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ABSTRACT

This report describes an aircraft trajectory optimization
computer program that has been used successfully at Grumman
for a variety of problems over a period of many years. Three
airplanes are simulated: the F-14, F-15, and ATF (Advanced
Tactical Fighter). The trajectories are in three dimensions
over a flat earth. Optimization is achieved by means of the
conjugate gradient variational technique. Inequality constraints
on the path and equality constraints on the final point are
satisfied by penalty integrals and penalty functions, respectively.
The equality constraints can be satisfied to the limit of
computer accuracy by a new technique that avoids increases in
the penalty function constants.
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NOTATION

constants used in the inequality imposed on the path
by the structural limit

coefficients varying with Mach used in the curve
fit for the lift coefficient

coefficients varying with Mach used in the curve
fit for the drag coefficient used when

M>0.9

coefficients varying with Mach used in the curve
fit for the drag coefficient used when

M =<0.9

drag coefficient; see Eqs. (11) and (12)

1ift coefficient; see Eq. (10)

function of Mach appearing in Eq. (12b)

drag; see Eq. (6) and Fig. 1

time derivative of the state vector X; see Eq. (21)

acceleration of gravity

equations for afterburner blow-out and engine
Operational limit are expressed generically by

g (M,z) =0

inequalities, Eqs. (7), (8), and (9), imposed on the
path and the mixed state-control inequality, Eq. (4),
are expressed generically by ¥ (X,u) = 0

Heavyside unit step function h (:) is zero for
negative arguments and one for positive arguments

generalized Hamiltonian; see Eq. (27)
the true Hamiltonian, which is obtained from the

generalized Hamiltonian by setting u to the value
that maximizes the latter function
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diagonal matrix of positive constants; see Eq. (36b)
lift; see Eq. (5) and Fig. 1
aircraft mass

constant appearing in the limit on the normal
aerodynamic force; see Eq. (4)

Mach; see Eq. (7)
limit imposed on Mach; see Eq. (7)

constant appearing in the limit on the normal
aerodynamic force; see Eq. (&)

cost functional; see Eq. (23)

cost functional for a problem with constraints on the
final point

PA augmented with penalty terms; see Eq. (36)

cost functional for the fixed final time approximation
to a problem with constraints on the final point;

see Eq. (42)

aircraft reference area

time

thrust

control vector composed of a, u, and n

velocity magnitude

speed of sound; see Eqs. (16), (18), and (20)

rectangular coordinates of the aircraft, z is the
altitude

vector of state variables

initial and final values of state vector as stated
in the problem formulation
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angle of attack (deg.); see Fig. 1

a + € (deg)

upper limit on a (deg); see Eq. (3)

engine mass flow varying with M, Z, and

vector of coefficients used in Eq. (32b); see Eq. (33)
coefficient appearing in Eq. (32b); see Eq. (33)

flight path angle measured in the vertical plane
between the velocity and the horizontal; see Fig. 1

vector of positive constants appearing in Eq. (53)
see Eq. (12b)

sum of the ram, interference, and spillage drags in
the F-15 engine

fixed angle between thrust and fuselage reference
line (deg); see Fig. 1

throttle coefficient appearing in Eqs. (1d) through (lg)
normalized time; see Eq. (24)

Lagrange multipliers associated with the state vector X
adjoint variables associated with the state vector X

adjoint variable associated with the free parameter t
regarded as a state variable

bank angle; the angle between the lift vector L and the
vertical plane containing the velocity vector

atmospheric mass density; see Eqs. (15, (17), and (19)

variable coefficient that scales the increments in u;
see (Eq. (32)

final time

ix
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final times for problems A, B, and C; see Table 1

heading angle - the angle between the x axis and the
projection of the velocity vector on the horizontal
plane

transpose of a vector

derivative of the variable with respect to t
generalized norm of a vector; see Eq. (36b)

variation with the independent variable fixed

variation with the independent variable not fixed

( ) belongs to
for all ( )




1. INTRODUCTION

This report desciibes a computer program that calculates
optimal three-dimensional aircraft trajectories over a flat earth.
The cost functional and terminal constraints can be defined at
will. At present there are three FORTRAN decks simulating the
F-14, F-15, and ATF (Advanced Tactical Fighter). A fourth program
simulates the evasion of a missile by an F-14,

The optimization is accomplished by the conjugate gradient
variational algorithm (Ref. 1). Constraints on the final point
are satisfied by a new technique that avoids increasing the
penalty function constants (Ref. 2). As with other optimization
techniques, there is a possibility of converging to a local
rather than the absolute minimum. Whenever a gradient-type
algorithm is used the results should be checked by computing
the problem twice using different starting trajectories. This
not only tests for local minimums but also reveals whether or
not the "noise" inherent in numerical methods has prevented

convergence.

