

U.S. Army Engineer Topographic Laboratories

Fort Belvoir, VA 22060
(16) 4A161102B520

Approved for public release; distribution unlimited

IMAGE ALIGNMENT AND CORRELATION SYSTEM

Samuel E. Craig
Alan L. Moyer

July 1980
Final Technical Report

Prepared for
U.S. Army Engineer Topographic Laboratories Fort Belvoir, VA 22060

Approved for public release; distribution unlimited

0
Deft Laboratories Inc.

UNCLASSIFIED

REPORT DOCUMENTATIN PAES	
 IMAGE ALIGNMENT AND CORRELATION SYSTEM	8. Trpe of minont almol covince Final Technical Report Sept 78 through July 80
7. autwora) Samuel E. Craig Alan L. Moyer	0101-A002 DAAK70-78-C-0217
	$4 \mathrm{~A} 161102 \mathrm{~B} 52 \mathrm{C}$
i. COMTROLLIME OFFICE WAME ANO ADORESS US Army Engineer Topographic Laboratories	12. MEPONT DATE July 1980
Research Institute Fort Belvoir, VA 22060	12. Mumber or paces 194
	 Unclassified
	Tha grctastiricatiom/bownenablo
Da. Distmicution statemint (of Mile Raperi)	
Approved for public release; distribution	nlimited
	Repmen)
Tr. SUPDLEMENTANY NOTES	
	Image Processing, Acousto-Optics, Microprocessors
 This report documents the developmen Image and Alignment and Correlation syst Army Engineer Topographic Laboratories by Inc. The purpose of the system is to pro demonstration of the applicability of DE Fourier Tranaform) technology to the pro	nt and design of the em built for the uis. y Deft Laboratories. ovide a hardware FT (Direct Electronic blems of image

20. ABSTRACT (cont.)

alignment and image cross-correlation measurement. These problems are related generally to the areas of topographic mapping, feature extraction and change detection, and photointerpretation.

The system uses a highly developed image-adaptive alignment algorithm which exploits the spatial frequency analysis capability of the DEFT sensor. With high-contrast images having prominent spatial frequencies, residual alignment errors are typically 50 microns in translation and 0.1 degree in angle. The system also has the capability of displaying the spatial frequency content of an image, and of computing normalized cross-correlation coefficients based on spatial frequency data.

The major limitations of the system are its slow operating speed, which is caused by certain parts of the circuitry rather than the sensor, and its dependence on the image.

SUMMARY

This report documents the development and design of the Image and Alignment and Correlation System built for the US Army Engineer Topographic Laboratories by Deft Laboratories, Inc. The purpose of the system is to provide a hardware demonstration of the applicability of DEFT (Direct Electronic Fourier Transform) technology to the problems of image alignment and image cross-correlation measurement. These problems are related generally to the areas of topographic mapping, feature extraction and change detection, and photointerpretation.

The development of this system is a continuation of the advancement of DEFT technology and its applications. The sensor technology has received previous sponsorship at Syracuse University by ETL and by the Night Vision Laboratories. The Image Alignment and Correlation System represents a significant achievement in the application of the technology and in its interfacing and programmable control by a microprocessor. In other words, the system represents the first real "use" of DEFT sensor outputs.

The system uses a highly developed image-adaptive alignment algorithm which exploits the spatial frequency analysis capability of the DEFT sensor. With high-contrast images having prominent spatial frequencies, residual alignment errors are typically 50 microns in translation and 0.1 degree in angle. The system also has the capability of displaying the spatial frequency content of an image, and of computing normalized cross-correlation coefficients based on spatial frequency data.

The system consists of two major assemblies, which are the alignment fixture and the electronics cabinet. The alignment fixture uses translation and rotation stages driven by stepper motors to align the test image with respect to the reference image. The images are transparencies mounted on light boxes.

An $x-y$ plotter and a graphics terminal were also furnished with the system as accessories.

The major limitations of the system are its slow operating speed, which is caused by certain parts of the circuitry rather than the sensor, and its dependence on the image.

This report contains all information specific to the Image Alignment and Correlation System, but it does not include background material on the principles of operation and characteristics of the DEFT sensor on which the system is based. That information can be obtained from any one of a number of previous papers and articles, the most significant of which are listed in a bibliography at the end of this document.

TABLE OF CONTENTS

Page No. iii
Summary
Preface v
List of Figures viii
List of Tables ix
I. Introduction 1
II. System Hardware 3
A. General Description 3
B. Microprocessor Subsystem 6
C. Stepper Motors and Controls 10
D. Frequency Synthesizers 13
E. RF Distribution Circuit Board 13
F. DEFT Sensor Modules 15
G. Synchronous Detector Circuit Board 17
H. Data Acquisition System (DAS) 19
I. Bias Generator 20
J. Power Supplies 20
K. Light Boxes 21
III. Alignment Algorithm 23
A. Overview 23
B. Spatial Frequency Selection 25
C. Angular Alignment 31
D. Least Squares Estimation of ΔX and ΔY 34
IV. System Software 43
A. General Description 43
B. Supervisor Program 43
C. Plotter and CRT Display Routine 45
D. Alignment Program and Its Subroutine 47
E. Calculation of Image Transform Cross-Correlation Function 63
F. Major Shared Subroutines 65
V. Operating Instructions 70
A. Operating Functions 70
VI. Review of the System's Development 81
VII. Conclusion 85
VIII. Recommendations 86
IX. References 87
X. Bibliography 88Appendix A - Schematic DiagramsAppendix B - Processor Assembly Code Listings

List of Figures

Figure No. Page
1 System Block Diagram 5
2
RF Distribution Block Diagram 14
3 Sensor Module Block Diagram 16
4 Synchronous Detector Block Diagram 18
5
Spatial Frequency Search Area 29
6 Overall Software, Flow Diagram 48
7
Spatial Frequency Selection, Flow Diagram 5089
Coarse Angular Alignment, Flow Diagram 51
10 Least Squares Estimation, Flow Diagram 53Fine Angular Alignment, Flow Diagram5211
Subroutine MEASRE, Flow Diagram 54 55
Correlation Coefficient, Flow Diagram 66

List of Tables

Table No.
Page

1
2
3
4
5Memory Address Allocations11
Power Supply Currents 22
Typical Residual Alignment Errors 26
Coding of Operational Modes 49
Pre-Programmed System Functions 70

I. INTRODUCTION

The Image Alignment and Correlation System was built for the U.S. Army Engineer Topographic Laboratories by Deft Laboratories, Inc. under Contract No. DAAK70-78-C-0217. Its purpose is to provide a hardware demonstration of the applicability of DEFT (Direct Electronic Fourier Transform) technology to the problems of image alignment and image cross-correlation measurement. These problems are related generally to the areas of topographic mapping, feature extraction and change detection, and photointerpretation.

The development of this system is a continuation of the advancement of DEFT technology and its applications. The sensor technology has received previous sponsorship at Syracuse University by ETL and by the Night Vision Laboratories. The Image Alignment and Correlation System represents a significant achievement in the application of the technology and in its interfacing and programmable control by a microprocessor. In other words, the system represents the first real "use" of DEFT sensor outputs.

The system performs three main functions: display, image alignment, and image correlation. There are options under each of these main functions. That of display uses as an output device either a graphics terminal which has a storage cathoderay tube (CRT) or an $x-y$ recorder for "hard copy." The sensor output is scanned in the spatial frequency domain under microprocessor control and displayed graphically in pseudo-threedimensional form.

The second function aligns a test image in angle and in vertical and horizontal translation, either with respect to a reference image viewed by a second sensor, or with respect to the original position of the test image using only one sensor. Using high-contrast images which have prominent features in the spatial frequency domain, residual alignment errors are
typically 50 microns in translation and 0.1 degree in angle.
The system measures image correlation by computing a normalized cross-correlation coefficient between the outputs of the two sensors over the usable range of the spatial frequency domain. The data on which the correlation coefficient is based is an approximation to the two-dimensional Fourier transform of each image's intensity pattern. Either a real coefficient using the data magnitudes or a complex coefficient using the complex data can be computed.

Because the entire system is controlled by a microprocessor, there is ample opportunity for program modification or expansion. In addition, the system can be used as a stand-alone microcomputer, either with its own terminal or with another.

The purpose of this report is to document the development and design of the system, describing both its hardware and software aspects in detail. The following sections begin with descriptions of the system hardware, the basis of the alignment algorithm, and the software which implements it and the other functions. These descriptions are followed by instructions for operating the system which are an expansion of the Condensed Operator's Manual furnished when the hardware was delivered. Then there is a review of the significant events, technical problems, and their solutions which were experienced during the contract term.

II. SYSTEM HARDWARE

A. General Description

The Image Alignment and Correlation System consists of two major assemblies and two accessories. The two major assemblies are an alignment fixture and an electronics cabinet. The two accessories are a display terminal and an $x-y$ plotter. Some of the system functions do not require the accessories, and they can be detached and used for other purposes.

The components of the alignment fixture are mounted on an L-shaped frame made of 0.5 in. thick aluminum plate. The vertical end of the frame supports a fixed mounting for the reference image and tandem-mounted translation and rotation stages which hold the test image. Each image is a transparency, and is placed on a light box. The translation and rotation stages are driven by stepper motors which are controlled by circuitry in the electronics cabinet. At the other end of the alignment fixture is a bracket which supports a pair of modules containing the DEFT sensors.

Three cables connect the alignment fixture to the electronics cabinet. One carries signals and power to the DEFT modules, and one carries power to the three stepper motors. The remaining cable is an ac line cord for the light boxes.

The electronics cabinet contains circuits which pulse the stepper motor windings, a microprocessor which controls the entire system, some analog signal processing circuitry, and power supplies.

The three stepper motor drivers are located in the center section of the cabinet. Each driver has its own power supply for itself and for the corresponding motor. The drivers are interfaced to an input/output port for the microprocessor. During image alignment the stepper motors are controlled
automatically through this interface. However, they can also be actuated manually by means of push-button controls on the front panel of the cabinet.

The top section of the cabinet front panel is a door which allows access to the microprocessor and the signal processing components. Both are assembled on plug-in circuit cards. Normal operation of the system does not require access to these cards, so the front panel door may be left closed. On the door is a 16-position keypad and a l5-position LED display. The keypad is used to select and execute the various functions which the system has been programmed to perform. The LED display shows either the positions of the translation and rotation stages or the value of the correlation coefficient, depending on the program selected. It also displays the number of the selected program and gives error warnings under certain conditions.

The bottom section of the electronics cabinet contains power supplies for the microprocessor, the analog signal processing circuits, and the DEFT sensor modules. Two power switches are located on the front panel of this section. The one on the left side is a master switch for the entire system except for the light boxes. The other switch controls the light boxes independently.

The rear panel of the cabinet is a door on which are mounted the connectors for the interfacing cable to the DEFT sensor modules, the stepper motors, and the accessory $x-y$ plotter and display terminal. All of these connectors are different, so there is no danger of connecting the interfaces improperly. Also located on the rear panel door are the ac line fuse and two small toggle switches. These switches were used for tape cassette read/write operations when the system software was being developed. They have no effect on the presently programmed system functions.

Figure 1 shows a block diagram of the entire system. The

Figure 1 - Functional Block Diagram of Image Alignment and Correlation System
signal flow is generally from the synthesizers, which are controlled by the microprocessor, to the rf distribution circuit board, and from there to the sensor modules and synchronous detector circuit boards. Signals from the modules go to the synchronous detectors and then to the data acquisition system where they are sampled and digitized synchronously under software control. The bias generator is coupled to the microprocessor to achieve this synchronization. The microprocessor also controls the stepper motors through their drivers and the accessory $x-y$ recorder through the analog output. It also exchanges data with the keypad and LED display and with the accessory graphics terminal. The power supply subsystem furnishes power to all parts of the system except the accessories, the stepper motors and their drivers.

B. Microprocessor Subsystem

1. General Description - The microprocessor subsystem consists of an integrated collection of modular plug-in circuit cards purchased from Wintek Corp. of Lafayette, IN. The modular approach allows the processor to be configured to meet the needs of the system at minimum cost. In addition, Wintek offers a very useful monitor in firmware called FANTOM-II, as well as an editor/assembler, which enabled the same processor to be used as a software development tool. The processor is an 8-bit machine based on the 6800, and includes a Control (CPU) Module, a ROM module with 16 K capacity, a 16 K dynamic RAM module, a RAM refresh module, an analog output module, and a two-port parallel I/O module. All of these cards are held in a cage behind the front door of the electronics cabinet. In addition, there is a Console $1 / O$ Module with a keypad and LED display which is mounted on the door.

All of the connections between the microprocessor and the remainder of the system, with the exception of the Data Acquisition Subsystem (DAS), are made through 6820/6821 Peripheral Interface Adapters (PIA's). The DAS is connected
directly to the address and data busses through buffers located on an auxiliary card. All peripherals are memorymapped since the 6800 has no IN or OUT instructions; that is, the peripherals are treated in the same way as memory locations by the processor. The address decoding scheme and other details can be found in the Wintek information which is included separately with the Commercial Data.
2. Control Module - This card includes the 6800 CPU , a 1 K ROM which contains the FANTOM-II monitor, $\frac{1}{2} K$ of RAM, two PIA's, and a 6850 Asynchronous Communications Interface Adapter (ACIA). The ACIA is configured to provide transmission and reception of ASCII data through an RS-232 interface with the accessory graphics terminal. The two PIA's provide two groups each of 16 lines of parallel output data which controls the two frequency synthesizers. The interconnection is made through a 50-conductor ribbon cable.
3. Cassette Interface - This module does not plug into the card cage, but rather is mounted on the inside of the rear cabinet door. It is connected to the Control Module by a 14conductor ribbon cable, and converts logic voltage levels to RS-2.3 levels and vice versa. It also can act as a modem for writing data to a cassette tape recorder and reading it back into memory later. The audio input and output lines are brought out to the connector which interfaces the system with the $x-y$ plotter, since the plotter and the cassette recorder would not be used simultaneously. The cassette functions were used extensively while the software was being developed. They remain functional, but they are unnecessary in normal system operation. Cassette read and write procedures can be found in the Wintek documentation with the Commercial Data.

The small 7-position DIP switch on the Cassette Interface circuit board sets the baud rate for the RS-232 interface. This setting must agree with the rate set at the accessory graphics terminal. The recommended rate is the maximum accepted by the
terminal in order to minimize execution times. In the case of the Tektronix 4006-1 terminal this rate is 4800 baud. To set this rate, position 6 on the DIP switch should be ON. All other positions should be OFF.

The small toggle switches on the rear panel affect only the cassette read and write operations.
4. RAM and Refresh Modules - the RAM module holds 16 K bytes of dynamic read-write memory. Refreshing of this memory, along with some address decoding functions, is done bv the RAM Refresh Module. These two cards are interconnected ai their front ends as well as at the backplane.

A portion of this 16 K block is unused by the existing software and is available for the temporary storage of other programs or data. In addition, the system can accommodate another 16 K module without any hardware or software changes.
5. ROM Module - This card has the capacity for sixteen 2708-type UV-erasable programmable read-only memory (EPROM) chips. As delivered, only nine sockets are in place. Eight of them contain the 8 K bytes of permanent software for the image alignment, correlation, and plotting functions. The ninth EPROM was purchased from Wintek and is programmed with a set of math routines which are used by the other software.

This module also can be expanded to its capacity of 16 K bytes.
6. Analog Output Module - This card has two 8-bit digital-to-analog (D / A) converters which furnish the x and y input voltages for the $x-y$ plotter. These voltages are taken to the rear panel connector through a ribbon cable which plugs into the front of the card. The D/A converters are adjusted for an output of 0.00 V for a binary input of 00000000 , and an output of +10.00 V for an input of $11111111\left(\mathrm{FF}_{\mathrm{H}}\right)$.
7. Parallel I/O Module - This unit has a PIA and buffers, and provides two 8-bit parallel ports, one input and one output,
for interfacing with the stepper motor drivers. These interconnections are made by means of two ribbon cables.

Although this module has the capacity for four PIA's, only one more can be added without creating a memory address conflict, because of the address decoding scheme used by Wintek.
8. Console I/O Module - This module is mounted on the front panel of the cabinet so that its 16 -position keypad and 15-position LED display can be seen and accessed easily. Its edge connector is wired to the backplane using only those lines necessary for its operation. The system software recognizes commands entered at the keypad and uses the display to show the number of the program being (or about to be) executed. It also shows the relative position of the test image and the value of the correlation coefficient when appropriate.

This circuit generates interrupts, which are maskable, at a rate of 1200 per second. The interrupt service routine updates the display and checks the keypad for input. Further details are given in the software description and with the Commercial Data.
9. Reset Generator - An auxiliary circuit card, located adjacent to the left end of the microprocessor backplane, contains address and data buffers for the DAS. It also has circuitry which produces a hardware reset when the system power is turned on and when the BREAK key on the graphics terminal is pressed. A hardware reset affects all of the interface adapters and the CPU, and is necessary before the system software can configure the interface adapters for their various functions. It also causes the processor to get an address from a particular memory location and to begin execution at that address. The address is $A 91 C_{H}$, the entry point for the initialization procedure. In the case of a system malfunction which stops normal program execution, it will be necessary to reset the
system to regain control of it. Rather than remove power and reapply it, a small white button on the auxiliary card can be used. This button simply grounds the reset line.

