AD-AO	48 966 SSIFIED	AIR F MAGNU DEC 7	ORCE IN S EFFEC 7 J D AFIT/G	SCHNEIL	TECH WR BALLIST DER 7D-8	IGHT-PA	TTERSO	N AFE C	HIO SO	CHETC	F/G 1		/
	9F 2 ADA048 986		e 				Ĩ.		· · · · · · · · · · · · · · · · · · ·		And An American Street		
													The second secon
			A second se	Waldhudl				4					• Banacana - Marine - Mari
	<section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>											How the second s	
	The second secon		 Paral Annual Annu										
			A second distance in the second distance is a second distance in the second distance is a second distance is second distance is a second distance is a secon					A A A A A A A A A A A A A A A A A A A				A CONTRACTOR	Martin Contraction
			A second		All and a second	ALTERNATION AND AND AND AND AND AND AND AND AND AN			A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONT				
				and the set of the set					internet of	Party Construction			

MAGNUS EFFECTS ON

BALLISTIC TRAJECTORIES

THES IS

AFIT/GA/AA-77D-8

James D. Schneider Major USAF

Approved for public release, distribution unlimited.

MAGNUS EFFECTS ON 4. BALLISTIC TRAJECTORIES .

Master's THESIS

 \mathbb{C}

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science FIT/GA/AA-92D-8 by James D. Schneider B.S. USAF

ACCESSION for Wille Section NTIS Biff Serian 5 DDC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/AVY MS Dist.

Graduate Astronautical Engineering

Approved for public release, distribution unlimited.

012 225

LB

Preface

Most of my time during the past six months has been spent preparing for, working at, and finally completing this project. As time progressed, I managed to develop at least a measure of proficiency in working with the six degree of freedom equations of motion, was introduced to the utility of aerodynamic coefficients, and gained considerable experience working with a computer simulation. This learning experience, unlike most of my rote textbook encounters, was found to be satisfying, rewarding, and real. I also found the professional people I came in contact with during the project to be knowledgable, motivated engineers willing to share their time and talent. My association with my advisor, Dr. D.W. Breuer of the Aeronautics and Astronautics department, Air Force Institute of Technology; Major Ed Mirmak, Air Force Avionics Laboratory who proposed the project; and Captain Bill Miklos, Flight Dynamics Laboratory who provided the computer program, made the project not only possible but enjoyable. An enormous amount of expertise was available to me through these people as well as from those who have previously documented their efforts in this field. This project represents the conclusion to a personal challenge of the first degree with its own reward at the time of completion. If any part of it is ever useful to anyone else, then all the effort is even more worthwhile.

0

Contents

Prefa	ACe	11
List	of Figures	v
List	of Tables	/111
List	of Symbols	ix
Abst	ract	xi
1.	Introduction	1
	Purpose	1
	Background	1
	Assumptions	2
11.	Mathematical Theory	4
	Reference Frame Transformation Matrix	4
	Equation of Motion	5
	Differential Equations of Motion in Rotational	
	Parameters	9
ш.	Method of Problem Solution	12
	The Computer Program	12
	Projectile Model Description	13
	Aerodynamic Coefficients	14
	Approach to the Investigation	23
IV.	Results of the Simulations	28
	Effect of Magnus Coefficients	28
	Effect of Initial Pitch Motion	30
	Effect of Spin Rate	41
	Other Observations	44
٧.	Conclusions	51

 \bigcirc

Q

0

Contents

Bibliography	53
Appendix A	54
Appendix B	57
Appendix C	67
Appendix D	69
Appendix E	83
Appendix F	85
Appendix G	99
Vita	105

0

List of Figures

Figure		Page
1	Reference Frames	4
2	Rotational and Linear Velocity Axes	6
3	Projectile Model	13
4	Periodic Change in Clo	15
5	Typical Theoretical vs Experimantal Data Curves	16
6	Definition of Cross-Spin/Velocity Terms	17
7	Force Coefficient vs Mach Number	21
8	Change in Magnus Force Coefficient	22
9	Magnus Lift	24
10	Magnus Moment	25
11	Effect of Magnus & Side Force Coefficients on Lateral	
	Displacement	29
12	Effect of Pitch Motion and Magnus Coefficients on Lateral	
	Displacement	33
13	Projectile Nose Track after Release	35_
14	Initial Rate of Lateral Displacement	36
15	Effect of Initial Side Velocity on Lateral Progression	38
16	Lateral Displacement vs Yaw Oscillation	40
17	Effect of Spin Rate on Lateral Displacement	43
18	Effect of Release Velocity and Altitude on Velocity	
	Progression	45
19	Effect of Release Velocity on Total Projectile Acceleration .	47
20	Effect of Initial Pitch Motion on Lateral Deflection	48

21	Effect of Release Velocity on Altitude Progression	49
22	Effect of Release Velocity and Altitude on Lateral	
	Displacement	50
B-1a	thru g Computer Input Cards 57 -	01
B-2	Flight Path/Perturbation Angle Input	62
B-3	Scale Factor Inputs	64
E-1	Local Level Reference Frame	83

0

List of Tables

Table	Page
I Differential Equations of Motion	. 11
II Force and Moment Coefficients	. 18
III Aerodynamic Coefficients	. 19
IV Magnus Force Aerodynamic Coefficient Array	. 23
V Parameters Investigated	. 27
VI Effect of Magnus Coefficients	. 31
VII Effect of Spin Rate	. 42
A-I Wind Tunnel Spin Up Data	. 55
A-II Wind Tunnel Spin Down Data	. 56
B-I Aerodynamic Coefficient Array	. 65
B-II Computer Input Array	. 66
C-I Sample Computer Readout	. 68

C

Ô

0

List of Symbols

Aerodynamic coeffi	cients (See Table 3)
CL. CM. CN	Moment coefficient about body X, Y, Z axes
C _x , C _y , C _z	Force coefficient along inertial axes
cx. cy. cz	Force coefficient along body axes
đ	Maximum projectile diameter
7	Net force vector
Fx, Fy, Fz	Components of F along body axes
6	Gravitational acceleration
ĥ	Net angular momentum vector
hx, hy, hz	Components of h along body axes
Ix, Iy, Iz	Moment of inertia about body axes
	Mass of projectile
Ħ	Net moment vector
M _X , M _Y , M _Z	Components of \overline{M} about body axes
p, q, r	Rate of rotation about body X, Y, Z
9	Dynamic pressure
q"	Magnitude of cross-spin vector
S	Cross-sectional area of projectile
t	Time
tE	Simulation termination time
Va	Speed with respect to air mass
7	Net velocity vector
u, v, w	Components of $\overline{\mathtt{V}}$ along body XYZ axes respectively
ymin	Simulation termination altitude
•	Wedge angle
X, Y, Z	Axes of inertial reference frame

viii

(

0

X, Y, Z	Axes of body fixed reference frame
x "	Position of inertial x after second rotation O
	New position of inertial z axis after rotation
~	Angle of attack
ß	Side slip angle
Δt	Numerical integration step size
ø .	Angle from cross-velocity vector to Z fin
¢ "	Angle from cross-spin vector to Y fin
Ψ, θ, φ	Rotation about inertial y, z', x" axes
λ	Rotational parameter
η	Number of fins
P	Air density
ω ^{bi}	Rotation between body and inertial reference frames

Note for hand printed equations: X, Y, Z = X, Y, Z

1×.4.9 = x, y, z

ABSTRACT

A six degree of freedom computer simulation was used to investigate the lateral progression of a free-fall ballistic trajectory due to spin rate, Magnus aerodynamic coefficients and initial projectile pitching motion. The increased spin rate extends the projectile impact point both downrange and cross range due to a slight increase in time of flight generated by a predominately positive angle of attack. The Magnus force, Magnus moment and side force coefficients, under normal release conditions, presents only a minor influence and can be omitted from the simulation without altering the trajectory appreciably. If the release altitude is sufficiently high, however, the small influence of these coefficients could propagate to a correctable magnitude. Projectile oscillations encountered at release can increase the lateral progression of the trajectory significantly, especially for high speed deliveries. Oscillations induced by an initial pitch rate of the projectile generates considerably more lateral deviation than an initial pitch displacement of equivalent maximum amplitude. This increased lateral displacement causes a corresponding decrease in range impact. Other observations concerning the performance of a projectile following a ballistic trajectory are included as support material in the last section of the study.

x

MAGNUS EFFECTS ON BALLISTIC TRAJECTORIES

I. Introduction

Purpose

This study uses computer simulations to investigate three factors that effect a free-fall ballistic trajectory. The first objective is to determine the relative influence of Magnus force, Magnus moment, and side force coefficients. The next area of interest is the effect of oscillatory motion induced by initial pitch rate motion compared to initial pitch displacement of the projectile. The third set of simulations determines how spin rate induced by the projectile fins alters the trajectory.

The development of the equations of motion used in the computer program is included in this study, followed by a discussion of the aerodynamic coefficients. The results of the simulations are presented in the last section.

Background

A ballistic projectile is designed to spin so that a predictable trajectory is generated. Without spin, aerodynamic lift created by non-symmetrical shape resulting from manufacturing imperfections would cause the projectile to fly away from the expected ballistic trajectory. Spin is also required for stability considerations. If the projectile has insufficient angular momentum, it will eventually begin precessing and, if the spin rate is in the neighborhood of the natural pitch frequency, it

may develop catastrophic yaw. Conversely, with excessive angular momentum, the projectile spin axis tends to become gyroscopically oriented with respect to inertial space and will not track properly throughout the trajectory. Conventional bombs are therefore designed so that a spin rate is achieved that will maintain satisfactory stability within either limit of spin rate (Ref 4:64 & 12:29). This spin, while desirable and necessary for a predictable trajectory, induces lateral errors which are attributable to Magnus lift and a gyroscopically induced lateral angle of attack. These effects are additive and can cause the bomb to progressively deviate laterally.

Assumptions

The set of equations that completely describe the trajectory of a spinning ballistic projectile are fully coupled, non-linear expressions that are developed in dynamics texts (such as Ref 4:99). The solutions to this set of equations requires extensive digital computer capability even with the following simplifying assumptions:

1. The earth curvature, variation in terrain, and earth rotation are neglected. For normal conventional weapon delivery airspeeds and altitudes, no significant error is introduced since the range and time of flight of the projectile is sufficiently small. This assumption eliminates the earth reference and allows the advantage of direct transformations between the body and inertial reference frames (See Fig 1). This greatly decreases the required computer time with no appreciable loss in accuracy.

2. The gravitational field is considered uniform over the entire trajectory.

3. The coriolis acceleration is neglected even though it can have

a small but discernable effect on the projectile impact point. For this investigation, the change in trajectory is of primary interest, not the precise trajectory itself. Coriolis acceleration is addressed in Appendix E but is not written into the computer program.

4. A standard atmosphere is assumed adequate for normal release altitudes. The ARDC 1959 Model Atmosphere was used and no winds were included in the simulation.

II. Mathematical Theory

Reference Frame Transformation Matrix

The orthogonal reference frame used in this development is the body fixed reference frame (XYZ) moving with respect to the inertial frame (xyz). The origin of the body frame is located at the center of gravity of the projectile.

Fig. 1. Reference Frames

To facilitate the direction cosine matrix development, the body reference frame is rotated 90° in the negative direction about the X axis to allign the YZ axes with the corresponding yz axes. The following sequence of Euler angles is then used to generate the direction cosine matrix (Ref 2:8): yaw rotation ψ about the y axis, pitch rotation θ about the new z' axis, then roll rotation ϕ about the new x" axes.

The resulting matrix is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c\phi & s\phi \\ 0 & -s\phi & c\phi \end{bmatrix} \begin{bmatrix} c\theta & s\theta & 0 \\ -s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\psi & 0 & s\psi \\ 0 & i & 0 \\ -s\psi & 0 & c\psi \end{bmatrix}$$
(1)

which expands to a single Euler angle transformation so that the set of equations describing the velocity vector is (Ref 7:10):

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} c\psi c\theta & S\theta & c\theta S\psi \\ -S\theta S\Psi - c\phi C\Psi 5\theta & c\phi c\theta & S\phi C\Psi - c\phi S\Psi 5\theta \\ -c\phi S\Psi + S\phi C\Psi 5\theta & -S\phi C\theta & c\phi C\Psi + S\phi S\Psi 5\theta \end{bmatrix} \begin{bmatrix} U \\ V \\ W \end{bmatrix}$$

$$(2)$$

Where \dot{x} , \dot{y} , \dot{z} are the velocity components in the inertial reference frame and u, v, w are the velocities along the body frame (Fig 2). S, C denotes sine and cosine respectively.

Equations of Motion

The relationship between vector derivatives in any two reference frames (where \overline{Z} denotes any vector) can be expressed as (Ref 6:109):

$$\frac{d}{Z} = \frac{d}{Z} + \frac{d}{\omega} \times \overline{Z}$$
(3)

Then, for a velocity vector \overline{V}

$$\dot{\nabla}^{i} = \dot{\nabla}^{b} + \vec{\omega} \times \vec{\nabla} \tag{4}$$

Consequently, F = ma = mV can be expressed in the reference frame of interest as

$$\vec{F} = m\vec{\nabla} + m\vec{\omega} \times \vec{\nabla}$$
⁽⁵⁾

0

The rotational parameters p, q, and r are defined as the angular velocities about the X, Y, Z body axes respectively and u, v and w are the linear velocity components along the X, Y, Z axes:

Fig. 2. Rotational and Linear Velocity Axes

The scalar components of equation 5 can be expressed in the body frame as (Ref 4:99):

$$F_{X} = m(\dot{u} + qw - rV)$$

$$F_{Y} = m(\dot{v} + ru - PW)$$

$$F_{z} = m(\dot{w} + PV - qu)$$
(6)

or, equivalently,

$$m\begin{bmatrix}\dot{u}\\\dot{v}\\\dot{v}\\\dot{w}\end{bmatrix} = \begin{bmatrix}F_{x}\\F_{y}\\F_{z}\end{bmatrix} - m\begin{bmatrix}qw-rv\\ru-pw\\pv-qu\end{bmatrix}$$
(7)

where the components of \overline{F} are expressed as the combination of aerodynamic and weight forces.

[Fx]		Cx		50	
. F.	= QS	Cy	-mg	cφ cθ	(8)
Ę		C _z		-S\$ C 8	

where $Q = \frac{1}{2} \rho V_a^2$ = dynamic pressure

S = cross sectional area

 C_{y} , C_{y} , C_{z} = aerodynamic force coefficients

This set of equations (Ref 2:11) describe the three translational degrees of freedom of a projectile as it proceeds along its path. Three additional equations are needed to account for the spin, pitch and yaw motion that will be encountered.

The expression relating the derivative of the angular momentum vector between the body and inertial frame, from Eq 2, is

$$\dot{h} = \dot{h} + \vec{\omega} \times \vec{h}$$
(9)

where

$$\begin{bmatrix} h_{X} \\ h_{Y} \\ h_{z} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{X} \ \mathcal{P} \\ \mathbf{I}_{Y} \ \mathcal{Q} \\ \mathbf{I}_{z} \ r \end{bmatrix}$$

(10)

The rate of change of angular momentum expressed in the body frame, for constant mass projectiles, is

$$\begin{bmatrix} \dot{h}_{x} \\ \dot{h}_{y} \\ \dot{h}_{z} \end{bmatrix}_{b} = \begin{bmatrix} I_{x} \dot{P} \\ I_{y} \dot{q} \\ I_{z} \dot{r} \end{bmatrix}$$

The origin of the body frame of reference is located at the center of gravity of the projectile which eliminates the products of inertia since the body frame is located on principal axes and the moment of inertia about the y & z axes are equal. The scalar components of Eq 9 can therefore be written as

$$\dot{h}_{x} = M_{x} = I_{x}\dot{p} + qr[I_{z} - I_{y}]
 \dot{h}_{y} = M_{y} = I_{y}\dot{q} + pr[I_{x} - I_{z}]$$

$$\dot{h}_{z} = M_{z} = I_{z}\dot{r} + pq[I_{y} - I_{x}]$$

$$(12)$$

Since $I_y = I_z$ for a projectile with rotational mass symmetry, this set is equivalently presented as (Ref 2:11):

$$\begin{bmatrix} \mathbf{I}_{\mathbf{X}} \dot{\mathbf{P}} \\ \mathbf{I}_{\mathbf{Y}} \dot{\mathbf{q}} \\ \mathbf{I}_{\mathbf{Z}} \dot{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} M_{\mathbf{X}} \\ M_{\mathbf{Y}} \\ M_{\mathbf{Z}} \end{bmatrix} - (\mathbf{I}_{\mathbf{Y}} - \mathbf{I}_{\mathbf{X}}) \mathcal{P} \begin{bmatrix} \mathbf{0} \\ -\mathbf{r} \\ \mathbf{q} \end{bmatrix}$$
(13)

where the M vector is the moment produced by aerodynamic forces expressed as a function of the aerodynamic moment coefficients C_L , C_M , C_N (Ref 2:12):

(11)

$$\begin{bmatrix} M_{X} \\ M_{Y} \\ M_{z} \end{bmatrix} = Q S d \begin{bmatrix} C_{L} \\ C_{H} \\ C_{H} \end{bmatrix}$$

where d is the diameter of the projectile.

Eqs 7 and 13 completely describe the motion of a six degree-offreedom ballistic projectile and form the basis of the six degree-offreedom computer program used in this investigation.

(14)

Differential Equations of Motion in Rotational Parameters

Euler angles provide an effective description of body orientation in space and the heading, pitch and roll angles are easily visualized. The transformation matrix of nine direction cosine elements, however, requires considerable computer time to process the numerous trigonometric functions. Also, singularities in the differential equations arise when the pitch angle of $\pm 90^{\circ}$ is reached, as well as inducing unacceptable truncation error when integrating in the neighborhood of the singularity point. The use of Euler rotational parameters (sometimes referred to as quaternions) provide a computational device that avoids the singularity limitation of Euler angles. This system uses four parameters to fix the position of a body in space: three direction cosine angles to specify the orientation of the spin axis, and another rotational parameter to specify the amount of spin about that axis. Instead of working with nine direction cosine elements and six constraint equations from the Euler set, the problem is now reduced to expressions for the rate of change of the four quaternion parameters (λ_1 , λ_2 , λ_3 , ξ λ_o) and a single constraint equation $\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \lambda_0^2 = 1$. The computer time required to solve this set is reduced but still remains ex-

tensive. The rotational parameter equivalent of the direction cosine matrix of equation 2 is (Ref 2:7):

$$\begin{bmatrix} 2(\lambda_{1}^{2} + \lambda_{1}^{2}) - 1 & 2(\lambda_{1}\lambda_{2} + \lambda_{0}\lambda_{3}) & 2(\lambda_{1}\lambda_{3} - \lambda_{0}\lambda_{3}) \\ 2(\lambda_{1}\lambda_{3} - \lambda_{0}\lambda_{3}) & 2(\lambda_{0}^{2} + \lambda_{2}^{2}) - 1 & 2(\lambda_{2}\lambda_{3} + \lambda_{0}\lambda_{1}) \\ 2(\lambda_{1}\lambda_{3} + \lambda_{0}\lambda_{3}) & 2(\lambda_{2}\lambda_{3} - \lambda_{0}\lambda_{1}) & 2(\lambda_{0}^{2} + \lambda_{3}^{2}) - 1 \end{bmatrix}$$
(15)

where

𝒴= ᢗॾऀ ᢗॾऀ ᢗ ≚	+ 2 은 2 은 2 북	
λ= C ≗ 5 星 5 垩	+ 5 द ट द ट द	
$\lambda_2 = C \frac{\phi}{2} C \frac{\phi}{2} S \frac{\phi}{2}$	+ 5월 5월 6월	(16)
λ3=C= 2 등 C 주	+ 5월 6월 5월	

The rate of change of these parameters are given by (Ref 2:10):

$$\begin{bmatrix} \dot{\lambda}_{o} \\ \dot{\lambda}_{i} \\ \dot{\lambda}_{2} \\ \dot{\lambda}_{3} \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{bmatrix} \begin{bmatrix} \lambda_{o} \\ \lambda_{i} \\ \lambda_{2} \\ \lambda_{3} \end{bmatrix}$$
(17)

The algebra required to develop equations 15 and 16 is quite extensive as shown in Appendix D. The derivation of equation 17 is found in Appendix B of reference 2, page 11.

The differential equations of motion are now in the programmed form and are summarized in Table I.

Table I

The kinematic relationships are:

$$\begin{bmatrix} \dot{\chi} \\ \dot{\chi}$$

$$\begin{split} \dot{\lambda}_{o} \\ \dot{\lambda}_{i} \\ \dot{\lambda}_{a} \\ \dot{\lambda}_{3} \\ \dot{\lambda}_{3} \\ \end{split} = -\frac{1}{2} \begin{bmatrix} 0 & p & q & r \\ -p & 0 & -r & q \\ -q & r & 0 & -p \\ -r & -q & p & 0 \end{bmatrix} \begin{bmatrix} \lambda_{o} \\ \lambda_{i} \\ \lambda_{2} \\ \lambda_{3} \\ \end{bmatrix}$$
(19)

The dynamic relationships are:

$$m\begin{bmatrix}\dot{u}\\\dot{v}\\\dot{v}\\\dot{w}\end{bmatrix} = \begin{bmatrix}F_{\chi}\\F_{\gamma}\\F_{\chi}\end{bmatrix} - m\begin{bmatrix}qw - rv\\ru - pw\\pv - qu\end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_{\mathbf{X}} \dot{\mathbf{P}} \\ \mathbf{I}_{\mathbf{Y}} \dot{\mathbf{q}} \\ \mathbf{I}_{\mathbf{Z}} \dot{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{\mathbf{X}} \\ \mathbf{M}_{\mathbf{Y}} \\ \mathbf{M}_{\mathbf{Z}} \end{bmatrix} - (\mathbf{I}_{\mathbf{Y}} - \mathbf{I}_{\mathbf{X}}) \mathbf{P} \begin{bmatrix} \mathbf{0} \\ -\mathbf{r} \\ \mathbf{q} \end{bmatrix}$$

where \overline{F} and \overline{M} are described in Eqs 8 and 14.

(21)

(20)

III. Method of Problem Solution

The Computer Program

Solution of the set of coupled, non-linear differential equations listed in Table I requires extensive computer capability. The program used in this study was originally coded for the Naval Ordinance Research Computer and has been updated as more advanced generations of computers became operational. The Fortran IV program used for this study was developed by Charles W. Ingram and R.S. Eikenberry using Cohen & Werners' work (Ref 2) as a point of departure. It was written originally for stability analysis applications rather than precision trajectory prediction. The six degree of freedom computer program numerically integrates the set of kinematic and dynamic Euler equations of Table I in the body reference frame and outputs in the inertial reference frame. The accuracy of the program is limited primarily by the quality of the aerodynamic coefficients that are input. The complete program is listed in Appendix F.

Both the Runge-Kutta numerical integration step size (value of A-(20) Table B-2) and the output time increment can be adjusted by the user as a means of tailoring the computer time and cost against the accuracy required. If high projectile spin rates are encountered, coarse step sizes on the order of .01 second could result in erroneous outputs due to insufficient data points to properly resolve the integration problem. The time step should be small enough to provide at least ten integration steps during one revolution of the highest spin rate expected. A step size of .002 second is used for most simulations in this report. Since extensive core memory and computer time is required to pro-

cess this program, it is written for only a single trajectory per run. A core memory of 100,000 was adequate for all trajectories used in this study. (An integration step size of .001 second requires in excess of 200 seconds of computer time for a 10,000 ft drop.)

Discussion of the computer program input and output is included in Appendices B and C.

Projectile Model Description

The standard Mark 82 warhead with an experimental tail section was the projectile model used to determine the aerodynamic coefficients. The cylindrical aft section has four slotted fins, each fitted with a trailing edge wedge to provide the roll driving moment. The designation of the configuration is FFSW (fin, fixed, slotted, wedge). This particular projectile was selected because of the similarity to existing conventional weapons and, significantly, most of the aerodynamic coefficients were available (Ref 14).

Fig. 3. Projectile Model

The cylindrical tail section provides both a higher drag coefficient and a housing for an inflatable high drag device that may be installed; the slotted fins increase the probability of a well-behaved roll rate throughout the trajectory (Ref 3:1).

A wedge angle of ten degrees is used for most of the simulations in this study. This wedge angle provides sufficient roll acceleration to overcome adverse dynamics encountered during release. The steady state spin rate produced is fast enough to investigate the influence of Magnus coefficients without inducing the type of instabilities that can occur when the spin rate exceeds approximately ten times the nutation frequency (Ref 8; Sec 3,5).

Aerodynamic Coefficients

Values of the aerodynamic coefficients used in equations 8 and 14 must be adequately determined by wind tunnel testing of the projectile model before satisfactory trajectory simulations are possible. The aerodynamic force and moment coefficients can, for most applications, be reduced to the expressions listed in Table II. These expressions include cross-velocity terms in both the force and moment coefficients, but cross spin terms are included only in moment coefficients about pitch and yaw axes. (See Fig 6 for definitions of cross-velocity and cross spin terms.) Table III describes the terms which make up the total aerodynamic force and moment coefficients. These mathematical expressions were determined in Cohen and Werners' work (Ref 2:15-19).

In order to illustrate the utility of the aerodynamic coefficient terms, the expression for induced roll moment is used as an example (See Table III):

$$C_{1} + C_{1} \sin \eta \phi' + C_{1} \cos \eta \phi'$$

(22)

where

The C_{l_0} term is the residual rolling moment that remains after the projectile has been aligned in the wind tunnel at the angle of attack of interest with no fin deflection; that is, an index of rolling moment due to body shape.

The next set of terms, $C_{17} \sin \eta \phi' + C_{18} \cos \eta \phi'$, is the mathematical format required to describe the data curve obtained from the wind tunnel measurements. This application can best be appreciated by the illustration of a spinning projectile at various stages of roll moving away at an angle of attack sufficient to cause a vortex to trail along the top of the missile as in Figure 4.

Fig. 4. Periodic Change in Aerodynamic Coefficient C/

At the beginning of the sequence, the trailing vortex is cut symmetrically by the fin, so no net roll influence is imposed by the dynamic pressure change on the fin due to the vortex. After 22.5 degrees of

roll, the vortex is in a position to exert a maximum rolling influence. At the 45° angle, a condition of symmetry is again encountered. For this type of oscillating characteristic, C_{1} could be graphed for the entire sequence as the solid curve of Fig 5. The graph obtained from the actual wind tunnel data for the coefficient of interest, however, is generally skewed from the theoretical curve as indicated by the dotted curve.

Fig. 5. Theoretical vs Experimental Data Curves

The three terms, $C_{I_0} + C_{I_7} \sin \eta \phi' + C_{I_8} \cos \eta \phi'$, are therefore used in whatever combination of magnitudes and sinusoidals that produce the best simulation of the actual wind tunnel data. The relative magnitude of C_{I_0} versus the amplitude of the sinusoidals often makes one or the other of the terms negligible.

The remaining trigonometric expressions in Table II not defined in Table III are attributable to transformations between reference frames.