Numerical experiments on the rate of convergence for two-
point boundary value problems are described in Ref. 2. Some

optimal F-14 maneuvers are presented in Ref. 3.

Descriptions of Grumman programs for paths over a spherical
earth may be found in Refs. 4, 5, and 6. The method of Refs. &
and 5 optimizes trajectories in a vertical plane by means of
gradients (rather than conjugate gradients) and satisfies con-
straints on the final point by increasing the penalty function
constants. The method of Ref. 6 optimizes three-dimensional
trajectories by converting the variational problem to one with
an ordinary minimum.

kol o it o i M Kl AﬁmMmej




2. SIMULATION OF THE F-14 TURBOFAN AIRCRAFT

DYNAMICAL EQUALITY AND INEQUALITY CONSTRAINTS

The three-dimensional flight of the F-14 turbofan aircraft
is governed by the fnllowing differential equations (Ref. 7, p. 48,
p. 50). Aircraft and thrust sideslip angles are neglected and
rigid body dynamics are not included. The Earth is assumed to be
flat. Forces and angles are shown in Fig, 1.

HORIZONTAL

Fig. 1 Forces and Angles in Vertical Plane when Bank
Angle Equals Zero

X = v cos Y cos ¥ (la)
y = v cos ¥ sin yx (1b)

z=vsin v (1c)
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V= i (M T cos a' - 1/2 p v SCD) — g 8in v (1d)
- SO8 1 A 2 B

¥ oo (nTsina +1/2 pv SCL) v €08 Y (le)
-« —3in 1 ' 2

Sl - (MTsina +1/2 p v SCL) (1£)

o= -p (1)

Figure 1 shows that the flight path angle v is undefined
when the magnitude v of the velocity vector is zero. This
is associated with the vanishing of the denominator of Eq. (le).
Thus the initial v must not be specified as exactly zero for
problems that begin at take-off.

The heading angle x is also undefined whenever the projection
of the velocity vector on the (x,y)-plane has zero magnitude
(i.e., v cos v= 0). By definition for three-dimensional problems
v ranges from -90° to +90°, and it is extremely unlikely that
the limiting values would ever occur in practice. However, for

motion restricted to a vertical plane it is convenient to fix ¥
and p at zero and allow Yy to have any value. Thus cos Y can
pass through zero. Whether computer overflow occurs when
calculating Eq. (1f) depends upon the time intervals used for
the numerical integration. The computer program avoids this
overflow by resetting cos v to * 10.20 whenever |cos ¥| is
originally less than 10-20. This does not affect the trajectory
since, as mentioned above, x is not obtained from Eq. (1f).

The control variables are the bank angle ., thrust coefficient
n: and angle of attack a (which is an argument of CL (M,a) and
@ = o+ €). The latter two control variables must satisfy the
inequalities

0sns1 @) |
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The limit on the normal aerodynamic force imposes a mixed state-
control inequality.

Lcosa+Dsinasmgn 4fms=m (4a)

Lcosa+Dsinasmgn ifm>m (4b)
Here the 1lift L and drag D are

L=1/2 pv? sc (5)

D= 1/2 p v’ sC, (6)

and the constant n is usually chosen to be between 6 and 8. Mach
number is defined and limited by

Mo viv, &Ny M
The structural limit imposes a second state inequality, which
is modeled as
M<a+bs+ cal (8)
Finally, the altitude must, of course, be above sea level.
220 (9)
ENGINE CHARACTERISTICS

The thrust T = T(M,z) is obtained either from the augmented
thrust table, the military thrust table, or set to zero, depending
upon the position of the aircraft relative to the afterburner
blow-out altitude and the engine operational limit. The data for
both altitudes are curve-fitted as parabolic functions of Mach.

The fuel flow f = Bp(M,2z,n) is nominally trivariate, but
at present has been coded only for n = 1 and only for afterburner
thrust. This fuel flow has been used in approximation for
trajectories that have short periods either with n<l or with mili-

tary thrust. The data for the engine characteristics were obtained




from Refs. 8 and 9. The interpolation procedure is described
in Section 9.

AERODYNAMICS
The 1lift coefficient CL(M,G) is curve~fitted using
CL - al(H) + bl(u) a (10)

The coefficients a and bl are obtained from tables using linear
interpolation.

