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SUMMAR ¥

Man-in-the-loop simulation is used both to evaluate
proposed system designs and to train new operators. Historically,
measures of the man's performance have often been confounded with
measures of the system he is asked to control. While the intent has
been to get a measure which has operational meaning and predictive
validity, confounding system performance with operator performance
can obscure important information. The intent here was to explore the
feasibility of developing a measure that would provide a better scoring
procedure for manned system simulation, whether for research or
training: a procedure which reflected the impact of inappropriate
operator action which did not also include penalties for factors beyond
the operator's control. For example, summary measures such as
RMS error or integrated absolute error can confound operator control
actions with turbulence induced excursions from a desired flight path.
Also, summarized measures do not provide any guidance as to how one
makes the best of a bad situation. They do not prescribe a desired or
appropriate course of action sensitive to the objectives of the task and
conditional upon the circumstances prevailing when action is required.

Optimal control theory was used as the basis for formulating
the continuous performance measurement approach developed here. The
original goal was to develop a measure that was sensitive to the infor-
mation displayed to the operator so one could "assign cause" for
inappropriate actions taken by the operator. It was also desirable to
develop the measure for all segments of the mission. It was soon
discovered that such ambitions were beyond the scope of this effort and
attention was devoted to simpler issues and a single, well defined mission
segment. The report documents the overall mission analysis but develops
the performance measure only for the cruise phase.

One of the impediments was the problem context chosen for
study. The optimal control theory requires the formulation of an explicit
model in order to define what actions are appropriate if one wishes to
achieve specified objectives. The model includes a description of the task
the operator is asked to perform. Since the measure would potentially be
applicable to a planned series of experiments, the model of the aircraft
control task used to develop the continuous performance measure was
borrowed directly from the real-time simulation program developed for
those studies.

This report describes the mission that was of interest and
rationalizes the model proposed for experimental studies. While the
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specifics of the continuous performance measure developed, implemented,
and briefly studied here are based upon that mission and aircraft model,
the general philosophy and approach are believed to be applicable to a broad
class of problems. The specifics of the continuous performance measure
appiropriate for these other applications will require a similar development:
quantification of mission objectives, descriptive modeling of the task (the
aircraft or plant dynamics), derivation of the optimal feedback control law
(including solution techniques appropriate to whatever model is developed),
and finally, the construction and implementation of the continuous perfor-
mance measure.

Additional work will be required to explore the unanswered
questions and to gain experience with these measures in contrasting them
with the more conventional measures now employed. While their utility
in human factors research was the original justification for the develop-
ment of continuous performance measures, they also appear attractive
as measures useful in a training environment where an instructor wishes
to single out appropriate and inappropriate student actions, calling attention
to the impact these actions have on mission effectiveness.

The findings of this study substantiate the feasibility of
developing a continuous performance measure. Unfortunately, they also
confirm the '"curse of dimensionality'" alluded to by Bellman: complicated
problems lead to tedious calculations if solvable at all. The measure as
presented in this report is not calculable in real-time as had been desired,
but insight has been gained that may lead to more practical and faster
solutions if not an entire new approach. Until further experience is gained
in applying the technique, no conclusions can be made about the total merits
of the method. While the results were inconclusive, they should encourage
further development, particularly for mission phases not treated here.
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1,0 INTRODUCT ION

A performance measurement concept typically employed for
manual control systems uses a summary measure which provides a single
numerical score to represent performance of the total control problem.
While summary measures are necessary for evaluating total problem
performance, for instance, in comparing performance of competitive
systems, summary measures do not reveal performance information about
control actions that occur during the control problem. [f performance can
be measured and evaluated continuously throughout the control problem,
each control action (or series of actions), whether continuous or discrete
can be evaluated rapidly and thus individually. Also, if the continuous
measurement and evaluation can be related to the summary measure
thereby indicating the effect of a control action on the associated summary
measure, each control action can be evaluated as an entity, as well as,
part of the total control problem. This performance measurement concept
specifically permits identification and evaluation of the significance of
operator error patterns, and identification of critical and sensitive regions
of the control problem.

This type of measure - a continuous performance measure
(CPM) - is a tool which the authors believe could be used to increase the
efficiency of experiments, training, and design of manual control systems.
For example, the tool can allow evaluation of experimental results on a
portion of a control problem with respect to the effect on the total mission.
Rapid evaluation of control errors can facilitate training efficiency, and
knowledge of control sensitivity to total mission performance permits con-
centration of design effort on critical areas. This report documents
research on a method of continuous performance evaluation of manual
flight control systems.

The desired CPM provides a continuous indication of the
correct motion of the aircraft at each point in a mission segment - thus
providing flight criteria against which actual aircraft motion can be com-
pared - and what is also important, an evaluation of the significance of
any motion errors with respect to the summary per'for‘ma-r;e measure
selected. This application of continuous performance measurement is
termed "Mission Model'" since the model can provide both the reference
aircraft motion and an evaluation of flight control errors. The objective
of the research reported here is to investigate the feasibility of continuous
performance measure for aircraft systems, and demonstrate the development
of the necessary computational tools,
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The mission model considered here is based on an optimal
control concept which relates performance during the mission to summary
performance. Wnen a summary measure is selected for a mission or
mission segment, optimal control theory can be used to determine for
each aircraft state in the mission segment, the optimal control and
associated optimal solution trajectories. The term "optimal solution
trajectories" used here means the aircraft motion trajectories that
minimize the summary performance measure selected for the mission
segment. Also the term "aircraft state" refers to a set of state
variables that provide a complete description of the aircraft (to the
extent it is represented by the aircraft model used) by identifying values
for all positional and rotational variables, as well as, their velocities.

In order to understand how optimal control theory can be
used to determine the instantaneous effect of control actions on the summary
measure, consider a control problem, shown in Figure 1, where the
aircraft is presently at Point A and the control objective is to direct
the aircraft to Point B. When the aircraft reaches Point B the segment
control problem is completed and performance for that segment is evaluated
according to the selected summary measure. Only those flights which
satisfy the control requirement by reaching Point B (or within a specified
tolerance) are considered for scoring. If one (or more) solution trajectory
from Point A to Point B incurs a minimum value of the selected summary
measure, that trajectory (or those trajectories) is the optimal one sought.
The optimal trajectory, say Path 1 of Figure 1, may be considered as a
reference path from Point A and each point along the path to Point B.
Optimal control theory is the mathematical tool that can be used to find
the optimal trajectory from each point in the region of interest in the
mission segment.

To determine what control is "optimal' it is necessary to
construct several model components. These include: (1) a representation
of the goal of the current task in terms of a set of objectives and weights
reflecting their relative importance, (2) a representation of the system
being controlled, e.g., the equations of motion for an aircraft of interest
(suitably detailed for the nature of the problem to be addressed), and
(3) a representation of the physical or other constraints that limit where
the system can go or what controls can be applied. Mathematical tech-
niques are used to solve this set of models to define a rule for choosing
the control which leads to the "best' outcome for these given objectives,
system, and constraints. Applying this rule leads to an optimal trajectory.
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The theory assumes the objective, system, and constraints as mathe-
matically represented are an accurate and complete description. To

the extent the models fall short, so will the theory's ability to meet
one's subjective or intuitive notion of "optimal." For example, if
"my" objectives differ from "your" objectives - or if we but weight

the same objectives differently, then the theory produces a control

rule for "me" that may differ from the control rule for '"you.'" While
this sensitivity is often desirable, it is apparent that acceptance of the
defined "optimum" requires concurrence in each element of the model.
If agreement is not reached, the theory does not apply except to each
separate model proposed, in which case it must be expected that the
results will differ if the models do. In short, what is optimal is
relative to the associated models, and here we must assume there is

no argument with the objectives, system, and constraints as posed. If
there were argument, the first step would be to change the models
proposed for whatever element was questioned, revise it appropriately,
and then proceed with optimization with the assurance that agreement
was reached. The reader is therefore asked to accept the models as
proposed simply to facilitate the subsequent analysis. It is to be under-
stood that exceptions to the model would demand reformulations specific
to each reader's criticisms - a task obviously impossible a priori -
which would, at least in principle, dispense with these criticisms. In

a sense, criticism of the specific model is peripheral to the main theme
of this report. The emphasis is on an approach not a specific application
much less a single result. On the other hand, much of the specifics
developed here must be repeated as the models are changed. The
philosophy is what is generalizable. This report attempts to demonstrate
the feasibility of implementing that philosophy in a given context, the
participating critiques (namely the authors) having been satisfied - at
least at this juncture.

The optimal control analysis can also provide error sensi-
tivity information. Error sensitivity weighting is important because it
allows direct evaluation of control errors and further reveals the regions
of high control error sensitivity in the mission segment. In order to
see how the error sensitivity is determined, assume that the pilot con-
trolling the aircraft at Point A does not provide the correct control and
as a result the aircraft moves to Point C. Thereafter, the pilot employs
optimal control directing the aircraft along the optimal path from Point C
to Point B. Note that Path C-B can be totally different from Path A-B.
Except for the control error of short duration which moved the aircraft
from A to C, the pilot used optimal control. The difference between the




summary measures for Paths 1 (the optimal solution from Point A to B)
and 2 (the trajectory from Point A to C and the optimal solution from

C to B) must be the increase in the summary measure due to the initial
control error. There cannot be a decrease in the summary measure
since that would imply that trajectory 1 is not optimal. The amount of
increase in the summary measure value due to the initial control error
is the effect of the control error on the summary measure. The type of
mission model considered here provides this sensitivity weighting for
each incremental aircraft motion and thus provides an instantaneous
weighting of control errors.

Military aircraft missions are not usually defined solely
with a summary measure, but typically are defined by a flight profile
consisting of a series of flight maneuvers along with objective values
for appropriate state variables such as velocity, heading, altitude, and
rate of climb. Frequently, a mission can be segmznted so that a con-
sistent set of flight variable specifications can be defined throughout
each segment. Segments may be and typically are defined by a reference
flight path along which some state variable values are given. Desired
terminal conditions indicating the preferred state variable values at the
end of the segmant may also be available. The total mission may be
viewed as a series of segments where the end flight conditions of one
segment are the initial conditions for the next segment. Thus in order
to construct a segmented Mission Model, the mission segment specifi-
cations must be converted to a summary measure and any required
flight constraints.

Conversion of mission specifications into a summary measure
and reference trajectories requires construction of a penalty function (cost
index function in control theory terminology) which identifies the relative
importance of:

1. Deviation from the desired terminal state, and

2. Variable rates of change, control actions, and
deviations from reference trajectories occurring
along the solution path,

The cost function is selected by study of the requirements of each mission
segment. It reflects the nature of the objectives for the segment and the
relative importance of each. For example, in some segments straight




and level flight is desired at a specified heading, altitude, and velocity.
In other segments a constant climb or dive may be desired. In yet
other segments, more complex coordinated maneuvering may be required.
The cost or penalty function is constructed to incorporate these reference
maneuvers so that if the aircraft flys along the reference path, zero
penalty is incurred. For instance, if constant altitude (2) and velocity
(V) are desired, the terms

T

1 = f (w1(v—\/R)2 + W2(Z—ZR)2...)dt
)

might be used, where VR and Zr are the reference values, and Wi, Wp
are weighting values. This expression proposes that the task objective
will be to minimize the weighted squared deviations or errors. These
weighted squared errors are then integrated (if time is a continuous
variable, summed if time were treated as a discrete variable) from the
start of the segment (t = O0) to its end (t = T). The result is a
single number (I).

The cost function also evaluates trajectories not along the
reference-trajectories, with initial conditions and displacements that
occur due to control errors or wind disturbances. But recall that what-
ever the present state, there is an optimal solution from that state to
the terminal point. Optimal solutions from points not on the reference
trajectories are termed "Preferred trajectories" to distinguish them from
the reference trajectories. Calculation of preferred trajectories is
accomplished, as described previously, from optimal control theory
employing the cost function and the aircraft equations. Thus the form
of the cost function and the weighting constant values influence the
calculation of preferred trajectories. The effect of a given weighting
term or relative values of terms is usually not known prior to calcu-

{ lation of the preferred trajectories. Initial selection of weighting values

{ might alternatively be accomplished by asking experienced pilots and/or
other personnel experienced in the mission performance requirements to
select weighting values or at least order the terms according to importance
to mission success. Thus selection of weighting values may be an
iterative process involving initial weighting selection, computation and
evaluation of preferred trajectories, followed by an adjustment of the
weighting values, etc.
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e Method of Approach

The mission selected for analysis is an aircraft operating
in a Close Air Support Night Attack Mission where the overall mission
was divided into segments: cruising, climbing, etc. Each segment of ‘
the mission may be considered as a separate problem in itself, The ]
overall mission can be modeled as a sequence of sub-problems which the
pilot must solve, where the terminal conditions of one segment serve
as the initial conditions of the next segment. Individual segments are
then cast in the form of an appropriate optimal control problem, the
solution of which yields an optimal control law as a function of thzs problem
state variables, i.e., feedback control law,

Once optimal trajectories and the feedback control law
have been obtainad for a given segment, a corresponding continuous
performance measure (CPM) function is found for that segment. The
CPM gives an instantaneous measure of actual man-machinz system
performance as contrasted to preferred or optimal performance.

The work was divided into the following subtasks:

1. Analysis of a Close Air Support Night Attack Mission
to develop segments and segment specifications.

2. Formulate a cost index for an example mission
segmeant.

3. Develop the optimum feedback control law for that
segment,

4, Evaluate segment trajectories using the optimal
feedback control.

5. Develop the continuous system performance measure
and associated computer algorithms.

6. Using the above system performance measure,
evaluate the segment performance using non-
optimal control, that is, use a non-optimal
autopilot model for the feedback control law.

7. Demonstrate the continuous performance measuremeant
technique.

14




1.2 Overview of Report

Section 2 provides a description of the mission, mission
segments, and segment specifications. The mathematical model for
aircraft dynamics is given in Section 3 along with a description of the
aircraft state variables selected for this problem. Section 4 contains
the development of the continuous performance measure (CPM) including
construction of CPM functions, and an illustrative example. Section 5
presents a specific application of the method to a mission segment.
Conclusions and recommendations are presented in Section 6.
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2.0 MISSION MODELS

This section includes a description of the Close Air Support
Night Attack Mission, and a development of a mathematical model for the
mission. The mission was broken into its segments, which can be treate
as separate flight control problems. Each mission segment has its own
reference and performance index functions.

2.1 Close Air Support Night Attack Mission

The Close Air Support Night Attack Mission was defined to
be a night/clear VFR* attack against a power plant. Refueling is done
en route to the target where rendezvous with a tanker is accomplished
via UFH/ADF* procedures. Missile evasion is done en route to target
to avoid radar detection and encounters with surface-to-air missiles
(SAMs). After using FLIR* to locate the target, type MF-84 "dumb
bombs" are dropped. The escape employs terrain—-following until the
forward-edge—of-battle-area (FEBA)* is reached. TACAN?* navigation
during the penetration segment is followed by a GCA landing (Figures 2
and 3 illustrates the mission). The mission segments and segment
elements are as follows:

1. Preflight and Takeoff

Mission briefing, weapons selection, aircraft preflight,
all communications equipment turned on, inertial system set up, engine
start and systems checks, taxi checks, pre-takeoff checks, arming com-
pleted, takeoff accomplished. Takeoff speed is 140 kts.

2. Accelerate and Climb

Gear and flaps retracted, build speed to 330 kts at
5,000 ft., radar and radar homing and warning receiver (RHAW) turned
on, TACAN turned on, external fuel tanks turned on, checks of jammers
zero delay lanyard unhooked. After level off, set power, and check all
systems. Climb speed is 330 kts.

i 3. Rendezvous and Refuel

Navigate to air refueling initial point with inertial systel
contact tanker on UHF, and join tanker in formation using UHF/ADF

*Acronyms are defined in the Glossary for readers not familar with
these terms; the Glossary is in Appendix A.
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procedures. Complete refueling and depart for target, navigating with
inertial system.

4, Cruise

Cruise at an altitude of 18,000 ft. at a speed of 420 kts.

5. Missile Evasion

Arm MK-84's (dumb bombs). RHAW indicates missile
threat, and ECM is turned on, successfully avoiding the threat.

6. Step 6 was deleted from the mission.

7. Descent

Descend to minimum terrain-following, VFR altitude.
Use DOPPLER and RADAR for navigation. Determine if weather will

permit use of FLIR for target identification and tracking. Descent speed
1s 420 kts.

8. Dash (Terrain Following)

Turn on laser designator and laser spot tracker; maintain }F
speed at 420 kts.

9. Pop-up and Attack

& Perform pop-up maneuver to 3,000 ft., 4 nm from
‘ target. Set HUD to bomb and select proper armament switches. Identify
target with FLIR. Select desired attack mode. Make approach and
release MK-84's, hitting the target.

. , 10. Escape Maneuver

At release, initiate 45c> bank right turn, hold until bomb
impact, then pull into dive to descend to terrain following (TF) altitude;
turn jammers to standby.

11. Terrain Following_

Fly TF at 350 kts, using FLIR. Navigate toward home.
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12. Climb to Cruise Altitude

Start climb to cruise altitude of 18,000; climb speed
is 350 kts. Check in with GCI sight on UHF, and report mission results
to combat operations center on HF/SSB.*

13. Cruise

Manage fuel and safety armament. Aircraft is passed
from GCI to approach control. Pilot is cleared for TACAN/GCA approach
and landing. Perform descent checklist. Cruise speed is 480 kts.

14. Penetration

Make TACAN penetration. Descent speed is 330 kts.

i

15. GCA Landin

Make GCA approach and landing. Landing speed is 1
140 kts. Dearm and complete after landing checklist. Debrief maintenance
and intelligence personnel.

The approximate average distance, average velocity, time,
change in altitude and rate of climb are given in Table 1 for each segment 1
of the Close Air Support Night Attack Mission. These numbers give an
indication of the desired aircraft average performance for each segment
of the mission.

2.2 Mission Model

Each segment of the overall mission can be considered as a
mission itself with its own performance index, reference functions (when
specified), and terminal conditions. The pilot can fly each segment of
the mission as a separate problem where the terminal conditions of one
segment are the initial conditions of the next segment. The overall
mission problem is considered to be the sequenced collection of pro-
blems from the segments. Table 2 lists the terminal conditions, possible
reference functions, inequality constraints, and performance factors for
each segment of the Close Air Support Night Attack Mission.

The performance factors are, in general, different for each
segment of the mission, however, the segments can be classified into a
few categories. The first is the climbing or descending type segment

*See Glossary, Appendix A
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where the objective is to reach some terminal altitude, or velocity
and altitude, while the performance is evaluated by comparing actual
trajectories with reference trajectories. A second type of segment is
the cruising segment. In this type of segment the performance is
evaluated based on how well the pilot maintains specified altitude,
heading and velocity while reaching the terminal position. A third
type of segment is a prescribed maneuver, which could include escape
maneuvers, refueling maneuvers, and possibly pop-up and attack
maneuvers, Finally, a fourth type of segment is terrain following where
desired performance requires completing the segment in minimum time
and maintaining a minimal distance above the ground.

Differences between segments of the same type would
occur in the initial conditions, terminal conditions, and possibly the
inclus.on of inequality constraints. Although each typical segment of
the mission appears to be quite different, a generalized performance
index common to many segments can be used. Equation 2.1 is the
proposed generalized performance index.

e
Jo= DXgt) - X1 S [Xg(t) = X1

tf it
v f { ® - x> @ e - x®)
t

e T
= (UR(t) =B (UR(t) = AJ) )

+ X@® )T W (X(t))} dt (2<1)

This is a measure of performance over a segment, where t¢ is the final
time, X is the vector of state variables of the system, U is a vector
of control variables of the system, and S, W, Q, and R are weighting
matrices which can be selected by the method described in the intro-
duction. Xg(t) is the reference state and Ug(t) is the control in that
reference state. The generalized performance index is made up of a
term that weights the difference of the state variables from a specified
reference state, penalizes excessive control, and penalizes high rates
of change of the state variables, effectively suggesting 'smooth"
transitions in changing states. Another termm might also be added to
penalize "jerky'" control actions, but since the optimal feedback control
law will define the control rule as a function of states, the penalty
(W) on state-change rates (>'<) serves virtually the same purpose.
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The difference between the performance index for a
cruise segment and a climbing segment could be reflected in differences
in the weighting matrices, reference functions and terminal conditions.
Essentially, the performance index is chosen such that the resulting
optimal paths (solution trajectories) represent the desired flight path.
if a flight path is specified as virtually mandatory (very high penalty
weights on errors or excursions from that path), then that reference
path is "optimal." Thus the optimal control forces the desired path
to be reference path. The distinction between '"desired" and "reference"
paths arises from not being able to maintain the reference path due to
other perturbing factors (e.g. turbulence). Then the optimal path may
not be identical with the reference path once the segment has begun
(e, t>to).




