

LEVEL R
U.S. NAVAL AIR TRAINING CENTER NAVAL SCHOOL OF AVIATION MEDICINE PENSACOLA, FLORIDA
 att. IIL nary
 (9) 18325

PROJECT NO: $\quad X-324(A v-185-f)$
One
REPORT NO:

REPORT BY:

Ensign/A.S. Burt/ $\mathrm{H}-\mathrm{V}(\mathrm{S})=(\mathrm{H})$ USNR

The document has been approved for public relouse and solo; its distribution is unlimited.

SUMMARY AND CONCLUSIONS:

```
    4N
of }10\mathrm{ men supplied from a single system were determined for
conditions of rest and moderate exercise.
(2) Under the conditions indicated, maximum rates of flow were as follows:
```

(ai) rest, random group breathing, 141 liters per minute.
(b) rest, rhythmic group breathing, 220 liters per minute.
(o) exercise, random group breathing, 415 liters per minute.
(a) exercise, rhythmic group breathing, 445 liters per minute.
(3) Respiratory minute volumes during exercise were determined on individual subjects receiving oxyeen from systems capable of maximum rates of flow of 52 and 75 liters per minute respectively.
(4) With a mean minute volume of 19.2 liters per minute, the ratio, maximum rate of flow divided by minute volume (M.F./M.V.) was found to be 2.8 when determined on 19 subjects.
(5) with a mean minute volume of 29.6 liters per minute, M.F./A.V. was found to be 2.6 when determined on 11 subjects.

INTRODUCTION:

In accordance with BuMed directive of 18 February 1944 concerning Project No. X-324(AV-185-f), as modified by BuMed-X-EV-1f, A21/F49-1(112-38) of 8 June 1944, studies were made concerning maximum rates of flow of oxygen reauired by a group of 10 men at rest and during exercise. Included with these studies are observations dealing with resniratory minute volumes which may be attained by individusl sublects from systems canable of sumplying oxypen at soecified maximum rates of flow.

EYPFRTMTTTAL METHODS:

GROTP EXTPRTMETTS. Maximum rates of flow were ascertained for a prouo of 10 men under the following conditions: (1) rest, random group breathing; (2) rest, rhythmic mroup breathing; (3) exercise, random group breathine; (4) exercise, rhythmic proup breathing. Tor this purpose oxyen was supplied through a $1 / 2^{\prime \prime}$ manifold ($0.42^{\prime \prime}$ i. d.) under a oroximately atmospheric pressure. The manifold (Figure l) consisted of two parallel lines each about 10 feet in lenpth and 1 foot apart. These were joined together at the ends. The oxypen entered the system through an orifice flow meter (A) at one end. To the other end was attached a check valve (B) through which excess oxypen escaped to the outside.

Figure 1.

Five outlets for the attachment of Al4 masks were provided along each of the lines, thus allowing 10 men to be supplied simultaneously. Oxypen was metered into the system at various rates. With inadequate rates of flow the check valve closes, and those subjects who are inhaline at the moment are deprived of a supply of oxyeen adequate for their inspiratory demands. As the rate of flow is increased the frequency with which one or more subjects complains of an inadeguate oxygen supply becomes less and less. Ultimately a rate of flow can be obtained at which only an occasional subject will complain at relatively lone intervals of time (several minutes). This is taken as the maximum rate of flow required under the conditions of the experiment.

The exercise used in some of these experiments consisted of stepoinf onto a box 6 inches high at a rate of 36 times per minute. This elevated respiratory minute volume to 20-30 liters per minute.

The orifice flow meter (Fipure 2) consists of a short piece (3 to 4 inches in lenpth) of small tubing (A, B) interposed between two portions of larger tubing (C, D). Pressure gauges (E, F) are attached to each of the larger portions of tubing. Rates of flow into a spirometer are measured under various heads of pressure, which may be regulated by valve G. Tables 1 and 2 show these data, and figures 3 and 4 the calibration curves obtained by plotting rate of flow apainst pressure. Unfortunately, the accuracy of these measurements at the highest rates of flow (ahove 350 liters per minute) was diminished because of the limited capacity of the spirometer.

EXPERTMIMTS ON INDIVIDIJAL SUBTECTS. For the purpose of investipating the extent to which maximum rates of flow may be reduced without harmful effects, a system having maximum flow characteristics within the desired range was prepared in the following manner. The oxypen inlet valve and orifice were removed from an All Pioneer Diluter Demand Oxypen Repulator. Rates of flow at 30 and 40 p.s.i. pressure and with various amounts of suction were measured by means of the National Bureau of Standards test stand desiened for the purpose. The results of these measurements are shown in Table 3. A rapid increase in rate of flow results from a slipht increase in suction until maximum rate is obtained. At maximum rate a large increase in suction produces no appreciable increase in flow. This.large increase in suction is quite evident subjectively when a regulator is recuired to deliver maximum rate of flow; and when the increase is indicated by a manometer attached to the mask, it provides a

converient means of measurine maximum inspiratory rate of flow. If one is required to maintain this inspiratory rate during an appreciable portion of each inspiratory phase, then the resistance to respiration rapidiy becomes very tiring.