When the front cabinet door is opened, two such buttons will be seen on adjacent cards at the left side. The reset button is the leftmost of the two. The other one grounds the non-maskable interrupt (NMI) line, and has the effect of stopping any program execution in progress and giving control to the FANTOM-II monitor. The monitor can be used only through the keyboard of a terminal connected to the RS-232 interface. This capability is useful for troubleshooting or for experimenting with new software, but it will not be needed in normal system operation. If the $N M I$ button should be pressed accidentally, simply press the Reset button to escape from the monitor. A program listing for the monitor and instructions for using it are included with the Commercial Data.
10. Memory Allocations - The addresses for the system's memory and peripheral adapters are given in the following table. All addresses are in hexadecimal notation. Address space which is designated as "Not Available" is such because of the Wintek address decoding scheme which does not use all 16 address bits in all cases. Addresses so designated must be avoided since their use can result in the simultaneous activation of more than one peripheral, with ambiguous results. Addresses not listed in Table 1 in the range E $\varnothing \varnothing \varphi_{\mathrm{H}} \mathrm{EFFFF}_{\mathrm{H}}$ fall in this category, with two exceptions. Either EEQ4-EEQ7 or EFQ4-EFQ7 (but not both) may be used without any hardware modification. This space will accommodate either one additional PIA (on the parallel I/O Niodule or on a separate module) or up to two additional ACIAs without conflict. See Wintek application note AN-0010 in the Commercial Data for more detail.
C.Stepper Motors and Controls

The translation and rotation stages and their controllers

TABLE 1

Memory Address Allocations

Hexadecimal Address

Function

$9 \varnothing \varnothing \varnothing$ - $3 F F F$
49ø甲 - 7FFF
$89 \emptyset 9$ - BFFF
C $9 \varphi \varphi$ - DEFF
DFXø - DFX7
DFX8 - DFXF
E $\varnothing \emptyset \emptyset$ - EBFT
ECQ9 - EDFF
EEQ8 - EEQ9
EE10 - EE13
EE2 9 - EE23
EE4 9 - EE43
EE8 9 - EE83
EFQ - EFQ3
FQ $\varnothing \varnothing$ - FBFF
FCQ 9 - FFFF
$\frac{\text { Function }}{\text { RAM }}$
Available for future expansion
ROM
Available for future expansion*
Available for future expansion
Data Acquisition Subsystem
Not Available
RAM
ACIA
PIA for X Synthesizer
PIA for Y Synthesizer
PIA for Front-Panel Console
PIA for Analog Output
PIA for Stepper Motors
Not Available
ROM (FANTOM-II Monitor)
*With additional address decoding hardware.

Note - See text regarding addresses starting with E.
were purchased from Aerotech, Inc. of Pittsburgh, PA. Each stage is actuated by a small stepper motor and each motor is controlled by a driver. Aerotech calls the driver a "translator," probably because it translates logic-level signals or switch closures into voltages which are applied to the motor windings in the proper sequence. Each driver is connected to one of the front-panel push-button switch assemblies by a ribbon cable. The upper switch assembly operates either the horizontal (x) or the vertical (y) translation stage, while the lower set of switches operates only the rotation stage.

Instructions and schematics pertaining to the driver (or "translator") and the switch assembly are included in the Commercial Data which is separate from this volume.

The stepper motor subsystem is interfaced to the microprocessor through two 8-bit ports on its Parallel I/O Board. One port is configured as an output and furnishes clock and direction signals to Pins 3 and 4 , respectively, of $J 1$ on each of the driver ("translator") boards. Since there are three stepper motors, only 6 of the 8 bits are used. Separate outputs which confirm the clock and direction signals are taken from Jl on the front-panel switch assemblies to the other I/O port, which is configured as an input. Again, only 6 of the 8 bits are used.

When the local/remote switch (labeled MAN/AUTO) is in the local (MAN) position, the outputs from the microprocessor are disconnected from the motor drivers. The drivers then generate their own clock pulses under the control of the STEP and SLEW switches, and the direction switch determines the motor direction. With the local/remote switch in the remote (AUTO) positicn, the STEP, SLEW, and direction switches have no effect and the stepper motors operate under the control of the microprocessor. The driver outputs which confirm the clock and direction signals remain connected to the processor in both modes so that it can keep track of the relative position of
each stage when the system is in its calibrated state．
Each driver board has its own power supply．

D．Frequency Synthesizers

Two digital frequency synthesizers are used in the system． They ultimately provide the excitation for the orthogonal surface－acoustic wave（SAW）transducers on the DEFT sensors， and they also furnish the reference for synchronous detection of the sensor outputs．

The synthesizers are modular plug－in circuit boards made by Syntest Corp．of Marlboro，MA．They are capable of covering the range of 20.000 MHz to 159.999 MHz in 1 kHz steps，and are controlled by the parallel input of $5 \frac{1}{2} \mathrm{BCD}$ digits at logic levels．In this system the most and least significant digits are always zero because they are hardwired to ground．The remaining four $B C D$ digits for each synthesizer come from the two PIA＇s on the Control Module．The resulting effective frequency range is 20.00 MHz to 99.99 MHz in 10 kHz steps， and each synthesizer is controlled independently．

The two synthesizers use a common crystal－controlled 1 MHz reference which is located on one of them and cross－connected to the other．The synthesizer without the reference oscillator cannot function without the other one．

The synthesizers are located immediately to the right of the microprocessor back plane．The x－frequency is produced by the one on the left．Their outputs are carried to the rf distribution circuit board by miniature 50 －ohm coaxial cables．

Specifications and other information on the synthesizers can be found with the Commercial Data．

E．RF Distribution Circuit Board

Figure 2 shows a block diagram for this unit．It is a plug－in card located immediately to the right of the synthesizers．

Figure 2 - Block Diagram of RF Distribution Circuit Board

Its function is to filter and amplify the synthesizer outputs and forward them to the DEFT sensor modules. In addition, the x-axis frequency is split into two orthogonal parts in a 90degree phase difference network and each part is mixed with the y-axis frequency in a balanced modulator. The difference frequency is isolated by a low-pass filter at the output of each balanced modulator. The resulting difference-frequency signals, which are in phase quadrature, are sent on to the synchronous detector cards.

F. DEFT Sensor Modules

The two sensor modules are located on the alignment fixture. They have identical circuitry, but there are minor differences in the characteristics of the sensors themselves. The system software takes these differences into account, and for that reason the sensor modules should not be interchanged.

Figure 3 shows a block diagram for the sensor modules. The x-axis and y-axis frequencies from the rf distribution circuit board are applied to the SAW transducers on the sensor through drivers and matching networks. The purpose of the matching networks is to increase the effective acoustic bandwidth of the transducers.

Before this system was built, the practice was to apply a dc bias to the contact pattern on the sensor, and the resulting output appeared at a frequency equal to the difference between the two SAW frequencies. However, in this design, a sinusoidal ac bias is used and the output takes the form of a double-sideband suppressed carrier signal. The sidebands are displaced from the difference frequency by the bias frequency, which is 1440 Hz in this system. This scheme provides a spectral separation of the desired signal from any component at the difference frequency which might result from stray mixing of the two transducer voltages, since they are very large compared to typical signals.

Figure 3 - Block Diagram of DEFT Sensor Module

A low-pass filter between the sensor and the signal preamplifier attenuates frequencies above the highest difference frequency, which in this case is about 10 MHz . The impedance of the sensor's contact pattern is mostly capacitive and forms an integral part of the filter circuit. Since the sensor is usually characterized as a current source as far as the signal is concerned, the preamplifier can be thought of as a current-to-voltage converter with a transimpedance of about 2.5 K . Its output is again low-pass filtered and further amplified. The output of the second amplifier stage is balanced and each side is matched to the 50Ω coaxial cables which carry the signal to the electronics cabinet.

The disc behind the lens on the module can be rotated to reveal a peep-hole on each side so that the image on the sensor can be seen. The lens is a standard one-inch format CCTV type with a "C" mounting thread (1"-32).
G. Synchronous Detector Circuit Board

The signal from each sensor module is fed to a synchronous detector card in the electronics cabinet. There are two such cards, one for each sensor module, and they are located immediately to the right of the rf distribution circuit board. They are readily identified by the 26 -conductor ribbon cable which connects to the front of both of them.

Figure 4 shows a block diagram for the synchronous detector board. It consists of a pair of balanced modulators to which the signal from the sensor is fed in parallel. The reference inputs to the modulators are the difference-frequency voltages in phase quadrature which come from the rf distribution board. The balanced modulators translate the double sideband suppressed carrier signal to the bias frequency, which is constant. Lowpass filters which follow the modulators essentially remove all other frequencies from the outputs. These two bias-frequency signals are in phase, but their voltages represent two orthogonal

Figure 4 - Block Diagram of Synchronous Detector Circuit Board
components of the signal from the sensor. These two voltages connect to the DAS via the ribbon cable and are digitized synchronously under software control.

The synchronous detector cards have other circuitry which is not used in the present system. It was included in the original design of the card prior to the decision to implement a synchronous detector in software for the bias-frequency signal.
H. Data Acquisition System (DAS)

The DAS is in the form of a plug-in circuit card purchased from Analog Devices of Norwood, MA. Wintek offers an input version of their analog interface module but it was considered to be too slow for this application. No source was found for an analog input module compatible with the Wintek bus. The Analog Devices model RTI-1220 was selected, but buffers for the address lines and for four bits of the data bus had to be included on an auxiliary card to prevent excessive loading of the Wintek bus.

The DAS consists of an input multiplexer, a sample-andhold circuit, a 12-bit A / D converter, and control logic. The input is configured for 16 channels of analog data with a common reference for "pseudo-differential" operation. Only four channels are used at present, and since their sources are the two side-by-side synchronous detector cards, negligible error is introduced by using a common reference. The selection of the input channel and the sampling of the analog voltage are both under software control. A conversion is initiated automatically when the sample-and-hold goes to the "hold" mode. This module is set for 2^{\prime} s complement binary output with an analog input range of $\pm 5 \mathrm{~V}$.

A data sheet for this unit is included with the Commercial Data. More detailed information is contained in the User's Guide for the RTI-1220 and RTI-1221, which was supplied separately because of its copyright restriction.

I. Bias Generator

The bias generator furnishes the ac bias voltage for the DEFT sensors. It is the circuit card at the extreme right end of the cage. It consists of a phase-locked loop frequency synthesizer using the 60 Hz line as a reference. A miniature rotary switch at the end of the circuit card sets the output frequency, which is equal to the switch setting multiplied by 240 Hz . The switch should remain set to 6 for a bias frequency of 1440 Hz , since the timing in the software synchronous detector is matched to that frequency.

Logic-level square waves derived from the 60 Hz line and from the bias output are made available to the microprocessor through extra inputs to the PIA's on the Control Module. The synchronous detector subroutine uses these signals for timing references. The 60 Hz waveform is obtained from a small filament transformer.

The bias voltage applied to the sensors has a peak value of about 5 V .

An LED below the frequency-setting switch indicates loss of phase lock. Normally it will flash when the system is turned on or if the frequency setting is changed. Otherwise it should remain of f at all times.

J. Power Supplies

The power supply subsystem at the bottom of the electronics cabinet was procured from Acopian Corp. of Easton, PA. and is identified by their number 3276. The chassis wiring was modified slightly to make some of the rear terminals available for the switch which was added for the light boxes.

This subsystem consists of four separate modular supplies. One furnishes $+5 V$ and $\pm 12 V$ to the microprocessor system. These three outputs are overvoltage protected. The +5 V also goes to the DAS. Another supply provides $\pm 15 \mathrm{~V}$ for the DAS, the bias generator, and all of the analog circuitry, which includes the

DEFT modules and the rf distribution and synchronous detector circuit boards. The remaining two units have outputs of +9 V and $+24 V$, respectively, for the frequency synthesizers.

The following table lists each available voltage, the rated maximum current available at that voltage at an ambient temperature of $60 C$, and the measured current drain with the system operating. It is evident that all of the ratings are conservative.

K. Light Boxes

Illumination for the test and reference images is provided by light boxes on which the images are held. The illuminated area is about 11 inches square, and images should be transparencies of approximately that size. They can be kept flat by squares of anti-reflective glass which were furnished with the system. The glass covering the image is retained by four spring fasteners on the light boxes.

The light source in each box is an array of six F6T5/CW fluorescent lamps, each having its own starter and ballast. Access to these parts is gained by removing the 24 screws which hold the translucent plastic cover to the box. Before removing the cover, it should be marked temporarily (with a piece of tape) so that it can be replaced with the same orientation.

A single power cord for both light boxes comes from the box which is fixed in position. This cord has a standard 3prong grounding plug which can be mated to the receptable on the rear door of the electronics cabinet or to some other 115 V 60 Hz source if more convenient. The receptable on the cabinet is switched from the front panel.

The power connection between the two light boxes also has a standard 3-prong disconnect, but the female part has been modified so that the plug can be pulled out easily. This measure was taken in case the rotating stage should accidentally
wrap the short cord around itself. In that event the plug and socket will disengage before tension on the cords causes any damage to the internal connections.

TABLE 2

Measured vs. Rated Power Supply Currents

Voltage	Current Rating (© 60C), A	Measured Current, A
+5	6.0	2.26
+12	1.2	0.36
-12	1.2	0.30
+15	0.85	0.29
-15	0.85	0.61
+9	2.6	1.3
+24	0.75	.006

III. ALIGNMENT ALGORITHM

A. Overview

The function of the alignment algorithm is to align two identical or nearly identical images (e.g., stereo pairs) which are misaligned in both angle and in translation. Alignment is achieved by the following steps:

1) Selection of prominent spatial frequencies in the reference image which are then used exclusively in the subsequent processing.
2) A coarse angular alignment based on maximizing the correlation of the magnitude of the two-dimensional Fourier transforms of the reference and misaligned images sampled at the selected spatial frequencies.
3) A fine angular alignment based on maximizing the same correlation function as in 2) above. The final fine search increment is 0.1 degree.
4) A translational alignment based on a least squares estimate of Δx and Δy, the x and y-axis misalignment. Fourier transform phase data is used in this step.
5) A fine angular correction.

Steps 4) and 5) are repeated iteratively until the computed translational correction becomes less than a small threshold.

The alignment algorithm is based on the well-known Fourier transform space-shifting theorem ${ }^{1}$. The theorem can be stated simply as follows: Let $I(x, y)$ be the intensity function of the reference image and $I_{\Delta x, \Delta y, \Delta \theta}(x, y)$ be the intensity function of an identical image translated by $\Delta x, \Delta y$ and rotated by $\Delta \theta$. Let $F\left(\omega_{x}, \omega_{y}\right)$ and $F_{\Delta x, \Delta y, \Delta \theta}\left(\omega_{x}, \omega_{y}\right)$ be the Fourier transforms of these images respectively. Then

$$
\begin{equation*}
\left|F\left(\omega_{x}, \omega_{y}\right)\right|=\left|F_{\Delta x, \Delta y, 0}\left(\omega_{x}, \omega_{y}\right)\right| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\arg \left[F\left(\omega_{x}, \omega_{y}\right)\right\}-\arg \left[F_{\Delta x,} \Delta y, 0\left(\omega_{x}, \omega_{y}\right)\right]=\omega_{x} \Delta x+\omega_{y} \Delta y \tag{2}
\end{equation*}
$$

[^0] -23-

The first equation states that if the two images are in angular alignment (but not necessarily translational alignment) then the magnitude of their Fourier transforms would be identical. Hence, a cross-correlation of the magnitudes of the two transforms achieves its maximum when the two images are aligned in angle. This property is the basis of steps 2), 3) and 5) in the algorithm.

Once the images are in angular alignment the second equation above states that the difference between the phase of the two transforms is a bilinear function of the misalignment Δx and Δy. These offsets could, in principle, be determined using only two spatial frequencies. However, a superior approach is to increase the number of samples and estimate Δx and Δy using least squares estimation. Since a number of samples are used in computing the estimate, the effect of noise at each sample is reduced through averaging over the set of spatial frequencies. This approach is used in step 4) of the algorithm.

There is, however, an additional complication not evident in equations (1) and (2). The DEFT sensors each have a 1.27 cm $x 1.27 \mathrm{~cm}$ square aperture onto which the images must be focused. To maximize resolution, it is desirable that $I(x, y)$ completely fills the aperture of one sensor. Since magnification is the same for both images, $|F|$ cannot equal $\left|F_{\Delta x, \Delta y, \Delta \theta}\right|$ unless $\Delta x=\Delta y=\Delta \theta=0$ since, otherwise, part of $I_{\Delta x}, \Delta y, \Delta \theta$ will
fall outside the aperture of the second sensor. Hence, equations (1) and (2) are only approximately true. The alignment algorithm has been designed to be insensitive to this approximation. This is accomplished by iterating steps 4) and 5). That is, corrections are computed assuming that equations (1) and (2) are exactly satisfied. These corrections are applied to the misaligned image to bring it into alignment with the reference. Since the equations are only partially satisfied there will be a residual error. New corrections are recomputed and applied
iteratively until the magnitude of the correction falls below a threshold. At that point the two images are assumed to be aligned. If, indeed, the algorithm converges to alignment then, in the limit, equations (1) and (2) will hold exactly.

Analytic conditions for convergence are image dependent, difficult to derive and probably not useful in practice. However, in experiments using test patterns containing prominent spatial frequency components, (e.g., grid patterns), the algorithm was successful in aligning images to high accuracy. Some experimental results are presented in Table 3. The reference image in this case was a black and white checkerboard pattern with a horizontal frequency of 10 line pairs across the sensor aperture and with a vertical frequency of 5 line pairs. The reference image was placed in three orientations: 1) 10 line pairs horizontal (0 degrees), 2) 10 line pairs with a 6.5 degree tilt and 3) 10 line pairs vertical (90 degrees). The misaligned image was identical. The initial and final offsets are shown in the table. For this pattern all final errors were less than 0.1 mm in $\Delta x, \Delta y$ with one exception and 0.2 degrees in $\Delta \theta$. (These errors are referred to the light table. Because of the 20:1 demagnification from light table to sensor, the errors $\Delta x, \Delta y$ referred to the sensor were all less than 5 microns.)

A detailed description of the alignment algorithm is contained in Sections III B. through III E. Section III F. contains a discussion of the computational requirements of the algorithm. It is shown there that the algorithm has computational advantages over algorithms which use image intensity data as input rather than the Fourier transform.

B. Spatial Frequency Selection

For computation time and signal-to-noise considerations a small number of spatial frequencies must be automatically selected by the program from the large number of addressable spatial frequencies within the bandwidth of the DEFT sensors.

TABLE 3

Initial and Final Offsets: Typical Test Pattern

Reference	Initial Offsets			Final Offsets		
Orientation	Δx	Δy	$\Delta \theta$	Δx	Δy	$\Delta \theta$
$($ deg.)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0	+5.00	+5.00	-2.0	.00	+.04	0.0
0	-5.00	+5.00	-2.0	-.02	+.05	-0.1
0	-5.00	-5.00	-2.0	-.03	-.07	-0.1
0	+5.00	-5.00	-2.0	-.01	-.13	0.0
6.5	+5.00	+5.00	-2.0	+.01	+.03	-0.1
6.5	-5.00	+5.00	-2.0	-.05	+.03	-0.2
6.5	-5.00	-5.00	-2.0	-.06	-.05	-.01
6.5	+5.00	-5.00	-2.0	-.04	-.04	-0.2
90	+5.00	+5.00	-2.0	-.02	+.05	-0.1
90	-5.00	+5.00	-2.0	-.08	+.07	-0.2
90	-5.00	-5.00	-2.0	-.06	+.03	-0.1
90	+5.00	-5.00	-2.0	+.07	+.03	0.0
Mean					-.0183	+.0033

The method of selection of these spatial frequencies will be discussed in this section.