3.0 MATHEMATICAL MODEL OF AIRCRAFT DYNAMICS

General mathematical models of the dynamics of an
aircraft moving through the atmosphere have been developed for use in
simulations and design of aircraft control systems (e.g., Etkin, 1972
and Fogarty and Howe, 1969). For purposes of this analysis, the
aircraft is modeled by the simplified equations for aircraft dynamics
contained in the subroutine ADCOMP from the ALL DIGITAL COCKPIT
DISPLAY SYSTEM PROGRAMS obtained from the Human Engineering
Division, Aerospace Medical Research Laboratory, Wright-Patterson
Air Force Base, Ohio. This aircraft model was derived as a first
attempt to provide a fairly reasonable and realistic task to relatively
naive subjects. For non-flyers it is a demanding task and believable,
For flyers and knowledgeable engineers, the simulation is anything but
real and represents an expedient compromise to obtain a workable set
up for controlled, laboratory experiments. Since the current effort
was focused on developing a new technique for scoring performance,
the CPM methodology has been developed for this artificial aircraft:
the ADCOMP subroutine. The rationale for this decision is that once
developed, initial experience with CPM can be gained as real-time
laboratory experiments are conducted using the ADCOMP driven simula-
tions. For other simulations or for real aircraft, a more elaborate
model would have to be defined (and parameter values determined)
specific to that application. Since ADCOMP was not documented by its
developer, an attempt is made here to rationalize the given design of the
aircraft model.

S.1 Assumptions

For the model of the aircraft incorporated in the equations
of the given ADCOMP subroutine, the following assumptions apply.

1

® The aircraft is traveling at a speed less than MACH 3,

° The thrust vector is aligned with the fuselage
reference line.

] The vehicle is a rigid body having a plane of
symmetry, i.e., the right side of the aircraft
is configured the same as the left (i.e., same
size, weight and shape of components and
attachments - fuel pods, weapons, etc.)*,

*While this is true in many cases, it may not be true for some segments
where a weapon releases from one wing but none from the other.
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The atmosphere is at rest relative to the earth,
i.e., the wind is zero,

The earth is considered a plane fixed in space,
i.e., a flat earth,

The reference axes are a north, east and down system
fixed to the earth, i

The side-slip angle is neglected, i.e., assumed
to be zero,

The aircraft is assumed to be a point mass, in
that moments of inertia are ignored,

The rate of change of roll angle is approximately
proportional to stick position,

The equations describing angular acceleration are
neglected,

The rate of change of the angle of attack is approxi-
mated as being proportional to stick position plus a
term due to lift,

The reference frame for the aircraft is a combined
wind and body axes system, and

The rudder is automatically set to give coordinated
turns.

Under the assumptions given above, the very complicated
set of equations for aircraft dynamics given on Pages 149-150 of Anderson
and Moore (1971) reduce down to the simplified set of equations used in
the ADCOMP subroutine. Generally, these assumptions are valid for the

mission segments considered since the aircraft flights are over short
distances and at relatively low speeds.

Figures 4 and 5 show the notation for the angles, forces
and associated reference frames for the aircraft.
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Lift
Drag
Velocity

Maximum
thrust

Angle of attack
Flight path angle
Mass of the aircraft

Weight of the aircraft

fixed coordinates

FIGURE 4 REFERENCE FRAMES

Heading angle

Roll angle

Gravitational
constant
(32 ft./sec.?)




Body Fixed Coordinates

FIGURE 5 CONVENTIONAL AIRCRAFT EULER ANGLES




The Aircraft Model

The resulting set of simplified equations for the aircraft

dynamics are:

where By is functionally related to the pilot's pitch input

and

V cos ¥ cos ¢ (3.1) 1

» =

e |
Ye = V cos Y sin V¥ (3.2)
Ze = MV sin Y (3.3)

¢ = ¥y (3.4)

¥ L sin ¢

S m V cos Y 55

3 L cos ¢ -~ W cos?

DA

et (3.6)

e A (L/W = 1) (AL1) @.7) ﬂ
. ps(MT)cosa—D—WsinY
VvV = (3.8)

m

(fore-aft stick movement)
is functionally related to the pilot's roll input
(side-to-side stick movement)

Iz is functionally related to the pilot's throttle settings.
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The parameter AL1 is a constant taking on the values:

- K L >
e +erg T
Al =
+ K L
YT , for v & (3.9)

where K is a scaling parameter which is used to specify the aircraft
pitching rates with respect to lift to weight ratio. In ADCOMP, K was
an input that was read into the computer when the real-time simulation
was executed. Here K was assumed to be 1.0 for convenience. Also,
the values of MAXG and MING are artificial constraints. Since there

is no motion in the ADCOMP simulation, subjects can "pull" unrealistically
high "G" levels. This equation prevents subjects' unreasonable inputs
from "blowing up'" the ADCOMP simulation. While MAXG refers to the
largest allowable positive acceleration, MING refers to the largest allow-
able negative acceleration. Chosen properly, MAXG (+15) and MING (=5)
prevent the execution of "impossible" turns, dives, and climbs. Even
so, the values used in ADCOMP are quite large, which is one of its
unrealistic features. The values can be readily changed, however. The
maximum thrust is given by:

N e [AMT (2327 + 0.172 Ze - 0.0000031 Zz) §\-/§
+ 11500 - 0.25 ze] (3.10)
where
2 , if the afterburner is on
& ¥
% , if the afterburner if off 3.11)

and SS is the speed of sound which is a function of altitude.
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The ADCOMP subroutine uses an aircraft weight (W) of
17,000 lbs or a mass (M) of 528 slugs. The drag force (D) is a function
of the altitude, velocity and angle of attack. The lift force (L) is a
function of angle of attack, altitude, thrust, and velocity. Appendix A
contains defining equations for the drag and lift forces.

The control variables (or inputs) for the model are
g (t) which controls the rate of change of the angle of attack and is
proportional to longitudinal stick position, Mo (t) which controls the rate
of change of the roll angle and is proportional to lateral stick position,
and Ka (t) which is normalized percent throttle. In practice these inputs
come from the pilot or from an autopilot.

The dynamic variables for the model are:

a(t) = Angle of attack (radians)

V() = Air speed of aircraft (feet/second)

Xe(t) = X-position of aircraft with respect to earth (feet)

\re(t) = Y-position of aircraft with respect to earth (feet)

Ze(t) = . Altitude of aircraft (feet)

149 = Roll angle (radians)

1¢9) = Heading angle (radians) ' 1
y(® = Flight path angle ~(r‘adians)

Appendix A contains a summary of these equations.

For various segments of the mission these equations can
be further simplified. For example, for a cruising segment if a constant
altitude is assumed, many of the coefficients that change with altitude can
be approximated by a constant over a small range of altitude change. The
equations can then be reduced to a simpler form for a cruising problem.

3.3 State Space Formulation of Aircraft Equations

The set of differential equations describing the aircraft
dynamics given in Section 3.2 can be put into the form of vector/matrix




differential equations if state variable notation is used (Padulo and
Arbib, 1974), This notation simplifies the description of the optimal
control and CPM developments.

The differential equations describing the aircraft dynamics
can, in general, be written in vector/matrix form by the state equation:

XY = F XM + GO pld) (8.12)
where p (t) is the three-dimensional control vector given by:

r,(®
r®) = |e ®

r 50 (8.13)

and X(t) is the system state vector. Wernli and Cook (1975) contains a
discussion of the "apparent linearization'" technique that rationalizes
equation 3.12. The choice of which of the aircraft dynamic variables to
include in the state vector may vary depending on the segment of the
mission. For example, in a cruising segment the X-position of the air-
craft with respect to earth, X , should not be included in the state vector
X, since steady state cruising conditions do not depend on Xg. This point
is discussed further in Section 5. F(X) is the system matrix whose
elements are a function of the state variables and G(X) is the control
matrix whose elements are also a function of the state variables. Since
F(X) and G(X) are not unique but change from problem to problem (i.e.,
sy-;tem A re—quir‘es a different model than system B, or mission phase 1
for system A requires a different model than phase II, etc.), the gen-
eralized forms apply to specific cases only when the numbers appropriate
to the system/problem at hand have been defined and entered into the
matrices. However, even in this general form, the matrix equations

can often be "solved" for the general case so that a specific solution is
immediately available as soon as the numeric values for the matrix entries
become available. When this is possible, the technique is indeed powerful,
since for those cases where the problem of interest '"fits'" one of the
general cases already formulated and solved, then the answers for the
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problem of interest are obtained relatively easily, However, this is
most often possible in cases where the linearized models reasonably
define the steady state behavior of the system. The theory of linear
systems is then applicable and provides a well developed set of solution
techniques many of which make use of the matrix or linear algebra.

For nonlinear cases, the same conceptual scheme is
taken for setting up the state variable equations in cannonical (e, @
predefined '"standard," and typically "simple") form, but the matrix
algebra does not apply, the solutions are typically not known in advance,
and the techniques for solving the equations may not be readily available.
In these cases it is often necessary to use a simulation and recursive
or iterative solution techniques to arrive at the definition of an optimal
control rule and the associated optimal trajectory. Because of these
often formidable difficulties, modelers often choose to study a linearized
model first and develop nonlinear representations only after they have
exhausted the insights to be gained from the simpler linearized model.

The choice of the F(X) and G(X) matrix is not unique, but
can frequently be put into the for‘m.given by_Equation 3.12. In certain
applications it may be of advantage to pick one form of F(X) over
another (Wernli and Cook, 1975). 54

The aircraft state equation given by Equation 3.12 together
with the performance index given in Section 2.2 by Equation 2.1 define
an optimal control problem. The solution to this optimal control problem
is the first step in finding the CPM.

3.4 Simplified State Equation for Constant Altitude Cruising
(Mission Segment 4)

The aircraft equations described in the previous sections can
be further simplified whenever the aircraft is flown at near constant
altitude. Segment 4 provides a constant altitude reference flight path,
and it is assumed the aircraft will be near that reference altitude. As
a result, aircraft coefficients which are functions of altitude can be
replaced by a constant value for Segment 4 analysis. The assumptions
for the simplified equation which are used in Section 5 of this report to
find an optimal control for Segment 4 are as follows:

® The altitude Z, is approximately 18,000 feet over
the entire segment

) The after-burner is off during the entire segment
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Then for Zg = 18,000 feet, the following variables were
assigned specific values as designated below:

Air Temperature = -5.26° F
D1 = 0.87604 (dimensionless)
Air Pressure = 1055.4212 1bs/sq ft
Air Density = 1.3539 x 1072  slugs/ft3
Speed of Sound = 1046.9171 ft/sec.
The mach of the aircraft is
M, = (9.5519 x 10"4) \V

The dynamic pressure is

2

Q (6.7695 x 10'4) Ny

]

Dynamic pressure affects the calculation of lift and drag forces as
described in Appendix A.

The maximum thrust (with after-burner off) is

MT = 2.1108v + 3500,

E o and thrust is

|
o
.
- i 2 = [2.1103 v + 3500.] py
_‘ The coefficient of lift is
'. cL o CL1 + (CL2) «

l
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where

o CUEC e e U R S A

Ol 1048

and

A6 F g e

where a is the angle of attack in radians. The implied restrictions are
a feature of the ADCOMP subroutine as originally designed. As with the
choice of values for MING and MAXG, it is not clear why the designer
of ADCOMP chose these exact limits, but it appears the intent was to
preclude grossly unrealistic inputs to the model even if naive subjects
inadvertently induced such inputs. The coefficient of drag is given by

L0827 4+ 0/1385a +  1.6875 or2

CD

The drag then is given by:
= v . 2
D = (0.1367) (0.0327 + 0.135« + 1.6875a %)

These equations for drag (D) and the coefficient of drag (CD) are also
only applicable for cases where the angle of attack (a«) is less than
0.4, which is an acceptable assumption at least for the cruise segment
of the mission.
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The component of applied force normal to the flight path is:

L = [0.13673 (cL1)] Va
+ [0.183673 (CL2)] « Va

+ [2.1108 vV + 8500.] sin (any)

Assuming, as stated previously, that K = 1, then the parameter ALA1
takes the values:*

L
-0.0666 —_ 2
0.0666, for 17,000 = 1

AL =
L

20,0400, for e
ST K

Using the above approximations the aircraft dynamic equations,

become for the cruising segment:

><e = V cos Y cos ¥
\./e = V cos Y sin ¥
Z.e = V sin 7Y
ey

*The calculation of these values is more, fully described in Appendix A.

Py
«
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-4 i
v = (2.589 x 10 ) CLA1 3‘—"—3
CcOos
sin ¢

cos Y . s

+ (2.589 x 10"4) cL2

r (3.18)

6.629] sin ¢ sin «a
cos Y 3

-3
+ [(3.997 X0 Y~

Y = [(3.997 A0 6;3‘-23] cos ¢ sin (amuy)

21 —
- 32,2 %— + (2.589 x 107 CL2 cos $a V

+ (2.589 x 10'4) CL1 cos ¢ V (3.19)
‘ ’ S
a = = AL1 + ALI [(1.241 x 10 ) V + 0.206]sin(ap.3)

-6 2
+ [(8.041 x 107) AL [cL1 (vD)]
+ [(8.041 x 1075 AL} cLs (aV2)] (3.20)
-3

\% = [(8.997 x 107°) V + 6.629] cos (@ng)

- 32.2 sin ¥ - (8.466 x 1075 Va

- (8.495 x 10'5) eV - (4.369 x 104 " o (8.21)

Again the reader is cautioned that the above equations apply for the
restricted values of (a ) that govern the computation of values for
CL1 and CL2., These equations are put into state variable notation in

Section 5.




4.0 A CONTINUOUS PERFORMANCE MEASURE FOR MAN-

MACHINE SYSTEMS

A continuous performance measure (CPM) for aircraft flight
control systems is developed in this section. A CPM is developed by applying
optimal control theory to the manual control problem in order to establish
the required flight reference (criteria) and significance of deviation-from-
criteria information. To illustrate the concepts and techniques used, an
example problem is presented.

4.1 Performance Measurement Requirements

A motivation and rationale for developing a CPM is presented
in the introduction. The desired properties of the CPM are summarized
as follows:

1. The measure should allow comparison of present
performance with respect to preferred performance
where the preferred performance is defined by the
system's motion in state space (trajectories) under
the optimal control law.

2, The optimum control against which performance is
being evaluated should be determined in- terms of a
system performance (cost) index which in turn is
selected by examination of the associated optimal
state space trajectories.

3. The measure should allow instantaneous (state related)
performance measurement, as well as, average perfor-
mance measurement over an arbitrary time interval
within the task.

4., The measure should allow determination of critical
regions in the system state space. Critical regions
refer to regions that are particularly sensitive to
accurate operator control. The performance measure-
ment must allow both theoretical determination and
experimental determination of high cost sensitivity
regions in state space.

The first step in developing the CPM for manual control
systems is to formulate mathematically the objective of the control task
as a performance index J. The performance index J is a summary
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measure for the task. Examples of some types of J where this might
be appropriate include cases where performance is defined in terms
of a penalty or "cost" function: minimize the time to complete the
task, minimize the fuel expended, minimize the error, etc.

The differential equations describing the system to be con-
trolled together with J constitute an optimal control problem. If a
solution to the optimal control problem exists and can be found in the
form of the optimal feedback control law, then the control to be applied
to the system in any state is determined such that J will have a minimum
value. For example, if J represents the time to complete the control
task, then the solution to the related optimal control problem will yield
a feedback control law which results in the task being completed in the
minimum time possible.

Any non-optimal control applied to the system by the operator
will result in a larger value for J. The CPM developed in this section
is based on the instantaneous effect of a non-optimal control applied to }
the system at any time during the task. This is done by comparing the
effect of the non-optimal control on J as opposed to the effect if an
optimal control had been applied to the system. By doing this, a CPM
is developed which gives an instantaneous measure of the operator's
performance as compared with optimal or '"best possible'" performance.

Again the reader is cautioned that "optimum" is defined
(or influenced) by the terms one places in the performance index and the
weights used in the scoring matrices. While these may reflect objective
quantities (fuel, time, etc.) or the engineer's judgment (large penalty
weights placed on altitudes 'close to the ground"), it was also proposed
that these could be subjective weights if one wished, thereby reflecting |
a single pilot's a priori goals, or a training instructor's criteria, or an
operating command's policy. Consequently, the comparison the CPM
makes to the 'best possible" performance is always relative to the nature
of the goals one explicitly puts into the performance index. The issue
of which goals are in some sense 'best" is yet another issue, and one
§ that is beyond the scope of this discussion. Here it is assumed the goals
i have been appropriately chosen and accurately reflected in the performance

index.

If the operator is using the optimal control, then the value
of the CPM is zero. If the operator uses non-optimal control, the CPM
is positive and its value is equal to the significance of the control error.
This sensitivity property of the CPM is demonstrated in the following

sections.
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4.2 Related Optimal Control Problem

The system to be controlled is described by a vector/matrix
differential equation of the general form:

X(t) f [xwm, u) 4.1)

where X(t) is the vector of state variables, U(t) is the vector of control
variables, and f is some function of X and U. It is assumed that the
objectives of a segment of the mission can be analytically expressed as
the minimization of a scalar performance index of the general form:

t
f
J [y, ued) = f E [xwm, uw]at (4.2)
t
(@]

where t is the initial time and t_ is the final time of the problem.
E is a Bositive definite function, that is, E [X(V), uw) > o for all
values of X # 0 and U # 0. Examples of positive definite functions
that arise in some typical control problems are:

i E is a quadratic function of X and U, that is
T W
EC,U) = X (1) @ X(t) + U (1) R U®) (4.3)
where R is a positive definite matrix and Q is
a non-negative definite matrix*

&y minimum time problems, where

E@U) =1 4.4)

*The differential, integral, and matrix calculus are used in the
remainder of this chapter and the reader is assumed to have a
reading knowledge of the notation (see Padulo and Arbib (1975),
Sage (1968), Bryson and Ho (1976), Athans and Falb (1966) or
Anderson and Moore (1971) for engineering application and Pipes
(1963), Bellman (1970) or Gantmacher (1959) for mathematical
development).
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] The related optimal control problem is to find a feedback
control law which transfers the system of Equation 4.1 from any initial
state to a given terminal condition and which minimizes the performance
index of Equation 4.2. Assuming a solution exists and can be found

) analytically, the optimal feedback control law can be written in functional
form as:

u* = B[xw, t) (4.5)

Equation 4.5 specifies the optimal control to be applied for every state

of the system. That is, equation 4.5 asserts that the optimal control

3 (U*(@) ) is some as yet unspecified but derivable function (8), and the

g only required inputs or arguments to that function are the states of the

system at time (t), the X(t), and the actual or current time (t). Using
this optimal control will result in the minimum value for J, which will

be denoted as J*. This is, by definition, the best performance possible
for this segment of the mission.

