 1b
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T17 FCC #17 Timer
18 FCC #18 Timer

T19 FCC #19 Timer

o b

Description

Monitor the clock time accrued by the helicopter during which all
five parameter threshold definitions are being satisfied simultan-
eously. The airspeed classification is based on maximum attainable
velocity at constant altitude (Vy), which is a function of density
altitude.

i

e

4354

Figure A-7. Flight Condition Categories 17, 18, and 19
(Maximum-Velocity Flight).
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Figure A

s: Normal (High-Speed) Turns
FCC Applicability
tor For—-11.3g < n; < 1.5g
0.65Vy<A/S<0.8VH |A/S20.8Vy | 8 > 10°
FCC #23 FCC ?25. GW. < 7750 1b
FCC #24 FCC #27 7750 1b < GW < 8750 1b
FCC #25 FCC #28 GW > 8750 1b )

780

7S pmm e —

o= TIME

o725 o727

#23 Timer
#24 Timer
#25 Timer
#26 Timer
#27 Timer
¥28 Timer

-8. Flight Condition Categories 23 through 28
(Normal (High-Speed) Turns).
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Description

The following graphical characterization demonstrates how
the time spent in normal turns should be defined,

20 "84
10 —_———_—_—
B 0 J\/\W
Tt M
-20
1.7
L Sf——— — F——— — ——— — — — — — — —
Ny Ldp—m — — bk — —
1.1 ANA\Mva“V~M-~A¢/W4w-\m
0.9 — T IME

“_——Ti'———’

time at which roll attitude first exceeds 10° threshold

Tay =

TS%,3’4 = respective times at which roll attitude crosses
19° threshold

Tp, = time at which vertical acceleration exceeds threshold

ATg = time between roll attitude threshold exceedances

(sce figure)
Tj = normal turn occurrence timer for FCC #i, i = 23,28

The time between Tg) and Tp, is defined at less than 10 seconds.
Upon confirmation that the roll attitude peaks at a magnitude
greater than 10° and the vertical acceleration also peaks be-
tween 1.3 and 1.5 g within the prescribed time, the timer

(Tj) should be initiated at Tg1. If ATg is subsequently less
than 10 seconds, Tj should be allowed to continue timing until
the roll attitude again returns below threshold (at Tg4); other-
wise, terminate Tj and Tg2. The airspeed classification is
based on maximum attainagle velocity at constant altitude (Vy)
which is a function of density altitude. The airspeed cate-
gorization, for a given turn, is defined at Tg1. If the gross
weight classification should change during the turn, the entire
Tj should be entered in the category corresponding to the

greater gross weight,

Figure A-8. Concluded
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Represents. Gunnery Run Dives
FCC Applicability n, < 1.3g
——For For For —7For 8 < 10°
A/S<0.70Vy | 0.70VL<A/S<0.85V], |0.85V <A/S£0.95Vy, | A/S§>0.95V) IRD > 1650 fpm
TCC #29 FCC#32 FCC F35 FCC F38 |GW < 7750 1b
. FCC #30 FCC #33 FCC #36 FCC #39 |7750 1b < GW < 8750 1b
fCC #31 FCC #34 FCC #37 FCC #40 |[GW > 8750 1b
E 8750 L}m—w _______________
= -__-—_-———‘"“—-————_~_____ -
5::
L' 7T e e e
o
S
=
-
IS kA
<3
g
%
b
2000y
= N
Go 0BV
250y
= .
0.6V, |
1.
z 1050 |- ]
2 3300
[
= 1650
_E 0
G 1650
be -3300
Lapl
- -3950 -
a2 1
= 1
v
~% e 1
® = 1
>§ 0.9 T 1ML
l 1 \ T T
37 33 39
T,g = 1CC #29 Timer 15 FCC #35 Timer -
1:6 = I'CC #30 limer TEG = I'CC #36 Timer
T%l = 1CC #31 TIimet T.;.Y = FCC #27 Timer
T35 = FCC 432 Lamer rgé = FCC #38 Timer
I%% = 1CC #33 limer 134 = FCC #39 Timer
1z = FCC #34 Timer Ty, = FCC 440 Timer .
34 10
Descraption
Monitor the (lock time accrued by the helicopter during whach all
patameter threshold definitions are being ~atasfied simultancously.
Ihe arrspeed clasaification 1s based on percentage of limit velocity
(Vi) wht h 1o a function of density altitude. Airspeed 1s cate- ;
gorized near the end of the dive.
Figure A-9. Flight Condition Categories 24 through 40
(Gunnery Run Dives).
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Represents: Asymmetrical Pullups