The alignment algorithm requires the computation of a cross-correlation at each angle increment during angular alignment. In addition, a least squares estimation is required at each iteration of the translational alignment. The computation time required is linearly proportional to the number of spatial frequency samples used. Hence, it is desirable to use as few spatial frequencies as possible. However, since each sample will contain noise due to the sensor, electronics and A/D converter it is necessary to use a set of spatial frequencies so that noise will be averaged out. Through experimentation it has been determined that about 16 spatial frequencies are adequate for the proper functioning of the algorithm.

These spatial frequencies are selected using transform data from the reference image only. A number of criteria are necessary in the selection of these points.
1). The reference transform evaluated at the spatial frequency should have a large magnitude. This increases the signal-to-noise ratio. It is especially important for least squares estimation since noisy phase data is weighted the same as phase data from significant transform components.
2). The set of spatial frequencies must not all lie along a straight line through the origin of transform space. During translational alignment a plane defined by $\omega_{x} \Delta x+\omega_{y} \Delta y$ is fitted to data consisting of transform phase differences. Since three points (which are not all on the same line) are required to define a plane, the spatial frequencies selected must not all lie along the same line. In addition, the least squares equation will be ill-conditioned if all data points are clustered along a line through the origin. If the equations are ill-conditioned then a small amount of noise at the A / D output will be magnified to a large error in the computed corrections $\Delta x, \Delta y$. A situation where ill-conditioning would occur would be if all the spatial frequencies selected were
clustered around a single peak in the transform.
3). Spatial frequencies near the origin of spatial frequency space should not be used. The transform magnitude and phase is rather insensitive to translation and rotation for very low spatial frequencies.
4). High spatial frequencies should not be used for coarse translational alignment if Δx or Δy are so large that $\left|\omega_{x} \Delta x\right|+\left|\omega_{y} \Delta y\right| \geq \pi$. This is because true phase cannot be measured. Rather, the principal value of phase is measured. Phase differences greater than π cannot be detected. However, as translational errors are reduced Δx and Δy will be smaller, allowing the use of higher spatial frequencies for fine alignment.

A search scheme which was developed to satisfy these criteria will now be described. The area searched in spatial frequency space is shown in Figure 5. As noted above, a region of low frequencies is excluded. During the first stage of the search, this region is sampled on a grid with a spacing of 210 kHz in both dimensions. Spacing is fine enough to satisfy the Nyquist criteria but coarse enough to require sampling at only 959 points. At each point on this grid the reference transform is sampled and the magnitude of the transform computed. From these magnitudes a table is constructed. The n-th entry in this table is the number of samples for which the magnitude of the sample is greater than $n \times$ THR2 where THR2 is a small constant. (In the software, this table is constructed during calls to subroutine UPDATE.) After the transform is searched, subroutine THRSET is used to determine the number n such that the $n-t h$ table entry is less than or equal to NPT and the n-1st entry is greater than NPT. NPT is the desired number of spatial frequencies which is 16 . Then the threshold THR1 is set to nxTHR2. The significance of THR1 is the following. If during the first stage of the search, a spatial frequency was accepted if and only if the magnitude of the transform at that frequency was equal to or greater

Figure 5-Search Area in Spatial Frequency Domain
than THR1, then the number of samples accepted would be less than or equal to NPT.

Once THR1 is computed the second stage of the search is initiated. The reference transform is again searched over the coarse 210 kHz grid. However, each time the magnitude of a sample equals or exceeds THR1, a fine search is initiated in the $180 \mathrm{kHz} \times 180 \mathrm{kHz}$ square centered at the sample. The fine search grid spacing is 30 kHz . (In the software, this search is carried out in subroutine GSRCH.) The spatial frequency with largest transform magnitude in this square is determined. This magnitude is compared with THR1. If it is at least as large as THR1 the spatial frequency is accepted and becomes one of the set to be used in the subsequent operations of correlation and least squares extimation. The use of the fine search results in spatial frequencies with larger magnitudes. Since a fine search is initiated only when THR1 is equalled or exceeded during the coarse search, the time spent in fine search is minimized. This procedure is continued over the entire coarse grid bounded as in Figure 5. Because of the way THR1 was chosen, the number of spatial frequencies chosen will be close to the desired NPT.

Since only one spatial frequency can be chosen in each $180 \mathrm{kHz} \times 180 \mathrm{kHz}$ square, the set of spatial frequencies chosen tend to represent the prominent frequency components of the transform without clustering exclusively around a single large peak (if the transform contains one.)

To prevent a condition of phase ambiguity as outlined in criterion 4) above, the search area shown in Figure 5 is subdivided into three regions. During least squares estimation of $\Delta x, \Delta y$ only spatial frequencies from region 1 are used until the iteration when the computed correction becomes less than a threshold DELTA (1). On the next iteration spatial frequencies in both region 1 and region 2 are used. This is the case until the iteration when the computed correction becomes less than the threshold DELTA (2). On the next and all succeeding iterations spatial frequencies from all three regions are used.

Hence, as Δx and Δy decrease higher spatial frequencies can be used to provide higher resolution since $\omega_{x} \Delta x+\omega_{y} \Delta y$ decreases with $\Delta x, \Delta y$.

In the alignment program the thresholds are stored in a table DELTA (L). At the beginning of least squares estimation L is set to 1. After a correction is computed, if $|\Delta x|+|\Delta y| \leq \operatorname{DELTA}(L) L$ is incremented by 1 . The parameter L also keeps track of which regions are to be used on the next iteration. DELTA (3) is the final threshold. Once the computed correction is reduced below this threshold the' program assumes that the images are aligned and returns control to the supervisor. For further detail, refer to the flow diagram Figure 10.

The search scheme developed in this section has been shown to satisfy all four criteria listed above. In addition, it makes efficient use of computation time and has worked well during tests. For further detail, refer to Figure 7.
C. Angular Alignment

Angular alignment occurs at three points in the algorithm and software: 1) coarse angular alignment, 2) fine angular alignment and 3) a fine angular correction or "dithering" after each least squares estimate of $\Delta x, \Delta y$. In all three cases the measure used to determine alignment is the crosscorrelation of the magnitudes of the Fourier transforms of the reference and misaligned image sampled at the frequencies chosen during spatial frequency selection. Let $m_{r, i}$ be the magnitude of the reference transform at spatial frequency i and let $r_{a, j}$ be the magnitude of the misaligned transform at spatial frequency j. Then the Cauchy-Schwarz inequality ${ }^{2}$ states that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} m_{r, i} m_{a, i}\right)^{2} \leq\left(\sum_{i=1}^{n} m_{r, i}^{2}\right)\left(\sum_{i=1}^{n} m_{a, i}^{2}\right) \tag{3}
\end{equation*}
$$

with equality if and only if $m_{a, i}=m_{r, i}$ for every i. Hence,

[^1]the measure
\[

$$
\begin{equation*}
\operatorname{SUM}=\frac{\left(\sum_{i=1}^{n} m_{r, i} m_{a, i}\right)^{2}}{\sum_{i=1}^{n} m_{a, i}{ }^{2}} \tag{4}
\end{equation*}
$$

\]

achieves its maximum when $m_{a, i}=m_{r, i}$ for every i. From equation (1) this condition will occur when the two images are aligned in angle. Angular alignment is achieved by trying various angles, computing SUM and picking the angle where SUM is maximum. Three different search schemes are used at the three sections in the algorithm where there is an angular alignment.

The first alignment is coarse angular alignment. The misaligned image is assumed to be misaligned in angle within some maximum displacement. (In the software this displacement is ± 6 degrees and is stored in the variable CORSE.) During coarse angular alignment the light table is first rotated cw 6 degrees and SUM computed. The table is then rotated cow in 2 degree steps over a 12 degree sector. At each step SUM is computed and compared with the previous largest value of SUM which is stored in the variable MAX. If SUM > MAX then MAX is replaced by SUM and the angular position saved in the variable STEPS. After the table has been rotated over the 12 degree sector it is rotated back to the position of maximum SUM. This ends the coarse angular alignment. For more detail, refer to the program flow diagram Fig. 8.

The next phase is fine angular alignment. At the beginning of this phase the light table is at the position of maximum SUM determined during coarse alignment. The variable MAX holds this value of SUM. The angle step size is set initially to a value stored in the variable FINE. (This value is 1.6 degrees in the program.) Current step size is stored in the variable STEPS. The light table is then rotated cw STEPS degrees and SUM is computed. If SUM > MAX a flag is set and SUM replaces MAX. The light table is then rotated cow $2 \times$ STEPS degrees and SUM is computed. If SUN > MAX a flag is set and SUM replaces MAX. The light table is then rotated to the position where SUM was maximum (either where
it was initially or \pm STEPS degrees from that position.) Then STEPS is divided by 2. The above three-position search is repeated iteratively until STEPS has been reduced below 0.1 degree. This one-dimensional search technique converges quickly to the maximum SUM to within 0.1 degrees. Since only two evaluations of SUM are required per iteration, a total of 10 evaluations are required during fine angular alignment. By comparison, a brute force search over 4 degrees in 0.1 degree steps would require 40 evaluations of SUM. Other search techniques such as Fibonacci and golden section ${ }^{3}$ were investigated during the development of the algorithm. However, because they maximize a function of a continuous variable they were not applicable since angle increments are discrete, 0.1 degree steps in the image alignment system. Once STEPS has been reduced below 0.1 degree fine angular alignment is complete. For more detail, refer to program flow diagram Figure 9.

As discussed in the Overview, since each sensor does not see the exact same image because of misalignment, equations (1) and (2) are only approximate during alignment. The coarse and fine angular alignment must occur before estimation of Δx and Δy. This is because equation (2) requires that $\Delta \theta=0$. However, since $\Delta x \neq 0, \Delta y \neq 0$ during angle alignment, equation (1) is only approximate and very likely the position of maximum SUM will not correspond exactly with $\Delta \theta=0$. Hence, a residual angle error will generally exist after fine angular alignment. This residual error will prevent Δx and Δy from being estimated exactly since equation (2) will only approximately hold. However, if Δx and Δy can at least be reduced then it should be possible to further reduce $\Delta \theta$. This will, in turn, allow better estimates of $\Delta x, \Delta y$. Hence, the algorithm was designed to be iterative. That is, after fine angle search a series of iterations consisting of a least squares estimation followed by a fine angle correction is carried out. This approach has worked well in practice. Depending on the test image, $\Delta \theta$ can be as large or larger than 1.0 degree after fine angular alignment. However, as Δx and Δy are reduced $\Delta \theta$ will

[^2]be reduced to a few tenths of a degree.
Fine angle correction is very similar to a single iteration during fine angular alignment. After Δx and Δy have been estimated and the light table moved to eliminate these estimated errors, SUM is recomputed and stored in MAX. The light table is then rotated cw 0.1 degree and SUM is computed. If SUM > MAX a flag is set and MAX is replaced with SUM. The light table is then rotated cew 0.2 degrees and SUM is computed. If SUM > MAX a flag is set and MAX is replaced with SUM. The light table is then rotated to the position where SUM was maximum. Hence, up to ± 0.1 degree of correction can be applied each iteration. For further detail refer to flow diagram Figure 10. Both fine angular alignment and fine angular correction is accomplished in software in subroutine FINSCH.
D. Least Squares Estimation of ΔX and ΔY

Estimation of Δx and Δy is based on equation (2). This equation states that if $\Delta \theta=0$ then the difference in phase between the reference and misaligned transform is a bilinear function of Δx and Δy. By measuring this phase difference at the previously chosen set of spatial frequencies Δx and Δy can be estimated by fitting a plane to the data. A standard means of curve fitting is least squares estimation ${ }^{2}$.

To apply least squares estimation, the first step is to sample the transforms at the pre-selected spatial frequencies using the DEFT sensors and compute the phase from the real and imaginary parts of the transform. This rectangular-to-polar conversion is accomplished using the Cordic algorithm ${ }^{4}$. Both the transform magnitude and phase are computed. (In the software, this is implemented in subroutine CORDIC.) The transform phase as provided by the DEFT sensor is of the form $\quad \phi_{R}\left(\omega_{x},{ }^{\omega} y\right)=\phi_{T R}\left(\omega_{x}, \omega_{y}\right)+\phi_{E}\left(\omega_{x}, \omega_{y}\right)+\phi_{R O}$
for the reference image and

$$
\begin{equation*}
\phi_{A}\left(\omega_{x}, \omega_{y}\right)=\phi_{T A}\left(\omega_{x}, \omega_{y}\right)+\phi_{E}(\omega x, \omega y)+\phi_{A O} \tag{6}
\end{equation*}
$$

for the misaligned image where ϕ_{R} and ϕ_{A} are the total phases of the reference and misaligned images, respectively. $\oint_{T A}$ is the phase due

[^3]to the Fourier transform of the reference image. $\phi_{T A}$ is the phase due to the Fourier transform of the misaligned image. ϕ_{E} is phase due to the electronic detectors, filters and cables. ϕ_{RO} and $\phi_{A O}$ are constant phase terms associated with the reference and aligning sensor. $\phi_{R O}{ }^{\neq} \phi_{A O}$. This phase difference arises from the non-equal length of cables connecting the sensor modules to the computer cabinet as well as from sensor mismatch such as acoustic wave velocity differences. ϕ_{E} is approximately equal for both modules. Hence, if the images are perfectly aligned, $\phi_{R}-\phi_{A}=\phi_{R O}-\phi_{A O}$. Hence the term $\phi_{R O}-\phi_{A O}$ must be subtracted from the left side of equation (2) since it arises from the sensors and electronics and has nothing to do with the Fourier transform. The first step in least squares estimation then is to measure $\phi_{\text {RO }}$ - $\phi_{A O}$. Recall that for any image which is an intensity function
\[

$$
\begin{equation*}
\phi_{T R}(0,0)=\phi_{T A}(0,0)=0 \tag{7}
\end{equation*}
$$

\]

Hence

$$
\begin{equation*}
\phi_{A}(0,0)-\phi_{A}(0,0)=\phi_{R O}-\phi_{A O} \tag{8}
\end{equation*}
$$

Hence, $\phi_{R O}-\phi_{A O}$ can be measured by sampling the two transforms at zero spatial frequency, computing the phase and subtracting the respective phases. Since the transform always has maximum magnitude at zero spatial frequency, the signal-to-noise ratio for this measurement will be good. The computed phase difference $\phi_{\mathrm{RO}}{ }^{-} \phi_{\mathrm{AO}}$ must be adjusted to lie in the interval ($\pi,-\pi$]. In the software, this adjustment is made in subroutine PHASDF. Subroutine PHSSET measures the phase difference and stores the result in the variable PHASE.

Once PHASE has been computed, the left side of equation (2) can be evaluated. At each of the selected spatial frequencies ${ }^{\omega} \mathrm{xi}$, ${ }^{\omega} \mathrm{yi}$ the two transforms are sampled and the phase computed. The difference

$$
\begin{equation*}
p_{i}=\phi_{R}\left(\omega_{x i}, \omega_{y i}\right)-\phi_{A}\left(\omega_{x i}, \omega_{y i}\right)-\text { PHASE } \tag{9}
\end{equation*}
$$

is formed and adjusted to lie in the interval ($\pi,-\pi$]. During any given iteration, only those spatial frequencies lying in the regions whose indices are less than or equal to L are
evaluated. Then the following quantities are computed:

$$
\begin{align*}
& U U=(1 / K \$ G) \sum_{i=1}^{L} \operatorname{SlU}(i) \tag{10}\\
& W=(1 / K \$ G) \sum_{i=1}^{L} \operatorname{slV}(i) \tag{11}\\
& U V=(1 / K \$ G) \sum_{i=1}^{L} \operatorname{slUV}(i) \tag{12}\\
& U P=(1 / K K K K) \sum_{i=1}^{L} \operatorname{slUP}(i) \tag{13}\\
& V P=(1 / K K K K) \sum_{i=1}^{L} \operatorname{slvP}(i) \tag{14}
\end{align*}
$$

The variables UU through VP are computed in subroutine SUMPAR from partial products S1U through S1VP which are computed in subroutine MEASRE. K\$G and KKKK are scale factors which scale the corrections Δx and Δy. The variables S1U through S1VP are defined as

$$
\begin{align*}
& \operatorname{siv}(i)=\sum_{j=k}^{f\left(c f_{x j}\right)^{2}} \tag{15}\\
& \operatorname{siv}(i)=\sum_{j=k}^{\ell}\left(c f_{y j}\right)^{2} \tag{16}\\
& \operatorname{SIUV}(i)=\sum_{j=k}^{\ell} c^{2} f_{x j} f_{y j} \tag{17}\\
& \operatorname{SIUP}(i)=\sum_{j=k}^{c f f_{j}{ }^{P}{ }_{j}} \tag{18}\\
& \operatorname{SIVP}(i)=\sum_{j=k}^{\ell} c f_{y j}{ }^{P} j \tag{19}
\end{align*}
$$

where $f_{x j}=\omega_{x j} / 2 \pi, f_{y j}=\omega_{y j} / 2 \pi$ and c is a constant used to scale the fixed point frequency variables used by the program. The limits k and ℓ are defined by

$$
\begin{align*}
k & =\operatorname{BDRYCT}(i-1)+1 \tag{20}\\
\ell & =\operatorname{BDRYCT}(i) \tag{21}
\end{align*}
$$

BDRYCT is a table in software and the entry BDRYCT(i) is the number of spatial frequencies in region 1 through region i. $\operatorname{BDRYCT}(0)$ is defined to be zero. If $k>\ell$ then there are no
points in region i and the $S 1$ terms are defined to be zero for that i. Hence, the indices k and ℓ limit the partial products S1 to contain contributions from only those spatial frequencies within region i. The terms $U U$ through VP contain contributions from spatial frequencies in regions 1 through region L.