Shch b

4.3 "Cost-to-Go" Function

. Consider the performance index of Equation 4.2, but with
the integral evaluated in two parts. This can be written as the sum

: : t t
t 3 / 1E[x(t), U(t)]dt + f ft—:[><(t), U(t)]dt (4.6)

t
o] t1

The first part of the sum is the integral evaluated between the initial
time, t,, and an intermediate time t1, where to < t1 < te. Call this the
: "cost accumulated" at time ty. The second part of the sum is the
| integral evaluated between time t{ and the final time te. By definition,
this integral is called the '"cost-to-go'" at time t1 and is denoted by
the symbol 6, i.e.,

t

0[><(t1), U(t)] = / FE[x(t), U(t)]dt 4.7)
Y
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Using the optimal feedback control law, we can replace
U(t) with U*(t) to define the optimal cost to go (§*(X(t1), U*(t))), but ,
by Equation 4.5, we can also replace U*(t) with g [X(t), t], so ‘
Equation 4.7 finally becomes

x

f 3
6* [><(t1)] * f E[><<t), BOX(E, t)] dt (4.8)
3

i -
|

Notice that the optimal '"cost-to-go'" is the value of the
integral when the optimal feedback control law is the control the
operator decides to use from time t, to tf and, therefore, §* depends
only on the state. It follows from Equation 4.8 that the '"cost-to-go"
evaluated at ty = tf is

o* [xtp] = o (4.9)
and if evaluated at t; = tp then
) = I (4.10)
Note also that from Equation 4.7
dé
= = -E [xt), ue)l (4.11)
dt 1 1
t=1t
1
4.4 Continuous Performance Measure

Consider the effect of two different control laws on the
performance index by comparing trajectories and cost values for two
solutions with different control laws but the same initial conditions.
Assume the first control law used is the optimal feedback control,
while the second control law is such that between time to and ty the
optimal control U*(t) is applied, but between time t; and tf a non-
optimal control U4(t) is applied. This is shown in Figure 6. The
value of the performance index using the first control, i.e., the
optimal control U* is
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FIGURE 6
TWO DIFFERENT CONTROL POLICIES

ONE OPTIMAL, ONE NON-OPTIMAL
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t
A
G / E[x®, U*®mkt + 0*[><(t1)] (4.12)
t

The value of the performance index using the second control law is

t
1
b= t/ E[X(t), u*(t)]dt .(
(o]

+ 0[><(t1), U1(t)] (4.13)

i

Subtracting Equation 4.13 from Equation 4,12 gives the cost difference
between the use of an optimal and a non-optimal control law over the
time interval [t1, t], as

AJ[X(t1), U1(t)] = J*-u, = 0*[><(t1)]—0[><(t1), U1(t)] (4.14)

The cost difference a J depends on the time ty, that is, when the non-
optimal control Uq{ was first applied, but indirectly through the state
and control variables,

Consider the cost difference A J if the same control Uj
is applied at some late time (t; + At), where At is a very small positive
time increment. Expand the cost difference AJ [><(t1 + at), Uy (t)]

in a Taylor's series expansion in At about the time ty1. This is given
by:

AJ[X(t‘.1 + At), U1(t)] = AJ[X(t1), U1(t)]
daJ
- (E:—

+ H.O.T. [At2] (4.15)

U (), X(t)

The last term on the righthand side of Equation 4.15 represents higher
order terms (H.O.T.) that depend on (At2) or larger powers. Rearranging
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Equation 2.15 and dividing by at, the incremental cost difference is
given by:

aJ [X(t1 + Ab), U1(t)] - aJ [X(t1), U1(t)]
at

daJ
dt

H.O.T. (atd
At
U(t1), X(t1) (4.16)

+

Equation 4.16 represents the incremental cost difference between the
use of the optimal control U* and the non-optimal control U, over the
time interval ty to (ty + At). In other words, the incremental cost
difference is the increase in the value of the performance index due to
the use of the non-optimal control Ujq during the time interval ty to
€ty + A0,

Define the Continuous Performance Measure (CPM at
time tq) as:

¢[><(t1), U1(t)] o nm X + ab), Ul(t‘)&' aJ X, U]

At—o (4.17)

Making use of Equations 4.11, 4.14, and 4.16 in Equation 4.17, the
CPM evaluated at time t; using control U,(t{) is given by:

sPacey, U] = 2EXOL

dt

U (), Xt

= d¢*[><(t2!|
dt

d¢

dt

U, (t)s X(E)) U (s X(t))

+ E[X(t1), U1(t1)] (4.18)
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The continuous performance measure ¢ of Equation 4.18
can be interpreted as the instantaneous increase in the value of the
performance index due to the use of the non-optimal control U4 at i
time ty. If one now considers any time t between to and tf, i.e., {
to<t<te, and any admissible control U(t), the CPM of Equation 4.18

generalizes to
*1 <
o, e = ke |
U, X
=+ E[X(t), U(t)] (4.19)
Equation 4.19 can be evaluated at each point in time to

yield a continuous metric of performance which only depends on the
present state and present value of control.

4.5 Properties of CPM

In this section, several properties of the CPM are presented.

1. The CPM, ¢ [X(t), U(t)] is zero when evaluated using
the optimal control law of Equation 4.5 i.e.,

¢[><(t), U*(t)] S R afor t < t<t (4.20)

2. Using the optimal feedback control law, Equation
4,19 is

de*| X))
dt

| + E[X(t), U"‘(t)] = 0 4.21)
| Uk, x

However, if the "cost-to-go" in Equation 4.21 is
only a function of the state variables, then
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d6*[xw]
dt

; "
[aoa >><<<t>]] =
1% o

| )% e

QX

- (ao*[x(t)l)T f[xct), B(X(t))]

The last substitution is based upon Equations 4.1
and 4.5. Using Equation 4.22 in Equation 4.21,
yields the partial differential equation whose
solution is the optimal '"cost-to-go" function as:

(%%:)T f [X(t), B (X(t))] + E[X(t), ,3(><(t))] = D

where f [X(t)] is the optimal feedback control law.

From the definition of 6 and the assumption that
E[x, U] >0, this implies

g*[x)) 2 o.

Property 1 above implies that
¢[xct), Ul 2 0if U # U*,

The integral of the CPM over the problem time
interval, [to, tf] is given by

Y

_[ ¢ [X(t), U(t)] gt = = U

t
(o]

which is the difference between the performance
index evaluated using the operators control and that
obtained using the optimal control law.
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If the performance index reflects a model of the operator's
goal aspirations, then J(U) - J¥(U*) implies the degree of dissatisfaction
which may be experienced when performance falls short of the operator's

!
objectives. I[f instead the performance index is based upon an instruc- i
tor's criteria, then J(U) - J*(U*) reflects the operator's earned §
score for less than perfect performance. If some "ideal" resource :

expenditure is reflected in the performance index, then J(U) - S ™)
reflects the wastefulness of non-optimal or sub-optimal control rules f
or policies and the behavior guided by these. So again, a specific !
interpretation depends upon the a priori specification of the objectives
captured in the performance index.

4.6 Application of the Continuous Performance Measure

e st e v

Generation, use, and interpretation of the continuous
performance measure ¢ (X,U) involves the following steps (the system
equation, performance index and control constants are assumed to be

R

given):

1. Obtain an analytic formulation of the optimal feedback
control function U* [X(t) ] and the "cost-to-go"
function @*[X(t)].

E 2. Form the performance measure ¢ (X(t), U())
5 d g *[ X
= = _E%_(_J 4 E[X(t), U(t)]
um, X
E 5 i where U is the operator's present control action at

each instant of time (t).
3. Make the following observations:

| a. ¢ (X)), U) = 0 if the operator is using
optimal control,

b. ¢ (X(B, Uw) 20 if U] # Uxw) 1

(f ¢ CX(t), U®) = 0 for U # U*, then
control sensitivity to cost is zero),

g S v
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c. ¢ (X)), U) indicates instantaneous performance
directly,

d. ¢ (X, U) is a state related measure of cost,

DA B e
e gﬁg——’-——) is a measure of the control sensitivity
at each point X in state space (for fixed t) and

therefore, weights the importance of control errors.

e Let, t

2
5= — tf ¢ [xw, vo] at
1

2t

This is a measure of average performance over the
interval [t1 ; t2],

g ilkiet:
t

2= L tf2;¢[><(t), ueo]

1

2dt

This is a measure of average squared performance.

h. Then define,

2 2 =
g = =
This is a measure or index of performance
variability.
) s 2 B
is TEhen S = NPS =iHeyE =0 RS, (¢[><(t), U(t)])

which is an index of performance variability also.
Similarly, higher order moments could provide
indeces of performance asymmetry (skewness and
kurtosis).

Continuous Performance Measure Illustrative Example

This section is devoted to the solution of an example
problem in order to illustrate the concepts and techniques introduced
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in previous sections. In this section, the CPM is found for the infinite-
time Linear Regulator Problem.

4.7.1 CPM For Linear Regulator Problem

Consider the standard infinite-time linear regulator
problem (Sage, 1968, Bryson and Ho, 1967, Athans and Falb, 1966 and
Anderson and Moore, 1971). Given the state equation as:

* >.<(t) = A X@® + B U® 4.24)

with arbitrary initial condition X(0) = Xy where A and B are constant
matrices, X(t) is the state vector, and U(t) is the control vector. The

performance index is given by:

oo
J = % f [XT(t) Q X)) + UT(t) R U(t)] dt (4.25)
o]

where Q and R are positive definite symmetric constant matrices.

The optimal control problem is to find the feedback control
law U* = U(X) which transfers the system given by Equation 4.24 from
i any arbitrary initial state Xg to the destination, while minimizing the
' performance index of Equation 4.25.

: The well-known solution to this problem (Sage, 1968, Bryvson
and Ho, 1967, Athans and Falb, 1966 and Anderson and Moore, 1971) is the
optimal feedback control law given by:

U = -R7 B! K X® (4.26)

where K is the positive definite symmetric constant matrix which is
the solution of the matrix equation:

L T
KBR ' B K-KA-A'K-@ = 0 4.27)

The minimum value of the performance index is given by:

J=E =" (0) K X (0) : (4.28)
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4.7 1. "Cost-to-Go" Function: 6* [X(t)]

The "cost-to-go" function must satisfy Equation 4.21 along
an optimal trajectory. For this example:

E [X(t), U(t)] = % [XT(t) Q XM + UT(t) R U(t)] dt
but by Equation 4.26:
G - R B X(1)

so E[X(), U*®)) becomes:

% [XT(t) Q X@®) + <—R-1 B X(t))T R (—R-1' e X(t))]

which may be simplified, using the matrix calculus (Gantmacher 1959), to the
expression d
* T ) MR [
E X, U(t)] = X ®M|Q + KBR B K[X{t (4.29
Substituting eq. 4.26 in eq. 4.24,
e
de* 3¢*[x®]
dt i X G
UF, % u* . x
s
* -
* (%g.<_) [A B K]X(t) (4.30)

So now the differential equation from which the optimal "cost-to-go"
function derives (as defined by eq. 4.23) can be expressed by combining
equations 4.29 and 4,30.

(aa’;: )T[A BB K] X(t)

+ % X' [Q + KB R gT K] X(t) (4.31)
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Along the optimal trajectory, this expression is equal to zero (which
implies that either both 4.29 and 4.30 are zero or that one is the
negative of the other, i.e., they balance out or null one another).
Further, by definition of 8%, we know that at x(t) =0 ¢*(X(t)) = O.
This is a boundary condition imposed upors eq. 4.31.

The '"cost-to-go" function which is the solution to
Equation 4.31 is

6* [X(t)] — XT(t) K X(t)

where K is the positive definite symmetric constant matrix which is
the solution of Equation 4.27. Since K is positive definite, then
0* [x@®)] > 0 for any X(t) # 0; and

6" [X(O)] = ¥ XT(O) KX (©) =.J%
and
6* [o] = 0
4712 Continuous Performance Measure ¢ [X(t), U(t)]

The Continuous Performance Measure (CPM) evaluated
at the present state and control is given by Equation 4,19 ard is
repeated here for convenience as Equation 4.383

*
s [x, uw] = 9’—%—(91

‘ U(t)

+ E[X(t), U(t)]

(4.32) &

(4.33)




Borrowing from eq. 4.29 and 4.30, 4.33 may be written
4 -1
¢[><(t), U(t)] = %& [A SRR K] X (t)

+ % XT(t) [Q KB R '8 K] X(t)

which with approprite manipulation using the matrix calculus becomes

¢[><(t), U(t)] 4 g gy [K g e e K] X(t)

+ X' KB U®
T
+ % U ()R U® - (4.34)

Note that if the optimal control U* given by Equation 4.26 is used, then
o[x), U*t) = 0. That is, the CPM evaluated using the optimal
control is zero.

Assume that the operator's present control action, U(t),
can be written as some deviation from the optimal; that is,

ug = Ut + em®

where U*(t) is the optimal feedback control given by Equation 4.26 and
e(t) is the control error. Note that the control error is the difference
between the operator's control action at the present time and the optimal
control action for the present state.

Using Equation 4.35 in Equation 4.34 the CPM in terms of
the control error is given by:

sxw, vt + e(t)] = sfew] = x e R et (4.36)




e

Since it was assumed that R is chosen as a positive definite matrix,
this implies that ¢[e(t)] > O for e(t) # O and ¢let)) = O for et) = O.
Hence the CPM is a positive definite function.

4,7.1.3 Sensitivity of Continuous Performance Measure

JOUU—

The sensitivity of the CPM to small variations in the
operator's control action can be found by taking the partial derivative
of Equation 4.34 with respect to U(t), which for this example is:

delxw), uwl
AU()

B! Kx® + R U®

Note that the sensitivity of the CPM to the control is proportional to
both the present state and the present control action for this linear-
regulator example. This implies that non-optimal operator action is
more serious in some states that in others.

The sensitivity of the CPM to small variations in the
control error e(t) can be found for this example by taking the partial
derivative of Equation 4.36 with respect to e(t), which is:

dlew)] _
i = e ,

Note that for this example the sensitivity of the CPM is directly
proportional to the present control error weighted by the matrix R
regardless of the present state. This implies that the changes in
the performance index will reflect a cost weighted penalty for
inappropriate action but will not again penalize him for being in some
undesirable state. So long as he makes the best of a bad situation,
he can keep the performance index "down," i.e., by minimizing his
own errors (by responding in a manner appropriate to the specified
and quantitative objectives) he can effectively produce a minimal
performance index as he was instructed or set out to do.
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5.0 APPLICATION OF CPM TO A CRUISING SEGMENT OF
THE MISSION

In this section, the theoretical results and methodology
of tHe preceeding three sections are used to find a continuous perfor-
mance measure for a cruise segment (Segment 4) of the aircraft
mission.

First, the optimal control problem is formulated for the
r cruising problem. This involves the formulation of the state equations
and performance index. Next, an approximate solution of the optimal

control problem is given for the cruising segment (Segment 4) of the

aircraft mission. Based on the approximate optimal control law, the

CPM for the cruising segment is derived. Preliminary computational

results are presented for the CPM when a non-optimal control policy

(an auto-pilot) is used to fly the aircraft in Segment 4.

5.1 Cruise Problem Formulation for Segment 4

The formulation of an optimal control problem for the
cruising segment of the aircraft mission is developed in this section.

5.1 Selection of a Performance Index

A generalized performance index, common to many segments
of a mission, was described in Section 2, and is given by:

J = [XR(tf) - X(tf)]TS[XR@f) A x(tf)]

+ . / tf;[xR(t) - ><(t)]TQ [XR(t) - ><(t)]
(o]

+ [UR(t) - U(t)]TR [UR(t) - U(t)]

+ >.<(t)T w x®! at (5.1)
[xt) }

where tg is the initial time, Xg(t) and Ug(t) are possible reference
state and control functions, tg is the final time, X is the vector of
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state variables of the system, U is a vector of control variables of the
system, and S, W, @, and R are weighting matrices. The generalized
performance index is made up of a term that penalizes state variable

errors, excessive control, and large rates of change of state variables.

For a general cruising mission segment, the assumed
objective is to maintain constant heading, altitude, and velocity over
a given distance with small changes in the control and state variables
that may be required for any error correction. The final time (tp)
and the error in the terminal state (X(tF)r - X(tf)) is assumed not to
be of primary importance. The problem is terminated when the air-
craft has travelled a specified distance over the earth. Therefore,
Equation 5.1 is adapted to a cruising problem by not penalizing the
error in the final state, i.e., let the weighting matrix S be all zero
elements; and by letting the final time tf be undefined, that is, tf = co.
In order to simplify the development, the rate of change of the state
variables are not penalized in the performance index, i.e., the
weighting matrix W has all zero elements. The objective for Segment
4 of the mission is to cruise at 18,000 feet altitude at a speed of
708.87 feet/sec. (420 knots). The direction to target is selected as
due East, so that the aircraft should travel along the Xe - axis. The
corresponding reference aircraft heading is taken as zero radians,
% = 0). The segment flight problem is terminated when the aircraft
has traveled East for fifty nautical miles, (Xg = 303,805.75 feet
(B0 Nnm.)).

The desired steady-state flight condition for Segment 4
of the mission (straight and level flight due east) is the reference
trajectory. When the aircraft flys along the reference trajectory all
variables are constant except for X, which is changing at a rate of
708.87 feet/sec. Figure 7 shows this reference trajectory in a vertical
plane indicating altitude versus X-position of the aircraft with respect
to earth. Also shown are several preferred (optimal) trajectories for
several non-reference initial conditions.

Choose as the vector of state variables for this problem
the 7-dimensional vector X, defined by

ENCE
$ (b
)
Xt = Y (® (5.2)
EG)
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Notice that the aircraft variable X, has not been included in the state
vector X. This is because in Segment 4, the X-position of the air-
craft with respect to the earth does not need to be used to generate
a feedback control to maintain the reference trajectory. This will
become clear from an inspection of the aircraft dynamic equation in
Section 3.4.

The reference state vector for Segment 4 is constant and

given by
"0.0594 radians |
| 0,0
Ii 0.0
X = | 0.0 (5.3)
! 708.876 ft./sec.
0.0
18000.0 ft.

These are the values of the state variables along the reference trajectory
in a steady-state flight condition. In the desired steady-state flight
condition the rate of change of the state variables is zero,

The aircraft control variables that maintain the reference state vector
XR, provided the aircraft is in the reference state, is given by the
constant 3-dimensional reference control vector

u, 0.0702
Y =Y, 0.0 (5.4) 1
0.54 s
Uy 1 |

With the choice of state variables given in Equation 5.2,
and the reference state vector and reference control vector given by
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Equations 5.3 and 5.4 respectively, the performance index for the
cruising problem of Segment 4 is given by Equation 5.5.

oo T
J o= % f o< = X)) Q X5 - XD
0

=
+ (Ug = UE) R (U - U®) }odt (5.5)

The selection of the weighting matrices Q and R are discussed in
Section 5.4,3.

The performance index for cruising (segment 4) given by
Equation 5.5 tends to limit excessive control element displacements and
insures that the reference trajectory is an optimal trajectory. The 1/2
term in front of the integral is merely a scaling factor for convenience.

St State Variable Formulation of Aircraft Equation for
Segment 4 of the Mission

The simplified set of equations (3.14 thru 3.21) that rep-
resent the model of aircraft dynamics for the cruising segment of the
mission (Segment 4) are given in Section 3.4. The model of aircraft
dynamics is put into state variable form as:

Xe =N cos Y €05 ¥ (5.6)

and the vector/matrix differential equation

>.<(t) F (x) X)) + G(x) U (5:7)

where X(t) is the 7-dimensional state vector defined by Equation 5.2,
and U(t) is the 3-dimensional control vector defined by

U,
u®m = Uy (5.8)

U ()

61




The matrix F(x) is the (7 by 7) dimensioned system matrix whose
elements are a function of the state vector, where

— —

f O O f !
1100 100 0O 755 |

0 g e - o, e " QR
00 B0 Qe i e 0 i
FOX) = P e
fGs "0 0 e 60l e B i
0 O i B BB ]
B 0.0, Dl E 60 0.1 D 1

and G(X) is the (7 by 3) - dimensioned control matrix whose elements
are a function of the state vector, where:

| 0 9,400 |
| |
0 1 0 1
0 0 93509
GE = 0 0 9,509 |
! i

0 (0] 953(x) , ;

i

0 0 0 |
- 0 0 0 |
i fi o)
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The non-zero elements of F(X) and G(X) are:

-6 2
R (8,041 % 10 ) (ALY (CLR)Y V
-6
fig = (8.041 x 10 7) (ALD) (CL1) V
% A AL
f17 1/ e
-4 sin¢
= 5 D B G
s (2589 x 10~ CL3) ——= W
=4 sin¢
f35 = (2.589 x 10 CL1) T
ol
f,, = (2.589 x 10) (CL2) cos ¢V
=
f45 = (2.589 x 10 ) (Cl-1) cos ¢
£ & 3 32.2 cos Y
47 e
Tl o
fey. = 04880 X 18 ) V
! =4 2 -5
’ fie = (480680 x 10 ) o V —(8.480 x 10y V
£ B L o228y
57 Zg
f65 = cos Ysin ¥
f75 = SR Y
~4
Sio- = ALY [(1.241 x 10 ) V + 0.2059] sin a
-3. 6.6288 ] sinasin¢
;‘ g [(3.997 X ATy s : ——
L -3 6.6288 ] :
943 = [(3.997 RE Q) s —v-—- sin a cos ¢
‘ —
- [(3.997 x 10'3) V + 6.6288| cos a




Figure 8 shows a block diagram of the structure of the
aircraft model used for Segment 4. Note that in the steady state flight
3 condition, that is on the reference trajectory, Equation 5.7 becomes:
3
._ ><R = F(XR) XR + G(XR) UR = 0 (5.9)
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Eie 2 Optimal Control Problem For Cruising

§.2.1 Statement of the Problem

The optimal control problem statement for Segment 4
of the mission is as follows: Given:

1, the state equation

>.<(t) = FCX) X)) + G(X) U) (5.10)

described in Section 5.1.2, with an arbitrary initial state vector X(0),
2, the reference state vector of Equation 5.3 and the

reference control vector of Equation 5.4 such that

X SR G =0 (5.11)

is satisfied along the reference trajectory, and

3, the performance index of Equation 5.5, repeated
for convenience,

o0
AT f [(XR-X(t))T A g = M
(o)
L U(t))T R U, = U] dt (5.12)

where it is assumed that R is a (8 x 3) positive definite symmetric
matrix of constants and Q is an (7 x 7) symmetric positive definite
matrix of constants whose values are chosen to yield optimal trajec-
tories which are the preferred aircraft trajectories, the p;ﬂoblem is

to find the feedback control law, U as a function of the state variables,
such that any initial state X(0) is transferred to the reference state
XRr and the performance index, J, of Equation 5.12 is minimized.

