

REMOTE VIEWING SYSTEM

RALPH W. FISHER
McDonnell Aircraft Company McDonnell Douglas Corporation St. Louis, Missouri 63166

Contract Mo0014-75-C-0660
ONR Task 213-129 June 1977
Final Report for Period I July 1975-30 May 1977

Approved for public release; distribution unlimited.

PREPARED FOR THE

Change of Address

Organizations receiving reports on the initial distribution list should confirm correct address. This list is located at the end of the report. Any change of address or distribution should be conveyed to the Office of Naval Research, Code 221, Arlington, Virginia 22217.

Disposition

When this report is no longer needed, it may be transmitted to other authorized organizations. Do not return it to the originator or the monitoring office.

Disclaimer

The findings in this report are not to be construed as an official Department of Defense or Military Department position unless so designated by other official documents.

Reproduction
Reproduction in whole or in part is permitted for any purpose of the United States Government.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)
"Approved for public release distribution unlimited"

SUPPLEMENTARY NOTES

KEY WOROS Continue on reverse side if necessary and identify by block number
Variable Acuity Displays Optical Detection
Optics Remote Sensing
Vision Television Systems

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)
A fully operable laboratory model of the Remote Viewing System was designed and built. The system consists of a TV camera and TV projector both equipped with a non-linear lens, i.e. a lens that matches the human eye acuity function with excellent resolution capability near the optical axis, but greatly reduced resolution capability in the peripheral areas. The camera and projector are slaved together by a digital servo system. An operator can steer the camera and thus the projector by use of a helmet mounted tracker. \rightarrow next

20. ABSTRACT.

As the operator rotates his head to observe off axis display detail, the camera is commanded to rotate and the projector follows. Thus, high acuity detail is retained on the foveal axis of the observer's eyes. This system allows wide field-of-view (160) remote viewing of scenes, with resolution comparable to human vision, using conventional TV system bandwidths.

The gimballed camera and projector mechanical and optical designs are presented along with the method of relaying the optics thru the gimbals. The digital servo system is described along with the associated computer programs. The head tracking system includes sections on the tracker, illuminator, optics and electronics.

Considering that the system is the first of this type, the results were very encouraging. Equipment developed to perform conventional functions worked perfectly including the servo control, TV camera, TV projector, and Head Tracker. The most challenging problem encountered in the development were associated with the state-of-the-art advancement required in non-linear optics. Problems were also encountered in malntaining optical quality in the camera and display. The maximum resolution attained is approximately 1.5 milliradians compared to the 0.5 milliradians that is theoretically possible.

Even with this limitation, system performance was very impressive. The value of the wide field in maintaining observer orientation within the full 160° field-of-regard was readily apparent. Target tracking capability by head control was very good and peripheral cueing by motion and glints proved to be of significant value in the acquisition and tracking task.

Detailed performance analyses of the current design indicate better acuity is possible by fabricating new rear spline elements for the non-linear lenses and redesigning the projector optical relay. Through these efforts, 1 milliradian performance should be readily obtained. Performance better than this appears to be limited by a diffraction problem inherent in the projector Schlierin optics and would require use of a different type of projector.

UNCLASSIEIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

Section Title Page
1 INTRODUCTION AND SUMMARY 1
2 APPROACH 4
3 ELECTRO-OPTICAL SYSTEM DESIGN 8
3.1 Camera Subsystem Design 8
3.1.1 Camera 8
3.1.2 Optical Relay 8
3.2 Projector Sub-System Design 12
3.2.1 The Projector Selection 12
3.2.2 Optical Relay Design 12
3.2.3 Focus Correction 26
3.24 Projection Surface Design 32
3.3 Head Tracking System Design 32
4 MECHANICAL DESIGN AND FABRICATION 42
4.1 Camera Assembly (P / N 71A050002-1001) 42
4.2 Projector Assembly (P/N 71A050003-1001) 42
CONTROL SYSTEM 52
5.1 Microprocessor Hardware 54
5.1.1 Diagnostic Hardware 55
5.1.2 Diagnostic Software 58
5.2 Camera Electronics Box 62
5.2.1 System Clocks and Timing 63
5.2.2 Control Logic 63
5.2.3 Camera Box Electro Mechanical Description 66
5.3 System Software 67
5.3.1 PROM Progranming 67
5.3.2 PROM \#1, Interrupt Handler Software 69
5.3.3 Transmitter Service Routine 73
5.3.4 PROM \#2 Yaw Control Equations 74
5.3.5 PROM \#3 Diagnostic Software 75
5.3.6 PROM 非 4 Pitch Control Equations 75
5.4 Math Models 75
5.4.1 Mode 1 76
5.4.2 Mode 2 79
5.4.3 Mode 3 84
5.5 System Operation 84
5.6 Head Tracker Interface Electronics 91
6 RESULTS AND CONCLUSIONS 94
6.1 Camera Performance 98
6.2 Total System Performance 98
6.2.1 Low Contrast Performance 103
6.2.2 Demonstration Results 107
6.3 Conclusions and Recommendations 107

TABLE OF CONTENTS (Continued)

Section	Title	Page
7	REFERENCE LIST	109
Appendix		110
A	BRIEF DESCRIPTION OF THE REMOTE VIEWING SYSTEM (RVS)	110
B	CAMERA CONSIDERATIONS	113
C	PROJECTOR STUDIES	116
D	PROM 1, PROM 2, PROM 3, AND PROM 4 COMPUTER PROGRAM LISTINGS	129
E	APPLICATION OF THE NIGHT VISION LABORATORY (NVL) THERMAL VIEWING SYSTEM STATIC PERFORMANCE MODEL TO THE RVS	176
	E. 1 MTF's	176
	E. 2 Noise Equivalent Modulation (NEM)	181
	E. 3 MRM Calculations	183
	E. 4 Conclusions	184
	APPENDIX - LIST OF REFERENCES	186
	DISTRIBUTION LIST	187

LIST OF ILLUSTRATIONS

Figure
 Title
 Page

1 Two Axis Gimbaled Cameras 2

Projector
Remote Viewing System Optical Requirements 4

Control System Elements 7

Camera and Relay Brassboard 11

Camera Optical Llements 13

Light Valve Operation - No Output 14

Light Valve Operation - Maximum Oputput 14
Light Valve Nonlinear Lens Interface for Single Element Relay 16
Basic Relay Parameters 17
Effect of Magnification on Brightness 21
MTF of an Annulus 23
Effect of Magnification on System Acuity 24
Projector Optical Relay 25
Relay Test Setup 26
Projection Lens Comjugate Geometry 27
Image Plane Position Relative to Infinity Focus for 54 In . Conjugate Distance 28
Focus Corrector Geometry 30
Corrector Agnular Blur 31
Display Error vs Actual Angle 33
Nodal Point Shift of Nonlinear Lens 34
Head Position Sensing 34
Head Tracking Radiometrics 35

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
24 Helmet Mounted Detector 40
25 Projector Mounted Source 41
26 Response of Infrared Head Tracking Detector System 4127282930
Camera Assembly 43
Pitch Axis 44
Yaw Axis Assembly 45
Camera Optical Elements 46
Camera Optical Mounting Surfaces 47
Projector Assembly 48
Relay Assembly 50
Projector Pitch Axis Assembly 51
Servo Control Block Diagram 52
Block Diagram Control System 53
Wiring Diagram SBC-80 Front Panel 56
Interrupt Channel 57
Computer Input and Output Ports 59
Display Processor Keyboard Explanation 61
Universal Asynchronous Receiver/Transmitter 64
Camera Electronics Box Block Diagram 65
Camera Electronics Box 67
(a) Top View Camera Electronics Box)
Camera Electronics Box68
(b) $\mathrm{SBC}-80 /$ Remote Camera Data Transfer Board
Camera Electronics Box Component List 69
Camera Electronic Box Transmitter Circuit Diagram 70

Figure	Title	Page
46	Camera Electronics Box Receiver Circuit Diagram	71
47	Software Flow Diagram	72
48	Mode 1 Servo Block Diagram	76
49	System Response for Stick Input	77
50	Servo Gains	78
51	Camera Azimuth Axis	79
52	Mode 2 Se rvo Block Diagram	80
53	System Response for Stick Input	81
54	System Response for Stick Input	82
55	System Response for Stick Input	83
	Pitch Servo Block Diagram	85
	System Response for Ramp Input	86
58	System Response for Step Input	87
59	System Math Model	88
60	Head Control Detector Amplifier	93
61	Geometry to Convert Shaft Encoders Readings to True Angles	95
62	Threshold Resolution vs Angle from Optical Axis	99
63	Threshold Resolution vs Angle from Optical Axis	100
64	Threshold Resolution vs Angle from Optical Axis	101
65	Threshold Resolution vs Angle from Optical Axis	102
66	Horizontal Display Error vs Angle	104
67	Vertical Display Error vs Actual Angle	105
68	Minimum Resolvable Modulation Predictions	106

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
A-1	Human Eye Characteristics	111
A-2	Bandwidth Requirements	111
A-3	Electro-Optical Schematic	112
A-4	Camera/Projector Interface	112
C-1	General Projection Geometry	117
C-2	Display Brightness Geometry	118
C-3	Normalized Display Brightness	121
C-4	Optimum Geometry for Specular Screen Coatings	122
C-5	Optimum Screen Coating	124
C-6	Prom No. 1 Service Interrupt Handler Software	128
D-1	Prom No. 2 Yaw Control Software	130
D-2	Prom No. 3 Monitor Program	138
D-3	Prom No. 4 Pitch Control Software	151
D-4	Scan Distortion Introduced by Foveal Lens	160
E-1	Optical Relay Parameters	177
E-3	NVL Model Adapted to VARVS for Visual Spectrum	179

APPENDICES

A Brief Description of the Remote Viewing System (RVS)
B Camera Considerations

C Projector Studies
D PROM 1, PROM 2, PROM 3 and PROM 4 Computer Program Listings
E Application of the Night Vision Laboratory (NVL) Thermal Viewing System Static Performance Model to the RVS

Section 1

INTRODUCTION AND SUMMARY

This final report documents the results of Contract No. N00014-75-C-0660. The objective of this contract was to design and build a fully operable laboratory brassboard of the MCAIR Remote Viewing System.

Under a previous ONR Contract (Ref. 1), MCAIR proved the feasibility of a unique non-linear lens which made this effort possible. This lens takes advantage of the "variable acuity" characteristics of human vision to reduce the amount of information (or bandwidth) that must be transmitted in a wide field-of-view high resolution imaging system. A brief description of the remote viewing system concept which utilizes this lens is presented in Appendix A. The brassboard system constructed under this contract represents a significant advancement in the state-of-he-art of remote viewing because for the first time a variable acuity picture that is designed to be compatible with human vision was recorded, transmitted, and displayed in real time.

The ONR Brassboard Remote viewing system consists of a two axis gimballed TV camera as shown in Figure 1 and a two axis gimballed TV projector as shown in Figure $2(a)$ and (b). A serial transmission link and low loss TV cable allow the camera to be located up to 400 ft . from the projector. The operator of the system can steer the camera under servo control using a helmet mounted tracker shown in Figure 2, approximately 90 Cgrees right and left and can look up and down $+45^{\circ}$. A microprocessor ilplements two axis servo control of the camera and projector servos. The sysem can track angular rates up to $1 \mathrm{rad} / \mathrm{sec}$. It is capable of looking at the sun with no catastrophic failure. The projector subsystem consists of a 9 ft . dia sphere, a TV projector, and mounting support frame. It requires a floor area of 15 ft . by 15 ft . The lower portion of the sphere is cut away, thus an 8 foot ceiling is adequate. Interconnecting cables between the microprocessor and the operator allow the operator to position himself at the center of the sphere. He is required to be at the spherical center directly below the projector to realize the best optical performance of the system and for optimum head control.

Considering that the system is the first of this type, the results were very encouraging. As should be expected the only serious problems encountered in the development were associated with the state-of-the-art advancement required in non-linear optics. All conventional functions or equipment worked perfectly including the servo control, TV camera, TV projector, Head Tracker, etc. Problems were encountered in maintaining optical quality in the non-linear image when transmitted through the optical relays, both in the camera and display. While most of these problems were overcome, the resulting resolution was still about 3 times lower than anticipated, about 1.5 milliradians compared to the 0.5 milliradians that should be theoretically possible.

Figure 1 Two Axis Gimbaled Camera

(a) Left Side Showing Detector Mounted on Helmet

(b) Right Side Showing Source on Projector Assembly

Figure 2 Projector

Even with this limitation, system performance was very impressive. The value of the wide field in maintaining observer orientation within the full 180° field-of-regard was readily apparent. Target tracking capability with head control was very good and peripherial cueing by motion and glints proved to be of significant value in the acquisition and tracking task.

Detailed performance analyses indicate better acuity is possible by fabricating new rear spline elements for the non-linear lenses and redesigning the projector optical relay. Through these efforts, 1 milliradian performance should be easily obtained. Performance better than this appears to be limited by a diffraction problem inherent in the light valve's Schlierin optical output. Further improvement would require use of a different type light valve projector.

Finally it appears that the laboratory demonstration which involved viewing a scene in which most of the spatial detail is stationary does not show the true potential of the system for the highly dynamic airborne application. It is therefore highly recommended that the brassboard hardware be flight tested in order to obtain a true performance assessment in a dynamic environment.

Section 2

APPROACH

The basic design philosophy is discussed and the rationale for the approach used is presented in this section. In subsequent sections detailed design of the equipment is developed. As a starting point for these discussions the original design goals from our proposal are listed below.

Electro-Optical Subsystem

The design goal of the video subsystems is to generate a projected display that fully supports human vision in both field-of-view and resolution. More specifically the goals are:

- 160° hemispherical FOV
o Image transfer characteristics as shown in Figure 3
o Resolution as a function of viewing angle as shown in Figure 3
o Display brightness greater than 1 ft -lambert over the entire FOV
o Standard TV bandwidth video transmission between camera and projector

Figure 3 Remote Viewing System Optical Requirements

Control Subsystem

Camera platform with motion capabilities of:
o Coverage -360° azimuth, $+\underset{2}{ } 0^{\circ}$ elevation

- Acceleration $-3000^{\circ} / \operatorname{second}^{2}$
o Slew rate $-300^{\circ} /$ second
Projector platform with the same specifications
Servo static position accuracy - 30 arc minutes

The starting point for the design was presented in the proposal for this study (References 2 and 3). As this design evolved, considerable change was dictated by practical considerations. Salient differences occurred in the gimballing philosophy and electronic servo control system. The basic design and these changes are summarized below.

The camera electro-optical design followed the proposal very closely. A silicon vidicon camera was used for solar damage protection (See Appendix B). This necessitated use of an optical relay with a mechanical iris for light level control. A significant change from the proposal was the decision to utilize a 1023 line raster $T V$ system which was selected to obtain greater resolution. The basic non-linear lens has an on-axis focal length of 2 inches and an image plane height of 0.72 inches (for maximum FOV of 160°). In a 525 line raster system (488 effective lines), the angular separation between scan lines is:
$\frac{.72}{488 \times 2}=0.738$ milliradians
2.5 minutes of arc

Ke11
ngular resolution results when this separation is multiplied by the r which is 1.4 . Thus the angular resolution is:
$2.5 \times 1.4=3.5$ minutes of arc
By utilizing a 1023 line system, the scan line separation is:

$$
\frac{.72}{937 \times 2}=.384 \text { mil1iradians }=1.32 \text { minutes of arc. }
$$

The angular resolution then is:
1.85 minutes of arc

This value is much closer to the desired performance. It will be shown later, however, that only a small fraction of this improvement was actually achieved for various technical reasons.

The camera gimbal approach changed somewhat from that outlined in the proposal. The azimuth gimbal axis was not at the lens nodal point but was offset as illustrated in Figure 4. The primary reason for this was simplicity of fabrication and the wide azimuth coverage available with this arrangement. The use of gimbal position encoders shown on Figure 4 reflects our decision to employ digital electronics wherever possible. This approach eliminated the need for rate and acceleration sensors on the camera platform because these functions can be derived digitally from the position encoder outputs.

The projector design deviated substantially from that outlined in the proposal, the difference being primarily in the mechanical gimballing arrangement. After consultation with General Electric Co. (G.E.) on mechanical constraints of the light valve projector, we decided to gimbal the projector in azimuth. This simplified the optical relay because it required articulation in one dimension only, the pitch direction. This could be handled by a simple half-angle mirror and eliminated the need for image derotation. Besides making the relay much simpler and easy to align, this approach assured a much higher level of light output, a critical concern with this system (See Appendix C). The resulting projector gimballing arrangement is shown in Figure 4. Other minor problems that impacted on the projector system design were:
o Focus correction is required because of the close proximity of the projection screen to the projector. This arises because the lens has a flat focal plane when focused at infinity. When the plane is shifted to obtain correct on-axis focus, the variable focal length makes this location incorrect for all other field angle points. An additional lens element was required to correct this problem. Design of this element is discussed in Section 3.2.3.
o Incompatibility between the projector Schlerin optics and the nonlinear lens. This rather complex problem is described in Section 3.2 and caused inefficient optical relay performance for projection angles near the optical axis.

This problem required refabrication of the rear element of the projection lens and relay design revision to obtain greater magnification between projector and non-linear lens.

A digital control system was selected primarily because of its flexibility. Since a control system for a variable acuity optical link of this type had never been constructed, we felt a oreat number of changes in control system dynamics and modes would be required before successful operation would be achieved. A digital system with microprocessor control met these requirements. In addition, this approach will make future additions of more sophisticated control modes possible e.g., eye control. Figure 4 shows the basic elements of this control system.

Head position sensing was as outlined in the proposal except that the souce and detector locations were interchanged. The IR source had to be mounted on the projector instead of the helmet so that it would be additive with the infrared output from the projector.

Figure 4 Control System Elements

Section 3

ELECTRO-OPTICAL SYSTEM DESIGN

The electro-optical design is divided into three separate efforts, those relating to the camera, the projector, and the head tracking system. For the camera, this effort includes TV camera selection and optical relay design to mate the camera with the non-linear lens. For the projector, this effort covers TV projector selection, relay design, and focus corrector design. The head tracking system design uses an infrared source boresighted with the projector and a detector assembly mounted on the helmet and is a part of the control system which is described in Section 5. Each of these items is discus detail in the following sections.

3.1 CAMERA SIIRC

The camera u esign consisted of the camera subsystem integration and optical relay des $+g^{11}$.

3.1.1 Camera

The camera electro-optical configuration followed that of the proposal very closely. The original TV camera purchased as the sensor was a GE model 4 TE33Al. This camera was selected because it utilized a silicon vidicon which is necessary for solar burn protection. It was compact and self contained and was believed to be compatible with the GE light valve projector which was selected for the display.

During early evaluation of the camera/projector combination, a vertical jitter was noted on the display. This problem was traced to the random scan interlace of the GE camera. The projector however, requires a precise $2 / 1$ interlace to maintain a stable picture. This problem was corrected by using an external sync generator. Later in the systems integration effort, numerous intermittent electrical connections were encountered in the TV camera. This, plus poor optical performance of the automatic iris assembly caused us to conclude that the GE camera would not be suitable for the demonstration system.

Therefore, another camera was selected and we elected to choose one with a higher line rate capability to obtain greater resolution. After a thorough search of available TV cameras, a General Electrodynamics Co. Model 6073 B camera was selected. This system had the desired 1023 line rate and a stable $2 / 1$ interlace required by the projector.

3.1.2 Optical Relay

The function of the optical relay system is to relay a good quality image from the non-linear lens to the TV camera vidicon with no loss of field-of-view or any noticeable vignetting. It must also magnify the image to the size compatible with the vidicon requirements and provide exposure control for the camera system. Exposure control is obtained by using an
electronic controlled iris on one of the relay lens. For convenience and to reduce cost, this element was purchased with the camera. Relay design requirements are:

- Its input must be the non-linear lens image which is 0.72 inches in diameter and is located about 0.070 inches from the last (aft) lens element. An F/5.6 ray bundle must be accommodated and imaging is nearly telecentric where all chief rays are nearly parallel to the optical axis.
o Its output must be to vidicon faceplate which has an active scanning area of 0.5×0.375 inches. Later this was found to be a circular area 0.7 inches in diameter.
- One relay element must be a 50 mm F/1.4 lens with an installed automatic iris assembly. This iris must be properly integrated to form an apecture stop without vignetting.

Using these optical relay requirements, the design progressed as follows. The relay optics were designed to use lenses that could be purchased off-the-shelf rather than custom designed and fabricated special lenses. The lenses were chosen with sufficient aperture and format to transmit the F/5.6 cone of light forming the non-linear lens image.

Use of the available automatic iris/lens assembly dictated that the relay use lenses operating at infinity conjugates. A pair of lenses are therefore required to relay an image. The first lens collimates the image and the second forms an image from the collimated bundle of light. The lens speed required is the same as the speed of the cone of light to be relayed. The image-to-image distance is approximately the sum of the two focal lengths. Magnification of the relayed image is equal to the ratio of the focal lengths of the two lenses.

If the purchased camera with the automatic iris assembly is used as the second relay lens, the focal length of the first relay can be calculated if the final image size is known. Selection of a final image size, requires a tradeoff of resolution and field-of-view. The problem is that a 4×3 aspect raster is used to scan the circular image from the non-linear lens. The aspect ratio of the TV raster must be 4×3 because the projector system uses a light valve television projector with a fixed 4 X 3 raster format. The image should cover as much of the raster as possible.

If the raster height is made equal to the image diameter, no FOV is lost but it does waste a large part of the TV format. If the image is larger, the angular resolution would be improved but the top and bottom of the FOV is cutoff. A compromise solution is to let the raster height cover 90% of the image diameter. The part of the image that is lost lies in an area of low interest. The non-linear lens image which is 0.72 inches in diameter should be demagnified to be 0.417 inches in diameter for a standard $1 / 2$ by $3 / 8$ inch television raster. An 86 mm focal length lens when paired with the 55 mm Vicon lens will give the desired image size. An 85 mm F/2.0 Olympus lens was selected for the first relay lens which
has an aperture that is large enough to collect all the light from the non-linear lens without the need for a field lens.

The second relay lens has an auto-iris to provide exposure control. However, this is the case only if the iris is the aperture stop. The aperture stop is defined to be the stop that effectively restricts the cone of rays passing through the lens system.

The following analysis shows how the auto-iris becomes the aperture stop. The first element restricting the light bundle is the non-linear lens which has a speed of $\mathrm{F} / 5.6$. The non-linear lens is telecentric in the image plane which means the non-linear lens' exit pupil is located at infinity. Therefore, the next lens, the 85 mm Olympus, will reimage the non-1inear lens exit pupil in it's back focal plane. The 85 mm lens is fast enough so that it doesn't restrict the F/5.6 light bundle. Therefore, if the 50 mm lens is positioned so that it's entrance pupil is coincident with the back focal plane of the 85 mm lens, the auto-iris will be the aperture stop.

The relay system described above fulfills all of the optical requirements but is mechanically awkward when coupled to the camera and non-linear lens. It is about three feet long and the two heavy elements are located on the ends. It can't be folded into a more compact package without severe vignetting unless a second relay is added. Therefore, an additional pair of relay lenses are used to fold the optical system 180° so that the vidicon is located directly above the first relay. The back focal distances of the second pair of relay lenses are large enough to accommodate folding mirrors. Each mirror folds the system 90°. Two $80 \mathrm{~mm} \mathrm{~F} / 2.8$ Xenotars are used for the second relay giving it unity magnification.

Adding a second relay makes it necessary to use a field lens to keep the auto-iris as the aperture stop and to keep vignetting from becoming noticeable. The field lens is a double convex lens located in the second image plane. With the image actually being formed inside the lens, the field lens doesn't affect the image and dust particles on the field lens surface are not in focus. The focal length of the lens is chosen to form an image of the exit pupil of the 50 mm relay lens onto the iris of the last relay lens. Using the lens maker's formula the focal length is found to be 52 mm .

The vidicon has typical silicon detector response and is very sensitive to near-infrared energy. However, the non-linear lens and relay optics are not optimized for this spectral band and the image suffers if the infrared is not filtered out. Various narrow band and low pass filters were tried and the one that worked best was a Schott KG-3 infrared absorbing glass. It is placed in the collimated region of the relay. A brassboard of this system was constructed and evaluated. This setup is shown in Figure 5.

Figure 5 Camera and Relay Brassboard

After initial testing of the camera and projector systems, some modifications were necessary. First the camera vidicon was rotated 90° to compensate for the 90° image rotation which occurs in the projector system. This gave more vertical FOV coverage than horizontal FOV coverage due to the 4×3 raster. Previously, the image size was chosen so that the part of the image falling outside of the raster was the top and bottom of the FOV. Now the 10% image loss occurs in the horizontal direction where the full FOV is desired. To get full coverage of the horizontal FOV, the circular image from the non-1inear lens must fit within the rectangular raster but the system resolution must not suffer. The solution was to magnify the image and increase the raster size so that the image would cover as many of the discrete diodes that makeup the sensitive surface area of the vidicon as possible. The vidicon has a sensitive area about 0.7 inch in diameter. The image which is also circular is made slightly smaller. The raster size is increased to 0.93×0.70 inches so that the raster height is about the same as the image diameter. Consequently the image covers more discrete sensitive elements than before and the resolution is improved with no loss of FOV.

The relative size of the image to the 4×3 aspect raster is smaller now than it was because the full image lies within the raster. This causes the projected image to be smaller. Consequently, the projector relay optics must be altered to provide increased magnification of the television image. This modification is described later in Section 3.2.

As in the projector, the camera relay optics had to provide increased magnification. The second relay pair which before operated at unity magnification was made to magnify the 0.417 inch diameter image to 0.703 inches. The larger image was obtained by replacing the last 80 mm Xenotar with a $135 \mathrm{~mm}, \mathrm{~F} / 4.7$ Xenar lens. This required only mirror modifications in mouting hardware. The other optics were unchanged with the same field lens used.

The optical components are located as shown in Figure 6. The television image is formed in the following way. Light from the object enters the non-linear lens from the left and is imaged immediately behind the non-linear lens. This image is collimated by a $85 \mathrm{~mm} F / 2.0$ Zuiko Olympus lens. The collimated bundle is imaged a second time by a Vicon $50 \mathrm{~mm} \mathrm{~F} / 1.4$ lens that contains the aperture stop for the system. A field lens is located in the second image plane. The first mirror folds the optical axis up 90° where a $80 \mathrm{~mm} \mathrm{~F} / 2.8$ Xenotar lens collimates the second image. A $135 \mathrm{~mm} \mathrm{~F} / 4.7$ Xenar lens picks up the collimated bundle and the final image. The second mirror folds the optical axis 90° to make the image hit the vidicon. An infrared absorbing filter is placed in the collimated bundle between the last pair of relay lenses.

3.2 PROJECTOR SUB-SYSTEM DESIGN

The second effort in the system design was the electro-optical subsystem design of the projector which consisted of projector selection, relay design, focus corrector design, and projection dome design and is detailed in the following sections.

3.2.1 The Projector Selection

Logic for the original selection of the GE light valve projector is presented in Appendix C. It was the lowest cost approach that could produce adequate display brightness. A PJ 7000 light valve was originally purchased for the system. This unit had a 525 line raster and an optical output of 700 lumens. Later this unit was updated to a 1023 line raster for reasons stated earlier in Section 2 and 1000 lumen output thereby making it a PJ7150 projector.

3.2.2 Optical Relay Design

After receiving the projector from GE it was coupled to the non-linear lens with a simple single element optical relay. Problems were immediately encountered with the optical energy transfer. The problem was traced to the Schlieren optical technique used in the projector. This is shown schematically in Figure 7, for the no output case and Figure 8 for full output. The light output is proportional to the rate of change of oil film thickness. This rate of change is generated by an electron beam which writes on the oil film. As can be seen in these figures, the result is a centrally obscurred bundle of illuminated segments. When this bundle is coupled into the non-linear lens a problem results. This is illustrated

Figure 6 Camera Optical Elements

Figure 7 Light Valve Operation
No Output

Figure 8 Light Valve Operation
Maximum Output
in Figure 9 for a simplistic one element relay used in our original experiment. In this experiment a dark spot was noted at the center of the projected image. In the on-axis case, the reason for this is that almost all of the energy from the light valve falls outside of the acceptance cone of the non-linear lens as can be seen in Figure 9. This causes two areas of concern. The low light in the central high acuity area of the image can seriously reduce the observer's visual capabilities. In addition, the annular shaped input to the lens provides energy in the worst possible portion of the acceptance ray cone if good image quality is desired. The latter is known from original ray trace data on the lens. In addition, the annular input by itself can cause serious diffraction problems. All of these problems can lead to low display acuity in the central region where the highest acuity is desired.

GE was consulted to see if the projector output could be modified to correct for this situation. After considerable study, they concluded that a major redesign would be required to make the light valve output more compatible with our lens. This left only the relay parameters as a possibility to effect an improvement. From an optical viewpoint, the only relay parameter that can be varied which affects the output ray cone geometry is magnification. This parameter can expand or compress the $\mathrm{F} / \mathrm{number}$ cone from the projector. In our case, we need to reduce the cone size which requires more magnification within the relay. A derivation will be presented which relates the $\mathrm{F} /$ number and magnification to the ratio of source and display brightness.

The entire optical system is shown schematically on Figure 10. The symbols to be used in this derivation are also defined on this figure.

The illumination (E_{S}) of the source is:

$$
\begin{equation*}
E_{S}=\frac{F}{A_{S}} \tag{1}
\end{equation*}
$$

Thus the source brightness (B_{s}) is:

$$
\begin{equation*}
B_{S} \cong \frac{E_{S}}{\omega_{S}}=\frac{F}{A_{S} \omega_{S}} \tag{2}
\end{equation*}
$$

Now from cone geometry the solid angle is:

$$
\begin{equation*}
\omega_{\mathrm{S}}=\frac{\pi}{4 \mathrm{FNO}_{\mathbf{s}}^{2}} \tag{3}
\end{equation*}
$$

where $\mathrm{FNO}_{\mathrm{s}}=\mathrm{F} /$ number of source

$$
\begin{equation*}
B_{S}=\frac{4 \mathrm{FNO}_{S}^{2} \mathrm{~F}}{\pi \mathrm{~A}_{\mathrm{S}}} \tag{4}
\end{equation*}
$$

Figure 9 Light Valve Nonlinear Lens Interface for Single Element Relay

This (B_{s}) is also the brightness of the image at the lens. For those who are not familiar with this fact it can be proven as follows: The total rlux passing through the source area (A_{S}) will arrive at the lens ara (A_{L}) assuming good relay design. The area A_{L} is related to A_{S} by the magnification (M), viz:

$$
\begin{equation*}
A_{L}=M^{2} A_{S} \tag{5}
\end{equation*}
$$

Since the output of relay is collimated as any good relay is, the output ray diameter equals the input diameter. Therefore, the ratio of output to input solid angle is

$$
\begin{equation*}
\frac{\omega_{L}}{\omega_{S}}=\frac{\pi D_{R}^{2}}{L^{12}} \frac{1^{2}}{\pi D_{R}^{2}}=\frac{1}{M^{2}} \tag{6}
\end{equation*}
$$

In addition, the areas A_{L} and A_{S} are also related by the magnification viz:

$$
\begin{equation*}
M^{2}=\frac{A_{L}}{A_{S}} \tag{7}
\end{equation*}
$$

The brightness of the image is:

$$
\begin{equation*}
B_{L}=\frac{F}{A_{L} \omega_{L}} \tag{8}
\end{equation*}
$$

Substituting Equations (5), (6), and (7) into (8) results in:

$$
\begin{equation*}
B_{L}=\frac{F}{A_{S} \omega_{S}} \tag{9}
\end{equation*}
$$

The right side of Equation (9) is equal to the right side of Equation (2), thus:

$$
\begin{equation*}
B_{L}=B_{S} \tag{10}
\end{equation*}
$$

Now we will determine the effect of the lens obscuration, magnification, and $F /$ number on the screen brightness. The light flux actually entering the projection lens from an incremental image area $\left(d A_{L}\right)$ is:

$$
\begin{equation*}
F=B_{L} d A_{L}\left(\omega_{L a}-\omega_{L O}\right) \tag{11}
\end{equation*}
$$

where

$$
\omega_{\mathrm{La}}=\frac{\pi}{4 \mathrm{FNO}_{\mathrm{L}}^{2}}
$$

where $\mathrm{FNO}_{\mathrm{L}}=$ Lens acceptance $\mathrm{F} /$ Number
Also:

$$
\begin{equation*}
\omega_{L O}=\frac{\omega_{s o}}{M^{2}}=\frac{\pi D_{\text {so }}{ }^{2}}{M^{2} f_{s}{ }^{2}} \tag{12}
\end{equation*}
$$

Now if we define an obscuration factor (K) as the ratio of the obscured diameter ($\mathrm{D}_{\text {SO }}$) to the aperture diameter (D_{S}), viz:

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{D}_{\mathrm{so}}}{\mathrm{D}_{\mathrm{s}}} \tag{13}
\end{equation*}
$$

Substituting Equation (13) into (12)

$$
\begin{equation*}
\omega_{\text {Lo }}=\frac{\pi K^{2} D_{s}^{2}}{M^{2} f_{s}^{2}}=\frac{\pi K^{2}}{M^{2} \mathrm{FNO}_{s}^{2}} \tag{14}
\end{equation*}
$$

where $\mathrm{FNO}_{\mathrm{s}}$ is the $\mathrm{F} /$ number of the source. Now substituting into Equation (11).

$$
\begin{align*}
& F=B_{L} d A_{L}\left[\frac{\pi}{4 \mathrm{FNO}_{L}^{2}}-\frac{\pi K^{2}}{4 \mathrm{FNO}_{S}^{2} \mathrm{M}^{2}}\right] \tag{15}\\
& =\frac{\pi B_{L} \mathrm{dA}_{\mathrm{L}}}{4}\left[\frac{1}{\mathrm{FNO}_{L}^{2}}-\frac{\mathrm{K}^{2}}{\mathrm{FNO}_{S}^{2} \mathrm{M}^{2}}\right] \tag{16}
\end{align*}
$$

All of this flux falls within area $d A_{d}$ on the projection screen. The illumination is then:

$$
\begin{equation*}
E_{d}=\frac{F}{d A_{d}}=\frac{\pi B_{L} d A_{L}}{4 \mathrm{dA}_{d}}\left[\frac{1}{\mathrm{FNO}_{L}^{2}}-\frac{K^{2}}{\mathrm{FNO}_{\mathrm{S}}^{2} \mathrm{M}^{2}}\right] \tag{17}
\end{equation*}
$$

However the focal lengths and differential areas are related by:

$$
\begin{equation*}
\frac{\mathrm{dA}}{\mathrm{LA}} \mathrm{~d}_{\mathrm{d}}=\frac{\mathrm{f}^{2}}{\mathrm{~L}^{2}} \tag{18}
\end{equation*}
$$

Substituting Equation (18), (3) and (2) into (17) results in:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{d}}=\frac{\mathrm{F} \mathrm{f}^{2}}{\mathrm{~L}^{2} \mathrm{~A}_{\mathrm{s}}}\left[\left(\frac{\mathrm{FNO}_{\mathrm{S}}^{2}}{\mathrm{FNO}_{\mathrm{L}}}\right)-\left(\frac{\mathrm{K}^{2}}{\mathrm{M}}\right)\right] \tag{19}
\end{equation*}
$$

Now the display screen brightness is:

$$
\begin{equation*}
B_{d}=\frac{E_{d}}{\omega_{d}} \tag{20}
\end{equation*}
$$

where ω_{d} is the solid angle over which E_{d} is reflected. For our purpose of studying the effects of magnification, the relative brightness referenced to an unobscured source will simplify the analysis. For an unobscured source:

$$
K=0
$$

And then Equation (19) becomes:

$$
\begin{equation*}
E_{r}=\frac{F f^{2}}{L^{2} A_{s}}\left(\frac{\mathrm{FNO}_{s}}{\mathrm{FNO}_{\mathrm{L}}}\right) \tag{21}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
\frac{B_{d}}{\mathrm{~B}_{\mathrm{r}}}=\frac{\mathrm{E}_{\mathrm{d}}}{\mathrm{E}_{\mathrm{r}}}=\frac{\left(\frac{\mathrm{FNO}_{\mathrm{S}}}{}{ }^{2}\right)-\left(\frac{\mathrm{K}^{2}}{\mathrm{MNO}}\right)}{\left(\frac{\mathrm{FNO}_{\mathrm{S}}}{2}\right)}=1-\left(\frac{\mathrm{K} \mathrm{FNO}_{\mathrm{L}}^{2}}{\mathrm{MNO}_{\mathrm{L}}}\right) \tag{22}
\end{equation*}
$$

For our light valve

$$
\begin{aligned}
\mathrm{K} & =0.36 \\
\mathrm{FNO}_{\mathrm{S}} & =2.8 \\
\mathrm{FNO}_{\mathrm{L}} & =5.6
\end{aligned}
$$

Substituting these values into Equation (22) results in:

$$
\begin{equation*}
\frac{\mathrm{B}_{\mathrm{d}}}{\mathrm{~B}_{\mathrm{r}}}=1-\frac{.518}{\mathrm{M}^{2}} \tag{23}
\end{equation*}
$$

This curve is plotted in Figure 11(a). This curve clearly illustrates the problem noted in our first experiments. During this exercise we had the full width of the light valve format filling the lens image plane as shown in Figure 11(b). Here the magnification was the ratio of the nonlinear lens diameter of 0.72 inch to the camera scanning width of 1.1 inches, viz:

$$
M=\frac{0.72 \text { inch }}{1.1}=0.65
$$

Original Format
(b)

Revised Format
(a)
)

Under these conditions no light was entering the lens. The system was made useable by reducing the portion of the source area occupied by the lens image as shown on Figure 11(c). Thus, the magnification is:

$$
M=\frac{0.72}{0.825}=0.87
$$

Now the display brightness is 0.3 that of an unscured or conventional optical system. Since considerably more light is available in the central area of the display (See Appendix C), this is an acceptable situation. In fact it helps to make the display brightness more uniform if the relay is correctly designed. Such a design was shown on Figure 9. Note that for the edge ray bundle that the lens acceptance cone shifts to a more desirable portion of the light valve cone. The result is essentially an increase in output when compared to that of an unobscured system at the field edge. Since the above solution appears to be satisfactory from a brightness stand~ point the question of acuity was then considered.