With these definitions the least squares solution for Δx and Δy is given by ${ }^{2}$

$$
\left[\begin{array}{l}
\Delta x \tag{22}\\
\Delta y
\end{array}\right]=\frac{1}{X}\left[\begin{array}{ll}
u v & v \\
u v & v v
\end{array}\right]^{-1}\left[\begin{array}{l}
u P \\
v P
\end{array}\right]
$$

The gain constant $1 / K$ equals 1 during the first 12 iterations. After 12 iterations it equals $1 /(i-11)$ on the ith iteration. Hence, after 12 iterations, the computed correction is weighted by a gain factor which decreases each succeeding iteration. This has the effect of making the final alignment insensitive to any noise in the phase differences P_{i}. This technique is a variation of the Robbins-Monro procedure for finding the root of a function in the presence of noise. A readable discussion of this procedure is contained in ${ }^{5}$. The harmonic sequence of weights $\left\{1, \frac{1}{2}, 1 / 3, \frac{1}{4}, \ldots\right\}$ has the property that

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} 1 / n=0 \tag{23}
\end{equation*}
$$

while

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}=\infty \tag{24}
\end{equation*}
$$

That is, the computed corrections will always be reduced to zero while the total corrective effort is potentially unlimited. It is shown in 5 that random experimental errors will be cancelled out using this sequence of weights. However, another important reason for using this sequence was to insure that the program will satisfy its stopping condition after a reasonable number of iterations. This stopping condition is that

$$
\begin{equation*}
|\Delta x|+|\Delta y| \leq .04 \mathrm{~mm} \tag{25}
\end{equation*}
$$

It was found through experimentation that reducing the right hand side of this equation did not improve the accuracy of

[^4]algorithm but did increase its running time.
For additional detail refer to flow diagram Fig. 10. In this figure the notation (KKKK + 2) means a variable stored in RAM two bytes after the address of the label KKKK. The corrections Δx and Δy are computed iteratively. On the first iteration $L=1$. L is incremented by one, if any one of the following conditions holds:

1) $|\Delta x|+|\Delta y| \leq$ DELTA (1)
2) $|\Delta x|+|\Delta y|>2 \sqrt{2}^{\prime \prime}$
3) $\operatorname{BDRYCT}(L)<2$

Condition 1) means that a larger region is used as soon as the correction is small enough so that there can be no phase ambiguity. DELTA (3) $=.04 \mathrm{~mm}$ and is the stopping condition since NBDRY is set to 3. Condition 2) means that the computed correction is too large. The correction is skipped and a larger region is used on the next iteration. Condition 3) means that in the present region there is at most one spatial frequency. Since at least two spatial frequencies are required for the least squares extimation of Δx and Δy, the region is enlarged in hopes of increasing the number of spatial frequencies on the next iteration.

The partial products S1U, S1V and S1UV depend only on the chosen spatial frequencies. Hence, they are only computed once during spatial frequency selection. The partial products S1UP and S1VP depend on both the spatial frequencies and the transform phase at those frequencies. Hence, they must be recomputed each iteration.

During normal operation using both sensors, fresh magnitude and phase data from both sensors is collected each iteration. In addition, the origin phase difference is re-measured each iteration. Hence, any zero mean noise in these measurements will be averaged out over a number of iterations.

E. Alignment Algorithm: Alternative Modes of Operation

To add flexibility to this experimental alignment system the basic algorithm and software implementation has been augmented with two alternative modes of operation.

In order to test the alignment capabilities of the system for test images which are misaligned in translation only, the software can function in a mode which skips all angular alignment steps. That is, coarse angular alignment, fine angular alignment and fine angular correction (or dithering) are all skipped. In the program, the flag HOW is set to zero if these functions are to be skipped and set to one if they are to be executed. Refer to flow-diagrams Figures 6 through 10 for details. Angular alignment can be skipped during both the normal two-sensor mode of operation and also during the single sensor mode which will be described next.

To this point the description of the alignment algorithm has dealt exclusively with the normal two-sensor operation. In this mode, one sensor views the fixed light table which contains the reference image. The second sensor views the movable light table which contains the misaligned image. In the single sensor mode of operation, only the sensor which views the movable light table is used. The image on this table functions as both the reference and as the misaligned image. This is accomplished as follows: During spatial frequency selection the movable image is viewed and spatial frequencies chosen from its transform. Both the magnitude and phase of the transform at these frequencies are then sampled and stored in a table. Magnitude samples are stored in table MS while phase samples are stored in table PS. These samples will not be updated until a new reference alignment is initiated. The alignment program then returns control to the supervisor so that the user can move the light table under manual control. If the alignment program is re-entered, it will seek to re-align the misaligned image to its position during reference alignment
using the tables MS and PS as a reference.
The structure of the alignment algorithm is identical for both two-sensor and one-sensor operation with the following exceptions:

1) The flag SNFLAG $=0$ for two-sensor operation and SNFLAG $=1$ for one-sensor operation.
2) Since the two DEFT sensors have slightly different origin frequencies, near the beginning of single sensor reference alignment the reference sensor origin frequency variables XOZERO, YOZERO are replaced with the origin frequency values contained in the aligning sensor frequency variables XIZERO, Y1ZERO.

The subroutine RDDEFT is used to sample the DEFT sensors and average either one or sixteen samples at each spatial frequency. (Single samples are taken only during the initial search for prominent spatial frequencies.) When the flag SNFLAG $=1$, RDDEFT will always sample from the sensor which views the movable table (aligning sensor). By also replacing the origin frequencies the program operates normally but only receives data from the aligning sensor.
3) Since only a single sensor is used, no sensor phase mismatch exists. Hence, when subroutine PHSSET is entered the condition SNFLAG = 1 causes an immediate return to the main alignment program and no phase difference is required.
4) During the least squares estimation iterations, new reference phase samples cannot be taken since the reference orientation no longer exists. The flag SNFLAG causes this step to be skipped. (See the flow diagram for subroutine MEASRE, Figure 11. Phase samples are normally taken during MODE = 3.)

> After a sequence of one-sensor alignments, the table of variables used in the alignment program must be re-initialized by pressing F followed by E. If this is not done and a correlation is attempted, then SNFLAG $=1$ and only one sensor will be used crroneously. (That is, the movable image will be correlated against itself.) If instead, a two-sensor alignment is initiated, then SNFLAG will be reset to 0 . However XOZERO and YOZERO will
not be restored to their proper values. This will lead to larger than desired errors in alignment.

F. Algorithm Operation Count

In this section a simplified operation count for the Fourter transform-based alignment algorithm will be developed and compared with the operation count of an algorithm which aligns two images using the image intensity functions. For this development an operation is defined to be either a multiplication or a division.

Consider first the Fourier transform-based algorithm. Let n_{s} be the number of spatial frequencies used in the algorithm. The cross-correlation of two sequences of length n_{s} requires $2 n_{s}+2$ ops. An additional $2 n s$ operations are required to form the magnitude from the real and imaginary components of the transform. (The Cordic algorithm takes about as long as a multiply.) Let n_{θ} be the number of correlations required for an alignment. (n_{θ} is typically 20 - 30.) The angle correlation requires $n_{\theta}\left(4 n_{s}+2\right)$ ops. One iteration of least squares estimation requires $7 \mathrm{~ns}+12$ ops. This count includes Cordic, formation of $U U$ through VP and matrix inversion.

Let $n_{\ell S}$ be the number of iterations of least squares. (Typically, $n_{\ell s}$ is less than 10.) An additional count of 2200 ops are required during the search for prominent spatial frequencies. (These are all calls to CORDIC.) The total number of operations is

$$
\begin{equation*}
n_{\theta}(4 n s+2)+n_{\ell s}\left(7 n_{s}+12\right)+2200 \tag{29}
\end{equation*}
$$

For the typical values $n_{\theta}=30, n_{x}=16, n_{\ell S}=10$ the first term contributes 1980 ops, the second term contributes 1240 ops and the total is 5420 ops.

Consider now the intensity function-based algorithm.
This algorithm works as follows: A three-dimensional grid of possible $\Delta x, \Delta y$, and $\Delta \theta$ values is searched. At each point in the grid the misaligned image is translated and rotated to the corresponding grid positions and the two images are correlated.

It may not be necessary to correlate every pixel. Let n_{p} be the number of pixels used. Then a single correlation requires $2 n_{p}+2$ ops. Let n_{x}, n_{x} and n_{θ} be the number of increments of $\Delta x, \Delta y$ and $\Delta \theta$ to be tested. Then the number of operations for alignment is

$$
\begin{equation*}
n_{x} n_{y} n_{\theta}\left(2 n_{p}+2\right) \text { ops } \tag{30}
\end{equation*}
$$

Additional operation would be required to choose the n_{p} pixels. For simplicity these will be ignored. To arrive at a number for comparison, assume that this algorithm searches a $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 12$ degree cube with grid spacing. 05 mm in x and y and .1 degree in θ. Then, $n_{x_{f}}=n_{y}=100$ and $n_{\theta}=120$. Assume $n_{p}=16$. Then 40.8×10^{6} ops are required for alignment. There are a number of multidimensional search techniques which will reduce this count considerably. However, in all circumstances the Fourier transform-based algorithm is more efficient since a multidimensional search is not required.

IV. SYSTEM SOFTWARE

A. General Description

The Image Alignment and Correlation System has been programmed to perform fourteen separate functions. The control programs for these functions are stored permanently in UVerasable read-only memories at addresses $A \emptyset \emptyset_{\mathrm{H}}$ - $\mathrm{BFFF}_{\mathrm{H}}$. (All address references are given here in hexadecimal notation.) The software is organized as a supervisor or main program and a master subroutine for each of the three major system functions, which are display generation, image alignment, and image crosscorrelation. The master subroutines use a number of smaller subroutines, many of which are shared.

In addition to the 8 K of software written in the performance of this contract, the system includes a library of mathematical functions which resides at $8 \varnothing \varnothing \varphi_{\mathrm{H}}-83 F F_{H}$ and a slightly modified version of the FANTOM-II monitor, located at $F C \emptyset \emptyset_{\mathrm{H}}-\mathrm{FFFFH}$. Both of these items were purchased from wintek Corp.

The system software uses RAM at $17 \phi_{\varphi_{\mathrm{H}}}-1 F F F_{\mathrm{H}}$ and $E C \varnothing \emptyset_{\mathrm{H}}$ $\operatorname{EDFF}_{\mathrm{H}}$ for temporary storage of data and parameters. The remainder of RAM is available for future expansion or software experiments.

The following sections will describe the supervisor and the three master subroutines. The smaller subroutines, except for those which are self-explanatory from their listings, are described in Appendix A. Complete program listings for all of the Deft-written software, as generated by the Wintek assembler, are found in Appendix B. The math library and the FANTOM-II monitor are documented with the Commercial Data.
B. Supervisor Program (A91C $\mathrm{H}_{\mathrm{H}}-$ AA5D $_{\mathrm{H}}$)

When power to the system is turned on, a delay circuit on the auxiliary card (next to the DAS card) holds the microprocessor subsystem's reset line near ground until the power supply voltages
and the clock frequency have stabilized. The small button on the auxiliary card also grounds the reset line. When the reset line goes high, the processor reads the contents of memory at hex addresses $\mathrm{FFFE}_{\mathrm{H}}$ and $\mathrm{FFFF}_{\mathrm{H}}$, and loads them into the program counter. Execution begins from that point.

As supplied by Wintek the reset vector is $\mathrm{FE} \phi 7_{\mathrm{H}}$, which is the reset entry point of the FANTOM-II monitor. For the Image Alignment and Correlation System the reset vector in the FANTOM-II EPROM was changed to $A 91 C_{\mathrm{H}}$, and $\mathrm{FE} \varnothing 7_{\mathrm{H}}$ was used instead as the vector for non-maskable interrupts (NMI) which is stored at $\mathrm{FFFC}_{\mathrm{H}}-\mathrm{FFFD}_{\mathrm{H}}$. This change allows the other small button behind the door, which grounds the NMI line, to stop execution and transfer control to the FANTOM-II monitor. Except for these four bytes, the monitor in the system is identical to FANTOM-II as documented with the Commercial Data.

When execution begins at $A 91 C_{H}$ following a system reset, the first instructions set up the peripheral interfaces and initialize certain parameters in read/write, or random access memory (RAM). The supervisor then enters a wait loop at A9B9 ${ }_{\mathrm{H}}$ with dashes displayed on the front-panel LED readout. The dashes indicated that the system is ready to accept commands from the keypad directly below the readout.

Pressing a key at this point will result in the display of the corresponding program number, with two exceptions. They are "A", which is reserved for ABORT, and "E", which is used for EXECUTE. After entering a valid program number, pressing "E" will cause execution of that program to begin. Any time before " E " is pressed, entering a new program number will override the preceding entry. Pressing "E" initially will have no effect. Entering "A" at any time will cause a return to the supervisor, and the execution of any program in progress will be terminated. Decoding of the "A" key and updating of the LED display is done in the interrupt service routine.

Near the end of the wait loop a test is made (at $A A \phi 7_{H}$)
to see if the system is in a calibrated state for alignment. If so, another test is made to sense whether any of the stepper motors is being actuated manually. If the clock pulse which moves a motor is detected, further tests are done to identify the motor. "Error" is displayed if the motor cannot be identified, and if this should occur it would indicate a hardware failure. After the stage in motion is identified a subroutine (POSDIS) is called which updates the counters which keep track of the positions of the translation and rotation stages when the system is calibrated. This subroutine also displays these positions. On returning from the subroutine the program checks for the end of the stepper motor pulse so that one pulse is not counted as two.

The entry addresses of the master subroutines are stored in a table at $A 8 \varnothing \varphi_{\mathrm{H}}$. When the "E" key is pressed with a valid program number in place, the program number is used to point to the corresponding entry address, and a jump-to-subroutine (JSR) at that address is executed. Upon returning, the program number is examined and the display is either left unaltered or cleared and filled again with dashes.
C. Plotter and CRT Display Routine $\left(A B C \emptyset_{H}-A D E 2_{H}\right)$

Entry to this program at $A C 47 H_{H}$ first initializes a number of parameters and clears a 256-byte area in RAM where the largest current vertical deflection values will be stored. It then tests the program number to determine which image is to be displayed, and sets the analog multiplexer in the DAS accordingly. A heading is written on the CRT display, snowing the starting points for the frequency scan and identifying the image whose transform is being displayed.

The action of the program from this point depends on whether the $x-y$ plotter or the CRT display is being executed, and this distinction is coded in the least-significant bit (LSB) of the program number. In the case of the plotter the pen is retraced to the lower left corner and dropped to the writing position. In
the case of the CRT display, which is vector driven, a dark vector is written to the lower left corner. The synchronous detector subroutine then samples the analog outputs from the appropriate synchronous detector circuit card and converts them to a complex digital representation of the sensor output. The detector subroutine returns the sums of sixteen consecutive samples for both the real and imaginary parts.

At this point the x-axis synthesizer frequency is increased by 40 kHz to allow the subsequent processing time for frequency stabilization. An extra time delay is inserted if the synthesizer crosses the boundary of 40 MHz , but this will not occur unless the starting frequencies or increments are changed. The absolute magnitude of the complex signal value is then computed by the CORDIC subroutine and a scaling or gain adjustment is made by shifting the result to the left.

The signal magnitude then is added to the raster height and compared to the previous value at the same horizontal position. For the first line of the raster the "previous" values are all zero. If the new value exceeds the old value, the new value is stored and either the pen is moved accordingly or a vector is drawn on the CRT display. If the old value is greater, the pen is lifted, or a character denoting a dark vector is sent to the CRT display, so that raster lines behind peaks are hidden.

This sequence is repeated 192 times for each line of the raster. At the end of each line the y-axis synthesizer frequency is incremented by 120 l Hz and the x -axis frequency is returned to its starting point. The position of the raster line is moved up by a count of 2 for the CRT display or 3 for the ploter. The number of the raster line becomes the initial x-coordinate to tilt the raster, and either the pen is lifted and retraced to that point or a dark vector is written to retrace the CRT display.

Sixty-four lines are drawn in this manner. At the end of
the last line the pen is lifted and moved to the lower right corner if the $x-y$ plotter is being driven, so that the paper can be removed easily. Then a bell code is sent to the terminal, followed by a return to the supervisor.
D. Alignment Program and Its Subroutine

The alignment program is written in the form of a main subroutine which is called by the supervisor program under control of the matrix key pad. Additional subroutines are called by the alignment program. The logical flow of the program is complex and is best understood by study of the assembly language listing in Appendix B. Flow diagrams are provided here which show the functional flow of the program. These diagrams can be used to relate the algorithm to its assembly language implementation.

Refer to the overall flow diagram, Figure 6. More detailed flow diagrams are shown in subsequent figures. The alignment program operation is controlled by three variables SNFLAG, HOW and CALIBR. These variables are set either before entry or upon entry to the alignment program and remain constant during each call to that program. For the various modes of operation, their values are indicated in Table 4. As shown, CALIBR indicates whether an alignment is to be a reference of a subsequent alignment. SNFLAG indicates whether one sensor or two sensors are to be used. HOW indicates whether the alignment is to include rotation.

The functional flow of the alignment program closely follows the description of the algorithm given in Section III.

The main subroutine which is called by the alignment program is MEASRE. This subroutine has a number of functions controlled by variables MODE, SNFLAG, SFLAG and ADRSW. The flow diagram of MEASRE is shown in Figure 11. When MODE $=1$, MEASRE is used in spatial frequency selection. When MODE +2 MEASRE is used in angular alignment. When MODE $=3$ MEASRE is

ENTER

Figure 6 －Overall Flow Diagram for Aligament Program

Modes of Operation	Flags		
	CALIBR	SNFLAG	HOW
Initial alignment/two sensors	0	0	1
Initial alignment/one sensor	0	1	1
Subsequent alignment/two sensors/ rotation	1	0	1
Subsequent alignment/two sensors/ no rotation	1	0	0
Subsequent alignment/one sensor/ rotation	1	1	1
Subsequent alignment/one sensor/ no rotation	1	1	0

Figure 8 - Flow Diagram for Coarse Angular Alignment

Figure 9 - Flow Diagram for Fine Angular Alignment

FROM FINE ANGULAR ALIGNMENT OR

Figure 10 - Flow Diagram for Least Squares Estimation of $\Delta X, \Delta Y$ and Fine Angular Correction

Figure 11 - Flow Diagram for Subroutine MEASRE

is used in least squares estimation.
Consider first MODE $=1$ operation. MEASRE is called twice. During the first call SFLAG $=0$. The transform is searched and a table characterizing the transform is set up using subroutine UPDATE. (See section on alignment algorithm for a discussion.) During the second Call SFLAG $=1$. The transform is again searched and the prominent spatial frequencies are selected. In addition, during this second call the variables $S 1 U(i)$, S1V(i) and S1UV(i) are computed and stored since their values depend only on the spatial frequencies and do not change until there is another initial alignment.

Consider now MODE $=2$ operation. During the first call to MEASRE, ADRSW $=\mathbf{- 1}$. This causes the frequency addresses of the prominent spatial frequencies to be computed and stored in Table BCDAR. In addition, the magnitudes of the reference transform at these frequencies are stored in Table MS.

