
AD-A096 360   GENERAL ELECTRIC CO  PITTSFIELD MA ORDNANCE SYSTEMS        F/G 9/2 
TEST GENERATION AND FAULT ISOLATION FOR MICROPROCESSORS AND THE—ETC(U) 
NOV 80  W H DEBANY. D A 0»CONNOR» B K TEAGUE    F30602-78-C-0235 

UNCLASSIFIED RADC-TR-80-27«» NL 





 _. _li~ 



This report has>w reviewed *T tht lADC Public Affairs Office (PA) and 
is r«leasable to ths Rational Technical Xnforaatlon Service (RTIS).    At HTIS 
it vlll be r«le«seble to £be general public. Including foreign nations. 

RADC-TR-80-274 has been revieifed and Is approved for publication. 

APPROVED: 

WARREN B. DEEABT, JR 
Project Engineer 

APPROVED: 

DAVID C. UJEE, Colonel, 08AF 
Chief, Reliability & Coapatlblllty Division 

FOR TEE OONHAMDERt ^p*0C«J J/S J$£±^ 

JOHN P. BBSS 
Acting Chief, Plans Office 

If your address has changed or if you «lab to be removed fro» the EADC «ailing 
list, or ii the addressee la no longer es* leyed by your organisation, please 
notify EADC (ISfiA) Crlffiss APE«T 13441. this wilx assist us In maintaining 
a current «ailing list. 

Do not return this copy. Retain or destroy. 

butt* 



-—        aim 

UNCLASSIFIED 
ASSIFICATION  OF  THIS PAGE /When Dele fmeted) 

do 

REPORT DOCUMENTATION PAGE 

274 i 
]J   GOVT   ACCESSION NO 

TOU-lmd tiinni») - —  i  ., _.       ., 
Jj^ST GENERATION AND J^AULT ISOLATION FOR' 
/MICROPROCESSORS AND THEIR SUPPORT DEVICES, 

AVjTHO«<«J 

Warren H./E 
A./O' David 

Basil K.yTeague 

Debany, Jr. TOD*.,      • 
Connor   / Patricia A./wat 

Mark S. /ZemsulisjTRADC 
"^-~inrnmiMr nan inn 'ITinn n *mr fwIBIHIII •••_.->—• 
General Electric Ordnance Systems ' 
Circuit Test Engineering 
100 Plastics Ave, Pittsfield MA 01201 

"     CONTROLLING OFFICE NAME  AND ADDRESS 

Rome Air Development Center (RBRA) 
Griffiss AFB NY 13441 a\ 

I«     MONITORING  AGENCY NAME »  ADDRESSf// different Irom Controlling! Ollice) 

Same 

READ INSTRUCTIONS 
BKFORE COMPLETING KORM 

3     RECIPIENT'S CATALOG NUMBER 

if mm* iß M>(i>> j pgmaeAroygRFP-. 
/Final  Technical ^ptfrt* } 

f Julp 78—. Jujj, 8/y     | j 
S5555 i »«<. mSSSSmStSti 

N/A 
CONTRACT   OR GRAWT   MUMBER'n 

!Fi«fi02-78-C-i}235 ^ 

.0      PROGRAM ELEMENT. PROJECT,   TASK 
AREA 4   WORK   UNIT NUMBERS 

627Q2F 
2338|bl52 • I 7>J 

I2REP0R_T_DJ\.T£ 

^NovLiiiiiiBiaoao'j 
IIMM8«» OF WAGES 

191 
IS     SECURITY CLASS   '•>< Ih 

UNCLASSIFIED 

IS«     DECLASSIFICATION    DOWNGRADING 
SCHEDULE N/Äc 

16.    DISTRIBUTION  STATEMENT fol this Report) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STATEMENT (ot the ebttrect entered in iftock 20, it different Irom Report) 

Same 

U     SUPPLEMENTARY NOTES 

RADC Project Engineer:  Warren H. Debany, Jr. (RBRA) 

This report was written jointly by GEOS and RADC. 

19.    KEY WORDS (Continue on reveree tide II neceeemry end Identify by bloc» number) 

Automatic Test Equipment  IC Scanning Electron 
Computer-Aided Test      LASAR Microscope 
Device Under Test       Logic Integrity Test MIL-M-38510 
FACTOR LSI, VLSI TEKTEST 

h IPVPI T.ang,,agP      Qualified Part« T.1«r VHSIC    (See Reverse) 
^ 

L 

TRACT (Conltnue on reveree elde If neeeeeery end Identify by block number) 

This report covers the generation of tests for complex digital 
devices, implementation of those tests on currently available ATE, 
and fault isolation. 

Techniques are described for the modeling of devices in order to 
facilitate the testing process. A new algorithm for fault dictionary 
searching is given.  Voltage Contrast (on the Scanning Electron :(Cont'd 

00   i  JA"M71   1473 EOlTION OF  I NOV »» IS OBSOLETE UNCLASSIFIED t <U   x 1      Ke 

SECURITY CLASSIFICATION OF THIS PAGE (When DM* Entered) feted)      f 

1 

i 

J II , .   /$ •*. 

_^- mi •,....• 



——•  • '•"—'•• • - mm 

UNCLASSIFIED 

X 
StOIHITY CLASSIFICATION OF THIS P AGEfHTlMi Dal« Enfarad.' 

Item 20 (Cont'd) « 

Microscope) was used as an aid for fault insertion, which in turn 
provided test cases for fault isolation.  Computer-Aided Test 
techniques are described.  As the demonstration vehicle for this 
work was the development of MIL-M-38510 Detail Specifications 
(Slash Sheets) a tutorial description of a recommended slash sheet 
format is given.  Many areas were only touched on during this con- 
tract; these have been described, with suggestions for further 
research topics. 

Item 19 (Cont'd) 

Computer Programs 
Software 

• 

UNCLASSIFIED 
IICU«1TV CLASSIFICATION O»  »»••  PAG».'l*»ian Dmlm t-<„.« 

• - •   - ----- -    - 



—-— «MM 

ACKNOWLEDGEMENTS 

The authors wish to offer their special thanks to the following persons, 
without whose help this report could not have been completed: 

Tom Dellecave, William Bader, and Jack Haberer, who reviewed sections for 
us. 

. 

Patti Schräm, Lorraine Armstrong, and Marie St. Thomas, for assistance in 
the data entry and manuscript preparation. 

Evelyn   Mesagna,   whose   foresight   and   planning   made   the   manuscript 
preparation possible. 

Allen  Converse,  most  sincere  thanks  for  the  many  unpaid weekend and 
evening hours he spent formatting the final text for the word processor. 

iii 

Aoe«3sion Vi\* 

HTIS    ci? A.&I 
DTtC TAB 
i: aonouxiQBä D 
j iStiflo« tioo  

1.: stributlon/ 
i   Availability Codes 
I Avail  ana/or 
bist    1    Sprcc'al 

J 



•.- ...,.—....— ,»j,..I    w.^<—mpi 

SUMMARY 

This report is the result of a joint effort by General Electric Ordnance 
Systems and RADC, to improve RADC's in-house testing capability for complex digjtaJ 
microcircuits. 

All of the topics covered relate to either the generation of tests, or the 
reduction of the data to provide fault isolation. 

Section 1 of this report concerns the philosophy held by the investigators at 
the end of the effort. In many cases, this philosophy differs greatly from that with 
which the effort started. 

Section 2 deals with the development of MIL-M-38510 "Slash Sheets," and the 
problems encountered when implementing the Slash Sheet tests on current Automatic 
Test Equipment. 

Section 3 discusses the various software tools developed for use during this 
effort. Two types are shown: those running on the RADC Multics facility, and those 
which run on the S-3260/3270 IC Tester. 

Section k describes the development of a test, including the items which 
should be considered during test generation, and the implementation of the test with the 
help of ALICE and LASAR. 

Section 5 covers the reduction of failure data, producing a concise listing of 
possible bad nodes in a device (fault isolation). A new matching algorithm for the fault 
dictionary search was developed for this, and is described in this section. 

Section 6 documents the techniques for fault insertion that were used in this 
effort.  This was done to provide test cases for fault isolation. 

Section 7 outlines the progress made with each of the devices studied under 
this effort. The "learning" process, test generation and implementation, fault insertion 
and isolation are covered. 

Section 8 summarizes and provides some recommendations. 

Appendix A is a tutorial on the use of Automaton Diagrams, which were one 
of the most fundamental tools used in this effort. 

No  "user's  manuals"  are  provided  here, as  the techniques  require further 
debugging before they should be declared to be complete. Once the rough spots have 
been fixed, more documentation will most likely follow, in the form of monographs or 
technical reports. 

lv 

••"•—- •••- --• - -  I .....I—. —    ,.l 



mm 

TABLE OF CONTENTS 

Section Title Page No. 

1. Introduction 

2. Spet Ification Writing 

2A Outline of a Slash Sheet 

2.2 Detailed Test Requirements 

2.2.1 DC Parametric Tests 

2.2.2 Logic Integrity Test 

2.2.3 AC Parametric Tests 

2.2.4 Limitations and Comments 

2.3 Test Techniques 

2.4 Tester Limitations 

2.4.1 Comparison of Architectures 

2.4.2 Modes of Operation 

2.4.3 Features Common to the S-3260/3270 and Sentry 

2.4.3.1 Cycle time 

2.4.3.2 Number of Timing Generators 

2.4.3.3 Timing Generator Capabilities 

2.4.3.4 Number of pins 

2.4.3.5 Data Modes 

2.4.4 Test Implementation Limitations of the S-3260/3270 

2.4.4.1 Mode 3 Operation 

2.4.4.2 Double Pulsing 

2.4.4.3 Loss of Error Information 

2.4.4.4 Timing Tolerance 

2.4.4.5 Time Measurement System 

2.4.4.6 Programming Language Limitations 

4 

4 

8 

8 

10 

10 

10 

13 

13 

14 

15 

15 

15 

15 

16 

16 

17 

17 

20 

21 

21 

22 

22 

23 

3. Computer-Aided Test Implementation Tools 

3.1 Programs Running on RADC Multics 

25 

25 

—•••    nliilMlM«"       iV •'•-'•   -^ •  • 



  — — 

Section       Title 

3.1.1 ALICE 

3.1.2 TECO 

3.1.3 DUP 

3.1.4 ALICENUM 

3.1.5 ADD_OUTPUTS 

3.1.6 REDUND 

3.1.7 LOADMODULE 

3.1.8 TEKTRONIX 

3.1.9 SENTRY 

3.1.10 CPAC 

3.1.11 AANDB 

3.1.12 SENPASS, SENPASS2 

3.1.13 NQUINE, SWAPCOL, PLAGEN 

3.1.1« ATE_TAPE_UTIL 

3.2 Programs Running on the S-3260/3270 

3.2.1 SIM PL Language 

3.2.2 MATSIM Program 

3.2.3 S1MTEK Program 

3.2.« CODE Routine 

3.2.5 BATLOG Routine 

3.2.6 BATRED Routine 

3.2.7 DATRDB Program 

3.2.8 PATPLO.ASC Routine 

3.2.9 PATPLO.EDT Program 

3.2.10 WAVE Program 

3.2.11 FISO.ASC Routine 

3.2.12 FISOV1 Routine 

3.2.13 FISO.EDT Program 

3,2.1« TABPRT 

3.2.15 XYZPRT 

3.2.16 ' RESIS 

Page No. 

26 

26 

28 

28 

28 

28 

32 

32 

32 

32 

3« 

3« 

35 

35 

35 

36 

36 

37 

37 

37 

37 

38 

38 

38 

38 

38 

39 

39 

HO 

«0 

«0 

«. Test Development and Implementation 

vl 

  

«1 



Section Title Page No. 

4.1 Procedure For LSI Functional Test Development 41 

.    4.2 Writing a LIT using ALICE and LASAR 44 

4.2.1 Developing the ALICE Program 45 

4.2.2 Running LASAR 50 

4.2.3 Using the Output of LASAR 50 

4.3 SIM PL Test Language                ' 56 

4.3.1 Test Development and Transfer Problems 56 

4.3.2 Possible Solutions 57 

4.3.2.1 Standardization of Test Systems. 57 

4.3.2.2 Conversion Programs 57 
1                 4.3.2.3 Table Driven Test Generators 57 

4.3.2.4 Text Processing of Tester Source Language 58 

4.3.2.5 Test Program Written in a High Level Tester Independent Language 58 

4.3.3 SIMPL Test Language 58 

4.3.3.1 Philosophy of SIMPL 58 

4.3.3.2 SIMPL Opcodes 59 

4.3.3.3 Program Restrictions 65 

4.3.4 SIMPL Interpreter Programs 66 

4.3.4.1 Philosophy 66 

4.3.4.2 SIMFA1R Interpreter 66 

4.3.4.3 SIMTEK Interpreter 66 

4.3.5 Developing a SIMTEK Test 66 

4.3.5.1 Philosophy 66 

4.3.5.1.1 The ".PIN" file 67 

4.3.5.1.2 The ".PAT" file 67 

4.3.5.1.3 The PINLIST 67 

4.3.5.1.4 The Main Program 67 

4.3.5.2 Development of Load Modules and Socket Card 67 

4.3.5.3 Development of Pin Assignment File 67 

4.3.5.4 Development of PINLIST (SC005.EDT) File 67 

4.3.5.4.1 PIN Array 72 

4.3.5.4.2 Pinlists 72 

4.3.5.5 Development of a Pattern File 72 

vli 

» mitm i i nm n. •*-*—-^ •    • 



IP^PJT*! LI  •• '     •*•••       •   L      ...^     ...I,        »,,., ... 
••"   I    ••• 

Section       Title Page No. 

4.3.5.6 Development of a Dummy Pattern File 

4.3.5.7 Development of the Header (SC001.EDT) File 

4.3.5.8 Development of a Device SIMTEK Program 

4.3.6 Development of SIM PL Language Device Test 

4.3.7 Setup to Log LIT Errors 

4.3.7.1 CODE Routine 

4.3.7.2 BATLOG Routine 

4.3.8 Testing a Device 

4.3.9 Summary 

72 

72 

77 

80 

82 

82 

82 

82 

85 

5. 

5.1 

5.2 

5.3 

5.4 

5.5 

5.5.1 

5.5.2 

5.5.3 

5.5.3. 

5.5.3. 

5.5.3. 

5.5.3, 

5.5.4 

1 

1.1 

1.2 

2 

LIT Failure Data Reduction 

Displaying Logged Data 

Plotting the Pseudo Timing Waveforms 

Isolating the Failed Element 

Reformatting the YTABLE 

Fault Signature Matching Algorithm 

XTABLE 

YTABLE 

ZTABLE 

The Matching Algorithm 

The Ideal Case 

The Non-Ideal Case 

The Significance of G 

Other Techniques 

87 

87 

87 

91 

91 

91 

93 

93 

S3 

94 

94 

97 

97 

97 

6. Fault Insertion 

6.1 Fault Site Selection/Circuit Descriptions 

6.1.1 Fault Site Selection Considerations 

6.1.1.1 Faults that Affect Mutually Exclusive Outputs 

6.1.1.2 Faults that Affect Diverse Logic Areas 

6.1.1.3 Faults That Affect Limited Circuitry 

6.1.1.4 Ease of Physical Site Location 

6.1.2 Circuit Descriptions 

99 

99 

99 

99 

100 

100 

100 

100 

vlii 



WPWWWIll '"'        •!•«»•« ""  "" 

Section Title 

6.1.2.1 Published Data Sheets 

6.1.2.2 Automaton Diagrams 

6.1.2.3 RADC Product Evaluation Reports 

6.1.2.4 Manufacturer's Logic Schematics 

6.2 Fault Tracing 

6.2.1 Equipment, Support Circuitry, Adapters 

6.2.2 Device Preparation 

6.2.3 Fault Site Identification with Voltage Contrast 

6.3 Physical Fault Insertion 

6.4 False Modeling 

7. Applications 

7.1 25LS2517 

7.1.1 Learning the 25LS2517 

7.1.2 Test Generation for the 25LS2517 

7.1.3 Test Implementation for the 25LS2517 

7.1.4 Tracing and Inserting Faults in the 25LS2517 

7.1.5 Isolating Faults in the 25LS25L7 

7.2 2914 

7.2.1 Learning the 2914 

7.2.2 Test Generation for the 2914 

7.2.3 Test Implementation for the 2914 

7.2.4 Tracing and Inserting Faults in the 2914 

7.2.5 Isolating Faults in the 2914 

7.3 15530 

7.3.1 Learning the 15530 

7.3.2 Test Generation for the 15530 

7.3.3 Test Implementation for the 15530 

7.3.4 Tracing and Inserting Faults in the 15530 

7.3.5 Isolating Faults in the 15530 

7.4 6821 

7.4.1 Learning the 6821 

7.4.2 Testing the 6821 

ix 

Page No 

100 

100 

100 

101 

101 

103 

103 

107 

110 

115 

117 

117 

117 

117 

117 

118 

US 

118 

US 

123 

123 

125 

125 

131 

131 

131 

132 

132 

133 

133 

133 

133 

n.n.      — na _ • --— — • 



Section       Title Page No. 

7.4.3 Test Implementation for the 6821 

7.4.4 Tracing and Inserting Faults in the 6821 

7.4.5 Isolating Faults in the 6821 

7.5 2903 

7.5.1 Learning the 2903 

7.5.2 Testing the 2903 

7.5.3 Test Implementation for the 2903 

7.5.4 Tracing and Inserting Faults in the 2903 

7.6 2910 

7.6.1 Learning the 2910 

7.6.2 Testing the 2910 

7.6.3 Test Implementation for the 2910 

7.6.4 Tracing and Inserting Faults in the 2910 

138 

138 

138 

138 

143 

143 

143 

143 

143 

148 

148 

148 

148 

8. Status 

8.1 Status of Slash Sheets 

8.2 Status of Fault Isolation 

8.3 Status of Software 

8.3.1 Multics Utilities 

8.3.2 S-3260/3270 Utilities 

8.4 Recommendations 

8.4.1 Slash Sheet Format 

8.4.2 Device Modeling 

8.4.3 Specialized ATE Capabilities 

8.4.4 Desired CAT Tools/Techniques 

157 

157 

157 

157 

158 

159 

159 

160 

160 

160 

160 

Appendix A.    Automaton Diagrams 162 

i 'r — ... — •b 



1   •       " —— mm — ^•i ~— 

.ASC 

.EDT 

•PAT 

.PIN 

.TST 

ALICE 

ATE 

CAT 

CRT 

Decap 

DUT 

FACTOR 

G 

HLL 

I/O 

IC 

LASAR 

LIT 

LSI 

LUN 

Mode 1 

Mode 3 

NRZ 

TERMS AND ABBREVIATIONS 

ASCII-type file, used on the S-3260/3270 

S-3260/3270 source program 

S-3260/3270 pattern file 

S-3260/3270 file for defining the configuration of the test fixture 

S-3260/3270 compiled program 

Automatic  LASAR  Input Coding  Editor,   the  generic  name  for 
several Computer-Aided Testing utilities 

Automatic Test Equipment 

Computer-Aided Test 

Cathode Ray Tube (television screen) 

De-encapsulate 

Device Under Test 

Fairchild Sentry test language 

Goodness of fit 

High Level Language 

Input/Output 

Integrated Circuit 

Hardware simulation program 

Logic Integrity Test 

Large Scale Integration (roughly 100 to 1000 gates) 

Logical Unit Number, on S-3260/3270 

S-3260/3270 mode where any sector can either force, or inhibit, 
or compare, or mask 

S-3260/3270 mode where any sector can either force or inhibit, or 
it can compare or mask 

Non-Return Zero 

t* 

xi 

-   ^"-'Ti^lil - • •   • - 



1 ii Him > I 

PDA 

PE Report 

QPL 

RAM 

ROM 

RTO 

RTZ 

S 

SAO 

SA1 

SEM 

Slash Sheet 

TCL 

TEKTEST 

TSCU 

UID 

VHSI 

VLSI 

Z 

Z-entry 

Percent Defective Allowable 

Product Evaluation Report 

Qualified Parts List 

Random Access Memory . 

Read-Only Memory 

Return To One 

Return To Zero 

Fault Signature 

Stuck At Zero 

Stuck At One 

Scanning Electron Microscope (not to be confused with Standard 
Electronic Module, which is not mentioned in this report) 

A detail specification added to MIL-M-38510, General 
Specification for Microcircuits 

Testing Confidence Level 

Tektronix test language 

Test Station Control Unit 

User Identification (on S-3260/3270, it is a three-character name) 

Very High Speed Integration 

Very Large Scale Integration (roughly from 1000 gates, up) 