FCC Applicability
—For For For —For n, > 1.5g
A/S20.70Vy [0.70V<A/S<0,.85VL, |0.85V)<A/S<0.95Vy | A/S>0.95V], 15° < B < 35°
FCC 741 FCC ¥4dd FCC#47 FCC #50 GW < 7750 1b
FCC #42 FCC #45 FCC #48 FCC #51 7750 1b < GW < 8750 1b
FCC #43 FCC #46 FCC #49 FCC #52 |GW > 8750 1b
’ c
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T“ = FCC #41 Timer T” = FCC #47 Timer
T42 = FCC #42 Timer T48 = FCC #48 Timer
T43 = FCC #43 Timer T49 = FCC #49 Timer
. Tys = FCC #44 Timer T50 = FCC #50 Timer
T45 = FCC #45 Timer 'l'51 = FCC #51 Timer
T46 = FCC #46 Timer T = FCC #52 Timer

Figure A-10. Flight Condition Categories 41 through 52
(Asymmetrical (Gunnery Run) Pullups).
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Description

The following graphical characterization demonstrates how the
time spent in asymmetrical pullups should be defined:

— —— — — — — — ——— om——— —

T ML

Ti = asymmetrical pullup occurrence timer for FCC #i, i = 41,52
Tgi = time at which roll attitude first exceeds 10° threshold
Ty, = time at which n, exceeds 1.5 g threshold

ATB time between rofl attitude threshold exceedances

The time between Tgy and Tp, should be definedat less than 10
seconds. The timer (Tj) initiates at Tgy. If ATg is less
than 10 seconds, T, should be allowed to continue timing until
the roll attitude once again drops below threshold; otherwise,
terminate Tj at the time the roll attitude first drops back
across the 10° threshold. Recall that the rell attitude peak
must fall between 10° and 35°; if it peaks above 35° it wi

be categorized as a different flight condition. The airspeed
classification is based on percentage of limit velocity (V[),
which is a function of density altitude. The airspeed cate-
gorization, for a given pullup, is defined at Tgj.

Figure A-10. Concluded
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Represents: Symmetrical (Gunnery Run) Pullups
FCC Applicability n, > 1,3g
For For For B <10°
JA/8<0.70V] | 0.70V]<A/S<0.85V] | A/S>0.85V] |6 > 5°
C #53 "FCC #7356 - FCC #59 | GW < 7750 1b
FCC #54 FCC #57 FCC #60 | 7750 1b < GW < 8750 1b
FCC #55 FCC #58 FCC #61 [ GW > 8750 1b ~

~ 1b

8750

7750

[T o P
TRV PP ADSR POURPNCIIRY WORPPE. 9. EAPTPE S SR ] RS

20 tam s R s

0.90
0.80
0.70
0.60

AIRSPEED GROSS WEIGHT
~ KIAS

~ DEGREES

ROLL ATTITUDE PITCH ATTITUDE
~ DEGREES

VERTICAL
ACCELERATION

~ g

b bl W b b

T53 = FCC #53 Timer T58 = FCC #58 Timer
TS@ = FCC #54 Timer ng = FCC #59 Timer
T55 = FCC #55 Timer T6O = FCC #60 Timer
T56 = FCC #56 Timer T61 = FCC #61 Timer
T57 = FCC #57 Timer

Figure A-11. Flight Condition Categories 53 through 61
(Symmetrical (Gunnery Run) Pullups).
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Description

The following graphical characterization demonstrates how the
time spent in symmetrical pullups should be defined.