While the exact effect of an annular aperture function is very difficult to predict precisely, an approximation of its affect on resolution is rather easy. Figure 12 shows such an aperture and its associated diffraction MTF. For a thin annulus where the inner (D_{OL}) and outer (D_{L}) diameters are approximately the same, the MTF shows a pronounced drop in response at a spatial frequency $\left(S_{1}\right)$ proportional to the difference in the diameters divided by twice the light wavelength (2λ), viz:

$$
\begin{equation*}
S_{1}=\frac{D_{L}-D_{O L}}{2 \lambda} \tag{24}
\end{equation*}
$$

Therefore, a good approximation to the MFF is to assume that the spatial frequency $\left(S_{1}\right)$ is the limiting factor in performance. For this reason this frequency was calculated in terms of the parameters of Figure 12.

At the projection lens output, the lens diameter $\left(D_{L}\right)$ and focal length (f) are related to $\mathrm{F} /$ number $\left(\mathrm{FNO}_{\mathrm{L}}\right)$ by:

$$
\begin{equation*}
D_{L}=\frac{f}{\mathrm{FNO}_{L}} \tag{25}
\end{equation*}
$$

Substituting Equation (13) into (25) and relating $\mathrm{FNO}_{\mathrm{L}}$ to $\mathrm{FNO}_{\mathrm{S}}$ by the magnification

$$
\begin{equation*}
D_{\mathrm{LO}}=\frac{\mathrm{Kf}}{\mathrm{MFNO}_{\mathrm{S}}} \tag{26}
\end{equation*}
$$

Substituting into Equation (24)

$$
\begin{equation*}
S_{1}=\frac{f}{2 \lambda}\left[\frac{1}{\mathrm{FNO}_{\mathrm{L}}}-\frac{\mathrm{K}}{\mathrm{MFNO}_{S}}\right] \tag{27}
\end{equation*}
$$

Figure 12 MTF of an Annulus
GP 77.0549-43

In more conventional terms the resolution is approximately the width of a half cycle.

$$
\begin{equation*}
\alpha=\frac{1}{2 \mathrm{~S}_{1}}=\frac{\lambda}{\mathrm{f}\left(\frac{1}{\mathrm{FNO}_{\mathrm{L}}}-\frac{\mathrm{K}}{\mathrm{M} \mathrm{FNO}_{\mathrm{S}}}\right)} \tag{28}
\end{equation*}
$$

This function is plotted in Figure 13 for the light valve output for an obscuration ratio ($K=0.36$) and $F /$ number of 2.8 and variable magnification and the non-1inear lens focal length of 2 inches and $F / n u m b e r ~ o f ~ 5.6 . ~ N o t e ~$ that for the revised raster format, the serious MTF degradation occurs at a resolution of 0.34 milliradians or 1.2 minutes of arc. While it would be desirable to have better performance than this, it is comparable to scan line substense and no further improvement could be made. Any further increase in relay magnification would result in an increase in scan line subsense, also shown in Figure 13 for a 1023 line raster. Based on the above effort the design requirements for the relay were established, and are:

Figure 13 Effect of Magnification on System Acuity

1. A magnification of 0.87
2. Aperture shift geometry with field angle as shown in Figure 9.

The final requirement was to iterate the overall relay mechanical design including overall length, fold point locations, and diameter with the designer.

Basically, these parameters are:

```
Overal1 Length = 4 feet
Diameter = 3 inches
Critical Folds = 12 inches required between last two lenses
```

After considerable design effort the relay of Figure 14 evolved. On this figure an edge ray bundle is drawn to show how the desired aperture shift is achieved. Note no field lenses are utilized. This was necessary to maintain the desired aperture shift. The large size penalty normally associated with a relay design of this type is eliminated by allowing vignetting of the unused part of the light valve optical output.

The lens elements were purchased and the relay set up on an optical bench. After a small decollimation at the projector output to achieve the required magnification, performance was exactly as expected. The relay configuration using available lenses is shown in Figure 14. Figure 15 is a photograph of the relay test set-up.

Figure 14 Projector Optical Relay
GP77-0549-53

Figure 15 Relay Test Setup

3.2.3 Focus Correction

The variable focal length nature of the projection lens creates a serious focus problem. This problem arises because the projector lens is identical to the camera lens and designed for an object located at infinity. For projection, the lens focal plane must be shifted aft by about 0.08 inch to obtain optimum on-axis focus where the lens focal length is 2 inches. At an 80° object field angle, the focal length is down to 0.04 inches. An 0.08 inch shifted image plane is obviously grossly out-of-focus for this short off-axis focal plane. To determine the magnitude of this problem, the focal plane profile for optimum focus was computed. The general case geometry of Figure 16 was used for this purpose. Here the lens equivalent optical geometry for on-axis and off-axis object angle θ is shown. For either case the general lens equation applies.

$$
\begin{equation*}
\frac{1}{S_{1}(\theta)}+\frac{1}{S_{2}(\theta)}=\frac{1}{f(\theta)} \tag{29}
\end{equation*}
$$

Figure 16 Projection Lens Conjugate Geometry
where

$$
\begin{aligned}
& \mathrm{S}_{1}(\theta)=\text { Object distance } \\
& \mathrm{S}_{2}(\theta)=\text { Image distance } \\
& \mathrm{f}(\theta)=\text { Focal length }
\end{aligned}
$$

From Figure (16) and because $S_{1}(\theta)$ is relatively constant, the focus error is

$$
\begin{equation*}
\delta(\theta)=S_{2}(\theta)-f(\theta) \tag{30}
\end{equation*}
$$

Substituting Equation (29) into (30)

$$
\begin{equation*}
\delta(\theta)=-\frac{f^{2}(\theta)}{S_{1}(\theta)-f(\theta)} \tag{31}
\end{equation*}
$$

For a 54 inch object distanct, $\left(S_{1}(\theta)\right)$, the error in focus for a system focused at infinity is:

$$
\begin{equation*}
\delta(\theta)=\frac{\mathrm{f}^{2}(\theta)}{54-\mathrm{f}(\theta)} \tag{32}
\end{equation*}
$$

This equation is plotted in Figure 17. In order to maintain optimum focus, the image plane would have to be the shape of the Figure 17 curve, i.e., 0.08 inch further back in the center relative to its edge.

Now the effect of this defocus will be related to focal plane resolution. $1 i \phi(\theta)$ is the required resolution, the allowable focal plane blur $(\beta(\theta))$ is

$$
\begin{equation*}
\beta(\theta)=f(\theta) \phi(\theta) \tag{33}
\end{equation*}
$$

Since the focal plane spatial resolution is uniform; that is the offaxis resolution is equal to the on-axis value,

$$
\begin{equation*}
\beta=\text { constant }=\mathrm{f}(\theta) \phi(\theta)=\mathrm{f}(0) \phi(0) \tag{34}
\end{equation*}
$$

If ϕ is in minutes of arc the allowable focal plane blur is

$$
\begin{equation*}
\beta=\frac{\mathrm{f}(0) \phi(0)}{3440} \tag{35}
\end{equation*}
$$

Relating similar triangles on Figure 16

$$
\begin{equation*}
\frac{D(\theta)}{S_{2}(\theta)}=\frac{B}{\delta(\theta)} \tag{36}
\end{equation*}
$$

Figure 17 Image Plane Position Relative to Infinity Focus for 54 In . Conjugate Distance

Solving for $\delta(\theta)$

$$
\begin{equation*}
\delta(\theta)=\frac{\beta S_{2}(\theta)}{D(\theta)} \tag{37}
\end{equation*}
$$

Since the $F /$ number is defined as

$$
\begin{equation*}
\mathrm{FNO} \triangleq \frac{\mathrm{f}(\theta)}{\mathrm{D}(\theta)}=\text { constant } \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}(\theta)=f(\theta) \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
\delta(\theta)=\beta \mathrm{F} / \mathrm{No} . \tag{40}
\end{equation*}
$$

Substituting Equation (35) and (39) into (40)

$$
\begin{equation*}
\delta(\theta)=\frac{\phi(0)}{3400} \text { F/No. } f(0) \tag{41}
\end{equation*}
$$

For our lens the $F /$ No. $=5.6$ and $f(0)=2$ inch, the allowable focal plane mislocation is

$$
\begin{equation*}
\delta(\theta)=3.294 \times 10^{-3} \phi(0) \tag{42}
\end{equation*}
$$

This equation is plotted on Figure 17 for resolutions ($\phi(0)$) of 1,2 , and 4 arc minutes.

There are two ways of correcting this focus shift problem. The image plane can be tailored to Figure 17 with a corrector element in the lens image plane or the lens can be operated at the infinity focal plane position and a positive optical element placed at the lens output to converge the lens output to a 54 inch conjugate distance. After some experimentation with a focal plane corrector, the latter approach was selected as the only feasible method of focus correction. This is not without its problems however.

The only way of achieving a positive (converging) lens effect outside of the non-linear lens is as shown in Figure 18. It must be a deep double convex element in order to accommodate the entire field-of-view while its thickness must be held down to reduce weight and inertia of the projector pitch axis.

The following technique was used to design this element. Curvature of the surface closest to the lens was selected by fit geometry. Then the second surface radius was computed to converge the on-axis ray bundle at the 54 inch distance. Then the angular blur size as seen from the center of the dome was computed for all other field angles. These results were then compared to the inherent system acuity. The resulting lens curvature are shown on Figure 18 while blur data are shown on Figure 19.

Figure 18 Focus Corrector Geometry

The blur after correction was well within the acuity tolerance for the entire 160° field.

The problem with this method of focus correction is that it generates a distortion to the non-linear lens output. Rays exiting the non-linear lens are bent towards the optical axis by an increment that increases with field angle. This is to say chat while blur is acceptable, the centroid of the blur falls on the screen at the wrong location. This can and will cause false motion of points on the display as gimbal angles vary.

Figure 19 Corrector Angular Blur

To study importance of this effect, rays were traced from the lens to the screen at various field angles without and with the corrector lens. The angular error resulting from both cases as observed from the dome couler are shown on Figure 20. With no corrector lens, an error is generated because of the nodal point shift in the non-linear lens. This shift can be seen on the chief ray trace data shown on Figure 21. The gimbal axis of the projection lens intersect very near the 45° nodal point. This make the projection correct only at 0° and 45°.

As the nodal point shifts aft or forward for the angles other than 45°, they fall on the screen at larger or smaller angles (measured from the sphere center) than they should to maintain no distortion. The worst case occurs at 80° where points are advanced by 2°, Figure 20 curve c. If the focus corrector is installed on the lens, points are directed in an opposite direction as shown by the curve e of Figure 20. Here the error increases continuously, reaching about 9° at 80° command angle. This suggests that if the size of the non-1inear lens image is increased, this problem must be reduced. This was analyzed and a 2% value was found to produce minimum error over the entire field, curve d. The maximum error is about the same magnitude as it would be with no corrector. The only problem is a slight loss in field-of-view, from 160° to 140°. Since resolution is very low in this region, this is believed to be an acceptable tradeoff for a better acuity close to the optical axis. A corrector of the design shown in Figure 18 was fabricated and installation hardware designed for the projector lens.

3.2.4 Projection Surface Design

It was apparent from early experimental projections on the interior surface of the sphere that a diffuse unity gain white screen surface did not yield enough edge brigthness. This was predicted and the calculations are contained in Appendix C. As also described in the appendix, the projection/viewer geometry was optimized for a specular screen coating. The work of Reference (4) indicated that a silver screen material would increase brightness by a factor of four. Based on this, we evaluated several types of aluminum paint on the surface and we found that a screen gain of four was easily achieved. By visual observations, we concluded that sufficient brightness was being obtained out to field angles of 120°. Beyond this, performance was questionable. However, high contrast objects were easily detected out to 140°.

The aluminum paint, however, caused the imperfections in the dome joints to become very noticeable. This required expenditure of considerable effort to refill and sand the roints smooth.

3.3 HEAD TRACKING SYSTEM DESIGN

The function of the head tracker servo control system is to maintain angular alignment of projector's optical axis and the observor's nominal sightline. A head angular position sensor or a relative head/projector angular position sensor will not accomplish this beacuse of the close proximity of the viewing surface. To correctly accomplish this sensing

Figure 20 Display Error vs Actual Angle

Figure 21 Nodal Point Shift of Nonlinear Lens
task, the head position must be sensed relative to the projection lens coordinates in all six dimensions. To avoid a complex sensing and computational task, an electro-optical approach was devised that inherently senses the required parameters and is shown in Figure 22.

For the head tracker to function properly it must have adequate sensitivity and no significant deadband. From an optical standpoint the image of the source that falls on the detector must be of sufficient size and streng th to provide a useable signal/noise ratio around the null point. For this system, where uniform acuity exists over about $\pm 1^{\circ}$, a threshold sensitivity of about 0.20° would seem adequate.

In the following paragraph, the sensitivity of the source will be related to other system parameters. An optical schematic and definition of terms is shown in Figure 23. The source has a radiant emittance of W_{λ} watts $/ \mathrm{cm}^{2}-\mu$. Assuming the source has a focal length (f_{1}), and $\mathrm{F} /$ number (FNO_{1}), the power output of the source assembly can be computed as follows:

Assuming the source is a Lambertian emitter, its radiance is

$$
\begin{equation*}
N_{\lambda}=\frac{W_{\lambda}}{\pi} \text { in } \frac{\text { watts }}{\text { steradian } \mathrm{cm}^{2}-\mu} \tag{43}
\end{equation*}
$$

The power exiting the source is:

$$
\begin{equation*}
P_{1}=N_{\lambda} \omega_{1} A_{1} \Delta \lambda \tag{44}
\end{equation*}
$$

where $\omega_{1}=$ Solid angle subtended by the projection lens (See Figure 23)
$\mathrm{A}_{1}=$ Source area
$\Delta \lambda \quad=$ Source emitting bandwidth

Figure 23 Head Tracking Radiometrics

The solid angle $\left(\omega_{1}\right)$ is

$$
\begin{equation*}
\omega_{1}=\frac{\pi D_{1}^{2}}{4 \mathrm{f}_{1}^{2}}=\frac{\pi}{4 \mathrm{FNO}_{1}^{2}} \tag{45}
\end{equation*}
$$

where $\quad D_{1}=$ Source lens diameter

$$
\begin{aligned}
\mathrm{f}_{1} & =\text { Source lens focal length } \\
\mathrm{FNO}_{1} & =\text { Source lens } \mathrm{F} / \text { number }
\end{aligned}
$$

It is also assumed that $\Delta \lambda$ is small enough so that N_{λ} remains essentially constant. If the source assembly is focused to form an image on the viewing screen a distance L from the source, the irradiance at the screen surface is

$$
\begin{equation*}
H=\frac{\mathrm{P}_{1}}{\mathrm{~A}_{2}} \tag{46}
\end{equation*}
$$

where $A_{2}=$ Screen area illuminated by source
From geometrical optics the source and screen areas are related by:

$$
\begin{equation*}
\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\left(\frac{\mathrm{f}_{1}}{\mathrm{~L}}\right)^{2} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}=A_{1}\left(\frac{L}{f_{1}}\right)^{2} \tag{48}
\end{equation*}
$$

Substituting Equation (44) through (48) into (46)

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{W}_{\lambda} \Delta \lambda}{4 \mathrm{FNO}_{1}^{2}}\left(\frac{\mathrm{f}_{1}}{\mathrm{~L}}\right)^{2} \tag{49}
\end{equation*}
$$

Assuming a screen gain of G, the radiance of the screen is:

$$
\begin{equation*}
N_{2}=\frac{G H}{\pi}=\frac{G W_{\lambda} \Delta \lambda}{4 \pi E .0}\left(\frac{\mathrm{f}_{1}}{2}\right)^{2} \tag{50}
\end{equation*}
$$

The power from the screen entering the detector aperture also located a distance (L) from the screen is:

$$
\begin{equation*}
P_{3}=N_{2} \omega_{3} A_{2} \tag{51}
\end{equation*}
$$

Where

$$
\begin{equation*}
\omega_{3}=\frac{\pi \mathrm{D}_{3}^{2}}{4 \mathrm{~L}^{2}} \tag{52}
\end{equation*}
$$

Substituting Equations (48), (50), and (52) into (51) results in an equation defining the power incident on the detector as a function of system parameters.

$$
\begin{equation*}
\mathrm{P}_{3}=\frac{\mathrm{G} \mathrm{~W}_{\lambda} \Delta \lambda \mathrm{D}_{3}^{2} \mathrm{~A}_{1}}{16 \mathrm{FNO}_{1}^{2} \mathrm{~L}^{2}} \tag{53}
\end{equation*}
$$

The detector selected was a UDT, Inc. PIN SC/25. Saliant characteristics for this cell are:

Spectral Response	$\frac{ \pm}{7} 5 \% 350-1100 \mathrm{~nm}$
Dark Current	$0.5 \mu \mathrm{mps}$ Max
Position Sensitivity	$0.32 \mathrm{amps} /$ watt-cm
Active Area	$3.5 \mathrm{~cm}^{2}(.74 \mathrm{x} .74$ inches)
Minimum Spot Size	0.05 inch

For this application an output exceeding the dark current of $7.5 \mu \mathrm{amps}$ for an angular spot displacement of 0.2° is desired. Thus the desired sensitivity to angular inputs should be:

$$
\begin{equation*}
S_{o}=\frac{\text { Dark current }}{\text { Threshold }}=\frac{7.5}{0.2} \frac{\mu \mathrm{amp}}{\mathrm{deg}}=37 \mu \mathrm{amp} / \mathrm{deg} \tag{54}
\end{equation*}
$$

To define the sensitivity in terms of linear displacements, Equation (54) must be adjusted by the detector focal length, thus the desired position sensitivity is:

$$
\begin{equation*}
S_{L}=\frac{2120}{f_{3}} \frac{\mu a m p s}{c m} \tag{55}
\end{equation*}
$$

We can equate the desired position sensitivity to the cell actual position sensitivity, thus

$$
\begin{equation*}
S_{L}=\text { Actual position sensitivity } x \text { Incident Power } \tag{56}
\end{equation*}
$$

Substituting Equation (55) into (56) and solving for the incident power results in:

$$
\begin{align*}
P_{3} & =\frac{2120}{f_{3}} \frac{\mu \mathrm{amp}}{\mathrm{~cm}} \times \frac{1}{.32 \frac{\mathrm{amp}}{\mathrm{w}-\mathrm{cm}}} \tag{57}\\
& =\frac{6.62\left(10^{-3}\right)}{\mathrm{f}_{3}} \quad \text { watts } \tag{58}
\end{align*}
$$

The incident power $\left(\mathrm{P}_{3}\right)$ was defined in Equation (53). The focal length $\left(\mathrm{f}_{3}\right)$ in Equation (58) is defined in terms of $\mathrm{F} /$ number and lens diameter, viz:

$$
\begin{equation*}
\mathrm{f}_{3}=\mathrm{D}_{3} \mathrm{FNO}_{3} \tag{59}
\end{equation*}
$$

Substituting Equation (53) and (59) into (58) results in an equation which interrelates the detector and source parameters, viz:

$$
\begin{equation*}
\frac{\mathrm{G} \mathrm{~W}_{\lambda} \Delta \lambda \mathrm{f}_{3}^{3} \mathrm{~A}_{1}}{16 \mathrm{FNO}_{1}^{2} \mathrm{FNO}_{3}^{2} \mathrm{~L}^{2}}=6.62\left(10^{-3}\right) \tag{60}
\end{equation*}
$$

Of the above parameters, G and L are available from display geometry. The parameters $\omega_{\lambda}, \Delta \lambda, A_{1}$ can be obtained from the source parameters.

A 1763 prefocused incandescent standard light bulb was chosen for mechanical reasons and has the following characteristics:
o Temperature $4000^{\circ} \mathrm{K}$
o Source Dimensions 0.06×0.12 inches $=0.4645 \mathrm{~cm}^{2}$
A Wratten No. 88A filter was selected to attenuate the visual and transmit the infrared wavelengths. This filter cuts off below 300 nm . The cell response limits the upper responsitivity to 1000 nm . This establishes the wavelength band to:

$$
\Delta \lambda=200 \mathrm{~nm}=0.2 \mu
$$

The $4000^{\circ} \mathrm{K}$ source has an average radiance over this wavelength band of

$$
W_{\lambda}=1000 \frac{\text { watts }}{\mathrm{cm}^{2}-\mu}
$$

Using a screen gain of 4 and distance to the screen of 54 inches (137 cm) and substituting these values into Equation (60) results in

$$
\begin{equation*}
\mathrm{f}_{3}=1.75 \mathrm{FNO}_{1}^{\frac{2}{3}} \mathrm{FNO}_{3}^{\frac{2}{3}} \tag{61}
\end{equation*}
$$

The aperture diameter of the source and receiver are related by their respective focal lengths, viz:

$$
\begin{equation*}
\frac{\mathrm{D}_{1}}{\mathrm{D}_{3}}=\frac{\mathrm{f}_{1}}{\mathrm{f}_{3}} \tag{62}
\end{equation*}
$$

The detector aperture $\left(D_{3}\right)$ has a diameter of 0.05 cm and if the smaller dimension of the source is equal to its aperture (D_{1}), the focal lengths are related by:

$$
\begin{equation*}
\frac{\mathrm{f}_{1}}{\mathrm{f}_{3}}=\frac{0.1524}{0.05}=3.05 \tag{63}
\end{equation*}
$$

A 2 inch focal length lens with a 1.5 inch aperture diameter was selected for the source optics. Thus the F/number is:

$$
\mathrm{FNO}_{1}=\frac{2.0}{1.5}=1.33
$$

The focal length of the detector from Equation (63) is:

$$
\mathrm{f}_{3}=\frac{2}{3.05}=0.66 \mathrm{inch}
$$

The required detector $\mathrm{F} /$ number is therefore

$$
\begin{align*}
& \mathrm{FNO}_{3}=\sqrt{5.35 \frac{\mathrm{FNO}_{1}^{2}}{\mathrm{f}_{3}^{3}}} \tag{64}\\
& \mathrm{FNO}_{3}=\sqrt{5.35 \frac{(1.33)^{2}}{(.66 \times 2.54)^{3}}}=1.42
\end{align*}
$$

The chosen detector field-of-view can be determined by:

$$
\begin{equation*}
\tan \frac{\theta}{2}=\frac{\text { detector size }}{2 \times \mathrm{f}_{3}}=\frac{0.74}{2 \times 0.66} \tag{65}
\end{equation*}
$$

Thus the field-of-view is:

$$
\theta=58^{\circ}
$$

After a search of available lenses, a double convex aspheric was selected. This lens had a focal length of 0.94 inches and a diameter of 1.5 inch. Therefore its $\mathrm{F} /$ number is:

$$
\mathrm{FNO}_{3}=\frac{.94}{1.5}=0.63
$$

While the field-of-view would be somewhat reduced with this lens i.e.,

$$
\theta=43^{\circ}
$$

the threshold will be improved by the ratio

This allows sufficient margin for more filtering if required and/or allows operation of the source at a lower power input.

The assembled sensor can be seen on Figure 24 while the source is seen on Figure 25. An additional Wratten 88 A filter was found to be necessary on the detector to reduce its sensitivity to visual wavelength band. The response of the final detector system is shown on Figure 26.

Figure 24 Helmet Mounted Detector

Figure 25 Projector Mounted Source

Figure 26 Response of Infrared Head Tracking Detector System

Section 4

MECHANICAL DESIGN AND FABRICATION

Detail drawings of the camera assembly and projector assembly and their components are included in this section.

4.1 CAMERA ASSEMBLY (P/N 71A050002-1001)

The camera assembly is shown in Figure 27. Camera and pitch axis assembly is supported by forks from the yaw axis assembly. Wiring for TV camera and pitch position encoder are flat cables secured to one of the forks.

PITCH AXIS (P/N 71A050002)

The pitch axis assembly is shown in Figure 28. Pitch shaft (-27) is supported on bearings in both forks. Bearings are fully retained in both forks. The pitch axis torque motor (Inland T-5135, $4 \mathrm{lb} .-\mathrm{ft}$.) is mounted in the -49 fork, pitch position encoder (Baldwin $5 \times 232 \mathrm{BL}$) and pitch stops in the -51 fork. The pitch stops, -39 and -41 permit $\pm 60^{\circ}$ rotation (from horizontal) with the yaw axis vertical as in Figure 27 or horizontal. A removeable pin is provided to lock the pitch axis in the horizontal position.

YAW AXIS (P/N 71A050003)

The yaw axis assembly is shown in Figure 29. Fork supported block is mounted on -57 . Yaw shaft (-59) is supported by 2 bearings the lower of which is fully retained, the upper is free to move axially in the support housing (-65). The yaw torque motor (Inland $T-5730,71 b,-f t$.) and yaw position encoder are mounted within the support housing. Stops (not shown) limit yaw travel to $\pm 90^{\circ}$, and a removable pin locks the yaw axis at 0°.

OPTICAL ELEMENTS AND MOUNTS

The optical elements layout is shown in Figure 30. The attach points are located as shown in Figure 31. The -1 base plate is mounted on -27 pitch shaft and provides the mount for the non-linear lens ($T-054427-1$) the relay optics, and television camera. The optical centerline of the non-linear lens is 2 inches below the pitch axis. The axial position of all relay optics except a field lens mounted in -79 shown in Figure 30 is adjustable along the optical axis. Folding mirrors are adjustable about 2 axes. A cover (not shown) is provided and is attached to the -1 base plate.

4. 2 PROJECTOR ASSEMBLY (P/N 71A050003-1001)

The projector assembly is shown in Figure $32(\mathrm{a})$ and (b) and is supported by 71 A 050004 support structure shown on the upper part of Figure $32(\mathrm{~b})$. The yaw axis bearing is a single 25 inch I.D. " x " section bearing designed to carry moments as well as axial and radial loads. This support method was selected to preclude a long yaw axis shaft (and a pair of conrad type bearings) and permit mounting the entire assembly within the dome. The yaw torque motor

Figure 27 Camera Assembly

Figure 29 Yaw Axis Assembly

Figure 30 Camera Optical Elements

Figure 32 Projector Assembly

(Inland T-10035, $100 \mathrm{lb} .-\mathrm{ft}$.$) and yaw position encoder are mounted on the -1$ plate above the bearing. The projector is mounted within a box structure supported by the yaw bearing. Holes in the box at appropriate locations provide access to projector controls. Bottom plate of the box supports the pitch axis forks. Yaw travel is limited by stops (not shown) on the $71 \mathrm{~A} 050004-1$ plate to approximately $\pm 120^{\circ}$. The stops are spring loaded to provide essentially uniform deceleration for 15° of rotation (of the yaw axis) before becoming "hard" stops. Limit switches short the yaw motor just before engaging either stop.

Fork arms (-27 and -29) support the pitch axis assembly. The -29 fork and bottom plate (-15) of box sturcutre support the -2001 relay assembly.

RELAY ASSEMBLY (P/N 71A050003-2001)

The relay assembly is shown on Figure 33 and supports and locates 4 of the 5 required relay lenses and 3 of the 6 required mirrors, the remaining lens and mirrors are mounted within the pitch axis assembly. All lenses in the relay assembly are adjustable along the optical axis, and all mirrors are adjustable about 2 axes.

PITCH AXIS (P/N 71A050003)

The pitch axis assembly is shown in Figure 34. The -27 fork mounts the pitch axis torque motor (Inland $\mathrm{T}-2950,1.2 \mathrm{lb} .-\mathrm{ft}$.) and pitch position encoder (Baldwin 5V232BL). Stops are provided to limit pitch travel to $\pm 60^{\circ}$ (from horizontal). A removeable pin (in the -29 fork) locks the pitch shaft in the horizontal position. A "half angle" drive is provided for the relay mirror mounted on the -55 mirror support. The "half angle" is obtained by a differential on the -29 fork. A ring gear (PIC N3-4-5) is fixed to the differential case $(-99,-47,-45)$, a second gear is fixed to the pitch shaft $(-43,-39)$. The planet gears, to which is mounted the "half angle" mirror $(-51,-53,-55)$, rotate in the same direction as the pitch shaft but at one-half the angular rate. The mirror may be "zeroed" by rotating the -47 cover with respect to the -45 housing. The -109 ring is the mount for the corrector lens (not shown).

Figure 33 Relay Assembly

Figure 34 Projector Pitch Axis Assembly

Section 5

CONTROL SYSTEM

The function of the Control System is to command the projector to follow changes in camera angle. Camera angle changes are commanded by changes in operator head position or joy stick input. It consists of these major parts; the microprocessor, the camera electronics box, and the software.

The general design of the control system has been done digitally. The digital design of this system is in general immune from the kind of problems such as drift and error due to the manufacture of position and rate signals that beseech common analog servos. The mathematic production of rate signals from position data and digital (PCM) transmission of control signals eliminate many noise and signal related problems, although some signal errors still show up. In the case of a digital system these errors show up in varying degrees. For example, a lower order bit could be dropped and probably not be noticed by the system, but the system would surely jump if the sign bit or one of the higher bits suddenly is in error. Filters and other protective software have been programmed to help smooth out the results of such signal errors.

Figure 35 is a block diagram showing the camera and projector servos, the microprocessor which is located at the home station and the camera electronics box at the remote site. The system uses serial data to communicate between the microprocessor and the camera electronics box. Figure 36 shows a more complete block diagram of the hard wired control system. The microprocessor allows the system to be operated in three basic modes:

Figure 35 Servo Control Block Diagram

MODE 1) Camera servo fully operational, the projector axes are pinned and the system is joy stick controlled. In this mode the high acuity spot is stationary while the "whole picture" moves about the dome.

MODE 2) The camera and projector servos are fully operationa1. The display picture is stabilized and the system is joy stick controlled. In this mode, the high acuity portion of the image is slewed about, using the joy stick control to the point of interest while the picture as a whole is stationary.

MODE 3) Camera and projector servos are fully operational and head controlled. This is generally the preferred mode of operation and the display is the same as in Mode 2 except that the camera and projector follow-up are controlled via a helmet mounted position detector.

These three modes allow the user to tailor the remote viewing system to his own particular needs.

This section contains a description of the control system and is divided into task oriented subsections which are: a description of the microprocessor, the camera electronics box, and software. In addition, included is a section on the head tracker and a section on the math models on which the software is based. Finally in the last section are system operation procedures.

5.1 MICROPROCESSOR HARDWARE

The basic microprocessor is the Inte1 $80 / 10$ packaged in the SBC 80 Modular Backplane/Card Cage with an I/O expansion board and prototype board. Diagnostic hardware, real time interrupt logic, power supplies, and some analog hardware were integrated with the Intel SBC 80 into one package resulting in a mini-computer for the Remote Viewing System.

The $80 / 10$ Intel microprocessor board contains:
$1-8080 \mathrm{~A}$ Central Processor
$1-8251$ Serial I/O
$1-8255$ Parallel I/O
$4-8708$ 1K-PROM-UV eraseable
$\quad 1$ K BYTES OF RAM
and line drivers and terminators. In addition to the hardware listed, a computer emulator and PROM programmer were available at the suppliers for scheduled use.

5.1.1 Diagnostic Hardware

The hardware consists of two hexadecimal keyboards, 5 hexadecimal LED displays, address comparators, and miscellaneous gates and logic and is shown in Figure 37. One keyboard is implemented as a function keyboard via the software and the other keyboard is implemented as a data/address keyborad via the software. The keyboards and LED Displays are front panel mounted on the computer. The rest of the hardware is mounted on the back of the front panel and on the prototype board.

Real Time Interrupt Hardware

The processor has provisions for six real time interrupts. They are designated MCLR, RXRDY, TXRDY, KB1, KB2, AND COMPARATOR on Figure 37. The basic interrupt channel is shown in Figure 38.