An entry in the fault dictionary 

An entry in the fault dictionary 

xii 

~~~ ......•...••• ^__ 



MM   »"""-'" — 

EVALUATION 

The objective of tnis effort was to develop new techniques for the testing of 
complex digital microcircuits, as well as improve existing techniques. 

As the preparing activity for MIL-M-38510 "Slash Sheets," RADC has 
attempted to stay at the leading edge of testing technology. It is felt that it is more 
important, in the area of electrical characterization, to make intelligent use of existing 
resources, and refine the techniques for using these resources, rather than constantly 
have to procure "fancy" new equipment. The techniques outlined in this report are either 
usable directly on commonly-available test systems, or compatible with them. 

General Electric Ordnance Systems provided much of the know-how and 
practical applications described here. This, and an earlier effort, helped to improve in- 
house expertise in this area, at RADC. This report is the result of a joint writing effort, 
between GEOS and RADC, which attempts to adequately describe the in-house and out- 
of-house synergism which took place. 

ft* •U 
WARREN H. DEBANY, JR. 
Project Engineer 

- f 

xlli 

-      -••"!>i.i.«lid,    r ii»«-rr 



1. Introduction 

The age of extensive data processing on a single integrated circuit has 
arrived. Today's equipment designs call for small boxes that have many times the 
throughput of entire rooms of older equipment. This increase in capability is being 
accomplished by reducing the signal path length (because of limitations imposed by the 
speed of light) and the signal swing (because of rise and fall times, or switching speed). 
These tactics reenforce the trend of designing more processing into each package. In the 
future, multi-package designs may be practical only for parallel data paths (as presently 
shown in bit-slice microprocessors), with elaborate carry look-ahead schemes imple- 
mented to reduce interface considerations and off-board processing. 

Avoiding intricate and fault-prone interconnections dictates that each device 
must have a severely limited number of connections to the outside world. If 
consideration ;s not given to Design-for-Testability, then the testing of buried sections 
of a Very Large Scale Integrated Circuit (VLSIC) may be expected to increase 
exponentially in difficulty in the near future. 

The testability of presently available integrated circuits is seldom adequate 
and is usually beyond the control of the user. The work described in this report addresses 
approaches that can be taken to test these devices more thoroughly: 

1) Generate tests for fault detection, 

2) Perform fault isolation, 

3) Provide  feedback  to  IC   manufacturers on the operation and failure 
modes of their devices. 

The demonstration vehicle for the test generation is the MIL-M-38M0 
Standardization Program for Microcircuits. The "Detail Specifications" for devices on 
the Qualified Parts List (QPL) include comprehensive tests intended to screen out 
devices which do not function correctly or are likely to fail in use. It is hoped that 
techniques outlined in this report may help to standardize test generation methods for 
military parts to a consistently high Testing Confidence Level (TCL). 

A detail specification (also called a "slash sheet") is judged not only on its 
test completeness, but also on its timeliness. Ideally, a slash sheet should be prepared 
quickly to encourage the use of newer, more capable parts in military systems. 

The key to accuracy and fast turnaround is Computer-Aided Testing (CAT). 
The test writer should not be concerned with the mundane details of the manipulation of 
large vector sets, but should instead prepare his test plan in a human-oriented shorthand. 
Utility programs (ALICE, etc.) that assist in test generation are described in this report. 

Test failure data reduction and fault isolation techniques are developed to 
both verify the completeness of the test generation methods and provide tools to aid in 
reliability investigations. A small number of devices were deliberately faulted during 
this effort to demonstrate the correct operation of the fault isolation routines. 

Accurate tests and failure data represent valuable information to the IC 
manufacturers.   This data, reduced by computer to a concise and meaningful form, can 



help increase the yield and reliability of their products.   This will benefit both military 
and industrial users by providing better and lower cost devices. 

A brief discussion of testing philosophy is in order here. When possible, both 
functional and structural models were made for each device tested. The functional 
representation used was the Autotnaton Diagram, which expresses the operation of the 
device in terms cf registers, data selectors, and boolean function blocks. Parallel data 
paths are immediately apparent to the user and test generation is facilitated. The 
structural representation chosen was the NAND gate equivalent network used by LASAR. 
This software package was selected partly because of its availability to both the 
contractor and to RADC, and in addition, it is the purest of structurally-based 
techniques and provides an extreme against which to measure other techniques. The 
automatic test pattern generation (STIMGN) feature was not used extensively during this 
effort. Instead, the input patterns were generated using manual techniques. The LASAR 
program then generated the expected outputs (using SIMUL), graded the pattern for TCL 
(using DYSOGN) and developed the fault dictionary (using REDUCE). Automaton 
Diagrams, shorthand utility programs, and functional block "recipe" test approaches were 
used to manually generate the input vectors. Then, the LASAR output was used to home 
in on undetected faults, thus improving the TCL. This procedure was repeated until an 
adequate TCL was obtained.    An adequate TCL is considered to be IQ0% of all faults Ij 
which can possibly be detected.   This technique proved to be quick and accurate, as fault 
injection experiments showed. 

As LASAR and most practical fault simulators assume a single-stuck-at 
failure mechanism, the approach used in this effort may be questioned as being 
unrealistic. However, the evidence so far indicates that such is not the case. 
Admittedly, only a small number of devices were deliberately faulted, but in each case 
the faults were isolated to the correct region, if not to the particular gate or metal line. • 

The difference between proposing to isolate to a region, instead of a node is 
significant. There is certainly not a one-to-one mapping between a gate-equivalent 
model and the actual implementation. However, there is by necessity such a mapping 
from the functional level to the silicon level. By recognizing that the gate-equivalent 
model is only a convenient language for describing the function, and nothing more, great 
progress may be made. 

By analogy, note that when solving a system of equations, the engineer never 
confuses the significance of the symbols, and their properties, with that of the real- 
world problem being solved. A notation or a language, elegant though it may be, is not 
sacred. Failure to recognize this, and acceptance of results at no more or less than face 
value, is a great pitfall in the testing of complex devices. It is important to cultivate 
scepticism. 

• 
By diminishing its importance, the single-stuck-at model has become more 

powerful.    The techniques based on it have led to the recipe approach.    The recipe of ' 
tests for a particular block of the Automaton Diagram is applied through the necessary 
connective logic with the results brought to the output of the DUT. 

If the equivalent of a memory bit map were available for a microprocessor, 
showing the location and route of every metal or polysilicon line, and if the features of 
every transistor, resistor, and capacitor were known, and it were possible to describe this 
to a computer program, and inject failures that exactly model those in the real world, 

.      .... iayr-rrlr ..  . ^—••*-* 



— 

the results would certainly be better than those obtained with present test and fault 
isolation capabilities. However, this is still impossible even with small analog circuit 
test programs, and so could not be implemented for digital LSI/VLSI even if the design 
data were available. The single-stuck-at fault model, with knowledge of some pattern 
sensitivities, is still the best "a priori" approach. 

It was beyond the scope of this effort to fully implement heuristic test 
generation and data reduction algorithms. However, extensive computer aids were 
developed to run under operator control. This report, although not a complete user's 
manual for all utilities described herein, should be sufficient to provide the basis for a 
complete test generation facility. Further documentation can be obtained by qualified 
DOD contractors or users whose testing can be shown to benefit the DOD. 

1& ......i. 



' -   'll- •'•"• '   ' '— 

1 

2. Specification Writing 

The specification tor an individual device (called a "slash sheet") contains all 
the information needed to use and test the device. The information is presented in a 
concise, easily understood format, but includes references to the base documents, M1L- 
M-38510 and MIL-STD-883, for predefined requirements or procedures. 

The basic goals of specification writing are to assure device reliability, 
standardization, and availability during a system's life cycle. To achieve these goals a 
specification must be written with an eye toward both clarity and completeness in order 
to expeditiously establish a qualified sources list, and for use by system builders. By 
clarity it it meant that the information will be easily understood by the user without the 
extensive cross referencing of other documents, especially those that are unique to a 
specific application. References to other military specifications will include details such 
as applicability, environmental, mechanical, and electrical requirements, exceptions and 
options. The latter two items should be made as rare as practical. By completeness it is 
meant that that all pertinent device characteristics, parametric limits, test conditions 
and special considerations must be included in detail. Device characteristics include 
mechanical, thermal, and electrical properties. The parameters include input and output 
voltage and current levels, and timing relationships. The test conditions are the stimuli 
applied to the device under test to obtain the expected results. These includes any 
special drive circuitry or output loads connected to the Device Under Test (DUT). 
Special considerations may include such things as anti-static protection or unusual timing 
constraints.   Burn-in circuits must be described. 

2.1 Outline of a Slash Sheet 

Slash sheets have been written in many formats, often making interpretation 
unnecessarily difficult. The following outline is offered as a guide to what the slash 
sheet paragraphs describe. The numbers in parentheses are the paragraph numbers of 
slash sheet MIL-M-3851Q/W* for the 291%f Vectored Priority Interrupt Encoder, which 
may be referenced for examples. 

The slash sheet indentifier is "MIL-M-38510/" followed by a three digit 
number that is unique to a function, and a two digit number (called dash number) which 
specifies the device type. The number is assigned by the issuing agency. The slash sheet 
title lists the microcircuit family, the technology, and the functional name of the device. 

The paragraphs are as follows: 

(1.1) -- Scope 
I 

The scope gives a brief description of the device family, the technology and F- 
the options. 

(1.2)-- Part Number 

The part number to be marked on the device is given, usually with reference 
to MIL-M-38510. It includes the device type (1.2.1), testing class (1.2.2), and case 
outline (1.2.3). 

•"—»-- -   •   J 



 • — 

(1.3) -- Absolute Minimum and Maximum Ratings 

The thermal and electrical conditions which are never to be exceeded should 
be listed. These parameters depend primarily on the technology used in manufacturing, 
but should include the following at the minimum: 

— Supply voltage range, 

— Current applied at the outputs, 

-- Voltage applied at the outputs, 

— Voltage applied at the inputs, 

— Power dissipation (including provision for test loading, if applicable), 

— Storage temperature range, 

— Soldering temperature and duration, 

— Thermal resistance (junction to case), j] 

-- Junction temperature. 

Selected items in the above list may reference the device option (by dash 
number) when appropriate. Also, some parameters may apply only to given device pins. 
For example, open collector outputs may have different voltage or current limits than 
active pull up outputs. 

(l.*0 — Recommended Operating Conditions 

The environmental and electrical conditions expected for normal operation 
are listed.   The items usually listed are: 

— Supply voltage range, 

— Minimum input high level voltage, 

— Maximum input low level voltage, 

— Loading considerations (such as maximum capacitance on a MOS tech- 
nology output), 

— Ambient operating temperature range. 

These items may depend on the dash number or device pin. 

(2) — Applicable Documents 

The principle military documents that are part of the device specification are 
listed, along with the statement that the issue in effect at the time of the invitation for 

i 

 -^ - —    J 



_——,—.  „,  

bid or request for proposal must be used.    Also, a source for additional copies of the 
documents is given. 

(3) — Requirements 

This paragraph lists all of the requirements that the device must meet. 
Information in other specifications, other paragraphs, tables or figures are included by 
reference as necessary. 

(3.1) — Detail Specification 

This is a cover statement that makes the MIL-M-38510 base document a part 
of this specification by reference. 

(3.2) -- Design, Construction and Physical Dimensions 

The case outline(s), terminal connections, function block diagram, logical 
implementation (it is suggested that an Automaton Diagram be included) and schematic 
diagram requirements are given by reference. For the sake of consistency in future slash 
sheets, it is suggested that the case outline be in paragraph (1.2.3), the terminal 
connections in Slash Sheet Figure 1, the functional block diagram in Slash Sheet Figure 2, 
and the Automaton Diagram in Slash Sheet Figure 3. The schematic diagram need not be 
included but should be available to the procuring activity. 

(3.3) — Lead Material and Finish 

Options selected from the MIL-M-38510 base document should be given. 

(3.<f) — Electrical Performance Characteristics 

This paragraph references Slash Sheet Table I, which lists the complete 
electrical parameters (design limits) of the device. The tables are discussed further in 
this report in section 2.2. 

(3.5) — Rebonding 

The  rebonding restrictions of  the  MIL-M-38510 base  document should be 
noted. 

(3.6) — Electrical Test Requirements 

Table II lists the required electrical subgroups from Group A for screening 
qualification and quality conformance needed to ensure that a device conforms to a 
given class. 

The detailed electrical test requirements are given in Slash Sheet Table III. 
Since these tables list the exact electrical requirements, extreme care must be exercised 
to guarantee that they are clear, complete, and easily converted to the format required 
by the user's ATE. 

(3.7) - Marking 

•-•-  •••••         --     ——   -•'• ^-—-•-     -•-• •** 



——' -"• 

The marking shall conform to the MIL-M-38510 base document. 

(3.8) — Microcircuit Group Assignment 

The group assignments in MIL-M-38510 do not presently include LSI devices, 
so this paragraph lists the microcircuit technology of the device. 

(4) — Quality Assurance Provisions 

This paragraph details the qualification, quality conformance, and screening 
requirements referencing MIL-STD-883 and MIL-M-38510 where feasible. 

(4.1) — Sampling and Inspection 

The sampling and inspection requirements are given with modifications to be 
applied as described in subparagraphs. 

(4.2) — Qualification Inspection 

These requirements ensure that the device design and production techniques 
are adequate. They should include design dependent tests such as measurement of input 
capacitance and checks of operation under absolute maximum conditions. 

(4.3) — Screening 

These tests are performed on reliability-critical parameters on every device 
to verify proper assembly and operation. Any options or criteria required by the MIL-M- 
38510 base document or MIL-STD-883 should be identified. The order of testing should 
be specified if it is significant. The Percent Defective Allowable (PDA) is given for 
certain subgroups. 

(4.4) -- Quality Conformance Inspection 

These tests are periodically performed on production lot samples to deter- 
mine if there is lot-to-lot variability due to processing, packaging, etc. The subpara- 
graphs list the tests for each group, including exceptions, options and additional 
requirements. 

(4.5) -- Methods of Inspection 

This paragraph gives any additional information, such as the voltage measure- 
ment reference point, that is needed by the user. 

(4.6) — Inspection of Packaging 

This paragraph specifies the packaging inspection requirements and additions 
to MIL-M-38510. 

(5) -- Packaging 

  ^^^ 



IjWII   IBM!     •• -^--^-        .  mulf         |, 

1 

The packaging requirements are given, usually by reference to the MIL-M- 
38510 base document. Additions such as protection for static sensitive devices should be 
included. 

(6) — Notes 

(6.1) - Notes 

Miscellaneous additional information needed by the manufacturer or user is 
given. 

(6.2) -- Intended Use 

A general description of the expected device application is given. 

(6.3) — Ordering Data 

A list of the details to be supplied by the procuring activity is given. 

(6.4) — Abbreviations, Symbols, and Definitions 

The abbreviations, symbols and definitions are defined, usually by reference 
to MIL-STD-1331.   Any symbols unique to this device are listed and defined. 

(6.5) -- Logistic Support 

Additional options such as lead material, length, or finish are given. Also, 
the default class and lead finish are given. 

(6.6) -- Substitutability 

The equivalent generic industry types are listed, along with a caution that 
they may have minor mechanical or packaging differences. 

2.2 Detailed Test Requirements 

In a slash sheet, Table I lists the DC and AC parameters of a device. Table II 
specifies when and what electrical tests are performed for each reliability class and the 
various inspection groups (environmental, die-attach, electrical, and packaging). Table 
III provides a breakout into subgroups of Table I tests over the military temperature 
range. The following paragraphs discuss techniques and limitations in developing Table 
III of slash sheet. 

The subgroup numbers in Table III are assigned in accordance with MIL-STD- 
883, Method 5005, Table I. The symbols should be consistent with MIL-STD-1331. For 
consistency and ease of conversion to a tester computer program, the pin names should 
be placed in logical groups and in the same order that appears in the LIT pattern. The 
most important requirements are that Table III (test implementation), 1) be easily 
understood by the user and, 2) be easily converted to the format required by his tester. 

2.2.1 DC Parametric Tests 

——.        -^ 



"•••"• 

The DC parametric tests verify the DC parameters of Table I of the slash 
sheet at the applicable device pins. The device is "conditioned" by applying a limited set 
of inputs, applying the required forced voltage or current to the pin under test and 
recording the resulting current or voltage. For LSI (or larger) devices, it is often 
convenient to apply a selected portion of the LIT pattern to establish the desired 
condition. The conditioning must ensure that bidirectional pins (if any) are in the proper 
state. Ideally, a pattern should be applied to input pins not under test that establishes a 
worst case condition CM the pin under test (on a simple multiple emitter transistor gate, 
this is the limit of ine opposite level). Subject to the constraints of worst case 
conditions, input and output pins not under test should be at the level opposite to the pin 
under test in order to verify pin to pin isolation, particularly during input current high 
and output voltage high tests. Note that the LIT will check most of the possible pin to 
pin shorts, but fault isolation is more convenient during the DC parametric testing. 

The order of the tests in Table III should place the tests that may stress the 
DUT before ones that verify that the DUT is not damaged. Also, the loss of VCC from 
the tester should be detected in later tests so that tester caused errors can be identified. 
A suggested order of tests is listed below, but the actual tests required will vary with 
device technology and pin electronics implementation. For example, CMOS devices are 
not tested for input clamp diode voltage (VIC) and open collector output pins are not 
tested for output voltage high (VOH). 

Order of DC parametric tests: 

VOLL — Voltage, output low-loaded, 

IIB — Current, input breakdown, 

IOB — Current, output breakdown, 

VIC — Voltage, input clamp diode, 

VOC — Voltage, output clamp diode, 

IOS — Current, output short circuit, 

IIH -- Current, input high logic level, 

IIL — Current, input low logic level, 

IOZH  — Current,  output  high  impedance, high logic level (for tnree-state 
pins), 

IOZL  --  Current, output  high  impedance,  low  logic  level (for  three-state 
pins), 

IOH — Current, output high (for open collector pins), 

VOL -- Voltage, output low logic level, 

VOH — Voltage, output high logic level, 



m—•—"• •   "   " •«i i 

ICC — Current, power supply. 

2.2.2 Logic Integrity Test (LIT) 

The LIT portion of the slash sheet Table HI is used to verify that the device 
will perform the required function. The table must specify the power supply voltage(s), 
the input voltages (for logic 0 and logic 1), timing relationships and output voltages and 
loading. A sample load circuit is shown in Figure 2.1. The user may be given the option 
of omitting the tests for VOH and VOL if the LIT is performed with all outputs loaded 
and the outputs detected exceed the VOH and VOL levels. 

The logic levels to be applied to the inputs and expected logic levels at 
outputs (collectively called the test "vectors") must be provided in detail. Since the 
number of vectors needed to fully check an LSI device can be large (usually greater than 
2000), it is recommended that they be stored on magnetic tape and optionally printed in 
the slash sheet. The tape storage will also allow the use of computers to reformat the 
vectors to be compatible with the user's test system. The vector set manipulation is 
discussed further in sections 3 and k. 

A sample of a convenient vector set notation is shown in Figure 2.2. 

The checklist in section 4.1 should be used as a guide when developing the 
vectors. 

2.2.3 AC Parametric Tests 

The AC parametric tests check the setup and hold times and the propagation 
times listed in Table I of the slash sheet. Special vectors with appropriate signal timing 
and levels should be developed so that a minimum set of signals is required to sensitize 
the pin(s) under tests to the outputs. The vector set should be extensively commented to 
show the signal being checked, the pin(s) under test and test limits. Also, the format 
should ideally be the same as used for the LIT. 

The AC parametric tests are normally performed with the outputs loaded. 
The load circuit(s) should be given in the slash sheets. An example is shown in Figure 
2.1. See section 3.1.7 for a discussion of a program that will calculate the value of the 
load voltage and resistors. 

Each independent portion of the vector set should initialize the DUT and test 
timing parameters of a logical group of signals, such as microprocessor instruction 
inputs. Some of the advantages of this kind of grouping are: easier determination of the 
failing pin; more efficient debugging by applying the vectors repeatedly for observation 
on an oscilloscope; easier evaluation of the vectors by the user. 

2.2.4 Limitations and Comments 

The slash sheet writer must remember that the slash sheet is for use by the 
DOD and its vendors and customers, meaning wide distribution to many companies, as 
well as other countries, may occur. Therefore, copyrighted or proprietary material 
should not be used. 

10 

mm --.--—*—^—"•""—>•*>' 



DÜT Output Pin >- 

1N3064 

-O  V TSC 

(When DUT pin 
is in high im- 
pedance state.) 

Fiqure 2.1.   Output Load Circuit 

11 

••••- '~—- - --• -  - - 



-..,-, 

FIGURE l 
uOGIC    INTEGRITY   TF?T 

FINLIST   INFUTS=M7. «'.-•, M5. »'•• KS. Ml. Ml- MO, 
CONTINUE   Si. Si. £.0. P7, Fc FT. P4. PS. P.'., PI . POi 
CONTINUE   IE. 13. 12. II. 10.GE.GAR, ID. LB. CF 
F INSIST   OUTPUTS»«?. Mt.. MT.. MA. Mi-, K2i M: , MO. 
CONTINUE  S2, S 1, SO. VI. vi   WO. 86. GAS. SV< IF;. PD. RD 
FINLIST   M«M7, te-, MS. M4. Mi. Ml. Mi. MO 
FINLIST   S=Si. SI. SO 

P-F7, P6. P5, F'4. P3i Pi, PI , PO 
I »IE. IS. 12. 11. 10 
GE-GE 
GAR-GAR 
ID-ID 
Lfc-LF 

FIN.. 1ST 
FINLIST 
PINLlST 
FINLIST 
FINLIST 
FINLIST 
FINLIST CF-CF 
VCC=A   SV 
vA-2 ov 
v&=o ev 
VH=2 4V 
VL"=0 5V 
CONNECT LOADS 
PERI0D=500NS 
FORCE INPUTS WITH VA. VD 
COMPARE OUTPUTS WITH VH. VI 
APPLY INPUTS AT ONS FOR 500NS. NRZ 
COMPARE AT 2IONS FOR 20NS 

C- 0 
1 SAIL C GASI PR 

r. s p E I ERDE F- (< c V SSVRDD 

00 0 FF 0 0 0010 1 * XX X X X1XXXX 
00 0 FF 0 0 0010 0 * xx X X X1XXXX 
00 0 CF 0 0 001 c ) * XX X X 011110 
00 0 FF 0 • 0010 1 * XX X X 01 1110 
00 0 FF 0 5 0010 0 * XX X X Oil 110 
z: 0 FF 0 7 0010 1 * 00 X X 011110 
zz 0 FF 0 7 ooio 0 * 00 X X 011110 
zz 0 FF 0 7 ooio 1 * 00 X X 011110 
oc. 0 F" 0 8 0010 1 * XX X X 011110 
00 0 FF 0 fs OOJ 0 0 * xx X X 011110 
00 0 FF 0 e 0010 1 * XX X X Oil!10 
zr 0 FF 0 7 0010 1 * FF X X Olli 10 
zz 0 FF 0 7 0010 0 * FF X X Oil 110 
zz 0 FP c •? 0010 1 * FF X X 011110 
00 0 FF 0 C 0010 1 * XX X X 011110 
00 0 FF 0 c 0010 G • XX X X 011 110 
00 0 FF (1 c 00 JO 1 » XX X > 01 J 1 10 
zz 0 PF 0 / 0010 1 * 00 X X 011110 
zz 0 FF 0 7 0010 0 • 00 > X 011110 
zz 0 FF 0 7 0010 1 * 00 X X Olli 10 
ss 0 FP 0 * 0010 1 * x> X r 011110 
55 0 FF 0 F- 001 0 0 * XX X X 01)110 
•a 0 FF c B 0010 1 * xx X X 011110 
zz 0 FF 0 3- 0010 J + ZZ X X 011110 
zz 0 FF 0 3 0010 0 * 55 X X Oil 110 
zz 0 FF 0 3 ooio 1 * 55 X X oiuio 
AA 0 FF 0 D 0010 1 # XX X X 011110 
AA 0 FF 0 B 0010 0 # x> X X 011110 
AA 0 FF 0 D 0010 1 * XX X X ouiio 
zz 0 FF 0 7 OOIO 1 * £K X X 011110 
Z7 0 FF ("1 7 0010 o * 31 X X 0111)0 
ZZ 0 FC 0 7 0010 1 * 35 X X 011110 
AA 0 FF 0 E 0010 1 # XX X X 011110 
AA 0 FF 0 t 0010 o * XX X X 011110 
AA 0 FF 0 I 0010 1 • XX X X Olli 10 
ZZ 0 FF 0 A 00)0 1 ft XX X X 0111)0 
«... 0 FF 0 A ooio 0 * XX X X Olli 10 
55 0 FF 0 A ooio 1 # XX X X 011110 
98 z FF 0 6 001 0 ) ft XX 0 X Oil HO 

MAS! REGISTEF TEST 
TEST LOADING THROUGH MAS! REGISTER I» 

READ nl.V    REGISTER < SEi.EC TOr. PÖS] 

PRESET M REGISTER, FOE IT ION •": 

READ THROUGH POSITION 7 

CLEAR THROUGH POSITJOI. .;. 

REAL 

OR FUNCTION. POSITION I- 

READ THROUGH FOS!"ION J 

COPY THROUGH POSITION D 

CHECI COF-» 

BIT SET M REGISTEF THROUGH P0&1T3 

fcl"r CLEAR H REGISTER THROUGH PÖS1 

READ BTATUS REGISTER  I = <:• 

ti 

Figure 2.2. Beginning of 2^14 Logic Integrity Test, 
including test conditions and 
first forty vectors 

12 

•il 'Mil». mm milt mh j 



••  '         '            • "' ^rmmi • ——^—m—m 

Other factors that the writer must consider are the limitations caused by the 
technology used to manufacture the device, the packaging, and the type of clocking 
required. The technology will dictate the type of tests to be performed and such 
considerations as handling precautions and load capacitance. The packaging may cause 
changes in Slash Sheet Table III (e.g., a device type with multiple ground pins). This is 
usually the case when a device is available in both the dual-in-line package and the flat 
package.  Thus, Table III should specify tests with all ground pins connected to ground. 

2.3 Test Techniques 

The methods of -implementing slash sheet tests are as numerous as the test 
systems used to implement them. In the past, many of the slash sheets were developed 
with little thought in the implementation of these tests on ATE. However in the last few 
years, the use of the LIT for setting up the device outputs for measurements has 
increased. This technique has gained widespread acceptance since it is easily adapted to 
many types of ATE. As larger and more versatile ATE (S-3260/3270, Sentry, etc) come 
on line at the various test sites, other test techniques will be developed that implement 
additional DC and AC tests. However, the limitations of the various ATE should be 
considered as these techniques are developed. 

2A Tester Limitations 

A great deal of emphasis has been placed on the development and the 
refinement of algorithms for test program generation, as evidenced by the proliferation 
of conferences, the literature, and even this effort. With all of the fine theoretical work 
going on, it is important to realize that test program implementation on actual ATE is 
the final goal. The limitations on the ATE should always be kept in mind, or else 
"clever" test vector sets may have to be discarded in favor of those which have the 
simple virtue of being practically implemented. 

There are two related reasons why a section on tester limitations has been 
included in this report. The first, and most important, is that the state of the art of test 
systems is such that not all desired operations can be performed. An obvious example 
would be the storage and delivery of an arbitrarily large number of test patterns at a 
high test rate. When this is necessary, it is usually done through system field testing, 
with a resultant lack of repeatability and testing confidence. The second reason for 
including this section is that tradeoffs have been made between test and tester 
capability to keep the cost of ATE down. As test writers who have used more than one 
type of ATE know, no piece of ATE possesses every desirable existing feature. 
Therefore, it is necessary to intimately know the capability of the machine on which a 
test is to be implemented. If a test is to be independently implemented on more than 
one machine, the set of features to be employed must be restricted to the set common to 
both. The expensive and error-prone manual conversion of data to accomodate different 
tester capabilities must be avoided. 

For the implementation of MIL-M-38510 testing on LSI devices, there are two 
types of ATE commonly used. The Tektronix S-3260/3270 is used extensively by the 
government and by DOD contractors. The Fairchild Sentry family (Series V, VII, VIII) is 
used extensively by IC manufacturers. Although these machines are both high speed, 
clock rate LSI device testers, they are greatly dissimilar in architecture and operation. 
This has made the effective transfer of test programs between these systems very 
difficult.   Both systems have desirable features not incorporated in the other.  There is a 

13 
/ 

/ 

 -fa,  . • ...     . -.   •^^^jja^**_,^eJL*-a-*. 



  --      •        • • ...  — I,» I. 

narrow band of commonality, and all tests designed under this effort were intended to 
fall in that area. This compatibility between testers has not been completely verified 
for these tests; only with time can this approach be validated. 

Please note that no advertisement or denigration of either of these ATF 
families of any other family is intended by the authors of this report, the government, or 
the contractor. 

A comparison of tester architectures will highlight the differences between 
the S-3260/3270 and the Sentry family of testers. It will also indicate some of the good 
and bad features of both, and thus may indicate to the test writer what features should 
not be used (sections 2.^.1 and 2.4.2). A discussion of the cpmmon features will indicate 
those used to implement the test programs resulting from this effort (section 2.^.3). The 
last section will deal only with the S-3260/3270, detailing some of the mundane 
difficulties encountered while implementing tests (section 2.4.4). It should be noted that 
a similar section covering the Sentry was not included only because of a lack of firsthand! 
experience on the part of the authors. 

2.4.1 Comparison of Architectures 

From an architectural point of view, the S-3260/3270 and the Sentry have 
little in common. A fundamental difference is in the method of applying the test 
vectors. The S-3260/3270 uses a set of 64 shift registers to store and deliver pattern 
information to the DUT. The S-3260 has a shift register length of 1032 bits (IK plus 8), 
while the S-3270 has a shift register length of 4104 bits (4K plus 8). These shift registers 
contain all of the data and their control (direction, force, compare) information. 

The Sentry, on the other hand, uses a fast "local memory" which contains 
statements for the data and control information. The local memory may be up to 4K bits 
in depth, and handles up to 60 pins. The various data and control statements are stored 
in a form which is more nearly a computer program than typical test vectors, although 
the effect is the same. This local memory is scanned by a controller which then applies 
the necessary conditions, through the pin electronics, to the DUT. 

Although the architectures described so far are significantly different, the 
method of pattern storage is not intrinsically a great problem. The difficulty lies in 
modes of operation. The S-3260/3270 is by nature a very straightforward machine. 
Patterns are loaded into the shift registers, and fired in a burst to the DUT. More 
patterns are loaded, and burst again. The Sentry, with a local memory, encourages 
looping, subroutining, and changing local memory contents on the fly. This does not 
necessarily disadvantage the S-3260/3270, as its linear organization allows the shift 
registers to be loaded with the error information from the DUT, generating the fault 
signatures which were necessary to the fault isolation experiments performed during this 
effort (see section !>). This would have been considerably more difficult on the Sentry, 
although there is optional hardware for the Sentry which allows the collection of failure 
data and which could have been used to gather the necessary fault signatures (the 
Dynamic Fail Module, or DFM). On the other hand, the S-3260/3270 has a Pattern RAM 
(PRAM) option which possesses many of the features of the Sentry local memory. 

14 



——————— 

2.4.2 Modes of Operation 

In spite of the differences in the basic architectures of the two machines 
mentioned above, test vector implementation with either a shift register or local 
memory is strictly an implementation detail. The real difficulties occur due to 