Note that the optimization problem defined by Equation
5.10 and 5.12 is similar to the standard linear tracking problem of
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optimal control theory (Bryson and Ho, 1967 or Athans and Falb, 1966).
The problem formulated here differs because the F and G matrices
elements are functions of the state variables. This is also analogous
to the classical compensatory tracking task used in laboratory studies
of manual control, where F and G constitute the so called '"plant
dyramics." Here the plant dynamics are non-linear and time varying,
again because of F and G being functions of the state variables.

S22 Approach to a Solution

There are several different approaches which can be taken
to solve this non-linear optimization problem. Applying Pontryagin's
maximum principle will yield a set of necessary conditions for the
solution to the optimization problem. However, these necessary con-
ditions would be in the form of a set of non-linear differential equations
which must be solved for given boundary conditions. Although this
approach is feasible for finding open-loop control (control as a function
of time), it is not practical for developing feedback control laws (control
as a function of state).

A second approach is to use the method of continuous
dynamic programming developed by Bellman which yields a sufficient
condition for the optimum. This condition is in the form of a partial
differential equation known as the Hamilton-Jacobi-Bellman equation.
In general, the Hamilton-Jacobi-Bellman equation cannot be easily
solved; however when it can, the control is determined as a function
of the state variables, i.e., feedback control. A detailed discussion
and derivation of Pontryagin's maximum principle and the Hamilton-
Jacobi-Bellman equation can be found in Sage (1968), Bryson and Ho
(1967), Athans and Falb (1966) and Anderson and Moore C1971).

The optimal control problem for the cruising segment
can be approximately solved using the Hamilton-Jacobi-Bellman equation.
However, the standard approach is modified so that this partial dif-
ferential equation need not be solved directly. This modified approach
has been successfully used on other types of optimal control problems
(Zeskind and Vimolranich, 1973).

5:2.3 Hamilton-Jacobi-Bellman Equation For Optimal Cruising
Problem

Equation 5.13 is the Hamilton-Jacobi-Bellman equation,
where H(CX, U, _aa%(. , t) is the Hamiltonian.

dJ AJ
ot
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It states that the partial derivative of the optimal performance index
with respect to time is equal to the negative of the Hamiltonian
evaluated along the optimal trajectory, that is, evaluated using the

minimizing value of U. The Hamiltonian for the problem considered
here is

H o= % [xg - x®] @ [xgq - X

=
+ % Uy - U® R (Ug - U®)

Sy
+ ( ax) [FOO Xt + Ge9 U]

Minimizing the Hamiltonian with respect to the control, the matrix
calculus allows us to obtain:

- L - e
- RusEEL e 60 e =8

Since by assumption R is positive definite, it has an inverse.
Therefore, the optimal control is given by:

u - S e dJ
s RO R e e B

Equation 5.16 is the control which minimizes the Hamiltonian, since

Note that Equation 5.16 gives the optimal feedback
control in terms of _dJ  and not in terms of J. This point is dis-
cussed later and is t@:key to the solution of the optimal control
problem.

Since the system given by Equation 5.10 and the Q and
R matrices of Equation 5.12 are time invariant, and since the
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optimization is for a process considered over an infinite duration, it
follows that the performance index will depend only upon the state
variables. This implies that

Gl e
. e 0 (5.18)

Substituting Equation 5.16 into Equation 5.14 and using Equation 5.18,
the Hamilton-Jacobi-Bellman equation for this problem becomes:

2
: vy e | dJ -1 T dJ_
b (X =X Q%G =X - % ( ) BRC B

X
3k i
dJ dJ =
+ <—a—><—) FX <+ (—B—X) G UR = 0 (5.19)

Note that the notational dependency of F and G on X, and that of X
on t has been dropped at this point for convenience. From here on
in the discussion, F is used instead of F(X), G instead of G(X) and
X instead of X(t).
1
Adding and substracting o) FECX) ><R in Equation 5.19,
and grouping terms, the Hamiltorn-Jacobi-Bellman equation becomes

o
: T dJ -1 T QaJ
% Xg =X QK =29 = % (_8X> GRS K
T T
dJ J
(--—ax) FOX = X3) +( gx) [F Xg + G Ul = 0 (5.20

Notice that Equation 5.20 is similar to the Hamilton-Jacobi-Bellman
equation for the standard linear regulator problem (Athans and Falb,
1966), except for the last term which involves [ F(X) XR + G(X) UR]'

5.2.4 An Approximate Solution to the Optimal Control Problem

Equation 5.20 is a non-linear first order partial dif-
ferential equation for the optimal performance index. If this equation
can be solved for J, as a function of X, a feedback control law can
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be obtained. However, from inspection of Equation 5.16 the optimal
feedback control law does not depend directly on J, but depends on
<k Therefore, it is the solution of 3J in terms of X which is
really of interest in finding a feedback c—c%‘ol law. From this point
of view, Equation 5.20 can be considered as a non-linear equation in
the unknown( oV )

X

From physical insight into the nature of the problem
and from inspection of the structure of Equation 5.20, assume that
the following approximate relationship holds

oJ ~
= 5 KeO e =) (5.21)

for values of X in the neighborhood of XR.

Equation 5.21 gives an approximation to QJ ) for
"reasonable" values of X(t), where K(X) is an (7 x 7) syffmetric
matrix whose elements are a function of the state variables. Sub-
stituting Equation 5.21 into Equation 5.20, the Hamilton-Jacobi-Bellman
equation can be written as:

Z(XR—X)T[Q+F'TK+KF—KGR_1 G K] (Xg = )

+ (X—XR)TK[FX + G U

g g = 9 (5.22)

Choose the matrix K(X), such that for every value of X, it is the
positive definite solution to the matrix equation:

BiF ErRE ko LG K n.0 (5.23)

Equation 5.23 is the steady state matrix Riccati equation (Anderson
and Moore, 1971), and is a function of X. Appendix C presents an
iterative method for solving this equation for each value of X,

A unique positive definite solution to Equation 5.23 exists
if the coefficient matrices of the system are controllable. Thus,

Cidoslc
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Equation 5.23 has a unique positive definite solution if the pair F(X(t)),
G(X(t)) is chosen such that the matrix

FOO GO -+ - .« . . FP00 609 ]

M = [G(X)

has rank 7 for all values of X in the range of interest. Wernli and
Cook (1975) contains a discussion of this type of equation.

Using Equation 5.23, Equation 5.22 reduces to
(X=X )T K (FX_+GU_) = 0 (5.24)
R R B ¢

If Equation 5.24 is approximately zero for the range of
values of X of interest in the problem, then Equation 5.21 gives a
good approximation for dJ . Notice that as X(t) approaches X_ the
approximation becomes bééer‘ and better, since [ F(X) Xr + G(>§ Ugl —* O
as X — XR'

If the range of X in the problem is restricted to values
for which Equation 5.24 is true, the approximate optimal feedback
control law is given by:

e T ou, - R—1GT(X) KOO (X)) = %) (5.25)

As X(t) approaches Xgr, the optimal control approaches
URr and Eqguation 5.25 becomes a better and better approximation to
the exact optimal feedback control law for the optimization problem
posed in Section 5.2.1.

5.2.5 Structure of the Closed-Loop System

Using the approximate optimal feedback control law of
Equation 5.25 results in the closed-loop system

>.<(t) = FO) X® + 6 Uy - R Tk xt) - Xg) (5.26)

T T . EovTow ——
XTI peR e 2 e s 1 2 o 0 3, 90 ? 3
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Adding and subtracting F(X) Xg to the right hand side of Equation 5,26
and rearranging the terms, the closed loop system reduces to

1

>.<(t) = + [F - GR™ G' K] () = Xg)

+ F(X) XR + GX) UR (5.27)

Equation 5.27 shows that the structure of the closed loop system is
such that the rate of change of the state variables is linearly related
to the state error [ X(t) - Xgl. Therefore, if the system is at the
reference state it will stay there. This implizs that the reference
trajectory for a cruising problem is an optimal solution to the problem
presented. This concurs with intuition, i.e., the mathematics have
led to no surprises for the relatively simple problem of maintaining

a cruise attitude. Figure 9 shows a block diagram of the closed-loop
system.

5.2,6 Stability of the Closed-Loop System

The stability of the closed-loop system is discussed in
this section. Again, if the mathematical derivations are to agree with
our intuition, we rationalize that the derived solution should prove to
yield stable results since we are examining the cruise phase which
intuitively should be steady and smooth. Liapunov's direct method is
applied to the system for values of X in the neighborhood of the refer-
ence state Xr. (Padulo and Arbib (1974) contains a discussion of
Liapunov's direct method, while Anderson and Moore, 1971 contains
an application to optimal feedback control problems.)

The reference state Xg is an equilibrium point of the

closed-loop system, since from Equation 5.27, X(t) = 0 when X(t) = XR.
Choose as a Liapunov function for the equilibrium point Xg

VOO = % DX - X1 KO DX - X ] 5.28)

which is positive definite since K(X) is the positive definite solution
of the algebraic Riccati equation. Differentiating V(X) with respect
to time and using Equation 5.27 for X(t), yields
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=

1

\}(><) = [X() - xR]T [KF - K GR™' & K] Xt - X

=
+X® = X)) K (F Xg + GUL)

v %O - X)) [—gt— K(><>] () = X (5.29)

For X in the neighborhood of Xg, the second term on the righthand
side of Equation 5.29 is approximately zero. The last term on the
righthand side of Equation 5.29 involves the time derivative of the
matrix K. The general element (i, j) of the K matrix derivative will
be of the form

T

5 ki) .

TG e i

Bkij(x)
ox

the elements of the F(X) and G(X) matrices do not change greatly for

the range of values of X of interest. Therefore, the time derivative

of V(X) can be approximated as

The partial derivatives [ ] will be small since the values of

1

v OO T [X - ><R]T [KF - K GR™ ot KIOX(D) = Xg)  (6.30)

Making use of the algebraic Riccati equation, Equation 5.30 can be
shown to be equivalent to

VX)) T - B (X - xR)T [QA + K cr™! GTKJ X(-Xg)  (5.31)

Since Q is assumed to be chosen to be positive definite, then V is
negative definite, and thus the closed-loop system is asymptotically
stable with respect to the reference state X_ for values of X(t) in the

neighborhood of Xg. =
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5.3 CPM For Cruising Segment of Aircraft Mission

The approximate optimal feedback control law found in
Section 5.2 can now be used with the results presented in Section 4
to find the CPM for Segment 4 of the aircraft mission. First, the
"cost-to-go" function is derived. Next the approximate CPM is
derived based on the approximate optimal control.

5.3.1 "Cost-to-Go'" Function, 6§ X(t)]

In Section 4 it was shown that the "cost-to-go" function
6*[X(t)] evaluated using optimal control satisfied the following equation:

d *[X(t)] + E[X®), U¥®)] = O (5.32)
dt
u*®

Since § is only a function of the state,

%
* o b
dé [;:(t)] = .%(_ X(t) (5.33)
U*o u*

Using Equations 5.33, 5.10, 5.12 and 5.25, Equation
5.32 for this example reduces to

—d—!—:g)tﬂl— + E XM, UX®] (5.34)
U*®

= gry 6 e F-6rR'e' 1

- L) - x-xp K| F - ) X = X

I
(o}

(F X5 + G UR)

* (R
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*
As an approximation to (a;)() choose

3” = ke (X - X (5.35)
X / R 2

Using the approximation of Equation 5.35, Equation 5.34 becomes
(X—X)TK[F'X e N e (- (5.36)
R R R

If the lef“t-hand side of Equation 5.36 is approximately zero then the

choice of _%. defined by Equation 5.35 is a good approximation.
Notice that Equation 5.36 is the same as Equation 5.24 and hence,
the comments for Equation 5.24 also apply to Equation 5.36.

5.8.2 CPM For General Cruising Problem

The continuous performance measure was developed in
Section 4 for a general class of problems. The CPM is given by
Equation 4.19 which for this specific problem can be written as:

X
$[xv, ) = (—%";) X ® + Ex®, uw]  5.37)
u(t)

since §* only depends on the state. Making use of Equatlon Bt for
X, Equation 5.5 for E [X(t), Ut)] and Equation 5.35 for 8" | the

CPM for this example is given by: X
3 T
slx®, U] = % g - Q[ =X
+ % (U —U)TR(U - U
PR R
=p X-X)TK(FX + GU_) . 5.38
( R R R (5+38)
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If the approximate optimal control given by Equation 5.25 is used in
Equation 5.38 the CPM is approximately equal to zero; since Equation
5.36 is approximately zero for the values of X of interest.

Assume that the operators present control action can
be written as the approximate optimal control plus a control error,
e(t), that is:

e = EE@) L+ fel) (5.39)

Using Equation 5.39 in Equation 5.38, the CPM can be written in
terms of the control error as:

sle®] = % eT(t) Re® + (X - xR)T K [FXR+GUR] (5.40)

' However, since it is assumed that Equation 5.36 holds for the value of
X considered,

sle®)) = % eT(t) Re(t) (5.41)

Note that the CPM given by Equation 5.41 depends only on the control
error.

5.4 Computer Simulation

In order to demonstrate the CPM technique developed in
the preceeding sections, a digital computer program was written to
solve the aircraft equations, optimal control law, auto-pilot control
law, and CPM for Segment 4 of the mission. The aircraft equations
used in this simulation are given in Section 5.1. The optimal control
law and CPM implemented are those developed in Sections 5.2 and
5.3 respectively. Auto-pilot equations were used to generate a control
vector U(t) that would fly the aircraft in a stable but non-optimal manner
in order to demonstrate the measurement capability of the CPM.

A FORTRAN digital computer program written to demon-
strate the CPM applied to Segment 4 of the mission is documented in
this section, Appendix B contains a more detailed description and a
listing of the program.
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5.4.1 Auto-pilot

The auto-pilot designed to correct initial aircraft errors
and bring the aircraft to the steady state flight conditions, is as
follows:

The control Uj(t) representing the longitudinal stick
position which controls the rate of change of angle of attack is pro-
portional to the altitude error Z,, the rate of change of altitude, Zg,
and the rate of change of the flight path angle, y. However the
altitude error was hard limited by:

. 10020, if (2. = Z (@D ) 100.0
¢ eR e

sz (0 = (ZeR = Ze(t)),

if —100,0'S (Z. - Z () <100,0
eR =

00,0, IR )~ 1080 (5.42)
eR e

where the reference altitude ZeR equals 18,000 feet for Segment 4.
The auto-pilot control Uy was expressed as follows:

U,(® = 0.001 AZ_ =~ 0.001 Z_(t) = 4.0 7(®) (5.43)

If a(t) > 0.2 and U (t) > O, then Uq(t) was redefined U, (t) = O.
Similarly, if a(t) < - 0.2 and U4(t) < 0, then U,(t) was again set
to zero. This limiting process keeps the aircraft model from pro-
ducing an excessive angle of attack.

The control Us(t) that represents lateral stick position
(to control the rate of change of roll angle ¢) is given by:

Uy(t) = 0.1 [¢R -y (t)] -2.2¥¢V® (5.44)

78

e T ST IR b L e T T

T




where 'PR is the reference heading, which for this pr‘oblecf;n is zero
radians. In order to limit aircraft roll angle (¢) to 40" or less,
Us(t) is set to zero if either ¢(t) > 0.69812 and Up(t) of Equation 5.44
is greater than zero or if ¢(t) < -0.69812 and Up(t) of Equation 5.44 is
less that zero.

The control Ug(t) that represents normalized percent
throttle is given by:

it
&)t = — 3 —
3® U500 f {O 001 (V(H) - V)
(e}

+ 0,120 V(t) dt (5.45)
where VR is the reference velocity which for Segment 4 is 708.876
feet/sec. (420 knots) and Ug(0) is the initial throttle setting. Since

Ug(t) is normalized percent throttle, the value given by Equation 5.45
must be between 0.0 and 1.0, thus

0.0 if U (t) < 0.0
= B i 0.00'€ < A
Us(t) US()1 0.0 _Ue(t)_1 0
9 )
1if U (®) > 1.0

This auto-pilot corrects for velocity, heading, and
altitude. It does not correct any error in the y-position of the air-
craft. f

5.4.2 FORTRAN Computer Program

A brief description of the FORTRAN computer program
15 given in this subsection. Appendix B contains a more detailed
discussion and documentation of this program. Figure 10 shows a
simplified flow chart of the computer program structure.
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In the initialization section of the program, variables
are defined, dimensioned and initialiized and the initial conditions,
reference conditions and diagonal elements of the Q and R matrices
are read. In the_second section, the elements of the F matrix and
G matrix are calculated for the present value of the state variables,
X. The defining relationship for the non-zero elements of these
matrices are given in Section 5.1.2.

Block 3 of coding implgments an iterative method of
computing for the present value of X, and the matrix K(X), which is the
solution to Equation 5.283. The matrices F(X) and G(X) calculated in
the previous section of the program are used in this section. Appendix
C contains a detailed discussion of an iterative technique for algebraic
steady state Riccati equation computations.

Once a numerical value for the elements of the matrix
K(X) has been found, the approximate optimal control law is calculated.
Equation 5.25 of Section 5.2 is implemented in the program. However,
since in the development of Section 5.2 no limits were placed on the
control variables, it was deemed appropriate to use the same limits
used in the auto-pilot.

Block 5 of the computer program implements the auto-
pilot equations discussed in Section 5.4.1. Values of the control
variables are calculated based on the present values of the aircraft
variables.,

Next, (Block 6) values of the auto-pilot control and the
optimal control are used to compute the CPM from Equation 5.41.
In the final section of the program, the aircraft variables are updated.
First, either the auto-pilot control or the approximate optimal control
is chosen to control the aircraft. This is done by logical comparison
based on the value of an input parameter that was read in the initialization
section of the program. Then the next value of the aircraft dynamic
variables is calculated. This is done by numerically integrating the
differential equations of the aircraft given in Section 3. Rectangular
numerical integrafion is used with a step size of 0.5 seconds. The
program then loops back and new values of the aircraft variables
are used to update F(X) and G(X). If, however, the aircraft has
flown for the predetermined amount of time, the program terminates
execution and stops.
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5.4.3 Example of Program Output

The output of the computer program is presented for a
typical run for purposes of documentation and demonstration. The
initial conditions chosen for the aircraft dynamic variables at the start
of Segment 4 of the mission are:

a (0) = 0.1 radians (5.7 degrees) 3
$(0) = 0.1 radians :
¥y(©O) = 0.1 radians (5.7 degrees)

y(©) = 0.1 radians

V(0) = 708.80 ft/sec.

Ye(O) = 0.0 ft.
z (0 = 17,000 ft.
X (0 = 0.0 ft.

Thus the aircraft model starts out 1,000 feet below the reference with
a misalignment of approximately 5.7 degrees in heading. The attitude
is pitched up and rolling slightly to the right. The initial velocity is
approximately that of the reference. The reference values of these
variables for a steady state flight condition in Segment 4 are given in
Section 5.1.1. The initial conditions chosen for the state variables are
in the neighborhood of the reference state variables. So that, the
approximate optimal control of Section 5.2.4 is applicable.

The Q and R matrix element values were chosen to give
the solution trajectories desired; but the exact relationship between Q
and R element values and the solution trajectory characteristics is not
known before the optimal solution is obtained. As an initial guess, the
values chosen are:

10 0 (0] 5
R = 0 10 0]
6] (0] 10
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The R matrix was chosen as the positive definite diagonal
matrix with the three diagonal elements all equal to 10. This was done
because it was felt that the error between the control (u) and reference
control U, should be weighed more heavily than the state errors as
weighted by the G matrix. The purpose for this choice was to try to
keep the optimal control values (U*) small. Also it was felt that one
control should be weighted the same as any other, that is there did
not seem to be any reason for unequal weights. Although one could
develop rational arguments for other weights, this issue was not explored.