Most of the aerodynamic coefficient arrays used in this computer program had been previously determined through a joint effort between the Naval Surface Weapons Center, Dahlgren Laboratory, and the Aero-

Fig. 6 . Definition of Cross-Spin/Velocity Terms.

where (Ref 2) $q^{H} = \sqrt{q^{2} + r^{2}}$, magnitude of cross-spin (rad/sec) $\alpha = \arctan \sqrt{\frac{v^{2} + w^{2}}{u}}$, magnitude of yaw or angle of attack (deg) $q^{H} = \arctan \frac{v}{w}$ (angle about X-axis from cross-velocity vector of the center of gravity of missile to Z fin) (deg)

=
$$\arctan \frac{(-r)}{q}$$
 angle about the X-axis from cross-spin vector
to Y fin) (deg)

6"

 $C_{Z} = \left[C_{y_{0}} + C_{y_{7}} \sin\eta\phi' + C_{y_{8}} \cos\eta\phi' + \frac{Pd}{2V_{8}} C_{y_{p}}\right](-\sin\phi') + \left[C_{z_{0}} + C_{z_{7}} \sin\eta\phi' + C_{z_{8}} \cos\eta\phi'\right]\cos\phi' + C_{z}(t)$ $C_{Y.} = \left[C_{Y_0} + C_{Y_7} \operatorname{stnn}\phi' + C_{Y_3} \cos n\phi' + \frac{Pd}{2V_3} C_{Y_p}\right] \cos \phi' + \left[C_{Z_0} + C_{Z_7} \operatorname{stnn}\phi' + C_{Z_8} \cos n\phi'\right] \operatorname{stn}\phi' + C_{Y.}(t)$ $C_{L} = C_{\lambda_{0}} + C_{\lambda} (sw) + C_{\lambda_{\gamma}} sinn\phi' + C_{\lambda_{g}} cosn\phi' + \frac{Pd}{2V_{a}} C_{L_{p}} + \alpha (C_{L_{e}\overline{\partial}_{0}} + C_{L_{e}\overline{\partial}_{1}} sin\phi' + C_{L_{e}\overline{\partial}_{2}} cos\phi')$ $C_{N} = \left[C_{m_{0}} + C_{m_{7}} \sin n\phi' + C_{m_{8}} \cos n\phi' \right] \left(-\sin \phi' \right) + \left[C_{n_{0}} + C_{n_{7}} \sin n\phi' + C_{n_{8}} \cos n\phi' + \frac{Pd}{2V_{a}} C_{n_{p}} \right] \cos \phi'$ $C_{M} = \left[C_{m_0} + C_{m_7} \sin n\phi' + C_{m_8} \cos n\phi' \right] \cos \phi' + \left[C_{n_0} + C_{n_7} \sin n\phi' + C_{n_8} \cos n\phi' + \frac{Pd}{2V_a} C_{n_p} \right] \sin \phi'$ Force And Moment Coefficients (Adapted from Ref 2) + $\left[C_{mq_0} + C_{mq_1} \sin \eta \phi^{m} + C_{ng} \cos \eta \phi^{m}\right] \frac{q^{u}d}{2V_a}$ (-sin ϕ^{m}) + C_n (c) + $\left[C_{m_{q_0}} + C_{m_{q_1}} \sin \eta \phi^{**} + C_{m_8} \cos \eta \phi^{**}\right] \frac{q^{**}d}{2V_g} \cos \phi^{**} + C_{m_8}(\epsilon)$ TABLE II

C

TABLE III

Aerodynamic Coefficients (Adapted from Ref 2)

Description of Coef	ficient	Array Symbol *
¢,	Axial force	CX
Cyo + Cy7sin79' +Cy8cos74'	Induced side force	CY7
Сур	Magnus force	CYP
$C_{z_0} + C_{z_7} \sin \eta \phi' + C_{z_8} \cos \eta \phi'$	Normal force	CZ
Cy (4)	Trim force along Y-axis	N/A
C ₂ (1)	Trim force along Z-axis	N/A
$C_{10}+C_{17}\sin\eta\phi'+C_{18}\cos\eta\phi'$	Inducea roll moment	CLGA
C2 (SW)	roll moment due to fin cant	CLDW
с _ф	Roll damping moment	CLP
$C_{m_0} + C_{m_7} \sin \eta \phi' + C_{m_8} \cos \eta \phi'$	Restoring moment	СМ
$[C_{m_{q_0}}+C_{m_{q_7}}\sin\eta\phi''+C_{m_{q_8}}\cos\eta\phi'']\frac{q''d}{2V_s}$	Damping moment	୯ଲକ୍
$C_{n_0} + C_{n_7} \sin \eta \phi' + C_{n_8} \cos \eta \phi'$	Induced side moment	CNGA
C _{np}	Magnus moment	CNP
c _m (4)	Trim moment about y-axis	CMDE
C _a ()	Trim moment about z-axis	N/A
$\boldsymbol{\epsilon} \left(C_{\boldsymbol{l} \epsilon \alpha_0} + C_{\boldsymbol{k} \alpha_1} \sin \phi' + C_{\boldsymbol{l} \epsilon \alpha_2} \cos \phi' \right)$	Roll moment due to eccentric tail	N/A ·

See Appendix G

space Research Laboratory, Wright-Patterson Air Force Base and were available for this project (See Appendix G). The Magnus force coefficient, however, was not available and had to be determined so that its effect on lateral error could be studied. The Magnus force coefficient is determined from the definition

$$c_{y_p} = \frac{\partial c_y}{\partial (pd/2V)}$$
(23)

where p = spin rate, d = projectile diameter, V = wind tunnel velocity.

This relation states that the slope of a line fit through a plot of C_y versus pd/2V should yield the nominal value of C_{y_p} for a specific angle of attack and Mach number. Tables A-I and A-II show the wind tunnel data taken at Mach 0.8 at an angle of attack of 1.87 degrees. Cy was plotted against pd/2V and then a "best fit" line was drawn through the data points (Fig 8). Greater weight was given to the lower values pd/2V so that the cluster of data points in the neighborhood of the steady state spin condition would not overly influence the slope. No attempt was made to force the line through the origin. As long as the axis intercept remains small, the error in the wind tunnel measuring instruments will dominate. The primary objective is to provide a best estimate of the most representative slope of the plot. The slope of the resulting line produced the nominal value of C_{y_D} that was entered as a single element in the CYP array corresponding to Mach = 0.8 and \propto = 2 (Ref Table IV). The remaining 71 elements of the 8 x 9 matrix were determined in the same manner. Note that the Mach = 0.4 values are used to fill the Mach = 0 row. This is done because, at lower Mach numbers, the compressibility effects diminish and the coefficient remains nearly constant. Fig. 7 shows a typical force coefficient progression.

C C 0 .5 MACH NUMBER

Fig. 7. Force Coefficient vs Mach Number

The alpha = 50° column contains unreliable data but is used only to provide a value for the program to interpolate against in the event $\propto = 25^{\circ}$ is exceeded. The computer program is written so that interpolation is accomplished for any intermediate value of angle of attack and Mach. The angles of attack used in this study were well below 25 degrees so this ill-defined edge of the array was not encountered.

Approach to the Investigation

AFIT/GA/AA-77D-8

The primary objective of this study is to investigate the relative contributions of the Magnus coefficients to lateral deflection of a spinning projectile following a ballistic trajectory. The general approach is to isolate the effect of the Magnus force coefficient C_{y_p} , the induced side coefficient C_{y_7} , and the Magnus moment coefficient C_{n_p} on the trajectories initiated from identical release conditions. Each coefficient is studied individually, and in pairs; then compared to the performance of all three coefficients together. The initial conditions include a range of airspeed, altitudes and attitude pertubations.

The Magnus force coefficient, Cyp, is of interest because it is

 \bigcirc

and the standard and the state of the state

TABLE 'IV

Magnus Force Aerodynamic Coefficient Array. (Extracted from Appendix G)

	-	
•		

20.000	-12.5000	-12.5000	-6.1500	-9-000	-3.4500	-3.4000	-2.3300	-2.3300
6000-52	-12.5000	-12.5000	-6.1500	-5.0300	-3.4530	-3.4000	-2.3300	-2.3300
20.000	-5.9189	-5.9180	-2.9900	-2.0000	-2-3720	-2.4630	-1.7700	-1.7700
19.0000	-2.1830	-2-1830	-1.1650	-1-1000	7800	6003	6750	6750
10.3000	7750	7750	+600	0077*-	3300	2540	2650	2650
0.000	5350	•• 5359	4100	3500	2950	3120	3100	3100
4.0000	1350	1350	1750	1050	1630	1500	1600	1800
2.0909	6300	0300	0269-	1050	0700	0800	0800	0800
0000-0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	. 0*0000
they	0000-5	.4000	9009*	0006*	1.0000	1.1000 .	1.2000	2.9030
	MACH	MACH	MACH	MACH	MACH	MACH	MACH	MACH

the source of Magnus lift that is generated by a spinning body subject to a relative wind component acting perpendicular to the body spin axis. This force will therefore be generated anytime the spinning projectile is falling with an angle of attack. The direction of the lateral Magnus lifting force is determined by the direction of spin and the crossvelocity component w. The spin rate, p, causes a velocity differential to be produced as shown in Fig. 9. A corresponding pressure differential is generated which produces lift in the lateral direction.

The side force coefficient, C_{y_7} , contributes to the deflection of a projectile by influencing side lift due to a lateral angle of attack.

Fig. 9. Magnus Lift

The Magnus moment coefficient, C_{n_p} , can directly effect lateral progression of a projectile following a ballistic trajectory. Magnus moment is generated when the projectile, at a sufficiently high angle of attack, trails a wake vortex that blanks out the rolling lift of the fin passing through it. This causes a change in roll torque and a fin force imbalance that produces a yaw moment on the projectile (Fig 10). The value of the aerodynamic coefficient is a measure of the sensitivity of the projectile to this effect.

Fig. 10. Magnus Moment

The release velocities used as initial conditions are 600 ft/sec for a lower limit (approximately 350 knots) and 1000 ft/sec for the high speed delivery. The lower limit was selected as a representative velocity for a slow delivery. The 1000 ft/sec velocity remains in the subsonic region and provides adequate velocity spread for comparisons. A velocity of 1200 ft/sec was used, in some cases, to investigate the effect of a supersonic delivery (Mach 1.1 at 10,000 ft).

The 10,000 foot altitude was selected for most of the simulations. This altitude provides sufficient time of flight to identify any significant trajectory trends and does not require prohibitive computer time to process. An altitude of 20,000 feet was used when a lower air density trajectory was desired for comparison.

All releases are from a level flight path. The projectile is, however, perturbed initially under three conditions: zero perturbation, a nose-down rate motion, and a nose-down displacement. The zero perturbation condition simulates a projectile perfectly aligned with the velocity vector at release. The pitch rate motion of q = -.5 radians/ sec is used to investigate the effect of motion that could be induced

by the bomb ejection mechanism. The initial angle of attack of \propto_{o} = -7.75 degrees, the third condition, is approximately the same maximum amplitude achieved by the preceding initial motion, but obtained in a different manner.

Spin rate of the projectile directly influences Magnus lift and, consequently, lateral progression of the trajectory. Wedge angles of 5, 10, and 15 degrees were used in the simulations to investigate the relative influence of the different wedges.

The parameters studied under various initial conditions are listed an an overview in Table V.

Ó

,

 \bigcirc

TABLE V

Parameters Investigated

					Init	1al Con	nd1tions					
	Altit	ude	Α	elocity		0	ده د	Ĩ	lo	•	vo	
Parameters	1 OK	ZOK	600	1000	1200	0	-7.75	0	5	5	0	+5.
All Coefficients	×	×	×	×	×	x	×	×	×	×	×	×
Cnp (Omitted)	×		x									
c _{yb}	x		x									
^c y7	×		×									
cyp, c _{np}	×		×								• •	
cyp. cyr	×		×									
cnp. cy7	×		x									
cyp. cnp. cy7	×		×	×	×	×	×	×	×			
cz	×		x				×		×			
50	×		x	×								
100	×	×	x	×	×		×		×			
150	×		x	×								
8	×	×	×	×	×	×	×	×	×	×	×	×
t	×		×	×			x		×			
												1

27

.

IV. Results of the Simulations

Effect of Magnus Coefficients

The first simulations were run to determine the relative influence of the Magnus coefficients. Initial release conditions of level flight at an altitude of 10,000 feet and 600 feet per second, using all twelve available aerodynamic coefficient arrays produced the result shown in Fig. 11. The ground zero impact point for the trajectory using all coefficients was 57.73 feet to the left of the inertial x-y plane containing the release point. With three coefficients removed that influence lateral displacement (C_{np}, C_{y7}, C_{yp}) , the impact point was changed to 56.58 feet. This total spread of only 1.15 feet, generated over a relatively long trajectory, is lost in the accuracy limitations of the aerodynamic coefficients and the simplifying assumptions used in the equation of motion development. This small, Magnus induced lateral motion is initiated early and propagates slowly throughout the trajectory.

A second set of simulations were run at a velocity of 1200 ft/sec to determine if higher velocity would cause these coefficients to generate a more significant change in the trajectories. The net difference in the trajectories with and without the three coefficients remains on the order of only a few feet.

There are a number of possible explanations why the Magnus influence is so small. Magnus lift depends on both the relative velocity component acting on the projectile due to angle of attack and the spin rate of the projectile. For normal weapon deliveries, the angle of attack is relatively small on release and dampens toward zero early in the fall. During the time the angle of attack is at a maximum, shortly after release, high spin rate has not yet developed. After the projectile

Effect of Magnus & Side Force Coefficients on Lateral Displacement F16. 11.

has fallen long enough to generate a high spin rate, the angle of attack is negligible. The Magnus side force due to body lift is negligible because the lateral angle of attack is small. The Magnus moment is also small since there is no significant wake generated at small angles of attack to produce a lift differential in the fins.

If oscillatory motion is encountered during release, the projectile angle of attack alternates from positive to negative. The Magnus lift will therefore alternate from positive to negative and average the net influence to zero.

Effect of Initial Pitch Motion

To simulate an initial release condition more realistic than perfect alignment of the projectile with the velocity vector, an initial angle of attack of -7.75 degrees was used as an perturbation. The same release initial conditions were used as before and simulations were run first using all coefficients, and then with C_{y_p} , C_{n_p} , C_{y_7} removed. There was essentially no difference in the resulting trajectories for $\ll_0 = -7.75$ degrees compared to $\ll_0 = 0$ as shown in Table VI).

An initial pitch rotation of the projectile at release, as might be induced by an ejector mechanism, was then implemented by entering a value of $q_0 = -.5$ rad/sec. This initial rotation produced the same maximum amplitude of oscillation as the $\propto_o = -7.75^\circ$ case, but a considerable difference in the resulting impact point of the projectile was generated. The increased lateral displacement caused a corresponding decrease in range which is consistent with the principle of conservation of energy. The oscillation induced by an initial angular displacement produced a trajectory that impacted at 14,165 feet downrange and 57.73 feet cross

0

and the second

0

0

TABLE VI (a)

Effect of Magnus Coefficients

Wedge angle = 10°			Initial Pitc	th Motion			t
Level flight release		0.0) = = *	7.750	" " "	5	time of flight
Accedence	0		Þ		•		
Coefficient	x	2	X	2	X	2	Sec
All coefficients	14165.16	-57.73	14179.60	- 56.44	14124.86	-73.02	25.725
Less C _{yp}	14165.48	+9.72-					25.727
Less Cyr	14166.83	-56.54	14178.94	-55.86			25.729
Less C _{np}	14178.31	-56.60	6				25.729
Less Cyp & Cy7	14167.15	-56.45					25.729
Less Cyp & Cnp	14165.98	-57.73					25.726
Less Cy7 & Cnp	14167.34	-56.66					25.728
Less Cyp, Cy7 & Cnp	14167.67	-56.58	14179.45	-55.82	14124.47	-67.68	25.728
Less C _Z , Cyp, Cy7 & Cnp			14191.70	+ 2.53	14188.68	+ 3.46	
Less C _Z			14191.06	+ 1.79			

Z = Lateral displacement (Ft) X = Range (Ft)

C

 \bigcirc

0

TABLE VI (b)

-
q
+
2
0
-
0
-
2
1
¥
0
0
0
3
2
5
E S
lagn
Magn
F Magn
of Magn
of Magn
: of Magn
t of Magn
ict of Magn
ect of Magn
fect of Magn
ffect of Magn
Effect of Magn
Effect of Magn

Velocity = 600 ft/sec						
Altitude = $10,000$ ft			Initial Pit	sh Motion		
reace andre = 10 Level flight release	" °	0	₫° =		. ш о в	•••
Aerodynamic	* *	0	**	-7.75	- *	
Coefficient	٧f	$\mathbf{P}_{\mathbf{f}}$	۲f	Pf	۲	Pf
All coefficients	889.06	62.9	689.37	62.9	888.55	62.8
Less Cy _p	889.06	62.9				
Less Cyr	889.05	62.9	889.36	62.9		
Less C _{np}	889.37	62.9				
Less Cyp & Cy7	889.05	62.9				
Less Cyp & Cnp	689.10	62.9				
Less Cy7 & Cnp	889.10	62.9				
Less Cyp. Cy7 & Cnp	889.10	62.9	889.38	62.9	888.63	62.5
Less C ₂ , Cyp, Cy7 & C _{np}			889.76	63.0	689.66	63.6
Less C ₂			889.76	63.0		

range to the left. The rate induced oscillation, with the same release conditions, impacted at 14,179 feet downrange and 73.02 feet cross range (See Table VI and Fig 12).

To investigate the cause of the difference in trajectory, the nose track, viewing the projectile from behind, was plotted for the two different inputs in Fig. 13. The beta versus alpla plot represents a close approximation of the nose track of the projectile early in the trajectory before the body reference frame and the projectile velocity vector rotate a significant amount with respect to the inertial frame. The motion of the projectile nose for the two conditions is quite different. Fig 13a represents single arm coning motion caused by nutation. No precession is evident and the damping is relatively constant. The nose track in Fig 13b shows less coning and displays two arm motion with both nutation and precession. This oscillation dampens faster in pitch than in yaw. The direction of nutation is opposite to the projectile spin rate while the precession is in the same direction. Figs 13c, d, e, f were plotted to identify any parameters that could cause the difference in trajectories. These plots show that the difference in spin rate buildup and velocity progression is very small. A slight phase shift in yaw oscillation is apparent, and the initial slopes of the β versus t plots are noticably different. The last plot shows a significantly different behavior in the angle of attack oscillations between the two initial conditions.

The lateral displacement for both initial conditions is plotted against time in Fig. 14 to further define the projectile motion shortly after release. The linearized average slope of these plots produces a measure of the initial lateral average velocity. The slope for the

Fig. 13. Projectile Nose Track After Release

 $\alpha = -7.75^{\circ}$ initial condition is approximately 1 ft/sec; for q = -.5 rad/sec, the slope is close to 1.5 ft/sec. These values of slope are significantly different and can be modeled as an initial lateral velocity of the projectile at release. The initial lateral velocity, v_0 , can be input into the simulation to determine its effect. Fig. 15 shows the lateral progression of the trajectories resulting from an initial side velocity of -5, 0, +5 ft/sec. The remaining initial release conditions were the same for all three trajectories. As the plots show, the magnitude of v_0 directly influences the overall trajectory. An equation for this lateral initial velocity is given by (Ref 1:53-68):

$$\mathbf{v}_{z} = -\left(\frac{C_{Z_{a}} \wedge q}{M}\right) \left(\frac{T}{1 - \omega^{2} T^{2}}\right) (2\beta + T\dot{\beta})$$
(24)

where $C_{Z_{q}}$ = the normal force coefficient (acting in plane containing the relative wind).

A = frontal area of the projectile.

q = dynamic pressure.

M = mass

T = time constant for oscillation damping.

 ω = frequency of oscillation.

 β = yaw angle of attack.

 $\dot{\beta}$ = yaw rate.

If the influence of the displacement term is considered small with respect to the rate term, the expression reduces to:

 \cap

$$s = -\frac{C_{Z_{\overline{\alpha}}}}{C_{M_{\overline{\alpha}}}} \frac{1}{Md}$$

(25)

where $C_{M_{a}}$ = moment coefficient (with respect to total angle of attack).

I = transverse moment of inertia.

d = max diameter of projectile.

and the following relation has been used:

$$\frac{T^2}{1+\omega^2 T^2} = \frac{I}{C_{M_{R}} \wedge q d}$$
(26)

Equation 25 shows that the lateral velocity induced by oscillation of the projectile is sensitive to the normal force coefficient C_Z , the moment coefficient C_M , and the yaw rate $\dot{\beta}$.

The magnitude of the side velocity predicted by this closed form approximation is given by (Ref 1:65)

$$v_{z} = \frac{\dot{\beta}}{\omega}$$
 (.362) ft/sec/degree (27)

where the constant, 0.362, is the result of equation 24 (displacement term neglected) using a velocity of 750 ft/sec, an altitude of 5000 ft, and coefficients of a projectile similiar to that in this investigation (coefficients used in this derivation are determined with respect to the total angle of attack instead of pd/2V). These same initial conditions were used in a six degree of freedom simulation and the lateral displacement and yaw oscillations were plotted in Fig. 16. From these plots, a representative yaw rate and frequency of oscillation were

estimated as 0.349 radians/sec and 5.34 radians/sec respectively. The closed form approximation (Eqn 27) then produces a value of $V_z = 1.36$ feet per second.

The plot of lateral displacement versus time indicates the initial lateral velocity, according to the simulation, is approximately 1.8 feet per second. This is on the order of 25% difference between the six degree of freedom simulation results and the closed form expression. This difference can be attributed to the more extensive simplifying assumptions used to make the closed form expression possible.

Effect of Spin Rate

The effect of spin rate induced by various wedge angles is investigated at different airspeeds and release perturbations (Table VII). The spin rate, induced by the wedge angle of fifteen degrees, produces the most nominally linear lateral deviation throughout the entire trajectory. This pattern holds for both velocities investigated (Fig 17).

Table VII also reveals that increasing the spin rate of the projectile causes the trajectory to impact longer and wider. This apparent contradiction to the principle of conservation of energy was initially thought to be an error caused by using an integration step size that was too large. A step size of .002 second, however, is adequate for the spin rates encountered.

Another possible explanation is that the projectile developed gyroscopic rigidity and was starting to fly at a net angle of attack rather than averaging to zero angle of attack in its oscillations. This concept is supported by the simulation readout which shows the angle of attack of the projectile with a five degree wedge angle oscillates on the

TABLE VII

0

0

Effect of Spin Rate

Alt = 10,000 ft, level flt release, all coefficients included.

			V = 600					V = 600		
			0 = >>					ot= −10		
			0 = D					0 = b		
Wedge	x	2	٧f	Pf	tr	X	2	٧f	Pf	tf
20	14159	-37.4	888.5	31.4	25.72	14165	-38.9	883.6	31.4	25.70
100	14165	-57.7	889.1	62.9	25.72	14174	-59.1	889.2	62.9	25.71
150	14185	-65.6	889.4	4.46	25.73	14199	-66.1	889.6	4.46	25.72
			V = 1000					V = 1000		
			0 = 0					≪= -10		
			0 = b					0 = 5		1
مي مر	22668	-30.7	1029.6	38.0	26.11	22669	1.14-	1029.3	38.3	26.10
100	22716	-79.7	1030.3	76.1	26.13	22718	-79.6	1030.5	76.1	26.12
150	22746	-87.2	1030.6	114.2	26.14	22738	-93.2	1030.7	114.1	26.13
	* X = Ran	ige (ft)				P _f = Im	pact spin	rate (rad/	(sec)	
	Z = Lat	displace	ment (ft/se	()		$t_{f} = Tt$	me to impa	act		
• •	,	3								

AFIT/GA/AA-77D-8

order of t 0.1 degree in the latter half of the trajectory. The fifteen degree wedge readout, however, shows only about half the magnitude of oscillation but the oscillations are predominantly positive in the last half of the trajectory. In fact, the angle of attack does not go negative at all during the final ten seconds of flight. Also, Table VII indicates the total time of flight of the projectile spinning at the faster rates is increased very slightly (on the order of 0.02 second). The downrange velocity just prior to impact is approximately 750 ft/sec which produces an opportunity for the projectile to impact 15 feet longer in the extra 0.02 second. This is compatible with the data shown in Table VII.

Other Observations

Fig. 18 shows the aerodynamic coefficients, C_{y7} , $C_{yp} \& C_{n_p}$, have no discernable effect on the projectile velocity. The velocity progression graphs remained the same regardless of whether or not these coefficients were included in the simulation.

The wedge angle did not change the velocity progression significantly. Simulations modeling spin rates as 5, 10, or 15° wedge angle indicates the velocity progression is not influenced by spin rate. This observation is subject to the projectile spin rate remaining low enough to preclude instability.

The higher dynamic pressure encountered during release at high airspeeds causes a significantly greater velocity change of the projectile after release. The magnitude of the difference in the release and steady state velocity of the projectile governs how the velocity will progress throughout the trajectory. The projectile shows significant velocity change throughout the trajectory when released from a low speed condition.

The projectile shows much less acceleration when released from a high dynamic pressure condition.

Figure 19 investigates projectile acceleration from release to impact. The slope of the velocity vs time curve shows that maximum deceleration is proportional to the drag force encountered at release and, as a result, velocity loss is greater at high release velocities. The time required for transition from deceleration to acceleration also increases with higher release velocities. The same plots apply for each of the projectile fin wedge angles investigated. Also, there are no significant changes in the graphs for an initial angle of attack of \propto_{e} 0 versus \propto_{e} -10.

Fig. 20 shows the lateral displacement progression of a projectile subjected to two different release perturbations ($\propto_o = -10^\circ$ and $q_o = -.5$ rad/sec) at two different release velocities. The slope of a pair of the curves is nearly identical at any given time but the magnitude of the lateral displacement attained in the same given time can be significantly different at the lower airspeed.

Fig. 21 shows that the rate of altitude loss does not change significantly with initial release airspeeds. For the 10,000 ft drop, time of flight through a standard atmosphere is increased on the order of one second compared to the time of flight through a vacuum.

The effect of release velocity and altitude is shown as a composite in Fig. 22. The set of trajectories initiated at 10,000 ft is essentially a duplication of Fig. 11 and is included with the 20,000 ft set to give an indication of the effect of air density on the lateral deflection.

 \bigcirc

0

C)

50 .

V. Conclusions

1 . 19 . 1

The Magnus force, Magnus moment, and side force coefficients, for a projectile of the type modeled in the simulations, and for normal release conditions, exert only a very small influence on the impact point. The cross range displacement attributable to these coefficients, for a trajectory initiated at 10,000 feet, are on the order of only a few feet. The influence on the downrange component of the trajectory is also very small. These coefficients could be influential under conditions of high angle of attack and high spin rates which, for normal releases, are not present simultaneously. When the projectile oscillation and the corresponding angle of attack is maximum following release, the spin rate has not yet developed. As the projectile progresses along the trajectory, the spin rate builds up but the oscillations dampen to a very small value. Also, the oscillations alternate about the velocity vector of the center of gravity of the projectile so the Magnus force direction, being dependent on the direction of the angle of attack, also alternates and tends to average to zero effect.

The lateral displacement of the trajectory is, in general, increased with increasing spin rate. Insufficient spin rate can be a stability factor as can excessive spin rate. Low values of angular momentum can allow the projectile to develop catastrophic yaw. High spin rates induce gyroscopic resistance to change in projectile orientation, allowing a positive angle of attack to build up as the trajectory progresses. A net lift is then developed which increases the time of flight of the projectile and, consequently, the cross range and downrange impact point.