8
n 2
TIME
%‘ .;
n, n,
Ty | T "
Tol = time at which pitch attitude first exceeds -5°
Toy 5.4 = second, third,and fourth times the pitch attitude
* exceeds the -5° threshold
Tp, = time at which n; exceeds 1.3g threshold
ATy = time between pitch attitude -5° threshold exceedances

A gunnery run symmetrical pullup is confirmed when, and only

when, Ty, is sensed within 10 seconds after Tgy is sensed. The
timer Ty initiates at Tg, and terminates at Tgp. The exception

is when the pitch attituée briefly crosses inside the -5° threshold
and then immediately returns outside threshold (ATg < 5 seconds).
In this case the threshold crossing defined by ATy is ignored and
T;{ continues to time the maneuver unti] a normal termination is
sensed. The airspeed classification is based on percentage of
limit velocity (VL), which is a function of density altitude. Air-

speed is categorized at the time the vertical acceleration exceeds
1.3¢g.

Figure A-11. Concluded
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Represents: Gunnery Turns

FCC Applicability n; > 1.5g
——For y For —For Binitial > 35°
/\/3_59.65\/}1 0.65VH<A/S$0.80VH A/S>0.80VH Bsubse uent < 25
T 762 TCC 765 FCCA68 | G < 7780 Ib
FCC #63 FCC 466 FCC #69 7750 1b < GW < 8750 1b
FCC #64 FCC #67 FCC #70 GW > 8750 1b
o
R ) R S S hnlninin —
e
= .0
B0 7750
5

0. 90
Z0. 80

0,70
0.60

AIRSPEED

ATTITUDE
~ DEGREES

ROLL

VERTICAL
ACCELERATION
g

L————T64————J L*———Teg“’J

T FCC #62 Timer T65 FCC #65 Timer T FCC #68 Timer

162 = RCC #63 Timer 185 = FCC #66 Timer 18 = FCC #69 Timer
Tgi = FCC #64 Timer T67 = FCC #67 Timer T70 = FCC #70 Timer

Figure A-12. Flight Condition Categories 62 through 70
(Gunnery Turns).
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Description

The fgllowing graphical characterization demonstrates how
the time spent in gunnery turns should be defined:

T, T
Tale, 838

- TIME

. ﬁ1_g% ) ! L_an

= second and third times the roll attitude crosses the

Te3,4 °
’ 10° threshold level
gunnery turn occurrence timer for FCC #i, i = 22,24

T; =

TB; = time at which roll attitude first exceeds 10° threshold
TBZ = time at which roll attitude first exceeds 35° threshold
Tp, = time at which n, exceeds 1.5g threshold

4Tg = time between roll attitude 10° threshold exceedances

The time between Tgy and Tp, should be definedatless than 10
seconds. Upon confirmation that the roll attitude crosses the
35° threshold (the time between Tg; and TSZ should also be
less than 10 seconds), the timer (+i) initiates at Tgy. If
ATg is less than 10 seconds, T; should be allowed to continue
timing until the roll attitude, once again, drops below the
10° threshold (at Tg4), if and only if, the second roll atti-
tude peak does not exceed 25°. Otherwise, terminate Tj at
Tg3. (The "subsequent peak" requirement is designed to dif-
ferentiate gunnery turns from gunnery S-turns.) The airspeed
classification is based on maximum attainable velocity at
constant attitude (Vy), which is a function of density attitude.
The airspeed categorization, for a given turn, is defined at

Ta1.