Subjects were supolied with oxygen from such a system, including an Al4 mask so modified that expired gas could be collected in a spirometer. A water manometer was connected to the mask primarily for the purpose of indicating when maximum rate of flow was beine demanded rather than for providing an accurate indication of suction within the mask:

Respiration was stimulated by exercise. This: exercise consisted of stepping onto a box 6 inches hieh at whatever rate found necessary to produce the desired deeree of stimulation, or by nedalling a bicycle ergometer under an ampropriate load. Yhen stimulation had progressed to the point of calsing maximum flow during an appreciable portion of each inspiration, as indicated by a great increase in suction shown by the manometer, the respiratory minute volume was measured by collecting the expired cas in a spirometer. All volumes were measured (over water) at ambient temperature and pressure.

BEGULTS:

GROUP EXPERMMENTS. As shown in Table 4, a maximum rate of flow of 141 liters per minute was found necessary to satisfy 10 subjects, sedentary, and breathing at random. With rhythmic group breathing these same subjects reouired 220 liters per minute (Table 5). \#ith exercise and random group breathing, the rate was 415 liters per minute (Table 6), while with rhythmic group breathing, it was 445 liters per minute (Table 7). In this connection it should beremembered F that with a group of subjects, each memher of which is breathing at his own individual rate with no conscious relationshio to the rates of others, there will be occasions when no one will he in the inspiratory phase, as well as other occasions when all will be inhaling simultaneously. All pradations between these extremes will occur from time to time, the frequency depending lareely on the laws of chance. For example, in Table 4 only one subject was obtaining an inadeouate supply of oxyeen at a rate of flow of $115^{\circ} 11$ ters per minute; whereas shortly thereafter five subjects complained with a flow of 119 ilters per minute. Likewise, in Table 7 all were satisiled
for a short period with 4.38 liters per minute, but one subject complained occasionally with a rate of 445 liters per minute. Figure 5 shows the probabilities that various members of a group of 10 subjects will be in the inspiratory phase at any given instant when inspiratory and expiratory phases are of equal duration. While it was not possible to measure the minute volume of each subject individually durine the course of these experiments, other observations indicate that a minute volume of 20-30 liters per minute is attained by such exercise. On the basis of an averace weight of 148 pounds for the members of the oroup, a minimum of 2664 foot pound s of work per minute was performed.

TEXPERTNTNTS ON INTDIVIDUAL SUBTTCTS. In Table 8 are shown pertinent data obtained from individuals under various loads of work while obtaining oxygen from the A12 regulator as described above. Pressures of 30 and 40 p.s.i. were supplied to the regulator, which provided maximum rates of flow of 52 and 75 liters per minute respectively. It will be noted that the ratios for maximum flow divided by minute volume (M.F.M.V.) of 2.8 and 2.6 (standard deviations are 0.5 and 0.4 respectively) are practically identical with those obtained by Silverman, et al., (OSRD Report NO. 1222, Tables 16 and 17) under similar though not quite identical conditions.

Table 9 shows heicht, weieht, and vital capacity for most of the subiects participating in these experiments. All but No. 18 were males. In Tables $4,5,6$, and 7 references are made to these subjects by numbers in the columns listing complaints.

DISCUSSION:

Data concerning maximum flow for the croup of 10 men under various conditions requires iittle comment. The rate of 141 liters per minute for resting conditions (Table 4) appears unexpectedly low. This may have been caused by "dead space" in the oxycen lines, or by a greater or less amount of rebreathing of the pases in the line. Rebreathing, as indicated by the sensation of inhaling vitiated air, was definitely noted when rates of flow were inadenuate, but not at the several hifhest rates. Lines with less "dead space" were not practicable because of the added resistance to flow these would have imposed. The volume of "dead space", exclusive
of mask hoses, was approximately 350 cc. The rate of 220 liters per minute at rest and 445 iiters per minute with exercise, (Tables 5 and 7) both obtained with rhythmic proup breathing, are believed to be valid. However, in this connection it must be recalled that maximum rate of flow during inspiration persists for only a fraction of a second. For this reason it cannot be stated with certainty that all members of the group were attaining maximum rate of flow simultaneously, even though a deliberate effort was beine made to accomplish this. It is doubtful if the maximum rate of flow required by a eroup of individuals in which all reach the maximum inspiratory rate simultaneously can be other than the sum of their individual maximum rates.