Subsequent calls to MEASRE are used to compute SUM as defined by equation 4. Hence, MEASRE computes the function "correlate transforms" shown in Figures 8, 9 and 10. In all cases ADRSW = 1 so that fresh data from the misaligned sensor will be taken and correlated against reference data which has been stored in the Table MS.

Finally consider MODE $=3$ operation. The variables S1UP(i) and S1VP(i) are computed for least squares estimation. If SNFLAG $=0$ then fresh data from both sensors is used to compute these variables. If, instead, SNFLAG $=1$ then fresh data from the misaligned sensor is used along with stored phase data from Table PS to compute these variables.

The remainder of this section consists of a brief description of the major subroutines and variables used by the alignment program. The notation (VAR1, VAR2) is used to indicate a two-byte variable consisting of the one-byte word VAR1 which is followed in memory immediately by the one-byte word VAR2.

Subroutine FINSCH is called during fine angular alignment and fine angular correction (dither angle). It computes SUM at the present position and at \pm FINE degrees from it. It then moves the light table to the position of maximum correlation.

Subroutine SUMPAR computes UU, UV, VV, UP and VP from the partial products S1U, S1V, S1UV, S1UP and SIVP. The variable L is used to set the summation limits in the defining equations (10) through (14).

Subroutine CORDIC computes the Cordic algorithm with 16 iterations. The algorithm has two functions. First, if variables COR9 $=$ COR10 $=0$ upon entry then the two byte rectangular coordinates (COR1, COR2), (COR3, COR4) will be converted to polar form with (COR1, COR2) $=.41169 \times$ magnitude and (COR9, COR10) $=$ phase (radians $/ \pi$). If the two-byte variable (COR9, COR10) $\neq 0$ then the rectangular coordinates (COR1, COR2), (COR3, COR4) are rotated through the angle (COR9, COR10) and suffer a gain change of . 41169 .

Subroutines ADDRES computes the BCD frequency variables UI1, UI2, VJ1, VJ2 from the binary frequency variables I, J. In addition, under control of variable ADRSW the BCD variables can be either stored in Table BCDAR after computation or read from that table in lieu of computation.

Subroutine READ is used to read data from the reference sensor and store the magnitude and phase in MP and PS respectively.

Subroutine $B I \$ B C D$ computes a $B C D$ number from a binary number.

The PUSH and PULL subroutines are used to push or pull four-byte numbers on or off the stack for use with the MATH chip.

The MATH chip contains software which implements fixed point and floating point arithmetic operations. The use of this software is described in the manual from Wintek Corp. supplied in the Commercial Data.

Subroutine RDDEFT takes a number of samples from one of the Deft sensors, averages them and returns the average value in (real) (COR1, COR2) and (imag.) (COR3, COR4). If SENSOR = -1 then NS samples of the reference transform are averaged. If SENSOR $=0$ then one sample of the reference transform is taken. If SENSOR = 1 then NS samples of the misaligned transform are averaged.

Subroutine INDEX1 computes the next coarse grid point from the previous grid point during transform search.

Subroutine GSRCH performs a fine grid search around a coarse grid point. The fine grid increment is 30 kHz and an area of $180 \times 180 \mathrm{kHz}$ is searched.

Subroutine UPDATE updates a table during the initial transform search during spatial frequency selection. When completed, the n-th entry in this table is the number of samples for which the magnitude of the sample is greater than $n \times$ THR2 where THR2 is a small constant.

Using the table constructed by UPDATE, subroutine THRSET sets the threshold THR1 so that THR1 $=n \times$ THR2 where the $n-t h$ entry in the table is less than or equal to NPT and the n-1st entry is greater than NPT. NPT is the desired number of spatial frequencies.

Subroutine PHASDF computes the difference of two phase samples and adjusts the difference to lie in the interval ($\pi,-\pi$].

Subroutine PHSSET measures the phase difference at the dc peak of the two sensors and stores the result in variable PHASE. If alignment is with one sensor only then there is no phase difference. In that case, (SNFLAG $=1$), the subroutine immediately returns to the calling program.

Subroutine INIZE is used to initialize a table in RAM with program constants which are stored in ROM. The area in RAM consists of the block from 1808_{H} to $1 \mathrm{FFF}_{\mathrm{H}}$ and the block $\mathbf{1 8 1 2}_{\mathrm{H}}$
to 1891_{H}. Most of the memory in the first block is simply cleared to zero. These memory blocks are reinitialized whenever the key pad key F is pressed. It is then possible to modify any parameter in RAM prior to alignment by using the monitor program. To enter the monitor, open the front panel and press the right-most button. An asterisk should appear on the CRT terminal. To modify RAM, refer to the monitor reference manual supplied in the Commercial Data. After memory has been modified, press together the control key and P on the terminal. Then enter A99B and carriage return. Follow this by G, carriage return. There should now be dashes on the LED display and control has been returned to the supervisor. Caution: Memory modification should only be attempted if the user has intimate knowledge of the alignment program, assembly language and hexidecimal notation. The program has been designed so that memory modification is not necessary during normal operation. In particular, the software adjusts automatically to the test image presented to it. That is, the program automatically characterizes the transform and determines which spatial frequencies it will use.

The remaining subroutines used in alignment are adequately explained in the assembly language listing. The remainder of this section consists of a description of the important variables used in the alignment program. Memory locations $1800_{H}-1809_{H}$ hold temporary variables which will not be discussed.

PHASE holds the difference in the phase of the two transforms provided by the two Deft sensors measured at the dc peaks.
$X Q Z E R O$ and YQZERO are the coordinates of the dc peak of the reference sensor. X1ZERO and Y1ZERO are the coordinates of the dc peak of the aligning sensor. ($\mathrm{MHz} / 10$)

COR1, COR2, COR3, COR4, COR9, COR10 are used to store the two-byte variables input to and output from the CORDIC subroutine. (See description of CORDIC.)
I and J hold binary numbers which address spatial frequencies. $I=J=0$ addresses the dc peak of either sensor. In general, to convert from these normalized addresses to the actual electrical frequencies use the formulas:
$\mathbf{f}_{\mathrm{x}}=30 \mathrm{kHz} \times \mathrm{I}+\mathrm{dc}$ peak x -coordinate
$f_{y}=30 \mathrm{kHz} \times \mathrm{J}+\mathrm{dc}$ peak y -coordinate
ID and JD are the normalized frequencies of the previous grid point.

UII and VJi are the x and y frequencies of the reference sensor expressed as BCD numbers. UI2 and VJ2 are the same for the aligning sensor. They are all computed from I and J using subroutine ADDRES.

MODE controls the function of subroutine MEASRE. (See description of MEASRE.)

DTIME is a parameter which controls the delay provided by subroutine DELAY1.

JSTART is the initial value of J during the search of the transform. It is set large enough to avoid the low-frequency region of the transforms.

BDRY indicates which region of the transform the variables I and J presently address. BDRYD is the same for ID and JD.

NBDRY gives the total number of regions that the transform is divided into. This number is 3.

BDRYPT is a pointer used to index the Sl variables.
FIRST is a flag used in subroutine MEASRE to tell whether the current point is the first point.

SENSOR tells whether the reference or aligning sensor is to be used.

NSAMP is the number of samples to be averaged in subroutine RDDEFT. LOGS $=\log _{2}$ NSAMP.

BCDPTR is a pointer used to index array BCDAR.

L is the present, outermost region. It is used during least squares estimation.

LIMIT is the largest allowable value of I which limits the search area to the sensor bandwidths.
X is the number of spatial frequencies chosen by the program.
Y is used to index data stored in MS and PS.
ZERO is not used.
X1INC and Y1INC are the fine grid increments scaled by 10. Their value is $30 \mathrm{kHz} / 10$.

NPT is the desired number of spatial frequencies (16).
STACK1, STACK2, PUSHST are temporary variables used by the PUSH and PULL subroutines.
(THR11, THR12) is the magnitude threshold set by the program to pass approximately NPT points.
(THR21, THR22) $=8$ is a small constant used to quantize the available range of magnitude values.

HOW is a flag indicating rotation or no rotation during alignment.

IJPTR and IJPTR1 are pointers which index array IJ.
ADRSW is a flag which controls the operation of subroutine ADDRES .

SETUP is not used.
FINE $=16$ is the initial fine angle increment.
$K \$ G$ is a gain constant used to scale UU, VV, and UV.
KKKK is a gain constant used to scale UP and VP.
CORSE $=60$ is the angle which the light table moves prior to the coarse angular alignment.

ST is a variable used to keep track of angular position.

SAVESP is not used.
MAX is the largest correlation to date during angle alignment.

SUM is the current correlation value.
XTRAN and YTRAN hold the x and y translations for the stepper motor subroutine.

DELX and DELY are four-byte variables which are the computed translations for the stepper motor. The lower two bytes are then stored in XTRAN and YTRAN.

VP, UP, UV, and UU are the computed least squares variables which are defined in Section III.

STEPS holds the angle where maximum correlation occurred.
ANGLE holds the angle used by the stepper motor subroutine.
SMAG holds the denominator of equation (4).
SAVEZ, SAVEY, DIRECT, DTHR11, DTHR12, DTHR21 and DTHR22 are not used.

MPLX stores the current multiplexer address.
SIGNI and SIGNQ are used to hold sign bits to sign-extend the real and imaginary sample respectively.

SFLAG is a flag which indicates first or second pass through MEASRE when MODE $=1$.

SNFLAG is a flag which indicates two-sensor or singlesensor alignment.

CFLAG is a flag which indicates real or complex correlation in the correlation program.

CCFLAG is a flag which indicates whether or not the scan of the transforms is complete in the correlation program.

Some of the above variables are also occasionally used for temporary storage. The alignment program also uses a block of
memory for table or array storage. These tables are listed below.

DELTA is a table holding threshold values used to determine if L should be incremented or the alignment considered complete.

BCDAR is an array which is filled with the $B C D$ values of the spatial frequencies chosen by the program.

BDRYLF is a table which holds the boundary values of J used to determine which region of the transform a grid point is in.

BDRYCT is an array which is filled during the second call to MEASRE, MODE $=1$. The i-th entry in this table is the value of the index y for the last spatial frequency chosen in region i.

S1YP, S1UP, S1UV, S1U and S1V are arrays which hold the partial products used in least squares extimation. The notation S1VP1M means that the table points to the first word in the table and the MSB of the word.

IJ is an array which holds the normalized frequency variables I and J for each spatial frequency chosen.

PS and MS are arrays which hold the phase and magnitude of the reference transform at the chosen spatial frequencies.

ARRAY is an array used in the correlation program to hold the partial products during scanning of the transforms.
E. Calculation of Image Transform Cross-Correlation Function

To compute a cross-correlation in the spatial frequency domain, first that domain is restricted to the bandwidth of the Deft sensors. The area used is a square extending from the location of the dc peak along the f_{x}-axis 6 MHz and along the f_{y}-axis $\pm 3 \mathrm{MHz}$. This area is quantized to a grid with spacing 100 kHz in both f_{x} and f_{y}. Let r_{i} be the aligning Deft sensor transform component evaluated at grid point i. Let a_{i} be the aligning Deft sensor transform component evaluated at grid
point i. In general r_{i} and a_{i} are complex numbers. The standard formula for cross-correlation of these samples is

$$
r=\frac{\sum_{i=1}^{n}\left(r_{i}-m_{r}\right)\left(a_{i}-m_{a}\right) *}{\sqrt{\sum_{i=1}^{n}\left(r_{i}-m_{r}\right)\left(r_{i}-m_{r}\right) *} \sqrt{\sum_{i=1}^{n}\left(a_{i}-m_{a}\right)\left(a_{i}-m_{a}\right) *}}
$$

where

$$
\begin{align*}
& m_{r}=\frac{1}{n} \sum_{i=1}^{n} r_{i} \tag{32}\\
& m_{a}=\frac{1}{n} \sum_{i=1}^{n} a_{i} \tag{33}
\end{align*}
$$

The symbol (*) means complex conjugate. Equation.(31) can be found in the references defined in the context of random variables ${ }^{6}$ or the Cauchy-Schwarz inequality ${ }^{7}$.

This formula is evaluated by the correlation routine and the result displayed on the LED display and on the computer display terminal if it is connected. In general, r will be a complex number. It is displayed in polar form.

In some cases it is more desirable to compute the crosscorrelation between the magnitude of the transforms. The corresponding formula is

$$
\sum_{i=1}^{n}\left(\left|r_{i}\right|-m|r|\right)\left(\left|a_{i}\right|-m|a|\right)
$$

$r=$

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{n}\left(\left|r_{i}\right|-m|r|\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(\left|a_{i}\right|-m \mid a\right)^{2}} \tag{34}
\end{equation*}
$$

where (\mid) means absolute value and

$$
\begin{align*}
& { }^{m}|r|=\frac{1}{n} \sum_{i=1}^{n}\left|r_{i}\right| \tag{35}\\
& { }^{m}|a|=\frac{1}{n} \sum_{i=1}^{n}\left|a_{i}\right| \tag{36}
\end{align*}
$$

[^5]This cross-correlation can also be computed by the routine. This is accomplished by finding the magnitude of each r_{i} and a_{i} sample using CORDIC. Then the real part of r_{i} or a_{i} is replaced by the corresponding magnitude and the imaginary part is set to zero. The subsequent computations are identical for both real and complex cross-correlation. However, for real correlation the computed phase should be zero or near zero and only represents roundoff errors in the calculations. Hence, it is to be ignored.

For additional details refer to the flow diagram Figure 12. Most of the time required for correlation is spent in the loop which samples the sensors, increments frequencies and computes partial products for r. Since the origin frequencies of the two sensors are slightly different, it is necessary to retune the synthesizers between sampling r_{i} and a_{i} for the same grid point i. Once the loop is exited the remaining computation requires only about one second.
F. Major Shared Subroutines

1. Subroutine to Move Stepper Motors ($A 82 \varphi_{H}-A 8 D D_{H}$) - This subroutine moves each stepper motor by a specific amount which depends on the contents of three 2-byte memory locations labeled XTRAN, YTRAN, and ANGLE. Before the subroutine is called these locations are filled with 2 's complement numbers. In the cases of XTRAN and YTRAN they are equal to the desired displacements of the x - and y-translation stages, respectively, in hundredths of a millimeter. In the case of ANGLE the number specifies the desired rotation in tenths of a degree.

The subroutine always operates the three motors one at a time in the order given above. Upon entry certain parameters are set up which are peculiar to the motor being operated. Then the program number is checked because Program D, whose function is to update the position display without moving the motors, has the same entry point. Next the desired number of steps is changed from 2 's complement to sign-magnitude form. If the

Figure 12 - Flow Diagram for Correlation Coefficient Subroutine
number is equal to zero the program goes directly on to the next motor.

Before the motor is operated a bit is either set or cleared in the PIA which establishes the direction of motion. The program operates by applying a given number (contained in Accumulator B) of clock pulses to the motor control and then decrementing the desired number of steps. Since the translation tables have a step size of .002 mm , the number of pulses is 5 for horizontal and vertical motion. For rotation it is 3 since the step size for the rotating stage is $1 / 30$ degree. After each pulse which steps the motor the position display is updated, but only if the system is in a calibrated state.

When the desired number of increments has been counted down to zero, the subroutine returns to take care of the next motor. The last return is to the calling program.
2. Position Display Subroutine ($\mathrm{AADE}_{\mathrm{H}}-\mathrm{AB93}{ }_{H}$) - This part of the code is responsible for keeping track of the motion of the translation and rotation stages and updating the frontpanel LED display accordingly. It is called by the stepper motor subroutine in the case of automated operation, or by the supervisor if the stepper motors are actuated manually. Entry is made with Accumulator A containing a mask which identifies the clock bit in the stepper motor control interface. The next bit to the left is the motor direction. In order to make up, right, and clockwise be the positive directions it was necessary to invert the direction bit for horizontal or rotational motion.

A total of five bytes is reserved in RAM for the position of each stage. Three bytes keep the step count in BCD form for the display, and two bytes keep it in 2 's complement binary form. In the case of translation, the least significant BCD byte is incremented or decremented by 20 for each clock pulse, since the program step size is 5 times as great as the step size of the stage. For rotation che increment or decrement is
33. To prevent roundoff error from accumulating, 99 is rounded up to 100 and 1 is rounded down to zero.

The two most significant BCD bytes are changed from 9's complement to sign-magnitude form, converted to the 7-segment display code, and stored in the appropriate part of the display buffer. The display is refreshed by the interrupt service routine, located at $\mathrm{AAAF}_{\mathrm{H}}$.

This subroutine has another entry point at $A B 3 D_{H}$ which is used by the image correlation routine to display the result of the computation. Entry here is made with a two-byte 9's complement $B C D$ number in the A and B accumulators. This number is changed to sign-magnitude form and displayed.
3. Synchronous Sampler Subroutine $\left(\right.$ AE2 $\left._{H} H^{-A E B D} D_{H}\right)$ - This part of the program operates the DAS to sample the signals from the detector circuit boards in synchronism with the bias frequency and the 60 Hz line frequency. Single-bit inputs on the PIA's which control the synthesizers are configured to set flags internal to the PIA's when the 60 Hz line and the bias signal undergo positive- or negative-going zero-crossings. These functions are independent from the synthesizer control functions even though the same PIA's are used.

After clearing the memory locations where the signal values will be accumulated, the subroutine sets the interrupt mask so the time required for interrupt service will not disturb the synchronism of the sampling. It then waits for a transition of the 60 Hz line, which marks the beginning of a group of 16 consecutive signal samples taken at the positive and negative peaks of the signal. At the bias frequency of 1440 Hz , the positive and negative peaks are separated by $347 \mu \mathrm{~s}$, so the 16 consecutive samples take 5.5 ms , which is somewhat less than a half-cycle at 60 Hz . After the next 60 Hz transition another 16 samples are taken. This method distributes the samples evenly over a full cycle of the line frequency so that cyclic
variations of the image brightness do not affect the data. The interrupt mask is cleared between groups of samples so the interrupt service routine can refresh the front-panel LED display.

A software time delay between the bias reference transitions and the sample commands was adjusted experimentally to make the samples coincide with the signal peaks. The pair of signals which represent the output from each sensor are in phase, although their voltages represent two orthogonal vectors which describe the signal's phase as well as its amplitude. Two samples are taken from one of the signal pair at positive and negative peaks, followed by two samples from the other one of the pair, and so on. Alternate sampling of the two orthogonal signal components minimizes phase errors caused by short-term signal fluctuations. Sampling positive and negative peak values and accumulating their difference eliminates any dc offset associated with the signal and provides some additional narrowband filtering around the bias frequency.