Figure A-12, Concluded
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Represents: Gunnery S-Turn %
FCC Applicability n, > 1.5g x
For ; For 8initial > 35°
A/S < 0.90 Vy [A/S 2> 0.90 Vy | Bsup > 25° N
T 7T ToC T oRU2SS S b i
FCC #72 FCC #75 7750 1b < GW < 8750 1b g
. FCC #73 FCC 476 GW > 8750 1b 4
4
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: 173 ; —T72‘—‘l
3 T71 = FCC #71 Timer T74 = FCC #74 Timer
T72 = FCC #72 Timer T75 = FCC #75 Timer
T = FCC #73 Timer T = FCC #76 Timer
73 76
Figure A-13. Flight Condition Categories 71 through 76 }5
(Gunnery S-Turns). :
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Description
The following graphical characterization demonstrates how
the time spent in gunnery S-turns should be defined:

T, T
T, T B."8
8, 8, 3 "4

- [ IME

-

Tss 4= second and third times the roll attitude crosses the
' 10° threshold level
T; = gunnery turn occurrence timer for FCC #i, i = 22,24
Tg} = time at which roll attitude first exceeds 10° threshold
Tgy = time at which roll attitude first exceeds 35° threshold
Ty, = time at which n, exceeds 1.5g threshold
ATg = time between rofl attitude 10° threshold exceedances

The time between Tgy and Tp, should be definedat less than 10 seconds.

Upon confirmation that the roll attitude crosses the 35° threshold
(the time between Tgj and Tg2 should also be less than 10 seconds),
the timer (Tj) initiates at Tgi. If ATg is less than 10 seconds,
T; should be allowed to continue timing until the roll attitude,
once again, drops below the 10° threshold (at Tgy4), if and only if,
the second (and any subsequent) roll attitude peaks exceed 25°.

By definition, the gunnery S-turn is characterized by at least two
cxcessive roll attitude peels occurring in rapid succession. There-
fore, the foregoing criterii concerning ''subsequent peaks" was
designed to differentiate the gunmery S-turn from normal gunnery
turns, The airspeed classification is based on maximum attainable
velocity at constant attitude (VH), which is a function of density
attitude. The airspeed categorization, for a given turn, is de-
fined at Tgj.

Figure A-13, Concluded
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Represents: Clock Time in Autorotation

FCC Applicability | ET < 5 psi
FCC 77 GW < 7750 1b
: FCC #78 7750 1b < GW < 8750 1b
FCC #79 GW > 8750 1b
8750 v oom e e e o e e e e e e e e e e

RCSS WEIGHT
~ 1b

7750 = —— e e e e

3
S

-
..:.\V)
OQ 40 |-
g 30
30 tp
=
- B
PERY 10
L B2
0N {
P
Lia

L..___T78——-—u<~1‘77-o]

T77 = FCC #77 Timer
T78 = FCC #78 Timer
T79 = FCC #79 Timer

Description

Monitor the total flight spent in the autorotation mode of
operation. Small perturbations in engine torque pressure

- (such as the torque pressure jumping above the § psi threshold
for very short periods of time) of less than 2-second duration
are ignored.

Figure A-14. Flight Condition Categories 77, 78, and 79
(Time in Autorotation).
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Represents: Autorotation to Power Transition

ECC Applicability

-For —For— 1 A/S > 0.65 vy
1.3g<n,<1.5¢ n->1.5g | ET crosses § psi (+)
FCC #80 FCC #83 | GW < 7750 1b
FCC #81 FCC #84 | 7750 1b < GW < 8750 1b

FCC #82 FCC #85 [ Gw > 8750 1b ~
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‘4 ,4 T IME
Ly g3
AT«
AT
T80 = FCC 480 Counter T83 = FCC #83 Counter
T81 = FCC #81 Counter '1'84 = FCC #84 Counter
T82 = FCC 482 Counter T85 = FCC #85 Counter
Description

Whenever the engine torque pressure crosses the § psi threshold

in a positive direction and is followed (AT less than § seconds)
by a vertical acceleration satisfying the threshold definition,
the event should be recorded. The airspeed classification is
based on a maximum attainable velocity at constant altitude ),
which is a function of density altitude. The airspeed categoriza-
tion is defined at the time the vertical acceleration exceeds
threshold,

Figure A-15. Flight Condition Categories 80 through 85
(Autorotation-to-Power Transition).
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Represents: High-Speed Autorotation Turns