The computer controls the active status of the interrupt channel by inputs to the channel enable and reset gate. When the channel is active, an interrupt from an external device sets the Q output of the flip-flop. The Q output generates an interrupt pulse to the computer and sets a bit in the computer interrupt input port. The computer software interrupt handler service routines polls the interrupt input port to determine the source of the interrupt and thereby takes the desired path. During this time all other low priority interrupts are disabled. For example, if an RXRDY interrupt came in while a TXRDY interrupt was being serviced, it would not recognize the RXRDY request until the TXRDY service was completed. High priority interrupts from the keyboards are always active.

All six interrupt channels operate in the same way and are mixed together at the eight input NAND Gate. The output of this gate drives the computer interrupt line. The hardware involved in an interrupt channel is a computer output port, computer input port, and gate, and a Flip-Flop.

Operation of one interrupt channel can be described as follows. The computer has instructions which enable and disable the external interrupt line. With the interrupt line enabled, the software sets the bit that is assigned to the channel being discussed. This bit appears as input to the 7408 gate as shown in Figure 37. The line from Reset is normally high and so the input to the preset channel of the Flip-Flop is high and active. The inputs to the NAND gate are all high and the channel is ready to accept an interrupt. An interrupt from an external source causes the Flip-Flop to go low. The Flip-Flop output causes the NAND gate output to go high generating a computer interrupt and it also sets a bit assigned to this channel at a computer input port.

Software samples the input port, determines which interrupt channel has requested service, sets the active status of all interrupt channels according to the priority level of the interrupt that has just occurred and proceeds to service the interrupt. When service is complete, software resets the output port which sets the Flip-Flop and then sets the output port so that the channel is again active. It also resets the other channels and

Figure 38 Interrupt Channel
makes them active. In summary, the output of the Flip-Flop is normally high, goes low when an interrupt occurs, stays low during software service, goes high when software is finished, and becomes active when the 7408 and gate output is high.

Restart

The restart function key causes $\mathrm{U}-19$ on Figure 37 , to change its output which in turn causes $U-11$ to trigger. The output of the one shot U-11 goes to the computer reset line which causes the computer to go to memory location zero. No interrupt is generated. When other keys are depressed, an interrupt is generated via $\mathrm{U}-17$ as described above. In addition the keyboard output is routed via J-1, pins $17,15,13,11,3,9,7$ and 5 to a computer parallel input port. As a consequence the software can determine which key was depressed and perform the necessary functions.

LEDS and Comparators

Circuits driving the LED displays and compare address functions involve the components $\mathrm{U}-1, \mathrm{U}-2, \mathrm{U}-3, \mathrm{U}-4, \mathrm{U}-5, \mathrm{U}-6, \mathrm{U}-7$. $\mathrm{J}-1$ pins $35,37,39,41$ are a computer output port on which the computer outputs the data desired to write to a specific LED. The software then outputs the code on pins 43,45 , 47,49 of J-1 which causes $\mathrm{U}-3$ to select the appropriate LED. The pins of $\mathrm{J}-2$ are the address bus of the computer. When the comparators $\mathrm{U}-4, \mathrm{U}-5, \mathrm{U}-6$, $\mathrm{U}-7$ "see" the address set on the 1 atches $\mathrm{U}-1$ and $\mathrm{U}-2$, a computer interrupt
is generated via $U-9$. The one shots $U-10$ and $U-11$, reset $U-12$ so that the gate U-9 is disabled after the compare address has been executed. $\mathrm{U}-12$ enables the gate $\mathrm{U}-9$ when the software selects it via $\mathrm{U}-3$. In summary, software loads the comparators with the desired address similar to the previous discussion about LED's and then software enables U-9. When the address appears at the comparators, U-9 generates an interrupt and the one shots $\mathrm{U}-10$ disable the $\mathrm{U}-9$ gate. Pins 34,33 of $\mathrm{J}-2$ are signals from the computer which enable U-9 only when an address is on the address bus of the computer. This is necessary since other computer data appears on the address bus and creates a timing problem solved by these inputs.

Input/Output PORTS

The system uses a total of eight input ports and five output ports. They are assigned as shown in Figure 39. The computer low order bits is shown at the right in the figure. High priority interrupts are at Input Port 1, low priority interrupts come in at Input Port 3. The A/D converters start the A / D conversion process when SYS CLK goes positive. The software checks Port E4 to verify that conversion is complete before reading the data at Ports E5 and E6.

The low order LED is selected by a 4 at port E8 and toggling bit 6 at port E-A.

5.1.2 Diagnostic Software

Intel has a computer emulator designated as LCE-80 which is used with the Intel MDS system. The in-circuit emulator interfaces to any user configured 8080 system. With the LCE- 80 , the designer can emulate the system 8080 in real time, single step the system program, and substitute Intellec memory and I / O for user system equivalents. It will provide address data and 8080 status information on the last 44 machine cycles emulated. It allows the user to share Intellec memory and I/O facilities and is indispensable for initial debugging. The ICE-80 was used with the RVS during Monitor Program debugging.

The RVS microprocessor has diagnostic software referred to as the Monitor Program designed primarily to facilitate operational program checkout and for enhancement of computer operation. One PROM in the processor is devoted to the Monitor Program. It is the only program input/output the computer has. Initial checkout of the processor monitor program utilized the computer emulator available on the Intel MDS System. After the Diagnostic Software checkout on the emulator was completed, it was used to troubleshoot other PROM software.

PROM \#3 is devoted to the Diagnostic Software. It is stand alone software. While the computer is operational with the system software, Diagnostic Software is not used. The Monitor program is accessed when the operator depresses the Halt Key. Exit from the diagnostic software is accomplished when the Return Key is depressed.

The primary purpose of the monitor program is to implement keyboard functions which allow the operator full utilization of processor capability. Under monitor, the operator can display the contents of all memory positions, program RAM, single step the processor, and access all processor registers.

The Monitor Program contains all of the diagnostic software required to couple the two keyboards with the processor. All keyboard functions are implemented by software as opposed to hardware. Keyboard generated interrupts are routed via the interrupt handler to the monitor. Keyboard 1 is a function keyboard and Keyboard 2 is for data in hexidecimal. When a Keyboard 1 key is depressed the monitor jumps to the appropriate routine corresponding to the function represented by the key. Concurrently, the interrupt handler has

Input Ports
$\phi \phi$

Projector Encoder Pitch
Low Order BYTE

$\phi 1$

$\phi 2$

Projector Encoder Yaw
Low Order BYTE

$\phi 3$

Output Ports

$\phi 1$

$\phi 2$

1/O Port Assignments

Output Port E•A

Figure 39 Computer Input and Output Ports
disabled all other interrupts so that once a keyboard interrupt has occurred they have priority. This assumes that the operator desires complete processor control. When the operator has finished his input, depressing the RST key, returns the machine to the program with all interrupts enabled.

Figure 40 is a brief explanation of keyboard functions implemented. These functions allow the operator to display contents of all memory locations, to load data into RAM, to display the contents of registers and load registers, to halt the program, to single step the program, and to stop the program at a specific program address. The SML Key used with the OK and Change Key allow the user to load or change any of the fixed multiply constants. The monitor generates fast multiply routines for each multiply constant and loads RAM with these routines. Twenty multiply constants are programmed and loaded in RAM from 3D90 to the top of RAM.

The stack pointer starts at 3CFF. The lower portion of RAM is assigned to the stack. Scratch pad RAM starts at 3D00 to 3D90. Since there are 608 locations above 3 D 90 and only 400 are required by the multiply routines, residual memory is available at the top of RAM.

An example of monitor will illustrate how it works. The example will illustrate how to examine a memory position (i.e., display contents of memory on the LEDS). First the operator presses the Halt button. Monitor recognizes the interrupt, halts the computer and displays on the LED's the address of the next program instruction that will be executed. Next the operator presses the display memory key. Monitor determines that the display memory function is required. It displays a 2 on the highest order LED indicating that the EM key was depressed. Then it prepares to fetch a memory location, and then halts and waits for the operator to proceed. Next the operator depresses in succession 4 keys which are the memory address entering, highest order hexidecimal number first. Monitor then moves the memory contents of that position to the LED display and waits for the next keyboard instruction. In summary, the operator presses Halt, EM, XXXX, on the numeric Keyboard and Monitor displays on the LED's the contents of memory location XXXX. If the operator wishes to see the next position he presses the continue button. This button sequences thru memory one step at a time executing the function initially loaded (i.e., deposit, or examine memory).

Keyboard Functions

The following describes the keyboard functions:

Reset | Reset causes the processor to start at location |
| :--- |
| zero. The PROM program at location zero |
| initializes the problem (see related section under |
| software) and then the processor is programmed to |
| Halt. This allows the operator to do necessary |
| tasks prior to system operation. Subsequently, |
| the operator causes the processor to proceed by |
| depressing the Start key. |

Examine Memory

Keyboard Mnemonic	Meaning	Description
HLT	Halt	Pressing this key causes an interrupt, sending program control to the diagnostic software.
RST	Reset	Hardware reset. Restores program counter to zero.
EM	Examine memory	After pressing this function key, the diagnostic software will expect four hexadecimal numbers to be input from the data keyboard, indicating the address to be examined. It will then display the contents of that memory location.
DM	Deposit memory	The DM routine expects six entries from the data keyboard. The first four of these are formed into the 16 -bit address and the last two form the 8 -bit data byte to be stored.
CO	Continue	Following an EXAMINE MEMORY or DEPOSIT MEMORY, the operator may automatically increment the address pointer by pressing CONTINUE. The software will then display the contents of this new location or will be ready to accept two hexadecimal digits for data entry.
ER	Examine register	After pressing $E R$ the software expects one hexadecimal digit from the data keyboard indicating which of 8 registers is to be displayed. The routine will then display the contents of this register.
DR	Deposit register	After pressing DR the software expects three entries from the data keyboard, the first digit indicating which register is to be modified, and the last two digits formed into the 8 -bit byte to be moved into the register. The registers are given the following numerical assignment: (Processor status word)
RS	Return	By pressing this key, the software will restore all register contents and condition bits to their values prior to entering the diagnostic software and will then return program control to the location being executed prior to entry into the diagnostics.
CA	Address compare	This function uses comparators to compare the address bus to a software stored 16 -bit number. After pressing this key, the software will expect four entries from the data keyboard which are formed into the 16 -bit number loaded into the comparator. A RETURN is executed automatically by the software and upon occurrence of the inserted address, program control is returned to the diagnostic software.
SS	Single step	After pressing this key, the software will automatically execute the RETURN routine and will execute the instruction prior to entering the diagnostic software. Program control is then returned to the diagnostics.
ST	Start	Causes the processor to return.
SML	Set Multiply Constant	This function expects the OK or change key to be depressed. If change is signaled it expects two hexadecimal entries. It will then generate a fast multiply routine load it in RAM and display the next multiply constant for the operator to OK or CHANGE. Twenty constant must be approved.
OK	Okay	Indicates to SML approval of constant.
CH	Change	SML expects two hexadecimal numbers to be input from the data keyboard. SML then generates multiply routine from numbers loaded and loads in RAM.

Figure 40 Display Processor Keyboard Explanation

Halt

Examine Register
Deposit Memory
Deposit Register
Set Multiply

Single Step

Continue

Restart
Compare Address

OK

Change

ST

Causes the computer to stop and wait for a keyboard input. Halt displays the next instruction address.

Displays register contents on LED's.
Allows user to load any RAM position.
Allows user to deposit register.
User may change any multiply constant. The next constant is displayed on the LED's. Once this mode is entered all twenty multiply constants must be OK or changed.

The computer executes one program step. The address of the next instruction is shown on the LED's.

Is used with the Examine memory, a Deposit memory function. It sequences to the next memory position implementing the same function used previously.

Is used to reenter the program from the Halt mode.
The computer stops at the desired address. The next instruction is displayed.

Is used with SML. It leaves the constant unchanged and the next constant is displayed.

Is used with SML. The user enters the desired constant on Keyboard 2.

After pressing this key, the software will execute the RVS control software.

5.2 CAMERA ELECTRONICS BOX

The Camera Electronics Box (CEB) interfaces the remote camera shaft encoders and servo amplifier via the serial data transmission line to the home station microprocessor. The CEB's primary function is to send and receive data. It sends gimbal position data to the microprocessor and receives servo-motor commands from the microprocessor.

The transmitter system is split into two identical sections, one handling pitch axis data, and the other yaw axis data. The transmitter section sends the 13 bit shaft encoder word (one for each axis) up the serial line in two eight bit words to the processor. The first byte contains the eight low order bits, the second byte contains the remaining five higher order bits. The 3 excess bits (the highest bits unused) are set to zero.

The receiver system, like the transmitter is split into two identical subsystems; one for each axis, pitch and yaw. The receiver subsystem output consists of two 8 bit parallel-parallel data latches which are input to two 12 bit digital-to-analog converters.

The heart of the camera electronics box is the Universal Asynchronous Receiver/Transmitter (UART). This device is an LSI subsystem which accepts parailel binary words consisting of 5 to 8 data bits, and outputs them as serial words with one or two stop bits and a parity option. The UART is a single monolithic chip, is TTL compatible and its strobed outputs are tristate logic.

Block diagrams of the UART's Transmitting and Receiving sections are shown in Figure 41 (a) and (b).

5.2.1 System Clocks and Timing

The basic computation cycle (M-clock) runs at 100 Hz . The system clocks runs at 153.6 KHz , the frequency required by the UART to establish a baud rate of 16. This is the maximum asynchronous baud rate of the Universal Synchronous Asynchronous Receiver/Transmitter (USART) and UART. The transmission of one byte takes approximately 1.2 usec. Two bytes per half cycle of M-clock are required, thus the timing margin of the system is approximately 50%. No measurements were made of the computation cycle length but some results indicated the computer timing margin is greater than 50%. Thus, the serial transmission line determines the maximum M-clock frequency.

Increasing M-clock would allow the design of a wider bandpass system, however since many factors must be considered (i.e., motor saturation, noise levels, accuracy, load disturbances) there is not a clear cut ratio between bandpass and M-clock frequency.

The initial design proceeded with an M-clock of 100 Hz , thus the basic sample rate of the system is $10 \mathrm{msec}, 5 \mathrm{msec}$ for each axis. Synchronous transmission was considered but preliminary work indicated that it might prove difficult to operate a 400 ft . transmission line in the synchronous mode. The asynchronous mode allowed design flexibilities because the 156.3
KHz clock could be a local oscillator or it could, if feasible, be sent over the transmission line. The final design sends the system clock over the transmission line. This required careful attention to the line driver selection and impedance matching of the receiver.

5.2.2 Control Logic

The control logic routes the incoming and outgoing bytes to the transmitter and receiver sections.

Figure 41 Universal Asynchronous Receiver/Transmitter

Transmitter Section

The control logic is symmetric for both axes. Figure 42 contains a block diagram of the CEB Design. The pitch axis is enabled by the positive

Figure 42 Camera Electronics Box Block Diagram

M-clock and the yaw axis is enabled by the negative M-clock. When M-clock goes positive the pitch axis encoder output is stored in data buffers, (the shaft encoder output continually tracks shaft position). The first buffer, (the low order bits) is strobed onto the data bus, while the other three latches are in the high impedance state. The falling edge of the data strobe (DS) pulse on the UART causes the shift register to transmit the data out on the serial output line. When the first byte of the transmission is complete, a real time interrupt is generated at the microprocessor. The microprocessor services the interrupt and generates a RXRDY pulse to the CEB. Upon receipt of the pulse, the second byte is strobed onto the data bus to the UART and the sequence is repeated. The second RXRDY pulse sent down by the microprocessor is ignored by the CEB and the box now waits for M-clock to go negative and then sends up the yaw information in the same manner. In summary, for each half cycle of the M-clock the encoders are read, stored in lat-ches and sent to the microprocessor in two eight bit words. These bytes are received by the microprocessor and stored in memory and the microprocessor acknowledges receipt of these words to the CEB via the RXRDY pulse.

Receiver Section

The receiver section is independent of the transmitter section including UART functions, thus allowing for complete asynchronous operation. When M-clock goes positive, the microprocessor initiates transmission of the first (high order bits) pitch axis command byte. When this transmission is complete, the receiver's control logic strobes the first byte into a buffer. The microprocessor then initiates transmission of the second byte. Upon completion of the second byte transmission, the control logic loads the second byte into a buffer and then it inputs both bytes to the digital-to-analog converter for the pitch axis. The D/A (12 bits) receives a full word at one instant in time just after the receiver has loaded both bytes of information into data storage. This word remains on the D/A input until the end of the next cycle of the M-clock.

5.2.3 Camera Box Electro Mechanical Description

The camera electronics box is connected to the microprocessor via five twisted pair cables. The processor supplies the system with:

1) System clock - 153.6 KHz
2) M-clock - 100 Hz
3) RX Data - Servo-amp command signal
4) RXRDY - Microprocessor acknowledgement of receipt of Position Data

The camera box sends

1) TX Data - A Position Data down to the SBC 80 microprocessor.

The shaft encoder words are brought to the CEB from the gimbals using 2-18 wire ribbon cables and DB25 connectors, and the D/A output is sent to the power amp over two twisted pairs, through an MS $3106-14 \mathrm{~S}-4 \mathrm{P}$ connector. The power amp outputs are run in separate cables to the torque motors. Thirteen (13) bit Baldwin shaft encoders are used to determine shaft position. Figure 43(a) shows the CEB LAYOUT and Figure 43 (b) shows the board layout. Component descriptions shown in the board are listed in Figure 44 . Figure 45 and 46 are schematics of the transmitter and receiver sections, respectively of the CEB.

(a) Top View Camera Electronics Box

Figure 43 Camera Electronics Box

5.3 SYSTEM SOFTWARE

Each of the four PROMS are assigned a system software function for ease of PROM management. PROM \#1 (memory locations $0-3 F F$) is devoted to the system initialization and the interrupt handler. PROM \#2 (memory locations $400-7 \mathrm{FF}$) contains the Yaw Axis control equation software. PROM 非3 (memory locations $800-\mathrm{BFF}$) contains the diagnostic software. PROM \#4 (memory location (COO-FFF) has the software for the system pitch axis. The detailed line by line listing of the software for all of the PROMS is included in Appendix D. Software flow diagrams are shown in Figure 47.

5.3.1 PROM Programming

An Intel 8080 Cross assembler is available on the PDP 11 Digital Equipment Computer. To program a PROM, a source program is created on the PDP 11 computer. It is assembled on the PDP-11 by the following commands into an 8080 binary language which is used as an input to the PROM programmer. Commands for useing the assembler are:
\$ AS KB:, CMI
RU INXAS
File, LP: < File since the assembler cannot handle a full PROM, a program MERGE can be used to link two programs together:

```
$ AS File 1.OBJ, 1
    AS File 2.0BJ, 2
    AS File 3, 3
    RU MERGE
```

Subsequently, the .OBJ files c an be punched on paper tape with commands

```
$ AS File 3, 1
$ AS PP:, 4
    RU CHANGE
```


Qty	Part No.	Description
8	8212	Eight Bit Input/Output Port
7	DM74123	Dual One-Shot
2	7474	Dual D-Type Flip Flop
1	7404	Hex Inverter
1	7402	Quad 2 Input NOR
1	7420	Dual NAND
1	74107	Dual J-K Flip Flop
1	7408	Quad 2 Input AND
1	1488	Line Driver
1	1489	Line Receiver
1	74194	4 Bit Shift Register
1	7427	Triple 3 Input Positive NOR
2	74100	8 Bit Latch
2	DAC372-12	D/A Converter
1	AY5-1013	Universal Asynchronous
1	N8T14B	Receiver/Transmitter

GP77-0549-63

Figure 44 Camera Electronics Box Component List
The resulting paper tape can then be read into the PROM programmer.

5.3.2 PROM \#1, Interrupt Handler Software

As real time interrupts are generated to the microprocessor, it is routed to memory location 38 , whereas the reset button causes the computer to start at memory location zero. As a consequence, memory locations zero thru 37 are devoted to the necessary housekeeping functions required to initialize the system. The processor than encounters a program Halt. The start button causes it to advance past the Halt where it enters the active system program. The program enables all interrupts and waits in a backward forward loop located at memory positions 30 and 33 for interrupts. A listing of the program is shown in Figure D-1, Appendix D.

Interrupts

There are three system interrupts; system clock, receiver, and transmitter. The system clock generates an interrupt every 0.010 sec. Each system interrupt causes the computer to proceed thru the yaw and pitch control equations and update the system commands. Concurrently, the receiver and transmitter send data over the serial transmission line link to the remote camera. The receiver interrupt causes the computer to store the received word in memory. The transmitter interrupt causes the computer to load the transmitter with a new command word.

Figure 45 Camera Electronic Box Transmitter Circuit Diagram

Figure 46 Camera Electronics Box Receiver Circuit Diagram
GP77-0549-3

GP77-0549-29
Figure 47 Software Flow Diagram

When an interrupt occurs, the following sequence is executed:

1) Save the status of the machine,
2) Poll the interrupt ports and determine the specific interrupt,
3) Reset all interrupts, make appropriate interrupts active determined by priority of interrupt requesting service,
4) Jump to interrupt service routine,
5) Restore status of machine and return to sequence prior to the interrupt.

System Interrupt Service Routine

This routine is the primary or key interrupt which determines the system data sample rate. The following events happen after a system interrupt:

1) Load the transmitter with a new word and load the transmitter counter used by the transmitter service routine
2) Initialize the receiver counter, Y Flag, and X Flag
3) Read the Projector Encoders
4) Output command updates to the Projector Power Amplifiers
5) Read the X and $Y A / D$'s
6) Compute the Yaw and Pitch control equations. The output of these equations update system commands.

Receiver Interrupt Service Routines

This routine stores the word just received in memory and resets the receiver. The receiver is then ready for the next word. Initially, the service routine loads the receiver counter. Since the receiver normally reads four words per sample interval, the service routine checks the counter. If more than four words have been received an error has occurred. In this case, the data from the last cycle is loaded into the yaw axis data memory positions. If the counter is correct, the routine reads in the receiver contents and stores the data in the memory position indicated by the counter. Next the routine increments the counter and stores it in memory. When two words have been received, X Flag is loaded. This indicates that new data is ready for processing in the pitch axis control equations. If the third word has been received the routine loads the transmitter and returns to the previous program before the interrupt occurred.

5.3.3 Transmitter Service Routine

This routine loads the transmitter with words from memory each time the transmitter is ready to send a new word. The pitch data is sent out first since it is always ready at the beginning of a clock cycle. The routine loads the transmitter counter, decrements the counter and sends a word to the transmitter from memory. When the counter indicates Yaw commands (i.e. third word) the routine checks Y Flag. Y Flag indicates that the Yaw axis computation is done and that new Yaw commands are ready. If data is available the routine sends the data and returns the computer to the previous program.

5．3．4 PROM \＃2 Yaw Control Equations

These equations are on PROM $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 2 and start at location 400．Due to the complexity of the system every effort was made to keep the pitch and yaw equations alike．As a consequence PROM 非 except for changes peculiar to the pitch axis is similar in program flow to PROM \＃2．First the new data word is called from memory and the bits 14 thru 16 are set so that the computer treats the encoder as a double precision word with the LSB of the encoder located at the LSB of the computer．The compensation equations are calculated and placed in intermediate storage at CAMAY．CAMAY is limited to $1 \mathrm{rad} / \mathrm{sec}$ and is input to the integrator driving the camera．Next the camera servo equations are processed．These equations represent a rate command position hold servo．The camera encoder is converted to a double precision word with the LSB of the encoder corresponding to the LSB of the computer．The unfiltered first difference is computed and stored at location 3FFO．The filtered gimbal rate is limited and multiplied by the constant MYLVB． MYLVB is stored at location 3 D 82 as a double precision word with the decimal at the left with one sign bit．At location 4 F 9 the digital integrator sums in the update CAMAY and limits the integrator output at gimbal stops of $\pm 90^{\circ}$ ．These stops are inside the mechanical stops of the gimbal．The camera encoder is subtracted from the integrator output and stored at CDEL location 3D72．Next the position feedback is limited and multiplied by the constant MYLVK．Subsequently，the rate feedback signal is summed with the position signal．This sum is multiplied by TORQY and limited．It is stored at CCMAY as a double precision word．The transmitter service routine sends CCMAY to
remote station where via the hardware it is truncated to a 12 bit word as input to the D／A driving the power amp．Next LAG is called．This subroutine is a filter which provides a signal to the projector．The signal provides accurate projector to camera tracking．The camera error is tested．If it is too large，the camera input is taken as the input to the projector．The pro－ gram now computes the projector servo equations which are a basic position servo with a modified rate command from LAG．The program proceeds as follows： Beginning at memory position 696 the position feedback is calculated，limited and multiplied by MULBY．This result is stored at IPOSY．At location 6C5 an integral channel is implemented for small input errors．If the error is large the integral channel is bypassed．The output is summed with the contents of IPOSY and stored at IPOSY．Next the first difference of position is calculated and stored at 3FF2 with the LSB of the result at the LSB of the computer．This unfiltered difference is summed with EOY，the LAG signal mentioned previously and the result is limited and filtered to provide a suit－ able rate feedback signal．It is stored at 3D64．

This result is summed with the position feedback signal．The computer word has one sign bit and the decimal to the left in the double precision word．Since the hardware requires the decimal to the right，the software truncates the word to 12 bits and shifts the result to the right so that the LSB of the word is at the LSB of the computer．This result is stored at PVLAY．Y Flag is set to indicate that new data is at PVLAY．Next the routine checks if the transmitter has already tried to send the data．This is indicated by the high order bit of Y flag．If it has the routine it initiates the trans－ mission．If not，the routine continues to the Pitch control．The computer Iisting is contained in Figure D－2．

5.3.5 PROM \#3 Diagnostic Software

Discussed earlier in Section 5.1.2. Computer listing is contained in Figure D-3.

5.3.6 PROM 非 4 Pitch Control Equations

X Flag is tested to determine if new data has been received. If not the routine waits for new data. After new data has been received, the pitch equations are processed similar to the yaw equations described above. Different multiply constants are used. A complete listing of the equations are shown in the Figure $D-4$. In the software equations X is used to designate the Pitch Axis and Y is used to designate the $Y a w$ Axis of the system. The new Pitch Axis commands are stored at PVLAX as a double precision word. At the beginning of the next clock cycle the transmitter service routine sends the new words to the remote station. At the end of the Pitch Axis equations, the computer has completed all required up data processing per clock cycle and returns to loop waiting for the next interrupt. Timing margins indicate that the next interrupt will be from the receiver and transmitter routines.

5.4 MATH MODELS

The Remote Viewing System servos can be operated in three different modes. They are:

MODE 1) Stand alone servos closed around each gimbal.
MODE 2) Camera as a rate command position hold servo with rate inputs from the stick. The projector in a position servo follower to the camera.

MODE 3) Camera and Projector in closed loop with the head controller. This option includes capability to insert the stick control in lieu of the head controller without changing the control equations.

The first mode allows the camera to be used with the projector servos disabled. It simplifies system power up because the system is stable for all gain modes.

The second mode uses the stick control as input. It can be implemented by minor program changes in the microprocessor. It can be used to achieve accurate pointing and projector to camera tracking. It is ideally suited for fine pointing but is less advantageous for tracking moving targets.

The third mode is the final system configuration which provides helmet mounted control by the operator.

5．4．1 MODE 1

Linear Transfer Function

A simplified linear model of the servo used for each gimbal is shown in Figure 48．The integral channel was implemented and used as required for fine pointing．The equivalent transfer function is：

$$
\begin{equation*}
\mathrm{H}_{1}(\mathrm{~s})=\frac{\mathrm{AKS}+\mathrm{AM}}{\mathrm{~S}^{3}+\mathrm{ACS}^{2}+\mathrm{AKS}+\mathrm{AM}} \tag{66}
\end{equation*}
$$

where

$$
A=1 / I
$$

$\mathrm{K}=\mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一 / \mathrm{rad}$
$\mathrm{M}=\mathrm{ft}$ 非／sec／rad
$\mathrm{C}=\mathrm{ft}$ 非／rad／sec
I＝Gimbal Inertia
Computer studies of ramp type inputs to the servo showed that the 100 ft ． 1 b ．torque motor on the projector azimuth axis was the system limiting factor and significant saturation occurred around $1 \mathrm{rad} / \mathrm{sec}$ ．The servos were designed to minimize this saturation and provide the best possible frequency response．Figure 49 shows the response of the camera to a ramp input of

GP77－0549－12
Figure 48 Mode 1 Servo Block Diagram

[^0]

Figure 49 System Response for Stick Input $\operatorname{Lag}=0.12 \mathrm{Sec}$

Gains

Important gains for each axis are summarized in Figure 50. Inertias shown in the table were results of measurements made when the system was first assembled. Subsequent changes in optics and mechanical design caused these inertia figures to change. Accurate information on inertias associated with the final design are unavailable. The channel gains shown in the table were used to derive the first estimate of computer gains cognizant of the effects of non-linearities. The important non-linearities in the system are saturation, threshold, and friction. These result in overall gain reduction and apparent increase in damping.

The gains of Figure 50 were required during software development. They served as a basis for software scaling and for sizing multiply routines. Subsequently, they were used during initial system checkout.

Name	Symbol	Units	Projector Azimuth	Projector Pitch	Camera Azimuth	Camera Pitch
Inertia	1	$\mathrm{ft} \cdot \mathrm{lb} / \mathrm{sec}^{2}$	1.58	0.052	0.28	0.113
Proportional Channel Gain	K	$\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$	632	20.8	112.5	45.2
Rate Channel Gain	C	$\mathrm{ft}-\mathrm{lb} / \mathrm{rad} / \mathrm{sec}$	63.2	2.08	11.25	4.52
Integral Channel Gain	M	$\mathrm{ft}-\mathrm{lb} / \mathrm{rad} / \mathrm{sec}$	7015	230	1249	501
Pwr amp Gain	KA	$\mathrm{ft}-\mathrm{lb} /$ Computer Volt	19.2	0.493	2.28	1.4
Computer Rate Gain	${ }^{G} \mathrm{C}$	-	413	530	619	406
Computer Prop Gain	G_{K}	-	165	212	15	10
Computer Integral Gain	G_{M}	-	18	23	1.7	1.1
	C	$\mathrm{ft}-\mathrm{lb} / \mathrm{rad} / \mathrm{sec}$	$0.1528 \mathrm{G}_{\mathrm{C}}$	$0.0039 \mathrm{G}_{\mathrm{C}}$	$0.018 \mathrm{G}_{\mathrm{C}}$	$0.011 \mathrm{G}_{\mathrm{C}}$
	K	$\mathrm{ft}-\mathrm{lb} / \mathrm{rad}$	$3.82 \mathrm{G}_{\mathrm{K}}$	$0.098 \mathrm{G}_{\mathrm{K}}$	$7.27 \mathrm{G}_{\mathrm{K}}$	$4.45 \mathrm{G}_{\mathrm{K}}$
	M	$\mathrm{ft} \cdot \mathrm{lb} / \mathrm{sec} / \mathrm{rad}$	380 GM	$9.76 \mathrm{G}_{\mathrm{M}}$	$726 \mathrm{G}_{\mathrm{M}}$	$445 \mathrm{G}_{\mathrm{M}}$

Figure 50 Servo Gains

Gains for Camera Azimuth Axis

An example of the gains involved for the camera azimuth axis are shown in Figure 51. Non-linearities not shown in the figure cause gain reduction and some phase shift. Consequently, gains were adjusted on the actual hardware to optimize gimbal performance and camera-to-projector tracking as evidenced by picture motion. The non-linearities of the system make

Figure 51 Camera Azimuth Axis
the frequency response of the system a function of amplitude and frequency. They tend to reduce the system bandwidth. The system was designed and optimized for ramp type inputs.

5.4.2 MODE 2

Using the projector in a servo follower mode to the camera requires careful system servo design. Any error in projector-to-camera tracking causes picture motion on the spherical screen as viewed by the observer. The servo follower inherently has dynamic lag even though integral feedback could be used to reduce steady state errors. From qualitative considerations some dynamic error is allowable because the observer cannot follow dynamic motion faster than a few hundreths of a second. Consequently, camera and projector instantaneous rates can be unequal for short time intervals providing the steady state position error remains within acceptable limits of approximately 0.01 radians.

While there are several approaches to the problem, the one used in the RVS was to feed the camera rate command signal forward to the projector. This required insertion of a lag network in series, which compensates the projector for camera velocity lag. Since the camera lag is insensitive to component changes by virtue of the feedback in the servos the circuit should remain in calibration. Adjustment of the lag can cause the projector to lead
the camera or to lag the camera. Computer studies indicate the system is easier to stabilize in Mode 3 if the projector leads the camera by a slight amount. While some dynamic error still exists its magnitude and time of decay are such that no deleterious system operation is evident to the observer. A simplified linear block diagram is shown in Figure 52.

Figure 52 Mode 2 Servo Block Diagram
The output of the lag network approximates the camera velocity. If the camera velocity were being fed forward the linear projector response can be shown to be

$$
\begin{equation*}
\mathrm{H}_{2}(\mathrm{~s})=\frac{\mathrm{ACS}^{2}+\mathrm{AKS}+\mathrm{AM}}{\mathrm{~S}^{3}+\mathrm{ASC}^{2}+\mathrm{AKS}+\mathrm{AM}} \tag{67}
\end{equation*}
$$

System Response Versus Lag

Figures 49,53 , and 54 show the response of the system to maximum stick inputs of $1 \mathrm{rad} / \mathrm{sec}$ for .25 sec with values of 1 ag in the forward loop of 0.1 and .12 sec and .14 sec . The figures show that this range of lag causes the projector to cross over the camera and change from lag to lead. The parameter was adjusted on the actual hardware to enhance projector tracking and achieve minimum picture motion.

The Figure 55 shows the system response for a stick input of max plus for 0.25 sec and then max negative for 0.25 sec . with the lag set at an optimum of 0.14 sec .

Figure 53 System Response for Stick Input
Lag $=0.10 \mathrm{Sec}$

Figure 54 System Response for Stick Input Lag $=0.14 \mathrm{Sec}$

Figure 55 System Response for Stick Input Lag $=0.14 \mathrm{Sec}$

5.4.3 MODE 3

Non-Linear Block Diagram

Figure 56 is a block diagram of the final mechanization showing the feedback loops implemented in the microprocessor. For simplicity the gimbal model is not included. The gimbals are shown as a double integration of the accelerating torque. Figures 57 and 58 show the response of the system to step inputs of the detector and for smooth Lead motion of $7 \mathrm{rad} / \mathrm{sec}$ for 0.25 sec .

Digital Model

A digital simulation of one axis of the system is shown in Figure 59. This model was used to conduct parametric studies and to determine the effects of various system non-linearities. The arithmetic and sample times of the microprocessor inherent in a sampled data system were included in the model to the extent possible. This was required to accurately predict hardware performance. Dynamic friction for the camera and the projector gimbals are included. The power amplifiers were modeled as voltage amplifiers. The torque motors for each gimbal were modeled from motor specificationa and gimbal inertias were taken from experimental results. The actual or final gains used in the microprocessor are in good agreement with those predicted by the model and in general correlation between hardware performance and that predicted by the model was very good. Quanitative information on the as built system non-linearities would further improve the simulation results.