When M > 0.9, the drag coefficient CD(M,CL) is modeled as
2
Cp = 8, () + b (NICy + ¢y () Cp 1)
At lower values of M the relation is

Cp = a5 () + by(M) (AcL)2 +e,00 (AcL)“ + dyM) (ACL)6 (12a)
ac, = ¢ - cLo(u) (12b)

Since the Mach-sweep program was operative during the tabulation
of the original data (Ref. 10), there is no need for a wing-sweep
variable.

.
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3. MODIFICATIONS REQUIRED FOR THE ATF AIRCRAFT

This section presents the changes made in the F-14 program
to simulate the ATF (Advanced Tactical Fighter). The fuel flow
(M, zn) has been tabulated for both afterburner and military
thrust. In each case there are nine values of the throttle setting
Nn. The interpolation is performed by the specially coded
subroutine BVI3, which calls on the subroutine BVISP described
in Section 9. Interpolation is linear in the z and n directions
and by spline in the M direction.

The data for thrust and fuel flow were provided by C.
Giannetto of Engineering's Navigation, Guidance, and Control
Section. The values of both T and f must be multiplied by
three because the ATF is equipped with this number of engines.
These data must also be multiplied by the pressure ratio
p(z) vsz(z)/p(o)vsz(O). In addition, the fuel flow data are
multiplied by vs(z)/vs(O). The engine operational limit is
60,000 ft for both military and afterburner power.

The formula for CL differs from Eq. (10) only in that
al(M) =0, i.e., CL - bl(M)a. The equation for CD has the form

of Eq. (12) with Cp, M) = d3(M) = 0 and with the store drag
AC, added. ¥

Cp = 83() + byM)CE + e, 0)C, + AC, (M) (13)

This equation is used for all values of M.

The upper limit , Toem

constant, but is tabulated as a function of Mach. As presently
coded, the trajectories begin with military thrust and light the

afterburner at a later time. The latter is given by t = OABT

on the angle of attack is no longer




T

e

where OAB is a predetermined constant and v is the final time.
The adjoint variables (see Section 7) do not jump on encountering
a discontinuity in the system equations that are defined in this

way.
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4. MODIFICATIONS REQUIRED FOR THE F-15

Although both the F-14 and the McDonnell-Douglas F-15 use
turbofan engines, the ram, interference, and spillage drags
cannot be neglected when simulating the latter airplane. The
sum of these drags has been tabulated as AD(M,z). Net thrust
is obtained by a vectorial subtraction of AD from gross thrust.
Since AD has the same direction as D (Fig. 1), Eq. (1ld) is replaced
with

¥ = (T cos G"I/ZPVZSCD - AD)Mm -g sin v (14)

Equations (le) and (1f) are unchanged in form, although T now
represents gross thrust.

The present program has afterburnmer thrust data only for
N = 1 and has no data at all for military thrust. Thus the engine
operational limit coincides with afterburner blow-out. This
altitude is expressed either as a linear functicn of Machor as
75,000 ft, whichever is lower. The equation for the drag coefficient
CD has the form of Eq. (12) with d3(M) = 0. The same equation is
used for all values of M. The upper limit on a is tabulated as
a function of Mach,




5. F-14 (EVADER) VERSUS A MISSILE (PURSUER)

The F-14 program has been combined with a missile program
(Ref. 11) to simulate missile evasion. The control variables
of the F-14 are chosen so that it attempts to evade a pursuing
missile. The latter's strictly deterministic trajectory is
governed by proportional navigation. The final time associated
with the starting trajectories is chosen to be so small that the
F-14 cannot be overtaken. At this final time, which is held
fixed, the distance separating the vehicles is maximized. The
minimum separation as the vehicles move along the final
trajectories is found using parabolic interpolation/extrapolation.
The final time is then given a small increment toward the time
of this minimum, and the process is repeated. The iteration
converges to the trajectories that either maximize the minimum
separation or maximize the time of impact.

As of the date of this report, the full simulation of the
missile trajectory as given in Ref. 11 has not been completed for
the above program.

11
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6. ATMOSPHERE

Three regimes are used to approximate the data of Ref. 12
for the mass density p (slugs/ft3) and the speed of sound v
(ft/sec). The following equations are used when the altitude
is below 36,146 ft.

p = 2.37688-10 3 (1-6.7911-10 02)%-3085 (45,

v = 1116.45(1-6.863956+ 10 % )1/2 (16)

For altitudes between 36,146 and 65,874 ft the expressions
are

3

p = 3.9792633-10 ~ exp(-4.7829648- 10-52) (17)

ve= 968.08 (18)

The regime for higher altitudes is modeled as

p = 5.1526166°10 > (1+1.6606526+ 10 % )32 838989 (19)

1/2

v = 922.5793652(1+1.535633914- 10" °z) (20)

13
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7. OPTIMIZATION PROCEDURE

The choice of an optimization algorithm was largely determined
by the presence of the tabulated functions., This ruled out
second order methods (e.g., second variation, quasilinearization)
because the numerical approximations to the various second order
partial derivatives are unreliable. The classical indirect
and the MIN H methods could not be used because it is not possible
to express explicitly the value of o that maximizes the generalized
Hamiltonian (defined in Eq. (27)). To avoid these difficulties
the gradient method was tried at first, Later the extension
to conjugate gradient (Ref. 1) was made in an attempt to reduce
computer time., A reduction by a factor of about five was obtained.