The form of the Q matrix was chosen for the following
reasons. It was decided to weight the angle of attack (a) error the
heaviest to keep the aircraft model from excessive angles of attack.
Excessive angles of attack can lead to instability, so this variable is
of some concern. The assigned weight reflects the seriousness or
gravity of allowing the aircraft to assume high angles of attack. Roll
x angle, heading_1angle, flight path angle, and velocity were all weighted

: the same, (10 ') but a factor of ten less than angle of attack. The y
position and altitude were both weighed by 10"4, since it was felt that
these states could be corrected slowly over the segment. Note they
are weighted 1/1000 times the weighting of roll angle, heading angle,
flight path angle and velocity; and 1/10,000 times the weighting of
angle of attack.
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The off-diagonal terms in the Q matrix were included
to introduce a weighted coupling of heading error and y-position error
into the roll angle in order to allow the aircraft to roll and to correct
for heading and y position error. Again, relatively small weights were
used reflecting moderate preference rather than grave concern.

The Q matrix is positive definite and symmetric. This
choice of Q and R matrices is only a preliminary one used for demon- :
stration of the computational technique. In order to determine the i
suitable values of the elements of Q and R, the simulation would have
to be run with the optimal control "flying" the aircraft model. From
inspection of the resulting trajectories, the Q and R matrices could
then be modified and the simulation repeated with these new values.
This process is repeated until the elements of @ and R are those which
give the desired solution trajectories. However, due to lack of time,
only the trajectory with the initial condition and values of Q and R given
above was run to demonstrate the program.

The simulation was run for 30 seconds of flight time on
an IBM 370-155 digital computer. In the present version of the computer
program the execution time is greater than real time. Several sug-
gestions are presented in Section 6 to remedy this situation to explore
the feasibility of calculating the CPM in real time.

Figure 11 is a sample of the printout for one iteration,
0.5 seconds of flight time, through the program. Figures 12 through
19 show plots of the aircraft variables resulting from the auto-pilot
control. Figure 20 is a plot of the CPM versus flight time for this
non-optimal, auto-pilot control. Summary measures, mean and variance
are given on the figure.

The mean was calculated using the time weighted average:

" L N-1

Pecie B 00
where

L = N A ¢t
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and

0.5 secs., ;

I

At

with

N=i
S ¢ () = 133.2281
i=0

The variance was calculated from the expectation formula:

A2

o

e [@ - 4>(i>>2]

e [0 ?]- [emf

Il

The expectation of the squared scores was again calculated
using the time weighted average:

N-1
e At e
e [tay] =2 o]
2 =0
with L[ @))% = as6.1372,
the variance is = 5,919 - 4,935 = 0.9839

Alternately, one might use the statistical formulas that

follow:
2 N-1
A RO,
- i=0 133.2881
J Moo ~ = = = 2.29

’
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: and i

NNZ_1 [¢(i)]2 - [Z—: ¢(i)]2

AR i=0 1=0
. N (N-1)
2
_ 60(855.1372) - (133.2881)
r = 3540
= - 1,001

In either case, the variability in performance as reflected
by 22 is relatively small. No attempt was made to explore higher
order moments. These would reflect the degree of assymmetry in the
measure, i.e., whether performance was skewed to the higher or lower
scores, or was symmetrical about the mean.
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Inspecting Figures 12 through 19, the autopilot rapidly
corrects the initial altitude error, bringing the aircraft model to 18,000
feet in approximately 15 seconds. However, in Figure 18 the altitude
correction oscillates slightly about 18,000 feet reference. The auto-
pilot rolls the aircraft model over slowly to correct the initial heading
error to zero as seen in Figure 14. The autopilot's attempt to correct
the initial misalignment in angle of attack and flight path angle is
highly oscillatory as can be seen in Figures 13 and 16. The autopilot
is attempting to bring 7y to zero radians and a to 0.0594 radians but
undershoots and then overshoots these reference values. The throttle
control is slowly varying the velocity as seen in Figure 17. Over the
30 seconds of this simulation, the aircraft velocity was about 15 feet/
second below the reference. As seen in Figure 18, the autopilot does
not correct the y-position error of the aircraft model. This is because
it was not designed to do so. While this is a "poor" autopilot design,
it provided a good check on the reasonableness of the computer output
and assured a non-optimal performance for evaluation via the CPM, as
reflected in Figure 20.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This investigation of continuous performance measurement
(CPM) (and continuous performance evaluation) shows that summary measures
developed from mission segment specifications, can be converted into
an instantaneous performance measure. This can be accomplished with
optimal control theory by either linearizing the plant (aircraft) equations
as is most frequently done in optimal control problems, or solving, at
least by approximation, the optimal control for the non-linear aircraft
equations. The latter approach was explored here.

Selection of the Q weighting matrix which is part of the
summary performance measure can be accomplished in at least three
ways. One way is to ask experienced pilots or other personnel familiar
with the mission performance to select numerical values reflecting the
relative importance of each flight factor. Another way is to pick Q
matrix values with a simple form, say with 1's on the diagonal and O's
elsewhere, and subsequently solve for the corresponding optimal control
law and aircraft trajectories. The third approach (really a variation of
either of the two previous approaches) would be to reset the values of
the Q matrix after examining the resulting "optimal" aircraft trajectories.
Systematic trial and error adjustments to the @ matrix entries would
then produce a variety of trajectories for examination. If one had pre-
defined notions of what the desired trajectory should look like, the Q
values might be approximated by iteratively adjusting the Q entries in
directions known (from the preliminary trial-and-error runs) to produce
"more desirable" trajectories.

There was not sufficient time available on the contract to
thoroughly investigate the relationship between the selected Q matrix
and the resultant optimal solution trajectories so that little can be con-
cluded about that relationship. It would be of interest to identify optimal
response characteristics with Q and R matrix element values. An
additional area of work which was not investigated extensively is the
region of validity of the approximate optimal control solution. It should
be noted, however, that the approximation improves as the aircraft
position approaches the reference flight path and becomes the exact
solution when the aircraft is on the reference flight path. Thus, the
region where the approximation holds to a given degree is the space
immediately surrounding the reference flight path. The reason the con-
trol law developed becomes only approximately optimal when the aircraft
is off the reference path is that the aircraft dynamics change as a
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function of the deviation from the reference path. If the aircraft
dynamics were constant the solution would not be approximate. Thus,
the preferred way to pick the aircraft dynamic (F and G) matrices and
corresponding state variables would be to render matrices F and G

as constant as possible as a function of the deviation from the reference
flight path. However, available time did not allow a thorough investi-
gation of the benefits to be obtained choosing various alternative structures
of the aircraft equations. Also, the alternate approach to the problem
would have been to linearize the representation of the aircraft model and
proceed with an exact solution for the linear representation. The results
could be subjected to sensitivity analysis to determine how the lineari-
~ation affected the results. Further comparisons might lead to insights
as to whether linearization of a non-linear phenomenon was a good or
bad compromise versus the need to approximate (rather than determine
exactly) the solution for the non-linear model. These are rather formi-
dable issues and were not addressed here. They should be explored in
future work.

A major problem in implementing the continuous performance
measure on-line us ng the non-linear aircraft model is the computational
load requires excessive computer time. With the approach developed to
the point described in this report, the computational load is extreme and
may prevent real time solution. However, it should be recognized that
the computation described here solves for both the approximate optimal
control law and the CPM. But the optimal control law can be precomputed
and stored, since only the CPM need be implemented on-line. For
example, the function K, which provides the feedback control law gains,
can be represented by a pre-computed function of the state variables
which might be evaluated more rapidly on-line to implement the desired
CPM.

6.2 Recommendations

In order to realize the benefits available from using a con-
tinuous performance measure to evaluate manual flight control performance,
the following steps are recommended:

1. The computation time required to compute the CPM
should be reduced so that it can be computed in real
time. This might be accomplished by approximating
K as a function of the state variables and/or im-
proving the computational efficiency of the program.
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2. The error weighting of the CPM must be evaluated
by examination of the continuous scoring of flights
by human subjects. Note that the trajectory eval-
uvation involving adjustment of the Q matrix is to
obtain satisfactory optimal aircraft trajectories -
the trajectories obtained when the aircraft motion
is governed by the optimal control law. These
trajectories were referred to as preferred trajec-
tories and serve as continuous criteria for the
CPM. As indicated above, the weighting of
deviations from the continuous criteria - deviations
that occur when the aircraft motion is governed
by a human operator - must be evaluated.

As shown by the section on sensitivity analysis, the control
deviation weighting is governed by the R matrix. Consequently, the
credibility of the CPM rests on the values one employs in the objective
function. Once again, the performance score rests upon proper selec-—
tion of criteria. The goals have to be defined and agreed upon if
performance measurement is to be meaningful. CPM does not resolve
the problem of choosing the goals, but it does provide a performance
index which is inextricably linked to the quantification of objectives,
however one wishes to accomplish that task.
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APPENDIX A

r ' AERODYNAMIC EQUATIONS FROM

SUBROUTINE ADCOMP
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AREA
CD

€L

DENE
DT

FEBA

FLIR

GCA

GClI

HF/SSB

MASS
MAXG

MING

MT

GLOSSARY

Area of aircraft in square feet - set to 202 (t’t)2
Coefficient of drag

Coefficient of lift

Drag in lbs.

Air density

Frame time in seconds (or fractions of a second)

Forward Edge of Battle Area, a hypothetical boundary line
separating safe and potentially hostile territories

Forward Looking Infra Red, a sensor often used at night
when visible light is not available; a very sensitive
"heat" related detection and display system

Ground Controlled Approach

Ground Controlled Intercept, radar operator '"vectors" an
aircraft to some desired location by telling the pilot

what altitude, heading and airspeed should be attained

High Frequency/Single Side Band - a type of radio
transmitter and receiver

Scaling factor in a equation
Lift
Mach of aircraft
Weight of aircraft divided by G - SLUGS
Set to +15
Aircraft scaling factors

Set to -5

Maximum thrust - a function of altitude, wvelocity
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PRES Air Pressure

Q Dynamic pressure
8sSs Speed of sound in ft/sec
TA Terrain Avoidance - altering course to avoid terrain when

altitude to be maintained is lower than terrain features

TACAN Tactical Air Navigation, a navigation aid originally
developed by and for the military but now used in commer- j
L cial aviation as well :
|
TEMP Air temperature in degrees |
TF Terrain Following - staying close to the ground, diving
and climbing but maintaining same heading (inh contrast
to TA)
UHF/ADF Ultra High Frequency/Automatic Direction Finding, a

radio based navigation aid

\4 Velocity of aircraft ft/sec
V Rate of change of velocity in ft/sec
VFR Visual Flight Rules (in contrast to IFR - instrument 1

flight rules)

A% Weight of aircraft in lbs. - set to 17,000 lbs.
Xe X position of aircraft - feet
>.<e Rate of change in X coordinate - ft/sec
! Yo Y position of aircraft - feet
t .":'e Rate of change in " coordinate - ft/sec }
‘ Zg Altitude in feet
Z.e Rate of change in Z, coordinate in ft/sec




|

ko

-

S °* 6 .

Attack angle in radians

Rate of change of attack angle in radians/sec
Flight path angle - radians

Rate of change of flight path angle in radians/sec

Input in radians/sec,controls the rate of change of attack
(proportional to fore and aft movements of the stick)

Input in radians/sec,controls the rate of change of roll
angle (proportional to lateral or side-to-side movements
of the stick)

Input as normalized percentage of throttle
(proportional to throttle position)

Heading angle - radians
Rate of change of heading angle in radians/sec
Roll angle in radians

Rate of change of roll angle in radians/sec
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This appendix presents a summary of the model of
flight dynamics that was used in this contract. The computer program
ADCOMP, which provides the coding for the flight dynamics, was
supplied to Omnemii by AMRL/HEB.

The following aerodynamic equations were extracted from
the FORTRAN subroutine ADCOMP, ALL DIGITAL COCKPIT DISPLAY
SYSTEM, and represent those equations which determine the simulated
flight characteristics for the display presented to subjects in the real-
time simulation. The subroutine computes all flight values from initial
values and from three analog inputs representing control stick positions
and throttle setting executed by the subject. The ADCOMP subroutine
is tied to other subroutines which monitor subject performance (read
and record the analog inputs) and generate the displays themselves.
These other routines are not described in this appendix.

The following set of equations is a listing in order of
execution of the computation steps involved in the subroutine ADCOMP.




1.0 ANGLE OF ATTACK, «

The angle of attack, alpha, is computed first. The
following steps are executed in computing a.

1'

2s

I

Compute GLOAD = W

Compute the derivative of a« based on GLOAD and K4.

When GLOAD 2 1, set

& o By = AGLOAD - 1) TA%G-
When GLOAD < 1 set

* K

a = ,“-1+(GLOAD—1) m

Compute present value of a from the previous value of
a and the present value of a as:

a = o +(.!DT

where DT is the time increment. This constitutes
a numerical rectangular integration.

Test the value of a«, and if a <-.2, set a = -0.2.
This limits « at -.2 radians.
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2.0 ROLL ANGLE, ¢

Next, the program computes a new value for the roll
angle, ¢. The following steps are executed.

1. Set the negative derivative of roll angle to
é = U2

where Uy is a control variable which is proportional
to stick position.

2., Compute the present value of ¢ from the previous
value of B and the present value of g using rectan-
gular numerical integration. When the absolute
value of the flight path angle, v, is greater than or
equal to-% radians, then

Blse B ¢ BT &

When the absolute value of v is less than -’2'— radians,

set

8 = B 4 BODT

Now convert the 8 values to positive roll angle:

$ = —3p

f




3.0

COMPUTATION OF ENVIRONMENTAL PARAMETERS 3

The ADCOMP subroutine next computes the environmental
parameters for the aircraft model in the following steps:

1.

The parameters associated with the atmosphere are
calculated based on the altitude of the aircraft, Zg.

When Z. > 35,300 ft., set

Temperature:
TEMP = -67.0
Pressure: ;
i - (Ze - 35,300.) i
PRES = 489.456 exp < 50930
Density:
PRES
RS 673946.

When Z, < 35,300 ft., set

TEMP = 59 - (.00357 Zg)
o, = 1 - (000857 Ze
518.4
PRES = 2116 D,°-256
DENS = .002378 D,4:256

The speed of sound is calculated as:
.5

ss = PRES 1.406 ft.

DENS sec.

and the MACH number as

\4
M, = SS where V is the velocity of the aircraft
in ft/sec.
The dynamic pressure is calculated as:

Q = 0.5 DENS (V)2

A-8




CALCULATION OF FORCES

The forces acting on the aircraft are calculated as

follows:

The coefficient of LIFT is first calculated by:

Gl = o+ 2.6«

Then the coefficient of DRAG by:
2

CD = 0.08 + .27(CL)

The DRAG is computed from

D = (Q) (CD) (AREA)

After the first computed value of CL is used to

compute CD and D, CL and a are modified according
to the value of «, as follows:

When a 2 .4 and « ¢ .6, set

CL = 1 =2, (a ~ .4)

When a« 2 .6, set

Ch = Dand e = .6 #fV ¢ 100, set « = 0O,

The thrust is computed as follows:

N 1, set V = 1.0

Compute maximum thrust, MT, depending on whether
the after-burner is on or off. When after-burner is
on, set

MY =

When after-burner is off, set

MT

2[( (2327. + .172Z¢ - .0000031(Z)%) M, + (11500. - .26Z¢)]

2

A-~9

((2827. + .172Z¢ - .0000031(Ze)?) M1 +(11500.2- 25Z4)



Next compute thrust from:
T = By MT
where M3 is a control input proportional to throttle.

The component of applied force normal to the flight
path (Lift) is:

L = ( (Q (CL) (AREA) ) + T sin(a)

A-10




E 5.0 VELOCITY, V

The derivative of the aircraft velocity is computed
according to:

.

v T cos (a) = D = W sin (Y)

MASS

where MASS is in slugs. The present value of V is next computed
from the previous value of V and the present value of VvV as:

WU RN O
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HEADING ANGLE ¥ AND FLIGHT PATH ANGLE Y

The present value of heading angle ¥ and flight path angle
Y are computed in the following steps:

1. The derivatives of ¥ and Y are computed from the
equations

g L sin (¢)

MASS cos (v) V

L. cos (¢) = W cos (¥)
(MASS) V

The present value of ¥ and Y are computed from the
previous values of ¥ and Y the present values of ¢
and 7, but with limits in the following way:

Set Y, = y+7v DT

If the absolute value of 7V is less than - radians,
set the present values of ¥ and ¥ equal to

v v+ ¢ DT

Y 71

If the absolute value of ‘11 is greater than or equal
to & radians, set

¥ = ¢ + DT % x

and set
AR S T 1 71( 0
or

g =~ Vg iF 7 20
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Vi dS, POSITION OF THE AIRCRAKFT

The position of the aircraft with respect to the earth is
calculated next. In each step below, the derivative is calculated first
and then the present value is found from rectangular numerical inte-
gration. The steps are as follows:

1. X-position of aircraft

X
(=

V cos (Y) cos (¥)

Il

and Xg oG ik KPT

2. Y-position of aircraft

: .
N/

3 ‘e

V cos (7) sin (¥)
and Yo = Yg + YDT

3. Z-position of aircraft (altitude)

Ze

V sin (7)

T —

and Zg = Zg + Z DT

A listing of the ADCOMP subroutine follows.

B A-13

R e e




ADCOMP_SUBROUTINE

/ G LEVEL 20 MAIN

OO0 ONONNCOOO0A0NCO0O0O0NO00

|

|
|

o000 000cO000

A-14

DETE = 74275 16/11/33
00000060
Bl : S00C007T
THIS SUBROUTINE COMPUTES ALL OF THE MATH USED 06092080
T GENERATE NEW XY COORGINATE POSITIONS OF ALL 90000090
THE CISPLAYS THAT ARE GENEKATED DURING A SIMULATED 800cCe9l
MISSION . PSSR NS L s o et SOPER060D)
00000110
00000122
FQUATION OF MOTION TAKEN FROM 000001320
DAOMASH AIRPLANE AERODYNAMICS 0CQ000140
00000150
ANGLES WP ] il e SR 00000160
06000170
Pl = RALL ANGLE (BANX) JC00018C
THETA = PITCH ANGLE 000C0190
ALPHA = ANGLE OF ATTACK 6C02G200
GAk A = FLISHT PATH ANGLE 90009210
PS1 = HIAGING ANGLE S i T L 00000220
00020230
FORCES i = 00000240
00000250
THRUST - LBS i : £ 00000269
DRAG - LBS 0000027¢C
SROEETAR RS e e el e R 2.7 rial 20000280
WEIGHT — LBS 0000G29C
_ MASS - SLUGS s ik R e s 1 860006300
G = 232.2 FT/SEC2 00000310
- - - ST R el gt ke et - TG H0EE 2D
RATE 00000320
LS s R S L B Ry 00000340
VELDT - RATZ OF CHANGE OF VELOCITY 00000350
PSIDT - RATE OF CHANGE OF PSI g L ey R 00000360
GAMDT - RATS OF CHANGE CF GAMMA 30000370
_ DELX — RATE OF CHANGE OF X POSITION s s el S P I e
DELY — RATE OF CHANGE OF Y POSITION 00000390
__DELZ = RATE OF CHANGE OF Z POSITIGN _ 0002040C_
0000C41C
____PASITION o e LR B ST e 00000420
00060430
X - PLANAR POSITION - SRS i e e r A B0 Ok O
Y - PLANAR POSITION 00000450
7 = ALTITUDE BB L i U TR . 0CJ06460
06000470
ATMOSPHERE i 0CQOGLRG
90006490
TEMP — AIR TEMPERATURE 4 00000S460
PRES - AIR PRESSURE 00000510
DENS - AIR DENSITY 60020520




LEVEL 20

OO OO0 ONOOODOCONOD N0 OOO0

MACH

AERQ

cL =
€8 =

BANKN
BANKNR
BANKO
CALD
caLy
FRTIME
HC TR X
HCTRY
HEADCK
S HEADC
HDRATE
ISPEED
NAVG
INCT
INCNT
IXCT
ITCNT
STHEAD
SIZET
SIZEN
TBANKN
TARG
TR GHDN
XAC
XT

oy

YAC T

T M:n Wi il onih 0w I|f|| WO i e oo

MATN

— OF . ATRCRAFT

Q - DYNAMIC PRESSURE

EIST COEEFLCTENT
DRAG COFFFICIENT

NEW RANK ANGLE

LD RANK ANGLE

FRAMc TIME
HORIZON CENTER
HORTIZON CENTER
HEADING CHANGE
HAZACING CHANGE
HEACING KATE
SPEED OF AIRCRAFT

—— X

fRUMBZR OF TARGETS

SIZc OF TEWS DISPLAY

NEW TRIG HEADING
X OF AIRCRAFT

X OF TARGET

Y CF AIRCRAFT

Y OF TARGET

~ SUBROUTINE ~ADCOMP

REAL

‘COMMCN INCT, ITCT, INALIN(6), SPEED,SPEEDK,ISPD

MAXG4,MING

COMMON ICTLPy ITCNT, INCNT

T COMMON
COMMON
COMMCN

COMMCN EPMYL, RPMYZ, RENM,
COMMCN  CX(5)
COMMCN COMPXy COMPY

" SOUND - SP CF SOUND (FT/SEC)

NUMBZR 0OF TARGETS TO CISPLAY
START HEADING OF AIRCRAFT

SIZE UF NAVIGATIGNAL DISPLAY

TANGENT OF NEW BANK ANGLE IN RADIANS
AREA TARGET DATA IS STORED

RPM2

DATE = 74275

MEW rANK ANGLE IN RADIANS

.