A projectile released at zero angle of attack with no initial per-

turbations produces the least lateral displacement of the trajectory. If the projectile is released with an initial negative angle of attack, the lateral progression is increased only slightly. If the projectile is released with a rate rotational motion, as could be induced by the ejector mechanism or an initial positive angle of attack, the lateral progression is significantly increased. This increase is directly proportional to the amplitude of the projectile oscillations. The difference in lateral progression between the rate induced and displacement induced oscillation is less at higher airspeeds. Also, as oscillations increase the cross range impact point of the trajectory, there is, in general, a corresponding decrease in the downrange impact point. These results suggest the following conclusions:

- Magnus force, as such, exerts no significant influence on the trajectory of a projectile such as the Mk-82 bomb. For most release airspeeds and altitudes, compensation for this specific effect in a weapons delivery system would not be cost effective.
- 2. The projectile should be designed to spin as slow as possible consistent with stability considerations.
- 3. Release mechanisms should be designed so no significant moment is applied. If assisted separation of the projectile from the delivery aircraft is desired, a slight negative angle of attack should be used instead of a moment.

Bibliography

- Ausman, J.S. <u>Theoretical Analysis and Experimental Measurements of</u> <u>Separation Disturbances in Weapon Delivery Systems</u>. Aircraft/Stores <u>Compatability Symposium Proceedings</u>, JTCG/MD WP No. 12:53-85 (September, 1975).
- 2. Cohen, C.J. and D. Werner. <u>A Formulation of the Equations of Mo-</u> <u>tion of a Four-Finned Missile</u>. Defense Documentation Center Reference AD112006, September 1956.
- 3. Daniels, P. <u>Minimization of Lock-In Roll Moment on Missiles via</u> <u>Slots</u>. Defense Documentation Center Reference AD010130, January 1975.
- 4. Etkin, B. <u>Dynamics of Flight</u>. New York: John Wiley and Sons, Inc., 1959.
- 5. Ingram, C.W. <u>A Computer Program for Integrating the Six Degree of</u> <u>Freedom Equations of Motion of a Symmetrical Missile</u>. Unpublished notes, Aerospace Department, University of Notre Dame.
- 6. Likins, P.W. <u>Elements of Engineering Mechanics</u>. New York: McGraw-Hill Book Company, 1973.
- Meirovitch, L. Methods of Analytical Dynamics. New York: McGraw-Hill Book Company, 1970.
- 8. Miklos, W. <u>Analysis of the Stability and Flight Performance of the</u> <u>Candidate Replacement for the MK-82 Snakeye Bomb</u>. Aif Force Flight Dynamics Laboratory Report Number AFFDL-TR-77-108, June 1976.
- 9. Murphy, C.H. Free Flight Motion of Symmetric Missiles. Defense Documentation Center Reference AD442757, July 1963.
- 10. Naveh, B.Z.N. Untitled, unpublished notes, Aerospace Department, University of Notre Dame, 1974.
- 11. Nicolaides, J.D. <u>Missile Flight and Astrodynamics</u>. Defense Documentation Center Reference AD287400.
- 12. Vaughn, H.R. <u>A Detailed Development of the Tricycle Theory</u>. Sandia Laboratory Report SC-M-67-2933, February 1968.
- 13. Whittaker, E.T. <u>A Treatise on the Analytical Dynamics of Particles</u> and <u>Rigid Bodies</u>. Dover Publications, 1944.
- 14. Air Force Armament Laboratory Report. AFATL MK 82/84 Air Inflatable Retarder (Magnus Phase) in the Aerodynamic Wind Tunnel (4T) Off-Line Data, parts 6 through 153. P41C-86A, TC387 Arnold Air Force Station, Tennessee. (July 1975).

Appendix A

Typical Wind Tunnel Data

The aerodynamic coefficients for a specific projectile model are normally obtained from wind tunnel tabulated data. Table A-I shows the spin-up data of a projectile model at a specific Mach and angle of attack. The data measurements were made as the projectile was progressively accelerated from a zero roll rate to the steady state spin rate (P_{ss}) . Table A-II shows the spin-down data taken as the projectile was progressively decelerated from a high spin rate down to P_{ss} . Both of these figures were obtained from reference 11, part 31.

TC-387	2	t	tried	*11K	140 .		DATA SET	143	- 92		TRANS	ONIC AT		
. 41	1.1.1	1.2.5	744.9 2.	10-6 PIA-1	2-814-2	PCA-1-1	PC8-2 P	1.0 92.8	92.6 0.	1-04 - 00	19-14	-UAT 2-U	T 4.9	
. 1916 1.	1852	ALF1 2.00	1144	10HC PF	C SCX10	DO SCHED	HU DA	ER COOF	E WIND-OF					
ONF IGUR	110M	HACH 0.00	5 6.3	552.5	P-INF	T-INF.	0-1NF 2.445 8	V-INF F	TE/INK10-6 0.189	REDX10	-6 RELK	10-6 CY	140	CLNP 0.243
MPLE AL	FA-H	C.	CLM	CY	CLN	XCP/U	XCY/D	TAVG	P(C)	RPH		72/00		
- ~	. 87	0.145	-0.160	-0-00206	0.00458	-1.118	-2.22+	2.7401	103.6	756	103.1 0.	0180		
-	1.87	0.1+7	-0-167	-0.00315	0.00818	-1.137	-2.592	3.7694	123.2	1172.	122.7 0	0280		
	147	-0-145-		-0+E00-0	-0.0036	1.124	-03.2-	-5-8279-	-152.6-	1.52.	152.1-0.	0346		
		0.145	-0.166	-0.00J59	6+600-0	-1.142	-2.645	6.8572	163.5	1556.	163.0 0.	1/60		
	18.	0.140	-0.160	-0-00-18	0.01000	-1.152	-2.152		140.0	1714.	179.5 0	2650		
	. 81	0.1.6	-0.168	-0.00476	-0.01124	-1.152	-2.363	9.9450	1.46.1	1774	185.8 - 0.	6453		
2:	1.87	1.147	1/1-0-	-0.400.0-	0.01150	-1.161	-2.740	10.9743	1.161	1824.	191.0 0.	55+0		
	14-	0-1+7	-0-171	-0.00.15	64110-0	191-1-	-2.259	13.032H	198.7	1845.	198.5 0.	6450		100
- 13 1	. 18.1	1+1.0	-0.172	66700-0-	06210.0	-1.167	-2.466	14.0620	201.5	1922	201.3 0.	0458		
	. H .	0.145	-0.110	-0.000494	0.01262	-1.163	+25.53+	15.0913	203.8		203.6 0	4950		
1		0.140	-0.170	61C00.0-	0.01219	-1.164	+82.5-	8641.01	E-102	1976.	0 0.705	1240		
	-18.1	0.146.	-0.171.	-16200.0	.0.01288-	-1.169.	-2.427	-1411.81-	-208.6	1989.	208.2.0.	0470		
18	1.41	0.140	1/1.0-	-U.00'1B	0.01242	-1.169	-2.435	19.2043	209.7	1999.	204.3 0.	1140.		
19	1.8.1	0.140	-0.171	-0.00.20	0.01220	-1.169	-2.319	20.2375	210.6	2006.	210.1.0.2	. 0479		
22	16.1	0.140	0/1-0-	19500.0-	22210.0	-1.164	-2.233 544 5-	21.2668	E-112	-+102	210-9 0	0480		
22		1.1.0	-0-172	11500.0-	001100	E21.1-	115.2-	1925.02	212.4	2025.	212.0	2850		
-23	1.81	0.146	-0.121	£1500.0-	0.01330	-1.169	-2.449	24.3546	212.8	2029 .	212.5 0	0484		
	:													
.00116	0.012	54 0.	- 6+50	•0330 23	0.61 0.	05253	CL-0EL	214.65	D.O.	-0.0	003			
-32040-		29+6-01	HA19-4	× 00 454	75 01									

TABLE A-I

55

AFIT/GA/AA/77D-8

0

Ó

0

Tist Ant Point Time NI PII 01 PI HID-6 PI NI PII 01 PI HID-6 PI PHC TPH ALFI PHII TUPC PHC TPH ALFI PHII TUPC PC TPH PL PL PL PL TPH PL PL PL PL PL PL PL PL	07-13-75 07-13-75 197-5 793.7 0 1197.5 793.7 PMC SCX100 SCHE							
MI FI O. 1987 II98.0 JSI.* 746.9 Z.268 II94. MC TPH ALFI PHI TUPC CONFIGUHATION MACH NO PO TO 40.1 CONFIGUHATION MACH NO PO TO 40.1 FFSJ 0.7947 2.00 00.011 TUPC F NO PO TO 40.1 F NO PO TO 40.1 F NO PO PO TO F NO PO PO PO AMPL ALFA NO PO TO I I PO PO PO I I PO PO PO AMPL ALFA NO PO PO I I PO PO PO I I PO PO PO PO I I PO	0 1197.5 793.7 PHC SCX100 SCHE	DATA SET	UAY 04	TA MODE	AEDC	PROPULSION TRANSONIC	WIND TUNNE	
MC TPH ALFI PHII TUPC CONFIGURATION MACH NO 0.0 0.0 10 FFS41 0.7947 0.7947 552.5 Configuration MACH NO 00711 I 1.87 0.137 0.0701 I 1.87 0.137 0.0711 I 1.87 0.137 0.0711 I 1.87 0.137 0.0012 I 1.87 0.152 0.0017 I 1.87 0.152 0.0017 I 1.87 0.151 0.0017 I 1.87 0.147	PHC SCX100 SCHE	PC4-2 PE	1-417 1.	.178-2 TH- 92.6 0.0	10.4.97	4.97 5.02	10.4 TAUBR	
Configurarion Mach No P0 10 FFS41 0. Mach No P0 10 FFS41 0. 137 0.137 0.071 1 1.87 0.153 -0.00431 2 1.87 0.153 -0.00431 1 1.87 0.153 -0.00431 1 1.87 0.151 -0.187 -0.00431 1 1.87 0.151 -0.187 -0.00431 1 1.87 0.151 -0.187 -0.00431 1 1.87 0.151 -0.187 -0.00431 1 1.87 0.147 -0.177 -0.00431 1 1.87 0.147 -0.177 -0.00431 1 1.87 0.147 -0.177 -0.00431 1 1.87 0.147 -0.177 -0.00531 1 2 1.87 0.147 -0.177 -0.00531 1 3 1.87 0.147 -0.177 -0.00531 1 3 1.87 0.147 -0.177 -0.00531 1 4 1.87 0.147 -0.177 -0.00531 1 4 1.87 0.147 -0.177 -0.00531 1 5 1.87 0.147 -0.177 -0.00531 1 5 1.87 0.147 -0.177 -0.00531 1 5 1.87 0.147 -0.177 -0.00531 1 6 1.87 0.147 -0.177 -0.00531 1 7 1.87 0.147 -0.177 -0.00531 1 9 1.87 0.147 -0.0172 -0.00531 1 9 1.87 0.147 -0.00531 1 9 1.87 0.147 -0.00531 1 9 1.87 0.147 -0.0172 -0.00531 1 9 1.81 0.147 -0.0		0 MU 0M 0.800 0.01	ER CODE	WIN0-OFF				
MPLE A.F.AH C.M. C.M. 1 1.87 0.131 -0.197 -0.00421 3 1.87 0.153 -0.197 -0.00461 4 1.47 0.153 -0.197 -0.00461 5 1.47 0.151 -0.191 -0.00461 6 1.47 0.151 -0.191 -0.00461 7 1.47 0.151 -0.191 -0.00461 9 1.47 0.151 -0.184 -0.0017 1 1.47 0.151 -0.184 -0.0017 1 1.47 0.151 -0.184 -0.0017 1 1.47 0.151 -0.184 -0.0017 1 1.47 0.151 -0.184 -0.0017 1 1.47 0.147 -0.117 -0.00517 1 1.47 0.147 -0.177 -0.00517 1 1.47 0.147 -0.172 -0.00517 1 1.47 0.147 -0.172 -0.00517 1 1.47 0.147 -0.172 -0.00517 1 1.47 0.147 -0.172 -0.00517 1 1.47 0.147 -0.172 -0.00517 </th <th>P-INF T-INF 5.465 440.0</th> <th>U-INF 2.440 86</th> <th>V-INF - RE 7.054</th> <th>/INX10-6 0.189</th> <th>RE 0 X 10-6 0.898</th> <th>- RELX10-6-7.570</th> <th>CYP -0.10974-0</th> <th>SULUP</th>	P-INF T-INF 5.465 440.0	U-INF 2.440 86	V-INF - RE 7.054	/INX10-6 0.189	RE 0 X 10-6 0.898	- RELX10-6-7.570	CYP -0.10974-0	SULUP
$ \begin{bmatrix} 1 & 0 & 131 & 0 & 141 & 0 & 0131 \\ 2 & 100 & 0 & 121 & 0 & 0200 \\ 2 & 100 & 0 & 0212 & 000002 \\ 2 & 100 & 0212 & 000002 \\ 2 & 100 & 0212 & 000002 \\ 2 & 100 & 0212 & 000002 \\ 2 & 100 & 0212 & 000002 \\ 2 & 100 & 0212 & 000002 \\ 2 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000002 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 0212 & 000000 \\ 1 & 100 & 00000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 000000 \\ 1 & 100 & 0000000 \\ 1 & 100 & 0000000 \\ 1 & 100 & 0000000 \\ 1 & 100 & 0000000 \\ 1 & 100 & 0000000 \\ 1 & 100 & 00000000 \\ 1 & 100 & 00000000 \\ 1 & 100 & 00000000 \\ 1 & 100 & 0000000000$	CLN XCP/D	XCY/D	TAVG	P(C)	A MAN	V0/2V		
0 1 0 1 0 1 0 1 0 1 0 0 1 0 <td>0.07201 -1.08</td> <td></td> <td>1.7126</td> <td>412.5</td> <td>14</td> <td>1460 0.0947</td> <td></td> <td>1</td>	0.07201 -1.08		1.7126	412.5	14	1460 0.0947		1
- - - - - - - 0 <td>HC-1- 14020-0</td> <td>946</td> <td>- 1177.6</td> <td>348.3 3</td> <td>1326. 34</td> <td>8.3 0.0745</td> <td></td> <td></td>	HC-1- 14020-0	946	- 1177.6	348.3 3	1326. 34	8.3 0.0745		
7 1.47 0.150 0.184 0.00164 7 1.47 0.151 0.167 0.00164 9 1.47 0.151 0.164 0.00164 12 1.47 0.151 0.164 0.00164 12 1.47 0.164 0.00164 12 1.47 0.164 0.0064 12 1.47 0.144 0.164 13 1.47 0.144 0.164 14 0.147 0.144 0.00647 14 0.147 0.144 0.00647 15 1.47 0.144 0.00647 16 1.47 0.144 0.00647 18 1.47 0.172 0.00647 18 1.47 0.174 0.00647 18 1.47 0.172 0.00647 19 1.47 0.172 0.00647 10 1.41 0.147 0.00647 10 1.41 0.147 0.00647 11 0.147 0.1167 0.00647 10 1.41 0.147 0.00647 11 0.147 0.1167 0.00647 12 0.147 0.1167 0.00647	0.019181-24		5.8296	304.9	010.016	2690 0-2-4		
0 0 <td>0.01/11 -1.23</td> <td>-2.395</td> <td>6.8589</td> <td>288.8 2</td> <td>756. 29</td> <td>19.6 0.0659</td> <td></td> <td></td>	0.01/11 -1.23	-2.395	6.8589	288.8 2	756. 29	19.6 0.0659		
9 1.87 0.151 -0.162 -0.006/H 10 74.1 0.147 -0.161 -0.006/H 11 1.17 0.147 -0.161 -0.006/H 12 1.47 0.147 -0.161 -0.006/H 13 1.47 0.147 -0.006/H -0.006/H 14 0.147 -0.117 -0.006/H 15 1.47 -0.117 -0.005/H 16 1.47 -0.117 -0.005/H 17 1.01 1.47 -0.117 18 1.87 0.147 -0.116 19 1.87 0.147 -0.117 19 1.87 0.147 -0.116 19 1.87 0.147 -0.175 10 1.47 -0.176 1.005/F 19 1.87 0.147 -0.106/H 19 1.81 0.147 -0.106/F 19 1.81 0.147 -0.112 23 1.87 0.147 -0.112 23 1.81 0.147 -0.006/F	0.01/45 -1.22	107.2- 0	6114.8	264.8	527. 26	+040.0 0.1404		
10 1,47 0.144 0.144 0.160 0.0000 12 1.41 0.144 0.145 0.0000 12 1.41 0.144 0.171 0.0000 14 0.144 0.171 0.0000 15 1.41 0.147 -0.101 16 0.147 -0.117 0.0005 17 1.41 0.147 -0.105 18 1.41 0.147 -0.105 18 1.41 0.147 -0.105 19 1.81 0.147 -0.116 18 1.81 0.147 -0.105 19 1.81 0.147 -0.116 10 1.81 0.147 -0.105 11 0.147 -0.116 1.41 10 1.81 0.147 -0.105 11 1.167 1.41 0.112 10 1.41 0.141 0.005 11 0.141 0.141 0.005 12 1.41 0.141 0.141 12 1.41 0.141 0.141 13 0.141 0.141 0.005 14 0.141 0.141 0.005	15.1 9.01544	- 255.350	9.9466	255.8 2	22 25	5.7 0.0584		
7100000 71100 74100 74100 51700000 71100 74100 74110 51700000 71100 74100 74110 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 7410 7811 11200000 71100 74100 7811 1200000 71100 74100 7811 1200000 71100 74100 7811 12000000 71100 74100 7811 12000000 71100 74100 7811 12000000 71100 74100 7811 12000000 71100 74100 7811 12000000 71100 74100 7811 12000000 71100 74100 12000000 <td>0.01566 -1.20</td> <td>192.5- 103</td> <td>10.9759</td> <td>248.5</td> <td>24 24</td> <td>·8.5 0.0567</td> <td></td> <td></td>	0.01566 -1.20	192.5- 103	10.9759	248.5	24 24	·8.5 0.0567		
13 1.47 0.17 -9.17 -1.16 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>0.01401 -1.19</td> <td>-2.272</td> <td>++60.61</td> <td>237.5</td> <td>269. 23</td> <td>7.6 0.0542</td> <td></td> <td></td>	0.01401 -1.19	-2.272	++60.61	237.5	269. 23	7.6 0.0542		
1 1.47 0.147 -0.147 -0.1615 15 1.41 0.147 -0.173 -0.00575 16 1.47 0.147 -0.174 -0.1612 17 1.47 0.147 -0.174 -0.00515 18 0.147 -0.174 -0.00515 19 1.87 0.147 -0.174 19 1.87 0.147 -0.175 19 1.81 0.147 -0.176 19 1.81 0.147 -0.176 21 1.91 0.147 -0.176 21 1.81 0.147 -0.172 23 1.87 0.147 -0.172		1 -2.586	14.0636	233.5 . 2	230. 23	13.5 0.0533		
1.9 1.47 0.147 -0.174 -0.00505 1.87 0.147 -0.174 -0.00505 1.81 0.147 -0.173 -0.00505 1.9 1.87 0.147 -0.173 -0.00505 1.9 1.87 0.147 -0.173 -0.00576 1.9 1.87 0.147 -0.172 -0.00576 2.1 1.91 0.147 -0.172 -0.00576 2.1 0.147 -0.172 -0.00525	0.01357 -1.18	612:2- 9	15.0429	230.1	197. 23	10.1 0.0525		
17 1.81 0.147 0.172 0.00021 18 1.87 0.147 0.172 0.0055 19 1.87 0.147 0.172 0.00576 20 1.87 0.147 0.172 0.00576 21 1.87 0.147 0.172 0.00576 21 1.87 0.147 0.172 0.00576 23 1.87 0.147 0.172 0.00525	0.01522 -1.17	-2.510	12.1514	225.1 2	148. 22	5.0 0.0514		
18 1.87 0.147 0.17 0.17 19 1.87 0.147 0.17 0.17 20 0.147 0.17 0.107 21 1.87 0.147 0.17 22 1.81 0.147 0.172 23 1.87 0.147 0.172			18.1806	223.3 6	130. 22	3.0-0.0509		
22010-0-147 -0.173 -0.00052 21.1.47 0.147 -0.172 -0.00576 21.1.47 0.147 -0.172 -0.00576 0150 -0.172 -0.00525 23 -1.87 -0.147 -0.172 -0.00525	0.01375 -1.17	5 -2.402	19.2100	221.8 2	2114. 22	1.4 0.0505		
22 1.91 0.141 -0.172 -0.00579 22 1.91 0.141 -0.172 -0.00579 23 -1.87 -0.141 -0.172 -0.00525	0.01416 -1.14		20.2392	220.5	102 22	0.1.0.0502		
22 1.87 0.147 -0.172 -0.00570 23 -1.87 -0.147 -0.172 -0.00525	0.01415 -1.17	-2-461	CU02.15	2.915	12 .040	8.1 0.0500		
-23	0.01396 -1.17	5 -2.450	23.3271	217.9 2	1076. 21	7.4 0.0496		
	71.1	52.499-		217.6	2012.21	6.9 0.0495		
CY0 CLN0 CL0 CL0 CLP	PSS (PSS)U/2V 230.49 0.05261	CL-DEL-	PSSF 214.73	LOTARE 0.0	-0.000	9		
1.3368E-02 1.5233L 00 -2.6386L 01 1.3	946E 02							
FINAL CLN COEFFICIENTS	0.575 03							

Appendix B

Computer Program Data Inputs

Coefficient Arrays

A single 000005 card precedes all of the coefficient matrix input decks. This card designates the total number of aerodynamic coefficient arrays used in the program and must match the actual number of arrays that have been input. The last digit of the array designator integer must be in column 12. For example, if ten coefficients are used, the lead card is:

000005 10

Fig. B-1a. Computer Input Card

Each individual coefficient array is then preceded by a card that specifies the desired coefficient symbol, the location of the array within the input deck in accordance with Table B-I, and the number of angle of attack columns and Mach number rows that will make up the array. A 20x20 matrix is the maximum size of the input array.

The first four spaces on the card shown in Fig. B-1b are available for the desired coefficient symbol. The last digit of the remaining three integers must lie on space 7, 9, and 11.

AFIT/GA/AA-77D-8

Fig. B-1b. Computer Input Card

The specific values of the input array are entered by rows. For example, the nine angle of attack elements that make up the heading row of the C_x array (Appendix G) is entered as:

Fig. B-1c. Computer Input Card

and, in successive rows, values of the array elements are entered; such as the zero angle of attack row:

AFIT/GA/AA-77D-8

-.2220 -.2220 al Tonttoo. Energisede la sur la s 0.0 -.273 -.2733 -.2743 -.2815 -.286 -.2725 -.2433

Fig. B-1d. Computer Input Card

The specific values of each element may be punched anywhere within successive ten-block segments of the card.

The remaining values of each element in the coefficient array are similarly entered until the matrix is complete (See Appendix G).

Each individual aerodynamic coefficient array used in the program is input in a similar manner. The sequence of these completed arrays must be in the order indicated in Table B-I. Only the desired aerodynamic coefficients need be input; zero entries are not required. The program will accept a maximum of thirty coefficient arrays.

Initial Conditions

The initial condition input deck is preceded with the desired title card. This title will appear as the heading of the computer output.

FSUIS AFRA DATA TDD EPER II. OF CLUERSEN AND MARINE AND A CONTRACTOR STREET AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR \$\$\$\$E\$\$E\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

Fig. B-1e. Computer Input Card

The next card (Fig B-1f) identifies which of the option parameters available in the program are to be used. These parameters are (Ref 5:23):

NORC: Gravity designator

NORC=1 denotes constant gravity used. NORC=0 denotes variable gravity will be input.

IPRN: Output time increment control

IPRN x Δt = output increment that will be printed. Δt is the A(20) value (Table B-2II).

NALL $\equiv 1$ for this program.

IPUN: Punch option for angle of attack (\propto) and sideslip (β) data

IPUN=1 implements the option. IPUN=0 option is not used.

NBODY: Reference frame output designator

NBODY=1 output prints and/or punches $\propto \& \beta$ in body axes. NBODY=0 output prints and/or punches $\propto \& \beta$ aeroballistic axes.

ISCALE: Coefficient scaling option.

ISCALE=1 implements option ISCALE=0 option is not used

ITRST: Thrust option

ITRST=1 implements thrust equation into program (See Ref 5: 11, 12)

ITRST=0 for unpowered projectile

The last digit of these integers must fall on every tenth space.

Fig. B-1f. Computer Input Card

The next three cards specify the desired initial conditions and projectile mass parameters in the sequence outlined by Table B-2II. All values are entered anywhere within successive ten-space segments.

to x Jo z_o θ Po 90 ro 10000.0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 ний заналанавая алхидая анасском Сперения астонново значалие върза A(11)=1 u Ø Y vo I. I. Wo 90.0 0.0 600. 1.81 46.4 1.0 -5. 0. d g Δt tE ymin 0.0 32.174 16.3175 . 8958 .01 60.0 ាន ភ្លាន នាយនា នាយនា នាង នាយនា នា ******************

Fig. B-ig. Computer Input Cards

The units of the initial conditions are:

t, At, tE Sec x, y, z, d, ymin Ft Po' go' ro Rad/Sec 0, 0, 4 Degrees ", v, w Ft/Sec Lb-Ft-Sec² Ix, Iv Ft/Sec² Slugs

The initial values of θ and \propto (which is input implicitly) as well as

u & w are determined according to the following scheme:

Fig. B-2. Flight Path/Perturbation Angle Input

where

- V = velocity vector of the center of gravity of the projectile.
- Θ = total angle between the body fixed and inertial frame.
- γ = flight path angle = angle between the inertial frame and velocity vector V.

∝ = initial pertubation angle from the initial flight path angle.

- $w_0 = V \sin \alpha_0 =$ projection of the velocity vector on the body Z axis.
- $u_0 = V \cos \alpha_0 =$ projection of the velocity vector on the body X axis.

For a projectile in a 30° initial dive angle at 800 ft/sec subjected to a 5° initial perturbation upon release, with no out-of-plane components, the following values would be input:

 $\theta = -35.0, \ \phi = 90.0, \ \psi = 0.0$ $u_0 = 800 \cos 10^0 = 787.846$ $v_0 = 0.0$ $w_0 = -800 \sin 10^0 = -138.918$

Note: $\theta \equiv 90^{\circ}$ to allign the inertial frame with the body fixed frame (See Fig 1).

Scale Factors

The remaining four cards are for scale factors (applicable only if ISCALE was previously designated as 1). The scale factor changes the corresponding coefficient of Table B-I by the multiple of the scaling factor.

The only scaling factor used in this study was $C_{f}(\delta w)$. $C_{f}(\delta w)$ is the coefficient for roll due to fin wedge angle. To scale the 15 degree wedge angle values of the coefficient array to, say, 10 degrees; the value .6666 is the appropriate scaling factor to enter in the ninth block of the scaling cards (Fig B-3).

The integer 1.0 is the required entry when no scaling of the corresponding coefficient array is desired.