CONJUGATE GRADIENT ALGORITHM

This subsection presents the conjugate gradient procedure
for problems whose final point and final time can be varied
freely. On defining the state vector xT = (x,y,2,v,%v,X,m) and

the control vector u = (¢, u, ) the dynamic equations
(Eq. (1)) can be written as

X = £(X,u) (21)

This system is to be transferred from the initial point

X(o) = X, (22)

to the final time v and final point X(t) that minimize the cost
functional :

P = P(X(1),T) (23)
An important example of this subsection's problem is that of
maximizing the altitude (P = -2) with the final values of the
other components of X as well as the final time open.

15




In order to keep u(t) as smooth as possible, it is advisable

to avoid extrapolation by replacing t with

6 = t/t (24)

whose range is always 0 to 1. The final time t could now be
regarded as a free parameter; however, the analysis will be a
little clearer if it is instead regarded as an additional state
variable. If X continues to represent only the original state
variables, the system equation takes on the form

dX/dé = t £ (X,u) (25a)

dt/dé = 0 (25b)

Note that T is distinguished from the other state variables in
that its initial value is not subjected to a constraint of the

Eq. (22) type.

The conjugate gradient algorithm employs adjoint variables
)‘x’ A'r that obey

d d
—5-5 (l:ux-&lrbr) -7 )\: 'S'& u = ‘SE tu (26)

The second member has been simplified by defining the generalized
Hamiltonian as

H

T A: £ (X,u) (27)

The differential equations that kx’ 7\1_ must satisfy when
Eq. (26) holds can be found by expanding the left member of this
equation and using the equations of variation of Eq. (25).




dA /a0 = - (H/AX)T (28a)
dAT/dO = - JH/oT (28b)
When the final values of the adjoint variables are defined as

A = - @RAX)T , A _(1)= - 3BT (29)
the integral of Eq. (26) becomes

S TP VW Y,

T
OP = anx + KTOT

1
o[
6=Q0 JO
1

=2 _(0)07 + l %ﬂ Budé (30)

The last member assumes

8X(0) = 0 (31)

since all the trajectories obey the initial conditions of Eq. (22).
Equation (30) indicates that the increments

T
br= oA (0) , bu(6) = of ©) (32a)

are in the direction of steepest descent. The best distance to
move in this direction can be found from a search with o.
Although the first descent must be in this direction, the later
descents can be in the conjugate gradient direction given by

D e




T
ij oj[ATj(O) + 61‘ ( o) j"l] ’ buj oj[(ﬂ) 3 ¢+ Bu(o j'l]

(32b)

Here the subscript j represents the descent number and BT and Bu
stand for

; 1 s 2 -1 1 9

2
B_ = A_T(0)/A 0, B = (Sn) de SH 33)
T Tj( Tj_l u [ u j"l L (au) j dé (

o

Although the conjugate gradient theory for problems with n state
variables calls for recycling after n descents, experiments with
the present variational problem indicate that Eqs. (32a) and

(32b) should be alternated from descent to descent for best results.

Whenever Eq. (32) makes a(6) + &a(8) > Qax the new @
is reset to Q ax in accordance with Ineq. (3). Similar steps
keep 1 between 0 and 1.

The conjugate gradient algorithm consists of the following
steps.

(a) Guess u(9) and =t

(b) Compute X(6) by integrating Eq. (25). Find Po
from Eq. (23)

(¢) Compute kx(e), kr(e) by integrating Eq. (28)
backward from Eq. (29)

(d) Obtain four values of o using Eq. (32a) with 6 = 0
while 6a, 6u, 6y, 6t separately take on small values.
Set oy equal to the smallest of the o's

Increment u(6) and t using Eq. (32) with 9

18
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(h)
(1)
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(k)

(1)
TWO-POINT

,1 This
specifies

Compute X(®) by integrating Eq. (25). Find
Pl from Eq. (23)

If P, > P, 01/10- gy If the new o, is above a
very small tolerance return to step {e), otherwise
terminate the computation

Set g, = 401 and find P2 as in steps (e) and (f)