NORADIANS

AREA NAVIGATIUNAL DATA IS STORED
NUMBER OF NZVIGATICNAL PCINTS
NUMBZR CF NAVIGATINNAL POINTS TG DISPLAY

(TFOR1)
(TFOR2)
(TFOR1)
(TFOR2)

16/11/33

00000530
00000540
0C000550
00000560
00000570
00000580
05000590
06000600
00000610
00000620
00000630
00000640
00030650
00000660
03009670
00360680
6G00CKS0
00000700
00000710
00000720
00000730
00000740
© 000006750
50000760

T 0000077C¢

000C0789

~ 00000790

00000800
00000810
00000820

- ocoocs3n

00000840
00000850
£0000860
00000870
00000880

0C000900

T L NURRUYED

00000920
~ 00000930
00000940

IDTX(LO3) yICTY(1CD),IDTYPE(YOD), IDTCHA(100)
IDNX(ZJ), IDNY (22) 4 INCHAR(2C) , INCTYP(20)
XRAGYRAXLAZYLAZITIMER,LMPDXy LMPDY,y RMPDX, RMPOY

IA=15

00000550
00000560
~ 0G0009T70
6G0C0980
0000099C
ocoo1gQ00

0000C890

4

4

1




» LEVEL 20 ADCUMP DATE = 74275 16/11/23
CCMMON RPMY2, RPMY& cco0i0le
COMMON XX(12), YY(12) 00001020
COMMON  TAS(&)s ISIAS(S) 06001030
CCMAMON KALTy KVV, KGAM, KMACH, KGLOD C0001C40
CUMMDN  KALF, KXAC, KYAC 00001050
COMMON MACHXY(5) 4MACHTX(5), TVRAST, IVOUM 00001060
COMMOY  DIGINL(1D) 06C0C10T72
CONMON 1SawT8 00001080
CUMMCN TALHXY(6), TALTXH(5), [ALTXY(6), IALTXT(5} 20001090
COMMON TACCY(A), TACCTX(5), IAUAY(&)s TADATX(S) 2G001100
CUMMON  ISwTC2, ISWTC3, ISWTC4, ISWTCS, ISWTCé, ISWTCT 0C00111C
COMALN ALPHA, cFTa, THETA, TRGHON, VELOT, UELZ, GLOAD 39001120
COMMON ALT, GDSPD, IAFBEN 00001130
COMMON IPRNTA(50) N0GO1L140
COHMON  IMUTSW, NCSW, ISTART, IRKESET, ICNCAR 00001159
COMMCN  ICNTABIS5S52), IMSEQ(R02 000011 60
COFMOH-TX(100) o TY(YDD) ,TCN(LZD ) TGF(1CD) 3 ITYPE(L30)y ICHAR(1D0) 20501170

- COMMON NX(22)4 MNY(20), SLOP(BO), NCTY(2D) - =~ - & =~ 496301180
COMMCN / CARD/ISPFED, FRTIME, XACy YAC, STHEAC, SIZET, SIZEN, 02001150

1 CALV, CALD, BETRMXy ALFARX, SCALEM . 50001260
COMMGH / SANK / BANKQ, BANKN 20001210
CUMMON /RXUYV/ X21, U21, Y21, V21, XN21,UN21, YN21, VN21 00001220
COMMON /RASTXY/ X249 X1y U244 Uly Y2, Yie V2, V1 20001230

__ COMHON /RASNXY/ XN2y XN, UN2, UNis YN2, YN1, VN2, VN1 00001247
00001250

_ CGMMON / LYONS / PHIy GAMMA, PSI, G, 1 00001260
1 SINPHI, COSPHI, SINGAM, COSGAM, APX, APY, Z 000012748
ks i () ot 00001282
COMMON /ARTHOR/ R, PI, PI2, CONST, CONST2 00001290
Y : : 35 s __0cdc130¢C

32001310

_ REAL NX, NY, NGNs NOF, KALF e R R folh: 00001320
REAL LIFT /17000./ 00001230
Sy ¥ Y A b DArRe s o 06001340
00001350

i SIKCER 8 & IMGEQ. . o o sul ol 0 00001360
INTEGZR * 2 XikAy YPA, XLAy YLAJINCTYP,NCTY c000137¢C
INTEGER * 2 1AS, IVRAST, 1VDUM g 00001380
INTEGER * 2 MACHXY - ¢000139C
INTEGER * 2 DIGIN: \ i 00001400
INTEGER * 2 LMPDXy LMPLY, RMPDXy RMPOY cCocL410

_ _INTEGFR * 2 RPMYl, RPMY2, PPM1, RPM2,RPMY3, RPMY4  0000142C
INTEGER * 2 10TX, 10TY, IDTYPE, IOTCHA, IONX, IONY, INCKAR, INALIN G5GO0C1430
INTEGER * 2 CMPX, COMPY, CX Yk R 00002440
INTEGER * 2 TALTXY, TALEXY B 000014590
INTEGER ®* 2 [ACCY, TAQAY 0000146C
INTEGER * 2 ISWTC2y ISWTC3, ISWTC4, ISWTCS, ISWTCE, ISWTCT7 00001470
INTEGER * 4 HNDX, GNDXy ANDX 3 S A AL 9 0001480
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T

INTEGER HI/1450/, LOZ3CQ/

INTEGER HIURZ2SI./y LLUKZ2350/

INTEGER * 2 1HAF(2), DGP

INTEGER & 2 CHAR(Z), BLANK/® o/

FQUIVAL NCF  (ICNCAR, CHAR(Y))

DATA I8CL1/)/, IBC2/0/

PATA  LCASFGID/

LOGICAL * 1 Li(2)

EQUIVAL NCE  (TFULLy THAF(YI))y (THAF(2), LI(1))

OIMENSTON  CDEL(S)y SDEL(S)s DELTAL(S)

DIMzNSTON  ITMACH(21)

DIMENSION  [SPOS(Z2Y)

DIMENSION  TALTLI(.35)

DIMENSION TALT(22)
DIMENSIUN STATEMENT FOR ACCELEROMETER DATA

DIMINSION  [ACCL22)
DIMENSION STATEMENT FOR ANGLF OF ATTACK

DIMENSION T2£J4(15)

CATA DRAG/D./y THRUST/Cu/

DATA ISPOS /' 0 *,¢ 100%,* 200%,* 300',' 400% * 500%',* 600°,
¢ TGUY,t BLD%,Y GOGY,91000%,°1100°,°1200%,%1300%,%1400%,
15500, 916000, 1 TCC,*1E00%,°1900%,°2020%/

I

DATA IMACH/® 2.0%,% 0.1%,% 0.2% % 0.3%,' 0.4% ' 0.5%"' 0.6%,

b C 0.T% % CuB®9® 0.9%9* 10,0 1.1%,% 1.2, 1,39,

2 ¢ 104.1. 105". 306.0' 1.7'0. ).05." ’.09." 2.0'/
DATA KRPM/O/y MRPM/O/ 4 TFLIP/Y/ s INCR/ZL/ <
OATA RADIUS/44.0/

DATA KIJUNT/1/
DATA CLO/2.1/,CLSLU/2.5/y AREA/2D24/9 WEIGHT/17000./

EVEL 29 ADCOIMP DATE = 74275  16/11/33

00001499
26001500
00001510
00001520
N0061530
00001540
00001550
00001560
00001570
00001580
30001590
00001600
00301610
00001620
00001630
20521640
90001650
35001660
00601670
00001680
90001650
200017090
06601710
00001720
00001730
00001740
06001750
00301760
00001770
00001780
00901790
00001800
00601810

00001820
00001830

00001840

DATA  VEL/1J00./
DATA 1BET/1/

DATA MAXG/15.0/
DATA MING/=5.9/

FOLLIWING DATA IS FOP, GENERATING A TAPE
TYPZ DISPLAY REPPESENTING AN ALTIMETER
WITH A SCALE IN INCREMENTS OF 109

CATA JALT/® 200%* 1C0%,* O ¢,

A-17

00001850
0CGO18¢€0
00001870
00001880

- 00001890

G0001900
9C001910
00001920
¢G0C1930
00001940

- 00001950

00001960
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Lo Mo T s W 1 5

C

(e}

aliaNeNeNaNe]

o

20 aDpCompP

CATA STATEMENT FOR ANGLE OF ATTACK

Lo ONTA - TAUATZY 45 Yot 40 %470 35 S4° 30 94?0 25 %9 °

Y L T TR BT T e

*% COMPUTE VOLTS FROM ANALCG INPUT **x

 FOLLOWING DATA STATEMENT IS FGR USE IN SCALING

THE XY COCR)IINATES OF ARTIFICIAL HORIZON
DATA AHM6 /-6.23/

VOLTS
voLTsS

INALIN(X)
VOLTS %* 5.0 / 2276€.

DLETE = 74275

20 *y* 15 ¢,

16/11/23

0C00L9TC
0000C1980
JGecCleso
00062920¢
000C221¢0
ococzc2o
0C0G2C30
24002040
0dgcaose
00350236C
000223570

_0GOC208C

O 4% =5 9,9-30 9,915 €,0-20 ,'-25 v/

00CCzas¢C
oo00z100
0gcoe2tlc
coog212¢
000021 3¢
00002140 _
0coc2lse
0000z16C
60g0217C
gegn2tec
00002190
0Cd0z2¢0
0cec2210
00002220
00002230
0000224C
0000z25¢C

000602260

* ¢ 9300, Y BU2', ' TOO*y" 602, S00*,* 400',' 200°,
1 ¢ 2000, 100GY," G 9,% 900%," 8CIU',* T720'%,* 6120%,* S0C*,
2 ¢ 4004, 300%," 2350',* 10G*'y* O 7/
FOLLOWING DATA IS FOR GENFRATING A TAPE
TYPE DISPLAY RePRESENTING AN ALTIMETER
WITH A SCALE IN INCREMENTS GF 10050
ORTA  FALTEA® 120%,% 119%¢% 118%:% 11705 116G%* 1259, 1114N,
* f 1138, % 132,09 111%* 110, 1099,% 108%,* Y07%,' 166%,
2 CI080, 8 1940,0 3D3 V.8 1020 1619, 100%.,% 999, 989,
? B 974yY Qelgt g58,0 G4Y," GamE Qpi.t G1%,* 90%, i’
3 £ 59N, paE. U 8Tt B6t,Y BSLEC 840, g N g2,
% ©OBiL, 0 300,08 TQu 0 T 770 0 TRV 50,0 a0
S LIBSRL 2 ol T2 0 T1% % T0%? 698, &89,V 674" 66,
€ TOB30,0 450,01 530,01 (20,0 g]e e GGV .Y 58,0 580
7 $USTE, T Sety 558, 5485 5300 528t SLtuY S50%,
men S 408,80 480,06 4700 460,80 4508 440,80 430,88 498,
9 L LR R S 395 B8V S 3Ny 35y RGN,
Aot 33t TRAE . IHEGE GO i RQUSe LR8N P TY8  PENy s
8 W25, ¥ LAty N T AN, 0 P2y Y 2R NS TRyt g, LB,y
G O %Y 164, 15 qQVyt 1308 1288 11 %yT 0%
D [0S - T TR TN TS (R W e ST SRR e T (e e
L E 010,00 %t o1 8,0 22 8,8 23 9,0 4 1,0 o5 0,0 6 0,
F -7 V.0 g e 0 g 0 0o 1 01) e e_]1)p € 0_]3 ¢ 014 0,
G t-15 v/ g _
ACCELEROMETER DOATA STATEMENT » o Oy e
s gBRTA EREC Y 35 Yyt 34 St s Sy 2 %S 0l Yyt A0 SyY 978,
3 R S R T T T S P i v A TR T TN .o
o) L B I I - T T I A O R R I e S 4

30062270
0200228C
00002250
00602300
00002310
00002326
00002330
06002340
06002350
00002360
0G0G2370
2062380
000023¢C
06002400
00C0z41¢
00aC242¢
2209243C
0020z44C




W

LEVEL 20 ADCCMP

C *%* COMPUTE ROLL RATE *x
C

cc ROLRAT = ( VOLTS - CALV ) * CALD

€6 BANKN = BANKU + ( ROLRAT # FRTIME
cc IF ( BANKN .GT. 180.0) GO TN 49

CC  IF ( BANKN «GT. 75.0 ) GO T3 50

e GO TO 69 i

CC 42 IF ( BANKN «LT. 285. ) GN TO 45
cC GO TG 60

CC 45 BANKN = 285,

(el GG TO 62

CC S0 BANKN = 75.0

CC &) CONTINUE

gﬁ*t** COMPUTE  ardondx

EC BANKN = AM30( BANKN,369.)
Ec IF ( BANKN ) 61,723,790

CC &1 BANKN = BANKN + 360.
CC 70 CONTINUE

C

cC BANKO = BANKN
C
Chaxdokskrsk COMPUTE ARTIFICIAL HORIZON  *¥¥fopkkokxxk
c
GO TO ( 802, 82 ),y KUUNT
83 KOUNT = 2 oo
G
Bl ) O e e o
DEL =1 e
DELTA(I) = DEL * CONST2
CDEL(I) = COS(DELTA(I)) T
_ 81 SDEL(I) = SIN(DELTA(I))
C
e deGEGNEINNE o oo b e
C COMPUTE ALPHA 3 A I TR i

DT = FRTIME
- ALFARB = INALIN(4)

IF ( ABS(ALFARB) .« LT.YQ00.) ALFARS

" ALFARS = (ALFARB/16384.0) *ALFARX
GLOAD = LIFT/WEIGHT »
IF ( GLIAD.LT.140) GO TO 1015

ALFAR3 =ALFAR3- (GLOAD-1.0) *ALFARX/MAXG

GO TO 19I1¢

1015 ALFARS =ALFAZZ24+ (GLIAD-'.2) XALFARX/(MING*5.9)

1215 CONTINUS
ALPHA = ALPHA + ALFARS * 0T

g g~ o -
T AR g Pl 4,0 ‘w

i6/11/33

50002450
00002460
0C002470
oe002480
00002490
0C002506
0occesie
00002520
930C25390
000682540
00002550
Q200256C
2002570
00002580
26402590
00002600
2€002610C
00002620
C0002630
3C002640
00002650
52002660
3C€002670
3C002680

00002690

00002700
00002710
00002720
0CC02730
00002740

00002750

9GC02760
00002770
00002780
000027S0
0002800

K
R 2

00002820

90002830

00002840

- 06002850

00002860

00002870

00002889
00602890
0000z9C0

159002910
00002920

R i TR

et o b alantntions sttt whiis

00002810

B



i

LEVEL 29 ADCOMP DATE = 74275 16/11/33

c 00002630
IF (ALPHA oLTe -3.2) ALPHA=-0.2 00002940
RHO = GAMMA 00002956
FBET=7. 00002960
IF ( IBET.LT. ©) FBET=1. 50062970
BETARS = INALIN(1) o e 2 s 00002980
IF ( ABS(RETARE) . LT.1d0.) BETARB  =5.0 20002990
BETAR3 = ( BETARS/32768.0) #RETRMX 20003000
BETA = SETA + BETARE * LT + FBET #* PI 00003010
c 20053920
c 30003034
D = F4O0 % CUNST : ) 3009347
A = SIN(BETA) 30023950
B = CIS(8ETA) 56303366
X =T « A 20003076
Y = oD % B 20502280
XX(i) = X = 13,0 * B 00602056
: YY(1) = Y - 19,5 * A 2 . e e e TeleR Y o
XX(2) =X + 18,0 * B 00003110
CYY(2) = Y + 18,0 % A 000063120
c C00U3130
ik Tl _ 3 A A 20003140
XX(3) = X 00002150

L ERELENa ) = ¥ e S S S SR i _ C0003165
c 00003170
K = 3 _ , SR A e G G0GO318C
XXU4) = X =629 % ( B * CDEL(K) - A * SDEL(K)) 2000219¢C
: CYY(4) = Y -6.0 % ( A % CDEL(K) + B * SDEL(K)) L 30003200
c 06002210
AALEDodS T Wil Kty > _0000322C
c 05003230
C XX(T) = ((XX(I) - AHM6) * 1400. / 12. ) + 1375. o 00002240
c 006062250
CYYUI) = ((YY(I) - AHM6) * 1400. / 12.) + 2350, o o G0C03260
c 00003270
% CuUNTINGE > 00003220
c £0093290
E _ R T R ST L 00663300
C *% COMPUTE HEAD RATE *= 00003310
TG e riages ) L ; 7 i e 00003320
MASS = WEIGHT / G 00003330
_ PHI = —HETA S P R e R SR e e SO G
SINPHI = SIN (PHI) 06062350
COSPHI = CCGS (PHI) e i CC003260
THETA = RHO 00002370
C COMPUTE ATMISPHERS d / 90003380
ALT = 2 GONg33e0
IF (Z 4GF. 35320) GO TC 1019 03002402

A-20




4
»
G LEVFL 20 ADCUMP DATE = 74275 16/131/33
TEMP = 59,0 - 2.00357 * ALT 00002410 | 3
i DUML = 1.0 - $.70357 / S18.4 * ALT 00003420
; PRES = 2114,0 * DUMY %% 5,256 00003430 1
! DENS = D,022376 * DUMY x* 4,254 00003440
; G TO 1020 0000245¢C
L1918 TEMP = -67.) e ¥ 00003440
> DUMZ = (ALY = 353.0.0) 7 20930, = T 0000247C 1
| PRES = 48%.4556 % LXP (-0UM2) B v 000C34R0
DENS = PRES / AT2G946,.0 3 00003490 |
1720 SOUND = SQET (PRES * Y.426 / DENS) Y 00002500
MACH = VEL / SOUND #100. e 00003510 3
/ Q = Ceo3 * JENS # VEL ** 2 : : ; 3 00003520
¢ COMPUTE FORCES = f{ 6C003530 1
CL = SLD + cLSLR * ALPHA ) ‘ 00003540 °
CD=D.0340.27 = CL*%¥2 S 0C0035S¢C ¢
DRAG=Q*C I¥ AR CA ’ . 0000356C
IF(ALPHALLT.D.4) GG TC 1038 E - 0C002576C 1
CL=ta) ~(ALPHA=D (&) %20 _ A i /4 C(0035€8C
IF(ALPHALLT.0.6) GO TO 1038 ¥ cop025se
CLI=19 o 00603600
LLPHA = 0.6 B e 00003610 &
y IF(VEL.LTL130.0) ALPHA=D : = =~ 00002620 1
1938 CONTINUE 2 00002620 |
e EEEVEL ST OISOl VERSYSGE e v e e s ol OODEB 66D
FALT = Y1500 ~ 0.25 % ALT Lo 000032650
FMACH= 2327.9 + 0.172 * ALT -~ D.0000031*ALT*ALT 37 A 60003660 |
THROT = INALIN(Z) ~~ 000026706
THROT = ( THROT + CALV ) / 32768. * CALD — CC003680
TMAX = FMACH* FLCAT(MACH)/10Q. + FALT : T 00002690
TMAX = TMAX%2.0 G e et L L G0003T00
3 TF(ISWT3.EQ.0) TMAX=TMAX/4.0 R e e e e 0D0C271C 1
THYUST = THROT* THAX : G000372¢C
LIFT = Q % CL * AREA A R 00003730
LIST = LIFT + THRUST % SIN (ALPHA) 0000374C
THRUST = THRUST * CUS (ALPHA) - Ry i 000037505
C DYNAMICS 250037606
SRR e S R R L e T e e T . T 0000377C ]
: VELDT = (THRUST - DRAG - WEIGHT * SINGAM) / MASS 0000378C
W ‘ PSILT = (LIFT * SINPHI) / (MV * COSGAM) S T e T 7 0c00379n
GAMOT = (LIFT % CRSPHI - WEIGHT * COSGAM) / MV 00002800
i VEL = VELDT = DT + VEL ; 3 iz TR 0000381C
| PSE = PSIDE ® DF 4 PSE i I ik X 00003820
! CANBA = CEMGT « DT ¢ GARME . . . - oo ii . oo L 6u0e3sat |
{ IF (IBET.LT.C) IBET=1 0000384C
IF ( ABS(GA*MA) « LT o PI2 ) GO TO 1040 e e T G 5. ¥
1857 = -18ET GO0038EC !
P51 = PSI+ PI R T ooce2s7c j
1F ( GAMMA , LT « 0. ) GO TO 1035 000C28¢87 |