Fig. B-3. Scale Factor Inputs C(1) thru C(30)

TABLE B-I

Aerodynamic Coefficient Array (Adapted from Ref 5)

C(I, J, K) Aerodynamic coefficient array

here:	I	Mach number array
	J.	Angle of attack array
	K	Location of aerodynamic coefficient

C(I, J, 1)	C _x	C(I, J, 2)	Cyo
C(I, J, 3)	Cy7	C(I, J, 4)	Cy8
C(1,], 5)	Cyp	C(I, J, 6)	Czo
C(I, J, 7)	C _{z7}	C(I, J, 8)	Cz8
C(I, J, 9)	CL (SW)	C(I, J, 10)	CLT
C(I, J, 11)	C18	C(I, J, 12)	Clp
C(I, J, 13)	Cmo	C(I, J, 14)	Cm7
C(I, J, 15)	C _{m8}	C(I, J, 16)	Cno
·C(I, J, 17)	C _{n7}	C(I, J, 18)	Cng
C(I, J, 19)	C _{np}	C(I, J, 20)	C _{me}
C(I, J, 21)	-Cne	C(I, J, 22)	Cye
C(I, J, 23)	CZ.	C(I, J, 24)	CLeap
C(I, J, 25)	CREQ1	C(I, J, 26)	Clea2
C(I, J, 27)	Cmgo	C(I, J, 28)	Cmq7
C(I, J, 29)	Cmg8	C(I, J, 30)	Clo

0

TABLE B-II

.

Computer Input Array (Adapted from Ref 5)

.

A(1)	to	A(12)	vo
A(2)	xo	A(13)	vo
A(3)	У _О	A(14)	wo
A(4)	z _o	A(15)	I _x
A(5)	P _O	A(16)	I _y
A(6)	q _o	A(17)	g
A(7)	ro	A(18)	m.
A(8)	θ	A(19)	đ
A(9)	¢	A(20)	St
A(10)	ψ.	A(21)	tE
·A(11)	1.0	A(22)	ymin
1	A CALL REPORT OF A CALL REPORT	Service Construction of the Construction	

Appendix C

Computer Output Example

The computer output parameters are shown in Table C-I.

TIME is measured from release.

RANGE, ALT, Z correspond to x, y, z of the inertial reference frame.

V = total velocity of the projectile with respect to the air mass.

p = spin rate. $\overline{ALPHA} = \sqrt{\alpha^2 + \beta^2}$ (where - -= denotes vector). M = mach number. PHI = roll angle. ALPHA = angle of attack. BETA = yaw angle.

The next set of parameters are useful for stability analysis applications. The outputs are based on linearized equations for the tricyclic response of a projectile to an initial disturbance (Ref 12, 8 or 11):

> L-N = λ_n = damping factor for nutation mode. L-P = λ_p = damping factor for precession mode. W-N = ω_n = nutation frequency. W-P = ω_p = precession frequency. S = s = stability factor. TAU = τ = dynamic weight factor. K-T = K₊ = trim arm.

TABLE C-I

Sample Computer Readout

FSMIS AER	PARO CI								ē	1 35N							
TTHE	RANCE	ALT FEFT	2 FEET	FT/SEC	RAVSEC	ALPHA	Ŧ	930 IHd	ALPHA	SETA DEG	L-N	L-P	N-N KA/SEC	RAFSFC	•	TAU	4-7 Des
		1000-00	0.00	50.028	0.0	84.	.56	00.06	00.	84.	00.0	0.30.	0.0	0.0	0.000	00.0	0.000
		78.9560	.50	59.99	3.	94.	.55	73.61	.14	44.	22	22	4.9	0.4-	000		
6846	1 10.03	9149. Th	66.	599.37		•34	.56	104.96	07	**.	22	22					121.2
0001.	170.85	9149.35	1.45	10.012	1.0	.50	• 56	161.97	55	.21	22	22		D			402 C
1017.	£2.015	27.7919	1.97	61.865	1.4	1.25	• 56	190.57	-1.75	.12	22	22					202.2
6503.	200.57	96.361 6	2.46	539.52	1.7	2.01	• 26	201.95	-2.01		22	£2					011.0
1003.	AT. TAT	9194.15	2.94	519.27	2.1	2.71	95.	211.11	-2.71	22.	52						
2002.	419.16	10.2616	3.42	533.03	2.4	3.23	• 56	21.613	-3.19	-21	23						
COLE.	474.99	15.6999	3.90	537.80	2.9	3.49	• 55.	\$1.752	-3.35	56.		52					
Earo.	65.153	9935.67	4.36	65.765	3.1	7.4.7	.55.	234.47	-3.12	1.53	52	23					6 76 a
1.1703	82. 853	9933.43	4.82	537.40	3.4	1.25	• 55 •	233.03	-2.45	2.13	73	52					
	5.7.48	4979.94	. 5.25	537.23	3.7	1.00	. 55	236.52	-1.37	2.67	23	52					12000
Lune .	74. 17:	10.2769	5.56	597.09.	4.0	3.02	.55	230.61	£0.	3.02	23						
	20	66'T266	6.05	595.95	4.3	3.47	.55	20.755	1.62	3.97	23	23	1.4				
	876. 54	9767. 19	6.41	536.83	4.5	4.19	. 59	530.49	3.20	2.70	23	23			100		
	10. 305	19.0200	6.74	12.965	4.9	4.88	• 55	39.96	4.51	1.88	23	+2	1.4	-3.9	100		
		39.7.766	7.05	536.60	5.1	5.31	.55	253.10	12.5	.66	23	24	2.4	-4.0	100	22.	004.5
		3452.22	7.36	536.49	5.4	5.34	• 55	267.52	5.28	78	23		2.5	-4-	100		C06-2-
	10.7.01	19.9406	7.67	536.41	5.7	66.4	.55	280.09	4.42	-2.31	23	24	4.1	-3.9	100	50.	4:2.2
	117.61	674A . 77	8.00	536.34	5.1	4.55	.55.	28.7.85	2.67	-3.58	23	24	4.1	-3.9	100	.0.	
	1137.03	9934.54	4.37	516.30	5.4	4.50	.54	200.28	• 23	64. 4-	23	+2	1.4	-1.9	100	50.	-1.359
	UC 1361	10.000	8.78	536.27	5.8	5.07	.55	205.73	-2.52	-4.41	23	+2	2.4	-3.9	031	. O 3	-1.136.
	17.117.	61.100	6.22	536.25	7.2	56.95	.55	300.94	96.4-	-3.26	23	+2	4.2	-3.9	001		166
	13 14 6 1	001100	64.6	516.23	7.4	5.53	.55	328.53	-6.51	+2-1-	23	+2	4.2	-3.9	001	10.	166
	10.001	9906.41	10.17	12.965	7.7	6.71	.55	352.77	-6.63	16.	23	•-24	4.2	-1.9	100	.04	+28
	14.44.47	3404.46	11.65	22.962	0.0	5.05	· 55	18.93	-5.34	2.34	23	24	4 . 7	-3.9	100		
		0801.15	11.10	535.28	8.4	4.33	55.	39.19	-2.95	4.02	23	+2	4.2	-3.S	200		
		0 3 4 1 . 5	11.51	596.37	9.5	4.19	.55.	53.71	15	4.19	23	+2	4.2	8.1-	200	+0.	065
	18	17.5.52	11.99	596.48		4.14	.55	63.25	2.30	3.45	23	24	4.2	-3-9	200	10.	552
	44	C 467.76	20.01	516.61	9.1	4.52	. 55	16.56	3.93	2.23	23	+2	4.2	-3.8	200	+6.	515
	1 - 47.67	9457.72	12.55	42.965	4.6	4.91	• 55	\$ 2.7.51	4.72	.93	23	74	4.2	8 · E -	032	• 62•	
		04.7.80	12.97	516.39	7.6	18.4	.55	158.95	4.86	£2	23	+2	4.2	-3.8	002	•02	
	11	0877 80	17.19	50.762	10.0	4.66	. 55	86.213	4.50	-1.21	23	+2	5.2	-3.8	032	• 02	214
	1061 17	04.1.40	17.52	22.762	10.3	1.23	.55	255.03	3.62	-2.13	23	•-24	4.2	-1.8	200	.05	
		77.0140	11.46	537.44	15	3.65	.55	11.195	21.2	16.5-	22	+2	4.2	-1.9	003	· 05	365
	C3	0961.97	14.24	537.55	10.9	3.25	.55	317.67	+U.	-3.25	22	+2		-2-9	500	50.	

APPENDIX D.

MYG = INERTIAL FRAME AJ2 = INERTIAL UNIT VECTORS XYZ = BODY FIXED: FRAME

THE UNIT VECTOR V IS MADE UP OF THE THREE COMPONENTS V. V. V. SO THAT

$$\overline{\mathbf{V}} = \overline{\mathbf{V}}_1 \,\hat{\boldsymbol{x}} + \overline{\mathbf{V}}_2 \,\hat{\boldsymbol{y}} + \overline{\mathbf{V}}_3 \,\hat{\boldsymbol{x}} \tag{110}$$

NOW DEFINE $\overline{V}_{1} = \lambda_{1} / SIN \ll /2$ $\overline{V}_{2} = \lambda_{2} / SIN \ll /2$ $\overline{V}_{3} = \lambda_{3} / SIN \ll /2$

(2)0

WHERE X, X2 X3 AND & ARE UNKNOWN PARAMETERS.

USING THE RELATION FOR DIRECTION COSINES THAT THE SUM OF THE SQUARES OF THE COMPONENTS OF A UNIT VECTOR MUST EQUAL ONE GIVES

$$\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2} = 5IN^{2}\alpha/2$$
 (3)0

NOW DEFINE ANOTHER PARAMETER X0 = COS 2/2.

$$\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2} + \lambda_{0}^{2} = 1$$
 (4)0

THE BODY FIXED FRAME CAN BE RESOLVED INTO INERTIAL COMPONENTS AS FOLLOWS:

LET A BE A UNIT VECTOR ALONG OY AND B ALONG OZ SO THAT

 $\overline{A} = a_1 x + a_2 \hat{j} + a_3 \hat{k}$ $\overline{B} = b_1 x + b_2 \hat{j} + b_3 \hat{k}$

WHERE Q. Q. Q. D. D. D. D. ARE WERTIAL FRAME COMPONENTS. ALSO LET & BE THE AMOUNT OF ROTATION OF THE PROJECTILE ABOUT THE OX AXIS WHERE T IS A VECTOR FIXED ON THE BODY BEFORE ROTATION AND T' IS THE POSITION AFTER ROTATION. THE DIRECTION COSINE MATRIX FOR

(510

THIS ROTATION IS

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & S\alpha & C\alpha \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_3 \end{bmatrix}$$

OR

 $r_{1} = r_{2} C \alpha - r_{2} S \alpha$ $r_{3} = r_{3} S \alpha + r_{3} C \alpha$

WHERE

E r. r. r. r. ARE COMPONENTS OF T; C = COS, S = SIN; NEGATIVE ROTATION ABOUT X WAS USED SO EQN 12 SIMPLIFIES. (6)0

(7)p

EXPRESSING I'S COMPONENTS IN THE INERTIAL FRAME :

 $r_{1}\bar{v} = \frac{\lambda_{1}}{SIN\sigma/2}\hat{x} + \frac{\lambda_{2}}{SIN\sigma/2}\hat{y} + \frac{\lambda_{3}}{SIN\sigma/2}\hat{k}$ $r_{2}\bar{A} = a_{1}\hat{x} + a_{2}\hat{y} + a_{3}\hat{k}$ $r_{3}\bar{B} = b_{1}\hat{x} + b_{2}\hat{y} + b_{3}\hat{k}$ (8)

COMBINING EON 7 & 8 IN TERMS OF THE BODY FRAME :

 $\mathbf{r}_{1}^{\prime} \mathbf{V} = \frac{\lambda_{1}}{51N \alpha_{12}} \mathbf{\hat{x}} + \frac{\lambda_{2}}{51N \alpha_{12}} \mathbf{\hat{x}} + \frac{\lambda_{3}}{51N \alpha_{12}} \mathbf{\hat{x}}$ $\mathbf{r}_{1}^{\prime} \mathbf{\hat{x}} = (a, \cos \alpha - b, \sin \alpha) \mathbf{\hat{x}} + (a_{2}\cos \alpha - b_{3}\sin \alpha) \mathbf{\hat{x}} + (a_{3}\cos \alpha - b_{3}\sin \alpha) \mathbf{\hat{x}}$ $\mathbf{r}_{2}^{\prime} \mathbf{\hat{x}} = (a, \sin \alpha - b, \cos \alpha) \mathbf{\hat{x}} + (a_{1}\sin \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{3}\sin \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}}$ $\mathbf{r}_{2}^{\prime} \mathbf{\hat{x}} = (a, \sin \alpha - b, \cos \alpha) \mathbf{\hat{x}} + (a_{1}\sin \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{2}\sin \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}}$ $\mathbf{\hat{x}} = (a, \sin \alpha - b, \cos \alpha) \mathbf{\hat{x}} + (a_{1}\sin \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{2}\sin \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{3}\sin \alpha + b_{3}\cos \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{3}\sin \alpha + b_{3}\cos \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{3}\sin \alpha + b_{3}\cos \alpha + b_{3}\cos \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{3}\sin \alpha + b_{3}\cos \alpha + b_{3}\cos \alpha + b_{3}\cos \alpha) \mathbf{\hat{x}} + (a_{3}\cos \alpha + b_{3}\cos \alpha + b_{$

DENOTING THE TRANSFORMATION MATRIX BY [C], THE EXPRESSION THAT TRANSFORMS THE COMPONENTS OF THE MOVING BODY AXES SYSTEM TO INERTIAL REFERENCE IS:

 $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} \\$

POST MULTIPLYING BY THE INVERSE (TRANSPOSE FOR THE ORTHOGONAL SYSTEM):

					EQN(1	JD
C31 C32 C	Let Let	<u>λ</u> 3 <u>SIN «/2</u> α3 Car - b3 Sac 9	a3 50 + b3 Cer	ь.	Ь.	ba
(21 Cz C	23 =	λ2 SIN -12 9 Q2 Ca-b2 Sa ,	az Sa + bz Ca	a,	az	03
C. C. C.	13	$\frac{\lambda_1}{SINO'_2}$, a.ca-bisa,	ais + bicx	<u>λ.</u> SIN «/2 1	X2 SIN dy2 ?	A3 SIN 04/2

MULTIPLYING IT OUT :

THE FOLLOWING RELATIONSHIPS BETWEEN DIRECTION COSINES APPLY TO AN ORTHOGONAL, RIGHT-HAND SYSTEM:

$$a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 1 \qquad (13)_{0}$$

$$b_{1}^{2} + b_{2}^{2} + b_{3}^{2} = 1 \qquad (14)_{0}$$

$$a_{1}\lambda_{1} + a_{1}\lambda_{2} + a_{3}\lambda_{3} = 0 \qquad (15)_{0}$$

$$b_{1}\lambda_{1} + b_{2}\lambda_{1} + b_{3}\lambda_{2} = 0 \qquad (16)_{0}$$

$$a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} = 0 \qquad (17)_{0}$$

$$b_{1} = \frac{1}{S = \frac{1}{2}}(\lambda_{1}a_{3} - \lambda_{3}a_{2}) \qquad (18)_{0}$$

$$b_{3} = \frac{1}{S = \frac{1}{2}}(\lambda_{1}a_{2} - \lambda_{2}a_{1}) \qquad (20)_{0}$$

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \overline{S=4/2} & \overline{S=4/2} & \overline{S=4/2} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 1$$
(21)0

EQUATIONS (15) AND (16) CAN BE WRITTEN AS:

$$a_2 = -\frac{1}{\lambda_2} (a, \lambda_1 + a_3 \lambda_3) \qquad (22)_0$$

$$b_2 = -\frac{1}{\lambda_2} (b_1 \lambda_1 + b_2 \lambda_2) \qquad (23)_0$$

SUDSTITUTING (22) (23) INTO (17)

$$a.b_{1} + \frac{1}{\lambda_{2}^{2}}(a,\lambda_{1} + a_{3}\lambda_{3})(b,\lambda_{1} + b_{3}\lambda_{3}) + a_{3}b_{3} = 0$$

$$(24)o$$

$$a_{1}b_{1}(\lambda_{1}^{2} + \lambda_{2}^{2}) + a_{3}b_{3}(\lambda_{2}^{2} + \lambda_{3}^{2}) + (a_{3}b_{1} + b_{3}a_{2})\lambda_{1}\lambda_{2} = 0$$

SUBSTITUT ING (22) INTO (13) AND (23) INTO (14)

$$a_{1}^{2}(\lambda_{1}^{3} + \lambda_{2}^{3}) + a_{2}^{2}(\lambda_{2}^{3} + \lambda_{3}^{3}) = \lambda_{2}^{3} - 2\lambda_{1}\lambda_{2} a_{1}a_{3}$$
 (25)
 $b_{1}^{3}(\lambda_{1}^{3} + \lambda_{2}^{3}) + b_{2}^{3}(\lambda_{2}^{3} + \lambda_{3}^{3}) = \lambda_{2}^{3} - 2\lambda_{1}\lambda_{2} b_{1} b_{3}$ (26)
EQUATIONS (22), (23) INTO (21)
 $-\lambda_{1}\frac{b_{3}}{\lambda_{2}}(a_{1}\lambda_{1} + a_{3}\lambda_{3}) + \lambda_{2}b_{1}a_{3} = \frac{\lambda_{3}a_{1}}{\lambda_{2}}(b_{1}\lambda_{1} + b_{3}\lambda_{3})$
 $+ \frac{\lambda_{3}b_{1}}{\lambda_{3}}(a_{1}\lambda_{1} + a_{3}\lambda_{3}) - \lambda_{2}a_{1}b_{3} = \frac{\lambda_{1}a_{3}}{\lambda_{2}}(b_{1}\lambda_{1} + b_{3}\lambda_{3})$
 $+ \frac{\lambda_{3}b_{1}}{\lambda_{3}}(a_{1}\lambda_{1} + \lambda_{3}^{2}) + \lambda_{2}b_{1}a_{3} = \frac{\lambda_{1}a_{3}}{\lambda_{2}}(b_{1}\lambda_{1} + b_{3}\lambda_{3}) = S \approx 2$
AFTER CANCELLATION S AND REGROUPING
 $-b_{3}a_{1}[\lambda_{1}^{3} + \lambda_{3}^{3} + b_{1}a_{3}[\lambda_{1}^{3} + \lambda_{3}^{3} + \lambda_{3}^{3}] = \lambda_{3}S = 1$
 $b_{3} = \frac{1}{a_{1}}[b_{1}a_{3} - \lambda_{2}/S = y_{2}]$ (27) D
EQUATION (27) INTO (24)
 $a_{1}b_{1}(\lambda_{1}^{3} + \lambda_{3}^{3}) + a_{2}[2\lambda_{1}\lambda_{3} a_{1}b_{1} - \frac{\lambda_{3}}{2}(\lambda_{1}^{3} + \lambda_{3}^{3})] = \frac{a_{1}}{2}\lambda_{2}\lambda_{2}\lambda_{3}\lambda_{2}\lambda_{3}$ (28)
EQUATION (27) INTO (24)
 $a_{1}b_{1}(\lambda_{1}^{3} + \lambda_{3}^{3}) + a_{2}[2\lambda_{1}\lambda_{3} a_{1}b_{2} - \frac{\lambda_{3}}{2}(\lambda_{1}^{3} + \lambda_{3}^{3})] = \frac{A}{2}\lambda_{2}\lambda_{3}\lambda_{3}\lambda_{3}$ (28)
EQUATION (27) INTO (26)
 $b_{1}(\lambda_{1}^{3} + \lambda_{1}^{3}) + a_{3}^{2}b_{1}(\lambda_{2}^{3} + \lambda_{3}^{3}) = \lambda_{2}^{3} - 2\frac{b_{1}}{a_{1}}(b_{1}a_{2} - \frac{\lambda_{3}}{2}\lambda_{3}\lambda_{3}\lambda_{3})$
 $a_{1}b_{1}(\lambda_{1}^{3} + \lambda_{1}^{3}) + a_{2}b_{2}(\lambda_{2}^{3} + \lambda_{3}^{3}) = \lambda_{2}^{3} - 2\frac{b_{1}}{a_{1}}(b_{1}a_{2} - \frac{\lambda_{3}}{2}\lambda_{3}(\lambda_{3} + \lambda_{3})] = \lambda_{1}^{3}a_{1}^{3}(\lambda_{2}^{3} + \lambda_{3}) = \lambda_{1}^{3}a_{2}^{3}(\lambda_{2}^{3} + \lambda_{3}) = \lambda_{1}^{3}a_{2}^{3}(\lambda_{2}^{3} + \lambda_{3}) = \lambda_{2}^{3}a_{2}^{3}(\lambda_{2}^{3} + \lambda_{3}) = \lambda_{2}$

.

.

74

. .

 \bigcirc

2

0

$$\begin{aligned} -\frac{\sigma_{i}b_{i}}{S^{4}\gamma_{2}}\lambda_{i}\lambda_{2}\lambda_{3} &= \lambda_{2}^{2}\sigma_{i}^{2} + 2b_{i}\sigma_{i}\frac{\lambda_{i}\lambda_{2}\lambda_{2}}{S^{4}\gamma_{2}} + \sigma_{3}b_{i}\frac{\lambda_{2}}{S^{4}\gamma_{2}}(\lambda_{1}^{2} + \lambda_{2}^{2}) - \frac{\lambda_{1}^{2}}{S^{4}\gamma_{2}}(\lambda_{2}^{2} + \lambda_{2}^{2}) \\ \text{MULTIPLYING THEU BY } \frac{S^{4}\gamma_{2}}{b_{i}} \\ \Omega_{3} &= \left\{ \left[\frac{\lambda_{2}}{S^{4}\gamma_{2}}(\lambda_{1}^{2} + \lambda_{2}^{2}) - S^{4}\gamma_{2}\lambda_{2}d_{i}^{2} \right] \frac{1}{b_{i}} - q_{i}\lambda_{1}\lambda_{3} \right\} \frac{1}{\lambda_{k}^{2} + \lambda_{3}^{2}} \\ (30)_{D} \\ \text{EQUATION (18) ANO (24)} \\ b_{i} &= \frac{1}{S^{4}\gamma_{2}} \left[\lambda_{2}\sigma_{3} + \lambda_{3}\frac{\lambda_{1}\sigma_{i} + \lambda_{3}\sigma_{3}}{\lambda_{2}} \right] = \frac{\lambda_{i}\lambda_{3}}{S^{4}\gamma_{2}\lambda_{2}}a_{i} + \left(\frac{\lambda_{2}}{S^{4}\gamma_{2}} + \frac{\lambda_{3}^{2}}{S^{4}\gamma_{2}\lambda_{2}} \right)a_{3} \\ (31)_{D} \\ \text{EQUATION (20) INTO (33)} \\ b_{i} &= \frac{\lambda_{i}\lambda_{3}}{S^{4}\gamma_{2}}\lambda_{1}a_{i} + \left(\frac{\lambda_{2}}{S^{4}\gamma_{2}} + \frac{\lambda_{3}^{2}}{S^{4}\gamma_{2}\lambda_{2}} \right) \left[\left[\frac{\lambda_{3}}{\lambda_{2}^{2} + \lambda_{3}^{2}} \right) - \sigma_{i}^{2}\lambda_{2}S^{4}\gamma_{2}} \right] \frac{1}{b_{i}} - a_{i}\lambda_{i}\lambda_{3} \right\} \\ &= \frac{\lambda_{i}\lambda_{3}}{S^{4}\gamma_{2}}\lambda_{1}a_{i} + \left(\frac{\lambda_{2}}{S^{4}\gamma_{2}} + \frac{\lambda_{3}^{2}}{S^{4}\gamma_{2}} \right) \left[\left[\frac{\lambda_{3}}{S^{4}\gamma_{2}} (\lambda_{1}^{2} + \lambda_{3}^{2}) - \sigma_{i}^{2}\lambda_{2}S^{4}\gamma_{2}} \right] \frac{1}{b_{i}} - \lambda_{i}\lambda_{3}\sigma_{i} \right\} \\ &= \frac{\lambda_{i}\lambda_{3}}{S^{4}\gamma_{2}}\lambda_{1}a_{i} + \left(\frac{\lambda_{2}}{S^{4}\gamma_{2}} + \frac{\lambda_{3}^{2}}{S^{4}\gamma_{2}} \right) \left[\left[\frac{\lambda_{3}}{S^{4}\gamma_{2}} (\lambda_{2}^{2} + \lambda_{3}^{2}) - (\sigma_{i}^{2}\lambda_{2}S^{4}\gamma_{2}) \right] \frac{1}{b_{i}}} - \lambda_{i}\lambda_{3}\sigma_{i} \right\} \\ &= \frac{\lambda_{i}\lambda_{3}}{S^{4}\gamma_{2}}\lambda_{1}a_{i} + \left(\frac{\lambda_{i}^{2} + \lambda_{3}^{2}}{S^{4}\gamma_{2}} \right) \left[\left(\frac{\lambda_{3}}{S^{4}\gamma_{2}} + \lambda_{3}^{2} \right) - (\sigma_{i}^{2}\lambda_{2}S^{4}\gamma_{2}) \right] \frac{1}{b_{i}}} \\ &= \lambda_{i}\lambda_{3}\sigma_{i} \right\} \\ &= \frac{\lambda_{i}\lambda_{2}}(\lambda_{1}^{2} + \lambda_{3}^{2}) - \sigma_{i}^{2}\lambda_{2}S^{4}\gamma_{2}^{2} \right] \frac{1}{b_{i}}} \\ &= \lambda_{i}\lambda_{2}^{2}(\lambda_{1}^{2} + \lambda_{3}^{2}) - \sigma_{i}^{2}\lambda_{2}S^{4}\gamma_{2}^{2} \right] \frac{1}{b_{i}}} \\ &= \lambda_{i}\lambda_{2}^{2}(\lambda_{1}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{2}^{4}(\lambda_{1}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{2}^{4}(\lambda_{1}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{2}^{2}(\lambda_{1}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{i}\lambda_{i}^{2}(\lambda_{i}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{i}\lambda_{i}^{2}(\lambda_{i}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{i}\lambda_{i}^{2}(\lambda_{i}^{2} + \lambda_{3}^{2}) \\ &= \lambda_{i}\lambda_{i}\lambda_{i}\lambda_{i}^{2}$$

EQUATION (32) IS USED TO EVALUATE C. IN (12)

$$C_{11} = \frac{\lambda_{1}^{2}}{S^{2}\sigma/2} + (a_{1}^{2} + b_{1}^{2})\cos \alpha$$

FROM THE DEFINITIONS $\lambda_{0}^{2} = COS^{2}\sigma/2$ AND $COS 2 \propto = 2COS^{2} \ll -1$

$$C_{11} = \frac{1}{S^{2}\sigma/2} \left[\lambda_{1}^{2} + (\lambda_{2}^{2} + \lambda_{3}^{2})(2\lambda_{0}^{2} - 1) \right]$$

$$= \frac{1}{S^{2}\sigma/2} \left[\lambda_{1}^{2} + (1 - \lambda_{0}^{2} - \lambda_{1}^{2})(2\lambda_{0}^{2} - 1) \right]$$

$$= \frac{1}{S^{2}\sigma/2} \left[\lambda_{1}^{2} + 2\lambda_{0}^{2} - 1 - 2\lambda_{0}^{2} + \lambda_{0}^{2} - 2\lambda_{1}^{2}\lambda_{0}^{2} + \lambda_{1}^{2} \right]$$

$$= \frac{1}{S^{2}\sigma/2} \left[2(\lambda_{1}^{2} + \lambda_{1}^{2}) - 2(\lambda_{0}^{2} + \lambda_{1}^{2})\lambda_{0}^{2} + \lambda_{0}^{2} - 1 \right]$$