Set o to the value at the minimum of the parabola
through (0,P ), (91,P;), (9,,P,)

2 2
;i -[ﬁ][(a )P -4 p1+pz_]
2
(4 l)Po 4P1+ P,
Obtain a set of four values of ¢ as in step (d)
but using large though acceptable values of ba,

6w, 6n, and Bt. Set oy to the smallest of these

and the o of step (1). Compute P3 as in steps (e)
and (f)

Set Po to the smallest of Pl, Pz, P3. Use the
corresponding o in Eq. (32) to update u,t. If

: ok P,, recompute X(6) so that the new nominal
trajectory is in storage

Return to step (c)
BOUNDARY VALUE PROBLEMS

subsection shows that the solution to a problem that
constraints on the final point can be approached by a

L sequence of variable endpoint problems (Ref. 2). First the time-
optimal case will be treated.




The original problem -- to be called Problem A (see Table
1) -- is to transfer the system obeying the differential equations,
Eq. (23), and the initial conditions, Eq. {(22), to

X = X .(34)

via the path that minimizes the cost functional

Pan (35)

The final time defined by the solution extremal will be called 1A.

TABLE 1 PROBLEM FORMULATIONS

Cost Initial Final
R ke Functional Conditions Conditions
A 5 x-xo,'ropen x-xf
)‘x open, 7\1_ = 0 ’Ax open, )"r - -]
B T+§HX-XHZ same as A = -K(X - X.)
£ X £
K above A
- -]
T
c iIx - Xfl |2 X=X, T fixed | v open, A= 0

K
A Mo Open e K(X Xf)

The algorithm begins with a preliminary stage whose purpose
is merely to find an optimal trajectory that is fairly close to the
solution and that has a lower final time. Thais is accomplished
by solving Problem B (Table 1), which differs from Problem A
in that the final constraints, Eq. (34), are ignored and the
cost functional, Eq. (35), is replaced with

PP = v+ 21X - X! 12 (36a)
K




The penalty term is defined as

X=X | I; = (X-X) TR(X-X) (36b)

where K is a diagonal matrix of positive constants.

After Problem B has been solved by the procedure of the
previous subsection, the results can be used to obtain a first
order estimate of fA. Equation (26) is integrated assuming only
OH(8)/du = 0.

T T
Rx6x+ATGT - 5x+ATGT (37)

x .
b 6=l

This important relation holds between the endpoints of any
extremal and those of any adjacent arc whose 5X(8), ot, 5u(®)
obey the equations of variation of Eq. (25). Let us evaluate it
for the extremal of Problem B using the endpoints of the
(otherwise unknown) extremal of Problem A. This implies

6X(0) = 0 , BX(1) = Xg - X°(1) (38)

so that Eq. (37) can be written as
or = A [x 8D ]/ @ - 2] 69
In accordance with Eqs. (29) and (36)

N = - [xq@) - x. ] & (40)

so that the first order estimate for the difference between the
final times of the two extremals is
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bt = [?5(1)-xé] : K [?B(l)-xg]’/ [kf(o)-hz(li] (41)

It can be shown with the aid of Eq. (59) that bt is positive.
The algorithm now proceeds to the second stage which works
with Problem C (Table 1). The cost functional

C

P 112

K

- 1/211x(1) - Xg (42)

is to be minimized with T kept fixed at the following first-order

estimate for TA.

© - 7P + b7 (43)

The solution procedure of the Conjugate Gradient Algorithm
subsection is used, except that 6T = 0 replaces the first members
of Eqs. (32a) and (32b) and the second member of Eq. (29)
requires AT(l) = 0 (see Table 1).

The above formulation of the variable endpoint Prcblem C
has been chosen so that its solution is identical to that of

Problem A, provided TC is exactly equal to fA. 1f TC happens

to be smaller than TA, the boundary value errors obtained from
the solution to Problem C may exceed the tolerances. A new
estimate for rA can then be obtained from rc + ot -Tc with ot
determined by Eq. (41) using X°(1), Ao(0), Ao(1) instead of XB(1),

B B
AL€0), A1),
The < defined by Eq. (43) might also be too large. In

this case the algorithm converges to a nonextremal trajectory

that makes the boundary value errors negligible. There is-then
c

no way of estimating the magnitude of «t ‘TA. Therefore the following

algorithm recommends that the increment in v given by Eq. (4l1)
be divided by two as a safety measure.
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L 4 ,

1 &

1 (b)
| (c)
1 ()
| (e)

(£)

(8)

(k)
(1)

(&)
(k)
(1)
(m)

(n)

The algorithm is summarized in the following steps:

Compute a3 starting trajectory. Set the descent
counter j to zero

Compute a descent cycle for Problem B. j + 1 —j
Compute 5t from Eq. (41)
If § <5, go to step (b)

If the conjugate gradient direction decreases Tt
(see Eq. (32)), go to step (b)

If the values of T + 87 computed from the three most
recent descents do not agree to within a given
tolerance, go to step (b)

Compute a new starting trajectory with
T+06T/2=171. j=0

Compute a descent cycle for Problem C. j + 1 — j

Terminate the computation if all boundary value errors
lie within given tolerances

Compute 6™ from Eq. (41)
If § < 5, go to step (h)
If 6t < 0, go to step (h)

If the values of 5t computed from the three most
recent descents do not agree to within a given tolerance,
go to step (h)

Go to step (g)

The numbers five and three in steps (d), (f), (k), and (m)
were chosen arbitrarily. Step (e) was inserted to help the
program converge to a 13 that is below 1‘. Step (1) helps test
for convergence because 6t approaches a positive value when
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rc < TA and a negligible value when Tc > fA.

These methods are easily extended to problems other than
that of minimum time. For example, suppose the cost functional
is xn(l) with the final values of the other state variables
specified. The final time can be either fixed or open. Let
us define xﬁ as the value of xn(l) on the solution extremal. If
xﬁ were known, the gradient program could generate the solution
extremal by minimizing the error norm, Eq. (32b) with X = xﬁ.
But a first-order approximation for xg can be found fromfzq. (37)
using the adjoint variables defined by the extremal that
minimizes

n-1
2
PexX (D+1/2 ) K [xi(l)-xif] (44)
i=1

Numerical results for F-14 trajectories are presented in
Refs. 2 and 3.

DISCONTINUITIES IN THE SYSTEM EQUATIONS

If at a time t the afterburner blows out or the engine reaches
its operational limit, X jumps from £ = f(t ) to f' - f(t+).
If the nominal arc were an extremal, the vector equation that
governs the jumps in the Lagrange multipliers A would be well
known (Ref. 13, p. 104).”

o T
R + Mi’l}_ (_3_3) (45)
@, ) oxX

Here §(X) = 0 is the hypersurface at which the system equations,
Eq. (21), are discontinuous (see Engine Characteristics in Section

*
Literal subscripts indicate partial differentiation in this
subsection. The independent variable is once more t rather than 6.
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2). Equation (45) is nonlinear in Xt since f+ depends on u+
which for extremals is a function of A'. Taking the scalar

product of both sides with f' shows that the Hamiltonian H = A f
is continuous.

| The present problem is slightly different. The proper
behavior must be determined for adjoint variables A as they

are integrated along arcs with Hu ¥ 0 and u previously defined.

The theory of the gradient procedure requires the adjoint variables
to jump so as to preserve the influence function properties
expressed by the following equations (cf. Eq. (30)).

P(r) = (3P(r)/3X(t')) BX(t') = - AT(e')ox(e') , t'e[0,q (46a)

Bu(t) = 0, Vt € E-.r] (46b)

At the hypersurface of discontinuity

S T TGRS

oX = 6XxT + £foe = 6% + £ 6t (47)

Here ot is the difference in the times at which the nominal
and varied arcs reach the hypersurface § = 0 and the 5x* are

evaluated with time fixed. Thus AX lies in the hypersurface
tangent space,

| B AX = § 60X +§ f ot =0 (48)
3 Eliminating 6t between Eqs. (47) and (48) yields

. (8.5X) £
oxt = 6x + _Est_ (£t-£7)
@®,f)

(49)
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The definition of A~ must indicate that any 6X has the same
effect on P as the corresponding 6x+.

T+ T

-6P = A text = AT ex”

. Y5 3
ﬂ“h+5b—@44 (50) |

@)

The last two members will balance for an arbitrary 6X if i

T
T+, +_ -
N @ Tk -Q‘_‘.ﬁ__f_.).). (%ﬁ) (51)
@)
Here we have solved for A" rather than A1 because adjoint
variables are integrated backward in time. Note that the right

side of Eq. (51) is independent of A" and that the form of this
equation is equivalent to that of Eq. (45) for Lagrange multipliers.

The jump in A produces a jump in the Su defined by Eq. (32).
Thus the u of the converged trajectory should have a jump
identical to that that would be obtained if the indirect method
were used instead of the conjugate gradient. Note that the
adjoint variables are continuous at the boundaries of the
atmospheric regimes because f is then continuous (see Section 6).