{ A=-21




|

XAC = APX / 682,

A-22

LEVEL 20 ADCOMP DATE = 74275 16/11/323
GAMMA = Pl - GAMMA 00002890
60 TO 1640 660032500
1035 GAMMA = —P1 — GAMMA 006032910
1040 CONTINUE : 000032920
SINGAM = SIN (GAMMA) 00003930
COSGAM = COS (GAMMA) _ e s N DDODZSED
DELX = VEL * COSGAM * COS (PSI) * DT 00003550
CELY = VEL * COSGAM # SIN (PSI) * DT 00003560
BELZ = VEL *SINGAM * DT 000032970
APX = APX + DELX 00003980
APY = APY + DELY gCCC299C
> 7 =1+ 0DELL i k SRS 00004000
ALT = 2Z 00004216
VVEL = DELZ / OT 00064620
XVEL = DELX 7 OT 20604030
YVEL = DELY / OT £000£040
GDSPD=VEL %3.592 06004556
____KGLGD = LIFT / WEIGHT * 130. R L e L T e
TRGHON = PSI 30004070
GAMMAD = GAMMA * 57.296 1 060604080
C 06004099
C #% COMPUTE COSINE OF TRGHDN *% 1 AT St 06004100
C 00004110
e NCTREHD S O TREHBNIY Y (0 e T AL 00004120
c 00004130
C *% COMPUTE SINE OF TRGHDN %% SRR i = A T C (6 0 G
C 00004150
: STRGHD = SIN ( TRGHDN ) . : sk e ST O S ABBBRIED
c 00004170
C__COMPUTE COMPASS POINT *%x% == Q0004185
[ 2000410
217 = 90. / 57.2956 i o I . Ny A 71001
TRIG2 = 2. % ZZ - TRGHON 00004210
COMPX = (((39.9 * COSITRIG2 - 100. / 57.2956)) - UNL) * XN21 /  0006&220
1 UN2I) + XN1 00004220
__COMPY = (((39.9 * SIN (TRIG2 - 100. / 57.2956)) - VN1) * YN21 /  0000424C
UNZ1) + YN 00004250
c : : : il e UGl
DG 90 LPP = 1,7,2 00004275
CX(LPP) = (((RADIUS * COS(TRIG2)) - UNL) * XN21 / UN21) + XN1 -56.0000428C
CX{LPP+1) = (((RADIUS * SIN(TRIG2)) = VN1) * YN21 / VN2L) + YN1 00004290
.90 TRIG2 = AMOD((TRIG2 - ZZ), 6.2832) 5 _ ©00043200
c 00004310
c P 00004320
[ 20004230
C #*x GET NEW POSITION OF XAC AND YAC ; 6000434
C 00604350

03035436C



LEVEL 29 ADCONP NATE = 74275
]
i YLC = APY / 6(GB80.
c
lc
i K =1
ITCNT = 2
£ :
n CTLECP = TCTLP
f IF (ITCT .EQ. 3) GO TQ 475
| DO 302 I= 1,1TCT
? IF ( CTLOGP .GT. TOF(L)) GO TG 300
IF ( CTLOGP oLT. TGN(I)) GO TO 475
c
Cx% CAMPUTE A UT AND VT AND CHECK IF *xk
C** THEY ART WITHIN SIZET LIMITS #ox
LT = TX(I) - XAC
VT = TY(I) - YAC
c
1F (ABS(UT) = SIZET) 100, 120, 300
C

142 IF (A3S(VT) - SIZET) 11, 110, 200
110 CONTINUE
Cx% GENEZATSE A DX AND OY AND CONVERT =%
C*% T3J RASTSER UNITS %
(7
' XS = (=1.) * VT % CTRGHD + UT # STRGHC
¥S = VT * STRGHC + UT # CTRGHD
c
IF (A3S(XS) - SIZET)125,125,300
c
125 1F (ABS(YS) - SIZET)135,135,300

1325 CCNTINUS

c :
[ C¥* CUNVFRT TJ) RASTER UNITS
[ €
IDTX(K) = (( XS = Ul) * x21 /U2l ) + x1~
IOTY(K) = (( ¥YS = V1) * Yzl / V21 ) + Y1
¢ v R R A s AU A B ML D RE SRR
f ICTYPE(K) = ITYPE(I)
ICTCHA(K) = ICHAR(I) %
K = K+ 1

[TCNT = ITCNT + 1
320 CONTINUS
c

CCE¥ COMPUTE X AND Y NAVIGATICNAL POSITIONS #*x
L3

C
475 CONTINUE
N =1
L=

A=-23

16/11/33

00004270
20004380
22004399
00004409
00004410
07004420

00004440
05004450
0NGG4460
20004470
02004483
(204496
03004500
970045310
00004520
2nC04539
aN604540
Q0204550
923C4560
0CN04570
09004580
32904599
JT054€6C0

20004620
00004620
00004640
0h0Q4650
00004660

20004680
20004690
00334700
00004710
00004720
T 00004730
200G4740
20004750
00004760
30004770
02004780
00004750
00004800
06004210
52084829
00004830
02004840

£0004430

03324610

00004675

dn it

comen b ey -




LEVEL 20 ADCOMP DATE = 74275 16/11/33
INCNT = 0 60004850
____IF (INCT .E%. C) GO TO 560 : 1A 26004860
C 0G004870
.500 CONTINUE i 00004880
c 000064890
C** CUMPUTE A UN AND VN AND CHECK IF %% A o ot R R = [ IO 086900 .
C**x THEY ARE WITHIN SIZEN LIMITS *x 00004910
C : 06004920
HN = NXIN) - XAC . 00004930
VN = NY(N) - YAC ) 00004940
c 00004550
. _1F (ABS(UN) —~ SIZEN) S20, 520, 550 00004960
C 00004S 70
523 IF (A3S(VN) =~ SIZEN) 53¢, 530, 550 , : 0004980
C : 00004990
€39 CONTINUE : ; ) 230005990
Cxx GENERATE 4 ONX AND CNY AND CONVERT %% Q0005910
EEXATOSRASTER SUNERS . el tar e o e el S S ns e Sl R T e e D0U0 5020
C 00265030
XNS = (-1.) * UN * CTRGHD + UN * STRGHD 00005040
YNS = VN % STRGHD + UN # CTRGHD 00005050
____IF (ABS(XNS) — SIZEN ) 535, 535y 550 00005060
c 00065070
535 IF (ABS(YNS) - SIZEN ) £40, 540y 550 RS e 00RES0808
c 02005050
S0 CORRTNUE - ot =iy = GRS SRR - e TR B s ey T BB b1 00
c 00005110
C*% CONVERT T RASTER UNITS *x AR¥aas o e e TR H006B51.20.
C 000051 20
. IDNX(L) = (( XNS - UN1)#* XN21 / UN21 ) + XNi = ° 0C005140
IDNY(L) = (( YNS — VN1)* YN21 / VN21 ) + YNi1 00005150
NGB SRR = eTY ey F /0 o e R T s e e e B0 005)60
Lt=1L+1 00005170
_ INCNT = INCNT + 1 R e e e ey e L S ABGNE TR0
859 CCNTINUE 00005190
o N L e A €0005200
¢ 00005210
3 Cex CHECK IF (N) IS LESS THAN INCT ( INCT = NO. OF NAVG. PTS ) ** = G000522C
o (= 00005230
! oL BEE N SEES CENGTE ). 60 VO 500" - oo ¢ o ol e L TIRRIO S 240
E c 00005250
| € e % s e o e skl s s kol ook o o o oo o ok e st oK ook ek ok ok ok e o e A e o oK ek o o ok koK Kol Kk 00005260
¥ SET UP THE REACTION TESTS IF THERE AKE ANY TO SET UP  *  — QC0G5270
G 3% 3 3 dewe s o e ook o ok ok o R SO e ok o o e o s o e st ol o ok o o ok ok ok ook ok ok ok 00005280
569 CONTINUE 3 Y. e 7 B Che e i 000C5290
IF (IBCl .EQ. i) GO TG €69 06305360
IF (IHOTSW «EQ. O) 60 TC 800 i e e . — Oes 310
NEWTIM = ICTLP A e St e 000980
( e

i A-24




. SN L3 i APk e o B 52 i i T S 5 e Lo o e
E
P
1
r~ | §
r LEVEL 20 ADCCMP DATE = 74275 16711733 ]
‘ - 2 il . < ! ]
IBC! = ! . 3000 y
thes 25 e 1
c 00005350
; C DECODE THF MANEUVER NO. S0005360
i C C0C05370
___DGP = DIGINL(3) -~ 1024 _ L T C0005380
M= o 6000539
| IF (CGP «FQ. 2) GO TO 520 > ococ«sl.og 2
ey ) 00005410 %
= =2 Q\/ £00C5420
- S 00005430
DO ST0 L = 1,49 L& “, 00005440
IE (D5P EQ. J) GC TO 5&0 T : S 03065450
J=J*2 & 00005460 -
M= M+ ey 0C065470
570 CUNTINUZ £t 00005480
M= g — 00005490
e 1o 429 vy A T, N 0C005500 !
c e, ; 00005510
' SBC M = M x 19 E , ™ 00005520 |
! DGP = DIGINT (4) .y 00005530 }
~ IF (OGP .GE. 1024) DGP = DGP — 1024 e : 00005540 |
N =C ——— 00C05550 ¢
Lo E IC (UG JEC. GU GO RO EO0 .. . - f M .- - DOBOSSGD 1
i N =1 00005570  §
. Tad=g 3 i 1 Ty r . 00005530 {
(5 é;a 7 06005590 !
| D0 599 L = 1,9 e 00005600 |
FTT7"0F wee JEG. 3) <o 10 seN T Ry T T deigsaw |
J=J%2 T e e, e it s~ s ay e I HOB05620, . ]
S e R TR L e g2 % ¥ BEs 00505630
599 CONTINUE 00005640 |
W=0 ¢ i3 SRR, S D AT o) 01 S i
GC TO 620 00005660 |
& c o ) AT T i i e v (s OO B RE e
£ 600 M = ¥ + N 00005680 |
B R e T P A L T o T S e L 00005690 i
: 620 IF (M .NE. 0) GO TO 630 00065700
! TRGIE i ; ; AT s Creeeen s NS TRy |
€ FALL THRU HERE FOR INVALID MANFUVER NC. AND IGNORE THIS MANEUVER 00605720 |
' c ; ' i 00005730 !
€25 [BCL = O 20005740 |
60 16 829 T R A D AT R T BN W P, L
[ C 00005760
€30 CONTINUE i .2k 00005770
IF (IMSZQ(M) .5Q. O) GO TO €25 o ks DA, 00005780
ISEINC = IMSEQ(M) 009C575¢
ISEQCT = JCNTAB(ISEGNC) L : BRI DGOC58GC
|
|
A-25




CFALL THRU HERE T CHSCK FOF A NEW CHARACTER TO BE DISPLAYED.

ADCOMP

1

IF (I8C2 .€4. 1) GO TO 899

LEVEL 20
IPTR = ISEQNC +
c
C
649
(o
e
c

e Xulq}

e Nale]

acooo

660

673

_ ICARFG.

IFULL = ICNTAB(IPTR)

IGOTIM = [HAF(1) + NEWTIM

IF (ICTLP «LT. IGOTIM) GG TC 80O
NCSw = 1

ICARFG = 1

IEMD = [CTLP + S5O

CHAR (1) = [HAF(2)

G TO 879

IF (THCTSW +EQ.
1eCx = 9

IRESET = 3}
CHAR () =
ISTART

3LANK

=00
S AR

GO TO 809

IF (ICARFG <EQ.

IF (ISTART .EQ.

IF (ICTLP .LT.

CHAR (1) = BLANK

__ISTART = 0

689

690

ICARFG = O
IRESET = 1
ISEQCT = ISEQCT
IF (ISEQCT .GT.
18€2 = 1

GO TC 800

IPTR = IPTR + 1
18cz = 9

GO TO 640

1) GO TG 679

0) GO TG 640
n) GO TO 689
1END) GO TO 800

" FALL THRU HEKE IF SUBJECT FAILED TOQ

TSET UP NEXT CHARACTER IN THE MEMORY

Sl

0) GO TO 650 _

Travides

"RESPOND TTO A CHARACTER.

DATE

A-26

= 74275

AR A A P i T k.

16/11/33

00005810
02005820
000C583C
0C005840
20005852

J00C5860

00005870
02005880
00005850
00005900
2065910
0000592¢C
00005530
37005640
00005¢50
J3005560
20005970
000C5980
QGOCSSSO
020060C0
30006010
05006020C
00006030

00606040

00006050
00606060
20006027C
000060€0
00006909C

_000C612C

00006110
00006120
22006120
0C0Ce140
00006150
000061 6GC

"CoGO61TC

0000e€18C
C220€150
00006200
0900¢21C
000ne2:2¢
CcoTe22C
Qeoce240
Q2006250
60CCe260
§3C06270
200¢Ce220

|
|
|




LEVEL 20 ADCOMP DATE = 74275 16/131./33

C C060E290
C - : 000063C0
807 CGNTINUE 20006210
€ CHECK 1F CATEGORY 3 SWITCH IS ON . , : 00006320
€ IF SWITCH IS 0N THAN COMPUTE DATA 00056330
[ _ NECESSARY TOU GENERATE DISPLAY : B : o 80006240
S 00006350
IF ( ISWTC3 +EQ. O «AND. ISWTC2 .EQ. O ) GO TO 850 :EN.. 6CCOE36C
c <:l~//oocnea7c
SFSWTC3 = 9 >/ sacoeass
ISWTC2 = 0 ; { ) 6000622C
CRPMi=  THROT=130. e GCO064C0
T RPMZ= RPMY E IS AR R L Y P4 3060641 ¢
RPMY1 = RPMi * 650 / 160 + 850 6 «f 000%es2C
RPMYZ = RPM2 * 6£5) / 107 + 850 3 e 4 QC00€430
C _ e 0000£440
RPMY2Z = RPMiL = 700 / 100 + 450 y o C¢000€e45C
_RPMY4 = RPM2 % 700 / 100 + 450 i ey 00006460

c gnR e oy T 00OC6sTT
C RESCALE MACH VALUES TC RASTER UNITS %% NN 06006480
€ i P S 00006490
c : arch n 20026500
IR S s T ; : G o W it 0C00651C
BSONCONIFENUES 1 (o (Bl 00 Tefed Th Sl ie R e Y e, LSO 2 00
MACHXY(1) = ¢ N 0000653
M =1 : ey - 00006540
RASH = 3820.0 * VEL / SCUND + 2925. &5 30056550
e IRASM = RASM _ B i T bbb 0000656¢
C y ; 36C06576
2 RO O TN =) ARty ad o s TG L s Y o i S Doéoesat
R g i St T 00006550
IF ( IRASM .GT. HIUR .GR. IRASM .LT. LOUR ) GO TO 860 00006600
€ rirps : ; T 3 3 s R A 5 00C06£12
MACHTX(M) = IMACH(N) 0000662C
T MACHXY(M#1) = IRASM : gy e g e T Y e e 00006630
MACHXY(1) = MACHXY(l) + 1 00006640

R T T T T T e o L B IR L S T T o e g o3 o Y2 /9 74 2
(= 00006560
860 IRASM = IRASM - 383 : i T 00006670
C 00006680
670 CONTINUE A R g T TR 02006690
€ ey S E T e o _____0000670G
7909 CONTINUE ' i 3 R ST TR 300G6T1 7
TAS(1) = O rei) j ; 09906729
T ’ j 20006730
SPEEDK = GDSPD ° 00066740
RAST = SPEEDK * 2,87 + 7925, : 00006750
IRAS = RAST Pl 0006752

A=-27

et AE TS I RL L ST St S




G

LEVEL 22 ADCOMP OLTE = 74275 16/11/33

00006770
= DG 910 I = 1,2} 000CET85
C 0006790
IF (IRAS .GTe HIUF 4OR. IRAS .LT. LOUR) GO TO 9235 20006802
C 0300681¢
ISIAS(K) = 1SPDS(I) i 02006820
IAS(K+1) = IRAS 0006830
IAS(1) = TAS(}) + 1 00CG6840
K =K+ 1 20006850
€ : 00006660
905 IRAS = IRAS - 287 00066870
N 2 : E 5 : e 30006889
910 CCNTINUE C0506ESC
5 00030690G
€ Reok g ok skaok ool ol ok ok ek xesle ok e s ok sk Aok ok o dolkokoR o koo 4 ok ek Rk ok ok Rk ok Aok kkkxk 30006910
c COMPUTE Y FO% VERTICAL VELOCITY AND CONVERT TO RASTER UNITS  #%  0000692¢C
C ke ook ok s o v sk o ok 4 xeok o o o e e ook sk ook ook ik Kokl ok ok ok ekt kv okt k%% 00006930
C k2l G AR ed S i S ¥ ~ 0C0C6540
VRAST = VVEL = 13.8 + 2925. 00606950
IVOUM = VVEL * .6 00006960
IVRAST = VRAST 03006970
SN oo N 00C0CE98C
IF (IVRAST .GT. 3285 ) GO TO 925 200906950

St S e i L e ke e ) pl ] L ety ek e OGDOTUN0 .
IF (IVRAST .LT. 2465 ) GO T9 $30 280007010
C X : : 00607220
GO TO 959 G000703G
925 IVRAST = 32135 ! 2o 00007040
GO TO 950 0CC07050
B A SR B ) P oo T ol el T S A et o P VR P S I L 16T P
|~ 930 TVRAST = 2465 60007070
C S ] e 2 i 00007C80
550 CONTINUE 69007295
_ KMACH = TMAX/10. - RN 3 o 7 v phBeTiog
KALT = ALT 00007110
L KALE = DALE = R g 00097120
KVV = ALPHA*1820/P1 00C07130C
KGAM = GAMMA * 57,3 g 3  ©0000T714G
KGAM = (THRUST-DRAG)/10. k 05007150
1SPD = GDSPD o 00007160
KXAC = XAC 00607170
o KRG = VARG e R e i e R T T S 00007180
(" TR P . u000TY90
C. 06607200
c 02007219
G PESCALE ATLIMETER Y VALUES T RASTER UNITS FGR 300C SCALE 03007220
c 30007230
IALTXY(L) = D 20GN7249
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LEVEL 20 ADCUMP CATE = 74275 16/11/33