5.5 SYCT OPERATION

system power-up, check to see that all cable connections are made.
At ase, the microprocessor has two ribbon cables with DB25
co: is coming from the pitch and yaw shaft encoders, an analog output with connector (MS 3106-MS-2P) which goes to two potentiometers on the input of the servo amplifiers, and the serial I/O cable (DB25) box. Also, located on the rear panel of the microprocessor are connections for the joystick control and helmet control.

The camera electronics box requires the serial cable from the microprocessor, two ribbon cables (DB25 connectors) from the shaft encoders and the analog output (MS 3106-14S-4P) cable to the servo amplifiers. When all cables have been connected and the servo amplifier input gain pots turned to the off position, the microprocessor, camera electronics box, and servo amplifiers can be powered in any order. The microprocessor may now be started by pushing the "RST" button (reset) and then the "Go" button.

Next the operator turns each camera servo gain pot to maximum. He verifies that the camera is pointed straight ahead and that it is stable. Subsequently, the projector servo pots should be set to a maximum, one at a time. When the pot is maximum the camera and projector should be stationary and both pointing at the same position.

Figure 56 Pitch Servo Block Diagram

Figure 57 System Response for Ramp Input

Figure 58 System Response for Step Input


```
    C PROJ CAMERA POSITION SERVOS STBP INPUT TORQ MTRS LIMITRD
0001 INTEGER A.B.CIMM,DX.X.CER
0002 DIMENSION K(100).J(100),PROJ(100).V(100),M(100),JR(100), IDET(100)
0003 DIMENSION IV(100),IP(100).FST(100%,DFST(100)
0004 DO 5 I=1.100
0005 IV (I)=0.0
0006 K(I)=0.0
0007 J(I)=0.0
0008 PROJ(I)=0.0
0009 DFST(I)=0.0
0010 FST(I)=0.0
0011 V(I)=0.0
0012 M(I)=0.0
0013 IP(I)=0.0
0014 JR(I)=0.0
0015 5 CONTINUE
0016 A=4
0017 B=-5
0018 E1N=0.25
0019 N=0
0020 CAMR=0
0021 DP=0.0
0022 PDOT=0.0
0 0 2 3 ~ D P D O T = 0 . 0 ~
0024 DT=0.010
0025 Z=0.00
0026 CR=^.0
0A27 CRTE=0.0
0028
0029
0030
9031
0032
0033
0034
0035
0036
0037
0038
0039 IF(CAMR.LE.-13)CAMR=-13
0040 DX=13
2041
0042
0043
0044
0 0 4 5
0.46
2047
0048
0049
0050
0051
    B=-5
    CR=0.0
    T=0.0
    RS=0.0
    DVDOT=0.0
    DV=0.0
    DO 100 I=3.10()
    IDET(I)=((E1N-PROJ(I-1))*0.2)/0.000767
    KDRT=((PROJ(I-1)-PROJ(I-2))*2.0)/().000767
    ID=IDET(I)*IDIST(I)
    IF(ID.LE. 16) IDET(I)=0
    rAMR=B*KDRT+A*KDET(I)
    IF(CAMR.GE.13)CAMR=13
    IF(CAMR.LE.-13)CAMR=-13
    N=N+1
    IF(N.GE.25)DX:0
    S=X+DX
    C=X*0.000767
    CER=X-IV(I-1)
    H(I)=CER
    DIP=M(I)*10.7*0.00244*1.333
    JR(I)=(V(I-2)-V(I-1))/0.000767
    CR=JR(I)/DT
    CRTE=CR*1.07*().00244*1.333
    T}=CRTE+D IP
```

Figure 59 System Math Model

```
0052
0053
0054
00S5
0056
0057
0058
0059
0060
0061
0062
0 0 5 3
0064
0865
0066
0067
0068
0069
0070
0071
0072
0073
0074
007S
00?6
007%
0078
0079
0.80
0081
0082
0.83
0684
0085
0086
0087
0088
0089
0090
0 0 9 1
0092
0093
0 0 9 4
0035
0096
0097
0098
```

```
    RS =T*T
```

 RS =T*T
 C.IF(T.GE.0.1)T(l=T-0.1
C.IF(T.GE.0.1)T(l=T-0.1
IF(T.LE.0.1)T()=T+0.1
IF(T.LE.0.1)T()=T+0.1
IF<RS.LE.0.01ITO-0.0
IF<RS.LE.0.01ITO-0.0
IF(RS.LB.0.01.aND.VDOT.GT.0.0)TO-T-0.1
IF(RS.LB.0.01.aND.VDOT.GT.0.0)TO-T-0.1
IF(RS.LE.0.01. AND.VDOT.LT.0.0)TQ=T+0.1
IF(RS.LE.0.01. AND.VDOT.LT.0.0)TQ=T+0.1
IF(T.GE.4.0)T(1)=4.0
IF(T.GE.4.0)T(1)=4.0
IF(T.LE.-4.0)TQ=-4.0
IF(T.LE.-4.0)TQ=-4.0
XLC=TQ-(VDOT*(1).1824)
XLC=TQ-(VDOT*(1).1824)
DVDOT-(XLC*DT:/0.113
DVDOT-(XLC*DT:/0.113
VDOT-VDOT+DVDOT
VDOT-VDOT+DVDOT
DV=VDOT*DT
DV=VDOT*DT
V(I)=V(I-1)+DV
V(I)=V(I-1)+DV
IV(I)=V(I)/0.000767
IV(I)=V(I)/0.000767
ERR-V(I)-PROJ:I-1)
ERR-V(I)-PROJ:I-1)
AERR=(ERR*180.0)/3.14159
AERR=(ERR*180.0)/3.14159
K(I)=ERR/0.00076?
K(I)=ERR/0.00076?
DISP=K(I)*13.{3*0.00244*0.5
DISP=K(I)*13.{3*0.00244*0.5
J(I)=(PROJ(1-?)-PROJ(I-1))/0.00076?
J(I)=(PROJ(1-?)-PROJ(I-1))/0.00076?
DFST(I)=(DX-FST(I-1))*0.10
DFST(I)=(DX-FST(I-1))*0.10
FST(I)=FST(I-I)+DFST(I)
FST(I)=FST(I-I)+DFST(I)
PRT=(J(I)+FST:I))/DT
PRT=(J(I)+FST:I))/DT
RATE=PRT*1.38*k0.00Z44**.5
RATE=PRT*1.38*k0.00Z44**.5
DZ=K(1)*0.000152
DZ=K(1)*0.000152
Z=Z+DZ
Z=Z+DZ
CHK=K(I)*0.0*! (1)
CHK=K(I)*0.0*! (1)
IF(CHK.GE.430())Z=0.0
IF(CHK.GE.430())Z=0.0
TRQE=RATE+DISP
TRQE=RATE+DISP
TRS=TRGE*TROE
TRS=TRGE*TROE
IF (TRQE, GE.0. 1)TRE=TRQE-0.1
IF (TRQE, GE.0. 1)TRE=TRQE-0.1
IF(TRQE.LE.-0.1)TRE=TRQE+0.1
IF(TRQE.LE.-0.1)TRE=TRQE+0.1
IF(TRS.LE.0.01)TRE=0.0
IF(TRS.LE.0.01)TRE=0.0
IF(TRS.LE.0.01.AND.PDOT.GT.0.0)TRE=TRQE-0.1
IF(TRS.LE.0.01.AND.PDOT.GT.0.0)TRE=TRQE-0.1
IF(TRS.LE.0.01.gND.PDOT.LT.0.0)TRR=TRQE+0.1
IF(TRS.LE.0.01.gND.PDOT.LT.0.0)TRR=TRQE+0.1
IF(TRQE,GE,1.2)TRE-1.2
IF(TRQE,GE,1.2)TRE-1.2
IF(TRQE.LE.-1.2)TRE--1.2
IF(TRQE.LE.-1.2)TRE--1.2
XL =TRE - (PDOT*().02466666)
XL =TRE - (PDOT*().02466666)
DPDOT=(XL*DT).0.052
DPDOT=(XL*DT).0.052
PDOT - PDOT+DPNOT
PDOT - PDOT+DPNOT
DP= PDOT*DT
DP= PDOT*DT
PROJ(I)=PROJ (1-1)+DP
PROJ(I)=PROJ (1-1)+DP
IP(I)=PROJ (I).0.000767
IP(I)=PROJ (I).0.000767
WRITE(1,300) AERR.C,V(I),PROJ(I),TQ
WRITE(1,300) AERR.C,V(I),PROJ(I),TQ
100 CONTINUE
100 CONTINUE
300 FORMAT (5(E|1.4.1X))
300 FORMAT (5(E|1.4.1X))
CALL EXIT
CALL EXIT
END
END
ROUTINES CALLED,
ROUTINES CALLED,
EXIT
EXIT
OPTIONS =/OP:2./GO
OPTIONS =/OP:2./GO
BLOCK LENGTH
BLOCK LENGTH
MAIN. 3478 (015.454)*

```
MAIN. 3478 (015.454)*
```

Figure 59 System Math Model (Concluded)

The system may be stopped at any time by turning the projector gain pots to zero. The processor may be stopped by pushing the HALT or the RESET button. The system may be restarted by repeating the sequence described above.

The mode of control may be switched between stick to head by actuating the toggle switch located on the rear panel of the microprocessor. When all gain pots are on, the system is in the stabilized mode. The projector pots can be left off for operation of system in non-stabilized display mode.

Basic Monitor Functions

The microprocessor has a self contained monitor program. An operator with an understanding of the servo control program, (See software section of this report) can use the monitor to troubleshoot not only software problems but also pin down the point of many electronic failures.

Using the monitor, the user can for instance examine the position data coming from the shaft encloders. To examine data, the following sequence should be used:
o Depress halt (HLT) button

- Depress examine memory (EM) button
- Punch in memory address

When the address has been entered, the processor will display the 8 bit word stored at that address in a hexidecimal code. The location in memory following this address may be addressed by pushing the " CO " button. The low order bits are stored in the first location and the higher bits in the second. Car ra pitch data is located at computer memory address 3D40 and 3D41. Came, yaw data is located at 3 D 42 and 3 D 43 . The lower 13 bits contain the positio 7 formation, highest order bits are not used and can be ignored. The lowest r bit is approximately equal to 2.6 minutes of arc.

A lis of the control program is available in the software section of this re . This listing, along with the monitor description in the same sectic will allow a person familiar with the 8080 programming language to alter the system parameters and fine tune the system. The control systems gains can be adjusted directly from the monitor, but a word of caution is in order. Due to the scaling complexities and interaction of the system gains it is suggested that change not be made without a complete and thorough understanding of the software.

The quad detector mounted on the helmet has approximately a 40° full field-of-view. If the IR spot that it senses is outside its field-of-view, the microprocessor will receive no control signals and the servo will remain at rest. The observer needs to turn his head, pointing the detector toward the high acuity portion of the display. As the user does this, the system will begin to slew toward him. The sensitivity of the head controller can be adjusted by adjusting the intensity of the source. The recommended settings of the light source are 5 Vac and 5 amps .

The joy stick control has zeroing pots so that the joy stick analog output signal can be adjusted within the system's software deadband eliminating servo drift.

The microprocessor LED readouts allow the operator to determine the operational mode of the microprocessor. Upon powerup, the readout will show 43210. The same readout will occur after the RST GO sequence. The halt (HLT) button will cause a "D" to be read into the first digit and the next four show the current program counter. The restart (RS) button changes the halt display to show a 6 in the first digit and leaves the other digits unchanged. If after depressing the halt button, a " D " is not located in the first digit, the microprocessor program is not running correctly is indicated. The user should then repeat to reset sequence (RST, GO).

The torque motor on the yaw axis of the projector can exert $100 \mathrm{ft} . \mathrm{lb}$. of torque if the power amplifier or its input should fail in a hardover mode. Hard stops and motor shorting switches have been installed on this axis to protect the light valve in the unlikely event that such a failure should occur. If the motor shorting switches are tripped, the operator must stop the system and reset the switches.

In normal operation the software limits the camera and projector axes to $\pm 90^{\circ}$ in yaw and $\pm 45^{\circ}$ in pitch. These software limits prevent the operator from slewing the equipment into the mechanical stops and eliminate undue rapid deceleration of the hardware.

5.6 HEAD TRACKER INTERFACE ELECTRONICS

The control signals required for the head tracking mode are generated by a dual axis position sensor. This sensor provides pitch and yaw position information from a light spot imaged on the detector surface. The source of the light imaged on the detector is a 24 watt bulb in a lens assembly focused to image the filament of the bulb on the dome surface. The detector is helmet mounted, and the light source is mounted on the projector pitch axis. Although some axes crosstalk could have been eliminated by mounting the detector on the pitch axis and the light source on the helmet, the opposite arrangement was chosen in order to keep the helmet assembly as light as possible. Both the light source and the detector are filtered with Wratten 88A filters. The detector (PIN-SC-25) manufactured by United Detector, has a position sensitivity of $.32 \mathrm{amp} / \mathrm{watt} / \mathrm{cm}$, and a series resistance of $5 K \Omega$. The light source is a 1763,6 volt, 4 ampere prefocus socket bulb. The detector output signal is amplified using the circuit shown in Figure 60. This amplifier is characterized by its low input impedance and high common mode rejection. The zener diodes located on the output stage clip the signal at approximately 4.7 volts to prevent overdriving the analog to digital input of the microprocessor.

The spot imaged on the detector (the filament of the bulb) nominally has a width of 0.06 inches. The detector has a usable width of 0.74 inch. A rough calculation shows that using a 0.9 inch focai length lens the detector will have an approximate field of view of 40°. If the source imaged on the dome is outside of the field of view of the detector the microprocessor receives no signals from the detector and the system will remain at rest. As the detector is pointed toward the image on the dome surface, the projector will begin to slew toward the detector. As the projector slews toward the detector* and locks onto the detector's signal, the system's feedback loop is completed and the system will be fully head controlled.

A typical signal output vs. command angle is shown in Figure 26. The amplitude of the signal output is not only a function of the CMR amplifier, but also of the light source intensity and positioning of the detector within the return cone of the source light.

The head control system may be finetuned by adjusting the light source to provide the appropriate response in the closed loop system.

[^1]

Figure 60 Head Control Detector Amplifier

Section 6

RESULTS AND CONCLUSIONS

This section details the tests that were made to document system performance as measured by system resolution and distortion and compares these data to theoretical predictions.

Resolution measurements of the total system were made using tribar targets. These measurements were made on the system as it was adjusted for the ONR demonstration. The system was set up for best overall focus, a situation which reduces on-axis resolution. The system focus problem is discussed in more detail in the focus corrector section of this report.

The lens distortion function causes no noticeable effect to radial lines while lines perpendicular to these (tangential lines) are compressed. For example, in the vertical direction, a vertical bar target which is readily resolvable has a horizontal counterpart which is not resolvable. These two target orientations were used to measure system resolution along and across the scanning line direction, (i.e. Horizontal bars used for vertical measurements).

The resolution measurements were made as a function of the angle from the optical axis (θ). These angles were computed from shaft position encoder data read from the microprocessor memory, the system geometry and lens nodal point shift data. Figure 61 shows the geometry involved to render a true θ from the encoder readings in order to determine vertical and horizontal resolution.

The target viewing distance was selected to be always greater than the lens hyperfocal distance as determined with an Fll system, and the focal length for the corresponding θ. The camera automatic iris control was disabled and set at the typical outdoor setting which was about Flll. The resolution targets were illuminated using photoflood lamps, to provide proper target contrast. Now the vertical and horizontal resolution as a function of incoder reading will be determined.

The lens is located vertical distance (a) and horizontal distance (b) from the pivot point. The lens nodal point is located a horizontal distance (b-n) from the pivot point. The lens optical axes labeled 0a is pointed on azimuth angle ($B a$) and elevation angle ($B e$) with respect to the reference co-ordinate system xyz. The tibar target is located at angle θ with respect to the lens optical axis in a vertical plane.

For the vertical resolution, from the triangle with apex's labeled as $1-5-8$ in Figure 61(a).

$$
\begin{equation*}
S_{1}=\frac{L}{\cos \beta_{a}} \tag{68}
\end{equation*}
$$

Figure 61 Geometry to Convert Shaft Encoders Readings to True Angles

From triangle 1-4-5

$$
\begin{equation*}
Y=S_{1} \tan \beta_{e} \tag{69}
\end{equation*}
$$

Also from triangle 1-4-5

$$
\begin{equation*}
S_{2}=\frac{S_{1}}{\cos \beta_{e}} \tag{70}
\end{equation*}
$$

From triangle 1-2-4

$$
\begin{equation*}
\alpha=\arcsin \frac{a}{S_{2}} \tag{71}
\end{equation*}
$$

From triangle $1-2-4$, the distance 0_{a} is

$$
\begin{equation*}
0_{a}=S_{2} \cos \alpha-b \tag{72}
\end{equation*}
$$

From the oblique triangle $3-4-6$, the distance T is

$$
\begin{align*}
T=\sqrt{(Y+y)^{2}+\left(0_{a}+n\right)^{2}-2(Y+y)} & \left(0_{z}+n\right) \cdot \tag{73}\\
& \cos \left(90-\beta_{e}+\alpha\right)
\end{align*}
$$

From the oblique triangle $3-4-6$ the angle θ is defined as:

$$
\begin{equation*}
\theta=\arccos \left(\frac{-(Y+y)^{2}+(0 a+n)^{2}+T^{2}}{2 T\left(0_{a}+n\right)}\right) \tag{74}
\end{equation*}
$$

From oblique triangle $3-4-7$

$$
\begin{align*}
& T^{\prime}=\sqrt{(Y+y+d)^{2}+\left(0_{a}+n\right)^{2}-2(Y+y+d) \cdot} \tag{75}\\
&\left(0_{a}+n\right) \cos \left(90+\alpha-\beta_{e}\right)
\end{align*}
$$

Also from oblique triangle $3-4-7$ the angle θ^{\prime} is defined as:

$$
\begin{equation*}
\theta^{\prime}=\arccos \frac{-(Y+y+d)^{2}+\left(0_{a}+n\right)^{2}+\left(T^{\prime}\right)^{2}}{2 T^{\prime}\left(0_{a}+n\right)} \tag{76}
\end{equation*}
$$

The resolution is then

$$
\begin{equation*}
\emptyset=\theta^{\prime}-\theta \tag{77}
\end{equation*}
$$

Now the horizontal resolution case shown on Figure 61(b) where the optical axis and line to target are in the horizontal plane. From the triangle with apex labeled 1-4-6,

$$
\begin{equation*}
S_{1}=\frac{L}{\cos \beta a} \tag{78}
\end{equation*}
$$

From triangle $1-4-5$

$$
\begin{equation*}
S_{2}=\frac{S_{1}}{\cos \beta_{e}} \tag{79}
\end{equation*}
$$

From triangle 1-2-5

$$
\begin{equation*}
\alpha=\arcsin \frac{a}{S_{2}} \tag{80}
\end{equation*}
$$

From triangle 1-4-6

$$
\begin{equation*}
X=L \tan \beta_{a} \tag{81}
\end{equation*}
$$

From triangle 1-2-5

$$
\begin{equation*}
0_{a}=S_{2} \cos \alpha-b \tag{82}
\end{equation*}
$$

From triangle 1-6-7

$$
\begin{equation*}
S_{3}=\sqrt{L^{2}+y^{2}} \tag{83}
\end{equation*}
$$

From triangle 1-5-7

$$
\begin{equation*}
\beta_{a}^{\prime}=\arctan \frac{X}{S_{3}} \tag{84}
\end{equation*}
$$

From oblique triangle 3-5-8

$$
\begin{align*}
T=\sqrt{(X+x)^{2}+\left(0_{a}+n\right)^{2}-2(X+x)}(0+n) & \cos \left(90-\beta_{a}\right) \tag{85}
\end{align*}
$$

Also from oblique triangle $3-5-8$

$$
\begin{equation*}
\theta=\arccos \left(\frac{-(X+x)^{2}+(0 a+n)^{2}+T^{2}}{2 T\left(0_{a}+n\right)}\right) \tag{86}
\end{equation*}
$$

From oblique triangle 3-5-9

$$
\begin{array}{r}
T^{\prime}=\sqrt{(X+x+d)^{2}+\left(0_{a}+n\right)^{2}-2(x+x+d)(0 a+n)} \tag{87}\\
\cos \left(90-\beta_{a}^{\prime}\right)
\end{array}
$$

Also from triangle 3-5-9

$$
\begin{equation*}
\theta^{\prime}=\operatorname{arc} \cos \left(\frac{-(x+x+d)^{2}+(0 a+n)^{2}+\left(T^{\prime}\right)^{2}}{2 T^{\prime}(0+n)}\right) \tag{88}
\end{equation*}
$$

The horizontal resolution is:

$$
\begin{equation*}
\emptyset=\theta^{\prime}-\theta \tag{89}
\end{equation*}
$$

6.1 CAMERA PERFORMANCE

Results of the camera performance tests are shown in Figures 62 and 63. Figure 63 shows resolution in the horizontal plane while Figure 63 is the same data for the vertical plane. The expected resolution as discussed in Section 3.0 is also shown on the figures. Note that in either case the on-axis angular resolution is about 1.7 times worse than was anticipated. In order to make some meaningful comparisons the computer model of Appendix E was degraded until the measured on-axis performance was achieved. This degradation was accomplished by increasing the Guassian blur of the nonlinear lens function. This required an increase from the ray trace data value of 5.5 microns (one sigma) to 50 microns. These data are shown by the solid line on the figures. Note that this data which was matched on-axis is near the actual performance for most other field angles. This indicates a uniform optical blur at the vidicon faceplate. A notable exception is the considerably worse performance in the 0.4 to 1.0 degree region caused by an incorrect aspheric element profile in the rear optical assembly of the non-linear lens. We attempted to correct for this during the contract by fabricating new elements using a new state-of-the-art pantagraph grinding technique and an air bearing spindle. Unfortunately, this was a failure. The new elements were even worse than the original hand fabricated elements. The fabricator is presently remaking these elements which will hopefully correct this problem in the near future. In this abnormal acuity region, performance drops by a factor of three. This is very distracting because performance should be best in this region to support foveal vision.

6.2 TOTAL SYSTEM PERFORMANCE

The measured performance of the overall system is shown in Figure 64 and 65 for the horizontal and vertical planes. Employing the same analytical method as in the camera case it was necessary to degrade display performance from the anticipated 15 mic cons (equivalent light valve spotsize) to 90 microns in order to predict horizontal on-axis performance. Then when

Figure 62 Threshold Resolution vs Angle from Optical Axis
Camera Only (Horizontal)

Figure 63 Threshold Resolution vs Angle from Optical Axis Camera Only (Vertical)

Figure 64 Threshold Resolution vs Angle from Optical Axis Total System (Horizontal)

Figure 65 Threshold Resolution vs Angle from Optical Axis
Total System (Vertical)
these data were plotted on Figures 64 and 65 very poor prediction of offaxis data is obtained. This implies a nonuniform degradation at the object plane of the projection non-linear lens with much higher blur on-axis. The reason for this is the diffraction problem created by the schlierin optics which was discussed in Section 3. However it appears to be considerably worse than anticipated. To assess the remainder of the field, the display blur was reduced until a good match was obtained off-axis. (The greatest emphasis was placed on the less than 15° region because of expected magnification problems which will be discussed later). A display blur of 30 microns matched the data very well for both horizontal and vertical planes as can be seen on the figures. This is a reasonable display quality value which would produce very little additional degradation to the camera if it applied on-axis as well. The on-axis performance would only degrade from 0.85 to 1.0 milliradian if the 30 micron display quality was maintained on-axis.

The disparity in on-axis system performance between horizontal and vertical planes (1.5 to 1.9 milliradians) is undoubtedly due to schlierin alignment (horizontal at the non-linear lens focal plane) which will yield a higher diffraction cutoff spatial frequency in the horizontal direction.

The system resolution, Figures 64 and 65 , show the same local region of poor performance (around 1°) that was seen on the camera only curves. The projector appears to aggrevate this region very little. The reason for this lies in the fact that the projector lens produces much better quality in this region apparently because it has a better rear lens cell.

The apparent lower system resolution at field angles larger than 20° is caused by incorrect magnification. This can be seen on Figures 66 and 67 which show measured vs. computed angular error in the projected display. Here the measured data is compared to $2 \%, 5 \%$ and 10% magnified images. The desired value is 2% while the horizontal magnification appears to be about 7% and the vertical about 4%.

6.2.1 Low Contrast Performance

Because of time constraints, direct measurement of low contrast performance was not possible. Therefore it is necessary to use the analytic model adjusted to yield the measured high contrast performance, to estimate performance at lower contrasts. These data are shown on Figure 68. Here the input modulation (contrast) required to resolve targets at various spatial frequencies are shown. Two curves are required for the system because of the projector problem noted above. It should be noted that the linear spatial frequency scale applies everywhere on the non-linear lens focal plane while the angular spatial frequency scale applies only on-axis. These two spatial frequency parameters are related as described in Appendix D.

Figure 66 Horizontal Display Error vs Angle

Figure 67 Vertical Display Error vs Actual Angle

Figure 68 Minimum Resolvable Modulation Predictions

6.2.2 Demonstration Results

The system was demonstrated in the laboratory by placing the camera on the northwest corner of the roof of MCAIR B1dg. 102. A hard wire link was established to the display station which was located in the laboratory about 300 ft . away. The camera overlooked Lambert Field and Brown Road which borders the airport. A field of regard of 180° in azimuth and $\pm 60^{\circ}$ in elevation was established. For comparison a 525 line conventional TV camera with a remote control zoom lens was also placed on the roof. This camera was pointed towards a sign board about 1000 ft . distant. This sensor was displayed adjacent to the RVS camera video CRT display.

To compare resolution, the RVS camera was pointed toward the same sign board and the conventional camera was zoomed until the same detail could be seen on its display as the on-axis RVS was producing. This field-of-view was about $10^{\circ} \times 14^{\circ}$. The RVS projection field-of-view was then reduced by masking to this field-of-view. The operator was then given the task of searching the field of regard of the RVS sensor using joy stick control. The usual problems with narrow fields-of-view were noted in maintaining orientation in the total field of regard and in smooth tracking of moving vehicles.

Next the mask was removed so the operator could see the entire RVS field of view and the full up head control operation established. In general all viewers liked the wide field display, especially the ease in tracking moving targets. It should be noted here that the servo control performance was excellent. No perceptible display motion occurred under any dynamic condition. This requires that the camera and projector servos track within about 0.5 milliradian under the most extreme dynamic conditions.

Most observers noted the low on-axis performance even when made aware that it was comparable to a 14° FOV conventional system. Some observers were impressed by motion and glint cueing in the peripheral very low resolution area of the display while others felt lack of sharp spatial detail in these regions would degrade these visual cues.

6.3 CONCLUSIONS AND RECOMMENDATIONS

Considering this is the first device of this type, we feel the results were very encouraging. As should be expected the only serious problems were with the new technology or state-of-the-art advancement in non-linear optics. All conventional functions within the state-of-the-art worked perfectly including the servo control, TV camera, TV projector, head tracker, etc. The value of the digital control system was demonstrated through its outstanding performance and reliability which could have been achieved only with great effort if an analog system was employed.

It appears the greatest improvement in performance could be obtained by (a) replacing the rear splines elements of the non-linear lenses and (b) solving the diffraction problem in the projector relay. The first is underway and if successful should be corrected within one to two months. The latter has no easy solution at this time. As discussed in Section 3, increased relay magnification may help but complete correction may require a different type of light valve that does not require Schlerin optics. At least two are presently under development. A KDP light valve is being developed in France while a liquid crystal light valve is under development at Hughes Aircraft in the USA. Both of these operate on a controlled polarization principle and can use conventional optics. Another possibility is to construct a new non-linear lens with a small $\mathrm{F} /$ number so that it can utilize more of the light valve optical ray cone.

Finally we believe the laboratory demonstration, where a scene is viewed in which most spatial detail is stationary, does not show the true potential of the system in flight control and navigation. We have seen this when projecting tape recorded video taken through the windshield of an aircraft. It appears that the somewhat low on-axis resolution is not so objectionable under these dynamic conditions. Based on these observations it may be desirable to fly the sensor in order to obtain a true performance assessment in a dynamic environment.

Section 7 REFERENCE LIST

1. RVS Display Feasibility Study, Report No. MDC A3392, 28 Feb. 1975 McDonnell Aircraft Co., St. Louis, Mo. 63166
2. Remote Viewing System Technical Proposal Report No. MDC A2486, 21 Sept. 1973, McDonne11 Aircraft Co., St. Louis, Mo. 63166
3. Head Controlled Remote Viewing System Technical Proposal Report No. MDC A3020, 3 Sept. 1974, McDonnell Aircraft Co., St. Louis, Mo. 63166
4. Klaiber, R.J., Physical and Optical Properties of Projection Screens; Technical Report NAVTRADEVCEN IH-63, December 1966

Appendix A

BRIEF DESCRIPTION OF THE REMOTE VIEWING SYSTEM (RVS)

The RVS concept is based on the fact that the human visual capability can be represented by a resolution capability of about 130,000 elements, provided that these elements are sized non-linearly according to the acuity function as shown in Figure A-1. An image with this characteristic requires only about 2 MHz video bandwidth at 30 Hz frame rates. In comparison, standard techniques would require over $1,000 \mathrm{MHz}$ bandwidth for this field-of-view (180°) and resolution. Even at smaller fields-of-view, the bandwidth saving is significant. A comparison of bandwidth requirements for varying fields-of-view for the conventional linear acuity function and for the RVS foveal concept is shown in Figure A-2. Approximately two orders of magnttude decrease in BW is achieved with the foveal system at FOV's greater than 20 degrees. In order to mechanize the concept described above, a method must be devised to generate an image which satisfies the optical requirements of the eye. The RVS concept contains a lens system that creates optical "distortion" by varying the spacing of the angular resolution elements to duplicate the acuity function shown in Figure A-1. This process is illustrated in Figure A-3. The lens transfer characteristic required and the technique for reconstructing the image at a remote location is also shown on this figure. System operation is as follows:

The image transmission system scans the photocathode of the vidicon or photodetectors of an imaging array, transmits this signal to the remote location, and recreates the image on a CRT or light valve tube. In the original RVS concept, the distorted image is expanded using a lens system with a transfer characteristic identical to the sensor lens and imaged on a spherical screen concentric with the nodal point of the lens.

Obviously, for the above image transmission system to perform adequately, the optical axes of both the sensor and projector must have the same alignment as the viewer's eye. The initial RVS system concept used the approach outlined in Figure A-4. The position of the projector is slaved to the camera by a high accuracy position servo, with the camera's angular position commanding the projector's position relative to fixed ground station reference coordinates. The viewer at the ground station thus has the same angular perspective as he would if he were located in the remote vehicle. The sensor and projector must also be aligned with the viewer's foveal axis. In the original concept a Honeywell oculometer was employed for this function. The oculometer measures the angle between the eye's foveal axis and the projector's optical axis. This error signal is transmitted to the remote vehicle and commands the camera to move until the angular error is reduced to zero. As the camera moves, the projector follows through the slaving loop. The control mode, presently under study, is somewhat different, however. The observer's head position instead of his eye position is utilized to point the remote camera. The operational difference resulting from this simplification is that when the viewer uses his peripheral vision, he must learn to rotate his head towards the area of interest rather than his eyes. A reticle may be required to show the observer the location of the highest acuity area of the display.

GP76-1037-112
Figure A-1. Human Eye Characteristics

Figure A-2. Bandwidth Requirements

Figure A-3. Electro-Optical Schematic

Figure A-4. Camera/Projector Interface

Appendix B

CAMERA CONSIDERATIONS

LIGHT LEVEL CONTROL

Light level control must be accomplished by an iris in the camera optical relay. The relay is required for this purpose because no iris control is available in the non-linear lens. An iris control was not initially considered necessary because an $\mathrm{S}_{\mathrm{b}_{2}} \mathrm{~S}_{3}$ vidicon was contemplated which had sufficient dynamic range for good daylight performance with electronic light control. Solar damage considerations later dictated the use of a silicon vidicon which cannot be adapted to electronic light level control. The range required of the iris control is discussed below.

Assuming a GE 27978 Epicon vidicon is utilized an average faceplate illumination of .25 ft -candles is recommended. Using conventional formulas, this relates to a scene brightness as follows:

$$
\begin{equation*}
E=\frac{\pi B}{4\left(F_{N O}\right)^{2}} \tag{B-1}
\end{equation*}
$$

If

$$
E=.25 \mathrm{ft} \text {-candles }
$$

$$
B=\frac{.25 \times 4}{\pi}\left(\mathrm{~F}_{\mathrm{NO}}\right)^{2}=.318\left(\mathrm{~F}_{\mathrm{NO}}\right)^{2} \frac{\text { Lumens }}{\text { Steradian- } \mathrm{ft}^{2}}
$$

Assuming a $1: 1$ relay between lens and vidicon the effective F number at the vidicon is identical to that of the non-linear lens $-F / 5.6$. The brightness is:

$$
B=9.97 \frac{\text { Lumens }}{\text { Steradian- } \mathrm{ft}^{2}}=31.32 \mathrm{ft} \text {-lambert }
$$

This is the minimum brightness level capability of the camera. It is sufficient to operate anywhere in the U.S., even under heavy cloud cover.

The maximum terrain brightness anticipated is about $5000 \mathrm{ft}-1$ amberts.
This approximates clear weather at 70° solar elevation and .16 terrain
reflectance. The F number required to attenuate this brightness to $.25 \mathrm{ft}-$ candles at the vidicon faceplate is (per Equation ($B-1$))

$$
\begin{aligned}
& \frac{5000}{\pi}=\frac{.25 \times 4}{\pi}\left(\mathrm{~F}_{\mathrm{NO}}\right)^{2} \\
& \left(\mathrm{~F}_{\mathrm{NO}}\right)^{2}=5000 \\
& \mathrm{~F}_{\mathrm{NO}}=70.7
\end{aligned}
$$

This small aperture would cause serious diffraction in the image quality. For this reason, a filter is considered. Because of sensitivity of the silicon vidicon to IR radiation a Schott KG3 filter is recommended. This filter provides about 20% transmission in the visual spectrum. This reduces the maximum F number requirements to about $\mathrm{F} / 16$, which is easily obtainable in the optical relay between camera and lens.

In summary, the camera optical relay must have sufficient aperture to couple all the energy in the $F / 5.6$ non-linear lens image ray bundle to the vidicon. The iris control in the relay must have the capability of reducing this $F / 5.6$ ray bundle at the vidicon to $F / 16$. This variable iris should be servo controlled to maintain the required vidicon faceplate illumination under varying terrain illumination and reflectance characteristics.