differences in modes of clocking or phasing of data. 

The Sentry is capable of delaying data when connecting to a particular phase. 
The waveform can retain the same shape, but be translated in time. It is unfortunate 
that on the S-3260/3270, only data that are applied "broadside," on the beginning of the 
cycle, can be Non-Return-Zero (NRZ). A connection to a phase implies ANDing the 
clock with the data to form Return-Zero (RZ) waveforms. The data may be explicitly 
Return-Zero-Inverted (RZI), but the data is still modified during a fixed clock cycle. 

The minimum cycle time (period) for the S-3260/3270 is 48ns in "Mode 1" 
operation, or 96ns in "Mode 3" (these are described shortly). For the Sentry, 100ns is the 
minimum when using RNGO (range 0, the fastest range). This is mitigated by Sentry's 
ability to OR timing generators, which will in some cases allow the data rate or clock 
rate to be effectively doubled. Using this feature, however, may make it difficult to use 
patterns developed for a Sentry on an S-3260/3270. 

2.4.3 Features Common to the S-3260/3270 and Sentry 

The following is a list of parameters which should indicate what is allowed 
when implementing a test intended to run on both the S-3260/3270 and the Sentry. The 
goal of this effort was to keep always within these specifications for the LIT and AC 
parametric tests, but occasionally it has been necessary to develop a unique test, or set 
of tests, intended for one or the other machine. 

As a note, the S-3270 is a more powerful machine than the S-3260, so it was 
usually necessary to take the lower performance parameters as the limiting factors. As 
upgrades become more common, it may be possible for these guidelines to be revised. 

2.4.3.1 Cycle time 

Tektronix: 96ns minimum, 8ns steps (Using Mode 3). 

Sentry: 100ns minimum, 10 ns steps. 

It is usually convenient to chose a fairly long cycle time, relative to the 
clocking phases. This will tend to avoid the problems with "dead time" after and before 
the start of test cycles. 

2.4.3.2 Number of Timing Generators 

Tektronix (S-3260):       5 for drivers, 2 for comparators. 

Tektronix (S-3270):       10 for drivers, 4 for comparators. 

Sentry: 6 for drivers, 2 for comparators (strobes). 

15 1 



  um I —       mim 

Although there are two comparator timing generators available, they are 
almost always used together, and are set to the same timing values. 

An additional restriction on the use of the S-3260/3270 clock phases is that 
not every phase is available at every pin. For example, the S-3260 has 64 sectors, every 
one of which has available the two comparator phases and DATAPHASE. Of the 
remaining four timing phases, PHASE 1 is available only at sectors 1-16, PHASE 2 only 
at sectors 17-32, Phase 3 only at sectors 33-48, and PHASE 4 only at sectors 49-64. This 
makes it absolutely necessary to use great care in the design of the test fixture (called a 
socket card assembly), so that the necessary phases are available to the correct DUT 
pins. For comprehensive AC testing of a device with many pins, pin assignment may 
become a major problem. The Sentry family is not as limited in the area of clock phase 
assignment. 

It would be desirable to automate the design of the S-3260/3270 fixtures as 
much as possible, to allow the best possible allocation of sectors during AC testing. 
Although a set of algorithms were developed during this effort for that purpose, they 
were never implemented in software, and so are not documented in this report. 

2.4.3.3 Timing Generator Capabilities 

Tektronix: 8ns minimum width, 
Ins steps, 
17ns forbidden zone before end of cycle. 

Sentry: 10ns minimum width, 
0.16ns steps, 
10ns forbidden zone after start of cycle, 
10ns forbidden zone before end of cycle. 

Note that there are several "forbidden" zones, during which times a clock 
phase edge should not be programmed to occur. This may become troublesome when 
doing setup and hold tests. 

^.4.3.4 Number of pins 

Tektronix: 64. 

Sentry: 60. 

This is a very fuzzy area. The literature is full of misleading figures for test 
rates as functions of various mixes of input-only pins, output-only pins, and bidirectional 
pins. It has been found that the number of bidirectional pins handled is the best measure 
of pin capability. 

The Sentry is able to perform the functions of forcing input data, comparing 
output data, masking output data, and inhibiting input data simultaneously on any pin, or 
column of the vector set. 

The S-3260/3270, on the other hand, when used in Mode 3, can only force apd 
inhibit input data, or compare and mask output data on any particular sector. There is a 
Mode 4 which can do all four operations simultaneously, at half the data rate and half 

16 

• — - , • - *••-•,<   —.- ..•—•... 



n""11   •• 

the pattern depth. In Mode 3, every bidirectional pin will require two sectors to be 
allocated to it to achieve full capability. There are other approaches available which 
provide more bidirectional pins (involving tradeoffs^ between the number of pins, test 
speed, pattern depth, reduced capability, etc.) but Mode 3 was deemed to be the most 
flexible for this effort. 

2.4.3.5        Data Modes 

Common waveform modes:  NRZ, RTZ, RTO (see below). 

There are a multitude of possible modes in which data may be applied to a 
DUT. One common mode is to apply the data broadside to the device, using NRZ, 
unmodified by any clock phases. This is shown in Figure 2.3. This is a mode available on 
both the S-3260/3270 and the Sentry. 

If a clock phase is used, the result can be Return-To-Zero (RTZ). This is 
shown in Figure 2A, with a start time and duration such that the pulse stays within the 
test cycle. Although it is possible to program a start time and duration such that the 
pulse falls outside the current test cycle and into the next, this should be avoided as the 
result may differ on different ATE. In particular, making the pulse width (duration) the 
same as the cycle time on the S-3260/3270, will not give the effect of only delaying the 
pulse. This restriction does not hold for the Sentry, but it should be kept in mind when 
designing tests that may be implemented elsewhere. 

To use the RTZ mode, both the Sentry and the S-3260/3270 specify Return- 
Zero (RZ). Here, the stimulus applied to the DUT pin is zero for any time outside the 
active portion of the clock phase, and is one if the data is one, zero otherwise. 

Corresponding to the RTZ mode is one called Return-To-One (RTO). This is 
shown in Figure 2.5.  The same clocking restrictions on RTZ data hold for RTO data. 

To use the RTO mode on the Sentry the pin is programmed to be Return-Zero 
by the use of the "SET RZ" statement, and then inverted by the use of the "SET INVERT" 
("SET I") statement. Note that this does not invert the sense of the data, but rather 
inverts the "zero" portion of the "SET RZ" statement, making it actually into a "SET 
RETURN-TO-ONE." 

The use of RTO presents a slight conceptualization problem when implemen- 
ted on the S-3260/3270. It is necessary to have the RTO data stored in the ".PAT" file as 
the inverse of the desired data, and then applied in the Return-Zero-Inverted (RZI) mode. 
As all of the test vector generation for this effort was done through the use of ALICE, 
and was intended to be used on both the S-3260/3270 and Sentry family, it was found to 
be more convenient to generate the data in the RTO mode, and cause the data to be 
inverted when it was converted into the ".PAT" format by the TEKTRONIX program (see 
section 3.1.8). 

This exemplifies a lesson learned: it is much easier to let the human do the 
creative portion of the test generation, and let the computer do the busywork. It is hard 
io imagine a better demonstration vehicle than the generation of test vectors where 
certain columns have their sense reversed. 

2.k.k Test Implementation Limitations of the S-3260/3270 

17 



- 

HRZ 

Data 

Logic 1 Logic 0 

%       Test    j 

Logic 0 

Cycle 

Figure  2.3.       Non-Return-Zero  (VRZ)   Data 

18 

•*_—^ .. ^ i I 



—    'I— I ' ^ 

RTZ 
Data 

Logic 0 Logic 1 Logic 0   j 

Figure   2.4.        Return-'po-Zero   (RTZ)   Data 

RTO 

Data 

Logic 1 Logic 0 Logic ( 3 

Figure  2.5.       Return-^o-One   (RTO)   Data 

19 

-••• = -.*• 



i-   i    ^m>^mmmm 

Every piece of ATE has its limitations. As in signal processing the sampling 
of a signal should occur at at least twice the signal frequency, so should test equipment 
outperform the DUT by a wide margin. However, with more complex and higher-speed 
devices, it is not uncommon for the devices to attain performance equal to or greater 
than that of the ATE itself, in certain parameters. 

This was the case encountered during this effort with the S-3260/3270. 
Different modes of operation had to be used to test unique device features. Some of the 
operation of the S-3260/3270 will be discussed in this section, along with options which 
were used when a performance Jimit was reached. 

2A.ttA        Mode 3 Operation 

Before discussing the test system modes, it is best to first describe the four 
functions available on each of the 6<* available sector cards.  These are: 

Force (F) — Force data, 

Inhibit (1) — Do not force data, 

Compare (C) -- Compare for expected data, 

Mask (M) — Do not compare for expected data. 

There are four available modes of operation on the S-3260/3270.  They are: 

Mode 1 (F, I, C, M) — Only one function per sector, 

Mode 2 (FC) — Two functions per sector, 

Mode 3 (FI, CM) — Two functions per sector, 

Mode <* (FICM) -- All four functions per sector. 

Most test generation done during this effort was geared for Mode 3 
implementation. In this mode, one can force and inhibit or compare and mask, on any 
sector card. An input pin would use the Force and Inhibit (FI) functions and an output pin 
would use the Compare and Mask (CM) functions. This implies that a single bidirectional 
pin will require two sectors. Consequently, two columns of data are required. Special 
care by the user must be taken in this mode to make sure that an input sector is inhibited 
when its corresponding output sector is comparing. Likewise, the mask function must be 
used when forcing. A special utility program was written to perform this function for 
proper bidirectional pin handling. 

With the restriction that the inhibit operation is always the complement of 
the mask operation, all four functions can be performed on a single sector card. That is, 
when forcing data, comparisons are masked and when comparing data, force data is 
inhibited. This capability of the Tektronix systems is referred to as I/O bus switching. 
Mode 3 with I/O switching can accomodate a single bidirectional pin with a single sector 
card and one column of data. A utility program to perform bidirectional pin inhibiting 
and masking is not necessary since these functions are performed automatically by the 
hardware.    In some cases I/O bus switching cannot be used.    An example of such a 

20 

MM. ^—I 



'•'"'—<~""""-^MWR 

situation is when several patterns must be applied to a device before it achieves a 
completely known state. While a device is going through this kind of initialization 
sequence, it is unknown whether certain pins are inputs, outputs or in the high impedance 
state. Therefore it is desirable to both inhibit and mask such pins simultaneously. 
Although I/O bus switching could have been used in many cases on this effort, it was 
avoided for convenience since the LASAR modeling of bidirectional pins resulted in two 
independent columns in the pattern. The test systems used all had enough capacity to 
keep inputs and outputs on different sectors. Had I/O bus switching been used, the 
utility program mentioned above would have been replaced by one which merged the two 
columns of patterns from the LASAR output into a single column for the Tektronix 
systems (in Mode 3 with I/O bus switching a "I" means force with a logical one and mask, 
a "0" means force with a logical zero and mask, an "H" means compare with a logical one 
and inhibit and an "L" means compare with a logical zero and inhibit). 

A limitation with Mode 3 is that it can only run at 10MHz, with a maximum 
shift register depth of 516 patterns (S-3260 only). This means that the shift registers 
must be reloaded more often, losing more error information (see section 2.0.0.3). Also, 
multiple shift register loading is one of the slowest parts of the testing function in a 
production environment. There is a trade-off among the number of functions available in 
terms of number of pins, shift register depth, and speed of pattern application. 

In one situation, when trying to test the Divide-By-Six Clock of the 15530 
Manchester Encoder/Decoder at I5MHz, the test had to be implemented in a mode other 
than Mode 3, because of the data rate required. Using Mode 1 (capable of a 20MHz test 
rate) was the only alternative. 

To use Mode 1 requires a choice of action. Since Mode I has only one 
function per sector available to it, it would be necessary to either create another column 
of data and physically wire another sector to the test fixture adaptor (clearly difficult), 
or to use a method called "parallel chaining." Parallel chaining uses the sector adjacent 
to the one called out in the pinlist, in a "piggyback" situation. This method allows the 
data to be in the same format as in Mode 3 (no additional columns of data are required), 
but a separate pinlist is needed to declare that the parallel chaining method is to be 
used. The pinlist is a statement which is compiled with the test program, and contains 
the necessary information to correspond the pattern columns with the pin assignments 
that describes the physical construction of the test fixture. The adjacent sectors 
required for control functions in parallel chaining must be otherwise unused, however one 
paralleling sector can control a bus of eight or more other consecutive sectors with some 
degradation in the overall test speed (8ns/sector). 

2.0.0.2        Double Pulsing 

With the Sentry it is possible to have a double pulse clock mode. This 
effectively doubles the maximum frequency of the test system. Only one phase (start 
and duration) can be set to occur in any given cycle period or periods with the S- 
3260/3270. Pulses can be stretched over several time periods, but the start time will 
always be referenced to the beginning of a cycle and patterns still change each time 
period. Thus the S-3260/3270 does not have quite the timing flexibility available on the 
Sentry systems. 

2.0.0.3 Loss of Error Information 

21 

win   IIHII HI        — 



• "••  I —"- 

A problem encountered when trying to recover the fault signature is the loss 
of four vectors of failure information per shift register load. This is due to a four cycle 
delay (one cycle if the complements of the error data are stored) in putting the error 
information back into the shift register where the patterns were once stored (recircula- 
tion of data). To get around this problem, locations were manually chosen in the pattern 
set as the last vectors of each shift register load, and the outputs were masked for the 
last four vectors. These positions were chosen, using the information from LASAR, as 
places which contributed to neither the TCL or to the fault dictionary. For the very last 
load of the shift register four dummy vectors were tacked on, with arbitrary inputs and 
masked outputs. This allowed the final four "good" vectors to be flushed out and their 
data retained. The four dummy vectors are not added to the other load statements 
because they would change the desired state of the DUT (unless it is purely combina- 
tional or the device is completely reinitialized during the next applied vector). 

The outputs must be masked for the four chosen vectors because the error 
flag would be set by a failure but that failure data rould not be accessed. By judiciously 
choosing the break points, any error which would have shown up during those four vectors 
should also show up elsewhere in the vector set. There is, of course, the possibility that 
a failure can occur in a place in the vector set which was not predicted by the single- 
stuck-at fault model used by LASAR, and by bad luck would not be caught. 

A further consideration, which complicates the choice of places to mask the 
outputs, is that all bidirectional pins must be in the input mode. Otherwise, the masking 
of the pin implies that it must be forced (using the convention built into the TEKTRONIX 
utility or I/O bus switching hardware), and this could either damage the device or change 
its state. 

l.k.k.k Timing Tolerance 

While implementing the AC timing tests, the limitations of the accuracy of 
the S-3260/3270 must be kept in mind. One device in particular, the 2914, has very fast 
setup and hold times, on the order of 10ns. The accuracy of the standard test system 
could be off by as much as 3.5ns, as the comparator skew can be up to 1.5ns. The 
measurement of a 10ns timing relationship with a possible error of 3ns was very 
undesirable. Without the benefit of a faster piece of equipment the best that could be 
done was to make sure that the timing was adjusted as close to zero skew as possible 
using tester calibration and verification programs. The practice of guardbanding may 
become very difficult to implement in cases such as this. 

2.<t.4.5 Time Measurement System 

The Delta-T subsystem on the S-3260/3270 is used to measure times, such as 
pulse width or propagation time. The time measurement is enabled at the beginning of a 
specific programmed vector number and then starts and stops when the voltage it is 
expecting is more than the programmed HICOMPARE or is less than the programmed 
LOCOMPARE value during the programmed compare times. HICOMPARE is used to 
detect rising transitions while LOCOMPARE detects falling transitions. The Delta-T 
subsystem can measure time transitions from a reference to a pin or from pin to pin. 
There are five ranges for the time measurement system with an accuracy of 

+/- ((1% of range) + (1% of reading) + 2ns) 

22 

• ,-      M,.-,..,.»....   —. 



"-**m*mmm—m*-' 

Therefore on the fastest range (100ns) the accuracy would be +/- 3.^ns for a <t0ns 
measurement. Tektronix offers a T.I.M.E. option which would improve that number to 
about +/- 0.9ns. The T.I.M.E. option uses a software autocalibration technique. It would 
be convenient if this feature were available for normal DRIVE and COMPARE skew 
compensation. However, something along these lines would be very difficult. This is 
because of limitations oi the present S-3260/3270 architecture (one phase signal can be 
used by many sectors). 

2.4.^.6 Programming Language Limitations 

This section lists a few suggestions concerning system software improve- 
ments. It is of course understood that a perfect operating system could not be 
implemented on a computer the size of the one used in the S-3260/3270, but is is hoped 
that this section may provide some impetus toward further improvement. 

The first major inconvenience encountered was that some large test programs 
would only translate (compile) using the second terminal's memory partition (Background 
1). This meant that for developing and running the test both Foreground (FG) and 
Backgro'ir-d (BG) were required, i.e., most of the test system was occupied with a single 
task. This is a common occurrence with a large program since more core is allocated to 
BG1. Having a dynamic core allocation would be much more convenient. An 
improvement to the operating system that would address this problem is currently under 
development by Tektronix. 

Also, some improvements could be made on the text, pattern, and pin editors. 
The text editor RESEQuence command could give equal spacing based on the number of 
lines per section rather than increments of ".1," ".01," ".001," and ".0001." At least 
increments of ".005" and ".0005" could be added. There also should be a way to have a 
search and replace command (like the text editor's SAR) to address only the line which a 
pointer is on, without having to call out the actual line number. Perhaps a line search 
and replace command (LSAR) in conjunction with existing pointer commands could 
accomplish this. 

It would be convenient to have something comparable to the SAR command 
available in the Pin Assignment Program (PAP) and the Pattern editor (PEDIT). Of 
course, the Pattern editor SAR would need to be two dimensional to allow replacement 
of rows and columns of data. 

If System Software were to be completely redesigned, it might be desirable 
to make a single expanded text editor capable of editing pin assignment, p ittern and 
program source files. Thus only one set of editing command definitions would be 
necessary. 

Similarly, improvements to the test language, TEKTEST, might be con- 
sidered. Possible improvements include adding structural programming constructs, 
parameterized subroutine and functions (written in TEKTEST) that can be separately 
compiled and linked when loaded, provisions for additional data structures include 
multiple dimensions, additional basic types, (bit, bytes, pattern characters, etc.) and user 
defined derivative types. Also, getting away from the BASIC-like line numbering, and 
instead addressing by label, would contribute to accuracy and readability. At present, 
TEKTEST is similar to FORTRAN and is well suited for implementing test programs. It 
is well established and efficient in execution but somewhat restricted in provisions for 

23 

*—- •   -— • - - - •fa« 



•    ' '-' • •-'••-• 

encouraging  consistently  prepared,   well  documented,  and  efficiently  generated  test 
procedures. 

i 

i 

24 



—. 

3. Computer-Aided Test Implementation Tools 

A great deal of time was spent during this effort in the identification of 
common testing problems. The intention was to isolate the mechanical activities from 
the creative ones; automate the former, leaving more time for the latter. 

Obvious candidates for automation were: the writing of test vectors; editing 
of pattern files; reduction of test data; and conversion of data from one format to 
another. Creative tasks were considered to be anything which was non-repetitive, 
unique, or requiring an action for which no well-defined algorithm could be found. For 
example, the formulation of a test plan was creative, but the implementation of each 
task was automated as much as practical. 

This section will describe utilities which were implemented on the RADC 
Multics facility and on the S-3260/3270. The utilities will be outlined in broad detail, 
rather than in the form of a user's manual. Brief operating guidelines and examples are 
given in sections U and 5. For users who will be generating tests with these, more 
complete documentation and examples can be made available on request. 

3.1 Programs Running on RADC Multics 

Test vector operations involve the manipulation of very large sets of data. 
Problems with vector sets are so unique that at least one Automatic Test System 
provides a separate editor for their manipulation (S-3260/3270 PED1T). However, the 
test writer still faces two major problems: how to generate the vectors and how to 
interpret the vectors. 

This problem is very similar to the one presented to early machine code 
programmers, and the solution is the same: develop a High Level Language (HLL) and 
debugging aids. 

An HLL for test vector generation has been developed, ALICE, which shares 
several similarities with true programming languages. There is even the capability to 
allow the test writer to become independent of a specific device pin list or clocking 
scheme. 

Described here are some utilities that allow the RADC Multics facility lo 
read/write magnetic tapes in the format required by the S-3260/3270. This has 
accelerated the use of the techniques for manually developing input vectors, and for 
using systems such as LASAR to generate the expected responses. It should be noted 
that many of the computer utilities developed or improved as a result of this effort run 
on the RADC Multics compute'-. Some utilities were written in text editor language, as 
that is often the quickest way to do a simple job, but most were written in PL/I. Not 
completely described here will be utilities dealing with the Sentry magnetic tape 
formats. Not enough usage has occurred yet to permit these to be completely 
generalized and debugged. y 

The following is a list of some of the most important utilities (all written in 
PL/I). Not listed will be routines which performed a very specialized function, or 
routines which exist only as support (e.g., I/O) for another utility. 

The utilities (in roughly the order in which they would be used) are: 

25 

*~-^->—^»—^-^-- -- — -ii       i 'i • n   



-•» 

1) ALICE — "High Level Language" for test vector generation, 

2) TECO — "Assembly Level Language" for test vector generation, 

3) DUP — Removes duplicate test vectors from a pattern set, 

4) ALICENUM — Generates a line number commented ALICE listing, 

5) ADD_OUTPUTS   —   Allows   test   writer   to   manually   specify   output 
response and add comments to an input pattern set, 

6) REDUND — Converts a pattern file into one showing only the change of 
a device pin state, 

7) LOADMODULE  —  Allows  rapid  design  of  device  pin  loads required 
during Logic Integrity Test (LIT)  and AC parametric tests, 

8) TEKTRONIX -- Changes an ALICE-type pattern set into S-3260/3270 
Mode 3 format, 

9) SENTRY -- Changes an ALICE-type pattern set into Fairchild Sentry 
"SET F" format, 

10) CPAC  — Compares two files, and lists the rows and columns which 
differ, 

11) AANDB — Performs some set operations on two files, 

12) SENPASS,   SENPASS2   -   Converts   Sentry   Application   Program   and 
Truth Table into S-3260/3270 ".PAT" files 

13) NQUINE, SWAPCOL, PLAGEN - Help to reduce a boolean function to 
a PLA model for LASAR, 

1*0     ATETAPEJJTIL -- A set of utilities for handling magnetic tapes from 
the S-3260/3270 and Sentry family. 

3.1.1 ALICE 

The Automatic LASAR Input Coding Editor (ALICE) accepts data in a 
convenient "vector" notation and outputs in TECO language (section 3.1.2). ALICE 
allows pins to be grouped (such as sixteen address lines) under a single variable name, and 
the test writer may assign values in binary, octal, decimal, or hexadecimal notation. A 
single statement defines the device pinlist (or pattern columns). Comments may be 
passed through ALICE to TECO, and then placed on desired pattern lines. An ISSUE 
statement allows the test writer to specify a subroutine or TECO statement to be 
executed after each ALICE statement, which allows a clocking or timing scheme to be 
implemented. 

An example is shown in Figure 3.1a. 

3.1.2 TECO 

26 

^fc«--- -mi - -   ••-    i       "if—•< 



——- w-p~ 

ASSIGN 1=1,?,3,4lHEX 
ASSIGN M=5,6,7lOCTAL 
ASSIGN EX7ERNAL=8.9,10,1 I,I2IDECIMAL 
ASSIGN VARIOUS=13,I4IBINARY 
ASSIGN VARI0US?=I3,I4|CBINARY 
ISSUE CALL GO 
/ THIS COMMENT WOULD BE PRINTED IN TECo 
// THIS COMMENT IS LOCAL TO ALICE 
// THE FOLLOWING IS NECESSARY FOR TECO"! 
/PINLIST = I,?,3,4,5,6,7,8,9,10,I 1,12,13.14,15 
START* 
I=3,M=7.EXTERNAL=2l,VARIOUS=00  /THIS COMMENT GOES 
I=2,VARIOUS=OI 
^=0 
VARIOUS?=IO 
I=C       /LAST STATEMENT 
STOP 
GO i 
/ THIS SUBROUTINE WILL TOGGLE PIN 15, ^HICH 
/ IS NOT LISTED IN THE ASSIGNS 
L 15 
H 15 
L lb 
RETURN 
END 

TO HATCEN 

27 

: 

Figure 3.1a.  Sample ALICE Program 

J 



• — I-1 '• i-        —        ..    I    .,. I ... - , 

The TEst COmpiler (TECO) is a language for test pattern generation. ALICE, 
the High Level Language, compiles a test pattern file into TECO, which resembles 
Assembly Level Language. TECO executes the instructions in the new data file, 
resulting in vectors which are suitable for input to LASAR or (with modification) to any 
ATE. 

This TECO is not the text editor with the same name. It started as a strict 
subset of the TECO which Digitest Corporation offered on their D4LASAR system. The 
RADC version has since been enhanced by the addition of many new functions. 

An ALICE file contains pure ALICE statements intermixed arbitrarily with 
TECO statements. ALICE provides the capability of grouping pins for convenient 
handling, while TECO provides the control structures and special case handling. 

An example is shown in Figure 3.1b, and output in Figure 3.1c. 

3.1.3 OUP 

Occasionally, due to the use of subroutines and do-loops to make ALICE code 
more homogeneous, duplicate pattern lines will appear in the output data file from 
TECO. If these are undesirable (as is the case when LASAR will be using the patterns) 
one may use DUP to remove the duplicate lines. 

If two lines are identical except for the presence of a comment on one, the 
one with the comment is retained. 

3.1.4 ALICENUM 

When the test writer is debugging or evaluating the test he has written, he 
generally looks at the response from LASAR or error data from his ATE. When ready to 
make changes, he should make those changes in the ALICE file, rather than in the actual 
stimulus data file. ALICENUM provides an ALICE listing with each ALICE statement 
annotated to show the actual vector number on which it took effect. 

An example is shown in Figure 3.Id. 

3.1.5 ADDJDUTPUTS 

ALICE is primarily used for the generation of input stimulus patterns, rather 
than the response or output of the device. Although this can be done, it is very difficult 
if the program flow involves loops or subroutine calls. Usually, the response for large 
pattern sets is provided by a simulator such as LASAR, or ATE in a "learn" mode. 

For small files (usually less than 200 vectors) the program ADDJDUTPUTS 
can be used to interactively specify outputs and comments. ADD OUTPUTS is easiest to 
use when there are only occasional output states to be specifiedTleaving the bulk of the 
output states masked).  This occurs very often in the design of AC parametric tests. 

3.1.6 REDUND 

When adapting a LIT or functional test for use as an AC or DC parametric 
test, it is often necessary to track down rare changes in state of a particular input or 

28 

-fr" — ' '-'•     —••'       •.-.^^ .^ J 



""—• 
—.- 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

ASSIGN 1=1,2.3,4tHEX 
ASSIGN M=5,6,7«OCTAL 
ASSIGN EXTERNAL=8,9,10,II,I2IDECIMAL 
ASSIGN VARI0US=I3,14«BINARY 
ASSIGN VARI0US2=I3,I41CBINARY 
ISSUE CALL GO 
THIS COWMEN! WOULD BE PRINTED 

/PINLIST=1,2,3,4,5,0,7,8,9,10, I I 
START« 

/ I=3.M=7,EXTERNAL=2I ,VARI()US=00 
I 2 

IN TECO 
. 12. 13, M, 15 

/THIS COMMENT G0F5 10 PATGEN 
L 
H 
H 
L 
H 
L 

3 
5 
9 
8 
13 

4 
6 7 
I I 
10 
14 

12 

CALL GO 
/ I=2,VARI0US=0I 

I 2 4 L 
H 
L 
H 

3 
13 
14 

CALL GO 
/ M=0 

H L 5 6 7 
CALL GO 

/ VARIOUS2=IO 
B LL 14 
ü HH 13 
CALL GO 

/ I=C /LAST STATEMENT 
B L 3 4 
b H 1 2 
CALL GO 
STOP 
GO« 

/ THIS SUBROUTINE iVILL 
/ IS NOT LISTED IN THE 

L 15 
H 15 
L 15 
RETURN 
END 

TOGGLE PIN 
ASSIGNS 

I5.»'.HICH 

Figure   3.1b.       Sample TECO Program   (output of ALICE) 

29 

—' -•   - •—    —  



—, .——,, 
" •'• "    "" *'• -  ' '"'   ' •l,wl 

001 I I I I I 
001 I II I I 
00 I I I I I I 
00 I 0 I I I I 
00101 I I I 
001 01 I I I 
0010000 I 
0010000 I 
001 0000 I 
001 00001 
00 I 0000 I 
00100001 
1 I 000001 
1 I 000001 
I I 00000 I 

0101000 
OIOIOOI 
0101000 
0101010 
010 I 0II 
01 0101o 
01 01 01 0 
0 10 10 I I 
0 I 0 I 0 10 
OIOIHLO 
0101 ULI 
OIOIHLO 
OIOIHLO 
0101 ULI 
0101HLO 

THIS COMMENT G()t;S Tu PATOEN 

LAST STATEMENT 

•• 

i i 

Figure 3.1c.   Sample PATGEN Program (output of TFCO) 

30 

 k_ .. ->....^,....,— 



-pr—• *mm 

ASSIGN   I=1,2.3,4|HEX 
ASSIGN   M=b,6,7«OCTAL 
ASSIGN   EXTERNAL=8.9, 10, I I , I21DECIMAL 
ASSIGN   VARI0US=I3,»4*BINARY 
ASSIGN   VARlOUS2=l3.l4iCBINARY 
ISSUE  CALL  GO 
/ THIS COMMENT WOULD BE PRINTED IN TECO 
// THIS COMMENT IS LOCAL TO ALICE 
// THE FOLLOWING IS NECESSARY FOR TFCO« 
/PINLIST = I,2,3,4,b,6,7.8,v,10,1 I,12.13,14,lb 
STARTi 

I I = 3,M=7,EXTERNAL=?l,VARlOdS-=O0   /THIS DWFNT GOFS TO PATGFN 
4 I=2.VARI0US=0I 
7 M=0 

10 VARI()US2=I0 
13 I=C   /LAST STATEMENT 

STOP 
GO« 
/ THIS SUBROUTINE WILL 
/ IS NOT LISTED IN THE 
L 15 
H lb 
L lb 
RETURN 
END 

TOGGLE PIN 
ASSIGNS 

ib. WHICH 

Figure 3. Id.   Output of ALICF.NUM 

31 

I lihUII II-     --  ' •ilMMMIi  i . 



output pin. REDUND allows the user to create a new listing from the LIT file, showing 
the state of pins only when they change, replacing the other occurances with some 
innocuous character of the user's choice. Thus, a quick visual scan is less likely to rniss 
difficult-to-detect transitions of single or multiple pins. 

An example is shown if Figure 3. le. 

3.1.7 LOADMODULE 

During the LIT and AC parametric test the DUT is generally run with the 
outputs loaded. The load, shown in Figure 2.1, is designed to force the DUT output pins 
to source current at the maximum IOH when the output pins are at minimum VOH; to 
sink maximum IOL when at maximum VOL; to float to some specified intermediate 
voltage (VTSC) when the pin is in a high-impedance state. 

LOADMODULE calculates two resistor values (RL, Rl) and a pullup voltage 
(VP) when given the desired IOH, IOL, VOH, VOL, and VTSC. Since the resistor values 
yielded are standard values, LOADMODULE for convenience also calculates the actual 
expected parameters, which are generally only a few percent from the desired values. 

3.1.8 TEKTRONIX 

ALICE generates data (through TECO and DUP) which are directly com- 
patible with LASAR. LASAR simulates the DUT, and generates the response data. 
Unfortunately, no digital simulation packages yet available can adequately and realis- 
tically handle three-state, or worse, bidirectional pins. These mechanisms require 
elaborate workarounds based on a thorough knowledge of the DUT's actual behavior. 

The usual workaround for a three-state pin is to use a "Don't Know" generator 
in the model to specify "X" as the output to signify the high impedance condition. A 
bidirectional pin is modeled as two pins (input and output), and may involve the use of 
the Don't Know generator to denote that the pin is in the input state. 

The TEKTRONIX utility accepts data in the form provided by LASAR (or 
manually-generated data) and converts that into S-3260/3270 Mode 3 data (using the 
symbols 0, 1, L, H), reserving two columns per bidirectional pin. 

When test vectors have been developed which require one or more pins to be 
applied in the "RTO" mode (see section 2.^.3.5) it will be necessary for the columns 
corresponding to those pins to be inverted. This is done when TEKTRONIX is invoked, by 
listing those pin numbers as arguments. 

3.1.9 SENTRY 

The SENTRY utility accepts the same data as TEKTRONIX, but changes it 
into Sentry "SET F" statements. Bidirectional or masked data is handled by use of the 
MA, MB, DA, and DB registers, which are set or enabled as needed. 

3.1.10 CPAC 

When debugging a LASAR model or performing fault signature analysis on 
Multics, it is often necessary to compare two large files of ones and zeros and note the 

32 

•• 



•"*"'•• 

001 I I I I 10101000 
 , 
—A— 0 