75

:

$$= \frac{1}{5^{5}} \left[2(\lambda_{1}^{2} + \lambda_{0}^{2})(1 - \lambda_{0}^{2}) - (1 - \lambda_{0}^{2}) \right]$$

$$= \frac{(1 - \lambda_{0}^{2})}{5^{2}} \left[2(\lambda_{1}^{2} + \lambda_{0}^{2}) - 1 \right]$$

$$USING \leq \frac{1 - 2}{2} = 1 - \frac{2^{2}}{2} = 1 - \lambda_{0}^{2}$$

$$\frac{C_{11}}{2} = 2(\lambda_{1}^{2} + \lambda_{0}^{2}) - 1 \qquad (33)_{D}$$

SIMILARLY

$$\underline{C_{22}} = \frac{\lambda_1^2}{S^{2\sigma/2}} + (q_2^2 + b_2^2)COS \ll = \underline{2(\lambda_2^2 + \lambda_2^2) - 1}$$
(34)

$$\underline{C_{33}} = \frac{\lambda_3^3}{5^2 \sqrt{2}} + (a_3^2 + b_3^2) \cos \omega = \frac{2(\lambda_3^2 + \lambda_3^2) - 1}{(35)_0}$$

FROM EQUATION (27) $b_1a_2 - b_3a_1 = \frac{\lambda_2}{S^{\alpha/2}}$ BY ANALOGY AND WITH (21) $b_2a_1 = b_1a_2 = \frac{\lambda_2}{S^{\alpha/2}}$ (37)

$$b_{3}a_{1} - b_{2}a_{3} = \frac{\lambda_{1}}{5^{*/2}}$$
 (38)₀

EVALUATE $a_1a_3 + b_1b_3$ BY USING (27) $a_1a_2 + b_1b_3 = a_1a_3 + b_1\frac{1}{a_1}(b_1a_3 - \frac{\lambda_2}{s^{-1/2}})$ $= \frac{a_1}{a_1}(a_1^2 + b_1^2) - \frac{b_1}{a_1}\frac{\lambda_2}{s^{-1/2}}$

SUB EQUATION (32):

 $= \frac{a_3}{a_1} \frac{\lambda_1^2 + \lambda_3^2}{5^2 - 4_2} - \frac{b_1}{a_1} \frac{\lambda_2}{5^- 4_2}$

SUB EQUATION (30):

$$= \frac{1}{S^{2} \omega/2} \frac{1}{a_{1}} \left\{ \frac{1}{b_{1}} \left[\frac{\lambda_{2}}{S^{2}} (\lambda_{1}^{2} + \lambda_{2}^{2}) - S^{-}/2 \lambda_{2} a_{1}^{2} \right] - a_{1} \lambda_{1} \lambda_{3} \right\} - \frac{b_{1}}{a_{1}} \frac{\lambda_{2}}{S^{-}/2} \\ = \frac{\lambda_{2}}{S^{2} \omega/2} \frac{1}{a_{1}b_{1}} (\lambda_{1}^{2} + \lambda_{3}^{2}) - \frac{\lambda_{2}}{S^{-}/2} \frac{a_{1}^{2}}{b_{1}a_{1}} - \frac{\lambda_{1}\lambda_{3}}{S^{2} \omega/2} - \frac{b_{1}^{2}}{a_{1}} \frac{\lambda_{2}}{b_{1}S^{-}/2} \\ = \frac{\lambda_{2}}{S^{2} \omega/2} \frac{1}{a_{1}b_{1}} (\lambda_{1}^{2} + \lambda_{3}^{2}) - \frac{\lambda_{2}}{S^{-}/2} \frac{a_{1}b_{1}}{b_{1}} (a_{1}^{2} + b_{1}^{2}) - \frac{\lambda_{1}\lambda_{3}}{S^{2} \omega/2} \\ = \frac{\lambda_{2}}{S^{2} \omega/2} \frac{\lambda_{2}}{S^{2} \omega/2} \frac{1}{S^{2} \omega/$$

IN THE SAME MANNER, USING EQUATIONS (32) (37) (38) (39) (40) (41), THE

REMAINING COMPONENTS ARE

AFTT/GA/AA-77D-8

$C_{24} = 2 \left[\lambda_1 \lambda_2 - \lambda_0 \lambda_3 \right]$	(43) _D
$C_{13} = 2 \left[\lambda_1 \lambda_3 - \lambda_0 \lambda_2 \right]$	(44) ₀
$C_{31} = 2 \left[\lambda_1 \lambda_3 - \lambda_0 \lambda_2 \right]$	(<i>15</i>)
$\mathcal{L}_{23} = 2 \left[\lambda_2 \lambda_3 - \lambda_0 \lambda_1 \right]$	(46)
C22 = 2[22 23 - 2021]	(41) _D

SO THAT THE DIRECTION COSINE MATRIX BETWEEN THE INERTIAL AND BODY FIXED. REFERENCE FRAMES AFTER ROTATION & IS

[Ci Ciz Cis]	2(1+2)-1	$2(\lambda_1\lambda_2+\lambda_0\lambda_3)$	2(1,13-7.2.)]
C21 C22 C23 =	2(2,12-2023)	2(オン+カン)-1	$2(\lambda_1\lambda_3 + \lambda_0\lambda_1)$
(JI (J2 (J3)	$2(\lambda_1\lambda_2+\lambda_2\lambda_2)$	2(1223-2021)	$2(\lambda_3^2+\lambda_0^2)-1$
			EQN (98)

WHICH IS EQUIVALENT TO THE EULER ANGLE FORM OF THE DIRECTION COSINE MATRIX

CO CY	50	- 54 (b
-5459 - C458CØ	CUCQ	CWSP-SYSBCP
-5460+645850	-6050	C4C0 + 5459 50

EQN (19)

G

0

0

and the second sec

COMPARING COEFFICIENTS	
$L_{II} = 2(\lambda_{0} + \lambda_{1}) - I = C \Psi C \theta$	(50)0
$C_{12} = 2(\lambda_{0}^{2} + \lambda_{1}^{2}) - 1 = C \phi C \theta$	(51)0
$C_{33} = 2(\lambda_{0}^{2} + \lambda_{3}^{2}) - 1 = C\Psi CO + S\Psi SOSO$	(.52)0
FROM EQN(4)	
$\lambda_0^2 = 1 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)$	(53) ₀
EQUATION (53) INTO (50)(51)(52)	
$I - 2(\lambda_1^2 + \lambda_2^2) = C \Psi C \theta$	(54)p
$I - 2(\lambda_1^2 + \lambda_3^2) = C \Phi C \theta$	(55)0
$1 - 2(\lambda_2^2 + \lambda_1^2) = C\Psi C \Phi + 5\Psi S \theta S \Phi$	(56)0
FON(52)- (55)	
	(77)
$-2(\lambda_{1}+\lambda_{3}) = C\Psi C \Psi + S\Psi S \Psi S \Psi S \Psi - C \Psi C \Psi$	(37)0
EQN(54) + (57)	
$1-4\lambda_{2}^{2}=C\Psi(C\theta+C\phi)+S\Psi S\theta S\Psi-C\phi C\theta$	
$4 \lambda_2^2 = 1 - C \Psi (C \theta + C \phi) + C \phi C \theta - S \Psi S \theta S \phi$	(58)0
USING THE IDENTITY $C \theta + C \theta = 2 C(\frac{\theta + \theta}{2}) C(\frac{\theta - \theta}{2})$	
$4\lambda_{1}^{2}=1-2C\Psi\left[C\frac{\theta+\varphi}{2}C\frac{\phi-\varphi}{2}\right]+C\ThetaC\Theta-S\Psi S\Theta S\Phi$	
USING THE IDENTITY C24=C4-54	
$4\lambda_{1}=1-2(c_{\frac{y}{2}}-s_{\frac{y}{2}})(c_{\frac{y}{2}}c_{\frac{y}{2}}+s_{\frac{y}{2}}s_{\frac{y}{2}})+coc\theta-sysus\phi$	
$4\lambda_{1}^{2} = 1 + 2\left[C_{\frac{1}{2}}^{\frac{1}{2}} \le \frac{1}{2} \le \frac{1}{2} + \frac{1}{2}\frac{1}{2}C_{\frac{1}{2}}^{\frac{1}{2}}C_{\frac{1}{2}}^{\frac{1}{2}}C_{\frac{1}{2}}^{\frac{1}{2}}\right] + COCO - SYSOSO +$	
$-2\left[C^{\frac{1}{2}}_{\frac{1}{2}}C^{\frac{1}{2}}_{\frac{1}{2}}+S^{\frac{1}{2}}_{\frac{1}{2}}S^{\frac{1}{2}}_{\frac{1}{2}}S^{\frac{1}{2}}_{\frac{1}{2}}\right]$	
USING IDENTIES COA= $2C^2 H - 1 + C2H = 1 - 2SH$	

 \bigcirc

 \mathbb{C}

C

$$4\lambda_{3}^{2} = 2\left[\hat{c}^{\frac{w}{2}} \leq \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{2}{2} + \frac$$

$$\lambda_{1} = -C \frac{\varphi}{2} \leq \frac{\varphi}{2} \leq \frac{\varphi}{2} + \leq \frac{\varphi}{2} C \frac{\varphi}{2} C \frac{\varphi}{2}$$

$$(60)_{p}$$

$$E GN (57) - (54)$$

$$4 \lambda_{3}^{2} - 1 = C \psi C \phi + S \psi S \theta S \phi - C \phi C \theta - C \psi C \theta$$

$$4 \lambda_{3}^{2} - 1 - C \theta (C \psi + C \phi) + C \phi C \psi + S \psi S \theta S \phi$$
THE SOLN TO THIS EGN IS SIMILIAR TO EGN S8:

$$\lambda_{3} = C \frac{\theta}{2} S \frac{\psi}{2} S \frac{\phi}{2} + S \frac{\theta}{2} C \frac{\psi}{2} C \frac{\phi}{2}$$

$$(61)_{p}$$
EGN (57) INTO (57)

$$\lambda_{0}^{2} = 1 - [\lambda_{1}^{2} + \frac{1}{2} (C \psi C \theta)] = \frac{1}{2} (1 + C \psi C \theta) - \lambda_{1}^{2}$$

$$\lambda_{0}^{2} = \frac{1}{2} + \frac{1}{3} C \psi C \theta - C^{2} \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} - S \frac{\phi}{2} C \frac{\psi}{2} C \frac{\theta}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + -S \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} - S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + -S \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} - S \frac{\phi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} C \frac{\psi}{2} S \frac{\phi}{2} + -S \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} - S \frac{\phi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} + -S \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} - S \frac{\phi}{2} S \frac{\phi}{2} + 2C \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} + C \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} = 1 + C \frac{\phi}{2} (-S \frac{\phi}{2} - C \frac{\phi}{2} - S \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} = 0$$
NOTE THAT
$$I + C \frac{\psi}{2} C \frac{\phi}{2} - C \frac{\psi}{2} - C \frac{\phi}{2} - S \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} = 0$$
THEREFORE
$$\lambda_{0}^{2} - C \frac{\psi}{2} C \frac{\phi}{2} + S \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} S \frac{\phi}{2} = 0$$

$$MOTE THAT = 0$$

$$\lambda_{0}^{2} - C \frac{\psi}{2} C \frac{\phi}{2} + S \frac{\phi}{2} S \frac$$

THE SET OF ROTATIONAL PARAMETERS ARE

N= c茶c亞c를 + 5米2亞5号 ~=-c 훅 5 년 5 북 + 5 북 c 북 c 북 $\lambda_2 = C \frac{\psi}{2} S \frac{\psi}{2} S \frac{\psi}{2} - S \frac{\psi}{2} C \frac{\psi}{2} C \frac{\psi}{2}$ $\lambda_3 = C \frac{\psi}{2} S \frac{\psi}{2} S \frac{\psi}{2} + S \frac{\psi}{2} C \frac{\psi}{2} C \frac{\psi}{2}$

Appendix E

Coriolis

From the kinematical expression for motion in terms of moving reference frames (Ref 7:111):

$$\ddot{\mathbf{r}}^{i} = \ddot{\mathbf{r}}^{e} + 2\omega^{i} \times \dot{\mathbf{r}}^{e} + \dot{\omega} \times \mathbf{r}^{e} + \omega^{i} \times (\omega^{i} \times \mathbf{r}^{e}) \qquad (1)_{E}$$

where the superscripts denote the applicable frame of reference.

The term 2 $\omega^{e_i} \times \dot{r}$ is the coriolis acceleration and, for the application of a projectile moving with a velocity (V) over the earth rotating at rate (Ω) , the coriolis expression becomes

Define the body frame (XYZ) moving globally with respect to a northeast-down reference frame (NED):

Fig. E-1. Local Level Reference Frame

where Ψ is the heading with respect to north and L denotes latitude.

The transformation between the body frame and north frame is

$$\mathbf{C}_{\mathbf{N}}^{\mathsf{L}} = \begin{bmatrix} \cos \psi & \sin \psi & o \\ -\sin \psi & \cos \psi & o \\ 0 & 0 & 1 \end{bmatrix}$$

(3)E

(4)E

The earth rate component as seen by the body frame is then

so that the coriolis expression becomes

$$2\Pi \times V = 2 \begin{bmatrix} \hat{\lambda} & \hat{f} & \hat{k} \\ \Omega CL C\Psi - \Omega CLS\Psi - \Omega SL \\ V_{W} & V_{E} & V_{0} \end{bmatrix}$$
(5)E

where V_N , V_E , V_D are the N, E, D velocity components. The scalar components of coriolis acceleration then, are

$$(2 \Omega \times V)_{\times} = -2 V_{0} \Omega CLS \Psi + 2 V_{0} \Omega SL$$

$$(2 \Omega \times V)_{\times} = -2 V_{0} \Omega CLC \Psi - 2 V_{0} \Omega SL$$

$$(6)_{E}$$

$$(2 \Omega \times V)_{\times} = 2 V_{0} \Omega CLC \Psi + 2 V_{0} \Omega CLS \Psi$$

Appendix F

Six Degree of Freedom Computer Program

PROSREM SIXOOF

74/74 OPT=1

PROGRAM SIXDOF (INPUT,OUTPUT,TAP55=INPUT) EXTERNAL AROCHA CALL CFRO CALL INIT6 CALL SIXDEG (ARD3MA) STOP END

BEST AVAILABLE COPY

17.09.00

09/12/77

4.5+414

FTN

SUSRI	OUTINE AROCH	14 74/74	OPT=1	FTN 4.5+414	89/12/77	17.09.
•	C #089	E 250 3.	S. FIKENTE U	PY. AFRO-SPACE FNST.	W91 01256	
	C	UNI	VERSITY OF	NOTES DAME. NOTRE DAME. IND.	W9L 01257	
	C				WAL01256	
5	C ARDS	1957 HODEL	ATHOSPHERE	SURROUTINE	W9L01259	
	C				WBL 01250	
		SONNON VAIRE	LK/ 1,0, P, V	K, VS	W3L01261	
		DIMENSION AC	31,9(3),0(7),) (3)	W7L 01252	
		DIMENSION HS	(12), W1(11)	,#2(11),#3(11),T8(11),P9(11),P9(11)	W9L 01253	
10	G				W3L 01264	
		JAIA M3/0.11	1000.,25005	•,4/0/9•,73000•,/7000•,90000•,107000•	,10000	
	0.3	DATA N1/- 22	55635-4.0.	1 18456F-1.1 153202F-4.0	-4.	
			7563.15-5	3507155-5. 2721292-5/		
15 .		DATA H?/ 52	5612=1.0	11383757		
	:	.170924E13	416435164	729551 9761 3751/		
		DATA W3/0	1576195-3,0	.,.1203695-3,0.,.2362345-3,0.,0.,0.,0	1.,0./	
		3ATA T3/.518	68 8E3 38 99:	83E3,.39983E3,.508783E3,.508788E3,		
	\$.295154F3,.2	98189E3, . 40	5183F3,.238618E4,.256618E4,.293618E4/	•	
20		34TA P9/.211	621754, . 472	73E351979E2,.25155E1,.12181E1,.2108	E-1,	
	5	.215 395 -2, .1	55625-3, .75	785-5,.589545-5,.297595-5/		
		JATA R3/.237	692E-2,.705	2E-3,.7765E-4,.28304E-5,.139468E-5,		
	5	.411*95-7,.4	2616-5,.224	2F-9, 13455-11, 1335E-11, 6113E-12/		
26		JATA CON1,CO	N2,CON3,CON	4, 3043, 30457 . 3045, 3356756 . , 49. 020576,	0.0226W3L01275	
23	•	3000-UD,193.	F2544 3757	a7/	Warnista	
		DATA B/0	74164. 2739	667		
		DATA C/D?	2E6. 19E5/			
		DATA D/0 2	5E5 14F6/			
30	C				N9L 01282	
		HGP=:01144/(1.+(2041+4/0	CON2))	W3L01283	
		IF (HSP.LT.O.) HGP=3.		W3L 01284	
		00 1002 M=1,	11		W9L01295	
		1F(43P-H3(M)	11003,1004,	1002	W9L01285	
35	1002	CONTINUE			W3L01237	
		IF ((HGP-HB(12)).GT.0.)	GO TO 1052	WBL 01285	
		M=12			W3L01289	
	1003	7=7-1 Tu-To/usa/4		-42(41))	W9L01290	
	1004	TE ((450-001	00.1.GT.0.1	60 TO 1006	N3L L1291	
		T=TM		33 . , 1000	N91 01292	
		50 TO 1070			W31 01294	
	1006	IF ((HSP-180	COO.).GT.0.1	GO TO 1009	W3L01235	
		1=2			W3L01235	
45		50 TO 1007			W9L01297	
	1009	[=3			W3L01235	
	1007	1=14. (V (I) -2	(1)+4744(44	GP-C(I))/J(I)))	W3L01299	
	1070					
60	10/0	TEND-1 AN1/10	11,1020,101		W3L 01300	
		D-DR(H) /TEMP	** W2 (M)	· ·	N91 01 301	
		R=PA(H) / TEMP	++ (1. +#2 (H))	1	W3L 01303	
		50 TO 1030			W9L 01304	
	1020	TEMP=FXP(-W3	(4)*(452-43	(4)))	W9L 01305	
55		P=PB(M) + TEMP			WBL 01306	
		R=QQ(H) + TE'IP			N3L01307	
	1030	IF CONSP-CON	61.GT.0.) G	0 10 1932	W9L01308	
		VS=CON3+SORT	(TM) -		W3L 91309	
		AK=2044+ (1++	1.5/((T+COV	5)•P))	W9L 01310	
60		RETUPN			W9L01311	
	1052	T=0.			W9L 01 31 2	
					W4L01313	
	40.10	4=0.			NAL CI 314	
45	10 32	WW-0.			N81 01 314	
.,		PETUDN			Wal 61317	
		END			W9L01318	

Q

SUSRAITIN	E CFRO		74/74	0PT=1	FTN 4.5+414	09/12/77	17.09
		SUSPOI	ITTNE CO			00003070	
•	c			~~			
	C STY	DEG SI	C. 1	. INGRAM. AFT	D-SPACE FNGR.	000000090	
	C		UNI	VERSITY OF NOT	RE DAME. NOTRE DAME. IND.	00000100	
5	c					03030110	
	C REAL	05 205	FICTEN	IS IN TAQULAR	FORM AS A FUNCTION OF ANGLE OF	00000120	
	C ATT	ACK AN	MACH I	NUMBER		00000130	
	C MAX	INUN NU	MAER OF	ANGLES OF AT	TACK = 20, MAXIMUM NUMBER OF MACH		
	C NUN	= 2528	20				
10	C					00000150	
	1001	FORMAT	r(A4,1X,	, 3 12)		00000160	
	1002	FORMAT	(//14X	+ AL > HA + , 2X , 1	0=19.4/21X,10=10.4)		
	1003	F0244	1/5x,**	1ACH* , 1F 10.4,2	x, 19=10.4/21x, 19=10.4)	-	
	1004	FORMAT	(/1XA6,	, 3X24C(I2, 1H))		00000190	
15	10 06	FORMAT	16F10.4	+)			
	1007	FORMAT	(8F10.4	+)			
		204401	V /COEF	AMCH(20, 30),	AL 944 (20, 30), C(20, 20, 30), NOA (30), NOM	(30)00000200	
		204401	I /COEPS	I/ NPLY		00000210	
		JOHMON	I POLI	CE(SO), ALOHA	R, CMA, CMPA, CZA	000000220	
20		20440	V VELKIA	RUN			
		DIMENS	SION AMO	3(600), ALP(600		00000230	
		Edota	LENCE	LANC, ANCHI, CAL	P, 12-44), (CC,C)	00000240	
						00000250	
	C SEI	NOI V-	TABLE	IU (ERJ		00000200	
		NPL 1-1	1			60000220	
		ANCIT		10		00000290	
	4 4 4	AL DIT	-0.			86869366	
		00 111	T=1.15	2000		60000310	
38 .	111	30(1)				00000 320	
		00 112	I=1.30			00000330	
		YOATI	= 0			0000340	
		NOMET	= 0			00000350	
	112	CONTIN	UE			80000 350	
35		CZA=2.	.0			000 30370	
		CMA=C.	.0			00000330	
		CMPA=	0.0			60000390	
	C					00000400	
40	C REAL	D NUMAR	R OF AL	RODYNAMIC COE	FFICIENTS	00003410	
		READE	5, 1005)	PUN, NO			
	1005	FORMAT	(A6,4X,	. 12)			
		PRINT	1005, 80	JN, NC			
	100 8	FORMAT	(1H1,2)	K, 46, 2X, 12 //)		
45	C F 02	CONSTI	ANT ANGI	LE OF ATTACK	NO ANGLE OF ATTACK TABLES ARE READ	00000430	
	C FOR	CONTAN	AT MACH	NUMBER ONE	TAALE OF MACH NUMBER IS READ	00000440	
		00 13	0 M=1,NC			00000450	
		READ	5,1001)	NAME, <, NOA(K)	, 104(<)	00000460	
		PRINT	1004. 1	NAME , K		60000470	
50		NY=NO	1(K)			000000450	
		IF (NH.	E0.0) 1	4M=1		00000490	
		NATYT	(K)			00000500	
		IF CNA	E0.0) N	1A=1		00000510	
		PENA	E4.17 (A DH I H	T-4 . MAX		
33		02747	1003	ALDUALT PL T-	1-1,44	-	
	44.5	20 424	1 7-4	A	11441	00000540	
	119	10 1/0	1-1,MP				
	150	READI .	5,1007)	AM34(1,K),(3(I, J, K), J=1, NA)		
		00 17	1=1,N			00000560	
99	125	POUT .	1003,4		J, (), J=1, (A)	00000570	
	130	DETHON	1			00000550	
•		ENO				00000530	

マアシャース

SURPRUTINE ED

74/74

0PT=1

FTN 4.5+414

09/12/77 17.09.

	SUBPOUTINE ED	00004560
	REAL MASS, IX, IY,L	
	INTERED PG	00004590
	CONMON /AIRBLK/ TEM. PRES. RHD. KVIS. VA	00004600
	20440N /COEF/ 4434(20.30) .4. P45(20.30) .C(20.20.30) .NOA (30) .NO4(30)	00004610
	20440N /INDALK/ IDEN. THIND. ITEP. TPRN. TALL . NORC. IPUN. NB00Y. ITEST. NT	0000-520
	1251	00004630
	20440N /INTT/ TITLE(12)-SCA: E(30)-A(22)	00004640
	ANNUT THE TENT TO THE THE TO THE	000000000
		00004550
	SAMANATETATIES THE ETA S DI	******
		00004070
	30 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00004030
		00004690
	JOHN IN /POL/ CE(SS), ALPHAN, CHA, SHPA, C/A	00004700
	30440N/E04K/01(14), 32(14), 3=1(14), 3=2(14), MIN(3), DAL(10), 34E(10)	00004710
	COMMONZEDAKZZV, Q, S, DD, ALDHAN, AMCHN, PG, LN	00004720
	COMMON/EDBK3/AXX, AXY, AXZ, AYX, AYY, AYZ, AZX, AZY, AZY	00004730
	20HYON/EDBK4/ LCOUNT	
	JOHNCN /9LK1/ RUN	
	9ATA CON0/57+295779/	
000	F024"T(56X,+=+)	
001	FORMET(1X, T4, *TIME*, 5X, *RANGE*, 5X, *4LT*, 7X, *Z*, 9X, +V*, 7X, *P*, 3X,	
1	L*ALP+A* .3X .*M* .5X .*PHI*.2X .*ALPHA*.2X .*PETA*.2X .*L-N*.3X .*L-P*.	
1	26X, *H-N*, 4X, *H-P*, 5X, *5*, 5X, *T411*, 3X, *K-T*)	
200	FORMAT(1X, T4, * SEC*, 7X, *FFET*, 6X, *FEET*, 5X, *FEET*, 4X, *FT/SEC*, 2X.	
1	1*R4/SEC*.2X.*DEG*.10X.*DEG*.3X.*DEG*.4X.*DEG*.1X.*1/SEC*.1X.	
-	2*1/SFC* .1X .* PA/SEC* .1X .* 34/SFC* .15X .* 0FG*/1	
003	FO2417 (1X.1F2.4.2F10.2.2F9.2.157.1.2F6.2.157.2.4F6.2.2F7.1.	
	1164.3.166.2.167.3)	
010	FO2M57(1H11244,37444046FT4)	
		00004850
801		00004055
		00004050
		00004070
		00004555
		00004530
		00004900
	BETA=-ALPHAN+SIN(XI)	00004910
	ALPH= ALPHAN*COS(XI)	00004920
	50 To 841	00004930
821	ALPH=ATAN(01(14)/01(12))*COND	00004940
	SETA=ATAN(01(13)/01(12))*CON9	00004950
541	PP= 32+CON7	00004950
	IF(MOD(LN,50).NE.0) GO TO 2	00004970
	PG=P5+1	00004950
	PRINT 1010, TITLE, PG	00004330
	PRINT 1000	00005000
	PRIN- 1001	00005010
	PRINT 1002	00005020
	P= 01(5)	00005030
•	IFIP.FO.0.) GO TO 6752	00005050
•	IF(P.En.D.) GO TO 4752 SSGC=(n1(5)*01(5)*4(15)*4(15))/(0*5*4(19)*CHA*4(16)*4.)	00005040
•	IF(P.Fn.D.) GO T) 4752 SSRC=(n1(5)*D1(5)*A(15)*A(15))/(0*S*A(19)*CHA*A(16)*4.) TAU = 1./SORT(1 1./SSRC)	00005040 00005050 00005050
•	IF(P.Fn.D.) G0 T3 4752 SSDC=(n1(5)*D1(5)*A(15)*A(15))/(0*S*A(19)*CHA*A(16)*4.) TAU = 1./SORT(1 1./SSBC) 224= A(19)*A(19)*A(19)	00005040 00005050 00005050
•	IF(P.Fn.D.) G0 73 4752 SSGC=(n1(5)*01(5)*A(15)*A(15))/(0*S*A(19)*CHA*A(16)*4.) TAU = 1./SORT(1 1./SSGC) 224= A(19)*A(19)*A(19) CLAMP = (0*S)/(2.*A(1A)*V)*(CTA*(1.*TAU)* 02H/(2.*A(16))*(CF(27))	00005040 00005050 00005050 00005070
	IF(P.Fn.D.) G0 T) 4752 SSRC=(n1(5)*01(5)*A(15)*A(15))/(0*S*A(19)*CHA*A(16)*4.) TAU = 1./SORT(1 1./SSRC) 224= A(19)*A(19)*A(15) CLAMP = (2*S)/(2.*A(15)*(:7A*(1.*TAU)* 02H/(2.*A(15))*(CE(27)) 5(1TAU)) - D2H/A(15)*CMPA*TAU)	00005050 00005050 00005050 00005050 00005050