The average video level from the vidicon can be used as the drive signal. This is possible because the foveal region occupies most of the vidicon photocathode area. Therefore an average video level will optimize brightness in this area as desired.

SOLAR DAMAGE CONSIDERATIONS
Utilizing the sun brightness value of:

$$
\mathrm{B}_{\mathrm{S}}=2.09 \times 10^{3} \frac{\text { Lumen }}{\text { Steradian } \mathrm{ft}^{2}} \quad[\text { From Reference }(\mathrm{B}-1)]
$$

At $F / 5.6$ the vidicon faceplate illumination would be [from Equation ($B-1$)]

$$
E=\frac{\pi}{4} \frac{2.09 \times 10^{8}}{(5.6)^{2}}=.523 \times 10^{7} \text { foot candles }
$$

This gives a 2 x safety factor over the 10^{7} foot candle maximum rating of the vidicon proposed for the RVS camera. Operationally the safety margin is considerably better than this because any time the sun is visible to the RVS the automatic light level control will certainly have the camera stopped down to $\mathrm{F} / 8$ or greater. The margin is at least 4 x when this is considered. The IR filter discussed in the previous paragraph also increases the safety margin.

Appendix C
 PROJECTOR STUDIES

INTRODUCTION

The projection brightness problem is illustrated in Figure C-1. Here uniform size area elements are shown in the projector object plane at three different distances from the optical axis. If the object plane is of uniform brightness (which is the case for the RVS intermediate image or projector object) the screen illumination decreases as object area elements displace from the optical axis. Each area in the object plane contains the same light flux, which is spread over a greater area on the projection screen. In the actual case, area elements are projected 1000 times larger in the extreme peripheral region $\left(90^{\circ}\right)$ than in the foveal region $\left(0^{\circ}\right)$ of the display. This, of course, is completely unacceptable to the viewer. Two alternatives are possible for solving the above problem.
(a) A variable density filter to properly attenuate the foveal area of projection so that it matches the peripheral field in screen brightness. This is, of course, feasible only if image brightness is sufficient to generate acceptable brightness in the peripheral field of the displayed image.
(b) Employ a direct or virtual image viewing system. This is much more efficient and inherently results in uniform display brightness if the exit pupil is large enough to support the entire eye aperture (or the interocular spacing if binocular viewing is to be achieved).

Selection of the best display approach requires a thorough analysis of the two above approaches.

In the past year, MCAIR IRAD on the RVS has been 95% devoted to trade-offs of display concepts. The results of these studies, analyses, and tests are outlined below.

GP73.0782.25
FIGURE C-1
GENERAL PROJECTION GEOMETRY

PROJECTION SCREEN APPROACH

The geometry of the projection screen approach is shown in Figure C-2. An element of area $d A$ with brightness B is projected through a lens of aperture D and focal length f to a viewing screen located at distance L. The image of $d A$ on the viewing screen appears as dA_{s}. This area re-radiates over solid angle ω_{s}. The apparent screen brightness $B_{S}(\theta)$, as seen by the observer also at distance L, but offset by distance ℓ, is calculated as follows.

The light flux through aperture D from image area $d A$ is: $F=B x \omega x d A$
where
ω is the solid angle of light collection by the projector lens.

FIGURE C-2
DISPLAY BRIGHTNESS GEOMETRY

Accordingly:

$$
\begin{equation*}
\omega=\frac{\pi[D(\theta)]^{2}}{4[f(\theta)]^{2}}=\frac{\pi}{4\left(\mathrm{~F}_{\mathrm{NO}}\right)^{2}} \tag{C-2}
\end{equation*}
$$

Development of ω in terms of $F_{N O}$ instead of lens aperture and focal length is preferred because both theory and experiment show that the latter vary with field angle (θ) on the non-linear lens while F_{NO} does not.
Combining these two equations yields:

$$
\begin{equation*}
\mathrm{F}=\frac{\mathrm{B} \pi \mathrm{dA}}{4\left(\mathrm{~F}_{\mathrm{NO}}\right)^{2}} \tag{C-3}
\end{equation*}
$$

This is the total flux that illuminates $d A_{s}$ at the screen.

Screen illumination (E) is:

$$
\begin{equation*}
E=\frac{F}{d A_{s}}=\frac{B \pi}{4\left(F_{N O}\right)^{2}} \frac{d A}{d A_{S}(\theta)} \tag{c-4}
\end{equation*}
$$

The screen brightness is therefore

$$
\begin{equation*}
B_{S}(\theta)=\frac{E}{\omega}=\frac{B \pi}{4\left(F_{N O}\right)^{2} \omega d A_{S}(\theta)} \frac{d A}{d^{2}} \tag{C-5}
\end{equation*}
$$

Note that B_{S} will have the same units as B if A and A_{S} have identical units. For the on-axis case, zero subscript is used:

$$
\begin{equation*}
\frac{d A}{d A_{S}(0)}=\frac{[f(0)]^{2}}{L^{2}}=\frac{\left(F_{N O}\right)^{2}[D(0)]^{2}}{L^{2}} \tag{c-6}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
B_{S_{o}}=\frac{B \pi D(0)^{2}}{4 \omega L^{2}} \tag{C-7}
\end{equation*}
$$

For the developed lens, $D(0)=.356^{\prime \prime}$. Accordingly:

$$
\begin{equation*}
\frac{B_{S}(0)}{B}=\frac{.0995}{\omega L^{2}} \tag{C-8}
\end{equation*}
$$

If $L=60^{\prime \prime}$:

$$
\begin{equation*}
\frac{B_{S}(0)}{B}=\frac{2.76 \times 10^{-5}}{\omega} \tag{C-9}
\end{equation*}
$$

WORST CASE

If the screen is perfectly diffuse $\omega=\pi$ steradians

If the screen has optimum characteristics $\omega \cong \frac{\pi l^{2}}{L^{2}}$

$$
\begin{aligned}
& \text { WORST CASE } \\
& \frac{B_{S}(0)}{B}=8.78 \times 10^{-6} \\
& \text { For } B_{S}(0)=1 \mathrm{ft} \text {-lambert } \\
& B=114,000 \mathrm{ft} \text {-lambert } \\
& \text { If the screen is perfectly diffuse }
\end{aligned}
$$

BEST CASE

$$
\begin{aligned}
& \text { If } \ell=10^{\prime \prime} \text { (About the minimum pro- } \\
& \text { } \begin{array}{l}
\text { jector/eye separation) } \\
\omega=\pi \frac{10^{2}}{60}=.0873 \text { steradians }
\end{array} .
\end{aligned}
$$

If the screen has optimum characteristics

$$
\frac{B_{s}(0)}{B}=3.161 \times 10^{-4}
$$

$$
\text { For } \mathrm{B}_{\mathrm{S}}(0)=1 \mathrm{ft}-1 \text { ambert }
$$

$$
\mathrm{B}=3160 \mathrm{ft}-1 \text { ambert }
$$

The above calculations show an object trightness in the 3000 to $100,000 \mathrm{ft}$ lambert range is required for acceptable display brightness in the foveal region of the projected display. For reasons shown on Figure C-1, it is not the foveal region, but the peripheral region that puts the greatest requirement on B.

In calculating peripheral display brightness it is most convenient to normalize Equation ($\mathrm{C}-5$) by the on-axis brightness. The result is a fall-off ratio of brightness anticipated in the projected display.

$$
\begin{equation*}
\frac{\mathrm{B}_{\mathrm{S}}(\theta)}{\mathrm{B}_{\mathrm{S}}(0)}=\frac{\mathrm{dA}_{S}(0)}{\mathrm{dA}_{S}(\theta)} \tag{C-10}
\end{equation*}
$$

Equation ($\mathrm{C}-10$) assumes a constant F_{NO} for the lens and ω for the screen. The former has been verified experimentally while the latter will be assured by spherical screen geometry and uniform coating.

The display brightness at any angle, θ, can be computed by determining the axial brightness using Equation ($C-7$) or ($C-9$) and multiplying by the ratio of Equation ($C-10$). The area ratios of Equation ($\mathrm{C}-10$) are available from lens design data and have been
verified experimentally. These data are plotted on Figure $\mathrm{C}-3$. Note that at 90°, brightness is down by 10^{-3}. It is obvious from this that the 3000 to $100,000 \mathrm{ft}$ lambert range required for on-axis brightness must be increased to $3,000,000$ to

FIGURE C-3
NORMALIZED DISPLAY BRIGHTNESS
GP73.078247
$100,000,000 \mathrm{ft}-1$ ambert to support peripheral vision. This exceedingly high requirement for object brightness initially led us to discard this approach and proceed to direct view display approaches. Difficulty in achieving sufficient exit pupil size and field of view (to be discussed later) with those approaches directed effort back to screen viewing techniques.

Since Equation ($C-10$) is constant (a function of the original concept) the clue to increasing display brightness must be found in the equation for axial brightness (Equation ($\mathrm{C}-7$)).

Possible parameters are:

1. Screen Characteristics (ω)
2. Projection Lens Aperture (D)
3. Screen/Projector Distance (L)
4. Object Brightness (B)

Screen Solid Angle - In the previous example a minimum value of ω was computed to determine a lower limit of object brightness for the display projector. Since this minimum may not be practical it was studied in more detail. The first observation was that projector/viewer geometry could be improved for a specular coating. This is illustrated in Figure C-4. The eye and lens are equally displaced on each side of the sphere center. This aligns the centroid of the reflected light towards the eye position - making a large ω unnecessary.

FIGURE C-4
OPTIMUM GEOMETRY FOR SPECULAR SCREEN COATINGS

In reviewing available screen materials from Reference ($C-1$) Stewart Filmscreen Silvergrain appears good for our application. This screen has a gain of four. While higher gain screens exist, they tend to be retroreflective rather than specular.

Calculating object brightness requirements using this wields:
$B=25 \times 10^{6}$ ft-lambert for a 1 ft-lambert screen brightness and full hemispheric projection

The Stewart screen coating discussed above develops a considerably larger dispersion than is required by our concept - i.e., about $\frac{\pi}{4}$ steradians, which is equivalent to $30^{\prime \prime}$ dispersion at the head location if $L=60$ inches. Using the geometry of Figure C-4 the dispersion required could be as small as half the interocular distance plus anticipated head motion. Allowing a 2 inch head motion, about 3 inches would be sufficient. Allowing an additional 2 inches for surface irregularities (about 2°) the solid angle would be

$$
\omega=\frac{\pi 5^{2}}{60^{2}}=.0218 \text { steradians }
$$

From Equation (B-9)

$$
\frac{{ }^{B}{ }_{s}(0)}{B}=\frac{2.76 \times 10^{-5}}{.0218}=.00126
$$

at 90° this requires

$$
\frac{{ }^{B_{90}}}{}=\frac{{ }^{\mathrm{B}_{\mathrm{S}_{0}}}}{1000}=1.26 \times 10^{-6} \mathrm{~B}
$$

For $\mathrm{B}_{90}=1 \mathrm{ft}$-lambert
$B=\frac{1}{1.26 \times 10^{-6}}=794,000 \mathrm{ft}-1$ ambert

This is a substantial reduction below the 25×10^{6} required using the stewart coating.

The natural question at this point is if this type of screen could be fabricated. Theoretically it could be - as shown in Figure C-5. This figure shows the

general construction that would receive the minimum beam dimension D and expand it into a diverging cone having a radius ℓ at distances L ($D \ll 1$).

From simple geometry it can be seen that

$$
\begin{aligned}
\cos \theta & =\frac{D}{2 h} \quad B=(\alpha-\theta) \\
h & =\frac{D}{2 \cos \theta} \quad \alpha=\theta+B \\
\sin B & =\frac{h}{r} \\
\theta^{\prime} & =\alpha+B=\theta+2 B \\
\Delta \theta & =\theta^{\prime}-\theta \\
\Delta \theta & =2 \operatorname{arc} \sin \frac{h}{r}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \theta & =2 \arcsin \frac{D}{2 r \cos \theta} \\
\sin \left(\frac{\theta}{2}\right) & =\frac{D}{2 r \cos \theta} \\
r & =\frac{D}{2 \cos \theta \sin \left(\frac{\Delta \theta}{2}\right)}
\end{aligned}
$$

The $\Delta \theta$ required to make $5^{\prime \prime}$ dispersion at $60^{\prime \prime}$ is

$$
\theta=\arctan \frac{5}{60}=4.76^{\circ}
$$

For our lens the minimum $D=.00356^{\prime \prime}$
θ is obtained from the projector lens/eye geometry which also is (by coincidence)

$$
\theta=4.76^{\circ}
$$

Therefore,

$$
r=\frac{.00356}{2 \cos 4.76 \sin \frac{4.76}{2}}=.043 \mathrm{inch}
$$

Spacing of sphere centers would be $2 h \cong D$

The optimum screen would therefore use specular reflective sections of .043 inch radius spheres - spaces at . $0035^{\prime \prime}$ centers.

The above calculations show how the projector object brightness requirements could be reduced over 30 times through an optimized screen coating. Construction of such a coating might be expensive however.

Exit Aperture - Brightness requirements reduce by the square of the lens aperture D. Therefore, a new lens design would appear to be of significant value. For instance, if $\mathrm{F}_{\mathrm{NO}}=1$ could be achieved, object brightness could be reduced by $(5.6)^{2}$ or about 30 times. Unfortunately the size of the projection lens would grow at least by 5.6 times. This means the present $9^{\prime \prime}$ diameter would increase to about $50^{\prime \prime}$. Besides being very expensive, a lens this size would force expansion
of screen geometry. If everything was scaled by 5.6 , the advantage of the large upeiture would be exactly negated by the increase in projection distance L.

Barring a completely different lens design, it appears that questionable advantage can be gained by scaling lens geometry.

If through a new projector lens design, aperture could be made to increase with image angle θ, some compensation in B_{s} could be achieved while reducing B requirements. The limit of this would probably be $F_{N O}=1$ in the peripheral field. Applying Equation ($\mathrm{C}-7$), the object brightness requirements would now be:

$$
B=800,000 \text { ft-1ambert (Stewart Screen Coating) }
$$

This level of improvement may be achievable through the expense and effort of a completely new non-linear lens design for projection only.

Considering the degree of technical advancement that was required to design a lens with correct distortion, such a redesign for projection appears to be a high risk.

Projection Distance L - Reducing the projection distance, L, is as effective as increasing D is reducing object brightness requirements. However, shown in Figure C-4, parallax angles of both projector/screen and viewer/screen are increased. Also, binocular viewing becomes impaired as L is reduced.

Quite arbitrarily at this time, a parallax of 5° is considered the maximum acceptable. Laboratory tests in projecting transparencies show that this value is acceptable in maintaining focus of the projected image. Since at the time of this writing a full hemispherical projection has not been achieved, it is impossible to determine if 5° is acceptable to the viewer.

It will be shown later that parallax can be eliminated and L reduced through .ybrid projection techniques. They require considerable development, however, involving some technical risks.

Maintaining the 5° parallax angle with the existing non-linear lens requires about $60^{\prime \prime}$ projection distance. This is considered the minimum acceptable (L) at this time.

Object Brightness - At this point in the analysis it appears that between $.8 \times 10^{6}$ to $25 \times 10^{6} \mathrm{ft}$-1ambert object brightness is required. Standard CRT's are in the 1000-3000 ft -lambert categories and are obviously unusable. Projection CRT's are better but still fall considerably short of the brightness requirements (10,000 - 20,000 ft-lambert) and add a x-ray radiation hazard that would probably make them unacceptable in the RVS application.

Eidophor light valve approaches eliminate the x-ray problem, but are quite large and have a mechanical pointing limit. Their high output, however, makes them a promising candidate. For this reason an available G.E. light valve was studied. The PJ 700 light valve has a monochrome output of 750 lumens and requires approximately $\mathrm{F} / 3$ relay optics. This indicates the geometry shown on Figure C-6. Since the non-linear lens requires only $\mathrm{F} / 5.6$ solid angle input and an image reduction is required to relay the light valve to the lens, the image brightness is equal to the light valve object brightness. This brightness can be computed as follows:

$$
\begin{aligned}
& B=\frac{\text { Flux }}{\text { Area } \times \text { Solid Angle }}=\frac{7501 \text { umens }}{6.3 \times 10^{-3} \times .0872} \\
& B=1,365,000 \frac{1 \text { umens }}{\mathrm{Ft}^{2} \text { steradian }}=4,290,000 \mathrm{ft} \text {-1 ambert }
\end{aligned}
$$

This value lies between requirements of the two screen coatings discussed above. For the Stewart coating, this value is about six times below that desired, or would deliver only . 17 ft -lambert at 90° projection.

The scale to the right of Figure $c-3$ shows actual screen brightness that would be achieved versus field angle for the Stewart screen coating. This figure shows the desired 1 ft -lambert could be achieved out to 32° view angle. At 80°, the

$\frac{f}{D}=3$

Light Valve Object Area $A=0.63 \times 10^{-3} \mathrm{ft}$
 Light Valve Effect Solid Angle $\omega=0.0872$ Steradians GP73.0782.22

FIGURE C-6
LIGHT VALVE GEOMETRY
assured max field from the existing non-linear lens, the brightness is about . $2 \mathrm{ft}-$ 1ambert.

While Eidophor light valves exist with outputs as high as 4000 lumens, which is sufficient to achieve the desired display brightness, problems such as price, bulkiness, and reliability lead to the off-th-shelf G.E. system being a better choice for a near-term demonstration del. The .2 ft-lambert minimum screen brightness, we believe, is sufficient for these purposes. In the more distant future, singlecrystal ferroelectric light valves can be expected to replace the Eidophor type [Reference (C-2)]. In addition to furnishing more light, these devices have a storage capability which will eliminate flicker in the peripheral field of the projected display - (an inherent problem in wide field displays). Therefore, we believe the light valve projection technique, using the existing non-linear lens and existing screen coatings, is a very feasible approach. If performance proves to be marginal, a specialized screen coating can correct the deficiency and assure a display brightness of over 5 ft -lambert.

Appendix D

PROM 1, PROM 2, PROM 3, AND
PROM 4 COMPUTER PROGRAM LISTINGS

Figure D-1 is a listing of the PROM No. 1 Computer Program. Figure D-2 is PROM No. 2, Figure D-3 is PROM No. 3, and Figure D-4 is PROM No. 4.

1		;*********10**		
2		;		
3		1		
4		3		
5		,	SYSTE	EQUATES
6		,		
7		,		
8		*****	***)<<*	**********
9		,		
10		,		
11		,		
12	0000	SETML	EOU	+ H 14
13	0000	FIRST	EQU	* H3FE0
14	0060	OUTPT	EQU	* H981
15	0600	OSTAT	EQU	* H3D8A
16	0600	YAW	EOU	* H0400
17	0000	PITCH	EQU	* Hocoo
18	0000	CAMAX	EQU	\#H3D00
19	0000	CAMEX	Eld	\#H3D01
20	0000	Camay	Elu	\#H3D02
21	0600	CAMBY	EQU	\#H3D03
22	0000	CCMAX	EQU	*H3D04
23	0 arad	CCMAX	EQU	*H3D0S
24	0000	CCMAY	EQU	\#H3D06
25	0000	CCMBY	EQU	*H3D07
26	0900	CPOAX	EOU	\#H3D88
27	0000	CPOBX	EQU	*H3D09
28	00 cos	CPOAI	E()U	\#H3D0A
29	0000	CPOBY	EQU	*H3D0B
30	0000	CPLEX	EQU	*H3D0C
31	0000	CPLBX	EQU	\#H3D0D
32	0000	CPLAY	EQU	*H3D0E
33	0000	CPLBY	EQU	\#H3D0F
34	0000	DETK	EQU	\#H3D10
35	0 OH	DETY	EQU	*H3D 11
36	- 0000	IPRJX	EQU	\#H3D 1A
37	0000	IPRJY	EQU	*H3D1C
38	0 OHO	IPOSX	EOU	*H3D 1E
39	$0 \cdot 00$	IPOSY	EOU	\#H3D20
40	0 O 00	MULCX	EOU	*H3D90
41	0 000	MULDX	EQU	MULCX +20
42	0000	MXLYB	EQU	MULDX +20
43	0 ()an	MXLVK	EQU	MXLVB+20
44	0 O 0 O	MULAX	EdU	MXL VK+20
45	0000	MULBX	EQU	MULAX +20
46	0 O 00	MULCY	EQU	MULBX+20
47	0000	MULDY	EQU	MULCY +20
48	$0 \cdot 00$	MYLVB	EQU	MULDY+20
49	0 cas	MYLVK	EQU	MYLVB +20
50	0000	MULAY	EQU	MYL VK+20

Figure D-1 Prom No. 1 Service Interrupt Handier Software

INTEL 8． 1 CROSS ASSEMBIER
14：33：02 09－MA．／i PAGE 2

51	8080		MULEY	EOU	MUL．AY +20
52	0000		NCPOX	E（2U	＊H3D22
53	0000		NCPOY	EQU	＊H3D24
54	0000		PRJAX	EかU	＊H3D26
55	0600		PRJBX	EOU	＊H3D27
56	0900		PRJAY	EQU	＊H3D28
57	0000		PRJBY	EQU	－H3D29
58	9000		PRLAX	ENU	＊H3D2A
59	0900		PRLBX	EQU	＊H3D2B
60	0000		PRLAY	EQU	＊H3D2C
61	0000		PRLBY	EQU	＊H3D2D
62	0600		PVIAY	ENU	＊H3D2E
63	日けつd		PVLB：	EQU	＊H3D2F
64	0000		PVLAY	EOU	＊H3D30
65	0ッ00		PVLBY	EQU	＊ H 3 D 31
66	0600		RSTRT	ECU	\＃H3D40
67	0000		RINT	EQU	\＃H3D34
63	0000		TSTRT	EQU	＊H3D47
69	0000		TINT	EQU	＊H3D38
70	0600		X	EQU	\＃ H 3 D 3 A
71	0090		XY	EかU	\＃H3D3C
12	0000		XFLAG	EQU	\＃H3D3E
73	coro		YFLAG	EQU	\＃H3D3F
74	0，000		USCMD	EQU	\＃HOOED
P5	coor		USDEO	EねU	＊H0OEC
TE	0000		USDAI	E ${ }_{\text {EU }}$	\＃HOOEE
77	QbつO		PRTH1	EQU	\＃ HODOO
T8	0600		PRTE1	EQU	＊ HOOO 1
79	2け00		PRTC1	EQU	＊ HODO 2
80	0000		PRTA2	EQU	\＃ H 0003
81	0000		PRTB2	$E C_{x} U$	\＃H00E5
82	0900		PRTC2	EQU	\＃ H 0000
83	0900		PRTD 1	EOU	\＃ HODO 1
84	0000		PRTD2	EQT	＊ HODO 2
85	0000		PRTD3	EQU	\＃HODE6
86	0020		PIOI 1	EQU	\＃HOOE？
87	0600		PIOI2	EQU	＊HOOEB
88	0000		MDWI	EQU	＊H009B
89	0000		MDW2	EOU	＊H008？
90	0000		N1	EQU	＊H0001
91	0000		N2	EQU	－H0003
92	0.900		PRSET	EQU	＊HEA
93	0000		KYBD 1	EOU	＊H800
94	0000		KYED2	E）U	＊H9AB
35	0000		COMPAR	EQU	＊H816
96	DけDO			ORGG	0
97	－ras	F3		DI	
98	0001	31FF3C		LSI	SP，\＃ H 3 CFF
99	01904	CD8101		CALL	INIT
100		3ECO		M 71	A．\＃HCO

Figure D－1 Prom No． 1 Service Interupt Handler Software（Continued）

INTISL E J CROSS ASSEMBIEER 14133:09 09-MA. R PAGE 3

101	0009	328A3D		S'TA	OSTAT	
102	000 C	2 F		Clid		
103	0 OOD	D3EA		OUT	PRSET	
104	000 F	3 ECF		M'II	A, \#HCP	
105	0011	2 F		C14		
106	(a) 12	D3EA		OIST	PRSET	
107	0014	CDC30 1		Call.	SETUP	
108	$00^{0} 17$	FB		El		
109	0)18	0604		M'I I	B. \#H04	
110	001 A	7రิ	LEDS:	Mov	A. B	
111	0618	CD8109		CaLl	OUTPT	
112	001 E	3E11		M'II	A. \#H11	
113	0 0?0	80		AldD	B	
114	0021	47		MOV	B. A	
115	$0 \cdot 22$	FES9		CPI	*H59	
116	0024	C21A00		JNZ	L.EDS	
117	0027	CDA401		CaLL	ZERO	
118	002 A	76		HL.T		
119	002 B	3EFF		M1'I	A. \# HFF	
120	002 D	2 F		CITA		
121	002 E	D3EA		OIJT	PRSET	
122	0030	C33300	BKWRD :	J1P	FRWRD	
123	0033	C33000	FRWRD:	J14P	BKWRD	
124	0036			DS	* H 38 -\$	
125	0938	CS	SRV:	PIJSH	B	;
126	0039	DS		PIJSH	D	; A
127	003 A	ES		PIJSH	H	1 V REG
128	003 B	F5		PIJSH	PSW	, E ISTERS
129	0035	DB01		IH	N1	: INPUT LAST 3 BITS OF PROJ X
130	0 03E	F61F		ORI	* HIF	
131	01940	FE1F		CPI	\# HIF	
132	$0 \cdot 42$	CA5D00		JZ	PTY	
133	0945	47		M10 ${ }^{\text {d }}$	B. A	
134	0646	3ECO		M'I	A, \#HC0	
135	0948	2F		CHAA		
136	0149	D3EA		$015 T$	PRSET	
137	0 ()4B	ЗЕС?		M'II	A. \#HC?	
138	0 ()4D	2 F		CITA		
133	004 E	D3EA		O1JT	PRSET	
140	0050	78		Mc V	A. B	
141	0 O 1	217800		LKI	H. JTAB	
142	0 dis	07	LOOP:	RLC		
143	0055	DA7300		JC,	ST	
144	0058	23		INX	H	
145	0059	23		INX	H	
146	0 a 5 A	C35400		J1P	LOOP	
147	$005 D$	DB03	PTY ${ }^{1}$	IH	N2	
148	005 F	F61F		ORI	* H1F	
149	0061	47		Mov	B. A	
150	0062	3ECO		M'II	A. ${ }^{\text {HCO}}$	

Figure D-1 Prom No. 1 Service Interupt Handier Software (Continued)

Figure D-1 Prom No. 1 Service Interupt Handler Software (Continued)

INTIEL 8. J CROSS ASSEMBIER

Figure D-1 Prom No. 1 Service Interupt Handler Software (Continued)

INTEL 8, , CROSS ASSEMBIER

251	0130	7D		Mov	A. L
252	2131	FE45		Cld	* H 45
253	0133	CA4101		Jis	YF
254	0136	DA4001		J	ET
255	0139	7E	CONT:	MOV	A. M
256	(13A	2B		DCX	H
257	013B	22383D		SIIID	TINT
258	-13E	D3EC		OIST	USDAO
259	0140	C9	ET:	RET	
260	0141	213F3D	YF,	LKI	H. YFLAG
261	0144	7E		MOV	A.M
262	0145	C680		Al) I	*H80
263	0147	77		Miov	M. A
264	0148	1F		RHR	
265	(1)149	2R383D		LIIID	TINT
266	$014 C$	D H 3901		JC	CONT
267	014 F	C9		RI:T	
2ЄB	0150	2A343D	RX:	LIFL	RINT
269	0153	7D		MO) V	A. L
270	-154	FE44		CPI	*H44
271	-156	CAFAO1		J:	CM
272	-159	DBEC		IH	USDAO
273	0 ! 5 B	7 ?		M1) V	M. A
274	-15C	23		IHX	H
275	0 ISD	22343D		SIILD	RINT
276	0160	TD		Mov	A. L
277	0161	FE42		CPI	*H42
278	0163	CA7301		Jis	BM
279	-166	「:43		ClP	* H 43
280	9168	(H 6 CO 1		J	AM1
281	-16B	C9		RIST	
282	016 C	2A383D	AM:	LHLD	TINT
283	016 F	7E		M()V	A. M
284	0170	D3EC		O1TT	USDAO
285	0172	C9		RI:T	
286	0173	213E3D	BM,	LKI	H. XFLAG
287	0176	3E01		M'I	A. $\mathrm{H}^{\text {O }} 1$
288	(1)178	77		Mov	M. A
289	0179	C9		RI:T	
290	017A	2A0E3D	CMt	LIILD	CPLAY
291	817D	220A3D		SIIID	CPOAY
292	-180	C9		RI:T	
293	0181	3E9B	INIT:	M'II	A. MDW 1
294	8183	D3E?		OITT	PIOII
295	0165	3E82	INIT1:	M'II	A. MDW2
296	0187	ก3EB		OITT	PIOI2
297	0189	AF	UCLEAR:	XR2	A
298	818日	D3ED		OIST	USCMD
299	Q18C	D3ED		$015 T$	USCMD
300	O18E	D3ED		OIST	USCMD

Figure D-1 Prom No. 1 Service Interupt Handler Software (Continued)

INTEL ©, 〕 CROSS RSSEMBI.ER						14:33:37	09-MA. . 7	PAGE
301	0190	3E40		M ${ }^{\prime}$ I	A. *H40			
302	0192	D3ED		OIST	USCMD			
303	0194	3E6E		M'II	A. *H6E			
304	0196	D3ED		O15T	USCMD			
305	0198	3E37		MYI	A. \#H3?			
306	019A	D3ED		Q1JT	USCMD			
307	019 C	DBEE		IN	USDAI			
308	-19E	DBEE		It	USDAI			
309	OLAO	AF		XRA	A			
310	(1A1	D3EC		O1JT	USDAO			
311	0183	C9		RI:T				
312	0184	210000	ZERO:	LKI	H. \#H0000			
313	$\theta \mid A T$	223A3D		SIILD	*H3D3A			
314	OLAA	223C3D		SIHLD	*H3D3C			
315	0 IAD	22603D		SIIID	*H3D60			
316	O1B ${ }^{\text {a }}$	22703D		SIIID	* H 3 D 70			
317	O1B3	22743D		SIILD	*H3D74			
318	0156	22783D		SIILD	* H 3 D 78			
319	-1B9	22EE3F		SIILD	* H3FEE			
320	0 IBC	22EA3F		SIILD	* H3FEA			
321	0 IBF	22EC3F		SIILD	* H3FEC			
322	- IC2	C9		RIIT				
323	0 -1C3	AF	SETUP:	XR2	A			
324	- IC4	32E03F		S'ta	FIRST	, FIRST=0. THEN	FIRST-FF	
325	OIC?	CD140A		ChLL	SETML			
326	OICA	3EFF		M1\%	A, \#HFF			
327	OICC	32E03F		STA	FIRST			
328	OICF	C9		RI:T				
329	OIDO			EHD				

Figure D-1 Prom No. 1 Sarvice Interupt Handler Software (Continued)

INTEL B086 -ROSS ASSEMBLER SYMBOL TABLE

PVLBX= 3D2F	PVLAY= 3D30	PVLBY: 3D31	RSTRT $=3$ D40
RINT - 3D34	TSTRT = 3D47	TINT - 3D38	X - 3D3A
XY - 3D3C	XFLAG $=3$ 3E	YFLAG - 3D3F	USCMD = - 0 ED
USDAO - OOEC	USDAI = DOEE	PRTA1-0000	PRTB1- 9001
PRTC1 - 0002	PRTA2 $=0003$	PRTB2-00E5	PRTC2-9000
PRTD $1=0001$	PRTD2 $=0002$	PRTD3- 00E6	PRSET- GOEA
$\operatorname{COMPA}=0816$	LEDS 901a	BKWRD 030	FRWRD 033
SRV 0038	LOOP 9054	PTY H0SD	ST O073
JTAB Gorb	COMPR 0097	RKRDY G09D	TXRDY 00A3
SYSCL 00R9	دYS OQB1	PORT 0108	SCND 9111
TX O12D	CONT ©139	ET 9140	YF ©141
RX 0150	N1 $=0091$	KB1 008	KB2 0091
$\mathrm{N} 2=0003$	BM 0173	CM O17A	$\mathrm{A}=0007$
INIT 9181	INIT1 0185	B $=0000$	UCLEA 9189
ZERO ©1A4	$C=0001$	SETUP ©1C3	D = 0002
$\mathrm{E}=0003$	$K Y B D 1=0800$	KYBD2 $=09 \mathrm{AB}$	PIOIL $=00 \mathrm{E} 7$
MDW1 $=009 \mathrm{~B}$	MDW2 $=0082$	PIOI2 = GEEB	DBRF OOAC
AM O16C	$\mathrm{H}=0004$	CAMAX $=3$ D00	CAMBX $=3$ O 1
CAMAY $=3$ O02	CAMBY= 3DE3	CCMAX $=3$ De4	CCMBX $=3$ D05
CCMAY $=3$ D06	CCMBY $=3$ O 07	PITCH $=13 \mathrm{COO}$	CPOAX $=3$ D08
CPLAX $=3$ DOC	L = 0005	CPOBX= 3D09	CPOAY = 3DOA
$M=0006$	SETML $=$ () A 14	CPOBY= 3DOB	FIRST $=3 \mathrm{FE} 0$
CPLBX $=3$ DOD	CPLAY= 3D0E	OSTAT $=3$ S8A	CPLBY= 3D0F
DETX $=3 \mathrm{D} 10$	YAW = 9400	DETY = 3D11	IPRJX $=3 \mathrm{D} 1 \mathrm{~A}$
SP $=0006$	IPRJY - 3D1C	IPOSX= 3D1E	OUTPT $=$ ()981
IPOSY $=3 \mathrm{D} 20$	MULCX $=3$ 390	PSW $=0006$	MULDX= 3DA4
MXLVB $=3$ 388	MXLVK= 3DCC	MULAX- 3DE0	MULBX $=3$ SF4
MULCY $=3 \mathrm{E} 08$	MULDY $=3 E 1 \mathrm{C}$	MYLVE $=3 E 30$	MYLVK $=3 E 44$
MULAY $=3 E 58$	MULBY $=3 E 6 \mathrm{C}$	NCPOX $=3 \mathrm{D} 22$	NCPOY $=3 \mathrm{D} 24$
PRJAX $=3$ D26	PRJBK= 3D27	PRJAY= 3D28	PRJBY = 3D29
PRLAX $=3$ D2A	PRLBX= 3D2B	PRLAY = 3D2C	PRLBY= 3D2D

PVLAX $=3 D 2 E$

ERRORS JETECTED: ©

Figure D-1 Prom No. 1 Service Interupt Handler Software (Concluded)