~~~Q~ IÄ 

 ÄÄÄÄÄ) 

A *AÄÄ() 

 ÄÄ^*ÄÄ0 

*• Ä ÄAHL" 
 AÄ| 

 0 

I ,0 **«**« 
~~~ „A~,.Ä«Ä«*1 
 ^n 

Figure 3.1e.  Output of REDUND 

33 

_:  --- • -- b 
. g 

- ••    -"--   



' .«•«I. »II IM. 

differences. As this is obviously a case where the computer is more capable than the 
human, the CPAC (Compare ASCII Columns) utility was developed. The output is a list 
of bits which differ, in the form of "ROW,COLUMN." 

3.1.11 AANDB 

This utility performs three set operations on a pair of files. If the files were 
indeed named "A" and "B," this would result in three files, containing the elements which 
are: 

— In A and in B, 

— In A but not in B, 

— Not in A but in B. 

The only other case, "in A or in B," is directly obtained from the use of two 
commands which are already available on Multics (concatenate, then sort while retaining 
only unique elements). 

This utility is especially useful when data must be "sieved," as in the case 
where a LASAR fault dictionary specifies a list of significant bits (see section 5.5.1) and 
requires that any other bits in a fault signature be struck from it. Here, the "in A and in 
B" case is useful. 

To compare two large fault signatures to see if one differs from the other 
only by the addition or deletion of bits, the "in A but not in B" and "not in A but in B" 
cases are employed. 

3.1.12 SENPASS, SENPASS2 

Due to fundamental differences between the S-3260/3270 and Sentry family, 
it is impossible to automatically convert any arbitrary complete Sentry program into an 
S-3260/3270 program. However, it is possible to perform the simpler job of converting 
only the test vector information in an automatic fashion. 

This process is done in two passes. First, the portion of the Sentry 
"Application Program" dealing solely with the actual test vectors is extracted. This 
consists of the "Truth Table" and the FACTOR statements that cause the Truth Table to 
be scanned. This is input to an interpreter which implements a subset of the FACTOR 
language (SENPASS). The output is a set of vectors, one column per pin, with the 
functions of input, output, bidirectionality, and three-state being denoted by the 
characters 0, 1, L, H, Z, X. 

The second pass is done by a program (SENPASS2) which breaks the 
bidirectional pins into two columns, and reorders the pins in a more convenient order 
(previously they were in ascending pin number order). The test vectors are now in S- 
3260/3270 Mode 3 form. 

If double clocking or other non-S-3260/3270 features are used, it is necessary 
that the person supervising the conversion to find a way around them. It is planned to 
implement a utility that  will be able  to "unwind" any arbitrary clocking scheme, and 

•UM 



"•"• 

generate  the  appropriate  broadside  vectors.     At  present,  this process  is manual and 
extremely difficult for large vector sets. 

3.1.13 NQUINE, SWAPCOL, PLAGEN 

A boolean function may be expressed in the form of "minterms," or the list of 
every binary code which, when applied to the inputs of a combinatorial network, results 
in a logical 1 (or conversely, a logical 0 if more convenient). The utility NQUINE 
performs the sort of reduction possible with Karnaugh Maps [1] or Veitch Diagrams [2], 
using a variation of the Quine-McCluskey Method [3], This results in a list of "prime 
implicants" which cover the function. This can be done for a network with up to IUU 
inputs. Of course, execution time increases dramatically as the number of inputs and 
minterms increases. However, this has proved useful in the quick design of decoding 
logic. 

The utility SWAPCOL is mentioned only for completeness. NQUINE has a 
mode where only partial reductions are made, i.e., the resulting implicants are not 
necessarily prime ft]. Here, each minterm in the original function becomes part of one 
and only one implicant. This speeds evaluation by many orders of magnitude, but yields a 
result which is not nearly as good as the complete reduction. SWAPCOL, which can 
scramble the columns in a directed manner, can allow the NQUINE "partial mode" to do 
a much more complete reduction. The cost saving is so great that ten or so runs can be 
made with random swapping, the best result chosen, and "unswapping" performed to 
recover the minimized original function. 

The PLAGEN utility is used to automatically generate a LASAR model that 
implements, in NAND gates, the function described by the output of NQUINE. This is in 
keeping with the policy during this effort of making purely mechanical jobs the 
responsibility of the computer, to minimize human error. 

A final note on the NQUINE utility is necessary. In the mode where prime 
implicants are the result, there will almost always be multiple coverage of minterms. 
This results in three types of prime implicants: superfluous or "absolutely- eliminable" 
prime implicants, which should be discarded; essential prime implicants, whose deletion 
changes the function, and should be identified for retention; non-essential prime 
implicants, some combinations of which can be deleted. A utility was developed for this, 
called PETRICK, which uses instead of Petrick's Method [5], a more computationally 
efficient algorithm However, it was found that even halving the final number of prime 
implicants was hardly worth the effort of running PETRICK. 

3.1.14 ATE TAPE UTIL 

This is a set of programs, called PEOIT, PCREATE, EEDIT, ECREATE, 
PWRITE, ECHECK, READ_TAPE_NSTD, and SENFROM. These allow the RADC Multics 
facility to perform magnetic tape transfers of information with the S-3260/3270 and, in 
a limited fashion, with the Sentry family. Those utilities are forced to perform rather 
circuitous exercises in bit stuffing to read and write in the internal formats of the other 
machines. Of all of the utilities described here, these are certainly the least 
transportable. 

3.2 Programs Running on the S-3260/3270 

35 



      —•  -•.wmiw—   

The proliferation of incompatible automated test equipment has slowed the 
evaluation of new devices. Device test programs written for one ATE will seldom run 
properly on another ATE. In some cases, these programs require extensive modification 
before they can be run on similar equipment. The following programs were developed to 
reduce this problem and to assist with the evaluation of the test and results. 

The utilities are: 

1) SIMPL — Test implementation language, 

2) MATSIM -- Aid to SIMPL programming, 

3) S1MTEK -- Creates a ".TST" file that executes SIMPL commands, 

4) CODE -- Sets key for data logging, 

5) BATLOG — Assign LUN's for data logging, 

6) BATRED — Assigns LUN's for DATRDB, 

7) DATRDB — Displays LIT failures from log files, 

8) PATPLO.ASC — Assigns initial LUN's for plotting waveforms, 

9) PATPLO.EDT — Assigns LUN to pattern file selected by user, 

10) WAVE -- Plots waveforms from above pattern file, 

11) FISO.ASC -- Assigns LUN's for fault isolation, 

12) FISOV1 -- Clears LUN's assigned by BATLOG, 

13) FISO.EDT — Isolates component that caused a LIT failure, 

I*) TABPRT — Assigns LUN's for fault dictionary operations, 

15) XY2PRT — Prints or reformats fault dictionary, 

16) RESIS — Calculates load module parameters. 

3.2.1 SIMPL Language 

The SIMPL language was developed as a first attempt to simplify test 
implementation on the S-3260/3270. All standard DC tests, the LIT, and some AC tests 
have been implemented.   Special functional tests have not been included at this time. 

3.2.2 MATSIM Program 

Generation of a device test using the SIMPL opcodes can be accomplished by 
referring to the Opcode Reference Chart. However, the MATSIM program was 
developed to assist the user in specifying the various arguments required for each 
opcode. 

3f> 

^Jt.   -^ „_   . . . .....J-.T .   ,r| 



••    »«II 

Future changes to this program will allow English Language statements to be 
translated into the appropriate SIMPL statements. Also included should be "checker" 
routines which will verify that any particular SIM PL device program is valid and will 
meet a particular test station configuration. 

3.2.3 SIMTEK Program 

The SIMTEK Program is a series of files that, when combined with a 
particular device pinlist/pinarray, results in a S-3260/3270 ".TST" program capable of 
executing the SIMPL opcodes. The program reads a S1MPL statement, executes it, then 
reads the next one, continuing until the opcode FINIS is read. LIT error information is 
saved in the disk files ERRPAT.LOG and CONTRL.LOG for later failure analysis. 

The complete program, as it exists now, requires a large amount of system 
memory (approximately 13K). For small tests this may be excessive. However, LSI and 
VLSI devices presently require larger tests when written in TEKTEST. When these 
device tests are implemented in SIMPL, the overall test size will generally be lower. 
Changes in the current operating system are anticipated that will help in this area. 

Recommended changes to a SIMPL Interpreter are: 

— The elimination of the ".PIN" file, pinlist and pinarray files from the main 
SIMTEK program, 

-- The above files should be stored in a special device test file that can be 
accessed to by the main test routine, 

— Device test pattern files should be separated from the test file and be 
referenced by the main test program. 

These changes will result in a few small files that describe the DUT test and 
one main test file for all devices. This would make better use of the system disk and 
computer memory and would eliminate much of the file manipulation that is currently 
required. 

3.2.<+ CODE Routine 

The CODE Routine requests a key for the ".LOG" files from the operator and 
stores it for use during testing. 1 ,ie routine also illuminates the lights on the TSCU for 
the operator to verify before beginning the test. 

As an aside, the name CODE is spelled with a zero, rather than the letter "O," 
to allow the user to dial the name on the hexadecimal switches of the TSCU. 

3.2.5 BATLOG Routine 

The batch log file (BATLOG) is a set of instructions that direct the system 
"LOG" program to assign the LUN's needed by the DUT test program. After all tests 
have been completed it closes the various LUN's and reassigns them to the keyboard. 

3.2.6 BATRED Routine 

37 

— - ^^_g_g_g^^^^^_ 



" '•    •!•• i  Hin,       w^w—**^mmmmmmmm •^^W-»'»   L ''•'•• 

The batch reduce file (BATRED) is a set of instructions that direct the 
system "REDUCE" program to assign the LUN's needed by the DATRDB program and 
then execute DATRDB. 

3.2.7 DATRDB Program 

The data reduction (DATRDB) program queries the operator for additional 
information, such as whether the line printer should be used for the output, or to accept 
the key of the log file data to be reduced. The device name, pin names, and LIT error 
data are read from log files created by SIMTEK (see section 3.2.3) and presented to the 
operator in the requested format. The program then queries the operator on whether it 
should rerun with the same data, rerun with new data or stop. 

The output format may be one of the following three choices: 

— Number of failures per DUT output pin, 

-- Contents of the log file containing the LIT errors, 

— Row and column numbers for each failed bit. 

3.2.8 PATPLO.ASC Routine 

The pattern plot ASCII file (PATPLO.ASC) is a set of instructions for the 
REDUCE program. These direct the creation of temporary d:sk files that are used by 
PATPLO.EDT, which is then automatically executed. 

Note that the programs PATPLO.ASC, PATPLO.EDT and WAVE.EDT were 
written by Tektronix, Inc. The WAVE.EDT program has been extensively modified to 
meet the needs of this effort. 

3.2.9 PATPLO.EDT Program 

This program asks the operator for the name of the pattern file to be plotted. 
The name along with other LUN assignments are placed into one of the temporary files 
created by PATPLO.ASC. Then the REDUCE program is directed to execute these 
assignments.   This automatically runs the WAVE.EDT program. 

3.2.10 WAVE Program 

The wave form plotting program (WAVE.EDT) queries the operator for the 
portion of the pattern file to be plotted. It then reads the file and displays a pseudo 
timing diagram on the CRT that reflects the levels that would be forced on inputs or 
expected on outputs during testing on the S-3260/3270. The wave forms are not true 
data because no timing terms or data inversions are included.    Also, Mode 3 is assumed. 

3.2.11 FISO.ASC Routine 

The fault isolation ASCII file (RSO.ASC) is a set of instructions for the 
REDUCE program. This set prompts the operator to ensure that the line printer is on. 
Then the LOG program is directed to execute the instructions in the ISOV1 file (see 
section 3.2.12).   When LOG returns control to REDUCE the logical units are assigned as 

38 

I   t 



~•~~^*mmmm, 

needed by FISO.EDT and displayed for the operator to verify, 
line feed, the FISO.EDT program is executed. 

When the operator types a 

3.2.12 FISOV1 Routine 

This file contains the instructions needed by the LOG program to close the 
files used by the SIMTEK program and clear all LUN assignments. This operation ensures 
that FISO.EDT can proceed without interference. 

Note that this operation is entirely transparent to the operator unless an 
error condition is encountered. 

3.2.13 FISO.EDT Program 

The fault isolation (F1SO) program queries the operator for his output device 
choice-and the key of the log file that contains the LIT error data from SIMTEK. The 
algorithm described in section 5.5 is then performed and the results displayed. The 
operator is asked to indicate whether the program should rerun with the same key, rerun 
with a new key, or stop. The following paragraphs will describe the TEKTEST 
implementation of the algorithm more fully. 

The number of output pins, the maximum number of elements in each Z-entry 
(called DYSOGN), the number bi-ts in the XTABLE, and the number of entries in the 
ZTABLE are read from the XTABLE, along with the device name and the date of the 
LASAR run> The LIT errors contained in the log files from SIMTEK are compared to the 
XTABLE entries, with the relative position of matches stored in an array. This is the 
error signature, "S" (called XCODE in the program). 

The contents of S are compared with each entry of the ZTABLE. Each time a 
match is found, a counter (called INTER) is incremented. Wnen the end of the ZTABLE 
entry or the signature is reached, INTER contains the number of elements in the 
intersection (SZ) of the S and Z. The number of ZTABLE entries (ZNUM) is then 
compared to DYSOGN. If the two are equal, the actual number of elements (ETAB) used 
from S in the first comparison is used to calculate the goodness of fit (RANK). 
Otherwise, the total number of S entries is used.   The equation for the first case is: 

INTER RANK 
(ETAB + ZNUM - INTER) 

In the        ind case, ETAB is set equal to the number of elements is S and then the above 
equation is  ised.   The RANK is stored for later ordering. 

If RANK equals I, the signature to ZTABLE coinparison is terminated, and 
the corresponding YTABM entry is printed. Otherwise, the comparison continues until 
the ZTABLE is exhausted. Then the ten highest RANKs are extracted from storage ^nd 
the related YTABM entries are printed. If the RANK to be printed is less than 0.1, the 
printing stops. Also, the printing continues beyond ten entries if the following RANKs 
are equal to the RANK of the tenth entry. Thus the circuit component(s) that caused the 
LIT failure is isolated. 

The YTABM file is the YTABLE reformated to a more easily read format (see 
the descriptions of the TABPRT and XYZPRT programs in sections 3.2.U and 3.2.15). 

IP 



•:  • - • " '" 

3.2.14 TABPRT 

The table print file (TABPRT) is a set of instructions for the REDUCE 
program. This set directs the creation of a disk file called YTABM.ASC and the 
assignment of the LUN's needed by the XYZPRT program, which is then automatically 
executed. If the file YTABM already exists, an error message is displayed and the data 
that would have been stored in YTABM is sent to the CRT. 

3.2.15 XYZPRT 

This prograin asks the operator for the output destination, and whether the 
XTABLE, YTABLE or ZTABLE is desired. If the YTABLE is selected, the operator may 
print it, store a reformated version in YTABM.ASC or both. The XTABLE and the 
ZTABLE files are printed only. 

The YTABM.ASC file must be created before the fault isolation routine 
FISO.EDT (see section 3.2.12) will perform correctly. 

3.2.16 RESIS 

This program performs the same function as the MULT1CS LOADMODULE 
program (see section 3.1.7). RESIS selects the two load resistors and the load power 
supply voltage that result in the lowest error in lOH and IOL. The resistors are selected 
from the table of standard five-percent values. 

References: 

1. Donald D. Givone, Introduction To Switching Circuit Theory, McGraw-Hill, 
1970, pp. 110-136. 

2. Thomas R. Blakeslee, Digital Design With Standard MSI & LSI, John Wiley & 
Sons, 1975, pp. 40-49. 

3. Givone, op. cit., pp. 136-144. 

4. Sheldon B. Akers, "On the Specification of and Analysis of Large Digital 
Functions," Proceedings of the Seventh Annual International Conference on Fault- 
Tolerant Computing (FTCS-7), pp. 88-93. 

The footnote on page 91 is of special interest. 

40 

•L~_.~ -- -•     .*^...... ^m^mmmkmt mi — I I      • 111' 1I1MV 



mm— "•"' •      " •   •|MI «i i     —   — 

4. Test Development and Implementation 

4.1 Procedure For LSI Functional Test Development 

This section describes the approach which is used for the evaluation of the 
functional tests. The steps outlined here indicate what sort of tests should be applied to 
a DUT. These provide a rough set of recipes for test generation, but were originally 
designed for cases where a test was submitted and had to be verified for completeness. 

4.1.1 The approach consists of the following steps: 

4.1.1.1 Generate a detailed functional block diagram by partitioning the LSI device 
into basic functional blocks such as registers, data selectors, arithmetic and logic 
functions. Identify all data paths. 

4.1.1.2 Test each of the basic functional blocks using proven test patterns which 
result in a high TCL. In some cases, these blocks can be exhaustively tested with few 
vectors. 

4.1.!.3        Generate test patterns to verify the integrity of the data and control paths. 

4.1.1.4 Verify that all instructions perform the specified operations. 

4.1.1.5 Include test patterns that check for known processor sensitivities. This may 
include vendor and user-supplied data. 

4.1.2 A gate-level diagram, timing diagram, Automaton Diagram, and a block 
diagram, showing the major functional areas of the microprocessor and the intercon- 
necting data and control paths, would be valuable for test development/evaluation. 

However, in many instances only a timing diagram and an insufficiently 
detailed block diagram are available. It is then necessary to develop a detailed 
functional block diagram or Automaton Diagram based upon the best available informa- 
tion and verify its accuracy with the manufacturer. 

Once this is done, verification that each of the functional blocks is tested, 
using proven test patterns, must be done. Following is a list of the types of tests 
required: 

1) Verify the independence of each IC pin. This is accomplished by 
checking that each pin assumes a "1" and a "0" state while all of the 
other pins, either individually or collectively, are in the complementary 
state. The states of input pins have to be monitored unless they are 
sensitized to the outputs. 

2) Verify that the control lines perform the intended functions and 
perform independently of the previous instruction. This is accomplished 
by activating each control line and checking that the address, data, and 
status lines assume the correct states. Independence is verified by 
activating the control lines in a gallop type test and checking the 
response. 

41 

 -        -'-•- •— -—    -   •       • ii-i    ii 



"-** 

3) Check that the proper priority is maintained when two or more control 
signals are applied at the same time. 

'4) Verify the high impedance capability of the applicable data and status 
lines by placing them in the high impedance state and measuring the 
leakage current. This should be done with the input of the three-state 
buffer driven to both a "1" and a "0." 

5) Verify the independence of each line in a data path and that each line 
can pass a "1" and a "0." This is accomplished by checking that each 
line assumes a "1" and a "0" state while the others, either individually 
or collectively, are in the complementary state. 

6) Verify that any identifiable multiplexer can pass both a "1" and a "0" in 
each selection position. 

7) For serial arithmetic adders/subtractors with unknown mechanizations, 
apply all possible inputs (0 & 0, 0 & 1, 1 & 0, 1 «5c 1) to each input pair 
with the carry equal to "0" and then with the carry equal to "1." This 
should be done in both the add and subtract modes. The carry is either 
the external carry into the adder or the carry from the next least 
significant bit. If the subtractor is a l's or 2's complement subtractor, 
these tests will also verify that the inverting circuitry can invert both a 
"1" and a"0." 

8) For logic operations apply the following input conditions to each input 
pair of the ALU: 

0 & 0, 0 <5c 1, 1 <3c 0, 1 <5c 1 during EXOR operations, 

0 6c 0,0 6c 1, 1 & 0 during OR operations, 

0 6c 1, 1 & 0, 1 6c 1 during AND operations. 

9) For shift left and shift right operations, verify the shift of the 0 to 0, 0 
to 1, 1 to 1, and 1 to 0 transitions in each direction. Use data patterns 
that will ensure that a shift in the wrong direction will be detected. 

10) Check all flip-flops for 0 to 0, 0 to 1, 1 to 1, and 1 to 0 transitions. 

11) Verify that the carry-in has no effect on the ALU during logic 
functions. 

12) Verify that special outputs such as carry, carry generate, carry 
propagate, overflow, etc. from an ALU operate properly, i.e., can 
assume both a "1" and a "0" state and that they occur at the proper 
time. If equations are provided for their generation, verify that each of 
the terms in the equations affects the outputs. 

13) Partially verify the instruction set by performing each instruction or 
opcode at least once. Checking that only the intended instruction is 
performed verifies that the decode circuitry is functioning properly. 

42 

  



. 

14) Verify register independence, bit independence, and integrity of unique 
registers such as accumulators, stack pointers, index counters, storage 
registers, etc. Register independence is verified by writing into one of 
the registers and checking that the others are not affected. Bit 
independence is shown by having each bit in the "0" and "1" state with 
all other bits in the complementary state. Integrity is verified by 
ensuring that transitions from 0 to 0, 0 to 1, 1 to 1, and 1 to 0 are 
possible for each bit of each static register. 

15) If the device contains a RAM, or the unique registers are configured as 
a RAM, the following items should be checked as a minimum: 

15.1) Address Uniqueness 

Verify that there are "W" independent word locations in a "W" word 
memory or that the unique registers are independent. This can be 
accomplished by writing into an address or register and verifying that it 
was the only address or register affected. The standard RAM tests 
which can be used for this are Walking-one, Walking-zero, Galloping- 
one, Galloping-zero, or Write Recovery. 

15.2) Bit Independence 

Show the independence of each bit in the "0" and "1" state with respect 
to all other bits which are in the complementary state. This can best 
be accomplished with the standard Walking-one, Walking-zero test. 

15.3) Cell Integrity 

Verify that transitions from 0 to 0, 0 to 1, 1 to 1, and 1 to 0 are possible 
for all bits. This can be accomplished with the Walking-one, Walking- 
zero test on RAM's that are more than one bit per word. For single-bit 
RAM's, separate tests have to be performed for the 0 to 0 and 1 to 1 
transitions. 

15.4) Intercell Disturbance 

Maximize the number of internal transitions to test for cell-to-cell 
interaction. This can be accomplished with the standard Galloping-one, 
Galloping-zero test. 

15.5) Data Retention 

This test is primarily for Dynamic RAM's and verifies the data written 
in the memory cells are unaffected by the delay between refresh 
cycles. Until recently, the data retention test was only performed on 
dynamic memories. However, static memories have also been found to 
have problems retaining data. Thus, the Static Hold test was developed 
for these parts. It consists of writing a data bit in memory and waiting 
before reading the data. 

43 

—         •     -•• • 



15.6) Write Recovery 

Verify that transitions fron a write to read do not cause access time 
failures. This is accomplished by checking all possible transitions from 
a write to a read. 

15.7) Read Modify Write Recovery 

Verify that transitions from a read to a write do not cause incorrect 
information to be written into the device. This is accomplished by 
checking all possible transitions from a read to a write. 

15.8) Sense Amplifier Recovery 

Tests should be included to ensure that sense amplifiers respond 
properly to a complementary bit after repeated reads of like data. 

15.9) Sense Amplifier Response 

Test for sense amplifier frequency response by repeatedly reading 0/1 
data patterns at the minimum read cycle time. 

4.2 

16) Check dynamic registers and buses for proper operation. The test 
should verify that sufficient charge is transferred in the minimum 
transfer time and that sufficient charge is available after the maximum 
storage time. This is accomplished by varying the power supply 
voltages, and clock amplitudes, periods, widths, and delays to set up the 
worse case conditions described above. 

Writing a LIT using ALICE and LASAR 

All of the manually-developed tests written and used in this effort were 
generated using ALICE, that is to say, all of the LIT vector sets and AC parametric tests 
were originally in the form of an ALICE program on the RADC Multics computer. In the 
case of the AC parametric tests, the outputs generally have to be supplied manually, and 
then transported to the S-3260/3270, or whatever ATE is the target machine. Those 
outputs may be generated by the ALICE program, as are the inputs, but it was found to 
be easier to use the simple-minded editor ADD_OUTPUTS (see section 2.1.5). 

When doing the LIT generation, the outputs are generally specified by means 
of a simulator. Experiments were performed with the use of PL/I programs to supply the 
response for a given input set in lieu of a true "functional simulator" (since no such off- 
the-shelf packages were available). However it was easier in every case to use the 
LASAR package. 

Available under this contract was computer time on an SMC minicomputer 
running LASAR. The version used was D4LASAR, which later became S1LASAR. GEOS, 
with permission of the Navy, aided RADC in the acquisition of the Navy-owned 
D2LASAR. This package was installed on the RADC GCOS facility. This allowed models 
to be debugged in-house, and taken to GEOS's facility for the more involved test vector 
evaluation and fault dictionary generation. 

44 

• --• • ••- - • 



(p- u       ' """ IIII1IIHWW HJI 

As an aside, a few months before the end of this contract a change in the 
GCOS operating system made D2LASAR unusable. Due to extraordinary efforts by the 
Computer Facility support personnel the D2LASAR package was quickly installed on the 
RADC Multics facility, running within the simulated GCOS environment. This actually 
made the model and vector generation easier as the rest of the utilities and data bases 
were also resident on Multics. 

4.2.1 Developing the ALICE Program 

The ALICE program is a shorthand representation of the conditions the test 
writer wishes to apply to the DUT. The items to be tested are described in section 4.1, 
although complete recipes are not given. 

An example will now be shown. Figure 4.1a is a partial Automaton Diagram 
of a hypothetical device. The block labeled simply, "random logic," is the portion to 
which the recipe (shown in Figure 4.1b) is to be applied. Using the partial pinout 
information shown in Figure 4.1c, the ALICE program in Figure 4.Id is generated. 

Note that the preamble, defining the vectors of pins, and a pair of 
subroutines called "EXECUTE" and "CLOCK" occupy the bulk of the ALICE program, 
while the actual testing takes only a few lines. This is because of the brevity of this 
example. The economy of this approach becomes enormous when performing even a few 
more tests than in this example. 

Note also the use of two variables, "TEMPA" and "TEMPB." These are 
dummy pin vectors, which the user loads with data which are used in subroutine 
EXECUTE.   These data are eventually applied to the D-input pins at the proper times. 

After the first few lines, which merely set up the initial conditions, the 
sequence is as follows: 

1) The user sets TEMPA and TEMPB with the data eventually to be applied 
to the A- and B-inputs of the logic block under test. Subroutine 
EXECUTE is automatically called, because of the ISSUE statement. 
The ISSUE statement names an action to be taken after every ALICE 
statement containing an assignment operator (the equal sign, "="), 
unless the issuance is suppressed by placing a semicolon at the end of 
the ALICE statement. 

2) Within EXECUTE, the contents of TEMPA are copied to the D-input 
pins. XR1 is set to allow Rl to be loaded, and subroutine CLOCK is 
called, causing a positive pulse on pin 18 (CP) to load Rl. 

3) The contents of TEMPB are copied to the D-input pins, XR1 is set to 
the copy position (to preserve Rl) and XR2 is set to allow R2 to be 
loaded.  The clock is pulsed, causing R2 to be loaded. 

4) XR2 is set to the copy position (which is not really necessary) and the 
clock is pulsed once more. At this time, the contents of R3 are now 
loaded with the output of the logic block, and the Y-outputs are the 
desired response to this test cycle. 

45 



XY C^\_ 

|3   R3   0    ; 3 !  A4 

E S 
XR4 

3   ^>v 5 

"andern 
Logic 

XA 
»"VO    12     3 

3 j   si     • i 
51 

XB 

I     I 

3 ;     R2        |0 

XP.2 
2 3 

-opy 

D 

Copy 

Figure 4.1a.   Hypothetical Automaton Diagram 

46 



^^1        ' 

Figure 4.1h. 

0000 

0001 

0011 

0010 

0110 

0100 

1100 

1000 

B 

0101 

Olli 

1001 

1010 

1011 

1101 

1110 

1111 

»typothetical   100*   test of random  logic block 
in hypothetical  Pt'T   (inputs only) 

47 



..-— -r--.-w.-i "•>M-I ""'"   '   "      "•'     —*• 

r- XRl 

XR2 

XR3 

XR4 { 

f 

xa  \ 

XY 

CP 

(Inputs) 

I  Tisb 
2 
3 
4 Isb 

5 ra3b 
g   Isb 

7   :nsb 

msb 
Isb 

msb 

 • 
9 

 m 
10 

1 1 
 |M 12 

13 
14 
15 
16 

17 

Isb 

msb 
Isb 
TT.Sb 

Isb 

h- 

__ 

18 

(Outputs 

Figure  4.1c.       Hypothetical   nnn 

48 

  ..- -     _ 



«OT — 

ASSlüN 0  « 
ASSION Xrfl   =  i. 
AiSI'JN W   »   :. 
A5S!Ci-< XO   »   ,, 
»SStüN <R4   = 
Aio[ IN AA   »      j, 
ASSUN X-i   •   15, 
ASSIGN <r = 
AbSIüN CP   » 

,>. j.    -M   rlEX 

?l   DECIMAL 
101   JECIäAL 

i .   ' ?\   JEC.'MAL 

J.   i4i   rjECIKAL 
t.   161   ÖECJ^AL 

UTE   DE= 

TF V r- - 

AäStJN   rSvPA   •    ICO,    ' •"   , 
tsilliN   TS*'P!    =   104,   .   5,   II o, 
ISSUE   CALL   E/ECLTS 
/   PINLI ST  •      ,   /,   3,   4,   3,    3, 
/   :.:f.r. •.-    II,    ..->,    13.     J. 
/ : n~.\ >L^5 H/-.->i: INC. ANI 

/   rtrflCH   ••ILL   Sj£    (A,     .'-.     <'j. 
XV   •   3,   in.'!  *   ,:.   <fi4  =   3,    ' '• 
TEMKA •  '. rEwPb •  ), ;P •  'i 
AiVLY 
/    . Ji<   EXECUTE    J-i.ji i'-'V 
r='/^»   i 
THMPA 

TEMPA 

r-McA 
:= «PA 
TEMPA   • 

TEMPA i 
STtJP 
CLOCKi 
L   M 
-   I •) 
L   H 
rt£Tj.<N 
EXECUTE! 
/   THIS   >03M I   T::.d   3(1 
/    TO    bUr,;-:      '_    UK 
/  L MD   II   »1TH   :h""\ 
j   COPY   I 
K.-t I   -    ) I 
-Ai__   _L. •-: 
/ L )AD  '.   '•:: •    ; "vi 

-..!*• *        i4 i toi 
<n i     «        .    XW2   •    ?l 
~ACL IXIICK 

<»2 «   JI 

«AU. :L CI 
/THE     -:.-';,. • ..  . >L . 

ETUrffl 
-: i 

IC3l 
II   ': 

.    I S, 
SET  - -•.••:.'     \7>i 

-•;--.   Ar -L:   i. . ii 

101   j   102  •»   ' ' -• 

Figure 4.Id.   ALICE program that implements the test 
in Figure 4.1b 

49 

k   i n „„^MttÜMmiMllii   ! '• — 



F" ~" ' —••• 

5)       The subroutine returns, and the cycle repeats until done. 

The input vectors resulting from this are shown in Figure 4.1e. 

4.2.2 Running LASAR 

Once the input vectors have been prepared using ALICE, the next step is to 
generate the responses. When using the D2LASAR package on Multics, the interface 
problem was slight, because there were system utilities to convert the data into and out 
of the format required by the GCOS environment. 

When using D4LASAR or S1LASAR, it was necessary to use a medium other 
than a disk file, since the package was running on a different computer. Here, cards or 
magnetic tape proved to be the best (indeed, the only) routes for input. The output data 
were returned via magnetic tape only. 

The outputs were loaded onto Multics, and converted for use on either ATE. 
That process is discussed in section 4.2.3. 

The difficulty in interfacing with LASAR was not in the limitations of the 
medium, but rather in the necessity for somewhat elaborate model workarounds. These 
problems are not unique to LASAR, but plague every designer and user of present-day 
simulation packages.  This is the problem of three-state and bidirectional pins. • 

The three-state case is the easier of the two to handle. For the case shown 
in Figure 4.2a, the "X" generator and data selector in Figure 4.2b may be used. The 
response from LASAR will be 

B - A for enable = 1, 

B = "X" for enable s 0. 

This character set is interpreted later (see section 4.2.3). 

The bidirectional case requires the pin to be broken into an input and output 
signal.   This is shown in Figure 4.3a and Figure 4.3b.   The response from LASAR will be 

Bout s A and C = A, for enable - 1, 

Bout = "X" and C = Bin, for enable = 0. 

(Note that Bin is supplk     >y ALICE, and Bout by LASAR.) 

Depending on the function of the real device this truth table may have to be 
modified. 

4.2.3 Using the Output of LASAR 

Once the data generated by LASAR have been re-installed on Multics, the 
test vector set must be converted into a form suitable for use on ATE. If no three-state 
or bidirectional pins were present, this would be straightforward. 

50 

*"-        ' i n  mmmm^^mimM^tbmm^ 



_~_ •*—•    ••• 

000000 
000000 
000000 
000000 
01 01 0 1 
01010 I 
0IOI0I 
01 01 0 I 
010101 
OIOIOI 
000 I 00 
000 I 00 
000 I 00 
0 I I I 01 
01 I 101 
01 I 101 
01 I I 0 I 
01 I KM 
01 I 101 
001100 
001100 
001 I 00 
I 001 0 I 
I 00 I 0 I 
I 00 I 0 I 
I 00 I 01 
I 001 0 I 
10010 I 
001000 
0O1000 
001 000 
I 01 001 
I 0 I 00 I 
I 0100 I 
I 0100 I 
1-01 001 
10100 I 
0iiooo 
01 Ioro 
011000 
10 110 1 
I 0 I I 0 I 
101101 
101 101 
101101 
I 0 I I 0 I 

010 
010 
010 
010 
010 
010 
0 10 
I 10 
I 10 
I 10 
I 10 
I to 
I 10 
01 c 
010 
010 
I 10 
1 10 
I 10 
I 10 
I 10 
1 10 
OIC 
010 
0 10 
1 10 
I 10 
I 10 
I 10 
I 10 
I 10 
010 
010 
010 
I 10 
1 10 
I 10 
I 10 
I 10 
11( 
010 
010 
010 
I 10 
I 10 
I 10 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
no 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
oc 
00 
00 
00 
00 
00 
00 
no 
00 
00 
00 
00 
00 
00 
00 

00 
00 
01 
00 
00 
01 
00 
00 
01 
(•0 

00 
0 1 
00 
CO 
C I 
00 
00 
0 1 
(.0 
00 
01 
00 
CO 
01 
00 
00 
01 
00 
00 
01 
00 
ro 
01 
00 
00 
f ! 
00 
00 
0 1 
00 
ro 
01 
CO 
CO 
01 
oo 

0 10000 
0 I 0000 
010000 
110101 
110 10 1 
1 IO I 0 I 
1 10101 
1 10101 
II01 0 I 
I I 0000 
I 10000 
I I 0000 
I I I 00 I 
I I 100 1 
1 I 100 1 
1 I 1001 
I I I 00 I 
I I I 00 I 
100000 
I 00000 
100000 
I I 101 

I 101 
I 101 
I 101 
I 101 
I 101 

I I 101 
I I 101 
I I I 01 
I 01 01 
10 10 1 
10101 
I I I 01 
1 1 101 
I I 101 
I I 101 
I I 101 
I I I 01 
10 I 0 1 
10 I 0 I 
10 101 
11101 
I I 101 
I I 101 
I 1 101 
I I 101 
I I 101 
I 0 I 0 I 
10101 
I 01 01 
I I 101 
I I 10 1 
I I 10 I 

1001 
1001 
I 00 I 
1001 
1001 
I 00 1 
1001 
I 001 
1001 
100 1 
1001 
1001 
1001 
1001 
1001 
1 00 I 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
I 00 I 
1001 
1001 
1001 

1(0 
101 
100 
ICO 
IC1 
100 
100 
101 
ICO 
100 
10 1 
100 
ICO 
10 1 
100 
100 
101 
ICO 
100 
ICI 
100 
ICO 
101 
ICO 
100 
101 
100 

Fiqure 4.1e.   Output of ALICE program 

51 

 - —— 



mmmmmm»" • >• 

enable 

Figure   4.2a.       Three-State Output 

52 

'•-•'-*-    -  -   -      -••• • 



'•.mi    i        i  •    in i • 'i ii u i .BIN—rmr^^f^mmmmmm 1 ' W" '      "'-1   "•"•"   - 

X"   Generator 

enable 

OB 

Figure   4.2b.        LASAR workaround   for  three-state  output 

53 

IIIIMI1I 



^^^p 
~^H 

B in/out 

enable 

Figure 4.3a.   Bidirectional Input/Output 

54 



^m^mm*-    i   jBupimi        i   HI     m 

0Rout 

Bin 
O On 

enable 

Fiqure  4.3b.       LASAP workaround   for bidirectional  pin 

— — 



—_^ 

Allowing for those cases, these are the results for an input pin: 

Input = 0 — Force LOW level, 

Input = 1 -- Force HIGH level. 

For an output or three-state pin: 

Output = 0 — Compare for LOW level, 

Output = 1 — Compare for HIGH level, 

Output = X -- Mask (do not compare). 

For the input and output signals comprising a bidirectional pin: 

Input s 0, output = 0 — Compare for LOW level, 

Input = 0, output = 1 — Compare for HIGH level, 

Input = 1, output = 0 -- Compare for LOW level, 

Input = 1, output = 1 — Compare for HIGH level, 

Input = 0, output = X — Force LOW level, 

Input = 1, output = X — Force HIGH level. 

This is translated into the S-3260/3270 Mode 3 format (using the character 
set 0, 1, L, H) or into the Sentry "SET F" statements (generating statements necessary to 
control the F, MA, MB, DA, DB registers). The utilities to do this are described in 
sections 2.1.8, 2.1.9, and 2.1,14. 

The output of LASAR is also used to generate the slash sheet vector set. 
This is accomplished with Multics utilities that convert the LASAR output into a human 
oriented format.   Figure 2.2 shows the first forty vectors of the 2914 LIT as an example. 

4.3 SIM PL Test Language 

4.3.1 Test Development and Transfer Problems 

One of the major difficulties in electronic testing is the coordination of test 
systems and transfer of test programs. This problem becomes acute when a test from an 
IC manufacturer (with a test implemented on one test system) must be verified on a 
user's system (another test system). Thus, tests developed on a Sentry system must be 
redeveloped for use on an S-3260/3270, General Radio, or other test system. During this 
effort, differences between the S-3260/3270 systems at GEOS and RADC required major 
program changes as programs were transported from one facility to another. 

Even between users of a particular test system there can be a program 
transfer problem of a different nature. The development of many similar test programs 
by different individuals often leads to a diversity of incompatible programming solutions 

56 

—"   '" *=•""- — —      •-—  ---—   _ J 



  II        •! 

to particular test problems.   This is undesirable for a number of reasons: 

1) Many of these "solutions" do not actually solve the problem correctly, 

2) The operation of a program is difficult to explain to someone who did 
not develop it and who uses a different approach, thus, the program 
cannot easily be understood and supported by others, 

3) Because there is no "learning" (improvement of techniques) from one 
test programming project to another, the same mistakes may be 
repeated. 

Proven, consistent, and standardized approaches to common test problems 
can result in higher quality and more efficient test designs. 

4.3.2 Possible Solutions 