IE CCABSEALT) oliTe YooV IALT =11 % 09007250 |
EiE g : Y 0lG07260 |
¢ 05607270 |
(o2 27255 = 230 * 121 - 575 0C007280 |
C 121 REPRESENTS THE NUMBER OF ENTRIES : CC007290 1
C _ TO ENTRY NUMBER D « 230 ¢2907300 J
C  REPRFESENTS 232 RASTER UNITS BETWEEN ' ' ! cCs07210 ;
(3 EACH ENTRY M THE DISPLAY . 00007320 |
C 575 1S THE NUMBEP CF RASTER UNITS TO THE on007330 |
€ CENTER CF THO DISPLAY . THE DISPLAY G00GT340 |
& IS 1150 RASTER UNITS LONC IN THE Y COQROD. GGGCT350
d i 9 : 0007360
e CALT SGTe 120000« A = 5120000% G0007379
IF (ALT +LT. —1500Ce) ALT = -15000. 00607380
RALT = ={ALT 7 Y000. ) = 239, + 27255, 256G7396
IALTA = RALT / 230.0 00007400
c 30007410
C 3507, REPRESLNTS THE HIGHEST RASTER ) 03007420
(2 UNLT USED IN THE CISPLAY . THE Y COORD." = R e S 00007430
g - GOSS FROM 2350 RU TG 3500 RU ( 1150 RU,S ) 05007440
o = "~ 00097450
DIFF = RALT - ( IALTA * 230 ) + 3590, 00007460
JNDX = 1ALTA + 1 © 06007470
§ e DILEE = aTE B GTS Ser e R e o0 ey 00800580
€ ; N T (4 T ~ 00007490
pEEIs0 § =155 006267500
oy ; e z i T e e e RGORTS LD
CTALTXT(J) = IALTI(INDX) ; T 0000752¢C
TIALTXY(J+1) = DIFF i g G TE e 5 Des 00007530
_IF (TIALTXY(J+1) .LT. LCUR ) GO TO 1151 SRR Y e - 03007540
DIFF = DIFF = 230. T R © 00007550
TALTXY(1) = TALTXY(1) + 1 : 00007560
JNDX = JUNDX + 1 APy e g T e OIS WEY
IF ( JUNDX .GT. 136 ) GO TO 1151 00007580
1150 CONTINUE : SR e ) T e NG S 90
1151 CONTINUE 00007600
S e e B e W e S =y e e M o L G i G T AR Pt < 7117 01 1. o IR
C 20207620
>~ J c e N 3 e - ruy ™ e = o r X 3 =, e ;) " YN S o 00007630
( G RESCALE ALTIMETER Y VALUES TO RASTER UNITS FOR 100 SCALE 00007640
- R : Fet T TN TR £ £ 2 ¢ (5
IALHXY(1) = 0 30007660
] T FE ( ABSTALTY <CY¥s Te) ALY = %o RO T A PR R T A 7 O o
! G 00007680
; IDUML = ALT / 1500, E =T RS 0O00T769C
j ALT105 = ALT = 1C%%. * FLCAT ( 1DUML )) 0007700 ¢
; ALTLCD = ALTIC) / 140 PR . 02007710
c A, DR, 00007720 |
4
, l [
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LEVEL 20 ADCCMP DATE = 74275 16/11/33
C 00007730
C 24315 = 230 = 13 - 575 : 00007740
C 12 REPRESENTS THE NUMBER UF ENTRIES 02007750
5 TO SNTRY CONTAINING THE 2ND ZERO . : 060007760
C 232 REPRESENTS 230 RASTER UNITS BETWEEN 0GN0TT70
C EACH ZNTRY ON THE DISPLAY . 2 o O Wi o ae00TT80
c 575 IS THE NUMAER OF RASTER UNITS TO THE 00007790
C CENTER NF THE DISPLAY o THE 2ISPLAY ; : 0C0CT80O0
o IS 1152 RASTEX UNITS LONG IN THE Y COORD. 0COCT8IC
C : 00007820 :
RALTH = =ALTLCD & 222, + 2415, 00007839 4
IALTH = RALTH / 230.0 T = e Dty 0007840
(o 20007850
€ 25C0. RIPEESENTS THE HIGHEST RASTER _ 00057860
c UNIT USED IN THE CISPLAY o THE Y CO0DRD. 20007870
o GRES FROM 2365 RU TO 35:.0 KU ( 1152 RUSS ) . 000CTRRD
(o 02007890
OIFFH = RALTH - ( IALTH * 230 ) + 3530, MR T o s L IGOBGYO0G -1
HNDX = TALTH + 1 00NC7S10
 DIFFH = DIFFH - 229.0 : ; M 25007920
C ¢C007930 |
0piiZso J = 1,5 e E i ) Ly 00007940 |
(5 00007950 |
SEUTROTYHESY = DALTERNDXE "0 05 Sl | T ee T ey e Bl D i g00eTee0. o
IALHXY(J+1) = DIFFH 00007970 |
C o , o . ) s S g Co067980
4 IF (TALHXY(J+1) +LT. LCUR ) GO TQ 1251 €0007590 !
, it o i AR 2 o 00008000 !
E DIFFH = DIFFH - 230, GCCreelo ,
LR NEAE T Y ALV S e e T T e e e e L S RRGOEGRD
HNDX = HNDX + 1 ocooso3sn !
1259 CONTINUS Sy L : h: 00008040 |
1251 CONTINUE 00008050
o i 1 £5008060 j
C 06C08070
G e e e S A R b SRR R e e e BSOS
€ COMPUTE Y FOR ACCELERCMETER ( G-LCAD ) 20008090 1
i C  AND CCNVERT TO RASTER UNITS cCon8100 !
¢ ococelic |
4 ! _ RGLUAD = KGLOD s 00008120 3
‘ IACCY(1) = 2 00008130 !
{ ______If ( ABS( RGLJIAD ) oLTe 0.01) RGLOAD = ,00 0008149
{ c 00908150
C : . CC00BL60
C 31C8% = 230 % 16 - 575 30038 70
C 16 REORESENTS THE NUMBER OF ENTRIES C00CBI 8C
¢ TG TNTRY CONTAINING THE ZERG « SUCR1ISD
C 220 %EPRESFANTS 230 RASTER UNITS BETWEEN Faes el LR CoeNE200
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LEVEL 22 ADCOMP DATE = 74275 16/11/33

C EACH ENTRY ON THE DISPLAY 390CE210
€ 575 1S THE NUMBER OF RASTER UNITS TG THE CCO0E220
C CENTER OF THE DISPLAY . THE DISPLAY 000CP230
c 1S 1150 RASTER UNITS LONG IN THE Y COORD. 0COCE240
c 400C8250
_ RGLOD = =( RGLOAD / 100. ) * 23D0. + 3105 : d i ONCNEZ260
IACLL = RGLOD / 220.0 £ CI0CE27C |
c 0CGCE28G |
€ 2500, REPRESENTS THE HIGHEST RASTER GCOGE2SH |
o UNIT USED IN THE DISPLAY o THE Y COORGC. 05208303 |
c GODES FROM 2353 RU T9 3500 RU ( 1150 RU,S ) 20C0821¢0 q
€ 000CE%2)
; DIFFG = RGLJD - ( IACCL * 230 ) + 3570, ; oeocessn
GNDX = LACCL w3 : 22028340
DIFFG = DIFFG = 223.0 ] 20065352
C 223CE260
po 1353 = 1,5 2200€37¢ |
C P 0C3081380
TIACCTX(J) = IACC(GNSX) 2C 208350
CTACCY(J+1) = DIFFG 02208400
C 030C8410
IF ( IACCY(J#1) .LT. LCUR ) GO TO 1351 Z0CCR420
, c 07002430
E A MBS E G S DI ERG 2B O e e e ! C000844C
‘ IACCY(21) = TACCY(Y) + 1 000C8450
GNDX = GNDX + 1 g A L : 06058460
E 135) CCONTINUE NN ~ G00N0E4T0
: 1351 CONTINUE ey : L — 02CC5480
c : e : .y T 000085450
e COWPUTE Y FOR ANGLE OF ATTACK R e » ey 03008500
(58 AND CONVERT TO RASTER UNITS R S T 0008510
3 (] ; iy 00008520
" 1A0AY(Y) = O Rl 005608530
¢ 00G0854C
P o T T T TDALF = ALPHA ¥ 36. / PI : 0GCGESSE
g IF ( ABS(DALF) .LT. .01) DALF = .01 00CB560
E S A AR P S R o N R ST A i s Fha vy A S 0COCESTC
E € ST occeesss ]
. € L2y =230 ¥ ta - 375 = Rl g 2 e 0G0C8sSe
f (7 10 KEPRESENTS THE NUMBER OF ENTRIES 0C056600
{ G- TO SNTRY CUNTAINING ZERC o : e croceel1d
) C 230 REPRESENTS 230 RASTER UNITS BETWEEN CO0CE620
€ 7 BACH ENIRY ONTTRE sTSPE o o 030CE630
{ & 575 IS THFE NUMBFR OF RASTER UNITS TO THF 30038640
c CENT=K OF THE ODISPLAY o THE DISPLAY 3 CCo0865°
1 ( IS 118) RASTER UNITS LONG IN THE Y CGORDe CCO0BERT
C 5 e 000CK6TD
E RADA = -DALF % 230. + 1725. CCOCEELEC
3 5 ¥ j ¥ T
I
| A-31
|




5 LEVEL 29 ADCUMP DATE = 74275 16711732

IRAGA = RAODA / 230.9 DC0GE690
C 090087C2
c 3509, REPRZSENTS THE HIGHEST RASTER 00008710
c GUES FROM 2352 RU TG 3505 PU ( 1150 RU,S ) 00088720
c UNIT USED IN THE CISPLAY . THE Y CCGRO. C0008739D
G e S e ey o Dt o SR : 00008740

DIFFA = RAGA — ( IRADA * 230 ) + 3500. 000C8750

AMDX = IRADA + 1 _ 00008760

DIFFA = DIFFA - 230.0 conCe770
C : e S 00008780
DO 1452 J = 1,5 00008790
c s 2 S R A L SN e LI v o e SRS M ___6onceson
IA0ATX(J) = TADA(ANDX) 00008810
 IAGAY(J#l) = DIFFA LAt i c00CB820
G : 00008830
. IF € TADAY(J+1) .LT. LOUR ) GO TO 145X 00008840
‘ c 00008850
! 3 DIFFA = DIFFA - 230.0 SEL SRt SR kel U 8 R DBODBRGD.
| TACAY(1) = TADAY (i) + 1 00008870
Lt ANBG S AND X B ol o e P e e s e : S 060008880
1450 CONTINUZ 00008850
: “X45Y CONTINUE: . i e e £ T 00008900
RETURN 08008910
END e e e R e S e e e e S e e A
P Feab e e s e D e e Mot e e St e e L e o A R R e i e T R
4
: AT "
E -
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This appendix documents the FORTRAN computer program
written to demonstrate the CPM technique. The details of the computer
program are given and a listing is included. Figure B-1 shows a
functional block flow chart for the program.

The initial setup portion of the program contains the decla-
ration of all matrices and of variables with abnormal type attributes.
Certain arrays are initialized to zero. The initial time is set to zero
and the numerical integration step size is set to 0.5 seconds.

The next section of coding contains read statements which
input from cards as follows: the initial state vector X(0) and the X-position
of the aircraft with respect to the earth X ; the reference state vector
XR; the reference control vector UR; the diagonal elements of the Q and
R matrices; the initial control settings (Uq,Uo, and US); the initial
setting for the autopilot's normalized percent throttle; a program control
switch named ISWT; and the number of iterations desired for program
execution, a parameter called ITIME. Table B-1 presents the input data
card structure for the eight input cards needed for the program. Note
that if ISWT is greater than zero the autopilot controls the aircraft,
but if ISWT is set less than zero, the aircraft motion is governed by
the approximate optimal control. In this section of coding certain off=
diagonal elements of the Q matrix were set equal to non-zero values.

Next the program prints the initial state vector, reference
state vector, reference control and diagonal elements of the Q and R
matrices.

The next step is the main loop of the program in which
values of the elements of the F and G matrices are computed from the
present value of the state vector. The four intermediate variables CL1,
CL2, L and AL1 are computed in this process, according to the equations
of Section 5.

The next section of coding implements an iterative technique
to obtain a numerical solution for the elements of the matrix K(X), which
is the positive definite symmetric solution to the algebraic Riccati equation.
Appendix C contains a detailed discussion of the numerical methad used to
compute K(X). This is the longest section of coding in the computer pro-
gram and consumes the major portion of the execution time.

The next section of coding contains write statements to
print some intermediate results. The G matrix; F matrix; the matrix Fg
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CARD

o

DATA

Initial values of state vector
X(0) and of Xe(O)

X __ vector
Reference state R ect

Ll swvecto
Reference contro ector
The seven diagonal elements
of Q matrix

The three diagonal elements
of R matrix

Initial control settings U1(O),
U,(0), Ug(0)

Initial setting for auto-pilot
normalized percent throttle
UPT L(3)

Program control patrameters

ISWT and ITIME where

ISWT = > 0O for auto-pilot
< O for optimal

ITIME = number of interations

2 ITIME = total number of
seconds of run

FIELDS

8(F10.5)

7(F10.5)
3(F10.9)

7(F10.5)

3(F10.5)

3(F10.5)

(F6.2)

(12, 16)

TABLE B-1 INPUT DATA CARD STRUTZTURE

TYRE

Real

Real
Real

Real

Real

Real

Real

Integer




used to start the iterative method of obtaining matrix K; the parameters
CL1, CL2, L and AL1; and the matrix K are printed.

The next several sections of coding calculate the approxi-
mate optimal control in the following manner. First, the approximate
optimal control vector is computed and the control values printed. Next,
appropriate limits, as discussed in Section 5, are applied to the approx-
imate optimal control to conform to realistic stick and throttle positions.
Finally, the approximate optimal controls after the limits have been
applied are printed.

The approximate solution to the Riccati equation (K) is
evaluated. This is done by computing the left hand side to Equation 5.23
which should equal zero. The result of this evaluation is then printed.

Next, the value of the cortrol variables are computed using
the autopilot functions described in Section 5.4. This solves the "non-
optimal" autopilot aircraft control equations. These autopilot control
values are then printed.

The following section of coding calculates the CPM when
the autopilot equations are used. The control error, (the approximate
optimal control subtracted from the autopilot generated control), is
computed followed by calculation of the CPM,

If ISWT is less than zero, the approximate optimal con-
trols are used and the program goes to the section of coding that
calculates the new state vector. If, however, ISWT is greater than
zero, the values for the CPM and the control erior are printed and
the autopilot generated controls are used. The aircraft state vector
will then reflect the impact of these non-optimal autopilot inputs when
the program updates the location of the aircraft.

Next, new values of the aircraft variables, are obtained
by numerical integration. Rectangular integration is used, with a fixed
step size of 0.5 seconds. The values of the new aircraft variables
and time are then printed.

Finally, the program determines if the flight calculation
is complete by comparing the number of main loop iterations to the
input parameter ITIME. If not, the program returns to the start of
the main loop (Point A in Figure B-1) for a new iteration. If the
number of iterations exceeds ITIME, the program terminates.

———




Extensive use is made by the main program of three r
subroutines documented in the IBM Scientific Subroutine Package:
(1) a matrix inversion subroutine called MINV which replaces the
square input matrix by its inverse; (2) a general matrix product sub-
routine called GMPRD that multiplies any two conformable matrices
and stores the result in a different matrix; and (3) a matrix addition
subroutina called MADD that stores the linear combination of twc
matrices of the same dimensions in a different matrix.

The following is a listing of the FORTRAN program just
described. i
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An iterative technique for computing an approximate
solution to the algebraic matrix Riccati equation:

GHF Kb s rer e ka0 (C-1)

is described in this section.

This equation arose in the development of the approximate
optimal control law for Segment 4 of the mission, as presented in
Section 5.2. The technique presented is an extension of Newton's
method first developed by Kleinman (1968 and 1970) and extended by
Sandell (1974) for algebraic Riccati equations. The technique calculates f
an approximate solution to the feedback gain matrix K which was imple- q
mented in the computer program as described in Appendix B.

1.0 CONDITIONS FOR A UNIQUE POSITIVE DEFINITE SOLUTION
TO THE ALGEBRAIC RICCATI EQUATION

As in Section 5, it is assumed that the constant matrices
R and @ are chosen such that they are both positive definite symmetric
matrices. The matrix K is defined to be a (7 x 7) symmetric matrix.
It has been shown (Bryson and Ho, 1967, Athans and Falb, 1966, and
Anderson and Moore, 1971) that a unique positive definite solution exists
for Equation C-1 if the matrix pair F, G are controllable, i.e., if for
the system of Section 5.1 the (7 x 21) matrix

has rank 7. For the state equations of Section 5.1, it was assumed that
this condition could be met for every value of X in the range of interest.




2.0 NEWTON'S METHOD

Kleinman (1968) has applied Newton's method in function
space to develop an iterative solution to the algebraic matrix Riccati
equation. A summary of the results is presented. Kleinman (1968)
contains the formal proofs for this technique.

Let Ki, i =0, 1, 2, ... be the sequence of unique
positive definite symmetric matrix solutions to the matrix equation:

6 Pl il EsBeT BT (C-2)
1 1 1 1 1 1

where Ti is the matrix computed from

T = R @ K (C-3)

P o= Pl Gard)
Choose a starting matrix T0 such that the matrix Fo, i.e.,

= - (C-
5 Fia 6 Tg (C-5)

has all of its eigenvalues with negative real parts. Then the sequence
of solutions K; will approach the unique positive definite symmetric
solution K to Equation C=1 in the limit as the index i tends toward
infinity (Kleinman, 1968), that is

lim Ki = K

i — o0 (C-6)

C-3
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Thus an approximation to the matrix K can be found by iterating
through the above procedure a finite number of times.

A starting value for the matrix T __ can be generated in
the following manner (Kleinman, 1970, and Sandell, 1974). Let T

: (0]
be given by

=Gl (C-7)

1 = =
B = f e £ GGT e £ dt (C-8)

The upper limit of integration, time t4, is arbitrary. The matrix
B can be computed by using the series expansion for the exponential
term in Equation (C-8), i.e.,

-Ft ®© k k
e =i |<_1T -F) t (C-9)
k=0 5

Equation C-9 is truncated at some appropriate number of terms and
Equation C-8 is numerically integrated. Since the system is assumed
controllable, the matrix E will have an inverse and the value of T,
will yield an Fg which has all of its eigenvalues with negative real
parts.

In order to use this technique, Equation C-2 must be
solved for K; for each iteration. A series solution to Equation C-2

was developed for this contract based on a technique proposed by
Smith (1968) to solve the matrix equation XA + BX = C. Let

T
(:i = Q+Ti RTi (C-10)

Then Equation C-2 becomes:

F',T e
i i ii

I
1
0

(C-11)




Adding and subtracting from the lefthand side of Equation C-11 a
factor € times the matrix K;, where € is a positive scalar parameter,
Equation C-11 can be put into the form of

b
[Fi + €l K o+ K, [I=i - el] = -C, (C-12)

where 1 is the identity matrix. Multiply both sides of Equation C-12
by the inverse of [Fi - €I]. Since F; has negative eigenvalues
(Kleinman, 1968), ¢ can be chosen such that the indicated inverse exists.
Then Equation C-12 can be put into the form

T -1 =
Ky = e1 + B K [er - Fi] i [el - Fi] (C-13)

A necessary and sufficient condition that Equation C-13 has a unique
solution for each Ci is that each Fi be a Hurwitzian matrix, i.e.,
all eigenvalues have negative real parts (Smith, 1968). Since Fi
will have all its eigenvalues with negative real parts, this condition
is met. A series solution for Ki which is convergent is given by

0 P o :
S [er + F—‘iT] G-1 ci[(e[ ~F) b
i=1

A
]

R s -2
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3.0 COMMENTS ON THE ITERATIVE SOLUTION TECHNIQUE

In order to implement the computation technique on a
digital computer, several approximations are required. In order to
obtain a starting value To for the method, the integral in Equation C-8
must be obtained. A series solution given by Equation C-9 is used
for the exponential. The number of terms in this series must be
selected. For the computer program discussed in Appendix B, the
series used 11 terms. An integration scheme must be used to calcu-
late matrix B. For the computer program described in Appendix B,
the integration time interval was from O to 1.5 seconds and rectangular
integration with a step size of 0.1 second was used. In order to solve
Equation C-2 for K;, the series solution given by Equation C-14 is used.
Kleinman recommends ten iterations for a good approximation. For this
method, as a first cut, we have used 20 iterations through the total
method, i.e., i = 20.

The sequence of Ki's, that is, Ko Ky, Ko, ... is mono-
tonically convergent from above, it is also quadratically convergent.
Once an Fy matrix has been found which has negative real parts for
its eigenvalues, then so does the F{ matrix, the F, matrix, the Fg
matrix, etc. In order to use Equation C-14 as an approximate solution
for the K; matrix, a value of € must be chosen. For the computer
program described in Appendix B, the value of € is chosen as 20.

With only limited experience, it was found that € had to be chosen
greater than one in order for the computer subroutine that calculates

the inverse to be numerically well behaved. Further investigation into
the choice of parameters, the number of terms that should be taken in
each series, the value of the starting matrix B is required to decrease
computation time. This technique, however, can be used on line. After
further investigation it should be possible to simplify this method to
generate a good approximation to the matrix K while requiring shorter
computation time. Figure C-8 shows a flow chart for the iterative
solution to the algebraic Riccati equation.
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