1		3*****	******	
2		1)		
3		,		
4		:		
5		3	SYSTEM	EQUATES
6		,		
7		3		
8		3*****	*******	************
9		,		
10		,		
11		3		
12	0000	CAMAX	EQU	- H3D00
13	0000	Cambx	EOU	*H3D0 1
14	0000	CAMAY	EQU	*H3D62
15	0000	CAMBY	EDU	*H3D03
16	0600	CCMAX	EQU	*H3D46
17	0000	CCMAY	EMU	*H3D44
18	$0 \cdot 00$	CPOAX	E(2T)	*H3D40
19	0000	CPOBX	EQU	*H3D41
20	0000	CPOAY	EQU	*H3D42
21	0000	CPOBY	EQU	*H3D43
22	0000	CPLAX	EQU	*H3DAC
23	0000	CPLBX	EQU	*H3DeD
24	0000	CPLAY	EQU	* H3DeE
25	0900	CPLBY	EQU	* H3DeF
26	0 COO	DETX	E(QU	*H3D 10
27	0000	DETY	EQU	*H3D 11
28	0000	DDOTX	EQU	*H3D 12
29	0000	DDOTY	EQU	*H3D14
30	0000	DOTIX	EQU	*H3D 16
31	0000	DOTIY	EQU	*H3D 18
32	0000	IPRJX	EOU	*H3D1a
33	0000	IPRJY	EQU	* H3D 1 C
34	0000	IPOSX	EQU	* H3D $1 E$
35	0000	IPOSY	EQU	*H3D20
36	0000	MULCX	EdU	* H3D90
37	0000	MULDX	EQU	MULCX +20
38	0900	MXLVB	E(QU	MULDX+20
39	0000	MXLVK	EOU	MXL VB +20
40	0000	MULAX	E(JU	MKL VK+20
41	0000	MULBX	EQU	MULAX +20
42	0 O 00	MULCY	EQU	MULBX+20
43	0000	MULDY	EOU	MULCY +20
44	0000	MYLVB	EQU	MULDY+20
45	0000	MYLVK	EQU	MYLVB +20
46	01900	MULAT	EQU	MYL VK+20
47	0900	MULBY	EQU	MULAY +20
48	0000	MICH	EQU	MULBY+20
49	0ッ00	MICHY	E(SU	$\mathrm{MICH}+20$
50	0000	CMIY	EQU	MICHY +20

Figure D-2 Prom No. 2 Yaw Control Software

INTI:L $6 .-\delta$ CROSS ASSEMBIER

51	0000		CMIX	EQU	CMIY+20	
52	0000		TORQY	Y EQU	CMIX+20	
53	0000		TORQX	X EQU	TORQY+20	
54	Or90a		PTQX	EQU	TORAX+20	
35	0000		NCPOX	X EQU	*H3D22	
56	$0 \cdot 000$		NCPOY	Y EnU	*H3D24	
57	0 arab		PRJAX	E EUU	*H3D26	
58	0000		PR.JBX	- EQU	*H3D27	
59	0900		PRJJY	Y EQU	*H3D28	
60	0900		PRJBY	Y EdU	*H3D29	
61	0000		PRLAX	E EXU	*H3D2A	
52	$0 \cdot 00$		PRLBX	- EdU	*H3D23	
63	0000		PRLAY	Y EMU	*H3D2C	
64	0000		PRLBY	Y EdU	*H3D2D	
65	0000		PVLAX	- EDU	*H3D2E	
66	0000		PVLBX	E EVU	*H3D2F	
67	0000		PVIAY	Y EQU	* H3D30	
68	0000		PVLBY	Y EQU	* H3D31	
69	0000		RINT	ESU	*H3D34	
70	0000		TINT	EQU	*H3D38	
71	0000		X	EQU	* H3D3A	
72	0900		XY	EdU	*H3D3C	
73	0000		XFLAG	G EOU	*H3D3E	
74	0000		YFLAG	G EQU	* H3D3F	
75	0900		DELY	EQU	*H3D68	
78	0008		ICHY	EQU	*H3D70	
77	0000		CDEL	EQU	*H3D72	
78	0900		CIY	EdU	*H3D74	
79	0900		USDAO	0 EQU	* H00EC	
80	0000		PRTA1	1 EQU	* H0000	
81	0000		PRTB1	1 Eoud	* H000 1	
82	0000		PRTC 1	1 EQU	* H0002	
83	0900		PRTA2	2 EQU	* $\mathrm{H0003}$	
84	0 raO		PRTB2	2 EQU	* H00ES	
85	0900		PRTC2	2 EQU	* H 0000	
86	0 areo		PRTD 1	1 EnU	* H0001	
87	0 arab		PRTD2	2 E®U	* H0002	
88	0000		PRTD3	3 EQU	* H00E6	
89			: SYSTEI COMPENSATION NETWORK			
90			; S	SYSTEIM COMPENSATION		NETWORK
91			, ${ }^{\text {a }}$			
92			;			
93	0.400			ORG	* H 400	
94	0.400	2A2C3D	YAW:	LHIL	D PRLAY	
95	0.403	EB		XCHG		
96	0.494	3A293D		LDA	PRJBY	
97	0.407	E610		AHI	* H10	
98	0.489	FE10		CPI	* H 10	
99	0.40 B	C21604		JNZ	RA	
100	0.40 E	3A293D		LI) A	PRJBY	

Figure D-2 Prom No. 2 Vaw Control Software (Continued)

101	0.411	C6E0		Al) I	*HEO
102	0.413	32293D		S'th	PRJBY
103	0.416	2A283D	RA 1	LHLD	PRJAY
184	0.419	CD4305		CALL	MINUS
105	0.41 C	19		DHD	D
106	0.41 D	CD4305		CALL	MINUS
107	0.420	EB		XC.HG	
108	0.421	CD083E		CALL	MULCY
109	0.424	22143D		SHLD	DDOTY
110	0.427	DBEC		It	USDAO
111	0.429	3A113D		LD) A	DETY
112	0.42 C	FE04		CPI	-H04
113	0.42 E	F24004		Jp	PAR
114	0.431	FEFC		CPI	* HFC
115	0.433	FA3B04		J11	MRN
116	0.436	3E00		M'I	A. \#H00
117	0.438	C34204		JMP	ING
110	0.43 B	C604	MAN:	Al) I	* H 04
119	843D	C34204		J1P	ING
120	0.440	CGFC	PAR:	Ald 1	* HFC
121	0.442	5F	ING:	Mov	E. A
122	0.443	FEDO		CPI	* H 00
123	0.445	3E00		MIII	A. $\mathrm{HOO}^{\text {O }}$
124	0.447	F24B04		Jp	ZP
125	0.44 A	2F		CMA	
126	0.448	57	ZP:	M1) V	D. A
127	0.44 C	CD1C3E		CaLl	MULDY
128	0.44 F	EB		XCHG	
129	0.450	2A143D		LHLD	DDOTY
130	0.453	19		DAD	D
131	0.454	EB		XCHG	
132	0.455	7A		M()V	A. D
133	0.456	07		RI.C	
134	0.457	DA6404		Jic	FIVE
135	0.45 A	$210 C F F$		LKI	H. *HFFCC
136	0.45 D	19		DAD	D
137	0.45 E	Da7204		JC	PL
138	0.461	C36B04		J1P	TWO
139	0.464	213400	FIVE:	LKI	H. *H0034
140	0.467	19		DAD	D
141	0.468	D27B04		JHC	ML
142	0.46 B	EB	TWO:	XCHG	
143	0.46 C	22023D		SIILD	CAMAY
144	0.46 F	C38404		JTP	EXT
1.45	0.472	213400	PL.:	LKI	H. \#H34
146	0.475	22023D		SIILD	CAMAY
147	0.478	C38404		J1P	EKT
148	0.47 B	$216 C F F$	ML:	LKI	H, *HFFCC
149	0.47 E	22023D		SIILD	CAMAY
150	0.481	C38404		JIP	EKT

Figure D- 2 Prom No. 2 Yaw Control Software (Continued)

INTIEL Buc凶 CROSS ASSEMBIER
14:35:32

151			1		
152			,	CIIMERA	SERVO
153			,		
154	0.484	38433D	EXT:	LD) A	CPOBY
155	0.487	E61F		Ald I	* HIF
156	0.489	32433D		S'TA	CPOBY
157	0.48 C	E610		AtMI	* H 10
158	0.48 E	FE10		Cl 1	* H 10
159	0.490	C29B04		JH2	WP
160	0.493	3A433D		L]) A	CPOBY
161	0.496	C6E0		Al) I	* HEO
162	0.498	32433D		S'ta	CPOBY
163	0.49 B	2A423D	WP:	LIILD	CPOAY
164	0.49 E	CD4305		CALL	MINUS
165	0.4 Al	22243D		SHLD	NCPOY
166	0.484	EB		XCHG	
167	0.485	2A0E3D		Lhild	CPLAY
168	0.488	19		DAD	D
169	0.489	22F03F		SHILD	* H3FF0
170	0.4 AC	29		DAD	H
171	0.4 AD	29		DAD	H
172	0.4 AE	EB		XCIIG	
173	9.4AF	2A423D		LIILD	CPOAY
174	0.482	220E3D		SIILD	CPLAY
175	$0.4 \mathrm{B5}$	7A		$\mathrm{MC}) \mathrm{V}$	A.D
176	0.486	0 ?		KJ. C	
177	0.4 B ?	D2C404		JHC	OGDR
178	0.4 BA	211101		LKI	H, *H111
179	0.4 BD	19		DAD	D
180	0.4 BE	D2D404		JHC	DECR
181	$0.4 C 1$	C3DA04		JMP	MUL
182	$0.4 C 4$	21EFFE	OGDR:	LKI	H. \#HFEEF
183	0.4C7	19		DAD	D
184	$0.4 C 8$	DACE04		J\%	LMAR
185	0.4 CB	C3DA04		JTP	MUL
186	$0.4 C E$	210040	LMAR:	LKI	H, \#H4000
187	0.4 D 1	C3DDO4		J1P	FLTR
183	0.4 D 4	2100C0	DECR:	LKI	H, \#HC000
189	0.4 D ?	C3DD04		JTP	FLTR
190	0.4 DA	CD303E	MUL:	CaLl	MYLVB
191	0.4 DD	CD4B05	FLTR:	CALL	SHIFT
192	0.4 EO	CD4B05		CALL	SHIFT
193	0.4 E 3	EB		XCHG	
194	0.4 E 4	2A803D		LIILD	*H3D80
195	0.4 E 7	19		DHD	D
196	0.4 E 3	EB		XCHG	
197	0.429	22803D		SHILD	*H3D80
198	0.45 こ	2A823D		LHLD	*H3D82
199	0.4 EF	CD4B05		CaLL.	SHIFT
200	0.4 F 2	13		DAD	D

Figure D-2 Prom No. 2 Yaw Control Software (Continued)

INTIIL Brud CROSS ASSEMBLER

201	0.4 F 3	22823D		SHLD	*H3D82
202	0.456	22183D		SHLD	DOTIY
203	$0.4 \mathrm{F9}$	2A023D		LHID	ChMAY
204	0.45 C	EB		XCHG	
205	0.4 FD	2A3C3D		LHLD	XY
206	0.500	19		DHD	D
207	0.321	EB		XCHG	
208	0.502	7A		MoV	A. D
209	0.503	07		RI.C	
210	0.304	DA1205		Ji:	PAP
211	0.507	21DOE2		LSI	H. \#HE2DO
212	$0 \cdot 30 \mathrm{~A}$	19		DHD	D
213	$0 \cdot 50 \mathrm{~B}$	Daldes		JC:	ONE
214	$0 \cdot 50 \mathrm{E}$	EB		XCHG	
215	0.50 F	C33205		J1P	THRE
216	0.512	210415	PAP:	LisI	H, \#H1E04
217	0.515	19		DAD	D
218	0.516	D22905		JHC	FOUR
219	0.519	EB		XCHG	
220	051 A	C33205		J1P	THRE
221	0.31D	210000	ONE:	LKI	H, 0
222	0.520	22023D		SIILD	CAMAY
223	0.523	21301 D		LSI	H, \#H1D30
224	0.526	C33205		J1P	THRE
225	0.329	210000	FOUR:	L:SI	H. ${ }^{\text {d }}$
226	0.32 C	22023D		SIILD	CAMAY
227	0.32 F	21FCE1		LKI	H, \#HE 1FC
228	0.332	223C3D	THRE:	SIILD	XY
229	0.335	EB		XCHG	
230	0.536	2A243D		LIILD	NCPOY
231	0.539	29		DiAD	H
232	053A	29		DAD	H
233	0.33B	19		DHD	D
234	0.33 C	22723D		SiLIL	CDEL
235	0.53 F	Eb		XC.HG	
236	0.540	C30006		JHP	* H600
237	0.543	TC	MINUS:	$\mathrm{Mo}) \mathrm{V}$	A. H
238	0544	2F		C/1A	
239	0.345	67		M(1)	H, A
240	0.546	7D		Mov	A.L
241	0.547	2F		CITA	
242	0.548	6F		$\mathrm{MO}) \mathrm{Y}$	L. A
243	0.349	23		INX	H
244	0.34 A	C9		RIET	
245	0.345	7 C	SHIFT:	M() V	A. H
246	$0.34 C$	07		RI.C	
247	0.34 D	7C		$\mathrm{MO} \mathrm{V}^{\text {d }}$	A. H
248	0.34 E	1 F		RAR	
249	0.54 F	67		MOV	H. A
250	0.350	7D		$\mathrm{MO}) \mathrm{V}$	A. L

Figure D-2 Prom No. 2 Yaw Control Software (Continued)

Figure D-2 Prom No. 2 Yaw Control Software (Continued)

1		1********:k**		
2		1 ,		
3		1		
4		,	SYSTEM EQUATES	
5		,		
6		,		
$?$;		
8		;********:1**************		
9		:		
10		;		
11		;		
12	0000	LAGX	End	* H 3 FOC
13	0000	LAGY	EdU	* H3F20
14	0000	CDEL	ECu	*H3D72
15	$0 \cdot 100$	EOY	EQU	*H3FEC
16	0000	CAMAX	EQU	\#H3D00
17	0,900	CAMBX	EQU	*H3D01
18	0 O 00	CAMAY	EdU	*H3D02
19	0000	CAMBY	EQU	\#H3D03
20	0000	CCMAX	EQU	\#H3D46
21	0000	CCMAY	EQU	*H3D44
22	0000	CPO日X	EQU	\#H3D40
23	0 O 00	CPOBX	EQU	*H3D41
24	0 OHO	CPOAY	EQU	*H3D42
25	0000	CPOBY	EQU	\#H3D43
26	0000	CPLAK	EQU	\#H3D0C
27	0000	CPLBK	E(XU	\#H3D0D
28	$0 \cdot 00$	CPLAY	EQU	\#H3D0E
29	0000	CPLBY	E)U	\#H3D0F
30	0000	DETX	EdU	*H3D 10
31	0000	DETY	EQU	*H3D 11
32	0080	DDOTX	EQU	*H3D 12
33	0000	DDOTY	EQU	\#H3D 14
34	0000	DOTIX	EQU	*H3D16
35	0000	DOTIY	E(QU	\#H3D 18
36	0000	IPRJX	Eld	*H3D 1A
37	0 OHO	IPRJY	EdU	\#H3D 1C
38	0 OHO	IPOSK	EQU	*H3D1E
39	0 O 00	IPOSY	Eld	*H3D20
40	0000	HULCX	E(t)	*H3D90
41	0000	MULDX	EdU	MULCX+20
42	0000	MXLVB	EQU	MULDX+20
43	0000	MXLVK	EdU	MXLVB+20
44	0000	MULAX	E()U	MXL VK+20
45	0000	MULBX	EかU	MULAX+20
46	0000	MULCY	EQU	MULBX+20
47	0000	MULDY	E(x)	MULCY+20
48	0000	MYLVB	E(QU	MULDY+20
49	0000	MYLVK	EDU	MYLVE+20
50	$0 \cdot 000$	MULAY	EDJ	MYL VK+20

Figure D-2 Prom No. 2 Yaw Control Software (Continued)

INTIEL E. \& CROSS ASSEMBIER

51	0000		MULBY	EQU	MULAY +20
52	0000		MICH	EqU	MULBY+20
53	0000		MICHY	EQU	$\mathrm{MICH}+20$
54	0000		CMIY	EQU	MICHY +20
55	0000		CMIX	EQU	CMIY+20
56	0000		TORQY	EQU	CMIX +20
57	0000		TORQX	EQU	TORQY +20
58	0000		PTQX	E(2)	TORQX+20
59	0000		NCPOX	Eciu	*H3D22
60	0000		nCPOY	EQU	*H3D24
61	0000		PRJAX	EQU	\#H3D26
62	0000		PRJBX	EQU	\#H3D27
63	0000		PRJAY	Eld	\#H3D28
64	0000		PRJBY	EOU	\#H3D29
65	0000		PRLAX	EQU	*H3D2A
66	00ed		PRLEX	EQU	\#H3D2B
67	0600		PRLAY	El)U	*H3D2C
68	0000		PRLBY	EQU	\#H3D2D
59	$0 \cdot 00$		PVLAK	EQU	\#H3D2E
70	0000		PVILBX	EQU	*H3D2F
71	0000		PVLAY	EQU	\#H3D30
72	0000		PVLBY	EQU	\#H3D31
73	0000		RINT	EQU	\#H3D34
74	0000		TINT	EOU	*H3D38
75	0000		X	EQU	\#H3D3A
76	0000		XY	EQU	\#H3D3C
77	0000		XFLAG	EQU	\#H3D3E
78	0000		YFLAG	EQU	\#H3D3F
79	0000		DELY	EQU	\#H3D68
80	0, 0 er		ICHY	EQU	\#H3DP9
81	0000		USDAO	EQU	\#HOOEC
82	9000		PRTA1	EdU	\# H 0000
33	0000		PRTB1	EQU	\# H 0001
84	0900		PRTC 1	EOU	*H0002
85	9000		PR'Th2	EQU	* H0903
86	0000		PRTB2	EQU	* H00ES
87	0000		PRTC2	EQU	\# H 0000
88	$0 \cdot 000$		PRTI 1	EOU	\# HO 001
89	0090		PRTD2	EQU	* HOOO 2
90	0000		PRTD3	EQU	*H00E6
91	0600			ORG	* H600
92	06500	7A		MOV	A. D
93	01501	07		RI.C	
94	06502	DA1506		Ji:	YMI
95	06505	2100 FO		LiSI	H, \#HF000
96	0688	19		DAD	D
37	0609	DA0F06		Jt:	YLM
98	0 FAC	C32506		JMP	KV
39	$\theta 60 \mathrm{~F}$	210040	YLM:	LKI	H, \#H4000
100	0612	C32806		JIP	YE

Figure D-2 Prom No. 2 Yaw Control Software (Continued)

INTAL B.-১ CROSS ASSEMBIER

101	0615	210010	YMI :	LKI	H. \#H1000
102	0 m 18	19		DHD	D
103	0t 19	D21F06		Jtic	YDE
104	E51C	C32506		J1P	KV
105	0615	210000	YDE:	LiSI	$\mathrm{H}, \mathrm{HCOOO}$
106	0622	C32806		J1P	YE
10 ?	0625	CD443E	KV:	CALL	MYLVK
108	0) 285	EB	YE:	XCHG	
109	0¢529	2A183D		LHLD	DOTIY
110	$0 \cdot 62 C$	19		DAD	D
111	062 D	EB		XCHG	
112	$0 \cdot 2 \mathrm{E}$	7A		Mi) V	A. D
113	062 F	Q 7		RIC	
114	0630	DA4306		JC	KAD
115	0633	$218 C F B$		LKI	H. \#HFBBC
116	0,636	19		DAD	D
117	06337	DA3D06		Ji	OH
118	063 A	C35306		J1P	GOSH
119	0635	210040	OH	LKI	H, ${ }^{\text {H4 } 4000 ~}$
120	0640	C35606		J1P	OSH
121	-1643	214404	KAD:	L.3I	H, \#H444
122	0646	19		DAD	D
123	9647	D24D06		JHC	WOW
124	0154 A	C35306		J1P	GOSH
125	$0 ¢ 4 \mathrm{D}$	2100 Co	WOW:	L\II	H, \#HCO00
126	$0 ¢ 50$	C35606		J14	OSH
127	0653	CDD03E	GOSH:	Call	TORQY
128	$0 ¢ 56$	22443D	OSH:	SIILD	CCMAY
129			,		
130			: PROJE	TOR SE	
131			;		
132			;		
133	-1559	CDACO?		CALL	LAG
134	065 SC	2A723D		LIILD	CDEL
135	0¢55F	EB		XCHG	
136	06560	7A		M) V	A. D
137	0661	07		RI.C	
138	01562	D26F06		JHC	YYY
139	0 0665	210004		LKI	H. *H400
140	01558	19		DIAD	D
141	01569	D27906		JHC	LARGE
142	0656	C38806		J1P	GO
143	066 F	2100 FC	YYY:	LKI	H. \#HFC00
144	$0 ¢ 572$	19		DiAD	D
145	0673	DA7906		Jt:	LARGE
146	0676	C38806		J1P	GO
147	0679	2A3C3D	LARGE:	LIILD	XY
148	01.37	CDA407		CaLl	MINUS
149	0675	CD9E0?		CALL	SHIFT
150	0682	CD9B07		CALL	SHIFT

14:37:36 09-MA. 17 PAGE 3

INTEL Brud CROSS ASSEMBIER

151	0 t 85	22243D		SHILD	NCPOY
152	0,888	2A283D	GO:	LHIL	PRJAY
153	0 068	CDA407		CALL	MINUS
154	068 E	221C3D		SHIL	IPRJY
155	0691	EB		XCHG	
156	0692	2A243D		LHLD	NCPOY
157	01595	19		DAD	D
158	0696	22683D		SHILD	DELY
159	0699	EB		XCHG	
160	0698	7A		Mov	A. D
161	0 t 9 CB	07		RIC	
162	DF9C	D2B506		JHC	OGD
163	0695	216600		LKI	H. \#H0066
164	0682	19		DAD	D
165	0¢A3	D2AF06		JHC	DEC
166	0¢56	С3BC06		J!1P	BY
167	06, 9	210040	LMA ${ }^{\text {I }}$	LKI	H. \#H4000
168	0¢FAC	C3BFe6		J1P	1 P
169	UKAF	210000	DEC:	LKI	H. \#HCOOO
170	0) 6 B2	C3BF06		J1P	IP
171	$0 ¢ 585$	219AFF	OGD:	LKI	H. \#HFF9A
172	ग¢ BB^{8}	19		DHD	D
173	2¢89	DAR906		JC	LMA
174	afibC	CD6C3E	BY:	CaLL	MULBY
175	$0 ¢ \mathrm{BF}$	22203D	IP,	SHILD	IPOSY
176	06 CL	2A683D		LHLD	DELY
177	9f⿺C5	EB		SCHG	
178	$0 \mathrm{EC6}$	- A		Mov	A.D
179	$05 C 7$	07		RLC	
180	0 ec 8	D2D506		JIC	CLA
181	06 CB	213000		LKI	H, \#H30
182	OECE	19		DHD	D
183	- $\mathrm{HCF}^{\text {c }}$	D21307		JHC	OUT
184	0652	C3DC06		J1P	GAIN
185	$06 D 5$	CIDOFF	CLA,	LKI	H, \#HFFDO
186	OEDE	19		DHD	D
187	O6D9	DH130?		Jt	OUT
188	$06 D C$	CD943E	GAIN:	ChLL	MICHY
189	OEDF	EB		XIHG	
190	DFE0	2AP03D		LHLD	ICHY
191	Offe3	19		DHD	D
192	06 E 4	22703D		SHLD	ICHY
193	$0 ¢ \mathrm{E}$?	EB		SCHG	
194	0 tjE8	7A		Mov	A.D
195	0¢E9	07		RIC	
196	OfEA	DaFT06		JC	PA
197	OGED	210000		LKI	H. \# HCO 00
198	$0 ¢ \mathrm{~F}$	19		DRD	D
199	$0 ¢ \mathrm{~F} 1$	DAO10?		$J C^{\circ}$	PB
200	0654	C30C07		J1P	PC

Figure D- 2 Prom No. 2 Yaw Control Software (Continued)

INTEL. 6.. CROSS ASSEMBIER 14:38:10 09-MA. R PAGE 5

201	$06 F ?$	210040	PR:	LRI	H. $\mathrm{H}^{\text {H000 }}$
202	06 FA	19		DAD	D
203	06 FB	D2080?		JHC	PD
204	06 FE	С30C07		J14P	PC
205	$0 ; 01$	210040	PB:	LKI	H. *H4000
206	0:04	EB		XCHG	
207	0;0s	С30С0?		JMP	PC
208	$0: 98$	210000	PD:	LKI	H. H HCOOO
209	$0: 0 \mathrm{~B}$	EB		XCHG	
210	a:OC	2A203D	PC:	LHLD	IPOSY
211	$0 ; 0 \mathrm{~F}$	19		DAD	D
212	$0: 10$	2二203D		SIHLD	IPOSY
213	- $: 13$	2A2C3D	OUT:	LHLD	PRLAY
214	$0: 16$	EB		YCHG	
215	$0: 17$	2H283D		LHLD	PrJjey
216	O:1A	222C3D		SIILD	PRLAY
217	Q:1D	2A1C3D		LIHLD	IPRJY
218	0:20	19		DAD	D
219	$0: 21$	22F23F		SHLD	* H 3 FF 2
220	$0: 24$	29		DAD	H
221	$0: 25$	29		DHD	H
222	0:26	29		DAD	H
223	$0: 27$	29		DAD	H
224	$0: 28$	29		DAD	H
225	$0: 29$	EB		XCHG	
226	$0: 2 \mathrm{~A}$	2AEC3F		LHLD	EOY
227	$0 ; 20$	CDA40'		CALL	MINUS
228	$0: 30$	19		DAD	D
229	$0 \% 31$	29		DAD	H
230	0;32	EB		SCHG	
231	0:33	7A		Mov	A.D
232	0:34	97		RIC	
233	0:35	D24207		JHC	OGDR
234	-9:38	210004		L:SI	H, \#H400
235	0:3B	19		DIAD	D
236	$0: 30$	D25207		JHC	DECR
237	$0: 3 F$	C3580?		JTP	EXR
238	$0 ; 42$	2100FC	OGDR:	L.KI	
239	0;'45	19		DHD	D
240	0; 46	DA4C0?		Jt,	LMAR
241	0i49	C35807		J1P	BXR
242	0; $4 C$	210040	LMAR:	LKI	H, $\mathrm{H}^{\text {c }} 4000$
243	0; 4 F	c35B0?		J1P	IPR
244	9:32	2100C0	DECR:	LRI	H. \# HCO 00
245	0755	C35B0?		J1P	IPR
246	$0: 58$	CD583E	BXR:	CALL	MULAY
247	0 0isb	CD9807	IPR:	CALL	SHIFT
248	0 0'SE	CD9B0?		CALL	SHIFT
249	$0 ; 61$	EB		XCHG	
250	$0 ; * 2$	2A623D		LHLD	*H3D62

Figure D- 2 Prom No. 2 Yaw Control Software (Continued)

INTEL $8 .-\Delta$ CROSS ASSEMBIER
14138：17 09－MA．17 PAGE 6

251	0：65 19		DAD	D
252	0：＇66 EB		XCHG	
253	0：＇67 22623D		SHLD	＊H3D62
254	0F5A 2A643D		LHLD	＊H3D64
255	0：6D CD9B07		CALL	SHIFT
256	Q：70 19		DIAD	D
257	0iP1 22643D		SHLD	＊H3D64
258	0：74 EB		XCHG	
259	$0: 775$ 2A203D		LIILD	IPOSY
260	Qi78 19		DAD	D
261	$0: 7922303 \mathrm{D}$		SIILD	PVLAY
262	0：PC 29		DAD	H
263	0：PD 29		DRD	H
264	QiPE 29		D AD	H
265	0：7F 29		DHD	H
266	0\％60 7C		Mov	A． H
267	0\％81 32303D		STA	PVLAY
208	$0 \% 84$ 213F3D		LRI	H．YFLAG
269	Q：b？TE		M1）V	A．M
270	c：88 C601		Al）I	＊H01
271	a；8日 77		Miv	M．A
272	0：ca dr		RI．C	
273	0：8C Da9007		Jt	ALT
274	0；8F C9		R：T	
275	0：90 2A383D	ALT，	LIILD	TINT
276	0．ミ3 TE		M1）V	A．M
277	$0: 9428$		DCX	H
278	$0: 95223830$		SIHLD	TINT
279	0；＇9E D3EC		OIJT	USDAO
280	0：98 C9		RI：T	
281	$0: 9 \mathrm{CR}$	SHIFT：	M（）V	A．H
282	0；90 0？		RI．C	
283	0：9D 7C		Mi）y^{1}	A，H
284	－O＇SE 1F		RAR	
295	0：9F67		MOV	H． A
256	－：＇月0 7D		Mov	A．L
287	OiAl 1F		RHR	
288	0；＇A2 5F		MIDV	L．A
289	0：＇A3 C9		RI：T	
290	0：＇A4 7C	MINUS：	M（）V	A．H
291	0iPS 2F		C／1／	
292	0；＇A6 67		M（）V	H，A
293	0；＇A7 7D		M（1）V	A．L
294	$0: 182 \mathrm{~F}$		C／19	
295	0i＇A9 6F		Mov	L．A
296	0；＇AR 23		IHX	H
297	0 ：AB C9		RIST	
298	0；AC 2A023D	LAG：	LHILD	CAMAY
299	0；＇AF 29		DAD	H
300	0；＇B0 29		DHD	H

Figure D－2 Prom No． 2 Yaw Control Software（Continued）

Figure D- 2 Prom No. 2 Yaw Control Software (Concluded)

Figure D- 3 Prom No. 3 Monitor Program

```
INTILL & \ CROSS ASSEMBLEER
```

11:26:08 27-Mh PAGE 2

Figure D-3 Prom No. 3 Monitor Program (Continued)

11:26:15 27-MA. 「" PAGE 3

Figure D- 3 Prom No. 3 Monitor Program (Continued)

INTEL \quad J CROSS RSSEMBI.ER $11: 26: 22$ 27-MA. Pi PAGE 4

151	OBEL UC		INR	C	
152	08E2 C9		RET		
153		; STORE	STI)RES	THE DATA R	READ IN
154	985.3 E60F	STORE:	an I	\#HF	:LOOK AT LOW ORDER FOUR
155	OEES P?		110 V	M. A	; BITS READ IN. MOVE INTO READA
156	日BE6 23		INX	H	- InCREMENT READA TABLE POINTER.
157	OEE 47		MOV	B. A	
158	08EE 78	DATA:	110 V	A. B	: MOV Data to
159	08E9 EGOF		ANI	\# HF	; HIGH OPDER
160	OEEB A?		RLC		FOUR BITS
16.	9EEC O?		RLC		
162	0 0cD 6 \%		ILC		
163	OBEE O?		RLC		
164	aCEF B1	LOW:	IRA	c	: OUTPUT DATA
165	OFFO CDEIA9		Call.	OUTPT	; TO APPROPRIATE
166	03 F 347		110 V	B, A	DISPLAY
167	03 F 4 3A873D		1.DA	FSTAT	: IS THIS PERHAPS a COMPARE
168	08F\% FETO		CPI	* H70	: AlDDRESS OR SINGLE STEP?
169	0359 CO		12NZ		
170	Q3Fa 70		MOV	A. B	: IF AC OR SS LOAD
171	Q3FB D604		SUI	4	- COMPARE ADDRESS BUFFERS
172	$03 F D$ EEFO		XRI	* HF 0	: COMPLEMENT THE HIGH ORDIR FOUR BITS
173	OEFF CDE109		Call.	OUTPT	
174	0902 C 9		12ET		
175		: E1.E2.	SHIRE AN	AND REPEAT	ARE ENTRY POINTS TO A ROUTINE THAT
176		- CONT	TROL.S THE	ge REfDING	AND STORING OF DATA.
177	03031604	E1:	171	D. 4	: D Contains - OF DIGITS OT bE READ.
178	09050207	E2:	IVI	C. 7	:C CONTAINS DISPLAY POINTER
179	$090721803 D$	SMARE:	1.XI	H. READA	
180	090A 3E08	REPEAT:	MVI	A. 8	
181	090C 328A3D		STA	OSTAT	
122	090F CD? 109		Call	READ	
183	0912 CDE308		CALL	STORE	SSTORE AND
174	0915 9D		DCR	C	DISPLAY DIGIT
185	091615		I)CR	D	READ
186	0917 C8		122		
187	0918 C30R09		IMP	REPERT	
188		: JUMP D	DETIRMINES	VES THE ADD	DRESS OF THE DIAGNOSTIC ROIJTINE
189		- TO B	BE IJSED		
130	$0 ¢ 18$ FES0	JUMP:	CPI	*H50	: STORE THE FUNCTION READ AT FSTAT
191	091 D CA2H09		JZ	AROUND	, ANDD DISPLAY ON HIGH ORDER
192	0920 32873D		STA	FSTAT	- DISPLAY (IF OTHER THAN CONT).
193	0923 F5		PUSH	PSW	
194	0924 F608)RI	8	
195	0926 CD8109		CAT.L	OUTPT	
196	0929 Fl		POP	PSW	
$19 ?$	092 A 0 F	AROUND:	RRC		: COMPUTE
198	292B 0F		RRC		; JIJMP
199	092 CoF		RRC		- TABLE
200	992D 215708		1.XI	H. EM	POSITION

Figure D-3 Prom No. 3 Monitor Program (Continued)

INTEL. BIru CROSS ASSEMBIER

201	043085	ADD	L	
202	09316 F	110 V	L, A	
203	0932 7E	110 V	A, M	
204	093323	INX	H	
205	093466	110 V	H.M	
206	0935 6F	140 V	L.A	
207	0936 C9	RET		
208		:MEMORY DETERM	INES WHERE	IN THE STACK a Particular
209		; REGISTER IS	STORED	
210	0937 3A303D	MEMCRY: I.DA	READA	: STEP BACK 11 LOCATIONS THRU
211	693 210900	LXI	H. 9	; STACK. H and L POINT
212	093D 2F	CMA		; TO B REGISTER
213	(193E 30	INR	A	: NOW STEP FORWARD NUMBER
214	093F 85	ADD	L	- OF LOCATIONS CORRESPOHDING
215	0940 6F	110 V	L.A	; TO REGISTER NUMBER.
216	094139	DAD	SP	
217	A942 C9	RET		
218		: TWO READS IN	TWO DIGITS	FROM THE KEYBOARD AND FORMS
219		: THESE INTO	AN B-BIT BY	
220	0943 DS	TWO: PUSH	D	: STORE ADDRESS OF LOCATION
22.1	09441602	IV I	D. 2	; TO BE MODIFIED
222	0945 (1E0S	14 I	C. 5	
223	0948 21843D	1.8I	H. READ	; REAI) IN
22.4	$0948 \mathrm{CDORO9}$	CALi	REPEAT	TINO DIGITS
225	094E E1	Pop	H	
226	094F 01843D	I.XI	B, READD	- COncatenate
227	0952 CDSB09	CALL	ENT	: AHD
228	095572	110 V	M. D	; STORE
229	$0) 56 \mathrm{EE}$	XCHG		; D AHD E ARE GGAIN THE
230	0957 C9	RET		: ADDDRESS POINTER
231		, CONCAT TAKES F	FOUR 4-BIT	NUMBERS (STORED IN THE LOW ORDER
232		: FOUR BITS OF	F FOUR MEMO	ORY LIOCATIONS) AND CONCATIENATES THEM
233		, INTO A 16-B	IT NUMBER	
234	$095801503 D$	CONCAT: I.MI	B. READA	: LOAIJ ACCUMULATOR WITH
235	095B 0A	ENT: $\quad \mathrm{D}$ DK	B	; HIGH ORDER HEX DIGIT
236	095C or	RLC		; OF READA TABLE
237	095 d	RL.C		
2.78	995E 07	RLC		
239	095 F 07	RLC		
240	035057	110 V	D. A	
2.11	096103	INX	B	
242	09620 A	L.DAX	B	; CONCATENATE TWO HIGHEST ORDER
243	0963 B2) RA	D	: DIGITS BY OR-ING A WITH D.
244	095457	110 V	D. A	: STORE RESULT IN D.
2.45	095503	INX	B	: SAME THING WITH NEXT
246	O9E6 OA	1.DAX	B	; TNO DIGITS AND
247	0367 ar	RLC		: STORE IN E REGISTER.
243	0968 07	RLC		
249	0369	RLC		
250	076 A 07	II.C		