Many major users of test equipment have been developing techniques that 
facilitate the test programming process.   The approaches include: 

4.3.2.1 Standardization of Test Systems. 

This approach requires that all ATE users have access to one particular test 
system design with the same options and system software revision level. This approach 
often restricts evolutionary hardware improvements. The program transfer problem is 
minimized, but, even though a consistent language is used, similar programs can take on 
many divergent forms. 

4.3.2.2 Conversion Programs 

This approach uses a computer to convert a program in one format to another 
format and may require the user to develop unique parts of these conversion programs 
for every different configuration test system. In most cases it is impossible to directly 
convert a program (e.g., the conversion from a Sentry test to a S-3260/3270 test). 
Again, this technique addresses transfer between testers but not other test development 
problems. 

4.3.2.3 Table Driven Test Generators 

This is a generator of the DC tests, LIT, and some AC test statements (but 
not the test patterns). The generator interrogates the user for tables of device limits 
and outputs a matrix-driven, tester dependent program that will test devices to these 
limits. It provides a structured but complex and hard to follow program. The generation 
process is lengthy, but not difficult, and can be performed by a user with minimal 
knowledge of IC test philosophy, the particular tester language, or tester characteristics. 
A unique and comprehensive test generator must be developed for each type of ATE. 
Such a test generation program is difficult to develop, debug, and understand, and 
requires a large amount of computer memory. In addition, it is difficult to transport it 
to other ATE. 

57 



*•' "   ""•'" "     '    -  1 

4.3.2.4 Text Processing of Tester Source Language 

A text writing program can be written that displays to the test engineer a 
previously developed standard test program line-by-line. At certain preselected points in 
the text, the engineer is allowed to change the standard program to reflect the unique 
conditions of the device test specification. This process continues until all desired 
unique conditions are entered. The output of this program is a source program for the 
particular device to be tested on a particular tester. This technique provides an 
efficiently generated, well structured, and readable test program because the portion of 
a test that are the same from one device to another are automatically given the same 
code in exactly the same arrangement. The user must have a good understanding of the 
configuration and language of each target tester. This approach is only as good as the 
previously developed standard program.. It is difficult to provide limit checking and 
other techniques of guaranteeing the correctness on the generated program using this 
technique. 

4.3.2.5 Test Program Written in a High Level Tester Independent Language 

This approach would allow the user to develop test programs that are 
independent of any test system. A translator or interpreter program that accepts the 
tester independent program and converts or executes its code would have to be 
developed for each type of test system. However, any test programs developed in a 
tester independent language could be transported to other test systems, and function 
properly. 

Control over the structure of tests developed depends on the level of the 
language. A tester independent language often must be written at a fairly high level in 
order to be "above" tester peculiarities. In a higher level language, structure ca.i be 
forced on the programmer in such a way that more concise, correct and consistent test 
programs result. For example, a single high leve\ "Measure VOL" statement can 
represent several possible sets of a dozen or so lower level tester statements. In 
actuality, the single high level statement is implemented in a predetermined and 
repeatable set of statements. Effective use of a high level tester independent language 
requires an experienced test engineer familar with IC testing, but not necessarily 
experienced in the operation and capabilities of any particular tester. 

4.3.3 SIM PL Test Language 

4.3.3.1 Philosophy of SIM PL 

The SIMPL Test Language is a high level, almost tester independent language 
that simplifies the development of tests and their transportation between the GEOS S- 
3263/3270 and the RADC S-3260/3270 test systems. In the beginning of this effort, both 
GEOS and RADC had 7-phase S-3260 systems. However, when GEOS upgraded their 
system to a 14-phase system, major problems occurred in trying to develop, maintain and 
modify two different test programs for a particular device. Use of the SIMPL Test 
Language solved this problem and resulted in quickly generated, consistent, and easily 
debugged test programs. 

It should be noted again that SIMPL as currently implemented and described 
below, is not completely tester independent. Certain test system modes and functional 
waveforms   are   unique   to   the   S-3260/3270.      However,   most   references   to   tester 

38 



peculiarities have been eliminated and it is probably feasible to eliminate those few that 
remain. 

^.3.3.2 SIMPL Opcodes 

The SIMPL opcodes developed to date allow the user to perform all DC 
parametrics and the LIT. Some AC parametrics (transitions and propagation time 
measurements) can also be performed. Tests that require special hardware (e.g., 
hardware pattern generators) have not been implemented. However, test programs fo<- 
devices requiring these (RAMs, ROMs, and others) can be generated in SIMPL with only 
the special routines developed in TEKTEST by the user. 

The following are the SIMPL Setup statements (reference Table <iA): 

INIT — Initializes the  test  system,  sets all inputs to 0.0V,  sets all  Power 
Supplies to 0.0V, etc., 

RNIS -- Resets the test system and prints the test results, 

PWRSUP — Sets the power supply voltage and checks the current supplied, 

CONLD — Connects load modules, 

DR1LEV — Sets the Input Drive Levels, 

CMPLEV -- Sets the Comparator Levels, 

CYCLE — Sets the system timing and mode, 

PHASE -- Sets the specified phase to the appropriate delay, 

PINFNT -- Sets each pin function (force, compare, inhibit, mask), mode (RTZ, 
RTO, etc.) and the data source ("1," "0," or pattern), 

PATPAR — Sets up the patterns for subsequent measurement tests, 

EXCTST   —   Executes   the   specified   patterns   for   LIT   or   AC   parametric 
verification, saving all errors for future failure analysis. 

The following SIMPL opcodes make a specified measurement on the indicated 
pin and compare the results with the test limits: 

MVCC — Measure Power Supply Voltage, 

MICC — Measure Power Supply Current, 

MVLDM — Measure Load Module Voltage, 

M1LDM — Measure Load Module Current, 

MIISOL — Measure Input Isolation Current, 

r)9 

. 

J 

- ----•' - - .•*. .-•_* J 



CMtRT.FDTtSIM 
DATE  ?7-»UG-eO 

J1JULSSGEOS 
TIME  MHO 

DISK N««Et  f" *'»C F/I 
P«Cf   1 0*   f 

•OPERATION OPCODE ««G1 »RG2 MM • RG« MM! NOTES 

• 
•INITIALIZE INIT . • • • • 

•PO"ER SUPPlY 
•SETUP 

PMRSUP NO. o • DISABLE, 
ELSE EN*BIC 

VOLTS IMIN I«*I 

•CONNECT in«OS 
• 

CONLO 11 12 LOAD MODULES 
NO. 1 OR 2 

0 • DISCONNECT, 
ELSE CONNECT 

- « 

• SET i)»I»E 
•LEVELS 

0«lLEV II 12 0 • DISCONNECT, 
ELSE CONNECT 

VLON VMIGM 12 

•SET CO»P«»E 
•LEVELS 

CXPLEV II 12 0 • DISCONNECT, 
ELSE CONNECT 

VLOR VMIGM 12 

•SET C»CLE 
•TIME 
n 
• 
• 
• 

CTCLF   «OOE 

••F.I.C.M 
2«r,c 
J«PI.CM 
«•»KM 

CTCL« 
TIME 

•SET PH4SES PM»SE II 12 PHASE NUMSE» FROM POR 2 

•»IN »UNCTION 
• 
• 
• 

• 
• 

PINFNT II 12 1 • • 
2 • I 
J » C 
• • M 

12 » »I 
1« • C« 

DATA 
0 • LOGIC ZERO 
1 • LOGIC ONE 
2 • PITTERN 

TTPE       1 
0 • HRZ 
1 • R7 
2 • Ih.-FRT 
I  • «71 
« • »C    11 
f • RI    11 

•PITTERN 
.»«»«MFTF» 

II 12 PIRST VECTOR LAST VECTOR OTHER 
VECTOR 

• 

•E»ECUTE TESTS 
• 

E«CTST II 12 FIRST VECTOR l«ST VECTOR OTHER 
VECTOR 

S 

•MEASURE DEVICE 
•SUPPLY V0LT«6E 

MVCC VII PO«E« 
SUPPLY NO. 

FORCEO 
CURRENT 

' VMJN VMA( 1 

•ME»SURE LO»0 
•MODULE VOLTS 

MVLO" II 12 FORCED 
CURRENT 

VMJN VMA« 

Table   4.1.        SIMPL Opcodes 

60 

. - 



——,» ""*»-——— 1 

CHART.EOTlSIN   11JULSOCE0S 
0«Tf  27-AUG-HO     TIME  1oil0 

DISK NIMEt  Ell RAOC F/I 
RICE   2 OF  I 

•OPERATION OPCODE ARG1 ARG2 • RCS ARG« 

•HEASURE LOAO 

•NODULE CURRENT 
MHO" 11 12 FORCED 

VOLTAGE 
|NIN 

• •»EASIIRE DEVICE 
•CURRENT 

NICC VII PQMER 
SUPPLY NO. 

FORCEO 
VOLTAGE 

IMIN 

•"EASURE INPUT 
•ISOLATION 
•CURRENT 

»IISOL II 12 FORCEO 
VOLTAGE 

IMIN 

• ••EAS'JRE CONTI- 
•NUIT» ON INPUT 

«»ICON II 12 FORCEO 
CURRENT 

V«1N 

•-F•SuBf OUTPUT 
•VOLTAGE LO« 
•LO»OEO 

NVOLL II 12 FORCEO 
CURRENT 

»»IN 

•»EiSURE INPUT 
•SRE««DO«N 
•CURRENT 

NIIS II 12 FORCEO 
VOLTAGE 

IMIN 

•«E»SURE OUTPUT 
•RRE4K00NN 
•CURRENT 

NIOR II 12 FORCEO 
VOLTAGE 

ININ 

•NEASURE OUTPUT 
• HIGH I«PFDANCE 
•CURRENT HIGH 

MtO?M II 12 FORCED 
VOLTAGE 

I«IN 

•MEASURE OUTPUT 
•HIGH INPEOANCE 
•CURRENT LO« 

MIOIL 11 12 FORCEO 
VOLTAGE 

ININ 

• •'(tSOI't   INPUT 
•CLAN» DIOOE 

MVIC II 12 FORCED 
CURRENT 

VNJN 

•"E«SUPE OUtPUT 
•CLANP OIOOE 

NVOC II 12 FORCEO 
CURRENT 

«MIN 

•MEASURE CONTI- 
NUITY ON OUTPUT 

MVOCON II 12 FORCED 
CURRENT 

»«IN 

ARGS NOTES 

IHM 

INAS 

INA! 

VNAX 

VHAX 11 

I-n 

INA» 

INA» 

INA« 

VNAX 

VNA« 

VMA> 

II 

II 

II 

II 

Table  4.1.        SIMPL Opcodes,   continued 

61 

•k,> . KHA^rffc       H 



I """ ^—.- — 

CHART.EOTlSIH   JIJULROGEOS 
04TE  ?7-A«C-«<>     TIME  1*110 

DISK «H«Ei fit   RA6C m 
PAGE  I or       % 

«OPERATION      OPCOOE   ARGI 

* 
II 

Cl M«S ARG« 

roRCEo 
VOLTAGE 

IMIN 

roRCEo 
VOLTAGE 

IH1N 

roRCEo 
VOLTAGE 

IHIN 

fORCEO 
CURRENT 

VMIN 

PORCEO 
CURRENT 

VMIN 

VECTOR 
TRIGGER 

THIN 

VECTOR 
TRIGGER 

THIN 

ARC*  NOTES 

IHAI •HEASURE OUTPUT  HIOS 
•SHORT CIRCUIT 
•CURRENT 

•HEASURE 
•CURRENT 

INPUT 
HIGH 

MIIH II 

»MEASURE 
•CURRENT 

INPUT 
LON 

HIIL II 

•MEASURE 
•VOLTAGE 

OUTPUT 
LOP 

HVOL II 

•HEASURE 
•VOLTAGE 

OUTPUT 
HIGH 

HVOH II 

•HEASURE 
• 

TIHE HT1HE II 

• 

•HEASURE OELTA 
•TIHE BETNEfN 
•2 OUTPUT PINS 
• 
•UNIQUE TESTS 

•TEST COMPLETE 

•LOOP ON TEST 

HOTIHE   II 

UNIQUE   • 

•INI» 

LOOP       • 

•PAUSE ON TEST   PAUSE 

IMA« 

IHAI 

VHA« 

II 

•PRINT MESSAGE   PRINT    TEIT TO RE PRINTED (lit C» 
•TO OPERATOR 

II 
1« 
I? 
I* 

II 
I« 
IS 

IT 

IT 

IT 

Table 4.1.   SIMPL Opcodes, continued 

62 

—- 



•""—• «UL • 

CH4BT.fflTl.1IM tlJIIlBOGFOS 
(UTE      77-4UG-B0 TI"E      HllO 

nis« N4MEI  EM «»DC F/I 
p.r.e  «or  s 

NOTES 
i. ii »NO i? »»f INOE« NUMBERS FOR THE PINLIST »LL. 

FOR El»»»LEl FORCE »LLUI.l?) »1TM... PINLIST «LL 
CONT4IN5 TH£ INPUT P>NS FOLLOWED BY THE OUTPUT »INI. 
IT OOFS "0T INCLUDE THE POKE» «HD CROUVO PIXi, 
4P.S V1L»E OF 12 alU 4L»4VS RE G»r»TE» THAN 
THE 4BS V4LUE OF It. 

^, THE PHASE Nu«BER I» B49ED OH » SEVEN PM49E SYSTEM 
AS FOLLO«Sl 

PH4SF NO. QH4D4NTS 
I FORCE 1 TO I* 
? FORCE IT TO Ji 
I FOPCE Jl TO «8 
4 FORCE «« TO *« 
5 LOCOMP4RE | TO 6« 
. HICOMP1RE I TO 61 
7 04T4PM4SE I TO «,« 

S6 BOTH MIC0HP4PE «NO LOCOWARE 

TMf -FROM',«FOR« ANO'CYCLE TIME« ARGUMENTS »HE IN 
SfCONOS. USE THE 4PPR0PRI4TE MULTIPLIERS» SUCH AS 
N,U OR M FOR N4N0,MICRO OR MILLI. 

ONLY »ODE 3 IS 4LL0RED 

1. FOP »RGJ, ll   HE4NS ROTH FORCE 4N0 INHIBIT, «NO »• 
»FANS BOTH C0HP4RE 4N0 M49K. »PCS IS SICNIFIC4NT ONLY 
»HEN 4R6) IS I OR 17. 

4. P4TP4R SELECTS THE VECTORS FROM FILE •P4TFIL.PRT» 
FOR PARAMETRIC TESTING. NO ERRORS 4RE S4VE0. »»£*• 
(OTHER VECTOR) IS INTERRUPTED 43 FOLLOWS! 

0 00 NOT 4PPEN0 M4SFIL.PAT 4N0 00 NOT 4LL0M MORE 
LOGGING OF ERRORS. 

1 4PPEN0 H4SFIL BUT 00 NOT 4LL0» LOGGING. 
I   00   NOT 4PPEN0 BUT 4LL0R MORE LOGGING 
J 4PPFNr> M4SFIL 4N0 4LL0« MORE LOGGING 

NOTElTO CLE4R THE P4TTERN MOVE FL46, ISSUE 4 • P4TP4R 0 • 8T4TEMENT 

*>. SPFCIF1E0 BY APGJ 4N0 APG4. THE FRRORS 4RE SAVED. 
IF 4RG I IS NOT 7FR0, ERRORS 4Rf RECORDED IN 
ACCORDANCE «1'H CONSOLE S»ITCMfS, ARG«. IS 

•"ahle   4.1.       SIMPL Opcodes,   continued 

ft! 

, 
, -,.*• 

Ml» 



       Hl«! p"  - • —•• 

CHART.EDTiSI*   51JUL80GE0S 
DATE  27-AUG-80     TIME  |«t!0 

INTERRUPTED AS I» NOTE «. 

DISK NAMEl  El* «»DC '/I 
PAGE  s or  s 

6. ARGMVM) I» THE INDEX FOR PINLIST «VCC. 
ARGJ IS ASSu«ED TO BE ZERO, BUT MUST BE INCLUDED. 

7. UXJOUF MERELY CALLS PART ISO. THE USER «» 
PROGRAM THIS P»»T AND »NT PART NUMBER GREATER 
THIN 20» TO PERFORM TESTS THAT CANNOT BE 
IMPLEMENTED BY THE OTHER OPCODES. 

B. FINIS TERMINATES THE TEST AND DISPLAYS THE RESULTS. 
THIS MUST BE THE LAST LINE OF THE .»SC FILE. 

9,   LOOP CAUSES THE NEXT FXCTST TO BE EXECUTED 
REPEATEDLY UNTIL THE ADVANCE P/R IS DEPRESSED. 

10. »AUSE CAUSES A HALT ON THE PI* OF THE F0LL0*lNC 
DC PARAMETRIC TEST. THIS ALLOPS MANUAL MEASUREMENT 
OF THE OUT PINS. 

11 THIS ROUTINE REQUIRES PATPAR STATEMENT TO SET UP 
REQUIRED OUTPUTS. 

I?. THIS ROUTINE REQUIRES PINFNT STATEMENT TO SETUP 
DRIVE/COMPARE ELECTRONICS 

IS. TYPE « AND S AVAILABLE ON TEKTRONIX 5*70 ONLY. 
TYPE I   IS NOT   AVAILABLE ON THE TEXTRONIX J270 

1«. THIS TEST MUST BE PRECEOEO BY i   »PHASE* CODE THAT SETS 
THE COMPARE MINDOH «IDE ENOUGH TO DETECT THE OUTPUT 
TRANSITION. 

15. THE INDEX PIN NUMBER «ILL CONTAIN A SIGN INDICATING THE EXPECTED 
TRANSITION DIRECTION. 

• POSITIVE DIRtCTION 

• NEGATIVE DIRECTION 

U. THIS TEST «ILL ONLY CONTAIN INDEX PINS «ITH THE SAME 
EXPECTED TRANSITION DIRECTION. 

17. THIS INSTRUCTION «ILL HOLD THE TEST UNTIL THE OPERATOR 
PRESSES THE ADVANCE BUTTON 

mable   4.1.        SIMPL Opcodes,   continued 

64 

ir*A%i   -- •-•• — 



11 • in»'«•   II    Hl——WPI 1  »««11 J          IIWllll 

MUß -- Measure Input Breakdown Current, 

MIOB — Measure Output Breakdown Current, 

MV1CON -- Measure Input Continuity, 

MVOCON - Measure Output Continuity, 

MVIC — Measure Input Clamp Diode, 

MVOC — Measure Output CJamp Diode, 

MIIL — Measure Input Current Low, 

MIIH — Measure Input Current High, 

MIOZH — Measure Output High-Impedance Current High, 

MIOZL -- Measure Output High-Impedance Current Low, 

MVOL — Measure Output Voltage Low, 

MVOLL -- Measure Output Voltage Low Loaded, 

MVOH — Measure Output Voltage High, 

MIOS — Measure Output Short Circuit Current, 

MTIME — Measure Time between a system reference time and the specified 
pin transition, 

MDTIME -- Measure Time between two specified pins' transitions. 

The following SIMPL codes implement utility functions of the language. 

UNIQUE -- Initiates a user defined test routine 

PAUSE — Pauses on each pin of a DC measurement test, 

LOOP -- Causes the pattern applied by the next EXCTST statement to be 
repeated continuously, 

PRINT — Causes a comment to be printed. 

**.3.3.3 Program Restrictions 

As previously stated, the SIMPL language was developed to minimize tester 
interface and some test development problems. However, when developing a device test, 
normal bench test practices and procedures should be followed. Thus the user selects the 
appropriate SIMPL opcodes in the same sequence required for a bench test. For 
example: 

65 

  -    -----  «.   . .   . . iiar— - — "-L,; 



4.3.4 

4.3.4.1 

— Setting VCC before setting drive and compare levels, 

— Setting cycle and phase timing before setting the pin function. 

SIMPL Interpreter Programs 

Philosophy 

The SIMPL test language opcodes are system independent which allows a 
device or module test program to be transported from one test system to another. An 
interpreter will be required for each test system to decode the SIMPL statements and 
then implement the required functions. 

4.3.4.?        SIMFAIR Interpreter (NOT YET IMPLEMENTED) 

This interpreter would be written in Sentry Test Language (FACTOR) to 
implement SIMPL statements on the Sentry. Although the feasibility of such a program 
was verified, the actual implementation was not accomplished because a Sentry was not 
available for this effort. 

4.3.4.3 SIMTEK Interpreter 

This program was written in the TEKTEST Language for use on S-3260/3270 
test systems.   At present, SIMTEK interpreters have been written for four systems: 

GEOS -- S-3263 

GEOS - S-3270 

RADC ~ S-3260 

RADC - S-3270 

Each of these systems had slightly different hardware configurations which 
required minor software variations to execute the SIMPL opcodes. Most of the devices 
in this report were tested using SIMPL programs on several of the systems. 

4.3.5 Developing a SIMTEK Test 

In order to show the uses of SIMPL and its associated programs, a test will be 
developed using the 2914 device slash sheet as an example. The steps shown do not 
necessarily have to be performed in the order shown. However, they show the procedure 
used to implement the LIT of the 2914. 

4.3.^.1 Philosophy 

The original idea of the SIMPL language was to have a single generic program 
capable of testing many devices. However, due to the constraints of the TEKTEST 
Language, a different complete ".TST" program is required for each device. 

In order tu develop a device test file (".TST") the following are required: 

hh 



4.3.5.1.1 The ".PIN" file 

This file relates a particular pin name to its associated sector card. It also 
indicates whether the indicated pin name is to be an input or output pin. 

4.3.5.1.2 The ".PAT" file 

The pattern file (".PAT") contains test vectors to be applied and compared to 
the DUT. 

4.3.5.1.3 The PIN LI ST 

The PINLIST is a list of pin names that are associated with the test program. 
This section is required in the main program. 

4.3.5.1.4 The Main Program 

The main program contains the PINLIST as well as the pattern file refer- 
ences.  Included are all the TuKTEST instructions required to implement the device test. 

Each of these sections is required by the system translator which converts 
them into a test file (".TST"). 

A SIM PL program contains opcode statements to be executed. The TEKTEST 
program reads an opcode from a SIMPL program (stored in an ".ASC" file), and proceeds 
to the section of the main program that will implement that function. Thus, a module of 
code was developed to implement each SIMPL opcode. 

Certain repeated functions (printing results, testing pin functions, etc) were 
developed into subroutines that could be called by other routines. This meant that only 
one section of a device program had to be developed per function. 

Figure 4.4 shows the layout of the SIMTEK program, 

4.3.5.2 Development of Load Modules and Socket Card Assemblies 

The socket card assembly is used to interface the DUT with the test systems 
sector cards. The user determines the phases required for each device pin such that the 
proper phase times may be applied during each test. Also any output load modules should 
be developed at this time. Figures 4.5 and 4.6 are examples of the load module and 
sector card assemblies. 

4.3.5.3 Development of Pin Assignment File 

The pin assignment (".PIN") file indicates which sector is connected to a 
particular device pin name. The device pin name will be used in the PINLIST file. 
Figure 4.7 is an example of the pin assignment file. 

4.3.5.4 Development of PINLIST (SC005.EDT) File 

The pinlist file is required by the main (".EDT") program. It is one of the two 
sections (section  5) to be developed for a SIMTEK program by the user.    The other 

67 

^wAt^^tn        i •fin.«    mfllMfc I       I   ••Jfrll 



"—• "•« — •»•• • ' • 

Section 

1 

2 
3 
I. 

5 

7 

9 

10 

15 

20 

25 

30 
35 
1.0 

'»5 
50 

55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
no 
115 
120 
125 
135 
136 
137 
lfco 
11*5 

150 

SC001 Header & Test Setup Info. 

5CÜ02 Table Of Contents 
SC003 Subroutine/Functions 
scoou Array  Declarations 

SC005 l'inlist/rin Array Info. 

SC007 Console Switch 

SC009 Tester Definitions 
Simtek Required Sections 

SC010 Simtek Opcode Interpreter 

GC015 Tester  Initialization 

scoeo Power Supply Setup 

scoes IMr. Svip.  Setup & Test. Subroutine 

SCO30 Set  Drive Levels 

SCJ35 Set Compatr Levels 
SCOliO Connect  Loads 

scol.5 Set  Phases 
SC050 Declare Pin Function Definition 

SC055 Set Mode & Cycle Time 
SC060 . Load Measurement Pattern Vectors 
SCOÖ5 Pattern Move Subroutine 
SC070 Lo/,ic Integrity Test  (LIT) 

SC0?5 LIT  Log Routine 
scoßo DUT Supply Current Test 
SC085 DUT Supply Volta,;e Test 
scoyo Input Voltage Test 
SC095 Input  Current Test, 
GC100 Output Voltage Test 
SC105 Output  Current Test 
BC110 Load Module Voltage Test 
SC115 Load Module Current Test 
SC120 Measure Tine Test 
SC125 Measure Delta Time Test 
OC135 Check For Bidirectional Output  Pin 
SC130 Check Test  Limits 
SC137 Check For Bidirectional Input Pin 
SC11*0 Print Test  Results 
SC1U5 End Of Test Routine 

SC150 Unique Test 

SIMTEK Program Layout 

User Supplied * 

Standard Yro%. 

User Supplied * 

Standard Pro;',. 

Tester Dependent Prog. 

Standard Pro/;. 

Tester Dependent Prog. 

Standard Proi',. 

Tester Dependent Prog. 

Standard Prog. 

Tester Dependent Prog. 

Standard Pro.". 

Standard  Proi;. 
or 

User Supplied » 

DOC 
i3/Aun./P.O 

Figure  4.4.        SIMTEK Program Layout 

ftR 



P-M. 

Load Module 

Load -    t-lW   "I 
Pin name Circ-iiit 

1 
2 
3 
>4 

5 
6 
7 
a 
9 

10 

Ll 
XBI 
+ 15V  (Bus   1) 
+5V  (Bus  2) 
C,nd. 
V'36 (Bus  3) 
Vti'/  (Bus  It) 
Hfl 
N-l 
n 

*- 
«- 

XT 
CKor 

Rl=3?OJl 

BcRor 

Load -     2 11 H-   -S 

1 Ll 
2 XOB 
3 +15V (Bus  1) 
I, + 5V  (bus  2) 
5 end • 
6 VOfi (Bus 3) 
7 VK7  (Bus li) 
li Nil 
9 H-l 

10 B 

Clnvilt 

cl      J RL 

• 'RCROT 

Dl 
£32-1 

I 

Figure 4.5.   2914 Load Modules 

69 

fc* -— • 



im"" ' .'   •^—ntmmr* 

291U 
Socket Card 

Phase 11 (HI Corap) 
Phase 9 (Lo Corop) 
Phase 13 

Wl 
X2 
Y3 
Zh 
W5 
X6 
Y7 
Z8 
U9 
xio 
Yll 
Z12 
W13 
Xlh 
Y15 
Zl6 
W17 
X1H 
Y19 
Z20 
W21 
X22 
Y23 
Z2U 
W25 
X26 
Y27 
Z28 
W29 
X30 
Y31 
Z32 

YO 
Yl 
Y2 
Y3 
Y«l 
Y5 
Y<> 

Y7 

X8 
Y9 
Y10 
Yll 
INH 
DO 

Dl 
D2 
D3 
Dl» 
D5 
D6 
D7 
D20 
Do 
D9 
D10 
Dll 
D12 
D13 
DlU 
D15 
D29 
Dl6 

I/O   6 
0     7 
0 
0 

I/O 
I 
I 
I 

0 
0 
0 
0 
0 
0 
0 
0 
I 
I 
I 
I 
I 
I 
I 
I 

8 
9 

10 
13 
12 
11 

17 
11 
12 
13 
1U 
15 
18 
16 
2 

1»0 
38 
36 
25 
23 
21 
19 

GPBIG 

INT/IWTT 
RIPDIS 
PARDIS 
IRQ. 
VCCM/VCCF 
SI0 
SI1 
SI2 

VI 
S02 
S01 
SO0 
STOVFL 
GAS 
V0 
V2 
MI3 
MI2 
Mil 
tat 
Mil» 
MI5 
«I6 
IB? 

Phase 10 (Lo Comp) 
Phase 12 (Hi Comp) 
Phase l1» 

W33 
X3'» 
Y35 
836 
W37 
X3B 
Y39 
zUo 
W'»l 
Xl»2 
Y'»3 
Zl»l» 
Wl»5 
Xk6 
Y"»7 
Zl»8 

w'»y 
X50 
Y51 
Z52 
W53 
X5i» 
Y55 
Z56 
W57 
X58 
Y59 
Z60 
W6l 
X62 
Y63 
Z6I» 

D12 

Din 

D19 
D20 
D21 
D30 
w 

D22 
D23 
DPI» 
D31 
D25 
D26 
D27 
X') 
XI 
X2 
X3 
xu 
X5 
Xb 
X7 
X« 
X9 
XIO 
Xll 

0 
0 
0 
0 
0 
0 
0 
0 

i/o 
1/0 
i/o 
i/o 
i/o 
i/o 
i/o 

i/o 
i/o 
i/o 
i/o 
i/o 
i/o 
i/o 
I/O 
i/o 
i/o 

M07 
M06 
M05 
MOU 
MO0 
MDl 
M02 
M03 
UTB/LTBT 
CLK/CUCT 
I0/I0T 
I0/I0T 
I2/I2T 
I3/I3T 
ISEN/ISEWT 

GENl/T 
GAR/GART 
Pb/PÖT 
P5/P5T 
PU/PUT 
P0/P0T 
Pl/PIT 
P2/P2T 
P7/P7T 
P3/P3T 

DOC 
8/27/80 

Figure   4.6.        2914  Socket Card  Layout 

70 

1 lim--       ' ••'•> • 11   •-•'••-   • 



111   ' •* 

DKH2<»14.PI>.i603 0*TEt 27-4UG-80 TIMEl 13t«2l09 

LINE SECTOR PIN OUT PIN 
NUM8ER NUMBER NAME OR :OMMENT 

1.0000 S**0 GPSIG PIN s 
2.0000 567*1 GAR PIN 4 
3.0000 S«.7»0 G*RT PIN a 
a.nooo 55r»l GEN1 PIN s 
5.0000 55Y»0 GEN1T PIN 5 
6.0000 87*1 INT PIN 6 *• 

7.0000 82*0 INTT PIN 6 
8.0000 9**0 RIPOIS PIN 7 
9.0000 iox»n P*R0IS PIN 8 
10.0000 1IY»0 IRQ PIN 9 
11.0000 12Z*I VCC* PIN 10 
12.0000 127*0 WCCF PIN to 
11.0000 13**1 SIO PIN 13 
ta.oono ia»*r Sit PIN 12 
is.oooo 15YAI SI2 PIN 11 
16.0000 18X»0 S02 PIN 11 
17.0000 19YA0 SOI PIN 12 
18.0000 202*0 SOO PIN 13 
19.0000 211*0 STOVFL PIN 14 
20.0000 22XAO GAS PIN IS 
21 .0000 2«7*0 V2 PIN 16 
22.0000 17**0 VI PIN 17 
25.0000 23r»0 vo PIN 18 
24.0000 25**1 MI3 PIN 2 
25.0000 26X»I MI2 PIN 40 
26.0000 27Y»I Mil PIN 38 
27.0000 282*1 MIO PIN 36 
28.0000 29**1 MI4 PIN 25 
29.0000 30X»I MIS PIN 23 
JO.0000 31YAI MI6 PIN 21 
31.5*»« 32Z»I M17 PIN 19 
32.0  '' 39Y*0 M07 PIN 19 
33.0..00 407*0 M06 PIN 21 
3«.0000 41**0 M05 PIN 23 
35.0000 42«*0 MO« PIN 25 
36.0000 43Y*0 MOO PIN 36 56.0000 58**1 P5 PIN 2« 
37.0000 ««7*0 M01 PIN 38 57.0000 5«x»0 P5T PIN 24 

38.0000 45**0 M02 PIN 40 58.0000 59Y*I P4 PIN 26 
39.0000 «6**0 M03 PIN 2 59.0000 59Y*0 P«T PIN 26 

ao.oooo 47Y*l LT8 PIN 27. 60.0000 607*1 PO PIN 35 
41.0000 «7Y*0 LT8T PIN 27 61.0000 607*0 POT PIN 35 
«2.0000 «8Z*I Cl« PIN 29 62.0000 61**1 PI PIN 37 
43.0000 «87*0 CLKT PIN 29 63.0000 61W*0 PIT PIN 3T 
44.0000 «9M*I 10 PIN 28 64.0000 62X»I P2 PIN 39 
«5.0000 «9**0 IOT PIN 28 65.0000 62x*0 P2T PIN 39 
46.0000 50X*I II PIN 1! 66.0000 63V*1 PT PIN 20 
«7.0000 50X*O I IT PIN 31 67.0000 63Y*0 P7T PIN 20 
48.0000 51Y4I 12 PIN 32 68.0000 642*1 P3 PIN 1 
49.0000 5tY«0 I2T PIN 32 69.0000 647*0 P3T UN 1 
50.0000 522»! IS PIN 33 
51.0000 527*0 I3T PIN 33 
52.0000 53*«t IN5EN PIN 3« 
53.0000 53**0 INSENT PIN 3« 
54.0000 57**1 P6 PIN ii 
55.0000 57**0 P6T PIN ti 

Fiqure 4.7, 2914 ".PIT!" File 

71 

H^HHL^. 



'••• I" 1 

section is described in section 4.3.5.7.  Reference Figure 4.8 for an example of section 5. 
This pinlist file consists of two parts described below. 

4.3.5.4.1 PIN Array 

The input and output pin numbers are listed in an integer array called PIN. 
These pins are in the same order as in the pattern file and the pinlist. A second integer 
array (PVCC) lists the power supply pin numbers. 

4.3.5.4.2 Pinlists 

The pin names in the pin assignment file are listed in the format required for 
TEKTEST pinlists.  Four pinlists are mandatory for the S1MTEK Program: 

-- Pinlist ALL for all inputs and all outputs (required for DC and LIT tests), 

— Pinlist ALLTIM for all inputs (connected to comparators) and alls (required 
for time measurements), 

— Pinlist MVCC for all device power pins (required for power supply voltage 
measurements). These pin names are isolated from the DUT VCC pin(s) by 
IK resistor(s), 

— Pinlist FVCC for all device power pins (required for power supply current 
measurements). These pin names are connected directly to tin DUT VCC 
pins. 

4.3.5.5 Development of a Pattern (".PAT") File 

The pattern file that is to be used to test the DUT must be stored in a file 
called PATFIL.PAT. The order of the columns must be consistent with pinlist ALL and 
the PIN array. The first and last vector number of each block of test should be saved for 
future use in developing SIMPL codes. Figure 4.9 is an example of a PATFIL.PAT file. 
This file was generated from the slash sheet vector set shown in Figure 2.2. 

4.3.5.6 Development of a Dummy Pattern (".PAT") File 

In the S-3260/3270 test system, the last four error bits of information remain 
in the test tables shift register (see section 2.4.4.3). The addition of four dummy vectors 
(stored in MASFIL.PAT) at the end of the test pattern will result in the last four errors 
being shifted out. The vectors developed by the user should not cause any internal state 
changes in the DUT.  Figure 4.10 shows an example of a MASFIL.PAT file. 

4.3.5.7 Development of the Header (SC001.EDT) File 

The header file documents the device test, listing pertinent information such 
as: 

— Test Specification, 

— Device Name, 

72 

-—- M«_ 



SCOOS.FOTtGOS        0?JIIL«0   GEOS 
DATF      27-AUG-SO T|NE      J5l59 

DISK   NAMfj      EJi   Ricr   RAOC 
PAGE  i or  2 

s.oino 
s.0200 
S.0500 
s.oooo 
S.osoo 
S.0600 
S.07O0 
5.0A0O 
S.OPOO 
S.tooo 
S.1100 
S.1200 
s.1500 
S.iuoo 
s.ison 
S.I600 
S.22oo 
5.2500 
S.?onn 
S.PSOO 
s.?soo 
S.2700 
5.2«0O 
s.29oo 
5.5000 
S.5too 
S.52oo 
5.55oo 
s,»»nn 
5.5500 
5.1600 
5.5700 
5.5*oo 
5.5900 
S.oooo 
S.IIIM 
s.«2oo 
S.ulon 
S. <> i n o 
S.osoo 
5.0600 
5.0700 
s.osoo 
S.09oo 
S.sooo 
S.sioo 
S.S200 
5.S500 
S.Sooo 
S.SSoo 
5.S600 
5.S700 
S.SSOO 
S.S900 
S.6000 
S.6I0O 
5.6200 

• PIN   ARRAY   PINLI3T   FOR   THE   29M   DEVICE 

• PIN   VECTOR   LIST 

»    INPUTS 

PINf 
PINf 
PINf 
PINf 
PIN( 
PIN( 
PIN( 
PIN( 
PIN( 
PINf 
PIN( 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
PIN« 
PINf 
PINf 
PINf 
PINf 
PINf 
PINf 
LAST 

1) 
?) 
5) 
«) 
5) 
fc> 
7) 
>n 
PI 
10) 
ii) 
i?) 
15) 
14) 
IS) 
16) 
17) 
1«) 
19) 
20) 
?l ) 
??) 
25) 
2u> 
25) 
26) 
27) 
2S) 
29) 

IP 
21 
?5 
25 
2 
oo 
1« 
56 
1 t 

: 12 
: 15 
•• 20 
s 22 
i 20 
I 26 
i 1 
i J9 
• 57 
I 55 
i 54 
: 55 
' 52 
i 51 
i 2» 
I 5 
i a 
I 6 

i 27 
t 29 

i 

I 

INPUT • 29 

OUTPUTS 

PINf 50) 
PINfSII 
PINf 52) 
PINf55) 
PINf 5«) 
PINf55) 
PINf56) 
PINf57) 
PINf 5*> 
PINf59) 
PINf«0) 
PlNiai) 
PINf02) 
PINf«5) 
P I Nf <i'J ) 

PINfUS) 
PINfaft) 
PINf07) 

19 
21 
25 
2S 
2 
Uli 

5« 
56 
1 1 
12 
I) 
16 
17 
I* 
5 
IS 
I« 
9 

Figuro 4.8.   2^14 PINARRAY 

7 * 

 _fc  - —"  



ii *mmm**> 

SC005.F0TIG01   02JUL«0 GEOS 
0*TE  27-»UG-«0     TIME  IM)* 

DISK NAMEt 
PAGE   2 OF 

£21 
2 

«JKT R«nc 

.6100 

.6100 
,6Soo 
.6600 
.6700 
.6«00 
,6<»00 
.7000 
.7100 
.7200 
.7*00 
.7000 
.7500 
.7600 
.7700 
,7«00 
.7900 
.«000 
.«100 
.»200 
.MOO 
.»ooo 
.«500 
.«600 
.»700 
.••00 
.•900 
.9000 
.9100 
.9200 
.9)00 
.94 00 

PIM(OA)    *   K 
PIN(09)   »   7 
L*ST01|TPUT   i 

• PINLIST 

09 

PINL1ST MOsMn7,MO6,M05,M00,MO5,M02,M0t,MO0 
PI «(LIST «I»M!7,MT6."!S,MIO,M!J,MI2,MII»,«IO 
PIMttSr P*P7,P(>iP5.PO,P3,P2,Pl,P0 
PINLI3T T»INSEW, U»I2,n.!0 
PINLIST V»V2,Vl,V0 
PINLIST r,EN»GEM 
PINLIST S0«S<12,Stl! ,300 
PINLIST ST«S12,3I1.ST0 

PINLIST tNL*MI,3I,P,I,G£N,G«R.INT,LT8,CLK 
PTNLIST 0ilTL»>*n,9n.V,r.PSir,,G*S.ST0vrL, I»9«P*PDI3.PIPDIS 

PINLIST INTIMf . MO,30/ 
PTT.P6T,P5T.PqT,PlT,P2T.PlT,P0T/ 
INSFNT,I)T,12T,I1T,I0T/ 
GEN1T,G»RT,INTT,LTRT/ 
CLKT , 

PINLIST »LLTIM • INTIME,OUTL 

PINLIST »LL • INL.OUTL 

• MVCC PINLIST 
PINLIST MVCC • VCCN 
PVCC(I) • 10 
PJM11ST Fvec * WCCP 

Figure 4.R.   2914 PINARRAY, continued 

1U 

—- ,:*** 



•MR " -^^•••1 

0»TE    ?«-*ur,-»o TIME      10f07 PATTERN FILE  P»TFIL.P*T|G03 

0 0 0 0 
TO I 2 3 n 

«9  l?1QSo7B 901 230567A9 0123« 567A <» 01230567 890 123 0567A9 

o.otoo < >>>»>>>>>>> Pi »TTFR N FI .E FOR THE i >9 «   DEVICE <<<<<<<<<< 
0.0200  < 
0.0300  < 'SPACE S- I.A-5-0-1 -«-3 •3-6,10,«3.5« 
0.0400  • 
0.0500  ' 
0.0600  < 
0.0700  • 
0.0*00  i sss pppppppp Mill GGIL c HMMM<44«H sss vvv GGSIPR 
0.0000  < •765O3210 210 765*3210 E3210 E»on L 76503210 210 210 SIORDO 
0.0950  < R K 

1.oooo 00000000 000 1111 till 00000 ooto 1 oooooooo 000 000 OHOOOO 
2.0000 00000000 000 mi till 00000 0010 0 oooooooo 000 000 OMOOOO 
3.0000 00000000 000 1111 tin ooooo ooto 1 oooooooo 000 000 LHMHHL 
«.0000 00000000 000 lilt till ootoi 0010 1 oooooooo ooo 000 LHHHML 
5.0000 00000000 000 1111 litt 00101 ooto 0 oooooooo ooo 000 LHHHHL 
6.0000 00000000 000 till till 00101 0010 1 oooooooo 000 000 LHHHML 
7.0000 LLLLLLLL 000 lilt tin 00111 00|0 1 LLLLLLLL 000 000 LHHHHL 
«.0000 LLLLLLLL 000 till mi 00111 0010 0 LLLLLLLL 000 ooo LHHHHL 
9.0000 LLLLLLLL 000 1111 till 001 11 0010 1 LLLLLLLL 000 000 LHHHHL 
10.0000 oooooooo 000 tilt It It 01000 0010 1 OOOOOOOO 000 000 LHHHHL 

11.0000 oooooooo 000 till 11II 01000 ooto 0 oooooooo ooo 000 LHHHHL 
12.0000 oooooooo 000 nit 1 It t 01000 ooto 1 oooooooo 000 000 LHMHHL 
13.0000 LLLLLLLL 000 till lilt 001 I 1 ooto 1 MHMMHHHH 000 000 LHMHHL 
tn.oooo LULUU 000 till tin 001 i 1 ooto 0 HHHHHHHH 000 000 iHMHHL 
I5.SO0O LLLLLLLL 000 Mil tin Mil« 0010 1 NMNHNNHH 000 000 LHHHML 
16.0000 OOOOOOOO 000 till till 01100 0010 t OOOOOOOO 000 000 LMMMML 
17.0000 OOOOOOOO 000 ill t 111 1 01 100 ooto 0 oooooooo 000 000 LMMMML 
M.0000 oooooooo 000 1111 lilt ot too ooto 1 oooooooo 000 000 LHMHHL 
19.0000 LLLLLLLL 000 1111 till oont 0010 1 LLLLLLLL 000 000 LHHHHL 
20.0000 LLLLLLLL 000 till mi 00111 0010 0 LLLLLLLL 000 000 LHHHHL 

21.0000 LLLLLLLL ooo 1111 It 11 0011« 0010 1 LLLLLLLL 000 000 LHHHML 
22.0000 flioiotoi 000 1111 tilt 01011 0010 1 OOOOOOOO 000 000 LHHHHL 
23.0000 01010101 000 till It 11 01011 ooto 0 OOOOOOOO 000 000 LHHHML 
2«.0000 01010101 000 till till 01011 ooto 1 OOOOOOOO 000 000 LHHHHL 
25.0000 LLLLLLLL 000 1111 mi 00011 0010 1 LHLHLHLH 000 000 LHHHHL 
26.0000 LLLLLLLL 000 1111 it it 0001 | 0010 0 LHLHLHLH ooo 000 LHHHHL 
27.0000 LLLLLLLL ooo mi tin 00011 0010 1 L*LMLMLM 000 000 LHMHHL 
2*.0000 10101010 000 1111 it 11 01101 noto 1 OOOOOOOO 000 ooo LHHHML 
29.0000 10101010 000 im ii it 01101 Ofl|0 0 OOOOOOOO ooo 000 LMMMML 
30.0000 10101010 000 lilt tin 01101 0010 1 OOOOOOOO 000 000 LHHHHL 

31.0000 LLLLLLLL 000 nit 1111 oot It ooto 1 LHLHLHLH 000 000 LHHHHL 
32.0000 LLLLLLLL ooo It 11 nit 001 t 1 ooto 0 LHLHLHLH 000 000 LHHHHL 
33.0000 LLLLLLLL 000 lilt tin 00111 0010 1 LHLHLHLH 000 000 LHHHHL 
30.0000 10101010 000 lilt tin 01011 0010 1 OOOOOOOO 000 000 LHMHHL 
35.0000 10101010 000 mi mi 010| t 0010 0 OOOOOOOO 000 000 LMMMML 
36.0000 10101010 000 lilt II 11 0101« ooto 1 OOOOOOOO 000 000 LHHHML 
37.0000 01010101 000 till nit 01010 0010 1 OOOOOOOO 000 000 LHMHHL 
3«.0000 01010101 000 tilt mi 01010 ooto 0 oooooooo 000 000 LHHHHL 
39.0000 01010101 000 1111 mi 01010 0010 1 oooooooo 000 000 LHHHML 
•0.0000 01010101 LLL lilt it n oot to 0010 1 oooooooo LLL 000 LMMMML 

Figure   4.0. 2014   PATFIL 

75 

mXm 



——— "—— 

DATE  27-AUG-80 TIME  IStV PATTERN FILE  MASFIL.PATIG05 

1 OOOO 
TO 12 5« 

U9  1251567A 901 25A567R9 0125« 5678 9 0125U567 «90 125 «56789 

0.0100 «>>>>>>> DUMMY PATTERN FILE FOB THE 291« DEVICE <<<<<<< 
0.0200 * 
0.0500 «SPACE 8-5-8-5-«-t-«-5-5-6,10,«5,5« 
o.oaoo * 
o.osoo « 
0,o*>nn • 
0.0700  • 
0.0*00 
0.0900 
0.0950 

«MMMMMMMM JSS PPPPPPPP Hill GGIL C MMMMMMMM SSS VVV GGSIPR 
«765«5210 210 765*5210 E5210 EADB L 76505210 210 210 3AORO0 

1.0000 LLLLLLLL LLL LLLLLLLL 11111 LLLL 1 00000000 000 000 000000 
2.0000 LLLLLLLL LLL LLLLLLLL Hill LLLL 1 OJOOOOOO 000 000 000000 
5,0000 LLLLLLLL LLL LLLLLLLL 11111 LLLL 1 00000000 000 000 000000 
•.0000 LLLLLLLL LLL LLLLLLLL 11111 LLLL 1 00000000 000 000 000000 

Figure 4.10.   20 14 MASFIL 

76 

• • --'""•'Al-*J - - ' • 



•     ••• 

4.3.5.8 

— Required Hardware/Files, 

— Output Loads. 

Figure 4.11 shows an example of a header file. 

Development of a Device SIMTEK Program 

As previously stated, a S-3260/3270 test file (".TST") is required for each 
device to be tested. Another requirement is for any test pattern files to be stored under 
the same User Identification (UID). Thus the following files, required for the device test 
program, should be developed and stored under the same UID. 

— Pin file - (name).PIN - see section 4.3.5.3, 

-- Pinlist file - SC005.EDT - see section 4.3.5.4, 

-- Pattern file - PATFIL.PAT - see section 4.3.5.5, 

-- Pattern file - MASFIL.PAT - see section 4.3.5.6, 

~ Header file - SC001.EDT - see section 4.3.5.7, 

To simplify the development of a device test program, the SIMTEK files used 
by all test programs have been stored under the UID called ":S1M." Also included in this 
UID are the tester files unique to particular test systems: 

GEOS S-3263 -- SC009A.EDT, 

RADC S-3260 -- SC009B.EDT, 

GEOS S-3270 - SC009C.EDT, 

RADC S-3270 -- SC009D.EDT. 

Thus, to assemble the complete device test program: 

1)       Enter the EDIT Program, 

Input the header file (SC001.EDT), 

Save under XXXXXX.EDT (where XXXXXX is the device part number), 

Merge the Pinlist file (SC005.EDT), 

2) 

3) 

4) 

5) Merge   Tester   File   SC009Y.EDT   (where   Y   is   the   alpha   character 
assigned to a particular test system). 

At this point, typing PERFORM will allow the editor to merge all the other 
required files and save them in XXXXXX.EDT. Translation of this file with the ".PIN" 
file will result in a test file (".TST") capable of executing "SlMPL" language statements. 

77 

-cw_ 



-"—- *mm^*um*^^^ 

V.EOTlGOl        11JUL60GEOS 
L      t      26-AUG-SO TIME      IOIOS 

DISK   N«MEI     E21   BKT   RAOC 
PAGE      i  or      2 

t.0100 
1.0120 • 
1.0140 TEKTRONIX TEST PROGRAM • 
1.01^0 • 
1.01B0 CIRCUIT TEST ENGINEERING • 
1.0200 GENERAL ELECTRIC nRDNANCE SYSTEMS • 
1.0220 PITTSFIELO# MASSACHUSETTS • 
1.02U0 • 
1.0260 • 
1.0260 >  . OUT DESCRIPTION IVECTOR PRIORITY • 
1.0100 INTERRUPT CONTROLLER • 
1.0520 i >  . PROGRAMER IB.K.TEAGUE/SLASAR • 
l.ojao < 0. O'CONNOR • 
1.0J60 • 
1.0J60 >  FOR SUPPORTING DOCUMENTS, CONSULT ETEC »NO OTHER • 
l.oaoo »  CABINET PILES UNOER THE FOLLOWING IOENTIFIEO TEST * 
1.0020 i •  SPECIFICATION NUMBER ANO ADAPTER NUMBERS, AS MELL A3 • 
l.oaao •  LISTINGS OF THE FOLLOWING IOENTIFIEO DISK OR MAGNETIC * 
1.0460 < »  TAPE FILES. • 
l.oa«o < • 
l.osoo < »  . TEST SPECIFICATION «MIL-M-J6510/440 « 
1.0520 1 • 
l.osao 1 »  . TEST TYPE/CONDITIONS ITIMING ANO FUNCTIONAL • 
1.0560 • 
l.OS^O »  . EDIT FILE 12418 • 
I.0600 • 
1.0620 »  . PIN ASSIGNMENT FILe »2414 • 
1.0640 < • 
1.0660 i •  . PATTERN FILE IPATFIL • 
1.0660 . • 
1.0700 i <  . TEST FILE 12414 • 
1.0720 i • 
1.0740 • t  . THIS LISTING IS ITFKTEST EOIT » 
t.076O « • 
1.0760 « . SOCKET CARD ASSEMBLY • 12036 • 
1.0600 * 
1.0620 * 
1.0*40 « 

• 

1.0660 « SNITCH POSITION FUNCTION 
1.0660 « 0 DATA LOGGING 
1.0000 * 1 LOGIC INTEGRITY TESTING 
1.0020 i i OC MEASUREMENT TESTS 
1.0440 < 3 TIME MEASUREMENT TESTS 
1.0460 » a UNJOUf TESTS 
1.0460 « 5 
1.1000 < 6 
1.1020 « 7 SUPRFSS ALL PRINTING 
1.1040 » 6 PRINT TO .ASC FILE 
1.1060 * 4 PRINT TO LP 
1.1060 * 10 MATRIX PRINTED 
1.1100 * 11 PRINT TEST RESULTS 
1.1120 t 1? MATRIX MOD. - SINGLE STEP 
1.1140 . IS PAUSE ON TEST 
1.1160 • 1* LOOP ON TEST 
1.1160 « 15 REQUEST OUT SN 
1.1200 
1.12*0 

Figure  4.11.        2914  Header 

78 



' 

SCOOI,FDT|G03 
DATE ?»i-Aur,-«o 

31JULAOGEOS 
TIME  |0|OS 

1.126« 
1.12*0 
I.lit« 
1.1320 
1.13oo 
1.1360 
1.13*0 
1.1OO0 
1.1020 
1.1000 
1.1060 
1.10*0 
t.isoo 
1.1520 
i.l5oo 
1.1560 
1.15*0 
1.1600 
1.1620 
i.ihao 
1.1660 
1.16*0 
1.1700 
1.17?0 
1.1730 
1.1700 
1.17«»« 
1 .17*0 
I .1*00 
1.1*20 
i.i*oo 
1.1160 
1.1**0 
1.1900 
1.1920 
1.1940 
1.1"60 
1.19*0 
1.200O 
1.2020 
1.2040 
1.2060 
1.20*0 
1.2100 

LUN ASSIGNMENTS 

ASSIGN LUN 
ASSIGN L'fN 
ASSIGN LUN 
ASSIGN LUN 
ASSIGN LUN 
ASSIGN LUN 
ASSIGN LUN 
ASSIGN LUN 
ASSIGN LUN 

LOAD BOARD 
OTP AOAPTER 
CHIP ADAPTER 

. LOAO MODULES 

TYPE 
2910-1 
5910-2 
>"»! U-? 
2910-2 
2910-2 
29M-2 
2910-2 
2920-2 
?9|o-2 
2910-2 
2910-2 
2910-2 
2910-2 
2914-2 
2910-2 
2910-2 
2910-2 
2910-2 

2910-2 

7 
A 
9 
10 
11 
1? 
13 
!« 
15 

DISK NAMEl  E21 HKT PADC 
PARE   2   OF   2 

FOR .ASC FILE FOR MATRIX TEST RESULTS 
F09 .ASC FILE MATRIX 
FOR .LOG FILE  FOR FAILURE PARAMETERS 
FOR .LOG FILE FOR SAVED ERRORS INFO. 
TRACE INFORMATION (CLOSEO) 
FOR LP 
FOR KB 
CLOSED 
FOR PAPER PUNCH 

IN/A 
IN/A 
IN/A 

LOCATION 
LOAD I 
LOAO 1 
LOAO t 
LOAD 1 
LOAO 1 
LOAD 1 
LOAO 1 
LOAO 1 
LOAD 1 
LOAD 1 
LOAD 1 
LOAD 1 
LOAD I 
LOAD 1 
LOAO 1 
LOAO 1 
LOAD I 
LOAD 1 
LOAO 1 
LOAO 1 

SECTOR 
II 
5 
9 
10 
17 
1« 
19 
20 
21 
22 
23 
20 
39 
00 
• I 
42 
43 
44 
45 
46 

I 
•i 

Figure 4.11.   2914 Header, continued 

79 

—•   - • _. .—< • ._«•» 



••""• '••"""" 

4.3.6 Development of SIMPL Language Device Test 

The SIMPL language was developed to minimize tester problems and also 
simplify the development of device tests. Also the sequence of statements is similar to 
the steps followed when implementing the test on the bench. The following describes the 
2914 LIT test shown in lines 1.08 through 1.2 of the SIMPL file in Figure 4.12. 

— Reset (initialize) all equipment, 

— Connect power supply 6 to the DUT and set it to 5.0V with current limits 
of 100mA minimum and 300mA maximum, 

— Set the drive levels of the pins denoted by pin array index numbers 1 
through 29 and connect them to the DUT with input low set to 0.0V and input 
high set to 3.0V, 

— Set the compare levels of the pins denoted by index numbers 30 through 49 
and connect them to the DUT with the low comparator set to 1.0V and the 
high comparator set to 2.0V, 

— Connect load module position 1 on the pins denoted by index numbers 30 
through 49, 

— Set the system to Mode 3 with a cycle time of 400ns, 

— Set the comparator phase connected to the pins denoted by index numbers 
30 through 49 to a delay of 340.0ns with a width of 20.0ns, 

— Set the pin function of the pins denoted by index numbers 1 through 29 to 
force and inhibit with the pattern in the NRZ mode, 