BEST AVAILABLE COPY

SUSPOUTTNE ED

			1
	48/4 ATAULA A DOM/A/45340000000		
		00005110	
	A A A A A A A A A A A A A A A A A A A	00005170	
		00005130	
	$\mathbf{L}_{\mathbf{A}} = (\mathbf{P} + \mathbf{A} + \mathbf{C} + \mathbf{S}) + (2 + \mathbf{A} + \mathbf{C} + \mathbf{S}) + (1 + 1 + 1 + \mathbf{A} + \mathbf{U})$	00005140	
	33=6LAMP*(P=HLA+N)=6LAMN*(3=4LA+D)	00005150	
	AK3= (19)*J=(20)/(4(15)*SQT(44**2 + 83**2)))*COND	00005160	
	60 10 4763	00005170	
	4762 CL440=0.	00005190	
	CLANNED.	80005190	
	ALCHP=0.	60005200	
	WLAMN=C.	00005210	
	4K3=J.	00005220	
	TAU=C.	00005230	
	5590=0.0		
	4763 CONTINUE	00005250	
	PRINT 1303, (01(1), 1=1,4), V. 01(5) ALPHAN. ANCHN. PP. ALPH. BETA.	00005260	
	1CLAMN, CLAMP, HLAMN, HLAMP, SSBC. TAU. AK3	00005270	
	IF(1PUN.EQ.0) GO TO 1113	00005290	
	LCOUNT=LCOUNT+1	60005230	
•	IF(LOUNT.EQ.10) GO TO 1112	60005290	
	DAL (LCOUNT) = AL PH	80005340	
	DECLCOUNT) = BETA	00005310	
	50 70 1113	00005320	
	1112 DAL (LCOUNT) =AL PH	00005330	
	DBF (L COUNT) = BFTA	00005340	
		00005350	
	1113 LN=(N+1	0. 05350	
	PFT IPN	60005390	
	END	00005400	
	E.I.A.	00005410	

SUBROUTINE	INIT6	74/74	OPT=1	FTI	N 4.5+414	09/12/77	17.09.
	SUBR	OUTINE IN	1176			80000610	
	C					00001620	
	C SIXDEG 1	CO C. W	. INGRAM, AFR	O-SPACE FNGR.		00000630	
	C	UNIV	ERSITY OF NOT	RE DAME, NOTRE DAME, IN	ND.	80 6 0 3 6 4 0	
	C					00001650	
	C INITIALI	ATION PR	OGRAM FOR N-D	EGREE OF FREEDOM MOTION	N (3+N+6)	00000550	
	C					00003570	
	REAL	MASS, IX,	IY,L			00000650	
	1001 FORM	T(1244)				00000690	
	1002 FORM	AT (////1	X,2345340 0F	INITIALIZATION INPUT .//	/)	00000790	
	1003 FORM	AT (4(6(1	X,2HA(,12,44)	= ,F11.4)/))		00003710	
	1004 FORM	AT (1X,7H	NOR3 = . 11.3X	,741PRN = , 12, 3%, 74NALL	L = , I1, 3X,	00000720	
	STHIP:	IN = , I1,	3X,7HN933Y =	, I1, 3X, 9HISCALE = , I1, 3	3x, 8HITRST = , I1,	/000007730	
	\$/)		and the second second second			00000740	
	1005 FORM	AT (//5(6	(1X, 645CALE(,	12,441 = , E8.21/11		00000750	
	1006 FORM	AT(1,5X,4	HTIME, 5X, 6HTH	RUST, 7X, 44MASS, 5X, 11HCC	G POSITION, 7X, 5H	G00000760	
	\$-43,8	2HIX,7X,2	HIY, /)			00000770	
	1007 FORM	AT(4X, F5.	2,51,=5.0,5X,	F5.3,64,F8.2,8X,F6.2,4X	KF6.3,4X,F5.3)	00000780	
	1006 FORM	AT (5X, 13H	THRUST DATA .	, 3X, 6HEPS = , F5.2, 3X, 9H	HTHETAC = ,F5.2,3	\$X00000790	
	\$, 64E	TA = ,F5.	2,34,4HL = ,F	5.2,11)		000000800	
	1009 FORM	at(//,5x,	144300Y LENGT	1 = ,F+.2,/)		00000810	
	1010 FORM	T(7110)					
1.1.1	1011 50340	AT(I10,3E	10.4, I10, E10.	4)			
	1012 FORM	T(BE10.4	/ 9 210.4 / 5	E10.4)			
•	1013 FORM	T(6E10.4	,)				
	1014 FORM!	AT (2E10.4	,)				
	1015 FORM	AT(3(8E10	.4 /), 6E10.4)			
	LOGIC	CAL LSCAL	E, IALL, LTRST	·		60000620	
	CONNI	DN /WINGL	K/ 40W, YH(125), W(125, 3)		00000830	
	COMM	DN /AIRBL	KI TEN, PRES, R	HO, KVIS, VA		60000840	
	CONN	DN TOENBL	K/ 100, 10(125)), DEN (128), TEMP(128)		00000850	
	CONH	DN/COEP1/	NPLY	•		10000860	
	204H	ON /POL/	CE(30), ALPHA	R, C44, 3HPA, C7A		00000870	
	SONH	ON /INDBL	K/ IDEN, IWIND	, ITER, IPRN, IALL, NORC, IF	PUN, NBODY, ITRST,	100007380	
	1258					00000890	
	CONMO	ON/INIT/T	ITLE(12), SCAL	E(31),4(22)		00000300	
	COMM	DN/ THRUST	/TI4(15), TPST	(15), 44SS(15), CG(15), I)	x(15), IY(15), CGP	(1000000910	
	\$5)					02600000	
	CONN	ON/TSTOAT	VEPS, THTC, ETA	,L ,9L		00000930	
	READ	(5,1001)	TITLE			00000940	
	C					00000950	
	DO 10	J I=1,15				00000950	
	TINC	[]=0.0				000000970	
	TRST	(I)=0.0				00001950	
	MASS	(1)=0.0				00000990	
	56(1)	=0.0				00001000	
	IXCI	=0.0				00001010	
	IVCI	=0.0				00001020	
	SGP(1	0.0=11				00001030	
	10 CONT	INUE				00001040	
	IDEN:	= 0					
	ININ	0=0					
	00 11	J=1,3				00001050	
	00 11	1 1=1,128	•			00001050	
	WCI,))=0.0				00001070	
	AMCII	=0.0				00001030	

BEST AVAILABLE COPY

のころのないないので

Q

************************************	SU	AROUTINE INITE	74/74	0PT=1		FTN 4.5+414	09/12/77	17.09
40								
40 JENILIALD 11 20VTINUE 40001130 40001120 61 12 20VTINUE 40001130 40001130 62 61015,1010 NORC, IPRN, NALL, TPUN, N900Y, ISCALE, ITRST 40001140 40001140 40001170 63 61015,1010 NORC, IPRN, NALL, TPUN, N900Y, ISCALE, ITRST 40001170 40001140 64 61015,1010 NORC, IPRN, NALL, TPUN, N900Y, ISCALE, ITRST 40001170 40001140 65 6105,1010 NORC, IPRN, NALL, TPUN, N900Y, ISCALE, ITRST 40001170 40001140 74 6 46105,1011 NTRST, EPS, THTC, FTA, L, BL 40001230 40001230 75 10 T9 7 40001230 76 10 T9 7 40001250 77 10 T9 7 40001250 78 10 T9 7 40001250 79 10 T9 7 40001250 70 10 T9 7 40001250 71 10 T9 7 40001250 72 10 T9 7 40001250 74 10 T9 7 40001250 75 10 T9 7 40001250 76 10 T9 7 40001250 77 10 T9 7 78 10 T			171-0.0				60001090	
41 100000000000000000000000000000000000	6.0	16.	P(T)=0.0				00001190	
c 0001133 c 0001170 ltschle.col 0001170 ltschle.col 0001170 ltschle.col 0001170 ltschle.col 0001170 ltschle.col 0001170 ltschle.col 0001130 c 0001130 c 0001170 ltschle.col 0001130 c 0001130 c 0001230 r c c 0001270 d			TTNIE				60001110	
 C 4EAD CONTROL PARAMETERS C 4EAD CONTROL PARAMETERS BEAD (5, 1610) MORC, IPRN, NALL, TPUN, NNODY, ISCALE, ITRST BEAD (5, 1610) MORC, IPRN, NALL, TPUN, NNODY, ISCALE, ITRST BEAD (5, 1610) MORC, IPRN, NALL, TPUN, NNODY, ISCALE, ITRST BEAD (5, 1610) MORC, IPRN, NALL, TPUN, NNODY, ISCALE, ITRST C 4EAD (5, 1610) MORC, IPRN, AND (5, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16			innoc				60001120	
C @ EAD CONTPOL PARAMETERS @001140 65 @ RED (5, 1010) NNGC, IPEN, NALL, IPUN, NNGDY, ISCALE, ITRST @001160 ISCALE = ISCALE, EQ. 1 @001170 LIRST=ITRST.ED.0 @001190 C @ 0001190 C @ 0001200 F(EAD INTITAL CONDITIONS @ 0001200 PERDES, 205773 @ 0001210 PERDES, 205773 @ 0001220 PERDES, 205773 @ 0001220 PERDES, 205773 @ 0001220 PERDES, 205773 @ 0001220 MTG-THUC/57.295773 @ 0001300 MTG-THUC/57.295773 @ 0001300 MTG-THUC/57.295773 @ 0								
65 READIS,1010) MORC, 1PRM, MALL, 1PUM, MODY, ISCALE, ITRST 0001160 1 LSCALE=ISCALE, EQ.1 0001170 1 IALL=MALL,EQ.1 0001170 1 IALL=MALL,EQ.1 0001170 1 IALL=MALL,EQ.1 0001170 1 IALL=MALL,EQ.1 0001170 0 C 0001170 1 IALL=MALL,EQ.1 0001170 0 C 0001100 0 C 0001120 1 IFL(ITST), GO TO 4 00001220 1 FRADIS,1011 NIRST,EPS,THTC,FTA,L,BL 0001220 1 IFL(ITST), GO TO 4 0001250 1 TST.295773 00001250 1 T		C READ CO	INTROL PAR	AMETERS			60001140	
LSCALE = ISCALE = CO.1 IALL=MALL.CQ.1 LTRST=ITRST.EO.0 C C C C C C C C C C C C C	65	RE	AD (5, 1010	NORC, IPRN, NA	LL, IPUN, N900Y, IS	SCALE, ITRST		
IALL+ALL,CJ.1 0001170 C GE001100 C GE001100 C GE001100 IF(LTST) GO TO 4 G0001200 READ(5,1011) NTST,FES,THTC,FTA,L,9L G0001200 E9S=F9S/57.295773 G0001250 THIC+THTC/57.295773 G0001250 A 20MTHWE G0001250 B REAP(5,1012) (A(I),I=1,22) G0001300 B REAP(5,1012) (A(I),I=1,22) G0001300 B REAP(5,1012) (SCALE(I),I=1,30) G0001320 B 2 SCALF(I)=1. G0001320 B 3 20MTHWE G0001320 B 3 20MTHWE G0001320 B 3 20MTHWE G0001400 B 4 E40(5,1013) TH(I),YASS(I),CG(I),IX(I),IY(I),CGP(I) B 4 E40(5,1013) TH(I), MASS(I),CG(I),IX(I),IY(I),CGP(I) B 5 20MTHWE G001400 C 6 COMO OUPDUT G001400 B 4 E40(5,1013) TH(I), MASS(I),CGP(I),IX(I),IY(I),CGP(I) B 5 20MTHWE G001450		LSC	ALE=ISCAL	E.EQ.1			60001160	
C G0001130 76 C GEAD INITIAL CONDITIONS G0001200 IF(LTSI) G01200 G0001200 IF(LTSI) G0001200 G0001250 IF(LTSI) G0001220 G0001250 IF(LTSI) G0001220 G0001220 IF(LTSI) G0001220 G0001220 IF(LTSI) G0001200 G0001220 IF(LTSI) G0001310 G0001310 IF(LTSI) G000131 G0001320 IF(LTSI) G000131 G0001320 IF(LTSI) G001350 G0001350 IF(LTSI) G000131 G0001350 IF(LTSI) G001350 G0001350 IF(LTSI) G0001350 G0001350 IF(LTSI) G0001350 G0001350 IF(LTSI) G000150 G0001350 <td< td=""><td></td><td>IAL</td><td>L=NALL.EQ</td><td>•1</td><td></td><td></td><td>00001170</td><td></td></td<>		IAL	L=NALL.EQ	•1			00001170	
78 C QEAD INITIAL CONDITIONS 00001200 IF(LT9ST) GO TO 4 00001210 READ(5,1011) NTRST, EPS, THTC, FTA, L, 9L 00001210 PS=F6PS/57.295773 00001250 THTC=THTC/57.295773 00001250 * 20NTINUE 00001250 * 10 T3 7 00001250 * 20NTINUE 00001270 * 0001700 00001270 * 20NTINUE 00001270 * 0001700 00001270 * 20NTINUE 00001270 * 00001270 00001270 * 00001270 00001270 * 00001270 00001270 * 00001270 00001370 * 00001370 00001370 * 00001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001370 00001370 * 0001400 0001370 <td></td> <td>LIG</td> <td>ST=ITRSI.</td> <td>EQ.0</td> <td></td> <td></td> <td>60001150</td> <td></td>		LIG	ST=ITRSI.	EQ.0			60001150	
76 C CERD INFIAL CONDITIONS 00001220 READ(5,1011) NTRST, EPS, THTC, FTA,L, 9L 00001230 READ(5,1011) NTRST, EPS, THTC, FTA,L, 9L 00001230 PS=FPS, 75, 2957.73 00001250 NTGETHIC/57.2957.73 00001250 A DONTINUE 00001250 WTSST=1 00001250 Y CONTINUE 00001250 B REAM(5,1012) (A(I), I=1,22) 00001250 FELSCALE GO TO 1 00001250 B REAM(5,1012) (A(I), I=1,22) 00001300 B REAM(5,1012) (A(I), I=1,22) 00001310 B SCALF (I)=1. 00001310 B SCALF (I)=1. 00001320 B SCALF (I)=1. 00001320 B SCALF (I)=1. 00001330 B SCALF (I)=1. 00001330 B SCALF (I)=1. 00001330 B SCALF (I)=1. 00001300 B SCALF (I)=1. 0000130 B SCALF (I)=1. 00001400 B		6					00001190	
READ(5,1011) NTRST, EPS, THTC, FTA, L, 9L 0001230 READ(5,1011) NTRST, EPS, THTC, FTA, L, 9L 0001230 PS=FPS/57.295773 0001250 THTC+THTC/57.295773 0001250 4 20HTINUE 0001250 YTST=1 0001300 YTST=1 0001400 YTTUE 0001400 </td <td>~</td> <td>G READ IN</td> <td>ITTAL CON</td> <td>DITIONS</td> <td></td> <td></td> <td>00001200</td> <td></td>	~	G READ IN	ITTAL CON	DITIONS			00001200	
EPS+FPS/7:295773 0001230 THIC=THIC/57.295773 0001250 THIC=THIC/57.295773 0001250 ************************************		1.0	LIRSTI GO	10 4			00001210	
EP3F25/2/297/3 B001230 75 10 T3 7 80001250 4 20MTIANUE 80001260 60 REAA(5,1012) (A(I),I=1,22) 80001300 7 CONTIANUE 80001300 80 REAA(5,1012) (A(I),I=1,22) 80001300 81 REAA(5,1013) (IA(I),I=1,22) 80001300 82 SCALF (I)=1. 80001300 83 20MTIANUE 80001320 84 9005,1013) (IA(I),I=1,30) 80001300 85 1 READ(5,1013) ITM(I),MASS((D),CG(I),IX(I),IY(ID),CGP(I)) 80001400 86 REAA(5,1014) (IIM(I),MASS(ID),CG(I),IX(ID),IY(ID),CGP(ID) 80001400 87 REAA(5,1014) (IIM(I),MASS(ID),CG(I),IX(ID),IY(ID),CGP(ID) 80001400 86 S 20MTIANUE 80001400 80001400 97 PRINT 1002 80001400 80001400 98 S 20MTIAN			CEAU(5,101	1) NIRSTAEPS,	410, 114, 1, 51			
75 10 T0 7 60001250 4 CONTINUE 60001250 WTRST=1 60001260 7 CONTINUE 60001260 80 REA^(5,1012) (A(1),I=1,22) 1F(LSCALE) GO TO 1 60001300 00 2 I=1,30 60001320 50 T0 3 60001320 65 1 QEAD(5,1015) (SCALE(1),I=1,30) 86 REAP(5,1013) TIM(1),MASS(1),CG(1),IX(1),IY(1),CGP(1) QEAD(5,1013) TIM(1),MASS(1),CG(1),IX(1),IY(1),CGP(1) QEAD(5,1014) (TIM(I),TRST(I),I=1,NTRST) 60001420 90 QEAP(5,1014) (TIM(I),TRST(I),I=1,NTRST) 60001420 91 QEAP(5,1014) (TIM(I),TRST(I),I=1,NTRST) 60001420 92 PRINT 1002 60001420 93 20NTINUE 60001420 94 QEAP(5,1014) (TIM(I),TEST(I),I=1,30) 60001420 95 PRINT 1003, (I,SCALE(I),I=1,30) 60001450 96 PRINT 1003, (I,SCALE(I),I=1,30) 60001450 97 PRINT 1005, (I,SCALE(I),I=1,30) <t< td=""><td></td><td>1.1</td><td>-THTC/57</td><td>205773</td><td></td><td></td><td>00001230</td><td></td></t<>		1.1	-THTC/57	205773			00001230	
4 20NTINUE 0001250 4 20NTINUE 0001250 4 1001200 0001260 60 REAA(5,1012) (A(I),I=1,22) 1 F(LSCALE) GO TO 1 00001300 0 0 2 I=1,30 00001300 0 0 2 I=1,30 00001300 0 2 I=1,30 00001300 0 2 I=1,30 00001300 0 5 I 0 3 0001300 1 0 5 20NTINUE 00001300 1 0 5 20NTINUE 00001350 1 0 5 20NTINUE 00001350 0 0 6 2 2 1 1,30 14 (I),1455((I),15(I),114(I),17(I),269(I) 0 0 0 1 400 0001350 0 0 0 0 1 14 (I), MASS(I),CG(I), IX(I),IY(ID),C69(I) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75	10	70 7	. 293/19		•	00001240	
• JONTINUE • 0001270 • REAR(5,1012) (A(1), I=1,22) • 0001200 • If (LSCALE) GO TO 1 • 0001300 • DO 2 I=1,30 • 0001300 • DO 2 I=1,30 • 0001300 • SCALF(1)=1. • 0001300 • S CALF(1)=1. • 0001400 • S CALF(1), I=1. • 0001400 • S CANTINUE • 0001400 • C C C COUPUT • 0001420 • S CANTINUE • 00001420 • S CANTINUE • 00001420 • PRINT 1002 • 00001420 • PRINT 1003, (CL, A(1), I=1, 30) • 00001440 • PRINT 1003, (CL, A(1), I=1, 30)			TTNUE				60001250	
7 CONTINUE 00001220 40 REA^(5,1012) (A(1),I=1,22) 00001220 61 If (LSCALE) GO TO 1 00001300 62 1f (LSCALE) GO TO 1 00001300 63 1 SCALF (1)=1. 00001320 65 1 SCALF (1)=1. 00001330 66 SONTINUE 00001350 70 SCALE (1)=1. 0001350 0001350 86 SCALE (1),I=1,30) 00001350 90 SCANTINUE 00001400 91 SCANTINUE 00001400 92 SCANTINUE 00001400 93 SCANTINUE 00001400 94 SCANTINUE 00001400 95 SCANTINUE 00001400 96 PRINT 1002, (1,A(1),I=1,22) 00001400 97 PRINT 1003, (I,A(1),I=1,30) 00001400 98 PRINT 1003, (I,A(1),I=1,30) 00001400 99 PRINT 1003, (I,A(I),I=1,30) 00001400			ET-4				00001259	
40 REA*(5,1012) (A(I),I=1,22) 1 If(LSSALE) GO TO 1 00 2 I=1,30 00001310 2 SCALF(I)=1. 00001320 50 TO 3 00001330 65 1 (EAD(5,1015) (SCALE(I),I=1,30) 3 JONTINUE 00001350 90 READ(5,1013) TL*(1),MASS(1),CG(1),IX(1),IY(1),CGP(1) 91 READ(5,1013) TL*(1),MASS(10),CG(1),IX(10),IY(10),CGP(I0) 92 READ(5,1013) TL*(1),TRST(I),I=1,NIRST) 93 S JONTINUE 94 READ(5,1013) TL*(1),TRST(I),I=1,NIRST) 95 JONDIAD 96 READ(5,1014) 97 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 98 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 99 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 90 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 90 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 91 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 92 READ(5,1014),TI*(I),TRST(I),I=1,NIRST) 93 READ(5,1014),TI*(I),TRST(I),NOODY,ISCALE,ITRST 94 READ(5,1014),TI*(I),TI*(I),TI*(I),TRST(I),TRST(I),TRST 95 PRINT 1005, (I,SCALE(I),I*I),I*I,II),I*I (I),I*I (I),I*I (I		7 000	TTNIE				00001270	
60 REARGS,1012) (A(I), I=1,22) IF(LSCALE) GO TO 1 00001300 0001310 00 2 T=1,30 00001310 00 2 T=1,30 00001320 00 2 SCALF(I)=1. 00001320 05 1 QEAD(5,1015) (SCALE(I),I=1,30) 00001350 05 1 QEAD(5,1013) SCALE(I),I=1,30) 00001350 05 1 QEAD(5,1013) TIH(1),MASS(I),CG(1),IX(1),IY(1),CGP(I) 00001350 90 QEAT(5,1013) TIH(I),MASS(I),CG(I),IX(I),IY(I),CGP(I) 00001400 91 QEAD(5,1013) TIH(I),TRST(I),I=1,NTRST) 00001400 92 PRINT 1002 00001400 93 S 20MTINUE 00001400 94 QEAD(5,1014) (TIM(I),TRST(I),I=1,NTRST) 00001400 95 PRINT 1002 00001420 96 PRINT 1002 00001420 97 PRINT 1003, (I,SCALE(I),I=1,30) 00001450 98 PRINT 1003, (I,SCALE(I),I=1,30) 00001450 99 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 99 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 99 PRINT 1003, (E,PS,TTHTC,ETA,L 00001450 90 PRINT 1000								
IF (LSCALE) GO TO 1 00001300 DO 2 T=1,30 00001310 DO 2 T=1,30 00001310 SCALF(I)=1. 00001320 50 TO 3 00001330 45 1 QEAD(5,1015) (SCALE(I),I=1,30) B0001350 0001350 I QEAD(5,1015) (SCALE(I),I=1,30) 00001350 IF (LTPST) GO TO 5 00001350 QEAD(5,1013) TIM(I),MASS(I),CG(I),IX(I),IY(I),CGP(I) 00001450 QEAD(5,1013) TIM(I),TRST(I),I=1,NTRST) 00001400 S CONTINUE 00001420 QEAD(5,1013) TIM(I),TRST(I),I=1,NTRST) 00001420 S CONTINUE 00001420 C C CONDUTPUT 00001420 PRINT 1002, (I,SCALE(I),I=1,30) 00001450 PRINT 1003, (I,A(I),I=1,22) 00001450 PRINT 1003, (I,SCALE(I),I=1,30) 00001450 IF (LTPST) GO TO 3 00001450 IF (LTPST) GO TO 5 00001450 PRINT 1003, (I,SCALE(I),I=1,30) 00001450 IF (LTPST) GO TO 5 00001450 PRINT 1003, (EPS,ITMTC,ETA,L 00001450 PRINT 1003,EPS,ITMTC,ETA,L 00001500	80	RE	#****	(A(I), I=1,22	1			
00 2 I=1,30 00001310 2 SCALF (I)=1. 00001320 50 TO 3 00001320 65 1 QEAD(5,1015) (SCALE(I),I=1,30) 00001350 3 CONTINUE 00001350 IF(LTPSI) GO TO 5 00001350 QEAD(5,1013) TIM(I),MASS(I),CG(I),IX(I),IY(I),CGP(I) 00001450 QEAD(5,1013) TIM(I),TRST(I),I=1,NTRST) 00001400 C 00001400 C 00001400 C 00001420 PRINT 1002 00001420 PRINT 1004, NORC, IPRN, NALL, IPUN, NRODY, ISCALE, ITRST 00001440 PRINT 1003, (I,A(I),I=1,22) 00001450 PRINT 1004, NORC, IPRN, NALL, IPUN, NRODY, ISCALE, ITRST 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPSI) GO TO 5 00001450 IF(LTPSI) GO TO 5 00001450 IF(LTPSI) GO TO 5 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPSI) GO TO 5 00001450 PRINT 1005, STATTC,ETA,L 00001450 PRINT 1007, (TIM(L),TRST(L),MASS(L),CGP(L),CG(L),IX(L),IY(L),IY(L),I=1,NIT00001570 PRINT 1007,		IFC	ILSCALE) G	0 TO 1			CCC01300	
2 SCALF (1)=1. 00001320 50 T0 3 10001330 3 CONTINUE 00001350 1 (EAD(5,1015) (SCALE(I),I=1,30) 00001350 3 CONTINUE 00001350 1 (EAD(5,1013) TIM(1),MASS(10),CG(1),IX(1),IY(1),CGP(1) 00001450 (EAD(5,1013) TIM(1),MASS(10),CG(12),IX(10),IY(10),CGP(10) 00001400 90 (EAD(5,1013) TIM(1),TRST(1),I=1,NTRST) 00001400 5 CONTINUE 00001420 6 C ECHO OUTPUT 00001420 91 PRINT 1002 00001420 92 PRINT 1004, NORG, IPRN,NALL, IPUN,N90DY, ISCALE,ITRST 00001430 94 PRINT 1005, (I,SCALE(1),I=1,30) 00001450 95 PRINT 1003, (I,A(1),f=1,22) 00001450 96 PRINT 1005, (I,SCALE(1),I=1,30) 00001450 97 PRINT 1005, (I,SCALE(1),I=1,30) 00001450 98 PRINT 1003, (EPS,ITHTC,ETA,L 00001450 99 PRINT 1003, SEPS,ITHTC,ETA,L 00001450 90 PRINT 1003, SEPS,ITHTC,ETA,L 0000150 90 PRINT 1003, SEPS,ITHTC,ETA,L 0000150 91 PRINT 1003, SEPS,ITHTC,ETA,L 0000150 92 PRINT 1003, SEPS,ITHTC,ETA,L 0000150 93 PRINT 10007, SEPS,ITHTC,ETA,L 0000150 <td></td> <td>DO</td> <td>2 I=1,30</td> <td></td> <td></td> <td></td> <td>00001310</td> <td></td>		DO	2 I=1,30				00001310	
65 1 QEAD(5,1015) (SCALE(I),I=1,30) 00001330 65 1 QEAD(5,1015) (SCALE(I),I=1,30) 00001350 90 90001330 114(1),MASS(1),CG(1),IX(1),IY(1),CGP(1) 90 QEAD(5,1013) TI4(1),MASS(10),CG(12),IX(10),IY(10),CGP(10) 90 QEAD(5,1013) TI4(1),MASS(10),CG(12),IX(10),IY(10),CGP(10) 90 QEAD(5,1013) TI4(1),MASS(10),CG(12),IX(10),IY(10),CGP(10) 90 QEAD(5,1014) (TIM(I),TRST(I),I=1,NTRST) 00001400 91 S CONTINUE 00001420 92 QENT 1002 00001420 93 QENT 1004, NORG, IPRN,NALL, IPUN,N900Y, ISCALE,ITRST 00001450 94 QENT 1003, (I,A(I),I=1,22) 00001450 95 PRINT 1003, (I,SCALE(I),I=1,30) 00001450 96 QEPS-EPS-57.295779 00001450 97 IF(LTPRT) GO TO 5 00001460 98 QUADIA QUADIA 99 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 97 IF(LTPRT) GO TO 5 00001450 98 QUADIA QUADIA 97 PRINT 1003, (EPS,ITHTC,ETA,L QUADIA <td></td> <td>2 5CA</td> <td>LF(I)=1.</td> <td></td> <td></td> <td></td> <td>00001320</td> <td></td>		2 5CA	LF(I)=1.				00001320	
65 1 QEAD(5,1015) (SCALE(1),I=1,30) 00001350 3 CONTINUE 00001350 IF(LTPST) GO TO 5 00001350 QEAD(5,1013) TIM(1),MASS(1),CG(1),IX(1),IY(1),CGP(1) 00001400 QEAD(5,1013) TIM(1),TRST(1),I=1,NTRST) 00001400 90 QEAD(5,1014) (TIM(1),TRST(1),I=1,NTRST) 00001400 C 0000140 C 00001423 PRINT 1002 00001423 95 PRINT 1004, NORC, IPRN, NALL, IPUN, N90DY, ISCALE, ITRST 00001400 PRINT 1003, (I,A(1),I=1,22) 00001450 PRINT 1003, (I,SCALE(1),I=1,30) 00001450 IF(LTPST) GO TO 3 00001450 IF(LTPST) GO TO 3 00001470 EEPS=FDS=57.295779 00001450 PRINT 1003, (EPS, ITHTC, ETA, L 00001500 PRINT 1003, SEPS, ITHTC, ETA, L 00001500 PRINT 1003, 9L 00001500 PRINT 1003, 9L 00001500 PRINT 1006, FINCT, ITH(L), TRST(L), MASS(L), CGP(I), CG(I), IX(I), IY(I), I=1, MT00001570 105 SEST) 00001550 6 20NTINUE 00001550 QUO01550 00001550 RENT 00001550 <td></td> <td>. 50</td> <td>10 3</td> <td></td> <td></td> <td></td> <td>80001330</td> <td></td>		. 50	10 3				80001330	
3 CONTINUE 00001350 IF(LTPST) GO TO 5 00001350 QEAD(5,1013) TIM(1),MASS(1),CG(1),IX(1),IY(1),CGP(1) 00001400 QEAD(5,1014) (TIM(I),TRST(I),I=1,NTRST) 00001400 S CONTINUE 00001420 Q PQINT 1002 00001430 PQINT 1002 00001430 PQINT 1002 00001450 PQINT 1005, (I,SCALE(I),I=1,30) 00001450 PQINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPST) GO TO 5 00001450 IF(LTPST) GO TO 5 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPST) GO TO 5 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 PRINT 1006, PRINT 1007, STATE 00001450 PRINT 1007, STATE 00001450 PRINT 1009, BL 00001500 PRINT 1009, BL 00001500 PRINT 1009, BL 00001500 PRINT 1006 00001550 QEATINE 00001550 QEATINE 00001550 QEATINE 00001550 PRINT 1007, STIMUE 000015	65	1 954	D(5,1015)	(SCALE(I),I=1	,30)			
IF(LIPST) G0 T0 5 00001350 READ(5,1013) TI4(1), "ASS(1), CG(1), IX(1), IY(1), CGP(1) 00001400 READ(5,1014) (TIM(I), TRST(I), I=1, NTRST) 00001400 S 20NTINUE 00001420 PRINT 1002 00001430 PRINT 1003, (I,A(I), I=1,22) 00001450 PRINT 1005, (I,SCALE(I), I=1,30) 00001460 IF(LTPST) 60 T0 5 00001450 PRINT 1005, (I,SCALE(I), I=1,30) 00001460 PRINT 1005, (I,SCALE(I), I=1,30) 00001460 IF(LTPST) 60 T0 5 00001460 PRINT 1005, (I,SCALE(I), I=1,30) 00001450 PRINT 1006, PRINT 1007, STHTC, ETA, L 0000150 PRINT 1007, STH(I), TRST(I), 4ASS(I), CGP(I), CG(I), IX(I), IY(I),		3 204	ITTNUE				0001350	
4EB0(5,1013) TLM(1), MASS(10), CG(1), IX(1), JY(1), CGP(1) 90 4EA0(5,1014) (TLM(1), MASS(10), CG(1), IX(10), IY(10), CGP(10) 5 CONTINUE 00001400 6 60001410 7 PRINT 1002 00001430 95 PRINT 1004, NORC, IPRN, NALL, IPUN, NRODY, ISCALE, ITRST 00001450 95 PRINT 1003, (I,A(I), I=1,22) 00001450 96 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 97 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 98 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 99 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 90 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 90 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 90 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 91 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 92 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 93 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 94 PRINT 1005, (I,SCALE(I),I=1,30) 60001450 95 PRINT 1003, (I,A(I),I=1,4,SS(I),CGP(I),CG(I),IX(I),IY(I),I=1,NTC0051570 60001550 95		. IFC	LTPST) GO	10 5			00001350	
90 QEAD(5,1013) TIV([D),MASS(10),CG([D),IX(ID),ICG([D)) 90 QEAT(5,1014) (TIM(I),TRST(I),I=1,NTRST) 90 S CONTINUE 90 QEOD(5,1014) (TIM(I),TRST(I),I=1,NTRST) 90 S CONTINUE 90 QEOD(5,1014) (TIM(I),TRST(I),I=1,NTRST) 91 S CONTINUE 92 QEOD(140) 93 PRINT 1002, NORC, IPRN, NALL, IPUN, NGODY, ISCALE, ITRST 94 PRINT 1004, NORC, IPRN, NALL, IPUN, NGODY, ISCALE, ITRST 95 PRINT 1003, (I,A(I), I=1,22) 96 QEEPS-100, (I,SCALE (I), I=1,30) 97 PRINT 1005, (I,SCALE (I), I=1,30) 98 QEEPS-100, (I,SCALE (I), I=1,30) 99 PRINT 1003,EEPS, ITHTC, ETA, L 99 QEOD(1400 99 PRINT 1003,EEPS, ITHTC, ETA, L 90 QEOD(150) 90 PRINT 1003, SEPS, ITHTC, ETA, L 91 QEOD(150) 92 PRINT 1000, SEPS, ITHTC, ETA, L <td></td> <td></td> <td>E40(5,101</td> <td>3) TIM(1), MASS</td> <td>(1),C5(1),IX(1),</td> <td>IY(1),36P(1)</td> <td></td> <td></td>			E40(5,101	3) TIM(1), MASS	(1),C5(1),IX(1),	IY(1),36P(1)		
90 REAR(5,1014) (TEM(1), REST(1), I=1, NTREST) 00001400 5 SONTINUE 00001420 0 PRINT 1002 00001420 95 PRINT 1004, NORC, IPRN, NALL, IPUN, NGODY, ISCALE, ITRST 00001430 95 PRINT 1003, (I, A(1), I=1, 22) 00001450 96 PRINT 1005, (I, SCALE (I), I=1, 30) 00001450 97 IF(LTPCT) GO TO 5 00001450 98 IF(LTPCT) GO TO 5 00001450 99 PRINT 1005, (I, SCALE (I), I=1, 30) 00001450 99 IF(LTPCT) GO TO 5 00001450 90 IF(LTPCT) GO TO 5 00001450 90 PRINT 1005, (I, SCALE (I), I=1, 30) 00001450 90 IF(LTPCT) GO TO 5 00001450 90 PRINT 1005, SCALE (I), ITT, I 00001450 90 PRINT 1003, EEPS, ITHTC, ETA, L 00001500 90 PRINT 1006 00001510 90 PRINT 1007, (TIM(I), TRST(I), 4ASS(I), CGP(I), CG(I), IX(I), IY(I), I=1, NT C0001570 105 SRST) 00001550 6 CONTINUE 00001550		QE.	AD(5,1013	114(10), MASS	(19),C5(13),IX(1	10),14(10),060(10)		
S JONTINGE OBUILED C OBUILED PRINT 1002 OBUILED PRINT 1003, (I,A(I), I=1,22) OBUILED PRINT 1003, (I,A(I), I=1,22) OBUILED PRINT 1005, (I,SCALE(I),I=1,30) OBUILED IF(LTPRT) GO TO 3 OBUILED EEPS:EPS*57.295779 OBUILED LOO TIT4IC=THIC*57.295779 OBUILED PRINT 1003, EEPS, TT4TC, ETA,L OBUILED PRINT 1003, EEPS, TT4TC, ETA,L OBUILED PRINT 1003, EEPS, TT4TC, ETA,L OBUILED PRINT 1006 PRINT 1007, (TIM(L), TRST(I), 4ASS(L), CGP(I), CG(I), IX(I), IY(I), I=1, NT 00001530 PRINT 1007, (TIM(L), TRST(I), 4ASS(L), CGP(I), CG(I), IX(I), IY(I), I=1, NT 00001530 QUILD C OBUILED OBUILED OBUILED OBUILED OBUILED COUNTSCO PRINT 1007, TIMUE OBUILED	40		A-1(5,1014.	(IIM(I), (KS)	(1),1=1,NIRSI)		******	
C ECHO OUTPUT 00001410 95 PRINT 1002, NORC, IPRN, NALL, IPUN, NGODY, ISCALE, ITRST 00001430 95 PRINT 1003, (I,A(I), I=1,22) 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPST) GO TO 3 00001470 EEPS=EPS-57.295779 00001450 PRINT 1003, EEPS, ITHTC,ETA,L 00001500 PRINT 1003, BL 00001500 PRINT 1003, BL 00001510 PRINT 1006, PRINT 1007, ITH(L), TRST(L), MASS(L), CGP(I), CG(I), IX(I), IY(I), I=1, NT00001530 105 SRST) 6 20NTINUE 00001550 9 CUNT 00001550 9 CUNT 00001550	•	5 .00	TINDE			•	00001400	
95 PRINT 1002 00001420 95 PRINT 1003, (I,A(I), f=1,22) 00001450 PRINT 1003, (I,SALE(I),I=1,30) 60001450 IF(LTPRT) GO TO 3 00001450 IF(LTPRT) GO TO 3 00001450 IF(LTPRT) GO TO 3 00001450 PRINT 1003, (I,SALE(I),I=1,30) 60001450 IF(LTPRT) GO TO 3 00001450 IF(LTPRT) GO TO 3 00001450 PRINT 1003,EEPS,T79 00001450 PRINT 1003,EEPS,TTY3 0000150 PRINT 1003,BEPS,TTY1C,ETA,L 0000150 PRINT 1009,BL 0000150 PRINT 1007,1TH(L),T2ST(L),4ASS(L),CGP(I),CG(I),IX(I),IY(I),I=1,NT00051570 00001550 I05 JRST) 00001550 EURN 00001550 PLURN 00001550 PLURN 00001550		C 5040 00	TOUT				00001410	
95 PRINT 1002, NORG, IPRN, NALL, IPUN, N900Y, ISCALE, ITRST 00001430 PRINT 1003, (I,A(I), f=1,22) 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPCT) 60 T0 5 00001450 IF(LTPCT) 60 T0 5 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 IF(LTPCT) 60 T0 5 00001450 PRINT 1005, (I,SCALE(I),I=1,30) 00001450 PRINT 1005, SCALE (I), ITALE, ISSON 00001450 PRINT 1003, EEPS, ST73 00001450 PRINT 1003, EEPS, TTHTC, ETA, L 00001500 PRINT 1006 00001500 PRINT 1007, (TIM(I), TRST(I), MASS(I), CGP(I), CG(I), IX(I), IY(I), I=1, NT C0001570 I05 SRST) 6 CONTINUE 00001550 QETURN 00001550 PRUNT 00001550		6 ECH5 00	NT +007				00001423	
PRINT 1003, (I,A(I),I=1,22) 00001450 PRINT 1003, (I,SCALE(I),I=1,30) 00001450 IF(LTPRT) GO TO 3 00001470 EEPS:EFDS:57.295779 00001480 ITHIC=THIC*57.295779 00001500 PRINT 1003, EEPS.TTHTC,ETA,L 00001500 PRINT 1003, 9L 00001500 PRINT 1007, 1THH(I),TRST(I), MASS(I),CGP(I),CG(I),IX(I),IY(I),I=1,NT00001550 IOS SRST) 6 20NTINUE 00001550 RETURN 00001560		301	NT 1002		TOUN NOODY TECH	1 5 77057	00001430	
PRINT 1005, (I,SCLE(I),I=1,30) 60001450 IF(LPRT) GO TO 3 60001450 IF(LPRT) GO TO 3 00001470 EEPS=EDS*57.295779 60001450 PRINT 1003,EEPS,TT4TC,ETA,L 00001500 PRINT 1009,BL 00001510 PRINT 1007,1TIM(I),T2ST(I),4ASS(I),CGP(I),CG(I),IX(I),IY(I),I=1,NT00001530 IOS \$RST) 6 20NTINUE 00001550 RETURN 00001560			NT 1004,	T. A/TI 1-1.22	, 1- JN, H-OUT, 1554		00001440	
IF(LIPST) 60 T0 5 00001470 EEPS=EPS*57.295779 00001480 100 TT4TC=THTC*57.295779 00001490 PRINT 1003, EEPS, TT4TC, ETA,L 00001500 PRINT 1006 00001510 PRINT 1007, TIM(I), TRST(I), 4ASS(I), CGP(I), CG(I), IX(I), IY(I), I=1, NT00001530 105 \$RST) 6 CONTINUE 00001550 QETURN 00001550 PRINT 00001550		100	NT 1005.	(T.STALE(T).T=	1. 30)		60001450	
EEPS=EPS*57.295779 60001480 100 TT4TC=THTC*57.295773 60001490 PRINT 1003,EEPS,TT4TC,ETA,L 60001500 PRINT 1003,EEPS,TT4TC,ETA,L 60001500 PRINT 1006 00001510 PRINT 1007, TIH(L),TRST(L),4AS3(L),CGP(L),CG(L),1X(L),IY(L),I=1,NT00001530 60001550 IOS \$RST) 60001550 EETURN 00001550 EETURN 60001560		TEC	TPSTI GO	TO 3	.,		66661430	
100 TT4TC=THTC-57,293773 00001490 PRINT 1003,EEPS,TT4TC,ETA,L 00001500 PRINT 1009,BL 00001510 PRINT 1007,1TLH(L),T2ST(L),4ASS(L),CGP(L),CG(L),1X(L),LY(L),L21,NT00001530 00001550 105 \$RST) 00001550 6 20NTTHUE 00001550 9ETURN 00001550 9D 00001550			C-FDC+57	295779			60601480	
PRINT 1003,EEPS,TTHTC,ETA,L 00001500 PRINT 1009,BL 00001510 PRINT 1007,TIM(I),TRST(I),HASS(I),CGP(I),CG(I),IX(I),IY(I),I=1,NTC0001530 00001520 IO5 SRST) 00001550 6 CONTINUE 00001550 QETURN 00001550 FURN 00001550 PRINT 00001550		TTA	TC=THTC+5	2.295773			66661400	
PRINT 1009, BL 00001510 PRINT 1006 00001520 PRINT 1007, (TIM(I), TRST(I), MASS(I), CGP(I), CG(I), IX(I), IY(I), I=1, NT CO001550 RRST) 00001550 6 CONTINUE 00001550 RETURN 00001550 FND 00001550		PPT	NT 100A.F	FPS.TTHTC.FTA.			60001500	
PRINT 1006 00001520 PRINT 1007, (TIM(I), TRST(I), MASS(I), CGP(I), CG(I), IX(I), IY(I), I=1, NT00001530 00001540 105 SRST) 00001550 6 20NTINUE 00001550 RETURN 00001550 FND 00001550		POT	NT 1009		•		60001510	
PRINT 1007, (TIH([), TRST([), MASS([), CGP([), CG([), 1X([), IY([), I=1, NT00001530 105 SRST) 00001540 6 CONTINUE 9 COUDISSO 9 ETURN 00001550 10 COUDISSO 10 COUDISSO 1		POT	NT 1006				60001520	
105 SRST) 00001540 6 CONTINUE 00001550 RETURN 00001550 FND			NT 1007-4	THET	. 4453(1) .CGP(1) .	CG(T) . YX(T) . TY (T) . T	#1.NT00001530	
6 CONTINUE 00001550 QETURN 00001550 END 00001550	105	tPCT	1				00001540	
Q0001550 END 00001570		6 201	TTNUE				00001550	
END 00001520		PFT	USN				00001560	
Panarata .		FND					60001520	