INEQUALITIES IMPOSED ON THE PATH

The inequalities, Ineqs. (7), (8), and (9), imposed on the
state variables will be satisfied using penalty integrals (Refs.
4 and 5). This method is readily incorporated into a gradient
program; however, it provides only an approximation to the
optimal path. The mixed state-control inequalitiy, Ineq. (4),
will also be treated by this method because it cannot be solved
explicitly for the control a. These inequalities can be written
26
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generically as

Ej(x,u) <0 j=1,...,4 (52)

The system equations are augmented with penalty state variables
that obey*

dx

—J-I'\' 2 ' - - - -

30 2 (gj+Aj) h(gj+Aj), xi(o) 0, j i-8, i=9,...,12 (53)
Here h is the Heaviside unit step function, and the positive
constants Aj have been introduced so that the penalty integrals

begin accumulating while the trajectory is still in the admissible
region.

A given problem is solved at first with the constraints, Ineq.
(52), ignored; that is, with the corresponding penalty function
constants in the cost functional, Eq. (36), set to zero. If the
solution violates the constraint.ia. a final value is assigned to
xi(l) (1 =3 +8). This value is of course smaller than that
computed for the unconstrained trajectory. The modified problem
is then solved with the new boundary condition satisfied by the
procedure given earlier in this section under Two-Point Boundary
Value Problems. If the constraint, Ineq. (52), is still violated,
the problem must be solved again either with a smaller final value
assigned to the penalty state variable xi(l), or with the A1-8
made more positive, or with a larger penalty function constant.

Note that the right sides of Eq. (53) are continuous even
though they contain step functions, so that by the theory of
the preceeding subsection A is also continuous when Ej + Aj - 0,

The analysis (Ref. 14) for exactly optimal paths also requires A

*
The original components of the state vector are the seven
variables of Eq. (1) plus 7.

27




to be continuous for three of the present inequalities, but not
at the junctions between interior and boundary arcs of the
"second order" constraint z = 0. But, then, the penalty integral
technique also uses a differing differential equation for A,
Since this technique employs optimization theory to bring in

the constraints, we may be confident that it yields a good

5 approximation to the exact minimum.

INTERCEPTION OF A MOVING TARGET

This subsection presents the modifications in the solution
procedure for the two-point boundary value problem that are
required when the final point is in motion; that is, when xf
is a given function of 7T rather than a constant (see Problem
A in Table 1 earlier in this section). As before, the original
problem will be solved by means of Problems B and C whose cost

functionals now have the arguments

B

P® = PPx(1),Xe (1), 1), PC = PCRQD), X (1)) (56)

For Problem C, X(o) and 7(0) are both fixed and u(9) is to be
chosen so that X(1), 7(l) minimize PC. Of course, we know that
u(f) has no effect on t(l), but transversality conditions are
assigned as though the computer does not know this. The point
is of no significance since we shall see that the relevant
quantity in Problem C is AT(o) - AT(I), and this is independent
of Ar(l). Thus for both Problems B and C

dX
o - R %

£
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The second of Eq. (38) is replaced with

8X(l) = xf(r) - X(1) + (dxfldt) 6t (1) (56)

so that Eq. (39) changes to

T
O ke - "“;]
A (0) = A(1)-AT(1) dxg/de

5t = 37)

The derivation of this equation does make use of the relation
87(l) = 8t (o).

When the nominal trajectory has converged to an extremal
with a fixed t (Problem C), it can be shown using the integral,
Eq. (59), of the next subsection that

A (XgX)
x'f‘ (£-dXc/dr)

T = (58)

=]

This expression is valid only when the numerator is an order of
magnitude smaller than the denominator. However, some moving-
target problems specify some of the components of f and dxf/dr

to be identical. The denominator of Eq. (58) then has a tendency
to be small so that Eq. (57) is unreliable. Such problems can
be treated by replacing the 6t of Eq. (57) with a fixed, small
positive constant. However, this means that the optimal final

time is found only approximately and at considerably more com-
putational expense.




FIRST INTEGRALS

The state variable T is of course constant as are the adjoint
variables associated with x, y, and the four penalty state
variables introduced above in the subsection Inegqualities Imposed

on the Path. For trajectories that have
12

converged to extremals, the Hamiltonian H = 7 2: Aifi is constant.
i=]1
The equation dXT/de = -H/t then has the integral

A+ HO/T = A+ (7\}; £)6 = const. (59)

Finally the quantity A& x - %x y + Z* is also constant along
extremals (Ref. 15). The last three integrals are not used by
the computer program although the time history of H is printed
in order to verify convergence.
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8. NUMERICAL INTEGRATION

The differential equations are integrated numerically using
a modified Adams predictor-corrector method. The procedure is

P e B e

B R e oo o i

illustrated for the vector set of equations X - f(X). The corrector
equation is

(o

X1 = X+ 5 B + £(¥pe01)] (60)