— Set the pin function of the pins denoted by index numbers 30 through 49 to 
mask and compare with the pattern, 

-- Execute the LIT test on the pins denoted by index numbers 1 through 49, 
applying vectors 1 through 512 with no dummy patterns (wait for additional 
vectors). 

The following describes the implementation of a portion of the 2914 DC tests 
(reference Figure 4.12, lines 1.22 through 1.38): 

-- Set up for a pattern move on the pins denoted by index numbers 1 through 
29, applying vectors 1 through 204 with no additional vectors and no logging 
allowed (sets the pattern move flag), 

-- Measure output voltage high on the pins denoted by index numbers 30 
through 49 after moving the pattern (if the flag is set) by forcing -1.0mA 
with limits of 2.4V minimum and 5.0V maximum, 

— Set up a pattern move on index number 0 (this clears the pattern flag for 
any subsequent measurement), 

80 

—. 



I ~* 

S29I4.ASCJG03   31JUL80GF0S 
OATE  27-AUG-80     TI«E  1 Si 41 

DISK NAMEl  E21 BKT B*OC 
PAGE   1 OF   1 

.0100 

.0200 

.0300 

.0100 

.osoo 

.0600 

.0700 

.0800 

.0900 

. 1000 

.1100 

.1200 

.5 300 
• 1<100 
.1500 
. ifcoo 
.1707 
. 1801 
. I9no 
.?ono 
.2100 
.??oo 
.2300 
.2400 
.2510 
.2600 
.2710 
.2800 
• ?°00 
,»ooo 
. J 1 0 0 
.32oo 
.»500 
.join 
.1500 
.3*>oo 
.»700 
. 3800 
.»«»00 
. aooo 
.ai oo 

• TFST FOR THE J914 DEVICE 

2910 OFVICE TEST 

1NIT 

• LOGIC INTEGRITY TEST 
PrtRSUP  6  1  5.0  100.OMA  300.OMA 

1   21»  1  0.0V   J.OV 
30  49  1  1.0V  2.0V 

ORILEV 
C*»IFV 
CONLD 
CYCLE 
PHASE 
PINPNT 
PINFNT 
FXCTST 
FXCTST 
FXCTST 
FXCTST 
FXCTST 

30   49   I 
3 000.ONS 
30  09  56 

2<* 
U9 
09 
09 
09 
09 
09 

1 
30 
1 

12 
3« 
1 
517 
1025 
1507 
2001 

» OUTPUT VOLTAGE HIGH 
PATPAR 
"VOH 
PATPAR 

PATPAR 
"VDH 
PATPAR 
"VOM 
PATPAR 
My/OH 
PATPAR 

WO* 
PATPAR 

1    29      1 
30   37   -l.OMA 

1    29      1 
3« 00 

1 29 
01 03 

1 29 
00 00 

1 29 
05 08 

1 29 
09 09 

0 

»   ICC   TEST 
"ICC I 

•   E^O   OF   TEST 

FINIS 

•l.OMA 

1 

•l.OMA 

1 

•l.OMA 

1 

•1 .OMA 

1 

•l.OMA 

1 

3O0.0NS 
2 
2 
512 

1020 
1506 
2000 
2156 

13 
2.0V 
030 
2.ov 
015 
2.0V 
200 
2.0V 
3 
2.0V 
204 
2.4V 

20.0NS 
0 
0 
2 
2 
2 
2 
0 

0 
5.0V 
0 
5.0V 
0 
5.0V 
0 
5.0V 
0 
5.0V 
0 
5.0V 

6  5.5V   15.OMA  310.OM» 

Figure   4.12. 2914   SIMPL   File 

81 

Atfi 



AD-A096 360   GENERAL ELECTRIC CO  PITTSFIELD MA ORDNANCE SYSTEMS        F/G 9/2 
TEST GENERATION AND FAULT ISOLATION FOR MICROPROCESSORS AND THE—ETC(U) 
NOV 80  w H DEBANY» D A OtCONNOR» B K TEA6UE    F30602-7B-C-0235 

UNCLASSIFIED RADC-TR-80-27H NL 





•w -*—' 

— Measure ICC on the pins denoted by power pin array PVCC index number 1, 
using power supply 6 with a forcing voltage of 5.5V and limits of 15.0mA 
minimum and 310.0mA maximum, 

— End of test (reinitialize system). 

4.3.7 Setup to Log LIT Errors 

4.3.7.1 CODE Routine 

The CODE routine was developed to initialize the logging key as well as check 
the Test Station Control Unit (TSCU). The logging key is required for subsequent failure 
data analysis routines and is reset each time CODE is executed. A translated version of 
CODE should be stored under the DUT UID and is executed from the TSCU. (Figure 4.13 
shows an example of the CODE program) 

The CODE routine is described briefly in section 3.2.4. 

4.3.7.2 BATLOG Routine 

The BATLOG Routine was developed to setup the LUN assignments required 
by the SIMTEK programs. The ".ASC" file containing the device SIMPL program and the 
".TST" file containing the translated SIMTEK program are to be specified by the user in 
the BATLOG file, which is then saved under the device UID. The program is run by 
depressing "Control-L" on the keyboard before running the device test. This operation 
clears the data files, stores the pinlists from the ".TST" file in ERRPAT.LOG, and 
assigns the peripheral devices. After the device testing is complete, depressing 
"Control-L" closes all files for later processing and assigns all LUN's to the keyboard. 
Note that all previously existing CONTRL.LOG and ERRPAT.LOG files will be lost. If 
these files contain data to be saved, they must be renamed before the first Control-L is 
typed. 

An example of a BATLOG Routine is shown in Figure 4.14. 

4.3.8 Testing a Device 

The sequence of operations to test a device is as follows: 

— Insert disk, socket card assembly and load modules, 

— Enter the device UID, 

— Execute the CODE routine by dialing "CODE" on the TSCU, depressing 
START and typing the log key number, 

— Type "Control-L" (this starts the BATLOG routine), 

— Dial the appropriate test number in the TSCU, 

— Set the computer switches to their appropriate positions (all off will 
display a switch option menu when START is depressed), 

82 

 : .....  .   -  ..••._.^,-  ~   — — 



•" 

] 

PROG»»*  CODE 
DATE  2T-AUG-A0 

TEST INITIALIZATION 
TIME  ISMS       PACE 

PROGRAM CODE 

t OP   1 

TEST INITIALIZATION .0100 • .TITLE. 
.0200 • 
.0100 COMMON KEY 
.0900 ACCEPT<13> ERASE.'INPUT OR RESET LOGGING KEY "tKCV.CR 
.0500 IP (KEY GE 500) 1.IS,1.06 
.0600 « 
.0700 LOOP 1,1 I • t .SO. 1 
.0*00 PR1NT«13> «COMPONENT LOGGING KEY IS SET Tt>: '.KEYr 13. »ttC.CR 
.0900 OISPLAV 0.PASS,MITHIN,BELON 
.1000 CONTINUE 
.1100 GO TO 1.19 
.1200 • 
.1300 LOOP 1.16 I • l.SO.l 
.1A00 PRTNT<13> »KEY MUST BE IN 0 - 500 RANGE tGtK'.CR 
.1500 DISPLAY I.FAIL.AROVE 
.1600 CONTINUE 
.1700 GO TO 1.04 
.1*00 * 
.1400 PRINT«13» CR.CR."CHECK OUT T.S.C.U. LIGHTS".CR 
.2000 * 
.2100 LOOP 1.25 I«l.1500,1 
.2200 OISPLAV SS,PASS,FAIL»ABOVE.BELON,WITHIN 
.2300 MA IT 2MS 
.2400 IP (ADVANCE) 1.26 
.2500 CONTINUE 
,2604 * 
.2744 DISPLAY 4 
.2800 STOP 

Figure  4,13.       CJfDE Program 

83 

-- ,, .—^••-.•, .,_..,•-,_ .... 
  -*•••*"'••*-* : 



1 

SATL06.ASCtGOS   JJUISOGCOS 
DATE  27-AUG-BO     TIME  11»39 

DISK NAMEl  E21 BUT »ADC 
p»ct  i or  i 

I.OIOO 
1.0200 
1.0300 
i.oaoo 
1.0500 
1.0600 
1.0700 
1.0800 
1.0900 
1.1000 
1.1100 
1.1200 
1.1300 
l.iaoo 
1.1S00 
1.1600 
1.1700 
1.1800 
1.1900 
1.2000 
1.2100 
1.2200 
1.2300 
1.2400 
1.2500 
1.2600 
1.2700 
1.2800 
1.2900 
1.3000 
1.3100 
1.3200 
1.3300 
l.Saoo 
1.3S00 
1.3600 
1.3700 
1.3800 
1.3900 
1.4000 
1.4100 
1.4200 
1.4300 
1.4400 
1.4500 
1.4600 
1.4700 
1.4800 
1.4900 
1.5000 
1.5100 

PROGRAM BATLOC 

PURPOSE!  TO ASSIGN L.U.N.S AND LOG FILC» 
PRIOR TO TESTING. 

•MESSAGE.tttGTL 
•MESSAGE» t TURN ON THE LINE PRINTER 
• tC 

L.U.N. ASSIGNMENT 

•ASSIGN » « KB 
•ASSIGN 7«SIMTEK.ASC/DE/0|100 

ASSIGN LUV 8 TO TEST.ASC FILE 

«ASSIGN 8 a S2914.ASC 

•ASSIGN 9*C0NTRL.L0G/0E/0|2S 
«ASSIGN 10*ERRPAT.LOG/DE/Ol200 

NOTEt DISK SPACE FOR ABOVE FILES SHOULO BE 
VARIED ACCORDING TO USAGE. 

«CLOSE 11 
«ASSIGN 12 > LP 
•ASSIGN |3 > KB 
•CLOSE 14 
• ASSIGN 15 > PF> 

THIS SECTION STORES THE PINLIST CONTAINED IN 
THE .TST FILE IN THE ERRPAT.LOG FILE 

«MESSAGE,tltGTL 

•RESET • 
«PINLISTS.10 

INSERT .TST FILE NUMBER HERE 

2914 

•FILES 
«BEXIT 
«HISTORY,KB 
•MESSAGE,tlfGtL 
• tG 

•FILES 
•CLOSE • 
•ASSIGN * • KB 
•EXIT i 

Figure 4.14.  BATLOG Program 

84 

_ 
--- • 



— 1 

f.3.9 

— Depress START on the TSCU to execute the device test, 

— Type "ControJ-L" after testing alJ devices that use this test number (this 
completes the BATLOG routine). 

The finaJ 5IMTEK program is shown, after execution, in Figure <f. 15. 

Summary 

It 

With the development of RADC's TEKTRONIX and SENTRY Pattern routines 
as well as the creation of the SIMPL statements (see section 3), it is now feasible to 
transport device tests among test systems with considerably less difficulty than 
previously experienced. Test program development is simple and results in structured 
programs. The interpreter program for one series of test systems (S-3260/3270) has been 
developed. Device tests have been developed using the SIMPL statements and are 
executable on four test systems. Special programs (BATLOG, CODE, BATRED, etc.) 
simplify testing and aid in failure analysis. 

L 
85 

-»-•»•'- 



S|MTC«.«SC|OOS 
»*T»     27-»UC-»o i]«e    Kill 

nil« »«»'I    cti *«r »«oc 
rise     i o»     i 

1.010 •      I (ST »0»  T Hf  2*1*  01 VICt 
1 .OSO INII 

1.9m • LOIIC   IKICM1TV   TCIT 
l.0»0 »•»9U» « 1 l.ooo   V 100,«Mt      100.0«« 100.0M1 •III 
1,000 n*uev 1 2» 1.0*0 0.00* 1.000 

I.IH t»*LC» SO • • l.oo* 1.00« 2.000 
1.1 10 CONll» 10 •* 1.000 1.000 

1.1?» C«CLt J «oo.omec 
1.1 to »H«|( 1* a« 10.00 JOO.ON 20.00« 

1.1 «o »INFNT 1 2« 12         2 • 
1.11« »INFMT 10 «« J*         I 0 
1.14« OCTST 1 «• 1.000 112.0 2.000 »til 
LIT« [It Til 1 • • 1IT.0 1.020« 2.000 «< r»iL »»» 

I.IH« («CIST 1 •• 1.021« 1.10»« 2.000 <«< »til »» 

1,1*0 CV.CTIT 1 • • 1.107« 2.000« 2.000 <*< »»11 »»» 

1.200 (ICT»T 1 • • 2.001« 2.11»« «.000 ««  »OIL  »»» 

1.220 •OUTPUT VOITOOC   MICH 
1 .MO »«!»»• 1 2» 1 IJ 0 
1 .MO MVOH 10 1« •1.OOOH« 2.000 V      1.000 V 220.OMV ««« »«It »»» 
1.2*0 MVOH II 21 •I.OOOM« 2.000 V     1.009 V J.*to V »»99 
1.200 MVOH 12 21 -1.000-« 2.000 V     1.000 V l.oll V »»•9 
1.2*0 MVOH 11 21 •1.0A0M» 2.000 V     1.099 V 1.011 V »«9S 

l.?a» MVOH JO 2 -I.OOOM» 2.«00 V     1.999 V 1.0*1 V »•II 

1.?*» MVOH 11 «0 -I.OOOM* 2.00* V     1.000 V 1.000 V »•91 
I.2«0 MVOH 1» J» •I.OOOM» 2.000 V     1.000 V l.oll V »til 
1.1*0 MVOH 17 J« •I.OOOM« 2.000 V     1.000 V l.oll V »•91 
1.210 »«T»00> 1 I* 1 OJO • 
1.200 MVOH 1» II •I.OOOM* 2.«00 V     1.000 V 1.0*1 V »»91 
1.200 MVOH 1* 12 •I.OOOM» 2.000 V    1.009 V 1.0*1 V »•99 
1.200 MVOH • 0 11 •I.OOOM« 2.«00 V     1.00» V !.«»1 V »»91 

1.270 •«!»«« 1 *• 1 oil • 
1.2*0 MVOH • 1 1» •1.000«» 2.000 V     1.000 V J.0T1 V »»IS 
1.200 MVOH 02 IT •I.OOOM» 2.000 V     1.««« V J.otl V »••1 
1.2*0 MVOH • 1 1« •I.OOOM« 2.(00 V      1.000 V J.OTO V »»91 
1.2*0 HI»»« 1 2« 1 20« 0 
1. 10 0 MVOH «« J •I.OOOM* 2,00» V     1,000 V l.ooo V »»II 
i.lio »•I»«* 1 2« 1 J • 
1.120 MVOH «1 1« •I.OOOM» 2.*00 V     1.0«« V l.OTO V »111 
1.120 MVOH • 0 1* •I.OOOM« 2.«00 V     1.000 V J.OTO V »til 

1.12 0 MVOH «7 • •I.OOOM» 2.00» •     1.00« V J.09J V »•II 
1.120 MVOH • • 0 -I.OOOM« 2.01» V     l.ooo V 1.001 V »111 
1.110 »*T»»I 1 2« 1 HO 1 
1.1*0 MVOH • • T -l.OOO«« 2.«00 V     1.00« V J.otl V »•II 
1 .110 »«!»»« • • 0 9 • 
1.170 • ICC TUT 

1.1*0 •ICC 1 10 1.10*   V 11.00»«        110.OH« 201.»H« »»•• 
1.40* • E1t> 0» TUT 

l.*IO »loll 

f 
I 

2*1*   DCVICC   KIT        l/«J   •        29*.* 

»men 1 

TUT  TIM«.  • 

TflTI OUT  0» 

12.Tl    ICC. 

««»«I. eiccTiic o«t»«*cf ITIICMI 
CLCCTIONIC TCIT *HB CVOIUOTIO* CCMTC* 

SI Jv*. II      7111110» 

Figure  4.15.       2914  SIMPL Program,  after running 

86 

-'••-•-•• 



m -———• 

5. LIT Failure Data Reduction 

The LIT failure data stored by SIMTEK (See section 3.2.3) are read by the 
following programs. The data are either presented to the operator or processed in 
conjunction with the error dictionary to indicate the cause of the failure. Also, the 
operator may display the test pattern as timing waveforms for easier interpretation. 

5.1 

steps: 

These programs run on the S-3260/3270 under the system REDUCE program. 

Displaying Logged Data 

The operator may observe the LIT failure data by performing the following 

— Enter the UID under which the data are stored, 

~ Verify that a copy of BATRED.ASC is stored under the above UID (if not, 
copy it from the UID ":SIM"), 

-- Type CTRL-R, 

-- Follow the instructions presented on the CRT. 

The above steps execute the BATRED.ASC and DATRDB.EDT routines 
described in sections 3.2.6 and 3.2.7, respectively. Figure 5.1a shows an example of the 
BATRED routine. Figure 5.1b shows the DATRDB output for the number of failures per 
pin. 

When the program first requests the key, the operator must enter the first 
key in the log files. On subsequent requests, any key in the CONTRL.LOG file may be 
entered. The keys may be obtained by running the S-3260/3270 ANALYZE program, 
which is described in the system manuals. 

5.2 Plotting the Pseudo Timing Waveforms 

The operator may display the LIT pattern file as pseudo timing waveforms by 
performing the following steps: 

— Enter the UID under which the pattern file is stored, 

- Type "RUN PATPLO:SIM" on the keyboard, 

-- Follow the instructions presented on the CRT. 

The above steps execute the PATPLO.ASC, PATPLO.EDT and WAVE.EDT 
routines described in sections 3.2.8, 3.2.9 and 3.2.10, respectively. 

The sample waveform shown in Figure 5.2 was plotted from the pattern file 
in Figure 2.2. The user is expected to know from the pin names whether a given line 
represents an input pin or an output pin. In the areas marked with slash lines, the inputs 
are inhibited or the outputs are masked. 

87 

irtldi - - - J 



— 

1 

BATREO.ASClGOS 
DATE  27-AUG»ftO 

J0JUN80GEOS 
TIME   131140 

DISK NAMEl  E2I BKT RADC 
PAGE   I OP        1 

1.0100 
1.0200 
1.0100 
1.0400 
1.0500 
1.0600 
1.0700 
I.0100 
1.0900 
1.1000 
1.1100 
1.1200 
1.1300 
1.1400 
1.1500 
1.1600 
1.1700 
l.lflOO 
1.1*00 

* BATREO ASSIGNMENT PROGRAM 

THIS ROUTINE SETS UP LUN ASSIGNMENTS FOR THE 
DATA REOUCTION ROUTINE IN IG01 

«ASSIGN * • KB 
•HISTORY.KB 
«ASSIGN • « KB 
«ASSIGN 9  m  C0NTRL.LOG 
•ASSIGN to « ERRPAT.LOG 
•CLOSE 11 
•ASSIGN 12 • LP 

NOTEl FOR FURTHER PROCESSING OF FAILED BITS 
INFORMATION ASSIGN LUN IS TO PP OR MT 

•ASSIGN 15 • 
•RUN OATROBlSIM 
•EXIT 

Figure 5.1a.   BATRED Program 

88 

Mttkü -• •• 



'••  - 

GENERAL ELECTRIC COMPANY 

DATA REDUCTION FOR 
DATE: 22 SEP 80 

2914 DEVICE TEST 
TIME: 16:39:42 

DATA LOGGING KEY •      3 

LOG FILE DATE:  29 AUG 80  TIME:  09:27:46 

NUMBER OF FAILURES PER PIN 

COLUMN PIN     NUMBER OF 
NUMBER NAME    FAILURES 

30 M07 0 
31 M06 0 
32 M05 0 
33 M04 0 
34 M03 0 
35 M02 0 
36 M01 0 
37 MOO 0 
38 S02 13 
39 SOI 12 
40 SOO 12 
41 V2 87 
42 VI 86 
43 VO 84 
44 GPS IG 72 
45 GAS 49 
46 STOVFL 66 
47 IRQ 717 
48 PARDIS 45 
49 RIPDIS 43 

DUT SERIAL NUMBER IS 1. 000 

Figure 5.1b. Data reduction output, showing the 
number of failures on each pin 

89 

_—.. 



PJ—• •"- 

tirais 
PATOIS 
IM 
STOUTl 
CM 
«PSI6 
V« 

a 
so« 
sot 

no« 
mi not 
"03 
KM 

BO? 
cue 
ITS 

OEM 
I* 
It 
12 
13 
WSDt n 
ft n n 
P4 
PS 
PS 
P7 
SI« 
SM 
sit 
PI« 
Ml 

P.I4 
PIS i 

parts* Fin NIPCI «arm 

<  S <S\    »                   .      "           «                          ,                          t                          t                          t                          v                          *                          t 
< <^>a ••»             •             •             t             •             •             «             f 
. «-^a »            •           •                •                •                *                t                t                •                • 

.     ^-*l      A                                A                              |                                           A                                           A 
P                                4                                SJ                                0                                * 

i^^^i „      C*A^*\ 
I—r~•   i_r •   i_r"•  I__J     ^—.i      \—j      i_J"< I     L_/          4   J           L—i           l—J    •     I—_J          i— J 

•        •        •            •            •            < 4 

 "i        I        1 1 1      I l_i >                         *                          « 
4                             < ,        1 , 

 » # i > •      i—-—•        •            *      i  -—t       ;   r 
i4       .   i 

•                             4 
•                             * 
• 
•                             • 

4                             j 
4                             1 .        r» 

•       t   r=F 

:      r^ 

 ESJ       ' . is-ss< 1  « 

yyy. P '   * 
tSf^^i     *   LS»-^»-> 

>            g3g LV/1      t   tF^X ^W     ! ,   L*V->  1 I 
s •       «         I r     •    "t           f           » r—     -f            t r       -> 1                   T 

1« 14 IS 

Figure   5.2. WAVE  Output,   showing  the   first  forty  vectors 
of   the   2914  LIT   (from Figure   2.2) 

90 

~  .  «IS«       I -—- - —-- Mika. 



mm— 

5.3 Isolating the Failed Element 

The operator may obtain an indication of the cause of an LIT failure by 
performing the following steps: 

— Enter the UID under which the logged data is ttored, 

— Type "RUN FISO:SIM" on the keyboard, 

— Follow the instructions presented on the CRT. 

The above steps execute the FISO.ASC, FISOVl.ASC and FISO.EDT routines 
described in sections 3.2.11, 3.2.12 and 3.2.13, respectively. Note that the restriction on 
entering keys described in section 5.1 also applies to this section. 

A sample fault isolation printout is shown in Figure 5.3. This figure was 
obtained by testing a 291«f with a known fault using the SIMTEK program. Then the fault 
isolation routines were performed using the data logged during testing. Note that the 
printout list several points which may have caused the failure. Also, the points are listed 
in a coded format that was derived by LASAR from the device model. In order to fully 
interpret the printout, the user must have the compiled LASAR model. 

5A Reformatting the YTABLE 

The operator may reformat the YTABLE or print the XTABLE, YTABLE, or 
ZTABLE by performing the following steps: 

— Enter the UID under which the tables are stored, 

— Type "RUN XYZPRT:SIM" on the keyboard, 

— Follow the instructions presented on the CRT. 

The above steps execute the XYZPRT.ASC and XYZPRT.EDT routines 
described in sections 3.2.14 and 3.2.15, respectively. 

5.5 Fault Signature Matching Algorithm 

The fault dictionary generated by LASAR is divided into three parts: 

XTABLE -- A list of "significant bits," 

YTABLE — A list of possible faults associated with a particular "fault 
isolation set number," 

ZTABLE — A list of fault isolation set numbers and the first ten significant 
bits in the "fault signature" exhibited by a device with one of the corres- 
ponding faults from the YTABLE. 

The fault signature from a bad device is compared with the XTABLE. Those 
entries that match form the "significant bit fault signature." This signature is then 
compared to the signatures in the ZTABLE.   This results in a ranking of the most likely 

91 

'-     •   -*-•'--   -  - 



mm ——— mmm . p| 11 » 
— 

GENERAL ELECTRIC COMPANY 

FAULT ISOLATION ROUTINE FOR BOARD # AM2914 

DATE: 22 SEP 80     TIME: 16:44:03 

NUMBER OUTPUTS = 20 
DYSOGEN LIMIT = 10 
DATA LOGGING KEY = 3 
DATE OF LAST LASflR RUN - 02/04/80 

LOG FILE DATE:  29 AUG 80  TIME:  09:27:46 
FROM DEVICE TEST  2914 DEVICE TEST 

SERIAL NUMBER    1. 000 

FAULT ISOLATION CROSS REFERENCE TABLE 

FAILURE     REPLACEABLE 
DESCRIPTION     PACKAGE 

ALTERNATE 
REPLACEABLE PACKAGE 

PERFECT MATCH DETECTED YTAB = 330 

15-  9 (1) 
240  (1) 
253 (0) 

12-  3 (0) 
12-   2 (0) 
15-  8 (0) 
15-  5* 15-  8 ÖRPK15 
8-61 (0)  QIPK8 

QRPK15 
QIPK8 

ÖSPK12  PK15  PK7 
GSPK12 
QSPK12 

GRPK15 

12-  4 (1) 
12-  4*253 

240« 12- 
9-  7 (0) 
9-  8 (0) 
9-  9 (0) 

248 (1) 
248* 12- 

0SPK12 
QSPK12 

3 QSPK12 
QLPK9 
QLPK9 
QLPK9 
QLPK9 

2 QSPK12 

FAULT ISOLATION COMPLETE 

Figure 5.3. Fault isolation output, showing the LASAR 
YTABLE nodes that could have caused 
the failure 

92 



11 •'•'• I I 

fault isolation set numbers.   The YTABLE then translates these set numbers into lists of 
gate level faults.  A more detailed description of each of the tables will folio*'. 

5.5.1 XTABLE 

The XTABLE contains a list of bits considered to be significant by LASAR, in 
a coded form.  Bits in a particular fault signature are expressed as 

R,C, 

where 

R = vector set row number in which a failure occurred, 

C = output column in which a failure occurred. 

A number L is calculated according to the formula 

L = (R-l) * W + C, 

where 

W = width (number) of output columns. 

The "bit number" or N is the location of L in the XTABLE. 

When using the XTABLE to encode the fault signature, not every resulting L 
will be found. In that case, they are simply omitted; they are not significant fault 
signature bits. 

5.5.2 YTABLE 

The YTABLE is a set of lists of LASAR model nodes and failures. For each 
of many "fault isolation set numbers," one or several nodes and failures will be listed. 
With the given input vector set, and a user-specified limitation on the length of fault 
signatures (to be discussed in section 5.5.3), these faults are indistinguishable from each 
other. 

5.5.3 

The fault isolation set number is obtained from the ZTABLE. 

ZTABLE 

The ZTABLE associates a fault isolation set number with lists of bit numbers, 
or "Z-entries." Ideally, there would be a Z-entry for each set of indistinguishable faults. 
These could be truly indistinguishable, as would be certain faults in a counter chain, or it 
may be that the input vector set was able to detect the faults, but was unable to provide 
sufficient resolution to discriminate. In practice, memory limitations force a user to set 
a limit on the length of the Z-entries. A usual option during REDUCE is "FILE 10," 
setting a limit of 10 bits per Z-entry. A larger limit would increase resolution, but would 
also increase run time. 

93 



MOW" 

Using the ZTABLE requires the matching of the user's fault signature against 
each of the Z-entries. If a perfect match is found, the user is in luck. However, the user 
must usually be satisfied with a partial (and hopefully, good) match. 

5.5.3.1        The Matching Algorithm 

The simple case, in which there was no artificial limitation on the length of 
the Z-entries, will be considered first, after a discussion of notation. 

Referring to Figure 5.4a through 5.4d, it may be seen that there are four 
cases of interest (noting that 5.4c has an equivalent case, that is, S may be contained in 
Z). We wish to derive a numerical index, called G, that will allow a ranking according to 
a "goodness of fit." 

The notation that will be used is as follows: 

S = The set of bit numbers in the fault signature (recall 5.5.1), 

Z = The set of bit numbers in the particular Z-entry being checked at the 
moment, 

SZ = The intersection (AND) of S and Z, 

SvZ = The union (inclusive OR) of S and Z, 

B]  = The number of bit numbers in S, 

IZ] = The number of bit numbers in Z, 

[SZ] = The number of bit numbers in SZ, 

[SvZ] = The number of bit numbers in SvZ, 

+,- = ordinary addition, subtraction. 

5.5.3.1.1     The Ideal Case 

The simplest measure of the goodness of fit is to let G equal the ratio of the 
number of bits in the intersection to the number of bits in the union, or 

BZ1 

[SvZ] 
(5.1) 

This would yield G = 0 when there is no overlap (Figure 5.4a), and G = 1 when S and Z are 
identical (Figure 5.4b).  For the cases depicted in Figure 5.4c and Figure 5.4d, 

0< G< 1. 

When calculating this quantity, there is a desirable shortcut.   Using the easily 
demonstrated identity 

(SvZ] = [S] A [Z] - [SZ], 

94 



Figure 5.4a.   The fault signature (S) and the Z-entry (Z) 
are disjoint 

0 
Figure 5.4b.  S and Z are identical 

95 

c 
-—"-~"     . - • --- - —^•^*—-^ •••i-^- — - 



 n" m ' wn—w 11 • UU1P 

Figure 5.4c.   Z is contained in S 

Figure 5.4d.   S and Z have some elements in common 

\ 

96 

 -^i^Mrtai    -- •       '-'-'- 



•'" 

Eq. (5.1) becomes 

G =     ^  (5.2) 
[S] • [Z] - [SZ] 

On a computer this quantity is found considerably faster using Eq. (5.2) rather 
than Eq. (5.1), as [S] and [Z] are usually already known, and [SvZ] will only have to be 
calculated, rather than found by enumeration. 

5.5.3.1.2     The Non-Ideal Case 

If there were no limitations on the length of the Z-entries, then Eq. (5.2) 
would be sufficient to give the relative rankings of each Z-entry. Unfortunately, it is in 
fact necessary to avoid penalizing Z-entries that have been "unfairly" truncated. 

The method used, when [Z] = 10 (maximum size), is to look at the largest N 
(bit number) in the particular Z-entry under examination. Temporarily, each N in S that 
is greater than the largest N in Z is discarded, and [S] is adjusted accordingly. Now Eq. 
(5.2) can be used and G obtained. 

Again, this is only done when [Z] = 10 (assuming FILE 10 was used) under the 
assumption that Z was indeed truncated.  When [Z] < 10, S is left untouched. 

5.5.3.2        The Significance of G 

It must be stressed that G allows only a relative ranking of Z-entries and 
their corresponding fault isolation set numbers (recall section 5.5.2). One cannot say 
that G = 0.8 indicates twice as good a match as G = 0A. Usually, the top ten Z-entries 
are extracted, and all of their nodes and faults in the YTABLE are considered as possible 
candidates for failure. 

The list of nodes from the YTABLE is not to be taken literally. It is 
necessary to remember the functions represented by the nodes, and to interpret that 
information into the necessary physical locations in the DUT. This philosophy is outlined 
in section 1 of this report. 

5.5.** Other Techniques 

The literature is conspicuously barren of practical techniques which can be 
used for the purpose described in this section. The only one found was a method which 
was presented at the 1979 Cherry Hill IEEE Test Conference [1]. 

The algorithm, as described in the paper, uses a scale where a perfect match 
is given a score of "0" and faulty matches have integral scores ranging upward. The 
score is obtained by summing the following penalty points, for each Z: 

— Add 1 for each Z-entry not in S, 

— Add 3 for each bit number in S which is not in Z. 

This technique was evaluated during this effort by making another entrypoint 
in the Multics routine "SEARCH" (not described in section 3.1, as it only duplicates the 

97 

 : ., ^ ^ 



function of the "FISO" described in sections 3.2.10 and 5.*). Taking advantage of the 
existing PL/I program's data structures and I/O, it was simple to implement the 
algorithm described in Reference 1. 

The results were interesting. The relative rankings given by this algorithm 
almost always matched those given by the one described by Eq. (5.2) used in the non- 
ideal case (i.e., discarding signature bits when the number of Z-entries equals 10). The 
differences that were observed in the few test cases run for comparison were 
attributable to the fact that consideration was not given to the truncated fault 
signatures (due to "FILE 10"). This was particularly evident when the signature and Z- 
entry would have been a perfect match if Z had not been truncated. 

When this algorithm was modified to take advantage of the knowledge of the 
non-ideal case, results were more consistent with the actual faults inserted. Still, it was 
not quite as accurate as the Eq. (5.2) implementation. 

Relative execution time varied from slightly less to 50% more than that of 
the Eq. (5.2) implementation. 

References: 

1. Joseph F. Weiss, "Fault Isolation Speedup For LSI Boards," Digest of Papers 
1979 Cherry Hill IEEE Test Conference, pp. 186-188. 

98 

. «£ « 



PF—— '   '  '    —^^—11 I . I l ii      i. 

6. Fault Insertion 

In order to demonstrate the effectiveness of the device models and to 
achieve confidence in the fault isolation programs, controlled faults have been physically 
inserted in the test Jevices. This involved logically locating a suitable site for faulting, 
tracing the circuitry on the device to identify the corresponding physical location, and 
physically inserting the fault at this site, A» test program generated from a good model 
of the device type, when applied to a physically faulted device, generated data that were 
used by the fault isolation software to identify where in the logical model the fault 
occurred. Model completeness, fault coverage, and fault isolation program effectiveness 
could thus be assessed. "False Modeling" was also done. The false modeling technique 
simulates physical fault insertion by developing a model with a known fault. In this case 
a test program generated from a faulted model of the device type, when applied to a 
good device, generated the data for fault isolation software. 

Five device types underwent the physical faulting procedures: The Advanced 
Micro Devices 25LS2517 (Arithmetic Logic Unit/Function Generator) and the 291^ 
(Vectored Priority Interrupt Encoder); Harris Semiconductor 15530 (CMOS Manchester 
Encoder/Decoder); the Motorola 6821 (NMOS Peripheral Interface Adapter); and the 
Advanced Micro Devices 2910 (Microprogram Controller). Three faults per device type 
were inserted except for the 6821, which had two faults inserted. 

6.1 Fault Site Select ion /Circuit Descriptions 

Because of the complexity of the device involved, complete tracing of the 
physical circuitry of each device would be very time consuming and therefore was 
undesirable. The first step in faulting a device, then, was analysis of the logic and 
selection of sites for fault insertion from these analyses. In this way, physical tracing of 
the device in question was limited to the areas of concern. 

6.1.1 Fault Site Selection Considerations 

Several considerations were taken into account in selecting fault sites. The 
following paragraphs discuss these factors. 

6.1.1.1 Faults that Affect Mutually Exclusive Outputs 

Selecting multiple faults that affected mutually exclusive outputs guarantees 
that the circuitry affected by each fault was isolated and that more than one fault could 
be inserted on a single IC. This was only possible on two device types examined here. 
The complexity of the design of all other device types inhibited multiple faulting unless 
extremely elementary sites were chosen (e.g., the buffering circuitry to an output). 
Because they were more challenging it was decided that more complex faults were 
necessary to adequately test the fault isolation programs. Therefore, several outputs are 
usually affected by each of the faults that were inserted. 

6.1.1.2 Faults that Affect Diverse Logic Areas 

By placing faults in different functional areas of a device type, more of the 
model is tested for accuracy and feasibility. Also, a wider range of situations is provided 
for exercising the fault isolation program. 

99 

...•MM-,    •      ,| , -'"•*'• 



" • •   " • l—l 

6.1.1.3        Faults That Affect Limited Circuitry 

A gross fault is one that when introduced into a device produces a fault 
isolation program signature that indicates possible faults in a wide-spread area (all 
affected circuitry). The ambiguity of such results masks the functioning of the fault 
isolation program. Because of this, gros» faults were avoided. This problem was 
encountered on several device types that contained long, chained sequences in the logic 
or a large amount of interdependence of logic functions. 

6.1.1.*        Ease of Physical Site Location 

In order to have confidence that the sites identified on the physical device 
truly correspond to the selected logic sites, it is necessary to choose locations within 
unique or readily traceable circuitry. This does not exclude imbedded circuitry but 
directs site selection to areas with distinctive characteristics (e.g., an eight-input NOR 
gate in the 2914). 

6.1.2 Circuit Descriptions 

Fault site selection was accomplished using a variety of technical materials 
containing information and descriptions of the circuits involved. The materials available 
varied from device to device and from manufacturer to manufacturer, creating an 
imbalance in the amount of time devoted to faulting each device type. The materials 
that proved to be most useful are listed below. 

6.1.2.1 Published Data Sheets 

This source gives a brief description of the operation of the device, block 
diagrams, electrical characteristics, package specifications, absolute ratings, and pin 
assignments. It was found that the data sheets often contained errors in the descriptions 
of the operation of the devices and in the flow of control shown in the block diagrams. 
They also varied greatly as to the detail of logic design given. Therefore, this material 
was used only for an initial, basic understanding and as a reference on electrical 
characteristics. 

6.1.2.2 Automaton Diagrams 

In some cases, these diagrams were the only logic-flow diagrams available for 
site selection. The fact that the functional blocks of an Automaton Diagram encompass 
large areas of circuitry led to some confusion and ambiguity in pinpointing the exact 
location of a fault site on the physical device. For more detailed explanation of the 
generation and application of Automaton Diagrams, see Appendix A. 

6.1.2.3 RADC Product Evaluation Reports 

When available, these reports greatly reduced the amount of time required 
for fault insertion on a device. The report analyzes the device on both a physical and 
electrical leveL A logic schematic is developed directly from the physical layout of the 
circuit and the correspondence between the two is given. Therefore, fault site selection 
was simplified because for each schematic is detailed to the transistor level. There is a 
corresponding physical structure shown (via micrographs and other figures). There are 
other disclaimers in the reports as to the accuracy of the logic circuits because of the 

100 

^—.;...„,, ,        -      •-        



complications in identifying and translating physical layouts of LSI devices to transistor 
level schematics. Verification of fault sites before faulting was done using SEM voltage 
contrast techniques (see section 6.2). 

Unfortunately, these reports are on Restricted Distribution, and so are not 
directly referenced in this report. 

6.1.2.^        Manufacturer's Logic Schematics 

Availability of accurate manufacturers' logic schematics would have greatly 
aided fault site selection and tracing of the physical circuitry to the fault site. 
Definitive logic diagrams would have eliminated much of the confusion resulting from 
errors in published data sheets and from insufficient information. The complexity of the 
devices and the methods used in their fabrication (e.g., Schottky technology, multilayer 
metallization) led to problems in circuit tracing because of the difficulty in identifying 
individual logic components. Logic schematics would have solved these problems and 
would have led to quicker fault site selection and identification as was evidenced by the 
schematics found in the Product Evaluation Reports that were available. 

6.2 Fault Tracing 

The major problem in fault insertion is uncertainty that the location of the 
fault on the physical device corresponds to the logic site selected. When this work was 
initiated, an attempt was made to trace the physical circuitry of a device to the 
proposed fault location using optical micrographs of the die enlarged to 400X. This 
method of identifying device structure and interconnections worked well on the 
25LS2517 because of its relatively simple design and its clean and open layout. However, 
the succeeding devices encountered in this effort were found to be too complex and 
dense to allow visual inspection of the circuit as an adequate method for fault location. 

Voltage contrast techniques using the Scanning Electron Microscope (SEM) 
proved to be a very effective method of circuit tracing. The SEM operates by scanning 
across the surface of the sample (in this case an IC) with a finely collimated electron 
beam that has a variable accelerating voltage potential (200V-39KV) controlled by the 
operator. Due to the interaction of the beam with the specimen, many complex physical 
processes occur producing several types of signals that image the specimen. Some of 
these include secondary electrons (electrons emitted with energies less than 50eV), back 
scattered electrons (high energy electrons), x-rays, and absorbed electrons. Voltage 
contrast techniques are applied using secondary electron imaging which presents 
topographic, voltage and magnetic variations in the specimen. The secondary electrons 
are sensitive to the effects of locally applied potentials. In other words, when a 
potential of +5V (the power level for most LSI devices) is applied to the specimen, 
electrons with energies less than 5eV cannot escape the specimen surface. Conversely, 
when a ground potential is applied to the specimen, all of the emitted electrons are 
reflected up to the detector. The resulting image of the areas at ground potential 
appears brighter than that of the areas at a positive potential. This brightness variation 
is known as voltage contrast. It lends itself well to tracing physical circuitry of an IC. 
A pattern of voltage high and low potentials (+5V and ground) can be applied to the DUT 
in order to exercise an area of interest on the physical device. The voltage contrast 
mode creates an image of recognizable highs (darker areas) and lows (brighter areas) 
throughout the circuitry to be traced. Figure 6.1 is an example of voltage contrast 
effects on a 25LS2517. 

101 

-  --•       -   - •••       -•  •• ^.-.>,... -—,.»• . . 
_ 



U1 

w 
•J 
»n 
fSI 

a» 

c 
o 
01 
4J 
V 
V 

M-l 
tu 
0 
4J 
(0 
id 
u 
•P 
c 
o 
u 
0) 

« 
.H 

£ 

—.      .     



••' 

6.2.1 Equipment, Support Circuitry, Adapters 

Figure 6.2 >hows the mainframe SEM and support equipment used for this 
project. The microscope, a Japan Electron Optics Laboratory 3SM-35C, is capable of 
producing spot sizes ol 60 Angstroms. Magnification capabilities range from 10X to 
180,000X.   The vacuum is inaintained at 3E-7 to 5E-7 torr to minimize contamination. 

The facility is equipped to perform dynamic voltage contrast studies 
(applying changing levels or pulses instead of static patterns to the inputs of the device) 
utilizing a TV scan generator, multiphase clocks, pulse generators, memory exorcisor, 
and a time lapse video tape recorder. Stimulus to the device under observation can be 
provided by a variety of signal sources via a 100 pin vacuum feedthrough and support 
circuitry. To ensure "clean signals" to the clocking inputs of the DUT, four differential 
line driver receiver pairs were incorporated. In addition, all wiring was done with 
shielded and terminated coax cables. The drive circuitry includes a four phase clock 
which accepts as input a master clock of frequency f and provides as output signals of 
f/2, f/*f, f/8 and f/16. The inverted waveforms can be accessed as well. These outputs 
are then input to the line drivers where they are transmitted over 15 feet of cable to the 
receivers inside the SEM vacuum chamber. This circuitry is mounted behind a matrix 
switching array which allows the user to apply any one of ten different input signals to 
each of up to fifty IC pins. These fifty signals, including power and ground, are 
connected to the DUT via the cable and feedthrough. The matrix array can be seen in 
the center of the equipment rack, shown in Figure 6.2, to the right of the SEM 
mainframe. A memory exerciser (the Macrodata MD-100), power supplies, meter, scope, 
and function generator are also mounted in this rack to make the entire setup easily 
accessible to the operator. 

The line driver signals are transferred into the vacuum feedthrough and 
received by support boards designed to incorporate the line receivers directly. These 
printed circuit boards are adaptable for observing voltage contrast on devices with up to 
W pins and allow direct application of line receiver signals to selected inputs of the IC. 
An example of a configured support board holding a typical device and residing on the 
SEM stage is shown in Figure 6.3. The support board limits movement of the stage 
within the chamber somewhat, notably the rotational movement. 

Support services to this facility include equipment for specimen preparation 
such as a plasma etcher, an ultrasonic cleaner and a diamond saw for sectioning. Also 
available is a high power metallurgical microscope for immediate visual inspection. 

6.2.2 Device Preparation 

Because all devices used in this effort were obtained from commercial 
vendors, device preparation was an important step in the fault insertion process. 
Specimen preparation is also a key to good scanning ele< tron microscopy. For lC's this 
preparation can include de-encapsulation (decap), cleaning and etching of the passivation 