In the experiments on individual subjects, it is siefnificant that hardly anyone was conscious of the eradually increasing inspiratory resistance during exercise until the system was heing required to deliver maximum rate of flow. During periods of physical activity and rapid ventilation, presumably the inspiratory resistance normally encountered in the respiratory passapes is sufficiently hirh that the external resistance is masked until the appearance of the sudden and marked increase in suction which occurs when maximum rate of flow is attained. Essentially the same observation was made on subjects at rest. With the modified Al2 regulator operating at line pressures barely sufficient to meet the resoiratory demands of the subiect, inspiratory resistance was not objectionable until maximum rate of flow of the repulator was attainca. when this occurred, the sudden increase in suction necessary to satisfy the inspiratory demand was quite objectionable and poorly tolerated by the subject.

TABLE 1.
CALIBRATION OF 3/16"ORIFTCE ($0.12^{\prime \prime}$ 1.d.). PRESSURE FLOY - L./min. 5
7.5 10 12.5 65

15 20 25. 30 40 84 91 101 110 137 143 156 207

> TABLE 2.
> CALIBRATION OF 1/4" ORIFICE ($0.18{ }^{\prime \prime}$ 1.d.).
> PRTSSUURE $\begin{gathered}5 \\ 7.5 \\ 10 \\ 12.5 \\ 15 \\ 17.5 \\ 20 \\ 25 \\ 30 \\ 35\end{gathered}$
> Fioly - L. $/ \mathrm{min}$.
> 160
> 198
> 216 248 272 306 340 368 394 474

TABLE 3.
CALIBRATION OF AI2 PIONEER DILUTER DEAMAND RECULATOR FOR OXXGEN OUTPUT AT VARIOUS AMOUNTS OF SUCTION ARD AT 30 AND 40 P.S.I. LINE PRTSSURES

L./min.:	30 Suct	in	${ }_{\text {ter }}$
10 :	0.2	:	0.2
15 :	0.2	:	0.2
20 :	0.2	:	0.2
25 :	0.25	:	0.25
30 :	0.3	:	0.25
35 :	0.4	:	0.3
40 :	0.6	:	0.4
45 :	0.7	:	
	1.0 -2.6	!	0.6
52 55	-2.6	:	-0.7
60 :		!	0.8
65 :		:	1.0
70 :		:	1.2
75 :		:	2.4

TABLE $4 \cdot$

MATtMMM FLOM, 10 MEM, REST; RANDOM GROUP BREATHIMG. 3/16" ORIFICE (0.12^{n} 1.d.)

PRESSURS	L. M M	COMPLATNTS
7	78	4, 5, 9,10
11	88 98	4,5,8,9,10
14	111	3,4,5,8,9,10
15	115	5,5
17	119	2,3, 4, 5,10
18	127	3,4,5
20	134	3,4,10pecasionally

TABLE 5.

HAXIMM FLON, 10 MEN, REST, RHYTEIIC GROUP BREATHING. 1/4n ORIFICE (0.18^{n} i.d.):

TABLE 6.

MAXIMOM FLOW, 10 MEN, EXERCISE, RANDOM GROUP RREATUTTM 1/4" ORIFICE (0.18" i.d.)

PRYSSURE	L. $/ \mathrm{min}$.	COMPIAIMTS
10	220	1,2,3,4,5,8,10
13	255	3,4,5,6,8,9,10
14	267	ail, occasionally
15	278	3,4,5,6,8,10
20	330	3,4,8, occasionally
25	378	3,4,5,9
30	415	3,4,rarely

TABLE 7.

MAXIMUM FLOW, 10 IMEN, EXERCISE, RHYTHIIC GROTSP BREATHING.
1/4n ORIFICE (0.18n 1.a.)

PRESSURE	L. $/ \mathrm{min}$.	COMPLATMTS
25	378	all
26	385	all
30	415	${ }^{\text {all }}$
32	430	none
33	438	none
34	445	4, occasionally

TABLE 8.

DETFRMINATION OF MINUTE VOLURE AT FIXED MAXIMUM FLOH:.

TABLE 9.

SUBTECTS PARTICTPA'PING IN EXPERTMENTS.

Standardization Curve For 3/6" Orifice ($0.12^{\prime \prime}$ internal diameter)

Figure 3.

Standardization Curve For 1/4" Orifice ($0.18^{\prime \prime}$ internal diameter)

Frequency of Simultaneous Inhalation by Members of a Group of 10 Subjects When Inhalation and Exhalation Are of Equal

Number Inhaling Simultaneously Figure 5.