Figure D-3 Prom No. 3 Monitor Program (Continued)

INTIEL σ. λ CROSS RSSEMBIAR

Figure D-3 Prom No. 3 Monitor Program (Continued)

1	Oroo		ORG	＊HA00	
2	0 HOO	FIRST	EOU	＊H3FE0	
3	01290	FSTAT	EQU	＊H3D87	
4	OROO	ZERO	EQU	\＃H975	
5	OROO	SPLIT	EQU	＊H8D 1	
6	0 HOO	Tul	EQU	＊H943	
7	0 HOO	OSTAT	EQU	＊H3D8A	
6	0 HOO	TEMP	EQU	OSTAT＋1	
9	0 H	COUNT	EQU	TEMP +1	
10	0 HOO	CNSNT	EQU	COUNT＋1	23D81 HAS MULTIPLY CONSTANT READ FROM
11	0 HOO	MPNTR	EQU	CNSNT＋1	；3D8IE THRU 3D8F HAS MULTIPLY ROUTINE
12	0 HOO	MULCX	EQU	MPNTR＋2	3 3D9 Has Starting location of 1ST MU
13		；Cinh	IS THE M	MULTIPLY CO	NSTAM「 TABLE
14	endo 08	CTAB ：	DB	8	
15	0 HOL 01		D13	1	
16	$0 \mathrm{HO2} 3 \mathrm{C}$		D13	\＃H3C	
17	0 203 01		D13	1	
18	010404		D13	4	
19	－nos al		Di3	1	
20	010606		D13	6	
21	0 HOT 01		D13	1	
22	0 nOO 3 C		D13	\＃ H 3 C	
23	0 HOS 04		D13	4	
24	$0 \mathrm{HOR} \mathrm{1a}$		D13	\＃H1A	
25	OhOR no		D13	\＃HAO	
26	0 AOCO		D13	\bigcirc	
27	OHOD DO		D13	\＃ H 0	
28	ORAE OD		D13	\＃HD	
29	0 HOF 0 O		［1］3	0	
30	0 AlO 09		D13	9	
31	0 H 110 A		Di3	\＃HA	
32	गH12 DO		D13	\＃HDO	
33	0H13 0D		D13	\＃HD	
34		；SETML	CRİATES	FAST MEMO	RY ROIJTINES IN RAM
35	0 O14 3E10	SETML：	MVI	H，\＃H10	：GET READY FOR SETML MINOR FUNCTION
36	0 A16 328A3D		STA	ostat	
37	91193500		M＇II	A． 0	：CERTAIN SUBROUTIMES USED BY THIS
38	0A1B 32873D		STA	FSTAT	：SECTION REQUIRE A VALUE POR FSTAT
39	a h1E CD7509		CALL	L ZERO	：ZERO OUT DISPLAY
40	0A21 21903D		LXI	H．MULCX	
41	OA24 228E3D		SHLD	D IPNTR	：INITIALIZE MULTIPLY ROUTINE POINTER
42	0 A 2 C 11000 A		LXI	D．CTAB	：initialize table pointer
43	0 A2A 3E14		MVI	A． 20	：INITIALIZE LOOP COUNT
4%	0 A2C 328C3D	INSPT：	STA	COUNT	
45	anz\％IA		LDAX	X D	：LOAl）THE ACCUMULATOR WITH TABLE ENTR
46	9月39 328D3D		STA	CNSNT	：STORE TABLE ENTRY
47	8.333 CDD 100		CALL	L SPLIT	：DISPLAY TABLE ENTRY
d	E．a36 32E03F		LDA	FIRST	：CHECK FOR FIRST TIME THRIJ
4	＊－39 17		RAL		：MSB DECIDES
48	8．79 Da4jen		JC	HALT	：IF C＝1．FIRST TIME THRU

Figurs D． 3 Prom No． 3 Monitor Program（Continued）

51	(A)3D	CD640A		Call	OK	: OTHERWISE, SET UP MULTIPLIES
52	0.140	C3440日		JMP	NEXT	- INTERACTION FROM KEYBOARD
53	0143	76	HALT:	H. T		; WaIT FOR A KEYBOARD INTERRUPT
54	$0: 144$	13	NEXT:	INX	D	; PREPARE FOR NEXT TABLE ENTRY
55	01445	3A8C3D		LDA	COUNT	
56	01448	3D		DCR	A	: DECREMENT LOOP COUNTER
57	0149	C 22 COA		JNZ	INSPT	
58	0 A 4 C	3ECO		MVI	A. \#HCO	: PREPARE FOR NEXT MAJOR FUNCTION
59	0 H 4 E	328A3D		STA	OSTAT	
60	(1) 51	C9	: CHANG READS TWO HEX NUMBERS FROM THE NUMERIC KEYBOARD AND USE			
61						
62			A NUMB	Rather	THAN THE	ONE IN CTAB TO GENERATE A MULTIPLY ROU
63	3A5?	118B3D	CHANG	LXI	D. TEMP	
64	dA55	CD4309		CALL	TWO	: REAl KEYBOARD
65	OHS8	3E10		MVI	A. \#H10	: PREPARE FOR NEXT SETML HINOR FUNCTIO
66	OASA	328A3D		STA	OSTAT	
67	ORSD	3A8B3D		LDA	TEMP	: THIS THE NEW MULTIPLY CONSTANT
68	0160	CD700A		CALI.	MULT	:SET UP THE MULTIPLY ROUTINE
69	01463	C9		RET		
70			: OK TAKES THE NUMBER FROM THE TABLE AND GENERATES THE			
71			: CORRESPOHDIHG MULTIPI.Y ROUTIHE			
72	01864	3E10	OK:	iVI	H. \#H10	- PREPARE FOR NEXT SETML IIINOR FUNCTIO
P3	0166	328A3D		STA	OSTAT	
74	01469	3A8D3D		LDA	CNSNT	: LOAI) THE TABLE EFITRY INTO THE ACCUMU
75	$0 \mathrm{~A} G \mathrm{C}$	CD700A		CALL	MUL:	:SET UP MULTIPLY ROUTINE
76	0 A 6 F	C9		RET		
77			: MULT WRITES A ROUTIINE IN RAM TO MULTIPLY VARIABLI: BY SOME CON			
78			: THE CONSTANT IS IN THE ACCUMIJLATOR. THE ROUTINE CORRESPONDING			
79			: TO THE CONSTANT 5 IS GIVEN BliLOW:			
80			;			
81			LXI H.0			
82			;			DAl) D
83			;			DAI) H
84			:			DAl) H
85			:			DAl) D
86			;			RE' $]$
87	0 H 70	2A8E3D	MULT:	LHLD	MPNTR	; GET THE STARTING LOCATION FOR THE MU
88	0.173	3621		MVI	M. * H 21	: WRI'te an 'LXI H. 0^{\prime} ' INTO MEMORY
89	0 1775	23		INX	H	
90	0 A76	3000		MVI	M. 0	
91	0 A 78	23		INX	H	
92	0179	3600		MVI	M. 0	
93	$0 \mathrm{i}_{2} 7 \mathrm{~B}$	23		IHX	H	
94	0 ATC	0508		MVI	B. 8	: B IS THE LOOP COUNTER
95	0 ATE	07	LPCY:	RLC		: IGNORE LEADING ZEROES
96	$0 \mathrm{~A} F \mathrm{~F}$	DA890A		JC	OWT	: JUMP OUT WHEN FIRST ONE IS FOUND
47	0182	05		DCR	B	
98	01883	C27E0A		JNZ	LPCY	
99	01466	C3990R		JMP	ZCNT	:NO ONES. NUMBER IS ZERO
100	0 n39	0 F	OWT:	RRC		

Figure D-3 Prom No. 3 Monitor Program (Continued)

101	OABA 07	TOP：	RLC		：CHECK FOR ZERO OR ONE
102	018B D2910日		JNC	GO2	：IF＇IERO．JUST WRITE A＇J）RD H＇
103	OHBE 3619	GO1：	MVI	M．\＃H19	：OTHERWISE WRITE A＇DAD J）＇
104	0129023		INX	H	：AlHD THEN A ${ }^{\text {P }}$ AD H^{\prime}
105	012913629	G02：	MVI	M．\＃H29	
106	0129323		INX	H	
107	0129405		DCR	B	：CONTINUE FOR ALL REMAIN［NG BITS
108	0 A 95 C 28 AOR		JNZ	TOP	
109	0 \＃98 2b		）CX	H	：WRI＇TE OVER LAST＇DAD H＇
110	$0129936 C 9$	ZCNT：	MVI	M．\＃HC9	：WITH A＇RET＇
111	0 A9B 2A8E3D		LIILD	MPNTR	：ADD 20 TO THE OLD STARTING
112	0 O9E 011400		LXI	B，\＃H14	；LDCATION TO GET THE NİW
113	OHA1 09		DAD	B	：STARTING LOCATION
114	OHA2 こ28E3D		SHLD	MPNTR	
115			RET		
116	0080				

INTEL 8080 CROSS ASSEMBLER STMBOL TABLE

$\mathrm{A}=0007$	$\mathrm{B}=0000$	GO1 GR8E	$\mathrm{GO2} 9 \mathrm{Ag} 1$
$C=10001$	$\mathrm{D}=1902$	$E=0003$	CTAB 9ROO
CHANG 9 O2	$\mathrm{H}=0004$	HALT けH43	$L=0005$
$M=9006$	FSTAT $=3$ S87	TEMP $=3$ D8B	FIRST $=3 \mathrm{FE} 0$
COUNT $=3$ D8C	CNSNT $=3$ S8D	SPLIT $=08 \mathrm{C} 1$	OSTAT＝3D8R
MULCX $=3 n 90$	ZERO＝9975	MPNTR $=3$ S ${ }^{\text {P }}$	SETML GA14
$\mathrm{SP}=0006$	INSPT（12C	NEXT ӨR44	OK GA64
MULT GR70	LPCY GAPE	PSW $=0006$	TWO＝ 9943
OWT GA89	TOP GA8A	ZCNT 0R99	

ERRORS DETECTED：θ
Figure D－3 Prom No． 3 Monitor Program（Concluded）

; ********:<<*		
;		
;		
;		
;	SYSTEM EQUATES	
:		
;		
;		
;		
;		
CAMAX	EQU	*H3D00
CAMBX	ECUU	*H3D0 1
CAMAY	EQU	\#H3D02
CAMBY	EQU	\#H3D03
CCMAX	EQU	*H3D46
CCMAY	Edu	*H3D44
CPOAX	EQU	\#H3D40
CPOBX	EQU	\#H3D41
CPOAY	EQU	\#H3D42
CPOBY	EQU	\#H3D43
CPLAX	EQU	\#H3D0C
CPLEX	EQU	\#H3D0D
CPLAY	EQU	\#H3D0E
CPLBY	EQU	\#H3D0F
DETX	EQU	*H3D18
DETY	EQU	\#H3D 11
DDOTX	EQU	\#H3D 1?
DDOTY	EQU	*H3D 14
DOTIX	EQU	\#H3D16
DOTIY	EQU	\#H3D18
IPRJX	EQU	\#H3D1A
IPRJY	EQU	\#H3D 1C
IPOSX	EQU	\#H3D1E
IPOSY	EQU	*H3D29
MULCX	EQU	*H3D90
MULDK	ECU	MULCX +20
MXLVB	EdU	MULDX +20
MXLVK	EQU	MXL VB +20
MULAX	EQU	MKL.VK+20
MULBX	EQU	MULAX +20
MULCY	E(QU	MULBX+20
MULDY	EQU	MULCY +20
MYL.VB	EQU	MULDY +20
MYLVK	E(QU	MYLVB +20
MULAY	EQU	MYLVK+20
MULBY	EQU	MULAY +20
MICH	EQU	MULBY+20
MICHY	EQU	$\mathrm{MLCH}+20$
CMIY	EQU	MICHY +20

Figure D. 4 Prom No. 4 Pitch Control Software

5 i	0000	CMIX	E.WU	CMIY +20
52	0000	NCPOX	EnU	\#H3D22
53	0 OHO	NCPOY	EdU	\#H3D24
5.	0000	PR.TAX	EQU	*H3D26
55	0000	PRJBX	EQU	\#H3D27
56	0000	PRi'AY	EQU	*H3D28
57	0000	PRJBY	Eld	\#H3D29
58	0000	PRLAX	EQU	\#H3D2A
59	0000	PRLBX	EQU	\#H3D2B
68	0000	PRI AY	EQU	\#H3D2C
61	0000	PRLEY	EQU	\#H3D2D
52	0 ab	PVLAX	EQU	\#H3D2E
63	0600	PVIBX	EQU	\#H3D2F
64	0000	PVLHY	EQU	* H3D30
65	0000	PVLBY	EQU	\#H3D31
6 f	0000	RINT	EQU	\#H3D34
67	0, 00	Tilt	EQU	*H3D38
68	0000	X	EQU	\#H3D3A
69	0000	XY	EQU	\# H3D3С
80	9000	XFLRG	EQU	\#H3D3E
71	0000	YFLAG	FOU	\#H3D3F
72	0000	CDEL. ${ }^{\text {d }}$	EQU	* H3D76
73	0 arag	CIX	EOTJ	\#H3DT8
74	0000	USD. ${ }^{\text {do }}$	EQU	\# HOOEC
75	0 arab	PRTA1	EQU	\# HODOO
76	0000	PRTB 1	EQU	\# HOOO 1
77	0000	PRTC1	EDU	\# HOOO 2
78	0000	PRTA2	EQU	\# $\mathrm{H0003}$
79	06000	FRTB2	EQU	\# H00E5
80	0.009	PRTC2	EQU	\# HOOOO
81	0000	PRTD 1	E(QU	\# HOOO 1
82	0000	PRTD?	EoU	\# H 0002
83	0000	PRTD3	E)U	\#H00E6
84	0,00		ORG	\# HCOO
85		: SYSTEII COMPENSATION		
65				
87		: SYSTEIA COMPENSATION		
88		:		
89	0 OCOO 213 E 3 D	PITCH:	LKI	H. XFLAG
90	$0 ¢ 03$ TE		Mov	A.M
91	0 CO 41 F		RAR	
92	0 CO D2000C		JHC	PITCH
93	$0 \mathrm{COB} \mathrm{2H2A3D}$		LIILD	PRLAX
94	OCOB EB		XCHG	
35	OCOC 3R273D		L.) A	PRJBX
36	OCGF E610		AHI	\#H10
97	$00_{11} \mathrm{FE} 10$		Cli	\#H10
38	$0 C 13$ C2IE9C		J小C	RA
99	0 C 16 3 A 273 D		L.) A	PRJ'BX
100	$0 C 19$ CCEO		A]) I	\#HEO

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

INTIEL 8080 CROSS ASSEMBI.ER
14:48:03 09-MAY-7: PAGE

101	0 CO 1 B	32273D		$5 \mathrm{SH}^{\text {a }}$	PRJBX
102	OC1E	2A?63D	RA:	LIILD	PRJAX
103	0 C 21	CDD20D		CHil.	MINUS
104	0 C 24	19		D 12 D	D
105	0 C 25	EB		XCHG	
106			*******SPIECIAL		LEAD NETWORK
107			;		
108			*	\%****;	*************************
109	0026	2AS?3D		LIILD	\#H3D52
110	0 C 29	EB		XCHG	
:11	$0 \cdot 2 \mathrm{~A}$	2AEA3F		LHIL.D	\#H3FER
112	0 C 2 D	CDDAOD		CaLl	SHIFT
113	$0 \mathrm{O}, 30$	CDD20D		Call	MINUS
114	$00^{0} 3$	19		DRD	D
115	$0 \cdot 34$	CDDAOD		CaLl	SHIFT
116	$0 \subset 37$	CIDAOD		Call	SHIFT
117			:	Call	MULCX
118	ac.3A	22123D		SIILD	DDOTX
119	OC:3D	EB		XCHG	
120	0 C 3 E	7A		Mov	A. D
121	OC3F	0 ?		RIC	
122	$0 \mathrm{C}, 40$	DA530C		Ji:	FEE
123	$0 \mathrm{C}, 43$	21FEFF		L...1	H, \#HFFFE
124	$0 \cdot 0.46$	19		DAD	D
125	00.47	DA600C		It:	DET
125	BC.4A	210000		LKI	H. 0
127	CC.4D	22123D		SHL	DDOTX
128	0cso	C3600C		JIP	DET
129	0 C 53	210200	FEE	L冫SI	H. 2
130	00.56	19		DHD	D
131	005 ?	D2600C		JHC	DET
132	OCSA	210000		LKI	H. 0
133	OCSD	22123D		SIILD	DDOTX
134	$0 \mathrm{CE}{ }^{\text {a }}$	3A103D	DET:	: Llle	DETX
135	0063	FE04		Cl 1	\#H04
136	0065	F2770C		Jp	PDL
137	0 C 68	FEFC		Cl 1	+ HFC
138	0 C 6 A	Fsizzoc		J1	MDL
139	$0 \mathrm{C}, 6 \mathrm{D}$	3E00		M1II	A. \#H00
140	0 C 6 F	C3790C		JIP	ING
141	$0: 72$	C604	MLi:	: Al) I	\#H04
142	0074	C3790C		J1P	ING
143	01.77	C6FC	PDL:	: Al) I	\# HF C
144	00.79	5 F	ING:	: Mov	E, H
145	$0 C 7 \mathrm{~A}$	FEOO		Cl I	\# H 00
1.15		3EOP		M'II	A.\#H00
147	OCOE	F2820C		J3	ZAP
148	0 C 81	2 F		CITA	
149	$0 \mathrm{c}, 62$	57	ZAP:	: Mis V	D. A
150	$0 \mathrm{C}, 83$	CDA43D		CaLL	MUEDX

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

INTEL 3080 CROSS ASSEMBI.ER
14:48:10 09-MAY-7? PAGE 4

151	0 C 86 EB		XCHG	
152	$0 C 88$ 2A123D		LHLD	DDOTX
153	018819		DAD	D
154	0 COB EB		XCHG	
155	$0 \mathrm{CBC} \mathrm{7}{ }^{\text {a }}$		Mov	A. D
156	$0 C 8 \mathrm{D} 07$		RI.C	
157	OCBE DAGBOC.		Ji:	FIVE
153	0 CO 9121 CCFF		LKI	H, \#HFFCC
153	009419		DHD	D
150	$0 C 95$ DRB90C		Ji:	PLMT
151	0. 98 C3A20C		JITP	TWO
162	OC9B 213400	FIVE:	LKI	H. \#H0034
163	OCOE 19		DIAD	Γ
164	0C9F $22 \mathrm{B2OC}$		JHC	MLMT
165	$0 C \mathrm{AZ}$ EB	TWO:	ACHG	
166	0¢. H 3 22003D		SIMLD	CAP1aX
167	0c¢. C3Bboc		J1?	EXIT
168	0. AY 2.3400	PLMT:	LKI	H. \#H34
159	OCAC 22003D		SIILD	Camax
170	CCAF C3BBAC		J!	EXIT
171	9CB2 21CCFF	MIMT:	L. 3 I	H. * HFFCC
172	OCB5 22003D		IILD	CAMAX
173	aCB8 C3BB0C		J1P	EXIT
17.4		;		
175		;	CHMERA	SERVO
176		;		
177	$0 C B B$ 3A413D	EXIT:	L19 ${ }^{\text {a }}$	CPOBX
178	OCBE E61F		A SH_{1}	* HiF
179	OCCO 32413D		S'TA	CPOBX
100	日CCJ E610		AlHI	* H 10
181	OCC5 FE10		CPI	* H10
182	OCCC C2D20C		JHZ	WP
183	OCCA 3A4:3D		1.1) a	CPCBX
134	UCCD C6E0		Ald 1	*HED
105	0 CCF 32-130		STA	$C F \cup B X$
186	OCD2 3A4C3D	WP:	L) A	LPORX
187	OCDS 2F		C/14	
188	ecD6 6F		M) 7	L. A
189	OCD 7 3 413 D		LD) A	CPOBX
190	BCDD 2 F		C/1A	
: 31	OCDB 67		mov	H. A
192	OCDC 23		INX	H
193	OCDD 22223D		SIILD	NCPOX
194	OCEO EB		XC:HG	
195	$0 C E 1$ 2A0C3D		LIILD	CPLAX
136	OCE4 19		DHD	D
197	OCES 22F4JF		SiHLD	* H 3 FF 4
198	OCEC 29		DHD	H
199	OCE9 29		DAD	H
200	OCEA Z		XI:HG	

Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

INTEL B080 CROSS ASSEMBIER

2.01	OCEB	2A403D	LHLD	CPOAX
202	OCEE	こ20C3D	SHLD	CPLAX
$2^{\prime} 3$	OCF1	7A	MoV	A. D
204	0 CF 2	07	RI.C	
205	טCF3	D2000D	JHC	OGDR
206	ACF6	211101	LKI	H. \#H111
207	OLFG	19	DAD	D
208	OCFA	D2100D	JHC	DECR
289	OCFD	C3160D	JTP	MUL
210	01) 0	21EFFE OGDR:	LKI	H, \#HFEEF
211	0103	19	DAD	D
212	01) 1	DAOAOD	Ji:	LMAR
213	01)07	C3160D	JMP	MUL
214	ODOA	219040 LMAR:	LKI	H. \#H4000
215	ODOD	C3190D	J14P	FLTR
216	(1)10	$2100 C 0$ DECR:	LKI	H. \#HCOOO
217	91) 13	C3190D	J19	FLTR
218	(1) 16	CDB83D MUL:	Sill	MXLVB
219	-1) 19	CDDAOD FLTR:	CaLL	SHIFT
220	OD:C	CDDAOD	CaLL	SHIFT
221	(1) 1 F	EB	WCAG	
222	01120	2A843D	LHLD	\#H3D84
223	a)23	19	DAD	D
224	0124	EB	XCHG	
225	(b)25	22843D	SIHLD	*H3D84
226	0)28	2A863D	LHLD	*H3D86
227	0D2B	CLDAOD	Call	SHIFT
228	-1)2E	19	DAD	D
229	OD2F	22863D	SIILD	\#H3D86
230	0132	22163D	SHED	DOTIX
231	0)35	2A903D	SHLD	CAMAX
232.	01)38	ER	VHG	
233	0139	2A3A3D	LIHLD	x
234	OD3C	19	DHD	D
235	013D	EB	X HG	
236	9) 3 E	7A	M1) V	A. D
237	0 D3F	0 ?	RL.C	
238	01)40	DA4E0D		FAP
$\angle 39$	01) 43	2100F2	LKI	H. + HF 200
240	0:46	19	DAD	D
241	014 ?	DAS90D	$J \mathrm{C}$	ONE
242	9D4A	EB	Xi:HG	
243	(1) 48	C36E0D	J1P	THRE
244	O1) 4 E	21100B PAP:	LKI	H. \#H0B10
245	01) 51	19	DAD	D
246	0) 52	-6500	JHC	FOUR
247	01)55	EB	StHG	
248	01)56	C36E0D	JIP	THRE
249	0159	210000 ONE:	L.KI	H, \#H0
250	O1)5C	22003 D	SIHLD	CAMAX

165165

FAP
H. F 200

ONE
THRE
H. \#H0B10

D

THRE
H. H0

CAMAX
Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

251	al3F	210 OE		LKI	H, \#H0E00
252	0162	C36E0D		J1P	THRE
253	0165	210000	FOUR:	LK1	H. 0
254	0168	22003D		SHLD	Camiax
255	016B	21F0F4		LKI	H, *HF4F0
256	OD6E	223A3D	THRE:	SIILD	X
257	6D71	EB		XCHG	
258	(1) 72	2A223D		LHLD	NCPOX
259	0175	29		DAD	H
260	01776	29		DHD	H
261	0177	19		DAD	D
262	91) 78	29		DAD	H
263	-1)79	29		DAD	H
264	ODTA	22763D		SIfLD	CDELX
245	Q17P	EB		XCHG	
266	9D7E	7 A		Mov	A. D
267	01) ${ }^{\text {a }}$	07		RI.C	
2E8	91180	D28D9D		JHC	CLA
269	(1)83	213000		L 31	H. \#H30
270	01186	19		DHD	D
271	0118?	D2CB0D		JHC	OUT
272	ब1]8	C3940D		JMP	GAIN
273	OD8D	21DOFF	CLA:	LKI	H. AHFFDO
274	01)90	19		DAD	D
275	el9 1	DACEOD		J	OUT
276	e1994	CDBC3E	GAIN:	Call	CMIX
277	019?	EB		XCHG	
278	0198	2A783D		LhLD	CIX
279	ells ${ }^{\text {a }}$	19		DAD	D
280	OD9C	22783D		SIFLD	IX
281	01)9F	EB		XCHG	
282	ODAO	7A		MOV	H. D
283	(1)AI	07		RI.C	
284	(1) A 2	daafed		Jt	PR
285	Q) A 5	210000		LK1	H. \#HCOOO
286	O) ${ }^{\text {a }}$ (${ }^{\text {a }}$	19		DAD	D
287	-DE9	DaB9ed		$J \mathrm{C}$	PB
288	UDAC	C3C 42 D		11P	PC
289	D)AF	310040	PA:	LKI	H. H4000
290	0)B?	19		DAD	D
291	0153	D2C00D		JHC	PD
292	0. B6	C7C40D		J1P	PC
293	91)B9	210040	PB:	L:XI	H. $\mathrm{H}_{4} 000$
294	ODBC	EB		Xt.HG	
295	O)BD	C3C46D		JTP	PC
296	ODCO	2100 C	PD:	L K I 1	H. $\mathrm{HCOOO}^{\text {O }}$
297	ODCs	EB		XCHG	
298	ODC4	2A163D	PC:	LIHLD	DOTIX
299	ODC?	19		DAD	D
309	- 1 CB	22163D		SIHLD	DOTIX

Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

1		;******	***ı***	
2		,		
3		;		
4		;		
5		;	SYSTEM	EQUATES
6		,		
7		;		
8		; *****	***:*****	**********
9		;		
10		;		
11		;		
12	0900	CAMAX	EQU	\#H3D00
13	6000	EOX	EQU	\#H3FEA
14	0 ± 00	CAMBX	EOU	\#H3D0 1
15	9000	CAMAY	EOU	*H3D02
16	0900	CAMBY	EQU	\#H3D03
17	$0 \cdot 00$	CCMAX	EQU	*H3D46
18	0000	CCMAY	EOU	\#H3D44
19	0000	CPOAX	EOU	*H3D40
20	0000	CPOBX	EQU	\#H3D41
21	0000	CPOAY	EQU	\#H3D42
22	(a)dor	CPOBY	EQU	*H3D43
23	0000	CPLAX	EQU	*H3D0C
24	01900	CPLBK	EQU	\#H3D0D
25	0000	CPLAY	EQU	\#H3D0E
26	0000	CPLBY	EQU	\# H 3 D 0 F
27	0000	DETX	EQU	*H3D 10
28	0000	DETY	EQU	*H3D 11
29	0000	DDOTX	EQU	*H3D 12
30	2000	DDOTY	EQU	\#H3D 14
31	0000	DOTIX	EQU	\#H3D 16
32	0×00	DOTIY	EOU	*H3D 18
33	0000	IPRJX	EQU	*H3D1A
34	0000	IPRJY	EQU	*H3D1C
35	0000	IPOSX	EQU	\#H3D 1E
36	$0 \cdot 00$	IPOSY	EQU	\#H3D20
37	0000	iUULCX	EQU	\#H3D90
38	0000	MULDX	EQU	MULCX +20
39	0000	MXLVB	EQU	MULDX +20
40	0000	MXLVK	EQU	MXLVE +20
41	0000	MULAX	EQU	MXL VK+20
42	0000	MULBX	EOU	MULAX +20
43	0000	MULCY	EQU	MULBX+20
44	$0 ¢ 00$	MULDY	EQU	MULCY +20
45	0000	MYLVB	EQU	MUL.DY +20
46	9090	MYLVK	EQU	MYL VB +20
47	0000	MULAY	EJU	MYL VK+20
48	0000	MULBY	EOU	MULAY +20
49	0000	MICH	EQU	MULBY+20
50	0000	MICHY	EQU	$\mathrm{MICH}+20$

Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

51	0000		CMIY	EQU	MICHY+20
52	0000		CMIX	EQU	CMIY+20
53	0000		TORQY	FQU	CMIX +20
54	00.0		TORQX	EQU	TORQY+20
55	0000		PTQX	EQU	TORQX+20
56	0900		NCPOX	E U	\#H3D22
57	0000		HCFOY	EQU	\#H3D24
58	D000		PRJAX	Eud	\#H3D26
59	(9)00		PRJBX	EdU	\#H3D27
60	0,000		PRJAY	EQU	\#H3D28
61	0000		PRJBY	Eld	\#H3D29
62	0000		PRLAX	EQU	\#H3D2A
63	0000		PRLBK	EQU	\#H3D2B
64	0000		PRLAY	EQU	\#H3D2C
65	0000		PRLBY	EQU	\#H3D2D
66	0000		PVLAX	EQU	*H3D2E
67	0000		PVLBX	EQU	\#H3D2F
68	0000		PVLAY	EQU	\#H3D30
69	0000		PVLBY	EQU	\#H3D31
70	0000		RINT	EQU	\#H3D34
71	n000		TINT	EQU	\#H3D38
22	0000		X	EQU	\#H3D3A
73	0000		XY	EQU	\#H3D3C
74	0000		SFI.AG	EQU	\#H3D3E
P5	0000		YFLA's	Fer	\#H3D3F
76	0000		DELTA	EQU	\#H3D58
? 7	0000		ICHAN	EQU	\#H3D60
78	0000		USDAO	EQU	\# HOOEC
79	0000		PRTA1	EQU	\# HOOOO
80	0000		PRTB1	EQU	\# HOOO 1
81	0000		PRTC1	EQT	\# H 0002
82	0000		PRTA2	EQU	\#H0003
83	0000		PRTB2	EQU	\#H00Es
84	0000		FRTC2	EQU	\# H 0000
85	0000		PRTD 1	E	\# H000 1
86	0000		PRTD2	EQU	\#H0002
87	0000		PRTD 3	EOU	\#H00E6
88	Q1) ${ }^{\text {a } 6}$			ORG	*HDE6
89	ODE6	7A		Mov	A. D
90	ODE?	07		RLC	
91	ODE8	DeF50d		JC	1118
92	OJEB	210000		LKI	H. $\# \mathrm{HCO} 00$
93	ODEE	19		DAD	D
94	ODEF	DAFF0D		Jt	ALM
95	ODF2	C30B0E		JiPP	XVK
96	QDFS	$\angle 10040$	MIB:	LKI	H. ${ }^{\text {H }} 4000$
97	ODF8	19		DAD	D
98	01)F9	D2050E		JHC	CDE
99	ODFC	C30LJE		J1P	XVK
100	ODFF	210040	ALM:	LKI	H. H4000

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

INTEL 8080 LROSS ASSEMBIIER $14: 50: 09$ 09-MAY-7: PAGE 3

101	01202	C30E0E		J11P	ETR
132	01205	210000	CDE:	L'SI	H. \# HCOOO
103	0120	C30E0E		J11P	ETR
104	01:0B	CDCC3D	XVK:	CALL	MXLVK
105	0 DOE	EB	ETR:	XCHG	
106	QROF	2A163D		IIHLD	DOTIX
107	O1:12	19		DAD	D
108	OE13	EL		XCHG	
109	0E14	7A		MOV	A, D
110	OE15	07		RI.C	
111	01216	DH290E		J゙.	KAD
112	01219	$219 \mathrm{AF9}$		LKI	H, \#HF998
113	OE1C	19		DHD	D
114	OE1D	DR230E		Jil	OH
115	0120	C3390E		J1P	GOSH
116	01:23	210040	OH :	LKI	H. \#H4000
117	$01: 26$	C33C0E		V.1P	OSH
118	01229	216606	KA7)	LKI	H, \#H666
119	$0: 20$	19		DAD	D
120	0 B 2 D	D2330E		JHC	WOW
121	01230	C3390E		J1P	GOSH
122	01:33	210000	WOW:	LSSI	H. $\# \mathrm{HCOOO}$
123	01836	C33C0E		J1P	1)SH
124	01239	CDE43E	GOSH:	CALL	TORQX
125	OE3C	22463D	OSH:	SinLD	CCMAX
126			;		
127			: PROJ	TOR SE)
128			;		
129			;		
130	01:35	CDCEOF		C.all	LAG
131	01242	2AこC3D		L.HLD	PRJAX
132.	$01: 45$	CD840		CILL	MINUS
133	91:48	221A3D		SIILD	IPRJX
: 34	$01: 4 B$	EB		XCOHG	
135	CR4C	2A403D		LHLD	CPOAX
136	$0: 14 \mathrm{~F}$	19		DAD	D
137	01:50	22583D		SIILD	DELTA
138	01:53	EB		XIOHG	
139	0125:	7A		MOV	A. D
140	01:55	07		RLC	
141	(0):56	D2630E		JHC	OGD
142	$01: 59$	210040		LSI	H. \#H4000
143	O1:5C	19		DHD	D
144	OLSD	D2730E		JthC	DEC
145	01260	C3790E		J\|P	BX
146	01263	219000	OGD:	L:SI	H, \# HCOOO
147	01366	13		DiAD	D
148	01857	DA6D0E		JC	LMA
149	0126A	C3790E		J1P	BX
150	01:6D	219040	LMA :	LKI	H, \#H4000