layer. 

The devices selected for this effort had cerami« packages« All but one 
device type that was chosen for fault insertion were scaled with a glass frit. The 
exception, the 6821, was solder-sealed. Prior to any preparation all devices were tested 
for logic integrity. 

103 

—^. - • — iikM 



••• nBSK! 

Figure  6.2. Scanninq electron microscopn and support 
equipment 

104 



u 
10 
o 
A 

+J 
u 
o 
a 
a o 

0) 

P 

[05 

— — >      : ,  



mmm 

The standard technique for decapping ceramic-packaged, glass-sealed devices 
consisted of gripping the cap of the device in a vise and applying a sharp blow to the cap 
until the .-.eal (and usually the cap) cracked. This method had about a 50% success rate 
with devices of 16 pins or less. A successful decapping is one in which the die is 
uncovered with no damage to it or to connecting pins or bonds. The 25LS2517, a twenty 
pin device, had only about a 20% success rate using this method because the cap on this 
device is thicker than the header and therefore the sharp blow tends to break the header 
before it breaks the cap. 

To overcome this problem, and the even greater difficulties anticipated for 
the 40 pin devices yet to be tried, a decap method was devised which used a motorized 
circular diamond saw to slice the cap from the device. This method takes an average of 
four hours of sawing per kO pin device but it has had a 100% success rate to date. A 
complication occurs because the saw blade runs through a lubricating oil bath to 
eliminate excessive loading on the internal gears. The oil must be cleaned from the 
device in a freon bath once decap is complete. At this point, the decapped device should 
again be tested for logic integrity to assess the effect of the decap process on device 
functionality. 

The method used to decap the solder-sealed 6821 was to rapidly heat the 
device to the solder melting point and carefully lift the lid to expose the die. A small 
heat sink in this process to together all the pins of the static sensitive device and to heat 
the device evenly. Difficulty was encountered in lifting the loosened lid manually 
without damaging any of the wire bonds, which are directly below it. For this reason this 
method of decap had a 75% success rate. 

The manufacturers' protective passivation layer deposited on the 1C poses 
special difficulties for SEM examination. When the electron beam strikes an insulator, 
such as the silicon dioxide or silicon nitride typically used for passivation, electrons 
accumulate on the surface since no conductive path to ground exists. The effects of 
voltage potentials applied to the device are neutralized by the accumulating charge and 
the image of the IC appears evenly shaded (i.e., contrast is reduced). When a change in 
potential is applied to the device, the affected circuitry will demonstrate voltage 
contrast for a short period until the charging effect again neutralizes it. 

Some experimentation was done with wet chemical etches to remove 
passivation layers but these were found to be difficult to regulate, due to variations in 
passivation layer thickness and composition, and therefore extremely destructive to the 
device. A plasma etcher using power levels of 15 to 20 watts and a 92% carbon 
tetraflouride and 8% oxygen plasma medium obtained much better results. However, 
etching rates were extremely variable because of the inconsistencies in passivation 
thickness. If etching is continued after the passivation layer is removed, the plasma will 
combine with the silicon wafer base of the device at a rapid rate and be destructive to 
the device. This presented problems in handling the devices used in this effort. The 
etching rates varied greatly from IC to IC as well as from device type to device type. In 
order to minimize the destruction of devices because of over-etching, this preparation 
process had to be discarded. 

The only apparent alternative to etching was to to develop a technique of 
viewing necessary deviations under voltage contrast with the passivation layer in place. 
An advantage was discovered in leaving the passivation layer on the LSI devices. These 
devices are   so complex   that  applying   just  power  and  ground  to a  sample  creates  a 

106 

IM.-, ,—   -   --   — _* 



'•"   mmm "      • "' •'•  

complicated pattern of voltage contrast. This makes tracing individual runs and 
components difficult, as is demonstrated by the 2914 pictured in Figure 6.4a. The 
charging effects tend to "grey out" all static potentials applied to the device. When a 
change in voltage potential is then applied to the appropriate inputs, the affected 
circuitry shows clearly against the evenly shaded image of the device. Figure 6.4b shows 
this phenomenon on the 2914. The voltage contrast fades in a short while because of the 
charging but while it lasts it isolates the circuitry and makes it easier to trace. 

It is important to note that because of the preparation needed for fault 
insertion, the devices are extremely susceptible to damage. Care must be taken in 
handling, transporting and storage of decapped devices to keep all bonds intact and the 
exposed die free of debris. 

6.2.3 Fault Site Identification with Voltage Contrast 

Once fault sites were selected with respect to the logic circuitry, and a 
familiarity with voltage contrast techniques was achieved, fault site identification on 
the physical device began. A necessary step in this process was a thorough analysis of 
the operation of the device. This analysis was geared toward developing vectors to apply 
to the device in order to exercise isolated portions of the circuitry. The fewer inputs 
needed to exercise the area of interest the easier it was to isolate the circuitry. 
Therefore, for maximum efficiency, it was necessary to develop patterns of voltage 
potentials to apply to the device that had the least number of varying inputs and still 
affected the selected site circuitry. At times it was also beneficial to develop several 
sets of patterns of voltages to apply to the device for identifying a single fault site. If 
several unrelated input changes should logically have an effect on the circuitry in 
question, each change should be applied separately to ensure the definitive location of 
the fault site. When possible, a known state was established using static input voltage 
levels. The state was used as a reference state from which circuit tracing could be 
performed. 

The complexity of the device determines the number of vectors needed to 
initialize it and effectively exercise internal circuitry. When the logic is strictly 
combinational as in the 25LS2517, a single vector can be used to set up the device 
operation as needed. To trace circuitry in this device, manually switching between +5V 
and ground potentials on a single input can produce sufficient change in the operation of 
the device to allow definitive fault location. The inclusion of a clock in the logic 
necessitates a more complicated pattern progression. A method of simplifying this 
progression is to apply a constant pulse to the clock input at a rate faster than is visible 
on the SEM display (100 KHz and up). As the clock pulse is continuously applied, the rest 
of the device can be exercised in a manner similar to that used for combinational 
devices. The logic of some devices dictates that a series of patterns must be applied to 
a device before a specific  site  is affected.    The MD-100  was used   in  such  cases  to 
automatically apply the needed patterns.   The speed with which the patterns are cycled f. 
to the device by the Macrodata is controlled by an externally applied clock regulated by 
the user. 

'Ns an example of fault site identification, the procedure lor identifying a 
fault site on the 2914 is given. The fault site chosen was one of the three outputs from 
the vector hold register. These three outputs combined are the encoded binary value of 
the highest unmasked interrupt that has just been received. The output of the vector 
hold register is used as a clear flag to the interrupts as they are serviced.    The logic 

107 

i   mm "••• — "—**-• 



(M 

C 
o 

u 
8 

•P 
m 
10 

4J 
C 

8 
0) 
Cn 
(0 

•P 

s 

L08 

 - • w  ^^^«^-.e..   ... 



Figure 6.4b, Voltage contrast effects on the 2914, showing 
the inverted v?, XI, YO signals, with 
P"7 low (active) and instruction = "V 

1 f)9 



^^i 

location of the fault site is indicated on the portion of the Automaton Diagram in Figure 
6.5 as Fault 3. The 291^ has an instruction set that provides proper control of the 
device. As can be seen from the Automaton Diagram, the instruction code must be set 
equal to "5" (read vector) for the encoded interrupt value to pass through the vector hold 
register. Also, the register is controlled by the clock input. Therefore a constant pulse 
of 100 KHz was applied to the clock input to enable operation of the device as if it were 
combinational logic and not visibly affect the SEM image. 

Initially, the decapped device was checked for logic integrity and placed 
within the SEM. The patterns applied through the matrix array to the device consisted 
of +5V (high or "1") and ground (low or "0") potentials. Ground, power and clock were 
applied first. Then, to initialize the device, the Instruction Enable line was set low to 
make it active and the Instruction code was set to "0" to master clear the device. The 
basic pattern used for isolating the circuitry was: 

— P7-P0 (Interrupt Inputs) set high (inactive), 

— M7-M0 (Mask Inputs) set low (inactive), 

— Instruction Enable set low (active), 

— Instruction Code set to "5," 

— Latch Bypass set high (active). 

The outputs of the vector hold register are X2', XT, X0'. Enabling the input 
P2 will directly affect XI' only, so an alternating signal of ground and +5V was applied 
manually through the matrix array to this input. The effects can be seen in Figure 6.6. 
Figure 6.6a shows the circuit when P2 is high (inactive) and Figure 6.6b shows the circuit 
when P2 is low (active). From this series of events the XI bit of the vector hold register 
was located. The same patterns were applied with the SEM focused at the register itself 
at a much greater magnification. The voltage contrast fades much quicker at greater 
magnifications because of an increased charging effect from the higher concentration of 
the electron beam on a smaller area. The voltage contrast faded too quickly to allow 
photographs to be taken but the tracing of the circuit visually was enhanced. It was 
discovered that both an XI' and inverted XI' outputs are generated from the register. A 
physical fault site internal to the register that affected both outputs in a consistent 
fashion had to be found because the register was modeled using only true outputs. Had 
only one of the complementary outputs been faulted, fault signature information would 
not have been accurate. Because of this complication and because of the complexity of 
the circuitry in this area, the only feasible place to physically insert a fault was the 
input transistor to the register. This changed the logical fault site from being an output 
of the vector hold register to being an input of the vector hold register Figure 6.6c 
pictures the XI1 register and pointers are placed at the XI' output, inverted XI' output, 
and the XI' input (the final identified fault location). 

As noted in this example sometimes it was necessary to alter a selected fault 
location due to the manufacturer's implementation of the logic. 

6.3 Physical Fault Insertion 

The best method for accurately inserting faults into an LSI device is to use a 

110 

I 



^^——i—I 

X* *I XO 

!£.,!: 

1 ?!•-- • • '". 

T j 
• ,- i 
!   "   i 

>,  i 
1 

it   hi 1 '''• \i i ,   ."- 
— Ffj\Jl 

S. 

copy 

V' 
v; 

Figure  6.5.       Partial Automaton  Diagram showing  the  fault site 

111 

m^Z. 



*• 

Figure fi.fia, Voltaqe contrast on the 2014, with 
P2 hiqh (inactive) 

112 



ff. 

0 
x: 
•p 

c "«; 
o > 

•w 

01   V 
«   A 

gg 
O -I 

0)  <M 

R> 
4J 
t-l 
o 
> 

VC 

0) 

113 



•c 
c 
«1 

•0 
0)   O 
*3 .c 
^ -P 
gj 
> <*-> 
c o 

•H 
m 

»4J 
4J   P 
3  & 
a+J 
C  P 

•H   O 

f-H i-H 

x y. 
C "C 
.c o 
•M  4J VJ 

h B 
{y 0) •u 
C   > w 

•H   C •H 
3 -H tP 
0   1 c 
£ c cr. 
W   O 1 

c >: % 
*r 
f-i 

Os 
<N 

• 
vc • 
vc 

B G 
3 
tr 

114 

...—•! ..—.—. 



•"• —mm 

laser to damage the specified area. Faults were inserted into the devices for this effort 
by creating discontinuities in runs identified as outputs from, or inputs to, a particular 
function block in the logic. These runs were typically 10 microns in width with 7 to 15 
micron spacing between runs. The geometries involved restricted the type of laser 
necessary for accurate faulting. The most obvious requirement was the spot size of the 
laser. Assuming perfect centering of the laser beam on the run to be damaged, the 
minimum spot size of the laser could be no greater than the run width plus the 
perpendicular distances from either size of the run to adjacent runs or other circuit 
structures. This total width averaged about 25 microns (1 mil). Since some margin for 
error in positioning must be allowed, the laser had to have a minimal spot size 
considerably less than 25 microns. The positioning capabilities were also a consideration. 
It was necessary to have manually controlled, high resolution positioning in the X and Y 
directions in order to enable accurate orientation of the laser beam. Obviously, the 
resolution of the optical equipment through which the positioning was done needed to be 
as good as that of the laser beam and aligned with it in order to ensure visual 
identification of the fault site. Finally, the power of the laser needed to be sufficient to 
thoroughly cut through the prescribed runs. 

The laser used in faulting the devices in this effort was a Union Carbide 
KORAD Resistor Trimmer. It is a YAG laser with specified minimum spot size of 1 mil. 
In actuality, the spot size can be narrowed approximately 10 microns. The stage which 
held the specimen could be positioned in 0.25 mil increments in both the X and Y 
direction once the course positioned was completed using a "joy stick" mechanism. The 
optics for positioning consisted of a microscope attached with magnification of approxi- 
mately 60X. The power of the laser was sufficient for opening runs both on the surface 
of the devices and on subsurface levels. 

The faulting procedure consisted of aligning the proposed fault location on a 
decapped, logic-tested device with the crosshairs of the laser microscope, applying laser 
pulses until a change was seen and observing the amount of damage in the affected area 
under a high magnification optical microscope. This process was repeated until it was 
determined that the run was damaged enough to result in a complete discontinuity. 

Once the faults were inserted, the devices were again tested in the SEM to 
verify faulting effectiveness. The same patterns used to identify the site locations were 
applied to the devices to ensure the physical fault inserted created an open (effectively 
SA1 for most devices, if positive logic is used) condition at the appropriate logic 
component. 

See the figures in section 7 for samples of the fault insertion results. 

6A False Modeling 

This section describes briefly a technique referred to here as "false model- 
ing." This technique involves the deliberate introduction of a fault into a LASAR model 
of a DUT. This was done in a few cases during this effort in order to see how closely the 
results of this technique matched the fault signatures obtained from the insertion of 
actual faults. 

It was to be expected, of course, that the fault signature from a LASAR 
model with an intentional fault in it would always match perfectly an entry in the 

115 

•• 



>. ...i   ....*«. .>. tmmm*"—* m* 

ZTABLE (see section 5.5), something that would be expected to happen only rarely in 
real life. 

One use of the false modeling technique would be for circumventing the 
"FILE 10" option in the LASAR REDUCE package (the utility that produces the fault 
dictionary). As explained in section 5.5, this option limits the length of ZTABLE entries 
to 10, to reduce the size of the memory required for execution. This causes the fault 
isolation to suffer, as the Z-entries may not be long possible failed enough to 
discriminate among possible failed nodes in the model, since the fault signatures may not 
differ until later in the vector set. This false modeling would allow the user to create 
the complete fault signatures for each fault listed in the YTABLE, that resulted from 
the matching algorithm. 

Another application would be to interactively home in on faults. The fault 
dictionary would identify a few regions that are candidates for failure, and the user 
could start inserting non-single-stuck-at faults, until he has matched the observed fault 
signature. 

116 

 ... - •M   - — - - - - 



•'" 

7. Applications 

This section discusses details peculiar to each of the devices which were 
studied during this effort.  These devices were: 

1) 25LS2517 -- Arithmetic Logic Unit, 

2) 2914 — Priority Interrupt Encoder, 

3) 15530 -- Manchester Encoder/Decoder, 

4) 6821 — Peripheral Interface Adaptor, 

5) 2903 --  Bit Slice Operation Unit, 

6) 2910 — Microprogram Control Unit. 

Each of these devices presented certain difficulties in modeling and testing. 
The 6821 handshake logic portion of the LASAR model has not been completely debugged 
at the time of this writing, but the response of the model differs from the response of 
the real device in only a few bit positions, so it is thought at this time that the vector 
set used to debug the model may have a subtle error in it, and may be exercising the 
device in an incorrect manne»-. The 2903 and 2910 LASAR models were not debugged, 
but the Automaton Models have been completed. The 25LS2517, 2914, and 15530 have 
had fault isolation performed on them, and the latter two devices had slash sheets 
prepared for them. 

7.1 25LS2517 

The 25LS2517 is a 4-bit ALU. This device is similar to the 54LS381, differing 
only in the functions of two outputs. The 25LS2517 provides outputs for use in ripple 
carry applications, while the 54LS381 provides the outputs used in carry look-ahead 
applications. 

The devices used in this effort were the Advanced Micro Devices, Inc. 
Am25LS2517, which had a date code of 7834.  The data sheets used were from AMD [1]. 

7.1.1 Learning the 25LS2517 

Becoming familiar with the device, or "learning" the DUT, was relatively 
simple in this case. Being a strictly combinational device the test vector set for it was 
short. These test vectors were supplied entirely by LASAR, using the STIMGN facility, 
the only case where this was done during this effort. The fault dictionary was also 
prepared by LASAR. 

7.1.2 Test Generation for the 25LS2517 

Nothing of note here, as this was done automatically. 

7.1.3 Test Implementation for the 25LS2517 

117 

-rtMJBin 



' "   ' " ' "" '— 

The test was originally written as a TEKTEST program dedicated to this 
device. Later, when the SIMTEK program (see section 3.2.3) was developed, a new test 
using SIMPL was written. These tests and the faulted 25LS2517 were used to debug the 
S3260/3270 utilities discussed in sections 3.2.8 through 3.2.U. 

7.1.4 Tracing and Inserting Faults in the 25LS2517 

This device consists of strictly combinational logic in an open layout that 
allows most logic tracing to be done by visual inspection. Because of the simplicity of 
the device, the prime consideration in choosing fault locations was the possibility of 
putting multiple faults on a single physical device. All three faults were put on one 
device, each affecting an output or outputs exclusive of those affected by the other 
faults. Figure 7.1 gives the logic diagram for the 25LS2517 with the logic sites of the 
inserted faults identified. Figure 7.2 gives optical photographs of the actual faults 
inserted in the device. Fault 1 affects only output FO, Fault 2 affects only output Fl, 
and Fault 3 affects outputs F2, F3, Cn+4, and OVR. 

7.1.5 Isolating Faults in the 25LS2517 

The faulted 25LS2517 was tested using four SIMPL files (see section 3.2.1), 
one for each fault plus one for an unfaulted device. The latter file verified that the test 
program, test system and ancillary equipment were operating correctly. Then the other 
three SIMPL files were used to log the errors from each fault separately. The fault 
isolation routines (see sections 3.2.10, 3.2.11, and 3.2.12) then evaluated each log file as 
though only one fault existed at a time. 

The printouts from fault isolation routines pinpointed the faulted gate for 
each of the three faults. Thus the validity of the fault isolation algorithm described in 
section 5.5 was demonstrated. 

7.2 29 It 

The 291 ^ is a Priority Interrupt Encoder intended for use in systems built 
with members of the 2900 bit-slice family. The 29It has eight input lines for the 
signaling of interrupts, and has the capability of either sampling or latching the 
interrupts, masking any combination of interrupts, rejecting any interrupts below a 
certain level, and clearing interrupts in several modes. Several 2914s may be used in a 
parallel configuration to accept more than eight interrupts. This device has a total of 17 
instructions, including a disabled state which could be called "Wait For Interrupt." The 
instruction bits are usually stored in the same microprogram store that serves the rest of 
the system. The approximate maximum useful clock rate (taking worst case conditions) is 
9MHz, which rivals the test rate of most ATE. 

The devices used in this effort for the characterization were the Advanced 
Micro Devices Am291t which had date codes of 7727 and 7906. Those used for 
microcircuit tracing and fault insertion had the latter date code. The data sheets used 
were from AMD [2]. 

7.2.1 Learning the 291<* 

Bench testing of this device was done before looking at the logic diagrams. 
Working from only the prose descriptions and function tables, and what could be observed 

118 

HI•'niMlWn-iimtn • i  ,  I— 



•9 **• ' 

VfiiJU-j      1 

LU.'JJ £iU' VL J^5i" " J 

Figure   7.1. Logic diagram for  25LS2517,   showing 
faulted   locations 

119 

KttHMitkäh 



,—    I 

Figure 7.2a. Optical photoqraph of the 25LS2S17, showing 
the location of Fault '1 

120 

 •-•• "-- • - •  • 



Figure 7.2b.   25LS2517, Fault #2 

121 



Figure 7.2c.        2t5LS2517,   Fault   §3 

122 

•        •       • Mllllllf 



—— 

using a switch panel and lights, it was attempted to completely model the device. This 
failed, as the operation of the device was incompletely specified in the data sheets, and 
no information was available as to the operation during active portions of the clock 
cycle. 

Although this lack was partially satisfied by the bench testing, the number of 
pins (effectively 29 inputs and 20 outputs, counting bidirectional pins twice) and the 
switching of input/output modes made this extremely difficult. Eventually, cheating 
(looking at the logic diagrams included with the data sheets) was necessary to complete 
the Automaton Diagram. It must be said, however, that this modeling was done very 
early in the effort (in fact, much was done in-house at RADC before the effort started) 
and that the sources of information have improved, along with the sophistication of the 
researchers. 

7.2.2 

The Automaton Diagram is shown in Figure 7.3. 

Test Generation for the 291*f 

Test vector generation for the ATE was hampered by the same limitations as 
those that plagued bench testing, and ALICE was developed as a result. 

The recipe approach to testing also started with the 291^. Although it is 
similar in effect to the testing of "hardcore" segments of a device [3] the philosophy is a 
bit different. Blocks are assumed to be completely accessible to the outside world, and 
tests are developed for them. The test writer then tries to apply those through the 
connecting logic, and sensitize the result to the output (see sections 1 and k.2). 

Most of the LIT was generated by manual techniques (through ALICE), but 
the last few vectors were generated by the LASAR STIMGN, to see if LASAR could take 
care of the small number of remaining faults that were extremely difficult to detect 
manually. The final vector set, it is believed, detects every single-stuck-at fault that 
can possibly be caught. The remaining faults are in logic that, because of the design, 
cannot be tested. 

Unique problems arose during the generation of the AC parametric testing. 
Due to the small propagation delay times, and minute setup and hold times, the S-3260's 
capability was taxed. Small differences in table skew, which cumulatively were nearly 
the same as some of the times being measured, accounted for a great deal of 
perturbation in the results when debugging these tests. 

The DC parametric tests were relatively simple to complete, as any output 
can be put into any desired state with a very short preconditioning vector set. In 
addition, GO/NO-GO tests for VOH and VOL were done entirely by running the LIT with 
the output pins loaded. 

With this device there were no tests included specifically to verify the fact 
that the bidirectional pins and three-state pins actually go into a high impedance state 
within some specified propagation delay time, during the AC parametric testing. 
Although this is a very important parameter, it is extremely difficult to test without 
complicated switching of loads, and multiple passes during the testing. 

125 

  
 -       -• -      - 



124 

—    - 



wm ^^mw mm 

8.1). 
A complete draft slash sheet was prepared for the 2914 (see sections 2.1 and 

7.2.3 Test Implementation for the 2914 

Because of the large number of AC parameters, this test was originally 
written with the setup, limits and pattern file row numbers stored in an array in the 
TEKTEST program. The program then replaced variables in hardware control statements 
with numbers from the array and executed the statements in a large loop. This approach 
led directly to the SIMTEK program with the array stored separately as the SIM PL file 
(see sections 3.2.3 and 3.2.1). 

The AC parametric test problems mentioned above were partially circumven- 
ted by delaying the application of the signals under test until the ATE cycle was well 
along, with the other inputs applied at the start of the cycle. This allows the 
programmed signal application times to be adjusted (both positive and negative) relative 
to the reference signal (usually clock) to correct for measured errors in the ATE. The 
obvious problem with this approach is the large number of correction factors that are 
needed since each pin pair under test would have a unique error. The next step would be. 
to automate the measurement and use of the correction factors. This approach was not 
developed further because of the lack of time. Tektronix, Inc. has partially implemented 
the above concept for use with their High Performance Option (HPO) and their T.I.M.E. 
Option. 

7.2.4 Tracing and Inserting Faults in the 2914 

The 2914 is fabricated using multilayer metallization. Circuit tracing was 
attempted using enlarged micrographs and visually inspecting the physical device but the 
device proved to be too complex. Voltage contrast techniques were initiated with this 
device, as a method of fault site identification. The location of Fault 1, an output to a 
gate with eight inputs, was selected because each input could be readily exercised and 
viewed on the SEM using the voltage contrast mode. In exercising this gate, it was 
discovered that it had two outputs, a DET signal and its inverse. This required finding a 
fault location internal to the gate in order for these outputs to be faulted in a consistent 
manner (stuck at opposite levels). Fault 2 was chosen because of its effect on a single 
output. Fault 3 was chosen because of its effect on the Vector Hold circuitry. The fault 
site was initially chosen as the output of the X Register but the logic was again 
implemented in such a way that each X and its inverse were output separately from the 
X Register. The circuitry of the register itself was too dense to allow laser faulting so 
the fault was inserted at the input to the X Register, bit XI. 

Figure 7.4 shows portions of Figure 7.3, the Automaton Diagram of the 2914, 
with additional markings indicating the fault sites used. Figure 7.5 shows optical 
photographs of faults that have been inserted on physical devices (one fault per device). 

7.2.5 Isolating Faults in the 2914 

The faulted 2914s were tested on two S-3260/3270s with somewhat less than 
total success. Fault 1 was located satisfactorily by the fault isolation routines, but 
Faults 2 and 3 were not located very well. 

125 

•  •   — ' 

.. . 



  Ml 

DE 

FAULT 

A 
V 8 

M?7...o 

0 
Js 

^ 

9jz: 
A. 

<1 p°>' CJ>£>>F 

!    •»."    copy 

Figure   7.4b 

Figure  7.4. Portions  of   the  2914  Automaton  Diagram, 
shoving   the   fa'-U  locations 

[26 

_ .^^«^ 



>z *i Xo 

4 
V: 

MLJiJitU 

2 
> 

\ 
3~ 

^ 

copy 

5 *     #3 

Figure   7.4c 

127 

•-"^-     • 



^*" 

Fiqurn 7.r>a. Optical photonraph of   the 7<*\H,   showinq 
the location of Fault »1 

__ 



Fiouro   l.r-h. 2914,   Fault   »2 

i  •     ——^—•— 
• MUM! I  AM r' H -> - — 



••«• 

Figure   7.5c.        2914,   Fault   13 

t.   ^IMM^ 



—— »•"'    IW 

The printout for Fault 2 included the actual fault site as the second best 
option, and the printout for Fault 3 included the actual fault site stuck-at-zero in place 
of the expected stuck-at-one. Both of these discrepancies may have been caused by 
having the actual implementation at the chosen fault sites being inverted from the logic 
level indicated on the available schematics. This emphasizes one of the hazards of 
developing device models without complete and detailed knowledge of the actual device 
implementation. 

The concept of false modeling was verified using the 29Ik. The approach was 
to replace a connection in the model with a stuck-at-one or stuck-at-zero, and generate 
new expected outputs with LASAR, using the same inputs that were used for the good 
model. The differences between the new outputs and the good outputs were input to the 
FISO routines, which then isolated the fault. Using this concept verifies the models and 
dictionaries without tracing a device and inserting a fault. 

7.3 15530 

The 15530 Manchester Encoder/Decoder is intended for use in Avionics 
Systems. This device, through line drivers and receivers, provides the means of encoding 
and decoding NRZ data using the Manchester II Bi-Phase Level. This directly supports 
the protocol outlined in MIL-STD-1553 ft]. 

The devices used in this effort for the tracing and fault insertion were the 
Harris Semiconductor HD-15530-2, with datecodes of 7815 and 78<f0. The data sheet was 
from Harris Corporation [5]. 

7.3.1 Learning the 15530 

The 15530 has 12 inputs and 10 outputs, with no bidirectional or three-state 
pins. However, due to the great number of clock cycles needed to cause changes in the 
outputs, it is a very difficult device to characterize entirely on the bench. In fact, this 
was one of the few cases where a static device was easier studied at a high clock rate 
than when single-stepping. In addition, the 15530 contains two completely separate 
functions, which share nothing but a common master reset (encoder and decoder 
functions). 

state. 
In spite of the name "master reset" this signal does very little to the internal 

There is an additional "decoder reset" fbr which the same is noted. 

Harris Corporation supplied the schematics to RADC for the purpose of 
evaluating the draft slash sheet submitted by Harris. This schematic is considered 
proprietary by Harris, and so no notes or models for the device are included in this 
report. The machine-readable LASAR model for the 15530 and fault dictionary for the 
device have been treated in the same way. 

In any case, an Automaton Diagram for this device could not be developed 
that was any simpler than the gate and flip-flop level, due to the single-bit-wide data 
path and a reliance on random logic for state decoding. 

7.3.2 Test Generation for the 15530 

131 

• •-- 
• - •    - 



—w^^—mm m 

The test generation for this device relied less on the recipe approach than did 
that for any other device tested to date. As the largest functional element was a flip- 
flop, and there were none of the usual functional blocks, test generation was done on an 
ad hoc basis. The tests consisted of a set of valid and invalid words, graded by the 
LASAR DYSOGN. These "words" are 16-bit data words, as defined in M1L-STD-1 553. 
The Encoder was tested by using NRZ data, and the Decoder was fed Manchester 11 bi- 
phase. The feedback from LASAR in the form of undetected nodes provided guidance 
during the writing of the test. Unfortunately, there were a great number of nodes and 
failures which are completely untestable. 

The fault isolation provided by the fault dictionary is not very good. There 
aFe very few separate paths for the data, causing most failures to be vaguely isolated to 
a region somewhere in a counter chain. 

The AC tests developed for the 15530 were very complicated. There are 
several parameters which are simple propagation delay times, but many are delays with 
respect to another output, rather than an input. This required the use of the Delta-T 
subsystem on the 5-3260/3270 (see section 2.**). 

In addition, the measurement of the Divide-By-Six output at its maximum 
speed required this device to be tested using the Mode 1 of the S-3260/3270, instead of 
the usual Mode 3. 

7.3.3 Test Implementation for the 15530 

The test for the 15530 was implemented on the S-3260/3270 using the 
SIMTEK program. This test was used to verify the output from LASAR and thus the 
model.   Also, the time measurement and unique portions of SIMTEK were evaluated. 

This device was tested on all four of the S-3260/3270 ATE's mentioned in 
section 4.3.4.3. The only problem encountered in changing testers was caused by one 
tester not having a full set of sector cards. 

The LIT pattern for this device includes several hundred vectors needed to 
drive the internal states to a known condition, and to cause all of the outputs to become 
known. This technique of initialization is compatible with most ATE's. Using special 
features, such as the ability of the Sentry to execute a group of vectors repeatedly until 
the desired condition is obtained, is a technique that would make the pattern incompat- 
ible with another ATE family. 

7.3.4 Tracing and Inserting Faults in the 15530 

Much of the fault identification/insertion work for this device was completed 
using the RADC Product Evaluation Report. Computer-Aided Design techniques were 
used in developing this device. This method of design uses standard cell designs, making 
the logic gates and other basic structures easily identifiable. Because CMOS technology 
was used less laser power was required to deliberately damage the polysilicon runs. The 
regularity of the design also aided in locating fault sites and in inserting the faults. 

The logic circuit diagrams and scheinatics used in identifying suitable fault 
sites are found in the RADC Product Evaluation Report of the Harris 15530, June 1979. 
This was on restricted distribution and cannot be reproduced in this report.    Basically, 

132 

._         - — -•---••  '••-- 

I 



the faults were placed in the following locations: the output of the ENCODER ENABLE 
flip-flops in the Encoder circuitry; the output of the Parity check flip-flop in the 
Decoder circuitry; and the output of the flip-flop of a single register bit in the Bit 
Counter in the Decoder circuitry. 

7.3.5 Isolating Faults in the 15530 

The fault isolation printouts for the 15530 included each of the inserted 
faults. But each printout also listed a large number of other possible fault sites. This 
was caused by the highly sequential implementation and the extensive use of feedback 
loops in the logic. This illustrates the difficulty in isolating faults in counters and 
feedback loops. 

7A 6821 

The 6821 is a Peripheral Interface Adapter (PIA). This device attaches to the 
data bus of a microprocessor system (usually one built around the 6800) and in its usual 
configuration is addressed as part of RAM. There are two ports, A and B, each of which 
have eight lines which go to the outside world. Each bit of the A and B ports may be 
programmed individually and independently to be an input or an output. There is 
handshaking logic supplied for both the A and B side that can act in several different 
modes. The 6821 can cause an interrupt in the microprocessor system when an external 
device requests service or responds on the handshaking lines. 

The devices used for tracing were the Motorola Semiconductors, Inc. 
MC6821 which had a datecode of 7930.  The data sheets were from Motorola Inc.   [6, 7], 

7.0.1 Learning the 6821 

The 6821 consists of two major sections: the registers and buffers, which 
were simple to understand; the handshake logic, which is still not completely understood 
or debugged in the LASAR model. 

Part of the learning process was done on the bench with a set of switches and 
lights, and part was done on the S-3260. Although the data sheet provides an excellent 
description for the 6800 system programmer, it fell short of that needed by a test writer. 
A Product Evaluation report was available, but the handshake logic had proved to be too 
difficult to trace meaningfully. However, valuable information about the control logic 
was obtained from the report. 

The Automaton Diagram for the 6821 is shown in Figure 7.6. Bear in mind 
that the sections covering the handshake logic are only postulations, and have been 
fudged over and over to try to copy the behavior of the real device. This section is made 
up of asynchronous logic and the behavior under a few odd conditions is very confusing. 

7.0.2 Testing the 6821 

The tests generated for the 6821 are limited because they were originally 
intended to help debug the model, not provide for fault detection or isolation. That 
would have come later. The portions of the planned test which would cover the registers 
and control logic would be a straightforward application of the recipe approach.    The 

133 

L 



mm —m —- —"••••• 

;^^ins 
4-^<5rr 

Gä*<5 4<K 

:i^MH^ 
ft. 

w       <t 

o 

-v- 
j£ 

to 

LU 

Or 

CM 

CO 

n 

-4- 
FT tt: 

•*• 

Figure 7.6.   6 821 Automaton Diagram 

134 

-  - J 



w  1—, _ • II. ....   -r        m, ,,, i    iwmnmqmip 
 •"•'— 

1 J   I rJ     " 

u Ij 1 

Figure   7.6.        6821 Automaton  Magram,   continued 

135 



— 

Figure 7.6.   6821 Automaton Diagram, continued 

136 

^—.   ^aht 



^ «r 

V 

V£ 

u/ 

UJ 

V 

\ 

4 

Id" 

Ur. 

k 
Mi 
*0 

r\ 

\ 

0 - 

4* 
I* 

0 
J 
c 

«J 
oc _ 
VJ _ 

° o 
0 

-Q yi "Ü 
(*- 

<o ri -o V 

U 4 TJ V 

u * "0 s- 

Figure 7.6.   6821 Automaton niagram, continued \ 

o - -v o 
o o - «. 

0 

Co 

137 

^ - •—•• — 



ijwiji >«—-mvippam 

tests for the handshake  logic would be similar in philosophy to those for the  15530, 
except that the functions are even less structured. 

7.4.3 Test Implementation for the 6Ü21 

The test for the 6821 was implemented using SIMTEK routines. The LIT data 
reduction routines (see sections 3.2.6 and 3.2.7) were used extensively to obtain 
simplified printouts of the failures, thus assisting with model debugging. 

The 6821 was the first device in this effort that required a new 5-3260/3270 
adaptor. The previous devices used modifications of existing adaptors. To check the 
wiring of the new adaptor, a simple SIMPL file was written. This file was executed by 
the SIMTEK program that had been generated to perform the LIT. The resulting test 