L

There are two corrections at each time interval. For the first
correction Yk+l is set to the predicted value

: Vel = X t éit Bf(xk) . f(xk-l)) (61)

At the initial time f(x-l) is assumed to be equal to f(xo). For
the second correction Yk+1 is set to the xk+1 obtained from the
first correction. Variations in the time interval At are not
permitted by the present program because values from the forward
integration for the state variables are required during the
backward integration for the adjoint variables.
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9. STORAGE AND INTERPOLATION OF TABULATED FUNCTIONS

AFTERBURNER THRUST

The afterburner thrust T = T(M,z) data have been key-punched
in the format of the Grumman Data Systems Software Library
subroutine TABIN (Index: 12.7.0.2). The subroutine itself
is not used to read in the cards because it is coded in single
precision. The thrust and its partial derivatives with respect
to M and z are obtained from the specially coded subroutine
BVISP. Spline interpolation with respect to Mach is used along
the curves of constant altitude. The equations are in the form
given in Ref. 16. The second derivatives at the mesh points
are found at the beginning of the main program and then stored
for later use by the interpolation subroutine. If the thrust
goes to zero as M decreases to some value called ﬁ, then the
second derivatives as well as the values of T are set equal to
zero at the mesh points of the region Me [O,L-i] . After T has
been found on the two curves that straddle the aircraft's
altitude, linear interpolation with respect to z is used to
obtain the thrust of the vehicle. :

The FORTRAN statement used to obtain afterburner thrust
TM,z) is

CALL BVISP (NO, N1, N2, L1, L2, TAB, M,z, SP3, DTDM, DTDZ, T)

NO is the fixed point number that has been assigned to
each table. For afterburner thurst NO is 1.

N1 is the block of storage containing the number of first
arguments of each bivariate table. N1(l) contains
the number of Machs tabulated for afterburner thrust.
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N2 1is the block of storage containing the number of
second arguments of each table. N2(1l) contains
the number of altitudes tabulated for afterburnmer thrust.

L1 1is the storage block that contains the first arguments
of each table. For example, L1(1,2) contains the
second Mach of the afterburner thrust table.

L2 1is the storage block that contains the second
arguments of each table. For example, L2(1,2)
contains the second altitude of the afterburner
thrust table.

TAB 1is the storage block that contains the values of
each table. For example, TAB(3,2,1) contains the
afterburner thrust corresponding to the third
altitude and the second Mach,

M is the current value of the first argument.
z is the current value of the second argument.

SP3 is the storage block that contains BZTIBHZ at each
mesh point of the afterburner thrust table. For
example, SP3(1,2) contains azr/auz at the second
mesh point of the curve for the first altitude.

DTDM is the output 3T/OM.
DTDZ is the output 9T/dz.
T is the output afterburner thrust.
FUEL FLOW AND MILITARY THRUST
The fuel flow ﬁ(M,z,n)* and military thrust T(M,z) have

*
Recall that fuel flow has been key-punched only for n=1 except
for the ATF. Section 3 presents the interpolation for the latter
aircraft.
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| also been key-punched in the format of subroutine TABIN (see the

| previous subsection, Afterburner Thrust). Regions for which

data are unavailable are indicated by zeros. The interpolation

is planar and is computed by the specially coded subroutine BVI.

: If values are defined at all four enclosing mesh points, the one
that is furthest from the nominal point is discarded and the
remaining points are used to determine the interpolating plane.

In the other cases, the three closest mesh points that have defined
values and are not collinear are used.

No significant changes in the trajectories were observed
when afterburner thrust was obtained by spline rather than
the original planar interpolation. Since the trajectories are
even less sensitive to the tables of this subsection, their
interpolation was kept planar.

The FORTRAN statement used to obtain either fuel flow or
military thrust is

CALL BVI (NO, N1, N2, L1, L2, TAB, M, z, DADM, DADZ, A)

The arguments are the same as those of BVISP except that SP3
is omitted. NO is 4 for fuel flow and 5 for military thrust.
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APPENDIX
COMPUTER PROGRAM LISTING AND TYPICAL SOLUTION

The FORTRAN IV Computer program listing is reproduced
on the following pages with all classified statements and data
replaced by asterisks. The particular problem is the minimum
time to climb of the F-14 from the end of the runway to z(altitude)
= 55,000 feet and V (velocity) = 1548.8 feet/second, with z con-

strained to be always positive. The numerical solution to this
problem follows the program listing.

For those interested in seeing the classified version of the
above problem, the program listing, including propulsion and
aerodynamic tables, is available from the author.
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