BEST AVAILABLE COPY

6

SUBROUTIN	E SIXDEG	74/74	097=1	FTN 4.5+414	09/12/77	17.09.
	SUR	DUTTNE ST	TADES (AT HOS)			
	t	UNT	FRSITY OF NOTOF	DAME. NOTRE DAME. THO.	80001590	
	1004 FOR-	AT (124 A	PHA FRPOPRETS	A TEL TOTAL SHIEL SHOL	88001500	
	1005 FOR-	AT(11H W	NO FPODAL		20001510	
5	1006 FOR-	AT(11H M	CH ERRORZXE14.81		00001620	
	1157 FOP-	AT (1X. 1	20.5)	· · · ·	00001630	
	8589 FO?-	AT (/// 5)	ALPHA 1F	D.S. DEGREES EXCEEDS MAXIMUM*.		
	1* 41	OHA IN AF	PAY+)			
10	1666 FOR-	AT(//5X."	HA24 -, 1F10.0	.* EXCEEDS MAXIMUM MACH *.		
	1 . NU.	TAFR IN AF	(*AY*)			
	REAL	MASS, IX,	IY, 4TX, MTY, 4TZ,L,	47JD,42JD	00001640	
	REAL	TOCH			00001650	
	INTE	SER PG			00001550	
15	LOGI	CAL LCZA,	L CHA . LC MPA		00001830	
	LOGI	CAL LTRST			00001840	
	CONY	ION /AIRAL	K/ TEN, PRES, RHD, W	WIS,VA	00001670	
	2044	ION /COEF	AMCH(20, 30), ALOU	A (20, 30) , C(20, 20, 30) , NOA (30) , NOM (3)	00001580	
	CONH	ION /INDBL	K/ IDEN, IWIND, ITS	P. IPRN, IALL, NORC, IPUN, NRODY, ITRST.	T00001590	
20	SRST				00001700	
	CONH	ION /INIT/	TITLE(12), SCALE	301.4(22)	00001710	
	2044	ION/THRUST	/TI4(15), TOST(15)	. 4455(15), 36(15), IX(15), IV(15), CGP	100001720	
•	\$5)				00001730	
	CONN	ION/T STOAT	PEPS, THTC, ETA,L ,	,?L	00001740	
25	COMM	ION /WINAL	K/ NOH, YH (1281, H	(125,3)	00011750	
	COMM	ION/COEP1/	NP.Y		00001760	
	CONH	INN /POL/	CE(TO), ALPHAR, C.	A, CHPA, CZA	80081770	
	2044	ION /DENAL	K/ 400, YD (128) . 05	Y(125), TEMP(128)	00031750	
	JONH	ON/EOSK/C	11(1+).02(14),3510	141, DE2(14), WIN(3), DAL(10), DEC(10)	00061790	
30	044	ION/ED9K2/	V, Q, S, OP, ALPHAN, A	MCHN, PG, LN	00001800	
	SOHA	ION/ED9K3/	AXX, AXY, AXZ, AYX, 5	XYY, AYZ, AZX, 4ZY, AZZ	800C1510	
•	2044	ION/ED9K4/	LCOUNT			
	DATA	COND, RAC	157.235779,.01745	3233/	00001820	
	LTRS	T=ITRST.E	0.0		00001850	
35	ITER	= 0			00001850	
	LN=0				00001570	
	PG=0				00001550	
	KOUN	T=0			00001893	
	LCOU	NT=Q			00001900	
40	44=1				00001910	
	DZ(1)=1.			00001920	
	5=3.	1415927 · A	(19) **2/4.		00001930	
	2 OC	0 I=1,14			00001940	
	20 01(1)=A(I)			00001950	
45						
· .	SCAP	= RAD/2.			00001950	
	0=01	(8) *RADZ			C0001970	
	E=91	(9) + PADZ			00001980	
		(101 - RAD2			00001990	
20	SPEC	USE			00002000	
	SPES	INCEP			0102010	
	STEC	05(0)	~		00002020	
	51=5	INCO	•.	•	0702000	
	US=C	UNIFI			00002040	
	55=5	TH(F)			00002050	
	C VEPSOR C	OPONENTS	(54)		00002050	
	71(4	IN-CP+ST+	22+2b+C1+C2		00002070	

Q,

:	SURPOUTINE SIXDES	74/74	OPT=1		FTN 4.5+414	09/12/77	17.09.0
	310	101-00+514	22+17+62+27			00002080	
60	310	111=00+014	22+12+92+23			00002100	
	AMP	=A (1A)	03.3. 3. 35			60302110	
		4(20)				00007120	
	25 1F.	A(20)*(D1)	1) -4 (211) .GT . 0.153	10 597		00002130	
	41=	1				00012140	
65	55 Y=7	1(3)				. 00002150	
	·	LTRST) GO	TO 56			00002150	
	X=0	1(1)			•	90002170	
	IFC	X.GT.TINCN	TRST11 50 TO 56			00002150	
	I=1					00002190	
70	58 IF (X.LT.TIMCI	+1)) 30 TO 57			000022000	
	I=I	+1				00002210	
	50	10 58				00002220	
	\$7 30N	TINUE				0002230	
	¥1=	TRST(I)				,00002240	
75	12=	TRST (I+1)				00002250	
	¥=¥	1+(X-TIM(1))+((Y2-Y1)/(TIM(I	+1)-TIM(I)))		00002260	
	ATR	ST=Y				60002270	
	· *1=	MASS (1)				00002280	
. 80	¥2=	MASSINTRST)			00002290	
	¥=Y	1+ (X-TIM(1))*((Y2-Y1)/(TIH(N	TRST) - TIH(1)))		00002300	
	. 4(1	6)=Y				00002310	
	400	T= (AMP-4 (1	8))/A(20)			00002320	
	AMP	=4 (18)				00002330	
85	¥1=	26(1)				00002340	
	12=	CG (NTRST)				00002350	
		1+(X-11M(1))*((Y2-Y1)/(TIM(N	IRST)-TIM(1)))		00002360	
						00002370	
	11-	TY INTORT Y				00002350	
44		LA ININGI I	11#//Y2-V11//TTH/N			00002390	
		E1-4	//*///2=/1////14/h	14311-1111111		00002400	
		****				00002410	
	# 2.	TVINTOSTI				00002425	
	Y=Y	1+ IY-TTHII	11+/ (Y2-Y1)/(TTH(N	(((!)NTT-(T25T		00002450	
		6) =Y				60002450	
	¥1=	CGP(1)				00002450	
	12=	COPINIEST				60002470	
-	YIY	1+ (X-TIM(1))*((Y2-Y1)/(TIM(N	TRSTI-TIM(1)))		00002480	
100	3GL	#¥				00002490	
	56 20N	TTNUE				00002500	
	IFC	X.GT.TIMIN	TRSTI) MOOT=0.			09002510	
	SCL	=1./SORT (D	1 (8) ** 2+ 01(9) ** 2+0	1(10) ** 2+01(11)	**2)	00002520	
	Dit	8) = SCL * D1 (8)			00002530	
105	01(9) = SCL . 01 (9)			00002540	
	010	101=SCL * 11	(10)			00002550	
	210	11) = SCL * 01	(11)			00002560	
	CAL	L ATMOS(Y)				00002570	
	C MATRIX	OF DIRECTI	ON COSINES			00002550	
110	AXX	= 71 (8) ** 2+	01(11)**25			00002590	
	- 4xr	= 31 (8) * 91 (91+71(10)*01(11)			00002600	
	4×2	=)1(8).01(10)-01(11)*01(3)			00002510	
		= 71 (6) * 01 (9)-71(11)*01(10)			00002620	

115	4YY=71(9)**2+01(11)**25	00002630	
	4VI=01(9)*01(10)*01(11)*01(5)	00002640	
	AZX=01(8) •01(10) +01(11)•01(9)	00002650	
	6ZY=01(9)*01(10)-01(11)*01(9)	00002660	
	€ZZ=n1(10) ** 2+01(11) ** 25	00002670	
150	IF(IWIND.ED.0) G) TO 2104	00002650	
		00002690	
		0007700	
	444 15 (VU(T) CE V) CO TO 210	00002710	
125	Tetat	00002720	
	CO TO 100	00002730	
	181 POTNT 1005	00002740	
	aftion	64002760	
	210 FASE= (Y-YW(T-1)) / (YW(T)-YH(T-1))	60002700	
130	00 220 Kat. 3	00002740	
	220 HTN/KIEW(T-1,K) +FASE + (W/T-K)-W(T-1,(1))	00002790	
	C WIND COMPONENTS	00002800	
	#X=2.*(WIN(:)*AXX+#TN(?)*AXY+WTN(3)*AY7)	00002000	
	. WY=2.*{WIN(1)*AYX+WIN(2)*AYY+WIN(3)*AY7)	60002820	
135	W7=2.+ (WIN(1)+A7X+HIN(2)+A7X+HIN(3)+A77)	00002830	
•	C VELOCITY VECTOR	00002840	
	D1(12)=D1(12)-WX	00002850	
	21(13)=D1(13)-WY	00002850	
	D1(14)=01(14)-WZ	80002679	
148	C SPEED	00002350	
	2104 #=\$921(01(12) ++2+01(13) ++2+01(14) ++2)	00022890	
	C ALPHA PRIME - YAN - ARCTAN(SORT(V+V+W+W)/U))	00002900	
	AL PHAP: ARCTAN (SART (D1 (13) ** 2+ 71 (14) ** 2). 01 (12))	00002910	
145	ALPHAN= ALPHAR+ COND	00002920	
	C DYNAMIC PRESSURE	00002930	
	3=.5*PHO*V*V	00002940	
	C CROSS-SPIN	00002950	
	2P== 502T (01 (6) ++2+01 (7) ++2)	00002950	
150	C ROLL ANGLES	00002970	
	3P=AQCTAN(01(13), 01(14))	00002980	
	OPP=ARCTAN(-D1(7), D1(6))	00002990	
	C PD/2V AND DD/2V	00003000	
•	IF(V.GT.0.) GO TO 2214	00003010	
155	2 CONTINUE	0207020	
	. PO=0.	60003030	
	20=0.	0000 3040	
	4MCHN=0.	00003050	
	50 10 2215	00003050	
160	2214 PD=(01(5)+A(19))/(2.+V)	00003070	
	05=(npb+a(19))/(2.•V)	0000 1050	
		00003090	
	2213 UNU=0-S-A(19)	00003100	
		00003110	
105	C INTERPLATE COEFFICIENT TANLES	00003120	
		00003140	
	1-1 104 (K) + EU+ U) + AND + (NUT(K) + E'+ 311 60 13 145	0000150	
		00003160	
	15 (HOL (K) 50 A) 50 50 120	0000 51/9	
1.0	TELAL DUAN IT ALDUALL VIL CO TO 444	00003140	
	AT THE THREE TARLES THE AVENUE AND	00003190	