FCC Applicability ' JA/S > 0.65 Vy

——For ~For— | ET < 5 psi
1.3g<n,<1.5g 1 n,>1.5 B > 10°
FCC 486 FCC #89 | GW < 7750 1b
- FCC #87 FCC #90 { 7750 1b < GW < 8750 1b
- FCC #88 FCC #91 | GW > 8750 1b —

=
v I
[ R -]
- Or-dﬂ
[~ %]
SE !
Gu Vi
[ Red
E20.75 Vy
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w0,
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s
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S-oor
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(Sl 2 IR
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H
I
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|
I
I
i
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0 e TIME
LTss"l L"'1 90""I
T86 = FCC #86 Timer
T87 = FCC #87 Timer
T88 = FCC #88 Timer
ng = FCC #89 Timar
T00 = FCC #90 Timer
T91 = FCC #91 Timer

Description

Monitor the clock time accrued by the helicopter in autorotation
while 1ts roll attitude ts greater than 10° only if it is ac-
companied by a vertical acceleration peak (within 5 seconds) 1in

the prescribed threshold levels. The dura‘ion of the maneuver

1s defined the same as the Normal High-Speed Turn (FCC #23 through
28). The airspeed classification is based on maximum attainable
velocity (Vy), which is a function of density altitude. The airspeed
categorization for a given turn 1s defined at the time the roll
attitude exceeds 10°.

Figure A-16. Flight Condition Categories 8¢ through 91
(High-Speed Autorotation Turns).
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Represents: Autorotation Landing

ET < § psi
FCC Applicability TD ON/OFF
FCC #92 GW < 7750 1b
FCC #93 7750 1b < GW < 8750 1b -
FCC #94 GW > 8750 1b
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2w 40
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Z& 10
o, 0
£3 IN
= h —
8% nur. l
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22 GRD.
P {’TIHE
Co2
ng = FCC #92 Counter
C93 = FCC #93 Counter
C94 = FCC #94 Counter
Description .

The engine torque pressure must be below threshold

immediately prior to (at least 10 seconds), and at

the time of, touchdown. Once a touchdown has been

recorded a rebounding helicopter should not register .
additional counts.

¢ Figure A-17., Flight Condition Categories 92, 93, and 94
(Autorotation Landing).
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Represents: Misc. High-G Maneuvers A?si'so VH
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C95 = FCC #95 counter
Description
It 1s simply intended to count the number of times the heli- i
copter experiences vertical accelerations in excess of 1.7 g
while flying at significant airspeeds. This implies that the
touchdown 1indicator must be registering in-flight operation. ;
; ;
g -
; Figure A-18. Flight Condition Category 95
: (Miscellaneous High-G Maneuvers).
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Represents: Maximum Vertical Acceleration
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- RLCORDING PLRIOD |
{ M90 = maxinum n, magnitude recorded during prescribed period
& (Mﬂﬁ) 2 ° intermediate maxima whose n, values were subsequently
b s surpassed during the recording period

Description

Record the magnitude of the largest vertical acceleration
experienced during the recording period. The (nZ)max may
occur 1n any flight condition category (which implies that
the in-flight indicator must be registering in-flight
operation).

Figure A-19. Flight Condition Category 96
(Maximum Vertical Acceleration). .
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Represents: Maxinum Airspeed
Attained During All
Flight Conditions

KL i 1.5 Vi r (A/S) pax
. 2 .
3 o T A —_
E ’ Vi
& o
i i _ Bl
L 2 I /\\A\
3 & 5
ﬁ: < R N
% 0.5 V|
E -
@ L~
B .
% —a TIME
& - RECORDING PERIOD ]
’i
M97 = maximum alrspeed magnitude recorded during pre-
, scribed period
= (Mq7)‘= intermediate maxima whose airspeed values were sub-
é : sequently surpassed during the recording period
-
5 .
Description
Record the magnitude of the highest airspeed experienced
3 during the recording period expressed in terms of percent
i of Vi. The (A/S)pax may occur in any flight condition
g category. (Recall that the value of Vj is a function of
; . density altitude.)

Figure A-20. Flight Condition Category 97
(Maximum Airspeed (VL)).
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