Exit from the subroutine occurs with the two orthogonal signal vectors accumulated separately in four consecutive memory locations pointed to by the x register. The accumulation scales the 12 -bit signal voltage samples up by a factor of 16 so that they each fill two bytes.

V. OPERATING INSTRUCTIONS

A. Operating Functions

The Image Alignment and Correlation System has been programmed to perform fourteen separate functions. The control programs for these functions are stored permanently in UVerasable read-only memories in the microprocessor subsystem. The software is organized as a supervisor or main program and a master subroutine for each system function.

When power is first turned on, the supervisor enters a wait loop with dashes displayed on the front-panel LED readout. The dashes indicate that the system is ready to accept commands from the keypad directly below the readout.

Pressing a key at this point will result in the display of the corresponding program number, with two exceptions. They are "A", which is reserved for ABORT, and "E", which is used for EXECUTE. After entering a valid program number, pressing "E" will cause execution of that program to begin. Any time before " E " is pressed, entering a new program number will override the preceding entry. Pressing " E " initially will have no effect. Entering "A" at any time will cause a return to the supervisor, and the execution of any program in progress will be terminated.

Next is a tabulation of the fourteen program functions, followed by a description and instructions for each one.

TABLE 5
Pre-programmed System Functions

Identifier
0

1

2

3

4

5

Description

Graphic x-y plot (hard copy) of spatial frequency content of test image (i.e., the image to be aligned).

Graphic CRT display of spatial frequency content of test image.

Graphic $x-y$ plot of spatial frequency content of reference (fixed) image.

Graphic CRT display of spatial frequency content of reference image.

Initial alignment and calibration using both sensors.

Calibration for re-alignment using test image only (single sensor).

Alignment after calibration using both sensors, including rotation.

Alignment after calibration using both sensors, without rotation.

Alignment after calibration using test image only, including rotation.

Alignment after calibration using test image only, without rotation.

Abort execution and return to supervisor.

Compute real image correlation coefficient using magnitude of spatial frequency data.

Compute complex correlation coefficient using complex spatial frequency data.

Display position of test image on LED readout (only after calibration).

Execute displayed program number.
Re-initialize parameters.

0 - X-Y plot from Test Image - This program operates the accessory x-y plotter, making it draw on paper a pseudo threedimensional graphic representation of the spatial frequency content of the test image. (The test image is the one on the left, viewed from the sensor modules.) Before executing this program for the first time, the instruction manual for the plotter (Hewlett-Packard model 8015B) should be read and understood. In addition, the following steps must be taken prior to execution:
a. Connect the power cord on the $x-y$ plotter to the 115 V ac supply.
b. Connect the interfacing cable from the $x-y$ plotter to the system's electronics cabinet.
c. Position a clean sheet of paper on the plotter. The use of paper furnished by the plotter manufacturer is recommended.
d. Set up the plotter controls as follows:

Line - On
V/In - 1 for both x and y
Cal/Vernier - Cal for x; vernier for y
Chart - Hold after paper is in place
Servo - On (Note: Pen may move quickly.)
Pen - Lift
Reset/Sweep - Reset
X Inputs/X Time Base - X Inputs
e. Place a pen of the desired color in the holder.
f. Depress Zero Check for the y axis and adjust Zero so that the pen is directly over the lowest line on the chart grid. Repeat for the X Asix, placing the pen over the left-hand end of the grid. (Note: The pen may move quickly to the zero locations when the Zero Check button is pressed. Be sure its movement is not obstructed.)
g. Last, remove the cap on the pen and lower the pen holder. The program may now be executed. A complete plot takes about 14 minutes.

Replacing the pen cap after each plot will prevent drying of the felt tip and will prolong pen life. It is also a good idea to keep the plastic cover on the plotter when it is not in use. However, be sure the power to the plotter is off before replacing the cover.

Periodically the recorder's y-axis vernier gain adjustment should be checked, although it affects only the vertical size of the graph. The procedure is as follows:

1. Perform steps a. through f. above.
2. Turn on the graphics terminal.
3. Open the door of the electronics cabinet and press the right-hand one of the two small white buttons. An asterisk will appear on the CRT.
4. Using the terminal's keyboard, enter MEE8 \varnothing and press the RETURN key. The terminal will respond by printing EE8 \varnothing followed by a space and two hexadecimal digits.
5. Now enter FF and RETURN. The pen on the recorder should move quickly to the top of the paper.
6. Do not disturb the Zero knob, but adjust the Vernier knob to position the pen directly over the top line on the paper.
7. While holding the CTRL and SHIFT keys down together, enter K. The terminal will respond with an asterisk.
8. Either press the BREAK key on the terminal or the small white button on the left inside the door of the cabinet. The pen should move quickly to the bottom line of the paper and dashes should return to tne front panel LED display. This completes the adjustment.

1 - Graphic CRT Display from Test Image - This program produces the same display as Program 0, but it appears on the accessory graphics terminal instead of the plotter. In this case, be sure that the interfacing cable from the terminal is connected
to the electronics cabinet, and that power is applied to the terminal. The terminal's ac power switch is located at the rear, on the right side as viewed from the front. Also check that both the transmit and receive baud rate switches on the rear of the terminal are set to 4800. Execution can then be started.

When program execution begins, the display, which is a storage CRT, will be erased. The program then labels the top of the display to show the x and y transducer frequencies at the starting point, which is the lower left-hand corner. The label also identifies the image being examined. The display covers a span of 7.6 MHz along each axis. A complete plot takes about 9 minutes. The terminal will sound an audible "beep" when the display is completed.

Except for the PAGE and BREAK keys, entries at the keyboard have no effect on this program. Pressing the PAGE key will erase the display. Execution will continue, but the terminal will print characters instead of drawing vectors. The only recourse is to abort execution and restart it.

Depressing the BREAK key causes a hardware reset which terminates any execution in progress and re-initializes the entire system. This applies to all of the fourteen available program functions as long as the terminal is connected and turned on.

The terminal should be turned on for a warm-up of several minutes before use. After prolonged periods of inactivity, the manufacturer recommends a 20 -minute warm-up.

2-X-Y Plot from Reference Image - All of the comments under Program 0 apply, except that the data is taken from the module which examines the reference image.

3-Graphic CRT Display from Reference Image - All of the comments under Program 1 apply, except that the data is from the reference image.

4- Initial Alignment and Calibration, Both Sensors - In demonstrating alignment of the Test Image with the Reference Image, it is first necessary for the system to align the Test Image to a position which is defined as zero error. Program 4 performs this function. It begins by searching the spatial frequency domain of the reference image to select a set of up to 16 points which are associated with prominent components of the image's spatial frequency spectrum. The system retains the locations of these points in the spatial frequency domain, and uses them first to achieve a preliminary alignment in angle. It searches over a range of ± 6 degrees from the original orientation of the Test Image, and computes a crosscorrelation coefficient based on the magnitudes of these sample points. After finding the angle where the correlation is greatest, the system uses the phase information from the same data points to align the Test Image laterally and vertically. It then alternately performs fine angular and translational adjustments, until the next computed translational correction falls below a preset threshold. At that point the system sets an internal flag which designates the calibrated state, and control returns to the supervisor.

Neither the CRT terminal or the $x-y$ plotter are required for this program. The light boxes must be turned on with suitable patterns in place before execution is started. In addition, the two push-button switches on the electronics cabinet marked MAN/AUTO must be in the AUTO position. Best alignment performance is obtained after a period of at least 30 minutes to allow for thermal stabilization of the sensors. One of the plotter programs should be executed after the system is first turned on, to initiate the stabilization.

It is good practice to execute Program F immediately before starting this function, to insure proper initialization.

5-Calibration for Re-alignment, Single Sensor - This program is similar to the preceding one, except that only the Test Image
is involved. The system may be calibrated with the Test Image in any position, and subsequent alignments will return it to that position. The selection of a set of data points in the spatial frequency domain proceeds as in Program 4, but in this case the magnitude and phase values at these points are simply stored in memory, and no rotation or translation of the image takes place.

The last two paragraphs under Program 4 above apply here also. However, the single-sensor mode of operation is more sensitive to thermal drift, so calibration should be done immediately prior to subsequent re-alignments using programs 8 or 9.

6 - Alignment with Both Sensors, Including Rotation - Before executing this program the system must be aligned for calibration using Program 4. Any attempt to run either Program 6 or 7 before calibration, or immediately after a system reset, will cause a return to the supervisor with the word "Error" shown on the front-panel LED display.

After the system has been aligned for calibration using Program 4, the Test Image can be displaced and rotated manually before this program is run to demonstrate re-alignment. Manual control of the stepper motors is effected with the two frontpanel buttons labeled MAN/AUTO in the "out" (MAN) position. The step, direction, and slew buttons, and the x / y button in the case of rotation, can then be used to move the Test Image to the desired starting point. The position on each axis will be shown on the LED display as each stepper motor is activated. The angular misalignment should not be made more than 6 degrees, so as not to exceed the search range of the alignment program. The allowable translational misalignment depends on the image, but displacements up to $\pm 5 \mathrm{~mm}$ have worked well in our tests.

As with any of the alignment programs (4, 6, 7, 8, or 9), the MAN/AUTO switches must be returned to AUTO before this
program is executed. Failure to do so will result in a program halt with "Error" displayed. The program may be restarted by pressing the " E " key after resetting the stepper motor controls to AUTO.

While the program is running, the LED display will show the position of the Test Image. When no further correction is indicated, execution will stop and dashes will return to the display. The final errors may be examined by pressing " D " followed by "E" on the front-panel keypad. (See section on "D.")

If the accessory CRT terminal is connected and turned on in advance, it will show a graphic display of the translation of the Test Image as alignment progresses. Initially the display will have the x and y axes with a very small square at their intersection. This square represents translational error bounds of 0.1 mm (100μ). The display encompasses an area in xy-space of about 24 mm by 18 mm . When the translational errors have been reduced to less than 1 mm in x and 0.5 mm in y, the display will be erased and replaced by a new one which is magnified 16x. The display does not give any information as to the angular position of the image.

7- Alignment with Both Sensors, Without Rotation - This program is similar to the preceding one except that the Test Image is re-aligned only in translation. Omitting the angular correction decreases the running time, and this mode also can be used to study the effects of constant angular errors on the translational corrections.

Except for those which refer specifically to rotation, all of the comments under Program 6 apply here also. The most accurate translational re-alignment will take place when no angular offset is introduced after calibration.

3-Alignment with Single Sensor, Including Rotation - This function is again similar to Program 6, except that only the Test Image is used. Program 5 must be run before this program is executed. Otherwise, the "Error" message will be displayed
and control will return to the supervisor. The most accurate results will be obtained when re-alignment immediately follows calibration.

Except for the difference in program numbers, the discussion under Program 6 applies here also.

9 - Alignment with Single Sensor, Without Rotation - This program is the only remaining permutation of the alignment functions. It must be preceded by Program 5 for calibration. Except for the lack of rotation, it is the same as Program 8.

A - Abort - Pressing this key at any time will stop the execution of any program which is in progress. The front-panel LED display will fill with dashes, showing that control has returned to the supervisor. In general, it is good practice to run Program F following an abort.

B - Correlation of Magnitudes - This program computes a normalized cross-correlation coefficient from the magnitudes of a large set of samples in the spatial frequency domain of both sensors. The samples are taken on a square grid at intervals of 100 kHz , over an area 6 MHz square in the transducer frequency domain. The corresponding area in the spatial frequency domain is 20 cycles square, and is somewhat smaller than the area covered by the plotter programs.

Mathematically, the correlation coefficient can be expressed as Equation 34 (page 63).

In order for the correlation program to give the correct result, the most recent calibration program executed must have been Program 4 (i.e., the one involving both sensors). Normally this would be done anyway, to insure that the degree of correlation is being measured between two images which are properly aligned. If the effect of misalignment is to be studied, the Test Image can be displaced manually after the initial alignment has been completed.

This program takes about 14 minutes to execute. At its completion the correlation coefficient will appear on the LED
display, and on the CRT terminal if it is connected. The terminal will also sound a "beep" to alert the user. The first number displayed is the result. The second number, labeled "Phase" on the CRT, should be very small and has no meaning in this case since a real number is computed.

C - Complex Correlation - In this case a complex normalized cross-correlation coefficient is calculated, using the same data grid as in Program B. Here the expression is the same as Equation 31 (page 63). The result is in polar form, with the phase given in degrees.

Running time is about 14 minutes, and a "beep" will sound from the terminal upon completion.

Both of the correlation computations reflect the response of the sensors as well as the content of the images. The complex computation takes the phase of the samples into account, and the sensors are not matched as well in. phase as they are in magnitude. Therefore, the complex correlation value tends to be smaller than the value computed from the magnitudes alone, for a given pair of images.

D - Position Display - This function uses the LED readout to display the position of the Test Image relative to its calibrated position. The first two numbers are the lateral and vertical translations in millimeters, respectively, and the third number is the angular position in degrees.

The displayed positions will always be zero upon initial turn-on of the system. In addition, Programs 4, 5, or F will clear the position counters, returning the displayed values to zero. When the system is in an uncalibrated state (i.e., neither 4 nor 5 has been run after initialization) manual operation of the stepper motors will not affect the position counters or the display. In the calibrated state, the position counters and the display will track any manual or programmed movement of the Test Image.

E Execute - Any time a program number shows at the left-hand
end of the LED display, pressing the " E " key will start execution of that program. Pressing "E" when the dashes are displayed has no effect.

F - Re-Initialize Parameters - When the system is first powered up, a hardware reset vectors the processor to a sequence of instructions which, among other things, sets a number of program parameters in read-write memory. An example is the counters which keep track of the translation and rotation stages. These counters are set to zero initially, but can be changed during operation of the system.

Program F returns all of these parameters to their initial values. It was included to allow for the possibility that parameter values could be changed selectively by using the processor's internal monitor through the CRT display keyboard. Such changes are not recommended unless the user understands both the software which implements the alignment algorithm and the processor's internal FANTOM-II monitor. The monitor is documented in the Commercial Data, and the software listings appear in Appendix B.

Although the system has received many hours of testing, the possibility still exists that the software has some "bugs" that have not been identified. For this reason it is a good practice to use Program F immediately prior to the execution of any other program except those which follow a calibration. In other words, do not precede Programs 6 through 9 by Program F.

VI. REVIEW OF THE SYSTEM'S DEVELOPMENT

Our technical proposal, on which this contract award was based, reveals that the final form of the system as it was delivered to ETL is remarkable similar to that originally envisioned, in spite of a number of significant technical problems which were encountered subsequently. The block diagram in the proposal is nearly identical to the current one in Section II. It was clear at the outset that the system should have microprocessor control. An image alignment algorithm which used the magnitude of the Fourier transform to achieve angular alignment was also seen as very probable, since the magnitude of the transform theoretically is insensitive to image translation. We knew that the phase of transform components would be the key to translational alignment, but the relationships involved turned out to be less clear than anticipated.

The first work undertaken on this program was the selection of a suitable microprocessor subsystem. Originally it had been planned to concentrate first on the DEFT sensors and their surrounding circuitry. However, at that time a design for a new, higher=resolution DEFT sensor operating near 100 MHz was about to be tried, and we wanted to use it in this system if it could be proven in time. Therefore, the sensor work was exchanged in the schedule for work with the microprocessor. This effort involved the circuit design of interfaces between the processor and the stepper motors, the frequency synthesizers, the data acquisition system, the $x-y$ plotter, the CRT display, and the front-panel LED display and keypad along with programming to support each of these interfaces. All of this was accomplished with relative ease.

Over a period of time, one of the frequency synthesizers malfunctioned intermittently, and the cause was traced to defective plated-through holes on its circuit board. It was
finally replaced by the manufacturer. Unfortunately, we know of no other source for a similar product. However, the problem has not recurred.

Two major factors which were not well established until later in the program were the format of the images and their means of illumination. The original discussions on this matter ranged from back-lighted 35 mm transparencies to opaque photographic prints.

When it was decided to use front-lighted opaque images in the system, the design of the alignment fixture could be finalized, and it was fabricated. At about the same time it became clear that the 100 MHz sensor could not be perfected in time for inclusion in the system, so sensor modules were built with the 35 MHz sensor with which we had accumulated a fair amount of experience. In the meantime, the first version of the alignment algorithm had been programmed, so it became possible to try the image alignment function of the system. These first tests were encouraging, but they did not show the degree of alignment accuracy we were seeking.

As program debugging and system testing proceeded we became aware of a number of previously unknown factors which bore on the performance of the alignment algorithm. For example, the phase of the sensor output is approximately a linear function of the difference between the two SAW frequencies, with a proportionality constant of about 1 degree per kHz . This phase function is in addition to the phase which the image imparts to the transform. A phase change of 1 degree at a point 3 MHz away from the origin in the frequency domain corresponds to an image displacement of only 3.5μ at the sensor, or 70μ at the image with 20x demagnification. Therefore, much greater significance became attached to the relatively small differences in the SAW frequencies which identify the spatial frequency origins of the two sensors. It became necessary to measure these frequencies accurately so the alignment program could use
them to measure the phase of each sensor at its transform origin. These phases were then applied as corrections to the phases measured at other points in the spatial frequency domain, since theoretically the phase of the transform at the origin should be zero for any real image.

Even after these refinements were incorporated into the software, the alignment accuracy was not satisfying. Errors in translation were typically 0.2 mm and rotational errors were typically 0.3 degree. Although the delivery date specified in the contract was very close, we felt that better performance could and should be obtained. Therefore we decided to ask for a 90 -day extension to the contract at no additional cost to the government.

In this request for an extension we proposed changes in the wording of the work statement so that the required alignment accuracy would be quantified. In addition, we suggested that image correlation be computed from the respective transforms rather than presented subjectively by means of the plotter or graphics display. The contract extension and the changes in wording were granted subsequently.

In the intervening time several changes were made in order to increase the signal-to-noise ratio from the sensors and to reduce or eliminate any suspected source of error. One factor which had been disturbing was the lack of contrast obtained with front-lighted opaque images. Several methods of making image patterns were tried, and even the most seemingly nonreflective surface tended to scatter back enough light to result in signals that were less than satisfactory. Therefore we decided to modify the alignment fixture to include light boxes so that transparencies could be used.