verified the isolation of each DUT socket pin from all other pins and, with a little 
manual aid, the continuity from the DUT pin to the associated ATE electronics. This 
approach proved to be so easy, useful, and accurate that it is highly recommended. 
Further details may be obtained from the authors. 

When the LIT for model debugging was first implemented, nearly all of the 
pattern rows failed on nine of the ten 6821 devices on hand. The one (serial number 7) 
that failed only a few rows had a different date code than the other nine devices. Also, 
the devices did not exhibit the expected voltage contrast patterns in the SEM. Further 
investigation revealed that the 6821 packages contained 6800 chips. Tf.ey were returned 
to the vendor, who promptly sent replacement 6821 devices. 

7AA Tracing and Inserting Faults in the 6821 

Only two faults were inserted in this device due to the incomplete informa- 
tion available concerning the logic. The technology used in fabrication is NMOS. The 
spacing between runs is small, causing difficulties in observing detail in optical 
photographs. The device is solder sealed which required that a new decap technique be 
developed (see section 6.2.2). The greatest difficulty in handling this device involved 
fault site identification. It was necessary to apply a series of patterns to set up the 
proper conditions for exercising the logic areas desired for voltage contrast observation. 
The memory exerciser was used to automatically apply this initialization sequence. 
Figure 7.7a is sheet 2 of the Automaton Diagram for the MC6821 with Fault 1 indicated. 
Figure 7.7b is sheet 1 of the Automaton Diagram with the general area of Fault 2 
indicated and an enlarged detailed diagram of this area with the actual fault location 
shown. Figures 7.8a and 7.8b contain the SEM photographs of the inserted faults. The 
physical faults are not clearly visibie on an optical microscope, yet they have been seen 
on the SEM and verified by testing. 

7.4.5 Isolating Faults in the 6821 

Since the model was not completed, no fault isolation was attempted. 

7.5 2903 

The 2903 is a 4-bit-slice Operation Unit. This device has all of the functions 
of the 2901A plus many new features. There are effectively two ALU's onboard, 
although only one set of functions is used at any time. There are 16 registers in an 
array, as there were with the 2901 A, but there is a great deal more flexibility with their 

138 

Mill        1^*1 I J 



p ' •' " " mm ma 

! 

Z* « 

Figure 7.7a.   A portion of the 6821 Automaton Diagram, showing 
the site of Fault »1 

139 

—^- LA*. 



w  -~ 

IM. 

K 

-v- 

1 

O 

00 

~u 

Figure 7.7b.   G821, Fault «2 

HO 

  , —,*—*. _^_ 
— -• 



Figure 7.fla. Scanninq electron microscope 
photograph of the 6921, 
showing the site of Fault »1 

141 

I —        tlMMHd 



Figure   7.9h.        r,q?i t   Faulf   $2 

l ..' 



I 

use,  such as being able to disable all writes to the registers; the 2901A required one 
register always to be loaded on every cycle. 

The devices used in this effort were the Advanced Micro Devices Am2903 
which had a datecode of 79V2. The data sheets used were from AMD [2]. The 
Automaton Diagram for this device is shown in Figure 7.9. 

7.5.1 Learning the 2903 

The logic diagrams for this device were not available, but a Product 
Evaluation report had been prepared and supplied necessary information. Sufficient 
detail to reconstruct the ALU was not included, and so a reasonable implementation was 
chosen and written into the LASAR model. 

This device was somewhat unique among those studied during this effort in 
that extensive bench testing was not necessary. Due to the investigators' familiarity 
with the 2901A there were no surprises, only a great deal of functional data to be 
consumed. 

The LASAR model for this device was not completely debugged by the close 
of this effort, but is expected to be completed as part of an RADC in-house effort to 
characterize the 2903. 

7.5.2 Testing the 2903 

Test generation for fault isolation was not done for this device because the 
LASAR model had not been completed. However, if done as an RADC in-house effort, 
no great problems are expected as the 2903 will lend itself to testing by means of the 
recipe approach better than any large device encountered to date. 

7.5.3 Test Implementation for the 2903 

Since the LIT was not generated, no device test was implemented. However, 
an S-3260/3270 adaptor was built and verified using the technique described in section 
7.^.3. 

7.5.*f Tracing and Inserting Faults in the 2903 

This was not done with the 2903. 

7.6 2910 

The 2910 is a Microprogram Controller capable of directly addressing <*096 
words of control store (via a 12-bit address). The predecessors to this device, the 2909 
and 2911, were only >* bits in width but were expandable. The 2910 is not immediately 
expandable, as there is no carry out from the microprogram counter register incre- 
menter, but more than <*K words of microprogram address space are seldom needed. In 
addition, the 2910 provides a great deal more flexibility in addressing modes. 

The devices studied in this effort were the Advanced Micro Devices, Inc. 
Am2910 which had a datecode of 8009.   The data sheets used were from AMD [2J. 

HI 

•        -  -    •••-'••• 



'•' •"•"" ••'•'•»"• •-•'-! "-^nqMPPNMp 

A,. 

EA 

7 
DA.. 

RA * 

.yrm-rl 

•r.> 

T 
RQ 

L, <DB„-5 

MB     O- A 
ft 

s,»> 
3 

A  ,\ >'. A A ... '•> it 

RAM 
C i new 

H 

wc  c>- 
• 

B.- ol 

^TB«S   Will  Rl    • 

'A 
It 

Figure   7.9.        290 3  Automaton  Diagram 

\uu 

•-  m ....m.,       HIV  



1 «w"11 
«•>'••' 

oroj 

VAU- 1 

r8 r,:^!,-^ T*ö 

t> i 

HQ0>— 

V.J.U 
\ 

r.i,-r.V TS 
,'J^-J«:) 

i-oQ15^ 

"W 
*      1 

Q S —r„ 

1,1.1.1.1, 

W.i,- 

~^* 

RO.-o 

3|    RQ  |a 

»0,., 

«.".^f      I » >•»,',* 

t £ f l 
V,«.'. 

V,*' 

. •»        t»        • r 

f.- 

. '<• 

J ».r       »,*-0 

«9 

QIl.«>,af,ai 

<7«I'T   KP) 

Figure 7.9.   290 3 Automaton Diagram, continued 

145 

.,— — •— ••••--<     



—— 

siojcr>—*• 

;.r,I.:i,-i 

MS-    Ä     |       4 *•»• 

-»•SI 3 

jg   I     1 

Fl 

—»r- A C * »,t I. > « 

A 

3(4 *- 

J.I.iV. 
\. 

V-V.1 

'\* 

A—C^>5Io? 

V*Vi   , 

** 
TT1 

ALU vr 
oe,   o- 

J,'i« 
*-^_* 

\ J»      *•*•' i, 

V 
»,c f 

t^,,»,t.'l ("•—.,",n/l 

»tj,«»,»i,'J uj,n,'i,«l 

o 

v. v. 

FT~I 
i 

, •«  - -•< 

\i 
(•••*'.i,'ä,",r* 

J 
t* t.t E 

i > i '• 77 

T   T7 
ft...   ..) 

>»,H »<t '»• 

Figure  7.9.       2903 Automaton Diagram,   continued 

146 



1 mmt 

*.WA 

V.« 
\ "•"   f.»« 

?,.   «- 

> . 

\ 

.1 

\. 

'.r,vv. 

T. 
'. \ l * 

^t ^ '. 'K 
*» «, 3, <? * f, F I 

v-.1— 

r.v.'.V\ 

-V.'.r, 

Tf' 
r 

D « 

^ i —11 

i 

Figure 7.9.   2903 Automaton Diagram, continued 

147 

'-^   • •—-- - - -. _ 



wmmm "•••i 

7.6.1 Learning the 2910 

The function of the 2910 was clearly outlined in the data sheets, but tins 
information was of course insufficient for the purpose of modeling. There was a Product 
Evaluation report available which gave the needed information about certain sections. 
AMD had supplied the schematics for the 2910 earlier, for a different project, but these 
were not consulted. All of the information in the Automaton Diagram (Figure 7.10) was 
garnered through the use of the PE report and through bench testing. 

The 2910 was extremelv simple to model, with the notable exception of the 
5-word x 12-bit microprogram counter stack. It is actually a '•-word x 12-bit stack, with 
an intricate pair of "stack-in" registers to buffer the input/output (PUSH/POP) functions. 
A simpler implementation for this in the model could have been used, but the Automaton 
Diagrain was made to reflect fairly closely the actual implementation. This was done 
for the planned fault isolation, although a more programmer-oriented model may be 
developed later. 

The LA5AR model for this device has not been debugged entirely. The major 
problem is, of course, in the PUSH/POP/HOLD sections of the stack circuitry. As the 
write signal is asynchronous, one problem is how to force LASAR to produce pulses (using 
one-shots, etc.) that do not cause race conditions in the model. 

7.6.2 Testing the 2910 

Test generation for fault isolation was not completed, as with the 6821 and 
2903, due to the lack of a complete LASAR model. Once this is completed, the fault 
isolation test may be written as part of an RADC in-house effort. The recipes for the 
various blocks have already been defined. 

7.6.3 Test Implementation for the 2910 

Since the LIT was not generated, no device test was implemented. However, 
an 5-3260/3270 adaptor was built and verified using the technique described in section 
7.4.3. 

7.6.4 Tracing and Inserting Faults in the 2910 

The 2910 is designed and fabricated in the same manner as the 2914 so the 
same problems and solutions apply. The logic is laid out on the device in distinct 
identifiable areas, (e.g., 4x12 stack, instruction PLA and stack pointer). All of the 
logic related to each of the 12 bits of the input/output structure is concentrated in 
repeated layouts bordered by the associated input (D) and output (Y) pins. This 
organization simplified fault identification on this device. It also affected the choice of 
fault sites giving definite divisions of logic which would be useful to test. The fault 
areas chosen were an output of the instruction PLA, carry-in to the incrementer logic of 
one of the repeated bits and the FULL function output from the stack pointer. The 
control line issuing from the PLA was chosen because although it functionally affects 
only one operation of the device, this operation cascades through all 12 bits. The control 
line chosen regulates the R register decrement function and was faulted in such a way 
that the register is always decremented unless a load command is being executed. 
Figure 7.11a is a portion of the Automaton Diagram for the 2910 showing the effect of 
the above fault. 

148 

-       — --   - 



mm 

Aß 

a. 

«- V 

^ 
*1 

4t 
a 

<5 j 
* * o 

5 
1 -i n <c QO O  u. Ü. 

II 
t 
c 

4- 0 o X o •    0  Q 
J 

^ 11 < j \u I < *k 4 i * •> & 
fi J \n 
j A a. 

J £ c£ 

A 
•* 

w 

<H 

-< id 

o 
•4 

s 
< ac 
tt: tu 

*0 i 

0 Q <r aC a. 
0 h- 
Cfc 2 
VJ o 
E u 

O 
N. 
JN. 

Oj 

ta.   o 

•  9. 

l<*] 

0 

•- 

z 

I o 

If" 

<0 

c 
o 
4-1 
m 

I '   ] 

0) u 
3 

I 

149 

• üinimüi ^^^^ 



J. ~z.l<9 

c 'L- 
ff.-o 

~^ (rti&H  IP [[*«,> •l\- 

i ft z o) 

•    J 

Figure 7.11a. A portion of the 2910 Automaton niaqram, 
showing the site of Fault #1 

150 

•~~^T1 



<h 

^ 

CQ   £ 
O 

UL 

O 

H O 

A 

o 
in 

Si 

V 
i 

& 

3 
a 
tu 

CM 

o 
I 
I 
I 

Q 
S 

o 

i si 

fc -- •    -— ••"--'- -•  •ll-kl.M 



'•!'       -"'•          

FULL 
10W   IF 

U PUSH 
St&tVftL 

Q 

kx. 

/ 

\ 

V     V 
/ 

-V FAULT#3 

<J? 

2 

E 
£7V 

/ • 3 

0 

A / 

! 

Figure 7.11c.   2910, Fault #3 

152 

— '-'-~~-~r-* •        - - 



'-"' 

Fault 2 prevents bit ft of the uPC incrementer from recognizing the active 
level of the CI input. The other uPC bits are not directly affected. Figure 7.11b shows 
the area of the fault. 

Fault 3 prevents the full signal from the stack pointer from going active. 
Figure 7.11c shows the fault site on the Automaton Diagram. 

Figure 7.11a is a detail of the logic for the R register and its decrement 
function showing more accurately the fault inserted in the control line. Thi? logir 
diagram comes from the RADC Product Evaluation of the Advanced Micro Devices 2910. 
Figure 7.11b details the positioning of Fault 2 showmg the logic for the bit slice in 
question.  Figures 7.12a, 7.12b, and 7.12c give optical photographs of the faults inserted. 

References: 

1. Schottky and Low-Power Schottky Data Book, Advanced Micro Devices, Inc. 

2. The Am2900 Family Data Book, Advanced Micro Devices, Inc. 

Note that the data covering AC and DC parameters for the 2903, 2910 is 
incomplete or lacking. Other data sheets were found around the laboratory which did 
have the information. The authors are unsure why these data were omitted from this 
book. 

3. A Survey of LSI Test Methodology, RADC-TR-79-8') (AO 70733), pp. 12-13. 

4. M1L-STD-1553B,     Military     Standard,     Aircraft     Internal    Time     Division 
Command/Response Multiplex Data Bus, 21 September 1978. 

5. HD-15530 CMOS Manchester Encoder/Decoder Data Sheet, Harris Corpora- 
tion. 

6. MC6821 Peripheral Interface Adaptor (PIA) Data Sheet, Motorola Semicon- 
ductor Products, Inc. 

7. M6800   Microprocessor   Applications  Manual,   Motorola  Semiconductor   Pro- 
ducts Inc. ' 

153 

  ^ -:•--.. ---    —       • .1 I.Uli. 



"—" 

rafasftWf 

Figure   7. 1 2a« Optical photograph of the 2910, 
showing the site of Fault *l 

• 

•-• • 



'i gure   7. ] 'l , ,r<lft.   Fault   12 



•   

A 

Fi Tirr> 7.12c.        29in,   Pault  *3 

• 

~L  - -=- 



^ *  "^1 

8. Status 

This effort provided the vehicle for investigations into several areas. Test 
generation, fault isolation, techniques for the tracing of internal circuitry of devices, 
slash sheet generation, and software development were a few of these areas. 

ln-house expertise was developed and improved at RADC with the intention 
of becoming better able to review work done by others, and to perform these tasks as 
required for quick reaction projects or the handling of proprietary material. 

The following will be a summary of the status of important areas which were 
studied. These areas are Slash Sheets, Fault Isolation, and Software. These discussions 
will be followed by some recommendations. 

8.1 Status of Slash Sheets 

Two slash sheets were completed for review under this effort. The first was 
for the 291**, and was assigned the number M38510/4^. The Table III LIT was developed 
using the techniques described in section 3 of this report, and was in fact the reason that 
these techniques were developed. ALICE was designed and implemented specifically for 
this LIT.   Some of this was done in-house at RADC before the start of this effort. 

The remainder of Table III and the balance of the slash sheet were done 
entirely under this effort. 

This slash sheet has been sent out for review by DESC and the industry. 

The second slash sheet was for the 15530, and was assigned the number 
M38510/501. This slash sheet was originally a draft sent in by the manufacturer of this 
device, and provided the basis for the work done with the 15530 under this effort. 

Although this slash sheet has been sent out for review, comments have not 
yet been received by RADC. 

The Table III format for these slash sheets differs from the usual format. It 
was attempted to make the Table III readable by humans through the use of vectors of 
pins and comments. The test vectors are available in both the Sentry and S-3260/3270 
formats, on magnetic tape. It is hoped that anyone who needs to test these devices will 
be able to find a usable machine-readable version of the vectors, and will be able to 
implement the same timing modes. 

8.2 Status of Fault Isolation 

The fault isolation routines have demonstrated the ability to locate the 
failing element within the limitations set by the model and the LIT. Most of the 
deficiencies are caused by differences between the model and the actual device. 

There are several improvements that could be made to the routines in 
operating time and operator interface. In particular, reducing the time required to 
perform the search through the data files would improve the operating speed directly. 

8.3 Status of Software 

157 

 • 



r 

The various software packages developed for use in test generation and test 
implementation were an integral portion of this effort. These packages and utilities, 
described in section 3, allowed the more mechanical tasks to be automated, leaving more 
time for the important jobs. 

It is unfortunate that more effort could not be devoted to their development. 
\s is usual in these cases, a particulai problem arose, and a utility was written to solve 
it. Later, a slightly different problem required a modification of the software. 
Fortunately, the software generated was well-structured and commented sufficiently to 
permit an orderly set of "patches." 

On the S-3260/3270, the well-structured software patches did not always 
work. Simple modifications often put a program outside the core limitations of the 
computer, and forced a roundabout approach. Lack of modularity of the TEKTEST 
language also hampered progress. 

There are several programs lor the RADC Multics and S-3260/3270 that have 
not been c ompleted, or are not sufficiently genera! to satisfy the authors. These 
programs will be fixed or completed either by RADC, working in-house, or by the 
contractor's personnel when they wish to use these utilities for other efforts. These 
packages are not explicitly listed here as they are expected to be completed by the time 
this report has been printed. 

Following is a brief summary, in outline form, of the status and pro|e> ted 
changes for some ot the software packages developed during this effort. The list is 
divided into separate sections for Multics and S-3260/3270 utilities. 

8.3.1 Multics I utilities: 

ALICE, TECO, etc. -- The«' are complete as they are, but several 
improvements are planned. ALICE needs a more powerful expression 
evaluation capability, which will allow it to perform more complicated 
pattern generation algorithms. 

TEKTRONIX, SENTRY, SENPASS, SENPASS2 - These utilities, which con- 
vert patterns to/from ATE languages, work only for a subset of these 
languages. For the Sentry Utilities, this is ^n extremely limited subset. It is 
hoped that these can be augmented in the near future so that they more fully 
implement these languages. A great deal of experience was garnered during 
this effort, and further refinements of these utilities will probably implement 
Virtual Machines that will be more faithful to the actual ATE. 

NQI INE, SWAPCOL, PLAGEN - These are the basis of Computer-Aided 
IVsign packages which will make the modeling of the DUT much easier. 
Although these techniques work at the present time, the cost of regularly 
running these on very large networks is prohibitive. Vast rediK tions in 
professing time and storage requirements will be necessary. 

ATE_TAFEJ TIL -- They programs, which allow compatibility between 
Multics and ATE on a magnetic tape level, require considerable improvement. 
At the present time, filr> transfers between the Multics facility and the S- 
^260/3270 take place on a retail hasis, rather than a wholesale basis.   In other 

I 58 



 '•"-•" III I »I   

8.3.? 

words, it should be possible to send or receive files in bulk, '>\ < ausing Wulti s 
to simulate the file structure (and storage syst ) • '. the S-3260/3270. \ 
comprehensive emulation of the whole syste n is needed (see se< tion 8.4.4). 

S-3260/3270 Utilities 

PATPLO, WAVE, etc. — At present these programs use the device pattern 
file and pinlist for all plotting information. Additional capability of plotting 
LIT errors information against the pattern information would De useful in 
analysing failure information. Other additions to the program should include 
plotting the pattern file, with the appropriate pluses, to aid in the analysis d 
a device test. 

BATRED — The BATRED file is presently stored in each device UID and is 
used only to run DATRED (see section 3.2.7). The user must enter RUN 
(name):SI\1 to run the other programs in sections 3.2.S through 3.2.1^.    These 
programs   should   be   transparent   to   the   user,   since   they   are DI  T 
dependent.    Changing BATRED and adding a user-interface program would 
simplify the operation of the S-3260/3270 utilities by eliminating the need tor 
the user to enter program names and automatically assigning all the required 
devices and files. 

M 

MATSIM — A first generation of this program was developed and is presently 
operating. This version assists the operator in the specification of <\i<"\ 
argument and outputs a ".ASC" file for the device test. No special syste n 
checks or opcode checks have presently been incorporated in this program. 
Future revisions to this program should include these checks as well as the 
capability of verifying that existing SIM PL. ASC files will execute on a 
particular piece of ATE. Other possibilities include the capability ol reading 
a computer version of a device slash sheet and automatically developing the 
SIMPL, PIN, PINLIST, and SIMTEK files (or a particular device. Developing 
this capability was beyond the scope of this effort. 

SIMPL — The SIM PL opcodes for all DC tests have been developed. Standard 
AC tests such as input setup and hold times as well as propagation and 
transition times can also be executed using the SIMPL opcodes. Special tests 
such as a Galloping RAM test require special hardware pattern generat rs 
and have not been implemented. However, future updates to SIMPL should 
include the implementation of these tests on the various test systems. 

SIMTEK — The SIMTEK program will presently execute all existing SIMPL 
opcodes, but as it requires approximately I 3K of S-}2f>0/3270 memory for 
testing. Some reduction in memory usage should be made. For example, the 
routines in SIMTEK that check the validity of the SIMPL parameters against 
the system limits could be moved to the MATSIM program. A further 
reduction in memory would result frotn having MATSIM compile a slMTI.K 
that contains only the sections needed by a given SIMPL file. The final 
objective could be to rewrite SIMTEK to develop an interpretive program 
that would implement SIMPL statements directly. 

Recommendations 

lr)9 

^ -     - 



 ' "•"""••••WPWPPP 

The following sections briefly discuss some suggestions for simplifying device 
specification development, interpretation, and usage. 

8.^.1 Slash Sheet Format 

The slash sheet format should be standardized in a format that is both human 
and machine readable. This would allow development of programs to convert the Table 
III tests to the format required by the user's ATE and to present the LIT and AC tests as 
waveforms (or other format) that a user can readily understand. Also, the slash sheets 
could be stored on magnetic tape for easy transmission among interested parties. 

8.^.2 Device Modeling 

This effort has demonstrated repeatedly that the development or evaluation 
of an LIT can be no better than the knowledge of the actual device implementation. This 
knowledge leads directly to accurate models, which then allow a test generation program 
to properly generate or evaluate an LIT, resulting in a realistic TCL and fault dictionary. 
Thus, the amount of device implementation details provided by a manufacturer has a 
direct impact on the accuracy, usefulness, and cost of a slash sheet. 

8.^.3 Specialized ATE Capabilities 

As noted in section 2.*t, each ATE has special features that facilitate 
implementation of some test types while restricting others. These capabilities also can 
make transferring a test from one ATE to another very difficult. For this reason, the 
slash sheet tests should always be written in a simple and standardized format that does 
not use the special capability of any ATE. This simple format has the additional 
advantages of improving an user's understanding of the device, simplifying slash sheet 
storage and manipulation by computer and allowing test implementation on an ATE that 
is not familar to the slash sheet writer. 

8.<i.<t Desired CAT Tools/Techniques 

This effort relied heavily on the use of Computer-Aided Testing. A great 
many utilities were created which appear to be unique in this field. However, there are 
still several areas which could bear improvement. 

One useful item would be a hardware simulator which could take an 
Automaton Diagram directly as input. It is quite possible that fault simulation would 
prove difficult on that level, but this utility would make the original model debugging 
much faster. 

Along similar lines, a tool for synthesizing asynchronous networks of (hope- 
fully) arbitrary complexity would be valuable. Such a tool rould have been used when 
developing the handshake logic for the 6821 model during this effort. Other Computer- 
Aided Design tools would also have been welcome. 

Complete simulators or interpreters for the S-3260/3270 TEKTEST and 
Sentry FACTOR languages would also have been useful. If the simulation also were able 
to allow debugging of hardware control statements, off-line implementation of tests 
would be much easier. Usually, the bottleneck in implementation is the availability of 
test   table  time.     In production environments this availability  is severely  limited.     In 

]60 



mw^m^^mmmmm 1 
addition, minor test table problems can cause a correct program to fail, causing 
engineers to waste time fixing something that is not broken. A reliable software 
emulation of the table response, providing trace capability, would be invaluable. 

A utility which would unwind complicated clocking schemes (see section 
3.1.12) will be implemented eventually. This will be a large step toward 100% 
compatibility among different types of ATE. 

i 

161 

 - _- 'a.  ••- —• --• -       ii n— 



II • 

Appendix A. Automaton Diagrams 

It was attempted, in this effort, to mode] each DUT in two forms, both the 
LASAR representation and Automaton Diagram. In one case, the modeling of the 15530 
Manchester Encoder/Decoder, it became evident that this was difficult or impossible, as 
the Automaton Diagram was no simpler than the original schematic. This was due to the 
lacK of parallelism in the data paths. With other devices, the Automaton Diagram was 
an invaluable tool for understanding the operation of the device (as in test generation) 
and for guiding the design of the LASAR model. In the latter case, heavy use was made 
of Product Evaluation Reports (generated by RADC and contractors) containing informa- 
tion about the specific implementations used for certain functions. Without this 
information, LASAR modeling would still have been possible, but fault detection/isola- 
tion results would not have been as accurate or faithful to the actual devices. 

The Automaton Diagram is a tool for both the design and diagnosis of 
sequential state machines. Essentially, an Automaton Diagram describes the behavior of 
the machine in terms of memory elements (delay elements) and combinatorial logic. The 
memory element of choice is the edge-triggered master/slave D-Flip-Flop, used in an 
array called a "register," with data flow controlled by means of data selectors. 
However, most existing designs require the use of other types oi memory elements, and 
the data flow is seldom implemented neatly with only data selectors. Occasionally, one- 
shots, SR-Flip-Flops, and discrete gates must be Introduccc], Examples will be provided 
shortly. 

The generalized sequential state machine is shown in Figure A.I. As the 
equations in the figure show, the next state is derived from the present input and the 
present state by the u.-e of "delta," the next state mapping function. Delta is usually 
implemented as combinatorial logic. In a similar manner, the present output is derived 
from the present input and present state using "ornega," the present output mapping 
function. 

The astute reader will have noted that there is no clock signal shown in 
Figure A. I. Although most current designs will employ such a signal lor synchronization, 
the memory elements denoted by "Z" are included solely ior delay, and could for example 
be implemented as acoustic delay lines. Their only purpose is to Ulow the system to 
settle (become determinant) before the next cycle, or change, occurs. In practice of 
course, the synchronization is most easily accomplished by the us*.- oi the external clock 
signal, which may be implemented in many ways, including: two- or multi-phase clocks; 
on-board timing generators; or one-shots. When drawing the Automaton Diagram, if 
there is a single :lock signal, it is usually omitted entirely. The notation for the 
triggering mode of the memory elements will be discussed shortly. 

The total number of elements in Z is the total number of feedback paths in 
the automaton. The delta and omega blocks shown in Figure A.l are memoryless, 
meaning that their outputs depend solely on their current inputs (ignoring propagation 
delay time). The automata considered here differ from "asynchronous" machines that 
may operate in the "fundamental mode" or "pulse mode" [1], 

The Mealy Machine shown in Figure \.\ is the most general case, but it is 
necessary at this point to restrict the definition.   In that figure, the equation 

162 

 ~-  



zn 

z S CJ 

i i 
zn+l 

, 

—fc ylJ 

xn 

zn+1 = S(xn, zn)  z 

Yn  - cO(Xn, Zn)   S 

zn 

zn+l 

Xn 

,n Y" = 

Memory Elements 

Next State Mapping 

Present Output Mapping 

Present State 

Next State 

Present Input 

Present Output 

Figure A.l.   Mealy Machine 

163 

      • -- 
.— 



""- •"— 

Yn = u.(Xn,Zn) (A.l) 

is now assumed  to be indeed a function of both of its arguments, not only one, 

Yn = ^(Xn), (A.2) 

or the other, 

Yn = u,(Zn). (A.3) 

The condition described by Eq. (A.2) is of course trivia], reducing the machine 
effectively to a single combinational block. The special case described by Eq. (A.3), 
however, is a very powerful one, and is called a Moore Machine. This is shown explicitly 
in Figure A.2. The distinction between the behavior öf a Mealy and a Moore Machine is 
so great that Eq. (A.l) must always be considered to be a function of both of its 
arguments. 

The output of a Moore Machine changes only at discrete time intervals, in 
contrast to the Mealy Machine where any change of an input may potentially cause an 
output transition. This implies that, in general, two Mealy Machines may not be 
connected directly together in a loop. This is shown in Figure A.3, along with a much- 
simplified schematic of the unintended, and illegal, feedback path. This may be avoided 
by making «At of the Machines into a Moore Machine. Now, no uncontrolled feedback 
path can occur. 

One may take Eq. (A.3) a step further, and cause the omega function (present 
output mapping) merely pass its argument unchanged, yielding 

Yn = Z 
n 

(A.fc) 

This is called a Medvedev Machine, and is shown in Figure A.4. When one uses a 2910 
Microprogram Sequencer to address a ROM, with a pipeline register to buffer the output 
of the ROM, one has built a Medvedev Machine. The 2901 or 2903 Operation Unit in the 
same system is a Mealy Machine. 

The symbols used in the construction of an Automaton Diagram have not as 
yet been completely standardized, as it appears that each new DUT requires at least one 
new element. However, the main functional blocks are relatively constant, and are 
generally drawn in the manner indicated by the following description. 

Registers and Flip-Flops form the core of the Automaton Diagram. An eight- 
bit, positive edge-triggered register is shown in Figure A.5. For convenience, the name 
of the output signal is usually taken to be the same as the name within the block. In 
addition, (a) through (h) on the same figure show the various clocking schemes usually 
encountered. Note that (c) and (d) are more properly called "latches" as opposed to 
"registers," and are usually not sufficient singly to satisfy the requirements of a memory 
element "Z." This is because they are transparent for a portion of the clock cycle, 
a/lowing uncontrolled feedback. Of course, tricks may be used, such as restricting the 
width of the "transparent" portion of the clock cycle to a duration safely shorter than 
the shortest propagation delay time, or transition time, through delta, but that is beyond 

164 



_ ——«^WN»  '- 

zn 

V ^ p_ 

z 8 cJ 

zn+l 
a 

k 
/•n 

*Yn 

zn+1 = S (xn, zn) 
Yn   =(j(Zn) 

Figure A,2.       Moore  Machine 

165 

•'. 
 •    • - 



'*"•— • " •'        •"""'•     ' I I'.»1 

ja 

3 

XI 
^X3 

XI 

10 

3 

M      * f 

T) 
0) 

•H 
IM 
•H 
•-( 
a 01 e c 

•i-t •r4 w s: *" o 
A s £ 

(0 >, a. H 
(0 x 0 o £ 

10 V 

ä 
<D 10 
ai 1 

•a 
a 

•Ö 
c CO 0) 
4J 
c < 

c 0) 
M a 3 
o> 

M 

(0 

w. XI 

3 f 

(0 

3 

W 

166 

^ CJ— «••ill  i J 



'•'•'•"I   ' I I '•""•l 

I Yn=Zn 

zn+1 = 6(xn, zn) 

Yn - z
n 

Figure A.4.   Medvedev Machine 

167 

... -^ 



""—' '"•l 
'••"•-' • 

R2 

E 

A.  [>  Positive Edge-triggered 

B.  f     Negative Edge-triggered 

C.  pl Positive Level Triggered (latch) 

D. Negative Level Triggered (latch) 

E. Neg. Level Master, Pos. Level Slave 

F. Pos. Level Master, Neg. Level Slave 

G.  [>4 Pos. Edge Master, Neg. Edge Slave 

H.  M Neg. Edge Master, Pos. Edge Slave 

Figure A.5.   Register (or latch) 

168 

'ftü -i '- - • 



•"—«——— 

the scope of this discussion.   Their usual purpose is to discretely and explicitly form a 
master/slave register, such as in case (e) or (f). 

One may consider (e) and (f) to be functionally equivalent in some cases to (a) 
and (b), respectively, and that is indeed how (a) and (b) are often implemented. These 
are not true edge-triggered devices however, and may be inappropriate for use with the 
scheme discussed in the next paragraph. 

The terms "setup" and "hold" time, while familiar and adequate when 
describing memory elements by themselves, are unfortunately insufficient to describe 
the dynamic properties of automata, particularly those with deltas and omegas possess- 
ing very short propagation delay times, The concepts of "decision" and "transition" 
intervals are more appropriate, and are discussed in detail in another report [2]. It is 
sufficient to say at this time that the cases described in (g) and (h) provide the only 
absolutely reliable operation in a large, high speed system, where an arbitrarily high 
degree of stability may be athicved by adjusting the width of the high portion of the 
clock pulse, for (g), or the low portion of the clock pulse, for (h). The edge-triggered 
flip-flops used here should be truly edge-triggered, not implemented as master-slave 
latches. Due to cost considerations, however, no one has yet implemented this scheme in 
LSI or VLSI. It is quite possible that the implementation of VHS1C will find this 
necessary. 

As in the case of reg sters, D-Flip-Flops may enjoy the same wide range of 
clocking options.   An example is • htown in Figure A.6. 

Although the D-Flip-Flop is the easiest memory element to work with in 
design of automata, it is necessary on occasion to include Si?- or JK-Flip-Flops, and 
fther memory elements which tend to muddy the dividing lines between combinatorial 
logic and feedback paths [3]. Thev mav, however, simplify the implementation of a 
complex function. 

The data selector is a heavily-used element in Automaton Diagrams. The 
data selector (also called a multiplexer) has a single output (which may be a vector of 
"bits"), and many inputs (also vectors, each with the same bit width as the output 
vector). A control vector selects which input is fed to the output, with disregard for the 
state of the other inputs.   An example is shown in Figure A.7. 

While schematically convenient for humans to understand, the data selector 
is customarily implemented as in Figure A.S. whenever possible, gate-level modeling 
(LASAR models) should reflect this. Here, decoding logic (which may serve the entire 
device) produces the necessary control signals. Note that a common failure mode would 
be failure to select any operand, which would default to a logical zero output if 
implemented as in Figure A.8. 

A useful element for modeling a register irray address selector is the 
demultiplexer, where an input vector is decodeu into many bits, one and only one of 
which is active at any time. This is shown in Figure A.9. Occasionally there may be an 
enable signal to the demultiplexer, which can cause no signal to be active, thus no 
register to be selected. 

169 

-t- . . .^hr -«-—- - • iinai^iriiin ' Ji 



•  • "•    "1 !••• 

D Input 

Positive Edge-triggered Master, 
Negative Edge-triggered Slave 

Dn "\/^nTT 

Clock 

Qn, Qn Qn+l#Qn+l 

Master 
Transition 

Figure A.6.   D-Flip-Flop 

Slave 
Transition 

170 

  :.~- •.. --"» J 



,»"1""—- 1 

Output 

3 bits 

control 

y' 

trol\ 
« S     1 2        3 

n bits * 

n bits 

4 5 

13 

12 

II 15 

Input 0 14 

16 

17 

8  inputs 

n bit-wide  data path 

with K  inputs,   control  path must be   (log K| 

bits wide 

Figure  A.7.        Data Selector 

171 



".«.'•«'I' ""«•'   " 

44 

decoding 
logic 

(Could be * * 
an instruct-» * 
ion PLA) 

Output 

A 

A  A 

Input 0  Input 1  Input 2 

Figure A.«.   A typical implementation of a data selector 

172 

^     



' ••- l  "•'"•" m 

u 
o 
*i 
u 
0) —* 
n 
10 
(0 
o 
>-l 

•c 
•c 
id 

in 
10 

c 
•H 

u 
«0 

0) 
X 

a 

a 
E 
0) c 

(D 
n 
3 

173 

i. 
-•    -••-* 



r ——— — •-'•"      •'     ""    -——-"^mmm.wmmmm  , 

Function blocks, such as an ALU, may be denoted as a rectangle with a 
boolean equation, function table, or reference to a function table. In rare cases, logic 
gates may be drawn.   This is shown in Figure A. 10. 

A few miscellaneous notes are necessary. First, asynchronous resets, presets, 
and clears should be avoided, both as good design practice and as an existing machine 
description. The only exception is in the latter case and only when the exact 
implementation is known (such as through the use of a Product Evaluation Report). 
Ideally, a machine should be designed so that complete initialization is a matter of only 
one or a few instructions. 

Second, the synchronizing signal (the clock) should never be gated or 
modified. Gating of the clock is one of the easiest ways to encourage race conditions, 
either in the real device, or in a LA5AR model of a DUT where there is in fact no actual 
race. In most devices, the copy operation is not done as is Figure A.9, but is done 
instead by stopping the clock. This is a case where it may be justifiable to implement 
this as a true copy in the LASAR model (and of course in the Automaton Diagram) even 
when the actual device gates the clock. Again, it is good design practice to avoid 
techniques which change the characteristics of the feedback paths. 

It is not known at the time of this writing how widely Automaton Diagrams 
will be used. The MIL-M-38510 detail specification for the 291** will include the 
Automaton Diagram for that device, and it will be interesting to note the reaction from 
industry. A great deal of benefit would result from the adoption of any common design 
language: logic designers need be trained only once; good design practices would br 
encouraged and easily monitored; a consistent set of logic blocks would evolve; and most 
pertinent to this effort, test generation and fault isolation would become almost trivial. 

References: 

1. Zvi Kohavi, Switching and Finite Automata Theory, McGraw-Hill,  1978, pp. 
356-37 5. 

2. Microprocessor  Test Generation Using Automata Models, RADC-TR-?-?, In 
preparation. 

3. Kohavi, op. cit., pp. 283-305. 

\n 

-    • L2_i y 



1 ' '•" 

J plus 1 

y 

i 
C = AB 

I 
1 

See Table 

mr 
A  B  C  D 

6 
A    B 

Figure A.10.   Function blocks 

£U.S. GOVERNMENT PRINTING OlHCf: lORI-TM-W/OO 

175 

- 1      -•—' 



r 

* 
:. 

MISSION 
of 

Rome Air Development Center 

MOC plans and execute*, research, development, tut and 
ielected acquisition programs in support o& Command, Control 
Communications and Intelligence (C3I) activities.   Technical 
and engineering support utittun areas o& technical competence 
Is provided to ESP Program ö^iecs IPOs) and otheK ESO 
elements.    The principal technical mission areas aw 
communications, electromagnetic guidance and control, sur- 
veillance o£ ground and aerospace objects, intelligence data 
collection and handling, information system technology, 
ionospheric propagation, solid state sciences, microwave 
phytlcs and eltctronie reliability, maintainability and 
compatibility. 

riiiiaiw'iitini-fiin-» <£&* .•*#**• > A 