0

0

SUR OF INE	SIXDES	74/74	OPT=1	FTN 4.5+414	09/12/77	17.09.	
					8080 1200		
	I	F CAL PHAN. GT	ALPHA(N.K)) GO TO	8888			
	j	*?			. 00003210		
175	110 I	FIAL PHA (J,K)	.GE.ALPHAN) GO TO	115	00003220		
	J	= J+1			00003230		
	5	0 TO 110			0000 3240		
	111 P	RTNT 1004, AL	PHAN		0000 3250		
	RI	ETURN			00003260		
160	85 68 P	RINT 8889, 1	AL PHAN				
	5	ETUPN					
	115 F	RA= (AL PHAN-)	12 PHA (J-1, K)) / (ALP4	A(J,K)-ALP4A(J-1,K))	0000 7270		
	120 I	F(NOM(K).EQ.	0) GO TO 140		00003280		
	1	F CAMCHN.LT.	MCH(1,K)) 60 17 13	1	00003290		
102		=NUM (K)			00003300		
	:		HCH(H, K)) 60 10 11	31			
	4 30 1			E	60603310		
198	T.	TA1	02.445AA7 60 15 15		00003320		
•	•						
	61	TO 130			00003340		
	131 0	RINT 1006.AP	ICHN		00003350		
		TURN			00003360		
195	1131 0	RINT 1665. /	AHCHN				
	91	TUPN					
	135 F	H= (AHCHN-AM	CH(I-1.K))/(4H2H(]	.<)-4HCH(I-1.K))	00003370		
	21	E(K)=C(I-1	J. K) + FRH+ (C(I, J.K)-	C(I-1, J.K))	0000 3350		
	I	FINDAIK) . E2.	3) GO TO 150		00003390		
200	T	======, J-1,	K)+=R4* (C(I, J-1,K)	-2(I-1, J-1, K))	00003400		
	L	ZA=K.E9.5			00003410		
	L	C44=K.E0.13			00003420		
	L	MPA=K.EQ.19)		00003430		
	1	FILCZA) CZI	L= (CE (<) -T 1) / (AL PHA	(J,K)-ALPHA (J-1,K))+COND*	00003440		
205	\$50	CALE (K)			00003450		
	I	FILCHA) CHA	I= (CE (<) -T 1) / (AL PHA	(J,K) - ALP+4 (J-1,K)) *COND*	0000 3460		
	\$50	CALF (K)			00003470		
		F(LCMPA) CMP	A= (SE(K) -T1)/(ALP4	A(J,K) - ALPHA(J-1,K)) * COND*	00003450		
	\$50	CALE (K)			00003490		
510	21	E(K) =T1+FRA4	(CE(K)-T1)		0000 7500		
	50	D TO 150			00003510		
	140 5	E(K)=C(I, J-1	,K)+FQA*(C(I,J,K)-	·C(I,J-1,K))	00003520		
	50	0 10 150			00003530		
	145				0000 3540		
215	150 0		SUAL- IKI		0000 3550		
	4544 2	NIT NUE	THIS CA, CT, CE, CL	, ch, ch trance st	00003550		
	1511 .	EINDLY NE 11	CO TO 1519		00003570		
		0 1613 WY=1.	10 13 1912		00003500		
978	1513 3	FIRENS CEIKE	+SCALE/VY)		600035500		
	1512 0	NITINUE	JOILEINN		00003610		
	5	PE SIN (OP)			00003620		
		P=COS(0P)			00003630		
		PL=STN(4. *00	21		0000 3640		
225			2)		00003650		
		PP4=SINCH	100)		00003660		
	-	PP4=COS (4	PP)		00003670		
•					00007680		
	SUBROUTINE	SI XOE 3	76/76	OPT=1	FTN 4.5	•616 09/12/77	17.09
------	------------	-----------	---------------	--------------------	-------------------------------------	--------------------------------	-------
•1				11.02D: ATE/LI			
£ 31		SCPL	SPACE 2	2)		1-3-4-52(3)-00003200	
		.7.	ICE (2) + CE	1)	+CP4+97+CE(5)1+(-SP1+(CE(6)+)	CE(7) + SPL + CE (000 3 371 0	
		SAL.	CPL) + CP+CF	(23)		0000 77 20	
		21 -	CF (9) +CF (3	101+35(10)+5	+	+ (CF (24) + 3F (0000 37 30	
23	5	\$251	.SP+CE(26)	+CP)	to set a set o setter set de	0000 1740	
		C4=	(CF(13)+CF	(14) * SP + CF	151 *0941 *09+ (CF (15) +05 (17)*5	P4+CF (18) +CP4000 1 3750	
		SIPO	*:F(19))*S	P+ (2F(27)+0	(24) *SPP4+ CF (29) *CPP4) *00*00	S (0PP) +CF (20) 0000 7760	
		CN=	(CE(13) +CE	(14) * 5P4 +CE	15) +C24) + (-SP) + (3E(15) +CE(17)	+SP4+CE(18)*00003770	
		SOP'	*****CE(19))+C3+(CE(27)	+CE(25) + SPP4 +CE(29) +CPP4) +QD	- (-SIN(OPP))+00003750	
240)	SCEC	21)			0000 3790	
		IFI	ININD.ED.C) GO TO 151		00003510	
	(C ADD WIN	D PACK			00003510	
		911	1?)=01(12)	+WX		0000 7520	
		910	13)=01(13)	+WY		00003430	
245		51(14)=01(14)	+WZ		0000 3540	
	(C KINEMAT	IGAL RELAT	IONSHIPS		00003850	
		0 . AETOC	ITY (9)			00003650	
		151 020	2)=2.*()1((12) • Axx+01(1	3) * A *X + 31 (14) * AZX)	00003870	
		02(3)=2.*(D1)	(12) • AXY + D1(1	3) * 4 ¥ Y + 31(14) * 4 Z Y)	00003350	
25		220	L)=Z.*(01)	12) * AXZ+D1(1	3) * A YZ + 31(14) * AZZ)	CO DO 3890	
		. MONEN	TS			00003900	
		D2 (5)=1./A(15)+(150+CL)		00003910	
		DZC	6)=1./A(16	- (157 C4+D	(5) • 01 (7) • (A (16) - 4 (15)))	00003920	
		DZC	/)=1./4(16	01 + (250+ CN-01	(5) *71(5) * (A(16) - A(15)))	0000 3930	
25	, (· VERSO	* (10)			00003940	
		020	===.5*(-(1(5)•)1(11)•	01(7) • 01 (9) • 01(5) • 01(10))	00003950	
		DZC	9)=5*(-(1 (6) + 31 (11) 4	01(7)*01(8)-01(5)*01(10))	00003960	
		320	10)=5•(-	01(7)*01(11)	-31(5)-31(5)+01(5)-31(9))	00053970	
		920		1 (5) • 01 (5) • 0	1(5)+)1(9)+01(7)+01(10))	0000 3950	
201		1-1	NIRCONE OJ	707977695-54		00003990	
		0-2	•. (#(1/)-	301333005-5-	51(3))	00004030	
			10 250			*****	
		230 6-2	.* 4 (1 7)			00004010	
265		FIRE	• • • • • • •			00004020	
		250 024	12)=05H+CX	-6+1 **= (01 16	1+ 11 (14) -01 (7) +01 (13))	00004055	
		121	1 3) = 054+CY	-G+AYY- (01 (7	1+01(12)-01(5)+11(14))	00004050	
		021	14)=054+CZ	-G+47Y- (0119	1+01(13)-01(6)+01(12))	00004050	
		TEU	TPST) GO	TO 251		00004070	
27	1	TX=	ATPST+COS	EPS)		00004050	
-		TY=	TPST+SING	EPS) +SIN(THT	C)	00004090	
		17=	-ATRST+SIN	(EPS) COS(TH	17:)	. 00004100	
		TTP	FTA+TX			00004110	
		414	=- (9L-CGL)	• 17		00004120	
275		412	=- ("L-CGL)	• TY		00004130	
		LAN	D=MOOT+ D1 (51*: **2		00004140	
		423	D= 400T+ 01 (71+1++2		00004150	
		020	5)=92(5)+H	IT X		00004150	
1		320	6)=02(5)+(HTY+HYJD+Q+S	*CZ*ACG)/A(16)	00004170	
280		020	7)=02(7)+(MT 7+ H7 J 3+ 0+ 9	*CY*40G)/4(16)	00004180	
		05(121=02(12)	+TX/A(18)		00004190	
		020	13)=02(13)	+TY/4(18)		0004200	
		25(14)=02(14)	+T?/4(18)		00004210	
		251 201	TINUE			00004220	
		761					

BEST AVAILABLE COPY

SUBROUTINE SIXOF

	C RUNGE-KUTTA CONSTANTS	· · ·	60004240
	00 298 I=1,14		00004250
	60 TO (294,295,296,297,70),41		00004260
	294 JE1(I)=D1(I)		60004270
290	DE2(I)=D2(I)+H		00004250
	£1=0£2(I)*.5		00004290
	50 10 298		00004300
	295 E1=02(I)*.5*H		00004310
•	JE2(I)=DE2(I)+4.*E1		00004320
295	50 TO 298		60004330
	296 E1=02(I)*H		00034340
	JE2(I)=DE2(I)+E1+E1		00004350
	30 TO 298		60004360
	297 E1=(DE2(I)+D2(I)+H)/5.		00004370
300	298 01(I)=0E1(I)+E1		00004350
	41=41+1		00004390
	50 TO 55		C0004400
	70 30 Th (540,550),44		00004410
	540 KOUNT=K CUNT+1		60004420
305	IF(01(3)-4(22)) 550,597,580		00004430
	550 IF (A95(D1(3) - A(22)) . LT 01) 60 TO 597		00004440
	4=-(71(3)-A(22))/D2(3)		00004450
	46=2		60004460
	41=1		00004470
310 .	C NEXT TIME LINE		00004450
	30 TO 55		60004490
	560 IF(MOD(KOUNT, IPRN).NE.0) GO TO 25		00004500
	GALL ED		00004510
	SO TO 25		00004520
315	597 CALL ED		00004530
	RETURN		00004540
	END		00004550

BEST AVAILABLE COPY

C

3

Port in	In active faile Obtai	FTN 4.5+414	09/12/77 17.09
1	FUNCTION ARCTAN(P1.P2)	· · · · · · · · · · · · · · · · · · ·	430.0000
	IF(P2) 2.1.2		
	1 IF(P1) 3.8.4		ACCOUTO
	3 APCT1N=4.7123890		ACC JUDZO
5	RETHON		A4C C0030
	A APCTANE 1. 5707963		A4C00040
	PETHON		A2C00050
	STEIDIN E.S.E		ARC30050
			A2C 00 07 0
18	• IF FFC.01.0.1 GU 10 8		ARCOCOSO
••	ABRTAN-T ALAFAAT		
	RTUIRN=3.141392/		ARC 30 090
	CEIUSN .		ARC 00190
	. AQUIANE . D	•	A2C00110
	REIURN		ARC 00120
12	S ARCEATAN (P1/P2)		A2C00130
*	IF(P2) 10,9,9		A2C00140
•	10 ARCTAN=ARC+3.1415927		A3C00159
•	RETURN		A3C00150
	9 IF(42C) 11,12,12		A3C00170
20	11 ARCTAN=ARC+6.2831853		A2C00140
·	RETURN		A2C00190
	12 ARCTAN=ARC		APCANZAN
	RETURN		420 40 210
	END		40000210

BEST AVAILABLE COPY

×	5				*						
		AHOUR	0* 0000	2.0000	5.000	10.0000	15.0000	20.000	25.0000	27.0000	50.000
	HACH	0.0300	2730	2735	2748	2515	2860	2725	2435	2220	2250
	HACH	0014.	2730	2735	2748	2515	2860	2725	2435	2220	229
	HACH	. 996.8.	2916	2930	3010	32.25	3175	3110	2993	2630	2630
	HOW	0016.	3093	3110	3200	3450	3489	3430	3250	6162	2910
		1.9700	3890	3965	4200	4520	4610	4550	4150	3750	3750
	HUCH	1.1300	5050	5055	5120	5420	5700	5660	5290	0115*-	5119
	HUCH	1.2900	5210	5218	5260	5560	5840	0625	5470	5430	5430
		0000-2	5213	5216	5260	55 60	5840	5790	5470	5430	5430
5											
		ALCHA	0.000	2.9000	4.0700	9.0000	10.0000	15.000	20.000	25.3000	50.0000
	HOTH	00100	.0213	.0043	.0208	1440.	.0631	.1343	.2663	9061.	.200
•	HACH	0014.	.0213	.0043	.0206	1446.	.0631	\$ 1343	.2563	.1905	.200
	HACH		.0012	.0013	.0033	.0450	.0770	.1652	.1945	• • • • • •	.2000
	HECH	8016.	000	0036	.0025	.0528	1960.	+161.	1:22.	.9540	.1000
	HACH	1.7300	0029	0012	0013	. 0641	.1129	.2410	1062.	.1543	.2000
	HECH	1.1300	.0050	1500.	.0109	.0570	1411.	\$622.	.2807	\$960.	.1003
		1.2700	. 0056	.0023	.0076	.0585	.1031	.2235	.2170	.0319	.1000
		2.1100	.0356	.0023	.0076	.0566	.1031	.2235	.2170	.0319	.1000

BEST AVAILABLE COPY

Appendix G

Coefficient Arrays Input

21 200000

		AHell	0.000	2*000	+.0000	8.600	10.000	15.000	20.000	29.0000	50.00
	HACH	0006-0	0.000	0300	1350	5350	7750	-2.1830	-5.9180	-12.5000	-12.50
		. 0514.	9.5000	0020*	1350	5350	7750	-2-1930	-5.9180	-12.5000	-12.50
	MACH	.9366.	0.000	0260*-	1750	4139	4600	-1.1650	-2.8909	-6.1500	-6.15
	HORK	8966.	0.0003	1050		-* 35 00	4400	-1-1000	-2.8000	-5.0000	-5.00
		1.0700	0.000	0700	1630	••2950	3300	7600	-2.3720	-3.4590	-3.45
	HJCH	1.1700	0.000	0600	1600	3120	2540	6000	-2.4630	-3.4000	-3.40
	HACH	1.2790	0.000	0800	1900	3100	2650	6750	-1.7709	-2.3300	-2.33
		9010.5	0000.0	0509	1800	3100	2650	6750	-1.7700	-2.3300	-2.33
5		(6)									
	•	ALONA	0.000	5.0000	10.000	15.0000	20.000	25.0000	27.0000	50.000	
	NDEN.	0010-0	0.00.0	3800	7500	-1.1900	-1.7100	-2.4600	-2.7803	-2.7500	
		9614.	0.0033	3800	7500	-1.1300	-1.7100	-2.4600	-2.7.40	-2.7503	
	-104		0.0000	4190	8030	-1.2900	-1.6750	-2.5400	-2-9150	-2.9150	

BEST AVAILABLE COPY

-3.0900 -3.6600 -4.2600

-4.2600

-3.6600

-2.6700 -3.0600 -3.3160 -3.6800 -3.6800

-3.0900

-1.9600 -2.1600 -2.4000 -2.4000

-1.3000 -1.4600 -1.5270 -1.5273

0004--0006--0006--

-.3009 -.4109 -.4100 -.4100 -.4100

0000-0

e. 3003 e. 9000 e. 900e

0010-1 0010-1 0011-1 0011-1

1 1 1

CYP 21 51

										29.000	.0520	0250*	1405	.1725	-1459	.1060	0160.	8768.	
50.0000	\$140.	\$140.	\$650*	.0761	6910.	.0500	+110.	1110.		27.8000	.0520	.0520	.1485	\$2.1.	6541.	.1050	0160.	0460*	
25.0000	.0415	.0415	9650*	.0351	.0489	.0500	1110.	1440.		25.0000	·0534	.0534	.1486	.1725	.1459	.1060	0160.	0460.	
20.000	.0471	1740.	.0677	.0582	.0560	.0576	.0530	.0530		20.000	1160.	.0311	2960 .	.1043	.0855	1060.	.0860	.0860	
15-0000	0640.	0640.	.0704	. 3610	.0622	.0604	.0562	-0502		15.0004	.0343	.0343	.0544	2450.	4640.	.0576	2450.	\$ 450.	
10.000	.050	+0S0 ·	0690.	.0506	£650°	.0565	.0567	.0567		10.0000	1620.	1920.	.0246	.0246	.0274	.0265	.0259	•0259	
3.0000	\$640.	5640.	.0665	.0585	+150.	.0555	.0552	.0552		8.0000	.0123	.0123	4110.	.0166	.0167	.0217	.0168	.0158	
0000 **	.0460	0490 .	.0634	.0561	.0542	1450*	1450 .	1750.		4.0000	. 0.060	. 0060	. 0055	.0065	6600 .	.0004	• 0 0 2 4	• 0059	
2.000	.0470	.0470	.0627	.0562	.0552	9450 .	.0543	.0543		2.0000	00000	0.000	.0031	.0031	2400*	0 1 0 0 *	.0050	•0020	
0.000	.0470	.0470	:550.	• 0567	.0525	.0536	.0546	* 024S		0.000	0.000	0.000	0.9000	0.000	0.000	0-000	9.090	0.000	
We T	0015-0	0614.	.9300	001.0.	00C0. 1	1.1300	1.2700	0010-2	101	A PHA	0010.0	0614.	901.6.		1.2700	1.1709	501.2.1	0011.5	
	24	195		MACH	MACH	HACH	HACH	MACH	164 30		HACH	HAT4	HIGH	-		HUEL	HACH		

BEST AVAILABLE COPY

S NOT

-2.4930 -4.9500 -5.5500 -2.6300 -2.1900 -1.9500 -2.1400 50.000 2296*-2566*--.9568 8676 ---1.4366 -2.9200 -2.1960 -1.9500 -2.1490 -1.3964 -1-4405 -1-4405 27.0000 -2.4930 -2.4930 -2.6700 -2.5600 -2.0500 -- 54 98 -1.4366 -1-3954 -1.4405 25.0000 -2.3190 25.9000 -- 98 32 --9932 -.9868 -1.4405 -2.3199 -2.4850 -2.1700 -1.9100 20.000.02 -1-0173 -1.0088 -1.0369 -1.2605 22.0000 -1.0173 -1.2537 -1.4101 -1.4101 -1.9500 -1.9600 -2.2600 -1.9050 -2.2280 -2.1650 -1.9090 -1.0569 -1.2629 -1.7450 -1.9820 -1.6200 15.0000 -1.1149 -1.2546 -1.2192 20.000 -1.7450 -1.9000 1640---.8497 -1.2192 -2.0900 -2.1600 10.000 -1.0014 +660.1--1.1083 -1.1878 -1.4000 -1.3700 -1.0014 -1.2152 -1.2152 15.0000 -1.2500 -1.2500 -1.5190 1.1900 -1.5900 -1.4500 10.0000 --9600 -- 85 00 8.0000 -1-0518 -1.0510 -1.1036 -1.1634 -1-1753 -1.2085 -1.2086 -- 3590 -.6350 1.0947 -.7200 -.7290 -.9700 -1.0415 7.0000 -1.0569 -1.0976 -- 4850 --6400 -1.0415 -1.0-35 -1.1261 -.6750 -.6050 -.5780 -1.1316 -1.1716 -.5700 --4.50 -1.0500 -1.0500 -1.0426 -1.0693 -1.1130 2.0000 +690 .1--1-1008 -1.1000 5.0000 --3580 0044----4550 -.4160 -.3950 -.3450 -.3450 -1.0769 -1.0789 -1-0416 -1.1042 0.000 -1.3564 1.0413 -1.1117 0.000 0.0000 0000.0 0.000.0 0.0000 0.0000 -1.1117 0.0000 0.0000 0010-5 .4700 .6700 0616. 2.0390 Vicle 1.3700 1.1300 1.2103 301 K. 1.1700 1.2100 AHC JA 0015.0 0627" 0016-1.3700 (11) HOCH -----------364 1.154 HUTH HOW PACH HURN -----104 13CH HOCH. HI CH . 2

BEST AVAILABLE COPY

-2.1403

-2.1400

-2.0509

-1.9100

-1.6200

-1.3709

-.8350

-.5750

0562 --

0.000.0

0000-2

HOT.

CT. C(12)

AFIT/GA/AA-77D-8

\$9.999	1.0609	1.0609	•292.	.3916	6602°	**09*	·6214	•129.		25.0900	35.6000	35.6000	15.4000	12.6000	6.7000	6.7100	4.7400	4.7400
27.0965	1.0509	1.0509	6292.	9165 .	.3099	.6044	•129.	+129"		8888-22	19.5000	19.5000	0005*6	8.0008	6.000	5.4100	4.1000	•.1000
22.9999	.9261	1926.	.5036	.6287	. 1000	.0332	5373	£1£2.		20.9999	12.5000	12.5009	6.6400	5.6000	5.3000	4.1500	3.3000	3.3000
20.000	+2+6*	+2+6*	6056.	1.0400	1.2660	1.2840	1.0051	1.0051		16.000	4.6000	4.6000	2.7009	2.2000	1.3500	0069.		0009.
15-9656	6405.	6905.	.7229	.8345	1.0030	1.0010	1606.	1606.		14.0000	2.6000	2.6000	1.5500	1.1400	.4630	3000	0.000	0.000
10.000	.2148	.2148	.3312	.3760	8151.	.4570	. 1665.	1565.		12.0008	1.5200	1.5200	.5300	• • • • •	0.000	5000	5000	- 6003
6.000	.1364	.1364	1272.	.202.	.2511	.2755	. 22 33	• 22 33		10.000	0026.	0026.	• 5000	.2403	0.000	3200	-*5000	C005
9060-4	• • • • •	6720.	.0037	.0057	.0373	.0450	.0176	.0176		8.0300	• 5 300	.5300	• 5 9 0 0	.4200	.1100	6602.	.3200	.3290
2.000	.0025	.0025	.0035	.0031	6000.	.0261	.000	.000		2.0030	• 5309	.2300	•4700	•5500	0041.	.3000	10054*	.4500
9-9663	0.000	9-9160	0.000	0.000	0.000	00000	0.000	. 0.000		0.0000	0-0000	8- 0000 35- 5000	15.4000	0.0000	0.0000	0.0000	0.9500	0.0000
Thall	0010.0	.4700		0006.	1.0709	1.1100	1.2703	0016-5	(61)	ALPHA	0010-0	4100	0619.		1.0709	1.1700	1.7700	3016-2
	-454	HIGH	MUCH	~~	224	Ł	-ACH	-			24	-454	HACH	24	-104			147

BEST AVAILABLE COPY

CN64 C1173

AFIT/GA/AA-77D-8 8.0000 15.0000 25.0008 50.0008 -111.3303 -115.0000 -119.3000 -176.8000 -133.5000 -154.0000 -154.0000 -178.8200 -141.8000 -145.4900 -157.6030 -164.0000 -178.3000 -178.3000 -111.3303 -115.0000 -119.0309 -126.8000 -138.5000 -154.0000 -154.0000 -115.5209 -145.0000 -154.5300 -169.5000 -107.5000 -210.0000 -213.0600 -105.7500 -130.0000 -147.0300 -159.5000 -192.0000 -215.3000 -215.0000 -121.1880 -128.0000 -134.0000 -144.4000 -158.4000 -175.0000 -175.0000 -143.7607 -121.0003 -123.0330 -111.9000 -97.8000 -83.5000 -53.5030 -03.5000 -97.5000 -83.5000 -143.7603 -131.0000 -123.0000 -111.8000 4.0390 2.0000 \$160. 20.0000 +110-+110. .0618 0060. 0000 .0727 .0727 0000-0 .0714 .0714 .0010 0260. \$1:0. .080. 0.0000 .0727 .0727 1.1700 ALTHA ALTHA 0010-0 00.6--4300 0610. 1.3399 2.1700 0010-0 .4100 0015-0016. 0010-1 1.1500 1.2700 2.0700 1.7300 1 . 21 5 (02) 5 HUES HUCH HOW HIGH -HACH MACH 49.44 MACH MUCH HACH HUCH HUBH PACH HOFH HUNH CHPE CHO BEST AVAILABLE COPY 104

Vita

James D. Schneider graduated from Oklahoma State University in 1962 with a Bachelor of Science degree in Mechanical Engineering. He entered pilot training, after receiving his commission through Officer Training School, and earned his aeronautical rating in February 1964. He accumulated twelve years of flying experience including instructor pilot in both the T-37 and T-38 trainers, aircraft commander in the F-4D, and operations pilot in the T-39. After completing an assignment to Headquarters Air Training Command as Operations Center Staff Officer, Major Schneider entered the Air Force Institute of Technology for study in Astronautical Engineering.

Permanent address: Fargo, Oklahoma 73840

	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPC	AFIT/GA/AA77D-8	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITL	E (and Subtitle)	1	5. TYPE OF REPORT & PERIOD COVERE
	MAGNUS EFFORT ON A BALLISTIC	TRAJECTORY	AFIT Thesis
			6. PERFORMING ORG. REPORT NUMBER
7. AUTH	IOR(a)		8. CONTRACT OR GRANT NUMBER(S)
i	James D. Schneider Major USAF		
9. PERF	ORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	Air Force Institute of Technol	logy (AU)	
	Wright-Patterson AFB, Ohio 454	+33	
11. CON	TROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
			December, 1977
			NUMBER OF PAGES
14. MON	ITORING AGENCY NAME & ADDRESS(II differen	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
	Air Force Institute of Technol	Logy (AU)	Unclassified
	Wright-Patterson AFB. Ohio 44	+33	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
			1
7. DIST	RIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	om Report)
18. SUP	PLEMENTARY NOTES		1292
	Approved for public release;]	LAW AFR/190-17	JERRAL F. GUESS, CAPT, USAF Director of Information
9. KEY	WORDS (Continue on reverse side if necessary a	nd identify by block number	
9. KEY	WORDS (Continue on reverse side if necessary a Ballistic Trajectory	nd identify by block number	
19. KEY	WORDS (Continue on reverse side if necessary a Ballistic Trajectory Magnus Lift	nd identify by block number	
19. KEY	WORDS (Continue on reverse side if necessary a Ballistic Trajectory Magnus Lift Trajectory Simulation	nd identify by block number	