In order to get the highest brightness consistent with reasonable power and heat dissipation levels, fluorescent lamps were used in the light boxes. Unfortunately, the light
output of a fluroescent lamp varies considerably over the power line cycle, and this variation modulates the sensor output. This modulation would have introduced a significant source of error in the data. In order to avoid this error it became necessary to phase-lock the sensor bias voltage to the power line frequency and to synchronize the sampling of the signals with the line frequency also. This procedure averages a number of samples over a complete cycle of the power line frequency so that each data point is sampled with the same apparent light level.

As additional steps to increase the available signal-tonoise ratio, the f/1.4 lenses originally used on the sensor modules were replaced by f/0.85 lenses, and the sensor bias voltage was increased by a factor of 5 . Typical signal-tonoise ratios at that point were of the order of 55 dB for prominent spatial frequencies.

Further improvements included a re-design of the layout of the rf distribution circuit board for better isolation and shielding, and a change in the synchronous sampling subroutine to interleave the "real" and "imaginary" samples. Both of these steps improved the accuracy of the data, particularly in regard to its phase.

With these improvements the alignment accuracy of the system exceeded the specification in the contract as modified, and it was delivered to ETL on schedule.

In order to compensate in some way for the extra time required to complete the system, a feature was added to the graphics display which portrays the motion of the test image as alignment progresses.

There is little to present in the way of study results on this contract since most of the work has dealt with hardware design and its practical problems. The exception to this is the development of the alignment algorithm, which is presented in Section III.

VII. CONCLUSIONS

The Image Alignment and Correlation System has demonstrated the application of DEFT technology to the problem of aligning two identical images in translation and rotation. The system uses a highly developed image-adaptive algorithm which exploits the spatial frequency analysis capability of the DEFT sensor. The alignment accuracy of the system is image dependent, but with high contrast images having prominent spatial frequency features, the accuracy approaches the resolution of the translation and rotation stages. The accuracy is limited by the signal-to-noise ratio of the image's spatial frequency components and by mismatch between the two sensors. However, the alignment algorithm makes corrections for these differences wherever possible.

In the course of developing this system, new information has been obtained regarding the use of an ac bias with the DEFT sensor, and on circuitry for processing the sensor's output signal coherently. This information has advanced the state of the art in DEFT applications, and will be of value to any related future development.

The alignment algorithm, its implementation in software, and particularly its refinement to suit the characteristics of the sensor, also represent a significant achievement in the application of DEFT technology. Especially noteworthy are the image-adaptive properties of that part of the program which selects the most useful spatial frequency data from the image.

The use of the method of least squares to provide translation offset estimates is sufficiently general so that alignment of rather arbitrary images should be possible when more sensitive DEFT sensors become available.

This system has shown that the spatial frequency information provided by the DEFT sensor can be used to actually perform a function, as well as being made available for interpretation and analysis.

VIII. RECOMMENDATIONS

The Image Alignment and Correlation System is most in need of improvement in the areas of operating speed and image dependence. Speed of execution was not a primary consideration in the design of the system, and it would have been impossible to assess this factor accurately prior to the development of the alignment algorithm. However, now that the system is complete and some experience has been gained with it, a reduction in execution times clearly would be a desirable improvement.

Speed of execution is limited primarily by the phase-locked loop frequency synthesizers in the system, which require about 30 ms for settling after a frequency change in commanded. Modifying the synthesizers to reduce their settling time by a factor of 10 would make a significant improvement in the operating speed of the system. There are probably areas of software which could be improved in regard to execution times. However, in the absense of a dc-powered light source, the need for data sampling which is synchronous with the ac line frequency puts a lower limit of about 16 ms on the time required for each signal sample. This factor alone accounts for 13% of the execution time for the image correlation function, for example.

The dependence of the system on particular types of images is based on the sensitivity of the DEFT sensors. Higher sensor output would allow operation with images having lower contrast or less prominent spatial frequency features. When improved sensors become available, they could be considered for retrofit into the system, and modifications to reduce execution times could be made concurrently.

IX. REFERENCES

1. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hil1 1968, chap. 2.
2. D. L. Kreider, et al., An Introduction to Linear Analysis, Addison-Wesley, 1966, chap. 7.
3. D. J. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, 1973, chap. 7.
4. J. E. Volder, "The Cordic Trigonometric Computing Technique," IRE Trans. Comp. Sept. 1959, pp. 330-334.
5. D. J. Wilde, Optimum Seeking Methods, Prentice-Hall Inc. 1964.
6. A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 1965, chap. 7.
7. D. G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons Inc., 1969, chap. 2.

X. BIBLIOGRAPHY

1. Kowel, S.T. et al, DEFT: Advanced Structures and Applications, Report No. TR-79-12, Dept. of Electrical and Computer Engineering, Syracuse University, Syracuse, N.Y., Prepared for US Army Night Vision Laboratory, Fort Belvoir, VA 22060, Grant No. DAAG53-76-C-0162, 30 June 1979.
2. Kowel, S.T. et al, Two-Dimensional Direct Electronic Fourier Transform (DEFT) Devices - Analysis, Fabrication and Evaluation, Report No. TR-77-5, Dept. of Electrical and Computer Engineering, Syracuse University, Syracuse, N.Y., June 1977.
3. Kornreich, P.G. et al, "DEFT: Direct Electronic Fourier Transforms of Optical Images", Proc. IEEE, Vol. 62, August 1974, pp. 1072-1087.

APPENDIX A

This section shows schematic diagrams for the various units described in Section II.
Unit Page
RF Distribution PC Board A-2
DEFT Sensor Module A-4
Bias Generator PC Board A-6
Synchronous Detector PC Board A-8
RTI-1220 Buffer Board A-9
System Wiring Diagram A-10

A-3

APPENDIX B

This section contains listings of all of the software furnished with the Image Alignment and Correlation System except for that purchased from Wintek Corp. All addresses and opcodes are hexadecimal. In the operand column of the statements, the following symbols are used:

Hexadecimal Prefix
Binary Prefix
Hexadecimal Postfix
Decimal Postfix
Binary Postfix
Denotes Immediate Addressing Mode

CORRELATION COEFFICIENT

C.ORFELATION COEFFICIENT

COKRELATION COEFFICIENT

COFRELATION COEFFICIENT

:ORRELATION COEFFICIENT

- A3AB	B7 18 2A	\cdots	StAA	COR9	
A3AB	2A OE		BPL	CR13	
A3AD	$4 F$		CLRA		
A3AE	$5 F$		CLRR		
A3AF	FO 1803		SURE	TEMF'4	
A382	821802		SECA	TEMF3	
A385	871802		STAA	TEMP3	
A3E8	F7 1803		Stak	TEMP4	
A3BB	ED RE 17	CR13	JSR	EI\$8CD	
A3PE	FE 1806		LnX	ECIII	
A3C1	FF 1826		STX	COR3	FHASE IN ECD (DEG)
A3C4	7D 18 2A		TST	COR9	
A3C7	2A 01		BFL	CORIISP	
A3C9	On		SEC		
A3CA	07	CORISP	TFA		
A3CR	36		FSHA		SAUE SIGN
A3CC	86 OA		LIAA	* 10	
A3CE	B7 En 30		STAA	DISFTR+1	
A3D1	CE 1826		LDX	FCOR1+2	
A3D4	8610		LDAA	* $\$ 10$	
A3D6	8 D 16		BSR	CORDS1	FOR ANGLE
A308	8603		LDAA	+3	
A3IIA	87 En 30		STAA	IISFTR+1	
A3ID	CE 1824		LIIX	\#C0R1	
ABEO	$86^{\circ} \mathrm{FF}$		LIAA	* 5 FF	
A3E2	8D OA		RSR	CORDS 1	FOR MAGNItUdE
A3E4	8601		LDAA	*1	TO MAKE ${ }^{\circ} \mathrm{O}$ -
A3E6	87 E1 03		STAA	LEMidFi+3	
A3E9	32		FULA		
A3EA	06		TAF		
A3EB	7E AE F7		JMP	CORCRT	WRITE TO CRT
ASEE	36	CORIISI	FSHA		
A3EF	A6 00		LDAA	$0, \mathrm{x}$	
ASF 1	E6 01		LIAR	1 1 X	
A3F3	7E AB 66	G1	JMP	FIXSGN	

$*$
$*$
$*$
$*$
$*$

CORRELATION COEFFICIENT

A4D1 4F CLRA
A4IT BR EB 68 JSR
A4D5 39 RTS
$\mathrm{KEAL}=(\mathrm{A}-\mathrm{B}) *(C+[I)+(B C-A I)$

COFRELATION COEFFICIENT

ITATEMENTS =731

FREE BYTES $=489$
more measure sukroutines

MORE MEASURE SUEROUTINES

MORE MEASURE SUEROUTINES

MORE MEASURE SUEROUTINES

MORE MEASURE SUBROUTINES

MORE MEASURE SUBROUTINES

MOFE MEASUKE SUBROUTINES

STATEMENTS $\equiv 346$
FREE BYTES $=4319$
NO ERRORS DETECTED

SUEFOUTINE TO MOUE STEFFFER MOTOKS

[^6]SUEROUTINE TO MOVE STEFFEF MOTORS

A8CE		CO			LDA B	\#\$ĊO	EQUALIZE DELAY	
A8DO	ED	AA	75	SFEED	JSR	DELAY1		SET STEFFING RATE
A8D3	33				FUL B			
ABD4	5A				IUEC E			
ABD5	26	10			ENE	CYCLE1		
A8D7	FE	EI	32		LIIX	TEMF'1		
A8DA	09				LIEX			
A8DE	26	C8			ENE	CYCLE		
A8IIn	39			RETFN3	RTS			
A8DE	OC			SINMAG	CLC			
A8LIF	2A	07			EFL	FLUS		
A8E1	43				COM A			
A8E2	53				COM B			-
A8E3	CB	01			ADD B	\$ 1	FOR	2'S COMF.
A8E5	89	00			ADC A	\$0		
A8E7	OII				SEC			
A8E8	39			FLUS	FiTS			
A8E9	8 E	EC	FF	LIMIT	LIIS	\#USRSTK		
A8EC	7E	AA	3A		JMF'	ERFOR2		
				**	CALLING	FOUTINE FOR	INITIAL	ALIGNMENT
F470				INALGN	EQU	\$ 8470		
A8EF	CE	A9	9 B	ALIGN ${ }^{-}$	Lnx	\#SUFFRVE		
A8F2	FF	EI	1 C		STX	AETUEC		
A8F5	$7 F$	ED	15		CLR	CALIBR		
A8F8	BII	E4	70		JSR	INALGN		
A8F B	7C	EII	15		INC	CAL I BR	50	IT'S NON-ZERO
ABFE	20	10			ERA	CLEAR		

-	** *	SETS UF FIA'S FOR SYNTHESIZER'S \& FLOTTER FOLLOWS HAFLIWARE RESET		
	*	hafillware	IUEFINITIONS	
EEOO	FIA	EQU	SEEOO	
EE40	Console	Eau	\$EE40	
EE40	KEYFAII	Eau	\$EE40	
	*	MONITOR R	feferences	
ECFF	USFSTK	Equ	\$ECFF	
EIIF7	UIFA	EQu	\$ELIF7	;
	*	OTHEF REFERENCES		
A000	CORMAG	EQU	\$ ${ }^{\text {O }} 000$	
A007	CORCOM	EQU	9 AOO 7	
AC47	KSFLOT	EQU	\$AC47	
E47E	HOURLE	EaU	\$E47E	
E487	SINGLE	EतU	\$1487	
H88C	INIZE	EQU	\$E88C	
	*	FAM declaritions		
EDOO		OFG	\$E100	
E 1000	LEIIEFR	RME	15	
EDOF	EUFENI	ERU	*	
ELIOF	BUFFNT	FME	2	
E111	kEYUAL	FiME	2	
ED13	LEIIFTR	FMB	2	
E[135	CALIER	RME	1	
E[16	INCRMT	RME	1	
El117	FROGNR	RMB	1	
ELI 18	FRGJMP	RME	2	
En1A	TEMF	RME	2	
ELIC	ABTVEC	RMB	2	
El148	GAIN	ERU	SED48	
Ell49	A\$GAIN	EQū	¢EIT49	
EII4A	R\$GAIN	EQU	\$EIIAA	
El14E	SETIIEL	EQU	SED4E	
	*	FFGOGFAM TA	TABLE	
A800		ORG	\$ 8800	

$A 800$	$A C$	47
$A 802$	$A C$	47
A804	AC	47
$A 806$	$A C$	47
$A 808$	$A B$	$E F$
$A 80 A$	$A B$	$E F$
$A 80 C$	$E 4$	$7 E$
$A 80 E$	$B 4$	$7 E$
$A 810$	$B 4$	87

ENTRY ALILRESS
KSFLOT
KSPLOT KSFLLOT KSFLOT ALIGN ALIGN DOUELE IIOUFLE SINGLE

FROGFAM NUMEER AND FUNCTION O, X-Y FLOT FROM TEST IMAGE 1, CRT IIISFLAY FFOM TEST IMA 2, $X-Y$ FLOT FROM REF. IMAGE
3: CRT IIISFLAY FROM REF. IMF
4, INITIAL ALIGNMENT, 2 SENS
S. INITIAL ALIGNMENT, 1 SENS
6. TEST ALIGNMENT, 2 SENSORE
7. TEST ALIGNMENT, 2 SENS.,

8, TEST ALIGNMENT, 1 SENSOR

B-25

INITIALIZATION AND SUFERUISOR ROUTINES

A812	84	87	\cdots		FnE ${ }^{\text {a }}$	SINGLE	9. TEST ALIGNMENT, 1 SENSOF,
A814					FME	2	FESERUEL FOR AFORT
A816	AO	00			FIIB	CORMAG	E. MAGNITUTIE COFFELATION
A818	AO	07			FIE	COFCCOM	C. COMFILEX CORFELATION
AB1A	A8	20			FIIB	XSTEF	[I, IISFLAY TAFLE FOSITION
AB1C					FMB	2	FESERUEI FOF EXECUTE
A81E	A9	6A			FIIR	INITLZ	F. FE-INITIALIZE FAFAMETERS
				*	SEGMENT	TAELE	
A900					ORG	\$ ${ }^{\text {P }} 900$	
A900	81	CF	92	LEITEL	FCR	\$81,\$CF, \$92,\$86	, \$CC, \$ $44, \$ A 0, \$ 8 F$
A908	80	8C	88		FCE	\$80, \$8C, \$88, \$E0	, \$E1, \$C2, \$ FO , \$ EB
				**	SETS POS	ITION COUNTERS	TO ZERO
A910	CE	ED	$1 E$	CLEAR	LIIX	* XCOUNT	
A913	$6 F$	00		CLEAR1	CLF	$0 . \mathrm{X}$	
A915 ${ }^{\text {A916 }}$	08				INX		
	8C	ED	21		CFX	*XCOUNT+15	
A919	26	F8			ENE	CLEAR1	
A918	39				RTS		
				**	HARIIWARE	E RESET VECTORS	HEFE
$\begin{aligned} & \text { A91C } \\ & \text { A91II } \end{aligned}$	01			AFESET	NOF		
	CE	EE	07		LIIX	\#FIA+7	
A920	EF	00			STX	O,X	
A922	09			ARSET 1	IIEX		
A923	26	FII			ENE	ARSET1	
A925	CE	EE	00		LIXX	*PIA	1
A928	35				TXS		1
A929	86	41			LIIA A	*\$41	7+E+2,1/16,RTS FALSE
A92B	A7	08			STA A	8 -X	
A920	86	FF			LIIA A	*\$FF	
A92F	A7	10			STA A	\$10, X	ALL OUTFUTS
A931	A7	11			STA A	\$11, x	
A933	A7	20			STA A	\$20, x	
A935	A7	21			STA A	\$21, X	
A937	A>	41			STA A	\$417x	
A939	A7	80			STA A	\$80, X	
A93E	A7	81			STA A	\$81, X	
A93D	86	36			LIA A	*\%00110110	TO SENSE FOSITIUE EIAS TRANS
A93F	A7	12			STA A	\$12.x	THFU CA1
A941	A7	13			STA A	\$13, x	LINE TEANSITION THFU CEI
A943	86	04			$\operatorname{LIA}^{-} A$	*\%00000100	TO SENSE NEG. TRANSITION
A945	A7	22			STA A	\$22, X	
A947	A7	82			STA A	\$82, X	
A949	86	34			LIA A	*\%00110100	CE2 AS LOW OUTFUT
A94E	A7	23			STA A	\$23, x	
A941I	A7	83			STA A	\$83, x	
A94F	A7	42			STA A	\$427x	CA2 HERE
A951	86	20			LDA A	* \%00101101	
A953	A7	43			STA A	\$43.X	FULSE MODE, INTEFRUFTS ON
A955	CE	EF	00		LnX	\&FIA+\$100	
$\begin{aligned} & \text { A958 } \\ & \text { A95A } \end{aligned}$	86	CF			LIA A	* ${ }^{\text {F }}$ FF-\$30	
	A7	00			STA A	0, X	TURN AROUND LS245'S
						3-26	

INITIALIZATION AND SUFERUISOR ROUTINES

INITIALIZATION ANI SUF-EFUISOK FOUTINES

INITIALIZATION ANU SUFEFVISOR ROUTINES


```
STATEMENTS =466
```

FFIEE BYTES $=1263$
NO EFRORS IIETECTEI
-- ! !