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

151	OR70	C37C0E		J1P	IP
152	01:73	210000	DEC:	LKI	H. \#HC000
153	01:76	C37COE		J1P	IP
154	01879	CDF43D	BX:	CALL	MULBX
155	ORTC	2?1E3D	IP:	SHID	IPOSX
156	01:7F	2A583D		LHLD	DELTA
157	01:82	EB		XI.HG	
158	01:83	${ }^{\prime} \mathrm{A}$		Mov	A. D
159	01884	07		RJ.C	
160	01:85	D2920E		JHC	CLA
161	0188	213000		LKI	H, \#H30
162	0188B	19		DHD	D
163	OE8C	D2D00E		JHC	OUT
164	918F	C3990E		J1P	GAIN
165	01992	21DeFF	CLA:	LKI	H. \#HFFD0
166	01295	19		DAD	D
167	01936	Dadoue		J	OUT
168	01899	CD803E	GAIN:	CALL	MICH
169	OE9C	EB		XCHG	
170	OE9D	2AE63D		LIILD	ICHAN
171	OEAO	19		IAD	-
172	OEA1	22603D		SHLD	ICHAN
173	01:34	EB		XCHG	
174	dias	7A		Mov	A. D
175	(1) 16	O?		K.C	
176	0) l F ?	DAB40E		Ji	PA
177	01 AA	210000		LSI	H. \#HC000
178	() $:$ AD	19		DHD	D
179	01 EAE	Drbeor		J\%	PB
189	$01: B 1$	C3C90E		J1P	PC
181	0):84	210040	PA:	LKI	H. \#H4000
182	OERT	19		DAD	D
183	anri	D2C50E		Jidc	PD
184	ORBB	C3C90E		J1P	PC
185	0 OBE	210040	PB:	LKI	H, \#H4000
186	Q1:C1	EB		ACHG	
187	0 BC 2	C3C90F		J1P	PC
188	01:C5	$2100 C 0$	PD :	LKI	H. \# $\mathrm{HC000}$
189	0):C8	EB		XCHG	
190	ORC9	2A1E3D	PC:	LHLD	I POSX
191	OECC	19		DIAD	D
192	0 OSCD	2211.3D		SIILD	IPOSX
193	01:D0	2A2A3D	OUT:	LHLD	PRLAX
194	01:D3	EB		XCHG	
195	0RD4	2A263D		LIILD	PRJAX
196	Al:D?	222H3D		SIILD	PRLAX
197	elida	2A1A3D		LHLD	IPRJX
193	$01: D D$	19		DAD	D
199	01:DE	22F63F		SIMLD	* H3FF6
200	0)EE 1	23		DHD	H

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

INTEL 8080 CROSS ASSEMELER 14:50:23 09-MAY-7? PRGE 5

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

INTIEL 8080 CROSS ASSEMBI.ER

251	(0):4E	19		DHD	D
252	01:4F	DA550F		JC	VLMA
253	(0):52	C3610F		J19	VBX
25.4	0):55	210040	VLMA:	Lil	H. \#H4000
255	0):58	C3640F		JIP	VIP
256	01:58	210000	VDEC:	LRI	H, \# HCOOO
257	0) 5 S	C3640F		J 1 P	VIP
258	01:61	CDF83E	VBX:	Call	PTQX
259	01:64	7 C	VIP:	MOV	A. H
250	(0) 665	OF		RRC	
261	(0):E6	OF		RRC	
2.62	016 6°	QF		RRC	
263	01:68	OF		RRC	
264	01169	322F3D		S'R	PVLBX
265	()) $=6$	E6F0		ghis	* HFO
266	OF6E	67		10V	H. H
267	$0 \cdot 6 \mathrm{~F}$	7D		MOV	A, L
2.68	(1)20	a)		RRC	
269	(1) 121	0 F		RRC	
270	0F72	0 F		RRC	
271	0 F 73	0 F		RPC	
272	01274	E60F		AHI	\# HOF
273	(0):76	B4		ORA	H
274	A1P?	322E3D		STA	PVLAX
275	(0):7A	C9		RI:T	
276	91FPB	7 C	SHIFT:	Mov	A. H
277	(0)?C	07		RIC	
278	(0):PD	70		M10V	A. H
279	()]PE	: F		RAR	
280	0)PFF	67		Mov	H. A
281	01880	? ${ }^{\text {d }}$		Mov	A. L
282	01881	1 F		RAR	
233	$0 \cdot 82$	6 F		MIS	L, A
284	01883	C9		RET	
285	0 P 84	7 C	MINUS:	Mov	A. H
286	0 F 85	2 F		CHA	
287	0186	67		MOV	H. A
288	01887	7D		Mov	R. L
289	0188	2F		CITA	
290	01889	6 F		M1)V	L. A
291	$01: 8 \mathrm{~B}$	23		INX	H
292	0188	C9		RI:T	
203	0]:8C	21523D		LKI	H. \#H3D 52
294	6) 8 F	34		I H R	M
295	31:90	7E		Mov	A.M
296	0) 191	FE64		Cl I	*H64
297	01993	FABOOF		J11	ALED
298	01796	FEC8		CPI	*HC8
299	01798	FA9E9F		J14	BLED
300	0198	3E00		M'II	A. \#H00

Figure D-4 Prom No. 4 Pitch Control Software (Continued)

INTEL 8089 CROSS RSSEMBIER

30 !	OR9D	77		Mov	M, A
302	drat	0654	BLED:	M'II	B. \#H54
303	(1) AO	78	SLED:	MuV	A.B
304	OFAl	CDCOOF		ChLL	OUTPT
305	015 A 4	3E11		M'II	A. \#H11
306	0 0.a6	80		Ald	B
307	0 - ${ }^{\text {a }}$	47		Mov	B. A
308	OF.. 8	FER9		CPI	\#HA9
309	dFar	C2AdeF		JHZ	SLED
310	0Rad	C3BF0F		J1P	BOX
311	0)FB0	DEA4	ALED :	M'II	B. \#HR4
312	01 BB 2	78	PLED:	Mov	A. B
313	01:R3	CDCOOF		Call	OUTPT
314	0):36	3E11		M'II	A.\#H11
315	0):88	86		Al) D	B
316	01839	47		MSV	B. A
317	AIPBA	FEF9		CPI	\#HF9
318	$01: B C$	C2B20F		JHz	PLED
319	A]:BF	C9	BOX:	RET	
320	01 CO	2 F	OUTPT:	CHA	
321	0 aCl	-3E8		OLT	\#HE8
322	01 Cl	3E3F		M'II	A. \#H3F
323	0).cs	2F		ClTR	
324	0):C6	D3EA		$015 T$	\# HEA
325	$0 \mathrm{FC8}$	3EFF		M'I	A, \#HFF
326	(1)CA	2F		CH	
327	0 OPCB	D3EA		O1JT	\#HEA
328	$01: C D$	C?		RJ:T	
329	OFCE	2R003D	LAG:	LIHLD	CAMAX
330	0 01D 1	29		Cad	H
331	0)PD2	29		DAD	Hi
332	01)D3	29		DHD	H
333	010 D 4	EB		XCHG	
334	01:DS	2AEA3F		LHLD	EOX
335	O1FD8	CD840F		Call	MINUS
336	0) P DB	19		DAD	D
337	$0]: D C$	EB		XCOHG	
338	OFDD	CD0C3F		CALL	\#H3F0C
333	OFEO	CD7B0F		Call	SHIFT
340	0 -23	CD7B0F		CALL	SHIFT
341	()PEo	CD7BeF		Call	SHIFT
342	O)PE9	CD7B0F		CALL	SHIFT
343	OPEC	CDPE0F		Call	SHIFT
344	OPEF	CD7B0F		CaLl	SHIFT
345	01 FF 2	CD7B0F		CaLl	SHIFT
346	DIFS	EB		XCHG	
347	0)PF6	2AEA3F		LHLD	EOX
348	01:F9	19		DAD	D
349	QPFA	22ER3F		SIMLD	EOX
350	OPFD	C9		RIET	

Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

Figure D. 4 Prom No. 4 Pitch Control Software (Continued)

INTEL 8080 CROSS ASSEMBLER SYMBOL TABLE

PRLAX $=3 \mathrm{D} 2 \mathrm{~A}$	PRLBX= 3D2B	PRLAY= 3D2C	PRLBY= 3D2D
PVLAX $=3$ P2E	PVLBX= 3D2F	PVLAY = 3D30	PVLBY: 3D31
RINT $=3$ D34	TINT = 3D38	$\mathrm{X}=3 \mathrm{D} 3 \mathrm{~A}$	KY - 3D3C
ZFLAG $=3$ 3 3 F	DELTA $=3$ S 58		PRTA1 - 0000
PRTB1 $=0001$	PRTC1 $=0002$	PRTA2 $=10003$	PRTB2 - 00E5
PKTC2 $=0000$	PRTD $=0001$	PRTD2 $=0002$	PRTD3-00E6
MIB GDFS	ALM ODFF	XVK OEOB	ETR EEOE
OH ge23	WOW GE33	GOSH OE39	OSH OE3C
OGD GEE3	LMA (3E61	BX OE79	IP GE7C
PA OEB4	PB GEEE	PD OEC5	PC GEC9
OUT EEDO	OGDR OFO4	LMAR OFOE	BXR GF1A
IPR OFID	YOGD GF4B	VLMA ©F5S	VDEC GF5B
VBX 9F61	VIP 9F64	SHIFT GF7B	$\mathrm{A}=00 \mathrm{O}$
MINUS GF84	SLED GFAO	$\mathrm{B}=0000$	PLED GFB2
BOX 9FBF	$C=0001$	OUTPT OFCO	D $=0002$
CDE OEOS	DEC GE73	$\mathrm{E}=0003$	KAD OE29
CLA OE92	BLED \%F9E	ALED 9FBO	LAG GFCE
ICHAN $=3$ S60	GAIN GEY9	DECR ()F14	$\mathrm{H}=0004$
CAMAX $=3$ DDO	$C \mathrm{AMBX}=3 \mathrm{CO} 1$	CAMAY $=3$ D02	CAMBY= 3D03
CCMAX $=3 \mathrm{D} .46$	CCMAY $=3 \mathrm{D} 44$	$\mathrm{MICH}=3 \mathrm{E} 80$	XFLAG $=3$ S3E
CPOAX $=3$ 3 40	C. LAX $=3 \mathrm{DOC}$	CPLBX $=3$ ODD	L - 9005
CPOBX $=3$ P41	CPOAY $=3$ S42	$\mathrm{M}=0006$	CPOBY= 3D43
$C P L A Y=3 D 0 E$	EOX $=3 \mathrm{FEA}$	CPLBY $=3$ D0F	DETX $=3 \mathrm{D} 10$
PETY $=3$ D11	DDOTX $=3212$	DDOTY $=3 \mathrm{D} 14$	DOTIX $=3 \mathrm{D} 16$
DOTIY $=3$ S 18	IPRJX $=3 \mathrm{D} 1 \mathrm{~A}$	SP $=0006$	IPRJY= 3D1C
IPOSX $=3$ DIE	$I P O S Y=3 \mathrm{D} 20$	MUT CX $=3$ 390	MULDX $=$ 3DA4
PSW $=0006$	$\mathrm{MXLVE}=3 \mathrm{SBB}$	MXLVK= 3DCC	MULAK= 3DE 0
MULBX $=3$ DF4	MULCY $=3 \mathrm{SOB}$	MULDY $=3 \mathrm{E} 1 \mathrm{C}$	MYLVB $=3530$
MYLVK = 3E44	MULAY= 3E58	MULBY = 3E6C	MICHY $=3$ 394
CMIY = 3EA8	CMIX $=3$ EBC	TORQY $=3$ SED	TORQX $=3$ SE4
PTQX = 3EF8	NCPOX $=3 \mathrm{D} 22$	NCPOY $=3$. 224	PRJAX $=3$ 206
PRJBX $=3 \mathrm{~B} 27$	PRJAY $=3$ 208	PRJBY $=3$ 29	

ERROKS NETECTED: 9
Figure D-4 Prom No. 4 Pitch Control Software (Concluded)

Appendix E

APPLICATION OF THE NIGHT VISION LABORATORY（NVL） THERMAL VIEWING SYSTEM STATIC PERFORMANCE MODEL TO THE RVS

It was suggested that the NVL Thermal Viewing System Static Performance Model， Reference（ $E-1$ ）be used to evaluate the performance of the Remote Viewing System（RVS）． However，repeated attempts to convert the RCS parameters directly to the NVL model have led to the following problem．The radial distortion function of the foveal lens does not lend itself to an MTF analysis as a function of object field angular spatial frequency as called for in the NVL model．All parameters can be converted successfully except for the scan velocity term because a linear raster scan on the lens image plane will create a variable angular velocity and variable direction scan in the object field．This is depicted in Figure E－1．Extreme complexity results when attempts are made to convert spatial into temporal frequency．This is illustrated by the rotation of the f_{x} bar pattern in the lens image plane shown in Figure E－1．Given enough time，an analysis could be made in a manner compatible with the NVL model．However，the analysis is much simpler if performed， not in object field angular frequency（cycles／milliradian）but in spatial frequency terms（cycles／millimeter）．For our purpose of optimizing the RVS lens，it is simpler to work in terms of spatial frequency on the foveal lens focal plane．

This simplicity arises because seven of the nine MTF＇s are independent of object field angle at this foveal lens focal plane location，and the scan velocity is undirectional and uniform at this location，thereby making easy conversion from spatial to temporal parameters．The only non－linear conversions necessary are simple geometrical ones which translate from focal plane to object field and display space．The advantages of working in the spatial frequency terms will become clear as the analysis is developed．In the following develop－ ment，the NVL model approach will be used precisely but will be applied in the foveal lens focal plane as a function of linear spatial frequency（ $\mathrm{cy} / \mathrm{mm}$ ）．Parameters will be covered in the same order as they are in the NVL Report Reference E－1，which describes the model in detail．

E． 1 MTF＇s

Optical MTF The optical MTF＇s consist of a diffraction MTF and a Gaussian MTF．
（a）Diffraction In angular terms，the diffraction MTF is referenced as Equations
（9）and（10）of the NVL report：

$$
\begin{equation*}
H_{o p t}\left(f_{x}, \theta\right)=\frac{2}{\pi}\left[\cos ^{-1} A-A\left(1-A^{2}\right)^{1 / 2}\right] \tag{E-1}
\end{equation*}
$$

where．

$$
\begin{equation*}
A=\lambda F_{⿰ ⿰ 三 丨 ⿰ 丨 三 一} f_{\mathbf{x}} / L(\theta) \tag{E-2}
\end{equation*}
$$

where $L(\theta)$ is the equivalent focal length which changes over a $50 / 1$ range as object field angle θ changes．The angle θ is the absolute angle between the point of interest and the lens optical axis．At the foveal lens image plane

$$
\begin{equation*}
S_{x}=\frac{f_{\mu}}{L(\theta)} \tag{E-3}
\end{equation*}
$$

where S_{x} is the image plane spatial frequency and f_{y} is its object field angular equivalent measured along the scan line projection in the object field (μ direction on Figure E-1). Solving for f in Equation(E-3) and substituting this for f_{x} in Equation (E-2).

$$
\begin{equation*}
A=\lambda F_{\#} S_{x} \tag{E-4}
\end{equation*}
$$

Since the F /number of our lens is constant, the diffraction MTF is no longer a function of object field angle. Thus we may write H (S_{x}) which indicates that the MTF is a function of the independent variabiet $S_{x} x_{\text {only. Note, however, }}$ that conversion to object field angular spatial frequency is very simple because focal length is constant over small angular increments and may be determined from

$$
\begin{equation*}
\mathrm{f}_{\mu}=\mathrm{S}_{\mathbf{x}} \mathrm{L}(\theta) \tag{E-5}
\end{equation*}
$$

where μ is along the scan line projection in the object field
likewise

$$
\begin{equation*}
f_{w}=S_{y} L(\theta) \tag{E-6}
\end{equation*}
$$

where w is normal to the scan direction in the object field
(b) Blur - A similar simplicity exists here. The MTF equation with the angular term \bar{b} of Equation (11) of Reference $(E-1)$ replaced with its equivalent is:

$$
\begin{equation*}
H_{b l u r}\left(f_{x}, \theta\right)=\exp \left[-\frac{2 \pi^{2} \sigma^{2}}{L(\theta)^{2}} f_{\dot{x}}^{2}\right] \tag{E-7}
\end{equation*}
$$

The foveal lens inherently has a constant spatial blur over its entire focal plane, so that the sigma (σ) of Equation(E-7) is a constant. Substituting Equation(E-5)into ($\mathrm{E}-7$) we see the blur MTF simplifies to

$$
\begin{equation*}
H_{b l u r}\left(S_{x}\right)=\exp \left[-2 \pi^{2} \sigma^{2} S_{x}^{2}\right] \tag{E-8}
\end{equation*}
$$

Thus this MTF like the diffraction MTF, is no longer a function of object field angle because the focal length variable has been removed.

Detection MTF - The spatial filter MTF of the detector is defined as:

$$
\begin{equation*}
H_{D e t}\left(f_{x}, \theta\right)=\frac{\operatorname{Sin}\left(\pi f_{x} \Delta x\right)}{\pi f_{x} \Delta x} \triangleq \operatorname{Sinc}\left(f_{x} \Delta x\right) \tag{E-9}
\end{equation*}
$$

It is also complex in our system because the angular projection of the detector into the object field $(\Delta \theta)$ in this equation varies with absolute object field angle (8). Since the detector height is still uniform at the lens focal plane, shown in Figure (E-2) as $\Delta \mathrm{h}$, Equation(D-9) can be restated as:

$$
\begin{equation*}
H_{D e t}\left(S_{x}\right)=\frac{\operatorname{Sin}\left(\pi S_{x} \Delta h_{x}\right)}{\pi S_{x} \Delta h_{x}} \tag{E-10}
\end{equation*}
$$

FIGURE E-2
OPTICAL RELAY PARAMETERS
 the detector height $\left(\Delta h_{x}\right)$ is a function of detector size (a), detector system focal length (L_{D}), and relay focal length (L_{C}), viz:

$$
\begin{equation*}
\Delta h_{x} \simeq a a_{x} \frac{L_{C}}{L_{D}} \tag{E-11}
\end{equation*}
$$

If the detector characteristics are known, the focal lengths are a function of detector size ($\Delta \mathrm{h}$) projected unto the image plane as shown in Figure (E-2). Detector size $\Delta \mathrm{h}$ can be computed directly from either the on-axis resolution required, the number of scan lines required across the vertical FOV, or bandwidth/ response restrictions and frame rate requirements. The focal lengths, L_{C} and L_{D}, are then selected to make the detector dimension appear as the required $\Delta \mathrm{h}$ at the foveal lens focal plane. The detector MTF becomes:

$$
\begin{equation*}
H_{D e t}\left(S_{x}\right)=\operatorname{Sinc} \frac{S_{x}{ }^{a} x{ }^{L_{C}}}{L_{D}} \tag{E-15}
\end{equation*}
$$

Again this MTF is independent of object field angle.

Detector Electronics MTF - It is in the MTF, the detector electrical response, that we get into real trouble trying to work in object field angular space. For a conventional linear optical system, a linear detector scan velocity converts into a scaled but linear angular scan in the object field. This is not true in our system as was shown in Figure E-1. A linear scan in the x direction on the image plane results in angular velocities in both θ_{x} and θ_{y} directions in the angular object field. Both of these angular components are nonlinear functions of both x and y position on the image plane. Thus, converting from spatial frequency to temporal frequency becomes very complex. All of this can be avoided by working in linear spatial plane terms. If the scanner has an angular scan velocity β, then the linear motion of the instantaneous $F O V$ on the foveal lens image is

$$
\begin{equation*}
V_{x}=\beta L_{C} \tag{E-16}
\end{equation*}
$$

The conversion to eemporal frequency (f) is therefore

$$
\begin{equation*}
f=V_{x} S_{x} \tag{E-17}
\end{equation*}
$$

This is a constant conversion and not a function of time. Therefore, all electronic MTF's of the NVL model are valid. These are

```
\(H^{\prime}{ }_{D e t}(f)\)
    \(\mathrm{H}_{\text {Elect }}{ }^{(f)}\)
\(H_{B}(f)\)
```

Display - The RVS display is the inverse of the foveal lens, which results in a conventional linear raster generated on the CRT. The CRT has a constant spot size and the expansion optics has a constant blur at the object focal plane. Again this MTF, if derived in the linear spatial plane, will not be a function of object angle. If the optical blur and CRT spot size are combined and assumed to have a Gaussian MTF, a composite sigma (σ_{d}) results and the MTF is:

$$
\begin{equation*}
H_{D i s p}\left(S_{x}\right)=\exp \left[-2 \pi^{2}\left(r \sigma_{d}\right)^{2} S_{x}^{2}\right] \tag{E-18}
\end{equation*}
$$

where r is the physical ratio of format sizes; viz

$$
\begin{equation*}
r=\frac{H_{\text {LENS IMAGE }}}{H_{\text {DISPLAY CRT }}} \tag{E-19}
\end{equation*}
$$

By contrast, if this were accomplished in the object angular plane, the MTF would be much more complex, viz

$$
\begin{equation*}
H_{\text {Disp }}\left(f_{x, \theta, M}\right)=\exp \left[-\frac{2 \pi^{2}\left(r \sigma_{d}\right)^{2} f_{x}^{2}}{L(\theta)^{2} M^{2}}\right] \tag{E-20}
\end{equation*}
$$

where M is any system angular magnification from object field to the viewer. Again the simplicity is obvious.

Stabilization and Eyeball - The remaining two MTF's are the only two that are not simplified by working in linear spatial rather than angular terms. First, stabilization tends to be angular input to the system. Using the MTF from the NVL report:

$$
\begin{equation*}
H_{L o s}\left(f_{x}\right)=\exp \left(-\mathrm{Pf}_{\mathrm{x}}^{2}\right) \tag{E-21}
\end{equation*}
$$

Converting to the foveal lens image plane results in

$$
\begin{equation*}
H_{\text {Los }}\left(S_{x}, \theta\right)-\exp \left[-\mathrm{PS}_{x}{ }^{2} \mathrm{~L}(\theta)^{2}\right] \tag{E-22}
\end{equation*}
$$

Similarly, the eye views the display in angular terms. The NVL MTF is

$$
\begin{equation*}
H_{E y e}\left(f_{x}\right)=\exp \left[-\frac{\Gamma f_{x}}{M}\right] \tag{E-23}
\end{equation*}
$$

Equation(E-23) must be converted to the foveal lens image plane

$$
\begin{equation*}
H_{E y e}\left(S_{x,}\right)=\exp \left[-\frac{\Gamma S_{x} L(\theta)}{M}\right] \tag{E-24}
\end{equation*}
$$

In conclusion, seven MTF's have been simplified at the expense of two that have been made slightly more complex by the conversion to linear spatial frequency.

E. 2 NOISE EQUIVALENT MODULATION (NEM)

For visual spectrum applications noise equivalent modulation must replace $N E \Delta T$ in the NVL model. In the visual model, the primary noise source is the detector which is a silicon vidicon. Its NEM was extracted from data of Reference (E-2). These data show vidicon S / N as a function of faceplate illumination for a specific bandwidth. The basic function is approximately

$$
\frac{\text { peak-to-peak signal }}{\text { noise }(\mathrm{rms})}=100 \mathrm{E}
$$

where E is faceplate illumination in $L U X$. The noise equivalent signal is (signal input that just equal noise)

$$
\begin{equation*}
\text { NEM }=\frac{\text { noise }}{\text { signal }}=\frac{1}{100 \mathrm{E}} \tag{E-22}
\end{equation*}
$$

assuming that the noise is proportional to the square root of the bandwidth (Δf) of $4\left(10^{8}\right) \mathrm{Hz}$. For data given:

$$
\begin{equation*}
\mathrm{NEM}=\frac{\Delta \mathrm{f}}{100 \mathrm{E} \sqrt{4 \times 10^{6}}}=5 \times 10^{-6} \frac{\sqrt{\Delta \mathrm{f}}}{\mathrm{E}} \text { (E in LUX) } \tag{E-23}
\end{equation*}
$$

For E in footcandles:

$$
\begin{equation*}
\text { NEM }=\frac{4.64 \times 10^{-7} \sqrt{\Delta f}}{E} \text { (E in Foot-Candles) } \tag{E-24}
\end{equation*}
$$

The faceplate illumination can be calculated from system geometry as follows:

$$
\begin{equation*}
E_{f}=\frac{B^{T} a_{o}^{T}}{4 F_{N o}^{2}} \tag{E-25}
\end{equation*}
$$

Where
$B=S$ cene brightness in footlamberts
$\mathrm{T}=$ Atmospheric transmission
T=Optical transmission within sensor
F 긍 The equivalent $\mathrm{F} /$ number or $\mathrm{F} /$ number actually supplying the vidicon. This is the lens $\mathrm{F} /$ number modified by the relay and from basic geometrical optical theory is:

$$
\begin{equation*}
\mathrm{F}_{\text {noe }}=\mathrm{F}_{\text {no }} \frac{\mathrm{L}_{\mathrm{D}}}{\mathrm{~L}_{\mathrm{c}}} \tag{E-26}
\end{equation*}
$$

If the sensor employs an automatic light level control which operates on vidicon target current, E will be accurately maintained. Therefore, Equation (E-24) applies as written for the level of E which is preset. For the silicon vidon under study, best performance is obtained when the level is about 0.1 lumens $/ \mathrm{ft}^{2}$. Equation(E-23)then becomes:

$$
\begin{equation*}
N E M=4.64 \times 10^{-6} \quad \sqrt{\Delta f} \tag{E-27}
\end{equation*}
$$

E. 3 MRM CALCULATIONS

The following MRM equation modifications are required so that the computation may be performed in linear spatial frequency terms. First, in the NVL MRT equation, Δy must be replaced by the apparent detector size at the foveal lens image plane, i.e., it must be the Δh defined on Figure $\mathrm{E}-2$. As previously demonstrated in Equation (E-11).

$$
\begin{equation*}
\Delta h_{y}=a_{y} \frac{L_{C}}{L_{D}} \tag{E-28}
\end{equation*}
$$

Also, in the $M R M$ equation, it is best to compute the Q integral in terms of temporal frequency. This eliminates the velocity term in the MRT equation and makes the Q integral easier to compute. The Q integral is therefore

$$
\begin{equation*}
Q(f, \theta)=\int_{0}^{\infty} \frac{S(f)}{S\left(f_{o}\right)} H_{N}^{2}(f) H_{w}\left(\frac{f}{V_{x}}\right)^{2} H_{E y e}\left(\frac{f}{V_{x}}\right) d f \tag{E-29}
\end{equation*}
$$

Of these terms, only H_{w}, the transfer function for a rectangular bar of width w, has not been defined. This transfer function is in linear rather than angular dimensions, i.e.,

$$
\begin{equation*}
H_{W}\left(\frac{f_{x}}{V_{x}}\right)=\operatorname{Sinc} W\left(\frac{f_{x}}{V_{x}}\right)=\operatorname{Sinc}\left(W S_{x}\right) \tag{E-30}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{W} \triangleq \frac{1}{2 \mathrm{~S}_{\mathrm{x}}} \tag{E-31}
\end{equation*}
$$

The MRM equation written to show the dependency of two variables is

$$
\begin{equation*}
\operatorname{MRM}\left(S_{x}, \theta\right)=\frac{S N R \pi^{2} N E M}{4 \sqrt{14} \operatorname{MTF}_{\text {TOTAL }}\left(S_{x}, \theta\right)}\left[\frac{\Delta h_{y} S_{x} Q(f, \theta)}{\Delta f_{N} F^{t} e^{\eta} O V S C}\right]^{1 / 2} \tag{E-32}
\end{equation*}
$$

This equation results in an MRT very weakly dependent on θ. To obtain the MRM for any field angle θ, we convert the spatial frequency term S into an angular frequency term by using Equation(E-9) containing the focal length function:

$$
\mathrm{f}_{\mu}=\mathrm{S}_{\mathrm{x}} \mathrm{~L}(\theta)
$$

Note this will be the angular spatial frequency in the scan direction (target bars normal to the scan direction). It could be related to f_{x} and f y but this does not appear to be required at this point.

To conclude this effort, a block diagram of the NVL model converted to the VARVS Concept in the visual spectrum is shown in Figure E-3. This model was used in the study to compute Minimum Resolvable Modulation to predict performance.

APPENDIX
 LIST OF REFERENCES

[^2]
DISTRIBUTION LIST

Chief of Naval Research 800 North Quincy Street Arlington, VA 22217
ATTN: Code 221 455 421

Defense Documentation Center Cameron Station
Alexandria, VA 23314

Naval Research Laboratory
Washington, DC 20375
ATTN: Tech Info Division
Library, Code 2039
Office of Naval Research Branch Office
New York Area Office
715 Broadway (5th Floor)
New York, NY 10003
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, CA 91106
Office of Naval Research Branch Office
495 Summer Street
Boston, MA 02210
Office of Naval Research Branch Office
536 Clark Street
Chicago, IL 60605
Director of Defense Research and Engineering
Washington, DC 20350
ATTN: ODDR\&E/E\&PS
ODDR\&E/E\&LS
Chief of Naval Operations
Washington, DC 20350
ATTN: OP 987
OP 986
OP 982
OP 596
OP 506
1

Naval Material Command
Washington, DC 20360
ATTN: MAT 08T231
Headquarters, U.S. Marine Corps
Washington, DC 20380
ATTN: RD-1

Naval Air Systems Command
Washington, DC 20360
ATTN: AIR 5103F 1
5105 1 340D 1 340F 1 $360 \mathrm{E} \quad 1$
PMA 247
Naval Sea Systems Command
Washington, DC 20360
ATTN: NSEA 0341 1
NSEA 653C 1
Naval Electronic Systems Command Washington, DC 20360
ATTN: ELEX $320 \quad 1$
$330 \quad 1$
U.S. Naval Air Development Center
Warminster, PA 18974

ATTN: Code 4021
3041
$54 \mathrm{P} 3 \quad 1$
30P8 3
$6011 \quad 1$
Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, CA 92152
ATTN: Code 8235
Naval Weapons Center
China Lake, CA 93555
ATTN: Code 3925
Code 3175
Naval Weapons Center Dahlgren, VA 22448
ATTN: Mr. K. Ferris
8

```
Naval Training Equipment
Orlando, FL 32813
ATTN: Code N-2224
Naval Air Test Center
Service Test Division
Aero Medical Branch
Patuxent River, MD 20670
ATTN: Mr. Fred Hoerner
Naval Avionics Facility
6000 E. 21st Street
Indianapolis, IN 46218
ATTN: Technical Library
Dean of Research Administration
Naval Postgraduate School
Monterey, CA 93940
ATTN: Dr. J. Powers
U.S. Coast Guard Headquarters
400 7th Street, NW
Washington, DC 20591
ATTN: GDST/62 TRPT
HQS Army Research Institute
1300 Wilson Boulevard
Arlingt on, VA }2220
Headquarters U.S. Army
Washington, DC }2035
ATTN: DAMA-WSA
    DAMA-ZE
    DAMA-WSM
    DAMA-ARZ
U.S. Army Avionics Laboratory
U.S. Army R&D Command
Fort Monmouth, NJ 07703
ATTN: DAVAA-F (Mr. Respass)
    DAVAA-E (Mr. Gurman)
U.S. Army Material Command
Washington, DC }2031
ATTN: DRCDR-HA
    DRCPM-AAH
    DRCPM-GCM-WF
```

Naval Training Equipment
Orlando, FL 32813
ATTN: Code N-2224
Naval Air Test Center
Service Test Division Aero Medical Branch Patuxent River, MD 20670
ATTN: Mr. Fred Hoerner
Naval Avionics Facility
6000 E. 21st Street
Indianapolis, IN 46218
ATIN: Technical Library
Dean of Research Administration
Naval Postgraduate School
Monterey, CA 93940
ATTN: Dr. J. Powers
U.S. Coast Guard Headquarters

400 7th Street, NW
Washington, DC 20591
ATTN: GDST/62 TRPT
HQS Army Research Institute
1300 Wilson Boulevard
Arlington, VA 22209
Headquarters U.S. Army
ATTN: DAMA-WSA DAMA-ZE DAMA-WSM DAMA-ARZ
U.S. Army Avionics Laboratory
U.S. Army R\&D Command

Fort Monmouth, NJ 07703
ATTN: DAVAA-F (Mr. Respass) DAVAA-E (Mr. Gurman)
U.S. Army Material Command

2031
DRCPM-AAH
DRCPM-GCM-WF
U.S. Army Night Vision Lab
Fort Belvoir, VA 22060
ATTN: DRSEL-NV-SD
U.S. Army Research and Development
Command
P.O. Box 209
St. Louis, MO 63166
ATTN: DRSAV-EV
U.S. Army Aviation Center
Ft. Rucker, AL 36362
ATTN: ATQZ-D-SGA
Human Engineering Labs
Aberdeen Proving Grounds, MD 21105
ATTN: DRXRD-HEL
Headquarters Aeronautical Systems
Division
Air Force Systems Command
Wright-Patterson AFB, OH 45433
ATTN: AFAL/AA
1
AFAL/CC 1
AFAL/RWI 1
Air Force Flight Dynamics Laboratory
Air Force Systems Command
Wright-Patterson AFB, OH 45433
ATTN: AFFDL/FG
Aero Medical Research Laboratory
Wright-Patterson AFB, OH 45433
ATTN; AMRL/HE
Air Force Office of Scientific
Research
4100 Wilson Boulevard
Arlington, VA $\angle 2209$
1
Federal Aviation Agency
NAFEC B1dg. 10
Atlantic City, NJ 03405
ATTN: Mr. D. Elliott
1
Headquarters Aeronautical Systems
Division
Air Force Systems Command
Wright-Patterson AFB, OH 45433
ATTN: ASD/YRD
1
ASD/SD
1

```
Defense Advanced Research
    Project Agency
1400 Wilson Blvd.
Arlington, VA 22209
ATTN: Dr. Strom
National Aeronautical and
    Space Administration
Langly Research Center
Mail Stop }157
Hampton, VA 23665
ATTN: Mr. R. Morris
National Aeronautical and
    Space Administration
Ames Research Center
Mail Stop 200-10
Moffett Field, CA }9403
ATTN: Mr. J. Dusterberry
Institute for Defense Analysis
400 Army-Navy Drive
Arlington, VA 22204
ATTN: Mr. L. Biberman
    Dr. A. Schnitzler
```


[^0]: $1 \mathrm{rad} / \mathrm{sec}$ for 0.25 sec ．The camera 1 ag is less than 0.1 sec as shown in the figure．This is consistent with an operators reaction time using stick control．Note that this lag does not cause image motion on the projector screen．The image will move because the projector remains stationary in Mode 1 operation．

[^1]: * In actuality, the detector directs the camera to move and the projector follows the camera.

[^2]: C-1 Klaiber, R.J., Physical and Optical Properties of Projection Screens; Technical Report NAVTRADEVCEN IH-63, December 1966

 C-2 Single Crystal Ferroelectronics and Their Application in Light Valve Display Devices; Proceedings of the IEEE Vol. 61, No. 7, July 1973

 E-1 Ratches, James, et al, Night Vision Laboratory Static Performance Model For Thermal Viewing Systems, Army Electronics Cmd., Fort Monmouth, N.J., Report No. 7043, April 1975.

 E-2 RCA, Inc., 4532A Camera Tube Specification Sheet RCA Corp., Harrison, N.J., Jan. 1973