STEFFER MOTOK POSITION IISPLAY FOF IMAGE ALIGNMENT SYSTEM

* EXTERNAL RĖFERENCES

EF02			TABLE	EQU		\$EFO2	
El13			LELIPTK	EQU		\$E113	
ED16			INCRMT	EQU		SELI 6	
EDIA			TEMF	ERU		\$EIIA	
Enizf			IISPTR	EQU		\$ED2F	
AALIE				ORG		\$ Aade	
Aatie	36		FOSIIS	FSH	A		Store cloock Mask
AALIF	48			ASL	A		
AAEO	16			TAB			
AAE1	E4	EF 03		AND	A	TAELE+1	WHICH. DIRECTION?
AAE4	C5	08		EIT	E	\#\%00001000	j
AAE6	26	06		ENE		Y	
AAEB	F7	ED 1A		STA	E	TEMF	
AAER	H8	EII 1A		EOR	A	TEMP	SO nISflay agrees WITH diIfec
AAEE	41		Y	TST	A		
AAEF	27	OC		EEQ		INCR1	
AAF 1	86	FF	IECR	LNA	A	\#\$FF	REVERSE
AAF 3	36			F.SH	A		
AAF 4	36			FSH	A		
AAFS	86	99		LIIA	A	\#\$99	FOR ECII UFTAATE
AAF7	E0	Ell 16		SUE	A	INCRMT	
AAFA	OD			SEC			
AAFB	20	09		BRA		Allis	
AAFD	$4 F$		INCR1	CLR	A		FOFWARII
AAFE	36^{-1}			FSH	A		
AAFF	86	01		LIA	A	\#1	
AH01	36			FSH	A		
AR02	E6	ED 16		LINA	A	INCRMT	
AE05	5			CLR	B		
AB06	A9	02	ALDI	AIIC	A	2, x	RCD UF'DATE
AE08	19			IAA			
A809	25	OA		BCS		TEST1	take cafe of roundioff erkor
ABOB	81	99		CMP	A	\#\$99	
AROD	OC			CLC			
AFOE	26	OB		ENE		Store	
AE10	8 E	. 01		ADB	A	\$1	ROUND UF_TO_ 100
AE12	19			DAA			
AF13	20	06		ERA		Store	
AE15	81	01	TEST 1	CMP	A	* 1	
AB17	26	01		RNE		SETCRY	
AE19	4F			CLR	A		ROUNI IJOWN TO O
ABIA	On		SETCRY	SEC			
AEIE	A7	02	STOFE	STA	A	$2, x$	
AR1D	86	00		LIAA	A	* 0	ASSUME FOFIWARI
AEIF	C4	FF		ANI	B	48FF	
AR21	27	02		EEQ		ADI2	
AB23	86	99		LDA	A	\$ 899	NO, REVERSE
AB25	16		And2	TAB			
AB26	Ă 9	01		AIIC	A	1, ${ }^{\text {d }}$	
AR28	19			DAA			
AE29	A7	01		STA	A	1, X	
AB2E	17			TRA			
AB2C	A9	00		ADC	A	$0, \mathrm{x}$	
AF2E	19			IAA			

SIEFFFER MOTOF FOSITION IIISFLAY FOR IMAGE AI.IGNMENT SYSTEM

STEFFER MOTOR FOSITION IISFFAY FOR IMAGE ALIGNMENT SYSTEM

STATEMENTS $=142$
FREE EYTES $=7297$
NO ERFORS LETECTEDI

- 1 1. SASSEMBLE
$\because-Y$ FLOTTER/CFT IISFLLAY FFROGFAM FOK IMAGE ALIGNMENT SYSTEM
* SUFERUISOR REFERENCES

EIIA E1127 EnIC A998

EIIN6

1700
1700
1824
E1134
EII34
E 1135
EL137
En39 ELIBE EIIC
EIIII
EIISE
E142 E 143 ED47 E148 E149 ED4A EIAB

	**
IFFO	IAS
EEOB	ACI
EEOO	FIA
EE8O	UER
EEB1	HOR
EE1O	XFR
EE2O	YFR

IAS	EQU	$\$$ DFFO
ACIASR	ERU	$\$ E E 08$
FIA	EQU	$\$ E E O O$
UERT	EQU	PIA+ $\$ 80$
HORIZ	EQU	UERT+1
XFREQ	EQU	PIAF $\$ 10$
YFREQ	EQU	FIA+ $\$ 20$

** FANTOM-II REFERENCES

X-Y FLOTTER/CRT IISFLAY FFROGRAM FOF IMAGE ALIGNMENT SYSTEM

AELIS	01	$O A$	18	ESC\$FF	FCC
AED9	54	45	53	TSTMSG	FCC
ABE3	52	45	46	REFMSG	FCC
AEF2	$1 F$	87		SIGNAL	FCC

ABF 4	CE	AB	IIS	FAGE	LIXX		\#ESC\$FF	SEND CR, LF,	, ANII ESC/FF
ABF 7	R1	FII	FF		JSR		OUTSTR		
ABFA	CE	00	00		LIXX		* 0		
AEFD	EII	AI	7 A		JSR		IIELAY	1 SECONL TO	ERASE CRT
ACOO	7E	AII	7A		JMF'		IIELAY	FETUFNS UIA	FTS IN DELAY
ACO3	81	EF		OUTFFQ	ESR		PAGE		
ACOS	CE	AB	CO		LIIX		\#STMSG	\checkmark	
AC08	RD	FII	FF		JSR		OUTSTR		
ACOB	86	3A			LIIA	A	*'!'		
ACOI	ED	FII	80		JSR		OUTCH		
AC10	CE	20	46		LIIX		$*^{\prime} F^{\prime}$		
AC13	FF	EII	3E		STX		XMSG		
AC16	CE	78	ED		LDX		\#' \times = ${ }^{\text {+ }}$ \$80		
AC19	FF	EII	40		STX		XMSG+2		
AClic	B6	En	46		LIIA	A	FFEQ 3		
ACiF	81	$1 A$			ESF		SHUFL		
AC21	08				INX				
AC22	08				INX				
AC23	8 I	08			ESR		OUTFR1		
AC25	7 C	EI	40		INC		XMSG+2	CHANGE TO Y	
AC28	B6	EII	44	---	LIIA	A	FFEQ+1		
AC2B	8 I	OE			BSR		SHUFL		
AC2II	86	2E		OUTFR1	LIA	A	*'.'		
AC2F	BII	FII	80		JSR		OUTCH		
AC32	EII	FD	8F		JSR		THE		
AC35	CE	AB	DO		LnX		\#MHZMSG		
AC38	7 E	FII	FF		JMP		OUTSTR		
AC3H	B7	ED	42	SHUFL	STA	A	XMSG+4	(USE 'CTE' T	TEMF'ORARILY)
AC3E ${ }^{-}$	CE	EII	3E		LIX		*XMSG		
AC41	BII	FD	FF		JSR		OUTSTK		
AC44	7E	FD	BF		JMP		THE		

** MAIN PROGRAM

$\$ 0^{\prime} I ; \$ 0 A, \$ 1 E^{\prime}, \$ 0 C+\$ 80$
TEST IMAG' ' $E^{\prime}+\$ 80$
'REFERENCE IMAG' ${ }^{\prime} E^{\prime}+\$ 80$
$\$ 1 F, 7+\$ 80$

CHANGE TO Y
(USE 'CTK" TEMFORARILY)
LIX *XMSG
JMF THE
$X-Y$ PLOTTER/CRT DISFLAY FFROGRAM FOF IMAGE ALIGNMENT SYSTEM

X-Y FLOTTER/CRT IIISFLAY FFROGRAM FOF IMAGE ALIGNMENT SYSTEM

X-Y FLOTIEF/CFT LISFLAY FROGRAM 1-OR IMAGE ALIGNMENT SYSTEM

X-Y FLOTTER/CRT IIISFLAY FROGRAM
FOR IMAGE ALIGNMENT SYSTEM
** FORMAT IAATÁ FOR OUTFUT TO TEK 4006-1

ADE3	31			ELANK	INS			
ADE4	A6	00			LIA	A	0, X	
ADE6	E7		37		STA	A	YCOORII	
ADE9	7 C		35		INC		XCOORII	
AIIEC	8 D	02			ESR		-IRKUCT	
AILEE	20	EC			ERA		XCHJMP	
ALIFO	81	33		mikuct	ESF		IIARK	
Alif 2	CE	E	75	UECTOR	LIIX		\#xCOORII	
ALIFS	8 D	18			HSR		LoFyte	
ALIF 7	BR	CO			AIII	A	\#\$40+\$80	MARK ENI OF STRING
ADF9	36				FSH	A		LAST WORII OUT
ALIFA	8D	21			ESF		HIEYTE	
ADFC	36				FSH	A		
ADFD	CE	ED	37	LOY	LIX		\#YCOORI	
AEOO	8 D	10			ESR		LOEYTE	
AE02	8 B	60			AILD	A	*\$60	AliII TAG
AE04	36				FSH	A		
AE05	8I	16			ESR		HIEYTE	
AE0 7	4 C				INC	A		MOUE RASTER UF 32 LINES
AE08	36				FSH	A		FIEST WORII OUT
AE09	30				TSX			
AEOA	EII	FD	FF		JSR		DUTSTR	SENI VECTORS TO IISFLAY
AEOD	31				INS			RESTORE S.F.
AEOE	31				INS			
AEOF	31				INS			
AE10	31				INS			
AE11	39				Fits			
AE12	A6	00		Lobyte	LIAA	A	0, x	
AE14	E6	01			LIIA	B	1, X	
AE16	58				ASL	B		
AE17	49				ROL	A		
AE18	58				ASL	B		
AE19	49				ROL	A		
AE1A	84	$1 F$			ANI	A	\#\%00011111	
AEIC	39				Fits			
AEIII	A6	00		hibyte	LIA	A	$0, \mathrm{x}$	
AEIF	44				LSR	A		
AE20	44				LSR	A		
AE21	44				LSR	A		
AE22	88	20			ALI	A	* $\$ 20$	Allif tag
AE24	39				Fits			
AE2S	86	10		DARK	LIIA	A	\$\$15	
AE27	$7 E$	FD	80		JMF		OUTCH	

SINCHRONOUS LIETECTOR FOF IMAGE ALIGNER/FLOTTER

3R,FFHIC ALIGNMENT IISFLAY
:OK IMAGE ALIGNER/FLOTTER

AFIE	27	OC			BEQ		SCALE	
AFEO	8 D	96		MAG16X	ESR		CROSS	FAINT MAGNIFIEI TAFGET
AFE2	CE	AF	66		LIX		*MAGSa	
AFES	8D	97			ESR		SQUAFE	
AFE7	7C	EI	4E		INC		MAG1	
AFEA	20	10			EFA		CENTER	
AFEC	CE	EII	35	SCALE	LDX		\#XCOORI	RELUCE COOFLINATES TD $1 / 16$
AFEF	C6	04			LIIA	B	$\ldots 4$	
AFF 1	67	00		LOOP	ASR		$0, \mathrm{X}$	
AFF 3	66	01			FOR		1 18	
AFFS	67	02			ASR		2, X	
AFF7	66	03			FOR		3, X	
AFF9	5 5				IIEC	E		
AFFA	26	F5			GNE		LODF	j
AFFC	CE	EII	35	CENTER	LDX		EXCOORD	
AFFF	A6	00			LIAA	A	0 - X	
E001	8E	02			ALIII	A	*512/256	SHIFT TO HOFIZ. CENTER
F003	E6	01			LIAA	B	1, X	
B005	81	OF			ESR		EXCHNG	
B007	08				INX			
H008	08				INX			
F009	E6	01			LINA	H	1; X	
FOOB	A6	00			LIA	A	$0 \cdot X$	
F0011	CE	66			AIID	E	4390-32-256	SHIFT TO UERTICAL CENTER
EOOF	89	01			AIIC	A	*390-32/256	- VECTOR" ALILIS HACK 32
E011	811	03			BSR		EXCHNG	
H013	7E	AI	F2		JMP		VECTOR - --....-
8016	47			EXCHNG	ASR	A		
H017	56				ROR	R		
R018	46				FOR	A		
B019	56				ROR	B		
B01A	46				ROR	A		
B01F	A7	01			STA	A	1.x	(A) NOW HAS L.S. 2 OF 10 EIT
E01D	E7	00			STA	B	0, X	(B) HAS M.S. 8 OF 10 EITS
F01F	39			FETRN4	FTTS			
H020					ENi			

STATEMENTS =574
FFEE EYTES $=19$

NO ERFORS IETECTED

> B-45

MEASUKE

measure

MEASURE

为sio

MEASURE

IEASURE

STATEMENTS $=548$
FREE BYTES $=1023$
NO ERRORS DETECTED

ALIGN

E4THI	7 C	18	A3		INC	SFLAG	
F4EO	HD	HO	40		JSF	MEASRE	REFERENCE
EAE3	86	02		LA21	LIIAA	\#2	ENTEF to keal Same ref
HAES	H7	18	34		StAA	MOLIE	
B4E8	86	FF			LIAAA	* $\$$ FF	
H4EA	67	18	58		STAA	ALRSW	
E4EL	EII	HO	40		JSF	MEASRE	Store men aluliesses
F4FO	71	18	A4		TST	SNFLAG	
H4F3	27	04			BEQ	LA23	
F4Fs	7 C	EI	15		INC	CALIEF	
H4F8	39				ETS		
E4F9	7 I	18	55	LA23	TST	HOW	
E4FC	2 E	03			BGT	LA24	
F4FE	7E	ES	9 F		JMF	LA85	
B501	CE	00	00	LA24	LIX	\# 0	ENTER TO SKIP REF
H504	FF	18	6E		STX	XTFAN	
F507	FF	18	70		STX	YTRAN	
F50A	FF	18	7A		STX	UF'	
E500	FF	18	7C		STX	UF+2	
F510	FF	18	7 E		STX	UF+4	
B513	CE.	00	80		LnX	+\$0080	
FS 16	FF	18	E,0		STX	UFF6	FF ZERO
F519	45				CLRA		
$\mathrm{F}^{\text {c/i }} 1 \mathrm{~A}$	SF				CLRB		
Fide	FO	18	61		SURR	CORSE+1	
HSIF.	F 2	18	60		SRCA	CORSE	
FST 1	F7	18	91		STAE	ANGLE+1	
ESO4	H7	18	90		stá	ANGLE	
H527	F7	18	63		STAR	ST+1	
F' ${ }^{\text {a }}$	B7	18	62		STAA	ST	
F525	EI	A8	20		JSR	STPMTK	-CORSE
F530	86	01			LIIAA	\#1	
B532	F7	18	58		STAA	AliRSW	
E535	86	02			LİAa	\#2	
H537	B7	18	34		STAA	MONE	
H53A	EII	FO	40	LA3	JSR	MEASRE	COFRELATE: CORSE LOOF
E535	70	18	611		TST	SUMY3	
H540	2 E	09			EGT	LA4	
H542	HII	H8	1 D	LA32	JSR	MAXSUM	SUMSMAX
F545	FE	18	62		Lnix	ST	
F548	FF	18	8E		STX	STEFS	STEFS=ST
F54E	F6	18	63	LA4	LIIAR	ST+1	ST=ST+2 IEEG
H54E	CB	14			ADDB	*\$14	
H550	F7	18	63		StAE	ST+1	
H553	R6	18	62		LIAA	ST	
H556	89	00			Alica	\#	
H558	E7	18	62		STAA	ST	
H55E	F0	18	61		SUBR	CORSE+1	ST-CORSE-0.1 DEG
FSSE	R2	18	60		SECA	CORSE	
H561	co	01			SUEE	\#1	
8563	82	00			SECA	* 0	
F565	2 C	OE			EGE	LAS	
B567	86	14			LIIAA	* $\$ 14$	
H569	B7	18	91		STAA	ANGLE+1	
B56C	7F	18	90		CLR	ANGLE	ANGLE $=2$ DEG
B56F	BD	A8	20		JSR	STPMTE	
E572	7E	R5	3A		JMF	LA3	TO MEASRE

ALIGN

ALIGN

ALIGN

ALIGN

MEASURE SUEROUTINES

MEASUFE SURROUTINES

MEASURE SUBROUTINES

MEASURE SUEROUTINES

MEASURE SUEROUTINES

MF.ASURE SURROUTINES

MEASUKE SUBFOUTINES

RORIIC

IN COR1,COR2 (MSH,LSH)
IMAG IN COR3,COR4 (MSH,LSH) PHASE IN COK9,COR10 (MSH,LSH) (RALIANS/PI) IF FHASE $=0$ RETURNS .41169MAG IN COR1,COR2 FHASE IN COK9,CORIO (RAIIIANS/PI) IF PHASE NOT=O RETURNS
. 41169 (FEALCOSTHETA-IMAGSINTHETA) IN COR1,COR2 . 41169 (REALSINTHETA+IMAGCOSTHETA) IN COR3,COR4 USES CORIIC ALGOFITHM: 16 ITERATIONS
1824
ORG $\$ 1824$
1824
1825

1826 1827 1828 1829 182A 182B 1800 1800 1802 1803 1804 1806 1807 1808 1809 180 A 180B 180C Hind	EDNG	86	01	
BDII	FE	18	$2 A$	BDAG 8 CC 0000 bIIDE

hDES BIIE8 EDEB HDEE EDF 1 BDF4 BD BF 50 $\begin{array}{llll}\text { EDFF } & \text { FF } & 1800\end{array}$ $\begin{array}{lllll}\text { BDFA } & \text { B6 } & 18 & 26 \\ \text { BDFD } & F 6 & 18 & 27\end{array}$ BEOD BI EF 50 BE03 EEO6 BE09 FEOB BEOE BE10 BEII

CORLIC

CORLIC

CORHIC

STATEMENTS $=285$
FREE BYTES $=4864$
no ERRORS DETECTED
\qquad
\qquad
\qquad

GLOSSARY OF ACRONYMS

ACIA - Asynchronous Communications Interface Adapter
ADC - Analog-to-digital converter
A/D - Analog-to-digital
BCD - Binary-coded decimal
CCTV - Closed-circuit television
CRT - Cathode-ray tube
DAS - Data Acquisition Subsystem
DEFT - Direct Electronic Fourier Transform
EPROM - Erasable Programmable Read-Only Memory
LED - Light-Emitting Diode
LSB - Least Significant Bit
MSB - Most Significant Bit
NMI - Non-Maskable Interrupt
PIA - Peripheral Interface Adapter
RAM - Random-Access Memory (read/write)
ROM - Read-Only Memory
SAW - Surface Acoustic Wave
UV - Ultraviolet

NL 0101-A002

UNCLASSIFIED

END
dute
duc
Dric

Distribution:

W26HAJ2 cysU.S. Army Engineer Topographic LaboratoriesResearch InstituteFort Belvoir, VA 22060ATTN: Joseph F. HanniganW26HAJ 14 cysU.S. Army Engineer Topographic LaboratoriesSurvey and Engineering DivisionFort Belvoir, VA 22060ATTN: STINFÓ

[^0]: IJ. W. Goodman, Introduction to Fourier Optics, McGraw-Hill 1968, chap. 2.

[^1]: 2 D.L.Kreider, et al. An Introduction to Linear Analysis, Addison-Wesley, 1966, chap. 7.

[^2]: ${ }^{3}$ D. J. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, 1973, chap. 7.

[^3]: 2 op. cit.
 ${ }^{4}$ J.E.Volder, "The Cordic Trigonometric Computing Technique," IRE Trans. Comp. Sept. 1959, pp. 330-334.

[^4]: ${ }^{5}$ D.J.Wilde, Optimum Seeking Methods, Prentice-Hall Inc. 1964.

[^5]: ${ }^{6}$ A.Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 1965, chap. 7.

 7D.G.Luenberger, Optimization by Vector Space Methods, John Wiley \& Sons, 1969, chap. 2.

[^6]: B-22

